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Now when the little Dwarf heard that he was to dance a second time before the Infanta, and by her
own express command, he was so proud that he ran out into the garden, kissing the white rose in an

absurd ecstasy of pleasure, and making the most uncouth and clumsy gestures of delight.
”The Birthday of the Infanta”

by OSCAR WILDE





What inspired us to write this book

In the last five years, following the publishing of the first book about applying the Mond-
Pečarić method in operator inequalities, many new results were obtained by using said
method. That has inspired us write a new book. We have chosen important and interesting
chapters, which were (mostly) published in many mathematical journals and presented at
international conferences.

vii





Preface

In the field of operator theory, an inequality due to L. V. Kantorovich provides an exam-
ple of “sailing upstream”, regarding the usual course of development of converse inequali-
ties. However, we do not understand how L. V. Kantorovich interpreted the meaning of that
inequality. Actually, the inequality only appeared as a Lemma to solve a certain problem.
Those who have immortalized that inequality as “the Kantorovich inequality” are Greub
and Rheinboldt. Based on an inequality due to Kantorovich, they gave a beautiful and
simple formulation in terms of operators as follows: If A is a positive operator on a Hilbert
space H such that mI ≤ A ≤ MI for some scalars 0 < m ≤ M, then

〈Ax,x〉〈A−1x,x〉 ≤ (M +m)2

4Mm

holds for every unit vector x ∈ H.
Afterwards, in the course of a generalization by Ky Fan, and a converse of the arithme-

tic-geometric mean inequality by Specht, Mond and Pečarić give a definitive meaning to
“the Kantorovich inequality”. Namely, the Kantorovich inequality is a special case of the
converse of Jensen’s inequality: Under the same conditions as above the inequality

〈A−1x,x〉 ≤ (M +m)2

4Mm
〈Ax,x〉−1

holds for every unit vector x ∈ H and it estimates the upper bounds of the ratio in Jensen’s
inequality for f (t) = t−1. In the 1990’s, Mond and Pečarić formulate directly the converse
of various Jensen type inequalities. It might be said that, owing to their approach, the po-
sition of the Kantorovich inequality in the operator theory becomes clear for the first time.
Furthermore, in the background of the Kantorovich inequality, they find the viewpoint for
the converse of means, that is to say, the Kantorovich inequality is the converse of the
arithmetic-harmonic means inequality: Under the same conditions as above the inequality

〈Ax,x〉 ≤ (M +m)2

4Mm
〈A−1x,x〉−1

holds for every unit vector x ∈ H.
In order to carry out a converse evaluation, a considerable amount of laborious manual

calculation is required, including a complicated calculation depending on each particular

ix



case. In a long research series, Mond and Pečarić establish the method which gives the
converse to Jensen’s inequality associated with convex functions. This principle yields a
rich harvest in a field of operator inequalities. We call it the Mond-Pečarić method for
convex functions. One of the most important features of the Mond-Pečarić method is that
it offers a totally new viewpoint in the field of operator inequalities: Let Φ be a normalized
positive linear mapping on B(H) and f an operator convex function on an interval I. Then
Davis-Choi-Jensen’s inequality asserts that

f (Φ(A)) ≤ Φ( f (A)) (�)

holds for every self-adjoint operator A on a Hilbert space H whose spectrum is contained
in I. The operator convexity plays an essential role in the result above, that is, (�) would
be false if we replace operator convexity by general convexity. We have no relation what-
soever between f (Φ(A) and Φ( f (A)) under the operator ordering, but even so the Mond-
Pečarić method brings us the following estimate:

1
K(m,M, f )

Φ( f (A)) ≤ f (Φ(A)) ≤ K(m,M, f )Φ( f (A))

where

K(m,M, f ) = max

{
1

f (t)

(
f (M)− f (m)

M−m
(t−m)+ f (m)

)
: t ∈ [m,M]

}
.

This book is devoted to the recent developments of the Mond-Pečarić method in the
field of self-adjoint operators on a Hilbert space.

This book consists of eleven chapters:

In Chapter 1 we give a very brief and quick review of the basic facts about a Hilbert space
and (bounded linear) operators on a Hilbert space, which will recur throughout the
book.

In Chapter 2 we tell the history of the Kantorovich inequality, and describe how the Kan-
torovich inequality develops in the field of operator inequalities. In such context, the
method for convex functions established by Mond and Pečarić (commonly known as
“the Mond-Pečarić method”) has outlined a more complete picture of that inequality
in the field of operator inequalities. We discuss ratio and difference type converses
of operator versions of Jensen’s inequality. These constants in terms of spectra of
given self-adjoint operators have many interesting properties and are connected with
a closed relation, and play an essential role in the remainder of this book.

In Chapter 3 we explain fundamental operator inequalities related to the Furuta inequal-
ity. The base point is the Löwner-Heinz inequality. It induces weighted geometric
means, which serves as an excellent technical tool. The chaotic order logA ≥ logB
is conceptually important in the late discussion.

In Chapter 4 we study the order preserving operator inequality in another direction which
differs from the Furuta inequality. We investigate the Kantorovich type inequalities
related to the operator ordering and the chaotic one.
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In Chapter 5 as applications of the Mond-Pečarić method for convex functions, we dis-
cuss inequalities involving the operator norm. Among others, we show a converse of
the Araki-Cordes inequality, the norm inequality of several geometric means and a
complement of the Ando-Hiai inequality. Also, we discuss Hölder’s inequality and
its converses in connection with the operator geometric mean.

In Chapter 6 we define the geometric mean of n operators due to Ando-Li-Mathias and
Lowson-Lim. We present an alternative proof of the power convergence of the sym-
metrization procedure on the weighted geometric mean due to Lawson and Lim. We
show a converse of the weighted arithmetic-geometric mean inequality of n opera-
tors.

In Chapter 7 we give some differential-geometrical structure of operators. The space
of positive invertible operators of a unital C∗-algebra has the natural structure of a
reductive homogenous manifold with a Finsler metric. Then a pair of points A and B
can be joined by a unique geodesic A #t B for t ∈ [0,1] and we consider estimates of
the upper bounds for the difference between the geodesic and extended interpolation
paths in terms of the spectra of positive operators.

In Chapter 8 we give some properties of Mercer’s type inequalities. A variant of Jensen’s
operator inequality for convex functions, which is a generalization of Mercer’s result,
is proved. We show a monotonicity property for Mercer’s power means for operators,
and a comparison theorem for quasi-arithmetic means for operators.

In Chapter 9 a general formulation of Jensen’s operator inequality for some non-unital
fields of positive linear mappings is given. Next, we consider different types of
converse inequalities. We discuss the ordering among power functions in a general
setting. We get the order among power means and some comparison theorems for
quasi-arithmetic means. We also give a refined calculation of bounds in converses
of Jensen’s operator inequality.

In Chapter 10 we give Jensen’s operator inequality without operator convexity. We ob-
serve this inequality for n−tuples of self-adjoint operators, unital n−tuples of pos-
itive linear mappings and real valued convex functions with conditions on the op-
erators bounds. In the present context, we also give an extension and a refinement
of Jensen’s operator inequality. As an application we get the order among quasi-
arithmetic operator means.

In Chapter 11 we observe some operator versions of Bohr’s inequality. Using a general
result involving matrix ordering, we derive several inequalities of Bohr’s type. Fur-
thermore, we present an approach to Bohr’s inequality based on a generalization
of the parallelogram theorem with absolute values of operators. Finally, applying
Jensen’s operator inequality we get a generalization of Bohr’s inequality.
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Notation

R the set of all real numbers

C the set of all complex numbers

λ ,μ ,ν, etc. scalars

H,K,L, etc. Hilbert spaces over C

x,y,z, etc. vectors in H

〈x,y〉 the inner product of two vectors x and y

‖x‖ the norm of a vector x

B(H) the C∗-algebra of all bounded linear operators
on a Hilbert space H

A,B,C, etc. linear operators in (H → H)

‖A‖ the operator norm of an operator A

|A| the absolute value of an operator A

IH the identity operator in B(H)

O the zero operator

Sp(A) the spectrum of an operator A

ker A the kernel of an operator A

ran A the range of an operator A
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[A] the range projection of an operator A

r(A) the spectral radius of an operator A

A ≥ 0 a positive operator, 〈Ax,x〉 ≥ 0 for all x ∈ H

A > 0 a strictly positive operator, A is positive and invertible

A ≥ B the usual operator ordering among operators A and B

A 
 B the chaotic ordering among operators A > 0 and B > 0

A ∇t B the weighted arithmetic operator mean

A[n, t](A1, . . . ,An) the weighted arithmetic operator mean of n operators

A !t B the weighted harmonic operator mean

H[n, t](A1, . . . ,An) the weighted harmonic operator mean of n operators

A #t B the weighted geometric operator mean

A �t B the binary operation of A > 0 and B for t �∈ [0,1]

G[n, t](A1, . . . ,An) the weighted geometric operator mean of n operators

A ♦t B the weighted chaotically geometric operator mean

eA[n,t](logA1,...,logAn) the weighted chaotically geometric operator mean
of n operators

S(A|B) the relative operator entropy of A and B, A,B > 0

A mr,t B the interpolational path from A to B, A,B > 0

Dα(A,B) α-operator divergence, A,B > 0

d(A,B) the Thompson metric on the convex cone
of positive invertible operators A and B
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A ,B,C etc. unital C∗-algebras

1 the identity element in unital C∗-algebra

Φ,Ψ,Ω, etc. positive linear mappings on C∗-algebras

Pk[A ,B] the set of all fields (Φt)t∈T of positive
linear mappings Φt : A → B, such that∫
T Φt(1)dμ(t) = k1 for some scalar k > 0

Mr(A,ΦΦ) the power operator mean of order r ∈ R

Mϕ (A,ΦΦ) the quasi-arithmetic operator mean generated by
a function ϕ

M̃r(A,ΦΦ) Mercer’s power operator mean of order r ∈ R

M̃ϕ (A,ΦΦ) the quasi-arithmetic operator mean of Mercer’s type
generated by a function ϕ
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Chapter1
Preliminaries

In this chapter, we review the basic concepts of a Hilbert space and (bounded linear) oper-
ators on a Hilbert space, which will recur throughout the book.

1.1 Hilbert space and operators

Definition 1.1 A complex vector space H is called an inner product space if to each pairs
of vectors x and y in H is associated a complex number 〈x,y〉, called the inner product of
x and y, such that the following rules hold:

(i) For x,y ∈ H, 〈x,y〉 = 〈y,x〉, where the bar denotes complex conjugation.

(ii) If x,y and z ∈ H and α,β ∈ C, then 〈αx+ βy,z〉 = α〈x,z〉+ β 〈y,z〉.

(iii) 〈x,x〉 ≥ 0 for all x ∈ H and equal to zero if and only if x is the zero vector.

Theorem 1.1 (SCHWARZ INEQUALITY) Let H be an inner product space. If x and y ∈
H, then

|〈x,y〉|2 ≤ 〈x,x〉〈y,y〉 (1.1)

and the equality holds if and only if x and y are linearly dependent.
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2 1 PRELIMINARIES

Proof. If y = 0, then the inequality (1.1) holds. Suppose that y �= 0 and put

e =
1√〈y,y〉y.

Then we have

0 ≤ 〈x−〈x,e〉e,x−〈x,e〉e〉
= 〈x,x〉− 〈x,e〉〈x,e〉− 〈x,e〉〈e,x〉+ |〈x,e〉|2〈e,e〉
= 〈x,x〉−2|〈x,e〉|2 + |〈x,e〉|2
= 〈x,x〉− |〈x,e〉|2

and hence |〈x,e〉|2 ≤ 〈x,x〉. Therefore it follows that |〈x,y〉|2 ≤ 〈x,x〉〈y,y〉.
If the equality holds in the inequality above, then we have x−〈x,e〉e = 0, and so x and

y are linearly dependent. Conversely, if x and y are linearly dependent, that is, there exists
a constant α ∈ C such that x = αy �= 0, then it follows that

|〈x,y〉|2 = |〈αy,y〉|2 = |α|2|〈y,y〉|2 = 〈αy,αy〉〈y,y〉 = 〈x,x〉〈y,y〉.

We can prove it in the case of y = αx in the same way. �

Let H be an inner product space. Put

‖x‖ =
√
〈x,x〉 for all x ∈ H.

Then it follows that ‖ · ‖ is a norm on H:

(i) Positivity: ‖x‖ ≥ 0 and x = 0 if and only if ‖x‖ = 0.

(ii) Homogeneity: ‖αx‖ = |α|‖x‖ for all α ∈ C.

(iii) Triangular inequality: ‖x+ y‖ ≤ ‖x‖+‖y‖.

In fact, positivity and homogeneity are obvious by Definition 1.1. Triangular inequality
follows from

‖x+ y‖2 = ‖x‖2 +2Re〈x,y〉+‖y‖2

≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x‖+‖y‖)2

by Schwarz’s inequality (Theorem 1.1). Therefore, ‖x‖ is a norm on H.

Definition 1.2 If an inner product space H is complete with respect to the norm derived
from the inner product, then H is said to be a Hilbert space.

Some examples of Hilbert spaces will now be given.
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Example 1.1 The space Cn of all n-tuples of complex numbers with the inner product
between x = (α1,α2, · · · ,αn) and y = (β1,β2, · · · ,βn) given by

〈x,y〉 =
n

∑
i=1

αiβi

is a Hilbert space.

Example 1.2 The space l2 of all sequences of complex numbers (α1,α2, · · · ,αn, · · · ) with

∞

∑
i=1

|αi|2 < ∞

and the inner product between x = (α1,α2, · · · ,αn, · · · ) and y = (β1,β2, · · · ,βn, · · · ) given
by

〈x,y〉 =
∞

∑
i=1

αiβi

is a Hilbert space.

A linear operator A on a Hilbert space H is said to be bounded if there exists c > 0 such
that ‖Ax‖ ≤ c‖x‖ for all x ∈ H. Let us define ‖A‖ by

‖A‖ = inf{c > 0 : ‖Ax‖ ≤ c‖x‖ for all x ∈ H.}
Then ‖A‖ is said to be the operator norm of A. By definition,

‖Ax‖ ≤ ‖A‖‖x‖ for all x ∈ H.

In fact, for each x �= 0, ‖Ax‖ ≤ c‖x‖ implies ‖Ax‖
‖x‖ ≤ c. Taking the inf of c, we have

‖Ax‖
‖x‖ ≤ ‖A‖.

We begin by adopting the word “operator” to mean a bounded linear operator.
B(H) will now denote the algebra of all bounded linear operators on a Hilbert space

H �= {0} and IH stands for the identity operator.
The following lemma shows some characterizations of the operator norm.

Lemma 1.1 For any operator A ∈ B(H), the following formulae hold:

‖A‖ = sup{‖Ax‖ : ‖x‖ = 1, x ∈ H}
= sup

{‖Ax‖
‖x‖ : x �= 0, x ∈ H

}
= sup{|〈Ax,y〉| : ‖x‖ = ‖y‖ = 1, x,y ∈ H}

Proof. Put

γ1 = sup{‖Ax‖ : ‖x‖ = 1} and γ2 = sup

{‖Ax‖
‖x‖ : x �= 0

}
.
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For ‖x‖ = 1, we have ‖Ax‖ ≤ ‖A‖‖x‖= ‖A‖ and hence γ1 ≤ ‖A‖. For x �= 0, we have

‖Ax‖
‖x‖ = ‖A x

‖x‖‖ ≤ γ1

and hence γ2 ≤ γ1. For an arbitrary ε > 0, there exists a nonzero vector x ∈ H such that
(‖A‖− ε)‖x‖< ‖Ax‖ and hence

‖A‖− ε <
‖Ax‖
‖x‖ ≤ γ2.

This fact implies ‖A‖ ≤ γ2. Therefore we have ‖A‖ = γ1 = γ2.
Put

γ3 = sup{|〈Ax,y〉| : ‖x‖ = 1,‖y‖ = 1}.
Since |〈Ax,y〉| ≤ ‖Ax‖‖y‖ = ‖Ax‖ ≤ γ1 for ‖x‖ = ‖y‖ = 1, we have γ3 ≤ γ1. Conversely,
for Ax �= 0, we have

‖Ax‖ = |〈Ax,
Ax

‖Ax‖〉| ≤ γ3

and hence γ1 ≤ γ3. Therefore the proof is complete. �

Theorem 1.2 The following properties hold for A,B ∈ B(H):

(i) If A �= O, then ‖A‖ > 0,

(ii) ‖αA‖ = |α|‖A‖ for all α ∈ C,

(iii) ‖A+B‖≤ ‖A‖+‖B‖,
(iv) ‖AB‖ ≤ ‖A‖‖B‖.

Proof.
(i) If A �= O, then there exists a nonzero vector x∈H such that Ax �= 0. Hence 0 < ‖Ax‖≤
‖A‖‖x‖, therefore ‖A‖ > 0.
(ii) If α = 0, then ‖αA‖ = ‖O‖ = 0 = |α|‖A‖. If α �= 0, then

‖αA‖ = sup{‖(αA)x‖ : ‖x‖ = 1}
= sup{|α|‖Ax‖ : ‖x‖ = 1}
= |α|sup{‖Ax‖ : ‖x‖ = 1} = |α|‖A‖.

(iii) If ‖x‖ = 1, then ‖(A+B)x‖= ‖Ax+Bx‖ ≤ ‖Ax‖+‖Bx‖ ≤ ‖A‖+‖B‖, therefore we
have

‖A+B‖= sup{‖(A+B)x‖ : ‖x‖ = 1} ≤ ‖A‖+‖B‖.
(iv) If ‖x‖ = 1, then ‖(AB)x‖ = ‖A(Bx)‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖, therefore we have

‖AB‖ = sup{‖(AB)x‖ : ‖x‖ = 1} ≤ ‖A‖‖B‖.
�
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Theorem 1.3 (RIESZ REPRESENTATION THEOREM) For each bounded linear functional
f from H to C, there exists a unique y ∈ H such that

f (x) = 〈x,y〉 for all x ∈ H.

Moreover, ‖ f‖ = ‖y‖.
Proof. Define M = {x ∈ H : f (x) = 0}. Then M is closed. If M = H, then f = 0 and

we can choose y = 0. If M �= H, then M⊥ �= {0}. For x0 ∈ M⊥\{0}, we have f (x0) �= 0.
Since

f (x− f (x)
f (x0)

x0) = f (x)− f (x)
f (x0)

f (x0) = 0 for all x ∈ H,

it follows that x− f (x)
f (x0)

x0 ∈ M . Hence we have

〈x− f (x)
f (x0)

x0,x0〉 = 0

and 〈x,x0〉 = f (x)
f (x0)

‖x0‖2. If we put y = f (x0)
‖x0‖2 x0, then we have f (x) = 〈x,y〉 for all x ∈ H.

For the uniqueness, suppose that f (x) = 〈x,y〉 = 〈x,z〉 for all x ∈ H. In this case,
〈x,y− z〉 = 0 for all x ∈ H implies y− z = 0.

Finally,
| f (x)| = |〈x,y〉| ≤ ‖x‖‖y‖

implies ‖ f‖ ≤ ‖y‖. Conversely,

‖y‖2 = |〈y,y〉| = | f (y)| ≤ ‖ f‖‖y‖
implies ‖y‖ ≤ ‖ f‖. Therefore, we have ‖ f‖ = ‖y‖. �

For a fixed A ∈ B(H), a functional on H defined by

x �→ 〈Ax,y〉 ∈ C

is bounded linear on H. By the Riesz representation theorem, there exists a unique y∗ ∈ H
such that

〈Ax,y〉 = 〈x,y∗〉 for all x ∈ H.

We now define
A∗ : y �→ y∗,

the mapping A∗ being called the adjoint of A. In summary,

〈Ax,y〉 = 〈x,A∗y〉 for all x,y ∈ H.

Theorem 1.4 The adjoint operation is closed in B(H) and moreover

(i) ‖A∗‖ = ‖A‖,
(ii) ‖A∗A‖ = ‖A‖2.
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Proof.
(i): For y1,y2 ∈ H and α1,α2 ∈ C,

〈Ax,α1y1 + α2y2〉 = α1〈Ax,y1〉+ α2〈Ax,y2〉
= α1〈x,A∗y1〉+ α2〈x,A∗y2〉
= 〈x,α1A

∗y1 + α2A
∗y2〉 for all x ∈ H.

This implies A∗(α1y1 + α2y2) = α1A∗y1 + α2A∗y2 and A∗ is linear. Next,

‖A∗y‖ = sup{|〈x,A∗y〉| : ‖x‖ = 1}
= sup{|〈Ax,y〉| : ‖x‖ = 1}
≤ sup{‖Ax‖‖y‖ : ‖x‖ = 1} = ‖A‖‖y‖,

hence A∗ is bounded and ‖A∗‖ ≤ ‖A‖. Therefore, the adjoint operation is closed in B(H).
Since (A∗)∗ = A, we have

‖A‖ = ‖(A∗)∗‖ ≤ ‖A∗‖
and hence ‖A∗‖ = ‖A‖.
(ii): Since ‖Ax‖2 = 〈Ax,Ax〉 = 〈A∗Ax,x〉 ≤ ‖A∗A‖‖x‖2 for every x ∈ H, we have ‖A‖2 ≤
‖A∗A‖.

On the other hand, (i) gives ‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2. Hence the equality

‖A∗A‖ = ‖A‖2

holds for every A ∈ B(H). �

1.2 Self-adjoint operators

We present relevant classes of operators:

Definition 1.3 An operator A ∈ B(H) is said to be

(i) self-adjoint or Hermitian if A = A∗,

(ii) positive if 〈Ax,x〉 ≥ 0 for x in H,

(iii) unitary if A∗A = AA∗ = IH,

(iv) isometry if A∗A = IH ,

(v) projection if A = A∗ = A2.

The following theorem gives characterizations of self-adjoint operators.
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Theorem 1.5 If A ∈ B(H), the following three statements are mutually equivalent.

(i) A is self-adjoint.

(ii) 〈Ax,y〉 = 〈x,Ay〉 for all x,y ∈ H.

(iii) 〈Ax,x〉 ∈ R for all x ∈ H.

Proof.
(i) ⇐⇒ (ii): If A is self-adjoint, then 〈Ax,y〉 = 〈x,A∗y〉 = 〈x,Ay〉. Conversely suppose
that (ii) holds. Since 〈x,A∗y〉 = 〈x,Ay〉 for all x,y ∈ H, we have A∗y = Ay, so that A = A∗.
(ii) ⇐⇒ (iii): If we put y = x in (ii), then

〈Ax,x〉 = 〈x,Ax〉 = 〈Ax,x〉,
so 〈Ax,x〉 is real. Thus (ii) implies (iii). Finally, suppose that (iii) holds. For each x
and y ∈ H, if we put w = x + y, then 〈Aw,w〉 is real, or 〈Aw,w〉 = 〈w,Aw〉. Expanding
〈A(x+ y),x+ y〉= 〈x+ y,A(x+ y)〉, we have

〈Ax,y〉+ 〈Ay,x〉 = 〈x,Ay〉+ 〈y,Ax〉
and Im〈Ax,y〉 = Im〈x,Ay〉. Replacing x by ix, we have Re〈Ax,y〉 = Re〈x,Ay〉. Therefore it
follows that 〈Ax,y〉 = 〈x,Ay〉. Thus (iii) implies (ii). �

The spectrum of an operator A is the set

Sp(A) = {λ ∈ C : A−λ IH is not invertible in B(H)}.
The spectrum Sp(A) is nonempty and compact. An operator A on a Hilbert space H is
bounded below if there exists ε > 0 such that ‖Ax‖ ≥ ε‖x‖ for every x ∈ H. As a useful
criterion for the invertibility of an operator, it is well known that A is invertible if and only
if both A and A∗ are bounded below.

The spectral radius r(A) of an operator A is defined by

r(A) = sup{|α| : α ∈ Sp(A)}.
Then we have the following relation between the operator norm and the spectral radius.

Theorem 1.6 For an operator A, the spectral radius is not greater than the operator
norm:

r(A) ≤ ‖A‖.
Proof. If |α| > ‖A‖, then IH −α−1A is invertible and hence A−αIH is so. Therefore

we have α �∈ Sp(A) and this implies r(A) ≤ ‖A‖. �

Let A be a self-adjoint operator on a Hilbert space H. We define

mA = inf
‖x‖=1

〈Ax,x〉 and MA = sup
‖x‖=1

〈Ax,x〉. (1.2)
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Theorem 1.7 For a self-adjoint operator A, Sp(A) is real and Sp(A) ⊆ [mA,MA].

Proof. If λ = α + iβ with α,β real and β �= 0, then we must show that A−λ IH is
invertible. Put B = 1

β (A−αIH). Since B is self-adjoint and B− iIH = 1
β (A− λ IH), it

follows that A−λ IH is invertible if and only if B− iIH is invertible. For every x ∈ H, we
have

‖(B± iIH)x‖2 = ‖Bx‖2− i〈x,Bx〉+ i〈Bx,x〉+‖x‖2

= ‖Bx‖2 +‖x‖2 ≥ ‖x‖2,

so B− iIH and (B− iIH)∗ are bounded below. Therefore B− iIH is invertible, and hence the
spectrum of a self-adjoint operator is real.

Next, to prove Sp(A) ⊂ [mA,MA], it is enough to show that λ > MA implies λ �∈ Sp(A).
If λ > MA and ε = λ −MA > 0, then

〈(λ IH −A)x,x〉 = λ 〈x,x〉− 〈Ax,x〉 ≥ λ 〈x,x〉−MA〈x,x〉
= ε〈x,x〉 ≥ 0 by the definition of MA.

Hence it follows that ‖(A−λ IH)x‖ ≥ ε‖x‖ for every x ∈H, so, A−λ IH is bounded below.
Since A−λ IH is self-adjoint, it follows that A−λ IH is invertible and λ �∈ Sp(A). �

Definition 1.4 Let A and B be self-adjoint operators on H. We write A ≥ B if A−B is
positive, i.e. 〈Ax,x〉 ≥ 〈Bx,x〉 for every x ∈H. In particular, we write A≥ 0 if A is positive,
A > 0 if A is positive and invertible.

Now, we review the continuous functional calculus. A rudimentary functional calculus
for an operator A can be defined as follows: For a polynomial p(t) = ∑k

j=0 α jt j, define

p(A) = α0IH + α1A+ α2A
2 + · · ·+ αkA

k.

The mapping p → p(A) is a homomorphism from the algebra of polynomials to the alge-
bra of operators. The extension of this mapping to larger algebras of functions is really
significant in operator theory.

Let A be a self-adjoint operator on a Hilbert space H. Then the Gelfand mapping es-
tablishes a ∗-isometrically isomorphism Φ between C∗-algebraC(Sp(A)) of all continuous
functions on Sp(A) and C∗-algebra C∗(A) generated by A and the identity operator IH on
H as follows: For f ,g ∈C(Sp(A)) and α,β ∈ C

(i) Φ(α f + βg) = αΦ( f )+ β Φ(g),

(ii) Φ( f g) = Φ( f )Φ(g) and Φ( f ) = Φ( f )∗ ,

(iii) ‖Φ( f )‖ = ‖ f‖
(

:= sup
t∈Sp(A)

| f (t)|
)

,

(iv) Φ( f0) = IH and Φ( f1) = A, where f0(t) = 1 and f1(t) = t.
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With this notation, we define
f (A) = Φ( f )

for all f ∈ C(Sp(A)) and we call it the continuous functional calculus for a self-adjoint
operator A. It is an extension of p(A) for a polynomial p. The continuous functional
calculus is applicable.

Theorem 1.8 Let A be a self-adjoint operator on H.

(i) f ∈C(Sp(A)) and f ≥ 0 implies f (A) ≥ 0.

(ii) f ,g ∈C(Sp(A)) and f ≥ g implies f (A) ≥ g(A).

(iii) A ≥ 0 and f1/2(t) =
√

t implies f1/2(A) = A1/2.

(iv) fs(t) = |t| implies fs(A) = |A|.

Proof.
(i) Since f ≥ 0, we can choose g =

√
f ∈ C(Sp(A)) and f = g2 = gg. Hence we have

f (A) = g(A)∗g(A) ≥ 0.
(ii) follows from (i).
(iii) Since A ≥ 0, it follows from Theorem 1.7 that f1/2(t) =

√
t ∈C(Sp(A)). Also, f1 =

f 2
1/2 implies A = f1(A) = f1/2(A)2. By (i), we have f1/2(A)≥ 0 and hence f1/2(A) = A1/2.

(iv) f 2
s = f 2

1 implies fs(A)2 = A2 = |A|2. Since fs(A) ≥ 0, we have fs(A) = |A|. �

We remark that the absolute value of an operator A is defined by |A| = (A∗A)1/2.

Theorem 1.9 An operator A is positive if and only if there is an operator B such that
A = B∗B.

Proof. If A is positive, take B =
√

A. If A = B∗B, then 〈Ax,x〉= 〈B∗Bx,x〉= ‖Bx‖2 ≥ 0
for every x ∈ H. This yields that A is positive. �

Theorem 1.10 (GENERALIZED SCHWARZ’S INEQUALITY) If A is positive, then

|〈Ax,y〉|2 ≤ 〈Ax,x〉〈Ay,y〉

for every x,y ∈ H.

Proof. It follows from Theorem 1.1 that

|〈Ax,y〉|2 = |〈A1/2x,A1/2y〉|2 ≤ ‖A1/2x‖2‖A1/2y‖2 = 〈Ax,x〉〈Ay,y〉.

�

Theorem 1.11 Let A be a self-adjoint operator on H. Then

(i) mAIH ≤ A ≤ MAIH,
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(ii) ‖A‖ = max{|mA|, |MA|} = sup{|〈Ax,x〉| : ‖x‖ = 1},
where mA and MA are defined by (1.2).

Proof. The assertion (i) is clear by definition of mA and MA.
Next, put K = max{|mA|, |MA|}. It is easily checked that

K = sup{|〈Ax,x〉| : ‖x‖ = 1} ≤ ‖A‖.
By (i), we have

−K‖x‖2 ≤ m‖x‖2 ≤ 〈Ax,x〉 ≤ M‖x‖2 ≤ K‖x‖2.

For each x,y ∈ H, since

|〈A(x+ y),x+ y〉| ≤ K‖x+ y‖2 and |〈A(x− y),x− y〉| ≤ K‖x− y‖2,

it follows that

|〈A(x+ y),x+ y〉− 〈A(x− y),x− y〉|≤ K(‖x+ y‖2 +‖x− y‖2).

By the parallelogram identity, we have

4|Re〈Ax,y〉| ≤ 2K(‖x‖2 +‖y‖2). (1.3)

Put y = ‖x‖
‖Ax‖Ax for Ax �= 0. Then ‖x‖ = ‖y‖ and Re〈Ax,y〉 = ‖x‖‖Ax‖. Therefore, by (1.3)

we have
‖Ax‖ ≤ K‖x‖. (1.4)

If Ax = 0, then (1.4) holds automatically. Hence we have ‖A‖ ≤ K. Therefore we have
‖A‖ = K. �

Corollary 1.1 If A is a self-adjoint operator, then r(A) = ‖A‖ and ‖An‖= ‖A‖n for n∈N.

Proof. By Theorem 1.11, it follows that r(A) = ‖A‖. By the spectral mapping theorem,
we have p(Sp(A)) = Sp(p(A)) for polynomial p. Therefore, we have ‖A‖n = r(A)n =
r(An) = ‖An‖. �

1.3 Spectral decomposition theorem

We shall introduce the spectral decomposition theorem for self-adjoint, bounded linear
operators on a Hilbert space H. To show it, we need the following notation and lemma.

Definition 1.5 If A is an operator on a Hilbert space H, then the kernel of A, denoted by
ker A, is the closed subspace {x ∈H : Ax = 0}, and the range of A, denoted by ran A, is the
subspace {Ax : x ∈ H}.
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Lemma 1.2 If A is an operator on a Hilbert space H, then

ker A = (ran A∗)⊥ and ker A∗ = (ran A)⊥.

Proof. If x ∈ ker A, then 〈A∗y,x〉 = 〈y,Ax〉 = 0 for all y ∈ H, and hence x is orthogonal
to ran A∗. Conversely, if x is orthogonal to ran A∗, then 〈Ax,y〉= 〈x,A∗y〉= 0 for all y ∈H,
which implies Ax = 0. Therefore, x ∈ ker A and hence ker A = (ran A∗)⊥. We have the
second relation by replacing A by A∗. �

Definition 1.6 A family of projections {e(λ ) : λ ∈ R} is said to be a resolution of the
identity if the following properties hold:

(i) λ < λ ′ =⇒ e(λ ) ≤ e(λ ′),

(ii) e(−∞) = O and e(∞) = IH,

(iii) e(λ +0) = e(λ ) (−∞ < λ < ∞),

where e(λ +0) = s− lim
μ→λ+0

e(μ).

Theorem 1.12 Let A be a self-adjoint operator on a Hilbert space H and m = mA,M =
MA as defined by (1.2). Then there exists a resolution of the identity {e(λ ) : λ ∈ R} such
that

A =
∫ M

m−0
λ de(λ ), e(m−0) = 0 and e(M) = IH .

In particular,

〈Ax,x〉 =
∫ M

m−0
λ d〈e(λ )x,x〉 for every x ∈ H. (1.5)

Proof. We prove only (1.5). Put e(λ ) = proj(ker((A− λ IH)+)) for λ ∈ R, where
A+ = (|A|+A)/2. Then it follows that {e(λ ) : λ ∈ R} is a resolution of the identity and
e(m−0) = 0, e(M) = IH :
(i) Let λ < λ ′. Since A−λ IH ≥ A−λ ′IH , we have (A−λ IH)+ ≥ (A−λ ′IH)+ ≥ 0. If
(A−λ IH)+x = 0, then

0 = 〈(A−λ IH)+x,x〉 ≥ 〈(A−λ ′IH)+x,x〉 ≥ 0

and hence (A−λ ′IH)x = 0. Therefore, we have ker((A−λ IH)+) ⊂ ker((A−λ ′IH)+) and
this implies e(λ ) ≤ e(λ ′).
(ii) If x ∈ ran(e(λ )) = ker((A− λ IH)+), then (A− λ IH)+x = 0 implies (A− λ IH)x =
−(A−λ IH)−x and hence

〈(A−λ IH)x,x〉 = −〈(A−λ IH)−x,x〉 ≤ 0.

Therefore we have 〈Ax,x〉 ≤ λ‖x‖2.
(iii) If x ∈ ran(IH − e(λ )) = (ker((A− λ IH)+)⊥, then (A−λ IH)−x ∈ ker((A− λ IH)+)
because (A−λ IH)+(A−λ IH)− = 0. Hence 〈(A−λ IH)−x,x〉 = 0 and 〈(A−λ IH)x,x〉 =
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〈(A− λ IH)+x,x〉 ≥ 0. Therefore we have 〈Ax,x〉 ≥ λ‖x‖2. If the equality holds, then
〈(A−λ IH)+x,x〉 = 0 and hence (A−λ IH)x = 0. Therefore we have x ∈ ker((A−λ IH)+)
and hence x = 0. Summing up, x ∈ ran(IH − e(λ )), x �= 0 implies 〈Ax,x〉 > λ‖x‖2.
(iv) If λ < m and x ∈ ran(e(λ )), then it follows from (ii) that m‖x‖2 ≤ 〈Ax,x) ≤ λ‖x‖2

and hence x = 0. Therefore we have e(λ ) = O, so that e(m−0) = O.
(v) If λ ≥ M and x ∈ ran(IH − e(λ )), then it follows from (iii) that λ‖x‖2 ≤ 〈Ax,x〉 ≤
M‖x‖2 and hence x = 0. Therefore we have IH − e(λ ) = O, so that e(λ ) = IH . In particu-
lar, we have e(M) = IH .
(vi) If λ < m or λ ≥ M, then it follows from (iv), (v) that e(λ ) = e(λ − 0). Sup-
pose that m ≤ λ < M. Put P = e(λ − 0)− e(λ ). For λ < λ ′ < M, we have ran(P) ⊂
ran(e(λ ′)− e(λ ))′)− e(λ )) = ran(e(λ ′))∩ ran(IH − e(λ )). Hence x ∈ ran(P) and x �= 0
implies λ‖x‖2 < 〈Ax,x〉 ≤ λ ′‖x‖2 by (ii) and (iii). As λ ′ → λ +0, we get λ‖x‖2 < λ‖x‖2,
which is a contradiction. Thereforewe have ran(P)= {0}, so that P = e(λ +0)−e(λ )= O.

For all ε > 0, we choose δ > 0 such that

Δ : α = λ0 < λ1 < · · · < λn = β , ξk ∈ [λk−1,λk] k = 1, · · · ,n,

and
|Δ| = max{λk −λk−1 : k = 1, · · · ,n} < δ .

Since A commutes with e(λ ) for each λ ∈ R, it follows that

A =
n

∑
k=1

A(e(λk)− e(λk−1)) .

For every x ∈ H, we have∣∣∣∣∣〈Ax,x〉−
n

∑
k=1

ξk〈(e(λk)− e(λk−1))x,x〉
∣∣∣∣∣

=

∣∣∣∣∣ n

∑
k=1

〈A(e(λk)− e(λk−1))x,x〉−
n

∑
k=1

ξk〈(e(λk)− e(λk−1))x,x〉
∣∣∣∣∣

≤
n

∑
k=1

|〈(A− ξkI)(e(λk)− e(λk−1))x,(e(λk)− e(λk−1))x〉|

≤
n

∑
k=1

(λk −λk−1)‖(e(λk)− e(λk−1))x‖2

≤ |Δ|‖x‖2 ≤ ε.

Hence we have the desired result 〈Ax,x〉 =
∫ M
m−0 λ d〈e(λ )x,x〉. �

Definition 1.7 Let A be a self-adjoint operator on a Hilbert space H and m = mA,M =
MA as defined by (1.2). For a real valued continuous function f (λ ) on [m,M], a self-adjoint
operator f (A) is defined by

f (A) =
∫ M

m−0
f (λ )de(λ ).
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In particular,

Ar =
∫ M

m−0
λ r de(λ ) for all r > 0 and A

1
2 =

∫ M

m−0
λ

1
2 de(λ ).

In the last part of this chapter, we present the polar decomposition for an operator.
Every complex number can be written as the product of a nonnegative number and a

number of modulus one:

z = |z|eiθ for a complex number z.

We shall attempt a similar argument for operators on an infinite dimensional Hilbert space.
Before considering this result, we need to introduce the notion of a partial isometry.

Definition 1.8 An operator V on a Hilbert space H is a partial isometry if ‖Vx‖ = ‖x‖
for x ∈ (ker V )⊥, which is called the initial space of V .

We consider a useful characterization of partial isometries:

Lemma 1.3 Let V be an operator on a Hilbert space H. The following are equivalent:

(i) V is a partial isometry.

(ii) V ∗ is a partial isometry.

(iii) V ∗V is a projection.

(iv) VV ∗ is a projection.

Moreover, if V is a partial isometry, then VV ∗ is the projection onto the range of V ,
while V ∗V is the projection onto the initial space.

Proof. Suppose that V is a partial isometry. Since

〈(I−V ∗V )x,x〉 = 〈x,x〉− 〈V ∗Vx,x〉 = ‖x‖2−‖Vx‖2 for x ∈ H,

it follows that I−V ∗V is a positive operator. Now if x is orthogonal to ker V , then ‖Vx‖ =
‖x‖ which implies that 〈(I−V ∗V )x,x〉 = 0. Since ‖(I−V ∗V )1/2x‖2 = 〈(I−V ∗V )x,x) = 0,
we have (I −V ∗V )x = 0 or V ∗Vx = x. Therefore, V ∗V is the projection onto the initial
space of V .

Conversely, if V ∗V is a projection and x is orthogonal to ker V ∗V , then V ∗Vx = x.
Therefore,

‖Vx‖2 = 〈V ∗Vx,x〉 = 〈x,x〉 = ‖x‖2,

and hence V preserves the norm on (ker V ∗V )⊥. Moreover, if V ∗Vx = 0, then 0 =
〈V ∗Vx,x〉 = ‖Vx‖2 and consequently ker V ∗V = ker V . Therefore, V is a partial isom-
etry, and hence (i) and (iii) are equivalent.

Similarly, we have the equivalence of (ii) and (iv).
Moreover, if V ∗V is a projection, then (VV ∗)2 = VV ∗VV ∗ = VV ∗, since V (V ∗V ) = V .

Therefore, VV ∗ is a projection, which completes the proof. �

We now obtain the polar decomposition for an operator.
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Theorem 1.13 If A is an operator on a Hilbert space H, then there exists a positive
operator P and a partial isometry V such that A = VP. Moreover, V and P are unique if
ker P = ker V .

Proof. If we set P = |A|, then

‖Px‖2 = 〈Px,Px〉 = 〈P∗Px,x〉 = 〈A∗Ax,x〉 = ‖Ax‖2 for x ∈ H.

Thus, if we define Ṽ on ran P such that ṼPx = Ax, then Ṽ is well defined and is isometric.
Hence, Ṽ can be extended uniquely to an isometry from clos(ranP) to H. If we further
extend Ṽ to H by defining it to be the zero operator on (ranP)⊥, then the extended ex-
tended operator V is a partial isometry satisfying A =VP and ker V = (ranP)⊥ = ker P by
Lemma 1.3.

We next consider uniqueness. Suppose A = WQ, where W is a partial isometry, Q is a
positive operator, and ker W = ker Q. Then P2 = A∗A = QW ∗WQ = Q2, since W ∗W is the
projection onto

(ker W )⊥ = (ker Q)⊥ = clos(ran Q).

Thus, by the uniqueness of the square root, we have P = Q and henceWP =VP. Therefore,
W = V on ran P. But

(ran P)⊥ = ker P = ker W = ker V

and hence W = V on (ran P)⊥. Therefore, V = W and the proof is complete. �

Corollary 1.2 If A is an operator on a Hilbert space H, then there exists a positive op-
erator Q and a partial isometry W such that A = QW. Moreover, W and Q are unique if
ran Q = (ker Q)⊥.

Proof. By Theorem 1.13, we obtain a partial isometry V and a positive operator P
such that A∗ = VP. Taking adjoints we have A = PV ∗, which is the form that we desire
with W =V ∗ and Q = P. Moreover, the uniqueness also follows from Theorem 1.13 since
ran W = (ker Q)⊥ if and only if

ker V = ker W ∗ = (ran W )⊥ = (ker Q)⊥⊥ = ker P.

�

1.4 Notes

For our exposition we have used [276], [45], [143], [18].



Chapter2
Kantorovich Inequality and
Mond-Pečarić Method

This chapter tells the history of the Kantorovich inequality, and describes how the Kan-
torovich inequality has developed in the field of operator inequalities. In such context, so
called “the Mond-Pečarić method” for convex functions established by Mond and Pečarić
has outlined a more complete picture of that inequality in the field of operator inequalities.

2.1 History

The story of the Kantorovich inequality is a very interesting example how a mathematician
creates mathematics. It provides a deep insight into how a principle raised from the Kan-
torovich inequality has developed in the field of operator inequalities on a Hilbert space,
and perhaps, more importantly, it has initiated a new way of thinking and new methods in
operator theory, noncommutative differential geometry, quantum information theory and
noncommutative probability theory. We call this principle the Mond-Pečarić method for
convex functions.

In 1959, Greub and Rheinboldt published the celebrated paper [132]. It is just the
birth of the Kantorovich inequality. They stated that Kantorovich proved the following
inequality.

15
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Theorem K1 If the sequence {γk} (k = 1,2, · · ·) of real numbers has the property

0 < m ≤ γk ≤ M

and {ξk} (k = 1,2, · · ·) denotes another sequence with ∑∞
k=1 ξ 2

k < ∞, then the inequality

∞

∑
k=1

γkξ 2
k

∞

∑
k=1

1
γk

ξ 2
k ≤ (M +m)2

4Mm

[
∞

∑
k=1

ξ 2
k

]2

(2.1)

holds.
It seems to be the first paper which introduced (2.1) to the world of mathematics. More-

over, they say that Kantorovich pointed out that (2.1) is a special case of the following
inequality enunciated by G. Pólya and G. Szegö [253].

Theorem PS If real numbers ak and bk (k = 1, · · · ,n) fulfill the conditions

0 < m1 ≤ ak ≤ M1 and 0 < m2 ≤ bk ≤ M2

respectively, then

1 ≤ ∑n
k=1 a2

k ∑n
k=1 b2

k

[∑n
k=1 akbk]

2 ≤ (M1M2 +m1m2)2

4m1m2M1M2
. (2.2)

To understand (2.1) in Theorem K1 well, if we put ξk = 1/
√

n for k = 1, · · · ,n, then
(2.1) implies

γ1 + · · ·+ γn

n
· γ−1

1 + · · ·+ γ−1
n

n
≤ (M +m)2

4Mm
. (2.3)

Summing up, whenever γ ′ks move in the closed interval [m,M], the left-hand side of (2.3)

does not absolutely exceed the constant (M+m)2
4Mm . At present, the constant (M+m)2

4Mm is called
the Kantorovich constant.

Greub and Rheinboldt moreover went ahead with the ideas of Kantorovich and proved
the following theorem as a generalization of the Kantorovich inequality.

Theorem K2 Given a self-adjoint operator A on a Hilbert space H. If A fulfills the
condition

mIH ≤ A ≤ MIH for some scalars 0 < m ≤ M,

then

〈x,x〉2 ≤ 〈Ax,x〉〈A−1x,x〉 ≤ (M +m)2

4Mm
〈x,x〉2 (2.4)

for all x ∈ H.
Though this formulation is very simple, how to generalize (2.1) might be not plain. In

the case that A is matrix, then (2.4) can be expressed as follows: Put

A =

⎛⎜⎜⎜⎜⎜⎜⎝

γ1 0
γ2

. . .
γn

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ and x =

⎛⎜⎜⎜⎜⎜⎜⎝

ξ1

ξ2
...

ξn
...

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Then

A−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

γ−1
1 0

γ−1
2

. . .
γ−1
n

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎠
and we get

〈Ax,x〉 =
∞

∑
k−1

γkξ 2
k and 〈A−1x,x〉 =

∞

∑
k=1

γ−1
k ξ 2

k .

We shall agree that (2.4) is called a generalization of the Kantorovich inequality (2.1).

Though Greub and Rheinboldt carefully cite the Kantorovich inequality, they do not
tell anything about his motivation for considering the inequality (2.1). What is his motive
for considering (2.1)? Thus, we shall attempt to investigate Kantorovich’s original paper
in this occasion. It is written in Russian and very old. We read the original paper in an
English translation [156]. It seems that he was interested in the mathematical formulation
of economics, as he provided a detailed commentary on how to carry out mathematical
analysis in economic activities. Now, when we read [156] slowly and carefully, we find
the inequality (2.1) in question, in the middle of the paper [156].

Lemma K The inequality

∑
k

γku
2
k ∑

k

γ−1
k u2

k ≤
1
4

[√
M
m

+
√

m
M

]2(
∑
k

u2
k

)2

(2.5)

holds, m and M being the bounds of the numbers γk

0 < m ≤ γk ≤ M.

The coefficient in the right-hand side of (2.5) seems to be different from the one in
(2.1). However, since

1
4

[√
M
m

+
√

m
M

]2

=
1
4

[
M +m√

Mm

]2

=
(M +m)2

4Mm
,

the constant of (2.5) coincides with one of (2.1). Following Kantorovich’s original paper,
we know that Kantorovich represents an upper bound as (2.5). Therefore the Kantorovich

constant (M+m)2
4Mm is deformed by Greub and Rheinboldt. Examining the history of math-

ematics a little more, Henrici [141] pointed out that in the case of equal weights, the in-
equality (2.3) is due to Schweitzer [258] in 1914. How Kantorovich proved the inequality
(2.5) in Lemma K is a very interesting matter:
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Proof of Lemma K. We may prove it in the case of finite sums γ1 ≤ γ2 ≤ ·· · ≤ γn and
∑n

k=1 u2
k = 1. We shall seek the maximum of

G = σσ̃ =

(
n

∑
k=1

γku
2
k

)(
n

∑
k=1

1
γk

u2
k

)

under the condition that ∑n
k=1 u2

k = 1. By using the method of Lagrange multipliers, if we
equate to zero the derivatives of the function

F = G−λ

(
n

∑
k=1

u2
k −1

)
,

then we have

1
2

∂F
∂us

= σ
1
γs

us + σ̃γsus−λus = 0, i.e. us(σ + σ̃ γ2
s −λ γs) = 0.

The second factor in the last expression, being a polynomial of the second degree in γs,
can reduce to zero at not more than two values of s; let these be s = k, l. For the remaining
values of s, us must be zero. But then

Gmax =
(
γku

2
k + γlu

2
l

)( 1
γk

u2
k +

1
γl

u2
l

)
=

1
4

[√
γk

γl
+

√
γl

γk

]2

(u2
k +u2

l )
2 − 1

4

[√
γk

γl
+

√
γl

γk

]2

(u2
k −u2

l )
2

≤ 1
4

[√
γk

γl
+

√
γl

γk

]2

≤ 1
4

[√
M
m

+
√

m
M

]2

.

�

Why does Kantorovich need the inequality (2.1)? If we only read the paper due to
Greub and Rheinboldt, we probably cannot fully understand those circumstances. How-
ever, having thoroughly read [156], we are able to explain the necessity of the Kantorovich
inequality.

Kantorovich says that as is generally known, a significant part of the problems of math-
ematical physics – the majority of the linear problems of analysis – may be reduced to a
problem of the extremum of quadratic functionals. This fact may be utilized, on the one
hand for different theoretical investigations relating to these problems. On the other hand,
it serves as a basis for direct methods of solving the problems named. A certain method
of successive approximations for the solution of problems concerning the minimum of
quadratic functionals, and of the linear problems connected with them, is elaborated – the
method of steepest descent.

Let H be a real Hilbert space and A a self-adjoint (bounded linear) operator on H such
that mIH ≤ A ≤ MIH for some scalars 0 < m ≤ M.
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We shall consider the method of steepest descent as it applies to the solution of the
equation

L(x) = Ax− y = 0, (2.6)

where x and y are in H. We introduce the quadratic functional

H(x) = 〈Ax,x〉−2〈y,x〉. (2.7)

For a given y ∈ H, a vector x0 ∈ H is the solution of L(x) = 0 if and only if x0 ∈ H
attains the minimum of H(x).

Indeed, suppose that x∈H satisfies H(x) = minu∈H H(u). Then for each nonzero z∈H
and a real parameter α ∈ R, it follows that

H(x+ αz)−H(x)≥ 0

and this implies

H(x+ αz)−H(x) = 〈Ax+ αAz,x+ αz〉−2〈y,x+ αz〉−H(x)
= α [〈Ax,z〉+ 〈Az,x〉]+ α2〈Az,z〉−2α〈y,z〉
= 2α〈Ax− y,z〉+ α2〈Az,z〉 ≥ 0.

Since A is positive invertible, we have 〈Az,z〉 > 0. Since the inequality above holds for all
α ∈ R, we get (Ax− y,z) = 0 for all nonzero z ∈ H. Therefore we have Ax− y = 0 and
hence x ∈ H is the solution of L(x) = 0.

Conversely, suppose that x ∈ H is the solution of L(x) = Ax− y = 0. Then

H(x+ z)−H(x) = 〈Az,z〉+2〈Ax− y,z〉= 〈Az,z〉 > 0 (2.8)

for all nonzero z∈H. For each y∈H, if we put z = y−x in (2.8), then we have H(y)≥H(x)
and this implies H(x) = miny∈H H(y).

In this way, if the problem of solving an equation (2.6) reduces to the problem of seek-
ing the minimum of the functional (2.7), then this fact is named the variational principle of
the equation.

In seeking the minimum of a functional (2.7) we shall employ the method of steepest
descent. Now, we consider the following three procedures (0), (1) and (2):
(0) For a given initial vector x0 ∈ H, we find a sequence {xn} ⊂ H such that

H(x0) > H(x1) > · · · > H(xn) > · · · → min
u∈H

H(u) = H(x).

(1) By induction, we construct a sequence {xn} ⊂ H such that

xn+1 = xn + αnzn

for αn ∈ R and zn ∈ H.
(2) Moreover, we choose αn ∈ R such that

H(xn + αnzn) = min
t∈R

H(xn + tzn). (2.9)

The following lemma shows that the condition (0) implies the convergence of {xn}.
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Lemma 2.1 Let x be the solution of L(x) = Ax− y = 0. If a sequence {xn} satisfies

H(x0) > H(x1) > · · · > H(xn) > · · · → min
u∈H

H(u) = H(x),

then xn → x as n → ∞.

Proof.

H(xn)−H(x) = 〈Axn,xn〉−2〈y,xn〉− 〈Ax,x〉+2〈y,x〉
= 2〈Ax− y,xn− x〉+ 〈A(xn− x),xn− x〉
= 〈A(xn − x),xn− x〉 ≥ m‖xn− x‖2,

because m〈z,z〉 ≤ 〈Az,z〉 ≤ M〈z,z〉 for every z ∈ H by the assumption. Therefore
lim
n→∞

H(xn) = H(x) implies lim
n→∞

xn = x. �

The following lemma determines the form of αn.

Lemma 2.2 If (2.9) holds, then

αn =
〈zn,zn〉
〈Azn,zn〉

where zn = y−Axn.

Proof.

H(xn + tzn) = 〈Azn,zn〉t2 +2(〈Axn,zn〉− 〈y,zn〉)t +H(xn)
= 〈Azn,zn〉t2 +2〈zn,zn〉t +H(xn)

= 〈Azn,zn〉
(

t− 〈zn,zn〉
〈Azn,zn〉

)2

− 〈zn,zn〉2
〈Azn,zn〉 +H(xn)

Therefore, t = 〈zn,zn〉
〈Azn,zn〉 attains the minimum of H(xn + tzn). �

By the proof of Lemma 2.2, we have

H(xn+1) = H(xn)− 〈zn,zn〉2
〈Azn,zn〉 < H(xn)

and hence we have
H(x0) > H(x1) > · · · > H(xn) > · · · .

Theorem K4 The successive approximations {xn} ⊂ H constructed by the method of
steepest descent converge strongly to the solution of the equation (2.6) with the speed of a
geometrical progression.

Proof. Let x∗ be the solution of equation (2.6) and ΔnH = H(xn)−H(x∗). It is obtained
that the change ΔnH of H in passing from x∗ to xn is

ΔnH = H(xn)−H(x∗) = 〈A(x∗ − xn),x∗ − xn〉.
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Also, since
zn = y−Axn

and
zn+1 = y−Axn+1 = zn−αnAzn,

it follows that
ΔnH = 〈A(xn− x∗),xn − x∗〉 = 〈A−1zn,zn〉

and
Δn+1H = 〈A(xn+1− x∗),xn+1− x∗〉 = ΔnH −2αn〈zn,zn〉+ α2

n 〈Azn,zn〉.
By the definition of αn, we have

ΔnH −Δn+1H
ΔnH

=
2αn〈zn,zn〉−α2

n 〈Azn,zn〉
〈A−1zn,zn〉

=
〈zn,zn〉2

〈Azn,zn〉〈A−1zn,zn〉 (2.10)

We notice the form of a generalization of the Kantorovich inequality due to Greub-
Rheinboldt in the last expression of (2.10).

For the estimation of this ratio let us make use of the spectral decomposition of an
operator A:

A =
∫ M

m
λdeλ and 〈Az1,z1〉 =

∫ M

m
λ d〈eλ z1,z1〉 = lim∑λ 〈Δeλ z1,z1〉; (2.11)

analogously

〈z1,z1〉 = lim∑〈Δeλ z1,z1〉 and 〈A−1z1,z1〉 = lim∑ 1
λ
〈Δeλ z1,z1〉. (2.12)

Replacing in expression (2.10) the inner product by their approximate value as given by
(2.11) and (2.12), we have

ΔnH−Δn+1H
ΔnH

=
[∑〈Δeλ z1,z1〉]2

∑λ 〈Δeλ z1,z1〉∑ 1
λ 〈Δeλ z1,z1〉

≥ 4Mm
(M +m)2 > 0.

The Kantorovich inequality is utilized here to estimate a lower bound!
The approximate equality here is correct with as small an error as one pleases, and we

have therefore an exact inequality

ΔnH−Δn+1H
ΔnH

≥ 4Mm
(M +m)2 ,

whence

Δn+1H ≤
(

1− 4Mm
(M +m)2

)
ΔnH =

(
M−m
M +m

)2

ΔnH.
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Since 0 ≤ M−m
M+m < 1, for a given initial vector x0, we have

lim
n→∞

ΔnH = 0

so that limn→∞ H(xn) = H(x∗). By Lemma 2.1, we have xn → x∗ as n → ∞ and this proves
the assertion. �

The rapidity of convergence of the process is of the order of a geometric progression
with ratio q = (M−m)/(M +m).

It is surprising that the Kantorovich inequality is utilized in the linear problems of
analysis. We cannot understand this fact by reading [132] only. Also, as mentioned above,
we think that Kantorovich proved the following form: If an operator A on H is positive
such that mIH ≤ A ≤ MIH for some scalars 0 < m < M, then

〈x,x〉2
〈Ax,x〉〈A−1x,x〉 ≥

4[√
M
m +

√ m
M

]2 (2.13)

holds for every nonzero vector x in H.
Namely, the Kantorovich inequality is not only the form (2.1) shown in Lemma K, but

also the form (2.13) of the operator version.
Now, the theorem denoted by K2 is a generalization of the Kantorovich inequality in

the operator form, as it was derived by Greub and Rheinboldt. In fact, we easily see that
(2.13) implies Theorem K2. Therefore, one could say that Kantorovich proved Theorem
K2 in a certain sense. At this point, it is suitable to cite a relevant part of [132]:

The subject of this paper is the proof of a generalized form of the inequality for lin-
ear, bounded and self-adjoint operators in Hilbert space. This generalized Kantorovich
inequality proves to be equivalent to a similarly generalized form of the inequality
which we shall call the generalized Pólya-Szegö inequality. Our generalized Kantorovich
inequality is already implicitly contained in the paper of L.V.Kantorovich. However, its
proof there involves the use of the theory of spectral decomposition for the operators in
question. The proof we shall present here will proceed in a considerable simpler way.

Hence, from the underlined sentence we learn that the proof of Theorem K2 was es-
sentially contained in [156]. Furthermore, we see that Greub and Rheinboldt prefer to
avoid the spectral decomposition theorem in the proof, as they believe their own proof to
be considerably simpler.

However, it turned out that their method of proof had a deep significance for mathemat-
ics. The impact of Theorem K2 could be compared to spreading of shock waves around
the world of mathematics. Thus we present the proof of which Greub and Rheinboldt say
that is simpler.

Proof of Theorem K2. The left hand side of the inequality follows directly from
Schwarz’s inequality

〈x,x〉2 = 〈A1/2x,A−1/2x〉2 ≤ 〈A1/2x,A1/2x〉〈A−1/2x,A−1/2x〉
= 〈Ax,x〉〈A−1x,x〉.
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We shall first prove the right hand side of (2.4) for finite dimensional space H. Then we
will show that the proof for the general case can be reduced to that of the finite dimensional
case.

Suppose that H is a finite dimensional space. Then the unit sphere S ⊂ H is compact.
Hence, considered on S, the continuous functional

f (x) =
〈Ax,x〉〈A−1x,x〉

〈x,x〉2

attains its maximum at a certain point, say x0 ∈ S, i.e.

f (x0) = max
x∈S

f (x) = 〈Ax0,x0〉〈A−1x0,x0〉.

With a fixed vector y ∈ H and the real parameter t (|t| < 1) we consider the real valued
function

g(t) = f (x0 + ty).

This function g(t) has a relative maximum at t = 0 and therefore we must necessarily have
g′(0) = 0. Using the self-adjointness of A and A−1 we find

g′(0) = 2〈Ax0,y〉〈A−1x0,x0〉+2〈A−1x0,y〉〈Ax0,x0〉−4 f (x0)〈x0,y〉 = 0

and thus
〈γAx0 + μA−1x0 − x0,y〉 = 0

holds for all y ∈ H, where

γ =
1

2〈Ax0,x0〉 and μ =
1

2〈A−1x0,x0〉 .

Consequently
x0 = γAx0 + μA−1x0.

Applying A and A−1 successively to this equation we find that

Ax0 = γA2x0 + μx0 and A−1x0 = γx0 + μA−2x0

or (
A− 1

2γ
IH

)2

x0 =
1−4γμ

4γ2 x0 and

(
A−1− 1

2μ
IH

)2

x0 =
1−4γμ

4μ2 x0.

Taking into account the assumption 0 < mIH ≤ A ≤ MIH , we have

4γμ
m
M

≤
(
1+(1−4γμ)1/2

)2 ≤ 4γμ
M
m

.

It follows [
4γμ

( m
M

+1
)
−2

]2 ≤ 4(1−4γμ)≤
[
4γμ

(
M
m

+1

)
−2

]2
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or γμ
M2

[
4γμ(M +m)2−4mM

]≤ 0 ≤ γμ
m2

[
4γμ(M +m)2−4mM

]
and therefore

4γμ(M +m)2−4mM = 0.

On the other hand, since

4γμ =
1

〈Ax0,x0〉〈A−1x0,x0〉 ,

we finally have

〈Ax0,x0〉〈A−1x0,x0〉 =
(M +m)2

4Mm
, (2.14)

which was to be proved. (2.14) shows furthermore that (at least in the finite dimensional
case) the upper bound in (2.4) can not be improved.

We now remove the restriction of the finite-dimensionality of H. Let x0 be a fixed
vector of H and let H0 ⊂ H be a finite dimensional subspace of H which contains three
vectors x0, Ax0 and A−1x0. We denote by P the projection of H onto H0. For the operator
B = PA, we have B(H0) ⊂ H0 and

〈Bx,y〉 = 〈PAx,y〉 = 〈PAPx,y〉= 〈x,PAPy〉 = 〈x,By〉

for all x,y ∈ H0. Hence, B is a self-adjoint operator on the space H0. Furthermore, we find
for x ∈ H0

〈Bx,x〉 = 〈PAx,x〉 = 〈Ax,Px〉 = 〈Ax,x〉
and therefore in H0

0 < mIH0 ≤ m′IH0 ≤ B ≤ M′IH0 ≤ MIH0 (2.15)

where

m′ = inf
x∈H0

〈Bx,x〉
〈x,x〉 and M′ = sup

x∈H0

〈Bx,x〉
〈x,x〉 .

Hence, we can apply the first part of the proof to the operator B in the finite dimensional
space H0. By doing that we obtain for all x ∈ H0

〈Bx,x〉〈B−1x,x〉
〈x,x〉2 ≤ (M′ +m′)2

4m′M′ =
1
4

(
M′

m′ +
m′

M′

)
+

1
2
. (2.16)

From (2.15) we conclude that

1 ≤ M′

m′ ≤
M
m

and
M′

m′ +
m′

M′ ≤
M
m

+
m
M

. (2.17)

This last inequality is a result of the fact that for u ≥ 1 the function f (u) = u + 1/u is
monotonically increasing. (2.16) and (2.17) together yield

〈Bx,x〉〈B−1x,x〉
〈x,x〉2 ≤ 1

4

(
M
m

+
m
M

)
+

1
2

=
(M +m)2

4mM
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for all x ∈ H0. Since H0 contains x0,Ax0 and A−1x0, we find

Bx0 = PAx0 = Ax0 and x0 = Px0 = PAA−1x0 = BA−1x0.

The last relation implies B−1x0 = A−1x0 when one considers that the existence of B−1 in
H0 is a direct consequence of (2.15). Substituting we obtain finally

〈Ax0,x0〉〈A−1x0,x0〉 ≤ (M +m)2

4mM
〈x0,x0〉2

Since x0 was arbitrary the theorem is hereby completely proved. �

Moreover, they showed the generalized Pólya-Szegö inequality, which is equivalent to
the Kantorovich inequality:

Theorem 2.1 Let A and B be commuting self-adjoint operators on a Hilbert space H
such that

0 < m1IH ≤ A ≤ M1IH and 0 < m2IH ≤ B ≤ M2IH .

Then

〈Ax,Ax〉〈Bx,Bx〉 ≤ (M1M2 +m1m2)2

4m1m2M1M2
〈Ax,Bx〉2

for all x ∈ H.

Proof. It is rather obvious that the Kantorovich inequality is contained in Theorem 2.1.
In fact, let C be any given self-adjoint operator with

0 < mIH ≤C ≤ MIH .

We set A = C1/2 and B = (C−1)1/2. Since

0 < m1/2IH ≤ A ≤ M1/2IH and 0 < (M−1)1/2IH ≤ B ≤ (m−1)1/2IH ,

it follows immediately from Theorem 2.1 that

〈Cx,x〉〈C−1x,x〉
〈x,x〉2 =

〈Ax,Ax〉〈Bx,Bx〉
〈Ax,Bx〉2 ≤ (M +m)2

4mm

for all x ∈ H and this is the statement of the Kantorovich inequality.
Next, we show that Theorem 2.1 is a consequence of Theorem K2.
From the commutativity of A and B, for the self-adjoint operator C = AB−1 we have

0 <
m1

M2
IH ≤C ≤ M1

m2
IH .

Therefore, it follows from Theorem K2 that

〈Cx,x〉〈C−1x,x〉
〈x,x〉2 ≤ (M1M2 +m1m2)2

4m1m2M1M2
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for all x ∈ H. Put x = (AB)1/2y, then we obtain 〈Cx,x〉 = 〈Ay,Ay〉,〈C−1x,x〉= 〈By,By〉 and
〈x,x〉 = 〈Ay,By〉. Substituting these relations, we get the statement of Theorem 2.1. �

The proof by Greub and Rheinboldt is very long, spanning over approximately five
pages. We can feel the strictness of their proof, but, in contrast, Kantorovich’s proof is
simple and only half a page long. However, it was the formulation by Greub and Rhein-
boldt that brought the first wave of excitement into the world of mathematics. Owing to
Greub and Rheinboldt, the work of Kantorovich has become an object of research in math-
ematics, in operator theory in particular. In their own words, their proof is simple. But, it
is a proof on a grand scale, unexpected and fascinating. Based on a beautiful relation, this
simple formulation may strike a chord in the heart of a mathematician. Many mathemati-
cians concentrated their energies on the generalization of the Kantorovich inequality and
on searching for an even simpler proof.

2.2 Generalizations and improvements

In 1960, one year after the publication of [132], Strang [272] shows the following general-
ization of the Kantorovich inequality for an arbitrary operator without conditions such as
self-adjoiness and positivity.

Theorem 2.2 If T is an arbitrary invertible operator on H, and ‖T‖= M,‖T−1‖−1 = m,
then

|〈Tx,y〉〈x,T−1y〉| ≤ (M +m)2

4Mm
〈x,x〉〈y,y〉 for all x,y ∈ H.

Furthermore, this bound is the best possible.

Proof. We consider the polar decomposition of T . Let A = (T ∗T )1/2. Then U = TA−1

is unitary, and

|〈Tx,y〉〈x,T−1y〉| = |〈UAx,x〉〈x,A−1U−1y〉| = |〈Ax,U∗y〉〈A−1x,U∗y〉| (2.18)

≤ [〈Ax,x〉〈AU∗y,U∗y〉〈A−1x,x〉〈A−1U∗y,U∗y〉]1/2

by generalized Schwarz’s inequality (Theorem 1.10). Since ‖A‖ = ‖(T ∗T )1/2‖
= ‖T‖ = M and ‖A−1‖−1 = ‖T−1‖−1 = m, it follows that mIH ≤ A ≤ MIH . Therefore, by
(2.4) in Theorem K2, we have

RHS in (2.18)≤
(

(M +m)2

4Mm
〈x,x〉2 · (M +m)2

4Mm
〈U∗y,U∗y〉2

)1/2

=
(M +m)2

4Mm
〈x,x〉〈y,y〉,

by using 〈U∗y,U∗y〉 = 〈y,y〉.
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If H is finite dimensional, the bound is attained for x = U∗y = u + v, where u and v
are unit eigenvectors of A corresponding to eigenvalues m and M. In a general case, the
bound need not be attained. But a sequence xn = U∗yn = un + vn, where ‖un‖ = ‖vn‖,
(e(m + 1/n)− e(m− 0))un = un, (e(M + 0)− e(M − 1/n))vn = vn shows on calculation
that the bound is best possible. �

Also, Schopf [257] considered a generalization of the power in the Kantorovich in-
equality. Moving to the year 1996, there is the following extension due to Spain [270]
which is totally different from the Kantorovich inequality. But it is surely an extension. It
does not assume positivity, either. It is slightly long, but we will quote it:

The Kantorovich inequality says that if A is a positive operator on a Hilbert space H
such that mIH ≤ A ≤ MIH for some scalars 0 < m ≤ M, then

4mM〈A−1x,x〉 ≤ (m+M)2 ‖x‖4

〈Ax,x〉

holds for every vector x in H. If we replace x by A
1
2 x, then

4mM〈x,x〉 ≤ (m+M)2 ‖A
1
2 x‖2

〈A2x,x〉 .

This inequality may be viewed as a conversion of the special case

〈Ax,x〉 ≤ ‖Ax‖‖x‖
of the Cauchy-Schwarz inequality, for it is equivalent to the inequality

2
√

mM‖Ax‖‖x‖ ≤ (m+M)〈Ax,x〉.

The methods of operator and spectral theory allow one to generalize the inequality to a
wide class of operators on a Hilbert space.

Let Γ be any nonzero complex number, let R = |Γ|, and let 0 ≤ r ≤ R.

Theorem 2.3 Let A be an operator on H such that
∣∣A−Γ[A]

∣∣2 ≤ r2[A], where [A] is the
range projection of A. Let u ∈ B(K,H) be an operator such that u∗[A]u is a projection.
Then

(R2− r2)u∗A∗Au ≤ R2(u∗A∗u)(u∗Au).

Proof. Since u∗[A]u is a projection, we have∣∣(R2− r2)u∗[A]u−Γu∗Au
∣∣2

= (R2 − r2)2u∗[A]u− (R2− r2){Γu∗Au+ Γu∗A∗u}+R2(u∗A∗u)(u∗Au),

while

u∗
(
r2[A]− ∣∣A−Γ[A]

∣∣2)u

= −(R2− r2)u∗[A]u−u∗A∗Au+ Γu∗Au+ Γu∗A∗u,
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and hence

R2u∗A∗uu∗Au− (R2− r2)u∗A∗Au

=
∣∣(R2− r2)u∗[A]u−Γu∗Au

∣∣2 +u∗
(
r2[A]− ∣∣A−Γ[A]

∣∣2)u.

By the assumption of |A−Γ[A]|2 ≤ r2[A], we have

R2(u∗A∗u)(u∗Au)− (R2− r2)u∗A∗Au ≥ 0.

�

Corollary 2.1 Let A be a positive operator on H such that A is invertible on its range, let
m = minSp(A)\{0} and M = maxSp(A) = ‖A‖. Let u ∈ B(K,H) be an operator such that
u∗[A]u is a projection. Then

4Mmu∗A2u ≤ (M +m)2(u∗Au)2.

Proof. In the situation of Theorem 2.3, we have

R = Γ =
M +m

2
and r =

M−m
2

.

By the assumption of A, it follows that

m[A] ≤ A ≤ M[A]

and hence |A−Γ[A]|2 ≤ r2[A]. Therefore Corollary 2.1 follow from Theorem 2.3. �

Theorem 2.4 Let A be an operator on H such that |A−Γ[A]|2 ≤ r2[A]. Then

(R2− r2)1/2‖Ax‖∥∥[A]x
∥∥≤ R|〈Ax,x〉|, x ∈ H.

If A is positive with Sp(A)\{0} ⊂ [m,M] (0 < m < M), then

2
√

Mm‖Ax‖∥∥[A]x
∥∥≤ (m+M)〈Ax,x〉 for all x ∈ H.

Proof. For x ∈ H define ux : C �→ H : λ �→ λx. Then, identifying C and B(C) canoni-
cally,

u∗xAux = 〈Ax,x〉 for A ∈ B(H).

There is nothing to prove if [A]x = 0, otherwise put u = ux/‖[A]x‖. The first assertion follows
from Corollary 2.1. The second assertion is a direct consequence of the the first. �

Remark 2.1 The second assertion in Theorem 2.4 may be proved in one line:

(m+M)2〈Ax,x〉2 −4Mm‖Ax‖2‖[A]x‖2

=
{
2mM‖[A]x‖2− (m+M)〈Ax,x〉}2

+4Mm
〈
(M−A)(A−m)[A]x, [A]x

〉∥∥[A]x
∥∥2 ≥ 0
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Generalizations of the Kantorovich inequality have made significant progress. The
Mathematical Society was given a treat in the form of topics for the Kantorovich inequality
for a while.

On the other hand, in pursuit of an even simpler proof, in such a flood of papers, Naka-
mura [237] instantly presents the following result in Proceedings of the Japan Academy. It
was in 1960, just one year after the paper due to Greub and Rheinboldt was published. It
is a simple visual proof by using the concavity of f (t) = t−1.

Theorem 2.5 For 0 < m < M, the following inequality holds true:∫ M

m
tdμ(t) ·

∫ M

m

1
t
dμ(t) ≤ (M +m)2

4Mm
(2.19)

for any positive Stieltjes measure μ on [m,M] with ‖μ‖ = 1.

It is easy to see, by the Gelfand representation of the C∗-algebra generated by A and
the identity operator I, that Theorem 2.5 implies the Kantorovich inequality.

If Nakamura had the opportunity to read [156] in an English translation and if he asked
the mathematical community for judgment on the inequality (2.19) and its overwhelmingly
simple proof, then how would that turn out? In one possible outcome, mathematicians
would mostly get the impression that it was very easy to prove that result and therefore the
investigations related to the Kantorovich inequality would be brought to the end. For some
reason, Nakamura’s paper is overlooked in the mathematical world.
To the best of this author’s knowledge, there is no evidence that anyone has ever cited
Nakamura’s paper. Instead, several improvements to proofs of the Kantorovich inequality
have been independently developed in Europe.

The origin of the Kantorovich inequality might be the following case of finite se-
quences.

Theorem 2.6 If the sequence {γi} satisfies the conditions such that m ≤ γi ≤ M for some
scalars 0 < m ≤ M and i = 1,2, · · · ,n, then

(ξ1γ1 + · · ·+ ξnγn)(ξ1γ−1
1 + · · ·+ ξnγ−1

n ) ≤ (M +m)2

4Mm
(2.20)

holds for every ξi ≥ 0 such that ξ1 + · · ·+ ξn = 1.

First of all, we present a direct proof due to Henrici [141]:

Proof of Theorem 2.6. We may assume that m < M. Determine pi and qi from the
equations

γi = piM +qim and γ−1
i = piM

−1 +qim
−1 for i = 1, · · · ,n.

An easy computation shows that pi,qi ≥ 0, i = 1,2, · · · ,n. Furthermore from

1 = (piM +qim)(piM
−1 +qim

−1) = (pi +qi)2 + piqi
(M−m)2

mM
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it follows that pi +qi ≤ 1. Setting p = ∑ξi pi, q = ∑ξiqi, we thus have p+q = ∑ξi(pi +
qi) ≤ ∑ξi = 1. Hence using the arithmetic-geometric mean inequality,

(ξ1γ1 + · · ·+ ξnγn)(ξ1γ−1
1 + · · ·+ ξnγ−1

n )

= (pM +qm)(pM−1 +qm−1) = (p+q)2 + pq
(M−m)2

Mm

≤ (p+q)2
[
1+

(M−m)2

4Mm

]
= (p+q)2 (M +m)2

4Mm
≤ (M +m)2

4Mm
.

Equality is attained in (2.20) if and only if the following two conditions are simulta-
neously fulfilled (we assume here ξi > 0, i = 1,2, · · · ,n without loss of generalization):

(i) p+q= 1. This implies that pi +qi = 1 or piqi = 0 for i = 1, · · · ,n. Thus, for equality
every γi must equal either M or m.

(ii) p+q = 4pq. This implies that p = q or, ∑γi=m ξi = ∑γi=M ξi.

Thus, the weights attached to m and M must be the same.

In comparison with Kantorovich’s proof, Henrici’s one relies on an algebraic calcula-
tion. Inspired by Henrici, Rennie [255] gives the following improved proof with functions
in 1963:

Let f be a measurable function on the probability space such that 0 < m ≤ f (x) ≤ M.
Integrating the inequality

( f (x)−m)( f (x)−M)
f (x)

≤ 0

gives ∫
f (x)dx+mM

∫
1

f (x)
dx ≤ m+M.

Put u = mM
∫ 1

f (x)dx, then we have

u
∫

f (x)dx ≤ (m+M)u−u2 = −
(

u− M +m
2

)2

+
(M +m)2

4
≤ (M +m)2

4
,

which is the Kantorovich inequality:∫
1

f (x)
dx

∫
f (x)dx ≤ (M +m)2

4mM
.

This is exactly a function version of the Kantorovich inequality due to Nakamura.
Its emphatic brevity is surprising. Moreover, inspired by Rennie, Mond [209] gives the
following improved proof with matrices in 1965:

Let A be a positive definite Hermitian matrix with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn > 0.
Since three factors in the LHS of below inequality commute, we have

(A−λnI)(A−λ1I)A−1 ≤ 0.
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Therefore,
〈Ax,x〉+ λ1λn〈A−1x,x〉 ≤ λ1 + λn

for every unit vector x. If we put u = λ1λn〈A−1x,x〉, then

λ1λn〈A−1x,x〉〈Ax,x〉 = u〈Ax,x〉 ≤ (λ1 + λn)u−u2 ≤ (λ1 + λn)2

4
,

which implies the Kantorovich inequality:

〈A−1x,x〉〈Ax,x〉 ≤ (λ1 + λn)2

4λ1λn
.

The proof of Mond may be considered one of the generalized Kantorovich inequal-
ity. But, we present a somewhere different proof by using the arithmetic-geometric mean
inequality in [164, 144, 158]:

Since A is positive and 0 < mIH ≤ A≤MIH , it follows that MIH −A≥ 0 and A−mIH ≥
0. The commutativity of MIH −A and A−mIH implies (MIH − A)(m−1IH − A−1) ≥ 0.
Hence

(M +m)IH ≥ MmA−1 +A

and
〈(M +m)x,x〉 ≥ Mm〈A−1x,x〉+ 〈Ax,x〉

holds for every unit vector x ∈ H. By using the arithmetic-geometric mean inequality

M +m = 〈(M +m)x,x〉 ≥ Mm〈A−1x,x〉+ 〈Ax,x〉 ≥ 2
√

Mm〈A−1x,x〉〈Ax,x〉.

Squaring both sides, we obtain the desired inequality

〈Ax,x〉〈A−1x,x〉 ≤ (M +m)2

4Mm
.

Finally, we present an extremely simple idea due to Diaz and Metcalf [43]:

Lemma 2.3 Let real numbers ak �= 0 and bk (k = 1,2, · · · ,n) satisfy

m ≤ bk

ak
≤ M. (2.21)

Then
n

∑
k=1

b2
k +mM

n

∑
k=1

a2
k ≤ (M +m)

n

∑
k=1

akbk.

The equality holds if and only if in each of the n inequalities (2.21), at least one of the
equality signs holds, i.e. either bk = mak or bk = Mak (where the equation may vary with
k).
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Proof. It follows from the hypothesis (2.21) that

0 ≤
(

bk

ak
−m

)(
M− bk

ak

)
a2

k .

Thus, summing from k = 1 to k = n,

0 ≤
n

∑
k=1

(bk −mak)(Mak −bk) (2.22)

= (M +m)
n

∑
k=1

akbk −
n

∑
k=1

b2
k −mM

n

∑
k=1

a2
k,

which gives the desired result. Clearly, the equality holds in (2.22) if and only if each term
of the summation is zero. �

By using Lemma 2.3, we have

0 ≤
(( n

∑
k=1

b2
k

)1/2−
(
mM

n

∑
k=1

a2
k

)1/2
)2

=
n

∑
k=1

b2
k −2

( n

∑
k=1

b2
k

)1/2(
mM

n

∑
k=1

a2
k

)1/2
+mM

n

∑
k=1

a2
k

≤ (m+M)
n

∑
k=1

akbk −2
√

mM
( n

∑
k=1

b2
k

)1/2( n

∑
k=1

a2
k

)1/2

and hence

4mM
( n

∑
k=1

b2
k

)( n

∑
k=1

a2
k

)
≤ (m+M)2

( n

∑
k=1

akbk

)2

yields immediately the result of Pólya and Szegö (Theorem PS (2.2)).

Similarly, we have an operator version of Lemma 2.3:

Theorem 2.7 Let A and B be self-adjoint operators such that AB = BA and A−1 exists,
and

mIH ≤ BA−1 ≤ MIH for some scalars 0 < m ≤ M.

Then
B2 +mMA2 ≤ (m+M)AB. (2.23)

The equality holds in (2.23) if and only if (MIH −BA−1)(BA−1−mIH) = 0.

By using Theorem 2.7, we have

0 ≤
{
〈Bx,Bx〉1/2−mM〈Ax,Ax〉1/2

}2

= 〈Bx,Bx〉−2
√

mM〈Bx,Bx〉1/2〈Ax,Ax〉1/2 +mM〈Ax,Ax〉
≤ (m+M)〈ABx,x〉−2

√
mM〈Bx,Bx〉1/2〈Ax,Ax〉1/2
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and hence

4mM〈Bx,Bx〉〈Ax,Ax〉 ≤ (m+M)2〈ABx,x〉2

yields immediately results of Greub and Rheinboldt (Theorem 2.1).

Comparing with the proofs of Kantorovich and Greub and Rheinboldt, only algebraic
calculation seems to belong to a different age. However, when we can prove it plainly and
simply, devising a new proof stops being an object of interest for mathematicians.

2.3 The Mond-Pečarić method

In this section, we present the principle of the Mond-Pečarić method for convex functions.
Mond and Pečarić rephrased the Kantorovich inequality as follows: The Kantorovich

inequality says that if A is a positive operator such that 0 < mIH ≤ A ≤ MIH , then

〈Ax,x〉〈A−1x,x〉 ≤ (M +m)2

4Mm
(2.24)

for every unit vector x ∈ H. Divideing both sides by 〈Ax,x〉, we get

〈A−1x,x〉 ≤ (M +m)2

4Mm
〈Ax,x〉−1. (2.25)

Also, since 1 ≤ 〈Ax,x〉〈A−1x,x), we may extend (2.25) into the following inequality:

〈Ax,x〉−1 ≤ 〈A−1x,x〉 ≤ (M +m)2

4Mm
〈Ax,x〉−1. (2.26)

The first inequality of (2.26) is a special case of Jensen’s inequality. In fact, if we put
f (t) = t−1, then (

a1 + · · ·+an

n

)−1

≤ a−1
1 + · · ·+a−1

n

n

for all positive real numbers a1, · · · ,an. Moreover, if f (t) is a convex function on an interval
[m,M], then

f

(
n

∑
i=1

tixi

)
≤

n

∑
i=1

ti f (xi)

for every x1, · · · ,xn ∈ [m,M] and every positive real number t1, · · · ,tn with ∑n
i=1 ti = 1. This

inequality is called the classical Jensen’s inequality. Moreover, an operator version of the
classical Jensen’s inequality holds:
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Theorem 2.8 Let A be a self-adjoint operator on H such that mIH ≤ A ≤ MIH for some
scalars m ≤ M and f a real valued continuous convex function on [m,M]. Then

f (〈Ax,x〉) ≤ 〈 f (A)x,x〉

holds for every unit vector x ∈ H.

Proof. Refer to [124, Theorem 1.2] for the proof. �

From this point of view, 〈Ax,x〉−1 ≤ 〈A−1x,x〉 is considered as one form of Jensen’s
inequality. Namely, Mond and Pečarić noticed that

the Kantorovich inequality is the converse inequality of the so called Jensen’s one for the
function f (t) = 1/t.

Jensen’s inequality is one of the most important inequalities in the functional analysis.
Many generalizations are developed and many significant results are obtained by using
Jensen’s inequalitiy.

Here, let us consider a generalization of the Kantorovich inequality. Jensen’s inequality
for f (t) = t3 yields

〈Ax,x〉3 ≤ 〈A3x,x〉 for every unit vector x ∈ H. (2.27)

What is a converse of (2.27)? Unfortunately, it seems to be difficult to apply the same
method as in the proof of the Kantorovich inequality. We need a new way of thinking. We
recall Nakamura’s article [237]. It was published too early, as it was ahead of its time and
later on hardly anyone looked back at that paper. Thirty years later ideas similar to his had
appeared in Eastern Europe. By then Nakamura had forgotten all about his principle, but
it had taken root in Eastern Europe and would grow in time.

Thus, we shall recall the proof due to Nakamura: Let μ be a normalized positive
Stieltjes measure on [m,M]. Let y = g(t) a straight line joining the points (m,1/m) and
(M,1/M). Since 1/t ≤ g(t), we have

∫ M

m

1
t
dμ(t) ≤

∫ M

m
g(t)dμ(t) =

M−1 +m−1

2
.

Multiply
∫ M
m tdμ(t) = M+m

2 to both sides,

∫ M

m
tdμ(t)

∫ M

m

1
t
dμ(t) ≤ M +m

2
· M

−1 +m−1

2
=

(M +m)2

4Mm
.

Applying it to a positive operator A with ‖A‖ = M and ‖A−1‖−1 = m, we have just the
Kantorovich inequality

〈Ax,x〉〈A−1x,x〉 ≤ (M +m)2

4Mm
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for every unit vector x ∈H. We remark that the Kantorovich constant equals the arithmetic
mean of m and M divided by the harmonic one:

(M +m)2

4Mm
=

M+m
2(

M−1+m−1

2

)−1 .

Namely, we know that Nakamura’s proof is actually the origin of the so called the
Mond-Pečarić method for convex functions by which the converses of Jensen’s inequality
are induced. Moreover, Ky Fan [48] proceeded with a generalization of the Kantorovich
inequality for f (t) = t p with p ∈ Z. Here, we shall present the principle of the Mond-
Pečarić method for convex functions:

Theorem 2.9 Let A be a self-adjoint operator on a Hilbert space H such that mIH ≤ A ≤
MIH for some scalars m < M. If f is a convex function on [m,M] such that f > 0 on [m,M],
then

〈 f (A)x,x〉 ≤ K(m,M, f ) f (〈Ax,x〉)
for every unit vector x ∈ H, where

K(m,M, f ) = max

{
1

f (t)

(
f (M)− f (m)

M−m
(t −m)+ f (m)

)
: m ≤ t ≤ M

}
.

Proof. Since f (t) is convex on [m,M], we have

f (t) ≤ f (M)− f (m)
M−m

(t −m)+ f (m) for all t ∈ [m,M].

