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(P1) Consistency with scalars. If A1, · · · ,An mutually commute for i = 1, · · · ,n, then

G[n,t](A1, · · · ,An) =
n

∏
i=1

At[n]i
i ,

where {t[n]i} is defined by (6.7) and (6.8).

(P2) Joint homogeneity. For αi > 0

G[n,t](α1A1, · · · ,αnAn) = G[n,t](α1, · · · ,αn)G[n,t](A1, · · · ,An)

=
n

∏
i=1

αt[n]i
i G[n,t](A1, · · · ,An),

where {t[n]i} is defined by (6.7) and (6.8).

(P3) Monotonicity. The mapping (A1, · · · ,An) �→ G[n,t](A1, · · · ,An) is monotone, i.e. if
Ai ≥ Bi for i = 1, · · · ,n, then

G[n,t](A1, · · · ,An) ≥ G[n,t](B1, · · · ,Bn).

(P4) Congruence invariance. For every invertible operator T

G[n,t](T ∗A1T, · · · ,T ∗AnT ) = T ∗G[n,t](A1, · · · ,An)T.

(P5) Joint concavity. The mapping (A1, · · · ,An) �→G[n, t](A1, · · · ,An) is jointly concave:

G[n,t](
n

∑
i=1

λiA1i, · · · ,
n

∑
i=1

λiAni) ≥
n

∑
i=1

λiG[n,t](A1i, · · · ,Ani),

where λi ≥ 0 with ∑n
i=1 λi = 1.

(P6) Self-duality.
G[n,t](A1, · · · ,An) = G[n,t](A−1

1 , · · · ,A−1
n )−1.

(P7) The arithmetic-geometric-harmonic mean inequality holds:

H[n,t](A1, · · · ,An) ≤ G[n,t](A1, · · · ,An) ≤ A[n,t](A1, · · · ,An). (AGH)

Proof. The properties (P1)-(P7) can be easily proved by induction and the fact that they
are known to be true for n = 2. To illustrate that we prove (P7). We know that the result is
true for n = 2. Now let us assume it is true for n and prove it for n+1.

A(r+1)
i = G[n,t]((A(r)

j ) j �=i) ≤ A[n,t]((A(r)
j ) j �=i)

≤ A[n,t]((Ã(r)
j ) j �=i) =

˜
A(r+1)

i

for i = 1, · · · ,n + 1. Therefore, as r → ∞, we have G[n + 1,t](A1, · · · ,An+1) ≤ A[n +
1, t](A1, · · · ,An+1). By (P6), we have the left-hand side of (P7). �
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6.3 The Kantorovich type inequality

First of all, we show a converse of the weighted arithmetic-geometric mean inequality of n
operators, which is an improvement of Theorem 6.1 for n ≥ 3:

Theorem 6.6 For any positive integer n ≥ 2, let A1,A2, · · · ,An be positive invertible op-
erators on a Hilbert space H such that 0 < mIH ≤ Ai ≤ MIH for i = 1,2, · · · ,n and some
scalars 0 < m < M. Then

A[n,t](A1, · · · ,An) ≤ (M +m)2

4Mm
G[n,t](A1, · · · ,An)

for 0 < t < 1.

Remark 6.3 In the case of t = 1
2 , we have

A1 + · · ·+An

n
≤ (M +m)2

4Mm
G(A1, · · · ,An). (6.13)

For n = 3, the constant in (6.13) coincides with one in Theorem 6.1. For n≥ 4, the constant
in (6.13) is less than one in Theorem 6.1.

To prove Theorem 6.6, we need the following lemma.

Lemma 6.9 Let Φ be a positive linear mapping on the algebra B(H) of all bounded
linear operators on a Hilbert space H such that Φ(IH) = IH. Then

Φ(A) ≤ (M +m)2

4Mm
Φ(A−1)−1

for all positive operators A such that mIH ≤ A ≤ MIH for some scalars M > m > 0.

Proof. Since t−1 ≤ M+m
Mm − 1

Mmt for all t ∈ [m,M], we have

Φ(A) ≤ (M +m)I−MmΦ(A)

=
(M +m)2

4Mm
Φ(A−1)−1−

(
M +m

2
√

Mm
Φ(A−1)−

1
2 −√

MmΦ(A)
1
2

)2

≤ (M +m)2

4Mm
Φ(A−1)−1.

�

Proof of Theorem 6.6. Let a mapping Ψ : B(H)⊕·· ·⊕B(H) �→ B(H)⊕·· ·⊕B(H) be
defined by

Ψ

⎛⎜⎝A1 0
. . .

0 An

⎞⎟⎠ =

⎛⎜⎝t[n]1A1 + · · ·+ t[n]nAn 0
. . .

0 t[n]1A1 + · · ·+ t[n]nAn

⎞⎟⎠
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where {t[n]i} is defined by (6.7). Then Ψ is a positive linear mapping such that Ψ(IH) = IH .
Since

m

⎛⎜⎝IH 0
. . .

0 IH

⎞⎟⎠≤

⎛⎜⎝A1 0
. . .

0 An

⎞⎟⎠≤ M

⎛⎜⎝IH 0
. . .

0 IH

⎞⎟⎠ ,

it follows from Lemma 6.9 that

Ψ

⎛⎜⎝A1 0
. . .

0 An

⎞⎟⎠≤ (M +m)2

4Mm
Ψ

⎛⎜⎝A−1
1 0

. . .
0 A−1

n

⎞⎟⎠
−1

and hence

A[n,t](A1, · · · ,An) ≤ (M +m)2

4Mm
H[n,t](A1, · · · ,An).

By (P7) in Theorem 6.5 we have the desired inequality

A[n,t](A1, · · · ,An) ≤ (M +m)2

4Mm
G[n,t](A1, · · · ,An).

�

By using Theorem 6.6 and the weighted arithmetic-geometric mean inequality, we ob-
tain a weighted version of Greub-Rheinboldt inequality of n operators:

Theorem 6.7 For any positive integer n ≥ 2, let A1,A2, · · · ,An be positive invertible op-
erators on a Hilbert space H such that mIH ≤ Ai ≤MIH for i = 1,2, · · · ,n and some scalars
0 < m < M. Then for 0 < t < 1

〈A1x,x〉t[n]1 〈A2x,x〉t[n]2 · · · 〈Anx,x〉t[n]n ≤ (M +m)2

4Mm
〈G[n,t](A1,A2, · · · ,An)x,x〉

holds for all x ∈ H, where {t[n]i} is defined by (6.7) and (6.8).

Proof. For 0 < t < 1, we have

〈A1x,x〉t[n]1〈A2x,x〉t[n]2 · · · 〈Anx,x〉t[n]n ≤ t[n]1〈A1x,x〉+ · · ·+ t[n]n〈Anx,x〉
= 〈A[n,t](A1, · · · ,An)x,x〉

≤ (M +m)2

4Mm
〈G[n,t](A1,A2, · · · ,An)x,x〉

for all x ∈ H. �

Remark 6.4 If we put t = 1
2 in Theorem 6.7, then t[n]i = 1

n for all i = 1, · · · ,n. Therefore,
we have an improvement of Theorem 6.2 for n ≥ 4.
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6.4 The Specht type inequality

We recall a 2-operators version of the Specht theorem (Theorem 6.3): If A1 and A2 are
positive invertible operators such that mIH ≤ A1,A2 ≤ MIH for some scalars 0 < m < M,
then

(1− t)A1 + tA2 ≤ S(h)A1 #t A2 for all t ∈ [0,1],

where h = M
m . Actually, the Specht ratio is the upper bound of the arithmetic mean by the

geometric one for positive numbers. We show a noncommutative version of the Specht
theorem of n operators. For this, we state the following lemma.

Lemma 6.10 Let A1,A2, · · · ,An be positive invertible operators such that mIH ≤ Ai ≤
MIH for some scalars 0 < m < M and i = 1,2, · · · ,n and α1,α2, · · · ,αn positive numbers
with ∑n

i=1 αi = 1. Put h = M
m . Then

α1A1 + α2A2 + · · ·+ αnAn ≤ S(h) exp(α1 logA1 + α2 logA2 + · · ·+ αn logAn) ,

where S(h) is the Specht ratio defined by (2.35).

Proof. Put A = diag(A1, · · · ,An) and y = (
√

α1x, · · · ,√αnx)T for every unit vector x.
By Theorem 2.14, we have

〈Ay,y〉 ≤ S(h) exp〈logA y,y〉

since mIH ≤ A ≤ MIH . Therefore, it follows from Jensen’s inequality that

〈(α1A1 + · · ·+ αnAn)x,x〉 = 〈Ay,y〉 ≤ S(h) exp〈logA y,y〉

= S(h) exp

〈
n

∑
i=1

αi logAix,x

〉
≤ S(h) 〈exp(α1 logA1 + · · ·+ αn logAn)x,x〉

for every unit vector x ∈ H and hence we have

α1A1 + · · ·+ αnAn ≤ S(h) exp(α1 logA1 + · · ·+ αn logAn) .

�

By virtue of Lemma 6.10, we have the following theorem.

Theorem 6.8 For any positive integer n ≥ 3, let A1, · · · ,An be positive invertible opera-
tors such that mIH ≤ Ai ≤MIH for i = 1,2, · · · ,n and some scalars 0 < m < M. Put h = M

m .
Then for 0 < t < 1

A[n,t](A1, · · · ,An) ≤ S(h)2 G[n,t](A1, · · · ,An).
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Proof. By Lemma 6.10, it follows that

A[n,t](A−1
1 , · · · ,A−1

n ) ≤ S(h) exp
(
A[n,t](logA−1

1 , · · · , logA−1
n )

)
.

Taking inverse, we have

H[n,t](A1, · · · ,An) ≥ S(h)−1 exp(A[n,t](logA1, · · · , logAn))

and this implies

A[n,t](A1, · · · ,An) ≤ S(h) exp(A[n,t](logA1, · · · , logAn))

≤ S(h)2 H[n,t](A1, · · · ,An).

Therefore, we have

A[n,t](A1, · · · ,An) ≤ S(h)2 H[n,t](A1, · · · ,An)

≤ S(h)2 G[n,t](A1, · · · ,An)

and we have this theorem. �

By using Theorem 6.8 and the weighted arithmetic-geometric mean inequality, we ob-
tain another n operators version of Grueb-Rheinboldt inequality:

Theorem 6.9 For any positive integer n ≥ 3, let A1, · · · ,An be positive invertible opera-
tors on a Hilbert space H such that 0 < mIH ≤ Ai ≤ MIH for i = 1, · · · ,n and some scalars
0 < m < M. Put h = M

m . Then

(A1x,x)t[n]1 (A2x,x)t[n]2 · · · (Anx,x)t[n]n ≤ S(h)2(G[n,t](A1, · · · ,An)x,x)

for all x ∈ H, where {t[n]i} is defined by (6.7) and (6.8).

6.5 The Golden-Thompson-Segal inequality

For the construction of nonlinear relativistic quantum fields, Segal proved that

‖eH+K‖ ≤ ‖eHeK‖.
Also, motivated by quantum statistical mechanics, Golden, Symanzik and Thompson in-
dependently proved that

Tr eH+K ≤ Tr eHeK

holds for Hermitian matrices H and K. This inequality is called Golden-Thompson trace
inequality.
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In the final section, we discuss the Golden-Thompson-Segal type inequalities for the
operator norm. Ando and Hiai gave a lower bound on ‖eH+K‖ in terms of the geometric
mean: For two self-adjoint operators H and K and α ∈ [0,1],

‖(epH #α epK) 1
p ‖ ≤ ‖e(1−α)H+αK‖ (6.14)

holds for all p > 0 and the left-hand side of (6.14) converges to the right-hand side as p ↓ 0.

Hiai and Petz showed the following geometric mean version of the Lie-Trotter formula:
If A and B are positive invertible and t ∈ [0,1], then

lim
p→0

(Ap #t Bp)
1
p = e(1−t) logA+t logB.

We firstly show an n-variable version of the Lie-Trotter formula for the weighted geo-
metric mean:

Lemma 6.11 Let A1,A2, · · · ,An be positive invertible operators such that mIH ≤ Ai ≤
MIH for i = 1, · · · ,n and some scalars 0 < m ≤ M, and let λ1, · · · ,λn ∈ [0,1] such that

∑n
i=1 λi = 1. Then G[n,t](Ap

1 , · · · ,Ap
n)

1
p uniformly converges to the chaotically geometric

mean eA[n,t](logA1,··· ,logAn) as p ↓ 0.

Proof. It follows that for each λi > 0 such that ∑n
i=1 λi = 1,

0 ≤ log
n

∑
i=1

λiAi −
n

∑
i=1

λi logAi ≤ logS(h).

In particular, we have

0 ≤ logA[n,t](A1, · · · ,An) − A[n,t](logA1, · · · , logAn) ≤ logS(h).

Replacing Ai by Ap
i for p > 0,

0 ≤ logA[n,t](Ap
1 , · · · ,Ap

n)−A[n,t](logAp
1 , · · · , logAp

n) ≤ logS(hp)

and hence

0 ≤ logA[n,t](Ap
1 , · · · ,Ap

n)
1
p −A[n,t](logA1, · · · , logAn) ≤ logS(hp)

1
p .

Since S(hp)
1
p → 1 as p ↓ 0, it follows that A[n,t](Ap

1 , · · · ,Ap
n)

1
p uniformly converges to the

chaotically geometric mean eA[n,t](logA1,··· ,logAn) as p ↓ 0.
On the other hand, since

0 ≤ logA[n,t](A−1
1 , · · · ,A−1

n )−A[n,t](logA−1
1 , · · · , logA−1

n ) ≤ logS(h−1),

it follows from S(h−1) = S(h) that

0 ≥ logH[n,t](A1, · · · ,An)−A[n, t](logA1, · · · , logAn) ≥− logS(h)
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and this implies

0 ≥ logH[n,t](Ap
1 , · · · ,Ap

n)
1
p −A[n,t](logA1, · · · , logAn) ≥− logS(hp)

1
p

for all p > 0. Hence H[n,t](Ap
1 , · · · ,Ap

n)
1
p uniformly converges to the chaotically geometric

mean eA[n,t](logA1,··· ,logAn) as p ↓ 0.
By arithmetic-geometric-harmonic mean inequality, we have

logH[n, t](Ap
1 , · · · ,Ap

n)
1
p ≤ logG[n,t](Ap

1 , · · · ,Ap
n)

1
p ≤ logA[n,t](Ap

1 , · · · ,Ap
n)

1
p

for all p > 0 and hence we have this lemma. �

For the case of n = 2, Ando and Hiai are showed that the norm ‖(Ap
1 #t Ap

2)
1
p ‖ is

monotone increasing for p > 0. For n ≥ 3, we have the following result.

Lemma 6.12 Let Ai be positive invertible operators such that mIH ≤ Ai ≤ MIH for i =
1, · · · ,n and some scalars 0 < m ≤ M. Put h = M

m . Then for each 0 < q < p

S(hp)−
2
p ‖G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖

≤ ‖G[n,t](Aq
1, · · · ,Aq

n)
1
q ‖ ≤ S(hp)

2
p ‖G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖,

where S(h) is defined by (2.35).

Proof. By the arithmetic-geometric mean inequality, it follows that for each 0 < q < p

G[n, t](A
q
p
1 , · · · ,A

q
p
n ) ≤ A[n,t](A

q
p
1 , · · · ,A

q
p
n )

≤ A[n,t](A1, · · · ,An)
q
p by concavity of t

q
p and 0 < q

p < 1

≤ S(h)
2q
p G[n,t](A1, · · · ,An)

q
p

The last inequality follows from Theorem 6.8 and the Löwner-Heinz theorem. Replacing
Ai by Ap

i , we have

G[n,t](Aq
1, · · · ,Aq

n) ≤ S(hp)
2q
p G[n,t](Ap

1 , · · · ,Ap
n)

q
p .

Also,

G[n,t](A−q
1 , · · · ,A−q

n ) ≤ S(h−p)
2q
p G[n,t](A−p

1 , · · · ,A−p
n )

q
p

and hence
G[n,t](Aq

1, · · · ,Aq
n) ≥ S(hp)−

2q
p G[n,t](Ap

1 , · · · ,Ap
n)

q
p .

Therefore we have for all q > 0

S(hp)−
2
p ‖G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖

≤ ‖G[n,t](Aq
1, · · · ,Aq

n)
1
q ‖ ≤ S(hp)

2
p ‖G[n,t](Ap

1 , · · · ,Ap
n)

1
p ‖.

�

By Lemma 6.12, we show n-variable versions of a complement of the Golden-Thom-
pson-Segal type inequality due to Ando and Hiai:
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Theorem 6.10 Let H1,H2, · · · ,Hn be self-adjoint operators such that mIH ≤ Hi ≤ MIH
for i = 1, · · · ,n and some scalars m ≤ M. Then

S
(
ep(M−m)

)− 2
p ‖G[n,t](epH1 , · · · ,epHn)

1
p ‖

≤ ‖eA[n,t](H1,··· ,Hn)‖ ≤ S
(
ep(M−m)

) 2
p ‖G[n, t](epH1 , · · · ,epHn)

1
p ‖ (6.15)

for all p > 0 and the both-hand sides of (6.15) converge to the middle-hand side as p ↓ 0,
where the Specht ratio S(h) is defined by (2.35).

Proof. If we replace Ai by eHi in Lemma 6.12, then it follows that

S
(
ep(M−m)

)− 2
p ‖G[n,t](epH1 , · · · ,epHn)

1
p ‖

≤ ‖G[n,t](eqH1 , · · · ,eqHn)
1
q ‖ ≤ S

(
ep(M−m)

) 2
p ‖G[n,t](epH1 , · · · ,epHn)

1
p ‖

for all 0 < q < p. Hence we have (6.15) as q ↓ 0 by Lemma 6.11.

The latter part of this theorem follows from S
(
ep(M−m)

) 2
p → 1 as p ↓ 0. �

6.6 Notes

For our exposition we have used Ando-Li-Mathias [13], Yamazaki [292], J.I. Fujii-M.
Fujii-Nakamura-Pečarić-Seo [60] and J.I. Fujii-M. Fujii-Seo [63].





Chapter7
Differential Geometry of
Operators

In this chapter, we study some differential-geometrical structure of operators. The space of
positive invertible operators of a unital C∗-algebra has the natural structure of a reductive
homogenous manifold with a Finsler metric. Then a pair of points A and B can be joined
by a unique geodesic A #t B for t ∈ [0,1] and we consider estimates of the upper bounds
for the difference between the geodesic and extended interpolational paths by terms of the
spectra of positive operators.

7.1 Introduction

We recall the Kubo-Ando theory of operator means [165]: A mapping (A,B) → A σ B
in the cone of positive invertible operators is called an operator mean if the following
conditions are satisfied:

Monotonicity A ≤C and B ≤ D imply A σ B ≤C σ D.

Upper continuity An ↓ A and Bn ↓ B imply An σBn ↓ A σ B.

Transformer inequality T ∗(AσB)T ≤ (T ∗AT )σ(T ∗BT ) for all operator T .

171
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Normalized condition A σ A = A.

In [124, Chapter 5], several inequalities associated with operator means are discussed.
For example, the bound β in the inequality

Φ(A σ1 B) ≥ αΦ(A) σ2 Φ(B)+ β Φ(A)

is determined, where A and B are positive invertible operators on a Hilbert space H, σ1,σ2

are two operator means with not affine representing functions, Φ is a unital positive linear
mapping and α > 0 is a given real constant.

We observe the weighted arithmetic mean ∇α and the weighted geometric mean #α ,
for α ∈ [0,1], defined by

A ∇α B := (1−α)A+ αB and A #α B := A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 ,

respectively. Like the numerical case, the arithmetic-geometric mean inequality holds:

A #α B ≤ A ∇α B for all α ∈ [0,1]. (7.1)

In [124, Corollary 5.36] it is obtained the following converse inequality of the arithme-
tic-geometric mean inequality (7.1): Let A and B be positive invertible operators satisfying
0 < m1IH ≤ A ≤ M1IH and 0 < m2IH ≤ B ≤ M2IH . Then

A ∇α B−A #α B ≤ max{1−α + αm−mα,1−α + αM−Mα}A,

where m = m2
M1

and M = M2
m1

.
Tominaga [280] showed the another converse of (7.1) for the arithmetic mean and

the geometric one: Let A and B be positive operators on a Hilbert space H satisfying
mIH ≤ A,B ≤ IH for some scalars 0 < m < M. Then (like the numerical case)

A ∇α B−A #α B ≤ hL(m,M) logS(h) for all α ∈ [0,1],

where h = M
m , the logarithmic mean L(m,M) is defined by (2.41) and the Specht ratio S(h)

is defined by (2.35).

7.2 Interpolational paths

Let A be a unital C∗-algebra, A + (resp. A h) be the set of all positive invertible (resp. self-
adjoint) operators of A . Following an excellent work due to Corach, Porta and Recht [37,
38], A + is a real analytic open submanifold of A h and its tangent space (TA +)A at any

A ∈ A + is naturally identified to A h. For each A ∈ A +, the norm ‖X‖A = ‖A− 1
2 XA− 1

2 ‖,
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X ∈ (TA +)A defined a Finslar structure on the tangent bundle TA +. For every A,B∈A +,
there is a unique geodesic joining A and B:

γA,B(t) = A #t B for t ∈ [0,1].

As usual, the length of a smooth curve γ in A + is defined by

l(γ) =
∫ 1

0
‖γ̇(t)‖γ(t)dt

and the geodesic distance between A and B in A + is

d(A,B) = inf{l(γ) : γ joins A and B}.
Then it follows that

d(A,B) = ‖ log(A− 1
2 BA− 1

2 )‖,
also see [14]. It is a general fact that (A +,d) is a complete metric space.

J.I.Fujii [55] showed that if the manifold A + has a metric La(X) = ‖X‖ (resp. Lh(X) =
‖A−1XA−1‖) on the tangent space TA +, the geodecis and the distance from A to B for
A,B ∈ A + are given by

A ∇t B = (1− t)A+ tB and d1(A,B) = ‖B−A‖
(resp. A !t B =

(
(1− t)A−1 + tB−1)−1

and d−1(A,B) = ‖A−1−B−1‖. )

The paths of means mt = #t ,∇t and !t satisfy the following interpolationality [89]:

(A mp B) mt (A mq B) = A m(1−t)p+tq B

for 0 ≤ p,q,t ≤ 1.
We next recall an interpolational path for symmetric operator means. Following after

[89, 96], for a symmetric mean σ , a parametrized operator mean σt is called an interpola-
tional path for σ if it satisfies

(1) A σ0 B = A, A σ1/2 B = A σ B and A σ1 B = B,

(2) (A σp B) σ (A σq B) = A σ p+q
2

B,

(3) the mapping t �→ A σt B is norm continuous for each A and B.

Typical examples of symmetric means are so-called power means:

A mr B = A
1
2

(
1+(A− 1

2 BA− 1
2 )r

2

) 1
r

A
1
2 for r ∈ [−1,1]

and their interpolational paths from A to B via A mr B are given as follows: For each
r ∈ [−1,1]

A mr,t B = A
1
2

(
1− t + t

(
A− 1

2 BA− 1
2

)r) 1
r
A

1
2 for t ∈ [0,1].
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In particular, A m1,t B = A ∇t B, A m0,t B = A #t B and A m−1,t B = A !t B.
Here we consider them in a general setting: For positive invertible operators A and B,

an extended path A mr,t B is defined as

A mr,t B = A
1
2

(
1− t + t(A− 1

2 BA− 1
2 )r

) 1
r
A

1
2 for all r ∈ R and t ∈ [0,1].

The representing function fr,t for mr,t is given by

fr,t(ξ ) = 1 mr,t ξ = (1− t + tξ r)
1
r for ξ > 0.

Notice that A mr,t B for r �∈ [−1,1] is no longer an operator mean, but we list some proper-
ties of interpolational paths mr,t and the representing function fr,t , also see [62].

Since every function fr,t(ξ ) is strictly increasing and strictly convex (resp. strictly
concave) for r > 1 (resp. r < 1), it follows that an extended path A mr,t B for each t ∈ (0,1)
is nondecreasing and norm continuous for r ∈ R: For r ≤ s

A mr,t B ≤ A ms,t B.

Moreover, it is also interpolational for all r ∈ R. In particular, the transposition formula
holds:

B mr,t A = A mr,1−t B. (7.2)

For the sake of convenience, we prepare the following notation: For k2 > k1 > 0, r ∈ R

and t ∈ [0,1]

a(r, t) =
fr,t(k2)− fr,t(k1)

k2− k1
and b(r,t) =

k2 fr,t(k1)− k1 fr,t(k2)
k2 − k1

. (7.3)

We investigate estimates of the upper bounds for the difference between extended in-
terpolational paths:

Lemma 7.1 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for r ≤ s and t ∈ (0,1)

0 ≤ A ms,t B−A mr,t B ≤ βA if r ≤ 1 (7.4)

and
0 ≤ A ms,t B−A mr,t B ≤ β

′
A if r ≥ 1 (7.5)

hold for
β = β (r,s,t,k1,k2) = max

k1≤ξ≤k2

{ fs,t(ξ )−a(r,t)ξ −b(r, t)}

and
β

′
= β

′
(r,s,t,k1,k2) = max

k1≤ξ≤k2

{a(s,t)ξ +b(s,t)− fr,t(ξ )},

where a,b are defined by (7.3).
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Proof. Suppose that r≤ 1. If we putC = A− 1
2 BA− 1

2 , then we have k2IH ≥C≥ k1IH > 0.
Since fr,t(ξ ) is concave for r ≤ 1, it follows from the definition of β that

β ≥ fs,t(ξ )−a(r,t)ξ −b(r,t) ≥ fs,t(ξ )− fr,t(ξ ) for all ξ ∈ [k1,k2],

and hence
β IH ≥ fs,t(C)− fr,t(C).

This fact implies

βA ≥ A
1
2 fs,t(C)A

1
2 −A

1
2 fr,t(C)A

1
2 = A ms,t B−A mr,t B,

which gives the desired result (7.4). Conversely, if r≥ 1, then fs,t(ξ ) is convex for 1≤ r≤ s
and (7.5) follows from the same way. �

Remark 7.1 The constant β = β (s,r,t,k1,k2) and β ′
= β ′

(s,r,t,k1,k2) in Lemma 7.1 can
be written explicitly as

β =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(r,t)

(
1− t

t

) 1
s (

t
1

s−1 a(r,t)
s

1−s −1
) s−1

s −b(r, t) if k1 ≤ ξ0 ≤ k2

fs,t(k1)− fr,t(k1) if ξ0 ≤ k1

fs,t(k2)− fr,t(k2) if k2 ≤ ξ0

where ξ0 =
(

1
1−t

(
a(r,t)

t

) s
1−s − t

1−t

)− 1
s

and

β
′
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−a(s,t)

(
1− t

t

) 1
r (

t
1

r−1 a(s,t)
r

1−r −1
) r−1

r +b(s,t) if k1 ≤ ξ1 ≤ k2

fs,t(k1)− fr,t(k1) if ξ1 ≤ k1

fs,t(k2)− fr,t(k2) if k2 ≤ ξ1

where ξ1 =
(

1
1−t

(
a(s,t)

t

) r
1−r − t

1−t

)− 1
r

.

By Lemma 7.1, we obtain estimates of the upper bounds for the difference between the
geodesic A #t B and extended interpolational paths:

Theorem 7.1 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for each t ∈ (0,1)

0 ≤ A ms,t B−A #t B ≤ β (0,s,t,k1,k2)A for s ≥ 0 (7.6)

and
0 ≤ A #t B−A mr,t B ≤ β (r,0,t,k1,k2)A for r ≤ 0, (7.7)

where β is defined by Remark 7.1.
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As special cases of Theorem 7.1, we obtain an estimate of the upper bound for the
difference between the geodesic A #t B and the arithmetic interpolational paths A ∇t B, the
harmonic one A !t B:

Theorem 7.2 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for each t ∈ (0,1)

0 ≤ A ∇t B−A #t B ≤ max{1− t + tk1− kt
1,1− t + tk2− kt

2}A

and
0 ≤ A #t B−A !t B ≤ β (−1,0,t,k1,k2)A,

where
β (−1,0, t,k1,k2) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− t(
(1− t)k1 + t

)(
(1− t)k2 + t

) ((
(1− t)k1 + t

)(
(1− t)k2 + t

) 1
1−t − k1k2

)
if k1−t

1 ≤ (
(1− t)k1 + t

)(
(1− t)k2 + t

)≤ k1−t
2

kt
2−

k2

(1− t)k2 + t
if k1−t

2 ≤ (
(1− t)k1 + t

)(
(1− t)k2 + t

)
kt
1−

k1

(1− t)k1 + t
if k1−t

1 ≥ (
(1− t)k1 + t

)(
(1− t)k2 + t

)
.

Proof. If we put r = 0 and s = 1 in (7.6) of Theorem 7.1 , then f1,t (ξ ) = 1− t + tξ and

f0,t (ξ ) = ξ t . Since a(0,t) = kt
2−kt

1
k2−k1

, the condition f ′1,t(k2) ≤ a(0, t) ≤ f ′1,t(k1) is equivalent
to a(0, t) = t. Therefore we have

β =

⎧⎪⎪⎨⎪⎪⎩
1− t + tk2− kt

2 if
kt
2− kt

1

k2− k1
≤ t

1− t + tk1− kt
1 if

kt
2− kt

1

k2− k1
≥ t.

Similarly, we have the latter part of this theorem by using (7.7) in Theorem 7.1. �

Next, we show estimates of the lower bounds of the ratio for extended interpolational
paths:

Lemma 7.2 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for r ≤ s and t ∈ (0,1)

A mr,t B ≥ αA ms,t B if r ≤ 1

and
A mr,t B ≥ α

′
A ms,t B if r ≥ 1

hold for

α = α(r,s,t,k1,k2) = min
k1≤ξ≤k2

{
a(r,t)ξ +b(r, t)

fs,t (ξ )

}
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and

α
′
= α

′
(r,s,t,k1,k2) = min

k1≤ξ≤k2

{
fr,t(ξ )

a(s,t)ξ +b(s,t)

}
,

where a,b are defined by (7.3).

Proof. Suppose that r < 1. Since fr,t(ξ ) is concave for r < 1, it follows that

fr,t(ξ )
fs,t(ξ )

≥ a(r,t)ξ +b(r,t)
fs,t(ξ )

≥ α

and hence fr,t(ξ ) ≥ α fs,t (ξ ) on [k1,k2]. Therefore we have

A mr,t B = A
1
2 fr,t(A− 1

2 BA− 1
2 )A

1
2 ≥ αA

1
2 fs,t(A− 1

2 BA− 1
2 )A

1
2 = αA ms,t B.

Similarly, since fs,t(ξ ) is convex for 1 ≤ r ≤ s, the latter part follows from the same way.
�

Remark 7.2 The constant α = α(r,s,t,k1,k2) and α ′
= α ′

(r,s, t,k1,k2) in Lemma 7.2
can be written explicitly as follows: In the case of s ≥ 1,

α = α
′
= min

{
fr,t(k1)
fs,t (k1)

,
fr,t(k2)
fs,t(k2)

}
.

In the case of s ≤ 1,

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(r,t)ξ0 +b(r,t)

(1− t + tξ s
0)

1
s

if k1 ≤ ξ0 ≤ k2

fr,t(k2)
fs,t(k2)

if k2 ≤ ξ0

fr,t(k1)
fs,t(k1)

if k1 ≥ ξ0,

where ξ0 =
(

1− t
t

a(r,t)
b(r,t)

) 1
s−1

and

α
′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− t + tξ r
1)

1
r

a(s,t)ξ1 +b(s,t)
if k1 ≤ ξ1 ≤ k2

fr,t(k2)
fs,t(k2)

if k2 ≤ ξ1

fr,t(k1)
fs,t(k1)

if k1 ≥ ξ1,

where ξ1 =
(

1− t
t

a(s,t)
b(s,t)

) 1
r−1

.
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By Lemma 7.2, we have the following theorem.

Theorem 7.3 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for each t ∈ (0,1)

A #t B ≥ min

{
kt
1

1− t + tk1
,

kt
2

1− t + tk2

}
A ∇t B

and
A !t B ≥ α(−1,0,t,k1,k2) A #t B

holds for

α(−1,0,t,k1,k2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(k1k2)1−t(
(1− t)k1 + t

)(
(1− t)k2 + t

) if k1 ≤ 1 ≤ k2

k1−t
2

(1− t)k2 + t
if 1 ≤ k1

k1−t
1

(1− t)k1 + t
if k2 ≤ 1.

7.3 Velocity vector of extended paths

Kamei and Fujii [67, 68] defined the relative operator entropy S(A|B), for positive invert-
ible operators A and B, by

S(A|B) = A
1
2

(
logA− 1

2 BA− 1
2

)
A

1
2 ,

which is a relative version of the operator entropy −A logA considered by Nakamura-
Umegaki [238]. The relative operator entropy S(A|B) is exactly the velocity vector γ̇A,B(0)
of the geodesic A #t B at t = 0:

S(A|B) = lim
t→0

A #t B−A #0 B
t

= γ̇A,B(0).

In [153], Kamei analogously generalizes the relative operator entropy: For each r ∈ R

Sr(A|B) = lim
t→0

A mr,t B−A mr,0 B
t

,

which is considered as the right differential coefficient at t = 0 of the extended path A mr,t B.
By the fact that

lim
t→0

(1− t + tξ r)
1
r −1

t
=

ξ r −1
r

,
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it follows that

Sr(A|B) =
A

1
2

(
A− 1

2 BA− 1
2

)r
A

1
2 −A

r
for r ∈ R

and the representing function is

fr(ξ ) = (ξ r −1)/r.

In particular,

S1(A|B) = lim
t→0

A ∇t B−A
t

= B−A

S0(A|B) = S(A|B)

S−1(A|B) = lim
t→0

A !t B−A
t

= A−AB−1A.

Since fr(ξ ) is monotone increasing on r ∈ R, the velocity vectors Sr(A|B) is monotone
increasing on r ∈ R:

r ≤ s implies Sr(A|B) ≤ Ss(A|B).

The left differentiable coefficient of A mr,t B at t = 1 is −Sr(B|A):

lim
t→1

A mr,t B−A mr,1 B
t−1

= −Sr(B|A).

If B ≥ A, then the velocity vectors of extended paths at t = 0,1 are positive:

Sr(A|B) ≥ 0 and −Sr(B|A) ≥ 0.

For the sake of convenience, we prepare the following notation:

a(r) =
fr(k2)− fr(k1)

k2− k1
and b(r) =

k2 fr(k1)− k1 fr(k2)
k2− k1

(7.8)

for 0 < k1 < k2 and r ∈ R.
We investigate estimates of the upper bounds for the difference between velocity vec-

tors of extended interpolational paths.

Lemma 7.3 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for r ≤ s

Ss(A|B)−Sr(A|B) ≤ γA if r ≤ s ≤ 1, (7.9)

Ss(A|B)−Sr(A|B) ≤ max

{
ks
1−1
s

− kr
1 −1
r

,
ks
2 −1
s

− kr
2−1
r

}
A if r ≤ 1 ≤ s (7.10)

and
Ss(A|B)−Sr(A|B) ≤ γ

′
A if 1 ≤ r ≤ s
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hold for

γ = γ(r,s,k1,k2) = max
k1≤ξ≤k2

{
fs(ξ )−a(r)ξ −b(r)

}
and

γ
′
= γ

′
(r,s,k1,k2) = max

k1≤ξ≤k2

{
a(s)ξ +b(s)− fr(ξ )

}
,

where a,b are defined by (7.8).

Proof. Suppose that r≤ 1. If we putC = A− 1
2 BA− 1

2 , then we have 0 < k1IH ≤C≤ k2IH .
Since fr(ξ ) is concave for r ≤ 1, it follows that

fs(ξ )− fr(ξ ) ≤ fs(ξ )−a(r)ξ −b(r) ≤ γ

and hence we have the desired result (7.9) and (7.10). The remainder parts follow from the
same way. �

Remark 7.3 The constant γ = γ(r,s,k1,k2) and γ ′
= γ ′

(r,s,k1,k2) in Lemma 7.3 can be
written explicitly as

γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− s

s
a(r)

s
s−1 −b(r)− 1

s
if k1 ≤ a(r)

1
s−1 ≤ k2

ks
2−1
s

− kr
2 −1
r

if k2 ≤ a(r)
1

s−1

ks
1−1
s

− kr
1 −1
r

if k1 ≥ a(r)
1

s−1

and

γ
′
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r−1

r
a(s)

r
r−1 +b(s)+

1
r

if k1 ≤ a(s)
1

r−1 ≤ k2

ks
2−1
s

− kr
2−1
r

if k2 ≤ a(s)
1

r−1

ks
1−1
s

− kr
1−1
r

if k1 ≥ a(s)
1

r−1 .

By Lemma 7.3, we obtain estimates of the upper bound for the difference between the
velocity vectors S(A|B) and Sr(A|B) of the extended interpolational paths A mr,t B at t = 0:

Theorem 7.4 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then

Ss(A|B)−S(A|B)≤ γA for 0 ≤ s ≤ 1

and

Ss(A|B)−S(A|B)≤ max
{ks

1 −1
s

− logk1,
ks
2−1
s

− logk2

}
A for 1 ≤ s,
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where

γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− s
s

(
logk2 − logk1

k2 − k1

) s
s−1

−k2 logk1− k1 logk2

k2− k1
− 1

s

if k1 ≤
(

logk2− logk1

k2− k1

) 1
s−1

≤ k2

ks
2 −1
s

− logk2 if k2 ≤
(

logk2− logk1

k2− k1

) 1
s−1

ks
1 −1
s

− logk1 if k1 ≥
(

logk2− logk1

k2− k1

) 1
s−1

.

7.4 α-operator divergence

The concept of α-divergence plays an important role in the information geometry.
Let (X,A ,μ) be a measure space, where μ is a finite or a σ -finite measure on (X,A )

and let assume that P and Q are two (probability) measures on (X,A ) such that P � μ ,
Q � μ are absolutely continuous with respect to a measure μ , e.g. μ = P + Q and that
p = dP

dμ and q = dQ
dμ the (densities) Radon-Nikodym derivative of P and Q with respect to

μ . Following [5], the basic asymmetric α-divergence is defined as follows: For positive
valued measurable functions p and q, and α ∈ R

Dα(p‖q) :=
4

1−α2

∫ {1−α
2

p(x)+
1+ α

2
q(x)− p(x)

1−α
2 q(x)

1+α
2

}
dμ(x) (α �= ±1),

(7.11)

D−1(p‖q) ≡ D1(q‖p) :=
∫ {

q(x)− p(x)+ p(x) log
p(x)
q(x)

}
dμ(x).

If we put t = 1+α
2 in (7.11), then

Dt(p‖q) :=
1

t(1− t)

∫ {
(1− t)p(x)+ tq(x)− p(x)1−tq(x)t

}
dμ(x) (t �= 0,1).

From the viewpoint of this, Fujii [53] defined the following operator version of α-diver-
gence in the differential geometry: For positive invertible operators A and B,

Dα(A,B) :=
1

α(1−α)
(
A ∇α B−A #α B

)
(0 < α < 1).
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In particular,

D1(A,B) := lim
α↑1

Dα(A,B) = lim
α↑1

(
A−B

α
− B#1−αA−B

α(1−α)

)
= A−B−S(B|A)

D0(A,B) := lim
α↓0

Dα(A,B) = lim
α↓0

(
B−A
1−α

− A#αB−A
α(1−α)

)
= B−A−S(A|B).

By definition, α-operator divergence is considered as the difference between the arith-
metic and the geometric interpolational paths. In particular, for the case α = 1/2, it follows
that α-operator divergence coincides with by four times the difference of the geometric
mean and the arithmetic mean. For the case of density operators, it coincides with a rela-
tive entropy introduced by Beravkin and Staszewski [20] in C∗-algebra setting.

Also we have the following different interpretation of α-operator divergence.

Theorem 7.5 The α-operator divergence is the difference between two velocity vectors
S1(A|B) and Sα(A|B): For each α ∈ (0,1)

Dα(A,B) =
1

1−α

(
S1(A|B)−Sα(A|B)

)
=

1
α

(
S1(B|A)−S1−α(B|A)

)
.

We investigate estimates of the upper bounds for α-operator divergence:

Theorem 7.6 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then α-operator divergence is positive and for every operator
mean ρ and α ∈ (0,1)

(βA) ρ (βB) ≥ Dα(A,B) ≥ 0

holds for

β = max

{
1−α + αk1− kα

1

α(1−α)
,
1−α + αk2− kα

2

α(1−α)

}
β = max

{
α +(1−α)k−1

2 − kα−1
2

α(1−α)
,

α +(1−α)k−1
1 − kα−1

1

α(1−α)

}
.

Proof. Since A ∇α B ≥ A #α B (0 ≤ α ≤ 1), it follows that α-operator divergence
is positive, that is, Dα(A,B) ≥ 0. On the other hand, it follows from Theorem 7.2 that
βA ≥ Dα(A,B) ≥ 0. Since A ∇α B−A #α B = B ∇1−α A−B #1−α A by (7.2), we applied
B,A and 1−α in Theorem 7.2 to obtain the constant β = β (0,1,1−α,k−1

2 ,k−1
1 ) such that

βB≥Dα(A,B)≥ 0 because k−1
2 B≤ A≤ k−1

1 B. Therefore we have for every operator mean
ρ

(βA) ρ (βB) ≥ Dα(A,B) ρ Dα(A,B) = Dα(A,B) ≥ 0.

