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Preface

Jensen’s inequality, named after the Danish mathematician Johan Ludwig William Valde-
mar Jensen (May 8, 1859 — March 5, 1925), relates the value of a convex function of
an integral to the integral of that convex function. The discrete version of this inequality
relates the value of a convex function of a sum to the sum of that convex function. Both
continuous and discrete versions appear in numerous forms and have a rich history of appli-
cations in mathematics and many different sciences such as statistics, economics, physics,
and information theory. As such, Jensen’s inequality and Jensen-type inequalities together
with their converses constitute an extremely important tool in mathematical analysis.

This book summarizes very recent research, published during the last three years by the
authors and their collaborators, related to Jensen-type inequalities on time scales. Many of
the presented results are proved via the theory of isotonic linear functionals. As such, this
book combines three areas of classical and active current research:

1. Classical inequalities in analysis.
2. Dynamic equations on time scales.
3. Isotonic linear functionals.

Jensen-type inequalities have a long history of research, both in the continuous and
the discrete case. Related inequalities involving functions and their integrals and deriva-
tives are the following: Hardy’s inequality, Hermite-Hadamard inequalities, converses of
Jensen’s inequality, Holder’s inequality, Minkowski’s inequality, the Cauchy—Schwartz in-
equality, the Jensen—Steffensen inequality, Jessen’s inequality, Jensen—Mercer inequali-
ties, Beckenbach—Dresher inequalities, Bellman’s inequality, Popovicu inequalities, Diaz—
Metcalf inequalities, Slater’s inequality, and Aczél’s inequality, to name but a few. Many
of these classical inequalities may be found in the monograph by Mitrinovié, Pecari¢, and
Fink [103], both for the continuous and the discrete case. Time scales versions of all of the
above and further inequalities are contained in the current book.

A time scale is an arbitrary nonempty closed subset of the real numbers. The concept
of derivatives and integrals on time scales is designed in such a way that, if the time scale
is equal to the set of all real numbers, then the derivative is the same as the usual derivative
and the integral is the usual integral; if the time scale is equal to the set of all integers,
then the derivative is the same as the usual forward difference and the integral is a sum;
and if the time scale is equal to all integer powers of a fixed number bigger than one,
then the derivative is the same as the usual Jackson derivative and the integral is the usual



Jackson integral. Of course there are many other examples of time scales, and as such,
this theory allows for a unification of continuous and discrete calculus and for the study of
cases “in between”. The theory of dynamic equations is rather young and goes back to the
1988 dissertation of Stefan Hilger. For an introduction with applications, we refer to the
monograph by Bohner and Peterson [45].

The connection point between the previously mentioned two research areas is theory
of isotonic linear functionals as presented in the monograph by Pecari¢, Proschan, and
Tong [119]. In there, many of the classical inequalities are proved for so-called isotonic
linear functionals. It turns out now that the time scales integral is indeed an isotonic linear
functionals, and thus the theory of isotonic linear functionals can be applied to it. This
is true for many time scales integrals, such as the time scales Cauchy delta integral, the
time scales Cauchy nabla integral, the ¢¢-diamond integral, the time scales Riemann and
multiple Riemann integrals, and the time scales Lebesgue and multiple Lebesgue integrals.

The set up of this book is as follows: In Chapter 1, we give an introduction to con-
vex functions, superquadratic functions, the theory of dynamic equations on time scales,
and some basic elementary related inequalities. Chapter 2 discusses Jensen-type inequal-
ities for convex and superquadratic functions. These results were published just recently
in 2011 by Anwar, Bibi, Bohner, and Pecari¢ [20] and in 2013 by Bari¢, Bibi, Bohner,
and Pecari¢ [27]. In Chapter 3, we introduce Jensen functionals, their properties, and ap-
plications, following closely the 2012 paper [21] by Anwar, Bibi, Bohner, and Pecari¢.
The case of several variables was published in 2014 by Anwar, Bibi, Bohner, and Pecari¢
[22] and is presented in Chapter 4. In Chapter 5, improvements of the Jensen—Steffensen
inequality and its converses are given, summarizing results from the 2014 publication by
Bibi, Pecaric, and Rodi¢ Lipanovi¢ [39]. Chapters 6 and 7 contain Hermite—-Hadamard
inequalities in the single and several variables case, respectively, as derived in the soon-to-
appear publications [38] and [37], respectively, by Bibi, Pecari¢, and Peri¢. Cauchy-type
means and exponential and logarithmic convexity for superquadratic functions on time
scales, following the 2015 publication [35] by Bibi, Bohner, and Pecarié, are presented in
Chapter 8. Chapter 9 features, among others, results from the 2013 paper [34] by Bibi,
Bohner, Pecari¢ and VaroSanec and discusses inequalities of Holder and Minkowski type
and related functionals. Finally, Chapter 10 presents the theory and applications of dy-
namic Hardy-type inequalities with general kernels. The results given in this chapter are
based, amongh others, on the 2014 publication by Bohner, Nosheen, Pecari¢, and Younus
[44].

The authors would like to thank all of their collaborators and colleagues that helped
in developing the results presented in this monograph. Moreover, we would like to thank
the staff of the Element Publishing House as well as the referees who have looked at our
manuscript in detail.
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Josipa Baric¢ (Split, Croatia)

Rabia Bibi (Islamabad, Pakistan)
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Chapter

Introduction

1.1 Convex Functions

Definition 1.1 (SEE [119, DEFINITION 1.1])  (a) Let I be an interval in R. Then ® :
I — R is said to be convex if for all x,y € I and all o € [0, 1],

O(ox+ (1 —0a)y) < o®(x) + (1 — o) D(y) (1.1)

holds. If (1.1) is strict for all x #y and o € (0,1), then @ is said to be strictly
convex.

(b) Ifthe inequality in (1.1) is reversed, then @ is said to be concave. If it is strict for all
x#yand o € (0,1), then @ is said to be strictly concave.

There are several equivalent ways to define convex functions, sometimes it is better to
define convex function in one way than the other.

Remark 1.1 (SEE [119, REMARKS 1.2]) (a) Forx,y€l,p,g>0,p+¢g>0,(1.1)is

equivalent to
o (px + qy) < PP() +4P(y)

Pty ptq
(b) Let x1,x,x3 be three points in I such that x; < x < x3. Then (1.1) is equivalent to
X1 d)(xl)

1
x2 D(x2) 1] = (03 —x2)P(x1) + (x1 — x3)P(x2) + (2 — x1)P(x3) > 0,
X3 (D(X3) 1
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which is further equivalent to

Xy — X X1 —X
(D()Cz) < ufb(xl)-i- ! 2

X1 —X3 X1 —X3

D(x3). (1.2)

More symmetrically and without the condition of monotonicity on xp,x;,x3, we can
write

D(x1) D(x2) D(x3)
(x1 —x2)(x1—x3) (2 —x3)(x2—x1) (3 —x1)(x3 —x2)

>0.

(c) @ is both convex and concave if and only if
D(x) =Ax+c
for some A,c € R.
(d) Another way of writing (1.2) is instructive:

D(x;) —P(x2) - D(xp) — DP(x3)
X|1 — X2 - Xy — X3

(1.3)

where x| < x3 and x1,x3 # x,. Hence the following result is valid:
A function @ is convex on [ if and only if for every point ¢ € I, the function (®(x) —
®(c))/(x—c) is increasing on I (x # c).
(e) By using (1.3), we can easily prove the following result:
If @ is a convex function on [ and if x; < y1, xp < y;, x| # X2, y1 # Y2, then the

following inequality is valid:

D(x) — D(x;) < D(y,) — qD(Yl).

X2 — X1 2=y

The following two theorems concern derivatives of convex functions.

Theorem 1.1 (SEE [119, THEOREM 1.3]) Let I be an interval in R and ® : I — R be
convex. Then

(i) @ is Lipschitz on any closed interval in I;

(i) @/, and @'_ exist and are increasing in I, and ®'_ < &'_ (if ® is strictly convex, then
these derivatives are strictly increasing); and

(iii) @ exists, except possibly on a countable set, and on the complement of which it is
continuous.

Remark 1.2 (SEE [119, THEOREM 1.4]) In Theorem 1.1, if ®” exists on I, then ® is
convex if and only if ®”(x) > 0. If ®”(x) > 0, then @ is strictly convex.
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Theorem 1.2 (SEE [119, THEOREM 1.6]) Let I be an open interval in R.

(a) @ :1— Ris convex if and only if there is at least one line of support for ® at each
xg €1, ie.,
D(x) > D(xo) +A(x—x0) forall x€(a,b),

where A depends on xo and is given by A = @' (xo) when @ exists, and A € [®'_(x),
&, (x0)] when @ (x0) £ ¥, (x0).

(b) @:1— Ris convex if the function ®(x) — D(xg) — A(x —x) (the difference between
the function and its support) is decreasing for x < xo and increasing for x > xy.

When dealing with functions with different degree of smoothness, divided differences are
found to be very useful.

Definition 1.2 (SEE [119, PAGE 14]) Let ®@ be a real-valued function defined on [a,b] C
R. The kth-order divided difference of ® at distinct points xg,...,x; in [a,b] is defined
recursively by

[xi;q)] = (D(xi), i€ {0, 1,... ,k}

and
X1, X P — [xo, -y X 15 D)

[X(), s 7-xk;q)] =
Xk — X0
Remark 1.3 In Definition 1.2, the value [xy, . ..,x;; @] is independent of the order of the
points xg, ..., x;. This definition may be extended to include the case in which some or all
of the points coincide by assuming that xo < ... < x; and letting

[x,...,.x;®] = V) (x) /!,
(j+1times)

provided that ®(/) exists.

Definition 1.3 (SEE [119, PAGE 15]) A real-valued function ® defined on [a,b] C R is
said to be n-convex, n > 0, on [a,b] if and only if for all choices of (n+ 1) distinct points
in [a,b),

[x0,- ., Xu;®P] > 0.

Remark 1.4 A function ®@ : I — R is convex if and only if for every choice of three
mutually different points xg,x1,x2 € 1, [xo,x1,%2;®] > 0 holds.

The definition of a convex function has a very natural generalization to real-valued
functions defined on R". Here we merely require that the domain U of @ be convex, i.e.,
ox+ (1 —a)y € U wheneverx,y € U and & € [0, 1].

Definition 1.4 Ler U be a convex set in R". Then ® : U — R is said to be convex if for
allx,y € U and all a € [0,1], we have

O(ax+(1—a)y) < ad(x)+ (1 — a)d(y). (1.4)
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J-Convex Function

In the theory of convex functions, the most known case is that of J-convex functions, which
deals with the arithmetic mean.

Definition 1.5 (SEE [119, DEFINITION 1.8]) Let I C R be an interval. A function ®© :
I — Ris called convex in the Jensen sense (or J-convex) on I if for all x,y € I, the inequality

o(142) < 21 100)

(1.5)
holds. A J-convex function @ is said to be strictly J-convex if for all pairs of points (x,y),
X #y, strict inequality holds in (1.5).

Remark 1.5 (SEE [119, THEOREM 1.10]) (i) Itcan be easily seen that a convex func-
tion is J-convex. For continuous functions, J-convex functions are equivalent to
convex functions.

(i) The inequality (1.5) can easily be extended to the convex combination of finitely
many points and next to random variables associated to arbitrary probability spaces.
These extensions are known as the discrete Jensen inequality and integral Jensen
inequality, respectively.

Log-Convex Function

An important sub-class of convex functions is that of log-convex functions.

Definition 1.6 (SEE [119, DEFINITION 1.15]) A function ® : I — R, I an interval in R,
is said to be log-convex, or multiplicative convex if log® is convex, or equivalently if for
all x,y € I and all o € [0,1],

D(ox+ (1 - a)y) < D(x)*D(y)' % (1.6)
It is said to be log-concave if the inequality in (1.6) is reversed.

Remark 1.6  (a) If we take o = 1/2, then (1.6) becomes

o (1) < et

and the function @ is said to be log-convex in the Jensen sense. If the function @ is
log-convex in the Jensen sense and is continuous, then @ is also log-convex.

(b) If x1,x2,x3 € I such that x; < x, < x3, then (1.6) is equivalent to
[@(x2)] 20 < [ ()] 32 [@D(x3)] 2.

Furthermore, if x1,x2,y1,y2 € I such that x; < yi, x; < y2, x| # X2, ¥1 # y2, then

()™ =@
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(c) ®:1— Rislog-convex in the Jensen sense if and only if

o’ ®(x) + 20 fP <%) +p2D(y) >0

holds for all o, € R and x,y € I.

1.2 Exponential and n-Exponential Convexity

Exponentially convex functions were introduced by S. N. Bernstein [31] over eighty years
ago and later D. V. Widder [132]. The notion of n-exponential convexity was introduced
by J. Pecari¢ and J. Peri¢ in [115] (see also [89, 78, 88]). Now we quote some definitions
and results about exponential and n-exponential convexity.

Definition 1.7 A function ®:1 — R (I CR) is n-exponentially convex in the Jensen sense
onl, if
n . .
2 éiéj(p (M) >0
ij=1 :

holds for all choices & € Randx; €1, i€ {1,...,n}. A function®: I — R is n-exponentially
convex if it is n-exponentially convex in the Jensen sense and continuous on 1.

Remark 1.7 It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are in fact nonnegative functions. Also, n-exponentially convex functions in
the Jensen sense are k-exponentially convex in the Jensen sense for every k € N, k < n.

By definition of positive semi-definite matrices and some basic linear algebra, we have the
following proposition.

Proposition 1.1 If ® is an n-exponentially convex function in the Jensen sense, then

k
the matrix |® (x, a )] is positive semi-definite for all k € N, k < n. Particularly,

2 i,j=1

det [cb (%ﬂ >0forallkeN, k<n.

i,j=1

Definition 1.8 A function ® : I — R is exponentially convex in the Jensen sense on I,
if it is n-exponentially convex in the Jensen sense for all n € N. A function ® : I — R is
exponentially convex if it is exponentially convex in the Jensen sense and continuous.

Proposition 1.2 [See [19, Proposition 1]] Let @ : (a,b) — R. The following are equiv-
alent:

(i) @ is exponentially convex.
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(i) @ is continuous and

n ) .
Z viv;® ()#) >0

ij=1
foralln e N, v; € R, and x;+x; € (a,b), 1 <i,j<n.
(iii) D is continuous and
det [@(m>}m >0, 1<m<n
2 ij=1
forall n € N and for every x; € (a,b), i € {1,...,n}.
Remark 1.8 Some examples of exponentially convex functions are:
(i) @ :1— R defined by ®(x) = cek*, where ¢ > 0 and k € R.
(ii) @:R" — R defined by ®(x) = x ¥, where k > 0.
(iii) ®:RT — R* defined by ®(x) = e *V¥, where k > 0.

Remark 1.9 From Remark 1.6 (c) it follows that a positive function is log-convex in the
Jensen sense if and only if it is 2-exponentially convex in the Jensen sense. Also, using
basic convexity theory, it follows that a positive function is log-convex if and only if it is
2-exponentially convex.

1.3 Superquadratic Functions

The concept of superquadratic functions in one variable, as a generalization of the class
of convex functions, was recently introduced by S. Abramovich, G. Jameson and G. Sin-
namon in [6] and [5]. More examples and properties of superquadratic functions can be
found in [1, 25, 26, 24] and its references.

Definition 1.9 A function ¥ : [0,00) — R is called superquadratic if there exists a func-
tion C : [0,0) — R such that

W(y) —¥(x) —¥(ly—x|) > C)(y—x) forall xy>0. (1.7)

We say that WY is subquadratic if — is superquadratic. If for all x,y > 0 with x # y, there
is strict inequality in (1.7), then Y is called strictly superquadratic.

For example, the function ¥(x) = x? is superquadratic for p > 2 and subquadratic for
p€(0,2].

The following lemma shows essentially that positive superquadratic functions are also
convex functions.
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Lemma 1.1 Let ¥ be a superquadratic function with C(x) as in Definition 1.9. Then
(i) ¥(0) <0;
(ii) if' P(0) =¥'(0) =0, then C(x) =¥/ (x) whenever ¥ is differentiable at x > 0;
(iii) if ¥ > 0, then ¥ is convex and ¥(0) = W' (0) = 0.

In the following theorem, some characterizations of superquadratic functions are given
analogous to the well-known characterizations of convex functions.

Theorem 1.3 (SEE [26, THEOREM 9]) For the function ¥ : [0,00) — R, the following
conditions are equivalent:

(i) The function V¥ is a superquadratic function, i.e., (1.7) holds.

n
(ii) Forany two nonnegative n-tuples (xi,...,x,) and (p1,...,pn) suchthat P, =Y, p; >
i=1

0, the inequality

‘I’(Tc)g—ipl W (xi) sz (Jxi =)

n =1 Py =

1 n
holds, where X = — Y. pix;.

3
I
—

(iii) The inequality

WAy +(1=2)y2) <A¥Y(y1) + (1 =2)¥(»2)
=AY (1 =A)y1 = y2| = (1= 2)¥(A]y1 = y2|)
holds for all yy,y> > 0 and A € [0,1].

(iv) Forall x,y1,y> > 0, such that y; < x < y;, we have

¥(x) < yyj_‘y’i <w<y1>—w<x—y1>>+;j§11 (W(y2) —¥(2—x),

ie.,

Y)Y —We—y) _ ¥h2) =¥ - ¥ —x)
yi—x - y2—Xx '

__ In the following, for any function ¥ € C!(]0,%),R), we define an associated function
¥ € C!((0,),R) by
_ N
V) = 1)

forall x> 0. (1.8)
Lemma 1.2 (SEE [3, LEMMA 1]) Let ¥ € C!([0,),R) such that ¥(0) < 0. If ¥ is
increasing (strictly increasing) or W' is superadditive (strictly superadditive), then W is
superquadratic (strictly superquadratic).
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Lemma 1.3 [See [3, Lemma 3]] Let ¥ € C2([0,00),R) be such that

XV (x) — ¥ (x)

5 <M; forall x>0.

mp =~
X

Let the functions 91, be defined by

M3 mx

1) = TS S W), a(x) = W) - (1.9)

Then Oy, 05 are increasing. If also ¥(0) = 0, then ¥y, 0, are superquadratic.

Lemma 1.4 Lets > 0and ¥ : [0,00) — R be defined by

x&‘
— = s#2
S(S—z), S‘# )
W(x) = (1.10)
x_210 =2
> gx, §=2.

Then ¥y is superquadratic, with the convention 0log0 := 0.

Lemma 1.5 Ler s € R and ¢; : [0,00) — R be defined by

sxe™t — e 41
35 s #0,

o5(x) = (1.11)

3
%, s=0.

Then @ is superquadratic.

1.4 Time Scales Theory

The theory of time scales was introduced by Stefan Hilger in his PhD thesis [69] in 1988
as a unification of the theory of difference equations with that of differential equations,
unifying integral and differential calculus with the calculus of finite differences, extending
to cases “in between”, and offering a formalism for studying hybrid discrete-continuous
dynamic systems. It has applications in any field that requires simultaneous modelling of
discrete and continuous data. Now, we briefly introduce the time scales calculus and refer
to [70, 71] and the monograph [45] for further details.

By a time scale T we mean any nonempty closed subset of R. The two most popular
examples of time scales are the real numbers R and the integers Z. Since the time scale T
may or may not be connected, we need the concept of jump operators.
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Fort € T, we define the forward jump operator 6 : T — T by
o(t)=inf{se€T: s>r}
and the backward jump operator by
p(t)=sup{seT: s<t}.

In this definition, the convention is inf@ = sup T and sup® = infT.

If o(¢) > 1, then we say that 7 is right-scattered, and if p(¢) <, then we say that 7 is
left-scattered. Points that are right-scattered and left-scattered at the same time are called
isolated. Also, if o(r) =1, then 7 is said to be right-dense, and if p(¢) =, then  is said to
be left-dense. Points that are simultaneously right-dense and left-dense are called dense.

If T has a left-scattered maximum My, then we define T* = T\ {M, }; otherwise T* =
T. If T has a right-scattered minimum M,, then we define T = T\ {M,}; otherwise
T, = T. Finally we define T* = T* N Tk.

The mappings i,V : T — [0, o) defined by

u)=o(@)—t and v(r)=r—p(t)

are called the forward and backward graininess functions, respectively.

In the following considerations, T will denote a time scale, IT =N T will denote a
time scale interval (for any open or closed interval I in R), and [0, ) will be used for the
time scale interval [0,0) NT.

Definition 1.10 Assume f : T — R is a function and let t € T*. Then we define f*(t)
to be the number (provided it exists) with the property that given any € > 0, there is a
neighborhood Ut of t such that

(o) = f(5) — () [o(t) —s]| < e|o(t) —s| forall seUr.

We call f2(t) the delta derivative of f att. We say that f is delta differentiable on T*
provided f*(t) exists for all t € T*.

Definition 1.11 Assume f : T — R is a function and let t € Ty. Then we define f" (r)
to be the number (provided it exists) with the property that given any € > 0, there is a
neighborhood Ut of t such that

(f(p)—=F(s)—fY @) [p(t)—s]| < elp(t)—s| forall s€Ur.

We call f¥ (t) the nabla derivative of f at t. We say that f is nabla differentiable on T\
provided fY (t) exists for all t € Ty.

Example 1.1 (i) If T =R, then
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(i) If T = Z, then
A = f+1) = ft)

is the forward difference operator, while
M) =)= fe—1)
is the backward difference operator.
(iii) Leth > 0. If T = hZ, then

f+h) - f@) @)= f(t—h)
h

and £V (1) = -

1) =
are the h-derivatives.
(iv) Letg > 1. If T = ¢™o, where Ny = {0,1,2,...}, then

sy S =10 a0 = f/)
= TR ad T = TR

are the g-derivatives (or Jackson derivatives).
Definition 1.12 Assume f: T — R is a function and let t € TX. Then we define f°(t)

to be the number (provided it exists) with the property that given any € > 0, there is a
neighborhood Ut of t such that

o (£ (a(0) = f(s) [p(1) =s]+ (1 =) (f(p(1)) = f(s)) [0 (t) — ]
=120 [p(t) =sllo(r) —sl| < ellp(t) =s[o(t) = s]|  forall s€Uy.

We call f°«(t) the diamond-o derivative of f att. We say that f is diamond-o differen-
tiable on T provided f°«(t) exists for all t € TX.

Remark 1.10 If f : T — R is differentiable on T in the sense of A and V, then f is
diamond-o differentiable at 1 € T¥, and the diamond-a derivative is given by

£out) = af )+ (1- )0, 0<a<l.

Remark 1.11 From Definition 1.12, it is clear that f is diamond-o differentiable for
0 < a <1 if and only if f is A and V differentiable. It is obvious that for a = 1, the
diamond- o derivative reduces to the standard A derivative, and for oo = 0, the diamond-o
derivative reduces to the standard V derivative.

For all € T, we have the following properties of delta derivative.

Theorem 1.4 (SEE [45, THEOREM 1.16]) (i) If f is delta differentiable at t, then f
is continuous at t.

(i) If f is continuous at t and t is right-scattered, then f is delta differentiable at t with
fA(t) _ f(O'(l)())—f(l)
uiey
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(iii) Ift is right-dense, then f is delta differentiable at t iff lin} w exists as a finite
5

number. In this case, f*(t) = lin} M
5

(iv) If f is delta differentiable at t, then f(o(t)) = f(t) + u(t) f2(¢).
In the same manner, for all # € T, we have the following properties of nabla derivative.

Theorem 1.5 (SEE [45, THEOREM 1.16]) (i) If f is nabla differentiable at t, then f
is continuous at t.

(i) If f is continuous at t and t is left-scattered, then f is nabla differentiable at t with
fv(t) _ f)=fp@)
V(1) '
. . . . . s f)—=f(s) .
(iii) Ift is left-dense, then f is nabla differentiable at t if and only if ?Etl 17‘5 exists

as a finite number. In this case, f" (t) = lim w
s—t

(iv) If f is nabla differentiable at t, then f(p(t)) = f(t) +v(2)fY ().

Definition 1.13 A function f : T — R is called rd-continuous if it is continuous at all
right-dense points in T and its left-sided limits are finite at all left-dense points in T. We
denote by C,q the set of all rd-continuous functions. We say that f is rd-continuously delta
differentiable (and write f € CL)) if fA(t) exists for all t € T* and f* € Cyy. A function
f: T — R is called ld-continuous if it is continuous at all left-dense points in T and its
right-sided limits are finite at all right-dense points in T. We denote by Ciq the set of all
ld-continuous functions. We say that f is ld-continuously nabla differentiable (and write
feCL)if f¥(t) exists forall t € Ty and ¥ € Cyq.

The set of all continuous functions on T contains both C,q and Cyq.

Definition 1.14 A function F : T — R is called a delta antiderivative of f: T — R if
FA(t) = f(t) for all t € TX. Then we define the delta integral by

A function G : T — R is called a nabla antiderivative of f : T — R if G¥ (1) = f(t) for all
t € Tk. Then we define the nabla integral by

/a' " H(5)Vs = Gr) - Gla).

The importance of rd-continuous and ld-continuous functions is revealed by the fol-
lowing result.

Theorem 1.6 (SEE [45, THEOREM 1.74, THEOREM 8.45]) Every rd-continuous func-
tion has a delta antiderivative and every ld-continuous function has a nabla antiderivative.
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Definition 1.15 Let f: T — R and a,b € T. Then the diamond-o. integral of f from a to
b is defined by

b b b
/f(t)<>at:a/f(t)At—l—(l—Oc)/f(t)Vt, 0<a<l.

Remark 1.12 Since the diamond- integral is a combined A and V integral, in general
5 Oq
( / f(t)<>at> £F(), 1ER
a

1
Example 1.2 Let o = 3 and T = {0,1,2,3}. Then the diamond-¢ derivative for a func-

tion on T is defined on the set TX which is {1,2}. Define the function f(z) = 0. Next
define functions F and G as follows:

(0)
(1)
F(2)
3)

Then

and

Also

and
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Thus
FOel = GO (1) = f1)

on T¥. We see that both F and G are diamond-o antiderivatives of f on T§. However,
F2)—F(1)=—-5#4=G(2)-G(1).

Example 1.2 can be generalized for any fixed o strictly between 0 and 1, and for any
purely discrete time scale, such as T = Z.
Next, we present an example where no diamond- ¢ antiderivative exists.

Example 1.3 Let o = % Let T = (—oo, 1]U[2,00). Set

-1, x<1,

f() =

5, x>2.

Assume a diamond-a antiderivative F of f exists on T§. On (—e, 1], F must be of the
form —z + Cy, where C| is a constant. On [2,e0), F must be of the form 57 + C,. It follows
therefore

Fo(1)= %FA(IH—%F (1)=f(1).
Thus | .
5[(5(2)+Cz)—(—1(1)+C1)]+§(—1):—1. (1.12)
Also,
F°e(2) = %FA(Z) + %F (2) = £(2).
Thus | |
5(5)+§[(5(2)+Cz)—(—1(1)+C1)] =5. (1.13)
From (1.12) and (1.13), we obtain the system of equations
Ci—-CG =12,
CI—C =6,

which has no solution. Thus for the function f, which is continuous on T, no diamond-o
antiderivative exists on T%.

Now we give some properties of the delta integral.
Theorem 1.7 (SEE [45, THEOREM 1.77]) Ifa,b,c € T, aa € R, and f,g € Cyq, then
(W) i (f(0)+8(0) A= [ F(1)Ar+ [ g(r),
i) [Paf()ar=aflf(r)Ar,
(i) fj' f()Ar == [7 F(1)A,
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Giv) [Jf(r)Ar =0,
W) 7 F0d = [ Fde+ 2 F0)Ar,
(vi) if f(t) > O forall 1, then [” f(t)At > 0.

A similar theorem holds for the nabla integral, for f,g € Cjq, and for the diamond-o
integral, for f,g € C.

Regarding integral calculus on time scales, the literature includes, among others, the
Cauchy delta integral [45, 70], the Cauchy nabla integral [23, 45], the Riemann delta
integral [46, 63, 64], the Riemann nabla integral [63]; the Cauchy diamond-¢ integral
[16, 123], the Riemann diamond- integral [97], the Lebesgue delta and nabla integrals
[46, 62], the multiple Riemann and multiple Lebesgue delta, nabla and diamond-o: inte-
grals [42, 43].

Let n € N be fixed. For each i € {1,...,n}, let T; denote a time scale and

AN =T x..xT,={t=(t1,...,tn): ; €T, 1 <i<n} (1.14)

an n-dimensional time scale. Let pp be the o-additive Lebesgue A-measure on A” and .#
be the family of A-measurable subsets of A”. Let & C A" and (&,.%, la) be a time scale
measure space. Then for a A-measurable function f : & — R, the corresponding A-integral
of f over & is denoted according to [43, (3.18)] by

/gf(tl,...,t,,)Altl...A,,t,,, /gf(t)At, /gfduA, or /gf(t)d[.LA(t).

By [43, Section 3], all theorems of the general Lebesgue integration theory, including the
Lebesgue dominated convergence theorem, hold also for Lebesgue A-integrals on A”. Here
we state Fubini’s theorem for multiple Lebesgue A-integrals on time scales. It is used in
Chapter 9.

Theorem 1.8 Let (X, ¢, up) and (Y,.£,Va) be two finite-dimensional time scale mea-
sure spaces. If f : X x Y — R is a A-integrable function and if we define the functions

o) = [ fe3)dus(x) forae. yev

and

y(x) = '/Yf(x,y)dvA(y) forae xeX,

then @ is A-integrable on Y and v is A-integrable on X and

/};dua(x)/;f(x,y)dm(y) Z/;dvA(y)/};f(x,y)duA(x)_
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1.5 Jensen’s and Related Inequalities

Inequalities are used everywhere in mathematics. In 1934, Hardy, Littlewood, and Pélya
[68] published a book on inequalities, since then, the theory of inequalities has become an
important branch of mathematics. Among the inequalities, Jensen’s inequality is one of the
most important and extensively used inequality in various fields of modern mathematics,
especially in mathematical analysis and statistics. It is a powerful tool of producing a large
class of classical inequalities, e.g., the arithmetic mean-geometric mean-harmonic mean
inequality, Young’s inequality, Holder’s inequality, Minkowski’s inequality, Beckenbach—
Dresher inequality, the positivity of relative entropy in information theory, Shannon’s in-
equality, Ky Fan’s inequality, Levinson’s inequality, etc. The improvements and gener-
alizations of Jensen’s inequality imply the improvements and generalizations of a whole
series of other classical inequalities. A simple search in MathSciNet database of the Amer-
ican Mathematical Society with the key words “Jensen” and “inequalities” in the title re-
veals that there are more than 300 items intimately devoted to this word. However, the
number of papers, where this inequality is used, is a lot larger and far more difficult to find.

In the following, we give a brief introduction to the Jensen and some of its related
classical inequalities.

Jensen’s Inequality

Let I be an interval in R and @ : / — R a convex function on /. If

n
X=(x,....x) €I", p=(p1,...,pn) €R’, and PH:Zpi,
i=1

then the well-known Jensen inequality

1 1
Y (F ZPixi> < Fn;piq)(xi) (1.15)

nij=1

holds. If @ is strictly convex, then (1.15) is strict unless x; = ¢ (constant) for all i € {; :
pj> 0}.

In the following, we quote some history about the Jensen inequality from [104]. The
Jensen inequality was proved under the assumption that @ is a J-convex function by
J. L. W. V. Jensen (see [82, 83] or for example [119, page 43]). He applied the famous
inductive method used by Cauchy (1821) in the proof of the arithmetic mean-geometric
mean inequality. However, inequality (1.15) appears, under different assumptions, much
earlier. Jensen himself mentioned in the appendix to his paper that O. Holder proved in-
equality (1.15) in 1889, supposing that ® is a twice differentiable function on [a,b] such
that @”(x) > 0 on that interval. This supposition is in the case of twice differentiable func-
tions equivalent with the supposition that @ is convex. The above inequality was proved,
after Holder, using the same assumptions, by R. Henderson in 1895. However, as far back
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as 1875, a particular case of the above inequality, the case when p; = ... = p,, was proved
by J. Grolous by an application of the centroid method. This is, as far as we could find,
the first inequality for convex functions to appear in the mathematical literature. J. Grolous
introduced the assumption that ®” (x) > 0, but it can be seen from the text itself that it is
enough to assume that @ is a convex function, in the geometric sense (see, for instance,
D. S. Mitrinovi¢ [101, page 15]).

The original Jensen inequality for integrals can be stated as follows.

Theorem 1.9 (SEE [82, FORMULA (5')]) Let a,b € R with a < b and suppose I C R is
an interval. If ® € C(I,R) is convex and f € C([a,b],I), then

b b

t)dt D(f(z))dt
b—a b—a

Note that in Jensen’s inequality, we have nonnegative weights. It is reasonable to ask

whether the condition “p is a nonnegative n-tuple” can be relaxed at the expense of restrict-

ing x more severely. An answer to this question was given by Steffensen in [127] (see also
[119, page 57]).

Theorem 1.10 Let I be an interval in R and ® : I — R be a convex function. If x =
(x1,-..,%y) € I'" is a monotonic n-tuple and p = (p1, ..., pn) a real n-tuple such that

0<P <P, k=1,....n—1, P, >0

k
is satisfied, where Py =Y, pi,k € {1,...,n}, then (1.15) holds. If ® is strictly convex, then
i=1

i=
inequality (1.15) is strict unless x; = ... = xp,.

Inequality (1.15) under conditions from Theorem 1.10 is called the Jensen—Steffensen
inequality. The integral version of the Jensen—Steffensen inequality is given by Boas [40]
(see also [119, page 59]). Furthermore, for different refinements and generalizations of the
Jensen—Steffensen inequality, see [51, 59, 119].

B. Jessen in 1931 (see [84] or see for example [119, page 47]) gave the generalization
of Jensen’s inequality for convex functions which involves positive normalized linear func-
tionals. In 1937, E. J. McShane gave the generalization of Jessen’s inequality for multi-
variables (see [99] or see for example [119, page 48-51]). S. Bani¢ and S. VaroSanec [26]
refined Jessen’s inequality for superquadratic functions.

In 2003, A. McD. Mercer in [100] gave a variant of Jensen’s inequality, called the
Jensen—Mercer inequality. Later, W. S. Cheung et al. generalized the Jensen—Mercer in-
equality for isotonic linear functionals, called Jessen—Mercer inequality (see [49]). Further
in [2], S. Abramovich et al. gave the refinement of the Jessen—Mercer inequality for su-
perquadratic functions.

There are also various generalizations of Jensen’s inequality to the time scales theory,
see Section 2.2.
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Hermite—Hadamard Inequality

The Hermite—Hadamard inequality is strongly related to the Jensen inequality. It is also
known as the first fundamental inequality for convex functions. It gives us an estimate for
the integral arithmetic mean:

a+b ®(a) + D(b)

b
)g/ @) < (b —a) PO (1.17)

(b—a)q><

where a,b € R with a < band @ : [a,b] — R is a convex function. It was first established by
Hermite in 1881. Also, Beckenbach, a leading expert on the history and theory of complex
functions, wrote that the first inequality in (1.17) was proved in 1893 by Hadamard who
apparently was not aware of Hermite’s result (see [119]). In general, (1.17) is now known
as the Hermite—-Hadamard inequality.

Note that the first inequality in (1.17) is a Jensen inequality (1.16) when f(z) =1,
and the second one gives a converse of Jensen’s inequality. Various generalizations and
refinements of the Hermite-Hadamard inequality and converses of Jensen’s inequality are
given in the literature for convex functions, superquadratic functions, as well as in time
scales theory, see e.g., [3, 90, 89, 26, 50, 51, 103, 108, 119].

The first inequality in (1.17) is stronger than the second one: if ® is convex on [a, b],
then

(bia)/abq)(l)df_q)<a;b)Sq)(a);q)(b)_(bia) /abq)(t)d[, (1.18)

A geometric proof of (1.18) is given in [65] and an analytic one in [47] (see also [119, page
140]). The inequality (1.18) is known as the Hammer—Bullen inequality.

Cauchy, Holder, and Minkowski Inequalities

The three inequalities are well known to all studies of power means in mathematics (see
for example [48]).

Augustin-Louis Cauchy published his famous inequality in 1821. Then in 1859, Viktor
Yakovlevich Bunyakovsky derived a corresponding inequality for integrals, and in 1885,
Hermann Schwarz proved a corresponding version for inner-product spaces. Therefore
the Cauchy inequality sometimes also shows up under the name Schwarz inequality, or
Cauchy-Schwarz inequality, or Cauchy-Bunyakovsky-Schwarz inequality. Holder’s gen-
eralization appeared in 1889. The Minkowski inequality was established in 1896 by Her-
mann Minkowski in his book Geometrie der Zahlen (Geometry of Numbers).

There are various versions of these inequalities given in the literature. For isotonic lin-
ear functionals, some generalizations and converses of the Holder and Minkowski inequal-
ities can be found in [119]. In any case, the discrete versions of Holder’s and Minkowski’s
inequalities are stated in the following two theorems, respectively.
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Theorem 1.11 (HOLDER’S INEQUALITY) For p # 1, defineqby q=p/(p—1). Ifx =
(X1, ,%0) andy = (y1,...,yn) are two positive n-tuples and p > 1, then

n n é n %
Y oxiyi < | Daf Sl (1.19)
i=1 i=1 i=1
If p<1, p#0, then (1.19) holds in reverse order.

In Theorem 1.11, if p = g =2, then (1.19) becomes the Cauchy Schwarz inequality.

Theorem 1.12 (CAUCHY SCHWARZ INEQUALITY) Ifx= (x1,...,x,) andy = (y1,-.-,Yn)
are two positive n-tuples, then

1

n n n 2
zmw§<2ﬁ> <Zﬁ>. (1.20)
i=1 i=1 i=1

Theorem 1.13 (MINKOWSKI’S INEQUALITY) Ifx= (xj,...,%,) andy = (yi,...,yn) are
two positive n-tuples and p > 1, then

1 1 1
n r n P n r
(Soer) < () 4 (£1)" 121
-1 i—1 i—1

If p<1, p#0, then (1.21) holds in reverse order.

S

Beckenbach—-Dresher Inequality

In 1950, E. F. Beckenbach published an inequality which has aroused interest until nowa-
days. He proved that for positive real numbers x;,y; >0, i € {1,...,n} and for 1 < p <2,
the inequality

n n n
DGR X S b
1= = =
- 1 < PrIR— (1.22)
Y (xi+y)rt o X 2y

i=1 i=1 i=1
is valid. If 0 < p < 1, then (1.22) is reversed.
Few years later, M. Dresher investigated moment spaces and stated that an integral

analogue of (1.22) holds. In recent literature, (1.22) is called the Beckenbach—Dresher
inequality. Some history and recent results about the Beckenbach—Dresher inequality can

be found in [61, 129].
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1.6 Hardy’s Inequality

In 1920, G. H. Hardy [66] announced and proved in [67] (see also [68] and [95]) the
following result: Let p > 1 and f € L?(0,°) be a nonnegative function, then

.[ (iff(t)d’ydxﬁ (l,%l)p/(;wf"(ﬂdx (1.23)

holds. This interesting result is today referred to as the classical Hardy integral inequality.
Inequality (1.23) has an interesting prehistory and history (see e.g., [68, 94, 95, 96] and the
references given there).

Other important inequalities are the following: if p > 1 and f is a nonnegative function
such that f € L?(0, ), then

p
(=) N o
/0 ( 0 xfydx) dy < sinE%) /0 fP(y)dy, (1.24)

11
and if in addition g € L9(0, ), where — + — = 1, then
P q

/: /: f(;fiy) drdy < si:E) (/(;mfp(x) dx>é </(;wg“(y) dy> i . (1.25)

Moreover, (1.25) is sometimes called Hilbert’s or Hardy—Hilbert’s inequality even if Hilbert
himself only considered the case p = 2 (L”-spaces were defined much later).
We also note that (1.23) shows that the Hardy operator H, defined by setting

@0 =1 [ s,

X

maps L? into itself with operator norm Ll Similarly, (1.24) shows that the operator A,
p—

defined by setting ~
ANW) = [ FE)ery) ar

maps L? into itself with operator norm —.
sinZ
P

It is now natural to generalize the operators above to the following ones:

Hof(x) = ﬁ /0 " FOk(e, ) dr, (1.26)

where "
K(x) ::/ k(x,t)dt <eo
0
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and (more generally)
S @) i= o | kG a, (1.27)

where now .
K(x) ::/ k(x,t)dt < eo.
0

Here, k(x,y) is a general measurable and nonnegative function, a so-called kernel.
Now, let (Q1,%,1;), (£2,%, U») be o-finite measure spaces and let A from (1.27)
be generalized as follows:

M6)1= g [ M) F0)d() (1.28)

where f: Q, — R is a measurable function, k : Q| x Q; — R is a measurable and nonneg-
ative kernel and

KW= [ kx3)dpaly) <o, Q. (1.29)
2



Chapter

Jensen Type Inequalities for
Convex and Superquadratic
Functions

In this chapter, we apply the theory of isotonic linear functionals to derive a series of
known inequalities, extensions of known inequalities, and new inequalities in the theory of
dynamic equations on time scales. The original results presented in this chapter appeared
in [20, 27].

2.1 Positive Linear Functionals and Time Scales
Integrals

We recall the following definition from [119, page 47].

Definition 2.1 Let E be a nonempty set and L be a linear class of real-valued functions
f: E — R having the following properties:

(Ly) If f,g € Land a,b € R, then (af + bg) € L.

(Lp) If f(t) =1 forallt € E, then f € L.

21
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An isotonic linear functional is a functional A : L — R having the following properties:
(A) Iff,g € Land a,b € R, then A(af +bg) = aA(f) + bA(g).
(Ap) IffeLand f(t) >0 forallt € E, then A(f) > 0.

When we use the approach of isotonic linear functionals as given in Definition 2.1, it is
not necessary to know many details from the calculus of dynamic equations on time scales.
We only need to know that the time scales integral is such an isotonic linear functional.

Theorem 2.1 Let T be a time scale. For a,b € T with a < b, let
E:[a>b)T and L:Crd([a7b)T7R)‘

Then (L1) and (L) are satisfied. Moreover, let

b
A = [ ron,
a
where the integral is the Cauchy delta time scales integral. Then (A1) and (Ay) are satisfied.

Proof. This follows from Theorem 1.7. O

Now we give a few examples of the Cauchy delta time scales integral.

Example 2.1 (i) If T =R in Theorem 2.1, then L = C([a,b),R) and
b
A = [ o

@i1) If T = 7Z in Theorem 2.1, then L consists of all real-valued functions defined on
[a,b—1]NZ and

(iii) Let h > 0. If T = hZ in Theorem 2.1, then L consists of all real-valued functions
defined on [a,b — )N hZ and

b/h—1

A(fy=h Y, f(kh).

k=a/h

(iv) Letg> 1. If T = qNo in Theorem 2.1, then L consists of all real-valued functions
defined on [a,b/q] N g™ and

log, ()1

A =(q-1) Y 414

k=log,(a)
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Note that Theorem 2.1 also has corresponding versions for the nabla and diamond-o inte-
gral, which are given next for completeness.
Theorem 2.2 Let T be a time scale. For a,b € T with a < b, let

E = (a,blr and L=Cyq((a,b]T,R).

Then (L) and (L) are satisfied. Moreover, let

where the integral is the Cauchy nabla time scales integral. Then (A1) and (A;) are satis-

fied.
Proof. This follows from [45, Definition 8.43 and Theorem 8.47]. O

Theorem 2.3 Let T be a time scale. For a,b € T with a < b, let
E=la,bly and L=C([a,b]T,R).

Then (L) and (L) are satisfied. Moreover, let

A(f) = /  H(0)0ut,

where the integral is the Cauchy diamond-o time scales integral. Then (A1) and (Ay) are
satisfied.

Proof. This follows from [123, Definition 3.2 and Theorem 3.7]. O

Multiple Riemann integration on time scales was introduced in [42]. The Riemann
integral introduced there is also an isotonic linear functional.

Theorem 2.4 Let Ty,..., T, be time scales. For a;,b; € T; with a; < b;, 1 <i<n, let
& C [al,bl)']rl X ... X [an,bn)T”

be Jordan A-measurable and let L be the set of all bounded A-integrable functions from &
to R. Then (L) and (Ly) are satisfied. Moreover, let

A = [ s,

where the integral is the multiple Riemann delta time scales integral. Then (A1) and (Az)
are satisfied.

Proof. This follows from [42, Definition 4.13 and Theorem 3.4]. O

From [42, Remark 2.18], it is also clear that a theorem similar to Theorem 2.4 is also
true for the nabla and diamond-« integrals in the multiple variable case.

Multiple Lebesgue integration on time scales was introduced in [43]. The Lebesgue
integral introduced there is also an isotonic linear functional.
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Theorem 2.5 Let & be a A-measurable subset of A", defined as in (1.14) and let L be the
set of all A-measurable functions from & to R. Then (Ly) and (Ly) are satisfied. Moreover,
let

AN = [ Fdua)

where the integral is the multiple Lebesgue delta time scales integral. Then (A1) and (A3)
are satisfied.

Proof. This follows from [43, Section 3]. O

Theorem 2.6 Under the assumptions of Theorem 2.5, let A(f) be replaced by

) f(0)dua)
A = = a0

where h : & — R is nonnegative A-integrable such that [, h(t)dua(t) > 0. Then A is an
isotonic linear functional satisfying A(1) = 1.

The monograph [119] contains numerous classical inequalities that are proved for iso-
tonic linear functionals. Since the time scales integral is in fact an isotonic linear func-
tional, the results from [119] can be applied to this setting. Our work shows that it is not
necessary to prove such kinds of inequalities “from scratch” in the time scales setting as
they can all be obtained easily from well-known inequalities for isotonic linear functionals.

For simplicity, in what follows, we use the following notations: & as A-measurable
subset of A",

7 J S ()h(1)dpa(7)
La(f) = [ FOduale), and Ta(rih) = 2000,
Je [ hO)apa(0)
where f: & — R is A-integrable and /& : & — R is nonnegative A-integrable such that
L2 h(t)dua(r) > 0. Also we assume throughout that I and [m, M| are nonempty intervals in
R such that —eco <m < M < oo,

2.2 Jensen’s Inequality

B. Jessen in [84] gave the following generalization of Jensen’s inequality for isotonic linear
functionals.

Theorem 2.7 (SEE [119, THEOREM 2.4]) Let L satisfy properties (L) and (Ly). As-
sume ® € C(I,R) is convex. If A satisfies (A1) and (Ay) such that A(1) = 1, then for all
f € L such that ®(f) € L, we have A(f) € I and

DA(f)) <A(D(f))- 2.1
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Now our first result is the following generalization of Jensen’s inequality.

Theorem 2.8 Assume ® € C(I,R) is convex, f : & — I is A-integrable, and h: & — R is
nonnegative A-integrable such that La(h) > 0. Then

@ (La(f;h)) < La(@(f),h).

Proof. Just apply Theorem 2.7 and Theorem 2.6. O

Corollary 2.1 Assume ® € C"(I,R) such that ®" > 0. Suppose f : & — I is A-integrable
and h : & — R is nonnegative A-integrable such that Ly(h) > 0. Then

D (ZA(le)) < LA(q)(f)7h)'

Proof. This follows immediately from Theorem 2.8, by using the fact that a function @
with ®” > 0 is convex. =]

Corollary 2.2 Assume ¢,y € C(I,R) such that ¢~ exists, y is strictly increasing, and
vo ¢! is convex. Suppose f: & — 1 is A-integrable and h: & — R is nonnegative A-
integrable such that h¢ (f),hy(f) A-integrable and Lx(h) > 0. Then

¢71 (ZA(¢(f)7h)) < Wﬁle(lI/(f)’h)

Proof. This follows from Theorem 2.8, by replacing ® with yo ¢! and f with g o f. O

Corollary 2.3 Ler o« <0 or o« > 1. Suppose f: & — I is positive A-integrable and h :
& — R is nonnegative A-integrable such that Lx(h) > 0. Then

(La(f,h)" <Ta(f*,h).

Proof. This follows from Corollary 2.1, by choosing ®(x) = x%, x > 0. a

Corollary 2.4 Suppose f: & — I is A-integrable and h : & — R is nonnegative A-integrable
such that Ly(h) > 0. Then

AU < Ty (el h).

Proof. This follows from Corollary 2.1, by choosing ®(x) = ¢, x € R. a

Corollary 2.5 Suppose f : & — I is positive A-integrable and h : & — R is nonnegative
A-integrable such that Ly(h) > 0. Then

InTa(f,h) > La(In £, h).

Proof. This follows from Corollary 2.1, by choosing ®(x) = Inx, x > 0. a
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Remark 2.1 Known results from time scales theory, which were proved by using time
scales calculus, follow from Theorem 2.7 in the same way as Theorem 2.8 does. Note
also that a similar theorem for the multiple Riemann integral can be stated and proved
using Theorem 2.4. This will be the case for all inequalities stated in this section and the
following sections; however, we only explicitly state each time the case for the multiple
Lebesgue integral.

The Jensen inequality for Cauchy delta integrals has been obtained by Agarwal, Bohner,
and Peterson [9].

Theorem 2.9 Let a,b € T with a < b. If ® € C(I,R) is convex and f € Cy(la,b)T,I),

then
o (f,ff(t)At> TR 0)A

b—a - b—a

Remark 2.2 When T = R in Theorem 2.9, then we obtain Theorem 1.9. When T = Z in
Theorem 2.9, then we get the discrete Jensen inequality (1.15).

The following result is given by Wong, Yeh, and Lian in [134]. When A(¢) = 1 in Theorem
2.10 below, then we obtain Theorem 2.9.

Theorem 2.10 Lez a,b € T with a < b. Assume h € Cyq([a,b)1,R) satisfies [” |h(t)|Ar >
0. If ® € C(I,R) is convex and f € Ciy([a,b)T,I), then

o [ J MO DA _ [ [h(@0)] (1))
Pl ) = Pee)ae

Proof. Just apply Theorem 2.7 and Theorem 2.1. a

In [112], Ozkan, Sarikaya, and Yildirim proved that Theorem 2.10 is also true if we
use the nabla integral (see [45, Section 8.4]) instead of the delta integral. The following
result concerning the diamond- integral is given by Ammi, Ferreira, and Torres in [16]
(see also [112]).

Theorem 2.11 Let o € [0,1]. Let a,b € T with a < b. Assume h € C([a,b]T,R) satisfies
[21h(1)[Oat > 0. If ® € C(I,R) is convex and f € C([a,b]y,I), then

o [ J OO 0at ) _ 41D/ (1) Oat
ROat )~ [OIOar

Proof. Just apply Theorem 2.7 and Theorem 2.3. a
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2.3 Hermite-Hadamard Inequality

P. Beesack and J. Pecari¢ in [30] gave the following generalization of the converse of
Jensen’s inequality for isotonic linear functionals.

Theorem 2.12 (SEE [119, THEOREM 3.37]) Let L satisfy properties (L) and (L,). As-
sume @ : [ — R is convex, where I = [m,M). If A satisfies (A1) and (A,) such that A(1) =1,
then for all f € L such that ®(f) € L, we have

_M=AU)

a@() < == S (). 2

In the following theorem, we give a generalization of the converse of Jensen’s inequality
on time scales.

Theorem 2.13 Assume ® : I — R is convex, [ : & — [m,M| is A-integrable, where
[m,M] C I, and h : & — R is nonnegative A-integrable such that Lx(h) > 0. Then

- M —L(f,h) La(f,h) —m

LA(®P(f),h) L ———————O ————OQ(M). 2.3

al®Uf):h) = == = ®lm) + — L — (M) 23)
Proof. Just apply Theorem 2.12 and Theorem 2.6. O

Remark 2.3 If @ is continuous in Theorem 2.13, then by combining Theorem 2.13 with
Theorem 2.8, we obtain a generalization of the Hermite—Hadamard inequality (1.17):

ZA(fah)_m
M—m

_ _ M—Ta(f.h
@ (Lur.1) <Ta@(n) ) < LB Mg oM. @)
Note that the known result [50, Theorem 3.14] (see also [18, 51]) follows from Theorem

2.12 in the same way as Theorem 2.13 does, this time applying Theorem 2.3.

A combination of Theorem 2.7 and Theorem 2.12 in a slightly different form is given by
Pecari¢ and Beesack as follows.

Theorem 2.14 (SEE [119, THEOREM 5.13]) Let L satisfy properties (L) and (Lp). As-
sume ® € C(I,R) is convex, where [m,M] C I. Suppose A satisfies (A1) and (Ay) such that
A(1) = 1. Let f € L be such that f(E) C [m,M] and ®(f) € L, and define p,q > 0 such
that p+q > 0 and

M
holds. Then
(pm+qM) < A(@(f)) < p®(m) +q®(M)
r+q r+q
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Theorem 2.15 Assume ® € C(I,R) is convex, f: & — [m,M] is A-integrable, where
[m,M] C I, and h : & — R is nonnegative A-integrable such that Lx(h) > 0. Let p,q >0
be such that p+q > 0 and

pm+gM
La(f.h) =
p+q
holds. Then Iy ® (M
® (w) <Ta(@(f),h) < PR £ aPM)
rP+q p+q
Proof. Just apply Theorem 2.14 and Theorem 2.6. a

R. Jak$i¢ and J. Pecari¢ presented, in [80], new converses of Jensen’s inequality for
positive linear functionals. Their main result is given in the following theorem.

Theorem 2.16 Ler ¢ be a continuous convex function on an interval of real numbers [
and m,M € R, m < M, with [m,M] C Int(I), where Int(I) is the interior of I. Let L satisfy
conditions (Ly), (Ly) and let A be any isotonic linear functional on L with A(1) = 1. If
f € L satisfies the bounds

—co<m< f(t) <M <o forevery tekE
and o f €L, then

0 < A(¢(f)) —o(A(f))

A A
el

<
| >
SN
= =
>

e
s 3

+

where ¢’ (M)= lim W is a left-hand derivative of ¢ at M, and ¢’ (M)= lim+w
x—M- x—M

is a right-hand derivative of ¢ at M, x € 1. If ¢ is concave on I, then the above inequalities
are reversed.

Theorem 2.16 can be generalized in terms of time scale calculus as follows.

Theorem 2.17 Let ¢ € C(I,R) be convex, where I = [m,M] C R, with m < M. Assume
& is as in Theorem 2.4 and suppose f is A-integrable on & such that (&) = I. Moreover,
let h: & — R be nonnegative A-integrable such that [ h(t)At > 0. Then

&

0 < La(9(f),h) = ¢ (La(f, 1) 2.5)
< (M= Ta(.)) (Eal ) —m) - S0 Z L)
< M —m)(9! (M) — . (m).

If ¢ is concave on I, then all inequalities in (2.5) are reversed.