Using the operator calculus, it follows that

f (A) ≤ f (M)− f (m)
M−m

(A−m)+ f (m)IH

and hence

〈 f (A)x,x〉 ≤ f (M)− f (m)
M−m

(〈Ax,x〉−m)+ f (m)

for every unit vector x ∈ H. Divide both sides by f (〈Ax,x〉) (> 0), and we get

〈 f (A)x,x〉
f (〈Ax,x〉) ≤

f (M)− f (m)
M−m (〈Ax,x〉−m)+ f (m)

f (〈Ax,x〉)
≤ max

{
1

f (t)

(
f (M)− f (m)

M−m
(t−m)+ f (m)

)
: m ≤ t ≤ M

}
,

since m ≤ 〈Ax,x〉 ≤ M. Therefore, we have the desired inequality. �

Theorem 2.10 Let A be a self-adjoint operator on a Hilbert space H such that mIH ≤
A ≤ MIH for some scalars m < M. If f is a concave function on [m,M] such that f > 0 on
[m,M], then

K̃(m,M, f ) f (〈Ax,x〉) ≤ 〈 f (A)x,x〉 ≤ f (〈Ax,x〉)
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for every unit vector x ∈ H, where

K̃(m,M, f ) = min

{
1

f (t)

(
f (M)− f (m)

M−m
(t−m)+ f (m)

)
: m ≤ t ≤ M

}
.

In particular, if we put f (t) = t p for p ∈ R in Theorem 2.9 and 2.10, then we have the
Hölder-McCarthy inequality and its converse:

Theorem 2.11 Let A be a positive operator on a Hilbert space H such that mIH ≤ A ≤
MIH for some scalars 0 < m < M. Then

〈Ax,x〉p ≤ 〈Apx,x〉 ≤ K(m,M, p)〈Ax,x〉p for p �∈ [0,1] (2.28)

and
K(m,M, p)〈Ax,x〉p ≤ 〈Apx,x〉 ≤ 〈Ax,x〉p for p ∈ [0,1]

for every unit vector x ∈ H, where

K(m,M, p) =
mMp−Mmp

(p−1)(M−m)

(
p−1

p
Mp −mp

mMp −Mmp

)p

(2.29)

for each p∈R. The constant K(m,M, p) is sharp in the sense that there exists a unit vector
z ∈ H such that

〈Apz,z〉 = K(m,M, p)〈Az,z〉p.

Proof. We only show the sharpness of K(m,M, p) in (2.28) for p > 1. Let Ax = mx,
Ay = My, and z = αx+ βy, where ‖x‖ = ‖y‖ = 1, |α|2 + |β |2 = 1, and h = M

m . Then we
have

〈Apz,z〉 = 〈αmpx+ βMpy,αx+ βy〉 = |α|2mp + |β |2Mp

and
〈Az,z〉p = (|α|2m+ |β |2M)p.

Therefore we want to obtain the unit vector z satisfying the following equality:

|α|2mp + |β |2Mp = K(m,M, p)(|α|2m+ |β |2M)p,

that is,
mp + |β |2(Mp −mp) = K(m,M, p){m+ |β |2(M−m)}p,

or equivalently
1+ |β |2(hp−1) = K(m,M, p){1+ |β |2(h−1)}p. (2.30)

We can obtain a solution β of the above equation (2.30) as

β =
(

hp−1− p(h−1)
(p−1)(h−1)(hp−1)

) 1
2

< 1.

For example, we have z = 1√
M+m

(
√

Mx+
√

my) for p = 2. �
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If we put p = −1 in (2.28) of Theorem 2.11, then

K(m,M,−1) =
(M +m)2

4Mm

is the Kantorovich constant and hence

〈A−1x,x〉 ≤ (M +m)2

4Mm
〈Ax,x〉−1

for every unit vector x ∈ H. Thus, Theorem 2.11 is an extension of Kantorovich inequal-
ity and we call K(m,M, p) the generalized Kantorovich constant. We introduce another
definition of K(m,M, p).

Definition 2.1 The condition number h = h(A) of an invertible operator A is defined by

h(A) = ‖A‖‖A−1‖.
If a positive operator A satisfies the condition mIH ≤ A≤MIH for some scalars 0 < m≤M,
then it may be thought as M = ‖A‖ and m = ‖A−1‖−1, so that

h = h(A) =
M
m

.

Definition 2.2 Let h > 0. The generalized Kantorovich constant K(h, p) is defined by

K(h, p) =
hp−h

(p−1)(h−1)

(
p−1

p
hp−1
hp−h

)p

(2.31)

for any real number p ∈ R and K(h, p) is sometimes briefly denoted by K(p) briefly.

We remark that K(m,M, p) just coincides with K(h, p) by putting h = M
m (≥ 1). We

mention basic properties of K(h, p):

Theorem 2.12 Let h > 0 be given. Then the generalized Kantorovich constant K(h, p)
has the following properties:

(i) K(h, p) = K(h−1, p) for all p ∈ R,

(ii) K
(
h,

1
2

+ p
)

= K
(
h,

1
2
− p

)
for all p ∈ R, that is, K(h, p) is symmetric with respect

to p = 1/2,

(iii) K(h,0) = K(h,1) = 1 and K(1, p) = 1 for all p ∈ R,

(iv) K(h, p) is an increasing function of p for p > 1/2 and a decreasing function of p for
p < 1/2,

(v) K(h, p) > 0 for all p ∈ R and

K(h, p)

{
≥ 1 if p �∈ (0,1)
≤ 1 if p ∈ [0,1] .

(2.32)
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Proof. Refer to [124, Theorem 2.54] for the proof. �

Next, we present the inversion formula of the generalized Kantorovich constant and a
closed relation between the condition number and the generalized Kantorovich constant:

Theorem 2.13 Let h > 0 be given. Then the generalized Kantorovich constant has the
following properties:

(i) K
(
hr,

p
r

) 1
p

= K
(
hp,

r
p

)− 1
r

for pr �= 0,

(ii) K(h, p) ≤ hp−1 for all p ≥ 1 and h > 1.

Proof. Refer to [124, Theorem 2.54] for the proof. �

Now we present an important constant due to Specht. He estimated the upper bound
of the arithmetic mean by the geometric one for positive numbers: For x1, · · · ,xn ∈ [m,M]
with M ≥ m > 0,

x1 + · · ·+ xn

n
≤ (h−1)h

1
h−1

e logh
n
√

x1 · · ·xn, (2.33)

where h = M
m (≥ 1). It is well known that

n
√

x1 · · ·xn ≤ x1 + · · ·+ xn

n
(2.34)

holds for positive numbers x1,x2, · · · ,xn. Therefore, the Specht theorem (2.33) means a
ratio type converse inequality of the arithmetic-geometric mean inequality (2.34).

So we define the following constant.

Definition 2.3 Let h > 0 be given. The Specht ratio S(h) is defined by

S(h) =
(h−1)h

1
h−1

e logh
(h �= 1) and S(1) = 1. (2.35)

Now let us show an operator version of (2.33).

Theorem 2.14 Let A be a positive operator such that mIH ≤ A ≤ MIH for some scalars
0 < m ≤ M and put h = M

m . Then

〈Ax,x〉 ≤ S(h)exp〈logAx,x〉 (2.36)

holds for every unit vector x ∈ H.

Proof. Refer to [124, Theorem 2.49] for the proof. �

If we put f (t) = exp(t) in Theorem 2.8 and Theorem 2.14, then we have the following
result.
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Theorem 2.15 Let A be a self-adjoint operator such that mIH ≤ A ≤ MIH for some
scalars m ≤ M. Then

exp〈Ax,x〉 ≤ 〈expAx,x〉 ≤ S(eM−m)exp〈Ax,x〉 (2.37)

holds for every unit vector x ∈ H.

We mention some basic properties of the Specht ratio S(h).

Theorem 2.16 Let h > 0 and p ∈ R.

(i) S(1) = lim
h→1

S(h) = 1.

(ii) S(h) = S(h−1).

(iii) A function S(h) is strictly decreasing for 0 < h < 1 and strictly increasing for h > 1.

(iv) lim
p→0

S(hp)
1
p = 1.

(v) lim
p→∞

S(hp)
1
p = h for h > 1 and lim

p→∞
S(hp)

1
p = h−1 for 0 < h < 1.

Proof. Refer to [124, Lemma 2.47] for the proof. �

We show also a closed relation between the generalized Kantorovich constant and the
Specht ratio.

Theorem 2.17 Let h > 0 be given. Then

(i) lim
r→0

K
(
hr,

p
r

)
= S(hp),

(ii) lim
r→0

K
(
hr,

r+ p
r

)
= S(hp).

Proof. Refer to [124, Theorem 2.56] for the proof. �

Moreover, we have the following most crucial result on the generalized Kantorovich
constant.

Theorem 2.18 Let h > 1. Then

S(h) = e−K′(0) = eK′(1),

where K(p) = K(h, p) for all p ∈ R.
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Proof. Refer to [124, Theorem 2.57] for the proof. �

We notice that the Kantorovich inequality can be interpreted as a converse of Jensen’s
inequality for f (t) = t−1:

〈A−1x,x〉 ≤ (M +m)2

4Mm
〈Ax,x〉−1.

We consider a difference type converse of the Kantorovich inequality:

Theorem 2.19 Let A be a positive operator such that mIH ≤ A ≤ MIH for some scalars
0 < m ≤ M. Then

〈A−1x,x〉− 〈Ax,x〉−1 ≤ (
√

M−√
m)2

Mm
for every unit vector x ∈ H.

Proof. Refer to [124, Theorem 1.31] for the proof. �

In a similar way, we have the following result.

Theorem 2.20 Let A be a self-adjoint operator such that mIH ≤ A ≤ MIH for some
scalars m ≤ M. Then

〈A2x,x〉− 〈Ax,x〉2 ≤ (M−m)2

4
for every unit vector x ∈ H.

Proof. Refer to [124, Theorem 1.30] for the proof. �

It seems that a generalization of Theorem 2.19 and Theorem 2.20 is very difficult.
However, as an application of the Mond-Pečarić method, we can show a difference type
converse of Jensen’s inequality for convex functions:

Theorem 2.21 Let A be a self-adjoint operator such that mIH ≤ A ≤ MIH for some
scalars m < M and f a real valued continuous convex function on [m,M]. Then

0 ≤ 〈 f (A)x,x〉− f (〈Ax,x〉) ≤ β (m,M, f )

holds for every unit vector x ∈ H, where

β (m,M, f ) = max

{
f (M)− f (m)

M−m
(t−m)+ f (m)− f (t) : t ∈ [m,M]

}
.

Theorem 2.22 Let A be a self-adjoint operator such that mIH ≤ A ≤ MIH for some
scalars m〈M and f a real valued continuous concave function on [m,M]. Then

β(m,M, f ) ≤ 〈 f (A)x,x〉− f (〈Ax,x〉) ≤ 0

holds for every unit vector x ∈ H, where

β (m,M, f ) = min

{
f (M)− f (m)

M−m
(t−m)+ f (m)− f (t) : t ∈ [m,M]

}
.
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If we put f (t) = t p for p ∈ R in Theorem 2.21 and Theorem 2.22, then we have a
difference type converse of the Hölder-McCarthy inequality.

Theorem 2.23 Let A be a self-adjoint operator such that mIH ≤ A ≤ MIH for some
scalars m < M. Then

0 ≤ 〈Apx,x〉− 〈Ax,x〉p ≤C(m,M, p) for all p �∈ [0,1]

and
C(m,M, p) ≤ 〈Apx,x〉− 〈Ax,x〉p ≤ 0 for all p ∈ [0,1]

for every unit vector x ∈ H, where

C(m,M, p) = (p−1)
(

Mp −mp

p(M−m)

) p
p−1

+
Mmp−mMp

M−m
(2.38)

for any real number p ∈ R.

We call C(m,M, p) the Kantorovich constant for the difference . Let us collect the basic
properties of C(m,M, p):

Theorem 2.24 Let M > m > 0 and p ∈ R.

(i) C(m,M, p) = mMp−Mmp

M−m {K(m,M, p)
1

p−1 −1},

(ii) 0 ≤C(m,M, p) ≤ M(Mp−1 −mp−1) for all p > 1,

(iii) C(m,M,1) = 0.

Proof. Refer to [124, Lemma 2.59] for the proof. �

If we put f (t) = logt, η(t) = −t logt in Theorem 2.22 and f (t) = exp(t) in Theo-
rem 2.21, then we have the following results.

Theorem 2.25 Let A be a positive operator such that 0 < mIH ≤ A ≤ MIH for some
scalars 0 < m < M. Then

− logS(h) ≤ 〈logAx,x〉− log〈Ax,x〉 ≤ 0

and
− logS(h)〈Ax,x〉 ≤ 〈η(A)x,x〉−η(〈Ax,x〉) ≤ 0

for every unit vector x ∈ H.

Theorem 2.26 Let A be a self-adjoint operator such that mIH ≤ A ≤ MIH for some
scalars m < M. Then

0 ≤ 〈expAx,x〉− exp〈Ax,x〉 ≤
(

Mem −meM

M−m
+

eM − em

M−m
log

(
eM − em

e(M−m)

))
for every unit vector x ∈ H.
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We shall give an estimate of the difference between the arithmetic mean and the geo-
metric one:

Corollary 2.2 For positive numbers x1, · · · ,xn ∈ [m,M] with M > m > 0 and h = M
m ,

n
√

x1x2 · · ·xn +D(m,M) ≥ x1 + x2 + · · ·xn

n
(2.39)

where

D(m,M) = θM +(1−θ )m−Mθm1−θ and θ = log

(
h−1
logh

)
1

logh
. (2.40)

We call D(m,M) the Mond-Shisha difference. Notice that (2.39) represents a differ-
ence type converse inequality of the arithmetic-geometric mean inequality. Recall that the
logarithmic mean L(m,M) is defined for M ≥ m > 0 as

L(m,M) =
M−m

logM− logm
(m < M) and L(m,m) = m. (2.41)

Lemma 2.4 The Mond-Shisha difference coincides with the following constant via the
Specht ratio: If M > m > 0 and h = M

m > 1, then

D(mp,Mp) = L(mp,Mp) logS(h, p) (2.42)

for all p ∈ R.

Proof. Refer to [124, Lemma 2.51] for the proof. �

The following result is considered as a continuous version of Mond-Shisha result
(2.39).

Theorem 2.27 Let A be a positive operator on H satisfying MIH ≥ A ≥ mIH > 0. Put
h = M

m . Then the difference between 〈Ax,x〉 and exp〈logAx,x〉 at a unit vector x ∈ H is not
greater than the Mond-Shisha difference:

〈Ax,x〉− exp〈logAx,x〉 ≤ D(m,M),

where D(m,M) is defined in (2.40) and the equality holds if and only if both m and M are
eigenvalues of A and

x =

√
1− log

(
h−1
logh

)
1

logh
em +

√
log

(
h−1
logh

)
1

logh
eM,

where em and eM are corresponding unit eigenvectors to m and M, respectively.

Proof. Refer to [124, Theorem 2.52] for the proof. �

Finally, in a general situation, we state explicitly the heart of the Mond-Pečarić method:
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Theorem 2.28 Let f : [m,M] �→ R be a convex continuous function, J an interval such
that J ⊂ f ([m,M]) and A a self-adjoint operator such that mIH ≤ A≤MIH for some scalars
m < M. If F(u,v) is a real function defined on J× J, non-decreasing in u, then

F [〈 f (A)x,x〉, f (〈Ax,x〉)] ≤ max
t∈[m,M]

F

[
f (M)− f (m)

M−m
(t −m)+ f (m), f (t)

]
= max

θ∈[0,1]
F [θ f (m)+ (1−θ ) f (M), f (θm+(1−θ )M)]

for every unit vector x ∈ H.

This book is dedicated to applications of the Mond-Pečarić method for convex func-
tions. One of the most important points of the Mond-Pečarić method is to offer a totally
new viewpoint in the field of operator theory.

2.4 Notes

The idea of the Mond-Pečarić method is firstly proposed by Nakamura [237] for p =−1 in
1960, afterwards by Ky Fan [48] for any integer p �= 0,1 in 1966. Finally the principle of
the Mond-Pečarić method as Theorem 2.28 is established explicitly by [214] for a vector
version in 1993, and [216] for an operator version, [221] for Hansen-Pedersen version and
[222] for multiple vector version.

Finally, we present the following A.N. Kolmogorov’s word. He said in a lecture that

“Behind every theorem lies an inequality.”

A.W. Marshall, I. Olkin and B.C. Arnold
Inequalities: Theory of Majorization

and Its Applications
Second Edition





Chapter3
Order Preserving Operator
Inequality

This chapter is devoted to explain fundamental operator inequalities related to the Furuta
inequality. The base point is the Löwner-Heinz inequality. It induces weighted geometric
means, which serves as an excellent technical tool. The chaotic order logA ≥ logB is
conceptually important in the discussion below.

3.1 From the Löwner-Heinz inequality to the Furuta
inequality

The non-commutativity of operators appears in the fact that the function t �→ t2 is not
order-preserving. That is, there is a pair of positive operators A and B such that A ≥ B and
A2 �≥ B2. The following is a quite familiar example;

A =
(

2 1
1 1

)
, B =

(
1 0
0 0

)
.

This implies that the function t �→ t p is not order-preserving for p > 1 by assuming the
following fact.

45
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Theorem 3.1 (LÖWNER-HEINZ INEQUALITY (LH)) The function t �→ t p is order-pre-
serving for 0 ≤ p ≤ 1, i.e.

A ≥ B ≥ 0 =⇒ Ap ≥ Bp.

The essence of the Löwner-Heinz inequality is the case p = 1
2 :

A ≥ B ≥ 0 =⇒ A
1
2 ≥ B

1
2 .

It is rephrased as follows: For A,B ≥ 0,

AB2A ≤ IH =⇒ A
1
2 BA

1
2 ≤ IH .

The assumption AB2A ≤ IH is equivalent to ‖AB‖ ≤ 1. Thus, noting the commutativity
of the spectral radius, r(XY ) = r(YX), we have

‖A 1
2 BA

1
2 ‖ = r(A

1
2 BA

1
2 ) = r(AB) ≤ ‖AB‖ ≤ 1.

The above discussion goes to Pedersen’s proof of the Löwner-Heinz inequality. As a
matter of fact, the following statement is true:
Let P be the set of all p ∈ [0, 1

2 ] such that A ≥ B ≥ 0 implies A2p ≥ B2p. Then P is convex.
So suppose that ApB2pAp ≤ IH and AqB2qAq ≤ IH , or equivalently ‖ApBp‖ ≤ 1 and

‖BqAq‖ ≤ 1. Then

‖A p+q
2 Bp+qA

p+q
2 ‖ = r(A

p+q
2 Bp+qA

p+q
2 ) = r(Ap+qBp+q) = r(ApBpBqAq)

≤ ‖ApBp‖‖BqAq‖ ≤ 1.

This implies that if 2p,2q ∈ P, then p+q ∈ P, that is, P is convex.
Related to the case p = 1

2 in the Löwner-Heinz inequality, Chan-Kwong conjectured
that

A ≥ B ≥ 0 =⇒ (AB2A)
1
2 ≤ A2.

Moreover, if it is true, then the following inequality holds:

A ≥ B ≥ 0 =⇒ (BA2B)
1
2 ≥ B2.

Here we cite a useful lemma on exponent.

Lemma 3.1 For p ∈ R, (X∗A2X)p = X∗A(AXX∗A)p−1AX for A > 0 and invertible X.

Proof. It is easily checked that Y ∗(YY ∗)nY = Y ∗Y (Y ∗Y )n for any n ∈ N. This implies
that Y ∗ f (YY ∗)Y = Y ∗Y f (Y ∗Y ) for any polynomials f and so it holds for continuous func-
tions f on a suitable interval. Hence we have the conclusion by applying it to f (x) = xp

and Y = AX . �

Consequently, the Chan-Kwong conjecture is modified in the following sense: If it is
true, then

A ≥ B ≥ 0 =⇒ (AB2A)
3
4 ≤ A3.
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As a matter of fact, we have

(AB2A)
3
4 = AB(BA2B)−

1
4 BA = AB((BA2B)−

1
2 )

1
2 BA

≤ ABB−1BA = ABA ≤ A3.

Based on this consideration, the Furuta inequality was established.

Theorem 3.2 (FURUTA INEQUALITY (FI)) If A ≥ B ≥ 0, then for each r ≥ 0,

(A
r
2 ApA

r
2 )

1
q ≥ (A

r
2 BpA

r
2 )

1
q (i)

and
(B

r
2 ApB

r
2 )

1
q ≥ (B

r
2 BpB

r
2 )

1
q (ii)

hold for p ≥ 0 and q ≥ 1 with
(1+ r)q ≥ p+ r. (∗)

The domain (∗) is drawn as in Figure 3.1.

p

q(1, 0)

(0,−r)

(1, 1)

q = 1 p = q

(1 + r)q = p + r

Figure 3.1: The domain (∗)

It is a quite important information on (FI) that the domain defined by (∗) is the best
possible in the sense that it cannot extend. It is proved by Tanahashi [277]:

If p,q,r > 0 satisfy either (1+ r)q < p+ r or q < 1, then there exist A,B > 0 such that
A ≥ B and

A
p+r
q �≥ (A

r
2 BpA

r
2 )

1
q .

Professor Berberian said that Figure 3.1 is “Rosetta Stone” in (FI). Incidentally it is
notable that Figure 3.1 is expressed by qp–axis: Berberian’s interesting comment might
contain it.

Proof of (FI). It suffices to show that if A ≥ B > 0, then

(A
r
2 BpA

r
2 )

1+r
p+r ≤ A1+r.
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It is proved for arbitrary p ≥ 1 by the induction on r. First of all, we take r ∈ [0,1].

(A
r
2 BpA

r
2 )

1+r
p+r = A

r
2 B

p
2 (B

p
2 ArB

p
2 )

1−p
p+r B

p
2 A

r
2

≤ A
r
2 B

p
2 (B

p
2 BrB

p
2 )

1−p
p+r B

p
2 A

r
2 = A

r
2 BA

r
2 ≤ A

r
2 AA

r
2 = A1+r.

Next we suppose that it is true for some r1 > 0, i.e.

B1 = (A
r1
2 BpA

r1
2 )

1+r1
p+r1 ≤ A1+r1 = A1.

Then for r ∈ (0,1]

(A
r
2
1 B

p+r1
1+r1
1 A

r
2
1 )

1+r
p1+r ≤ A1+r

1 ,

where p1 = p+r1
1+r1

. Putting s = r1 +(1+ r1)r = (1+ r1)(1+ r)−1, we have

(A
s
2 BpA

s
2 )

1+s
p+s ≤ A1+s,

This means that it is true for s ∈ [r1,1+2r1]. Hence the proof is complete. �

To make clear the structure of (FI), we give a mean theoretic approach to (FI).
The Löwner-Heinz inequality says that the function tα is operator monotone for α ∈

[0,1]. It induces the α-geometric operator mean defined for α ∈ [0,1] as

A #α B = A
1
2 (A− 1

2 BA− 1
2 )αA

1
2

if A > 0, i.e. A is invertible, by the Kubo-Ando theory [165].
For the sake of convenience, we cite a useful lemma which we will use frequently in

the below.

Lemma 3.2 For X ,Y > 0 and a, b ∈ [0,1],

(i) monotonicity: X ≤ X1 and Y ≤ Y1 =⇒ X #a Y ≤ X1 #a Y1,

(ii) transformer equality: T ∗XT #a T ∗YT = T ∗(X #a Y )T for invertible T ,

(iii) transposition: X #a Y = Y #1−a X,

(iv) multiplicity: X #ab Y = X #a (X #b Y ).

Proof. First of all, (iii) follows from Lemma 3.1, and (iv) does from a direct computa-
tion under the assumption of invertibility of operators.

To prove (i), we may assume that X ,Y > 0. If Y ≤Y1, then X #a Y ≤ X #a Y1 is assured
by (LH) (and the formula of #a). Moreover the monotonicity of the other is shown by the
use of (iii).



3.1 FROM THE LÖWNER-HEINZ INEQUALITY TO THE FURUTA INEQUALITY 49

Finally (ii) is obtained by Jensen’s inequality (JI) which is discussed in Theorem 3.45.
We put Z = X

1
2 T . Then it follows from (JI) that

T ∗XT #a T ∗YT = Z∗Z #a T ∗YT

= |Z|(|Z|−1T ∗YT |Z|−1)a|Z|
= |Z|

(
|Z|−1Z∗(X− 1

2YX− 1
2
)
Z|Z|−1

)a|Z|
≥ Z∗(X− 1

2YX− 1
2
)a

Z

= T ∗X
1
2
(
X− 1

2YX− 1
2
)a

X
1
2 T

= T ∗(X #a Y )T,

because Z|Z|−1 = V is the partial inequality in the polar decomposition of Z and so a
contraction. �

By using the mean theoretic notation, the Furuta inequality has the following expres-
sion:

(FI) If A ≥ B > 0, then

A−r # 1+r
p+r

Bp ≤ A for p ≥ 1 and r ≥ 0. (3.1)

Related to this, we have to mention the following more precise expression of it. We
say it a satellite inequality of (FI), simply (SF).

Theorem 3.3 (SATELLITE INEQUALITY (SF)) If A ≥ B > 0, then

A−r # 1+r
p+r

Bp ≤ B ≤ A for p ≥ 1 and r ≥ 0. (3.2)

Proof. As the first stage, we assume that 0 ≤ r ≤ 1. Then the monotonicity of #α (α ∈
[0,1]) implies that

A−r # 1+r
p+r

Bp ≤ B−r # 1+r
p+r

Bp = B.

Next we assume that for some r > 0,

A ≥ B > 0 =⇒ A−r # 1+r
p+r

Bp ≤ B ≤ A

holds for all p ≥ 1. So we prove that it is true for s = 1+2r. Since A ≥ B > 0 is assumed,
we have

A−1 # 2
p+1

Bp ≤ B,

so that
B1 = (A

1
2 BpA

1
2 )

2
p+1 ≤ A

1
2 BA

1
2 ≤ A2 = A1.

By the assumption, it follows that for p1 ≥ 1

A−r
1 # 1+r

p1+r
Bp

1 ≤ B1 ≤ A
1
2 BA

1
2 .
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Arranging this for p1 = p+1
2 , we have

A−2r # 2(1+r)
p+1+2r

A
1
2 BpA

1
2 ≤ B1 ≤ A

1
2 BA

1
2 .

Furthermore multiplying A− 1
2 on both sides, it follows that for s = 2r+1

A−s # 1+s
p+s

Bp ≤ B,

as desired. �

3.2 The Ando-Hiai inequality

Ando and Hiai proposed a log-majorization inequality, whose essential part is the following
operator inequality. We say it the Ando-Hiai inequality, simply (AH).

Theorem 3.4 (ANDO-HIAI INEQUALITY (AH)) If A #α B ≤ IH for A,B > 0, then
Ar #α Br ≤ IH for r ≥ 1.

Proof. It suffices to show that Ar #α Br ≤ IH for 1 ≤ r ≤ 2. Put p = r−1 ∈ [0,1] and

C = A− 1
2 BA− 1

2 . Then, since the assumption A #α B ≤ IH is equivalent to Cα ≤ A−1 and so
C−α ≥ A, it follows from Lemma 3.1 that

A− 1
2 BrA− 1

2 = A− 1
2 (A

1
2CA

1
2 )rA− 1

2 = C
1
2 (C

1
2 AC

1
2 )pA− 1

2

≤C
1
2 (C

1
2C−αC

1
2 )pC

1
2 = C1+(1−α)p.

Hence we have

Ar #α Br = A
1
2 (Ap #α A− 1

2 BrA− 1
2 )A

1
2 ≤ A

1
2 (C−α p #α C1+(1−α)p)A

1
2

= A
1
2C(1+p)α−α pA

1
2 = A

1
2CαA

1
2 ≤ A

1
2 A−1A

1
2 = IH .

�

Based on an idea of the Furuta inequality, we propose two variables version of the
Ando-Hiai inequality:

Theorem 3.5 (GENERALIZED ANDO-HIAI INEQUALITY (GAH)) For A,B > 0 and α ∈
[0,1], if A #α B ≤ IH, then

Ar # αr
αr+(1−α)s

Bs ≤ IH for r,s ≥ 1.

It is obvious that the case r = s in Theorem 3.5 is just the Ando-Hiai inequality.
Now we consider two one-sided versions of Theorem 3.5:
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Proposition 3.1 For A,B > 0 and α ∈ [0, 1], if A #α B ≤ IH, then

Ar # αr
αr+1−α

B ≤ IH for r ≥ 1.

Proposition 3.2 For A,B > 0 and α ∈ [0, 1], if A #α B ≤ IH, then

A # α
α+(1−α)s

Bs ≤ IH for s ≥ 1.

Next we investigate relations among these propositions and Theorem 3.5.

Theorem 3.6 (1) Propositions 3.1 and 3.2 are equivalent.

(2) Theorem 3.5 follows from Propositions 3.1 and 3.2.

Proof.
(1) We first note the transposition formula X #α Y = Y #β X for β = 1−α . Therefore
Proposition 3.1 (for β ) is rephrased as follows:

B #β A ≤ IH =⇒ Bs # βs
βs+α

A ≤ IH for s ≥ 1.

Using the transposition formula again, it coincides with Proposition 3.2 because

1− β s
β s+ α

=
α

β s+ α
=

α
(1−α)s+ α

.

(2) Suppose that A #α B ≤ IH and r,s ≥ 1 are given. Then it follows from Proposition 3.1
that Ar #α1 B ≤ IH for α1 = αr

αr+1−α . We next apply Proposition 3.2 to it, so that we have

IH ≥ Ar # α1
α1+(1−α1)s

Bs = Ar # αr
αr+(1−α)s

Bs,

as desired. �

We now point out that Proposition 3.1 is an equivalent expression of the Furuta in-
equality of the Ando-Hiai type:

Theorem 3.7 The inequality in Proposition 3.1 is equivalent to the Furuta inequality.

Proof. For a given p ≥ 1, we put α = 1
p . Then A ≥ B(≥ 0) if and only if

A−1 #α B1 ≤ IH , for B1 = A− 1
2 BpA− 1

2 . (3.3)

If A ≥ B > 0, then (3.3) holds for A,B > 0, so that Proposition 3.1 implies that for any
r ≥ 0

IH ≥ A−(r+1) # r+1
p

(1− 1
p )+ r+1

p

B1 = A−(r+1) # 1+r
p+r

B1 = A−(r+1) # 1+r
p+r

A− 1
2 BpA− 1

2 .
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Hence we have (FI);
A−r # 1+r

p+r
Bp ≤ A.

Conversely suppose that (FI) is assumed. If A−1 #α B1 ≤ IH , then A≥ (A
1
2 B1A

1
2 )α = B,

where p = 1
α . So (FI) implies that for r1 = r−1 ≥ 0

A ≥ A−r1 # 1+r1
p+r1

Bp = A−(r−1) # r
p+r−1

A
1
2 B1A

1
2 .

Since r
p+r−1 = αr

1+αr−α , we have Proposition 3.1. �

As in the discussion as above, Theorem 3.5 can be proved by showing Proposition 3.1.
Finally we cite its proof. Since it is equivalent to the Furuta inequality, we have an alterna-
tive proof of it. It is done by the usual induction, whose technical point is a multiplicative
property of the index αr

(1−α)+αr of # as appeared below.

Proof of Proposition 3.1. For convenience, we show that if A−1 #α B ≤ IH , then

A−r # αr
(1−α)+αr

B ≤ IH for r ≥ 1. (3.4)

Now the assumption says that

Cα = (A
1
2 BA

1
2 )α ≤ A.

For any ε ∈ (0,1], we have Cαε ≤ Aε by the Löwner-Heinz inequality and so

A−(1+ε) # α(1+ε)
(1−α)+α(1+ε)

B = A− 1
2 (A−ε # α(1+ε)

1+αε
A

1
2 BA

1
2 )A− 1

2

≤ A− 1
2 (C−αε # α(1+ε)

1+αε
C)A− 1

2 = A− 1
2CαA− 1

2 = A−1 #α B ≤ IH .

Hence we proved the conclusion (3.4) for 1 ≤ r ≤ 2. So we next assume that (3.4) holds
for 1 ≤ r ≤ 2n. Then the discussion of the first half ensures that

(A−r)r1 # α1r1
(1−α1)+α1r1

B ≤ IH for 1 ≤ r1 ≤ 2, where α1 =
αr

(1−α)+ αr
.

Thus the multiplicative property of the index

α1r1

(1−α1)+ α1r1
=

αrr1

(1−α)+ αrr1

shows that (3.4) holds for all r ≥ 1. �

Here we consider an expression of (AH)-type for satellite of (FI): Suppose that A−1 #α

B ≤ IH and put α = 1
p . It is equivalent to C = (A

1
2 BA

1
2 )

1
p ≤ A. So (SF) says that

A−r # 1+r
p+r

Cp ≤C, or A−(r+1) # 1+r
p+r

B ≤ A− 1
2CA− 1

2 = A−1 # 1
p

B.

Namely (SF) has an (AH)-type representation as follows:
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Theorem 3.8 Let A and B be positive invertible operators. Then

A #α B ≤ IH =⇒ Ar # αr
αr+1−α

B ≤ A #α B (≤ IH) for r ≥ 1.

As an application, we have the monotonicity of the operator function induced by
(GAH):

Theorem 3.9 If A #α B ≤ I for A,B > 0, then

f (r,s) = Ar # αr
αr+(1−α)s

Bs

is decreasing for r, s ≥ 1.

Proof. It suffices to show that f is decreasing for r≥1 because fα ,A,B(r,s)= f1−α ,B,A(s,r).
So we fix s ≥ 1.

By (GAH), it follows that for each r ≥ 1

f (r,s) = Ar #α1 B ≤ IH , where α1 =
αr

αr+(1−α)s
.

For arbitrary r2 > r, we put r1 = r2
r > 1. Then we have

f (r2,s) = Ar2 # αr2
αr2+(1−α)s

Bs = (Ar)r1 # α1r1
α1r1+(1−α1)

Bs ≤ Ar #α1B
s = f (r,s)

by Theorem 3.8. �

3.3 The grand Furuta inequality

To compare (AH) with (FI), (AH) is arranged as a Furuta type operator inequality. As in
the proof of (AH), its assumption is that

B1 = Cα = (A− 1
2 BA− 1

2 )α ≤ A−1 = A1.

Replacing p = α−1, it is reformulated that

A ≥ B > 0 =⇒ Ar ≥
(
A

r
2
(
A− 1

2 BpA− 1
2
)r

A
r
2

) 1
p

(†)

for r ≥ 1 and p ≥ 1.

Moreover, to make a simultaneous extension of both (FI) and (AH), Furuta added vari-
ables as in the case of (FI). Actually he paid his attention to A− 1

2 in (†), precisely, he
replaced it to A− t

2 (t ∈ [0,1]). Consequently he established so-called the grand Furuta
inequality, simply (GFI). It is sometimes said to be a generalized Furuta inequality.
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Theorem 3.10 (GRAND FURUTA INEQUALITY (GFI)) If A ≥ B > 0 and t ∈ [0,1], then[
A

r
2
(
A− t

2 BpA− t
2
)s

A
r
2

] 1−t+r
(p−t)s+r ≤ A1−t+r

holds for r ≥ t and p,s ≥ 1.

It is easily seen that
(GFI) for t = 1, r = s ⇐⇒ (AH)
(GFI) for t = 0, s = 1 ⇐⇒ (FI).

Proof of (GFI). We prove it by the induction on s. For this, we first prove it for 1≤ s≤
2: Since (X∗C2X)s = X∗C(CXX∗C)s−1CX for arbitrary X and C ≥ 0, and 0 ≤ s− 1 ≤ 1,
(LH) implies that

Ar/2(A−t/2BpA−t/2)sAr/2 = A
r−t
2 B

p
2 (B

p
2 A−tB

p
2 )s−1B

p
2 A

r−t
2

≤ A
r−t
2 B

p
2 (B

p
2 B−tB

p
2 )s−1B

p
2 A

r−t
2 = A

r−t
2 B(p−t)s+tA

r−t
2 .

Furthermore it follows from (LH) and (FI) that{
Ar/2(A−t/2BpA−t/2)s

Ar/2
} 1−t+r

(p−t)s+r ≤
{

A
r−t
2 B(p−t)s+tA

r−t
2

} 1−t+r
(p−t)s+r ≤ A1−t+r

by noting that (p− t)s+ t +(r− t) = (p− t)s+ r. Hence (GFI) is proved for 1 ≤ s ≤ 2.
Next, under the assumption (GFI) holds for some s≥ 1, we now prove that (GFI) holds

for s+1. Since (GFI) holds for s, we take r = t in it. Thus we have

A ≥
{

At/2(A−t/2BpA−t/2)s
At/2

} 1
(p−t)s+t

.

Put C = {At/2(A−t/2BpA−t/2)sAt/2} 1
(p−t)s+t , that is, A ≥C. By using that s ≥ 1 if and only

if 1 ≤ s+1
s ≤ 2 and that (GFI) for 1 ≤ s ≤ 2 has been proved, we obtain that

A1−t+r ≥
{

Ar/2(A−t/2C(p−t)s+tA−t/2)
s+1
s Ar/2

} 1−t+r
{(p−t)s+t−t}( s+1

s )+r

=
{

Ar/2(A−t/2C(p−t)s+tA−t/2)
s+1
s Ar/2

} 1−t+r
(p−t)(s+1)+r

=
{

Ar/2(A−t/2{At/2(A−t/2BpA−t/2)sAt/2}A−t/2)
s+1
s Ar/2

} 1−t+r
(p−t)(s+1)+r

=
{

Ar/2(A−t/2BpA−t/2)s+1Ar/2
} 1−t+r

(p−t)(s+1)+r
.

This means that (GFI) holds for s+1, and so the proof is complete. �

Next we point out that (GFI) for t = 1 includes both: the Ando-Hiai and Furuta in-
equality.

Since the Ando-Hiai inequality is just (GFI; t = 1) for r = s, it suffices to check that
the Furuta inequality is contained in (GFI; t = 1). As a matter of fact, it is just (GFI; t = 1)
for s = 1.
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Theorem 3.11 Furuta inequality (FI) is equivalent to (GFI) for t = s = 1.

Proof. We write down (GFI; t = 1) for s = 1: If A ≥ B > 0, then[
A

r
2
(
A− 1

2 BpA− 1
2
)
A

r
2

] r
p−1+r ≤ Ar

for p,r ≥ 1, or equivalently,
A−(r−1) # r

p−1+r
Bp ≤ A

for p,r ≥ 1. Replacing r− 1 by r1, (GFI; t = 1) for s = 1 is rephrased as follows: If
A ≥ B > 0, then

A−r1 # 1+r1
p+r1

Bp ≤ A

for p ≥ 1 and r1 ≥ 0, which is nothing but the Furuta inequality. �

Furthermore Theorem 3.5, the generalized Ando-Hiai inequality, is understood as the
case t = 1 in (GFI):

Theorem 3.12 (GFI; t = 1) is equivalent to Theorem 3.5.

Proof. (GFI; t = 1) is written as

A ≥ B > 0 =⇒
[
A

r
2
(
A− 1

2 BpA− 1
2
)s

A
r
2
] r

(p−1)s+r ≤ Ar (p,r,s ≥ 1).

Here we put

α =
1
p
, B1 = A− 1

2 BpA− 1
2 .

Then we have

A ≥ B > 0 ⇐⇒ A−1 # 1
p

A− 1
2 BpA− 1

2 ≤ IH ⇐⇒ A−1 #α B1 ≤ IH

and for each p,r,s ≥ 1

[A
r
2 (A− 1

2 BpA− 1
2 )sA

r
2 ]

r
(p−1)s+r ≤ Ar

⇐⇒ A−r # r
(p−1)s+r

(A− 1
2 BpA− 1

2 )s ≤ IH

⇐⇒ A−r # αr
αr+(1−α)s

Bs
1 ≤ IH .

This shows the statement of Theorem 3.5 (GAH). �

Next we consider some variants of (GFI), which are useful in the discussion of Kan-
torovich type inequalities.

Theorem 3.13 If A ≥ B ≥ 0, then

A
(p+t)s+r

q ≥
(
A

r
2
(
A

t
2 BpA

t
2
)s

A
r
2

) 1
q

holds for all p, t, s, r ≥ 0 and q ≥ 1 with (p+ t + r)q ≥ (p+ t)s+ r and (1+ t + r)q ≥
(p+ t)s+ r.
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Proof. First of all, we may assume p > 0. Now the Furuta inequality says that

A1 = A
p+t
q1 ≥ B1 =

(
A

t
2 BpA

t
2

) 1
q1

holds for t ≥ 0, where q1 = max{1, p+t
1+t }. Applying the Furuta inequality again, we have

A
p1+r1

q
1 ≥

(
A

r1
2

1 Bp1
1 A

r1
2

1

) 1
q
,

that is,

A
(p+t)(p1+r1)

qq1 ≥
(
A

(p+t)r1
2q1

(
A

t
2 BpA

t
2
) p1

q1 A
(p+t)r1

2q1

) 1
q
,

for all p1, r1 ≥ 0 and q ≥ 1 with (1+ r1)q ≥ p1 + r1. So we take p1 = sq1 and r1 = rq1
p+t .

Since (1+ r1)q ≥ p1 + r1 is equivalent to the condition that (p+ t + r)q ≥ (p+ t)s+ r and
(1+ t + r)q ≥ (p+ t)s+ r, the statement is proved. �

In the remainder, we reconsider (GFI). For this, we cite it by the use of operator means.
For convenience, we use the notation �s for the binary operation

A �s B = A
1
2 (A− 1

2 BA− 1
2 )sA

1
2 for s �∈ [0,1],

whose formula is the same as #s.

GRAND FURUTA INEQUALITY (GFI)

A ≥ B > 0,t ∈ [0,1] =⇒ A−r+t# 1−t+r
(p−t)s+r

(At�sB
p) ≤ A (r ≥ t; p,s ≥ 1)

This mean theoretic expression of (GFI) induces the following improvement of it.

SATELLITE OF THE GRAND FURUTA INEQUALITY (SGF)

A ≥ B > 0,t ∈ [0,1] =⇒ A−r+t# 1−t+r
(p−t)s+r

(At�sB
p) ≤ B (r ≥ t; p,s ≥ 1)

Here we clarify that the case t = 1 is essential in (GFI), in which SGF) is quite mean-
ingful. As a matter of fact, we prove that (SGF; t=1) implies (SGF) for every t ∈ [0,1].

For the reader’s convenience, we prove (SGF). For this, the following lemma is needed,
which is a variational expression of (LH).

Lemma 3.3 If A ≥ B > 0, t ∈ [0,1] and 1 ≤ s ≤ 2, then

At �s C ≤ Bt �s C

holds for arbitrary C > 0, in particular,

At �s Bp ≤ B(p−t)s+t

holds for p ≥ 1.
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Proof. Since A−t ≤ B−t by (LH), we have

At �s C = C(C−1 #s−1 A−t)C ≤C(C−1 #s−1 B−t)C = Bt �s C.

Similarly we have

At �s Bp = Bp(B−p #s−1 A−t)Bp ≤ Bp(B−p #s−1 B−t)Bp = B(p−t)s+t .

�

Here we give a short comment on the first statement in the above lemma: Suppose that
A ≥ B > 0 and t ∈ [0,1]. Then

At �s C ≤ Bt �s C

holds for arbitrary C > 0 and 1 ≤ s ≤ 2. Then taking C = Bt and s = 2, we have

At �2 Bt ≤ Bt �2 Bt = Bt ,

so that BtA−tBt ≤ Bt , or At ≥ Bt . That is, it is equivalent to (LH).

More generally, we know the following fact.

Lemma 3.4 If A ≥ B > 0 and t ∈ [0,1], then

(At�sB
p)

1
(p−t)s+t ≤ B ≤ A

holds for p,s ≥ 1.

Proof. We fix p ≥ 1 and t ∈ [0,1]. It follows from Lemma 3.3.5 and (LH) that

A ≥ B > 0 =⇒ B1 = (At�sB
p)

1
(p−t)s+t ≤ B ≤ A (∗∗)

for s ∈ [1,2]. So we assume that (∗∗) holds for some s ≥ 1, and prove that

B2 = (At�2sB
p)

1
2(p−t)s+t ≤ B1 ≤ B.

Actually we apply (†) to B1 ≤ A. Then we have

(At�2B
p1
1 )

1
2(p1−t)+t ≤ B1 ≤ B, where p1 = (p− t)s+ t,

and moreover

(At�2B
p1
1 )

1
2(p1−t)+t =

[
At�2

(
At�sB

p)] 1
(p−t)2s+t = (At�2sB

p)
1

(p−t)2s+t = B2,

which completes the proof. �

Under this preparation, we can easily prove (SGF) by virtue of (SF) in Theorem 3.3:
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Proof of (SGF). For given p,t,s, we use the same notation as above; p1 = (p− t)s+ t

and B1 = (At�sBp)
1
p1 . Then Lemma 3.3.6 implies that B1 ≤ B ≤ A. Hence it follows from

(SF) for B1 ≤ A and r1 = r− t that

A−r+t# 1−t+r
(p−t)s+r

(At�sB
p) = Ar1# 1+r1

p1+r1

Bp1
1 ≤ B1 ≤ B.

�

It is shown that (SGF; t = 1) is essential among (SGF; t ∈ [0,1]), in which (LH) com-
pletely works. That is,

Theorem 3.14 (SGF; t = 1) implies (SGF; t) for t ∈ [0,1].

Proof. Suppose that for A ≥ B > 0,

A−r+1# r
(p−1)s+r

(A�sB
p) ≤ B

holds for r ≥ 1.
We fix arbitrary t ∈ (0,1). As At ≥ Bt by (LH), we have

(At)−
r
t +1# r

t
( p

t −1)s+ r
t

(At�sB
p) ≤ Bt

for r ≥ t. It is arranged as

A−r+t# r
(p−t)s+r

(At�sB
p) ≤ Bt ,

or equivalently,
(At�sB

p)# (p−t)s
(p−t)s+r

A−r+t ≤ Bt .

Therefore it follows from Lemma 3.3 that for s ∈ [1,2]

A−r+t# 1−t+r
(p−t)s+r

(At�sB
p) = (At�sB

p)# (p−t)s−(1−t)
(p−t)s+r

A−r+t

= (At�sB
p)# (p−t)s−(1−t)

(p−t)s

{
(At�sB

p)# (p−t)s
(p−t)s+r

A−r+t
}

≤ (At�sB
p)# (p−t)s−(1−t)

(p−t)s
Bt

= Bt# 1−t
(p−t)s

(At�sB
p)

≤ Bt# 1−t
p−t

B(p−t)s+t = B.

Namely we have
A ≥ B > 0 =⇒ A−r+t# 1−t+r

(p−t)s+r
(At�sB

p) ≤ B (∗∗∗)

for 1 ≤ s ≤ 2, r ≥ t and p ≥ 1.
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Next we assume that (∗∗∗) holds for some s ≥ 1. Then taking r = t, we have

B ≥ (At�sB
p)

1
(p−t)s+t .

Put C = (At�sBp)
1

(p−t)s+t , that is, (A ≥)B ≥C. By (∗∗) for s+1
s ∈ [1,2], we obtain

C ≥ A−r+t# 1−t+r
((p−t)s+t−t)( s+1

s )+r

(At� s+1
s

C(p−t)s+t)

= A−r+t# 1−t+r
(p−t)(s+1)+r

(
At� s+1

s
(At�sB

p)
)

= A−r+t# 1−t+r
(p−t)(s+1)+r

(At�s+1B
p).

Hence we have
A−r+t# 1−t+r

(p−t)(s+1)+r
(At�s+1B

p) ≤C ≤ B.

�

Remark 3.1 (GFI; t = 1) implies a variant of (GFI) that

A ≥ B > 0, t ∈ [0,1]

=⇒ A−r+t# 1−t+r
(p−t)s+r

(At�sB
p) ≤ At# 1−t

p−t
Bp (r ≥ t; p,s ≥ 1)

Here we note: (1) The case t = 0 and s = 1 is just

A ≥ B > 0 =⇒ A−r# 1+r
p+r

Bp ≤ B (p ≥ 1, r ≥ 0). (SF)

(2) The case t = 1 and r = s is the Ando-Hiai inequality:

X#αY ≤ IH =⇒ Xr#αY r ≤ IH (r ≥ 1). (AH)

(Replace X = A−1, Y = A− 1
2 BpA− 1

2 and α = 1
p .)

However, it easily follows from (SGF) because

A−r+t# 1−t+r
(p−t)s+r

(At�sB
p) ≤ B = Bt# 1−t

p−t
Bp ≤ At# 1−t

p−t
Bp

under the same condition as in the above.

3.4 The chaotic ordering

We first remark that logx is operator monotone, i.e. A ≥ B > 0 implies logA ≥ logB by
(LH) and X p−1

p → logX for X > 0. By this fact, we can introduce the chaotic order as
logA ≥ logB among positive invertible operators, which is weaker than the usual order
A ≥ B. In this section, we consider the Furuta inequality under the chaotic ordering.
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Theorem 3.15 The following assertions are mutually equivalent for A, B > 0:

(i) A 
 B, i.e. logA ≥ logB,

(ii) Ap ≥ (A
p
2 BpA

p
2 )

1
2 for p ≥ 0,

(iii) Ar ≥ (A
r
2 BpA

r
2 )

r
p+r for p, r ≥ 0.

Proof.
(i) =⇒ (iii): First we note that (IH + logX

n )n → X for X > 0. Since

An = IH +
logA

n
≥ Bn = IH +

logB
n

> 0

for sufficiently large n, the Furuta inequality ensures that for given p, r > 0

An
1+nr ≥ (An

nr
2 Bn

npAn
nr
2 )

1+nr
n(p+r) ,

or equivalently

An
n( 1

n+r) ≥ (An
n r

2 Bn
npAn

n r
2 )

1
n(p+r) +

r
p+r .

Taking n → ∞, we have the desired inequality (iii).
(iii) =⇒ (ii) is trivial by setting r = p.
(ii) =⇒ (i): Note that X p−IH

p → logX for X > 0. The assumption (ii) implies that

Ap− IH
p

≥ (A
p
2 BpA

p
2 )

1
2 − IH

p
=

A
p
2 BpA

p
2 − IH

p
(
(A

p
2 BpA

p
2 )

1
2 + IH

) =
A

p
2 (Bp−1)A

p
2 +Ap− IH

p
(
(A

p
2 BpA

p
2 )

1
2 + IH

) .

Taking p → +0, we have

logA ≥ logB+ logA
2

, that is, logA ≥ logB.

So the proof is complete. �

Remark 3.2 The order preserving operator inequality (i) =⇒ (iii) in above is called the
chaotic Furuta inequality, simply (CFI). Here we note that (iii) =⇒ (i) is directly proved
as follows:

Take the logarithm on both side of (iii), that is,

r logA ≥ r
p+ r

logA
r
2 BpA

r
2

for p, r ≥ 0. Therefore we have

logA ≥ 1
p+ r

logA
r
2 BpA

r
2 .

So we put r = 0 in above. Namely it implies that

logA ≥ 1
p

logBp = logB.
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As in the chaotic Furuta inequality, Theorem 3.13 has the following chaotic order ver-
sion:

Theorem 3.16 If logA ≥ logB for A,B > 0, then

A
(p+t)s+r

q ≥
(
A

r
2 (A

t
2 BpA

t
2 )sA

r
2

) 1
q

holds for all p, t, s, r ≥ 0 and q ≥ 1 with (t + r)q ≥ (p+ t)s+ r.

Proof. As in the proof of the chaotic Furuta inequality (i) =⇒ (iii), we have

An = IH +
logA

n
≥ Bn = IH +

logB
n

> 0

for sufficiently large n. Thus Theorem 3.13 implies that

An

(p1+t1)s+r1
q ≥

(
An

r1
2 (An

t1
2 Bn

p1An
t1
2 )sAn

r1
2

) 1
q

holds for all p1, t1, s, r1 ≥ 0 and q ≥ 1 with (t1 + r1)q ≥ (p1 + t1)s+ r1. Putting p1 = np,
t1 = nt and r1 = nr, we have

An
n((p+t)s+r

q ≥
(
An

nr
2 (An

nt
2 Bn

npAn
nt
2 )sAn

nr
2

) 1
q

for all p, t, s, r ≥ 0 and q ≥ 1 with (t + r)q ≥ (p+ t)s+ r. Finally, since An
n → A and

Bn
n → B, we have the desired inequality by tending n → ∞. �

The chaotic Furuta inequality (CFI), Theorem 3.15 (iii), is expressed in terms of the
weighted geometric mean as well as the Furuta inequality (FI) as follows:

A ≥ B > 0 =⇒ A−r # r
p+r

Bp ≤ IH (CFI)

holds for p ≥ 0 and r ≥ 0.
For the sake of convenience, we cite (AH): For α ∈ (0,1)

A #α B ≤ IH =⇒ Ar #α Br ≤ IH (AH)

holds for r ≥ 1.

Theorem 3.17 The operator inequalities (FI), (CFI) and (AH) are mutually equivalent.

Proof.
(CFI) =⇒ (FI): Suppose that (CFI) holds. Then we prove (FI), so we assume that A ≥ B >
0. We have

A−r # 1+r
p+r

Bp = Bp # p−1
p+r

A−r = Bp # p−1
p

(Bp # p
p+r

A−r)

=Bp # p−1
p

(A−r # r
p+r

Bp) ≤ Bp # p−1
p

IH = B ≤ A,

which means that (FI) is shown.
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(FI) =⇒ (AH): Suppose that (FI) holds. Then we prove (AH), so we assume that
A #α B ≤ IH and r ≥ 0. Then, putting C = A− 1

2 BA− 1
2 and p = 1

α > 1, we have

B1 = (A− 1
2 BA− 1

2 )α =C
1
p ≤ A−1 = A1.

Applying (FI) to A1 ≥ B1, it follows that for p ≥ 1,

A−r
1 # 1+r

p+r
Bp

1 ≤ B1 ≤ A1.

Summing up the above discussion, for each p > 1,

A # 1
p

B ≤ IH =⇒ Ar # 1+r
p+r

A− 1
2 BA− 1

2 ≤ A−1, or Ar+1 # 1+r
p+r

B ≤ IH for r ≥ 0.

Note that
B # p−1

p+r
Ar+1 = Ar+1 # 1+r

p+r
B ≤ IH

holds. That is, we can assume this and so apply it for q = p+r
p−1 ≥ 1. Hence it implies that

IH ≥ Br+1 # 1+r
q+r

Ar+1.

Since 1− 1+r
p1+r = 1

p ,

IH ≥ Br+1 # 1+r
q+r

Ar+1 = Ar+1 # 1
p

Br+1.

Namely we obtain (AH).
(AH) =⇒ (CFI): Suppose that (AH) holds. Then we prove (CFI), so we assume that
A ≥ B > 0 and p,r > 1 because it holds for 0 ≤ p,r ≤ 1 by (LH). For given p,r > 1, we
put α = r

p+r and r1 = r
p . Then we have

A−r1 # r1
1+r1

B ≤ A−r1 # r1
1+r1

A = IH .

Here we apply (AH) to this and so we have

IH ≥ A−r1 p # r1 p
p+r1 p

Bp = A−r # r
p+r

Bp,

as desired. �

Here we present an interesting characterization of the chaotic ordering.

Theorem 3.18 The following assertions are mutually equivalent for A,B > 0:

(i) logA ≥ logB,

(ii) For each δ > 0 there exists an α = αδ > 0 such that (eδ A)α > Bα .

The proof of Theorem 3.18 is not given here, but its essence is shown as follows:

Theorem 3.19 If logA > logB for A, B> 0, then there exists an α > 0 such that Aα >Bα .
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Proof. Since logA− logB ≥ 2s > 0 for some s > 0, there exists an α > 0 such that∥∥∥∥xh−1
h

− logx

∥∥∥∥
J
< s

for 0 < h ≤ α , where J is a bounded interval including the spectra of A and B. Hence we
have

0 ≤ Aα − IH
α

− logA ≤ s, 0 ≤ Bα − IH
α

− logB ≤ s,

so

Aα −Bα

α
=

(
Aα − IH

α
− logA

)
+ logA− logB−

(
Bα − IH

α
− logB

)
≥ logA− logB−

(
Bα − IH

α
− logB

)
≥ logA− logB−

∥∥∥∥Bα − IH
α

− logB

∥∥∥∥
J

≥2s− s = s,

that is Aα −Bα ≥ αs > 0 is shown. �

Related to this, there raises the problem: Does logA ≥ logB imply that there exists an
α > 0 such that Aα ≥ Bα?

Example 3.1 Take A and B as follows:

A = U

(
e4 0
0 e−1

)
U, U =

1√
5

(√
3

√
2√

2 −√
3

)
and B =

(
1 0
0 e−2

)
.

Then we have

logA =
(√

2
√

6√
6 1

)
and logB =

(
0 0
0 −2

)
,

so that logA ≥ logB is easily checked.
On the other hand, putting x = eα for α > 0,

det(Aα −Bα) = −x−3(x+1)(x−1)4(2x2 + x+2) < 0

for all x > 1. Hence Aα ≥ Bα does not hold for any α > 0.

Concluding this section, we mention some operator inequalities related to (CFI).

Theorem 3.20 Let A and B be positive invertible operators. Then the following state-
ments are mutually equivalent:

(1) logA ≤ logB.

(2) A−r # r
p+r

Bp ≥ IH for p, r ≥ 0.
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(3) A−r # δ+r
p+r

Bp ≥ Bδ for p, r ≥ 0 and 0 ≤ δ ≤ p.

(4) The operator function f (p) = A−r # r
p+r

Bp is increasing on p.

Proof.
(1) ⇐⇒ (2): It follows from (i) ⇐⇒ (iii) in Theorem 3.15.
(2) =⇒ (3): By using Lemma 3.2, we have

A−r # δ+r
p+r

Bp = Bp # p−δ
p+r

A−r = Bp # p−δ
p

(Bp # p
p+r

A−r)

=Bp # p−δ
p

(A−r # r
p+r

Bp) ≤ Bp # p−δ
p

IH = Bδ .

(3) =⇒ (2): It is trivial by putting δ = 0.
(3) =⇒ (4): By using (iv) of Lemma 3.2, we have

f (p+ ε) = A−r # r
p+ε+r

Bp+ε

= A−r # r
p+r

(A−r # p+r
p+ε+r

Bp+ε)

≥ A−r # r
p+r

Bp = f (p).

(4) =⇒ (2): It is obtained by f (p) ≥ f (0) = 1. �

3.5 The chaotically geometric mean

We consider the monotonicity of the operator function for a fixed μ ∈ [0,1] and A,B > 0
defined by

F(s) = ((1− μ)As + μBs)
1
s for s ∈ R.

Lemma 3.5 Let F(s) be as in above for a fixed μ ∈ [0,1] and A,B > 0. Then

(1) F(s) is monotone increasing on [1,∞) and not so on (0,1] under the usual order.

(2) F(s) is monotone increasing on R under the chaotic order. Consequently there exists
F(0) = s− lim

h→0
F(h) and

F(0) = e(1−μ) logA+μ logB.
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We call it the chaotically μ-geometric mean for A, B > 0 and denote it by A♦μB, so

A♦μB := e(1−μ) logA+μ logB.

Proof of Lemma 3.5. We first note that the function x �→ xr is operator concave for
r ∈ [0,1].

(1) If t ≥ s ≥ 1, then r = s
t ∈ (0,1] and so

((1− μ)At + μBt)
s
t ≥ (1− μ)As + μBs.

Hence (LH) for 1
s implies that F(t) ≥ F(s).

Next a counterexample to the latter for μ = 1
2 is given by

A =
(

2 1
1 1

)3

, B =
(

2 1
1 3

)3

.

Then we have

F(1) =
1
2
(A+B) =

(
14 14
14 20

)
and

F

(
1
3

)
=

(
1
2
(A

1
3 +B

1
3 )

)3

=
(

2 1
1 2

)3

=
(

14 13
13 14

)
,

so that

F(1)−F

(
1
3

)
=

(
0 1
1 6

)
�≥ 0.

(2) We show that logF(s)≤ logF(t) for s < t with s,t �= 0. We first assume that 0 < s < t.
Since xr is operator concave for r ∈ [0,1] and logx is operator monotone on (0,∞), it
follows that

log((1− μ)At + μBt)
s
t ≥ log((1− μ)As + μBs),

so that
logF(t) ≥ logF(s).

The case s < t < 0 is similar to the above.
We now prove the second assertion. It follows from the concavity of logx and the Krein

inequality that

(1− μ) logA+ μ logB =
1
t
((1− μ) logAt + μ logBt)

≤ 1
t

log((1− μ)At + μBt) ≤ 1
t
((1− μ)At + μBt)

= (1− μ)
At − IH

t
+ μ

Bt − IH
t

=⇒ (1− μ) logA+ μ logB (t → +0).
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Moreover it follows that for t = −s < 0

FA,B(t) = FA−1,B−1(−s)−1 =⇒
[
e(1−μ) logA−1+μ logB−1

]−1
= e(1−μ) logA+μ logB.

Therefore there exists the limit s− lim
t→0

F(t) and it is F(0) = e(1−μ) logA+μ logB.

Consequently we obtain that if s < 0 < t, then

logF(s) ≤ logF(0) ≤ logF(t),

and that F(s) is monotone increasing on R under the chaotic order. �

Remark 3.3 (1) On the other hand, we note that xr is operator convex for r ∈ [1,2].
So, if 0 < s ≤ t ≤ 2s and t ≥ 1, then F(s) ≤ F(t). For example, we have F(s) ≤ F(1) for
1
2 ≤ s ≤ 1.

(2) It is proved that F(s) converges to A ♦μ B unifromly.

We recall that μ-arithmetic mean and μ-harmonic mean are denoted by
A ∇μ B = (1− μ)A+ μB and A !μ B = ((1− μ)A−1 + μB−1)−1, respectively.

Theorem 3.21 Let A,B > 0 and μ ∈ [0,1]. Then both (At ∇μ Bt)
1
t and (At !μ Bt)

1
t

converge to A♦μB as t → +0. Consequently

s− lim
t→+0

(At #μ Bt)
1
t = A♦μB.

Proof. The first assertion follows from Lemma 3.5 and the second one does from the
well-known fact that

At !μ Bt ≤ At #μ Bt ≤ At ∇μ Bt .

�

Remark 3.4 Theorem 3.21 is closely related to the Golden-Thompson inequality

‖eH+K‖ ≤ ‖eHeK‖ for self-adjoint H, K

and its complementary inequality

‖(epH #μ epK)
1
p ‖ ≤ ‖e(1−μ)H+μK‖

for self-adjoint H, K, p > 0 and μ ∈ [0,1].

As an application of the chaotically geometric mean, we have three operator version of
the Furuta inequality.

Theorem 3.22 Let A,B,C > 0 and μ ∈ [0,1]. Then the following statements are mutually
equivalent:

(1) logA ≤ log(B♦μC),
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(2) Bs ∇μ Cs ≤ A−r # s+r
t+r

(Bt ∇μ Ct) for r ≥ 0 and t ≥ s ≥ 0.

(3) For each r, s ≥ 0, f (t) = A−r # s+r
t+r

(Bt ∇μ Ct) is an increasing function of t ≥ s.

Proof.

(1) =⇒ (2): We note that (1) is equivalent to logA ≤ log(Bt ∇ Ct)
1
t for t > 0 by the

preceding theorem. Therefore (2) follows from Theorem 3.20.
(2) =⇒ (3): Suppose that (2) holds. By Theorem 3.20 again, we have

A−r # t+r
t+ε+r

(Bt+ε ∇μ Ct+ε ) ≥ (Bt+ε ∇μ Ct+ε )
t

t+ε ,

so that
f (t + ε) = A−r # s+r

t+r
(A−r # t+r

t+ε+r
(Bt+ε ∇μ Ct+ε ))

≥ A−r # s+r
t+r

(Bt+ε ∇μ Ct+ε )
t

t+ε ≥ A−r # s+r
t+r

(Bt ∇μ Ct) = f (t),

where the second inequality is ensured by Jensen’s inequality for the function x
t

t+ε .
(3) =⇒ (1): If (3) holds, then f (s) ≤ f (t) for s ≤ t. It implies (1) by Theorem 3.20, too.

�

The following theorem is a complement of the preceding theorem.

Theorem 3.23 Let A,B,C > 0 and μ ∈ [0,1]. Then the following statements are mutually
equivalent:

(1) logA ≥ log(B♦μC),

(2) Bs !μ Cs ≤ A−r # s+r
t+r

(Bt !μ Ct) for r ≥ 0 and t ≥ s ≥ 0.

(3) For each r, s ≥ 0, h(t) = A−r # s+r
t+r

(Bt !μ Ct) is a decreasing function of t ≥ s.

Proof. We note that (1) is equivalent to logA−1 ≤ log(B−1♦μC−1) and h(t) =
hA,B,C(t) = fA−1,B−1,C−1(t)−1. So we have the conclusion by the preceding theorem. �

3.6 Generalized the Bebiano-Lemos-Providência
inequalities

It is known that the Löwner-Heinz inequality (LH) is equivalent to the Araki-Cordes in-
equality (AC):

‖A t
2 BtA

t
2 ‖ ≤ ‖(A 1

2 BA
1
2 )t‖ (AC)

for 0 ≤ t ≤ 1,
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As a matter of fact, it is easily proved as follows: Let t ∈ (0,1) be fixed. Suppose that

(AC) holds for t, and that A ≥ B > 0. Since A− 1
2 BA− 1

2 ≤ I, we have

‖A− t
2 BtA− t

2 ‖ ≤ ‖A− 1
2 BA− 1

2 ‖t ≤ 1,

so that A− t
2 BtA− t

2 ≤ I, or Bt ≤ At . Conversely assume that (LH) holds for t, and put
‖A− 1

2 BA− 1
2 ‖ = b. Then A ≥ B

b and so At ≥ (B
b )t . Hence it follows that bt ≥ A− t

2 BtA− t
2

and
‖A− 1

2 BA− 1
2 ‖t = bt ≥ ‖A− t

2 BtA− t
2 ‖.

Recently, Bebiano, Lemos and Providência showed the following norm inequality, say
the BLP inequality, which is an extension of the Araki-Cordes inequality (AC) in some
sense.

Theorem 3.24 (BLP) If A,B ≥ 0, then

‖A 1+t
2 BtA

1+t
2 ‖ ≤ ‖A 1

2 (A
s
2 BsA

s
2 )

t
s A

1
2 ‖ (BLP)

for all s ≥ t ≥ 0.

The following operator inequality is corresponding to (BLP):
For A,B ≥ 0 and t > 0,

As# t
s
Bs ≤ A1+s for some s ≥ t =⇒ Bt ≤ A1+t (3.5)

Here replacing B by B
1+t
t , and putting p = s

t (≥ 1) in (3.5), it is rewritten as follows.

Theorem 3.25 For A,B ≥ 0

As# 1
p
Bp+s ≤ A1+s for some p ≥ 1 and s ≥ 0 =⇒ B1+ s

p ≤ A1+ s
p . (3.6)

As in (BLP), our base is the Furuta inequality. Nevertheless, (BLP) can be improved
by reviewing as an operator inequality expression in Theorem 3.25:

Theorem 3.26 Let A and B be positive operators and s ≥ 0. Then

As# 1
p
Bp+s ≤ A1+s for some p ≥ 1 =⇒ B1+s ≤ A1+s. (3.7)

Proof. We put

C = (A− s
2 Bp+sA− s

2 )
1
p , or Bp+s = A

s
2CpA

s
2 .

Then the assumption says that A ≥C ≥ 0, and so the Furuta inequality ensures that

B1+s = (A
s
2CpA

s
2 )

1+s
p+s ≤ A1+s.

That is, the desired inequality (3.7) is proved. �

Now we have a norm inequality equivalent to (3.7) in Theorem 3.26.
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Corollary 3.1 Let A and B be positive operators. Then

‖A 1+s
2 B1+sA

1+s
2 ‖

p+s
p(1+s) ≤ ‖A 1

2 (A
s
2 Bp+sA

s
2 )

1
p A

1
2 ‖

for all p ≥ 1 and s ≥ 0.

In addition, Theorem 3.26 has the following expression by the Löwner-Heinz inequal-
ity.

Corollary 3.2 Let A and B be positive operators. Then

As# 1
p
Bp+s ≤ A1+s for some p ≥ 1 and s ≥ 0 =⇒ B1+t ≤ A1+t

for t ∈ [0,s], or equivalently

‖A 1+t
2 B1+tA

1+t
2 ‖

p+s
p(1+t) ≤ ‖A 1

2 (A
s
2 Bp+sA

s
2 )

1
p A

1
2 ‖ (3.8)

for p ≥ 1 and s ≥ t ≥ 0.

Remark 3.5 Replacing B by B
t

1+t , (3.8) is expressed as follows: For A,B ≥ 0

‖A 1+t
2 BtA

1+t
2 ‖

p+s
p(1+t) ≤ ‖A 1

2 (A
s
2 B

t(p+s)
1+t A

s
2 )

1
p A

1
2 ‖

for p ≥ 1 and s≥ t ≥ 0. Thus if we take p = s
t for s ≥ t ≥ 0, then we have the original BLP

inequality (BLP) because p+s
p(1+t) = 1 and t(p+s)

1+t = s.

Next, we approach to (BLP) from the reverse direction. That is,

Theorem 3.27 The Furuta inequality is equivalent to the following norm inequality:

‖A 1
2 (A

s
2 B

t(p+s)
1+t A

s
2 )

1
p A

1
2 ‖ ≥ ‖A 1+t

2 BtA
1+t
2 ‖

p+s
p(1+t)

for p ≥ 1 and s ≥ t ≥ 0.

Proof. First of all, the proposed norm inequality is rephrased by replacing A to A−1 as
follows:

‖A− 1
2 (A− s

2 B
t(p+s)
1+t A− s

2 )
1
p A− 1

2 ‖ ≥ ‖A− 1+t
2 BtA− 1+t

2 ‖
p+s

p(1+t)

for p ≥ 1 and s ≥ t ≥ 0. Moreover, putting

C = (A− s
2 B

t(p+s)
1+t A− s

2 )
1
p , or Bt = (A

s
2CpA

s
2 )

1+t
p+s ,

it is also represented as

‖A− 1
2CA− 1

2 ‖ ≥ ‖A− 1+t
2 (A

s
2CpA

s
2 )

1+t
p+s A− 1+t

2 ‖
p+s

p(1+t)

for p ≥ 1 and s ≥ t ≥ 0.
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Hence it suffices to show that it is equivalent to the Furuta inequality, which follows
from rewriting the Furuta inequality by the help of the Löwner-Heinz inequality:

A ≥C > 0 =⇒ A1+t ≥ (A
s
2CpA

s
2 )

1+t
p+s for p ≥ 1 and s ≥ t ≥ 0.

The way from Theorem 3.27 to Theorem 3.24 (the BLP inequality) is as follows:
We take p = s

t ≥ 1 in Theorem 3.27. Then

1+ t
p+ s

=
t
s

and
p+ s

p(1+ t)
= 1.

So we have (BLP)

‖A 1
2 (A

s
2 BsA

s
2 )

t
s A

1
2 ‖ ≥ ‖A 1+t

2 BtA
1+t
2 ‖ for s ≥ t > 0.

�

Now we return to (AC), which is the starting point of (BLP). It is easily seen that the
Araki-Cordes inequality

‖A t
2 BtA

t
2 ‖ ≤ ‖(A 1

2 BA
1
2 )t‖ for 0 ≤ t ≤ 1

is equivalent to the following reverse inequality:

‖A t
2 BtA

t
2 ‖ ≥ ‖(A 1

2 BA
1
2 )t‖ for t ≥ 1.

Inspired by this fact, we discuss appropriate conditions for which the reverse order of
the BLP inequality holds.

Theorem 3.28 For A, B > 0,

‖A 1+t
2 BtA

1+t
2 ‖ ≥ ‖A 1

2 (A
s
2 BsA

s
2 )

t
s A

1
2 ‖ (3.9)

holds for all t ≥ s ≥ 1.

More generally, the reverse inequality of the one in Theorem 3.27, the generalized BLP
inequality, is given by the following way.

Theorem 3.29 Let A,B ≥ 0 and 0 < p ≤ 1. Then

‖A 1+s
2 B1+sA

1+s
2 ‖

p+s
p(1+s) ≥ ‖A 1

2 (A
s
2 Bp+sA

s
2 )

1
p A

1
2 ‖

for all s ≥ 0 with s ≥ 1−2p.

To prove it, Kamei’s theorem on complement of the Furuta inequality is available:

Theorem K. If A ≥ B > 0, then for 0 < p ≤ 1
2
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At � 2p−t
p−t

Bp ≤ A2p for 0 ≤ t ≤ p

and for 1
2 ≤ p ≤ 1

At � 1−t
p−t

Bp ≤ A for 0 ≤ t ≤ p.

Proof of Theorem 3.29. It suffices to show that

B1+s ≤ A−(1+s) =⇒ A
1
2 (A

s
2 Bp+sA

s
2 )

1
p A

1
2 ≤ IH (3.10)

for 0 < p ≤ 1 and s ≥ 0 with s ≥ 1−2p. So we put

A1 = A−(1+s), B1 = B1+s.

Then (3.10) is rephrased as

A1 ≥ B1 > 0 =⇒ A
s

1+s
1 � 1

p
B

p+s
1+s
1 ≤ A1

for 0 < p ≤ 1 and s ≥ 0 with s ≥ 1−2p. Moreover, if we replace

t1 =
s

1+ s
, p1 =

p+ s
1+ s

,

then we have 1−t1
p1−t1

= 1
p , and 1

2 ≤ p1(≤ 1) if and only if 1−2p ≤ s, so that (3.10) has the
following equivalent expression:

A1 ≥ B1 > 0 =⇒ At1
1 � 1−t1

p1−t1

Bp
1 ≤ A1 for 0 ≤ t1 < p1.

Since 1
2 ≤ p1 ≤ 1, this is ensured by Theorem K due to Kamei. �

Next we show that Theorem 3.28 is obtained as a corollary of Theorem 3.29.

Proof of Theorem 3.28. We put p = s
t for t ≥ s ≥ 1. Then we have 1− 2p ≤ s if

and only if t
t+2 ≤ s. Since s ≥ 1 is assumed, t

t+2 ≤ s holds for arbitrary t > 0, so that
Theorem 3.29 is applicable.

Now we take B = B
t

1+t
1 for a given arbitrary B1 ≥ 0, i.e. B1 = B

1+t
t . Then the Araki-

Cordes inequality and Theorem 3.29 imply that

‖A 1+t
2 Bt

1A
1+t
2 ‖ ≥ ‖A 1+s

2 B
t(1+s)
1+t

1 A
1+s
2 ‖ 1+t

1+s = ‖A 1+s
2 B1+sA

1+s
2 ‖

p+s
p(1+s)

≥ ‖A 1
2 (A

s
2 Bp+sA

s
2 )

1
p A

1
2 ‖ = ‖A 1

2 (A
s
2 Bs

1A
s
2 )

t
s A

1
2 ‖,

which proves (3.9). �

Theorem 3.28 is slightly generalized as follows:
If A, B > 0 and r ≥ 0, then

‖Ar+t
2 BtA

r+t
2 ‖ ≥ ‖A r

2 (A
s
2 BsA

s
2 )

t
s A

r
2 ‖ (3.11)

for all t ≥ s ≥ r.
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It is proved by applying Theorem 3.28 to A1 = Ar, B1 = Br and t1 = t
r , s1 = s

r .

Finally we consider a converse inequality of the generalized BLP inequality which
corresponds to another Kamei’s complement: If A ≥ B > 0, then for 0 < p ≤ 1

2

At � 2p−t
p−t

Bp ≤ A2p for 0 ≤ t < p.

Theorem 3.30 Let A,B ≥ 0 and 0 < p ≤ 1
2 . Then

‖A 1+s
2 B1+sA

1+s
2 ‖

(2p+s)(p+s)
p(1+s) ≥ ‖Ap+ s

2 (A
s
2 Bp+sA

s
2 )

2p+s
p Ap+ s

2 ‖ (3.12)

for all 0 ≤ s ≤ 1−2p.

Proof. The proof is quite similar to that of Theorem 3.29. We put

A1 = A−(1+s), B1 = B1+s; t1 =
s

1+ s
, p1 =

p+ s
1+ s

.

Then Theorem K gives

A1 ≥ B1 > 0 =⇒ At1
1 � 2p1−t1

p1−t1

Bp1
1 ≤ A2p1

1 ,

for 0 ≤ t1 < p1 ≤ 1
2 , so that

A−(1+s) ≥ B1+s =⇒ A−s � 2p+s
p

Bp+s ≤ A−2(p+s)

for 0 ≤ s ≤ 1−2p. Obviously, it implies the desired norm inequality (3.12). �

Remark 3.6 In Theorem 3.30, if we take s = 0, then we obtain the Araki-Cordes inequal-
ity

‖A 1
2 BA

1
2 ‖2p ≥ ‖ApB2pAp‖

for 0 ≤ p ≤ 1
2 . Also it appears in (3.11) by taking r = 0. Actually we have

‖A t
2 BtA

t
2 ‖ ≥ ‖(A s

2 BsA
s
2 )

t
s ‖ = ‖(A s

2 BsA
s
2 )‖ t

s

for t ≥ s > 0.

3.7 Riccati’s equation

The following equation is said to be the algebraic Riccati equation:

X∗B−1X −T ∗X −X∗T = C (3.13)
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for positive definite matrices B, C and arbitrary T . The simple case T = 0 in (3.13)

X∗B−1X = C (3.14)

is called Riccati’s equation by several authors. It is known that the geometric mean B # C
is the unique positive definite solution of (3.14). We recall Ando’s definition of it in terms
of operator matrix: for positive operators B, C on a Hilbert space,

B # C = max

{
X ≥ 0;

(
B X
X C

)
≥ 0

}
. (3.15)

If B is invertible, it is expressed by

B # C = B
1
2 (B− 1

2CB− 1
2 )

1
2 B

1
2 .

We first discuss a relation between solutions of Riccati’s equations (3.13) and (3.14), by
which solutions of (3.13) can be given. The following lemma says that (3.14) is substantial
in a mathematical sense.

Lemma 3.6 Let B be positive invertible,C positive and T arbitrary operators on a Hilbert
space. Then W is a solution of Riccati’s equation

W ∗B−1W = C+T ∗BT

if and only if X = W +BT is a solution of the algebraic Riccati equation

X∗B−1X −T ∗X −X∗T = C.

Proof. Put X = W +BT . Since

X∗B−1X −T ∗X −X∗T = W ∗B−1W −T ∗BT

we have the conclusion immediately. �

Next we determine solutions of Riccati’s equation (3.7.2):

Lemma 3.7 Let B be positive invertible and A positive. Then W is a solution of Riccati’s
equation

W ∗B−1W = A

if and only if W is in the form of W = B
1
2UA

1
2 for some partial isometry U whose initial

space contains ranA
1
2 .

Proof. If W is a solution, then ‖B− 1
2Wx‖ = ‖A 1

2 x‖ for all vectors x. It ensures the

existence of a partial isometry U such that B− 1
2W = UA

1
2W , i.e. W = B

1
2UA

1
2 . �

Consequently, we have solutions of the algebraic Riccati equation (3.13).
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Theorem 3.31 The solutions of the algebraic Riccati equation (3.13)

X∗B−1X −T ∗X −X∗T = C.

is given by X = B
1
2U(C+T ∗BT )

1
2 +BT for some partial isometry U whose initial space

contains ran(C+T∗BT)
1
2 .

In addition, the following result due to Trapp [283] is obtained by Lemma 3.6.

Corollary 3.3 Under the assumption that BT is self-adjoint, the self-adjoint solution of
the algebraic Riccati equation (3.13) is in the form of

X = (T ∗BT +C) # B+BT.

Proof. The uniqueness of solution follows from the fact that A # B is the unique positive
solution of XB−1X = A. �

Next we will generalize Riccati’s equation. Actually it is realized as the positivity of

an operator matrix

(
B W

W ∗ A

)
≥ 0 for given positive operators B and A. Roughly speaking,

it is regarded as an operator inequality W ∗B−1W ≤ A. As a matter of fact, it is correct if B
is invertible.

Lemma 3.8 Let A be a positive operator. Then(
IH X
X∗ A

)
≥ 0 if and only if A ≥ X∗X .

Proof. Since (
IH 0
0 A−X∗X

)
=

(
IH 0
−X∗ IH

)(
IH X
X∗ A

)(
IH −X
0 IH

)
,

it follows that (
IH X
X∗ A

)
≥ 0 if and only if A ≥ X∗X .

�

The following majorization theorem is quite useful in the below. For convenience, we
cite it.

Theorem 3.32 (DOUGLAS’ MAJORIZATION THEOREM (DM)) The following statements
are mutually equivalent:

(i) ran X ⊂ ran Y .

(ii) There exists a constant k > 0 such that XX∗ ≤ k2YY ∗.

(iii) There exists an operator C such that X = YC (and ‖C‖ ≤ k if (ii) is assumed).
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Incidentally, the unicity of C in (iii) is ensured by the conditions that
(1) ‖C‖ = inf{k > 0; XX∗ ≤ k2YY ∗}, (2) ker X = ker C, (3) ran C ⊂ ker Y⊥.

Proof. We show (i) =⇒ (iii) only. Since Y1|ker Y⊥ is a bijection onto ran Y , for each
x ∈ H there exists a vector y ∈ ker B⊥ with Xx = Y1y. In other words, we can define a
linear operator C on H such that Cx = y, i.e. X = YC and ran C ⊂ ker Y⊥. Finally the
boundedness of C is shown by the closed graph theorem; if {(xn,Cxn)} ⊂ G(C) satisfies
xn → x and Cxn → y for some x,y ∈ H, then

Yy = limYCxn = limXxn = Ax.

Since Cxn ∈ ker B⊥ and so y ∈ ker B⊥, we have Cx = y. �

Lemma 3.9 Let A and B be positive operators. Then(
B W

W ∗ A

)
≥ 0 implies ranW ⊆ ranB

1
2 .

and so X = B− 1
2W is well-defined as a mapping.

Proof. Let S =
(

a b
b∗ d

)
be the square root of R =

(
B W

W ∗ A

)
. Then

R = S2 =
(

a2 +bb∗ ab+bd
b∗a+db∗ b∗b+d2

)
,

that is,
B = a2 +bb∗ and W = ab+bd.

Since ran B
1
2 contains both ran a and ran b by (DM), it contains ran a+ ran b. Moreover

ran W is contained in ran a+ ran b by W = ab+bd. �

Theorem 3.33 Let A and B be positive operators on K and H respectively, and W be an

operator from K to H. Then

(
B W

W ∗ A

)
≥ 0 if and only if W = B

1
2 X for some operator X

from K to H and A ≥ X∗X.

Proof. Suppose that

(
B W

W ∗ A

)
≥ 0. Since ranW ⊆ ranB

1
2 by Lemma 3.9, (DM) says

that W = B
1
2 X for some operator X . Moreover we restrict X by PBX = X , where PB is the

range projection of B. Noting that y ∈ ranB if and only if y = B
1
2 x for some x ∈ ranB

1
2 , the

assumption implies that〈(
PB X
X∗ A

)(
y
z

)
,

(
y
z

)〉
=

〈(
B W

W ∗ A

)(
x
z

)
,

(
x
z

)〉
≥ 0

for all y ∈ ranB and z ∈ K. This means that

(
PB X
X∗ A

)
≥ 0, and so(

PB 0
0 A−X∗X

)
=

(
IH 0
−X∗ A

)(
PB X
X∗ A

)(
IH −X
0 IH

)
≥ 0,

that is, A ≥ X∗X , as required. The converse is easily checked. �
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The following factorization theorem due to Ando is led by Theorem 3.33.

Theorem 3.34 Let A and B be positive operators. Then

(
B W

W ∗ A

)
≥ 0 if and only if

W = B
1
2VA

1
2 for some contraction V .

Proof. Suppose that

(
B W

W ∗ A

)
≥ 0. Then it follows from Theorem 3.7.7 thatW = B

1
2 X

for some bounded X satisfying A≥ X∗X . Hence we can find a contractionV with X =VA
1
2

by (DM), so that W = B
1
2VA

1
2 is shown.

The converse is proved by Lemma 3.7.5 as follows:(
B W

W ∗ A

)
=

(
B B

1
2VA

1
2

A
1
2V ∗B

1
2 A

)

=

(
B

1
2 0

0 A
1
2

)(
IH V
V ∗ IH

)(
B

1
2 0

0 A
1
2

)
≥ 0.

�

Finally we consider the geometric mean and the harmonic one, as an application of the
preceding paragraph. The former is defined by (3.15).

If B is invertible, then Theorem 3.33 says that

(
B X
X C

)
≥ 0 if and only if C ≥ X∗B−1X .

By the way, we can directly obtain the desired inequalityC≥ X∗B−1X by the following
identity: (

IH 0
−X∗B−1 IH

)(
B X
X∗ C

)(
IH −B−1X
0 IH

)
=

(
B 0
0 C−X∗B−1X

)
.

Anyway the maximum is given by

B # C = B
1
2 (B− 1

2CB− 1
2 )

1
2 B

1
2 .

Next we review a work of Pedersen and Takesaki [252]. They proved that if B andC are
positive operators and B is nonsingular, then there exists a positive solution X of XBX =C

if and only if (B
1
2CB

1
2 )

1
2 ≤ kB holds for some k > 0.

From the viewpoint of Riccati’s inequality, we add another equivalent condition to the
Pedersen-Takesaki theorem:

Theorem 3.35 Let B andC be positive operators and B be nonsingular. Then the follow-
ing statements are mutually equivalent:

(1) Riccati’s equation XBX = C has a positive solution.

(2) (B
1
2CB

1
2 )

1
2 ≤ kB for some k > 0.
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(3) There exists the minimum of {X ≥ 0;C ≤ XBX}.

(3’) There exists the minimum of

{
X ≥ 0;

(
IH C

1
2

C
1
2 XBX

)
≥ 0

}
.

Proof. We first note that (3) and (3’) are equivalent by Lemma 3.8.
Now we suppose (1), i.e. X0BX0 = C for some X0 ≥ 0. If X ≥ 0 satisfies C ≤ XBX ,

then
(B

1
2 X0B

1
2 )2 = B

1
2CB

1
2 ≤ (B

1
2 XB

1
2 )2

and so
B

1
2 X0B

1
2 ≤ B

1
2 XB

1
2 .

Since B is nonsingular, we have X0 ≤ X , namely (3) is proved.
Next we suppose (3). Since C ≤ XBX for some X , we have

B
1
2CB

1
2 ≤ (B

1
2 XB

1
2 )2

and so
(B

1
2CB

1
2 )

1
2 ≤ B

1
2 XB

1
2 ≤ ‖X‖B,

which shows (2).
The implication (2) =⇒ (1) has been shown by Pedersen-Takesaki [252] and Nakamoto

[233], but we sketch it for convenience. By Douglas’ majorization theorem [45], we have

(B
1
2CB

1
2 )

1
4 = ZB

1
2

for some Z, so that

(B
1
2CB

1
2 )

1
2 = B

1
2 Z∗ZB

1
2 and B

1
2CB

1
2 = B

1
2 (Z∗ZBZ∗Z)B

1
2 .

