Despite of the title, the main motivation for writing this book (and the papers from which this book has grown) was presenting some aspects of generalizations, refinements, variants of three famous inequalities (actually four). The first inequality is the Hermite-Hadamard inequality

\[ f \left( \frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}, \]

which holds for a convex function \( f \) on \( [a, b] \subset \mathbb{R} \). The second inequality is the Ostrowski inequality

\[ \left| f(x) - \frac{1}{b - a} \int_a^b f(t) \, dt \right| \leq \left[ \frac{1}{4} \left( \frac{1}{(b - a)^2} \right) \left( x - \frac{a + b}{2} \right)^2 \right] (b - a)L, \]

which holds for a \( L \)-Lipschitzian function \( f \) on \( [a, b] \subset \mathbb{R} \), and the third one is the Iyengar inequality

\[ \left| \frac{1}{b - a} \int_a^b f(x) \, dx - \frac{f(a) + f(b)}{2} \right| \leq \left[ 1 - \left( \frac{f(b) - f(a)}{L(b - a)} \right)^2 \right] \frac{b - a}{4} L, \]

which also holds for a \( L \)-Lipschitzian function \( f \) on \( [a, b] \subset \mathbb{R} \).

Generalizations of the Ostrowski inequality are mainly given in Chapter 1, but related results are scattered throughout the book (especially for the case \( x = (a + b)/2 \)). Variants of the Hermite-Hadamard inequality are given for some pairs of quadrature formulae (called dual formulae) and refinements are given in the sense of the Bullen inequalities for higher convex functions. The basic Bullen inequality

\[ 0 \leq \frac{1}{b - a} \int_a^b f(x) \, dx - f \left( \frac{a + b}{2} \right) \leq \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \]

holds for a convex function \( f \) on \( [a, b] \subset \mathbb{R} \).

The book contains generalizations of many classical quadrature formulae such as Simpson, dual Simpson, Maclaurin, Gauss, Lobatto, Radau. Standard methods in deducing these formulae are very different, spanning from Lagrange, Newton interpolation polynomials to orthogonal polynomials such as Legendre, Chebyshev, Jacobi. The specific
feature of this book (regarded nevertheless as a book in numerical integration) is that the
unique method is used. This method is based on the, so called, *Euler integral identities*
expressing expansion of a function in Bernoulli polynomials proved by V. I. Krylov in [79]
as a generalization of the first and the second Euler-Maclaurin sum formula (for details see
Chapter 1). The Iyengar inequality is the exception. Although related to the Hermite-
Hadamard inequality in the same way as the Ostrowski inequality, Iyengar type inequali-
ties are, it seems, beyond the reach of methods based on the Euler integral identities. This
is the reason why generalizations of the Iyengar inequality are given in the Addendum.
Preface

1 Euler integral identities
   1.1 Introduction ........................................ 1
   1.2 General Euler-Ostrowski formulae .................... 4
       1.2.1 Trapezoid formula .............................. 9
       1.2.2 Midpoint formula ............................... 10

2 Euler two-point formulae .................................. 11
   2.1 Introduction ......................................... 11
   2.2 General Euler two-point formulae .................... 12
   2.3 Inequalities related to the general Euler two-point formulae .......... 17
   2.4 Integration of periodic function and application on the general Euler two-point formula .......................................................... 28
   2.5 Hermite-Hadamard and Dragomir-Agarwal inequalities and convex functions ............................................................... 32
   2.6 Estimations of the error for two-point formula via pre-Grüss inequality 45
   2.7 Hermite-Hadamard’s inequalities of Bullen type .......................... 50

3 General 3-point quadrature formulae of Euler type ............ 67
   3.1 General approach ....................................... 67
       3.1.1 Gauss 2-point formula ................................ 75
       3.1.2 Simpson’s formula .................................. 78
       3.1.3 Dual Simpson’s formula ............................ 79
       3.1.4 Maclaurin’s formula ................................ 79
       3.1.5 Hermite-Hadamard-type inequality for the 3-point quadrature formulae .................................................. 80
       3.1.6 Bullen-Simpson’s inequality ........................ 81
   3.2 Corrected 3-point quadrature formulae .................... 98
       3.2.1 Corrected Simpson’s formula ........................ 104
       3.2.2 Corrected dual Simpson’s formula ................. 106
       3.2.3 Corrected Maclaurin’s formula ..................... 107
       3.2.4 Gauss 3-point formula ............................ 109
       3.2.5 Corrected Gauss 2-point formula .................. 112
       3.2.6 Hermite-Hadamard-type inequality for the corrected 3-point quadrature formulae .................................................. 115
       3.2.7 On corrected Bullen-Simpson’s inequality .......... 118
   3.3 General Simpson formulae ................................ 127
       3.3.1 General Euler-Simpson formulae .................... 127
       3.3.2 General dual Euler-Simpson formulae ............... 139
       3.3.3 Estimations of the error via pre-Grüss inequality 151
# General 4-point quadrature formulae of Euler type

4.1 General approach .......................................................... 157
  4.1.1 Simpson’s 3/8 formula .................................................. 163
  4.1.2 Hermite-Hadamard-type inequality for the 4-point
        quadrature formulae .................................................. 163
  4.1.3 Bullen-Simpson’s 3/8 inequality .................................... 164

4.2 Closed corrected 4-point quadrature formulae ..................... 184
  4.2.1 Lobatto 4-point formula ............................................. 190
  4.2.2 Corrected Simpson’s 3/8 formula .................................. 192
  4.2.3 Hermite-Hadamard-type inequality for the corrected
        4-point quadrature formulae ........................................ 193
  4.2.4 On corrected Bullen-Simpson’s 3/8 inequality .................. 195

4.3 Gauss 4-point formula .................................................... 204

# General 5-point quadrature formulae of Euler type

5.1 General approach .......................................................... 211
  5.1.1 Boole’s formula ....................................................... 218
  5.1.2 Hermite-Hadamard-type inequality for the 5-point quadrature
        formulae ................................................................. 219

5.2 Closed corrected 5-point quadrature formulae ..................... 220
  5.2.1 Lobatto 5-point formula ............................................. 225
  5.2.2 Corrected Lobatto 4-point formula ................................ 227
  5.2.3 Corrected Gauss 3-point formula .................................. 229
  5.2.4 Corrected Boole’s formula .......................................... 232
  5.2.5 Hermite-Hadamard-type inequality for the corrected
        5-point quadrature formulae ........................................ 234

5.3 Corrected Lobatto 5-point formula ................................... 236

5.4 General Euler-Boole’s and dual Euler-Boole’s formulae .......... 240
  5.4.1 General Euler-Boole’s formulae .................................... 240
  5.4.2 General dual Euler-Boole’s formulae ................................ 244
  5.4.3 General Bullen-Boole’s inequality ................................ 247

# Radau-type quadrature formulae

6.1 The first family of Radau-type quadratures ......................... 252

6.2 The second family of Radau-type quadratures ....................... 255

6.3 Radau 3-point formulae .................................................. 258

# A general problem of non-vanishing of the kernel
 in the quadrature formulae

7.1 Introduction ............................................................... 261

7.2 Some preliminary considerations ...................................... 264

7.3 Case \( m_i = n \) .......................................................... 269

7.4 Using the Fourier expansion of the periodic Bernoulli functions . . . . . . . . . 271