2.3 HERMITE-HADAMARD INEQUALITY 29

Proof. Let ¢ be a convex function. The first inequality in (2.5) follows directly from
Jessen’s inequality on time scales given in Theorem 2.8. Now, let us take the inequality
(2.3) from Theorem 2.13. Adding the term —¢ (ZA (f,h)) on both sides of (2.3), we obtain

La(9(f).h) = ¢ (La(fh))

M —La(f,h LA(f,h) — —
< ML) oy AL ) g @ p) =B 26
By the convexity of ¢, it follows
o(x) = 9(M) > ¢_(M)(x—M),  x €& [m,M]. 2.7)

Multiplying inequality (2.7) with (x —m) > 0, we get
(x=m)p(x) = (x=m)$(M) = " (M)(x=M)(x—m),  x€[mM]. (28

Similarly, multiplying the inequality ¢ (x) — ¢ (m) > ¢/ (m)(x —m) with (M —x) > 0, we
obtain

(M —x)p(x) = (M =x)¢p(m) = ¢’ (m)(x—=m)(M —x),  x€[mM]. (29

Adding (2.8) to (2.9) and dividing by (M — m), for any x € [m,M], we have

(M —x)¢(m) + (x—m)¢(M)

el ()
< M) (o1 0a) — ol (m) . 210
Replacing x in (2.10) with Lx(f, ), leads to
B< (M—Ta(f,1) (Talf.h) — m) == 02lm) @11

M—m

Combining (2.6) and (2.11) brings us to the second inequality in (2.5). The third inequality

in (2.5) follows from the elementary estimate W < %(M —m) for every x € R. If
the function ¢ is concave, then —¢ is convex, so applying (2.5) to —¢ gives us the reversed
inequalities in (2.5). O

Remark 2.4 The proof of Theorem 2.17 can be obtained directly from Theorem 2.16
since the multiple Riemann delta time scale integral is an isotonic linear functional, ac-
cording to Theorem 2.4.

Theorem 2.18 Suppose that all assumptions from Theorem 2.17 hold. Then

< M_EA(f>h)
- M—m

ZA(f7h)_m T

0 v O(M) = La(9(f),h) (2.12)

¢(m)+
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S0 g [V IOG0 -

< M—m S h(r)Ar

&
< OO (47, (1)) (T )~ m)
< %(M—m)(‘P/_(M)—fl)jr(m»

If ¢ is concave on I, then all inequalities in (2.12) are reversed.

Proof. Assume that ¢ is convex. The first inequality in (2.12) follows directly from
inequality (2.3) in Theorem 2.13. We now replace x in (2.10) by f(¢), t € E (notice that
m < f(t) < M since f(E) = I by the assumptions) so that

M—f(1)
M—m M —

(M — f(1))(f(1) —m)
M—m

< (/. (M) — ¢/ (m)). (2.13)

Since the multiple Riemann delta time scale integral is an isotonic linear functional, mul-

tiplying inequality (2.13) by 1 ;’f&) -
E

and integrating the resulting inequality, we get

W"’(’"”www—ﬁwqu
Jh(t) (M —f(2)) (f(t) —m)At
5 oL (M) — ¢ (m)
<* Jh(0)Ar e @19
&

which is the second inequality in (2.12). Using the fact that the function g : R — R defined
as g(x) = (M —x)(x —m), is concave, and applying Theorem 2.8 to the function g instead
of the function ¢, we deduce

ga'h(f) (M —f(1)) (f (1) —m) At

Jh(t)At
£

< (M—EA(.ﬂh)) (ZA(.ﬂh) _m) ’

which implies the third inequality in (2.12). The last inequality in (2.12) is the same one
as the last inequality in Theorem 2.17. If the function ¢ is concave, then —¢ is convex, so
applying (2.12) to —¢ gives us the reversed inequalities in (2.12). a

In [79], the authors proved the following refinement of Theorem 2.16.

Theorem 2.19 Ler ¢ be a continuous convex function on an interval of real numbers [
and m,M € R, m < M, with [m,M] C Int(I), where Int(I) is the interior of I. Let L satisfy
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conditions (Ly), (Lp) on & and let A be any isotonic linear functional on L with A(1) = 1.
If f € L satisfies the bounds

—co<m< f(t) <M <o forevery te&

and ¢o f €L, then

0 < AB() (AL
< (M- AU ) sup ol b0
< (- A A —m =) @15

< (0= m)(9” (M) — 9L (m),

. o . —o(M
where ¢! (M)= Hm % is a left-hand derivative of ¢ at M, and ¢!, (M )ZXEIA}1+%

is a right-hand derivative of ¢ at M, x € 1. We also have the inequalities

(M —m)>Wo (A(f);m, M)

4>|~

0<A(O(f)—0(A(f)) <
< < (M —m)(¢~ (M) — ¢/, (m)), (2.16)

where Yo (-;m,M): (m,M) — R is defined by

1 (¢’(M)—¢(f) 3 ¢(f)—¢(m))
M—m M—t t—m ’

[u—

\Pq)([;m,M) =

If ¢ is concave on I, then all inequalities in (2.15) and (2.16) are reversed.

Using the result from Theorem 2.19, we obtain the following refinement of Theorem
2.17.

Theorem 2.20 Ler ¢ € C(I,R) be convex, where I = [m,M] C R, with m < M. Assume
[ is A-integrable on & such that (&) = 1. Moreover, let h : & — R be nonnegative A-
integrable such that [, h(t)At > 0. Then

0 < La(9(f):h) — ¢ (La(f,h))
< (M —La(f,h)) (La(f,h) —m) ?ulzl)‘f’q)(f;m’M)
m)- 9L (M) — ¢! (m)

T 2.17)

< (M —=La(f,h)) (La(f,h) =
< 20— m)(9" (M) — ¢’ (m),

where Wy (-;m,M): (m,M) — R is defined by

1 <¢(M) —0() 91 —¢(m)).

\Pq)(t;m’M):M—m M —t t—m
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If ¢ is concave on I, then all inequalities in (2.17) are reversed.

Proof. Since ¢ is a convex function, the first inequality in (2.17) follows from Theorem
2.8. From Theorem 2.13, we have

La(9(f),h) — ¢ (La(f>h)) (2.18)

< MoTllb) o) EA(]{;’f)m_ " 9(1) — ¢ (La(/:h)
:ﬂ(M La(f,h)) (La(f,h) —
(o) = ¢ (La(f:h)) ¢ (La(f.h)
M— z (f7 ) LA f>
— (M~Ta

fvh)) (ZA(.ﬂh) m) \P(P (LA(.ﬂh)’ 7M)
h h

f.1) (La(f:h) —m) sup Wy (tsm, M),
te(m,M)

which is the second inequality in (2.17), provided that Ls(f,h) # m,M. When La(f,h) is
equal to m or M, then inequality (2.17) is obvious. Since

{d)(M) —¢@) _9()—9¢(m) }

< (M—Ly

1
sup Wy (t;m,M) = —— sup

re(m,M) M—m re(m,M) M —t t—m
C 1 SM=00) (0~ 0m)
M—=m\;conpmy M-t 1€(m,M) I—m

empy  M—t e(mM)  t—m M—m

! ( o) —0() mn—mm>:¢wa¢um

the third inequality in (2.17) is true. The last inequality in (2.17) follows from the ele-
mentary estimate W < %(M —m), for every x € R. If the function ¢ is concave,
then —¢ is convex, so applying (2.17) to —¢ gives the reversed inequalities in (2.17). This
completes the proof. O

Remark 2.5 According to (2.18), with the same assumptions as in Theorem 2.20, we also
have

0 < Ia(9(f),h) — ¢ (Ta(f,1))
g%WnM%@@)WW
< (M= m)(o!. (M) — o/, m).

2.3.1 Applications

Now, we use the results from Theorem 2.17 and Theorem 2.18 to get new converse in-
equalities for generalized means and power means in the time scale setting.
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Generalized Means

Applying classical results to the monotonicity properties of generalized means with respect
to the functional A, found in [68, p. 75, Theorem 92] and [119, p. 108, Theorem 4.3], R.
Jaksi¢ and J. Pecari€ proved, in [80], the following converse.

Theorem 2.21 Let L satisfy properties (Ly), (L) and A satisfy (A1), (Az) with A(1) = 1.
Suppose y,x : I — R are continuous and strictly monotone and ¢ = ) o l//_l is convex.
Then, for every f € L such that m < f(t) <M, t € [m,M] C I, —eo <m < M < o and

v(f),x(f) € L, we have

0 < x (My(f.A)) —x (My(f,A)) (2.19)
< (My— AGW() (ACp() ~ my) &) 0]
y — My
< % (My —my) (9. (My) — ¢’ (my)).

where My(f,A) = w~ ' (A(y(f))) is a generalized mean with respect to the operator A
and function y and [my,My] = y([m,M)). If ¢ is concave, then all inequalities in (2.19)
are reversed.

To get new converse inequalities, let us first define the generalized mean in terms of
the multiple Riemann delta time scale integral using the definition of weighted generalized
mean on time scales [21].

Definition 2.2 Suppose ¥ : I — R is continuous and strictly monotone and f is A-integrable
on & such that (&) = I, where & C R" is as in Theorem 2.4. Let h : & — R be nonnega-
tive A-integrable such that [ h(t)At > 0. The generalized mean with respect to the multiple

&

Riemann delta time scale integral is defined by
My (f,La(f,h) =¥~ (La(¥(f) 1)) - (2.20)

Since the multiple Riemann delta time scale integral is an isotonic linear functional,
from Theorem 2.21 we deduce the following result.

Theorem 2.22 Suppose y,x : I — R are continuous and strictly monotone and ¢ =
X0 14/_1 is convex, I = [m,M], —oo <m < M < oo. Assume f is A-integrable on & such that
f(&) =1, where & CR" is as in Theorem 2.4. Let h : & — R be nonnegative A-integrable
such that [ h(t)At > 0. Then,

&

0 < x (My (f,La(fh))) — x (My (f,La(f,h)))

(My — LA (f), 1)) (Ta(P(f), h) —my)

0 (My) — (9% (my) o1
Mll/ —my

3 (My —my) (0L (My) = 0. (my)

where [my,My| = y([m,M)). If ¢ is concave, then all inequalities in (2.21) are reversed.

IAIA

IN
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Proof. The claim follows from Theorem 2.4 and Theorem 2.21. O

Theorem 2.23 Let all assumptions from Theorem 2.22 be valid. If the function ¢ =
x oy~ is convex, then

o < My=Ls(¥().1)

L) - my
D g+ A
—x (My (£, La(¥(f),1)))

0" (My) — @', (my) gh(t) (My =y (f(1))) (W(f(1) —my) At

¢(M)

- My —my ({a'h(t)At
< O 0D (41, ()0 (T 1)~ )
v v
< %(Mw—mlw) (07 (My) — ¢} (my)) (2.22)

where [my,My] = y([m,M]). If ¢ is concave on I, then all inequalities in (2.22) are
reversed.

Proof. The inequalities in (2.22) follow directly from Theorem 2.18 by replacing m
by my, M by My, ¢ by xo v~ !, and f by wo f. All conditions of Theorem 2.18 are
satisfied because y o y~! is obviously continuous and convex by assumption. Also, we
have my < y(f(r)) < My for every ¢ € [m,M] since my = y(m) and My, = y(M) if y is
increasing and my = y(M) and My, = y/(m) if y is decreasing. If the function ¢ = y o y!
is concave, then the function —¢ = —y o y~! is convex so, replacing ¢ by —¢ in (2.22),
we obtain the reversed inequalities. O

Theorem 2.24 Suppose I = [m,M], —eo <m <M < oo, W, ) : [ — R are continuous and
strictly monotone and ¢ = y oy~ is convex. Assume f,h: & — R are A-integrable on &
such that (&) =1and [|h(t)|At > 0. Then,

0 < x(My(f.Ls)) —x (My (f,Ls))
< (My —La(y(f),h)) (La(w(f).h) —my) teiu%‘i‘xow—l(w(t);mv,Mw)
< (My —La(w(f),h)) (La(y(f), 1) —my)

ow—1Y —(yow 1Y
(xov )_(A%—ffw v ) (my) (2.23)

< Xty —my) (o w4y~ Gow Yo my).

where [my,My| = y([m,M]). If ¢ is concave, then all inequalities in (2.23) are reversed.

Proof. The claim follows from Theorem 2.20. O

The following result on power means with respect to an isotonic linear functional is
proved in [80].
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Theorem 2.25 Let L satisfy properties (Ly), (L) and A satisfy (Ay), (Ay) with A(1) = 1.
Letm,M € R, f €L, be such that —es <m <M < o, 0 <m < f(t) <M <o, fort € &,
and 7, f*,(log f) € L, forr,s € R.

1) If0<r<sorr<0<s, then

0 < (MU(r,0)) - (M)

S M —mS"

~ (M7= A(f) (A =) =

r
N
r

IN

IN

(Mr _ mr) (Msfr _ msfr) .

(i) Ifr <s <0, then

(e
vV
—~

Mil(r.4)) = (MV(7.0))
M —m
o

Vv
S la

(M"—A(f")) (A(f") —m")

Z (Mr _ mr) (Msfr _ msfr) .

L=

(i) If s=0andr <0, then

0 < log (M[O] (f)A)) —log (M[r] (f,A))
LM AU (AT —m)

- or M m"
_ _i (Mr_mr)2
- 4r Mm

@iv) Ifr=0o0rs >0, then

where

is the power mean.

0 < (M(r.0)) = (MO(r.0))

sM __ sm
< (logM—A(logf))(A(Ing)_IOgm)lso(geA/Ifligr)n
S sm sm M
< g —e™)log—,
M (f.A) = (A(f’))%, if r#0
' exp(A(logf)), if r=0

(2.24)

(2.25)

(2.26)

(2.27)

Now, we define the power mean in terms of the multiple Riemann delta time scale

integral.
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Definition 2.3 Assume & C R" is as in Theorem 2.4 and f is A-integrable on & such
that f(&)=1and f(t) >0,t € &. Let h: & — R be nonnegative A-integrable such that
Jh(t)Ar > 0. For r € R, suppose f" and (log f) are A-integrable on &. The power mean
&

with respect to the multiple Riemann delta time scale integral is defined by
— 1
_ r r 7
ML (£ Ta(p ) = § FaU7)” i r#0 228)
exp (La(log f,h)), if r=0.

Using the fact that the multiple Riemann delta time scale integral is an isotonic linear
functional, from Theorem 2.25, we derive the following result.

Theorem 2.26 Ler & C R" be as in Theorem 2.4, let f be A-integrable on & such that

F(&)=Tand0<m < f(t) <M < oo, fort € &, m,M €R. Let h: & — R be nonnegative

A-integrable such that [h(t)At > 0. For r,s € R suppose [, f*, (logf) are A-integrable
&

oné.

1) Ifo<r<sorr<0<s, then

0 < (MY (£ Ta(f.1)) = (MY (£.Ta(£.1) ) (2.29)
_ _ MS—V_ S—r
< (M La(f7 1) (Talf" ) =) o
S r r S—r s—r
< E(M —m") (M —m"").
(i) Ifr <s <O, then
0> (MY (£ Tal ) = (M7 (£.Ta(£)) 230)
s P - _ . , M~ —ms—"
> = (M =Ta(f" 1)) (Talf ) =) =

‘i-_s‘r (Mr _ mr) (Msfr _ msfr) )

Y

(iii) Ifs=0and r <0, then

0 < log (M (£.Ls(,h)) ) —log (M) (f.La(£.1))
< _l (Mr _ZA(fr7h)) (ZA(fr>h) _mr) (231)
r M"m”"
1 (Mr_mr)2
<
-~ 4r Mwm

@iv) Ifr=0and s > 0, then

N

0.< (M (1.Ta(f) ) = (MO (7.Ta(£) ) 232
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_ _ s,(eSM _ esm)
< (logM — Lx(1 h)) (La(l h)—1 e
< (logM —La(log f,h)) (La(log f,h) —logm) logh _Togm
< %(eSM—e“'m)logE.
Proof. The claim follows from Theorem 2.4 and Theorem 2.25. O

Theorem 2.27 Suppose the same hypotheses as in Theorem 2.26 are valid.

1) IfO<r<sorr<0<s, then

M’ _ZA(fr7h)ms_|_ ZA(fr7h) _mrMs

0<
- M"—m" M"—m"
— (M (7. Ta(r.m)) (233)
v — s L BO (M7= 1) (f7(2) —m")) Ar
LS MTomT g
—r M-m Jh(t)At
&

M= — ST _ _
i . ﬁ (M" =TA(f7,h)) (Ta(f",h) —m")

4i(Mr _ mr) (MS—F _ ms—r).
r

IN
I

IN

(i) If r<s <O, then

M’ _zA(fr7h)ms+ zA(fr7h) —m’
M"—m" M"—m"
_ (MM (. La f,h)))s (2.34)
I — Jh() (M"—f7 (1) (f"(t) —m")) At
m &

roM—m [ h(t)At
&

0> M

v
o

M= — s _ _
i . ﬁ (M" =TA(f7,1)) (Ta(f",h) —m")

4i(Mr _ mr) (MS—F _ ms—r).
r

v
I

Y
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(i) If s=0andr <0, then

M"—m" r M —m"
~log (MY (£,Za(f.1)) (2.35)
[.i'h(t)((M’—f’(t))(f"(t)—mr))At
{ ThOA
< .
- or M™m"
_ L (M —La(f" 1) (Ea(f" ) = m")
- r M m"
1
<

1 1
— M -m")—=——.
4r( m)<M’ m’)
@iv) Ifr=0and s > 0, then

- logM — La(log f, h) s La(log f,h) — logmMs

0= logM —logm logM —logm
- (MM (f,Za(f,h)))s (2.36)
(e _gmy (0 (Gogh —1og(£(0)) log(£(6)) ~logm))
= logM —logm Jh(t)Ar
&
< St —em) (logM —La(log f,h)) (La(log f,h) —logm)

logM —logm

K M
< %(eSM —e™)log o

Proof. The above inequalities follow from Theorem 2.18. Namely,

(i) if 0 < r < sorr <0< s, then we can take the function ¢ to be of the form ¢ () =
because ¢ is now continuous and convex and all the conditions of Theorem 2.18 are
satisfied. Now, inequality (2.33) follows from (2.12) with replacing m by m”", M by
M, and f by f" if r > 0 (because the function f” is then strictly increasing) and with
replacing M by m”", m by M", and f by f" if r < 0 (because the function f” is then
strictly decreasing);

(ii) if r < s < 0, then the function ¢ (¢) = ¢* is concave so we obtain inequality (2.34)
from the inequalities reversed to (2.12) making following replacements: M by m", m
by M", and f by f" (f" is now strictly decreasing);

(iii) if s =0 and r < 0, then we take ¢(¢) = %logt which is continuous and convex, and

we deduce inequality (2.35) from (2.12) interchanging M by m”", m by M", and f by
ST (f" is now strictly decreasing);
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(iv) if r =0 and s > 0, then we take ¢(¢) = ¢* which is continuous and convex, and
inequality (2.36) follows from (2.12) interchanging m by logm, M by logM, and f
by log f (log f is strictly increasing).

This completes the proof. |
Theorem 2.28 Suppose & C R" is as in Theorem 2.4 and f is A-integrable on & such that

F(&)=Tand0<m < f(t) <M < oo, fort € &, m,M €R. Let h: & — R be nonnegative
A-integrable such that [h(t)At > 0. For r,s € R suppose ", f*, (log f) are A-integrable
&

oné.

1) Ifr<0<sorr<s<0, then

0 < (MF(£Talr.)) — (M9 (£.La(.0) )

M= —m'—

< g (M* —La(f*,h)) (La(f°, ) —m") M
r 0 S r—s r—s
< E(M —m’) (M" —m"?). (2.37)

(1) If0O<r <s, then

0> (M (r.Za(rim)) = (M (£ Ta(7.))
> L0 ~La( ) (Talr ) )
> L o) (5 ). 23%)

4s

(iii) Ifs=0andr <0, then

0 < (M (£.La(r.1)) — (MO (7.Lar) )
< (logM —La(log f,h)) (La(log f,h) —logm) - %

M
< g(M’—m’)log - (2.39)
@iv) Ifr=0and s > 0, then

0 > tog (M (£.La(£.1) ) ~ log (M) (.La(1.)))
1
M™m"

> < (0~ Lalf 1) (Ta( ) — )
> Lo ) (L_L), (2.40)

4s ms  m
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Proof. The above inequalities follow directly from Theorem 2.17. Namely,

(i) if r <0 < sorr<s<0, then we can take the function ¢ to be of the form ¢ () =+
because ¢ is now continuous and convex and all the conditions of Theorem 2.17
are satisfied. Now, inequality (2.37) follows from (2.5) with replacing m by m*, M
by M* and f by f* if s > 0 (because the function f* is then strictly increasing) and
replacing M by m®, m by M* and f by f* if s < 0 (because the function f* is then

strictly decreasing);

(ii) if 0 < r < s, then the function ¢ (¢) = £ is concave so we obtain inequality (2.38)
from the inequalities reversed to (2.5) making following replacements m by m*, M

by M* and f by f* (f* is now strictly decreasing);

(iii) if s =0 and r < 0, then we take ¢ (¢) = ¢”* which is continuous and convex, and we
deduce inequality (2.39) from (2.5) replacing m by logm, M by logM and f by log f

(log f is strictly increasing);

(iv) if r=0and s > 0, then we take ¢ (¢) = %logt which is continuous and concave, and
inequality (2.40) follows from (2.5) replacing m by m®, M by M*, and f by f*, (f* is

now strictly increasing).

This completes the proof. O
Theorem 2.29 Suppose the hypotheses of Theorem 2.28 hold.
1) Ifr<s<O0orr<0<s, then
S _ T S T S S
0 S M LA(f7h)mr+LA(f7h) m Mr
MS _ mS MS _ mS
_ r
_ (M[r] (f,LA(f,h))) (2.41)
s e s THOQF=PO) PO =)0
< . L
s M-m S h(t)At
&
r Mrfs _ mrfs _ _ ! !
< PR YT (MS _LA(fSah)) (LA(f“,h) - ms)
S é(MS _mS)(Mr—S _ mr—S)'
(1) If0O<r<s, then
S _ T S T S S
0 Z M LA(f7h)mr+LA(f7h) m Mr
MS — mS MS — mS
_ r
_ (M[r] (f.La( f,h))) (2.42)

oy J RO (M= () (£ () =

r M—S—m— »

m*)) At

Y

s Ms—mt S h(t)At
&
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Vv
I

Ry — (M° —La(f*,h)) (La(f*,h) —m®)

4L(MS _ ms)(Mr—s _ mr—S).
)

(iii) Ifs=0andr <0, then

logM — ZA(logf,h)mr La(log f,h) — logmMr

0< logM —logm logM —logm
_ (M[’] (f,ZA(f,h)))r (2.43)
r o Jh() ((logM —log(f(1))) (log(f(¢)) —logm)) At
- M —m")  #
~ logM —logm Jh(t)Ar
&
< % (logM ~Ly(log 1)) (La(logf.h) ~ logm)
< I(Mr—m’)log%.
4 m

@(iv) If r=0and s > 0, then

0> M- —VLA(f‘ 7h) logm + LA(fvh) —-m logM
M5 —ms MS —ms
—log (M[O] (f,ZA(f,h)))
JHOOF £ 0)(* 0
§ _1 ;!h(t)At
— s MSmS
M* — LA(f5,h)) (La(f5,h) —m®
> 1 ( A(f ))(,A(f, ) —nr') (2.44)
s Moms
Lo (L),
Ky M* ms

Proof. All the inequalities can be obtained directly from Theorem 2.18 using inequality
(2.12) and the same technique and substitutions as in the proof of Theorem 2.28. o

From Theorem 2.20 and Theorem 2.25, the following refinement is obtained.

Theorem 2.30 Suppose & C R" is as in Theorem 2.4, f is A-integrable on & such that
f(&)=Tand0<m < f(t) <M <eo, fort € &, mMcR. Let h: & — R be A-integrable
such that [, |h(t)|At > 0. For r,s € R suppose f", f*, (log f) are A-integrable on &.
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1) Ifo<r<sorr<0<s, then

0 < (M[S] (fiA))S_ (M[r] (fjA))s
< (M"—La(f",h)) (La(f",h) —m") sup Wo(:"sm" . M")

te(mM)
S - _ " _ - , Ms—r_ms—r
< = (M7 =La(f,h)) (La(f" 1) =) = (2.45)
S r r S—r s—r
< (M) (M=)

@) If r <s <0, then

0> (M (£,10)) — (MY (£.La))

N

> (M"—TLa(f",1)) (La(f" ) —m") ?up )‘P¢(t’;m’,M’)
te(mM
s - . _ . . M~ — ST
>~ (M"=La(f", 1)) (La(f" ) = m") — (2.46)
2 i (Mr _ mr) (Msfr _ msfr) .

4r

(iii) Ifs=0andr <0, then

0 < log (MY (£,1)) —log (M" (f.Ls))
< (Mr—ZA(fr,h)) (ZA(f’,h) —mr) ?up )‘I’¢(tr;M’,mr)
te(mM
oL O L) () ) 2
r M™m"
1 (Mr_mr)Z
<. "7/
- 4r M'm"

@iv) Ifr=0and s > 0, then

0< (MY (£.T8)) — (MO (£.T0))

< (logM —La(log f,h)) (La(log f,h) —logm) (2.48)
- sup Wy (logt;logm,logM)
re(m,M)

(logM—ZA(logf,h)) (ZA(logf,h) — logm) . S(M* — nr’)

logM —logm

IN

, M
< s(M*—m’)log —.
m

Proof. The claim follows from Theorem 2.20 and Theorem 2.25. O



2.4 INEQUALITIES RELATED TO JENSEN’S INEQUALITY 43

2.4 Inequalities Related to Jensen’s Inequality

Holder’s Inequality

We first recall Holder’s inequality for isotonic linear functionals.

Theorem 2.31 (SEE [119, THEOREM 4.12]) Let E,L, and A be such that (Ly), (L),
(A1), (Ap) are satisfied. For p # 1, define q=p/(p—1). Assume w, f,g are nonnegative
functions on E and wfP ,wgd, wfg € L. If p > 1, then

A(wfg) < AP (wfP)AM 4 (wg).

This inequality is reversed if 0 < p < 1 and A(wg?) > 0, and it is also reversed if p < 0
and A(wf?) > 0.

In the following theorem, we give the generalization of Holder’s inequality on time scales.

Theorem 2.32 For p # 1, defineq=p/(p—1). Assume w, f, g are nonnegative functions
on & and wfP wgl wfg are A-integrable on &. If p > 1, then

La(wfg) < LY (wfP)L{ (wg?).

This inequality is reversed if 0 < p < 1 and Lx(wg?) > 0, and it is also reversed if p < 0
and La(wf?) > 0.

Proof. Just apply Theorem 2.31 and Theorem 2.5. a
Remark 2.6 Note that the known results from the time scales literature follow from Theo-

rem 2.31 in the same way as Theorem 2.32 does: [45, Theorem 6.13] follows as in Theorem
2.1 and [16, Theorem 4.1] (see also [57, 17]) follows as in Theorem 2.3.

From Holder’s inequality follows the Cauchy—Schwarz inequality given in the next theo-
rem.

Theorem 2.33 Ifw, f,g are nonnegative functions on & and wf?,wg?,wfg are A-integrable

on &, then
La(wfg) < y/La(wf?)La(wg?).

Proof. Just let p =2 in Theorem 2.32. O

Now, we can prove new converses of Holder’s inequality in terms of time scale calculus
and A-integral using the results given in [80].
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Theorem 2.34 Let p > 1 and define q by % + é = 1. Assume & C R" is as in Theorem 2.4

and w, f, g are nonnegative real functions on & such that wf?, wg?, wfg are A-integrable

on& and [w(t)g?(t)At > 0. Let m,M € R such that —ec <m <M < ooandm < f(t)gi(t) <
&

M, t € &. Then,

0 < Laoos?) L] (we?) — LE ()
< (MLa(wg?) — La(wfg)) (La(wfg) — mLa(wg?))
n—1 -1
.P(M’M _—r;"p ) _LZ*2(qu) (2.49)
< B —m)(7" =L (wg?).

For p <0, inequalities (2.49) hold if LA(wfg) >0,t € &. Incase 0 < p < 1, all inequalities
in (2.49) are reversed.

Proof. Inequalities (2.49) follow directly from Theorem 2.17 by taking the function ¢

to be of the form ¢ (¢) = ¢” and replacing & by wg? and f by fg_%. For p <0and p > 1, the
function #? is convex, and inequalities (2.49) follow from inequalities (2.5). For0 < p < 1,
the function ¢? is concave, and, according to Theorem 2.17, all inequalities in (2.49) will
be reversed. O

Theorem 2.35 Let all assumptions of Theorem 2.34 hold. For p < 0 or p > 1, we have

o < MLa(wg?) —La(wfg) , +LA(ng)_LA(qu)

MP — LA(wf?)

- M—m M—m
o pMrt—mh)
- M—m

[ (wl0)g7(0) = w(6)£(0)(0) (w0 £(D)g(0) ~ m()g(0) 51

&

—1 _ -1

< P s (ML)~ L))

-(La(wfg) —mLa(wg?)) (2.50)
< GO —m)(aP s (w,g7).

If 0 < p < 1, then all inequalities in (2.50) are reversed.

Proof. Inequalities (2.50) follow directly from Theorem 2.18 by taking the function ¢
to be of the form ¢(¢) = ¢” and replacing & by wg? and f by fgfg. Ifp<Oandp>1,
then the function 77 is convex, and inequalities (2.50) follow from inequalities (2.12). For

0 < p < 1, the function #? is concave, and, according to Theorem 2.18, all inequalities in
(2.50) will be reversed. O
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Theorem 2.36 Ler 0 < p < 1 and define q by % + é = 1. Assume & C R" is as in Theorem
2.4 and f,g are nonnegative real functions such that f?, g9, fg are A-integrable on & and
Jg2(t)Ar > 0. Let m,M € R such that —ec <m <M < ecandm < f(t)g~9(t) <M, t € &.
&

Then,

0 < La(fg) — L (f7)L1 (g) 2.51)

1

1 Mﬁé—m q
S —_ . .
P M-—m  Lx(g9)

(MLA(8") = La(f")) (La(f") — mLa(g"))

IN

ﬁ(M—m (b5 =) La(e).

For p <0, inequalities (2.51) hold if LA(f") > 0, t € &. In case p > 1, all inequalities in
(2.51) are reversed.

Proof. Inequalities (2.51) follow directly from Theorem 2.17 by taking the function ¢
1
to be of the form ¢(z) =7 and replacing / by g9 and f by -;—:. Namely, when p < 1, the

function t% is convex, and inequalities (2.51) follow from inequalities (2.5). For p > 1, the
function #7 is concave, and, according to Theorem 2.17, all inequalities in (2.51) will be
reversed. O

Theorem 2.37 Let p < 1 and let the assumptions from Theorem 2.36 hold. Then,

MLy8") ~La(f7) 4 La(f") = mLa(s")

0< Y- - M7 —LA(fg)

L M3 —mo [ (Mg9(t) — f(0) (7 () — mg?(1r))

< g/ e At (2.52)
| M i—mi 1

o M TG MRl )
“(La(f?) — mLa(g"))

< i(M—m) (Mﬁ—"f?)LA(gq)

<

If p > 1, then all inequalities in (2.52) are reversed.

Proof. Inequalities (2.52) follow directly from Theorem 2.18 by taking the function ¢

1
to be of the form ¢(z) =7 and replacing / by g9 and f by -;—:. Namely, when p < 1, the
function t% is convex, and inequalities (2.52) follow from inequalities (2.12). For p > 1,

the function #? is concave, and, according to Theorem 2.18, all inequalities in (2.52) will
be reversed. O
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Theorem 2.38 For p < 0 or p > 1, define q by % + é = 1. Assume & C R" is as in
Theorem 2.4 and f, g are nonnegative real functions such that g4, fg are A-integrable on
& and La(g9) > 0. Let m,M € R such that — <m < M < s and m < f(t)g' ~9(t) < M,
t € &. Then,

0 < La(f) LY () — I4(F.2)
< (MLA(g7) — La(fg)) (La(fg) —mLa(g?))
1 p—
MPM——_;ZI) L2 (g9) (2.53)

(M —m)(MP~" = mP~1)LE (g).

IN
kS

In case 0 < p < 1, all inequalities in (2.53) are reversed.

Proof. Inequalities (2.53) follow directly from Theorem 2.17 by taking the function ¢
to be of the form ¢(¢) = ¢” and replacing i by g? and f by fg' 9. Namely, for p < 0 and
p > 1, the function #? is convex, and inequalities (2.53) follow from inequalities (2.5). For
0 < p < 1, the function #” is concave, and, according to Theorem 2.17, all inequalities in
(2.53) will be reversed. O

Theorem 2.39 Suppose that the assumptions from Theorem 2.34 hold. For p < 0 or
p > 1, we have

MLA(g?) —La(fg) P+ La(fg) — La(g?)

0 < S (/) (2.54)

—1 _ o1

< pP T [ (Mgh0) ~ F(08(0) (F0)800) — me(e)) &

&

—1 _ o1

< P s (ML)~ La(f)

+(La(fg) —mLa(g))
< GO —m) (Mt = La(e?).

If0 < p < 1, all inequalities in (2.54) are reversed.

Proof. Inequalities (2.54) follow directly from Theorem 2.18 by taking the function ¢
to be of the form ¢ (¢) = ¢” and replacing by g% and f by fg'!~9. Namely, for p < 0 and
p > 1, the function ¢ is convex, and inequalities (2.54) follow from inequalities (2.12).
For 0 < p < 1, the function ¢? is concave, and, according to Theorem 2.18, all inequalities
in (2.54) will be reversed. O

Using the result of Theorem 2.20, we obtain the following refinements of previous
converse Holder’s inequalities on time scales.
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Theorem 2.40 Assume w, f,g are real functions on & such thatw, f,g > 0. Form,M € R
such that —eo <m < M < oo, let m < f(t)g?(t) <M, t € & If wfP, wgd, wfg are A-
integrable on & and Lx(wg?) > 0, where p > 1 and q=p/(p — 1), then

P

0 < La(wf”)- (La(wg?))7 — (La(wfg))
)

< (MLa(wg?) — La(wfg)) - (La(wfg) — mLa(wg?))
sup Wy (t;m,M) - (La(wg?))"
te(m,M)
< (MLA(wg?) —La(wfg)) - (La(wfg) — mLa(wg?))
.W.([‘A(W(gt]))z’—2 (2.55)

< %(M —m)(MP~! —mP~ 1) (La(wg))" .

For p <0, inequalities (2.55) hold if LA(wfg) > 0,1 € &. In case 0 < p < 1, all inequalities
in (2.55) are reversed.

Proof. Inequalities (2.55) follow directly from Theorem 2.20 by taking the function
¢ to be of the form ¢(z) = ¢” and replacing h by wg? and f by fgfg. For p < 0 and
p > 1, the function ¢ is convex, and inequalities (2.55) follow from inequalities (2.17).
For 0 < p < 1, the function ¢? is concave, and, according to Theorem 2.20, all inequalities
in (2.55) will be reversed. O

Theorem 2.41 Assume f,g > 0 suchthat f?, g9, fg are A-integrable on & and [ g9(t)At >
&

0, where 0 < p<land q=p/(p—1). For m;M € R such that —ec < m < M < oo, let
m<f(t)g ) <M, t €&. Then,

0 < La(fg) — (La(f"))7 (La(g"))
= ﬁ (ML(8") — La(")) - (La (") — mL(g"))
sup Wy (1:m,M) (2.56)
te(mM)

. M a—m 4 .
M—m  La(g9)
La(f?) —mLx(g?))

< %(M—m) (M_?II —m_é> La(g?).

IN

]17 (MLa(g9) — La(f"))
(

For p < 0, inequalities (2.56) hold if La(fP) > 0, t € &. In case p > 1, all inequalities in
(2.56) are reversed.

Proof. Inequalities (2.56) follow directly from Theorem 2.20 by taking the function ¢
1 .
to be of the form ¢(z) =7 and replacing & by g9 and f by j;;_:' Namely, when p < 1, the
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function t% is convex, and inequalities (2.56) follow from inequalities (2.17). For p > 1,
the function #? is concave, and, according to Theorem 2.20, all inequalities in (2.56) will
be reversed. O

Theorem 2.42 Assume f,g > 0 suchthat g9, fg are A-integrable on & and [ g%(t)At > 0,
&

where p <Qorp>1landq=p/(p—1). Let m,M € R such that —e < m < M < e and
m< f(t)g'~9(t) <M, t € &. Then,

P
q

0 < La(f?)- (La(g?)) — (La(fg))"

< (MLa(g%) — La(fg)) | La(fg) —m / gl(t)Ar

“(La(g")"? - Wy (1;m, M) (2.57)
< (MLx(g") — La(fg)) (La(fg) — mLa(g?))
Mt —mP )

A(La(29))P2
e (La(g")
< GOm0 ) (La(e)"
In case 0 < p < 1, all inequalities in (2.57) are reversed.

Proof. Inequalities (2.57) follow from Theorem 2.20 by taking the function ¢ to be of
the form ¢ (¢) = ¢” and replacing i by g% and f by fg' 9. Namely, for p < 0 or p > 1, the
function ¢ is convex, and inequalities (2.57) follow from inequalities (2.17). For0 < p < 1,
the function ¢? is concave, and, according to Theorem 2.20, all inequalities in (2.57) will
be reversed. O

Additional Improvements

R. Jaksi¢ and J. E. Pecari¢ proved in [81] a new refinement of the converse Jensen inequal-
ity for isotonic linear functionals, given in Theorem 2.19. Using that result, we derive the
following theorem which refines inequality (2.17) from Theorem 2.20.

Theorem 2.43 Let ¢ € C(I,R) be convex, where I = [m,M] C R, with m < M. Assume
& C R" and L satisfies conditions (Ly), (L) with additional property that min{f,g} € L
and max{f,g} € L, for every f,g € L. Let f be A-integrable on & such that f(&) = L
Moreover, let h : & — R be nonnegative A-integrable such that [, h(t)At > 0. Then,

< La(9(f),h) — ¢ (La(f,h))
< M_ZA(f7h)) (ZA(fvh) _m) ?ulz)u)\de(t;va) _ZA(fvh)afl)

< (M=Talrih) (Talf.h) - m) - LD 0LL)

0

—La(f,h)3
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< (M= m)(9" (M) ~ ¢,(m)) ~ Ta(F. )3, .58
where v
» 1 m
F-5- Ll d—etmremn 20 ("HM). esy)
and Wy (-;m,M): (m,M) — R is defined by
: __ L (oM —0(1) ¢()—9(m)
‘Pq)(t,m,M)—M_m< =S —— ) (2.60)

If ¢ is concave on I, then all inequalities in (2.58) are reversed.

Proof. Inequality (2.58) follows from the main result of [81] and the fact that the
multiple Lebesgue delta integral is an isotonic linear functional. O

Remark 2.7 Using Theorem 2.43, the refinements of the inequalities proved in Theorem
2.24 and Theorem 2.30 can be obtained.

Minkowski’s Inequality

We first recall Minkowski’s inequality for isotonic linear functionals.

Theorem 2.44 (SEE [119, THEOREM 4.13]) Let E,L, and A be such that (Ly), (L),
(A1), (A2) are satisfied. For p € R, assume w, f,g are nonnegative functions on E and
wfP wgl w(f+g)? € L. If p> 1, then

AVP (w(f +8)7) < AP (wfP) + AP (wg?).

This inequality is reversed if 0 < p < 1 or p < 0 provided A(wf?) > 0 and A(wg?) > 0
hold.

In the following theorem, we give a generalization of the Minkowski inequality on time
scales.

Theorem 2.45 For p € R, assume w, f, g are nonnegative functions on & and wf?, wg?,
w(f + g)? are A-integrable on &. If p > 1, then
l

LT ((f +8)") < L] (wf?) + L (wg?)

This inequality is reversed for 0 < p < 1 or p < 0 provided each of the two terms on the
right-hand side is positive.

Proof. Just apply Theorem 2.44 and Theorem 2.5. O
Remark 2.8 Note that the known results from the time scales literature follow from Theo-

rem 2.44 in the same way as Theorem 2.45 does: [45, Theorem 6.16] follows as in Theorem
2.1 and [16, Theorem 4.4] (see also [57, 17]) follows as in Theorem 2.3.



50 2 JENSEN TYPE INEQUALITIES

Dresher’s Inequality

If n =2 in the following result, then we have the Dresher inequality (see [55, Section 7]).
We first present the generalization of this inequality for isotonic linear functionals.

Theorem 2.46 (SEE [119, THEOREM 4.21]) Let E and L be such that (Ly), (L) are
satisfied and suppose that both A and B satisfy (A1), (A2). If fi,u; are nonnegative functions

r

n r n
onEandwip,w(Zf,) ,wgf,w(Zgi) €L, where p>1>r>0and A(wg) >0
i=1 i=1

for 1 <i<nm, then
n\P\\ 7
A (w (Elﬁ) ) - (A(Wfip)> P
s(w($e))) AN

In the following theorem, we give the Dresher inequality on time scales.

M=

I
_

i’

n r
Theorem 2.47 If f:,u; are nonnegative functions on & and wfF w(Z ﬁ) , wgl,
i=1

n r
w ( S gi) are A-integrable on &, where p > 1 > r > 0 and Ly (wg{) >0for1 <i<n,
i=1

then

(N
w(v(ge))) 7

1\ La(wgf)
Proof. Just apply Theorem 2.46 and Theorem 2.5. a

Remark 2.9 Dresher’s inequality on time scales is new even for the cases of a single-
variable Cauchy delta and nabla integral and also for the diamond- integral.

Popoviciu’s Inequality
We first recall Popoviciu’s inequality for isotonic linear functionals.

Theorem 2.48 (SEE [119, THEOREM 4.27]) Let E,L, and A be such that (Ly), (L),
(A1), (Ay) are satisfied. For p # 1, define q = p/(p—1). Assume f,g are nonnegative
Sfunctions on E and f?,g9, fg € L. Suppose fo,80 > 0 are such that

fY—A(fP)>0 and gl—A(g?) >0.

If p> 1, then
1 1
(A" (g-A(e")""" < fogo—Alfg)-
This inequality is reversed if 0 < p < L and A(g?) > 0, orif p <0 and A (fP) > 0.
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In the following theorem, we give the Popoviciu inequality on time scales.

Theorem 2.49 For p # 1, define q = p/(p — 1). Assume f,g are nonnegative functions
on & and [P g4, fg are A-integrable on &. Suppose fy,g0 > 0 are such that

Y —La(f?)>0 and gi—Lx(g?) >0.

If p > 1, then

==
N

fogo—La(fg) = (f —La(f))" (g4 —La(g9))?.
This inequality is reversed if 0 < p < 1 and LA( 1) >0, orif p < 0 and L (f7) >

Proof. Just apply Theorem 2.48 and Theorem 2.5. O

From Popoviciu’s inequality follows the Aczél inequality given in the next theorem.

Theorem 2.50 Assume f,g are nonnegative functions on & and f*,g>, fg are A-integrable
on &. If fo,g0 > 0 are such that

fE—La(fA) >0 and g3—La(g*) >0,

then

fogo —La(fg) > \/(fé —La(f?)) (85— La(g?)).

Proof. Just let p =2 in Theorem 2.49. O

Remark 2.10 The Aczé€l and Popoviciu inequalities on time scales are new even for the
cases of a single-variable Cauchy delta and nabla integral and also for the diamond-o
integral. The original Aczél inequality can be found in [8]. For a version of Aczél’s
inequality for isotonic linear functionals, we refer to [119, Theorem 4.26].

Bellman’s Inequality

We first recall Bellman’s inequality for isotonic linear functionals.

Theorem 2.51 (SEE [119, THEOREM 4.29]) Let E,L, and A be such that (Ly), (L),
(A1), (Ap) are satisfied. For p € R, assume f,g are nonnegative functions on E and
P8P, (f +¢g)P € L. Suppose fy,g0 > 0 are such that

A(f?)>0 and gh—A(g")>0.
If p > 1, then
n 14
(=20 + (g -aE)"")" < (fo+a0)’ —A(f+8)"):
This inequality is reversed if 0 < p < L or p < 0and A(fP) >0

In the following theorem, we give the Bellman inequality on time scales.
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Theorem 2.52 For p € R, assume f,g are nonnegative functions on & and f?, gP, (f +
g)P are A-integrable on &. Suppose fy,go > 0 are such that

f8—La(f?)>0 and gf—La(g")>0.

If p> 1, then

1 1\ P
((fo” —La(f7))? + (86 — La (gf’))F> < (fo+80)" —La((f +8)").

This inequality is reversed if 0 < p < 1 or p <0 and Lx (f7) > 0.

Proof. Just apply Theorem 2.51 and Theorem 2.5. O

Diaz—Metcalf Inequality

If p =g =2 and w = 1 in the following result, then we have the Diaz—Metcalf inequality.
We first present the generalization of this inequality for isotonic linear functionals.

Theorem 2.53 (SEE [119, THEOREM 4.14]) Let E,L, and A be such that (Ly), (L),
(A1), (Ap) are satisfied. For p # 1, let ¢ = p/(p—1). Assume w, f,g are nonnegative
functions on E such that wf? . wg4, wfg € L and, if p # 0,

0<m<f(t)gVP(t)<M forall t€E.
Ifp>1,0rifp<0and A(wfP)+A(wg?) > 0, then
(M —m)A(wf?) + (mMP" — MmP)A(wg?) < (MP —m")A(wfeg).
This inequality is reversed if 0 < p < 1 and A(wfP) +A(wg?) > 0.
In the following theorem, we give the Diaz—Metcalf inequality on time scales.

Theorem 2.54 For p # 1, let g=p/(p—1). Assume w, f,g are nonnegative functions
on & such that wfP ,wg?,wfg are A-integrable on & and, if p # 0,

0<m<f(t)gVP(t) <M forall t€é&.

If p> 1, orif p <0 and at least one of the two integrals on the left-hand side of the
following inequality is positive, then

(M —m)Lp (wf?) + (mMP — MmP)La(wg?) < (MP —mP)La(wfg)-

This inequality is reversed if 0 < p < 1 and at least one of the two integrals on the left-hand
side is positive.

Proof. Just apply Theorem 2.53 and Theorem 2.5. a

The following two inequalities follow from [119, Theorem 4.16 and Theorem 4.18] in
the same way as Theorem 2.54 follows from Theorem 2.53.
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Theorem 2.55 Let &,p,q,w, f,g,m,M be as in Theorem 2.54. If p > 1, then

1 1
La(wfg) = K(p,m,M) (La (wf?))? (La(wg?))7, (2.61)
where
1/g (M — m)Y'P|mMP — MmP|'/4
M7 |

The inequality (2.61) is reversed if p < 0 or 0 < p < 1, provided at least one of the two
integrals on the right-hand side is positive.

K(p,m,M) = |p|"/"|q|

(2.62)

Proof. Just apply [119, Theorem 4.16] and Theorem 2.5. O

Theorem 2.56 Let &, p,q,w, f,g,m,M be as in Theorem 2.54 and assume
O<m<F(@t)<M and 0<G(t)<M forall teé&,

where F = f(f +g)~ 9" and G = g(f + g)~9/?. Let K(p,m,M) be defined as in (2.62). If
p > 1, then

1/q (M — m)YP(mMP — MmP)'/4
Mo —

1
L; (w(f+28)P) = |p["/"lq| X

<{ Laturm? + 2 ) .

This inequality is reversed if 0 < p < 1, or if p < 0 and the integral on the left-hand side is
positive.

Proof. Just apply [119, Theorem 4.18] and Theorem 2.5. a

2.5 Further Converses of the Jensen Inequality

Some converses of Jensen’s inequality are obtained in the previous sections. This section is
concerned with some further converses of Jensen’s inequality. The five theorems presented
follow from the specified results in [119] in the same way as Theorem 2.13 follows from
Theorem 2.12.

Theorem 2.57  (a) Assume ® € C(I,R) is convex, where I = [m,M), such that ®" (x) >
0 with equality for at most isolated points of I. Assume further that either
(i) ®(x) >0forallxel, or

(i") @(x) > 0 for all m < x < M with either ®(m) =0, @' (m) # 0, or ®(M) = 0,
' (M) #0, or
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(ii) @(x) <Oforallxel, or
(ii") ®(x) < 0for all m < x < M with precisely one of ®(m) =0, ®(M) = 0.

Suppose f is A-integrable on & such that f(&) =1 and h: & — R is nonnegative
A-integrable such that Lx(h) > 0. Then

La(®(f),h) < A® (La(f,h))

holds for some A > 1 in cases (i), ('), or A € (0,1) in cases (ii), (ii'). More precisely,
a value of A, depending only on m,M,®, may be determined as follows: Define
v=(DM)—®(m))/(M—m). Ifv=0,let % € (m,M) be the unique solution of the
equation @' (x) = 0; then A = ®(m)/®(X). If v # 0, let & € [m,M] be the unique
solution of the equation v®(x) — @' (x) (®(m)+ v(x —m)) = 0; then A = v /@' (%).
Moreover, we have X € (m,M) in the cases (i), (ii).

(b) Let all the hypotheses of (a) hold except that @ is concave on I with @ (x) < 0 with
equality for at most isolated points of I. Then

La(®(f),h) = 2@ (La(f 1)),

where A is determined as in (a). Furthermore, A > 1 holds if ®(x) < 0 for all
x € (m,M), and 0 < A < 1 holds if ®(x) > 0 for all x € (m,M).

Proof. Just apply [119, Theorem 3.39] and Theorem 2.6. O

Theorem 2.58 (a) Let f,I,m,M,h,v be as in Theorem 2.57 and ® € C(I,R) be dif-
ferentiable such that @' is strictly increasing on I. Then

La(®(f),h) <A +® (La(f,h))

for A =®(m) — @)+ v(E—m) € (0,(M —m)(v—D'(m))), where X € (m,M) is
the unique solution of the equation @ (x) = v.

(b) Let all the hypotheses of (a) hold except that @' is strictly decreasing on 1. Then
@ (La(f,h)) <A +La(D(f),h)
for A = ®(%) — ®(m) — v(¥—m) € (0,(M —m)(®'(m) — v)) with % given in (a).
Proof. Just apply [119, Theorem 3.41] and Theorem 2.6. O

Theorem 2.59 In addition to the assumptions of Theorem 2.13, let J C R be an interval
such that J O ®(I) and assume that F : J x J — R is increasing in the first variable. Then

F(ZA((D(f),h),(D (ZA(f7h)))

< max F (;‘\;__:;d)(m) + ;I__'fn@(M)p(x))
= 61161[%><1]F(0'd>(m) +(1—0)®(M),®(cm+ (1 —0)M)),

and the right-hand side of the inequality is an increasing function of M and a decreasing
function of m.
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Proof. Just apply [119, Theorem 3.42] and Theorem 2.6. a
Remark 2.11 The discrete version of Theorem 2.59 can be found in [103, Theorem 8,
page 9-10].

Remark 2.12 If we choose F(x,y) =x —y, as a simple consequence of Theorem 2.59, it
follows

La(®(f),h) — @ (La(f 1))

< Gnel[%xl] (c®(m)+ (1 —0)P(M)—®(om+ (1—0)M)). (2.63)

On the other hand, if we choose F(x,y) = f, then we get
y

LA(®(f).h) G®(m) + (1 6)d(M)
® (La(f.1) Sé?[%fi]( ®(om+ (1 0)M) ) (269

The inequalities (2.63) and (2.64) are generalizations of the results given in [124, 125, 126].

Theorem 2.60 Under the same hypotheses as in Theorem 2.59 except that F is decreas-
ing in its first variable, we have

F (La(®(f),h),® (La(f, 1))

> P (G0t 00 00)
= Grél[%)nl]F (c®@(m)+ (1 —0)P(M),®(om+ (1 —0)M)).

Moreover; the right-hand side of the above inequality is a decreasing function of M and an
increasing function of m.

Proof. Just apply [119, Theorem 3.42'] and Theorem 2.6. O

Theorem 2.61 Assume ®: 1 — R is convexand f : & — I is A-integrable. Let h: & — R
be nonnegative A-integrable such that 0 < La(h) < o for some o, € R. If hf and h(® o f)
are A-integrable on & and a € 1 is such that

oa—La(hf)

el,
o —La(h)

then

aa—La(hf)\ _ a®(a)— La(h®(f))
q>< oc—Li(h) )2 OC—Li(h) .

Proof. Just apply [119, Lemma 4.25] and Theorem 2.5. a
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2.6 Jensen Type Inequalities for Superquadratic
Functions

In this section, all the inequalities obtained are given for Cauchy delta time scales inte-
grals, but they also hold for many other time scales integrals, such as Cauchy, Riemann,
Lebesgue, multiple Riemann, and multiple Lebesgue delta, nabla, and diamond-o time
scales integrals as we know that these integrals are isotonic linear functionals.

Jensen’s Inequality

First we quote the following result of S. Bani¢ and S. Varosanec.

Theorem 2.62 (SEE [26, THEOREM 10]) Let E,L, and A be such that (Ly), (L), (A1),
(Ay) are satisfied. Suppose that h € L with h > 0 and A(h) > 0 and that ¥ : [0,0) —
R is a continuous superquadratic function. Then for all nonnegative f € L such that

hf,h‘i‘(f),h‘i’( f—m-lb € L, we have

A
AMY(F) —A (h¥ (| f— 400
T</;(?l£)>§ (A(hg‘ AW D)

If VY is a subquadratic function, then the reversed inequality holds.

Now we will demonstrate how Jensen’s inequality on time scales for superquadratic
functions can be proved by two completely different approaches: The first approach uses
the methods and techniques of time scales calculus and the second one follows from The-
orem 2.62. According to the conclusion that comes out from the second way of proving
Jensen’s inequality, in the rest of this section, some new inequalities with delta integrals
will be obtained.

In the next theorem, we present the Jensen inequality on time scales for superquadratic
functions.

Theorem 2.63 Let a,b € T. Assume f € Cy([a,b)T,[0,%0)) and ¥ € C([0,),R) is
superquadratic. Then

b b
A 1 b A
a
Proof.[First Proof of Theorem 2.63] Let ¥ : [0,00) — R be a superquadratic function and

b—a “b—a —a
let xo € [0,0). According to (1.7), there is a constant C(xo) such that

As. (2.65)

Moreover, if ¥ is subquadratic, then (2.65) holds in reverse order.

W(y) > ¥(xo) +Clx0)(y —xo0) +¥ (|y — o) - (2.66)
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Since f is rd-continuous,

b
1)At
Xp = 7f“ ) (2.67)
b—a
is well defined. The function W o f is also rd-continuous, so we may apply (2.66) with
y = f(s) and (2.67) to obtain

b b
) 2 ¥ (%) +Clxo) (f(s) . M)

Integrating (2.68) from a to b, we get

from which (2.65) follows. If ¥ is subquadratic, then the reverse inequality in (2.65) can
be obtained in a similar way. |

Proof.[Second Proof of Theorem 2.63] Substituting A from Theorem 2.1 into Theorem
2.62 and using k(t) = 1 for all 7 € [a,b)T, we get inequality (2.65). O

Remark 2.13 Note that if W is strictly superquadratic in Theorem 2.63, then strict in-
equality in (2.65) holds.

Remark 2.14 In the case when ¥ is a nonnegative superquadratic function and therefore
(by Lemma 1.1) a convex one too, the result of Theorem 2.63 refines the result given in
Theorem 2.9.

