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Introduction

1.1 Convex Functions

Convex functions are very important in the theory of inequalities. The foundations of the
theory of convex functions are due to the Danish mathematician and engineer J. L. W. V.
Jensen (1859 – 1925).

The natural domain of the different type of convex functions is a convex set in a real
vector space V : we say that the subset C ⊂V is convex if the segment

{x1 +(1− )x2 |  ∈ [0,1]}
is a subset of C for every x1,x2 ∈C.

The convex sets in R exactly the intervals.
Investigation of means under the action of functions is an interesting task. The sim-

plest case which deals with the arithmetic mean leads to the mid-convex (or the J-convex)
functions.
J-convex function [69, p.5]: Let V be a real vector space, and C ⊂ V be a convex set. A
function f : C → R is called convex in the or mid-convex if

f

(
x1 + x2

2

)
≤ f (x1)+ f (x2)

2
(1.1)

for all x1,x2 ∈C.
A J-convex function f is called strictly J-convex if for all pairs of points (x1,x2) ∈

C×C, x1 	= x2, strict inequality holds in (1.1).
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Convex function [69, p.1]: Let V be a real vector space, and C ⊂ V be a convex set. A
function f : C → R is called convex if

f ( x1 + (1− )x2) ≤  f (x1) + (1− ) f (x2) (1.2)

holds for all x1,x2 ∈C and  ∈ [0,1].
f is called strictly convex if strict inequality holds in (1.2) for x1 	= x2 and  ∈ (0,1). If the
inequality in (1.2) is reversed, then f is called concave function. If it is strict for all x1 	= x2

and  ∈ (0,1), then f is called strictly concave.
Some characterization of convex functions of a real variable can be found in the fol-

lowing three results.

Theorem 1.1 [63]Let I ⊂ R be an interval. Then f : I → R is convex, if and only if

(x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) ≥ 0 (1.3)

holds for every x1,x2,x3 ∈ I such that x1 < x2 < x3. Further, f is strictly convex if and only
if ≥ is replaced by > in (1.3).

A relation between convex and J-convex functions is as follows.

Theorem 1.2 (J. L. W. V. JENSEN [63, P.10]) If f : I →R is continuous on the interval
I ⊂ R, then f is convex if and only if f is convex in the Jensen sense.

Next, we give the second derivative test for convexity of a function.

Theorem 1.3 Let I ⊂ R be an open interval, and f : I → R be a function such that f ′′
exits on I. Then f is convex if and only if f ′′(x) ≥ 0 (x ∈ I). If f ′′(x) > 0 (x ∈ I), then f is
strictly convex on the interval.

J-log-convex function [46]: Let V be a real vector space, and C ⊂ V be a convex set. A
function f : C → (0,) is called log-convex in the Jensen sense if log◦ f is J-convex, that
is

f 2
(

x1 + x2

2

)
≤ f (x1) f (x2)

for all x1,x2 ∈C.
Log-convex function [69, p.7]: Let V be a real vector space, and C ⊂ V be a convex set.
A function f : C → (0,) is called log-convex if log◦ f is convex, that is

f (x1 +(1− )x2) ≤ f  (x1) f 1− (x2),

holds for all x1,x2 ∈C and all  ∈ [0,1].

Lemma 1.1 ([70]) Let V be a real vector space, and C ⊂ V be a convex set. Then a
function f : C → (0,) is log-convex in the Jensen sense if and only if the relation

v2 f (x1)+2vw f

(
x1 + x2

2

)
+w2 f (x2) ≥ 0

holds for each real v,w and x1,x2 ∈C.
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We denote x[1] ≥ . . . ≥ x[n] the components of a vector x = (x1, . . . ,xn) ∈ Rn arranged
in decreasing order. We say that a vector x = (x1, . . . ,xn) ∈ Rn is majorized by a vector
y = (y1, . . . ,yn) ∈ Rn (x ≺ y) if

k


i=1

x[i] ≤
k


i=1

y[i], 1 ≤ k ≤ n

with equality for k = n (see [56]). Then the binary relation ≺ over Rn is reflexive and
transitive, i.e. a preorder.

Schur-convex function [56]: Let D⊂Rn. A function f : D→R is called Schur-convex
if x ≺ y implies f (x) ≤ f (y) for all x,y ∈ D.

The following known result is proved in [56].

Theorem 1.4 Let D ⊂ Rn be a symmetric convex set with nonempty interior D◦, and
f : D → R be a continuous function. If f is differentiable on D◦, then f is Schur convex
(Schur concave) on D if and only if f is symmetric and

(x2 − x1)
(
 f (x)
x1

−  f (x)
x2

)
≥ 0 (≤ 0)

for all x =(x1, . . . ,xn) ∈ D◦.

