Contents

Preface v

1 Basic results on convexity 1
 1.1 Different types of convexity ... 1
 1.2 Convexity of a mollification ... 4

2 The weighted energy inequalities for convex functions 7
 2.1 The weighted square integral inequalities for the first derivative
 of the function of a real variable 7
 2.1.1 The weighted square integral estimates for the difference
 of derivatives of two convex functions 10
 2.2 Weighted integral inequality for the second derivative of 4-convex
 function .. 20
 2.2.1 The case of smooth 4-convex functions and mollification
 of an arbitrary 4-convex function 20
 2.2.2 The case of an arbitrary 4-convex function 22
 2.3 The weighted energy estimates for the third derivative of 6-convex
 function .. 23
 2.3.1 The case of smooth 6-convex functions and mollification
 of an arbitrary 6-convex function 23
 2.3.2 The case of an arbitrary 6-convex function 27
 2.4 The weighted energy estimates for the (2,2)-convex function 30

3 The weighted energy estimates for the vector valued functions 33
 3.1 The weighted reverse Poincaré-type estimate for the difference
 of two convex vector functions ... 33
 3.1.1 The reverse Poincaré inequalities for smooth vectors and
 approximation of arbitrary convex vectors by smooth ones 34
 3.1.2 Existence of weak derivative and reverse Poincaré type
 inequality for arbitrary convex vectors 38
 3.2 Weighted energy estimates for second derivative of 4-convex vector 42
 3.2.1 The case of an arbitrary 4-convex vector 44
4 The weighted energy inequalities for subsolution of 2nd order partial differential equations 47
4.1 Reverse Poincaré-type inequalities for the difference of superharmonic functions 47
 4.1.1 The case of smooth superharmonic functions and mollification of weak superharmonic functions 48
 4.1.2 Existence of Sobolev gradient 51
4.2 Reverse Poincaré-type Inequalities for the difference of superharmonic functions 56
4.3 The energy estimates for smooth subsolution and approximation of weak subsolution 57
4.4 The case of weak subsolution of wave equation 62
4.5 The weighted energy estimates for the difference of weak subsolutions of wave equation 65
 4.5.1 Approximation of weak subsolution 66
 4.5.2 Reverse Poincaré type estimate for weak subsolution of wave equation 67
4.6 The weighted energy estimates for the difference of weak subsolutions of telegraph equation 73
4.7 The weighted reverse Poincaré type inequalities for elliptic subsolution 80
 4.7.1 Subsolutions that are close in the uniform norm are close in the Sobolev norm as well 81
 4.7.2 Preliminary material and the formulation of the basic result 83
 4.7.3 Auxiliary propositions and the proof of the basic result 85
4.8 The weighted reverse Poincaré inequality for bounded smooth domains 92
 4.8.1 The energy inequality for the smooth L-subsolution 94
 4.8.2 The existence and integrability of first order weak partial derivatives for continuous weak L-subsolution and the weighted reverse Poincaré inequality 98
4.9 The weighted reverse Poincaré type inequality for parabolic subsolutions 102
 4.9.1 Mollification of the weak parabolic subsolutions 102
 4.9.2 The case of smooth parabolic subsolutions 105
 4.9.3 The existence and the integrability of the Sobolev gradient 108
5 The weighted energy inequalities for subsolution of higher order partial differential equations 113
5.1 The weighted square integral inequalities for smooth and weak subsolution of fourth order Laplace equation 113
 5.1.1 The weighted energy estimates for the smooth subsolution for the fourth order Laplace equation 115
 5.1.2 The weighted energy estimates for the weak subsolution using smooth ones for the fourth order Laplace equation 121
5.2 The weighted energy estimate for the smooth subsolution of
\(\text{n-dimensional beam equation} \) .. 126
5.3 The weighted energy estimates for the smooth and weak sub-solutions
of fourth order partial differential equations 146
 5.3.1 The weight energy inequality for smooth sub-solution and
approximation of weak sub-solution 147
 5.3.2 Existence of second order weak derivative and energy
inequality for weak sub-solution 152
 5.3.3 Existence and integrability of weak partial derivatives
and weighted square inequalities for the difference of weak
subsolutions .. 154
5.4 The weighted square integral inequalities for smooth
and weak subsolution of system of partial differential inequalities 158
 5.4.1 The reverse Poincaré inequalities for smooth
subsolution and approximation of weak subsolution
by smooth ones ... 159
 5.4.2 The existence and integrability of weak partial derivative
and weighted square inequalities for the difference of weak
subsolutions .. 162

Definitions ... 165

Bibliography ... 169

Index ... 175