Holder’s Inequality

Let us recall the following refinement of the functional Holder inequality.
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Theorem 2.64 (SEE [26, THEOREM 13]) For p # 1, define g = p/(p—1). Let E,L,
and A be such that (Ly), (Lo), (A1), (Ay) are sativﬁed If p > 2, then for all nonnegative

functions f,g € L such that fg, f?, g4, ‘f g lggf)) €L, and A(g9) > 0, the inequality

atro) < [aum -a(|r- e 38

holds. In the case 0 < p < 1 or 1 < p <2, the inequality in (2.69) is reversed.

)] o (¢%) (2.69)

Now Holder’s inequality on time scales (see [9] and [45, Theorem 6.13]) can be refined
as follows.

Theorem 2.65 For p # 1, define q=p/(p—1). Let a,b € T. If p > 2, then for f,g €
Cu([a,b)T,[0,0)), the inequality

b
' /a (fg)(t)At

Sl [ - Lb(‘f(s)_g ()wa;jz() ) ] ([ e At> @.70)

holds. If 0 < p < 1 or 1 < p <2, the inequality (2.70) holds in reverse order.

Proof. The inequality (2.70) follows from Theorem 2.69 and Theorem 2.1. O

Remark 2.15 Since the delta integral is an isotonic linear functional, we have
b b b el

/ g(t)At >0 and / f(s) — gqfl(s)jalgfﬂ As >0,

a a fa g4 (I)At

so the inequality (2.70) represents a refinement of the classical Holder inequality on time
scales for nonnegative functions f and g.

Taking p = ¢ = 2 in Theorem 2.65 gives the following special case of the above Holder
inequality that we can name the refinement of the Cauchy—Schwarz inequality on time
scales.

Theorem 2.66 Let a,b € T. For f,g € Cua([a,b)p, [0,0)) with [ g*(t)At > 0, the in-

equality
b
/a (fg)(t)At
< /abﬂ(r)m—/j ‘f(s) ()ff(fgzr(;)m As (/abgz(t)At>2 (2.71)

holds.
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Minkowski’s Inequality
First, we quote the functional Minkowski inequality for superquadratic functions.
Theorem 2.67 (SEE [26, THEOREM 14]) Let E,L, and A be such that (L), (L), (A1),

(A2) are satisfied. If p > 2, then for all nonnegative functions f,g on E such that (f +
)P, fP,gP € Land A(f + g)? > 0O, the inequality
)

)

Now, Minkowski’s inequality on time scales (see [9] and [45, Theorem 6.16]) can be
refined as follows.

-1
(Fre)) < (A(f”)—A(’f—(erg)%

==

A

Alg(f+g)P ")
A(f+g)r

+ <A(g") —A <‘g— (f+s)

holds.

Theorem 2.68 Let a,b € T and p > 2. For f,g € Cua([a,b)p,[0,%)) with [7(f(s)+
g(8))PAs > 0, the inequality

([ v +sora) em)

<([ 0w

is valid.
Proof. The inequality (2.72) follows directly from Theorem 2.67 and Theorem 2.1. O
Remark 2.16 If the functions f and g in Theorem 2.68 are nonnegative, then inequality

(2.72) represents a refinement of Minkowski’s inequality on time scales as established in
[9, Theorem 3.3].
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Jensen-Mercer Inequality

A variant of Jensen’s inequality of Mercer’s type for superquadratic functions and isotonic
linear functionals is given in the following theorem.

Theorem 2.69 (SEE [2, THEOREM 2.3]) Let E,L, and A be such that (Ly), (L), (A1),
(Ay) are satisfied. Assume ¥ : [0,) — R is a continuous superquadratic function and let
0<m<M<eoo If f € Lis suchthatm < f(t) <M for allt € E and such that

V), Ym+M—f),(M—)¥(f—m),(f-m)¥M-[) €L,
then we have

Y(m+M—A(f)) <W¥(m)+¥ (M) —A(Y(f))

2

=AW —m) ¥ (M = f) + (M = f)¥(f —m)) —AC¥(lf = AH)]))-

If the function ¥ is subquadratic, then the above inequality is reversed.
Next, we state the time scales version of Jensen’s inequality of Mercer’s type for

superquadratic functions and isotonic linear functionals which we will call the Jensen—
Mercer inequality for superquadratic functions on time scales.

Theorem 2.70 Leta,b € T. Assume f € Cy(|a,b), [m,M]), where 0 <m < M < o and
Y € C([0,e0),R) is superquadratic. Then

(b—a)¥ (m—l—M— big/jf(t)At)

< (b—a)(¥(m) +¥(M)) - / "W —K, 273)

where
2 b
K= s [ 1) = m)¥ (M = £(0)+ (M= £(0) (1 (0) )] &1
b 1 b
+ / v (’ Flu)— —— / o, ) Au. (2.74)
a b—a. a
Moreover, if Y is subquadratic then (2.73) holds in reverse order.
Proof. The result follows from Theorem 2.1 and Theorem 2.69. O

Remark 2.17 Note that if W is strictly superquadratic in Theorem 2.70, then strict in-
equality in (2.73) holds.
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Converses of Jensen’s Inequality

In the following theorem, a functional version of the converse of Jensen’s inequality for
superquadratic functions is recalled.

Theorem 2.71 (SEE [26, THEOREM 15]) Let E,L, and A be such that (Ly), (L), (A}),
(Ap) are satisfied. Let h € L be a nonnegative function. Suppose that W : [0,00) — R
is a superquadratic function. Then for every f € L, f : E — [m,M] C [0,0) such that
hf,h(Wo f) € L, we have

where |
Ac = T A((Mk=hf)¥(f = m- 1)+ (hf = mk)¥(M -1~ )).

Now, we give a converse of Jensen’s inequality for superquadratic functions on time
scales.

Theorem 2.72 Leta,b € T. Assume f € Cq([a,b), [m,M]), where 0 <m < M < o and
Y e C([0,00),R) is superquadratic. Then

/ W (£() A + R

M=) [0y, LSOM —mlb=)yy (5

where
M- m/ (M~ f(t) + (M~ f(t)¥(f(t) —m)]Ar. (2.76)

Proof. Inequality (2.75) follows directly from Theorem 2.1 and Theorem 2.71 with A (¢) = 1
forallz € [a,b)T. a

Remark 2.18 Note that if W is strictly superquadratic in Theorem 2.72, then strict in-
equality in (2.75) holds.
Slater’s Inequality

A functional inequality of Slater type for superquadratic functions, which gives another
estimate of the expression A(¥'(f)), is given next.

Theorem 2.73 (SEE [26, THEOREM 17]) Let E,L, and A be such that (Ly), (L), (A}),
(Ap) are satisfied. Suppose that ¥ : [0,00) — R is a superquadratic function, C is as in
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Definition 1.9, and h, f € L are nonnegative functions such that h¥Y(f), hC(f), hfC(f),
W (f—S-1|) €L If
_A(RfC(f))
T Amc) ="
then
A(RY(f)) <W(S)A(h) —AMY(|f—S-1])).

Now, we can state the inequality of Slater type for superquadratic functions on time
scales.

Theorem 2.74 Let a,b € T. Assume V¥ : [0,00) — R is a superquadratic function, C is
as in Definition 1.9 and f : [a,b)T — [0,0) such that f,¥,C € Cyq. If C is a nonnegative
function, then

[ wtranar < wis)o—a) - [ -s)an @77

where
o Irocyon
I7 C(F(n))ar

Proof. Inequality (2.77) follows directly from Theorem 2.1 and Theorem 2.73 with 4(z) = 1
foralls € [a,b)r.

Remark 2.19 Weighted version of all theorems, given in this section, also hold, i.e., we

S b f(1)As Jd F(0)As
b

can take the weighted mean =*————— instead of =-———, where
[ h(t)ar —a

b
h € Cua(fa,b)p,[0,5=)) is such that / h(t)Ar > 0.
a



Chapter

Jensen’s Functionals, their
Properties and Applications

In this chapter, we consider Jensen’s functionals on time scales and discuss its properties
and applications. Further, we define weighted generalized and power means on time scales.
By applying the properties of Jensen’s functionals on these means, we obtain several re-
finements and converses of Holder’s inequality on time scales. (See [21]).

We give all the results for Lebesgue A-integrals but they also hold for many other time
scales integrals, such as Cauchy, Riemann, Lebesgue, multiple Riemann, and multiple
Lebesgue delta, nabla, and diamond-¢ time scales integrals in a similar way. We use the
same notations as in [46, Chapter 5].

3.1 Properties of Jensen’s Functionals

First we recall Jensen’s inequality on time scales for Lebesgue A-integrals.

Theorem 3.1 (SEE THEOREM 2.8) Assume ® € C(I,R) is convex, f : [a,b)r — I is A-
integrable and p : [a,b)T — R is nonnegative and A-integrable such that f[a’b) pdua > 0.

Then
o Jiapy PfdlA - Jiapy P(@o f)dua
‘/.[a,b) pdua f[a,b) pduy

3.1

63
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Definition 3.1 (JENSEN’S FUNCTIONAL) Under the assumptions of Theorem 3.1, we
define Jensen’s functional on time scales by

3.2)

‘ ‘ ap) PS4
jA((Dny?) = ./[ab)p(q)of)d‘uA_‘/[ab)pd'qu) (M) .

Jiap) PAlA
Remark 3.1 By Theorem 3.1, the following statements are obvious. If @ is convex, then

Sa(®@.f,p) =0,

while if @ is concave, then

/A(q)afap) < 0

Theorem 3.2 Assume ® € C(I,R) and f : [a,b)T — I is A-integrable. Let p,q: [a,b)T —
R be nonnegative and A-integrable such that f[a’b) pdua > 0 and j'[mb) qdua > 0. If ® is
convex, then /A(QD, f,-) is superadditive, i.e.,

fA((D7f7p+q)ZfA(q)afvp)+/A((D7f7q)7 (33)
and JZA(®, f,-) is increasing, i.e., p > q with f[a’b) pdua > f[a’b) qdpa implies

/A(®afap)2/A(¢7f7q) (34)

Moreover, if ® is concave, then ZA(®, f,-) is subadditive and decreasing, i.e., (3.3) and
(3.4) hold in reverse order.

Proof. Let ®@ be convex. Because the time scales integral is linear, it follows from
Definition 3.1 that

fA(q)uﬂp"i_Q)
=/, pra@ean— |

la

+ q)dups®
b)(p 9t (f[a,b)(P+4)dHA

)

— [ (p+a) @0 f)dus— /{ab)<p+q>dqu

[a, :

o JapyPAla  Jigpy Pfdlia Japyadia  figpafdua
Jiapy(P+a)dtia [iapypdtia  Jiup(P+a)dia Jigp) adia

f[a,b) pfd.uA >

2/ fDod—i—/ cpod/dcb
) p(®o f)dua fdua oy PO ( s PAin

: yafdua
298
Jia.) qdliA

:fA( 7f7 )+/A(q)af’ )
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If p > g, we have p — g > 0. Now, because Jensen’s functional is superadditive (see above)
and nonnegative, we have

@ f.p) = Ia(®.f.a+p—4q)
> /A(q)vaq)+ jA(q)hf?p_Q)
> /A(q)afaq)

On the other hand, if @ is concave, then the reversed inequalities of (3.3) and (3.4) can be
obtained in a similar way. O

Superadditivity (subadditivity) and monotonicity of Jensen’s functional are very im-
portant properties, considering the numerous applications of the associated inequality. Re-
garding the monotonicity property, in the following corollaries we give some consequences
of Theorem 3.2.

Corollary 3.1 Ler @, f, p,q satisfy the hypotheses of Theorem 3.2. Further, suppose there
exist nonnegative constants m and M such that

Mq(t) > p(t) >mq(t) forall t€[a,b)r

and
M / gdps > / pda >m / qdpa.
Jla,b) Jla,b) Ja,b)

If @ is convex, then
M ZA(D.f.q) = FA(®,f.p) =m Ia(®.f,q), 3.5
while if @ is concave, then the inequalities in (3.5) hold in reverse order.
Proof. By using Definition 3.1, we have
A, f,mq) =m ZA(®, f,q)

and
/A(q)afan) :M/A(q)afaq)

Now the result follows from the second property of Theorem 3.2. O

Corollary 3.2 Ler @, f, p satisfy the hypotheses of Theorem 3.2. Further, assume that p
attains its minimum value and its maximum value on its domain. If ®@ is convex, then

[ max P(I) 3A(q)7f) 2 jA(q)uf?p) Z [ min p(l) 3A((D,f), (36)
t€la,b) r€lab)p
where ,

3 [ a,p) fAHA

Ja(D, f) = /W) (®o f)dus — (b—a)® (ﬂ) .

Moreover, if © is concave, then the inequalities in (3.6) hold in reverse order.
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Proof. Let p attain its minimum value p and its maximum value p on its domain [a,b)T.
Then

p= max p(t)>p(x) > min p(t)=p.
t€la,b) t€la,b)r -

By Definition 3.1, we have
/A(q)7f7l_7) = 1_73A(¢7f)
and

I, f,p) = pIa(®,f).

Now the result follows from the second property of Theorem 3.2. O

Remark 3.2 The first inequality in (3.6) gives a converse of Jensen’s inequality on time
scales, and the second one gives a refinement of the observed inequality.

Example 3.1 (SEE [92, REMARK 4]) Let us take the discrete form of Jensen’s func-
tional (3.2). For this, let T=Z,n €N, a=1, b=n+1 and f(i) = x;, p(i) = p; for
i €la,b)T ={1,2,...,n}. Then (3.2) becomes

n
2 PiXi
2(@x,p) 2 pi®(x) — P | =5 | 37
n
where )
X=(x,....x) €I", p=(p1,...,pn) €RY, and P, = Zpi. (3.8)
i=1
With these notations, (3.6) takes the form
max {pi}3’1(¢7x) Z /n(q)?X?p) 2 m.in {pi}:jn(q)>x)7 (39)
1<i<n 1<i<n
where
n
n '§1Xi
In(@,x) = Y, O(x;) — n® ’*n

In addition to the above notations, let ¢(i) = ¢; > 0 for i € [a,b)T = {1,2,...,n} and put
q = (5117512, e 761,1). USing

m = min {&} and M = max {&}
1<i<n | qi 1<i<n | qi

in Corollary 3.1, (3.5) becomes

1<i<n 1<i<n

max{ }/A(op X,q) > ZA(®,x,p) > min { }/A(cp x,q)>0.  (3.10)
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Dragomir et al., [54], investigated the properties of discrete Jensen’s functionals (3.7) con-

cerning superadditivity and monotonicity property of discrete Jensen’s functional (see also

[103, page 717]). In [53], Dragomir investigated boundedness of normalized Jensen’s
n

functionals, that is, functional (3.7) satisfying Y, p; = 1. He obtained the lower and upper

bound for the normalized functional given in (37.10).
Example 3.2 Suppose T =R and a,b € R. Then Jensen’s functional (3.2) becomes

Jiapy h(0)f(£)dp(r)
Jap h@)du(t) ]

'/[mb)h(t)cb( F)du(r) — /

[a,b)

h(t)dp(t)® (

3.2 Applications to Weighted Generalized Means

Definition 3.2 (WEIGHTED GENERALIZED MEAN) Assume ) € C(I,R) is strictly mono-
tone and f : |a,b)y — I is A-integrable. Let p : [a,b)T — R be nonnegative and A-
integrable such that f[a’b) pdua > 0. Then we define the weighted generalized mean on
time scales by

. A
JapyP(x°f) IJA>. G.1D

‘% 'J = _1
Ax.fir)=x ( i Pt

Theorem 3.3 Assume y,y € C(I,R) are strictly monotone and f : [a,b)y — I is A-
integrable. Let p,q : [a,b)T — R be nonnegative and A-integrable such that the functional

./[;mpd”A[X (Au(x. 1)) — X (AW, f,D))] (3.12)

is well defined. If y o l//’1 is convex, then (3.12) is superadditive, i.e.,

/[ , P WAL (Ao fp+0) = 2 (Ma(v-f.p+))
> [ P CAAGE ) =2 (A f.)
© [ sl A .0) = 2 A )] 1)

and (3.12) is increasing, i.e., p > q with f[a.b) pdua > f[a_b) qdup implies

PN (A £2)) = 2 (A £,)

2'/[;b)qdua[x(%A(x,f,q))—x(xfla(w,f,q))]. (3.14)
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Moreover, if y oy Uis concave, then (3.12) is subadditive and decreasing, i.e., (3.13) and
(3.14) hold in reverse order.

Proof. The functional defined in (3.12) is obtained by replacing ® with y o ! and f with
o fin Jensen’s functional (3.2), i.e.,

Ia(xow Lyof.p)

f[ab ( )d.uA
/ “loyo f)dua— /[a )PdHA<XOW (W))

7

= [, pae = [ pduag (4w 1.p)
:/ pduayx (%A(x’f’p))_/ pduayx (%A(w’f’p))
[a,b) [a,b)
= |, P (A £.9)) = 2 (Ar(.£.P)):

Now, all claims follow immediately from Theorem 3.2. O

Corollary 3.3 Ler f,p, x, ¥ satisfy the hypotheses of Theorem 3.3. Further, assume that

p attains its minimum value and its maximum value on its domain. If y o w~! is convex,
then

L max P(I)] (b —a) [x(Malx, 1)) = xMa(y,.f))]

E[a,b)'E

> /[;_,,) pdua [x (a2, ) — X (MW, ,p))]

t€la,b)

> [ min p(t)] (b—a) (Ma(x, ) = 2(Malw, /)], (3.15)

where

Maln.f) =" (W_fw

b 6 b .
- ) nefx, vt
Moreover; if y o l//’1 is concave, then the inequalities in (3.15) hold in reverse order.

Proof. The proof is omitted as it is similar to the proof of Corollary 3.2. O
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3.3 Applications to Weighted Generalized Power
Means

Definition 3.3 (WEIGHTED GENERALIZED POWER MEAN) Letr € R. Assume f: [a,b)T
— [ is positive and A-integrable. Let p : [a,b) — R be nonnegative and A-integrable such
that f[a.’b) pdua > 0. Then we define the weighted generalized power mean on time scales
by

Jiu) PS bt ) :

G _ ( Tty POHLS if r#0,
Ay (fp) (b./'[awpln(fm%) o (3.16)
X Jia.p) PAlia yor==u

Remark 3.3 The weighted generalized power mean defined in (3.16) follows from the
weighted generalized mean defined in (3.11) by taking y (x) = x" (x > 0) in the weighted
generalized mean.

Theorem 3.4 Let r,s € Rwith r £0. Assume f : [a,b) — I is positive and A-integrable.
Let p,q: [a,b)T — R be nonnegative and A-integrable such that the functional

/[a,b) pdia { [///AH (f ’P)} - [///A” (f ,p)} } (3.17)

is well defined. If min{0,r} > s > max{0,r}, then (3.17) is superadditive (also if r = 0),
ie.,

|, eraws{[ 4 vpral -4 ra)}

9
N

> [ {0 0p)] - [0 '}
+ [ aan{[ 4] - [400a] ). G
and (3.17) is increasing, i.e., p > q with f[a,b) pdua > f[a?b) qdup implies
J,, {4l o) - [l op) '}
> [, qdun{ [ 43070

Moreover, if r > s >0 or 0> s >r, then (3.17) is subadditive and decreasing, i.e., (3.18)
and (3.19) hold in reverse order.

S

]’} G

Proof. If r # 0, then let y(x) = x°* and y(x) = x" (x > 0) in Theorem 3.3. Then
(x oy )(x) = x+ and therefore

s(s— r)ngz'
72

(xovw )'(x)=
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Thus y oy~ ! is convex if min{0, 7} > s > max{0,r} and concave if r >s>0o0r0 > s> r.
If, however, r = 0, then let y(x) = x* and y(x) = In(x) (x > 0) in Theorem 3.3. Then
(x oy 1)(x) =e*. Thus y oy ! is convex for s # 0. In either case the result follows now
immediately from Theorem 3.3. |

Corollary 3.4 Let r,s, f,p satisfy the hypotheses of Theorem 3.4. Further, assume that
p attains its minimum value and its maximum value on its domain. If min{0,r} > s >
max{0,r}, then

IG[a,b)T

[ max p(t)‘| (b_“){[m[i](f)r_ [fm[A’] (f)r}

N

> [ {0 0p)] - [0}

> L?J&BTP(”] p-a{[mi ] -]} G20
where :
’ Sy 2ty if ueR\{0},
mld(f) = Sxp(lj-’f“~h>l‘,‘1<)£)d“A) zf:io 3.21)

Moreover, if r > s > 0 or 0 > s > r, then the inequalities in (3.20) hold in reverse order.

Proof. The proof is omitted as it is similar to the proof of Corollary 3.2 followed by
Theorem 3.4. ]

Example 3.3 From the discrete form of Corollary 3.4, i.e., by using T = Z, we get a
refinement and a converse of the arithmetic-geometric mean inequality. Using the notation
as introduced in Example 3.1, let x; > 0 for all i € [a,b) and s = 1, r = 0. Then (3.20)
becomes

n max {pi} [An(x) — Ga(x)] = Pu[443" (x,p) — 44" (x.p)]

1<i<n
>n min {pi} [Ax(x) = Ga(x)] 20, (3.22)

where

if reRr\ {0},

A (x,p) =
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n
lei . :
An(x) = FT’ and Gn(X) = (Hxl)
i=1

The first inequality in (3.22) gives a converse and the second one gives a refinement of

the arithmetic-geometric mean inequality of ///,P] (x,p) and ///,EO] (x,p). Some variants of
inequalities in (3.22) were recently studied by Aldaz in [14] (see also [10, 11, 12, 15, 13]).

Theorem 3.5 Let r, f, p,q satisfy the hypotheses of Theorem 3.4. Suppose that the func-

tional
f[a b) pIn(f)dua "
d — —In(# , (3.23)
'/W))P .LLA{ f[mb)PdUA ( A (f P))

is well defined. If r < 0, then (3.23) is superadditive, i.e.,

In(f)d
/[a.b)(erq)duA{f[a,b)(erq) (f)dpa o (///A[r](f,p+q))} (3.24)

Jiap) (P +a)dlia
f[a b) pIn(f)dua [
> [ pduad T (a,
il [a.’b) p ‘LLA { f[a’b) pd.LLA ( A (f p))
" f[a b) gIn(f)dua "
+ d — —In(.#, (f, ,
oy 19K { TR ( A (S q))

and (3.23) is increasing, i.e., p > q with f[mb) pdua > f[a,b) qdup implies

f[a,b) pIn(f)dua I
/W) pdua { T enpii In (//fA (f ,p))

f[a b) qIn(f)dua I
d ke A —— Y . (3.25
= /[a,b) 4CH { Jiapy a4 ! ( A (f,q)) G2)

Moreover, if r > 0, then (3.23) is subadditive and decreasing, i.e., (3.24) and (3.25) hold
in reverse order.

Proof. Let x(x) = In(x) and y(x) = x" in Theorem 3.3. Then (yoy ') (x) = %ln(x).
Thus y o y~! is convex if r < 0 and concave if » > 0. Now the rest of the proof follows

immediately from Theorem 3.3. O

Corollary 3.5 Ler r, f, p satisfy the hypotheses of Theorem 3.4. Further, assume that p
attains its minimum value and its maximum value on its domain. If r < O, then
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[ max p(t)‘| (b—a){w—ln (fm[A’](f))} (3.26)

te [a,b)']r b—a

f[mb) pin(f)dus "
> /W) pd”A{—f[a,b) i —In (///A (f,p))

In(f)d
> l minTp(t)] (b—a){M—ln (Dﬁk](f))},

1€(a,b) b—a

where SJTK] (f) is defined in (3.21). Moreover, if r > 0, then the inequalities in (3.26) hold
in reverse order.

Proof. The proof is omitted as it is similar to the proof of Corollary 3.2 followed by
Theorem 3.5. ]

Example 3.4 (SEE [92, REMARK 8]) Again we consider T = Z. Using the notation as

Jiap) PI(F)d

introduced in Example 3.1, the term Ha takes the form

j[ah) pd.u'A
2 Pi ln(xi) n é
= ——=M (fo"‘) —in (2" (x.p)).
2 pi i=1

and (3.26) becomes

. By i .
(Gl [ Yap]” [Ga

Ap(x) B ,/{Jl](x,p) An(x) .

The inequalities in (3.27) provide a refinement and a converse of the arithmetic-geometric
mean inequality in quotient form.

(3.27)

Example 3.5 (SEE [92, REMARK 9]) The relations (3.22) and (3.27) also yield refine-
ments and converses of Young’s inequality. To see this, consider again T = Z. Using the
notation as introduced in Example 3.1, define

1 1 1
xP = (X', x0%,...xb")  and p_1:<—,—,...,—>,
pP1 P2 Pn

n
where x and p are positive n-tuples such that % = 1. Then (3.22) and (3.27) become
i=1""

n max {i} [An(xP) — G, (xP)] > //nm(xp,p_l) — (xP,p~ 1) (3.28)

1<i<n | pi

> 71 min {i} (A (xP) — G, (xP)],

1<i<n | pi
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and

{Gn(xp)]"fﬁf‘i‘n{ ) . M (xP,p ") - [Gn(xp)]"lglfign{”l"}_ (3.29)

An(xP) ///,Ell(xp,p* ) An(xP)

The inequalities in (3.28) and (3.29) provide refinements and converses of Young’s in-
equality in difference and quotient form.

3.4 Improvements of Holder’s Inequality

Let us recall Holder’s inequality for Lebesgue A-integrals.

Theorem 3.6 (SEE THEOREM 2.32) For p # 1, define g = p]Tll' Let w, f,g be nonnega-
tive functions such that wf? ,wg?, wfg are A-integrable on [a,b). If p > 1, then

1 .
/ wfgdua < ( / Wf”duA> ’ ( / wqum) " (3.30)
Jla,b) la,b) [a,b)

If0<p<1and f[a?b) wgddua >0, orif p <0 and f[a?b) wfPdup > 0, then (3.30) is re-
versed.

Remark 3.4 Letn € N and let f; : [a,b)T — R be A-integrable for all i € {1,2,...,n}.
n 1

Assume p; > 1 foralli € {1,2,...,n} are conjugate exponents, i.e., Y, ]% =1, and ]n'[ 1
i=1"" i=1

is A-integrable on [a,b). Holder’s inequality on time scales (Theorem 3.6) asserts that

1

n 1 n Pi

[P dus < (/ ﬁdu) -
/[a,mg 4 1} 0’

It is well known from the literature (see [103, 119]) that Holder’s inequality can easily be
obtained from Young’s inequality. Therefore, it is natural to expect that relations (3.28)
and (3.29) also provide refinements and conversions of Holder’s inequality.

The first in a series of results refers to relation (3.28), that is, refinement and conversion
of Holder’s inequality in difference form.

Theorem 3.7 Letp;>1,i€{1,2,...,n}, be con]ugate exponents Let fi,i€{1,2,...,n},

be nonnegative A-integrable functions such that H f; g " and H f are nonnegative and A-
=1 i=1
integrable. Then the following inequalities hold

g} (), o)
—H ( / ﬁduA> "

S

b
(Lo )
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Z,Ul(/[a,b)f'd“A> (/ Hf ’CWA)
=2 {i} [ ( ﬁdm)”"
I<i<n | pi i—1 \/[a,b)
_H( a b)ﬁd“A> (/[ ) Hf dmﬂ

1
Proof. Let x; = [W} ",i€{1,2,...,n}, in Example 3.5. Then the expressions in
(3.28) become '

1
PRSP TRS S S
&1 Pi Jap) fidia !

o (f[a,b) fid.UA) "

and |

1& fz n f;ﬁ
=2

p =
An(x ) 2 fab flduA ll_Il (

T
Jia) ﬁd#A)

Now, by applying the A-integral to the last two equations, we get

/[b)[ 11[1](Xp7p—1)_%[0](xp )} duia

n L

Pi
" Jaw) fidta Jiap) (iH1fi >dﬂA
= i

M

zl;ll (f[a.,b)fid“A) 7

f[ﬂub) <ﬁ fi”) dpa
—1— i

=1

L

1:11 (f[a.,b) fiduA> 7

and

n 1
1 2 Jian) fidita Jian) <l,1_—[1fi > dpia
n 5 Jiap) fidta T

/ [An(XP) — Gu(xP)]dpa =
[a.b)
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By applying the A-integral to the series of inequalities in (3.28), we obtain the required
inequalities. O

Remark 3.5 The first inequality in Theorem 3.7 gives a converse and the second one

gives a refinement of Holder’s inequality on time scales.

Now we give refinement and conversion of Holder’s inequality in quotient form, deduced
from relation (3.29).

Theorem 3.8 Under the same assumptions as in Theorem 3.7, the following inequalities
hold:

. 1 }
min -
19‘9{ Pi

n

n
S E— x
l:ll f[a,b) fld'uA
AR
lab) | =] Di ][a,b)fid“A y —f
& T fidHa
n L
f[a,b) I1 fipl dl'LA
i=1
> T
idua )"
il;ll (f[“vb)f uA)
mx {7}
nll
= x
s o ()
n fi =1t
X n d‘UA
/[a,b) LZ{ pif[a,b)fidm] 1
Jiap) fidHa

i=1
provided that all expressions are well defined.

Proof. We consider relation (3.29) in the same settings as in Theorem 3.7. By inverting,
(3.29) can be rewritten in the form

. 1
)" S
Gu(x )} 1<ic {’ } ZJ/Z,EO](Xpyp_l) (3.31)

A, (x2 ) [ WD)

> 4R p ) [
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Now, if we consider the n-tuple x = (x,x2,...,X,), where
1

fi |” .
xi= |— | forall ie{1,2,....n}
[f la,b) JidHA ] t J

then the expressions that represent the means in (3.31) become

n n Pi
1 ; 0 _ f;
M=y Ty ) =
=t et = (f[a,b)fid#A>
and :
1 : n n
A, (Xp) - 2 L H fi
n 5 Jiap fidia’ Pl
(fa b ﬁd“A>
Now, by taking the A-integral on (3.31) in the described setting, we obtain the required
inequalities. |

Remark 3.6 The first inequality in Theorem 3.8 gives a refinement and the second one
gives a converse of Holder’s inequality on time scales.

Corollary 3.6 Let r,s € R such that % + % = 1. Further, assume that f,g are positive and
A-integrable such that f attains its minimum value and its maximum value on its domain.

If r > 1, then
NIRRT
Lem% f(t)] [(b B /[a o) f dm) /[a,w <f > duA] (332

Z( [a.,b>fd”A) (-/[a,wgd”A) _/[a.,mf;gEd”A
. 1 g o g\’
> o[-0 ([, Sams) = [, (5) am].

Moreover, if 0 < r < 1, then the inequalities in (3.32) hold in reverse order.

Proof. The result follows from Corollary 3.2 by replacing f with &, p with f and letting

D(x) = —rsx. Then @ is convex on (0,00) and we have
s <‘I’§f>/ f®<§>d“ ~ [ rduso S 80
T T T TNE) T ST g fdta
1-1 1
s s 11
—rs ( / fduA> ( / gdm) [ ietdus
[a,b) [avb) [avb)
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1 1
r s 11
( fduA> (/ gduA) - / Frgtdus
[a.b) [a.b) [a.b)

.\ <<I>, §> _ /[a,b)q) (?) dup — (b—a)® (W)
et ([ o) (2) )
=rs [(b—a)% (/[a’b) ?dm) - /[a,b) (?) ; d‘uA] '

If > 1, then by substituting _#x (cb, £, f) and 35(®, £) in (3.6), we get (3.32). If 0 < r <

=rs

and

1, then rs < 0, and since the expressions _#a <<I), %, f) and Ja (P, %) contain the factor rs,
we conclude that the inequalities in (3.32) hold in reverse order in that case. O

Remark 3.7 The first inequality in (3.32) gives a converse and the second one gives a
refinement of Holder’s inequality on time scales.

Since Holder’s inequality can directly be deduced from Jensen’s inequality in the case
of two functions (see [103]), Corollary 3.2 also provides another class of refinements and
conversions of Holder’s inequality.

Corollary 3.7 Let r,s € R such that r > 0 and 1 —|— <~ = 1. Further, assume that f,g are

positive and A-integrable such that  attains its mmlmum value and its maximum value on
its domain. Then

Lem%f(t)] X
s—1 s—1 1 s
: g Jiap) falA ‘ (§> s
) < [a.b) fdm) /[a,b) f dHa ( b—a > (/[a,b) f dia

F/ 1) (o) | =[], et

t€la,b)

X (/ fd )S—l / gd - M s—1 / (§>£d s
la5) " [ab) f Ha b—a la.b) \f Ha
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1

Proof. Tn Corollary 3.2, replace f with (%) ° p with f and let ®(x) = s(;‘: - Then @ is

convex on (0,). We get

fA <q)a (?) S af)
' 8 ; ' f[a,b)f%g%d“A
- o () )dua— dpa | Jel e TR
[cub)f ((f ) > s /[a,b)f e Jia) Fdtia

1 1—s I K
T (=) V{a,m st~ </[a.,b>fdm) </[a,b>frgbduA> ]

and
% % | g) % dua
. (Q(?) ) :/[a,b)q)<<§> >dHA—(b—a)q> %
1 : . R
= s(s—1) [/[a,b) ?dIJA— (b—a)'™* (/{mb) (?) d;,LA> 1 .
Now, the result follows immediately from (3.6). 0

Remark 3.8 Similarly as in Chapter 2, we can apply the theory of isotonic linear func-
tionals. The related results for isotonic linear functionals are given in [91].



Chapter

Jensen’s Functionals for
Several Variables, their
Properties and Applications

In this chapter, we define the Jensen functional and related generalized means for several
variables on time scales. We derive properties of Jensen functionals and apply them to
generalized means. In this setting, we obtain generalizations, refinements, and conversions
of many remarkable inequalities. The results presented in this chapter are taken from [22].

In the single-variable case, the obtained results coincide with the results given in Chap-
ter 3. Moreover, we give all results for Lebesgue A-integrals, but they also hold for many
other time scales integrals such as Cauchy, Riemann, Lebesgue, multiple Riemann, and
multiple Lebesgue delta, nabla, and diamond-¢ time scales integrals in a similar way. We
use the same notations as in Chapter 3.

4.1 Jensen’s Inequality and Jensen’s Functionals

Let f() = (f1(¢),. .., fu(7)) be an n-tuple of functions such that fi,..., f, are A-integrable
on [a,b)T. Then [, , fdua denotes the n-tuple

(/ fldIJ'A7"'7/ f;7duA) 5
Ja,b) Ja,b)

i.e., A-integral acts on each component of f.

79
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Theorem 4.1 Assume ® € C(U,R) is convex, where U C R" is a closed convex set. Sup-
pose fi, i € {1,...,n}, are A-integrable on [a,b)T such that £(t) = (fi(¢),...,fu(t)) €U
forallt € [a,b). Moreover, let p : [a,b)T — R be nonnegative and A-integrable such that
Jiap) PAla > 0. Then

fd d(f)d
q)(fw,)l? .UA> < Jiapy PP(E) UA. @

Jiap) PAHA Jiapy PAHA

Proof. Since @ is convex on U C R”", for every point X € U there exists a point A € R"
(see [119, Theorem 1.31]) such that

D(x) — DP(x9) > (A,x—Xo). (4.2)
Let A = (Ay,...,A). By (4.2), we get

S f[ath) pfd[JA
Jiap) PO (B)dpa ® Jiapy PEALA _ Janyp {q)(f) -0 ( Tiap) PAHA ) } dita
f[a.,b) pdpa f[a,b) pdpa f[a,b) pdiua
S f[a,b) pfd[JA
- j[a,b)p <A’7f_ f[aﬁh) pdiis >d.uA
B f[a,b) pdua
& o (4 Jiap Plidka
3 20 (= B2 ) s

Jiap) PAlA

:O,

and hence the proof is completed. |

Remark 4.1 By using the fact that the time scale integral is an isotonic linear functional,
Theorem 4.1 can also be obtained from [119, Theorem 2.6].

Definition 4.1 (JENSEN’S FUNCTIONAL) Assume ® € C(U,R), where U CR" is a closed
convex set. Suppose f;, i € {1,...,n}, are A-integrable functions on |a,b)r such that
f(t) = (fi(t),...,fu(t)) €U forallt € [a,b)r. Moreover; let p : [a,b)T — R be nonnegative
and A-integrable such that f[a,b) pdua > 0. Then we define the Jensen functional on time
scales for several variables by

fd
f[a,b)P M) . 4.3)

JA(@f, :/ (f)d —/ dpp [ L
A(®.f,p) wn’ (F)dpua o) PR ( T

Remark 4.2 By Theorem 4.1, the following statements are obvious. If @ is continuous
and convex, then
JA(®’f’p) Z 0’

while if @ is continuous and concave, then

JA(q)7f7p) S 0.
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Example 4.1 Let [a,b)r={1,2,...,n}, fi(i)=x1,,..., [u(i) =xu,, p(i) =pini€{1,...,n},
in (4.3). Then Jensen’s functional (4.3) becomes

n
leixi
q) X p Zpl lip ’

n

n
where X = (X1,X2,...,X,) With X; = (x;, Xy, ...,Xi,), P= (P1,...,Pn), and P, = .lei > 0.
f

Example 4.2 1f [a,b)T = [a,b), then Jensen’s functional (4.3) becomes

/[  PORULS(0) (1) plt

la,b)

o[ Jan POROWO [y POAOIBE)  Jupy PORO)
Jamy POGRD) " Jup PO Jupy pOdu0) )

4.2 Properties of Jensen’s Functionals

In the following theorem, we give our main result concerning the properties of the Jensen
functional (4.3).

Theorem 4.2 Assume ® € C(U,R), where U C R" is a closed convex set. Suppose f;,
i € {1,...,n}, are A-integrable on |a,b)y such that £f(t) = (f1(¢),...,fx(t)) € U for all
t € a,b)y. Let p,q: [a,b)T — R be nonnegative and A-integrable such that f[a?b) pdpa >0
and f[a?b) qdua > 0. If @ is convex, then JA(D,f,-) is superadditive, i.e.,

JA(q))f7p+q) ZJA(q)afap)+JA(q)afaq)’ (44)
and JA(D, £, ) is increasing, i.e., p > q with f[a?b) pdpa > f[a?b) qdpa implies
Ja(®@,f,p) > Ja(D,f,q). 4.5)

Moreover, if @ is concave, then JA(®,f,-) is subadditive and decreasing, i.e., (4.4) and
(4.5) hold in reverse order.

Proof. We omit the proof because it is similar to the proof of Theorem 3.2. O

Corollary 4.1 Ler ®,f, p,q satisfy the hypotheses of Theorem 4.2. Further, suppose there
exist nonnegative constants m and M such that

Mq(t) > p(t) > mq(t) forall t€ |a,b)
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and
M / gdua > / pdua>m / qda.
la.b) [a.b) [a.b)

If © is convex, then
MJA((D7f7 61) Z JA(q)7f7p) Z mJA(cD7f7 Q)7 (46)
while if ® is concave, then the inequalities in (4.6) hold in reverse order.

Proof. The proof is similar to the proof of Corollary 3.1. O

Corollary 4.2 Ler @.f, p satisfy the hypotheses of Theorem 4.2. Further, assume that p
attains its minimum value and its maximum value on its domain. If ® is convex, then

[ max plt) |Ja(®0) 2 Js(®.Lp) 2 l min p(t)| ja(®,f), 4.7
t€la,b)r clab)g
where
j fa. fd.uA
ia(@,f)= [ ©f)dus—(b—a)® (L .
) b—a

Moreover, if © is concave, then the inequalities in (4.7) hold in reverse order.

Proof. The proof is similar to the proof of Corollary 3.2. O

Example 4.3 Let the functional J,(®,X,p) be defined as in Example 4.1. Let q =
n
(q1,---,qn) With g; > 0 and Y, ¢q; = O, > 0. If ® is convex, then Theorem 4.2 implies
i=1
that J,,(®,X,.) is superadditive, i.e.,
Jn(@,X,p+q) > Ju(@, X, p) +Ju(P, X, q), (4.8)
and that J,(®,X,.) is increasing, i.e., if p > q such that P, > Q,, then

Moreover, if @ is concave, then the inequalities in (4.8) and (4.9) hold in reverse order. If
p attains minimum and maximum value on its domain, then Corollary 4.2 yields

Din(@,X) > J,(®,X,p) > min {p;}ju(®@,X), 4.1
lrg;fgn{p Fin(@,X) > J,,(@,X,p) 11;1[.151{17 Fin(@,X) (4.10)
where
n
. 2 X
n(@X) = Y (x) —n® [ = |,
i=1

if @ is convex. Further, the inequalities in (4.10) hold in reverse order if @ is concave.
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4.3 Applications to Weighted Generalized Means

We start this section by applying the obtained results on the properties of Jensen’s func-
tionals to weighted generalized means. In the sequel, U C R" is closed and convex.

Definition 4.2 Assume y € C(I,R) is strictly monotone and ¢ : U — I is a function
of n variables. Suppose f;, i € {1,...,n}, are A-integrable on |a,b)T such that f(t) =
(f1(#)s....fu(t)) €U forallt € [a,b)y. Let p : [a,b)T — R be a nonnegative A-integrable
function such that py(¢(f)) is A-integrable and [y, ;) pdis > 0. Then we define the
weighted generalized mean on time scales by

.11

Ma(x,0(f).p) =2~ (f[mb) P%<<P(f))duA> |

Jiapy PAtiA
Theorem 4.3 Assume y,y; € C(I,R), i € {1,...,n}, are strictly monotone and ¢ : U —
I C Ris a function of n variables. Suppose f; - [a,b)y — I, i € {1,...,n}, are A-integrable
such that £(t) = (f1(¢),....fu(t)) €U forallt € [a,b)r. Let p,q : [a,b)r — R be nonneg-
ative and A-integrable such that py (¢(£f)),qx (o)), pwi(fi)),qwi(fi)), i € {1,...,n}, are
A-integrable and j'[mb) pdua >0, f[mb) qdua > 0. If H defined by

Hstoe ) = (20 @) (W (1), v (50)

is convex, then the functional
., P (MaC0(0.) = (2 0) Malyi, 1), Ma(yi frp))] (412
satisfies
/m (p+q)dualx Ma(x,o(f),p+4q))

—(x00)MA(W1, f1,0+4)s- . . MA(W, f, P+ q))]
2/[ab)pduA[X(MA(X7(P(f)al’))_(XO(P)(MA(WlafhP),---aMA(an,fn,p))]

+ ., 40Hs L (MaCE0(0,0) = (20 0) (M (1., 4)- Ma(yi )] (413)
If p > qwith [,y pdlia > [, ) qdla, then
., PAHALX (M0, 9(0).)) = (0 9) (Ma(¥i, 1.p), - Ma (¥ fo )]

> /[;1.19) qdpa[x Ma(x, 0(),9)) — (x o @) Ma(y1,/1,9),- -, Ma(Wn, fn:q9))] . (4.14)
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Moreover, if H is concave, then (4.13) and (4.14) hold in reverse order, i.e., the functional

/[a ) e X (Ma(x, 0(F),) — (x o @) Ma(W1, f1,°),- .. Ma(Wi fa, )]

is subadditive and decreasing.

Proof. The functional defined in (4.12) is obtained by replacing @ with H and f; with
vi(fi),i€{1,...,n},inthe Jensen functional (4.3), and letting ¥(f) = (w1 (f1),---, ¥ (fn)),

i.e.,
JA(H7\P(f)7p)
:/[aib)p(xow)(fl,-.-,fn)dm

: Japy Wi (f1)dla fiap) PYR(fa)dita
- / pd[,LAH Sy
lab) Jiap) PAA Jiap) PAlA

_ /[a.m pdusy (Ma(x, 0(f),p))
- /[a b) pd[,LA()(O q)) (MA(lefbp)?-'-7MA(Wn7fn7p))
= [, P GV 008 P)) = (> 0) (Ma (Vi 1) -oo- M i)

Now, all claims follow immediately from Theorem 4.2. O

Corollary 4.3 Let H,,f,p,x,fi, ¥, i € {1,...,n}, satisfy the hypotheses of Theorem
4.3. Further, assume that p attains its minimum value and its maximum value on its do-
main. If H is convex, then

Ler[r;a;;;irp(t)] (b—a) (4.15)
X [xma(y, @) = (x° @) (ma(yi, f1), ..., ma(Yin, /)]

> [ P L (M (. 9(0).) = (22 9) (Ma (1. ). Ma (¥ fiop))]

> x LEI[I;};%TP(I)] (b—a)
(X (ma(x, @(£)) = (x 0 @) (ma(yr, f1), -, ma (Y, fu))] -

where

my (o) = x ' ( —

Moreover, if H is concave, then the inequalities in (4.15) hold in reverse order.
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Proof. The proof is similar to the proof of Corollary 3.2. O

Remark 4.3 If we take the discrete form of weighted generalized mean (4.11) with
f[a_b) pdua = 1, then we obtain the quasi-arithmetic mean. Namely, let y : I CR — R be a

continuous and strictly monotone function, a = (ay,...,a,) witha, € I, k€ {1,...,n}, and
n
w = (wi,...,w,) with wy > 0 and Y, w; = 1. Then the quasi-arithmetic mean of a with
k=1
weight w is defined by

M, = W_l (

Now the following examples connects the quasi-arithmetic mean (4.17) and the prop-
erties of Jensen functionals.

wkuI(ak)) : (4.17)

»
HM:
L

Example 4.4 (SEE [92, COROLLARY 3]) Let w and y be defined as in Remark 4.3 such
that v is a strictly increasing, strictly convex function with continuous derivatives of sec-

!
ond order and % is a concave function. Further, let X, p,xj, i € {1,...,n}, be defined as in

n
Example 4.1, and q = (q1,...,¢,) With ¢; >0, i € {1,...,n},and Y q; = O, > 0. Then,
i=1

n
Dy (x1) =y ! ( > wku/(xik)) is a convex function (see [103, Theorem 1]). Hence by
k=1

Theorem 4.2, the functional

n
n 2 piXi

Jn(®m,, X, p) = Y pi®m, (xi) — PPy, IZIP
i=1 n

is superadditive, i.e.,
Ju(Pm,. X, p+ ) = Ju(Pwm,, X, p) + Ju(Pwm,, X, q),
and increasing, i.e., if p > q such that P, > Q,, then
Jn(®u,, X, p) > Jn(q)M,ﬂXv(I)~

Also, by Corollary 4.2, we have

max {p; }jn(Pm, . X) > J,(Puy,, X,p) > 1Igiign{pi}jn(<I>Mn,X),

1<i<n

where
n

2 X

! —
Jn(®Pm,, X) =D Dy, (x;) — nDy, 17’11
-1
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Example 4.5 (SEE [92, COROLLARY 4]) Consider (4.17), but with different conditions
on Y and w. Namely, if

(i) wi>1,forie{l,...,n};
(i) v:Rt - R";
(i) lim y(x) = +eoor lim y(x) = +oo,

then we have the following definition:
. n
M, = l[/71 2 wkl[/(ak) .
k=1

Let X,p,xj, i € {1,...,n}, be defined as in Example 4.1 and q = (q1,...,qn) With g; >0
n

and Y, ¢ = Q, > 0. Let y be strictly increasing and strictly convex with continuous
i=1

derivatives of second order, such that is convex. Then @y (x;) = < S, Wi ly(x,k)>
is a convex function (see [103, Theorem 2]). Hence by Theorem 4.2, the functlonal
n
'21 DiXi,
Ju(®g Z Piyy, (i) = PPy | =
n

is superadditive, i.e.,
In(@y X, p+q) = Ju (@7, X, p) +Jn(Py; X, q),
and increasing, i.e., if p > g, then
3,(@g X.p) = Ju(Py; . X.q).
Also, by Corollary 4.2, we have

> > mi At _
max {pitn(Py, X) = Jn(@m,. X, p) 2 min {pi}j(Py . X),

where
n
> X,

Z(IJ (x;,) —ny; ":;

Example 4.6 (SEE [92, COROLLARY 5]) Let X,p,x;, i € {1,...,n}, be defined as in
n

Example 4.1 and q = (q1,...,q,), with ¢; >0 and Y ¢i=0, >0. Let ¢ : ] — R be a
i=1
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(n+ 1)-convex function, where [ is a closed and bounded interval in R. Then by Theorem
4.2, for ®g(x;) = [xi, ..., Xi,: @], the functional

n
> piXi
=1

n
Jn(@g. X, p) = Y, pi®c(x;) — P, Pc 5
n

i=1

is superadditive, i.e.,
Jn(@, X, p+q) = Ju(Pg. X, p) +Ju(Pc. X, q),
and increasing, i.e., if p > q such that P, > Q,, then
Jn(®g, X, p) = Jn(P6, X, q).
Also, by Corollary 4.2, we have

s > > mi s
1H§11a§Xn{pl}Jn(q)G7X) = J"(®G7X7p) el lrgl.lgn{pl}.]n(q)GaX)a

where

n
in(®6,X) = Y g (x;) — n®g lfn
i-1

4.4 Applications to Additive and Multiplicative Type
Inequalities

In this section we give some applications of Theorem 4.2 to additive and multiplicative
type mean inequalities.

Corollary 4.4 Assume x, v, y, € C>(I,R) are strictly monotone. Suppose fi, f» : [a,b)T —
I are A-integrable such that f1(t)+ f>(t) €I forallt € [a,b)T. Let p,q: [a,b)T — R be non-

negative and A-integrable such that py(fi + £2).qx(f + ). pwiU)) awiL£), i = 1.2,
are A-integrable and [, ) pdiia >0, [, ;) qdpta > 0. Furthermore, let

/

v 4 X
E:—”, F_—”, G—

7 7 1"

If i, w5, x are positive and v,y , x"" are negative, then the functional

/[a " pdua[x Ma(x. fi + f2.1)) — X Ma(y1, f1,p) +Ma(y2, f2,p))] (4.18)
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is superadditive, i.e.,

'/[a ) (p+q)dualy Ma(x, /1 + f2,p +4)) (4.19)
=X Ma(y1, fi,p+q) +Ma(¥2, f2,p +q))]
2 ./[a )pd.uA [x (MA(X’fl +f27p)) —X (MA(thl?p) +MA(W27f27p))]

+/ qdpa [x Ma(x, f1+ f2,9)) — x Ma(y1, f1,9) + Ma(y2, f2,9))] -

If p > q such that j[mb) pdpa > j[mb) qdpia, then
) pdualx Ma(x, f1 + f2,p)) — x Ma(y1, f1,p) +Ma(ya, f2,p))]
/ qdua[x Ma(x, f1 + f2,q)) — x Ma(w1, f1,9) +Ma(va, f2,9))]  (4.20)

if and only if G(x+y) < E(x) + F(y). If p attains its minimum and maximum value on its
domain [a,b)T, then (4.20) yields

[ max p(l) (b_a)[X(mA(X,fl+f2))_X(mA(lefl)+mA(W27f2))] (421)

t€la,b)

/ pdua[x Ma(x, f1+ f2,0)) = x Ma(y1, f1,p) + Ma(y2, f2,p))]

t€la,b)

> [ min P(f)] (b—a)[x (ma(x, i+ f2)) — x (ma(y1, f1) + ma(y, f2))] -

Moreover, if Wi, vy, x', Wi, Wy, x" are all positive, then the inequalities in (4.19), (4.20),
and (4.21) are reversed if and only if G(x+y) > E(x) + F(y).

Proof. Let n =2 in Theorem 4.3. By setting ¢(x,y) = x+y, we have

H(si,50) = 2 (wy ' (s1)+ w5 ' (52)).

If yi, v, x' are positive and i, y4, x” are negative, then H is convex if and only if G(x+
y) < E(x)+F(y) (see [29]). If wi, w5, x' v, vy, x" are all positive, then H is concave if
and only if G(x+y) > E(x) + F(y) (see [29]). Now, all claims follow immediately from
Theorem 4.3. ]

Corollary 4.5 Assume x,y1,y, € C2(I,R) are strictly monotone. Suppose f1, f> : [a,b)T
— I are A-integrable such that fi(t)f>(t) € I for all t € [a,b)t. Let p,q : [a,b)T — R be

nonnegative and A-integrable such that py (f1- f2),qx(f1- f2), pwi(f),qwi(f)), i = 1,2,
are A-integrable and f[a.’b) pdpa >0, f[a,b) qdua > 0. Furthermore, let

__ v ___ w0 __ x@
O= v PO O 0
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If wi, w5, ) are positive and A, B,C are negative, then the functional
/ pdalx (Ma(X, fi - f2.0)) — x (Ma(vi, f1,0) - Ma(yn, fo.p))] (422

is superadditive, i.e.,

/[ (P DX (M 1112+ 9) (4.23)

—x Ma(y1, f1,p+@)Ma(v2, f2,p +q))]
/ pdua[x Ma(x, fif2,p)) = x Ma(y1, f1,p)Ma(v2, f2,P))]

+/[ b)qd”A[ ( (X f1f27 )) (MA(bel? )MA(W2>f27Q))}'
If p = q such that [, pdtia > [, ) qdla, then

/[a b)PdHA [x Ma(x, fif2,p) — x Ma(y1, f1,p)Ma(wa, f2,))]

2./[”)"‘1““’““(% f12.9) ~ 2 (Ma(vi. fi.)Ma(ya. f2.q))] - (4.24)

if and only if C(xy) < A(x)+ B(y). If p attains its minimum and maximum value on its
domain [a,b)T, then (4.24) yields

[ ] —a)[x (ma(x, f1f2)) — x (ma(y1, fi)ma(y2, £2))] (4.25)
> /[ )PdIlA [x Ma(x, fi.f2,p)) — x Ma(y1, fi,p)Ma(¥2, f2,p))]

>

minTP(f)] (b—a)[x (ma(x, f1f2)) — x (ma(y1, fr)ma(y2, £2))] -

tela,b)

If i, v, x',A,B.C are all positive, then the inequalities in (4.23), (4.24), and (4.25) are
reversed if and only if C(xy) > A(x) + B(y).

Proof. Let n = 2 in Theorem 4.3. By setting ¢(x,y) = xy, we have
H(s1,52) = x(wy ' (s1) 95 ' (52))-
If yi, w5, ¥ are positive and A, B,C are negative, then H is convex if and only if C(xy)

<
A(x)+B(y). If yi, v, x',A,B,C are all positive, then H is concave if and only if C(xy) >
A(x) + B(y) (see [29]). Now, all claims follow immediately from Theorem 4.3. ad
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Corollary 4.6 Let A,w,v € R be such that
(a) AL<0<w,v,orow,v<0<A;
(b)) A<®,v<0,0rv<0<®<Aoro<0<v<A,fori<

© A<o<0<Vv,orA<v<0<o,fort>++1.

