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Preface

Convex functions are one of the most important terms of the Theory of inequalities. We
say that a function f : I → R is convex on the interval I ⊆ R if for all x,y ∈ I and every
λ ∈ [0,1] it holds

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y). (a)

If for all x �= y and every λ ∈ 〈0,1〉 the inequality (a) is strict, then we say that the function
f is strictly convex. If the inequality sign in (a) is reversed, then we say that f is a concave
function. Geometrically speaking, function f is convex on the interval I if for any two
points x,y ∈ I part of the graph between points x and y is below the chord of the function f
at these points.

Jensen’s inequality for convex functions is one of the most important inequalities in
contemporary mathematics since it results a whole series of other classical inequalities. It
was named after a famous Danish mathematician Johan Ludwig Jensen (1859-1925) who
proved it in 1906.

Theorem A (Jensen’s inequality, [124]) Let f : I→ R be a convex function on the inter-
val I ⊆ R. For n ≥ 2, let x1, ...,xn ∈ I, and p1, .., pn ∈ R be such that pi > 0 for every i.
Then we have

f
( 1

Pn

n

∑
i=1

pixi

)
≤ 1

Pn

n

∑
i=1

pi f (xi), (b)

where Pn = ∑n
i=1 pi. If the function f is strictly convex and if x1, ...,xn are not all equal to

each other, then the inequality in (b) is strict.

However, simpler variants of the inequality (b) appeared much earlier, but under differ-
ent assumptions. In 1889 Hölder proved that for a function f : [a,b]→ R and x,y ∈ [a,b]
it holds

f
( x+ y

2

)
≤ f (x)+ f (y)

2
(c)

assuming that the function f is twice differentiable on [a,b], and f ′′(x) ≥ 0 on that inter-
val. If the function f is twice differentiable, then the condition f ′′(x) ≥ 0 for x ∈ [a,b] is
equivalent to f being convex on [a,b], but the concept of convexity was introduced later
by Jensen in the paper [75] in which he also proved the inequality (b). In 1896 Henderson
proved the inequality (b), but under Hölder’s assumptions. Special case of the inequality
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(b) for p1 = ... = pn = 1 was proved by Grolous yet in 1875 using centroid method in the
paper [53]. This is also the first known inequality for convex functions in mathematical
literature.

Jensen’s inequality has a significant application in the various branches of mathematics,
especially in mathematical analysis and statistics, where it is most commonly used to de-
termine lower bounds for the expectation of convex functions. Over the centuries, Jensen’s
inequality has been extensively explored by many renowned mathematicians, and has been
generalized in many ways. Integral version of the same inequlity was obtained by Beesack
and Pečarić in 1984. Analogue inequality for positive linear functionals was proved by
Jessen in 1931, and Davis in 1957 showed that Jensen’s inequality is also true between
operator algebras. Numerous well-known classical inequalities have arisen as a result of
the Jensen inequality. One of the more known is the so-called Edmundson-Lah-Ribarič
inequality:

1
Pn

n

∑
i=1

pi f (xi)≤ M− x̄
M−m

f (m)+
x̄−m
M−m

f (M), (d)

where f : [m,M]→R is a convex function and x̄ = ∑n
i=1 pixi.

It was proved in 1973 by Lah and Ribarič. They also obtained a converse of the Jensen
inequality in their paper [89] from 1971, which we state in its original form.

Theorem B ([89]) Let μ be a positive measure on [0,1] and let φ be a convex function on
the interval [m,M], where −∞ < m < M < +∞. Then for every μ-measurable function f
on the interval [0,1] such that m≤ f (x)≤M holds for any x ∈ [0,1] we have the following
inequality ∫ 1

0 Φ( f )dμ∫ 1
0 dμ

≤ M− f̄
M−m

Φ(m)+
f̄ −m
M−m

Φ(M), (e)

where f̄ =
∫ 1
0 f dμ/

∫ 1
0 dμ .

Since then, many papers have been written on the subject of generalizations and converses
of the inequality (e). A whole series of monographs in inequalities ([3], [44], [48], [49],
[84] and [85]) has been dedicated to classical inequalities, including the Lah-Ribarič in-
equality (e).

Beesack and Pečarić [14] (see also [124, p.98]) proved the following generalization of
the Lah-Ribarič inequality (e) for positive linear functionals.

Theorem C ([14]) Let φ be a convex function on the interval I = [m,M], where −∞ <
m < M < ∞. Let L be a vector space of all real functions defined on a non-empty set E such
that a f + bg ∈ L holds for all f ,g ∈ L, a,b ∈ R and 111 ∈ L, and let A be any normalized
positive linear functional on L. Then for every function f ∈ L such that φ( f ) ∈ L we have:

A(φ( f )) ≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M). (f)
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Amongst most recent results, we should mention converses in the difference form of the
integral Jensen’s inequality obtained by Dragomir. We should also mention the improve-
ment the of Edmundson-Lah-Ribarič inequalities for positive linear functionals obtained
by Klaričić Bakula, Pečarić and Perić.

Probability version of the inequality (e) for the mathematical expectation of a random
variable is given in the theorem which follows.

Theorem D ([42]) Let −∞ < a < b < +∞, and let X : Ω→ [a,b] be a random variable
with finite expectation on a probability space (Ω, p). Let f : [a,b]→R be a convex function
such that E( f (X)) < ∞. Then

E( f (X)) ≤ b−E(X)
b−a

f (a)+
E(X)−a

b−a
f (b). (g)

Inequality (g) is often reffered to as the Edmundson-Madansky inequality, because it
was proved in 1956 by Edmundson ([42]), and Madansky ([93]) in 1959 was the first
one to start using it in context of stohastic programming for finding the best possible upper
bound for the expectation of convex functions. A comprehensive list of some recent results
concerning the Edmundson-Madansky inequality can be found in [18] and [87].

One can easily see that Theorem C is also a generalization of Theorem D, that is, the
inequalities (e) and (g) are actually special cases of the same inequality, but in different
settings. Therefore, from now on those inequalities will be united under the common name
of the Edmundson-Lah-Ribarič inequality.

Jensen’s inequality for mathematical expectation

f (E(X))≤ E( f (X)) (h)

is used in the same context for determining best possible lower bound for the expectation
of a convex function, so it is clear that inequalities (g) and (h) are closely related.

Levinson in 1964 in the paper “Generalisation of an inequality of Ky Fan” obtained an
important inequality of the Jensen type concerning two distinct series of numbers. This
result today is known as Levinson’s inequality. Many mathematicians have worked on
weakening the conditions under which Levinson’s inequality is valid. Thus, Bullen and
Pečarić weakened the condition of symmetry, and Mercer completely replaced it with the
condition of equality of variances for functions that have a nonnegative third derivation.
Witkowski showed that in Mercer’s assumptions it is enough for the function to be 3-
convex. Further, Baloch, Pečarić and Praljak found the widest class of functions for which
Levinson’s inequality is valid under Mercer’s assumptions. The mentioned class of func-
tions is an extension of the class of 3-convex functions and can be viewed as a class of
functions that are 3-convex at the point.

This book is based on several recent research papers on the subject of Jensen’s in-
equality, its converses and their variants, with special emphasis on the Edmundson-Lah
Ribarič inequality in different settings and under various conditions. In the first chapter
we will show some difference type converses of the mentioned inequalities for positive
linear functionals, together with their refinements, improvements and applications to many
famous classical inequalities. In the second chapter different classes of inequalities of
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the Jensen and Edmundson-Lah-Ribarič type for functions with bounded second order di-
vided differences, Lipschitzian functions and 3-convex functions are derived. Also, several
representations of the left side in the Edmundson-Lah-Ribarič inequality via Hermite’s in-
terpolating polynomial in terms of divided differences are given and used for obtaining
inequalities for the class of n-convex functions. Third chapter is dedicated to estimates for
the Csiszár f -divergence functional and generalization of the f -divergence functional for
different classes of functions via results from the previous two chapters. Application to
Zipf and Zipf-Mandelbrot law is also given. In the fourth chapter we give difference type
converses of the Jensen and Edmundson-Lah-Ribarič operator inequality for a unital field
of positive linear mappings between C∗-algebras of operators in compact Hausdorff space
and their further refinements and improvements. Several mutual bounds for the operator
version of the Jensen and Edmundson-Lah-Ribarič inequality which hold for the classes
of bounded real-valued functions, Lipschitzian functions and n-convex functions are also
given. In the fifth chapter we show some converses of Ando’s and Davis-Choi’s inequality
of different types, as well as the Edmundson-Lah-Ribarič inequality and its difference type
converse for positive linear mappings. Some results are extended to the class of n-convex
functions. Difference type converse for solidarities and connections are also given. In
the sixth chapter, some converses of the Jensen and Edmundson-Lah-Ribarič inequality in
terms of time scale calculus are proved together with new refinements of those converse
relations with respect to the multiple Lebesgue delta integral for convex functions. In the
last chapter we give a short historical comment on the connection between the Edmundson-
Madansky and the Lah-Ribarič inequality, and an overview of some already known results.
Also we give a Levinson’s type generalization of the Edmundson-Lah-Ribarič inequality
for a class of functions which contains the class of 3-convex functions, and analogous in-
equalities for the operator inequality in the Hilbert space and the scalar product of Hilbert
space operators.

Authors
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Chapter1
Difference type converses for
linear functionals

This chapter begins with an overview of some important results related to the Jensen and
Edmundson-Lah-Ribarič inequality for positive linear functionals which are known from
earlier. Further, some difference type converses of the mentioned results will be shown, as
well as their refinements and improvements. Finally, those improvements will be applied
to generalized means and some famous classical inequalities (the ones of Hölder, Hermite-
Hadamard, Giaccardi and Petrović). In that way we will get converses of listed inequalities
that provide us with an upper bound for the difference of their right and left sides.

1.1 Introduction

Let E be a non-empty set and L a vector space of real functions f : E→R with the follow-
ing properties:

(L1): f ,g ∈ L⇒ (a f +bg)∈ L for all a,b ∈ R;

(L2): 111 ∈ L, that is, if f (t) = 1 for every t ∈ E , then f ∈ L.

(L3): if f ,g ∈ L, then min{ f ,g} ∈ L or max{ f ,g} ∈ L.

1



2 1 DIFFERENCE TYPE CONVERSES FOR LINEAR FUNCTIONALS

Obviously, (RE ,≤) (with standard ordering) is a lattice. It can also be easily verified that
a subspace (X ⊆ R

E) is a lattice if and only if x ∈ X implies |x| ∈ X . This is a simple
consequence of the fact that for every x ∈ X the functions |x|, x− and x+ can be defined by

|x|(t) = |x(t)|, x+(t) = max{0,x(t)}, x−(t) =−min{0,x(t)}, t ∈ E

and
x+ + x− = |x|, x+− x− = x,

min{x,y}=
1
2

(x+ y−|x− y|), max{x,y}=
1
2

(x+ y+ |x− y|).
We also study positive linear functionals A : L→R, that is, we assume:

(A1): A(a f +bg) = aA( f )+bA(g) for f ,g ∈ L and a,b ∈ R;

(A2): f ∈ L, f (t)≥ 0 for every t ∈ E ⇒ A( f )≥ 0.

We say that a functional A is normalized if A(111) = 1.
Throughout this chapter, if a function is defined on an interval [m,M] without any

further emphasis we assume that the bounds of that interval are finite.
Jessen [76] gave the following generalization of Jensen’s inequality for convex func-

tions (see also [124, p. 47]):

Theorem 1.1 ([76]) Let L be a vector space of real functions defined on a non-empty
set E that has properties (L1) and (L2), and let us assume that φ is a continuous convex
function on an interval I ⊂R. If A is a normalized positive linear functional, then for every
f ∈ L such that φ( f ) ∈ L we have A( f ) ∈ I and

φ(A( f )) ≤ A(φ( f )). (1.1)

Next result is a generalization of the Edmundson-Lah-Ribarič inequality for linear
functionals and it was proved by Beesack and Pečarić in [14] (see also [124, p. 98]):

Theorem 1.2 ([14]) Let φ be a convex function on I = [m,M], let L be a vector space of
real functions defined on a non-empty set E that has properties (L1) and (L2), and let A
be a normalized positive linear functional. Then for every f ∈ L such that φ( f ) ∈ L (so
m≤ f (t)≤M for all t ∈ E), we have

A(φ( f )) ≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M). (1.2)

Dragomir in [37] studied a measure space (Ω,A ,μ) which consists of a set Ω, σ -
algebra A of subsets of Ω and a countably additive and positive measure μ on A with
values in R∪{∞}. For a μ-measurable function w : Ω→ R such that w(x) ≥ 0 for μ-a.e.
(almost every) x ∈Ω, he considered a Lebesgue space

Lw(Ω,μ) := { f : Ω→R, f is μ−measurable and
∫

Ω w(x)| f (x)|dμ(x) < ∞},
and proved the following converse of Jensen’s inequality.



1.1 INTRODUCTION 3

Theorem 1.3 ([37]) Let φ : I→R be a continuous convex function on an interval of real
numbers I and let m,M ∈R, m < M be such that the interval [m,M] belongs to the interior
of I. Let w > 0 be such that

∫
wdμ = 1. If f : Ω→R is μ-measurable, satisfies the bounds

−∞ < m≤ f (t)≤M < ∞ for μ-a.e. t ∈Ω

and such that f ,φ ◦ f ∈ Lw(Ω,μ), then

0≤
∫

Ω
w(t)φ( f (t))dμ(t)−φ( f̄Ω,w)

≤ (M− f̄Ω,w)( f̄Ω,w−m)
φ ′−(M)−φ ′+(m)

M−m

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)), (1.3)

where f̄Ω,w :=
∫

Ω w(t) f (t)dμ(t) ∈ [m,M].

In [38] Dragomir obtained a refinement of the previous result that we state in the fol-
lowing theorem.

Theorem 1.4 ([38]) Let φ : I→R be a continuous convex function on an interval of real
numbers I and let m,M ∈R, m < M be such that the interval [m,M] belongs to the interior
of I. Let w > 0 be such that

∫
wdμ = 1. If f : Ω→R is μ-measurable, satisfies the bounds

−∞ < m≤ f (t)≤M < ∞ for μ-a.e. t ∈Ω

and such that f ,φ ◦ f ∈ Lw(Ω,μ), then

0≤
∫

Ω
w(t)φ( f (t))dμ(t)−φ( f̄Ω,w)

≤ (M− f̄Ω,w)( f̄Ω,w−m)
M−m

sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ (M− f̄Ω,w)( f̄Ω,w−m)
φ ′−(M)−φ ′+(m)

M−m

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)), (1.4)

where f̄Ω,w :=
∫

Ω w(t) f (t)dμ(t) ∈ [m,M] and Ψφ (·;m,M) : 〈m,M〉 → R is defined by

Ψφ (t;m,M) =
φ(M)−φ(t)

M− t
− φ(t)−φ(m)

t−m
.

We also have inequalities

0≤
∫

Ω
w(t)φ( f (t))dμ(t)−φ( f̄Ω,w)≤ 1

4
(M−m)Ψφ (t;m,M)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)), (1.5)

where f̄Ω,w ∈ 〈m,M〉.



4 1 DIFFERENCE TYPE CONVERSES FOR LINEAR FUNCTIONALS

1.2 Converses of the Jensen and Edmundson-Lah-
-Ribarič inequality for linear functionals

Results that follow are obtained in [68] and they give an upper bound for the difference
between the right and left side of the Jensen and Edmundson-Lah-Ribarič inequality re-
spectively. First theorem is also a generalization of Dragomir’s result (1.3) for linear func-
tionals.

Theorem 1.5 Let φ be a continuous convex function on the interval I whose interior
contains interval [m,M], let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1) and (L2). Let A be any normalized positive linear
functional on L. Then for every function f ∈ L such that φ( f ) ∈ L and which satisfies the
bounds m≤ f (t)≤M for every t ∈ E we have

0≤ A(φ( f ))−φ(A( f ))

≤ (M−A( f ))(A( f )−m)
φ ′−(M)−φ ′+(m)

M−m

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)). (1.6)

If the function φ is concave on I, then the inequality signs in (1.6) are reversed.

Proof. Let φ be a convex function. The first inequality follows directly from Theorem 1.1.
According to Theorem 1.2 we have

A(φ( f ))−φ(A( f )) ≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−φ(A( f )) =: z.

Because of the convexity of the function φ , the gradient inequality

φ(t)−φ(M)≥ φ ′−(M)(t−M)

holds for every t ∈ [m,M]. If we multiply this inequality by (t−m)≥ 0, we get

(t−m)φ(t)− (t−m)φ(M)≥ φ ′−(M)(t−M)(t−m), t ∈ [m,M] (1.7)

In a similar manner we obtain:

(M− t)φ(t)− (M− t)φ(m)≥ φ ′+(m)(t−m)(M− t), t ∈ [m,M] (1.8)

When we add up (1.7) and (1.8) and then divide by (m−M), we get that for every t ∈ [m,M]
it holds:

(t−m)φ(M)+ (M− t)φ(m)
M−m

−φ(t)≤ (M− t)(t−m)
M−m

(φ ′−(M)−φ ′+(m)). (1.9)
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Since A( f ) ∈ [m,M], in the previous relation we can replace t with A( f ) and obtain the
following

z≤ (M−A( f ))(A( f )−m)
M−m

(φ ′−(M)−φ ′+(m)),

what is exactly the second inequality in (1.6).
To prove the third inequlity in (1.6), we need to notice that inequality

1
M−m

(M− t)(t−m)≤ 1
4
(M−m),

holds for every t ∈ [m,M], and this proves the claim of the theorem.
If φ is a concave function, then the function −φ is convex, and we can apply inequali-

ties (1.6) to the function −φ , and reversed inequalities follow after multiplying by −1.
�

Remark 1.1 Observe that in the statement of Theorem 1.5 interval [m,M] needs to belong
to the interior of the interval I. This condition assures finiteness of the one-sided derivatives
in (1.6). Without this assumption these derivatives might be infinite.

Theorem 1.6 Let φ be a continuous convex function on the interval I whose interior
contains interval [m,M], let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1) and (L2). Let A be any normalized positive linear
functional on L. Then for every function f ∈ L such that φ( f ) ∈ L and which satisfies the
bounds m≤ f (t)≤M for every t ∈ E we have

0≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))

≤ φ ′−(M)−φ ′+(m)
M−m

A([M− f ][ f −m])

≤ φ ′−(M)−φ ′+(m)
M−m

(M−A( f ))(A( f )−m)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)). (1.10)

If φ is concave, then the inequality signs in (1.10) are reversed.

Proof. Let φ be a convex function. The first inequality from (1.10) is obtained from
(1.2) by subtracting φ(A( f )) from both sides of the inequality. Since f (t) ∈ [m,M], we can
replace t by f (t) i the relation (1.9), which gives us

M− f (t)
M−m

φ(m)+
f (t)−m
M−m

φ(M)−φ( f (t)) ≤ (M− f (t))( f (t)−m)
M−m

(φ ′−(M)−φ ′+(m)).

Function h(t) = (M− t)(t−m) is concave on [m,M], so when we apply the functional A
to the previous inequality, because of its linearity and Jensen’s inequality (1.1) we get the
second inequality from (1.10):
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M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))

≤ (φ ′−(m)−φ ′+(m))
M−m

A([M− f ][ f −m])

≤ φ ′−(M)−φ ′+(m)
M−m

(M−A( f ))(A( f )−m).

To prove the last inequality from (1.10), we need to notice that for every t ∈ [m,M] we

have h(t)≤ 1
4
(M−m)2. Since A( f ) ∈ [m,M], we also have

h(A( f ))≤ 1
4
(M−m)2,

which completes the proof. �

Remark 1.2 Under the assumptions from the previous two theorems, let l be a linear
function through points (m, f (m)) and (M, f (M)). Since φ is a convex function on [m,M],
the following relation

φ(A( f )) ≤ A(φ( f )) ≤ l(A( f ))

holds for every f ∈ L such that φ( f ) ∈ L.
From Theorem 1.5 and Theorem 1.6 we see that both differences

A(φ( f ))−φ(A( f )) and l(A( f ))−A(φ( f ))

have the same estimation, so one can see that, in a weak sense, A(φ( f )) is almost the mid
point point between φ(A( f )) and l(A( f )).

The following results are proved in [69], and they give refinements of sequences of
inequalities obtained in Theorem 1.5 and Theorem 1.6. The first theorem that follows is
also a generalization of Dragomir’s results (1.4) and (1.5).

Theorem 1.7 Let φ be a continuous convex function on the interval I whose interior
contains interval [m,M], let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1) and (L2). Let A be any normalized positive linear
functional on L. Then for every function f ∈ L such that φ( f ) ∈ L and which satisfies the
bounds m≤ f (t)≤M for every t ∈ E we have

0≤ A(φ( f ))−φ(A( f ))
≤ (M−A( f ))(A( f )−m) sup

t∈〈m,M〉
Ψφ (t;m,M)

≤ (M−A( f ))(A( f )−m)
φ ′−(M)−φ ′+(m)

M−m

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)). (1.11)
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We also have inequalities

0≤ A(φ( f ))−φ(A( f )) ≤ 1
4
(M−m)2Ψφ (A( f );m,M)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)), (1.12)

where Ψφ (·;m,M) : 〈m,M〉 → R is defined by

Ψφ (t;m,M) =
1

M−m

(φ(M)−φ(t)
M− t

− φ(t)−φ(m)
t−m

)
. (1.13)

If φ is concave on I, then the inequality signs are reversed.

Proof. Let φ be a convex function. If A( f ) = m or A( f ) = M, inequalities are trivial. Let
us assume that A( f ) ∈ 〈m,M〉.

The first inequality from (1.11) i (1.12) follows directly from Theorem 1.1. According
to Theorem 1.2 we have

A(φ( f ))−φ(A( f )) ≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−φ(A( f ))

=
(M−A( f ))(A( f )−m)

M−m

{φ(M)−φ(A( f ))
M−A( f )

− φ(A( f ))−φ(m)
A( f )−m

}
= (M−A( f ))(A( f )−m)Ψφ (A( f );m,M)
≤ (M−A( f ))(A( f )−m) sup

t∈〈m,M〉
Ψφ (t;m,M),

and we see that the second inequality from (1.11) holds. Further,

sup
t∈〈m,M〉

Ψφ (t;m,M) =
1

M−m
sup

t∈〈m,M〉

{φ(M)−φ(t)
M− t

− φ(t)−φ(m)
t−m

}
≤ 1

M−m

(
sup

t∈〈m,M〉
φ(M)−φ(t)

M− t
+ sup

t∈〈m,M〉
−(φ(t)−φ(m))

t−m

)
=

1
M−m

(
sup

t∈〈m,M〉

φ(M)−φ(t)
M− t

− inf
t∈〈m,M〉

φ(t)−φ(m)
t−m

)
=

φ ′−(M)−φ ′+(m)
M−m

,

which proves the third inequality from (1.11). The last inequality in (1.11) follows from the

fact that for every t ∈ [m,M] we have
(M− t)(t−m)

M−m
≤ 1

4
(M−m). Since A( f ) ∈ [m,M],

we can replace t with A( f ) in the previous inequality.
The proof for inequalities (1.12) is obvious from the proof for (1.11). �

Remark 1.3 Observe that Ψφ (·;m,M), defined in (1.13), is actually second order divided
difference [m,t,M]φ of the function φ in points m, t and M for every t ∈ 〈m,M〉.
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In order to prove a converse of the Edmundson-Lah-Ribarič inequality, first we need
the following result from [69].

Lemma 1.1 Let φ be a convex function on an interval of real numbers I, and let m,M ∈R,
m < M be such that the interval [m,M] belongs to the interior of I. Then for every t ∈ [m,M]
the following inequalities hold:

Δφ (t;m,M) =
t−m
M−m

φ(M)+
M− t
M−m

φ(m)−φ(t)

≤ (M− t)(t−m) sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ (M− t)(t−m)
M−m

(φ ′−(M)−φ ′+(m))

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)). (1.14)

We also have

Δφ (t;m,M)≤ 1
4
(M−m)2Ψφ (t;m,M) ≤ 1

4
(M−m)(φ ′−(M)−φ ′+(m)),

where Ψφ (·;m,M) : 〈m,M〉 → R is defined by (1.13) If the function φ is concave, then the
inequality signs are reversed.

Proof. Let φ be a convex function. If t = m or t = M, inequalities are trivial. For any
t ∈ 〈m,M〉 it holds

Δφ (t;m,M) =
t−m
M−m

φ(M)+
M− t
M−m

φ(m)−φ(t)

=
(M− t)(t−m)

M−m

[φ(M)−φ(t)
M− t

− φ(t)−φ(m)
t−m

]
= (M− t)(t−m)Ψφ (t;m,M)
≤ (M− t)(t−m) sup

t∈〈m,M〉
Ψφ (t;m,M),

which is exactly the first inequality from (1.14). The second inequality follows directly
from:

sup
t∈〈m,M〉

Ψφ (t;m,M) =
1

M−m
sup

t∈〈m,M〉

{φ(M)−φ(t)
M− t

− φ(t)−φ(m)
t−m

}
≤ 1

M−m

(
sup

t∈〈m,M〉

φ(M)−φ(t)
M− t

+ sup
t∈〈m,M〉

−(φ(t)−φ(m))
t−m

)
=

1
M−m

(
sup

t∈〈m,M〉
φ(M)−φ(t)

M− t
− inf

t∈〈m,M〉
φ(t)−φ(m)

t−m

)
=

φ ′−(M)−φ ′+(m)
M−m

.
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The last inequality from (1.14) follows directly from

(M− t)(t−m)
M−m

≤ 1
4
(M−m) for every t ∈ [m,M].

The proof of the inequalities (1.1) is clear from the proof of (1.14). �

Theorem 1.8 Let φ be a continuous convex function on the interval I whose interior
contains interval [m,M], let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1) and (L2). Let A be any normalized positive linear
functional on L. Then for every function f ∈ L such that φ( f ) ∈ L and which satisfies the
bounds m≤ f (t)≤M for every t ∈ E we have

(i)

0≤ A( f )−m
M−m

φ(M)+
M−A( f )
M−m

φ(m)−A(φ( f ))

≤ A[(M− f )( f −m)] sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ A[(M− f )( f −m)]
M−m

(φ ′−(M)−φ ′+(m))

≤ (M−A( f ))(A( f )−m)
M−m

(φ ′−(M)−φ ′+(m))

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)) (1.15)

(ii)

0≤ A( f )−m
M−m

φ(M)+
M−A( f )
M−m

φ(m)−A(φ( f ))

≤ A[(M− f )( f −m)] sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ (M−A( f ))(A( f )−m) sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ (M−A( f ))(A( f )−m)
M−m

(φ ′−(M)−φ ′+(m))

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)) (1.16)

(iii)

0≤ A( f )−m
M−m

φ(M)+
M−A( f )
M−m

φ(m)−A(φ( f ))

≤ 1
4
(M−m)2A(Ψφ (t;m,M))

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)) (1.17)
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where Ψφ (·;m,M) : 〈m,M〉 → R is defined in (1.13). If the function φ is concave, then the
inequality signs are reversed.

Proof. Let φ be a convex function. The first inequalities from (1.15), (1.16) and (1.17)
follow directly from Theorem 1.2.

Since f satisfies the bounds m≤ f (t) ≤M for every t ∈ [m,M], we can replace t with
f (t) in (1.14) and (1.1) from Lemma 1.1 and obtain

f (t)−m
M−m

φ(M)+
M− f (t)
M−m

φ(m)−φ( f (t))

≤ (M− f (t))( f (t)−m) sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ (M− f (t))( f (t)−m)
M−m

(φ ′−(M)−φ ′+(m))

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))

and

f (t)−m
M−m

φ(M)+
M− f (t)
M−m

φ(m)−φ( f (t))

≤ 1
4
(M−m)2Ψφ ( f ;m,M)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)).

Next, we apply linear functional A, which is normalized, to the previous sequences of
inequalities, and that gives us (1.17) and first three inequalities from (1.15) respectively.

Since for every t ∈ [m,M] we have
(M− t)(t−m)

M−m
≤ 1

4
(M−m), the same inequality holds

for A( f ) ∈ [m,M]. In that way we get the last inequality from (1.15).
The first inequality from (1.16) is the same as the first inequality from (1.15). Function

g(t) = (M− t)(t−m) is concave, so according to Jessen’s inequality (1.1) we have

A([M− f ][ f −m])≤ (M−A( f ))(A( f )−m),

which provides the second inequality from (1.16). In the proof of Lemma 1.1 we showed
that

sup
t∈〈m,M〉

Ψφ (t;m,M) ≤ φ ′−(M)−φ ′+(m)
M−m

,

so the third inequality from (1.16) easily follows. As before, the last inequality in (1.16)

follows from
(M−A( f ))(A( f )−m)

M−m
≤ 1

4
(M−m). �

Remark 1.4 The function φ is defined on the interval I whose interior contains the inter-
val [m,M]. This condition ensures finiteness of the one-sided derivatives in points m and
M. Then

lim
t→m+

Ψφ (t;m,M) =
1

M−m

[
φ(M)−φ(m)

M−m
−φ ′+(m)

]
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and

lim
t→M−

Ψφ (t;m,M) =
1

M−m

[
φ ′−(M)− φ(t)−φ(m)

t−m

]
,

so Ψφ (·;m,M) can be observed as a continuous function (in parameter t) on the interval
[m,M]. Therefore, if the function f satisfies bounds m ≤ f (t) ≤M for every t ∈ E , then
the expression Ψφ ( f (t);m,M) is meaningful.

In order to state an improvement of the Edmundson-Lah-Ribarič inequality (1.2) ob-
tained by Klaričić Bakula, Pečarić and Perić in [80], the vector space of real functions
L defined on a non-empty set E aditionally needs to satisfy the condition (L3) stated in
Introduction.

Theorem 1.9 ([80]) Let L be a vector space of real functions defined on a non-empty
set E that has properties (L1), (L2) and (L3) and let A be a normalized positive linear
functional on L. If φ is a convex function on [m,M], then for every f ∈ L such that φ( f ) ∈ L
we have A( f ) ∈ [m,M] and

A(φ( f )) ≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A( f̃ )δφ , (1.18)

where

f̃ =
1
2
111− 1

M−m

∣∣∣∣ f − m+M
2

111

∣∣∣∣ , δφ = φ(m)+ φ(M)−2φ
(m+M

2

)
. (1.19)

Remark 1.5 When applied to an apropriate vector space of real functions L, inequality
(1.18) from Theorem 1.9 is clearly an improvement of the Edmundson-Lah-Ribarič in-
equality (1.2), since under the required assumptions we have

A( f̃ )δφ = A
(1

2
111− | f −

m+M
2 111|

M−m

)(
φ(m)+ φ(M)−2φ

(m+M
2

))
≥ 0.

Next two results give improvements of Theorem 1.7 and Theorem 1.8 respectively.
They are proved in an analogousway as the previous two theorems, only instead of Edmund-
son-Lah-Ribarič inequality, its improvement (1.18) was used.

Theorem 1.10 Let φ be a continuous convex function on the interval I whose interior
contains interval [m,M], let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1), (L2) and (L3). Let A be any normalized positive
linear functional on L. Then for every function f ∈ L such that φ( f ) ∈ L and which satisfies
the bounds m≤ f (t)≤M for every t ∈ E we have

0≤ A(φ( f ))−φ(A( f ))

≤ (M−A( f ))(A( f )−m) sup
t∈〈m,M〉

Ψφ (t;m,M)−A( f̃ )δφ

≤ (M−A( f ))(A( f )−m)
φ ′−(M)−φ ′+(m)

M−m
−A( f̃ )δφ

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−A( f̃ )δφ . (1.20)
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We also have

0≤ A(φ( f ))−φ(A( f )) ≤ 1
4
(M−m)2Ψφ (A( f );m,M)−A( f̃ )δφ

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−A( f̃ )δφ , (1.21)

where f̃ and δφ are defined in (1.19), and we assume that Ψφ ( f ;m,M) ∈ L, where
Ψφ (·;m,M) : 〈m,M〉 → R is defined in (1.13). If φ is concave on I, then the inequality
signs are reversed.

Proof. First we need to note that according to the property (L3) it holds

f̃ = min
{M− f (x)

M−m
,
f (x)−m
M−m

}
=

1
2
111− | f −

m+M
2 111|

M−m
∈ L.

If A( f ) = m or A( f ) = M, inequalities are trivial. Let us assume that A( f ) ∈ 〈m,M〉 and
let φ be a convex function.

The first inequality in (1.20) is a direct consequence of Jessen’s inequality (1.1). Ac-
cording to Theorem 1.9 we have

A(φ( f ))−φ(A( f )) ≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−φ(A( f ))−A( f̃ )δφ

=
(M−A( f ))(A( f )−m)

M−m

{φ(M)−φ(A( f ))
M−A( f )

− φ(A( f ))−φ(m)
A( f )−m

}
−A( f̃ )δφ

= (M−A( f ))(A( f )−m)Ψφ (A( f );m,M)−A( f̃ )δφ

≤ (M−A( f ))(A( f )−m) sup
t∈〈m,M〉

Ψφ (t;m,M)−A( f̃ )δφ ,

which proves the second inequality in (1.20). Next,

sup
t∈〈m,M〉

Ψφ (t;m,M) =
1

M−m
sup

t∈〈m,M〉

{φ(M)−φ(t)
M− t

− φ(t)−φ(m)
t−m

}
≤ 1

M−m

(
sup

t∈〈m,M〉

φ(M)−φ(t)
M− t

+ sup
t∈〈m,M〉

−(φ(t)−φ(m))
t−m

)
=

1
M−m

(
sup

t∈〈m,M〉

φ(M)−φ(t)
M− t

− inf
t∈〈m,M〉

φ(t)−φ(m)
t−m

)
=

φ ′−(M)−φ ′+(m)
M−m

,

and the third inequality from (1.20) is proved. We have already seen that

(M−A( f ))(A( f )−m)
M−m

≤ 1
4
(M−m)

holds, so the last inequality from (1.20) follows directly.
Proof of the inequalities (1.21) is clear from the proof of inequalities (1.20). �
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Theorem 1.11 Let φ be a continuous convex function on the interval I whose interior
contains interval [m,M], let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1), (L2) and (L3). Let A be any normalized positive
linear functional on L. Then for every function f ∈ L such that φ( f ) ∈ L and which satisfies
the bounds m≤ f (t)≤M for every t ∈ E we have the following sequences of inequalities

(i)

0≤ A( f )−m
M−m

φ(M)+
M−A( f )
M−m

φ(m)−A(φ( f ))−A( f̃ )δφ

≤ A[(M− f )( f −m)] sup
t∈〈m,M〉

Ψφ (t;m,M)−A( f̃ )δφ

≤ A[(M− f )( f −m)]
M−m

(φ ′−(M)−φ ′+(m))−A( f̃ )δφ

≤ (M−A( f ))(A( f )−m)
M−m

(φ ′−(M)−φ ′+(m))−A( f̃ )δφ

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−A( f̃ )δφ (1.22)

(ii)

0≤ A( f )−m
M−m

φ(M)+
M−A( f )
M−m

φ(m)−A(φ( f ))−A( f̃ )δφ

≤ A[(M− f )( f −m)] sup
t∈〈m,M〉

Ψφ (t;m,M)−A( f̃ )δφ

≤ (M−A( f ))(A( f )−m) sup
t∈〈m,M〉

Ψφ (t;m,M)−A( f̃ )δφ

≤ (M−A( f ))(A( f )−m)
M−m

(φ ′−(M)−φ ′+(m))−A( f̃ )δφ

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−A( f̃ )δφ (1.23)

(iii)

0≤ A( f )−m
M−m

φ(M)+
M−A( f )
M−m

φ(m)−A(φ( f ))−A( f̃ )δφ

≤ 1
4
(M−m)2A(Ψφ ( f ;m,M))−A( f̃ )δφ

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−A( f̃ )δφ (1.24)

where f̃ and δφ are defined in (1.19), and Ψφ (·;m,M) is defined in (1.13). If the function
φ is concave, then the inequality signs are reversed.

Proof. In the proof of Theorem 1.10 it has been shown that f̃ ∈ L. First inequalities in
(1.22), (1.23) and (1.24) are obtained from (1.18) by subtracting A(φ( f )) from both sides
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of the inequality. Because f satisfies the bounds m ≤ f (t) ≤ M for every t ∈ [m,M], we
can replace t with f (t) in inequalities (1.14) and (1.1) from Lemma 1.1, which gives

f (t)−m
M−m

φ(M)+
M− f (t)
M−m

φ(m)−φ( f (t)) ≤ (M− f (t))( f (t)−m) sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ (M− f (t))( f (t)−m)
M−m

(φ ′−(M)−φ ′+(m))

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))

and

f (t)−m
M−m

φ(M)+
M− f (t)
M−m

φ(m)−φ( f (t)) ≤ 1
4
(M−m)2Ψφ ( f ;m,M)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)).

To prove (1.24) and first three inequalities from (1.22), we apply positive linear functional
A to the previous sequences of inequalities, and then subtract A( f̃ )δφ from each side of
those inequalities. The fourth inequality in (1.22) follows from the fact that the function
g(t) = (M− t)(t−m) is concave, so Jessen’s inequality gives us

A(g( f ))−A( f̃ )δφ ≤ g(A( f ))−A( f̃ )δφ .

Since for every t ∈ [m,M] we have

(M− t)(t−m)
M−m

−A( f̃ )δφ ≤ 1
4
(M−m)−A( f̃ )δφ ,

and A( f ) ∈ [m,M], the last inequality from (1.22) follows.
First inequalities in (1.23) and (1.22) are the same. Again, we use the concavity of

the function g(t) = (M− t)(t−m). When we subtract A( f̃ )δφ from both sides in Jessen’s
inequality, we get

A([M− f ][ f −m])−A( f̃ )δφ ≤ (M−A( f ))(A( f )−m)−A( f̃ )δφ ,

which proves the second inequality in (1.23). In the proof of Lemma 1.1 we have shown
that

sup
t∈〈m,M〉

Ψφ (t;m,M) ≤ φ ′−(M)−φ ′+(m)
M−m

,

and the third inequality in (1.23) follows by subtracting A( f̃ )δφ from both sides of the

mentioned inequality. Since for every t ∈ [m,M] it holds
(M− t)(t−m)

M−m
≤ 1

4
(M−m), and

since A( f ) ∈ [m,M], we immediately see that

(M−A( f ))(A( f )−m)
M−m

−A( f̃ )δφ ≤ 1
4
(M−m)−A( f̃ )δφ ,

and the last inequality from (1.23) is proved. �
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Recently, Pečarić and Perić in [122], established even more accurate version of the
Edmundson-Lah-Ribarič inequality. The corresponding result is derived by virtue of the
refinement of the Jensen inequality via linear interpolation obtained by Choi et.al. [31].

Let the functions rn(v) be defined recursively:

r0 = min{v,1− v}
rn = min{2rn−1(v),1−2rn−1(v)}

for 0≤ v≤ 1. The functions rn, n ∈N, are non-negative and it has been shown in [31] that
they can be rewritten in an explicit form

rn(t) =

{
2nt− k+1, k−1

2n ≤ t ≤ 2k−1
2n+1 ,

k−2nt, 2k−1
2n+1 < t ≤ k

2n ,
(1.25)

for k = 1,2, . . . ,2n.
It has been shown in [31] that if N is a nonnegative integer and f is convex on [0,1],

then

(1− v) f (0)+ v f (1)≥ f (v)+
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (n,k)χ( k−1
2n , k

2n )(v),

where

Δ f (n,k) = f

(
k−1
2n

)
+ f

(
k
2n

)
−2 f

(
2k−1
2n+1

)
and χ represents the characteristic function of the corresponding interval. If N = 0 then
sum is zero, that is we have convexity.

In the paper [31] previous relation is extended to hold for an arbitrary interval.

Lemma 1.2 ([31]) Let N be a nonnegative integer and let f be convex on [a,b]. Then

(1− v) f (a)+ v f (b)≥ f ((1− v)a+ vb)+
N−1

∑
n=0

rn(v)
2n

∑
k=1

Δ f (a,b,n,k)χ( k−1
2n , k

2n )(v), (1.26)

where

Δ f (a,b,n,k) = f
( (2n− k+1)a+(k−1)b

2n

)
+ f
((2n− k)a+ kb

2n

)
−2 f

((2n+1−2k+1)a+(2k−1)b
2n+1

)
(1.27)

and χ represents the characteristic function of the corresponding interval.

Theorem 1.12 ([122]) Let φ : [m,M]→ R be a convex function and f ∈ L be such that
φ ◦ f ∈ L. Then, A( f ) ∈ [m,M] and

A(φ( f )) ≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−Rφ ,A(m,M; f ), (1.28)
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where

Rφ ,A(m,M; f ) =
N−1

∑
n=0

2n

∑
k=1

Δφ (m,M,n,k)A
(
rnχ( k−1

2n , k
2n )

( f −m111
M−m

))
, (1.29)

Δφ (m,M,n,k) is defined in (1.27), and where χ stands for the characteristic function of
the corresponding interval.

Proof. First observe that φ( f ) ∈ L also means that the composition φ( f ) is well defined,
hence f (E) ∈ [m,M]. Now we have m111≤ f ≤M111 and

m = A(m111)≤ A( f )≤ A(M111) = M.

If we put a = m, b = M, x = (1− v)a+ vb in (1.26) from Lemma 1.2 using

v =
x−m
M−m

, 1− v =
M− x
M−m

we get

M− x
M−m

φ(m)+
x−m
M−m

φ(M)

≥ φ(x)+
N−1

∑
n=0

rn

(
x−m
M−m

) 2n

∑
k=1

Δφ (m,M,n,k)χ( k−1
2n , k

2n )

(
x−m
M−m

)
.

Let f ∈ L be such that φ( f ) ∈ L. Applying the functional A to the above inequality with
x←→ f (x) we obtain

M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)

≥ A(φ( f ))+
N−1

∑
n=0

2n

∑
k=1

Δφ (m,M,n,k)A
(

rnχ( k−1
2n , k

2n )

(
f −m111
M−m

))
which is inequality (1.28). �

Remark 1.6 Any summation having ∑N−1
n=0 is assumed to be zero for N = 0, therefore

inequality (1.28) may be regarded as a generalization of inequality (1.18). In addition, if
N ≥ 1, then Rφ ,A(m,M; f ) can be rewritten in the following way:

Rφ ,A(m,M; f ) =Δφ (m,M,0,1)A
(
r0χ(0,1)

( f −m
M−m

))
+

N−1

∑
n=1

2n

∑
k=1

Δφ (m,M,n,k)A
(
rnχ( k−1

2n , k
2n )

( f −m
M−m

))
.

Now, since χ(0,1)

(
f−m
M−m

)
= 1, Δφ (m,M,0,1) = φ(m)+ φ(M)−2φ

(m+M
2

)
, and

r0

( f −m
M−m

)
= min

{ f −m
M−m

,1− f −m
M−m

}
=

1
2
− | f −

m+M
2 |

M−m
,

it follows that the inequality (1.28) provides sharper estimate for the Edmundson-Lah-Ri-
barič inequality than inequality (1.18).
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Corollary 1.1 ([122]) Let ppp be a nonnegative l-tuple with Pl = ∑l
i=1 pi �= 0 and xxx ∈

[m,M]l . If f : [m,M]→ R is a convex function then

1
Pl

∑l
i=1 pi f (xi)≤ M− x̄

M−m
f (m)+

x̄−m
M−m

f (M) (1.30)

− 1
Pl

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)pi

[(
rn · χ( k−1

2n , k
2n )

)( xi−m
M−m

)]
=

M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)

− 1
Pl

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)pi

[(
2n xi−m

M−m
−k+1

)
·χ( k−1

2n , 2k−1
2n+1

)( xi−m
M−m

)
+
(

k−2n xi−m
M−m

)
χ( 2k−1

2n+1 , k
2n

)( xi−m
M−m

)]
where x̄ = 1

Pl
∑l

i=1 pixi.

Proof. If we consider E = [m,M] ,L = R
[m,M],g = idE , A( f ) = 1

Pl
∑l

i=1 pi f (xi) in Theorem
1.12, then inequality (1.28) becomes (1.30) . �

According to Remark 1.6 we can give strengthened Theorems 1.10 and 1.11. More pre-
cisely, following the lines of the proofs of Theorems 1.10 and 1.11 with a term Rφ ,A(m,M; f )
instead of A( f̃ )δφ , and taking into account relation (1.28), we give now sharper forms for
converses of the Jensen and Edmundson-Lah-Ribarič inequalities than those established in
Theorems 1.10 and 1.11.

Theorem 1.13 ([81]) Let φ : I→ R be a continuous convex function and [m,M] ⊆ Int I.
If f ∈ L is such that f (E) ⊆ [m,M] and φ ◦ f ∈ L, then

0≤ A(φ( f ))−φ(A( f ))
≤ (M−A( f ))(A( f )−m) sup

t∈(m,M)
Ψφ (t;m,M)−Rφ ,A(m,M; f )

≤ (M−A( f ))(A( f )−m)
φ ′−(M)−φ ′+(m)

M−m
−Rφ ,A(m,M; f )

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f ) (1.31)

and

0≤ A(φ( f ))−φ(A( f )) ≤ 1
4
(M−m)2Ψφ (A( f );m,M)−Rφ ,A(m,M; f )

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f ), (1.32)

where Ψφ and Rφ ,A are defined by (1.13) and (1.29). If φ is concave on I, then the inequal-
ity signs in (1.31) and (1.32) are reversed.
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Theorem 1.14 ([81]) Let φ : I→ R be a continuous convex function and [m,M] ⊆ Int I.
If f ∈ L is such that f (E)⊆ [m,M] and φ ◦ f ∈ L, then

0≤ A( f )−m
M−m

φ(M)+
M−A( f )
M−m

φ(m)−A(φ( f ))−Rφ ,A(m,M; f )

≤ A[(M− f )( f −m)] sup
t∈(m,M)

Ψφ (t;m,M)−Rφ ,A(m,M; f )

≤ A[(M− f )( f −m)]
M−m

(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f ) (1.33)

≤ (M−A( f ))(A( f )−m)
M−m

(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f )

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f )

0≤ A( f )−m
M−m

φ(M)+
M−A( f )
M−m

φ(m)−A(φ( f ))−Rφ ,A(m,M; f )

≤ A[(M− f )( f −m)] sup
t∈〈m,M〉

Ψφ (t;m,M)−Rφ ,A(m,M; f )

≤ (M−A( f ))(A( f )−m) sup
t∈〈m,M〉

Ψφ (t;m,M)−Rφ ,A(m,M; f )

≤ (M−A( f ))(A( f )−m)
M−m

(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f )

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f ) (1.34)

and

0≤ A( f )−m
M−m

φ(M)+
M−A( f )
M−m

φ(m)−A(φ( f ))−Rφ ,A(m,M; f )

≤ 1
4
(M−m)2A(Ψφ ( f ;m,M))−Rφ ,A(m,M; f ) (1.35)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f )

where Ψφ and Rφ ,A are defined by (1.13) and (1.29). If φ is concave on I, then the inequal-
ity signs in (1.33), (1.34) and (1.35) are reversed.

Remark 1.7 Results presented in this section cover the classical discrete and integral
case. Namely, common examples of positive linear functionals are A( f ) =

∫
E f dμ or

A( f ) = ∑k∈E pk fk, where μ is positive measure on E in the first case, and in the other,
E = N is a countable set with the discrete measure μ(k) = pk ≥ 0, 0 < ∑k∈E pk < ∞,
f (k) = fk, defined on it.

Moreover, let X : Ω→ [m,M] be a random variable on a probability space (Ω, p) with
finite expectation E[X ]. Then, setting A = E and f = X , all the theorems yield probabilistic
versions of converses for the Jensen and Edmundson-Lah-Ribarič inequalities, provided
that E[φ(X)] < ∞.
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1.3 Applications

In this section we will apply Theorem 1.13 and Theorem 1.14 to some of the classical
inequalities and in that way obtain upper bounds for the difference of right and left sides
of those inequalities. Analogous applications can be obtained either from Theorem 1.5
and Theorem 1.6, or Theorem 1.7 and Theorem 1.8, or Theorem 1.10 and Theorem 1.11.
Mentioned results can be found in [68], [69] and [81] respectively.

1.3.1 Generalized means

Definition 1.1 Let I = 〈a,b〉, where −∞≤ a < b≤∞, and let ψ : I→ R be a continuous
and strictly monotone function. Let us assume that vector space of real functions L on a
non-empty set E has properties (L1), (L2) and (L3). Let A be a normalized positive linear
functional on L, and let ψ( f ) ∈ L for a function f ∈ L. Generalized mean of the function
f ∈ L with respect to the functional A and function ψ is

Mψ( f ,A) = ψ−1(A(ψ( f ))).

Note that if α ≤ ψ( f (t)) ≤ β for every t ∈ E , then because of the positivity of the
functional A we have α ≤ A(ψ( f )) ≤ β , so Mψ( f ,A) is well defined. Also, note that
because of the above assumptions we have f (t) ∈ I for t ∈ E . From now on we assume
that f ∈ L satisfies the above assumptions, so the obtained result are valid only for such
functions f ∈ L.

First we will state some already known results involving generalized means. Proofs of
those results can be found in [124].

Theorem 1.15 ([124]) Let I = 〈a,b〉, where −∞ ≤ a < b ≤ ∞, and let ψ ,χ : I → R be
continuous and strictly monotone functions. Assume that vector space of real functions L
defined on a non-empty set E has properties (L1) and (L2). Let A be a normalized positive
linear functional on L, and let f ∈ L be such that ψ( f ),χ( f ) ∈ L. Then we have

Mψ( f ,A) ≤Mχ( f ,A),

under the assumption that either χ is increasing and φ = χ ◦ψ−1 is convex, or χ is de-
creasing and φ = χ ◦ψ−1 is concave.

Theorem 1.16 ([124]) Let I = [m,M], and let L, A, ψ and χ satisfy assumptions from
Theorem 1.15. Then for every function f ∈ L such that m ≤ f (t) ≤M for every t ∈ E we
have

(ψ(M)−ψ(m))A(χ( f ))− (χ(M)− χ(m))A(ψ( f ))≤ ψ(M)χ(m)− χ(M)ψ(m),

under the assumption that φ = χ ◦ψ−1 is convex. Inequality is reversed if the function φ
is concave.
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The next results give us the upper bound for the difference between right and left side
in the inequalities from Theorem 1.15 and Theorem 1.16 respectively.

Theorem 1.17 Let L, A, ψ and χ satisfy assumptions from Theorem 1.16, and in addi-
tion, let L have property (L3). Let I be an interval of real numbers whose interior contains
the interval [m,M], and assume that function φ = χ ◦ψ−1 is convex on I. Then for ev-
ery function f ∈ L such that ψ( f ),χ( f ) ∈ L and such that for every t ∈ [m,M] it satisfies
bounds m≤ f (t)≤M we have

0≤ χ(Mχ( f ,A))− χ(Mψ( f ,A))
≤ (Mψ −A(ψ( f )))(A(ψ( f ))−mψ) sup

t∈〈m,M〉
Ψφ (ψ(t);mψ ,Mψ )−Rφ ,A(mψ ,Mψ ;ψ( f ))

≤ (Mψ −A(ψ( f )))(A(ψ( f ))−mψ)
φ ′−(Mψ )−φ ′+(mψ )

Mψ −mψ
−Rφ ,A(mψ ,Mψ ;ψ( f ))

≤ 1
4
(Mψ −mψ)(φ ′−(Mψ )−φ ′+(mψ))−Rφ ,A(mψ ,Mψ ;ψ( f )). (1.36)

We also have

0≤ χ(Mχ( f ,A))− χ(Mψ ( f ,A))

≤ 1
4
(Mψ −mψ)2Ψφ (A(ψ( f ));mψ ,Mψ )−Rφ ,A(mψ ,Mψ ;ψ( f ))

≤ 1
4
(Mψ −mψ)(φ ′−(Mψ)−φ ′+(mψ ))−Rφ ,A(mψ ,Mψ ;ψ( f )), (1.37)

where [mψ ,Mψ ] = ψ([m,M]) and Ψφ and Rφ ,A are defined by (1.13) and (1.29). If the
function φ is concave, inequality signs are reversed.

Proof. Since f (E) ⊆ [m,M], it follows that mψ ≤ ψ( f (t)) ≤Mψ for every t ∈ E (if ψ is
increasing, then mψ = ψ(m) and Mψ = ψ(M); if ψ is decreasing, then mψ = ψ(M) and
Mψ = ψ(m)). Therefore, the conditions as in Theorem 1.13 are fulfilled, so (1.36) and
(1.37) are obtained by putting m = mψ , M = Mψ and replacing f with ψ ◦ f in inequalities
(1.31) and (1.32) respectively. �

From Theorem 1.14, by utilizing the same substitutions as in the previous theorem, we
get the following result.

Theorem 1.18 Let the assumptions of Theorem 1.17 hold. If the function φ = χ ◦ψ−1 is
convex, then we have following sequences of inequalities:

(i)

Rφ ,A(mψ ,Mψ ;ψ( f )) ≤ A(ψ( f ))−ψ(m)
ψ(M)−ψ(m)

χ(M)+
ψ(M)−A(ψ( f ))

ψ(M)−ψ(m)
χ(m)− χ(Mχ( f ,A))

≤ A[(Mψ −ψ( f ))(ψ( f )−mψ)] sup
t∈〈m,M〉

Ψφ (ψ(t);mψ ,Mψ )

≤ A[(Mψ −ψ( f ))(ψ( f )−mψ)]
M−m

(φ ′−(Mψ)−φ ′+(mψ ))
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≤ (Mψ −A(ψ( f )))(A(ψ( f ))−mψ)
Mψ −mψ

(φ ′−(Mψ )−φ ′+(mψ ))

≤ 1
4
(Mψ −mψ)(φ ′−(Mψ )−φ ′+(mψ)) (1.38)

(ii)

Rφ ,A(mψ ,Mψ ;ψ( f )) ≤ A(ψ( f ))−ψ(m)
ψ(M)−ψ(m)

χ(M)+
ψ(M)−A(ψ( f ))

ψ(M)−ψ(m)
χ(m)− χ(Mχ( f ,A))

≤ A[(Mψ −ψ( f ))(ψ( f )−mψ)] sup
t∈〈m,M〉

Ψφ (ψ(t);mψ ,Mψ)

≤ (Mψ −A(ψ( f )))(A(ψ( f ))−mψ) sup
t∈〈m,M〉

Ψφ (ψ(t);mψ ,Mψ )

≤ (Mψ −A(ψ( f )))(A(ψ( f ))−mψ)
Mψ −mψ

(φ ′−(Mψ )−φ ′+(mψ ))

≤ 1
4
(Mψ −mψ)(φ ′−(Mψ )−φ ′+(mψ)) (1.39)

(iii)

Rφ ,A(mψ ,Mψ ;ψ( f )) ≤ A(ψ( f ))−ψ(m)
ψ(M)−ψ(m)

χ(M)+
ψ(M)−A(ψ( f ))

ψ(M)−ψ(m)
χ(m)− χ(Mχ( f ,A))

≤ 1
4
(Mψ −mψ)2A(Ψφ (ψ( f );mψ ,Mψ ))

≤ 1
4
(Mψ −mψ)(φ ′−(Mψ )−φ ′+(mψ)) (1.40)

If the function φ is concave, inequality signs are reversed.

1.3.2 Power means

Definition 1.2 Let E be a non-empty set, let L be vector space of real functions on E that
has properties (L1) and (L2), and let A be a normalized positive linear functional that has
properties (A1) and (A2) from Introduction. Power mean of the function f ∈ L with respect
to the normalized positive linear functional A is defined as

M[r]( f ,A) =
{

(A( f r))1/r : r �= 0
exp(A(log f )) : r = 0

where r ∈ R, f (t) > 0 for t ∈ E, f r ∈ L and log f ∈ L.

Since power means M[r]( f ,A) are a special case of generalized means Mψ( f ,A) for
ψ(t) = tr, from Theorem 1.15 ([57, p. 75, Theorem 92]), as a special case it follows:

Theorem 1.19 Let −∞ < r ≤ s < ∞ and let us assume that assumptions from Definition
1.2 hold. Then

M[r]( f ,A) ≤M[s]( f ,A).
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In the same manner, Goldman’s inequality for positive linear functionals (see [27, p.
203]) can be obtained as a special case of Theorem 1.16:

(Mr−mr)(M[s]( f ,A))s− (Ms−ms)(M[r]( f ,A))r ≤Mrmr−Msms

for 0 < r < s or r < 0 < s, and inequality is reversed for r < s < 0.
Similarly, for r = 0 and s ∈ R we have

log
M
m

(M[s]( f ,A))s− (Ms−ms) log(M[0]( f ,A)) ≤ ms logM−Ms logm.

The results that follow are obtained by applying Theorem 1.17 and Theorem 1.18 on
specially chosen functions ψ and χ , but they can also be proved by utilizing Theorem 1.13
and Theorem 1.14.

Corollary 1.2 Let E be a non-empty set, let L be vector space of real functions on E that
has properties (L1) and (L2), and let A be a normalized positive linear functional with
properties (A1) and (A2). Let f ∈ L and assume that 0 < m ≤ f (t) ≤ M < ∞ for t ∈ E,
f r, f s ∈ L for r,s ∈ R, r < s and log f ∈ L. Let us define function

φ(t) =

⎧⎨⎩
ts/r : r �= 0,s �= 0,
1
r logt : r �= 0,s = 0,
est : r = 0,s �= 0.

If 0 < r < s then:

0≤ (M[s]( f ,A))s− (M[r]( f ,A))s

≤ (Mr−A( f r))(A( f r)−mr) sup
t∈〈m,M〉

Ψφ (tr;mr,Mr)−Rφ ,A(mr,Mr; f r)

≤ s
r
(Mr−A( f r))(A( f r)−mr)

Ms−r−ms−r

Mr−mr −Rφ ,A(mr,Mr; f r)

≤ s
4r

(Mr−mr)(Ms−r−ms−r)−Rφ ,A(mr,Mr; f r) (1.41)

and we have

0≤ (M[s]( f ,A))s− (M[r]( f ,A))s ≤ 1
4
(Mr−mr)2Ψφ (A( f r);mr,Mr)−Rφ ,A(mr,Mr; f r)

≤ s
4r

(Mr−mr)(Ms−r−ms−r)−Rφ ,A(mr,Mr; f r). (1.42)

If r < 0 < s, inequalities (1.41) hold with Rφ ,A(Mr,mr; f r) instead of Rφ ,A(mr,Mr; f r), and
for r < s < 0 the inequality signs are reversed.
If s = 0 and r < 0, then:

0≤ log(M[0]( f ,A))− log(M[r]( f ,A))
≤ (Mr−A( f r))(A( f r)−mr) sup

t∈〈m,M〉
Ψφ (tr;Mr,mr)−Rφ ,A(Mr,mr; f r)
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≤−1
r

(Mr−A( f r))(A( f r)−mr)
Mrmr −Rφ ,A(Mr,mr; f r)

≤ 1
4r

(mr−Mr)
(

1
mr −

1
Mr

)
−Rφ ,A(Mr ,mr; f r) (1.43)

and we have

0≤ log(M[0]( f ,A))− log(M[r]( f ,A))

≤ 1
4
(mr−Mr)2Ψφ (A( f r);Mr ,mr−Rφ ,A(Mr,mr; f r)

≤ 1
4r

(mr−Mr)
(

1
mr −

1
Mr

)
−Rφ ,A(Mr ,mr; f r). (1.44)

If r = 0 and s > 0, then:

0≤ (M[s]( f ,A))s− (M[0]( f ,A))s

≤ (logM−A(log f ))(A(log f )− logm) sup
t∈〈m,M〉

Ψφ (log t; logm, logM)

−Rφ ,A(logm, logM; log f )

≤ s(logM−A(log f ))(A(log f )− logm)
Ms−ms

logM− logm
−Rφ ,A(logm, logM; log f )

≤ s(Ms−ms) log
M
m
−Rφ ,A(logm, logM; log f ) (1.45)

and we have

0≤ (M[s]( f ,A))s− (M[0]( f ,A))s

≤ 1
4
(logM− logm)2Ψφ (A(log f ); logm, logM)−Rφ ,A(logm, logM; log f )

≤ s
4
(Ms−ms) log

M
m
−Rφ ,A(logm, logM; log f ). (1.46)

Proof. When we take χ(t) = ts and ψ(t) = tr, then the function φ(t) = χ(ψ−1(t)) = ts/r

is continuous, and convex for 0 < r < s and r < 0 < s. Function ψ is strictly increasing for
r > 0, so the assumptions from Theorem 1.17 hold. Sequences of inequalities (1.41) and
(1.42) are obtained by putting mψ = ψ(m) = mr, Mψ = ψ(M) = Mr, φ(t) = χ ◦ψ−1(t) =
ts/r, ψ(t) = tr and ψ( f ) = f r in (1.36) and (1.37) respectively. Function ψ is strictly
decreasing for r < 0, so sequences of inequalities (1.41) and (1.42) are obtained by putting
Mψ = ψ(m) = mr, mψ = ψ(M) = Mr, φ(t) = χ ◦ψ−1(t) = ts/r ψ(t) = tr and ψ( f ) = f r

in (1.36) and (1.37) consecutively.
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In case when r < s < 0, the function ψ(t) = tr is strictly decreasing and φ(t) =
χ(ψ−1(t)) = ts/r is concave, so we obtain inequalities (1.41) and (1.42) with reversed signs
of inequality by putting Mψ = ψ(m)= mr, mψ = ψ(M) = Mr, φ(t) =−χ ◦ψ−1(t)=−ts/r,
ψ(t) = tr and ψ( f ) = f r in (1.36) and (1.37).

In case when r < 0 and s = 0 we take χ(t) = log t and ψ(t) = tr. Then the function

φ(t) = χ(ψ−1(t)) =
1
r

log t is continuous and convex, and ψ is strictly decreasing for r < 0,

so by putting Mψ = ψ(m) = mr, mψ = ψ(M) = Mr, φ(t) = χ ◦ψ−1(t) =
1
r

logt, ψ(t) = tr

and ψ( f ) = f r in (1.36) and (1.37), we get inequalities (1.43) and (1.44) respectively.
When r = 0 and s > 0, we take χ(t)= ts and ψ(t) = log t. Then φ(t) = χ(ψ−1(t)) = est

is continuous and convex function, and ψ is strictly increasing. Inequalities (1.45) and
(1.46) follow by putting mψ = ψ(m) = logm, Mψ = ψ(M) = logM, φ(t) = χ ◦ψ−1(t) =
est , ψ(t) = logt and ψ( f ) = log f in (1.36) and (1.37) consecutively. �

By taking the same substitutions as in the proof of the previous corollary, from Theo-
rem 1.18 we directly get our next result.

Corollary 1.3 Let E be a non-empty set, let L be vector space of real functions on E that
has properties (L1) and (L2), and let A be a normalized positive linear functional with
properties (A1) and (A2). Let f ∈ L and assume that 0 < m ≤ f (t) ≤ M < ∞ for t ∈ E,
f r, f s ∈ L for r,s ∈ R, r < s and log f ∈ L. Let φ be the function defined in the previous
corollary.
If 0 < r < s, then:

(i)

Rφ ,A(mr,Mr; f r)≤ A( f r)−mr

Mr−mr Ms +
Mr−A( f r)
Mr−mr ms− (M[s]( f ,A))s

≤ A[(Mr− f r)( f r−mr)] sup
t∈〈m,M〉

Ψφ (tr;mr,Mr)

≤ s
r
A[(Mr− f r)( f r−mr)]

Mr−mr (Ms−r−ms−r)

≤ s
r
(Mr−A( f r))(A( f r)−mr)

Mr−mr (Ms−r−ms−r)

≤ s
4r

(Mr−mr)(Ms−r−ms−r)

(ii)

A( f̃ r)δφ ≤ A( f r)−mr

Mr−mr Ms +
Mr−A( f r)
Mr−mr ms− (M[s]( f ,A))s

≤ A[(Mr− f r)( f r−mr)] sup
t∈〈m,M〉

Ψφ (tr;mr,Mr)

≤ (Mr−A( f r))(A( f r)−mr) sup
t∈〈m,M〉

Ψφ (tr;mr,Mr)

≤ s
r
(Mr−A( f r))(A( f r)−mr)

Mr−mr (Ms−r−ms−r)

≤ s
4r

(Mr−mr)(Ms−r−ms−r)
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(iii)

A( f̃ r)δφ ≤ A( f r)−mr

Mr−mr Ms +
Mr−A( f r)
Mr−mr ms− (M[s]( f ,A))s

≤ 1
4
(Mr−mr)2A(Ψφ ( f r ;mr,Mr))

≤ s
4r

(Mr−mr)(Ms−r−ms−r).

If r < 0 < s, inequalities (1.41) hold with Rφ ,A(Mr ,mr; f r) instead of Rφ ,A(mr,Mr; f r), and
if r < s < 0, then the inequality signs are reversed.
If s = 0 and r < 0, then:

(i)

Rφ ,A(Mr,mr; f r)≤ A( f r)−mr

Mr−mr logM +
Mr−A( f r)
Mr−mr logm− log(M[0]( f ,A))

≤ A[(Mr− f r)( f r−mr)] sup
t∈〈m,M〉

Ψφ (tr;Mr,mr)

≤ 1
r

A[(Mr− f r)( f r−mr)]
mr−Mr

(
1
mr −

1
Mr

)
≤ 1

r
(Mr−A( f r))(A( f r)−mr)

mr−Mr

(
1
mr −

1
Mr

)
≤ 1

4r
(mr−Mr)

(
1
mr −

1
Mr

)
(ii)

Rφ ,A(Mr,mr; f r)≤ A( f r)−mr

Mr−mr logM +
Mr−A( f r)
Mr−mr logm− log(M[0]( f ,A))

≤ A[(Mr− f r)( f r−mr)] sup
t∈〈m,M〉

Ψφ (tr;Mr,mr)

≤ (Mr−A( f r))(A( f r)−mr) sup
t∈〈m,M〉

Ψφ (tr;Mr,mr)

≤ 1
r

(Mr−A( f r))(A( f r)−mr)
mr−Mr

(
1
mr −

1
Mr

)
≤ 1

4r
(mr−Mr)

(
1
mr −

1
Mr

)
(iii)

Rφ ,A(Mr,mr; f r)≤ A( f r)−mr

Mr−mr logM +
Mr−A( f r)
Mr−mr logm− log(M[0]( f ,A))

≤ 1
4
(mr−Mr)2A(Ψφ ( f r ;Mr,mr))

≤ 1
4r

(mr−Mr)
(

1
mr −

1
Mr

)
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If r = 0 and s > 0, then:

(i)

Rφ ,A(logm, logM; log f )≤ A(log f )− logm
logM− logm

Ms +
logM−A(log f )
logM− logm

ms− (M[s]( f ,A))s

≤ A[(logM− log f )(log f − logm)] sup
t∈〈m,M〉

Ψφ (log t; logm, logM)

≤ s
A[(logM− log f )(log f − logm)]

logM− logm
(Ms−ms)

≤ s
(logM−A(log f ))(A(log f )− logm)

logM− logm
(Ms−ms)

≤ s
4
(Ms−ms) log

M
m

(ii)

Rφ ,A(logm, logM; log f )≤ A(log f )− logm
logM− logm

Ms +
logM−A(log f )
logM− logm

ms− (M[s]( f ,A))s

≤ A[(logM− log f )(log f − logm)] sup
t∈〈m,M〉

Ψφ (log t; logm, logM)

≤ (logM−A(log f ))(A(log f )− logm) sup
t∈〈m,M〉

Ψφ (logt; logm, logM)

≤ s
(logM−A(log f ))(A(log f )− logm)

logM− logm
(Ms−ms)

≤ s
4
(Ms−ms) log

M
m

(iii)

Rφ ,A(logm, logM; log f )≤ A(log f )− logm
logM− logm

Ms +
logM−A(log f )
logM− logm

ms− (M[s]( f ,A))s

≤ 1
4
(logM− logm)2A(Ψφ (log f ; logm, logM))

≤ s
4r

(logM− logm)(Ms−ms).