�

If we put α → 0,1 in Theorem 7.6, then we have the following corollary.
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Corollary 7.1 Let A and B be positive invertible operators such that k1A ≤ B ≤ k2A for
some scalars 0 < k1 < k2. Then for every operator mean ρ

(βA) ρ (βB) ≥ D0(A,B) = S1(A|B)−S0(A|B)

holds for β = max
{
k1−1− logk1,k2−1− logk2

}
and β = max

{
1−k−1

2 −k−1
2 logk2,1−

k−1
1 − k−1

1 logk1
}

and

(βA) ρ (βB) ≥ D1(A,B) = S1(B|A)−S0(B|A)

holds for β = max
{
1− k−1

2 − k−1
2 logk2,1− k−1

1 + k−1
1 logk1

}
and β = max

{
k1 − 1 +

logk1,k2 −1− logk2
}
.

7.5 Notes

For our exposition we have used J.I. Fujii-Mićić-Pečarić-Seo [71], Kamei-J.I. Fujii [67, 68]
and J.I. Fujii [53]. Further study may be seen in [55, 56].





Chapter8
Mercer’s Type Inequality

This chapter devotes some properties of Mercer’s type inequalities. A variant of Jensen’s
operator inequality for convex functions, which is a generalization of Mercer’s result, is
proved. We show a monotonicity property for Mercer’s power means for operators and a
comparison theorem for quasi-arithmetic means for operators.

8.1 Classical version

Let a ≤ x1 ≤ x2 ≤ ·· · ≤ xn ≤ b and let wi,1 ≤ i ≤ n, be nonnegative weights such that
∑n

i=1 wi = 1. Then Jensen’s inequality asserts:

Theorem 8.1 If f is convex on [a,b], then

f

(
n

∑
i=1

wixi

)
≤

n

∑
i=1

wi f (xi). (8.1)

Proof. Refer to [124, Theorem 1.1] for the proof. �

The following theorem is a variant of Jensen’s inequality (8.1).

185
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Theorem 8.2 If f is convex on [a,b], then

f

(
a+b−

n

∑
i=1

wixi

)
≤ f (a)+ f (b)−

n

∑
i=1

wi f (xi).

Proof. If we put yi = a + b− xi, then a + b = xi + yi, so that the pairs a,b and xi,yi

possess the same mid-point. Since there exists λ ∈ [0,1] that

xi = λa+(1−λ )b, yi = (1−λ )a+ λb for 1 ≤ i ≤ n,

it follows from (8.1) twice that

f (yi) ≤ (1−λ ) f (a)+ λ f (b)

= f (a)+ f (b)− [
λ f (a)+ (1−λ ) f (b)

]
≤ f (a)+ f (b)− f

(
λa+(1−λ )b

)
= f (a)+ f (b)− f (xi)

and hence we have

f (a+b− xi) ≤ f (a)+ f (b)− f (xi) for 1 ≤ i ≤ n. (8.2)

Therefore it follows that

f

(
a+b−

n

∑
i=1

wixi

)
= f

(
n

∑
i=1

wi(a+b− xi)

)

≤
n

∑
i=1

wi f (a+b− xi) by (8.1)

≤
n

∑
i=1

wi
[
f (a)+ f (b)− f (xi)

]
by (8.2)

= f (a)+ f (b)−
n

∑
i=1

wi f (xi).

�

Let A,G and H be the arithmetic, geometric and harmonic means of the positive num-
bers 0 < x1 ≤ x2 ≤ ·· · ≤ xn formed with the positive weights wi whose sum is unity. Since
(b− t)(t−a) is non-negative for 0 < a ≤ t ≤ b, division by t gives

a+b− t ≥ ab
t

(with equality if and only if t = a or t = b).

Put t = xi for i = 1,2, . . . ,n. Forming the arithmetic mean on the left and geometric mean
on the right derives the following inequality:

a+b−A≥ ab
G

. (8.3)
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Making the substitutions a → a−1, b → b−1, xi → x−1
i in it and taking inverses extends

(8.3) to

a+b−A≥ ab
G

≥
(
a−1 +b−1−H−1

)−1
.

With r > 0, we substitute a → ar, b → br, xi → xr
i in this and then raise all three members

to the power 1
r . We get(

ar +br−
n

∑
i=1

wix
r
i

) 1
r

>
ab
G

>

(
a−r +b−r −

n

∑
i=1

wix
−1
i

)− 1
r

.

Now introducing the notation

Qr(a,b,x) =

(
ar +br −

n

∑
i=1

wix
r
i

) 1
r

for all real r �= 0,

these last inequalities read

Qr(a,b,x) > Q0(a,b,x) > Q−r(a,b,x) for r > 0, (8.4)

where

Q0(a,b,x) = lim
r→0

Qr(a,b,x) =
ab
G

This consideration leads us to formulate the following theorem.

Theorem 8.3 Let +∞ > r > s > −∞. Then

b > Qr(a,b,x) > Qs(a,b,x) > a. (8.5)

Proof. There are three cases which remain to be considered:
(a) r > s > 0, (b) 0 > r > s, and (c) r > 0 > s.
Once these are proved it is a simple matter to verify that

lim
r→+∞

Qr(a,b,x) = b and lim
r→−∞

Qr(a,b,x) = a,

giving the upper and lower bounds in the theorem.
The cases (b) and (c) follow easily from (a) and (8.4) above. So let us suppose the truth

of case (a) for the moment and dispose of these other cases first.
(a) reads(

ar +br −
n

∑
i=1

wix
r
i

) 1
r

>

(
as +bs−

n

∑
i=1

wix
s
i

) 1
s

for r > s > 0.

If we make the substitutions a → a−1, b → b−1, xi → x−1
i in this and then invert both sides

it reads(
a−r +b−r−

n

∑
i=1

wix
−r
i

)− 1
r

<

(
a−s +b−s−

n

∑
i=1

wix
−s
i

)− 1
s

for −r < −s < 0.
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Writing r = −p and s = −q this reads

Qq(a,b,x) > Qp(a,b,x) for 0 > q > p

which is case (b).
The case (c) where r > 0 > s has two subcases namely |r| > |s| and |s| > |r|.
The former follows by noting that Qr(a,b,x) > Q−s(a,b,x) > Qs(a,b,x) by virtue of

(a) and (8.4). The latter follows since Qr(a,b,x) > Q−r(a,b,x) > Q−s(a,b,x) by virtue of
(8.4) and (b). So the cases (b) and (c) have been dealt with.

It now remains to give the proof of case (a). If we put f (t) = tα for α > 1 in Theo-
rem 8.2, then we have(

aα +bα −
n

∑
i=1

wix
α
i

) 1
α

>

(
a+b−

n

∑
i=1

wixi

)
for α > 1.

Putting α = r
s , making the substitutions a → as,b → bs,xi → xs

i and then raising each side
to the power 1

s , we get (a). �

8.2 Operator version

In this section, we show an extension of Theorem 8.2 to self-adjoint operators on a Hilbert
space. We use this result to prove a monotonicity property of power means of Mercer’s
type. Moreover, we consider quasi-arithmetic means in the same way.

First of all, we recall that an operator version of Theorem 8.1 (Jensen’s inequality) is
true [124, Theorem 1.3]:

Theorem 8.4 Let A1, . . . ,An ∈ B(H) be self-adjoint operators with mIH ≤ Aj ≤ MIH for
some scalars m < M and let x1, . . .xn ∈ H satisfy ∑n

i=1 ‖xi‖2 = 1. If f ∈ C ([m,M]) is
convex, then

f

(
n

∑
i=1

〈Aixi,xi〉
)

≤
n

∑
i=1

〈
f (Ai)xi,xi

〉
.

The following theorem stands for a geometrical property of convexity and is frequently
useful.

Theorem 8.5 Let A1, . . . ,An ∈ B(H) be self-adjoint operators with mIH ≤ Ai ≤ MIH for
some scalars m < M and let x1, . . .xn ∈ H satisfy ∑n

i=1 ‖xi‖2 = 1. If f ∈ C ([m,M]) is
convex, then

n

∑
i=1

〈
f (Ai)xi,xi

〉≤ M−∑n
i=1 〈Aixi,xi〉
M−m

f (m)+ ∑n
i=1 〈Aixi,xi〉−m

M−m
f (M) .
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Proof. Since f is convex on [m,M], we have

f (t) ≤ M− t
M−m

f (m)+
t−m
M−m

f (M) for all t ∈ [m,M].

Since mIH ≤Ai ≤MIH for i = 1, . . . ,n and ∑n
i=1〈xi,xi〉= 1, it follows that m≤∑n

i=1〈Aixi,xi〉
≤ M. Using the functional calculus, we have this theorem. �

The following theorem is an operator vertion of Mercer’s inequality.

Theorem 8.6 Let A1, . . . ,An ∈ B(H) be self-adjoint operators with mIH ≤ Ai ≤ MIH for
some scalars m < M and let x1, . . .xn ∈H satisfy ∑n

i=1 ‖xi‖2 = 1. If f ∈C ([m,M]) is convex,
then we have the following variant of Jensen’s inequality

f

(
m+M−

n

∑
i=1

〈Aixi,xi〉
)

≤ f (m)+ f (M)−
n

∑
i=1

〈
f
(
Ai

)
xi,xi

〉
. (8.6)

In fact, to be more specific, we have the following series of inequalities

f

(
m+M−

n

∑
i=1

〈Aixi,xi〉
)

≤
n

∑
i=1

〈
f (mIH +MIH −Ai)xi,xi

〉
(8.7)

≤ M−∑n
i=1 〈Aixi,xi〉
M−m

f (M)+ ∑n
i=1 〈Aixi,xi〉−m

M−m
f (m)

≤ f (m)+ f (M)−
n

∑
i=1

〈
f (Ai)xi,xi

〉
.

If a function f is concave, then the inequalities (8.6) and (8.7) are reversed.

Proof. From the conditions m〈xi,xi〉 ≤ 〈Aixi,xi〉 ≤ M 〈xi,xi〉 for all i = 1, . . . ,n and
∑n

i=1 〈xi,xi〉 = 1, by summing it follows that m ≤ ∑n
i=1 〈Aixi,xi〉 ≤ M and hence, m ≤ m+

M−∑n
i=1 〈Aixi,xi〉 ≤ M.

Since f is continuous and convex, the same is also true for the function g : [m,M] → R

defined by g(t) = f (m+M− t), t ∈ [m,M]. By Theorem 8.4,

g

(
n

∑
i=1

〈Aixi,xi〉
)

≤
n

∑
i=1

〈
g(Ai)xi,xi

〉
,

i.e. f

(
m+M−

n

∑
i=1

〈Aixi,xi〉
)

≤
n

∑
i=1

〈
f (mIH +MIH −Ai)xi,xi

〉
.
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Applying Theorem 8.5 to g and then to f , we have

n

∑
i=1

〈
f (mIH +MIH −Ai)xi,xi

〉
≤ M−∑n

i=1 〈Aixi,xi〉
M−m

g(m)+
∑n

i=1 〈Aixi,xi〉−m
M−m

g(M)

=
M−∑n

i=1 〈Aixi,xi〉
M−m

f (M)+ ∑n
i=1 〈Aixi,xi〉−m

M−m
f (m)

= f (m)+ f (M)−
[
M−∑n

i=1 〈Aixi,xi〉
M−m

f (m)+ ∑n
i=1 〈Aixi,xi〉−m

M−m
f (M)

]
≤ f (m)+ f (M)−

n

∑
i=1

〈
f (Ai)xi,xi

〉
.

The last statement follows immediately from the fact that if f is concave then− f is convex.
�

Next, we consider an operator version of power means of Mercer’s type.
Let A = (A1, . . . ,An), where Ai ∈ B(H) are self-adjoint operators with mIH ≤ Ai ≤MIH

for some scalars 0 < m < M, and x = (x1, . . . ,xn), where xi ∈ H satisfy ∑n
i=1 〈xi,xi〉 = 1.

We define, for any r ∈ R

M̃r(A,x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
mr +Mr −

n

∑
i=1

〈Ar
i xi,xi〉

] 1
r

, r �= 0,

exp
(
logm+ logM−

n

∑
i=1

〈
(logAi)xi,xi

〉)
, r = 0 .

Observe that, since 0 < m〈xi,xi〉 ≤ 〈Aixi,xi〉 ≤ M 〈xi,xi〉 and ∑n
i=1 〈xi,xi〉 = 1, then

· 0 < mr ≤
n

∑
i=1

〈Ar
i xi,xi〉 ≤ Mr for all r > 0,

· 0 < Mr ≤
n

∑
i=1

〈Ar
i xi,xi〉 ≤ mr for all r < 0,

· logm ≤
n

∑
i=1

〈(logAi)xi,xi〉 ≤ logM.

Hence, M̃r(A,x) is well defined.
Furthermore, we define, for any r,s ∈ R

R(r,s,A,x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[ n

∑
i=1

〈
(mrIH +MrIH −Ar

i )
s
r xi,xi

〉] 1
s
, r �= 0,s �= 0,

exp
( n

∑
i=1

〈
log(mrIH +MrIH −Ar

i )
1
r xi,xi

〉)
, r �= 0,s = 0,[ n

∑
i=1

〈
exp

(
s(logm) IH +(logM) IH − logAi

)
xi,xi

〉] 1
s
, r = 0,s �= 0,
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S(r,s,A,x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[ Mr −Sr

Mr −mr ·Ms +
Sr −mr

Mr −mr ·ms
] 1

s
, r �= 0,s �= 0,

exp
( Mr −Sr

Mr −mr · logM +
Sr −mr

Mr −mr · logm
)

, r �= 0,s = 0,[ (logM)−S0

logM− logm
·Ms +

S0− (logm)
logM− logm

·ms
] 1

s
, r = 0,s �= 0,

where Sr = ∑n
i=1 〈Ar

i xi,xi〉 and S0 = ∑n
i=1 〈(logAi)xi,xi〉. It is easy to see that R(r,s,A,x)

and S(r,s,A,x) are also well defined.

Theorem 8.7 If r,s ∈ R, r < s, then

M̃r(A,x) ≤ M̃s(A,x).

Furthermore,

M̃r(A,x) ≤ R(r,s,A,x) ≤ S(r,s,A,x) ≤ M̃s(A,x). (8.8)

Proof. STEP 1: Assume 0 < r < s.
In this case we have 0 < mrIH ≤ Ar

i ≤ MrIH (i = 1, . . . ,n) . Applying Theorem 8.6 to the
continuous convex function f (t) = t

s
r (note that s

r > 1 here) and replacing Ai, m and M
with Ar

i , mr and Mr, respectively, we have

[
mr +Mr −

n

∑
i=1

〈Ar
i xi,xi〉

] s
r

≤
n

∑
i=1

〈
(mrIH +MrIH −Ar

i )
s
r xi,xi

〉
≤ Mr −∑n

i=1 〈Ar
i xi,xi〉

Mr −mr Ms + ∑n
i=1 〈Ar

i xi,xi〉−mr

Mr −mr ms

≤ ms +Ms−
n

∑
i=1

〈As
i xi,xi〉 ,

or [
M̃r(A,x)

]s ≤
[
R(r,s,A,x)

]s ≤
[
S(r,s,A,x)

]s ≤
[
M̃s(A,x)

]s
.

Since s > 0, this gives (8.8).

STEP 2: Assume r < s < 0.
In this case we have 0 < MrIH ≤ Ar

i ≤ mrIH (i = 1, . . . ,n) . Applying Theorem 8.6 to the
continuous concave function f (t) = t

s
r (note that 0 < s

r < 1 here) and replacing Ai, m and
M with Ar

i , Mr and mr, respectively, we have



192 8 MERCER’S TYPE INEQUALITY

[
Mr +mr −

n

∑
i=1

〈Ar
i xi,xi〉

] s
r

≥
n

∑
i=1

〈
(MrIH +mrIH −Ar

i )
s
r xi,xi

〉
≥ mr −∑n

i=1 〈Ar
i xi,xi〉

mr −Mr ms + ∑n
i=1 〈Ar

i xi,xi〉−Mr

mr −Mr Ms

≥ Ms +ms−
n

∑
i=1

〈As
i xi,xi〉

or [
M̃r(A,x)

]s ≥
[
R(r,s,A,x)

]s ≥
[
S(r,s,A,x)

]s ≥
[
M̃s(A,x)

]s
.

Since s < 0, this gives (8.8).
STEP 3: Assume r < 0 < s.

In this case we have 0 < MrIH ≤ Ar
i ≤ mrIH (i = 1, . . . ,n) . Applying Theorem 8.6 to

the continuous convex function f (t) = t
s
r (note that s

r < 0 here) and proceeding in the same
way as in STEP 1, we obtain (8.8).
STEP 4: Assume r < 0,s = 0.

In this case we have 0 < MrIH ≤ Ar
i ≤ mrIH (i = 1, . . . ,n) . Applying Theorem 8.6 to

the continuous convex function f (t) = 1
r log t (note that 1

r < 0 here) and replacing Ai, m
and M with Ar

i , Mr and mr, respectively, we have

1
r

log

(
Mr +mr −

n

∑
i=1

〈Ar
i xi,xi〉

)

≤
n

∑
i=1

〈
1
r

log(MrIH +mrIH −Ar
i )xi,xi

〉
≤ mr −∑n

i=1 〈Ar
i xi,xi〉

mr −Mr · logm+ ∑n
i=1 〈Ar

i xi,xi〉−Mr

mr −Mr · logM

≤ logM + logm−
n

∑
i=1

〈(logAi)xi,xi〉

or

logM̃r(A,x) ≤ logR(r,0,A,x) ≤ logS(r,0,A,x)≤ logM̃0(A,x).

This gives (8.8) for s = 0.
STEP 5: Assume r = 0,s > 0.

We have (logm) IH ≤ logAi ≤ (logM) IH (i = 1, . . . ,n) . Applying Theorem 8.6 to the
continuous convex function f (t) = exp(st) and replacing Ai, m and M with logAi, logm
and logM, respectively, we have
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exp

(
s
(
logm+ logM−

n

∑
i=1

〈(logAi)xi,xi〉
))

≤
n

∑
i=1

〈exp(s((logm) IH +(logM) IH − logAi))xi,xi〉

≤ logM−∑n
i=1 〈(logAi)xi,xi〉

logM− logm
Ms + ∑n

i=1 〈(logAi)xi,xi〉− logm
logM− logm

ms

≤ ms +Ms−
n

∑
i=1

〈As
i xi,xi〉

or [
M̃0(A,x)

]s ≤
[
R(0,s,A,x)

]s ≤
[
S(0,s,A,x)

]s ≤
[
M̃s(A,x)

]s
.

Since s > 0, this gives (8.8) for r = 0. �

Next, we consider quasi-arithmetic means of Mercer’s type.
Let A = (A1, . . . ,An), where Ai ∈B(H) are self-adjoint operators with mIH ≤ Ai ≤MIH

for some scalars m < M, and x = (x1, . . . ,xn), where xi ∈ H satisfy ∑n
i=1 〈xi,xi〉 = 1. Let

ϕ ,ψ ∈C ([m,M]) be strictly monotonic functions on an interval [m,M]. We define

M̃ϕ (A,x) := ϕ−1
(

ϕ (m)+ ϕ (M)−
n

∑
i=1

〈
ϕ (Ai)xi,xi

〉)
.

Observe that, since mIH ≤ Ai ≤ MIH and ∑n
i=1 〈xi,xi〉 = 1, then

· ϕ (m) ≤
n

∑
i=1

〈ϕ (Ai)xi,xi〉 ≤ ϕ (M) if ϕ is increasing,

· ϕ (M) ≤
n

∑
i=1

〈ϕ (Ai)xi,xi〉 ≤ ϕ (m) if ϕ is decreasing.

Hence, M̃ϕ (A,x) is well defined.

Theorem 8.8 Under the above hypotheses,

(i) if either ψ ◦ϕ−1 is convex and ψ is strictly increasing, or ψ ◦ϕ−1 is concave and ψ
is strictly decreasing, then

M̃ϕ (A,x) ≤ M̃ψ (A,x) . (8.9)

In fact, to be more specific, we have the following series of inequalities

M̃ϕ (A,x)

≤ ψ−1

(
n

∑
i=1

〈(
ψϕ−1)(ϕ (m) IH + ϕ (M) IH −ϕ (Ai))xi,xi

〉)
(8.10)

≤ ψ−1
(

ϕ (M)−∑n
i=1 〈ϕ (Ai)xi,xi〉

ϕ (M)−ϕ (m)
ψ (M)+

∑n
i=1 〈ϕ (Ai)xi,xi〉−ϕ (m)

ϕ (M)−ϕ (m)
ψ (m)

)
≤ M̃ψ (A,x) ,
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(ii) if either ψ ◦ϕ−1 is concave and ψ is strictly increasing, or ψ ◦ϕ−1 is convex and ψ
is strictly decreasing, then the reverse inequalities of (8.9) and (8.10) hold.

Proof. Suppose that ψ ◦ϕ−1 is convex. If in Theorem 8.6 we let f = ψ ◦ϕ−1 and
replace Ai, m and M with ϕ (Ai), ϕ (m) and ϕ (M), respectively, then we obtain

(
ψ ◦ϕ−1)(ϕ (m)+ ϕ (M)−

n

∑
i=1

〈ϕ (Ai)xi,xi〉
)

≤
n

∑
i=1

〈(
ψ ◦ϕ−1)(ϕ (m) IH + ϕ (M) IH −ϕ (Ai))xi,xi

〉
(8.11)

≤ ϕ (M)−∑n
i=1 〈ϕ (Ai)xi,xi〉

ϕ (M)−ϕ (m)
ψ (M)+

∑n
i=1 〈ϕ (Ai)xi,xi〉−ϕ (m)

ϕ (M)−ϕ (m)
ψ (m)

≤ ψ (m)+ ψ (M)−
n

∑
i=1

〈ψ (Ai)xi,xi〉 .

If ψ ◦ϕ−1 is concave then we obtain the reverse of inequalities (8.11).
If ψ is strictly increasing, then the inverse function ψ−1 is also strictly increasing, so

that (8.11) implies (8.10). If ψ is strictly decreasing, then the inverse function ψ−1 is also
strictly decreasing, so that in this case the reverse of (8.11) implies (8.10). Analogously, we
get the reverse of (8.10) in the cases when ψ ◦ϕ−1 is convex and ψ is strictly decreasing,
or ψ ◦ϕ−1 is concave and ψ is strictly increasing. �

8.3 Operator version with mappings

Assume that (Φ1, . . . ,Φn) is an n−tuple of positive linear mappings Φi : B(H) → B(K),
i = 1, . . . ,n. If ∑n

i=1 Φi(IH) = IK , we say that (Φ1, . . . ,Φn) is unital.

We have the following generalization of discrete Jensen’s operator inequality.

Theorem 8.9 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators in B(H) with spec-
tra in [m,M] for some scalars m < M, and let (Φ1, . . . ,Φn) be a unital n−tuple positive
linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. If f is an operator convex function on
[m,M], then

f

(
n

∑
i=1

Φi(Ai)

)
≤

n

∑
i=1

Φi( f (Ai)). (8.12)

Proof. Using continuity of f , Φi and uniform approximation of self-adjoint operators
by simple operators using decomposition of unit we can assume that Ai = ∑ j∈Ii ti, jei, j where
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Ii are finite sets and {ei, j} j∈Ii are decompositions of unit, i = 1, . . . ,n. We have

f

(
n

∑
i=1

Φi(Ai)

)
= f

(
n

∑
i=1

Φi(∑
j∈Ii

ti, jei, j)

)
= f

(
n

∑
i=1

∑
j∈Ii

ti, jΦi(ei, j)

)

= f

(
n

∑
i=1

∑
j∈Ii

√
Φi(ei, j)ti, j

√
Φi(ei, j)

)

≤
n

∑
i=1

∑
j∈Ii

√
Φi(ei, j) f (ti, j)

√
Φi(ei, j)

=
n

∑
i=1

∑
j∈Ii

f (ti, j)Φi(ei, j) =
n

∑
i=1

Φi( f (Ai)).

The second proof: We use the idea from [81] (also compare to [221]). If f is operator
convex in I = [0,1] and f (0) ≤ 0, we can suppose, with no loss of generality, that it is non-
positive. Then there is a connection σ such that − f (t) = t σ (1− t). We use the following
properties of a connection σ :

(i) Φ(Aσ B) ≤ Φ(A)σ Φ(B) for a positive linear mapping Φ and positive operators A
and B ([15]).

(ii) (subadditivity) ∑n
i=1 Ai σ Bi≤(∑n

i=1 Ai) σ (∑n
i=1 Bi) for positive n−tuples (A1, . . .,An)

and (B1, . . . ,Bn) ([81]).

We obtain

−
n

∑
i=1

Φi( f (Ai)) =
n

∑
i=1

Φi (Ai σ (IH −Ai))

≤
n

∑
i=1

Φi(Ai)σ Φi(IH −Ai) ≤
(

n

∑
i=1

Φi(Ai)

)
σ

(
n

∑
i=1

Φi(IH −Ai)

)

=

(
n

∑
i=1

Φi(Ai)

)
σ

(
IK −

n

∑
i=1

Φi(Ai)

)
= − f

(
n

∑
i=1

Φi(Ai)

)
.

Consider now an arbitrary operator convex function f defined on [0,1]. The function
f̃ (x) = f (x)− f (0) satisfies the previous conditions, so (8.12) becomes

f

(
n

∑
i=1

Φi(Ai)

)
≤

n

∑
i=1

Φi( f (Ai))+ f (0)

(
IK −

n

∑
i=1

Φi(IH)

)
. (8.13)

By setting g(x) = f ((β −α)x+ α) one may reduce the statement for operator convex
functions defined on an arbitrary interval [α,β ] to operator convex functions defined on
the interval [0,1]. �

We show a variant of Jensen’s operator inequality which is an extension of Theorem 8.2
and Theorem 8.6 to self-adjoint operators and positive linear mappings.
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Theorem 8.10 Let (A1, . . . ,An) be n−tuple of self-adjoint operators in B(H) with spec-
tra in [m,M] for some scalars m < M, and let (Φ1, . . . ,Φn) be a unital n−tuple positive
linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. If f ∈ C ([m,M]) is convex on [m,M],
then

f

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)
≤ f (m) IK + f (M) IK −

n

∑
i=1

Φi ( f (Ai)) . (8.14)

In fact, to be more specific, the following series of inequalities holds

f

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)

≤ MIK −∑n
i=1 Φi (Ai)

M−m
f (M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

f (m) (8.15)

≤ f (m) IK + f (M) IK −
n

∑
i=1

Φi ( f (Ai)) .

If a function f is concave, then inequalities (8.14) and (8.15) are reversed.

Proof. Since f is continuous and convex, the same is also true for the function g :
[m,M] → R defined by g(t) = f (m+M− t), t ∈ [m,M]. Hence, the following inequalities

f (t) ≤ t−m
M−m

f (M)+
M− t
M−m

f (m) and g(t) ≤ t−m
M−m

g(M)+
M− t
M−m

g(m)

hold for every t ∈ [m,M] (see e.g. [249, p. 2]).
Since mIH ≤ Ai ≤ MIH for i = 1, . . . ,n and ∑n

i=1 Φi (IH) = IK , it follows that mIK ≤
∑n

i=1 Φi (Ai) ≤ MIK . Now, using the functional calculus we have

g

(
n

∑
i=1

Φi (Ai)

)
≤ ∑n

i=1 Φi (Ai)−mIK
M−m

g(M)+
MIK −∑n

i=1 Φi (Ai)
M−m

g(m)

or

f

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)

≤ ∑n
i=1 Φi (Ai)−mIK

M−m
f (m)+

MIK −∑n
i=1 Φi (Ai)

M−m
f (M) (8.16)

= f (m) IK + f (M) IK −
[
MIK −∑n

i=1 Φi (Ai)
M−m

f (m)+
∑n

i=1 Φi (Ai)−mIK
M−m

f (M)
]
.

On the other hand, we also have

f (Ai) ≤ Ai−mIH
M−m

f (M)+
MIH −Ai

M−m
f (m).
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Applying positive linear mappings Φi and summing, it follows that

n

∑
i=1

Φi ( f (Ai)) ≤ ∑n
i=1 Φi (Ai)−mIK

M−m
f (M)+

MIK −∑n
i=1 Φi (Ai)

M−m
f (m) . (8.17)

Using inequalities (8.16) and (8.17), we obtain desired inequalities (8.14) and (8.15).
The last statement follows immediately from the fact that if ϕ is concave then −ϕ is

convex. �

We consider Mercer’s power means for positive linear mappings.
Let A = (A1, . . . ,An) be an n−tuple of positive invertible operators in B(H) with

Sp(Ai)⊆ [m,M] for some scalars 0 < m < M, and let ΦΦ = (Φ1, . . . ,Φn) be a unital n−tuple
positive linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. We define, for any r ∈ R

M̃r(A,ΦΦ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i )

] 1
r

, r �= 0,

exp
(
(logm) IK +(logM) IK −

n

∑
i=1

Φi
(
log(Ai)

))
, r = 0.

(8.18)

Observe that, since 0 < mIH ≤ Ai ≤ MIH and ∑n
i=1 Φi (IH) = IK , then

· 0 < mrIK ≤
n

∑
i=1

Φi (Ar
i ) ≤ MrIK for all r > 0,

· 0 < MrIK ≤
n

∑
i=1

Φi (Ar
i ) ≤ mrIK for all r < 0,

· (logm) IK ≤
n

∑
i=1

Φi (log(Ai)) ≤ (logM) IK .

Hence, M̃r(A,ΦΦ) is well defined.
Furthermore, we define a constant Δ(m,M, p) for 0 < m < M and p ∈ R as follows:

Δ(m,M, p) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K

(
mp,Mp,

1
p

)
=

p(mpM−Mpm)
(1− p)(Mp−mp)

(
(1− p)(M−m)
mpM−Mpm

) 1
p

, p �= 0,

S

(
M
m

)
=

M−m
logM− logm

exp

(
m(1+ logM)−M(1+ logm)

M−m

)
, p = 0.

We remark that Δ(m,M,0) = limp→0 Δ(m,M, p) by using Theorem 2.17.
We show a monotonicity property of Mercer’s power means for positive linear map-

pings and investigate a complementary domain to Mercer’s power means.

Theorem 8.11 Let r,s ∈ R, r < s.
(i) If either r ≤−1 or s ≥ 1, then

M̃r(A,ΦΦ) ≤ M̃s(A,ΦΦ). (8.19)

(ii) If −1 < r and s < 1, then

M̃r(A,ΦΦ) ≤ Δ(m,M,s) · M̃s(A,ΦΦ). (8.20)
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Proof. (i) STEP 1: Suppose that 0 < r < s and s ≥ 1.
Applying the inequality (8.14) to the convex function f (t) = t

s
r (note that s

r > 1 here)
and replacing Ai, m and M with Ar

i , mr and Mr, respectively, we have[
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i ))

] s
r

≤ msIK +MsIK −
n

∑
i=1

Φi (As
i ) . (8.21)

Raising both sides to the power 1
s

(
0 < 1

s ≤ 1
)
, it follows from the Löwner-Heinz theorem

(Theorem 3.1) that (8.19) holds.
STEP 2: Suppose that r < 0 and s ≥ 1.

Applying the inequality (8.14) to the convex function f (t) = t
s
r (note that s

r < 0 here)
and proceeding in the same way as in STEP 1, we have that (8.19) holds.
STEP 3: Suppose that r = 0 and s ≥ 1.

Applying the inequality (8.14) to the convex function f (t) = exp(s · t) and replacing
Ai, m and M with log(Ai), logm and logM, respectively, we have

exp

(
s
(
(logm) IK +(logM) IK −

n

∑
i=1

Φi
(
log(Ai)

)))

≤ exp(s logm) IK + exp(s logM) IK −
n

∑
i=1

Φi

(
exp

(
s log(Ai)

))
= msIK +MsIK −

n

∑
i=1

Φi (As
i ) (8.22)

or [
M̃0(A,ΦΦ)

]s ≤
[
M̃s(A,ΦΦ)

]s
.

Raising both sides to the power 1
s

(
0 < 1

s ≤ 1
)
, it follows from the Löwner-Heinz theorem

that (8.19) holds for r = 0.
STEP 4: Suppose that r ≤−1 and s > r.

The inequality (8.19) follows from the above cases replacing Ai, r and s by A−1
i , −s

and −r, respectively, and using the equality M̃−s
(
A−1,ΦΦ

)
= M̃s(A,ΦΦ)−1, where A−1 =(

A−1
1 , . . . ,A−1

n

)
.

(ii) STEP 1: Suppose that 0 < r < s < 1.
In the same way as in (i) STEP 1 we obtain inequality (8.21). Observe that, since

msIK ≤ ∑n
i=1 Φi (As

i ) ≤ MsIK , it follows that msIK ≤ msIK +MsIK −∑n
i=1 Φi (As

i ) ≤ MsIK .
Raising both sides of (8.21) to the power 1

s

(
1
s > 1

)
, it follows from Theorem 4.3 (i) that

M̃r(A,ΦΦ) ≤ K

(
ms,Ms,

1
s

)
M̃s(A,ΦΦ).

STEP 2: Suppose that 0 = r < s < 1.
In the same way as in (i) STEP 3 we obtain inequality (8.22). With the same observa-

tion as in (ii) STEP 1 and raising both sides of (8.22) to the power 1
s

(
1
s > 1

)
, it follows
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from Theorem 4.3 (i) that

M̃0(A,ΦΦ) ≤ K

(
ms,Ms,

1
s

)
M̃s(A,ΦΦ).

STEP 3: Suppose that −1 < r < s < 0.
The proof follows from (ii) STEP 1 replacing Ai, r and s by A−1

i , −s and −r, respec-
tively, and using the equality K (M,m, p) = K (m,M, p) (see [96, p. 77]).
STEP 4: Suppose that −1 < r < s = 0.

Applying the inequality (8.14) to the convex function f (t) = 1
r logt and replacing Ai,

m and M with Ar
i , Mr and mr, respectively, we obtain

1
r

log

(
mrIK +MrIK −

n

∑
i=1

Φi(Ar
i )

)
≤ (logm)IK +(logM)IK −

n

∑
i=1

Φi(log(Ai).

Observing that both sides have spectra in [logm, logM], it follows from Theorem 4.7 that
(8.20) holds for s = 0.
STEP 5: Suppose that −1 < r < 0 < s < 1.

In the same way as in (i) STEP 2 we obtain inequality (8.21). With the same observa-
tion as in (ii) STEP 1 it follows from Theorem 4.3 (i) that

M̃r(A,ΦΦ) ≤ K

(
ms,Ms,

1
s

)
M̃s(A,ΦΦ).

�

Furthermore, we define S(r,s,A,ΦΦ) for A, ΦΦ as in (8.18) and r,s ∈ R as follows:

S(r,s,A,ΦΦ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
MrIK −Sr

Mr −mr Ms +
Sr −mrIK
Mr −mr ms

] 1
s

, r �= 0,s �= 0,

exp

(
MrIK −Sr

Mr −mr logM +
Sr −mrIK
Mr −mr logm

)
, r �= 0,s = 0,[

(logM) IK −S0

logM− logm
Ms +

S0− (logm) IK
logM− logm

ms
] 1

s

, r = 0,s �= 0,

(8.23)

where Sr = ∑n
i=1 Φi (Ar

i ) and S0 = ∑n
i=1 Φi (log(Ai)). It is easy to see that S(r,s,A,ΦΦ) is

well defined.
If we use inequalities (8.15) instead of the inequality (8.14), then we have the following

results.

Theorem 8.12 Let r,s ∈ R, r < s.
(i) If s ≥ 1, then

M̃r(A,ΦΦ) ≤ S(r,s,A,ΦΦ) ≤ M̃s(A,ΦΦ). (8.24)

If r ≤−1, then
M̃r(A,ΦΦ) ≤ S(s,r,A,ΦΦ) ≤ M̃s(A,ΦΦ). (8.25)

(ii) If −1 < r and s < 1, then

1
Δ(m,M,s)

· M̃r(A,Φ) ≤ S(r,s,A,ΦΦ) ≤ Δ(m,M,s) · M̃s(A,ΦΦ). (8.26)
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Proof. (i) STEP 1: Suppose that 0 < r < s and s ≥ 1.

Applying inequalities (8.15) to the convex function f (t) = t
s
r (note that s

r ≥ 1 here) and
replacing Ai, m and M with Ar

i , mr and Mr, respectively, we have

[
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i ))

] s
r

≤ MrIK −Sr

Mr −mr Ms +
Sr −mrIK
Mr −mr ms

≤ msIK +MsIK −
n

∑
i=1

Φi (As
i ) . (8.27)

Raising these inequalities to the power 1
s

(
0 < 1

s ≤ 1
)
, it follows from the Löwner-Heinz

theorem that the desired inequality (8.24) holds.

STEP 2: Suppose that r < 0 and s ≥ 1.

Applying inequalities (8.15) to the convex function f (t) = t
s
r (note that s

r < 0 here) and
proceeding in the same way as in STEP 1, we obtain the desired inequality (8.24).

STEP 3: Suppose that r = 0 and s ≥ 1.

Applying inequalities (8.15) to the convex function f (t) = exp(s · t) and replacing Ai,
m and M with logAi, logm and logM, respectively, we have

exp

(
s
(
(logm) IK +(logM) IK −

n

∑
i=1

Φi
(
log(Ai)

)))

≤ (logM) IK −S0

logM− logm
· exp(s logM)+

S0− (logm) IK
logM− logm

· exp(s logm)

≤ exp(s logm) IK + exp(s logM) IK −
n

∑
i=1

Φi

(
exp

(
s log(Ai)

))
= msIK +MsIK −

n

∑
i=1

Φi (As
i ) (8.28)

or [
M̃0(A,ΦΦ)

]s ≤ [S(0,s,A,ΦΦ)]s ≤
[
M̃s(A,ΦΦ)

]s
.

Raising these inequalities to the power 1
s

(
0 < 1

s ≤ 1
)
, it follows from the Löwner-Heinz

theorem that (8.24) holds for r = 0.

STEP 4: Suppose that r ≤−1 and s > r.

The proof of (8.25) follows using the same way as in the above cases.

(ii) STEP 1: Suppose that 0 < r < s < 1.

In the same way as in (i) STEP 1 we obtain inequalities (8.27). Observe that, since
mrIK ≤ ∑n

i=1 Φi (Ar
i ) ≤ MrIK and msIK ≤ ∑n

i=1 Φi (As
i ) ≤ MsIK , it follows that msIK ≤

[mrIK +MrIK −∑n
i=1 Φi (Ar

i )]
s
r ≤ MsIK and msIK ≤ msIK + MsIK −∑n

i=1 Φi (As
i ) ≤ MsIK .
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Raising inequalities (8.27) to the power 1
s

(
1
s > 1

)
, it follows from Theorem 4.3 (i) that

K

(
ms,Ms,

1
s

)−1
[
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i ))

] 1
r

≤
[
MrIK −Sr

Mr −mr ·Ms +
Sr −mrIK
Mr −mr ms

] 1
s

≤ K

(
ms,Ms,

1
s

)[
msIK +MsIK −

n

∑
i=1

Φi (As
i )

] 1
s

,

which gives the desired inequality (8.26).
STEP 2: Suppose that 0 = r < s < 1.

In the same way as in (i) STEP 3 we obtain inequalities (8.28). Observe that, since
(logm) IK≤(logm) IK +(logM) IK−∑n

i=1 Φi (log(Ai))≤(logM) IK and msIK ≤∑n
i=1 Φi (As

i )
≤ MsIK , it follows that

msIK ≤ exp

(
s

(
(logm) IK +(logM) IK −

n

∑
i=1

Φi (log(Ai))

))
≤ MsIK

and msIK ≤ msIK +MsIK −∑n
i=1 Φi (As

i ) ≤ MsIK . Raising inequalities (8.28) to the power
1
s

(
1
s > 1

)
, it follows from Theorem 4.3 (i) that (8.26) holds for r = 0.

STEP 3: Suppose that −1 < r < s < 0.
Applying reversed inequalities (8.15) to the concave function f (t) = t

s
r (note that 0 <

s
r < 1 here) and replacing Ai, m and M with Ar

i , m
r and Mr, respectively, we obtain reversed

(8.27). With the same observation as in STEP 1 it follows that (8.26) holds.
STEP 4: Suppose that −1 < r < s = 0.

Applying inequalities (8.15) to the convex function f (t) = 1
r logt (note that 1

r < 0 here)
and replacing Ai, m and M with Ar

i , mr and Mr, respectively, we obtain

1
r

log

(
mrIK +MrIK −

n

∑
i=1

Φi (Ar
i )

)

≤ MrIK −Sr

Mr −mr · logM +
Sr −mr

Mr −mr · logm

≤ (logm) IK +(logM) IK −
n

∑
i=1

Φi (log(Ai)) .

Now, it follows from Theorem 4.7 that

S
(
elogM−logm

)−1
M̃r(A,ΦΦ) ≤ S(r,0,A,ΦΦ) ≤ S

(
elogM−logm

)
M̃0(A,ΦΦ),

which gives (8.26) holds for s = 0.
STEP 5: Suppose that −1 < r < 0 < s < 1.

Applying inequalities (8.15) to the convex function f (t) = t
s
r (note that s

r < 0 here)
and replacing Ai, m and M with Ar

i , mr and Mr, respectively, we obtain inequalities (8.27).
Proceeding in the same way as in STEP 1, we obtain (8.26). �
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Remark 8.1 Since obviously S(r,r,A,ΦΦ) = M̃r(A,ΦΦ), inequalities in Theorem 8.12 (i)
give us

S(r,r,A,ΦΦ) ≤ S(r,s,A,ΦΦ) ≤ S(s,s,A,ΦΦ), r < s, s ≥ 1

and

S(r,r,A,ΦΦ) ≤ S(s,r,A,ΦΦ) ≤ S(s,s,A,ΦΦ), r < s, r ≤−1.

An open problem is to give list of inequalities comparing “mixed means” S(r,s,A,ΦΦ) in
remaining cases.

Finally, we consider quasi-arithmetic means of Mercer’s type for positive linear map-
pings.