L
w
Suppose f1, f» : [a,b)T — R are A-integrable. Let p,q : [a,b)T — R be nonnegative and A-

integrable such that pfllf%, qfftf%, pf,af’,pfy afy are A-integrable and j'[mb) pdpa >
0, f[a’b) qdpa > 0. Then the functional

1 19 A
: Japy PfCAUAN © [ [iapy Py dua\ Y
A pA [a,p) PJ1 [a,b) PJ2
dpts — / d (4.26)
'/W)) pfi f3dua [mb)p Ha {( fWﬂ) pdua fw) pda

is superadditive, i.e.,

/[ | (pralft faus

[ ap | (fanle s O ( fun (P +a) 3 ditn
PN (P )dua Jian) (P +@)dpia

<

1}1
fumpfPas\ ® [ fumpfans\*]
: ap) PIUAUA N\ @ [ Jiap) PS7 dUa
> / pfffdua— / pdpy | [ 2L lab) 72
la,b) Jlab) Jiap) PAlIA Jiap) PAHA
+ / 1t fdu / auy | [ Jun 470t " (fuatian 7 (4.27)
fapy P2 S TN T ) adia Jra) 44H S
If p = q such that [, ) pdpia > [, ) qdlta, then

1 19 A
: Sap PFPAUAN© [ fiapy Py da | ¥
[ pirtans— [ pdus | (240 V.
Jlab) [ab) Jiap) PAlA Jiap) PAHA
1

19 A
Japy @A\ @ [ Jiapyafy dua’\ "
2/ | —/ d B s . (4.28)
PR P e L N ey Jra) 44H

<
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If p attains its minimum and maximum value on its domain, then

’EIE%TP(I) (4.29)
A
/[a.’b) flfrdus— (b—a) (f[a,b;]:lwaduA> 5 (‘ﬁa7l7b)]:2‘/;”A> 1
® ® . 194
- ot st [, | (B2250 ) (B2
>, min p()

JE 194
Ao Sy SPAHA N\ [ i) f2 dtia "
./[a,b) fify dpa = (b=a) ( b—a b—a

Moreover, the inequalities in (4.27), (4.28), and (4.29) are reversed provided

(@) w,v>l>0,for%2 _|_%’.

1
o

) 0,v<A<0forgy <Ll

1
o

Proof. Let n =2 in Theorem 4.3. By setting @(x,y) = xy, (1) = t*

Yy (t) =1, we have

, y(r) =1®, and

L1\ A
His1s) = 2001 0w (52) = (5855 )

Now, H is convex if and only if d*H > 0, which implies

3
&<&_1>20’ &(&_1>20’ and L(l_i_l>207
o \w v v ovV\AL o Vv

and these are satisfied if A, @, and v satisfy conditions (a),(b), and (c). H is concave if and
only if d?H < 0, and this implies

3
&G‘l)“’ &(&‘QSO’ and L(Lii)zo'
o\ o v v ovV\AL o Vv

These are satisfied if A, @, and v satisfy conditions (a’) and (b’). Now, all claims follow
immediately from Theorem 4.3. |
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Corollary 4.7 Let A,w,v € R be such that A,®,v >0, A,0,v # 1 and

(A A<l<wV,orowv<l<Ai;

1 1 1 .
(b) /1<w7"<1’0”’<1<w</1’07w<1<"</1’f0710g1§1ogw+1ogw

1 1 1
(c) /l<w<1<v,or/l<v<1<w,for@2logw+@.

Suppose f1,f> : [a,b)T — R are A-integrable. Let p,q : [a,b)r]r — R be nonnegative and A-
integrable such that pA\ 712 gA 1+ 2 pwlt g/t pv/2 qv/2 are A-integrable and j'[mb) pdua >
0, fi4.5)qdta > 0. Then the functional

Jiap) polduy Jia.b) pv/2duy

/[ pA-f1+,fzduA_/[ P R P R P (4.30)
a.’b) a,b)

is superadditive, i.e.,

[, (prans auy
Ja,b

Jiap) (Pl duy Jjap) (p+a)v2duy

- / | (p+ CI)duMlog“’ Tap P +1O8¢ Ty o Faldin
[a.b)
log Jia) pollduy og, Jap) pvl2duy
> p?LflJrfzd‘uA _/ Pd,UA)L Jia.p) PIRA Jja,p) PAHA
~ Jlab) la,b)
Jia.p) ol duy Jiawp) av/2auy

+log,, .,[a,b)qd“A ) (431)

9

+ / AT dp, — / qdiad "5 Tar s
[a,b) [a,b)

If p > q such that [, ;) pdia > [, ) qdtia, then

log Jap)? wfld“AHog f[a~b)1"’f2d“A
pszl+f2d‘UA—/ pd,uA)L @ Jiap) PdHA V' Jlap) Pdia
[a,b) [a,b)
log,, Jlat) a0/t duy +log,, Jia) avP2duy
= quﬁdeuA—/[ qdpal " Tan 7 lany®¥a . (4.32)
a,b) a,b)

If p attains its minimum and maximum value on its domain, then

Jia. o/lduy Ja., v/2dpy
max_p(r) Ao d s — (b— a) A0t i Hogy 5
t€la,b) [a,b)
: log,, 4:2) po/Lduy +Hog, Jep) pv2auy
> prlJrfzd[.LA— / pd[,LAﬁ, 403 Jia,p) PAHA 8y Jja,p) PAHA
[a.b) Jla,b)

Jiap) @1 dup Jiap) V2 dun

> min p(t)l[ )Afl*deuA—(b—a)/ll"gw L ] (4.33)
a,b

T t€lab)
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Moreover, the inequalities in (4.31), (4.32), and (4.33) are reversed provided

@) w,v>Ai>1,for

log?L = logw + logv’

1 1
) w,v<A <O, for 1og/1 < 1ozo + Togv-

Proof. Let n =2 in Theorem 4.3. By setting @(x,y) =x+y, x (1) = A", y(t) = @', and

Y, (1) = V', we have
1 1\ logh
H(sy,s2) = (si"E“’s;’&V) .

Now, the proof is similar to the proof of Corollary 4.6. O

Corollary 4.8 Let A, w,v € R be such that
(@) 0<w,v<A<l,forall fi,f, >0;

(b) 0<v<A<w<lforfy> @M p >0

(©) 0<w<l<v<1for%flzf220,

Suppose f1,f> : [a,b)T — R are A-integrable. Let p,q: [a,b)r — R be nonnegative and

A-integrable such that p(fi + f2)*,q(fi + f)* . pfC.af®,pfy ,afy are A-integrable and
Jiapy PAla >0, [iy ) qdiia > 0. Then the functional

1 194
A Japy PfdUa '\ © Japy P2 dpia\ "
+ d —/ d —_— + | ——— (4.34)
'/[mb)P(fl f2)"dua '[mb)p UA [( f[a,b)Pd”A f[a,wpd#A

is superadditive, i.e.,

/[. ) (p+a)(fi+ f2) dua (4.35)
1 1
f[a.b) ([7 +q)f1wd.uA o f[a b) ([7 —|—q)f2"d,uA v
— _|_ d ’ _|_ s
/[a,b)(p 9 [( f[mb)(l?—i-q)dHA f[a7b)(l7+61)dﬂa
' 2
d
Z/{a’b)P(fl—i—fz) Ha
funpfPaus\®  (fumpfian\*]
JlapyPSdlA\ @ ap) PI3dlA Y
- d e I
an? Ha {( Jiap) PAHA ) ( Jiap) PAlA ) ]

+/ q(fi + ) dua

1 194
i ®q o vd v
_/ qdita J[azwqfl HA n f[a,b)‘lfz A
Jab) Jiap) 9dHa Jiap)9dua

A
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If p > q such that [, ) pdpia > Ji, ) qdta, then

/[ b)l’(fl + fo)tdua (4.36)
| a1\ *( fuypryans\ V]
ap) PS17dHA @ ap) PF M\
ja.b) Jiap) PAHA Jiap) PAHA
> /[ b)CI(fl + f2)* dua
o4 » vd ?
_ qdii f[a,b) qf"dua n Ji [a.b) qfy dua
ja.b) Jiap) a9pa Jiap) @dtia
If p attains its minimum and maximum value on its domain, then
max p(z) U (fi+ f2)*dpa (4.37)
le[a,b)'ﬂ* [a7b)
" 1 _ y 174
—(b-a) Jiapy Pfd0A | © N JapyPfydpa '\ "
b—a b—a

> /[ b)P(f1+f2))Ld#A
o 4 5 vd k
_ iy f[mb)l’fl Ha n f[a,b)sz UA
[a.b) J la.p) PAHA J la.b) PAHA
> min p(t) {/ (fi + /o) dpa
IG[a,b)T [a7b)

1 1 A
®q o : vd v
b—a) [(f[a,b)bpfla M) N (j[a,b;)p_fza .UA> }

Moreover, the inequalities in (4.35), (4.36), and (4.37) are reversed provided
@) 1< A<,V forall fi,f, > 0;

B) 1<v<A<ofor0< fr < E=Eg
B) I<O<A<V for fr2 Gl fi 20

Proof. Let n =2 in Theorem 4.3. By setting ¢(x,y) = x+y, x(t) = t*, y(t) = t®, and

Yy (t) =1Y, we have
TN
H(s1,8) = <s1‘” —|—szv> .
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Now, the proof is similar to the proof of Corollary 4.4, with some extra considerations of
the definitions of the functions E, F', and G. O

Corollary 4.9 Suppose f1, f> : [a,b) — [0, %] are A-integrable. Let p,q : [a,b) — R be
nonnegative and A-integrable such that pcos(fi + f2),qcos(fi + f2), pcos(f;),qcos(fi),
i=1,2, are A-integrable and [, ;) pdtin >0, [, 5y qdita > 0. Then the functional

/ pdpacos | arccos f[m;,)pcos(fl)d‘uA
[a,b) A f[mb) pdyA

Jiapy PCOS(f2)dpta
-+ arccos
Jiap) PAlA

>] —/[ab)PCOS(fl + fo)dus  (4.38)

is subadditive, i.e.,

Jia5) (P + ) cos(f1)dua ) (4.39)

4+ g)duacos |arccos | -
/[a,w(p @)y [ ( Jiap) (P +a)duia

Jiap) (P + @) cos(f2)da
-+arccos
Jiap) (P +a)dlia

)]jﬁm@+®ﬂwﬁ+ﬁﬁm
Jiapy Peos(f1)dua
Jiap) PAlA

Jiapy Peos(f2)duia .
+ arccos : —/ cos(fi+ H)d
( Jiap) PAHA W)P (fi + f>)dua

+/ qdpia cos |arccos Jiap) acos(fi)dpa
- [a,b) A f[mb) quA

Jiap) ac0s(f2)dpa .
+ arccos : —/ cos(fi + f)dun.
( Jiap) 291 [a,b)q (fi+ f2)dua

If p > q such that [, ;) pdia > [, ) qdlia, then

' f[a b)PCOS(fl)dIJA
dLia cos |arccos . 4.40
./[a,b)p Ha [ ( Jiap) PAA (40

< pdua cos [arccos (
[a.b)

f[aJ,) pcos(f2)dua
f[a,b) pdua
cos(f1)d
< / qdua cos | arccos f[“v”)q (f1)dua
0 Jiap) adta

Sy acos(f>)du
+arccoS<f[,b)f[ b)qil;ii A)] _/[ab)qcos(f1+f2)d,liA-

+arccos< )] — /[a b)pCOS(fl + f2)dpa




96 4 JENSEN’S FUNCTIONALS FOR SEVERAL VARIABLES

If p attains its minimum and maximum value on its domain, then
- ycos(f1)dua
max p(t)| (b—a)cos |arccos M (4.41)
t€lab)p b—a

d n
+arccos (W)] _/[mb) cos(fi + fo)dua

' f[a,b)PCOS(fl)dliA
g/ pdpiacos | arccos .
Jla,b) ‘[[GJJ) pd,uA

f[a b)PCOS(fz)dIJA '
~+arccos . —/ cos(f1+ fo)d
( Fon Pl wn)” (fi + f2)da

min p(t)] (b—a)cos [arccos (M)

1€fa,b)p b—a

+arccos <M>] —/[ b)COS(fl-f-fz)duA.

<

b—a

Proof. Letn =2 in Theorem 4.3. By setting @ (x,y) =x+yand x(t) = w1 () = yo(t) =
—cos(t), we have

H(sy,s2) = —cos(arccos(—sy ) + arccos(—s2)).

Now, the proof is similar to the proof of Corollary 4.4. O

4.5 Applications to Holder’s Inequality

Remark 4.4 Suppose fi, i € {1,...,n}, are nonnegative and A-integrable functions on
[a,b)T such that H £ is A-integrable, where ¢; > 0,i € {1,...,n}, are such that 2 o;=1.
Then, by using Theorem 3.6 (Holder’s inequality for Lebesgue A-integrals), we have

Q;

Yiduy < - +d . 4.42
/[a’b)gf, HA_H(/W)f .UA> (4.42)

n
If ¥ o = o7, > 0, then (4.42) implies
i=1

%

dn ' : I
/ab Hf dua < H (/{mb)ﬁdm) (4.43)
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or

i n n o
o g -d . 4.44
</[a7b) gf, .UA> < g </[a7b)f .UA) (4.44)

In this section, we discuss properties of the functional, deduced from the Holder inequality
(4.43), defined in the following way.
Definition 4.3 Supposef= (fi,...,fu) is suchthat f;, i € {1,...,n}, are nonnegative and
n

A-integrable functions on [a,b)T. Let o0 = (0u,...,0y) be such that o; > 0 and Y, o4 =

i=1
@y > 0. Then we define the functional Hy by

n

I1 (f[a,b) fid.uA> "

Hy(f, o) = —=! — —. (4.45)
n 7/:1 n
<f[a,b) ,Hlfi' duA)
i
Theorem 4. 4 Let o0 = ((xl, . 0y) and B = (Bi,...,Bn) be real n-tuples with o; > 0,
Bi > 0 and 2 o; =y >0, 2 Bi = Py > 0. Suppose f;, i € {1,...,n}, are nonnegative

= =
al n Bl

and A-integrable functions on [a,b) such that H f " and H I 71 are A- integrable. Then

Hy(f, 0+ B) > Ha(f, o) Ha(f, B), (4.46)
and Ha(f,) is increasing, i.e., if o0 > B such that <7, > 9B, then
Ha(f, o) > Ha(f, B). (4.47)
Proof. By Definition 4.3, we have

o;+B;
11 (f ) fz’dHA>
Hy(fo+p) = ——

B A+ Py
(fab HanJrﬁnd.uv )

(4.48)

where

. Ayt By
n al+/pl
/ T1/7 7 dua (4.49)
[a,b) =1
“n Pn Gn+PBn
o\ FtZn [0 B\ FntFn
/ (Hf”") (Hff”") dita
[a,b) i=1

(/{abnfiﬁ:,du> (/ Hf}’"du>

IN
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Now, by combining (4.48) and (4.49), we have

i n

H(f, 0+ B) > 1;[1 (Jab ﬂduA) l 1(j[a,, f,duA) '

ﬁ an
(f[ab 11/ d.UA (f f}"dﬂ>

= Hy(f, )H, (£, B).

i=

B

If o > B, then ov — B > 0 and therefore

The proof is complete. O

Corollary 4.10 Let f and o satisfy the hypotheses of Theorem 4.4. Then

n 1rgla<xn{a,} " 11311271{0{ }
IT Jia ) fidta T Jiap) fidtia
R >Hy(f o) > |~ (4.50)
(Vi 11 s (i 11 70
Proof. Let

Olmax = <lr£11a<x{oc,} max{a,}> and  Opin = <m1n {04},..., min {(xi}) .

1< 1<i< 1<i<n

Now by Definition 4.3, we have

n mgx<x {0}
Il Jiapy fida |5
HA(f7 (XI‘HHX) - = n l n
(f[a,b) 1:[1 1" duA)
and (o)
n i s
I flap) fidpa |
HA (fa amin) = =

n 1 n
<f lab) I:—[l 1 duA)

Since Omax = O > Omin, the result follows from the second property of Theorem 4.4. O

Corollary 4.11 Letf, o, and B satisfy the hypotheses of Theorem 4.4 with <t = %, = 1.
If there exist constants M > 1 > m such that M3 > oo > mf3, then

H(f,MB) = Ha(f, ) = Ha(f,mP). (4.51)
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Proof. By Definition 4.3, we have
HA(f,MB) =MHA(f,3) and Ha(f,mfB) =mH(f, ).

Now the result follows from the second property of Theorem 4.4. O

Remark 4.5 Similarly as in Chapter 2, we can apply the theory of isotonic linear func-
tionals. The related results for isotonic linear functionals are given in [92].






Chapter

Improvements of the
Jensen-Steffensen Inequality
and its Converse

In this chapter, we give a generalization of the Jensen—Steffensen inequality and its con-
verse on time scales. These results also generalize the Jensen—Steffensen inequality and its
converse given for the discrete and continuous cases. Further, we investigate the exponen-
tial and logarithmic convexity of the functionals defined as differences of the left-hand and
the right-hand sides of these inequalities. Finally, we present several families of functions
for which these results can be applied. The results presented in this chapter are taken from
[39].

5.1 «-SP and a-HH Weights

In order to give a better version of the Jensen inequality (Theorem 2.11) on time scales,
C. Dinu in [51] gives the definition of an o-Steffensen—Popoviciu (o-SP) weight.

Definition 5.1 (a-SP WEIGHT) Let g € C(T,RR). Then w € C(T,R) is an o.-Steffensen—
Popoviciu (0.-SP) weight for g on [a, b if

b b
/ W(t)Out >0 and / O (g(1))W(1) Ot > 0 G.1)

101
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for every convex function ® € C([m,M],R), where

m= inf g(r) and M= sup g(t).
t€la,blp t€fablp

In the following lemma, he gives a characterization for o-SP weight for a nondecreas-
ing function g on time scales.

Lemma 5.1 Lerw € C(T,R) be such that ff w(t)O gt > 0. Then w is an o-SP weight for
a nondecreasing function g € C([a,b]1,R) if and only if it satisfies

[ (66~ gm0w 20 anad [ (e~ wiowz0, 52

for every s € [a,b]1. If the stronger (but more suitable) condition

K b
0< / w(t)Ont < / w(t)Out  forevery s€la,blr (5.3)
a a
holds, then w is also an a-SP weight for the nondecreasing continuous function g.

As given in [51], all positive weights are ¢-SP weights, for any continuous function g
and every o € [0,1]. But there are some -SP weights that are allowed to take negative
values. The Jensen inequality on time scales (where it is allowed that the weight function
takes some negative values) is given in the following theorem from [51].

Theorem 5.1 Let g € C([a,b|, [m,M]) andletw € C([a,b]T,R) be such that ff w(t)Ogt >
0. Then the following two statements are equivalent:

(i) wis an o-SP weight for g on [a,b];

(ii) for every convex function ® € C([m,M],R), we have

® (‘fabg(t)w(t)oat> L@ Oat (5.4)

JEw(t)Oqt TPw(6) Ot

Remark 5.1 Let g be a nondecreasing function. If T = N, then Theorem 5.1 is equivalent
to Theorem 1.10 (Jensen—Steffensen inequality). On the other hand, if we take T = R in
Theorem 5.1, we obtain the integral version of Jensen—Steffensen inequality given by Boas
[40].

Considering the converse of the Jensen inequality, C. Dinu gives the following defi-
nition of o-Hermite—Hadamard (o-HH) weight. He gives the characterization for a non-
decreasing function g on time scales and the improvement of the converse of the Jensen
inequality for some negative weights.
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Definition 5.2 (a-HH WEIGHT) Let g € C(T,R). Then w € C(T,R) is an o-Hermite—
Hadamard (o-HH) weight for g on |a, b if

i PO)w)Oat M =T g,
ff w(t)Oat T M-m

b
/ w(t)Out >0 and m)+
Ja

for every convex function ® € C([m,M],R), where

b
o
m= inf g(t), M= sup g(r), and ga:M'

r€fablp t€lablp Jiw(t) Ot

Lemma 5.2 Let w € C([a,b]T,R) be such that j;lbw(t)Oat > 0. Then w is an a-HH
weight for a nondecreasing function g € C([a,b]1,R) if and only if it satisfies
g(b)—g(s) [
o | 60 —g@w 0w
_ b
+ 28 ) - swi)0wr 20 55)

for every s € |a,b|.

In the next result, C. Dinu gives the connection between these two classes of weights on a
time scale.

Theorem 5.2 Let g € C(T,R). Then every o-SP weight for g on [a,b] is an o-HH
weight for g on |a,b|T, for all o € [0,1].

Corollary 5.1 Ler g € C([a,b]T, [m,M]). Let ® € C([m,M],R) be a convex function and
w € C([a,b]T,R) an a-SP weight for g on [a,b]. Then

o Ja @O Oa M-, Zo =
D(g,) < ffw(t)<>at < M—m(D(m)—i_—’U—mq)(M)’ (5.6)
_ [ sw(@)at
where g, = ffw(t)<>at .

5.2 Jensen-Steffensen Inequality

Letm,M € R, where m # M. Consider the Green function G : [m,M] x [m,M] — R defined
by

M—-m -
G(x,y) = 5.7)
M—-m =y=a

The function G is convex and continuous with respect to both x and y.
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Remark 5.2 Note that the condition (5.5) is equivalent to

/ Glg W(t)Out <0,
where the function G is defined in (5.7).

It is well known that (see for example [88, 108, 120, 133]) any function @ € C?([m,M],R)
can be represented by

oon)+ [CGne’ e, 68

Jm

M —x xX—m

q)(x):M—mq)(m)+M—m

where the function G is defined in (5.7). Using (5.8), we now derive several interesting
results concerning inequalities of Jensen type.

Firstly, we give a generalization of the Jensen inequality on time scales, where negative
weights are also allowed.

Theorem 5.3 Assume g € C([a,b]T,R) is such that g([a,b]T) C [m,M]. Letw € C([a,b]T,R)
J2 8@)w(t)Oat

8
be such that [Pw(t)Out # 0 and
fa ( ) o 7é fabw(t)<>at

€ [m,M). Then the following two state-
ments are equivalent:

(i) For every convex ® € C([m,M],R), we have

(J g()wle ><>ar> < J22EOW)0ar (5.9)
S w(t)Oat Ja w(t)Oat
(ii) Forally € [m,M], we have
(f g(t)w ()Oat,y> . ffG(gb(l)yy)W(l)Oat’ 5.10)
f w(t)Out L w(@)Oat

where G : [m,M] x [m,M] — R is defined in (5.7).

Furthermore, the statements (i) and (ii) are also equivalent if we reverse the inequality in
both (5.9) and (5.10).

Proof. (i) = (ii): Let (i) hold. As the function G(-,y), where y € [m, M], is also continuous
and convex, it follows that (5.10) holds.
(ii) = (i): Let (i) hold. Let ® € C?([m, M],R). By using (5.8), we get

J2@(g(t))w(t)Oat M
Jaw(t) Ot f w(t) Ot
_/ e Ggt), yw(t)0at [ [7g(t)w(t)Oat ,
w(t)Oat f w(t)O gt '

@ (y)dy. (5.11)
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If the function @ is also convex, then ®”(y) > 0 for all y € [m,M], and hence it follows
that for every convex function ® € C?([m,M],R), inequality (5.9) holds. Moreover, it
is not necessary to demand the existence of the second derivative of the function @ (see
[119, page 172]). The differentiability condition can be directly eliminated by using the
fact that it is possible to approximate uniformly a continuous convex function by convex
polynomials.

The last part can be proved analogously. O

Remark 5.3 Let the conditions of Theorem 5.3 hold. Then the following two statements
are equivalent:

(i") For every concave @ € C([m,M],R), the reverse inequality in (5.9) holds.

(i") Forall y € [m, M|, inequality (5.10) holds.

Moreover, the statements (i') and (ii’) are also equivalent if we reverse the inequality in
both statements (i’) and (ii’).

Remark 5.4 Consider (5.11). Suppose that g is nondecreasing and that it has a first
derivative. Let m = g(a), M = g(b) and make the substitution y = g(s). Then we get

Ja @(gO)W(H)Cat o ( JEg(t)w() Ot )

Jw(t) Ot [Pw(t)Oqt
b b
- /ab I G(g}?ﬁfiﬁjf’o‘” o (fﬁ(%gitg (s)> O (e(s)¢ ()45
| (5.12)

Since g is nondecreasing, so is g’(s) > 0. If ® € C?([m, M],R) is convex, then @” (g(s)) >0
for all s € [a,b]T. Hence every continuous and convex @ satisfies (5.9) if and only if

ffg(t)w(t)oat jab G(g(t),g(s))w(t)Ont
¢ (W’g(‘go = P yo(t)O gt

Ja

holds for all s € [a,b]T.

Combining the result from Theorem 5.3 with Theorem 5.1 and Lemma 5.1, we get the
following two corollaries.

Corollary 5.2 Ler g € C([a,b]T, [m,M]) and w € C([a,b]T,R) such that ffw(t)oat > 0.
Then w is an o-SP weight for g on [a, b if and only if (5.10) holds for all y € [m,M).

Corollary 5.3 Ler g € C([a,b]r,[m,M)) is nondecreasing and w € C([a,b]1,R) be such
that [Pw(1)Oat > 0. Then (5.2) holds for all s € [a,b]y if and only if (5.10) holds for all
y € [m,M].

If T =R, then from Theorem 5.3 we obtain the following result.
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Corollary 5.4 Assume g € C([a,b],R) is such that g([a,b]) C [m,M]. Letw € C([a,b],R)
b
d

be such that ff w(t)dt # 0 and M

5 € [m,M). Then the following two statements
Ja wiz)de

are equivalent:

(i) For every convex ® € C([m,M],R), we have

o Lemu _ [olenmu 51
fwnde )T [Fwde -
(ii) Forally € [m,M],
S g()w(r)dr Ju G(g(0),y)w(r)dr
G( Pl ’y> S o e

holds, where G : [m,M] x [m,M] — R is defined in (5.7).

Furthermore, the statements (i) and (ii) are also equivalent if we reverse the inequality in

both (5.13) and (5.14).
When T = Z, Theorem 5.3 yields the following result.

Corollary 5.5 Let p; € R, x; € [m,M], i € {1,...,n+ 1}, such that

n

op1+ (1= e)pasi+ ), pi >0
i=2

and
n
apixi + (1= @)pps1xps1 + X pixi
€ [, M],

n
apr+ (1 = o)pps1+ 'Zzpi
i

where o € [0, 1]. Then the following two statements are equivalent:

(i) For every convex ® € C([m,M],R), we have

n
apixi + (1 — &) pp1xni1 + '22171'361'
i=

@ n
opr+ (1 —a)ppp1 + '22171'

n
ap1®(x1) + (1 — @) pu1 P(n41) + 3 piP(xi)
< _ =2 . (5.15)
apr+ (1 —a)pps1+ 'Zzpi
iz
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(ii) Forally € [m,M],

n
apix; + (1 —a)pprixXnr1 + 2 pixi
G i—2
n
opi+ (1= a)ppi1+ X pi

i=2

Y

n
ap1G(x1,y) + (1 = ) pu1G(Xn41,¥) + X piG(xi,y)
< __ = (5.16)
apr+ (1 —a)pps1+ 'Zzpi
=

holds, where G : [m,M] x [m,M] — R is defined in (5.7).

Furthermore, the statements (i) and (ii) are also equivalent if we reverse the inequality in

both (5.15) and (5.16).

Example 5.1 (i) If a=1and p;=1,i€{l,...,n+ 1}, then Corollary 5.5 is equiva-
lent to Jensen’s inequality.

(i) Let [m,M] C (0,0) and ®(x) = xP, where B < 0 or B > 1. Then (5.15) becomes

n p
op1x + (1= &) pri1xnt1 + ZZPixi
i=

n
apr+ (1 = o)ppy1 + '22171'
i

8 - B n B
apix) + (1 —a)ppix, | + ,zzplxi
=

<

n
op1+ (1= a)ppi1+ 2 pi

i=2

(iii) Let @(x) = exp(x). Then (5.15) becomes

n
apixi + (1 — &) pp1xnin + '22171'361'
iz

exp -
opi+ (1 —a)pp1 + '22171'
iz

n
apiexp(xy) + (1 — o) ppr1exp(xnr1) + Zzpi exp(x;)
< —

n
api+ (1= o)ppy1+ 'Zzpi

=

(iv) Let [m,M] C (0,e0) and ®(x) = Inx. Then (5.15) becomes



108 5 JENSEN-STEFFENSEN INEQUALITY

n
op1xy + (1= &) pri1xns1 + Zzpixi
i

n
api+ (1 = o)ppy1 + 'Zzpi
i

apy (1=0)pp 1 pi

n n n
al’1+(1*0)17,1+1+.2217i O‘P1+(1*0¢)Pn+1+.2217i n al’1+(1*0)17,1+1+.2217i
i= i= i=
1 Xnt1 X
i=2

>Xx

To shorten the notation, in the sequel we will use the notation

[ s0wl)0at
C w00t

Under the assumptions of Theorem 5.3, we define the functional _#y (g, ®) by

J2a(g(t)w(t)Oat _® (ffg(t)w(t)@w)

S w(t)Oat L w(t) Ot
if (5.10) holds for all y € [m, M],
Ho1(8, @) = (5.17)
o <f,fg<r>w<r><>ar> L R(e0)w(1)at
Jiw(t)Oat L w(t) Ot

if the reverse of (5.10) holds for all y € [m, M|,

where the function @ is defined on [m,M]. Clearly, if ® is continuous and convex, then
Za1(g, @) is nonnegative.

Theorem 5.4 Let g,w, andg,, satisfy the assumptions of Theorem 5.3. Let ® € C?([m,M],R)
and let Zy1 be the functional defined in (5.17). Then there exists & € [m,M] such that

Ha1(8,@) =" (§) Zai (g, Do) (5.18)
holds, where ®¢(x) = )‘72
Proof. The function ®” is continuous and

J2 Ge0).yw)at (L 8(0)w(t)Oar
Jw(t)Oat Jiw(t)Oat

does not change positivity on [m,M]. For @, (5.11) holds, and now applying the integral
mean value theorem, we get that there exists & € [m, M| such that

J2 @(eOIw(D)at _ (ffg<r>w<r><>ar>

JEw(t)Oat TP w(t) Ot
@ M1 L7 Gg(1),y)w(t) Ot [P e(t)w(t)Out
_q>(§)/m Pw()0ut —G< Pui)out dy. (5.19)
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As in [120], it can be easily checked that

1
=—(x—m)(x—M)
2
holds. Calculating the integral on the right-hand side in (5.19), we get

J2@(g(t))w(t)Oat _® (fabg(t)w(t)<>at>

JEw(t)Out TP w(t)Out
=@"(§)
=@"(&)

m/f (/mMG(g(t),y)dy) W(t)Oat—AMG(ga,y)dy]
R L
Jow(t)0at Ja 2

J (g0’ w)Out
f: w(t)Oqt ‘|

and the proof is completed. |

(g(t) =m)(g(t) = M)w(t)Out — %(Ea —m)(gq — M)]

1 /!
= 3 (E)

Remark 5.5 Theorem 5.4 can also be proved by using the two convex functions

()= 2 @) and o) = D) - 2,
where
®,= min ®'(x) and @ = max @®"(x).
x€[m,M] x€[m,M)

Since @ and ¢, are continuous and convex, we have

Ha1(8:91) =0 and _Zu1(g,62) > 0.
This implies that
D, 7a1(8:P0) < Fa1(g, @) <D*_Zo1(8,Po).
Hence, as @” is continuous, there exists & € [m,M] such that (5.18) holds.

Theorem 5.5 Let g,w, and g, satisfy the assumptions of Theorem 5.3. Let ®,¥ €
C?([m,M),R) and 7y be the functional defined in (5.17). Then there exists & € [m, M|

such that (e ®) ()
al\8s _
T8 ) PIE) 520

holds, provided that the denominator in the left-hand side of (5.20) is nonzero.
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Proof. Consider the following function y, defined as the linear combination of functions
® and V¥ by

X) = a1 (g, ¥V)P(x) = Fai (g, P)¥(x).

Clearly, ¥ € C?([m,M],R). By applying Theorem 5.4 to y, it follows that there exists
& € [m,M] such that

Jor(g:x) =x"(&) For(g, o). (5.21)

Thus, Z41(g,x) =0, and by hypotheses _#1(g,Po) # 0 (otherwise we have a contradic-
tion with _#y1(g,'¥) # 0). It follows that

x"(£)=0,
which is equivalent to (5.20). O

/!
Remark 5.6 In Theorem 5.5, if the inverse of the function % exists, then (5.20) gives

52(§»”(/@@@»

v Hur(8,Y)

Remark 5.7 Note that setting the function ¥ as ¥(x) = "72 in Theorem 5.5, we get the
statement of Theorem 5.4.

As a consequence of Theorem 5.4 and Theorem 5.5, the following corollaries easily follow.

Corollary 5.6 Ler g € C([a,b]r,[m,M]), ®,¥ : [m,M] — R and let w € C([a,b]T,R) be
an o.-SP weight for g. Let _#q1 be the functional defined in (5.17). Then the following two
statements hold:

() If ® € C*([m,M],R), then there exists & € [m,M] such that (5.18) holds.
(i) If®,¥ € C*([m,M],R), then there exists & € [m,M] such that (5.20) holds.
Proof. The statement (i) (statement (ii), respectively) directly follows from Theorem 5.4

(Theorem 5.5, respectively) and Corollary 5.2. O

Corollary 5.7 Ler g € C([a,b]T,[m,M]) be monotone, ®,¥ : m,M| — R, and
w € C([a,b]r,R) such that [Pw(t)Out > 0. Suppose (5.2) holds for all s € [a,b|y. Let
H a1 be the functional defined in (5.17). Then the following two statements hold:

() If ® € C?*([m,M],R), then there exists & € [m,M] such that (5.18) holds.

(i) If®,¥ € C*([m,M],R), then there exists & € [m,M] such that (5.20) holds.

Proof. The statement (i) (statement (ii), respectively) directly follows from Theorem 5.4
(Theorem 5.5, respectively) and Corollary 5.3. O
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5.3 Converse of Jensen-Steffensen Inequality

Using a similar method as in Section 5.2, in the following theorem, we obtain a general-
ization of the converse of the Jensen—Steffensen inequality on time scales, where negative
weights are also allowed.

Theorem 5.6 Let g € C([a,b]T,R) be such that g(|a,b]t) C [m,M] and let ¢,d € [m,M],
where ¢ # d, be such that c < g(t) <d forallt € [a,b]y. Let w € C([a,b]T,R) be such that

/. : w(t)O gt # 0. Then the following two statements are equivalent:

(i) For every convex ® € C([m,M],R), we have

JPD(g(0))w(t)Out _ d—3, Z,—c
fab w(t)Oat = d—c O(c)+ d—c (d). (5.22)

(ii) Forally € [m,M],

Ji G(8(0).Y)w(t)Oat _ d By .
ffW(I)Oat T d-c

holds, where G : [m,M] x [m,M] — R is defined in (5.7).

e +E 6@y 62

Furthermore, the statements (i) and (ii) are also equivalent if we reverse the inequality in

both (5.22) and (5.23).

Proof. The idea of the proof is very similar to the proof of Theorem 5.3. Suppose that (i)
holds. As G(-,y), where y € [m,M], is also continuous and convex, it follows that (5.23)
holds. Suppose now that (ii) holds. Let ® € C2([m, M],R). Then, by using (5.8), we get

d_ga(l)(c)—k ga _C(I)(d) _ fabCD(g(t))w(t)Oat

d—c d—c JPw(t)Out
d—3gy, 8a—C j;sz(g(t)ay)W(t)Oat 1"
_ / [ Gley)+ 2 —G(d.y) - o @ (y)dy. (5.24)

If @ is also convex, then ®”(y) > 0 for all y € [m,M], and hence it follows that for every
convex @ € C2([m,M],R), (5.22) holds. Moreover, it is not necessary to demand the exis-
tence of the second derivative of @ (see [119, page 172]). The differentiability condition
can be directly eliminated by using the fact that it is possible to approximate a continuous
convex function uniformly by convex polynomials. The last part of our theorem can be
proved analogously. |
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Remark 5.8 Let the conditions of Theorem 5.6 hold. Then the following two statements
are equivalent:

(i") For every concave ® € C([m,M],R), the reverse inequality in (5.22) holds.
(i) Forall y € [m,M], (5.23) holds.

Moreover, the statements (i') and (ii’) are also equivalent if we reverse the inequality in
both statements (i) and (ii’).

Remark 5.9 Note that in all the results in this section, we allow that the mean value
g, leaves the interval [m,M], while in the results from Section 5.2, we demanded that
8 € [m,M].

Setting ¢ = m and d = M in Theorem 5.6, we get the following result.

Corollary 5.8 Ler g € C([a,b]T,R) be such that g(|a, b)) C [m,M]. Letw € C([a,b]T,R)
be such that fabw(t)<>at # 0. Then the following two statements are equivalent:

(i) For every convex ® € C([m,M],R), we have

J2@(g(0)w(t)Oat _ M—F, 8o —m
Pwoa Mmoo

D(M). (5.25)

(ii) Forally € [m,M],
Ja G(8())w()Oat _
Jiw)Oat
holds, where G : [m,M] x [m,M] — R is defined in (5.7).

(5.26)

Furthermore, the statements (i) and (ii) are also equivalent if we reverse the inequality in
both (5.25) and (5.26).

Remark 5.10 As a consequence of Corollary 5.8, we obtain Lemma 5.2. Let ¢ = m and
d = M. Then (5.24) transforms into

M B gy B My L2 @O0

M—m M—m faw

VOt
Glg Out
/ Js 0() Lo (y)dy. (5.27)

at

Let [ f w(t)Oqt > 0 and suppose that g is nondecreasing and that it has the first derivative.
Now, similarly as in [51], we obtain Lemma 5.2. Let m = g(a), M = g(b) and make the
substitution y = g(s). Then we get
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M__(X _a—m :(I) w <>Ol
i)+ e ;”g(t()))é;)t :
:_f <>az/ (/ it ()Oaf)q’"(g(S))g’(S)ds. (5.28)

Since g is nondecreasing, g'(s) > 0. If ® € C?([m,M],R) is convex, then ®"(g(s)) > 0,

for all s € [a,b]7. Hence every continuous and convex @ satisfies (5.25) if and only if
/ Glg ()t <0

holds for all s € [a,b]T.

Corollary 5.9 Let g € C([a,b]T,[m,M]) and w € C([a,b]T,R) be an o-SP weight for g
on [a,b]t. Then (5.26) holds for all y € [m,M).

Proof. The proof follows directly from Theorem 5.2 and Corollary 5.8. O

Under the assumptions of Theorem 5.6, we define the following functional _Z»(g,®@):

d— g(x g(x —C fab(D(g(t))W(l)Qat
() D(d) —

= T e T 0w

if (5.23) holds for all y € [m, M],
Ha2(8,®) = , (5.29)

Jo Pg)w(t)Oat  d—34 8a—C
() = d(d
o el - o)
if the reverse of (5.23) holds for all y € [m, M],

where the function @ is defined on [m,M]. Clearly, if ® is continuous and convex, then
Zar(g, @) is nonnegative.

Theorem 5.7 Letc,d,g, andw satisfy the assumptions of Theorem 5.6. Let ® € C*([m,M],R)
and _Zy» be the functional defined in (5.29). Then there exists & € [m,M] such that

Ho2(8, D) = D" (&) _Foa(g, Do) (5.30)

2

holds, where ®y(x) = 5.

Proof. The idea of the proof is very similar to the proof of Theorem 5.4. Following the
assumptions of our theorem, we have that ®” is continuous and that
8o —

—g c b w o
dd —gg Gle)+5 =5 Gldy) = L GFE’(ZE;))OEZ)O :

does not change positivity on [m,M]. For @, (5.24) holds, and now applying the integral
mean value theorem, we get that there exists & € [m, M] such that
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JPo(g()w(t)Oat
J2w(t)Oat

—@%@/MK[}Gmw+%§§a¢w

d—3u
d—c

ga_c

d—c

D(c) + D(d) —

P G(() )W) Ot
fabw(t)Oat

dy. (5.31)

m -

Calculating the integral on the right-hand side in (5.31), we get

_ _ b
— — &
d 8o q)(C) + 8a CQD(d) _ fa (D(;g(t))w(t) al
d—c d—c fa W(Z)O(Xt
-3 T, — P(g(0))?w(t)o
— lq)//(é) d—38q 2y 8a”C 2 Ja (gl(f)) w(t)Oqt . (5.32)
2 d—c d—c fa W(I)Oat
and we obtain (5.30). O
Remark 5.11 Note that (5.32) can also be expressed as
_ _ b
— — (o} &
d ga(D(C)—Fga C(I)(d)—'[a (;g(t))w(t) ol
d—c d—c fa W([)Qa[
1 _ Ji (2(1))*w(t) Ot
=_¢ c+d)—cd—+2 )
3@ () [Zale+a) o

Theorem 5.8 Let c¢,d,g, and w satisfy the assumptions of Theorem 5.6. Let ®W¥ €
C?([m,M],R) and #y» be the functional defined in (5.29). Then there exists & € [m,M|

such that
Sarlg®) _ ')
Sa2(8,¥)  W'(E)

provided that the denominator in the left-hand side of (5.33) is nonzero.

(5.33)

Proof. The proof is very similar to the proof of Theorem 5.5. O
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5.4 Exponential Convexity and Logarithmic
Convexity

We use an idea from [78] to give a method of producing n-exponentially convex and ex-
ponentially convex functions, applying the functionals _#y; and _#; to a given family of
functions with the same property.

Theorem 5.9 Let 7, i = 1,2, be the linear functionals defined in (5.17) and (5.29),
respectively. Let Q = {®, : p € J}, where J is an interval in R, be a family of functions
@, € C([m,M],R) such that the function p — [xo,x1,x2;®Dp] is n-exponentially convex in
the Jensen sense on J for every choice of three mutually different points x,x1,x, € [m,M].
Then p — _Z4i(g,®p) is an n-exponentially convex function in the Jensen sense on J. If

the function p — _#4i(g,®p) is also continuous on J, then it is n-exponentially convex on
J.

Proof. Define the function v : [ — R by
n
v = Y §&Pr, (v),
k=1

ri+r
where & eR, rjree, 1< jk<n,rjx= UL

;and @, € Q. Using the assumption that

for every choice of three mutually different points xo,x1,x2 € [m,M], p — [x0,x1,x2;Dp]
is n-exponentially convex in the Jensen sense on J, we obtain that

n
[XO,Xl,XQ;V] = 2 éjék[x(]?xl?xZ;(Drjk] > 0.
Jk=1

Therefore v is convex (and continuous) on I. Hence _Z4i(g,v) >0, i = 1,2, which implies
that .
Y &b ailg, @) > 0.
Jk=1
We conclude that the function p — _Z4i(g,®,) is n-exponentially convex on J in the
Jensensense. If p — Z4i(g, @) is continuous on J, then p — _Z4(g, @, ) is n-exponentially
convex by definition. O

The following corollary is an immediate consequence of Theorem 5.9.

Corollary 5.10 Let Zy;, i = 1,2, be the linear functionals defined in (5.17) and (5.29),
respectively. Let Q = {®, : p € J}, where J is an interval in R, be a family of functions
@, € C([m,M],R) such that the function p — [xo,X1,X2;®@p] is exponentially convex in
the Jensen sense on J for every choice of three mutually different points x,x1,x, € [m,M].
Then p — _Z4i(8,®p) is an exponentially convex function in the Jensen sense on J. If the
function p — _Z4i(g,®p) is also continuous on J, then it is exponentially convex on J.



116 5 JENSEN—STEFFENSEN INEQUALITY

Corollary 5.11 Ler 7y, i = 1,2, be the linear functionals defined in (5.17) and (5.29),
respectively. Let Q = {®, : p € J}, where J is an interval in R, be a family of functions
@, € C([m,M],R) such that the function p — [xo,x1,x2;Dp] is 2-exponentially convex in
the Jensen sense on J for every choice of three mutually different points x,x1,x, € [m,M].
Then the following statements hold:

(1) p— Zai(g,®p) is a 2-exponentially convex function in the Jensen sense on J.

() Ifp— _Zai(g, Pp) is continuous on J, then it is also 2-exponentially convex on J. If
p— Zai(g Pp) is additionally strictly positive, then it is also log-convex on J.

(ii) Ifp — _Zai(g, @p) is strictly positive and differentiable function on J, then for every
p,q,u,v € J such that p <u, g <v, we have

%[77C](ga /OliaQ) S%IMV(g’ /OliaQ)a i= 1a2a (534)
where .
/ai(g,q)p)) ] .
G ) IR

Mpq(8, Foir Q) = (5.35)

d
@/ﬁli(gaq)ﬁ)

Pl Q7 a | P79
/ai(&q)p)

for @, ®, € Q.

Proof. (i) and (ii) are immediate consequences of Theorem 5.9. To prove (iii), let p —
/ai(g,(Dp) be strictly positive and differentiable and therefore continuous, too. By (ii),
the function p — _#4,(g, ®p) is log-convex on J, and by Remark 1.1 (e), we obtain

log Zai(g, ®p) —10g Fail8, Py) _ 10g Failg, Pu) —l0g Fai(g, D)

(5.36)
P—q u—v
for p <u,q <v, p#q,u+#v,concluding
My (8 Fairy Q) < Muy(8: Fois Q).
The cases p = g and u = v follow from (5.36) as limit cases. O

Remark 5.12 Note that the results from Theorem 5.9, Corollary 5.10, and Corollary 5.11
still hold when two of the points xg,x;,x, € [m,M] coincide, for a family of differentiable
functions @, such that the function p — [xo,x1,x2;®,] is n-exponentially convex in the
Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense)
and furthermore, they still hold when all three points coincide for a family of twice differ-
entiable functions with the same property. The proofs are obtained by recalling Remark
1.3 and a suitable characterization of convexity.
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5.5 Examples

In this section, we will vary the choice of a family Q = {®, : p € J} in order to construct
different examples of exponentially convex functions and construct some means.

Example 5.2 Consider the family of functions

Q :{Kpi R— [0,00); pP ER}

defined by
1
Wepxa P 7é 0;
Kp(x) = .
Exz, p = 0.

2 . .
We have 5171(;, (x) = eP* > 0, which shows that k, is convex on R for every p € R.

From Remark 1.8, it follows that p — d‘i—zzicp (x) is exponentially convex. Therefore, p —
[x0,x1,X2; Kp] is exponentially convex (see [78]) (and so exponentially convex in the Jensen
sense). Now using Corollary 5.10, we conclude that p — _Z4i(g,kp), i = 1,2, are expo-
nentially convex in the Jensen sense. It is easy to verify that these mappings are continu-
ous, so they are exponentially convex. For this family of functions, .#), 4(g, Zui, Q) from
(5.35) becomes

1

Hai(8:Kp) \ 7 .
(/m<g, m) SR
Mpq(8, Foir Q) =4 exp (%—%) . p=q#0;
/ai(g,id~1(()) o
exp( 3 Fai(8:%0) ) p=a=b

and using (5.34), we have that it is monotone in p and g. If Z4;, i = 1,2, are positive,
using Theorem 5.5 and Theorem 5.8 applied for ® = k, € Qq and ¥ = x,, € Qy, it follows
that

Rp.q(8 o) =10g Mpg(8, Fois)  i=1,2

satisfy X, 4(8, Z0i, Q1) € [m,M]. If we set g([a,b]T) = [m,M], then we have that
X, 4(8, Fai, 1) are means (of the function g). Note that by (5.34) they are monotone
means.

Example 5.3 Consider the family of functions

Q= {Bp: (0.=) ~R: p € R}
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defined by
xp
———, p#0,1;
pip—1) P
Pl =1 “togx, p=o0:

xlogx, p=1

2 . .
We have %ﬁp (x) = xP72 = ¢(P=2)loex . (0, which shows that B, is convex for x > 0.

Also, from Remark 1.8, it follows that p — d(ic_ZZ Bp (x) is exponentially convex. Therefore,
p — [x0,x1,%x2; Bp] is exponentially convex (and so exponentially convex in the Jensen
sense). Here we assume that [m,M] C (0,e0), so € fulfills the conditions of Corollary
5.10. In this case, .#), 4(g, Fai,2) from (5.35) becomes

Sails:By) |7 |
</ai(gvﬁq)> ' P#4:
1-2p Hai(g: BoBp)
o —1)  Zulg, ,p=q#0,1;
Mpq(8, Fairy Q) = <p(p ) (8 ﬁp))
ex — i(8,B7) N
(1) P=q=0:
ex _/Oﬂ(g ﬁOﬁl) o
P(1-gey)  pmemt

If Zai, i=1,2, are positive, by applying Theorem 5.5 and Theorem 5.8 for ® = ff, €
and ¥ = B, € Q,, it follows that for i = 1,2, there exist §; € [m, M] such that

gr-a _ Lail8:Bp)
l Hai(8,Bq)

Since the function & — &7~ is invertible for p # g, we have

/Oll(gvﬂ[?)
(fa,ag ﬁq)) =M 637

Also, Mp.4(8, Fai, ) is continuous, symmetric and monotone (by (5.34)). If we set
g([a,b]T) = [m,M], then we have that

_ . Hai(8,Bp)\ 7 X i=
m_fEI[Ialallf]lT{g(t)} (/ou(&ﬁq)) <l£a}7]’]1‘{g( y=M, fori=12, (38

which shows that .}, ;(g, Zai,€22) are means (of the function g). Now we impose one
additional parameter r in case g([a,b|T) = [m,M]. For r # 0, by substituting g — g",



5.5 EXAMPLES 119
pr— p/rand g— q/rin (5.3), we get
(o .
m= min {¢g'()} < (M)p "< max {g'(0)) =M, fori=12. (539

r€fabp Hai(g" By) = tefably

We define new generalized means by

s

(‘//’,%(gr7fai,gz)>% . r£0;

~|

M4 (8 Fair ) =
(A2 401088, Fai ), r=0.
These new generalized means are also monotone.

Example 5.4 Consider the family of functions

Q= {1p: (0,%0) = (0,%0): p € (0,0)}

defined by
p—x

Y, pF L
(logp)?” P

Yo (x) = ,
X
gl -1
7 P

We have (fx—zzyp (x) = p™* >0, which shows that ¥, is convex for p > 0. Also, from Remark
1.8, it follows that p — di—zzyp (x) is exponentially convex. Therefore, p — [xo,x1,X2;%p]
is exponentially convex (and so exponentially convex in the Jensen sense). Here we as-
sume that [m,M] C (0,e), so €3 fulfills the conditions of Corollary 5.10. In this case,
Mp4(8, Fai, Q) from (5.35) becomes

1

o S

_ i(g,id-yp) 2
Mpq(8 FaisQ3) = { ex (—/a (8,id- 7 — >, = 1;
e P\ 0 Fulery)  plogp) P #

exp [~ ei(8:1d-11) .
p( 3 Zai(g:m) >’ p=a=1

and by (5.34) it is monotone in p and g. Using Theorem 5.5 and Theorem 5.8, it follows
that fori = 1,2,

Rpq(8: FaiQ3) = —L(p,q)log Mp4(8: Fi,23)
satisfy 8, ,(g, Zai,3) € [m,M]. Here, L(p,q) is the logarithmic mean defined by
P—q

L(p,q) = ————
(p,9) logp _logq’

p#q, Lip,p)=p.
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Example 5.5 Consider the family of functions
Q4= {51) 2 (0,00) = (0,00) 1 p € (0,00)}

defined by

We have d‘i—225p (x) = e *VP > 0, which shows that 0p is convex for p > 0. Also, from Re-

mark 1.8, it follows that p — <f7226p (x) is exponentially convex. Therefore, p — [xo,x1,x2; Op]
is exponentially convex (and so exponentially convex in the Jensen sense). Here we as-
sume that [m,M] C (0,0), so Q4 fulfills the conditions of Corollary 5.10. In this case,
Mpq(8, Fai, Q) from (5.35) becomes

GB)" e

_ /ai(gvid'ap) _l —
eXp( 2P 7 0i(g,6p) l’)7p *

and it is monotone in p and g by (5.34). Using Theorem 5.5 and Theorem 5.8, it follows
that fori = 1,2,

'ﬂ[%q(ga /OliaQ4) =

Rpq(8 Sai Q) = —(Vs+\/q)log Mpq(8, Jai,Qu)
satisfies X, 4(g, Zui,Q4) € [m,M].



Chapter

Improvements of the
Hermite—Hadamard Inequality

In this chapter, we give several refinements of the converses of Jensen’s inequality as well
as of the Hermite—Hadamard inequality on time scales. We give mean value theorems
and investigate logarithmic and exponential convexity of linear functionals related to the
obtained refinements. We also give several examples which illustrate possible applications
for our results. Our presentation closely follows [38].

6.1 Converses of Jensen’s Inequality

To prove our main results, we need the following lemma, which is a simple consequence
of [103, page 717, Theorem 1].

Lemma 6.1 Let @ be a convex functionon I, x,y € I, and p,q € [0, 1] such that p+q = 1.
Then

min{p,q} [(D(x) L D(y) - 20 (%ﬂ ©.1)
< p@(x) +qP(y) — P(px+qy)

< max{p.q} |00 +00) ~20 (2.

121
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Throughout this chapter, we use the same notation as in Chapter 2.

Theorem 6.1 Assume f: & — [m,M] is A-integrable, where [m,M] C I, and h: & — R
is nonnegative and A-integrable such that La(h) > 0. If ® is convex on I, then

- M_EA(f>h) ZA(f7h) -m T (7
La(®(f),h) < —————2® ————O(M)-L h) o 6.2
s(@() ) < S 2B g + L 00 L (7 &, 62)
e I 1f = (e m)/2)
~ —(m+M m-+M
N =P O(M) —2® . .
foy - LR s oon 20 (") 6y
Moreover, if ® is concave, then the inequality in (6.2) holds in reverse order.
Proof. Let p,q : [m,M] — R be defined by
M —x x—m
= = . 6.4
p()=—. qx) = — (6.4)
For any x € [m,M], we can write
() = (7 —mt 2w ) = @(p(x)m+ (M)
X) = Sy v =O(p(x)m—+qg(x)M).

Suppose @ is convex. By Lemma 6.1, we have
@(x) < p(x)®(m) +q(x) (M)
—min{p(x),q(x)} (@(m) +O(M) - 20 (#)) :

Since |
min{x,y} = 5 (x+y—|x—yl),
by replacing x with f(s), for s € &, we obtain
®(f(s)) < p(f(s))D(m) + (£ (s))D(M) — F(s)80 6.5)

where the function f is defined on & by

7s) = % _ G —A/I("_’t;M)/%

Since & is nonnegative and A-integrable and L (k) > 0, multiplying (6.5) by A, integrating,
and then dividing by L (%), we obtain

La(®(f).h) < La(p(f),h)®(m) +La(q(f),1)@(M) — L (f,h) So,

from which (6.2) follows. If ® is concave, the reverse inequality in (6.2) follows immedi-
ately by using the fact that if @ is concave, then —® is convex. O
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Remark 6.1 Theorem 6.1 gives a refinement of Theorem 2.13 as under the required as-
sumptions, we have

La(f,h) 80 > 0.

Theorem 6.2 Assume ® € C(I,R) is convex and f : & — [m,M] is A-integrable with
[m,M] C 1. Also, let h: & — R be nonnegative and A-integrable such that La(h) > 0. Then

LA(D(f),h) — @ (La(f,h)) (6.6)
< Dax, {ff —®(m) + + ——D(M) - <I><x>} CTa (Fh) S0

= max {0®(m) (1~ 0)@(M) ~ @(om + (1~ 0)M)} ~La (7.1) do

where f and Og are defined in (6.3).

Proof. This is an immediate consequence of Theorem 6.1. The identity follows from the
change of variables 6 = (M —x)/(M — m), so that for x € [m,M], we have ¢ € [0,1] and
x=om+(l—0o)M. O

Remark 6.2 Arguing as in Remark 6.1, (6.6) is a refinement of (2.63).