Remark 1.8 It is easy to check that M[r]( f ,A) = (M[−r]( f−1,A))−1 holds for every func-
tion f ∈ L and every r ∈ R. Utilizing this relation, we can get sequences of inequal-
ities analogous to those from Corollary 1.2 and Corollary 1.3 by making substitutions
f ←→ f−1, −r←→ s and −s←→ r.
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1.3.3 Hölder’s inequality

Theorem 1.20 [124] (Hölder’s inequality for positive linear functionals) Let E be a non-
empty set, let L be vector space of real functions on E that has properties (L1) and (L2),
and let A be a positive linear functional with properties (A1) and (A2). Let p > 1 and
q = p/(p−1). If w, f ,g ≥ 0 on E, and w f p,wgq,w fg ∈ L, then we have

A(w fg)≤ A1/p(wf p)A1/q(wgq)

In case when 0 < p < 1 and A(wgq) > 0 (or p < 0 and A(wf p) > 0) inequality is reversed.

Theorem 1.21 [124] Let E be a non-empty set, let L be vector space of real functions
on E that has properties (L1) and (L2), and let A be a positive linear functional on L. Let
p > 1 and q = p/(p−1). If the functions w, f ,g≥ 0 on E are such that w f p,wgq,w fg ∈ L
and 0 < m≤ f (t)g−q/p(t)≤M for t ∈ E, then we have

(M−m)A(wf p)+ (mMp−Mmp)A(wgq)≤ (Mp−mp)A(w fg).

If p < 0, then the upper inequality is also valid with the assumption that A(wf p) > 0
or A(wgq) > 0. If 0 < p < 1, then reversed inequality holds under the assumption that
A(wf p) > 0 or A(wgq) > 0.

Results that follow are converses of inequalities from Theorem 1.20 and Theorem 1.21
respectively, that is, they give an estimate of the difference between the right and left sides
of the mentioned inequalities.

Theorem 1.22 Let E be a non-empty set, let L be a vector space of real functions on E
that has properties (L1), (L2) and (L3), and let A be a positive linear functional on L. Let
p > 1 and q = p/(p−1). If the functions w, f ,g≥ 0 on E are such that w f p,wgq,w fg ∈ L
and 0 < m≤ f (t)g−q/p(t)≤M for t ∈ E, then we have

0≤ A(wf p)Ap/q(wgq)−Ap(w fg)

≤ (MA(wgq)−A(w fg))(A(w fg)−mA(wgq)) sup
t∈〈m,M〉

Ψφ (t;m,M)Ap−2(wgq)

− R̃φ ,A(m,M; f g−
p
q )Ap−1(wgq)

≤ (MA(wgq)−A(w fg))(A(w fg)−mA(wgq))p
Mp−1−mp−1

M−m
Ap−2(wgq)

− R̃φ ,A(m,M; f g−
p
q )Ap−1(wgq)

≤ p
4
(M−m)(Mp−1−mp−1)Ap(wgq)− R̃φ ,A(m,M; f g−

p
q )Ap−1(wgq). (1.47)
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We also have

0≤ A(wf p)Ap/q(wgq)−Ap(w fg)

≤ 1
4
(M−m)2Ψφ (

A(w fg)
A(wgq)

;m,M)Ap(wgq)− R̃φ ,A(m,M; f g−
p
q )Ap−1(wgq)

≤ p
4
(M−m)(Mp−1−mp−1)Ap(wgq)− R̃φ ,A(m,M; f g−

p
q )Ap−1(wgq), (1.48)

where φ(t) = t p, Ψφ is defined by (1.13), and

R̃φ ,A(m,M; f g−
p
q ) =

N−1

∑
n=0

2n

∑
k=1

Δφ (m,M,n,k)A
(
wgqrnχ( k−1

2n , k
2n )

( f g−
q
p −m

M−m

))
,

where Δφ (m,M,n,k) is defined in Theorem 1.12. If A(w fg) > 0, then the inequalities also
hold for p < 0, while for 0 < p < 1 the inequalities are reversed.

Proof. Function φ(t) = t p is continuous, convex for p > 1 and p < 0, concave for 0 <

p < 1. Let us define a linear functional B( f ) =
A(wf )
A(w)

for a function w ∈ L such that

w≥ 0 and A(w) > 0. Then it holds B(111) =
A(w)
A(w)

= 1, so we see that B satisfies conditions

from Theorem 1.13. Now inequalities (1.47) and (1.48) follow from (1.31) and (1.32)
respectively after replacing functional A with functional B, and after putting wgq instead of
w, and f g−q/p instead of f . �

Using the same substitutions, from the Theorem 1.14 we get the following result.

Theorem 1.23 Let E be a non-empty set, let L be a vector space of real functions on E
that has properties (L1), (L2) and (L3), and let A be a positive linear functional on L. Let
p > 1 and q = p/(p−1). If the functions w, f ,g≥ 0 on E are such that w f p,wgq,w fg ∈ L
and 0 < m≤ f (t)g−q/p(t)≤M for t ∈ E, then we have

(i)

R̃φ ,A(m,M; f g−
p
q )Ap−1(wgq)

≤ A(w fg)−mA(wgq)
M−m

Mp +
MA(wgq)−A(w fg)

M−m
mp−A(wf p)

≤ A(wgq[(M− f g−q/p)( f g−q/p−m)]) sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ p
A(wgq[(M− f g−q/p)( f g−q/p−m)])

M−m
(Mp−1−mp−1)

≤ p
(MA(wgq)−A(w fg))(A(w fg)−mA(wgq))

(M−m)A(wgq)
(Mp−1−mp−1)

≤ p
4
(M−m)(Mp−1−mp−1)A(wgq)
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(ii)

R̃φ ,A(m,M; f g−
p
q )Ap−1(wgq)

≤ A(w fg)−mA(wgq)
M−m

Mp +
MA(wgq)−A(w fg)

M−m
mp−A(wf p)

≤ A(wgq[(M− f g−q/p)( f g−q/p−m)]) sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ (MA(wgq)−A(w fg))(A(w fg)−mA(wgq))
A(wgq)

sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ p
(MA(wgq)−A(w fg))(A(w fg)−mA(wgq))

(M−m)A(wgq)
(Mp−1−mp−1)

≤ p
4
(M−m)(Mp−1−mp−1)A(wgq)

(iii)

R̃φ ,A(m,M; f g−
p
q )Ap−1(wgq)

≤ A(w fg)−mA(wgq)
M−m

Mp +
MA(wgq)−A(w fg)

M−m
mp−A(wf p)

≤ 1
4
(M−m)2A(wgqΨφ ( f g−q/p;m,M))

≤ p
4
(M−m)(Mp−1−mp−1)A(wgq)

where φ(t) = t p, Ψφ is defined by (1.13) and R̃φ ,A is defined in the previous theorem. If
A(w fg) > 0, then the upper inequalities also hold for p < 0. In case when 0 < p < 1,
inequality signs are reversed.

1.3.4 Hermite-Hadamard’s inequality

Hermite-Hadamard’s inequality gives us an estimate of the (integral) mean value of a con-
tinuous convex function. It was first proved by Hermite [58] in 1883, and was rediscovered
by Hadamard [54] ten years later. However, the note [58] has not been recorded anywhere,
and it was only recently discovered that Hermite was the first one who proved it (for more
historical details see [113]).

Theorem 1.24 ([54]) (Hermite-Hadamard’s inequality) Let −∞ < a < b < ∞ and
f : [a,b]→ R. If the function f is convex, then

f
(a+b

2

)
≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
. (1.49)

If the function f is concave, inequality signs in (1.49) are reversed.
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The first inequality in the sequence (1.49) is sharper than the second one, that is, so-
called Bullen’s inequality holds for a convex function (for proof see [26] or [124]):

1
b−a

∫ b

a
f (t)dt− f

(a+b
2

)
≤ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (t)dt. (1.50)

By applying Theorem 1.13 and Theorem 1.14 to Hermite-Hadamard’s inequality (1.49)
we get an estimate of the difference between left and right side and the value of 1

b−a

∫ b
a f (t)dt

respectively.

Theorem 1.25 Let a < b and let f be a convex function on the interval of real numbers I
whose interior contains interval [a,b]. Then

0≤ 1
b−a

∫ b

a
f (t)dt− f

(a+b
2

)
≤ 1

4
(b−a)2 sup

t∈〈a,b〉
Ψ f (t;a,b)−Rf (a,b)

≤ 1
4
(b−a)( f ′−(b)− f ′+(a))−Rf (a,b). (1.51)

We also have

0≤ 1
b−a

∫ b

a
f (t)dt− f

(a+b
2

)
≤ 1

4
(b−a)2Ψ f

(a+b
2

;a,b
)
−Rf (a,b)

≤ 1
4
(b−a)( f ′−(b)− f ′+(a))−Rf (a,b), (1.52)

where

R f (a,b) =
N−1

∑
n=0

2−n−2
2n

∑
k=1

Δ f (a,b,n,k) (1.53)

and Δ f (a,b,n,k) is defined in Theorem 1.12. If the function f is concave, inequality signs
are reversed.

Proof. Inequalities (1.51) and (1.52) are obtained from (1.31) and (1.32) respectively after

putting A( f ) =
1

b−a

∫ b
a f (t)dt, f (t) = t and then replacing φ with f . �

In the same manner, from Theorem 1.14 it follows:

Theorem 1.26 Let a < b and let f be a convex function on the interval of real numbers I
whose interior contains interval [a,b]. Then

Rf (a,b)≤ f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt ≤ 1

6
(b−a)2 sup

t∈〈a,b〉
Ψ f (t;a,b)

≤ 1
6
(b−a)( f ′−(b)− f ′+(a)). (1.54)

where R f (a,b) is defined in (1.53). If the function f is concave, inequality signs are re-
versed.



1.3 APPLICATIONS 31

Remark 1.9 For N = 1, when we take into account that

Rf (a,b) = 2−2Δ f (a,b,0,1) =
1
4

(
f (a)+ f (b)−2 f

(a+b
2

))
,

we see that the first inequality from (1.54) is exactly Bullen’s inequality (1.50).

Remark 1.10 Let a < b and let f be a convex function on an interval of real numbers I
whose interior contains the interval [a,b]. By combining the upper results we get

f (a)+ f (b)
2

− 1
6
(b−a)( f ′−(b)− f ′+(a))≤ 1

b−a

∫ b

a
f (t)dt

≤ f
(a+b

2

)
+

1
4
(b−a)( f ′−(b)− f ′+(a))−Rf (a,b). (1.55)

where Rf (a,b) is defined in (1.53). If the function f is concave, then inequality signs in
(1.55) are reversed.

Remark 1.11 Similarly as in the proof of Bullen’s inequality, if we apply the first in-
equality from (1.55) to the function f over the intervals [a,(a + b)/2] and [(a + b)/2,b]
respectively, we get

1
2

[
f (a)+ f

(a+b
2

)]
− 1

12
(b−a)

[
f ′−
(a+b

2

)
− f ′+(a)

]
≤ 2

b−a

∫ (a+b)/2

a
f (t)dt

and

1
2

[
f
(a+b

2

)
+ f (b)

]
− 1

12
(b−a)

[
f ′−(b)− f ′+

(a+b
2

)]
≤ 2

b−a

∫ b

(a+b)/2
f (t)dt.

By summing these inequalities, we get a converse of Bullen’s inequality:

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt

≤ 1
b−a

∫ b

a
f (t)− f

(a+b
2

)
+

1
12

(b−a)
[
f ′−(b)− f ′+

(a+b
2

)
+ f ′−

(a+b
2

)
− f ′+(a)

]
,

and if the function f is additionally differentiable in the mid-point (a+b)/2 of the interval
[a,b], then the upper relation becomes:

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt ≤ 1

b−a

∫ b

a
f (t)− f

(a+b
2

)
+

1
12

(b−a)( f ′−(b)− f ′+(a)).

Following generalization of the Hermite-Hadamard inequality for positive linear func-
tionals is given in [121] (see also [124]).

Theorem 1.27 ([121]) Let φ be a continuous convex function on an interval I ⊃ [m,M],
where −∞ < m < M < ∞. Suppose that f : E→R satisfies m≤ f (t)≤M for every t ∈ E,
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f ∈ L and φ( f ) ∈ L. Let A : L→ R be a normalized positive linear functional, and let
p = p f , q = q f be nonnegative real numbers (with p+q > 0) for which

A( f ) =
pm+qM

p+q
. (1.56)

Then

φ
( pm+qM

p+q

)
≤ A(φ( f )) ≤ pφ(m)+qφ(M)

p+q
. (1.57)

Applying Theorem 1.13 to the previous theorem, we obtain a converse of the first
inequality from (1.57).

Theorem 1.28 Let φ be a continuous convex function on an open interval of real num-
bers I ⊃ [m,M], where−∞ < m < M < ∞. Suppose that f : E→ R satisfies m≤ f (t)≤M
for every t ∈ E, f ∈ L and φ( f ) ∈ L. Let A : L→ R be a normalized positive linear func-
tional, and let p = p f , q = q f be nonnegative real numbers (with p + q > 0) for which
(1.56) holds. Then

0≤ A(φ( f ))−φ
( pm+qM

p+q

)
≤ pq

(p+q)2 (M−m) sup
t∈〈m,M〉

Ψφ (t;m,M)−Rφ ,A(m,M; f )

≤ pq
(p+q)2 (M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f ) (1.58)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f )

and

0≤ A(φ( f ))−φ
( pm+qM

p+q

)
≤ 1

4
(M−m)2Ψφ

(
pm+qM

p+q
;m,M

)
−Rφ ,A(m,M; f )

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f ), (1.59)

where Ψφ and Rφ ,A are defined by (1.13) and (1.29) respectively. If φ is concave, the
inequalities in (1.58) and (1.59) are reversed.

Proof. First observe that φ( f ) ∈L implies A( f ) ∈ [m,M], hence there exists a unique
nonnegative real number λ ∈ [0,1] such that A( f ) = λm+(1−λ )M. If p,q are nonnegative
real numbers satisfying (1.56), then obviously

p
p+q

= λ ,
q

p+q
= 1−λ .

Inequalities (1.58) and (1.59) are now obtained from (1.31) and (1.32) by replacing A( f )

with
pm+qM

p+q
. �
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Further, applying Theorem 1.14 to Theorem 1.27, we obtain converses of the second
inequality from (1.57).

Theorem 1.29 Let φ be a continuous convex function on an open interval of real num-
bers I ⊃ [m,M], where −∞ < m < M < ∞. Suppose that f : E→ R satisfies m≤ f (t)≤M
for every t ∈ E, f ∈ L and φ( f ) ∈ L. Let A : L→ R be a positive linear functional with
A(1) = 1, and let p = p f , q = q f be nonnegative real numbers (with p+q > 0) for which
(1.56) holds. Then

0≤ pφ(m)+qφ(M)
p+q

−A(φ( f ))−Rφ ,A(m,M; f )

≤ A[(M− f )( f −m)] sup
t∈(m,M)

Ψφ (t;m,M)−Rφ ,A(m,M; f )

≤ φ ′−(M)−φ ′+(m)
M−m

A([M− f ][ f −m])−Rφ ,A(m,M; f )

≤ pq
(p+q)2 (M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f ) (1.60)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f ).

0≤ pφ(m)+qφ(M)
p+q

−A(φ( f ))−Rφ ,A(m,M; f )

≤ A[(M− f )( f −m)] sup
t∈〈m,M〉

Ψφ (t;m,M)−Rφ ,A(m,M; f )

≤ pq
(M−m)2

(p+q)2 sup
t∈〈m,M〉

Ψφ (t;m,M)−Rφ ,A(m,M; f )

≤ pq
(p+q)2 (M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f )

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f ) (1.61)

and

0≤ pφ(m)+qφ(M)
p+q

−A(φ( f ))−Rφ ,A(m,M; f )

≤ 1
4
(M−m)2A(Ψφ ( f ;m,M))−Rφ ,A(m,M; f ) (1.62)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−Rφ ,A(m,M; f )

where Ψφ and Rφ ,A are defined by (1.13) and (1.29) respectively. If φ is concave, the
inequalities are reversed.

Proof. Like in the proof of the previous theorem, there exist unique nonnegative real
numbers p,q satisfying (1.56). Since

M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M) =
p

p+q
φ(m)+

q
p+q

φ(M)
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we obtain inequalities (1.60), (1.61) and (1.62) from (1.33), (1.34) and (1.35) respectively

by replacing A( f ) with
pm+qM

p+q
. �

The following result arises from combining previous two theorems. It was also proved
in [122] by applying Theorem 1.12 to generalized Hermite-Hamadard’s inequality.

Remark 1.12 Under the same assumptions as in last two theorems, we have

φ
( pm+qM

p+q

)
≤ A(φ( f )) ≤ pφ(m)+qφ(M)

p+q
−Rφ ,A(m,M; f ).

1.3.5 Inequalities of Giaccardi and Petrović

We start this subsection with the inequality of Giaccardi.

Theorem 1.30 ([130]) Let p be an n−tuple of nonnegative real numbers and x be an
n−tuple of real numbers such that

(xi− x0)
( n

∑
j=1

p jx j− xi

)
≥ 0, i = 1, ...,n;

n

∑
k=1

pkxk �= x0; x0,
n

∑
i=1

pixi ∈ [a,b]. (1.63)

If f : [a,b]→ R is a convex function, then

n

∑
i=1

pi f (xi)≤ A f
( n

∑
i=1

pixi

)
+B
( n

∑
i=1

pi−1
)

f (x0)

where

A = ∑n
i=1 pi(xi− x0)

∑n
i=1 pixi− x0

, B = ∑n
i=1 pixi

∑n
i=1 pixi− x0

. (1.64)

Next result is a converse of the Giaccardi inequality, and it follows from Theorem 1.14:

Theorem 1.31 Let p be an n−tuple of nonnegative real numbers and let x be an n−tuple
of real numbers such that (1.63) holds. Let I be an interval of real numbers such that its
interior contains [a,b]. If f : I→ R is a convex function, then we have

(i)

R f (m,M;x)≤ A f
( n

∑
i=1

pixi

)
+B
( n

∑
i=1

pi−1
)

f (x0)−
n

∑
i=1

pi f (xi)

≤
n

∑
j=1

p j

( n

∑
i=1

pixi− x j

)
(x j− x0) sup

t∈〈m,M〉
Ψ f

(
t;x0,

n

∑
i=1

pixi

)
≤ ∑n

j=1 p j(∑n
i=1 pixi− x j)(x j− x0)

M−m
( f ′−(M)− f ′+(m))

≤
(
M− ∑n

i=1 pixi

∑n
i=1 pi

)(∑n
i=1 pixi

∑n
i=1 pi

−m
) f ′−(M)− f ′+(m)

M−m

n

∑
i=1

pi

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))

n

∑
i=1

pi
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(ii)

R f (m,M;x)≤ A f
( n

∑
i=1

pixi

)
+B
( n

∑
i=1

pi−1
)

f (x0)−
n

∑
i=1

pi f (xi)

≤
n

∑
j=1

p j

( n

∑
i=1

pixi− x j

)
(x j− x0) sup

t∈〈m,M〉
Ψ f

(
t;x0,

n

∑
i=1

pixi

)
≤
(
M− ∑n

i=1 pixi

∑n
i=1 pi

)(∑n
i=1 pixi

∑n
i=1 pi

−m
)

sup
t∈〈m,M〉

Ψ f

(
t;x0,

n

∑
i=1

pixi

) n

∑
i=1

pi

≤
(
M− ∑n

i=1 pixi

∑n
i=1 pi

)(∑n
i=1 pixi

∑n
i=1 pi

−m
) f ′−(M)− f ′+(m)

M−m

n

∑
i=1

pi

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))

n

∑
i=1

pi

(iii)

R f (m,M;x) ≤ A f
( n

∑
i=1

pixi

)
+B
( n

∑
i=1

pi−1
)

f (x0)−
n

∑
i=1

pi f (xi)

≤ 1
4
(M−m)2

n

∑
i=1

piΨ f

(
xi;x0,

n

∑
i=1

pixi

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))

n

∑
i=1

pi

where m = min{x0,∑n
i=1 pixi}, M = max{x0,∑n

i=1 pixi},

R f (m,M;x) =
r

∑
i=1

N−1

∑
n=0

2n

∑
k=1

piΔ f (m,M,n,k)rnχ( k−1
2n , k

2n )

( xi−m
M−m

)
,

Δ f (m,M,n,k) is defined in Theorem 1.12 and A, B are defined in (1.64). If the function f
is concave, inequality signs are reversed.

Proof. Let f be a convex function. The inequalities from above are obtained directly from

Theorem 1.14 for A(x) = ∑n
i=1 pixi

∑n
i=1 pi

and φ = f . �

The well-known Petrović inequality [125] for a convex function f : [0,a]→ R is

n

∑
i=1

f (xi)≤ f
( n

∑
i=1

xi

)
+(n−1) f (0)

where xi, i = 1, ...,n are nonnegative real numbers such that x1, ...,xn,∑n
i=1 xi ∈ [0,a].

The next result is a special case of Theorem 1.31 for p1 = ... = pn = 1 and x0 = 0.
Likewise, it can be obtained by applying Theorem 1.14 to the Petrović inequality.
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Theorem 1.32 Let f be a convex function on an interval od real numbers I whose interior
contains [0,a]. If x1, ...,xn ∈ [0,a] are real numbers such that ∑n

i=1 xi ∈ 〈0,a], then we have

(i)

R f (x)≤ f
( n

∑
i=1

xi

)
+(n−1) f (0)−

n

∑
i=1

f (xi)

≤
n

∑
j=1

x j

( n

∑
i=1

xi− x j

)
sup

t∈〈0,∑n
i=1 xi〉

Ψ f

(
t;0,

n

∑
i=1

xi

)
≤ ∑n

j=1 x j(∑n
i=1 xi− x j)

∑n
i=1 xi

(
f ′−
( n

∑
i=1

xi

)
− f ′+(0)

)
≤ n−1

n

( n

∑
i=1

xi

)(
f ′−
( n

∑
i=1

xi

)
− f ′+(0)

)
≤ n

4

( n

∑
i=1

xi

)(
f ′−
( n

∑
i=1

xi

)
− f ′+(0)

)
(ii)

R f (x)≤ f
( n

∑
i=1

xi

)
+(n−1) f (0)−

n

∑
i=1

f (xi)

≤
n

∑
j=1

x j

( n

∑
i=1

xi− x j

)
sup

t∈〈0,∑n
i=1 xi〉

Ψ f

(
t;0,

n

∑
i=1

xi

)
≤ n−1

n

( n

∑
i=1

xi

)2
sup

t∈〈0,∑n
i=1 xi〉

Ψ f

(
t;0,

n

∑
i=1

xi

)
≤ n−1

n

( n

∑
i=1

xi

)(
f ′−
( n

∑
i=1

xi

)
− f ′+(0)

)
≤ n

4

( n

∑
i=1

xi

)(
f ′−
( n

∑
i=1

xi

)
− f ′+(0)

)
(iii)

R f (x)≤ f
( n

∑
i=1

xi

)
+(n−1) f (0)−

n

∑
i=1

f (xi)

≤ 1
4

( n

∑
i=1

xi

)2 n

∑
i=1

Ψ f

(
xi;0,

n

∑
i=1

xi

)
≤ n

4

( n

∑
i=1

xi

)(
f ′−
( n

∑
i=1

xi

)
− f ′+(0)

)
where

R f (x) =
r

∑
i=1

N−1

∑
n=0

2n

∑
k=1

Δ f (0,
r

∑
i=1

xi,n,k)rnχ( k−1
2n , k

2n )

( xi

∑r
i=1 xi

)
,

and Δ f (0,∑r
i=1 xi,n,k) is defined in Theorem 1.12. If the function f is concave, inequality

signs are reversed.



Chapter2
Inequalities of the Jensen and
Edmundson-Lah-Ribarič type
without convexity in the
classical sense

In this chapter first we will derive classes of inequalities of the Jensen and Edmundson-
Lah-Ribarič type which are valid for functions with bounded second order divided differ-
ences and for Lipschitzian functions. This is a significant improvement compared to the
results from the previous chapter because the results from this chapter hold for a much
wider class of functions than the class of convex functions. Next, we will derive differ-
ent classes of inequalities of the Jensen and Edmundson-Lah-Ribarič type that hold for
3-convex functions. Finally, we will derive several representations of the left side in the
Edmundson-Lah-Ribarič inequality by using Hermite’s interpolating polynomial written in
terms of divided differences. Those representations are then utilized for obtaining differ-
ent Edmundson-Lah-Ribarič type inequalities for positive linear functionals and n-convex
functions. General results are applied to generalized means. Also, examples with power
means are given.
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2.1 Introduction

Let E be a nonempty set and let L be a vector space of real-valued functions f : E → R

having the properties:

(L1) f ,g ∈ L⇒ (a f +bg) ∈ L for all a,b ∈R;

(L2) 111 ∈ L, i.e., if f (t) = 1 for every t ∈ E , then f ∈ L.

We also consider positive linear functionals A : L→ R. That is, we assume that:

(A1) A(a f +bg) = aA( f )+bA(g) for f ,g ∈ L and a,b ∈ R;

(A2) f ∈ L, f (t)≥ 0 for every t ∈ E ⇒ A( f )≥ 0 (A is positive).

We say that a functional A is normalized if A(111) = 1.
Throughout this chapter, if a function is defined on an interval [m,M], we assume that

the bounds of that interval are finite.
Unlike the results from the previous chapter, which require convexity of the involved

functions, the main objective of this chapter is to derive a class of inequalities of the Jensen
and Edmundson-Lah-Ribarič type that hold for n-convex functions.

Definition of the n-convex function is characterized by nth-order divided difference.
The nth-order divided difference of a function f : [a,b]→ R at mutually distinct points
t0,t1, ...,tn ∈ [a,b] is defined recursively by

[ti] f = f (ti), i = 0, ...,n,

[t0, ...,tn] f =
[t1, ...,tn] f − [t0, ...,tn−1] f

tn− t0
.

The value [t0, ...,tn] f is independent of the order of the points t0, ...,tn. Definition of divided
differences can be extended to include the cases in which some or all the points coincide
(see e.g. [2], [124]):

f [a, ...,a︸ ︷︷ ︸
n times

] =
1

(n−1)!
f (n−1)(a), n ∈ N.

Regarding third order divided differences, in the case in which some or all the points
coincide they are defined in the following way.

• If the function f is differentiable on [a,b] and t,t0,t1 ∈ [a,b] are mutually different
points, then

[t,t,t0,t1] f =
f ′(t)

(t− t0)(t− t1)
+

f (t)(t0 + t1−2t)
(t− t0)2(t− t1)2

+
f (t0)

(t0− t)2(t0− t1)
+

f (t1)
(t1− t)2(t1− t0)

. (2.1)
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• If the function f is differentiable on [a,b] and t,t0 ∈ [a,b] are mutually different
points, then

[t,t,t0,t0] f =
1

(t0− t)3

[
(t0− t)( f ′(t0)+ f ′(t))+2( f (t)− f (t0))

]
. (2.2)

• If the function f is twice differentiable on [a,b] and t,t0 ∈ [a,b] are mutually different
points, then

[t,t,t,t0] f =
1

(t0− t)3

[
f (t0)−

2

∑
k=0

f (k)(t)
k!

(t0− t)k

]
. (2.3)

• If the function f is three times differentiable on [a,b] and t ∈ [a,b], then

[t,t,t,t] f =
f ′′′(t)
3!

. (2.4)

A function f : [a,b]→R is said to be n-convex (n≥ 0) if and only if for all choices of
(n+1) distinct points t0,t1, ...,tn ∈ [a,b], we have [t0, ...,tn] f ≥ 0.

We can extend the definition of 3-convex functions by including the cases in which
some or all of the points coincide. This is given in the following theorem which can be
easily proven by using the mean value theorem for divided differences (see e.g. [64]).

Theorem 2.1 Let a function f be defined on an interval I ⊆ R. The following equiva-
lences hold.

(i) If f ∈ C (I), then f is 3-convex if and only if [t,t,t0,t1] f ≥ 0 for all mutually different
points t,t0,t1 ∈ I.

(ii) If f ∈ C (I), then f is 3-convex if and only if [t,t,t0,t0] f ≥ 0 for all mutually different
points t,t0 ∈ I.

(iii) If f ∈ C 2(I), then f is 3-convex if and only if [t,t,t,t0] f ≥ 0 for all mutually different
points t,t0 ∈ I.

(iv) If f ∈ C 3(I), then f is 3-convex if and only if [t,t,t,t] f ≥ 0 for every t ∈ I.
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2.2 Inequalities for functions with bounded second
order divided differences

In this section we derive a class of inequalities of the Jensen and Edmundson-Lah-Ribarič
type which are valid for functions with bounded second order divided differences. This is a
significant improvement compared to the results from the previous chapter, because these
hold for a much wider class of functions than the class of convex functions.

Throughout this section, whenever mentioning the interval [m,M], we assume that
−∞ < m < M < ∞ holds.

Theorem 2.2 ([105]) Let φ be a function on an interval of real numbers [m,M] such that
there exist γ,Γ ∈ R such that γ ≤ [m,t,M]φ ≤ Γ holds for every t ∈ [m,M], that is, such
that its second order divided difference in m,t and M is bounded for every t ∈ [m,M]. Let L
satisfy conditions (L1) and (L2) on E and let A be any positive linear functional on L with
A(111) = 1. Then

γA [(M111− f )( f −m111)]≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))

≤ ΓA [(M111− f )( f −m111)] (2.5)

holds for any f ∈ L such that φ ◦ f ∈ L.

Proof. We start with a scalar identity for t ∈ [m,M]:

M− t
M−m

φ(m)+
t−m
M−m

φ(M)−φ(t) =
M− t
M−m

(φ(m)−φ(t))+
t−m
M−m

(φ(M)−φ(t))

=
(M− t)(t−m)

M−m

(
φ(M)−φ(t)

M− t
− φ(t)−φ(m)

t−m

)
=(M− t)(t−m)[m,t,M]φ .

It follows that

M− t
M−m

φ(m)+
t−m
M−m

φ(M)−φ(t) = (M− t)(t−m)[m,t,M]φ

holds for every t ∈ [m,M]. Since the second order divided difference of the function φ in
m,t and M is bounded, from the previous relation we have

(M− t)(t−m)γ ≤ M− t
M−m

φ(m)+
t−m
M−m

φ(M)−φ(t)

≤ (M− t)(t−m)Γ (2.6)

for any t ∈ [m,M]. The function φ ◦ f belongs to L, which means that the function f
satisfies the bounds

m≤ f (t)≤M,
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so we can replace t with f (t) in (2.6) and obtain:

(M− f (t))( f (t)−m)γ ≤ M− f (t)
M−m

φ(m)+
f (t)−m
M−m

φ(M)−φ( f (t))

≤ (M− f (t))( f (t)−m)Γ

Functional A is linear and positive, and such that A(111) = 1, so when we apply it to the
previous inequalities we get the following:

γA [(M111− f )( f −m111)]≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))

≤ ΓA [(M111− f )( f −m111)] ,

and the proof is complete. �

Corollary 2.1 ([105]) Let us suppose that the assumptions from Theorem 2.2 hold. If in
addition we have−∞ < γ < 0 < Γ < ∞, then the following inequalities

γ
4
(M−m)2 ≤ γ(M−A( f ))(A( f )−m)≤ γA [(M111− f )( f −m111)]

≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f )) (2.7)

≤ ΓA [(M111− f )( f −m111)]
≤ Γ(M−A( f ))(A( f )−m)

≤ Γ
4

(M−m)2

hold for any f ∈ L such that φ ◦ f ∈ L.

Proof. The function t �→ −t2 +(m+M)t−mM is concave, so from Jensen’s inequality
(1.1) we have

A [(M111− f )( f −m111)]≤ (M−A( f ))(A( f )−m). (2.8)

Since Γ is positive, when we multiply (2.8) by Γ/(M−m) we get

ΓA [(M111− f )( f −m111)]≤ Γ(M−A( f ))(A( f )−m), (2.9)

and since γ is negative, when we multiply (2.8) by γ/(M−m) we get

γA [(M111− f )( f −m111)]≥ γ(M−A( f ))(A( f )−m). (2.10)

Inequalities (2.7) now follow from Theorem 2.2, relations (2.9) and (2.10) and relation

(M− t)(t−m)≤ 1
4
(M−m)2 for any t ∈ [m,M].

�
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Corollary 2.2 ([105]) Let us suppose that the assumptions from Theorem 2.2 hold. If in
addition we have γ =−Γ, then the following inequalities∣∣∣∣M−A( f )

M−m
φ(m)+

A( f )−m
M−m

φ(M)−A(φ( f ))
∣∣∣∣

≤ ΓA [(M111− f )( f −m111)] (2.11)

≤ Γ(M−A( f ))(A( f )−m)≤ Γ
4

(M−m)2

hold for any f ∈ L such that φ ◦ f ∈ L.

Proof. Inequalities (2.11) follow directly from the definition of the absolute value and
Corollary 2.1. �

Remark 2.1 There are two more cases that need to be considered.

• If 0≤ γ < Γ < ∞, then the function φ is convex, so from the Edmundson-Lah-Ribarič
inequality (1.2) and (2.9) it follows that

0≤ γA [(M111− f )( f −m111)]

≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))

≤ ΓA [(M111− f )( f −m111)] (2.12)

≤ Γ(M−A( f ))(A( f )−m)≤ Γ
4

(M−m)2

holds for any f ∈ L such that φ ◦ f ∈ L.

• If−∞ < γ < Γ≤ 0, then the function φ is concave, so from the Edmundson-Lah-Ri-
barič inequality (1.2) and (2.10) it follows that

γ
4
(M−m)2 ≤ γ(M−A( f ))(A( f )−m)

≤ γA [(M111− f )( f −m111)] (2.13)

≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))

≤ ΓA [(M111− f )( f −m111)]≤ 0

holds for any f ∈ L such that φ ◦ f ∈ L.

Theorem 2.2 can be utilized for obtaining Jensen-type inequalities for functions with
bounded second order divided differences.

Theorem 2.3 ([105]) Let φ be a function on an interval of real numbers [m,M] such that
there exist γ,Γ ∈ R such that γ ≤ [m,t,M]φ ≤ Γ holds for every t ∈ [m,M], that is, such
that its second order divided difference in m,t and M is bounded for every t ∈ [m,M]. Let L
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satisfy conditions (L1) and (L2) on E and let A be any positive linear functional on L with
A(111) = 1. Then

γ(M−A( f ))(A( f )−m)−ΓA [(M111− f )( f −m111)] (2.14)

≤ A(φ( f ))−φ(A( f ))≤ Γ(M−A( f ))(A( f )−m)− γA [(M111− f )( f −m111)]

holds for any f ∈ L such that φ ◦ f ∈ L.

Proof. Function φ ◦ f belongs to L, which means that the function f satisfies the bounds
m≤ f (t)≤M. It follows that m≤ A( f )≤M, so we can replace t with A( f ) in the relation
(2.6) and obtain

γ(M−A( f ))(A( f )−m)≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−φ(A( f ))

≤ Γ(M−A( f ))(A( f )−m). (2.15)

When we multiply the relation (2.5) from Theorem 2.2 by −1 we get

−ΓA [(M111− f )( f −m111)]≤−M−A( f )
M−m

φ(m)− A( f )−m
M−m

φ(M)+A(φ( f ))

≤−γA [(M111− f )( f −m111)] . (2.16)

Inequalities (2.14) follow by adding (2.15) to (2.16). �

In an analogous way as in Corollary 2.1 and Corollary 2.2, depending on the positivity
and negativity of the bounds γ and Γ, inequalities (2.14) can be extended in the following
way.

Corollary 2.3 ([105]) Let us suppose that the assumptions from Theorem 2.3 hold. If in
addition we have−∞ < γ < 0 < Γ < ∞, then the following inequalities

γ−Γ
4

(M−m)2 ≤ (γ−Γ)(M−A( f ))(A( f )−m)

≤ γ(M−A( f ))(A( f )−m)−ΓA [(M111− f )( f −m111)]
≤ A(φ( f ))−φ(A( f )) (2.17)

≤ Γ(M−A( f ))(A( f )−m)− γA [(M111− f )( f −m111)]

≤ (Γ− γ)(M−A( f ))(A( f )−m)≤ Γ− γ
4

(M−m)2

hold for any f ∈ L such that φ ◦ f ∈ L.

Corollary 2.4 ([105]) Let us suppose that the assumptions from Theorem 2.3 hold. If in
addition we have γ =−Γ, then the following inequalities

|A(φ( f ))−φ(A( f ))| ≤ Γ
(
A( f 2)− (A( f ))2)

≤ 2Γ(M−A( f ))(A( f )−m)≤ Γ
2

(M−m)2 (2.18)

hold for any f ∈ L such that φ ◦ f ∈ L.
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In our next result, which is based on the method from the paper [29], we give inequal-
ities of the Jensen and Edmundson-Lah-Ribarič type for Lipschitzian mappings.

Theorem 2.4 ([105]) Let φ : [m,M]→ R be a Lipschitzian function with the Lipschitz
constant L. Let L satisfy conditions (L1) and (L2) on E and let A be any positive linear
functional on L with A(111) = 1. Then the inequalities

|A(φ( f ))−φ(A( f ))| ≤ LA(| f −A( f )111|) (2.19)

and ∣∣∣∣M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))
∣∣∣∣

≤ 2L
M−m

A([M111− f ][ f −m111]) (2.20)

≤ 2L
M−m

(M−A( f ))(A( f )−m)≤ L
2
(M−m)

hold for any f ∈ L such that φ ◦ f ∈ L.

Proof. By using the properties of linear functionals and absolute value, and the fact that
because function φ is a Lipschitzian with the Lipschitz constant L we have

|φ(x)−φ(y)| ≤ L|x− y| for every x,y ∈ [m,M],

we can calculate

|A(φ( f ))−φ(A( f ))| = |A [φ( f )−φ(A( f ))111]|
≤ A(|φ( f )−φ(A( f ))111|)≤ LA(| f −A( f )111|) ,

which is (2.19). In a similar way we have∣∣∣∣M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))
∣∣∣∣

=
∣∣∣∣A(M111− f

M−m
φ(m)+

f −m111
M−m

φ(M)−φ( f )
)∣∣∣∣

≤ A

(∣∣∣∣M111− f
M−m

φ(m)+
f −m111
M−m

φ(M)−φ( f )
∣∣∣∣)

= A

(∣∣∣∣M111− f
M−m

(φ(m)−φ( f ))+
f −m111
M−m

(φ(M)−φ( f ))
∣∣∣∣)

≤ A

(
M111− f
M−m

|φ(m)−φ( f )|+ f −m111
M−m

|φ(M)−φ( f )|
)

≤ 2L
M−m

A([M111− f ][ f −m111]),

which gives us first inequality in (2.20). Last two inequalities in (2.20) follow by applying
Jensen’s inequality to the concave function t �→ −t2 + (m + M)t−mM, and the fact that
(M− t)(t−m)≤ (M−m)2/4 holds for every t ∈ [m,M]. �
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2.3 Inequalities for 3-convex functions

Theorem 2.5 ([103]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(111) = 1. Let φ be a 3-convex function on an
interval of real numbers I whose interior contains the interval [m,M]. Then

A [(M111− f )( f −m111)]
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
≤ M−A( f )

M−m
φ(m)+

A( f )−m
M−m

φ(M)−A(φ( f )) (2.21)

≤ A [(M111− f )( f −m111)]
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
holds for any f ∈ L such that φ ◦ f ∈ L and m≤ f (t) ≤M for t ∈ E. If the function −φ is
3-convex, then the inequalities are reversed.

Proof. We start with a scalar identity for t ∈ [m,M]:

M− t
M−m

φ(m)+
t−m
M−m

φ(M)−φ(t) =
M− t
M−m

(φ(m)−φ(t))+
t−m
M−m

(φ(M)−φ(t))

=
(M− t)(t−m)

M−m

(
φ(M)−φ(t)

M− t
− φ(t)−φ(m)

t−m

)
= (M− t)(t−m)[m,t,M]φ .

It follows that
M− t
M−m

φ(m)+
t−m
M−m

φ(M)−φ(t) = (M− t)(t−m)[m, t,M]φ (2.22)

holds for every t ∈ [m,M].
Since the function φ is 3-convex, we have [t0, t1,t2,t3]φ ≥ 0 for every choice of the

points t0, t1, t2,t3 ∈ [m,M]. Let t0 = m, t3 = M and t1 < t2. From the definition and main
properties of the divided differences we get the following relation:

0≤ [m,t1,t2,M]φ = [t1,m,M,t2]φ =
[m,M,t2]φ − [t1,m,M]φ

t2− t1

=
[m,t2,M]φ − [m,t1,M]φ

t2− t1
,

so we have obtained that
[m,t2,M]φ − [m,t1,M]φ ≥ 0

holds for any t1 < t2, that is, the function [m,t,M]φ is non-decreasing on [m,M]. It follows
that the function [m,t,M]φ attains its minimal and maximal value in the points m and M
respectively. We can calculate those bounds:

[m,m,M]φ =
1

M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
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[m,M,M]φ =
1

M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
(2.23)

Now, from (2.22) and (2.23) we have

(M− t)(t−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
≤ M− t

M−m
φ(m)+

t−m
M−m

φ(M)−φ(t)

≤ (M− t)(t−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
(2.24)

for any t ∈ [m,M]. The function f satisfies the bounds

m≤ f (t)≤M,

so we can replace t with f (t) in (2.24) and obtain:

(M− f (t))( f (t)−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
≤ M− f (t)

M−m
φ(m)+

f (t)−m
M−m

φ(M)−φ( f (t))

≤ (M− f (t))( f (t)−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
.

Functional A is linear and positive, and such that A(111) = 1, so when we apply it to the
previous inequalities we get the following:

A [(M111− f )( f −m111)]
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
≤ M−A( f )

M−m
φ(m)+

A( f )−m
M−m

φ(M)−A(φ( f ))

≤ A [(M111− f )( f −m111)]
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
,

which concludes the proof. �

Theorem 2.5 can be utilized for obtaining Jensen-type inequalities for 3-convex func-
tions.

Theorem 2.6 ([103]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(111) = 1. Let φ be a 3-convex function on an
interval of real numbers I whose interior contains the interval [m,M]. Then

(M−A( f ))(A( f )−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
− A [(M111− f )( f −m111)]

M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
(2.25)
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≤ A(φ( f ))−φ(A( f ))≤ (M−A( f ))(A( f )−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
− A [(M111− f )( f −m111)]

M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
holds for any f ∈ L such that φ ◦ f ∈ L and m≤ f (t) ≤M for t ∈ E. If the function −φ is
3-convex, then the inequalities are reversed.

Proof. Function φ ◦ f belongs to L, which means that the function f satisfies the bounds
m≤ f (t)≤M. It follows that m≤ A( f )≤M, so we can replace t with A( f ) in the relation
(2.24) and obtain

(M−A( f ))(A( f )−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
≤ M−A( f )

M−m
φ(m)+

A( f )−m
M−m

φ(M)−φ(A( f )) (2.26)

≤ (M−A( f ))(A( f )−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
.

When we multiply the relation (2.21) from Theorem 2.5 by −1 we get

− A [(M111− f )( f −m111)]
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
≤−M−A( f )

M−m
φ(m)− A( f )−m

M−m
φ(M)+A(φ( f )) (2.27)

≤−A [(M111− f )( f −m111)]
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
.

Inequalities (2.25) follow by adding (2.26) to (2.27). �

Following results are obtained by virtue of Theorem 2.1, and they represent different
Edmundson-Lah-Ribarič type inequalities for 3-convex functions.

Theorem 2.7 ([106]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and
let A be any positive linear functional on L with A(111) = 1. Let φ be a 3-convex function
defined on an interval of real numbers I whose interior contains the interval [m,M] and
differentiable on 〈m,M〉. Then

(A( f )−m)
[

φ(M)−φ(m)
M−m

− φ ′+(m)
2

]
− 1

2
A[( f −m111)φ ′( f )]

≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f )) (2.28)

≤ 1
2
A[(M111− f )φ ′( f )]− (M−A( f ))

[
φ(M)−φ(m)

M−m
− φ ′−(M)

2

]
holds for any f ∈ L such that φ ◦ f ∈ L and m≤ f (t) ≤M for t ∈ E. If the function −φ is
3-convex, then the inequalities are reversed.
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Proof. Let φ be a 3-convex function. From Theorem 2.1 (ii) we have that [t,t, t0, t0]φ ≥ 0
for all mutually different points t,t0 ∈ I. When we take t = m and t0 = x in (2.2), we obtain
that

0≤ 1
(x−m)3

[
(x−m)(φ ′(x)+ φ ′+(m))+2(φ(m)−φ(x))

]
holds for every x ∈ 〈m,M〉. After multiplying by (x−m)3 and rearranging, the relation
from above becomes

(x−m)
[

φ(M)−φ(m)
M−m

− 1
2

(
φ ′(x)+ φ ′+(m)

)]
≤ M− x

M−m
φ(m)+

x−m
M−m

φ(M)−φ(x). (2.29)

Similarly, when we put t = M and t0 = x in (2.2) and rearrange the obtained relation, we
get that

M− x
M−m

φ(m)+
x−m
M−m

φ(M)−φ(x)

≤ (M− x)
[
1
2

(
φ ′(x)+ φ ′−(M)

)− φ(M)−φ(m)
M−m

]
(2.30)

holds for every x ∈ 〈m,M〉. Now, we see that (2.29) and (2.30) together give the following
sequence of inequalities:

(x−m)
[

φ(M)−φ(m)
M−m

− 1
2

(
φ ′(x)+ φ ′+(m)

)]
≤ M− x

M−m
φ(m)+

x−m
M−m

φ(M)−φ(x)

≤ (M− x)
[
1
2

(
φ ′(x)+ φ ′−(M)

)− φ(M)−φ(m)
M−m

]
. (2.31)

Since the function f ∈ L satisfies the bounds m≤ f (t) ≤M, we can replace x with f (t) in
(2.31), and get

( f (t)−m)
[

φ(M)−φ(m)
M−m

− 1
2

(
φ ′( f (t))+ φ ′+(m)

)]
≤ M− f (t)

M−m
φ(m)+

f (t)−m
M−m

φ(M)−φ( f (t))

≤ (M− f (t))
[
1
2

(
φ ′( f (t))+ φ ′−(M)

)− φ(M)−φ(m)
M−m

]
.

The inequalities (2.28) follow after applying linear functional A to the previous relation
taking into account linearity of the functional A and condition A(111) = 1. �

Remark 2.2 If it exists, the first derivative φ ′ of a 3-convex function φ is a convex func-
tion. It is known that convex functions are continuous on every open interval, and their
one-sided derivatives exist and are finite.
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Theorem 2.8 ([106]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and
let A be any positive linear functional on L with A(111) = 1. Let φ be a 3-convex function
defined on an interval of real numbers I whose interior contains the interval [m,M] and
differentiable on 〈m,M〉. Then

(M−A( f ))
[

φ ′−(M)− φ(M)−φ(m)
M−m

]
− φ ′′−(M)

2
A[(M111− f )2]

≤ M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f )) (2.32)

≤ (A( f )−m)
[

φ(M)−φ(m)
M−m

−φ ′+(m)
]
− φ ′′+(m)

2
A[( f −m111)2]

holds for any f ∈ L such that φ ◦ f ∈ L and m≤ f (t) ≤M for t ∈ E. If the function −φ is
3-convex, then the inequalities are reversed.

Proof. The function φ is 3-convex on [m,M] and twice differentiable, so from Theorem
2.1 (iii) we have that [t,t,t0,t1]φ ≥ 0 for all mutually different points t, t,t0 ∈ [m,M]. When
we take t = m and t0 = x in (2.3), we obtain that

0≤ 1
(x−m)3

[
φ(x)−

2

∑
k=0

φ (k)
+ (m)
k!

(x−m)k

]

holds for every x ∈ 〈m,M〉. After multiplying by (x−m)3 and rearranging, the upper
relation becomes

M− x
M−m

φ(m)+
x−m
M−m

φ(M)−φ(x)

≤ (x−m)
[

φ(M)−φ(m)
M−m

−φ ′+(m)− φ ′′+(m)
2

(x−m)
]
. (2.33)

In a similar manner, when we put t = M and t0 = x in (2.3), after rearranging the relation
thus obtained, we get that

(M− x)
[

φ ′−(M)− φ(M)−φ(m)
M−m

− φ ′′−(M)
2

(M− x)
]

≤ M− x
M−m

φ(m)+
x−m
M−m

φ(M)−φ(x) (2.34)

holds for every x ∈ 〈m,M〉. Now, we see that (2.33) and (2.34) give the following sequence
of inequalities:

(M− x)
[

φ ′−(M)− φ(M)−φ(m)
M−m

− φ ′′−(M)
2

(M− x)
]

≤ M− x
M−m

φ(m)+
x−m
M−m

φ(M)−φ(x)

≤ (x−m)
[

φ(M)−φ(m)
M−m

−φ ′+(m)− φ ′′+(m)
2

(x−m)
]
. (2.35)
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Since the function f ∈ L satisfies the bounds m≤ f (t) ≤M, we can replace x with f (t) in
(2.35), and get

(M− f (t))
[

φ ′−(M)− φ(M)−φ(m)
M−m

− φ ′′−(M)
2

(M− f (t))
]

≤ M− f (t)
M−m

φ(m)+
f (t)−m
M−m

φ(M)−φ( f (t))

≤ ( f (t)−m)
[

φ(M)−φ(m)
M−m

−φ ′+(m)− φ ′′+(m)
2

( f (t)−m)
]
.

The inequalities (2.32) follow after applying linear functional A to the previous relation
taking into account linearity of the functional A and condition A(111) = 1. �

Remark 2.3 For the sake of completeness, we give an alternative proof of Theorem 2.5,
which is shorter and more elegant ([106]):
Proof. The function φ is 3-convex, so from Theorem 2.1 (i) we have that [t, t, t0,t1]φ ≥ 0
for all mutually different points t,t0,t1 ∈ I. When we take t = m, t0 = x and t1 = M in (2.1),
we obtain that

0≤ φ ′+(m)
(m− x)(m−M)

+
φ(m)(x+M−2m)
(m− x)2(m−M)2 +

φ(x)
(x−m)2(x−M)

+
φ(M)

(M−m)2(M− x)

holds for every x ∈ 〈m,M〉. After multiplying by (x−m)2(x−M) and rearranging, the
upper relation becomes

(M− x)(x−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
≤ M− x

M−m
φ(m)+

x−m
M−m

φ(M)−φ(x). (2.36)

In a similar manner, when we put t = M, t0 = x and t1 = m in (2.1), after arranging the
relation thus obtained, we get that

M− x
M−m

φ(m)+
x−m
M−m

φ(M)−φ(x)

≤ (M− x)(x−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
(2.37)

holds for every x∈ 〈m,M〉. Now, we see that (2.36) and (2.37) give the following sequence
of inequalities:

(M− x)(x−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
≤ M− x

M−m
φ(m)+

x−m
M−m

φ(M)−φ(x)

≤ (M− x)(x−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
. (2.38)
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Since the function f ∈ L satisfies the bounds m≤ f (t) ≤M, we can replace x with f (t) in
(2.38), and get

(M− f (t))( f (t)−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
≤ M− f (t)

M−m
φ(m)+

f (t)−m
M−m

φ(M)−φ( f (t))

≤ (M− f (t))( f (t)−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
.

The inequalities (2.21) follow after applying linear functional A to the previous relation
taking into account linearity of the functional A and condition A(111) = 1. �

Remark 2.4 Theorems 2.7 and 2.8 can be utilized for obtaining following Jensen-type
inequalities for 3-convex functions.

(i) When we put x = A( f ) in scalar inequalities (2.31) and then subtract the inequalities
from Theorem 2.7, we get

(A( f )−m)
[

φ(M)−φ(m)
M−m

− 1
2

(
φ ′(A( f ))+ φ ′+(m)

)]
− 1

2
A[(M111− f )φ ′( f )]− (M−A( f ))

[
φ(M)−φ(m)

M−m
+

φ ′−(M)
2

]
≤ A(φ( f ))−φ(A( f ))

≤ (M−A( f ))
[
1
2

(
φ ′(A( f ))+ φ ′−(M)

)− φ(M)−φ(m)
M−m

]
− (A( f )−m)

[
φ(M)−φ(m)

M−m
− φ ′+(m)

2

]
+

1
2
A[( f −m111)φ ′( f )].

(ii) When we put x = A( f ) in scalar inequalities (2.35) and then subtract the inequalities
from Theorem 2.8, we get

(M−A( f ))
[

φ ′−(M)− φ(M)−φ(m)
M−m

− φ ′′−(M)
2

(M−A( f ))
]

− (A( f )−m)
[

φ(M)−φ(m)
M−m

−φ ′+(m)
]

+
φ ′′+(m)

2
A[( f −m111)2]

≤ A(φ( f ))−φ(A( f ))

≤ (A( f )−m)
[

φ(M)−φ(m)
M−m

−φ ′+(m)− φ ′′+(m)
2

(A( f )−m)
]

− (M−A( f ))
[

φ ′−(M)− φ(M)−φ(m)
M−m

]
+

φ ′′−(M)
2

A[(M111− f )2].
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2.4 Inequalities for n-convex functions

The results in this section are obtained by utilizing Hermite’s interpolating polynomial, so
first we need to give a definition and some properties (see [2]).

Let −∞ < a < b < ∞ and let a≤ a1 < a2 < ... < ar ≤ b, where r ≥ 2, be given points.
For f ∈ C n([a,b]) there exists a unique polynomial PH(t), called Hermite’s interpolating
polynomial, of degree (n−1) fulfilling Hermite’s conditions:

P(i)
H (a j) = f (i)(a j) : 0≤ i≤ k j, 1≤ j ≤ r,

r

∑
j=1

k j + r = n.

Among other special cases, these conditions include type (m,n−m) conditions, which will
be of special interest to us:

(r = 2, 1≤ m≤ n−1, k1 = m−1, k2 = n−m−1)

P(i)
mn(a) = f (i)(a), 0≤ i≤ m−1

P(i)
mn(b) = f (i)(b), 0≤ i≤ n−m−1.

To give a development of the interpolating polynomial in terms of divided differences,
first let us assume that the function f is also defined at a point t �= a j, 1 ≤ j ≤ n. In [2] it
is shown that

f (t) = P(t)+R(t), (2.39)

where

P(t) = f (a1)+ (t−a1) f [a1,a2]+ (t−a1)(t−a2) f [a1,a2,a3]
+ ...+(t−a1) · · · (t−an−1) f [a1, ...,an] (2.40)

and

R(t) =(t−a1) · · · (t−an) f [t,a1, ...,an]. (2.41)

In case of (m,n−m) conditions, (2.40) and (2.41) become

Pmn(t) = f (a)+ (t−a) f [a,a]+ ...+(t−a)m−1 f [a, ...,a︸ ︷︷ ︸
m times

]

+ (t−a)m f [a, ...,a︸ ︷︷ ︸
m times

;b]+ (t−a)m(t−b) f [a, ...,a︸ ︷︷ ︸
m times

;b,b]

+ ...+(t−a)m(t−b)n−m−1 f [a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

] (2.42)
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and
Rm(t) =(t−a)m(t−b)n−m f [t;a, ...,a︸ ︷︷ ︸

m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

]. (2.43)

Throughout this section, whenever mentioning the interval [a,b], we assume that
−∞ < a < b < ∞ holds.

Let L satisfy conditions (L1) and (L2) on a non-empty set E , let A be any positive
linear functional on L with A(111) = 1, and let g ∈ L be any function such that g(E)⊆ [a,b].
For a given function f : [a,b]→ R denote:

LR( f ,g,a,b,A) = A( f (g))− b−A(g)
b−a

f (a)− A(g)−a
b−a

f (b). (2.44)

Following representations of the left side in the Edmundson-Lah-Ribarič inequality
is obtained by using Hermite’s interpolating polynomials in terms of divided differences
(2.42).

Lemma 2.1 ([107]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(111) = 1. Let f ∈ C n([a,b]), and let g ∈ L
be any function such that f ◦ g ∈ L. Then the following identities hold:

• LR( f ,g,a,b,A) =
n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]A
[
(g−a111)(g−b111)k−1

]
+A(R1(g)) (2.45)

• LR( f ,g,a,b,A) = f [a,a;b]A[(g−a111)(g−b111)]

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]A
[
(g−a111)2(g−b111)k−1

]
+A(R2(g)) (2.46)

• LR( f ,g,a,b,A) = (A(g)−a)( f [a,a]− f [a,b])+
m−1

∑
k=2

f (k)(a)
k!

A
[
(g−a111)k

]
+

n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]A
[
(g−a111)m(g−b111)k−1

]
+A(Rm(g)), (2.47)

where m≥ 3 and Rm(·) is defined in (2.43).

Proof. From representation (2.39) of every function f ∈ C n([a,b]) and its Hermite inter-
polating polynomial of type (m,n−m) conditions in terms of divided differences (2.42)
we have

f (t) = f (a)+ (t−a) f [a,a]+ ...+(t−a)m−1 f [a, ...,a︸ ︷︷ ︸
m times

]

+ (t−a)m f [a, ...,a︸ ︷︷ ︸
m times

;b]+ (t−a)m(t−b) f [a, ...,a︸ ︷︷ ︸
m times

;b,b]

+ ...+(t−a)m(t−b)n−m−1 f [a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

]+Rm(t), (2.48)
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where Rm(·) is defined in (2.43). After some straightforward calculations, for different
choices of 1≤ m≤ n−1, from (2.48) we get the following:

• for m = 1 it holds

LR( f ,111,a,b, id) = (t−a)(t−b) f [a;b,b]+ (t−a)(t−b)2 f [a;b,b,b]

+ ...+(t−a)(t−b)n−2 f [a; b,b, ...,b︸ ︷︷ ︸
(n−1) times

]+R1(t) (2.49)

• for m = 2 it holds

LR( f ,111,a,b, id) = (t−a)(t−b) f [a,a;b]+ (t−a)2(t−b) f [a,a;b,b]

+ ...+(t−a)2(t−b)n−3 f [a,a; b,b, ...,b︸ ︷︷ ︸
(n−2) times

]+R2(t) (2.50)

• for 3≤ m≤ n−1 it holds

LR( f ,111,a,b, id) = (t−a)( f [a,a]− f [a,b])+ ...+(t−a)m−1 f [a, ...,a︸ ︷︷ ︸
m times

]

+ (t−a)m f [a, ...,a︸ ︷︷ ︸
m times

;b]+ (t−a)m(t−b) f [a, ...,a︸ ︷︷ ︸
m times

;b,b]

+ ...+(t−a)m(t−b)n−m−1 f [a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

]+Rm(t). (2.51)

Since f ◦ g ∈ L it holds g(E) ⊆ [a,b], so we can replace t with g(t) in (2.49), (2.50) and
(2.51), and thus obtain:

LR( f ,g,a,b, id) =
n−1

∑
k=2

(g(t)−a)(g(t)−b)k−1 f [a;b, ...,b︸ ︷︷ ︸
k times

]+R1(g(t)),

LR( f ,g,a,b, id) = (g(t)−a)(g(t)−b) f [a,a;b]

+
n−2

∑
k=2

(g(t)−a)2(g(t)−b)k−1 f [a,a;b, ...,b︸ ︷︷ ︸
k times

]+R2(g(t))

and

LR( f ,g,a,b, id) = (g(t)−a)( f [a,a]− f [a,b])+
m

∑
k=3

(g(t)−a)k−1 f [a, ...,a︸ ︷︷ ︸
k times

]

+
n−m

∑
k=1

(g(t)−a)m(g(t)−b)k−1 f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]+Rm(g(t)).

Identities (2.45), (2.46) and (2.47) follow by applying positive normalized linear functional
A to the previous equalities respectively. �
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Lemma 2.2 ([107]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(111) = 1. Let f ∈ C n([a,b]), and let g ∈ L
be any function such that f ◦ g ∈ L. Then the following identities hold:

• LR( f ,g,a,b,A) =
n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]A[(g−b111)(g−a111)k−1]+A(R∗1(g)) (2.52)

• LR( f ,g,a,b,A) = f [b,b;a]A[(g−b111)(g−a111)]

+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]A[(g−b111)2(g−a111)k−1]+A(R∗2(g)) (2.53)

• LR( f ,g,a,b,A) =(b−A(g))( f [a,b]− f [b,b])+
m−1

∑
k=2

f (k)(b)
k!

A[(g−b111)k]

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]A[(g−b111)m(g−a111)k−1]+A(R∗m(g)) (2.54)

where m≥ 3 and

A(R∗m(g)) = A[ f [g;b111, ...,b111︸ ︷︷ ︸
m times

; a111, ...,a111︸ ︷︷ ︸
(n−m) times

](g−b111)m(g−a111)n−m]. (2.55)

Proof. Let us define an auxiliary function F : [a,b]→ R with

F(t) = f (a+b− t).

Since f ∈ C n([a,b]) we immediately have F ∈ C n([a,b]), so we can apply (2.49), (2.50)
and (2.51) to F and obtain respectively

LR(F,111,a,b, id) =
n−1

∑
k=2

F [a;b, ...,b︸ ︷︷ ︸
k times

](t−a)(t−b)k−1 +R1(t) (2.56)

LR(F,111,a,b, id) =F[a,a;b](t−a)(t−b)

+
n−2

∑
k=2

F[a,a;b, ...,b︸ ︷︷ ︸
k times

](t−a)2(t−b)k−1 +R2(t) (2.57)

LR(F,111,a,b, id) =(t−a)(F [a,a]−F[a,b])+
m−1

∑
k=2

F (k)(a)
k!

(t−a)k

+
n−m

∑
k=1

F [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

](t−a)m(t−b)k−1 +Rm(t). (2.58)

We can calculate divided differences of the function F in terms of divided differences of
the function f :

F [a, ...,a︸ ︷︷ ︸
k times

;b, ...,b︸ ︷︷ ︸
i times

] = (−1)k+i−1 f [b, ...,b︸ ︷︷ ︸
k times

;a, ...,a︸ ︷︷ ︸
i times

].
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Now (2.56), (2.57) and (2.58) become

LR(F,111,a,b, id) =
n−1

∑
k=2

(−1)k f [b;a, ...,a︸ ︷︷ ︸
k times

](t−a)(t−b)k−1 + R̄1(t) (2.59)

LR(F,111,a,b, id) =(−1)2 f [b,b;a](t−a)(t−b)

+
n−2

∑
k=2

(−1)k+1 f [b,b;a, ...,a︸ ︷︷ ︸
k times

](t−a)2(t−b)k−1 + R̄2(t) (2.60)

LR(F,111,a,b, id) =(t−a)(− f [b,b]+ f [a,b])+
m−1

∑
k=2

(−1)k f (k)(b)
k!

(t−a)k

+
n−m

∑
k=1

(−1)m+k−1 f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

](t−a)m(t−b)k−1 + R̄m(t), (2.61)

where

R̄m(t) = (t−a)m(t−b)n−m(−1)n f [a+b− t;b, ...,b︸ ︷︷ ︸
m times

; a,a, ...,a︸ ︷︷ ︸
(n−m) times

].

Let g ∈ L be any function such that f ◦ g ∈ L, that is, a ≤ g(t)≤ b for every t ∈ E . Let us
define a function ḡ(t) = a+b−g(t). Trivially, we have a≤ ḡ(t)≤ b and ḡ ∈ L. Since

LR(F, ḡ,a,b, id) = f (a+b− (a+b−g(t)))− b− (a+b−g(t))
b−a

f (a+b−a)

− a+b−g(t)−a
b−a

f (a+b−b) = LR( f ,g,a,b, id),

after putting ḡ(t) in (2.59), (2.60) and (2.61) instead of t, we get

LR( f ,g,a,b, id) =
n−1

∑
k=2

(−1)k f [b;a, ...,a︸ ︷︷ ︸
k times

](b−g(t))(a−g(t))k−1 + R̄1(a+b−g(t))

LR( f ,g,a,b, id) = (−1)2 f [b,b;a](b−g(t))(a−g(t))

+
n−2

∑
k=2

(−1)k+1 f [b,b;a, ...,a︸ ︷︷ ︸
k times

](b−g(t))2(a−g(t))k−1 + R̄2(a+b−g(t))

LR( f ,g,a,b, id) = (b−g(t))(− f [b,b]+ f [a,b])+
m−1

∑
k=2

(−1)k f (k)(b)
k!

(b−g(t))k

+
n−m

∑
k=1

(−1)m+k−1 f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

](b−g(t))m(a−g(t))k−1 + R̄m(a+b−g(t)).

Identities (2.52), (2.53) and (2.54) follow after applying a normalized positive linear func-
tional A to previous equalities respectively. �
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Following representations of the left side in the scalar Edmundson-Lah-Ribarič in-
equality are special cases of Lemma 2.1 and Lemma 2.2 for A = id and g = 111.

Lemma 2.3 Let a,b be real numbers such that a < b. For a function f ∈C n([a,b]), n≥ 3,
the following identities hold:

• f (t)− b− t
b−a

f (a)− t−a
b−a

f (b) =
n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

](t−a)(t−b)k−1 +R1(t) (2.62)

• f (t)− b− t
b−a

f (a)− t−a
b−a

f (b) = f [a,a;b](t−a)(t−b)

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

](t−a)2(t−b)k−1 +R2(t) (2.63)

where Rm(t) =(t−a)m(t−b)n−m f [t;a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

]. (2.64)

Additionally, if n > m≥ 3, then we have

• f (t)− b− t
b−a

f (a)− t−a
b−a

f (b) = (t−a)( f [a,a]− f [a,b])+
m−1

∑
k=2

f (k)(a)
k!

(t−a)k

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

](t−a)m(t−b)k−1 +Rm(t). (2.65)

Lemma 2.4 Let a,b be real numbers such that a < b. For a function f ∈C n([a,b]), n≥ 3,
the following identities hold:

• f (t)− b− t
b−a

f (a)− t−a
b−a

f (b) =
n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

](t−b)(t−a)k−1 +R∗1(t) (2.66)

• f (t)− b− t
b−a

f (a)− t−a
b−a

f (b) = f [b,b;a](t−b)(t−a)

+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

](t−b)2(t−a)k−1 +R∗2(t) (2.67)

where R∗m(t) = f [t;b, ...,b︸ ︷︷ ︸
m times

; a,a, ...,a︸ ︷︷ ︸
(n−m) times

](t−b)m(t−a)n−m. (2.68)

Also, if n > m≥ 3, then

• f (t)− b− t
b−a

f (a)− t−a
b−a

f (b) = (b− t)( f [a,b]− f [b,b])+
m−1

∑
k=2

f (k)(b)
k!

(t−b)k

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

](t−b)m(t−a)k−1 +R∗m(t). (2.69)
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A generalization of the Edmundson-Lah-Ribarič inequality by Hermite’s interpolating
polynomials in terms of divided differences, obtained from Lemma 2.1, is given in the
following theorem.

Theorem 2.9 ([107]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(111) = 1. Let f ∈ C n([a,b]), and let g ∈ L
be any function such that f ◦ g ∈ L. If the function f is n-convex and if n and m≥ 3 are of
different parity, then

LR( f ,g,a,b,A)≤ (A(g)−a)( f [a,a]− f [a,b])+
m−1

∑
k=2

f (k)(a)
k!

A
[
(g−a111)k

]
+

n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]A
[
(g−a111)m(g−b111)k−1

]
. (2.70)

Inequality (2.70) also holds when the function f is n-concave and n and m are of equal
parity. In case when the function f is n-convex and n and m are of equal parity, or when
the function f is n-concave and n and m are of different parity, the inequality sign in (2.70)
is reversed.

Proof. We start with the representation of the left side in the Edmundson-Lah-Ribarič
inequality (2.47) from Lemma 2.1 with a special focus on the last term:

A(R(g)) = A

⎛⎜⎝(g−a111)m (g−b111)n−m f [g;a111, ...,a111︸ ︷︷ ︸
m times

; b111, ...,b111︸ ︷︷ ︸
(n−m) times

]

⎞⎟⎠ .

Since A is positive, it preserves the sign, so we need to study the sign of the expression:

(g(t)−a)m (g(t)−b)n−m f [g(t);a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

].