Since B is nonsingular, Z∗Z is a solution of XBX = C.

In addition, we consider an operator matrix MB,C(X) =

(
IH B

1
2 X

XB
1
2 C

)
for B,C,X ≥ 0.

We know that MB,C(X) ≥ 0 if and only if C ≥ XBX by Lemma 3.8. We remark that there
exists the maximum of {X ≥ 0;MB,C(X) ≥ 0} if (1) in Theorem 3.35 holds. As a matter of
fact, if X0BX0 = C for some X0 ≥ 0, then it follows from Lemma 3.8 that

X0BX0 = C ≥ XBX and so B
1
2 X0B

1
2 ≥ B

1
2 XB

1
2

for X ≥ 0 with MB,C(X)≥ 0. Finally the nonsingularity of B implies X0 ≥ X , as desired. �

On the other hand, the harmonic mean is defined by

B ! C = max

{
X ≥ 0;

(
2B 0
0 2C

)
≥

(
X X
X X

)}
.

To obtain the exact expression of the harmonic mean, we need the following lemma which
is more explicit than Theorem 3.33.
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Lemma 3.10 If

(
B W

W ∗ A

)
≥ 0, then X = B− 1

2W is bounded and A ≥ X∗X.

Proof. For a fixed vector x, we put x1 = B− 1
2Wx. Since B

1
2 x1 = Wx, we may assume

x1 ∈ (ker B
1
2 )⊥. So it follows that

‖B− 1
2Wx‖ = sup{|(Wx,v)|;‖v‖ = 1}

= sup{|(B− 1
2Wx,B

1
2 u)|;‖B 1

2 u‖ = 1}
= sup{|(Wx,u)|;(Bu,u) = 1}.

On the other hand, since〈(
B W

W ∗ A

)(
u
tx

)
,

(
u
tx

)〉
= |t|2〈Ax,x〉+2Re t〈Wx,u〉+ 〈Bu,u〉 ≥ 0

for all scalars t, we have
|〈Wx,u〉|2 ≤ 〈Ax,x〉〈Bu,u〉.

Hence it follows that

‖B− 1
2Wx‖2 = sup{|〈Wx,u〉|;〈Bu,u〉 = 1} ≤ 〈Ax,x〉,

which implies that X = B− 1
2W is bounded and A ≥ X∗X . �

Theorem 3.36 Let B, C be positive operators. Then

B ! C = 2(B− [(B+C)−
1
2 B]∗[(B+C)−

1
2 B]).

In particular, if B+C is invertible, then

B ! C = 2(B−B(B+C)−1B) = 2B(B+C)−1C.

Proof. First of all, the inequality

(
2B 0
0 2C

)
≥

(
X X
X X

)
is equivalent to

(
2(B+C) −2B
−2B 2B−X

)
=

(−IH IH
IH 0

)(
2B−X −X
−X 2C−X

)(−IH IH
IH 0

)
≥ 0.

Then it follows from Lemma 3.8 that D = [2(B +C)]−
1
2 (−2B) is bounded and D∗D ≤

2B− X . Therefore we have the explicit expression of B ! C even if both B and C are
non-inbertible:

B ! C = max{X ≥ 0;D∗D ≤ 2B−X}= 2B−D∗D.

In particular, if B+C is invertible, then

B ! C = 2B−D∗D = 2(B−B(B+C)−1B) = 2B(B+C)−1C.

�
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Incidentally we consider the set

FE = {X ∈ B(H);X∗EX ≤ E}
for a projection E , where B(H) is the set of all bounded linear operators on H.

Lemma 3.11 Let E be a projection. Then

FE =
{(

X11 0
X21 X22

)
on EH⊕ (IH −E)H; ‖X11‖ ≤ 1

}
.

Proof. If X ∈ FE , then EX∗EXE ≤ E and so EXE is a contraction. On the other hand,
since (IH −E)X∗EX(IH −E) = 0, we have EX(IH −E) = 0.

Conversely suppose that

X =
(

X11 0
X21 X22

)
on EH⊕ (IH −E)H and ‖X11‖ ≤ 1.

Then

X∗EX =
(

X11 0
0 0

)
≤

(
IH 0
0 0

)
= E.

�

Consequently we have the following:

Theorem 3.37 Let E be a projection. Then

(1) A positive operator X belongs to FE if and only if X = X1⊕X2 on EH⊕ (IH −E)H
and X1 ≤ IH.

(2) A projection F belongs to FE if and only if F commutes with E.

(3) A projection F satisfies FEF = E if and only if F ≤ E.

Proof. (1) follows from the preceding lemma, and (2) from (1). For (3), first suppose
that a projection F satisfies FEF = E . Then F commutes with E by (2), so that FE =
FEF = E . The converse is clear. �

3.8 Hua’s inequality

Classical Hua’s inequality says that∣∣∣∣∣δ −
n

∑
k=1

ak

∣∣∣∣∣
2

≥ δ 2α
α +n

−α
n

∑
k=1

a2
k



80 3 ORDER PRESERVING OPERATOR INEQUALITY

for every δ ,α > 0 and ak ∈ R. By putting bk = nak/δ , β = α/n, τ(X) = (Tr X)/n, the
normalized trace, and B = diag(b1, · · · ,bn), it is expressed as the following brief form:

|τ(I−B)|2 ≥ β
β +1

−β τ(B2)

for β > 0.
On the other hand, Hua gave the determinant inequality as follows:

|det(I−B∗A)|2 = det |1−B∗A|2 ≥ det(I−A∗A)det(I−B∗B)

for contractive matrices A and B.
In this section, we generalize them in a noncommutative field as a good use of the

operator geometric mean. For this, we explain Schwarz’s inequality for positive mapping
between C∗-algebras. A (not necessarily linear) mapping Φ between C*-algebras is called
2-positive if (

A B
C D

)
≥ 0 implies

(
Φ(A) Φ(B)
Φ(C) Φ(D)

)
≥ 0

for all operators A,B,C and D in a C∗-algebra. The determinant on matrix algebras is a
(non-linear) 2-positive mapping by Theorem 3.34. For a state φ , a normalized positive
linear functioanl on a C∗-algebra, we have(

φ(A∗A) φ(B∗A)
φ(B∗A) φ(B∗B)

)
=

(
φ(A∗A) φ(A∗B)
φ(B∗A) φ(B∗B)

)
≥ 0 by

(
A∗A A∗B
B∗A B∗B

)
≥ 0.

Thus the 2-positivity of arbitrary states is supported by Schwarz’s inequality, i.e.

|φ(B∗A)|2 ≤ φ(A∗A)φ(B∗B)

for operators A and B in a C*-algebra.
Now we mention Schwarz’s operator inequality:

Lemma 3.12 Let Φ be a 2-positive mapping and Φ(B∗A) = U |Φ(B∗A)| the polar de-
composition. Then,

|Φ(B∗A)| ≤ Φ(A∗A) # U∗Φ(B∗B)U.

Proof. Since (
A∗A A∗B
B∗A B∗B

)
=

(
A∗ 0
B∗ 0

)(
A B
0 0

)
≥ 0,

the 2-positivity of Φ implies that

(
Φ(A∗A) Φ(A∗B)
Φ(B∗A) φ(B∗B)

)
≥ 0.

So we show that if

(
X Y
Y ∗ Z

)
≥ 0 and X > 0, then

X # U∗ZU ≥ |Y ∗|,
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where Y ∗ = U |Y ∗| is the polar decomposition of Y ∗. Now it follows from the assumption
that (

I Y1

Y ∗
1 Z1

)
≥ 0, where Y1 = X− 1

2YX− 1
2 and Z1 = X− 1

2 ZX− 1
2 .

Therefore Lemma 3.8 ensures that Z1 ≥Y ∗
1 Y1, or Z ≥Y ∗X−1Y. SinceU∗Y ∗ = |Y ∗|, we have

U∗ZU ≥ |Y ∗|X−1|Y ∗|,
so that

X # U∗ZU ≥ X # |Y ∗|X−1|Y ∗|

= X
1
2

(
X− 1

2 |Y ∗|X−1|Y ∗|X− 1
2

) 1
2
X

1
2

= X
1
2 (X− 1

2 |Y ∗|X− 1
2 )X

1
2 = |Y ∗|.

�

The above lemma leads us to an operator inequality for the modulus of operators:

Corollary 3.4 If Φ(X) = U |Φ(X)| is the polar decomposition of Φ(X) for a 2-positive
mapping Φ, then

|Φ(X)| ≤ Φ(|X |) # U∗Φ(|X∗|)U.

In particular, if Φ = φ is a state, then |φ(X)| ≤√
φ(|X |)φ(|X∗|).

Proof. Let X = V |X | be the polar decomposition of X . Since V |X |V ∗ = |X∗|, we have

|Φ(X)| = |Φ(V |X | 1
2 |X | 1

2 )| ≤ Φ(|X |) # U∗Φ(V |X |V ∗)U = Φ(|X |) # U∗Φ(|X∗|)U.

�

Theorem 3.38 Let A and B be operators on a Hilbert space and Φ a contractive 2-
positive mapping for a C∗-algebra including A, B and the identity operator. If Φ(B∗A) =
U |Φ(B∗A)| is the polar decomposition of a normal operator Φ(B∗A), then

|I−Φ(B∗A)| ≥ I−|Φ(B∗A)| ≥ I−Φ(A∗A) # U∗Φ(B∗B)U.

In addition, if A and B are contractions and Φ is linear, then

I−Φ(A∗A) # U∗Φ(B∗B)U ≥ Φ(I−A∗A) # U∗Φ(I−B∗B)U.

Proof. The first inequality follows from the normality of X = Φ(B∗A), i.e. |I −X | ≥
I−|X | and the second from Lemma 3.12. The last inequality does from the subadditivity
and the monotonicity of the geometric mean:

Φ(A∗A) # U∗Φ(B∗B)U + Φ(I−A∗A) # U∗Φ(I−B∗B)U
≤ Φ(A∗A+ I−A∗A) # U∗Φ(B∗B+ I−B∗B)U
= Φ(I) # U∗Φ(I)U ≤ I # I = I,

because Φ(I) ≤ I and U∗U ≤ I. �
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Corollary 3.5 If A and B are contractions and φ is a state, then

|φ(I−B∗A)|2 ≥ (I−|φ(B∗A)|)2 ≥
(
I−

√
φ(A∗A)φ(B∗B)

)2

≥ φ(I−A∗A)φ(I−B∗B).

Proof. We have only to check the last inequality, which is shown by

2
√

φ(A∗A)φ(B∗B) ≤ φ(A∗A)+ φ(B∗B),

that is, the arithmetic-geometric mean inequality for positive numbers. �

In the remainder, we mention relations among them.

(1) We claim that Corollary 3.5 implies Hua’s determinant inequality. To show this, we
may assume that

det |I−B∗A|2 = ∏
k

|〈|I−B∗A|ek,ek〉|2

for some complete orthonormal base {ek}. Noting that I−A∗A≥ 0 and I−B∗B≥ 0,
it follows from Corollary 3.5 that for each ek

|〈|I−B∗A|ek,ek〉|2 ≥ 〈(I−A∗A)ek,ek〉〈(I−B∗B)ek,ek〉,

so that

det |I−B∗A|2 = ∏
k

|〈|I−B∗A|ek,ek〉|2 ≥ ∏
k

〈(I−A∗A)ek,ek〉〈(I−B∗B)ek,ek〉.

Since each 〈Hek,ek〉 is a diagonal entry of H with respect to the base {ek}, we have

∏
k

〈(I−A∗A)ek,ek〉〈(I−B∗B)ek,ek〉 ≥ det(I−A∗A)det(I−B∗B)

by the Hadamard theorem, which obtains the determinant inequality.

(2) Hua’s inequality follows from Schwarz’s inequality for states. As a matter of fact, it
is proved by the use of a simpler inequality; φ(A)2 ≤ φ(A2) for A ≥ 0. We have to
show that

|τ(I−B)|2 ≥ β
β +1

I−β τ(B2).

Instead of showing it, we easily checked that

|τ(I−B)|2 ≥ β
β +1

I−β τ(B)2 ≥ β
β +1

I−β τ(B2).
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3.9 The Heinz inequality

In this section, we investigate several norm inequalities equivalent to the Heinz inequality.

Theorem 3.39 (HEINZ INEQUALITY (HI)) Let A and B be positive operators and t ∈
[0,1]. Then

‖AQ+QB‖≥ ‖AtQB1−t +A1−tQBt‖
for arbitrary operators Q.

The case t = 1
2 in above is expressed by

‖P∗PQ+QRR∗‖ ≥ 2‖PQR‖
for arbitrary operators P and Q. Furthermore it is reduced to the following:

‖Re QP‖ ≥ ‖PQ‖ if PQ is self-adjoint.

Adding to some other inequalities, we have the equivalence among them:

Theorem 3.40 The following inequalities hold and are mutually equivalent:

(1) (HI)

(2) ‖P∗PQ+QRR∗‖ ≥ 2‖PQR‖ for arbitrary operators P and Q.

(3) ‖STR−1 +S−1TR‖ ≥ 2‖T‖ for invertible self-adjoint S, R and arbitrary T .

(4) ‖STS−1 +S−1TS‖ ≥ 2‖T‖ for invertible self-adjoint S and arbitrary T .

(5) ‖STS−1 +S−1TS‖ ≥ 2‖T‖ for invertible self-adjoint S and self-adjoint T .

(6) ‖S2m+nTR−n +S−nTR2m+n‖ ≥ 2‖S2mT +TR2m‖ for invertible self-adjoint S, R, ar-
bitrary T and nonnegative integers m, n.

(7) ‖Re A2Q‖ ≥ ‖AQA‖ for A ≥ 0 and self-adjoint Q.

(8) ‖Re QP‖ ≥ ‖PQ‖ for arbitrary P, Q whose product PQ is self-adjoint.

Proof. We prove it by the following implication:

(1) =⇒ (6) =⇒ (5) =⇒ (4) =⇒ (3) =⇒ (2) =⇒ (1) and (5) =⇒ (8) =⇒ (7) =⇒ (2).

(1) =⇒ (6): In (1), we replace A and B by A2m+2n and B2m+2n respectively, and take
t = (2m+n)(2m+2n)−1. Then we obtain (6).
(6) =⇒ (5): It is trivial by taking m = 0 and n = 1 in (6).
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(5) =⇒ (4): Since

(
0 T
T ∗ 0

)
is self-adjoint, (5) implies that

‖
(

S 0
0 S

)(
0 T
T ∗ 0

)(
S 0
0 S

)−1

−
(

S 0
0 S

)−1( 0 T
T ∗ 0

)(
S 0
0 S

)
‖

≥ 2‖
(

0 T
T ∗ 0

)
‖ = 2‖T‖.

Since the left hand side in above equals to ‖STS−1 +S−1TS‖, (4) is obtained.
(4) =⇒ (3): We use Berberian’s magic. That is,

‖
(

S 0
0 R

)(
0 T
0 0

)(
S 0
0 R

)−1

−
(

S 0
0 R

)−1(0 T
0 0

)(
S 0
0 R

)
‖

≥ 2‖
(

0 T
T ∗ 0

)
‖ = 2‖T‖.

Since the right hand side in above is ‖STR−1 +S−1TR‖, (3) is obtained.
(3) =⇒ (2): We may assume that both P∗P and RR∗ are invertible. Then we have

‖P∗PQ+QRR∗‖ = ‖|P|(|P|Q|R∗|)|R∗|−1 + |P|−1(|P|Q|R∗|)|R∗|‖
≥ 2‖|P|Q|R∗|‖ = 2‖PQR‖.

(2) =⇒ (1): The proof is an analogy to Pedersen’s one for (LH), stated in Section 3.1.
We define the operator function on [0,1] by

f (t) = ‖AtQB1−t +A1−tQBt‖ for t ∈ [0,1].

Thus we prove that I = {t ∈ [0,1]; f (t) ≤ f (1)} = [0,1]. Since 0,1 ∈ I and f (t) is norm
continuous, it suffices to show that it is a convex function. For given α,γ ∈ I with α < γ ,
we put β = (α + γ)/2, i.e. α = β − ε and γ = β + ε for ε = (α − γ)/2. Then we have

2 f (β ) = 2‖Aβ QB1−β +A1−βQBβ‖
= 2‖Aε(AαQB1−γ +A1−γQBα)Bε‖
≤ ‖A2ε(AαQB1−γ +A1−γQBα)+ (AαQB1−γ +A1−γQBα)B2ε‖ by (2)

= ‖AγQB1−γ +A1−αQBα +AαQB1−α +A1−γQBγ‖
≤ f (α)+ f (γ),

as desired.

Next we show the second: (5) =⇒ (8) =⇒ (7) =⇒ (2).
(5) =⇒ (8): Let Q = UH be the polar decomposition. We may assume that U is unitary
(by extending the space) and H is invertible. Then we have

2‖Re QP‖ = ‖UHP+P∗HU∗‖ = ‖HPU +U∗P∗H‖ = 2‖Re HPU‖.
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Here we apply (5) for T = PQ and S=H;

2‖PQ‖ ≤ ‖HPQH−1 +H−1Q∗P∗H‖ = ‖HPU +U∗P∗H‖
= ‖QP+P∗Q∗‖ = 2‖Re QP‖,

so that we have (8).
(8) =⇒ (7): It is trivial by putting Q = A and P = AT .
(7) =⇒ (2): We put

T =
(

P 0
0 R∗

)
and S =

(
0 Q
Q∗ 0

)
,

and apply (7) for A = |T | and Q = S. Then we have

‖T ∗TS+ST∗T‖ ≥ 2‖ |T |S|T | ‖.

Moreover, since ‖
(

0 X
X∗ 0

)
‖ = ‖X‖, we have

‖T ∗TS+ST∗T‖ = ‖P∗PQ+QRR∗‖
and

‖ |T |S|T | ‖ = ‖TST ∗‖ = ‖PQR‖,
which imply (2).

Finally we prove (8) on behalf of them.
If PQ is self-adjoint, then the spectrum σ(PQ) lies in the real axis and so does σ(QP).

Since the closed numerical range W (QP)− contains σ(QP), σ(PQ) is contained in Re
W (QP)− =W (Re QP)−, so that the spectral radius r(QP) is not greater than the numerical
radius w(Re QP). Hence we have

‖PQ‖ = r(PQ) = r(QP) ≤ w(Re QP) = ‖Re QP‖.
This completes the proof. �

Next we mention several inequalities equivalent to (LH). Among them, the Heinz-Kato
inequality is important from the historical view.

Theorem 3.41 (HEINZ-KATO INEQUALITY (HK)) Let A and B positive operators on
H. Then

T ∗T ≤ A2, TT ∗ ≤ B2 =⇒ |(Tx,y)| ≤ ‖Asx‖‖B1−s‖ for s ∈ [0,1], x,y ∈ H.

Afterwards, it was extended by Furuta:

Theorem 3.42 (HEINZ-KATO-FURUTA INEQUALITY (HKF)) Let A and B positive op-
erators on H. Then

T ∗T ≤ A2, TT ∗ ≤ B2 =⇒ |(U |T |s+t x,y)| ≤ ‖Asx‖‖Bt‖
holds for s,t ∈ [0,1], x,y ∈ H, where T = U |T | is the polar decomposition of T .
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Proof. Noting that U |T |tU∗ = |T ∗|t for t > 0, it follows that

|(U |T |s+t x,y)| = |(|T |sx, |T |tU∗y)| ≤ ‖|T |sx‖|T |tU∗y‖
= ‖|T |sx‖‖U |T |tU∗y‖ = ‖|T |sx‖‖|T ∗|t y‖.

Since ‖|T |sx‖ ≤ ‖Asx‖ and ‖|T ∗|t y‖ ≤ ‖Bty‖ by (LH) we have (HKF). �

Theorem 3.43 The following inequalities are mutually equivalent:

(1) (LH) or (AC),

(2) (HK) or (HKF),

(3) ‖AsTB1−s‖ ≤ ‖AT‖s‖TB‖1−s for s ∈ [0,1].

(4) ‖ABA‖ ≤ ‖A2B‖ for A,B ≥ 0.

(5) ‖TS‖ ≥ ‖ST‖ if ST is self-adjoint.

Proof. First of all, we note that a proof of (LH) is written in the below of Theorem 3.1,
in which the equivalence (1) ⇐⇒ (2) is implicitly explained.
(1) =⇒ (2) is done in the proof of (HKF) in above.
(2) =⇒ (3): (2) says that

‖TA‖ ≤ 1, ‖T ∗B‖ ≤ 1 =⇒ |(Tx,y)| ≤ ‖A−sx‖‖Bs−1y‖ for x,y ∈ H.

If we replace x and y by Asx and B1−sy respectively, then we have

|(B1−sTAsx,y)| ≤ ‖x‖‖y‖,

that is, we obtain that if ‖TA‖ ≤ 1 and ‖T ∗B‖ ≤ 1, then ‖B1−sTAs‖ ≤ 1. By the use of
Berberian’s operator matrix magic, we may assume that T is self-adjoint in (3). Hence we
have

‖AsTB1−s‖ = ‖B1−sTAs‖ ≤ ‖AT‖s‖TB1−s‖.
(3) =⇒ (4): Put T = B = A and s = 1

2 in (3).
(4) =⇒ (5): Let T ∗ = UH be the polar decomposition of T ∗. Then

‖ST‖2 = ‖UHS∗SHU∗‖ ≤ ‖HS∗SH‖
≤ ‖H2S∗S‖ by (4)

= ‖TT ∗S∗S‖ = ‖T (ST )∗S‖ = ‖TSTS‖ ≤ ‖TS‖2.

(5) =⇒ (1): We show (5) =⇒ (AC). For convenience, (AC; t) holds for t ∈ [0,1] means
that ‖AtBt‖ ≤ ‖AB‖t holds for all A,B ≥ 0. We first prove that (5) implies (AC; 1

2 ) holds.

For this, we put S = B
1
2 and T = AB

1
2 . Then ST ≥ 0, it follows from (5) that

‖AB‖ = ‖TS‖ ≥ ‖ST‖ = ‖B 1
2 AB

1
2 ‖ = ‖A 1

2 B
1
2 ‖2.
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Next we show (AC; 3
4 ) by (AC; 1

2 ).

‖A 3
4 B

3
4 ‖2 = ‖B 3

4 A
3
2 B

3
4 ‖ = ‖B 1

4 (B
1
2 A

3
2 B

3
4 )‖

≤ ‖B 1
2 A

3
2 B‖ ≤ ‖B 1

2 A
1
2 ‖‖AB‖

≤ ‖AB‖ 3
2 .

In general, if (AC; s) and (AC; t) holds, then so does (AC; s+t
2 ). Assume s < t, and put

r = s+t
2 and d = t−s

2 . Then

‖ArBr‖2 = ‖BrAs+tBr‖ = ‖Bd(BsAs+tBr)‖
≤ ‖BsAs+tBr+d‖ ≤ ‖BsAs‖‖AtBt‖
≤ ‖AB‖s+t = ‖AB‖2r.

Since {m/2n;n = 1,2, . . . ,m = 1,2, . . . ,2n} is dense in [0,1], (AC) is proved under the
assumption (5). �

Remark 3.7 We now mention an interesting relation between (HI) and (LH): We compare
Theorem 3.9.1 (8) and Theorem 3.9.2 (5). We pick out them.

(HI) ⇐⇒ ‖ReTS‖ ≥ ‖ST‖ if ST is self-adjoint.

(LH) ⇐⇒ ‖TS‖ ≥ ‖ST‖ if ST is self-adjoint.

From this, it is obvious that (HI) is stronger than (LH).

Finally we discuss a norm inequality considered in the Corach-Porta-Recht geometry:

Theorem 3.44 (CORACH-PORTA-RECHT INEQUALITY (CPR)) Let A,B,C,D ≥ 0.
Then

‖(A #t B)
1
2 (C #t D)

1
2 ‖ ≤ ‖A 1

2C
1
2 ‖1−t‖B 1

2 D
1
2 ‖t for t ∈ [0,1].

Theorem 3.45 The inequalities (CPR), (LH) and Jensen’s inequality (JI);

(X∗AX)t ≥ X∗AtX for contractions X ,A ≥ 0, t ∈ [0,1]

are mutually equivalent.

Proof.
(LH) =⇒ (JI): By virtue of the polar decomposition, it suffices to show that

(CAC)t ≥CAtC for invertible positive contractions C,

or equivalently
At ≤C−1(CAC)tC−1 = C−2 #t A.

Since C−1 ≥ IH and so C−2 ≥ IH , it is ensured by the monotonicity of #t , namely (LH).
(JI) =⇒ (CPR): First of all, (JI) is explicitly expressed as

(X∗AX)t ≤ ‖X‖2−2tX∗AtX for arbitrary X ,A ≥ 0, t ∈ [0,1].
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Thus it follows that for C > 0

A #t B = C− 1
2 (C

1
2 A

1
2 )(A− 1

2 BA− 1
2 )t(A

1
2C

1
2 )C− 1

2

≤C− 1
2 ‖C 1

2 A
1
2 ‖2−2t((C

1
2 A

1
2 )(A− 1

2 BA− 1
2 )(A

1
2C

1
2 ))tC− 1

2

= ‖C 1
2 A

1
2 ‖2−2tC− 1

2 (C
1
2 BC

1
2 )tC− 1

2

= ‖A 1
2C

1
2 ‖2−2tC−1 #t B,

and that for B > 0

C #t D = D #1−t C ≤ ‖B 1
2 D

1
2 ‖2−2(1−t)(B−1 #1−t C) = ‖B 1

2 D
1
2 ‖2t(C #t B−1).

Therefore we have

‖(A #t B)
1
2 (C #t D)

1
2 ‖2 = ‖(C #t D)

1
2 (A #t B)(C #t D)

1
2 ‖

≤ ‖A 1
2C

1
2 ‖2−2t‖(C #t D)

1
2 (C−1 #t B)‖(C #t D)

1
2 ‖

= ‖A 1
2C

1
2 ‖2−2t‖(C−1 #t B)

1
2 (C #t D)(C−1 #t B)

1
2 ‖

≤ ‖A 1
2C

1
2 ‖2−2t‖B 1

2 D
1
2 ‖2t‖(C−1 #t B)

1
2 (C #t B−1)(C−1 #t B)

1
2 ‖

= ‖A 1
2C

1
2 ‖2−2t‖B 1

2 D
1
2 ‖2t ,

because C #t B−1 = (C−1 #t B)−1. So we obtain (CPR).

(CPR) =⇒ (LH): Put A = C = IH in (CPR) and X = B
1
2 ,Y = D

1
2 . Then we have (AC),

which is equivalent to (LH). �

3.10 Notes

(LH) was considered in general setting by Löwner [171] and explicitly proved by Heinz
[140]. Another proof is given by Kato [157], and interesting proof is presented by Peder-
sen [251]. A step of the way from (LH) to (FI) was set up by Chan-Kwong [31]. (FI) was
established by Furuta [106] in 1987. A simple proof was given by himself [107], and mean
theoretic approach was done by [151] and [79]. Among others, Tanahashi [277] considered
the best possibility of the exponent in (FI).

(AH) is an essential part of the proof of a majorization inequality in [12]. Its 2 variable
version (GAH) was given by [90], and (GAH) is equivalent to (GFI; t = 1) by [91].

(GFI) was established in order to discuss (AH) in the flame of (FI). As similar to (FI),
the best possibility of (GFI) is obtained in [278] cf. [289, 95], see also [124, Chapter 7].
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The chaotic order was introduced in [89]. The Furuta inequality for the chaotic order
was essentially initiated by Ando [8]: For self-adjoint operators A and B,

A ≥ B ⇐⇒ epA ≥ (e
pA
2 epBe

pA
2 )

1
2 for p ≥ 0,

which appears in (i) and (ii) of Theorem 3.4.1, and (iii) is posed in [80], see also [108].

The Furuta inequality induces another geometric mean, so called the chaotically geo-
metric mean A♦μ B = e(1−μ) logA+μ logB, [98]. It is closely related to the Golden-Thompson
inequality:

‖eH+K‖ ≤ ‖eHeK‖ for self-adjoint H, K.

Theorem 3.5.3 was obtained by Hiai-Petz [142].

BLP inequality [19] is a generalization of the Araki-Cordes inequality in some sense.
It is discussed from the viewpoint of the difference from (FI). Consequently (BLP) is ge-
neralized in [100, 180].

Section 3.7 is written by depending on [59] mainly. The study of Riccati’s equation
was initiated by Pedersen-Takesaki [252]. In particular, the geometric mean A # B is the
unique self-adjoint solution of XA−1X = B for given A,B > 0. The definition of the geo-
metric mean by using operator matrix was introduced by Ando [6]. The algebraic Riccati
equation is solved by Trapp [283] under some additional assumption.





Chapter4
Kantorovich-Furuta Type
Inequalities

In this chapter, we study order preserving operator inequalities in another direction which
differs from the Furuta inequality. We investigate the Kantorovich-Furuta type inequalities
related to the operator ordering and the chaotic one.

4.1 Introduction

Let A and B be positive operators on a Hilbert space H. The Löwner-Heinz theorem asserts
that A ≥ B ≥ 0 ensures Ap ≥ Bp for all p ∈ [0,1]. However A ≥ B does not always ensure
Ap ≥ Bp for each p > 1 in general. In order to study operator inequality, the Löwner-
Heinz theorem is very useful, but the fact above is inconvenient, because the condition
“p ∈ [0,1]” is too restrictive. Thus, excluding the limit of p, it is the Furuta inequality that
devises methods to preserve the order for p > 1. Namely, by considering the magic box

f (�) =
(
B

r
2 � B

r
2

) 1
q
,

then the Furuta inequality asserts that A ≥ B ≥ 0 ensures

f (Ap) ≥ f (Bp)

holds for all p > 1 and additional conditions of q and r.

91
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We study order preserving operator inequalities in another direction which differ from
the Furuta inequality. First of all, to explain it, we present the following simple example.
By virtue of the Kantorovich inequality, a function f (t) = t2 is order preserving in the
following sense.

Theorem 4.1 Let A and B be positive operators. Then

A ≥ B ≥ 0 and MIH ≥ B ≥ mIH > 0 imply
(M +m)2

4Mm
A2 ≥ B2.

Proof. Refer to [124, Theorem 8.1] for the proof. �

Theorem 4.1 is a new view of operator inequality which differ from the Furuta in-
equality. Namely, f (t) = t2 preserves the order in terms of the spectrum of given positive
operators by virtue of the Kantorovich inequality. Thus, we call it the Kantorovich-Furuta
type operator inequality.

By using a generalization of the Kantorovich inequality, we get the following Kantoro-
vich-Furuta type operator inequality.

Theorem 4.2 Let A and B be positive operators such that MIH ≥ B ≥ mIH for some
scalars M > m > 0. If A ≥ B, then(

M
m

)p−1

Ap ≥ K(m,M, p)Ap ≥ Bp for all p ≥ 1,

where the generalized Kantorovich constant K(m,M, p) is defined by (2.29).

Proof. Refer to [124, Theorem 8.3] for the proof. �

Theorem 4.3 Let A and B be positive operators such that M1I ≥ A ≥ m1I and M2IH ≥
B≥m2IH for some scalars Mj > mj > 0 ( j = 1,2). If A≥ B, then the following inequalities
hold:

(i) K(mj,Mj, p)Ap ≥ Bp for all p > 1 and j = 1,2,

(ii) K(mj,Mj, p)Bp ≥ Ap for all p < −1 and j = 1,2.

Proof. Refer to [124, p.220,232,250] for the proof. �

For positive invertible operators A and B, the order A 
 B defined by logA ≥ logB is
called the chaotic order. Since logt is an operator monotone function, the chaotic order is
weaker than the operator order A ≥ B.

The following theorem is a Kantorovich-Furuta type operator inequality related to the
chaotic order which is parallel to Theorem 4.2.

Theorem 4.4 Let A and B be positive invertible operators such that MIH ≥ B ≥ mIH for
some scalars M > m > 0. If logA ≥ logB, then(

M
m

)p

Ap ≥ K(m,M, p+1)Ap ≥ Bp for all p ≥ 0.
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Proof. Refer to [124, Theorem 8.4] for the proof. �

Remark 4.1 In fact, the chaotic order logA ≥ logB does not always ensure the operator
order A ≥ B in general. However, by Theorem 4.4, it follows that

logA ≥ logB and MI ≥ B ≥ mI > 0 imply
(M +m)2

4Mm
A ≥ B.

In terms of the Kantorovich constant, we show Kantorovich type operator inequalities
related to the operator ordering and the chaotic one:

Theorem 4.5 Let A and B be positive operators such that MIH ≥ B ≥ mIH for some
scalars 0 < m ≤ M. If A ≥ B, then

(Mp−1 +mp−1)2

4Mp−1mp−1 Ap ≥ Bp for all p ≥ 2.

Proof. For each p ≥ 2, put r = p− 2 and q = p+r
1+r in the Furuta inequality (FI). Then

the Furuta inequality ensures (
B

p−2
2 ApB

p−2
2

) 1
2 ≥ Bp−1. (4.1)

Square both sides of (4.1), it follows from Mp−1IH ≥ B ≥ mp−1IH and Theorem 4.1 that

(Mp−1 +mp−1)2

4Mp−1mp−1 B
p−2
2 ApB

p−2
2 ≥ B2(p−1),

and hence
(Mp−1 +mp−1)2

4Mp−1mp−1 Ap ≥ Bp for all p ≥ 2.

�

Theorem 4.6 Let A and B be positive invertible operators such that MIH ≥ B ≥ mIH for
some scalars M > m > 0. Then the following assertions are mutually equivalent:

(i) logA ≥ logB.

(ii) (Mp+mp)2
4Mpmp Ap ≥ Bp for all p ≥ 0.

Proof. Refer to [124, Theorem 8.5] for the proof. �

The exponential function t �→ exp(t) is not operator monotone. By virtue of the Mond-
Pečarić method, the exponential function preserves the operator order in the following
sense.

Theorem 4.7 Let A and B be self-adjoint operators such that MIH ≥ B ≥ mIH for some
scalars m ≤ M. If A ≥ B, then

S(eM−m)expA ≥ expB,

where the Specht ratio S(h) is defined by (2.35).
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Proof. By Theorem 2.15, we have 〈expBx,x〉 ≤ S(eM−m)exp〈Bx,x〉 for every unit
vector x ∈ H. Hence it follows that

〈expBx,x〉 ≤ S(eM−m)exp〈Bx,x〉
≤ S(eM−m)exp〈Ax,x〉 by the assumption A ≥ B

≤ S(eM−m)〈expA x,x〉 by Jensen’s inequality

for every unit vector x ∈ H, so that we have S(eM−m)expA ≥ expB. �

Furthermore, by the property of the Specht ratio, we have the following characteriza-
tion of the operator ordering.

Theorem 4.8 Let A and B be positive operators such that MIH ≥ B ≥ mIH for some
scalars 0 < m ≤ M. Then the following assertions are mutually equivalent:

(i) A ≥ B.

(ii) S(ep(M−m))exp(pA) ≥ exp(pB) for all p ≥ 0,

where the Specht ratio S(h) is defined by (2.35).

Proof.
Suppose (i): Since pA ≥ pB and pMIH ≥ pB ≥ pmIH for all p > 0, we have (i) =⇒ (ii) by
Theorem 4.7.
Conversely, suppose (ii): Taking the logarithm of both sides of (ii), we have

logS(ep(M−m))
1
p +A ≥ B.

Since S(ep(M−m))
1
p → 1 as p → 0 by (iv) of Theorem 2.16, we have A ≥ B. �

The following theorem is a more precise characterization of the chaotic ordering.

Theorem 4.9 Let A and B be positive invertible operators such that MIH ≥ B ≥ mIH for
some scalars M > m > 0. Put h = M

m (≥ 1). Then the following assertions are mutually
equivalent:

(i) logA ≥ logB.

(ii) S(hp)Ap ≥ Bp for all p ≥ 0.

Proof. Refer to [124, Theorem 8.7] for the proof. �
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4.2 Difference version

In this section, we show new order preserving operator inequality on the operator order
and the chaotic order by estimating the upper bound of the difference.

First of all, we present that the function t �→ t2 preserves the operator order in the
following sense associated with the difference.

Theorem 4.10 If A and B are positive operators such that MIH ≥ B ≥ mIH for some
scalars 0 < m < M, then

A ≥ B implies A2 +
(M−m)2

4
IH ≥ B2. (4.2)

Proof. By a difference type of the Kantorovich inequality (Theorem 2.20), we have

〈B2x,x〉 ≤ 〈Bx,x〉2 +
(M−m)2

4
by MIH ≥ B ≥ mIH

≤ 〈Ax,x〉2 +
(M−m)2

4
by A ≥ B

≤ 〈A2x,x〉+ (M−m)2

4
by the Hölder-McCarthy inequality

for every unit vector x ∈ H. Hence we have (4.2). �

Moreover, we have the following order preserving operator inequality associated with
the difference, which is a parallel result to the Kantorovich type inequality in Theorem 4.1.

Theorem 4.11 If A and B are positive operators such that MIH ≥ B ≥ mIH for some
scalars 0,m < M, then

Ap +M(Mp−1−mp−1)IH ≥ Ap +C(m,M, p)IH ≥ Bp for all p > 1,

where the Kantorovich constant for the difference C(m,M, p) is defined by (2.38).

Proof. The former inequality follows from (ii) of Theorem 2.24. The latter follows
from

〈Bpx,x〉 ≤ 〈Bx,x〉p +C(m,M, p) by Theorem 2.23

≤ 〈Ax,x〉p +C(m,M, p) by A ≥ B

≤ 〈Apx,x〉+C(m,M, p) by the Hölder-McCarthy inequality

for every unit vector x ∈ H. �

Theorem 4.12 Let A and B be positive invertible operators such that MIH ≥ B ≥ mIH
for some scalars 0 < m < M. Put h = M

m > 1. Then the following assertions are mutually
equivalent:
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(i) logA ≥ logB.

(ii) Ap +L(mp,Mp) logS(hp)IH ≥ Bp for all p > 0,

where the Specht ratio S(h) is defined by (2.35) and the logarithmic mean L(m,M)
is defined by (2.41).

Proof.
(i) =⇒(ii): By using Theorem 2.27 and MpIH ≥ Bp ≥ mpIH , it follows that

〈Bpx,x〉 ≤ exp〈logBp x,x〉+D(mp,Mp)
≤ exp〈logAp x,x〉+D(mp,Mp) by logB ≤ logA

≤ 〈Apx,x〉+D(mp,Mp) by convexity of the exp function

holds for every unit vector x ∈ H. Hence it follows from Lemma 2.4 that

Ap +L(mp,Mp) logS(hp)I ≥ Bp for all p > 0.

(ii) =⇒(i): We have

lim
p→0

1
p
D(mp,Mp) = lim

p→0

1
p
L(mp,Mp) logS(hp) = 0

by (iv) of Theorem 2.16. Therefore, we have

Ap− I
p

+
1
p
D(mp,Mp)I ≥ Bp− I

p

and hence logA ≥ logB as p → 0. �

As an application of the Furuta inequality, we shall show order preserving operator
inequality associated with the difference which is parametrized the operator order and the
chaotic order.

Let A and B be positive invertible operators on a Hilbert space H. We consider an
order Aδ ≥ Bδ for δ ∈ [0,1] which interpolates usual order A ≥ B and chaotic order A 
 B

continuously. We consider that the case δ = 0 means the chaotic order since limδ→0
Aδ−I

δ =
logA for a positive invertible operator A.

The following lemma shows that the Furuta inequality interpolates the usual order and
the chaotic one.

Lemma 4.1 Let A and B be positive invertible operators. The following statements are
mutually equivalent for each δ ∈ [0,1]:

(i) Aδ ≥ Bδ , where the case δ = 0 means A 
 B.

(ii)
(
B

p
2 Ap+δ B

p
2

) p+δ
2p+δ ≥ Bp+δ for all p ≥ 0.

(iii)
(
B

r
2 Ap+δ B

r
2

) r+δ
p+r+δ ≥ Br+δ for all p ≥ 0 and r ≥ 0.
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Proof. The case of 0 < δ ≤ 1 is ensured by the Furuta inequality and the case of δ = 0
by the chaotic Furuta inequality (CFI). �

By virtue of Lemma 4.1, we shall obtain the following order preserving operator in-
equality associated with the difference.

Theorem 4.13 Let A and B be positive operators on H satisfying MIH ≥ B ≥ mIH > 0.
Then the following implication (i) ⇐⇒ (ii) ⇐⇒ (iv) =⇒ (iii) holds for some δ ∈ [0,1]:

(i) Aδ ≥ Bδ , where the case δ = 0 means A 
 B.

(ii) Ap+δ + 1
m1−δ C(m,M, p+1)IH ≥ Bp+δ for all p > 0.

(iii) Ap+δ + (Mp−mp)2

4mp−δ IH ≥ Bp+δ for all p > δ .

(iv) Ap+δ + 1
mr C(mr+δ ,Mr+δ , p+r+δ

r+δ )IH ≥ Bp+δ for all p > 0 and r > 0,

where C(m,M, p) is defined by (2.38).

Proof.
(i)=⇒(iv): It follows from Lemma 4.1 that Aδ ≥ Bδ is equivalent to the following in-
equality: (

B
r
2 Ap+δ B

r
2

) r+δ
p+r+δ ≥ Br+δ for all p > 0 and r > 0.

Put A1 =
(
B

r
2 Ap+δ B

r
2

) r+δ
p+r+δ and B1 = Br+δ , then A1 and B1 satisfy A1 ≥ B1 > 0 and

Mr+δ IH ≥ B1 ≥ mr+δ IH > 0. Applying Theorem 4.11 to A1 and B1, we have

A
p+r+δ
r+δ

1 +C
(
mr+δ ,Mr+δ ,

p+ r+ δ
r+ δ

)
IH ≥ B

p+r+δ
r+δ

1 .

Therefore we have

B
r
2 Ap+δ B

r
2 +C

(
mr+δ ,Mr+δ ,

p+ r+ δ
r+ δ

)
IH ≥ Bp+r+δ ,

so that it follows that

Ap+δ +C
(
mr+δ ,Mr+δ ,

p+ r+ δ
r+ δ

)
B−r ≥ Bp+δ .

(iv)=⇒(ii): Put r = 1− δ > 0 in (iv).
(iv)=⇒(iii): Put r = p− δ > 0 in (iv). Then we have

1
mr C

(
mr+δ ,Mr+δ ,

p+ r+ δ
r+ δ

)
=

1

mp−δ C(mp,Mp,2) =
(Mp−mp)2

4mp−δ

and p > δ .



98 4 KANTOROVICH-FURUTA TYPE INEQUALITIES

(ii)=⇒(i): It follows from (ii) of Theorem 2.13 that(
M
m

)p

≥ K(m,M, p+1)≥ 1 for all p > 0

and hence

mMp−Mmp

M−m

(
M
m

−1

)
≥ mMp−Mmp

M−m
(K(m,M, p+1)

1
p −1) ≥ 0.

Therefore we have limp→0C(m,M, p+1) = 0.
Hence the proof of Theorem 4.13 is complete. �

Theorem 4.13 interpolates the following two theorems. As a matter of fact, if we
put δ = 0 in Theorem 4.13, then we have Theorem 4.14 which make a paraphrase of
Theorem 4.12. Also, if we put δ = 1 in Theorem 4.13, then we obtain order preserving
operator inequality under the operator order associated with the difference.

Theorem 4.14 Let A and B be positive invertible operators such that MI ≥ B ≥ mI for
some scalars 0 < m < M. Then the following implication (i) ⇐⇒ (iii) ⇐⇒ (iv) =⇒ (ii)
holds:

(i) logA ≥ logB.

(ii) Ap + 1
mC(m,M, p+1)IH ≥ Bp for all p > 0.

(iii) Ap + (Mp−mp)2
4mp IH ≥ Bp for all p > 0.

(iv) Ap + 1
mr C

(
mr,Mr, p+r

r

)
IH ≥ Bp for all p > 0 and r > 0,

where C(m,M, p) is defined by (2.38).

Proof. If we put δ = 0 in Theorem 4.13, then we have the implication (i) =⇒ (iv) =⇒
(iii) and (iv) =⇒ (ii). For (iii) =⇒ (i), since

Ap− IH
p

+
1
p

(Mp−mp)2

4mp IH ≥ Bp− IH
p

,

we have (i) as p → 0. �

Theorem 4.15 Let A and B be positive operators such that MI ≥ B≥mI for some scalars
0 < m < M. Then the following implication (i) ⇐⇒ (ii) ⇐⇒ (iv) =⇒ (iii) holds:

(i) A ≥ B.

(ii) Ap +C(m,M, p)IH ≥ Bp for all p ≥ 1.

(iii) Ap+1 + (Mp−mp)2

4mp−1 IH ≥ Bp+1 for all p ≥ 1.
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(iv) Ap + 1
mr−1 C

(
mr,Mr , p+r−1

r

)
IH ≥ Bp for all p ≥ 1 and r ≥ 1,

where C(m,M, p) is defined by (2.38).

Remark 4.2 Theorem 4.13 interpolates Theorem 4.11 and Theorem 4.12. Let A and B
be positive invertible operators such that MIH ≥ B ≥ mIH. Then the following assertions
hold:

(i) A ≥ B implies Ap +C(m,M, p)IH ≥ Bp for all p ≥ 1.

(ii) Aδ ≥ Bδ implies Ap +C(mδ ,Mδ , p
δ )IH ≥ Bp for all p ≥ δ .

(iii) logA ≥ logB implies Ap +L(mp,Mp) logS(hp)IH ≥ Bp for all p > 0,

where the Specht ratio S(h) is defined by (2.35) and the logarithmic mean L(m,M)
is defined by (2.41).

It follows that the constant of (ii) interpolates the constant of (i) and (iii) continuously.
In fact, if we put δ = 1 in (ii), then we have (i), also if we put δ → 0 in (ii), then we have

C(mδ ,Mδ ,
p
δ

) =
mδ Mp −Mδ mp

Mδ −mδ {K(mδ ,Mδ ,
p
δ

)
δ

p−δ −1}

=
δ

hδ −1
mp(hp−hδ )

K(mδ ,Mδ , p
δ )

δ
p−δ −1

δ

→ 1
logh

(Mp−mp) logMh(p)
1
p (as δ → 0)

= L(mp,Mp) logS(hp),

where h = M
m > 1.

4.3 Version with the Specht ratio

In this section, we see that the Specht ratio plays an important rule as characterizations of
the chaotic order: Let A and B be positive invertible operators such that MIH ≥ B ≥ mIH
for some scalars 0 < m < M and h = M

m . Then

logA ≥ logB ⇐⇒ Sh(p)Ap ≥ Bp for all p > 0,

where the symbol Sh is defined by

Sh(p) = S(hp) (4.3)

and the Specht ratio S(h) is defined by (2.35).
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It is natural to ask what is characterizations of the operator order in terms of the Specht
ratio. Thus, we compare Theorem 4.5 with Theorem 4.6: For A,B > 0 with MIH ≥B≥mIH

A ≥ B =⇒ (Mp−1 +mp−1)2

4Mp−1mp−1 Ap ≥ Bp for all p ≥ 2

logA ≥ logB =⇒ (Mp +mp)2

4Mpmp Ap ≥ Bp for all p > 0.

Therefore, we observe the difference between p and p− 1 in the power of the constant.
Hence one might expect that the following result holds under the operator order as a parallel
result to Theorem 4.9: Let A and B be positive invertible operators such that MI ≥ B ≥ mI.
Then

A ≥ B implies Sh(p−1)Ap ≥ Bp for all p ≥ 2, where h =
M
m

≥ 1.

However, we have a counterexample to this conjecture. Put

A =
(

4 1
1 1

)
and B =

(
2 0
0 1

2

)
,

then A ≥ B ≥ 0. And m = 1
2 and M = 2, so that h = M

m = 4. Then we have S(h) = 1.26374
and S(h2) = 2.39434. On the other hand, αA2 ≥ B2 holds if and only if α ≥ 1.27389, and
βA3 ≥ B3 holds if and only if β ≥ 2.396585. Therefore S(h)A2 �≥ B2 and S(h2)A3 �≥ B3.

Here, we present other characterizations of the chaotic ordering and the operator one
associated with Kantorovich type inequalities via the Specht ratio:

Theorem 4.16 Let A and B be positive invertible operators such that kIH ≥ A ≥ 1
k IH for

some k ≥ 1. Then the following assertions are mutually equivalent:

(i) logA ≥ logB.

(ii) Sk((p+ t)s+ r)qA(p+t)s ≥ (A
t
2 BpA

t
2 )s

holds for p ≥ 0, t ≥ 0, s ≥ 0, r ≥ 0, q ≥ 1 with (t + r)q ≥ (p+ t)s+ r.

(iii) Sk(2(p+ t)s−2t)2A(p+t)s ≥ (A
t
2 BpA

t
2 )s

holds for p ≥ 0, t ≥ 0, s ≥ 0 with (p+ t)s≥ 2t.

(iv) Sk(2ps)
2
s Ap ≥ Bp holds for p ≥ 0 and s ≥ 1,

where Sk(r) is defined by (4.3).

Theorem 4.17 Let A and B be positive invertible operators such that kIH ≥ A ≥ 1
k IH for

some k ≥ 1. Then the

(i) A ≥ B.
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(ii) Sk((p− t)s+ r)qA(p−t)s ≥ (A− t
2 BpA− t

2 )s

holds for p ≥ 1, t ∈ [0,1], s≥ 1, q≥ 1 such that (1− t + r)q≥ (p− t)s+ r and r ≥ t.

(iii) Sk(2(p− t)s−2(1− t))2A(p−t)s ≥ (A− t
2 BpA− t

2 )s

holds for p ≥ 1, t ∈ [0,1], s ≥ 1 such that (p− t)s≥ 2− t.

(iv) Sk(2(p−1)s)
2
s Ap ≥ Bp holds for p ≥ 1, s ≥ 1 such that p ≥ 1

s +1.

(v) k4(p−1)Ap ≥ Bp holds for p ≥ 1,

where Sk(r) is defined by (4.3).

The following corollary is easily obtained by Theorem 4.17.

Corollary 4.1 Let A and B be positive invertible operators on a Hilbert space H such
that kIH ≥ A ≥ 1

k IH for some k ≥ 1. If Aδ ≥ Bδ for δ ∈ (0,1], then

Sk(2(p− δ )s)
2
s Ap ≥ Bp

holds for p ≥ δ , s ≥ 1 such that p ≥ ( 1
s +1)δ , where Sk(r) is defined by (4.3).

Remark 4.3 Corollary 4.1 interpolates (iv) of Theorem 4.16 and (iv) of Theorem 4.17
by means of the Specht ratio. Let A and B be positive invertible operators such that kIH ≥
A ≥ 1

k IH for some k ≥ 1. Then the following assertions holds:

(i) A ≥ B implies Sk(2(p−1)s)
2
s Ap ≥ Bp for all p ≥ 1

s +1 and s ≥ 1,

(ii) Aδ ≥ Bδ implies Sk(2(p−δ )s)
2
s Ap ≥ Bp for all p≥ δ , s≥ 1 such that p≥ ( 1

s +1)δ ,

(iii) logA ≥ logB implies Sk(2ps)
2
s Ap ≥ Bp for all p ≥ 0 and s ≥ 1.

It follows that the Specht ratio of (ii) interpolates the scalar of (i) and (iii) continuously.
In fact, if we put δ = 1 in (ii), then we have (i). Also, if we put δ → 0 in (ii), then we have
(iii).

Moreover, Corollary 4.1 interpolates the following result by means of the Specht ratio:

(i) A ≥ B implies k4(p−1)Ap ≥ Bp for all p ≥ 1,

(ii) Aδ ≥ Bδ implies Sk(2(p−δ )s)
2
s Ap ≥ Bp for all p≥ δ , s≥ 1 such that p≥ ( 1

s +1)δ ,

(iii) logA ≥ logB implies k4pAp ≥ Bp for all p ≥ 0.

The Specht ratio of (ii) interpolates the scalar of (i) and (iii). In fact, if we put δ = 1
and s → ∞ in (ii), then we have (i). Also, if we put δ → 0 and s → ∞ in (ii), then we have
(iii).
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To prove them, we need some preliminaries.
In the following lemma a complementary inequality to the Hölder-McCarthy inequality

via the Specht ratio is given.

Lemma 4.2 Let A be a positive operator such that kIH ≥ A ≥ 1
k IH for some k ≥ 1. Then

the following inequalities hold for every unit vector x ∈ H :

(i) Sk(1)〈Apx,x〉 ≥ 〈Ax,x〉p (≥ 〈Apx,x〉) for all 0 < p < 1,

(ii) Sk(p)p〈Ax,x〉p ≥ 〈Apx,x〉(≥ 〈Ax,x〉p) for all p ≥ 1.

Proof.
(i): The following converse of Young’s inequality is shown in [280]: For a given a > 0,

Sa(1)ap ≥ pa+(1− p)

holds for all 1 > p > 0. If k≥ a≥ 1
k > 0, then it follows from (ii) and (iii) of Theorem 2.16

that Sk(1) = Sk−1(1) ≥ Sa(1). Therefore we have

Sk(1)Ap ≥ pA+(1− p)IH for all 1 > p > 0. (4.4)

By (4.4) and Young’s inequality, it follows that

Sk(1)〈Apx,x〉 ≥ p〈Ax,x〉+(1− p)≥ 〈Ax,x〉p

holds for every unit vector x ∈ H.
(ii): Next, suppose the case of p ≥ 1. Replacing p by 1/p and A by Ap in (i), then
kpIH ≥ Ap ≥ k−pIH and we have

Skp(1)〈(Ap)1/px,x〉 ≥ 〈Apx,x〉1/p.

Taking the p-th power on both sides, we have

Sk(p)p〈Ax,x〉p ≥ 〈Apx,x〉.
�

The following lemma is a Kantorovich-Furuta type operator inequality via the Specht
ratio.

Lemma 4.3 Let A and B be positive operators such that

(i) kIH ≥ A ≥ 1
k
IH or (ii) kIH ≥ B ≥ 1

k
IH

for some k ≥ 1. Then

A ≥ B implies Sk(p)pAp ≥ Bp for all p ≥ 1,

where Sk(p) is defined by (4.3).
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Proof.
Suppose (ii). Then we have

Sk(p)p〈Apx,x〉 ≥ Sk(p)p〈Ax,x〉p by Hölder-McCarthy inequality and p ≥ 1

≥ Sk(p)p〈Bx,x〉p by A ≥ B

≥ 〈Bpx,x〉 by Lemma 4.2 and kIH ≥ B ≥ (1/k)IH .

Next, suppose (i). Since B−1 ≥ A−1 and kIH ≥ A−1 ≥ 1
k IH , then it follows from above

discussion that Sk(p)pB−p ≥ A−p. Hence we have Sk(p)pAp ≥ Bp. �

Proof of Theorem 4.16.
(i) =⇒ (ii): By Theorem 3.16, (i) ensures

A
(p+t)s+r

q ≥ {A r
2 (A

t
2 BpA

t
2 )sA

r
2 } 1

q (4.5)

holds for p,t,s,r ≥ 0 and q ≥ 1 with

(t + r)q ≥ (p+ t)s+ r. (4.6)

Put A1 = A
(p+t)s+r

q and B1 = {A r
2 (A

t
2 BpA

t
2 )sA

r
2 } 1

q , then A1 ≥ B1 by (4.5) and kIH ≥ A ≥
1
k IH > 0 assures k

(p+t)s+r
q IH ≥ A1 ≥ k−

(p+t)s+r
q IH . By applying Lemma 4.3 to A1 and B1, we

have
S

k
(p+t)s+r

q
(q)qAq

1 = Sk((p+ t)s+ r)q Aq
1 ≥ Bq

1.

Multiplying A− r
2 on both sides, we have (ii).

(ii) =⇒ (iii): Put r = (p + t)s− 2t ≥ 0 and q = 2 in (ii). Then the condition (4.6) is
satisfied and (p+ t)s≥ 2t, so we have (iii).
(iii) =⇒ (iv): If we put t = 0 in (iii), then we have (iv) by the Löwner-Heinz theorem.
(iv) =⇒ (i): If we put s = 1 and take logarithm of both sides of (iv), we have

log(Sk2(p)Ap) ≥ logBp for all p > 0

and hence
logSk2(p)1/p + logA ≥ logB for all p > 0.

Then letting p → +0, we have logA ≥ logB by (iv) of Theorem 2.16. �

Proof of Theorem 4.17.
(i) =⇒ (ii): By the grand Furuta inequality, (i) ensures

A
(p−t)s+r

q ≥ {A r
2 (A− t

2 BpA− t
2 )sA

r
2 } 1

q (4.7)

holds for p ≥ 1, t ∈ [0,1], s ≥ 1, q ≥ 1 and

r ≥ t, (4.8)

(1− t + r)q ≥ (p− t)s+ r. (4.9)
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Put A1 = A
(p−t)s+r

q and B1 = {A r
2 (A− t

2 BpA− t
2 )sA

r
2 } 1

q , then A1 ≥ B1 by (4.7) and kIH ≥ A≥
1
k IH > 0 assures k

(p−t)s+r
q IH ≥ A1 ≥ k−

(p−t)s+r
q IH . By applying Lemma 4.3 to A1 and B1, we

have
S

k
(p−t)s+r

q
(q)q Aq

1 = Sk((p− t)s+ r)q Aq
1 ≥ Bq

1.

Multiplying A− r
2 on both sides, we have (ii).

(ii) =⇒ (iii): Put r = (p− t)s− 2(1− t) and q = 2 in (ii), then the condition (4.9) is
satisfied and the condition (4.8) is equivalent to (p− t)s≥ 2− t, so that we have (iii).
(iii) =⇒ (iv): Put t = 1 in (iii), then by taking the 1

s -power of both sides, we have (iv).
(iv) =⇒ (v): It follows from (v) of Theorem 2.16 that

Sk(2(p−1)s)
2
s =

(
Sk2(p−1)(s)

1
s

)2 → k4(p−1) as s → ∞,

so that we have (v).
(v) =⇒ (i): We have only to put p = 1 in (v). �

Proof of Corollary 4.1. Put A1 = Aδ and B1 = Bδ , then A1 ≥ B1 > 0 and kδ IH ≥ A1 ≥
1
kδ IH . By applying (iv) of Theorem 4.16 to A1 and B1, it follows that

Skδ (2(p1−1)s)
2
s Ap1

1 ≥ Bp1
1

holds for p1 ≥ 1, s ≥ 1 such that p1 ≥ 1
s +1. Put p1 = p

δ ≥ 1
s +1, then we have

Sk(2(p− δ )s)
2
s Ap ≥ Bp

holds for p ≥ δ , s ≥ 1 such that p ≥ ( 1
s +1)δ . �

Remark 4.4 Let A and B be positive invertible operators such that kIH ≥ A ≥ 1
k IH for

some k ≥ 1. By using Uchiyama’s method, (iv) of Theorem 4.16 can be derived from (iv)
of Theorem 4.17 directly. In fact, the hypothesis logA ≥ logB ensures An = IH + 1

n logA ≥
IH + 1

n logB = Bn > 0 and MnIH = (1+ 1
n logk)IH ≥ IH + 1

n logA ≥ (1+ 1
n log 1

k )IH = mnIH
for sufficiently large natural number n. By Theorem 4.17, we have

max{SMn(2(p−1)s)
2
s ,Sm−1

n
(2(p−1)s)

2
s }Ap

n ≥ Bp
n

for p,s ≥ 1 with p ≥ 1+ 1
s . By substituting np to p, we have

max{SMn(2(np−1)s)
2
s ,Sm−1

n
(2(np−1)s)

2
s }Anp

n ≥ Bnp
n

for np,s ≥ 1 with np ≥ 1+ 1
s . Since

lim
n→∞

(I +
1
n

logX)n = X for any X > 0,

we obtain
Sk(2ps)

2
s Ap ≥ Bp for s ≥ 1, p ≥ 0.

Therefore, we have (iv) of Theorem 4.16.
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We place an emphasis on the coherence of characterizations of the chaotic order and
the operator one via the Specht ratio, though our estimates via the Specht ratio are not
better than the ones in Theorem 4.2 and Theorem 4.9. We observe a connection between
their constants just to make sure. First of all, we start with the following lemma.

Lemma 4.4 Let h ≥ 1. Then

F(s) = Sh(s)
1
s =

(
(hs−1)h

s
hs−1

es logh

) 1
s

is an increasing function for s ≥ 1 and a decreasing function for 0 < s ≤ 1.

Proof. Since

(logF)′(s) =
F ′(s)
F(s)

=
1
s2 (− log(hs−1)− s

hs−1
logh+ logs+ log(logh)

+
hs

hs−1
loghs +

(hs−1)− shs logh
(hs −1)2 loghs),

if we put x = hs (> 1), then we have

(logF)′(s)

=
1
s2

(
− log(x−1)− logx

x−1
+ log(logx)+

x logx
x−1

+
(x−1)− x logx

(x−1)2 logx

)
=

1
s2

(
log

(
logx
x−1

)
+ x

logx
x−1

− x

(
logx
x−1

)2
)

.

Klein’s inequality 1−1/x≤ logx ≤ x−1 and x = hs > 1 imply

1 ≥ logx
x−1

≥ 1
x
.

Then, since L(t) = log t
1−t is negative and increasing for t > 0, we have

s2(logF)′(s) = log

(
logx
x−1

)
+ x

logx
x−1

(
1− logx

x−1

)
=

(
1− logx

x−1

)(
L

(
logx
x−1

)
+

x logx
x−1

)
≥

(
1− logx

x−1

)(
L

(
1
x

)
+

x logx
x−1

)
=

(
1− logx

x−1

)(
−x logx

x−1
+

x logx
x−1

)
= 0.

Thus we have (logF)′(s) ≥ 0. By F(s) ≥ 0, F itself is increasing for s ≥ 1. �

Let A and B be positive invertible operators such that kIH ≥ A ≥ 1
k IH for some k ≥ 1.

We have the following two characterizations of the chaotic order via the Specht ratio:
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(i) logA ≥ logB ⇐⇒ Sk2(p)Ap ≥ Bp for all p > 0.

(ii) logA ≥ logB ⇐⇒ Sk2(ps)
2
s Ap ≥ Bp for all p > 0 and s ≥ 1.

We have the following relation between the constants (i) and (ii):

Lemma 4.5 For a given p > 0, the constant Sk2(ps)2/s is not smaller than the constant
Sk2(p) for all s ≥ 1:

Sk2(ps)2/s ≥ Sk2(p) for all s ≥ 1.

Proof. By definition, we have Sk2(p) = Sk2p(1) and Sk2(ps)2/s = Sk2p(s)2/s. If we put
s = 1, then it obviously follows that Sk2p(1)2 ≥ Sk2p(1). Therefore by Lemma 4.4 we have

Sk2(ps)2/s = Sk2p(s)2/s ≥ Sk2p(1)2 ≥ Sk2p(1) = Sk2(p).

�

Next, let A and B be positive operators such that kIH ≥ A ≥ 1
k IH for some k ≥ 1. We

have the following two characterizations of the operator order via the Specht ratio and the
Kantorovich constant:

(iii) A ≥ B ⇐⇒ K
(

1
k ,k, p

)
Ap ≥ Bp for all p ≥ 1.

(iv) A ≥ B ⇐⇒ Sk2((p−1)s)
2
s Ap ≥ Bp for all p,s ≥ 1 with p ≥ 1+ 1

s .

Here, we investigate a relation between the constants (iii) and (iv) in the case of p = 2.
If we put s = 1, then it follows that

Sk(2)2 ≥ K(
1
k
,k,2).

In fact, since an inequality x ≥ e logx for x > 0 implies

h
h+1

2(h−1) ≥ e logh
h+1

2(h−1)

where h = k2, it follows that
(h−1)h

1
h−1

e logh
≥ h+1

2
√

h

or equivalently (
(h−1)h

1
h−1

e logh

)2

≥ (h+1)2

4h
.

Therefore, it follows from Lemma 4.4 that the constant Sk(2)2 is not smaller than the
constant K

( 1
k ,k,2

)
for all s ≥ 1:

Sk2(s)
2
s ≥ Sk2(1)2 ≥ K

(1
k
,k,2

)
for all s ≥ 1.
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4.4 The Furuta inequality version

In this section, we shall present Kantorovich type operator inequalities for the Furuta in-
equality related to the usual ordering and the chaotic one in terms of the generalized Kan-
torovich constant, a generalized condition number and the Specht ratio, in which we use
variants of the grand Furuta inequality (Theorem 3.13).

Theorem 4.18 Let A and B be positive operators such that MIH ≥ A ≥ mIH for some
scalars M > m > 0. If A ≥ B, then for each r ≥ 0 and α > 1

K
(
m

1
α−1 ( p+r

q −(1+r)),M
1

α−1 ( p+r
q −(1+r)),α

)
A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q (4.10)

holds for all p ≥ 1, q ≥ 0 such that p ≥ α(1+ r)q− r, and

K
(
m

p+r
αq ,M

p+r
αq ,α

)
A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q (4.11)

holds for all p ≥ 1, q ≥ 0 such that α(1+ r)q− r ≥ p ≥ (1+ r)q− r, where K(m,M, p) is

defined by (2.29).

In particular,

(m
p+r
q −(1+r) +M

p+r
q −(1+r))2

4m
p+r
q −(1+r)M

p+r
q −(1+r)

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q (4.12)

holds for all p ≥ 1, q ≥ 0 such that p ≥ 2(1+ r)q− r.

Proof. For each r ≥ 0 and α > 1, it follows from Theorem 3.13 that

A
(p+r)s+t

α ≥ {A t
2 (A

r
2 BpA

r
2 )sA

t
2 } 1

α (4.13)

holds for all p ≥ 1 and t,s ≥ 0 with

(1+ t + r)α ≥ (p+ r)s+ t. (4.14)

Put A1 = A
(p+r)s+t

α and B1 = {A t
2 (A

r
2 BpA

r
2 )sA

t
2 } 1

α , then A1 ≥ B1 by (4.13) and MIH ≥ A ≥
mIH assures M

(p+r)s+t
α IH ≥ A1 ≥ m

(p+r)s+t
α IH . By applying Theorem 4.2 to A1 and B1, we

have
K
(
m

(p+r)s+t
α ,M

(p+r)s+t
α ,α

)
Aα

1 ≥ Bα
1 .

Multiplying A− t
2 on both sides, we have

K
(
m

(p+r)s+t
α ,M

(p+r)s+t
α ,α

)
A(p+r)s ≥ (A

r
2 BpA

r
2 )s.
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Put t = (p+r)s−(1+r)α
α−1 and s = 1

q . Since p≥ α(1+ r)q− r and q > 0, then it follows that
t ≥ 0, s ≥ 0 and the condition (4.14) is satisfied. Therefore, we have

K
(
m

1
α−1 ( p+r

q −(1+r)),M
1

α−1 ( p+r
q −(1+r)),α

)
A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

for all p ≥ 1, q ≥ 0 such that p ≥ α(1 + r)q− r, so that we have the desired inequality
(4.10).

Also, putting t = 0 and s = 1
q in (4.13) and (4.14), we have (4.11) by the same discus-

sion above.
For (4.12), we have only to put α = 2 in (4.10).
Hence the proof of Theorem 4.18 is complete. �

By Theorem 4.2 and Theorem 4.18, we have the following corollary.

Corollary 4.2 Let A and B be positive operators satisfying A ≥ B and MIH ≥ A ≥ mIH
for some scalars M > m > 0. Then for each r ≥ 0(

M
m

) p+r
q −(1+r)

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q (4.15)

holds for all p ≥ 1, q ≥ 0 such that p ≥ (1+ r)q− r.

Proof. By using Theorem 4.2 and Theorem 4.18, for each r ≥ 0 and α ≥ 1(
M
m

) p+r
q −(1+r)

A
p+r
q =

(
M
m

)(
1

α−1 ( p+r
q −(1+r))

)
(α−1)

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

holds for all p ≥ 1, q ≥ 0 such that p ≥ α(1 + r)q− r. If we put α = 1, then we have
Corollary 4.2. �

Remark 4.5 Putting r = 0, q = 1 and p = α ≥ 1 in (4.10) of Theorem 4.18 and r = 0, q =
1 in (4.15) of Corollary 4.2, we have Theorem 4.2. Hence Theorem 4.18 and Corollary 4.2
is an extension of Theorem 4.2.

Next, we present Kantorovich type operator inequalities for the Furuta inequality re-
lated to the operator ordering in terms of the Specht ratio.

Theorem 4.19 Let A and B be positive operators such that kIH ≥ A ≥ 1
k IH for some

scalar k > 1. If A ≥ B, then for each r ≥ 0 and α > 1

S
(
(k

p+r
q −(1+r))2s

) 2
s

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q (4.16)

holds for all p ≥ 1, q ≥ 0, s ≥ 1 such that p ≥ α(1+ r)q− r and α −1 ≥ 1
s , and

S
(
(k

α−1
α

p+r
q )2s

) 2
s

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q (4.17)

holds for all p ≥ 1, q ≥ 0, s ≥ 1 such that α −1≥ 1
s and α(1+ r)q− r≥ p ≥ (1+ r)q− r,

where the Specht ratio S(h) is defined by (2.35).



4.4 THE FURUTA INEQUALITY VERSION 109

Proof. For each r ≥ 0 and α > 1, it follows from Theorem 3.13 that

A
(p+r)u+t

α ≥ {A t
2 (A

r
2 BpA

r
2 )uA

t
2 } 1

α (4.18)

holds for all p ≥ 1 and t,u ≥ 0 with

(1+ t + r)α ≥ (p+ r)u+ t (4.19)

Put A1 = A
(p+r)u+t

α and B1 = {A t
2 (A

r
2 BpA

r
2 )uA

t
2 } 1

α , then A1 ≥ B1 > 0 by (4.18) and kIH ≥
A≥ 1

k IH > 0 assures k
(p+r)u+t

α IH ≥ A1 ≥ k−
(p+r)u+t

α IH > 0. By applying (iv) of Theorem 4.17
to A1 and B1, we have

S
(
(k

(p+r)s+t
α )2(α−1)s

) 2
s

Aα
1 ≥ Bα

1 .

Multiplying A− t
2 on both sides, we have

S
(
(k

(p+r)u+t
α )2(α−1)s

) 2
s

A(p+r)u ≥ (A
r
2 BpA

r
2 )u

holds for all p ≥ 1, u,t ≥ 0 and s ≥ 1 such that α −1 ≥ 1
s and the condition (4.19).

Put t = (p+r)u−(1+r)α
α−1 and u = 1

q . Since p ≥ α(1+ r)q− r and q > 0, then it follows
that t ≥ 0, u ≥ 0 and the condition (4.19) is satisfied. Therefore, we have

S
(
(k

(p+r)u+t
α )2(α−1)s

) 2
s

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

for all p ≥ 1, q ≥ 0 and s ≥ 1 such that p ≥ α(1+ r)q− r and α −1 ≥ 1
s , so that we have

the desired inequality (4.16).
Also, putting t = 0 and u = 1

q in (4.18) and (4.19), we have (4.17) by the same discus-
sion above.

Hence the proof of Theorem 4.19 is complete. �

Remark 4.6 Putting r = 0, q = 1 and p = α > 1 in (4.16) of Theorem 4.19, we have (iv)
of Theorem 4.17. Hence Theorem 4.19 is an extension of (iv) in Theorem 4.17.

Corollary 4.3 Let A and B be positive operators such that kIH ≥ A≥ 1
k IH for some scalar

k > 1. If A ≥ B, then for each r ≥ 0

(k4)
p+r
q −(1+r) A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

holds for all p ≥ 1, q ≥ 0 such that p ≥ (1+ r)q− r.

Proof. Since it follows from (v) of Theorem 2.16 that

lim
s→∞

S(ks)
1
s = k,

we have this corollary by using Theorem 4.19. �

Next, we present Kantorovich type operator inequalities for the chaotic Furuta inequal-
ity related to the chaotic ordering in terms of the generalized Kantorovich constant, a gene-
ralized condition number and the Specht ratio.
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Theorem 4.20 Let A and B be positive invertible operators such that MIH ≥ A ≥ mIH
for some scalars M > m > 0. If logA ≥ logB, then for each r ≥ 0 and α > 1

K
(
m

1
α−1 ( p+r

q −r),M
1

α−1 ( p+r
q −r),α

)
A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q (4.20)

holds for all p ≥ 0, q ≥ 0 such that p ≥ αrq− r, and

K
(
m

p+r
αq ,M

p+r
αq ,α

)
A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

holds for all p ≥ 0, q ≥ 0 such that αrq− r ≥ p ≥ rq− r, where K(m,M, p) is defined by
(2.29).

In particular,

(m
p+r
q −r +M

p+r
q −r)2

4m
p+r
q −rM

p+r
q −r

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

holds for all p ≥ 0, q ≥ 0 such that p ≥ 2rq− r.

Proof. We can prove this theorem by a similar method as Theorem 4.18 by using
Theorem 3.16 instead of Theorem 3.13. �

By Theorem 4.20 and Theorem 4.4, we have the following corollary.

Corollary 4.4 Let A and B be positive invertible operators satisfying logA ≥ logB and
MIH ≥ A ≥ mIH for some scalars M > m > 0. Then for each r ≥ 0(

M
m

) p+r
q −r

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q (4.21)

holds for all p ≥ 0, q ≥ 0 such that p ≥ rq− r.

Remark 4.7 Putting r = 0, q = 1 and p = α − 1 > 0 in (4.20) of Theorem 4.20 and
r = 0, q = 1 in (4.21) of Corollary 4.4, we have Theorem 4.4. Hence Theorem 4.20 and
Corollary 4.4 can be considered as an extension of Theorem 4.4.

Similarly, we have the following result which is considered as an extension of (ii) of
Theorem 4.16.

Theorem 4.21 Let A and B be positive invertible operators such that kIH ≥ A ≥ 1
k IH for

some scalar k > 1. If logA ≥ logB, then for each r ≥ 0 and α > 1

S
(
(k

p+r
q −r)2s

) 2
s

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

holds for all p ≥ 0, q ≥ 0, s ≥ 1 such that p ≥ αrq− r and α −1 ≥ 1
s , and

S
(
(k

α−1
α

p+r
q )2s

) 2
s

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

holds for all p ≥ 0, q ≥ 0, s ≥ 1 such that α −1 ≥ 1
s and αrq− r ≥ p ≥ rq− r,

where the Specht ratio S(h) is defined by (2.35).
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Proof. We can prove this theorem by a similar method as Theorem 4.21 by using (ii)
of Theorem 4.16 and Theorem 3.13 instead of Theorem 3.16. �

Corollary 4.5 Let A and B be positive invertible operators such that kIH ≥ A ≥ 1
k IH for

some scalar k > 1. If logA ≥ logB, then for each r ≥ 0

(k4)
p+r
q −r A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

holds for all p ≥ 0 and q ≥ 0 such that p ≥ rq− r.

The following corollaries are easily obtained by Theorem 4.18 and Theorem 4.19, re-
spectively.

Corollary 4.6 Let A and B be positive invertible operators such that MIH ≥ A ≥ mIH for
some scalars M > m > 0. If Aδ ≥ Bδ for δ ∈ (0,1], then for each r ≥ 0 and α > 1

K
(
m

1
α−1 ( p+r

q −(δ+r)),M
1

α−1 ( p+r
q −(δ+r)),α

)
A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q (4.22)

holds for all p ≥ δ , q ≥ 0 such that p ≥ α(δ + r)q− r, where K(m,M, p) is defined by
(2.29).

Corollary 4.7 Let A and B be positive invertible operators such that kIH ≥ A ≥ 1
k IH for

some scalar k > 1. If Aδ ≥ Bδ for δ ∈ (0,1], then for each r ≥ 0 and α > 1

S
(
(k

p+r
q −(δ+r))2s

) 2
s

A
p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

holds for all p ≥ δ , q ≥ 0 such that p ≥ α(δ + r)q− r, where the Specht ratio S(h) is
defined by (2.35).

Remark 4.8 (4.22) in Corollary 4.6 interpolates (4.10) in Theorem 4.18 and (4.20) in
Theorem 4.20 by means of the generalized Kantorovich constant. Let A and B be positive
invertible operators such that MIH ≥ A ≥ mIH for some scalars M > m > 0. Then the
following assertions hold:

(i) A ≥ B implies K
(
m

1
α−1 ( p+r

q −(1+r)),M
1

α−1 ( p+r
q −(1+r)),α

)
A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q for

all p ≥ 1, q ≥ 0 such that p ≥ α(1+ r)q− r.

(ii) Aδ ≥ Bδ implies K
(
m

1
α−1 ( p+r

q −(δ+r)),M
1

α−1 ( p+r
q −(δ+r)),α

)
A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q

for all p ≥ δ , q ≥ 0 such that p ≥ α(δ + r)q− r.

(iii) logA ≥ logB implies K
(
m

1
α−1 ( p+r

q −r),M
1

α−1 ( p+r
q −r),α

)
A

p+r
q ≥ (A

r
2 BpA

r
2 )

1
q for

all p ≥ 0, q ≥ 0 with p > αrq− r.

It follows that the generalized Kantorovich constant of (ii) interpolates the scalar of
(i) and (iii) continuously. In fact, if we put δ = 1 in (ii), then we have (i). Also, if we put
δ → 0 in (ii), then we have (iii).
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4.5 Notes

Theorem 4.1 is due to M. Fujii, Izumino, Nakamoto and Seo [85]. Theorem 4.2 is due
to Furuta [113]. Theorem 4.4, Theorem 4.6 and Theorem 4.9 are due to Yamzaki and
Yanagida [293]. Theorem 4.5 is due to Seo [260].

The results in Section 4.3 are due to [104] and in Section 4.4 due to [262].



Chapter5
Operator Norm

As applications of the Mond-Pečarić method for convex functions, we shall discuss in-
equalities involving the operator norm. Among others, we show a converse of the Araki-
Cordes inequality, the norm inequality of several geometric means and a complement of the
Ando-Hiai inequality. Also, we discuss Hölder’s inequality and its converses in connection
with the operator geometric mean.

5.1 Operator norm and spectral radius

Let A be a (bounded linear) operator on a Hilbert space H. By Theorem 1.6, we have the
following relation between the operator norm ‖ · ‖ and the spectral radius r(·):

r(A) ≤ ‖A‖. (5.1)

In this section, we shall discuss a converse of (5.1). To consider it, we use another
interpretation of the Kantorovich inequality. By Schwarz’s inequality (Theorem 1.1), it
follows that

〈Zh,h〉 ≤ ‖Zh‖‖h‖ (5.2)

for a positive operator Z and a vector h ∈ H. We first show a converse of Schwarz’s
inequality (5.2):

113
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Theorem 5.1 Let Z be a positive operator such that mIH ≤ Z ≤ MIH for some scalars
0 < m ≤ M. Then

‖Zh‖‖h‖≤ M +m

2
√

Mm
〈Zh,h〉 (5.3)

for every vector h ∈ H.

Proof. Let E be any subspace of H and there exist M′ and m′ such that 0 < m′IH ≤
ZE ≤ M′IH . Then m ≤ m′ ≤ M′ ≤ M and setting t =

√
M/m and t ′ =

√
M′/m′, we have

t ≥ t ′ ≥ 1. Since t �→ t +1/t increases on [1,∞) and

M +m

2
√

Mm
=

1
2

(
t +

1
t

)
and

M′ +m′

2
√

M′m′ =
1
2

(
t ′ +

1
t ′

)
,

we infer
M +m

2
√

Mm
≥ M′ +m′

2
√

M′m′ .

Therefore, for a unit vector h ∈ H, it suffices to prove the theorem for ZE with E =
span{h,Zh}. Hence we may assume dimH = 2,Z = Me1 ⊗ e1 +me2 ⊗ e2 and h = xe1 +√

1− x2e2. Setting x2 = y we have

‖Zh‖
〈Zh,h〉 =

√
M2y+m2(1− y)
My+m(1− y)

.

The right-hand side attains its maximum on [0,1] at y = m/(M +m), and then

‖Zh‖
〈Zh,h〉 =

M +m

2
√

Mm
.

Therefore, the proof is complete. �

Remark 5.1 (5.2) in Theorem 5.1 is equivalent to the Kantorovich inequality (2.24):
〈Zx,x〉〈Z−1x,x〉≤ (M+m)2/4Mm for every unit vector x∈H. If we put x = Z1/2h/‖Z1/2h‖
for every vector h ∈ H, then

〈ZZ1/2h,Z1/2h〉〈Z−1Z1/2h,Z1/2h〉/‖Z1/2h‖4 ≤ (M +m)2

4Mm

and hence ‖Zh‖2‖h‖2 ≤ (M+m)2
4Mm 〈Zh,h〉2. Taking square roots of the inequality, we have

Theorem 5.1. Conversely, suppose (5.3). If we replace h by Z− 1
2 x for every unit vector

x ∈ H in (5.3), then we have

‖ZZ− 1
2 x‖‖Z− 1

2 x‖ ≤ M +m

2
√

Mm
〈ZZ− 1

2 x,Z− 1
2 x〉

and hence ‖Z 1
2 x‖‖Z− 1

2 x‖ ≤ M+m
2
√

Mm
. Rasing it to the second powers, we have the Kan-

torovich inequality.
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By virtue of Theorem 5.1, we show the following converse inequality of (5.1).

Theorem 5.2 Let A and Z be positive operators such that mIH ≤ Z ≤ MIH for some
scalars 0 < m ≤ M. Then

‖AZ‖ ≤ M +m

2
√

Mm
r(AZ). (5.4)

Proof. We may assume that there exists a unit vector f such that ‖ZA‖= ‖ZA f‖. Then
‖ZA f‖ is expressed as follows:

‖ZA f‖ = ‖ZA1/2(A1/2 f )‖‖ f‖ = ‖ZA1/2(A1/2 f )⊗ f‖
= ‖(A1/2 f ⊗ f )A1/2Z‖ = ‖A1/2 f ⊗ZA1/2 f‖ = ‖A1/2 f‖‖ZA1/2 f‖.

Hence we have

‖AZ‖ = ‖ZA‖ ≤ ‖ZA1/2 f‖‖A1/2 f‖ ≤ M +m

2
√

Mm
〈ZA1/2 f ,A1/2 f 〉

=
M +m

2
√

Mm
〈A1/2ZA1/2 f , f 〉 ≤ M +m

2
√

Mm
r(A1/2ZA1/2)

=
M +m

2
√

Mm
r(AZ)

by Theorem 5.1. �

Remark 5.2 Theorem 5.2 extends Theorem 5.1. Indeed, if we put A = h⊗ h in Theo-
rem 5.2, then we have Theorem 5.1.

Let Z be a positive operator and A a contraction. Then

AZA ≤ Z

does not always hold in general. As a matter of fact, if we put

Z =
(

2 0
0 1

)
and A =

1
2

(
1 1
1 1

)
,

then we have Z ≥ 0 and 0 ≤ A ≤ IH , but

Z−AZA =
( 5

4 − 3
4

− 3
4

1
4

)
�≥ 0.

By using Theorem 5.2, we have the following operator inequality.

Theorem 5.3 Let A be a contraction and Z a positive operator such that mIH ≤ Z ≤MIH
for some scalars 0 < m ≤ M. Then

AZA ≤ (M +m)2

4Mm
Z.
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Proof. It follows from Theorem 5.2 that

‖Z−1/2AZ1/2‖ = ‖Z−1/2AZ−1/2Z‖ ≤ M +m

2
√

Mm
r(Z−1/2AZ−1/2Z)

=
M +m

2
√

Mm
r(A) ≤ M +m

2
√

Mm
.

Hence we have

Z−1/2AZAZ−1/2 ≤ ‖Z−1/2AZAZ−1/2‖IH ≤ (M +m)2

4Mm
IH .

�

An important source of interesting inequalities in operator theory is the study of rear-
rangements in a product. The following rearrangement inequality is well known:

‖AB‖ ≤ ‖BA‖ (5.5)

whenever AB is normal. In fact, since the spectral radii of AB and BA are equal and nor-
mality of AB implies ‖AB‖ = r(AB), we have

‖AB‖ = r(AB) = r(BA) ≤ ‖BA‖.

Thus, when AB ≥ 0 the following theorem is a generalization of (5.5).

Theorem 5.4 Let A,B be operators such that AB ≥ 0 and let Z be a positive operator
such that mIH ≤ Z ≤ MIH for some scalars 0 < m ≤ M. Then

‖ZAB‖ ≤ M +m

2
√

Mm
‖BZA‖.

Proof. By Theorem 5.2, we have

‖ZAB‖ ≤ M +m

2
√

Mm
r(ZAB) =

M +m

2
√

Mm
r(BZA) ≤ M +m

2
√

Mm
‖BZA‖.

�

We shall extend Theorem 5.2 by applying the Mond-Pečarić method for convex func-
tions. For that purpose, we need some preliminaries.

Let A be a positive operator on a Hilbert space H and x a unit vector in H. By the
Hölder-McCarthy inequality (Theorem 2.11), we have the relation between the continuous
power mean and the continuous arithmetic one:

〈Ax,x〉 ≤ 〈Apx,x〉 1
p for all p > 1. (5.6)

By using the Mond-Pečarić method, we have the following converse inequality of (5.6).
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Lemma 5.1 If A is a positive operator on H such that mIH ≤ A ≤ MIH for some scalars
0 < m < M, then for each α > 0

〈Apx,x〉 1
p ≤ α〈Ax,x〉+ β (m,M, p,α) for all p > 1

holds for every unit vector x ∈ H, where

β (m,M, p,α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p−1

p

(
ap

α p

) 1
p−1

+ αbp if
ap

pMp−1 ≤ α ≤ ap

pmp−1 ,

(1−α)M if 0 < α ≤ ap

pMp−1 ,

(1−α)m if α ≥ ap

pmp−1

(5.7)

and ap :=
Mp −mp

M−m
, bp :=

Mmp−mMp

M−m
.

Proof. For the sake of reader’s convenience, we give a proof. Put f (t) = (apt +bp)
1
p −

αt and β = β (m,M, p,α) = max{ f (t) : m ≤ t ≤ M}. Then it follows that

f ′(t) =
ap

p
(apt +bp)

1
p−1−α

and the equation f ′(t) = 0 has exactly one solution

t0 =
1
ap

(
α p
ap

) p
1−p

− bp

ap
.

If m ≤ t0 ≤ M, then we have β = maxm≤t≤M f (t) = f (t0) since

f ′′(t) =
a2

p(1− p)
p2 (apt +bp)

1
p−2 < 0

and the condition m ≤ t0 ≤ M is equivalent to the condition
ap

pMp−1 ≤ α ≤ ap

pmp−1 .