In view of applications in different parts of mathematics the Jensen’s inequalities are
especially noteworthy, as well as useful.

We begin with the discrete version of the Jensen’s inequality:

Theorem 1.5 Discrete Jensen’s inequality[69, p.43]: (a) Let V be a real vector space,
and C ⊂V be a convex set, and f : C 
→ R be a convex function. Then

f

(
1
Pn

n


i=1

pixi

)
≤ 1

Pn

n


i=1

pi f (xi) (1.4)

holds, where xi ∈C (i = 1, . . . ,n) and pi (i = 1, . . . ,n) are nonnegative real numbers, with
Pn = n

i=1 pi > 0. If f is strictly convex and the pi’s are positive, then inequality (1.4) is
strict unless x1 = x2 = . . . = xn.

(b) If f :C →R is a J-convex function, and the pi’s are rational numbers (i = 1, . . . ,n),
then (1.4) also holds.

The integral version of the Jensen’s inequality is as follows:

Theorem 1.6 Integral Jensen’s inequality[26]: Let (,A ,) be a finite measure space
with  () > 0, and g :  → R is a -integrable function taking values in an interval
I ⊂ R. Then 1

()
∫


gd lies in I, and for every convex function f : I → R the composition

f ◦ g is measurable. Further, if f ◦ g is -integrable, then

f

⎛⎝ 1
 ()

∫


gd

⎞⎠≤ 1
 ()

∫


f ◦ gd . (1.5)

In case when f is strictly convex on I equality is satisfied in (1.5) if and only if g is
constant -almost everywhere on .
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1.2 Interpolations of Jensen’s Inequality

We start with the following interpolation of the discrete Jensen’s inequality based on sam-
ples without repetitions given by Pečarić and Volenec in 1988 (see [73]).

Theorem 1.7 Let C be a convex subset of a real vector space V , and let f : C → R be a
mid-convex function. If x = (x1, ...,xn) ∈Cn, and

fk,n = fk,n (x) :=
1(n
k

) 
1≤i1<...<ik≤n

f

(
xi1 + . . .+ xik

k

)
, 1 ≤ k ≤ n, (1.6)

then

f

(
1
n

n


i=1

xi

)
= fn,n ≤ . . .≤ fk+1,n ≤ fk,n ≤ . . .≤ f1,n =

1
n

n


i=1

f (xi) , 1≤ k≤ n−1. (1.7)

The weighted version of the above theorem is given by Pečarić.

Theorem 1.8 ([66]) Let C be a convex subset of a real vector spaceV , and let f :C →R

be a convex function. Suppose x= (x1, ...,xn)∈Cn, and p = (p1, ..., pn) is a positive n-tuple
such that n

i=1 pi = 1. For k = 1, . . . ,n define

f 1
k,n = f 1

k,n(x,p) :=
1(n−1

k−1

) 
1≤i1<...<ik≤n

(
k


j=1

pi j

)
f

⎛⎜⎜⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

⎞⎟⎟⎟⎠. (1.8)

Then for 1 ≤ k ≤ n−1

f (
n


i=1

pixi) = f 1
n,n ≤ ... ≤ f 1

k+1,n ≤ f 1
k,n ≤ ... ≤ f 1

1,n =
n


i=1

pi f (xi). (1.9)

The following interpolation of the discrete Jensen’s inequality based on samples with
repetitions is given by Pečarić and Svrtan in 1998 (see [71]).

Theorem 1.9 [71] Let C be a convex subset of a real vector space V , and let f : C → R

be a mid-convex function. If x = (x1, ...,xn) ∈Cn, and

f̄k,n = f̄k,n (x) :=
1(n+k−1
k

) 
1≤i1≤...≤ik≤n

f

(
xi1 + . . .+ xik

k

)
, k ≥ 1,

then

f

(
1
n

n


i=1

xi

)
≤ . . . ≤ f̄k+1,n ≤ f̄k,n ≤ . . . ≤ f̄1,n =

1
n

n


i=1

f (xi) . (1.10)
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The weighted version of the above theorem causes motivation for many authors and it
can be found in [60, p.8].