Let A and ΦΦ be as in the previous context and m < M. Let ϕ ,ψ ∈C ([m,M]) be strictly
monotonic functions on an interval [m,M]. We define

M̃ϕ (A,ΦΦ) := ϕ−1

(
ϕ (m) IK + ϕ (M) IK −

n

∑
i=1

Φi (ϕ (Ai))

)
. (8.29)

It is easy to see that M̃ϕ (A,ΦΦ) is well defined.

Theorem 8.13 Under the above hypotheses,

(i) if either ψ ◦ϕ−1 is convex and ψ−1 is operator monotone, or ψ ◦ϕ−1 is concave
and −ψ−1 is operator monotone, then

M̃ϕ (A,ΦΦ) ≤ M̃ψ (A,ΦΦ) . (8.30)

In fact, to be more specific, we have the following series of inequalities

M̃ϕ (A,ΦΦ)

≤ ψ−1
(

ϕ (M) IK −∑n
i=1 Φi (ϕ (Ai))

ϕ (M)−ϕ (m)
·ψ (M)

+∑n
i=1 Φi (ϕ (Ai))−ϕ (m) IK

ϕ (M)−ϕ (m)
·ψ (m)

)
(8.31)

≤ M̃ψ (A,ΦΦ) .

(ii) if either ψ ◦ϕ−1 is concave and ψ−1 is operator monotone, or ψ ◦ϕ−1 is convex
and −ψ−1 is operator monotone, then inequalities (8.30) and (8.31) are reversed.

Proof. Suppose that ψ ◦ϕ−1 is convex. If in Theorem 8.10 we let f = ψ ◦ϕ−1 and
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replace Ai, m and M with ϕ (Ai), ϕ (m) and ϕ (M), respectively, then we obtain

(
ψ ◦ϕ−1)(ϕ (m) IK + ϕ (M) IK −

n

∑
i=1

Φi (ϕ (Ai))

)

≤ ϕ (M) IK −∑n
i=1 Φi (ϕ (Ai))

ϕ (M)−ϕ (m)
· (ψ ◦ϕ−1)(ϕ (M))

+ ∑n
i=1 Φi (ϕ (Ai))−ϕ (m) IK

ϕ (M)−ϕ (m)
· (ψ ◦ϕ−1)(ϕ (m))

≤ (
ψ ◦ϕ−1)(ϕ (m)) IK +

(
ψ ◦ϕ−1)(ϕ (M)) IK −

n

∑
i=1

Φi
((

ψ ◦ϕ−1) (ϕ (Ai))
)

or

ψ

(
ϕ−1

(
ϕ(m)IK + ϕ(M)IK −

n

∑
i=1

Φi (ϕ (Ai))

))

≤ ϕ (M) IK −∑n
i=1 Φi (ϕ (Ai))

ϕ (M)−ϕ (m)
·ψ (M)+ ∑n

i=1 Φi (ϕ (Ai))−ϕ (m) IK
ϕ (M)−ϕ (m)

·ψ (m)

≤ ψ (m) IK + ψ (M) IK −
n

∑
i=1

Φi (ψ (Ai)) . (8.32)

If ψ ◦ϕ−1 is concave then we obtain the reverse of inequalities (8.32).
If ψ−1 is operatormonotone, then (8.32) implies (8.31). If−ψ−1 is operatormonotone,

then the reverse of (8.32) implies (8.31). Analogously, we get the reverse of (8.31) in the
cases when ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone, or ψ ◦ϕ−1 is concave and
ψ−1 is operator monotone. �

8.4 Chaotic order version

Let A = (A1, . . . ,An) be an n−tuple of positive invertible operators in B(H) with Sp(Ai)⊆
[m,M] for some scalars 0 < m < M, and let ΦΦ = (Φ1, . . . ,Φn) be a unital n−tuple positive
linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. We recall that we define the r-th power
operator mean for r ∈ R as

Mr(A,ΦΦ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
n

∑
i=1

Φi (Ar
i )

) 1
r

, r �= 0,

exp

(
n

∑
i=1

Φi (log(Ai))

)
, r = 0.

(8.33)
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The ordering among these means is given in Chapter 9. Here we discuss the chaotic
ordering among them: the chaotic order A 
 B for A,B > 0 means logA ≥ logB, also see
3.4.

The following theorems are generalizations of the theorems in [124, p.135, 136].

Theorem 8.14 If r,s ∈ R , r < s, then

Mr(A,ΦΦ) � Ms(A,ΦΦ).

Proof. STEP 1: Assume 0 < r < s. Applying Theorem 8.9 to the operator concave
function f (t) = t

r
s (note that 0 < r

s < 1 here) and replacing Ai with As
i we have(

n

∑
i=1

Φi (As
i )

) r
s

≥
n

∑
i=1

Φi (Ar
i ) .

Since the function f (t) = log t is operator monotone and r > 0, it follows that

1
s

log

(
n

∑
i=1

Φi (As
i )

)
≥ 1

r
log

(
n

∑
i=1

Φi (Ar
i )

)
,

i.e. logMr(A,ΦΦ) ≤ logMs(A,ΦΦ).

STEP 2: Assume r < s < 0. Applying Theorem 8.9 to the operator concave function
f (t) = t

s
r (note that 0 < s

r < 1 here) and replacing Ai with Ar
i we have(

n

∑
i=1

Φi (Ar
i )

) s
r

≥
n

∑
i=1

Φi (As
i ) .

Since s < 0, it follows that

1
r

log

(
n

∑
i=1

Φi (Ar
i )

)
≤ 1

s
log

(
n

∑
i=1

Φi (As
i )

)
,

i.e. logMr(A,ΦΦ) ≤ logMs(A,ΦΦ).

STEP 3: Assume r < 0 = s. Applying Theorem 8.9 to the operator convex function f (t) =
1
r log t (note that 1

r < 0 here) and replacing Ai with Ar
i we have

1
r

log

(
n

∑
i=1

Φi (Ar
i )

)
≤

n

∑
i=1

Φi log(Ai) ,

i.e. logMr(A,ΦΦ) ≤ logM0(A,ΦΦ).

STEP 4: Assume r = 0 < s. Applying Theorem 8.9 to the operator concave function
f (t) = 1

s log t and replacing Ai with As
i we have

1
s

log

(
n

∑
i=1

Φi (As
i )

)
≥

n

∑
i=1

Φi (log(Ai)) ,
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i.e. logM0(A,ΦΦ) ≤ logMs(A,ΦΦ).

STEP 5: Assume r < 0 < s. From STEP 3 and STEP 4 it follows that
logMr(A,ΦΦ) ≤ logM0(A,ΦΦ) ≤ logMs(A,ΦΦ). �

To prove the following theorem, we need the following lemma.

Lemma 8.1 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators in B(H) with spectra
in [m,M] for some scalars 0 < m < M, and (Φ1, . . . ,Φn) be a unital n−tuple positive linear
mappings Φi : B(H) → B(K), i = 1, . . . ,n. Denote h = M

m . Then

α2

(
n

∑
i=1

Φi(Ai)

)p

≤
n

∑
i=1

Φi(A
p
i ) ≤ α1

(
n

∑
i=1

Φi(Ai)

)p

for

α1 =

{
K(h, p) if p < 0 or 1 < p,

1 if 0 < p < 1,

α2 =

⎧⎪⎨⎪⎩
K(h, p)−1 if p < −1 or 2 < p,

1 if −1 ≥ p < 0 or 1 ≤ p ≤ 2,

K(h, p) if 0 < p < 1,

where the generalized Kantorovich constant K(m,M, p) is defined by (2.29).

Proof. This lemma is proved in a similar way as [124, Lemma 4.13] using converses
of Jensen’s inequality. �

Theorem 8.15 If r,s ∈ R, r < s, then

Δ(h,r,s)−1 Ms(A,ΦΦ) � Mr(A,ΦΦ), (8.34)

where the generalized Specht ratio Δ(h,r,s) cf. [124, eq. (2.97)] for h > 0 is defined as

Δ(h,r,s) =

⎧⎪⎪⎨⎪⎪⎩
K
(
hr, s

r

) 1
s if r < s, r,s �= 0,(

e logh
p

hp−1

h
p

hp−1

) sgn(p)
p

if r = 0 < s = p, or r = p < s = 0.
(8.35)

Proof. STEP 1: Assume 0 < r < s. Then 0 < msIK ≤ ∑n
i=1 Φi (As

i ) ≤ MsIK . Applying
Lemma 8.1 with p = r

s (0 < p < 1) and replacing Ai with As
i we obtain

K
(
hs,

r
s

)(
n

∑
i=1

Φi (As
i )

) r
s

≤
n

∑
i=1

Φi (Ar
i ) .

Since the function f (t) = logt is operator monotone and r > 0, we have

log

⎛⎝K
(
hs,

r
s

) 1
r

(
n

∑
i=1

Φi (As
i )

) 1
s
⎞⎠≤ log

(
n

∑
i=1

Φi (Ar
i )

) 1
r

,



206 8 MERCER’S TYPE INEQUALITY

i.e.
log

(
Δ(h,r,s)−1 Ms(A,ΦΦ)

)
≤ logMr(A,ΦΦ). (8.36)

Since Δ(h,s,r) = Δ(h,r,s)−1 (see [124, p. 87]), (8.34) follows from (8.36).
STEP 2: Assume r < s < 0. Then, 0 < MrIK ≤ ∑n

i=1 Φi (Ar
i )≤ mrIK . Applying Lemma 8.1

with p = s
r (0 < p < 1) and replacing Ai with Ar

i we obtain

K
(
hr,

s
r

)(
n

∑
i=1

Φi (Ar
i )

) s
r

≤
n

∑
i=1

Φi (As
i ) .

Since s < 0, we have

log

⎛⎝K
(
hr,

s
r

) 1
s

(
n

∑
i=1

Φi (Ar
i )

) 1
r
⎞⎠≥ log

(
n

∑
i=1

Φi (As
i )

) 1
s

,

i.e.
log(Δ(h,r,s)Mr(A,ΦΦ)) ≥ logMs(A,ΦΦ). (8.37)

Now, (8.34) follows from (8.37).
STEP 3: Assume r < 0 < s. If 0 < −r < s or 0 < s < −r, we let p = r

s or p = s
r in

Lemma 8.1 (−1 < p < 0), respectively. Then we obtain

n

∑
i=1

Φi (Ar
i ) ≤ K

(
hs,

r
s

)(
n

∑
i=1

Φi (As
i )

) r
s

or
n

∑
i=1

Φi (As
i ) ≤ K

(
hr,

s
r

)(
n

∑
i=1

Φi (Ar
i )

) s
r

.

So we have
logMr(A,ΦΦ) ≥ log

(
Δ(h,r,s)−1 Ms(A,ΦΦ)

)
or

logMs(A,ΦΦ) ≤ log(Δ(h,r,s)Mr(A,ΦΦ)) .

STEP 4: Assume r = 0 < s. If r → 0 in (8.36), then

log
(

Δ(h,0,s)−1 Ms(A,ΦΦ)
)
≤ logM0(A,ΦΦ).

STEP 5: Assume r < s = 0. If s → 0 in (8.37), then

logM0(A,ΦΦ) ≤ log(Δ(h,r,0)Mr(A,ΦΦ)) .

�

Next, we consider the chaotic ordering among Mercer’s power operator means defined
by (8.18).
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Theorem 8.16 If r,s ∈ R, r < s, then

M̃r(A,ΦΦ) � M̃s(A,ΦΦ).

Proof. Analogously to the proof of Theorem 8.14, but using Theorem 8.10 instead of
Theorem 8.9. �

Now, we define, for any r,s ∈ R

R(r,s,A,ΦΦ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
n

∑
i=1

Φi

(
[(mr +Mr) IH −Ar

i ]
s
r

)] 1
s

, r �= 0,s �= 0,

exp

(
n

∑
i=1

Φi

(
log [(mr +Mr) IH −Ar

i ]
1
r

))
, r �= 0,s = 0,[

n

∑
i=1

Φi (exps [(logmM) IH − logAi])

] 1
s

, r = 0,s �= 0,

(8.38)

and S(r,s,A,ΦΦ) by (8.23). It is easy to see that R(r,s,A,ΦΦ) is well defined and also notice
that R(r,r,A,ΦΦ) = S(r,r,A,ΦΦ) = M̃r(A,ΦΦ) (including r = 0).

Theorem 8.17 Let r,s ∈ R, r < s.
(i) If r ≥ 0, then

M̃r(A,ΦΦ) � S(s,r,A,ΦΦ) � R(s,r,A,ΦΦ) � M̃s(A,ΦΦ). (8.39)

(ii) If s ≤ 0, then

M̃r(A,ΦΦ) � R(r,s,A,ΦΦ) � S(r,s,A,ΦΦ) � M̃s(A,ΦΦ). (8.40)

(iii) If r < 0 < s, then

M̃r(A,ΦΦ) � R(r,0,A,ΦΦ) � S(r,0,A,ΦΦ) � M̃0(A,ΦΦ)
� S(s,0,A,ΦΦ) � R(s,0,A,ΦΦ) � M̃s(A,ΦΦ). (8.41)

Proof. (i) STEP 1: Assume 0 < r < s. Applying Theorem 8.10 to the operator concave
function f (t) = t

r
s (note that 0 < r

s < 1 here) and replacing Ai, m and M with As
i , ms and

Ms we have (
(ms +Ms) IK −

n

∑
i=1

Φi (As
i )

) r
s

≥
n

∑
i=1

Φi

(
((ms +Ms) IH −As

i )
r
s

)
≥ MsIK −Ss

Ms −ms Mr +
Ss−msIK
Ms −ms mr ≥ (mr +Mr) IK −

n

∑
i=1

Φi (Ar
i ) .

Since the function f (t) = log t is operator monotone and r > 0, it follows that (8.39) holds.
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STEP 2: Assume r = 0 < s. Applying Theorem 8.10 to the operator concave function
f (t) = 1

s log t and replacing Ai, m and M with As
i , ms and Ms we have

1
s

log

(
(ms +Ms) IK −

n

∑
i=1

Φi (As
i )

)
≥

n

∑
i=1

Φi

(
1
s

log((ms +Ms) IH −As
i )
)

≥ MsIK −Ss

Ms −ms logM +
Ss −msIK
Ms −ms logm ≥ (logmM) IK −

n

∑
i=1

Φi (log(Ai)) ,

which gives (8.39) for r = 0.
(ii) STEP 1: Assume r < s < 0. Applying Theorem 8.10 to the operator concave

function f (t) = t
s
r (note that 0 < s

r < 1 here) and replacing Ai, m and M with Ar
i , mr and

Mr we have (
(mr +Mr) IK −

n

∑
i=1

Φi (Ar
i )

) s
r

≥
n

∑
i=1

Φi

(
((mr +Mr) IH −Ar

i )
s
r

)
≥ MrIK −Sr

Mr −mr Ms +
Sr −mrIK
Mr −mr ms ≥ (ms +Ms) IK −

n

∑
i=1

Φi (As
i ) .

Since s < 0, it follows that (8.40) holds.
STEP 2: Assume r < 0 = s. Applying Theorem 8.10 to the operator convex function
f (t) = 1

r logt (note that 1
r < 0 here) and replacing Ai, m and M with Ar

i , m
r and Mr we have

1
r

log

(
(mr +Mr) IK −

n

∑
i=1

Φi (Ar
i )

)
≤

n

∑
i=1

Φi

(
1
r

log((mr +Mr) IH −Ar
i )
)

≤ MrIK −Sr

Mr −mr logM +
Sr −mrIK
Mr −mr logm ≤ (logmM) IK −

n

∑
i=1

Φi (log(Ai)) ,

which gives (8.40) for s = 0.
(iii) Assume r < 0 < s. The desired inequality (8.41) follows set s = 0 in (ii) and r = 0

in (i). �

Remark 8.2 If we define by M̃r(B) = (mr1 + Mr1−Br)
1
r (Mercer’s mean for positive

invertible operator B with Sp(B)⊂[m,M], 0<m<M) and by M̃r(A)=(M̃r(A1), . . .,M̃r(An))
(for n−tuple A of positive invertible operators), we can write:

M̃r(A,ΦΦ) = M̃r(Mr(A,ΦΦ))

R(r,s,A,ΦΦ) = Ms(M̃r(A),ΦΦ),

so we can describe inequalities in Theorem 8.17 as mixed mean inequalities. One can also
ask the question: What is the complete set of inequalities among mixed means Mr(M̃s(A),ΦΦ),
M̃s(Mr(A,ΦΦ)), M̃r(Ms(A,ΦΦ)) and Ms(M̃r(A),ΦΦ) under the chaotic order? One part of the
answer is in Theorem 8.16 and Theorem 8.17.
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8.5 Refinements

In this section, we give a refinement of Mercer’s inequality for operator convex functions.
We use that result to refine monotonicity properties of power means of Mercer’s type for
operators. Finally, we consider related quasi-arithmetic means for operators.

Theorem 8.18 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators in B(H) with
spectra in [m,M] for some scalars 0 < m < M, and (Φ1, . . . ,Φn) be a unital n−tuple posi-
tive linear mappings Φi : B(H) → B(K), i = 1, . . . ,n. If f ∈C ([m,M]) is operator convex,
then we have the following series of inequalities

f

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)
≤

n

∑
i=1

Φi ( f (mIH +MIH −Ai))

≤ MIK −∑n
i=1 Φi (Ai)

M−m
· f (M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

· f (m) (8.42)

≤ f (m) IK + f (M) IK −
n

∑
i=1

Φi ( f (Ai)) .

If a function f is operator concave, then the inequalities (8.42) are reversed.

Proof. The proof of this theorem is quite similar to the proof of Theorem 8.6. We omit
the details. �

We give applications to the ordering among Mercer’s power operator means defined by
(8.18).

Let R(r,s,A,ΦΦ) and S(r,s,A,ΦΦ) are defined by (8.38) and (8.23), respectively. To
simplify notations, in what follows we will write M̃r, R(r,s), S(r,s) instead of M̃r(A,ΦΦ),
R(r,s,A,ΦΦ), S(r,s,A,ΦΦ), respectively.

Figure 8.1 illustrates regions (i)− (vii) which determine the seven cases occurring in
Theorem 8.19.

Theorem 8.19 Let r,s ∈ R, r < s.
(i) If 1 ≤ r, then

M̃r(A,ΦΦ) ≤ S(s,r,A,ΦΦ) ≤ R(s,r,A,ΦΦ) ≤ M̃s(A,ΦΦ). (8.43)

(ii) If s ≤−1, then

M̃r(A,ΦΦ) ≤ R(r,s,A,ΦΦ) ≤ S(r,s,A,ΦΦ) ≤ M̃(A,ΦΦ)s. (8.44)

(iii) If r ≤−1,s ≥ 1, then

M̃r(A,ΦΦ) ≤ R(r,−1,A,ΦΦ) ≤ S(r,−1,A,ΦΦ)
≤ M̃−1(A,ΦΦ) ≤ S(1,−1,A,ΦΦ) ≤ R(1,−1,A,ΦΦ)
≤ M̃1(A,ΦΦ) ≤ S(s,1,A,ΦΦ) ≤ R(s,1,A,ΦΦ) (8.45)

≤ M̃s(A,ΦΦ).
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Figure 8.1: Regions (i)− (vii)

(iv) If 1
2 < r < 1 < s, then

M̃r(A,ΦΦ) ≤ R(r,1,A,ΦΦ) ≤ S(r,1,A,ΦΦ)
≤ M̃1(A,ΦΦ) ≤ S(s,1,A,ΦΦ) ≤ R(s,1,A,ΦΦ) (8.46)

≤ M̃s(A,ΦΦ).

(v) If r < −1 < s < − 1
2 , then

M̃r(A,ΦΦ) ≤ R(r,−1,A,ΦΦ) ≤ S(r,−1,A,ΦΦ)
≤ M̃−1(A,ΦΦ) ≤ S(s,−1,A,ΦΦ) ≤ R(s,−1,A,ΦΦ) (8.47)

≤ M̃s(A,ΦΦ).

(vi) If −1 < r ≤ 1
2 ,s ≥ 1; or −s ≤ r < s ≤ 1, then

M̃r(A,ΦΦ) ≤ C (m,M,r)S(s,r,A,ΦΦ) ≤C (m,M,r)2 R(s,r,A,ΦΦ)

≤ C (m,M,r)3 M̃s(A,ΦΦ). (8.48)

(vii) If r ≤−1,− 1
2 ≤ s < 1; or −1 ≤ r < s ≤−r, then

M̃r(A,ΦΦ) ≤ C (m,M,s)R(r,s,A,ΦΦ) ≤C (m,M,s)2 S(r,s,A,ΦΦ)

≤ C (m,M,s)3 M̃s(A,ΦΦ). (8.49)
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Proof. To simplify notations, in this proof we will write M̃r, R(r,s), S(r,s) instead of
M̃r(A,ΦΦ), R(r,s,A,ΦΦ), S(r,s,A,ΦΦ), respectively.

(i) Suppose that 1 ≤ r < s.
Applying inequalities (8.42) to the operator concave function f (t) = t

r
s (note that 0 <

r
s ≤ 1 here) and replacing Ai, m and M with As

i , ms and Ms, respectively, we have[
M̃s

]r ≥ [R(s,r)]r ≥ [S(s,r)]r ≥
[
M̃r

]r
. (8.50)

Raising these inequalities to the power 1
r , by the Löwner-Heinz theorem it follows that

(8.43) holds.

(ii) Suppose that r < s ≤−1.
Applying inequalities (8.43) to A−1 =

(
A−1

1 , . . . ,A−1
n

)
and observing that M̃−r(A−1,ΦΦ)

=
[
M̃r(A,ΦΦ)

]−1
, M̃−s(A−1,ΦΦ) =

[
M̃s(A,ΦΦ)

]−1
, S

(−r,−s,A−1,ΦΦ
)

= [S (r,s,A,ΦΦ)]−1,

R
(−r,−s,A−1,ΦΦ

)
= [R(r,s,A,ΦΦ)]−1, we have[

M̃s

]−1 ≤ [S (r,s)]−1 ≤ [R(r,s)]−1 ≤
[
M̃r

]−1
.

Hence, (8.44) holds.

(iii) Suppose that r ≤−1 and s ≥ 1.
Applying inequalities (8.42) to the operator convex function f (t) = t−1 we have[

M̃1

]−1 ≤ [R(1,−1)]−1 ≤ [S(1,−1)]−1 ≤
[
M̃−1

]−1
.

Hence,
M̃−1 ≤ S(1,−1)≤ R(1,−1)≤ M̃1.

If we let r = 1 in (8.43) and s =−1 in (8.43) then it follows thatM̃1 ≤ S (s,1)≤R(s,1)≤ M̃s

and M̃r ≤ R(r,−1) ≤ S (r,−1) ≤ M̃−1 holds. Hence, (8.45) holds.

(iv) Suppose that 1
2 < r < 1 < s.

Applying inequalities (8.42) to the operator convex function f (t) = t
1
r and replacing

Ai, m and M with Ar
i , mr and Mr, respectively, we have

M̃r ≤ R(r,1) ≤ S(r,1) ≤ M̃1.

If we let r = 1 in (8.43) then it follows that (8.46) holds.

(v) Suppose that r < −1 < s < − 1
2 .

Applying inequalities (8.46) to A−1 =
(
A−1

1 , . . . ,A−1
n

)
and following analogous arguing

as in (ii), we obtain (8.47).

(vi)
STEP 1: Suppose that 0 < r ≤ 1

2 ,1 ≤ s.
In the same way as in (i) we obtain that (8.50) holds in this case. Raising (8.50) to the

power 1
r , by Theorem 4.3 (i) it follows that (8.48) holds.
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STEP 2: Suppose that −1 < r < 0, 1 ≤ s.
Applying inequalities (8.42) to the operator convex function f (t) = t

r
s and replacing

Ai, m and M with As
i , ms and Ms, respectively, we have[

M̃s

]r ≤ [R(s,r)]r ≤ [S(s,r)]r ≤
[
M̃r

]r
.

Raising these inequalities to the power 1
r , by Theorem 4.3 (ii) it follows that (8.48) holds

(since K (M,m, p) = K (m,M, p) by [124, p. 77]).
STEP 3: Suppose that 0 < r < s ≤ 1 and −1 ≤−s ≤ r < 0.
In the same way as in STEP 1 and STEP 2, we have (8.48).
STEP 4: Suppose that 0 = r < s.
Applying inequalities (8.42) to the operator concave function f (t) = 1

s log t and replac-
ing Ai, m and M with As

i , ms and Ms, respectively, we obtain

logM̃s ≥ logR(s,0) ≥ logS (s,0) ≥ logM̃0.

By using Theorem 4.7, it follows that (8.48) holds for r = 0.

(vii) Suppose that r ≤−1,− 1
2 ≤ s < 1; or −1 ≤ r < s ≤−r.

Applying inequalities (8.48) to A−1 =
(
A−1

1 , . . . ,A−1
n

)
and following analogous arguing

as in (ii), we obtain (8.49). �

Remark 8.3 Besides these results in Theorem 8.19, one can prove in the same way that
for r < s < 2r,s > 1

M̃r(A,ΦΦ) ≤ R(r,s,A,ΦΦ) ≤ S(r,s,A,ΦΦ) ≤ M̃s(A,ΦΦ),

and for r < s < 1
2r,r < −1

M̃r(A,ΦΦ) ≤ S(s,r,A,ΦΦ) ≤ R(s,r,A,ΦΦ) ≤ M̃s(A,ΦΦ)

also hold, but to include these cases in the figure we should compare sequences of inequal-
ities in common regions (see Remark 8.4).

Remark 8.4 If we define by Mr(A,ΦΦ) = (∑n
i=1 Φi(Ar

i ))
1
r (the weighted power mean),

by M̃r(B) = (mr1 + Mr1− Br)
1
r (Mercer’s mean for positive invertible operator B with

Sp(B) ⊂ [m,M], 0 < m < M) and by M̃r(A) = (M̃r(A1), . . . ,M̃r(An)) (for an n−tuple A of
positive invertible operators), we can write:

M̃r(A,ΦΦ) = M̃r(Mr(A,ΦΦ)),
R(r,s,A,ΦΦ) = Ms(M̃r(A),ΦΦ),

so one can describe inequalities in Theorem 8.19 as mixed mean inequalities. We can also
state the following open problem: What is the complete set of inequalities among mixed
means Mr(M̃s(A),ΦΦ), M̃s(Mr(A,ΦΦ)), M̃r(Ms(A,ΦΦ)) and Ms(M̃r(A),ΦΦ)? Some special
cases are given in Theorem 8.19 and Remark 8.3. Also, it is easy to see that

M̃r(Mr(A,ΦΦ)) ≤ M̃s(Mr(A,ΦΦ))
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reduces to monotonicity property of Mercer’s means, and that in some cases,

M̃s(Ms(A,ΦΦ)) ≤ M̃s(Mr(A,ΦΦ))

reduces to inequalities between (∑n
i=1 Φi(Ar

i ))
s/r and ∑n

i=1 Φ(As
i ).

Finally, we consider quasi-arithmetic means of Mercer’s type defined by (8.29).

Theorem 8.20 Let A and ΦΦ be as in the previous context and m < M. Let ϕ ,ψ ∈
C ([m,M]) be strictly monotonic functions on an interval [m,M].

(i) If either ψ ◦ϕ−1 is operator convex and ψ−1 is operator monotone, or ψ ◦ϕ−1 is
operator concave and −ψ−1 is operator monotone, then

M̃ϕ (A,ΦΦ)

≤ ψ−1

(
n

∑
i=1

Φi
((

ψ ◦ϕ−1)(ϕ (m) IH + ϕ (M) IH −ϕ (Ai))
))

(8.51)

≤ ψ−1
(

ϕ (M) IK −∑n
i=1 Φi (ϕ (Ai))

ϕ (M)−ϕ (m)
·ψ (M)+ ∑n

i=1 Φi (ϕ (Ai))−ϕ (m) IK
ϕ (M)−ϕ (m)

·ψ (m)
)

≤ M̃ψ (A,ΦΦ) .

(ii) If either ψ ◦ϕ−1 is operator concave and ψ−1 is operator monotone, or ψ ◦ϕ−1

is operator convex and −ψ−1 is operator monotone, then the reverse inequalities
(8.51) hold.

Proof. The proof is quite similar to the proof of Theorem 8.8 and we omit the details.

�

Theorem 8.21 Under the hypotheses of Theorem 8.20, we have

(i) if either ϕ is operator concave and ϕ−1 is operator monotone or ϕ is operator
convex and −ϕ−1 is operator monotone, and either ψ is operator convex and ψ−1

is operator monotone or ψ is operator concave and −ψ−1 is operator monotone,



214 8 MERCER’S TYPE INEQUALITY

then

M̃ϕ (A,ΦΦ)

≤ ϕ−1
(

MIK −∑n
i=1 Φi (Ai)

M−m
·ϕ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ϕ(m)
)

≤ ϕ−1

(
n

∑
i=1

Φi (ϕ (mIH +MIH −Ai))

)
≤ M̃1 (A,ΦΦ) (8.52)

≤ ψ−1

(
n

∑
i=1

Φi (ψ (mIH +MIH −Ai))

)

≤ ψ−1
(

MIK −∑n
i=1 Φi (Ai)

M−m
·ψ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ψ(m)
)

≤ M̃ψ (A,ΦΦ) .

(ii) if either ϕ is operator convex and ϕ−1 is operator monotone or ϕ is operator con-
cave and −ϕ−1 is operator monotone, and either ψ is operator concave and ψ−1 is
operator monotone or ψ is operator convex and −ψ−1 is operator monotone, then
the reverse inequalities (8.52) hold.

Proof. Suppose that ϕ is operator concave and ϕ−1 is operator monotone, and ψ is
operator convex and ψ−1 is operator monotone. By Theorem 8.18, we have

ϕ

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)

≥
n

∑
i=1

Φi (ϕ (mIH +MIH −Ai))

≥ MIK −∑n
i=1 Φi (Ai)

M−m
·ϕ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ϕ(m)

≥ ϕ (m) IK + ϕ (M) IK −
n

∑
i=1

Φi (ϕ (Ai)) .

Since ϕ−1 is operator monotone, it follows that

M̃ϕ (A,ΦΦ)

≤ ϕ−1
(

MIK −∑n
i=1 Φi (Ai)

M−m
·ϕ(M)+

∑n
i=1 Φi (Ai)−mIK

M−m
·ϕ(m)

)
≤ ϕ−1

(
n

∑
i=1

Φi (ϕ (mIH +MIH −Ai))

)
≤ M̃1 (A,ΦΦ) .
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Also, by Theorem 8.18, we have

ψ

(
mIK +MIK −

n

∑
i=1

Φi (Ai)

)

≤
n

∑
i=1

Φi (ψ (mIH +MIH −Ai))

≤ MIK −∑n
i=1 Φi (Ai)

M−m
·ψ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ψ(m)

≤ ψ (m) IK + ψ (M) IK −
n

∑
i=1

Φi (ψ (Ai)) .

Since ψ−1 is operator monotone, it follows that

M̃1 (A,ΦΦ)

≤ ψ−1

(
n

∑
i=1

Φi (ψ (mIH +MIH −Ai))

)

≤ ψ−1
(

MIK −∑n
i=1 Φi (Ai)

M−m
·ψ(M)+ ∑n

i=1 Φi (Ai)−mIK
M−m

·ψ(m)
)

≤ M̃ψ (A,ΦΦ) .

Hence, we have inequalities (8.52). In remaining cases the proof is analogous. �

Remark 8.5 Results given in this chapter we can generalize for continuous fields of op-
erators, similarly to how it was done for Jensen’s inequality in Chapter 9.

8.6 Notes

For our exposition we have used Mercer [183, 184, 185], Matković-Pečarić [176, 177] and
Matković-Pečarić-I. Perić [178, 179].





Chapter9
Jensen’s Operator Inequality

In this chapter, we give a general formulation of Jensen’s operator inequality for some
non-unital fields of positive linear mappings, and we consider different types of converse
inequalities. We discuss the ordering among power functions in a general setting. As an
application we get the order among power means and some comparison theorems for quasi-
arithmetic means. We also give a refined calculation of bounds in converses of Jensen’s
operator inequality.

9.1 Continuous fields of operators

Let T be a locally compact Hausdorff space, and let A be a C∗-algebra of operators on a
Hilbert space H. We say that a field (xt)t∈T of operators in A is continuous if the function
t �→ xt is norm continuous on T. If in addition μ is a bounded Radon measure on T and the
function t �→ ‖xt‖ is integrable, then we can form the Bochner integral

∫
T xt dμ(t), which

is the unique element in A such that

ϕ
(∫

T
xt dμ(t)

)
=

∫
T

ϕ(xt)dμ(t)

for every linear functional ϕ in the norm dual A ∗, cf. [137, Section 4.1].
Assume furthermore that there is a field (Φt )t∈T of positive linear mappings Φt : A →

B from A to another C∗-algebra B of operators on a Hilbert space K. We say that such

217
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a field is continuous if the function t �→ Φt(x) is continuous for every x ∈ A . If the C∗-
algebras are unital and the field t → Φt (1) is integrable with integral equals 1, we say that
(Φt )t∈T is unital.

Theorem 9.1 Let f : J → R be an operator convex function defined on an interval J,
and let A and B be unital C∗-algebras. If (Φt)t∈T is a unital field of positive linear
mappings Φt : A → B defined on a locally compact Hausdorff space T with a bounded
Radon measure μ , then the inequality

f

(∫
T

Φt(xt)dμ(t)
)
≤

∫
T

Φt( f (xt ))dμ(t) (9.1)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in J.

Proof. We first note that the function t �→ Φt (xt) ∈ B is continuous and bounded,
hence integrable with respect to the bounded Radon measure μ . We may organize the set
CB(T,A ) of bounded continuous functions on T with values in A as a normed involutive
algebra by applying the point-wise operations and setting

‖(yt)t∈T ‖ = sup
t∈T

‖yt‖ (yt)t∈T ∈CB(T,A ),

and it is not difficult to verify that the norm is already complete and satisfy the C∗-identity.
In fact, this is a standard construction in C∗-algebra theory. It follows that f ((xt )t∈T ) =
( f (xt ))t∈T . We then consider the mapping

π : CB(T,A ) → M(B) ⊆ B(K)

defined by setting

π ((xt)t∈T ) =
∫

T
Φt(xt)dμ(t),

and note that it is a unital positive linear mapping. Setting x = (xt)t∈T ∈CB(T,A ), we use
the Davis-Choi-Jensen inequality to obtain

f (π ((xt)t∈T )) = f (π(x)) ≤ π( f (x)) = π
(
f
(
(xt)t∈T

))
= π

((
f (xt )

)
t∈T

)
,

but this is just the statement of the theorem. �

In the following theorem we give a converse of Jensen’s inequality (9.1). For a function
f : [m,M] → R we use the standard notation:

α f =
f (M)− f (m)

M−m
, β f =

M f (m)−mf (M)
M−m

. (9.2)

Theorem 9.2 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a uni-
tal C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital field of positive lin-
ear mappings Φt : A →B from A to another unitalC∗−algebra B. Let f ,g : [m,M]→R
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and F :U×V →R be functions such that f ([m,M])⊂U, g([m,M])⊂V and F is bounded.
If F is operator monotone in the first variable and f is convex in the interval [m,M], then

F

[∫
T

Φt ( f (xt))dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≤ sup

m≤z≤M
F
[
α f z+ β f ,g(z)

]
1. (9.3)

In the dual case (when f is concave) the opposite inequality holds in (9.3) with inf instead
of sup.

Proof. For convex f the inequality f (z) ≤ α f z+ β f holds for every z ∈ [m,M]. Thus,
by using functional calculus, f (xt) ≤ α f xt + β f 1 for every t ∈ T . Applying the positive
linear mappings Φt and integrating, we obtain∫

T
Φt ( f (xt ))dμ(t) ≤ α f

∫
T

Φ(xt)dμ(t)+ β f1.

Now, using operator monotonicity of F(·,v), we obtain

F

[∫
T

Φt ( f (xt))dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≤ F

[
α f

∫
T

Φt(xt)dμ(t)+ β f1,g

(∫
T

Φt(xt)dμ(t)
)]

≤ sup
m≤z≤M

F
[
α f z+ β f ,g(z)

]
1.

�

Numerous applications of the previous theorem can be given. For example, we give
generalizations of some results from [281].

Theorem 9.3 Let (At)t∈T be a continuous field of positive operators on a Hilbert space H
defined on a locally compact Hausdorff space T equipped with a bounded Radon measure
μ . We assume the spectra are in [m,M] for some 0 < m < M. Let furthermore (xt)t∈T be
a continuous field of vectors in H such that

∫
T ‖xt‖2dμ(t) = 1. Then for any λ ≥ 0, p ≥ 1

and q ≥ 1 we have(∫
T
〈Ap

t xt ,xt〉dμ(t)
)1/q

−λ
∫

T
〈Atxt ,xt〉dμ(t) ≤C(λ ,m,M, p,q), (9.4)

where the constant

C(λ ,m,M, p,q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M
(
M

p
q−1−λ

)
, 0 < λ ≤ αp

q
M

p
(

1
q−1

)

q−1
q

(
q

αp
λ
) 1

1−q

+
βp

αp
λ ,

αp

q
M

p
(

1
q−1

)
≤ λ ≤ αp

q
m

p
(

1
q−1

)

m
(
m

p
q−1−λ

)
,

αp

q
m

p
(

1
q−1

)
≤ λ

and αp and βp are the constants α f and β f associated with the function f (z) = zp.
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Proof. Applying Theorem 9.2 for the functions

f (z) = zp, F(u,v) = u1/q−λv,

and unital fields of positive linear mappings Φt : B(H) → C defined by setting Φt(At) =
〈Atxt ,xt〉 for t ∈ T , the problem is reduced to determine supm≤z≤M H(z) where H(z) =
(αpz+ βp)1/q−λ z. �

Applying Theorem 9.3 we obtain the following result with the r−geometric mean
A#rB.

Corollary 9.1 Let (At)t∈T and (Bt)t∈T be continuous fields of positive invertible opera-
tors on a Hilbert space H defined on a locally compact Hausdorff space T equipped with
a bounded Radon measure μ such that

m1IH ≤ At ≤ M1IH and m2IH ≤ Bt ≤ M2IH

for all t ∈ T for some 0 < m1 < M1 and 0 < m2 < M2. Then for any λ ≥ 0, s ≥ 1, p ≥ 1
and any continuous field (xt)t∈T of vectors in H such that

∫
T ‖xt‖2dμ(t) = 1 we have(∫

T
〈Ap

t xt ,xt〉dμ(t)
)1/p(∫

T
〈Bq

t xt ,xt〉dμ(t)
)1/q

−λ
∫

T
〈Bq

t #1/sA
p
t xt ,xt〉dμ(t)

≤C

(
λ ,

mp/s
1

Mq/s
2

,
Mp/s

1

mq/s
2

,s, p

)
Mq

2 ,

(9.5)

where the constant C is defined in Theorem 9.3 and 1/p+1/q = 1.

Proof. By using Theorem 9.3 we obtain for any λ ≥ 0, for any continuous field (Ct )t∈T

of positive operators with mIH ≤Ct ≤MIH and a square integrable continuous field (yt)t∈T

of vectors in H the inequality(∫
T
〈Cs

t yt ,yt〉dμ(t)
)1/p(∫

T
〈yt ,yt〉dμ(t)

)1/q

−λ
∫

T
〈Ctyt ,yt〉dμ(t)

≤C(λ ,m,M,s, p)
∫

T
〈yt ,yt〉dμ(t).

(9.6)

Set now Ct =
(
B−q/2

t Ap
t B−q/2

t

)1/s
and yt = Bq/2

t xt for t ∈ T in (9.6) and observe that

mp/s
1

Mq/s
2

IH ≤
(
B−q/2

t Ap
t B−q/2

t

)1/s ≤ Mp/s
1

mq/s
2

IH .

By using the definition of the 1/s−geometric mean and rearranging (9.6) we obtain(∫
T
〈Ap

t xt ,xt〉dμ(t)
)1/p(∫

T
〈Bq

t xt ,xt〉dμ(t)
)1/q

−λ
∫

T
〈Bq

t #1/sA
p
t xt ,xt〉dμ(t)

≤C

(
λ ,

mp/s
1

M
q/s
2

,
Mp/s

1

m
q/s
2

,s, p

)∫
T 〈Bq

t xt ,xt〉dμ(t) ≤C

(
λ ,

mp/s
1

Mq/s
2

,
Mp/s

1

mq/s
2

,s, p

)
Mq

2 ,

which gives (9.5). �
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In the present context we may obtain results of the Li-Mathias type by using Theo-
rem 9.2 and the following result which is a simple consequence of Theorem 9.1.

Theorem 9.4 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗−algebra A defined on a locally compact Hausdorff space T equipped with a
bounded Radon measure μ . We assume the spectra are in [m,M]. Let furthermore (Φt)t∈T

be a unital field of positive linear mappings Φt : A → B from A to another unital
C∗−algebra B. Let f ,g : [m,M]→R and F :U×V →R be functions such that f ([m,M])⊂
U, g([m,M]) ⊂V and F is bounded. If F is operator monotone in the first variable and f
is operator convex in the interval [m,M], then

F

[∫
T

Φt ( f (xt)) dμ(t),g
(∫

T
Φt (xt)dμ(t)

)]
≥ inf

m≤z≤M
F [ f (z),g(z)]1. (9.7)

In the dual case (when f is operator concave) the opposite inequality holds in (9.7) with
sup instead of inf.

We also give generalizations of some results from [46].

Theorem 9.5 Let f be a convex function on [0,∞) and let ‖ · ‖ be a normalized unitarily
invariant norm on B(H) for some finite dimensional Hilbert space H. Let (Φt)t∈T be a
unital field of positive linear mappings Φt : B(H) → B(K), where K is a Hilbert space,
defined on a locally compact Hausdorff space T equipped with a bounded Radon measure
μ . Then for every continuous field of positive operators (At)t∈T we have∫

T
Φt( f (At ))dμ(t) ≤ f (0)IK +

∫
T

f (‖At‖)− f (0)
‖At‖ Φt(At)dμ(t).