If M ≤ t0, then f (t) is increasing on [m,M] and hence we have β = f (t0) = (1−α)M
for t0 = M. Similarly, we have β = f (t0) = (1−α)m for t0 = m if t0 ≤ m. Hence it follows
that

(apt +bp)
1
p −αt ≤ β for all t ∈ [m,M].

Since t p is convex for p > 1, it follows that t p ≤ apt + bp for t ∈ [m,M]. By the spectral
theorem, we have Ap ≤ apA + bpIH and hence 〈Apx,x〉 ≤ ap〈Ax,x〉+ bp for every unit
vector x ∈ H. Therefore we have

〈Apx,x〉 1
p −α〈Ax,x〉 ≤ (ap〈Ax,x〉+bp)

1
p −α〈Ax,x〉

≤ max
m≤t≤M

f (t) = β (m,M, p,α)

as desired. �

As a complementary result, we state the following lemma.



118 5 OPERATOR NORM

Lemma 5.2 If A is a positive operator on H such that mIH ≤ A ≤ MIH for some scalars
0 < m < M, then for each α > 0

〈Apx,x〉 1
p ≥ α〈Ax,x〉+ β(m,M, p,α) for all 0 < p < 1

holds for every unit vector x ∈ H, where

β (m,M, p,α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p−1

p

(
ap

α p

) 1
p−1

+ αbp if
ap

pmp−1 ≤ α ≤ ap

pMp−1 ,

(1−α)M if α ≥ ap

pMp−1 ,

(1−α)m if 0 < α ≤ ap

pmp−1 ,

and ap :=
Mp−mp

M−m
, bp :=

Mmp −mMp

M−m
.

By Lemma 5.1 and 5.2, we have the following estimates of both the difference and the
ratio in the inequality (5.6).

Lemma 5.3 If A is a positive operator on H such that mIH ≤ A ≤ MIH for some scalars
0 < m < M, then

〈Apx,x〉 1
p ≤ K(m,M, p)

1
p 〈Ax,x〉 for all p > 1 (5.8)

and
K(m,M, p)

1
p 〈Ax,x〉 ≤ 〈Apx,x〉 1

p for all 0 < p < 1 (5.9)

hold for every unit vector x ∈ H, where the generalized Kantorovich constant K(m,M, p)
is defined by (2.29).

Proof. For p > 1, if we put β (m,M, p,α) = 0 in Lemma 5.1, then it follows that

p−1
p

(
Mp−mp

p(M−m)

) 1
p−1

+ α
p

p−1
(Mmp −mMp)

Mp −mp = 0

and hence

α
p

p−1 = − p−1
p

(
Mp−mp

p(M−m)

) 1
p−1 Mp −mp

Mmp−mMp .

Therefore, we have

α p =
Mp −mp

p(M−m)

(
p−1

p
Mp −mp

mMp−Mmp

)p−1

= K(m,M, p)

and we obtain the desired inequality (5.8). For 0 < p < 1, we similarly have the inequality
(5.9) by Lemma 5.2. �
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Lemma 5.4 If A is a positive operator on H such that mIH ≤ A ≤ MIH for some scalars
0 < m < M, then

〈Apx,x〉 1
p −〈Ax,x〉 ≤ −C

(
mp,Mp,

1
p

)
for all p > 1 (5.10)

and

−C
(
mp,Mp,

1
p

)
≤ 〈Apx,x〉 1

p −〈Ax,x〉 for all 0 < p < 1 (5.11)

hold for every unit vector x ∈ H, where the constant C(m,M, p) is defined by (2.38).

Proof. For p > 1, if we put α = 1 in Lemma 5.1, then it follows that

−C
(
mp,Mp,

1
p

)
= (1− 1

p
)

(
M−m

1
p (Mp−mp)

) 1
p

1
p−1

− Mpm−mpM
M−m

= β (m,M, p,1)

and we obtain the desired inequality (5.10). For 0 < p < 1, we similarly have the inequality
(5.11) by Lemma 5.2. �

The following theorem is a generalization of Theorem 5.2.

Theorem 5.5 If A and Z are positive operators on H such that mIH ≤ Z ≤ MIH for some
scalars 0 < m ≤ M, then for each α > 0

‖(AZpA)
1
p ‖ ≤ α r(ZA

2
p )+ β (m,M, p,α)‖A‖ 2

p for all p > 1,

where β (m,M, p,α) is defined by (5.7).

Proof. For every unit vector x ∈ H, it follows from 0 < 1
p < 1 that

〈(AZpA)
1
p x,x〉 ≤ 〈AZpAx,x〉 1

p by the Hölder-McCarthy inequality

=
〈

Zp Ax
‖Ax‖ ,

Ax
‖Ax‖

〉 1
p

‖Ax‖ 2
p

≤
(

α
〈

Z
Ax

‖Ax‖ ,
Ax

‖Ax‖
〉

+ β (m,M, p,α)
)
‖Ax‖ 2

p by Lemma 5.1

= α〈ZAx,Ax〉‖Ax‖ 2
p−2 + β (m,M, p,α)‖Ax‖ 2

p

= α

〈
A

1
p ZA

1
p

A1− 1
p x

‖A1− 1
p x‖

,
A1− 1

p x

‖A1− 1
p x‖

〉
‖Ax‖ 2

p−2‖A1− 1
p x‖2 + β (m,M, p,α)‖Ax‖ 2

p

and

‖Ax‖ 2
p−2‖A1− 1

p x‖2 = 〈A2x,x〉 1
p−1〈A2− 2

p x,x〉
≤ 〈A2x,x〉 1

p−1〈A2x,x〉1− 1
p = 1 by 0 < 1− 1

p < 1.
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By combining two inequalities above, we have

〈(AZpA)
1
p x,x〉 ≤ α ‖A 1

p ZA
1
p ‖+ β (m,M, p,α)‖Ax‖ 2

p

= α r(A
1
p ZA

1
p )+ β (m,M, p,α)‖Ax‖ 2

p

≤ α r(ZA
2
p )+ β (m,M, p,α)‖A‖ 2

p

for every unit vector x ∈ H and hence we have the desired inequality. �

Remark 5.3 If A and Z are positive operators, then it follows that

r(ZA
2
p ) ≤ ‖(AZpA)

1
p ‖ for all p > 1. (5.12)

As a matter of fact, by the Araki-Cordes inequality (Theorem 5.9), we have

r(ZA
2
p ) = r(A

1
p ZA

1
p ) = ‖A 1

p ZA
1
p ‖ ≤ ‖(AZpA)

1
p ‖

for all p > 1. Therefore, the inequality in Theorem 5.5 can be considered as a converse
inequality of (5.12).

The following theorem is a variant of Theorem 5.5 with 2-variables.

Theorem 5.6 If A and Z are positive operators on H such that mIH ≤ Z ≤ MIH for some
scalars 0 < m ≤ M, then for each α > 0

‖(AZpA)
1
q ‖ ≤ α r(Z

p
q A

2
q )+ β (m

p
q ,M

p
q ,q,α)‖A‖ 2

q for all p > 1 and q > 1,

where β (m,M, p,α) is defined by (5.7).

Proof. For every unit vector x ∈ H, we have

〈(AZpA)
1
q x,x〉 ≤ 〈AZpAx,x〉 1

q by 0 < 1
q < 1

=
〈

(Z
p
q )q Ax

‖Ax‖ ,
Ax

‖Ax‖
〉 1

q

‖Ax‖ 2
q

≤
(

α
〈

Z
p
q

Ax
‖Ax‖ ,

Ax
‖Ax‖

〉
+ β (m

p
q ,M

p
q ,q,α)

)
‖Ax‖ 2

q .

The rest of the proof is proved in a similar way as the proof of Theorem 5.5. �

Theorem 5.7 Let A and Z be positive operators on H such that mIH ≤ Z ≤MIH for some
scalars 0 < m ≤ M. Then for each p > 1

‖(AZpA)
1
p ‖ ≤ K(m,M, p)

1
p r(ZA

2
p ). (5.13)

In addition, (5.13) is equivalent to (5.8) in Lemma 5.3.
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Proof. By using (5.8) of Lemma 5.3 instead of Lemma 5.1 in the proof of Theorem 5.5,
we obtain (5.13). Conversely, for every unit vector x ∈ H, if we put A = x⊗ x in (5.13),
then

‖(x⊗ x)Zp(x⊗ x)‖1/p = ‖〈x,Zpx〉〈x,x〉‖1/p = 〈Zpx,x〉1/p

and
r(ZA2/p) = r(AZA) ≤ ‖AZA‖ = ‖〈Zx,x〉〈x,x〉‖ = 〈Zx,x〉.

Hence we have (5.8) of Lemma 5.3. �

Remark 5.4 We have Theorem 5.2 as a special case of Theorem 5.7. As a matter of fact,
if we put p = 2 in Theorem 5.7, then we have

‖(AZ2A)
1
2 ‖ ≤ K(m,M,2)

1
2 r(ZA).

Since ‖(AZ2A)
1
2 ‖ = ‖(ZA)∗(ZA)‖ 1

2 = ‖ZA‖ = ‖AZ‖ and K(m,M,2)
1
2 =

(
(M+m)2

4Mm

) 1
2

=
M+m
2
√

Mm
, we have the desired inequality (5.4) in Theorem 5.2.

Theorem 5.8 Let A and Z be positive operators on H such that mIH ≤ Z ≤MIH for some
scalars 0 < m < M. Then for each p > 1

‖(AZpA)
1
p ‖ ≤ r(ZA

2
p )−C

(
mp,Mp,

1
p

)
‖A‖ 2

p . (5.14)

In addition, (5.14) is equivalent to (5.10) in Lemma 5.4.

Proof. By using (5.10) of Lemma 5.4 instead of Lemma 5.1 in the proof of Theo-
rem 5.5, we obtain (5.14). Conversely, for every unit vector x ∈ H, if we put A = x⊗ x in
(5.14), then we have (5.10) of Lemma 5.4. �

We have the following corollary as a special case of (5.14) in Theorem 5.8, which is a
difference type converse inequality of (5.1).

Corollary 5.1 If A and Z are positive operators on H such that 0 < mIH ≤ Z ≤ MIH for
some scalars 0 < m < M, then

‖ZA‖− r(ZA)≤ (M−m)2

4(M +m)
‖A‖. (5.15)

Proof. If we put p = 2 in Theorem 5.8, then we have (5.15) since

C
(
m2,M2,

1
2

)
=

(M−m)2

4(M +m)
.

�
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5.2 The Araki-Cordes inequality

First of all, we recall the Araki-Cordes inequality (AC) for the operator norm in §3.6:

Theorem 5.9 Let A and B be positive operators. Then

‖BpApBp‖ ≤ ‖(BAB)p‖ for all 0 < p ≤ 1 (5.16)

or equivalently
‖(BAB)p‖ ≤ ‖BpApBp‖ for all p > 1.

The Cordes inequality for the operator norm is as follows:

Theorem 5.10 Let A and B be positive operators. Then

‖ApBp‖ ≤ ‖AB‖p for all 0 < p ≤ 1

or equivalently
‖AB‖p ≤ ‖ApBp‖ for all p > 1.

Proof. By using the Araki-Cordes inequality, we have

‖ApBp‖2 = ‖BpA2pBp‖ ≤ ‖(BA2B)p‖ = ‖BA2B‖p = ‖AB‖2p

for all 0 < p ≤ 1. �

In this section, we show converse inequalities to these inequalities and investigate the
equivalence among converse inequalities of Araki, Cordes and Löwner-Heinz inequalities.

First of all, we show the following ratio type converse inequality of the Araki-Cordes
inequality.

Theorem 5.11 If A and B are positive operators on H such that mIH ≤ A≤MIH for some
scalars 0 < m ≤ M, then

K(m,M, p)‖BAB‖p ≤ ‖BpApBp‖ for all 0 < p ≤ 1 (5.17)

or equivalently

‖BpApBp‖ ≤ K(m,M, p) ‖BAB‖p for all p > 1, (5.18)

where K(m,M, p) is defined by (2.29).
In particular,

‖B2A2B2‖ ≤ (M +m)2

4Mm
‖BAB‖2

and
2 4
√

Mm√
M +

√
m
‖BAB‖ 1

2 ≤ ‖B 1
2 A

1
2 B

1
2 ‖.
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Proof. Suppose that 0 < p ≤ 1. For every unit vector x ∈ H, it follows that

〈(BAB)px,x〉
≤ 〈BABx,x〉p by the Hölder-McCarthy inequality and 0 < p ≤ 1

=
〈

(Ap)
1
p

Bx
‖Bx‖ ,

Bx
‖Bx‖

〉p

‖Bx‖2p

≤ K
(
mp,Mp,

1
p

)p
〈

Ap Bx
‖Bx‖ ,

Bx
‖Bx‖

〉
‖Bx‖2p by Lemma 5.3 and 1

p > 1

= K
(
mp,Mp,

1
p

)p〈ApBx,Bx〉‖Bx‖2p−2

= K
(
mp,Mp,

1
p

)p
〈

BpApBp B1−px
‖B1−px‖ ,

B1−px
‖B1−px‖

〉
‖Bx‖2p−2‖B1−px‖2

and

‖Bx‖2p−2‖B1−px‖2 = 〈B2x,x〉p−1〈B2−2px,x〉
≤ 〈B2x,x〉p−1〈B2x,x〉1−p = 1 by 0 < 1− p < 1.

By combining two inequalities above, we have

‖BAB‖p = ‖(BAB)p‖
≤ K

(
mp,Mp,

1
p

)p‖BpApBp‖ = K(m,M, p)−1‖BpApBp‖

because K(m,M, p)1/p = K(mp,Mp,1/p)−1 by the inversion formula in Theorem 2.13.
Hence we have the desired inequality (5.17).

Next, we show (5.17) =⇒ (5.18). For p > 1, since 0 < 1
p < 1, it follows from (5.17)

that

K
(
m,M,

1
p

)
‖BAB‖ 1

p ≤ ‖B 1
p A

1
p B

1
p ‖.

By replacing A and B by Ap and Bp respectively, in the inequality above we have

K
(
mp,Mp,

1
p

)
‖BpApBp‖ 1

p ≤ ‖BAB‖,

and so
K(m,M, p)−1‖BpApBp‖ ≤ ‖BAB‖p

by the inversion formula in Theorem 2.13. Similarly we can show (5.18) =⇒ (5.17). �

Remark 5.5 Theorem 5.11 implies Theorem 5.7. In fact, for each p > 1,

‖(AZpA)
1
p ‖ ≤ K

(
mp,Mp,

1
p

)−1‖A 1
p ZA

1
p ‖

= K(m,M, p)
1
p r(A

1
p ZA

1
p )

= K(m,M, p)
1
p r(ZA

2
p ).
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Next, we show a difference type converse inequality of the Araki-Cordes one.

Theorem 5.12 If A and B are positive operators on H such that mIH ≤ A≤MIH for some
scalars 0 < m ≤ M, then

‖BAB‖p ≤ ‖BpApBp‖−C(m,M, p)‖B‖2p for all 0 < p ≤ 1,

or equivalently

‖BAB‖p ≥ ‖BpApBp‖−C(m,M, p)‖B‖2p for all p > 1,

where C(m,M, p) is defined by (2.38).
In particular,

‖BAB‖ 1
2 ≤ ‖B 1

2 A
1
2 B

1
2 ‖+

(
√

M−√
m)2

4(
√

M +
√

m)
‖B‖.

and

‖B2A2B2‖ ≤ ‖BAB‖2 +
(M−m)2

4
‖B‖4

Proof. For 0 < p ≤ 1,

〈(BAB)px,x〉 ≤ 〈BABx,x〉p

=
〈

(Ap)
1
p

Bx
‖Bx‖ ,

Bx
‖Bx‖

〉p

‖Bx‖2p

≤
(〈

Ap Bx
‖Bx‖ ,

Bx
‖Bx‖

〉
−C(m,M, p)

)
‖Bx‖2p

=
〈

BpApBp B1−px
‖B1−px‖ ,

B1−px
‖B1−px‖

〉
‖Bx‖2p−2‖B1−px‖2p−C(m,M, p)‖Bx‖2p

≤ ‖BpApBp‖−C(m,M, p)‖B‖2p.

The last inequality holds since

‖Bx‖2p−2‖B1−px‖2 = 〈B2x,x〉p−1〈B2−2px,x〉
≤ 〈B2x,x〉p−1〈B2x,x〉1−p = 1 by 0 < 1− p < 1.

Hence we have

‖BAB‖p ≤ ‖BpApBp‖−C(m,M, p)‖B‖2p.

Next, suppose that p > 1. For every unit vector x ∈ H we have

‖Bx‖2p−2‖B1−px‖2 = 〈B2x,x〉p−1〈B2−2px,x〉
≥ 〈B2x,x〉p−1〈B2x,x〉1−p = 1 by 1− p < 0
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and

〈(BAB)px,x〉 ≥ 〈BABx,x〉p

=
〈

(Ap)
1
p

Bx
‖Bx‖ ,

Bx
‖Bx‖

〉p

‖Bx‖2p

≥ 〈ApBx,Bx〉‖Bx‖2p−2−C(m,M, p)‖Bx‖2p

≥
〈

BpApBp B1−px
‖B1−px‖ ,

B1−px
‖B1−px‖

〉
‖Bx‖2p−2‖B1−px‖2−C(m,M, p)‖Bx‖2p

≥
〈

BpApBp B1−px
‖B1−px‖ ,

B1−px
‖B1−px‖

〉
−C(m,M, p)‖Bx‖2p.

By a suitable unit vector x ∈ H, it follows that

〈(BAB)px,xa〉 ≥ ‖BpApBp‖−C(m,M, p)‖Bx‖2p.

Since ‖Bx‖2p ≤ ‖B‖2p, we have −C(m,M, p)‖Bx‖2p ≥−C(m,M, p)‖B‖2p and hence

‖BAB‖p ≥ ‖BpApBp‖−C(m,M, p)‖B‖2p.

�

Moreover, we obtain the following converse inequality of the Cordes inequality by
Theorem 5.11.

Theorem 5.13 If A and B are positive operators on H such that mIH ≤A≤MIH for some
scalars 0 < m ≤ M, then

‖ApBp‖ ≤ K(m2,M2, p)
1
2 ‖AB‖p for all p > 1

or equivalently

K(m2,M2, p)
1
2 ‖AB‖p ≤ ‖ApBp‖ for all 0 < p < 1.

In particular,

‖A2B2‖ ≤ M2 +m2

2Mm
‖AB‖2

and √
2
√

Mm
M +m

‖AB‖ 1
2 ≤ ‖A 1

2 B
1
2 ‖.

Proof. For a given p > 1, it follows from Theorem 5.11 that

‖BpApBp‖ ≤ K(m,M, p)‖BAB‖p

and hence
‖A p

2 Bp‖2 ≤ K(m,M, p)‖A 1
2 B‖2p.
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If we replace A by A2, then we have

‖ApBp‖2 ≤ K(m2,M2, p)‖AB‖2p

as desired. �

The equivalence among the converse inequalities of Araki, Cordes and Löwner-Heinz
inequalities is now given as follows.

Theorem 5.14 Let A,B be positive operators such that mIH ≤ A ≤MIH for some scalars
0 < m ≤ M. Then for a given p > 1, the following are mutually equivalent:

(a) A ≥ B ≥ 0 implies K(m,M, p)Ap ≥ Bp.

(b) ‖ApBp‖ ≤ K(m2,M2, p)1/2‖AB‖p.

(c) ‖BpApBp‖ ≤ K(m,M, p)‖BAB‖p.

(b’) K(m2,M2,1/p)1/2‖AB‖p ≤ ‖ApBp‖.

(c’) K(m,M,1/p)‖BAB‖p ≤ ‖BpApBp‖.

Proof. The proof is divided into three parts, namely the equivalence (a) =⇒ (b) =⇒
(c) =⇒ (a), (b) ⇐⇒ (b’) and (c) ⇐⇒ (c’).

(a) =⇒ (b): It follows that

(a) ⇐⇒
(
‖A− 1

2 B
1
2 ‖ ≤ 1 implies ‖A− p

2 B
p
2 ‖2 ≤ K(m,M, p)

)
⇐⇒

(
‖A 1

2 B
1
2 ‖ ≤ 1 implies ‖A p

2 B
p
2 ‖2 ≤ K(M−1,m−1, p) = K(m,M, p)

)
⇐⇒ (‖AB‖ ≤ 1 implies ‖ApBp‖ ≤ K(m2,M2, p).

)
If we put B1 = B/‖AB‖, then it follows from ‖AB1‖ = 1 that

‖ApBp
1‖ ≤ K(m2,M2, p)

1
2 ⇐⇒ ‖ApBp‖ ≤ K(m2,M2, p)

1
2 ‖AB‖p.

(b) =⇒ (c): If we replace A by A
1
2 in (B), then it follows that

‖A p
2 Bp‖ ≤ K(m,M, p)

1
2 ‖A 1

2 B‖p.

Squaring both sides, we have

‖BpApBp‖ ≤ K(m,M, p)‖BAB‖p.

(c) =⇒ (a): If we replace B by B
1
2 and A by A−1 in (C), then it follows that

‖B p
2 A−pB

p
2 ‖ ≤ K(M−1,m−1, p)‖B 1

2 A−1B
1
2 ‖p.
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By rearranging it, we have

‖A− p
2 BpA− p

2 ‖ ≤ K(m,M, p)‖A− 1
2 BA− 1

2 ‖p.

Since A ≥ B ≥ 0, it follows from A− 1
2 BA− 1

2 ≤ IH that

‖A− p
2 BpA− p

2 ‖ ≤ K(m,M, p)

and hence
Bp ≤ K(m,M, p)Ap.

(b) ⇐⇒ (b’): If we replace A and B by A
1
p and B

1
p respectively in (B), then it follows that

(B) ⇐⇒ ‖AB‖ ≤ K
(
m

2
p ,M

2
p , p

) 1
2 ‖A 1

p B
1
p ‖p

⇐⇒ ‖AB‖ 1
p ≤ K

(
m

2
p ,M

2
p , p

) 1
2p ‖A 1

p B
1
p ‖

⇐⇒ K(m2,M2, p)
1
2 ‖AB‖ 1

p ≤ ‖A 1
p B

1
p ‖ by Theorem 2.13

⇐⇒ (B′)

Similarly we have (c) ⇐⇒ (c’) and so the proof is complete. �

5.3 Norm inequality for the geometric mean

Let A and B be two positive operators on a Hilbert space. The arithmetic-geometric mean
inequality says that

(1−α)A+ αB≥ A #α B for all 0 ≤ α ≤ 1, (5.19)

where the α-geometric mean A #α B is defined by

A #α B = A
1
2

(
A− 1

2 BA− 1
2

)α
A

1
2 for all 0 ≤ α ≤ 1.

In fact, put C = A− 1
2 BA− 1

2 . Since α(t −1)+1 ≥ tα for t > 0, we have (1−α)IH + αC ≥
Cα . Therefore, we have (5.19).

On the other hand, it is known the following matrix Young inequality: For positive
semi-definite matrices A, B and p,q > 1 such that 1

p + 1
q = 1

1
p
Ap +

1
q
Bq ≥U∗|AB|U (5.20)
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for some unitary matrix U . By (5.20), for positive semi-definite matrices A,B

‖(1−α)A+ αB‖≥ ‖A1−αBα‖ for all 0 ≤ α ≤ 1 (5.21)

and by (5.19) we have

‖(1−α)A+ αB‖≥ ‖A #α B‖ for 0 ≤ α ≤ 1 and A,B ≥ 0.

Here we remark that McIntosh [182] proved that (5.21) holds for α = 1/2 and positive
operators.

In this section, we show a norm inequality and its converse on the geometric mean. In
other words, we estimate ‖A #α B‖ by ‖A1−αBα‖. Moreover we discuss it for the case
α > 1. Our main tools are the Araki-Cordes inequality (Theorem 5.9) and its converse one
(Theorem 5.11).

We show the following norm inequality for the geometric mean, in which we use the
Araki-Cordes inequality twice.

Theorem 5.15 Let A and B be positive operators. Then for each 0 ≤ α ≤ 1

‖A #α B‖ ≤ ‖A1−αBα‖. (5.22)

Proof. It follows from (5.16) in Theorem 5.9 that

‖A 1
2

(
A− 1

2 BA− 1
2

)α
A

1
2 ‖ ≤ ‖A 1

2α A− 1
2 BA− 1

2 A
1

2α ‖α = ‖A 1−α
2α BA

1−α
2α ‖α

for 0 ≤ α ≤ 1.
Furtheremore, if α ≥ 1/2, then by (5.16) in Theorem 5.9 again

‖A 1−α
2α BA

1−α
2α ‖α ≤ ‖A1−αB2αA1−α‖ 1

2 = ‖A1−αBα‖.

Hence, if 1/2 ≤ α ≤ 1, then we have the desired inequality (5.22).
If α < 1/2, then by using A #α B = B #1−α A, it reduces the proof to the case α ≥ 1/2

and so the proof is complete. �

As in Chapter 3, we use the notation � to distinguish from the operator mean #:

A �α B = A
1
2

(
A− 1

2 BA− 1
2

)α
A

1
2 for all α �∈ [0,1].

Theorem 5.16 Let A and B be positive operators. If 3/2 ≤ α ≤ 2, then

‖A �α B‖ ≤ ‖A1−αBα‖. (5.23)
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Proof. Put α = 1+ β and 1/2 ≤ β ≤ 1. Then we have

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β
B

1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β
B

1
2 ‖

≤ ‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by Theorem 5.9 and 1/2 ≤ β ≤ 1

= ‖B
1+β
2β A−1B

1+β
2β ‖β

≤ ‖B1+βA−2β B1+β‖ 1
2 by Theorem 5.9 and 0 < 1

2β ≤ 1

= ‖A−β B1+β‖ = ‖A1−αBα‖.
�

Remark 5.6 In Theorem 5.16, the inequality ‖A �α B‖ ≤ ‖A1−αBα‖ does not always

hold for 1 < α < 3/2. In fact, let A =
(

2 1
1 1

)
and B =

(
2 1
1 2

)
. Then we have ‖A � 4

3
B‖ =

3.38526 > ‖A− 1
3 B

4
3 ‖ = 3.3759. Also, ‖A � 7

5
B‖ = 3.49615 < ‖A− 2

5 B
7
5 ‖ = 3.50464.

We show the following converse inequality of (5.22) in Theorem 5.15.

Theorem 5.17 If A and B are positive operators such that mIH ≤ A,B ≤ MIH for some
scalars 0 < m ≤ M and h = M

m , then for each 0 ≤ α ≤ 1

K(h2,α)‖A1−αBα‖ ≤ ‖A #α B‖,
where the generalized Kantorovich constant K(h,α) is defined by (2.31).

Proof. Suppose that 0 ≤ α ≤ 1
2 . Since m

M IH ≤ A− 1
2 BA− 1

2 ≤ M
m IH , it follows that a

generalized condition number of A− 1
2 BA− 1

2 is M
m / m

M = h2 and we have

‖A #α B‖ = ‖(A 1
2α )α

(
A− 1

2 BA− 1
2

)α
(A

1
2α )α‖

≥ K(h2,α)‖A 1
2α A− 1

2 BA− 1
2 A

1
2α ‖α by Theorem 5.11 and 0 ≤ α ≤ 1

2

= K(h2,α)‖A 1−α
2α BA

1−α
2α ‖α

≥ K(h2,α)‖A1−αB2αA1−α‖ 1
2 by Theorem 5.9 and 1

2α ≥ 1

= K(h2,α)‖A1−αBα‖.
Suppose that 1

2 ≤ α ≤ 1. Since 0 ≤ 1−α ≤ 1
2 , we have

‖A #α B‖ = ‖B #1−α A‖
≥ K(h2,1−α)‖B1−(1−α)A1−α‖
= K(h2,α)‖A1−αBα‖ by (ii) of Theorem 2.12

and so the proof is complete. �
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We show the following converse inequality of (5.23) in Theorem 5.16.

Theorem 5.18 If A and B are positive operators such that mIH ≤ A,B ≤ MIH for some
scalars 0 < m ≤ M and h = M

m , then for each 3
2 ≤ α ≤ 2

K(h2,α −1)K(h,2(α −1))−
1
2 ‖A1−αBα‖ ≤ ‖A �α B‖,

where K(h,α) is defined by (2.31).

Proof. Put α = 1+ β and 1/2 ≤ β ≤ 1. Then we have

‖A �α B‖ = ‖B �−β A‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β
B

1
2 ‖

≥ K(h2,β )‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by Theorem 5.11 and 1/2 ≤ β ≤ 1

= K(h2,β )‖B
1+β
2β A− 2β

2β B
1+β
2β ‖β

≥ K(h2,β )
(

K
(
h−2β ,

1
2β

)
‖B1+βA−2β B1+β‖ 1

2β

)β
by Theorem 5.11 and 0 < 1

2β ≤ 1

= K(h2,β )K
(
h−2β ,

1
2β

)β‖A−β B1+β‖

= K(h2,β )K(h,2β )−
1
2 ‖A1−αBα‖.

The last equality follows from

K
(
h−2β ,

1
2β

)β
= K

(
h2β ,

1
2β

)β
= K(h,2β )−

β
2β = K(h,2β )−

1
2

by (i) of Theorem 2.12 and (i) of Theorem 2.13. �

As mentioned in Remark 5.6, we have no relation between ‖A �α B‖ and ‖A1−αBα‖
for 1 ≤ α ≤ 3

2 . We have the following result.

Theorem 5.19 If A and B are positive operators such that mIH ≤ A,B ≤ MIH for some
scalars 0 < m ≤ M and h = M

m , then for each 1 ≤ α ≤ 3
2

K(h2,α −1)‖A1−αBα‖ ≤ ‖A �α B‖ ≤ K(h,2(α −1))−
1
2 ‖A1−αBα‖,

where K(h,α) is defined by (2.31).

Proof. Put α = 1+β and 0 ≤ β ≤ 1
2 . Since a generalized condition number of A−2β is
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h−2β , it follows that

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β
B

1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β
B

1
2 ‖

≤ ‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by Theorem 5.9 and 0 ≤ β ≤ 1

= ‖B
1+β
2β A−1B

1+β
2β ‖β

≤
(

K
(
h−2β ,

1
2β

)
‖B1+βA−2β B1+β‖ 1

2β

)β
by Theorem 5.11 and 1 ≤ 1

2β

= K(h,2(α −1))−
1
2 ‖A1−αBα‖ by Theorem 2.12 and 2.13.

Also, we have

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β
B

1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β
B

1
2 ‖

≥ K(h2,β )‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by Theorem 5.11 and 0 ≤ β ≤ 1

= K(h2,β )‖B
1+β
2β A−1B

1+β
2β ‖β

≥ K(h2,β )‖B1+βA−2β B1+β‖ 1
2 by Theorem 5.9 and 1

2β ≥ 1

= K(h2,α −1)‖A1−αBα‖
and so the proof is complete. �

Finally, we consider the case α ≥ 2:

Theorem 5.20 If A and B are positive operators such that mIH ≤ A,B ≤ MIH for some
scalars 0 < m ≤ M and h = M

m , then for each α ≥ 2

K(h,2(α −1))−
1
2 ‖A1−αBα‖ ≤ ‖A �α B‖ ≤ K(h2,α −1)‖A1−αBα‖,

where K(h,α) is defined by (2.31).

Proof. Put α = 1+ β and β ≥ 1. Then we have

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β
B

1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β
B

1
2 ‖

≤ K(h2,β )‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by Theorem 5.11 and β ≥ 1

= K(h2,β )‖B
1+β
2β A−1B

1+β
2β ‖β

≤ K(h2,α −1)‖A1−αBα‖ by Theorem 5.9 and 0 < 1
2β ≤ 1.
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Also, it follows that

‖A �α B‖ = ‖B �−β A‖ = ‖B 1
2

(
B− 1

2 AB− 1
2

)−β
B

1
2 ‖

= ‖B 1
2

(
B

1
2 A−1B

1
2

)β
B

1
2 ‖

≥ ‖B 1
2β B

1
2 A−1B

1
2 B

1
2β ‖β by Theorem 5.9 and β ≥ 1

= ‖B
1+β
2β A−1B

1+β
2β ‖β

≥ K
(
h−2β ,

1
2β

)β‖B1+βA−2βB1+β‖ 1
2 by Theorem 5.11 and 0 < 1

2β ≤ 1

= K(h,2(α −1))−
1
2 ‖A1−αBα‖ by Theorem 2.12 and Theorem 2.13.

�

5.4 Norm inequality for the chaotically
geometric mean

Let A and B be two positive invertible operators on a Hilbert space H. We recall that the
chaotically geometric mean A ♦α B for all α ∈ R is defined by

A ♦α B = exp((1−α) logA+ α logB) .

If A and B commute, then A ♦α B = A1−αBα for all α ∈ R.
First of all, we recall the following Ando-Hiai inequality (Theorem 3.4).

Theorem AH If A and B are positive operators, then for each α ∈ [0,1]

‖Ar #α Br‖ ≤ ‖A #α B‖r for all r ≥ 1 (5.24)

or equivalently

A #α B ≤ IH =⇒ Ar #α Br ≤ IH for all r ≥ 1.

The following result is a geometric mean version of the Lie-Trotter formula

exp(A+B) = lim
n→∞

(
exp

(A
n

)
exp

(B
n

))n

(5.25)

for self-adjoint operators A and B.
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Lemma 5.5 If A and B are self-adjoint operators, then

exp((1−α)A+ αB) = lim
r→+0

(exp(rA) �α exp(rB))
1
r

in the operator norm topology for all α ∈ R

Proof. For 0 < r < 1 and α ∈ R, let X(r) = exp(rA) �α exp(rB), Y (r) = exp(r[(1−
α)A + αB]), and r−1 = m + s, where m ∈ N and s ∈ [0,1). It is enough to prove that
‖X(r)m −Y(r)m‖→ 0. Since, with the convention o(r)/r → 0 as r → 0,

X(r) = exp
(rA

2

)(
∞

∑
k=0

1
k!

(
− rA

2

)k ∞

∑
k=0

(rB)k

k!

∞

∑
k=0

1
k!

(
− rA

2

)k
)α

exp
(rA

2

)
= exp

(rA
2

)
(IH + r(B−A)+o(r))α exp

(rA
2

)
=

(
IH +

rA
2

+o(r)
)

(IH + rα(B−A)+o(r))
(

IH +
rA
2

+o(r)
)

= IH + r[(1−α)A+ αB]+o(r),

we get X(r)−Y(r) = o(r). Since

X(r)m −Y (r)m =
m−1

∑
j=0

X(r)m− j−1(X(r)−Y(r))Y (r) j,

it follows that

‖X(r)m −Y (r)m‖ ≤ m‖X(r)−Y(r)‖max{‖X(r)‖,‖Y(r)‖}m−1

≤ 1
r
‖X(r)−Y(r)‖exp((1−α)‖A‖+ α‖B‖) → 0 as r → 0.

�

By Lemma 5.5, we have the following formula for the chaotically geometric mean,
which is an extension of Theorem 3.21.

Theorem 5.21 Let A and B be positive invertible operators. Then for each α ∈ [0,1]

A ♦α B = lim
r→+0

(Ar #α Br)
1
r (5.26)

in the operator norm topology. Moreover, for each α �∈ [0,1]

A ♦α B = lim
r→+0

(Ar �α Br)
1
r .

We show the following norm inequality for the geometric mean, in which we use the
Ando-Hiai inequality.
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Theorem 5.22 Let A and B be positive invertible operators. Then for each α ∈ [0,1]

‖A #α B‖ ≤ ‖A ♦α B‖ ≤ ‖A1−αBα‖.
Proof. It follows from (5.24) in Theorem AH that

‖A #α B‖ ≤ ‖Ar #α Br‖ 1
r for all 0 < r < 1.

As r → 0, we have ‖A #α B‖ ≤ ‖A ♦α B‖ by Theorem 5.21.
By Lie-Trotter formula (5.25) and the Cordes inequality (Theorem 5.10), we have

‖exp(H +K)‖ = lim
n→∞

‖exp
(H

n

)
exp

(K
n

)
‖n ≤ ‖expH expK‖

for self-adjoint operators H and K. Hence it follows that

‖A ♦α B‖ = ‖exp((1−α) logA+ α logB)‖
≤ ‖explogA1−α explogBα‖
= ‖A1−αBα‖.

�

Remark 5.7 By the proof above, we have

‖A ♦α B‖ ≤ ‖A1−αBα‖ for all α ∈ R.

We show the following converse inequality for Theorem 5.22.

Theorem 5.23 If A and B are positive operators such that mIH ≤ A,B ≤ MIH for some
scalars 0 < m < M and h = M

m , then for each 0 ≤ α ≤ 1

K(h2,α)‖A1−αBα‖ ≤ ‖A #α B‖, (5.27)

where K(h,α) is defined by (2.31).

Proof. Suppose that 0 ≤ α ≤ 1
2 . Since m

M IH ≤ A− 1
2 BA− 1

2 ≤ M
m IH , it follows that a

generalized condition number of A− 1
2 BA− 1

2 is M
m / m

M = h2 and by Theorem 5.9 we have
‖BpApBp‖ ≤ ‖(BAB)p‖ for all p ∈ [0,1] and the opposite inequality holds for all p > 1.
Hence it follows that

‖A #α B‖ = ‖(A 1
2α )α

(
A− 1

2 BA− 1
2

)α
(A

1
2α )α‖

≥ K(h2,α)‖A 1
2α A− 1

2 BA− 1
2 A

1
2α ‖α by 0 ≤ α ≤ 1

2

= K(h2,α)‖A 1−α
2α BA

1−α
2α ‖α

≥ K(h2,α)‖A1−αB2αA1−α‖ 1
2 by 1

2α ≥ 1

= K(h2,α)‖A1−αBα‖.
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Suppose that 1
2 ≤ α ≤ 1. Since 0 ≤ 1−α ≤ 1

2 and K(h,1−α) = K(h,α) by (i) of Theo-
rem 2.13, we have

‖A #α B‖ = ‖B #1−α A‖
≥ K(h2,1−α)‖B1−(1−α)A1−α‖
= K(h2,α)‖A1−αBα‖

and so the proof is complete. �

We show the following complement of the Ando-Hiai inequality.

Theorem 5.24 Let A and B be positive operators on H such that mIH ≤ A,B ≤ MIH for
some scalars 0 < m ≤ M, h = M

m and 0 ≤ α ≤ 1. Then

‖Ar #α Br‖ ≤ K(h2,α)−r‖A #α B‖r for all 0 < r < 1 (5.28)

or equivalently

A #α B ≤ IH =⇒ Ar #α Br ≤ K(h2,α)−r for all 0 < r < 1, (5.29)

where K(h,α) is defined by (2.31).

Proof. We firstly show (5.28). Since a generalized condition number of A− 1
2 BA− 1

2 is

h2 =
(

M
m

)2
, it follows from Theorem 5.9 that for each 0 ≤ α ≤ 1

‖Ar #α Br‖ = ‖A r
2

(
A− r

2 BrA− r
2

)α
A

r
2 ‖

≤ ‖A r
2α A− r

2 BrA− r
2 A

r
2α ‖α by 0 ≤ α ≤ 1

= ‖Ar−rα
2α BrA

r−rα
2α ‖α

≤ ‖A 1−α
2α BA

1−α
2α ‖rα by 0 < r < 1

= ‖A 1
2α A− 1

2 BA− 1
2 A

1
2α ‖rα

≤
(
K(h2,α)−1‖A 1

2

(
A− 1

2 BA− 1
2

)α
A

1
2 ‖

)r
by 0 ≤ α ≤ 1

= K(h2,α)−r‖A #α B‖r

for all 0 < r < 1 and hence we have the desired inequality (5.28).
(5.28) =⇒ (5.29): is obvious.
(5.29) =⇒ (5.28): Since A #α B ≤ ‖A #α B‖, it follows from the homogeneity of the
geometric mean that

A
‖A #α B‖ #α

B
‖A #α B‖ ≤ IH .

By (5.29), we have
Ar

‖A #α B‖r #α
Br

‖A #α B‖r ≤ K(h2,α)−r,
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because generalized condition numbers of both A/‖A #α B‖ and B/‖A #α B‖ coincides
with M

‖A #α B‖/
m

‖A #α B‖ = M/m = h. Hence we have the desired inequality:

‖Ar #α Br‖ ≤ K(h2,α)−r‖A #α B‖r

for all 0 < r < 1. Therefore the proof is complete. �

By Theorem 5.24, we have the following converse inequality of the Ando-Hiai one for
the case r > 1.

Corollary 5.2 Let A and B be positive operators such that mIH ≤ A,B ≤ MIH for some
scalars 0 < m < M, h = M

m and 0 ≤ α ≤ 1. Then

K(h2r,α)‖A #α B‖r ≤ ‖Ar #α Br‖(≤ ‖A #α B‖r) for all r > 1. (5.30)

Proof. For r > 1, we have 0 < 1
r < 1 and by (5.28) in Theorem 5.24

‖A 1
r #α B

1
r ‖ ≤ K(h2,α)−

1
r ‖A #α B‖ 1

r .

Replacing A and B by Ar and Br respectively, and a generalized condition number of Ar

and Br is hr, it follows that

‖A #α B‖ ≤ K(h2r,α)−
1
r ‖Ar #α Br‖ 1

r

and by taking r-th power on both sides we have the desired inequality (5.30). �

In the remainder of the section, we investigate the Ando-Hiai inequality without the
framework of operator mean. The following theorem corresponds to (5.28) in Theo-
rem 5.24 in the case α > 1.

Theorem 5.25 Let A and B be positive operators such that 0 < mIH ≤ A,B ≤ MIH for
some scalars 0 < m < M, h = M

m and α > 1. Then

K(h,r)αK(h2,α)−r‖A �α B‖r ≤ ‖Ar �α Br‖ ≤ K(h2r,α)‖A �α B‖r (5.31)

for all 0 < r < 1, where K(h,α) is defined by (2.31).

Proof. Since ‖BpApBp‖ ≤ ‖(BAB)p‖ for all p∈ [0,1] and the opposite inequality holds
for all p > 1 by Theorem 5.9, for each α > 1, we have

‖Ar �α Br‖ = ‖A r
2

(
A− r

2 BrA− r
2

)α
A

r
2 ‖

≤ K(h2r,α)‖A r
2α A− r

2 BrA− r
2 A

r
2α ‖α by α > 1

= K(h2r,α)‖Ar−rα
2α BrA

r−rα
2α ‖α

≤ K(h2r,α)‖A 1−α
2α BA

1−α
2α ‖rα by 0 < r < 1

= K(h2r,α)‖A 1
2α A− 1

2 BA− 1
2 A

1
2α ‖rα

≤ K(h2r,α)‖A 1
2

(
A− 1

2 BA− 1
2

)α
A

1
2 ‖r by α > 1

= K(h2r,α)‖A �α B‖r

and hence we have the right-hand side of (5.31).
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Conversely, we have

‖Ar �α Br‖ = ‖A r
2

(
A− r

2 BrA− r
2

)α
A

r
2 ‖

≥ ‖A r
2α A− r

2 BrA− r
2 A

r
2α ‖α by α > 1

= ‖Ar−rα
2α BrA

r−rα
2α ‖α

≥
(
K(h,r)‖A 1−α

2α BA
1−α
2α ‖r

)α
by 0 < r < 1

= K(h,r)α‖A 1−α
2α BA

1−α
2α ‖rα

= K(h,r)α‖A 1
2α A− 1

2 BA− 1
2 A

1
2α ‖rα

≥ K(h,r)α
(
K(h2,α)−1‖A 1

2

(
A− 1

2 BA− 1
2

)α
A

1
2 ‖

)r
by α > 1

= K(h,r)αK(h2,α)−r‖A �α B‖r

and hence we have the left-hand side of (5.31). �

By Theorem 5.25, we have the following complement of the Ando-Hiai inequality in
the case α > 1.

Theorem 5.26 Let A and B be positive operators such that 0 < mIH ≤ A,B ≤ MIH for
some scalars 0 < m < M, h = M

m and α > 1. Then

‖Ar �α Br‖ ≤ K(h2r,α)‖A �α B‖r for all 0 < r < 1 (5.32)

or equivalently

A �α B ≤ IH =⇒ Ar �α Br ≤ K(h2r,α) for all 0 < r < 1, (5.33)

where K(h,α) is defined by (2.31).

The following corollary is a complementary result for Theorem 5.25.

Corollary 5.3 Let A and B be positive operators such that 0 < mIH ≤ A,B ≤ MIH for
some scalars 0 < m < M, h = M

m and α > 1. Then

K(h2,α)−r‖A �α B‖r ≤ ‖Ar �α Br‖ ≤ K(h,r)αK(h2r,α)‖A �α B‖r (5.34)

for all r > 1.

Next, we show converse norm inequalities for the α-geometric mean and the chaoti-
cally geometric one.

Theorem 5.27 If A and B are positive operators such that 0 < mIH ≤ A,B ≤ MIH for
some scalars 0 < m < M and h = M

m , then

K(h2,α)‖A ♦α B‖ ≤ ‖A #α B‖ for all 0 < α < 1. (5.35)

S(h)−αK(h2,α)−1‖A �α B‖ ≤ ‖A ♦α B‖ ≤ h2(α−1)‖A �α B‖ for all α > 1, (5.36)

where the Specht ratio S(h) is defined by (2.35).
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Proof. By (5.28) in Theorem 5.24, it follows that for each 0 < α < 1

‖Ar #α Br‖ ≤ K(h2,α)−r‖A #α B‖r for all 0 < r < 1.

By taking 1
r -th power on both sides, we have

‖(Ar #α Br)
1
r ‖ ≤ K(h2,α)−1‖A #α B‖

and hence we have the desired inequality (5.35)

‖A ♦α B‖ ≤ K(h2,α)−1‖A #α B‖

by the formula (5.26) in Theorem 5.21.
Next, since K(h2r,α) ≤ (h2r)α−1 by Theorem 2.13, it follows from (5.31) in Theo-

rem 5.25 that for each α > 1

K(h,r)
α
r K(h2,α)−1‖A �α B‖ ≤ ‖Ar �α Br‖ 1

r ≤ K(h2r,α)
1
r ‖A �α B‖

≤ h2(α−1)‖A �α B‖ for all 0 < r < 1.

On the other hand, since K(hr, 1
r ) = K(h,r)−

1
r in the case of p = 1 by (i) of Theorem 2.13

and K(hr, 1
r ) → S(h) as r → 0 by (i) of Theorem 2.17, we have

lim
r→0

K(h,r)
α
r = lim

r→0
K

(
hr,

1
r

)−α
= S(h)−α .

By Theorem 5.21 we have (Ar �α Br)
1
r → A ♦α B as r → 0 and hence

S(h)−αK(h2,α)−1‖A �α B‖ ≤ ‖A ♦α B‖ ≤ h2(α−1)‖A �α B‖.

�

Finally, we show a slight improvement of Theorem 5.23 for the chaotically geometric
mean and its converse. The following lemma shows the Golden-Thompson type inequality
for the operator norm and its converse.

Lemma 5.6 Let A and B be self-adjoint operators such that mIH ≤ B ≤ MIH for some
scalars m < M. Then

S(eM−m)−1‖e A
2 eBe

A
2 ‖ ≤ ‖eA+B‖ ≤ ‖e A

2 eBe
A
2 ‖,

where S(eM−m) is the Specht ratio defined by (2.35).

Proof. Since 0 < em ≤ eB ≤ eM and a generalized condition number of eB is eM−m, it
follows from Theorem 5.9 and Theorem 5.11 that

K(eM−m, p)‖e A
2 eBe

A
2 ‖p ≤ ‖e pA

2 epBe
pA
2 ‖ ≤ ‖e A

2 eBe
A
2 ‖p for all p ∈ [0,1].
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Taking 1
p -th power of both sides, we have

K(eM−m, p)
1
p ‖e A

2 eBe
A
2 ‖ ≤ ‖e pA

2 epBe
pA
2 ‖ 1

p ≤ ‖e A
2 eBe

A
2 ‖. (5.37)

It follows from (i) of Theorem 2.13 and (i) of Theorem 2.17 that

K
(
eM−m, p

) 1
p = K

(
epM−pm,

1
p

)−1 → S(eM−m)−1 as p → 0.

By the Lie-Trotter formula, we have ‖e pA
2 epBe

pA
2 ‖ 1

p → ‖eA+B‖ as p → 0 and hence by
(5.37) it follows that

S(eM−m)−1‖e A
2 eBe

A
2 ‖ ≤ ‖eA+B‖ ≤ ‖e A

2 eBe
A
2 ‖,

as desired. �

By Lemma 5.6, we have the following theorem which is a slight improvement of Theo-
rem 5.23.

Theorem 5.28 Let A and B be strictly positive operators such that 0 < mIH ≤ B ≤ MIH
for some scalars 0 < m < M, hB = M

m . Then for each real number α ∈ R

S(hα
B)−1‖A 1−α

2 BαA
1−α

2 ‖ ≤ ‖A ♦α B‖ ≤ ‖A 1−α
2 BαA

1−α
2 ‖,

where S(h) is the Specht ratio defined by (2.35).

Proof. For each α > 0, replacing A and B by (1−α) logA and α logB respectively
in Lemma 5.6, we have the desired inequality since α logm ≤ α logB ≤ α logM and
eα logM−α logm = hα

B . In the case of α < 0, we have α logM ≤ α logB ≤ α logm and
eα logm−α logM = h−α

B . By the property of the Specht ratio in Theorem 2.16, it follows
that S(h−α

B ) = S(hα
B) and hence we have this theorem. �

The following corollary is a complementary result for Theorem 5.23.

Corollary 5.4 Let A and B be positive operators such that mIH ≤ A ≤ MIH for some
scalars 0 < m < M, hA = M

m . Then for each real number α ∈ R

S(h1−α
A )−1‖A 1−α

2 BαA
1−α

2 ‖ ≤ ‖A ♦α B‖ ≤ ‖A 1−α
2 BαA

1−α
2 ‖.

Proof. If we apply B ♦1−α A to Theorem 5.23, then it follows that

S(h1−α
A )−1‖B α

2 A1−αB
α
2 ‖ ≤ ‖B ♦1−α A‖

and hence we have this corollary. �
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Remark 5.8 Let A and B be positive operators such that mIH ≤ A,B ≤ MIH for some
scalars 0 < m < M, h = M

m . Since ‖A 1−α
2 BαA

1−α
2 ‖ ≤ ‖A1−αBα‖, the expression in Theo-

rem 5.22 implies

K(h2,α)‖A 1−α
2 BαA

1−α
2 ‖ ≤ ‖A ♦α B‖ for all α ∈ [0,1]. (5.38)

By combing Theorem 5.28 and Corollary 5.4, we have

max{S(hα)−1,S(h1−α)−1}‖A 1−α
2 BαA

1−α
2 ‖ ≤ ‖A ♦α B‖ for all α ∈ R. (5.39)

Then (5.39) is an improvement of (5.38). As a matter of fact, we have

K(h2,α) ≤ S(hα)−1 for all 0 ≤ α ≤ 1
2 . (i)

K(h2,α) ≤ S(h1−α)−1 for all 1
2 ≤ α ≤ 1. (ii)

To prove (i), it is sufficient to show K(h,α)−1 ≥ S(h
α
2 ) for all 0 ≤ α ≤ 1

2 . By (ii) of
Theorem 2.12, (i) of Theorem 2.13 and (ii) of Theorem 2.17, we have

K(h,α)−1 = K(h,1−α)−1 = K

(
h1−α ,

1
1−α

)1−α

= K

(
h1−α ,

α +1−α
1−α

)1−α
≥ S(hα)1−α .

Since S(hs)
1
s is decreasing for 0≤ s≤ 1 by Lemma 4.4, it follows that S(hα)≥ S(h

α
2 )2 and

hence we have
S(hα)1−α ≥ S(h

α
2 )2(1−α) ≥ S(h

α
2 )

since 0≤α ≤ 1
2 . Therefore, it follows that K(h2,α)≤ S(hα)−1 for all 0≤α ≤ 1

2 . Similarly,
we have (ii). Therefore we have

K(h2,α) ≤ max
{

S(hα)−1,S(h1−α)−1
}

for all α ∈ [0,1].

5.5 Complement of the Ando-Hiai inequality

The following theorem is an operator norm version of a generalized Ando-Hiai inequality
(GAH) in Theorem 3.5.

Theorem 5.29 Let A and B be positive operators, and let α ∈ [0,1]. Then

‖Ar # αr
(1−α)s+αr

Bs‖ ≤ ‖A #α B‖ rs
(1−α)s+αr for all r,s ≥ 1, (5.40)
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or equivalently

‖A #α B‖ rs
(1−α)s+αr ≤ ‖Ar # αr

(1−α)s+αr
Bs‖ for all 0 < r,s ≤ 1. (5.41)

For each α ∈ [0,1], we have no relation between ‖A#αB‖ rs
(1−α)s+αr and ‖Ar# αr

(1−α)s+αr
Bs‖

for r,s > 0 without constraint (r− 1)(s− 1) ≥ 0. In this section, we show a complement
of the generalized Ando-Hiai inequality. We attempt to find upper and lower bounds for

‖Ar # αr
(1−α)s+αr

Bs‖ by means of scalar multiples of ‖A #α B‖ rs
(1−α)s+αr , that is, for each

0 < r ≤ 1 and s ≥ 1 there exist constants β and γ such that

β ‖A #α B‖ rs
(1−α)s+αr ≤ ‖Ar # αr

(1−α)s+αr
Bs‖ ≤ γ ‖A #α B‖ rs

(1−α)s+αr

for two positive operators A and B.
First of all, in the case of r ≥ 1 and s≥ 1, we estimate a lower bound of the generalized

Ando-Hiai inequality (5.40):

Theorem 5.30 Let A and B be positive operators on a Hilbert space H such that m1IH ≤
A≤M1IH and m2IH ≤ B≤M2IH for some scalars 0 < mi ≤Mi (i = 1,2), and let α ∈ [0,1].
Put hi = Mi

mi
for i = 1,2. Then for each r ≥ 1 and s ≥ 1

K
(
hr

1h
s
2,

αr
(1−α)s+αr

)
‖A #α B‖ rs

(1−α)s+αr

≤ ‖Ar # αr
(1−α)s+αr

Bs‖ ( ≤ ‖A #α B‖ rs
(1−α)s+αr ),

or equivalently for each 0 < r ≤ 1 and 0 < s ≤ 1(
‖A #α B‖ rs

(1−α)s+αr ≤
)
‖Ar # αr

(1−α)s+αr
Bs‖

≤ K(h1h2,α)
−rs

(1−α)s+αr ‖A #α B‖ rs
(1−α)s+αr .

Proof. It follows that the generalized condition number of A− r
2 BsA− r

2 is hr
1h

s
2 since

mr
2/Mr

1IH ≤ A− r
2 BsA− r

2 ≤ Ms
2/mr

1IH . By Theorem 5.11, we have

‖Ar # αr
(1−α)s+αr

Bs‖ = ‖A r
2

(
A− r

2 BsA− r
2

) αr
(1−α)s+αr

A
r
2 ‖

≥ K
(
hr

1h
s
2,

αr
(1−α)s+αr

)
‖A (1−α)s

2α BsA
(1−α)s

2α ‖ αr
(1−α)s+αr by αr

(1−α)s+αr ∈ [0,1] and (5.17)

≥ K
(
hr

1h
s
2,

αr
(1−α)s+αr

)
‖A 1−α

2α BA
1−α
2α ‖ αrs

(1−α)s+αr by s ≥ 1 and (5.18)

≥ K
(
hr

1h
s
2,

αr
(1−α)s+αr

)
‖A 1

2α A− 1
2 BA− 1

2 A
1

2α ‖ αrs
(1−α)s+αr

≥ K
(
hr

1h
s
2,

αr
(1−α)s+αr

)
‖A 1

2

(
A− 1

2 BA− 1
2

)α
A

1
2 ‖ rs

(1−α)s+αr by 0 ≤ α ≤ 1 and (5.16)

= K
(
hr

1h
s
2,

αr
(1−α)s+αr

)
‖A #α B‖ rs

(1−α)s+αr .

�



142 5 OPERATOR NORM

If we put r = s in Theorem 5.30, then we have the following converse of the Ando-Hiai
inequality (5.28) in Theorem 5.24.

Corollary 5.5 Suppose that the same conditions of Theorem 5.30 hold. Then for each
r ≥ 1

K(hr
1h

r
2,α) ‖A #α B‖r ≤ ‖Ar #α Br‖ ( ≤ ‖A #α B‖r ),

or equivalently for each 0 < r ≤ 1

( ‖A #α B‖r ≤ ) ‖Ar#α Br‖ ≤ K(h1h2,α)−r ‖A #α B‖r.

We remark that in Corollary 5.5 the constant K(hr
1h

r
2,α) = 1 in the case of α = 0,1 and

K(hr
1h

r
2,α) �= 1 in the case of r = 1 and 0 < α < 1.

Remark 5.9 For α ∈ [0,1], the generalized Ando-Hiai inequality

‖Ar# αr
(1−α)s+αr

Bs‖ ≤ ‖A#αB‖ rs
(1−α)s+αr

does not always hold for 0 < r ≤ 1 and s ≥ 1. In fact, put A =
(

5 3
3 2

)
and B =

(
5 4
4 5

)
.

Then for α = 1
2 we have ‖A 1

2 # 1
5

B2‖ = 4.798011 > ‖A # 1
2

B‖ 4
5 = 4.795148 in the case of

r = 1
2 and s = 2. Also, ‖A 1

2 # 1
9

B4‖ = 5.514677 < ‖A # 1
2

B‖ 8
9 = 5.707511 in the case of

r = 1
2 and s = 4.

At the end of this section, we present a complementary inequality to the generalized
Ando-Hiai inequality for the case 0 < r ≤ 1 and s ≥ 1. The following theorem gives esti-
mates of both upper and lower bounds of ‖Ar # αr

(1−α)s+αr
Bs‖ by means of scalars multiples

of ‖A #α B‖ rs
(1−α)s+αr .

Theorem 5.31 Let A and B be positive operators on a Hilbert space H such that m1IH ≤
A≤M1IH and m2IH ≤ B≤M2IH for some scalars 0 < mi ≤Mi (i = 1,2), and let α ∈ [0,1].
Put hi = Mi

mi
for i = 1,2. Then for each 0 < r ≤ 1 and s ≥ 1

K
(
hs

1,
r
s

) (1−α)s
(1−α)s+αr

K
(
hsα

1 hsα
2 , r

(1−α)s+αr

)
h

(1−α)s(r−s)
(1−α)s+αr

2 ‖A #α B‖ rs
(1−α)s+αr

≤ ‖Ar # αr
(1−α)s+αr

Bs‖

≤ h
(1−α)s(s−r)
(1−α)s+αr
2 ‖A #α B‖ rs

(1−α)s+αr .

In order to prove this theorem, we need the following lemma.

Lemma 5.7 Let A and B be positive operators on a Hilbert space H such that m1IH ≤
A≤M1IH and m2IH ≤ B≤M2IH for some scalars 0 < mi ≤Mi (i = 1,2), and let α ∈ [0,1].
Put hi = Mi

mi
for i = 1,2. Then for each 0 < s ≤ 1

K(h2,s)‖A−2‖s−1(ABA)s ≤ ABsA ≤ ‖A2‖1−s(ABA)s. (5.42)
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Proof. Since f (t) = ts for 0 < s ≤ 1 is operator concave, it follows that

ABsA = ‖A2‖ A
‖A‖Bs A

‖A‖ ≤ ‖A2‖
(

A
‖A‖B

A
‖A‖

)s

= ‖A2‖1−s(ABA)s,

and we have the right-hand side of (5.42). Next, we show the left-hand side of (5.42). By
(2.11) in Theorem 2.11, we have

〈AsBsAsx,x〉 ≥ K(h2,s)〈(ABA)sAs−1x,As−1x〉‖Asx‖2−2s‖As−1x‖2s−2.

Since 〈A2sx,x〉 ≥ ‖A−2s‖−1, it follows that

‖Asx‖2s−2‖As−1x‖2−2s = 〈A2sx,x〉s−1〈A2s−2x,x〉1−s

≤ ‖A−2‖s(1−s)‖A−2‖(1−s)2 = ‖A−2‖1−s

and hence
K(h2,s)As−1(ABA)sAs−1 ≤ ‖A−2‖1−sAsBsAs,

as desired. �

Proof of Theorem 5.31. Replacing A by A− 1
2 in Lemma 5.7, we have

A− 1
2 BsA− 1

2 ≤ ‖A−1‖1−s (A− 1
2 BA− 1

2 )s

for all 0 < s ≤ 1. By α
(1−α)s+α ∈ [0,1] and the Löwner-Heinz inequality, we have

(
A− 1

2 BsA− 1
2

) α
(1−α)s+α ≤ (‖A−1‖1−s) α

(1−α)s+α (A− 1
2 BA− 1

2 )
αs

(1−α)s+α .

Therefore, it follows that

‖A # α
(1−α)s+α

Bs‖ ≤ ‖A−1‖
α(1−s)

(1−α)s+α ‖A 1
2 (A− 1

2 BA− 1
2 )

αs
(1−α)s+α A

1
2 ‖.

Next, we estimate the norm of the right-hand side in the expression above. Since 0 <
αs

(1−α)s+α ≤ 1, it follows from (5.17) in Theorem 5.11 that

‖A 1
2 (A− 1

2 BA− 1
2 )

αs
(1−α)s+α A

1
2 ‖

≤ ‖A (1−α)s+α
2s (A− 1

2 BA− 1
2 )αA

(1−α)s+α
2s ‖ s

(1−α)s+α

= ‖A α(1−s)
2s A

1
2 (A− 1

2 BA− 1
2 )αA

1
2 A

α(1−s)
2s ‖ s

(1−α)s+α

≤ ‖A #α B‖ s
(1−α)s+α ‖A‖

α(1−s)
(1−α)s+α

and since ‖A‖‖A−1‖ ≤ M1
m1

= h1 by m1 ≤ A ≤ M1, we have

‖A # α
(1−α)s+α

Bs‖ ≤ h
α(1−s)

(1−α)s+α
1 ‖A #α B‖ s

(1−α)s+α (5.43)
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for all 0 < s ≤ 1. Since

A #α B = B #1−α A and Ar # αr
1−α+αr

B = B # 1−α
1−α+αr

Ar,

replacing A, B, α and s by B, A, 1−α and r in (5.43), it follows that for each 0 < r ≤ 1

‖Ar # αr
1−α+αr

B‖ ≤ h
(1−α)(1−r)
1−α+αr

2 ‖A #α B‖ r
1−α+αr . (5.44)

For each 0 < r ≤ 1 and s ≥ 1, replacing A, B and r by As, Bs and r
s respectively in (5.44),

we have

‖Ar # αr
(1−α)s+αr

Bs‖ = ‖(As)
r
s # α r

s
(1−α)+α r

s

Bs‖

≤ h
s

(1−α)(1− r
s )

(1−α)+α r
s

2 ‖As #α Bs‖
r
s

(1−α)+α r
s by 0 ≤ r

s ≤ 1 and (5.44)

= h
(1−α)s(s−r)
(1−α)s+αr

2 ‖As #α Bs‖ r
(1−α)s+αr

≤ h
(1−α)s(s−r)
(1−α)s+αr

2 ‖A #α B‖ rs
(1−α)s+αr by s ≥ 1 and (AH),

and hence we have the right-hand side in Theorem 5.31.
Next, we show the left-hand side in Theorem 5.31. By using the left-hand side of (5.42)

in Lemma 5.7 and (5.17) in Theorem 5.11 it similarly follows that

K(h2,s)
α

(1−α)s+α K
(
hα

1 hα
2 , s

(1−α)s+α

)
h

α(s−1)
(1−α)s+α
1 ‖A#α B‖ s

(1−α)s+α ≤ ‖A # α
(1−α)s+α

Bs‖

holds for each 0 < s ≤ 1 and this implies that

‖Ar # αr
1−α+αr

B‖ ≥ K(h1,r)
1−α

αr+1−α K
(
hα

1 hα
2 , r

αr+1−α

)
h

(1−α)(r−1)
αr+1−α

2 ‖A #α B‖ r
αr+1−α (5.45)

holds for each 0 < r ≤ 1. Therefore for s ≥ 1 we have

‖Ar # αr
(1−α)s+αr

Bs‖ = ‖(As)
r
s # α r

s
1−α+α r

s

Bs‖

≥ K(hs
1,

r
s )

(1−α)s
(1−α)s+αr K

(
hsα

1 hsα
2 , r

(1−α)s+αr

)
h

(1−α)s(r−s)
(1−α)s+αr
2 ‖As #α Bs‖ r

(1−α)s+αr

≥ K(hs
1,

r
s )

(1−α)s
(1−α)s+αr K

(
hsα

1 hsα
2 , r

(1−α)s+αr

)
h

(1−α)s(r−s)
(1−α)s+αr
2 ‖A #α B‖ rs

(1−α)s+αr ,

as desired. Hence the proof is completed. �

We remark that in the case of r = s = 1, both bounds of the inequalities in Theorem 5.31
are equal to 1.

Finally, we show a complementary result of Theorem 5.31:
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Corollary 5.6 Suppose that the conditions of Theorem 5.31 hold. Then for each r ≥ 1
and 0 < s ≤ 1

h
(1−α)s(s−r)
(1−α)s+αr

2 ‖A #α B‖ rs
(1−α)s+αr ≤ ‖Ar # αr

(1−α)s+αr
Bs‖

≤ K
(
h

r
s
1 , s

r

) −(1−α)rs
(1−α)s+αr

K
(
(h

r
s
1 h2)α , r

(1−α)s+αr

)s
h

(1−α)s(r−s)
(1−α)s+αr
2 ‖A #α B‖ rs

(1−α)s+αr .

5.6 Converses of Hölder’s inequality

Let ai and bi be positive real numbers for i = 1, · · · ,n. Hölder’s inequality says that

n

∑
i=1

a
1
p
i b

1
q
i ≤

(
n

∑
i=1

ai

) 1
p
(

n

∑
i=1

bi

) 1
q

(5.46)

for p,q > 1 such that 1
p + 1

q = 1. When p = q = 2 in (5.46), we have the Cauchy-Schwarz
inequality

n

∑
i=1

√
aibi ≤

√
n

∑
i=1

ai

√
n

∑
i=1

bi. (5.47)

These inequalities can be extended to operators by means of the subadditivity of the op-
erator geometric mean [124, Theorem 5.7]: Let {Ai}n

i=1 and {Bi}n
i=1 be positive invertible

operators on a Hilbert space. The following inequality is regarded as Hölder’s inequality
for operators

n

∑
i=1

Ai#αBi ≤
(

n

∑
i=1

Ai

)
#α

(
n

∑
i=1

Bi

)
(5.48)

for all α ∈ [0,1]. In particular, in the case of α = 1
2 we have the Cauchy-Schwarz operator

inequality:
n

∑
i=1

Ai#Bi ≤
(

n

∑
i=1

Ai

)
#

(
n

∑
i=1

Bi

)
. (5.49)

By using the Mond-Pečarić method for concave functions, we shall show converses of
operator Hölder’s inequality (5.48).

Theorem 5.32 Let Ai and Bi be positive invertible operators such that mAi ≤ Bi ≤ MAi

for some scalars 0 < m ≤ M and i = 1,2, · · · ,n. Then for each α ∈ [0,1](
n

∑
i=1

Ai

)
#α

(
n

∑
i=1

Bi

)
≤ K(m,M,α)−1

n

∑
i=1

Ai #α Bi (5.50)
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and (
n

∑
i=1

Ai

)
#α

(
n

∑
i=1

Bi

)
−

n

∑
i=1

Ai #α Bi ≤−C(m,M,α)
n

∑
i=1

Ai, (5.51)

where the generalized Kantorovich constant K(m,M,α) is defined by (2.29) and the Kan-
torovich constant for the difference C(m,M,α) is defined by (2.38).

If we put α = 1
2 in Theorem 5.32, then we have the following converses of the Cauchy-

Schwarz operator inequalities.

Corollary 5.7 Let Ai and Bi be positive invertible operators such that mAi ≤ Bi ≤ MAi

for some scalars 0 < m ≤ M and i = 1,2, · · · ,n. Then(
n

∑
i=1

Ai

)
#

(
n

∑
i=1

Bi

)
≤

√
M +

√
m

2 4
√

mM

n

∑
i=1

Ai # Bi

and (
n

∑
i=1

Ai

)
#

(
n

∑
i=1

Bi

)
−

n

∑
i=1

Ai # Bi ≤ (
√

M−√
m)2

4(
√

M +
√

m)

n

∑
i=1

Ai.

To prove our results, we need the following Lemmas, also see [124, Corollary 5.33].

Lemma 5.8 Let A and B be positive operators such that mA ≤ B ≤ MA for some scalars
0 < m≤M and let Φ : B(H) �→B(K) be a positive linear mapping. Then for each α ∈ [0,1]

Φ(A) #α Φ(B) ≤ K(m,M,α)−1Φ(A #α B), (5.52)

where the generalized Kantorovich constant K(m,M,α) is optimal.

Proof. Put C = A−1/2BA−1/2. If we put

λ0 =
α

1−α
M1−α −m1−α

m−α −M−α and μ0 =
α(M−m)
Mα −mα ,

then
αt1−α +(1−α)λ0t

−α ≤ μ0 for all t ∈ [m,M].

Since mI ≤C ≤ MI, we get
αC+(1−λ0)I ≤ μ0C

α

and hence
αB+(1−α)λ0A ≤ μ0A #α B.

This implies
(1−α)λ0Φ(A)+ αΦ(B) ≤ μ0Φ(A #α B).

By the weighted arithmetic-geometric mean inequality, it follows that

(1−α)λ0Φ(A)+ αΦ(B) ≥ λ 1−α
0 Φ(A) #α Φ(B).
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On the other hand, since μ0

λ 1−α
0

= K(m,M,α)−1 by an easy calculation, we have the desired

inequality (5.52).
Moreover, the generalized Kantorovich constant K(m,Mα) is optimal in the sense that

for each α ∈ [0,1] there exist two positive operators A, B such that mA≤ B≤MA for some
scalars 0 < m ≤ M and a positive linear mapping Φ such that

Φ(A) #α Φ(B) = K(m,M,α)−1Φ(A #α B).

As a matter of fact, let Φ : M2(C) �→ C be a positive linear mapping defined by

Φ(X) = rx11 +(1− r)x22 for X =
(

x11 x12

x21 x22

)
with 0 < r < 1

and A and B positive definite matrices such as

A =
(

1 0
0 1

)
and B =

(
M 0
0 m

)
.

Then it is clear that the sandwich condition mA ≤ B ≤ MA holds. If we put

r =
αmα(M−m)−m(Mα −mα)
(1−α)(M−m)(Mα −mα)

,

then we have 0 < r < 1. Therefore it follows that

Φ(A) #α Φ(B)
Φ(A #α B)

=
(m+ r(M−m))α

mα + r(Mα −mα)

=
(

α(Mmα −mMα)
(1−α)(Mα −mα)

)α (1−α)(M−m)
mαM−mMα

= K(m,M,α)−1.

�

Lemma 5.9 Let A and B be positive operators such that mA ≤ B ≤ MA for some scalars
0 < m≤M and let Φ : B(H) �→ B(K) be a positive linear mapping. Then for each α ∈ [0,1]

Φ(A) #α Φ(B)−Φ(A #α B) ≤−C(m,M,α)Φ(A), (5.53)

where the Kantorovich constant for the difference C(m,M,α) is optimal.

Proof. Put C = A−1/2BA−1/2 and for each α ∈ [0,1]

λ =
(

Mα −mα

α(M−m)

) 1
α−1

.

Since mI ≤C ≤ MI, it follows that

(1−α)λ αI + αλ α−1C ≤Cα −C(m,M,α)I
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and hence
(1−α)λ αA+ αλ α−1B ≤ A #α B−C(m,M,α)A.

This implies

(1−α)λ αΦ(A)+ αλ α−1Φ(B) ≤ Φ(A #α B)−C(m,M,α)Φ(A).

On the other hand, by the weighted arithmetic-geometric mean inequality

(1−α)λ αΦ(A)+ αλ α−1Φ(B) ≥ Φ(A) #α Φ(B)

and hence we have the desired inequality (5.53).
Moreover, the Kantorovich constant for the difference C(m,M,α) is optimal in the

sense that for each α ∈ [0,1] there exist two positive operators A, B such that mA≤ B≤MA
for some scalars 0 < m ≤ M and a positive linear mapping Φ such that

Φ(A) #α Φ(B)−Φ(A #α B) = −C(m,M,α)Φ(A).

As a matter of fact, put A,B and Φ be as in Lemma 5.8. If we put

r =
1

M−m

(
Mα −mα

α(M−m)

) 1
α−1

− m
M−m

,

then we have 0 < r < 1 and

Φ(A) #α Φ(B)−Φ(A #α B) = (m+ r(M−m))α −mα − r(Mα −mα)
= −C(m,M,α)
= −C(m,M,α)Φ(A)

as desired. �

Proof of Theorem 5.32. If we put A = diag(A1, · · · ,An),B = diag(B1, · · · ,Bn) and
Φ(A ) = Z∗A Z where Z∗ = (I, · · · , I) in Lemma 5.8 and Lemma 5.9 respectively, then a
sandwich condition mA ≤ B ≤ MA is satisfied and we have Theorem 5.32. �

5.7 Notes

Kantorovich type converse inequalities for operator norm and spectral radius are firstly
discussed by Bourin [26] and afterward generalized by J.I. Fujii, Seo and Tominaga [76].

The results in Section 5.2 are due to [102], in Section 5.3 [235], in Section 5.4 [236,
263], in Section 5.5 [268] and in Section 5.6 [167, 28, 93, 266].

Matrix Young inequality is due to Ando [10].



Chapter6
Geometric Mean

This chapter is devoted to the geometric mean of n operators due to Ando-Li-Mathias
and Lowson-Lim. We present an alternative proof of the power convergence of the sym-
metrization procedure on the weighted geometric mean due to Lawson and Lim. We show
a converse of the weighted arithmetic-geometric mean inequality of n operators.

6.1 Introduction

First of all, we present a definition for the geometric mean of three or more positive invert-
ible operators on a Hilbert space. For positive invertible operators A and B on a Hilbert
space H, the geometric mean A # B of A and B is defined by

A # B = A
1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2 .

As an extension of A#B, for any positive integer n≥2, the geometricmean G(A1,A2, · · ·,An)
of any n-tuple of positive invertible operators A1,A2, · · · ,An on a Hilbert space H is defined
by induction as follows:

(i) G(A1,A2) = A # B.

(ii) Assume that the geometric mean of any (n−1)-tuple of operators is defined. Let

G((Aj) j �=i) = G(A1, · · · ,Ai−1,Ai+1, · · · ,An)

149
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and let sequences {A(r)
i }∞

r=1 be A(1)
i = Ai and A(r+1)

i = G((A(r)
j ) j �=i). Then there exists

limr→∞ A(r)
i uniformly and it does not depend on i. Hence the geometric mean of n opera-

tors is defined by

lim
r→∞

A(r)
i = G(A1,A2, · · · ,An) for i = 1, · · · ,n.

For positive invertible operators A and B, let

R(A,B) = max
{
r(A−1B),r(B−1A)

}
,

where r(T ) means the spectral radius of T . Then

R(G(A1,A2, · · · ,An),G(B1,B2, · · · ,Bn)) ≤
{

n

∏
i=1

R(Ai,Bi)

} 1
n

. (6.1)

In particular,

R(A(2)
i ,A(2)

j ) ≤ R(Ai,Aj)
1

n−1 . (6.2)

We have the following converse of the arithmetic-geometric mean inequality.

Lemma 6.1 Let A1 and A2 be positive operators such that mIH ≤ A1,A2 ≤ MIH for some
scalars M > m > 0. Then

A1 +A2

2
≤ M +m

2
√

Mm
G(A1,A2) =

M +m

2
√

Mm
A1 # A2.

Proof. If we put C = A
− 1

2
1 A2A

− 1
2

1 , then we have
√ m

M IH ≤C
1
2 ≤

√
M
m IH . Since

max

{
t +

1
t

:

√
m
M

≤ t ≤
√

M
m

}
=

√
M
m

+
√

m
M

,

it follows that
1
2

(
C

1
2 +C− 1

2

)
≤ 1

2

(√
M
m

+
√

m
M

)
and hence we have

IH +C
2

≤ M +m

2
√

Mm
C

1
2 .

Multiplying both sides by A
1
2
1 , we have

A1 +A2

2
≤ M +m

2
√

Mm
A1 # A2.

�

For any positive integer n ≥ 2, we show a converse of the arithmetic-geometric mean
inequality of n operators, which is an extension of Lemma 6.1:
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Theorem 6.1 For any positive integer n ≥ 2, let A1, · · · ,An be positive invertible opera-
tors such that mIH ≤ Ai ≤ MIH for i = 1,2, · · · ,n for some scalars 0 < m < M. Then

A1 + · · ·+An

n
≤

(
(M +m)2

4Mm

) n−1
2

G(A1, · · · ,An).

Proof. We will prove it by induction on n. In the case of n = 2, it holds by Lemma 6.1.

Assume that Theorem 6.1 holds for n−1. For positive integer r, we define A(r)
i ,hr and Kr

as follows:

A(0)
i = Ai and A(r)

i = G

((
A(r−1)

j

)
j �=i

)
,

h0 = h and hr = max
i, j

R
(
A(r)

i ,A(r)
j

)
,

Kr =
1+hr

2
√

hr
.

Then by the induction hypothesis on n, we have

1
n

n

∑
i=1

Ai =
1
n

n

∑
i=1

(
1

n−1 ∑
j �=i

A j

)
≤ 1

n

n

∑
i=1

Kn−2
0 A(1)

i

= Kn−2
0

1
n

n

∑
i=1

A(1)
i ≤ (K0K1)n−2 1

n

n

∑
i=1

A(2)
i

≤ ·· ·

≤ (K0K1 · · ·Kr)n−2 1
n

n

∑
i=1

A(r+1)
i .

Since
lim
r→∞

A(r)
i = G(A1,A2, · · · ,An) for i = 1,2, · · · ,n,

we have

lim
r→∞

1
n

n

∑
i=1

A(r+1)
i = G(A1,A2, · · · ,An).

So we have only to prove the following inequality:

limsup
r→∞

K0K1 · · ·Kr ≤ K
n−1
n−2
0 .

By (6.2), we have

1 ≤ hr ≤ h
1

n−1
r−1 ≤ ·· · ≤ h

( 1
n−1)

r

0 .

Since
1
2

(
1
x

+ x

)
≤ 1

2

(
1
yα + yα

)
≤

{
1
2

(
1
y

+ y

)}α
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holds for 1 ≤ x ≤ yα and α ∈ (0,1], we have

Kr =
1+hr

2
√

hr
=

1
2

(
1√
hr

+
√

hr

)
≤

{
1
2

(
1√
h0

+
√

h0

)}( 1
n−1 )

r

= K
( 1

n−1)
r

0 .

Therefore we obtain

K0K1 · · ·Kr ≤ K
1+ 1

n−1+···+( 1
n−1)

r

0 → K
n−1
n−2
0 as r → ∞.

Hence we have

A1 +A2 + · · ·+An

n
≤

(
1+h

2
√

h

)n−1

G(A1,A2, · · · ,An).

By putting h = M
m , we obtain this Theorem 6.1. �

The following result is a noncommutative variant of the Greub-Rheinboldt inequality,
which is equivalent to the Kantorovich inequality.

Lemma 6.2 Let A and B be positive operators such that mIH ≤ A,B ≤ MIH for some
scalars 0 < m < M. Then √

〈Ax,x〉〈Bx,x〉 ≤ M +m

2
√

Mm
〈A # Bx,x〉

for every unit vector x ∈ H.

Proof. By the Kantorovich inequality, if C is a positive operator such that aIH ≤C ≤
bIH for some scalars 0 < a < b, then

〈C2x,x〉 ≤ (a+b)2

4ab
〈Cx,x〉2 (6.3)

for every unit vector x∈H. Replacing C by (A− 1
2 BA− 1

2 )
1
2 and x by A

1
2

‖A 1
2 x‖

in (6.3), we have

√
m
M

IH ≤ (A− 1
2 BA− 1

2 )
1
2 ≤

√
M
m

IH

and hence

〈Bx,x〉〈Ax,x〉 ≤ 1
4

(√
M
m

+
√

m
M

)
〈A # Bx,x〉2.

�

For any positive integer n ≥ 2, we show a noncommutative variant of the Greub-
Rheinboldt inequality of n operators, which is an extension of Lemma 6.2:
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Theorem 6.2 For any positive integer n ≥ 2, let A1, · · · ,An be positive invertible opera-
tors on a Hilbert space H such that 0 < mIH ≤ Ai ≤ MIH , i = 1,2, · · · ,n, for some scalars
0 < m < M. Then

n
√
〈A1x,x〉〈A2x,x〉 · · · 〈Anx,x〉 ≤

(
(M +m)2

4Mm

) n−1
2

〈G(A1, · · · ,An)x,x〉

for all x ∈ H.

Proof. By using Theorem 6.1 and arithmetic-geometric mean inequality, we have(
n

∏
i=1

〈Aix,x〉
) 1

n

≤ 1
n

n

∑
i=1

〈Aix,x〉

=

〈
1
n

n

∑
i=1

Aix,x

〉

≤
(

(M +m)2

4Mm

) n−1
2

〈G(A1,A2, · · · ,An)x,x〉.

This completes the proof. �

We recall the Specht theorem: For x1, · · · ,xn ∈ [m,M] with M ≥ m > 0,

x1 + · · ·+ xn

n
≤ S(h) n

√
x1 · · ·xn, (6.4)

where h = M
m (≥ 1) and the Specht ratio S(h) is defined by (2.35).

We recall the t-geometric mean for t ∈ [0,1]:

A #t B = A
1
2

(
A− 1

2 BA− 1
2

)t
A

1
2

for positive invertible operators A and B. The following theorem is a noncommutative
version of the Specht theorem (6.4) in the case of n = 2.

Theorem 6.3 Let A1 and A2 be positive invertible operators such that mIH ≤ A1,A2 ≤
MIH for some scalars 0 < m < M and put h = M

m . Then

(1− t)A1 + tA2 ≤ S(h) A1 #t A2 for all t ∈ [0,1].

To prove Theorem 6.3, we need the following converse ratio type inequality of Young’s
inequality.

Lemma 6.3 Let a be a positive number. Then the inequality

S(a)a1−t ≥ (1− t)a+ t (6.5)

holds for all t ∈ [0,1]. Consequently, for a,b > 0, the inequality

S
(a

b

)
a1−tbt ≥ (1− t)a+ tb (6.6)

holds for all t ∈ [0,1].



154 6 GEOMETRIC MEAN

Proof. Let a �= 1. We put

fa(t) =
(1− t)a+ t

a1−t =
(

1−a
a

t +1

)
at .

Then we obtain the constant S(a) = (a−1)a
1

a−1

e loga as the maximum of fa(t) for t ∈ [0,1]. In-
deed, we have by the elementary differential calculus

f ′a(t) =
{

1−a
a

+
(

1−a
a

t +1

)
loga

}
at ,

and so the equation f ′a(t) = 0 has the following unique solution t = t0:

t0 =
a

a−1
− 1

loga
∈ [0,1].

In fact, the Klein inequality ensures t0 ∈ [0,1]. Furthermore it is easily seen that

f ′a(t) > 0 for t < t0 and f ′a(t) < 0 for t > t0.

Therefore, the maximum of fa(t) takes at t = t0 and we have

max
0≤t≤1

fa(t) = fa(t0) = S(a).

In the case of a = 1, the inequality (6.5) is clear since S(1) = 1. Finally, the inequality
(6.6) is obtained replacing a by a

b in (6.5). �

Proof of Theorem 6.3. Let C be a positive operator such that mIH ≤C ≤MIH for some
scalars 0 < m < M. Then we have

max
m≤a≤M

S(a)C1−t ≥ (1− t)C+ tIH

for all t ∈ [0,1]. Moreover, since S(a) is decreasing for 0 < a < 1 and increasing for a > 1,
the maximum of S(a) in a ∈ [m,M] is given by max{S(m),S(M)} and hence

max{S(m),S(M)}C1−t ≥ (1− t)C+ tIH.

Here we replace C by A− 1
2 BA− 1

2 . Then we have m
M IH ≤ A− 1

2 BA− 1
2 ≤ M

m IH , i.e. 1
h IH ≤

A− 1
2 BA− 1

2 b ≤ hIH . Hence it follows that for any t ∈ [0,1]

S(h)(A− 1
2 BA− 1

2 )1−t ≥ (1− t)A− 1
2 BA− 1

2 + tIH

by S(h) = S( 1
h). Multiplying both sides by A

1
2 , we have

S(h)A
1
2 (A− 1

2 BA− 1
2 )1−tA

1
2 ≥ (1− t)B+ tA.

�
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6.2 Weighted geometric mean

In this section, we present the construction of the weighted geometric mean of n operators,
which extend to the geometric mean G(A1, · · · ,An) of n operators due to Ando-Li-Mathias.
For two positive invertible operators A and B, the weighted (power) arithmetic, geometric
and harmonic means for t ∈ [0,1] are defined by

the weighted arithmetic mean A ∇t B := (1− t)A+ tB,

the weighted geometric mean A #t B := A
1
2

(
A− 1

2 BA− 1
2

)t
A

1
2 ,

the weighted harmonic mean A !t B :=
(
(1− t)A−1 + tB−1

)−1
.

We need some preparations to define weighted means of n operators. We use a limiting
process to define a weighted means of n operators. In proving convergence we use the
following Thompson metric on the convex cone Ω of positive invertible operators:

d(A,B) = max{logM(A/B), logM(B/A)}
where M(A/B) = inf{λ > 0 : A ≤ λB}. We remark that Ω is a complete metric space with
respect to this metric and the corresponding metric topology on Ω agrees with the relative
norm topology.

Lemma 6.4 Let A and B be positive invertible operators. Then the following estimates
coincide with the Thompson metric:

d(A,B) = max{log‖B− 1
2 AB− 1

2 ‖, log‖A− 1
2 BA− 1

2 ‖}
= log(max{r(B−1A),r(A−1B)})
= ‖ logB− 1

2 AB− 1
2 ‖ = ‖ logA− 1

2 BA− 1
2 ‖.

The Thompson metric has many nice properties, cf. [13]:

Lemma 6.5 Let A,B and C be positive invertible operators. Then

(i) d(A,C) ≤ d(A,B)+d(B,C).

(ii) d(A,B) ≥ 0 and d(A,B) = 0 ⇐⇒ A = B.

(iii) exp(−d(A,B))A ≤ B ≤ exp(d(A,B))A.

(iv) d(T ∗AT,T ∗BT ) = d(A,B) for every invertible operator T .

(v) d(At ,Bt) ≤ td(A,B) for all t ∈ [0,1].

(vi) ‖A−B‖≤ (expd(A,B)−1)‖A‖.