Theorem 1.10 Let C be a convex subset of a real vector space V , and let f : C → R be
a convex function. Suppose x = (x1, ...,xn) ∈Cn, and p = (p1, ..., pn) is a positive n-tuple
such that n

i=1 pi = 1. Then

f (
n


i=1

pixi) ≤ ... ≤ f 2
k+1,n ≤ f 2

k,n ≤ ... ≤ f 2
1,n =

n


i=1

pi f (xi), (1.11)

where

f 2
k,n = f 2

k,n(x,p) =
1(n+k−1

k−1

) 
1≤i1≤...≤ik≤n

(
k


j=1

pi j

)
f

⎛⎜⎜⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

⎞⎟⎟⎟⎠ , k ≥ 1. (1.12)

Remark 1.1 If f is a concave function then the inequalities (1.9) and (1.11) are reversed.
If pi (i = 1, . . . ,n) are rational numbers, then (1.9) and (1.11) are also valid for mid-

convex functions.

An important consequence of the discrete Jensen’s inequality for mid-convex functions
is the following Key Lemma from [71].

Lemma 1.2 Let C be a convex subset of real linear space V , f : C → R be a mid-convex
function, and x = (x1, ...,xn) ∈Cn. Then

f (
1
n

n


j=1

x j) ≤ 1
n

n


j=1

f

(
x1 + . . .+ x̂ j + . . .+ xn

n−1

)
, (1.13)

where x̂ j means that x j is omitted.

Proof. Apply the discrete Jensen’s inequality for mid-convex functions to

x(i) :=
(
1
/
(n−1)

)
(x1 + ...+ x̂i + ...+ xn) ,

and use the identity
n

i=1

xi =
n

i=1

x(i). �

Unified treatment for samples with and without repetitions: Assume f : C → R is a
mid-convex function defined on a convex setC in a real linear spaceV , and x = (x1, ...,xn)∈
Cn. Let M = {1m1 ,2m2 , . . . ,nmn} be a fixed multiset having mj =:  j(M)≥ 1 elements equal
to j, for 1 ≤ j ≤ n. Nk(M) denotes the k-th rank number of M (the number of subsets of M
containing exactly k elements). For every nonempty submultiset I ⊂ M, xI := 

i∈I
xi, and |I|

means the number of elements in I. Now, define the M-dominated k-sample mean of f by

f M
k,n = f M

k,n(x) :=
1

Nk(M) I⊂M
|I|=k

f (
1
k
xI), 1 ≤ k ≤ m1 + . . .+mn.

The following Proposition makes a unified treatment of Theorems 1.7 and 1.9.
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Proposition 1.1 Under the previous assumptions, we have

Nk+1(M) f M
k+1,n = 

J⊂M,|J|=k+1

f

(
1

k+1
xJ

)
≤ 1

k+1 
I⊂M,|I|=k

cI f

(
1
k
xI

)
(1.14)

for every 1 ≤ k < m1 + . . .+mn, where cI : = 
1≤ j≤n
 j(I)<m

j

( j(I)+1).

Proof. By applying Lemma 1.2 to the terms of the middle sum in (1.14), we have


J⊂M,|J|=k+1

f

(
1

k+1
xJ

)
≤ 1

k+1 
J⊂M,|J|=k+1


j∈J

f

(
1
k
xJ\{ j}

)
.

Then, the right hand side can be rewritten as

1
k+1 

I⊂M,|I|=k

cI f

(
1
k
xI

)
,

where cI can be calculated in the following way: let

AI := {J ⊂ M | J = I�{ j} for some 1 ≤ j ≤ n} ,

where � means the multiset sum, and for J ∈ AI let cI (J) be the number of all elements j
of J such that I = J�{ j}; then

cI = 
J∈AI

cI (J) = 
1≤ j≤n
 j (I)<m

j

( j(I)+1).

The proof is complete. �

Now we show that Theorems 1.7 and 1.9 are special cases of Proposition 1.1.

Corollary 1.1 Let C be a convex subset of a real vector space V , and let f : C → R be a
mid-convex function. If x = (x1, ...,xn) ∈Cn, then the following refinements of the Jensen’s
inequality hold:
a)

f

(
1
n

n


i=1

xi

)
= fn,n ≤ . . . ≤ fk+1,n ≤ fk,n ≤ . . . ≤ f1,n =

1
n

n


i=1

f (xi),

b)

f

(
1
n

n


i=1

xi

)
= . . . ≤ f̄k+1,n ≤ f̄k,n ≤ . . . ≤ f̄1,n =

1
n

n


i=1

f (xi).
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Proof. (a) We take M to be the following multiset (actually a set): M := {1, . . . ,n}. In
this case  j(M) = 1 (1 ≤ j ≤ n), and


I⊂M,|I|=k

f

(
1
k
xI

)
=
(

n
k

)
fk,n, k = 1, . . . ,n−1.