Theorem 6.3 Assume ® € C(I,R), f: & — [m,M] is A-integrable, where [m,M| C I, and
h: & — R is nonnegative and A-integrable such that Lx(h) > 0. If ® is convex, then

{ M—LA(L )’+ZA( m ,h>}6¢, 6.7)

where Og is defined in (6.3). Moreover, if @ is concave, then (6.7) holds in reverse order.

LA(®(f),h) — @ (ZA(f, )

<
“M—-—m

Proof. Let p,q : [m,M] — R be defined as in (6.4). Then for any x € [m,M], we can write
(x) = D(p(x)m -+ g()M).
Since La(f,h) € [m,M], the above equation implies that
@ (La(f,h)) = @ (p (La(f,h)) m+q (La(f,h)) M) .

Suppose @ is convex. By Lemma 6.1, we get

@ (La(f,1)) > p (La(f, 1)) ©(m) + q (La( f, ) ©(M) (6.8)
—max {p (La(f,h)) .q (La(f.h)) } B0
= p (La(f,h)) @(m) +q (La(f,h)) P(M)
(m+M)/2—La(f,h)|

(sl
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Again by Lemma 6.1, we get
O(f) < p(f)@(m) +q(f)PM) —min{p(f),q(f)} b,

which implies that

LA(®(f), h) < La(p(f), h)®(m) +La(q(f),h)D(M) (6.9)
— La(min{p(f),q(f)},h)d0
= p (La(f.h)) @(m) + q (La(f,h)) D(M)
_{1_zA<|f—<m+M>/z|,h>}5¢.

2 M—m

Now, from inequalities (6.8) and (6.9), we get the desired inequality (6.7). If @ is concave,
the reverse inequality in (6.2) follows immediately by using the fact that if @ is concave,
then —® is convex. |

Corollary 6.1 Ler all the assumptions of Theorem 6.3 be satisfied. If @ is convex, then

LA((I)(f)ah) -0 (ZA(le))

m+M

——— — Lx( . (6.10
Moreover, if ® is concave, then (6.10) holds in reverse order.

Proof. Since

1 |m+M ¥ 1
M—m| 2 -2
we have
1 - (im+M 1
L —fl,h) <=
M—m™ ( ) > =2
Now inequality (6.10) directly follows from Theorem 6.3. O

Theorem 6.4 Assume @ : [m,M] — R is differentiable such that @' is strictly increasing
n [m,M]. Suppose f : & — [m,M| is A-integrable and h : & — R is nonnegative and
A-integrable such that Lx(h) > 0. If f and 8¢ are defined as in (6.3), then

La(®(f),h) < A+ (La(f,h)) = La (f,h) S0 (6.11)
holds for some A satisfying 0 < A < (M —m)(v—®'(m)), where v = (O(M)—®(m))/(M—
m). More precisely, A may be determined as follows: Let X be the unique solution of the
equation @ (x) = v. Then

A =®(m) — D)+ v(F—m)

satisfies (6.11).
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Proof. By Theorem 6.2, we have
LA(D(f),h) — @ (La(f,h)) < max g(x) —La (f,h) 8o,

x€[m,M]
where "
—X x—m
= D dM)—-D
80) = T (m) + 2 B(M) D (x)
Then

¢ (x) =v—® ),

which is strictly decreasing on I with g’(&) = 0 for a unique ¥ € I. Consequently g achieves
its maximum value at ¥. Hence the result follows. O

Remark 6.3 Theorem 6.4 gives a refinement of Theorem 2.58.

Corollary 6.2 Suppose f: & — [m,M] is A-integrable such that [m,M] C (0,e) and h :
& — R is nonnegative and A-integrable such that Lx(h) > 0. Then

La(f.h) < exp (La(log /) — 2 EM/m)_ (6.12)
[(m+ M) /4mp] ()
where S(+) is the Specht ratio defined by
ql/(a=1)
S(a) = eloga/@ 1’ ¢ € (0,0)\ {1},
and f is defined in Theorem 6.1.
Proof. This is a special case of Theorem 6.4 for ® = —log. In this case, (6.11) becomes

_ZA(longl) < A— log(zA(fvh)) _ZA (f,h) 5—loga

that is,
ZA(fah) < exp (ZA(Ing,h) +2 _ZA (fNah) 6—log)
_ expA
=exp (La(log f,h — ,
( ( )) exp (LA (f>h) o log)
where
M M)?
O_log = —logm—logM—i—Zlogm—; =log (m4—|—M) ,
m
v_logm—logM i——l— M—m
 M-m v logM—logm’
and

M/ m)"™ M—m) M
A =—logm+ v(X—m)+log% = log (M/m) :S< )

elog (M /m)™/ M=)
Considering all this, we obtain (6.12). O
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Corollary 6.3 Suppose f : & — [m,M] is A-integrable such that [m,M] C (0,e) and h :
& — R is nonnegative and A-integrable such that La(h) > 0. Then

La(f,h) <exp (La(log f,h)) +k)]gw(#/n:n)S (%) (6.13)

—La(f2,h) (m+M —2vV/mM),

where S(-) is the Specht ratio and f5 is defined by

1 |10gf—10g\/mM’

= 14
f2 2 logM —logm (©.14)

Proof. This is a special case of Theorem 6.4 for ® = exp and f = log f. In this case, (6.11)
becomes

La(explog f,h) < A +exp (La(log f,h)) — La(f2,h) 8exp,

where
1 logM
Ocxp = explogm + explogM — 2exp w =m+M—-2vVmM,
M—m B M—m
vV=———— JI=logv=log——,
logM —logm logM —logm
and
A =explogm+ v(¥—logm) — exp¥
o Mom (g MM gy
=m —logm —
logM —logm & logM —logm &
. M-m s M
~logM/m)" \m )’
Considering all this, we obtain (6.13). O

6.2 Improvements of the Hermite-Hadamard
Inequality

If @ is continuous in Theorem 6.1, then by combining this theorem with Theorem 2.8,
we obtain the refinement of the generalized Hermite—Hadamard inequality (2.4). In the
following two theorems, we give improvements of Theorem 2.15.
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Theorem 6.5 Assume f: & — [m,M] is A-integrable, where m,M] C I, andh: & — R is
nonnegative and A-integrable such that Lx(h) > 0. Moreover, let p,q be positive numbers
such that

_ m~+ gM
La(f.h) = P92
p+q
holds. If @ is convex on I, then
m+ qgM — d(m)+qgd(M) -~ .
@ (u) < Ta(@(f).n) < PRI 77 5, (6.15)
p+q p+q

where f and 8¢ are defined as in (6.3). Moreover, if ® is concave, then the inequalities in
(6.15) hold in reverse order.

Proof. The first inequality in (6.15) follows from Theorem 2.8, and the second one follows
from Theorem 6.1. ]

Theorem 6.6 Assume f: & — [m,M] is A-integrable, where m,M] C I, and h: & — R is
nonnegative and A-integrable such that Ly(h) > 0. Moreover, let p,q be positive numbers

such that M M
- pm-+q -m .
LA(f,h)=—, 0<y< min{ p,q (6.16)
A(f:h) P P {p.qa}

holds. If @ is convex on I, then

pm+qM —
® (ﬁ) < Ly(@(f).h)

< PRI g, (o (PRI g (PR 10

where

7= %_ If—(pm+;1M)/(p+61)\. 6.18)
y

Moreover, if ® is concave, then (6.17) holds in reverse order.

Proof. The first inequality in (6.17) follows from Theorem 2.8. By using (6.16), we have
m S zA(f7h) —y< ZA(f7h) +y S M.
Suppose m; = La(f,h) —y and M| = La(f,h) +y. Then

La(f,h) —y+La(f,h)+y _ m1+M1.

ZA(f7h) = 2 2

Now by Theorem 6.5 with p = g = 1, we obtain

La@(f).n) < 2Lalh) =) erd)(ZA(f,h)er)
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—La (fi,h) (D (La(f.h) —y) + @ (La(f,h) +y) — 2@ (La(f.h)))

= (1-2La (/1.h)) @ (La(f.h) - ) ;@(ZA(f,h)H)

+2EA (f17h) o (zA(fJ/l)) .
Suppose @ is convex. By Theorem 2.13, we get

M — (ZA(fah)_y)
M—m

M — (Lx(f,h)+)
M—m

)+zA(f>h)_y_m

D(m
M—m

(D(ZA(.ﬂh) _y) <

@ (La(f,h)+y) < ®(m) +

Hence

® (La(f,h) =y) + @ (Lalfih) +)
2

< Migff(i ) (m) + Lﬁf;’?m_ "om).

If p and g are any nonnegative numbers such that (6.16) holds (observe that they are dif-
ferent from those we started with), we obtain
@ (La(fh) =y) + @ (Lalf, 1) +3) _ p®(m) +q@(M)
2 - P+q ‘

Considering all this and the fact that 1 — 2L, ( fi, h) > 0, we deduce

+ ) p®(m) +q®(M)

La(®(f),h) < (1 2L (f1,h) + 2L (f1,h) @ (La(f,h))

r+q
_ p@(m) +qP(M)
p+q
- D(m) + qP(M m—+qM
—ZLA(fl,h) pP(m) + qP( )_q)<P q )}
r+q r+q
If @ is concave, then the reverse inequality in (6.17) holds immediately by using the fact
that if @ is concave, then —® is convex. O

From (6.17), an inequality of Hammer—Bullen type for multiple Lebesgue A-integrals
easily follows.

Corollary 6.4 Ler all the assumptions of Theorem 6.6 be satisfied. If @ is convex, then

p®(m)+q®M) —

(1—2ZA (fl,h)) ptq _LA(q)(f)’h):|

> 2L (fi,h) {ZA(GJ(f),h) —® <%)] . (6.19)

Moreover, if ® is concave, then (6.19) holds in reverse order.
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Proof. 1t follows directly from Theorem 6.6. |

Remark 6.4 We can also prove all the results of this section by using the fact that the time
scales integral is an isotonic linear functional. Using Theorem 2.6, Theorem 6.1 follows
from [90, Theorem 12]; Theorem 6.2 follows from [90, Theorem 13]; Theorem 6.3 follows
from [117, Theorem 8]; Corollary 6.1 follows from [117, Theorem 6]; Theorem 6.4 follows
from [90, Theorem 14]; Corollary 6.2 follows from [90, Corollary 2]; Corollary 6.3 follows
from [90, Corollary 3]; Theorem 6.5 follows from [89, Theorem 5]; Theorem 6.6 follows
from [89, Theorem 6] and Corollary 6.4 follows from [89, Corollary 1].

6.3 Mean Value Theorems

We assume throughout this section and the next section that f : & — [m,M] is A-integrable
and & : & — R is nonnegative and A-integrable such that Lx (k) > 0. If @ : I — R is such that
[m,M] C I and ®(f) is A-integrable, then motivated by Theorems 6.1, 6.3, and Corollary
6.1, we define the linear functionals _#;, i € {1,2,3}, by

/Al(q)):%(mf’h) M—m

~La(f.,h) 8o, (6.20)

Ina(®) =@ (La(f,h)) —La(®(f), h)

m+M ’

Sy m{ ——LA(fa ) +ZA((m+M)/2—f’h)}5¢’ 621)

I3(®) = @ (La(f 1)) — La(P(f), 1)

! m+M
+{2+M m —_LA(f7 )‘}&p, (6.22)

where f and 8¢ are defined in (6.3). If p,q, and f; are as in Theorems 6.5 and 6.6, we
define linear functionals _#x4 and _#as by

p®(m) +q@M) —

Ina(®@) = g —LA(D(f),h) =L (f,h) S0, (6.23)
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_ p(m)+q@()
- P2 IO L@().h)

If @ is additionally continuous and convex on /, then by using Theorem 6.1, Theorem 6.3,
Corollary 6.1, Theorem 6.5, and Theorem 6.6, respectively, we have

/Ai(q))zoy 16{172737475}

Theorem 6.7 Assume ® € C*(I,R), where [m,M] C I. Then there exist & € [m,M], i €
{1,2,3,4,5}, such that

Fas(®@)

Ini(®) = q)/lz(éi) Iai(®), i€{1,2,3,4,5} (6.25)

where ®g(x) = x°.
Proof. We give a proof for the functional _#x;. Since ® € Cc? (I), there exist @,,®* € R
such that

®, = min ®'(x) and @ = max ®"(x).

x€[m,M) xe[mM]
Let o o
o1(x) = 7);2 —®(x) and ¢y (x) = D(x) — 7*x2

Then ¢; and ¢, are continuous and convex on [m,M], and we have

Iai(¢1) >0,  _Zai(¢2) >0,
which implies
%fm(q’o) < (@) < %/AI (D).

If _Zx1(®g) = 0, then there is nothing to prove. Suppose _Zxi(Pg) > 0. Then we have

D, < m < d*.
Fa1(®o)
Hence, there exists & € [m,M] such that
2 b
/Al( ) — q)/l(él),
a1(Po)
and the result follows. O

Theorem 6.8 Assume ®,V € C*(I,R), where [m,M] C I. Then there exist & € [m,M], i €
{1,2,3,4,5}, such that
Jui(®) D&
Ia(Y)  W(&)

provided that the denominators in (6.26) are nonzero.

i€{1,2,3,4,5}, (6.26)



6.4 EXPONENTIAL CONVEXITY 131

Proof. The proof is similar to the proof of Theorem 5.5. O

/!
Remark 6.5 If the inverse of the function o exists, then (6.26) gives

- (2)'(52) cnasan

6.4 Exponential Convexity and Logarithmic
Convexity

Now we study log-convexity, n-exponential convexity, and exponential-convexity of the
functionals _#a;, i € {1,2,3,4,5}, similarly as in Section 5.4.

Theorem 6.9 Let J be an interval in R and I be an open interval in R. Assume Q =
{®p : p €J} is a family of functions @p : I — R such that @, (f) is A-integrable and
that the function p — [xo,x1,x2;®@p] is n-exponentially convex in the Jensen sense on J
for every choice of mutually different numbers xo,x1,x2 € I. Then p — _Z7i(®p), i €
{1,2,3,4,5}, is an n-exponentially convex function in the Jensen sense on J. If the function
p = Ixi(®p), i €{1,2,3,4,5}, is also continuous on J, then it is n-exponentially convex
onlJ.

Proof. The proof is similar to the proof of Theorem 5.9. O

The following corollary is an immediate consequence of Theorem 6.9.

Corollary 6.5 LetJ be an interval in R and I be an open interval in R. Assume Q = {®,, :
p €J} is afamily of functions ®, : I — R such that ®, (f) is A-integrable and that the func-
tion p — [xo,x1,x2;Pp] is exponentially convex in the Jensen sense on J for every choice
of mutually different numbers xo,x1,x2 € I. Then p — Zxi(®p), i € {1,2,3,4,5}, is an
exponentially convex function in the Jensen sense on J. If the function p — Zai(®p), i €
{1,2,3,4,5}, is also continuous on J, then it is exponentially convex on J.

Corollary 6.6 Let J be an interval in R and I be an open interval in R. Assume Q =
{®, : p €J} is a family of functions ®p : I — R such that ®,(f) is A-integrable and
that the function p — [xo,x1,x2;®p] is 2-exponentially convex in the Jensen sense on J for
every choice of mutually different numbers xy,x1,x2 € I. Then the following statements
hold:

(i) The functionp— Zai(®p), i €{1,2,3,4,5}, is 2-exponentially convex in the Jensen
sense on J.
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(i) If p— Zai(®p), i €{1,2,3,4,5}, is continuous on J, then it is also 2-exponentially
convexonJ. If p— Zai(®p), i € {1,2,3,4,5}, is additionally strictly positive, then
it is also log-convex on J.

(i) If p — Zai(®p), i € {1,2,3,4,5}, is strictly positive and differentiable on J, then
forp <u,q<v, p,q,u,v €J, we have

%p,q(fAhQ) g%u,v(fAhQ)7 i€{172737475}7 (627)
where 1
Ai(Pp) \ P79
(L { ")> . PE@
PANC)
Mpg( Iri, Q) = d (6.28)
e @/Ai(q’p)

exp| ———— |, p=g¢.

P\ @, |
Proof. The proof is similar to the proof of Corollary 5.11. O

Remark 6.6 Note that the results from Theorem 6.9, Corollary 6.5, and Corollary 6.6
still hold when two of the points xg,x1,x> € I coincide, for a family of differentiable func-
tions @, such that the function p — [xo,x1,x2;®,] is n-exponentially convex in the Jensen
sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense), and fur-
thermore, they still hold when all three points coincide for a family of twice differentiable
functions with the same property. The proofs are obtained by recalling Remark 1.3 and a
suitable characterization of convexity.

Example 6.1 Consider the family of functions
Q) ={xy: R—[0,); p e R}

defined in Example 5.2. Then by using Corollary 6.5, we conclude that p — _Zx;(kp), i €
{1,2,3,4,5}, are exponentially convex in the Jensen sense. It is easy to verify that these
mappings are continuous, so they are exponentially convex. For this family of functions,
My g( F2i,Q), i €{1,2,3,4,5}, from (6.28) becomes

1

(/Ai('ﬁz))”’

() P#q

i\Kp

/Ai(id-K'()) o
exp( 3_7ai(K0) )’ p=4=9,
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and by (6.27), it is monotone in p and g. Using Theorem 6.8, it follows that for i €
{1’273’475}7

Nm(/Aiagl) = log///p,q(/Ai,Ql)

satisfy X, ,(_Za;,Q21) € [m,M], which shows that X, ,(_#a;, Q) are means (of the func-
tion f). Note that by (6.27), they are monotone means.

Example 6.2 Consider the family of functions
Q= {By: (0.) = R: p € R)

defined in Example 5.3. Arguing as in Example 6.1, we have p — _Zai(By), i € {1,2,3,4,5},
are exponentially convex. In this case, .#Z), 4(_#ai,Q), i € {1,2,3,4, 5}, from (6.28) be-
comes

L

o[ L=2p  Lui(Bobo)
© p<p<p—1> By

) , P=q#0,1;
My q( Fni, Q) =

_ IwiBg) o
e""(l 2/A,~<ﬁo>>’ P=a=0;

. Fai(BoB) o
""p<1 2/A,~<Bl>>’ p=a=t

As fZai, i €{1,2,3,4,5},is positive, by Theorem 6.8 for @ = f3, € Q; and ¥ = f3, € Q,
there exist & € [m,M], i € {1,2,3,4,5}, such that

(éi)pq:%’ i6{1,2,3,4,5}-

Since the function & — (&)1, i € {1,2,3,4,5}, is invertible for p # g, we have

(S BNT
g(/Ai(ﬁq)) <M. ie{l23.4.5).

Also Ay o(_Zai,Q2), 1€{1,2,3,4,5},is continuous, symmetric, and monotone (by (6.27)),
shows that .7}, 4(_Zai, ), i € {1,2,3,4,5}, is a mean (of the function f).

Example 6.3 Consider the family of functions

Q3 ={1p: (0,%0) = (0,%0): p € (0,0)}
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defined in Example 5.4. For this family of functions, .#, 4(_#ai,2), i € {1,2,3,4,5},
from (6.28) becomes

(Z)

_ i(id - 7p) 2
%17 (/Ai?Q:;)_ €X (_ jA (1 bz )7 = 0713
i P p In(tp)  plp) 7 7

=2 _Zni(id-71) o
exp( 3 7xi(n) )’ p=a=1

and by (6.27), it is monotone in s and g. Using Theorem 6.8, it follows that for i €
{172737475}7

P#q

N[},(/(/Ai) QS) = —L(qu) log'%lhq(/Aia 93)
satisfies R, 4(_Zai»€23) € [m,M], which shows that X, ;(_#a;,Q3) is a mean (of the func-
tion f). Here L(p,q) is the logarithmic mean defined by

pP—q
L(p,q) = ———— L = p.
(p,q) logp —logq’ p#aq L(p,p)=p

Example 6.4 Consider the family of functions

Q4 ={8p: (0,00) = (0,0): p€(0,00)}
defined in Example 5.5. For this family of functions, .4, ,(_#ai,Q), i € {1,2,3,4,5},
from (6.28) becomes

1

_ /Ai(id'sp) _l _
xp < 2P Ini(8)) p>’p e

and it is monotone in p and g by (6.27). Using Theorem 6.8, it follows that for i €
{172737475}7

Mpq( Fni- Q) =

R (I8 Q) = —(Vs+/q)log My 4(_Fai,Q4)

satisfies R, o (_Zai,C24) € [m,M], which shows that X, ;(_#a;,Q4) is a mean (of the func-
tion f).



Chapter 7

Hermite—Hadamard and
Jensen-Mercer Inequalities
on Time Scales for Several
Variables

In this chapter, we obtain many improvements and generalizations of Jensen—Mercer and
Hermite—Hadamard inequalities on time scales. We also generalize these inequalities for
convex hulls in R¥. Moreover, we investigate logarithmic and exponential convexity of the
linear functionals obtained by the new results concerning Jensen—Mercer inequality. The
results presented in this chapter are taken from [37].

7.1 Preliminaries

The convex hull of vectors X1, ..., x, € R is the set

n n
{Z(X,'X,‘ ‘ o, eR, a; >0, ZOC,‘Z 1}
=1 i=1

and it is represented by K = co({xy,...,X,}).

135
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Barycentric coordinates over K are continuous real functions Ay, ..., A, on K with the
following properties:

2i(x)>0,ie{l,....,n}, D A(x)=1, and x:iki(x)xi. (7.1)

i=1 i=1

If x; —xq,...,X, — X are linearly independent vectors, then each x € K can be written in a
unique way as a convex combination of Xy, ...,X, in the form (7.1). We also consider a k-
simplex S = co({w1,..., W 1}) in R¥ which is a convex hull of its vertices Wy, ..., Wiy €
R, where vertices wp — w1, ... ,Wii] — W € R¥ are linearly independent. In this case, we
denote a k-simplex by S = [wy,..., W, ]. Barycentric coordinates Ai,...,Ax1 over S are
nonnegative linear polynomials on S and have a special form (see [32]). Moreover, in what
follows, we denote

n
Q,= {(vl,...,v,,): vi>0,ie{l,...,n}, Zvizl}
i=1

for n € N. Also, if ® is a function defined on a convex subset U C R¥ and X{,...,.X, €U,

we denote
1 n
Si D(x;) —nd | — il
(I)X17 7 2 n <n2X>

i=1
Obviously, if @ is convex, then S§ (Xi,...,X,) > 0.

To prove our main results we need the following lemma, which is a simple consequence
of [103, page 717, Theorem 1].

Lemma 7.1 Let U be a convex set in R* and (x,...,x,) € U". Suppose p = (p1,-..,pn)
n
is a nonnegative n-tuple such that 'y, p; = 1. If @ is a convex function on U, then
i=1

n
min {pi}Sh(xi,....x <2p1 X; —d)(ZpiXi)

<
1H<121<X {pl}S(I)(Xla - X )

From the discrete Jensen inequality, a reversed Jensen inequality easily follows (see
[119]).

Theorem 7.1 Let p be a real n-tuple such that

p1>0, p;<0,ie{2,....n}, and P,>0,

where P, = 2 pi. Let U be a convex set in RX, x; e U, i € {1,...,n}, and — Z pix; €U.
l’l i=1
Iff:U— R lS a convex function, then

( szxz> > —pr

"11 "11
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7.2 Generalizations of the Hermite—Hadamard
Inequality

In this section, we obtain generalizations of the converses of Jensen’s inequality, Theo-
rems 2.13, 2.59, and 6.2. As a consequence, we obtain generalizations of the Hermite—
Hadamard’s inequality (1.17). Moreover, since time scales integrals are isotonic linear
functionals, we can also use the approach of isotonic linear functionals. Results for iso-
tonic linear functionals analogous to the results of this section are given in [77, 118].

First we present generalizations of Theorem 2.13 and Theorem 6.1.

Lemma 7.2 Lerx,...,x, € RN and K = co({xy,...,x,}). Let Ay,..., A, be barycentric
coordinates over K. Suppose f is a A-integrable function on & such that £(&) C K and
h: & — R is nonnegative and A-integrable. If ® is a convex function on K, then

La(h®(f)) < iLA(hli(f))q)(Xi) —La (h min {;Li(f)}) So (X1, -+, Xn). (7.2)

= 1<i<n
Moreover, if ® is concave, then the inequality in (7.2) holds in reverse order.

Proof. By using the properties of barycentric coordinates, we have

n n

Ai(f(t))>0,ie{l,...,n}, D A(fr))=1, and f£(t) = A(f(t))x;.

i=1 i=1

Suppose @ is convex on K. Then by using Lemma 7.1, we have
n
O(f(r)) =@ | D Ai(f(1))xi (7.3)
i=1

n

< ZJLi(f(t))CIJ(xi) — min {A(f(2)) 1S (X1, - -, Xn)-
= 1<i<n

Since & is nonnegative and A-integrable, multiplying (7.3) by & and integrating, we obtain

the inequality (7.2). If @ is concave, the reverse inequality in (7.2) holds immediately by

using the fact that if @ is concave, then —® is convex. O

Theorem 7.2 Lerx,,...,x, € R¥and K =co({xy,...,x,}). Let Ay,..., A, be barycentric
coordinates over K. Suppose f is a A-integrable function on & such that £(&) C K and
h: & — R is nonnegative and A-integrable such that Ly(h) > 0. If ® is a convex function
on K, then

La(®(f),h) < iZA(ﬂLi(f),h)dJ(xi) ~ L <1r332n{/1,»(f)},h> SE(XDye o Xn).  (14)
i=1 SIS

Moreover; if @ is concave, then the inequality in (7.4) holds in reverse order.
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Proof. Since all assumptions of Lemma 7.2 are satisfied and additionally we have La(h) >
0, after dividing (7.2) by La(h), we obtain (7.4). O

Remark 7.1 Since the second term in (7.4) is nonnegative, we have
n
LA(D(F),h) < Y La(Ai(£), H)D(xy). (7.5)

Now (7.5) generalizes (2.3) and (7.4) generalizes (6.2).

Remark 7.2 If all assumptions of Theorem 7.2 are satisfied and additionally @ is contin-
uous, then by combining (7.4) with (4.1), we have

1<i<n

A(Ai(£),h)D(x;) — La ( min {A;( )},h) St (X1, -+, Xn).

Remark 7.3 Let all assumptions of Theorem 7.2 be satisfied and additionally ® > 0.
Dividing (7.4) by

(LA f h (ZLA Xh > ’
we obtain

o $ L) s  pin ().
T @(La(th)

So (X1, Xp)
f)x;, h)

£ vot) Lo ( min (1(0), )S

< max — - B (X15 ey Xn),
T, 3 wxi) O(La(f, 7))
which is equivalent to
La(®(f), h)
n
> vi®(x;)

< max ﬁ@(ﬁ(f,h)) —Ia (g}gn{xi(f)},@ SE(X1,...,X,).  (7.6)
ViX

Now inequality (7.6) is a refinement and generalization of (2.64).

In the following theorem, we give a generalization and refinement of Theorem 2.59.
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Theorem 7.3 Lerx,,...,x, € R¥and K =co({xy,...,x,}). Let Ay,..., A, be barycentric
coordinates over K. Suppose f is a A-integrable function on & such that £(&) C K and
h: & — R is nonnegative and A-integrable such that Ly(h) > 0. Let J be an interval in R.
Suppose @ is a convex function on K such that ®(K) C J and F: J x J — R is increasing
in the first variable. Then

F (La(®(£),h),® (La(f,h))) (7.7)

< F [ X Lalu(), o)

~Ia ( min {%(F)}, h) S (x1,.. Xn>>q><fA<f7h>>)

—ZA <1I£1[1§nn{ll(f)},h> S(%(Xl, A ,Xn),q) (ﬁi V,‘Xi>> .

Proof. By using the properties of barycentric coordinates, we have
Ai(f(z)) >0, i€ {l,...,n}, Zli(f(t)) =1,

and

()= 3 A1) (7.8)
i—1

Since & is nonnegative, A-integrable, and L (k) > 0, multiplying (7.8) by A, integrating,
and then dividing by Lx (%), we obtain

ZLA Xh

where
ZA(ll(f)’h)ZOa le{l,,l’l}

and

M=

i=1

La(Ai(f),h) = La (i/l,»(f),h) -
i=1

Therefore, EA(f,h) € K. Since F: J xJ — R is increasing in the first variable, using (7.4),
we have

F(EA(q)(f)>h)>q)(zA(f>h))) §F<iZA(kz(f),h)q)(Xl)

i=1

—ZA (fglélﬁ:},,(f)},h) S’&,(Xl, cee ,Xn),q) (ZA(f,h))> . (79)
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By the substitutions La(Ai(f),h) = v;, i € {1,...,n}, we get

n
ZA(f,h) = 2 ViX;.
i=1

Now we have

F (iZA(/li(f),h)CD(xi) —1a (113111 {/li(f)},h) S{i,(xl,...,x,l),CD(fA(f,h))> (7.10)
i=1 sisn
=F (i Vi®(x;) — Ly (fgin {7L,~(f)},h> So(Xi,5...,X,), P (i Vm))
=1 sisn i=1
< maxF (i Vi®(x;) — La ( min {ki(f)},h> St (X150, Xp), @ (i vixi>> :
n -1 1<i<n -1

By combining (7.9) and (7.10), we get (7.7). O
Remark 7.4 In Theorem 7.3, let F(x,y) =x—y. Then we have

La(®(F),h) — D(La(f,h))

< max (i vi®(x;) — @ (i vixi> —La ( min {l,(f)},h) S (X1, - ,x,,)> :

n \ =1 1<i<n

If Fx,y) = < for @ > 0, then
y

ZA((I)(f),h) . ,’El V,'(D(X,') — ZA (llgli’ln{ll(f)},h) S&,(Xl, . ,Xn)

OLa(ER) = @ ( i Vixi)
i=1

These inequalities are refinements and generalizations of the inequalities given in Remark
2.12.

By replacing F' with —F in Theorem 7.3, we get the next result.

Theorem 7.4 Letx,...,x, € RFand K = co({x1,...,Xp}). Let Ay,..., A, be barycentric
coordinates over K. Suppose f is a A-integrable function on & such that £(&) C K and
h: & — R is nonnegative and A-integrable such that Lx(h) > 0. Let J be an interval in R.
Suppose @ is a convex function on K such that ®(K) C J and F: J x J — R is decreasing
in the first variable. Then

F (La(®(£),h),® (La(f,h))) (7.11)

1<i<n

>F (g_A(li(f),h)CD(xi) — 1L ( min {)L,(f)},h) St (X1,...,X,), D (ZA(f,h))>
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> minF (i vi®(x;) — L (fgin {/l,(f)},h) S (X150, Xp), D (i v,~x,~>> .
i=1 sisn =1

n

Let S = [Wy,..., W] be a k-simplex in R¥ with vertices wy,...,wiy; € RY. The
barycentric coordinates Ay, ..., A4 over S are nonnegative linear polynomials that satisfy
Lagrange’s property

L,i=j
/’Li(Wj) = 5,']' = (7.12)
0,i+#].
Therefore, it is known that for each x € S, the barycentric coordinates A (x), ..., Az 1(X)
have the form
Vol ([x,W2,..., Wiy
Al (X) — ([ + D
VOlk(S)
Vol
Aa(x) = ol ([W1,X, ..., Wip1])
VOlk (S)
Vol ([wy,wa, ..., Wi, X])
A’ — ) ) ) )
k+1 (X) VOlk (S) )
where Vol;, denotes k-dimensional Lebesgue measure on S. Here, for example, [w1,X, ..., W]
denotes the subsimplex obtained by replacing wy by x.
In other words, we see that the barycentric coordinates A4y, ..., A, for each x € § can

be presented as the ratios of the volume of a subsimplex with one vertex in x and the
volume of S.
The signed volume Vol (S) is given by the (k+ 1) x (k+ 1) determinant

1 1 ... 1
| w11 W21 Wi+1,1
— — W12 w22 Wi41,2
Vol(8) =57 |12 ™ P
Wik Wok -+« Wikl k
where Wi = (Wi1,Wi2,. .. ,Wik), -+, Wikt 1 = (Wit 1,1, Wk+12, - - -, Wi 1,&)- Since the vectors
Wy — Wi,..., W1 — W are linearly independent, each x € S can be written in a unique
way as a convex combination of wy,..., W in the form
. Volk([x,wz,...,wkﬂ})w n Vol ([Wi,X, ..., Wii1])
Vol (S) ! Vol (S)
Vol (Wi, W2, ..., Wi, X
4.+ k([ 1, W2, s Wk Dwk+l~ (713)

VOlk (S)

Now we present an analogue of Theorem 7.2 for convex functions defined on k-simplices
ok
in R".
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Theorem 7.5 LerS=[wy,..., W] be ak-simplex in R* andlet Ay,..., A\ be barycen-
tric coordinates over S. Suppose f is a A-integrable function on & such that £(&) C S and
h: & — R is nonnegative and A-integrable such that Lx(h) > 0. If ® is a convex function
on S, then

La(D(F), 1) (7.14)

K+l B .

< ;LA(li(f)’h)q’(Wi) — Ly (1<I}1<11£1+1{)Li(f)}7h> SEFH (W1, Wit 1)

_ Vol ([La(f,h), W2, ..., Wit 1])
VOlk(S)

VOlk([wlaW27 o awk7zA(f7h)])
VOlk(S)

—La (KIIIE?H{%(f)},h) SET WL W),

(D(W1)+...

D(Wip1)

Moreover; if @ is concave, then the inequality in (7.14) holds in reverse order.

Proof. The proof is analogous to the proof of Theorem 7.2 with

11 ... 1
1 fl(t) wa1 Wk+171
I :
A (£(t)) = Vol ([f(t), w2, ... Wier]) [ felt) wak - Wip1k
1 Vol (S) r 1 ... 1
Wil W2l Wkl
— (W12 W22 Wit12
4 _ ‘
Wik Wok -+ Wrrlk
1 ... 1
1 |wiwar fi(t)
Ko :
Vol ([wy,wa,...,wi,£()]) Wik Wi ... filt)
M1 (£(2)) = _
w1(£(2)) Voli(S) [
Wil W21 Wil

— W12 W22 Wi+1,2
[

Wik Wok -+ Wit1k
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and
1 1 1
1 |La(fish) war wigrn
k! : :
— LA(fish) wok - W1k
La(A(£),h) = '
1 1 1
Wil W21 Wiyl
w2 w2 Wiyn2
k!
Wik Wok - Wiilk

Vol ([La(f,h),wa, ..., W

i+1])

VOlk(S)
1 1 1
1 (Wit war La(fi,h)
k! :
_ Wik Wk .. La(fi,h)
La(Aay1(£),h) =
1 1 1
Wil W21 Wil
— W12 W22 Wi+1,2
k!
Wik Wok - Witik
o Vol ([Wl,Wz,---,Wk,ZA(f,h)])

VOlk (S)

Using Theorem 7.5, in the following theorem, we

Theorem 7.6 LetS=[wy,...,Wiy1] be ak-simplexi

O

present an analogue of Theorem 7.3.

nR¥ andlet Ay, ..., Axy1 be barycen-

tric coordinates over S. Suppose f is a A-integrable function on & such that £(&) C S and

h: & — R is nonnegative and A-integrable such that
Suppose @ is a convex function on K such that ®(S)
in the first variable. Then

F (ZA(q)(f)’h)’q) (ZA(f7h)))
(Volk([X,Wz,---7Wk+l])
VOlk(S)

VO]](([W17W27 s 7Wk>X])
VOlk(S)

D(wy)

< maxF
xes

D(Wyi1)

La(h) > 0. Let J be an interval in R.
CJand F:JxJ— Risincreasing

(7.15)

+...
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T min ()] 57 ) 00

1<i<kt1
k1
=maxF | Y vi®d(w;)
Qk+l i=1

k+1
L i k1
T (min G010 557 w1 )0 ( ) viw,)) |

Proof. By putting

_ Volp([x,wa,..., Wi y1]) _ Volg([wy,wa, ..., Wi, X])
Vi = sy Vil = 5
Vol (S) Vol (S)
and
k+1
X= Viw;,
i=1
the proof is analogous to the proof of Theorem 7.3. O

Remark 7.5 By replacing F with —F in Theorem 7.6, we get an analogue of Theorem
7.4 for convex functions defined on k-simplices in R,

Remark 7.6 If all assumptions of Theorem 7.5 are satisfied and if @ is continuous and
convex, then

D(La(f,h)) < La(P(F), ) (7.16)

k+1
< 3 La(Xi(t),h)®(w;) — La (Kng&l{xi(f)},h) Se (W, Wit1)
i=1 ==

_ Vol([La(f,h), W2, .., Wi 1])
VOlk(S)

Vol ([wi,wa,...,wi, La(f,h)])
VOlk(S)

—Ia ( min {xl(f)},h> Slgrl(wl, e ,Wk+1).

1<i<k+1

D(wy)+...

D(Wiy 1)

The first inequality is (4.1) and the second one is (7.14). If we take the discrete form of
inequality (7.16), then its related results are given in [32, 131]. On the other hand, if we

take the real case, related results are obtained as a consequence of Choquet’s theory (see
[58, 105, 106, 107, 128]).
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7.3 Jensen—Mercer Inequality

The discrete form of Jensen—Mercer’s inequality and some of its applications are given in
[100]. In this section and the next section, we give refinements and generalizations on time
scales. Moreover, related results for isotonic linear functionals are given in [98].

Throughout this section and the following sections, we take [m,M] an interval in R
such that —eo <m < M < oo,

Theorem 7.7 Suppose f is a A-integrable function on & such that (&) C [m,M] and
h: & — R is nonnegative and A-integrable such that La(h) > 0. Let ® € C([m,M],R). If
D is convex, then

O(m+M —Lr(f,h)) < La(®@(m+M — f),h) (7.17)
< Mij‘ﬁ(r’; ) o) + LA’;’ f)m_ “o(m)

< @(m) + (M) — La(P(f), h).
Moreover, if © is concave, then the inequalities in (7.17) hold in reverse order.

Proof. Suppose @ is convex. By applying the Jensen inequality on time scales to the
function g = m+ M — f, we obtain

@ (La(g,h)) <La(®(g),h),

i.e.,
d>(m+M—ZA(f,h)) < LA(D(m+M— f),h).

Now by applying Theorem 2.13 to g, and then to f, we obtain

LA(P(m+M — f,h)

< Mi;ff(r’; ) @) + LA(A’;’ f)m_ " (m)
— @ (m)+oM) - | X }ff% ) o m) + LA(A’;’f)m_ “o(m)

< @(m) + O(M) — La(D(f),h).
If @ is concave, the reverse inequalities in (7.17) hold immediately by using the fact that if

® is concave, then —® is convex. O

Theorem 7.8 Suppose f is a A-integrable function on & such that (&) C [m,M] and
h: & — R is nonnegative and A-integrable such that Ly(h) > 0. Let ® € C([m,M],R). If
D is convex, then

D(m+M—La(f,h)) (7.18)
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< La(@(m+M— f),h)
< M_ZA(fah)q)

(M)—FZA(f,h)_m m T

—m M—m
)]

D(m) + D(M) — La(P(f),h)
2 - M
—P— lﬂ< m
—m
where f and 8¢ are defined as in (6.3). Moreover, if ® is concave, then the inequalities in
(7.18) hold in reverse order.

IA
<

W =
< ®(m) + D(M) — La(D(f),h),

Proof. Suppose @ is convex. Using the first inequality from the series (7.17) and applying
inequality (6.2) first to the function g = m+ M — f, and then to the function f, we obtain

D(m+M —La(f,h))
< zA(q)(m+M_f)7h)

< M) g BT gy 7 (7

=)+ o(ur) - | M Mg U My 171
< ®m) + (M) ~ La(@(1). )~ 2La 7, 1)

=0+ 000) - La@(.h) - [1- 32 (- "M ) o

< ®m) + OM) ~ La(@(1).h).

The last inequality follows from the facts that 8¢ > 0 and

2 - m+M
1-— L ——|,h] >0.
M—m A ( f 2 ) ) =
If @ is concave, then the reverse inequalities in (7.17) hold immediately by using the fact
that if ® is concave, then —® is convex. O

Theorem 7.9 Suppose f is a A-integrable function on & such that (&) C [m,M] and
h: & — R is nonnegative and A-integrable such that Ly(h) > 0. Let ® € C([m,M],R). If
D is convex, then

®(m+M —Ta(f,h)) (7.19)

< M_ZA(fvh)q)(M)+zA(f7h)_m
M—m M—m

1 1 — m+M
—<§—m La(f,h) — —5— )5<1>

®(m)

2
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< @(m) +D(M) — La(D(f),h)

e (B ()

< ®(m) + D(M) —~ La(@(f). 1) - [l -l (‘f S

L(f,h) - # )] S0

s

where Og is defined as in (6.3). Moreover, if ® is concave, then the inequalities in (7.19)
hold in reverse order.

= M_
< ®(m) +D(M) — La(D(f), h).

Proof. Let the functions p,q: [m,M] — R be defined by

M —x xX—m
d = .
P =T g = S
For any x € [m,M], we can write
O) = (o —Sm+ 2" 0 ) = o(p(x)m + g(x)M)
X) = U—m" T U—m =®(p(x)m+q(x)M).

By Lemma 7.1 for n = 2, we get
(x) < p(x)@(m) +q(x)P(M) — min{p(x),q(x) } b

Since

min{x,y} = = (x+y— |x—yl),

N —

we have

M —x x—m 1 1 m+M
D(x) < (o} OM)— [ =— — .
(x)_M—m (m)+M—m (M) <2 M—m’x 2 D&D

Substituting x by La(g,h) such that g is A-integrable on &, we get

_ M —Ta(g,h) La(g,h)—m
@ (La(g,h)) < Y- D(m) + M (M)
1 1 — m+M
— <§ — m LA(g,h) - T > 5<I)~ (720)

Now, applying inequality (7.20) to g = m+ M — f, and then using inequality (6.2), we have

DO(m+M —La(f,h))

< Mi}ff(i ) O(M) +

1 1
2 M-—m

ZA(f,h)—m
M—m

L= "5 ) 5

®(m)
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= ®(m)+DM) — {Mi;ff(j; ) o om) 1 Lf‘;’ f)m‘ " o(m)
(5 3 P - "5 ) o

< 00 +000)~Lo@() 1) ~La(/ )
(oL - M 6

- ¢<S1§+<11§4<M;1 —Liii<;>,h> alh
e ) =22

< (n) + @)~ La@().0) - 1= 12T (|7 - 5 ) |

The last inequality is obtained by applying Jensen’s inequality to the continuous and con-

vex function |x|, so that
B ((r-5%) )
({7 )

If @ is concave, then the reverse inequalities in (7.19) hold immediately by using the fact
that if ® is concave, then —® is convex. O

ZA(f,h)—M‘ -

Remark 7.7 Using Theorem 7.9, we get an upper bound for the difference La(®(f),h) —
) (ZA (f,h)) obtained in [38, Theorem 2.6]. From (7.19), we have

LA(®(f),h) (7.21)
< ®d(m —i—fD(M)—fD(m—i-M—ZA(f,h))

[t -5

Since @ is convex, we get
O(m+M—Lx(f,h)) + D (La(f,h)) > 2@ (

La(f:h) = #D] 0.

M) . (7.22)

2

Combining inequalities (7.21) and (7.22), we obtain

La(®(f),h) = @ (La(f:h))
< ®(m) +D(M) — [®(m+M—La(f,h) +P (La(f,h))]

i (B (=) o)
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M
g@WyHmMya®<ﬂ%—)
{ i (2
<A<!f—— )+
—m

h) +|La(fh) — #D] S0

L) - "M )

S

7.4 Generalizations of Jensen—Mercer Inequality

Theorem 7.10 Lerxy,....x, € RY and K = co({x1,...,Xn}). Let Ay,..., A, be barycen-
tric coordinates over K. Suppose f is a A-integrable function on & such that £(&) C K and
h: & — R is nonnegative and A-integrable such that Ly(h) > 0. Let py, ..., p, be positive
real numbers such that

n

Py=Y.pi>La(h) and pi>La(h), i€{l,....n}.
i=1

If ® is a convex function on K, then

2 DiXi — LA(hf)

i=1
ol By (7.23)

~ Pn (2]71 l ZLA(hll(f))q)(Xl)

— min {p;— LA(hﬂLi(f))}Sfi,(xl,...,xn)>

1<i<n

<o (zpl ~ La(h(R)

i=1

(x5, | min (i~ La(h(0) + Lo (1 in G001 )| ).

1<i<n
Moreover, if ® is concave, then the inequalities in (7.23) hold in reverse order:

Proof. By using the properties of barycentric coordinates, we have

Ai(f(1)) >0, ie{l,....n}, i/li(f(t)) -

and

f@zZMWW& (7.24)
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Since 4 is nonnegative and A-integrable, multiplying (7.24) by & and integrating, we obtain

hf) = i LA (hki(f))xi.

i=1

Now we can write

Z pixi—La(hf) 3 pixi— 3 La(hAi(f))x;

’ - i Lalii)
1pn_LA(h) a P, —La(h) ; La(h) Xi,
where
— La(hAi(h) _ pi— La(hh(®) _ .
ij_l and mzo,le{l,...,n},
since

pi > La(h) > La(hAi(f)) forall ie{l,...,n}.
Therefore, the expression
él pixi — La(hf)
C B—La(h)

is a convex combination of the vectors Xy, ...,X, and belongs to K. Suppose ® is convex
on K. By using Lemma 7.1 and inequality (7.2), we get

i PpiXi — L (hf)
5 N NON
Py — La(h) =® (,Z{ B, —La(h) l)

pi = La(hAi(£) | o
{m}&)(xl,...,xn)

3 pid(xi) — 3 La(h2(£))D(x;) — min {pi—La(h(5)} Sh(xi.....x,)

i=1 i=1
Pn - LA(h)

> P LA (2[’1 LA hq)(f))

i=1

n
pi .
< N L AN N —
<2 P La(h) (%)~ min,

0510 [ min (i La(h(0)) + 2 (1 min 0} )] )

1<i<

If @ is concave, then the reverse inequality in (7.23) holds immediately by using the fact
that if @ is concave, then —® is convex. O

Theorem 7.11 Lerx,,...,x, € R¥ and K = co({xy,...,X,}). Let Aq,..., A, be barycen-
tric coordinates over K. Suppose f is a A-integrable function on & such that £(&) C K and
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h: & — R is nonnegative and A-integrable such that Lx(h) > 0. Let py, ..., pn be positive
real numbers such that

n
Po=Ypi>1 and p;>1,ic{l,...,n}. (7.25)
i=1

If ® is a convex function on K, then

o[ ($n o)
l_ 1 (iplq)(xl) - izA(l,(f),h)cp(xl)

— min {p;—La(Ai(f),h) } Sp(x1,...,X )>

1<i<n

< (ZP: —La(f,h)
—SE(X1,...,X,) [mm {pi—La(Mi( }-l—LA(mm {( )},h)D.

Moreover, if ® is concave, then the inequalities in (7.26) hold in reverse order:

Proof. The proof is similar to the proof of Theorem 7.10. Here we have

n

N La(Mi(f),h) =1, 0<La(Mi(f),h) <1,i€{l,...,n},

i=1

and

Now we can write

Zple L(f,h) ‘glpixi—gle(li(f%h)Xi

i N _ i pi—La(Ai(f), h) %
P, —1 P,—1 b P, —1
where
i 1 f 7h i_z i f ah .
zp—))zl and %20,16{1,...,@,
1 P,—1
since

pi>12> ZA(},i(f),h), ie {1,...,1’1}.
Therefore, the expression

2 PiXi — ZA(f7h)

=

P, -1
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is a convex combination of the vectors Xi,...,X, and belongs to K. Suppose ® is convex
on K. By using Lemma 7.1 and Theorem 7.2, we have

n
> pixi— La(f, )
i=1 Di— f) h) .
@ P—1 =¢ (2 -1

d l_L A«ifyh . i L }, f).h n
S 1@;{%} bixs - ox0
3 pi0(x) — 3 Ta(0.00(x) — min {pi~ Lo (0.1} Shixi. -3

P,—1

—SE(X1,...,X,) [mm {pi—La(Ai(£),h)} +La ( min {x( )},h)D .

If @ is concave, then the reverse inequality in (7.26) holds immediately by using the fact
that if ® is concave, then —® is convex. O

Remark 7.8 Theorems 7.10 and 7.11 can also be obtained by using Theorem 2.5 and [98,
Theorem 4].

Remark 7.9 Theorem 7.11 is a generalization of Theorem 7.9 for convex hulls. Since the
interval I = [m,M] is a 1-simplex with vertices m and M, the barycentric coordinates have
the special form

ft)—m
M—m

(7.27)

Therefore we have

M_ZA(f7h)
M—m

ZA(f7h) _m.

and La(A2(f),h) = T

La(Ai(f),h) =
Choosing n =2, p; = py = 1, x; = m, x, = M, from (7.26), we get

D(m+M—La(f,h))
ZA(fah) —m

< O(m [ D(m) + M —m (M)
- (%—ﬁ u(ﬂh)—#!)%( )
_ MLLi(i,h)q)(MHLA(A];,ﬁ)m )
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= (5~ s [Fatr =22 ) shma
< 0+ 000~ Ta(@(1),h) - |5 - 3 Tt - Y

(L

= ®(m) + ©(M) — La(P(f), h)
_[l_ﬁ(m(ﬂ -2 +La(‘f—w ”))]

82, (m,M).

Theorem 7.12 Lerx,,...,x, € R* and K = co({xy,...,X,}). Let Aq,..., A, be barycen-
tric coordinates over K. Suppose f is a A-integrable function on & such that £(&) C K and
h: & — R is nonnegative and A-integrable such that Lx(h) > 0. Let py, ..., pn be positive
real numbers such that

Y pix; — La(hf)

P, > La(h = —Y ¢
> La(h) an D) c

If ® is a convex function on K, then

z DiXi — LA(hf)
@ —Pn N (7.28)
1 2 PiXi _
> m P,® P, —LA(h)® (LA(ﬂh))
| ,;1 PiXi 0
> P Iath) P,® P - ;LA(hli(f))q)(Xi)

+ min {LA(h/'L,'(f))}S’&,(xl,...,x,,)) .
1<i<n
Moreover, if © is concave, then the inequalities in (7.28) hold in reverse order.

Proof. The proof is similar to the proof of Theorem 7.10. Here we use Theorem 7.1 instead
of Lemma 7.1. If @ is convex, then we have

n
| 2 piXi

P B La(h) I lzlpn — La(h) (La(£,1))
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n

| le’ixi
P — = — L
S RN P,® B La(h)® (L (£, 1))
| leixi "
P — = — ; ;
S RO B,® B Z{LA(hk,(f))QD(x,)

+ min {La(hkif))}Sp(x1,. ,xn)) '

If @ is concave, then the reverse inequality in (7.28) holds immediately by using the fact
that if @ is concave, then —® is convex. O

Theorem 7.13 Lerx;,....x, € RF and K = co({x1,...,Xn}). Let Ay,..., A, be barycen-
tric coordinates over K. Suppose f is a A-integrable function on & such that £(&) C K and
h: & — R is nonnegative and A-integrable such that Ly(h) > 0. Let py, ..., p, be positive

real numbers such that

n _
" <Z pix; — La(f, h))
P=Ypi>1 and ~= Yo cK. (7.29)
"

i=1

If ® is a convex function on K, then

Z PiXi — LA f h
o= B — (7.30)
n_

n
2 PiX

> 1 po| = (La(f,h))

~— B, -1 P, ’
n

| 21plxl 0
> PO | = — Y LA (), h)®
~— B, -1 n P, ; A( l( )7 ) (X,)

+ min {La( i(f),h)}S’&,(xl,...,x,,)).

Moreover, if ® is concave, then the inequalities in (7.30) hold in reverse order:

Proof. The proof is similar to the proof of Theorem 7.11; only here we use Theorem 7.1
instead of Lemma 7.1. ]
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Remark 7.10 If positive real numbers py, ..., p, satisfy condition (7.25), then condition
(7.29) is also satisfied since K is a convex set. Hence (7.26) can be extended as

n
| Zplxz "
P,® | = La(
P—1|" R )

+g}gn{maxf),h)}sg(xl,...,x,,>)

n
| leixi
< PO | = — @ (La(f,
“p—1|" P, (Lalf 1)
n
<o Zp,x, La(f,h)
i=1
1
S

(ip,cpx, pRACKORIE
~ s, P L0, Sl % ’)

l n _
S — (i;l’iq)(xi) —LA(q’(f)»h)>

—SE(X1,...,X,) [mm {pi—La(Ai(f),h)} +La (1m1n {( )},h)D .

Corollary 7.1 Suppose f is a A-integrable function on & such that £(&) C [m,M] and

h: & — R is nonnegative and A-integrable such that Lx(h) > 0. If ® is a convex function
on [m,M], then

D(m+M — La(f,h)) (7.31)
220 <#) — @ (La(f,h))
>20 (#) _ [w(p(m) + m

M—m M—m
n 1 1
2 M-—m

_ m+M
Moreover, if ® is concave, then the inequalities in (7.31) hold in reverse order.

(M)

a(r) = "5 ) s n)

Proof. Choosing n =2, x; =m, xp =M, p; = pp = 1, and using (7.27), the inequalities
in (7.31) easily follow from (7.30). O
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Corollary 7.2 LetS=[wy,..., W] be ak-simplex inR* andlet Ay,..., A\ be barycen-
tric coordinates over S. Suppose f is a A-integrable function on & such that £(&) C S and

h: & — R is nonnegative and A-integrable such that Ly(h) > 0. If ® is a convex function
on S, then

k+1
1 Elwi K+l
T (k+1)® I;+1 —Zili(LA(f,h))dD(wi) (7.32)

+ min {A; (La(f,h))} SlfDH(Wl o ,Wk+1)>

1<i<n
k+1
| 2 W
<= i=1 (T
<z |G+Do e @ (La(f,h))

1 [kt 3
<o <% (l; Wi —LA(f,h)>>

| [k 1
<< (2 D(w;) — Z, i (La(f,1)) ©(w;)

s + ket 1
< % (I)(wl)_LA(f’h)_S(D (wla"'ywarl)
—1

in {1 - (La(f,h L in A;(f),h .
| min (1 2 (a(6)} + T  min 201 | )
Moreover, if ® is concave, then the inequalities in (7.32) hold in reverse order:

Proof. Since barycentric coordinates A; . .., Ay, | over a k-simplex S in R¥ are nonnegative
linear polynomials, we have

LA(li(f),h):li (ZA(f,h)) forall i=1,....k+1.

Choosing x; =w; foralli=1,....,k+1 and p; = pp = ... = pry1 = 1, the inequalities in
(7.32) easily follow from (7.26) and (7.30). O
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7.5 Exponential Convexity

Suppose ®@: I — R is such that ®(f) is A-integrable, where [m, M| C I. Then motivated by
Theorems 7.8 and 7.9, we define the functionals _#y;, i € {6,...,10}, by

Ssal®) = Ta(@(m+ M= )0~ O(m+ M-Ta(f),  (1.33)
Fio(@) = ML) g0y LI gy 77 1)
—LA(®(m+M — f),h), (7.34)
Fasl@) = LA gy Ll ) iy,
M—m M—m
- (5 30 [ - 5] ) da - @ - Ta(rm). 139

I n9(®@) = @(m) + D(M) — @(m+M —La(f, h)) = La(P(f), h)

2 m+M
— 1= L S e
-t (-

h)] 5w, (7.36)
and
Ia10(®) = @(m) + ®(M) — D(m+M — Lx(f,h)) — La(P(f), )

1 _ —
- [1—m (LA (‘f—# h> + LA(f,h)—# >] 8. (7.37)

where f and 8¢ are defined as in (6.3). Obviously, Fai» i €{6,...,10}, are linear. If ®
is additionally continuous and convex, then Theorems 7.8 and 7.9 imply _#»;(®) >0, i €
{6,...,10}.