Since a ≤ g(t) ≤ b for every t ∈ E , we have (g(t)−a)m ≥ 0 for every t ∈ E and any
choice of m. For the same reason we have (g(t)−b)≤ 0. Trivially it follows that (g(t)−
b)n−m ≤ 0 when n and m are of different parity, and (g(t)− b)n−m ≥ 0 when n and m are
of equal parity.

If the function f is n-convex, then f [g(t);a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

]≥ 0, and if the function f

is n-concave, then f [g(t);a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

]≤ 0.

Now (2.70) easily follows from (2.1). �

Following generalization of the Edmundson-Lah-Ribarič inequality by Hermite’s in-
terpolating polynomials in terms of divided differences is obtained from Lemma 2.2.
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Theorem 2.10 ([107]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and
let A be any positive linear functional on L with A(111) = 1. Let f ∈ C n([a,b]), and let g ∈ L
be any function such that f ◦ g ∈ L. If the function f is n-convex and if m≥ 3 is odd, then

LR( f ,g,a,b,A)≤ (b−A(g))( f [a,b]− f [b,b])+
m−1

∑
k=2

f (k)(b)
k!

A[(g−b111)k]

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]A[(g−b111)m(g−a111)k−1] (2.71)

Inequality (2.71) also holds when the function f is n-concave and m is even. In case when
the function f is n-convex and m is even, or when the function f is n-concave and m is odd,
the inequality sign in (2.71) is reversed.

Proof. Similarly as in the proof of the previous theorem, we start with the representation
of the left side in the Edmundson-Lah-Ribarič inequality (2.54) from Lemma 2.2 with a
special focus on the last term:

A(R∗m(g)) = A

⎛⎜⎝ f [g;b111, ...,b111︸ ︷︷ ︸
m times

; a111, ...,a111︸ ︷︷ ︸
(n−m) times

](g−b111)m(g−a111)n−m

⎞⎟⎠
As before, because of the positivity of the linear functional A, we only need to study the
sign of the expression:

(g(t)−b)m(g(t)−a)n−m f [g(t);b, ...,b︸ ︷︷ ︸
m times

; a,a, ...,a︸ ︷︷ ︸
(n−m) times

].

Since a ≤ g(t) ≤ b for every t ∈ E , we have (g(t)−a)n−m ≥ 0 for every t ∈ E and
any choice of m. For the same reason we have (g(t)− b) ≤ 0. Trivially it follows that
(g(t)−b)m ≤ 0 when m is odd, and (g(t)−b)m ≥ 0 when m is even.

If the function f is n-convex, then its n-th order divided differences are greater of equal
to zero, and if the function f is n-concave, then its n-th order divided differences are less
or equal to zero.

Now (2.71) easily follows from Lemma (2.2). �

Corollary 2.5 ([107]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and
let A be any positive linear functional on L with A(111) = 1. Let n be an odd number, let
f ∈C n([a,b]), and let g∈ L be any function such that f ◦g∈ L. If the function f is n-convex
and if m≥ 3 is odd, then

(A(g)−a)( f [a,a]− f [a,b])+
m−1

∑
k=2

f (k)(a)
k!

A
[
(g−a111)k

]
+

n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]A
[
(g−a111)m(g−b111)k−1

]
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≤ LR( f ,g,a,b,A)≤ (b−A(g))( f [a,b]− f [b,b])+
m−1

∑
k=2

f (k)(b)
k!

A[(g−b111)k]

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]A[(g−b111)m(g−a111)k−1]. (2.72)

Inequality (2.72) also holds when the function f is n-concave and m is even. In case when
the function f is n-convex and m is even, or when the function f is n-concave and m is odd,
the inequality signs in (2.72) are reversed.

Remark 2.5 In Theorem 2.8 it is shown that for a 3-convex functions we have

(A(g)−a)
[
f ′(a)− f (b)− f (a)

b−a

]
+

f ′′(a)
2

A[(g−a111)2],

≤ LR( f ,g,a,b,A)≤ (b−A(g))
[

f (b)− f (a)
b−a

− f ′(b)
]

+
f ′′(b)

2
A[(b111−g)2]

and if the function f is 3-concave, then the inequality signs are reversed. It is obvious that
inequalities (2.72) from Corollary 2.5 provide us with a generalization of the result stated
above.

The following result is another generalization of the Edmundson-Lah-Ribarič inequal-
ity by Hermite’s interpolating polynomials in terms of divided differences obtained from
Lemma 2.1.

Theorem 2.11 ([107]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and
let A be any positive linear functional on L with A(111) = 1. Let f ∈ C n([a,b]), and let g∈ L
be any function such that f ◦ g ∈ L. If the function f is n-convex and if n is odd, then

n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]A
[
(g−a111)(g−b111)k−1

]
≤ LR( f ,g,a,b,A) (2.73)

≤ f [a,a;b]A[(g−a111)(g−b111)]+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]A
[
(g−a111)2(g−b111)k−1

]
.

Inequalities (2.73) also hold when the function f is n-concave and n is even. In case when
the function f is n-convex and n is even, or when the function f is n-concave and n is odd,
the inequality signs in (2.73) are reversed.

Proof. From the discussion about positivity and negativity of the term A(Rm(g)) in the
proof of Theorem 2.9, for m = 1 it follows that

∗ A(R1(g))≥ 0 when the function f is n-convex and n is odd, or when f is n-concave
and n even;

∗ A(R1(g))≤ 0 when the function f is n-concave and n is odd, or when f is n-convex
and n even.
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Now the identity (2.45) gives us

LR( f ,g,a,b,A)≥ f [a;b,b]A[(g−a111)(g−b111)]+ f [a;b,b,b]A[(g−a111)(g−b111)2]

+ ...+ f [a; b,b, ...,b︸ ︷︷ ︸
(n−1) times

]A
[
(g−a111)(g−b111)n−2]

for A(R1(g))≥ 0, and in case A(R1(g))≤ 0 the inequality sign is reversed.
In the same manner, for m = 2 it follows that

∗ A(R2(g))≤ 0 when the function f is n-convex and n is odd, or when f is n-concave
and n even;

∗ A(R2(g))≥ 0 when the function f is n-concave and n is odd, or when f is n-convex
and n even.

In this case the identity (2.46) for A(R2(g))≤ 0 gives us

LR( f ,g,a,b,A)≤ f [a,a;b]A[(g−a111)(g−b111)]+ f [a,a;b,b]A[(g−a111)2(g−b111)]

+ ...+ f [a,a; b,b, ...,b︸ ︷︷ ︸
(n−2) times

]A
[
(g−a111)2(g−b111)n−3]

and in case A(R2(g))≥ 0 the inequality sign is reversed.
When we combine the two results from above, we get exactly (2.73). �

By utilizing Lemma 2.2 we can get a similar generalization of the Edmundson-Lah-Ri-
barič inequality that holds for all n ∈ N, not only the odd ones.

Theorem 2.12 ([107]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and
let A be any positive linear functional on L with A(111) = 1. Let f ∈ C n([a,b]), and let g ∈ L
be any function such that f ◦ g ∈ L. If the function f is n-convex, then

f [b,b;a]A[(g−b111)(g−a111)]+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]A[(g−b111)2(g−a111)k−1]

≤ LR( f ,g,a,b,A)≤
n−1

∑
k=1

f [b;a, ...,a︸ ︷︷ ︸
k times

]A[(g−b111)(g−a111)k−1]. (2.74)

If the function f is n-concave, the inequality signs in (2.74) are reversed.

Proof. We return to the discussion about positivity and negativity of the term A(R∗m(g)) in
the proof of Theorem 2.10. For m = 1 we have

(g(t)−b)1(g(t)−a)n−1 ≤ 0 for every t ∈ E,

so A(R∗1(g))≥ 0 when the function f is n-concave, and A(R∗1(g))≤ 0 when the function f
is n-convex. Now the identity (2.52) for a n-convex function f gives us
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LR( f ,g,a,b,A)≥ f [b,b;a]A[(g−b111)(g−a111)]+ f [b,b;a,a]A[(g−b111)2(g−a111)]

+ ...+ f [b,b; a,a, ...,a︸ ︷︷ ︸
(n−2) times

]A[(g−b111)2(g−a111)n−3]

and if the function f is n-concave, the inequality sign is reversed.
Similarly, for m = 2 we have

(g(t)−b)2(g(t)−a)n−2 ≥ 0 for every t ∈ E,

so A(R∗2(g)) ≥ 0 when the function f is n-convex, and A(R∗2(g)) ≤ 0 when the function f
is n-concave. In this case the identity (2.53) for a n-convex function f gives us

LR( f ,g,a,b,A)≤ f [b;a,a]A[(g−b111)(g−a111)]+ f [b;a,a,a]A[(g−b111)(g−a111)2]

+ ...+ f [b; a,a, ...,a︸ ︷︷ ︸
(n−1) times

]A[(g−b111)(g−a111)n−2]

and if the function f is n-concave, the inequality sign is reversed.
When we combine the two results from above, we get exactly (2.74). �

Remark 2.6 Since

f [a;b,b] =
1

b−a

(
f ′(b)− f (b)− f (a)

b−a

)
f [a,a;b] =

1
b−a

(
f ′(b)− f (b)− f (a)

b−a

)
,

when we take n = 3 in (2.73) or (2.74), we get that

A[(g−a111)(g−b111)]
b−a

(
f ′(b)− f (b)− f (a)

b−a

)
(2.75)

≤ LR( f ,g,a,b,A)≤ A[(g−a111)(g−b111)]
b−a

(
f ′(b)− f (b)− f (a)

b−a

)
holds for a 3-convex function, and for a 3-concave function the inequality signs are re-
versed. Inequalities (2.75) are proved in Theorem 2.5, so it follows that Theorem 2.11 and
Theorem 2.12 give a generalization of that result.

2.5 Applications to generalized means

Let I = 〈a,b〉, −∞≤ a < b ≤ ∞, and let ψ : I→ R be continuous and strictly monotonic.
Suppose that L and A satisfy the conditions L1,L2 and A1,A2 with A(111) = 1 on a non-
empty set E , and that ψ( f ) ∈ L for some f ∈ L. Generalized mean for f ∈ L with respect
to the operator A and the function ψ is defined by

Mψ( f ,A) = ψ−1 (A(ψ( f ))) . (2.76)
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The following results give us inequalities of the Edmundson-Lah-Ribarič and Jensen
type respectively for the generalized means.

Theorem 2.13 ([103]) Let I ⊂ R be such that its interior contains the interval [m,M],
and let ψ ,χ : I → R be continuous and strictly monotonic. Suppose that L and A satisfy
the conditions L1,L2 and A1,A2 with A(111) = 1 on a non-empty set E, and let f ∈ L be
such that ψ( f ),χ( f ) ∈ L. Let us assume that the function φ = χ ◦ψ−1 is 3-convex. Then

A
(
[Mψ111−ψ( f )][ψ( f )−mψ111]

)
Mψ −mψ

(
χ(M)− χ(m)
ψ(M)−ψ(m)

− [χ ◦ψ−1]′+(mψ)
)

≤ ψ(M)−A(ψ( f ))
ψ(M)−ψ(m)

χ(m)+
A(ψ( f ))−ψ(m)

ψ(M)−ψ(m)
χ(M)− χ(Mχ( f ,A)) (2.77)

≤ A
(
[Mψ111−ψ( f )][ψ( f )−mψ111]

)
Mψ −mψ

(
[χ ◦ψ−1]′−(Mψ )− χ(M)− χ(m)

ψ(M)−ψ(m)

)
for every f ∈ L such that m ≤ f (t) ≤ M for t ∈ [m,M], where [mψ ,Mψ ] = ψ([m,M]). If
−φ is 3-convex, then the inequalities in (2.77) are reversed.

Proof. Function ψ is strictly monotonic. If ψ is increasing, then mψ = ψ(m) and Mψ =
ψ(M), and if ψ is decreasing, then mψ = ψ(M) and Mψ = ψ(m). Since m≤ f (t)≤M for
t ∈ [m,M], we have mψ ≤ ψ( f (t)) ≤Mψ for every t ∈ [m,M]. We see that the conditions
of Theorem 2.5 are satisfied, so we can obtain (2.77) by making substitutions

m = mψ , M = Mψ , φ = χ ◦ψ−1 and f = ψ ◦ f

in (2.21). �

Theorem 2.14 ([103]) Let I ⊂ R be such that its interior contains the interval [m,M],
and let ψ ,χ : I → R be continuous and strictly monotonic. Suppose that L and A satisfy
the conditions L1,L2 and A1,A2 with A(111) = 1 on a non-empty set E, and let f ∈ L be
such that ψ( f ),χ( f ) ∈ L. Let us assume that the function φ = χ ◦ψ−1 is 3-convex. Then

(Mψ −A(ψ( f )))(A(ψ( f ))−mψ )
Mψ −mψ

(
χ(M)− χ(m)
ψ(M)−ψ(m)

− [χ ◦ψ−1]′+(mψ)
)

− A
[
(Mψ111−ψ( f ))(ψ( f )−mψ111)

]
Mψ −mψ

(
[χ ◦ψ−1]′−(Mψ )− χ(M)− χ(m)

ψ(M)−ψ(m)

)
≤ χ(Mχ( f ,A))− χ(Mψ( f ,A)) (2.78)

≤ (Mψ −A(ψ( f )))(A(ψ( f ))−mψ)
Mψ −mψ

(
[χ ◦ψ−1]′−(Mψ )− χ(M)− χ(m)

ψ(M)−ψ(m)

)
− A

(
[Mψ111−ψ( f )][ψ( f )−mψ111]

)
Mψ −mψ

(
χ(M)− χ(m)
ψ(M)−ψ(m)

− [χ ◦ψ−1]′+(mψ )
)

for every f ∈ L such that m ≤ f (t) ≤ M for t ∈ [m,M], where [mψ ,Mψ ] = ψ([m,M]). If
−φ is 3-convex, then the inequalities in (2.78) are reversed.
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Proof. The inequalities (2.78) are obtained by making the same substitutions in the relation
(2.25) from Theorem 2.6 as in the proof of the previous theorem. �

Remark 2.7 With notations as in Theorems 2.13 and 2.14, suppose that the function χ ◦
ψ−1 is differentiable in points ψm and ψM. In this case, expressions ψm and ψM can
respectively be replaced by ψ(m) and ψ(M), due to the symmetry. In addition, utilizing
the chain rule, the expressions

[χ ◦ψ−1]′−(ψ(M)) and [χ ◦ψ−1]′+(ψ(m))

can be rewritten in a more suitable form, that is,

[χ ◦ψ−1]′−(ψ(M)) =
χ ′(M)
ψ ′(M)

and (χ ◦ψ−1)′+(ψ(m)) =
χ ′(m)
ψ ′(m)

.

2.5.1 Examples with power means

Suppose that L and A satisfy the conditions L1,L2 and A1,A2 with A(111) = 1, on a non-
empty set E . The power mean of a function f ∈ L with respect to the operator A is a special
case of the generalized mean, and it is defined for r ∈ R with:

M[r]( f ,A) =
{

(A( f r))1/r : r �= 0
exp(A(log f )) : r = 0

(2.79)

where f (t) > 0 for t ∈ E , f r ∈ L and log f ∈ L.
Following two results are simple consequences of Theorem 2.13 and Theorem 2.14,

that is, the series of inequalities in (2.77) and (2.78) with particular choices of functions χ
and ψ respectively. The first result is a Edmundson-Lah-Ribarič type inequality for power
means.

Corollary 2.6 ([103]) Let I ⊂ R be such that its interior contains the interval [m,M].
Suppose that L and A satisfy the conditions L1,L2 and A1,A2 with A(111) = 1 on a non-
empty set E, and let f ∈ L be such that 0 < m≤ f (t)≤M for t ∈ E, f r, f s ∈ L for r,s ∈ R

and log f ∈ L.

• If any of the relations 0 ≤ s ≤ r or 0 ≤ 2r ≤ s or r < 0 < s or 2r < s < r < 0 hold,
then

A([Mr111− f r][ f r−mr111])
Mr−mr

(
Ms−ms

Mr−mr −ms−r
)

≤ Mr−M[r]( f ,A)r

Mr−mr ms +
M[r]( f ,A)r−mr

Mr−mr Ms−M[s]( f ,A)s (2.80)

≤ A
(
[Mψ111−ψ( f )][ψ( f )−mψ111]

)
Mr−mr

(
Ms−r− Ms−ms

Mr−mr

)
.

If r ≤ s ≤ 0 or s ≤ 2r ≤ 0 or s < 0 < r or 0 < r < s < 2r, then the inequalities in
(2.80) are reversed.
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• If r �= 0, then

A([Mr111− f r][ f r−mr111])
Mr−mr

(
logM− logm

Mr−mr − 1
rmr

)
≤ Mr−M[r]( f ,A)r

Mr−mr logm+
M[r]( f ,A)r−mr

Mr−mr logM− log[M[0]( f ,A)] (2.81)

≤ A([Mr111− f r][ f r−mr111])
Mr−mr

(
1

rMr −
logM− logm

Mr−mr

)
.

• If s > 0, then

A([logM111− log f ][log f − logm111])
logM− logm

(
Ms−ms

logM− logm
− sms

)
≤ logM− log[M[0]( f ,A)]

logM− logm
ms +

log[M[0]( f ,A)]− logm
logM− logm

Ms−M[s]( f ,A)s

(2.82)

≤ A([logM111− log f ][log f − logm111])
logM− logm

(
sMs− Ms−ms

logM− logm

)
,

and if s < 0, the inequality signs in (2.82) are reversed.

Proof. Let us set χ(t) = ts and ψ(t) = tr, where s and r are mutually different real
parameters not equal to zero. Then the function

(
χ ◦ψ−1

)
(t) = t

s
r is 3-convex on R+ if

0≤ s
r ≤ 1 or s

r ≥ 2. It is possible in each of the following four cases: 0≤ s≤ r or r≤ s≤ 0

or 0 ≤ 2r ≤ s or s ≤ 2r ≤ 0. We calculate
(
χ ◦ψ−1

)′ (t) = s
r t

s−r
r . Since the function

ψ(t) = tr is increasing for r > 0 we have mψ = ψ(m) and Mψ = ψ(M). Now, considering
(2.77) with the above functions χ and ψ on the interval [m,M], we obtain (2.80). For r < 0
the function ψ(t) = tr is decreasing, which means that mψ = ψ(M) and Mψ = ψ(m), so
those inequalities are reversed.

On the other hand, the function−(χ ◦ψ−1
)
(t) =−t

s
r is 3-convex on R+ if 0≤ s

r < 0
or 1 < s

r < 2, which is possible in any of the following cases: r < 0 < s or s < 0 < r or
0 < r < s < 2r or 2r < s < r < 0. Again, if r > 0 the function ψ(t) = tr is increasing,
so we get the inequalities (2.80) with the reversed sign of inequality by setting χ(t) = ts

and ψ(t) = tr in the reversed inequalities (2.77), and if r < 0, we get exactly inequalities
(2.80).

It remains to consider the cases when one of the parameters r and s is equal to zero. If
s = 0, then setting χ(t)= logt and ψ(t)= tr, it follows that

(
χ ◦ψ−1

)
(t) = 1

r log t. Clearly,
this function is 3-convex for r > 0, while−χ ◦ψ−1 is 3-convex for r < 0. Moreover, since(
χ ◦ψ−1

)′ (t) = 1
rt , after a straightforward computation and taking into account that the

function ψ(t) = tr is increasing for r > 0 and decreasing for r < 0, we obtain (2.81).
Finally, if r = 0, then setting χ(t) = ts and ψ(t) = log t, it follows that the function(

χ ◦ψ−1
)
(t) = exp(st) is 3-convex for s > 0. The function ψ(t) = logt is increasing, so

after calculating
(
χ ◦ψ−1

)′ (t) = sexp(st), from (2.77) we get (2.82). �

Next result is a Jensen type inequality for power means, and it is obtained from Theo-
rem 2.14 in an analogous way as described in the proof of the previous corollary.
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Corollary 2.7 ([103]) Let I ⊂ R be such that its interior contains the interval [m,M].
Suppose that L and A satisfy the conditions L1,L2 and A1,A2 with A(111) = 1 on a non-
empty set E, and let f ∈ L be such that 0 < m≤ f (t)≤M for t ∈ E, f r, f s ∈ L for r,s ∈ R

and log f ∈ L.

• If any of the relations 0 ≤ s ≤ r or 0 ≤ 2r ≤ s or r < 0 < s or 2r < s < r < 0 hold,
then

(Mr−M[r]( f ,A)r)(M[r]( f ,A)r−mr)
Mr−mr

(
Ms−ms

Mr−mr −
s
r
ms−r

)
− A [(Mr111− f r)( f r−mr111)]

Mr−mr

(
s
r
Ms−r− Ms−ms

Mr−mr

)
≤M[s]( f ,A)s−M[r]( f ,A)s (2.83)

≤ (Mr−M[r]( f ,A)r)(M[r]( f ,A)r−mr)
Mr−mr

(
s
r
Ms−r− Ms−ms

Mr−mr

)
− A [(Mr111− f r)( f r−mr111)]

Mr−mr

(
Ms−ms

Mr−mr −
s
r
ms−r

)
If r ≤ s ≤ 0 or s ≤ 2r ≤ 0 or s < 0 < r or 0 < r < s < 2r, then the inequalities in
(2.83) are reversed.

• If r �= 0, then
(Mr−M[r]( f ,A)r)(M[r]( f ,A)r−mr)

Mr−mr

(
logM− logm

Mr−mr − 1
rmr

)
− A([Mr111− f r][ f r−mr111])

Mr−mr

(
1

rMr −
logM− logm

Mr−mr

)
≤ log[M[0]( f ,A)]− log[M[r]( f ,A)] (2.84)

≤ (Mr−M[r]( f ,A)r)(M[r]( f ,A)r−mr)
Mr−mr

(
1

rMr −
logM− logm

Mr−mr

)
− A([Mr111− f r][ f r−mr111])

Mr−mr

(
logM− logm

Mr−mr − 1
rmr

)
.

• If s > 0, then
(logM− log[M[0]( f ,A))(log[M[0]( f ,A)− logm)

logM− logm

(
Ms−ms

logM− logm
− sms

)
− A([logM111− log f ][log f − logm111])

logM− logm

(
sMs− Ms−ms

logM− logm

)
≤M[s]( f ,A)s−M[0]( f ,A)s (2.85)

≤ (logM− log[M[0]( f ,A))(log[M[0]( f ,A)− logm)
logM− logm

(
sMs− Ms−ms

logM− logm

)
− A([logM111− log f ][log f − logm111])

logM− logm

(
Ms−ms

logM− logm
− sms

)
and if s < 0, the inequality signs in (2.85) are reversed.



Chapter3

Jensen and
Edmundson-Lah-Ribarič type
inequalities for f -divergence

Numerous theoretic divergence measures between two probability distributions have been
introduced and comprehensively studied. Their applications can be found in the analysis of
contingency tables, in approximation of probability distributions, in signal processing, and
in pattern recognition. Csiszár introduced the f−divergence functional which represent
a “distance function” on the set of probability distributions. A great number of theoretic
divergences are special cases of Csiszár f -divergence for different choices of the function
f .

In this chapter first we will obtain some estimates for the f -divergence functional via
converses of the Jensen and Edmundson-Lah-Ribarič inequalities for convex functions.
Then we will study a generalization of the f -divergence functional for different classes
of functions (functions with bounded second order divided differences, Lipschitzian func-
tions, 3-convex functions and n-convex functions). We also utilize our results regard-
ing Csiszár divergence in order to obtain different inequalities for the Zipf and Zipf-
Mandelbrot law.

The Zipf law has and continues to attract considerable attention in a wide variety of
scientific disciplines - from astronomy to demographics to software structure to economics
to zoology, and even to warfare [45]. It is one of the basic laws in information science and
bibliometrics, but it is also often used in linguistics. Same law in mathematical sense is also
used in other scientific disciplines, but name of the law can be different, since regularities
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in different scientific fields are discovered independently from each other. Typically one
is dealing with integer-valued observables (numbers of objects, people, cities, words, ani-
mals, corpses) and the frequency of their occurrence. Benoit Mandelbrot in 1966 gave an
improvement of the Zipf law for the count of the low-rank words. Various scientific fields
use this law for different purposes, for example information sciences use it for indexing,
ecological field studies in predictability of ecosystem, in music it is used to determine
aesthetically pleasing music.

3.1 Introduction

Let us denote the set of all probability densities by P, i.e. ppp = (p1, ..., pn) ∈ P if pi ∈
[0,1] for i = 1, ...,n and ∑n

i=1 pi = 1. One of the numerous applications of Probability
Theory is finding an appropriate measure of distance (difference or divergence) between
two probability distributions.

Consequently, many different divergence measures have been introduced and exten-
sively studied, for example Kullback-Leibler divergence, Hellinger divergence, Renyi di-
vergence, Bhattacharyya divergence, harmonic divergence, Jeffrey divergence, triangu-
lar divergence etc. All of the mentioned divergences are special cases of the Csiszár
f -divergence.

These measures of distance between two probability distributions have an important
application in a great number of fields such as: anthropology, genetics, economics and
political science, biology, approximation of probability distributions ([32], [92]), signal
processing ([77]) and pattern recognition ([15], [28]), analysis of contingency tables ([52]),
ecological studies, music etc.

A large number of papers has been written on the subject of inequalities for different
types of divergences. Since the functions that are used to define most of the divergences
are convex, Jensen’s inequality and its converses play an important role in the mentioned
inequalities.

Csiszár [33]–[34] introduced the f−divergence functional as

Df (ppp,qqq) =
n

∑
i=1

qi f

(
pi

qi

)
, (3.1)

where f : [0,+∞〉 is a convex function, and it represents a “distance function” on the set of
probability distributions P.

Dragomir [39] gave the following upper bound for the Csiszár divergence functional

Df (ppp,qqq)≤ M−1
M−m

f (m)+
1−m
M−m

f (M), (3.2)

where f is a convex function on the interval [m,M], ppp = (p1, ..., pn),qqq = (q1, ...,qn) ∈ P

and m≤ pi/qi ≤M for every i = 1, ...,n (then it easily follows that 1 ∈ [m,M]).
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The Kullback-Leibler divergence, also called relative entropy or KL divergence

DKL(ppp,qqq) :=
n

∑
i=1

pilog

(
pi

qi

)
is a measure of the non-symmetric difference between two probability distributions ppp and
qqq, but it is not a true metric because it does not obey the triangle inequality and in general
DKL(ppp,qqq) �= DKL(qqq, ppp). The Kullback-Leibler divergence was introduced by Kullback and
Leibler in [88], and it is a special case of the Csiszár divergence for f (t) = tlogt.

In order to use nonnegative probability distributions in the f -divergence functional,
Horvath et. al. in [62] defined

f (0) := lim
t→0+

f (t), 0 · f
(

0
0

)
:= 0, 0 · f

(a
0

)
:= lim

t→0+
t f
(a

t

)
and gave the following definition of a generalized f -divergence functional.

Definition 3.1 Let J ⊂ R be an interval, and let f : J → R be a function. Let P =
(p1, ..., pn) be an n-tuple of real numbers and Q = (q1, ...,qn) be an n-tuple of nonneg-
ative real numbers such that pi/qi ∈ J for every i = 1, ...,n. Then

D̂ f (ppp,qqq) :=
n

∑
i=1

qi f

(
pi

qi

)
. (3.3)

Let ppp = (p1, ..., pn) and ppp = (q1, ...,qn) be probability distributions. Examples of some
well-known divergences and their generating functions are as follows.

� Kullback-Leibler divergence of the probability distributions ppp and qqq is defined as

DKL(ppp,qqq) =
n

∑
i=1

qi log
qi

pi
,

and the corresponding generating function is f (t) = t logt, t > 0.

� Hellinger divergence of the probability distributions ppp and qqq is defined as

DH(ppp,qqq) =
1
2

n

∑
i=1

(
√

qi−√pi)2,

and the corresponding generating function is f (t) = 1
2 (1−√t)2, t > 0.

� Renyi divergence of the probability distributions ppp and qqq is defined as

Dα(ppp,qqq) =
n

∑
i=1

qα−1
i pα

i , α ∈ R,

and the corresponding generating function is f (t) = tα , t > 0.
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� Harmonic divergence of the probability distributions ppp and qqq is defined as

DHa(ppp,qqq) =
n

∑
i=1

2piqi

pi +qi
,

and the corresponding generating function is f (t) = 2t
1+t .

� Jeffrey divergence of the probability distributions ppp and qqq is defined as

DJ(ppp,qqq) =
1
2

n

∑
i=1

(qi− pi) log
qi

pi
,

and the corresponding generating function is f (t) = (1− t) log 1
t , t > 0.

3.2 Inequalities for generalized f -divergence

Our first result in this section is an improved version of Dragomir’s result (3.2) for the
generalized f -divergence functional, and it provides an upper bound for the mentioned
functional.

Theorem 3.1 ([104]) Let [m,M] ⊂ R be an interval, let f : [m,M] → R be a function
and let δ f be defined in (1.19). Let ppp = (p1, ..., pn) be an n-tuple of real numbers and
qqq = (q1, ...,qn) be an n-tuple of nonnegative real numbers such that pi/qi ∈ [m,M] for
every i = 1, ...,n. If the function f is convex, we have

D̂ f (ppp,qqq)≤ MQn−Pn

M−m
f (m)+

Pn−mQn

M−m
f (M)

−
(Qn

2
− 1

M−m

n

∑
i=1

∣∣∣pi− m+M
2

qi

∣∣∣)δ f , (3.4)

where Pn = ∑n
i=1 pi and Qn = ∑n

i=1 qi. If the function f is concave, then the inequality sign
is reversed.

Proof. Let f : [m,M]→ R be a convex function. For an n-tuple of real numbers xxx =
(x1, ...,xn), an n-tuple of positive numbers ppp = (p1, ..., pn) and a normalized positive linear
functional A(xxx) = 1

Pn
∑n

i=1 pixi, from Theorem 1.9 we have

1
Pn

n

∑
i=1

pi f (xi)≤ M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)

− 1
Pn

n

∑
i=1

pi

(
1
2
− 1

M−m

∣∣∣∣xi− m+M
2

∣∣∣∣)δ f , (3.5)
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where x̄ = 1
Pn

∑n
i=1 pixi. Since qqq = (q1, ...,qn) are nonnegative real numbers, we can put

pi = qi and xi =
pi

qi

in (3.5) and get

1
Qn

n

∑
i=1

qi f

(
pi

qi

)
≤

M− 1
Qn

∑n
i=1 qi

pi
qi

M−m
f (m)+

1
Qn

∑n
i=1 qi

pi
qi
−m

M−m
f (M)

− 1
Qn

(
Qn

2
− 1

M−m

n

∑
i=1

qi

∣∣∣∣ pi

qi
− m+M

2

∣∣∣∣
)

δ f ,

and after multiplying by Qn we get (3.4). �

Remark 3.1 From m≤ pi/qi ≤M it easily follows that (see [80])

−M−m
2

qi ≤ pi− m+M
2

qi ≤ M−m
2

qi, i.e.

∣∣∣∣pi− m+M
2

qi

∣∣∣∣≤ M−m
2

qi

which together with δ f ≥ 0 for a convex function f gives us(Qn

2
− 1

M−m

n

∑
i=1

∣∣∣pi− m+M
2

qi

∣∣∣)δ f ≥ 0.

Remark 3.2 If in the previous theorem we take ppp and qqq to be probability distributions, we
directly get an improvement of Dragomir’s result for the Csiszár f -divergence functional:

Df (ppp,qqq)≤ M−1
M−m

f (m)+
1−m
M−m

f (M)

−
(1

2
− 1

M−m

n

∑
i=1

∣∣∣pi− m+M
2

qi

∣∣∣)δ f .

Next result is a special case of Theorem 3.1, and provideswith bounds for the Kullback-
Leibler divergence of two probability distributions.

Corollary 3.1 ([104]) Let [m,M] ⊂ R be an interval and let us assume that the base of
the logarithm is greater than 1.

• Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) be n-tuples of nonnegative real numbers such
that pi/qi ∈ [m,M] for every i = 1, ...,n. Then

n

∑
i=1

pilog

(
pi

qi

)
≤ Qn

Mm
M−m

log
(m

M

)
+

Pn

M−m
log

(
MM

mm

)
(3.6)

−
(Qn

2
− 1

M−m

n

∑
i=1

∣∣∣pi− m+M
2

qi

∣∣∣)(mlog
2m

m+M
+Mlog

2M
m+M

)
.
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• Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) ∈ P be probability distributions such that
m≤ pi/qi ≤M holds for every i = 1, ...,n. Then

DKL(ppp,qqq)≤ Mm
M−m

log
(m

M

)
+

1
M−m

log

(
MM

mm

)
(3.7)

−
(1

2
− 1

M−m

n

∑
i=1

∣∣∣pi− m+M
2

qi

∣∣∣)(mlog
2m

m+M
+Mlog

2M
m+M

)
.

If the base of the logarithm is less than 1, the inequality sign in the inequalities above
is reversed.

Proof. Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) be n-tuples of nonnegative real numbers.
Since the function t �→ tlogt is convex when the base of the logarithm is greater than 1, the
inequality (3.6) follows from Theorem 3.1, inequality (3.1), by setting f (t) = tlogt.

Inequality (3.7) is a special case of the inequality (3.6) for probability distributions ppp
and qqq. �

Next result is obtained by utilizing Theorem 1.10, and it also gives us bounds for
the generalized f -divergence functional. Concurrently, it represents an improvement of
bounds for f -divergence functional obtained by Dragomir in the paper [39].

Theorem 3.2 ([104]) Let I ⊂ R be an interval such that its interior contains the interval
[m,M], let f : I → R be a continuous function and let δ f be defined in (1.19). Let ppp =
(p1, ..., pn) be an n-tuple of real numbers and qqq = (q1, ...,qn) be an n-tuple of nonnegative
real numbers such that pi/qi ∈ [m,M] for every i = 1, ...,n. Let Ψ f be defined in (1.13). If
the function f is convex, then

0≤ D̂ f (ppp,qqq)−Qn f

(
Pn

Qn

)
≤ Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψ f (t;m,M)

−
(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

δ f (3.8)

≤ Qn

M−m

(
M− Pn

Qn

)(
Pn

Qn
−m

)(
f ′−(M)− f ′+(m)

)
−
(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

δ f

≤ Qn

4
(M−m)( f ′−(M)− f ′+(m))−

(
Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

δ f .

If the function f is concave, the inequality signs are reversed.

Proof. Let f : [m,M]→ R be a convex function. Let xxx = (x1, ...,xn) be an n-tuple of
real numbers and let ppp = (p1, ..., pn) be an n-tuple of positive numbers. Then A(xxx) =
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1
Pn

∑n
i=1 pixi is a normalized positive linear functional, so from Theorem 1.10, inequality

(1.20), we have

0≤
n

∑
i=1

pi f (xi)− f

(
n

∑
i=1

pixi

)

≤ (M− x̄)(x̄−m) sup
t∈〈m,M〉

Ψ f (t;m,M)−
(

1
2
− 1

M−m

n

∑
i=1

pi

∣∣∣∣xi− m+M
2

∣∣∣∣
)

δ f

≤ (M− x̄)(x̄−m)
M−m

( f ′−(M)− f ′+(m))−
(

1
2
− 1

M−m

n

∑
i=1

pi

∣∣∣∣xi− m+M
2

∣∣∣∣
)

δ f

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))−

(
1
2
− 1

M−m

n

∑
i=1

pi

∣∣∣∣xi− m+M
2

∣∣∣∣
)

δ f , (3.9)

Since qqq = (q1, ...,qn) are nonnegative real numbers, we can put

pi =
qi

∑n
i=1 qi

=
qi

Qn
and xi =

pi

qi

in (3.9) and get

0≤
n

∑
i=1

qi

∑n
i=1 qi

f

(
pi

qi

)
− f

(
n

∑
i=1

qi

∑n
i=1 qi

pi

qi

)

≤
(

M−
n

∑
i=1

qi

∑n
i=1 qi

pi

qi

)(
n

∑
i=1

qi

∑n
i=1 qi

pi

qi
−m

)
sup

t∈〈m,M〉
Ψ f (t;m,M)

−
(

1
2
− 1

M−m

n

∑
i=1

qi

∑n
i=1 qi

∣∣∣∣ pi

qi
− m+M

2

∣∣∣∣
)

δ f

≤ f ′−(M)− f ′+(m)
M−m

(
M−

n

∑
i=1

qi

∑n
i=1 qi

pi

qi

)(
n

∑
i=1

qi

∑n
i=1 qi

pi

qi
−m

)

−
(

1
2
− 1

M−m

n

∑
i=1

qi

∑n
i=1 qi

∣∣∣∣ pi

qi
− m+M

2

∣∣∣∣
)

δ f

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))−

(
1
2
− 1

M−m

n

∑
i=1

qi

∑n
i=1 qi

∣∣∣∣ pi

qi
− m+M

2

∣∣∣∣
)

δ f ,

and after multiplying by Qn we get (3.8). �

The result that follows is a special case of Theorem 3.2. It gives us different bounds of
those that we have already obtained for the Kullback-Leibler divergence of two probability
distributions.

Corollary 3.2 ([104]) Let [m,M] ⊂ R be an interval and let us assume that the base of
the logarithm is greater than 1.
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• Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) be n-tuples of nonnegative real numbers such
that pi/qi ∈ [m,M] for every i = 1, ...,n. Then

0≤
n

∑
i=1

pilog
pi

qi
−Pnlog

(
Pn

Qn

)
≤ Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψid·log(t;m,M)

−
(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤ Qn

M−m

(
M− Pn

Qn

)(
Pn

Qn
−m

)
log

M
m

(3.10)

−
(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)

≤ Qn

4
(M−m)log

M
m
−
(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi−m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
.

• Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) ∈ P be probability distributions such that
m≤ pi/qi ≤M holds for every i = 1, ...,n. Then

0≤ DKL(ppp,qqq)
≤ (M−1)(1−m) sup

t∈〈m,M〉
Ψid·log(t;m,M)

−
(

1
2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤ 1

M−m
(M−1)(1−m) log

M
m

(3.11)

−
(

1
2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)

≤ 1
4
(M−m)log

M
m
−
(

1
2
− 1

M−m

n

∑
i=1

∣∣∣∣pi−m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
.

If the base of the logarithm is less than 1, the inequality sign in the inequalities above is
reversed.

Proof. Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) be n-tuples of nonnegative real numbers.
Function t �→ tlogt is convex, so inequality (3.10) follows from Theorem 3.2, inequality
(3.8), by setting f (t) = tlogt.

Inequality (3.11) is a special case of the inequality (3.10) for probability distributions
ppp and qqq. �
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Remark 3.3 If in Theorem 3.2, inequality (3.8), we set f (t) =−logt with the base greater
than 1, we get the following:

• for n-tuples of nonnegative real numbers ppp = (p1, ..., pn) and qqq = (q1, ...,qn) such
that pi/qi ∈ [m,M] for every i = 1, ...,n we have

0≤
n

∑
i=1

qilog

(
qi

pi

)
+Qnlog

(
Pn

Qn

)
≤ Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψ−log(t;m,M)

−
(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM
(3.12)

≤ Qn

Mm

(
M− Pn

Qn

)(
Pn

Qn
−m

)
−
(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ Qn(M−m)2

4Mm
−
(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM
.

• for probability distributions ppp = (p1, ..., pn) and qqq = (q1, ...,qn) ∈ P such that
m≤ pi/qi ≤M holds for every i = 1, ...,n we have

0≤ DKL(qqq, ppp)
≤ (M−1)(1−m) sup

t∈〈m,M〉
Ψ−log(t;m,M)

−
(

1
2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM
(3.13)

≤ 1
Mm

(M−1)(1−m)

−
(

1
2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ (M−m)2

4Mm
−
(

1
2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM
.

If the base of the logarithm is less than 1, the inequality signs in the inequalities above are
reversed.

By following the same steps as in the proof of Theorem 3.2, but starting from Theorem
1.11, we get lower and upper bounds for the difference in the results from Theorem 3.1,
and consequently in Dragomir’s result (3.2).
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Theorem 3.3 ([104]) Let I ⊂ R be an interval such that its interior contains the interval
[m,M], let f : I → R be a continuous function and let δ f be defined in (1.19). Let ppp =
(p1, ..., pn) be an n-tuple of real numbers and qqq = (q1, ...,qn) be an n-tuple of nonnegative
real numbers such that pi/qi ∈ [m,M] for every i = 1, ...,n. Let Ψ f be defined in (1.13). If
the function f is convex, then we have(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

δ f

≤ MQn−Pn

M−m
f (m)+

Pn−mQn

M−m
f (M)− D̂ f (P,Q)

≤ sup
t∈〈m,M〉

Ψ f (t;m,M)
n

∑
i=1

(
M− pi

qi

)(
pi

qi
−m

)
≤ Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψ f (t;m,M)

≤ Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
f ′−(M)− f ′+(m)

M−m

≤ Qn

4
(M−m)( f ′−(M)− f ′+(m)). (3.14)

If the function f is concave, the inequality signs are reversed.

We can utilize Theorem 3.3 to obtain lower and upper bounds for the difference in the
results from Corollary 3.1, as well as for the reversed Kullback-Leibler divergence.

Corollary 3.3 ([104]) Let [m,M] ⊂ R be an interval and let us assume that the base of
the logarithm is greater than 1.

• Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) be n-tuples of nonnegative real numbers such
that pi/qi ∈ [m,M] for every i = 1, ...,n. Then(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤ Qn

Mm
M−m

log
(m

M

)
+

Pn

M−m
log

(
MM

mm

)
−

n

∑
i=1

pilog

(
pi

qi

)
≤ sup

t∈〈m,M〉
Ψid·log(t;m,M)

n

∑
i=1

(
M− pi

qi

)(
pi

qi
−m

)
≤ Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψid·log(t;m,M) (3.15)

≤ Qn

M−m

(
M− Pn

Qn

)(
Pn

Qn
−m

)
log

(
M
m

)
≤ Qn

4
(M−m)log

(
M
m

)
.
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• Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) ∈ P be probability distributions such that
m≤ pi/qi ≤M holds for every i = 1, ...,n. Then(

1
2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤ Mm

M−m
log
(m

M

)
+

1
M−m

log

(
MM

mm

)
−DKL(ppp,qqq)

≤ sup
t∈〈m,M〉

Ψid·log(t;m,M)
n

∑
i=1

(
M− pi

qi

)(
pi

qi
−m

)
≤ (M−1)(1−m) sup

t∈〈m,M〉
Ψid·log(t;m,M) (3.16)

≤ 1
M−m

(M−1)(1−m) log

(
M
m

)
≤ 1

4
(M−m)log

(
M
m

)
.

If the base of the logarithm is less than 1, the inequality signs in the inequalities above are
reversed.

Remark 3.4 As in Remark 3.3, we can set f (t) = −logt with the base greater than 1
in Theorem 3.3, inequality (3.14), and obtain the following inequalities for the reversed
Kullback-Leibler divergence:

• for n-tuples of nonnegative real numbers ppp = (p1, ..., pn) and qqq = (q1, ...,qn) such
that pi/qi ∈ [m,M] for every i = 1, ...,n we have(

Qn

2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ Qn

M−m
log

(
Mm

mM

)
+

Pn

M−m
log
(m

M

)
−

n

∑
i=1

qilog

(
qi

pi

)
≤ sup

t∈〈m,M〉
Ψlog(t;m,M)

n

∑
i=1

(
M− pi

qi

)(
pi

qi
−m

)
≤ Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
Ψlog(t;m,M)

≤− Qn

Mm

(
M− Pn

Qn

)(
Pn

Qn
−m

)
≤− Qn

4Mm
(M−m)2. (3.17)

• for probability distributions ppp = (p1, ..., pn) and qqq = (q1, ...,qn) ∈ P such that m ≤
pi/qi ≤M holds for every i = 1, ...,n we have(

1
2
− 1

M−m

n

∑
i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ 1
M−m

log

(
Mm−1

mM−1

)
−DKL(qqq, ppp)
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≤ sup
t∈〈m,M〉

Ψlog(t;m,M)
n

∑
i=1

(
M− pi

qi

)(
pi

qi
−m

)
≤ (M−1)(1−m) sup

t∈〈m,M〉
Ψlog(t;m,M)

≤− 1
Mm

(M−1)(1−m)≤− 1
4Mm

(M−m)2. (3.18)

If the base of the logarithm is less than 1, the inequality signs in the inequalities above are
reversed.

By using Corollary 1.1 we get an improvement of Theorem 3.1.

Theorem 3.4 [122] Let [m,M] ⊂ R be an interval and let f : [m,M]→ R be a function.
Let ppp = (p1, ..., pl) be an l-tuple of real numbers and qqq = (q1, ...,ql) be an l-tuple of
nonnegative real numbers such that pi/qi ∈ [m,M] for every i = 1, . . . , l. If the function f
is convex, we have

D̂ f (ppp,qqq) ≤ MQl−Pl

M−m
f (m)+

Pl−mQl

M−m
f (M)

−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)qi

[(
rn · χ( k−1

2n , k
2n )

)( pi
qi
−m

M−m

)]

=
MQl−Pl

M−m
f (m)+

Pl−mQl

M−m
f (M)

−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · χ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))χ( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]

where Pl = ∑l
i=1 pi and Ql = ∑l

i=1 qi. If the function f is concave, then the inequality sign
is reversed.

Proof. Let f : [m,M]→ R be a convex function. For an l-tuple of real numbers xxx =
(x1, ...,xl) and an l-tuple of nonnegative numbers ppp = (p1, ..., pl) from Corollary 1.1 we
have

1
Pl

l

∑
i=1

pi f (xi) ≤ M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)

− 1
Pl

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)pi

[(
rn · χ( k−1

2n , k
2n )

)( xi−m
M−m

)]
=

M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)
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− 1
Pl

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)pi

[(
2n xi−m

M−m
−k+1

)
·χ( k−1

2n , 2k−1
2n+1

)( xi−m
M−m

)
+
(

k−2n xi−m
M−m

)
χ( 2k−1

2n+1 , k
2n

)( xi−m
M−m

)]
where x̄ = 1

Pl
∑l

i=1 pixi. Since qqq = (q1, ...,ql) are nonnegative real numbers, we can put

pi = qi and xi =
pi

qi

in previous inequality and get

1
Ql

l

∑
i=1

qi f

(
pi

qi

)
≤

M− 1
Ql

∑l
i=1 qi

pi
qi

M−m
f (m)+

1
Ql

∑l
i=1 qi

pi
qi
−m

M−m
f (M)

− 1
Ql

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)qi

[
rn

( pi
qi
−m

M−m

)
· χ( k−1

2n , k
2n )

( pi
qi
−m

M−m

)]

=
M− 1

Ql
∑l

i=1 qi
pi
qi

M−m
f (m)+

1
Ql

∑l
i=1 qi

pi
qi
−m

M−m
f (M)

− 1
Ql

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · χ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))χ( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]
and after multiplying by Ql we get the result. �

Remark 3.5 If in the previous theorem we take ppp and qqq to be probability distributions,
we directly get following result for the Csiszár f -divergence functional.

Df (ppp,qqq) ≤ M−1
M−m

f (m)+
1−m
M−m

f (M)

−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)qi

[
rn

( pi
qi
−m

M−m

)
· χ( k−1

2n , k
2n )

( pi
qi
−m

M−m

)]

=
M−1
M−m

f (m)+
1−m
M−m

f (M)−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · χ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))χ( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]
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Next result provides with an improvement of the bounds for the Kullback-Leibler di-
vergence of two probability distributions, that is result from Corollary 3.1.

Corollary 3.4 [122] Let [m,M]⊂ R be an interval and let us assume that the base of the
logarithm is greater than 1.

• Let ppp = (p1, ..., pn) and qqq = (q1, ...,ql) be l-tuples of nonnegative real numbers such
that pi

qi
∈ [m,M] for every i = 1, . . . , l. Then

l

∑
i=1

pilog

(
pi

qi

)
≤ Ql

Mm
M−m

log
(m

M

)
+

Pl

M−m
log

(
MM

mm

)

−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δlog(m,M,n,k)qi

[(
rn · χ( k−1

2n , k
2n )

)( pi
qi
−m

M−m

)]

= Ql
Mm

M−m
log
(m

M

)
+

Pl

M−m
log

(
MM

mm

)
−

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δlog(m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · χ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))χ( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]

• Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) ∈ P be probability distributions such that
m≤ pi/qi ≤M holds for every i = 1, ...,n. Then

DKL(ppp,qqq) ≤ Mm
M−m

log
(m

M

)
+

1
M−m

log

(
MM

mm

)
−

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δlog(m,M,n,k)qi

[
rn

( pi
qi
−m

M−m

)
· χ( k−1

2n , k
2n )

( pi
qi
−m

M−m

)]

=
Mm

M−m
log
(m

M

)
+

1
M−m

log

(
MM

mm

)
−

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δlog(m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · χ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))χ( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]
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If the base of the logarithm is less than 1, the inequality sign in the inequalities above is
reversed.

Proof. Let ppp = (p1, ..., pn) and qqq = (q1, ...,qn) be n-tuples of nonnegative real numbers.
Since the function t �→ tlogt is convex when the base of the logarithm is greater than 1,
first inequality follows from Theorem 3.4 by setting f (t) = tlogt.

Second inequality is a special case of the first inequality for probability distributions ppp
and qqq. �

Unlike previous results, the following results do not require convexity in the classical
sense of the function f . We start with an Edmundson-Lah-Ribarič type inequality for the
generalized f -divergence functional D̃ f (ppp,qqq), where the function f has bounded second
order divided differences. This is a significant progress in relation to the previous results,
since the class of functions with bounded second order divided differences is much greater
then the class of convex functions.

Theorem 3.5 ([105]) Let [m,M]⊂R be an interval such that m≤ 1≤M and let f : [m,M]
→ R be a function with γ ≤ [m,t,M] f ≤ Γ. Let ppp = (p1, ..., pn) and ppp = (q1, ...,qn) be
probability distributions such that pi/qi ∈ [m,M] for every i = 1, ...,n. Then we have

γ
n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ M−1

M−m
f (m)+

1−m
M−m

f (M)− D̃ f (ppp,qqq)

≤ Γ
n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
. (3.19)

Proof. The function f has bounded second order divided difference with bounds γ and Γ,
so when we set linear functional A from (2.5) to be a discrete sum, we get

γ
n

∑
i=1

pi(M− xi)(xi−m)≤ M− x̄
M−m

φ(m)+
x̄−m
M−m

φ(M)−
n

∑
i=1

piφ(xi)

≤ Γ
n

∑
i=1

pi(M− xi)(xi−m), (3.20)

where xxx = (x1, ...,xn) is an n-tuple of real numbers from [m,M], ppp = (p1, ..., pn) is an n-
tuple of nonnegative real numbers such that ∑n

i=1 pi = 1, and x̄ = ∑n
i=1 pixi. Now, in the

relation (3.20) we can put

φ = f , pi = qi and xi =
pi

qi
,

and after calculating

x̄ =
n

∑
i=1

qi
pi

qi
=

n

∑
i=1

pi = 1

we get (3.19). �

By following the same idea as in the proof of the previous theorem, but starting with
the relation (2.14) from Theorem 2.3, we get the following result, which is a Jensen type
inequality for the generalized f -divergence functional D̃ f (ppp,qqq).
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Theorem 3.6 Let [m,M]⊂R be an interval such that m≤ 1≤M and let f : [m,M]→R

be a function with γ ≤ [m,t,M] f ≤ Γ. Let ppp = (p1, ..., pn) and ppp = (q1, ...,qn) be proba-
bility distributions such that pi/qi ∈ [m,M] for every i = 1, ...,n. Then we have

γ(M−1)(1−m)−Γ
n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
(3.21)

≤ D̃ f (ppp,qqq)− f (1)≤ Γ(M−1)(1−m)− γ
n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
.

Remark 3.6 If the function f : [m,M]→ R is additionally convex, then from (2.12), by
following the same idea as in the proof of Theorem 3.5, we get Edmundson-Lah-Ribarič
type inequality for the Csiszár f -divergence functional:

0≤ γ
n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ M−1

M−m
f (m)+

1−m
M−m

f (M)−Df (ppp,qqq)

≤ Γ
n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
(3.22)

≤ Γ(M−1)(1−m)≤ Γ
4

(M−m)2.

Jensen type inequality for the Csiszár divergence functional is a special case of Theorem
3.6 for a convex function.

The generating function of the Kullback-Leibler divergence f (t) = tlogt is convex,
and its second order divided difference [m,t,M] f is a continuous and decreasing function,
which means that it attains its maximal and minimal value in the points m and M respec-
tively.

Figure 3.1: Graphs of the Function−[m,t,M]id ◦ log
for different Choices of the Points m and M.



3.2 INEQUALITIES FOR GENERALIZED f -DIVERGENCE 83

We calculate the bounds for the second order divided difference of the function
f (t) = tlogt:

Γ = [m,m,M]id · log =
1

M−m

(
MlogM−mlogm

M−m
− [(id · log)(m)]′+

)
=

1
M−m

(
1

M−m
log

MM

mm − logm−1

)
γ = [m,M,M]id · log

1
M−m

(
[(id · log)(m)]′− −

MlogM−mlogm
M−m

)
=

1
M−m

(
logM +1− 1

M−m
log

MM

mm

)
.

Now, as a special case of Theorem 3.5 and Theorem 3.6 for f (t) = tlogt, taking into
account convexity of the function f , we have obtained Jensen and Edmundson-Lah-Ribarič
type inequalities for Kullback-Leibler divergence DKL(ppp,qqq).

Corollary 3.5 ([105]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let ppp =
(p1, ..., pn) and ppp = (q1, ...,qn) be probability distributions such that pi/qi ∈ [m,M] for
every i = 1, ...,n. Then we have

0≤ 1
M−m

(
logM +1− 1

M−m
log

MM

mm

) n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ mM

M−m
log

m
M

+
1

M−m
log

MM

mm −DKL(ppp,qqq) (3.23)

≤ 1
M−m

(
1

M−m
log

MM

mm − logm−1

) n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ 1

M−m

(
1

M−m
log

MM

mm − logm−1

)
(M−1)(1−m)

≤ 1
4

(
log

MM

mm − (logm+1)(M−m)
)

.

Corollary 3.6 ([105]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let ppp =
(p1, ..., pn) and ppp = (q1, ...,qn) be probability distributions such that pi/qi ∈ [m,M] for
every i = 1, ...,n. Then we have

0≤ DKL(ppp,qqq)≤ 1
M−m

[(
1

M−m
log

MM

mm − logm−1

)
(M−1)(1−m)

−
(

logM +1− 1
M−m

log
MM

mm

) n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
. (3.24)

The function f (t) = −logt is also convex, and its second order divided difference
[m, t,M] f is a continuous and decreasing function, which means that it attains its maximal
and minimal value in the points m and M respectively.
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Figure 3.2: Graphs of the function−[m,t,M]log
for different choices of the points m and M.

We calculate the bounds for the second order divided difference of the function
f (t) =−logt:

Γ =−[m,m,M]log =
1

M−m

(−logM + logm
M−m

− (−log)′+(m)
)

=
1

M−m

(
1

M−m
log

m
M

+
1
m

)
γ =−[m,M,M]log =

1
M−m

(
(−log)′−(M)− −logM + logm

M−m

)
=− 1

M−m

(
1
M

+
1

M−m
log

m
M

)
.

As a special case of Theorem 3.5 and Theorem 3.6 for f (t) = −logt, taking into ac-
count convexity of the function f , we get Jensen and Edmundson-Lah-Ribarič type in-
equalities for the reversed Kullback-Leibler divergence DKL(qqq, ppp).

Corollary 3.7 ([105]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let ppp =
(p1, ..., pn) and ppp = (q1, ...,qn) be probability distributions such that pi/qi ∈ [m,M] for
every i = 1, ...,n. Then we have

0≤− 1
M−m

(
1
M

+
1

M−m
log

m
M

) n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ 1

M−m
log

Mm

mM +
1

M−m
log

m
M
−DKL(qqq, ppp) (3.25)

≤ 1
M−m

(
1

M−m
log

m
M

+
1
m

) n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ 1

M−m

(
1

M−m
log

m
M

+
1
m

)
(M−1)(1−m)

≤ 1
4

(
log

m
M

+
M
m
−1

)
.
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Corollary 3.8 ([105]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let ppp =
(p1, ..., pn) and ppp = (q1, ...,qn) be probability distributions such that pi/qi ∈ [m,M] for
every i = 1, ...,n. Then we have

0≤ DKL(qqq, ppp)≤ 1
M−m

[(
1

M−m
log

m
M

+
1
m

)
(M−1)(1−m)

+
(

1
M

+
1

M−m
log

m
M

) n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)]
. (3.26)

Following results are applications of Theorem 2.5 and Theorem 2.6, and they provide
us with an Edmundson-Lah-Ribarič type and Jensen type inequality respectively for the
generalized f -divergence functional for 3-convex function.

Theorem 3.7 ([103]) Let [m,M]⊂R be an interval such that m≤ 1≤M and let f : [m,M]
→R be a 3-convex function. Let ppp = (p1, ..., pn) and ppp = (q1, ...,qn) be probability distri-
butions such that pi/qi ∈ [m,M] for every i = 1, ...,n. Then we have

1
M−m

n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f (M)− f (m)

M−m
− f ′+(m)

)
≤ M−1

M−m
f (m)+

1−m
M−m

f (M)− D̃ f (ppp,qqq) (3.27)

≤ 1
M−m

n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f ′−(M)− f (M)− f (m)

M−m

)
Proof. Let xxx = (x1, ...,xn) such that xi ∈ [m,M] for i = 1, ...,n. For a 3-convex function φ ,
in the relation (2.21) we can replace

f ←→ xxx, and A(xxx) =
n

∑
i=1

pixi.

In that way we get

∑n
i=1 pi(M− xi)(xi−m)

M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
≤ M− x̄

M−m
φ(m)+

x̄−m
M−m

φ(M)−
n

∑
i=1

piφ(xi)

≤ ∑n
i=1 pi(M− xi)(xi−m)

M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
,

where x̄ = ∑n
i=1 pixi. Since the function f is 3-convex, in the previous relation we can set

φ = f , pi = qi and xi =
pi

qi
,

and after calculating

x̄ =
n

∑
i=1

qi
pi

qi
=

n

∑
i=1

pi = 1

we get (3.27). �
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Theorem 3.8 ([103]) Let [m,M]⊂R be an interval such that m≤ 1≤M and let f : [m,M]→
R be a 3-convex function. Let ppp = (p1, ..., pn) and ppp = (q1, ...,qn) be probability distribu-
tions such that pi/qi ∈ [m,M] for every i = 1, ...,n. Then we have

(M−1)(1−m)
M−m

(
f (M)− f (m)

M−m
− f ′+(m)

)
− 1

M−m

n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f ′−(M)− f (M)− f (m)

M−m

)
(3.28)

≤ D̃ f (ppp,qqq)− f (1)≤ (M−1)(1−m)
M−m

(
f ′−(M)− f (M)− f (m)

M−m

)
− 1

M−m

n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f (M)− f (m)

M−m
− f ′+(m)

)
.

Proof. As in the proof of the previous theorem, let xxx = (x1, ...,xn) such that xi ∈ [m,M] for
i = 1, ...,n. For a 3-convex function φ , in the relation (2.25) we can replace

f ←→ xxx, and A(xxx) =
n

∑
i=1

pixi

and obtain the following discrete sequence of inequalities:

(M− x̄)(x̄−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
− ∑n

i=1 pi(M− xi)(xi−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
≤

n

∑
i=1

piφ(xi)−φ(x̄)≤ (M− x̄)(x̄−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
− ∑n

i=1 pi(M− xi)(xi−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
.

The function f is 3-convex, so in the previous relation we can set

φ = f , pi = qi and xi =
pi

qi
,

and after calculating

x̄ =
n

∑
i=1

qi
pi

qi
=

n

∑
i=1

pi = 1

we get (3.28). �

Next two results are obtained as an application of Theorem 2.7 and Theorem 2.8 re-
spectively, and they give us different Edmundson-Lah-Ribarič type inequalities for the
generalized f -divergence functional.
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Theorem 3.9 ([106]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let f be a
3-convex function on the interval I whose interior contains [m,M] and differentiable on
〈m,M〉. Let ppp = (p1, ..., pn) and ppp = (q1, ...,qn) be probability distributions such that
pi/qi ∈ [m,M] for every i = 1, ...,n. Then we have

(1−m)
[

f (M)− f (m)
M−m

− f ′+(m)
2

]
− 1

2

n

∑
i=1

(pi−mqi) f ′
(

pi

qi

)
≤ M−1

M−m
f (m)+

1−m
M−m

f (M)− D̃ f (ppp,qqq) (3.29)

≤ 1
2

n

∑
i=1

(Mqi− pi) f ′
(

pi

qi

)
− (M−1)

[
f (M)− f (m)

M−m
− f ′−(M)

2

]
.

Proof. Let xxx = (x1, ...,xn) such that xi ∈ [m,M] for i = 1, ...,n. Let φ be a 3-convex
function on the interval I whose interior contains [m,M] and differentiable on 〈m,M〉. In
the relation (2.28) we can replace

f ←→ xxx, and A(xxx) =
n

∑
i=1

pixi.

In that way we get

(x̄−m)
[

φ(M)−φ(m)
M−m

− φ ′+(m)
2

]
− 1

2

n

∑
i=1

pi(xi−m)φ ′(xi)

≤ M− x̄
M−m

φ(m)+
x̄−m
M−m

φ(M)−
n

∑
i=1

piφ(xi)

≤ 1
2

n

∑
i=1

pi(M− xi)φ ′(xi)− (M− x̄)
[

φ(M)−φ(m)
M−m

− φ ′−(M)
2

]
where x̄ = ∑n

i=1 pixi. Since the function f satisfies the same assumtions as φ , in the previous
relation we can set

φ = f , pi = qi and xi =
pi

qi
,

and after calculating

x̄ =
n

∑
i=1

qi
pi

qi
=

n

∑
i=1

pi = 1

we get (3.29). �

By utilizing Theorem 2.8 in the analogous way as above, we get a different Edmund-
son-Lah-Ribarič type inequality for the generalized f -divergence functional, and it is given
in the following theorem.

Theorem 3.10 ([106]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let f be
a 3-convex function on the interval I whose interior contains [m,M] and differentiable
on 〈m,M〉. Let ppp = (p1, ..., pn) and ppp = (q1, ...,qn) be probability distributions such that
pi/qi ∈ [m,M] for every i = 1, ...,n. Then we have
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(M−1)
[
f ′−(M)− f (M)− f (m)

M−m

]
− f ′′−(M)

2

n

∑
i=1

(Mqi− pi)2

qi

≤ M−1
M−m

f (m)+
1−m
M−m

f (M)− D̃ f (ppp,qqq) (3.30)

≤ (1−m)
[

f (M)− f (m)
M−m

− f ′+(m)
]
− f ′′+(m)

2

n

∑
i=1

(pi−mqi)2

qi
.

Remark 3.7 Let ppp = (p1, ..., pn) and ppp = (q1, ...,qn) be probability distributions and let
[m,M]⊂ R be an interval such that m≤ 1≤M and pi/qi ∈ [m,M] for every i = 1, ...,n.

� Kullback-Leibler divergence of the probability distributions ppp and qqq is defined by
means of the generating function f (t) = t logt, t > 0. We can calculate f ′′′(t) =
− 1

t2
< 0, so the function − f (t) = −t logt is 3-convex. It is obvious that for the

Kullback-Leibler divergence the inequalities (3.27), (3.28), (3.29) and (3.30) hold
with reversed signs of inequality, with

f ′+(m) = logm+1, f ′−(M) = logM +1

and

f ′′+(m) =
1
m

, f ′′−(M) =
1
M

.

� Hellinger divergence of the probability distributions ppp and qqq is defined by means of
the generating function f (t) = 1

2 (1−√t)2, t > 0. We see that f ′′′(t) = − 3
8 t
− 5

2 < 0,
so the function − f (t) =− 1

2(1−√t)2 is 3-convex. For the Hellinger divergence the
inequalities (3.27), (3.28), (3.29) and (3.30) hold with reversed signs of inequality,
with

f ′+(m) =− 1
2
√

m
+

1
2
, f ′−(M) =− 1

2
√

M
+

1
2

and

f ′′+(m) =
1

4
√

m3
, f ′′−(M) =

1

4
√

M3
.

� Renyi divergence of the probability distributions ppp and qqq is defined via the gener-
ating function is f (t) = tα , t > 0. We calculate that f ′′′(t) = α(α −1)(α−2)tα−3,
which is 3-convex for 0≤ α ≤ 1 and α ≥ 2, and− f (t) =−tα is 3-convex for α ≤ 0
and 1 < α < 2. We have

f ′+(m) = αmα−1, f ′−(M) = αMα−1,

f ′′+(m) = α(α −1)mα−2 and f ′′−(M) = α(α −1)Mα−2.

As regards the Renyi divergence, the inequalities (3.27), (3.28), (3.29) and (3.30)
hold for 0≤ α ≤ 1 and α ≥ 2, and if α ≤ 0 or 1 < α < 2 the signs of inequality are
reversed.
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� Harmonic divergence of the probability distributions ppp and qqq is defined using the
generating function f (t) = 2t

1+t . We can calculate f ′′′(t) = 12
(1+t)4 > 0, so the function

f is 3-convex. It is obvious that for the harmonic divergence the inequalities (3.27),
(3.28), (3.29) and (3.30) hold with

f ′+(m) =
2

(1+m)2 , f ′−(M) =
2

(1+M)2

and

f ′′+(m) =− 4
(1+m)3 , f ′′−(M) =− 4

(1+M)3 .

� Jeffrey divergence of the probability distributions ppp and qqq is defined using the gen-
erating function f (t) = (1− t) log 1

t , t > 0. We see that f ′′′(t) =− 1
t2
− 2

t3
< 0, so the

function − f (t) = (1− t) log t is 3-convex, and we instantly get that for the Jeffrey
divergence the inequalities (3.27), (3.28), (3.29) and (3.30) hold with reversed signs
of inequality, with

f ′+(m) = logm− 1
m

+1, f ′−(M) = logM− 1
M

+1

and

f ′′+(m) =
1
m

+
1
m2 , f ′′−(M) =

1
M

+
1

M2 .

The results that follow are a generalization of the previous results which hold for the
class of 3-convex functions. Until the end of this section, when mentioning the interval
[a,b], we assume that [a,b]⊆ R+.

We can utilize Theorem 2.9 to get an Edmundson-Lah-Ribarič type inequality for the
above defined generalized f -divergence functional.

Theorem 3.11 Let [a,b]⊂ R be an interval such that a ≤ 1 ≤ b. Let f ∈ C n([a,b]) and
let ppp = (p1, ..., pr) and ppp = (q1, ...,qr) be probability distributions such that pi/qi ∈ [a,b]
for every i = 1, ...,r. If the function f is n-convex and if n and 3≤m≤ n−1 are of different
parity, then

b−1
b−a

f (a)+
1−a
b−a

f (b)− D̃ f (ppp,qqq)

≤ (1−a)( f [a,a]− f [a,b])+
m−1

∑
k=2

f (k)(a)
k!

r

∑
i=1

(pi−aqi)k

qk−1
i

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
r

∑
i=1

(pi−aqi)m(pi−aqi)k−1

qm+k−2
i

. (3.31)

Inequality (3.31) also holds when the function f is n-concave and n and m are of equal
parity. In case when the function f is n-convex and n and m are of equal parity, or when
the function f is n-concave and n and m are of different parity, the inequality sign in (3.31)
is reversed.
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Proof. Let xxx = (x1, ...,xr) be such that xi ∈ [a,b] for i = 1, ...,r. In the relation (2.70) we
can replace

g←→ xxx, and A(xxx) =
r

∑
i=1

pixi.