By (1.14), this implies that(
n

k+1

)
fk+1,n ≤ 1

k+1 
I⊂M,|I|=k

cI f

(
1
k
xI

)

=
1

k+1
(n− k)

(
n
k

)
fk,n =
(

n
k+1

)
fk,n, k = 1, . . . ,n−1,

finishes the proof of the first claim.
(b) Let the integers k ≥ 1 and l ≥ k + 1 be fixed, and let M be the following multiset:

M := {1l, . . . ,nl} (the multiplicity of j is l for 1 ≤ j ≤ n). Then


I⊂M,|I|=k

f

(
1
k
xI

)
=
(

n+ k−1
k

)
f̄k,n, k = 1, . . . , l.

This yields by (1.14) (
n+ k
k+1

)
f̄k+1,n ≤ 1

k+1 
I⊂M,|I|=k

cI f

(
1
k
xI

)

=
1

k+1
(k+n)

(
n+ k−1

k

)
f̄k,n =
(

n+ k
k+1

)
f̄k,n,

and therefore
f̄k+1,n ≤ f̄k,n, k ≥ 1.

�

The following result is given in [20]:

Theorem 1.11 Let C be a convex subset of a real vector space V , and let f : C → R

be a convex function. Suppose x = (x1, ...,xn) ∈Cn, and p = (p1, ..., pn) is a nonnegative
n-tuple such that n

i=1 pi = 1. If

f 3
k,n = f 3

k,n(x,p) :=
n


i1,...,ik=1

pi1 ...pik f

(
1
k

k


j=1

xi j

)
, k ≥ 1, (1.15)

then

f (
n


i=1

pixi) ≤ ... ≤ f 3
k+1,n ≤ f 3

k,n ≤ ... ≤ f 3
1,n =

n


i=1

pi f (xi), k ≥ 1. (1.16)
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The next result comes from [19] and [74] ( see also Theorem 3.36 in [69, p.97]).

Theorem 1.12 Let I ⊂R be an interval, f : I →R be a convex function,  be an increas-

ing function on [0,1] such that
1∫
0

d(x) = 1, and u : [0,1] → I be  -integrable. If f ◦ u is

also  -integrable, then

f

(
1∫
0

u(x)d(x)
)
≤ ∫

[0,1]k+1
f

(
1

k+1

k+1

i=1

u(xi)
)

k+1

i=1

d(xi)

≤ ∫
[0,1]k

f

(
1
k

k

i=1

u(xi)
)

k

i=1

d(xi) ≤ ...

≤ ∫
[0,1]2

f

(
1
2

2

i=1

u(xi)
)

2

i=1

d(xi)

≤
1∫
0

f (u(x))d(x),

(1.17)

for all positive integers k.

1.3 Quotients for samples without repetitions

Let I ⊂ R be an interval, and f : I → R. Consider the following notations: for xi ∈ I
(1 ≤ i ≤ n)

x := (x1, . . . ,xn); f (x) := ( f (x1), . . . , f (xn));

arithmeticmean: A(x) := 1
n (x1 + · · ·+ xn);

geometric mean: G(x) := n
√

x1 · · ·xn (I ⊂ [0,)) .

Then the discrete Jensen’s inequality for equal weights is

f (A(x)) ≤ A( f (x)), (1.18)

where f : I → R is a convex function, and x ∈ In. The inequality is clearly reversed if
f : I → R is concave function.

In this context, (1.7) can be written as

f (A(x)) = fn,n ≤ . . . ≤ fk+1,n ≤ fk,n . . . ≤ f1,n = A( f (x)), 1 ≤ k ≤ n−1. (1.19)

In 2003, Tang and Wen [76] obtained the following inequalities which contain (1.19):
For all 1 ≤ r ≤ j ≤ s ≤ i ≤ n, the following refinement holds:

fr,s,n ≥ ·· · ≥ fr,s,i ≥ ·· · ≥ fr,s,s ≥ ·· · ≥ fr, j, j ≥ ·· · ≥ fr,r,r = 0, (1.20)
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where

fr,s,n :=
(

n
r

)(
n
s

)
( fr,n− fs,n) .

Equality conditions are also considered.
In 2008, Gao and Wen [22] obtained the following results in this direction:

Theorem 1.13 Let I ⊂R be an interval. If f : I →R, a = (a1, . . . ,an) , b = (b1, . . . ,bn)∈
In (n ≥ 2) and

(i) a1 ≤ ·· · ≤ an ≤ bn ≤ . . . ≤ b1,a1 +b1 ≤ ·· · ≤ an +bn,
(ii) f (t) > 0, f ′(t) > 0, f ′′(t) > 0, f ′′′(t) < 0 for every t ∈ I,
then

f (A(a))
f (A(b))

=
fn,n(a)
fn,n(b)

≤ ·· · ≤ fk+1,n(a)
fk+1,n(b)

≤ fk,n(a)
fk,n(b)

≤ ·· · ≤ f1,n(a)
f1,n(b)

=
A( f (a))
A( f (b))

, 1≤ k≤ n−1.