In the following, we denote by ® the function defined by ®¢(x) = x
domain.

Now, we give Cauchy mean value type theorems for the functionals #a,(®), i €

{6,...,10}.

Theorem 7.14 Let ¢ € C*(I,R), where [m,M] C I. Suppose Zpi, i € {6,...,10}, are
defined as in (7.33),...,(7.37). Then there exist & € [m,M], i € {6,...,10}, such that

Aute) =T gy, iete 10} 139

2 on a suitable
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Proof. Since ¢ € C*(I), there exist ), { € R such that

nzxen[}g}}ﬂ(p”(ﬂ and C=xg[lm]¢”(x}

Let
¢, 2

¢1(x) = R @(x) and ¢ (x) = @(x)— gx .

Then ¢; and ¢, are continuous and convex. Therefore, we have

pi(01) >0 and _Zpi(d2) >0, ie{6,...,10},

which implies
n ¢ .
> 8 ®0) < Jai(@) < 5 Jai(®o), i€16,...,10}.
If _7Zai(Pp) =0, then there is nothing to prove. If _#x;(®g) > 0, then we have

n < 2/ni(9) <¢, ie{6,...,10}.

= ai(Po)
Hence, there exist & € [m,M], i € {6,...,10}, such that
2fAi((P) " .
2ZMP) _ gy, ieds,...,10),
(@) v (&) { J
and the result follows. O

Theorem 7.15 Let ¢,y € C*(1,R), where [m,M] C I. Suppose Za;, i € {6,...,10}, are
defined as in (7.33),...,(7.37). Then there exist & € [m,M], i € {6,...,10}, such that

Saile) _ ¢"(&)
Iaiw)  v'(&)’

provided that the denominators in (7.39) are nonzero.

i€{6,...,10}, (7.39)

Proof. Consider the function y defined by
1) = Zai(w)o(t) — Zai(@) ().

As the function ¥ is a linear combination of ¢ and y, we get ¥ € C>(I). Now by applying
Theorem 7.14 to y, there exists & € [m, M] such that

Iai(x) = Xﬁééi) ai(@o).

But _Zxi(x) =0and #a;(Dp) # 0 (otherwise we have a contradiction with _#x;(y) # 0,
by Theorem 7.14). Therefore

x"(&)=0.
From here the result follows. O



7.5 EXPONENTIAL CONVEXITY 159

1
Remark 7.11 If the inverse of the function % exists, then (7.39) gives

-1
& = (‘P_//) </Ai(q))>
v (W)
Now we study the log-convexity, n-exponential convexity, and exponential-convexity of
the functionals _#;, i € {6,...,10}, similarly as in Section 5.4.

Theorem 7.16 Let #a;, i €{6,...,10}, be linear functionals defined as in (7.33),... (7.37).
Suppose J is an interval in R and Q = {®, : p € J} is a family of functions defined on an
open interval I such that [m,M] C I. If the function p — [xo,x1,Xx2;®p] is n-exponentially
convex in the Jensen sense on J for every choice of mutually different numbers xq,x1,x2 € I,
then p — _Zzi(®p), i € {6,...,10}, is an n-exponentially convex function in the Jensen
sense on J. If the function p — Zxi(®p), i € {6,...,10}, is also continuous on J, then it

is n-exponentially convex on J.

Proof. The proof is similar to the proof of Theorem 5.9. O

The following corollary is an immediate consequence of Theorem 7.16.

Corollary 7.3 Let _#;, i €{6,...,10}, be linear functionals defined as in (7.33), ... ,(7.37).
Suppose J is an interval in R and Q = {®,: p € J} is a family of functions defined on
an open interval I such that [m,M| C I. If the function p — [xo,X1,x2;®@p] is exponentially
convex in the Jensen sense on J for every choice of mutually different numbers xq,x1,x2 € I,
thenp — Zxi(®p), i€ {6,...,10}, is an exponentially convex function in the Jensen sense
on J. If the function p — _Zxi(®p), i € {6,...,10}, is also continuous on J, then it is ex-
ponentially convex on J.

Corollary 7.4 Let #a;, i €{6,...,10}, belinear functionals defined as in (7.33),... (7.37).
Suppose J is an interval in R and Q = {®, : p € J} is a family of functions defined on an
open interval I such that [m,M) C I. If the function p — [xo,x1,X2;®Dp] is 2-exponentially
convex in the Jensen sense on J for every choice of mutually different numbers xq,x1,x2 € I,
then the following statements hold:

(i) The function p — Zxi(®p), i € {6,...,10}, is 2-exponentially convex in the Jensen
sense on J.

(i) If p— Zai(®p), i € {6,...,10}, is continuous on J, then it is also 2-exponentially
convex on J. If p— _Zxi(®p), i € {6,...,10}, is additionally strictly positive, then
it is also log-convex on J.

(iii) If p — Zai(®p), i € {6,...,10}, is a strictly positive differentiable function on J,
then for any p <u, g <v, p,q,u,v € J, we have

Mpg( Ini, Q) < Mun( FainQ), 1€{6,...,10}, (7.40)
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where
Fail®,)\ 7 .
</Ai(‘1’q)> PP
Mpq( Inir Q) = fi/@&®ﬁ (7.41)
exp | 427 .
Pl e, |07

Proof. (i) and (ii) are immediate consequences of Theorem 7.16. To prove (iii), note that
p— Zai(®p), i € {6,...,10}, is positive and differentiable and therefore continuous too.
By (ii), the function p — _#x;(®, ) is log-convex, and by Remark 1.6 (b), we obtain

log Zni(®p) —log Fai(®q) _ log Zai(Pu) —log Fai(®Py)
P—q N u—v

for p <u,q <v, p+#q,u+v,concluding

Mpg( I0i Q) < Muy( Iain Q). (7.42)

The cases p = g and u = v follow from (7.42) as limit cases. O

Remark 7.12 Note that the results from Theorem 7.16, Corollary 7.3, and Corollary 7.4
still hold when two of the points xg,x1,x> € I coincide, for a family of differentiable func-
tions @, such that the function p — [xo,x1,x2; @,] is n-exponentially convex in the Jensen
sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense), and fur-
thermore, they still hold when all three points coincide for a family of twice differentiable
functions with the same property. The proofs are obtained by recalling Remark 1.4 and
suitably characterizing convexity.

Now, we present several families of functions which fulfil the conditions of Theorem 7.16,
Corollary 7.3, and Corollary 7.4 (and Remark 7.12). This enables us to construct large
families of functions which are exponentially convex. For a discussion related to this
problem, see [56]. In the following, we denote by id the identity function.

Example 7.1 Consider the family of functions
Q) ={xy: R—[0,); p e R}
defined in Example 5.2. Then by using Corollary 7.3, we conclude that p — _#xi(kp), i €

{6,...,10}, are exponentially convex in the Jensen sense. It is easy to verify that these
mappings are continuous, so they are exponentially convex. For this family of functions,
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Mpg( i, Q), i €{6,...,10}, from (6.28) becomes

Failkp) \ 70 .
</Ai(’<q)) ’ P
o Iaidok) 2\
«/fp,q(/Azagl) exp (W_;> , P=q#0;
ai(id - ko) _
exp <73in(KO) ), p=q=0,

and using (7.40), it is monotone in p and g. Using Theorem 7.15, it follows that for
i€{6,...,10},
Rpg( i 1) =log My q( Fai, 1)
satisfy X, ,(_Zai,Q21) € [m,M], which shows that X, ,(_#a;, Q1) are means (of the func-
tion f). Note that by (7.40) they are monotone means.
Example 7.2 Consider the family of functions
Q= {By: (0.%) = R: p € R)

defined in Example 5.3. Arguing as in Example 7.1, we have p — _#xi(By), i € {6,...,10},
are exponentially convex. In this case .#), 4(_Zi,Q), i € {6,...,10}, from (7.41) becomes

o[ L=2p  Fui(BoPo)
© p<p<p—1> By

) , P=q#0,1;
My q( Fni, Q) =

_ IwiBg) o
e""(l 2/A,~<ﬁo>>’ P=a=0;

. Fai(BoB) o
""p<1 2/A,~<Bl>>’ p=a=t

As _Za; is positive, by applying Theorem 7.15 for ¢ = 8, € Q; and y = B, € Q», there
exist & € [m,M] such that

gra i(By) i€{6,...,10}.

-~ Iai(By)’
Since the function &; — (&;)?~ 7 is invertible for p # g, we have

e (LB
g(/Ai(ﬁq)) <M, ie{s...10}

Also Ay 4(_Zai,€2) is continuous, symmetric, and monotone (by (7.40)) shows that
My q(_Fai,Q2) is a mean (of the function f).



162 7 INEQUALITIES FOR SEVERAL VARIABLES

Example 7.3 Consider the family of functions

Q3Z{YP: (0,00) = (0,00): p € (0,00)}

defined in Example 5.4. For this family of functions, .#, ,(_#a;,Q), i €{6,...,10}, from
(7.41) become

PF#G

()™

Q) — Sailid-yp) 2 _ .
Mp.q( I 5i:£23) exp <— P/Ai()fp[)) _plnp)’ p=q#1;

=2 _Zxi(id-m) o
e’“’( 3 /w1 > p=a=1

and by (7.40), it is monotone in p and q. Using Theorem 7.15, it follows that for i €
{6,...,10},

Ry o( 78i,3) = —L(p,q)log My 4 Zni, )

satisfies R, ;(_Zai,Q3) € [m,M], which shows that X, ,(_#a;,Q3) is a mean (of the func-
tion f). Here L(p,q) is the logarithmic mean defined by

pP—q
L(p,q) = ——1— ., L(p,p)=p.
(p,q) fogp_logg’ © #4q. L(p,p)=p

Example 7.4 Consider the family of functions
Q4= {51): (0,00) = (0,00): p € (0,0)}

For this family of functions, .#,, 4(_#ai,2), i € {6,...,10}, from (7.41) become

PF#q

(Lo

e [ Lailid-6p) 1 _
p( 2P Fi(3)) p>”’ *

and it is monotone in p and g by (7.40). Using Theorem 7.15, it follows that for i €
{6,...,10},

Mpq( Fni- Q) =

Nl’ﬂ(fAi?Q“) = _(\/E+ \/‘?)log'/fp,q(/AiaQU

satisfies R, o (_Zai,€24) € [m,M], which shows that X, ;(_#a;,Q4) is a mean (of the func-
tion f).



Chapter

Cauchy Type Means and
Exponential and Logarithmic
Convexity for Superquadratic
Functions

In this chapter, we define positive functionals by using Jensen’s inequality, the converse
of Jensen’s inequality, and Jensen—Mercer’s inequality on time scales for superquadratic
functions. We give mean-value theorems and introduce related Cauchy type means by
using the functionals mentioned above and show the monotonicity of these means. We
also show that these functionals are exponentially convex and give some applications of
them by using log-convexity and exponential convexity. The presentation of the results in
this chapter closely follows [35].

8.1 Mean Value Theorems

Under the assumptions of Theorems 2.63, 2.70, and 2.72, we define functionals _#y, j\;

and j\\y by
>] Au—(b—a)¥ <7ffbf£tlm> , (8.1

163

J2 f(1)Ar
b

j@zlﬂﬁuw»—WQﬂm—
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Fo = (b—a)(¥m) + ()~ [ W(r) - K 52
—(b—a)¥ <m+M— big/ﬂ”f(r)&) :
S MO [PIOM, [N b
Sy = Y W(m)+ Ty ¥(M) (8.3)

—/b‘{’(f(t))At—R.

From the inequalitie/sv (2.65), (2.73), and (2.75), it is clear that, subject to the relevant

assumptions, %y, Zv,and f_\y are nonnegative.
In the sequel, we consider ¥ € C!((0,),R) defined as in (1.8).

Theorem 8.1 Leta,b € T. Suppose f € Cra([a,b),[0,0)) and ¥ € C!([0,0),R) is such
that ¥(0) = 0 and ¥ € C'((0,),R). Then

p¥'(p) —¥'(p)
2
holds for some p > 0, provided that v, # 0, where V3 is defined in (1.10).

v = BAA (8.4)

Proof. Define
Y, = inf ?/(x) and y*:= sup ?/(x).
x€(0,00) x€(0,00)

Case 1: Suppose

.= min P d v'= ¥ (x).
LA

Then
- XV (x) — W' (x)

v, <

2 <wy* forall x>0. (8.5)

Hence by Lemma 1.3, ¥ and ¥, defined in (1.9) are superquadratic. By Theorem 2.63,
we have fZy,, 79, > 0. Thus, since fy, = y* fy, — Zy and Ly, = Ty — Y _y,,

we obtain
Ve Joy, < Jw Sy Fys. (8.6)
Now, (8.5) and (8.6) imply that there exists p > 0 such that (8.4) holds.
Case 2: Suppose

.= min ¥ d v ¥ ().
Y. = min (x) and 'y #xgg{i) (x)

In this case, ¥ is strictly superquadratic. Therefore #3 > 0and ¢y, > 0. Hence

XV (x) — ¥ (x) .

W*Sx—2<u/

8.7



8.1 MEAN VALUE THEOREMS 165

and thus
Ve Jy, < v <yt fy,. (8.8)
Now, (8.7) and (8.8) imply that (8.4) holds for some p > 0.
Case 3: Suppose

. in ¥ d y*= ¥ (x).
v #xé?éfi) (x) and 'y max (x)

In this case, ¥, is strictly superquadratic. The rest of the proof is analogous to the proof in
Case 2.
Case 4: Suppose
v, # min ¥ (x) and y*# max ¥ (x).
x€(0,00) x€(0,00)
In this case, ¥, and ) both are strictly superquadratic. The rest of the proof is analogous
to the proof in Case 2.

In the case where y* = o (i.e., ¥ is not bounded above) and i, exists, using just ¥,

we obtain
- X (x) — ¥ (x)

W* = X2
in the case of minimum, and strong inequality in the case where y; is infimum. The rest
of the proof is as above. The remaining cases can be treated analogously. O

Theorem 8.2 Let a,b € T and f € Cu([a,b)T,[0,%0)) such that fy, # 0. Suppose
¥, @ € C'(]0,),R) are such that ¥(0) = ®(0) = 0 and ¥,® € C'((0,0),R). Then there
exists p > 0 such that
Su _p¥(p) ¥ (p) o)
So  pP(p)—@(p) '
holds, provided that the denominators in (8.9) are nonzero.

Proof. Define y € C!([0,0),R) by

x(x) = Fo¥(x)— FeD(x) for x>0.

Then ¥ € C!((0,%),R), x(0) =0, and _#, = 0. Therefore, by using x instead of ¥ in
Theorem 8.1, we obtain that there exists p > 0 such that

0=px"(p)—x'(p) = Fo(p¥"(p) =¥ (p)) — L¥(p®@"(p) — @' (p)),
from which (8.9) follows. O

Remark 8.1 In Theorem 8.2, let

_p¥"(p) —¥(p)
P w7 @ lp)

and suppose ¥ is invertible. Then we obtain another mean defined by

=0 (%)
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Theorem 8.3 Leta,b € T. Suppose f € Cu([a,b)T,[m,M]), where 0 <m < M < oo, and
WY € C([0,00),R) is such that ¥(0) = 0 and ¥ € C'((0,),R). Then

N p —y .
Sy = P¥(p) ¥ (p) /))2 () v, (8.10)

holds for some p > 0, provided that %3 #0.

Proof. The proof is analogous to the proof of Theorem 8.1, where, instead of using Theo-
rem 2.63, we apply Theorem 2.70 to ¥ and ¥,. ]

Theorem 8.4 Let a,b € T and f € Cy([a,b)T,[m,M]), where 0 < m < M < oo, such
that _fy, # 0. Suppose ¥,® € C!([0,0),R) are such that ¥(0) = ®(0) = 0 and ¥, ® €
C!((0,%0),R). Then there exists p > 0 such that

Sy _p¥(p) =¥ (p) &.11)
Jo  PY(p)—P(p)
holds, provided that the denominators in (8.11) are nonzero.

Proof. The proof is analogous to the proof of Theorem 8.2, where, instead of using Theo-
rem 8.1, we apply Theorem 8.3 to y. |

Remark 8.2 In Theorem 8.4, let

7o) = P (P) =¥ (p)
)= pw7p) @ lp)

and suppose % is invertible. Then we obtain another mean defined by

Theorem 8.5 Leta,b € T. Suppose f € Cu([a,b)T,[m,M]), where 0 <m < M < oo, and
WY € C'([0,00),R) is such that ¥(0) = 0 and ¥ € C'((0,),R). Then

P p —y A
Sy = P (p) ~¥(p) /))2 () w, (8.12)

holds for some p > 0O, provided that j;z # 0.

Proof. The proof is analogous to the proof of Theorem 8.1, where, instead of using Theo-
rem 2.63, we apply Theorem 2.72 to ¥, and 0. O
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Theorem 8.6 Let a,b € T and f € Cy([a,b)T,[m,M]), where 0 < m < M < oo, such
that j;:} # 0. Suppose ¥, ® € C([0,),R) are such that ¥(0) = ®(0) = 0 and ¥,® €
C!((0,00),R). Then there exists p > 0 such that

Sy p¥'(p)—¥(p)
To P (p)—W(p) 1

holds, provided that the denominators in (8.13) are nonzero.

Proof. The proof is analogous to the proof of Theorem 8.2, where, instead of using Theo-
rem 8.1, we apply Theorem 8.5 to . |

Remark 8.3 In Theorem 8.6, let

> p¥(p)—¥(p)
Y= pap)—wip)

and suppose % is invertible. Then we obtain another mean defined by

8.2 Generalized Means

First we recall the definition of generalized means for Cauchy A-integrals (See Definition
3.2).

Definition 8.1 Ler a,b € T. Let oo € C(I,R) be strictly monotone, where I C R is an
interval. If f € Cw([a,b)y, 1), then the generalized mean of f is defined by

My (f) = o ! (W) , (8.14)

provided that (8.14) is well defined.

Theorem 8.7 Leta,b € T and f € Cq([a,b)T, [0,)). Suppose that o, B,y € C([0,0),R)

are strictly monotone such that

ooy LBoy1eC!((0,)R) and (ooy ')(0)=(Boy ')(0)=0.
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(b—a)?

o 3) o (Boenon)

) = (My(f))

—YO(ND)) = BO(f)
_ o (§)7'(8) — ' (D))
V() B"(E)Y' (&) =B'(E)r'(8) =B (E)(¥(£)?

holds for some { € f([a,b)T), provided that the denominators in (8.15) are nonzero.

(8.15)

Proof. Replace the functions f, ¥, and @ in Theorem 8.2 by yo f, oy !, and Boy !,
respectively. So there exists p > 0 such that

a(Ma(f)) — (Mo (v (I(ro £) = V(O (H))])) — (M

B () =B (=" (I(vo£) = vy ())))) — B(M(f))

_p@"(r ()Y () — ot (p) Y (v (p) — e (v ) (Y (v (p)))?
p(B"(r ey (r (p) =B (r 1)V (r 1 (P)) =B (r (e (¥ (v (P)))*

By putting y~!(p) = ¢, there exists { € f([a,b)T) such that (8.15) holds. a

v(f))

o

)
7(f))
)Y'(
)Y'(

Remark 8.4 In Theorem 8.7, let

Z(0) = 1" ()Y (8) — e (§)Y'(£) — () (¥ ()
V(OB (Q)r'(E) = B'(E)y"(£) =B (E)(r(£))?

and suppose .7 is invertible. Then, since { is in the image of f, we obtain a new mean
defined by

71 <O¢(9ﬁa(f)) —a(Ma (v (I(ro f) — v(My(£))) — Ot(fmy(f)))
B () =B (y="(I(vo f) =y (1)) = BO(f) )

Now we recall the definition of generalized power means for Cauchy A-integrals (See
Definition 3.3).

Definition 8.2 Let a,b € T and f € Cy([a,b)T,I), where I C R is an interval. If r € R,
then the generalized power mean of f is defined by

b r %
(fa bf_(l;zAt> ) r#oa
M, (f) =

) (8.16)
xp (fa logf(t)At> o
b—a

provided that (8.16) is well defined.
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Corollary 8.1 Leta,b € T and f € Cu([a,b)T,I) be positive. Supposer,1,s > 0 are such

that r #1, r # 2s, | # 25, and
3 b (e)Ar ’
)Au—7<fa o ) #0

b 3s
/a f (l/t) - (b—a)2

M (f) — (| — M(F)|5) — M(f) _r(r=2s) = S17)
M} () = M}(|f* — M ()| 5) — () L= 29)

holds for some { € f([a,b)T), provided that the denominators in (8.17) are nonzero.

sy da S OA
Pl ==

Then

Proof. Equation (8.17) directly follows from Theorem 8.7 by taking o/(x) = x", B(x) = x/
and y(x) = x* in Theorem 8.7. a

Remark 8.5 From Corollary 8.1, since { € f([a,b)), we obtain a new mean defined by
1
L =
ml(f) = ( 10— 25) ()~ I~ ()] )~ fm;<f>> |
i B _ 1
’ r(r=28) () — (1~ M(P)] ) — ML)
where r,l,s > 0, r # 2s, | # 2s. We can extend these means to the limiting cases. To do so,
let r,l,s > 0. We define

B P 2(l—y)
- <Q 1(1—25)

> ;L #£2s,
i () = () =exp (o2 )T 1
L,2s 25 I(I—2s)P, ’ ’
s 1
m[zs],zs(f) = exp <2Q_P11 - Z) )
where P, Q, P, and Q; are given by
1 b
P / (1) log £ (1) — D) log M)
e [ 1O - Fogl o) - (v,

0 = (f) — M (| f* —Wf)ﬁ)—mé(f),

1 b 2s 2s
Plsz/ I (1) log f(t)Ar — 5 (f) log M f)
b a) / 7 (/)] log |f*(r) — M3(f)|Ar,
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0 —— "’f”( 1) (log £ (1) At — I (f) (log M, (/))?

/ £ 2 (log | £ (1) — M) Ar.

Theorem 8.8 Leta,b € T and f € Cu([a,b)T,[m,M]), where 0 < m < M < . Suppose
a,B,7 € C*([0,%0),R) are strictly monotone such that

aoy,BoyteC!((0,),R) and (aoy ')(0)=(Boy ')(0)=0.

If
b
(b= a)(rm)*+ (n)P) — [ (yo P00
. 3
~=a) (yom +300) - 5= [ (e (020)
2 b 3
— i | (e O =m0 = (o (o)’
M) = (v £)O)(ro )0 — yom)] &
b 1 b 3
- [ e == [ wenwal auzo,
then
W~ X~ 55 21a(6) (007 )(b(0)) + b(0) (o0 7~) 0] ~ Zo
Wy —Xp— 125 [21a()(Boy () +6()(Boy ) (eI — 75
_ HO@OF ) - a7 ) - QWP o o
HOE Q7O - B Oy @) -FOr©r ©

holds for some § € f([a,b)T), provided that the denominators in (8.18) are nonzero, where
Wo = a(m) + o(M) — a(Mo(f)),
Xo = (0o y™)(v(m) + (M) — y(My())),
Zo = (Mo (v (|(vo £) = v (M (N)D)), Y= a0
g=(yof)—vim), bh=yM)—(rof).

Proof. Replace the functions f, ¥, and @ in Theorem 8.4 by yo f, oy~ !, and Boy !,
respectively. The rest of the proof is analogous to the proof of Theorem 8.7. o

Remark 8.6 In Theorem 8.8, let

Y(&)(@"(E)Y () —a'(S)Y"(S)) — &'(§)

7O OE PO - PO @)~ B
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and suppose 7 is invertible. Then, since { is in the image of f, we obtain a new mean
defined by

S (Wa—xa—
Wp —Xp —

r
b—a
r
b—a

JbeXaOY”KhUD+UOXQOV”X90DMr—Za>
8@ (Boy (i) +b()(Boy ) (a@)lar 25 )

Corollary 8.2 Leta,b € T and f € Cyy([a,b)T,[m,M]), where 0 <m < M < oo. Suppose
r,l,s > 0 are such that r £ 1, r # 2s, | # 25, and

(b—a)(m® +M>) — '/abfa“(;)m —(b—a) (m“' +M - 5 i - /:7 fs(t)At> 3

b
s
3
HOF = PO -m] - [ rw - / poa] auro,
Then . L1
W, —X, — Ys(mi(gg hs?) +9ﬁ;(bgg§)) —Z — V(V— 2S) Cr—l (8.19)

11 11 _
VVI _Xl - Y‘(f)ﬁf (gsl []3 ) +Dﬁ§(hsl gss )) _Zl l(l 2S)

holds for some ¢ € f([a,b)T), provided that the denominators in (8.19) are nonzero, where
W= M= D), X, = (4 M=),
2
MS —ms’
g =f—-m', by=M—f".

Remark 8.7 From Corollary 8.2, since { € f([a,b)), we obtain a new mean defined by

Z = (| = Mf)]5), Y=

)

anls] _ l(l - 25) W, — X, — Ys(ﬂﬁﬁ(g;l b?%) +9ﬁ;(f);9§)) —7Z "
mgl(f) - ( _2 ) 11
AT es ‘/Vl_Xl_Ys(mf(gvl b$)+9ﬁ;(h; 8))—7Z

where r,1,s > 0, r # 2s, | # 2s. We can extend these means to the limiting cases. To do so,
let r,l,s > 0. We define

e A P 2(l—s)
M (f) =exp (6 - l(l—2s)> » 1#2s,
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where ﬁ, Q, ﬁl, and é 1 are defined by

- 1 b
P:mllogm+MllogM—b—/ fl(2)log f(1)Ar
—al.

1 , ,
— —Xjlog(m’ +M* — (1))
Yy

1

e o000 0)om(04(6)) + B, 1) el 1)

a / £0) £ log |£°(r) — () A,
ész— X, — Y,(M(ad b3 ) + M) 0)) — 7,
- 1 b
Py :mzslogm—l—MzslogM—m/a 2 () log f(1)Ar

1
- ;Xzs log(m® +M* —9(f))

- S(byi [ To ) 108(0:00) + b.0)g30 o)

s(b a) / (1) = (1) P log| (1) — (),
Q1 =m™(logm)? + M*(logM)? — -— / F2(0)(log f(1))* At
~ s Xallog(nr +3 ()
Yy

W/ a4 (0)02(0) Tog(6,(1) + b, (1)g2(r) (log(g. (1)1

b 2 / 7 (0) 2 (log £*(r) — IM(f)])Ar.

Theorem 8.9 Leta,b € T and f € Cu([a,b)T,[m,M]), where 0 < m < M < . Suppose
a,B,v € C*([0,50),R) are strictly monotone such that

aoy L,BoyteC!((0,2),R) and (aoy ')(0)=(Boy ')(0)=0.
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If
[ 7o P (7)) + (rm) P+ 5(MYm)
(b )My m) () im) — [ (o £ )
1 b
~ = | (e N 0= im0 = (o )’
+(Y(M) = (vo £)(1)((vo f)(t) — y(m))’] Ar #0
then
(b~ )~ [2la(0) oo ™) (b(0)) + (1) (@o 7 (@(W))Ar — (b —a)F
(b—a)Es— [Za()(Bor (b)) +H(0) (B ov ) (o)A — (b a)F
IO OO SOV QYO g
HOBE Q7 Q) - FOr @) FOrQr

holds for some ¢ € f([a,b)T), provided that the denominators in (8.20) are nonzero, where
g and Yy are defined as in Theorem 8.8 and

Eq = (Y(M) = YOy (f))) et (m) + (Y(Iy(f)) = v(m)) (M),
Fo = (Y(M) = y(m))a(Me(f)).

Proof. Replace the functions f, ¥, and @ in Theorem 8.4 by yo f, oy !, and oy},
respectively. The rest of the proof is analogous to the proof of Theorem 8.7. O

Remark 8.8 In Theorem 8.9, let

7o) = Y(O)(@"(§)Y(§) —a'(§)7'(£) - (D) (¥ (£))?
V(OB ()Y (&) =B'(E)y"(£) =B (E)(¥(£))?

and suppose 7 is invertible. Then, since { is in the image of f, we obtain a new mean
defined by

§_1<<b—a>Ea—ff[g<r><aoy )(b(0)
(b= a)Es— [la@)(Boy ) (b()

Corollary 8.3 Leta,bc T and f € Cy([a,b)
r,l,s > 0 are such that r # 1, r # 2s, | # 25, and

UOICENS ><g<r>>1Ar—<b—a>Fa>.
(1) (Boy)(a(1)]ar — (b—a)Fy
fm,

M]), where 0 < m < M < oo. Suppose

(h(1)) +
(h(1)) +

[P O8 0 2 amy) — =)y 0+~ [P0

I[P @) =m) (= PO+ 0 = PO)F () —m) | &r

- Y £0.
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Then
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“Ni—

11 1
E.— 9 (a5 b5 ) — M (bigs) —Fr _ r(r—2s)

;1 T (12
E - mi(glos)—minig)—f (72

gt (8.21)

—

holds for some § € f([a,b)T), provided that the denominators in (8.21) are nonzero, where
gs and b are defined as in Corollary 8.2 and

Ey = (M =9(f))m" + (MG(f) —m")M", Fr = (M* —m*)D(f).

Remark 8.9 From Corollary 8.3, since { € f([a,b)), we obtain a new mean defined by

) = (w ~29) £, — (o7 b) (!

r(r=25) g, ol (al by ) — 90! (b

S| Sy e
© ©
TN R,
)
|
=
v
-
-

$)—F

where r,l,s > 0, r # 2s, | # 2s. We can extend these means to the limiting cases. To do so,
let r,l,s > 0. We define

(s P 20—
9'Ttl[}(f) =exp (5_ l(g-;?)) ) l#2s7

where 13, Q, 131, and Ql are defined by

13:(Ms — M (f))m! logm + (IME(f) — m*)M' logM

— o [ o o0 + .0 () togla. )

MS _ ms b .

el A ONHOIY

—~ 11 1 1

0 =E; —M(g{ by ) —M(bh{ g5) — F,

Py =(M* — 0(f))m* logm + (I(f) — m*)M* logM

s [ OB (0.0) + 0.0 og(an (1)

S _ .8 b
S [ P weron,
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01 =(° = () (logm)? + (M) — m)M™ (logM)?
~ [ 0530 g0 (1)) + 00) ) o) Pl

M5 —m*

_p /abfz“'(t)(Ing(t))zAr.

8.3 Exponential Convexity and Logarithmic
Convexity

Applying the functional _#y to the function ¥ defined in Lemma 1.4, we obtain

/%:s(slj{/f lf“'(u)—|f(u)—f b(tlm M (822)
_<b_a><ﬁbff’zl”>s}, 42
and
Sy { [ [P oer 82
—‘f(u)—j LTS 10g|f(u)—%]m¢

(o) s (B2

Theorem 8.10 Let 2y, be defined as in (8.22)~(8.23). Then

Di n

(i) forall n € N and for all p; >0, p;; = ‘|2'l7] 1 <i,j <n, the matrix [/xyplj}

i,j=1
is positive semidefinite;

(ii) the function s — _Py_is exponentially convex;

(i) if /\ys > 0, then the function s — /\ps is log-convex, i.e., for 0 <r <s <w, we
have

(Je)" " < (Aw)" 7 (Sw)
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Proof. To show (i), let
n
AW =Y, viv ¥y, (2):
ij=1

Then )

— 1 Pij 4 1 pi—3

A(x)= 2 vivix2 0 = ZvixT >0

ij=1 i=1

and A(0) = 0. Thus A is superquadratic. Now using A instead of ¥ in (8.1), we obtain

In= 2 vivj f, >0. (8.24)

i,j=1

n
Hence the matrix [ v p,} is positive semidefinite.
ij i=1

ij=
Now we show (ii). Beca{use !Ln% Hw, = Hw,, the function s — _#y, is continuous on

R, . Hence by (8.24) and Proposition 1.2, the function s — £y is exponentially convex.
Finally, we show (iii). Because the function s — _#y_ is exponentially convex, if

Hw, > 0, then by Remark 1.9, the function s — _#y_ is log-convex. O

Corollary 8.4 Let a,b € T and f € Cy([a,b)T,I) be positive and define

. J2p@)ar
2 [f (u) — ‘f(”)—ﬁ

b s
b-a) (Ja f(t)At> | s42

Au

b—a

S22 () log f(u) — | f(u) — ———

b
tog | () — 4/ 2

a

Then
(i) fors>4,

rma (fLroa 1
b—a Z( b—a >+b—a/a
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@) forl <s<?2,

Rroa _ (froa) 1 g J2 )|
b—a S( b—a > +b—a/a flu) =25 = | A
s—1
s(s—2) D b A
T | T Pow [ o=
2/, f(“)—ﬁ Au
(i) for2 <s <3,
rma_(frrmar\ 1 2 raoal
b—a S( b—a > +b—a/,l flu)= b—a Au
s(s—2) (225\**
2(b—a) (3%) 7
(iv) for3 <s <4,
rmar _(frrmar\ 1 b 2 r)ar]
b—a S( b—a > +b—a/a f(u) b—a Au
s(s—2) (324\*°
o Gm) *
Proof. The results follow from Theorem 8.10 (iii). O

Example 8.1 Let us consider the discrete form of Z;. For this, let [a,b) = {1,2}, f(1) =
X, f(2) =y such thaty > x > 0. Then %, becomes

_@:d:xg—ky?_z m S_2 y;x '
s ) 2 2 .

For s > 4, we obtain the inequality

s(s—2) (3dy =3 _s(s—2) 32(y+x)? = (y—x)2(y+2x)
d2z =3 (ﬁ> B="3 (42<y+zx>) 2 '

If 3 <5 <4, we have

ds < 3

s(s—2) (32<y+x>2)“ (v—x)2(y+2x)
42(y+2x) 2

Therefore for s = 1, the inequality becomes

1 (42)2 O+20°(—x?

—0=v=-35(%x y+x)?

32
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1 1
Theorem 8.11 Suppose p,q € R are such that 1 < p <2and —+—-=1. Leta,b €T
P q
and f,g € Cw([a,b)T,[0,50)) be such that ffgq(t)At > 0. Then

)4

m (((Lbfp(t)Az - '/abg(u)hl’(u)Au) : (/abgq(z)m> ‘1’> (8.25)

([ reon))
< 2:__1</abg(u)h(u)m>2_p (/abg </ fA 1) log(f(1)g" (1)) Ar

b
-/ g2q<u>h2<u>log<g1q(u)h(u))Au)

’ 2 roga )\
_ (/a f(t)g(t)At) log< f (1A >>

; 2 f()g(0)Ar
fu)—g? Uif (A

Proof. In Theorem 8.10 (iii), let r =1, s = p, w =2, so that | < p < 2. Then we have

(Aw,) < ()" ()

holds, where

b b
A k A
By replacing Ja f(t) ' with M, where k € Cyq([a,b),[0,0)) is such that
—a i k(t)Ar

fa k(r)Ar > 0, we get
e ( [ ko~ [ k| 10 -

(2

JP k() f0)ar |
S k(r)Ar
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Now replacing k by g7 and f by fg' =7, we get the required result. ]

Remark 8.10 Theorem 8.11 refines the time scales Holder inequality for superquadratic
functions (Theorem 2.65).

Theorem 8.12 Let Zw and v, be positive. Then for r,l,v,w > 0 such that r < v,
[ <w, we have

() < bl (). (8.26)

Proof. Since _Zy_ is positive, by Theorem 8.10, #y, is log-convex. Now by using Remark
1.6 (b), for r,l,v,w > O such that r < v, <w, r £ 1, v # w, we have

1 1
(/‘P,) r—I < ( /\Pv ) v—w
/\Pl N /\Pw
. .r l u % L.
By substituting - for r, - for /, — for u, — for v, f* for f, and from the continuity of Zy ,
\) \) \) S

we obtain the reE]uired result. O

Theorem 8.13 Theorem 8.10 is still valid if we replace Wy by @5 as defined in Lemma
1.5.

Proof. As in the proof of Theorem 8.10, consider
n
Qx) = 2 Vivi@p;; (x).
i,j=1

Then )
— U Pi
Q(x) = (Zwez)‘) >0
i=1

and Q(0) = 0. Thus Q is superquadratic. Now using Q instead of ¥ in (8.1), we obtain the
required result. |

Corollary 8.5 Let a,b € T and f € Cyy(|a,b)T,I) be positive. Let r,s € R, r # 5. Then
we have

My (f)

1

8 (12 70 log f(1) 8 — A, —r [ A1) #O 0 + [ er#0ar - 1)\ T

r (sjffS(t)logf(t)At —As— s [P B(1)esPO AL + [P esP 0 A — 1)

oe (m%)) ‘

provided that the occurring denominators are nonzero, where

Ar = (b= a)(M(f) + My (f)log (M (f) =M (f),  B(t) =
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Proof. The proof follows from Theorem 8.2 by replacing ¥, ®, and f with ¢,, ¢, and
log f, respectively. O

Remark 8.11 For the limiting cases of Cauchy type means defined in Corollary 8.5, we

have
B 3 3B
M5 (f) = exp (E — ;) ., s#0 and Moo(f) =exp (8—Ci> ,
where
b
B=s( [ £ Ooe 078~ (b)) log(Mal1)°
b )
_/ %2(I)€S%(I)Al> 7
C=s / " () log F(0)M — (b— a)As—s / " B Op v [ ePOp -1,

b

Br= /;b“ng (1)*Ar — (b—a) (log(Mo (1)) — | &),

b 'ab
Cl :/a (logf(t))3At - (b—a)(log(?)ﬁo(f)))3 _L <@3(I)At.

Theorem 8.14 Let ¢y, be positive. Then for r,l,v,w > 0 such that r <v, | <w, we have

M (f) <My (f)- (8.27)
Proof. See the proof of Theorem 8.12. |
We can obtain corresponding results for /?\;S and j\\ys analogously as in the case of
Hw,.
. __ Ppitpj .
Theorem 8.15 (i) For all n € N and for all p; > 0, p;j = 5 1<i,j<n, the

— n
matrix [ /uymj] - is positive semidefinite;
i,j=

(ii) the function s — _Py_ is exponentially convex;

(iii) #f j:ys > 0, then the function s — /?;:S is log-convex, i.e., for 0 <r < s <w, we
have

w—r w—s S—r
v, =Sy, v, -
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Corollary 8.6 Leta,bc T and f € Cyy([a,b)T,[m,M]), where 0 <m < M < oo. Suppose

(b—a)(m’* +M*) = [ f*(1)Ar

—(b—a) (m—i—M—ﬁfff(t)At)s—Ks, 52
7= 3 (b-a)(mtlogm+M2logh) — [* POloef
—~(b—a) (m+ M~ 5L [2 fa)
log (m+M— L fabf(r)m) — K, §=2,
where
b
K =g [ 100 =m0 = 70"+ (M= F0) (70~ m)] A
b 1 b S
+/ f(u)—b_a/a F)At| Au
and
2 b
Ko = [ [(F0) = m) (M~ ) Plog(M - £()
+(M — f(0))(f(t) —m)*log(f (t) —m)] At
b b 2 1 b
+ [ =5 [ rwar] og| ) - — [ rie)ar|
Then
(1) fors >4,

(i) for 1 <s<2,

(iii) for2 <s <3,

@iv) for3 <s <4,
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1 1

Theorem 8.16 Suppose p,q € R are such that 1 < p <2and —+ - =1. Leta,b €T
P q

and f,g € Cw([a,b)T,[m,M]), where 0 < m < M < oo, be such that ffgq(t)At > 0. Then

ﬁ <<.ngq(t)At)p(m"+M") (8.28)
- </abg"(t)At>p_l/abf"(t)At_Uf’— —— (/abg”(t)At>p_lU2
Tl

/ D [ P00 logr 08 10))
(oo e [roan)

I £ (@)
log<m—|—M—|— fgq ) T m/ 1)AtV,

p—1

2

o | g2—q<u>h2<u>log<g1—q<u>h<u>>Au)

holds, where

Ui =(m+M) '/abgq(t)At — /C;bf(t)g(;)m7
= [0 (100~ m) (- 70 10))" &
+/bgq — f(0)g" () (F(0)g"~(e) —m)" A,

= [ sttt g [0 (M~ g 90) (1008 00) - m) v,

e[ gq(t)[(f(t)gl (0) = m) (M~ f(0)g" (1)) log (M — f(1)' (1))

+ (M~ £(1)g" (1)) (£(1)g" () —m) log (f(1)g" (1) — m)} Ar.
Theorem 8.17 Let j\;s be positive. Then for r,l,v,w > 0 such that r < v, | < w, we have

mll(r) < mEL(r). (8.29)

rl
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1<i,j<n, the

Theorem 8.18 (i) For all n € N and for all p; > 0, p;; = pl—|2-p,

n
matrix [ v Pi,'] - is positive semidefinite;
ij=

(ii) the function s — _Py_is exponentially convex;

(iii) if 2w, > 0, then the function s — _Zy_ is log-convex, ie., for 0 <r <s<w, we

have . . .
So, = Se S

Corollary 8.7 Leta,bc T and f € Cyy([a,b)T,[m,M]), where 0 < m < M < oo. Suppose

b—a)—[? f(1)Ar 2 f(0)A—m(b—a)
M—m S+ M m M

~ —R— [} (1), s7#2
-@s:
fa. 210gm_|_7fa- AA/[’ m(b “)leogM
—Rz—f fz()logf() 2 s=2,
where
Ry = 2 [ 100) ~m) M £+ O ) (@) ]
and
1 b
Ry = 3= [ ()= m)( = £(0)tog( — £(1)
(M — f(0))(f(r) —m)*log(f (1) —m)] At
Then
(i) fors>4,

@) forl <s<?2,

(iii) for2 <s <3,

(iv) for3 <s <4,
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1 1

Theorem 8.19 Suppose p,q € R are such that 1 < p <2and —+ - =1. Leta,b €T
P q

and f,g € Cw([a,b)T,[m,M]), where 0 < m < M < oo, be such that ffgq(t)At > 0. Then

1 »
oo —2) Wi WM (8.30)
b b
- [ 0 a0 + s @]a - 1) [ r0)20)
1 b 2=
S 553 ( i gq(t)a(t)b(t)At) (Wlmzlogm—f—WzM2 logM

- bgq(t) [a(r)b?(r)logb(r) + b(r)a*(t) loga(r)] At

a
b ]171
~wa-m) [ o)
Ja
holds, where
a=fg" l—m, b=M-fg'"

b b b b
wi=M [gion— [ roswan wa= [ fagwa—m [ grnan
a a a a
Theorem 8.20 Let j\\}ls be positive. Then for r,1,v,w > 0 such that r <v, [ <w, we have

ML () < ML (F). 8.31)

r7

Remark 8.12 Similarly as in Chapter 2, we can apply the theory of isotonic linear func-
tionals. The related results for isotonic linear functionals are given in [3, 4].



Chapter

Holder and Minkowski Type
Inequalities and Functionals

In this chapter, we give integral forms of Minkowski’s inequality, a converse Minkowski
inequality, and Beckenbach—Dresher’s inequality on time scales and investigate the prop-
erties concerning superadditivity and monotonicity of several functions arising from the
these inequalities. We give refinements of the generalized Popoviciu, Bellman and Diaz—
Metcalf inequalities. Further, we give some new integral inequalities by using Popoviciu’s
inequality and Diaz—Metcalf’s inequality. The presentation in this chapter is based on
[33, 34, 36].

9.1 Integral Minkowski Inequality and Functionals

Theorem 2.45 also holds if we have a finite number of functions. The next theorem gives
an inequality of Minkowski type for infinitely many functions. We assume throughout that
all occurring integrals are finite.

Theorem 9.1 (INTEGRAL MINKOWSKI INEQUALITY) Let (X, , up) and (Y,.ZL,Va) be
time scale measure spaces and let u, v, and f be nonnegative functionson X, Y, and X xY,
respectively. If p > 1, then

1
P

X

[ ([ r6mtiavae)) utoanso]

=

< [ (L) v o

185



186 9 HOLDER AND MINKOWSKI TYPE INEQUALITIES
holds provided all integrals in (9.1) exists. If 0 < p < 1 and
p
/ </ fvdvA> udup >0, / fvdva >0 9.2)
x \Jy Y
holds, then (9.1) is reversed. If p < 0 and (9.2) and

/ fPudpip >0, 9.3)
X
hold, then (9.1) is reversed as well.

Proof. Let p > 1. Put
/fxy y)dva(y).

Now, by using Fubini’s theorem (Theorem 1.8) and Holder’s inequality (Theorem 2.32) on
time scales, we have

and hence

(/ HP (x)u(x)d i (x ) / (/f"xy x)dpa(x ))l v(y)dva(y).

For p < 0and 0 < p < 1, the corresponding results can be obtained similarly. o

Remark 9.1 Theorem 9.1 is a generalization of Theorem 2.44 (Minkowski inequality on
time scales). Moreover, if X,Y C R”, then (9.1) becomes

[/X (/y.f(x’y)V(y)dV(y)>pu(x)du(x)] 5
< [ (Lrremine (>)1 o). 0
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Now we consider some functionals which arise from the Minkowski inequality. Similar
results (but not for time scales measure spaces) can be found in [76].

Let f and v be fixed functions satisfying the assumptions of Theorem 9.1. Let us
consider the functional M; defined by

l/ (/ ST (e, y)u(x)dpa(x ))1 (y)dvA(y)][7
/(/f” y)ava(y )) u(x)dpa (x),

where u is a nonnegative function on X such that all occurring integrals exist. Also, if we
fix the functions f and u, then we can consider the functional

/ (/ SP(x,y)u(x)dua(x ))l v(y)dva(y)
[/ (/fxy y)dva(y )) (x)duA(x)r,

where v is a nonnegative function on Y such that all occurring integrals exist.

Remark 9.2 (i) Itis obviousthat M; and M, are positive homogeneous, i.e., M (au) =
aM(u), and My (av) = aM;(v), for any a > 0.

(ii) If p > 1 or p <0, then M («) > 0, and if 0 < p < 1, then M (u) <O0.
(iii) If p > 1, then M3 (v) > 0, and if p < 1 and p # 0, then M, (v) <O0.

Theorem 9.2 (i) Ifp > 1o0r p <0, then My is superadditive. If 0 < p < 1, then My is
subadditive.

(ii) If p > 1, then My is superadditive. If p < 1 and p # 0, then M is subadditive.

(iii) Suppose uy and u, are nonnegative functions such that uy; > uy. If p > 1 or p <0,
then

0 <Mj(uy) <Mj(uz), 9.5)

and if 0 < p < 1, then (9.5) is reversed.
(iv) Suppose v and v, are nonnegative functions such that v, > vy. If p > 1, then
0 < My(v1) < Mj(v), (9.6)

andif p < 1 and p # 0, then (9.6) is reversed.
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Proof. First we show (i). We have

My (i1 +up) — My (u1) — My (u2)
" % P
= [/ (/ SP(x,y) (uy —i—uz)(x)duA(x)) V(y)dvA(y)]

/(/fxy y)dva(y ) (1 +u2) (x)dpa (x)
- /(/ fp(x’y)”l(x)d”A(x))éV(y)dvA(y):p
+/ (/fxy y)dva(y ) 1 (x)dpa (%)

- /Y ( [ 77 s () >)%v<y>dvA<y>

/(/fxy y)dva(y > 2(x)dpta(x)

= /Y ( /X f”(x,y)(u1+uz)(X)duA(x))%V(y)dvA(y)]

- [/Y (/Xfp(x,}’)ul(x)d%(x)) : V(}’)dVA(Y)r
- [/Y </x fp(x,y)uz(x)dﬂA(x)) % V(}’)dVA(}’)] p~

Using the Minkowski inequality (2.68) for integrals (Theorem 2.45) with p replaced by
1/p, we have

p

>0 if >lorp<O,
Ml(u1+u2)—M1(M1)—M1(M2){20 ;f ggp<f CN))

So, M is superadditive for p > 1 or p < 0, and it is subadditive for 0 < p < 1. The proof
of (ii) is similar: We have

M (vi +v2) — Ma(vi) — Ma(v2)

— [/X </Yf(x,}’)vl (}’)dVA(y)>pu(x)duA(x)} p
+ [/X (/Y f(x,y)Vz(y)dvA(y))p”(x)d”A(x)} E
- [ [ ( [ 1)+ vz><y>dvA<y>)ﬂu@d‘“(x)] %'
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Using the Minkowski inequality for integrals (Theorem 9.1), we have that this is nonnega-
tive for p > 1 and nonpositive for p < 1 and p # 0. Now we show (iii). If p > 1 or p <0,
then using superadditivity and positivity of My, up, > u; implies

My (uz) = My (uy + (u2 —uy)) > My (ur) + My (uz —ur) > My (uy),

and the proof of (9.5) is established. If 0 < p < 1, then using subadditivity and negativity
of My, up > uj implies

Mi(u2) < My(up) +My(uz —ur) < My (uy).
The proof of (iv) is similar. O
Remark 9.3 From Theorem 9.2, we obtain a refinement of the discrete Minkowski in-
equality given in [76]. Namely, put X,Y C N and let u be A-measurable on X and v; and

vz be A-measurable on Y such that u(i) =u; >0, i € X, vi(j) =n; >0, n(j) =p; >0,
j €Y. Then, for fixed f and u, the function M, has the form

1/p P\ Up
Mz(vl): an (211,615) — (21,{, (21’1]'(11‘]') > 5
jey ieX icX jey

where f(i,j) = a;jj > 0. If p > 1, then the mapping M, is superadditive, and p; > n; for
all j € Y implies

1/p p\ U/p
0< Y ny (2“1’“5) - (2“1’ (Z n,»a,;,-) )
jey ieX ieX Jjey
1/p p\ U/p
=S, (z) . (z (ijaij> )
jey ieX ieX jey

provided all occurring sums are finite.

Corollary 9.1 (i) Suppose u; and uy are nonnegative functions such that Cup > u; >
cup, where ¢,C > 0. If p>1o0r p <0, then

cMi(uz) <My (u1) < CMy(u2),
and if 0 < p < 1, then the above inequality is reversed.

(ii) Suppose v and v, are nonnegative functions such that Cvy > vy > cvy, where ¢,C >
0. Ifp>1, then

cMz(v2) <My (v1) < CMa(v2),

and if p < 1 and p # 0, then the above inequality is reversed.



190 9 HOLDER AND MINKOWSKI TYPE INEQUALITIES

Let the functions f,u,v be defined as in Theorem 9.5. Now we define the rth power
mean //{ ( f,u) of the function f with weight function u and measure u, by

1
S frey)u(x)dpa () \ :
(Xfx (x)dua(x )A ) if r#0,

Y (fu) = 9.8)
Jylogfey)u®)dpa(®) e _
exp (Al bauiaal) i -,

where [y udpa > 0.

Corollary 9.2 If v, and v, are nonnegative functions such that vy > vy, then
[0] (/fxym y)dva(y) ) ////A (f,u)vi(y)dva(y)
<///[](/fxy W2 (y)dva(y) ) ////A (f,u)v2(y)dvaly), (9.9)

where %LO] (f,u) is defined in (9.8).
Remark 9.4 If the measures are discrete, then from Corollary 9.2, we get the following
k
result: Let uj,vi,wj,a;; >0forallie {1,...,n}andall j € {1,....,k}. Put U = Y u;. If
J=1

vi <w;forallie{l,...,n}, then

n MVJ n k uj
[ (Ev) £ (1147
=1 \y=1

j=1

This inequality is a refinement of the discrete Holder inequality
“i
n % n ko ouj
(S o) = (M),
Jj=1 =1

The next result gives another property of My, but a similar result can also be stated for
M.

Theorem 9.3 Ler ¢ : [0,00) — [0,0) be a concave function. Suppose uy and uy are non-
negative functions such that

pour, @ouz, @o(ou+(1—o)ur)
are A-integrable for o € [0,1). If p > 1, then
Mi(@o (ou+ (1 —a)uz)) = aMi(@our) + (1 — )M (@ous),

and if 0 < p < 1, then the above inequality is reversed.
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Proof. We show this only for p > 1 as the other case follows similarly. Since ¢ is concave,
we have

@(ouy + (1 - a)uz)) > oep(ur) + (1 — ) @(u2).
Now, from (9.5) and (9.7), we have
Mi(@o (aur+ (1 —a)uz)) = Mi(a(@our) + (1 — a)(pour))
> Mi(a(@our)) +Mi((1—a)(pou))
> oMi(pour)+ (1 —a)M(@pouy),
and the proof is established. |

Let f,u, and v be fixed functions satisfying the assumptions of Theorem 9.1. Let us
define functionals M3 and My by

= | [ ([ et >)1 <y>dvA<y>r
~ [ ([ reanonane)) uaust

and

1

/(/fpxy x)dpia (x )) v(y)dva(y)
{/(/fxy dm(o (@mmgﬂa
where AC X and BC Y.

The following theorem establishes superadditivity and monotonicity of the mappings
M 3 and M4.

Theorem 9.4 (i) Suppose A1,Ay CX and A{NA, =0.If p>1o0rp <0, then
M3(A1UA,) > M3(A}) + M3(A,),
and if 0 < p < 1, then the above inequality is reversed.
(1) Suppose A1,A» CX andAy CAy. If p>1orp <O, then
M3 (A1) < M3(Az),
and if 0 < p < 1, then the above inequality is reversed.
(iii) Suppose B1,By, CY and ByNBy =0. If p > 1, then
M4(B1UB,) > My(By) + My(B2),

and if p < 1 and p # 0, then the above inequality is reversed.
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(iv) Suppose B1,B> CY and By C By. If p > 1, then
M4 (B1) < M4(Ba),
and if p < 1 and p # 0, then the above inequality is reversed.
The proof of Theorem 9.4 is omitted as it is similar to the proof of Theorem 9.2.

Remark 9.5 For p > 1,if S, is a subset of Y with m elements and if S,,, 2 S, 1 2 ... D Sy,
then we have
My (Sm) > My(Spm—1) > ... > My(S2) >0

and My(S,,) > max{My4(S) : S> is any subset of S, with 2 elements}.

9.2 Converse Integral Minkowski Inequality and
Functionals

In the following theorem, we give a converse of Theorem 9.1 (integral Minkowski inequal-
ity).

Theorem 9.5 (CONVERSE OF INTEGRAL MINKOWSKI INEQUALITY) Let (X, 2", ua) and
(Y,Z,vA) be time scale measure spaces and let u,v, and f be nonnegative functions on
X.,Y, and X X Y, respectively. Suppose

fxy)
= Jy fOoy)v(y)dva(y)

0<m<

<M forall xeX,yeY.

If p > 1, then

[/);(/Y'f(x,y) Jdva(y > x)dpa (x }

KmmMM(/ﬂmwwwmﬂ%wwm>@m>

==

provided all integrals in (9.10) exist, where K(p,m,M) is defined by (2.62). If 0 < p < 1
and (9.2) holds, then (9.10) is reversed. If p < 0 and (9.2) and (9.3) hold, then (9.10) is

reversed as well.