Especially, for f (0) ≤ 0, the inequality∫
T

Φt ( f (At))dμ(t) ≤
∫

T

f (‖At‖)
‖At‖ Φt(At)dμ(t). (9.8)

is valid.

Proof. Since f is a convex function, f (x) ≤ M−x
M−m f (m) + x−m

M−m f (M) for every x ∈
[m,M], m ≤ M. Since ‖ · ‖ is normalized and unitarily invariant, we have 0 < At ≤ ‖At‖IH
and thus

f (At) ≤ ‖At‖IH −At

‖At‖ f (0)+
At

‖At‖ f (‖At‖)
for every t ∈ T . Applying positive linear mappings and integrating we obtain∫

T
Φt( f (At ))dμ(t) ≤ f (0)

[
IK −

∫
T

Φt(At)
‖At‖ dμ(t)

]
+

∫
T

f (‖At‖)
‖At‖ Φt(At)dμ(t) (9.9)

or ∫
T

Φt( f (At ))dμ(t) ≤ f (0)IH +
∫
T

f (‖At‖)− f (0)
‖At‖ Φt (At)dμ(t).

Note that since
∫
T

Φt(At)
‖At‖ dμ(t)≤ ∫

T
‖At‖Φt(IH )

‖At‖ dμ(t) = IK , we obtain, for f (0) ≤ 0, inequal-
ity (9.8) from (9.9). �
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Remark 9.1 Setting T = {1} the inequality (9.8) gives

Φ( f (A)) ≤ f (‖A‖)
‖A‖ Φ(A).

Furthermore, setting that Φ is the identical mapping, we get the inequality f (‖A‖) ≥
‖ f (A)‖ obtained in [46] under the assumption that f is a non-negative convex function
with f (0) = 0.

Related inequalities may be obtained by using subdifferentials. If f : R→R is a convex
function and [m,M] is a closed bounded real interval, then a subdifferential function of f
on [m,M] is any function l : [m,M] → R such that

l(x) ∈ [ f ′−(x), f ′+(x)], x ∈ (m,M),

where f ′− and f ′+ are the one-sides derivatives of f and l(m) = f ′+(m) and l(M) = f ′−(M).
Since this functions are Borel measurable, we may use the Borel functional calculus. Sub-
differential function for concave functions is defined in analogous way.

Theorem 9.6 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a uni-
tal C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure μ , and let (Φt )t∈T be a unital field of positive
linear mappings Φt : A → B from A to another unital C∗-algebra B. If f : [m,M] → R

is a convex function then

f (y)1+ l(y)
(∫

T
Φt (xt)dμ(t)− y1

)
≤

∫
T

Φt ( f (xt))dμ(t)

≤ f (x)1− x
∫

T
Φt (l(xt))dμ(t)+

∫
T

Φt (l(xt)xt)dμ(t)
(9.10)

for every x,y ∈ [m,M], where l is the subdifferential of f on [m,M]. In the dual case ( f is
concave) the opposite inequality holds in (9.10).

Proof. Since f is convex we have f (x) ≥ f (y)+ l(y)(x− y) for every x,y ∈ [m,M]. By
using the functional calculus it then follows that f (xt ) ≥ f (y)1+ l(y)(xt − y1) for t ∈ T .
Applying the positive linear mappings Φt and integrating, LHS of (9.10) follows. The RHS
of (9.10) follows similarly by using the functional calculus in the variable y. �

Numerous inequalities can be obtained from (9.10). For example, LHS of (9.10) may
be used to obtain an estimation from below in the sense of Theorem 9.2. Namely, the
following theorem holds.

Theorem 9.7 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a uni-
tal C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure μ , and let (Φt )t∈T be a unital field of positive li-
near mappings Φt : A →B from A to another unitalC∗-algebra B. Let f ,g : [m,M]→R

and F : U ×V → R be functions such that f ([m,M]) ⊂U, g([m,M]) ⊂V, F is bounded, f
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is convex and f (y)+ l(y)(t− y) ∈U for every y,t ∈ [m,M] where l is the subdifferential of
f on [m,M]. If F is operator monotone in the first variable, then

F

[∫
T

Φt ( f (xt )) dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≥ inf

m≤z≤M
F [ f (y)+ l(y)(z− y),g(z)]1

(9.11)
for every y ∈ [m,M]. In the dual case (when f is concave) the opposite inequality holds in
(9.11) with sup instead of inf.

Using LHS of (9.10) we can give generalizations of some dual results from [46].

Theorem 9.8 Let (xt)t∈T be a bounded continuous field of positive elements in a unital
C∗-algebra A defined on a locally compact Hausdorff space T equipped with a bounded
Radon measure μ , and let (Φt)t∈T be a unital field of positive linear mappings Φt : A →B
from A to another unitalC∗-algebra B acting on a finite dimensional Hilbert space K. Let
‖ · ‖ be unitarily invariant norm on B(K) and let f : [0,∞) → R be an increasing function.

(1) If ‖1‖ = 1 and f is convex with f (0) ≤ 0 then

f

(
‖
∫

T
Φt(xt)dμ(t)‖

)
≤ ‖

∫
T

Φt( f (xt ))dμ(t)‖. (9.12)

(2) If
∫
T Φt(xt)dμ(t) ≤ ‖∫

T Φt (xt)dμ(t)‖1 and f is concave then∫
T

Φt( f (xt ))dμ(t) ≤ f

(
‖
∫

T
Φt(xt)dμ(t)‖

)
1. (9.13)

Proof. Since f (0)≤ 0 and f is increasing we have l(y)y− f (y)≥ 0 and l(y) ≥ 0. From
(9.10) and the triangle inequality we have

l(y)‖
∫

T
Φt(xt)dμ(t)‖ ≤ ‖

∫
T

Φt ( f (xt ))‖+(l(y)y− f (y)).

Now (9.12) follows by setting y = ‖∫
T Φt(xt)dμ(t)‖. Inequality (9.13) follows imme-

diately from the assumptions and from the dual case of LHS in (9.10) by setting y =
‖∫

T Φt (xt)dμ(t)‖. �

Finally, to illustrate how RHS of (9.10) works, we set

x =
‖∫

T Φt(l(xt)xt)dμ(t)‖
‖∫

T Φt(l(xt ))dμ(t)‖
and obtain a Slater type inequality∫

T
Φt ( f (xt))dμ(t) ≤ f

(‖∫
T Φt(l(xt )xt)dμ(t)‖

‖∫
T Φt (l(xt))dμ(t)‖

)
1

under the condition ∫
T Φt(l(xt )xt)dμ(t)

‖∫
T Φt(l(xt )xt)dμ(t)‖ ≤

∫
T Φt(l(xt))dμ(t)

‖∫
T Φt (l(xt))dμ(t)‖ .
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9.2 Non-unital fields of positive linear mappings

In this section we observe one type of non-unital fields of positive linear mappings, which
is a generalization of the results obtained in previous section.

Let T be a locally compact Hausdorff space with a bounded Radon measure μ . For
convenience, we use the abbreviation Pk[A ,B] for the set of all fields (Φt )t∈T of positive
linear mappings Φt : A → B from a unital C∗−algebra A to another unital C∗−algebra
B, such that the field t → Φt(1) is integrable with

∫
T Φt(1)dμ(t) = k1 for some positive

scalar k.

Let Φ be a normalized positive linear mapping on B(H) and f an operator convex func-
tion on an interval J. We recall that Jensen’s inequality asserts that f (Φ(A)) ≤ Φ( f (A))
holds for every self-adjoint operator A on a Hilbert space H whose the spectrum is con-
tained in J. But if Φ(1) = k1, for some positive scalar k, then f (Φ(A)) �≤ Φ( f (A)). Really,
let Φ : M2 (M2(C)) → M2 (M2(C)) be a positive linear mapping defined by

Φ
(

A 0
0 B

)
=

(
A+B 0

0 A+B

)
for A, B ∈ M2(C). Then Φ(I) = 2I. Let f (t) = t2. Then f is the operator convex function.
Put

A =
(

1 1
1 1

)
and B =

(
2 0
0 1

)
.

We have

f

(
Φ

(
A 0
0 B

))
−Φ

(
f

(
A 0
0 B

))

=

⎛⎜⎜⎝
10 5 0 0
5 5 0 0
0 0 10 5
0 0 5 5

⎞⎟⎟⎠−

⎛⎜⎜⎝
6 2 0 0
2 3 0 0
0 0 6 2
0 0 2 3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
4 3 0 0
3 2 0 0
0 0 4 3
0 0 3 2

⎞⎟⎟⎠ �≥ 0.

But, the following theorem is equivalent to Theorem 9.1.

Theorem 9.9 Let f : J → R be an operator convex function defined on an interval J, and
let A and B be unital C∗-algebras. Let T be a locally compact Hausdorff space with a
bounded Radon measure μ . If a field (Φt)t∈T ∈ Pk[A ,B], then the inequality

f

(
1
k

∫
T

Φt(xt)dμ(t)
)
≤ 1

k

∫
T

Φt( f (xt ))dμ(t) (9.14)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in J. In the dual case (when f is operator concave) the opposite inequality holds
in (9.14).
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In the present context we may obtain results of the Li-Mathias type, which is a genera-
lization of Theorem 9.2.

Theorem 9.10 Let A and B be unitalC∗-algebras. Let (xt)t∈T be a bounded continuous
field of self-adjoint elements in A with spectra in [m,M] defined on a locally compact
Hausdorff space T equippedwith a boundedRadon measure μ . Furthermore, let (Φt )t∈T ∈
Pk[A ,B] and f : [m,M] → R, g : [km,kM] → R and F : U ×V → R be functions such
that (k f )([m,M]) ⊂ U, g([km,kM]) ⊂ V and F is bounded. Let {conx.} (resp. {conc.})
denotes the set of operator convex (resp. operator concave) functions defined on [m,M]. If
F is operator monotone in the first variable, then

inf
km≤z≤kM

F

[
k ·h1

(
1
k
z

)
,g(z)

]
1 ≤ F [

∫
T Φt ( f (xt))dμ(t),g(

∫
T Φt(xt)dμ(t))]

≤ sup
km≤z≤kM

F

[
k ·h2

(
1
k
z

)
,g(z)

]
1

(9.15)

holds for every h1 ∈ {conx.}, h1 ≤ f and h2 ∈ {conc.}, h2 ≥ f .

Proof. We prove only RHS of (9.15). Let h2 be operator concave function on [m,M]
such that f (z) ≤ h2(z) for every z ∈ [m,M]. Thus, by using the functional calculus, f (xt )≤
h2(xt) for every t ∈ T . Applying the positive linear mappings Φt and integrating, we obtain∫

T
Φt ( f (xt ))dμ(t) ≤

∫
T

Φt (h2(xt))dμ(t).

Furthermore, by using Theorem 9.9, we have

∫
T

Φt (h2(xt)) dμ(t) ≤ k ·h2

(
1
k

∫
T

Φt(xt)dμ(t)
)

and it follows that
∫

T
Φt ( f (xt ))dμ(t)≤ k ·h2

(
1
k

∫
T

Φt(xt)dμ(t)
)

. Since mΦt(1)≤Φt(xt)

≤ M Φt(1), it follows that km1 ≤ ∫
T Φt(xt)dμ(t) ≤ kM 1. Using operator monotonicity of

F(·,v), we obtain

F

[∫
T

Φt ( f (xt))dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≤ F

[
k ·h2

(
1
k

∫
T

Φt(xt)dμ(t)
)

,g

(∫
T

Φt(xt)dμ(t)
)]

≤ sup
km≤z≤kM

F

[
k ·h2

(
1
k
z

)
,g(z)

]
1.

�
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Remark 9.2 Putting F(u,v) = u− v and F(u,v) = u−1/2vu−1/2 in Theorem 9.10, we ob-
tain that

inf
km≤z≤kM

{
k ·h1

(
1
k
z

)
−g(z)

}
1 ≤

∫
T

Φt ( f (xt))dμ(t)−g

(∫
T

Φt(xt)dμ(t)
)

≤ sup
km≤z≤kM

{
k ·h2

(
1
k
z

)
−g(z)

}
1

holds and if in addition g(t) > 0 for all t ∈ [m,M] then

inf
km≤z≤kM

k ·h1
(

1
k z

)
g(z)

g

(∫
T

Φt (xt)dμ(t)
)
≤

∫
T

Φt ( f (xt ))dμ(t)

≤ sup
km≤z≤kM

k ·h2
( 1

k z
)

g(z)
g

(∫
T

Φt(xt)dμ(t)
)

holds for every h1 ∈ {conx.}, h1 ≤ f and h2 ∈ {conc.}, h2 ≥ f .

Applying RHS of (9.15) for a convex function f (or LHS of (9.15) for a concave func-
tion f ) we obtain the following theorem (compare with Theorem 9.2).

Theorem 9.11 Let (xt)t∈T and (Φt)t∈T be as in Theorem 9.10. Let f : [m,M] → R, g :
[km,kM] →R and F :U×V → R be functions such that (k f )([m,M])⊂U, g([km,kM])⊂
V and F is bounded. If F is operator monotone in the first variable and f is convex in the
interval [m,M], then

F

[∫
T

Φt ( f (xt ))dμ(t),g
(∫

T
Φt (xt)dμ(t)

)]
≤ sup

km≤z≤kM
F
[
α f z+ β f k,g(z)

]
1. (9.16)

In the dual case (when f is concave) the opposite inequality holds in (9.16) with inf instead
of sup.

Proof. We prove only the convex case. For convex f the inequality f (z) ≤ α f z+ β f

holds for every z ∈ [m,M]. Thus, by putting h2(z) = α f z+ β f in RHS of (9.15) we obtain
(9.16). �

Numerous applications of the previous theorem can be given. Namely, applying Theo-
rem 9.11 for the function F(u,v) = u−λv, we obtain the following result.

Corollary 9.2 Let (xt)t∈T and (Φt)t∈T be as in Theorem 9.10. If f : [m,M]→R is convex
in the interval [m,M] and g : [km,kM] → R, then for any λ ∈ R∫

T
Φt ( f (xt ))dμ(t)≤ λ g

(∫
T

Φt(xt)dμ(t)
)

+C1, (9.17)

where
C = sup

km≤z≤kM

{
α f z+ β f k−λg(z)

}
.
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If furthermore λg is strictly convex differentiable, then the constant C ≡C(m,M, f ,g,k,λ )
can be written more precisely as

C = α f z0 + β f k−λg(z0),

where

z0 =

⎧⎨⎩ g′−1(α f /λ ) if λg′(km) ≤ α f ≤ λg′(kM),
km if λg′(km) ≥ α f ,
kM if λg′(kM) ≤ α f .

In the dual case (when f is concave and λg is strictly concave differentiable) the oppo-
site inequality holds in (9.17) with min instead of max with the opposite condition while
determining z0.

Remark 9.3 We assume that (xt)t∈T and (Φt)t∈T are as in Theorem 9.10. If f : [m,M] →
R is convex and λg : [km,kM] → R is strictly concave differentiable, then the constant
C ≡C(m,M, f ,g,k,λ ) in (9.17) can be written more precisely as

C =

{
α f kM + β f k−λg(kM) if α f −λ αg,k ≥ 0,

α f km+ β f k−λg(km) if α f −λ αg,k ≤ 0,

where

αg,k =
g(kM)−g(km)

kM− km
.

Setting Φt (At) = 〈Atxt ,xt〉 for xt ∈H and t ∈ T in Corollary 9.2 and Remark 9.3 give a
generalization of all results from [96, Section 2.4]. For example, we obtain the following
two corollaries.

Corollary 9.3 Let (At)t∈T be a continuous field of positive operators on a Hilbert space
H defined on a locally compact Hausdorff space T equipped with a bounded Radon mea-
sure μ . We assume the spectra are in [m,M] for some 0 < m < M. Let furthermore (xt)t∈T

be a continuous field of vectors in H such that
∫
T ‖xt‖2dμ(t) = k for some scalar k > 0.

Then for any real λ ,q, p∫
T
〈Ap

t xt ,xt〉dμ(t)−λ
(∫

T
〈Atxt ,xt〉dμ(t)

)q

≤C, (9.18)

where the constant C ≡C(λ ,m,M, p,q,k) is

C =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(q−1)λ

(
αp

λq

)q/(q−1)

+ βpk if λqmq−1 ≤ αp

kq−1 ≤ λqMq−1,

kMp −λ (kM)q if
αp

kq−1 ≥ λqMq−1,

kmp−λ (km)q if
αp

kq−1 ≤ λqmq−1,

(9.19)

in the case λq(q−1) > 0 and p ∈ R\ (0,1)
or

C =

{
kMp −λ (kM)q if αp−λkq−1αq ≥ 0,

kmp−λ (km)q if αp−λkq−1αq ≤ 0,
(9.20)
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in the case λq(q−1) < 0 and p∈R\(0,1). In the dual case: λq(q−1) < 0 and p∈ (0,1)
the opposite inequality holds in (9.18) with the opposite condition while determining the
constant C in (9.19). But in the dual case: λq(q− 1) > 0 and p ∈ (0,1) the opposite
inequality holds in (9.18) with the opposite condition while determining the constant C in
(9.20).

Constants αp and βp in the terms above are the constants α f and β f associated with
the function f (z) = zp.

Corollary 9.4 Let (At)t∈T and (xt)t∈T be as in Corollary 9.3. Then for any real number
r �= 0 we have ∫

T
〈exp(rAt)xt ,xt〉dμ(t)− exp

(
r
∫

T
〈Atxt ,xt〉dμ(t)

)
≤C1, (9.21)

∫
T
〈exp(rAt)xt ,xt〉dμ(t) ≤C2 exp

(
r
∫

T
〈Atxt ,xt〉dμ(t)

)
, (9.22)

where constants C1 ≡C1(r,m,M,k) and C2 ≡C2(r,m,M,k) are

C1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α
r

log
( α

re

)
+ kβ if rerkm ≤ α ≤ rerkM,

kMα + kβ − erkM if rerkM ≤ α,

kmα + kβ − erkm if rerkm ≥ α,

C2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α
re

ekrβ/α if krerm ≤ α ≤ krerM,

ke(1−k)rm if krerm ≥ α,

ke(1−k)rM if krerM ≤ α.

Constants α and β in the terms above are the constants α f and β f associated with the
function f (z) = erz.

By using subdifferentials we can give an estimation from below in the sense of The-
orem 9.11 (compare with Theorem 9.6). It follows from Theorem 9.10 applying LHS of
(9.15) for a convex function f (or RHS of (9.15) for a concave function f ).

Theorem 9.12 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space
T equipped with a bounded Radon measure μ . Let (Φt)t∈T ∈ Pk[A ,B]. Furthermore, let
f : [m,M]→R, g : [km,kM]→R and F :U×V →R be functions such that (k f )([m,M])⊂
U, g([km,kM]) ⊂V, F is bounded and f (y)+ l(y)(t− y) ∈U for every y,t ∈ [m,M] where
l is the subdifferential of f . If F is operator monotone in the first variable and f is convex
on [m,M], then

F

[∫
T

Φt ( f (xt)) dμ(t),g
(∫

T
Φt(xt)dμ(t)

)]
≥ inf

km≤z≤kM
F [ f (y)k+ l(y)(z− yk),g(z)]1

(9.23)
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holds for every y ∈ [m,M]. In the dual case (when f is concave) the opposite inequality
holds in (9.23) with sup instead of inf.

Proof. We prove only the convex case. Since f is convex we have f (z) ≥ f (y) +
l(y)(z− y) for every z,y ∈ [m,M]. Thus, by putting h1(z) = f (y)+ l(y)(z− y) in LHS of
(9.15) we obtain (9.23). �

Though f (z) = logz is operator concave, Jensen’s inequality Φ( f (x)) ≤ f (Φ(x)) does
not hold in the case of non-unital Φ. However, as applications of Corollary 9.2 and Theo-
rem 9.12, we obtain the following corollary.

Corollary 9.5 Let (xt)t∈T and (Φt)t∈T be as in Theorem 9.12 for 0 < m < M. Then

C11 ≤
∫

T
Φt (log(xt)) dμ(t)− log

(∫
T

Φt(xt)dμ(t)
)
≤C21, (9.24)

where constants C1 ≡C1(m,M,k) and C2 ≡C2(m,M,k) are

C1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kβ + log(e/L(m,M)) if km ≤ L(m,M) ≤ kM,

log
(
Mk−1/k

)
if kM ≤ L(m,M),

log
(
mk−1/k

)
if km ≥ L(m,M),

C2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
log

(
L(m,M)kkk−1

ekm

)
+

m
L(m,M)

if m ≤ kL(m,M) ≤ M

log
(
Mk−1/k

)
if kL(m,M) ≥ M,

log
(
mk−1/k

)
if kL(m,M) ≤ m,

and the logarithmic mean L(m,M), β is the constant β f associated with the function f (z) =
logz.

Proof. We set f (z) ≡ g(z) = logz in Corollary 9.2. Then we obtain the lower bound
C1 when we determine min

km≤z≤kM
(αz+ kβ − logz).

Next, we shall obtain the upper boundC2. We set F(u,v)= u−v and f (z)≡ g(z)= logz
in Theorem 9.12. We obtain∫

T
Φt (log(xt)) dμ(t)− log

(∫
T

Φt(xt)dμ(t)
)

≤ max

{
log

(
yk

ekkm

)
+

km
y

, log

(
yk

ekkM

)
+

kM
y

}
1

for every y ∈ [m,M], since h(z) = k logy + 1
y (z− ky)− logz is a convex function and it

implies that
max

km≤z≤kM
h(z) = max{h(km),h(kM)}.
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Now, if m ≤ kL(m,M) ≤ M, then we choose y = kL(m,M). In this case we have
h(km) = h(kM). But, if m ≥ kL(m,M), then it follows 0 < k ≤ 1, which implies that
max{h(km),h(kM)} = h(km) for every y ∈ [m,M]. In this case we choose y = m, since

h(y) = log

(
yk

ekkm

)
+

km
y

is an increasing function in [m,M]. If M ≤ kL(m,M), then the

proof is similar to above. �

By using subdifferentials, we also give generalizations of Theorem 9.6.

Theorem 9.13 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with spectra in [m,M] defined on a locally compact Hausdorff space
T equipped with a bounded Radon measure μ , and let (Φt)t∈T ∈ Pk[A ,B]. If the field t →
Φt (1) is integrable with

∫
T Φt(1)dμ(t) = k1 for some positive scalar k and f : [m,M] → R

is a convex function then

f (y)k1+ l(y)
(∫

T
Φt (xt)dμ(t)− yk1

)
≤

∫
T

Φt( f (xt ))dμ(t)

≤ f (x)k1− x
∫

T
Φt(l(xt))dμ(t)+

∫
T

Φt(l(xt)xt)dμ(t)
(9.25)

for every x,y ∈ [m,M], where l is the subdifferential of f . In the dual case ( f is concave)
the reverse inequality is valid in (9.25).

Remark 9.4 In the case (Φt )t∈T ∈ Pk[A ,B] we may obtain analogues results as in The-
orems 9.5 and 9.8. The interested reader may be read the details in [202].

9.3 Ratio type inequalities with power functions

In this section we consider the ratio type ordering among the following power functions of
operators:

Fr(x,ΦΦ) :=
(∫

T
Φt (xr

t )dμ(t)
)1/r

, r ∈ R\{0} (9.26)

under these conditions: (xt)t∈T is a bounded continuous field of positive operators in a
unitalC∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and (Φt)t∈T ∈
Pk[A ,B]

As an application, we consider a generalization of the weighted power means of ope-
rators:

Mr(x,ΦΦ) :=
(∫

T

1
k

Φt (xr
t )dμ(t)

)1/r

, r ∈ R\{0} (9.27)

under the same conditions as above.
We need some previous results given in the following three lemmas.
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Lemma 9.1 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt )t∈T ∈
Pk[A ,B].

If 0 < p ≤ 1, then∫
T

Φt
(
xp
t

)
dμ(t) ≤ k1−p

(∫
T

Φt(xt)dμ(t)
)p

. (9.28)

If −1 ≤ p < 0 or 1 ≤ p ≤ 2, then the reverse inequality is valid in (9.28).

Proof. We obtain this lemma by applying Theorem 9.9 for the function f (z) = zp and
using the proposition that it is an operator concave function for 0 < p ≤ 1 and an operator
convex one for −1 ≤ p < 0 and 1 ≤ p ≤ 2. �

Lemma 9.2 Assume that the conditions of Lemma 9.1 hold.
If 0 < p ≤ 1, then

k1−pK(m,M, p)
(∫

T
Φt (xt)dμ(t)

)p

≤
∫

T
Φt

(
xp
t

)
dμ(t) ≤ k1−p

(∫
T

Φt (xt)dμ(t)
)p

,

(9.29)
if −1 ≤ p < 0 or 1 ≤ p ≤ 2, then

k1−p
(∫

T
Φt(xt)dμ(t)

)p

≤
∫

T
Φt

(
xp
t

)
dμ(t) ≤ k1−pK(m,M, p)

(∫
T

Φt (xt)dμ(t)
)p

,

(9.30)
if p < −1 or p > 2, then

k1−pK(m,M, p)−1
(∫

T
Φt (xt)dμ(t)

)p

≤
∫

T
Φt

(
xp
t

)
dμ(t)

≤ k1−pK(m,M, p)
(∫

T
Φt(xt)dμ(t)

)p

,
(9.31)

where K(m,M, p) is the generalized Kantorovich constant by (2.29).

Proof. We obtain this lemma by applying Corollary 9.2 for the function f (z) ≡ g(z) =
zp and choosing λ such that C = 0. �

We shall need some properties of the generalized Specht ratio Δ(h,r,s) (see (8.35) and
Figure 9.1).

Lemma 9.3 Let M > m > 0, r ∈ R and

Δ(h,r,1) =
r(h−hr)

(1− r)(hr−1)

(
hr −h

(r−1)(h−1)

)−1/r

, h =
M
m

.

(i) A function Δ(r) ≡ Δ(h,r,1) is strictly decreasing for all r ∈ R,
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�(r)

r

h

1/h

S(h)

1

Figure 9.1: Function Δ(r) ≡ Δ(h,r,1)

(ii) lim
r→1

Δ(h,r,1) = 1 and lim
r→0

Δ(h,r,1) = S(h),

where the Specht ratio S(h) is defined by (2.35).

(iii) lim
r→∞

Δ(h,r,1) = 1/h and lim
r→−∞

Δ(h,r,1) = h.

Proof.

(i) We write Δ(r) = Δ1(r) ·Δ2(r), where

Δ1(r) =
r(hr −h)

(r−1)(hr −1)
, Δ2(r) =

(
hr −h

(r−1)(h−1)

)−1/r

. (9.32)

By using differential calculus we shall prove that a function Δ1 is strictly decreasing
for all r �= 0,1. We have

d
dr Δ1(r) = −1

(r−1)2(hr−1)2 ((hr −1)(hr−h)− (r−1)rhr(h−1) logh)

= − hr(h−1) logh
(r−1)2(hr−1)2 f (r), (9.33)

where f (r) = (hr−1)(hr−h)
hr(h−1) logh − (r−1)r. Stationary points of the function f are 0, 0.5,

1 and it is a strictly decreasing function on (−∞,0)∪ (0.5,1) and strictly increasing
on (0,0.5)∪ (1,∞). Also, f (0) = f (1) = 0. So, f (r) > 0 for all r �= 0,1. (More

exactly, f ′′′(r) = log2 h
h−1

(
hr −h1−r

)
imply that the function f ′′ is strictly increasing

on (0.5,∞) and strictly decreasing on (−∞,0.5). It follows that f ′(r) < 0 for r ∈
(−∞,0)∪ (0.5,1) and f ′(r) > 0 for r ∈ (0,0.5)∪ (1,∞).) Now, using (9.33) we have
that d

dr Δ1(r) < 0 for all r �= 0,1 and it follows that Δ1 is strictly decreasing function.

Further, in the case of a function Δ2 in (9.32), we obtain

d
dr Δ2(r) = −1

(r−1)r2(hr−h)

(
hr−h

(r−1)(h−1)

)−1/r

×
[
r(r−1)hr logh− r(hr−h)+ (r−1)(hr−h) log

(
(r−1)(h−1)

hr−h

)]
.
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By using differential calculus we can prove that a function

r �→ r(r−1)hr logh− r(hr−h)+ (r−1)(hr−h) log

(
(r−1)(h−1)

hr −h

)
is positive for all r �= 0,1. So d

dr Δ2(r) < 0 for all r �= 0,1 and it follows that Δ2 is
strictly decreasing function.

(ii) Using the definition of the generalized Specht ratio (8.35), we have Δ(h,r,1) =
K(hr,1/r) if r �= 0. Now, we have K(h,1) = 1 by using Theorem 2.12 and
lim
r→0

K(hr,1/r) = S(h) by using Theorem 2.17.

(iii) We have by L’Hospital’s theorem

lim
r→∞

log((r−1)(h−1)/(hr−h))
r

= lim
r→∞

(
1

r−1
− hr logh

hr −h

)
= − logh.

So

lim
r→∞

Δ(h,r,1) = lim
r→∞

r
r−1

· h
r −h

hr −1
·
(

(r−1)(h−1)
hr −h

)1/r

= e− logh = 1/h.

Similarly, we obtain lim
r→−∞

Δ(h,r,1) = h.

�

Now, we give the ratio type ordering among power functions.

Theorem 9.14 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt )t∈T ∈
Pk[A ,B]. Let regions (i) – (v)1 be as in Figure 9.2.
If (r,s) in (i), then

k
s−r
rs Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
rs Fs(x,ΦΦ),

if (r,s) in (ii) or (iii), then

k
s−r
rs Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
rs Δ(h,r,s) Fs(x,ΦΦ),

if (r,s) in (iv), then

k
s−r
rs Δ(h,s,1)−1Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ)

≤ k
s−r
rs min{Δ(h,r,1),Δ(h,s,1)Δ(h,r,s)} Fs(x,ΦΦ),

if (r,s) in (v) or (iv)1 or (v)1, then

k
s−r
rs Δ(h,s,1)−1Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
rs Δ(h,s,1) Fs(x,ΦΦ),

where Δ(h,r,s), rs �= 0 is defined by (8.35).
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1/2

1/2

(i)

(ii) s 1, -1 < r < 1/2, r 0,

<

=

(iv)

r s, s (-1,1), r (-1,1)
1/2 r 1 s
r -1 s -1/2,

or
or

� �i� �i

-s r < s/2, r 0, 0 < s 1,=
1/2

1/2

1

1 1

1

� �
�v
1

� �
�v
1

�
�v 1

�
�v 1

� �i i� �i i

� �v� �v
� �i i i� �i i i

� �i� �i

� �i� �i

(iv)1

2s r s, -1 r < 0.(v)1

r s 2r, 0 < s 1,

(v) r/2 < s -r, s 0, -1 r < 0,=

� �i v� �i v

r -1, -1/2 < s < 1, s 0,=(iii)

Figure 9.2: Regions in the (r,s)-plain

Proof. This theorem follows from Lemma 9.2 by putting p = s/r or p = r/s and then
using the Löwner-Heinz theorem, Theorem 4.3 and Lemma 9.3. We give the proof for the
sake of completeness.

We put p = s/r in Lemma 9.2 and replace xt by xr
t . Applying the Löwner-Heinz

inequality if s ≥ 1 or s ≤ −1 and using that K (mr,Mr ,s/r)1/s = K (Mr,mr,s/r)1/s =
Δ(h,r,s), we obtain:
(a) If r ≤ s ≤−1 or 1 ≤ s ≤−r or 0 < r ≤ s ≤ 2r, s ≥ 1, then

k
r−s
sr Fr(x,ΦΦ) ≤ Fs(x,ΦΦ) ≤ k

r−s
sr Δ(h,r,s) Fr(x,ΦΦ). (9.34)

(b) If 0 < −r < s, s ≥ 1 or 0 < 2r < s, s ≥ 1, then

k
r−s
sr Δ(h,r,s)−1 Fr(x,ΦΦ) ≤ Fs(x,ΦΦ) ≤ k

r−s
sr Δ(h,r,s) Fr(x,ΦΦ). (9.35)

Applying Theorem 4.3 if−1≤ s≤ 1 and using that K (kms,kMs,1/s)= K (ms,Ms,1/s)
= Δ(h,s,1), we obtain:
(c) If r ≤ s, −1 ≤ s < 0 or s ≤−r, 0 < s ≤ 1 or 0 < r ≤ s ≤ 2r, s ≤ 1, then

k
r−s
sr Δ(h,s,1)−1 Fr(x,ΦΦ) ≤ Fs(x,ΦΦ) ≤ k

r−s
sr Δ(h,s,1) Δ(h,r,s) Fr(x,ΦΦ). (9.36)

(d) If 0 < −r < s ≤ 1 or 0 < 2r < s ≤ 1, then

k
r−s
sr Δ(h,s,1)−1Δ(h,r,s)−1 Fr(x,ΦΦ) ≤ Fs(x,ΦΦ)

≤ k
r−s
sr Δ(h,s,1)Δ(h,r,s) Fr(x,ΦΦ).

(9.37)

Similarly, putting p = r/s in Lemma 9.2 and replace xt by xs
t , we obtain:

(a1) If 1 ≤ r ≤ s or −s ≤ r ≤−1 or 2s ≤ r ≤ s < 0, r ≤−1, then

k
s−r
sr Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
sr Fs(x,ΦΦ). (9.38)
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(b1) If r < −s < 0, r ≤−1 or r < 2s < 0, r ≤−1, then

k
s−r
sr Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
sr Δ(h,r,s) Fs(x,ΦΦ). (9.39)

(c1) If r ≤ s, 0 < r ≤ 1 or −s ≤ r, −1 ≤ r < 0 or 2s ≤ r ≤ s < 0, r ≥−1, then

k
s−r
sr Δ(h,r,1)−1Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ) ≤ k

s−r
sr Δ(h,r,1) Fs(x,ΦΦ). (9.40)

(d1) If −1 ≤ r < −s < 0 or −1 ≤ r < 2s < 0, then

k
s−r
sr Δ(h,r,1)−1Δ(h,r,s)−1 Fs(x,ΦΦ) ≤ Fr(x,ΦΦ)

≤ k
s−r
sr Δ(h,r,1)Δ(h,r,s) Fs(x,ΦΦ).

(9.41)

Now, we have that in cases (a) and (a1) the inequality (9.34) holds and in cases (b)
and (b1) the inequality (9.35) holds. If we put r = 1 in RHS of (9.38) for 1 ≤ r ≤ s then
we obtain ∫

T

1
k

Φt (xt)dμ(t)≤
(∫

T

1
k

Φt (xs
t )dμ(t)

)1/s

, if s ≥ 1.

Next, applying LHS of (9.34) for s = 1 and 0 < r ≤ s ≤ 2r, we have(∫
T

1
k

Φt (xr
t )dμ(t)

)1/r

≤
∫

T

1
k

Φt (xt)dμ(t).

The assumption s ≥ 1 implies(∫
T

1
k

Φt (xr
t )dμ(t)

)1/r

≤
∫

T

1
k

Φt (xt)dμ(t) ≤
(∫

T

1
k

Φt (xs
t )dμ(t)

)1/s

(9.42)

for 1/2≤ r ≤ 1≤ s. Similarly, putting s =−1 in LHS of (9.34) for r ≤ s≤−1 and r =−1
in RHS of (9.38) for 2s≤ r≤ s < 0, we can obtain that (9.42) holds for r ≤−1≤ s≤−1/2.
Consequently, we obtain that (9.34) holds in the region (i) and (9.35) holds in the regions
(ii) and (iii).

In remainder cases we can choose better bounds. In the region (iv) inequalities (9.37)
and (9.40) hold. Now, by Lemma 9.3 we have

Δ(h,r,1) ≥ Δ(h,s,1) if r ≤ s, (9.43)

and we get
Δ(h,s,1)−1Δ(h,r,s)−1 ≥ Δ(h,r,1)−1Δ(h,r,s)−1.

It follows that k
s−r
sr Δ(h,s,1)−1Δ(h,r,s)−1 is a better lower bound. The upper bound is equal

k
s−r
sr ·min{Δ(h,r,1),Δ(h,s,1)Δ(h,r,s)}.

In the region (v) inequalities (9.36) and (9.41) hold. We have that k
s−r
sr Δ(h,s,1)−1Δ(h,r,s)−1

is a better lower bound, since (9.43) holds. The upper bound is equal

k
s−r
sr ·min{Δ(h,s,1),Δ(h,r,1)Δ(h,r,s)} = k

s−r
sr ·Δ(h,s,1),

since (9.43) holds and Δ(h,r,s) ≥ 1 by (2.32).
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In the regions (iv)1 and (v)1 inequalities (9.36) and (9.40) hold. Analogously to the
case above we obtain that the bounds in the inequality (9.36) are better. �

Finally, we give the ratio type ordering among means (9.27).

Corollary 9.6 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T ∈
Pk[A ,B]. Let regions (i) – (v)1 be as in Figure 9.2.
If (r,s) in (i), then

Δ(h,r,s)−1 Ms(x,ΦΦ) ≤ Mr(x,ΦΦ) ≤ Ms(x,ΦΦ),

if (r,s) in (ii) or (iii), then

Δ(h,r,s)−1 Ms(x,ΦΦ) ≤ Mr(x,ΦΦ) ≤ Δ(h,r,s) Ms(x,ΦΦ),

if (r,s) in (iv), then

Δ(h,s,1)−1Δ(h,r,s)−1 Ms(x,ΦΦ) ≤ Mr(x,ΦΦ)
≤ min{Δ(h,r,1),Δ(h,s,1)Δ(h,r,s)} Ms(x,ΦΦ),

if (r,s) in (v) or (iv)1 or (v)1, then

Δ(h,s,1)−1Δ(h,r,s)−1 Ms(x,ΦΦ) ≤ Mr(x,ΦΦ) ≤ Δ(h,s,1) Ms(x,ΦΦ),

where Δ(h,r,s), rs �= 0, is defined by (8.35).

Proof. It is sufficient to multiply each inequality in Theorem 9.14 by k−1/r. �

9.4 Difference type inequalities with power functions

In this section we consider the difference type ordering among the power functions (9.26).
As an application, we consider the weighted power means (9.27).

We need some previous results given in the following two lemmas.

Lemma 9.4 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T ∈
Pk[A ,B].
If 0 < p ≤ 1, then

αp

∫
T

Φt(xt)dμ(t)+ kβp1 ≤
∫

T
Φt(x

p
t )dμ(t) ≤ k1−p

(∫
T

Φt(xt)dμ(t)
)p

, (9.44)
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if −1 ≤ p < 0 or 1 ≤ p ≤ 2, then

k1−p
(∫

T
Φt (xt)dμ(t)

)p

≤
∫

T
Φt(x

p
t )dμ(t) ≤ αp

∫
T

Φt(xt)dμ(t)+ kβp1, (9.45)

if p < −1 or p > 2, then

pyp−1
∫

T
Φt(xt)dμ(t)+ k(1− p)yp1 ≤

∫
T

Φt(x
p
t )dμ(t) ≤ αp

∫
T

Φt(xt)dμ(t)+ kβp1

(9.46)
for every y ∈ [m,M]. Constants αp and βp are the constants α f and β f associated with the
function f (z) = zp.

Proof. RHS of (9.44) and LHS of (9.45) are proven in Lemma 9.1. LHS of (9.44) and
RHS of (9.45) and (9.46) follow from Corollary 9.2 for f (z) = zp, g(z) = z and λ = αp.
LHS of (9.46) follows from LHS of (9.25) in Theorem 9.13 putting f (y) = yp and l(y) =
pyp−1. �

Remark 9.5 Setting y = (αp/p)1/(p−1) ∈ [m,M] the inequality (9.46) gives

αp
∫
T Φt(xt)dμ(t)+ k(1− p)(αp /p)p/(p−1)1 ≤ ∫

T Φt (x
p
t )dμ(t)

≤ αp
∫
T Φt(xt)dμ(t)+ kβp1

for p < −1 or p > 2.
Furthermore, setting y = m or y = M gives

pmp−1 ∫
T Φt(xt)dμ(t)+ k(1− p)mp1 ≤ ∫

T Φt(x
p
t )dμ(t)

≤ αp
∫
T Φt(xt)dμ(t)+ kβp1 (9.47)

or

pMp−1 ∫
T Φt(xt)dμ(t)+ k(1− p)Mp1 ≤ ∫

T Φt (x
p
t )dμ(t)

≤ αp
∫
T Φt(xt)dμ(t)+ kβp1. (9.48)

We remark that the operator in LHS of (9.47) is positive for p > 2, since

0 < kmp1 ≤ pmp−1 ∫
T Φt(xt)dμ(t)+ k(1− p)mp1

≤ k(pmp−1M +(1− p)mp)1 < kMp1 (9.49)

and the operator in LHS of (9.48) is positive for p < −1, since

0 < kMp1 ≤ pMp−1 ∫
T Φt(xt)dμ(t)+ k(1− p)Mp1

≤ k(pMp−1m+(1− p)Mp)1 < kmp1. (9.50)

(We have the inequality pmp−1M +(1− p)mp < Mp in RHS of (9.49) and pMp−1m+
(1− p)Mp < mp in RHS of (9.50) by using Bernoulli’s inequality.)
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C(r)

r

M-m

m-M

1

L(m,M) lnS(M/m)

Figure 9.3: Function C(r) ≡C(mr,Mr,1/r)

We shall need some properties of the Kantorovich constant for the differenceC(m,M, p)
(see (2.38) and Figure 9.3).

Lemma 9.5 Let M > m > 0, r ∈ R and

C(mr,Mr ,1/r) :=
1− r

r

(
r

M−m
Mr −mr

)1/(1−r)

+
Mrm−mrM

Mr −mr .