In that way we get

b− x̄
b−a

f (a)+
x̄−a
b−a

f (b)−
r

∑
i=1

pi f (xi)

≤ (x̄−a)( f [a,a]− f [a,b])+
m−1

∑
k=2

f (k)(a)
k!

r

∑
i=1

pi(xi−a)k

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
r

∑
i=1

pi(xi−a)m(xi−b)k−1,

where x̄ = ∑n
i=1 pixi. In the previous relation we can set

pi = qi and xi =
pi

qi
,

and after calculating
x̄ =

n

∑
i=1

qi
pi

qi
=

n

∑
i=1

pi = 1

we get (3.31). �

By utilizing Theorem 2.10 in the analogous way as above, we get an Edmundson-Lah-
Ribarič type inequality for the generalized f -divergence functional (3.3) which does not
depend on parity of n, and it is given in the following theorem.

Theorem 3.12 Let [a,b]⊂ R be an interval such that a≤ 1 ≤ b. Let f ∈ C n([a,b]) and
let ppp = (p1, ..., pr) and ppp = (q1, ...,qr) be probability distributions such that pi/qi ∈ [a,b]
for every i = 1, ...,r. If the function f is n-convex and if 3≤ m≤ n−1 is odd, then

b−1
b−a

f (a)+
1−a
b−a

f (b)− D̃ f (ppp,qqq)

≤ (b−1)( f [a,b]− f [b,b])+
m−1

∑
k=2

f (k)(b)
k!

r

∑
i=1

(pi−bqi)k

qk−1
i

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
r

∑
i=1

(pi−bqi)m(pi−aqi)k−1

qm+k−2
i

(3.32)

Inequality (3.32) also holds when the function f is n-concave and m is even. In case when
the function f is n-convex and m is even, or when the function f is n-concave and m is odd,
the inequality sign in (3.32) is reversed.

Another generalization of the Edmundson-Lah-Ribarič inequality, which provides with
a lower and an upper bound for the generalized f -divergence functional, is given in the
following theorem.
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Theorem 3.13 Let [a,b]⊂ R be an interval such that a ≤ 1 ≤ b. Let f ∈ C n([a,b]) and
let ppp = (p1, ..., pr) and ppp = (q1, ...,qr) be probability distributions such that pi/qi ∈ [a,b]
for every i = 1, ...,r. If the function f is n-convex and if n is odd, then we have

n−1

∑
k=2

f [a;b,b, ...,b︸ ︷︷ ︸
k times

]
r

∑
i=1

(pi−aqi)(pi−bqi)k−1

qk−1
i

≤ b−1
b−a

f (a)+
1−a
b−a

f (b)− D̃ f (ppp,qqq)

≤ f [a,a;b]
r

∑
i=1

(pi−aqi)(pi−bqi)
qi

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
r

∑
i=1

(pi−aqi)2(pi−bqi)k−1

qk
i

.

(3.33)

Inequalities (3.33) also hold when the function f is n-concave and n is even. In case when
the function f is n-convex and n is even, or when the function f is n-concave and n is odd,
the inequality signs in (3.33) are reversed.

Proof. We start with inequalities (2.73) from Theorem 2.11, and follow the steps from the
proof of Theorem 3.11. �

By utilizing Theorem 2.12 in an analogous way, we can get similar bounds for the
generalized f -divergence functional that hold for all n ∈ N, not only the odd ones.

Theorem 3.14 Let [a,b]⊂ R be an interval such that a ≤ 1 ≤ b. Let f ∈ C n([a,b]) and
let ppp = (p1, ..., pr) and ppp = (q1, ...,qr) be probability distributions such that pi/qi ∈ [a,b]
for every i = 1, ...,r. If the function f is n-convex, then we have

f [b,b;a]
r

∑
i=1

(pi−aqi)(pi−bqi)
qi

+
n−2

∑
k=2

f [b,b;a,a, ...,a︸ ︷︷ ︸
k times

]
r

∑
i=1

(pi−aqi)k−1(pi−bqi)2

qk
i

≤ b−1
b−a

f (a)+
1−a
b−a

f (b)− D̃ f (ppp,qqq)≤
n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]
r

∑
i=1

(pi−aqi)k−1(pi−bqi)
qk−1

i

.

(3.34)

If the function f is n-concave, the inequality signs in (3.34) are reversed.

3.3 Applications to Zipf-Mandelbrot law

The Zipf-Mandelbrot law is a discrete probability distribution with parametersN ∈N, q,s∈
R such that q≥ 0 and s > 0, possible values {1,2, ...,N} and probability mass function

f (i;N,q,s) =
1/(i+q)s

HN,q,s
, where HN,q,s =

N

∑
i=1

1
(i+q)s .
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It is used in various scientific fields: linguistics [115], information sciences [43, 129],
ecological field studies [116] and music [94]. Benoit Mandelbrot in 1966 gave improve-
ment of the Zipf law for the count of the low-rank words. Various scientific fields use this
law for different purposes, for example information sciences use it for indexing [43, 129],
ecological field studies in predictability of ecosystem [116], in music is used to determine
aesthetically pleasing music [94].

Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈N, q1,q2 ≥ 0 and s1,s2 > 0
respectively. We can use Corollary 3.2 and Corollary 3.3 in a similar way as described
above in order to obtain inequalities for the Kullback-Leibler divergence. Let us denote

HN,q1,s1 = H1, HN,q2,s2 = H2

mppp,qqq : = min

{
pi

qi

}
=

H2

H1
min

{
(i+q2)s2

(i+q1)s1

}
Mppp,qqq : = max

{
pi

qi

}
=

H2

H1
max

{
(i+q2)s2

(i+q1)s1

}
(3.35)

Corollary 3.9 ([104]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively. If the base of the logarithm is greater than one,
we have

0≤ DKL(ppp,qqq)
≤ (Mppp,qqq−1)(1−mppp,qqq) sup

t∈〈mppp,qqq,Mppp,qqq〉
Ψid·log(t;mppp,qqq,MP,Q)−Δppp,qqq

≤ 1
Mppp,qqq−mppp,qqq

(Mppp,qqq−1)(1−mppp,qqq) log
Mppp,qqq

mppp,qqq
−Δppp,qqq (3.36)

≤ 1
4
(Mppp,qqq−mppp,qqq)log

Mppp,qqq

mppp,qqq
−Δppp,qqq

and

Δppp,qqq ≤ Mppp,qqqmppp,qqq

Mppp,qqq−mppp,qqq
log

(
mppp,qqq

Mppp,qqq

)
+

1
Mppp,qqq−mppp,qqq

log

(
M

Mppp,qqq
ppp,qqq

m
mppp,qqq
ppp,qqq

)
−DKL(ppp,qqq)

≤ (Mppp,qqq−1)(1−mppp,qqq) sup
t∈〈mppp,qqq,Mppp,qqq〉

Ψid·log(t;mppp,qqq,Mppp,qqq) (3.37)

≤ 1
Mppp,qqq−mppp,qqq

(Mppp,qqq−1)(1−mppp,qqq) log

(
Mppp,qqq

mppp,qqq

)
≤ 1

4
(Mppp,qqq−mppp,qqq)log

(
Mppp,qqq

mppp,qqq

)
,

where DKL(ppp,qqq) is the Kullback-Leibler divergence of distributions ppp and qqq, mppp,qqq and
Mppp,qqq are defined in (3.35), and

Δppp,qqq =

(
1
2
− 1

Mppp,qqq−mppp,qqq

N

∑
i=1

∣∣∣∣ 1
H1(i+q1)s1

− mppp,qqq +Mppp,qqq

2
· 1
H2(i+q2)s2

∣∣∣∣
)

×
(

mppp,qqqlog
2mppp,qqq

mppp,qqq +Mppp,qqq
+Mppp,qqqlog

2Mppp,qqq

mppp,qqq +Mppp,qqq

)
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Remark 3.8 If we utilize Remark 3.3 and Remark 3.4 in the same way as described
above, we can obtain companion inequalities for the reversed Kullback-Leibler divergence
DKL(qqq, ppp) of these distributions.

For finite N and q = 0 the Zipf-Mandelbrot law becomes Zipf’s law. It is one of the
basic laws in information science and bibliometrics, but it is also often used in linguistics.
George Zipf’s in 1932 found that we can count how many times each word appears in the
text. So if we ranked (r) word according to the frequency of word occurrence ( f ), the prod-
uct of these two numbers is a constant C = r ∗ f . Same law in mathematical sense is also
used in other scientific disciplines, but name of the law can be different, since regularities
in different scientific fields are discovered independently from each other. In economics
same law or regularity are called Pareto’s law which analyze and predicts the distribution
of the wealthiest members of the community [36]. The same type of distribution that we
have in Zipf’s and Pareto’s law, also known as the Power law, can be found in wide variety
of scientific disciplines, such as: physics, biology, earth and planetary sciences, computer
science, demography and the social sciences [117] and many others. At this point of time
we will not explain usage and their importance of this law in each scientific field, but we
will retain on frequency of the word usage. Since, words are one of basic properties in
human communication system. That frequency of used word and human communication
system can be explained with plain mathematical formula is extremely interesting and use-
ful in analysis of language and their usage. Since this law is applicable in indexing and
text mining, it is quite useful in today’s world in which we use Internet to retrive most of
the information that we need.

Probability mass function of Zipf’s law is:

f (k;N,s) =
1/ks

HN,s
, where HN,s =

N

∑
i=1

1
is

.

Since Zipf’s law is a special case of the Zipf-Mandelbrot law, all of the results from
above hold for q = 0.

Gelbukh and Sidorov in [50] observed the difference between the coefficients s1 and
s2 in Zipf’s law for the Russian and English language. They processed 39 literature texts
for each language, chosen randomly from different genres, with the requirement that the
size is greater than 10,000 running words each. They calculated coefficients for each of
the mentioned texts and as the result they obtained the average of s1 = 0,892869 for the
Russian language, and s2 = 0,973863 for the English language.

If we take q1 = q2 = 0, we can use the results from the above regarding the Kullback-
Leibler divergence of two Zipf-Mandelbrot distributions in order to give estimates for the
Kullback-Leibler divergence of the distributions associated to the Russian and English
language. For those experimental values of s1 and s2 we have

mN = min

{
pi

qi

}
=

HN,s2

HN,s1
min

{
is2

is1

}
=

HN,s2

HN,s1
min
{
is2−s1

}
=

HN,s2

HN,s1

and

MN = max

{
pi

qi

}
=

HN,s2

HN,s1
max

{
is2

is1

}
=

HN,s2

HN,s1
max

{
is2−s1

}
=

HN,s2

HN,s1
N0,080994.
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Hence the following bounds for the mentioned divergence, arising from Corollary 3.9
and depending only on the parameter N, hold.

0≤ DKL(ppp,qqq)
≤ (MN −1)(1−mN) sup

t∈〈mN ,MN 〉
Ψid·log(t;mN ,MN)−ΔN

≤ 0,080994
MN −mN

(MN −1)(1−mN) logN−ΔN

≤ 0,020249(MN−mN)logN−ΔN

We also have

ΔN ≤ 0,080994N0,080994

N0,080994−1

(
1− HN;0,973863

HN;0,892869

)
logN + log

(
HN;0,973863

HN;0,892869

)
−DKL(ppp,qqq)

≤ (MN −1)(1−mN) sup
t∈〈mN ,MN 〉

Ψid·log(t;mN ,MN)

≤ 0,080994
MN −mN

(MN −1)(1−mN) logN ≤ 0,020249(MN−mN)logN,

where

ΔN =

(
1
2
− 1

HN;0,973863(N0,080994−1)

N

∑
i=1

∣∣∣∣ 1
i0,892869 −

N0,080994 +1
2i0,973863

∣∣∣∣
)

×
(

log
2

N0,080994 +1
+N0,080994log

2N0,080994

N0,080994 +1

)
HN;0,973863

HN;0,892869

By calculating the above results for the Kullback-Leibler divergence of the distributions
associated to the Russian (ppp) and English (qqq) language for different values of the parameter
N, we obtained the following bounds:

• from the first series of inequalities:

N 5000 10000 50000 100000
DKL(ppp,qqq)≤ 0,0862934 0,100855 0,138862 0,157016

• from the second series of inequalities:

N 5000 10000 50000 100000
DKL(ppp,qqq)≤ 0,00106 0,001274 0,0018269 0,002091

The base of the logarithm used in our calculations is 2.
Again, ppp and qqq are Zipf-Mandelbrot laws with parameters N ∈N, q1,q2≥ 0 and s1,s2 >

0 respectively, and let mppp,qqq and Mppp,qqq be defined in (3.35).
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In the following three results we will denote parameters in Zipf-Mandelbrot law as
l, t1,s1. If we define q as a Zipf-Mandelbrot law l-tuple, we have

qi =
1

(i+ t2)s2Hl,s2,t2
, i = 1, . . . , l

where

Hl,s2,t2 =
l

∑
i=1

1
(k+ t2)s2

and Csiszar functional becomes

D̂ f (p, i, l,s2,t2) =
l

∑
i=1

1
(i+ t2)s2Hl,s2,t2

f
(
pi(i+ t2)s2Hl,s2,t2

)
,

where f : I → R, I ⊆ R, and the parameters l ∈ N, s2 > 0, t2 ≥ 0 are such that pi(i +
t2)s2Hl,s2,t2 ∈ I, i = 1, . . . , l.

If p and q are both defined as Zipf-Mandelbrot law l-tuples, then Csiszar functional
becomes

D̂ f (i, l,s1,s2,t1,t2) =
l

∑
i=1

1
(i+ t2)s2Hl,s2,t2

f

(
(i+ t2)s2Hl,s2,t2

(i+ t1)s1Hl,s1,t1

)
,

where f : I → R, I ⊆ R, and the parameters l ∈ N, s1,s2 > 0, t1, t2 ≥ 0 are such that
(i+t2)s2 Hl,s2,t2
(i+t1)s1 Hl,s1,t1∈ I, i = 1, . . . , l.

Since the minimal value for qi is min{qi} = 1
(l+t2)s2 Hl,s2,t2

, then from Theorem 3.4 we

have the following result.

Corollary 3.10 [122] Let p = (p1, . . . ,pl) be an l-tuple of real numbers with Pl = ∑l
i=1 pi.

Suppose I ⊆ R is an interval, l ∈ N and s2 > 0, t2 ≥ 0 are such that pi(i+ t2)s2Hl,s2,t2 ∈ I,
i = 1, . . . , l. If f : I→ R is a convex function, then

D̂ f (ppp, i, l,s2,t2)≤ M−Pl

M−m
f (m)+

Pl−m
M−m

f (M)

−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)
1

(l + t2)s2Hl,s2,t2

[(
rn · χ( k−1

2n , k
2n )

)( pi(i+ t2)s2HM,s2,t2 −m
M−m

)]

≤ M−Pl

M−m
f (m)+

Pl−m
M−m

f (M)−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)
1

M−m[
(2n(pi−mmin{qi})−min{qi}(M−m)(k−1)) · χ( k−1

2n , 2k−1
2n+1

)( pi(i+ t2)s2HM,s2,t2 −m
M−m

)
+ (min{qi}(M−m)k−2n(pi−mmin{qi}))χ( 2k−1

2n+1 , k
2n

)( pi(i+ t2)s2HM,s2,t2 −m
M−m

)]
(3.38)
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Proof. Follows easily from Theorem 3.4. �

Now let’s denote

Hl,s1,t1 = H1,Hl,s2,t2 = H2,

mp,q := min

{
pi

qi

}
=

H2

H1
min

{
(i+q2)s2

(i+q1)s1

}
.

Corollary 3.11 [122] Let I ⊆ R be an interval and suppose N ∈ N, s1,s2 > 0, q1,q2 ≥ 0

are such that
(i+t2)s2Hl,s2,t2
(i+t1)s1Hl,s1,t1

∈ I, i = 1, . . . , l.

If f : I→R is a convex function, then

D̂ f (i, l,s1,s2, t1, t2)≤ M−1
M−m

f (m)+
1−m
M−m

f (M)

−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)
1

(l + t2)s2Hl,s2,t2

⎡⎢⎣(rn · χ( k−1
2n , k

2n )

)⎛⎜⎝
(i+t2)s2 Hl,s2,t2
(i+t1)s1 Hl,s1,t1

−m

M−m

⎞⎟⎠
⎤⎥⎦

≤ M−1
M−m

f (m)+
1−m
M−m

f (M)−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δ f (m,M,n,k)
1

(l + t2)s2Hl,s2,t2
·

·

⎡⎢⎣(2n
(

mp,q−m

M−m

)
− k+1

)
· χ( k−1

2n , 2k−1
2n+1

)
⎛⎜⎝

(i+t2)s2Hl,s2 ,t2
(i+t1)s1Hl,s1 ,t1

−m

M−m

⎞⎟⎠
+
(

k−2n
(

mp,q−m
M−m

))
χ( 2k−1

2n+1 , k
2n

)
⎛⎜⎝

(i+t2)s2Hl,s2 ,t2
(i+t1)s1Hl,s1 ,t1

−m

M−m

⎞⎟⎠
⎤⎥⎦ . (3.39)

Proof. Follows easily from Theorem 3.4. �

We denote Kullback-Leibler divergence for p and q both defined as Zipf-Mandelbrot
law l-tuples as DKL(i, l,s1,s2,t1,t2).

Corollary 3.12 [122] Let l ∈ N and s1,s2 > 0, t1,t2 ≥ 0.
If the logarithm base is greater than 1, then

DKL(ppp,qqq)≤ Mm
M−m

log
(m

M

)
+

1
M−m

log

(
MM

mm

)
(3.40)

−
N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δlog(m,M,n,k)
1

(l + t2)s2Hl,s2,t2

⎡⎢⎣(rn · χ( k−1
2n , k

2n )

)⎛⎜⎝
(i+t2)s2 Hl,s2,t2
(i+t1)s1 Hl,s1,t1

−m

M−m

⎞⎟⎠
⎤⎥⎦

≤ Mm
M−m

log
(m

M

)
+

1
M−m

log

(
MM

mm

)
−

N−1

∑
n=0

2n

∑
k=1

l

∑
i=1

Δlog(m,M,n,k)
1

(l + t2)s2Hl,s2,t2
·
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·

⎡⎢⎣(2n
(

mp,q−m

M−m

)
− k+1

)
· χ( k−1

2n , 2k−1
2n+1

)
⎛⎜⎝

(i+t2)s2Hl,s2 ,t2
(i+t1)s1Hl,s1 ,t1

−m

M−m

⎞⎟⎠
+
(

k−2n
(

mp,q−m
M−m

))
χ( 2k−1

2n+1 , k
2n

)
⎛⎜⎝

(i+t2)s2Hl,s2,t2
(i+t1)s1Hl,s1,t1

−m

M−m

⎞⎟⎠
⎤⎥⎦ . (3.41)

If the base of the logarithm is less than 1, the inequality signs in the inequalities above are
reversed.

Proof. Follows easily from Corollary 3.4. �

Next result is a special case of Corollary 3.5 and Corollary 3.6, and it gives us Edmund-
son-Lah-Ribarič and Jensen type inequalities for the Kullback-Leibler divergence of two
Zipf-Mandelbrot laws. In contrast to previous results, function f is not necessarily convex
in the classical sense.

Corollary 3.13 ([105]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively. Then we have

0≤ 1
Mppp,qqq−mppp,qqq

(
logMppp,qqq +1− 1

Mppp,qqq−mppp,qqq
log

M
Mppp,qqq
ppp,qqq

m
mppp,qqq
ppp,qqq

)
×

N

∑
i=1

1
(i+q2)s2H2

(
Mppp,qqq− H2

H1

(i+q2)s2

(i+q1)s1

)(
H2

H1

(i+q2)s2

(i+q1)s1
−mppp,qqq

)

≤ mppp,qqqMppp,qqq

Mppp,qqq−mppp,qqq
log

mppp,qqq

Mppp,qqq
+

1
Mppp,qqq−mppp,qqq

log
M

Mppp,qqq
ppp,qqq

m
mppp,qqq
ppp,qqq
−DKL(ppp,qqq)

≤ 1
Mppp,qqq−mppp,qqq

(
1

Mppp,qqq−mppp,qqq
log

M
Mppp,qqq
ppp,qqq

m
mppp,qqq
ppp,qqq
− logmppp,qqq−1

)
×

N

∑
i=1

1
(i+q2)s2H2

(
Mppp,qqq− H2

H1

(i+q2)s2

(i+q1)s1

)(
H2

H1

(i+q2)s2

(i+q1)s1
−mppp,qqq

)

≤ 1
Mppp,qqq−mppp,qqq

(
1

Mppp,qqq−mppp,qqq
log

M
Mppp,qqq
ppp,qqq

m
mppp,qqq
ppp,qqq
− logmppp,qqq−1

)
(Mppp,qqq−1)(1−mppp,qqq)

≤ 1
4

(
log

M
Mppp,qqq
ppp,qqq

m
mppp,qqq
ppp,qqq
− (logmppp,qqq +1)(Mppp,qqq−mppp,qqq)

)

and

0≤DKL(ppp,qqq)

≤ 1
Mppp,qqq−mppp,qqq

[(
1

Mppp,qqq−mppp,qqq
log

M
Mppp,qqq
ppp,qqq

m
mppp,qqq
ppp,qqq
− logm−1

)
(Mppp,qqq−1)(1−mppp,qqq)
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−
(

logMppp,qqq +1− 1
Mppp,qqq−mppp,qqq

log
M

Mppp,qqq
ppp,qqq

m
mppp,qqq
ppp,qqq

)
×

N

∑
i=1

1
(i+q2)s2H2

(
Mppp,qqq− H2

H1

(i+q2)s2

(i+q1)s1

)(
H2

H1

(i+q2)s2

(i+q1)s1
−mppp,qqq

)]
.

Remark 3.9 From Corollary 3.7 and Corollary 3.8 we can obtain the same type of in-
equalities, but for the reversed Kullback-Leibler divergence DKL(qqq, ppp) of the Zipf-Mandel-
brot distributions ppp and qqq.

Since Zipf’s law is a special case of the Zipf-Mandelbrot law, two previous results hold
for Zipf’s law with q = 0.

Again, if we take q1 = q2 = 0, we can use the results from the above regarding the
Kullback-Leibler divergence of two Zipf-Mandelbrot distributions in order to give esti-
mates for the Kullback-Leibler divergence of the distributions associated to the Russian
and English language. As said before, for those experimental values of s1 and s2 we have

mN = min

{
pi

qi

}
=

HN,s2

HN,s1
min

{
is2

is1

}
=

HN,s2

HN,s1
min
{
is2−s1

}
=

HN,s2

HN,s1

and

MN = max

{
pi

qi

}
=

HN,s2

HN,s1
max

{
is2

is1

}
=

HN,s2

HN,s1
max

{
is2−s1

}
=

HN,s2

HN,s1
N0,080994.

Hence the following bounds for the mentioned divergence, depending only on the pa-
rameter N, hold.

0≤ 1
MN−mN

(
logMN +1− 1

MN−mN
log

MMN
N

mmN
N

)
×

N

∑
i=1

HN,0,973863

i0,973863H2
N,0,892869

(
N0,080994− i0,080994)(i0,080994−1

)
≤ mNMN

MN−mN
log

mN

MN
+

1
MN−mN

log
MMN

N

mmN
N
−DKL(ppp,qqq)

≤ 1
MN−mN

(
1

MN−mN
log

MMN
N

mmN
N
− logmN −1

)
×

N

∑
i=1

HN,0,973863

i0,973863H2
N,0,892869

(
N0,080994− i0,080994)(i0,080994−1

)
≤ 1

MN−mN

(
1

MN−mN
log

MMN
N

mmN
N
− logmN −1

)
(MN −1)(1−mN)

≤ 1
4

(
log

MMN
N

mmN
N
− (logmN +1)(MN−mN)

)
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0≤ DKL(ppp,qqq)≤ 1
MN −mN

[(
1

MN−mN
log

MMN
N

mmN
N
− logmN−1

)
(MN−1)(1−mN)

−
(

logM +1− 1
M−m

log
MM

mm

)
×

N

∑
i=1

HN,0,973863

i0,973863H2
N,0,892869

(
N0,080994− i0,080994)(i0,080994−1

)]
.

By calculating the above results for the Kullback-Leibler divergence of the distributions
associated to the Russian (ppp) and English (qqq) language for different values of the parameter
N, we obtained the following bounds:

• from the first series of inequalities:

N 5000 10000 50000 100000
DKL(ppp,qqq)≤ 1.19101 1.16826 1.12176 1.10408

• from the second series of inequalities:

N 5000 10000 50000 100000
DKL(ppp,qqq)≤ 0.170194 0.189118 0.236439 0.258335

The base of the logarithm used in our calculations is 2.
The result that follows is a special case of Theorem 3.7, and it gives us Edmundson-

Lah-Ribarič type inequality for the generalized f -divergence of the Zipf-Mandelbrot law.

Corollary 3.14 ([103]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let mppp,qqq and Mppp,qqq be defined in (3.35). Let
f : [mppp,qqq,Mppp,qqq]→R be a 3-convex function. Then we have

1
Mppp,qqq−mppp,qqq

(
f (Mppp,qqq)− f (mppp,qqq)

Mppp,qqq−mppp,qqq
− f ′+(mppp,qqq)

)
×

n

∑
i=1

1
(i+q2)s2H2

(
Mppp,qqq− (i+q2)s2H2

(i+q1)s1H1

)(
(i+q2)s2H2

(i+q1)s1H1
−mppp,qqq

)
≤ Mppp,qqq−1

Mppp,qqq−mppp,qqq
f (mppp,qqq)+

1−mppp,qqq

Mppp,qqq−mppp,qqq
f (Mppp,qqq)− D̃ f (ppp,qqq) (3.42)

≤ 1
Mppp,qqq−mppp,qqq

(
f ′−(Mppp,qqq)− f (Mppp,qqq)− f (mppp,qqq)

Mppp,qqq−mppp,qqq

)
×

n

∑
i=1

1
(i+q2)s2H2

(
Mppp,qqq− (i+q2)s2H2

(i+q1)s1H1

)(
(i+q2)s2H2

(i+q1)s1H1
−mppp,qqq

)
.

Next result follows directly from Theorem 3.8, and it represents a Jensen type inequal-
ity for the generalized f -divergence of the Zipf-Mandelbrot law without the assumption on
the convexity of the function f in the classical sense.
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Corollary 3.15 ([103]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let mppp,qqq and Mppp,qqq be defined in (3.35). Let
f : [mppp,qqq,Mppp,qqq]→R be a 3-convex function. Then we have

(Mppp,qqq−1)(1−mppp,qqq)
Mppp,qqq−mppp,qqq

(
f (Mppp,qqq)− f (mppp,qqq)

Mppp,qqq−mppp,qqq
− f ′+(mppp,qqq)

)
− 1

Mppp,qqq−mppp,qqq

(
f ′−(Mppp,qqq)− f (Mppp,qqq)− f (mppp,qqq)

Mppp,qqq−mppp,qqq

)
×

n

∑
i=1

1
(i+q2)s2H2

(
Mppp,qqq− (i+q2)s2H2

(i+q1)s1H1

)(
(i+q2)s2H2

(i+q1)s1H1
−mppp,qqq

)
≤ D̃ f (ppp,qqq)− f (1) (3.43)

≤ (Mppp,qqq−1)(1−mppp,qqq)
Mppp,qqq−mppp,qqq

(
f ′−(Mppp,qqq)− f (Mppp,qqq)− f (mppp,qqq)

Mppp,qqq−mppp,qqq

)
− 1

Mppp,qqq−mppp,qqq

(
f (Mppp,qqq)− f (mppp,qqq)

Mppp,qqq−mppp,qqq
− f ′+(mppp,qqq)

)
×

n

∑
i=1

1
(i+q2)s2H2

(
Mppp,qqq− (i+q2)s2H2

(i+q1)s1H1

)(
(i+q2)s2H2

(i+q1)s1H1
−mppp,qqq

)
.

Remark 3.10 Corollary 3.14 and Corollary 3.15 can easily be applied to Kullback-Leibler
divergence, Hellinger divergence, Renyi divergence, harmonic divergence or Jeffrey diver-
gence considering Remark 3.7.

The following result is a special case of Theorem 3.9, and it gives us Edmundson-Lah-
Ribarič type inequality for the generalized f -divergence of the Zipf-Mandelbrot law.

Corollary 3.16 ([106]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let mppp,qqq and Mppp,qqq be defined in (3.35). Let
f : [mppp,qqq,Mppp,qqq]→R be a 3-convex function. Then we have

(1−mppp,qqq)
[

f (Mppp,qqq)− f (mppp,qqq)
Mppp,qqq−mppp,qqq

− f ′+(mppp,qqq)
2

]
− 1

2

n

∑
i=1

(
1

(i+q1)s1H1
− mppp,qqq

(i+q2)s2H2

)
f ′
(

H2

H1

(i+q2)s2

(i+q1)s1

)
≤ Mppp,qqq−1

Mppp,qqq−mppp,qqq
f (mppp,qqq)+

1−mppp,qqq

Mppp,qqq−mppp,qqq
f (Mppp,qqq)− D̃ f (ppp,qqq) (3.44)

≤ 1
2

n

∑
i=1

(
Mppp,qqq

(i+q2)s2H2
− 1

(i+q1)s1H1

)
f ′
(

H2

H1

(i+q2)s2

(i+q1)s1

)
− (Mppp,qqq−1)

[
f (Mppp,qqq)− f (mppp,qqq)

Mppp,qqq−mppp,qqq
− f ′−(Mppp,qqq)

2

]
.

Next result follows directly from Theorem 2.8, and it gives us another Edmundson-
Lah-Ribarič type inequality for the generalized f -divergence of the Zipf-Mandelbrot law.
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Corollary 3.17 ([106]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let mppp,qqq and Mppp,qqq be defined in (3.35). Let
f : [mppp,qqq,Mppp,qqq]→R be a 3-convex function. Then we have

(Mppp,qqq−1)
[

f ′−(Mppp,qqq)− f (Mppp,qqq)− f (mppp,qqq)
Mppp,qqq−mppp,qqq

]
− f ′′−(Mppp,qqq)

2

n

∑
i=1

(i+q2)s2H2

(
Mppp,qqq

(i+q2)s2H2
− 1

(i+q1)s1H1

)2

≤ Mppp,qqq−1
Mppp,qqq−mppp,qqq

f (mppp,qqq)+
1−mppp,qqq

Mppp,qqq−mppp,qqq
f (Mppp,qqq)− D̃ f (ppp,qqq) (3.45)

≤ (1−mppp,qqq)
[

f (Mppp,qqq)− f (mppp,qqq)
Mppp,qqq−mppp,qqq

− f ′+(mppp,qqq)
]

− f ′′+(mppp,qqq)
2

n

∑
i=1

(i+q2)s2HN,q2,s2

(
1

(i+q1)s1H1
− mppp,qqq

(i+q2)s2H2

)2

.

Remark 3.11 Again, by taking into consideration Remark 3.7 one can see that Corol-
lary 3.16 and Corollary 3.17 can easily be applied to any of the following divergences:
Kullback-Leibler divergence, Hellinger divergence, Renyi divergence, harmonic diver-
gence or Jeffrey divergence.

The following results are special cases of Theorems 3.11, 3.12, 3.13 and 3.14 respec-
tively, and they gives us Edmundson-Lah-Ribarič type inequality for the generalized f -
divergence of the Zipf-Mandelbrot law.

Corollary 3.18 ([107]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let H1, H2, appp,qqq and bppp,qqq be defined in (3.35). Let
f ∈ C n([appp,qqq,bppp,qqq]) be a n-convex function. If n and 3 ≤ m≤ n−1 are of different parity,
then

bppp,qqq−1
bppp,qqq−appp,qqq

f (appp,qqq)+
1−appp,qqq

bppp,qqq−appp,qqq
f (bppp,qqq)− D̃ f (ppp,qqq)

≤ (1−appp,qqq)
(
f ′(appp,qqq)− f [appp,qqq,bppp,qqq]

)
+

m−1

∑
k=2

f (k)(appp,qqq)
H2k!

r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−appp,qqq

)k

(i+q2)s2

+
n−m

∑
k=1

f [appp,qqq, ...,appp,qqq︸ ︷︷ ︸
m times

;bppp,qqq, ...,bppp,qqq︸ ︷︷ ︸
k times

]
r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−appp,qqq

)m(H2(i+q2)s2
H1(i+q1)s1

−bppp,qqq

)k−1

H2(i+q2)s2
.

This inequality also holds when the function f is n-concave and n and m are of equal
parity. In case when the function f is n-convex and n and m are of equal parity, or when
the function f is n-concave and n and m are of different parity, the inequality sign is
reversed.
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Corollary 3.19 ([107]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let H1, H2, appp,qqq and bppp,qqq be defined in (3.35).
Let Let f ∈ C n([appp,qqq,bppp,qqq]) be a n-convex function. If the function f is n-convex and if
3≤ m≤ n−1 are of different parity, then

bppp,qqq−1
bppp,qqq−appp,qqq

f (appp,qqq)+
1−appp,qqq

bppp,qqq−appp,qqq
f (bppp,qqq)− D̃ f (ppp,qqq)

≤ (bppp,qqq−1)
(
f [appp,qqq,bppp,qqq]− f ′(bppp,qqq)

)
+

m−1

∑
k=2

f (k)(bppp,qqq)
H2k!

r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−bppp,qqq

)k

(i+q2)s2

+
n−m

∑
k=1

f [bppp,qqq, ...,bppp,qqq︸ ︷︷ ︸
m times

;appp,qqq, ...,appp,qqq︸ ︷︷ ︸
k times

]
r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−bppp,qqq

)m(H2(i+q2)s2
H1(i+q1)s1

−appp,qqq

)k−1

H2(i+q2)s2
.

The inequality above also holds when the function f is n-concave and m is even. In case
when the function f is n-convex and m is even, or when the function f is n-concave and m
is odd, the inequality sign is reversed.

Corollary 3.20 ([107]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let H1, H2, appp,qqq and bppp,qqq be defined in (3.35).
Let Let f ∈ C n([appp,qqq,bppp,qqq]) be a n-convex function. If the function f is n-convex and if n is
odd, then we have

n−1

∑
k=2

f [appp,qqq;bppp,qqq, ...,bppp,qqq︸ ︷︷ ︸
k times

]
r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−appp,qqq

)(
H2(i+q2)s2
H1(i+q1)s1

−bppp,qqq

)k−1

H2(i+q2)s2

≤ bppp,qqq−1
bppp,qqq−appp,qqq

f (appp,qqq)+
1−appp,qqq

bppp,qqq−appp,qqq
f (bppp,qqq)− D̃ f (ppp,qqq)

≤ f [appp,qqq,appp,qqq;bppp,qqq]
r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−appp,qqq

)(
H2(i+q2)s2
H1(i+q1)s1

−bppp,qqq

)
H2(i+q2)s2

+
n−2

∑
k=2

f [appp,qqq,appp,qqq;bppp,qqq, ...,bppp,qqq︸ ︷︷ ︸
k times

]
r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−appp,qqq

)2(H2(i+q2)s2
H1(i+q1)s1

−bppp,qqq

)k−1

H2(i+q2)s2
.

These inequalities also hold when the function f is n-concave and n is even. In case when
the function f is n-convex and n is even, or when the function f is n-concave and n is odd,
the inequality signs are reversed.

Corollary 3.21 ([107]) Let ppp and qqq be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let H1, H2, appp,qqq and bppp,qqq be defined in (3.35). Let
Let f ∈ C n([appp,qqq,bppp,qqq]) be a n-convex function. If the function f is n-convex, then we have

f [bppp,qqq,bppp,qqq;appp,qqq]
r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−appp,qqq

)(
H2(i+q2)s2
H1(i+q1)s1

−bppp,qqq

)
H2(i+q2)s2
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+
n−2

∑
k=2

f [bppp,qqq,bppp,qqq;appp,qqq, ...,appp,qqq︸ ︷︷ ︸
k times

]
r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−appp,qqq

)k−1(H2(i+q2)s2
H1(i+q1)s1

−bppp,qqq

)2

H2(i+q2)s2

≤ b−1
b−a

f (a)+
1−a
b−a

f (b)− D̃ f (ppp,qqq)

≤
n−1

∑
k=2

f [bppp,qqq;appp,qqq, ...,appp,qqq︸ ︷︷ ︸
k times

]
r

∑
i=1

(
H2(i+q2)s2
H1(i+q1)s1

−appp,qqq

)k−1(H2(i+q2)s2
H1(i+q1)s1

−bppp,qqq

)
H2(i+q2)s2

.

If the function f is n-concave, the inequality signs are reversed.





Chapter4
Converse inequalities in
compact Hausdorff space

In this chapter we will prove difference type converses of the Jensen and Edmundson-
Lah-Ribarič operator inequality for a unital field of positive linear mappings between C∗-
algebras of operators in compact Hausdorff space, as well as further refinements and im-
provements thereto. Obtained general result will be applied to quasi-arithmetic operator
means and to potential operator means with the aim of obtaining a better estimate of the
difference between these means. Likewise, the mutual bounds for the Jensen operator in-
equality and the Lah-Ribarič operator inequality for the classes of bounded real-valued
functions and Lipschitzian functions will be studied. The connection with the classical
convexity will also be discussed. In the last section we give several mutual bounds for
the operator version of the Edmundson-Lah-Ribarič inequality which hold for the class of
n-convex functions. By virtue of the established estimates, we then derive several mutual
bounds for the Jensen operator inequality which are also related to n-convex functions. As
an application, we obtain mutual bounds for the differences of quasi-arithmetic and power
operator means based on n-convexity.
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4.1 Introduction

Let T be a locally compact Hausdorff space and let A be a C∗-algebra. We say that a
field (xt)t∈T of elements in A is continuous if the function t → xt is norm continuous on
T . Additionally, if T is equipped with a Radon measure μ and the function t → ||xt || is
integrable, then, the so-called Bochner integral

∫
T xtdμ(t) can be formed. More precisely,

the Bochner integral is the unique element in A such that the relation

ϕ
(∫

T
xtdμ(t)

)
=
∫

T
ϕ (xt)dμ(t)

holds for every linear functional ϕ in the norm dual A ∗ (see [55]).
Assume furthermore that there is a field (φt )t∈T of positive linear mappings φt : A →B

from A to another C∗-algebra B. Such field is said to be continuous if the function t →
φt(x) is continuous for every x ∈ A . If the C∗-algebras are unital and the field t → φt (1)
is integrable with integral 1, we say that (φt)t∈T is unital. We assume that such field is
continuous.

Let x and y be operators (acting) on an infinite dimensional Hilbert space H . The
ordering is defined by setting x≤ y if y− x is a positive semi-definite operator.

A continuous function f : I→ R is operator convex if

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y)

holds for each λ ∈ [0,1] and every pair of self-adjoint operators x and y (acting) on an infi-
nite dimensional Hilbert space H with spectra in I. When the inequality sign is reversed,
function f is operator concave.

If f : I → R is operator convex function, where I is a real interval of any type, and
(φt )t∈T is a unital field, then the Jensen operator inequality (see Hansen et.al., [56]) asserts
that

f

(∫
T

φt(xt)dμ(t)
)
≤
∫

T
φt ( f (xt))dμ(t) (4.1)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in I. If f : I→R is operator concave function, then the sign of inequality in (4.1)
is reversed.

In the same paper, Hansen et.al. obtained the following inequality which holds for an
usual convex function f : [m,M]→ R (see [56], proof of Theorem 2):∫

T
φt( f (xt ))dμ(t)≤ α f

∫
T

φt(xt)dμ(t)+ β f1. (4.2)

In this matter, the usual notation is used:

α f =
f (M)− f (m)

M−m
and β f =

M f (m)−mf (M)
M−m

.
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Inequality (4.2) is referred to as the Edmundson-Lah-Ribarič operator inequality. Observe
that the operator inequality (4.2) is established by applying the functional calculus to the
well-known inequality

f (t)≤ α f t + βt, (4.3)

which holds for every convex function on the interval [m,M]. Recall that l(t) = α f t +βt is
the linear function limiting convex function f (t) on interval [m,M] from the above.

On the other hand, Mićić, Pečarić and Perić in [99] obtained the following improvement
of the Edmundson-Lah-Ribarič operator inequality∫

T
φt( f (xt ))dμ(t)≤ α f

∫
T

φt(xt)dμ(t)+ β f1− δ f x, (4.4)

where

x =
1
2
1− 1

M−m

∫
T

φt

(∣∣xt − m+M
2

1
∣∣)dμ(t) (4.5)

and

δ f = f (m)+ f (M)−2 f

(
m+M

2

)
. (4.6)

Since f : [m,M]→R is convex function, it follows that x≥ 0 and δ f ≥ 0.
The techniques that will be used in the proofs are mainly based on the classical real and

functional calculus, especially on the well-known monotonicity principle for self-adjoint
elements of a C∗-algebra A : If x ∈A with a spectra Sp(x), then

f (t)≥ g(t), t ∈ Sp(x) =⇒ f (x) ≥ g(x), (4.7)

where f and g are real continuous functions (for more details see [49]). Moreover, all the
results that follow include the Bochner integral, defined in this Introduction. If nothing else
is explicitly stated, (xt)t∈T is a bounded continuous field of self-adjoint elements in unital
C∗-algebra whose spectra belongs to a domain of the corresponding function and (φt)t∈T

is a unital field of positive linear mappings between the corresponding unital C∗-algebras.
The following results refer to functions that are convex in the classical sense. Although

regarding different inequalities, it appears that these two series of converses are closely
connected.

4.2 Converses of the Jensen and Edmundson-Lah-
-Ribarič operator inequality

First we give a series of converses for the Jensen operator inequality obtained in [65]. It
should be noticed here that the following theorem in the classical real case was proved
by Dragomir in the recent paper [37], and generalization of the same inequality for lin-
ear functionals was proved by Jakšić and Pečarić in [68]. In fact, such series of scalar
inequalities will be exploited in establishing the corresponding operator form.
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Theorem 4.1 Let f : I→ R be a continuous convex function, and let m,M ∈ R, m < M,
be such that interval [m,M] belongs to the interior of interval I. Further, suppose A and B
are unitalC∗-algebras, and (φt )t∈T is a unital field of positive linear mappings φt : A →B
defined on a locally compact Hausdorff space T with a bounded Radon measure μ . Then
the series of inequalities∫

T
φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1 (4.8)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. If f is concave on I, then the signs of inequalities in (4.8) are reversed.

Proof. Taking into account the operator version of the Lah-Ribarič inequality (4.2), it
follows that ∫

T
φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ α f

∫
T

φt(xt)dμ(t)+ β f 1− f

(∫
T

φt(xt)dμ(t)
)

. (4.9)

On the other hand, regarding convexity of f , we have the so-called gradient inequality,

f (t)− f (M)≥ f ′−(M)(t−M),

which holds for every t ∈ [m,M], that is,

(t−m) f (t)− (t−m) f (M)≥ f ′−(M)(t−M)(t−m), t ∈ [m,M],

after multiplying with t−m. In the same way, it follows that

(M− t) f (t)− (M− t) f (m)≥ f ′+(m)(M− t)(t−m), t ∈ [m,M].

Now, adding the above two inequalities, and then, dividing by m−M, we have

α f t + β f − f (t)≤ f ′−(M)− f ′+(m)
M−m

(M− t)(t−m). (4.10)

Moreover, taking into account the arithmetic-geometric mean inequality, the following
series of inequalities holds for all t ∈ [m,M] (see also [37]):

α f t + β f − f (t) ≤ f ′−(M)− f ′+(m)
M−m

(M− t)(t−m)

≤ 1
4
(M−m)( f ′−(M)− f ′+(m)). (4.11)
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Now, since m1 ≤ xt ≤M1 for every t ∈ T , it follows that mφt(1)≤ φt(xt)≤Mφt(1), that
is, m1≤ ∫T φt(xt)dμ(t)≤M1. Hence, applying the functional calculus to the above series
of inequalities, that is, setting

∫
T φt(xt)dμ(t) instead of t, we have

α f

∫
T

φt(xt)dμ(t)+ β f 1− f

(∫
T

φt(xt)dμ(t)
)

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1. (4.12)

Finally, comparing (4.9) and (4.12), we obtain (4.8), as claimed. �

Remark 4.1 Observe that in the statement of Theorem 4.1 the interval [m,M] belongs to
the interior of the interval I. This condition assures finiteness of the one-sided derivatives
in (4.8). Without this assumption these derivatives might be infinite.

Remark 4.2 It should be noticed here that the first expression in the series of inequalities
(4.8), that is, the element

∫
T φt( f (xt))dμ(t)− f (

∫
T φt(xt)dμ(t)) is not positive in general.

This element is positive if f is in addition operator convex function, due to the Jensen
operator inequality (4.1).

The following result was also proved in [65] and it represents converses of the Ed-
mundson-Lah-Ribarič operator inequality (4.2):

Theorem 4.2 Suppose f : I→R is a continuous convex function, and m,M ∈R, m < M,
are such that interval [m,M] belongs to the interior of interval I. Further, let (φt )t∈T be
a unital field of positive linear mappings φt : A → B, where A and B are unital C∗-
algebras, defined on a locally compact Hausdorff space T with a bounded Radon measure
μ . Then the series of inequalities

0 ≤ α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt( f (xt))dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

∫
T

φt ([M1− xt][xt −m1])dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1 (4.13)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. If f is concave on I, then the signs of inequalities in (4.13) are
reversed.

Proof. The first inequality in (4.13) holds by virtue of the Edmundson-Lah-Ribarič in-
equality (4.2). Further, starting from the scalar inequality (4.10), it follows that relation

α f xt + β f 1− f (xt)≤ f ′−(M)− f ′+(m)
M−m

(M1− xt)(xt −m1)
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holds for every t ∈ T . Now, applying the positive linear mappings φt to the above relation,
we obtain

α f φt(xt)+ β f φt (1)−φt( f (xt ))≤ f ′−(M)− f ′+(m)
M−m

φt([M1− xt][xt −m1]),

while integrating yields

α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt( f (xt ))dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

∫
T

φt ([M1− xt][xt −m1])dμ(t),

so the second inequality in (4.13) holds.
Taking into account Theorem 4.1, it is enough to justify the third inequality sign in

(4.13). To prove our assertion, we note that the function

h(t) = (M− t)(t−m) =−t2 +(M +m)t−Mm, t ∈ [m,M]

is operator concave (see e.g. [49]). Finally, applying the Jensen operator inequality (4.1)
to the above function h, it follows that∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤
(

M1−
∫
T

φt (xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
,

and the proof is completed. �

Following results are obtained in [66] and they represent more precise converses of the
Jensen and Edmundson-Lah-Ribarič operator inequality, and they represent also refine-
ments of the inequalities (4.8) and (4.13) respectively. Such improved relations are also
accompanied with a convexity in the classical real sense.

In order to present our basic results, we define

Δ f (t;m,M) =
1

M−m

[
f (M)− f (t)

M− t
− f (t)− f (m)

t−m

]
, (4.14)

where m < M and f : I→ R is a continuous convex function such that the interval [m,M]
belongs to the interior of interval I. Observe that expression (4.14) is actually the second
order divided difference of the function f at points m, t, and M, for every t ∈ (m,M).

Remark 4.3 Observe that the function f is defined on the interval I whose interior con-
tains interval [m,M]. This condition ensures finiteness of one-sided derivatives at points m
and M. Then,

lim
t→m+

Δ f (t;m,M) =
1

M−m

[
f (M)− f (m)

M−m
− f ′+(m)

]
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and

lim
t→M−

Δ f (t;m,M) =
1

M−m

[
f ′−(M)− f (M)− f (m)

M−m

]
,

so Δ f (·;m,M) may be regarded as a continuous function (in parameter t) on the interval
[m,M]. Therefore, if x is a self-adjoint element in C∗-algebra with spectra contained in
[m,M], then the expression Δ f (x;m,M) is also meaningful. Clearly, this assertion holds
due to functional calculus.

Now we give two series of converses for the Jensen operator inequality. One of them
refines series (4.8). The classical real version of the following theorem was proved by
Dragomir in recent paper [38]. In fact, such scalar series of inequalities will be exploited
in establishing the corresponding operator forms.

Theorem 4.3 Let f : I→ R be a continuous convex function, and let m,M ∈ R, m < M,
be such that interval [m,M] belongs to the interior of interval I. Further, suppose A and B
are unitalC∗-algebras, and (φt)t∈T is a unital field of positive linear mappings φt : A →B
defined on a locally compact Hausdorff space T with a bounded Radon measure μ . Then
the series of inequalities∫

T
φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ sup
m<t<M

Δ f (t;m,M)
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt (xt)dμ(t)−m1

)
≤ f ′−(M)− f ′+(m)

M−m

(
M1−

∫
T

φt (xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1 (4.15)

and ∫
T

φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ 1
4
(M−m)2Δ f

(∫
T

φt(xt)dμ(t);m,M

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1 (4.16)

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. If f is concave on I, then the signs of inequalities in (4.15) and (4.16)
are reversed.

Proof. Taking into account the operator version of the Edmundson-Lah-Ribarič inequality
(4.2), it follows that∫

T
φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ α f

∫
T

φt(xt)dμ(t)+ β f1− f

(∫
T

φt(xt)dμ(t)
)

. (4.17)



112 4 CONVERSE INEQUALITIES IN COMPACT HAUSDORFF SPACE

On the other hand, the scalar inequality

α f t + β f − f (t) =
M− t
M−m

f (m)+
t−m
M−m

f (M)− f (t)

=
(M− t)(t−m)

M−m

[
f (M)− f (t)

M− t
− f (t)− f (m)

t−m

]
= (M− t)(t−m)Δ f (t;m,M)
≤ (M− t)(t−m) sup

m<t<M
Δ f (t;m,M) (4.18)

holds for all t ∈ [m,M]. In addition, since

sup
m<t<M

Δ f (t;m,M) =
1

M−m
sup

m<t<M

[
f (M)− f (t)

M− t
− f (t)− f (m)

t−m

]
≤ 1

M−m

[
sup

m<t<M

f (M)− f (t)
M− t

+ sup
m<t<M

(
− f (t)− f (m)

t−m

)]
=

1
M−m

[
sup

m<t<M

f (M)− f (t)
M− t

− inf
m<t<M

f (t)− f (m)
t−m

]
=

f ′−(M)− f ′+(m)
M−m

, (4.19)

we have the following series of inequalities:

α f t + β f − f (t)≤ (M− t)(t−m) sup
m<t<M

Δ f (t;m,M)

≤ f ′−(M)− f ′+(m)
M−m

(M− t)(t−m)

≤ 1
4
(M−m)( f ′−(M)− f ′+(m)). (4.20)

Clearly, the last inequality sign in (4.20) holds due to the arithmetic-geometric mean in-
equality, that is, (M− t)(t−m)≤ 1

4 (M−m)2.
Now, since m1 ≤ xt ≤M1 for every t ∈ T , it follows that mφt(1) ≤ φt(xt) ≤Mφt (1),

that is, m1 ≤ ∫T φt(xt)dμ(t) ≤ M1. Hence, applying the functional calculus to the above
series of inequalities, that is, putting

∫
T φt(xt)dμ(t) instead of t, we have

α f

∫
T

φt(xt)dμ(t)+ β f1− f

(∫
T

φt(xt)dμ(t)
)

≤ sup
m<t<M

Δ f (t;m,M)
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ f ′−(M)− f ′+(m)

M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ 1

4
(M−m)( f ′−(M)− f ′+(m))1. (4.21)

Finally, comparing (4.17) and (4.21), we obtain (4.15), as claimed.
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To prove (4.16), we start with the scalar series of inequalities

α f t + β f − f (t)≤ 1
4
(M−m)2Δ f (t;m,M)

≤ 1
4
(M−m)( f ′−(M)− f ′+(m)), t ∈ [m,M], (4.22)

which obviously follows from (4.18), (4.19), and the arithmetic-geometricmean inequality.
Finally, setting

∫
T φt(xt)dμ(t) in (4.22) and utilizing (4.17), we obtain (4.16) and the proof

is completed. �

Remark 4.4 Observe that the series of inequalities in (4.15) refines the series (4.8), since

supm<t<M Δ f (t;m,M) ≤ f ′−(M)− f ′+(m)
M−m . For example, if f (t) = t2 and m < M, then

1 = sup
m<t<M

Δ f (t;m,M) <
f ′−(M)− f ′+(m)

M−m
= 2,

while for f (t) = t3 we have

m+2M = sup
m<t<M

Δ f (t;m,M) <
f ′−(M)− f ′+(m)

M−m
= 3(m+M),

provided that 0 < m < M. However, a convex function needs not to be differentiable. To
see the corresponding example, let m < 0 < M and let f : R→R be defined by

f (t) =
{

t2, t ≥ 0
−t, t < 0

.

Then,

Δ f (t;m,M) =

{
1− m(m+1)

(M−m)(t−m) , t ≥ 0
M(M+1)

(M−m)(M−t) , t < 0
,

and consequently,

sup
m<t<M

Δ f (t;m,M) =

{
M2−2Mm−m

(M−m)2 , if m <−1
M+1
M−m , if −1≤ m < 0

.

On the other hand,
f ′−(M)− f ′+(m)

M−m
=

2M +1
M−m

,

which implies that supm<t<M Δ f (t;m,M) <
f ′−(M)− f ′+(m)

M−m , since M > 0.

Remark 4.5 It should be noticed here that the first line in the series of inequalities (4.15)
and (4.16), that is, the element

∫
T φt( f (xt ))dμ(t)− f (

∫
T φt (xt)dμ(t)) is not positive in

general. This element is positive if f is in addition operator convex function, due to the
Jensen operator inequality (4.1).
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The following result provides several converse series of inequalities for the Edmund-
son-Lah-Ribarič operator inequality (4.2). As we shall see below, one of them improves
the series (4.13).

Theorem 4.4 Suppose f : I→R is a continuous convex function, and m,M ∈R, m < M,
are such that interval [m,M] belongs to the interior of interval I. Further, let (φt)t∈T be
a unital field of positive linear mappings φt : A → B, where A and B are unital C∗-
algebras, defined on a locally compact Hausdorff space T with a bounded Radon measure
μ . Then the series of inequalities

0≤α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt ( f (xt))dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

∫
T

φt ([M1− xt][xt −m1])dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤1

4
(M−m)( f ′−(M)− f ′+(m))1, (4.23)

0≤α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt ( f (xt))dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ f ′−(M)− f ′+(m)

M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤1

4
(M−m)( f ′−(M)− f ′+(m))1, (4.24)

and

0≤α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt( f (xt ))dμ(t)

≤1
4
(M−m)2

∫
T

φt
(
Δ f (xt ;m,M)

)
dμ(t)

≤1
4
(M−m)( f ′−(M)− f ′+(m))1 (4.25)

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. Moreover, if f is concave on I, then the signs of inequalities in (4.23),
(4.24), and (4.25) are reversed.
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Proof. The first inequality in (4.23) holds by virtue of the Edmundson-Lah-Ribarič in-
equality (4.2). Further, starting from the scalar inequalities (4.18) and (4.19), it follows
that the relation

α f xt + β f 1− f (xt) ≤ sup
m<t<M

Δ f (t;m,M)(M1− xt)(xt −m1)

≤ f ′−(M)− f ′+(m)
M−m

(M1− xt)(xt −m1)

holds for every t ∈ T . Now, applying the positive linear mappings φt to the above relation,
we obtain

α f φt(xt)+ β f φt(1)−φt( f (xt )) ≤ sup
m<t<M

Δ f (t;m,M)φt ([M1− xt ][xt −m1])

≤ f ′−(M)− f ′+(m)
M−m

φt([M1− xt ][xt −m1]),

while integrating yields

α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt ( f (xt))dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

∫
T

φt ([M1− xt][xt −m1])dμ(t).

Therefore, the second and the third inequality sign in (4.23) hold.
Taking into account Theorem 4.3, that is, the series of inequalities in (4.15), it suffices

to motivate the fourth inequality sign in (4.23). To prove our assertion, we note that the
function

h(t) = (M− t)(t−m) =−t2 +(M +m)t−Mm, t ∈ [m,M]

is operator concave (see e.g. [49]). Finally, applying the Jensen operator inequality (4.1)
to the above function h, it follows that∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
,

and the proof of (4.23) is completed.
Further, the series of inequalities in (4.24) is established in the same way as the proof

of (4.23), except that we apply the above functional calculus to inequality (4.18) and utilize
scalar inequality (4.19).

Finally, the series of inequalities in (4.25) follows by applying the functional calculus
to the scalar series of inequalities in (4.22). �

Remark 4.6 Taking into account the Remark 4.4, the series of inequalities in (4.23) re-
fines converse series (4.13) from Theorem 4.2.
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Improved version of the Edmundson-Lah-Ribarič operator inequality (4.4) can be uti-
lized for obtaining more accurate refinements of the Jensen and Edmundson-Lah-Ribarič
inequality than those from Theorem 4.3 and Theorem 4.4. Results that follow are proved
in [67].

Theorem 4.5 Let f : I→ R be a continuous convex function, and let m,M ∈ R, m < M,
be such that interval [m,M] belongs to the interior of interval I. Further, suppose A and B
are unitalC∗-algebras, and (φt )t∈T is a unital field of positive linear mappings φt : A →B
defined on a locally compact Hausdorff space T with a bounded Radon measure μ . Let x
and δ f be defined in (4.5) and (4.6) respectively. Then the series of inequalities

∫
T

φt( f (xt))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ sup
m<t<M

Δ f (t;m,M)
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
− δ f x

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
− δ f x

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))1− δ f x (4.26)

and ∫
T

φt( f (xt))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ 1
4
(M−m)2Δ f

(∫
T

φt(xt)dμ(t);m,M

)
− δ f x

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))1− δ f x, (4.27)

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. Moreover, if f is concave on I, then the signs of inequalities in (4.26)
and (4.27) are reversed.

Proof. Utilizing the improved version (4.4) of the Lah-Ribarič inequality, it follows that∫
T

φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ α f

∫
T

φt (xt)dμ(t)+ β f 1− f

(∫
T

φt (xt)dμ(t)
)
− δ f x. (4.28)

On the other hand, it is easy to see that the scalar expression α f t +β f − f (t) can be rewrit-
ten as (M− t)(t−m)Δ f (t;m,M), so, it follows that the inequality

α f t + β f − f (t)≤ (M− t)(t−m) sup
m<t<M

Δ f (t;m,M) (4.29)
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holds for all t ∈ [m,M]. Moreover, since

sup
m<t<M

Δ f (t;m,M) =
1

M−m
sup

m<t<M

[
f (M)− f (t)

M− t
− f (t)− f (m)

t−m

]
≤ 1

M−m

[
sup

m<t<M

f (M)− f (t)
M− t

+ sup
m<t<M

(
− f (t)− f (m)

t−m

)]
=

1
M−m

[
sup

m<t<M

f (M)− f (t)
M− t

− inf
m<t<M

f (t)− f (m)
t−m

]
=

f ′−(M)− f ′+(m)
M−m

, (4.30)

i (M− t)(t−m) ≤ 1
4(M−m)2, and (M− t)(t−m) ≤ 1

4 (M−m)2, due to the arithmetic-
geometric mean inequality, we have the following set of inequalities:

α f t + β f − f (t)≤ (M− t)(t−m) sup
m<t<M

Δ f (t;m,M)

≤ f ′−(M)− f ′+(m)
M−m

(M− t)(t−m)

≤ 1
4
(M−m)( f ′−(M)− f ′+(m)). (4.31)

Now, since m1 ≤ xt ≤M1 for every t ∈ T , it follows that mφt(1) ≤ φt(xt) ≤Mφt(1), that
is, m1≤ ∫T φt(xt)dμ(t)≤M1. Consequently, applying the functional calculus to above set
of scalar inequalities and subtracting δ f x, it follows that

α f

∫
T

φt(xt)dμ(t)+ β f1− f

(∫
T

φt(xt)dμ(t)
)
− δ f x

≤ sup
m<t<M

Δ f (t;m,M)
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
− δ f x

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
− δ f x

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))1− δ f x. (4.32)

Finally, comparing (4.28) and (4.32), we obtain (4.26), as claimed.
To prove (4.27), we start with the scalar series of inequalities

α f t + β f − f (t)≤ 1
4
(M−m)2Δ f (t;m,M)

≤ 1
4
(M−m)( f ′−(M)− f ′+(m)), t ∈ [m,M], (4.33)

following from (4.30) and the arithmetic-geometric mean inequality.
Now, inserting

∫
T φt(xt)dμ(t) in (4.33) and utilizing (4.28), we obtain (4.27). �
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Remark 4.7 Observe that the series of inequalities in (4.26) refines the converse set of

inequalities from Theorem 4.3, since supm<t<M Δ f (t;m,M) ≤ f ′−(M)− f ′+(m)
M−m , δ f ≥ 0, and

x≥ 0. For example, if f (t) = t2 and m < M, then

1 = sup
m<t<M

Δ f (t;m,M) <
f ′−(M)− f ′+(m)

M−m
= 2,

and

δ f =
(M−m)2

2
> 0.

Besides the improved Edmundson-Lah-Ribarič operator inequality, the crucial step in
proving Theorem 4.5 was in estimating the scalar expression α f t + β f − f (t) from above.
Our next goal is to derive a different kind of upper bound for this scalar expression, which
will result in another converse of the Jensen operator inequality (4.1).

It should be noticed here that the improved version (4.4) of the Edmundson-Lah-Riba-
rič inequality was derived by applying functional calculus to the left inequality in

min{p1, p2}δ f ≤ p1 f (m)+ p2 f (M)− f (p1m+ p2M)≤max{p1, p2}δ f , (4.34)

where f : [m,M]→R is an arbitrary convex function and p1, p2 ∈ [0,1] are real parameters
such that p1 + p2 = 1. Obviously, the left inequality in (4.34) represents a refinement of
the classical Jensen inequality, while the second inequality sign means the converse of the
Jensen inequality (for more details, see [114, Theorem 1, p. 717]). Now, we show that this
converse relation can also be utilized to obtain another type of converses for the inequality
(4.1).

Theorem 4.6 Let the assumptions from the previous theorem hold. If f : [m,M]→ R is a
continuous convex function, then∫

T
φt ( f (xt))dμ(t)− f

(∫
T

φt (xt)dμ(t)
)

≤ δ f

M−m

(∣∣∣∣∫
T

φt(xt)dμ(t)− m+M
2

1

∣∣∣∣+∫
T

φt

(∣∣xt − m+M
2

1
∣∣)dμ(t)

)
≤ δ f 1. (4.35)

Moreover, if f is concave, then the signs of inequalities in (4.35) are reversed.

Proof. The starting point is relation (4.28) from the proof of Theorem 4.5, this time ac-
companied with another method for estimating the expression α f

∫
T φt(xt)dμ(t)+ β f 1−

f (
∫
T φt(xt)dμ(t)). More precisely, we utilize the right inequality in (4.34), i.e. the con-

verse of the classical Jensen inequality, which reduces to

α f t + β f − f (t)≤max

{
M− t
M−m

,
t−m
M−m

}
δ f ,
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after setting p1 = M−t
M−m and p2 = t−m

M−m , t ∈ [m,M]. Now, since

max

{
M− t
M−m

,
t−m
M−m

}
=

1
2

+
1

M−m

∣∣∣∣t− m+M
2

∣∣∣∣ ,
we have

α f t + β f − f (t)≤
(

1
2

+
1

M−m

∣∣∣∣t− m+M
2

∣∣∣∣)δ f , (4.36)

and consequently,

α f

∫
T

φt(xt)dμ(t)+ β f1− f

(∫
T

φt(xt)dμ(t)
)

≤
(

1
2
1+

1
M−m

∣∣∣∣∫
T

φt(xt)dμ(t)− m+M
2

1

∣∣∣∣)δ f , (4.37)

after applying the functional calculus. Now, the first inequality sign in (4.35) holds due to
(4.28), (4.37), and the definition of element x. Finally, the second inequality sign in (4.35)
holds due to obvious relations

∣∣∫
T φt(xt)dμ(t)− m+M

2 1
∣∣≤ M−m

2 1 and
∫
T φt
(∣∣xt − m+M

2 1
∣∣)

dμ(t)≤ M−m
2 1. �

Remark 4.8 Note that the inequality (4.36) represents the converse of the classical Lah-
Ribarič inequality (4.3).

Remark 4.9 For the sake of completeness, let us mention that the results presented here
also cover the discrete case. For example, if T = {1,2, . . . ,n} and μ is a counting measure,
then the relation (4.26) reduces to

n

∑
i=1

φi( f (xi))− f

(
n

∑
i=1

φi(xi)

)

≤ sup
m<t<M

Δ f (t;m,M)

(
M1−

n

∑
i=1

φi(xi)

)(
n

∑
i=1

φi(xi)−m1

)
− δ f x

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

n

∑
i=1

φi(xi)

)(
n

∑
i=1

φi(xi)−m1

)
− δ f x

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))1− δ f x,

where x = 1
21 − 1

M−m ∑n
i=1 φi

(∣∣xi− m+M
2 1
∣∣) , f is a continuous convex function, xi,

i = 1,2, . . . ,n, are self-adjoint elements in C∗-algebra with spectra contained in [m,M],
and φi, i = 1,2, . . . ,n, are positive linear mappings provided that ∑n

i=1 φi(1) = 1.

Applying the right inequality in (4.34), we can also establish a relation that is in some
way complementary to (4.2). This complementary relation represents the converse of the
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Edmundson-Lah-Ribarič inequality (4.2). In order to state the corresponding result, we
define x as

x =
1
2
1+

1
M−m

∫
T

φt

(∣∣xt − m+M
2

1
∣∣)dμ(t), (4.38)

where (xt)t∈T is a bounded continuous field of self-adjoint elements in unital C∗-algebra
whose spectra belongs to the interval [m,M]. Observe that 1

21≤ x≤ 1 and x+x = 1.

Theorem 4.7 Let f : I→ R be a continuous convex function, and let m,M ∈ R, m < M,
be such that interval [m,M] belongs to the interior of interval I. Further, suppose A and B
are unitalC∗-algebras, and (φt )t∈T is a unital field of positive linear mappings φt : A →B
defined on a locally compact Hausdorff space T with a bounded Radon measure μ . Let x
and δ f be defined in (4.38) and (4.6) respectively.

α f

∫
T

φt(xt)dμ(t)+ β f1−
∫
T

φt( f (xt))dμ(t)≤ δ f x (4.39)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. Moreover, if f is concave on I, then the sign of inequality in (4.39) is
reversed.

Proof. The starting point in this proof is the scalar inequality (4.36), derived in the proof of
Theorem 4.6. Now, since m1 ≤ xt ≤M1 for every t ∈ T , applying the functional calculus
to (4.36), it follows that

α f xt + β f 1− f (xt)≤
(

1
2
1+

1
M−m

∣∣∣∣xt − m+M
2

∣∣∣∣)δ f ,

i.e.

α f φt(xt)+ β f φt(1)−φt( f (xt))≤
[
1
2

φt(1)+
1

M−m
φt

(∣∣∣∣xt − m+M
2

∣∣∣∣)]δ f ,

after applying a linear mapping φt . Finally, integrating the previous relation and using that∫
T φt(1)dμ(t) = 1, we get (4.39) and the proof is completed. �

Remark 4.10 At the first glance, it seems that the relation (4.39) may be utilized to obtain
refinements of the Jensen operator inequality (4.1). Namely, the converse relation (4.39)
yields the inequality∫

T
φt( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≥ α f

∫
T

φt (xt)dμ(t)+ β f 1− f

(∫
T

φt (xt)dμ(t)
)
− δ f x.

(4.40)

Unfortunately, it turns out that the methods used in Theorems 4.5 and 4.6 are not really
applicable in obtaining the corresponding refinements.
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More precisely, since infm<t<M Δ f (t;m,M) = 0, the method used in Theorem 4.5 ac-
companied with relation (4.40) yields the inequality∫

T
φt( f (xt))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)
≥−δ f x,

which does not represent refinement of (4.1) since −δ f x≤ 0.
On the other hand, following the lines as in the proof of Theorem 4.6, with the left

inequality in (4.34) instead of the right one, it follows that

α f

∫
T

φt(xt)dμ(t)+ β f1− f

(∫
T

φt(xt)dμ(t)
)

≥
(

1
2
1− 1

M−m

∣∣∣∣∫
T

φt(xt)dμ(t)− m+M
2

1

∣∣∣∣)δ f ,

which together with (4.40) yields∫
T

φt( f (xt))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≥− δ f

M−m

(∣∣∣∣∫
T

φt (xt)dμ(t)− m+M
2

1

∣∣∣∣+∫
T

φt

(∣∣xt − m+M
2

1
∣∣)dμ(t)

)
≥−δ f 1.