156 6 GEOMETRIC MEAN

Next, we estimate the distance among weighted geometric means.

Lemma 6.6 d(A #t C,B #t D) ≤ (1− t) d(A,B)+ t d(C,D) for all t ∈ [0,1].

Proof. Note that

T ∗(X)tT = ‖T ∗T‖
(

T ∗

‖T ∗‖Xt T
‖T‖

)
≤ ‖T ∗T‖( T ∗

‖T ∗‖X
T

‖T‖)t = ‖T ∗T‖1−t(T ∗XT )t

by Jensen’s operator inequality. So we have

log r
(
(A#tC)−1(B#tD)

)
= logr

(
(A−1#tC

−1)(B#tD)
)

= logr
(
A−1/2(A1/2C−1A1/2)tA−1/2B1/2(B−1/2DB−1/2)tB1/2

)
= log‖(A1/2C−1A1/2)t/2A−1/2B1/2(B−1/2DB−1/2)tB1/2A−1/2(A1/2C−1A1/2)t/2‖
≤ log‖A−1/2BA−1/2‖1−t‖(A1/2C−1A1/2)t/2(A−1/2DA−1/2)t(A1/2C−1A1/2)t/2‖
≤ log‖A−1/2BA−1/2‖1−t‖(A1/2C−1A1/2)1/2(A−1/2DA−1/2)(A1/2C−1A1/2)1/2‖t

= logr(A−1B)1−t r
(
(A1/2C−1A1/2)(A−1/2DA−1/2)

)t

= logr(A−1B)1−t r
(
C−1D

)t
= (1− t) logr(A−1B)+ t logr

(
C−1D

)
= (1− t) d(A,B)+ t d(C,D).

�

We present the definition of the weighted geometric mean G[n, t] with t ∈ [0,1] for an
n-tuple of positive invertible operators A1,A2, · · · ,An. Let

G[2, t](A1,A2) = A1 #t A2. For n≥ 3, G[n,t] is defined inductively as follows: Put A(1)
i = Ai

for all i = 1, · · · ,n and

A(r)
i = G[n−1,t]((A(r−1)

j ) j �=i) = G[n−1,t](A(r−1)
1 , · · · ,A(r−1)

i−1 ,A(r−1)
i+1 , · · · ,A(r−1)

n )

inductively for r. If sequences {A(r)
i } have the same limit limr→∞ A(r)

i for all i = 1, · · · ,n in
the Thompson metric, then we define

G[n,t](A1, · · · ,An) = lim
r→∞

A(r)
i .

To show that sequences {A(r)
i } converge, we investigate the construction of the weighted

arithmetic mean due to Lawson and Lim: Let A[2,t](A1,A2) = (1− t)A1 + tA2. For n ≥ 3,

A[n, t] is defined inductively as follows: Put Ã(1)
i = Ai for all i = 1, · · · ,n and

Ã(r)
i = A[n−1,t]((

˜
A(r−1)

j ) j �=i) = A[n−1,t](
˜
A(r−1)

1 , · · · , ˜
A(r−1)

i−1 ,
˜
A(r−1)

i+1 , · · · , ˜A(r−1)
n )

inductively for r. Then we see that sequences {Ã(r)
i } have the same limit limr→∞ Ã(r)

i for
all i = 1, · · · ,n because it is just the problems on weights. If we put

A[n,t](A1, · · · ,An) = lim
r→∞

Ã(r)
i ,
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then it is expressed by

A[n,t](A1, · · · ,An) = t[n]1A1 + · · ·+ t[n]nAn (6.7)

where t[n]i ≥ 0 for i = 1, · · · ,n and ∑n
i=1 t[n]i = 1. Similarly, we can define the weighted

harmonic mean H[n,t](A1, · · · ,An) as

H[n,t](A1, · · · ,An) =
(
t[n]1A−1

1 + · · ·+ t[n]nA−1
n

)−1
.

We remark that the coefficient {t[n]i} depends on n only. For example, in the case of
n = 2,3, it follows that

A[2,t](A1,A2) = (1− t)A1 + tA2,

t[2]1 = 1− t and t[2]2 = t,

A[3,t](A1,A2,A3) =
1− t
2− t

A1 +
1− t + t2

2+ t− t2
A2 +

t
1+ t

A3,

t[3]1 =
1− t
2− t

, t[3]2 =
1− t + t2

(2− t)(1+ t)
and t[3]3 =

t
1+ t

.

For the sake of convenience, we show the general term of the coefficient {t[n]i}:
Lemma 6.7 For any positive integer n ≥ 2

t[n]n−m =
m(m+1)+2m(n−2m−2)t+(n2− (4m+1)n+4m(m+1))t2

(n−1)(m+(n−2m)t)(m+1+(n−2(m+1))t)
(6.8)

for m = 0,1, · · · ,n−1.

Proof. We prove this lemma by induction on both n and m. First of all, we show

t[n]n =
t

1+(n−2)t
(6.9)

for any integer n ≥ 2. Suppose that the expression (6.9) holds for n and put ω = t[n]n ∈
(0,1). Noticing that t[n+1]n+1 = A[n+1,t](O, · · · ,O, IH), we consider the case A1 = · · ·=
An = O and An+1 = IH . In this case, for i = 1, · · · ,n, all Ã(r)

i are equal and hence we can

write arIH = Ã(r)
i , and also put brIH = Ã(r)

n+1. Then simple observation shows

a1 = 0, b1 = 1, ar+1 = (1−ω)ar + ωbr and br+1 = ar,

and hence we have
a1 = 0, ar+1−ar = −ω(ar −ar−1).

It follows that

ar+1 = a1−
r

∑
k=1

(−ω)k = ω
1− (−ω)r

1+ ω
−→ t[n]n

1+ t[n]n
=

t
1+(n−1)t

as r → ∞.
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It follows from t[n+1]n+1 = limr→∞ ar that (6.9) holds for any integer n ≥ 2 by induction.
Replacing t by 1− t in (6.9), we have

t[n]1 =
1− t

(n−1)− (n−2)t
. (6.10)

By a similar consideration, we have the following recurrence formula:

t[n+1]k = 1−
∑
j<k

t[n] j

1+ t[n]k−1
−

∑
j>k−1

t[n] j

1+ t[n]k
(6.11)

for k = 2, · · · ,n.
Now, we show (6.8) by induction. Since t[2]2 = t, it follows that (6.8) holds for n = 2.

Inductively, let n ≥ 2 be an integer such that (6.8) holds. Then it follows from (6.9) and
induction that

∑
j>n−m−1

t[n] j =
(m+1)(m+(n−2m−1)t)

(n−1)(m+1+(n−2m−2)t)

for all m such that m < n. If m = n, then it follows from (6.10) that t[n+1]1 = 1−t
n+(1−n)t . If

m < n, then it follows from (6.9) and (6.11) that

t[n+1]n−m =
m(m+1)+2m(n−2m−1)t+(n2− (4m−1)n+4m2)t2

n(m+(n+1−2m)t)(m+1+(n−2m−1)t)
.

In the case of n+1, it follows that (6.8) holds for all m < n+1. Therefore, (6.8) holds for
all n ≥ 2 by induction. �

To confirm that the above weighted geometric mean can be always defined, we observe
properties of the weighted geometric mean.

Lemma 6.8 For any positive integer n ≥ 2, let A1, · · · ,An and B1, · · · ,Bn be positive in-
vertible operators. Assume that G[n,t] is defined for n ≤ n0 for some n0. Then

d(G[n, t](A1, · · · ,An),G[n,t](B1, · · · ,Bn)) ≤ A[n,t](d(A1,B1), · · · ,d(An,Bn)) (6.12)

holds for n ≤ n0.

Proof. It follows from Lemma 6.6 that the inequality (6.12) holds for n = 2:

d(A1 #t A2,B1 #t B2) ≤ (1− t) d(A1,B1)+ t d(A2,B2) for all t ∈ [0,1].

Assume (6.12) holds for n = N < n0. For (N+1)-tuples (A1, · · · ,AN+1) and (B1, · · · ,BN+1),
it follows by induction that

d(A(r+1)
J ,B(r+1)

J ) = d (G[N,t]((A(r)
j ) j �=J),G[N,t]((B(r)

j ) j �=J) )

≤ A[N,t] ((d(A(r)
j ,B(r)

j ) j �=J) ).
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Note that this process is parallel to that of the definition for the weighted arithmetic mean:

For a fixed J, put weights w(r)
j inductively with

˜
A(r+1)

J = A[N,t]((Ã(r)
j ) j �=J) =

N+1

∑
j=1

w(1)
j Ã(r)

j

=
N+1

∑
j=1

w(2)
j

˜
A(r−1)

j = · · · =
N+1

∑
j=1

w(r)
j A j.

Then we have

˜
A(r+1)

J ∇t
˜
B(r+1)

J =

(
N+1

∑
j=1

w(r)
j A j

)
∇t

(
N+1

∑
j=1

w(r)
j B j

)

=
N+1

∑
j=1

w(r)
j (Aj∇tB j).

The left hand in the above equation converges to

A[N +1,t](A1∇tB1, · · · ,AN+1∇tBN+1) =
N+1

∑
k=1

t[N +1]kAk∇tBk as r → ∞,

which implies

w(r)
k −→ t[N +1]k.

Then the same weights appear in the successive relations for d(A(r+1)
J ,B(r+1)

J ) as that for
˜
A(r+1)

J ∇t
˜
B(r+1)

J :

d(A(r+1)
J ,B(r+1)

J ) ≤ A[N,t]((d(A(r)
k ,B(r)

k ))k �=J) =
N+1

∑
k=1

w(1)
k d(A(r)

k ,B(r)
k )

≤
N+1

∑
k=1

w(2)
k d(A(r−1)

k ,B(r−1)
k ) ≤ ·· · ≤

N+1

∑
k=1

w(r)
k d(Ak,Bk),

so that, taking limit as r → ∞ , we have

d(G[N +1,t](A1, · · · ,AN+1),G[N +1,t](B1, · · · ,BN+1))

≤
N+1

∑
k=1

t[N +1]kd(Ak,Bk) = A[N +1,t](d(A1,B1), · · · ,d(AN+1,BN+1)).

Thus (6.12) holds for all n ≤ n0. �

Remark 6.1 If t = 1
2 , then we have t[n]i = 1

n for i = 1, · · · ,n and hence Lemma 6.8 is a
generalization of (6.1). In fact,

R(G(A1, · · · ,An),G(B1, · · · ,Bn)) ≤
{

n

∏
i=1

R(Ai,Bi)

} 1
n

.
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Taking the logarithm of both sides of this inequality, we have

logR(G(A1, · · · ,An),G(B1, · · · ,Bn)) ≤ 1
n

(logR(A1,B1)+ · · ·+ logR(An,Bn)) ,

that is,

d(G(A1, · · · ,An),G(B1, · · · ,Bn)) ≤ 1
n

n

∑
i=1

d(Ai,Bi).

Now we confirm that G[n,t](A1, · · · ,An) is defined for all n:

Theorem 6.4 For any positive integer n ≥ 2 and 0 < t < 1, the weighted geometric mean
G[n, t] can be defined for all n-tuples of positive invertible operators and

d (G[n, t](A1, · · · ,An),G[n,t](B1, · · · ,Bn) ) ≤ A[n,t](d(A1,B1), · · · ,d(An,Bn))

holds.

Proof. For n = 2, G[2,t](A1,A2) = A1#tA2 is defined. Assume that G[n, t] is defined
for n ≤ N. Take (N + 1)-tuples (A1, · · · ,AN+1) and (B1, · · · ,BN+1) of positive invertible
operators. By Lemma 6.8, we have

d (G[n, t](Ai(1), · · · ,Ai(n)),G[n,t](Bi(1), · · · ,Bi(n)) )

≤ A[n,t](d(Ai(1),Bi(1)), · · · ,d(Ai(n),Bi(n)))

for all n ≤ N. Take the sequence {A(r)
i } for (A1, · · · ,AN+1) to define G[N +1,t]. To show

the existence of the weighted geometric mean, we have only to show that {A(r)
J }∞

r=1 for a
fixed J is a Cauchy sequence in the Thompson metric. Then the above inequality shows

d(A(r+1)
J ,A(r)

J ) = d (G[N,t]((A(r)
j ) j �=J),G[N,t]((A(r)

J )) )

≤ A[N,t]((d(A(r)
j ,A(r)

J )) j �=J)

= A[N,t]((d(G[N,t]((A(r−1)
i )i�= j),G[N,t]((A(r−1)

i )i�=J)))

= A[N,t]((d(G[N,t]((A(r−1)
j(i) )),G[N,t]((A(r−1)

J(i) )))

≤ A[N,t]
(
A[N,t](d(A(r−1)

j(i) ,A(r−1)
J(i) )

)
Since d is a metric, then d(A(r−1)

j(i) ,A(r−1)
J(i) ) = 0 when j(i) = J(i). Moreover a direct compu-

tation shows the above last form can be expressed by only the terms d(A(r−1)
k ,A(r−1)

k+1 ) (k =
1, · · · ,N). There exist positive numbers vk which do not depend on r with

d(A(r+1)
J ,A(r)

J ) ≤
N

∑
k=1

vkd(A(r−1)
k ,A(r−1)

k+1 ).
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Since Lemma 6.8 implies

d(A(r)
k ,A(r)

k+1) = d
(
G[N,t](A(r−1)

1 , · · · ,A(r−1)
k−1 ,A(r−1)

k+1 ,A(r−1)
k+2 , · · · ,A(r−1)

N+1 ),

G[N,t](A(r−1)
1 , · · · ,A(r−1)

k−1 ,A(r−1)
k ,A(r−1)

k+2 , · · · ,A(r−1)
N+1 )

)
≤ t[N]kd(A(r−1)

k ,A(r−1)
k+1 ) ≤ ·· · ≤ t[N]r−1

k d(Ak,Ak+1),

we have

d(A(r+1)
J ,A(r)

J ) ≤
N

∑
k=1

vkd(A(r−1)
k ,A(r−1)

k+1 ) ≤
N

∑
k=1

vkt[N]r−1
k d(Ak,Ak+1).

Putting ρ = max{1− t,t} and M = maxk d(Ak,Ak+1), we have t[N]k ≤ ρ and

d(A(r+1)
J ,A(r)

J ) ≤
( N

∑
k=1

vk

)
Mρ r−1.

Therefore, for s > r,

d(A(s)
J ,A(r)

J ) ≤
s−r

∑
j=1

d(A(s− j+1)
J ,A(s− j)

J ) ≤
( N

∑
k=1

vk

) s−r

∑
j=1

Mρ s− j−1

=
( N

∑
k=1

vk

)
M

ρ r−1(1−ρ s−r)
1−ρ

≤
( N

∑
k=1

vk

)
M

ρ r−1

1−ρ
→ 0 as r → ∞,

which means the sequence {A(r)
J } for J = 1, · · · ,N +1 is Cauchy. Finally, we show {A(r)

J }
for J=1, · · ·,N+1 have the same limit. It is enough to show that limr→∞ A(r)

1 = limr→∞ A(r)
2 .

Let B1 and B2 such that limr→∞ A(r)
1 = B1 and limr→∞ A(r)

2 = B2. Then

d(B1,B2) ≤ d(B1,A
(r)
1 )+d(A(r)

1 ,A(r)
2 )+d(A(r)

2 ,B2)

and
0 ≤ d(A(r)

1 ,A(r)
2 ) ≤ t[N]r−1

1 d(A1,A2) → 0 as r → ∞.

We conclude that B1 = B2. Hence {A(r)
J } for J = 1, · · · ,N + 1 have the same limit by the

same way. Thus G[n,t] is defined and the required inequality holds by Lemma 6.8.
�

Remark 6.2 The 1
2 -weighted geometric mean G[n, 1

2 ](A1, · · · ,An) coincides with the ge-
ometric one G(A1, · · · ,An) due to Ando-Li-Mathias.

We sum up some properties of the weighted geometric mean:

Theorem 6.5 Let 0 < t < 1 and any positive integer n ≥ 2.
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(P1) Consistency with scalars. If A1, · · · ,An mutually commute for i = 1, · · · ,n, then

G[n,t](A1, · · · ,An) =
n

∏
i=1

At[n]i
i ,

where {t[n]i} is defined by (6.7) and (6.8).

(P2) Joint homogeneity. For αi > 0

G[n,t](α1A1, · · · ,αnAn) = G[n,t](α1, · · · ,αn)G[n,t](A1, · · · ,An)

=
n

∏
i=1

αt[n]i
i G[n,t](A1, · · · ,An),

where {t[n]i} is defined by (6.7) and (6.8).

(P3) Monotonicity. The mapping (A1, · · · ,An) �→ G[n,t](A1, · · · ,An) is monotone, i.e. if
Ai ≥ Bi for i = 1, · · · ,n, then

G[n,t](A1, · · · ,An) ≥ G[n,t](B1, · · · ,Bn).

(P4) Congruence invariance. For every invertible operator T

G[n,t](T ∗A1T, · · · ,T ∗AnT ) = T ∗G[n,t](A1, · · · ,An)T.

(P5) Joint concavity. The mapping (A1, · · · ,An) �→G[n, t](A1, · · · ,An) is jointly concave:

G[n,t](
n

∑
i=1

λiA1i, · · · ,
n

∑
i=1

λiAni) ≥
n

∑
i=1

λiG[n,t](A1i, · · · ,Ani),

where λi ≥ 0 with ∑n
i=1 λi = 1.

(P6) Self-duality.
G[n,t](A1, · · · ,An) = G[n,t](A−1

1 , · · · ,A−1
n )−1.

(P7) The arithmetic-geometric-harmonic mean inequality holds:

H[n,t](A1, · · · ,An) ≤ G[n,t](A1, · · · ,An) ≤ A[n,t](A1, · · · ,An). (AGH)

Proof. The properties (P1)-(P7) can be easily proved by induction and the fact that they
are known to be true for n = 2. To illustrate that we prove (P7). We know that the result is
true for n = 2. Now let us assume it is true for n and prove it for n+1.

A(r+1)
i = G[n,t]((A(r)

j ) j �=i) ≤ A[n,t]((A(r)
j ) j �=i)

≤ A[n,t]((Ã(r)
j ) j �=i) =

˜
A(r+1)

i

for i = 1, · · · ,n + 1. Therefore, as r → ∞, we have G[n + 1,t](A1, · · · ,An+1) ≤ A[n +
1, t](A1, · · · ,An+1). By (P6), we have the left-hand side of (P7). �
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6.3 The Kantorovich type inequality

First of all, we show a converse of the weighted arithmetic-geometric mean inequality of n
operators, which is an improvement of Theorem 6.1 for n ≥ 3:

Theorem 6.6 For any positive integer n ≥ 2, let A1,A2, · · · ,An be positive invertible op-
erators on a Hilbert space H such that 0 < mIH ≤ Ai ≤ MIH for i = 1,2, · · · ,n and some
scalars 0 < m < M. Then

A[n,t](A1, · · · ,An) ≤ (M +m)2

4Mm
G[n,t](A1, · · · ,An)

for 0 < t < 1.

Remark 6.3 In the case of t = 1
2 , we have

A1 + · · ·+An

n
≤ (M +m)2

4Mm
G(A1, · · · ,An). (6.13)

For n = 3, the constant in (6.13) coincides with one in Theorem 6.1. For n≥ 4, the constant
in (6.13) is less than one in Theorem 6.1.

To prove Theorem 6.6, we need the following lemma.

Lemma 6.9 Let Φ be a positive linear mapping on the algebra B(H) of all bounded
linear operators on a Hilbert space H such that Φ(IH) = IH. Then

Φ(A) ≤ (M +m)2

4Mm
Φ(A−1)−1

for all positive operators A such that mIH ≤ A ≤ MIH for some scalars M > m > 0.

Proof. Since t−1 ≤ M+m
Mm − 1

Mmt for all t ∈ [m,M], we have

Φ(A) ≤ (M +m)I−MmΦ(A)

=
(M +m)2

4Mm
Φ(A−1)−1−

(
M +m

2
√

Mm
Φ(A−1)−

1
2 −√

MmΦ(A)
1
2

)2

≤ (M +m)2

4Mm
Φ(A−1)−1.

�

Proof of Theorem 6.6. Let a mapping Ψ : B(H)⊕·· ·⊕B(H) �→ B(H)⊕·· ·⊕B(H) be
defined by

Ψ

⎛⎜⎝A1 0
. . .

0 An

⎞⎟⎠ =

⎛⎜⎝t[n]1A1 + · · ·+ t[n]nAn 0
. . .

0 t[n]1A1 + · · ·+ t[n]nAn

⎞⎟⎠
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where {t[n]i} is defined by (6.7). Then Ψ is a positive linear mapping such that Ψ(IH) = IH .
Since

m

⎛⎜⎝IH 0
. . .

0 IH

⎞⎟⎠≤

⎛⎜⎝A1 0
. . .

0 An

⎞⎟⎠≤ M

⎛⎜⎝IH 0
. . .

0 IH

⎞⎟⎠ ,

it follows from Lemma 6.9 that

Ψ

⎛⎜⎝A1 0
. . .

0 An

⎞⎟⎠≤ (M +m)2

4Mm
Ψ

⎛⎜⎝A−1
1 0

. . .
0 A−1

n

⎞⎟⎠
−1

and hence

A[n,t](A1, · · · ,An) ≤ (M +m)2

4Mm
H[n,t](A1, · · · ,An).

By (P7) in Theorem 6.5 we have the desired inequality

A[n,t](A1, · · · ,An) ≤ (M +m)2

4Mm
G[n,t](A1, · · · ,An).

�

By using Theorem 6.6 and the weighted arithmetic-geometric mean inequality, we ob-
tain a weighted version of Greub-Rheinboldt inequality of n operators:

Theorem 6.7 For any positive integer n ≥ 2, let A1,A2, · · · ,An be positive invertible op-
erators on a Hilbert space H such that mIH ≤ Ai ≤MIH for i = 1,2, · · · ,n and some scalars
0 < m < M. Then for 0 < t < 1

〈A1x,x〉t[n]1 〈A2x,x〉t[n]2 · · · 〈Anx,x〉t[n]n ≤ (M +m)2

4Mm
〈G[n,t](A1,A2, · · · ,An)x,x〉

holds for all x ∈ H, where {t[n]i} is defined by (6.7) and (6.8).

Proof. For 0 < t < 1, we have

〈A1x,x〉t[n]1〈A2x,x〉t[n]2 · · · 〈Anx,x〉t[n]n ≤ t[n]1〈A1x,x〉+ · · ·+ t[n]n〈Anx,x〉
= 〈A[n,t](A1, · · · ,An)x,x〉

≤ (M +m)2

4Mm
〈G[n,t](A1,A2, · · · ,An)x,x〉

for all x ∈ H. �

Remark 6.4 If we put t = 1
2 in Theorem 6.7, then t[n]i = 1

n for all i = 1, · · · ,n. Therefore,
we have an improvement of Theorem 6.2 for n ≥ 4.
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6.4 The Specht type inequality

We recall a 2-operators version of the Specht theorem (Theorem 6.3): If A1 and A2 are
positive invertible operators such that mIH ≤ A1,A2 ≤ MIH for some scalars 0 < m < M,
then

(1− t)A1 + tA2 ≤ S(h)A1 #t A2 for all t ∈ [0,1],

where h = M
m . Actually, the Specht ratio is the upper bound of the arithmetic mean by the

geometric one for positive numbers. We show a noncommutative version of the Specht
theorem of n operators. For this, we state the following lemma.

Lemma 6.10 Let A1,A2, · · · ,An be positive invertible operators such that mIH ≤ Ai ≤
MIH for some scalars 0 < m < M and i = 1,2, · · · ,n and α1,α2, · · · ,αn positive numbers
with ∑n

i=1 αi = 1. Put h = M
m . Then

α1A1 + α2A2 + · · ·+ αnAn ≤ S(h) exp(α1 logA1 + α2 logA2 + · · ·+ αn logAn) ,

where S(h) is the Specht ratio defined by (2.35).

Proof. Put A = diag(A1, · · · ,An) and y = (
√

α1x, · · · ,√αnx)T for every unit vector x.
By Theorem 2.14, we have

〈Ay,y〉 ≤ S(h) exp〈logA y,y〉

since mIH ≤ A ≤ MIH . Therefore, it follows from Jensen’s inequality that

〈(α1A1 + · · ·+ αnAn)x,x〉 = 〈Ay,y〉 ≤ S(h) exp〈logA y,y〉

= S(h) exp

〈
n

∑
i=1

αi logAix,x

〉
≤ S(h) 〈exp(α1 logA1 + · · ·+ αn logAn)x,x〉

for every unit vector x ∈ H and hence we have

α1A1 + · · ·+ αnAn ≤ S(h) exp(α1 logA1 + · · ·+ αn logAn) .

�

By virtue of Lemma 6.10, we have the following theorem.

Theorem 6.8 For any positive integer n ≥ 3, let A1, · · · ,An be positive invertible opera-
tors such that mIH ≤ Ai ≤MIH for i = 1,2, · · · ,n and some scalars 0 < m < M. Put h = M

m .
Then for 0 < t < 1

A[n,t](A1, · · · ,An) ≤ S(h)2 G[n,t](A1, · · · ,An).
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Proof. By Lemma 6.10, it follows that

A[n,t](A−1
1 , · · · ,A−1

n ) ≤ S(h) exp
(
A[n,t](logA−1

1 , · · · , logA−1
n )

)
.

Taking inverse, we have

H[n,t](A1, · · · ,An) ≥ S(h)−1 exp(A[n,t](logA1, · · · , logAn))

and this implies

A[n,t](A1, · · · ,An) ≤ S(h) exp(A[n,t](logA1, · · · , logAn))

≤ S(h)2 H[n,t](A1, · · · ,An).

Therefore, we have

A[n,t](A1, · · · ,An) ≤ S(h)2 H[n,t](A1, · · · ,An)

≤ S(h)2 G[n,t](A1, · · · ,An)

and we have this theorem. �

By using Theorem 6.8 and the weighted arithmetic-geometric mean inequality, we ob-
tain another n operators version of Grueb-Rheinboldt inequality:

Theorem 6.9 For any positive integer n ≥ 3, let A1, · · · ,An be positive invertible opera-
tors on a Hilbert space H such that 0 < mIH ≤ Ai ≤ MIH for i = 1, · · · ,n and some scalars
0 < m < M. Put h = M

m . Then

(A1x,x)t[n]1 (A2x,x)t[n]2 · · · (Anx,x)t[n]n ≤ S(h)2(G[n,t](A1, · · · ,An)x,x)

for all x ∈ H, where {t[n]i} is defined by (6.7) and (6.8).

6.5 The Golden-Thompson-Segal inequality

For the construction of nonlinear relativistic quantum fields, Segal proved that

‖eH+K‖ ≤ ‖eHeK‖.
Also, motivated by quantum statistical mechanics, Golden, Symanzik and Thompson in-
dependently proved that

Tr eH+K ≤ Tr eHeK

holds for Hermitian matrices H and K. This inequality is called Golden-Thompson trace
inequality.
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In the final section, we discuss the Golden-Thompson-Segal type inequalities for the
operator norm. Ando and Hiai gave a lower bound on ‖eH+K‖ in terms of the geometric
mean: For two self-adjoint operators H and K and α ∈ [0,1],

‖(epH #α epK) 1
p ‖ ≤ ‖e(1−α)H+αK‖ (6.14)

holds for all p > 0 and the left-hand side of (6.14) converges to the right-hand side as p ↓ 0.

Hiai and Petz showed the following geometric mean version of the Lie-Trotter formula:
If A and B are positive invertible and t ∈ [0,1], then

lim
p→0

(Ap #t Bp)
1
p = e(1−t) logA+t logB.

We firstly show an n-variable version of the Lie-Trotter formula for the weighted geo-
metric mean:

Lemma 6.11 Let A1,A2, · · · ,An be positive invertible operators such that mIH ≤ Ai ≤
MIH for i = 1, · · · ,n and some scalars 0 < m ≤ M, and let λ1, · · · ,λn ∈ [0,1] such that

∑n
i=1 λi = 1. Then G[n,t](Ap

1 , · · · ,Ap
n)

1
p uniformly converges to the chaotically geometric

mean eA[n,t](logA1,··· ,logAn) as p ↓ 0.

Proof. It follows that for each λi > 0 such that ∑n
i=1 λi = 1,

0 ≤ log
n

∑
i=1

λiAi −
n

∑
i=1

λi logAi ≤ logS(h).

In particular, we have

0 ≤ logA[n,t](A1, · · · ,An) − A[n,t](logA1, · · · , logAn) ≤ logS(h).

Replacing Ai by Ap
i for p > 0,

0 ≤ logA[n,t](Ap
1 , · · · ,Ap

n)−A[n,t](logAp
1 , · · · , logAp

n) ≤ logS(hp)

and hence

0 ≤ logA[n,t](Ap
1 , · · · ,Ap

n)
1
p −A[n,t](logA1, · · · , logAn) ≤ logS(hp)

1
p .

Since S(hp)
1
p → 1 as p ↓ 0, it follows that A[n,t](Ap

1 , · · · ,Ap
n)

1
p uniformly converges to the

chaotically geometric mean eA[n,t](logA1,··· ,logAn) as p ↓ 0.
On the other hand, since

0 ≤ logA[n,t](A−1
1 , · · · ,A−1

n )−A[n,t](logA−1
1 , · · · , logA−1

n ) ≤ logS(h−1),

it follows from S(h−1) = S(h) that

0 ≥ logH[n,t](A1, · · · ,An)−A[n, t](logA1, · · · , logAn) ≥− logS(h)
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and this implies

0 ≥ logH[n,t](Ap
1 , · · · ,Ap

n)
1
p −A[n,t](logA1, · · · , logAn) ≥− logS(hp)

1
p

for all p > 0. Hence H[n,t](Ap
1 , · · · ,Ap

n)
1
p uniformly converges to the chaotically geometric

mean eA[n,t](logA1,··· ,logAn) as p ↓ 0.
By arithmetic-geometric-harmonic mean inequality, we have

logH[n, t](Ap
1 , · · · ,Ap

n)
1
p ≤ logG[n,t](Ap

1 , · · · ,Ap
n)

1
p ≤ logA[n,t](Ap

1 , · · · ,Ap
n)

1
p

for all p > 0 and hence we have this lemma. �

For the case of n = 2, Ando and Hiai are showed that the norm ‖(Ap
1 #t Ap

2)
1
p ‖ is

monotone increasing for p > 0. For n ≥ 3, we have the following result.

Lemma 6.12 Let Ai be positive invertible operators such that mIH ≤ Ai ≤ MIH for i =
1, · · · ,n and some scalars 0 < m ≤ M. Put h = M

m . Then for each 0 < q < p

S(hp)−
2
p ‖G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖

≤ ‖G[n,t](Aq
1, · · · ,Aq

n)
1
q ‖ ≤ S(hp)

2
p ‖G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖,

where S(h) is defined by (2.35).

Proof. By the arithmetic-geometric mean inequality, it follows that for each 0 < q < p

G[n, t](A
q
p
1 , · · · ,A

q
p
n ) ≤ A[n,t](A

q
p
1 , · · · ,A

q
p
n )

≤ A[n,t](A1, · · · ,An)
q
p by concavity of t

q
p and 0 < q

p < 1

≤ S(h)
2q
p G[n,t](A1, · · · ,An)

q
p

The last inequality follows from Theorem 6.8 and the Löwner-Heinz theorem. Replacing
Ai by Ap

i , we have

G[n,t](Aq
1, · · · ,Aq

n) ≤ S(hp)
2q
p G[n,t](Ap

1 , · · · ,Ap
n)

q
p .

Also,

G[n,t](A−q
1 , · · · ,A−q

n ) ≤ S(h−p)
2q
p G[n,t](A−p

1 , · · · ,A−p
n )

q
p

and hence
G[n,t](Aq

1, · · · ,Aq
n) ≥ S(hp)−

2q
p G[n,t](Ap

1 , · · · ,Ap
n)

q
p .

Therefore we have for all q > 0

S(hp)−
2
p ‖G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖

≤ ‖G[n,t](Aq
1, · · · ,Aq

n)
1
q ‖ ≤ S(hp)

2
p ‖G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖.

�

By Lemma 6.12, we show n-variable versions of a complement of the Golden-Thom-
pson-Segal type inequality due to Ando and Hiai:
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Theorem 6.10 Let H1,H2, · · · ,Hn be self-adjoint operators such that mIH ≤ Hi ≤ MIH
for i = 1, · · · ,n and some scalars m ≤ M. Then

S
(
ep(M−m)

)− 2
p ‖G[n,t](epH1 , · · · ,epHn)

1
p ‖

≤ ‖eA[n,t](H1,··· ,Hn)‖ ≤ S
(
ep(M−m)

) 2
p ‖G[n, t](epH1 , · · · ,epHn)

1
p ‖ (6.15)

for all p > 0 and the both-hand sides of (6.15) converge to the middle-hand side as p ↓ 0,
where the Specht ratio S(h) is defined by (2.35).

Proof. If we replace Ai by eHi in Lemma 6.12, then it follows that

S
(
ep(M−m)

)− 2
p ‖G[n,t](epH1 , · · · ,epHn)

1
p ‖

≤ ‖G[n,t](eqH1 , · · · ,eqHn)
1
q ‖ ≤ S

(
ep(M−m)

) 2
p ‖G[n,t](epH1 , · · · ,epHn)

1
p ‖

for all 0 < q < p. Hence we have (6.15) as q ↓ 0 by Lemma 6.11.

The latter part of this theorem follows from S
(
ep(M−m)

) 2
p → 1 as p ↓ 0. �

6.6 Notes

For our exposition we have used Ando-Li-Mathias [13], Yamazaki [292], J.I. Fujii-M.
Fujii-Nakamura-Pečarić-Seo [60] and J.I. Fujii-M. Fujii-Seo [63].





Chapter7
Differential Geometry of
Operators

In this chapter, we study some differential-geometrical structure of operators. The space of
positive invertible operators of a unital C∗-algebra has the natural structure of a reductive
homogenous manifold with a Finsler metric. Then a pair of points A and B can be joined
by a unique geodesic A #t B for t ∈ [0,1] and we consider estimates of the upper bounds
for the difference between the geodesic and extended interpolational paths by terms of the
spectra of positive operators.

7.1 Introduction

We recall the Kubo-Ando theory of operator means [165]: A mapping (A,B) → A σ B
in the cone of positive invertible operators is called an operator mean if the following
conditions are satisfied:

Monotonicity A ≤C and B ≤ D imply A σ B ≤C σ D.

Upper continuity An ↓ A and Bn ↓ B imply An σBn ↓ A σ B.

Transformer inequality T ∗(AσB)T ≤ (T ∗AT )σ(T ∗BT ) for all operator T .

171
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Normalized condition A σ A = A.

In [124, Chapter 5], several inequalities associated with operator means are discussed.
For example, the bound β in the inequality

Φ(A σ1 B) ≥ αΦ(A) σ2 Φ(B)+ β Φ(A)

is determined, where A and B are positive invertible operators on a Hilbert space H, σ1,σ2

are two operator means with not affine representing functions, Φ is a unital positive linear
mapping and α > 0 is a given real constant.

We observe the weighted arithmetic mean ∇α and the weighted geometric mean #α ,
for α ∈ [0,1], defined by

A ∇α B := (1−α)A+ αB and A #α B := A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 ,

respectively. Like the numerical case, the arithmetic-geometric mean inequality holds:

A #α B ≤ A ∇α B for all α ∈ [0,1]. (7.1)

In [124, Corollary 5.36] it is obtained the following converse inequality of the arithme-
tic-geometric mean inequality (7.1): Let A and B be positive invertible operators satisfying
0 < m1IH ≤ A ≤ M1IH and 0 < m2IH ≤ B ≤ M2IH . Then

A ∇α B−A #α B ≤ max{1−α + αm−mα,1−α + αM−Mα}A,

where m = m2
M1

and M = M2
m1

.
Tominaga [280] showed the another converse of (7.1) for the arithmetic mean and

the geometric one: Let A and B be positive operators on a Hilbert space H satisfying
mIH ≤ A,B ≤ IH for some scalars 0 < m < M. Then (like the numerical case)

A ∇α B−A #α B ≤ hL(m,M) logS(h) for all α ∈ [0,1],

where h = M
m , the logarithmic mean L(m,M) is defined by (2.41) and the Specht ratio S(h)

is defined by (2.35).

7.2 Interpolational paths

Let A be a unital C∗-algebra, A + (resp. A h) be the set of all positive invertible (resp. self-
adjoint) operators of A . Following an excellent work due to Corach, Porta and Recht [37,
38], A + is a real analytic open submanifold of A h and its tangent space (TA +)A at any

A ∈ A + is naturally identified to A h. For each A ∈ A +, the norm ‖X‖A = ‖A− 1
2 XA− 1

2 ‖,
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X ∈ (TA +)A defined a Finslar structure on the tangent bundle TA +. For every A,B∈A +,
there is a unique geodesic joining A and B:

γA,B(t) = A #t B for t ∈ [0,1].

As usual, the length of a smooth curve γ in A + is defined by

l(γ) =
∫ 1

0
‖γ̇(t)‖γ(t)dt

and the geodesic distance between A and B in A + is

d(A,B) = inf{l(γ) : γ joins A and B}.
Then it follows that

d(A,B) = ‖ log(A− 1
2 BA− 1

2 )‖,
also see [14]. It is a general fact that (A +,d) is a complete metric space.

J.I.Fujii [55] showed that if the manifold A + has a metric La(X) = ‖X‖ (resp. Lh(X) =
‖A−1XA−1‖) on the tangent space TA +, the geodecis and the distance from A to B for
A,B ∈ A + are given by

A ∇t B = (1− t)A+ tB and d1(A,B) = ‖B−A‖
(resp. A !t B =

(
(1− t)A−1 + tB−1)−1

and d−1(A,B) = ‖A−1−B−1‖. )

The paths of means mt = #t ,∇t and !t satisfy the following interpolationality [89]:

(A mp B) mt (A mq B) = A m(1−t)p+tq B

for 0 ≤ p,q,t ≤ 1.
We next recall an interpolational path for symmetric operator means. Following after

[89, 96], for a symmetric mean σ , a parametrized operator mean σt is called an interpola-
tional path for σ if it satisfies

(1) A σ0 B = A, A σ1/2 B = A σ B and A σ1 B = B,

(2) (A σp B) σ (A σq B) = A σ p+q
2

B,

(3) the mapping t �→ A σt B is norm continuous for each A and B.

Typical examples of symmetric means are so-called power means:

A mr B = A
1
2

(
1+(A− 1

2 BA− 1
2 )r

2

) 1
r

A
1
2 for r ∈ [−1,1]

and their interpolational paths from A to B via A mr B are given as follows: For each
r ∈ [−1,1]

A mr,t B = A
1
2

(
1− t + t

(
A− 1

2 BA− 1
2

)r) 1
r
A

1
2 for t ∈ [0,1].
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In particular, A m1,t B = A ∇t B, A m0,t B = A #t B and A m−1,t B = A !t B.
Here we consider them in a general setting: For positive invertible operators A and B,

an extended path A mr,t B is defined as

A mr,t B = A
1
2

(
1− t + t(A− 1

2 BA− 1
2 )r

) 1
r
A

1
2 for all r ∈ R and t ∈ [0,1].

The representing function fr,t for mr,t is given by

fr,t(ξ ) = 1 mr,t ξ = (1− t + tξ r)
1
r for ξ > 0.

Notice that A mr,t B for r �∈ [−1,1] is no longer an operator mean, but we list some proper-
ties of interpolational paths mr,t and the representing function fr,t , also see [62].

Since every function fr,t(ξ ) is strictly increasing and strictly convex (resp. strictly
concave) for r > 1 (resp. r < 1), it follows that an extended path A mr,t B for each t ∈ (0,1)
is nondecreasing and norm continuous for r ∈ R: For r ≤ s

A mr,t B ≤ A ms,t B.

Moreover, it is also interpolational for all r ∈ R. In particular, the transposition formula
holds:

B mr,t A = A mr,1−t B. (7.2)

For the sake of convenience, we prepare the following notation: For k2 > k1 > 0, r ∈ R

and t ∈ [0,1]

a(r, t) =
fr,t(k2)− fr,t(k1)

k2− k1
and b(r,t) =

k2 fr,t(k1)− k1 fr,t(k2)
k2 − k1

. (7.3)

We investigate estimates of the upper bounds for the difference between extended in-
terpolational paths:

Lemma 7.1 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for r ≤ s and t ∈ (0,1)

0 ≤ A ms,t B−A mr,t B ≤ βA if r ≤ 1 (7.4)

and
0 ≤ A ms,t B−A mr,t B ≤ β

′
A if r ≥ 1 (7.5)

hold for
β = β (r,s,t,k1,k2) = max

k1≤ξ≤k2

{ fs,t(ξ )−a(r,t)ξ −b(r, t)}

and
β

′
= β

′
(r,s,t,k1,k2) = max

k1≤ξ≤k2

{a(s,t)ξ +b(s,t)− fr,t(ξ )},

where a,b are defined by (7.3).
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Proof. Suppose that r≤ 1. If we putC = A− 1
2 BA− 1

2 , then we have k2IH ≥C≥ k1IH > 0.
Since fr,t(ξ ) is concave for r ≤ 1, it follows from the definition of β that

β ≥ fs,t(ξ )−a(r,t)ξ −b(r,t) ≥ fs,t(ξ )− fr,t(ξ ) for all ξ ∈ [k1,k2],

and hence
β IH ≥ fs,t(C)− fr,t(C).

This fact implies

βA ≥ A
1
2 fs,t(C)A

1
2 −A

1
2 fr,t(C)A

1
2 = A ms,t B−A mr,t B,

which gives the desired result (7.4). Conversely, if r≥ 1, then fs,t(ξ ) is convex for 1≤ r≤ s
and (7.5) follows from the same way. �

Remark 7.1 The constant β = β (s,r,t,k1,k2) and β ′
= β ′

(s,r,t,k1,k2) in Lemma 7.1 can
be written explicitly as

β =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(r,t)

(
1− t

t

) 1
s (

t
1

s−1 a(r,t)
s

1−s −1
) s−1

s −b(r, t) if k1 ≤ ξ0 ≤ k2

fs,t(k1)− fr,t(k1) if ξ0 ≤ k1

fs,t(k2)− fr,t(k2) if k2 ≤ ξ0

where ξ0 =
(

1
1−t

(
a(r,t)

t

) s
1−s − t

1−t

)− 1
s

and

β
′
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−a(s,t)

(
1− t

t

) 1
r (

t
1

r−1 a(s,t)
r

1−r −1
) r−1

r +b(s,t) if k1 ≤ ξ1 ≤ k2

fs,t(k1)− fr,t(k1) if ξ1 ≤ k1

fs,t(k2)− fr,t(k2) if k2 ≤ ξ1

where ξ1 =
(

1
1−t

(
a(s,t)

t

) r
1−r − t

1−t

)− 1
r

.

By Lemma 7.1, we obtain estimates of the upper bounds for the difference between the
geodesic A #t B and extended interpolational paths:

Theorem 7.1 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for each t ∈ (0,1)

0 ≤ A ms,t B−A #t B ≤ β (0,s,t,k1,k2)A for s ≥ 0 (7.6)

and
0 ≤ A #t B−A mr,t B ≤ β (r,0,t,k1,k2)A for r ≤ 0, (7.7)

where β is defined by Remark 7.1.
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As special cases of Theorem 7.1, we obtain an estimate of the upper bound for the
difference between the geodesic A #t B and the arithmetic interpolational paths A ∇t B, the
harmonic one A !t B:

Theorem 7.2 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for each t ∈ (0,1)

0 ≤ A ∇t B−A #t B ≤ max{1− t + tk1− kt
1,1− t + tk2− kt

2}A

and
0 ≤ A #t B−A !t B ≤ β (−1,0,t,k1,k2)A,

where
β (−1,0, t,k1,k2) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− t(
(1− t)k1 + t

)(
(1− t)k2 + t

) ((
(1− t)k1 + t

)(
(1− t)k2 + t

) 1
1−t − k1k2

)
if k1−t

1 ≤ (
(1− t)k1 + t

)(
(1− t)k2 + t

)≤ k1−t
2

kt
2−

k2

(1− t)k2 + t
if k1−t

2 ≤ (
(1− t)k1 + t

)(
(1− t)k2 + t

)
kt
1−

k1

(1− t)k1 + t
if k1−t

1 ≥ (
(1− t)k1 + t

)(
(1− t)k2 + t

)
.

Proof. If we put r = 0 and s = 1 in (7.6) of Theorem 7.1 , then f1,t (ξ ) = 1− t + tξ and

f0,t (ξ ) = ξ t . Since a(0,t) = kt
2−kt

1
k2−k1

, the condition f ′1,t(k2) ≤ a(0, t) ≤ f ′1,t(k1) is equivalent
to a(0, t) = t. Therefore we have

β =

⎧⎪⎪⎨⎪⎪⎩
1− t + tk2− kt

2 if
kt
2− kt

1

k2− k1
≤ t

1− t + tk1− kt
1 if

kt
2− kt

1

k2− k1
≥ t.

Similarly, we have the latter part of this theorem by using (7.7) in Theorem 7.1. �

Next, we show estimates of the lower bounds of the ratio for extended interpolational
paths:

Lemma 7.2 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for r ≤ s and t ∈ (0,1)

A mr,t B ≥ αA ms,t B if r ≤ 1

and
A mr,t B ≥ α

′
A ms,t B if r ≥ 1

hold for

α = α(r,s,t,k1,k2) = min
k1≤ξ≤k2

{
a(r,t)ξ +b(r, t)

fs,t (ξ )

}
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and

α
′
= α

′
(r,s,t,k1,k2) = min

k1≤ξ≤k2

{
fr,t(ξ )

a(s,t)ξ +b(s,t)

}
,

where a,b are defined by (7.3).

Proof. Suppose that r < 1. Since fr,t(ξ ) is concave for r < 1, it follows that

fr,t(ξ )
fs,t(ξ )

≥ a(r,t)ξ +b(r,t)
fs,t(ξ )

≥ α

and hence fr,t(ξ ) ≥ α fs,t (ξ ) on [k1,k2]. Therefore we have

A mr,t B = A
1
2 fr,t(A− 1

2 BA− 1
2 )A

1
2 ≥ αA

1
2 fs,t(A− 1

2 BA− 1
2 )A

1
2 = αA ms,t B.

Similarly, since fs,t(ξ ) is convex for 1 ≤ r ≤ s, the latter part follows from the same way.
�

Remark 7.2 The constant α = α(r,s,t,k1,k2) and α ′
= α ′

(r,s, t,k1,k2) in Lemma 7.2
can be written explicitly as follows: In the case of s ≥ 1,

α = α
′
= min

{
fr,t(k1)
fs,t (k1)

,
fr,t(k2)
fs,t(k2)

}
.

In the case of s ≤ 1,

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(r,t)ξ0 +b(r,t)

(1− t + tξ s
0)

1
s

if k1 ≤ ξ0 ≤ k2

fr,t(k2)
fs,t(k2)

if k2 ≤ ξ0

fr,t(k1)
fs,t(k1)

if k1 ≥ ξ0,

where ξ0 =
(

1− t
t

a(r,t)
b(r,t)

) 1
s−1

and

α
′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− t + tξ r
1)

1
r

a(s,t)ξ1 +b(s,t)
if k1 ≤ ξ1 ≤ k2

fr,t(k2)
fs,t(k2)

if k2 ≤ ξ1

fr,t(k1)
fs,t(k1)

if k1 ≥ ξ1,

where ξ1 =
(

1− t
t

a(s,t)
b(s,t)

) 1
r−1

.
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By Lemma 7.2, we have the following theorem.

Theorem 7.3 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for each t ∈ (0,1)

A #t B ≥ min

{
kt
1

1− t + tk1
,

kt
2

1− t + tk2

}
A ∇t B

and
A !t B ≥ α(−1,0,t,k1,k2) A #t B

holds for

α(−1,0,t,k1,k2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(k1k2)1−t(
(1− t)k1 + t

)(
(1− t)k2 + t

) if k1 ≤ 1 ≤ k2

k1−t
2

(1− t)k2 + t
if 1 ≤ k1

k1−t
1

(1− t)k1 + t
if k2 ≤ 1.

7.3 Velocity vector of extended paths

Kamei and Fujii [67, 68] defined the relative operator entropy S(A|B), for positive invert-
ible operators A and B, by

S(A|B) = A
1
2

(
logA− 1

2 BA− 1
2

)
A

1
2 ,

which is a relative version of the operator entropy −A logA considered by Nakamura-
Umegaki [238]. The relative operator entropy S(A|B) is exactly the velocity vector γ̇A,B(0)
of the geodesic A #t B at t = 0:

S(A|B) = lim
t→0

A #t B−A #0 B
t

= γ̇A,B(0).

In [153], Kamei analogously generalizes the relative operator entropy: For each r ∈ R

Sr(A|B) = lim
t→0

A mr,t B−A mr,0 B
t

,

which is considered as the right differential coefficient at t = 0 of the extended path A mr,t B.
By the fact that

lim
t→0

(1− t + tξ r)
1
r −1

t
=

ξ r −1
r

,
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it follows that

Sr(A|B) =
A

1
2

(
A− 1

2 BA− 1
2

)r
A

1
2 −A

r
for r ∈ R

and the representing function is

fr(ξ ) = (ξ r −1)/r.

In particular,

S1(A|B) = lim
t→0

A ∇t B−A
t

= B−A

S0(A|B) = S(A|B)

S−1(A|B) = lim
t→0

A !t B−A
t

= A−AB−1A.

Since fr(ξ ) is monotone increasing on r ∈ R, the velocity vectors Sr(A|B) is monotone
increasing on r ∈ R:

r ≤ s implies Sr(A|B) ≤ Ss(A|B).

The left differentiable coefficient of A mr,t B at t = 1 is −Sr(B|A):

lim
t→1

A mr,t B−A mr,1 B
t−1

= −Sr(B|A).

If B ≥ A, then the velocity vectors of extended paths at t = 0,1 are positive:

Sr(A|B) ≥ 0 and −Sr(B|A) ≥ 0.

For the sake of convenience, we prepare the following notation:

a(r) =
fr(k2)− fr(k1)

k2− k1
and b(r) =

k2 fr(k1)− k1 fr(k2)
k2− k1

(7.8)

for 0 < k1 < k2 and r ∈ R.
We investigate estimates of the upper bounds for the difference between velocity vec-

tors of extended interpolational paths.

Lemma 7.3 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for r ≤ s

Ss(A|B)−Sr(A|B) ≤ γA if r ≤ s ≤ 1, (7.9)

Ss(A|B)−Sr(A|B) ≤ max

{
ks
1−1
s

− kr
1 −1
r

,
ks
2 −1
s

− kr
2−1
r

}
A if r ≤ 1 ≤ s (7.10)

and
Ss(A|B)−Sr(A|B) ≤ γ

′
A if 1 ≤ r ≤ s
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hold for

γ = γ(r,s,k1,k2) = max
k1≤ξ≤k2

{
fs(ξ )−a(r)ξ −b(r)

}
and

γ
′
= γ

′
(r,s,k1,k2) = max

k1≤ξ≤k2

{
a(s)ξ +b(s)− fr(ξ )

}
,

where a,b are defined by (7.8).

Proof. Suppose that r≤ 1. If we putC = A− 1
2 BA− 1

2 , then we have 0 < k1IH ≤C≤ k2IH .
Since fr(ξ ) is concave for r ≤ 1, it follows that

fs(ξ )− fr(ξ ) ≤ fs(ξ )−a(r)ξ −b(r) ≤ γ

and hence we have the desired result (7.9) and (7.10). The remainder parts follow from the
same way. �

Remark 7.3 The constant γ = γ(r,s,k1,k2) and γ ′
= γ ′

(r,s,k1,k2) in Lemma 7.3 can be
written explicitly as

γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− s

s
a(r)

s
s−1 −b(r)− 1

s
if k1 ≤ a(r)

1
s−1 ≤ k2

ks
2−1
s

− kr
2 −1
r

if k2 ≤ a(r)
1

s−1

ks
1−1
s

− kr
1 −1
r

if k1 ≥ a(r)
1

s−1

and

γ
′
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r−1

r
a(s)

r
r−1 +b(s)+

1
r

if k1 ≤ a(s)
1

r−1 ≤ k2

ks
2−1
s

− kr
2−1
r

if k2 ≤ a(s)
1

r−1

ks
1−1
s

− kr
1−1
r

if k1 ≥ a(s)
1

r−1 .

By Lemma 7.3, we obtain estimates of the upper bound for the difference between the
velocity vectors S(A|B) and Sr(A|B) of the extended interpolational paths A mr,t B at t = 0:

Theorem 7.4 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then

Ss(A|B)−S(A|B)≤ γA for 0 ≤ s ≤ 1

and

Ss(A|B)−S(A|B)≤ max
{ks

1 −1
s

− logk1,
ks
2−1
s

− logk2

}
A for 1 ≤ s,
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where

γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− s
s

(
logk2 − logk1

k2 − k1

) s
s−1

−k2 logk1− k1 logk2

k2− k1
− 1

s

if k1 ≤
(

logk2− logk1

k2− k1

) 1
s−1

≤ k2

ks
2 −1
s

− logk2 if k2 ≤
(

logk2− logk1

k2− k1

) 1
s−1

ks
1 −1
s

− logk1 if k1 ≥
(

logk2− logk1

k2− k1

) 1
s−1

.

7.4 α-operator divergence

The concept of α-divergence plays an important role in the information geometry.
Let (X,A ,μ) be a measure space, where μ is a finite or a σ -finite measure on (X,A )

and let assume that P and Q are two (probability) measures on (X,A ) such that P � μ ,
Q � μ are absolutely continuous with respect to a measure μ , e.g. μ = P + Q and that
p = dP

dμ and q = dQ
dμ the (densities) Radon-Nikodym derivative of P and Q with respect to

μ . Following [5], the basic asymmetric α-divergence is defined as follows: For positive
valued measurable functions p and q, and α ∈ R

Dα(p‖q) :=
4

1−α2

∫ {1−α
2

p(x)+
1+ α

2
q(x)− p(x)

1−α
2 q(x)

1+α
2

}
dμ(x) (α �= ±1),

(7.11)

D−1(p‖q) ≡ D1(q‖p) :=
∫ {

q(x)− p(x)+ p(x) log
p(x)
q(x)

}
dμ(x).

If we put t = 1+α
2 in (7.11), then

Dt(p‖q) :=
1

t(1− t)

∫ {
(1− t)p(x)+ tq(x)− p(x)1−tq(x)t

}
dμ(x) (t �= 0,1).

From the viewpoint of this, Fujii [53] defined the following operator version of α-diver-
gence in the differential geometry: For positive invertible operators A and B,

Dα(A,B) :=
1

α(1−α)
(
A ∇α B−A #α B

)
(0 < α < 1).
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In particular,

D1(A,B) := lim
α↑1

Dα(A,B) = lim
α↑1

(
A−B

α
− B#1−αA−B

α(1−α)

)
= A−B−S(B|A)

D0(A,B) := lim
α↓0

Dα(A,B) = lim
α↓0

(
B−A
1−α

− A#αB−A
α(1−α)

)
= B−A−S(A|B).

By definition, α-operator divergence is considered as the difference between the arith-
metic and the geometric interpolational paths. In particular, for the case α = 1/2, it follows
that α-operator divergence coincides with by four times the difference of the geometric
mean and the arithmetic mean. For the case of density operators, it coincides with a rela-
tive entropy introduced by Beravkin and Staszewski [20] in C∗-algebra setting.

Also we have the following different interpretation of α-operator divergence.

Theorem 7.5 The α-operator divergence is the difference between two velocity vectors
S1(A|B) and Sα(A|B): For each α ∈ (0,1)

Dα(A,B) =
1

1−α

(
S1(A|B)−Sα(A|B)

)
=

1
α

(
S1(B|A)−S1−α(B|A)

)
.

We investigate estimates of the upper bounds for α-operator divergence:

Theorem 7.6 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then α-operator divergence is positive and for every operator
mean ρ and α ∈ (0,1)

(βA) ρ (βB) ≥ Dα(A,B) ≥ 0

holds for

β = max

{
1−α + αk1− kα

1

α(1−α)
,
1−α + αk2− kα

2

α(1−α)

}
β = max

{
α +(1−α)k−1

2 − kα−1
2

α(1−α)
,

α +(1−α)k−1
1 − kα−1

1

α(1−α)

}
.

Proof. Since A ∇α B ≥ A #α B (0 ≤ α ≤ 1), it follows that α-operator divergence
is positive, that is, Dα(A,B) ≥ 0. On the other hand, it follows from Theorem 7.2 that
βA ≥ Dα(A,B) ≥ 0. Since A ∇α B−A #α B = B ∇1−α A−B #1−α A by (7.2), we applied
B,A and 1−α in Theorem 7.2 to obtain the constant β = β (0,1,1−α,k−1

2 ,k−1
1 ) such that

βB≥Dα(A,B)≥ 0 because k−1
2 B≤ A≤ k−1

1 B. Therefore we have for every operator mean
ρ

(βA) ρ (βB) ≥ Dα(A,B) ρ Dα(A,B) = Dα(A,B) ≥ 0.

�

If we put α → 0,1 in Theorem 7.6, then we have the following corollary.
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Corollary 7.1 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for every operator mean ρ

(βA) ρ (βB) ≥ D0(A,B) = S1(A|B)−S0(A|B)

holds for β = max
{
k1−1− logk1,k2−1− logk2

}
and β = max

{
1−k−1

2 −k−1
2 logk2,1−

k−1
1 − k−1

1 logk1
}

and

(βA) ρ (βB) ≥ D1(A,B) = S1(B|A)−S0(B|A)

holds for β = max
{
1− k−1

2 − k−1
2 logk2,1− k−1

1 + k−1
1 logk1

}
and β = max

{
k1 − 1 +

logk1,k2 −1− logk2
}
.

7.5 Notes

For our exposition we have used J.I. Fujii-Mićić-Pečarić-Seo [71], Kamei-J.I. Fujii [67, 68]
and J.I. Fujii [53]. Further study may be seen in [55, 56].





Chapter8
Mercer’s Type Inequality

This chapter devotes some properties of Mercer’s type inequalities. A variant of Jensen’s
operator inequality for convex functions, which is a generalization of Mercer’s result, is
proved. We show a monotonicity property for Mercer’s power means for operators and a
comparison theorem for quasi-arithmetic means for operators.

8.1 Classical version

Let a ≤ x1 ≤ x2 ≤ ·· · ≤ xn ≤ b and let wi,1 ≤ i ≤ n, be nonnegative weights such that
∑n

i=1 wi = 1. Then Jensen’s inequality asserts:

Theorem 8.1 If f is convex on [a,b], then

f

(
n

∑
i=1

wixi

)
≤

n

∑
i=1

wi f (xi). (8.1)

Proof. Refer to [124, Theorem 1.1] for the proof. �

The following theorem is a variant of Jensen’s inequality (8.1).

185
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Theorem 8.2 If f is convex on [a,b], then

f

(
a+b−

n

∑
i=1

wixi

)
≤ f (a)+ f (b)−

n

∑
i=1

wi f (xi).

Proof. If we put yi = a + b− xi, then a + b = xi + yi, so that the pairs a,b and xi,yi

possess the same mid-point. Since there exists λ ∈ [0,1] that

xi = λa+(1−λ )b, yi = (1−λ )a+ λb for 1 ≤ i ≤ n,

it follows from (8.1) twice that

f (yi) ≤ (1−λ ) f (a)+ λ f (b)

= f (a)+ f (b)− [
λ f (a)+ (1−λ ) f (b)

]
≤ f (a)+ f (b)− f

(
λa+(1−λ )b

)
= f (a)+ f (b)− f (xi)

and hence we have

f (a+b− xi) ≤ f (a)+ f (b)− f (xi) for 1 ≤ i ≤ n. (8.2)

Therefore it follows that

f

(
a+b−

n

∑
i=1

wixi

)
= f

(
n

∑
i=1

wi(a+b− xi)

)

≤
n

∑
i=1

wi f (a+b− xi) by (8.1)

≤
n

∑
i=1

wi
[
f (a)+ f (b)− f (xi)

]
by (8.2)

= f (a)+ f (b)−
n

∑
i=1

wi f (xi).

�

Let A,G and H be the arithmetic, geometric and harmonic means of the positive num-
bers 0 < x1 ≤ x2 ≤ ·· · ≤ xn formed with the positive weights wi whose sum is unity. Since
(b− t)(t−a) is non-negative for 0 < a ≤ t ≤ b, division by t gives

a+b− t ≥ ab
t

(with equality if and only if t = a or t = b).

Put t = xi for i = 1,2, . . . ,n. Forming the arithmetic mean on the left and geometric mean
on the right derives the following inequality:

a+b−A≥ ab
G

. (8.3)
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Making the substitutions a → a−1, b → b−1, xi → x−1
i in it and taking inverses extends

(8.3) to

a+b−A≥ ab
G

≥
(
a−1 +b−1−H−1

)−1
.

With r > 0, we substitute a → ar, b → br, xi → xr
i in this and then raise all three members

to the power 1
r . We get(

ar +br−
n

∑
i=1

wix
r
i

) 1
r

>
ab
G

>

(
a−r +b−r −

n

∑
i=1

wix
−1
i

)− 1
r

.

Now introducing the notation

Qr(a,b,x) =

(
ar +br −

n

∑
i=1

wix
r
i

) 1
r

for all real r �= 0,

these last inequalities read

Qr(a,b,x) > Q0(a,b,x) > Q−r(a,b,x) for r > 0, (8.4)

where

Q0(a,b,x) = lim
r→0

Qr(a,b,x) =
ab
G

This consideration leads us to formulate the following theorem.

Theorem 8.3 Let +∞ > r > s > −∞. Then

b > Qr(a,b,x) > Qs(a,b,x) > a. (8.5)

Proof. There are three cases which remain to be considered:
(a) r > s > 0, (b) 0 > r > s, and (c) r > 0 > s.
Once these are proved it is a simple matter to verify that

lim
r→+∞

Qr(a,b,x) = b and lim
r→−∞

Qr(a,b,x) = a,

giving the upper and lower bounds in the theorem.
The cases (b) and (c) follow easily from (a) and (8.4) above. So let us suppose the truth

of case (a) for the moment and dispose of these other cases first.
(a) reads(

ar +br −
n

∑
i=1

wix
r
i

) 1
r

>

(
as +bs−

n

∑
i=1

wix
s
i

) 1
s

for r > s > 0.

If we make the substitutions a → a−1, b → b−1, xi → x−1
i in this and then invert both sides

it reads(
a−r +b−r−

n

∑
i=1

wix
−r
i

)− 1
r

<

(
a−s +b−s−

n

∑
i=1

wix
−s
i

)− 1
s

for −r < −s < 0.
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Writing r = −p and s = −q this reads

Qq(a,b,x) > Qp(a,b,x) for 0 > q > p

which is case (b).
The case (c) where r > 0 > s has two subcases namely |r| > |s| and |s| > |r|.
The former follows by noting that Qr(a,b,x) > Q−s(a,b,x) > Qs(a,b,x) by virtue of

(a) and (8.4). The latter follows since Qr(a,b,x) > Q−r(a,b,x) > Q−s(a,b,x) by virtue of
(8.4) and (b). So the cases (b) and (c) have been dealt with.

It now remains to give the proof of case (a). If we put f (t) = tα for α > 1 in Theo-
rem 8.2, then we have(

aα +bα −
n

∑
i=1

wix
α
i

) 1
α

>

(
a+b−

n

∑
i=1

wixi

)
for α > 1.

Putting α = r
s , making the substitutions a → as,b → bs,xi → xs

i and then raising each side
to the power 1

s , we get (a). �

8.2 Operator version

In this section, we show an extension of Theorem 8.2 to self-adjoint operators on a Hilbert
space. We use this result to prove a monotonicity property of power means of Mercer’s
type. Moreover, we consider quasi-arithmetic means in the same way.

First of all, we recall that an operator version of Theorem 8.1 (Jensen’s inequality) is
true [124, Theorem 1.3]:

Theorem 8.4 Let A1, . . . ,An ∈ B(H) be self-adjoint operators with mIH ≤ Aj ≤ MIH for
some scalars m < M and let x1, . . .xn ∈ H satisfy ∑n

i=1 ‖xi‖2 = 1. If f ∈ C ([m,M]) is
convex, then

f

(
n

∑
i=1

〈Aixi,xi〉
)

≤
n

∑
i=1

〈
f (Ai)xi,xi

〉
.

The following theorem stands for a geometrical property of convexity and is frequently
useful.

Theorem 8.5 Let A1, . . . ,An ∈ B(H) be self-adjoint operators with mIH ≤ Ai ≤ MIH for
some scalars m < M and let x1, . . .xn ∈ H satisfy ∑n

i=1 ‖xi‖2 = 1. If f ∈ C ([m,M]) is
convex, then

n

∑
i=1

〈
f (Ai)xi,xi

〉≤ M−∑n
i=1 〈Aixi,xi〉
M−m

f (m)+ ∑n
i=1 〈Aixi,xi〉−m

M−m
f (M) .
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Proof. Since f is convex on [m,M], we have

f (t) ≤ M− t
M−m

f (m)+
t−m
M−m

f (M) for all t ∈ [m,M].

Since mIH ≤Ai ≤MIH for i = 1, . . . ,n and ∑n
i=1〈xi,xi〉= 1, it follows that m≤∑n

i=1〈Aixi,xi〉
≤ M. Using the functional calculus, we have this theorem. �

The following theorem is an operator vertion of Mercer’s inequality.

Theorem 8.6 Let A1, . . . ,An ∈ B(H) be self-adjoint operators with mIH ≤ Ai ≤ MIH for
some scalars m < M and let x1, . . .xn ∈H satisfy ∑n

i=1 ‖xi‖2 = 1. If f ∈C ([m,M]) is convex,
then we have the following variant of Jensen’s inequality

f

(
m+M−

n

∑
i=1

〈Aixi,xi〉
)

≤ f (m)+ f (M)−
n

∑
i=1

〈
f
(
Ai

)
xi,xi

〉
. (8.6)

In fact, to be more specific, we have the following series of inequalities

f

(
m+M−

n

∑
i=1

〈Aixi,xi〉
)

≤
n

∑
i=1

〈
f (mIH +MIH −Ai)xi,xi

〉
(8.7)

≤ M−∑n
i=1 〈Aixi,xi〉
M−m

f (M)+ ∑n
i=1 〈Aixi,xi〉−m

M−m
f (m)

≤ f (m)+ f (M)−
n

∑
i=1

〈
f (Ai)xi,xi

〉
.

If a function f is concave, then the inequalities (8.6) and (8.7) are reversed.

Proof. From the conditions m〈xi,xi〉 ≤ 〈Aixi,xi〉 ≤ M 〈xi,xi〉 for all i = 1, . . . ,n and
∑n

i=1 〈xi,xi〉 = 1, by summing it follows that m ≤ ∑n
i=1 〈Aixi,xi〉 ≤ M and hence, m ≤ m+

M−∑n
i=1 〈Aixi,xi〉 ≤ M.

Since f is continuous and convex, the same is also true for the function g : [m,M] → R

defined by g(t) = f (m+M− t), t ∈ [m,M]. By Theorem 8.4,

g

(
n

∑
i=1

〈Aixi,xi〉
)

≤
n

∑
i=1

〈
g(Ai)xi,xi

〉
,

i.e. f

(
m+M−

n

∑
i=1

〈Aixi,xi〉
)

≤
n

∑
i=1

〈
f (mIH +MIH −Ai)xi,xi

〉
.
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Applying Theorem 8.5 to g and then to f , we have

n

∑
i=1

〈
f (mIH +MIH −Ai)xi,xi

〉
≤ M−∑n

i=1 〈Aixi,xi〉
M−m

g(m)+
∑n

i=1 〈Aixi,xi〉−m
M−m

g(M)

=
M−∑n

i=1 〈Aixi,xi〉
M−m

f (M)+ ∑n
i=1 〈Aixi,xi〉−m

M−m
f (m)

= f (m)+ f (M)−
[
M−∑n

i=1 〈Aixi,xi〉
M−m

f (m)+ ∑n
i=1 〈Aixi,xi〉−m

M−m
f (M)

]
≤ f (m)+ f (M)−

n

∑
i=1

〈
f (Ai)xi,xi

〉
.

The last statement follows immediately from the fact that if f is concave then− f is convex.
�

Next, we consider an operator version of power means of Mercer’s type.
Let A = (A1, . . . ,An), where Ai ∈ B(H) are self-adjoint operators with mIH ≤ Ai ≤MIH

for some scalars 0 < m < M, and x = (x1, . . . ,xn), where xi ∈ H satisfy ∑n
i=1 〈xi,xi〉 = 1.

We define, for any r ∈ R

M̃r(A,x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
mr +Mr −

n

∑
i=1

〈Ar
i xi,xi〉

] 1
r

, r �= 0,

exp
(
logm+ logM−

n

∑
i=1

〈
(logAi)xi,xi

〉)
, r = 0 .

Observe that, since 0 < m〈xi,xi〉 ≤ 〈Aixi,xi〉 ≤ M 〈xi,xi〉 and ∑n
i=1 〈xi,xi〉 = 1, then

· 0 < mr ≤
n

∑
i=1

〈Ar
i xi,xi〉 ≤ Mr for all r > 0,

· 0 < Mr ≤
n

∑
i=1

〈Ar
i xi,xi〉 ≤ mr for all r < 0,

· logm ≤
n

∑
i=1

〈(logAi)xi,xi〉 ≤ logM.

Hence, M̃r(A,x) is well defined.
Furthermore, we define, for any r,s ∈ R

R(r,s,A,x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[ n

∑
i=1

〈
(mrIH +MrIH −Ar

i )
s
r xi,xi

〉] 1
s
, r �= 0,s �= 0,

exp
( n

∑
i=1

〈
log(mrIH +MrIH −Ar

i )
1
r xi,xi

〉)
, r �= 0,s = 0,[ n

∑
i=1

〈
exp

(
s(logm) IH +(logM) IH − logAi

)
xi,xi

〉] 1
s
, r = 0,s �= 0,
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S(r,s,A,x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[ Mr −Sr

Mr −mr ·Ms +
Sr −mr

Mr −mr ·ms
] 1

s
, r �= 0,s �= 0,

exp
( Mr −Sr

Mr −mr · logM +
Sr −mr

Mr −mr · logm
)

, r �= 0,s = 0,[ (logM)−S0

logM− logm
·Ms +

S0− (logm)
logM− logm

·ms
] 1

s
, r = 0,s �= 0,

where Sr = ∑n
i=1 〈Ar

i xi,xi〉 and S0 = ∑n
i=1 〈(logAi)xi,xi〉. It is easy to see that R(r,s,A,x)

and S(r,s,A,x) are also well defined.

Theorem 8.7 If r,s ∈ R, r < s, then

M̃r(A,x) ≤ M̃s(A,x).

Furthermore,

M̃r(A,x) ≤ R(r,s,A,x) ≤ S(r,s,A,x) ≤ M̃s(A,x). (8.8)

Proof. STEP 1: Assume 0 < r < s.
In this case we have 0 < mrIH ≤ Ar

i ≤ MrIH (i = 1, . . . ,n) . Applying Theorem 8.6 to the
continuous convex function f (t) = t

s
r (note that s

r > 1 here) and replacing Ai, m and M
with Ar

i , mr and Mr, respectively, we have

[
mr +Mr −

n

∑
i=1

〈Ar
i xi,xi〉

] s
r

≤
n

∑
i=1

〈
(mrIH +MrIH −Ar

i )
s
r xi,xi

〉
≤ Mr −∑n

i=1 〈Ar
i xi,xi〉

Mr −mr Ms + ∑n
i=1 〈Ar

i xi,xi〉−mr

Mr −mr ms

≤ ms +Ms−
n

∑
i=1

〈As
i xi,xi〉 ,

or [
M̃r(A,x)

]s ≤
[
R(r,s,A,x)

]s ≤
[
S(r,s,A,x)

]s ≤
[
M̃s(A,x)

]s
.

Since s > 0, this gives (8.8).

STEP 2: Assume r < s < 0.
In this case we have 0 < MrIH ≤ Ar

i ≤ mrIH (i = 1, . . . ,n) . Applying Theorem 8.6 to the
continuous concave function f (t) = t

s
r (note that 0 < s

r < 1 here) and replacing Ai, m and
M with Ar

i , Mr and mr, respectively, we have
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[
Mr +mr −

n

∑
i=1

〈Ar
i xi,xi〉

] s
r

≥
n

∑
i=1

〈
(MrIH +mrIH −Ar

i )
s
r xi,xi

〉
≥ mr −∑n

i=1 〈Ar
i xi,xi〉

mr −Mr ms + ∑n
i=1 〈Ar

i xi,xi〉−Mr

mr −Mr Ms

≥ Ms +ms−
n

∑
i=1

〈As
i xi,xi〉

or [
M̃r(A,x)

]s ≥
[
R(r,s,A,x)

]s ≥
[
S(r,s,A,x)

]s ≥
[
M̃s(A,x)

]s
.

Since s < 0, this gives (8.8).
STEP 3: Assume r < 0 < s.

In this case we have 0 < MrIH ≤ Ar
i ≤ mrIH (i = 1, . . . ,n) . Applying Theorem 8.6 to

the continuous convex function f (t) = t
s
r (note that s

r < 0 here) and proceeding in the same
way as in STEP 1, we obtain (8.8).
STEP 4: Assume r < 0,s = 0.

In this case we have 0 < MrIH ≤ Ar
i ≤ mrIH (i = 1, . . . ,n) . Applying Theorem 8.6 to

the continuous convex function f (t) = 1
r log t (note that 1

r < 0 here) and replacing Ai, m
and M with Ar

i , Mr and mr, respectively, we have

1
r

log

(
Mr +mr −

n

∑
i=1

〈Ar
i xi,xi〉

)

≤
n

∑
i=1

〈
1
r

log(MrIH +mrIH −Ar
i )xi,xi

〉
≤ mr −∑n

i=1 〈Ar
i xi,xi〉

mr −Mr · logm+ ∑n
i=1 〈Ar

i xi,xi〉−Mr

mr −Mr · logM

≤ logM + logm−
n

∑
i=1

〈(logAi)xi,xi〉

or

logM̃r(A,x) ≤ logR(r,0,A,x) ≤ logS(r,0,A,x)≤ logM̃0(A,x).

This gives (8.8) for s = 0.
STEP 5: Assume r = 0,s > 0.

We have (logm) IH ≤ logAi ≤ (logM) IH (i = 1, . . . ,n) . Applying Theorem 8.6 to the
continuous convex function f (t) = exp(st) and replacing Ai, m and M with logAi, logm
and logM, respectively, we have
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exp

(
s
(
logm+ logM−

n

∑
i=1

〈(logAi)xi,xi〉
))

≤
n

∑
i=1

〈exp(s((logm) IH +(logM) IH − logAi))xi,xi〉

≤ logM−∑n
i=1 〈(logAi)xi,xi〉

logM− logm
Ms + ∑n

i=1 〈(logAi)xi,xi〉− logm
logM− logm

ms

≤ ms +Ms−
n

∑
i=1

〈As
i xi,xi〉

or [
M̃0(A,x)

]s ≤
[
R(0,s,A,x)

]s ≤
[
S(0,s,A,x)

]s ≤
[
M̃s(A,x)

]s
.

Since s > 0, this gives (8.8) for r = 0. �

Next, we consider quasi-arithmetic means of Mercer’s type.
Let A = (A1, . . . ,An), where Ai ∈B(H) are self-adjoint operators with mIH ≤ Ai ≤MIH

for some scalars m < M, and x = (x1, . . . ,xn), where xi ∈ H satisfy ∑n
i=1 〈xi,xi〉 = 1. Let

ϕ ,ψ ∈C ([m,M]) be strictly monotonic functions on an interval [m,M]. We define

M̃ϕ (A,x) := ϕ−1
(

ϕ (m)+ ϕ (M)−
n

∑
i=1

〈
ϕ (Ai)xi,xi

〉)
.

Observe that, since mIH ≤ Ai ≤ MIH and ∑n
i=1 〈xi,xi〉 = 1, then

· ϕ (m) ≤
n

∑
i=1

〈ϕ (Ai)xi,xi〉 ≤ ϕ (M) if ϕ is increasing,

· ϕ (M) ≤
n

∑
i=1

〈ϕ (Ai)xi,xi〉 ≤ ϕ (m) if ϕ is decreasing.

Hence, M̃ϕ (A,x) is well defined.

Theorem 8.8 Under the above hypotheses,

(i) if either ψ ◦ϕ−1 is convex and ψ is strictly increasing, or ψ ◦ϕ−1 is concave and ψ
is strictly decreasing, then

M̃ϕ (A,x) ≤ M̃ψ (A,x) . (8.9)

In fact, to be more specific, we have the following series of inequalities

M̃ϕ (A,x)

≤ ψ−1

(
n

∑
i=1

〈(
ψϕ−1)(ϕ (m) IH + ϕ (M) IH −ϕ (Ai))xi,xi

〉)
(8.10)

≤ ψ−1
(

ϕ (M)−∑n
i=1 〈ϕ (Ai)xi,xi〉

ϕ (M)−ϕ (m)
ψ (M)+

∑n
i=1 〈ϕ (Ai)xi,xi〉−ϕ (m)

ϕ (M)−ϕ (m)
ψ (m)

)
≤ M̃ψ (A,x) ,
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(ii) if either ψ ◦ϕ−1 is concave and ψ is strictly increasing, or ψ ◦ϕ−1 is convex and ψ
is strictly decreasing, then the reverse inequalities of (8.9) and (8.10) hold.

Proof. Suppose that ψ ◦ϕ−1 is convex. If in Theorem 8.6 we let f = ψ ◦ϕ−1 and
replace Ai, m and M with ϕ (Ai), ϕ (m) and ϕ (M), respectively, then we obtain

(
ψ ◦ϕ−1)(ϕ (m)+ ϕ (M)−

n

∑
i=1

〈ϕ (Ai)xi,xi〉
)

≤
n

∑
i=1

〈(
ψ ◦ϕ−1)(ϕ (m) IH + ϕ (M) IH −ϕ (Ai))xi,xi

〉
(8.11)

≤ ϕ (M)−∑n
i=1 〈ϕ (Ai)xi,xi〉

ϕ (M)−ϕ (m)
ψ (M)+

∑n
i=1 〈ϕ (Ai)xi,xi〉−ϕ (m)

ϕ (M)−ϕ (m)
ψ (m)

≤ ψ (m)+ ψ (M)−
n

∑
i=1

〈ψ (Ai)xi,xi〉 .

If ψ ◦ϕ−1 is concave then we obtain the reverse of inequalities (8.11).
If ψ is strictly increasing, then the inverse function ψ−1 is also strictly increasing, so

that (8.11) implies (8.10). If ψ is strictly decreasing, then the inverse function ψ−1 is also
strictly decreasing, so that in this case the reverse of (8.11) implies (8.10). Analogously, we
get the reverse of (8.10) in the cases when ψ ◦ϕ−1 is convex and ψ is strictly decreasing,
or ψ ◦ϕ−1 is concave and ψ is strictly increasing. �

8.3 Operator version with mappings

Assume that (Φ1, . . . ,Φn) is an n−tuple of positive linear mappings Φi : B(H) → B(K),
i = 1, . . . ,n. If ∑n

i=1 Φi(IH) = IK , we say that (Φ1, . . . ,Φn) is unital.

We have the following generalization of discrete Jensen’s operator inequality.

Theorem 8.9 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators in B(H) with spec-
tra in [m,M] for some scalars m < M, and let (Φ1, . . . ,Φn) be a unital n−tuple positive
linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. If f is an operator convex function on
[m,M], then

f

(
n

∑
i=1

Φi(Ai)

)
≤

n

∑
i=1

Φi( f (Ai)). (8.12)

Proof. Using continuity of f , Φi and uniform approximation of self-adjoint operators
by simple operators using decomposition of unit we can assume that Ai = ∑ j∈Ii ti, jei, j where
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Ii are finite sets and {ei, j} j∈Ii are decompositions of unit, i = 1, . . . ,n. We have

f

(
n

∑
i=1

Φi(Ai)

)
= f

(
n

∑
i=1

Φi(∑
j∈Ii

ti, jei, j)

)
= f

(
n

∑
i=1

∑
j∈Ii

ti, jΦi(ei, j)

)

= f

(
n

∑
i=1

∑
j∈Ii

√
Φi(ei, j)ti, j

√
Φi(ei, j)

)

≤
n

∑
i=1

∑
j∈Ii

√
Φi(ei, j) f (ti, j)

√
Φi(ei, j)

=
n

∑
i=1

∑
j∈Ii

f (ti, j)Φi(ei, j) =
n

∑
i=1

Φi( f (Ai)).

The second proof: We use the idea from [81] (also compare to [221]). If f is operator
convex in I = [0,1] and f (0) ≤ 0, we can suppose, with no loss of generality, that it is non-
positive. Then there is a connection σ such that − f (t) = t σ (1− t). We use the following
properties of a connection σ :

(i) Φ(Aσ B) ≤ Φ(A)σ Φ(B) for a positive linear mapping Φ and positive operators A
and B ([15]).

(ii) (subadditivity) ∑n
i=1 Ai σ Bi≤(∑n

i=1 Ai) σ (∑n
i=1 Bi) for positive n−tuples (A1, . . .,An)

and (B1, . . . ,Bn) ([81]).

We obtain

−
n

∑
i=1

Φi( f (Ai)) =
n

∑
i=1

Φi (Ai σ (IH −Ai))

≤
n

∑
i=1

Φi(Ai)σ Φi(IH −Ai) ≤
(

n

∑
i=1

Φi(Ai)

)
σ

(
n

∑
i=1

Φi(IH −Ai)

)

=

(
n

∑
i=1

Φi(Ai)

)
σ

(
IK −

n

∑
i=1

Φi(Ai)

)
= − f

(
n

∑
i=1

Φi(Ai)

)
.

Consider now an arbitrary operator convex function f defined on [0,1]. The function
f̃ (x) = f (x)− f (0) satisfies the previous conditions, so (8.12) becomes

f

(
n

∑
i=1

Φi(Ai)

)
≤

n

∑
i=1

Φi( f (Ai))+ f (0)

(
IK −

n

∑
i=1

Φi(IH)

)
. (8.13)

By setting g(x) = f ((β −α)x+ α) one may reduce the statement for operator convex
functions defined on an arbitrary interval [α,β ] to operator convex functions defined on
the interval [0,1]. �

We show a variant of Jensen’s operator inequality which is an extension of Theorem 8.2
and Theorem 8.6 to self-adjoint operators and positive linear mappings.
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Theorem 8.10 Let (A1, . . . ,An) be n−tuple of self-adjoint operators in B(H) with spec-
tra in [m,M] for some scalars m < M, and let (Φ1, . . . ,Φn) be a unital n−tuple positive
linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. If f ∈ C ([m,M]) is convex on [m,M],
then

f

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)
≤ f (m) IK + f (M) IK −

n

∑
i=1

Φi ( f (Ai)) . (8.14)

In fact, to be more specific, the following series of inequalities holds

f

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)

≤ MIK −∑n
i=1 Φi (Ai)

M−m
f (M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

f (m) (8.15)

≤ f (m) IK + f (M) IK −
n

∑
i=1

Φi ( f (Ai)) .

If a function f is concave, then inequalities (8.14) and (8.15) are reversed.

Proof. Since f is continuous and convex, the same is also true for the function g :
[m,M] → R defined by g(t) = f (m+M− t), t ∈ [m,M]. Hence, the following inequalities

f (t) ≤ t−m
M−m

f (M)+
M− t
M−m

f (m) and g(t) ≤ t−m
M−m

g(M)+
M− t
M−m

g(m)

hold for every t ∈ [m,M] (see e.g. [249, p. 2]).
Since mIH ≤ Ai ≤ MIH for i = 1, . . . ,n and ∑n

i=1 Φi (IH) = IK , it follows that mIK ≤
∑n

i=1 Φi (Ai) ≤ MIK . Now, using the functional calculus we have

g

(
n

∑
i=1

Φi (Ai)

)
≤ ∑n

i=1 Φi (Ai)−mIK
M−m

g(M)+
MIK −∑n

i=1 Φi (Ai)
M−m

g(m)

or

f

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)

≤ ∑n
i=1 Φi (Ai)−mIK

M−m
f (m)+

MIK −∑n
i=1 Φi (Ai)

M−m
f (M) (8.16)

= f (m) IK + f (M) IK −
[
MIK −∑n

i=1 Φi (Ai)
M−m

f (m)+
∑n

i=1 Φi (Ai)−mIK
M−m

f (M)
]
.

On the other hand, we also have

f (Ai) ≤ Ai−mIH
M−m

f (M)+
MIH −Ai

M−m
f (m).
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Applying positive linear mappings Φi and summing, it follows that

n

∑
i=1

Φi ( f (Ai)) ≤ ∑n
i=1 Φi (Ai)−mIK

M−m
f (M)+

MIK −∑n
i=1 Φi (Ai)

M−m
f (m) . (8.17)

Using inequalities (8.16) and (8.17), we obtain desired inequalities (8.14) and (8.15).
The last statement follows immediately from the fact that if ϕ is concave then −ϕ is

convex. �

We consider Mercer’s power means for positive linear mappings.
Let A = (A1, . . . ,An) be an n−tuple of positive invertible operators in B(H) with

Sp(Ai)⊆ [m,M] for some scalars 0 < m < M, and let ΦΦ = (Φ1, . . . ,Φn) be a unital n−tuple
positive linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. We define, for any r ∈ R

M̃r(A,ΦΦ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i )

] 1
r

, r �= 0,

exp
(
(logm) IK +(logM) IK −

n

∑
i=1

Φi
(
log(Ai)

))
, r = 0.

(8.18)

Observe that, since 0 < mIH ≤ Ai ≤ MIH and ∑n
i=1 Φi (IH) = IK , then

· 0 < mrIK ≤
n

∑
i=1

Φi (Ar
i ) ≤ MrIK for all r > 0,

· 0 < MrIK ≤
n

∑
i=1

Φi (Ar
i ) ≤ mrIK for all r < 0,

· (logm) IK ≤
n

∑
i=1

Φi (log(Ai)) ≤ (logM) IK .

Hence, M̃r(A,ΦΦ) is well defined.
Furthermore, we define a constant Δ(m,M, p) for 0 < m < M and p ∈ R as follows:

Δ(m,M, p) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K

(
mp,Mp,

1
p

)
=

p(mpM−Mpm)
(1− p)(Mp−mp)

(
(1− p)(M−m)
mpM−Mpm

) 1
p

, p �= 0,

S

(
M
m

)
=

M−m
logM− logm

exp

(
m(1+ logM)−M(1+ logm)

M−m

)
, p = 0.