Proof. Let p > 1. Put
0= | Fype)dvw).

Then by using Fubini’s theorem (Theorem 1.8) and the converse Holder inequality (Theo-
rem 2.55) on time scales, we get
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/Hp x)dua(x / (/fxy y)dva(y )) HP 71 (x)u(x)dua (x)
- /Y (s wutiauss) ) )ava)
K(p,m,M) / </f”xy x)dpia(x )>1/p

( [ utans(x >) 7 oval)

—1
Dividing both sides by (fy H”(x)u(x)d,uA(x))pT, we obtain (9.10). For 0 < p < 1 and
p < 0, the corresponding results can be obtained similarly. O

Corollary 9.3 Let 0 < s <r. Then
AN ) ) = K (S M) T (f0,0)
Proof. By putting p = r/s and replacing f by f* in (9.10), raising to the power of % and

dividing by

(/. u(x)dw))% (o)

we get the result. |

Let f and v be fixed functions satisfying the assumptions of Theorem 9.5. Let us
consider the functional CM; defined by

CM (u / </ F,y)v(y)dvaly ))pu(x)d;,LA(x)

1 p
—K?(p,m,M) l/ </ SP(x,y)u(x)dua(x )) (}’)dVA(}’)] ,

where u is a nonnegative function on X such that all occurring integrals exist. Also, if we
fix the functions f and u, then we can consider the functional

CMa (v U (/ FOeyv()dvaly )) (X)%(X)F

1
" P
=kl [ ([ 77 Gputians)) voiavs0,
where v is a nonnegative function on Y such that all occurring integrals exist.

Remark 9.6 (i) Itisobviousthat CM; and CM, are positive homogeneous, i.e., CM (au)
= aCM (u), and CM;(av) = aCM;(v), for any a > 0.



194 9 HOLDER AND MINKOWSKI TYPE INEQUALITIES

(ii) If p > 1 or p <0, then CM; (1) >0, and if 0 < p < 1, then CM; (u) < 0.
(iii) If p > 1, then CMj(v) >0, and if p < 1 and p # 0, then CM;(v) < 0.

Theorem 9.6 (i) If p > 1 or p <0, then CM is subadditive. If0 < p < 1, then CM,
is superadditive.

(i) If p > 1, then CM; is subadditive. If p < 1 and p # 0, then CM; is superadditive.
Proof. First we show (i). We have

CMl(u1—|—u2) CMyu; — CMl(uz)

/(/fxy y)dva( )) (11 + uz) (x)dpa (x)

-/ ( [ eyt >dvA<y>)puz<x>duA<x>
K (M) [ / ( / fP(x,y>uz<x>duA<x>) % v(y)dm(y)] p

— K (p,m.M) ( [ / ( e +M2)(X)dHA(X)> % v(y)dvA(y)] p

- /y </X fp(x’Y)"l(x)dﬂA(x)> : V(Y)dVA(Y)‘| P
- [/Y (/X fp(x,y)uz(x)dHA(X)> ' v(y)dvA(y)] 1’) _

Using the Minkowski inequality for integrals (Theorem 9.1) with p replaced by 1/p, we
have

<0 if p>lorp<O,

CMl(Ml+M2)—CM1(M1)—CM1(M2){ >0 if 0<p<l.

So, CM is subadditive for p > 1 or p < 0, and it is superadditive for 0 < p < 1. The proof
of (ii) is similar: We have

CMz(Vl + Vz) — CMZ(Vl) — CMZ(VZ)
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[ (frtmoane) soamsin]

" [/X (/Yf(x’y)"Z(Y)dVA(y))pu(x)duA(x)] %

_ [ /X ( /Y‘f(x,y)(vl +v2)(y)dvA(y))pu(x) aus (x)] ;

Using the Minkowski inequality (9.1) for integrals (Theorem 9.1), we have that this is
nonpositive for p > 1 and nonnegative for p < 1 and p # 0. O

Let f,u, and v be fixed functions satisfying the assumptions of Theorem 9.5. Let us
define functionals CM3 and CMy by

cs(4) = | ( oo >) u()dpa(x)
—K?(p,m,M) [/ (/ S (e, y)u(x)dpa(x )) : V(y)dVA(y)r

and

i) = [ ([ rtermiiavat >)pu<x>duA<x>]”
klpann) [ ([ £t >)1 v)dva(y)

where AC X and BCY.
The following theorem establishes superadditivity of the mappings CM3 and CMy.

Theorem 9.7 (i) Suppose A1,Ay CX and A{NA, =0.Ifp>1o0rp <0, then
CM3(A; UA,) < CM3(A1) + CM3(Ay),
and if 0 < p < 1, then the above inequality is reversed.
(ii) Suppose B1,B, CY and BiNBy, =0. If p > 1, then
CMy4(B1 UB,) < CMy(By) + CMy(By),
andif p < 1, p # 0, then the above inequality is reversed.

The proof of Theorem 9.4 is omitted as it is similar to the proof of Theorem 9.2.
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9.3 Beckenbach-Dresher Inequality and
Functionals

Theorem 9.8 Ler (X, 7, Up), (X, ,An), and (Y, L, Va) be time scale measure spaces.
Suppose u and w are nonnegative functions on X, v is a nonnegative function on Y, f
is a nonnegative function on X X Y with respect to the measure (Up X Vp), and g is a

nonnegative function on X X Y with respect to the measure (Ax X Vp). If

s>1, g<1<p, and q#0

or
5s<0, p<1<gq, and p#0,

then

[x Uy £ 3)v(y)dva(y))” u(x)dpa(x)]
[x (Jy 8(x,y)v(y)dva(y))? wlx)dAs(x)] &

5
P
s—=1
q

</ ((fxfﬂ(x,y) u@dpa ()

Y (g4 y)w(x)dAa(x) T

provided all occurring integrals in (9.13) exist. If
0<s<1l, p<l, ¢g<l1, and p,q#0,

then (9.13) is reversed.

v(y)dva(y)

9.11)

(9.12)

(9.13)

(9.14)

Proof. Assume (9.11) or (9.12). By using the integral Minkowski inequality (9.1) and

Holder’s inequality (2.65), we have

[y (y fOey)v(y)dvaly ))"u(x)d;,tA(x)]?
x (fyg(x y)v( )dva(y)) T w(x)dAa(x)] T
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/(/f”xy x)dpta(x ) (/g X, y)w dM()>%

(v)dva(y).

If (9.14) holds, then the reversed inequality in (9.13) can be proved in a similar way. O

Remark 9.7 Theorem 9.8 is a generalization of Theorem 2.47 (Beckenbach—-Dresher in-
equality on time scales).

Let f,g,u,w be fixed functions satisfying the assumptions of Theorem 9.8. We define
the Beckenbach—Dresher functional BD(v) by

800) - | (i S ey )u()dpaa (x >>fl Y5)dval)
Y (fy g7(x.y)w(x)dAa(x)) T
U Uy SO y)v(0)dva () u(x)dpa (x)]
[y Cy Gy dva()) wix)dia (x)] T

where we suppose that all occurring integrals exist.

Theorem 9.9 If (9.11) or (9.12) holds, then
BD(vi +v2) > BD(vy) +BD(»,). (9.15)

If vy > vy, then
BD(v;) < BD(v,). (9.16)

IfC,c > 0and Cvy > vy > cv, then

CBD(v2) > BD(vy) > ¢BD(vy). (9.17)
If (9.14) holds, then (9.15), (9.16), and (9.17) are reversed.
Proof. Assume (9.11) or (9.12). Then we have

BD(v| +v;) —BD(v;) — BD(1,)

U Uy £y () dva(v)” u(x)dpa(x)]

[y Uy 80ey)w ()dva () wix)daa ()] @

4 U Uy S 0)r2 )V () ) dpta ()]
|7

s—1

[x (Jy 8(x,y)v2(y)dva(y))? w(x)dAa (x)
U Uy £ 0)dva®y) + Jy £069)v2(0)dva ()P u(x)dpa ()] 7

s—1

[fx (Jy 8(,y)vi () dva(y) + fy (x,y)v2(y)dva(y)) I w(x)dAa(x)] T
0,

._.

Y
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where in the last inequality we used (9.13) from Theorem 9.8. Using Theorem 9.8 again,
vy > vy implies

BD(v;) = BD(vy + (va—v1)) > BD(v1) + BD(v; — vi) > BD(vy).
The proof of (9.17) is similar. If (9.14) holds, then the reversed inequalities of (9.15),
(9.16), and (9.17) can be proved in a similar way. O

Let f,g,u,v,w be fixed functions. We define a functional BD; by

(e s )P o

BD, (4) =
1 /A<fxgq<x,y>w<x>dw>>

Uy U f ) v()dva(v))” u(x)dpta (x)]7
[y (U g(ray)v(v)dva(3)? wix)dAa (x)] @

b

where A CY.
For BD1, the following result holds.

Theorem 9.10 (i) Suppose A;,A> CY and A{NA, =0. If (9.11) or (9.12) holds, then
BDi(A;UAy) > BD; (A1) +BDy(A4z), (9.18)

and if (9.14) holds, then the inequality in (9.18) is reversed.

(i) Suppose A1, Ay CY and Ay C Ajy. If (9.11) or (9.12) holds, then

BD)(A) < BD (42), 9.19)

and if (9.14) holds, then the inequality in (9.19) is reversed.

The proof of Theorem 9.10 is omitted as it is similar to the proof of Theorem 9.9.

Remark 9.8 If S; C Y has k elements and if S, O S,,_1 O ... D S», then (9.11) or (9.12)

implies
BD1(Sn) > BD1(Sp—1) > ... > BD;(S2) >0

and BD;(S,,) > max{BD(S>) : Sz is any subset of S,, with 2 elements}, while (9.14)
implies the reversed inequalities with max replaced by min.
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9.4 Refinement of the Integral Minkowski Inequality

In the following theorems, we recall Theorem 2.64 and Theorem 2.68 (Holder and Min-
kowski inequalities) for multiple Lebesgue A-integrals.

Theorem 9.11 For p # 1, define q by ;74— Ll; = 1. Let (X, . , up) be a time scale measure
space. Assume w, g, h are nonnegative functions such that wgP ,wh, wgh are A-integrable
on X and [y, whidpa > 0. If p > 2, then

JACRIGLNG (9.20)
< [ JREGIGTG

i) (Lasy — gy L wem) (0)dua(e)
/X ()(‘g() K ()fo(t)h‘/(t)dyA(;)

") dus(s)] %

(f o)’

holds. In the case 0 < p < 2 and p # 1, the inequality in (9.20) holds in reverse order.

Proof. The inequality (9.20) follows from Theorem 2.69 and Theorem 2.5. O

Remark 9.9 Note that for p > 2, Theorem 9.11 is a refinement of Theorem 2.32, and for
1 < p <2, we have

[ [ 0 0auste

— [ w(s o) 1) Jx (veh) (1)dua(t)
/X ()(‘g() R ()fo(t)h‘/(t)dyA(t)

,,) duA(s>F
(/Xw(t)hq(t)dm(t)>é < /X(wgh)(t)duA(;)

<(/ w(r)gf’(r)duA(r))l/p (f w(r)hqo)dm(r))w.

Theorem 9.12 Let (X,.#,1up) be a time scale measure space. For p € R, assume
w, g, h are nonnegative functions such that wg? wh? ,w(g + h)? are A-integrable on X and
Jxw(g+h)Pdus > 0. If p > 2, then
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L

(0 noranso)’ 021
< (w0 @auat) - [ wi et
—1 P %
s S )
([ oo - [ v
Jy w(s)h(s)(s(s) +h(s))?"'da(s) |” 7
) s 400
is valid.
Proof. The inequality (9.21) follows from Theorem 2.67 and Theorem 2.5. O

Remark 9.10 In Theorem 9.12, if we take 0 < p < 2 and p # 1, then the inequality in
(9.21) holds in reverse order.

Theorem 9.12 also holds if we take a finite number of functions, as given in the following
corollary.

Corollary 9.4 Ler (X, # , 1) be a time scale measure space. For p € R, assume w, g;, i €

P

n

{1,...,n}, are nonnegative functions such that wgf.), w < > gi> are A-integrable on X and
i=1

p
fxw(i gi) dua > 0. If p > 2, then
i=1

0 P ’
( w(t (2& >duA ) (9.22)
- i=1
< (t)
X

3 (o anst = [l

p—1
e (£ a6) auao
—<28i(t)> —
' o) (£ 6:0)) ama

i=1

><\

1
P 7

dua(t)

is valid. If 0 < p <2 and p # 1, then the inequality in (9.22) holds in reverse order.

In the following theorem, we give a refinement of Theorem 9.1 and a generalization of
Corollary 9.4.
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Theorem 9.13 Let (X, .# ,up) and (Y, £, Vp) be time scale measure spaces and let u,v,
and f be nonnegative functions on X, Y, and X x Y, respectively. If p > 2, then

(frsmomta)
g/y{/f”xy dua() = [ 1)

X 1) u(x X
_H(x)fxf(f);)gf(i ( ) ( )d”A( )

holds provided that all integrals in

Ju(x)dpa (x)

(9.23) exist, where

/fxy y)dva(y

u(x)dm(x)]

1

(9.23)

v(y)dva(y)

If 0 < p <2and p # 1, then the inequality in (9.23) holds in reverse order.

Proof. Let p > 2. By using Fubini’s theorem (Theorem 1.8) and Theorem 9.11, we

obtain

/Hp d[JA /H

YHP ! (x)u(x)dpia (x)

[ enm)avsty >H”1(x)u(X)duA(x)

JP (e y)u(x)dpa(x

-J(
_/(/fxyH”l
<1

fley) —H(x)

() dpalx >) V(»)dvay)

Jx Fee ) HP (u(x)dpa(x) |”

)

p—1

= [ | eoutauso

Jx HP (x)u(x)

Jx fCey)HP~H (x)u(x)dpa () 7

)

fxy) = H(x)

Jx HP (x)u(x)

()0

()0

1

1

v(y)dva(y)
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and hence

</H” dﬂA())p
/Uf"xy x)dps(x)

1
P

Jy e y)HP ! (x)u(x)dpa (x) |”
— d
e ) R u(x)dus ()
v(y)dva(y).
For 0 < p <2 and p # 1, the reverse inequality in (9.23) can be obtained similarly. a

9.5 Refinements of the Converse Holder and
Minkowski Inequalities

In [121], the following refinements of the converse Holder and and Minkowski inequalities
are given for isotonic linear functionals.

Theorem 9.14 Let A be a linear positive functional on a linear class L. Let p € R, g =
p/(p—1)and w,f,g > 0 on E with wg? ,whi,wgh € L. Let m,M be such that 0 < m <
gOh9P(t) <M forall t€E.Ifp> 1, then

A(wgh) > K(p,m,M)AT (wgP) A1 (wh?) +Q(g?, fg)N(p,m,M) (9.24)

(wh),

B N

> K(p,m,M)A? (wg’) A
where K is defined as in (2.62),

mP +MP —2((m+M)/2)P
MP — mP

N(p.m,M) = 9.25)

Q(h9,gh) = A (w (M; it (r) — g (t)h(r) - )) . (9.26)

IfO<p<1andA(wh?) >0, or p<0 and A(wgP) > 0, then the inequalities in (9.24)
hold in reverse order.

and
m-+M

hA (1)

Theorem 9.15 Let A, p,q,K,N,w,g,h,Q be as in Theorem 9.14 with additional property
w(g+h)P € L. Let m and M be such that 0 <m < g(t)(g(t) +h(t)) ' <M and 0 <m <
h(t)(g(t) +h(t))~' <M fort € E. Then for p > 1,



9.5 REFINEMENTS OF THE CONVERSE HOLDER AND MINKOWSKI INEQUALITIES 203

A (w(g+h)") = K (p,m, M) (AT (wg?) +AT (wh?)) +N(p.m, M)
Qf+8) . f(f+8)P N +Q((f+8)"e(f+8) ")
A (w(g + 1))
and for p < 1 (p #0), the reversed inequality holds.

. (9.27)

From the above theorems follow the refinements of the converse Holder and Minkow-
ski inequalities on time scales.

Theorem 9.16 For p # 1, defineq=p/(p—1). Let (X, 4 ,1up) be a time scale measure
space. Assume w, g, h are nonnegative functions such that wgP ,whi,wgh are A-integrable
onX. Let

0<m<g)h™9P(t) <M forall teX.

If p> 1, then
[ wOgh(e)dus(o 9.28)

> Kpom) (| win@)aus(0)) v (o auso) "

+ A(h?,gh)N(p,m,M)
1/q

> K(p,m,M) (/X w(z)gl’(t)duA(t)) v (/X W(t)h‘/(t)d[JA(t)) ,
where K is defined as in (2.62), N is defined as in (9.25), and
Attt = [ty (M50~ etonie

If0<p<1and [ywhidus >0, or p <0 and [y wgPdua > 0, then the inequalities in
(9.28) hold in reverse order.

M—m m+M

hi(1)

> dua (). (9.29)

Proof. Just apply Theorems 2.5 and 9.14. a

Theorem 9.17 Let p,w,g,h,K,N, A be defined as in Theorem 9.16 with additional prop-
erty w(g+h)P be A-integrable. Let m and M be such that 0 < m < g(t)(g(t)+h(t))"' <M
and 0 <m < h(t)(g(t) +h(t))~' <M fort € X. Then for p > 1,

UX w(t)(g(7) +h(t))deA(t)] ,

> K(p.m,M) (( [ v " ([ rom0a) W)

A+ f(f+8)" ) +A((f+8)8(f+8)" )
U we) (1) +(6)Pdps(6))' 7
and for p < 1 (p #0), the reversed inequality holds.

+N(p,m,M)

)



204 9 HOLDER AND MINKOWSKI TYPE INEQUALITIES

Proof. Just apply Theorems 2.5 and 9.15. a

In next theorem, we generalize Theorem 9.17 to infinitely many functions.

Theorem 9.18 Let (X, .# ,up) and (Y, £, vp) be time scale measure spaces and let u,v,
and f be nonnegative functions on X,Y, and X x Y, respectively. Suppose

f(x,y)
O e () dva ()

<M forall xeX,yeY.

If p > 1, then

Vx (/Yf (e y)v(y)dva(y ) (x)dpia (x } (9.30)
K(p,m,M) /(/f”Xy (x)dpa(x ) y)dva(y

+N<p,mM[/H" ()dum] A

Kt ) [ ([ 176000 010050,

where K is defined in (2.62), N is defined in (9.25), H(x) = [, f(x,y)v(y)dva(y), and

m= [ (2520 - |repme ) - 25 )

u(x)da (x)v(y)dva(y)-
If 0 < p < 1 with (9.2) or p < 0 with (9.2) and (9.3), then the reversed inequality holds.

Proof. Using Fubini’s theorem on time scales and (9.28), we get
/ HP (x)u(x)dpa(x / H(x)H?~ (x)u(x)dpa (x)
-/ ( / ANV () ) B ()l dps (o)
-[(/ f(x,y>H"1<x>u<x>duA<x>) O)dvs()

p,mM/</f”xy x)dpi (x )>1

(/ HP (x)u(x)dua( ))pT v(y)dva(y) +N(p,m,M)A,
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> K(pm.1) | ( / f”(x,y)u(x)duA(X)y

p—1

P

(/X HP(x)u(x)duA(x)) v(y)dva(y).

p—1

Dividing by (fy H? (x)u(x)dua(x))'7 . we get (9.30). O

Remark 9.11 If A” = R" in (1.14) and X,Y C R", then Theorem 9.18 is equivalent to
[121, Theorem 8].

9.6 Refinements of Bellman’s inequality

In the following theorem, we give a refinement of the functional Bellman inequality (The-
orem 2.51).

Theorem 9.19 Let L satisfy conditions (Ly), (Ly) and A satisfy (A1), (Az). For p > 2, as-
sume f, g are nonnegative functions on E such that (f +g)P, fP,g” € Land A((f +g)") >
0. Suppose fo,g0 > 0 are such that

fé’—A(fp)>0 and gg—A(gp)>0. (9.31)
Then we have
(=)' +(sh-a(e)""")" 932)
“1\ |? %
< (fé’—A<f—(f+g)% ))
—1\ |P % P
+<g§—A<g—(f+g)% )) —A((f+8)").

Proof. Let x1,x2,y1,y2 be nonnegative real numbers. Now from the discrete Minkowski
inequality, we have

==

1 1
(v +y1)P+ (2 +32)7)7 < (] +25) 7 + (07 +35) 7 - 9.33)
By applying the substitution

X — [ —A(fP), ¥ —eh—Ag),
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A(f(f+g) )

xg_,A(fl’)—A<f—(f+g) A((f+g)P) >,
1\ |P
ﬁ—*A@@—A<g_(f+@é%%;§g%l )

in (9.33), and by using Theorem 2.67 and (9.31), we have

(6 -a0)" "+ (e -atem) )"
. AU+ Y[\
S[(’% A( A+ 87) ))
(s (f- )|
ﬂ>>1/p

[ -
)

f=(f+e

Alg(f+g)r™)

A T (ETD

A(f(f+)"")

Iy T om)

Ag(f+g)r
A((f+g)P)

+<A@@—A<g—
R
Ag(f+8)")

+<g6’—A<g— A T8 )) } —A((f+8)P),

i.e., (9.32) holds. O

(f+e)

A(f(f+g)P")

f U ) e

(f+e)

Remark 9.12 Since

“1\ P
fé’>A(f”)2A<f—(f+g)% )zo,
we have 1
1\ |P »
Similarly,

p—1\ [P %
Gﬁ—A<g—%f+@é§%%$%ﬂl->> < go.

It follows that (9.32) is a refinement of the Bellman inequality.
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The following corollary is an immediate consequence of Theorem 9.19 by using the
fact that the A-integral is an isotonic linear functional.

Corollary 9.5 Ler (X,.# ,up) be a time scale measure space. For p > 2, assume f,g are
nonnegative functions on X such that (f +g)?, f?,g? are A-integrable on X and [ (f(¢)+
g(2))PAt > 0. Suppose fo,g0 > 0 are such that

f”—/XfP(t)At>0 and gg—/xgp(t)At>0.

Then we have
p

((fg_ /X fP(t)At)l/p—l— (gg_ /X gp(t)At)l/p> (9.34)

— [ )= (s6s KOV + 507" N\
< | (8= Lo -erssn RS =)

+ (gg—/x V(1) + ()P At pAS>},

() +8(0)A
- | r+g)an.
JX

Remark 9.13 Corollary 9.5 is a refinement of Theorem 2.52.

£(5) — (f(5) + () 2 g;

9.7 Integral Inequalities of Popoviciu Type

In the following theorem, we give the weighted version of Popoviciu’s inequality (Theorem
2.49).

Theorem 9.20 Let (X,.# 1) be a time scale measure space. For p # 1, define g =
p/(p—1). Assume that w, f,g are nonnegative functions such that wf? wg?, wfg are A-
integrable on X. Suppose fy,g0 > 0 are such that

fr— /X wfPdus >0 and gf— /X wg?dua > 0.

If p > 1, then we have

fogo /X w(r) £(1)g(1)dualr)

z(o JRGIRC )dm(r))‘l’(gz-./; w(r)g"(r)dm(r))q. 9.35)

This inequality is reversed if 0 < p < 1 and [, wg?dua >0, orif p <0 and [, wfPdua > 0.
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Proof. Just apply [119, Theorem 4.27] and Theorem 2.5. a

In the next theorem, we obtain a new inequality by using Popoviciu’s inequality on
time scales (Theorem 9.20).

Theorem 9.21 Let (X, 4 ,up) and (Y,.L,Va) be time scale measure spaces. For p # 1,
define g = p/(p —1). Assume that u,v, f are nonnegative functions on XY, and X x Y,
respectively. Let fy,g0 > 0. If p > 1, then

/ (/fxy y)dva(y )) u(x)dpa(x) (9.36)

1

S/}; [fogo— (fé’—'/Xfp(x,y)u(X)duA(X)> ’

[ (i) uaust )

holds, provided all integrals in (9.36) exist and

p
fo = / fPudpa >0, gf— / ( / fvdvA) udpiy > 0.
X X Y

The inequality (9.36) is reversed if 0 < p < Land [y HPudpa > 0, orif p <0and [y fPudpa >
0.

(g6

] v(y)dva(y)

Proof. Let p > 1. Put
)= [ Fype)dv0)

Now, by using Fubini’s theorem (Theorem 1.8) and Popoviciu’s inequality (Theorem 9.20),
we have

(1) duia(x / H)HP (0)u(x)dua (x)

If 0 < p < 1or p <0, then the corresponding results can be obtained similarly. O

Now we recall the refinement of Popoviciu’s inequality for isotonic linear functionals
as given in [26].
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Theorem 9.22 (SEE [26, THEOREM 211]) Let L satisfy conditions (L), (L) and A sat-
isfy (A1), (Ap). For p>2,let q=p/(p—1). Assume f,g are nonnegative functions on E
such that

q p
17, 8%, fg. |g7A(fg) — fA(g")| €L,
and fo,80 > 0 are such that
7 —A(f7) >0, gg—A(g?) >0, and A(g?)>0.

Then

1/p

fogo—A(f8) = [(ff =AU™) (8§~ A(eN) ¥ +N,]
> (1 - AU™)" (g5 - Als) "

holds, where

2

(80 —A(g1)

%=t

g7 A(fg) —fA(g")‘p)

P (gh—Ag) "

foso P Alg?) —A(fg)| [ 1+ 80~
Ad(g9)

+

In the following theorem, we present a refinement of Popoviciu’s inequality for A-
integrals.

Theorem 9.23 Let (X,.# ,1Ua) be a time scale measure space. For p > 2, letq=p/(p—
1). Assume f,g are nonnegative functions on X such that

P
17, 8%, fg.

¢h [ fgn—r [ g0

are A-integrable on X. Suppose fo,g0 > 0 are such that

fé’—/fp(t)At >0, gg—/gq(t)m >0, and /gq(t)At > 0.
X X X
Then

fogo— [ F0g0)80 937)
> [(fé’— L) (si- o) o,
> (fg_/xfp(t)m)'l’ (gg_/);gq(;)m>

p
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holds, where

(s Jyg'A) 7 a(
R, = O(fX;q(t)At)p / /f 1At — f /Xg 1)At AY
-4 gt )At)g
+ | fogo /Xg (t)At—'/Xf(t) xg}; YWY

Proof. The inequality (9.37) follows from Theorem 9.22 by using the fact that the
A-integral is an isotonic linear functional. |

Remark 9.14 Theorem 9.23 is a refinement of Theorem 2.49.

For p =2, Theorem 9.23 gives the refinement of Aczél’s inequality on time scales (Theo-
rem 2.50).

Theorem 9.24 Let (X,.# ,Uua) be a time scale measure space. Assume f,g are nonneg-
ative functions on X such that

12,8 18, ‘g/xf(t)g(t)At—f/ng(t)At 2
are A-integrable on X. Suppose fo,g0 > 0 are such that
fg—/xfz(t)At>0, g%—/Xg2(t)At>O, and /Xg2(t)At>0.
Then

fogo — /X f(t)g(t)Ar (9.38)
> \/[(fé—/xfz(t)m) (g%—/xgz(t)m> +Rz]
> \/ (8- [rom) (8- [ o)

holds, where

g5 JxgE)Ar : . )
Re= oy /. (g(s) [ rwgtom—sts) [ gz(,)A,) N

" (f"g&l'/Xg2(t)At—/);f(t)g(t)Az)2 <l+%)-
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9.8 Integral Inequalities of Diaz—Metcalf Type

In the following theorem, we obtain a new inequality by using Diaz—Metcalf’s inequality
(Theorem 2.54) on time scales.

Theorem 9.25 Ler (X,.# 1) and (Y, £, Va) be time scale measure spaces. For p # 1,
define q = p/(p—1). Assume that u,v, f are nonnegative functions on X,Y, and X x Y,
respectively and p # 0,

flx,y)
O ) a )

If p>1,o0rifp <O, then

<M forall xeX,ycY.

/ (/ Fey)v(y)dva(y ))” (x)u(x)dpa (x) (9.39)
> Gy |01 [ )
+(mMP — MmP) / (/ FOuy)v(y)dvaly )> (x )u(x)d;,LA(x)} v(y)dva(y)
holds, provided all integrals in (9.39) exist and
/);f"(x>y)u(X)duA(x) >0 or
/ (/ JGe,y)v(y)dvaly )> u(x)dpa(x) > 0. (9.40)

The inequality (9.39) is reversed if 0 < p < 1 and (9.40) holds.

Proof. Let p > 1 or p < 0 and suppose (9.40) holds. Put

0= [ £ 0)avs).

Now, by using Fubini’s theorem (Theorem 1.8) and the Diaz—Metcalf inequality (Theorem
2.54), we obtain

J P @udus() = [ HEOH (a(x)dus )
-/ ( / f(x,y>v<y>dvA<y>)H"1<x>u<x>duA<x>
-/ (/ f(x,y>H'”<x>u<x>duA<x>) V)dva(y)
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1 -
> e |01 [ P ouauato
o ) [ B u)ams ()] v)ava0),

If 0 < p < 1, then the corresponding result can be obtained similarly. O

In the following theorem, we give a refinement of the functional Diaz—Metcalf inequal-
ity (Theorem 2.53).

Theorem 9.26 Let L satisfy conditions (Ly), (L) and A satisfy (Ay), (A2). For p > 2, let
q=p/(p—1). Assume w, f, g are nonnegative functions on E such that wfP wg4, wfg € L
and

0<m<f(t)gVP(t)<M forall t€E.

Then we have

(M —m)A(wfP) + (mMP — MmP)A(wg?) (9.41)
< (MP—mP)A(wfg)

_a _g P 4 _a\P
—A[qu((M—fg p) (fg p—m) —|—(fg P—m) (M—fg P) )}
Proof. Applying the substitution
Y(x)—x" h — fg79P. and k— wg,

the inequality (9.41) follows from Theorem 2.71. O

The following corollary is an immediate consequence of Theorem 9.26 by using the
fact that A-integral is an isotonic linear functional.

Corollary 9.6 Let (X,.# ,uUa) be a time scale measure space. For p > 2, letq=p/(p—
1). Assume w, f, g are nonnegative functions on X such that wf? , wg?, wfg are A-integrable
on X and

0<m<f(t)g "P(t)<M forall teX.

Then we have
(= m) [ w(e)f ()22 + (mbt? ~Mm?) [ (o) 0001 (9.42)
< (MP —mP) /X e
— [ g%r)((M 70 <>) (s 5 0)-m)"
+ (f(t)g_%(t) —m) (M—f(t)g_%(;))p) AL

Remark 9.15 Corollary 9.6 is a refinement of Theorem 2.54.



Chapter 10

Some Dynamic Hardy-Type
Inequalities with General
Kernels

The well-known Hardy inequality as presented in [68] (both in the continuous and discrete
settings) has been extensively studied and used as a model for investigation of more general
integral inequalities [60, 85, 86, 93, 102]. Recently, several papers have treated the unifica-
tion and extension of Hardy’s continuous and discrete integral inequalities by means of the
theory of time scales [113, 114, 122]. Measure spaces and measurable functions for time
scales are discussed in [42, 43, 62]. The aim of this chapter is to extend some inequalities
of Hardy type with certain kernels to arbitrary time scales. Certain classical and some new
integral and discrete inequalities are deduced in seek of applications.

10.1 Hardy Type Inequalities via Convexity in One
Variable

In this section, inequalities of Hardy type using convex function of one variable with gen-
eral kernels on arbitrary time scales are studied. The results of this section are contained
in [44].

213
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10.1.1 Inequalities with General Kernels
Let us consider the following hypotheses:
(Hy) (X,2¢,up) and (Y,.Z, va) are two time scale measure spaces.

(Hy) k:X xY — Ris anonnegative kernel and

K(x) ::/k(x,y)Ay<<><>, xeX.
Jy

(H3) & :X — R, is pp-integrable and denote

w(y) = /X 7k(x}(y()x§)(x) Ax, ye€Y.

Theorem 10.1 Assume (Hy)—(H3). If ® € C(I,R) is convex, where I C R is an interval,
then

, 1 s ,
fewe (s [rensom)ars [wweroiar  aon
holds for all vp-integrable f 1Y — R such that f(Y) C I

Proof. By using Jensen’s inequality given in Theorem 2.10 and the Fubini Theorem 1.8 on

time scales, we find that
JLewe (s [renroay)ax

Jy k(e y)If () Ay

< T, Kooy Ay )“

|y k() D))y
Lk

- oo
< oo
- [0 (fremao)s
[
[

(252 XA
¥))Ay,

and the proof is complete. O

Corollary 10.1 Assume (Hy)—(H3). If p > 1, then

[609 (g frnrom ) ax< [wo)ro)ray

holds for all vp-integrable f : Y — R
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Proof. Use ®(r) = r” and I = R in Theorem 10.1. O

Corollary 10.2 Assume (H|)-(H3). If p > 1, then

[ GRS A < [3) 500y

JY

holds for all vp-integrable g : Y — (0,00).

Proof. Use ®(r) = ¢" and I = R and let f = In(g”) in Theorem 10.1. |

Corollary 10.3 Assume (H,)—(H3). Then

/Xii(x Kt Jy Kty ())AyAxS/W(y)g(y)Ay

Y
holds for all va-integrable g : Y — (0,0).
Proof. Use p = 1 in Corollary 10.2. O
Further, we assume the following hypotheses:

(H/l) Let X =Y = [al,bl)'ﬂ‘ X [az,bz)T X ... X [an,bn)'ﬂ‘, 0<a;<bj<o foralliec
{1,...,n}, where T is an arbitrary time scale.

Theorem 10.2 Assume (H)) and (H>). Suppose

u:X — Ry issuchthat

._ V1 ---ynk(X,y)u(x) -
V)= /x o(x1)...0(x,)K(x) Ax <o, yeY. (10.2)

If® € C(I,R) is convex, where I C R is an interval, then

/’” / O((Aef)(x >>H

/bl /b" Ayl---Ayn (10 3)
Y1 n .

holds for all vp-integrable f : Y — R such that f(Y) C I, where

by bn
@0 = g [ [y )41y

Proof. We replace & (x) by #ﬁlm) in Theorem 10.1 and notice that therefore

v
w(y) = )
Yi---Yn
holds. An application of Theorem 10.1 completes the proof. O
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Corollary 10.4 Assume (H)), (H>), and (10.2). If p > 1, then

[ [ o St

o(x1)...0(x,)

< [ [ R

1 v dn yl"

holds for all vp-integrable f 1Y — R

Proof. Use ®(r) = r” and I = R in Theorem 10.2.

Corollary 10.5 Assume (H)), (H,), and (10.2). If p > 1, then

/”1 / X)eP(Ailn@)(x) AN A%
o(x1)...0(x,)

S

Yi---Yn

holds for all va-integrable g : Y — (0,0).

Proof. Use ®(r) = ¢" and I = R and let f = In(g”) in Theorem 10.2.

Ay,

‘yll

(10.4)

Example 10.1 If in Corollary 10.5 we take T =R and a; = 0 for all 1 <i <n, then (10.4)

takes the form

/”1 /b" x)erAxtn()x) P -+ L

X1...Xn

b1 bn dy;...
< [ [ et S

Corollary 10.6 Assume (H)), (H>), and (10.2). Then

/bl / n Akh’l ))(x) AXl .. Axn
o(x1)...0(xn)

IN

1

holds for all vp-integrable g : Y — (0,00).

Proof. Use p =1 in Corollary 10.5.

/fl /b () gy) e A

Vi-..

dyy,

Ay,
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10.1.2 Inequalities with Special Kernels
Corollary 10.7 Assume (H)), (H>), and (10.2) with the kernel k such that

k(x,y)=0 if a;<y;<o(x;)<b;,l1<i<n.

217

(10.5)

If ® € C(I,R) is convex, where I C R is an interval, then (10.3) holds for all vp-integrable

f:Y = Rsuch that f(Y) C I, where

K(x) = /b‘ . /b" K(x,¥)Av1 .. Ay,

o(x xn)

/y1 l/ay o) k(x,y x(n)) 0 )Axl...Axm

and

bn
(Acf) (x / . / KA A

Proof. The statement follows from Theorem 10.2 by using (10.5).

O

Example 10.2 If in Corollary 10.7 we take T = R and b; = o for all 1 <i < n, then

yi-.

(10.3) takes the form
[ [ e ) St
R

where

- /w.../Nk(x,y)dyl...dy,,,

/y‘ /y = 2 dx ... dx,,
and

(Aef) (x / /kxy ¥)dyi ....dy,

This result is the same as [110, inequality (2.2)].
Corollary 10.8 Assume (H)), (H>), and (10.2) with the kernel k such that

k(x,y) =0 if ai<o(x)<yi<b 1<i<n.

dy,

)

(10.6)
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If ® € C(I,R) is convex, where I C R is an interval, then (10.3) holds for all v-integrable
f:Y = Rsuch that f(Y) C I, where

"o (x1) "0 (xn)
K@%i/ m/ k(X Y)AY! - .. Ay,
ap a

n

by bn k(x,y)u(x
V(y):y1~~~yn/ / . (x,y)u(x) XAx1~~~Axn,

and
@0 = o [T [ k) A
X)=—— X, . Ay,
kf K Jay g Y)S(¥)Ay1- .. Ayn
Proof. The statement follows from Theorem 10.2 by using (10.6). O

Example 10.3 If in Corollary 10.8 we take T =R and a; = 0 for all 1 <i <n, then (10.3)
takes the form

[ [ e St

X1...Xp

b1 bn dy;...dy
< [ [Tvmerrm) S,
0 0 Vi---Yn
where
X1 Xn
m@:A.”Ak@w@hdM
b kxy)u(x)
W(y)=yi... 2R gy dw,
(¥)=n y"/yl /yn X1 .. X, K(X) ! 8
and

(Akf / / k X y dyl dyn~

This result is the same as [110, inequality (2.5)]. Special cases are given (for n = 1) in [85,
Theorem 4.1] and (for k(x,y) = 1) in [109, inequality (2.2)].

Remark 10.1 Using (10.6) in Example 10.1, we obtain [85, inequality (4.2)] (forn = 1).
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10.1.3 Examples and Special Cases
Theorem 10.3 Assume (H}) and

£ : X — Ry is such that

e E(x) -
w(y).—/yl /y 7(G(Xi)_ai)ml...mn< LyEY. (10.7)

=¥

1

If® € C(I,R) is convex, where I C R is an interval, then

by ba ~
/a / Ex0® ((Af)(x)) Av . Av,
1 an N N
nganﬂwMﬂwmmmm%(w&

holds for all vp-integrable f : Y — R such that f(Y) C I, where

~ o (x1) 0 (Xn)
@)= ——— [ [ f)an

(o(xi) —a;) " o

T

1

Proof. Let K and A f be defined as in the statements of Theorem 10.1 and Theorem 10.2,
respectively. The statement follows from Theorem 10.1 by using

1 if a;<yi<olx)<b,1<i<
k(x,y) = foas ol s bsis (10.9)
0 otherwise,
since in this case we have
o(x) 0 (xn) n
k= [ [ s = TT(00) ~a)
ai an i=1
and thus Ay = Aandw=w. O

Remark 10.2 By using & of the form (10.9), we may also give results corresponding to
Corollary 10.1, Corollary 10.2, Corollary 10.3, Theorem 10.2, Corollary 10.4, Corollary
10.5, Corollary 10.6, and Corollary 10.6.

Corollary 10.9 Assume (H}) with a; =0 forall 1 <i<n. If® € C(I,R) is convex, where
I C R is an interval, then

[ o)

X1 .-

S/Ob‘.../ob"{ﬁ(%—i)}dﬁﬂy))ml...mn (10.10)

=
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holds for all va-integrable f : Y — R such that f(Y) C I, where

~ 1 o(xy) o (xn)
@)= [ [ WA
H G(X,’) 0 0
i=1
Proof. The statement follows from Theorem 10.3 by using

Ex)= ——,

X1...Xp

since in this case we have

~ by bn 1 Ly 1
o1 [ [ s s f1(1-1)
)1 Yn " i—1 \Vi bi

xiO'(xi)

[i=F

4

as the function A(x) = 1/x is known [45, Example 1.25] to have the time scales derivative
WA (x) = —1/(x0(x)). O

Example 10.4 1f b; = « for all 1 <i < n in addition to the assumptions of Corollary
10.9, then (10.10) takes the form

oo oo _ A
/ / <I)<(Af)(x) Ax” / / D(f(y)) 2L
0 0 - Yn
For T = N and n = 1, this result is given in [41, 86].

Now we give an inequality of Hardy—Hilbert type on time scales.

Theorem 10.4 Assume (H’l) withn=1, a; =0, and by = . If we define

-7 ()
ki) = [y ad K= [ A

then

/om(Kl ()" (/Om %Ay) pr = '/Osz(y)(g(y))”Ay (10.11)

holds for all va-integrable g1 Y — R

Proof. We use

X*I/P .
and  k(x,y) = (‘x)ﬂ if x#0,y#0,x+y#0

X 0 otherwise

() = 2102

in Corollary 10.1 to obtain

- IO OTAY
/0 (K (x))! p(/o TAY

=B

< [ worora. o)
0
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where
= k(x,»)E (x) / = k(x,y)Ax
= DI A= | DT
o) = [ R (" 222
- 1-1/p
_ 1/ () IM:Kz(y).
yJo xX+y y

Using this in (10.12) and letting f(y) = g(y)y_%, we obtain (10.11). a

Example 10.5 1f we take T = R in Theorem 10.4 and use the known fact that
g Il )
ey U RO .
0o x+y 0 Xty sin(7/p)

then (10.11) turns into the classical Hilbert inequality (see e.g., [68])

/;( ow%dy)pdxﬁ (ﬁ) | (o).

Now we consider some generalizations of the inequalities of P6lya—Knopp type.

Corollary 10.10 Assume (H)) withn =1, aj = a > 0, by = o. Suppose (10.7). If ® €
C(I,R) is convex, where I C R is an interval, then

/awi(X)GD <G<x; — /;(X) f(y)Ay) Ax

< / ) ( /y T sl )d>(f(y))Ay (10.13)

holds for all vp-integrable f : Y — R such that f(Y) C L.

Proof. The statement follows from Theorem 10.3 by using n = 1. O

Example 10.6 In addition to the assumptions of Corollary 10.10, if T consists of only
isolated points, then (10.13) takes the form

Y et 3 f0)00) ) | (0 —x)

xe[a,w)rﬂ* O'()C) —a ye[a,x]r]r

< 3 | 2 0 ormiom -y (o4

ye[a,oo)T xe [y1°°>'1[‘ O—(x)

This result is the same as [130, Theorem 1.1], but here we use time scales notation instead
of the notation given in [130].
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Remark 10.3 As in Example 10.6, one can write the discrete version of (10.8).

In the following three examples, we consider Example 10.6 with ®(r) = r”, where
p>1.

Example 10.7 For T = hN = {hn:n € N} with h > 0, a = h, and

1
E(x) = %7
(10.14) takes the form
oo n r oo
2 (l Zf(kh)> <y 7(,0(?))1). (10.15)
n=1 k=1 n=1

Example 10.8 For T = N?> = {n? : n € N} with a = 1 and

2(c(x)—1)
(0(x) =x)*(2vx+3)’

(10.14) takes the form

> n(n+2)) 1
Zm<2

n:1 k=1

If instead

then (10.14) takes the form

oo n p oo
2 (2n+1)(n+2)'-r (2 St 1)f ) .S 2n42r1(f(n2))p.

nPt(n+1)2 = on

Example 10.9 For T = qN ={q":neN}withg>1,a=gq,and

_ ox)—a
)= S ew
(10.14) takes the form
i g "(g—DP(g"—1)"" (Z q"‘lf(qk)> < i (f(g))". (10.16)
n=1 k=1 n=1

In the following three examples, we consider Example 10.6 with @(r) =" and f(y) =
In(g(y)) for g(y) > 0.
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Example 10.10 For T, a, and & as in Example 10.7, (10.14) takes the form

inﬂ(Hgkh)lgi

(10.17)
If we let ¢(y) = g(v)/y in (10.17), then we get
1
! (n!H(p(kh)) <Y o(nh). (10.18)
o R A N n=1

Sincee ! < (n )%/(n—i- 1), from (10.18) we obtain

1

2(1_[(,0 kh) <e2<pnh

n=1

which is the well-known Carleman inequality [85, p. 141].

Example 10.11 For T, a, and the two choices of & as in Example 10.8, (10.14) takes the
forms

n:l

1
< 2n(n+2) = EIRCTIR R R
([ (ek <
(2n+1)(2n+3) (kl(g( ) < 2,80r)

and

i 2”%’11)—’—2) (ﬁ(g(kZ))2k+l

k=1
Example 10.12 For T, a, and & as in Example 10.9, (10.14) takes the form

i g "(¢"—1) (ﬁ(g(qk))"“> T< ig(q"). (10.19)
n=1

n=1 k=1

Remark 10.4 For i = 1, inequalities (10.15) and (10.18) are given in [102, (12.6), (12.7),
p. 153]. Also, (10.16) and (10.19) are the same as [102, (12.1), (12.2), p. 153].

10.2 Hardy-Type Inequalities via Convexity in
Several Variables

Here we extend the results of Section 10.1 using convex functions of multivariable with
general kernels to arbitrary time scales. The main result of this section is a direct conse-
quence of Theorem 10.1, but with different interesting applications. Results of this section
are contained in [52].
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10.2.1 Inequalities with General Kernels

Theorem 10.5 Assume (Hi)—(H3). If U C R™ is a closed convex set such that ® €
C(U,R) is convex, then

. e, .
[Lswe (55 [enmom )ax< [worotopay  02)
holds for all va-integrable functions f: Y — R™ such that f(Y) C U.

Proof. Using Jensen’s inequality (4.1) for several variables and the Fubini theorem on
time scales, we find that

[ ewe (s ke ) a
= 000 (i [REDAOIA s [ R0 )
Ié(((jg(/}/kxyq) A)Ax

(oo ([ 5250 ar) 2y

|

w(y)@(f(y))Ay.

;N

The proof is therefore complete. O

Remark 10.5 If @ is concave, then (10.20) holds in reverse direction.

Corollary 10.11 Assume (H,)—(H3). Let ¥ : [I1,1}) X ... X [ln,1},) — R be continuous

and define
(fy (x,y) j(fj(y))Ay>
K(x)

(f17 )_
forall j € {1,....m}. If ®(s1,...,5m) =P(L; ' (s1),-.., Ly  (sm)) is convex, then
JEG¥ @A), Ll V) A S [ wOPPAG). - S

holds for all f;(Y) C [l;,1}) and continuous monotone functions L; : [l;,1’) — R such that
Ljo f; are va-integrable for all j € {1,...,m}.

Proof. Replace in Theorem 10.5 f;(y) by L;(f;(y)) forall j € {1,...,m} and ®(sy,...,sn)
by WLy (s1), -, Ly (sm))- =

Remark 10.6 Incase T = N and m = 2, Corollary 10.11 is [130, Corollary 1.2].
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Remark 10.7 Incase m =2, we can use the results of E. Beck [29] (see also [103, p. 194])
as applications of Corollary 10.11, which correspond to the generalizations of Holder’s and
Minkowski’s inequalities. In the classical case, many authors have studied these types of
generalizations, see, e.g., [74, 73, 92].

1 1
Further in this section, we use p > 1 with — 4+ — = 1.
P q

Corollary 10.12 Assume (H\)—(Hz). Iff(x) = (f1(x), f2(x)), then

Je0 (i ket (y))PAy)%
(ﬁ / k(x,y)(fz(y))quyAxZ [ OG0

holds for all va-integrable f; 1Y — Ry, where j € {1,2}.

Proof. Use m = 2,¥(s1,s2) = s152,Li (1) =t} ,La(t2) = ] in Corollary 10.11. Then
1 1

D(s1,s52) = s{ 55 is concave in Theorem 10.5. o

Corollary 10.13 Assume (H))-(Hz). If f(x) = (f1(x), f2(x)), then

[ e ((ﬁ JEes <y>>PAy)%
- <ﬁ/yk(x,y)(fz(y))%y>%>pr2/YW(y)(fl(y)Jrfz(y))"Ay

holds for all va-integrable f; 1Y — Ry, where j € {1,2}.
Proof. Use m =2,¥(s1,52) = (s1+52)P, L1 (1) =1V, L (1) = 15 in Corollary 10.11. Then
1 1

®(s1,52) = (s{ +s5 )P is concave in Theorem 10.5. O

Remark 10.8 If p < 1, then the reverse inequalities hold in Corollary 10.11, Corollary
10.12, and Corollary 10.13.
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10.2.2 Inequalities with Special Kernels
Corollary 10.14 Assume (H') and

E:X — Ry issuchthat

by by
L[k y)E(x)
=/[...] ———Ax;...Ax Y.
I
If ® € C(U,R) is convex, where U C R™ is a closed convex set, then

'/ab1 abné(x)QD((Akf)(x))Axl Ay
< / " / T $)BEY) Ay .. Ay

holds for all vp-integrable £: Y — R™ such that £(Y) C U, where

o(x1) o (xn)
(Akf)(x) = ! / / k(xvy)f(y)Ayl ~~~Ayn-

K(X) Jay Jdn
Proof. The statement follows from Theorem 10.5 by using
k(x,y)=0, if @ <y;<o(x) forall ie{l,...,n},

since in this case

o(x1) o(xn)
K(x) :/ / k(x,¥)Ay; ... Ayy.

ay an
This completes the proof.
Corollary 10.15 Assume

E:X —TRy issuchthat

w(y):/K.../j%g(x)ml...mm yev.

(10.21)

(10.22)

(10.23)

If ® € C(U,R) is convex, where U C R™ is a closed convex set, then (10.22) holds for all

va-integrable £ : Y — R™ such that £(Y) C U, and

by b
ADE) =z [ oo [ WA Ay
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Proof. The statement follows from Theorem 10.5 by using
k(x,y)=0, ifa;<o(x;) <yforallie{l,...,n},
since in this case

by by

K(x) = / /k(x,y)Ayl...Ay,,.
The proof is complete.

Theorem 10.6 Assume (H)) and

E:X — Ry issuchthat

] bn §(x)
w(y)—/ / mml...m, yev.

=

<

=
=5

If® € C(U,R) is convex, where U C R™ is a closed convex set, then

by bn _
/al £ ((A)(x)) Avi .. Ax,
< /? - b F)OEY)AN ... Ay,

holds for all vp-integrable £: Y — R™ such that £(Y) C U, where

_ 1 o) ol
Af)(x) = —— £(y) Ay ... Ay
(GW%WDL‘ L”

T

1

Proof. The statement follows from Theorem 10.5 by using

o 1 ifa<y<ox)<b,ie{l,....,n}
k(X’Y)_{ 0 otherwise ’

since in this case

Thus Ay = Ag,w = W.

227

(10.24)

(10.25)

O

Corollary 10.16 Assume (H)) witha; =0 foralli € {1,...,n}. If® € C(U,R) is convex,

where U C R™ is a closed convex set, then
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/bl bn Ax| ...Axn

D ((Auf) (x)) —
/bl / " <_——> O(f(y))Ay ... Ay, (10.26)

=

holds for all vp-integrable £: Y — R™ such that £(Y) C U, where

1 o (xy) 0 ()
(Af) (x) = — / / £(y)Avi ... Ayn.
H O-(.Xl') 0 JO
i=1
Proof. The statement follows from Theorem 10.6 by using
1
S =0

b 'bn 1 n 1 1
W(Y)Z/y l/ niAxl...Axn:H<——b—i) (10.27)

holds. O

Example 10.13 If b; = foralli € {1,...,n} in addition to the assumptions of Corollary
10.16, then (10.26) takes the form

/ /dDAkf AXAX"

Xn

o o Ay ... Ay,
g/o /0 @(i(y) S (1028)

Remark 10.9 Clearly, if the left-hand side is oo in (10.26), then the right-hand side is also

oo,

Remark 10.10 For T«»R and m = 1, the inequality (10.28) is proved in [41, 86].

10.2.3 Some Particular Cases

Here, let us start with the inequality of Hilbert type on time scales.

Theorem 10.7 Assume (H)) withn = 1,a; =0, and by = oo. If we define

o (Y —% e 1—%
Kl(X)Z/O ) Ay,Kz(y)z/O LAx (10.29)

X+Yy xX+y

for g > 1, then
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1 1
[ 2) 1- 1/q P = 2) 1- 1/q p’ 4
/ / y)) Ay / ) Ay Ax
x+y x+y
0 \0 0

2‘/w3&00g100g200Ay (10.30)
0

holds for all vs-integrable g;: Y — R, where j € {1,2}.

Proof. We use

/4
and k(x,y)_{ —(“x)ﬂ x#0,y#0,x+y#0 }’

0 otherwise

K (x)

S =

in Corollary 10.12 to obtain

1 E
e T2V ? TV () v
K
/1@ / (il M / Ay | A
X xX+y
0 0 0

2'/W(y)f1(y)fz(y)Ay, (10.31)
0

where

wsz Hed)s®) / xym / D Kal)

y

Using this value in (10.31), we obtain

> [(RMA0ANT. 1032
0 y

Now, if we replace f;(y) by g1(y)y'/? and f>(y) by gz(y)yl/",, then we obtain (10.30). O

Proof.[ Another Proof of (10.32)] Consider the left-hand side of (10.31) and apply

Holder inequality on time scale [20, Theorem 6.2] and Fubini theorem on time scale [34,
Theorem 1.1].Then we have
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(k@[ 1 TSR " O h)? ’
! X (Kum/] Xty m) (KN@! y YA
vy 1/a it < \—1/q
z/(/(x) xﬁ(yy)ﬁ(y)Ay)%—/ﬁ(y)fz(y) (/(’;)H %)Ay
0 0 0 0

i.e., (10.32) holds.

O
Example 10.14 1t is known that
o0 1/q e (LY1=1/q
/ () dy—/ G (10.33)
Jo x+y Jo  x+y sin(r/q)

for all x,y € Ry = (0,) with g > 1. If T =R, then from (10.30) we obtain

oo [ oo ll/q P e 1l/q ,/ ﬁ

/= / )
x+y

0 0

T -
> m/o fi(y)fa(y)dy

In the rest of this section, we take n = 1,a > 0,b = oo in (H)).

Theorem 10.8 If (10.29) is satisfied, then

o 1 1/q p ’ < e\i-1/q p z ’
(fiy) (1) (R WK)
0/ (/ Ty Ay) + (/ —Ay) Ax

X+
0 y

> [KO)(A0)+ £ Ay (1034
0

holds for all va-integrable f; 1Y — R, where j € {1,2}.
Proof. We use

é(x):KI;EX) and k(x,y):{ (‘;x)+;/q X#0,y#0,x+y#0 }

0 otherwise

in Corollary 10.12 to obtain
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p

7 Ve ’ Ty Ax
J(7emra) (o

X+Yy X

==

> /Kz<y>(f1<y>+fz<y>>”%. (1035)
0

Now, if we replace f1(y) by fi(y)y"/? and f>(y) by f2(y)y'/?, then we obtain (10.34). O

Remark 10.11  (a) We can give another proof of (10.35) using Minkowski’s inequality
on time scales [20, Theorem 7.2].