Obviously, this set of inequalities does not improve the Jensen operator inequality due to
negative elements that are the right side of the inequality signs.

If we follow the proof of Theorem 4.4, but instead the Edmundson-Lah-Ribarič in-
equality (4.2) we take its improvement (4.4), we obtain the following result that provides
an improvement of Theorem 4.4.

Corollary 4.1 Let f : I→ R be a continuous convex function, and let m,M ∈ R, m < M,
be such that interval [m,M] belongs to the interior of interval I. Further, suppose A and B
are unitalC∗-algebras, and (φt)t∈T is a unital field of positive linear mappings φt : A →B
defined on a locally compact Hausdorff space T with a bounded Radon measure μ . Let x
and δ f be defined in (4.5) and (4.6) respectively.

δ f x≤α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt ( f (xt))dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

∫
T

φt ([M1− xt][xt −m1])dμ(t)

≤ f ′−(M)− f ′+(m)
M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤1

4
(M−m)( f ′−(M)− f ′+(m))1, (4.41)
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δ f x≤α f

∫
T

φt(xt)dμ(t)+ β f 1−
∫
T

φt( f (xt ))dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
∫

T
φt ([M1− xt][xt −m1])dμ(t)

≤ sup
m<t<M

Δ f (t;m,M)
(

M1−
∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤ f ′−(M)− f ′+(m)

M−m

(
M1−

∫
T

φt(xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−m1

)
≤1

4
(M−m)( f ′−(M)− f ′+(m))1, (4.42)

and

δ f x≤α f

∫
T

φt(xt)dμ(t)+ β f1−
∫
T

φt( f (xt ))dμ(t)

≤1
4
(M−m)2

∫
T

φt
(
Δ f (xt ;m,M)

)
dμ(t)

≤1
4
(M−m)( f ′−(M)− f ′+(m))1 (4.43)

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M]. Moreover, if f is concave on I, then the signs of inequalities in (4.41),
(4.42) and (4.43) are reversed.

4.3 Applications to quasi-arithmetic operator means

The main objective of this section is application of general converses from the previous
section to the so-called quasi-arithmetic operator means. A generalized quasi-arithmetic
operator mean with regard to the Bochner integral (see Introduction), is defined by

Mψ (x,φ) = ψ−1
(∫

T
φt(ψ(xt))dμ(t)

)
, (4.44)

where (φt)t∈T is a unital field of positive linear mappings, (xt)t∈T is a bounded continu-
ous field of self-adjoint elements in the corresponding unital C∗-algebra with spectra in
[m,M]⊆ R, and ψ : [m,M]→ R is a continuous strictly monotone function.

Roughly speaking, an arbitrary C∗-algebra is isomorphic to a C∗-algebra of bounded
operators on a Hilbert space H , denoted by B(H ). It is a consequence of the well-
known Gelfand-Naimark theorem (see [51]). Hence, for the reader convenience, from now
on, C∗-algebras will be regarded as algebras of bounded operators on a Hilbert space.

Now, for the Hilbert spaces H and K , let P [B(H ),B(K )] denote the set of all fields
(φt )t∈T of positive linear mappings φt : B(H )→B(K ), defined on a locally compact
Hausdorff space T with a bounded Radon measure μ , which are unital.
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Recently, Mićić et.al. in [102], [101] and [96] investigated an order among the above
quasi-arithmetic means Mψ (x,φ) and Mχ (x,φ). Such order was established by virtue of
the operator convexity and monotonicity of the corresponding functions appearing in these
means.

As before, let (xt)t∈T be a bounded continuousfield of self-adjoint operators, let (φt)t∈T

be a unital field of positive linear mappings, and let χ ,ψ : I ⊃ [m,M]→ R be continuous,
strictly monotone functions. Then the inequality

Mψ (x,φ)≤Mχ (x,φ) (4.45)

holds if one of the following two conditions is fulfilled:
(i) χ ◦ψ−1 is operator convex and χ−1 is operator monotone,
(ii) χ ◦ψ−1 is operator concave and −χ−1 is operator monotone.
On the other hand, if
(i’) χ ◦ψ−1 is operator concave and χ−1 is operator monotone,
(ii’) χ ◦ψ−1 is operator convex and −χ−1 is operator monotone,
then the sign of inequality in (4.45) is reversed.

Moreover, if ψ−1 is operator convex and χ−1 is operator concave, then

Mψ (x,φ) ≤M1 (x,φ) ≤Mχ (x,φ) , (4.46)

while for operator concave function ψ−1 and operator convex function χ−1 the signs of
inequalities in series (4.46) are reversed.

In contrast to above reference related to the order among quasi-arithmetic means, the
corresponding converses are derived by virtue of convexity and monotonicity in the classi-
cal real sense.

In order to state the corresponding results, we first present some notation arising from
this particular setting. Throughout this section we denote

ψm = min{ψ(m),ψ(M)}, ψM = max{ψ(m),ψ(M)},
where ψ : [m,M]→ R is a continuous strictly monotone function. Moreover, with this re-
gard, it will be more convenient to use a slightly altered notation for the divided difference
of second order (4.14). More precisely, if χ ,ψ : I → R are continuous strictly monotone
functions such that χ ◦ψ−1 is well-defined and convex on ψ(I), and the interval [m,M]
belongs to the interior of interval I, we define

Δχ
ψ(t;m,M) =

1
ψ(M)−ψ(m)

[
χ(M)− χ(t)
ψ(M)−ψ(t)

− χ(t)− χ(m)
ψ(t)−ψ(m)

]
.

Remark 4.11 Taking into account the discussion from the previous section which con-
cerned the relation (4.14), the expression Δχ

ψ(·;m,M) may be regarded as a continuous
function (in parameter t) on the interval [m,M]. Consequently, the operator expression
Δχ

ψ(x;m,M) is meaningful whenever m1≤ x≤M1.

Finally, with the abbreviations

xψ =
1
2
1− 1

ψM−ψm

∫
T

φt

(∣∣ψ(xt)− ψm + ψM

2
1
∣∣)dμ(t)
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and

δ χ
ψ = χ(m)+ χ(M)−2χ ◦ψ−1

(
ψm + ψM

2

)
,

we have the following consequence of Theorem 4.5, providing two series of converses for
quasi-arithmetic operator means.

Theorem 4.8 Let χ ,ψ : I → R be continuous strictly monotone functions and let the
interval [m,M] belongs to the interior of interval I. If the function χ ◦ψ−1 is well-defined
and convex on ψ(I), then the series of inequalities

χ
(
Mχ(x,φ)

)− χ
(
Mψ(x,φ)

)
≤ sup

t∈(m,M)
Δχ

ψ (t;m,M)
[
ψM1−ψ

(
Mψ (x,φ)

)][
ψ
(
Mψ(x,φ)

)−ψm1
]− δ χ

ψ xψ

≤ (χ ◦ψ−1)′−(ψM)− (χ ◦ψ−1)′+(ψm)
ψM−ψm

[
ψM1−ψ

(
Mψ(x,φ)

)]
× [ψ (Mψ(x,φ)

)−ψm1
]− δ χ

ψ xψ

≤ 1
4

(ψM−ψm)
[
(χ ◦ψ−1)′−(ψM)− (χ ◦ψ−1)′+(ψm)

]
1− δ χ

ψxψ (4.47)

and

χ
(
Mχ(x,φ)

)− χ
(
Mψ(x,φ)

)
≤ 1

4
(ψM−ψm)2 Δχ

ψ
(
Mψ (x,φ);m,M

)− δ χ
ψ xψ

≤ 1
4

(ψM−ψm)
[
(χ ◦ψ−1)′−(ψM)− (χ ◦ψ−1)′+(ψm)

]
1− δ χ

ψxψ (4.48)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in C∗-algebra,
with spectra contained in [m,M]. Moreover, if χ ◦ψ−1 is concave on ψ(I), then the signs
of inequalities in (4.47) and (4.48) are reversed.

Proof. Since ψm ≤ ψ(t)≤ ψM , for all t ∈ [m,M], it follows that ψm1≤ ψ(xt)≤ ψM1, for
every t ∈ T . This means that the spectra of the field (yt)t∈T = (ψ(xt))t∈T is contained in
the interval [ψm,ψM]. In addition, since the function χ ◦ψ−1 is continuous on ψ(I), the
interval [ψm,ψM] belongs to the interior of ψ(I).

Finally, utilizing the series of inequalities in (4.26) and (4.27) with ψm, ψM , χ ◦ψ−1,
(yt)t∈T respectively instead of m, M, f , (xt)t∈T , noting that

Δχ◦ψ−1(ψ(t);ψm,ψM) = Δχ
ψ(t;m,M),

and with definition (4.44) of quasi-arithmetic operator mean, we obtain (4.47) and (4.48).
�

Remark 4.12 Clearly, with assumptions from the Theorem 4.8, operator χ
(
Mχ(x,φ)

)−
χ
(
Mψ (x,φ)

)
generally is not necessarily positive. It is positive if the function χ ◦ψ−1 is

additionally operator convex on the appropriate interval.
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With the same setting as in the proof of Theorem 4.8, we also obtain another series of
converses of quasi-arithmetic means, which follows immediately from Theorem 4.6.

Corollary 4.2 Suppose χ ,ψ : [m,M]→R, are continuous strictly monotone functions. If
the function χ ◦ψ−1 is well-defined and convex on [ψm,ψM], then

χ
(
Mχ(x,φ)

)− χ
(
Mψ (x,φ)

)
≤ δ χ

ψ

ψM−ψm

[∣∣∣∣ψ (Mψ (x,φ)
)− ψm + ψM

2
1

∣∣∣∣+∫
T

φt

(∣∣ψ(xt)− ψm + ψM

2
1
∣∣)dμ(t)

]
≤ δ χ

ψ 1. (4.49)

Moreover, if χ ◦ψ−1 is concave on [ψm,ψM], then the signs of inequalities in (4.49) are
reversed.

In the same manner, Corollary 4.1 can be also utilized for obtaining converses of the
Edmundson-Lah-Ribarič inequality related to quasi-arithmetic operator means.

Corollary 4.3 Let χ ,ψ : [m,M]→ R be continuous strictly monotone functions. If the
function χ ◦ψ−1 is well-defined and convex on [ψm,ψM], then we have

δ χ
ψ xψ ≤

χ(M)− χ(m)
ψ(M)−ψ(m)

ψ
(
Mψ(x,φ)

)
+

ψ(M)χ(m)−ψ(m)χ(M)
ψ(M)−ψ(m)

1− χ
(
Mχ(x,φ)

)
≤ sup

t∈(m,M)
δ χ

ψ (t;m,M)
∫

T
φt ([ψM1−ψ(xt)][ψ(xt)−ψm1])dμ(t)

≤(χ ◦ψ−1)′−(ψM)− (χ ◦ψ−1)′+(ψm)
ψM−ψm

×
∫
T

φt ([ψM1−ψ(xt)][ψ(xt)−ψm1])dμ(t)

≤(χ ◦ψ−1)′−(ψM)−(χ ◦ψ−1)′+(ψm)
ψM−ψm

[
ψM1−ψ

(
Mψ (x,φ)

)][
ψ
(
Mψ (x,φ)

)−ψm1
]

≤1
4

(ψM−ψm)
[
(χ ◦ψ−1)′−(ψM)− (χ ◦ψ−1)′+(ψm)

]
1, (4.50)

δ χ
ψ xψ ≤

χ(M)− χ(m)
ψ(M)−ψ(m)

ψ
(
Mψ(x,φ)

)
+

ψ(M)χ(m)−ψ(m)χ(M)
ψ(M)−ψ(m)

1− χ
(
Mχ(x,φ)

)
≤ sup

t∈(m,M)
δ χ

ψ (t;m,M)
∫

T
φt ([ψM1−ψ(xt)][ψ(xt)−ψm1])dμ(t)

≤ sup
t∈(m,M)

δ χ
ψ (t;m,M)

[
ψM1−ψ

(
Mψ (x,φ)

)][
ψ
(
Mψ(x,φ)

)−ψm1
]

≤(χ ◦ψ−1)′−(ψM)−(χ ◦ψ−1)′+(ψm)
ψM−ψm

[
ψM1−ψ

(
Mψ (x,φ)

)][
ψ
(
Mψ (x,φ)

)−ψm1
]

≤1
4

(ψM−ψm)
[
(χ ◦ψ−1)′−(ψM)− (χ ◦ψ−1)′+(ψm)

]
1, (4.51)
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and

δ χ
ψ xψ ≤

χ(M)− χ(m)
ψ(M)−ψ(m)

ψ
(
Mψ(x,φ)

)
+

ψ(M)χ(m)−ψ(m)χ(M)
ψ(M)−ψ(m)

1− χ
(
Mχ(x,φ)

)
≤1

4
(ψM−ψm)2

∫
T

φt
(
δ χ

ψ (xt ;m,M)
)
dμ(t)

≤1
4

(ψM−ψm)
[
(χ ◦ψ−1)′−(ψM)− (χ ◦ψ−1)′+(ψm).

]
1 (4.52)

Moreover, if χ ◦ψ−1 is concave on [ψm,ψM], then the signs of inequalities in (4.50), (4.51)
and (4.52) are reversed.

Remark 4.13 The first inequality from the relation (4.50) can be rewritten as

(ψ(M)−ψ(m))χ
(
Mχ(x,φ)

)− (χ(M)− χ(m))ψ
(
Mψ(x,φ)

)
≤ (ψ(M)χ(m)−ψ(m)χ(M))1− (ψ(M)−ψ(m))δ χ

ψ xψ ,

which results in the improvement of the operator analogous of corresponding inequality
for the linear functionals (see [124], Theorem 4.3, p. 108).

Remark 4.14 Suppose that the function χ is differentiable at the points m and M, and
ψ−1 is differentiable at ψm and ψM , so that χ ◦ψ−1 is differentiable at the points ψm and
ψM . In this case, the points ψm and ψM in (4.47), (4.50) and (4.51) may respectively be
replaced by ψ(m) and ψ(M), due to the symmetry. In addition, utilizing a chain rule, the
expression

(χ ◦ψ−1)′−(ψ(M))− (χ ◦ψ−1)′+(ψ(m))

may be rewritten in a more suitable form, that is,

(χ ◦ψ−1)′−(ψ(M))− (χ ◦ψ−1)′+(ψ(m)) =
χ ′(M)
ψ ′(M)

− χ ′(m)
ψ ′(m)

.

This formula will frequently be used in the following subsection.

4.3.1 Examples with power operator means

The most common example of a quasi-arithmetic mean (4.44) is a power operator mean
(see e.g. [101]):

Mr (x,φ) =

{
(
∫
T φt (xr

t )dμ(t))
1
r , r �= 0

exp(
∫
T φt(logxt)dμ(t)) , r = 0.

(4.53)

In this subsection, our intention is to derive converses for power operator means by
utilizing results from the previous section. Having regard to this particular setting, we
define:

Δs
r(t;m,M) =

1
Mr−mr

[
Ms− ts

Mr− tr
− ts−ms

tr−mr

]
, s ∈ R,r �= 0,
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Δ∗r (t;m,M) =
1

Mr−mr

[
logM− logt

Mr− tr
− logt− logm

tr−mr

]
, r �= 0,

Δs
∗(t;m,M) =

1
logM− logm

[
Ms− ts

logM− logt
− ts−ms

logt− logm

]
, s ∈ R.

Due to Remark 4.11, the operator expressions Δs
r(x;m,M), Δ∗r (x;m,M), and Δs∗(x;m,M)

are well-defined whenever m1≤ x≤M1.
Now, with the abbreviations

xr =

{
1
21− 1

|Mr−mr |
∫
T φt

(∣∣xr
t − mr+Mr

2 1
∣∣)dμ(t), r �= 0

1
21− 1

logM−logm

∫
T φt
(∣∣ logxt − log

√
mM1

∣∣)dμ(t), r = 0,

and

δ s
r = ms +Ms−2

(
mr +Mr

2

) s
r

, s ∈ R,r �= 0,

δ ∗r =
2
r

log
2
√

mrMr

mr +Mr , r �= 0,

δ s
∗ =

(√
Ms−√ms

)2
, s ∈ R,

we obtain a whole range of converses of power operator means, arising from Theorem 4.8.

Corollary 4.4 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in C∗-
algebra with spectra in [m,M], 0 < m < M.

(i) If either s≤ 0 < r or r < 0≤ s or 0 < r≤ s or s≤ r < 0, then the series of inequalities

[Ms (x,φ)]s− [Mr (x,φ)]s

≤ sup
t∈(m,M)

Δs
r(t;m,M) [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]− δ s

r xr

≤ s
r
· M

s−r−ms−r

Mr−mr [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]− δ s
r xr

≤ s
4r

(Mr−mr)
(
Ms−r−ms−r)1− δ s

r xr (4.54)

and

[Ms (x,φ)]s− [Mr (x,φ)]s ≤ 1
4

(Mr−mr)2 Δs
r (Mr (x,φ) ;m,M)− δ s

r xr

≤ s
4r

(Mr−mr)
(
Ms−r−ms−r)1− δ s

r xr (4.55)

hold. Further, if 0 ≤ s ≤ r �= 0 or 0 �= r ≤ s ≤ 0, then the signs of inequalities in
(4.54) and (4.55) are reversed.
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(ii) If r < 0, then

0≤ log [M0 (x,φ)]− log [Mr (x,φ)]
≤ sup

t∈(m,M)
Δ∗r (t;m,M) [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]− δ ∗r xr

≤− 1
rMrmr [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]− δ ∗r xr

≤− (Mr−mr)2

4rMrmr 1− δ ∗r xr (4.56)

and

0≤ log [M0 (x,φ)]− log [Mr (x,φ)]

≤1
4

(Mr−mr)2 Δ∗r (Mr (x,φ) ;m,M)− δ ∗r xr

≤− (Mr−mr)2

4rMrmr 1− δ ∗r xr, (4.57)

while for r > 0 the signs of inequalities in (4.56) and (4.57) are reversed.

(iii) The series of inequalities

[Ms (x,φ)]s− [M0 (x,φ)]s

≤ sup
t∈(m,M)

Δs
∗(t;m,M) [logM1− log [M0 (x,φ)]] [log [M0 (x,φ)]− logm1]− δ s

∗x0

≤ s(Ms−ms)
logM− logm

[logM1− log [M0 (x,φ)]] [log [M0 (x,φ)]− logm1]− δ s
∗x0

≤ s
4

(logM− logm)(Ms−ms)1− δ s
∗x0 (4.58)

and

[Ms (x,φ)]s− [M0 (x,φ)]s ≤ 1
4
(logM− logm)2Δs

∗ (M0 (x,φ) ;m,M)− δ s
∗x0

≤ s
4

(logM− logm)(Ms−ms)1− δ s
∗x0 (4.59)

hold for all s ∈ R.

Proof. The proof is a consequence of Theorem 4.8, accompanied with particular choices
of functions χ and ψ .

First, set χ(t) = ts and ψ(t) = tr, where s and r are real parameters such that r �= 0.
The function

(
χ ◦ψ−1

)
(t) = t

s
r is convex on R+ if s

r ≤ 0 or s
r ≥ 1, which is possible in

each of the following four cases: s≤ 0 < r or r < 0≤ s or 0 < r ≤ s or s≤ r < 0. Finally,
since

(
χ ◦ψ−1

)′ (t) = s
r t

s−r
r , considering (4.47) and (4.48) with above functions χ and ψ

on the interval [m,M], we obtain (4.54) and (4.55).
Conversely, the function

(
χ ◦ψ−1

)
(t) = t

s
r is concave on R+ provided that 0≤ s

r ≤ 1,
therefore, if 0 ≤ s ≤ r �= 0 or 0 �= r ≤ s ≤ 0, we obtain relations (4.54) and (4.55) with
reversed signs of inequalities.
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It remains to consider non-trivial cases when one of parameters r and s is equal to
zero. If s = 0, then, putting χ(t) = logt and ψ(t) = tr, it follows that

(
χ ◦ψ−1

)
(t) =

1
r logt. Obviously, this function is convex (concave) for r < 0 (r > 0). In addition, since(
χ ◦ψ−1

)′ (t) = 1
rt , we obtain (4.56) and (4.57) without the first inequality sign. The first

inequality sign in (4.56) and (4.57), as well as in the corresponding reversed inequalities,
holds due to the operator convexity (concavity) of the function 1

r log t when r < 0 (r > 0).
Finally, if r = 0, then, setting χ(t) = ts and ψ(t) = logt, it follows that the func-

tion
(
χ ◦ψ−1

)
(t) = exp(st) is convex for every s ∈ R. Moreover, since

(
χ ◦ψ−1

)′ (t) =
sexp(st), we obtain (4.58) and (4.59), and the proof is completed. �

Remark 4.15 Generally speaking, the element [Ms (x,φ)]s− [Mr (x,φ)]s, appearing in
(4.54) and (4.55), is not positive semi-definite. Certainly, positivity of this element depends
on the operator convexity of a power function. It is well-known that the function f (t) = tr

is operator convex on R+ if either 1 ≤ r ≤ 2 or −1 ≤ r ≤ 0, and is operator concave on
R+ when 0 ≤ r ≤ 1 (for more details, see e.g. [49]). Therefore, discussing the operator
convexity of the function

(
χ ◦ψ−1

)
(t) = t

s
r , as in the proof of Corollary 4.4, we obtain

conditions for parameters r and s under which the operator [Ms (x,φ)]s− [Mr (x,φ)]s is
positive semi-definite. More precisely,

0≤ [Ms (x,φ)]s− [Mr (x,φ)]s (4.60)

holds if either

0 < r ≤ s≤ 2r or 2r ≤ s≤ r < 0 or 0≤ s+ r ≤ r �= 0 or 0 �= r ≤ r+ s≤ 0. (4.61)

On the other hand, if
0 �= r ≤ s≤ 0 or 0≤ s≤ r �= 0, (4.62)

then the sign of inequality in (4.60) is reversed. Moreover, since the operator convexity
(concavity) of a power function implies its usual convexity (concavity), it follows that
relations (4.54), (4.55), and (4.60) simultaneously hold under conditions as in (4.61). The
reverse relations simultaneously hold provided that conditions as in (4.62) are fulfilled.

Remark 4.16 Above discussion with regard to operator convexity can not be applied
to relations (4.58) and (4.59), since the exponential function f (t) = expt is not operator
convex (see e.g. [16]).

For the same choices of functions χ and ψ as above, but in Corollary 4.2 and Corollary
4.3, we get the following results respectively.

Corollary 4.5 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in C∗-
algebra with spectra in [m,M], 0 < m < M.

(i) If either s≤ 0 < r or r < 0≤ s or 0 < r ≤ s or s≤ r < 0, then

[Ms (x,φ)]s− [Mr (x,φ)]s

≤ δ s
r

|Mr−mr|

[∣∣∣∣[Mr (x,φ)]r− mr +Mr

2
1

∣∣∣∣+∫
T

φt

(∣∣xr
t −

mr +Mr

2
1
∣∣)dμ(t)

]
≤ δ s

r 1.
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Moreover, if 0≤ s≤ r �= 0 or 0 �= r≤ s≤ 0, then the signs of inequalities are reversed.

(ii) If r < 0, then

0≤ log [M0 (x,φ)]− log [Mr (x,φ)]

≤ δ ∗r
|Mr−mr|

[∣∣∣∣[Mr (x,φ)]r− mr +Mr

2
1

∣∣∣∣+∫
T

φt

(∣∣xr
t −

mr +Mr

2
1
∣∣)dμ(t)

]
≤ δ ∗r 1,

while for r > 0 the signs of inequalities are reversed.

(iii) The series of inequalities

[Ms (x,φ)]s− [M0 (x,φ)]s

≤ δ s∗
logM− logm

[∣∣∣log [M0 (x,φ)]− log
√

mM1
∣∣∣+∫

T
φt

(∣∣ logxt− log
√

mM1
∣∣)dμ(t)

]
≤ δ s

∗1

hold for all s ∈ R.

Corollary 4.6 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in C∗-
algebra with spectra in [m,M], 0 < m < M.

(i) If any of the relations s≤ 0 < r or r < 0≤ s or 0 < r≤ s or s≤ r < 0 holds, then we
have

δ s
r xr ≤

Ms−ms

Mr−mr [Mr (x,φ)]r +
Mrms−mrMs

Mr−mr 1− [Ms(x,φ)]s

≤ sup
t∈(m,M)

δ s
r (t;m,M)

∫
T

φt ([Mr1− xr
t ][x

r
t −mr1])dμ(t)

≤ s
r
· M

s−r−ms−r

Mr−mr

∫
T

φt ([Mr1− xr
t ][x

r
t −mr1])dμ(t)

≤ s
r
· M

s−r−ms−r

Mr−mr [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]

≤ s
4r

(Mr−mr)
(
Ms−r−ms−r)1,

δ s
r xr ≤

Ms−ms

Mr−mr [Mr (x,φ)]r +
Mrms−mrMs

Mr−mr 1− [Ms(x,φ)]s

≤ sup
t∈(m,M)

δ s
r (t;m,M)

∫
T

φt ([Mr1− xr
t ][x

r
t −mr1])dμ(t)

≤ sup
t∈(m,M)

δ s
r (t;m,M) [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]

≤ s
r
· M

s−r−ms−r

Mr−mr [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]

≤ s
4r

(Mr−mr)
(
Ms−r−ms−r)1,
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and

δ s
r xr ≤

Ms−ms

Mr−mr [Mr (x,φ)]r +
Mrms−mrMs

Mr−mr 1− [Ms(x,φ)]s

≤1
4

(Mr−mr)2
∫

T
φt (δ s

r (xt ;m,M))dμ(t)

≤ s
4r

(Mr−mr)
(
Ms−r−ms−r)1.

Additionally, if either 0≤ s≤ r �= 0 or 0 �= r≤ s≤ 0 holds, then the signs of inequal-
ities are reversed.

(ii) If r < 0, then

δ ∗r xr ≤
logM− logm

Mr−mr [Mr (x,φ)]r +
Mr logm−mr logM

Mr−mr 1− log [M0(x,φ)]

≤ sup
t∈(m,M)

δ ∗r (t;m,M)
∫

T
φt ([Mr1− xr

t ][x
r
t −mr1])dμ(t)

≤− 1
rMrmr

∫
T

φt ([Mr1− xr
t ][x

r
t −mr1])dμ(t)

≤− 1
rMrmr [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]

≤− (Mr−mr)2

4rMrmr 1,

δ ∗r xr ≤
logM− logm

Mr−mr [Mr (x,φ)]r +
Mr logm−mr logM

Mr−mr 1− log [M0(x,φ)]

≤ sup
t∈(m,M)

δ ∗r (t;m,M)
∫

T
φt ([Mr1− xr

t ][x
r
t −mr1])dμ(t)

≤ sup
t∈(m,M)

δ ∗r (t;m,M) [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]

≤− 1
rMrmr [Mr1− [Mr (x,φ)]r] [[Mr (x,φ)]r−mr1]

≤− (Mr−mr)2

4rMrmr 1,

and

δ ∗r xr ≤
logM− logm

Mr−mr [Mr (x,φ)]r +
Mr logm−mr logM

Mr−mr 1− log [M0(x,φ)]

≤1
4

(Mr−mr)2
∫

T
φt (δ ∗r (xt ;m,M))dμ(t)

≤− (Mr−mr)2

4rMrmr 1,

while for r > 0 the signs of inequalities are reversed.
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(iii) Series of inequalities

δ s
∗x0 ≤

Ms−ms

logM− logm
log [M0 (x,φ)]+

ms logM−Ms logm
logM− logm

1− [Ms(x,φ)]s

≤ sup
t∈(m,M)

δ s
∗(t;m,M)

∫
T

φt ([logM1− logxt ][logxt − logm1])dμ(t)

≤ s(Ms−ms)
logM− logm

∫
T

φt ([logM1− logxt ][logxt − logm1])dμ(t)

≤ s(Ms−ms)
logM− logm

[logM1− log[M0 (x,φ)]] [log [M0 (x,φ)]− logm1]

≤ s
4

(logM− logm)(Ms−ms)1,

δ s
∗x0 ≤

Ms−ms

logM− logm
log [M0 (x,φ)]+

ms logM−Ms logm
logM− logm

1− [Ms(x,φ)]s

≤ sup
t∈(m,M)

δ s
∗(t;m,M)

∫
T

φt ([logM1− logxt ][logxt − logm1])dμ(t)

≤ sup
t∈(m,M)

δ s
∗(t;m,M) [logM1− log [M0 (x,φ)]] [log [M0 (x,φ)]− logm1]

≤ s(Ms−ms)
logM− logm

[logM1− log [M0 (x,φ)]] [log [M0 (x,φ)]− logm1]

≤ s
4

(logM− logm)(Ms−ms)1,

and

δ s
∗x0 ≤

Ms−ms

logM− logm
log [M0 (x,φ)]+

ms logM−Ms logm
logM− logm

1− [Ms(x,φ)]s

≤1
4
(logM− logm)2

∫
T

φt (δ s
∗(xt ;m,M))

≤ s
4

(logM− logm)(Ms−ms)1

hold for every s ∈ R.
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4.4 Jensen-type inequalities for bounded and
Lipschitzian functions

It is interesting that the estimates, mentioned and proved in the previous sections, can
be established even for some more general classes of functions. The main objective of
this section is to establish mutual bounds for the Jensen operator inequality (4.1) and the
Lah-Ribarič operator inequality (4.2) in the case of bounded real-valued functions and Lip-
schitzian functions. Further, obtained results are then applied to quasi-arithmetic operator
means, with a particular emphasis to power operator means. In such a way, we obtain some
new reverse relations for quasi-arithmetic and power operator means.

In order to do so, we first need to state the corresponding estimate for the scalar Lah-
Ribarič inequality obtained by Dragomir [40]: If f : [m,M]→ [γ,Γ] is a boundexd real-
valued function, then the inequality∣∣α f t + β f − f (t)

∣∣≤ Γ− γ (4.63)

holds for every t ∈ [m,M]. In addition, the constant Γ− γ is the best possible in the sense
that it cannot be replaced by a smaller quantity.

In the same paper Dragomir also established a similar relation that correspond to L-
Lipschitzian functions. Recall that a function f : I→R is said to be L-Lipschitzian if there
exists a constant L such that

| f (x)− f (y)| ≤ L|x− y|
holds for all x,y∈ I. Now, if f : [m,M]→R is a L-Lipschitzian function, Dragomir showed
that the relation ∣∣α f t + β f − f (t)

∣∣≤ 2L
(M− t)(t−m)

M−m
≤ L

2
(M−m) (4.64)

holds for every t ∈ [m,M].
Scalar inequalities (4.63) and (4.64) will be crucial in establishing our main results.
The techniques that will be used in the proofs are mainly based on the classical real

and functional analysis, and on a bounded Borel functional calculus, especially on the
monotonicity principle for self-adjoint operators on a Hilbert space: If X has a spectra
Sp(X), then

f (t) ≥ g(t), t ∈ Sp(X) =⇒ f (X)≥ g(X),

where f and g are bounded Borel functions. For more details about the bounded Borel
functional calculus, the reader is referred to [8] or [132]. It should be noticed here that,
throughout this section, all the functions are assumed to be Borel measurable.

Our first result refers to an operator extension of the scalar inequality (4.63) with re-
spect to the Bochner integral defined in the Introduction.

Theorem 4.9 ([82]) Let f : [m,M]→ [γ,Γ] be a real-valued function. Further, suppose A
and B are unital C∗-algebras and (φt)t∈T is a unital field of positive linear mappings φt :
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A →B defined on a locally compact Hausdorff space T with a bounded Radon measure
μ . Then, inequalities

−(Γ− γ)111≤ α f

∫
T

φt (Xt)dμ(t)+ β f 111−
∫

T
φt( f (Xt ))dμ(t)≤ (Γ− γ)111 (4.65)

and ∣∣∣∣α f

∫
T

φt(Xt)dμ(t)+ β f111−
∫
T

φt ( f (Xt))dμ(t)
∣∣∣∣≤ (Γ− γ)111 (4.66)

hold for every bounded continuous field (Xt)t∈T of self-adjoint elements in A with spec-
tra contained in [m,M]. In addition, the constant Γ− γ cannot be replaced by a smaller
quantity.

Proof. Since (Xt)t∈T is a bounded continuous field of self-adjoint operators with spectra
contained in [m,M], it follows that m1 ≤ Xt ≤ M1, for every t ∈ T . Hence, applying the
functional calculus to scalar inequality (4.63), that is, by setting Xt instead of t, we get

−(Γ− γ)111≤ α f Xt + β f 111− f (Xt)≤ (Γ− γ)111.

Now, (4.65) follows after applying φt to the previous relation and then integrating.
As regards the inequality (4.66), by squaring the inequality (4.63) it follows that(

α f t + β f − f (t)
)2 ≤ (Γ− γ)2

holds for every t ∈ [m,M]. Further, applaying the functional calculus to the above squared
inequality, we have (

α f Xt + β f 111− f (Xt)
)2 ≤ (Γ− γ)2111.

Now, since the linear mapping preserves the order, applying φt to the above relation yields

φt

([
α f Xt + β f 111− f (Xt)

]2)≤ (Γ− γ)2φt(111),

while integrating yields∫
T

φt

([
α f Xt + β f 111− f (Xt)

]2)
dμ(t)≤ (Γ− γ)2111,

due to
∫
T φt (111)dμ(t) = 111.

It should be noticed here that the function g(t) = t2 is operator convex (see e.g. [16,
49]), so utilizing the Jensen operator inequality (4.1) it follows that

(
α f

∫
T

φt(Xt)dμ(t)+ β f φt(111)−
∫
T

φt( f (Xt ))dμ(t)
)2

≤
∫

T
φt

([
α f Xt + β f 111− f (Xt)

]2)
dμ(t),



4.4 JENSEN-TYPE INEQUALITIES FOR BOUNDED AND LIPSCHITZIAN FUNCTIONS 135

and consequently(
α f

∫
T

φt(Xt)dμ(t)+ β f φt(111)−
∫
T

φt( f (Xt))dμ(t)
)2

≤ (Γ− γ)2111.

Finally, relation (4.66) follows from definition of the absolute value of a self-adjoint oper-
ator and due to the operator monotonicity of the function h(t) =

√
t (see e.g. [16, 49]).

Now, in order to show that the constant Γ− γ is the best possible in (4.66), assume that
inequality (4.66) holds with a multiplicative constant C as follows:∣∣∣∣α f

∫
T

φt(Xt)dμ(t)+ β f 111−
∫

T
φt( f (Xt ))dμ(t)

∣∣∣∣≤C(Γ− γ)111. (4.67)

Let us consider the function

f (t) =

⎧⎨⎩
M−m

2 , t = m,
0, t ∈ (m,M),
M−m

2 , t = M.

Clearly, the function f is bounded, and we can set Γ = M−m
2 and γ = 0. Now, if we

substitute Xt = m+M
2 111 and the above function f in (4.67), it follows that∣∣∣∣∣M− m+M

2

M−m
· M−m

2
111+

m+M
2 −m

M−m
· M−m

2
111−0

∣∣∣∣∣≤C
M−m

2
111,

which reduces to ∣∣∣∣M−m
2

111

∣∣∣∣≤C
M−m

2
111.

The above inequality implies that C ≥ 1 and shows that C = 1 is the best possible constant
in (4.67). �

Remark 4.17 By applying positive linear mappings φt , t ∈ T , to m1 ≤ Xt ≤ M1 and
then, integrating, we get m1 ≤ ∫T φt(Xt)dμ(t) ≤M1. Since the function f is bounded, in
the same way it follows that

∫
T φt( f (Xt))dμ(t) is bounded as well. This means that the

operator X := α f
∫
T φt(Xt)dμ(t)+β f φt (111)−

∫
T φt( f (Xt))dμ(t) is bounded. Therefore, the

absolute value of X is |X |=√X∗X =
√

X2, since X∗ = X .

Remark 4.18 In Theorem 4.9 we have established inequalities of the form −Y ≤ X ≤ Y
and |X | ≤ Y , where X ,Y are bounded self-adjoint operators. Generally speaking, if −Y ≤
X ≤Y , then it need not be true that |X | ≤Y . For more details, the reader is referred to [79].

By virtue of Theorem 4.9, we can establish mutual bounds for the Jensen operator
inequality (4.1), for the class of bounded real-valued functions.
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Theorem 4.10 ([82]) Let f : [m,M]→ [γ,Γ] be a real-valued function. Further, suppose
A and B are unital C∗-algebras, and (φt )t∈T is a unital field of positive linear mappings
φt : A →B defined on a locally compact Hausdorff space T with a bounded Radon mea-
sure μ . Then

−2(Γ− γ)111≤
∫

T
φt( f (Xt ))dμ(t)− f

(∫
T

φt (Xt)dμ(t)
)
≤ 2(Γ− γ)111 (4.68)

holds for every bounded continuous field (Xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M].

Proof. Since (Xt)t∈T is a bounded continuous field of self-adjoint operators with spectra
contained in [m,M], we have m1≤ Xt ≤M1 for every t ∈ T , so applying the positive linear
mapping φt and then integrating, we have

m111≤
∫

T
φt(Xt)dμ(t)≤M111.

Therefore, applying the functional calculus to (4.63) by setting
∫
T φt(Xt)dμ(t) instead of t,

it follows that

−(Γ− γ)111≤ α f

∫
T

φt (Xt)dμ(t)+ β f 111− f

(∫
T

φt(Xt)dμ(t)
)
≤ (Γ− γ)111. (4.69)

After adding up (4.69) and (4.65) we get (4.68), and the proof is complete. �

Our next result refers to an operator extension of the scalar inequality (4.64) for a class
of Lipschitzian functions.

Theorem 4.11 ([82]) Let f : [m,M]→ R be a L-Lipschitzian function. Further, suppose
A and B are unital C∗-algebras, and (φt )t∈T is a unital field of positive linear mappings
φt : A →B defined on a locally compact Hausdorff space T with a bounded Radon mea-
sure μ . Then the set of inequalities

− L
2
(M−m)111

≤ −2L
M−m

(
M111−

∫
T

φt (Xt)dμ(t)
)(∫

T
φt (Xt)dμ(t)−m111

)
≤ −2L

M−m

∫
T

φt [(M111−Xt) (Xt −m111)]dμ(t)

≤ α f

∫
T

φt(Xt)dμ(t)+ β f111−
∫

T
φt( f (Xt ))dμ(t) (4.70)

≤ 2L
M−m

∫
T

φt [(M111−Xt) (Xt −m111)]dμ(t)

≤ 2L
M−m

(
M111−

∫
T

φt (Xt)dμ(t)
)(∫

T
φt (Xt)dμ(t)−m111

)
≤ L

2
(M−m)111
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holds for every bounded continuous field (Xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M].

Proof. Since m1 ≤ Xt ≤ M1 for every t ∈ T , applying the functional calculus to scalar
inequality (4.64), it follows that

− 2L
M−m

(M111−Xt)(Xt −m111)≤ α f Xt + β f − f (Xt)≤ 2L
M−m

(M111−Xt)(Xt −m111).

Furthermore, applying linear mappings φt to the above set of inequalities and then, inte-
grating, we have

− 2L
M−m

∫
T

φt [(M111−Xt)(Xt −m111)]dμ(t)

≤ α f

∫
T

φt(Xt)dμ(t)+ β f111−
∫

T
φt( f (Xt ))dμ(t)

≤ 2L
M−m

∫
T

φt [(M111−Xt)(Xt −m111)]dμ(t).

Now, taking into account that the function g(t) =−t2+(m+M)t−mM is operator concave
(see e.g. [49]), application of the Jensen operator inequality (4.1) yields

2L
M−m

∫
T

φt [(M111−Xt)(Xt −m111)]dμ(t)

≤ 2L
M−m

(
M111−

∫
T

φt(Xt)dμ(t)
)(∫

T
φt(Xt)dμ(t)−m111

)
and

−2L
M−m

∫
T

φt [(M111−Xt)(Xt −m111)]dμ(t)

≥ −2L
M−m

(
M111−

∫
T

φt(Xt)dμ(t)
)(∫

T
φt(Xt)dμ(t)−m111

)
.

Finally, the first and the last inequality in (4.70) are direct consequences of the arithmetic-
geometric mean inequality

(M− t)(t−m)≤ 1
4
(M−m)2,

where t ∈ [m,M]. �

In a similar way as before, Theorem 4.11 can also be utilized for establishing double
precision of the Jensen operator inequality (4.1), this time for a class of L-Lipschitzian
functions.

Theorem 4.12 ([82]) Let f : [m,M]→ R be a L-Lipschitzian function. Further, suppose
A and B are unital C∗-algebras, and (φt)t∈T is a unital field of positive linear mappings
φt : A →B defined on a locally compact Hausdorff space T with a bounded Radon mea-
sure μ . Then the set of inequalities
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−L(M−m)111

≤ −4L
M−m

(
M111−

∫
T

φt (Xt)dμ(t)
)(∫

T
φt (Xt)dμ(t)−m111

)
≤ −2L

M−m

[∫
T

φt [(M111−Xt)(Xt −m111)]dμ(t)

+
(

M111−
∫
T

φt(Xt)dμ(t)
)(∫

T
φt(Xt)dμ(t)−m111

)]

≤
∫

T
φt( f (Xt ))dμ(t)− f

(∫
T

φt(Xt)dμ(t)
)

(4.71)

≤ 2L
M−m

[∫
T

φt [(M111−Xt)(Xt −m111)]dμ(t)

+
(

M111−
∫
T

φt(Xt)dμ(t)
)(∫

T
φt(Xt)dμ(t)−m111

)]

≤ 4L
M−m

(
M111−

∫
T

φt (Xt)dμ(t)
)(∫

T
φt (Xt)dμ(t)−m111

)
≤ L(M−m)111

holds for every bounded continuous field (Xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M].

Proof. In the same way as in the proof of the previous theorem, it follows that

m111≤
∫

T
φt(Xt)dμ(t)≤M111,

and so, by putting
∫
T φt(Xt)dμ(t) in (4.64) we obtain

− 2L
M−m

(
M−

∫
T

φt(Xt)dμ(t)
)(∫

T
φt(Xt)dμ(t)−m

)
≤ α f

∫
T

φt(Xt)dμ(t)+ β f111− f

(∫
T

φt(Xt)dμ(t)
)

(4.72)

≤ 2L
M−m

(
M−

∫
T

φt (Xt)dμ(t)
)(∫

T
φt(Xt)dμ(t)−m

)
.

Now, taking into account the set of inequalities (4.70) multiplied by −1, it follows that

− 2L
M−m

∫
T

φt [(M111−Xt)(Xt −m111)]dμ(t)

≤−α f

∫
T

φt (Xt)dμ(t)−β f 111+
∫

T
φt( f (Xt ))dμ(t) (4.73)

≤ 2L
M−m

∫
T

φt [(M111−Xt) (Xt −m111)]dμ(t).
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When we add up inequalities (4.72) and (4.73), we get the first inequality sign in (4.71).
As in the proof of the previous theorem, the remaining inequality signs in (4.71) follow
by applying the Jensen operator inequality with respect to the operator concave function
t �→ −t2 +(m+M)t−mM and due to the arithmetic-geometric mean inequality

(M− t)(t−m)≤ 1
4
(M−m)2

which holds for every t ∈ [m,M]. �

It is well known that every convex function is bounded and Lipschitz continuous on
any compact subset of the interior of its domain (see e.g. [126]), so all of the results from
this section can be applied to the class of convex functions. The following consequence is
a special case of Theorems 4.9 and 4.10.

Corollary 4.7 ([82]) Let f : I → R be a convex function, and let m,M ∈ R, m < M, be
such that interval [m,M] belongs to the interior of interval I. Suppose A and B are unital
C∗-algebras, and (φt )t∈T is a unital field of positive linear mappings φt : A →B defined
on a locally compact Hausdorff space T with a bounded Radon measure μ . Then there
exist γ,Γ ∈ R such that relations

000≤ α f

∫
T

φt(Xt)dμ(t)+ β f 111−
∫
T

φt ( f (Xt))dμ(t)≤ (Γ− γ)111 (4.74)

and

−(Γ− γ)111≤
∫

T
φt( f (Xt ))dμ(t)− f

(∫
T

φt(Xt)dμ(t)
)
≤ (Γ− γ)111 (4.75)

hold for every bounded continuous field (Xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M].

Proof. Since the interval [m,M] is compact, there exist γ,Γ such that γ ≤ f (t) ≤ Γ for
every t ∈ [m,M]. Function f is convex, so by virtue of the scalar Lah-Ribarič inequality,
the relation (4.63) becomes

0≤ α f t + β f − f (t)≤ Γ− γ.

Now, inequalities (4.74) and (4.75) are obtained by following the lines as in the proofs of
Theorems 4.9 and 4.10, except that we utilize the above scalar relation instead of (4.63).
The last part follows from the Jensen operator inequality. �

Remark 4.19 If f is in addition an operator convex function, then the left term−(Γ−γ)111
in (4.75) can be replaced by 000.

Our next result is a special case of Theorem 4.11, and it follows directly from the
Lah-Ribarič operator inequality (4.2).
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Corollary 4.8 ([82]) Let f : I → R be a convex function, and let m,M ∈ R, m < M, be
such that interval [m,M] belongs to the interior of interval I. Let L be the Lipschitz constant
of the function f on [m,M]. Suppose A and B are unital C∗-algebras, and (φt)t∈T is a
unital field of positive linear mappings φt : A →B defined on a locally compact Hausdorff
space T with a bounded Radon measure μ . Then the set of inequalities

000≤α f

∫
T

φt (Xt)dμ(t)+ β f 111−
∫

T
φt( f (Xt ))dμ(t)

≤ 2L
M−m

∫
T

φt [(M111−Xt)(Xt −m111)]dμ(t) (4.76)

≤ 2L
M−m

(
M111−

∫
T

φt(Xt)dμ(t)
)(∫

T
φt(Xt)dμ(t)−m111

)
≤L

2
(M−m)111

holds for every bounded continuous field (Xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M].

In order to conclude this section, we give the following result which is a special case
of Theorem 4.12.

Corollary 4.9 ([82]) Let f : I → R be a convex function, and let m,M ∈ R, m < M, be
such that interval [m,M] belongs to the interior of interval I. Let L be the Lipschitz constant
of the function f on [m,M]. Suppose A and B are unital C∗-algebras, and (φt)t∈T is a
unital field of positive linear mappings φt : A →B defined on a locally compact Hausdorff
space T with a bounded Radon measure μ . Then the set of inequalities

− 2L
M−m

∫
T

φt [(M111−Xt)(Xt −m111)]dμ(t)

≤
∫

T
φt( f (Xt ))dμ(t)− f

(∫
T

φt(Xt)dμ(t)
)

(4.77)

≤ 2L
M−m

(
M111−

∫
T

φt (Xt)dμ(t)
)(∫

T
φt (Xt)dμ(t)−m111

)
≤ L

2
(M−m)111

holds for every bounded continuous field (Xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M].

Proof. Since f is a convex function, it follows that

0≤ α f t + β f − f (t)≤ 2L
(M− t)(t−m)

M−m
.

Now the proof follows the lines of the proof of Theorem 4.12 except that we use the above
scalar inequality instead of (4.64). �

Remark 4.20 If the function f is additionally operator convex, then the first line in (4.77)
can be replaced by 000.
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4.4.1 Applications to quasi-arithmetic operator means

It is well-known that an arbitrary C∗-algebra is isomorphic to a C∗-algebra of bounded
operators on a Hilbert space H (see, e.g. [51]). Hence, in order to simplify our further
discussion, from now on, C∗-algebras will be regarded as algebras of bounded operators
on a Hilbert space, denoted here by B(H ).

The main goal in this subsection is an application of obtained general Jensen-type
inequalities to the so-called quasi-arithmetic operator means. As in the previous section,
generalized quasi-arithmetic operator mean is defined by

Mψ (X ,φ) = ψ−1
(∫

T
φt(ψ(Xt))dμ(t)

)
,

where (Xt)t∈T is a continuous field of positive operators in B(H ) with spectra in [m,M]
for some scalars 0 < m < M, (φt)t∈T ∈ P [B(H ),B(K )], and ψ : [m,M]→R is a strictly
monotone bounded function.

In Section 4.3 we have established reverse relations for quasi-arithmetic operatormeans
which rely on convexity and monotonicity in the classical real sense. Now, our intention
is to derive mutual bounds for quasi-arithmetic means in described setting. In such a way,
we will obtain some new reverse relations for quasi-arithmetic means that correspond to
bounded and Lipschitzian functions. Before we state such results, we have to introduce
some notations arising from this particular setting. Throughout this section we denote

ψm = min{ψ(m),ψ(M)}, ψM = max{ψ(m),ψ(M)}

and
γχ = min{χ(t), t ∈m,M]}, Γχ = max{χ(t), t ∈ [m,M]},

where ψ ,χ : [m,M]→ R are strictly monotone bounded functions.
The first result in this subsection is carried out by virtue of our Theorem 4.9.

Theorem 4.13 ([82]) Let χ ,ψ : [m,M] → R be strictly monotone bounded functions,
where 0 < m < M. Further, suppose that χ ◦ψ−1 is well-defined on [ψm,ψM]. If (φt )t∈T ∈
P [B(H ),B(K )], where H , K are Hilbert spaces and T is a locally compact Hausdorff
space with a bounded Radon measure μ , then the series of inequalities

−(Γχ − γχ)111≤ χ(M)− χ(m)
ψ(M)−ψ(m)

ψ
(
Mψ(X ,φ)

)
+

ψ(M)χ(m)−ψ(m)χ(M)
ψ(M)−ψ(m)

1

− χ
(
Mχ(X ,φ)

)≤ (Γχ − γχ)111 (4.78)

holds for every continuous field (Xt)t∈T of positive operators in B(H ) with spectra in
[m,M].

Proof. Since ψ : [m,M]→ R is a bounded strictly monotone function, it follows that
ψm ≤ ψ(t) ≤ ψM , for all t ∈ [m,M]. Moreover, by virtue of the functional calculus, it
follows that ψm1 ≤ ψ(Xt)≤ ψM1 for every t ∈ T . This means that the spectra of the field
(Yt)t∈T = (ψ(Xt))t∈T is contained in the interval [ψm,ψM].
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Now, regarding Theorem 4.9, that is, utilizing the series of inequalities in (4.65) with
ψm, ψM , χ ◦ψ−1, (Yt)t∈T respectively instead of m, M, f , (Xt)t∈T , and with definition
(4.44) of the quasi-arithmetic mean, we obtain (4.78), as claimed. �

Following the lines as in the proof of the previous result, Theorem 4.10 can also be ex-
ploited in establishing some new reverses of the Jensen operator inequality related to quasi-
arithmetic means. First, we establish the corresponding mutual bounds quasi-arithmetic
means.

Theorem 4.14 ([82]) Let χ ,ψ : [m,M] → R be strictly monotone bounded functions,
where 0 < m < M. Further, suppose that χ ◦ψ−1 is well-defined on [ψm,ψM]. If (φt)t∈T ∈
P [B(H ),B(K )], where H , K are Hilbert spaces and T is a locally compact Hausdorff
space with a bounded Radon measure μ , then the series of inequalities

−2(Γχ − γχ)111≤ χ
(
Mχ(X ,φ)

)− χ
(
Mψ(X ,φ)

)≤ 2(Γχ − γχ)111 (4.79)

holds for every continuous field (Xt)t∈T of positive operators in B(H ) with spectra in
[m,M].

Remark 4.21 Let χ ,ψ : I→ R be strictly monotone functions and let the interval [m,M]
belongs to the interior of interval I. If the function χ ◦ψ−1 : I→ R is additionally convex
on [ψm,ψM], inequalities in (4.78) become

000≤ χ(M)− χ(m)
ψ(M)−ψ(m)

ψ
(
Mψ (X ,φ)

)
+

ψ(M)χ(m)−ψ(m)χ(M)
ψ(M)−ψ(m)

1

− χ
(
Mχ(X ,φ)

) ≤ (Γχ − γχ)111, (4.80)

while inequalities in (4.79) become

−(Γχ− γχ)111≤ χ
(
Mχ(X ,φ)

)− χ
(
Mψ (X ,φ)

)≤ (Γχ − γχ)111. (4.81)

If the function χ ◦ψ−1 is additionally operator convex, then the left term −(Γχ − γχ)111 in
(4.81) can be replaced by 000. This is a consequence of Corollary 4.7.

Our next result arises from Theorem 4.11 and it provides Lah-Ribarič-type estimates
for quasi-arithmetic operator means, for a class of Lipschitzian functions.

Theorem 4.15 ([82]) Let ψ : [m,M]→ R be a strictly monotone bounded function and
let χ : [m,M]→ R be an Lχ -Lipschitzian function, where 0 < m < M. Further, suppose
that χ ◦ψ−1 is well-defined on [ψm,ψM]. If (φt)t∈T ∈ P [B(H ),B(K )], where H , K
are Hilbert spaces and T is a locally compact Hausdorff space with a bounded Radon
measure μ , then the series of inequalities



4.4 JENSEN-TYPE INEQUALITIES FOR BOUNDED AND LIPSCHITZIAN FUNCTIONS 143

− Lχ

2
(ψM−ψm)111

≤ −2Lχ

ψM−ψm

(
ψM1−ψ

(
Mψ (X ,φ)

))(
ψ
(
Mψ (X ,φ)

)−ψm1
)

≤ −2L
M−m

∫
T

φt ([ψM1−ψ(Xt)][ψ(Xt)−ψm1])dμ(t)

≤ χ(M)− χ(m)
ψ(M)−ψ(m)

ψ
(
Mψ (X ,φ)

)
+

ψ(M)χ(m)−ψ(m)χ(M)
ψ(M)−ψ(m)

1− χ
(
Mχ(X ,φ)

)
(4.82)

≤ 2Lχ

ψM−ψm

∫
T

φt ([ψM1−ψ(Xt)][ψ(Xt)−ψm1])dμ(t)

≤ 2Lχ

ψM−ψm

(
ψM1−ψ

(
Mψ (X ,φ)

))(
ψ
(
Mψ(X ,φ)

)−ψm1
)

≤ Lχ

2
(ψM−ψm)

holds for every continuous field (Xt)t∈T of positive operators in B(H ) with spectra in
[m,M].

Proof. As in the proof of Theorem 4.13, since ψ : [m,M] → R is a bounded strictly
monotone function, it follows that ψm ≤ ψ(t) ≤ ψM , for all t ∈ [m,M], and by virtue of
the functional calculus we have ψm1≤ ψ(Xt)≤ ψM1, for every t ∈ T . This means that the
spectra of the field (Yt)t∈T = (ψ(Xt))t∈T belongs to the interval [ψm,ψM].

On the other hand, the function χ ◦ψ−1 is obviously Lχ -Lipschitzian on ψ([m,M]), so
we can utilize the series of inequalities in (4.71) with ψm, ψM, χ ◦ψ−1, (Yt)t∈T respectively
instead of m, M, f , (Xt)t∈T . Finally, taking into account (4.44) we obtain (4.82). �

In the same manner as described above, Theorem 4.12 enables us to establish mu-
tual bounds of the Jensen operator inequality for Lipschitzian functions, related to quasi-
arithmetic means.

Theorem 4.16 ([82]) Let ψ : [m,M]→ R be a strictly monotone bounded function and
let χ : [m,M]→ R be an Lχ -Lipschitzian function, where 0 < m < M. Further, suppose
that χ ◦ψ−1 is well-defined on [ψm,ψM]. If (φt)t∈T ∈ P [B(H ),B(K )], where H , K
are Hilbert spaces and T is a locally compact Hausdorff space with a bounded Radon
measure μ , then the series of inequalities

−Lχ(ψM−ψm)111

≤ −4Lχ

ψM−ψm

(
ψM1−ψ

(
Mψ (X ,φ)

))(
ψ
(
Mψ(X ,φ)

)−ψm1
)

≤ −2Lχ

ψM−ψm

[∫
T

φt ([ψM1−ψ(Xt)][ψ(Xt)−ψm1])dμ(t)

+
(
ψM1−ψ

(
Mψ (X ,φ)

))(
ψ
(
Mψ(X ,φ)

)−ψm1
)]
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≤ χ
(
Mχ(X ,φ)

)− χ
(
Mψ(X ,φ)

)
(4.83)

≤ 2Lχ

ψM−ψm

[∫
T

φt ([ψM1−ψ(Xt)][ψ(Xt)−ψm1])dμ(t)

+
(
ψM1−ψ

(
Mψ(X ,φ)

))(
ψ
(
Mψ (X ,φ)

)−ψm1
)]

≤ 4Lχ

ψM−ψm

(
ψM1−ψ

(
Mψ (X ,φ)

))(
ψ
(
Mψ(X ,φ)

)−ψm1
)

≤ Lχ(ψM−ψm)111

holds for every continuous field (Xt)t∈T of positive operators in B(H ) with spectra in
[m,M].

Remark 4.22 If the function χ ◦ψ−1 is convex, then, due to the fact that every convex
function on a compact set that belongs to the interior of its domain is Lipschitzian, the
inequalities in (4.82) become

000≤ χ(M)− χ(m)
ψ(M)−ψ(m)

ψ
(
Mψ(X ,φ)

)
+

ψ(M)χ(m)−ψ(m)χ(M)
ψ(M)−ψ(m)

1− χ
(
Mχ(X ,φ)

)
≤ 2Lχ

ψM−ψm

∫
T

φt ([ψM1−ψ(Xt)][ψ(Xt)−ψm1])dμ(t) (4.84)

≤ 2Lχ

ψM−ψm

(
ψM1−ψ

(
Mψ (X ,φ)

))(
ψ
(
Mψ(X ,φ)

)−ψm1
)

≤Lχ

2
(ψM−ψm),

while inequalities in (4.83) read

− 2Lχ

ψM−ψm

∫
T

φt ([ψM1−ψ(Xt)][ψ(Xt)−ψm1])dμ(t)

≤ χ
(
Mχ(X ,φ)

)− χ
(
Mψ(X ,φ)

)
(4.85)

≤ 2Lχ

ψM−ψm

(
ψM1−ψ

(
Mψ (X ,φ)

))(
ψ
(
Mψ(X ,φ)

)−ψm1
)

≤ Lχ

2
(ψM−ψm)111

In addition, if χ ◦ψ−1 is operator convex, then the first line in (4.85) can be replaced by 000.
These inequalities follow from Corollaries 4.8 and 4.9.

4.4.2 Examples with power operator means

Let us recall, a common example of a quasi-arithmetic mean (4.44) is a power operator
mean

Mr (X ,φ) =

{
(
∫
T φt (Xr

t )dμ(t))
1
r , r �= 0

exp(
∫
T φt(logXt)dμ(t)) , r = 0

}
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already defined in the previous section by (4.53).
Clearly, the method developed in this section can be applied to the above power means.

More precisely, as a consequence of results from the previous section we obtain a whole
series of estimates for power operator means. In particular, we obtain some new reverse
relations for power operator means.

Corollary 4.10 ([82]) Let (φt)t∈T ∈P [B(H ),B(K )], where H , K are Hilbert spaces
and T is a locally compact Hausdorff space with a bounded Radon measure μ , and let
(Xt)t∈T be a continuous field of positive operators in B(H ) with spectra in [m,M]⊆ R+.

(i) If either s < 0 < r or r < 0 < s or 0 < r < s or s < r < 0, then

000≤ Ms−ms

Mr−mr (Mr(X ,φ))r +
Mrms−mrMs

Mr−mr 1− (Ms(X ,φ))s ≤ |Ms−ms|111, (4.86)

and if 0≤ s < r or r < s≤ 0, then

−|Ms−ms|111≤Ms−ms

Mr−mr (Mr(X ,φ))r +
Mrms−mrMs

Mr−mr 1− (Ms(X ,φ))s ≤ 000. (4.87)

(ii) For r ∈ R, r < 0 we have

000≤ logM− logm
Mr−mr (Mr(X ,φ))r +

Mr logm−mr logM
Mr−mr 1− log(M0(X ,φ))≤ log

M
m

111,

(4.88)

and for r > 0 we have

log
m
M

111≤ logM− logm
Mr−mr (Mr(X ,φ))r +

Mr logm−mr logM
Mr−mr 1− log(M0(X ,φ)) ≤ 000,

(4.89)

Proof. The proof is a consequence of Theorem 4.13 and Remark 4.21. More precisely, we
utilize series of inequalities in (4.80) with particular choices of functions χ and ψ .

First, we set χ(t) = ts and ψ(t) = tr, where s and r are real parameters such that sr �= 0.
Further, the function

(
χ ◦ψ−1

)
(t)= t

s
r is convex on R+ if s

r ≤ 0 or s
r ≥ 1, which is possible

in each of the following four cases: s≤ 0 < r, r < 0≤ s, 0 < r≤ s, s≤ r < 0. Now, utilizing
inequalities in (4.80) with the above functions χ and ψ on the interval [m,M], we obtain
(4.86).

On the other hand, the function
(
χ ◦ψ−1

)
(t) = t

s
r is concave on R+ provided that

0≤ s
r ≤ 1, hence, if 0≤ s≤ r �= 0 or 0 �= r ≤ s≤ 0, we obtain (4.87).

It remains to consider non-trivial cases when one of parameters r or s is equal to zero.
Without loss of generality, let s = 0. Here we set χ(t) = logt and ψ(t) = tr, and it follows
that

(
χ ◦ψ−1

)
(t) = 1

r logt. Clearly, this function is convex for r < 0, while it is concave
for r > 0. Now, relations (4.88) and (4.89) follow from inequalities in (4.80) and the proof
is completed. �

By following the same procedure as in the proof of the previous corollary and taking
into account inequalities in (4.81), we can also obtain a consequence of Theorem 4.14 that
corresponds to Jensen-type inequalities for power operator means.
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Corollary 4.11 ([82]) Let (φt)t∈T ∈P [B(H ),B(K )], where H , K are Hilbert spaces
and T is a locally compact Hausdorff space with a bounded Radon measure μ , and let
(Xt)t∈T be a continuous field of positive operators in B(H ) with spectra in [m,M]⊆ R+.

(i) For s,r ∈R such that sr �= 0 we have

−|Ms−ms|111≤(Ms(X ,φ))s− (Mr(X ,φ))s ≤ |Ms−ms|111, (4.90)

(ii) For r ∈ R, r < 0 we have

000≤ log(M0(X ,φ))− log(Mr(X ,φ))≤ log
M
m

111, (4.91)

and for r > 0 we have

log
m
M

111≤ log(M0(X ,φ))− log(Mr(X ,φ))≤ 000. (4.92)

Remark 4.23 It is well-known that the function f (t) = tr is operator convex on R+ if
either 1 ≤ r ≤ 2 or −1 ≤ r ≤ 0, and is operator concave on R+ when 0 ≤ r ≤ 1. Hence,
discussing the operator convexity of the function

(
χ ◦ψ−1

)
(t) = t

s
r , as in the proof of

Corollary 4.10, we obtain conditions on parameters r and s under which one of the outer
terms in (4.90) is equal to 000. If either

0 < r ≤ s≤ 2r or 2r ≤ s≤ r < 0 or 0≤ s+ r ≤ r �= 0 or 0 �= r ≤ r+ s≤ 0, (4.93)

then (4.90) reads

000≤(Ms(X ,φ))s− (Mr(X ,φ))s ≤ |Ms−ms|111,

and if

0 �= r ≤ s≤ 0 or 0≤ s≤ r �= 0, (4.94)

then (4.90) becomes

−|Ms−ms|111≤(Ms(X ,φ))s− (Mr(X ,φ))s ≤ 000.

The following results rely on Theorem 4.15, Theorem 4.16 and Remark 4.22, and they
provide a different class of Lah-Ribarič and Jensen-type inequalities for power operator
means then those obtained above.

Corollary 4.12 ([82]) Let (φt)t∈T ∈P [B(H ),B(K )], where H , K are Hilbert spaces
and T is a locally compact Hausdorff space with a bounded Radon measure μ , and let
(Xt)t∈T be a continuous field of positive operators in B(H ) with spectra in [m,M]⊆ R+.
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(i) If either 0 < r < s or s < r < 0, then

000≤ Ms−ms

Mr−mr (Mr(X ,φ))r +
Mrms−mrMs

Mr−mr 1− (Ms(X ,φ))s

≤ 2sM
s−r
r

r|Mr−mr|
∫

T
φt ([Mr1−Xr

t ][X
r
t −mr1])dμ(t) (4.95)

≤ 2sM
s−r
r

r|Mr−mr| (M
r1− (Mr (X ,φ))r) ((Mr (X ,φ))r−mr1)

≤ sM
s−r
r

2r
|Mr−mr|111,

if 0≤ s < r or r < s≤ 0, then

− sm
s−r
r

2r
|Mr−mr|111

≤− 2sm
s−r
r

r|Mr−mr| (M
r1− (Mr (X ,φ))r) ((Mr (X ,φ))r−mr1)

≤− 2sm
s−r
r

r|Mr−mr|
∫

T
φt ([Mr1−Xr

t ][X
r
t −mr1])dμ(t) (4.96)

≤ Ms−ms

Mr−mr (Mr(X ,φ))r +
Mrms−mrMs

Mr−mr 1− (Ms(X ,φ))s ≤ 000,

and if s < 0 < r or r < 0 < s then the inequality signs in (4.96) are reversed.

(ii) For r ∈ R, r < 0 we have

000≤ logM− logm
Mr−mr (Mr(X ,φ))r +

Mr logm−mr logM
Mr−mr 1− log(M0(X ,φ))

≤ 2
rm(Mr−mr)

∫
T

φt ([Mr1−Xr
t ][X

r
t −mr1])dμ(t) (4.97)

≤ 2L
rm(Mr−mr)

(Mr1− (Mr (X ,φ))r)((Mr (X ,φ))r−mr1)≤ Mr−mr

2rm
111,

and if r > 0, then the inequality signs in (4.97) are reversed.

(iii) For s ∈ R, s > 0 we have

000≤ Ms−ms

logM− logm
log(M0 (X ,φ))+

ms logM−Ms logm
logM− logm

1− (Ms(X ,φ))s

≤ 2sesM

logM− logm

∫
T

φt ([logM1− logXt ][logXt − logm1])dμ(t) (4.98)

≤ 2sesM

logM− logm
(logM1− log(M0 (X ,φ)))(log(M0 (X ,φ))− logm1)

≤ sesM

2
log

M
m

111,
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and for s < 0 we have

000≤ Ms−ms

logM− logm
log(M0 (X ,φ))+

ms logM−Ms logm
logM− logm

1− (Ms(X ,φ))s

≤ 2sesm

logm− logM

∫
T

φt ([logM1− logXt ][logXt − logm1])dμ(t) (4.99)

≤ 2sesm

logm− logM
(logM1− log(M0 (X ,φ)))(log(M0 (X ,φ))− logm1)

≤sesm

2
log

m
M

111.

Proof. The proof is similar to the proof of Corollary 4.10 except that we use relations in
(4.84) instead of inequalities in (4.80).

More precisely, let χ(t) = ts and ψ(t) = tr, where s and r are mutually different real
parameters not equal to zero. As noticed before, the function

(
χ ◦ψ−1

)
(t) = t

s
r is convex

on R+ if either s < 0 < r or r < 0 < s or 0 < r < s or s < r < 0, and it is concave if 0 < s < r
or r < s < 0.

Since the function
(
χ ◦ψ−1

)
(t) = t

s
r is differentiable, we can use the mean value the-

orem (
χ ◦ψ−1

)
(x)− (χ ◦ψ−1

)
(y)

x− y
=
(
χ ◦ψ−1)′ (t), x < t < y,

and deduce that for finding its Lipschitz constant it is sufficient to find a bound L such that∣∣∣(χ ◦ψ−1)′ (t)∣∣∣≤ L for all t ∈ [m,M].

We have (
χ ◦ψ−1)′ (t) =

s
r
t

s−r
r ,

and since the function f (t) = ta is increasing for a≥ 0 and decreasing for a < 0, it follows
that

Lχ =
s
r
M

s−r
r for 0 < r ≤ s or s≤ r < 0;

Lχ =− s
r
m

s−r
r for s < 0 < r or r < 0 < s;

Lχ =
s
r
m

s−r
r for 0 < s < r or r < s < 0.