We remark that Δ(m,M,0) = limp→0 Δ(m,M, p) by using Theorem 2.17.
We show a monotonicity property of Mercer’s power means for positive linear map-

pings and investigate a complementary domain to Mercer’s power means.

Theorem 8.11 Let r,s ∈ R, r < s.
(i) If either r ≤−1 or s ≥ 1, then

M̃r(A,ΦΦ) ≤ M̃s(A,ΦΦ). (8.19)

(ii) If −1 < r and s < 1, then

M̃r(A,ΦΦ) ≤ Δ(m,M,s) · M̃s(A,ΦΦ). (8.20)



198 8 MERCER’S TYPE INEQUALITY

Proof. (i) STEP 1: Suppose that 0 < r < s and s ≥ 1.
Applying the inequality (8.14) to the convex function f (t) = t

s
r (note that s

r > 1 here)
and replacing Ai, m and M with Ar

i , mr and Mr, respectively, we have[
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i ))

] s
r

≤ msIK +MsIK −
n

∑
i=1

Φi (As
i ) . (8.21)

Raising both sides to the power 1
s

(
0 < 1

s ≤ 1
)
, it follows from the Löwner-Heinz theorem

(Theorem 3.1) that (8.19) holds.
STEP 2: Suppose that r < 0 and s ≥ 1.

Applying the inequality (8.14) to the convex function f (t) = t
s
r (note that s

r < 0 here)
and proceeding in the same way as in STEP 1, we have that (8.19) holds.
STEP 3: Suppose that r = 0 and s ≥ 1.

Applying the inequality (8.14) to the convex function f (t) = exp(s · t) and replacing
Ai, m and M with log(Ai), logm and logM, respectively, we have

exp

(
s
(
(logm) IK +(logM) IK −

n

∑
i=1

Φi
(
log(Ai)

)))

≤ exp(s logm) IK + exp(s logM) IK −
n

∑
i=1

Φi

(
exp

(
s log(Ai)

))
= msIK +MsIK −

n

∑
i=1

Φi (As
i ) (8.22)

or [
M̃0(A,ΦΦ)

]s ≤
[
M̃s(A,ΦΦ)

]s
.

Raising both sides to the power 1
s

(
0 < 1

s ≤ 1
)
, it follows from the Löwner-Heinz theorem

that (8.19) holds for r = 0.
STEP 4: Suppose that r ≤−1 and s > r.

The inequality (8.19) follows from the above cases replacing Ai, r and s by A−1
i , −s

and −r, respectively, and using the equality M̃−s
(
A−1,ΦΦ

)
= M̃s(A,ΦΦ)−1, where A−1 =(

A−1
1 , . . . ,A−1

n

)
.

(ii) STEP 1: Suppose that 0 < r < s < 1.
In the same way as in (i) STEP 1 we obtain inequality (8.21). Observe that, since

msIK ≤ ∑n
i=1 Φi (As

i ) ≤ MsIK , it follows that msIK ≤ msIK +MsIK −∑n
i=1 Φi (As

i ) ≤ MsIK .
Raising both sides of (8.21) to the power 1

s

(
1
s > 1

)
, it follows from Theorem 4.3 (i) that

M̃r(A,ΦΦ) ≤ K

(
ms,Ms,

1
s

)
M̃s(A,ΦΦ).

STEP 2: Suppose that 0 = r < s < 1.
In the same way as in (i) STEP 3 we obtain inequality (8.22). With the same observa-

tion as in (ii) STEP 1 and raising both sides of (8.22) to the power 1
s

(
1
s > 1

)
, it follows
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from Theorem 4.3 (i) that

M̃0(A,ΦΦ) ≤ K

(
ms,Ms,

1
s

)
M̃s(A,ΦΦ).

STEP 3: Suppose that −1 < r < s < 0.
The proof follows from (ii) STEP 1 replacing Ai, r and s by A−1

i , −s and −r, respec-
tively, and using the equality K (M,m, p) = K (m,M, p) (see [96, p. 77]).
STEP 4: Suppose that −1 < r < s = 0.

Applying the inequality (8.14) to the convex function f (t) = 1
r logt and replacing Ai,

m and M with Ar
i , Mr and mr, respectively, we obtain

1
r

log

(
mrIK +MrIK −

n

∑
i=1

Φi(Ar
i )

)
≤ (logm)IK +(logM)IK −

n

∑
i=1

Φi(log(Ai).

Observing that both sides have spectra in [logm, logM], it follows from Theorem 4.7 that
(8.20) holds for s = 0.
STEP 5: Suppose that −1 < r < 0 < s < 1.

In the same way as in (i) STEP 2 we obtain inequality (8.21). With the same observa-
tion as in (ii) STEP 1 it follows from Theorem 4.3 (i) that

M̃r(A,ΦΦ) ≤ K

(
ms,Ms,

1
s

)
M̃s(A,ΦΦ).

�

Furthermore, we define S(r,s,A,ΦΦ) for A, ΦΦ as in (8.18) and r,s ∈ R as follows:

S(r,s,A,ΦΦ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
MrIK −Sr

Mr −mr Ms +
Sr −mrIK
Mr −mr ms

] 1
s

, r �= 0,s �= 0,

exp

(
MrIK −Sr

Mr −mr logM +
Sr −mrIK
Mr −mr logm

)
, r �= 0,s = 0,[

(logM) IK −S0

logM− logm
Ms +

S0− (logm) IK
logM− logm

ms
] 1

s

, r = 0,s �= 0,

(8.23)

where Sr = ∑n
i=1 Φi (Ar

i ) and S0 = ∑n
i=1 Φi (log(Ai)). It is easy to see that S(r,s,A,ΦΦ) is

well defined.
If we use inequalities (8.15) instead of the inequality (8.14), then we have the following

results.

Theorem 8.12 Let r,s ∈ R, r < s.
(i) If s ≥ 1, then

M̃r(A,ΦΦ) ≤ S(r,s,A,ΦΦ) ≤ M̃s(A,ΦΦ). (8.24)

If r ≤−1, then
M̃r(A,ΦΦ) ≤ S(s,r,A,ΦΦ) ≤ M̃s(A,ΦΦ). (8.25)

(ii) If −1 < r and s < 1, then

1
Δ(m,M,s)

· M̃r(A,Φ) ≤ S(r,s,A,ΦΦ) ≤ Δ(m,M,s) · M̃s(A,ΦΦ). (8.26)
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Proof. (i) STEP 1: Suppose that 0 < r < s and s ≥ 1.

Applying inequalities (8.15) to the convex function f (t) = t
s
r (note that s

r ≥ 1 here) and
replacing Ai, m and M with Ar

i , mr and Mr, respectively, we have

[
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i ))

] s
r

≤ MrIK −Sr

Mr −mr Ms +
Sr −mrIK
Mr −mr ms

≤ msIK +MsIK −
n

∑
i=1

Φi (As
i ) . (8.27)

Raising these inequalities to the power 1
s

(
0 < 1

s ≤ 1
)
, it follows from the Löwner-Heinz

theorem that the desired inequality (8.24) holds.

STEP 2: Suppose that r < 0 and s ≥ 1.

Applying inequalities (8.15) to the convex function f (t) = t
s
r (note that s

r < 0 here) and
proceeding in the same way as in STEP 1, we obtain the desired inequality (8.24).

STEP 3: Suppose that r = 0 and s ≥ 1.

Applying inequalities (8.15) to the convex function f (t) = exp(s · t) and replacing Ai,
m and M with logAi, logm and logM, respectively, we have

exp

(
s
(
(logm) IK +(logM) IK −

n

∑
i=1

Φi
(
log(Ai)

)))

≤ (logM) IK −S0

logM− logm
· exp(s logM)+

S0− (logm) IK
logM− logm

· exp(s logm)

≤ exp(s logm) IK + exp(s logM) IK −
n

∑
i=1

Φi

(
exp

(
s log(Ai)

))
= msIK +MsIK −

n

∑
i=1

Φi (As
i ) (8.28)

or [
M̃0(A,ΦΦ)

]s ≤ [S(0,s,A,ΦΦ)]s ≤
[
M̃s(A,ΦΦ)

]s
.

Raising these inequalities to the power 1
s

(
0 < 1

s ≤ 1
)
, it follows from the Löwner-Heinz

theorem that (8.24) holds for r = 0.

STEP 4: Suppose that r ≤−1 and s > r.

The proof of (8.25) follows using the same way as in the above cases.

(ii) STEP 1: Suppose that 0 < r < s < 1.

In the same way as in (i) STEP 1 we obtain inequalities (8.27). Observe that, since
mrIK ≤ ∑n

i=1 Φi (Ar
i ) ≤ MrIK and msIK ≤ ∑n

i=1 Φi (As
i ) ≤ MsIK , it follows that msIK ≤

[mrIK +MrIK −∑n
i=1 Φi (Ar

i )]
s
r ≤ MsIK and msIK ≤ msIK + MsIK −∑n

i=1 Φi (As
i ) ≤ MsIK .
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Raising inequalities (8.27) to the power 1
s

(
1
s > 1

)
, it follows from Theorem 4.3 (i) that

K

(
ms,Ms,

1
s

)−1
[
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i ))

] 1
r

≤
[
MrIK −Sr

Mr −mr ·Ms +
Sr −mrIK
Mr −mr ms

] 1
s

≤ K

(
ms,Ms,

1
s

)[
msIK +MsIK −

n

∑
i=1

Φi (As
i )

] 1
s

,

which gives the desired inequality (8.26).
STEP 2: Suppose that 0 = r < s < 1.

In the same way as in (i) STEP 3 we obtain inequalities (8.28). Observe that, since
(logm) IK≤(logm) IK +(logM) IK−∑n

i=1 Φi (log(Ai))≤(logM) IK and msIK ≤∑n
i=1 Φi (As

i )
≤ MsIK , it follows that

msIK ≤ exp

(
s

(
(logm) IK +(logM) IK −

n

∑
i=1

Φi (log(Ai))

))
≤ MsIK

and msIK ≤ msIK +MsIK −∑n
i=1 Φi (As

i ) ≤ MsIK . Raising inequalities (8.28) to the power
1
s

(
1
s > 1

)
, it follows from Theorem 4.3 (i) that (8.26) holds for r = 0.

STEP 3: Suppose that −1 < r < s < 0.
Applying reversed inequalities (8.15) to the concave function f (t) = t

s
r (note that 0 <

s
r < 1 here) and replacing Ai, m and M with Ar

i , m
r and Mr, respectively, we obtain reversed

(8.27). With the same observation as in STEP 1 it follows that (8.26) holds.
STEP 4: Suppose that −1 < r < s = 0.

Applying inequalities (8.15) to the convex function f (t) = 1
r logt (note that 1

r < 0 here)
and replacing Ai, m and M with Ar

i , mr and Mr, respectively, we obtain

1
r

log

(
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i )

)

≤ MrIK −Sr

Mr −mr · logM +
Sr −mr

Mr −mr · logm

≤ (logm) IK +(logM) IK −
n

∑
i=1

Φi (log(Ai)) .

Now, it follows from Theorem 4.7 that

S
(
elogM−logm

)−1
M̃r(A,ΦΦ) ≤ S(r,0,A,ΦΦ) ≤ S

(
elogM−logm

)
M̃0(A,ΦΦ),

which gives (8.26) holds for s = 0.
STEP 5: Suppose that −1 < r < 0 < s < 1.

Applying inequalities (8.15) to the convex function f (t) = t
s
r (note that s

r < 0 here)
and replacing Ai, m and M with Ar

i , mr and Mr, respectively, we obtain inequalities (8.27).
Proceeding in the same way as in STEP 1, we obtain (8.26). �
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Remark 8.1 Since obviously S(r,r,A,ΦΦ) = M̃r(A,ΦΦ), inequalities in Theorem 8.12 (i)
give us

S(r,r,A,ΦΦ) ≤ S(r,s,A,ΦΦ) ≤ S(s,s,A,ΦΦ), r < s, s ≥ 1

and

S(r,r,A,ΦΦ) ≤ S(s,r,A,ΦΦ) ≤ S(s,s,A,ΦΦ), r < s, r ≤−1.

An open problem is to give list of inequalities comparing “mixed means” S(r,s,A,ΦΦ) in
remaining cases.

Finally, we consider quasi-arithmetic means of Mercer’s type for positive linear map-
pings.

Let A and ΦΦ be as in the previous context and m < M. Let ϕ ,ψ ∈C ([m,M]) be strictly
monotonic functions on an interval [m,M]. We define

M̃ϕ (A,ΦΦ) := ϕ−1

(
ϕ (m) IK + ϕ (M) IK −

n

∑
i=1

Φi (ϕ (Ai))

)
. (8.29)

It is easy to see that M̃ϕ (A,ΦΦ) is well defined.

Theorem 8.13 Under the above hypotheses,

(i) if either ψ ◦ϕ−1 is convex and ψ−1 is operator monotone, or ψ ◦ϕ−1 is concave
and −ψ−1 is operator monotone, then

M̃ϕ (A,ΦΦ) ≤ M̃ψ (A,ΦΦ) . (8.30)

In fact, to be more specific, we have the following series of inequalities

M̃ϕ (A,ΦΦ)

≤ ψ−1
(

ϕ (M) IK −∑n
i=1 Φi (ϕ (Ai))

ϕ (M)−ϕ (m)
·ψ (M)

+∑n
i=1 Φi (ϕ (Ai))−ϕ (m) IK

ϕ (M)−ϕ (m)
·ψ (m)

)
(8.31)

≤ M̃ψ (A,ΦΦ) .

(ii) if either ψ ◦ϕ−1 is concave and ψ−1 is operator monotone, or ψ ◦ϕ−1 is convex
and −ψ−1 is operator monotone, then inequalities (8.30) and (8.31) are reversed.

Proof. Suppose that ψ ◦ϕ−1 is convex. If in Theorem 8.10 we let f = ψ ◦ϕ−1 and
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replace Ai, m and M with ϕ (Ai), ϕ (m) and ϕ (M), respectively, then we obtain

(
ψ ◦ϕ−1)(ϕ (m) IK + ϕ (M) IK −

n

∑
i=1

Φi (ϕ (Ai))

)

≤ ϕ (M) IK −∑n
i=1 Φi (ϕ (Ai))

ϕ (M)−ϕ (m)
· (ψ ◦ϕ−1)(ϕ (M))

+ ∑n
i=1 Φi (ϕ (Ai))−ϕ (m) IK

ϕ (M)−ϕ (m)
· (ψ ◦ϕ−1)(ϕ (m))

≤ (
ψ ◦ϕ−1)(ϕ (m)) IK +

(
ψ ◦ϕ−1)(ϕ (M)) IK −

n

∑
i=1

Φi
((

ψ ◦ϕ−1) (ϕ (Ai))
)

or

ψ

(
ϕ−1

(
ϕ(m)IK + ϕ(M)IK −

n

∑
i=1

Φi (ϕ (Ai))

))

≤ ϕ (M) IK −∑n
i=1 Φi (ϕ (Ai))

ϕ (M)−ϕ (m)
·ψ (M)+ ∑n

i=1 Φi (ϕ (Ai))−ϕ (m) IK
ϕ (M)−ϕ (m)

·ψ (m)

≤ ψ (m) IK + ψ (M) IK −
n

∑
i=1

Φi (ψ (Ai)) . (8.32)

If ψ ◦ϕ−1 is concave then we obtain the reverse of inequalities (8.32).
If ψ−1 is operatormonotone, then (8.32) implies (8.31). If−ψ−1 is operatormonotone,

then the reverse of (8.32) implies (8.31). Analogously, we get the reverse of (8.31) in the
cases when ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone, or ψ ◦ϕ−1 is concave and
ψ−1 is operator monotone. �

8.4 Chaotic order version

Let A = (A1, . . . ,An) be an n−tuple of positive invertible operators in B(H) with Sp(Ai)⊆
[m,M] for some scalars 0 < m < M, and let ΦΦ = (Φ1, . . . ,Φn) be a unital n−tuple positive
linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. We recall that we define the r-th power
operator mean for r ∈ R as

Mr(A,ΦΦ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
n

∑
i=1

Φi (Ar
i )

) 1
r

, r �= 0,

exp

(
n

∑
i=1

Φi (log(Ai))

)
, r = 0.

(8.33)
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The ordering among these means is given in Chapter 9. Here we discuss the chaotic
ordering among them: the chaotic order A 
 B for A,B > 0 means logA ≥ logB, also see
3.4.

The following theorems are generalizations of the theorems in [124, p.135, 136].

Theorem 8.14 If r,s ∈ R , r < s, then

Mr(A,ΦΦ) � Ms(A,ΦΦ).

Proof. STEP 1: Assume 0 < r < s. Applying Theorem 8.9 to the operator concave
function f (t) = t

r
s (note that 0 < r

s < 1 here) and replacing Ai with As
i we have(

n

∑
i=1

Φi (As
i )

) r
s

≥
n

∑
i=1

Φi (Ar
i ) .

Since the function f (t) = log t is operator monotone and r > 0, it follows that

1
s

log

(
n

∑
i=1

Φi (As
i )

)
≥ 1

r
log

(
n

∑
i=1

Φi (Ar
i )

)
,

i.e. logMr(A,ΦΦ) ≤ logMs(A,ΦΦ).

STEP 2: Assume r < s < 0. Applying Theorem 8.9 to the operator concave function
f (t) = t

s
r (note that 0 < s

r < 1 here) and replacing Ai with Ar
i we have(

n

∑
i=1

Φi (Ar
i )

) s
r

≥
n

∑
i=1

Φi (As
i ) .

Since s < 0, it follows that

1
r

log

(
n

∑
i=1

Φi (Ar
i )

)
≤ 1

s
log

(
n

∑
i=1

Φi (As
i )

)
,

i.e. logMr(A,ΦΦ) ≤ logMs(A,ΦΦ).

STEP 3: Assume r < 0 = s. Applying Theorem 8.9 to the operator convex function f (t) =
1
r log t (note that 1

r < 0 here) and replacing Ai with Ar
i we have

1
r

log

(
n

∑
i=1

Φi (Ar
i )

)
≤

n

∑
i=1

Φi log(Ai) ,

i.e. logMr(A,ΦΦ) ≤ logM0(A,ΦΦ).

STEP 4: Assume r = 0 < s. Applying Theorem 8.9 to the operator concave function
f (t) = 1

s log t and replacing Ai with As
i we have

1
s

log

(
n

∑
i=1

Φi (As
i )

)
≥

n

∑
i=1

Φi (log(Ai)) ,
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i.e. logM0(A,ΦΦ) ≤ logMs(A,ΦΦ).

STEP 5: Assume r < 0 < s. From STEP 3 and STEP 4 it follows that
logMr(A,ΦΦ) ≤ logM0(A,ΦΦ) ≤ logMs(A,ΦΦ). �

To prove the following theorem, we need the following lemma.

Lemma 8.1 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators in B(H) with spectra
in [m,M] for some scalars 0 < m < M, and (Φ1, . . . ,Φn) be a unital n−tuple positive linear
mappings Φi : B(H) → B(K), i = 1, . . . ,n. Denote h = M

m . Then

α2

(
n

∑
i=1

Φi(Ai)

)p

≤
n

∑
i=1

Φi(A
p
i ) ≤ α1

(
n

∑
i=1

Φi(Ai)

)p

for

α1 =

{
K(h, p) if p < 0 or 1 < p,

1 if 0 < p < 1,

α2 =

⎧⎪⎨⎪⎩
K(h, p)−1 if p < −1 or 2 < p,

1 if −1 ≥ p < 0 or 1 ≤ p ≤ 2,

K(h, p) if 0 < p < 1,

where the generalized Kantorovich constant K(m,M, p) is defined by (2.29).

Proof. This lemma is proved in a similar way as [124, Lemma 4.13] using converses
of Jensen’s inequality. �

Theorem 8.15 If r,s ∈ R, r < s, then

Δ(h,r,s)−1 Ms(A,ΦΦ) � Mr(A,ΦΦ), (8.34)

where the generalized Specht ratio Δ(h,r,s) cf. [124, eq. (2.97)] for h > 0 is defined as

Δ(h,r,s) =

⎧⎪⎪⎨⎪⎪⎩
K
(
hr, s

r

) 1
s if r < s, r,s �= 0,(

e logh
p

hp−1

h
p

hp−1

) sgn(p)
p

if r = 0 < s = p, or r = p < s = 0.
(8.35)

Proof. STEP 1: Assume 0 < r < s. Then 0 < msIK ≤ ∑n
i=1 Φi (As

i ) ≤ MsIK . Applying
Lemma 8.1 with p = r

s (0 < p < 1) and replacing Ai with As
i we obtain

K
(
hs,

r
s

)(
n

∑
i=1

Φi (As
i )

) r
s

≤
n

∑
i=1

Φi (Ar
i ) .

Since the function f (t) = logt is operator monotone and r > 0, we have

log

⎛⎝K
(
hs,

r
s

) 1
r

(
n

∑
i=1

Φi (As
i )

) 1
s
⎞⎠≤ log

(
n

∑
i=1

Φi (Ar
i )

) 1
r

,
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i.e.
log

(
Δ(h,r,s)−1 Ms(A,ΦΦ)

)
≤ logMr(A,ΦΦ). (8.36)

Since Δ(h,s,r) = Δ(h,r,s)−1 (see [124, p. 87]), (8.34) follows from (8.36).
STEP 2: Assume r < s < 0. Then, 0 < MrIK ≤ ∑n

i=1 Φi (Ar
i )≤ mrIK . Applying Lemma 8.1

with p = s
r (0 < p < 1) and replacing Ai with Ar

i we obtain

K
(
hr,

s
r

)(
n

∑
i=1

Φi (Ar
i )

) s
r

≤
n

∑
i=1

Φi (As
i ) .

Since s < 0, we have

log

⎛⎝K
(
hr,

s
r

) 1
s

(
n

∑
i=1

Φi (Ar
i )

) 1
r
⎞⎠≥ log

(
n

∑
i=1

Φi (As
i )

) 1
s

,

i.e.
log(Δ(h,r,s)Mr(A,ΦΦ)) ≥ logMs(A,ΦΦ). (8.37)

Now, (8.34) follows from (8.37).
STEP 3: Assume r < 0 < s. If 0 < −r < s or 0 < s < −r, we let p = r

s or p = s
r in

Lemma 8.1 (−1 < p < 0), respectively. Then we obtain

n

∑
i=1

Φi (Ar
i ) ≤ K

(
hs,

r
s

)(
n

∑
i=1

Φi (As
i )

) r
s

or
n

∑
i=1

Φi (As
i ) ≤ K

(
hr,

s
r

)(
n

∑
i=1

Φi (Ar
i )

) s
r

.

So we have
logMr(A,ΦΦ) ≥ log

(
Δ(h,r,s)−1 Ms(A,ΦΦ)

)
or

logMs(A,ΦΦ) ≤ log(Δ(h,r,s)Mr(A,ΦΦ)) .

STEP 4: Assume r = 0 < s. If r → 0 in (8.36), then

log
(

Δ(h,0,s)−1 Ms(A,ΦΦ)
)
≤ logM0(A,ΦΦ).

STEP 5: Assume r < s = 0. If s → 0 in (8.37), then

logM0(A,ΦΦ) ≤ log(Δ(h,r,0)Mr(A,ΦΦ)) .

�

Next, we consider the chaotic ordering among Mercer’s power operator means defined
by (8.18).
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Theorem 8.16 If r,s ∈ R, r < s, then

M̃r(A,ΦΦ) � M̃s(A,ΦΦ).

Proof. Analogously to the proof of Theorem 8.14, but using Theorem 8.10 instead of
Theorem 8.9. �

Now, we define, for any r,s ∈ R

R(r,s,A,ΦΦ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
n

∑
i=1

Φi

(
[(mr +Mr) IH −Ar

i ]
s
r

)] 1
s

, r �= 0,s �= 0,

exp

(
n

∑
i=1

Φi

(
log [(mr +Mr) IH −Ar

i ]
1
r

))
, r �= 0,s = 0,[

n

∑
i=1

Φi (exps [(logmM) IH − logAi])

] 1
s

, r = 0,s �= 0,

(8.38)

and S(r,s,A,ΦΦ) by (8.23). It is easy to see that R(r,s,A,ΦΦ) is well defined and also notice
that R(r,r,A,ΦΦ) = S(r,r,A,ΦΦ) = M̃r(A,ΦΦ) (including r = 0).

Theorem 8.17 Let r,s ∈ R, r < s.
(i) If r ≥ 0, then

M̃r(A,ΦΦ) � S(s,r,A,ΦΦ) � R(s,r,A,ΦΦ) � M̃s(A,ΦΦ). (8.39)

(ii) If s ≤ 0, then

M̃r(A,ΦΦ) � R(r,s,A,ΦΦ) � S(r,s,A,ΦΦ) � M̃s(A,ΦΦ). (8.40)

(iii) If r < 0 < s, then

M̃r(A,ΦΦ) � R(r,0,A,ΦΦ) � S(r,0,A,ΦΦ) � M̃0(A,ΦΦ)
� S(s,0,A,ΦΦ) � R(s,0,A,ΦΦ) � M̃s(A,ΦΦ). (8.41)

Proof. (i) STEP 1: Assume 0 < r < s. Applying Theorem 8.10 to the operator concave
function f (t) = t

r
s (note that 0 < r

s < 1 here) and replacing Ai, m and M with As
i , ms and

Ms we have (
(ms +Ms) IK −

n

∑
i=1

Φi (As
i )

) r
s

≥
n

∑
i=1

Φi

(
((ms +Ms) IH −As

i )
r
s

)
≥ MsIK −Ss

Ms −ms Mr +
Ss−msIK
Ms −ms mr ≥ (mr +Mr) IK −

n

∑
i=1

Φi (Ar
i ) .

Since the function f (t) = log t is operator monotone and r > 0, it follows that (8.39) holds.
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STEP 2: Assume r = 0 < s. Applying Theorem 8.10 to the operator concave function
f (t) = 1

s log t and replacing Ai, m and M with As
i , ms and Ms we have

1
s

log

(
(ms +Ms) IK −

n

∑
i=1

Φi (As
i )

)
≥

n

∑
i=1

Φi

(
1
s

log((ms +Ms) IH −As
i )
)

≥ MsIK −Ss

Ms −ms logM +
Ss −msIK
Ms −ms logm ≥ (logmM) IK −

n

∑
i=1

Φi (log(Ai)) ,

which gives (8.39) for r = 0.
(ii) STEP 1: Assume r < s < 0. Applying Theorem 8.10 to the operator concave

function f (t) = t
s
r (note that 0 < s

r < 1 here) and replacing Ai, m and M with Ar
i , mr and

Mr we have (
(mr +Mr) IK −

n

∑
i=1

Φi (Ar
i )

) s
r

≥
n

∑
i=1

Φi

(
((mr +Mr) IH −Ar

i )
s
r

)
≥ MrIK −Sr

Mr −mr Ms +
Sr −mrIK
Mr −mr ms ≥ (ms +Ms) IK −

n

∑
i=1

Φi (As
i ) .

Since s < 0, it follows that (8.40) holds.
STEP 2: Assume r < 0 = s. Applying Theorem 8.10 to the operator convex function
f (t) = 1

r logt (note that 1
r < 0 here) and replacing Ai, m and M with Ar

i , m
r and Mr we have

1
r

log

(
(mr +Mr) IK −

n

∑
i=1

Φi (Ar
i )

)
≤

n

∑
i=1

Φi

(
1
r

log((mr +Mr) IH −Ar
i )
)

≤ MrIK −Sr

Mr −mr logM +
Sr −mrIK
Mr −mr logm ≤ (logmM) IK −

n

∑
i=1

Φi (log(Ai)) ,

which gives (8.40) for s = 0.
(iii) Assume r < 0 < s. The desired inequality (8.41) follows set s = 0 in (ii) and r = 0

in (i). �

Remark 8.2 If we define by M̃r(B) = (mr1 + Mr1−Br)
1
r (Mercer’s mean for positive

invertible operator B with Sp(B)⊂[m,M], 0<m<M) and by M̃r(A)=(M̃r(A1), . . .,M̃r(An))
(for n−tuple A of positive invertible operators), we can write:

M̃r(A,ΦΦ) = M̃r(Mr(A,ΦΦ))

R(r,s,A,ΦΦ) = Ms(M̃r(A),ΦΦ),

so we can describe inequalities in Theorem 8.17 as mixed mean inequalities. One can also
ask the question: What is the complete set of inequalities among mixed means Mr(M̃s(A),ΦΦ),
M̃s(Mr(A,ΦΦ)), M̃r(Ms(A,ΦΦ)) and Ms(M̃r(A),ΦΦ) under the chaotic order? One part of the
answer is in Theorem 8.16 and Theorem 8.17.
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8.5 Refinements

In this section, we give a refinement of Mercer’s inequality for operator convex functions.
We use that result to refine monotonicity properties of power means of Mercer’s type for
operators. Finally, we consider related quasi-arithmetic means for operators.

Theorem 8.18 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators in B(H) with
spectra in [m,M] for some scalars 0 < m < M, and (Φ1, . . . ,Φn) be a unital n−tuple posi-
tive linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. If f ∈C ([m,M]) is operator convex,
then we have the following series of inequalities

f

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)
≤

n

∑
i=1

Φi ( f (mIH +MIH −Ai))

≤ MIK −∑n
i=1 Φi (Ai)

M−m
· f (M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

· f (m) (8.42)

≤ f (m) IK + f (M) IK −
n

∑
i=1

Φi ( f (Ai)) .

If a function f is operator concave, then the inequalities (8.42) are reversed.

Proof. The proof of this theorem is quite similar to the proof of Theorem 8.6. We omit
the details. �

We give applications to the ordering among Mercer’s power operator means defined by
(8.18).

Let R(r,s,A,ΦΦ) and S(r,s,A,ΦΦ) are defined by (8.38) and (8.23), respectively. To
simplify notations, in what follows we will write M̃r, R(r,s), S(r,s) instead of M̃r(A,ΦΦ),
R(r,s,A,ΦΦ), S(r,s,A,ΦΦ), respectively.

Figure 8.1 illustrates regions (i)− (vii) which determine the seven cases occurring in
Theorem 8.19.

Theorem 8.19 Let r,s ∈ R, r < s.
(i) If 1 ≤ r, then

M̃r(A,ΦΦ) ≤ S(s,r,A,ΦΦ) ≤ R(s,r,A,ΦΦ) ≤ M̃s(A,ΦΦ). (8.43)

(ii) If s ≤−1, then

M̃r(A,ΦΦ) ≤ R(r,s,A,ΦΦ) ≤ S(r,s,A,ΦΦ) ≤ M̃(A,ΦΦ)s. (8.44)

(iii) If r ≤−1,s ≥ 1, then

M̃r(A,ΦΦ) ≤ R(r,−1,A,ΦΦ) ≤ S(r,−1,A,ΦΦ)
≤ M̃−1(A,ΦΦ) ≤ S(1,−1,A,ΦΦ) ≤ R(1,−1,A,ΦΦ)
≤ M̃1(A,ΦΦ) ≤ S(s,1,A,ΦΦ) ≤ R(s,1,A,ΦΦ) (8.45)

≤ M̃s(A,ΦΦ).
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Figure 8.1: Regions (i)− (vii)

(iv) If 1
2 < r < 1 < s, then

M̃r(A,ΦΦ) ≤ R(r,1,A,ΦΦ) ≤ S(r,1,A,ΦΦ)
≤ M̃1(A,ΦΦ) ≤ S(s,1,A,ΦΦ) ≤ R(s,1,A,ΦΦ) (8.46)

≤ M̃s(A,ΦΦ).

(v) If r < −1 < s < − 1
2 , then

M̃r(A,ΦΦ) ≤ R(r,−1,A,ΦΦ) ≤ S(r,−1,A,ΦΦ)
≤ M̃−1(A,ΦΦ) ≤ S(s,−1,A,ΦΦ) ≤ R(s,−1,A,ΦΦ) (8.47)

≤ M̃s(A,ΦΦ).

(vi) If −1 < r ≤ 1
2 ,s ≥ 1; or −s ≤ r < s ≤ 1, then

M̃r(A,ΦΦ) ≤ C (m,M,r)S(s,r,A,ΦΦ) ≤C (m,M,r)2 R(s,r,A,ΦΦ)

≤ C (m,M,r)3 M̃s(A,ΦΦ). (8.48)

(vii) If r ≤−1,− 1
2 ≤ s < 1; or −1 ≤ r < s ≤−r, then

M̃r(A,ΦΦ) ≤ C (m,M,s)R(r,s,A,ΦΦ) ≤C (m,M,s)2 S(r,s,A,ΦΦ)

≤ C (m,M,s)3 M̃s(A,ΦΦ). (8.49)



8.5 REFINEMENTS 211

Proof. To simplify notations, in this proof we will write M̃r, R(r,s), S(r,s) instead of
M̃r(A,ΦΦ), R(r,s,A,ΦΦ), S(r,s,A,ΦΦ), respectively.

(i) Suppose that 1 ≤ r < s.
Applying inequalities (8.42) to the operator concave function f (t) = t

r
s (note that 0 <

r
s ≤ 1 here) and replacing Ai, m and M with As

i , ms and Ms, respectively, we have[
M̃s

]r ≥ [R(s,r)]r ≥ [S(s,r)]r ≥
[
M̃r

]r
. (8.50)

Raising these inequalities to the power 1
r , by the Löwner-Heinz theorem it follows that

(8.43) holds.

(ii) Suppose that r < s ≤−1.
Applying inequalities (8.43) to A−1 =

(
A−1

1 , . . . ,A−1
n

)
and observing that M̃−r(A−1,ΦΦ)

=
[
M̃r(A,ΦΦ)

]−1
, M̃−s(A−1,ΦΦ) =

[
M̃s(A,ΦΦ)

]−1
, S

(−r,−s,A−1,ΦΦ
)

= [S (r,s,A,ΦΦ)]−1,

R
(−r,−s,A−1,ΦΦ

)
= [R(r,s,A,ΦΦ)]−1, we have[

M̃s

]−1 ≤ [S (r,s)]−1 ≤ [R(r,s)]−1 ≤
[
M̃r

]−1
.

Hence, (8.44) holds.

(iii) Suppose that r ≤−1 and s ≥ 1.
Applying inequalities (8.42) to the operator convex function f (t) = t−1 we have[

M̃1

]−1 ≤ [R(1,−1)]−1 ≤ [S(1,−1)]−1 ≤
[
M̃−1

]−1
.

Hence,
M̃−1 ≤ S(1,−1)≤ R(1,−1)≤ M̃1.

If we let r = 1 in (8.43) and s =−1 in (8.43) then it follows thatM̃1 ≤ S (s,1)≤R(s,1)≤ M̃s

and M̃r ≤ R(r,−1) ≤ S (r,−1) ≤ M̃−1 holds. Hence, (8.45) holds.

(iv) Suppose that 1
2 < r < 1 < s.

Applying inequalities (8.42) to the operator convex function f (t) = t
1
r and replacing

Ai, m and M with Ar
i , mr and Mr, respectively, we have

M̃r ≤ R(r,1) ≤ S(r,1) ≤ M̃1.

If we let r = 1 in (8.43) then it follows that (8.46) holds.

(v) Suppose that r < −1 < s < − 1
2 .

Applying inequalities (8.46) to A−1 =
(
A−1

1 , . . . ,A−1
n

)
and following analogous arguing

as in (ii), we obtain (8.47).

(vi)
STEP 1: Suppose that 0 < r ≤ 1

2 ,1 ≤ s.
In the same way as in (i) we obtain that (8.50) holds in this case. Raising (8.50) to the

power 1
r , by Theorem 4.3 (i) it follows that (8.48) holds.
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STEP 2: Suppose that −1 < r < 0, 1 ≤ s.
Applying inequalities (8.42) to the operator convex function f (t) = t

r
s and replacing

Ai, m and M with As
i , ms and Ms, respectively, we have[

M̃s

]r ≤ [R(s,r)]r ≤ [S(s,r)]r ≤
[
M̃r

]r
.

Raising these inequalities to the power 1
r , by Theorem 4.3 (ii) it follows that (8.48) holds

(since K (M,m, p) = K (m,M, p) by [124, p. 77]).
STEP 3: Suppose that 0 < r < s ≤ 1 and −1 ≤−s ≤ r < 0.
In the same way as in STEP 1 and STEP 2, we have (8.48).
STEP 4: Suppose that 0 = r < s.
Applying inequalities (8.42) to the operator concave function f (t) = 1

s log t and replac-
ing Ai, m and M with As

i , ms and Ms, respectively, we obtain

logM̃s ≥ logR(s,0) ≥ logS (s,0) ≥ logM̃0.

By using Theorem 4.7, it follows that (8.48) holds for r = 0.

(vii) Suppose that r ≤−1,− 1
2 ≤ s < 1; or −1 ≤ r < s ≤−r.

Applying inequalities (8.48) to A−1 =
(
A−1

1 , . . . ,A−1
n

)
and following analogous arguing

as in (ii), we obtain (8.49). �

Remark 8.3 Besides these results in Theorem 8.19, one can prove in the same way that
for r < s < 2r,s > 1

M̃r(A,ΦΦ) ≤ R(r,s,A,ΦΦ) ≤ S(r,s,A,ΦΦ) ≤ M̃s(A,ΦΦ),

and for r < s < 1
2r,r < −1

M̃r(A,ΦΦ) ≤ S(s,r,A,ΦΦ) ≤ R(s,r,A,ΦΦ) ≤ M̃s(A,ΦΦ)

also hold, but to include these cases in the figure we should compare sequences of inequal-
ities in common regions (see Remark 8.4).

Remark 8.4 If we define by Mr(A,ΦΦ) = (∑n
i=1 Φi(Ar

i ))
1
r (the weighted power mean),

by M̃r(B) = (mr1 + Mr1− Br)
1
r (Mercer’s mean for positive invertible operator B with

Sp(B) ⊂ [m,M], 0 < m < M) and by M̃r(A) = (M̃r(A1), . . . ,M̃r(An)) (for an n−tuple A of
positive invertible operators), we can write:

M̃r(A,ΦΦ) = M̃r(Mr(A,ΦΦ)),
R(r,s,A,ΦΦ) = Ms(M̃r(A),ΦΦ),

so one can describe inequalities in Theorem 8.19 as mixed mean inequalities. We can also
state the following open problem: What is the complete set of inequalities among mixed
means Mr(M̃s(A),ΦΦ), M̃s(Mr(A,ΦΦ)), M̃r(Ms(A,ΦΦ)) and Ms(M̃r(A),ΦΦ)? Some special
cases are given in Theorem 8.19 and Remark 8.3. Also, it is easy to see that

M̃r(Mr(A,ΦΦ)) ≤ M̃s(Mr(A,ΦΦ))
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reduces to monotonicity property of Mercer’s means, and that in some cases,

M̃s(Ms(A,ΦΦ)) ≤ M̃s(Mr(A,ΦΦ))

reduces to inequalities between (∑n
i=1 Φi(Ar

i ))
s/r and ∑n

i=1 Φ(As
i ).

Finally, we consider quasi-arithmetic means of Mercer’s type defined by (8.29).

Theorem 8.20 Let A and ΦΦ be as in the previous context and m < M. Let ϕ ,ψ ∈
C ([m,M]) be strictly monotonic functions on an interval [m,M].

(i) If either ψ ◦ϕ−1 is operator convex and ψ−1 is operator monotone, or ψ ◦ϕ−1 is
operator concave and −ψ−1 is operator monotone, then

M̃ϕ (A,ΦΦ)

≤ ψ−1

(
n

∑
i=1

Φi
((

ψ ◦ϕ−1)(ϕ (m) IH + ϕ (M) IH −ϕ (Ai))
))

(8.51)

≤ ψ−1
(

ϕ (M) IK −∑n
i=1 Φi (ϕ (Ai))

ϕ (M)−ϕ (m)
·ψ (M)+ ∑n

i=1 Φi (ϕ (Ai))−ϕ (m) IK
ϕ (M)−ϕ (m)

·ψ (m)
)

≤ M̃ψ (A,ΦΦ) .

(ii) If either ψ ◦ϕ−1 is operator concave and ψ−1 is operator monotone, or ψ ◦ϕ−1

is operator convex and −ψ−1 is operator monotone, then the reverse inequalities
(8.51) hold.

Proof. The proof is quite similar to the proof of Theorem 8.8 and we omit the details.

�

Theorem 8.21 Under the hypotheses of Theorem 8.20, we have

(i) if either ϕ is operator concave and ϕ−1 is operator monotone or ϕ is operator
convex and −ϕ−1 is operator monotone, and either ψ is operator convex and ψ−1

is operator monotone or ψ is operator concave and −ψ−1 is operator monotone,
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then

M̃ϕ (A,ΦΦ)

≤ ϕ−1
(

MIK −∑n
i=1 Φi (Ai)

M−m
·ϕ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ϕ(m)
)

≤ ϕ−1

(
n

∑
i=1

Φi (ϕ (mIH +MIH −Ai))

)
≤ M̃1 (A,ΦΦ) (8.52)

≤ ψ−1

(
n

∑
i=1

Φi (ψ (mIH +MIH −Ai))

)

≤ ψ−1
(

MIK −∑n
i=1 Φi (Ai)

M−m
·ψ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ψ(m)
)

≤ M̃ψ (A,ΦΦ) .

(ii) if either ϕ is operator convex and ϕ−1 is operator monotone or ϕ is operator con-
cave and −ϕ−1 is operator monotone, and either ψ is operator concave and ψ−1 is
operator monotone or ψ is operator convex and −ψ−1 is operator monotone, then
the reverse inequalities (8.52) hold.

Proof. Suppose that ϕ is operator concave and ϕ−1 is operator monotone, and ψ is
operator convex and ψ−1 is operator monotone. By Theorem 8.18, we have

ϕ

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)

≥
n

∑
i=1

Φi (ϕ (mIH +MIH −Ai))

≥ MIK −∑n
i=1 Φi (Ai)

M−m
·ϕ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ϕ(m)

≥ ϕ (m) IK + ϕ (M) IK −
n

∑
i=1

Φi (ϕ (Ai)) .

Since ϕ−1 is operator monotone, it follows that

M̃ϕ (A,ΦΦ)

≤ ϕ−1
(

MIK −∑n
i=1 Φi (Ai)

M−m
·ϕ(M)+

∑n
i=1 Φi (Ai)−mIK

M−m
·ϕ(m)

)
≤ ϕ−1

(
n

∑
i=1

Φi (ϕ (mIH +MIH −Ai))

)
≤ M̃1 (A,ΦΦ) .
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Also, by Theorem 8.18, we have

ψ

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)

≤
n

∑
i=1

Φi (ψ (mIH +MIH −Ai))

≤ MIK −∑n
i=1 Φi (Ai)

M−m
·ψ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ψ(m)

≤ ψ (m) IK + ψ (M) IK −
n

∑
i=1

Φi (ψ (Ai)) .

Since ψ−1 is operator monotone, it follows that

M̃1 (A,ΦΦ)

≤ ψ−1

(
n

∑
i=1

Φi (ψ (mIH +MIH −Ai))

)

≤ ψ−1
(

MIK −∑n
i=1 Φi (Ai)

M−m
·ψ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ψ(m)
)

≤ M̃ψ (A,ΦΦ) .

Hence, we have inequalities (8.52). In remaining cases the proof is analogous. �

Remark 8.5 Results given in this chapter we can generalize for continuous fields of op-
erators, similarly to how it was done for Jensen’s inequality in Chapter 9.

8.6 Notes

For our exposition we have used Mercer [183, 184, 185], Matković-Pečarić [176, 177] and
Matković-Pečarić-I. Perić [178, 179].





Chapter9
Jensen’s Operator Inequality

In this chapter, we give a general formulation of Jensen’s operator inequality for some
non-unital fields of positive linear mappings, and we consider different types of converse
inequalities. We discuss the ordering among power functions in a general setting. As an
application we get the order among power means and some comparison theorems for quasi-
arithmetic means. We also give a refined calculation of bounds in converses of Jensen’s
operator inequality.

9.1 Continuous fields of operators

Let T be a locally compact Hausdorff space, and let A be a C∗-algebra of operators on a
Hilbert space H. We say that a field (xt)t∈T of operators in A is continuous if the function
t �→ xt is norm continuous on T. If in addition μ is a bounded Radon measure on T and the
function t �→ ‖xt‖ is integrable, then we can form the Bochner integral

∫
T xt dμ(t), which

is the unique element in A such that

ϕ
(∫

T
xt dμ(t)

)
=

∫
T

ϕ(xt)dμ(t)

for every linear functional ϕ in the norm dual A ∗, cf. [137, Section 4.1].
Assume furthermore that there is a field (Φt )t∈T of positive linear mappings Φt : A →

B from A to another C∗-algebra B of operators on a Hilbert space K. We say that such

217
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a field is continuous if the function t �→ Φt(x) is continuous for every x ∈ A . If the C∗-
algebras are unital and the field t → Φt (1) is integrable with integral equals 1, we say that
(Φt )t∈T is unital.

Theorem 9.1 Let f : J → R be an operator convex function defined on an interval J,
and let A and B be unital C∗-algebras. If (Φt)t∈T is a unital field of positive linear
mappings Φt : A → B defined on a locally compact Hausdorff space T with a bounded
Radon measure μ , then the inequality

f

(∫
T

Φt(xt)dμ(t)
)
≤

∫
T

Φt( f (xt ))dμ(t) (9.1)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in J.

Proof. We first note that the function t �→ Φt (xt) ∈ B is continuous and bounded,
hence integrable with respect to the bounded Radon measure μ . We may organize the set
CB(T,A ) of bounded continuous functions on T with values in A as a normed involutive
algebra by applying the point-wise operations and setting

‖(yt)t∈T ‖ = sup
t∈T

‖yt‖ (yt)t∈T ∈CB(T,A ),

and it is not difficult to verify that the norm is already complete and satisfy the C∗-identity.
In fact, this is a standard construction in C∗-algebra theory. It follows that f ((xt )t∈T ) =
( f (xt ))t∈T . We then consider the mapping

π : CB(T,A ) → M(B) ⊆ B(K)

defined by setting

π ((xt)t∈T ) =
∫

T
Φt(xt)dμ(t),

and note that it is a unital positive linear mapping. Setting x = (xt)t∈T ∈CB(T,A ), we use
the Davis-Choi-Jensen inequality to obtain

f (π ((xt)t∈T )) = f (π(x)) ≤ π( f (x)) = π
(
f
(
(xt)t∈T

))
= π

((
f (xt )

)
t∈T

)
,

but this is just the statement of the theorem. �

In the following theorem we give a converse of Jensen’s inequality (9.1). For a function
f : [m,M] → R we use the standard notation:

α f =
f (M)− f (m)

M−m
, β f =

M f (m)−mf (M)
M−m

. (9.2)

Theorem 9.2 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a uni-
tal C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital field of positive lin-
ear mappings Φt : A →B from A to another unitalC∗−algebra B. Let f ,g : [m,M]→R
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and F :U×V →R be functions such that f ([m,M])⊂U, g([m,M])⊂V and F is bounded.
If F is operator monotone in the first variable and f is convex in the interval [m,M], then

F

[∫
T

Φt ( f (xt))dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≤ sup

m≤z≤M
F
[
α f z+ β f ,g(z)

]
1. (9.3)

In the dual case (when f is concave) the opposite inequality holds in (9.3) with inf instead
of sup.

Proof. For convex f the inequality f (z) ≤ α f z+ β f holds for every z ∈ [m,M]. Thus,
by using functional calculus, f (xt) ≤ α f xt + β f 1 for every t ∈ T . Applying the positive
linear mappings Φt and integrating, we obtain∫

T
Φt ( f (xt ))dμ(t) ≤ α f

∫
T

Φ(xt)dμ(t)+ β f1.

Now, using operator monotonicity of F(·,v), we obtain

F

[∫
T

Φt ( f (xt))dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≤ F

[
α f

∫
T

Φt(xt)dμ(t)+ β f1,g

(∫
T

Φt(xt)dμ(t)
)]

≤ sup
m≤z≤M

F
[
α f z+ β f ,g(z)

]
1.

�

Numerous applications of the previous theorem can be given. For example, we give
generalizations of some results from [281].

Theorem 9.3 Let (At)t∈T be a continuous field of positive operators on a Hilbert space H
defined on a locally compact Hausdorff space T equipped with a bounded Radon measure
μ . We assume the spectra are in [m,M] for some 0 < m < M. Let furthermore (xt)t∈T be
a continuous field of vectors in H such that

∫
T ‖xt‖2dμ(t) = 1. Then for any λ ≥ 0, p ≥ 1

and q ≥ 1 we have(∫
T
〈Ap

t xt ,xt〉dμ(t)
)1/q

−λ
∫

T
〈Atxt ,xt〉dμ(t) ≤C(λ ,m,M, p,q), (9.4)

where the constant

C(λ ,m,M, p,q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M
(
M

p
q−1−λ

)
, 0 < λ ≤ αp

q
M

p
(

1
q−1

)

q−1
q

(
q

αp
λ
) 1

1−q

+
βp

αp
λ ,

αp

q
M

p
(

1
q−1

)
≤ λ ≤ αp

q
m

p
(

1
q−1

)

m
(
m

p
q−1−λ

)
,

αp

q
m

p
(

1
q−1

)
≤ λ

and αp and βp are the constants α f and β f associated with the function f (z) = zp.
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Proof. Applying Theorem 9.2 for the functions

f (z) = zp, F(u,v) = u1/q−λv,

and unital fields of positive linear mappings Φt : B(H) → C defined by setting Φt(At) =
〈Atxt ,xt〉 for t ∈ T , the problem is reduced to determine supm≤z≤M H(z) where H(z) =
(αpz+ βp)1/q−λ z. �

Applying Theorem 9.3 we obtain the following result with the r−geometric mean
A#rB.

Corollary 9.1 Let (At)t∈T and (Bt)t∈T be continuous fields of positive invertible opera-
tors on a Hilbert space H defined on a locally compact Hausdorff space T equipped with
a bounded Radon measure μ such that

m1IH ≤ At ≤ M1IH and m2IH ≤ Bt ≤ M2IH

for all t ∈ T for some 0 < m1 < M1 and 0 < m2 < M2. Then for any λ ≥ 0, s ≥ 1, p ≥ 1
and any continuous field (xt)t∈T of vectors in H such that

∫
T ‖xt‖2dμ(t) = 1 we have(∫

T
〈Ap

t xt ,xt〉dμ(t)
)1/p(∫

T
〈Bq

t xt ,xt〉dμ(t)
)1/q

−λ
∫

T
〈Bq

t #1/sA
p
t xt ,xt〉dμ(t)

≤C

(
λ ,

mp/s
1

Mq/s
2

,
Mp/s

1

mq/s
2

,s, p

)
Mq

2 ,

(9.5)

where the constant C is defined in Theorem 9.3 and 1/p+1/q = 1.

Proof. By using Theorem 9.3 we obtain for any λ ≥ 0, for any continuous field (Ct )t∈T

of positive operators with mIH ≤Ct ≤MIH and a square integrable continuous field (yt)t∈T

of vectors in H the inequality(∫
T
〈Cs

t yt ,yt〉dμ(t)
)1/p(∫

T
〈yt ,yt〉dμ(t)

)1/q

−λ
∫

T
〈Ctyt ,yt〉dμ(t)

≤C(λ ,m,M,s, p)
∫

T
〈yt ,yt〉dμ(t).

(9.6)

Set now Ct =
(
B−q/2

t Ap
t B−q/2

t

)1/s
and yt = Bq/2

t xt for t ∈ T in (9.6) and observe that

mp/s
1

Mq/s
2

IH ≤
(
B−q/2

t Ap
t B−q/2

t

)1/s ≤ Mp/s
1

mq/s
2

IH .

By using the definition of the 1/s−geometric mean and rearranging (9.6) we obtain(∫
T
〈Ap

t xt ,xt〉dμ(t)
)1/p(∫

T
〈Bq

t xt ,xt〉dμ(t)
)1/q

−λ
∫

T
〈Bq

t #1/sA
p
t xt ,xt〉dμ(t)

≤C

(
λ ,

mp/s
1

M
q/s
2

,
Mp/s

1

m
q/s
2

,s, p

)∫
T 〈Bq

t xt ,xt〉dμ(t) ≤C

(
λ ,

mp/s
1

Mq/s
2

,
Mp/s

1

mq/s
2

,s, p

)
Mq

2 ,

which gives (9.5). �
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In the present context we may obtain results of the Li-Mathias type by using Theo-
rem 9.2 and the following result which is a simple consequence of Theorem 9.1.

Theorem 9.4 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗−algebra A defined on a locally compact Hausdorff space T equipped with a
bounded Radon measure μ . We assume the spectra are in [m,M]. Let furthermore (Φt)t∈T

be a unital field of positive linear mappings Φt : A → B from A to another unital
C∗−algebra B. Let f ,g : [m,M]→R and F :U×V →R be functions such that f ([m,M])⊂
U, g([m,M]) ⊂V and F is bounded. If F is operator monotone in the first variable and f
is operator convex in the interval [m,M], then

F

[∫
T

Φt ( f (xt)) dμ(t),g
(∫

T
Φt (xt)dμ(t)

)]
≥ inf

m≤z≤M
F [ f (z),g(z)]1. (9.7)

In the dual case (when f is operator concave) the opposite inequality holds in (9.7) with
sup instead of inf.

We also give generalizations of some results from [46].

Theorem 9.5 Let f be a convex function on [0,∞) and let ‖ · ‖ be a normalized unitarily
invariant norm on B(H) for some finite dimensional Hilbert space H. Let (Φt)t∈T be a
unital field of positive linear mappings Φt : B(H) → B(K), where K is a Hilbert space,
defined on a locally compact Hausdorff space T equipped with a bounded Radon measure
μ . Then for every continuous field of positive operators (At)t∈T we have∫

T
Φt( f (At ))dμ(t) ≤ f (0)IK +

∫
T

f (‖At‖)− f (0)
‖At‖ Φt(At)dμ(t).

Especially, for f (0) ≤ 0, the inequality∫
T

Φt ( f (At))dμ(t) ≤
∫

T

f (‖At‖)
‖At‖ Φt(At)dμ(t). (9.8)

is valid.

Proof. Since f is a convex function, f (x) ≤ M−x
M−m f (m) + x−m

M−m f (M) for every x ∈
[m,M], m ≤ M. Since ‖ · ‖ is normalized and unitarily invariant, we have 0 < At ≤ ‖At‖IH
and thus

f (At) ≤ ‖At‖IH −At

‖At‖ f (0)+
At

‖At‖ f (‖At‖)
for every t ∈ T . Applying positive linear mappings and integrating we obtain∫

T
Φt( f (At ))dμ(t) ≤ f (0)

[
IK −

∫
T

Φt(At)
‖At‖ dμ(t)

]
+

∫
T

f (‖At‖)
‖At‖ Φt(At)dμ(t) (9.9)

or ∫
T

Φt( f (At ))dμ(t) ≤ f (0)IH +
∫
T

f (‖At‖)− f (0)
‖At‖ Φt (At)dμ(t).

Note that since
∫
T

Φt(At)
‖At‖ dμ(t)≤ ∫

T
‖At‖Φt(IH )

‖At‖ dμ(t) = IK , we obtain, for f (0) ≤ 0, inequal-
ity (9.8) from (9.9). �
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Remark 9.1 Setting T = {1} the inequality (9.8) gives

Φ( f (A)) ≤ f (‖A‖)
‖A‖ Φ(A).

Furthermore, setting that Φ is the identical mapping, we get the inequality f (‖A‖) ≥
‖ f (A)‖ obtained in [46] under the assumption that f is a non-negative convex function
with f (0) = 0.

Related inequalities may be obtained by using subdifferentials. If f : R→R is a convex
function and [m,M] is a closed bounded real interval, then a subdifferential function of f
on [m,M] is any function l : [m,M] → R such that

l(x) ∈ [ f ′−(x), f ′+(x)], x ∈ (m,M),

where f ′− and f ′+ are the one-sides derivatives of f and l(m) = f ′+(m) and l(M) = f ′−(M).
Since this functions are Borel measurable, we may use the Borel functional calculus. Sub-
differential function for concave functions is defined in analogous way.

Theorem 9.6 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a uni-
tal C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure μ , and let (Φt )t∈T be a unital field of positive
linear mappings Φt : A → B from A to another unital C∗-algebra B. If f : [m,M] → R

is a convex function then

f (y)1+ l(y)
(∫

T
Φt (xt)dμ(t)− y1

)
≤

∫
T

Φt ( f (xt))dμ(t)

≤ f (x)1− x
∫

T
Φt (l(xt))dμ(t)+

∫
T

Φt (l(xt)xt)dμ(t)
(9.10)

for every x,y ∈ [m,M], where l is the subdifferential of f on [m,M]. In the dual case ( f is
concave) the opposite inequality holds in (9.10).

Proof. Since f is convex we have f (x) ≥ f (y)+ l(y)(x− y) for every x,y ∈ [m,M]. By
using the functional calculus it then follows that f (xt ) ≥ f (y)1+ l(y)(xt − y1) for t ∈ T .
Applying the positive linear mappings Φt and integrating, LHS of (9.10) follows. The RHS
of (9.10) follows similarly by using the functional calculus in the variable y. �

Numerous inequalities can be obtained from (9.10). For example, LHS of (9.10) may
be used to obtain an estimation from below in the sense of Theorem 9.2. Namely, the
following theorem holds.

Theorem 9.7 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a uni-
tal C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure μ , and let (Φt )t∈T be a unital field of positive li-
near mappings Φt : A →B from A to another unitalC∗-algebra B. Let f ,g : [m,M]→R

and F : U ×V → R be functions such that f ([m,M]) ⊂U, g([m,M]) ⊂V, F is bounded, f
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is convex and f (y)+ l(y)(t− y) ∈U for every y,t ∈ [m,M] where l is the subdifferential of
f on [m,M]. If F is operator monotone in the first variable, then

F

[∫
T

Φt ( f (xt )) dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≥ inf

m≤z≤M
F [ f (y)+ l(y)(z− y),g(z)]1

(9.11)
for every y ∈ [m,M]. In the dual case (when f is concave) the opposite inequality holds in
(9.11) with sup instead of inf.

Using LHS of (9.10) we can give generalizations of some dual results from [46].

Theorem 9.8 Let (xt)t∈T be a bounded continuous field of positive elements in a unital
C∗-algebra A defined on a locally compact Hausdorff space T equipped with a bounded
Radon measure μ , and let (Φt)t∈T be a unital field of positive linear mappings Φt : A →B
from A to another unitalC∗-algebra B acting on a finite dimensional Hilbert space K. Let
‖ · ‖ be unitarily invariant norm on B(K) and let f : [0,∞) → R be an increasing function.

(1) If ‖1‖ = 1 and f is convex with f (0) ≤ 0 then

f

(
‖
∫

T
Φt(xt)dμ(t)‖

)
≤ ‖

∫
T

Φt( f (xt ))dμ(t)‖. (9.12)

(2) If
∫
T Φt(xt)dμ(t) ≤ ‖∫

T Φt (xt)dμ(t)‖1 and f is concave then∫
T

Φt( f (xt ))dμ(t) ≤ f

(
‖
∫

T
Φt(xt)dμ(t)‖

)
1. (9.13)

Proof. Since f (0)≤ 0 and f is increasing we have l(y)y− f (y)≥ 0 and l(y) ≥ 0. From
(9.10) and the triangle inequality we have

l(y)‖
∫

T
Φt(xt)dμ(t)‖ ≤ ‖

∫
T

Φt ( f (xt ))‖+(l(y)y− f (y)).

Now (9.12) follows by setting y = ‖∫
T Φt(xt)dμ(t)‖. Inequality (9.13) follows imme-

diately from the assumptions and from the dual case of LHS in (9.10) by setting y =
‖∫

T Φt (xt)dμ(t)‖. �

Finally, to illustrate how RHS of (9.10) works, we set

x =
‖∫

T Φt(l(xt)xt)dμ(t)‖
‖∫

T Φt(l(xt ))dμ(t)‖
and obtain a Slater type inequality∫

T
Φt ( f (xt))dμ(t) ≤ f

(‖∫
T Φt(l(xt )xt)dμ(t)‖

‖∫
T Φt (l(xt))dμ(t)‖

)
1

under the condition ∫
T Φt(l(xt )xt)dμ(t)

‖∫
T Φt(l(xt )xt)dμ(t)‖ ≤

∫
T Φt(l(xt))dμ(t)

‖∫
T Φt (l(xt))dμ(t)‖ .
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9.2 Non-unital fields of positive linear mappings

In this section we observe one type of non-unital fields of positive linear mappings, which
is a generalization of the results obtained in previous section.

Let T be a locally compact Hausdorff space with a bounded Radon measure μ . For
convenience, we use the abbreviation Pk[A ,B] for the set of all fields (Φt )t∈T of positive
linear mappings Φt : A → B from a unital C∗−algebra A to another unital C∗−algebra
B, such that the field t → Φt(1) is integrable with

∫
T Φt(1)dμ(t) = k1 for some positive

scalar k.

Let Φ be a normalized positive linear mapping on B(H) and f an operator convex func-
tion on an interval J. We recall that Jensen’s inequality asserts that f (Φ(A)) ≤ Φ( f (A))
holds for every self-adjoint operator A on a Hilbert space H whose the spectrum is con-
tained in J. But if Φ(1) = k1, for some positive scalar k, then f (Φ(A)) �≤ Φ( f (A)). Really,
let Φ : M2 (M2(C)) → M2 (M2(C)) be a positive linear mapping defined by

Φ
(

A 0
0 B

)
=

(
A+B 0

0 A+B

)
for A, B ∈ M2(C). Then Φ(I) = 2I. Let f (t) = t2. Then f is the operator convex function.
Put

A =
(

1 1
1 1

)
and B =

(
2 0
0 1

)
.

We have

f

(
Φ

(
A 0
0 B

))
−Φ

(
f

(
A 0
0 B

))

=

⎛⎜⎜⎝
10 5 0 0
5 5 0 0
0 0 10 5
0 0 5 5

⎞⎟⎟⎠−

⎛⎜⎜⎝
6 2 0 0
2 3 0 0
0 0 6 2
0 0 2 3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
4 3 0 0
3 2 0 0
0 0 4 3
0 0 3 2

⎞⎟⎟⎠ �≥ 0.

But, the following theorem is equivalent to Theorem 9.1.

Theorem 9.9 Let f : J → R be an operator convex function defined on an interval J, and
let A and B be unital C∗-algebras. Let T be a locally compact Hausdorff space with a
bounded Radon measure μ . If a field (Φt)t∈T ∈ Pk[A ,B], then the inequality

f

(
1
k

∫
T

Φt(xt)dμ(t)
)
≤ 1

k

∫
T

Φt( f (xt ))dμ(t) (9.14)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in J. In the dual case (when f is operator concave) the opposite inequality holds
in (9.14).
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In the present context we may obtain results of the Li-Mathias type, which is a genera-
lization of Theorem 9.2.

Theorem 9.10 Let A and B be unitalC∗-algebras. Let (xt)t∈T be a bounded continuous
field of self-adjoint elements in A with spectra in [m,M] defined on a locally compact
Hausdorff space T equippedwith a boundedRadon measure μ . Furthermore, let (Φt )t∈T ∈
Pk[A ,B] and f : [m,M] → R, g : [km,kM] → R and F : U ×V → R be functions such
that (k f )([m,M]) ⊂ U, g([km,kM]) ⊂ V and F is bounded. Let {conx.} (resp. {conc.})
denotes the set of operator convex (resp. operator concave) functions defined on [m,M]. If
F is operator monotone in the first variable, then

inf
km≤z≤kM

F

[
k ·h1

(
1
k
z

)
,g(z)

]
1 ≤ F [

∫
T Φt ( f (xt))dμ(t),g(

∫
T Φt(xt)dμ(t))]

≤ sup
km≤z≤kM

F

[
k ·h2

(
1
k
z

)
,g(z)

]
1

(9.15)

holds for every h1 ∈ {conx.}, h1 ≤ f and h2 ∈ {conc.}, h2 ≥ f .

Proof. We prove only RHS of (9.15). Let h2 be operator concave function on [m,M]
such that f (z) ≤ h2(z) for every z ∈ [m,M]. Thus, by using the functional calculus, f (xt )≤
h2(xt) for every t ∈ T . Applying the positive linear mappings Φt and integrating, we obtain∫

T
Φt ( f (xt ))dμ(t) ≤

∫
T

Φt (h2(xt))dμ(t).

Furthermore, by using Theorem 9.9, we have

∫
T

Φt (h2(xt)) dμ(t) ≤ k ·h2

(
1
k

∫
T

Φt(xt)dμ(t)
)

and it follows that
∫

T
Φt ( f (xt ))dμ(t)≤ k ·h2

(
1
k

∫
T

Φt(xt)dμ(t)
)

. Since mΦt(1)≤Φt(xt)

≤ M Φt(1), it follows that km1 ≤ ∫
T Φt(xt)dμ(t) ≤ kM 1. Using operator monotonicity of

F(·,v), we obtain

F

[∫
T

Φt ( f (xt))dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≤ F

[
k ·h2

(
1
k

∫
T

Φt(xt)dμ(t)
)

,g

(∫
T

Φt(xt)dμ(t)
)]

≤ sup
km≤z≤kM

F

[
k ·h2

(
1
k
z

)
,g(z)

]
1.

�
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Remark 9.2 Putting F(u,v) = u− v and F(u,v) = u−1/2vu−1/2 in Theorem 9.10, we ob-
tain that

inf
km≤z≤kM

{
k ·h1

(
1
k
z

)
−g(z)

}
1 ≤

∫
T

Φt ( f (xt))dμ(t)−g

(∫
T

Φt(xt)dμ(t)
)

≤ sup
km≤z≤kM

{
k ·h2

(
1
k
z

)
−g(z)

}
1

holds and if in addition g(t) > 0 for all t ∈ [m,M] then

inf
km≤z≤kM

k ·h1
(

1
k z

)
g(z)

g

(∫
T

Φt (xt)dμ(t)
)
≤

∫
T

Φt ( f (xt ))dμ(t)

≤ sup
km≤z≤kM

k ·h2
( 1

k z
)

g(z)
g

(∫
T

Φt(xt)dμ(t)
)

holds for every h1 ∈ {conx.}, h1 ≤ f and h2 ∈ {conc.}, h2 ≥ f .

Applying RHS of (9.15) for a convex function f (or LHS of (9.15) for a concave func-
tion f ) we obtain the following theorem (compare with Theorem 9.2).

Theorem 9.11 Let (xt)t∈T and (Φt)t∈T be as in Theorem 9.10. Let f : [m,M] → R, g :
[km,kM] →R and F :U×V → R be functions such that (k f )([m,M])⊂U, g([km,kM])⊂
V and F is bounded. If F is operator monotone in the first variable and f is convex in the
interval [m,M], then

F

[∫
T

Φt ( f (xt ))dμ(t),g
(∫

T
Φt (xt)dμ(t)

)]
≤ sup

km≤z≤kM
F
[
α f z+ β f k,g(z)

]
1. (9.16)

In the dual case (when f is concave) the opposite inequality holds in (9.16) with inf instead
of sup.

Proof. We prove only the convex case. For convex f the inequality f (z) ≤ α f z+ β f

holds for every z ∈ [m,M]. Thus, by putting h2(z) = α f z+ β f in RHS of (9.15) we obtain
(9.16). �

Numerous applications of the previous theorem can be given. Namely, applying Theo-
rem 9.11 for the function F(u,v) = u−λv, we obtain the following result.

Corollary 9.2 Let (xt)t∈T and (Φt)t∈T be as in Theorem 9.10. If f : [m,M]→R is convex
in the interval [m,M] and g : [km,kM] → R, then for any λ ∈ R∫

T
Φt ( f (xt ))dμ(t)≤ λ g

(∫
T

Φt(xt)dμ(t)
)

+C1, (9.17)

where
C = sup

km≤z≤kM

{
α f z+ β f k−λg(z)

}
.
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If furthermore λg is strictly convex differentiable, then the constant C ≡C(m,M, f ,g,k,λ )
can be written more precisely as

C = α f z0 + β f k−λg(z0),

where

z0 =

⎧⎨⎩ g′−1(α f /λ ) if λg′(km) ≤ α f ≤ λg′(kM),
km if λg′(km) ≥ α f ,
kM if λg′(kM) ≤ α f .

In the dual case (when f is concave and λg is strictly concave differentiable) the oppo-
site inequality holds in (9.17) with min instead of max with the opposite condition while
determining z0.

Remark 9.3 We assume that (xt)t∈T and (Φt)t∈T are as in Theorem 9.10. If f : [m,M] →
R is convex and λg : [km,kM] → R is strictly concave differentiable, then the constant
C ≡C(m,M, f ,g,k,λ ) in (9.17) can be written more precisely as

C =

{
α f kM + β f k−λg(kM) if α f −λ αg,k ≥ 0,

α f km+ β f k−λg(km) if α f −λ αg,k ≤ 0,

where

αg,k =
g(kM)−g(km)

kM− km
.

Setting Φt (At) = 〈Atxt ,xt〉 for xt ∈H and t ∈ T in Corollary 9.2 and Remark 9.3 give a
generalization of all results from [96, Section 2.4]. For example, we obtain the following
two corollaries.

Corollary 9.3 Let (At)t∈T be a continuous field of positive operators on a Hilbert space
H defined on a locally compact Hausdorff space T equipped with a bounded Radon mea-
sure μ . We assume the spectra are in [m,M] for some 0 < m < M. Let furthermore (xt)t∈T

be a continuous field of vectors in H such that
∫
T ‖xt‖2dμ(t) = k for some scalar k > 0.

Then for any real λ ,q, p∫
T
〈Ap

t xt ,xt〉dμ(t)−λ
(∫

T
〈Atxt ,xt〉dμ(t)

)q

≤C, (9.18)

where the constant C ≡C(λ ,m,M, p,q,k) is

C =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(q−1)λ

(
αp

λq

)q/(q−1)

+ βpk if λqmq−1 ≤ αp

kq−1 ≤ λqMq−1,

kMp −λ (kM)q if
αp

kq−1 ≥ λqMq−1,

kmp−λ (km)q if
αp

kq−1 ≤ λqmq−1,

(9.19)

in the case λq(q−1) > 0 and p ∈ R\ (0,1)
or

C =

{
kMp −λ (kM)q if αp−λkq−1αq ≥ 0,

kmp−λ (km)q if αp−λkq−1αq ≤ 0,
(9.20)
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in the case λq(q−1) < 0 and p∈R\(0,1). In the dual case: λq(q−1) < 0 and p∈ (0,1)
the opposite inequality holds in (9.18) with the opposite condition while determining the
constant C in (9.19). But in the dual case: λq(q− 1) > 0 and p ∈ (0,1) the opposite
inequality holds in (9.18) with the opposite condition while determining the constant C in
(9.20).

Constants αp and βp in the terms above are the constants α f and β f associated with
the function f (z) = zp.

Corollary 9.4 Let (At)t∈T and (xt)t∈T be as in Corollary 9.3. Then for any real number
r �= 0 we have ∫

T
〈exp(rAt)xt ,xt〉dμ(t)− exp

(
r
∫

T
〈Atxt ,xt〉dμ(t)

)
≤C1, (9.21)

∫
T
〈exp(rAt)xt ,xt〉dμ(t) ≤C2 exp

(
r
∫

T
〈Atxt ,xt〉dμ(t)

)
, (9.22)

where constants C1 ≡C1(r,m,M,k) and C2 ≡C2(r,m,M,k) are

C1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α
r

log
( α

re

)
+ kβ if rerkm ≤ α ≤ rerkM,

kMα + kβ − erkM if rerkM ≤ α,

kmα + kβ − erkm if rerkm ≥ α,

C2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α
re

ekrβ/α if krerm ≤ α ≤ krerM,

ke(1−k)rm if krerm ≥ α,

ke(1−k)rM if krerM ≤ α.

Constants α and β in the terms above are the constants α f and β f associated with the
function f (z) = erz.

By using subdifferentials we can give an estimation from below in the sense of The-
orem 9.11 (compare with Theorem 9.6). It follows from Theorem 9.10 applying LHS of
(9.15) for a convex function f (or RHS of (9.15) for a concave function f ).

Theorem 9.12 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space
T equipped with a bounded Radon measure μ . Let (Φt)t∈T ∈ Pk[A ,B]. Furthermore, let
f : [m,M]→R, g : [km,kM]→R and F :U×V →R be functions such that (k f )([m,M])⊂
U, g([km,kM]) ⊂V, F is bounded and f (y)+ l(y)(t− y) ∈U for every y,t ∈ [m,M] where
l is the subdifferential of f . If F is operator monotone in the first variable and f is convex
on [m,M], then

F

[∫
T

Φt ( f (xt)) dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≥ inf

km≤z≤kM
F [ f (y)k+ l(y)(z− yk),g(z)]1

(9.23)
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holds for every y ∈ [m,M]. In the dual case (when f is concave) the opposite inequality
holds in (9.23) with sup instead of inf.

Proof. We prove only the convex case. Since f is convex we have f (z) ≥ f (y) +
l(y)(z− y) for every z,y ∈ [m,M]. Thus, by putting h1(z) = f (y)+ l(y)(z− y) in LHS of
(9.15) we obtain (9.23). �

Though f (z) = logz is operator concave, Jensen’s inequality Φ( f (x)) ≤ f (Φ(x)) does
not hold in the case of non-unital Φ. However, as applications of Corollary 9.2 and Theo-
rem 9.12, we obtain the following corollary.

Corollary 9.5 Let (xt)t∈T and (Φt)t∈T be as in Theorem 9.12 for 0 < m < M. Then

C11 ≤
∫

T
Φt (log(xt)) dμ(t)− log

(∫
T

Φt(xt)dμ(t)
)
≤C21, (9.24)

where constants C1 ≡C1(m,M,k) and C2 ≡C2(m,M,k) are

C1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kβ + log(e/L(m,M)) if km ≤ L(m,M) ≤ kM,

log
(
Mk−1/k

)
if kM ≤ L(m,M),

log
(
mk−1/k

)
if km ≥ L(m,M),

C2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
log

(
L(m,M)kkk−1

ekm

)
+

m
L(m,M)

if m ≤ kL(m,M) ≤ M

log
(
Mk−1/k

)
if kL(m,M) ≥ M,

log
(
mk−1/k

)
if kL(m,M) ≤ m,

and the logarithmic mean L(m,M), β is the constant β f associated with the function f (z) =
logz.

Proof. We set f (z) ≡ g(z) = logz in Corollary 9.2. Then we obtain the lower bound
C1 when we determine min

km≤z≤kM
(αz+ kβ − logz).

Next, we shall obtain the upper boundC2. We set F(u,v)= u−v and f (z)≡ g(z)= logz
in Theorem 9.12. We obtain∫

T
Φt (log(xt)) dμ(t)− log

(∫
T

Φt(xt)dμ(t)
)

≤ max

{
log

(
yk

ekkm

)
+

km
y

, log

(
yk

ekkM

)
+

kM
y

}
1

for every y ∈ [m,M], since h(z) = k logy + 1
y (z− ky)− logz is a convex function and it

implies that
max

km≤z≤kM
h(z) = max{h(km),h(kM)}.
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Now, if m ≤ kL(m,M) ≤ M, then we choose y = kL(m,M). In this case we have
h(km) = h(kM). But, if m ≥ kL(m,M), then it follows 0 < k ≤ 1, which implies that
max{h(km),h(kM)} = h(km) for every y ∈ [m,M]. In this case we choose y = m, since

h(y) = log

(
yk

ekkm

)
+

km
y

is an increasing function in [m,M]. If M ≤ kL(m,M), then the

proof is similar to above. �

By using subdifferentials, we also give generalizations of Theorem 9.6.

Theorem 9.13 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space
T equipped with a bounded Radon measure μ , and let (Φt)t∈T ∈ Pk[A ,B]. If the field t →
Φt (1) is integrable with

∫
T Φt(1)dμ(t) = k1 for some positive scalar k and f : [m,M] → R

is a convex function then

f (y)k1+ l(y)
(∫

T
Φt (xt)dμ(t)− yk1

)
≤

∫
T

Φt( f (xt ))dμ(t)

≤ f (x)k1− x
∫

T
Φt(l(xt))dμ(t)+

∫
T

Φt(l(xt)xt)dμ(t)
(9.25)

for every x,y ∈ [m,M], where l is the subdifferential of f . In the dual case ( f is concave)
the reverse inequality is valid in (9.25).

Remark 9.4 In the case (Φt )t∈T ∈ Pk[A ,B] we may obtain analogues results as in The-
orems 9.5 and 9.8. The interested reader may be read the details in [202].

9.3 Ratio type inequalities with power functions

In this section we consider the ratio type ordering among the following power functions of
operators:

Fr(x,ΦΦ) :=
(∫

T
Φt (xr

t )dμ(t)
)1/r

, r ∈ R\{0} (9.26)

under these conditions: (xt)t∈T is a bounded continuous field of positive operators in a
unitalC∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and (Φt)t∈T ∈
Pk[A ,B]

As an application, we consider a generalization of the weighted power means of ope-
rators:

Mr(x,ΦΦ) :=
(∫

T

1
k

Φt (xr
t )dμ(t)

)1/r

, r ∈ R\{0} (9.27)

under the same conditions as above.
We need some previous results given in the following three lemmas.



9.3 RATIO TYPE INEQUALITIES WITH POWER FUNCTIONS 231

Lemma 9.1 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt )t∈T ∈
Pk[A ,B].

If 0 < p ≤ 1, then∫
T

Φt
(
xp
t

)
dμ(t) ≤ k1−p

(∫
T

Φt(xt)dμ(t)
)p

. (9.28)

If −1 ≤ p < 0 or 1 ≤ p ≤ 2, then the reverse inequality is valid in (9.28).

Proof. We obtain this lemma by applying Theorem 9.9 for the function f (z) = zp and
using the proposition that it is an operator concave function for 0 < p ≤ 1 and an operator
convex one for −1 ≤ p < 0 and 1 ≤ p ≤ 2. �

Lemma 9.2 Assume that the conditions of Lemma 9.1 hold.
If 0 < p ≤ 1, then

k1−pK(m,M, p)
(∫

T
Φt (xt)dμ(t)

)p

≤
∫

T
Φt

(
xp
t

)
dμ(t) ≤ k1−p

(∫
T

Φt (xt)dμ(t)
)p

,

(9.29)
if −1 ≤ p < 0 or 1 ≤ p ≤ 2, then

k1−p
(∫

T
Φt(xt)dμ(t)

)p

≤
∫

T
Φt

(
xp
t

)
dμ(t) ≤ k1−pK(m,M, p)

(∫
T

Φt (xt)dμ(t)
)p

,

(9.30)
if p < −1 or p > 2, then

k1−pK(m,M, p)−1
(∫

T
Φt (xt)dμ(t)

)p

≤
∫

T
Φt

(
xp
t

)
dμ(t)

≤ k1−pK(m,M, p)
(∫

T
Φt(xt)dμ(t)

)p

,
(9.31)

where K(m,M, p) is the generalized Kantorovich constant by (2.29).

Proof. We obtain this lemma by applying Corollary 9.2 for the function f (z) ≡ g(z) =
zp and choosing λ such that C = 0. �

We shall need some properties of the generalized Specht ratio Δ(h,r,s) (see (8.35) and
Figure 9.1).

Lemma 9.3 Let M > m > 0, r ∈ R and

Δ(h,r,1) =
r(h−hr)

(1− r)(hr−1)

(
hr −h

(r−1)(h−1)

)−1/r

, h =
M
m

.

(i) A function Δ(r) ≡ Δ(h,r,1) is strictly decreasing for all r ∈ R,
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�(r)

r

h

1/h

S(h)

1

Figure 9.1: Function Δ(r) ≡ Δ(h,r,1)

(ii) lim
r→1

Δ(h,r,1) = 1 and lim
r→0

Δ(h,r,1) = S(h),

where the Specht ratio S(h) is defined by (2.35).

(iii) lim
r→∞

Δ(h,r,1) = 1/h and lim
r→−∞

Δ(h,r,1) = h.

Proof.

(i) We write Δ(r) = Δ1(r) ·Δ2(r), where

Δ1(r) =
r(hr −h)

(r−1)(hr −1)
, Δ2(r) =

(
hr −h

(r−1)(h−1)

)−1/r

. (9.32)

By using differential calculus we shall prove that a function Δ1 is strictly decreasing
for all r �= 0,1. We have

d
dr Δ1(r) = −1

(r−1)2(hr−1)2 ((hr −1)(hr−h)− (r−1)rhr(h−1) logh)

= − hr(h−1) logh
(r−1)2(hr−1)2 f (r), (9.33)

where f (r) = (hr−1)(hr−h)
hr(h−1) logh − (r−1)r. Stationary points of the function f are 0, 0.5,

1 and it is a strictly decreasing function on (−∞,0)∪ (0.5,1) and strictly increasing
on (0,0.5)∪ (1,∞). Also, f (0) = f (1) = 0. So, f (r) > 0 for all r �= 0,1. (More

exactly, f ′′′(r) = log2 h
h−1

(
hr −h1−r

)
imply that the function f ′′ is strictly increasing

on (0.5,∞) and strictly decreasing on (−∞,0.5). It follows that f ′(r) < 0 for r ∈
(−∞,0)∪ (0.5,1) and f ′(r) > 0 for r ∈ (0,0.5)∪ (1,∞).) Now, using (9.33) we have
that d

dr Δ1(r) < 0 for all r �= 0,1 and it follows that Δ1 is strictly decreasing function.

Further, in the case of a function Δ2 in (9.32), we obtain

d
dr Δ2(r) = −1

(r−1)r2(hr−h)

(
hr−h

(r−1)(h−1)

)−1/r

×
[
r(r−1)hr logh− r(hr−h)+ (r−1)(hr−h) log

(
(r−1)(h−1)

hr−h

)]
.



9.3 RATIO TYPE INEQUALITIES WITH POWER FUNCTIONS 233

By using differential calculus we can prove that a function

r �→ r(r−1)hr logh− r(hr−h)+ (r−1)(hr−h) log

(
(r−1)(h−1)

hr −h

)
is positive for all r �= 0,1. So d

dr Δ2(r) < 0 for all r �= 0,1 and it follows that Δ2 is
strictly decreasing function.

(ii) Using the definition of the generalized Specht ratio (8.35), we have Δ(h,r,1) =
K(hr,1/r) if r �= 0. Now, we have K(h,1) = 1 by using Theorem 2.12 and
lim
r→0

K(hr,1/r) = S(h) by using Theorem 2.17.

(iii) We have by L’Hospital’s theorem

lim
r→∞

log((r−1)(h−1)/(hr−h))
r

= lim
r→∞

(
1

r−1
− hr logh

hr −h

)
= − logh.

So

lim
r→∞

Δ(h,r,1) = lim
r→∞

r
r−1

· h
r −h

hr −1
·
(

(r−1)(h−1)
hr −h

)1/r

= e− logh = 1/h.

Similarly, we obtain lim
r→−∞

Δ(h,r,1) = h.

�

Now, we give the ratio type ordering among power functions.

Theorem 9.14 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt )t∈T ∈
Pk[A ,B]. Let regions (i) – (v)1 be as in Figure 9.2.
If (r,s) in (i), then

k
s−r
rs Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
rs Fs(x,ΦΦ),

if (r,s) in (ii) or (iii), then

k
s−r
rs Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
rs Δ(h,r,s) Fs(x,ΦΦ),

if (r,s) in (iv), then

k
s−r
rs Δ(h,s,1)−1Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ)

≤ k
s−r
rs min{Δ(h,r,1),Δ(h,s,1)Δ(h,r,s)} Fs(x,ΦΦ),

if (r,s) in (v) or (iv)1 or (v)1, then

k
s−r
rs Δ(h,s,1)−1Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
rs Δ(h,s,1) Fs(x,ΦΦ),

where Δ(h,r,s), rs �= 0 is defined by (8.35).
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1/2

1/2

(i)

(ii) s 1, -1 < r < 1/2, r 0,

<

=

(iv)

r s, s (-1,1), r (-1,1)
1/2 r 1 s
r -1 s -1/2,

or
or

� �i� �i

-s r < s/2, r 0, 0 < s 1,=
1/2

1/2

1

1 1

1

� �
�v
1

� �
�v
1

�
�v 1

�
�v 1

� �i i� �i i

� �v� �v
� �i i i� �i i i

� �i� �i

� �i� �i

(iv)1

2s r s, -1 r < 0.(v)1

r s 2r, 0 < s 1,

(v) r/2 < s -r, s 0, -1 r < 0,=

� �i v� �i v

r -1, -1/2 < s < 1, s 0,=(iii)

Figure 9.2: Regions in the (r,s)-plain

Proof. This theorem follows from Lemma 9.2 by putting p = s/r or p = r/s and then
using the Löwner-Heinz theorem, Theorem 4.3 and Lemma 9.3. We give the proof for the
sake of completeness.

We put p = s/r in Lemma 9.2 and replace xt by xr
t . Applying the Löwner-Heinz

inequality if s ≥ 1 or s ≤ −1 and using that K (mr,Mr ,s/r)1/s = K (Mr,mr,s/r)1/s =
Δ(h,r,s), we obtain:
(a) If r ≤ s ≤−1 or 1 ≤ s ≤−r or 0 < r ≤ s ≤ 2r, s ≥ 1, then

k
r−s
sr Fr(x,ΦΦ) ≤ Fs(x,ΦΦ) ≤ k

r−s
sr Δ(h,r,s) Fr(x,ΦΦ). (9.34)

(b) If 0 < −r < s, s ≥ 1 or 0 < 2r < s, s ≥ 1, then

k
r−s
sr Δ(h,r,s)−1 Fr(x,ΦΦ) ≤ Fs(x,ΦΦ) ≤ k

r−s
sr Δ(h,r,s) Fr(x,ΦΦ). (9.35)

Applying Theorem 4.3 if−1≤ s≤ 1 and using that K (kms,kMs,1/s)= K (ms,Ms,1/s)
= Δ(h,s,1), we obtain:
(c) If r ≤ s, −1 ≤ s < 0 or s ≤−r, 0 < s ≤ 1 or 0 < r ≤ s ≤ 2r, s ≤ 1, then

k
r−s
sr Δ(h,s,1)−1 Fr(x,ΦΦ) ≤ Fs(x,ΦΦ) ≤ k

r−s
sr Δ(h,s,1) Δ(h,r,s) Fr(x,ΦΦ). (9.36)

(d) If 0 < −r < s ≤ 1 or 0 < 2r < s ≤ 1, then

k
r−s
sr Δ(h,s,1)−1Δ(h,r,s)−1 Fr(x,ΦΦ) ≤ Fs(x,ΦΦ)

≤ k
r−s
sr Δ(h,s,1)Δ(h,r,s) Fr(x,ΦΦ).