(i) A function C(r) ≡C(mr,Mr,1/r) is strictly decreasing for all r ∈ R,

(ii) lim
r→1

C(mr,Mr ,1/r) = 0 and lim
r→0

C(mr,Mr,1/r) = L(m,M) logS(M/m),

where L(m,M) is the logarithmic mean and the Specht ratio S(h) is defined by (2.35).

(iii) lim
r→∞

C(mr,Mr ,1/r) = m−M and lim
r→−∞

C(mr,Mr,1/r) = M−m.

Proof.

(i) We have by a differential calculation

d
dr

C(r)

=
(

r
M−m

Mr −mr

)1/(1−r)(mr logm−Mr logM
r(Mr −mr)

+
1

r(1− r)
log

r(M−m)
Mr −mr

)
+

Mrmr(M−m) log(m/M)
(Mr −mr)2 .

Both of functions

r �→ mr logm−Mr logM
r(Mr −mr)

+
1

r(r−1)
log

Mr −mr

r(M−m)

and

r �→ Mrmr(M−m) log(m/M)
(Mr −mr)2

are negative for all r �= 0,1. So d
drC(r) < 0 and the function C is strictly decreasing.
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(ii) We have by L’Hospital’s theorem

lim
r→1

log(r(M−m)/(Mr −mr))
1− r

= −1+
M logM−m logm

M−m
,

so

lim
r→1

1− r
r

(
r

M−m
Mr −mr

)1/(1−r)

= 0 · e−1+(M logM−m logm)/(M−m) = 0.

Also,

lim
r→1

Mrm−mrM
Mr −mr = lim

r→1
m

hr −h
hr −1

= 0, h =
M
m

> 1.

Then, lim
r→1

C(mr,Mr,1/r) = 0. Using Theorem 2.24, we have

lim
r→0

C(mr,Mr, p/r) = L(mp,Mp) logS(hp) for all p ∈ R and h = M/m,

so we obtain lim
r→0

C(mr,Mr ,1/r) = L(m,M) logS(M/m).

(iii) We have by L’Hospital’s theorem

lim
r→∞

log(r(M−m)/(Mr −mr))
1− r

= lim
r→∞

Mrm−mrM
Mr −mr = logM,

so

lim
r→∞

1− r
r

(
r

M−m
Mr −mr

)1/(1−r)

= −1 · elogM = −M.

Also,

lim
r→∞

Mrm−mrM
Mr −mr = lim

r→∞
m

hr −h
hr −1

= m, h =
M
m

> 1.

Then, lim
r→∞

C(mr,Mr,1/r) = m−M.

Similarly, we obtain lim
r→−∞

C(mr,Mr,1/r) = M−m.

�

Also, we need the following function order of positive operators.

Theorem 9.15 Let A,B be positive operators in B(H).
If A ≥ B > 0 and the spectrum Sp(B) ⊆ [m,M] for some scalars 0 < m < M, then

Ap +C(m,M, p)1 ≥ Bp for all p ≥ 1.

But, if A ≥ B > 0 and the spectrum Sp(A) ⊆ [m,M], 0 < m < M, then

Bp +C(m,M, p)1 ≥ Ap for all p ≤−1,

where the Kantorovich constant for the difference C(m,M, p) is defined by (2.38).
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Proof. Refer to [191, Corollary 1] for the proof. �

Now, we give the the difference type ordering among power functions.

Theorem 9.16 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T ∈
Pk[A ,B]. Let regions (i)1 – (v)1 be as in Figure 9.2.

Then
C21 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤C11, (9.51)

where constants C1 ≡C1(m,M,s,r,k) and C2 ≡C2(m,M,s,r,k) are

C1 =

{
Δ̃k if (r,s) in (i)1 or (ii)1 or (iii)1;

Δ̃k +min{Ck(s),Ck(r)} if (r,s) in (iv) or (v) or (iv)1 or (v)1;

C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1/s − k1/r)m, if (r,s) in (i)1;

D̃k, if (r,s) in (ii)1;

Dk, if (r,s) in (iii)1;

max
{

D̃k −Ck(s),
(
k1/s− k1/r

)
m−Ck(r)

}
, if (r,s) in (iv);

max
{
Dk −Ck(r),

(
k1/s− k1/r

)
m−Ck(s)

}
, if (r,s) in (v);

(k1/s − k1/r)m−min{Ck(r),Ck(s)} , if (r,s) in (iv)1 or (v)1.

A constant Δ̃k ≡ Δ̃k(m,M,r,s) is

Δ̃k = max
θ∈[0,1]

{
k1/s[θMs +(1−θ )ms]1/s− k1/r[θMr +(1−θ )mr]1/r

}
,

a constant D̃k ≡ D̃k(m,M,r,s) is

D̃k = min

{(
k

1
s − k

1
r

)
m,k

1
s m

(
s
Mr −mr

rmr +1

) 1
s

− k
1
r M

}
,

Dk ≡ Dk(m,M,r,s) = −D̃k(M,m,s,r) and the Kantorovich constant for the difference
Ck(p) ≡Ck(m,M, p) is defined by (2.38).

Proof. This theorem follows from Lemma 9.4 by putting p = s/r or p = r/s and then
using the Löwner-Heinz theorem, Theorem 9.15 and Lemma 9.5. We give the proof for
the sake of completeness.

By Lemma 9.4 by putting p = s/r or p = r/s and then using the Löwner-Heinz in-
equality and Theorem 9.15 we have the following inequalities.
(a) If r ≤ s ≤−1 or 1 ≤ s ≤−r or 0 < r ≤ s ≤ 2r, s ≥ 1, then(

k1/s− k1/r
)

m1 ≤
(
k

r−s
rs −1

)
Fr(x,ΦΦ) ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≤
(

α̃
∫

T
Φt (xr

t )dμ(t)+ kβ̃1
)1/s

−Fr(x,ΦΦ) ≤ Δ̃k1.
(9.52)
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(b) If 0 < −r < s, s ≥ 1 or 0 < 2r < s, s ≥ 1, then

m

(
s
r
m−r

∫
T

Φt (xr
t )dμ(t)+ k

r− s
r

1
)1/s

−Fr(x,ΦΦ) ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≤
(

α̃
∫

T
Φt(xr

t )dμ(t)+ kβ̃1
)1/s

−Fr(x,ΦΦ) ≤ Δ̃k1.

(9.53)

(c) If r ≤ s, −1 ≤ s < 0 or s ≤−r, 0 < s ≤ 1 or 0 < r ≤ s ≤ 2r, s ≤ 1, then((
k1/s − k1/r

)
m−Ck(s)

)
1 ≤

(
k

r−s
rs −1

)
Fr(x,ΦΦ)−Ck(s)1

≤ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≤
(

α̃
∫

T
Φt(xr

t )dμ(t)+ kβ̃1
)1/s

−Fr(x,ΦΦ)+Ck(s)1 ≤
(

Δ̃k +Ck(s)
)

1.

(9.54)

(d) If 0 < −r < s ≤ 1 or 0 < 2r < s ≤ 1, then

m

(
s
r
m−r

∫
T

Φt(xr
t )dμ(t)+ k

r− s
r

1
)1/s

−Fr(x,ΦΦ)−Ck(s)1

≤ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≤
(

α̃
∫

T
Φt(xr

t )dμ(t)+ kβ̃1
)1/s

−Fr(x,ΦΦ)+Ck(s)1 ≤
(

Δ̃k +Ck(s)
)

1.

(9.55)

Moreover, we can obtain the following inequalities:
(a1) If 1 ≤ r ≤ s or −s ≤ r ≤−1 or 2s ≤ r ≤ s < 0, r ≤−1, then

Δ̃k1 ≥ Fs(x,ΦΦ)−
(

ᾱ
∫

T
Φt(xs

t )dμ(t)+ kβ̄1
)1/r

≥ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≥
(
1− k

s−r
rs

)
Fs(x,ΦΦ) ≥

(
k1/s − k1/r

)
m1.

(9.56)

(b1) If r < −s < 0, r ≤−1 or r < 2s < 0, r ≤−1, then

Δ̃k1 ≥ Fs(x,ΦΦ)−
(

ᾱ
∫

T
Φt(xs

t )dμ(t)+ kβ̄1
)1/r

≥ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≥ Fs(x,ΦΦ)−M

(
r
s
M−s

∫
T

Φt(xs
t )dμ(t)+ k

s− r
s

1
)1/r

.

(9.57)

(c1) If r ≤ s, 0 < r ≤ 1 or −s ≤ r, −1 ≤ r < 0 or 2s ≤ r ≤ s < 0, r ≥−1, then

(Δ̃k +Ck(r))1 ≥ Fs(x,ΦΦ)−
(

ᾱ
∫

T
Φt (xs

t )dμ(t)+ kβ̄1
)1/r

+Ck(r)1

≥ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≥
(
1− k

s−r
rs

)
Fs(x,ΦΦ)−Ck(r)1 ≥

((
k1/s− k1/r

)
m−Ck(r)

)
1.

(9.58)
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(d1) If −1 ≤ r < −s < 0 or −1 ≤ r < 2s < 0, then

(Δ̃k +Ck(r))1 ≥ Fs(x,ΦΦ)−
(

ᾱ
∫

T
Φt(xs

t )dμ(t)+ kβ̄1
)1/r

+Ck(r)1

≥ Fs(x,ΦΦ)−Fr(x,ΦΦ)

≥ Fs(x,ΦΦ)−M

(
r
s
M−s

∫
T

Φt(xs
t )dμ(t)+ k

s− r
s

1
)1/r

−Ck(r)1,

where we denote

α̃ = Ms−ms

Mr−mr , β̃ = Mrms−Msmr

Mr−mr , ᾱ = Mr−mr

Ms−ms , β̄ = Msmr−Mrms

Ms−ms ,

C (kms,kMs,1/s) = k1/s C (ms,Ms,1/s) = Ck(s),

Δ̃k = max
z∈T̄1

{
k1/s

(
α̃ z+ β̃

)1/s− k1/rz1/r
}

= max
z∈T̄2

{
k1/sz1/s− k1/r (ᾱ z+ β̄

)1/r
}
,

and T̄1 and T̄2 denote the closed intervals joining mr to Mr and ms to Ms, respectively.
We will determine lower bounds in LHS of (b) and (d), in RHS of (b1) and (d1).
For LHS of (9.53) we can obtain

m

(
s
r
m−r

∫
T

Φt (xr
t )dμ(t)+ k

r− s
r

1
)1/s

−Fr(x,ΦΦ)

≥ minz∈T̄1

{
k1/sm

(
s
rm

−rz+1− s
r

)1/s− k1/rz1/r
}

1 = D̃k1.

(9.59)

Really, using substitution z = rmr
(
x− 1

s

)
, finding the minimum of the function h(z) =

k1/sm
(

s
r m

−rz+ r−s
r

)1/s − k1/rz1/r on T̄1 is equivalent to finding the minimum of h1(x) =

k1/sm
(
s(x− 1

r )
)1/s − k1/rm

(
r(x− 1

s )
)1/r

on T̄ = [ 1
s + 1

r ,
1
s + 1

r
Mr

mr ]. The domain of h1 is

S = [ 1
r ,∞) for r > 0 or S = [ 1

r ,
1
s ) for r < 0. We have h′′1(x) = k1/sm(1−s)

(
s(x− 1

r )
)1/s−2−

k1/rm(1−r)
(
r(x− 1

s )
)1/r−2

. If r<1 and s≥1 then h′′1(x)<0, since k1/sm(1−s)
(
s(x− 1

r )
)1/s−2

≤ 0 < k1/rm(1− r)
(
r(x− 1

s )
)1/r−2

. It follows that h1 is concave on S for r < 1 and s ≥ 1.
In this case we obtain

min
z∈T̄1

h(z) = min
x∈T̄

h1(x) = min

{
h1

(
1
s

+
1
r

)
,h1

(
1
s

+
1
r

Mr

mr

)}
= D̃k. (9.60)

If 1 < r < s, then we have limx→ 1
r
h1(x) = −k1/rm( s−r

s )
1
r < 0, limx→∞ h1(x) = −∞. If

x0 > 1
r is the stationary point of the function h1, then h1(x0) is the maximum value,

since h′′1(x0) = k
1
s m

(
s(x0− 1

r )
)1/s−2 (

r(x0 − 1
s )

)−1 (r− s)(x0 + 1− r+s
rs ) < 0. It follows

that (9.60) is also true in this case.
So in the case (b) we obtain:

D̃k1 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤ Δ̃k1 (9.61)
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and in the case (d) we obtain:(
D̃k −Ck(s)

)
1 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤

(
Δ̃k +Ck(s)

)
1. (9.62)

Similarly, for the RHS of (9.57) we obtain

Fs(x,ΦΦ)−M

(
r
s
M−s

∫
T

Φt(xr
t )dμ(t)+ k

s− r
s

1
)1/r

≥ min
z∈T̄2

{
k1/sz1/s − k1/rM

( r
s
M−sz+1− r

s

)1/r
}

1

= min

{
k1/sm− k1/rM

(
r
s

ms

Ms +1− r
s

)1/r

,
(
k1/s− k1/r

)
M

}
1

= Dk1.

So in the case (b1) we obtain:

Dk1 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤ Δ̃k1 (9.63)

and in the case (d1) we obtain:(
Dk −Ck(r)

)
1 ≤ Fs(x,ΦΦ)−Fr(x,ΦΦ) ≤

(
Δ̃k +Ck(r)

)
1. (9.64)

Finally, we can obtain desired bounds C1 and C2 in (9.51), taking into account that
(9.52) holds in the region (i)1, (9.61) holds in (ii)1, (9.63) holds in (iii)1, (9.62) and (9.58)
hold in (iv), (9.54) and (9.64) hold in (v), (9.54) and (9.58) hold in (iv)1 and (v)1. �

Finally, we give the difference type ordering among means (9.27).

Corollary 9.7 Let (xt)t∈T be a bounded continuous field of positive operators in a unital
C∗-algebra A with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt )t∈T ∈
Pk[A ,B]. Let regions (i) – (v)1 be as in Figure 9.2.
If (r,s) in (i), then

0 ≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ Δ̃1,

if (r,s) in (ii), then(
m

(
s
r
Mr

mr +1− s
r

)1/s

−M

)
1 ≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ Δ̃1,

if (r,s) in (iii), then(
m−M

(
r
s

ms

Ms +1− r
s

)1/r
)

1 ≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ Δ̃1,
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if (r,s) in (iv), then

max

{
m
(

s
r

Mr

mr + r−s
r

)1/s −M− C(ms,Ms,1/s),−C (mr,Mr ,1/r)
}

1

≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ (
Δ̃+C(ms,Ms,1/s)

)
1,

if (r,s) in (v) or (iv)1 or (v)1, then

−C(ms,Ms,1/s)1 ≤ Ms(x,ΦΦ)−Mr(x,ΦΦ) ≤ (
Δ̃ +C(ms,Ms,1/s)

)
1,

where a constant Δ̃ ≡ Δ̃(m,M,r,s) is

Δ̃ = max
θ∈[0,1]

{
[θMs +(1−θ )ms]1/s− [θMr +(1−θ )mr]1/r

}
and the Kantorovich constant for the difference C(n,N, p) is defined by (2.38).

Proof. This corollary follows from Theorem 9.16 putting k = 1, and then replac-
ing Φt by 1

k Φt , t ∈ T . Finally we choose a better bounds using that C(mr,Mr ,1/r) ≥
C(ms,Ms,1/s) holds for r ≤ s by (9.43) and D̃k = D̃1 = m

(
sMr−mr

rmr +1
) 1

s −M, since

1− M
m < 1−

(
s
r

Mr

mr +
(
1− s

r

)) 1
s

holds by (9.49) and (9.50). �

9.5 Quasi-arithmetic means

In this section we give the order among the following generalized quasi-arithmetic operator
means

Mϕ(x,ΦΦ) = ϕ−1
(∫

T

1
k

Φt (ϕ(xt))dμ(t)
)

, (9.65)

under these conditions (xt)t∈T is a bounded continuous field of positive operators in a uni-
talC∗-algebra A with spectra in [m,M] for some scalars m < M, (Φt)t∈T ∈Pk[A ,B]
and ϕ ∈ C [m,M] is a strictly monotone function.

We denote Mϕ(x,ΦΦ) shortly with Mϕ . It is easy to see that the mean Mϕ is well defined.
As a special case of (9.65), we may consider the power operator mean (9.27), which is

studied in Sections 9.3 and 9.4.
First, we study the monotonicity of quasi-arithmetic means.

Theorem 9.17 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65). Let ψ ,ϕ ∈ C [m,M] be strictly monotone functions.
If one of the following conditions
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(i) ψ ◦ϕ−1 is operator convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is operator concave and −ψ−1 is operator monotone

is satisfied, then
Mϕ ≤ Mψ . (9.66)

If one of the following conditions

(ii) ψ ◦ϕ−1 is operator concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is operator convex and −ψ−1 is operator monotone

is satisfied, then the reverse inequality is valid in (9.66).

Proof. We prove only the case (i). If we put f = ψ ◦ϕ−1 in Theorem 9.9 and replace
xt with ϕ(xt), then we obtain

ψ ◦ϕ−1
(∫

T

1
k

Φt (ϕ(xt))dμ(t)
)
≤

∫
T

1
k

Φt (ψ(xt))dμ(t). (9.67)

Since ψ−1 is operator monotone, it follows that

ϕ−1
(∫

T

1
k

Φt (ϕ(xt))dμ(t)
)
≤ ψ−1

(∫
T

1
k

Φt (ψ(xt))dμ(t)
)

,

which is the desired inequality (9.66). �

We can give the following generalization of the previous theorem.

Corollary 9.8 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65). Let ψ ,ϕ ∈ C [m,M] be strictly monotone functions and F : [m,M]× [m,M] → R be
a bounded and operator monotone function in its first variable, such that F(z,z) = C for
all z ∈ [m,M].
If one of the following conditions

(i) ψ ◦ϕ−1 is operator convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is operator concave and −ψ−1 is operator monotone

is satisfied, then
F
[
Mψ ,Mϕ

]≥C1. (9.68)

If one of the following conditions

(ii) ψ ◦ϕ−1 is operator concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is operator convex and −ψ−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (9.68).
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Proof. Suppose (i) or (i’). Then by Theorem 9.17 we have Mϕ ≤ Mψ . Using assump-
tions about function F , it follows

F
[
Mψ ,Mϕ

]≥ F
[
Mϕ ,Mϕ

]≥ inf
m≤z≤M

F(z,z)1 = C1.

In the remaining cases the proof is essentially the same as in previous cases. �

Theorem 9.18 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions.

(i) If ϕ−1 is operator convex and ψ−1 is operator concave, then

Mϕ ≤ M1 ≤ Mψ . (9.69)

(ii) If ϕ−1 is operator concave and ψ−1 is operator convex then the reverse inequality
is valid in (9.69).

Proof. We prove only the case (i): Using Theorem 9.9 for a operator convex function
ϕ−1 on [ϕm,ϕM], we have

Mϕ = ϕ−1
(

1
k

∫
T

Φt (ϕ(xt))dμ(t)
)
≤ 1

k

∫
T

Φt (xt)dμ(t) = M1,

which gives LHS of (9.69). Similarly, since ψ−1 is operator concave on J = [ψm,ψM], we
have

M1 =
1
k

∫
T

Φt (xt)dμ(t)≤ ψ−1
(

1
k

∫
T

Φt (ψ(xt))dμ(t)
)

= Mψ ,

which gives RHS of (9.69). �

Theorem 9.19 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions. Then

Mϕ = Mψ for all (xt)t∈T , (Φt)t∈T

if and only if
ϕ = Aψ +B for some real numbers A �= 0 and B.

Proof. The case ϕ = Aψ +B ⇒ Mϕ = Mψ is obvious.
Mϕ = Mψ ⇒ ϕ = Aψ +B: Let

ϕ−1
(

1
k

∫
T

Φt (ϕ(xt))dμ(t)
)

= ψ−1
(

1
k

∫
T

Φt (ψ(xt))dμ(t)
)

for all (xt)t∈T and (Φt )t∈T . Setting yt = ϕ(xt) ∈ B(H), ϕm1 ≤ yt ≤ ϕM1, we obtain

ψ ◦ϕ−1
(∫

T

1
k

Φt (yt)dμ(t)
)

=
∫

T

1
k

Φt
(
ψ ◦ϕ−1(yt)

)
dμ(t)
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for all (yt)t∈T and (Φt)t∈T . M. D. Choi showed in [35, Theorem 2.5] that if Φ : A → B
is a positive linear mapping, f is a non-affine operator convex function on (−a,a), and
f (Φ(x)) = Φ( f (x)) for all Hermitian x in C∗-algebra A with spectra in (−a,a), then Φ is
a C∗-homomorphism. Similarly as above, in our case we can obtain that ψ ◦ϕ−1 is affine,
i.e. ψ ◦ϕ−1(u) = Au + B for some real numbers A �= 0 and B, which gives the desired
connection: ψ(v) = Aϕ(v)+B. �

Using properties of operator monotone or operator convex functions we can obtain
some corollaries of Theorems 9.17 and 9.18. E.g. we have the following corollary.

Corollary 9.9 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and 0 ≤ m < M. Let ϕ and ψ be continuous strictly monotone functions from [0,∞)
into itself.
If one of the following conditions

(i) ψ ◦ϕ−1 and ψ−1 are operator monotone,

(ii) ϕ ◦ψ−1 is operator convex, ϕ ◦ψ−1(0) = 0 and ψ−1 is operator monotone

is satisfied, then
Mψ ≤ M1 ≤ Mϕ .

Specially, if one of the following conditions

(ii) ψ−1 is operator monotone,

(ii’) ψ−1 is operator convex and ϕ(0) = 0,

is satisfied, then
M1 ≤ Mψ .

Proof. This theorem follows directly from Theorem 9.17.
We prove only the case (i). We use the statement: a bounded below function f ∈

C([α,∞)) is operator monotone iff f is operator concave and we apply Theorem 9.17-(ii).
�

Example 9.1 If we put ϕ(t) = tr, ψ(t) = ts or ϕ(t) = ts, ψ(t) = tr in Theorem 9.17 and
Theorem 9.18, then we obtain (cf. Corollary 9.6)

Mr(x,ΦΦ) ≤ Ms(x,ΦΦ)

for either r ≤ s, r �∈ (−1,1), s �∈ (−1,1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤−1 ≤ s ≤−1/2.

Next, we study the difference and ratio type inequalities among quasi-arithmeticmeans.
With that in mind, we shall prove the following general result.

Theorem 9.20 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65). Let ψ ,ϕ ∈ C [m,M] be strictly monotone functions and let F : [m,M]× [m,M] → R

be a bounded and operator monotone function in its first variable.
If one of the following conditions



248 9 JENSEN’S OPERATOR INEQUALITY

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then

F
[
Mψ ,Mϕ

]≤ sup
0≤θ≤1

F
[
ψ−1 (θψ(m)+ (1−θ )ψ(M),ϕ−1 (θϕ(m)+ (1−θ )ϕ(M))

)]
1.

(9.70)
If one of the following conditions

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the opposite inequality is valid in (9.70) with inf instead of sup.

Proof. We prove only the case (i). Since f ∈ C [m,M] is convex then

f (z) ≤ M− z
M−m

f (m)+
z−m
M−m

f (M)

holds for any z ∈ [m,M]. Replacing f by ψ ◦ ϕ−1, and z by ϕ(z) and introducing the
notation ϕm = min{ϕ(m),ϕ(M)}, ϕM = max{ϕ(m),ϕ(M)}, we have

ψ(z) ≤ ϕM −ϕ(z)
ϕM −ϕm

ψ ◦ϕ−1(ϕm)+
ϕ(z)−ϕm

ϕM −ϕm
ψ ◦ϕ−1(ϕM), for any z ∈ [m,M].

Thus, replacing z by xt for t ∈ T , applying the positive linear mappings 1
k Φt and inte-

grating, we obtain that

∫
T

1
k

Φt (ψ(xt))dμ(t) ≤ ϕM1− ∫
T

1
k Φt (ϕ(xt))dμ(t)

ϕM −ϕm
ψ ◦ϕ−1(ϕm)

+
∫
T

1
k Φt (ϕ(xt))dμ(t)−ϕm1

ϕM −ϕm
ψ ◦ϕ−1(ϕM)

(9.71)

holds, since
∫
T

1
k Φt (1)dμ(t) = 1. We denote briefly

B =
ϕ(M)1− ∫

T
1
k Φt (ϕ(xt))dμ(t)

ϕ(M)−ϕ(m)
. (9.72)

Since 0 ≤ ϕ(M)1− ∫
T

1
k Φt (ϕ(xt))dμ(t) ≤ (ϕ(M)−ϕ(m))1 holds for a increasing func-

tion ϕ or (ϕ(M)−ϕ(m))1 ≤ ϕ(M)1− ∫
T

1
k Φt (ϕ(xt))dμ(t) ≤ 0 holds for a decreasing

function ϕ , then 0 ≤ B ≤ 1 holds for any monotone function ϕ . It is easy to check that the
inequality (9.71) becomes∫

T

1
k

Φt (ψ(xt))dμ(t) ≤ Bψ(m)+ (1−B)ψ(M).
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Next, applying an operator monotone function ψ−1 to the above inequality, we obtain

Mψ = ψ−1
(∫

T

1
k

Φt (ψ(xt))dμ(t)
)
≤ ψ−1 (Bψ(m)+ (1−B)ψ(M)).

Also, using (9.72), we can write

Mϕ = ϕ−1
(∫

T

1
k

Φt (ϕ(xt))dμ(t)
)

= ϕ−1 (Bϕ(m)+ (1−B)ϕ(M)).

Finally using operator monotonicity of F(·,v), we have

F
[
Mψ ,Mϕ

]
≤ F

[
ψ−1 (Bψ(m)+ (1−B)ψ(M)),ϕ−1 (Bϕ(m)+ (1−B)ϕ(M))

]
≤ sup

0≤θ≤1
F
[
ψ−1 (θψ(m)+ (1−θ )ψ(M),ϕ−1 (θϕ(m)+ (1−θ )ϕ(M))

)]
1,

which is the desired inequality (9.70). �

Remark 9.6 We can obtain similar inequalities as in Theorem 9.20 when F : [m,M]×
[m,M] → R is a bounded and operator monotone function in its second variable.

If the functionF in Theorem 9.20 has the form F(u,v)= u−v and F(u,v)= v−1/2uv−1/2

(v > 0), we obtain the difference and ratio type inequalities.

Corollary 9.10 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and let ψ ,ϕ ∈ C [m,M] be strictly monotone functions.
If one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(ii) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then

Mψ ≤ Mϕ + max
0≤θ≤1

{
ψ−1 (θψ(M)+ (1−θ )ψ(m))−ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
.

If in addition ϕ > 0 on [m,M], then

Mψ ≤ max
0≤θ≤1

{
ψ−1 (θψ(M)+ (1−θ )ψ(m))
ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
Mϕ .

If one of the following conditions

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the opposite inequalities are valid with min instead of max.
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We will give a complementary result to (i) or (i’) of Theorem 9.17 under the assump-
tion that ψ ◦ϕ−1 is operator convex and ψ−1 is not operator monotone. In the following
theorem we give a general result.

Theorem 9.21 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65). Let ψ ,ϕ ∈ C [m,M] be strictly monotone functions and F : [m,M]× [m,M] → R be
a bounded and operator monotone function in its first variable.
If one of the following conditions

(i) ψ ◦ϕ−1 is operator convex and ψ−1 is increasing convex,

(i’) ψ ◦ϕ−1 is operator concave and ψ−1 is decreasing convex,

is satisfied, then

F
[
Mϕ ,Mψ

]≤ sup
0≤θ≤1

F
[
θM +(1−θ )m,ψ−1 (θψ(M)+ (1−θ )ψ(m))

]
1. (9.73)

If one of the following conditions

(ii) ψ ◦ϕ−1 is operator convex and ψ−1 is decreasing concave,

(ii’) ψ ◦ϕ−1 is operator concave and ψ−1 is increasing concave,

is satisfied, then the opposite inequality is valid in (9.73) with inf instead of sup.

Proof. We prove only the case (i): If we put f = ψ ◦ϕ−1 in Theorem 9.9 and replace
xt with ϕ(xt), then we obtain (see (9.67))

ψ(Mϕ) ≤ ψ(Mψ) (9.74)

Since ψ−1 is increasing, then ψ(m)1 ≤ ψ(Mϕ) ≤ ψ(M)1, and also since ψ−1 is convex
we have

Mϕ = ψ−1(ψ(Mϕ))

≤ M−m
ψ(M)−ψ(m)

(
ψ(Mϕ)−ψ(m)1

)
+m1 by convexity of ψ−1

≤ M−m
ψ(M)−ψ(m)

(
ψ(Mψ)−ψ(m)1

)
+m1 by increase of ψ and (9.74).

Now, operator monotonicity of F(·,v) give

F
[
Mϕ ,Mψ

] ≤ F

[
M−m

ψ(M)−ψ(m)
(
ψ(Mψ )−ψ(m)1

)
+m1,ψ−1(ψ(Mψ )

)]
≤ sup

ψ(m)≤z≤ψ(M)
F

[
M−m

ψ(M)−ψ(m)
(z−ψ(m))+m,ψ−1 (z)

]
1

= sup
0≤θ≤1

F
[
θM +(1−θ )m,ψ−1 (θψ(M)+ (1−θ )ψ(m))

]
1,

which is the desired inequality (9.73). �
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Remark 9.7 Similar to Corollary 9.10, by using Theorem 9.21 we have the following
results.
Let one of the following conditions

(i) ψ ◦ϕ−1 is operator convex and ψ−1 is increasing convex,

(i’) ψ ◦ϕ−1 is operator concave and ψ−1 is decreasing convex

be satisfied. Then

Mϕ ≤ Mψ + max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
1,

and if, additionally, ψ > 0 on [m,M], then

Mϕ ≤ max
0≤θ≤1

{
θM +(1−θ )m

ψ−1 (θψ(M)+ (1−θ )ψ(m))

}
Mψ .

Let one of the following conditions

(ii) ψ ◦ϕ−1 is operator convex and ψ−1 is decreasing concave,

(ii’) ψ ◦ϕ−1 is operator concave and ψ−1 is increasing concave

be satisfied. Then the opposite inequalities are valid with min instead of max.

In the following theorem we give the complementary result to the one given in the
above remark.

Theorem 9.22 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions.

(i) ψ ◦ϕ−1 is operator convex and ψ−1 is decreasing convex,

(i’) ψ ◦ϕ−1 is operator concave and ψ−1 is increasing convex

be satisfied. Then

Mψ ≤ Mϕ + max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
1, (9.75)

and if, additionally, ψ > 0 on [m,M], then

Mψ ≤ max
0≤θ≤1

{
θM +(1−θ )m

ψ−1 (θψ(M)+ (1−θ )ψ(m))

}
Mϕ . (9.76)

Let one of the following conditions

(ii) ψ ◦ϕ−1 is operator convex and ψ−1 is increasing concave,

(ii’) ψ ◦ϕ−1 is operator concave and ψ−1 is decreasing concave
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be satisfied. Then the opposite inequality is valid in (9.75) with min instead of max.
If, additionally, ψ > 0 on [m,M], then the opposite inequality is valid in (9.76) with

min instead of max.

Proof. We prove only the case (i): Since ψ ◦ϕ−1 is operator convex, then ψ(Mϕ ) ≤
ψ(Mψ ) holds. Next, for every unit vector x ∈ H we have

〈Mϕx,x〉
= 〈ψ−1 ◦ψ(Mϕ)x,x〉
≥ ψ−1〈ψ(Mϕ)x,x〉 by convexity of ψ−1

≥ ψ−1〈ψ(Mψ)x,x〉 by decrease of ψ−1 and operator convexity ψ ◦ϕ−1

≥ 〈Mψx,x〉− max
ψ(M)≤z≤ψ(m)

{
m−M

ψ−1(m)−ψ−1(M)
(z−m)+ ψ−1(m)−ψ−1(z)

}
by convexity of ψ−1 and using the Mond-Pečarić method

= 〈Mψx,x〉− max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
and hence we have the desired inequality (9.75).

Similarly, we can check that (9.76) holds. �

We will give a complementary result to Theorem 9.18. In the following theorem we
give a general result.

Theorem 9.23 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions and F : [m,M]× [m,M] → R be
a bounded and operator monotone function in its first variable.

(i) If ϕ−1 is operator convex and ψ−1 is concave, then

F [Mϕ ,Mψ ] ≤ sup
0≤θ≤1

F
[
θM +(1−θ )m,ψ−1 (θψ(M)+ (1−θ )ψ(m))

]
1. (9.77)

(ii) If ϕ−1 is convex and ψ−1 is operator concave, then

F[Mψ ,Mϕ ] ≥ inf
0≤θ≤1

F
[
θM +(1−θ )m,ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

]
1. (9.78)

Proof. We prove only the case (i): Using LHS of (9.69) for an operator convex function
ϕ−1 and then operator monotonicity of F(·,v) we have

F [Mϕ ,Mψ ] ≤ F [M1,Mψ ].

If we put ψ = ι the identity function and replace ϕ by ψ in (9.70), we obtain

F
[
M1,Mψ

]≤ sup
0≤θ≤1

F
[
θM +(1−θ )m,ψ−1 (θψ(M)+ (1−θ )ψ(m))

]
1.

Combining two above inequalities we have the desired inequality. �
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Corollary 9.11 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions.
If ϕ−1 is convex and ψ−1 is concave, then

Mϕ ≤ Mψ (9.79)

+ max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
1

+ max
0≤θ≤1

{
ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))−θM− (1−θ )m

}
1,

and if, additionally, ϕ > and ψ > 0 on [m,M], then

Mϕ ≤ max
0≤θ≤1

{
θM +(1−θ )m

ψ−1 (θψ(M)+ (1−θ )ψ(m))

}
(9.80)

× max
0≤θ≤1

{
ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

θM +(1−θ )m

}
Mψ .

Proof. If we put F(u,v) = u−v and ϕ = ι in (9.77), then for any concave function ψ−1

we have

M1 −Mψ ≤ max
0≤θ≤1

{
θM +(1−θ )m−ψ−1(θψ(M)+ (1−θ )ψ(m))

}
1.

Similarly, if we put ψ = ι in (9.78), then for any convex function ϕ−1 we have

M1 −Mϕ ≥ min
0≤θ≤1

{
θM +(1−θ )m−ϕ−1(θϕ(M)+ (1−θ )ϕ(m))

}
1.

Combining two above inequalities we have the inequality (9.79).
We have (9.80) by a similar method. �

If we use conversions of Jensen’s inequality (9.1), we obtain the following two corol-
laries.

Corollary 9.12 Let (xt)t∈T , (Φt )t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions. Let ψ ◦ϕ−1 be convex (resp.
concave).

(i) If ψ−1 is operator monotone and operator subadditive (resp. operator superaddi-
tive) on R, then

Mψ ≤ Mϕ + ψ−1(β )1
(
resp. Mψ ≥ Mϕ + ψ−1(β )1

)
, (9.81)

(i’) if −ψ−1 is operator monotone and operator subadditive (resp. operator superaddi-
tive) on R, then the reverse inequality is valid in (9.73),

(ii) if ψ−1 is operator monotone and operator superadditive (resp. operator subaddi-
tive) on R, then

Mψ ≤ Mϕ −ϕ−1(−β )1
(
resp. Mψ ≥ Mϕ −ϕ−1(−β )1

)
, (9.82)
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(ii’) if −ψ−1 is operator monotone and operator superadditive (resp. operator subaddi-
tive) on R, then the reverse inequality is valid in (9.81),

where

β = max
0≤θ≤1

{
θψ(M)+ (1−θ )ψ(m)−ψ ◦ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
(9.83)

(resp. β = min
0≤θ≤1

{
θψ(M)+ (1−θ )ψ(m)−ψ ◦ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
.)

Proof. We prove the case (i) only and when ψ ◦ϕ−1 is convex: Putting F(u,v) = u− v
and f = g = ψ ◦ϕ−1 in Theorem 9.11, we have:

ψ(Mψ ) =
∫

T

1
k

Φt
(
ψ ◦ϕ−1 (ϕ(xt))

)
dμ(t) ≤ ψ ◦ϕ−1 (ϕ(Mϕ)

)
+ β1, (9.84)

where

β = max
ϕm≤z≤ϕM

{
ψ(M)−ψ(m)
ϕ(M)−ϕ(m)

(z−ϕm)+ ψ ◦ϕ−1(ϕm)−ψ ◦ϕ−1(z)
}

which gives (9.83). Since ψ−1 is operator monotone and subadditive on R, then by using
(9.84) we obtain

Mψ ≤ ψ−1 (ψ(Mϕ )+ β1
)≤ Mϕ + ψ−1(β )1.

�

Corollary 9.13 Let (xt)t∈T , (Φt)t∈T be as in the definition of the quasi-arithmetic mean
(9.65) and ψ ,ϕ ∈ C [m,M] be strictly monotone functions. Let ψ ◦ ϕ−1 be convex and
ψ > 0 (resp. ψ < 0) on [m,M].

(i) If ψ−1 is operator monotone and operator submultiplicative on R, then

Mψ ≤ ψ−1(α)Mϕ , (9.85)

(i’) if −ψ−1 is operator monotone and operator submultiplicative on R, then the reverse
inequality is valid in (9.85),

(ii) if ψ−1 is operator monotone and operator supermultiplicative on R, then

Mψ ≤ [
ψ−1(α−1)

]−1
Mϕ , (9.86)

(ii’) if −ψ−1 is operator monotone and operator supermultiplicative on R, then the re-
verse inequality is valid in (9.86),

where

α = max
0≤θ≤1

{
θψ(M)+ (1−θ )ψ(m)

ψ ◦ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
(9.87)(

resp. α = min
0≤θ≤1

{
θψ(M)+ (1−θ )ψ(m)

ψ ◦ϕ−1 (θϕ(M)+ (1−θ )ϕ(m))

}
.

)
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Proof. The proof is essentially the same as that of Corollary 9.12 and we omit details.
�

Remark 9.8 We note that if ψ ◦ϕ−1 is a concave function, we can obtain similar inequa-
lities as in Corollary 9.13. We use the same way as we did in Corollary 9.12.
E.g. if ψ > 0 (resp. ψ < 0) on [m,M] is operator monotone and operator supermultiplica-
tive on R, then

Mψ ≥ ψ−1(α)Mϕ ,

with min instead of max in (9.87).

Example 9.2 If we put ϕ(t) = ts and ψ(t) = tr in inequalities involving the complemen-
tary order among quasi-arithmetic means, we can obtain the complementary order among
power means.
E.g. using Corollary 9.10, we obtain that (compare with Theorem 9.14)

Ms(x,ΦΦ) ≤ k
r−s
rs max

0≤θ≤1

{
r
√

(θMr +(1−θ )mr)
s
√

(θMs +(1−θ )ms)

}
Mr(x,ΦΦ)

holds for r ≤ s, s ≥ 1 or r ≤ s ≤−1, where

max
0≤θ≤1

{
r
√

(θMr +(1−θ )mr)
s
√

(θMs +(1−θ )ms)

}
= Δ(h,r,s)

is the generalized Specht ratio defined by (9.3), i.e.

Δ(h,r,s) =
{

r(hs −hr)
(s− r)(hr −1)

} 1
s
{

s(hr −hs)
(r− s)(hs −1)

}− 1
r

, h =
M
m

.

9.6 Some better bounds

In this section we study converses of a generalized Jensen’s inequality for a continuous
field of self-adjoint operators, a unital field of positive linear mappings and real values
continuous convex functions. We obtain some better bounds than the ones calculated in
Section 9.1 and a series of papers in which these inequalities are studied. As an application,
we provide a refined calculation of bounds in the case of power functions.

In the following theorem we give a general form of converses of Jensen’s inequality
which give a better bound than the one in Theorem 9.2.
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Theorem 9.24 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤Mx, be the bounds of the self-adjoint element x =

∫
T Φt(xt)dμ(t) and

f : [a,b]→ R, g : [mx,Mx] → R, F : U ×V → R, where f ([a,b])⊆U, g([mx,Mx]) ⊆V and
F be bounded.

If f is convex and F is operator monotone in the first variable, then

F

[∫
T
Φt( f (xt ))dμ(t) , g

(∫
T
Φt (xt)dμ(t)

)]
≤C1 1K ≤C1K , (9.88)

where constants C1 ≡C1(F, f ,g,m,M,mx,Mx) and C ≡C(F, f ,g,m,M) are

C1 := sup
mx≤z≤Mx

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

= sup
M−Mx
M−m ≤p≤M−mx

M−m

{F [p f (m)+ (1− p) f (M) , g(pm+(1− p)M)]} ,

C := sup
m≤z≤M

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

= sup
0≤p≤1

{F [p f (m)+ (1− p) f (M) , g(pm+(1− p)M)]} .

If f is concave, then the opposite inequality holds in (9.88) with inf instead of sup in
bounds C1 and C.

Proof. We prove only the convex case. Since mΦt (1H) ≤ Φt (xt) ≤ M Φt(1H) and∫
T Φt(1H)dμ(t) = 1K , then m1K ≤ ∫

T Φt(xt)dμ(t) ≤ M1K . Next, since mx and Mx, are the
bounds of the operator

∫
T Φt(xt)dμ(t) it follows that [mx,Mx] ⊆ [m,M].

By using convexity of f and functional calculus, we obtain∫
T

Φt ( f (xt))dμ(t) ≤
∫

T
Φt

(
M1H − xt

M−m
f (m)+

xt −m1H

M−m
f (M)

)
dμ(t)

=
M1K − ∫

T Φt(xt)dμ(t)
M−m

f (m)+
∫
T Φt(xt)dμ(t)−m1K

M−m
f (M).