In first two cases the function χ ◦ψ−1 is convex, so relations (4.95) and (4.96)with reversed
signs of inequality follow directly from (4.84). In the third case the function χ ◦ψ−1 is
concave, so inequalities in (4.96) follow from (4.84) and due to convexity of −χ ◦ψ−1.

We still need to consider the cases when one of the parameters r and s is equal to zero.
If s = 0, then setting χ(t) = log t and ψ(t) = tr, it follows that

(
χ ◦ψ−1

)
(t) = 1

r logt.
Clearly, this function is convex for r < 0, while it is concave for r > 0. Moreover, since
it is differentiable we can calculate

(
χ ◦ψ−1

)′ (t) = 1
rt , and from the mean value theorem

we get

Lχ =− 1
rm

for r < 0 and Lχ =
1
rm

for r > 0.
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Since in the first case the function χ ◦ψ−1 is convex and ψM = mr, ψm = Mr, inequalities
in (4.97) follow directly from (4.84), and in the second case the reversed inequalities in
(4.97) follow from (4.84) due to the convexity of the function− 1

r logt when r > 0.
Finally, if r = 0, then setting χ(t) = ts and ψ(t) = log t, it follows that the function(

χ ◦ψ−1
)
(t) = est is convex for every s �= 0. In addition,

(
χ ◦ψ−1

)′ (t) = sest , so the
mean value theorem yields

Lχ = sesM for s > 0 and Lχ =−sesm for s < 0.

Now relations (4.98) and (4.99) follow from (4.84). �

In the same manner as described above and relying on inequalities in (4.85), we obtain
the following result with which we conclude the paper.

Corollary 4.13 ([82]) Let (φt)t∈T ∈P [B(H ),B(K )], where H , K are Hilbert spaces
and T is a locally compact Hausdorff space with a bounded Radon measure μ , and let
(Xt)t∈T be a continuous field of positive operators in B(H ) with spectra in [m,M]⊆ R+.

(i) If either 0 < r < s or s < r < 0, then

− 2sM
s−r
r

r|Mr−mr|
∫

T
φt ([Mr1−Xr

t ][X
r
t −mr1])dμ(t)

≤ (Ms(X ,φ))s− (Mr(X ,φ))s (4.100)

≤ 2sM
s−r
r

r|Mr−mr| (M
r1− (Mr (X ,φ))r) ((Mr (X ,φ))r−mr1)

≤ sM
s−r
r

2r
|Mr−mr|111,

if 0≤ s < r or r < s < 0, then

− sm
s−r
r

2r
|Mr−mr|111

≤− 2sm
s−r
r

r|Mr−mr| (M
r1− (Mr (X ,φ))r) ((Mr (X ,φ))r−mr1)

≤ (Ms(X ,φ))s− (Mr(X ,φ))s (4.101)

≤ 2sm
s−r
r

r|Mr−mr|
∫

T
φt ([Mr1−Xr

t ][X
r
t −mr1])dμ(t),

and if s < 0 < r or r < 0 < s then the inequality signs in (4.101) are reversed.

(ii) For r ∈ R, r < 0 we have

000≤ log(M0(X ,φ))− log(Mr(X ,φ))

≤ 2
rm(Mr−mr)

(Mr1− (Mr (X ,φ))r)((Mr (X ,φ))r−mr1) (4.102)

≤ Mr−mr

2rm
111
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and if r > 0, then the inequality signs in (4.102) are reversed.

(iii) For s ∈ R, s > 0 we have

− 2sesM

logM− logm

∫
T

φt ([logM1− logXt ][logXt − logm1])dμ(t)

≤ (Ms(X ,φ))s− (M0(X ,φ))s (4.103)

≤ 2sesm

logm− logM
(logM1− log(M0 (X ,φ)))(logM1− log(M0 (X ,φ)))

≤ sesM

2
log

M
m

111,

and for s < 0 we have

2sesm

logM− logm

∫
T

φt ([logM1− logXt ][logXt − logm1])dμ(t)

≤ (Ms(X ,φ))s− (M0(X ,φ))s (4.104)

≤ 2sesm

logm− logM
(logM1− log(M0 (X ,φ))) (log(M0 (X ,φ))− logm1)

≤ sesm

2
log

m
M

111.

Remark 4.24 Inequalities (4.100) and (4.101) can be further altered in accordance with
the positivity and negativity of the term (Ms(X ,φ))s− (Mr(X ,φ))s which has already been
discussed in Remark 4.23.

4.5 Mutual bounds for Jensen-type operator
inequalities related to higher order convexity

The main objective of this section is to establish lower and upper bounds for the difference
between the left-hand side and the right-hand side of the Lah-Ribarič operator inequality
(4.2), which hold for a class of n-convex functions. The results that follow will be es-
tablished in a general setting, as described in the Introduction. Therefore, throughout, we
assume that A and B are unital C∗-algebras, and (φt)t∈T is a unital field of positive linear
mappings φt : A →B defined on a locally compact Hausdorff space T with a bounded
Radon measure μ .

Our first extension of the Lah-Ribarič inequality (4.2) that holds for n-convex functions
follows by virtue of Lemma 2.3, and is given in the following theorem. Throughout this
paper, whenever mentioning the interval [a,b], we assume that a,b are real numbers such
that a < b.
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Theorem 4.17 ([83]) Let f ∈ C n([a,b]) be n-convex function. If n > m≥ 3 are of differ-
ent parity, then the inequality∫

T
φt ( f (xt))dμ(t)−α f

∫
T

φt(xt)dμ(t)−β f111

≤ ( f [a,a]− f [a,b])
(∫

T
φt(xt)dμ(t)−a111

)
+

m−1

∑
k=2

f (k)(a)
k!

∫
T

φt

(
(xt −a111)k

)
dμ(t)

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)m(xt −b111)k−1

)
dμ(t)

(4.105)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [a,b]. Inequality (4.105) holds also when f is n-concave and n and m are
of equal parity. Moreover, when f is n-convex and n and m are of equal parity, or when
f is n-concave and n and m are of different parity, then the inequality sign in (4.105) is
reversed.

Proof. Since f ∈ C n([a,b]), it follows that its n-th order divided difference fn(t) =
f [t;a, ...,a︸ ︷︷ ︸

m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

] is continuous, so consequently the function Rm(t) defined by (2.64)

is also continuous. Therefore, applying the functional calculus to scalar relation (2.65), i.e.
setting xt instead of scalar t, we have

f (xt )−α f xt −β f 111 = (xt −a111)( f [a,a]− f [a,b])+
m−1

∑
k=2

f (k)(a)
k!

(xt −a111)k

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

](xt −a111)m(xt −b111)k−1 +Rm(xt).

Now, applying the positive linear mapping φt to the above relation and then by integrating,
it follows that∫

T
φt ( f (xt))dμ(t)−α f

∫
T

φt(xt)dμ(t)−β f111

= ( f [a,a]− f [a,b])
(∫

T
φt(xt)dμ(t)−a111

)
+

m−1

∑
k=2

f (k)(a)
k!

∫
T

φt

(
(xt −a111)k

)
dμ(t)

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)m(xt −b111)k−1

)
dμ(t)

+
∫

T
φt (Rm(xt))dμ(t).

(4.106)
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In order to complete our proof, we discuss positivity of the term
∫
T φt (Rm(xt))dμ(t). Due

to the monotonicity property, it suffices to study the sign of the function

Rm(t) = (t−a)m (t−b)n−m f [t;a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

].

Since a≤ t ≤ b, it follows that (t−a)m ≥ 0 for any choice of m. Similarly, t−b≤ 0 implies
that (t−b)n−m ≤ 0 when n and m are of different parity, and (t−b)n−m ≥ 0 when n and m
are of the same parity. Finally, according to the definition, f [t;a, ...,a︸ ︷︷ ︸

m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

]≥ 0(≤ 0)

for n-convex (n-concave) function, so the inequality (4.105) easily follows from relation
(4.106) and the proof is completed. �

Our next result provides another extension of the Lah-Ribarič operator inequality (4.2)
for n-convex functions in terms of divided differences, and it follows by virtue of Lemma
2.4.

Theorem 4.18 ([83]) Let f ∈ C n([a,b]) be n-convex function. If m≥ 3 is odd and m < n,
then the inequality∫

T
φt( f (xt ))dμ(t)−α f

∫
T

φt(xt)dμ(t)−β f 111

≤ ( f [a,b]− f [b,b])
(

b111−
∫
T

φt(xt)dμ(t)
)

+
m−1

∑
k=2

f (k)(b)
k!

∫
T

φt

(
(xt −b111)k

)
dμ(t)

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −b111)m(xt −a111)k−1

)
dμ(t)

(4.107)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [a,b]. Inequality (4.107) also holds when f is n-concave and m is even.
Moreover, when f is n-convex and m is even, or when f is n-concave and m is odd, then
the inequality sign in (4.107) is reversed.

Proof. In a similar manner as in the proof of the previous theorem, since every involved
function is continuous, we can replace t with operator xt in (2.69), and then apply positive
linear mapping φt to the obtained relation and integrate it. In such a way we have∫

T
φt( f (xt ))dμ(t)−α f

∫
T

φt(xt)dμ(t)−β f 111

= ( f [a,b]− f [b,b])
(

b111−
∫
T

φt (xt)dμ(t)
)

+
m−1

∑
k=2

f (k)(b)
k!

∫
T

φt

(
(xt −b111)k

)
dμ(t) (4.108)
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+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −b111)m(xt −a111)k−1

)
dμ(t)

+
∫

T
φt (R∗m(xt))dμ(t).

Following the lines of the previous theorem, it remains to discuss positivity of the term∫
T φt (R∗m(xt))dμ(t). Again, due to the monotonicity property, it is enough to study the

sign of the function

R∗m(t) = (t−b)m(t−a)n−m f [t;b, ...,b︸ ︷︷ ︸
m times

; a,a, ...,a︸ ︷︷ ︸
(n−m) times

].

Since t ∈ [a,b], we have (t−a)n−m ≥ 0 for every t and for any choice of m. Similarly,
(t−b)m ≤ 0 when m is odd, and (t−b)m ≥ 0 when m is even. Finally, taking into account
the definition of n-convex (n-concave) function and relation (4.108), we obtain (4.107), as
claimed. �

Remark 4.25 In the proofs of previous two theorems, when discussing positivity of terms∫
T φt (Rm(xt))dμ(t) and

∫
T φt (R∗m(xt))dμ(t), it was enough to discuss the sign of functions

Rm(t) and R∗m(t) since for a continuous and positive function f and a self-adjoint operator
xt , the operator f (xt ) is positive definite. Moreover, since a positive linear mapping φt

preserves positivity, it follows that
∫
T φt ( f (xt))dμ(t)≥ 0.

By combining results from Theorem 4.17 and Theorem 4.18, we get the following
bounds for the difference between the left-hand side and the right-hand side of the Lah-
Ribarič operator inequality (4.2), which are valid for the class of n-convex functions.

Corollary 4.14 ([83]) Let f ∈C n([a,b]) be n-convex function, where n is an odd number.
If m≥ 3 is odd and m < n, then the series of inequalities

( f [a,a]− f [a,b])
(∫

T
φt(xt)dμ(t)−a111

)
+

m−1

∑
k=2

f (k)(a)
k!

∫
T

φt

(
(xt −a111)k

)
dμ(t)

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)m(xt −b111)k−1

)
dμ(t)

≤
∫

T
φt( f (xt ))dμ(t)−α f

∫
T

φt(xt)dμ(t)−β f 111

≤ ( f [a,b]− f [b,b])
(

b111−
∫

T
φt(xt)dμ(t)

)
+

m−1

∑
k=2

f (k)(b)
k!

∫
T

φt

(
(xt −b111)k

)
dμ(t)

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −b111)m(xt −a111)k−1

)
dμ(t)

(4.109)
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holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [a,b]. Inequality (4.109) also holds when f is n-concave and m is even.
Moreover, when f is n-convex and m is even, or when f is n-concave and m is odd, then
the inequality signs in (4.109) are reversed.

The following result also provides mutual bounds for the difference between the left-
hand side and the right-hand side of the Lah-Ribarič operator inequality, and it relies on
scalar relations (2.62) and (2.63).

Theorem 4.19 ([83]) Let f ∈ C n([a,b]) be n-convex function, where n ≥ 3 is an odd
number. Then the inequalities

n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)(xt −b111)k−1

)
dμ(t)

≤
∫

T
φt( f (xt ))dμ(t)−α f

∫
T

φt(xt)dμ(t)−β f111

≤ f [a,a;b]
∫

T
φt ((xt −a111)(xt −b111))dμ(t)

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)2(xt −b111)k−1

)
dμ(t)

(4.110)

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [a,b]. Inequalities in (4.110) also hold when f is n-concave and n is even. In
the case when f is n-convex and n is even, or when f is n-concave and n is odd, then the
inequality signs in (4.110) are reversed.

Proof. Following the lines as in the proofs of the previous two theorems, we can replace
t by xt in (2.62) and (2.63) respectively, and then, apply a positive linear mapping φt to the
established relations and integrate them. By doing so, we get∫

T
φt( f (xt ))dμ(t)−α f

∫
T

φt(xt)dμ(t)−β f111

=
n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)(xt −b111)k−1

)
dμ(t)+

∫
T

φt (R1(xt))dμ(t)
(4.111)

and ∫
T

φt( f (xt ))dμ(t)−α f

∫
T

φt (xt)dμ(t)−β f 111

= f [a,a;b]
∫

T
φt ((xt −a111)(xt −b111))dμ(t)

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)2(xt −b111)k−1

)
dμ(t)

+
∫
T

φt (R2(xt))dμ(t).

(4.112)
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Now, taking into account the discussion about positivity of term
∫
T φt (Rm(xt))dμ(t) as in

the proof of Theorem 4.17, it follows that if m = 1, then

• ∫T φt (R1(xt))dμ(t) ≥ 0 when f is n-convex and n is odd, or when f is n-concave
and n even;

• ∫T φt (R1(xt))dμ(t) ≤ 0 when f is n-concave and n is odd, or when f is n-convex
and n even.

Hence, if
∫
T φt (R1(xt))dμ(t) ≥ 0, the relation (4.111) yields the first inequality sign in

(4.110). Moreover, if
∫
T φt (R1(xt))dμ(t)≤ 0 the corresponding inequality sign is reversed.

In the same manner, if m = 2, then

• ∫T φt (R2(xt))dμ(t) ≤ 0 when f is n-convex and n is odd, or when f is n-concave
and n even;

• ∫T φt (R2(xt))dμ(t) ≥ 0 when f is n-concave and n is odd, or when f is n-convex
and n even.

Consequently, if
∫
T φt (R2(xt))dμ(t)≤ 0, the relation (4.112) provides the second inequal-

ity sign in (4.110), while for
∫
T φt (R2(xt))dμ(t) ≥ 0 the corresponding sign is reversed.

This completes the proof. �

In order to conclude this topic, we give yet another pair of mutual bounds for the
difference between the left-hand side and the right-hand side of the Lah-Ribarič operator
inequality. The corresponding result relies on Lemma 2.4 and it is interesting since it holds
for all n ∈ N, not only for the odd ones.

Theorem 4.20 ([83]) If f ∈ C n([a,b]) is n-convex function, where n ≥ 3, then the in-
equalities

f [b,b;a]
∫

T
φt ((xt −b111)(xt −a111))dμ(t)

+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −b111)2(xt −a111)k−1

)
dμ(t)

≤
∫

T
φt( f (xt ))dμ(t)−α f

∫
T

φt(xt)dμ(t)−β f 111

≤
n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −b111)(xt −a111)k−1

)
dμ(t)

(4.113)

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spec-
tra contained in [a,b]. If the function f is n-concave, the inequality signs in (4.113) are
reversed.
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Proof. We follow the same procedure as in the proof of Theorem 4.19 except that we
utilize relations (2.66) and (2.67) instead of (2.62) and (2.63). In such a way we obtain
relations∫

T
φt( f (xt ))dμ(t)−α f

∫
T

φt (xt)dμ(t)−β f111

=
n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −b111)(xt −a111)k−1

)
dμ(t)+

∫
T

φt (R∗1(xt))dμ(t)
(4.114)

and ∫
T

φt( f (xt ))dμ(t)−α f

∫
T

φt (xt)dμ(t)−β f 111

= f [b,b;a]
∫

T
φt ((xt −b111)(xt −a111))dμ(t)

+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −b111)2(xt −a111)k−1

)
dμ(t)

+
∫
T

φt (R∗2(xt))dμ(t).

(4.115)

Now, we refer to discussion about positivity of the term
∫
T φt (R∗m(xt))dμ(t), as in the

proof of Theorem 4.18. If m = 1, then (t − b)1(t − a)n−1 ≤ 0 for every t ∈ [a,b], so∫
T φt (R∗1(xt))dμ(t) ≥ 0 when the function f is n-concave, and

∫
T φt (R∗1(xt))dμ(t) ≤ 0

when f is n-convex. Therefore the relation (4.114) yields the second inequality sign in
(4.113) for an n-convex function f , while for n-concave function f the corresponding sign
is reversed.

Similarly, for m = 2 we have (t−b)2(t−a)n−2 ≥ 0 for every t ∈ [a,b], so
∫
T φt (R∗2(xt))

dμ(t) ≥ 0 when f is n-convex, and
∫
T φt (R∗2(xt))dμ(t) ≤ 0 when f is n-concave. In this

case the identity (4.115) yields the first inequality sign in (4.113), which completes the
proof. �

Remark 4.26 It should be noticed here that if f is 3-convex function, then the series of
inequalities in (4.110) and (4.113) coincide, providing the relation

f [b,b;a]
∫

T
φt ((xt −b111)(xt −a111))dμ(t)

≤
∫

T
φt( f (xt ))dμ(t)−α f

∫
T

φt(xt)dμ(t)−β f 111

≤ f [a,a;b]
∫

T
φt ((xt −b111)(xt −a111))dμ(t).

(4.116)

In the remainder of this section we will utilize the results from above, as well Lemma
2.3 and Lemma 2.4, in order to obtain several Jensen-type operator inequalities that cor-
respond to n-convex functions. More precisely, we will establish several mutual bounds
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for the difference between the right-hand side and the left hand side of the Jensen opera-
tor inequality (4.1). The results that follows will be derived in the same setting as in the
previous section.

Our first estimate for the difference in the Jensen inequality (4.1) relies on Corollary
4.14.

Theorem 4.21 ([83]) Let f ∈ C n([a,b]) be n-convex function, where n is an odd number.
If m≥ 3 is odd and m < n, then the series of inequalities

Hf (a,b)≤
∫

T
φt ( f (xt))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)
≤ Hf (b,a), (4.117)

where

Hf (a,b) =
(
f (a)− f (b)+b f ′(b)−a f ′(a)

)
111+( f ′(a)− f ′(b))

∫
T

φt(xt)dμ(t)

+
m−1

∑
k=2

[
f (k)(a)

k!

∫
T

φt

(
(xt −a111)k

)
dμ(t)− f (k)(b)

k!

(∫
T

φt(xt)dμ(t)−b111

)k
]

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)m(xt −b111)k−1

)
dμ(t)

−
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−b111

)m(∫
T

φt (xt)dμ(t)−a111

)k−1

,

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [a,b]. Inequalities in (4.117) also hold when f is n-concave and m is even.
In the cases when f is n-convex and m is even, or when f is n-concave and m is odd, the
inequality signs in (4.117) are reversed.

Proof. Since a1 ≤ xt ≤ b1 for every t ∈ T , it follows that aφt(1) ≤ φt(xt) ≤ bφt(1), i.e.
a1 ≤ ∫T φt (xt)dμ(t) ≤ b1. Hence, applying the functional calculus to relation (2.65), i.e.
setting

∫
T φt(xt)dμ(t) instead of t, it follows that

f

(∫
T

φt(xt)dμ(t)
)
−α f

∫
T

φt (xt)dμ(t)−β f 111

=
(∫

T
φt (xt)dμ(t)−a111

)
( f [a,a]− f [a,b])+

m−1

∑
k=2

f (k)(a)
k!

(∫
T

φt(xt)dμ(t)−a111

)k

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−a111

)m(∫
T

φt(xt)dμ(t)−b111

)k−1

+Rm

(∫
T

φt(xt)dμ(t)
)

.

Now, we study positivity of the term Rm (
∫
T φt (xt)dμ(t)). Namely, since a1≤ ∫T φt(xt)dμ(t)

≤ b1, due to the monotonicity property, it suffices to study positivity of the scalar function
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Rm(t) for t ∈ [a,b], which we have already done in the proof of Theorem 4.17. Hence, if f
is an n-convex function and n and m≥ 3 are of different parity, or if f is n-concave and n
and m≥ 3 are of the same parity, the above relation yields the inequality

f

(∫
T

φt(xt)dμ(t)
)
−α f

∫
T

φt(xt)dμ(t)−β f111

≤
(∫

T
φt(xt)dμ(t)−a111

)
( f [a,a]− f [a,b])+

m−1

∑
k=2

f (k)(a)
k!

(∫
T

φt(xt)dμ(t)−a111

)k

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−a111

)m(∫
T

φt(xt)dμ(t)−b111

)k−1

.

Clearly, if f is n-convex and n and m≥ 3 are of the same parity, or if f is n-concave and n
and m≥ 3 are of different parity, the inequality sign is reversed.

Now, in the same way as above, applying the functional calculus to (2.69) and taking
into account discussion about the sign of the scalar function R∗m(t) for t ∈ [a,b] (see the
proof of the Theorem 4.18), we obtain the inequality

f

(∫
T

φt(xt)dμ(t)
)
−α f

∫
T

φt(xt)dμ(t)−β f111

≤
(

b111−
∫

T
φt(xt)dμ(t)

)
( f [a,b]− f [b,b])+

m−1

∑
k=2

f (k)(b)
k!

(∫
T

φt(xt)dμ(t)−b111

)k

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−b111

)m(∫
T

φt(xt)dμ(t)−a111

)k−1

,

which holds for n-convex function f and an odd number m ≥ 3 or for n-concave function
f and an even number m≥ 3. If f is n-convex and m is even, or if f is n-concave and m is
odd, the inequality sign is reversed.

By combining the previous two inequalities, it follows that the series of inequalities(∫
T

φt(xt)dμ(t)−a111

)
( f [a,a]− f [a,b])+

m−1

∑
k=2

f (k)(a)
k!

(∫
T

φt(xt)dμ(t)−a111

)k

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−a111

)m(∫
T

φt(xt)dμ(t)−b111

)k−1

≤ f

(∫
T

φt(xt)dμ(t)
)
−α f

∫
T

φt (xt)dμ(t)−β f111

≤
(

b111−
∫
T

φt (xt)dμ(t)
)

( f [a,b]− f [b,b])+
m−1

∑
k=2

f (k)(b)
k!

(∫
T

φt(xt)dμ(t)−b111

)k

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−b111

)m(∫
T

φt(xt)dμ(t)−a111

)k−1
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holds if f is n-convex and m is odd, or if f is n-concave and m is even. If f is n-convex
and m is even, or f is n-concave and m is odd, then the inequality signs are reversed.

Finally, multiplying the above series of inequalities by −1 and then, adding it to
(4.109), we obtain exactly the relation (4.117), as claimed. �

Our next result provides yet another lower and upper bound for the difference in the
Jensen operator inequality for n-convex functions, this time obtained by virtue of Lemma
2.3 and Theorem 4.19.

Theorem 4.22 ([83]) Let f ∈ C n([a,b]) be n-convex function, where n ≥ 3 is an odd
number. Then the series of inequalities

f [a,a;b]
(

b111−
∫

T
φt(xt)dμ(t)

)(∫
T

φt(xt)dμ(t)−a111

)
+

n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)(xt −b111)k−1

)
dμ(t)

−
(∫

T
φt (xt)dμ(t)−a111

)2 n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−b111

)k−1

≤
∫

T
φt ( f (xt))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

(4.118)

≤ f [a,a;b]
∫

T
φt ((xt −a111)(xt −b111))dμ(t)

−
(∫

T
φt (xt)dμ(t)−a111

)n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]
(∫

T
φt (xt)dμ(t)−b111

)k−1

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −a111)2(xt −b111)k−1

)
dμ(t)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [a,b]. Inequalities in (4.118) also hold when f is n-concave and n is even.
In the cases when f is n-convex and n is even, or when f is n-concave and n is odd, the
inequality signs in (4.118) are reversed.

Proof. By following the same procedure as in the proof of the previous theorem, we start
by replacing t with

∫
T φt(xt)dμ(t) in relations (2.62) and (2.63). Therefore we get

f

(∫
T

φt(xt)dμ(t)
)
−α f

∫
T

φt(xt)dμ(t)−β f 111

=
n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−a111

)(∫
T

φt(xt)dμ(t)−b111

)k−1

+R1

(∫
T

φt(xt)dμ(t)
)

and
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f

(∫
T

φt(xt)dμ(t)
)
−α f

∫
T

φt (xt)dμ(t)−β f111

= f [a,a;b]
(∫

T
φt(xt)dμ(t)−a111

)(∫
T

φt(xt)dμ(t)−b111

)
+

n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−a111

)2(∫
T

φt(xt)dμ(t)−b111

)k−1

+R2

(∫
T

φt(xt)dμ(t)
)

,

respectively. Now, taking into account discussion about the sign of scalar terms R1 (t) and
R2(t), t ∈ [a,b], from Theorem 4.19, the above relations imply that the series of inequalities

n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−a111

)(∫
T

φt(xt)dμ(t)−b111

)k−1

≤ f

(∫
T

φt(xt)dμ(t)
)
−α f

∫
T

φt(xt)dμ(t)−β f111

≤ f [a,a;b]
(∫

T
φt(xt)dμ(t)−a111

)(∫
T

φt(xt)dμ(t)−b111

)
+

n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−a111

)2(∫
T

φt(xt)dμ(t)−b111

)k−1

holds when n is odd and f is n-convex, or when n is even and f is n-concave. If n is odd
and f is n-concave, or if n is even and f is n-convex, then the corresponding inequality
signs are reversed.

Finally, inequalities in (4.118) follow after multiplying the above series by −1 and
adding it to (4.110). �

In an analogous way as described in the proof of the previous theorem, this time by
virtue of Lemma 2.4 and Theorem 4.20, we can get a similar lower and upper bound for
the difference between the right-hand side and the left-hand side of (4.1) that holds for all
n≥ 3, not only for the odd ones.

Theorem 4.23 ([83]) If f ∈ C n([a,b]) is n-convex function, n≥ 3, then the inequalities

f [b,b;a]
∫

T
φt ((xt −b111)(xt −a111))dμ(t)

−
(∫

T
φt(xt)dμ(t)−b111

)n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−a111

)k−1

+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −b111)2(xt −a111)k−1

)
dμ(t)



4.5 MUTUAL BOUNDS FOR INEQUALITIES 161

≤
∫

T
φt ( f (xt ))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

(4.119)

≤ f [b,b;a]
(

b111−
∫

T
φt(xt)dμ(t)

)(∫
T

φt(xt)dμ(t)−a111

)
+

n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]
∫

T
φt

(
(xt −b111)(xt −a111)k−1

)
dμ(t)

−
(∫

T
φt (xt)dμ(t)−b111

)2 n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]
(∫

T
φt(xt)dμ(t)−a111

)k−1

hold for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [a,b]. In addition, if f is n-concave, then the inequality signs in (4.119) are
reversed.

Remark 4.27 It should be noticed here that if f is 3-convex function, then the relations
(4.118) and (4.119) coincide, giving the series of inequalities

f [a,a;b]
(

b111−
∫
T

φt(xt)dμ(t)
)(∫

T
φt (xt)dμ(t)−a111

)
+ f [b,b;a]

∫
T

φt ((xt −a111)(xt −b111))dμ(t)

≤
∫

T
φt ( f (xt))dμ(t)− f

(∫
T

φt(xt)dμ(t)
)

≤ f [b,b;a]
(

b111−
∫
T

φt (xt)dμ(t)
)(∫

T
φt(xt)dμ(t)−a111

)
+ f [a,a;b]

∫
T

φt ((xt −a111)(xt −b111))dμ(t).

(4.120)

4.5.1 Applications to quasi-arithmetic operator means

Our goal in this subsection is an application of general Jensen-type inequalities established
above to the so-called quasi-arithmetic operator means. In such a way, we shall obtain
mutual bounds for the differences of quasi-arithmetic means.

A few years ago, Mićić et al. [101], investigated an order among quasi-arithmetic
means Mχ (x,φ) and Mψ (x,φ). Such order was derived by virtue of operator convexity
and operator monotonicity of the corresponding functions appearing in these means. A
similar conclusion can be drawn for quasi-arithmetic means in a view of higher convexity.
More precisely, utilizing the Jensen-type inequalities from above, we will establish several
mutual bounds for the difference χ

(
Mχ (x,φ)

)−χ
(
Mψ (x,φ)

)
of quasi-arithmetic means.

Before we state our results, we will first introduce some notation arising from this par-
ticular setting. Throughout this section we denote F = χ ◦ψ−1 and ψa =min{ψ(a),ψ(b)},
ψb = max{ψ(a),ψ(b)}, where χ and ψ are strictly monotone functions. It is obvious that
if ψ is increasing, then ψa = ψ(a), ψb = ψ(b), and if ψ is decreasing, then ψa = ψ(b),
ψb = ψ(a). Furthermore, since ψ : [a,b]→ R is a continuous strictly monotone function,
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it follows that ψa1 ≤ ψ(xt) ≤ ψb1, for every t ∈ T , which means that the spectra of the
field (yt)t∈T = (ψ(xt))t∈T is contained in the interval [ψa,ψb].

Now, rewriting Theorem 4.21 with F = χ ◦ψ−1, (ψ(xt))t∈T and [ψa,ψb] instead of f ,
(xt)t∈T , and [a,b], respectively, we obtain the following result:

Corollary 4.15 ([83]) Let χ ,ψ : [a,b]→ R be continuous strictly monotone functions
such that F = χ ◦ψ−1 ∈ C n([a,b]). If the function F is n-convex, m≥ 3 is odd and m < n,
then the series of inequalities

HF (ψa,ψb)≤ χ
(
Mχ (x,φ)

)− χ
(
Mψ (x,φ)

)≤ HF (ψb,ψa) , (4.121)

where Hf (a,b) is defined in the statement of Theorem 4.21, hold for every continuous field
(xt)t∈T of self-adjoint operators in B(H ) with spectra in [a,b]. Inequalities in (4.121)
also hold when F is n-concave and m is even. In the cases when F is n-convex and m is
even, or when the F is n-concave and m is odd, the inequality signs in (4.121) are reversed.

Similarly to the previous corollary, Theorems 4.22 and 4.23 also providemutual bounds
for the difference χ

(
Mχ (x,φ)

)−χ
(
Mψ (x,φ)

)
. In order to simplify our further discussion,

we give the corresponding result for the case when Theorems 4.22 and 4.23 coincide,
i.e. for the case of 3-convex function. Namely, rewriting relation (4.120) with F = χ ◦
ψ−1, (ψ(xt))t∈T and [ψa,ψb] instead of f , (xt)t∈T , and [a,b], respectively, we obtain the
following result:

Corollary 4.16 ([83]) Let χ ,ψ : [a,b]→ R be continuous strictly monotone functions
such that F = χ ◦ψ−1 ∈C 3([a,b]). If F is 3-convex function, then the series of inequalities

F[ψa,ψa;ψb]
(

ψb111−
∫
T

φt (ψ(xt))dμ(t)
)(∫

T
φt (ψ(xt))dμ(t)−ψa111

)
+F[ψb,ψb;ψa]

∫
T

φt ((ψ(xt)−ψa111)(ψ(xt)−ψb111))dμ(t)

≤ χ
(
Mχ (x,φ)

)− χ
(
Mψ (x,φ)

)
≤ F [ψb,ψb;ψa]

(
ψb111−

∫
T

φt (ψ(xt))dμ(t)
)(∫

T
φt (ψ(xt))dμ(t)−ψa111

)
+F[ψa,ψa;ψb]

∫
T

φt ((ψ(xt)−ψa111)(ψ(xt)−ψb111))dμ(t)

holds for every continuous field (xt)t∈T of positive operators in B(H ) with spectra in
[a,b]. If F is 3-concave, the corresponding inequality signs are reversed.

The simplest example of a quasi-arithmetic mean (4.44) is a power operator mean
defined by (see e.g. [101]):

Mr (x,φ) =

{
(
∫
T φt(xr

t )dμ(t))
1
r , r �= 0

exp(
∫
T φt (logxt)dμ(t)) , r = 0.

Since power operator means are special cases of quasi-arithmetic operator means for par-
ticular choices of functions χ and ψ , let us first set χ(t) = ts and ψ(t) = tr, t > 0, where s
and r are real parameters such that r,s �= 0.
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Now, the function F(t) = (χ ◦ψ−1)(t) = ts/r belongs to the class C n(R) for any n∈N,
and we have

F (n)(t) =
s
r

( s
r
−1
)( s

r
−2
)
· · ·
(s

r
−n+1

)
t

s
r−n.

It is straightforward to check that:

• if r < 0 < s or s < 0 < r, then the function F is n-convex for any even n ∈ N, and
n-concave for any odd number n;

• if 0 < s < r or r < s < 0, then the function F is n-convex for any odd n ∈ N, and
n-concave for any even number n;

• if 0 < r < s or s < r < 0, then the function F is n-convex when � s
r � is even and n is

odd, or when � s
r � is odd and n is even, and F is n-concave when � s

r � and n are both
either even or odd.

It remains to consider the cases when one of the parameters r and s is equal to zero. If

s = 0, then setting χ(t) = log t and ψ(t) = tr, it follows that F(t) = (χ ◦ψ−1)(t) =
1
r

log t

belongs to the class C n(R) for any n ∈ N, and we have

F (n)(t) =
1
r
(−1)n−1(n−1)! t−n.

It is easy to see that:

• the function F is n-convex if r > 0 and n ∈N is odd, or if r < 0 and n ∈ N is even;

• the function F is n-concave if r > 0 and n ∈ N is even, or if r < 0 and n ∈ N is odd.

In cases when r < 0 the function ψ(t) = tr is strictly decreasing, so we have ψa = br

and ψb = ar, and in cases when 0 < r the function ψ is strictly increasing, so we have
ψa = ar and ψb = br.

Finally, if r = 0, then setting χ(t) = ts and ψ(t) = log t, it follows that the function
F(t) = (χ ◦ψ−1)(t) = est belongs to the class C n(R) for any n ∈ N, and we have

F (n)(t) = sn est .

Trivially,

• if s > 0, then the function F is n-convex for any n ∈N;

• if s < 0, then F is n-convex for any even number n, and n-concave for any odd
number n.

The function ψ(t) = log t is strictly increasing, so in this case we have ψa = loga and
ψb = logb.

We see that all of our results regarding quasi-arithmetic means can be applied to power
operator means, considering our discussion from above (see also [108]).
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• If 0 < s≤ r or 0 < 2r ≤ s holds, then

1
br−ar

[(
s
r
bs−r− bs−as

br−ar

)∫
T

φt ((xr
t −br111)(xr

t −ar111))dμ(t)

+
(

bs−as

br−ar −
s
r
as−r
)(

br111−
∫
T

φt (xr
t )dμ(t)

)(∫
T

φt (xr
t )dμ(t)−ar111

)]
≤ (Ms (x,φ))s− (Mr (x,φ))s

≤ 1
br−ar

[(
s
r
bs−r− bs−as

br−ar

)(
br111−

∫
T

φt (xr
t )dμ(t)

)(∫
T

φt (xr
t )dμ(t)−ar111

)

+
(

bs−as

br−ar −
s
r
as−r
)∫

T
φt ((xr

t −br111)(xr
t −ar111))dμ(t)

]
If s < 0 < r or 0 < r ≤ s≤ 2r, then the above inequalities are reversed.
• If r ≤ s < 0 or s≤ 2r < 0 holds, then

1
br−ar

[(
bs−as

br−ar −
s
r
as−r
)∫

T
φt ((xr

t −br111)(xr
t −ar111))dμ(t)

+
(

s
r
bs−r− bs−as

br−ar

)(
br111−

∫
T

φt (xr
t )dμ(t)

)(∫
T

φt (xr
t )dμ(t)−ar111

)]
≤ (Ms (x,φ))s− (Mr (x,φ))s

≤ 1
br−ar

[(
bs−as

br−ar −
s
r
as−r
)(

br111−
∫

T
φt (xr

t )dμ(t)
)(∫

T
φt (xr

t )dμ(t)−ar111

)

+
(

s
r
bs−r− bs−as

br−ar

)∫
T

φt ((xr
t −br111)(xr

t −ar111))dμ(t)

]
If r < 0 < s or 2r ≤ s≤ r < 0, then the inequalities are reversed.
• If r �= 0, then

1
br−ar

[(
1

rbr −
logb− loga

br−ar

)∫
T

φt ((xr
t −br111)(xr

t −ar111))dμ(t)

+
(

logb− loga
br−ar − 1

rar

)(
br111−

∫
T

φt (xr
t )dμ(t)

)(∫
T

φt (xr
t )dμ(t)−ar111

)
≤ log(M0 (x,φ))− log(Mr (x,φ))

≤ 1
br−ar

[(
1

rbr −
logb− loga

br−ar

)(
br111−

∫
T

φt (xr
t )dμ(t)

)(∫
T

φt (xr
t )dμ(t)−ar111

)

+
(

logb− loga
br−ar − 1

rar

)∫
T

φt ((xr
t −br111)(xr

t −ar111))dμ(t)

]
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• If s > 0, then

1

log b
a

[(
sbs− bs−as

log b
a

)∫
T

φt ((ψ(xt)−ψb111)(logxt − loga111))dμ(t)

+

(
bs−as

log b
a

− sas

)(
logb111−

∫
T

φt (logxt)dμ(t)
)(∫

T
φt (logxt)dμ(t)− loga111

)]
≤ (Ms (x,φ))s− (M0 (x,φ))s

≤ 1

log b
a

[(
sbs− bs−as

log b
a

)(
logb111−

∫
T

φt (logxt))dμ(t)
)(∫

T
φt (logxt)dμ(t)− loga111

)

+

(
bs−as

log b
a

− sas

)∫
T

φt ((logxt − logb111)(logxt − loga111))dμ(t)

]

and if s < 0, the inequality signs are reversed.





Chapter5
Converses of Ando’s and
Davis-Choi’s inequality

In this chapter, several converses of Ando’s inequalitiy and Davis-Choi’s inequality of
different types have been proved, as well as the Edmundson-Lah-Ribarič inequality and
its difference type converse for positive linear mappings. Also, a difference type converse
for solidarities, one of which is of a special type that includes connections, and a quotient
reverse inequality (or a reverse of the operator Hölder inequality) for connections and for
the special type of solidarities that includes connections are given. In the case of converses
in the form of a difference, the estimations are expressed using a kind of variation of the
involved family of operators. As an application of the obtained results, operator reverses of
inequalities for the general weighted power mean are given in a difference and a quotient
form.

Also, by exploiting different scalar equalities obtained via Hermite’s interpolating poly-
nomial, we will obtain lower and upper bounds for the difference in Ando’s inequality and
in the Edmundson-Lah-Ribarič inequality for solidarities that hold for the class of n-convex
functions. As an example, main results are applied to some operator means and relative
operator entropy.
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5.1 Introduction

Let H be Hilbert space and let A be a linear operator on H. Operator norm of A is defined
as

||A|| := sup{||Ax|| : ||x|| ≤ 1,x ∈ H}.
Adjoint operator A∗ of A is defined as a unique operator on H such that 〈Ax,y〉= 〈x,A∗y〉
holds for every x,y ∈ H. It follows that ||A||= ||A∗||= ||AA∗||1/2.

Operator A is bounded if ||A||< ∞. With B(H) we denote a C∗-algebra of all bounded
(that is continuous) linear operators on H.

Spectrum of an operator A is defined as a set

Sp(A) = {λ ∈ C : A−λ111H not invertible in B(H)}.

We say that a bounded linear operator A ∈B(H) is self-adjoint if A = A∗. Operator A
is self-adjoint if and only if 〈Ax,x〉 ∈ R holds for every x ∈ H. We say that a self-adjoint
operator A is positive semi-definite (or simply positive) and write A≥ 0 if 〈Ax,x〉 ≥ 0 holds
for every vector x ∈ H.

The theory for connections and means of pairs of positive operators has been developed
by Kubo and Ando in [86]. Connection σ , as a binary operation on the set of positive
definite operators, is characterized by the relation

AσB = A1/2 f
(
A−1/2BA−1/2

)
A1/2, (5.1)

where f is a positive operator monotone function on (0,∞) called the representing function
for σ . The axiomatic properties of connections are as follows:

(1) A≤C, B≤ D implies AσB≤CσD,

(2) C (AσB)C ≤ (CAC)σ(CBC),

(3) from Ak ↓ A and Bk ↓ B it follows that AkσBk ↓ AσB.

A mean is a connection with normalization condition:

(4) Iσ I = I.

A binary operation σ on the set of positive definite operators is called solidarity if
the representing function f in (5.1) is just operator monotone on (0,∞). The theory of
solidarities has been developed in [46]. The relative operator entropy

S(A|B) = A1/2 log
(
A−1/2BA−1/2

)
A1/2

is an example of solidarity.
The following properties are proved in [46].
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Theorem 5.1 ([46]) If σ is a solidarity, then

• (A+B)σ(C+D)≥ AσC+BσD (subaditivity)

• (λA1 +(1−λ )A2)σ (λB1 +(1−λ )B2)≥ λ (A1σB1)+(1−λ )(A2σB2), 0≤ λ ≤ 1
(joint concavity).

A simple consequence of the stated properties is the following Jensen type inequality.

Corollary 5.1 ([46]) Let pi ≥ 0, Ai,Bi > 0, i = 1, . . . ,n. Then

n

∑
i=1

piAiσBi ≤
(

n

∑
i=1

piAi

)
σ

(
n

∑
i=1

piBi

)
(5.2)

for any solidarity σ .

The basic examples of connections and their representing functions are:

• The weighted arithmetic mean

A∇αB = (1−α)A+ αB, 0≤ α ≤ 1,

with representing function t �→ (1−α)+ αt.

• The weighted harmonic mean

A !αB =
[
(1−α)A−1 + αB−1]−1

, 0≤ α ≤ 1,

with representing function t �→ t
(1−α)t+α .

• The weighted geometric mean

A#αB = A1/2
(
A−1/2BA−1/2

)α
A1/2, 0≤ α ≤ 1,

with representing function t �→ tα .

• The weighted power mean

A#p,αB = A1/2
[
(1−α)I + α

(
A−1/2BA−1/2

)p]1/p
A1/2, 0≤ α ≤ 1,−1≤ p ≤ 1,

with representing function t �→ [(1−α)+ αt p]1/p.

In this way the Hölder inequality for positive definite operators Ai, Bi and pi ≥ 0,
i = 1, . . . ,n

n

∑
i=1

piAi#p,αBi ≤
(

n

∑
i=1

piAi

)
#p,α

(
n

∑
i=1

piBi

)
(5.3)

holds, where 0≤ α ≤ 1, −1≤ p≤ 1.
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Although it is common to call inequality (5.3) the Hölder inequality, it is worthwhile
to mention that in the real case inequality (5.3) reduces to

n

∑
i=1

pi
[
(1−α)ap

i + αbp
i

] 1
p ≤
[
(1−α)

(
n

∑
i=1

piai

)p

+ α

(
n

∑
i=1

pibi

)p] 1
p

,

which holds for p < 1 and the reversed inequality holds for p > 1. This is discrete
Minkowski’s inequality. A more general form of which is

n

∑
i=1

pi

(
m

∑
j=1

q ja
p
i, j

) 1
p

≤
[

m

∑
j=1

q j

(
n

∑
i=1

piai, j

)p] 1
p

, (5.4)

where ai, j > 0, pi,q j ≥ 0, i = 1, . . . ,n, j = 1, . . . ,m, p < 1. For p > 1 the reversed inequality
holds in (5.4).

Note that inequality (5.4) is, due to homogeneous property, equivalent to inequality

n

∑
i=1

(
m

∑
j=1

ap
i, j

) 1
p

≤
[

m

∑
j=1

(
n

∑
i=1

ai, j

)p] 1
p

.

In the operator case the only known result of this type is proven in [4] for the harmonic
mean:

n

∑
i=1

(
m

∑
j=1

A−1
i, j

)−1

≤
⎡⎣ m

∑
j=1

(
n

∑
i=1

Ai, j

)−1
⎤⎦−1

,

where Ai, j, i = 1, . . . ,n, j = 1, . . . ,m are positive invertible operators.
Main goal of the first section is to give reverse inequalities to (5.2) of a difference and

quotient type for the special type of solidarities that includes connections. In the case of the
weighted power mean the explicit estimations of reverse inequalities of (5.3) in a difference
and quotient form are obtained. The difference case for the relative operator entropy is also
given. The methods used in this paper and related results in this area can be found in the
monographs [48] and [49]. The next result has been proved [24].

Theorem 5.2 ([24]) Let Ai,Bi > 0, i = 1, . . .n be such that mAi ≤ Bi ≤ MAi for some
scalars 0 < m < M. Then, if 0 < α < 1(

n

∑
i=1

Ai

)
#α

(
n

∑
i=1

Bi

)
≤ 1

K(m,M,α)

n

∑
i=1

Ai#αBi, (5.5)

where

K(m,M,α) =
Mmα −mMα

(1−α)(M−m)

(
1−α

α
Mα −mα

Mmα −mMα

)α

is the Kantorovich constant.

A reverse type result is given in [47].
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Theorem 5.3 ([47]) Let Ai,Bi be positive definite matrices such that mAi ≤ Bi ≤MAi for
some 0 < m≤M and i = 1, . . . ,n. Then for every α ∈ [0,1](

n

∑
i=1

Ai

)
#α

(
n

∑
i=1

Bi

)
−

n

∑
i=1

Ai#αBi ≤C(m,M,α)
n

∑
i=1

Ai, (5.6)

where

C(m,M,α) = (1−α)
(

Mα −mα

α(M−m)

) α
1−α
− Mmα −mMα

M−m
.

In the same paper, using Theorem 5.3 and S(A|B) = limα→0
A#αB−A

A , the following
corollary is proven.

Corollary 5.2 ([47]) Let Ai, Bi be positive definite matrices such that mAi ≤ Bi ≤ MAi

for some 0 < m≤M and i = 1, . . . ,n. Then

S

(
n

∑
i=1

Ai|
n

∑
i=1

)
−

n

∑
i=1

S (Ai|Bi)≤ logS(h)
n

∑
i=1

Ai, (5.7)

where

S(h) =
(h−1)h

1
h−1

e logh

is the Specht ratio and h = M
m .

A mapping Φ : B(H)→B(K) is said to be linear if:

∗ Φ(X +Y ) = Φ(X)+ Φ(Y ) for all X ,Y ∈B(H) (additivity);

∗ Φ(λX) = λ Φ(X) for all X ∈B(H) i λ ∈C (homogeneity).

A linear mapping Φ : B(H)→B(K) is positive if it preserves the operator order, that is if
A≥ 0 implies Φ(A)≥ 0. A linear mapping Φ : B(H)→B(K) is unital if it preserves the
identity operator, that is, if Φ(111H) = 111K .

It is clear from the definition that a positive linear mapping preserves the adjoint oper-
ation, that is Φ(A∗) = Φ(A)∗, and if Φ is additionally unital, then from α111H ≤ A≤ β111H it
follows α111K ≤Φ(A)≤ β111K , where α,β ∈ C.

Main goal of the second section is to obtain a converse of the well-known Davis-Choi
inequality, which states that for an operator convex function f : I→ R, where I ⊆ R is an
interval, and for a positive unital linear mapping Φ we have

f (Φ(A))≤Φ( f (A)) , (5.8)

where A is a self-adjoint operator such that Sp(A)⊆ I (see [30], [35]).
Next result is another Jensen type inequality, but for connections (see [10]).

Theorem 5.4 (Ando’s inequality, [10]) If Φ is a positive linear mapping, then for any
connection σ and for any positive definite operators A and B we have

Φ(AσB)≤Φ(A)σΦ(B). (5.9)
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From Theorem 5.4 it is easy to draw the conclusion that also holds a generalization of
Ando’s inequality

n

∑
j=1

p jΦ j(AjσBj)≤
( n

∑
j=1

p jΦ j(Aj)
)

σ
( n

∑
j=1

p jΦ j(Bj)
)
, (5.10)

where σ is a connection, Aj, Bj are positive definite operators, Φ j are positive linear map-
pings and we have p j ≥ 0, j = 1, . . . ,n.

Another goal of the second section is to obtain an estimation for the upper bounds for
the differences generated by Ando’s inequality and by the generalization of the Edmund-
son-Lah-Ribarič inequality using a kind of variation of the involved family of operators.
Method is based on the method from [38].

5.2 Converse inequalities of the quotient type
for connections and solidarities

First result is a generalization of the Edmundson-Lah-Ribarič inequality for the special
type of solidarities that includes connections.

Theorem 5.5 Let Ai,Bi be positive definite operators such that mAi ≤ Bi ≤MAi for some
0 < m ≤M, pi ≥ 0, and let Φi be positive linear maps, i = 1, . . . ,n. Suppose that σ is a
solidarity generated by an operator monotone and operator concave function f . Then

n

∑
i=1

piΦi (AiσBi) (5.11)

≥ M ∑n
i=1 piΦi (Ai)−∑n

i=1 piΦi (Bi)
M−m

f (m)+ ∑n
i=1 piΦi (Bi)−m∑n

i=1 piΦi (Ai)
M−m

f (M).

Proof. Since f is concave on (0,∞), by the Edmundson-Lah-Ribarič inequality (see [124])
we have

f (t)≥ M− t
M−m

f (m)+
t−m
M−m

f (M), t ∈ [m,M]. (5.12)

From mAi ≤ Bi ≤MAi easily follows mI ≤ A
− 1

2
i BiA

− 1
2

i ≤MI, i = 1, . . . ,n. Using the func-
tional calculus and (5.12), we obtain

f

(
A
− 1

2
i BiA

− 1
2

i

)
≥ M111H −A

− 1
2

i BiA
− 1

2
i

M−m
f (m)+

A
− 1

2
i BiA

− 1
2

i −m111H

M−m
f (M), i = 1, . . . ,n.

(5.13)

Multiplying (5.13) twice by A
1
2
i , acting by Φi, then multiplying by pi and summing, it

follows
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n

∑
i=1

piΦi

(
A

1
2
i f

(
A
− 1

2
i BiA

− 1
2

i

)
A

1
2
i

)
≥ M∑n

i=1 piΦi (Ai)−∑n
i=1 piΦi (Bi)

M−m
f (m)+

∑n
i=1 piΦi (Bi)−m∑n

i=1 piΦi (Ai)
M−m

f (M).

�

A difference counterpart of the operator Hölder inequality (5.1) is given in the follow-
ing theorem.

Theorem 5.6 Let Ai,Bi be positive definite operators such that mAi ≤ Bi ≤MAi for some
0 < m≤M, pi ≥ 0, λ ∈R, and let Φi be positive linear maps, i = 1, . . . ,n. Suppose that σ1

is a solidarity generated by f1 and σ2 is a solidarity generated by an operator monotone
and operator concave function f2. Then

λ

(
n

∑
i=1

piΦi (Ai)

)
σ1

(
n

∑
i=1

piΦi (Bi)

)
−

n

∑
i=1

piΦi (Aiσ2Bi)

≤ max
m≤t≤M

[
λ f1(t)−

(
M− t
M−m

f2(m)+
t−m
M−m

f2(M)
)] n

∑
i=1

piΦi (Ai) . (5.14)

Proof. Using (5.11) we have:

λ

(
n

∑
i=1

piΦi (Ai)

)
σ1

(
n

∑
i=1

piΦi (Bi)

)
−

n

∑
i=1

piΦi (Aiσ2Bi)

≤ λ

(
n

∑
i=1

piΦi (Ai)

) 1
2

f1

⎛⎝( n

∑
i=1

piΦi (Ai)

)− 1
2
(

n

∑
i=1

piΦi (Bi)

)(
n

∑
i=1

piΦi (Ai)

)− 1
2
⎞⎠( n

∑
i=1

piΦi (Ai)

) 1
2

−
[
M ∑n

i=1 piΦi (Ai)−∑n
i=1 piΦi (Bi)

M−m
f2(m)+ ∑n

i=1 piΦ(Bi)−m∑n
i=1 piΦi (Ai)

M−m
f2(M)

]

= λ

(
n

∑
i=1

piΦi (Ai)

) 1
2
⎡⎣ f1

⎛⎝( n

∑
i=1

piΦ(Ai)

)− 1
2
(

n

∑
i=1

piΦi (Bi)

)(
n

∑
i=1

piΦi (Ai)

)− 1
2
⎞⎠

−
[

M− (∑n
i=1 piΦi (Ai))−

1
2 (∑n

i=1 piΦi (Bi)) (∑n
i=1 piΦ(Ai))−

1
2

M−m
f2(m)

+
(∑n

i=1 piΦi (Ai))−
1
2 (∑n

i=1 piΦ(Bi)) (∑n
i=1 piΦi (Ai))−

1
2 −m

M−m
f2(M)

]](
n

∑
i=1

piΦi (Ai)

) 1
2

≤ max
m≤t≤M

[
λ f1(t)−

(
M− t
M−m

f2(m)+
t−m
M−m

f2(M)
)] n

∑
i=1

piΦi (Ai) .
�

As a corollary we give a reverse of the operator Hölder inequality.
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Corollary 5.3 Let Ai,Bi be positive definite operators such that mAi ≤ Bi≤MAi for some
0 < m ≤M, pi ≥ 0, and let Φi be positive linear maps, i = 1, . . . ,n. Suppose that σ1 is a
connection generated by f1 and σ2 is a solidarity generated by an operator monotone and
operator concave function f2. Then

n

∑
i=1

piΦ(Aiσ2Bi)

≥ min
m≤t≤M

M−t
M−m f2(m)+ t−m

M−m f2(M)
f1(t)

(
n

∑
i=1

piΦi (Ai)

)
σ1

(
n

∑
i=1

piΦi (Bi)

)
. (5.15)

Proof. Notice that f1 > 0. Set in (5.14)

λ = min
m≤t≤M

M−t
M−m f2(m)+ t−m

M−m f2(M)
f1(t)

.

Notice that for λ chosen in this way, it follows

λ f1(t)− M− t
M−m

f2(m)− t−m
M−m

f2(M)≤ 0, t ∈ [m,M].

Since the function f1 is continuous on [m,M], there exists t0 ∈ [m,M] such that

λ =
M−t0
M−m f2(m)+ t0−m

M−m f2(M)
f1 (t0)

,

which implies that for this λ

max
m≤t≤M

[
λ f1(t)−

(
M− t
M−m

f2(m)+
t−m
M−m

f2(M)
)]

= 0,

which obviously gives (5.15). �

An alternative approach can be given using Mond-Pečarić method described in [49].
The following results deal with reverses of the Davis-Choi and Ando’s inequality (5.9).
The proofs of matrix reverses of Hölder’s inequality given in [24], [90], [78] are based on
Gelfand-Naimark-Segal construction.

Lemma 5.1 Let A be a self-adjoint operator with Sp(A)⊆ [m,M] for some m < M. Sup-
pose that f ,g ∈ C([m,M]), where f is a concave function and Φ is a normalized positive
linear map. Then

Φ( f (A)) ≥ αg(Φ(A))+ β111K ,

where β = minm≤t≤M
[
μ f t + ν f −αg(t)

]
, μ f = f (M)− f (m)

M−m , ν f = M f (m)−mf (M)
M−m .

Proof. Since f is concave, it follows f (t) ≥ μ f t + ν f . This implies f (A) ≥ μ f A+ ν f I.
Applying the normalized positive linear map Φ it follows

Φ( f (A)) ≥ μ f Φ(A)+ ν f I,

which gives

Φ( f (A))−αg(Φ(A))≥ μ f Φ(A)+ ν f I−αg(Φ(A))≥ β I. �
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Theorem 5.7 Let A,B be positive definite operators such that mA ≤ B ≤ MA for some
0 < m ≤ M. Let σ be a connection generated by f and τ a connection generated by g.
Suppose that Φ is a normalized positive linear map and α ∈ R. Then

Φ(AσB)≥ αΦ(A)τΦ(B)+ β Φ(A),

where β = minm≤t≤M
[
μ f t + ν f −αg(t)

]
.

Proof. Define a normalized positive linear map Ψ by

Ψ(X) = Φ(A)−
1
2 Φ
(
A

1
2 XA

1
2

)
Φ(A)−

1
2 .

Using Lemma 5.1 we have:

Φ(AσB)) = Φ
(
A

1
2 f
(
A−

1
2 BA−

1
2

)
A

1
2

)
= Φ(A)

1
2 Ψ
(

f
(
A−

1
2 BA−

1
2

))
Φ(A)

1
2

≥Φ(A)
1
2

[
αg
(

Ψ
(
A−

1
2 BA−

1
2

))
+ β I

]
Φ(A)

1
2

= αΦ(A)
1
2 g
(

Ψ
(
A−

1
2 BA−

1
2

))
Φ(A)

1
2 + β Φ(A)

= αΦ(A)τΦ(B)+ β Φ(A).
�

Corollary 5.4 Let A,B be positive definite operators such that mA ≤ B ≤ MA for some
0 < m ≤ M. Let σ be a connection generated by f and τ a connection generated by g.
Suppose that Φ is a normalized positive linear map. Then

Φ(AσB)≥ min
m≤t≤M

μ f t + ν f

g(t)
Φ(A)τΦ(B).

Proof. Set in Theorem 5.7 α = minm≤t≤M
μ f t+ν f

g(t) . Since g is continuous, there exists

t1 ∈ [m,M] such that minm≤t≤M
μ f t+ν f

g(t) = μ f t1+ν f
g(t1) . Notice that for this α it holds 0≤ μ f t−

ν f −αg(t), but μ f t1 + ν f −αg(t1) = 0, so β = 0 and (5.4) is proven. �

As an application we give the following theorem which is a generalization of Theorem
5.2.

Theorem 5.8 Let Ai,Bi be positive definite operators such that mAi ≤ Bi ≤MAi for some
0 < m≤M, Φi positive linear maps, pi ≥ 0, i = 1, . . . ,n, and let −1≤ p ≤ 1, 0 ≤ α ≤ 1.
Then (

n

∑
i=1

piΦi (Ai)

)
#p,α

(
n

∑
i=1

piΦi (Bi)

)
≤ K(M,m, p,α)

n

∑
i=1

piΦi (Ai#p,αBi) ,
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where

K(m,M, p,α)

=
M−m

M (1−α + αmp)
1
p −m(1−α + αMp)

1
p

·
⎡⎣(1−α)

1
1−p + α

1
1−p

(
M (1−α + αmp)

1
p −m(1−α + αMp)

1
p

(1−α + αMp)
1
p − (1−α + αmp)

1
p

) p
1−p
⎤⎦

1−p
p

=
1

ν f

[
(1−α)

1
1−p + α

1
1−p

(
ν f

μ f

) p
1−p
] 1−p

p

,

and f (t) = [1−α + αt p]1/p.

Proof. We give a sketch of long but routine calculations. Set in (5.15) f1(t) = f2(t) =
(1−α + αt p)1/p. Define

F(t) =
(M−m)(1−α + αt p)1/p

(M− t)(1−α + αmp)1/p +(t−m)(1−α + αMp)1/p
.

By straightforward calculations F ′(t) = 0 is equivalent to equation

αt p−1
[
(M− t)(1−α + αmp)1/p +(t−m)(1−α + αMp)1/p

]
= (1−α + αt p)

[
(1−α + αMp)1/p− (1−α + αmp)1/p

]
,

which by obvious reduction is equivalent to equation

α
(
M (1−α + αmp)1/p−m(1−α + αMp)1/p

)
= (1−α)t1−p

(
(1−α + αMp)1/p− (1−α + αmp)1/p

)
,

which finally gives

t =
(

α
1−α

) 1
1−p
(

M (1−α + αmp)1/p−m(1−α + αMp)1/p

(1−α + αMp)1/p− (1−α + αmp)1/p

) 1
1−p

.

Plugging this value in F and rearranging, the constant K(m,M, p,α) can be easily obtained.
�

The following corollary is proven by setting α =−1 in the previous theorem.

Corollary 5.5 Let Ai,Bi be positive definite operators such that mAi ≤ Bi≤MAi for some
0 < m≤M, Φi positive linear maps, 0≤ α ≤ 1 and pi ≥ 0, i = 1, . . . ,n. Then(

n

∑
i=1

piΦi (Ai)

)
!α

(
n

∑
i=1

piΦi (Bi)

)
≤ K(M,m,−1,α)

n

∑
i=1

piΦi (Ai!αBi) ,
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where

K(m,M,−1,α) =
((1−α)m+ α)((1−α)M + α)(

(1−α)
√

mM + α
)2 .

Generalization of Theorem 5.3 is given in the following theorem.

Theorem 5.9 Let Ai,Bi be positive definite operators such that mAi ≤ Bi ≤MAi for some
0 < m ≤M, Φi positive linear maps, pi ≥ 0, i = 1, . . . ,n and let −1 ≤ p ≤ 1, 0 ≤ α ≤ 1.
Then (

n

∑
i=1

Ai

)
#p,α

(
n

∑
i=1

Bi

)
−

n

∑
i=1

Ai#p,αBi ≤C(m,M, p,α)
n

∑
i=1

Ai,

where

C(m,M, p,α) =
(

1−α
α

) 1
p μ f(

α
1

p−1 μ
p

1−p
f −1

) 1−p
p

−ν f ,

and f (t) = [1−α + αt p]1/p.

Proof. We use Theorem 5.14 for λ = 1, f1(t) = f2(t) = f (t) = [1−α + αt p]1/p. Set

F(t) = [1−α + αt p]1/p− μ f t−ν f .

It is easy to see that equation F ′(t) = 0 gives

t =
(

1−α
α

) 1
p 1[

α
1

p−1 μ
p

1−p
f −1

] 1
p

.

Plugging this value in F and rearranging, the constant C(m,M, p,α) easily follows. �

Now we can give a direct proof of Corollary 5.2 using Theorem 5.6.

Corollary 5.6 Let Ai,Bi be positive definite operators such that mAi≤ Bi ≤MAi for some
0 < m≤M, Φi positive linear maps and pi ≥ 0, i = 1, . . . ,n. Then

S

(
n

∑
i=1

piΦi (Ai) |
n

∑
i=1

piΦi (Bi)

)
−

n

∑
i=1

piΦi (S (Ai|Bi))≤ logS(h)
n

∑
i=1

piΦi (Ai) ,

where S(h) is defined in Corollary 5.2.

Proof. Set in Theorem 5.6 f1(t) = f2(t) = log t and λ = 1. Define

F(t) = log t− M− t
M−m

logm− t−m
M−m

logM.

Trivially F ′(t) = 0 is equivalent to

t =
M−m

logM− logm
.
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It is straightforward to check that

F

(
M−m

logM− logm

)
= logS(h),

where h = M/m. �

5.3 Converses of Ando’s and Davis-Choi’s
inequality in a difference form

The following theorem is given in [66] in integral form. For the sake of completeness we
will prove the discrete version. It is about a difference type convese of the generalized
Davis-Choi’s inequality (5.8).

Theorem 5.10 Let A j be self-adjoint operators such that Sp(Aj)⊆ [m,M] for some scalars
m < M and let Φ j be normalized positive linear maps, j = 1, . . . ,n . If f is a concave func-
tion on an interval I whose interior contains [m,M] and p1, ..., pn are positive real numbers
such that ∑n

j=1 p j = 1, then

f
( n

∑
j=1

p jΦ j(Aj)
)
−

n

∑
j=1

p jΦ j( f (Aj))

≤− inf
t∈〈m,M〉

Ψ f (t;m,M)
(
M111K−

n

∑
j=1

p jΦ j(Aj)
)( n

∑
j=1

p jΦ j(Aj)−m111K

)
≤ f ′+(m)− f ′−(M)

M−m

(
M111K−

n

∑
j=1

p jΦ j(Aj)
)( n

∑
j=1

p jΦ j(Aj)−m111K

)
≤ 1

4
(M−m)( f ′+(m)− f ′−(M))111K , (5.16)

where Ψ f (·;m,M) : 〈m,M〉 → R is defined by

Ψ f (t;m,M) =
1

M−m

( f (M)− f (t)
M− t

− f (t)− f (m)
t−m

)
= [m,t,M; f ], (5.17)

and [m, t,M; f ] denotes second order divided difference.

Proof. Since f is concave, from the Edmundson-Lah-Ribarič inequality we have

f (t) ≥ M− t
M−m

f (m)+
t−m
M−m

f (M) (5.18)

for every t ∈ [m,M], so we can replace t with Aj in (5.18) and then apply Φ j:

Φ j( f (Aj))≥ M111K−Φ j(Aj)
M−m

f (m)+
Φ j(Aj)−m111K

M−m
f (M).
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Multiplying the previous inequality with p j, and then summing it, we get

n

∑
j=1

p jΦ j( f (Aj))≥
M111K−∑n

j=1 p jΦ j(Aj)
M−m

f (m)+
∑n

j=1 p jΦ j(Aj)−m111K

M−m
f (M). (5.19)

Using functional calculus and (5.19) we obtain

f
( n

∑
j=1

p jΦ j(Aj)
)
−

n

∑
j=1

p jΦ j( f (Aj))

≤ f
( n

∑
j=1

p jΦ j(Aj)
)
− M111K−∑n

j=1 p jΦ j(Aj)
M−m

f (m)− ∑n
j=1 p jΦ j(Aj)−m111K

M−m
f (M)

=− 1
M−m

(
M111K−

n

∑
j=1

p jΦ j(Aj)
)( n

∑
j=1

p jΦ j(Aj)−m111K

)

×
[(

f (M)111K− f
( n

∑
j=1

p jΦ j(Aj)
))(

M111K−
n

∑
j=1

p jΦ j(Aj)

)−1

−
(

f
( n

∑
j=1

p jΦ j(Aj)
)
− f (m)111K

)(
n

∑
j=1

p jΦ j(Aj)−m111K

)−1]

=
(
M111K−

n

∑
j=1

p jΦ j(Aj)
)( n

∑
j=1

p jΦ j(Aj)−m111K

)(
−Ψ f

( n

∑
j=1

p jΦ j(Aj);m,M
))

≤− inf
t∈〈m,M〉

(Ψ f (t;m,M))
(
M111K−

n

∑
j=1

p jΦ j(Aj)
)( n

∑
j=1

p jΦ j(Aj)−m111K

)
,

since ∑n
j=1 p jΦ j(Aj) ∈ (m,M). The last two inequalities in (5.16) follow directly from:

− inf
t∈(m,M)

Ψ f (t;m,M) ≤ f ′+(m)− f ′−(M)
M−m

and (M− t)(t−m)≤ 1
4(M−m)2. �

Remark 5.1 We need to observe that if in Theorem 5.10 we take p1 = 1, we obtain a
difference type reverse of the Davis-Choi inequality:

f (Φ(A))−Φ( f (A))
≤− inf

t∈〈m,M〉
Ψ f (t;m,M)(M111K−Φ(A))(Φ(A)−m111K)

≤ (M111K−Φ(A))(Φ(A)−m111K)
f ′+(m)− f ′−(M)

M−m

≤ 1
4
(M−m)( f ′+(m)− f ′−(M))111K . (5.20)
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Theorem 5.11 Let A j,Bj, j = 1, ...,n, be positive definite operators such that mAj ≤
Bj ≤ MAj for some 0 < m < M < ∞ and p j ≥ 0 such that ∑n

j=1 p j = 1. Let σ be a
solidarity generated by an operator monotone and operator concave function f . If Φ j are
normalized positive linear maps for j = 1, ...,n, then we have(

n

∑
j=1

p jΦ j (Aj)

)
σ

(
n

∑
j=1

p jΦ j (Bj)

)
− M ∑n

j=1 p jΦ j(Aj)−∑n
j=1 p jΦ j(Bj)

M−m
f (m)

− ∑n
j=1 p jΦ j(Bj)−m∑n

j=1 p jΦ j(Aj)
M−m

f (M)

≤− inf
t∈〈m,M〉

Ψ f (t;m,M)
(
M

n

∑
j=1

p jΦ j(Aj)−
n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)−1

×
( n

∑
j=1

p jΦ j(Bj)−m
n

∑
j=1

p jΦ j(Aj)
)

≤ f ′+(m)− f ′−(M)
M−m

(
M

n

∑
j=1

p jΦ j(Aj)−
n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)−1

×
( n

∑
j=1

p jΦ j(Bj)−m
n

∑
j=1

p jΦ j(Aj)
)

≤ 1
4
(M−m)( f ′+(m)− f ′−(M))

( n

∑
j=1

p jΦ j(Aj)
)
, (5.21)

where Ψ f (·;m,M) is defined in (5.17).