(9.37)

Similarly, putting p = r/s in Lemma 9.2 and replace xt by xs
t , we obtain:

(a1) If 1 ≤ r ≤ s or −s ≤ r ≤−1 or 2s ≤ r ≤ s < 0, r ≤−1, then

k
s−r
sr Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
sr Fs(x,ΦΦ). (9.38)
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(b1) If r < −s < 0, r ≤−1 or r < 2s < 0, r ≤−1, then

k
s−r
sr Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
sr Δ(h,r,s) Fs(x,ΦΦ). (9.39)

(c1) If r ≤ s, 0 < r ≤ 1 or −s ≤ r, −1 ≤ r < 0 or 2s ≤ r ≤ s < 0, r ≥−1, then

k
s−r
sr Δ(h,r,1)−1Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
sr Δ(h,r,1) Fs(x,ΦΦ). (9.40)

(d1) If −1 ≤ r < −s < 0 or −1 ≤ r < 2s < 0, then

k
s−r
sr Δ(h,r,1)−1Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ)

≤ k
s−r
sr Δ(h,r,1)Δ(h,r,s) Fs(x,ΦΦ).

(9.41)

Now, we have that in cases (a) and (a1) the inequality (9.34) holds and in cases (b)
and (b1) the inequality (9.35) holds. If we put r = 1 in RHS of (9.38) for 1 ≤ r ≤ s then
we obtain ∫

T

1
k

Φt (xt)dμ(t)≤
(∫

T

1
k

Φt (xs
t )dμ(t)

)1/s

, if s ≥ 1.

Next, applying LHS of (9.34) for s = 1 and 0 < r ≤ s ≤ 2r, we have(∫
T

1
k

Φt (xr
t )dμ(t)

)1/r

≤
∫

T

1
k

Φt (xt)dμ(t).

The assumption s ≥ 1 implies(∫
T

1
k

Φt (xr
t )dμ(t)

)1/r

≤
∫

T

1
k

Φt (xt)dμ(t) ≤
(∫

T

1
k

Φt (xs
t )dμ(t)

)1/s

(9.42)

for 1/2≤ r ≤ 1≤ s. Similarly, putting s =−1 in LHS of (9.34) for r ≤ s≤−1 and r =−1
in RHS of (9.38) for 2s≤ r≤ s < 0, we can obtain that (9.42) holds for r ≤−1≤ s≤−1/2.
Consequently, we obtain that (9.34) holds in the region (i) and (9.35) holds in the regions
(ii) and (iii).

In remainder cases we can choose better bounds. In the region (iv) inequalities (9.37)
and (9.40) hold. Now, by Lemma 9.3 we have

Δ(h,r,1) ≥ Δ(h,s,1) if r ≤ s, (9.43)

and we get
Δ(h,s,1)−1Δ(h,r,s)−1 ≥ Δ(h,r,1)−1Δ(h,r,s)−1.

It follows that k
s−r
sr Δ(h,s,1)−1Δ(h,r,s)−1 is a better lower bound. The upper bound is equal

k
s−r
sr ·min{Δ(h,r,1),Δ(h,s,1)Δ(h,r,s)}.

In the region (v) inequalities (9.36) and (9.41) hold. We have that k
s−r
sr Δ(h,s,1)−1Δ(h,r,s)−1

is a better lower bound, since (9.43) holds. The upper bound is equal

k
s−r
sr ·min{Δ(h,s,1),Δ(h,r,1)Δ(h,r,s)} = k

s−r
sr ·Δ(h,s,1),

since (9.43) holds and Δ(h,r,s) ≥ 1 by (2.32).
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In the regions (iv)1 and (v)1 inequalities (9.36) and (9.40) hold. Analogously to the
case above we obtain that the bounds in the inequality (9.36) are better. �

Finally, we give the ratio type ordering among means (9.27).

Corollary 9.6 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T ∈
Pk[A ,B]. Let regions (i) – (v)1 be as in Figure 9.2.
If (r,s) in (i), then

Δ(h,r,s)−1 Ms(x,ΦΦ) ≤ Mr(x,ΦΦ) ≤ Ms(x,ΦΦ),

if (r,s) in (ii) or (iii), then

Δ(h,r,s)−1 Ms(x,ΦΦ) ≤ Mr(x,ΦΦ) ≤ Δ(h,r,s) Ms(x,ΦΦ),

if (r,s) in (iv), then

Δ(h,s,1)−1Δ(h,r,s)−1 Ms(x,ΦΦ) ≤ Mr(x,ΦΦ)
≤ min{Δ(h,r,1),Δ(h,s,1)Δ(h,r,s)} Ms(x,ΦΦ),

if (r,s) in (v) or (iv)1 or (v)1, then

Δ(h,s,1)−1Δ(h,r,s)−1 Ms(x,ΦΦ) ≤ Mr(x,ΦΦ) ≤ Δ(h,s,1) Ms(x,ΦΦ),

where Δ(h,r,s), rs �= 0, is defined by (8.35).

Proof. It is sufficient to multiply each inequality in Theorem 9.14 by k−1/r. �

9.4 Difference type inequalities with power functions

In this section we consider the difference type ordering among the power functions (9.26).
As an application, we consider the weighted power means (9.27).

We need some previous results given in the following two lemmas.

Lemma 9.4 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T ∈
Pk[A ,B].
If 0 < p ≤ 1, then

αp

∫
T

Φt(xt)dμ(t)+ kβp1 ≤
∫

T
Φt(x

p
t )dμ(t) ≤ k1−p

(∫
T

Φt(xt)dμ(t)
)p

, (9.44)
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if −1 ≤ p < 0 or 1 ≤ p ≤ 2, then

k1−p
(∫

T
Φt (xt)dμ(t)

)p

≤
∫

T
Φt(x

p
t )dμ(t) ≤ αp

∫
T

Φt(xt)dμ(t)+ kβp1, (9.45)

if p < −1 or p > 2, then

pyp−1
∫

T
Φt(xt)dμ(t)+ k(1− p)yp1 ≤

∫
T

Φt(x
p
t )dμ(t) ≤ αp

∫
T

Φt(xt)dμ(t)+ kβp1

(9.46)
for every y ∈ [m,M]. Constants αp and βp are the constants α f and β f associated with the
function f (z) = zp.

Proof. RHS of (9.44) and LHS of (9.45) are proven in Lemma 9.1. LHS of (9.44) and
RHS of (9.45) and (9.46) follow from Corollary 9.2 for f (z) = zp, g(z) = z and λ = αp.
LHS of (9.46) follows from LHS of (9.25) in Theorem 9.13 putting f (y) = yp and l(y) =
pyp−1. �

Remark 9.5 Setting y = (αp/p)1/(p−1) ∈ [m,M] the inequality (9.46) gives

αp
∫
T Φt(xt)dμ(t)+ k(1− p)(αp /p)p/(p−1)1 ≤ ∫

T Φt (x
p
t )dμ(t)

≤ αp
∫
T Φt(xt)dμ(t)+ kβp1

for p < −1 or p > 2.
Furthermore, setting y = m or y = M gives

pmp−1 ∫
T Φt(xt)dμ(t)+ k(1− p)mp1 ≤ ∫

T Φt(x
p
t )dμ(t)

≤ αp
∫
T Φt(xt)dμ(t)+ kβp1 (9.47)

or

pMp−1 ∫
T Φt(xt)dμ(t)+ k(1− p)Mp1 ≤ ∫

T Φt (x
p
t )dμ(t)

≤ αp
∫
T Φt(xt)dμ(t)+ kβp1. (9.48)

We remark that the operator in LHS of (9.47) is positive for p > 2, since

0 < kmp1 ≤ pmp−1 ∫
T Φt(xt)dμ(t)+ k(1− p)mp1

≤ k(pmp−1M +(1− p)mp)1 < kMp1 (9.49)

and the operator in LHS of (9.48) is positive for p < −1, since

0 < kMp1 ≤ pMp−1 ∫
T Φt(xt)dμ(t)+ k(1− p)Mp1

≤ k(pMp−1m+(1− p)Mp)1 < kmp1. (9.50)

(We have the inequality pmp−1M +(1− p)mp < Mp in RHS of (9.49) and pMp−1m+
(1− p)Mp < mp in RHS of (9.50) by using Bernoulli’s inequality.)
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C(r)

r

M-m

m-M

1

L(m,M) lnS(M/m)

Figure 9.3: Function C(r) ≡C(mr,Mr,1/r)

We shall need some properties of the Kantorovich constant for the differenceC(m,M, p)
(see (2.38) and Figure 9.3).

Lemma 9.5 Let M > m > 0, r ∈ R and

C(mr,Mr ,1/r) :=
1− r

r

(
r

M−m
Mr −mr

)1/(1−r)

+
Mrm−mrM

Mr −mr .

(i) A function C(r) ≡C(mr,Mr,1/r) is strictly decreasing for all r ∈ R,

(ii) lim
r→1

C(mr,Mr ,1/r) = 0 and lim
r→0

C(mr,Mr,1/r) = L(m,M) logS(M/m),

where L(m,M) is the logarithmic mean and the Specht ratio S(h) is defined by (2.35).

(iii) lim
r→∞

C(mr,Mr ,1/r) = m−M and lim
r→−∞

C(mr,Mr,1/r) = M−m.

Proof.

(i) We have by a differential calculation

d
dr

C(r)

=
(

r
M−m

Mr −mr

)1/(1−r)(mr logm−Mr logM
r(Mr −mr)

+
1

r(1− r)
log

r(M−m)
Mr −mr

)
+

Mrmr(M−m) log(m/M)
(Mr −mr)2 .

Both of functions

r �→ mr logm−Mr logM
r(Mr −mr)

+
1

r(r−1)
log

Mr −mr

r(M−m)

and

r �→ Mrmr(M−m) log(m/M)
(Mr −mr)2

are negative for all r �= 0,1. So d
drC(r) < 0 and the function C is strictly decreasing.
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(ii) We have by L’Hospital’s theorem

lim
r→1

log(r(M−m)/(Mr −mr))
1− r

= −1+
M logM−m logm

M−m
,

so

lim
r→1

1− r
r

(
r

M−m
Mr −mr

)1/(1−r)

= 0 · e−1+(M logM−m logm)/(M−m) = 0.

Also,

lim
r→1

Mrm−mrM
Mr −mr = lim

r→1
m

hr −h
hr −1

= 0, h =
M
m

> 1.

Then, lim
r→1

C(mr,Mr,1/r) = 0. Using Theorem 2.24, we have

lim
r→0

C(mr,Mr, p/r) = L(mp,Mp) logS(hp) for all p ∈ R and h = M/m,

so we obtain lim
r→0

C(mr,Mr ,1/r) = L(m,M) logS(M/m).

(iii) We have by L’Hospital’s theorem

lim
r→∞

log(r(M−m)/(Mr −mr))
1− r

= lim
r→∞

Mrm−mrM
Mr −mr = logM,

so

lim
r→∞

1− r
r

(
r

M−m
Mr −mr

)1/(1−r)

= −1 · elogM = −M.

Also,

lim
r→∞

Mrm−mrM
Mr −mr = lim

r→∞
m

hr −h
hr −1

= m, h =
M
m

> 1.

Then, lim
r→∞

C(mr,Mr,1/r) = m−M.

Similarly, we obtain lim
r→−∞

C(mr,Mr,1/r) = M−m.

�

Also, we need the following function order of positive operators.

Theorem 9.15 Let A,B be positive operators in B(H).
If A ≥ B > 0 and the spectrum Sp(B) ⊆ [m,M] for some scalars 0 < m < M, then

Ap +C(m,M, p)1 ≥ Bp for all p ≥ 1.

But, if A ≥ B > 0 and the spectrum Sp(A) ⊆ [m,M], 0 < m < M, then

Bp +C(m,M, p)1 ≥ Ap for all p ≤−1,

where the Kantorovich constant for the difference C(m,M, p) is defined by (2.38).
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Proof. Refer to [191, Corollary 1] for the proof. �

Now, we give the the difference type ordering among power functions.

Theorem 9.16 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T ∈
Pk[A ,B]. Let regions (i)1 – (v)1 be as in Figure 9.2.

Then
C21 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤C11, (9.51)

where constants C1 ≡C1(m,M,s,r,k) and C2 ≡C2(m,M,s,r,k) are

C1 =

{
Δ̃k if (r,s) in (i)1 or (ii)1 or (iii)1;

Δ̃k +min{Ck(s),Ck(r)} if (r,s) in (iv) or (v) or (iv)1 or (v)1;

C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1/s − k1/r)m, if (r,s) in (i)1;

D̃k, if (r,s) in (ii)1;

Dk, if (r,s) in (iii)1;

max
{

D̃k −Ck(s),
(
k1/s− k1/r

)
m−Ck(r)

}
, if (r,s) in (iv);

max
{
Dk −Ck(r),

(
k1/s− k1/r

)
m−Ck(s)

}
, if (r,s) in (v);

(k1/s − k1/r)m−min{Ck(r),Ck(s)} , if (r,s) in (iv)1 or (v)1.

A constant Δ̃k ≡ Δ̃k(m,M,r,s) is

Δ̃k = max
θ∈[0,1]

{
k1/s[θMs +(1−θ )ms]1/s− k1/r[θMr +(1−θ )mr]1/r

}
,

a constant D̃k ≡ D̃k(m,M,r,s) is

D̃k = min

{(
k

1
s − k

1
r

)
m,k

1
s m

(
s
Mr −mr

rmr +1

) 1
s

− k
1
r M

}
,

Dk ≡ Dk(m,M,r,s) = −D̃k(M,m,s,r) and the Kantorovich constant for the difference
Ck(p) ≡Ck(m,M, p) is defined by (2.38).

Proof. This theorem follows from Lemma 9.4 by putting p = s/r or p = r/s and then
using the Löwner-Heinz theorem, Theorem 9.15 and Lemma 9.5. We give the proof for
the sake of completeness.

By Lemma 9.4 by putting p = s/r or p = r/s and then using the Löwner-Heinz in-
equality and Theorem 9.15 we have the following inequalities.
(a) If r ≤ s ≤−1 or 1 ≤ s ≤−r or 0 < r ≤ s ≤ 2r, s ≥ 1, then(

k1/s− k1/r
)

m1 ≤
(
k

r−s
rs −1

)
Fr(x,ΦΦ) ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≤
(

α̃
∫

T
Φt (xr

t )dμ(t)+ kβ̃1
)1/s

−Fr(x,ΦΦ) ≤ Δ̃k1.
(9.52)
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(b) If 0 < −r < s, s ≥ 1 or 0 < 2r < s, s ≥ 1, then

m

(
s
r
m−r

∫
T

Φt (xr
t )dμ(t)+ k

r− s
r

1
)1/s

−Fr(x,ΦΦ) ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≤
(

α̃
∫

T
Φt(xr

t )dμ(t)+ kβ̃1
)1/s

−Fr(x,ΦΦ) ≤ Δ̃k1.

(9.53)

(c) If r ≤ s, −1 ≤ s < 0 or s ≤−r, 0 < s ≤ 1 or 0 < r ≤ s ≤ 2r, s ≤ 1, then((
k1/s − k1/r

)
m−Ck(s)

)
1 ≤

(
k

r−s
rs −1

)
Fr(x,ΦΦ)−Ck(s)1

≤ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≤
(

α̃
∫

T
Φt(xr

t )dμ(t)+ kβ̃1
)1/s

−Fr(x,ΦΦ)+Ck(s)1 ≤
(

Δ̃k +Ck(s)
)

1.

(9.54)

(d) If 0 < −r < s ≤ 1 or 0 < 2r < s ≤ 1, then

m

(
s
r
m−r

∫
T

Φt(xr
t )dμ(t)+ k

r− s
r

1
)1/s

−Fr(x,ΦΦ)−Ck(s)1

≤ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≤
(

α̃
∫

T
Φt(xr

t )dμ(t)+ kβ̃1
)1/s

−Fr(x,ΦΦ)+Ck(s)1 ≤
(

Δ̃k +Ck(s)
)

1.

(9.55)

Moreover, we can obtain the following inequalities:
(a1) If 1 ≤ r ≤ s or −s ≤ r ≤−1 or 2s ≤ r ≤ s < 0, r ≤−1, then

Δ̃k1 ≥ Fs(x,ΦΦ)−
(

ᾱ
∫

T
Φt(xs

t )dμ(t)+ kβ̄1
)1/r

≥ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≥
(
1− k

s−r
rs

)
Fs(x,ΦΦ) ≥

(
k1/s − k1/r

)
m1.

(9.56)

(b1) If r < −s < 0, r ≤−1 or r < 2s < 0, r ≤−1, then

Δ̃k1 ≥ Fs(x,ΦΦ)−
(

ᾱ
∫

T
Φt(xs

t )dμ(t)+ kβ̄1
)1/r

≥ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≥ Fs(x,ΦΦ)−M

(
r
s
M−s

∫
T

Φt(xs
t )dμ(t)+ k

s− r
s

1
)1/r

.

(9.57)

(c1) If r ≤ s, 0 < r ≤ 1 or −s ≤ r, −1 ≤ r < 0 or 2s ≤ r ≤ s < 0, r ≥−1, then

(Δ̃k +Ck(r))1 ≥ Fs(x,ΦΦ)−
(

ᾱ
∫

T
Φt (xs

t )dμ(t)+ kβ̄1
)1/r

+Ck(r)1

≥ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≥
(
1− k

s−r
rs

)
Fs(x,ΦΦ)−Ck(r)1 ≥

((
k1/s− k1/r

)
m−Ck(r)

)
1.

(9.58)
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(d1) If −1 ≤ r < −s < 0 or −1 ≤ r < 2s < 0, then

(Δ̃k +Ck(r))1 ≥ Fs(x,ΦΦ)−
(

ᾱ
∫

T
Φt(xs

t )dμ(t)+ kβ̄1
)1/r

+Ck(r)1

≥ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≥ Fs(x,ΦΦ)−M

(
r
s
M−s

∫
T

Φt(xs
t )dμ(t)+ k

s− r
s

1
)1/r

−Ck(r)1,

where we denote

α̃ = Ms−ms

Mr−mr , β̃ = Mrms−Msmr

Mr−mr , ᾱ = Mr−mr

Ms−ms , β̄ = Msmr−Mrms

Ms−ms ,

C (kms,kMs,1/s) = k1/s C (ms,Ms,1/s) = Ck(s),

Δ̃k = max
z∈T̄1

{
k1/s

(
α̃ z+ β̃

)1/s− k1/rz1/r
}

= max
z∈T̄2

{
k1/sz1/s− k1/r (ᾱ z+ β̄

)1/r
}
,

and T̄1 and T̄2 denote the closed intervals joining mr to Mr and ms to Ms, respectively.
We will determine lower bounds in LHS of (b) and (d), in RHS of (b1) and (d1).
For LHS of (9.53) we can obtain

m

(
s
r
m−r

∫
T

Φt (xr
t )dμ(t)+ k

r− s
r

1
)1/s

−Fr(x,ΦΦ)

≥ minz∈T̄1

{
k1/sm

(
s
rm

−rz+1− s
r

)1/s− k1/rz1/r
}

1 = D̃k1.

(9.59)

Really, using substitution z = rmr
(
x− 1

s

)
, finding the minimum of the function h(z) =

k1/sm
(

s
r m

−rz+ r−s
r

)1/s − k1/rz1/r on T̄1 is equivalent to finding the minimum of h1(x) =

k1/sm
(
s(x− 1

r )
)1/s − k1/rm

(
r(x− 1

s )
)1/r

on T̄ = [ 1
s + 1

r ,
1
s + 1

r
Mr

mr ]. The domain of h1 is

S = [ 1
r ,∞) for r > 0 or S = [ 1

r ,
1
s ) for r < 0. We have h′′1(x) = k1/sm(1−s)

(
s(x− 1

r )
)1/s−2−

k1/rm(1−r)
(
r(x− 1

s )
)1/r−2

. If r<1 and s≥1 then h′′1(x)<0, since k1/sm(1−s)
(
s(x− 1

r )
)1/s−2

≤ 0 < k1/rm(1− r)
(
r(x− 1

s )
)1/r−2

. It follows that h1 is concave on S for r < 1 and s ≥ 1.
In this case we obtain

min
z∈T̄1

h(z) = min
x∈T̄

h1(x) = min

{
h1

(
1
s

+
1
r

)
,h1

(
1
s

+
1
r

Mr

mr

)}
= D̃k. (9.60)

If 1 < r < s, then we have limx→ 1
r
h1(x) = −k1/rm( s−r

s )
1
r < 0, limx→∞ h1(x) = −∞. If

x0 > 1
r is the stationary point of the function h1, then h1(x0) is the maximum value,

since h′′1(x0) = k
1
s m

(
s(x0− 1

r )
)1/s−2 (

r(x0 − 1
s )

)−1 (r− s)(x0 + 1− r+s
rs ) < 0. It follows

that (9.60) is also true in this case.
So in the case (b) we obtain:

D̃k1 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤ Δ̃k1 (9.61)
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and in the case (d) we obtain:(
D̃k −Ck(s)

)
1 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤

(
Δ̃k +Ck(s)

)
1. (9.62)

Similarly, for the RHS of (9.57) we obtain

Fs(x,ΦΦ)−M

(
r
s
M−s

∫
T

Φt(xr
t )dμ(t)+ k

s− r
s

1
)1/r

≥ min
z∈T̄2

{
k1/sz1/s − k1/rM

( r
s
M−sz+1− r

s

)1/r
}

1

= min

{
k1/sm− k1/rM

(
r
s

ms

Ms +1− r
s

)1/r

,
(
k1/s− k1/r

)
M

}
1

= Dk1.

So in the case (b1) we obtain:

Dk1 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤ Δ̃k1 (9.63)

and in the case (d1) we obtain:(
Dk −Ck(r)

)
1 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤

(
Δ̃k +Ck(r)

)
1. (9.64)

Finally, we can obtain desired bounds C1 and C2 in (9.51), taking into account that
(9.52) holds in the region (i)1, (9.61) holds in (ii)1, (9.63) holds in (iii)1, (9.62) and (9.58)
hold in (iv), (9.54) and (9.64) hold in (v), (9.54) and (9.58) hold in (iv)1 and (v)1. �

Finally, we give the difference type ordering among means (9.27).

Corollary 9.7 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt )t∈T ∈
Pk[A ,B]. Let regions (i) – (v)1 be as in Figure 9.2.
If (r,s) in (i), then

0 ≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ Δ̃1,

if (r,s) in (ii), then(
m

(
s
r
Mr

mr +1− s
r

)1/s

−M

)
1 ≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ Δ̃1,

if (r,s) in (iii), then(
m−M

(
r
s

ms

Ms +1− r
s

)1/r
)

1 ≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ Δ̃1,
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if (r,s) in (iv), then

max

{
m
(

s
r

Mr

mr + r−s
r

)1/s −M− C(ms,Ms,1/s),−C (mr,Mr ,1/r)
}

1

≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ (
Δ̃+C(ms,Ms,1/s)

)
1,

if (r,s) in (v) or (iv)1 or (v)1, then

−C(ms,Ms,1/s)1 ≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ (
Δ̃ +C(ms,Ms,1/s)

)
1,

where a constant Δ̃ ≡ Δ̃(m,M,r,s) is

Δ̃ = max
θ∈[0,1]

{
[θMs +(1−θ )ms]1/s− [θMr +(1−θ )mr]1/r

}
and the Kantorovich constant for the difference C(n,N, p) is defined by (2.38).

Proof. This corollary follows from Theorem 9.16 putting k = 1, and then replac-
ing Φt by 1

k Φt , t ∈ T . Finally we choose a better bounds using that C(mr,Mr ,1/r) ≥
C(ms,Ms,1/s) holds for r ≤ s by (9.43) and D̃k = D̃1 = m

(
sMr−mr

rmr +1
) 1

s −M, since

1− M
m < 1−

(
s
r

Mr

mr +
(
1− s

r

)) 1
s

holds by (9.49) and (9.50). �

9.5 Quasi-arithmetic means

In this section we give the order among the following generalized quasi-arithmetic operator
means

Mϕ(x,ΦΦ) = ϕ−1
(∫

T

1
k

Φt (ϕ(xt))dμ(t)
)

, (9.65)

under these conditions (xt)t∈T is a bounded continuous field of positive operators in a uni-
talC∗-algebra A with spectra in [m,M] for some scalars m < M, (Φt)t∈T ∈Pk[A ,B]
and ϕ ∈ C [m,M] is a strictly monotone function.

We denote Mϕ(x,ΦΦ) shortly with Mϕ . It is easy to see that the mean Mϕ is well defined.
As a special case of (9.65), we may consider the power operator mean (9.27), which is

studied in Sections 9.3 and 9.4.
First, we study the monotonicity of quasi-arithmetic means.

Theorem 9.17 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65). Let ψ ,ϕ ∈ C [m,M] be strictly monotone functions.
If one of the following conditions
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(i) ψ ◦ϕ−1 is operator convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is operator concave and −ψ−1 is operator monotone

is satisfied, then
Mϕ ≤ Mψ . (9.66)

If one of the following conditions

(ii) ψ ◦ϕ−1 is operator concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is operator convex and −ψ−1 is operator monotone

is satisfied, then the reverse inequality is valid in (9.66).

Proof. We prove only the case (i). If we put f = ψ ◦ϕ−1 in Theorem 9.9 and replace
xt with ϕ(xt), then we obtain

ψ ◦ϕ−1
(∫

T

1
k

Φt (ϕ(xt))dμ(t)
)
≤

∫
T

1
k

Φt (ψ(xt))dμ(t). (9.67)

Since ψ−1 is operator monotone, it follows that

ϕ−1
(∫

T

1
k

Φt (ϕ(xt))dμ(t)
)
≤ ψ−1

(∫
T

1
k

Φt (ψ(xt))dμ(t)
)

,

which is the desired inequality (9.66). �

We can give the following generalization of the previous theorem.

Corollary 9.8 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65). Let ψ ,ϕ ∈ C [m,M] be strictly monotone functions and F : [m,M]× [m,M] → R be
a bounded and operator monotone function in its first variable, such that F(z,z) = C for
all z ∈ [m,M].
If one of the following conditions

(i) ψ ◦ϕ−1 is operator convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is operator concave and −ψ−1 is operator monotone

is satisfied, then
F
[
Mψ ,Mϕ

]≥C1. (9.68)

If one of the following conditions

(ii) ψ ◦ϕ−1 is operator concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is operator convex and −ψ−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (9.68).
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Proof. Suppose (i) or (i’). Then by Theorem 9.17 we have Mϕ ≤ Mψ . Using assump-
tions about function F , it follows

F
[
Mψ ,Mϕ

]≥ F
[
Mϕ ,Mϕ

]≥ inf
m≤z≤M

F(z,z)1 = C1.

In the remaining cases the proof is essentially the same as in previous cases. �

Theorem 9.18 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions.

(i) If ϕ−1 is operator convex and ψ−1 is operator concave, then

Mϕ ≤ M1 ≤ Mψ . (9.69)

(ii) If ϕ−1 is operator concave and ψ−1 is operator convex then the reverse inequality
is valid in (9.69).

Proof. We prove only the case (i): Using Theorem 9.9 for a operator convex function
ϕ−1 on [ϕm,ϕM], we have

Mϕ = ϕ−1
(

1
k

∫
T

Φt (ϕ(xt))dμ(t)
)
≤ 1

k

∫
T

Φt (xt)dμ(t) = M1,

which gives LHS of (9.69). Similarly, since ψ−1 is operator concave on J = [ψm,ψM], we
have

M1 =
1
k

∫
T

Φt (xt)dμ(t)≤ ψ−1
(

1
k

∫
T

Φt (ψ(xt))dμ(t)
)

= Mψ ,

which gives RHS of (9.69). �

Theorem 9.19 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions. Then

Mϕ = Mψ for all (xt)t∈T , (Φt)t∈T

if and only if
ϕ = Aψ +B for some real numbers A �= 0 and B.

Proof. The case ϕ = Aψ +B ⇒ Mϕ = Mψ is obvious.
Mϕ = Mψ ⇒ ϕ = Aψ +B: Let

ϕ−1
(

1
k

∫
T

Φt (ϕ(xt))dμ(t)
)

= ψ−1
(

1
k

∫
T

Φt (ψ(xt))dμ(t)
)

for all (xt)t∈T and (Φt )t∈T . Setting yt = ϕ(xt) ∈ B(H), ϕm1 ≤ yt ≤ ϕM1, we obtain

ψ ◦ϕ−1
(∫

T

1
k

Φt (yt)dμ(t)
)

=
∫

T

1
k

Φt
(
ψ ◦ϕ−1(yt)

)
dμ(t)
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for all (yt)t∈T and (Φt)t∈T . M. D. Choi showed in [35, Theorem 2.5] that if Φ : A → B
is a positive linear mapping, f is a non-affine operator convex function on (−a,a), and
f (Φ(x)) = Φ( f (x)) for all Hermitian x in C∗-algebra A with spectra in (−a,a), then Φ is
a C∗-homomorphism. Similarly as above, in our case we can obtain that ψ ◦ϕ−1 is affine,
i.e. ψ ◦ϕ−1(u) = Au + B for some real numbers A �= 0 and B, which gives the desired
connection: ψ(v) = Aϕ(v)+B. �

Using properties of operator monotone or operator convex functions we can obtain
some corollaries of Theorems 9.17 and 9.18. E.g. we have the following corollary.

Corollary 9.9 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and 0 ≤ m < M. Let ϕ and ψ be continuous strictly monotone functions from [0,∞)
into itself.
If one of the following conditions

(i) ψ ◦ϕ−1 and ψ−1 are operator monotone,

(ii) ϕ ◦ψ−1 is operator convex, ϕ ◦ψ−1(0) = 0 and ψ−1 is operator monotone

is satisfied, then
Mψ ≤ M1 ≤ Mϕ .

Specially, if one of the following conditions

(ii) ψ−1 is operator monotone,

(ii’) ψ−1 is operator convex and ϕ(0) = 0,

is satisfied, then
M1 ≤ Mψ .

Proof. This theorem follows directly from Theorem 9.17.
We prove only the case (i). We use the statement: a bounded below function f ∈

C([α,∞)) is operator monotone iff f is operator concave and we apply Theorem 9.17-(ii).
�

Example 9.1 If we put ϕ(t) = tr, ψ(t) = ts or ϕ(t) = ts, ψ(t) = tr in Theorem 9.17 and
Theorem 9.18, then we obtain (cf. Corollary 9.6)

Mr(x,ΦΦ) ≤ Ms(x,ΦΦ)

for either r ≤ s, r �∈ (−1,1), s �∈ (−1,1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤−1 ≤ s ≤−1/2.

Next, we study the difference and ratio type inequalities among quasi-arithmeticmeans.
With that in mind, we shall prove the following general result.

Theorem 9.20 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65). Let ψ ,ϕ ∈ C [m,M] be strictly monotone functions and let F : [m,M]× [m,M] → R

be a bounded and operator monotone function in its first variable.
If one of the following conditions
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(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then

F
[
Mψ ,Mϕ

]≤ sup
0≤θ≤1

F
[
ψ−1 (θψ(m)+ (1−θ )ψ(M),ϕ−1 (θϕ(m)+ (1−θ )ϕ(M))

)]
1.

(9.70)
If one of the following conditions

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the opposite inequality is valid in (9.70) with inf instead of sup.

Proof. We prove only the case (i). Since f ∈ C [m,M] is convex then

f (z) ≤ M− z
M−m

f (m)+
z−m
M−m

f (M)

holds for any z ∈ [m,M]. Replacing f by ψ ◦ ϕ−1, and z by ϕ(z) and introducing the
notation ϕm = min{ϕ(m),ϕ(M)}, ϕM = max{ϕ(m),ϕ(M)}, we have

ψ(z) ≤ ϕM −ϕ(z)
ϕM −ϕm

ψ ◦ϕ−1(ϕm)+
ϕ(z)−ϕm

ϕM −ϕm
ψ ◦ϕ−1(ϕM), for any z ∈ [m,M].

Thus, replacing z by xt for t ∈ T , applying the positive linear mappings 1
k Φt and inte-

grating, we obtain that

∫
T

1
k

Φt (ψ(xt))dμ(t) ≤ ϕM1− ∫
T

1
k Φt (ϕ(xt))dμ(t)

ϕM −ϕm
ψ ◦ϕ−1(ϕm)

+
∫
T

1
k Φt (ϕ(xt))dμ(t)−ϕm1

ϕM −ϕm
ψ ◦ϕ−1(ϕM)

(9.71)

holds, since
∫
T

1
k Φt (1)dμ(t) = 1. We denote briefly

B =
ϕ(M)1− ∫

T
1
k Φt (ϕ(xt))dμ(t)

ϕ(M)−ϕ(m)
. (9.72)

Since 0 ≤ ϕ(M)1− ∫
T

1
k Φt (ϕ(xt))dμ(t) ≤ (ϕ(M)−ϕ(m))1 holds for a increasing func-

tion ϕ or (ϕ(M)−ϕ(m))1 ≤ ϕ(M)1− ∫
T

1
k Φt (ϕ(xt))dμ(t) ≤ 0 holds for a decreasing

function ϕ , then 0 ≤ B ≤ 1 holds for any monotone function ϕ . It is easy to check that the
inequality (9.71) becomes∫

T

1
k

Φt (ψ(xt))dμ(t) ≤ Bψ(m)+ (1−B)ψ(M).
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Next, applying an operator monotone function ψ−1 to the above inequality, we obtain

Mψ = ψ−1
(∫

T

1
k

Φt (ψ(xt))dμ(t)
)
≤ ψ−1 (Bψ(m)+ (1−B)ψ(M)).

Also, using (9.72), we can write

Mϕ = ϕ−1
(∫

T

1
k

Φt (ϕ(xt))dμ(t)
)

= ϕ−1 (Bϕ(m)+ (1−B)ϕ(M)).

Finally using operator monotonicity of F(·,v), we have

F
[
Mψ ,Mϕ

]
≤ F

[
ψ−1 (Bψ(m)+ (1−B)ψ(M)),ϕ−1 (Bϕ(m)+ (1−B)ϕ(M))

]
≤ sup

0≤θ≤1
F
[
ψ−1 (θψ(m)+ (1−θ )ψ(M),ϕ−1 (θϕ(m)+ (1−θ )ϕ(M))

)]
1,

which is the desired inequality (9.70). �

Remark 9.6 We can obtain similar inequalities as in Theorem 9.20 when F : [m,M]×
[m,M] → R is a bounded and operator monotone function in its second variable.

If the functionF in Theorem 9.20 has the form F(u,v)= u−v and F(u,v)= v−1/2uv−1/2

(v > 0), we obtain the difference and ratio type inequalities.

Corollary 9.10 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and let ψ ,ϕ ∈ C [m,M] be strictly monotone functions.
If one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(ii) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then

Mψ ≤ Mϕ + max
0≤θ≤1

{
ψ−1 (θψ(M)+ (1−θ )ψ(m))−ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
.

If in addition ϕ > 0 on [m,M], then

Mψ ≤ max
0≤θ≤1

{
ψ−1 (θψ(M)+ (1−θ )ψ(m))
ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
Mϕ .

If one of the following conditions

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the opposite inequalities are valid with min instead of max.
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We will give a complementary result to (i) or (i’) of Theorem 9.17 under the assump-
tion that ψ ◦ϕ−1 is operator convex and ψ−1 is not operator monotone. In the following
theorem we give a general result.

Theorem 9.21 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65). Let ψ ,ϕ ∈ C [m,M] be strictly monotone functions and F : [m,M]× [m,M] → R be
a bounded and operator monotone function in its first variable.
If one of the following conditions

(i) ψ ◦ϕ−1 is operator convex and ψ−1 is increasing convex,

(i’) ψ ◦ϕ−1 is operator concave and ψ−1 is decreasing convex,

is satisfied, then

F
[
Mϕ ,Mψ

]≤ sup
0≤θ≤1

F
[
θM +(1−θ )m,ψ−1 (θψ(M)+ (1−θ )ψ(m))

]
1. (9.73)

If one of the following conditions

(ii) ψ ◦ϕ−1 is operator convex and ψ−1 is decreasing concave,

(ii’) ψ ◦ϕ−1 is operator concave and ψ−1 is increasing concave,

is satisfied, then the opposite inequality is valid in (9.73) with inf instead of sup.

Proof. We prove only the case (i): If we put f = ψ ◦ϕ−1 in Theorem 9.9 and replace
xt with ϕ(xt), then we obtain (see (9.67))

ψ(Mϕ) ≤ ψ(Mψ) (9.74)

Since ψ−1 is increasing, then ψ(m)1 ≤ ψ(Mϕ) ≤ ψ(M)1, and also since ψ−1 is convex
we have

Mϕ = ψ−1(ψ(Mϕ))

≤ M−m
ψ(M)−ψ(m)

(
ψ(Mϕ)−ψ(m)1

)
+m1 by convexity of ψ−1

≤ M−m
ψ(M)−ψ(m)

(
ψ(Mψ)−ψ(m)1

)
+m1 by increase of ψ and (9.74).

Now, operator monotonicity of F(·,v) give

F
[
Mϕ ,Mψ

] ≤ F

[
M−m

ψ(M)−ψ(m)
(
ψ(Mψ )−ψ(m)1

)
+m1,ψ−1(ψ(Mψ )

)]
≤ sup

ψ(m)≤z≤ψ(M)
F

[
M−m

ψ(M)−ψ(m)
(z−ψ(m))+m,ψ−1 (z)

]
1

= sup
0≤θ≤1

F
[
θM +(1−θ )m,ψ−1 (θψ(M)+ (1−θ )ψ(m))

]
1,

which is the desired inequality (9.73). �
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Remark 9.7 Similar to Corollary 9.10, by using Theorem 9.21 we have the following
results.
Let one of the following conditions

(i) ψ ◦ϕ−1 is operator convex and ψ−1 is increasing convex,

(i’) ψ ◦ϕ−1 is operator concave and ψ−1 is decreasing convex

be satisfied. Then

Mϕ ≤ Mψ + max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
1,

and if, additionally, ψ > 0 on [m,M], then

Mϕ ≤ max
0≤θ≤1

{
θM +(1−θ )m

ψ−1 (θψ(M)+ (1−θ )ψ(m))

}
Mψ .

Let one of the following conditions

(ii) ψ ◦ϕ−1 is operator convex and ψ−1 is decreasing concave,

(ii’) ψ ◦ϕ−1 is operator concave and ψ−1 is increasing concave

be satisfied. Then the opposite inequalities are valid with min instead of max.

In the following theorem we give the complementary result to the one given in the
above remark.

Theorem 9.22 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions.

(i) ψ ◦ϕ−1 is operator convex and ψ−1 is decreasing convex,

(i’) ψ ◦ϕ−1 is operator concave and ψ−1 is increasing convex

be satisfied. Then

Mψ ≤ Mϕ + max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
1, (9.75)

and if, additionally, ψ > 0 on [m,M], then

Mψ ≤ max
0≤θ≤1

{
θM +(1−θ )m

ψ−1 (θψ(M)+ (1−θ )ψ(m))

}
Mϕ . (9.76)

Let one of the following conditions

(ii) ψ ◦ϕ−1 is operator convex and ψ−1 is increasing concave,

(ii’) ψ ◦ϕ−1 is operator concave and ψ−1 is decreasing concave
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be satisfied. Then the opposite inequality is valid in (9.75) with min instead of max.
If, additionally, ψ > 0 on [m,M], then the opposite inequality is valid in (9.76) with

min instead of max.

Proof. We prove only the case (i): Since ψ ◦ϕ−1 is operator convex, then ψ(Mϕ ) ≤
ψ(Mψ ) holds. Next, for every unit vector x ∈ H we have

〈Mϕx,x〉
= 〈ψ−1 ◦ψ(Mϕ)x,x〉
≥ ψ−1〈ψ(Mϕ)x,x〉 by convexity of ψ−1

≥ ψ−1〈ψ(Mψ)x,x〉 by decrease of ψ−1 and operator convexity ψ ◦ϕ−1

≥ 〈Mψx,x〉− max
ψ(M)≤z≤ψ(m)

{
m−M

ψ−1(m)−ψ−1(M)
(z−m)+ ψ−1(m)−ψ−1(z)

}
by convexity of ψ−1 and using the Mond-Pečarić method

= 〈Mψx,x〉− max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
and hence we have the desired inequality (9.75).

Similarly, we can check that (9.76) holds. �

We will give a complementary result to Theorem 9.18. In the following theorem we
give a general result.

Theorem 9.23 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions and F : [m,M]× [m,M] → R be
a bounded and operator monotone function in its first variable.

(i) If ϕ−1 is operator convex and ψ−1 is concave, then

F [Mϕ ,Mψ ] ≤ sup
0≤θ≤1

F
[
θM +(1−θ )m,ψ−1 (θψ(M)+ (1−θ )ψ(m))

]
1. (9.77)

(ii) If ϕ−1 is convex and ψ−1 is operator concave, then

F[Mψ ,Mϕ ] ≥ inf
0≤θ≤1

F
[
θM +(1−θ )m,ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

]
1. (9.78)

Proof. We prove only the case (i): Using LHS of (9.69) for an operator convex function
ϕ−1 and then operator monotonicity of F(·,v) we have

F [Mϕ ,Mψ ] ≤ F [M1,Mψ ].

If we put ψ = ι the identity function and replace ϕ by ψ in (9.70), we obtain

F
[
M1,Mψ

]≤ sup
0≤θ≤1

F
[
θM +(1−θ )m,ψ−1 (θψ(M)+ (1−θ )ψ(m))

]
1.

Combining two above inequalities we have the desired inequality. �
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Corollary 9.11 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions.
If ϕ−1 is convex and ψ−1 is concave, then

Mϕ ≤ Mψ (9.79)

+ max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
1

+ max
0≤θ≤1

{
ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))−θM− (1−θ )m

}
1,

and if, additionally, ϕ > and ψ > 0 on [m,M], then

Mϕ ≤ max
0≤θ≤1

{
θM +(1−θ )m

ψ−1 (θψ(M)+ (1−θ )ψ(m))

}
(9.80)

× max
0≤θ≤1

{
ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

θM +(1−θ )m

}
Mψ .

Proof. If we put F(u,v) = u−v and ϕ = ι in (9.77), then for any concave function ψ−1

we have

M1 −Mψ ≤ max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
1.

Similarly, if we put ψ = ι in (9.78), then for any convex function ϕ−1 we have

M1 −Mϕ ≥ min
0≤θ≤1

{
θM +(1−θ )m−ϕ−1(θϕ(M)+ (1−θ )ϕ(m))

}
1.

Combining two above inequalities we have the inequality (9.79).
We have (9.80) by a similar method. �

If we use conversions of Jensen’s inequality (9.1), we obtain the following two corol-
laries.

Corollary 9.12 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions. Let ψ ◦ϕ−1 be convex (resp.
concave).

(i) If ψ−1 is operator monotone and operator subadditive (resp. operator superaddi-
tive) on R, then

Mψ ≤ Mϕ + ψ−1(β )1
(
resp. Mψ ≥ Mϕ + ψ−1(β )1

)
, (9.81)

(i’) if −ψ−1 is operator monotone and operator subadditive (resp. operator superaddi-
tive) on R, then the reverse inequality is valid in (9.73),

(ii) if ψ−1 is operator monotone and operator superadditive (resp. operator subaddi-
tive) on R, then

Mψ ≤ Mϕ −ϕ−1(−β )1
(
resp. Mψ ≥ Mϕ −ϕ−1(−β )1

)
, (9.82)
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(ii’) if −ψ−1 is operator monotone and operator superadditive (resp. operator subaddi-
tive) on R, then the reverse inequality is valid in (9.81),

where

β = max
0≤θ≤1

{
θψ(M)+ (1−θ )ψ(m)−ψ ◦ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
(9.83)

(resp. β = min
0≤θ≤1

{
θψ(M)+ (1−θ )ψ(m)−ψ ◦ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
.)

Proof. We prove the case (i) only and when ψ ◦ϕ−1 is convex: Putting F(u,v) = u− v
and f = g = ψ ◦ϕ−1 in Theorem 9.11, we have:

ψ(Mψ ) =
∫

T

1
k

Φt
(
ψ ◦ϕ−1 (ϕ(xt))

)
dμ(t) ≤ ψ ◦ϕ−1 (ϕ(Mϕ)

)
+ β1, (9.84)

where

β = max
ϕm≤z≤ϕM

{
ψ(M)−ψ(m)
ϕ(M)−ϕ(m)

(z−ϕm)+ ψ ◦ϕ−1(ϕm)−ψ ◦ϕ−1(z)
}

which gives (9.83). Since ψ−1 is operator monotone and subadditive on R, then by using
(9.84) we obtain

Mψ ≤ ψ−1 (ψ(Mϕ )+ β1
)≤ Mϕ + ψ−1(β )1.

�

Corollary 9.13 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions. Let ψ ◦ ϕ−1 be convex and
ψ > 0 (resp. ψ < 0) on [m,M].

(i) If ψ−1 is operator monotone and operator submultiplicative on R, then

Mψ ≤ ψ−1(α)Mϕ , (9.85)

(i’) if −ψ−1 is operator monotone and operator submultiplicative on R, then the reverse
inequality is valid in (9.85),

(ii) if ψ−1 is operator monotone and operator supermultiplicative on R, then

Mψ ≤ [
ψ−1(α−1)

]−1
Mϕ , (9.86)

(ii’) if −ψ−1 is operator monotone and operator supermultiplicative on R, then the re-
verse inequality is valid in (9.86),

where

α = max
0≤θ≤1

{
θψ(M)+ (1−θ )ψ(m)

ψ ◦ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
(9.87)(

resp. α = min
0≤θ≤1

{
θψ(M)+ (1−θ )ψ(m)

ψ ◦ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
.

)
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Proof. The proof is essentially the same as that of Corollary 9.12 and we omit details.
�

Remark 9.8 We note that if ψ ◦ϕ−1 is a concave function, we can obtain similar inequa-
lities as in Corollary 9.13. We use the same way as we did in Corollary 9.12.
E.g. if ψ > 0 (resp. ψ < 0) on [m,M] is operator monotone and operator supermultiplica-
tive on R, then

Mψ ≥ ψ−1(α)Mϕ ,

with min instead of max in (9.87).

Example 9.2 If we put ϕ(t) = ts and ψ(t) = tr in inequalities involving the complemen-
tary order among quasi-arithmetic means, we can obtain the complementary order among
power means.
E.g. using Corollary 9.10, we obtain that (compare with Theorem 9.14)

Ms(x,ΦΦ) ≤ k
r−s
rs max

0≤θ≤1

{
r
√

(θMr +(1−θ )mr)
s
√

(θMs +(1−θ )ms)

}
Mr(x,ΦΦ)

holds for r ≤ s, s ≥ 1 or r ≤ s ≤−1, where

max
0≤θ≤1

{
r
√

(θMr +(1−θ )mr)
s
√

(θMs +(1−θ )ms)

}
= Δ(h,r,s)

is the generalized Specht ratio defined by (9.3), i.e.

Δ(h,r,s) =
{

r(hs −hr)
(s− r)(hr −1)

} 1
s
{

s(hr −hs)
(r− s)(hs −1)

}− 1
r

, h =
M
m

.

9.6 Some better bounds

In this section we study converses of a generalized Jensen’s inequality for a continuous
field of self-adjoint operators, a unital field of positive linear mappings and real values
continuous convex functions. We obtain some better bounds than the ones calculated in
Section 9.1 and a series of papers in which these inequalities are studied. As an application,
we provide a refined calculation of bounds in the case of power functions.

In the following theorem we give a general form of converses of Jensen’s inequality
which give a better bound than the one in Theorem 9.2.
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Theorem 9.24 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤Mx, be the bounds of the self-adjoint element x =

∫
T Φt(xt)dμ(t) and

f : [a,b]→ R, g : [mx,Mx] → R, F : U ×V → R, where f ([a,b])⊆U, g([mx,Mx]) ⊆V and
F be bounded.

If f is convex and F is operator monotone in the first variable, then

F

[∫
T
Φt( f (xt ))dμ(t) , g

(∫
T
Φt (xt)dμ(t)

)]
≤C1 1K ≤C1K , (9.88)

where constants C1 ≡C1(F, f ,g,m,M,mx,Mx) and C ≡C(F, f ,g,m,M) are

C1 := sup
mx≤z≤Mx

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

= sup
M−Mx
M−m ≤p≤M−mx

M−m

{F [p f (m)+ (1− p) f (M) , g(pm+(1− p)M)]} ,

C := sup
m≤z≤M

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

= sup
0≤p≤1

{F [p f (m)+ (1− p) f (M) , g(pm+(1− p)M)]} .

If f is concave, then the opposite inequality holds in (9.88) with inf instead of sup in
bounds C1 and C.

Proof. We prove only the convex case. Since mΦt (1H) ≤ Φt (xt) ≤ M Φt(1H) and∫
T Φt(1H)dμ(t) = 1K , then m1K ≤ ∫

T Φt(xt)dμ(t) ≤ M1K . Next, since mx and Mx, are the
bounds of the operator

∫
T Φt(xt)dμ(t) it follows that [mx,Mx] ⊆ [m,M].

By using convexity of f and functional calculus, we obtain∫
T

Φt ( f (xt))dμ(t) ≤
∫

T
Φt

(
M1H − xt

M−m
f (m)+

xt −m1H

M−m
f (M)

)
dμ(t)

=
M1K − ∫

T Φt(xt)dμ(t)
M−m

f (m)+
∫
T Φt(xt)dμ(t)−m1K

M−m
f (M).

Using operator monotonicity of u �→ F(u,v) and boundedness of F , it follows

F

[∫
T
Φt( f (xt ))dμ(t) , g

(∫
T
Φt(xt)dμ(t)

)]
≤ F

[
M1K − ∫

T Φt(xt)dμ(t)
M−m

f (m)+
∫
T Φt(xt)dμ(t)−m1K

M−m
f (M) , g

(∫
T
Φt (xt)dμ(t)

)]
≤ sup

mx≤z≤Mx

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

1K

≤ sup
m≤z≤M

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

1K.

�
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Remark 9.9 We can obtain an inequality similar to the one in Theorem 9.24 in the case
when (Φt )t∈T is a non-unit field of positive linear mappings, i.e. when

∫
T Φt(1)dμ(t) = k1

for some positive scalar k. Then,

F

[∫
T
Φt( f (xt ))dμ(t) , g

(∫
T
Φt (xt)dμ(t)

)]
≤ sup

kmx≤z≤kMx

{
F

[
kM− z
M−m

f (m)+
z− km
M−m

f (M) , g(z)
]}

1K

≤ sup
km≤z≤kM

{
F

[
kM− z
M−m

f (m)+
z− km
M−m

f (M) , g(z)
]}

1K .

This means that we obtain a better upper bound than the one given in Theorem 9.11.

We recall that the following generalization of Jensen’s inequality (9.1) holds. If f is
an operator convex function on [m,M] and λg ≤ f on [m,M] for some function g and real
number λ , then

0 ≤
∫

T
Φt ( f (xt ))dμ(t)−λg

(∫
T

Φt(xt)dμ(t)
)

.

In the following we consider the difference type converses of the above inequality.

We introduce some abbreviations. Let f : [m,M]→R, m < M, be a convex or a concave
function. We denote a linear function through (m, f (m)) and (M, f (M)) by f cho

[m,M], i.e.

f cho
[m,M](z) =

M− z
M−m

f (m)+
z−m
M−m

f (M), z ∈ R

and the slope and the intercept by α f and β f as in (9.2).

The following Theorem 9.25 and Corollary 9.14 are refinements of [124, Theorem 2.4].

Theorem 9.25 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤ Mx, be the bounds of x =

∫
T Φt(xt)dμ(t) and f : [m,M] → R, g :

[mx,Mx] → R be continuous functions.
If f is convex, then∫
T

Φt ( f (xt))dμ(t)−λg

(∫
T

Φt(xt)dμ(t)
)
≤ max

mx≤z≤Mx

{
α f z+ β f −λg(z)

}
1K (9.89)

holds and the bound in RHS of (9.89) exists for any m,M,mx and Mx.
If f is concave, then the reverse inequality with min instead of max is valid in (9.89).

The bound in RHS of this inequality exists for any m,M,mx and Mx.
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Proof. We put F(u,v) = u−λv, λ ∈ R in Theorem 9.24. A function z �→ α f z+ β f −
λg(z) is continuous on [mx,Mx], so the global extremes exist. �

In the following corollary we give a way of determining the bounds placed in Theo-
rem 9.25.

Corollary 9.14 Let (xt)t∈T , (Φt )t∈T , A, f and g be as in Theorem 9.25.

(i) Let λ ≤ 0.

If f is convex and g is convex, then∫
T

Φt ( f (xt))dμ(t)−λg

(∫
T

Φt(xt)dμ(t)
)
≤Cλ 1K (9.90)

holds with

Cλ = max
{

f cho
[m,M](mx)−λg(mx) , f cho

[m,M](Mx)−λg(Mx)
}

. (9.91)

But, if f is convex and g is concave, then the inequality (9.90) holds with

Cλ =

⎧⎪⎪⎨⎪⎪⎩
f cho
[m,M](mx)−λg(mx) if λg′−(z) ≥ α f for every z∈(mx,Mx),

f cho
[m,M](z0)−λg(z0) if λg′−(z0) ≤ α f ≤ λg′+(z0) for some z0∈(mx,Mx),

f cho
[m,M](Mx)−λg(Mx) if λg′+(z) ≤ α f for every z∈(mx,Mx).

(9.92)

If f is concave and g is convex, then

cλ 1K ≤
∫

T
Φt( f (xt ))dμ(t)−λg

(∫
T

Φt(xt)dμ(t)
)

(9.93)

holds with cλ which equals the right side in (9.92) with reverse inequality signs.

But, if f is concave and g is concave, then the inequality (9.93) holds with cλ which
equals the right side in (9.91) with min instead of max.

(ii) Let λ ≥ 0.

If f is convex and g is convex, then the inequality (9.90) holds with Cλ defined by
(9.92). But if f is convex and g is concave, then (9.90) holds with Cλ defined by
(9.91).

If f is concave and g is convex, then the inequality (9.93) holds with cλ which equals
the right side in (9.91) with min instead of max. But, if f is concave and g is concave,
then (9.93) holds with cλ which equals the right side in (9.92) with reverse inequality
signs.

Proof. (i): We prove only the cases when f is convex. If g is convex (resp. concave)
we apply Proposition 9.2 (resp. Proposition 9.1) on the convex (resp. concave) function
hλ = f cho

[m,M](z)−λg(z), and get (9.91) (resp. (9.92)).
In the remaining cases the proof is essentially the same as in the above cases. �

Corollary 9.14 applied on the functions f (z) = zp and g(z) = zq gives the following
corollary, which is a refinement of [124, Corollary 2.6].
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Corollary 9.15 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.25, and additionally let
operators xt be strictly positive with the spectra in [m,M], where 0 < m < M.

(i) Let λ ≤ 0.

If p,q ∈ (−∞,0]∪ [1,∞), then∫
T

Φt(x
p
t )dμ(t)−λ

(∫
T

Φt(xt)dμ(t)
)q

≤C�
λ 1K (9.94)

holds with

C�
λ = max{αt pmx + βt p −λmq

x , αt pMx + βt p −λMq
x} . (9.95)

If p ∈ (−∞,0) and q ∈ (0,1), then the inequality (9.94) holds with

C�
λ =

⎧⎪⎪⎨⎪⎪⎩
αt p mx + βt p −λ mq

x if (λ q/αt p)1/(1−q) ≤ mx,

βt p + λ (q−1)(λ q/αt p)q/(1−q) if mx ≤ (λ q/αt p)1/(1−q) ≤ Mx,

αt p Mx + βt p −λ Mq
x if (λ q/αt p)1/(1−q) ≥ Mx.

(9.96)

If p ∈ (0,1) and q ∈ (−∞,0), then

c�
λ 1K ≤

∫
T

Φt(x
p
t )dμ(t)−λ

(∫
T

Φt(xt)dμ(t)
)q

(9.97)

holds with c�
λ which equals the right side in (9.96).

If p,q ∈ [0,1], then the inequality (9.97) holds with c�
λ which equals the right side in

(9.95) with min instead of max.

(ii) Let λ ≥ 0.

If p,q ∈ (−∞,0)∪ (1,∞), then (9.94) holds with C�
λ defined by (9.96). But, if p ∈

(−∞,0]∪ [1,+∞) and q ∈ [0,1], then (9.94) holds with C�
λ defined by (9.95).

If p∈ [0,1] and q∈ (−∞,0]∪ [1,∞), then (9.97) holds with c�
λ which equals the right

side in (9.95) with min instead of max. But, if p ∈ (0,1) and q ∈ (0,1), then (9.97)
holds with c�

λ which equals the right side in (9.96).

Using Theorem 9.25 and Corollary 9.14 with g = f and λ = 1 we have the following
theorem.

Theorem 9.26 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤ Mx, be the bounds of x =

∫
T Φt(xt)dμ(t) and f : [m,M] → R be a

continuous function.
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If f is convex, then

0 ≤
∫

T
Φt( f (xt ))dμ(t)− f

(∫
T

Φt(xt)dμ(t)
)
≤ max

mx≤z≤Mx

{
f cho
[m,M](z)− f (z)

}
1K (9.98)

holds and the bound in RHS of (9.98) exists for any m,M,mx and Mx.
The value of the constant

C̄ ≡ C̄( f ,m,M,mx,Mx) := max
mx≤z≤Mx

{
f cho
[m,M](z)− f (z)

}
can be determined as follows

C̄ =

⎧⎪⎪⎨⎪⎪⎩
f cho
[m,M](mx)− f (mx) if f ′−(z) ≥ α f for every z∈(mx,Mx),

f cho
[m,M](z0)− f (z0) if g′−(z0) ≤ α f ≤ g′+(z0) for some z0∈(mx,Mx),

f cho
[m,M](Mx)− f (Mx) if g′+(z) ≤ α f for every z∈(mx,Mx).

(9.99)

If f is concave, then the reverse inequality with min instead of max is valid in (9.98).
The bound in this inequality exists for any m,M,mx and Mx. The value of the constant

c̄ ≡ c̄( f ,m,M,mx,Mx) := min
mx≤z≤Mx

{
f cho
[m,M](z)− f (z)

}
can be determined as in the right side in (9.99) with reverse inequality signs.

If f is a strictly convex differentiable function on [mx,Mx], then we obtain the following
corollary of Theorem 9.26. This is a refinement of [124, Corollary 2.16].

Corollary 9.16 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.26. Let f : [m,M] → R be
a continuous function. If f is strictly convex differentiable on [mx,Mx], then

0 ≤
∫

T
Φt( f (xt ))dμ(t)− f

(∫
T

Φt (xt)dμ(t)
)
≤ (

α f z0 + β f − f (z0)
)
1K, (9.100)

where

z0 =

⎧⎪⎨⎪⎩
mx if f ′(mx) ≥ α f ,

f ′−1 (α f
)

if f ′(mx) ≤ α f ≤ f ′(Mx),

Mx if f ′(Mx) ≤ α f .

(9.101)

The global upper bound is C(m,M, f ) = α f z̄0 + β f − f (z̄0), where z̄0 = ( f ′)−1(α f ) ∈
(m,M). The upper bound in RHS of (9.100) is better than the global upper bound provided
that either f ′(mx) ≥ α f or f ′(Mx) ≤ α f .

In the dual case, when f is strictly concave differentiable on [mx,Mx], then the reverse
inequality is valid in (9.100), with z0 which equals the right side in (9.101) with reverse
inequality signs. The global lower bound is defined as the global upper bound in the convex
case. The lower bound in the reverse inequality in (9.100) is better than the global lower
bound provided that either f ′(mx) ≤ α f or f ′(Mx) ≥ α f .
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Proof. We prove only the cases when f is strictly convex differentiable on [mx,Mx].
The inequality (9.100) follows from Theorem 9.26 by using the differential calculus. Since
h(z) = α f z+ β f − f (z) is a continuous strictly concave function on [m,M], then there is
exactly one point z0 ∈ [m,M] which achieves the global maximum. If neither of these
points is in the interval [mx,Mx], then the global maximum in [mx,Mx] is less than the
global maximum in [m,M]. �

Using Corollary 9.15 with q = p, λ = 1 or applying Corollary 9.16 we have the fol-
lowing corollary, which is a refinement of [124, Corollary 2.18].

Corollary 9.17 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.26, and additionally let
operators xt be strictly positive with the spectra in [m,M], where 0 < m < M. Then

0 ≤
∫

T
Φt(x

p
t )dμ(t)−

(∫
T

Φt(xt)dμ(t)
)p

≤ C̄(mx,Mx,m,M, p)1K ≤C(m,M, p)1K

for p �∈ (0,1), and

0 ≥
∫

T
Φt(x

p
t )dμ(t)−

(∫
T

Φt(xt)dμ(t)
)p

≥ c̄(mx,Mx,m,M, p)1K ≥C(m,M, p)1K

for p ∈ (0,1), where

C̄(mx,Mx,m,M, p) =

⎧⎪⎪⎨⎪⎪⎩
αt p mx + βt p −mp

x if pmp−1
x ≥ αt p ,

C(m,M, p) if pmp−1
x ≤ αt p ≤ pMp−1

x ,

αt p Mx + βt p −Mp
x if pMp−1

x ≤ αt p ,

(9.102)

and c̄(mx,Mx,m,M, p) equals the right side in (9.102) with reverse inequality signs. The
constant C(m,M, p) is defined by (2.38).

In the same way in the following we consider the ratio type converses of Jensen’s
inequality. The following Theorem 9.27 and Corollary 9.18 are refinements of [124, The-
orem 2.9].

Theorem 9.27 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤ Mx, be the bounds of x =

∫
T Φt(xt)dμ(t) and f : [m,M] → R be a

continuous function and g : [mx,Mx] → R be a strictly positive continuous function.
If f is convex, then∫

T
Φt( f (xt ))dμ(t) ≤ max

mx≤z≤Mx

{
α f z+ β f

g(z)

}
g

(∫
T

Φt(xt)dμ(t)
)

(9.103)

holds and the bound in RHS of (9.103) exists for any m,M,mx and Mx.
If f is concave, then the reverse inequality with min instead of max is valid in (9.103).

The bound in RHS of this inequality exists for any m,M,mx and Mx.
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Proof. We put F(u,v) = v−
1
2 uv−

1
2 in Theorem 9.24.

A function z �→ α f z+β f
g(z) is continuous on [mx,Mx], so the global extremes exist. �

Remark 9.10 If f is convex and g is strictly negative on [mx,Mx], then the inequality with
min instead of max is valid in (9.103). If f is concave and g is strictly negative on [mx,Mx],
then the reverse inequality is valid in (9.103).

In the following corollary, we give a way of determining the bounds placed in Theo-
rem 9.27.

Corollary 9.18 Let (xt)t∈T , (Φt)t∈T , A, f and g be as in Theorem 9.27. Additionally, let
f cho
[m,M] and g be strictly positive on [mx,Mx].

If f is convex and g is convex, then∫
T

Φt( f (xt ))dμ(t) ≤Cg

(∫
T

Φt(xt)dμ(t)
)

(9.104)

holds with

C=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f cho
[m,M](mx)

g(mx)
if g′−(z) ≥ α f g(z)

α f z+ β f
for every z∈(mx,Mx),

f cho
[m,M](z0)

g(z0)
if g′−(z0) ≤ α f g(z0)

α f z0 + β f
≤ g′+(z0) forsome z0∈(mx,Mx),

f cho
[m,M](Mx)

g(Mx)
if g′+(z) ≤ α f g(z)

α f z+ β f
for every z∈(mx,Mx).

(9.105)

If f is convex and g is concave, then the inequality (9.104) holds with

C = max

{
f cho
[m,M](mx)

g(mx)
,

f cho
[m,M](Mx)

g(Mx)

}
. (9.106)

If f is concave and g is convex, then∫
T

Φt( f (xt ))dμ(t) ≥ cg

(∫
T

Φt(xt)dμ(t)
)

(9.107)

holds with c which equals the right side in (9.106) with min instead of max.
If f is concave and g is concave, then the inequality (9.107) holds with c which equals

the right side in (9.105) with reverse inequality signs.

Proof. We prove only the cases when f is convex. If g is convex (resp. concave) we

apply Proposition 9.3 (resp. Proposition 9.5) on the ratio function h(z) =
f cho
[m,M](z)
g(z) with the

convex (resp. concave) denominator g, and so we get (9.105) (resp. (9.106)). �

Corollary 9.18 applied on the functions f (z) = zp and g(z) = zq gives the following
corollary, which is a refinement of [124, Corollary 2.11].
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Corollary 9.19 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.27, and additionally let
operators xt be strictly positive with the spectra in [m,M], where 0 < m < M.

If p,q ∈ (−∞,0)∪ (1,∞), then∫
T

Φt(x
p
t )dμ(t) ≤C�

(∫
T

Φt (xt)dμ(t)
)q

(9.108)

holds with

C� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

αt p mx + βt p

mq
x

if
q

1−q
βt p

αt p
≤ mx,

βt p

1−q

(
1−q

q
αt p

βt p

)q

if mx ≤ q
1−q

βt p

αt p
≤ Mx,

αt p Mx + βt p

Mq
x

if
q

1−q
βt p

αt p
≥ Mx.

(9.109)

If p ∈ (−∞,0]∪ [1,∞) and q ∈ [0,1], then the inequality (9.108) holds with

C� = max

{
αt pmx + βt p

mq
x

,
αt pMx + βt p

Mq
x

}
. (9.110)

If p ∈ [0,1] and q ∈ (−∞,0]∪ [1,∞), then∫
T

Φt(x
p
t )dμ(t) ≥ c�

(∫
T

Φt(xt)dμ(t)
)q

(9.111)

holds with cλ which equals the right side in (9.110) with min instead of max.
If p,q ∈ (0,1), then the inequality (9.111) holds with c� which equals the right side in

(9.109).

Using Theorem 9.27, Proposition 9.4 and 9.6 with g = f we have the following theo-
rem.

Theorem 9.28 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤ Mx, be the bounds of x =

∫
T Φt(xt)dμ(t). let f : [m,M] → R be a

continuous function and strictly positive on [mx,Mx].
If f is convex, then

∫
T

Φt( f (xt ))dμ(t) ≤ max
mx≤z≤Mx

{
f cho
[m,M](z)

f (z)

}
f

(∫
T

Φt (xt)dμ(t)
)

(9.112)

holds and the bound in RHS of (9.112) exists for any m,M,mx and Mx.
The value of the constant

C̄ ≡ C̄( f ,m,M,mx,Mx) := max
mx≤z≤Mx

{
f cho
[m,M](z)

f (z)

}
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can be determined as follows:

C̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f cho
[m,M](mx)

f (mx)
if f ′−(z) ≥ α f f (z)

α f z+ β f
for every z∈(mx,Mx),

f cho
[m,M](z0)

f (z0)
if f ′−(z0) ≤ α f f (z0)

α f z0 + β f
≤ f ′+(z0) forsome z0∈(mx,Mx),

f cho
[m,M](Mx)

f (Mx)
if f ′+(z) ≤ α f f (z)

α f z+ β f
for every z∈(mx,Mx).

(9.113)

If f is concave, then the reverse inequality with min instead of max is valid in (9.112).
The bound in this inequality exists for any m,M,mx and Mx. The value of the constant

c̄ ≡ c̄( f ,m,M,mx,Mx) := min
mx≤z≤Mx

{
f cho
[m,M](z)

f (z)

}

can be determined as in the right side in (9.112) with reverse inequality signs.

Remark 9.11 If f is convex and strictly negative on [mx,Mx], then the inequality with
min instead of max is valid in (9.112). If f is concave and strictly negative on [mx,Mx],
then the reverse inequality is valid in (9.112).

If f is a strictly convex differentiable function on [mx,Mx], then we obtain the following
corollary of Theorem 9.28. This is a refinement of [124, Corollary 2.10].

Corollary 9.20 Let (xt)t∈T , (Φt )t∈T and x be as in Theorem 9.28. Let f : [m,M] → R

be a continuous function and f (m), f (M) > 0. If f is strictly positive and strictly convex
twice differentiable on [mx,Mx], then∫

T
Φt( f (xt ))dμ(t) ≤

(
α f z0 + β f

f (z0)

)
f

(∫
T

Φt(xt)dμ(t)
)

, (9.114)

where z0 ∈ (mx,Mx) is defined as the unique solution of α f f (z) = (α f z+β f ) f ′(z) provided
(α f mx + β f ) f ′(mx)/ f (mx) ≤ α f ≤ (α f Mx + β f ) f ′(Mx)/ f (Mx), otherwise z0 is defined as
mx or Mx provided α f ≤ (α f mx + β f ) f ′(mx)/ f (mx) or α f ≥ (α f Mx + β f ) f ′(Mx)/ f (Mx),
respectively.

The global upper bound is C(m,M, f ) = (α f z̄0 + β f )/ f (z̄0), where z̄0 ∈ (m,M) is
defined as the unique solution of α f f (z) = (α f z + β f ) f ′(z). The upper bound in RHS
of (9.114) is better than the global upper bound provided that either α f ≤ (α f mx +
β f ) f ′(mx)/ f (mx) or α f ≥ (α f Mx + β f ) f ′(Mx)/ f (Mx).

In the dual case, when f is positive and strictly concave differentiable on [mx,Mx],
then the reverse inequality is valid in (9.114), with z0 is defined as in (9.114) with re-
verse inequality signs. The global lower bound is defined as the global upper bound
in the convex case. The lower bound in the reverse inequality in (9.114) is better than
the global lower bound provided that either α f ≥ (α f mx + β f ) f ′(mx)/ f (mx) or α f ≤
(α f Mx + β f ) f ′(Mx)/ f (Mx).
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Proof. We prove only the cases when f is strictly convex differentiable on [mx,Mx].
The inequality (9.114) follows from Theorem 9.28 by using the differential calculus.

Next, we put h(z)= (α f z+β f )/ f (z). Then h′(z)= H(z)/ f (z)2, where H(z)= α f f (z)−
(α f z+ β f ) f ′(z). Due to the strict convexity of f on [mx,Mx] and since f (m), f (M) > 0,
it follows that H ′(z) = −(α f z+ β f ) f ′′(z) < 0. Hence H(z) is decreasing on [mx,Mx]. If
H(mx)H(Mx) ≤ 0, then the minimum value of the function h on [mx,Mx] is attained in z0

which is the unique solution of the equation H(z) = 0. Otherwise, if H(mx)H(Mx) ≥ 0,
then this minimum value is attained in mx or Mx according to H(mx) ≤ 0 or H(Mx) ≥ 0.

Since h(z) = (α f z+β f )/ f (z) is a continuous function on [m,M], then the global max-
imum in [mx,Mx] is less than the global maximum in [m,M]. �

Using Corollary 9.19 with q = p or applying Corollary 9.20 we have the following
corollary, which is a refinement of [124, Corollary 2.12].

Corollary 9.21 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.28, and additionally let
operators xt be strictly positive with the spectra in [m,M], where 0 < m < M. Then

∫
T

Φt (x
p
t )dμ(t) ≤ K̄(mx,Mx,m,M, p)

(∫
T

Φt (xt)dμ(t)
)p

≤ K(m,M, p)
(∫

T
Φt(xt)dμ(t)

)p

for p �∈ (0,1), and

∫
T

Φt(x
p
t )dμ(t) ≥ k̄(mx,Mx,m,M, p)

(∫
T

Φt (xt)dμ(t)
)p

≥ K(m,M, p)
(∫

T
Φt (xt)dμ(t)

)p

for p ∈ (0,1), where

K̄(mx,Mx,m,M, p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αt p mx + βt p

mp
x

if pβt p/mx ≥ (1− p)αt p ,

K(m,M, p) if pβt p/mx < (1− p)αt p < pβt p/Mx,

αt p Mx + βt p

Mp
x

if pβt p/Mx ≤ (1− p)αt p ,

(9.115)

and k̄(mx,Mx,m,M, p) equals the right side in (9.115) with reverse inequality signs.
K(m,M, p) is the Kantorovich constant defined by (2.29).

Remark 9.12 We can obtain similar inequalities to above in the case when (Φt )t∈T is a
field of positive linear mappings such that

∫
T Φt(1)dμ(t) = k1 for some positive scalar k.

The details are left to the interested reader.
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9.7 Appendix

In appendix of this section we give the calculation of extreme values of a difference or ratio
function y = h(z), of a linear function y = kx+ l and a continuous convex or concave func-
tion y = g(x) on a closed interval. The basic facts about the convex and concave functions
can be found e.g. in books [239, 249].

We first examine two cases for the difference.

Proposition 9.1 Let g : [a,b] → R be a continuous function and let h(z) = kz+ l−g(z)
be a difference function. If g is convex, then

min
a≤z≤b

h(z) = min{h(a) , h(b)} (9.116)

and

max
a≤z≤b

h(z) =

⎧⎪⎪⎨⎪⎪⎩
h(a) if g′−(z) ≥ k for every z ∈ (a,b),

h(z0) if g′−(z0) ≤ k ≤ g′+(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) ≤ k for every z ∈ (a,b).

(9.117)

Additionally, if g is strictly convex and h is not monotone, then a unique number z0 ∈
(a,b) exists so that

h(z0) = max
a≤z≤b

h(z). (9.118)

Proof. A function y = h(z) is continuously concave because it is the sum of two con-
tinuous concave functions y = kz+ l and y = −g(z). Since a function h is lower bounded
by the chord line through endpoints Pa(a,h(a)) and Pb(b,h(b)), then (9.116) holds. Next,
(9.117) follows from the global maximum property for concave functions. With additional
assumptions the equality (9.118) follows from the strict concavity of h. �

Proposition 9.2 Let g : [a,b] → R be a continuous function and let h(z) = kz+ l−g(z)
be a difference function. If g is concave, then

max
a≤z≤b

h(z) = max{h(a) , h(b)}

and

min
a≤z≤b

h(z) =

⎧⎪⎪⎨⎪⎪⎩
h(a) if g′−(z) ≤ k for every z ∈ (a,b),

h(z0) if g′+(z0) ≤ k ≤ g′−(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) ≥ k for every z ∈ (a,b).

Additionally, if g is strictly concave and h is not monotone, then a unique number
z0 ∈ (a,b) exists so that

h(z0) = min
a≤z≤b

h(z).
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Proof. The proof is essentially the same as the one in Proposition 9.1. �

We now examine four cases for the ratio.

Proposition 9.3 Let g : [a,b]→ R be either a strictly positive or strictly negative contin-
uous function and let h(z) = (kz+ l)/g(z) be a ratio function with strictly positive numer-
ator. If g is convex, then

min
a≤z≤b

h(z) = min{h(a) , h(b)} (9.119)

and

max
a≤z≤b

h(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h(a) if g′−(z) ≥ kg(z)
kz+ l

for every z ∈ (a,b),

h(z0) if g′−(z0) ≤ kg(z0)
kz0 + l

≤ g′+(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) ≤ kg(z)
kz+ l

for every z ∈ (a,b).

(9.120)

Additionally, if g is strictly convex and h is not monotone, then a unique number z0 ∈
(a,b) exists so that

h(z0) = max
a≤z≤b

h(z). (9.121)

Proof. Maximum value: A function y = h(z) is continuous on [a,b] because it is
the ratio of two continuous functions. Then there exists z0 ∈ [a,b] such that h(z0) =
maxa≤z≤b h(z). Also, since g is convex, then g′−(z) and g′+(z) exist and g′−(z) ≤ g′+(z)
on (a,b). Then h′− and h′+ exist and

h′∓(z) =
kg(z)− (k z+ l)g′∓(z)

(g(z))2 .

First we observe the case when h is not monotone on [a,b]. Then there exists z0 ∈ (a,b)
such that h(z0) = maxa≤z≤b h(z). So for every z ∈ (a,b) we have

(k z+ l)/g(z)≤ (k z0 + l)/g(z0) (because h(z0) is maximum),
(k z+ l) g(z0) ≤ (k z+ l)g(z)+ kg(z)(z0− z) (because g > 0 or g < 0),
(k z+ l)μg(z)(z0 − z) ≤ (k z+ l)(g(z0)−g(z)) ≤ kg(z)(z0− z) (because g is convex),

g′−(z) ≤ μg(z) ≤ kg(z)/(k z + l) for a < z < z0 and g′+(z) ≥ μg(z) ≥ kg(z)/(k z + l) for
b > z > z0, where μg(z) is a subdifferential of the function g in z, i.e. μg(z)∈ [g′−(z),g′+(z)].
So

h′−(z) ≥ 0 for a < z < z0 and h′+(z) ≤ 0 for b > z > z0. (9.122)

It follows that for each number z0 at which the function h has the global maximum on [a,b]
the conditione g′−(z0) ≤ kg(z0)/(kz0 + l) ≤ g′+(z0) is valid.

In the case when h is monotonically decreasing on [a,b], we have
maxa≤z≤b h(z)= h(a) and h′−(z)≤ 0 for all z∈ (a,b), which imply that g′−(z)≥ kg(z)/(kz+
l) for every z ∈ (a,b). In the same way we can observe the case when h is monotonically
increasing.
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With additional assumptions it follows by using (9.122) that the function h is strictly
increasing on (a,z0] and strictly decreasing on [z0,b). Hence the equality (9.121) is valid.

Minimum value: There does not exist z0 ∈ (a,b) at which the function h has the global
minimum. Indeed, if h is not a monotone function on [a,b], it follows by using (9.122)
that h is increasing on (a, z̄0] and decreasing on [z̄0,b), where z̄0 ∈ (a,b) is the point at
which the function h has the global maximum. It follows that the function h does not have
a global minimum on (a,b), and consequently (9.119) is valid. �

Similarly to Proposition 9.3 we obtain the following result.

Proposition 9.4 Let g : [a,b] → R be either a strictly positive or strictly negative con-
tinuous function and let h(z) = (kz + l)/g(z) be a ratio function with a strictly negative
numerator. If g is convex, then the equality (9.119) is valid with max instead of min, and
the equality (9.120) is valid with min instead of max .

Additionally, if g is strictly convex and h is not monotone, then the equality (9.121) is
valid with min instead of max.

Proposition 9.5 Let g : [a,b] → R be either a strictly positive or strictly negative con-
tinuous function and let h(z) = (kz + l)/g(z) be a ratio function with a strictly positive
numerator. If g is concave, then

max
a≤z≤b

h(z) = max{h(a) , h(b)} . (9.123)

and

min
a≤z≤b

h(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h(a) if g′−(z) ≤ kg(z)
kz+ l

for every z ∈ (a,b),

h(z0) if g′+(z0) ≤ kg(z0)
kz0 + l

≤ g′−(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) ≥ kg(z)
kz+ l

for every z ∈ (a,b).

(9.124)

Additionally, if g is strictly concave and h is not monotone, then a unique number
z0 ∈ (a,b) exists so that

h(z0) = min
a≤z≤b

h(z). (9.125)

Proof. The proof is the same as the one in Proposition 9.3. �

Similarly to the above proposition we obtain the following result.

Proposition 9.6 Let g : [a,b] → R be either a strictly positive or strictly negative con-
tinuous function and let h(z) = (kz + l)/g(z) be a ratio function with a strictly negative
numerator. If g is concave, then the equality (9.123) is valid with min instead of max, and
the equality (9.124) is valid with max instead of min.

Additionally, if g is strictly concave and h is not monotone, then the equality (9.125) is
valid with max instead of min .
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9.8 Notes

A version of Jensen’s operator inequality and its converses for a bounded continuous field
self-adjoint elements in C∗-algebra and a unital field of positive linear mappings is firstly
discussed by Hansen, Pečarić and I. Perić [135] based on [137] by Hansen and Pederson.
A generalization of the previous results on non-unital fields of positive linear mappings
is presented by Mićić, Pečarić and Seo [202]. The results in Sections 9.3 and 9.4 for
power operator means are given by Mićić, and Pečarić [193]. A version of these results
is presented in Sections 9.5 for quasi-arithmetic means, which is based on the results of
Mićić, Pečarić and Seo [203, 204]. Results with some better bounds in Section 9.6 are
given by Mićić, Pavić and Pečarić [189].





Chapter10
Jensen’s Operator Inequality
Without Operator Convexity

In this chapter, we study Jensen’s operator inequality without operator convexity. We ob-
serve this inequality for an n−tuples of self-adjoint operators, a unital n−tuples of positive
linear mappings and a general convex function with conditions on the operators bounds.
In the present context, we also study an extension and a refinement of Jensen’s operator
inequality. As an application we give the order among quasi-arithmetic operator means.

10.1 Jensen’s operator inequality with
a general convex function

In this section we give our main result about Jensen’s operator inequality without oper-
ator convexity. We give this inequality with conditions on the bounds of the operators
(defined by (1.2)), but for a general convex function. We also study monotonicity of quasi-
arithmetic operator means under the same conditions.

Suppose that J is an arbitrary interval in R.
We recall that operator convexity plays an essential role in the Davis-Choi-Jensen in-

equality: f (Φ(A)) ≤ Φ( f (A)). In fact, this inequality will be false if we replace an oper-
ator convex function by a general convex function (see the example given by M.D. Choi

271
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in [35]). Furthermore, if f : J → R be an operator convex function, then the generalized
discrete Jensen’s operator inequality (8.12):

f

(
n

∑
i=1

Φi(Ai)

)
≤

n

∑
i=1

Φi( f (Ai)) (♣)

holds for every n−tuple (A1, . . . ,An) of self-adjoint operators in B(H) with spectra in J
and every unital n−tuple (Φ1, . . . ,Φn) of positive linear mappings Φi : B(H) → B(K),
i = 1, . . . ,n, (i.e. (Φ1, . . . ,Φn) is such that ∑n

i=1 Φi(IH) = IK).
Next we observe an example when the above Jensen’s inequality is valid for some

non-operator convex function.

Example 10.1 It appears that the above inequality will be false if we replace the operator
convex function by a general convex function. For example, we define mappings Φ1,Φ2 :
M3(C)→M2(C) by Φ1((ai j)1≤i, j≤3)= 1

2(ai j)1≤i, j≤2, Φ2 = Φ1. Then Φ1(I3)+Φ2(I3)= I2.

I) If

A1 = 2

⎛⎝1 0 1
0 0 1
1 1 1

⎞⎠ and A2 = 2

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ ,

then

(Φ1(A1)+ Φ2(A2))
4 =

(
16 0
0 0

)
�≤

(
80 40
40 24

)
= Φ1

(
A4

1

)
+ Φ2

(
A4

2

)
.

Given the above, there is no relation between (Φ1(A1)+ Φ2(A2))
4 and Φ1

(
A4

1

)
+

Φ2
(
A4

2

)
under the operator order. We observe that in the above case the following

stands A = Φ1(A1)+Φ2(A2) =
(

2 0
0 0

)
and [mA,MA] = [0,2], [m1,M1]⊂ [−1.60388,

4.49396], [m2,M2] = [0,2], i.e.

(mA,MA) ⊂ [m1,M1]∪ [m2,M2]

similarly as in Figure 10.1.a).

II) If

A1 =

⎛⎝−14 0 1
0 −2 −1
1 −1 −1

⎞⎠ and A2 =

⎛⎝15 0 0
0 2 0
0 0 15

⎞⎠ ,

then

(Φ1(A1)+ Φ2(A2))
4 =

(
1
16 0
0 0

)
≤

(
89660 −247
−247 51

)
= Φ1

(
A4

1

)
+ Φ2

(
A4

2

)
.

So we have that an inequality of type (♣) now is valid. In the above case the fol-

lowing stands A = Φ1(A1)+ Φ2(A2) =
(

1
2 0
0 0

)
and [mA,MA] = [0,0.5], [m1,M1] ⊂

[−14.077,−0.328566], [m2,M2] = [2,15], i.e.

(mA,MA)∩ [m1,M1] = /0 and (mA,MA)∩ [m2,M2] = /0.
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similarly as in Figure 10.1.b).

m1m1 m2m2 M2M2M1M1
m1m1 m2m2 M2M2M1M1

a) b)

mAmA MAMA
mAmA MAMA

Figure 10.1: Spectral conditions for a convex function f

It is no coincidence that the inequality (♣) is valid in Example 10.1-II). In the following
theorem we prove a general result when Jensen’s operator inequality holds for convex
functions.

Theorem 10.1 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (Φ1, . . . ,Φn) be an n−tuple of positive
linear mappings Φi : B(H) → B(K), i = 1, . . . ,n, such that ∑n

i=1 Φi(IH) = IK. If

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, (10.1)

where mA and MA, mA ≤ MA, are the bounds of the self-adjoint operator A =
n
∑
i=1

Φi(Ai),

then

f

(
n

∑
i=1

Φi(Ai)

)
≤

n

∑
i=1

Φi ( f (Ai)) (10.2)

holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi.

If f : J → R is concave, then the reverse inequality is valid in (10.2).

Proof. We prove only the case when f is a convex function.
If we denote m = min{m1, . . . ,mn} and M = max{M1, . . . ,Mn}, then [m,M] ⊆ I and

mIH ≤ Ai ≤ MIH , i = 1, . . . ,n. It follows mIK ≤ ∑n
i=1 Φi(Ai) ≤ MIK . Therefore [mA,MA] ⊆

[m,M] ⊆ I.

a) Let mA < MA. Since f is convex on [mA,MA], then

f (t) ≤ MA − t
MA −mA

f (mA)+
t−mA

MA −mA
f (MA), t ∈ [mA,MA], (10.3)

but since f is convex on [mi,Mi] and since (mA,MA)∩ [mi,Mi] = /0, then

f (t) ≥ MA − t
MA −mA

f (mA)+
t−mA

MA −mA
f (MA), t ∈ [mi,Mi] for i = 1, . . . ,n. (10.4)
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Since mAIK ≤ ∑n
i=1 Φi(Ai) ≤ MAIK , then by using functional calculus, it follows from

(10.3)

f

(
n

∑
i=1

Φi(Ai)

)
≤ MAIK −∑n

i=1 Φi(Ai)
MA −mA

f (mA)+ ∑n
i=1 Φi(Ai)−mAIK

MA −mA
f (MA). (10.5)

On the other hand, since miIH ≤ Ai ≤ MiIH , i = 1, . . . ,n, then by using functional cal-
culus, it follows from (10.4)

f (Ai) ≥ MAIH −Ai

MA −mA
f (mA)+

Ai−mAIH
MA −mA

f (MA), i = 1, . . . ,n.

Applying a positive linear mapping Φi and summing, we obtain

n

∑
i=1

Φi ( f (Ai)) ≥ MAIK −∑n
i=1 Φi(Ai)

MA −mA
f (mA)+ ∑n

i=1 Φi(Ai)−mAIK
MA −mA

f (MA), (10.6)

since ∑n
i=1 Φi(IH) = IK . Combining the two inequalities (10.5) and (10.6), we have the

desired inequality (10.2).

b) Let mA = MA. Since f is convex on [m,M], we have

f (t) ≥ f (mA)+ l(mA)(t −mA) for every t ∈ [m,M], (10.7)

where l is the subdifferential of f . Since mIH ≤ Ai ≤ MIH , i = 1, . . . ,n, then by using
functional calculus, applying a positive linear mapping Φi and summing, we obtain from
(10.7)

n

∑
i=1

Φi ( f (Ai)) ≥ f (mA)IK + l(mA)

(
n

∑
i=1

Φi(Ai)−mAIK

)
.