Using operator monotonicity of u �→ F(u,v) and boundedness of F , it follows

F

[∫
T
Φt( f (xt ))dμ(t) , g

(∫
T
Φt(xt)dμ(t)

)]
≤ F

[
M1K − ∫

T Φt(xt)dμ(t)
M−m

f (m)+
∫
T Φt(xt)dμ(t)−m1K

M−m
f (M) , g

(∫
T
Φt (xt)dμ(t)

)]
≤ sup

mx≤z≤Mx

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

1K

≤ sup
m≤z≤M

{
F

[
M− z
M−m

f (m)+
z−m
M−m

f (M),g(z)
]}

1K.

�



9.6 SOME BETTER BOUNDS 257

Remark 9.9 We can obtain an inequality similar to the one in Theorem 9.24 in the case
when (Φt )t∈T is a non-unit field of positive linear mappings, i.e. when

∫
T Φt(1)dμ(t) = k1

for some positive scalar k. Then,

F

[∫
T
Φt( f (xt ))dμ(t) , g

(∫
T
Φt (xt)dμ(t)

)]
≤ sup

kmx≤z≤kMx

{
F

[
kM− z
M−m

f (m)+
z− km
M−m

f (M) , g(z)
]}

1K

≤ sup
km≤z≤kM

{
F

[
kM− z
M−m

f (m)+
z− km
M−m

f (M) , g(z)
]}

1K .

This means that we obtain a better upper bound than the one given in Theorem 9.11.

We recall that the following generalization of Jensen’s inequality (9.1) holds. If f is
an operator convex function on [m,M] and λg ≤ f on [m,M] for some function g and real
number λ , then

0 ≤
∫

T
Φt ( f (xt ))dμ(t)−λg

(∫
T

Φt(xt)dμ(t)
)

.

In the following we consider the difference type converses of the above inequality.

We introduce some abbreviations. Let f : [m,M]→R, m < M, be a convex or a concave
function. We denote a linear function through (m, f (m)) and (M, f (M)) by f cho

[m,M], i.e.

f cho
[m,M](z) =

M− z
M−m

f (m)+
z−m
M−m

f (M), z ∈ R

and the slope and the intercept by α f and β f as in (9.2).

The following Theorem 9.25 and Corollary 9.14 are refinements of [124, Theorem 2.4].

Theorem 9.25 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤ Mx, be the bounds of x =

∫
T Φt(xt)dμ(t) and f : [m,M] → R, g :

[mx,Mx] → R be continuous functions.
If f is convex, then∫
T

Φt ( f (xt))dμ(t)−λg

(∫
T

Φt(xt)dμ(t)
)
≤ max

mx≤z≤Mx

{
α f z+ β f −λg(z)

}
1K (9.89)

holds and the bound in RHS of (9.89) exists for any m,M,mx and Mx.
If f is concave, then the reverse inequality with min instead of max is valid in (9.89).

The bound in RHS of this inequality exists for any m,M,mx and Mx.
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Proof. We put F(u,v) = u−λv, λ ∈ R in Theorem 9.24. A function z �→ α f z+ β f −
λg(z) is continuous on [mx,Mx], so the global extremes exist. �

In the following corollary we give a way of determining the bounds placed in Theo-
rem 9.25.

Corollary 9.14 Let (xt)t∈T , (Φt )t∈T , A, f and g be as in Theorem 9.25.

(i) Let λ ≤ 0.

If f is convex and g is convex, then∫
T

Φt ( f (xt))dμ(t)−λg

(∫
T

Φt(xt)dμ(t)
)
≤Cλ 1K (9.90)

holds with

Cλ = max
{

f cho
[m,M](mx)−λg(mx) , f cho

[m,M](Mx)−λg(Mx)
}

. (9.91)

But, if f is convex and g is concave, then the inequality (9.90) holds with

Cλ =

⎧⎪⎪⎨⎪⎪⎩
f cho
[m,M](mx)−λg(mx) if λg′−(z) ≥ α f for every z∈(mx,Mx),

f cho
[m,M](z0)−λg(z0) if λg′−(z0) ≤ α f ≤ λg′+(z0) for some z0∈(mx,Mx),

f cho
[m,M](Mx)−λg(Mx) if λg′+(z) ≤ α f for every z∈(mx,Mx).

(9.92)

If f is concave and g is convex, then

cλ 1K ≤
∫

T
Φt( f (xt ))dμ(t)−λg

(∫
T

Φt(xt)dμ(t)
)

(9.93)

holds with cλ which equals the right side in (9.92) with reverse inequality signs.

But, if f is concave and g is concave, then the inequality (9.93) holds with cλ which
equals the right side in (9.91) with min instead of max.

(ii) Let λ ≥ 0.

If f is convex and g is convex, then the inequality (9.90) holds with Cλ defined by
(9.92). But if f is convex and g is concave, then (9.90) holds with Cλ defined by
(9.91).

If f is concave and g is convex, then the inequality (9.93) holds with cλ which equals
the right side in (9.91) with min instead of max. But, if f is concave and g is concave,
then (9.93) holds with cλ which equals the right side in (9.92) with reverse inequality
signs.

Proof. (i): We prove only the cases when f is convex. If g is convex (resp. concave)
we apply Proposition 9.2 (resp. Proposition 9.1) on the convex (resp. concave) function
hλ = f cho

[m,M](z)−λg(z), and get (9.91) (resp. (9.92)).
In the remaining cases the proof is essentially the same as in the above cases. �

Corollary 9.14 applied on the functions f (z) = zp and g(z) = zq gives the following
corollary, which is a refinement of [124, Corollary 2.6].
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Corollary 9.15 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.25, and additionally let
operators xt be strictly positive with the spectra in [m,M], where 0 < m < M.

(i) Let λ ≤ 0.

If p,q ∈ (−∞,0]∪ [1,∞), then∫
T

Φt(x
p
t )dμ(t)−λ

(∫
T

Φt(xt)dμ(t)
)q

≤C�
λ 1K (9.94)

holds with

C�
λ = max{αt pmx + βt p −λmq

x , αt pMx + βt p −λMq
x} . (9.95)

If p ∈ (−∞,0) and q ∈ (0,1), then the inequality (9.94) holds with

C�
λ =

⎧⎪⎪⎨⎪⎪⎩
αt p mx + βt p −λ mq

x if (λ q/αt p)1/(1−q) ≤ mx,

βt p + λ (q−1)(λ q/αt p)q/(1−q) if mx ≤ (λ q/αt p)1/(1−q) ≤ Mx,

αt p Mx + βt p −λ Mq
x if (λ q/αt p)1/(1−q) ≥ Mx.

(9.96)

If p ∈ (0,1) and q ∈ (−∞,0), then

c�
λ 1K ≤

∫
T

Φt(x
p
t )dμ(t)−λ

(∫
T

Φt(xt)dμ(t)
)q

(9.97)

holds with c�
λ which equals the right side in (9.96).

If p,q ∈ [0,1], then the inequality (9.97) holds with c�
λ which equals the right side in

(9.95) with min instead of max.

(ii) Let λ ≥ 0.

If p,q ∈ (−∞,0)∪ (1,∞), then (9.94) holds with C�
λ defined by (9.96). But, if p ∈

(−∞,0]∪ [1,+∞) and q ∈ [0,1], then (9.94) holds with C�
λ defined by (9.95).

If p∈ [0,1] and q∈ (−∞,0]∪ [1,∞), then (9.97) holds with c�
λ which equals the right

side in (9.95) with min instead of max. But, if p ∈ (0,1) and q ∈ (0,1), then (9.97)
holds with c�

λ which equals the right side in (9.96).

Using Theorem 9.25 and Corollary 9.14 with g = f and λ = 1 we have the following
theorem.

Theorem 9.26 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤ Mx, be the bounds of x =

∫
T Φt(xt)dμ(t) and f : [m,M] → R be a

continuous function.
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If f is convex, then

0 ≤
∫

T
Φt( f (xt ))dμ(t)− f

(∫
T

Φt(xt)dμ(t)
)
≤ max

mx≤z≤Mx

{
f cho
[m,M](z)− f (z)

}
1K (9.98)

holds and the bound in RHS of (9.98) exists for any m,M,mx and Mx.
The value of the constant

C̄ ≡ C̄( f ,m,M,mx,Mx) := max
mx≤z≤Mx

{
f cho
[m,M](z)− f (z)

}
can be determined as follows

C̄ =

⎧⎪⎪⎨⎪⎪⎩
f cho
[m,M](mx)− f (mx) if f ′−(z) ≥ α f for every z∈(mx,Mx),

f cho
[m,M](z0)− f (z0) if g′−(z0) ≤ α f ≤ g′+(z0) for some z0∈(mx,Mx),

f cho
[m,M](Mx)− f (Mx) if g′+(z) ≤ α f for every z∈(mx,Mx).

(9.99)

If f is concave, then the reverse inequality with min instead of max is valid in (9.98).
The bound in this inequality exists for any m,M,mx and Mx. The value of the constant

c̄ ≡ c̄( f ,m,M,mx,Mx) := min
mx≤z≤Mx

{
f cho
[m,M](z)− f (z)

}
can be determined as in the right side in (9.99) with reverse inequality signs.

If f is a strictly convex differentiable function on [mx,Mx], then we obtain the following
corollary of Theorem 9.26. This is a refinement of [124, Corollary 2.16].

Corollary 9.16 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.26. Let f : [m,M] → R be
a continuous function. If f is strictly convex differentiable on [mx,Mx], then

0 ≤
∫

T
Φt( f (xt ))dμ(t)− f

(∫
T

Φt (xt)dμ(t)
)
≤ (

α f z0 + β f − f (z0)
)
1K, (9.100)

where

z0 =

⎧⎪⎨⎪⎩
mx if f ′(mx) ≥ α f ,

f ′−1 (α f
)

if f ′(mx) ≤ α f ≤ f ′(Mx),

Mx if f ′(Mx) ≤ α f .

(9.101)

The global upper bound is C(m,M, f ) = α f z̄0 + β f − f (z̄0), where z̄0 = ( f ′)−1(α f ) ∈
(m,M). The upper bound in RHS of (9.100) is better than the global upper bound provided
that either f ′(mx) ≥ α f or f ′(Mx) ≤ α f .

In the dual case, when f is strictly concave differentiable on [mx,Mx], then the reverse
inequality is valid in (9.100), with z0 which equals the right side in (9.101) with reverse
inequality signs. The global lower bound is defined as the global upper bound in the convex
case. The lower bound in the reverse inequality in (9.100) is better than the global lower
bound provided that either f ′(mx) ≤ α f or f ′(Mx) ≥ α f .
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Proof. We prove only the cases when f is strictly convex differentiable on [mx,Mx].
The inequality (9.100) follows from Theorem 9.26 by using the differential calculus. Since
h(z) = α f z+ β f − f (z) is a continuous strictly concave function on [m,M], then there is
exactly one point z0 ∈ [m,M] which achieves the global maximum. If neither of these
points is in the interval [mx,Mx], then the global maximum in [mx,Mx] is less than the
global maximum in [m,M]. �

Using Corollary 9.15 with q = p, λ = 1 or applying Corollary 9.16 we have the fol-
lowing corollary, which is a refinement of [124, Corollary 2.18].

Corollary 9.17 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.26, and additionally let
operators xt be strictly positive with the spectra in [m,M], where 0 < m < M. Then

0 ≤
∫

T
Φt(x

p
t )dμ(t)−

(∫
T

Φt(xt)dμ(t)
)p

≤ C̄(mx,Mx,m,M, p)1K ≤C(m,M, p)1K

for p �∈ (0,1), and

0 ≥
∫

T
Φt(x

p
t )dμ(t)−

(∫
T

Φt(xt)dμ(t)
)p

≥ c̄(mx,Mx,m,M, p)1K ≥C(m,M, p)1K

for p ∈ (0,1), where

C̄(mx,Mx,m,M, p) =

⎧⎪⎪⎨⎪⎪⎩
αt p mx + βt p −mp

x if pmp−1
x ≥ αt p ,

C(m,M, p) if pmp−1
x ≤ αt p ≤ pMp−1

x ,

αt p Mx + βt p −Mp
x if pMp−1

x ≤ αt p ,

(9.102)

and c̄(mx,Mx,m,M, p) equals the right side in (9.102) with reverse inequality signs. The
constant C(m,M, p) is defined by (2.38).

In the same way in the following we consider the ratio type converses of Jensen’s
inequality. The following Theorem 9.27 and Corollary 9.18 are refinements of [124, The-
orem 2.9].

Theorem 9.27 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤ Mx, be the bounds of x =

∫
T Φt(xt)dμ(t) and f : [m,M] → R be a

continuous function and g : [mx,Mx] → R be a strictly positive continuous function.
If f is convex, then∫

T
Φt( f (xt ))dμ(t) ≤ max

mx≤z≤Mx

{
α f z+ β f

g(z)

}
g

(∫
T

Φt(xt)dμ(t)
)

(9.103)

holds and the bound in RHS of (9.103) exists for any m,M,mx and Mx.
If f is concave, then the reverse inequality with min instead of max is valid in (9.103).

The bound in RHS of this inequality exists for any m,M,mx and Mx.
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Proof. We put F(u,v) = v−
1
2 uv−

1
2 in Theorem 9.24.

A function z �→ α f z+β f
g(z) is continuous on [mx,Mx], so the global extremes exist. �

Remark 9.10 If f is convex and g is strictly negative on [mx,Mx], then the inequality with
min instead of max is valid in (9.103). If f is concave and g is strictly negative on [mx,Mx],
then the reverse inequality is valid in (9.103).

In the following corollary, we give a way of determining the bounds placed in Theo-
rem 9.27.

Corollary 9.18 Let (xt)t∈T , (Φt)t∈T , A, f and g be as in Theorem 9.27. Additionally, let
f cho
[m,M] and g be strictly positive on [mx,Mx].

If f is convex and g is convex, then∫
T

Φt( f (xt ))dμ(t) ≤Cg

(∫
T

Φt(xt)dμ(t)
)

(9.104)

holds with

C=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f cho
[m,M](mx)

g(mx)
if g′−(z) ≥ α f g(z)

α f z+ β f
for every z∈(mx,Mx),

f cho
[m,M](z0)

g(z0)
if g′−(z0) ≤ α f g(z0)

α f z0 + β f
≤ g′+(z0) forsome z0∈(mx,Mx),

f cho
[m,M](Mx)

g(Mx)
if g′+(z) ≤ α f g(z)

α f z+ β f
for every z∈(mx,Mx).

(9.105)

If f is convex and g is concave, then the inequality (9.104) holds with

C = max

{
f cho
[m,M](mx)

g(mx)
,

f cho
[m,M](Mx)

g(Mx)

}
. (9.106)

If f is concave and g is convex, then∫
T

Φt( f (xt ))dμ(t) ≥ cg

(∫
T

Φt(xt)dμ(t)
)

(9.107)

holds with c which equals the right side in (9.106) with min instead of max.
If f is concave and g is concave, then the inequality (9.107) holds with c which equals

the right side in (9.105) with reverse inequality signs.

Proof. We prove only the cases when f is convex. If g is convex (resp. concave) we

apply Proposition 9.3 (resp. Proposition 9.5) on the ratio function h(z) =
f cho
[m,M](z)
g(z) with the

convex (resp. concave) denominator g, and so we get (9.105) (resp. (9.106)). �

Corollary 9.18 applied on the functions f (z) = zp and g(z) = zq gives the following
corollary, which is a refinement of [124, Corollary 2.11].
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Corollary 9.19 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.27, and additionally let
operators xt be strictly positive with the spectra in [m,M], where 0 < m < M.

If p,q ∈ (−∞,0)∪ (1,∞), then∫
T

Φt(x
p
t )dμ(t) ≤C�

(∫
T

Φt (xt)dμ(t)
)q

(9.108)

holds with

C� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

αt p mx + βt p

mq
x

if
q

1−q
βt p

αt p
≤ mx,

βt p

1−q

(
1−q

q
αt p

βt p

)q

if mx ≤ q
1−q

βt p

αt p
≤ Mx,

αt p Mx + βt p

Mq
x

if
q

1−q
βt p

αt p
≥ Mx.

(9.109)

If p ∈ (−∞,0]∪ [1,∞) and q ∈ [0,1], then the inequality (9.108) holds with

C� = max

{
αt pmx + βt p

mq
x

,
αt pMx + βt p

Mq
x

}
. (9.110)

If p ∈ [0,1] and q ∈ (−∞,0]∪ [1,∞), then∫
T

Φt(x
p
t )dμ(t) ≥ c�

(∫
T

Φt(xt)dμ(t)
)q

(9.111)

holds with cλ which equals the right side in (9.110) with min instead of max.
If p,q ∈ (0,1), then the inequality (9.111) holds with c� which equals the right side in

(9.109).

Using Theorem 9.27, Proposition 9.4 and 9.6 with g = f we have the following theo-
rem.

Theorem 9.28 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ , and let (Φt)t∈T be a unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Let mx and Mx, mx ≤ Mx, be the bounds of x =

∫
T Φt(xt)dμ(t). let f : [m,M] → R be a

continuous function and strictly positive on [mx,Mx].
If f is convex, then

∫
T

Φt( f (xt ))dμ(t) ≤ max
mx≤z≤Mx

{
f cho
[m,M](z)

f (z)

}
f

(∫
T

Φt (xt)dμ(t)
)

(9.112)

holds and the bound in RHS of (9.112) exists for any m,M,mx and Mx.
The value of the constant

C̄ ≡ C̄( f ,m,M,mx,Mx) := max
mx≤z≤Mx

{
f cho
[m,M](z)

f (z)

}
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can be determined as follows:

C̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f cho
[m,M](mx)

f (mx)
if f ′−(z) ≥ α f f (z)

α f z+ β f
for every z∈(mx,Mx),

f cho
[m,M](z0)

f (z0)
if f ′−(z0) ≤ α f f (z0)

α f z0 + β f
≤ f ′+(z0) forsome z0∈(mx,Mx),

f cho
[m,M](Mx)

f (Mx)
if f ′+(z) ≤ α f f (z)

α f z+ β f
for every z∈(mx,Mx).

(9.113)

If f is concave, then the reverse inequality with min instead of max is valid in (9.112).
The bound in this inequality exists for any m,M,mx and Mx. The value of the constant

c̄ ≡ c̄( f ,m,M,mx,Mx) := min
mx≤z≤Mx

{
f cho
[m,M](z)

f (z)

}

can be determined as in the right side in (9.112) with reverse inequality signs.

Remark 9.11 If f is convex and strictly negative on [mx,Mx], then the inequality with
min instead of max is valid in (9.112). If f is concave and strictly negative on [mx,Mx],
then the reverse inequality is valid in (9.112).

If f is a strictly convex differentiable function on [mx,Mx], then we obtain the following
corollary of Theorem 9.28. This is a refinement of [124, Corollary 2.10].

Corollary 9.20 Let (xt)t∈T , (Φt )t∈T and x be as in Theorem 9.28. Let f : [m,M] → R

be a continuous function and f (m), f (M) > 0. If f is strictly positive and strictly convex
twice differentiable on [mx,Mx], then∫

T
Φt( f (xt ))dμ(t) ≤

(
α f z0 + β f

f (z0)

)
f

(∫
T

Φt(xt)dμ(t)
)

, (9.114)

where z0 ∈ (mx,Mx) is defined as the unique solution of α f f (z) = (α f z+β f ) f ′(z) provided
(α f mx + β f ) f ′(mx)/ f (mx) ≤ α f ≤ (α f Mx + β f ) f ′(Mx)/ f (Mx), otherwise z0 is defined as
mx or Mx provided α f ≤ (α f mx + β f ) f ′(mx)/ f (mx) or α f ≥ (α f Mx + β f ) f ′(Mx)/ f (Mx),
respectively.

The global upper bound is C(m,M, f ) = (α f z̄0 + β f )/ f (z̄0), where z̄0 ∈ (m,M) is
defined as the unique solution of α f f (z) = (α f z + β f ) f ′(z). The upper bound in RHS
of (9.114) is better than the global upper bound provided that either α f ≤ (α f mx +
β f ) f ′(mx)/ f (mx) or α f ≥ (α f Mx + β f ) f ′(Mx)/ f (Mx).

In the dual case, when f is positive and strictly concave differentiable on [mx,Mx],
then the reverse inequality is valid in (9.114), with z0 is defined as in (9.114) with re-
verse inequality signs. The global lower bound is defined as the global upper bound
in the convex case. The lower bound in the reverse inequality in (9.114) is better than
the global lower bound provided that either α f ≥ (α f mx + β f ) f ′(mx)/ f (mx) or α f ≤
(α f Mx + β f ) f ′(Mx)/ f (Mx).
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Proof. We prove only the cases when f is strictly convex differentiable on [mx,Mx].
The inequality (9.114) follows from Theorem 9.28 by using the differential calculus.

Next, we put h(z)= (α f z+β f )/ f (z). Then h′(z)= H(z)/ f (z)2, where H(z)= α f f (z)−
(α f z+ β f ) f ′(z). Due to the strict convexity of f on [mx,Mx] and since f (m), f (M) > 0,
it follows that H ′(z) = −(α f z+ β f ) f ′′(z) < 0. Hence H(z) is decreasing on [mx,Mx]. If
H(mx)H(Mx) ≤ 0, then the minimum value of the function h on [mx,Mx] is attained in z0

which is the unique solution of the equation H(z) = 0. Otherwise, if H(mx)H(Mx) ≥ 0,
then this minimum value is attained in mx or Mx according to H(mx) ≤ 0 or H(Mx) ≥ 0.

Since h(z) = (α f z+β f )/ f (z) is a continuous function on [m,M], then the global max-
imum in [mx,Mx] is less than the global maximum in [m,M]. �

Using Corollary 9.19 with q = p or applying Corollary 9.20 we have the following
corollary, which is a refinement of [124, Corollary 2.12].

Corollary 9.21 Let (xt)t∈T , (Φt)t∈T and x be as in Theorem 9.28, and additionally let
operators xt be strictly positive with the spectra in [m,M], where 0 < m < M. Then

∫
T

Φt (x
p
t )dμ(t) ≤ K̄(mx,Mx,m,M, p)

(∫
T

Φt (xt)dμ(t)
)p

≤ K(m,M, p)
(∫

T
Φt(xt)dμ(t)

)p

for p �∈ (0,1), and

∫
T

Φt(x
p
t )dμ(t) ≥ k̄(mx,Mx,m,M, p)

(∫
T

Φt (xt)dμ(t)
)p

≥ K(m,M, p)
(∫

T
Φt (xt)dμ(t)

)p

for p ∈ (0,1), where

K̄(mx,Mx,m,M, p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αt p mx + βt p

mp
x

if pβt p/mx ≥ (1− p)αt p ,

K(m,M, p) if pβt p/mx < (1− p)αt p < pβt p/Mx,

αt p Mx + βt p

Mp
x

if pβt p/Mx ≤ (1− p)αt p ,

(9.115)

and k̄(mx,Mx,m,M, p) equals the right side in (9.115) with reverse inequality signs.
K(m,M, p) is the Kantorovich constant defined by (2.29).

Remark 9.12 We can obtain similar inequalities to above in the case when (Φt )t∈T is a
field of positive linear mappings such that

∫
T Φt(1)dμ(t) = k1 for some positive scalar k.

The details are left to the interested reader.
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9.7 Appendix

In appendix of this section we give the calculation of extreme values of a difference or ratio
function y = h(z), of a linear function y = kx+ l and a continuous convex or concave func-
tion y = g(x) on a closed interval. The basic facts about the convex and concave functions
can be found e.g. in books [239, 249].

We first examine two cases for the difference.

Proposition 9.1 Let g : [a,b] → R be a continuous function and let h(z) = kz+ l−g(z)
be a difference function. If g is convex, then

min
a≤z≤b

h(z) = min{h(a) , h(b)} (9.116)

and

max
a≤z≤b

h(z) =

⎧⎪⎪⎨⎪⎪⎩
h(a) if g′−(z) ≥ k for every z ∈ (a,b),

h(z0) if g′−(z0) ≤ k ≤ g′+(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) ≤ k for every z ∈ (a,b).

(9.117)

Additionally, if g is strictly convex and h is not monotone, then a unique number z0 ∈
(a,b) exists so that

h(z0) = max
a≤z≤b

h(z). (9.118)

Proof. A function y = h(z) is continuously concave because it is the sum of two con-
tinuous concave functions y = kz+ l and y = −g(z). Since a function h is lower bounded
by the chord line through endpoints Pa(a,h(a)) and Pb(b,h(b)), then (9.116) holds. Next,
(9.117) follows from the global maximum property for concave functions. With additional
assumptions the equality (9.118) follows from the strict concavity of h. �

Proposition 9.2 Let g : [a,b] → R be a continuous function and let h(z) = kz+ l−g(z)
be a difference function. If g is concave, then

max
a≤z≤b

h(z) = max{h(a) , h(b)}

and

min
a≤z≤b

h(z) =

⎧⎪⎪⎨⎪⎪⎩
h(a) if g′−(z) ≤ k for every z ∈ (a,b),

h(z0) if g′+(z0) ≤ k ≤ g′−(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) ≥ k for every z ∈ (a,b).

Additionally, if g is strictly concave and h is not monotone, then a unique number
z0 ∈ (a,b) exists so that

h(z0) = min
a≤z≤b

h(z).
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Proof. The proof is essentially the same as the one in Proposition 9.1. �

We now examine four cases for the ratio.

Proposition 9.3 Let g : [a,b]→ R be either a strictly positive or strictly negative contin-
uous function and let h(z) = (kz+ l)/g(z) be a ratio function with strictly positive numer-
ator. If g is convex, then

min
a≤z≤b

h(z) = min{h(a) , h(b)} (9.119)

and

max
a≤z≤b

h(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h(a) if g′−(z) ≥ kg(z)
kz+ l

for every z ∈ (a,b),

h(z0) if g′−(z0) ≤ kg(z0)
kz0 + l

≤ g′+(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) ≤ kg(z)
kz+ l

for every z ∈ (a,b).

(9.120)

Additionally, if g is strictly convex and h is not monotone, then a unique number z0 ∈
(a,b) exists so that

h(z0) = max
a≤z≤b

h(z). (9.121)

Proof. Maximum value: A function y = h(z) is continuous on [a,b] because it is
the ratio of two continuous functions. Then there exists z0 ∈ [a,b] such that h(z0) =
maxa≤z≤b h(z). Also, since g is convex, then g′−(z) and g′+(z) exist and g′−(z) ≤ g′+(z)
on (a,b). Then h′− and h′+ exist and

h′∓(z) =
kg(z)− (k z+ l)g′∓(z)

(g(z))2 .

First we observe the case when h is not monotone on [a,b]. Then there exists z0 ∈ (a,b)
such that h(z0) = maxa≤z≤b h(z). So for every z ∈ (a,b) we have

(k z+ l)/g(z)≤ (k z0 + l)/g(z0) (because h(z0) is maximum),
(k z+ l) g(z0) ≤ (k z+ l)g(z)+ kg(z)(z0− z) (because g > 0 or g < 0),
(k z+ l)μg(z)(z0 − z) ≤ (k z+ l)(g(z0)−g(z)) ≤ kg(z)(z0− z) (because g is convex),

g′−(z) ≤ μg(z) ≤ kg(z)/(k z + l) for a < z < z0 and g′+(z) ≥ μg(z) ≥ kg(z)/(k z + l) for
b > z > z0, where μg(z) is a subdifferential of the function g in z, i.e. μg(z)∈ [g′−(z),g′+(z)].
So

h′−(z) ≥ 0 for a < z < z0 and h′+(z) ≤ 0 for b > z > z0. (9.122)

It follows that for each number z0 at which the function h has the global maximum on [a,b]
the conditione g′−(z0) ≤ kg(z0)/(kz0 + l) ≤ g′+(z0) is valid.

In the case when h is monotonically decreasing on [a,b], we have
maxa≤z≤b h(z)= h(a) and h′−(z)≤ 0 for all z∈ (a,b), which imply that g′−(z)≥ kg(z)/(kz+
l) for every z ∈ (a,b). In the same way we can observe the case when h is monotonically
increasing.
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With additional assumptions it follows by using (9.122) that the function h is strictly
increasing on (a,z0] and strictly decreasing on [z0,b). Hence the equality (9.121) is valid.

Minimum value: There does not exist z0 ∈ (a,b) at which the function h has the global
minimum. Indeed, if h is not a monotone function on [a,b], it follows by using (9.122)
that h is increasing on (a, z̄0] and decreasing on [z̄0,b), where z̄0 ∈ (a,b) is the point at
which the function h has the global maximum. It follows that the function h does not have
a global minimum on (a,b), and consequently (9.119) is valid. �

Similarly to Proposition 9.3 we obtain the following result.

Proposition 9.4 Let g : [a,b] → R be either a strictly positive or strictly negative con-
tinuous function and let h(z) = (kz + l)/g(z) be a ratio function with a strictly negative
numerator. If g is convex, then the equality (9.119) is valid with max instead of min, and
the equality (9.120) is valid with min instead of max .

Additionally, if g is strictly convex and h is not monotone, then the equality (9.121) is
valid with min instead of max.

Proposition 9.5 Let g : [a,b] → R be either a strictly positive or strictly negative con-
tinuous function and let h(z) = (kz + l)/g(z) be a ratio function with a strictly positive
numerator. If g is concave, then

max
a≤z≤b

h(z) = max{h(a) , h(b)} . (9.123)

and

min
a≤z≤b

h(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h(a) if g′−(z) ≤ kg(z)
kz+ l

for every z ∈ (a,b),

h(z0) if g′+(z0) ≤ kg(z0)
kz0 + l

≤ g′−(z0) for some z0 ∈ (a,b),

h(b) if g′+(z) ≥ kg(z)
kz+ l

for every z ∈ (a,b).

(9.124)

Additionally, if g is strictly concave and h is not monotone, then a unique number
z0 ∈ (a,b) exists so that

h(z0) = min
a≤z≤b

h(z). (9.125)

Proof. The proof is the same as the one in Proposition 9.3. �

Similarly to the above proposition we obtain the following result.

Proposition 9.6 Let g : [a,b] → R be either a strictly positive or strictly negative con-
tinuous function and let h(z) = (kz + l)/g(z) be a ratio function with a strictly negative
numerator. If g is concave, then the equality (9.123) is valid with min instead of max, and
the equality (9.124) is valid with max instead of min.

Additionally, if g is strictly concave and h is not monotone, then the equality (9.125) is
valid with max instead of min .
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9.8 Notes

A version of Jensen’s operator inequality and its converses for a bounded continuous field
self-adjoint elements in C∗-algebra and a unital field of positive linear mappings is firstly
discussed by Hansen, Pečarić and I. Perić [135] based on [137] by Hansen and Pederson.
A generalization of the previous results on non-unital fields of positive linear mappings
is presented by Mićić, Pečarić and Seo [202]. The results in Sections 9.3 and 9.4 for
power operator means are given by Mićić, and Pečarić [193]. A version of these results
is presented in Sections 9.5 for quasi-arithmetic means, which is based on the results of
Mićić, Pečarić and Seo [203, 204]. Results with some better bounds in Section 9.6 are
given by Mićić, Pavić and Pečarić [189].





Chapter10
Jensen’s Operator Inequality
Without Operator Convexity

In this chapter, we study Jensen’s operator inequality without operator convexity. We ob-
serve this inequality for an n−tuples of self-adjoint operators, a unital n−tuples of positive
linear mappings and a general convex function with conditions on the operators bounds.
In the present context, we also study an extension and a refinement of Jensen’s operator
inequality. As an application we give the order among quasi-arithmetic operator means.

10.1 Jensen’s operator inequality with
a general convex function

In this section we give our main result about Jensen’s operator inequality without oper-
ator convexity. We give this inequality with conditions on the bounds of the operators
(defined by (1.2)), but for a general convex function. We also study monotonicity of quasi-
arithmetic operator means under the same conditions.

Suppose that J is an arbitrary interval in R.
We recall that operator convexity plays an essential role in the Davis-Choi-Jensen in-

equality: f (Φ(A)) ≤ Φ( f (A)). In fact, this inequality will be false if we replace an oper-
ator convex function by a general convex function (see the example given by M.D. Choi

271



272 10 JENSEN’S OPERATOR INEQUALITY WITHOUT OPERATOR CONVEXITY

in [35]). Furthermore, if f : J → R be an operator convex function, then the generalized
discrete Jensen’s operator inequality (8.12):

f

(
n

∑
i=1

Φi(Ai)

)
≤

n

∑
i=1

Φi( f (Ai)) (♣)

holds for every n−tuple (A1, . . . ,An) of self-adjoint operators in B(H) with spectra in J
and every unital n−tuple (Φ1, . . . ,Φn) of positive linear mappings Φi : B(H) → B(K),
i = 1, . . . ,n, (i.e. (Φ1, . . . ,Φn) is such that ∑n

i=1 Φi(IH) = IK).
Next we observe an example when the above Jensen’s inequality is valid for some

non-operator convex function.

Example 10.1 It appears that the above inequality will be false if we replace the operator
convex function by a general convex function. For example, we define mappings Φ1,Φ2 :
M3(C)→M2(C) by Φ1((ai j)1≤i, j≤3)= 1

2(ai j)1≤i, j≤2, Φ2 = Φ1. Then Φ1(I3)+Φ2(I3)= I2.

I) If

A1 = 2

⎛⎝1 0 1
0 0 1
1 1 1

⎞⎠ and A2 = 2

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ ,

then

(Φ1(A1)+ Φ2(A2))
4 =

(
16 0
0 0

)
�≤

(
80 40
40 24

)
= Φ1

(
A4

1

)
+ Φ2

(
A4

2

)
.

Given the above, there is no relation between (Φ1(A1)+ Φ2(A2))
4 and Φ1

(
A4

1

)
+

Φ2
(
A4

2

)
under the operator order. We observe that in the above case the following

stands A = Φ1(A1)+Φ2(A2) =
(

2 0
0 0

)
and [mA,MA] = [0,2], [m1,M1]⊂ [−1.60388,

4.49396], [m2,M2] = [0,2], i.e.

(mA,MA) ⊂ [m1,M1]∪ [m2,M2]

similarly as in Figure 10.1.a).

II) If

A1 =

⎛⎝−14 0 1
0 −2 −1
1 −1 −1

⎞⎠ and A2 =

⎛⎝15 0 0
0 2 0
0 0 15

⎞⎠ ,

then

(Φ1(A1)+ Φ2(A2))
4 =

(
1
16 0
0 0

)
≤

(
89660 −247
−247 51

)
= Φ1

(
A4

1

)
+ Φ2

(
A4

2

)
.

So we have that an inequality of type (♣) now is valid. In the above case the fol-

lowing stands A = Φ1(A1)+ Φ2(A2) =
(

1
2 0
0 0

)
and [mA,MA] = [0,0.5], [m1,M1] ⊂

[−14.077,−0.328566], [m2,M2] = [2,15], i.e.

(mA,MA)∩ [m1,M1] = /0 and (mA,MA)∩ [m2,M2] = /0.
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similarly as in Figure 10.1.b).

m1m1 m2m2 M2M2M1M1
m1m1 m2m2 M2M2M1M1

a) b)

mAmA MAMA
mAmA MAMA

Figure 10.1: Spectral conditions for a convex function f

It is no coincidence that the inequality (♣) is valid in Example 10.1-II). In the following
theorem we prove a general result when Jensen’s operator inequality holds for convex
functions.

Theorem 10.1 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (Φ1, . . . ,Φn) be an n−tuple of positive
linear mappings Φi : B(H) → B(K), i = 1, . . . ,n, such that ∑n

i=1 Φi(IH) = IK. If

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, (10.1)

where mA and MA, mA ≤ MA, are the bounds of the self-adjoint operator A =
n
∑
i=1

Φi(Ai),

then

f

(
n

∑
i=1

Φi(Ai)

)
≤

n

∑
i=1

Φi ( f (Ai)) (10.2)

holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi.

If f : J → R is concave, then the reverse inequality is valid in (10.2).

Proof. We prove only the case when f is a convex function.
If we denote m = min{m1, . . . ,mn} and M = max{M1, . . . ,Mn}, then [m,M] ⊆ I and

mIH ≤ Ai ≤ MIH , i = 1, . . . ,n. It follows mIK ≤ ∑n
i=1 Φi(Ai) ≤ MIK . Therefore [mA,MA] ⊆

[m,M] ⊆ I.

a) Let mA < MA. Since f is convex on [mA,MA], then

f (t) ≤ MA − t
MA −mA

f (mA)+
t−mA

MA −mA
f (MA), t ∈ [mA,MA], (10.3)

but since f is convex on [mi,Mi] and since (mA,MA)∩ [mi,Mi] = /0, then

f (t) ≥ MA − t
MA −mA

f (mA)+
t−mA

MA −mA
f (MA), t ∈ [mi,Mi] for i = 1, . . . ,n. (10.4)
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Since mAIK ≤ ∑n
i=1 Φi(Ai) ≤ MAIK , then by using functional calculus, it follows from

(10.3)

f

(
n

∑
i=1

Φi(Ai)

)
≤ MAIK −∑n

i=1 Φi(Ai)
MA −mA

f (mA)+ ∑n
i=1 Φi(Ai)−mAIK

MA −mA
f (MA). (10.5)

On the other hand, since miIH ≤ Ai ≤ MiIH , i = 1, . . . ,n, then by using functional cal-
culus, it follows from (10.4)

f (Ai) ≥ MAIH −Ai

MA −mA
f (mA)+

Ai−mAIH
MA −mA

f (MA), i = 1, . . . ,n.

Applying a positive linear mapping Φi and summing, we obtain

n

∑
i=1

Φi ( f (Ai)) ≥ MAIK −∑n
i=1 Φi(Ai)

MA −mA
f (mA)+ ∑n

i=1 Φi(Ai)−mAIK
MA −mA

f (MA), (10.6)

since ∑n
i=1 Φi(IH) = IK . Combining the two inequalities (10.5) and (10.6), we have the

desired inequality (10.2).

b) Let mA = MA. Since f is convex on [m,M], we have

f (t) ≥ f (mA)+ l(mA)(t −mA) for every t ∈ [m,M], (10.7)

where l is the subdifferential of f . Since mIH ≤ Ai ≤ MIH , i = 1, . . . ,n, then by using
functional calculus, applying a positive linear mapping Φi and summing, we obtain from
(10.7)

n

∑
i=1

Φi ( f (Ai)) ≥ f (mA)IK + l(mA)

(
n

∑
i=1

Φi(Ai)−mAIK

)
.

Since mAIK = ∑n
i=1 Φi(Ai), it follows

n

∑
i=1

Φi ( f (Ai)) ≥ f (mA)IK = f

(
n

∑
i=1

Φi(Ai)

)
,

which is the desired inequality (10.2). �

We have the following obvious corollary of Theorem 10.1 with the convex combination
of operators Ai, i = 1, . . . ,n.

Corollary 10.1 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤Mi, i = 1, . . . ,n. Let (α1, . . . ,αn) be an n−tuple of nonnegative
real numbers such that ∑n

i=1 αi = 1. If

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n,

where mA and MA, mA ≤ MA, are the bounds of A =
n
∑
i=1

αiAi, then

f

(
n

∑
i=1

αiAi

)
≤

n

∑
i=1

αi f (Ai) (10.8)
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holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi.

Proof. We apply Theorem 10.1 for positive linear mappings Φi : B(H) → B(H) deter-
mined by Φi : B �→ αiB, i = 1, . . . ,n. �

In the present context we can study the monotonicity of the discrete version of quasi-
arithmetic mean (9.65) defined as follows

Mϕ(A,ΦΦ,n) = ϕ−1

(
n

∑
i=1

Φi (ϕ(Ai))

)
, (10.9)

where (A1, . . . ,An) is an n−tuple of self-adjoint operators in B(H) with spectra in J,
(Φ1, . . . ,Φn) is a unital n−tuple of positive linear mappings Φi : B(H) → B(K) and ϕ :
J → R is a continuous strictly monotone function.

Example 10.2 Theorem 9.17 will not true if we replace the operator convex function
by a general convex function in (9.66). Indeed, we put for T = {1,2}, ϕ(t) = 3

√
t and

ψ = ι (the identity function) in (10.9) (ψ ◦ ϕ−1(t) = t3 is not operator convex) and we
define mappings Φ1,Φ2 : M2(C) → M2(C) by Φ1(B) = Φ2(B) = 1

2B for B ∈ M2(C) (then
Φ1(I2)+ Φ2(I2) = I2). If

A1 =
(

34 14
14 6

)
and A2 =

(
36 28
28 36

)
,

then

M 3√t(A,Φ,2) =
(

Φ1

(
3
√

A1

)
+ Φ2

(
3
√

A2

))3

=
(

1
2

(
3 1
1 1

)
+

1
2

(
3 1
1 3

))3

=
(

35 20
20 15

)
,

M1(A,Φ,2) = Φ1 (A1)+ Φ2 (A2) =
(

35 21
21 35

)
,

M1(A,Φ,2)−M 3√ (A,Φ,2) =
(

0 1
1 20

)
�≥ 0.

Given the above, there is no relation between M1(A,Φ,2) and M 3√ (A,Φ,2) under the ope-
rator order. For the bounds of A1, A2 and the mean M 3√ (A,Φ,2) the following stands
[m1,M1] ⊂ [0.2,39.8], [m2,M2] = [8,64] and [m,M] ⊂ [2.63,47.37], respectively. We ob-
serve that in the above case the following stands

(m,M)∩ [m1,M1] �= /0, (and (m,M)∩ [m2,M2] �= /0.)

In the case when (m,M)∩ [m1,M1] = /0 and (m,M)∩ [m2,M2] = /0 for some A1 and A2, then
the relation M 3√ (A,Φ,2) ≤ M1(A,Φ,2) holds according to Theorem 10.2.
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In the next theorem we will examine the order among quasi-arithmetic means without
operator convexity in Theorem 9.17 when T = {1, . . . ,n} and k = 1.