Proof. Let I be an interval of real numbers such that [m,M] belongs to the interior of I and
let us suppose that φ : I→R is a concave function. Then from the Edmundson-Lah-Ribarič
inequality we easily get

φ(t)− M− t
M−m

φ(m)− t−m
M−m

φ(M)

=−(M− t)(t−m)
1

M−m

(φ(M)−φ(t)
M− t

− φ(t)−φ(m)
t−m

)
=−(M− t)(t−m)ΨΦ(t;m,M)≤ (M− t)(t−m) sup

t∈〈m,M〉
(−ΨΦ(t;m,M))

≤ (M− t)(t−m)
φ ′+(m)−φ ′−(M)

M−m
≤ 1

4
(M−m)(φ ′+(m)−φ ′−(M)) (5.22)

for every t ∈ 〈m,M〉.
From mAj ≤ Bj ≤MAj easily follows that

m≤
( n

∑
j=1

p jΦ j(Aj)
)− 1

2
( n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)− 1

2 ≤M,

so using functional calculus and (5.22) we get the following inequalities:
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f
(( n

∑
j=1

p jΦ j(Aj)
)− 1

2
( n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)− 1

2
)

−
M111K−

(
∑n

j=1 p jΦ j(Aj)
)− 1

2
(

∑n
j=1 p jΦ j(Bj)

)(
∑n

j=1 p jΦ j(Aj)
)− 1

2

M−m
f (m)

−
(

∑n
j=1 p jΦ j(Aj)

)− 1
2
(

∑n
j=1 p jΦ j(Bj)

)(
∑n

j=1 p jΦ j(Aj)
)− 1

2 −m111K

M−m
f (M)

≤− inf
t∈〈m,M〉

Ψ f (t;m,M)
(
M111K−

( n

∑
j=1

p jΦ j(Aj)
)− 1

2
( n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)− 1

2
)

·
(( n

∑
j=1

p jΦ j(Aj)
)− 1

2
( n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)− 1

2 −m111K

)
≤ f ′+(m)− f ′−(M)

M−m

(
M111K−

( n

∑
j=1

p jΦ j(Aj)
)− 1

2
( n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)− 1

2
)

·
(( n

∑
j=1

p jΦ j(Aj)
)− 1

2
( n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)− 1

2 −m111K

)
≤ 1

4
(M−m)( f ′+(m)− f ′−(M))111K .

Now, if we multiply the inequalities above twice by
(

∑n
k=1 pkΦk(Ak)

) 1
2
, inequalities (5.21)

follow. �

As an immediate consequence of Theorems 5.5 and 5.11 we have the following corol-
lary which is a difference type converse of Ando’s inequality (5.10).

Corollary 5.7 Let A j,Bj, j = 1, ...,n, be positive definite operators such that mAj ≤ Bj ≤
MAj for some 0 < m < M < ∞ and p j ≥ 0 such that ∑n

j=1 = 1. Let σ be a solidarity
generated by an operator monotone and operator concave function f . If Φ j are normalized
positive linear maps for j = 1, ...,n, then we have( n

∑
j=1

p jΦ j(Aj)
)

σ
( n

∑
j=1

p jΦ j(Bj)
)
−

n

∑
j=1

p jΦ j(AjσBj)

≤− inf
t∈〈m,M〉

Ψ f (t;m,M)
(
M

n

∑
j=1

p jΦ j(Aj)−
n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)−1

×
( n

∑
j=1

p jΦ j(Bj)−m
n

∑
j=1

p jΦ j(Aj)
)

≤ f ′+(m)− f ′−(M)
M−m

(
M

n

∑
j=1

p jΦ j(Aj)−
n

∑
j=1

p jΦ j(Bj)
)( n

∑
j=1

p jΦ j(Aj)
)−1

×
( n

∑
j=1

p jΦ j(Bj)−m
n

∑
j=1

p jΦ j(Aj)
)
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≤ 1
4
(M−m)( f ′+(m)− f ′−(M))

( n

∑
j=1

p jΦ j(Aj)
)
,

where Ψ f (·;m,M) is defined in (5.17).

Result that follows is a special case of the previous corollary for n = 1 and p1 = 1, but
we will give an alternative proof using the converse of Davis-Choi’s inequality (5.20).

Corollary 5.8 Let A,B be positive definite operators such that mA ≤ B ≤MA for some
0 < m < M < ∞. Let σ be a solidarity generated by an operator monotone and operator
concave function f . If Φ is a normalized positive linear map, then we have

Φ(A)σΦ(B)−Φ(AσB)

≤− inf
t∈〈m,M〉

Ψ f (t;m,M)(MΦ(A)−Φ(B))Φ(A)−1(Φ(B)−mΦ(A))

≤ (MΦ(A)−Φ(B))Φ(A)−1(Φ(B)−mΦ(A))
f ′+(m)− f ′−(M)

M−m

≤ 1
4
(M−m)( f ′+(m)− f ′−(M))Φ(A),

where Ψ f (·;m,M) is defined in (5.17).

Proof. Let us define an auxiliary linear map

Ψ(X) = Φ(A)−
1
2 Φ(A

1
2 XA

1
2 )Φ(A)−

1
2 .

It is straightforward to check that Ψ is unital and positive. Now from the inequality (5.20)
it follows that

f (Ψ(X))−Ψ( f (X))
≤− inf

t∈〈m,M〉
Ψ f (t;m,M)(M111K−Ψ(X))(Ψ(X)−m111K)

≤ f ′+(m)− f ′−(M)
M−m

(M111K−Ψ(X))(Ψ(X)−m111K)

≤ 1
4
(M−m)( f ′+(m)− f ′−(M))111K , (5.23)

holds for a self-adjoint operator X such that Sp(X)∈ [m,M]. From mA≤B≤MA we easily

get m≤ A−
1
2 BA−

1
2 ≤M, so we can put X = A−

1
2 BA−

1
2 in (5.23) and obtain:

f (Φ(A)−
1
2 Φ(B)Φ(A)−

1
2 )−Φ(A)−

1
2 Φ(A

1
2 f (A−

1
2 BA−

1
2 )A

1
2 )Φ(A)−

1
2

≤− inf
t∈〈m,M〉

Ψ f (t;m,M)(M111K−Φ(A)−
1
2 Φ(B)Φ(A)−

1
2 )(Φ(A)−

1
2 Φ(B)Φ(A)−

1
2 −m111K)

≤ f ′+(m)− f ′−(M)
M−m

(
M111K−Φ(A)−

1
2 Φ(B)Φ(A)−

1
2

)(
Φ(A)−

1
2 Φ(B)Φ(A)−

1
2 −m111K

)
≤ 1

4
(M−m)( f ′+(m)− f ′−(M))111K .
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Sought inequalities are obtained by multiplying the inequalities from above twice with
Φ(A)

1
2 . �

As applications of Corollary 5.7 we give reverses of this type for basic examples of
operator means and relative operator entropy.

Corollary 5.9 Let Ai,Bi, i = 1, ...,n, be positive definite operators such that mAi ≤ Bi ≤
MAi for some 0 < m < M < ∞ and let pi ≥ 0 be real numbers such that ∑n

i=1 pi = 1.

• If α ∈ [0,1] and p ∈ [−1,1], then(
n

∑
i=1

piAi

)
�p,α

(
n

∑
i=1

piBi

)
−

n

∑
i=1

piAi�p,αBi

≤− inf
t∈〈m,M〉

Ψ f (t;m,M)

×
(

M
n

∑
i=1

piAi−
n

∑
i=1

piBi

)(
n

∑
i=1

piAi

)−1( n

∑
i=1

piBi−m
n

∑
i=1

piAi

)

≤ α
(α +(1−α)m−p)

1−p
p − (α +(1−α)M−p)

1−p
p

M−m

×
(

M
n

∑
i=1

piAi−
n

∑
i=1

piBi

)(
n

∑
i=1

piAi

)−1( n

∑
i=1

piBi−m
n

∑
i=1

piAi

)
.

• If α ∈ [0,1], then(
n

∑
i=1

piAi

)
�α

(
n

∑
i=1

piBi

)
−

n

∑
i=1

piAi�αBi

≤− inf
t∈〈m,M〉

Ψα(t;m,M)

×
(

M
n

∑
i=1

piAi−
n

∑
i=1

piBi

)(
n

∑
i=1

piAi

)−1( n

∑
i=1

piBi−m
n

∑
i=1

piAi

)

≤ α(mα−1−Mα−1)
M−m

(
M

n

∑
i=1

piAi−
n

∑
i=1

piBi

)(
n

∑
i=1

piAi

)−1( n

∑
i=1

piBi−m
n

∑
i=1

piAi

)
.

• If α ∈ [0,1], then( n

∑
i=1

piAi

)
!α

( n

∑
i=1

piBi

)
−

n

∑
i=1

piAi!αBi

≤− inf
t∈〈m,M〉

Ψ f (t;m,M)

×
(
M

n

∑
i=1

piAi−
n

∑
i=1

piBi

)( n

∑
i=1

piAi

)−1( n

∑
i=1

piBi−m
n

∑
i=1

piAi

)
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≤ α
(α +(1−α)m)−2− (α +(1−α)M)−2

M−m

×
(
M

n

∑
i=1

piAi−
n

∑
i=1

piBi

)( n

∑
i=1

piAi

)−1( n

∑
i=1

piBi−m
n

∑
i=1

piAi

)
.

• We also have

S
( n

∑
i=1

piAi

∣∣∣ n

∑
i=1

piBi

)
−

n

∑
i=1

piS(Ai|Bi)

≤− inf
t∈〈m,M〉

Ψ f (t;m,M)

×
(
M

n

∑
i=1

piAi−
n

∑
i=1

piBi

)( n

∑
i=1

piAi

)−1( n

∑
i=1

piBi−m
n

∑
i=1

piAi

)
≤ 1

Mm

(
M

n

∑
i=1

piAi−
n

∑
i=1

piBi

)( n

∑
i=1

piAi

)−1( n

∑
i=1

piBi−m
n

∑
i=1

piAi

)
.

In each case Ψ f (·;m,M) : (m,M)→ R is defined in (5.17), where f is the appropriate
generating function.

5.4 Inequalities of Ando’s type for n-convex
functions

In this section the difference generated by the Edmundson-Lah-Ribarič inequality is es-
timated from below and from above by Hermite’s interpolating polynomials in terms of
divided differences.

For the rest of the chapter, let Φi be normalized positive linear maps and let Ai,Bi,
i = 1, ...,r, be positive definite operators such that aAi ≤ Bi ≤ bAi for some 0 < a < b < ∞
and pi ≥ 0 such that ∑r

i=1 pi = 1. Let σ be a solidarity generated by an operator mono-
tone function f ∈ C n([a,b]). In order to simplify the obtained relations, we introduce the
following notations:

ΔΦΦΦ
ppp (AAA) =

r

∑
i=1

piΦi(Ai); ΛΦΦΦ
ppp (AAA,BBB;g(t)) =

r

∑
i=1

piΦ j

(
A

1
2
i g

(
A
− 1

2
i BiA

− 1
2

i

)
A

1
2
i

)
.

Our first result is a generalization of the Edmundson-Lah-Ribarič inequality for soli-
darities that holds for the class of n-convex functions.
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Theorem 5.12 ([109]) If the function f is n-convex and if n > m ≥ 3 are of different
parity, then we have

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA) (5.24)

≤ ( f [a,a]− f [a,b])
(

ΔΦΦΦ
ppp (BBB)−aΔΦΦΦ

ppp (AAA)
)

+
m−1

∑
k=2

f (k)(a)
k!

ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)k

)
+

n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)m (t−b)k−1

)
.

Inequality (5.24) also holds when the function f is n-concave and n and m are of equal
parity. In case when the function f is n-convex and n and m are of equal parity, or when
the function f is n-concave and n and m are of different parity, the inequality sign in (5.24)
is reversed.

Proof. Since f ∈ C n([a,b]), it is continuous and its n-th order divided difference fn(t) =
f [t;a, ...,a︸ ︷︷ ︸

m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

] is also continuous, so consequently the function Rm(t) defined in

(2.64) is also continuous.

From aAi ≤ Bi ≤ bAi easily follows a111 ≤ A
− 1

2
i BiA

− 1
2

i ≤ b111, i = 1, . . . ,n. Using the
functional calculus and (2.65), we get

f

(
A
− 1

2
i BiA

− 1
2

i

)
−α f A

− 1
2

i BiA
− 1

2
i −β f 111

= ( f [a,a]− f [a,b])
(

A
− 1

2
i BiA

− 1
2

i −a111

)
+

m−1

∑
k=2

f (k)(a)
k!

(
A
− 1

2
i BiA

− 1
2

i −a111

)k

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
(

A
− 1

2
i BiA

− 1
2

i −a111

)m(
A
− 1

2
i BiA

− 1
2

i −b111

)k−1

+Rm

(
A
− 1

2
i BiA

− 1
2

i

)
.

After multiplying the obtained relation twice by A
1
2
i , acting by Φi, then finally multiplying

by pi and summing, it follows:

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA) (5.25)

= ( f [a,a]− f [a,b])
(

ΔΦΦΦ
ppp (BBB)−aΔΦΦΦ

ppp (AAA)
)

+
m−1

∑
k=2

f (k)(a)
k!

ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)k

)
+

n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)m (t−b)k−1

)
+ ΛΦΦΦ

ppp (AAA,BBB;Rm(t)) .

We want to remove the term ΛΦΦΦ
ppp (AAA,BBB;Rm(t)) from the equality above, so we need to

check its positivity (negativity). Due to the monotonicity property, it is actually enough to
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study positivity and negativity of the function:

Rm(t) = (t−a)m (t−b)n−m f [t;a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

].

Since a≤ t ≤ b, we have (t−a)m ≥ 0 for any choice of m. For the same reason we have
(t− b) ≤ 0. Trivially it follows that (t− b)n−m ≤ 0 when n and m are of different parity,
and (t− b)n−m ≥ 0 when n and m are of equal parity. When the function f is n-convex,
then its nth order divided differences are nonnegative, and when it is n-concave, then those
divided differences are less or equal to zero.

Now we see that ΛΦΦΦ
ppp (AAA,BBB;Rm(t)) ≤ 0 when the function f is n-convex and n and

m are of different parity or when f is n-concave and n and m are of equal parity, and
ΛΦΦΦ

ppp (AAA,BBB;Rm(t))≥ 0 in the remaining cases, so inequality (5.24) easily follows from (5.25).
�

Remark 5.2 Sum of positive definite operators is again positive, and for positive definite
operators A and B, operator A

1
2 BA

1
2 is positive definite, so in the proof of Theorem 5.12, in

the discussion about the positivity and negativity of the term ΛΦΦΦ
ppp (AAA,BBB;Rm(t)) it was enough

to discuss the positivity and negativity of function Rm(t) because for a continuous and
positive function Rm and a selfadjoint operator A, the operator Rm(A) is positive definite.

Following result provides with a similar generalization of the Edmundson-Lah-Ribarič
inequality, and it is obtained from Lemma 2.4.

Theorem 5.13 ([109]) If the function f is n-convex and if n > m, where m≥ 3 is an odd
number, then

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA) (5.26)

≤ ( f [a,b]− f [b,b])
(
bΔΦΦΦ

ppp (AAA)−ΔΦΦΦ
ppp (BBB)

)
+

m−1

∑
k=2

f (k)(b)
k!

ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)k

)
+

n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)m(t−a)k−1

)
.

Inequality (5.26) also holds when the function f is n-concave and m is even. In case when
the function f is n-convex and m is even, or when the function f is n-concave and m is odd,
the inequality sign in (5.26) is reversed.

Proof. As in the proof of Theorem 5.12, since all the involved functions are continuous,

we can replace t with operator A
− 1

2
i BiA

− 1
2

i in (2.69), multiply the obtained relation twice

by A
1
2
i , act by Φi, then finally multiply it by pi and sum it and get
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ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA) (5.27)

= ( f [a,b]− f [b,b])
(
bΔΦΦΦ

ppp (AAA)−ΔΦΦΦ
ppp (BBB)

)
+

m−1

∑
k=2

f (k)(b)
k!

ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)k

)
+

n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)m(t−a)k−1

)
+ ΛΦΦΦ

ppp (AAA,BBB;R∗m(t)) .

As before, in order to remove the term ΛΦΦΦ
ppp (AAA,BBB;R∗m(t)), we need to know when it is

positive, and when it is negative. Due to the monotonicity property, it is enough to check
positivity and negativity of the function:

R∗m(t) = (t−b)m(t−a)n−m f [t;b, ...,b︸ ︷︷ ︸
m times

; a,a, ...,a︸ ︷︷ ︸
(n−m) times

].

Since t ∈ [a,b], we have (t−a)n−m ≥ 0 for every t and any choice of m. For the same
reason we have (t − b) ≤ 0. Trivially it follows that (t − b)m ≤ 0 when m is odd, and
(t − b)m ≥ 0 when m is even. If the function f is n-convex, then its n-th order divided
differences are greater of equal to zero, and if the function f is n-concave, then its n-th
order divided differences are less or equal to zero.

Now it follows that ΛΦΦΦ
ppp (AAA,BBB;R∗m(t))≤ 0 when the function f is n-convex and m is odd

or f is n-concave and m is even. In the remaining cases the inequality sign is reversed,
(5.26) easily follows from (5.27). �

As a direct consequence of Theorem 5.12 and Theorem 5.13, we get lower and upper
bounds for the difference in the Edmundson-Lah-Ribarič inequality that hold for the class
of n-convex functions.

Corollary 5.10 ([109]) If the function f is n-convex, where n is an odd number, and if
m≥ 3 is odd, then

( f [a,a]− f [a,b])
(

ΔΦΦΦ
ppp (BBB)−aΔΦΦΦ

ppp (AAA)
)

+
m−1

∑
k=2

f (k)(a)
k!

ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)k

)
+

n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)m (t−b)k−1

)
≤ ΔΦΦΦ

ppp (AAAσBBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA) (5.28)

≤ ( f [a,b]− f [b,b])
(
bΔΦΦΦ

ppp (AAA)−ΔΦΦΦ
ppp (BBB)

)
+

m−1

∑
k=2

f (k)(b)
k!

ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)k

)
+

n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)m(t−a)k−1

)
.

Inequality (5.28) also holds when the function f is n-concave and m is even. In case when
the function f is n-convex and m is even, or when the function f is n-concave and m is odd,
the inequality signs in (5.28) are reversed.
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The following result also provides with a lower and upper bound for the difference in
the Edmundson-Lah-Ribarič inequality, and it is obtained from Lemma 2.3.

Theorem 5.14 ([109]) If the function f is n-convex and if n≥ 3 is odd, then

n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)(t−b)k−1

)
≤ ΔΦΦΦ

ppp (AAAσBBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA) (5.29)

≤ f [a,a;b]ΛΦΦΦ
ppp (AAA,BBB;(t−a)(t−b))

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)2(t−b)k−1

)
,

where x ∈H is a unit vector. Inequalities (5.29) also hold when the function f is n-concave
and n is even. In case when the function f is n-convex and n is even, or when the function
f is n-concave and n is odd, the inequality signs in (5.29) are reversed.

Proof. Again, using the functional calculus, we can replace t with A
− 1

2
i BiA

− 1
2

i in (2.62)

and (2.63), multiply obtained relations twice by A
1
2
i , act by Φi, then finally multiply them

by pi and sum them. In that way we get

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA) (5.30)

=
n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)(t−b)k−1

)
+ ΛΦΦΦ

ppp (AAA,BBB;R1(t))

and

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA) (5.31)

= f [a,a;b]ΛΦΦΦ
ppp (AAA,BBB;(t−a)(t−b))

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)2(t−b)k−1

)
+ ΛΦΦΦ

ppp (AAA,BBB;R2(t)) .

We have already discussed positivity and negativity of the term ΛΦΦΦ
ppp (AAA,BBB;Rm(t)) in the

proof of Theorem 5.12. For m = 1 it follows that ΛΦΦΦ
ppp (AAA,BBB;R1(t)) ≥ 0 when the function

f is n-convex and n is odd, or when f is n-concave and n even, and when the function f is
n-concave and n is odd, or when f is n-convex and n even the inequality sign is reversed,
so the relation (5.30) gives us

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA)

≥
n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)(t−b)k−1

)
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for ΛΦΦΦ
ppp (AAA,BBB;R1(t))≥ 0, and in case ΛΦΦΦ

ppp (AAA,BBB;R1(t))≤ 0 the inequality sign is reversed.

In the same way, for m = 2 it follows that ΛΦΦΦ
ppp (AAA,BBB;R2(t))≤ 0 when the function f is

n-convex and n is odd, or when f is n-concave and n even, and ΛΦΦΦ
ppp (AAA,BBB;R2(t))≥ 0 in the

remaining cases.
The relation (5.31) for ΛΦΦΦ

ppp (AAA,BBB;R2(t))≤ 0 gives us

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA)

≤ f [a,a;b]ΛΦΦΦ
ppp (AAA,BBB;(t−a)(t−b))

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)2(t−b)k−1

)
,

and when ΛΦΦΦ
ppp (AAA,BBB;R2(t))≥ 0 the inequality sign is reversed.

When we combine the two inequalities obtained above, we get exactly (5.29). �

By utilizing Lemma 2.4 we can get similar lower and upper bounds for the difference
in the Edmundson-Lah-Ribarič operator inequality that hold for all n∈N, not only the odd
ones.

Theorem 5.15 ([109]) If the function f is n-convex, n≥ 3, then

f [b,b;a]ΛΦΦΦ
ppp (AAA,BBB;(t−b)(t−a))

+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)2(t−a)k−1

)
≤ ΔΦΦΦ

ppp (AAAσBBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA) (5.32)

≤
n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)(t−a)k−1

)
.

If the function f is n-concave, the inequality signs in (5.32) are reversed.

Proof. This proof follows the lines of the proof of Theorem 5.14. We start with replacing

t with operator A
− 1

2
i BiA

− 1
2

i in (2.66) and (2.67) respectively, and after multiplying obtained

relations twice by A
1
2
i , acting by Φi, then finally multiplying them by pi and summing them

we get

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA) (5.33)

=
n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)(t−a)k−1

)
+ ΛΦΦΦ

ppp (AAA,BBB;R∗1(t))

and
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ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA) (5.34)

= f [b,b;a]ΛΦΦΦ
ppp (AAA,BBB;(t−b)(t−a))

+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)2(t−a)k−1

)
+ ΛΦΦΦ

ppp (AAA,BBB;R∗2(t)) .

Now we return to the discussion about positivity and negativity of the term ΛΦΦΦ
ppp (AAA,BBB;R∗m(t))

from the proof of Theorem 5.13. For m = 1 we have ΛΦΦΦ
ppp (AAA,BBB;R∗1(t))≥ 0 when the function

f is n-concave, and ΛΦΦΦ
ppp (AAA,BBB;R∗1(t)) ≤ 0 when the function f is n-convex, so the relation

(5.33) for a n-convex function f gives us

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA)

≤
n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)(t−a)k−1

)
,

and if the function f is n-concave, the inequality sign is reversed.
Similarly, for m = 2 we have ΛΦΦΦ

ppp (AAA,BBB;R∗2(t))≥ 0 when the function f is n-convex, and
ΛΦΦΦ

ppp (AAA,BBB;R∗2(t)) ≤ 0 when the function f is n-concave. In this case the identity (5.34) for
a n-convex function f gives us

ΔΦΦΦ
ppp (AAAσBBB)−α f ΔΦΦΦ

ppp (BBB)−β f ΔΦΦΦ
ppp (AAA)

≥ f [b,b;a]ΛΦΦΦ
ppp (AAA,BBB;(t−b)(t−a))

+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)2(t−a)k−1

)
,

and if the function f is n-concave, the inequality sign is reversed.
When we combine the two results from above, we get exactly (5.32). �

In the rest of this section we will utilize the results from above, as well as Lemma 2.3
and Lemma 2.4, in order to obtain some Jensen-type inequalities that hold for the class of
n-convex functions. in that way we will obtain lower and upper bounds for the difference
generated by the Jensen inequality for solidarities.

Again, let Φi be normalized positive linear maps and let Ai,Bi, i = 1, ...,r, be positive
definite operators such that aAi ≤ Bi ≤ bAi for some 0 < a < b < ∞ and pi ≥ 0 such
that ∑r

i=1 pi = 1. Let σ be a solidarity generated by an operator monotone function f ∈
C n([a,b]).

Our first result is a consequence of Corollary 5.10 and Lemma 2.3 and 2.4.

Theorem 5.16 ([109]) Let n be an odd number. If the function f is n-convex, n > m, and
if m≥ 3 is odd, then
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( f [a,a]− f [b,b])ΔΦΦΦ
ppp (BBB)+ (b( f [b,b]− f [a,b])−a( f [a,a]− f [a,b]))ΔΦΦΦ

ppp (AAA)

+
m−1

∑
k=2

[
f (k)(a)

k!
ΛΦΦΦ

ppp

(
AAA,BBB;(t−a)k

)
− f (k)(b)

k!

(
ΔΦΦΦ

ppp (AAA)
) 1

2

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)k(
ΔΦΦΦ

ppp (AAA)
) 1

2

]

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)m (t−b)k−1

)

−
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)m

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

≤ ΔΦΦΦ
ppp (AAAσBBB)−ΔΦΦΦ

ppp (AAA)σΔΦΦΦ
ppp (BBB) (5.35)

≤ ( f [b,b]− f [a,a])ΔΦΦΦ
ppp (BBB)+ (b( f [a,b]− f [b,b])−a( f [a,b]− f [a,a]))ΔΦΦΦ

ppp (AAA)

+
m−1

∑
k=2

[
f (k)(b)

k!
ΛΦΦΦ

ppp

(
AAA,BBB;(t−b)k

)
− f (k)(a)

k!

(
ΔΦΦΦ

ppp (AAA)
) 1

2

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)k(
ΔΦΦΦ

ppp (AAA)
) 1

2

]

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)m(t−a)k−1

)
.

−
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)m

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

Inequalities (5.35) also hold when the function f is n-concave and m is even. In case
when the function f is n-convex and m is even, or when the function f is n-concave and m
is odd, the inequality signs in (5.35) are reversed.

Proof. From aAj ≤ Bj ≤ bAj it follows that

a111≤
(

r

∑
j=1

p jΦ j(Aj)

)− 1
2
(

r

∑
j=1

p jΦ j(Bj)

)(
r

∑
j=1

p jΦ j(Aj)

)− 1
2

≤ b111,

so using functional calculus and (2.65), and then multiplying twice by (∑r
i=1 piΦi(A1))

1
2

we get the following relation:
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ΔΦΦΦ
ppp (AAA)σΔΦΦΦ

ppp (BBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA)

= ( f [a,a]− f [a,b])
(

ΔΦΦΦ
ppp (BBB)−aΔΦΦΦ

ppp (AAA)
)

+
m−1

∑
k=2

f (k)(a)
k!

(
ΔΦΦΦ

ppp (AAA)
) 1

2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)k(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)m

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
(

ΔΦΦΦ
ppp (AAA)

) 1
2
Rm

((
ΔΦΦΦ

ppp (AAA)
)− 1

2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2
)(

ΔΦΦΦ
ppp (AAA)

) 1
2
.

We want to remove the last term from the equality above, so we need to check its
positivity (negativity). Again, due to the monotonicity property and Remark 5.2, it is
actually enough to study positivity and negativity of the function Rm(t), and we already
have that discussion in the proof of Theorem 5.12, so for n-convex function f and n and
m≥ 3 of different parity, or n-concave function f and n and m≥ 3 of the same parity, from
the previous equality it follows

ΔΦΦΦ
ppp (AAA)σΔΦΦΦ

ppp (BBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA) (5.36)

≤ ( f [a,a]− f [a,b])
(

ΔΦΦΦ
ppp (BBB)−aΔΦΦΦ

ppp (AAA)
)

+
m−1

∑
k=2

f (k)(a)
k!

(
ΔΦΦΦ

ppp (AAA)
) 1

2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)k(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)m

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2
,

and for n-convex function f and n and m ≥ 3 of the same parity, or n-concave function f
and n and m≥ 3 of different parity, the inequality sign is reversed.

In the same way we can replace t with
(
ΔΦΦΦ

ppp (AAA)
)− 1

2 ΔΦΦΦ
ppp (BBB)

(
ΔΦΦΦ

ppp (AAA)
)− 1

2 in (2.69) and

then multiplying twice by (∑r
i=1 piΦi(A1))

1
2 we get

ΔΦΦΦ
ppp (AAA)σΔΦΦΦ

ppp (BBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA)

= ( f [a,b]− f [b,b])
(
bΔΦΦΦ

ppp (AAA)−ΔΦΦΦ
ppp (BBB)

)
+

m−1

∑
k=2

f (k)(b)
k!

(
ΔΦΦΦ

ppp (AAA)
) 1

2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)k(
ΔΦΦΦ

ppp (AAA)
) 1

2
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+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)m

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
(

ΔΦΦΦ
ppp (AAA)

) 1
2
R∗m

((
ΔΦΦΦ

ppp (AAA)
)− 1

2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2
)(

ΔΦΦΦ
ppp (AAA)

) 1
2
.

To remove the last term from the previous equality, we need to study its positivity and
negativity. For the same reasons as before, it is enough to check positivity and negativity
of the function R∗m, and we have that discussion in the proof of Theorem 5.13. The equality
above now turns into

ΔΦΦΦ
ppp (AAA)σΔΦΦΦ

ppp (BBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA) (5.37)

≤ ( f [a,b]− f [b,b])
(
bΔΦΦΦ

ppp (AAA)−ΔΦΦΦ
ppp (BBB)

)
+

m−1

∑
k=2

f (k)(b)
k!

(
ΔΦΦΦ

ppp (AAA)
) 1

2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)k(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)m

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

for n-convex function f and an odd number m ≥ 3 or n-concave function f and an even
number m ≥ 3. If f is n-convex and m is even, or if f is n-concave and m is odd, the
inequality is reversed.

By combining inequalities (5.36) and (5.37) we get that

( f [a,a]− f [a,b])
(

ΔΦΦΦ
ppp (BBB)−aΔΦΦΦ

ppp (AAA)
)

+
m−1

∑
k=2

f (k)(a)
k!

(
ΔΦΦΦ

ppp (AAA)
) 1

2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)k(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
n−m

∑
k=1

f [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)m

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

≤ΔΦΦΦ
ppp (AAA)σΔΦΦΦ

ppp (BBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA) (5.38)

≤ ( f [a,b]− f [b,b])
(
bΔΦΦΦ

ppp (AAA)−ΔΦΦΦ
ppp (BBB)

)
+

m−1

∑
k=2

f (k)(b)
k!

(
ΔΦΦΦ

ppp (AAA)
) 1

2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)k(
ΔΦΦΦ

ppp (AAA)
) 1

2



194 5 CONVERSES OF ANDO’S AND DAVIS-CHOI’S INEQUALITY

+
n−m

∑
k=1

f [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −b111

)m

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2
(

ΔΦΦΦ
ppp (BBB)

)(
ΔΦΦΦ

ppp (AAA)
)− 1

2 −a111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

holds if n is odd and f is n-convex and m is odd, or f is n-concave and m is even. If f
is n-convex and m is even, or f is n-concave and m is odd, then the inequality signs are
reversed.

When we multiply series of inequalities (5.38) by−1 and add to (5.28), we get exactly
(5.35), and the proof is complete. �

Next result also provideswith an estimate from below and from above for the difference
generated by Ando’s inequality, and it is obtained from Theorem 5.14 and Lemma 2.3.

Theorem 5.17 ([109]) If the function f is n-convex and if n≥ 3 is odd, then

n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)(t−b)k−1

)

− f [a,a;b]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)
×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)(
ΔΦΦΦ

ppp (AAA)
) 1

2

−
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)2

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

≤ ΔΦΦΦ
ppp (AAAσBBB)−ΔΦΦΦ

ppp (AAA)σΔΦΦΦ
ppp (BBB) (5.39)

≤ f [a,a;b]ΛΦΦΦ
ppp (AAA,BBB;(t−a)(t−b))

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−a)2(t−b)k−1

)

−
n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

(5.40)
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Inequalities (5.39) also hold when the function f is n-concave and n is even. In case
when the function f is n-convex and n is even, or when the function f is n-concave and n
is odd, the inequality signs in (5.39) are reversed.

Proof. By following a similar procedure as in the proof of the previous theorem, we start

by replacing t with
(
ΔΦΦΦ

ppp (AAA)
)− 1

2 ΔΦΦΦ
ppp (BBB)

(
ΔΦΦΦ

ppp (AAA)
)− 1

2 in with relations (2.62) and (2.63) from

Lemma 2.3, and then multiplying them twice with
(
ΔΦΦΦ

ppp (AAA)
) 1

2 . We get

ΔΦΦΦ
ppp (AAA)σΔΦΦΦ

ppp (BBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA)

=
n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
(

ΔΦΦΦ
ppp (AAA)

) 1
2
R1

((
ΔΦΦΦ

ppp (AAA)
)− 1

2 ΔΦΦΦ
ppp (BBB)

(
ΔΦΦΦ

ppp (AAA)
)− 1

2
)(

ΔΦΦΦ
ppp (AAA)

) 1
2

and

ΔΦΦΦ
ppp (AAA)σΔΦΦΦ

ppp (BBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA)

= f [a,a;b]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)
×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)2

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
(

ΔΦΦΦ
ppp (AAA)

) 1
2
R2

((
ΔΦΦΦ

ppp (AAA)
)− 1

2 ΔΦΦΦ
ppp (BBB)

(
ΔΦΦΦ

ppp (AAA)
)− 1

2
)(

ΔΦΦΦ
ppp (AAA)

) 1
2

respectively. After discussing the positivity an negativity of the last terms in the equalities
from above and removing them in the same way as in the proof Theorem 5.16, we get a
series of inequalities

n−1

∑
k=2

f [a;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

≤ ΔΦΦΦ
ppp (AAA)σΔΦΦΦ

ppp (BBB)−α f ΔΦΦΦ
ppp (BBB)−β f ΔΦΦΦ

ppp (AAA) (5.41)



196 5 CONVERSES OF ANDO’S AND DAVIS-CHOI’S INEQUALITY

≤ f [a,a;b]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)
×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
n−2

∑
k=2

f [a,a;b, ...,b︸ ︷︷ ︸
k times

]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)2

×
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

that holds when n is odd and f is n-convex, or when n is even and f is n-concave. If n is
odd and f is n-concave, or if n is even and f is n-convex, then the inequality signs in (5.41)
are reversed.

Inequalities (5.39) are obtained after multiplying (5.41) by−1 and adding it to (5.29).
�

In the analogous way as described in the proof of the previous theorem, but this time
utilizing Lemma 2.4 and Theorem 5.15, we can get similar lower and upper bounds for the
difference generated by Ando’s inequality that hold for all n ∈ N, not only the odd ones.

Theorem 5.18 ([109]) Let A ∈Bh(H) be a selfadjoint operator with Sp(A)⊆ [a,b] and
let f ∈ C n([a,b]). If the function f is n-convex, n≥ 3, then

f [b,b;a]ΛΦΦΦ
ppp (AAA,BBB;(t−b)(t−a))

−
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)
×

n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2

+
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)2(t−a)k−1

)
≤ ΔΦΦΦ

ppp (AAAσBBB)−ΔΦΦΦ
ppp (AAA)σΔΦΦΦ

ppp (BBB) (5.42)

≤ f [b,b;a]
(

ΔΦΦΦ
ppp (AAA)

) 1
2
(

b111−
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2
)

(〈Ax,x〉−a111)

+
n−1

∑
k=2

f [b;a, ...,a︸ ︷︷ ︸
k times

]ΛΦΦΦ
ppp

(
AAA,BBB;(t−b)(t−a)k−1

)

−
(

ΔΦΦΦ
ppp (AAA)

) 1
2
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −b111

)2

×
n−2

∑
k=2

f [b,b;a, ...,a︸ ︷︷ ︸
k times

]
((

ΔΦΦΦ
ppp (AAA)

)− 1
2 ΔΦΦΦ

ppp (BBB)
(

ΔΦΦΦ
ppp (AAA)

)− 1
2 −a111

)k−1(
ΔΦΦΦ

ppp (AAA)
) 1

2
.
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If the function f is n-concave, the inequality signs in (5.42) are reversed.

5.4.1 Applications

As applications of the results from this section, we give reverses of this type for basic
examples of some operator means and relative operator entropy.

Let Ai,Bi, i = 1, ...,r, be positive definite operators such that aAi ≤ Bi ≤ bAi for some
0 < a < b < ∞ and pi ≥ 0 such that ∑r

i=1 pi = 1.
Some examples of connections and solidarities and their representing functions to

which our results are applicable are as follows.

• The weighted harmonic mean

A !αB =
[
(1−α)A−1 + αB−1]−1

, 0≤ α ≤ 1,

has representing function f (t) = t
(1−α)t+α . We can calculate that for n ∈ N

f (n)(t) = α(−1)n−1n!(1−α)n−1 ((1−α)t + α)−n−1 .

Since α ∈ [0,1], it is easy to see that this generating function is n-convex when n is
odd, and it is n-concave when n is an even number.

• The weighted geometric mean

A#αB = A1/2
(
A−1/2BA−1/2

)α
A1/2, 0≤ α ≤ 1,

has representing function f (t) = tα . After an easy calculation we get that

f (n)(t) = α(α −1)(α−2) · · · (α−n+1)tα−n.

Because α ∈ [0,1], we see that this generating function is n-convex when n is odd,
and it is n-concave when n is an even number.

• The relative operator entropy

S(A|B) = A1/2 log
(
A−1/2BA−1/2

)
A1/2

has representing function f (t) = logt. After an easy calculation we get that

f (n)(t) = (−1)n−1(n−1)!t−n.

We immediately see that this generating function is n-convex when n is odd, and it
is n-concave when n is an even number.





Chapter6
Inequalities on time scales

In this chapter, some converses of the Jensen and Edmundson-Lah-Ribarič inequality in
terms of time scale calculus are proved. We will also obtain new refinements of those con-
verse relations with respect to the multiple Lebesgue delta integral for convex functions.
The applicability of these results is illustrated in refinements of converse inequalities re-
garding monotonicity properties of generalized means, power means and some refinements
of converse Hölder’s inequality, which are all proved in the time scale setting.

Additionally, by utilizing some scalar inequalities obtained via Hermite’s interpolating
polynomial, we will obtain lower and upper bounds for the difference in Jensen’s inequality
and in the Edmundson-Lah-Ribarič inequality in time scale calculus that hold for the class
of n-convex functions. Those results are later applied to generalized means, with a partic-
ular emphasis to power means, and in that way some new reverse relations for generalized
and power means that correspond to n-convex functions are obtained.

6.1 Introduction

The theory of time scales was introduced by Stefan Hilger in his PhD thesis [59] in 1988
as a unification of the theory of difference equations with that of differential equations,
unifying integral and differential calculus with the calculus of finite differences, extending
to cases “in between” and offering a formalism for studying hybrid discrete-continuous
dynamic systems. It has applications in any field that requires simultaneous modelling of
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200 6 INEQUALITIES ON TIME SCALES

discrete and continuous time. Now, we briefly introduce the time scales calculus and refer
to [1, 60, 61] and the books [22, 23] for further details.

By a time scale T we mean any closed subset of R. The two most popular examples of
time scales are the real numbers R and the integers Z. Since the time scale T may or may
not be connected, we need the concept of jump operators.

For t ∈ T, we define the forward jump operator σ : T→ T by

σ(t) = inf{s ∈ T : s > t}

and the backward jump operator by

ρ(t) = sup{s ∈ T : s < t}.

In this definition, the convention is inf /0 = sup T (that is, σ(t) = t if T has a maximum
t) and sup /0 = inf T (i.e., ρ(t) = t if T has a minimum t). If σ(t) > t, then we say that t
is right-scattered, and if ρ(t) < t, then we say that t is left-scattered. Points that are right-
scattered and left-scattered at the same time are called isolated. Also, if σ(t) = t, then t
is said to be right-dense, and if ρ(t) = t, then t is said to be left-dense. Points that are
simultaneously right-dense and left-dense are called dense. The mapping μ : T→ [0,∞)
defined by

μ(t) = σ(t)− t

is called the graininess function. If T has a left-scattered maximum M, then we define
T

κ = T\ {M}; otherwise T
κ = T. If f : T→ R is a function, then we define the function

f σ : T→R by
f σ (t) = f (σ(t)) for all t ∈ T.

In the following considerations, T will denote a time scale, IT = I∩T will denote a time
scale interval (for any open or closed interval I in R), and [0,∞)T will be used for the time
scale interval [0,∞)∩T.

Definition 6.1 Assume f : T→ R is a function and let t ∈ T
κ . Then we define f Δ(t)

to be the number (provided it exists) with the property that given any ε > 0, there is a
neighborhoodU of t such that∣∣∣ f (σ(t))− f (s)− f Δ(t)(σ(t)− s)

∣∣∣≤ ε |σ(t)− s| for all s ∈UT.

We call f Δ(t) the delta derivative of f at t. We say that f is delta differentiable on T
κ

provided f Δ(t) exists for all t ∈ T
κ .

For all t ∈ T
κ , we have the following properties:

(i) If f is delta differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is delta differentiable at t with
f Δ(t) = f (σ(t))− f (t)

μ(t) .
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(iii) If t is right-dense, then f is delta differentiable at t iff the limit lim
s→t

f (t)− f (s)
t−s exists as

a finite number. In this case, f Δ(t) = lim
s→t

f (t)− f (s)
t−s .

(iv) If f is delta differentiable at t, then f (σ(t)) = f (t)+ μ(t) f Δ(t).

Definition 6.2 A function f : T→ R is called rd-continuous if it is continuous at all
right-dense points in T and its left-sided limits are finite at all left-dense points in T. We
denote by Crd the set of all rd-continuous functions. We say that f is rd-continuously delta
differentiable (and write f ∈ C1

rd) if f Δ(t) exists for all t ∈ T
κ and f Δ ∈ Crd.

Definition 6.3 A function F : T→ R is called a delta antiderivative of f : T→ R if
FΔ(t) = f (t) for all t ∈ T

κ . Then we define the delta integral by∫ t

a
f (s)Δs = F(t)−F(a).

The importance of rd-continuous function is revealed by the following result.

Theorem 6.1 Every rd-continuous function has a delta antiderivative.

Now we give some properties of the delta integral.

Theorem 6.2 If a,b,c ∈ T, β ∈R and f ,g ∈ Crd, then

(i)
b∫
a

( f (t)+g(t))Δt =
b∫
a

f (t)Δt +
b∫
a

g(t)Δt;

(ii)
b∫
a

α f (t)Δt = α
b∫
a

f (t)Δt;

(iii)
b∫
a

f (t)Δt =−
a∫
b

f (t)Δt;

(iv)
b∫
a

f (t)Δt =
c∫
a

f (t)Δt +
b∫
c

f (t)Δt;

(v)
a∫
a

f (t)Δt = 0;

(vi) if f (t) ≥ 0 for all t, then
b∫
a

f (t)Δt ≥ 0.

In order to show the connection between positive linear functionals and time scale
integrals, we first need to define the appropriate settings.

Let E be a nonempty set and L be a linear class of real-valued functions f : E → R

having the following properties.

(L1) If f ,g ∈ L and α,β ∈ R, then (α f + βg) ∈ L.
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(L2) If f (t) = 1 for all t ∈ E , then f ∈ L.

A positive linear functional is a functional A : L→ R having the following properties.

(A1) If f ,g ∈ L and α,β ∈ R, then A(α f + βg) = αA( f )+ βA(g).

(A2) If f ∈ L and f (t)≥ 0 for all t ∈ E , then A( f )≥ 0.

In [6, 17, 9, 21], the authors presented a series of inequalities for the time scale integral
and showed that it is not necessary to prove such kind of inequalities “from scratch” in the
time scale setting as they can be obtained easily from well-known inequalities for positive
linear functionals since the time scale integral is in fact a positive linear functional. The
results on classical inequalities that are proved for the positive linear functionals, given in
the monograph [124], are used to get new inequalities for the time scale integral.

Now we quote three theorems from [6] that we need in our research.

Theorem 6.3 Let T be a time scale. For a,b ∈ T with a < b, let

E = [a,b)∩T and L = Crd (E,R) .

Then (L1) and (L2) are satisfied. Moreover, the delta integral
b∫
a

f (t)Δt is a positive linear

functional which satisfies conditions (A1) and (A2).

Corresponding versions of Theorem 6.3 for nabla and α-diamond integrals are also
given in [6].

Multiple Riemann integration and multiple Lebesgue integration on time scale was
introduced in [19] and [20], respectively, and both integrals are also positive linear func-
tionals.

Theorem 6.4 Let T1, . . . ,Tn be time scales. For ai,bi ∈ Ti with ai < bi, 1≤ i≤ n, let

E ⊂ ([a1,b1)∩T1)×·· ·× ([an,bn)∩Tn)

be Lebesgue Δ-measurable and let L be the set of all Δ-measurable functions from E to R.
Then (L1) and (L2) are satisfied. Moreover, the multiple Lebesgue delta integral on time
scales

∫
E

f (t)Δt is a positive linear functional and satisfies conditions (A1) and (A2).

Theorem 6.5 Under the assumptions of Theorem 6.4, the delta integral

∫
E

h(t) f (t)Δt∫
E

h(t)Δt , where

h : E →R is nonnegative, Δ-integrable and
∫
E

h(t)Δt > 0, is also a positive linear functional

satisfying (A1), (A2) and A(1) = 1.

Using the known Jessen inequality for positive linear functionals ([124, Theorem 2.4])
and Theorem 6.5, M. Anwar, R. Bibi, M. Bohner and J. Pečarić proved in [6] the following
generalization of Jessen’s inequality on time scales.
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Theorem 6.6 Assume φ ∈C(I,R) is convex, where I ⊂ R is an interval. Let E ⊂ R
n be

as in Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = I. Moreover, let
h : E →R be nonnegative, Δ-integrable such that

∫
E

h(t)Δt > 0. Then

φ

⎛⎝
∫
E

h(t) f (t)Δt∫
E

h(t)Δt

⎞⎠≤
∫
E

h(t)φ( f (t))Δt∫
E

h(t)Δt
. (6.1)

Lah and Ribarič proved in [89] the converse of Jensen’s inequality for convex functions
(see also [120]). Beesack and Pečarić gave in [14] the generalization of Lah–Ribarič’s
inequality for positive linear functionals. Applying the fact that the multiple Lebesgue
delta time scale integral is a positive linear functional (Theorem 6.5) to Beesack–Pečarić’s
result from [14], the following theorem is proved in [6].

Theorem 6.7 Assume φ ∈ C(I,R) is convex, where I = [m,M] ⊂ R, with m < M. Let
E ⊂ R

n be as in Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = I.
Moreover, let h : E → R be nonnegative, Δ-integrable such that

∫
E

h(t)Δt > 0. Then

∫
E

h(t)φ( f (t))Δt∫
E

h(t)Δt
≤

M−
∫
E

h(t) f (t)Δt∫
E

h(t)Δt

M−m
φ(m)+

∫
E

h(t) f (t)Δt∫
E

h(t)Δt −m

M−m
φ(M). (6.2)

6.2 Converses of the Jensen and Edmundson-Lah-
-Ribarič inequalities

In this section, we prove new converses of Jensen’s inequality on time scales. For simplic-
ity, we introduce the notations

LΔ( f ) =
∫

E
f (t)Δt and LΔ( f ,h) =

∫
E f (t)h(t)Δt∫

E h(t)Δt
,

where f : E → R is Δ-integrable and h : E → R is nonnegative Δ-integrable such that∫
E h(t)Δt > 0.

Theorem 6.8 ([12]) Let φ ∈ C(I,R) be convex, where I = [m,M] ⊂ R, with m < M.
Assume E is as in Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = I.
Moreover, let h : E → R be nonnegative Δ-integrable such that

∫
E

h(t)Δt > 0. Then

0 ≤ LΔ(φ( f ),h)−φ
(
LΔ( f ,h)

)
(6.3)
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≤ (M−LΔ( f ,h)
)(

LΔ( f ,h)−m
) · φ ′−(M)−φ ′+(m)

M−m

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)).

If φ is concave on I, then all inequalities in (6.3) are reversed.

Proof. Let φ be a convex function. The first inequality in (6.3) follows directly from
Jensen’s inequality on time scales given in Theorem 6.6. Now, let us take the inequality
(6.2) from Theorem 6.7. Adding the term −φ

(
LΔ( f ,h)

)
on both sides of (6.2), we obtain

LΔ(φ( f ),h)−φ
(
LΔ( f ,h)

)
≤ M−LΔ( f ,h)

M−m
φ(m)+

LΔ( f ,h)−m
M−m

φ(M)−φ
(
LΔ( f ,h)

)
=: B. (6.4)

By the convexity of φ , it follows

φ(x)−φ(M)≥ φ ′−(M)(x−M), x ∈ [m,M]. (6.5)

Multiplying inequality (6.5) with (x−m)≥ 0, we get

(x−m)φ(x)− (x−m)φ(M)≥ φ ′−(M)(x−M)(x−m), x ∈ [m,M]. (6.6)

Similarly, multiplying the inequality φ(x)− φ(m) ≥ φ ′+(m)(x−m) with (M− x) ≥ 0, we
obtain

(M− x)φ(x)− (M− x)φ(m)≥ φ ′+(m)(x−m)(M− x), x ∈ [m,M]. (6.7)

Adding (6.6) to (6.7) and dividing by (M−m), for any x ∈ [m,M], we have

(M− x)φ(m)+ (x−m)φ(M)
M−m

−φ(x)≤ (M− x)(x−m)
M−m

(
φ ′−(M)−φ ′+(m)

)
. (6.8)

Replacing x in (6.8) with LΔ( f ,h), leads to

B≤ (M−LΔ( f ,h)
)(

LΔ( f ,h)−m
) φ ′−(M)−φ ′+(m)

M−m
. (6.9)

Combining (6.4) and (6.9) brings us to the second inequality in (6.3). The third inequality
in (6.3) follows from the elementary estimate (M−x)(x−m)

M−m ≤ 1
4 (M−m) for every x ∈ R. If

the function φ is concave, then−φ is convex, so applying (6.3) to−φ gives us the reversed
inequalities in (6.3). �

Remark 6.1 The proof of Theorem 6.8 can be obtained directly from Theorem 1.5 since
the multiple Lebesgue delta time scale integral is a positive linear functional, according to
Theorem 6.5.
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Theorem 6.9 ([12]) Suppose that all assumptions from Theorem 6.8 hold. Then

0 ≤ M−LΔ( f ,h)
M−m

φ(m)+
LΔ( f ,h)−m

M−m
φ(M)−LΔ(φ( f ),h)

≤ φ ′−(M)−φ ′+(m)
M−m

·

∫
E

h(t)(M− f (t))( f (t)−m)Δt∫
E

h(t)Δt
(6.10)

≤ φ ′−(M)−φ ′+(m)
M−m

(
M−LΔ( f ,h)

)(
LΔ( f ,h)−m

)
≤ 1

4
(M−m)(φ ′−(M)−φ ′+(m)).

If φ is concave on I, then all inequalities in (6.10) are reversed.

Proof. Assume that φ is convex. The first inequality in (6.10) follows directly from
inequality (6.2) in Theorem 6.7. We now replace x in (6.8) by f (t), t ∈ E (notice that
m≤ f (t) ≤M since f (E ) = I by the assumptions) so that

M− f (t)
M−m

φ(m)+
f (t)−m
M−m

φ(M)−φ( f (t))

≤ (M− f (t))( f (t)−m)
M−m

(
φ ′−(M)−φ ′+(m)

)
. (6.11)

Since the multiple Lebesgue delta time scale integral is a positive linear functional, multi-
plying inequality (6.11) by h(t)∫

E
h(t)Δt and integrating the resulting inequality, we get

M−LΔ( f ,h)
M−m

φ(m)+
LΔ( f ,h)−m

M−m
φ(M)−LΔ(φ( f ),h)

≤

∫
E

h(t)(M− f (t)) ( f (t)−m)Δt∫
E

h(t)Δt
· φ
′−(M)−φ ′+(m)

M−m

which is the second inequality in (6.10). Using the fact that the function g : R→R, defined
as g(x) = (M− x)(x−m), is concave and applying Theorem 6.6 to the function g instead
of the function φ , we deduce∫

E
h(t)(M− f (t)) ( f (t)−m)Δt∫

E
h(t)Δt

≤ (M−LΔ( f ,h)
)(

LΔ( f ,h)−m
)
,

which implies the third inequality in (6.10). The last inequality in (6.10) is the same one
as the last inequality in Theorem 6.8. If the function φ is concave, then −φ is convex, so
applying (6.10) to −φ gives us the reversed inequalities in (6.10). �
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The following results are converses of Jensen’s inequality on time scales which refine
the results from the above for multiple Lebesgue delta integral. For simplicity, we intro-
duce the following notations

LΔ( f ) =
∫

E
f (t)Δt and LΔ( f ,h) =

∫
E f (t)|h(t)|Δt∫

E |h(t)|Δt
,

where f ,h : E →R are Δ-integrable and
∫
E |h(t)|Δt > 0.

Theorem 6.10 ([13]) Let φ ∈ C(I,R) be convex, where I = [m,M] ⊂ R, with m < M.
Assume E ⊂R

n is as in Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) =
I. Moreover, let h : E → R be Δ-integrable such that

∫
E |h(t)|Δt > 0. Then

0 ≤ LΔ(φ( f ),h)−φ
(
LΔ( f ,h)

)
≤ (M−LΔ( f ,h)

)(
LΔ( f ,h)−m

)
sup

t∈〈m,M〉
Ψφ (t;m,M)

≤ (M−LΔ( f ,h)
)(

LΔ( f ,h)−m
) · φ ′−(M)−φ ′+(m)

M−m
(6.12)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m)),

where Ψφ (·;m,M) : 〈m,M〉 →R is defined by

ΨΦ(t;m,M) =
1

M−m

(φ(M)−φ(t)
M− t

− φ(t)−φ(m)
t−m

)
.

If φ is concave on I, then all inequalities in (6.3) are reversed.

Proof. Since φ is a convex function, first inequality in (6.12) follows from Theorem 6.6.
From Theorem 6.7, we have

LΔ(φ( f ),h)−φ
(
LΔ( f ,h)

)
(6.13)

≤ M−LΔ( f ,h)
M−m

φ(m)+
LΔ( f ,h)−m

M−m
φ(M)−φ

(
LΔ( f ,h)

)
=

1
M−m

(
M−LΔ( f ,h)

)(
LΔ( f ,h)−m

)
·
(

φ(M)−φ
(
LΔ( f ,h)

)
M−LΔ( f ,h)

− φ
(
LΔ( f ,h)

)−φ(m)
LΔ( f ,h)−m

)
=
(
M−LΔ( f ,h)

)(
LΔ( f ,h)−m

)
Ψφ
(
LΔ( f ,h);m,M

)
≤ (M−LΔ( f ,h)

)(
LΔ( f ,h)−m

)
sup

t∈〈m,M〉
Ψφ (t;m,M),

which is the second inequality in (6.12), provided that LΔ( f ,h) �= m,M. When LΔ( f ,h) is
equal to m or M then inequality (6.12) is obvious.

Since,

sup
t∈〈m,M〉

Ψφ (t;m,M) =
1

M−m
sup

t∈〈m,M〉

{φ(M)−φ(t)
M− t

− φ(t)−φ(m)
t−m

}
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≤ 1
M−m

(
sup

t∈〈m,M〉
φ(M)−φ(t)

M− t
+ sup

t∈〈m,M〉
−(φ(t)−φ(m))

t−m

)
=

1
M−m

(
sup

t∈〈m,M〉
φ(M)−φ(t)

M− t
− inf

t∈〈m,M〉
φ(t)−φ(m)

t−m

)
=

φ ′−(M)−φ ′+(m)
M−m

,

the third inequality in (6.12) is true. The last inequality in (6.12) follows from the elemen-
tary estimate (M−x)(x−m)

M−m ≤ 1
4 (M−m), for every x ∈ R. If the function φ is concave, then

−φ is convex, so applying (6.12) to −φ gives the reversed inequalities in (6.12). This
completes the proof. �

Remark 6.2 According to (6.13), with the same assumptions as in Theorem 6.10, follow-
ing inequalities are also true

0 ≤ LΔ(φ( f ),h)−φ
(
LΔ( f ,h)

)
≤ 1

4
(M−m)2Ψφ

(
LΔ( f ,h);m,M

)
≤ 1

4
(M−m)(φ ′−(M)−φ ′+(m)).

Using the refinement of the converse Jensen inequality for normalized positive lin-
ear functionals, given in Theorem 1.10, we derive the following theorem which refines
inequality (6.12) from Theorem 6.10.

Theorem 6.11 ([13]) Let φ ∈ C(I,R) be convex, where I = [m,M] ⊂ R, with m < M.
Assume E ⊂R

n and L are as in Theorem 6.4 with additional property that for every f ,g∈ L
we have that min{ f ,g} ∈ L and max{ f ,g} ∈ L. Let f be Δ-integrable on E such that
f (E ) = I. Moreover, let h : E → R be Δ-integrable such that

∫
E |h(t)|Δt > 0. Then,

0 ≤ LΔ(φ( f ),h)−φ
(
LΔ( f ,h)

)
≤ (M−LΔ( f ,h)

)(
LΔ( f ,h)−m

)
sup

t∈〈m,M〉
Ψφ (t;m,M)−LΔ( f̃ ,h)δφ

≤ (M−LΔ( f ,h)
)(

LΔ( f ,h)−m
) · φ ′−(M)−φ ′+(m)

M−m
−LΔ( f̃ ,h)δφ (6.14)

≤ 1
4
(M−m)(φ ′−(M)−φ ′+(m))−LΔ( f̃ ,h)δφ ,

where

f̃ = 1
2 −

| f−m+M
2 |

M−m , δφ = φ(m)+ φ(M)−2φ
(

m+M
2

)
and Ψφ (·;m,M) : 〈m,M〉 →R is defined by

ΨΦ(t;m,M) = 1
M−m

(
φ(M)−φ(t)

M−t − φ(t)−φ(m)
t−m

)
.

If φ is concave on I, then the above inequalities are reversed.

Proof. Inequality (6.14) follows directly from the result from Theorem 1.10 and the fact
that multiple Lebesgue delta integral is a positive linear functional. �
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6.3 Inequalities of the Jensen and Edmundson-Lah-
-Ribarič type on time scales for n-convex
functions

For simplicity, we introduce the notations

LΔ( f ) =
∫

E
f (t)Δt and LΔ( f ,h) =

∫
E f (t)h(t)Δt∫

E h(t)Δt
,

where f : E → R is Δ-integrable and h : E → R is nonnegative Δ-integrable such that∫
E h(t)Δt > 0.

Throughout this section, whenever mentioning the interval [a,b], we assume that a,b
are finite real numbers such that a < b. We can write the Edmundson-Lah-Ribarič inequal-
ity (C) in the form

αφ LΔ( f ,h)+ βφ −LΔ(φ( f ),h) ≥ 0 (6.15)

with standard notation

αφ =
φ(b)−φ(a)

b−a
and βφ =

bφ(a)−aφ(b)
b−a

.

A generalization of the Edmundson-Lah-Ribarič inequality (C) obtained from Lemma
2.3 is given in the following theorem.

Theorem 6.12 ([108]) Let φ ∈ C n([a,b]) be an n-convex function. Assume E is as in
Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = [a,b]. Moreover, let
h : E →R be nonnegative Δ-integrable such that

∫
E

h(t)Δt > 0. If n > m≥ 3 are of different

parity, then

LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ (6.16)

≤ (LΔ( f ,h)−a)
(
φ ′(a)−φ [a,b]

)
+

m−1

∑
k=2

φ (k)(a)
k!

LΔ

(
( f −a111)k,h

)
+

n−m

∑
k=1

φ [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]LΔ

(
( f −a111)m( f −b111)k−1,h

)
.

Inequality (6.16) also holds when the function φ is n-concave and n and m are of equal
parity. In case when the function φ is n-convex and n and m are of equal parity, or when
the function φ is n-concave and n and m are of different parity, the inequality sign in (6.16)
is reversed.
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Proof. Since f (E ) = [a,b] by the assumptions, we have a≤ f (t)≤ b, so we can replace t
with f (t) in (2.65) and obtain:

φ( f (t))−αφ f (t)−βφ = ( f (t)−a)
(
φ ′(a)−φ [a,b]

)
+

m−1

∑
k=2

φ (k)(a)
k!

( f (t)−a)k

+
n−m

∑
k=1

φ [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]( f (t)−a)m( f (t)−b)k−1 +Rm( f (t)).

Since the multiple Lebesgue delta time scale integral is a positive linear functional,
multiplying the previous inequality by h(t)∫

E
h(t)Δt and then integrating the resulting inequality

yields

LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ (6.17)

= (LΔ( f ,h)−a)
(
φ ′(a)−φ [a,b]

)
+

m−1

∑
k=2

φ (k)(a)
k!

·
∫
E ( f (t)−a)kh(t)Δt∫

E h(t)Δt

+
n−m

∑
k=1

φ [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]
∫
E ( f (t)−a)m( f (t)−b)k−1h(t)Δt∫

E h(t)Δt
+
∫
E Rm( f (t))h(t)Δt∫

E h(t)Δt
.

Now we set our focus on positivity and negativity of the term∫
E Rm( f (t))h(t)Δt∫

E h(t)Δt
.

Because multiple Lebesgue delta time scale integral takes nonnegative values for posi-
tive functions, it is enough to study positivity and negativity of:

Rm( f (t)) = ( f (t)−a)m ( f (t)−b)n−m φ [ f (t);a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

].

Since by assumptions we have a≤ f (t)≤ b, we have ( f (t)−a)m ≥ 0 for any choice of
m. For the same reason we have ( f (t)−b)≤ 0. Trivially it follows that ( f (t)−b)n−m ≤ 0
when n and m are of different parity, and ( f (t)− b)n−m ≥ 0 when n and m are of equal
parity.

If the function φ is n-convex, then φ [ f (t);a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

]≥ 0, and if the function φ

is n-concave, then φ [ f (t);a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

] ≤ 0 for any t ∈ [a,b]. Inequality (6.16) now

easily follows from (6.17). �

Next result is another generalization of the Edmundson-Lah-Ribarič inequality in terms
of divided differences, obtained from Lemma 2.4 that also holds for the class of n-convex
functions.
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Theorem 6.13 ([108]) Let φ ∈ C n([a,b]) be an n-convex function. Assume E is as in
Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = [a,b]. Moreover, let
h : E → R be nonnegative Δ-integrable such that

∫
E

h(t)Δt > 0. For an odd number m≥ 3

such that m < n we have

LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ (6.18)

≤ (b−LΔ( f ,h))
(
φ [a,b]−φ ′(b)

)
+

m−1

∑
k=2

φ (k)(b)
k!

LΔ

(
( f −b111)k,h

)
+

n−m

∑
k=1

φ [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]LΔ

(
( f −b111)m( f −a111)k−1,h

)
.

Inequality (6.18) also holds when the function φ is n-concave and m is even. In case when
the function φ is n-convex and m is even, or when the function φ is n-concave and m is
odd, the inequality sign in (6.18) is reversed.

Proof. In a similar manner as in the proof of the previous theorem, we can replace t with
f (t) in (2.69), multiply the obtained inequality by h(t)∫

E
h(t)Δt and then integrate the resulting

inequality. In that way we get

LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ (6.19)

= (b−LΔ( f ,h))
(
φ [a,b]−φ ′(b)

)
+

m−1

∑
k=2

φ (k)(b)
k!

·
∫
E ( f (t)−b)kh(t)Δt∫

E h(t)Δt

+
n−m

∑
k=1

φ [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]
∫
E ( f (t)−b)m( f (t)−a)k−1h(t)Δt∫

E h(t)Δt
+
∫
E R∗m( f (t))h(t)Δt∫

E h(t)Δt
.

Next, we study positivity and negativity of the term∫
E R∗m( f (t))h(t)Δt∫

E h(t)Δt
.

Again, it is enough to study positivity and negativity of the function:

R∗m( f (t)) = ( f (t)−b)m( f (t)−a)n−mφ [ f (t);b, ...,b︸ ︷︷ ︸
m times

; a,a, ...,a︸ ︷︷ ︸
(n−m) times

].

Since f (t) ∈ [a,b], we have ( f (t)−a)n−m ≥ 0 for every t and any choice of m. For the
same reason we have ( f (t)− b) ≤ 0. Trivially it follows that ( f (t)− b)m ≤ 0 when m is
odd, and ( f (t)−b)m ≥ 0 when m is even. If the function φ is n-convex, then its n-th order
divided differences are greater of equal to zero, and if the function φ is n-concave, then
its n-th order divided differences are less or equal to zero. Now (6.18) easily follows from
(6.19). �

The following corollary is a direct consequence of the previous two theorems, and it
provides with a lower and an upper bound for the difference in the Edmundson-Lah-Ribarič
inequality for time scales.
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Corollary 6.1 Let φ ∈ C n([a,b]) be an n-convex function. Assume E is as in Theorem
6.4 and suppose f is Δ-integrable on E such that f (E ) = [a,b]. Moreover, let h : E → R

be nonnegative Δ-integrable such that
∫
E

h(t)Δt > 0. If m≥ 3 is odd and m < n, then

(LΔ( f ,h)−a)
(
φ ′(a)−φ [a,b]

)
+

m−1

∑
k=2

φ (k)(a)
k!

LΔ(( f −a111)k,h)

+
n−m

∑
k=1

φ [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]LΔ(( f −a111)m( f −b111)k−1,h)

≤ LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ (6.20)

≤ (b−LΔ( f ,h))
(
φ [a,b]−φ ′(b)

)
+

m−1

∑
k=2

φ (k)(b)
k!

LΔ(( f −b111)k,h)

+
n−m

∑
k=1

φ [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]LΔ(( f −b111)m( f −a111)k−1,h).

Inequality (6.20) also holds when the function φ is n-concave and m is even. In case when
the function φ is n-convex and m is even, or when the function φ is n-concave and m is
odd, the inequality signs in (6.20) are reversed.

In our next result we establish another set of bounds for the difference in the Edmund-
son-Lah-Ribarič inequality. It is obtained from Lemma 2.3.

Theorem 6.14 ([108]) Let φ ∈ C n([a,b]) be an n-convex function. Assume E is as in
Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = [a,b]. Moreover, let
h : E →R be nonnegative Δ-integrable such that

∫
E

h(t)Δt > 0. If n≥ 3 is odd, then

n−1

∑
k=2

φ [a;b, ...,b︸ ︷︷ ︸
k times

]LΔ(( f −a111)( f −b111)k−1,h)

≤ LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ ≤ φ [a,a;b]LΔ(( f −a111)( f −b111),h) (6.21)

+
n−2

∑
k=2

φ [a,a;b, ...,b︸ ︷︷ ︸
k times

]LΔ(( f −a111)2( f −b111)k−1,h).

Inequalities (6.21) also hold when the function φ is n-concave and n is even. In case when
the function φ is n-convex and n is even, or when the function φ is n-concave and n is odd,
the inequality signs in (6.21) are reversed.