(b) If p < 1, then we have reverse inequalities.
Now we consider some generalization of the inequalities of P6lya—Knopp type.

Corollary 10.17 Ler (10.24) hold. If ® € C(U,R) is convex, where U C R™ is a closed

convex set, then

[ swe (ﬁ [ f<y>AY) ax< [woo)ay

holds for all va-integrable f: Y — R™ such that £(Y) C U

Proof. The statement follows from Theorem 10.6 by using n = 1. O

Corollary 10.18 Assume (10.24). Then

[eo(5m= [ o) :

( ! /-6<x>(f1(y>>pfAy> axz [T wi)fi6)A0)8y

o(x)—ala

= |-

holds for all vs-integrable f;: Y — R, where j € {1,2}.

Proof. The statement follows from Corollary 10.12 by using m = 2. O

Corollary 10.19 Assume (10.24). Then

1

[eo( (sm= [ nowrs)
P

o) 3 -
*(W;_a/a <f2<Y>>”Ay) Ax> / w() (/1 () + ()" Ay

holds for all vs-integrable f;: Y — R, where j € {1,2}.
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Proof. The statement follows from Corollary 10.13 by using m = 2. O

Example 10.15 If T consists of isolated points, then from Corollary 10.18 we have

1

> M( > (fl(y))”(ff(y)—y)>

y€la,0(x))

1
7

( > (fz(y))”l(ff(y)—y)yz > w) A AG) (o) —y), (10.36)
ye|

y€la,e)

5 E0ot) )

where w(y) =
v xpey (O)

Example 10.16 If T consists of isolated points, then from Corollary 10.19 we have

+< [2 (fz(y))”(ff(y)—y)>p) > > w)(A)+ L) (e()—y),

a,0(x)) y€la,e)
(10.37)
where w(y) is the same as in Corollary 10.15.
Example 10.17 For T=hiN={hn:neN} witha >0, a=1,and &(x) = ﬁ, (10.36)
x

takes the form

El'ﬂ

\(nh) fo(nh),  (10.38)

() () 52
kl k=1 n=1

and (10.37) takes the form

1 1\ P
oo l n p n p
,,;n(n -y ((l;l (fl(kh))”) + (l;l (fz(kh))p> )

i % (fi(nh) + fo(nh))".  (10.39)

!
r;”(”+
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Example 10.18 For T«»N*> = {n?> :n € N},a =1, and

o))
R RV )

(10.36) takes the form

2 2n+l)(2n+3 (2 @+ DA ()" )

k=1

N

AR (K, (10.40)

M

(i (2k+1)(f(K))" ) >

k

1
and (10.37) takes the form

oo n ) ’
; 2n+l (2n+3) ((,;1 @+ 1)( flk)))

1

P
(n (2k+1)(f2(k%)) ) ) Z(fl () + (&))", (10.41)
k=1 —

If we take

then (10.36) takes the form

i (2n+1) (i a1 ))p>p

n=11 (n+1

8

Zk 1
D r ) A00), (1042)

(i (2k+1)(fz(k2))p> -5 &

k=1
and (10.37) takes the form

1\ P
(2 (2k+1)(f2(k*)) ) ) 2 2"“ (f1 () + (&))", (10.43)

1
By replacing fi (k) with (2k +1) £1(k?) and f>(k?) with <2k +1) £(K?) in (10.42) and
(10.43), respectively, we have
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i (2n+1) (i (A () ) (Zszz 2)) ) Zifl(kz)fz(kz) (10.44)
= =1 k=1

n+l
and
S (2 <f1<k2>>")'%+(ik%fz(k%)”)l p
S+ 12\ \& k=1

> 3 () + A1) (1045)

(10.36) takes the form

) (i ¢ (h (q"))p> p (i q’”(fz(tf))") '

i (q
n=1 =

= ifl (d")f2(q"), (10.46)

and (10.37) takes the form

i (q—
n=1

8

Z(fm ")+ f2(g")P. (10.47)

Remark 10.12 (a) In classical case, for & = 1, the inequalities (10.38), (10.39) are the
same as (1.7), (1.9). Also (10.46), (10.47) are the same as (1.6), (1.8) in [130, Corol-
lary 1.3], respectively, while according to the authors knowledge (10.40), (10.41),
(10.42), (10.43), (10.44), and (10.45) are not existing in the literature.

(b) For p < 1, we get the reverse inequalities.

Remark 10.13 The results given in Section 10.2.3 can be proved analogously for X =
Y = [al,‘x’)’ﬂ‘ X ... X [a,l,oc)']r.

Remark 10.14 The results given in Corollary 10.12, Corollary 10.13, and in their given
applications can also be obtained analogously for a finite value of m > 2.
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10.3 Hardy-Type Inequalities via Superquadratic
Functions

In this section, we give extensions of the inequalities of Hardy type with general kernel for
superquadratic functions to arbitrary time scales. Results of this section are contained in
[28].

Before presenting the next results, which were recently proved by Oguntuase et al.
[111], it is necessary to introduce some further notation: We use bold letters to denote
n-tuples of real numbers, e.g., X = (x1,...,x,). Also, we set 0 = (0,...,0) € R" and
1=(1,...,1) € R". Furthermore, the relations <, <, >, and > are, as usual, defined
componentwise, for example, for x,y € R", we write x <y if x; <y; foralli € {1,...,n}.
Finally, we denote

(0,b)={xcR":0<x<b} and (b,o)={xcR":b<x<oo}.

Proposition 10.1 Ler b € (0,00), u: (0,b) — R be a weight function which is locally
integrable in (0,D), and define v by

by "bn
0 :tl...t,,/ / 2u(x)2dx, t€(0,b). (10.48)
Jty Jty xl coe Xy

Suppose I = (a,c),0<a<c<e @:1—R,and f:(0,b) — R is an integrable function
such that f(x) € I for all x € (0,b).

(1) If ¢ is superquadratic, then the inequality

[ e (o [ ) S
+./O.bl..../0.b"/t;bl..../t;b"(p(f(t)—xi'xn /lel..../o.xnf(t)dt

u(x b b
(_.)x%dthé/o /o v(x)e(f(x)) &

X1...Xp

) (10.49)

.y
holds.
(1) If @ is subquadratic, then (10.49) is reversed.

Proposition 10.2 Ler b € [0,), u : (b,0) — R be a weight function which is locally
integrable in (0,D), and define v by

1
...l

"l "In
W(t) = /m /b u(x)dx < oo, 1 € (b,eo). (10.50)

Suppose I = (a,c),0<a<c<oo, @:1—R, and f: (b,o) — R is integrable such that
f(x) €l forall x € (b,).
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(1) If ¢ is superquadratic, then the inequality

/l:.../:ou(x)q) (xl...xn/x:o.../xjf(t)tffl%t%> % (10.51)
R (L Ay

n o 212
dr ° i
(e < J @t

dx

X1...Xp

holds.

(1) If @ is subquadratic, then (10.51) is reversed.

Recently, S. Abramovich, K. Krulié, J. Pecarié, and L. E. Persson proved in [7] that
for superquadratic function ¢ and an integral operator Ay f defined by (1.28) the following
theorem holds.

Theorem 10.9 Let (X;,%1, 1) and (X2,%, Up) be measure spaces with positive G-finite
measures, u be a weight function on X, k a nonnegative measurable function on X| x X»,
and K be defined on X| by (1.29). Suppose that K(x) > 0 for all x € X| and that the
k(x,y)
K(x)
¢ <oo, @:1— R.If @ is a superquadratic function, then the inequality

Sfunction x — u(x) is integrable on X; for each fixed y € X. Suppose I = (0,c¢),

w0 am@+ [ [ o) - 4D

%dﬂl(@duz@) S/QZV(Y)<P(f(y))dH2(}’) (10.52)

holds for all measurable functions f : X, — R such that f(Xo) C I, where Ay is defined by
(1.28) and

v(y) = /Ql k[(;c(’;;) u(x)dpy (x) < eo. (10.53)

If ¢ is subquadratic, then (10.52) is reversed.

10.3.1 Inequalities with General Kernel

In the next theorem, we give an analogue of Theorem 10.9 for arbitrary time scale measure
spaces.

Theorem 10.10 Suppose that hypotheses (H1)—(H3) are valid. Let I = [a,c), 0 < a <
c<oo,and ¢:1—R. If o € C(I,R) is superquadratic, then
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K
< [oUtmiay (oss

Y

[otmnenzeacs [ [o70)- wni ) SRR
X

holds for all Y -integrable functions f 1Y — R such that f(Y) C I. If ¢ is subquadratic,
then (10.54) is reversed.

Proof. Using Jensen’s inequality (2.65) for superquadratic functions on time scales and
the Fubini theorem on time scales, we have

[ o @)Ewax
X

~ [ o0 - oo 2 avay,

which is equivalent to (10.54). If ¢ is subquadratic, then (2.65) is reversed, which implies,
according to the conclusions made above, that (10.54) is reversed. O

Remark 10.15 If ¢ is nonnegative in Theorem 10.10, then according to Lemma 1.1 ¢ is
convex and therefore Theorem 10.10 gives a refinement of Theorem 10.1.

Corollary 10.20 Assume (H,)—(H3). If p > 2, then

[ ALr@Ee) av / / 170) = ()l 2R sy
X

/f” (MAy (10.55)

holds for all vp-integrable f 1Y — R. If 0 < p <2, then (10.55) is reversed.
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Proof. We use @(x) = x” in Theorem 10.10. O

Remark 10.16 In particular, if p = 2 in Corollary 10.20, then we get

Jairmzemar + [ [170)- @ueP S axay - [ Pomom
X Y X

Corollary 10.21 Assume (H,)—(H3). Then

[ explarg(0)EWAx+1< [ glw()y (10.56)

X

~

Agg(x) = % Y/ k(x,y)Ing(y) Ay
and
Y/ / exp (Ing(y) — Arg(x)])  Ing(y) — Acgx >>%mm
+/lng /(l—i—Akg( ))Ax.
Proof. Use @(x) = ¢" —x— 1 and f(x) = Ing(x) in Theorem 10.10. O

Corollary 10.22 Assume (H,)—(H3). Let [Ay =
X
If ¢ € C(I,R) is superquadratic, then

Jo (|71|/ f(y)Ay> Ax
X Y
IYI// ( y_ﬁ.y/f(y )MAy<|Y/<p )Ay  (10.57)

holds for all va-integrable f Y — R such that f(Y) C L. If ¢ is subquadratic, then (10.57)
is reversed.

Proof. By taking k(x,y) = 1 and & (x) = 1 so that

Ay=1Y| and :—:—
/y||anw [ =
X

the statement follows directly from Theorem 10.10. O
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10.3.2 Inequalities with Special Kernels

Throughout this section, we assume (H'l) holds.

Theorem 10.11 Assume (H)). Let

N O O
= — 2 Ax;...Ax, 10.58
W) /) ¥ 1 (o(xi) —ai) ! ( )

such that & : X — Ry is a Ua-integrable function. If ¢ € C(I,R), I C R, is superquadratic,
then

[ [ 60 () an . ans
by by by by
/ / /y Vi Hl (o(x) —a;) (‘f Akf )D

by
Axl...Ax,,Ayl...Ayng/ / W) OF)A ... Ayn (10.59)
ay

holds for all va-integrable f : Y — R such that f(Y) C I, where
(Af) (%) = =

/G(Xl) /G(Xn)f( )A A
Y)Ayp ... Ay,.
(o) —ai) Ja, an !

If ¢ is subquadratic, then (10.59) is reversed.
Proof. The statement follows from Theorem 10.10 by using

. 1 ifaigyi<0'(x,~)§b,~,ie{l,...,n}
k(x,y) _{ 0 otherwise, ’

since in this case

-0 (x1) -0 (x) n
K(x):/ / Ayi .. Ay = [[(0(x) — ),

val v dn i=1

and thus Ay = Xk, w=w. O

Corollary 10.23 Assume (H) with a; = 0 foralli € {1,...,n}. If ¢ € C(I,R) is su-
perquadratic for [ C R, then

by
I / 0 (Af)(x)) 2By
i1 i

/Oblm/obn/yl /y o (If(y) — (Auf)(x ))%Ayu.mﬂ

/ / V))AYI ... Ay (10.60)
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holds for all va-integrable f : Y — R such that f(Y) C I, where

o(x1) S (xn)
(Af)(x) = ﬁ/o /0 F(¥)Ay; ... Ay,.

n
=10

Proof. The statement follows from Theorem 10.11 by using

since in this case

W= [ [ e an =TT (1)
wy:/ / —  Au. A=)
Vi - Iy Xi0 (%) ! i \i  bi

This completes the proof |

Remark 10.17 If b; = e foralli € {1,...,n} in (H)), then (10.60) takes the form
- Ay
(A
/ / (Acf)(x H” L Xi T
Axy ... Ax,
— (Arf —————Ay1... Ay,
) - // /ot k><>“n1xl»<i>

/ / o(f - y (10.61)

Theorem 10.12 Leta > 0,b = in (H)), and v:Y — R be defined by

1 "o (y1) ‘G(Vn)
= . L Ax, =
V(y) H:lzl 0'(}’1) /al an H ( y ))

If o € C(I,R) is superquadratic, then

o m(p Hx, 7Y)Ay1...Ayn w (10.62)
ay an Jx, T2y vio o(yi) i=1%i

+/°°.../ / v .../6("<p(\f(y)
—Hx,/ s Wf)(yi)Ayl...Ayn
<[, ot S

holds for all va-integrable f: Y — R such that f(Y) C . If ¢ is subquadratic, then (10.62)
is reversed.

If ¢ is subquadratic, then (10.61) is reversed.

" IT-, yio(yi)

Ayp... A
>Ax1...Ax V1 Vn
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Proof. The statement follows from Theorem 10.11 by using

n
———, yi>xforallie{l,...,n},
woxy) = 4 5ot ’
0 otherwise,

since in this case

1
KX)= —,
(%) T
and we replace & (x) with 1/]]", x; to obtain
v(y)
w(y) = .
) IT=1vi
This completes the proof. O

Remark 10.18 If ¢(u) = u” in Theorem 10.11 and Theorem 10.12, then for p > 2, the
corresponding inequalities are preserved. However, for p € (0,2], the corresponding in-
equalities are reversed.

10.3.3 Some Particular Cases

Corollary 10.24 Let T be an isolated time scale. Suppose X =Y = [a,e°)T, a > 0, and
& : X — Ry is a up-integrable function. If p > 2, then

Y E(x) (Aef) (X)) u(x) (10.63)
x€[a,e)

T

£y Y S0 )@@ p@e o)

ye[a7w>ﬂ‘xe[y%°°)ﬂ‘ ° (x) a4

< D wOFm)Prk)

y€la,eo)p

holds for all va-integrable f : Y — R, where

(Aef)(x) =

o(x)—a

and

Proof. We use @(r) = r” in Theorem 10.11 with p >2 andn = 1. O
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Corollary 10.25 Let T be an isolated time scale. Suppose X =Y = [a,e°)T, a > 0, and
& : X — Ry is a ua-integrable function. Then

Z E@) (AN @) +I< Y wO)fO)u(y)

'I[‘ yE[a,N)T
holds for all va-integrable f : Y — (0,0), where

- 23 O el (E5)] - (53]

yE[a,N)TXE[y,‘X’)T o (x) —a
+1In : — . (10.64)

o(x)—a
g‘(x):( I1 (g(y))‘“”) (10.65)
ye€la,o(x))p

for a va-integrable function g : Y — (0,0), and w(y) is as in Corollary 10.24.
Proof. We use ¢(x) =¢* —x— 1 and f(x) =Ing(x) in Theorem 10.11. ad

Example 10.20 For T = hN = {hn:n € N} with 4 > 0 and

£ = 5o
(10.63) takes the form
o1 1 &
S (b5 )
ii f(kh) ——kah Si(f(kh : (10.66)
k=1n=k k= k=1

Example 10.21 For T«»N? = {n2 :ne€N}a=1,and

o)1)
S0 = G a3y

(10.63) takes the form

= 2nn+2)7 (& i
; 2n+1)(2n—|—3 (2 2k+1D)f )

= o 202+ 1)
+,{§§{ 2+ 1)(2n13)

f(k2)—n(n+2)ki(zk+1 (k) i( )"
(10.67)
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Example 10.22 For T = qN ={q" :n € N} with ¢ > 1 and

261
*W = G —xPEVET )

(10.63) takes the form

n=1

ql

1 & p
q Zklf

=15

i ( )”. (10.68)

Example 10.23 For T and & as in Example 10.20, (10.64) takes the form

il"L(kH g(kh)> ” (10.69)
n= =1

yy ! o (kh)

exp|/ln| —=~—~2
= [ &) )) N m1<wm%w<n M)ﬁ
<mﬂmww ' o I ITstt

5 g(lh)

Sg,l P

Example 10.24 For T and & as in Example 10.21, (10.64) takes the form

1
n(n+2)

2 2,12:1’1—;213) (g (8("2))%1) (10.70)
- — 2k—|—1) (k2)
+I§ ; @ntDn+3) (exp ! ((HZ 18 (k2)2k+1)"("+2) ) ‘
—|In g(kz)
(ITy_, (k) )y

+In H?:lg(kz)
2ntl
H:’Zl e2n+1 (HZ:I g(k2)2k+1) A0t
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Example 10.25 For T and & (x) as in Example 10.22, (10.64) takes the form

1

g—1
oo n 1\ 771
ZW(q”—l)( (2(a)" > (10.71)
n=1 k

+

o k—1(, k
34 (Z D [ explin g(d")
ek A (Mii8(a5)” )

_m< s(d) 1))
(T g(qh) )7

tIn I 8(4")
N, 1\2
= e D (T g(qh) ) T

Ms

k

10.4 n-Exponential Convexity of some Dynamic
Hardy-Type Functionals

Here we use the isotonic linear functionals obtained from the results given in Section 10.1
to give nontrivial examples of n-exponentially convex functions. The results in this section
are taken from [87].

Remark 10.19 Under the assumptions of Theorem 10.1, we have
11(@) = [ wOIR()8y— [ EXD (A () Ax 0. (10.72)
From Theorem 10.2, we have

by n A
2 (D) / / v(y)®(f -2
- Yn

- /b‘ .../jnu(x)cb((ﬁkf)(x))w >0. (10.73)

Jdaj

From Theorem 10.3, we have
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va@) = [ [ S o) s,
_/j‘ ,../aj"g(x)qn((ﬁf)(x))Axl...Ax,, >0. (10.74)

For simplicity, we use Y(®) instead of Y;(®) Vi € {1,2,3}. Hence, for any convex @ €
C(I,RD,
Y(®) > 0.

In [75], the authors describe the n-exponential convexity for the functionals obtained
from the inequalities of Hardy and Boas types. In this section, we utilize the functional
Y (@) given in Remark 10.19 to establish the n-exponential convexity via the theory of time
scales. Therefore our work is a continuation of the results in [75].

Theorem 10.13 Ler J be an interval in R and I be an open interval in R. Let Y(®) be
as given in Remark 10.19. Assume Y = {¢ |t € J} is a family of continuous functions
@ : I — R such that the functiont — [yo,y1,y2; @] is n-exponentially convex in the Jensen
sense on J for every choice of mutually different points yo,y1,v2 € I. Thent — Y(¢) is an
n-exponentially convex function in the Jensen sense on J. Also the function t — Y(¢y) is
continuous, therefore it is n-exponentially convex on J.

Proof. The proof is similar to the proof of Theorem 5.9. O

The following corollary is an immediate consequence of Theorem 6.9.

Corollary 10.26 Let J be an interval in R and I be an open interval in R. Let Y(®) be
as given in Remark 10.19. Assume Y = {¢, |t € J} is a family of continuous functions
& : I — R such that the function t — [yo,y1,y2;®] is exponentially convex in the Jensen
sense on J for every choice of mutually different points yy,y1,y2 € I. Thent — Y(¢) is
an exponentially convex function in the Jensen sense on J. As the function t — Y(¢) is
continuous, therefore it is exponentially convex on J.

Corollary 10.27 Let J be an interval in R and I be an open interval in R. Let Y(®) be
as given in Remark 10.19. Assume Y = {¢ |t € J} is a family of continuous functions
@ : I — R such that the functiont — [yo,y1,y2; @] is 2-exponentially convex in the Jensen
sense on J for every choice of mutually different points yo,y1,y2 € I. Then the following
statements hold:

(i) The functiont — Y (@) is 2-exponentially convex on J. If t — Y (&) (¢t € J) is addi-
tionally strictly positive, then it is also log-convex on J, i.e.,

Y(r—p)((pq) < Y(r—q)(%)y(q—P)(@) (10.75)

for p,q.,r € J suchthatp < g <r.
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(ii) If the functiont — Y(¢) is strictly positive and differentiable on J, then for s < u,
t <v,s,t,u,vel, wehave

U (Y,Y) <y (YY), (10.76)
where .
=
()"
us, (YY) = (10.77)
exp %?;30) ,s=t
for ¢s, ¢y €Y.
Proof. The proof is similar to the proof of Corollary 5.11. O

Remark 10.20 Note that the results from Theorem 10.13, Corollary 10.26, and Corol-
lary 10.27 are valid when two of the points yg,y;,y2 € I coincide, for a family of differen-
tiable functions ¢ such that the function r — [yg,y1,y2; @] is n-exponentially convex in the
Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense),
and moreover, they are also valid when all three points coincide for a family of twice differ-
entiable functions with the same property. The proofs can be obtained by recalling Remark
1.3 and a suitable characterization of convexity.

The following result is given in [72].

Theorem 10.14 Assume J C R is an interval, and assume Y = {@, |t € J} is a family of
twice differentiable functions defined on an interval I C R such that the functiont — ¢/ (x),
(t €J), is exponentially convex for every fixed x € I. Then the function t — [yo,y1,v2; 0],
(r €J), is exponentially convex in the Jensen sense for any three points yo,y1,y2 € I.

10.4.1 Applications to Cauchy Means

In this section, first we give mean value theorems corresponding to the Hardy-type func-
tional Y(®) given in Remark 10.19.

Theorem 10.15 Ler the linear functional Y be defined as in Remark 10.19. Assume
g € (C?[a,b],R), where [a,b] C R. Then there exists & € [a,b] such that

Y(g)= %g”(é)Y(ﬂ

Proof. The proof is similar to the proof of Theorem 6.7. O

Theorem 10.16 Let the linear functional X be defined as in Remark 10.19. Assume
g,h € (C*[a,b],R), where |a,b] C R. Then there exists & € |a,b] such that

Y(g)= 38" (6 ().
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provided that Y (h) # 0.

Proof. The proof is similar to the proof of Theorem 5.5.

"

Remark 10.21 If the inverse of the function % exists, then (10.78) gives

£ g\ (Yle)
A\ Y(h) /)
Example 10.26 Consider the family of functions

Q :{Kpi R— [0,00); pP ER}

247

(10.78)

(10.79)

defined in Example 5.2. Then by using Corollary 10.26, we conclude that p — Y(k, ) is
exponentially convex in the Jensen sense. This mapping is also continuous, so they are
exponentially convex. For this family of functions, the expression in (10.77) becomes

()™ e

and by (10.76), it is monotone in s and 7. Using (10.79), it follows that

M, (Y,Q1) =logu, (Y,Q)

satisfy M, (Y, Q1) € [a,b], which shows that 91, (Y,€;) are means (of the function f).

Note that by (10.76), they are monotone means.

Example 10.27 Consider the family of functions

Q= {p: (0.=) ~R: p € R}

defined in Example 5.3. Arguing as in Example 10.26, we have p — Y(f3,)) is exponen-
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tially convex. In this case, (10.77) becomes

( Eﬁfi)li o
exp(l ) s—1—0;
exp( - zgrﬁ(ogﬁll))) ) r=1

Also ug,(Y,€,) is continuous, symmetric, and monotone in both parameters (by (10.76)).
For the class Q,, we have

Y1(Bp) =
ooy Uy w2 0)Ay = fx E(x) (R(x))"Ax),  p#0,1;
= Jyw)log f(»)Ay + [x & (x)log (R(x)) Ax, p=0;  (10.80)
Jyw) f(y)log f(»)Ay — [x E(x)R(x)log (R(x))Ax, p =1,
where

For (10.80), (10.75) gives
1

7 (prorom- [ so Ax)“,

< (—/Yw(y)logf(y)Ay+/é(x)mg(R(x))Ax) (10.81)
(/ w(3)f () log Sy = [ EWR()log (R(x >>Ax) ,

where p=0<g<1l=r.Ifg<0<1or0< 1< gq,then (10.81) holds in reverse order.

Observe that (10.81) is a refinement of the inequality in Corollary 10.1. Similar results can
be written for i € {2,3}. Particularly, for i = 3, n = 1, we have
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YB(ﬁp):
s (Fao)r0ar- [z () ar). - p2o.s
b b ~
— [0 log f()Ay+ [E()log (R()) Ax,  p=0:  (1082)
b b ~ ~
[W0) /() log f(r)Ay — [ EWR()log (R(x)) Ax, p= 1.
where

o(x) roo X
R(X)Zﬁ/a f(y)Ay and W(y)Z/y s (WA

o(x)—a

For 0 < g < 1, using (10.82) in (10.75), we have

b

b
0 ( [0 mar- / £ (ﬂm)"m)

b

I—q
< (—/w( Jlog £(y) Ay+/é Jlog (R ())Ax) (10.83)

(/w ¥)log f()Ay — /é 1og(<>>)Ax>q.

Ifg<0<1lor0<1<gq,then (10.83)is reversed.
Example 10.28 Consider the family of functions
S23 = {YP : (0’00) - (0’00) S pE (0’00)}

defined in Example 5.4. For this family of functions, (10.77) has the form

(Fa)™,

Y(id - ¥ 2
s (Y,€23) = ¢ exp (_ T(T('Y’);) - m>

—2Y(id")/1) L
eXp<W>, S—t—l,

and by (10.76), it is monotone in s and ¢. Using Theorem 10.16, it follows that

s=t=#0,1;

R (Y,Q3) = —L(s,1)logu(Y,Q3)
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satisfies X, (Y,Q3) € [a,b], which shows that X,,(Y,Q3) is a mean. Here L(s,t) is the
logarithmic mean defined by

s—1

L(s,t) s#t, L(s,s)=s.

B logs —logt’
Example 10.29 Consider the family of functions
Qs = {51) : (0,00) = (0,00) 1 p € (0,00)}

defined in Example 5.5. For this family of functions, (10.77) becomes

s, (Y, Q4) = (igﬁ) B ' s 1

and it is monotone function in s and ¢ by (10.76). Using Theorem 10.16, it follows that
NS,Z (Ya Q4) = (\/;+ \/E) IOg us,l (Ya Q4)

satisfies R, (Y,Qy4) € [a,b], which shows that X, ,(T,Q4) is a mean.

10.4.2 Applications to Isolated Time Scales

Now, we consider some particular cases corresponding to the examples from Section 10.1.
Let us take X =Y = [a,00)7 = [0,00) N'T, @ > 0. Further assume that the time scale T
is isolated. In this case, (10.82) takes the form

Ts(ﬂp) =

—log< i (f(y))”“”””)ﬂog( i (k’(x))é(x’“(”>, p=0;  (10.84)

[aﬂb)'ﬂ‘
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Also, for 0 < g < 1, (10.83) takes the form
1 _ -
P Y ) O = Y, EERE) )
q(q—1) [a,b) [a.b)
M (RG))EDR@N\ M (Fo)"omm Y \*
< | 10g | 401 T log | 42T _ . (10.85)
H (f(y)) VIR H (ﬁ(x))é(x)R(x)“(x)
[a.b) la,b)p

1 = (f(nh)? = 1 /= p _
q(g—1) <n21 n _n§1n+1<R(nh)> >’ p#0,1;
T3(B,) ={ ~log (ﬁ (f(nh»%) +log (ff[l (ﬁ(nh))ﬁ) p=0:
- () o Rinh)
log <H<f<nh>> ; >_1og<H(R<nh)) & >,p:1.
n=1 n—1

For 0 < g < 1, (10.85) takes the form

- 1\ e o gom '\ 4
I1 (R(nh))"™" I1 (f(nh))""

<|1og| =L - log j—w . (10.86)
I, (Flnk))" IT (R(uh)) ™
n= n=1

where

R(nh) = % 2 f(kh).
k=1

For T =N? = {n>:n € N} witha =1 and

(10.84) takes the form
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Y3(By) =
- < 2n(n+2 ~ p

”<ZU( ) (()%+MM+$@WD>J#Qu

n=1 n=1
had > 2n(n+2)
—log | [T f(n®) | +log( [T(R(n*)Brner |, p=0;
n=1 n=1
i nz o 2n(n+2) an
mgOIﬂ#V<v—mgO]mm%wwwwﬂ)>, p=1.
n=1 n=1
(10.87)
For 0 < g < 1, (10.85) takes the form
1 < & 2n(n+2) ENY
qlqg—1) (21 ; 2n+1) 2n+3)<R(” )) )
oo __ 2n(n+2) I—q o f(nz) q
H (R(HZ))(2n+l)(2n+3) H f(nz)
n=1 n=1
< | log ﬁ o) log | — — %Ym )
n n n
I 11 (R()
(10.88)

where .
Y (2k+1)f(k)
k=

n(n+2)
ForT=YN={y":neN}withY >1,a=Y,and

_ ox)—a
) = et
(10.84) takes the form
Y3(Bp) =
1 < n\\p _ < yn n_ iy P .
m(;,l(f(l’ ) Z,IY (¥Y"=1)(R(Y")) ) p#0.1;

“log (ﬁf(Y”)) +log (ﬁ Ry’ Y””), p=0.  (10.89)
n=1

log (

Fxrm) ) log<

R(rm) ”(Y”—l)R(Y”>>7 po1.

HEX
uzx
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For 0 < g < 1, (10.85) takes the form

1 < - = q
—_— Y4 —» vy "(Y"—1)(R(Y"
0T (nzlm )= DR )))
oo — —n(yn__ 1— oo -
1 &) e\
< | log - - log | ——— DR , (10.90)
1) 11 (R(rm)
where .,
Y —1) 2 Y= F(r")
E(Y”): k=1
yr—1

Remark 10.22 (a) If <0< 1o0r0< 1< g, then (10.86), (10.88), and (10.90) are
reversed.

(b) The inequalities (10.86), (10.88), and (10.90) are refinements of (5.9), the first in-
equality given in Example 5.11, and (5.11) of [44], respectively.

10.5 Refinements of Hardy-Type Inequalities on Time
Scales

In this section, we give many refinements and generalizations of the inequalities of Hardy
type on time scales for convex functions, nonnegative convex functions, monotone convex
functions, and nonnegative monotone convex functions. Further we give refinements for
power and exponential functions. Finally we present several examples of these inequalities
on different time scales. Results of this section are contained in [28].

10.5.1 Results using General Kernels
Let us consider the following additional hypotheses.

(H3) 0<p<g<oor—o<qg<p<0and&:X — R, is such that
P

sir=(fs (5] <n ven

(Hy) @ € C(I,R) is nonnegative and convex, where / C R, and ¢ : I — R is such that
¢(x) € 9D (x) = [/, (x), D" (x)] for all x € Int I.




254 10 SOME DYNAMIC HARDY-TYPE INEQUALITIES

Theorem 10.17 Assume (H;), (Ho), (Hs), and (Hs). Then

(/Y fI)(f(y))?(y)Ay)Z —/ E(x)D7 (A f(x))Ax

q/% (A f (x)) /kxy,%’k(xy)AyAx (10.91)

holds for va-integrable function f onY such that f(Y) C I, where

1
A= g MO8 xeX, (10.92)
and

T (x,y) = |@(f(y)) = ©(f (x))| = |l@(f ()| (v) = Fif ()] (10.93)

If ® is nonnegative, monotone, and convex on I in (Hy) and f(y) > < f(x) forye Y' CY,
then

(/ch(f(y))ﬂ(y)Ay)% —/Xé(x)QD%(,g{kf(x))Ax

NS ) [ senlf) = (k) Filry)Ayar| - (1094

holds, where
F(x,y) = B(f(v) = ©(f () = |@( S (0))|(f (v) — S (x))- (10.95)
Proof. Since @ is convex on I and @(x) € d®(x) for all x € Int I, we have
(s) = B(r) = (r)(s—r) 2 0
forall » € Int/ and s € I. Now

B(s) = @(r) = @(r)(s —r) = [D(s) = (r) — (r)(s = )| (10.96)
> ||®(s) = D(r)| = |@(r)[[s —l].

Since <7 f(x) € I for all x € X, let <7 f(x) € Int . Then by substituting r = <7 f(x) and
s = f(y) in (10.96), we get

O(f(y)) — P(Af(x)) — (A f (x))(f(v) — i f(x))
2 [|D(f(y)) = (i f (x))| = |@(Af (X)) f(v) = i f (x)]| = Zi(x,y).  (10.97)
If @ f(x) is an end point of /, then (10.97) holds with value zero on both sides of the

inequality for va-a.e. y € Y. Multiplying (10.97) by k(x,y)/.# (x) > 0 and integrating it
over Y with respect to the measure v, we obtain
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! 1
A0) /Yk(x,y)ﬂb(f (y)Ay — 70 /Y k(x,y)® (e f (x))Ay (10.98)
%(x) /Yk(x,y)w(ﬂfkf () (f(v) = Sf (x))Ay
70 /Yk(x,y)%’k(x, y)Ay

The second integral on the left-hand side of (10.98) becomes

i k@l ray = LD [y — (i),

and for the third integral we have
7 DAL W) ()~ s ) Ay = 0.
Hence (10.98) becomes
1 1
A S () + g | M Fe )ty < s [ ks 3)@( )y

Since ® is nonnegative, for % > 1, we have

( (%f())+—/kXy9?k(XyAy> S( /kXy )q-

By applying Bernoulli’s inequality on the left-hand side of the above inequality, we get

q Oy (o,
(Dn(,;a{kf(x))—i—:]—)%/ k(x,y)%(x,y)Ay (10.99)

< (d)(%f(X))Jr% | ki

< (% / k(x,y><b<f<y>>Ay) g

Multiplying (10.99) by &(x), integrating it over X with respect to the measure U, and
applying the integral Minkowski inequality on time scales, we have

y)%(x,ymy) ’

a q [ () L
Jewob ehsnacd [ ZEral o) [ k)i s

< [ &0 (% / k(x,y>d><f<y>>Ay) e
~ ([ ew Uy ) Ax ¥
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< (/Y<b<f<y>> ([(é<x>(’§c&§§)%m>qu>ﬁ.

If @ is nondecreasing on the interval I, for a fixed x € X, then let Y/ = {y € Y : f(y) >
o f(x)}. Then

[ ) @(7() ~ @(f (o) (10.100)
= [ K@) ~ Dl )]y

R CEIRL N
=Ak@ﬁ¢0@»®—£vkww¢ﬁbﬂM

- B f(x) / o)Ay + @k () [ ke )y

- / sen( () — o f (x)k(x, ) [D(f () — DA f (x))] Ay

Similarly, we can write

J e 0) - s )y
= [ sen(f ) = TS (k(x.9) () — S ()Ay. (10101

From (10.91), (10.100), and (10.101), we get (10.94). The case when ® is nonincreasing
can be discussed in a similar way. O

Remark 10.23 (i) Suppose @ is concave (that is, —® is convex) in (Hy). Then for all
re€lIntl and s € I, we have

D(r) = D(s) — @(r)(r—s5) = 0,
and (10.96) reads

O(r) = @(s) — @(r)(r—s) = [®(r) = D(s) — @(r)(r—5)|
=z ||@(s) = @(r)| = lo(r)]]-

Hence, in this setting, (10.91) takes the form

[ ottt ( [otrmrma)’

q/ var <IJ%71 (A f(x) /kxy Ry (x,y)AyAx.



10.5 REFINEMENTS OF HARDY-TYPE INEQUALITIES 257

(ii) If @ is nonnegative, monotone, and concave in (Hy), then the order of terms on the
left-hand side of (10.94) is reversed.

Corollary 10.28 Assume (H;), (Hp), (H3), and (Hy), where 0 < p<qg<eandfisa
va-integrable function on Y such that f(Y) C I. Then

q

(/ @P(f(y))ﬂ(ymy) ~ | E00" (A ()Ar

54 [ SO g
>4 [ S ek ) [ k)
197(£(3)) = @ (S ()] = |p(ASWIIFO) — 4/ (0] [Avae

holds. Moreover, if ® is nonnegative, monotone, and convex on I, and f(y) > <. f(x) for
yeY' CY, then

4q

( / @P(f(y))ﬂ(ymy) ~ | & (s (x)ax
Y

S 1 o () [ sen(70) — Al (DK )
(x) Y

(@7 (f(v)) — P (i f (x)) = [@(Fhf (X)) (f(y) — @S (x))] AyAx|

< 4

P

holds.

Proof. The result follows from Theorem 10.17 by replacing @ with ®7. O

Corollary 10.29 Assume (H)), (Hy), and (H3). Suppose f is a nonnegative v-integrable
function (positive for p < 0) on Y and Ay f is defined in (10.92).

1) Ifl<p<g<oo or—eo<qg<p<0,then

(/Yfp(y)ﬂ(y)Ay)% —/Xé(x)(,gzkf(x))qm

- 1% /x jif( 2) (s (x))qu'/y k(x,y)Zp g (x,y)AvAx  (10.102)

holds, where
Rpsly) = |7 0) = A £0)| = plLoAf @I 1) - ()| (10.103)

Ifp€(0,1)and p < g < oo, then the order of terms on the left-hand side of (10.102)
is reversed.
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(ii) Let f(y) > i f(x)foryeY CY. If1 < p<g<oo, or —o < q<p<0,then

(/yf ”<y>9<y>Ay)% — [ S0 ax

- 4

> ] [ 200 (0 00)7 [ senlr0) — 0K (50) ) o
(10.104)

holds, where
Lpr(,y) = P () = AL f(x) = p|(Ghf ()P (f(y) = f(x).  (10.105)

Ifp € (0,1) and p < g < o, then the order of terms on the left-hand side of (10.104)
is reversed.

Proof. We use ®(x) =x”, x > 0, in Theorem 10.17, which is nonnegative, monotone, and
convex for p € R\ [0, 1), concave for p € (0, 1], and affine, that is, both convex and concave
for p = 1. Obviously, in this case @(x) = @' (x) = pxP~ 1. o

Corollary 10.30 Assume (Hy), (Hy), and (H3) hold with 0 < p < g <eoandgisapositive
va-integrable function on Y. Then

(femrom) [

- %/X jff(g) g’g_p(x)Ak(x7y)glz,k(an)AyM

holds, where

“(x) =exp (%f#(x) /Y k(x,) lng(y)Ay) (10.106)
and
2pato) = [0~ 9] - i 0 £ 1000

Moreover, if g(y) > 9(x) fory €Y' CY, then

< /Yg”(yW (y)Ay>%— /X E(0)% (x)Ax

> 2] [ E807710) [ senlels) - o kix) Bpater)iven|
holds, where
Ups(x.9) = 70) 9 () — pl? ()| 1n S2L (10.108)

Gi(x)
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Proof. We use ®@(x) = ¢*, x > 0, and f(x) = plng(x) in Theorem 10.17, to obtain the
required result. Note that % (x) = exp(#(Ing(x))). a

Theorem 10.18 Assume (Hy), (Hy), (H3), and (Hy) hold and f is a va-integrable func-
tion on'Y such that f(Y) C L.

(1) If @ is convex (need not to be nonnegative) in (Hy), then

[ otmmomay- [ Ee(atswm

)
;/X 70 /Y k(x,y) %, (x,y)AvAx  (10.109)

holds, where % is defined in (10.93). If @ is concave, then the order of terms on the
left-hand side of (10.109) is reversed.

(ii) If ® is monotone and convex, and f(y) > “.f(x) fory €Y' CY, then

[ @rmmomay- /ii (A f () Ax

Sgl’l ( )_@{kf(x))k(x?y)yk(x?y)AyAx (10110)

holds, where .7} is defined in (10.95). If @ is monotone and concave, then the order
of terms on the left-hand side of (10.110) is reversed.

Proof. The proof is similar to the proof of Theorem 10.17, just use ¢ = p in the proof of
Theorem 10.17. o

Remark 10.24 In Theorem 10.18, since the right-hand side of (10.109) is nonnegative,
we get the refinement of Theorem 10.1.

Corollary 10.31 Assume (H;), (Hy), and (H3) hold and f is a positive Va-integrable
functiononY.

(1) If p>1orp<0, then

7 6me)ay = [ & fas

§(x)
2/X 20 '/Yk(x,y)%pk(x,y)AyAx (10.111)

holds, where Z,, i is defined in (10.103). If p € (0, 1), then the order of terms on the
left-hand side of (10.111) is reversed.
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(ii) Let f(y) > df(x)foryeY CY. If p>1orp <O, then

JREOEONE / é(x)ﬂ”’f(x)Ax
Y

Sgn f) = 2 f(x))k(x, )7k (x,y)AyAx|  (10.112)

holds, where 7). i is defined in (10.105). If p € (0,1), then the order of terms on the
left-hand side of (10.112) is reversed.

Proof. We use @(x) =x”, x >0, in Theorem 10.18. a

Remark 10.25 (10.111) is a refinement of the inequality in Corollary 10.1.

Corollary 10.32 Assume (Hy), (H), and (H3). If g is a positive Vp-integrable function
onY, then

[eromomm - [ wmaremarz [ 25 [k 2, tnma a0

holds, where 9 is defined in (10.106) and 2, is defined in (10.107). Moreover, if g(y) >
G(x) foryeY' CY, then

J & omiay- / é(x)%”(x)m
)

/ sgn(8(y) — G (x) k(x,3) % (x,y) AyAx|  (10.114)

holds, where %, i is defined in (10.108).

Proof. We use @(x) = ¢*, x > 0, and f(x) = pIng(x) in Theorem 10.18. O
Remark 10.26 (10.113) is a refinement of the inequality in Corollary 10.2.

10.5.2 Results using Special Kernels

Let us give two new hypotheses for our next result.

(H)) X =Y in (H)).

(H,) m:Y — R, is such that Jym(y)Ay < oo forally €Y.

Theorem 10.19 Assume (1-71), (1-72), and (Hy). If 0 < p<g<ooor—eo<qg<p<0and
f is a va-integrable function on Y such that f(Y) C I, then

(fym(y)d)(f(y))Ay)Z

fYM(y)Ay _q)%(%mf(y))

Ay /m y)Ay (10.115)

"BIQ
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holds, where

1
G f(y) = T m0Ay /Ym(y)f(y)Ay (10.116)

and

A(y) = |O(f(y) = P(nf (V)] = [@(Fnf W) (¥) = Fnf ] (10.117)

If © is nonnegative and concave, then the order of terms on the left-hand side of (10.115)
is reversed. Moreover, if ® is a nonnegative, monotone, and convex, and f(y) > “pf(y)
fory€eY' CY, then

Jym()R(O)AYN? s
( Jym(y)Ay ) @7 (Anf(y))
q

> ” sen(f(y) — D f (y))m(y)A (y)Ay| (10.118)

1
fym(y)Ay/y

holds, where

N () =O(f(y) = P(Fnf () = [@(Fnf W) (f(¥) = Finf)- (10.119)

If ® is nonnegative, monotone, and concave, then the order of terms on the left-hand side
of (10.118) is reversed.

Proof. The result follows from Theorem 10.17 by taking k(x,y) = & (x)m(y) for some
positive [p-integrable function & and positive vx-integrable function m. O

Theorem 10.20 Assume (1-7 s (1-72), and (Hy). If f is a va-integrable function on Y such
that f(Y) C I and @ is a convex function in (Hy), then

Jy mO)P(f () Ay 1
—O(e,f(y Zi/my///yAy (10.120)

fomay IO Ay )
holds, where <7, f is defined in (10.116) and # is defined in (10.117). If ®@ is concave,
then the order of terms on the left-hand side of (10.120) is reversed. Moreover, if @ is
monotone and convex on I, and f(y) > i f(y) fory €Y' CY, then

fym)PUFONAY o
Jy ()

(Anf(y))

>

m /Y sgn(f(y) = @uf(y))m(y)# (y)Ay| (10.121)

holds, where A is defined in (10.119). If ® is monotone and concave, then the order of
terms on the left-hand side of (10.121) is reversed.

Proof. The result follows from Theorem 10.18 by taking k(x,y) = &(x)m(y) for some
positive Ua-integrable function & and positive va-integrable function m. O
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Remark 10.27 Since the right-hand side of (10.120) is nonnegative, it gives a refinement
of Jensen’s inequality on time scales.

Further our new hypotheses are:
(H) X=Y = [a,b)T, where T is an arbitrary time scale.

(H») Let0< p<g<ooor—eo<g<p<0,and

£ : X — Ry is such that

§<y>—</fé<x>(ﬁ)’q’m>q<m, ver.

Theorem 10.21 Assume (H,), (H,), and (Hy). If f is a va-integrable function on'Y such
that f(Y) C I, then

</j“’(f (y>>§<y>Ay> . / " ()0 (£ (0))Ax

- 7_7./; Gi()xiaclﬁl(m £(x)) ;(X) %1 (x,y)AvAx  (10.122)
holds, where
1 o(x)
AW = o [ roan xex (10.123)
and
H(x,y) = [|O(£(5)) — (A L)~ [9(AL ) — AL (10.124)

If ® is nonnegative, monotone, and convex, and f(y) > @\ f(x) fory €Y' CY, then

([ eron 7o) . [ 6wt e ras

< 4

B

X o)
/ab E(x) qﬁ-l(mf(x))/ sen(f(y) — o f(x))A (x,y)AyAx|  (10.125)

o(x)—a a

holds, where

L1(x6y) = O(f(y)) = ®(A1 £ (x)) = [@(A f ()| (f () — A (x))- (10.126)

Proof. The statement follows from Theorem 10.17, by using

k(x,y) = 1 if a<y<o(x)<b, (10.127)
W)= 0 otherwise, '
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since in this case we have

This completes the proof. O
For p =g¢, (H,) becomes

() &:X — R is such that w(y) = f” f)) Ax <oo, ye€v.

Theorem 10.22 Assume (H,), (H,), and (Hy) hold, and [ is a va-integrable function on
Y such that f(Y) C I

(1) If @ is convex in (Hy), then

[ etronamar- [ eweter)a

v g oW
z/a st ), Ay (10128)

holds, where <\ f and %) are defined in (10.123) and (10.124), respectively. If D is
concave, then the order of terms on the left-hand side of (10.128) is reversed.

(i) If © is monotone and convex, and f(y) > o/ f(x) fory €Y' CY, then

[ @trnamar— [ o sear
= /ab o(éx()xza/:()() sgn(f(v) — 2 f(x))71 (x,y)AyAx|  (10.129)

holds, where . is defined in (10.126). If @ is monotone and concave, then the order
of terms on the left-hand side of (10.129) is reversed.

Proof. The statement follows from Theorem 10.18 with k defined as in (10.127). O

Corollary 10.33 Assume (Hy) and (H>) hold and f is a nonnegative V-integrable func-
tion on'Y such that f(Y) C L.

(1) If p>1orp<0, then

b b
| rroaeiay— [ e reax

boE(x) oW
Z/a O'(x)—a/a Ap,1(x,y)AyAx  (10.130)

holds, where <\ f is defined in (10.123) and

B (03) = ||£70) = S 10| = Pl AL 1) = AL @]
If p € (0,1), then the order of terms on the left-hand side of (10.130) is reversed.
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(ii) Let f(y) > 1 f(x)foryeY' CY.Ifp>1orp<0,then

b b
| oy - [Tewar feas

X o(x)
2| [1 B [ an(103) o £09) )| 10131

o(x)—ala

holds, where
Fpa(6,y) = fP(y) = A f(x) = (A f ()P (F () = A f(x)).
If p € (0, 1),then the order of terms on the left-hand side of (10.131) is reversed.

Proof. We use ®(x) = x”, x > 0, in Theorem 10.22. a

Corollary 10.34 Assume (Hy) and (H). If g is a positive vp-integrable function on Y,
then

/g Ay/é%

b g o
2/a o) —als 21 (x,y)AyAx (10.132)

holds, where
9 L ea
1(x) = exp <m/a ng(y) }’>

and

&mw=&m—%m—%w>m

8(v) H .
%1 (x)

Ifg(y) > % (x) foryeY' CY, then

’ 0)T)Ay a><>
| /

o(x)
= [ el - ) o] (1013

holds, where

%@w=aw4www%wm%%;

Proof. We use ®(x) = ¢*, x > 0, and f(x) = Ing(x) in Theorem 10.22. O
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10.5.3 Examples

Example 10.30 In addition to the assumptions of Theorem 10.21, if T consists of only
isolated points and b = oo, then (10.122) takes the form

( > q’(f(y))?(y)(ff(y)—y)) - Z E(0)D7 () f(x))(0(x) — x)

yEla,eo)p )T

Z %d)%’l(ﬁ%f(x)) Y ) (ek) ) (o) ),

y€la,o(x))p

where

ﬁ(y)z( ) é<x><6(x§_a)5<o<x>—x>> CveY and pgeR,

A f(x) = Y, [k -y), xeX (10.134)

0(0) =4 ot)p

and

Z1(x%,y) = |O(f () = @(Af (%)) = @A fEDIf () = f )],
and (10.125) takes the form

[Z) q’(f(y))f(y)(c(y)—y)) - Z E(0)D7 (1 f(x))(0(x) —x)
aeo)p

< ~
m

Yy 59 b (g fw)

o) o(x)—a

Y

1
pr

> sen(f(y) — Zf(x)Ax,y)(0(y) —y)(o(x) —x)

y€la,o(x))

where

A1(x,y) = (f(y)) = @[ (x)) — l9(A S () (f(y) = A (x).

Example 10.31 In addition to the hypotheses of Corollary 10.33, let T consist of only
isolated points and b = co.

(i) If p>1orp<0,then
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Y, PO (ol Y S fx)(o(x) —x)
ye[a,oo xe[awT
- O'fx()xz Y Zpilxy)(o(y)—y)(o(x)—x) (10.135)

4 yela,o(0))p

holds, where szfl f is defined in (10.134) and

wy) = Y ﬂ(s(x)—x), yey, (10.136)

x€E[y,e0)

N 1 N
R (.3) = ||£76) = T 1) = pl | AL [ £0) = A )]
If p € (0,1), then the order of terms on the left-hand side of (10.135) is reversed.

(i) Let f(y) > @ f(x) forye Y CY.If p>1or p <0, then

Y, POMO)(e() —y) - Z &)l f(x)(0(x) —x) (10.137)

y€la.eo) x€la,eo)
|y
sefam)p o(x)—a

Y sen(f) = Af () Sp1 () (o) ~y) (o) )

y€la,o(x)T
holds, where
Fpa(6.y) = P (0) = L () = Ipl(Af ()P () = A f ().
If p € (0,1), then the order of terms on the left-hand side of (10.137) is reversed.

Example 10.32 In addition to the hypotheses of Corollary 10.34, if T consists of only
isolated points, then (10.132) becomes

> gM(em -y~ Y & (o(x) —x)

)’G[d,‘x’)'ﬂ* x€ a oo T
> Y Sy 9y)(e0) (o) ). (10.138)
selamyp OF) = 4 seiotony
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ln&

Qmm:%@—%M—%w =

If g(y) > % (x) fory € Y’ C ¥, then (10.133) becomes

> s -y — Y E@®FD ) (ox)—x) (10.139)

ye€la,eo)p x€la,eo)p

Y sen(g(y) = G(0)) % (x.y) (0 () —y)(o(x) —x)

yela,o(x))

)

where

2 () = o(v) — % () — [, ()| 1n SO
% (x,y) =8(y) —%1(x) = |%( )“ngﬂ(x)'

Example 10.33 For T = hN = {hn:n € N} with h > 0, a = h, and

1
é(x):%7
(10.135) takes the form
& fPmh) &1 (1 P a
S0 § (35 en) = 8ty S A
where
1 P
Ry 1 (nh,mh) = ‘ fP(mh) — (- S f(mh)>
m=1
1 & p—1 1
il 0 Zf(mh) f(m}l)—; Zf(mh) )
m=1 m=1

and (10.137) takes the form

- P(m hd n P
-3 1<12ﬂm0
m=1 m =1 n+1 n =

- | . o A
Z‘l n(n+1) Y sgn (f(mh) - Zmzlf(mh)> S 1(nh,mh)

m=1

>

)

where
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Py 1(nh,mh) = fP(mh) — ( 2 f(mh) )

m=1

—pl< lefmh>p1 (fmh ——meh).

m=1

Example 10.34 For T = N? = {n> :n € N} witha = 1 and

B 2(c(x)—1)
RN CERE V)

(10.135) takes the form

oo

1]1 n
P (m?) — n(n+2)) 2m+1)f
mZ:,lf (m) “ 1 2n—|—1 2n—|—3 (2‘ "
2 2 Gar D)

2n+1)( 2n+3) 2%1 )@+ 1)

m=1
where

and (10.137) takes the form

I o n r
Zﬂ’(mZ)—zz((L@ ot 1)f m)>

m=1 n=1 (2n—|—1)(2n—|—3 m=1

p

p—1
— ; S m m? m? —; S m m?
I <n<n+2>mzl(2 + A >> (f( )= ) Xm0 >>.
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Example 10.35 For T = qN ={q¢":neN}withg>1,a=gq, and

where

n P
(") - (q“’[_ll ) qm1f<qm>>

Rpa(d".q") = |

—|pl

q_l c m—1 m
(q,, ImZ:,lq flq ))

and (10.137) takes the form

where

qn -1 m=1

n p
Ipald"q"™) = f"(g") - ( g-1 D qmlf(fi’"))

qn_ 1 m=1 m=1

p—1 N
—|p<"‘1 Zq’"‘lf(q’”)> (f(q’”)— I zq'"—lf(q'")).

Example 10.36 For T, a, and & as in Example 10.33, (10.138) takes the form

005 (o) 5§ S

=1

where
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- (ﬁlg<mh>>"|— (ﬁlgwh))"

and (10.139) takes the form

9, (nh,mh) = In g(#)l
(ITy—1 g(mh))"

b

1
n

o 8(mh) &1 ‘ '
S5 b (feom )

1
n

i 1 nooq n n .
2 A1) & Z _sen (g(mh) (Eg(mh)) ) %, (nh,mh)|,
[ (mh)

- g(mh>>" S
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Example 10.37 For T, a, and & as in Example 10.34, (10.138) takes the form

>

where

In

1
< < 2n(n+2) - avamin |
,Zl ; 2n+1)(2n+3) (U(g(’" )

2 2n+1) 2n+3 2:4 )(@m+1),
where
n n(n+2)
9y(n*,m*) = g(mz)—< (g(mz))z'"*l)
m=1
(1+2) 2

_ (H(g(m2))2m+ > In g(m~) : 7

= (T 1 (glon?) 1) 5

and (10.139) takes the form

oo oo 2n n+2) n o] n(n+2)
m% g 2n+1)(2n+3) (H(g(m )

had n n n(n+2)

where
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n

W (n?,m*) = g(m*) - (H(g(mz))m“)

m=1

- (f[(g(mz))z’"“)m n- ()

) (gon) e

Example 10.38 For T, a, and & as in Example 10.35, (10.138) takes the form
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