Theorem 10.2 Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in the definition of the quasi-
arithmetic mean (10.9). Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let
ϕ ,ψ : J → R be continuous strictly monotone functions on an interval J which contains all
mi,Mi. Let mϕ and Mϕ , mϕ ≤ Mϕ , be the bounds of the mean Mϕ (A,ΦΦ,n), such that(

mϕ ,Mϕ
)∩ [mi,Mi] = /0 for i = 1, . . . ,n. (10.10)

If one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then
Mϕ(A,ΦΦ,n) ≤ Mψ (A,ΦΦ,n). (10.11)

If one of the following conditions

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the reverse inequality is valid in (10.11).

Proof. We prove the case (i) only. Suppose that ϕ is a strictly increasing function.
Since miIH ≤ Ai ≤ MiIH , i = 1, . . . ,n, and mϕ IK ≤ Mϕ(A,ΦΦ,n) ≤ Mϕ IK , then

ϕ(mi)IH ≤ ϕ(Ai) ≤ ϕ(Mi)IH , i = 1, . . . ,n,

and ϕ(mϕ )IK ≤
n

∑
i=1

Φi(ϕ(Ai)) ≤ ϕ(Mϕ)IK .

Then, (
mϕ ,Mϕ

)∩ [mi,Mi] = /0 for i = 1, . . . ,n

implies (
ϕ(mϕ),ϕ(Mϕ )

)∩ [ϕ(mi),ϕ(Mi)] = /0 for i = 1, . . . ,n. (10.12)

Replacing Ai by ϕ(Ai) in (10.2) and taking into account (10.12), we obtain

f

(
n

∑
i=1

Φi(ϕ(Ai))

)
≤

n

∑
i=1

Φi ( f (ϕ(Ai))) (10.13)

for every convex function f : J → R on an interval J which contains all [ϕ(mi),ϕ(Mi)] =
ϕ([mi,Mi]). Also, if ϕ is strictly decreasing, then we check that (10.13) holds for convex
f : J → R on J which contains all [ϕ(Mi),ϕ(mi)] = ϕ([mi,Mi]).
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Putting f = ψ ◦ϕ−1 in (10.13), we obtain

ψ ◦ϕ−1

(
n

∑
i=1

Φi (ϕ(Ai))

)
≤

n

∑
i=1

Φi (ψ(Ai)) .

Applying an operator monotone function ψ−1 on the above inequality, we get the desired
inequality (10.11). �

We can give the following version of Corollary 9.8 without operator convexity and
operator concavity.

Corollary 10.2 Let the assumptions of Theorem 10.2 hold. Let F : J × J → R be a
bounded and operator monotone function in its first variable, such that F(t,t) = C for
all t ∈ [mϕ ,Mϕ ].
If one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then
F
[
Mψ(A,ΦΦ,n),Mϕ (A,ΦΦ,n)

]≥CIK . (10.14)

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the reverse inequality is valid in (10.14).

Proof. The proof is the same as the one of Corollary 9.8 and we omit it. �

Now, we will examine the order among quasi-arithmetic means (10.9) without operator
convexity and operator concavity in Theorem 9.18.

Corollary 10.3 Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in the definition of the quasi-
arithmetic mean (10.9). Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let
ϕ ,ψ : J →R be continuous strictly monotone functions on an interval J which contains all
mi,Mi and M1 be generated by the identity function on J.

(i) If mϕ and Mϕ , mϕ ≤ Mϕ are the bounds of Mϕ(A,ΦΦ,n), such that(
mϕ ,Mϕ

)∩ [mi,Mi] = /0 for i = 1, . . . ,n (10.15)

and ϕ−1 is convex, then

Mϕ (A,ΦΦ,n) ≤ M1(A,ΦΦ,n). (10.16)

(ii) If (10.15) is satisfied and ϕ−1 is concave, then the reverse inequality is valid in
(10.16).
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(iii) If (10.15) is satisfied and ϕ−1 is convex, and if mψ and Mψ , mψ ≤Mψ are the bounds
of Mψ (A,ΦΦ,n), such that(

mψ ,Mψ
)∩ [mi,Mi] = /0 for i = 1, . . . ,n

and ψ−1 is concave, then

Mϕ (A,ΦΦ,n) ≤ M1(A,ΦΦ,n) ≤ Mψ (A,ΦΦ,n). (10.17)

Proof. (i)− (ii): Putting ψ = M1 in Theorem 10.2(i) and (ii), we obtain (10.16) and its
reverse inequality, respectively.

(iii): Replacing ψ by ϕ in (ii) and combining this with (i), we obtain the desired
inequality (10.17). �

Remark 10.1 Results given in the previous section we can generalize for continuous
fields of operators. E.g. the continuous version of Theorem 10.1 is given below (see also
Theorem 10.7 in Section 10.5).

Let (xt)t∈T be a bounded continuous field of self-adjoint elements in an unital C∗-
algebra A defined on a locally compact Hausdorff space T equipped with a bounded
Radon measure μ . Let mt and Mt , mt ≤ Mt, be the bounds of xt , t ∈ T . Let (φt )t∈T be an
unital field of positive linear mappings φt : A → B from A to another unital C∗−algebra
B. Let

(mx,Mx)∩ [mt ,Mt ] = /0, t ∈ T,

where mx and Mx, mx ≤Mx, are the bounds of the operator x =
∫
T φt(xt)dμ(t). If f : J →R

is a continuous convex function provided that the interval J contains all mt ,Mt , then

f

(∫
T

φt(xt)dμ(t)
)
≤

∫
T

φt( f (xt ))dμ(t). (10.18)

If f is concave, the reverse inequality is valid in (10.18).

10.2 Order among power means

The operator power mean Mr(A,ΦΦ) defined by (8.33) is a special case of the quasi-arithme-
tic mean (10.9). As a continuation of our previous considerations about the order among
quasi-arithmetic operator means, in this section we observe the order among operator
power means.

We recall the known result as follows (see Example 9.1).
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Corollary 10.4 Let A = (A1, . . . ,An) be an n−tuple of positive invertible operators in
B(H) with Sp(Ai) ⊆ [m,M] for some scalars 0 < m < M, and let ΦΦ = (Φ1, . . . ,Φn) be a
unital n−tuple positive linear mappings Φi : B(H) → B(K), i = 1, . . . ,n.

If either r ≤ s, r �∈ (−1,1), s �∈ (−1,1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤−1 ≤ s ≤−1/2 (see
Figure 10.1.a), then

Mr(A,ΦΦ) ≤ Ms(A,ΦΦ). (10.19)

1/21/2

1/21/2
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1
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Figure 10.2: Regions for the order among power means

Remark 10.2 Corollary 10.4 is not valid if r,s are not in the regions (1)-(2) in Fig-
ure 10.2.a) (see Example 10.2).

Applying Theorem 10.2 we obtain that (10.19) holds in a broader region (see Fig-
ure 10.2.b).

Corollary 10.5 Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in Corollary 10.4. Let mi and Mi,
0 < mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n.
If one of the following conditions

(i) r ≤ s, s ≥ 1 or r ≤ s ≤−1 (Figure 10.2.b (1),(2),(4)) and(
m[r],M[r])∩ [mi,Mi] = /0, i = 1, . . . ,n,

where m[r] and M[r], m[r] ≤ M[r] are the bounds of Mr(A,ΦΦ),

(ii) r ≤ s, r ≤−1 or 1 ≤ r ≤ s (Figure 10.2.b (1),(3),(5)) and(
m[s],M[s])∩ [mi,Mi] = /0, i = 1, . . . ,n,

where m[s] and M[s], m[s] ≤ M[s] are the bounds of Ms(A,ΦΦ),
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is satisfied, then

Mr(A,ΦΦ) ≤ Ms(A,ΦΦ). (10.20)

Proof. We prove the case (i) only. We put ϕ(t) = tr and ψ(t) = ts for t > 0.
Then ψ ◦ϕ−1(t) = ts/r is concave for r ≤ s, s≤ 0 and r �= 0. Since −ψ−1(t) = −t1/s is

operator monotone for s ≤−1 and
(
m[r],M[r])∩ [mi,Mi] = /0 is satisfied, then by applying

Theorem 10.2-(i’) we obtain (10.20) for r ≤ s ≤−1.
But, ψ ◦ϕ−1(t) = ts/r is convex for r ≤ s, s ≥ 0 and r �= 0. Since ψ−1(t) = t1/s is

operator monotone for s ≥ 1, then by applying Theorem 10.2-(i) we obtain (10.20) for
r ≤ s, s ≥ 1, r �= 0.

If r = 0 and s≥ 1, we put ϕ(t) = logt and ψ(t) = ts, t > 0. Since ψ ◦ϕ−1(t) = exp(st)
is convex, then similarly as above we obtain the desired inequality.

In the case (ii) we put ϕ(t) = ts and ψ(t) = tr for t > 0 and we use the same technique
as in the case (i). �

a) WITHOUT CONDITION ON SPECTRA:

1/21/2

1/21/2

1

1 1

1

0

r=
s

r=
s

( 3 )( 3 )

( 4 )( 4 )( 1 )( 1 ) ( 2 )( 2 )

( 5 )( 5 )

� = 1, if r,s

,r/s r,s

,r r,s

,s r,s

in (1), (2), (3)

= K(h ) , if in (4), (5)

= K(h ) , if in (6)

= K(h ) , if in (7)

�

�

�

s 1/r

-1/r

-1/s

b) WITH CONDITION :ON SPECTRA

( 6 )( 6 )

( 7 )( 7 )

� = 1, if r,s

,s ,r r,s

in (1), (2), (4) or (1), (3), (5)

= K(h ) or = K(h ) , if in (6), (7)� �A A

-1/s -1/r

Figure 10.3: Regions for the order Mr(A,ΦΦ) ≤ ΔMs(A,ΦΦ)

Figure 10.3 shows regions (1),(2),(3) in which the monotonicity of the power mean
(♣) holds true and regions (1)-(5) which this holds true with the condition on spectra. In
the next theorem we observe the order among power operator means with the condition on
spectra in regions (6) and (7) in Figure 10.3.

Theorem 10.3 Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in Corollary 10.4. Let mi and Mi,
0 < mi ≤ Mi be bounds of Ai, i = 1, . . . ,n. Let r,s ∈ (−1,1), r ≤ s (Figure 10.3 (6),(7)).

(i) If (
m[r],M[r])∩ [mi,Mi] = /0, i = 1, . . . ,n,

where m[r] and M[r], m[r] ≤ M[r] are bounds of Mr(A,ΦΦ), then

Mr(A,ΦΦ) ≤C(h[r],s)Ms(A,ΦΦ), h[r] = M[r]/m[r]. (10.21)
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(ii) If (
m[s],M[s])∩ [mi,Mi] = /0, i = 1, . . . ,n,

where m[s] and M[s], m[s] ≤ M[s] are bounds of Ms(A,ΦΦ), then

Mr(A,ΦΦ) ≤C(h[s],r)Ms(A,ΦΦ), h[s] = M[s]/m[s]. (10.22)

The constantC(h, p), h > 0, is a generalization of the Specht ratio (2.35) defined as follows

C(h, p) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(h−hp)

(1−p)(hp−1)

(
(p−1)(h−1)

hp−h

) 1
p
, if p �= 0 and h �= 1,

(h−1)h
1

h−1

e logh , if p = 0 and h �= 1,

1, if h = 1.

In order to prove Theorem 10.3, we need the operator order given in the following
theorem.

Theorem 10.4 Self-adjoint operators A,B ∈ B(H) with Sp(A) ⊆ [mA,MA] where 0 <
mA < MA satisfy the following implication:

A ≤ B =⇒ eA ≤ S(eMA−mA)eB

where S(h) is the Specht ratio defined by (2.35).

Proof. Refer to [124, Corollary 8.24] for the proof. �

Proof of Theorem 10.3. We prove the case (i) only.
a) Let m[r] < M[r].

· Suppose that 0 < r ≤ s ≤ 1. Since miIH ≤ Ai ≤ MiIH , i = 1, . . . ,n, and m[r]IK ≤
Mr(A,ΦΦ) ≤ M[r]IK , then

mr
i IH ≤ Ar

i ≤ Mr
i IH , i = 1, . . . ,n, (10.23)

(m[r])rIK ≤ ∑n
i=1 Φi (Ar

i ) ≤ (M[r])rIK . (10.24)

Then, (
m[r],M[r])∩ [mi,Mi] = /0 for i = 1, . . . ,n

implies (
(m[r])r,(M[r])r)∩ [mr

i ,M
r
i ] = /0 for i = 1, . . . ,n. (10.25)

Putting f (t) = ts/r, which is convex, in Theorem 10.1 and replacing Ai by Ar
i , we

obtain (
n

∑
i=1

Φi(Ar
i )

)s/r

≤
n

∑
i=1

Φi (As
i ) . (10.26)
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Now, applying Theorem 4.3 for p = 1
s ≥ 1 and using that

(m[r])sIK ≤
(

n

∑
i=1

Φi(Ar
i )

)s/r

≤ (M[r])sIK , (10.27)

we obtain
Mr(A,ΦΦ) ≤ K

(
(m[r])s,(M[r])s,1/s

)
Ms(A,ΦΦ), (10.28)

which gives the desired inequality by using K
(
(m[r])s,(M[r])s,1/s

)
= C

(
h[r],s

)
.

· Suppose that −1 ≤ r < 0 < s ≤ 1. Then the reverse inequality is valid in (10.23)
and (10.24). It follows that(

(M[r])r,(m[r])r)∩ [Mr
i ,m

r
i ] = /0 for i = 1, . . . ,n (10.29)

holds. Putting f (t) = ts/r, which is convex, in Theorem 10.1 and replacing Ai by
Ar

i , we again obtain (10.26). Now, applying Theorem 4.3 for p = 1
s ≥ 1 and since

(10.27) holds, then we obtain again (10.28).

· Suppose that −1 ≤ r ≤ s < 0. Then the reverse inequality is valid in (10.23) and
(10.24). It follows that (10.29) holds. Putting f (t) = ts/r, which is concave, in
Theorem 10.1 and replacing Ai by Ar

i , we obtain that the reverse inequality holds
in (10.26). Now, applying Theorem 4.3 for p = 1

s ≤ −1 and using that reverse
inequalities is valid in (10.27), then we obtain

Mr(A,ΦΦ) ≤ K
(
(M[r])s,(m[r])s,1/s

)
Ms(A,ΦΦ).

Since K
(
(M[r])s,(m[r])s,1/s

)
= K

(
(m[r])s,(M[r])s,1/s

)
we get again the desired in-

equality.

· Suppose that 0 = r < s ≤ 1. Putting the operator concave function f (t) = 1
s log t in

reverse of Jensen’s operator inequality given in Theorem 9.1 and replace Ai by As
i ,

we obtain
log

(
M0(A,ΦΦ)

)≤ log
(
Ms(A,ΦΦ)

)
.

The spectrum of log
(
M0(A,ΦΦ)

)
is contained in [logm[0], logM[0]], and then after use

Theorem 10.4 we get

M0(A,ΦΦ) ≤ S

(
M[0]

m[0] ,1

)
Ms(A,ΦΦ) = C

(
h[0],0

)
Ms(A,ΦΦ),

which is the desired inequality.

· Suppose that −1≤ r < s = 0. Putting the operator convex function f (t) = 1
r logt in

Jensen’s operator inequality given in Theorem 9.1 and replace Ai by Ar
i , we obtain

log
(
Mr(A,ΦΦ)

)≤ log
(
M0(A,ΦΦ)

)
.
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The spectrum of log
(
Mr(A,ΦΦ)

)
is contained in [logm[r], logM[r]]. Then applying

Theorem 10.4 we get

Mr(A,ΦΦ) ≤ S

(
M[r]

m[r] ,1

)
M0(A,ΦΦ) = C

(
h[r],0

)
M0(A,ΦΦ),

which is the desired inequality.

b) Let m[r] → M[r] in inequalities

Mr(A,ΦΦ) ≤ K
(
(m[r])s,(M[r])s,1/s

)
Ms(A,ΦΦ),

or Mr(A,ΦΦ) ≤ S

(
M[r]

m[r]

)
Ms(A,ΦΦ).

Since K
(
ms,Ms,1/s

)
= K

(
m,M,s

)−1/s
and limm→M K

(
m,M,s

)
= 1 for all s ∈ R;

limh→1 S(h) = 1, we obtain the desired inequalities in the case m[r] = M[r]. �

Remark 10.3 The constantC(h[r],s) in RHS of (10.21) in Theorem 10.3 is not worse than
the constants in RHS of the inequalities in Corollary 9.6, i.e. if r,s ∈ (−1,1), r ≤ s, then

C(h[r],s) ≤ min{Δ(h,s,1),Δ(h,s,1) ·Δ(h,r,s),Δ(h,r,1)},
where h[r] = M[r]/m[r], h = M/m and m[r] and M[r], m[r] ≤ M[r] are bounds of Mr(A,ΦΦ),
such that

(
m[r],M[r])∩ [mi,Mi] = /0, i = 1, . . . ,n and

m = min{m1, . . . ,mn}, M = max{M1, . . . ,Mn}.
Indeed, we should just use the following properties of the function (h,s) �→C(h,s) =

Δ(h,s,1).

(r1) C(h,s) is strictly increasing in the first variable for h > 1 and s < 1 by [124, Theo-
rem 2.62 (i)],

(r2) C(h,s) is strictly decreasing in the second variable for h > 1 and s∈R by Lemma 9.3.

So, let r,s ∈ (−1,1), r ≤ s. Since [m[r],M[r]] ⊆ [m,M], it follows by (r1) that

C(h[r],s) = Δ(h[r],s,1) ≤ Δ(h,s,1);

since Δ(h,r,s) ≥ 1, then
C(h[r],s) ≤ Δ(h,s,1) ·Δ(h,r,s);

and it follows by (r2) that

C(h[r],s) ≤C(h[r],r) ≤ Δ(h,r,1).

The three inequalities above give the desired relation.

Similarly, we can observe that the constantC(h[s],r) in RHS of (10.22) in Theorem 10.3
is not worse than the constants in RHS of the inequalities in Corollary 9.6.
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10.3 Extension of Jensen’s operator inequality
without operator convexity

In this section, we give an extension of Jensen’s operator inequality without operator con-
vexity. As an application of this result, we give an extension of our previous results for a
version of the quasi-arithmetic mean (10.9) with an n−tuple of positive linear mappings
which is non-unital.

In Theorem 10.1 we prove that Jensen’s operator inequality holds for every continuous
convex function and for every n−tuple of self-adjoint operators (A1, . . . ,An), for every
n−tuple of positive linear mappings (Φ1, . . . ,Φn) in the case when the interval with bounds
of the operator A = ∑n

i=1 Φi(Ai) has no intersection points with the interval with bounds of
the operator Ai for each i = 1, . . . ,n, i.e. when

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n,

where mA and MA, mA ≤ MA, are the bounds of A, and mi and Mi, mi ≤ Mi, are the bounds
of Ai, i = 1, . . . ,n.

It is interesting to consider the case when (mA,MA)∩ [mi,Mi] = /0 is valid for several
i ∈ {1, . . . ,n}, but not for all i = 1, . . . ,n. We study it in the following theorem.

Theorem 10.5 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (Φ1, . . . ,Φn) be an n−tuple of positive
linear mappings Φi : B(H)→ B(K), such that ∑n

i=1 Φi(IH) = IK. For 1≤ n1 < n, we denote
m = min{m1, . . . ,mn1}, M = max{M1, . . . ,Mn1} and ∑n1

i=1 Φi(IH) = α IK, ∑n
i=n1+1 Φi(IH) =

β IK, where α,β > 0, α + β = 1. If

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n,

and one of two equalities

1
α

n1

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai) =
n

∑
i=1

Φi(Ai)

is valid, then
1
α

n1

∑
i=1

Φi( f (Ai)) ≤
n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai)) (10.30)

holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi, i = 1, . . . ,n,.

If f : J → R is concave, then the reverse inequality is valid in (10.30).

Proof. We prove only the case when f is a convex function.
Let us denote

A =
1
α

n1

∑
i=1

Φi(Ai), B =
1
β

n

∑
i=n1+1

Φi(Ai), C =
n

∑
i=1

Φi(Ai).
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It is easy to verify that A = B or B = C or A = C implies A = B = C.

a) Let m < M. Since f is convex on [m,M] and [mi,Mi] ⊆ [m,M] for i = 1, . . . ,n1, then

f (t) ≤ M− t
M−m

f (m)+
t−m
M−m

f (M), t ∈ [mi,Mi] for i = 1, . . . ,n1, (10.31)

but since f is convex on all [mi,Mi] and (m,M)∩ [mi,Mi] = /0 for i = n1 + 1, . . . ,n,
then

f (t) ≥ M− t
M−m

f (m)+
t−m
M−m

f (M), t ∈ [mi,Mi] for i = n1 +1, . . . ,n. (10.32)

Since miIH ≤ Ai ≤ MiIH , i = 1, . . . ,n1, it follows from (10.31)

f (Ai) ≤ MIH −Ai

M−m
f (m)+

Ai−mIH
M−m

f (M), i = 1, . . . ,n1.

Applying a positive linear mapping Φi and summing, we obtain
n1

∑
i=1

Φi ( f (Ai)) ≤ MαIK −∑n1
i=1 Φi(Ai)

M−m
f (m)+

∑n1
i=1 Φi(Ai)−mαIK

M−m
f (M),

since ∑n1
i=1 Φi(IH) = αIK . It follows

1
α

n1

∑
i=1

Φi ( f (Ai)) ≤ MIK −A
M−m

f (m)+
A−mIK
M−m

f (M). (10.33)

Similarly to (10.33) in the case miIH ≤ Ai ≤ MiIH , i = n1 +1, . . . ,n, it follows from
(10.32)

1
β

n

∑
i=n1+1

Φi ( f (Ai)) ≥ MIK −B
M−m

f (m)+
B−mIK
M−m

f (M). (10.34)

Combining (10.33) and (10.34) and taking into account that A = B, we obtain

1
α

n1

∑
i=1

Φi ( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi ( f (Ai)) . (10.35)

It follows

1
α

n1

∑
i=1

Φi( f (Ai)) =
n1

∑
i=1

Φi( f (Ai))+
β
α

n1

∑
i=1

Φi( f (Ai)) (by α + β = 1)

≤
n1

∑
i=1

Φi( f (Ai))+
n

∑
i=n1+1

Φi( f (Ai)) (by (10.35))

=
n

∑
i=1

Φi( f (Ai))

≤ α
β

n

∑
i=n1+1

Φi( f (Ai))+
n

∑
i=n1+1

Φi( f (Ai)) (by (10.35))

=
1
β

n

∑
i=n1+1

Φi( f (Ai)) (by α + β = 1)
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which gives the desired double inequality (10.30).

b) Let m = M. Since [mi,Mi] ⊆ [m,M] for i = 1, . . . ,n1, then Ai = mIH and f (Ai) =
f (m)IH for i = 1, . . . ,n1. It follows

1
α

n1

∑
i=1

Φi(Ai) = mIK and
1
α

n1

∑
i=1

Φi ( f (Ai)) = f (m)IK . (10.36)

On the other hand, since f is convex on J, we have

f (t) ≥ f (m)+ l(m)(t −m) for every t ∈ I, (10.37)

where l is the subdifferential of f . Replacing t by Ai for i = n1 +1, . . . ,n, applying
Φi and summing, we obtain from (10.37) and (10.36)

1
β

n

∑
i=n1+1

Φi ( f (Ai)) ≥ f (m)IK + l(m)

(
1
β

n

∑
i=n1+1

Φi(Ai)−mIK

)

= f (m)IK =
1
α

n1

∑
i=1

Φi ( f (Ai)) .

So (10.35) holds again. The remaining part of the proof is the same as in the case a).

�

Remark 10.4 We obtain the equivalent inequality to the one in Theorem 10.5 in the case
when ∑n

i=1 Φi(IH) = γ IK, for some positive scalar γ . If α +β = γ and one of two equalities

1
α

n1

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai) =
1
γ

n

∑
i=1

Φi(Ai)

is valid, then

1
α

n1

∑
i=1

Φi( f (Ai)) ≤ 1
γ

n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai))

holds for every continuous convex function f .

Remark 10.5 Let the assumptions of Theorem 10.5 be valid.

(1) We observe that the following inequality

f

(
1
β

n

∑
i=n1+1

Φi(Ai)

)
≤ 1

β

n

∑
i=n1+1

Φi( f (Ai)),

holds for every continuous convex function f : J → R.
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Indeed, by the assumptions of Theorem 10.5 we have

mαIH ≤
n1

∑
i=1

Φi( f (Ai)) ≤ MαIH and
1
α

n1

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai)

which implies

mIH ≤
n

∑
i=n1+1

1
β

Φi( f (Ai)) ≤ MIH .

Also (m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n and ∑n
i=n1+1

1
β Φi(IH) = IK hold. So we can

apply Theorem 10.1 on operators An1+1, . . . ,An and mappings 1
β Φi and obtain the desired

inequality.

(2) We denote by mC and MC the bounds of C = ∑n
i=1 Φi(Ai). If (mC,MC)∩ [mi,Mi] = /0,

i = 1, . . . ,n1 or f is an operator convex function on [m,M], then the double inequality
(10.30) can be extended from the left side if we use Jensen’s operator inequality in Theo-
rem 9.9

f

(
n

∑
i=1

Φi(Ai)

)
= f

(
1
α

n1

∑
i=1

Φi(Ai)

)

≤ 1
α

n1

∑
i=1

Φi( f (Ai)) ≤
n

∑
i=1

Φi( f (Ai)) ≤ 1
β

n

∑
i=n1+1

Φi( f (Ai)).

Example 10.3 If neither assumptions (mC,MC)∩ [mi,Mi] = /0, i = 1, . . . ,n1 nor f is op-
erator convex in Remark 10.5 (2) is satisfied and if 1 < n1 < n, then (10.30) can not be
extended by Jensen’s operator inequality, since it is not valid. Indeed, for n1 = 2 we define
mappings Φ1,Φ2 : M3(C) → M2(C) by Φ1((ai j)1≤i, j≤3) = α

2 (ai j)1≤i, j≤2, Φ2 = Φ1. Then
Φ1(I3)+ Φ2(I3) = αI2. If

A1 = 2

⎛⎝1 0 1
0 0 1
1 1 1

⎞⎠ and A2 = 2

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ ,

then(
1
α

Φ1(A1)+
1
α

Φ2(A2)
)4

=
1

α4

(
16 0
0 0

)
�≤ 1

α

(
80 40
40 24

)
=

1
α

Φ1
(
A4

1

)
+

1
α

Φ2
(
A4

2

)
for every α ∈ (0,1). We observe that f (t) = t4 is not operator convex and (mC,MC)∩
[mi,Mi] �= /0, sinceC = A = 1

α Φ1(A1)+ 1
α Φ2(A2)= 1

α

(
2 0
0 0

)
, [mC,MC] = [0,2/α], [m1,M1]

⊂ [−1.60388,4.49396] and [m2,M2] = [0,2].

With respect to Remark 10.4, we obtain the following obvious corollary of Theo-
rem 10.5.
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Corollary 10.6 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. For some 1 ≤ n1 < n, we denote m =
min{m1, . . . ,mn1}, M = max{M1, . . . ,Mn1}. Let (p1, . . . , pn) be an n−tuple of non-negative
numbers, such that 0 < ∑n1

i=1 pi = pn1 < pn = ∑n
i=1 pi. If

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n,

and one of two equalities

1
pn1

n1

∑
i=1

piAi =
1
pn

n

∑
i=1

piAi =
1

pn −pn1

n

∑
i=n1+1

piAi

is valid, then

1
pn1

n1

∑
i=1

pi f (Ai) ≤ 1
pn

n

∑
i=1

pi f (Ai) ≤ 1
pn −pn1

n

∑
i=n1+1

pi f (Ai) (10.38)

holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi, i = 1, . . . ,n.

If f : J → R is concave, then the reverse inequality is valid in (10.38).

By applying Corollary 10.6 we obtain the following special case of Theorem 10.1.

Corollary 10.7 Let (A1, . . . ,An) be an n−tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤Mi, i = 1, . . . ,n. Let (α1, . . . ,αn) be an n−tuple of nonnegative
real numbers such that ∑n

i=1 αi = 1. If

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, (10.39)

where mA and MA, mA ≤ MA, are the bounds of A =
n
∑
i=1

αiAi, then

f

(
n

∑
i=1

αiAi

)
≤

n

∑
i=1

αi f (Ai) (10.40)

holds for every continuous convex function f : J → R provided that the interval J contains
all mi,Mi.

Proof. We prove only the convex case. We define (n + 1)−tuple of operators
(B1, . . . ,Bn+1), Bi ∈ B(H), by B1 = A = ∑n

i=1 αiAi and Bi = Ai−1, i = 2, . . . ,n + 1. Then
mB1 = mA, MB1 = MA are the bounds of B1 and mBi = mi−1, MBi = Mi−1 are the ones of Bi,
i = 2, . . . ,n+1. Also, we define (n+1)−tuple of non-negative numbers (p1, . . . , pn+1) by

p1 = 1 and pi = αi−1, i = 2, . . . ,n+1. Then
n+1
∑
i=1

pi = 2 and by using (10.39) we have

(mB1 ,MB1)∩ [mBi ,MBi ] = /0, for i = 2, . . . ,n+1. (10.41)
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Since
n+1

∑
i=1

piBi = B1 +
n+1

∑
i=2

piBi =
n

∑
i=1

αiAi +
n

∑
i=1

αiAi = 2B1,

then

p1B1 =
1
2

n+1

∑
i=1

piBi =
n+1

∑
i=2

piBi. (10.42)

Taking into account (10.41) and (10.42), we can apply Corollary 10.6 for n1 = 1 and Bi, pi

as above, and we get

p1 f (B1) ≤ 1
2

n+1

∑
i=1

pi f (Bi) ≤
n+1

∑
i=2

pi f (Bi),

which gives the desired inequality (10.40). �

10.4 Extension of order among quasi-arithmetic
means

In this section we study an application of Theorem 10.5 to the quasi-arithmetic mean with
weight. For a subset {Ap1 , . . . ,Ap2} of {A1, . . . ,An} we denote the quasi-arithmetic mean
by

Mϕ (γ,A,ΦΦ, p1, p2) = ϕ−1

(
1
γ

p2

∑
i=p1

Φi (ϕ(Ai))

)
, (10.43)

where (Ap1 , . . . ,Ap2) are self-adjoint operators in B(H) with the spectra in J, (Φp1 , . . . ,Φp2)
are positive linear mappings Φi : B(H)→ B(K) such that ∑p2

i=p1
Φi(IH) = γ IK , and ϕ : J →

R is a continuous strictly monotone function.

The following theorem is an extension of Theorem 10.2.

Theorem 10.6 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators in B(H) with the
spectra in J, (Φ1, . . . ,Φn) be an n-tuple of positive linear mappings Φi : B(H) → B(K)
such that ∑n

i=1 Φi(IH) = IK. Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let
ϕ ,ψ : J → R be continuous strictly monotone functions on an interval J which contains
all mi,Mi. For 1 ≤ n1 < n, we denote m = min{m1, . . . ,mn1}, M = max{M1, . . . ,Mn1} and
∑n1

i=1 Φi(IH) = α IK, ∑n
i=n1+1 Φi(IH) = β IK, where α,β > 0, α + β = 1. Let

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n,

and one of two equalities

Mϕ(α,A,ΦΦ,1,n1) = Mϕ(1,A,ΦΦ,1,n) = Mϕ(β ,A,ΦΦ,n1 +1,n) (10.44)

be valid.
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If one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, then

Mψ(α,A,ΦΦ,1,n1) ≤ Mψ(1,A,ΦΦ,1,n) ≤ Mψ(β ,A,ΦΦ,n1 +1,n). (10.45)

If one of the following conditions

(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone

is satisfied, then the reverse inequality is valid in (10.45).

Proof. We prove the case (i) only. Suppose that ϕ is a strictly increasing function.
Since mIH ≤ Ai ≤ MIH , i = 1, . . . ,n1, implies ϕ(m)IK ≤ ϕ(Ai) ≤ ϕ(M)IK , then

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n

implies (
ϕ(m),ϕ(M)

)∩ [ϕ(mi),ϕ(Mi)] = /0 for i = n1 +1, . . . ,n. (10.46)

Also, by using (10.44), we have

1
α

n1

∑
i=1

Φi (ϕ(Ai)) =
n

∑
i=1

Φi (ϕ(Ai)) =
1
β

n

∑
i=n1+1

Φi (ϕ(Ai)) .

Taking into account (10.46) and the above double equality, we obtain by Theorem 10.5

1
α

n1

∑
i=1

Φi ( f (ϕ(Ai))) ≤
n

∑
i=1

Φi ( f (ϕ(Ai))) ≤ 1
β

n

∑
i=n1+1

Φi ( f (ϕ(Ai))) (10.47)

for every continuous convex function f : J → R on an interval J which contains all
[ϕ(mi),ϕ(Mi)] = ϕ([mi,Mi]), i = 1, . . . ,n.

Also, if ϕ is strictly decreasing, then we check that (10.47) holds for convex f : J → R

on J which contains all [ϕ(Mi),ϕ(mi)] = ϕ([mi,Mi]).

Putting f = ψ ◦ϕ−1 in (10.47), we obtain

1
α

n1

∑
i=1

Φi (ψ(Ai)) ≤
n

∑
i=1

Φi (ψ(Ai)) ≤ 1
β

n

∑
i=n1+1

Φi (ψ(Ai)) .

Applying an operator monotone function ψ−1 on the above double inequality, we obtain
the desired inequality (10.45). �
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Remark 10.6 Let the assumptions of Theorem 10.6 be valid.

(1) We observe that if one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(ii) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone,

is satisfied, then the following obvious inequality (see Remark 10.5 (1))

Mϕ(β ,A,ΦΦ,n1 +1,n)≤ Mψ (β ,A,ΦΦ,n1 +1,n)

holds.

(2) We denote by mϕ and Mϕ the bounds of Mϕ(1,A,ΦΦ,1,n). If (mϕ ,Mϕ )∩ [mi,Mi] = /0,
i = 1, . . . ,n1, and one of two following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(ii) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is operator convex and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is operator concave and −ψ−1 is operator monotone,

is satisfied (see Theorem 9.17), then the double inequality (10.45) can be extended from
the left side as follows

Mϕ(1,A,ΦΦ,1,n) = Mϕ (1,A,ΦΦ,1,n1)
≤ Mψ (α,A,ΦΦ,1,n1) ≤ Mψ(1,A,ΦΦ,1,n) ≤ Mψ (β ,A,ΦΦ,n1 +1,n).

(3) If neither assumptions (mψ ,Mψ)∩ [mi,Mi] = /0, i = 1, . . . ,n1 nor ψ ◦ϕ−1 is operator
convex (or operator concave) is satisfied and if 1< n1 < n, then (10.45) can not be extended
from the left side by Mϕ(1,A,ΦΦ,1,n1) as above. It is easy to check it with a counterexample
similarly to Example 10.2.

We now give some particular results of interest that can be derived from Theorem 10.6.

Corollary 10.8 Let (A1, . . . ,An) and (Φ1, . . . ,Φn), mi, Mi, m, M, α and β be as in Theo-
rem 10.6. Let J be an interval which contains all mi,Mi and

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n.

If one of two equalities

Mϕ(α,A,ΦΦ,1,n1) = Mϕ(1,A,ΦΦ,1,n) = Mϕ(β ,A,ΦΦ,n1 +1,n)

is valid, then
1
α

n1

∑
i=1

Φi(Ai) ≤
n

∑
i=1

Φi(Ai) ≤ 1
β

n

∑
i=n1+1

Φi(Ai) (10.48)
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holds for every continuous strictly monotone function ϕ : J → R such that ϕ−1 is convex
on J. But, if ϕ−1 is concave, then the reverse inequality is valid in (10.48).

On the other hand, if one of two equalities

1
α

n1

∑
i=1

Φi(Ai) =
n

∑
i=1

Φi(Ai) =
1
β

n

∑
i=n1+1

Φi(Ai)

is valid, then

Mϕ(α,A,ΦΦ,1,n1) ≤ Mϕ(1,A,ΦΦ,1,n) ≤ Mϕ(β ,A,ΦΦ,n1 +1,n) (10.49)

holds for every continuous strictly monotone function ϕ : J → R such that one of the fol-
lowing conditions

(i) ϕ is convex and ϕ−1 is operator monotone,

(i’) ϕ is concave and −ϕ−1 is operator monotone

is satisfied.
But, if one of the following conditions

(ii) ϕ is concave and ϕ−1 is operator monotone,

(ii’) ϕ is convex and −ϕ−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (10.49).

Proof. The proof of (10.48) follows from Theorem 10.6 by replacing ψ with the iden-
tity function, while the proof of (10.49) follows from the same theorem by replacing ϕ
with the identity function and ψ with ϕ . �

As a special case of the quasi-arithmetic mean (10.43)we can study the weighted power
mean as follows. For a subset {Ap1 , . . . ,Ap2} of {A1, . . . ,An} we denote this mean by

Mr(γ,A,ΦΦ, p1, p2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1
γ

p2

∑
i=p1

Φi (Ar
i )

)1/r

, r ∈ R\{0},

exp

(
1
γ

p2

∑
i=p1

Φi (log(Ai))

)
, r = 0,

where (Ap1 , . . . ,Ap2) are strictly positive operators, (Φp1 , . . . ,Φp2) are positive linear map-
pings Φi : B(H) → B(K) such that ∑p2

i=p1
Φi(IH) = γ IK .

We obtain the following corollary by applying Theorem 10.6 to the above mean.

Corollary 10.9 Let (A1, . . . ,An) be an n−tuple of strictly positive operators in B(H)
and (Φ1, . . . ,Φn) be an n−tuple of positive linear mappings Φi : B(H) → B(K) such that
∑n

i=1 Φi(IH) = IK. Let mi and Mi, 0 < mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. For 1 ≤
n1 < n, we denote m = min{m1, . . . ,mn1}, M = max{M1, . . . ,Mn1} and ∑n1

i=1 Φi(IH) = α IK,
∑n

i=n1+1 Φi(IH) = β IK, where α,β > 0, α + β = 1.
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(i) If either r ≤ s, s ≥ 1 or r ≤ s ≤−1 and also one of two equalities

Mr(α,A,ΦΦ,1,n1) = Mr(1,A,ΦΦ,1,n) = Mr(β ,A,ΦΦ,n1 +1,n) (10.50)

is valid, then

Ms(α,A,ΦΦ,1,n1) ≤ Ms(1,A,ΦΦ,1,n) ≤ Ms(β ,A,ΦΦ,n1 +1,n). (10.51)

(ii) If either r ≤ s, r ≤−1 or 1 ≤ r ≤ s and also one of two equalities

Ms(α,A,ΦΦ,1,n1) = Ms(1,A,ΦΦ,1,n) = Ms(β ,A,ΦΦ,n1 +1,n)

is valid, then

Mr(α,A,ΦΦ,1,n1) ≥ Mr(1,A,ΦΦ,1,n) ≥ Mr(β ,A,ΦΦ,n1 +1,n). (10.52)

Proof. We take ϕ(t) = tr and ψ(t) = ts or ϕ(t) = ts and ψ(t) = tr for t > 0 and apply
Theorem 10.6. We omit the details. �

10.5 Refinements

In this section we present a refinement of Jensen’s inequality (10.18) and a refined the
general form of its converses (9.88).

For convenience we introduce the abbreviation

δ f (m,M) := f (m)+ f (M)−2 f

(
m+M

2

)
, (10.53)

where f : [m,M] → R, m < M, is a continue function. It is obvious that, if f is convex
(resp. concave) then δ f ≥ 0 (resp. δ f ≤ 0).

To obtain our results we need the following three lemmas.

Lemma 10.1 Let f be a convex function on an interval J, m,M ∈ J and p1, p2 ∈ [0,1]
such that p1 + p2 = 1. Then

min{p1, p2}
[

f (m)+ f (M)−2 f

(
m+M

2

)]
≤ p1 f (m)+ p2 f (M)− f (p1m+ p2M). (10.54)

Proof. These results follows from [208, Theorem 1, p. 717] for n = 2 and replacing x1

and x2 with m and M, respectively. �
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Lemma 10.2 Let x be a bounded self-adjoint elements in a unital C∗-algebra A of oper-
ators on some Hilbert space H. If the spectrum of x is in [m,M], for some scalars m < M,
then

f (x) ≤ M1H − x
M−m

f (m)+
x−m1H

M−m
f (M)− δ f (m,M)x (10.55)

holds for every continuous convex function f : [m,M] → R, where δ f (m,M) is defined by
(10.53) and

x =
1
2
1H − 1

M−m

∣∣∣∣x− m+M
2

1H

∣∣∣∣ .
If f is concave, then the reverse inequality is valid in (10.55).

Proof. We prove the convex case only. By using (10.54) we get

f (p1m+ p2M) ≤ p1 f (m)+ p2 f (M)−min{p1, p2}δ f (m,M) (10.56)

for every p1, p2 ∈ [0,1] such that p1 + p2 = 1. Let functions p1, p2 : [m,M] → [0,1] be
defined by

p1(z) =
M− z
M−m

, p2(z) =
z−m
M−m

.

Than for any z ∈ [m,M] we can write

f (z) = f

(
M− z
M−m

m+
z−m
M−m

M

)
= f (p1(z)m+ p2(z)M) .

By using (10.56) we get

f (z) ≤ M− z
M−m

f (m)+
z−m
M−m

f (M)− z̃δ f (m,M), (10.57)

where

z̃ =
1
2
− 1

M−m

∣∣∣∣z− m+M
2

∣∣∣∣ ,
since

min

{
M− z
M−m

,
z−m
M−m

}
=

1
2
− 1

M−m

∣∣∣∣z− m+M
2

∣∣∣∣ .
Finally by utilizing the functional calculus to (10.57) we obtain the desired inequality
(10.55). �

In the following lemma we present an improvement of the Mond-Pečarić method.