Since mAIK = ∑n
i=1 Φi(Ai), it follows

n

∑
i=1

Φi ( f (Ai)) ≥ f (mA)IK = f

(
n

∑
i=1

Φi(Ai)

)
,

which is the desired inequality (10.2). �

We have the following obvious corollary of Theorem 10.1 with the convex combination
of operators Ai, i = 1, . . . ,n.

Corollary 10.1 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤Mi, i = 1, . . . ,n. Let (α1, . . . ,αn) be an n−tuple of nonnegative
real numbers such that ∑n

i=1 αi = 1. If

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n,

where mA and MA, mA ≤ MA, are the bounds of A =
n
∑
i=1

αiAi, then

f

(
n

∑
i=1

αiAi

)
≤

n

∑
i=1

αi f (Ai) (10.8)
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holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi.

Proof. We apply Theorem 10.1 for positive linear mappings Φi : B(H) → B(H) deter-
mined by Φi : B �→ αiB, i = 1, . . . ,n. �

In the present context we can study the monotonicity of the discrete version of quasi-
arithmetic mean (9.65) defined as follows

Mϕ(A,ΦΦ,n) = ϕ−1

(
n

∑
i=1

Φi (ϕ(Ai))

)
, (10.9)

where (A1, . . . ,An) is an n−tuple of self-adjoint operators in B(H) with spectra in J,
(Φ1, . . . ,Φn) is a unital n−tuple of positive linear mappings Φi : B(H) → B(K) and ϕ :
J → R is a continuous strictly monotone function.

Example 10.2 Theorem 9.17 will not true if we replace the operator convex function
by a general convex function in (9.66). Indeed, we put for T = {1,2}, ϕ(t) = 3

√
t and

ψ = ι (the identity function) in (10.9) (ψ ◦ ϕ−1(t) = t3 is not operator convex) and we
define mappings Φ1,Φ2 : M2(C) → M2(C) by Φ1(B) = Φ2(B) = 1

2B for B ∈ M2(C) (then
Φ1(I2)+ Φ2(I2) = I2). If

A1 =
(

34 14
14 6

)
and A2 =

(
36 28
28 36

)
,

then

M 3√t(A,Φ,2) =
(

Φ1

(
3
√

A1

)
+ Φ2

(
3
√

A2

))3

=
(

1
2

(
3 1
1 1

)
+

1
2

(
3 1
1 3

))3

=
(

35 20
20 15

)
,

M1(A,Φ,2) = Φ1 (A1)+ Φ2 (A2) =
(

35 21
21 35

)
,

M1(A,Φ,2)−M 3√ (A,Φ,2) =
(

0 1
1 20

)
�≥ 0.

Given the above, there is no relation between M1(A,Φ,2) and M 3√ (A,Φ,2) under the ope-
rator order. For the bounds of A1, A2 and the mean M 3√ (A,Φ,2) the following stands
[m1,M1] ⊂ [0.2,39.8], [m2,M2] = [8,64] and [m,M] ⊂ [2.63,47.37], respectively. We ob-
serve that in the above case the following stands

(m,M)∩ [m1,M1] �= /0, (and (m,M)∩ [m2,M2] �= /0.)

In the case when (m,M)∩ [m1,M1] = /0 and (m,M)∩ [m2,M2] = /0 for some A1 and A2, then
the relation M 3√ (A,Φ,2) ≤ M1(A,Φ,2) holds according to Theorem 10.2.
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In the next theorem we will examine the order among quasi-arithmetic means without
operator convexity in Theorem 9.17 when T = {1, . . . ,n} and k = 1.

Theorem 10.2 Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in the definition of the quasi-
arithmetic mean (10.9). Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let
ϕ ,ψ : J → R be continuous strictly monotone functions on an interval J which contains all
mi,Mi. Let mϕ and Mϕ , mϕ ≤ Mϕ , be the bounds of the mean Mϕ (A,ΦΦ,n), such that(

mϕ ,Mϕ
)∩ [mi,Mi] = /0 for i = 1, . . . ,n. (10.10)

If one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then
Mϕ(A,ΦΦ,n) ≤ Mψ (A,ΦΦ,n). (10.11)

If one of the following conditions

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the reverse inequality is valid in (10.11).

Proof. We prove the case (i) only. Suppose that ϕ is a strictly increasing function.
Since miIH ≤ Ai ≤ MiIH , i = 1, . . . ,n, and mϕ IK ≤ Mϕ(A,ΦΦ,n) ≤ Mϕ IK , then

ϕ(mi)IH ≤ ϕ(Ai) ≤ ϕ(Mi)IH , i = 1, . . . ,n,

and ϕ(mϕ )IK ≤
n

∑
i=1

Φi(ϕ(Ai)) ≤ ϕ(Mϕ)IK .

Then, (
mϕ ,Mϕ

)∩ [mi,Mi] = /0 for i = 1, . . . ,n

implies (
ϕ(mϕ),ϕ(Mϕ )

)∩ [ϕ(mi),ϕ(Mi)] = /0 for i = 1, . . . ,n. (10.12)

Replacing Ai by ϕ(Ai) in (10.2) and taking into account (10.12), we obtain

f

(
n

∑
i=1

Φi(ϕ(Ai))

)
≤

n

∑
i=1

Φi ( f (ϕ(Ai))) (10.13)

for every convex function f : J → R on an interval J which contains all [ϕ(mi),ϕ(Mi)] =
ϕ([mi,Mi]). Also, if ϕ is strictly decreasing, then we check that (10.13) holds for convex
f : J → R on J which contains all [ϕ(Mi),ϕ(mi)] = ϕ([mi,Mi]).
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Putting f = ψ ◦ϕ−1 in (10.13), we obtain

ψ ◦ϕ−1

(
n

∑
i=1

Φi (ϕ(Ai))

)
≤

n

∑
i=1

Φi (ψ(Ai)) .

Applying an operator monotone function ψ−1 on the above inequality, we get the desired
inequality (10.11). �

We can give the following version of Corollary 9.8 without operator convexity and
operator concavity.

Corollary 10.2 Let the assumptions of Theorem 10.2 hold. Let F : J × J → R be a
bounded and operator monotone function in its first variable, such that F(t,t) = C for
all t ∈ [mϕ ,Mϕ ].
If one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then
F
[
Mψ(A,ΦΦ,n),Mϕ (A,ΦΦ,n)

]≥CIK . (10.14)

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the reverse inequality is valid in (10.14).

Proof. The proof is the same as the one of Corollary 9.8 and we omit it. �

Now, we will examine the order among quasi-arithmetic means (10.9) without operator
convexity and operator concavity in Theorem 9.18.

Corollary 10.3 Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in the definition of the quasi-
arithmetic mean (10.9). Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let
ϕ ,ψ : J →R be continuous strictly monotone functions on an interval J which contains all
mi,Mi and M1 be generated by the identity function on J.

(i) If mϕ and Mϕ , mϕ ≤ Mϕ are the bounds of Mϕ(A,ΦΦ,n), such that(
mϕ ,Mϕ

)∩ [mi,Mi] = /0 for i = 1, . . . ,n (10.15)

and ϕ−1 is convex, then

Mϕ (A,ΦΦ,n) ≤ M1(A,ΦΦ,n). (10.16)

(ii) If (10.15) is satisfied and ϕ−1 is concave, then the reverse inequality is valid in
(10.16).
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(iii) If (10.15) is satisfied and ϕ−1 is convex, and if mψ and Mψ , mψ ≤Mψ are the bounds
of Mψ (A,ΦΦ,n), such that(

mψ ,Mψ
)∩ [mi,Mi] = /0 for i = 1, . . . ,n

and ψ−1 is concave, then

Mϕ (A,ΦΦ,n) ≤ M1(A,ΦΦ,n) ≤ Mψ (A,ΦΦ,n). (10.17)

Proof. (i)− (ii): Putting ψ = M1 in Theorem 10.2(i) and (ii), we obtain (10.16) and its
reverse inequality, respectively.

(iii): Replacing ψ by ϕ in (ii) and combining this with (i), we obtain the desired
inequality (10.17). �

Remark 10.1 Results given in the previous section we can generalize for continuous
fields of operators. E.g. the continuous version of Theorem 10.1 is given below (see also
Theorem 10.7 in Section 10.5).

Let (xt)t∈T be a bounded continuous field of self-adjoint elements in an unital C∗-
algebra A defined on a locally compact Hausdorff space T equipped with a bounded
Radon measure μ . Let mt and Mt , mt ≤ Mt, be the bounds of xt , t ∈ T . Let (φt )t∈T be an
unital field of positive linear mappings φt : A → B from A to another unital C∗−algebra
B. Let

(mx,Mx)∩ [mt ,Mt ] = /0, t ∈ T,

where mx and Mx, mx ≤Mx, are the bounds of the operator x =
∫
T φt(xt)dμ(t). If f : J →R

is a continuous convex function provided that the interval J contains all mt ,Mt , then

f

(∫
T

φt(xt)dμ(t)
)
≤

∫
T

φt( f (xt ))dμ(t). (10.18)

If f is concave, the reverse inequality is valid in (10.18).

10.2 Order among power means

The operator power mean Mr(A,ΦΦ) defined by (8.33) is a special case of the quasi-arithme-
tic mean (10.9). As a continuation of our previous considerations about the order among
quasi-arithmetic operator means, in this section we observe the order among operator
power means.

We recall the known result as follows (see Example 9.1).
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Corollary 10.4 Let A = (A1, . . . ,An) be an n−tuple of positive invertible operators in
B(H) with Sp(Ai) ⊆ [m,M] for some scalars 0 < m < M, and let ΦΦ = (Φ1, . . . ,Φn) be a
unital n−tuple positive linear mappings Φi : B(H) → B(K), i = 1, . . . ,n.

If either r ≤ s, r �∈ (−1,1), s �∈ (−1,1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤−1 ≤ s ≤−1/2 (see
Figure 10.1.a), then

Mr(A,ΦΦ) ≤ Ms(A,ΦΦ). (10.19)

1/21/2

1/21/2

1

1 1

1

a) OPERATOR CONVEXITY b) WITHOUT OPERATOR CONVEXITY

1/21/21 1

1

1/21/2

1/21/2

1

1 1

1

00

( 1 )( 1 )( 2 )( 2 )

( 3 )( 3 )

( 4 )( 4 )( 1 )( 1 )

( 1 )( 1 )

( 1 )( 1 )( 2 )( 2 )( 1 )( 1 )

( 3 )( 3 )

( 1 )( 1 )

( 5 )( 5 )

Figure 10.2: Regions for the order among power means

Remark 10.2 Corollary 10.4 is not valid if r,s are not in the regions (1)-(2) in Fig-
ure 10.2.a) (see Example 10.2).

Applying Theorem 10.2 we obtain that (10.19) holds in a broader region (see Fig-
ure 10.2.b).

Corollary 10.5 Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in Corollary 10.4. Let mi and Mi,
0 < mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n.
If one of the following conditions

(i) r ≤ s, s ≥ 1 or r ≤ s ≤−1 (Figure 10.2.b (1),(2),(4)) and(
m[r],M[r])∩ [mi,Mi] = /0, i = 1, . . . ,n,

where m[r] and M[r], m[r] ≤ M[r] are the bounds of Mr(A,ΦΦ),

(ii) r ≤ s, r ≤−1 or 1 ≤ r ≤ s (Figure 10.2.b (1),(3),(5)) and(
m[s],M[s])∩ [mi,Mi] = /0, i = 1, . . . ,n,

where m[s] and M[s], m[s] ≤ M[s] are the bounds of Ms(A,ΦΦ),
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is satisfied, then

Mr(A,ΦΦ) ≤ Ms(A,ΦΦ). (10.20)

Proof. We prove the case (i) only. We put ϕ(t) = tr and ψ(t) = ts for t > 0.
Then ψ ◦ϕ−1(t) = ts/r is concave for r ≤ s, s≤ 0 and r �= 0. Since −ψ−1(t) = −t1/s is

operator monotone for s ≤−1 and
(
m[r],M[r])∩ [mi,Mi] = /0 is satisfied, then by applying

Theorem 10.2-(i’) we obtain (10.20) for r ≤ s ≤−1.
But, ψ ◦ϕ−1(t) = ts/r is convex for r ≤ s, s ≥ 0 and r �= 0. Since ψ−1(t) = t1/s is

operator monotone for s ≥ 1, then by applying Theorem 10.2-(i) we obtain (10.20) for
r ≤ s, s ≥ 1, r �= 0.

If r = 0 and s≥ 1, we put ϕ(t) = logt and ψ(t) = ts, t > 0. Since ψ ◦ϕ−1(t) = exp(st)
is convex, then similarly as above we obtain the desired inequality.

In the case (ii) we put ϕ(t) = ts and ψ(t) = tr for t > 0 and we use the same technique
as in the case (i). �
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Figure 10.3: Regions for the order Mr(A,ΦΦ) ≤ ΔMs(A,ΦΦ)

Figure 10.3 shows regions (1),(2),(3) in which the monotonicity of the power mean
(♣) holds true and regions (1)-(5) which this holds true with the condition on spectra. In
the next theorem we observe the order among power operator means with the condition on
spectra in regions (6) and (7) in Figure 10.3.

Theorem 10.3 Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in Corollary 10.4. Let mi and Mi,
0 < mi ≤ Mi be bounds of Ai, i = 1, . . . ,n. Let r,s ∈ (−1,1), r ≤ s (Figure 10.3 (6),(7)).

(i) If (
m[r],M[r])∩ [mi,Mi] = /0, i = 1, . . . ,n,

where m[r] and M[r], m[r] ≤ M[r] are bounds of Mr(A,ΦΦ), then

Mr(A,ΦΦ) ≤C(h[r],s)Ms(A,ΦΦ), h[r] = M[r]/m[r]. (10.21)
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(ii) If (
m[s],M[s])∩ [mi,Mi] = /0, i = 1, . . . ,n,

where m[s] and M[s], m[s] ≤ M[s] are bounds of Ms(A,ΦΦ), then

Mr(A,ΦΦ) ≤C(h[s],r)Ms(A,ΦΦ), h[s] = M[s]/m[s]. (10.22)

The constantC(h, p), h > 0, is a generalization of the Specht ratio (2.35) defined as follows

C(h, p) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(h−hp)

(1−p)(hp−1)

(
(p−1)(h−1)

hp−h

) 1
p
, if p �= 0 and h �= 1,

(h−1)h
1

h−1

e logh , if p = 0 and h �= 1,

1, if h = 1.

In order to prove Theorem 10.3, we need the operator order given in the following
theorem.

Theorem 10.4 Self-adjoint operators A,B ∈ B(H) with Sp(A) ⊆ [mA,MA] where 0 <
mA < MA satisfy the following implication:

A ≤ B =⇒ eA ≤ S(eMA−mA)eB

where S(h) is the Specht ratio defined by (2.35).

Proof. Refer to [124, Corollary 8.24] for the proof. �

Proof of Theorem 10.3. We prove the case (i) only.
a) Let m[r] < M[r].

· Suppose that 0 < r ≤ s ≤ 1. Since miIH ≤ Ai ≤ MiIH , i = 1, . . . ,n, and m[r]IK ≤
Mr(A,ΦΦ) ≤ M[r]IK , then

mr
i IH ≤ Ar

i ≤ Mr
i IH , i = 1, . . . ,n, (10.23)

(m[r])rIK ≤ ∑n
i=1 Φi (Ar

i ) ≤ (M[r])rIK . (10.24)

Then, (
m[r],M[r])∩ [mi,Mi] = /0 for i = 1, . . . ,n

implies (
(m[r])r,(M[r])r)∩ [mr

i ,M
r
i ] = /0 for i = 1, . . . ,n. (10.25)

Putting f (t) = ts/r, which is convex, in Theorem 10.1 and replacing Ai by Ar
i , we

obtain (
n

∑
i=1

Φi(Ar
i )

)s/r

≤
n

∑
i=1

Φi (As
i ) . (10.26)
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Now, applying Theorem 4.3 for p = 1
s ≥ 1 and using that

(m[r])sIK ≤
(

n

∑
i=1

Φi(Ar
i )

)s/r

≤ (M[r])sIK , (10.27)

we obtain
Mr(A,ΦΦ) ≤ K

(
(m[r])s,(M[r])s,1/s

)
Ms(A,ΦΦ), (10.28)

which gives the desired inequality by using K
(
(m[r])s,(M[r])s,1/s

)
= C

(
h[r],s

)
.

· Suppose that −1 ≤ r < 0 < s ≤ 1. Then the reverse inequality is valid in (10.23)
and (10.24). It follows that(

(M[r])r,(m[r])r)∩ [Mr
i ,m

r
i ] = /0 for i = 1, . . . ,n (10.29)

holds. Putting f (t) = ts/r, which is convex, in Theorem 10.1 and replacing Ai by
Ar

i , we again obtain (10.26). Now, applying Theorem 4.3 for p = 1
s ≥ 1 and since

(10.27) holds, then we obtain again (10.28).

· Suppose that −1 ≤ r ≤ s < 0. Then the reverse inequality is valid in (10.23) and
(10.24). It follows that (10.29) holds. Putting f (t) = ts/r, which is concave, in
Theorem 10.1 and replacing Ai by Ar

i , we obtain that the reverse inequality holds
in (10.26). Now, applying Theorem 4.3 for p = 1

s ≤ −1 and using that reverse
inequalities is valid in (10.27), then we obtain

Mr(A,ΦΦ) ≤ K
(
(M[r])s,(m[r])s,1/s

)
Ms(A,ΦΦ).

Since K
(
(M[r])s,(m[r])s,1/s

)
= K

(
(m[r])s,(M[r])s,1/s

)
we get again the desired in-

equality.

· Suppose that 0 = r < s ≤ 1. Putting the operator concave function f (t) = 1
s log t in

reverse of Jensen’s operator inequality given in Theorem 9.1 and replace Ai by As
i ,

we obtain
log

(
M0(A,ΦΦ)

)≤ log
(
Ms(A,ΦΦ)

)
.

The spectrum of log
(
M0(A,ΦΦ)

)
is contained in [logm[0], logM[0]], and then after use

Theorem 10.4 we get

M0(A,ΦΦ) ≤ S

(
M[0]

m[0] ,1

)
Ms(A,ΦΦ) = C

(
h[0],0

)
Ms(A,ΦΦ),

which is the desired inequality.

· Suppose that −1≤ r < s = 0. Putting the operator convex function f (t) = 1
r logt in

Jensen’s operator inequality given in Theorem 9.1 and replace Ai by Ar
i , we obtain

log
(
Mr(A,ΦΦ)

)≤ log
(
M0(A,ΦΦ)

)
.
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The spectrum of log
(
Mr(A,ΦΦ)

)
is contained in [logm[r], logM[r]]. Then applying

Theorem 10.4 we get

Mr(A,ΦΦ) ≤ S

(
M[r]

m[r] ,1

)
M0(A,ΦΦ) = C

(
h[r],0

)
M0(A,ΦΦ),

which is the desired inequality.

b) Let m[r] → M[r] in inequalities

Mr(A,ΦΦ) ≤ K
(
(m[r])s,(M[r])s,1/s

)
Ms(A,ΦΦ),

or Mr(A,ΦΦ) ≤ S

(
M[r]

m[r]

)
Ms(A,ΦΦ).

Since K
(
ms,Ms,1/s

)
= K

(
m,M,s

)−1/s
and limm→M K

(
m,M,s

)
= 1 for all s ∈ R;

limh→1 S(h) = 1, we obtain the desired inequalities in the case m[r] = M[r]. �

Remark 10.3 The constantC(h[r],s) in RHS of (10.21) in Theorem 10.3 is not worse than
the constants in RHS of the inequalities in Corollary 9.6, i.e. if r,s ∈ (−1,1), r ≤ s, then

C(h[r],s) ≤ min{Δ(h,s,1),Δ(h,s,1) ·Δ(h,r,s),Δ(h,r,1)},
where h[r] = M[r]/m[r], h = M/m and m[r] and M[r], m[r] ≤ M[r] are bounds of Mr(A,ΦΦ),
such that

(
m[r],M[r])∩ [mi,Mi] = /0, i = 1, . . . ,n and

m = min{m1, . . . ,mn}, M = max{M1, . . . ,Mn}.
Indeed, we should just use the following properties of the function (h,s) �→C(h,s) =

Δ(h,s,1).

(r1) C(h,s) is strictly increasing in the first variable for h > 1 and s < 1 by [124, Theo-
rem 2.62 (i)],

(r2) C(h,s) is strictly decreasing in the second variable for h > 1 and s∈R by Lemma 9.3.

So, let r,s ∈ (−1,1), r ≤ s. Since [m[r],M[r]] ⊆ [m,M], it follows by (r1) that

C(h[r],s) = Δ(h[r],s,1) ≤ Δ(h,s,1);

since Δ(h,r,s) ≥ 1, then
C(h[r],s) ≤ Δ(h,s,1) ·Δ(h,r,s);

and it follows by (r2) that

C(h[r],s) ≤C(h[r],r) ≤ Δ(h,r,1).

The three inequalities above give the desired relation.

Similarly, we can observe that the constantC(h[s],r) in RHS of (10.22) in Theorem 10.3
is not worse than the constants in RHS of the inequalities in Corollary 9.6.



284 10 JENSEN’S OPERATOR INEQUALITY WITHOUT OPERATOR CONVEXITY

10.3 Extension of Jensen’s operator inequality
without operator convexity

In this section, we give an extension of Jensen’s operator inequality without operator con-
vexity. As an application of this result, we give an extension of our previous results for a
version of the quasi-arithmetic mean (10.9) with an n−tuple of positive linear mappings
which is non-unital.

In Theorem 10.1 we prove that Jensen’s operator inequality holds for every continuous
convex function and for every n−tuple of self-adjoint operators (A1, . . . ,An), for every
n−tuple of positive linear mappings (Φ1, . . . ,Φn) in the case when the interval with bounds
of the operator A = ∑n

i=1 Φi(Ai) has no intersection points with the interval with bounds of
the operator Ai for each i = 1, . . . ,n, i.e. when

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n,

where mA and MA, mA ≤ MA, are the bounds of A, and mi and Mi, mi ≤ Mi, are the bounds
of Ai, i = 1, . . . ,n.

It is interesting to consider the case when (mA,MA)∩ [mi,Mi] = /0 is valid for several
i ∈ {1, . . . ,n}, but not for all i = 1, . . . ,n. We study it in the following theorem.

Theorem 10.5 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (Φ1, . . . ,Φn) be an n−tuple of positive
linear mappings Φi : B(H)→ B(K), such that ∑n

i=1 Φi(IH) = IK. For 1≤ n1 < n, we denote
m = min{m1, . . . ,mn1}, M = max{M1, . . . ,Mn1} and ∑n1

i=1 Φi(IH) = α IK, ∑n
i=n1+1 Φi(IH) =

β IK, where α,β > 0, α + β = 1. If

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n,

and one of two equalities

1
α

n1

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai) =
n

∑
i=1

Φi(Ai)

is valid, then
1
α

n1

∑
i=1

Φi( f (Ai)) ≤
n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai)) (10.30)

holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi, i = 1, . . . ,n,.

If f : J → R is concave, then the reverse inequality is valid in (10.30).

Proof. We prove only the case when f is a convex function.
Let us denote

A =
1
α

n1

∑
i=1

Φi(Ai), B =
1
β

n

∑
i=n1+1

Φi(Ai), C =
n

∑
i=1

Φi(Ai).
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It is easy to verify that A = B or B = C or A = C implies A = B = C.

a) Let m < M. Since f is convex on [m,M] and [mi,Mi] ⊆ [m,M] for i = 1, . . . ,n1, then

f (t) ≤ M− t
M−m

f (m)+
t−m
M−m

f (M), t ∈ [mi,Mi] for i = 1, . . . ,n1, (10.31)

but since f is convex on all [mi,Mi] and (m,M)∩ [mi,Mi] = /0 for i = n1 + 1, . . . ,n,
then

f (t) ≥ M− t
M−m

f (m)+
t−m
M−m

f (M), t ∈ [mi,Mi] for i = n1 +1, . . . ,n. (10.32)

Since miIH ≤ Ai ≤ MiIH , i = 1, . . . ,n1, it follows from (10.31)

f (Ai) ≤ MIH −Ai

M−m
f (m)+

Ai−mIH
M−m

f (M), i = 1, . . . ,n1.

Applying a positive linear mapping Φi and summing, we obtain
n1

∑
i=1

Φi ( f (Ai)) ≤ MαIK −∑n1
i=1 Φi(Ai)

M−m
f (m)+

∑n1
i=1 Φi(Ai)−mαIK

M−m
f (M),

since ∑n1
i=1 Φi(IH) = αIK . It follows

1
α

n1

∑
i=1

Φi ( f (Ai)) ≤ MIK −A
M−m

f (m)+
A−mIK
M−m

f (M). (10.33)

Similarly to (10.33) in the case miIH ≤ Ai ≤ MiIH , i = n1 +1, . . . ,n, it follows from
(10.32)

1
β

n

∑
i=n1+1

Φi ( f (Ai)) ≥ MIK −B
M−m

f (m)+
B−mIK
M−m

f (M). (10.34)

Combining (10.33) and (10.34) and taking into account that A = B, we obtain

1
α

n1

∑
i=1

Φi ( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi ( f (Ai)) . (10.35)

It follows

1
α

n1

∑
i=1

Φi( f (Ai)) =
n1

∑
i=1

Φi( f (Ai))+
β
α

n1

∑
i=1

Φi( f (Ai)) (by α + β = 1)

≤
n1

∑
i=1

Φi( f (Ai))+
n

∑
i=n1+1

Φi( f (Ai)) (by (10.35))

=
n

∑
i=1

Φi( f (Ai))

≤ α
β

n

∑
i=n1+1

Φi( f (Ai))+
n

∑
i=n1+1

Φi( f (Ai)) (by (10.35))

=
1
β

n

∑
i=n1+1

Φi( f (Ai)) (by α + β = 1)
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which gives the desired double inequality (10.30).

b) Let m = M. Since [mi,Mi] ⊆ [m,M] for i = 1, . . . ,n1, then Ai = mIH and f (Ai) =
f (m)IH for i = 1, . . . ,n1. It follows

1
α

n1

∑
i=1

Φi(Ai) = mIK and
1
α

n1

∑
i=1

Φi ( f (Ai)) = f (m)IK . (10.36)

On the other hand, since f is convex on J, we have

f (t) ≥ f (m)+ l(m)(t −m) for every t ∈ I, (10.37)

where l is the subdifferential of f . Replacing t by Ai for i = n1 +1, . . . ,n, applying
Φi and summing, we obtain from (10.37) and (10.36)

1
β

n

∑
i=n1+1

Φi ( f (Ai)) ≥ f (m)IK + l(m)

(
1
β

n

∑
i=n1+1

Φi(Ai)−mIK

)

= f (m)IK =
1
α

n1

∑
i=1

Φi ( f (Ai)) .

So (10.35) holds again. The remaining part of the proof is the same as in the case a).

�

Remark 10.4 We obtain the equivalent inequality to the one in Theorem 10.5 in the case
when ∑n

i=1 Φi(IH) = γ IK, for some positive scalar γ . If α +β = γ and one of two equalities

1
α

n1

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai) =
1
γ

n

∑
i=1

Φi(Ai)

is valid, then

1
α

n1

∑
i=1

Φi( f (Ai)) ≤ 1
γ

n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))

holds for every continuous convex function f .

Remark 10.5 Let the assumptions of Theorem 10.5 be valid.

(1) We observe that the following inequality

f

(
1
β

n

∑
i=n1+1

Φi(Ai)

)
≤ 1

β

n

∑
i=n1+1

Φi( f (Ai)),

holds for every continuous convex function f : J → R.
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Indeed, by the assumptions of Theorem 10.5 we have

mαIH ≤
n1

∑
i=1

Φi( f (Ai)) ≤ MαIH and
1
α

n1

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai)

which implies

mIH ≤
n

∑
i=n1+1

1
β

Φi( f (Ai)) ≤ MIH .

Also (m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n and ∑n
i=n1+1

1
β Φi(IH) = IK hold. So we can

apply Theorem 10.1 on operators An1+1, . . . ,An and mappings 1
β Φi and obtain the desired

inequality.

(2) We denote by mC and MC the bounds of C = ∑n
i=1 Φi(Ai). If (mC,MC)∩ [mi,Mi] = /0,

i = 1, . . . ,n1 or f is an operator convex function on [m,M], then the double inequality
(10.30) can be extended from the left side if we use Jensen’s operator inequality in Theo-
rem 9.9

f

(
n

∑
i=1

Φi(Ai)

)
= f

(
1
α

n1

∑
i=1

Φi(Ai)

)

≤ 1
α

n1

∑
i=1

Φi( f (Ai)) ≤
n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai)).

Example 10.3 If neither assumptions (mC,MC)∩ [mi,Mi] = /0, i = 1, . . . ,n1 nor f is op-
erator convex in Remark 10.5 (2) is satisfied and if 1 < n1 < n, then (10.30) can not be
extended by Jensen’s operator inequality, since it is not valid. Indeed, for n1 = 2 we define
mappings Φ1,Φ2 : M3(C) → M2(C) by Φ1((ai j)1≤i, j≤3) = α

2 (ai j)1≤i, j≤2, Φ2 = Φ1. Then
Φ1(I3)+ Φ2(I3) = αI2. If

A1 = 2

⎛⎝1 0 1
0 0 1
1 1 1

⎞⎠ and A2 = 2

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ ,

then(
1
α

Φ1(A1)+
1
α

Φ2(A2)
)4

=
1

α4

(
16 0
0 0

)
�≤ 1

α

(
80 40
40 24

)
=

1
α

Φ1
(
A4

1

)
+

1
α

Φ2
(
A4

2

)
for every α ∈ (0,1). We observe that f (t) = t4 is not operator convex and (mC,MC)∩
[mi,Mi] �= /0, sinceC = A = 1

α Φ1(A1)+ 1
α Φ2(A2)= 1

α

(
2 0
0 0

)
, [mC,MC] = [0,2/α], [m1,M1]

⊂ [−1.60388,4.49396] and [m2,M2] = [0,2].

With respect to Remark 10.4, we obtain the following obvious corollary of Theo-
rem 10.5.
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Corollary 10.6 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. For some 1 ≤ n1 < n, we denote m =
min{m1, . . . ,mn1}, M = max{M1, . . . ,Mn1}. Let (p1, . . . , pn) be an n−tuple of non-negative
numbers, such that 0 < ∑n1

i=1 pi = pn1 < pn = ∑n
i=1 pi. If

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n,

and one of two equalities

1
pn1

n1

∑
i=1

piAi =
1
pn

n

∑
i=1

piAi =
1

pn −pn1

n

∑
i=n1+1

piAi

is valid, then

1
pn1

n1

∑
i=1

pi f (Ai) ≤ 1
pn

n

∑
i=1

pi f (Ai) ≤ 1
pn −pn1

n

∑
i=n1+1

pi f (Ai) (10.38)

holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi, i = 1, . . . ,n.

If f : J → R is concave, then the reverse inequality is valid in (10.38).

By applying Corollary 10.6 we obtain the following special case of Theorem 10.1.

Corollary 10.7 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤Mi, i = 1, . . . ,n. Let (α1, . . . ,αn) be an n−tuple of nonnegative
real numbers such that ∑n

i=1 αi = 1. If

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, (10.39)

where mA and MA, mA ≤ MA, are the bounds of A =
n
∑
i=1

αiAi, then

f

(
n

∑
i=1

αiAi

)
≤

n

∑
i=1

αi f (Ai) (10.40)

holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi.

Proof. We prove only the convex case. We define (n + 1)−tuple of operators
(B1, . . . ,Bn+1), Bi ∈ B(H), by B1 = A = ∑n

i=1 αiAi and Bi = Ai−1, i = 2, . . . ,n + 1. Then
mB1 = mA, MB1 = MA are the bounds of B1 and mBi = mi−1, MBi = Mi−1 are the ones of Bi,
i = 2, . . . ,n+1. Also, we define (n+1)−tuple of non-negative numbers (p1, . . . , pn+1) by

p1 = 1 and pi = αi−1, i = 2, . . . ,n+1. Then
n+1
∑
i=1

pi = 2 and by using (10.39) we have

(mB1 ,MB1)∩ [mBi ,MBi ] = /0, for i = 2, . . . ,n+1. (10.41)
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Since
n+1

∑
i=1

piBi = B1 +
n+1

∑
i=2

piBi =
n

∑
i=1

αiAi +
n

∑
i=1

αiAi = 2B1,

then

p1B1 =
1
2

n+1

∑
i=1

piBi =
n+1

∑
i=2

piBi. (10.42)

Taking into account (10.41) and (10.42), we can apply Corollary 10.6 for n1 = 1 and Bi, pi

as above, and we get

p1 f (B1) ≤ 1
2

n+1

∑
i=1

pi f (Bi) ≤
n+1

∑
i=2

pi f (Bi),

which gives the desired inequality (10.40). �

10.4 Extension of order among quasi-arithmetic
means

In this section we study an application of Theorem 10.5 to the quasi-arithmetic mean with
weight. For a subset {Ap1 , . . . ,Ap2} of {A1, . . . ,An} we denote the quasi-arithmetic mean
by

Mϕ (γ,A,ΦΦ, p1, p2) = ϕ−1

(
1
γ

p2

∑
i=p1

Φi (ϕ(Ai))

)
, (10.43)

where (Ap1 , . . . ,Ap2) are self-adjoint operators in B(H) with the spectra in J, (Φp1 , . . . ,Φp2)
are positive linear mappings Φi : B(H)→ B(K) such that ∑p2

i=p1
Φi(IH) = γ IK , and ϕ : J →

R is a continuous strictly monotone function.

The following theorem is an extension of Theorem 10.2.

Theorem 10.6 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators in B(H) with the
spectra in J, (Φ1, . . . ,Φn) be an n-tuple of positive linear mappings Φi : B(H) → B(K)
such that ∑n

i=1 Φi(IH) = IK. Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let
ϕ ,ψ : J → R be continuous strictly monotone functions on an interval J which contains
all mi,Mi. For 1 ≤ n1 < n, we denote m = min{m1, . . . ,mn1}, M = max{M1, . . . ,Mn1} and
∑n1

i=1 Φi(IH) = α IK, ∑n
i=n1+1 Φi(IH) = β IK, where α,β > 0, α + β = 1. Let

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n,

and one of two equalities

Mϕ(α,A,ΦΦ,1,n1) = Mϕ(1,A,ΦΦ,1,n) = Mϕ(β ,A,ΦΦ,n1 +1,n) (10.44)

be valid.
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If one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then

Mψ(α,A,ΦΦ,1,n1) ≤ Mψ(1,A,ΦΦ,1,n) ≤ Mψ(β ,A,ΦΦ,n1 +1,n). (10.45)

If one of the following conditions

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the reverse inequality is valid in (10.45).

Proof. We prove the case (i) only. Suppose that ϕ is a strictly increasing function.
Since mIH ≤ Ai ≤ MIH , i = 1, . . . ,n1, implies ϕ(m)IK ≤ ϕ(Ai) ≤ ϕ(M)IK , then

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n

implies (
ϕ(m),ϕ(M)

)∩ [ϕ(mi),ϕ(Mi)] = /0 for i = n1 +1, . . . ,n. (10.46)

Also, by using (10.44), we have

1
α

n1

∑
i=1

Φi (ϕ(Ai)) =
n

∑
i=1

Φi (ϕ(Ai)) =
1
β

n

∑
i=n1+1

Φi (ϕ(Ai)) .

Taking into account (10.46) and the above double equality, we obtain by Theorem 10.5

1
α

n1

∑
i=1

Φi ( f (ϕ(Ai))) ≤
n

∑
i=1

Φi ( f (ϕ(Ai))) ≤ 1
β

n

∑
i=n1+1

Φi ( f (ϕ(Ai))) (10.47)

for every continuous convex function f : J → R on an interval J which contains all
[ϕ(mi),ϕ(Mi)] = ϕ([mi,Mi]), i = 1, . . . ,n.

Also, if ϕ is strictly decreasing, then we check that (10.47) holds for convex f : J → R

on J which contains all [ϕ(Mi),ϕ(mi)] = ϕ([mi,Mi]).

Putting f = ψ ◦ϕ−1 in (10.47), we obtain

1
α

n1

∑
i=1

Φi (ψ(Ai)) ≤
n

∑
i=1

Φi (ψ(Ai)) ≤ 1
β

n

∑
i=n1+1

Φi (ψ(Ai)) .

Applying an operator monotone function ψ−1 on the above double inequality, we obtain
the desired inequality (10.45). �
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Remark 10.6 Let the assumptions of Theorem 10.6 be valid.

(1) We observe that if one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(ii) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone,

is satisfied, then the following obvious inequality (see Remark 10.5 (1))

Mϕ(β ,A,ΦΦ,n1 +1,n)≤ Mψ (β ,A,ΦΦ,n1 +1,n)

holds.

(2) We denote by mϕ and Mϕ the bounds of Mϕ(1,A,ΦΦ,1,n). If (mϕ ,Mϕ )∩ [mi,Mi] = /0,
i = 1, . . . ,n1, and one of two following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(ii) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is operator convex and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is operator concave and −ψ−1 is operator monotone,

is satisfied (see Theorem 9.17), then the double inequality (10.45) can be extended from
the left side as follows

Mϕ(1,A,ΦΦ,1,n) = Mϕ (1,A,ΦΦ,1,n1)
≤ Mψ (α,A,ΦΦ,1,n1) ≤ Mψ(1,A,ΦΦ,1,n) ≤ Mψ (β ,A,ΦΦ,n1 +1,n).

(3) If neither assumptions (mψ ,Mψ)∩ [mi,Mi] = /0, i = 1, . . . ,n1 nor ψ ◦ϕ−1 is operator
convex (or operator concave) is satisfied and if 1< n1 < n, then (10.45) can not be extended
from the left side by Mϕ(1,A,ΦΦ,1,n1) as above. It is easy to check it with a counterexample
similarly to Example 10.2.

We now give some particular results of interest that can be derived from Theorem 10.6.

Corollary 10.8 Let (A1, . . . ,An) and (Φ1, . . . ,Φn), mi, Mi, m, M, α and β be as in Theo-
rem 10.6. Let J be an interval which contains all mi,Mi and

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n.

If one of two equalities

Mϕ(α,A,ΦΦ,1,n1) = Mϕ(1,A,ΦΦ,1,n) = Mϕ(β ,A,ΦΦ,n1 +1,n)

is valid, then
1
α

n1

∑
i=1

Φi(Ai) ≤
n

∑
i=1

Φi(Ai) ≤ 1
β

n

∑
i=n1+1

Φi(Ai) (10.48)



292 10 JENSEN’S OPERATOR INEQUALITY WITHOUT OPERATOR CONVEXITY

holds for every continuous strictly monotone function ϕ : J → R such that ϕ−1 is convex
on J. But, if ϕ−1 is concave, then the reverse inequality is valid in (10.48).

On the other hand, if one of two equalities

1
α

n1

∑
i=1

Φi(Ai) =
n

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai)

is valid, then

Mϕ(α,A,ΦΦ,1,n1) ≤ Mϕ(1,A,ΦΦ,1,n) ≤ Mϕ(β ,A,ΦΦ,n1 +1,n) (10.49)

holds for every continuous strictly monotone function ϕ : J → R such that one of the fol-
lowing conditions

(i) ϕ is convex and ϕ−1 is operator monotone,

(i’) ϕ is concave and −ϕ−1 is operator monotone

is satisfied.
But, if one of the following conditions

(ii) ϕ is concave and ϕ−1 is operator monotone,

(ii’) ϕ is convex and −ϕ−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (10.49).

Proof. The proof of (10.48) follows from Theorem 10.6 by replacing ψ with the iden-
tity function, while the proof of (10.49) follows from the same theorem by replacing ϕ
with the identity function and ψ with ϕ . �

As a special case of the quasi-arithmetic mean (10.43)we can study the weighted power
mean as follows. For a subset {Ap1 , . . . ,Ap2} of {A1, . . . ,An} we denote this mean by

Mr(γ,A,ΦΦ, p1, p2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1
γ

p2

∑
i=p1

Φi (Ar
i )

)1/r

, r ∈ R\{0},

exp

(
1
γ

p2

∑
i=p1

Φi (log(Ai))

)
, r = 0,

where (Ap1 , . . . ,Ap2) are strictly positive operators, (Φp1 , . . . ,Φp2) are positive linear map-
pings Φi : B(H) → B(K) such that ∑p2

i=p1
Φi(IH) = γ IK .

We obtain the following corollary by applying Theorem 10.6 to the above mean.

Corollary 10.9 Let (A1, . . . ,An) be an n−tuple of strictly positive operators in B(H)
and (Φ1, . . . ,Φn) be an n−tuple of positive linear mappings Φi : B(H) → B(K) such that
∑n

i=1 Φi(IH) = IK. Let mi and Mi, 0 < mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. For 1 ≤
n1 < n, we denote m = min{m1, . . . ,mn1}, M = max{M1, . . . ,Mn1} and ∑n1

i=1 Φi(IH) = α IK,
∑n

i=n1+1 Φi(IH) = β IK, where α,β > 0, α + β = 1.
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(i) If either r ≤ s, s ≥ 1 or r ≤ s ≤−1 and also one of two equalities

Mr(α,A,ΦΦ,1,n1) = Mr(1,A,ΦΦ,1,n) = Mr(β ,A,ΦΦ,n1 +1,n) (10.50)

is valid, then

Ms(α,A,ΦΦ,1,n1) ≤ Ms(1,A,ΦΦ,1,n) ≤ Ms(β ,A,ΦΦ,n1 +1,n). (10.51)

(ii) If either r ≤ s, r ≤−1 or 1 ≤ r ≤ s and also one of two equalities

Ms(α,A,ΦΦ,1,n1) = Ms(1,A,ΦΦ,1,n) = Ms(β ,A,ΦΦ,n1 +1,n)

is valid, then

Mr(α,A,ΦΦ,1,n1) ≥ Mr(1,A,ΦΦ,1,n) ≥ Mr(β ,A,ΦΦ,n1 +1,n). (10.52)

Proof. We take ϕ(t) = tr and ψ(t) = ts or ϕ(t) = ts and ψ(t) = tr for t > 0 and apply
Theorem 10.6. We omit the details. �

10.5 Refinements

In this section we present a refinement of Jensen’s inequality (10.18) and a refined the
general form of its converses (9.88).

For convenience we introduce the abbreviation

δ f (m,M) := f (m)+ f (M)−2 f

(
m+M

2

)
, (10.53)

where f : [m,M] → R, m < M, is a continue function. It is obvious that, if f is convex
(resp. concave) then δ f ≥ 0 (resp. δ f ≤ 0).

To obtain our results we need the following three lemmas.

Lemma 10.1 Let f be a convex function on an interval J, m,M ∈ J and p1, p2 ∈ [0,1]
such that p1 + p2 = 1. Then

min{p1, p2}
[

f (m)+ f (M)−2 f

(
m+M

2

)]
≤ p1 f (m)+ p2 f (M)− f (p1m+ p2M). (10.54)

Proof. These results follows from [208, Theorem 1, p. 717] for n = 2 and replacing x1

and x2 with m and M, respectively. �
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Lemma 10.2 Let x be a bounded self-adjoint elements in a unital C∗-algebra A of oper-
ators on some Hilbert space H. If the spectrum of x is in [m,M], for some scalars m < M,
then

f (x) ≤ M1H − x
M−m

f (m)+
x−m1H

M−m
f (M)− δ f (m,M)x (10.55)

holds for every continuous convex function f : [m,M] → R, where δ f (m,M) is defined by
(10.53) and

x =
1
2
1H − 1

M−m

∣∣∣∣x− m+M
2

1H

∣∣∣∣ .
If f is concave, then the reverse inequality is valid in (10.55).

Proof. We prove the convex case only. By using (10.54) we get

f (p1m+ p2M) ≤ p1 f (m)+ p2 f (M)−min{p1, p2}δ f (m,M) (10.56)

for every p1, p2 ∈ [0,1] such that p1 + p2 = 1. Let functions p1, p2 : [m,M] → [0,1] be
defined by

p1(z) =
M− z
M−m

, p2(z) =
z−m
M−m

.

Than for any z ∈ [m,M] we can write

f (z) = f

(
M− z
M−m

m+
z−m
M−m

M

)
= f (p1(z)m+ p2(z)M) .

By using (10.56) we get

f (z) ≤ M− z
M−m

f (m)+
z−m
M−m

f (M)− z̃δ f (m,M), (10.57)

where

z̃ =
1
2
− 1

M−m

∣∣∣∣z− m+M
2

∣∣∣∣ ,
since

min

{
M− z
M−m

,
z−m
M−m

}
=

1
2
− 1

M−m

∣∣∣∣z− m+M
2

∣∣∣∣ .
Finally by utilizing the functional calculus to (10.57) we obtain the desired inequality
(10.55). �

In the following lemma we present an improvement of the Mond-Pečarić method.

Lemma 10.3 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in an
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ and (Φt)t∈T be an unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Then∫

T
Φt( f (xt ))dμ(t) ≤ α f

∫
T

Φt (xt)dμ(t)+ β f1K − δ f x̃ ≤ α f

∫
T

Φt (xt)dμ(t)+ β f1K

(10.58)
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for every continuous convex function f : [m,M] → R, where δ f ≡ δ f (m,M) is defined by
(10.53),

x̃ ≡ x̃xt ,Φt (m,M) :=
1
2
1K − 1

M−m

∫
T

Φt

(
|xt − m+M

2
1H |

)
dμ(t) (10.59)

and α f =
f (M)− f (m)

M−m
, β f =

M f (m)−mf (M)
M−m

(the same as in Chapter 9).

If f is concave, then the reverse inequality is valid in (10.58).

Proof. We prove the convex case only. Since Sp(xt) ⊆ [m,M], then by utilizing the
functional calculus to (10.57) in Lemma 10.2, we obtain

f (xt ) ≤ M− xt

M−m
f (m)+

xt −m
M−m

f (M)− x̃tδ f (m,M),

where

x̃t =
1
2
1H − 1

M−m

∣∣∣∣xt − m+M
2

1H

∣∣∣∣ .
Applying a positive linear mapping Φt , integrating and using that

∫
T Φt(1H)dμ(t) = 1K,

we get the first inequality in (10.58), since∫
T

Φt (x̃t) dμ(t) =
1
2
1K − 1

M−m

∫
T

Φt

(
|xt − m+M

2
1H |

)
dμ(t) = x̃.

Also, m1H ≤ xt ≤ M1H , t ∈ T , implies
∫
T Φt

(|xt − m+M
2 1H |

)
dμ(t) ≤ M−m

2 1K. It follows
x̃ ≥ 0. Then the second inequality in (10.58) holds, since δ f x̃ ≥ 0. �

Now, we present a refinement of Jensen’s inequality.

Theorem 10.7 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A defined on a locally compact Hausdorff space T equipped with a
bounded Radon measure μ . Let mt and Mt , mt ≤ Mt, be the bounds of xt , t ∈ T . Let
(Φt )t∈T be a unital field of positive linear mappings Φt : A → B from A to another
unital C∗−algebra B. Let

(mx,Mx)∩ [mt ,Mt ] = /0, t ∈ T, and m < M,

where mx and Mx, mx ≤ Mx, be the bounds of the operator x =
∫
T

Φt(xt)dμ(t) and

a = sup{Mt : Mt ≤ mx,t ∈ T} , b = inf{mt : mt ≥ Mx,t ∈ T} .

If f : J →R is a continuous convex function provided that the interval J contains all mt ,Mt ,
then

f

(∫
T

Φt(xt)dμ(t)
)
≤

∫
T

Φt ( f (xt))dμ(t)− δ f (m,M)x ≤
∫

T
Φt( f (xt ))dμ(t) (10.60)
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holds, where δ f (m,M) is defined by (10.53),

x ≡ xx(m,M) :=
1
2
1K − 1

M−m

∣∣∣∣x− m+M
2

1K

∣∣∣∣ (10.61)

and m ∈ [a,mx], M ∈ [Mx,b], m < M, are arbitrary numbers. If f is concave, then the
reverse inequality is valid in (10.60).

Proof. We prove only the convex case. Since x =
∫
T Φt(xt)dμ(t) ∈ B is the self-

adjoint elements such that m1K ≤ mx1K ≤ ∫
T Φt(xt)dμ(t) ≤ Mx1K ≤ M1K and f is convex

on [m,M] ⊆ J, then by Lemma 10.2 we obtain

f

(∫
T

Φt(xt)dμ(t)
)
≤ M1K − ∫

T Φt(xt)dμ(t)
M−m

f (m)+
∫
T Φt(xt)dμ(t)−m1K

M−m
f (M)− δ f x,

(10.62)
where δ f ≡ δ f (m,M) and x are defined by (10.53) and (10.61), respectively. On the
other hand, since (mx,Mx)∩ [mt ,Mt ] = /0 implies (m,M)∩ [mt ,Mt ] = /0 and f is convex
on [mt ,Mt ], then

f (xt) ≥ M1H − xt

M−m
f (m)+

xt −m1H

M−m
f (M), t ∈ T.

Applying a positive linear mapping Φt , integrating and adding −δ f x, we obtain

∫
T

Φt ( f (xt)) dμ(t)−δ f x≥M1K−
∫
T Φt(xt)dμ(t)
M−m

f (m)+
∫
T Φt (xt)dμ(t)−m1K

M−m
f (M)−δ f x.

(10.63)
Combining two inequalities (10.62) and (10.63), we have LHS of (10.60). Also, since
δ f ≥ 0 and x ≥ 0, we have RHS of (10.60). �

Finally, we present a refinement of (9.88).

Theorem 10.8 Let (xt)t∈T , (Φt)t∈T , m,M, δ f (m,M), x̃, α f and β f be as in Lemma 10.3.
Let mx and Mx, mx ≤ Mx, be the bounds of the operator x =

∫
T

Φt (xt)dμ(t), and mx̃ be the

lower bound of the operator x̃.
Let f : [m,M]→R, g : [mx,Mx]→R, F :U×V →R, where f ([m,M])⊆U, g([mx,Mx])⊆

V and F be bounded. If f is convex and F is operator monotone in the first variable, then

F

[∫
T
Φt( f (xt ))dμ(t) , g

(∫
T
Φt(xt)dμ(t)

)]
≤ F

[
α f x+ β f − δ f (m,M)x̃ , g

(∫
T
Φt(xt)dμ(t)

)]
≤ sup

mx≤z≤Mx

F
[
α f z+ β f − δ f (m,M)mx̃,g(z)

]
1K ≤ sup

mx≤z≤Mx

F
[
α f z+ β f ,g(z)

]
1K .

(10.64)

If f is concave, then the opposite inequalities are valid in (10.64) with inf instead of sup.
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Proof. We only prove the case when f is convex. Then δ f (m,M) ≥ 0 implies 0 ≤
δ f (m,M) mx̃ 1K ≤ δ f (m,M) x̃. By using (10.58) it follows∫

T
Φt( f (xt ))dμ(t) ≤ α f x+ β f − δ f (m,M) x̃ ≤ α f x+ β f − δ f (m,M) mx̃1K ≤ α f x+ β f .

Taking into account operator monotonicity of F(·,v) in the first variable, we obtain (10.64).
�

Example 10.4 We give examples for the matrix cases and T = {1,2}. We put F(u,v) =
u− v, f (t) = t4 which is convex but not operator convex, and g ≡ f . As a special case of
(10.64), we have

Φ1(X4
1 )+Φ2(X4

2 )≤ (
Φ1(X1)+Φ2(X2)

)4+CI2−δ f (m,M)X̃ ≤ (
Φ1(X1)+Φ2(X2)

)4+CI2,
(10.65)

where

C = max
mx≤z≤Mx

{
M4 −m4

M−m
z+

Mm4 −mM4

M−m
− z4

}
.

Also, we define mappings Φ1,Φ2 : M3(C) → M2(C): Φ1((ai j)1≤i, j≤3) = 1
2 (ai j)1≤i, j≤2,

Φ2 ≡ Φ1.

I) First, we observe an example without the spectra condition. Then we obtain a refined
inequality (10.65), but Jensen’s inequality doesn’t hold.

If X1 = 2

⎛⎝1 0 1
0 0 1
1 1 1

⎞⎠ and X2 = 2

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ , then X = 2

(
1 0
0 0

)
and m1 = −1.604, M1 = 4.494, m2 = 0, M2 = 2, m = −1.604, M = 4.494 (rounded to
three decimal places). We have

(Φ1(X1)+ Φ2(X2))
4 =

(
16 0
0 0

)
��

(
80 40
40 24

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
and (

80 40
40 24

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
<

(
111.742 39.327
39.327 142.858

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
+CI2− δ f X̃

<

(
243.758 0

0 227.758

)
= (Φ1(X1)+ Φ2(X2))

4 +CI2,

since C = 227.758, δ f = 405.762, X̃ =
(

0.325 −0.097
−0.097 0.2092

)
II) Next, we observe an example with the spectra condition. Then we obtain a series of
inequalities involving the refined Jensen’s inequality:(

Φ1(X1)+ Φ2(X2)
)4 ≤ Φ1(X4

1 )+ Φ2(X4
2 )− δ f (m,M)X ≤ Φ1(X4

1 )+ Φ2(X4
2 )
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and its converse (10.65).

If X1 =

⎛⎝−4 1 1
1 −2 −1
1 −1 −1

⎞⎠ and X2 =

⎛⎝ 5 −1 −1
−1 2 1
−1 1 3

⎞⎠ , then X =
1
2

(
1 0
0 0

)

and m1 = −4.866, M1 = −0.345, m2 = 1.345, M2 = 5.866, m = −4.866, M = 5.866,
a = −0.345, b = 1.345 and we put m = a, M = b (rounded to three decimal places). We
have (

0.0625 0
0 0

)
= (Φ1(X1)+ Φ2(X2))

4

<

(
639.921 −255
−255 117.856

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)− δ f (a,b)X

<

(
641.5 −255
−255 118.5

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
<

(
731.649 −162.575
−162.575 325.15

)
= (Φ1(X1)+ Φ2(X2))

4 +CI2− δ f (m,M)X̃

<

(
872.471 0

0 872.409

)
= (Φ1(X1)+ Φ2(X2))

4 +CI2,

since δ f (a,b) = 3.158, X =
(

0.5 0
0 0.204

)
, δ f (m,M) = 1744.82, X̃ =

(
0.325 −0.097
−0.097 0.2092

)
and C = 872.409 .

10.6 Notes

The idea of Jensen’s inequality without operator convexity is given by Mićić, Pavić and
Pečarić [187]. The application on the power operator means is presented in [188]. Ex-
tensions of the previous results are given by the same authors in [190]. A refinement of
Jensen’s inequality and its converses based on research by Mićić, Pečarić and J. Perić is
presented in Section 10.5. The interested reader can find additional results in [186, 194,
195, 196].



Chapter11
Bohr’s Inequality

The classical inequality of Bohr says that |a+ b|2 ≤ p|a|2 + q|b|2 for all scalars a, b and
p, q > 0 with 1/p+1/q = 1. The equality holds if and only if (p−1)a = b.

In this chapter, we observe some operator versions of Bohr’s inequality. Using a gen-
eral result involving matrix ordering, we derive several inequalities of Bohr’s type. Fur-
thermore, we present an approach to Bohr’s inequality based on a generalization of the
parallelogram theorem with absolute values of operators. Finally, applying Jensen’s oper-
ator inequality we get a generalization of Bohr’s inequality.

11.1 Bohr’s inequalities for operators

Let H be a complex separable Hilbert space and B(H) the algebra of all bounded operators
on H. The absolute value of A ∈ B(H) is denoted by |A| = (A∗A)1/2.

The classical inequality of Bohr [24] says that

|a+b|2 ≤ p|a|2 +q|b|2

for all scalars a, b and p, q > 0 with 1/p+ 1/q = 1. The equality holds if and only if
(p−1)a = b.

For this, Hirzallah [145] proposed an operator version of Bohr’s inequality:

299
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Theorem 11.1 If A and B are operators on a Hilbert space, and q ≥ p > 0 satisfy 1/p+
1/q = 1, then

|A−B|2 + |(p−1)A+B|2 ≤ p|A|2 +q|B|2.
Afterwards, several authors have presented generalizations of Bohr’s inequality.

Theorem 11.2 If A,B ∈ B(H), 1
p + 1

q = 1, and 1 < p ≤ 2, i.e. q ≥ p > 1, then

(i) |A−B|2 + |(p−1)A+B|2 ≤ p|A|2 +q|B|2,
(ii) |A−B|2 + |A+(q−1)B|2 ≥ p|A|2 +q|B|2.

On the other hand, if p < 1, then

(iii) |A−B|2 + |(p−1)A+B|2 ≥ p|A|2 +q|B|2.
Theorem 11.3 If A,B ∈ B(H) and |α| ≥ |β |, then

|A−B|2 +
1

|α|2
∣∣∣ |β |A+ |α|B

∣∣∣2 ≤ (
1+

|β |
|α|

)
|A|2 +

(
1+

|α|
|β |

)
|B|2.

We note that it unifies the following inequalities:

(i) If α ≥ |β | = −β , then

|A−B|2 +
∣∣∣∣ |β |α

A+B

∣∣∣∣2 ≤ (
1+

|β |
α

)
|A|2 +

(
1+

α
|β |

)
|B|2.

(ii) If 0 < α ≤−β , then

|A−B|2 +
∣∣∣∣ α
|β |A+B

∣∣∣∣2 ≤ (
1+

α
|β |

)
|A|2 +

(
1+

|β |
α

)
|B|2.

Next we state Bohr’s inequalities for multi-operators.

Theorem 11.4 Suppose that Ai ∈B(H), and ri ≥ 1 for i = 1,2, · · · ,n with
n
∑
i=1

1
ri

= 1. Then

∣∣∣∣∣ n

∑
i=1

Ai

∣∣∣∣∣
2

≤
n

∑
i=1

ri|Ai|2.

In other words, it says that K(z) = |z|2 satisfies Jensen’s (operator) inequality:

K

(
n

∑
i=1

ti Ai

)
≤

n

∑
i=1

ti K(Ai)

holds for t1, · · · ,tn > 0 with
n
∑
i=1

ti = 1.
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11.2 Matrix approach to Bohr’s inequalities

In this section, we present an approach to Bohr’s inequalities by the use of the matrix order.
For this, we introduce two notations: For x = (x1, · · · ,xn) ∈ Rn, we define an n× n

matrix Λ(x) = x∗x = (xix j) and D(x) = diag(x1, · · · ,xn).

Theorem 11.5 If Λ(a)+ Λ(b)≤ D(c) for a,b,c ∈ Rn, then∣∣∣ n

∑
i=1

aiAi

∣∣∣2 +
∣∣∣ n

∑
i=1

biAi

∣∣∣2 ≤ n

∑
i=1

ci|Ai|2

for arbitrary n-tuple (Ai) in B(H). Incidentally, the statement is correct even if the order
is replaced by the reverse.

Proof. We define a positive mapping Φ of B(H)n to B(H) by

Φ(X) = (A∗
1 · · ·A∗

n)X
T (A1 · · ·An),

where ·T denotes the transpose operation. Since Λ(a) = (a1, · · · ,an)T (a1, · · · ,an), we have

Φ(Λ(a)) =
( n

∑
i=1

aiAi

)∗( n

∑
i=1

aiAi

)
=

∣∣∣ n

∑
i=1

aiAi

∣∣∣2,
so that ∣∣∣ n

∑
i=1

aiAi

∣∣∣2 +
∣∣∣ n

∑
i=1

biAi

∣∣∣2 = Φ
(

Λ(a)+ Λ(b)
)
≤ Φ(D(c)) =

n

∑
i=1

ci|Ai|2.

The additional part is easily shown by the same way. �

The meaning of Theorem 11.5 will be well explained in the following theorem.

Theorem 11.6 Let t ∈ R.

(i) If 0 < t ≤ 1, then |A∓B|2 + |tA±B|2 ≤ (1+ t)|A|2 +
(
1+

1
t

)
|B|2.

(ii) If t ≥ 1 or t < 0, then |A∓B|2 + |tA±B|2 ≥ (1+ t)|A|2 +
(
1+

1
t

)
|B|2.

Proof. We apply Theorem 11.5 to a = (1,∓1), b = (t,±1) and c = (1 + t,1 + 1/t).
Then we consider the order between corresponding matrices:

T =
(

1+ t 0
0 1+ 1

t

)
−

(
1 ∓1
∓1 1

)
−

(
t2 ±t
±t 1

)
= (1− t)

(
t ±1
±1 1

t

)
.

Since det(T ) = 0, T is positive semidefinite (resp. negative semidefinite) if 0 < t < 1 (resp.
t > 1 or t < 0). �
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Remark 11.1 It is important that all of theorems cited in Section 11.1 follow from Theo-
rem 11.6 easily. For instance, for (i) and (iii) of Theorem 11.2, we take t = p−1. For (ii),
we take t = q−1 and permute A and B. Also, Theorem 11.3 follows taking t = |β |/|α|.

As another application of Theorem 11.5, we give a proof of Theorem 11.4.

Proof of Theorem 11.4. We check the order between the corresponding matrices D =
diag(r1, · · · ,rn) andC = (ci j) where ci j = 1. All principal minors of D−C are nonnegative
and it follows that C ≤ D. Really, for natural numbers k ≤ n, put Dk = diag(ri1 , · · · ,rik ),
Ck = (ci j) with ci j = 1, i, j = 1, . . . ,k and Rk = ∑k

j=1 1/ri j where 1 ≤ ri1 < · · · < rik ≤ n.
Then

det(Dk −Ck) = (ri1 · · · · · rik)(1−Rk) ≥ 0 for arbitrary k ≤ n.

Hence we have the conclusion by Theorem 11.5. �

In the remainder, we cite additional results obtained by Theorem 11.5.

Corollary 11.1 If a = (a1,a2), b = (b1,b2) and p = (p1, p2) satisfy

p1 ≥ a2
1 +b2

1, p2 ≥ a2
2 +b2

2, (p1 − (a2
1 +b2

1))(p2 − (a2
2 +b2

2)) ≥ (a1a2 +b1b2)2,

then
|a1A+a2B|2 + |b1A+b2B|2 ≤ p1|A|2 + p2|B|2

holds all A,B ∈ B(H).

Proof. Since the assumption of the above is nothing but the matrix inequality Λ(a)+
Λ(b) ≤ D(p), Theorem 11.5 implies the conclusion. �

Finally, we remark the monotonicity of the operator function F(a) =
∣∣∣ n

∑
i=1

ai Ai

∣∣∣2.
Corollary 11.2 For a fixed n-tuple (Ai) in B(H), the operator function F(a) =

∣∣∣ n
∑
i=1

ai Ai

∣∣∣2
for a = (a1, · · · ,an) is order preserving, that is,

if Λ(a) ≤ Λ(b), then F(a) ≤ F(b).

Proof. We prove this putting F(a) = Φ(a∗a), where Φ is a positive linear mapping as
in the proof of Theorem 11.5. �

Corollary 11.3 If a = (a1,a2,a3) and b = (b1,b2,b3) satisfy |ai| ≤ |bi| for i = 1,2,3 and
aib j = a jbi for i �= j, then F(a) ≤ F(b).

Proof. It follows from assumptions that if i �= l and j �= k, then∣∣∣∣ aia j −bib j aiak −bibk

ala j −blb j alak −blbk

∣∣∣∣ = akb j(aibl −bial)+a jbk(bial −aibl) = 0.

This means that all 2nd principal minors of Λ(b)−Λ(a) are zero. It follows that det(Λ(b)−
Λ(a)) = 0. Since the diagonal elements satisfy |ai| ≤ |bi| for i = 1,2,3, we have the matrix
inequality Λ(a) ≤ Λ(b). Now it is sufficient to apply Corollary 11.2. �
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11.3 Generalized parallelogram law for operators

Next we give another approach to Bohr’s inequality. In our frame, the following general-
ization of the parallelogram law easily implies Theorem 11.6 which covers many previous
results as discussed in the preceding section.

Theorem 11.7 If A and B are operators on a Hilbert space and t �= 0, then

|A+B|2 +
1
t
|tA−B|2 = (1+ t)|A|2 +

(
1+

1
t

)
|B|2.

Proof. It is easily checked that

|A+B|2 +
1
t
|tA−B|2

= |A|2 + |B|2 +A∗B+B∗A+ t|A|2 +
1
t
|B|2−A∗B−B∗A

= (1+ t)|A|2 +
(

1+
1
t

)
|B|2.

�

Remark 11.2 We immediately obtain Theorem 11.6 by noting the condition of t in Theo-
rem 11.7. This means that Theorems 11.1 and 11.2 also follow from Theorem 11.7 .

Next we extend Theorem 11.7 for several operators.

Theorem 11.8 Suppose that Ai ∈ B(H) and ri ≥ 1 with
n
∑
i=1

1
ri

= 1 for i = 1,2, ...,n. Then

n

∑
i=1

ri|Ai|2−|
n

∑
i=1

Ai|2 = ∑
1≤i< j≤n

∣∣∣∣√ ri

r j
Ai−

√
r j

ri
A j

∣∣∣∣2.
Proof. We show it by the induction on n. Note that it is true for n = 2 by Theorem

11.7, because it is expressed as follows: Let Ai ∈ B(H) and ri ≥ 1 for i = 1,2 satisfying
1
r1

+ 1
r2

= 1. Then

r1|A1|2 + r2|A2|2−|A1 +A2|2 =
∣∣∣∣√ r1

r2
A1−

√
r2

r1
A2

∣∣∣∣2 .

Now suppose that it is true for n = k, then we take A1, · · · ,Ak+1 ∈B(H) and r1, · · · ,rk+1 > 1

satisfying
k+1

∑
i=1

1
ri

= 1. Here we put r′i = ri

(
1− 1

rk+1

)
for i = 1, · · · ,k and B =

k
∑
i=1

Ai for

convenience, then r′i > 1 and
k

∑
i=1

1
r′i

= 1. Hence we have
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k+1

∑
i=1

ri|Ai|2 −
∣∣∣∣∣k+1

∑
i=1

Ai

∣∣∣∣∣
2

=
k

∑
i=1

ri|Ai|2 + rk+1|Ak+1|2−
∣∣∣∣∣ k

∑
i=1

Ai +Ak+1

∣∣∣∣∣
2

=
(

1− 1
rk+1

) k

∑
i=1

ri|Ai|2−|B|2 +(rk+1−1)|Ak+1|2 +
1

rk+1

k

∑
i=1

ri|Ai|2−B∗Ak+1−A∗
k+1B

=
( k

∑
i=1

r
′
i|Ai|2 −|B|2

)
+

k

∑
i=1

ri

rk+1
|Ai|2−B∗Ak+1−A∗

k+1B+(rk+1−1)|Ak+1|2

= ∑
1≤i< j≤k

∣∣∣∣√ ri

r j
Ai −

√
r j

ri
A j

∣∣∣∣2 +
k

∑
i=1

ri

rk+1
|Ai|2−B∗Ak+1−A∗

k+1B+
k

∑
i=1

rk+1

ri
|Ak+1|2

= ∑
1≤i< j≤k

∣∣∣∣√ ri

r j
Ai −

√
r j

ri
A j

∣∣∣∣2 +
k+1

∑
i=1

∣∣∣∣√ ri

rk+1
Ai−

√
rk+1

ri
Ak+1

∣∣∣∣2
= ∑

1≤i< j≤k+1

∣∣∣∣√ ri

r j
Ai−

√
r j

ri
A j

∣∣∣∣2.
Therefore, the required equality holds for all n ∈ N. �

Remark 11.3 Theorem 11.4 is an easy consequence of Theorem 11.8.

Incidentally, we note that the condition ri ≥ 1 in Theorem 11.8 is not necessary. As a
matter of fact, we can show the following.

Corollary 11.4 Let Ai ∈ B(H) and ri �= 0 for i = 1,2, ...,n with
n
∑
i=1

1
ri

= 1. Then

n

∑
i=1

ri|Ai|2 −
∣∣∣∣∣ n

∑
i=1

Ai

∣∣∣∣∣
2

= ∑
1≤i≤ j≤n

r j

ri

∣∣∣∣ ri

r j
Ai−Aj

∣∣∣∣2 .

11.4 The Dunkl-Williams inequality

Dunkl and Williams showed that∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥≤ 4‖x− y‖

‖x‖+‖y‖
for every nonzero element x,y in a normed linear space.
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Pečarić and Rajić gave the following refinement: For every nonzero element x,y in a
normed linear space X∥∥∥∥ x

‖x‖ − y
‖y‖

∥∥∥∥≤
√

2‖x− y‖2 +2(‖x‖−‖y‖)2

max{‖x‖,‖y‖} .

Furthermore they generalized it to an operator inequality as follow:

Theorem 11.9 Let A,B ∈ B(H) be operators where |A| and |B| are invertible, and let
p,q > 1 with 1

p + 1
q = 1.∣∣∣A|A|−1−B|B|−1

∣∣∣2 ≤ |A|−1 (p|A−B|2 +q(|A|− |B|)2) |A|−1.

The equality holds if and only if

p (A−B)|A|−1 = q B
(|A|−1−|B|−1) .

Very recently, Saito-Tominaga improved Theorem 11.9 without the assumption of the
invertibility of the absolute value of operators.

Theorem 11.10 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and let p,q > 1 with 1

p + 1
q = 1. Then∣∣∣(U −V)|A|

∣∣∣2 ≤ p|A−B|2 +q(|A|− |B|)2 .

The equality holds if and only if

p (A−B) = q V (|B|− |A|) and V ∗V ≥U∗U.

In this section, we consider the Dunkl-Williams inequality for operators as an applica-
tion of generalized parallelogram law of operators in Theorem 11.7:

|A−B|2 +
1
t
|tA+B|2 = (1+ t)|A|2 +

(
1+

1
t

)
|B|2

for any nonzero t ∈ R.
The following lemma follows from it easily.

Lemma 11.1 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|. Then for each t > 0

|A−B|2 ≤ (1+ t)|A|2 +
(

1+
1
t

)
|B|2.

The equality holds for t if and only if tA+B = 0.
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We prepare another lemma.

Lemma 11.2 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B| and t > 0. If t(A−B)+V(|A|− |B|) = 0 is satisfied, then

t|A−B|2 ≤ |A|2−|B|2,

and so |A| ≥ |B| and U∗U ≥V ∗V .
In addition, if U∗U = V ∗V , then t|A−B|2 = |A|2−|B|2.

Proof. Since tA− (t +1)B = −V |A| by the assumption, we have∣∣tA− (t +1)B
∣∣2 = |A|V ∗V |A|.

Adding t|A|2− (t +1)|B|2 to both sides, it follows that

t(t +1)|A−B|2 = |A|V ∗V |A|+ t|A|2− (t +1)|B|2 ≤ (t +1)
(|A|2−|B|2) ,

so that
0 ≤ t|A−B|2 ≤ |A|2−|B|2.

Hence it follows that |A| ≥ |B| and U∗U ≥ V ∗V . Moreover, if U∗U = V ∗V is assumed,
then V ∗V |A| = |A| and so

t|A−B|2 = |A|2−|B|2.
�

The following theorem is proved by the lemmas cited above, and it changes to Theo-
rem 11.10 by taking t = p−1.

Theorem 11.11 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and t > 0. Then

∣∣(U −V)|A|∣∣2 ≤ (t +1)|A−B|2 +
(

1+
1
t

)
(|A|− |B|)2.

The equality holds if and only if

t(A−B) = V (|B|− |A|) and V ∗V = U∗U.

Proof. We replace A and B in Lemma 11.1 by A−B and V (|A| − |B|), respectively.
Then we have the required inequality, and the condition for which the equality holds is that

t(A−B) = V (|B|− |A|) and V ∗V = U∗U.

The latter in above is equivalent to |A|V ∗V |A| = |A|2, that is, V ∗V ≥U∗U . By the help of
Lemma 11.2, it becomes V ∗V = U∗U . �
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Lemma 11.3 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and t > 0. Suppose that V ∗V = U∗U. Then

t(A−B) = V (|B|− |A|)
if and only if

|A| = |B|+ t|A−B| and A−B = −V |A−B|.
Proof. Let t(A−B) = −V (|A|− |B|). It follows from Lemma 11.2 that

t|A−B|=
∣∣∣|A|− |B|

∣∣∣ = |A|− |B|

and moreover

A−B =
1
t
V (|B|− |A|) = −1

t
tV |A−B|= −V |A−B|.

Conversely, let |A|− |B|= t|A−B| and A−B = −V |A−B|. Then

t(A−B)+V(|A|− |B|) = −tV |A−B|+ tV|A−B|= 0.

�

Lemma 11.4 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and t > 0. Suppose that V ∗V = U∗U. If t(A−B) = V (|B|− |A|), then

|B||A−B|+ |A−B||B|= (1− t)|A−B|2.
Proof. Put C = A−B. The preceding lemma ensures that

t|C| = |B+C|− |B| and C = −V |C|.
Then it follows that

|B+C|= |B|+ t|C|,
and that

B∗C = −B∗V |C| = −(|B|V ∗V )|C| = −|B||C|.
Hence we have

|B+C|2 = (|B|− |C|)2 and |B+C|2 = (|B|+ t|C|)2,

so that
(t +1)

(|B||C|+ |C||B|) = (1− t2)|C|2,
which is equivalent to the conclusion. �

Theorem 11.12 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and C = A−B = W |C| the polar decomposition of C. Assume that the equality∣∣(U −V )|A|∣∣2 = (t +1)|A−B|2 +

(
1+

1
t

)(|A|− |B|)2
.

holds for some t > 0.
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(1) If t ≥ 1, then A = B.

(2) If 0 ≤ t ≤ 1, then

A = B

(
I− 2

1− t
W ∗W

)
and |A| = |B|

(
I +

2t
1− t

W ∗W
)

,

and the converse is true.

Proof. The preceding lemma leads us the fact that if positive operators S and T satisfy
ST +TS = rS2 for some r ∈ R, then

(i) S = 0 if r < 0, and (ii) S and T commute if r ≥ 0.

(Since S2T = STS− tS3 is self-adjoint, S2 commutes with T and so does S.) Thus we apply
it for S = |A−B||C|, T = |B| and r = 1− t.

(1) Since r = 1− t ≤ 0, we first suppose that r < 0. Then S = |A−B|= 0, that is, A = B,
as desired. Next we suppose r = 0. Then S = |C| commutes with T = |B| and so ST = 0.
Hence we have |C|V ∗V = 0. Moreover, since C = −V |C| by Lemma 11.3, it follows that
|C|2 = |C|V ∗V |C| = 0, i.e. C = 0.

(2) We apply (ii). Namely we have

|B||C| = |C||B| = 1− t
2

|C|2,

so that

B|C| = V |B||C| = 1− t
2

V |C|2 =
t−1

2
C|C| = t−1

2
A|C|− t−1

2
B|C|.

It implies that

A|C| = 2
t−1

(
1+

t−1
2

)
B|C| = t +1

t−1
B|C|,

and so

AW ∗W =
t +1
t−1

BW ∗W.

Therefore we have

A = AW ∗W +A(I−W ∗W ) =
t +1
t −1

BW ∗W +B(I−W∗W ) = B

(
I +

2
t −1

W ∗W
)

.

For the second equality, it suffices to show that W ∗W commutes with |B| because∣∣∣I− 2
1− t

W ∗W
∣∣∣ = I +

2t
1− t

W ∗W
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is easily seen. For this commutativity, we note that C = A−B = 2
t−1BW∗W by the first

equality, C = −V |C| by Lemma 11.3, and V ∗V ≥ W ∗W by W ∗W ≤ sup{V ∗V,U∗U} and
V ∗V = U∗U . So we prove that

|B|W ∗W =V ∗BW ∗W = −1− t
2

V ∗C =
1− t

2
V ∗V |C| = 1− t

2
|C|.

Incidentally the converse implication in (2) is as follows: We first note that the second
equality assures the commutativity of |B| and W ∗W . Next it follows that

|A|− |B|= − 2t
1− t

|B|W ∗W

and

V |A|−B = V (|A|− |B|) = − 2t
1− t

BW ∗W = −t(A−B)

by the first equality. Hence we have

(U −V )|A| = A−V |A| = A+ t(A−B)−B= (1+ t)(A−B)

and so ∣∣(U −V)|A|∣∣2 = (1+ t)2|A−B|2.
On the other hand, since

(|A|− |B|)2 =
(

2t
1− t

)2

B∗BW ∗W = t2|A−B|2

we have

(1+ t)|A−B|2+(1+
1
t
)(|A|− |B|)2

=
(

(1+ t)+
(
1+

1
t

)
t2
)
|A−B|2 = (1+ t)2|A−B|2,

which completes the proof. �

11.5 From Jensen’s inequality to Bohr’s inequality

As an application of Jensen’s inequality, in this section we consider a generalization of
Bohr’s inequality. Namely Jensen’s inequality implies Bohr’s inequality even in the opera-
tor case.

For this, we first target the following inequality which is an extension of Bohr’s in-
equality, precisely, it is a multiple version of Bohr’s inequality in the case r = 2:
If r > 1 and a1, · · · ,an > 0, then∣∣∣ n

∑
i=1

zi

∣∣∣r ≤ ( n

∑
i=1

a
1

1−r
i

)r−1 n

∑
i=1

ai|zi|r

for all z1, · · · ,zn ∈ C.
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We note that it follows from Hölder inequality. Actually, p = r
r−1 and q = r are conju-

gate, i.e. 1
p + 1

q = 1. We here set

ui = a
− 1

q
i , wi = u−1

i zi (i = 1,2, · · · ,n)

and apply them to Hölder inequality. Then we have∣∣∣ n

∑
i=1

zi

∣∣∣r =
∣∣∣ n

∑
i=1

uiwi

∣∣∣r ≤ ( n

∑
i=1

|ui|p
) r

p
( n

∑
i=1

|wi|q
) r

q =
( n

∑
i=1

a
1

1−r
i

)r−1 n

∑
i=1

ai|zi|r.

Now we propose its operator extension. For the sake of convenience, we recall Jensen’s
inequality (see also Remark 10.1 with conditions on spectra) for our use below:

Let f be an operator convex function on an interval J, let T be a locally compact Haus-
dorff space with a bounded Radon measure μ , and let A and B be unital C∗-algebras. If
(ψt)t∈T is a unital field of positive linear mappings of A to B, then

f

(∫
T

ψt(xt)dμ(t)
)
≤

∫
T

ψt( f (xt ))dμ(t)

holds for bounded continuous fields (xt)t∈T of self-adjoint elements in A whose spectra
are contained in J.

Theorem 11.13 Let T be a locally compact Hausdorff space with a bounded Radon
measure μ , and let A and B be unital C∗-algebras. If 1 < r ≤ 2, a : T → R is a bounded
continuous positive function and (φt )t∈T is a field of positive linear mappings φt : A → B
satisfying ∫

T
a(t)

1
1−r φt(1)dμ(t) ≤

∫
T

a(t)
1

1−r dμ(t)1 , (11.1)

then (∫
T

φt(xt)dμ(t)
)r

≤
(∫

T
a(t)

1
1−r dμ(t)

)r−1 ∫
T

a(t)φt(xr
t )dμ(t) (11.2)

holds for all continuous fields (xt)t∈T of positive elements in A .

Proof. We set ψt =
1
M

a(t)
1

1−r φt , where M =
∫

T
a(t)

1
1−r dμ(t) > 0. Then we have∫

T
ψt(1)dμ(t) ≤ 1. By a routine way, we may assume that

∫
T

ψt(1)dμ(t) = 1. Since

f (t) = tr is operator convex for 1 < r ≤ 2, then we applying Jensen’s inequality cited
above and obtain(∫

T

1
M

a(t)
1

1−r φt(x̃t)dμ(t)
)r

≤
∫

T

1
M

a(t)
1

1−r φt(x̃r
t )dμ(t)

for every bounded continuous fields (x̃t)t∈T of positive elements in A . Replacing x̃t by
a(t)−1/(1−r)xt , the above inequality can be written as(∫

T
φt(xt)dμ(t)

)r

≤ Mr−1
∫

T
a(t)φt(xr

t )dμ(t)

which is the desired inequality. �
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Remark 11.4 We can obtain the inequality in a broader region for r under conditions on
spectra. Let

(mx,Mx)∩ [a(t)−1/(1−r)mt ,a(t)−1/(1−r)Mt ] = /0, t ∈ T,

where mx and Mx, mx ≤ Mx, be the bounds of x =
∫
T φt(xt)dμ(t) and mt and Mt , mt ≤ Mt,

be the bounds of xt , t ∈ T . If the condition (11.1) is valid, then the inequality (11.2) holds
for every r ∈ (−∞,0)∪ (1,∞).

The following corollary is a discrete version of Theorem 11.13.

Corollary 11.5 If 1 < r ≤ 2, a1, · · · ,an > 0 and positive linear mappings φ1, · · · ,φn on
B(H) satisfy

n

∑
i=1

a
1

1−r
i φi(I) ≤

n

∑
i=1

a
1

1−r
i I,

then ( n

∑
i=1

φi(Ai)
)r ≤

( n

∑
i=1

ma
1

1−r
i

)r−1 n

∑
i=1

aiφi(Ar
i )

holds for positive operators A1, · · · ,An ≥ 0 on H.

For a typical positive linear mapping φ(A) = X∗AX for some X , the preceding corollary
is written as follows:

Corollary 11.6 If 1 < r ≤ 2, and a1, · · · ,an > 0 and X1, · · · ,Xn in B(H) satisfy

n

∑
i=1

a
1

1−r
i X∗

i Xi ≤
n

∑
i=1

a
1

1−r
i I,

then ( n

∑
i=1

X∗
i AiXi

)r ≤
( n

∑
i=1

a
1

1−r
i

)r−1 n

∑
i=1

aiX
∗
i Ar

i Xi

holds for positive operators A1, · · · ,An ≥ 0 on H.

11.6 Notes

The original inequality of Bohr [24] was established for scalars in 1929. Hirzallah [145]
posed an operator version of it. Afterwards, Cheung-Pečarić [32], Zhang [295] and sev-
eral authors have considered extensions of Bohr’s inequality for operators. Very recently,
such study has been done by Abramovich-Barić-Pečarić [1], and Fujii-Zuo [105], in which
matrix order method is proposed.
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The Dunkl-Williams inequality in a normed space was established in [47]. Pečarić-
Rajić [250] presented an operator version of it, which was generalized by Saito-Tominaga
[256]. Moreover it was discussed in [39] from the viewpoint of generalized parallelogram
law for operators. Such operator versions are regarded as applications of Bohr operator
inequality.

The results in 8.6 depend on [232], in which Jensen’s inequality we used is appeared
in [135].
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(2006), 749–759.

[73] J.I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math. 1 (1998),
153–156.

[74] J.I. Fujii and Y. Seo, On parametrized operator means dominated by power ones, Sci.
Math. 1 (1998), 301–306.

[75] J.I. Fujii and Y. Seo, Characterizations of chaotic order associated with the Mond-
Shisha difference, Math. Inequal. Appl. 5 (2002), 725–734.

[76] J.I. Fujii, Y. Seo and M. Tominaga, Kantorovich type operator inequalities via the
Specht ratio, Linear Algebra Appl. 337 (2004), 69–81.

[77] J.I. Fujii, Y. Seo and M. Tominaga, Kantorovich type reverse inequalities for operator
norm, Math. Inequal. Appl. 8 (2005), 529–535.

[78] M. Fujii, On operator concavity related to means of operators, Math. Japon. 30
(1985), 283–288.

[79] M. Fujii, Furuta’s inequality and its mean theoretic approach, J. Operator Theorey
23 (1990), 67–72.



318 BIBLIOGRAPHY

[80] M. Fujii, T. Furuta and E. Kamei, Furuta’s inequality and its application to Ando’s
theorem, Linear Algebra Appl. 179 (1993), 161–169.

[81] M. Fujii and F. Kubo, Around Jensen’s inequality II, Math. Japon. 27 (1982),
495–499.

[82] M. Fujii, T. Furuta and R. Nakamoto, Norm inequalities in the Corach-Porta-Recht
theory and operator means, Illinois J.Math. 40 (1996), 527–534.

[83] M. Fujii, T. Furuta, R. Nakamoto and S.-E. Takahasi, Operator inequalities and co-
variance in noncommutative probability, Math. Japon. 46 (1997), 317–320.

[84] M. Fujii, M. Hashimoto, Y. Seo and M. Yanagida, Characterizations of usual
and chaotic order via Furuta and Kantorovich inequalities, Sci. Math. 3 (2000),
405–418.

[85] M. Fujii, S. Izumino, R. Nakamoto and Y. Seo, Operator inequalities related to
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equalities, Nihonkai Math. J. 16 (2005), 145–154.

[103] M. Fujii and Y. Seo, Several reverse inequalities of operators, RIMS Kokyuroku
1452 (2005), 30–37.

[104] M. Fujii, Y. Seo and M. Tominaga, Golden-Thompson type inequalities related to a
geometric mean via Specht’s ratio, Math. Inequal. Appl. 5 (2002), 573–582.

[105] M. Fujii and H. Zuo, Matrix order in Bohr inequality for operators, Banach J. Math.
Anal. 4 (2010), 21–27.

[106] T. Furuta, A ≥ B ≥ 0 assures (BrApBr)1/q ≥ B(p+2r)/q for r ≥ 0, p ≥ 0, q ≥ 1 with
(1+2r)q≥ p+2r, Proc. Amer. Math. Soc. 101 (1987), 85–88.

[107] T. Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad. 65
(1989), 126.

[108] T. Furuta, Applications of order preserving operator inequalities, Operator Theorey:
Advances and Applications 59 (1992), 180–190.

[109] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Lin-
ear Algebra Appl. 219 (1995), 139–155.

[110] T. Furuta, Generalizations of Kosaki trace inequalities and related trace inequalities
on chaotic order, Linear Algebra Appl. 235 (1996), 153–161.
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inequalities by Mićić-Pečarić-Seo, Linear Algebra Appl. 369 (2003), 27–40.

[123] T. Furuta, M. Hashimoto and M. Ito, Equivalence relation between generalized Fu-
ruta inequality and related operator functions, Sci. Math. 1 (1998), 257–259.
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[192] J. Mićić and J. Pečarić, Generalization of the Kantorovich type operator inequalities
via grand Furuta inequality, Math. Inequal. Appl. 9 (2006), 495–510.
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[196] J. Mićić, J. Pečarić and J. Perić, Refined Jensen’s operator inequality with condition
on spectra, Oper. Matrices 7 (2013), 293–308.
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[216] B. Mond and J. Pečarić, Bounds for Jensen’s inequality for several operators, Hous-
ton J. Math. 20 (1994), 645–651.
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Anal. Numér. Théor. Approx. 23 (1994), 179–183.
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[222] B. Mond and J. Pečarić, Some matrix inequalities of Ky Fan type, Tamkang J. Math.
26 (1995), 321–326.
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