(1.21)
The inequalities are reversed for f ′′(t) < 0, f ′′′(t) > 0 (t ∈ I). Equality signs hold if and
only if a1 = · · · = an and b1 = · · · = bn.

Moreover, Wen and Wang [82] considered some inequalities for linear combinations
involving fk,n.

Another type of generalization is due to Wen [80]: Let I ⊂ R be an interval, and let
f : I → R be twice continuously differentiable such that f ′′ is convex. Then

f ′′ (D3(x)) ≤ 2J [ f (x)]
J [x2]

≤ 1
3

[
max
1≤i≤n

{
f ′′(xi)
}

+A
(
f ′′(x)
)
+ f ′′ (A(x))

]
, (1.22)

where

D3(x) :=
1
3

A(x3)−A3(x)
A(x2)−A2(x)

,

J [ f (x)] := A( f (x))− f (A(x)) , J
[
x2
]
:= A(x2)−A2(x).

In [81] an other kind of interesting inequalities, centering about the topic of refinements
involving quotients of two functions, are given.

Theorem 1.14 Let the functions

f : [a,b]→ (0,),g : [a,b]→ (0,)

satisfying

sup
t∈[a,b]

{∣∣∣∣g′′(t)f ′′(t)

∣∣∣∣}< inf
t∈[a,b]

{
g(t)
f (t)

}
.

If f ′′(t) > 0 for each t ∈ [a,b], then for any x ∈ [a,b]n, we have the following inequali-
ties of Jensen-Pečarić-Svrtan-Fan (Abbreviated as J-P-S-F) type:

f (A(x))
g(A(x))

=
fn,n(A(x))
gn,n(A(x))

≤ ·· · ≤ fk+1,n(A(x))
gk+1,n(A(x))

(1.23)
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≤ fk,n(A(x))
gk,n(A(x))

≤ ·· · ≤ f1,n(A(x))
g1,n(A(x))

=
A( f (x))
A(g(x))

, 1 ≤ k ≤ n−1.

If f ′′(t) < 0 for each t ∈ [a,b], then the above inequalities are reversed. In each case, the
sign of the equality holding throughout if and only if x1 = · · · = xn.

Proof of Theorem 1.14: To prove Theorem 1.14, we set

:= (1, . . . ,n); n := {∈ [0,1]n|1 + · · ·+n = 1} ,

S f (,x) :=
1
n! i1···in

f (1xi1 + · · ·+nxin); F() := log
S f (,x)
Sg(,x)

;

ui(x) := 1xi1 +2xi2 +
n


j=3

 jxi j ; vi(x) := 1xi2 +2xi1 +
n


j=3

 jxi j . (1.24)

Here and in the sequel x ∈ [a,b]n,  ∈ n, i = (i1, . . . , in), and let i1 · · · in and i3 · · · in
denote the possible permutations of Nn = {1, . . . ,n} and the possible permutations of Nn \
{i1, i2}, respectively.

We start with two lemmas.

Lemma 1.3 Under the hypotheses of Theorem 1.14, there exist i and  ∗
i between ui(x)

and vi(x) such that

(1 −2)
(
F()
1

− F()
2

)
= 1

n! 
i3···in


1≤i1<i2≤n

f ′′(i)(ui(x)−vi(x))2

S f ( ,x)

×
(
1− g′′(i

∗)
f ′′(i

∗)
S f ( ,x)
Sg( ,x)

)
.

(1.25)

Proof. Note the following identities:

S f (,x) := 1
n! 

i3···in


1≤i1 	=i2≤n
f (1xi1 + · · ·+nxin)

= 1
n! 

i3···in


1≤i1<i2≤n
[ f (ui(x))− f (vi(x))];

similarly,

Sg(,x) =
1
n! i3···in 

1≤i1<i2≤n

[g(ui(x))−g(vi(x))];


1

[ f (ui(x))+ f (vi(x))]− 
2

[ f (ui(x))+ f (vi(x))]

= [xi1 f ′ (ui(x))+ xi2 f ′ (vi(x))]− [xi2 f ′ (ui(x))+ xi1 f ′ (vi(x))]

= [ f ′ (ui(x))− f ′ (vi(x))](xi1 − xi2);

similarly,


1
[g(ui(x))+ f (vi(x))]− 

2
[g(ui(x))+g(vi(x))]

= [g′ (ui(x))−g′ (vi(x))](xi1 − xi2).