Lemma 10.3 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in an
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ and (Φt)t∈T be an unital
field of positive linear mappings Φt : A → B from A to another unital C∗−algebra B.
Then∫

T
Φt( f (xt ))dμ(t) ≤ α f

∫
T

Φt (xt)dμ(t)+ β f1K − δ f x̃ ≤ α f

∫
T

Φt (xt)dμ(t)+ β f1K

(10.58)
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for every continuous convex function f : [m,M] → R, where δ f ≡ δ f (m,M) is defined by
(10.53),

x̃ ≡ x̃xt ,Φt (m,M) :=
1
2
1K − 1

M−m

∫
T

Φt

(
|xt − m+M

2
1H |

)
dμ(t) (10.59)

and α f =
f (M)− f (m)

M−m
, β f =

M f (m)−mf (M)
M−m

(the same as in Chapter 9).

If f is concave, then the reverse inequality is valid in (10.58).

Proof. We prove the convex case only. Since Sp(xt) ⊆ [m,M], then by utilizing the
functional calculus to (10.57) in Lemma 10.2, we obtain

f (xt ) ≤ M− xt

M−m
f (m)+

xt −m
M−m

f (M)− x̃tδ f (m,M),

where

x̃t =
1
2
1H − 1

M−m

∣∣∣∣xt − m+M
2

1H

∣∣∣∣ .
Applying a positive linear mapping Φt , integrating and using that

∫
T Φt(1H)dμ(t) = 1K,

we get the first inequality in (10.58), since∫
T

Φt (x̃t) dμ(t) =
1
2
1K − 1

M−m

∫
T

Φt

(
|xt − m+M

2
1H |

)
dμ(t) = x̃.

Also, m1H ≤ xt ≤ M1H , t ∈ T , implies
∫
T Φt

(|xt − m+M
2 1H |

)
dμ(t) ≤ M−m

2 1K. It follows
x̃ ≥ 0. Then the second inequality in (10.58) holds, since δ f x̃ ≥ 0. �

Now, we present a refinement of Jensen’s inequality.

Theorem 10.7 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A defined on a locally compact Hausdorff space T equipped with a
bounded Radon measure μ . Let mt and Mt , mt ≤ Mt, be the bounds of xt , t ∈ T . Let
(Φt )t∈T be a unital field of positive linear mappings Φt : A → B from A to another
unital C∗−algebra B. Let

(mx,Mx)∩ [mt ,Mt ] = /0, t ∈ T, and m < M,

where mx and Mx, mx ≤ Mx, be the bounds of the operator x =
∫
T

Φt(xt)dμ(t) and

a = sup{Mt : Mt ≤ mx,t ∈ T} , b = inf{mt : mt ≥ Mx,t ∈ T} .

If f : J →R is a continuous convex function provided that the interval J contains all mt ,Mt ,
then

f

(∫
T

Φt(xt)dμ(t)
)
≤

∫
T

Φt ( f (xt))dμ(t)− δ f (m,M)x ≤
∫

T
Φt( f (xt ))dμ(t) (10.60)
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holds, where δ f (m,M) is defined by (10.53),

x ≡ xx(m,M) :=
1
2
1K − 1

M−m

∣∣∣∣x− m+M
2

1K

∣∣∣∣ (10.61)

and m ∈ [a,mx], M ∈ [Mx,b], m < M, are arbitrary numbers. If f is concave, then the
reverse inequality is valid in (10.60).

Proof. We prove only the convex case. Since x =
∫
T Φt(xt)dμ(t) ∈ B is the self-

adjoint elements such that m1K ≤ mx1K ≤ ∫
T Φt(xt)dμ(t) ≤ Mx1K ≤ M1K and f is convex

on [m,M] ⊆ J, then by Lemma 10.2 we obtain

f

(∫
T

Φt(xt)dμ(t)
)
≤ M1K − ∫

T Φt(xt)dμ(t)
M−m

f (m)+
∫
T Φt(xt)dμ(t)−m1K

M−m
f (M)− δ f x,

(10.62)
where δ f ≡ δ f (m,M) and x are defined by (10.53) and (10.61), respectively. On the
other hand, since (mx,Mx)∩ [mt ,Mt ] = /0 implies (m,M)∩ [mt ,Mt ] = /0 and f is convex
on [mt ,Mt ], then

f (xt) ≥ M1H − xt

M−m
f (m)+

xt −m1H

M−m
f (M), t ∈ T.

Applying a positive linear mapping Φt , integrating and adding −δ f x, we obtain

∫
T

Φt ( f (xt)) dμ(t)−δ f x≥M1K−
∫
T Φt(xt)dμ(t)
M−m

f (m)+
∫
T Φt (xt)dμ(t)−m1K

M−m
f (M)−δ f x.

(10.63)
Combining two inequalities (10.62) and (10.63), we have LHS of (10.60). Also, since
δ f ≥ 0 and x ≥ 0, we have RHS of (10.60). �

Finally, we present a refinement of (9.88).

Theorem 10.8 Let (xt)t∈T , (Φt)t∈T , m,M, δ f (m,M), x̃, α f and β f be as in Lemma 10.3.
Let mx and Mx, mx ≤ Mx, be the bounds of the operator x =

∫
T

Φt (xt)dμ(t), and mx̃ be the

lower bound of the operator x̃.
Let f : [m,M]→R, g : [mx,Mx]→R, F :U×V →R, where f ([m,M])⊆U, g([mx,Mx])⊆

V and F be bounded. If f is convex and F is operator monotone in the first variable, then

F

[∫
T
Φt( f (xt ))dμ(t) , g

(∫
T
Φt(xt)dμ(t)

)]
≤ F

[
α f x+ β f − δ f (m,M)x̃ , g

(∫
T
Φt(xt)dμ(t)

)]
≤ sup

mx≤z≤Mx

F
[
α f z+ β f − δ f (m,M)mx̃,g(z)

]
1K ≤ sup

mx≤z≤Mx

F
[
α f z+ β f ,g(z)

]
1K .

(10.64)

If f is concave, then the opposite inequalities are valid in (10.64) with inf instead of sup.
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Proof. We only prove the case when f is convex. Then δ f (m,M) ≥ 0 implies 0 ≤
δ f (m,M) mx̃ 1K ≤ δ f (m,M) x̃. By using (10.58) it follows∫

T
Φt( f (xt ))dμ(t) ≤ α f x+ β f − δ f (m,M) x̃ ≤ α f x+ β f − δ f (m,M) mx̃1K ≤ α f x+ β f .

Taking into account operator monotonicity of F(·,v) in the first variable, we obtain (10.64).
�

Example 10.4 We give examples for the matrix cases and T = {1,2}. We put F(u,v) =
u− v, f (t) = t4 which is convex but not operator convex, and g ≡ f . As a special case of
(10.64), we have

Φ1(X4
1 )+Φ2(X4

2 )≤ (
Φ1(X1)+Φ2(X2)

)4+CI2−δ f (m,M)X̃ ≤ (
Φ1(X1)+Φ2(X2)

)4+CI2,
(10.65)

where

C = max
mx≤z≤Mx

{
M4 −m4

M−m
z+

Mm4 −mM4

M−m
− z4

}
.

Also, we define mappings Φ1,Φ2 : M3(C) → M2(C): Φ1((ai j)1≤i, j≤3) = 1
2 (ai j)1≤i, j≤2,

Φ2 ≡ Φ1.

I) First, we observe an example without the spectra condition. Then we obtain a refined
inequality (10.65), but Jensen’s inequality doesn’t hold.

If X1 = 2

⎛⎝1 0 1
0 0 1
1 1 1

⎞⎠ and X2 = 2

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ , then X = 2

(
1 0
0 0

)
and m1 = −1.604, M1 = 4.494, m2 = 0, M2 = 2, m = −1.604, M = 4.494 (rounded to
three decimal places). We have

(Φ1(X1)+ Φ2(X2))
4 =

(
16 0
0 0

)
��

(
80 40
40 24

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
and (

80 40
40 24

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
<

(
111.742 39.327
39.327 142.858

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
+CI2− δ f X̃

<

(
243.758 0

0 227.758

)
= (Φ1(X1)+ Φ2(X2))

4 +CI2,

since C = 227.758, δ f = 405.762, X̃ =
(

0.325 −0.097
−0.097 0.2092

)
II) Next, we observe an example with the spectra condition. Then we obtain a series of
inequalities involving the refined Jensen’s inequality:(

Φ1(X1)+ Φ2(X2)
)4 ≤ Φ1(X4

1 )+ Φ2(X4
2 )− δ f (m,M)X ≤ Φ1(X4

1 )+ Φ2(X4
2 )
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and its converse (10.65).

If X1 =

⎛⎝−4 1 1
1 −2 −1
1 −1 −1

⎞⎠ and X2 =

⎛⎝ 5 −1 −1
−1 2 1
−1 1 3

⎞⎠ , then X =
1
2

(
1 0
0 0

)

and m1 = −4.866, M1 = −0.345, m2 = 1.345, M2 = 5.866, m = −4.866, M = 5.866,
a = −0.345, b = 1.345 and we put m = a, M = b (rounded to three decimal places). We
have (

0.0625 0
0 0

)
= (Φ1(X1)+ Φ2(X2))

4

<

(
639.921 −255
−255 117.856

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)− δ f (a,b)X

<

(
641.5 −255
−255 118.5

)
= Φ1

(
X4

1

)
+ Φ2

(
X4

2

)
<

(
731.649 −162.575
−162.575 325.15

)
= (Φ1(X1)+ Φ2(X2))

4 +CI2− δ f (m,M)X̃

<

(
872.471 0

0 872.409

)
= (Φ1(X1)+ Φ2(X2))

4 +CI2,

since δ f (a,b) = 3.158, X =
(

0.5 0
0 0.204

)
, δ f (m,M) = 1744.82, X̃ =

(
0.325 −0.097
−0.097 0.2092

)
and C = 872.409 .

10.6 Notes

The idea of Jensen’s inequality without operator convexity is given by Mićić, Pavić and
Pečarić [187]. The application on the power operator means is presented in [188]. Ex-
tensions of the previous results are given by the same authors in [190]. A refinement of
Jensen’s inequality and its converses based on research by Mićić, Pečarić and J. Perić is
presented in Section 10.5. The interested reader can find additional results in [186, 194,
195, 196].



Chapter11
Bohr’s Inequality

The classical inequality of Bohr says that |a+ b|2 ≤ p|a|2 + q|b|2 for all scalars a, b and
p, q > 0 with 1/p+1/q = 1. The equality holds if and only if (p−1)a = b.

In this chapter, we observe some operator versions of Bohr’s inequality. Using a gen-
eral result involving matrix ordering, we derive several inequalities of Bohr’s type. Fur-
thermore, we present an approach to Bohr’s inequality based on a generalization of the
parallelogram theorem with absolute values of operators. Finally, applying Jensen’s oper-
ator inequality we get a generalization of Bohr’s inequality.

11.1 Bohr’s inequalities for operators

Let H be a complex separable Hilbert space and B(H) the algebra of all bounded operators
on H. The absolute value of A ∈ B(H) is denoted by |A| = (A∗A)1/2.

The classical inequality of Bohr [24] says that

|a+b|2 ≤ p|a|2 +q|b|2

for all scalars a, b and p, q > 0 with 1/p+ 1/q = 1. The equality holds if and only if
(p−1)a = b.

For this, Hirzallah [145] proposed an operator version of Bohr’s inequality:

299
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Theorem 11.1 If A and B are operators on a Hilbert space, and q ≥ p > 0 satisfy 1/p+
1/q = 1, then

|A−B|2 + |(p−1)A+B|2 ≤ p|A|2 +q|B|2.
Afterwards, several authors have presented generalizations of Bohr’s inequality.

Theorem 11.2 If A,B ∈ B(H), 1
p + 1

q = 1, and 1 < p ≤ 2, i.e. q ≥ p > 1, then

(i) |A−B|2 + |(p−1)A+B|2 ≤ p|A|2 +q|B|2,
(ii) |A−B|2 + |A+(q−1)B|2 ≥ p|A|2 +q|B|2.

On the other hand, if p < 1, then

(iii) |A−B|2 + |(p−1)A+B|2 ≥ p|A|2 +q|B|2.
Theorem 11.3 If A,B ∈ B(H) and |α| ≥ |β |, then

|A−B|2 +
1

|α|2
∣∣∣ |β |A+ |α|B

∣∣∣2 ≤ (
1+

|β |
|α|

)
|A|2 +

(
1+

|α|
|β |

)
|B|2.

We note that it unifies the following inequalities:

(i) If α ≥ |β | = −β , then

|A−B|2 +
∣∣∣∣ |β |α

A+B

∣∣∣∣2 ≤ (
1+

|β |
α

)
|A|2 +

(
1+

α
|β |

)
|B|2.

(ii) If 0 < α ≤−β , then

|A−B|2 +
∣∣∣∣ α
|β |A+B

∣∣∣∣2 ≤ (
1+

α
|β |

)
|A|2 +

(
1+

|β |
α

)
|B|2.

Next we state Bohr’s inequalities for multi-operators.

Theorem 11.4 Suppose that Ai ∈B(H), and ri ≥ 1 for i = 1,2, · · · ,n with
n
∑
i=1

1
ri

= 1. Then

∣∣∣∣∣ n

∑
i=1

Ai

∣∣∣∣∣
2

≤
n

∑
i=1

ri|Ai|2.

In other words, it says that K(z) = |z|2 satisfies Jensen’s (operator) inequality:

K

(
n

∑
i=1

ti Ai

)
≤

n

∑
i=1

ti K(Ai)

holds for t1, · · · ,tn > 0 with
n
∑
i=1

ti = 1.
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11.2 Matrix approach to Bohr’s inequalities

In this section, we present an approach to Bohr’s inequalities by the use of the matrix order.
For this, we introduce two notations: For x = (x1, · · · ,xn) ∈ Rn, we define an n× n

matrix Λ(x) = x∗x = (xix j) and D(x) = diag(x1, · · · ,xn).

Theorem 11.5 If Λ(a)+ Λ(b)≤ D(c) for a,b,c ∈ Rn, then∣∣∣ n

∑
i=1

aiAi

∣∣∣2 +
∣∣∣ n

∑
i=1

biAi

∣∣∣2 ≤ n

∑
i=1

ci|Ai|2

for arbitrary n-tuple (Ai) in B(H). Incidentally, the statement is correct even if the order
is replaced by the reverse.

Proof. We define a positive mapping Φ of B(H)n to B(H) by

Φ(X) = (A∗
1 · · ·A∗

n)X
T (A1 · · ·An),

where ·T denotes the transpose operation. Since Λ(a) = (a1, · · · ,an)T (a1, · · · ,an), we have

Φ(Λ(a)) =
( n

∑
i=1

aiAi

)∗( n

∑
i=1

aiAi

)
=

∣∣∣ n

∑
i=1

aiAi

∣∣∣2,
so that ∣∣∣ n

∑
i=1

aiAi

∣∣∣2 +
∣∣∣ n

∑
i=1

biAi

∣∣∣2 = Φ
(

Λ(a)+ Λ(b)
)
≤ Φ(D(c)) =

n

∑
i=1

ci|Ai|2.

The additional part is easily shown by the same way. �

The meaning of Theorem 11.5 will be well explained in the following theorem.

Theorem 11.6 Let t ∈ R.

(i) If 0 < t ≤ 1, then |A∓B|2 + |tA±B|2 ≤ (1+ t)|A|2 +
(
1+

1
t

)
|B|2.

(ii) If t ≥ 1 or t < 0, then |A∓B|2 + |tA±B|2 ≥ (1+ t)|A|2 +
(
1+

1
t

)
|B|2.

Proof. We apply Theorem 11.5 to a = (1,∓1), b = (t,±1) and c = (1 + t,1 + 1/t).
Then we consider the order between corresponding matrices:

T =
(

1+ t 0
0 1+ 1

t

)
−

(
1 ∓1
∓1 1

)
−

(
t2 ±t
±t 1

)
= (1− t)

(
t ±1
±1 1

t

)
.

Since det(T ) = 0, T is positive semidefinite (resp. negative semidefinite) if 0 < t < 1 (resp.
t > 1 or t < 0). �
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Remark 11.1 It is important that all of theorems cited in Section 11.1 follow from Theo-
rem 11.6 easily. For instance, for (i) and (iii) of Theorem 11.2, we take t = p−1. For (ii),
we take t = q−1 and permute A and B. Also, Theorem 11.3 follows taking t = |β |/|α|.

As another application of Theorem 11.5, we give a proof of Theorem 11.4.

Proof of Theorem 11.4. We check the order between the corresponding matrices D =
diag(r1, · · · ,rn) andC = (ci j) where ci j = 1. All principal minors of D−C are nonnegative
and it follows that C ≤ D. Really, for natural numbers k ≤ n, put Dk = diag(ri1 , · · · ,rik ),
Ck = (ci j) with ci j = 1, i, j = 1, . . . ,k and Rk = ∑k

j=1 1/ri j where 1 ≤ ri1 < · · · < rik ≤ n.
Then

det(Dk −Ck) = (ri1 · · · · · rik)(1−Rk) ≥ 0 for arbitrary k ≤ n.

Hence we have the conclusion by Theorem 11.5. �

In the remainder, we cite additional results obtained by Theorem 11.5.

Corollary 11.1 If a = (a1,a2), b = (b1,b2) and p = (p1, p2) satisfy

p1 ≥ a2
1 +b2

1, p2 ≥ a2
2 +b2

2, (p1 − (a2
1 +b2

1))(p2 − (a2
2 +b2

2)) ≥ (a1a2 +b1b2)2,

then
|a1A+a2B|2 + |b1A+b2B|2 ≤ p1|A|2 + p2|B|2

holds all A,B ∈ B(H).

Proof. Since the assumption of the above is nothing but the matrix inequality Λ(a)+
Λ(b) ≤ D(p), Theorem 11.5 implies the conclusion. �

Finally, we remark the monotonicity of the operator function F(a) =
∣∣∣ n

∑
i=1

ai Ai

∣∣∣2.
Corollary 11.2 For a fixed n-tuple (Ai) in B(H), the operator function F(a) =

∣∣∣ n
∑
i=1

ai Ai

∣∣∣2
for a = (a1, · · · ,an) is order preserving, that is,

if Λ(a) ≤ Λ(b), then F(a) ≤ F(b).

Proof. We prove this putting F(a) = Φ(a∗a), where Φ is a positive linear mapping as
in the proof of Theorem 11.5. �

Corollary 11.3 If a = (a1,a2,a3) and b = (b1,b2,b3) satisfy |ai| ≤ |bi| for i = 1,2,3 and
aib j = a jbi for i �= j, then F(a) ≤ F(b).

Proof. It follows from assumptions that if i �= l and j �= k, then∣∣∣∣ aia j −bib j aiak −bibk

ala j −blb j alak −blbk

∣∣∣∣ = akb j(aibl −bial)+a jbk(bial −aibl) = 0.

This means that all 2nd principal minors of Λ(b)−Λ(a) are zero. It follows that det(Λ(b)−
Λ(a)) = 0. Since the diagonal elements satisfy |ai| ≤ |bi| for i = 1,2,3, we have the matrix
inequality Λ(a) ≤ Λ(b). Now it is sufficient to apply Corollary 11.2. �
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11.3 Generalized parallelogram law for operators

Next we give another approach to Bohr’s inequality. In our frame, the following general-
ization of the parallelogram law easily implies Theorem 11.6 which covers many previous
results as discussed in the preceding section.

Theorem 11.7 If A and B are operators on a Hilbert space and t �= 0, then

|A+B|2 +
1
t
|tA−B|2 = (1+ t)|A|2 +

(
1+

1
t

)
|B|2.

Proof. It is easily checked that

|A+B|2 +
1
t
|tA−B|2

= |A|2 + |B|2 +A∗B+B∗A+ t|A|2 +
1
t
|B|2−A∗B−B∗A

= (1+ t)|A|2 +
(

1+
1
t

)
|B|2.

�

Remark 11.2 We immediately obtain Theorem 11.6 by noting the condition of t in Theo-
rem 11.7. This means that Theorems 11.1 and 11.2 also follow from Theorem 11.7 .

Next we extend Theorem 11.7 for several operators.

Theorem 11.8 Suppose that Ai ∈ B(H) and ri ≥ 1 with
n
∑
i=1

1
ri

= 1 for i = 1,2, ...,n. Then

n

∑
i=1

ri|Ai|2−|
n

∑
i=1

Ai|2 = ∑
1≤i< j≤n

∣∣∣∣√ ri

r j
Ai−

√
r j

ri
A j

∣∣∣∣2.
Proof. We show it by the induction on n. Note that it is true for n = 2 by Theorem

11.7, because it is expressed as follows: Let Ai ∈ B(H) and ri ≥ 1 for i = 1,2 satisfying
1
r1

+ 1
r2

= 1. Then

r1|A1|2 + r2|A2|2−|A1 +A2|2 =
∣∣∣∣√ r1

r2
A1−

√
r2

r1
A2

∣∣∣∣2 .

Now suppose that it is true for n = k, then we take A1, · · · ,Ak+1 ∈B(H) and r1, · · · ,rk+1 > 1

satisfying
k+1

∑
i=1

1
ri

= 1. Here we put r′i = ri

(
1− 1

rk+1

)
for i = 1, · · · ,k and B =

k
∑
i=1

Ai for

convenience, then r′i > 1 and
k

∑
i=1

1
r′i

= 1. Hence we have



304 11 BOHR’S INEQUALITY

k+1

∑
i=1

ri|Ai|2 −
∣∣∣∣∣k+1

∑
i=1

Ai

∣∣∣∣∣
2

=
k

∑
i=1

ri|Ai|2 + rk+1|Ak+1|2−
∣∣∣∣∣ k

∑
i=1

Ai +Ak+1

∣∣∣∣∣
2

=
(

1− 1
rk+1

) k

∑
i=1

ri|Ai|2−|B|2 +(rk+1−1)|Ak+1|2 +
1

rk+1

k

∑
i=1

ri|Ai|2−B∗Ak+1−A∗
k+1B

=
( k

∑
i=1

r
′
i|Ai|2 −|B|2

)
+

k

∑
i=1

ri

rk+1
|Ai|2−B∗Ak+1−A∗

k+1B+(rk+1−1)|Ak+1|2

= ∑
1≤i< j≤k

∣∣∣∣√ ri

r j
Ai −

√
r j

ri
A j

∣∣∣∣2 +
k

∑
i=1

ri

rk+1
|Ai|2−B∗Ak+1−A∗

k+1B+
k

∑
i=1

rk+1

ri
|Ak+1|2

= ∑
1≤i< j≤k

∣∣∣∣√ ri

r j
Ai −

√
r j

ri
A j

∣∣∣∣2 +
k+1

∑
i=1

∣∣∣∣√ ri

rk+1
Ai−

√
rk+1

ri
Ak+1

∣∣∣∣2
= ∑

1≤i< j≤k+1

∣∣∣∣√ ri

r j
Ai−

√
r j

ri
A j

∣∣∣∣2.
Therefore, the required equality holds for all n ∈ N. �

Remark 11.3 Theorem 11.4 is an easy consequence of Theorem 11.8.

Incidentally, we note that the condition ri ≥ 1 in Theorem 11.8 is not necessary. As a
matter of fact, we can show the following.

Corollary 11.4 Let Ai ∈ B(H) and ri �= 0 for i = 1,2, ...,n with
n
∑
i=1

1
ri

= 1. Then

n

∑
i=1

ri|Ai|2 −
∣∣∣∣∣ n

∑
i=1

Ai

∣∣∣∣∣
2

= ∑
1≤i≤ j≤n

r j

ri

∣∣∣∣ ri

r j
Ai−Aj

∣∣∣∣2 .

11.4 The Dunkl-Williams inequality

Dunkl and Williams showed that∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥≤ 4‖x− y‖

‖x‖+‖y‖
for every nonzero element x,y in a normed linear space.
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Pečarić and Rajić gave the following refinement: For every nonzero element x,y in a
normed linear space X∥∥∥∥ x

‖x‖ − y
‖y‖

∥∥∥∥≤
√

2‖x− y‖2 +2(‖x‖−‖y‖)2

max{‖x‖,‖y‖} .

Furthermore they generalized it to an operator inequality as follow:

Theorem 11.9 Let A,B ∈ B(H) be operators where |A| and |B| are invertible, and let
p,q > 1 with 1

p + 1
q = 1.∣∣∣A|A|−1−B|B|−1

∣∣∣2 ≤ |A|−1 (p|A−B|2 +q(|A|− |B|)2) |A|−1.

The equality holds if and only if

p (A−B)|A|−1 = q B
(|A|−1−|B|−1) .

Very recently, Saito-Tominaga improved Theorem 11.9 without the assumption of the
invertibility of the absolute value of operators.

Theorem 11.10 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and let p,q > 1 with 1

p + 1
q = 1. Then∣∣∣(U −V)|A|

∣∣∣2 ≤ p|A−B|2 +q(|A|− |B|)2 .

The equality holds if and only if

p (A−B) = q V (|B|− |A|) and V ∗V ≥U∗U.

In this section, we consider the Dunkl-Williams inequality for operators as an applica-
tion of generalized parallelogram law of operators in Theorem 11.7:

|A−B|2 +
1
t
|tA+B|2 = (1+ t)|A|2 +

(
1+

1
t

)
|B|2

for any nonzero t ∈ R.
The following lemma follows from it easily.

Lemma 11.1 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|. Then for each t > 0

|A−B|2 ≤ (1+ t)|A|2 +
(

1+
1
t

)
|B|2.

The equality holds for t if and only if tA+B = 0.
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We prepare another lemma.

Lemma 11.2 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B| and t > 0. If t(A−B)+V(|A|− |B|) = 0 is satisfied, then

t|A−B|2 ≤ |A|2−|B|2,

and so |A| ≥ |B| and U∗U ≥V ∗V .
In addition, if U∗U = V ∗V , then t|A−B|2 = |A|2−|B|2.

Proof. Since tA− (t +1)B = −V |A| by the assumption, we have∣∣tA− (t +1)B
∣∣2 = |A|V ∗V |A|.

Adding t|A|2− (t +1)|B|2 to both sides, it follows that

t(t +1)|A−B|2 = |A|V ∗V |A|+ t|A|2− (t +1)|B|2 ≤ (t +1)
(|A|2−|B|2) ,

so that
0 ≤ t|A−B|2 ≤ |A|2−|B|2.

Hence it follows that |A| ≥ |B| and U∗U ≥ V ∗V . Moreover, if U∗U = V ∗V is assumed,
then V ∗V |A| = |A| and so

t|A−B|2 = |A|2−|B|2.
�

The following theorem is proved by the lemmas cited above, and it changes to Theo-
rem 11.10 by taking t = p−1.

Theorem 11.11 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and t > 0. Then

∣∣(U −V)|A|∣∣2 ≤ (t +1)|A−B|2 +
(

1+
1
t

)
(|A|− |B|)2.

The equality holds if and only if

t(A−B) = V (|B|− |A|) and V ∗V = U∗U.

Proof. We replace A and B in Lemma 11.1 by A−B and V (|A| − |B|), respectively.
Then we have the required inequality, and the condition for which the equality holds is that

t(A−B) = V (|B|− |A|) and V ∗V = U∗U.

The latter in above is equivalent to |A|V ∗V |A| = |A|2, that is, V ∗V ≥U∗U . By the help of
Lemma 11.2, it becomes V ∗V = U∗U . �
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Lemma 11.3 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and t > 0. Suppose that V ∗V = U∗U. Then

t(A−B) = V (|B|− |A|)
if and only if

|A| = |B|+ t|A−B| and A−B = −V |A−B|.
Proof. Let t(A−B) = −V (|A|− |B|). It follows from Lemma 11.2 that

t|A−B|=
∣∣∣|A|− |B|

∣∣∣ = |A|− |B|

and moreover

A−B =
1
t
V (|B|− |A|) = −1

t
tV |A−B|= −V |A−B|.

Conversely, let |A|− |B|= t|A−B| and A−B = −V |A−B|. Then

t(A−B)+V(|A|− |B|) = −tV |A−B|+ tV|A−B|= 0.

�

Lemma 11.4 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and t > 0. Suppose that V ∗V = U∗U. If t(A−B) = V (|B|− |A|), then

|B||A−B|+ |A−B||B|= (1− t)|A−B|2.
Proof. Put C = A−B. The preceding lemma ensures that

t|C| = |B+C|− |B| and C = −V |C|.
Then it follows that

|B+C|= |B|+ t|C|,
and that

B∗C = −B∗V |C| = −(|B|V ∗V )|C| = −|B||C|.
Hence we have

|B+C|2 = (|B|− |C|)2 and |B+C|2 = (|B|+ t|C|)2,

so that
(t +1)

(|B||C|+ |C||B|) = (1− t2)|C|2,
which is equivalent to the conclusion. �

Theorem 11.12 Let A,B ∈ B(H) be operators with polar decompositions A = U |A| and
B = V |B|, and C = A−B = W |C| the polar decomposition of C. Assume that the equality∣∣(U −V )|A|∣∣2 = (t +1)|A−B|2 +

(
1+

1
t

)(|A|− |B|)2
.

holds for some t > 0.
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(1) If t ≥ 1, then A = B.

(2) If 0 ≤ t ≤ 1, then

A = B

(
I− 2

1− t
W ∗W

)
and |A| = |B|

(
I +

2t
1− t

W ∗W
)

,

and the converse is true.

Proof. The preceding lemma leads us the fact that if positive operators S and T satisfy
ST +TS = rS2 for some r ∈ R, then

(i) S = 0 if r < 0, and (ii) S and T commute if r ≥ 0.

(Since S2T = STS− tS3 is self-adjoint, S2 commutes with T and so does S.) Thus we apply
it for S = |A−B||C|, T = |B| and r = 1− t.

(1) Since r = 1− t ≤ 0, we first suppose that r < 0. Then S = |A−B|= 0, that is, A = B,
as desired. Next we suppose r = 0. Then S = |C| commutes with T = |B| and so ST = 0.
Hence we have |C|V ∗V = 0. Moreover, since C = −V |C| by Lemma 11.3, it follows that
|C|2 = |C|V ∗V |C| = 0, i.e. C = 0.

(2) We apply (ii). Namely we have

|B||C| = |C||B| = 1− t
2

|C|2,

so that

B|C| = V |B||C| = 1− t
2

V |C|2 =
t−1

2
C|C| = t−1

2
A|C|− t−1

2
B|C|.

It implies that

A|C| = 2
t−1

(
1+

t−1
2

)
B|C| = t +1

t−1
B|C|,

and so

AW ∗W =
t +1
t−1

BW ∗W.

Therefore we have

A = AW ∗W +A(I−W ∗W ) =
t +1
t −1

BW ∗W +B(I−W∗W ) = B

(
I +

2
t −1

W ∗W
)

.

For the second equality, it suffices to show that W ∗W commutes with |B| because∣∣∣I− 2
1− t

W ∗W
∣∣∣ = I +

2t
1− t

W ∗W
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is easily seen. For this commutativity, we note that C = A−B = 2
t−1BW∗W by the first

equality, C = −V |C| by Lemma 11.3, and V ∗V ≥ W ∗W by W ∗W ≤ sup{V ∗V,U∗U} and
V ∗V = U∗U . So we prove that

|B|W ∗W =V ∗BW ∗W = −1− t
2

V ∗C =
1− t

2
V ∗V |C| = 1− t

2
|C|.

Incidentally the converse implication in (2) is as follows: We first note that the second
equality assures the commutativity of |B| and W ∗W . Next it follows that

|A|− |B|= − 2t
1− t

|B|W ∗W

and

V |A|−B = V (|A|− |B|) = − 2t
1− t

BW ∗W = −t(A−B)

by the first equality. Hence we have

(U −V )|A| = A−V |A| = A+ t(A−B)−B= (1+ t)(A−B)

and so ∣∣(U −V)|A|∣∣2 = (1+ t)2|A−B|2.
On the other hand, since

(|A|− |B|)2 =
(

2t
1− t

)2

B∗BW ∗W = t2|A−B|2

we have

(1+ t)|A−B|2+(1+
1
t
)(|A|− |B|)2

=
(

(1+ t)+
(
1+

1
t

)
t2
)
|A−B|2 = (1+ t)2|A−B|2,

which completes the proof. �

11.5 From Jensen’s inequality to Bohr’s inequality

As an application of Jensen’s inequality, in this section we consider a generalization of
Bohr’s inequality. Namely Jensen’s inequality implies Bohr’s inequality even in the opera-
tor case.

For this, we first target the following inequality which is an extension of Bohr’s in-
equality, precisely, it is a multiple version of Bohr’s inequality in the case r = 2:
If r > 1 and a1, · · · ,an > 0, then∣∣∣ n

∑
i=1

zi

∣∣∣r ≤ ( n

∑
i=1

a
1

1−r
i

)r−1 n

∑
i=1

ai|zi|r

for all z1, · · · ,zn ∈ C.
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We note that it follows from Hölder inequality. Actually, p = r
r−1 and q = r are conju-

gate, i.e. 1
p + 1

q = 1. We here set

ui = a
− 1

q
i , wi = u−1

i zi (i = 1,2, · · · ,n)

and apply them to Hölder inequality. Then we have∣∣∣ n

∑
i=1

zi

∣∣∣r =
∣∣∣ n

∑
i=1

uiwi

∣∣∣r ≤ ( n

∑
i=1

|ui|p
) r

p
( n

∑
i=1

|wi|q
) r

q =
( n

∑
i=1

a
1

1−r
i

)r−1 n

∑
i=1

ai|zi|r.

Now we propose its operator extension. For the sake of convenience, we recall Jensen’s
inequality (see also Remark 10.1 with conditions on spectra) for our use below:

Let f be an operator convex function on an interval J, let T be a locally compact Haus-
dorff space with a bounded Radon measure μ , and let A and B be unital C∗-algebras. If
(ψt)t∈T is a unital field of positive linear mappings of A to B, then

f

(∫
T

ψt(xt)dμ(t)
)
≤

∫
T

ψt( f (xt ))dμ(t)

holds for bounded continuous fields (xt)t∈T of self-adjoint elements in A whose spectra
are contained in J.

Theorem 11.13 Let T be a locally compact Hausdorff space with a bounded Radon
measure μ , and let A and B be unital C∗-algebras. If 1 < r ≤ 2, a : T → R is a bounded
continuous positive function and (φt )t∈T is a field of positive linear mappings φt : A → B
satisfying ∫

T
a(t)

1
1−r φt(1)dμ(t) ≤

∫
T

a(t)
1

1−r dμ(t)1 , (11.1)

then (∫
T

φt(xt)dμ(t)
)r

≤
(∫

T
a(t)

1
1−r dμ(t)

)r−1 ∫
T

a(t)φt(xr
t )dμ(t) (11.2)

holds for all continuous fields (xt)t∈T of positive elements in A .

Proof. We set ψt =
1
M

a(t)
1

1−r φt , where M =
∫

T
a(t)

1
1−r dμ(t) > 0. Then we have∫

T
ψt(1)dμ(t) ≤ 1. By a routine way, we may assume that

∫
T

ψt(1)dμ(t) = 1. Since

f (t) = tr is operator convex for 1 < r ≤ 2, then we applying Jensen’s inequality cited
above and obtain(∫

T

1
M

a(t)
1

1−r φt(x̃t)dμ(t)
)r

≤
∫

T

1
M

a(t)
1

1−r φt(x̃r
t )dμ(t)

for every bounded continuous fields (x̃t)t∈T of positive elements in A . Replacing x̃t by
a(t)−1/(1−r)xt , the above inequality can be written as(∫

T
φt(xt)dμ(t)

)r

≤ Mr−1
∫

T
a(t)φt(xr

t )dμ(t)

which is the desired inequality. �



11.6 NOTES 311

Remark 11.4 We can obtain the inequality in a broader region for r under conditions on
spectra. Let

(mx,Mx)∩ [a(t)−1/(1−r)mt ,a(t)−1/(1−r)Mt ] = /0, t ∈ T,

where mx and Mx, mx ≤ Mx, be the bounds of x =
∫
T φt(xt)dμ(t) and mt and Mt , mt ≤ Mt,

be the bounds of xt , t ∈ T . If the condition (11.1) is valid, then the inequality (11.2) holds
for every r ∈ (−∞,0)∪ (1,∞).

The following corollary is a discrete version of Theorem 11.13.

Corollary 11.5 If 1 < r ≤ 2, a1, · · · ,an > 0 and positive linear mappings φ1, · · · ,φn on
B(H) satisfy

n

∑
i=1

a
1

1−r
i φi(I) ≤

n

∑
i=1

a
1

1−r
i I,

then ( n

∑
i=1

φi(Ai)
)r ≤

( n

∑
i=1

ma
1

1−r
i

)r−1 n

∑
i=1

aiφi(Ar
i )

holds for positive operators A1, · · · ,An ≥ 0 on H.

For a typical positive linear mapping φ(A) = X∗AX for some X , the preceding corollary
is written as follows:

Corollary 11.6 If 1 < r ≤ 2, and a1, · · · ,an > 0 and X1, · · · ,Xn in B(H) satisfy

n

∑
i=1

a
1

1−r
i X∗

i Xi ≤
n

∑
i=1

a
1

1−r
i I,

then ( n

∑
i=1

X∗
i AiXi

)r ≤
( n

∑
i=1

a
1

1−r
i

)r−1 n

∑
i=1

aiX
∗
i Ar

i Xi

holds for positive operators A1, · · · ,An ≥ 0 on H.

11.6 Notes

The original inequality of Bohr [24] was established for scalars in 1929. Hirzallah [145]
posed an operator version of it. Afterwards, Cheung-Pečarić [32], Zhang [295] and sev-
eral authors have considered extensions of Bohr’s inequality for operators. Very recently,
such study has been done by Abramovich-Barić-Pečarić [1], and Fujii-Zuo [105], in which
matrix order method is proposed.
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The Dunkl-Williams inequality in a normed space was established in [47]. Pečarić-
Rajić [250] presented an operator version of it, which was generalized by Saito-Tominaga
[256]. Moreover it was discussed in [39] from the viewpoint of generalized parallelogram
law for operators. Such operator versions are regarded as applications of Bohr operator
inequality.

The results in 8.6 depend on [232], in which Jensen’s inequality we used is appeared
in [135].
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Heinz inequality, Proc. Amer. Math. Soc. 128 (1999), 1031–1037.

[15] J.S. Aujla and H.L. Vasudeva, Operator inequalities related to means of operators,
Math. Japon. 41 (1995), 383–388.

[16] J.S. Aujla and H.L. Vasudeva, Inequalities involving Hadamard product and operator
means, Math. Japon. 42 (1995), 265–272.

[17] E. Bach and T. Furuta, Order preserving operator inequalities, J. Operator Theory 19
(1988), 341–346.

[18] G. Bachman and L. Narici, Functional Analysis, Academic Press Inc., London, 1966.

[19] N. Bebiano, R. Lemos and J. Providência, Inequalities for quantum relative entropy,
Linear Algebra Appl. 401 (2005), 159–172.

[20] J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer.
Math. Soc. 79 (1955), 58–71.

[21] K.V. Bhagwat and R. Subramanian, Inequalities between means of positive operators,
Math. Proc. Camb. Phil. Soc. 83 (1978), 393–401.

[22] R. Bhatia, Matrix Anaysis, Springer, New York, 1997.

[23] R. Bhatia and T. Sano, Loewner matrices and operator convexity, Math. Ann. 344
(2009), 703–716.

[24] H. Bohr, Zur theorie der fastperiodischen funktionmen I, Acta Math. 45 (1929),
29–127.

[25] J.-C. Bourin, Reverse inequality to Araki’s inequality comparison of ApZpAp and
(AZA)p, Math. Inequal. Appl. 8 (2005), 373–378.

[26] J.-C. Bourin, Symmetric norms and reverse inequalities to Davis and Hansen-
Pedersen characterizations of operator convexity, Math. Inequal. Appl. 9 (2006),
33–42.

[27] J.-C. Bourin, Matrix versions of some classical inequalities, Linear Algebra Appl.
416 (2006), 890–907.

[28] J.-C. Bourin, E.-Y. Lee, M.Fujii and Y.Seo, A matrix reverse Hölder inequality, Lin-
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[232] M.S. Moslehian, J. Pečarić and I. Perić, An operator extension of Bohr’s inequality,
Bull. Iranian Math. Soc. 35 (2009), 77–84.

[233] R. Nakamoto, On the operator equation THT = K, Math. Japon. 18 (1973),
251–252.

[234] R. Nakamoto and M. Nakamura, Operator mean and Kantorovich inequality, Math.
Japon. 44 (1996), 495–498.

[235] R. Nakamoto and Y. Seo, Norm inequalities for the geometric mean and its reverse,
Sci. Math. Jpn. 65 (2007), 281–286.

[236] R. Nakamoto and Y. Seo, A complement of the Ando-Hiai inequality and norm in-
equalities for the geometric mean, Nihonkai Math. J. 18 (2007), 43–50.

[237] M. Nakamura, A remark on a paper of Greub and Rheinboldt, Proc. Japon. Acad.
36 (1960), 198–199.

[238] M. Nakamura and H. Umegaki, A note on the entropy for operator algebras, Proc.
Jap. Acad. 37 (1961), 149–154.

[239] C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications, Canadian
Mathematical Society, 2006.

[240] R.D. Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, Mem.
Amer. Math. Soc. 75 (1988), no. 391, iv+137 pp.

[241] N. Ozeki and K. Ozeki, Introduction to Inequalities (in Japanese), Kindai Ka-
gakusya, Tokyo, 1987.

[242] V. Paulsen, Completely Bounded Maps and Dilations, Pitman Research Notes in
Mathematics Series 146. Longman Scientific & Technical, Harlow; John Wiley &
Sons, Inc., New York, 1986.
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