Proof. Again, we can replace t with f (t) in (2.62) and (2.63), multiply the obtained

inequality by h(t)∫
E

h(t)Δt and then integrate the resulting inequality. In that way we get
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LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ (6.22)

=
n−1

∑
k=2

φ [a;b, ...,b︸ ︷︷ ︸
k times

]

∫
E

h(t)( f (t)−a)( f (t)−b)k−1Δt∫
E

h(t)Δt
+

∫
E

h(t)R1( f (t))Δt∫
E

h(t)Δt

and

LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ = φ [a,a;b]

∫
E

h(t)( f (t)−a)( f (t)−b)Δt∫
E

h(t)Δt

+
n−2

∑
k=2

φ [a,a;b, ...,b︸ ︷︷ ︸
k times

]

∫
E

h(t)( f (t)−a)2( f (t)−b)k−1Δt∫
E

h(t)Δt
+

∫
E

h(t)R2( f (t))Δt∫
E

h(t)Δt
. (6.23)

From the discussion about positivity and negativity of the term

LΔ(Rm( f ),h) =

∫
E

h(t)Rm( f (t))Δt∫
E

h(t)Δt
,

that is, about positivity and negativity of the function Rm( f (t)) in the proof of Theorem
6.12, for m = 1 it follows that

∗ LΔ(R1( f ),h) ≥ 0 when the function φ is n-convex and n is odd, or when φ is n-
concave and n even;

∗ LΔ(R1( f ),h) ≤ 0 when the function φ is n-concave and n is odd, or when φ is n-
convex and n even.

Now the relation (6.22) becomes inequality

LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ ≥
n−1

∑
k=2

φ [a;b, ...,b︸ ︷︷ ︸
k times

]LΔ(( f −a111)( f −b111)k−1,h)

that holds for LΔ(R1( f ),h)≥ 0, and in case LΔ(R1( f ),h)≤ 0 the inequality sign is reversed.
In the same manner, for m = 2 it follows that

∗ LΔ(R2( f ),h) ≤ 0 when the function φ is n-convex and n is odd, or when φ is n-
concave and n even;

∗ LΔ(R2( f ),h) ≥ 0 when the function φ is n-concave and n is odd, or when φ is n-
convex and n even.

In this case the relation (6.23) for LΔ(R2( f ),h) ≤ 0 gives us

LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ ≤ φ [a,a;b]LΔ(( f −a111)( f −b111),h)

+
n−2

∑
k=2

φ [a,a;b, ...,b︸ ︷︷ ︸
k times

]LΔ(( f −a111)2( f −b111)k−1,h),
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and when LΔ(R2( f ),h) ≥ 0 the inequality sign is reversed.
When we combine the two inequalities obtained above, we get exactly (6.21). �

By utilizing Lemma 2.4 we can get a similar lower and upper bound for the difference
in the Edmundson-Lah-Ribarič inequality that holds for all n ∈ N, not only the odd ones.

Theorem 6.15 ([108]) Let φ ∈ C n([a,b]) be an n-convex function, n ≥ 3. Assume E is
as in Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = [a,b]. Moreover,
let h : E →R be nonnegative Δ-integrable such that

∫
E

h(t)Δt > 0. Then we have

φ [b,b;a]LΔ(( f −b111)( f −a111),h)+
n−2

∑
k=2

φ [b,b;a, ...,a︸ ︷︷ ︸
k times

]LΔ(( f −b111)2( f −a111)k−1,h)

≤ LΔ(φ( f ),h)−αφ LΔ( f ,h)−βφ ≤
n−1

∑
k=2

φ [b;a, ...,a︸ ︷︷ ︸
k times

]LΔ(( f −b111)( f −a111)k−1,h) (6.24)

If the function φ is n-concave, the inequality signs in (6.24) are reversed.

Proof. We follow the lines from the proof of Theorem 6.14, with the difference that we
start with equalities (2.66) and (2.67) from Lemma 2.4, and then we return to the discussion
about positivity and negativity of the term LΔ(R∗m( f ),h) from the proof of Theorem 6.13
for m = 1 and m = 2. �

In the rest of this section we will utilize the results from above, as well Lemma 2.3
and Lemma 2.4, in order to obtain some Jensen-type inequalities that hold for n-convex
functions.

Our first result is a consequence of Corollary 6.1, and it provides with a lower and an
upper bound for the difference in the Jensen inequality for time scales (6.1).

Theorem 6.16 ([108]) Let φ ∈ C n([a,b]) be an n-convex function. Assume E is as in
Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = [a,b]. Moreover, let
h : E →R be nonnegative Δ-integrable such that

∫
E

h(t)Δt > 0. If m≥ 3 is odd and m < n,

then

φ(a)−φ(b)+bφ ′(b)−aφ ′(a)+ (φ ′(a)−φ ′(b))LΔ( f ,h)

+
m−1

∑
k=2

(
φ (k)(a)

k!
LΔ(( f −a111)k,h)− φ (k)(b)

k!
(LΔ( f ,h)−b)k

)

+
n−m

∑
k=1

φ [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

]LΔ(( f −a111)m( f −b111)k−1,h)

−
n−m

∑
k=1

φ [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

](LΔ( f ,h)−b)m(LΔ( f ,h)−a)k−1

≤ LΔ(φ( f ),h)−φ(LΔ( f ,h)) (6.25)
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≤ φ(b)−φ(a)+aφ ′(a)−bφ ′(b)+ (φ ′(b)−φ ′(a))LΔ( f ,h)

+
m−1

∑
k=2

(
φ (k)(b)

k!
LΔ(( f −b111)k,h)− φ (k)(a)

k!
(LΔ( f ,h)−a)k

)

+
n−m

∑
k=1

φ [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

]LΔ(( f −b111)m( f −a111)k−1,h)

−
n−m

∑
k=1

φ [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−a)m(LΔ( f ,h)−b)k−1

Inequalities (6.25) also hold when the function φ is n-concave and m is even. In case when
the function φ is n-convex and m is even, or when the function φ is n-concave and m is
odd, the inequality signs in (6.25) are reversed.

Proof. Because f (E ) = [a,b], we have ah(t) ≤ f (t)h(t) ≤ bh(t), and consequently
LΔ( f ,h) ∈ [a,b], so we can substitute t with LΔ( f ,h) in (2.65) and obtain

φ(LΔ( f ,h))−αφ LΔ( f ,h)−βφ (6.26)

= (LΔ( f ,h)−a)
(
φ ′(a)−φ [a,b]

)
+

m−1

∑
k=2

φ (k)(a)
k!

(LΔ( f ,h)−a)k

+
n−m

∑
k=1

φ [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−a)m(LΔ( f ,h)−b)k−1 +Rm(LΔ( f ,h)).

We need to study positivity and negativity of the term:

Rm(LΔ( f ,h)) =
(
LΔ( f ,h)−a

)m (
LΔ( f ,h)−b

)n−m φ [LΔ( f ,h);a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

].

Since LΔ( f ,h)∈ [a,b], we have
(
LΔ( f ,h)−a

)m≥ 0 for any choice of m, and (LΔ( f ,h)−
b)n−m ≤ 0 when n and m are of different parity, and (LΔ( f ,h)−b)n−m ≥ 0 when n and m
are of equal parity.

If the function φ is n-convex, then φ [LΔ( f ,h);a, ...,a︸ ︷︷ ︸
m times

; b,b, ...,b︸ ︷︷ ︸
(n−m) times

] ≥ 0, and if the func-

tion φ is n-concave, then the inequality sign is reversed.
Now the relation (6.26) for n-convex function φ and n and m≥ 3 of different parity, or

n-concave function φ and n and m≥ 3 of the same parity, becomes

φ(LΔ( f ,h))−αφ LΔ( f ,h)−βφ (6.27)

≤ (LΔ( f ,h)−a)
(
φ ′(a)−φ [a,b]

)
+

m−1

∑
k=2

φ (k)(a)
k!

(LΔ( f ,h)−a)k

+
n−m

∑
k=1

φ [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−a)m(LΔ( f ,h)−b)k−1,
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and for n-convex function φ and n and m ≥ 3 of the same parity, or n-concave function φ
and n and m≥ 3 of different parity, the inequality sign is reversed.

In the same way we can replace t with LΔ( f ,h) in (2.69) and get

φ(LΔ( f ,h))−αφ LΔ( f ,h)−βφ (6.28)

= (b−LΔ( f ,h))
(
φ [a,b]−φ ′(b)

)
+

m−1

∑
k=2

φ (k)(b)
k!

(LΔ( f ,h)−b)k

+
n−m

∑
k=1

φ [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

](LΔ( f ,h)−b)m(LΔ( f ,h)−a)k−1 +R∗m(LΔ( f ,h)).

As before, we study positivity and negativity of the term R∗m(LΔ( f ,h)):

R∗m(LΔ( f ,h)) = (LΔ( f ,h)−b)m(LΔ( f ,h)−a)n−mφ [LΔ( f ,h);b, ...,b︸ ︷︷ ︸
m times

; a,a, ...,a︸ ︷︷ ︸
(n−m) times

].

Again, since LΔ( f ,h) ∈ [a,b], we have
(
LΔ( f ,h)−a

)n−m ≥ 0 for any choice of m, and
(LΔ( f ,h)−b)m ≤ 0 when m is odd, and (LΔ( f ,h)−b)m ≥ 0 when m is even. If the function
φ is n-convex, then its n-th order divided differences are greater of equal to zero, and if the
function φ is n-concave, then its n-th order divided differences are less or equal to zero.

Equality (6.28) now turns into

φ(LΔ( f ,h))−αφ LΔ( f ,h)−βφ (6.29)

≤ (b−LΔ( f ,h))
(
φ [a,b]−φ ′(b)

)
+

m−1

∑
k=2

φ (k)(b)
k!

(LΔ( f ,h)−b)k

+
n−m

∑
k=1

φ [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

](LΔ( f ,h)−b)m(LΔ( f ,h)−a)k−1

for n-convex function φ and an odd number m ≥ 3 or n-concave function φ and an even
number m ≥ 3. If φ is n-convex and m is even, or if φ is n-concave and m is odd, the
inequality is reversed.

By combining inequalities (6.27) and (6.29) we get that

(LΔ( f ,h)−a)
(
φ ′(a)−φ [a,b]

)
+

m−1

∑
k=2

φ (k)(a)
k!

(LΔ( f ,h)−a)k

+
n−m

∑
k=1

φ [a, ...,a︸ ︷︷ ︸
m times

;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−a)m(LΔ( f ,h)−b)k−1

≤ φ(LΔ( f ,h))−αφ LΔ( f ,h)−βφ (6.30)

≤ (b−LΔ( f ,h))
(
φ [a,b]−φ ′(b)

)
+

m−1

∑
k=2

φ (k)(b)
k!

(LΔ( f ,h)−b)k

+
n−m

∑
k=1

φ [b, ...,b︸ ︷︷ ︸
m times

;a, ...,a︸ ︷︷ ︸
k times

](LΔ( f ,h)−b)m(LΔ( f ,h)−a)k−1
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holds if n is odd and φ is n-convex and m is odd, or φ is n-concave and m is even. If φ
is n-convex and m is even, or φ is n-concave and m is odd, then the inequality signs are
reversed.

When we multiply series of inequalities (6.30) by−1 and add to (6.20), we get exactly
(6.25), and the proof is complete. �

Next result also provides with a lower and upper bound for the difference in the Jensen
inequality for time scales, and it is obtained from Theorem 6.14 and Lemma 2.3.

Theorem 6.17 ([108]) Let φ ∈ C n([a,b]) be an n-convex function. Assume E is as in
Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = [a,b]. Moreover, let
h : E → R be nonnegative Δ-integrable such that

∫
E

h(t)Δt > 0. If n≥ 3 is odd, then

φ [a,a;b](b−LΔ( f ,h))(LΔ( f ,h)−a)+
n−1

∑
k=2

φ [a;b, ...,b︸ ︷︷ ︸
k times

]LΔ(( f −a111)( f −b111)k−1,h)

− (LΔ( f ,h)−a)2
n−2

∑
k=2

φ [a,a;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−b)k−1

≤ LΔ(φ( f ),h)−φ(LΔ( f ,h)) (6.31)

≤ φ [a,a;b]LΔ(( f −a111)( f −b111),h)− (LΔ( f ,h)−a)
n−1

∑
k=2

φ [a;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−b)k−1

+
n−2

∑
k=2

φ [a,a;b, ...,b︸ ︷︷ ︸
k times

]LΔ(( f −a111)2( f −b111)k−1,h).

Inequalities (6.31) also hold when the function φ is n-concave and n is even. In case when
the function φ is n-convex and n is even, or when the function φ is n-concave and n is odd,
the inequality signs in (6.31) are reversed.

Proof. By following a similar procedure as in the proof of the previous theorem, we start
by replacing t with LΔ( f ,h) in with relations (2.62) and (2.63) from Lemma 2.3. We get

φ(LΔ( f ,h))−αφ LΔ( f ,h)−βφ

=
n−1

∑
k=2

φ [a;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−a)(LΔ( f ,h)−b)k−1 +R1(LΔ( f ,h)) (6.32)

and
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φ(LΔ( f ,h))−αφ LΔ( f ,h)−βφ (6.33)

= φ [a,a;b](LΔ( f ,h)−a)(LΔ( f ,h)−b)

+
n−2

∑
k=2

φ [a,a;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−a)2(LΔ( f ,h)−b)k−1 +R2(LΔ( f ,h))

respectively. After discussing the positivity an negativity of terms R1(LΔ( f ,h)) and
R2(LΔ( f ,h)) in the same way as in the proof Theorem 6.16, from relations (6.32) and
(6.33) we get a series of inequalities

(LΔ( f ,h)−a)
n−1

∑
k=2

φ [a;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−b)k−1 ≤ φ(LΔ( f ,h))−αφ LΔ( f ,h)−βφ (6.34)

≤ φ [a,a;b](LΔ( f ,h)−a)(LΔ( f ,h)−b)+(LΔ( f ,h)−a)2
n−2

∑
k=2

φ [a,a;b, ...,b︸ ︷︷ ︸
k times

](LΔ( f ,h)−b)k−1

that holds when n is odd and φ is n-convex, or when n is even and φ is n-concave. If n
is odd and φ is n-concave, or if n is even and φ is n-convex, then the inequality signs in
(6.34) are reversed.

Inequalities (6.31) are obtained after multiplying (6.34) by −1 and adding it to (6.21).
�

In the analogous way as described in the proof of the previous theorem, but with uti-
lizing Lemma 2.4 and Theorem 6.15, we can get a similar lower and upper bound for the
difference in the Jensen inequality (6.1) that holds for all n ∈N, not only the odd ones.

Theorem 6.18 ([108]) Let φ ∈ C n([a,b]) be an n-convex function, n ≥ 3. Assume E is
as in Theorem 6.4 and suppose f is Δ-integrable on E such that f (E ) = [a,b]. Moreover,
let h : E →R be nonnegative Δ-integrable such that

∫
E

h(t)Δt > 0. We have

φ [b,b;a]LΔ(( f −b111)( f −a111),h)− (LΔ( f ,h)−b)
n−1

∑
k=2

φ [b;a, ...,a︸ ︷︷ ︸
k times

](LΔ( f ,h)−a)k−1

+
n−2

∑
k=2

φ [b,b;a, ...,a︸ ︷︷ ︸
k times

]LΔ(( f −b111)2( f −a111)k−1,h)

≤ LΔ(φ( f ),h)−φ(LΔ( f ,h)) (6.35)

≤ f [b,b;a](b−LΔ( f ,h))(LΔ( f ,h)−a)+
n−1

∑
k=2

φ [b;a, ...,a︸ ︷︷ ︸
k times

]LΔ(( f −b111)( f −a111)k−1,h)

− (LΔ( f ,h)−b)2
n−2

∑
k=2

φ [b,b;a, ...,a︸ ︷︷ ︸
k times

](LΔ( f ,h)−a)k−1.

If the function φ is n-concave, the inequality signs in (6.35) are reversed.
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6.4 Applications

In this section, we use the results obtained in the previous sections from this chapter in
order to get new converse inequalities for generalized means, power means and the Hölder
inequality in the time scale setting.

6.4.1 Generalized means

Let us define the generalized mean in terms of the multiple Lebesgue delta time scale
integral using the definition of weighted generalized mean on time scales proved in [7].

Definition 6.4 Suppose Ψ : I→ R is continuous and strictly monotone and f is Δ-integ-
rable on E such that f (E ) = I, where E ⊂ R

n is as in Theorem 6.4. Let h : E → R be
nonnegative Δ-integrable such that

∫
E

h(t)Δt > 0. The generalized mean with respect to the

multiple Lebesgue delta time scale integral is defined by

MΨ
(
f ,LΔ( f ,h)

)
= Ψ−1 (LΔ(Ψ( f ),h)

)
. (6.36)

Theorem 6.19 ([13]) Suppose I = [m,M],−∞ <m <M < ∞, ψ ,χ : I→R are continuous
and strictly monotone and φ = χ ◦ψ−1 is convex. Assume E ⊂ R

n is as in Theorem 6.4
and f ,h : E →R are Δ-integrable on E such that f (E ) = I and

∫
E |h(t)|Δt > 0. Then,

0 ≤ χ
(
Mχ
(
f ,LΔ

))− χ
(
Mψ
(
f ,LΔ

))
≤ (Mψ −LΔ(ψ( f ),h)

)(
LΔ(ψ( f ),h)−mψ

)
sup

t∈〈m,M〉
Ψχ◦ψ−1(ψ(t);mψ ,Mψ )

≤ (Mψ −LΔ(ψ( f ),h)
)(

LΔ(ψ( f ),h)−mψ
)

· (χ ◦ψ−1)′−(Mψ )− (χ ◦ψ−1)′+(mψ)
Mψ −mψ

(6.37)

≤ 1
4

(
Mψ −mψ

)(
(χ ◦ψ−1)′−(Mψ)− (χ ◦ψ−1)′+(mψ )

)
,

where [mψ ,Mψ ] = ψ([m,M]). If φ is concave, then all inequalities in (6.37) are reversed.

Proof. The claim follows from Theorem 6.4, Theorem 6.10 and Theorem 1.17. �

Theorem 6.20 ([12]) Let all assumptions from Theorem 6.19 be valid. If the function
φ = χ ◦ψ−1 is convex, then

0 ≤ Mψ −LΔ(Ψ( f ),h)
Mψ −mψ

φ(m)+
LΔ(Ψ( f ),h)−mψ

Mψ −mψ
φ(M)

−χ
(
Mχ
(
f ,LΔ(Ψ( f ),h)

))
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≤ φ ′−(Mψ )−φ ′+(mψ )
Mψ −mψ

·
∫
E

h(t)
(
Mψ −ψ( f (t))

)(
ψ( f (t))−mψ

)
Δt∫

E
h(t)Δt

≤ φ ′−(Mψ )−φ ′+(mψ )
Mψ −mψ

· (Mψ −LΔ(Ψ( f ),h)
)(

LΔ(Ψ( f ),h)−mψ
)

(6.38)

≤ 1
4

(
Mψ −mψ

)(
φ ′−(Mψ)−φ ′+(mψ )

)
.

where [mψ ,Mψ ] = ψ([m,M]). If φ is concave on I, then all inequalities in (6.38) are
reversed.

Proof. The inequalities in (6.38) follow directly from Theorem 6.9 by replacing m by
mψ , M by Mψ , φ by χ ◦ψ−1, and f by ψ ◦ f . All conditions of Theorem 6.9 are satisfied
because χ ◦ψ−1 is obviously continuous and convex by assumption. Also, we have mψ ≤
ψ( f (t)) ≤Mψ for every t ∈ [m,M] since mψ = ψ(m) and Mψ = ψ(M) if ψ is increasing
and mψ = ψ(M) and Mψ = ψ(m) if ψ is decreasing. If the function φ = χ ◦ψ−1 is concave,
then the function−φ =−χ ◦ψ−1 is convex so, replacing φ by−φ in (6.38), we obtain the
reversed inequalities. �

Next, our intention is to obtain some new reverse relations for generalized means that
correspond to n-convex functions and in that way get some mutual bounds for generalized
means.

Before we state such results, we have to introduce some notations arising from this
particular setting. Throughout this section we denote

Φ = χ ◦ψ−1, αΦ =
χ(b)− χ(a)
ψ(b)−ψ(a)

, βΦ =
ψ(b)χ(a)−ψ(a)χ(b)

ψ(b)−ψ(a)

and

ψa = min{ψ(a),ψ(b)}, ψb = max{ψ(a),ψ(b)},
where χ and ψ are strictly monotone functions. It is obvious that if the function ψ is
increasing, then ψa = ψ(a), ψb = ψ(b), and if ψ is decreasing, then ψa = ψ(b), ψb =
ψ(a).

Since for a Δ-integrable function f on E such that f (E ) = [a,b] we have ψ( f (E )) =
[ψa,ψb], all of the results from previous sections can be exploited in establishing some new
reverses of Jensen’s inequality and the Edmundson-Lah-Ribarič inequality for selfadjoint
operators related to quasi-arithmetic means by substituting φ with Φ = χ ◦ψ−1 and f with
ψ( f ).

We start with some Edmundson-Lah-Ribarič type inequalities for generalized means
which arise from the previous section. The first result of this type is carried out by virtue
of our Theorem 6.12.

Corollary 6.2 ([108]) Suppose ψ ,χ : [a,b]→ R are continuous and strictly monotone
and Φ = χ ◦ψ−1 ∈C n([a,b]) is n-convex. Assume f is Δ-integrable on E such that f (E ) =
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[a,b], where E ⊂R
n is as in Theorem 6.4. Let h : E →R be nonnegative Δ-integrable such

that
∫
E

h(t)Δt > 0. If n > m≥ 3 are of different parity, then

χ
(
Mχ( f ,LΔ( f ,h))

)−αΦψ
(
Mψ( f ,LΔ( f ,h))

)−βΦ (6.39)

≤ (LΔ(ψ( f ),h)−ψa)
(
Φ′(ψa)−Φ[ψa,ψb]

)
+

m−1

∑
k=2

Φ(k)(ψa)
k!

LΔ

(
(ψ( f )−ψa111)k,h

)
+

n−m

∑
k=1

Φ[ψa, ...,ψa︸ ︷︷ ︸
m times

;ψb, ...,ψb︸ ︷︷ ︸
k times

]LΔ

(
(ψ( f )−ψa111)m(ψ( f )−ψb111)k−1,h

)
.

Inequality (6.39) also holds when the function Φ is n-concave and n and m are of equal
parity. In case when the function Φ is n-convex and n and m are of equal parity, or when
the function Φ is n-concave and n and m are of different parity, the inequality sign in (6.39)
is reversed.

The following result is a direct consequence of Theorem 6.13.

Corollary 6.3 ([108]) Suppose ψ ,χ : [a,b]→ R are continuous and strictly monotone
and Φ = χ ◦ψ−1 ∈C n([a,b]) is n-convex. Assume f is Δ-integrable on E such that f (E ) =
[a,b], where E ⊂R

n is as in Theorem 6.4. Let h : E →R be nonnegative Δ-integrable such
that

∫
E

h(t)Δt > 0. For an odd number m≥ 3 such that m < n, we have

χ
(
Mχ( f ,LΔ( f ,h))

)−αΦψ
(
Mψ( f ,LΔ( f ,h))

)−βΦ (6.40)

≤ (ψb−LΔ(ψ( f ),h))
(
Φ[ψa,ψb]−Φ′(ψb)

)
+

m−1

∑
k=2

Φ(k)(ψb)
k!

LΔ((ψ( f )−ψb111)k,h)

+
n−m

∑
k=1

Φ[ψb, ...,ψb︸ ︷︷ ︸
m times

;ψa, ...,ψa︸ ︷︷ ︸
k times

]LΔ( f ,h)(ψ( f )−ψb111)m(ψ( f )−ψa111)k−1.

Inequality (6.40) also holds when the function Φ is n-concave and m is even. In case when
the function Φ is n-convex and m is even, or when the function Φ is n-concave and m is
odd, the inequality sign in (6.40) is reversed.

Our next result arises from Theorem 6.14.

Corollary 6.4 ([108]) Suppose ψ ,χ : [a,b]→ R are continuous and strictly monotone
and Φ = χ ◦ψ−1 ∈C n([a,b]) is n-convex. Assume f is Δ-integrable on E such that f (E ) =
[a,b], where E ⊂R

n is as in Theorem 6.4. Let h : E →R be nonnegative Δ-integrable such
that

∫
E

h(t)Δt > 0. If n≥ 3 is odd, then

n−1

∑
k=2

Φ[ψa;ψb, ...,ψb︸ ︷︷ ︸
k times

]LΔ((ψ( f )−ψa111)(ψ( f )−ψb111)k−1,h)

≤ χ
(
Mχ( f ,LΔ( f ,h))

)−αΦψ
(
Mψ ( f ,LΔ( f ,h))

)−βΦ (6.41)
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≤Φ[ψa,ψa;ψb]LΔ((ψ( f )−ψa111)(ψ( f )−ψb111),h)

+
n−2

∑
k=2

Φ[ψa,ψa;ψb, ...,ψb︸ ︷︷ ︸
k times

]LΔ((ψ( f )−ψa111)2(ψ( f )−ψb111)k−1,h).

Inequalities (6.41) also hold when the function Φ is n-concave and n is even. In case when
the function Φ is n-convex and n is even, or when the function Φ is n-concave and n is odd,
the inequality signs in (6.41) are reversed.

As a consequence of Theorem 6.15, we have the following result.

Corollary 6.5 ([108]) Suppose ψ ,χ : [a,b]→ R are continuous and strictly monotone
and Φ = χ ◦ψ−1 ∈ C n([a,b]) is n-convex, n ≥ 3. Assume f is Δ-integrable on E such
that f (E ) = [a,b], where E ⊂ R

n is as in Theorem 6.4. Let h : E → R be nonnegative
Δ-integrable such that

∫
E

h(t)Δt > 0. Then we have

Φ[ψb,ψb;ψa]LΔ((ψ( f )−ψb111)(ψ( f )−ψa111),h)

+
n−2

∑
k=2

Φ[ψb,ψb;ψa, ...,ψa︸ ︷︷ ︸
k times

]LΔ((ψ( f )−ψb111)2(ψ( f )−ψa111)k−1,h)

≤ χ
(
Mχ( f ,LΔ( f ,h))

)−αΦψ
(
Mψ ( f ,LΔ( f ,h))

)−βΦ (6.42)

≤
n−1

∑
k=2

Φ[ψb;ψa, ...,ψa︸ ︷︷ ︸
k times

]LΔ((ψ( f )−ψb111)(ψ( f )−ψa111)k−1,h).

If the function Φ is n-concave, the inequality signs in (6.42) are reversed.

The corollaries below arise from the Jensen-type inequalities on time scales for n-
convex functions and give us Jensen type inequalities for quasi-arithmetic means. They
are obtained from Theorem 6.16, 6.17 and 6.18 respectively.

Corollary 6.6 ([108]) Suppose ψ ,χ : [a,b]→ R are continuous and strictly monotone
and Φ = χ ◦ψ−1 ∈C n([a,b]) is n-convex. Assume f is Δ-integrable on E such that f (E ) =
[a,b], where E ⊂R

n is as in Theorem 6.4. Let h : E →R be nonnegative Δ-integrable such
that

∫
E

h(t)Δt > 0. If m≥ 3 is odd and m < n, then

Φ(ψa)−Φ(ψb)+ ψbΦ′(ψb)−ψaΦ′(ψa)+ (Φ′(ψa)−Φ′(ψb))LΔ(ψ( f ),h)

+
m−1

∑
k=2

(
Φ(k)(ψa)

k!
LΔ((ψ( f )−ψa111)k,h)− Φ(k)(gb)

k!
(LΔ(ψ( f ),h)−ψb)k

)

+
n−m

∑
k=1

Φ[ψa, ...,ψa︸ ︷︷ ︸
m times

;ψb, ...,ψb︸ ︷︷ ︸
k times

]LΔ((ψ( f )−ψa111)m(ψ( f )−ψb111)k−1,h)

−
n−m

∑
k=1

Φ[ψb, ...,ψb︸ ︷︷ ︸
m times

;ψa, ...,ψa︸ ︷︷ ︸
k times

](LΔ(ψ( f ),h)−ψb)m(LΔ(ψ( f ),h)−ψa)k−1
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≤ χ
(
Mχ( f ,LΔ( f ,h))

)− χ
(
Mψ ( f ,LΔ( f ,h))

)
(6.43)

≤Φ(ψb)−Φ(ψa)+ ψaΦ′(ψa)−ψbΦ′(ψb)+ (Φ′(ψb)−Φ′(ψa))LΔ(ψ( f ),h)

+
m−1

∑
k=2

(
Φ(k)(ψb)

k!
LΔ((ψ( f )−ψb111)k,h)− Φ(k)(ψa)

k!
(LΔ(ψ( f ),h)−ψa)k

)

+
n−m

∑
k=1

Φ[ψb, ...,ψb︸ ︷︷ ︸
m times

;ψa, ...,ψa︸ ︷︷ ︸
k times

]LΔ((ψ( f )−ψb111)m(ψ( f )−ψa111)k−1,h)

−
n−m

∑
k=1

Φ[ψa, ...,ψa︸ ︷︷ ︸
m times

;ψb, ...,ψb︸ ︷︷ ︸
k times

](LΔ(ψ( f ),h)−ψa)m(LΔ(ψ( f ),h)−ψb)k−1

Inequalities (6.43) also hold when the function Φ is n-concave and m is even. In case when
the function Φ is n-convex and m is even, or when the function Φ is n-concave and m is
odd, the inequality signs in (6.43) are reversed.

Corollary 6.7 ([108]) Suppose ψ ,χ : [a,b]→ R are continuous and strictly monotone
and Φ = χ ◦ψ−1 ∈C n([a,b]) is n-convex. Assume f is Δ-integrable on E such that f (E ) =
[a,b], where E ⊂R

n is as in Theorem 6.4. Let h : E →R be nonnegative Δ-integrable such
that

∫
E

h(t)Δt > 0. If n≥ 3 is odd, then

Φ[ψa,ψa;ψb](ψb−LΔ(ψ( f ),h))(LΔ(ψ( f ),h)−ψa)

+
n−1

∑
k=2

Φ[ψa;ψb, ...,ψb︸ ︷︷ ︸
k times

]LΔ((ψ( f )−ψa111)(ψ( f )−ψb111)k−1,h)

− (LΔ(ψ( f ),h)−ψa)2
n−2

∑
k=2

Φ[ψa,ψa;ψb, ...,ψb︸ ︷︷ ︸
k times

](LΔ(ψ( f ),h)−ψb)k−1

≤ χ
(
Mχ( f ,LΔ( f ,h))

)− χ
(
Mψ ( f ,LΔ( f ,h))

)
(6.44)

≤Φ[ψa,ψa;ψb]LΔ((ψ( f )−ψa111)(ψ( f )−ψb111),h)

− (LΔ(ψ( f ),h)−ψa)
n−1

∑
k=2

Φ[ψa;ψb, ...,ψb︸ ︷︷ ︸
k times

](LΔ(ψ( f ),h)−ψb)k−1

+
n−2

∑
k=2

Φ[ψa,ψa;ψb, ...,ψb︸ ︷︷ ︸
k times

](LΔ((ψ( f )−ψa111)2(ψ( f )−ψb111)k−1,h).

Inequalities (6.44) also hold when the function Φ is n-concave and n is even. In case when
the function Φ is n-convex and n is even, or when the function Φ is n-concave and n is odd,
the inequality signs in (6.44) are reversed.

Corollary 6.8 ([108]) Suppose ψ ,χ : [a,b]→ R are continuous and strictly monotone
and Φ = χ ◦ψ−1 ∈ C n([a,b]) is n-convex, n ≥ 3. Assume f is Δ-integrable on E such
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that f (E ) = [a,b], where E ⊂ R
n is as in Theorem 6.4. Let h : E → R be nonnegative

Δ-integrable such that
∫
E

h(t)Δt > 0. Then we have

Φ[ψb,ψb;ψa]LΔ((ψ( f )−ψb111)(ψ( f )−ψa111),h)

− (LΔ(ψ( f ),h)−ψb)
n−1

∑
k=2

Φ[ψb;ψa, ...,ψa︸ ︷︷ ︸
k times

](LΔ(ψ( f ),h)−ψa)k−1

+
n−2

∑
k=2

Φ[ψb,ψb;ψa, ...,ψa︸ ︷︷ ︸
k times

]LΔ((ψ( f )−ψb111)2(ψ( f )−ψa111)k−1,h)

≤ χ
(
Mχ( f ,LΔ( f ,h))

)− χ
(
Mψ( f ,LΔ( f ,h))

)
(6.45)

≤Φ[ψb,ψb;ψa](ψb−LΔ(ψ( f ),h))(LΔ(ψ( f ),h)−ψa)

+
n−1

∑
k=2

Φ[ψb;ψa, ...,ψa︸ ︷︷ ︸
k times

]LΔ((ψ( f )−ψb111)(ψ( f )−ψa111)k−1,h)

− (LΔ(ψ( f ),h)−ψb)2
n−2

∑
k=2

Φ[ψb,ψb;ψa, ...,ψa︸ ︷︷ ︸
k times

](LΔ(ψ( f ),h)−ψa)k−1.

If the function Φ is n-concave, the inequality signs in (6.45) are reversed.

6.4.2 Power means

First we need to define the power mean in terms of the multiple Lebesgue delta time scale
integral.

Definition 6.5 Assume E ⊂ R
n is as in Theorem 6.4 and f is Δ-integrable on E such

that f (E ) = I and f (t) > 0, t ∈ E . Let h : E → R be nonnegative Δ-integrable such that∫
E

h(t)Δt > 0. For r ∈ R, suppose f r and (log f ) are Δ-integrable on E . The power mean

with respect to the multiple Riemann delta time scale integral is defined by

M[r] ( f ,LΔ( f ,h)
)

=

{(
LΔ( f r,h)

) 1
r , if r �= 0

exp
(
LΔ(log f ,h)

)
, if r = 0.

(6.46)

According to definition of power mean on time scales with respect of the multiple
Lebesgue delta integral ([12]), we derive the following result.

Theorem 6.21 ([13]) Suppose E ⊂R
n is as in Theorem 6.4, f is Δ-integrable on E such

that f (E ) = I and 0 < m ≤ f (t) ≤ M < ∞, for t ∈ E , m,M ∈ R. Let h : E → R be Δ-
integrable such that

∫
E |h(t)|Δt > 0. For r,s ∈ R suppose f r, f s, (log f ) are Δ-integrable

on E .

(i) If 0 < r < s or r < 0 < s, then

0 ≤
(
M[s] ( f ,LΔ

))s−
(
M[r] ( f ,LΔ

))s
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≤ (Mr−LΔ( f r ,h)
)(

LΔ( f r,h)−mr) sup
t∈〈m,M〉

Ψφ (tr;mr,Mr)

≤ s
r

(
Mr−LΔ( f r,h)

)(
LΔ( f r ,h)−mr)Ms−r−ms−r

Mr−mr (6.47)

≤ s
4r

(Mr−mr)
(
Ms−r−ms−r) .

(ii) If r < s < 0, then

0 ≥
(
M[s] ( f ,LΔ

))s−
(
M[r] ( f ,LΔ

))s

≥ (Mr−LΔ( f r ,h)
)(

LΔ( f r,h)−mr) sup
t∈〈m,M〉

Ψφ (tr;mr,Mr)

≥ s
r

(
Mr−LΔ( f r,h)

)(
LΔ( f r ,h)−mr)Ms−r−ms−r

Mr−mr (6.48)

≥ s
4r

(Mr−mr)
(
Ms−r−ms−r) .

(iii) If s = 0 and r < 0, then

0 ≤ log
(
M[0] ( f ,LΔ

))− log
(
M[r] ( f ,LΔ

))
≤ (Mr−LΔ( f r ,h)

)(
LΔ( f r,h)−mr) sup

t∈〈m,M〉
Ψφ (tr;Mr ,mr)

≤ −1
r
·
(
Mr−LΔ( f r,h)

)(
LΔ( f r,h)−mr

)
Mrmr (6.49)

≤ − 1
4r
· (M

r−mr)2

Mrmr .

(iv) If r = 0 and s > 0, then

0 ≤
(
M[s] ( f ,LΔ

))s−
(
M[0] ( f ,LΔ

))s

≤ (logM−LΔ(log f ,h)
)(

LΔ(log f ,h)− logm
)

sup
t∈〈m,M〉

Ψφ (log t; logm, logM)

≤ (logM−LΔ(log f ,h)
)(

LΔ(log f ,h)− logm
) · s(Ms−ms)

logM− logm
(6.50)

≤ s(Ms−ms) log
M
m

.

Proof. The claim follows from Theorem 6.4, Theorem 6.10 and Theorem 6.19. �

Theorem 6.22 ([12]) Suppose that the same hypotheses as in Theorem 6.21 are valid.

(i) If 0 < r < s or r < 0 < s, then

0 ≤ Mr−LΔ( f r ,h)
Mr−mr ms +

LΔ( f r ,h)−mr

Mr−mr Ms−
(
M[s] ( f ,LΔ( f ,h)

))s
(6.51)
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≤ s
r
· M

s−r−ms−r

Mr−mr ·
∫
E

h(t)((Mr− f r(t))( f r(t)−mr))Δt∫
E

h(t)Δt

≤ s
r
· M

s−r−ms−r

Mr−mr

(
Mr−LΔ( f r,h)

)(
LΔ( f r ,h)−mr)

≤ s
4r

(Mr−mr)(Ms−r−ms−r).

(ii) If r < s < 0, then

0 ≥ Mr−LΔ( f r,h)
Mr−mr ms +

LΔ( f r,h)−mr

Mr−mr Ms−
(
M[s] ( f ,LΔ( f ,h)

))s
(6.52)

≥ s
r
· M

s−r−ms−r

Mr−mr ·
∫
E

h(t)((Mr− f r(t))( f r(t)−mr))Δt∫
E

h(t)Δt

≥ s
r
· M

s−r−ms−r

Mr−mr

(
Mr−LΔ( f r,h)

)(
LΔ( f r ,h)−mr)

≥ s
4r

(Mr−mr)(Ms−r−ms−r).

(iii) If s = 0 and r < 0, then

0 ≤ Mr−LΔ( f r ,h)
Mr−mr logm+

s
r
· LΔ( f r,h)−mr

Mr−mr logM− log
(
M[0] ( f ,LΔ( f ,h)

))
(6.53)

≤ −1
r
·

∫
E

h(t)((Mr− f r(t))( f r(t)−mr))Δt∫
E

h(t)Δt

Mrmr

≤ −1
r
·
(
Mr−LΔ( f r ,h)

)(
LΔ( f r,h)−mr

)
Mrmr

≤ 1
4r

(Mr−mr)
(

1
Mr −

1
mr

)
.

(iv) If r = 0 and s > 0, then

0 ≤ logM−LΔ(log f ,h)
logM− logm

ms +
LΔ(log f ,h)− logm

logM− logm
Ms−

(
M[s] ( f ,LΔ( f ,h)

))s
(6.54)

≤ s(esM− esm)
logM− logm

·

∫
E

h(t)((logM− log( f (t))) (log( f (t))− logm))Δt∫
E

h(t)Δt

≤ s(esM− esm)
logM− logm

(
logM−LΔ(log f ,h)

)(
LΔ(log f ,h)− logm

)
≤ s

4
(esM− esm) log

M
m

.
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Proof. The above inequalities follow from Theorem 6.9. Namely,

(i) if 0 < r < s or r < 0 < s, then we can take the function φ to be of the form φ(t) = t
s
r

because φ is now continuous and convex and all the conditions of Theorem 6.9 are
satisfied. Now, inequality (6.51) follows from (6.10) with replacing m by mr, M by
Mr, and f by f r if r > 0 (because the function f r is then strictly increasing) and with
replacing M by mr, m by Mr, and f by f r if r < 0 (because the function f r is then
strictly decreasing);

(ii) if r < s < 0, then the function φ(t) = t
s
r is concave so we obtain inequality (6.52)

from the inequalities reversed to (6.10) making following replacements: M by mr, m
by Mr, and f by f r ( f r is now strictly decreasing);

(iii) if s = 0 and r < 0, then we take φ(t) = 1
r logt which is continuous and convex and

we deduce inequality (6.53) from (6.10) interchanging M by mr, m by Mr, and f by
f r ( f r is now strictly decreasing);

(iv) if r = 0 and s > 0, then we take φ(t) = est which is continuous and convex and
inequality (6.54) follows from (6.10) interchanging m by logm, M by logM, and f
by log f (log f is strictly increasing).

This completes the proof. �

Theorem 6.23 Suppose E ⊂R
n is as in Theorem 6.4 and f is Δ-integrable on E such that

f (E ) = I and 0 < m≤ f (t)≤M < ∞, for t ∈ E , m,M ∈R. Let h : E → R be nonnegative
Δ-integrable such that

∫
E

h(t)Δt > 0. For r,s ∈ R suppose f r, f s, (log f ) are Δ-integrable

on E .

(i) If r < 0 < s or r < s < 0, then

0 ≤
(
M[r] ( f ,LΔ( f ,h)

))r−
(
M[s] ( f ,LΔ( f ,h)

))r

≤ r
s

(
Ms−LΔ( f s,h)

)(
LΔ( f s,h)−ms)Mr−s−mr−s

Ms−ms

≤ r
4s

(Ms−ms)
(
Mr−s−mr−s) . (6.55)

(ii) If 0 < r < s, then

0 ≥
(
M[r] ( f ,LΔ( f ,h)

))r−
(
M[s] ( f ,LΔ( f ,h)

))r

≥ r
s

(
Ms−LΔ( f s,h)

)(
LΔ( f s,h)−ms)Mr−s−mr−s

Ms−ms

≥ r
4s

(Ms−ms)
(
Mr−s−mr−s) . (6.56)
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(iii) If s = 0 and r < 0, then

0 ≤
(
M[r] ( f ,LΔ( f ,h)

))r−
(
M[0] ( f ,LΔ( f ,h)

))r

≤ (logM−LΔ(log f ,h)
)(

LΔ(log f ,h)− logm
) · r(Mr−mr)

logM− logm

≤ r
4
(Mr−mr) log

M
m

. (6.57)

(iv) If r = 0 and s > 0, then

0 ≥ log
(
M[0] ( f ,LΔ( f ,h)

))− log
(
M[s] ( f ,LΔ( f ,h)

))
≥ −1

s

(
Ms−LΔ( f s,h)

)(
LΔ( f s,h)−ms) 1

Mrmr

≥ 1
4s

(Ms−ms)
(

1
ms −

1
ms

)
. (6.58)

Proof. The above inequalities follow directly from Theorem 6.8. Namely,

(i) if r < 0 < s or r < s < 0, then we can take the function φ to be of the form φ(t) = t
r
s

because φ is now continuous and convex and all the conditions of Theorem 6.8 are
satisfied. Now, inequality (6.55) follows from (6.3) with replacing m by ms, M by
Ms and f by f s if s > 0 (because the function f s is then strictly increasing) and
replacing M by ms, m by Ms and f by f s if s < 0 (because the function f s is then
strictly decreasing);

(ii) if 0 < r < s, then the function φ(t) = t
r
s is concave so we obtain inequality (6.56)

from the inequalities reversed to (6.3) making following replacements m by ms, M
by Ms and f by f s ( f s is now strictly decreasing);

(iii) if s = 0 and r < 0, then we take φ(t) = ert which is continuous and convex and we
deduce inequality (6.57) from (6.3) replacing m by logm, M by logM and f by log f
(log f is strictly increasing);

(iv) if r = 0 and s > 0, then we take φ(t) = 1
s logt which is continuous and concave and

inequality (6.58) follows from (6.3) replacing m by ms, M by Ms, and f by f s ( f s is
now strictly increasing).

This completes the proof. �
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Theorem 6.24 Suppose the hypotheses of Theorem 6.23 hold.

(i) If r < s < 0 or r < 0 < s, then

0 ≤ Ms−LΔ( f s,h)
Ms−ms mr +

LΔ( f s,h)−ms

Ms−ms Mr−
(
M[r] ( f ,LΔ( f ,h)

))r
(6.59)

≤ r
s
· M

r−s−mr−s

Ms−ms ·
∫
E

h(t)((Ms− f s(t)) ( f s(t)−ms))Δt∫
E

h(t)Δt

≤ r
s
· M

r−s−mr−s

Ms−ms

(
Ms−LΔ( f s,h)

)(
LΔ( f s,h)−ms)

≤ r
4s

(Ms−ms)(Mr−s−mr−s).

(ii) If 0 < r < s, then

0 ≥ Ms−LΔ( f s,h)
Ms−ms mr +

LΔ( f s,h)−ms

Ms−ms Mr−
(
M[r] ( f ,LΔ( f ,h)

))r
(6.60)

≥ r
s
· M

r−s−mr−s

Ms−ms ·
∫
E

h(t)((Ms− f s(t)) ( f s(t)−ms))Δt∫
E

h(t)Δt

≥ r
s
· M

r−s−mr−s

Ms−ms

(
Ms−LΔ( f s,h)

)(
LΔ( f s,h)−ms)

≥ r
4s

(Ms−ms)(Mr−s−mr−s).

(iii) If s = 0 and r < 0, then

0 ≤ logM−LΔ(log f ,h)
logM− logm

mr +
LΔ(log f ,h)− logm

logM− logm
Mr−

(
M[r] ( f ,LΔ( f ,h)

))r
(6.61)

≤ r(Mr−mr)
logM− logm

·
∫
E

h(t)((logM− log( f (t))) (log( f (t))− logm))Δt∫
E

h(t)Δt

≤ r(Mr−mr)
logM− logm

(
logM−LΔ(log f ,h)

)(
LΔ(log f ,h)− logm

)
≤ r

4
(Mr−mr) log

M
m

.

(iv) If r = 0 and s > 0, then

0 ≥ Ms−LΔ( f s,h)
Ms−ms logm+

LΔ( f s,h)−ms

Ms−ms logM− log
(
M[0] ( f ,LΔ( f ,h)

))

≥ −1
s
·

∫
E

h(t)((Ms− f s(t))( f s(t)−ms))Δt∫
E

h(t)Δt

Msms
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≥ −1
s
·
(
Ms−LΔ( f s,h)

)(
LΔ( f s,h)−ms

)
Msms (6.62)

≥ 1
s
(Ms−ms)

(
1

Ms −
1
ms

)
.

Proof. All the inequalities can be obtained directly from Theorem 6.9 using inequality
(6.10) and the same technique and substitutions as in the proof of Theorem 6.23. �

Since power means are a special case of generalized means for particular choices of
functions χ and ψ , in order to utilize our results on generalized means for obtaining similar
results on power means, first let us set χ(t) = ts and ψ(t) = tr, where s and r are real
parameters such that r �= 0 and t > 0.

Now, the function Φ(t) = (χ ◦ψ−1)(t) = ts/r belongs to the class C n(R) for any n∈N,
and we have

Φ(n)(t) =
s
r

( s
r
−1
)( s

r
−2
)
· · ·
(s

r
−n+1

)
t

s
r−n.

It is straightforward to check that:

• if r < 0 < s or s < 0 < r, then the function Φ is n-convex for any even n ∈ N, and
n-concave for any odd number n;

• if 0 < s < r or r < s < 0, then the function Φ is n-convex for any odd n ∈ N, and
n-concave for any even number n;

• if 0 < r < s or s < r < 0, then the function Φ is n-convex when � s
r � is even and n is

odd, or when � s
r � is odd and n is even, and Φ is n-concave when � s

r � and n are both
either even or odd.

It remains to consider the cases when one of the parameters r and s is equal to zero. If

s = 0, then setting χ(t) = log t and ψ(t) = tr, it follows that Φ(t) = (χ ◦ψ−1)(t) =
1
r

log t

belongs to the class C n(R) for any n ∈ N, and we have

Φ(n)(t) =
1
r
(−1)n−1(n−1)! t−n.

It is easy to see that:

• the function Φ is n-convex if r > 0 and n ∈ N is odd, or if r < 0 and n ∈ N is even;

• the function Φ is n-concave if r > 0 and n ∈ N is even, or if r < 0 and n ∈ N is odd.

In cases when r < 0 the function ψ(t) = tr is strictly decreasing, so we have ψa = br

and ψb = ar, and in cases when 0 < r the function ψ is strictly increasing, so we have
ψa = ar and ψb = br.

Finally, if r = 0, then setting χ(t) = ts and ψ(t) = log t, it follows that the function
Φ(t) = (φ ◦ψ−1)(t) = est belongs to the class C n(R) for any n ∈N, and we have

Φ(n)(t) = sn est .
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Trivially,

• if s > 0, then the function Φ is n-convex for any n ∈ N;

• if s < 0, then Φ is n-convex for any even number n, and n-concave for any odd
number n.

The function ψ(t) = logt is strictly increasing, so in this case we have ψa = loga and
ψb = logb.

We see that all of the results regarding generalized means obtained in the previous
subsection can be applied to power means, considering our discussion from above.

6.4.3 Hölder’s inequality

In this subsection, we deduce some converses of Hölder’s inequality on time scales using
the results from the previous section and the following Hölder inequality for delta time
scale integrals proved in [6].

Theorem 6.25 ([6]) For p > 1, define q = p/(p−1). Let E ⊂ R
n be as in Theorem 6.4.

Assume |w|| f |p, |w||g|q, |w fg| are Δ-integrable on E . Then,

∫
E

|w(t) f (t)g(t)|Δt ≤
⎛⎝∫

E

|w(t)|| f (t)|pΔt

⎞⎠
1
p
⎛⎝∫

E

|w(t)||g(t)|qΔt

⎞⎠
1
q

.

This inequality is reversed if 0 < p < 1 and
∫
E |w(t)||g(t)|qΔt > 0, and it is also reversed

if p < 0 and
∫
E |w(t)|| f (t)|pΔt > 0.

Now, we can prove new converses of Hölder’s inequality in terms of time scale calculus
and Δ-integral.

Theorem 6.26 ([13]) Assume E ⊂ R
n is as in Theorem 6.4 and w, f ,g are real functions

on E such that w, f ,g≥ 0. For m,M ∈R such that−∞ <m <M < ∞ let m≤ f (t)gq(t)≤M,
t ∈ E . If w f p, wgq, w f g are Δ-integrable on E and

∫
E

w(t)gq(t)Δt > 0, where p > 1 and

q = p/(p−1), then

0 ≤ LΔ(wf p) ·L
p
q
Δ (wgq)−Lp

Δ(w fg)
≤ (MLΔ(wgq)−LΔ(w fg)) (LΔ(w fg)−mLΔ(wgq)) (6.63)

· sup
t∈〈m,M〉

Ψφ (t;m,M) ·Lp−2
Δ (wgq)

≤ (MLΔ(wgq)−LΔ(w fg)) (LΔ(w fg)−mLΔ(wgq)) (6.64)

· p(Mp−1−mp−1)
M−m

·Lp−2
Δ (wgq)

≤ p
4
(M−m)(Mp−1−mp−1)Lp−2

Δ (wgq).

For p < 0, inequalities (6.64) hold if
∫
E w(t) f (t)g(t)Δt > 0, t ∈ E . In case 0 < p < 1, all

inequalities in (6.64) are reversed.
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Proof. Inequalities (6.64) follow directly from Theroem 6.10 by taking the function φ to

be of the form φ(t) = t p and replacing h by wgq and f by f g−
q
p . For p < 0 and p > 1, the

function t p is convex and inequalities (6.64) follow from inequalities (6.12). For 0 < p < 1,
the function t p is concave and, according to Theorem 6.10, all inequalities in (6.64) will be
reversed. �

Theorem 6.27 ([12]) Let all assumptions of Theorem 6.26 hold. For p < 0 or p > 1, we
have

0 ≤ MLΔ(wgq)−LΔ(w fg)
M−m

mp +
LΔ(w fg)−LΔ(wgq)

M−m
Mp−LΔ(wf p)

≤ p(Mp−1−mp−1)
M−m

·
∫
E

(Mw(t)gq(t)−w(t) f (t)g(t))(w(t) f (t)g(t)−mw(t)gq(t))Δt

≤ p
Mp−1−mp−1

M−m
· 1
LΔ(wgq)

(MLΔ(wgq)−LΔ(w fg))

·(LΔ(w fg)−mLΔ(wgq)) (6.65)

≤ p
4
(M−m)(Mp−1−mp−1)LΔ(w,gq).

If 0 < p < 1, then all inequalities in (6.65) are reversed.

Proof. Inequalities (6.65) follow directly from Theorem 6.9 by taking the function φ to be

of the form φ(t) = t p and replacing h by wgq and f by f g−
q
p . If p < 0 and p > 1, then the

function t p is convex and inequalities (6.65) follow from inequalities (6.10). For 0 < p < 1,
the function t p is concave and, according to Theorem 6.9, all inequalities in (6.65) will be
reversed. �

Theorem 6.28 ([13]) Assume E ⊂ R
n is as in Theorem 6.4 and f ,g ≥ 0 such that f p,

gq, f g are Δ-integrable on E and
∫
E

gq(t)Δt > 0, where 0 < p < 1 and q = p/(p−1). For

m,M ∈ R such that −∞ < m < M < ∞, let m≤ f (t)g−q(t)≤M, t ∈ E . Then,

0 ≤ LΔ( f g)−L
1
p
Δ ( f p)L

1
q
Δ (gq) (6.66)

≤ 1
LΔ(gq)

(MLΔ(gq)−LΔ( f p)) (LΔ( f p)−mLΔ(gq)) sup
t∈〈m,M〉

Ψφ (t;m,M)

≤ 1
p
· M
− 1

q −m−
1
q

M−m
· 1
LΔ(gq)

(MLΔ(gq)−LΔ( f p)) (LΔ( f p)−mLΔ(gq))

≤ 1
4p

(M−m)
(
M−

1
q −m−

1
q

)
LΔ(gq).

For p < 0, inequalities (6.66) hold if
∫
E f p(t)Δt > 0, t ∈ E . In case p > 1, all inequalities

in (6.66) are reversed.
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Proof. Inequalities (6.66) follow directly from Theroem 6.10 by taking the function φ to

be of the form φ(t) = t
1
p and replacing h by gq and f by f p

gq . Namely, when p < 1, the

function t
1
p is convex and inequalities (6.66) follow from inequalities (6.12). For p > 1,

the function t p is concave and, according to Theorem 6.10, all inequalities in (6.66) will be
reversed. �

Theorem 6.29 ([12]) Let p < 1 and let the assumptions from Theorem 6.28 hold. Then,

0 ≤ MLΔ(gq)−LΔ( f p)
M−m

m
1
p +

LΔ( f p)−mLΔ(gq)
M−m

M
1
p −LΔ( f g)

≤ 1
p
· M
− 1

q −m−
1
q

M−m

∫
E

(Mgq(t)− f p(t))( f p(t)−mgq(t))
gq(t)

Δt (6.67)

≤ 1
p
· M
− 1

q −m−
1
q

M−m
· 1
LΔ(gq)

(MLΔ(gq)−LΔ( f p))

·(LΔ( f p)−mLΔ(gq))

≤ 1
4p

(M−m)
(
M−

1
q −m−

1
q

)
LΔ(gq).

If p > 1, then all inequalities in (6.67) are reversed.

Proof. Inequalities (6.67) follow directly from Theroem 6.9 by taking the function φ to

be of the form φ(t) = t
1
p and replacing h by gq and f by f p

gq . Namely, when p < 1, the

function t
1
p is convex and inequalities (6.67) follow from inequalities (6.10). For p > 1,

the function t p is concave and, according to Theorem 6.9, all inequalities in (6.67) will be
reversed. �

Theorem 6.30 ([13]) Assume E ⊂R
n is as in Theorem 6.4 and f ,g ≥ 0 such that gq, f g

are Δ-integrable on E and
∫
E

gq(t)Δt > 0, where p < 0 or p > 1 and q = p/(p− 1). Let

m,M ∈ R such that −∞ < m < M < ∞ and m≤ f (t)g1−q(t)≤M, t ∈ E . Then,

0 ≤ LΔ( f p) ·L
p
q
Δ (gq)−Lp

Δ( f ,g) (6.68)

≤ sup
t∈〈m,M〉

Ψφ (t;m,M)(MLΔ(gq)−LΔ( f g)) (LΔ( f g)−mLΔ(gq))Lp−2
Δ (gq)

≤ p(Mp−1−mp−1)
M−m

(MLΔ(gq)−LΔ( f g)) (LΔ( f g)−mLΔ(gq))Lp−2
Δ (gq)

≤ p
4
(M−m)(Mp−1−mp−1)Lp−2

Δ (gq).

In case 0 < p < 1, all inequalities in (6.68) are reversed.
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Proof. Inequalities (6.68) follow directly from Theroem 6.10 by taking the function φ
to be of the form φ(t) = t p and replacing h by gq and f by f g1−q. Namely, for p < 0 or
p > 1, the function t p is convex and inequalities (6.68) follow from inequalities (6.12). For
0 < p < 1, the function t p is concave and, according to Theorem 6.10, all inequalities in
(6.68) will be reversed. �

Theorem 6.31 ([12]) Suppose that the assumptions from Theorem 6.30 hold. For p < 0
or p > 1, we have

0 ≤ MLΔ(gq)−LΔ( f g)
M−m

mp +
LΔ( f g)−LΔ(gq)

M−m
Mp−LΔ( f p)

≤ p
Mp−1−mp−1

M−m

∫
E

(Mgq(t)− f (t)g(t))( f (t)g(t)−mgq(t))Δt

≤ p
Mp−1−mp−1

M−m
· 1
LΔ(gq)

(MLΔ(gq)−LΔ( f g))

·(LΔ( f g)−mLΔ(gq)) (6.69)

≤ p
4
(M−m)(Mp−1−mp−1)LΔ(gq).

If 0 < p < 1, all inequalities in (6.69) are reversed.

Proof. Inequalities (6.69) follow directly from Theroem 6.9 by taking the function φ to
be of the form φ(t) = t p and replacing h by gq and f by f g1−q. Namely, for p < 0 and
p > 1, the function t p is convex and inequalities (6.69) follow from inequalities (6.10). For
0 < p < 1, the function t p is concave and, according to Theorem 6.9, all inequalities in
(6.69) will be reversed. �





Chapter7
Inequalities of the Levinson
type

This chapter begins with a short historical comment on the connection between the Ed-
mundson-Madansky and the Lah-Ribarič inequality, and an overview of some already
known results. Both inequalities are special cases of the same inequality, so they have been
united under the name of Edmundson-Lah-Ribarič inequality. Further, a Levinson’s type
generalization of the Edmundson-Lah-Ribarič inequality for a class of functions which
contains the class of 3-convex functions will be proved, and it will be examined under
what conditions the mentioned inequality is valid. Also it will be shown that analogous
inequalities hold for the operator Edmundson-Lah-Ribarič inequality in Hilbert space, as
well as for the scalar product of Hilbert space operators.

7.1 Introduction

In 1960, Levinson [91], obtained a very important inequality concerning two different
sequences of real numbers. That result, today known as the Levinson inequality, is stated
in the next theorem.

Theorem 7.1 ([91]) Let the function f : 〈0,2c〉 → R satisfy f ′′′ ≥ 0 and let pi,xi,yi for
i = 1, ...,n be such that pi > 0, ∑n

i=1 pi = 1, 0≤ xi ≤ c and

x1 + y1 = x2 + y2 = ... = xn + yn = 2c. (7.1)

235
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Then we have the following inequality:

n

∑
i=1

pi f (xi)− f (x̄)≤
n

∑
i=1

pi f (yi)− f (ȳ), (7.2)

where x̄ = ∑n
i=1 pixi and ȳ = ∑n

i=1 piyi denote weighted arithemic means.

In order to weaken the assumption on the differentiability of the function f , divided
differences were observed. Divided difference of the k-th order of a function f : I → R

defined on the interval I in mutually different points x0,x1, ...,xk ∈ I is defined recursively
by relation

[xi] f = f (xi), for i = 0, ...,k

[x0, ...,xk] f =
[x1, ...,xk] f − [x0, ...,xk−1] f

xk− x0
.

We say that a function f : I → R is k-convex if [x0, ...,xk] f ≥ 0 holds for every choice
of k + 1 mutually different points x0,x1, ...,xk ∈ I. If k-th derivation of a convex function
exists, then f (k) ≥ 0, but f (k) doesn’t need to exist (for properties of the divided differences
and k-convex functions see [124]).

Numerous mathematicians have dealt with the weakening of the conditions under which
Levinson’s inequality (7.2) holds. Bullen in his paper [25] generalized Levinson’s in-
equality to an interval [a,b] and showed that if the function f is 3-convex and if pi,xi,yi

(i = 1, ...,n) are such that pi > 0, ∑n
i=1 pi = 1, a≤ xi,yi ≤ b holds, and if we have (7.1) and

max{x1, ...,xn} ≤max{y1, ...,yn}, (7.3)

then the inequality (7.2) holds. He also showed that the reverse is true as well, that is,
he showed that the function f is 3-convex if for pi,xi,yi (i = 1, ...,n) which satisfy the
conditions from above the inequality (7.2) holds.

Pečarić in paper [119] additionally weakened Bullen’s conditions, that is, he proved
that the inequality (7.2) is valid if the condition (7.3) is replaced with a weaker one:

xi + xn−i+1 ≤ 2c and
pixi + pn−i+1xn−i+1

pi + pn−i+1
≤ c, for i = 1,2, ...,n

where x1 + y1 = x2 + y2 = ... = xn + yn = 2c.
Mercer in [95] obtained a significant improvement by completely replacing the sym-

metry condition (7.1) by equality of variances, that is he proved that the inequality (7.2)
holds under the following conditions:

f ′′′ ≥ 0, pi > 0,
n

∑
i=1

pi = 1, a≤ xi,yi ≤ b, max{x1, ...,xn} ≤max{y1, ...,yn}

n

∑
i=1

pi(xi− x̄)2 =
n

∑
i=1

pi(yi− ȳ)2. (7.4)

Witkowski in [131] showed that in Mercer’s assumptions, instead of the condition
f ′′′ ≥ 0, it is enough to assume that the function f is 3-convex. Further, Witkowski even
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additionally weakened the condition (7.4) and showed that the sign of equality can be re-
placed by a sign of inequality in a certain direction.

In paper [11] Baloch, Pečarić and Praljak introduced a new class of functions K 1
c (a,b)

which extends the class of 3-convex functions and can be interpreted as functions that
are “3-convex in the point c ∈ 〈a,b〉”. They showed that K 1

c (a,b) is the largest class of
functions for which Levinson’s inequality (7.2) holds under Mercer’s assumptions, that is,
they showed that f ∈K 1

c (a,b) if and only if the inequality (7.2) holds for arbitrary weights
pi > 0, ∑n

i=1 pi = 1 and sequences xi and yi that satisfy xi ≤ c≤ yi for i = 1,2, ...,n.
Here, a definition of the class K 1

c (a,b) extended to an arbitrary interval I ⊂R is given.

Definition 7.1 Let f : I → R and let c be an arbitrary point from the interior of the
interval I. We say that f ∈ K 1

c (I) ( f ∈ K 2
c (I)) if there exists a constant D such that

function F(x) = f (x)− D
2 x2 is concave (convex) on 〈−∞,c]∩ I and convex (concave) on

[c,+∞〉∩ I.

7.2 Levinson’s type generalization of the
Edmundson-Lah-Ribarič inequality

Throughout this section, E(Z) and Var(Z) denote expectation and variance of a random
variable Z respectively, and without further emphasis, we assume these values are fi-
nite. Pečarić, Praljak and Witkowski in [123] proved the following probabilistic version of
Levinson’s inequality.

Theorem 7.2 ([123]) Let X : Ω1 → I and Y : Ω2 → I be two random variables defined
on probability spaces (Ω1, p) and (Ω2,q) respecively, and let us assume that there exists c
from the interior of the interval I such that

ess sup
ω∈Ω1

X(ω)≤ c≤ ess inf
ω∈Ω2

Y (ω) (7.5)

and
Var(X) = Var(Y ) < ∞.

Then for every function f ∈K 1
c (I) such that E( f (X)) and E( f (Y )) are finite we have:

E( f (X))− f (E(X))≤ E( f (Y ))− f (E(Y )).

As a simple consequence of the previous theorem, they obtained the following gener-
alization of the results from the paper [11]. This resulted in a significant improvement of
Levinson’s inequality, because not only they additionally weakened the conditions, but the
sequences of the involved real numbers are of mutually different lenght and with different
weights.
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Corollary 7.1 ([123]) If xi ∈ I∩〈−∞,c], y j ∈ I∩ [c,+∞〉, pi > 0, q j > 0 for i = 1, ...,n and
j = 1, ...,m are such that ∑n

i=1 pi = ∑m
j=1 q j = 1 and ∑n

i=1 pi(xi− x̄)2 = ∑m
j=1 q j(y j− ȳ)2,

then

n

∑
i=1

pi f (xi)− f (x̄)≤
m

∑
j=1

q j f (y j)− f (ȳ) (7.6)

holds for every f ∈K 1
c (I).

Since the Edmundson-Lah-Ribarič inequality resulted from the Jensen iequality, they
are closely related. Jensen’s inequality gives us a lower, while the Edmundson-Lah-Ribarič
inequality gives us an upper bound for the expectation of convex functions. Therefore it is
natural to expect that a generalization of the Edmundson-Lah-Ribarič inequality analogous
to the one from Theorem 7.2 will hold. Aim of this section is to find such generalization,
and to see under what different condition that inequality holds.

The main result in this section is a Levinson’s type generalization of the Edmundson-
Lah-Ribarič inequality for the mathematical expectation obtained in paper [70].

Theorem 7.3 Let −∞ < a ≤ A ≤ b ≤ B < +∞. Let X : Ω1→ [a,A] and Y : Ω2→ [b,B]
be two random variables on probability spaces (Ω1, p) and (Ω2,q) respectively such that
(7.5) holds and

A−E(X)
A−a

a2 +
E(X)−a

A−a
A2−E(X2) =

B−E(Y )
B−b

b2 +
E(Y )−b

B−b
B2−E(Y 2). (7.7)

Then for every function f ∈K 1
c (a,B) such that E( f (X)) and E( f (Y )) are finite we have

A−E(X)
A−a

f (a)+
E(X)−a

A−a
f (A)−E( f (X))

≤ B−E(Y )
B−b

f (b)+
E(Y )−b

B−b
f (B)−E( f (Y )). (7.8)

Proof. Let F(x) = f (x)− D
2 x2, where D is the constant from Definition 7.1. Since

F : [a,A]→R is concave, from Edmundson-Madansky inequality (g) immediately follows

0≥ A−E(X)
A−a

F(a)+
E(X)−a

A−a
F(A)−E(F(X))

=
A−E(X)

A−a
f (a)+

E(X)−a
A−a

f (A)−E( f (X))

− D
2

(A−E(X)
A−a

a2 +
E(X)−a

A−a
A2−E(X2)

)
.

After resetting the previous inequality we get

− D
2

(A−E(X)
A−a

a2 +
E(X)−a

A−a
A2−E(X2)

)
≤−A−E(X)

A−a
f (a)− E(X)−a

A−a
f (A)+E( f (X)). (7.9)
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Similarly, F : [b,B]→R is convex, so in the same manner we obtain

0≤ B−E(Y )
B−b

F(b)+
E(Y )−b

B−b
F(B)−E(F(Y ))

=
B−E(Y )

B−b
f (b)+

E(Y )−b
B−b

f (B)−E( f (Y ))

− D
2

(B−E(Y )
B−b

b2 +
E(Y )−b

B−b
B2−E(Y 2)

)
,

and after resetting we have

D
2

(B−E(Y )
B−b

b2 +
E(Y )−b

B−b
B2−E(Y 2)

)
≤ B−E(Y )

B−b
f (b)+

E(Y )−b
B−b

f (B)−E( f (Y )). (7.10)

After summing up (7.9) and (7.10), we get

0 =
D
2

(B−E(Y )
B−b

b2 +
E(Y )−b

B−b
B2−E(Y 2)

− A−E(X)
A−a

a2− E(X)−a
A−a

A2 +E(X2)
)

≤ B−E(Y )
B−b

f (b)+
E(Y )−b

B−b
f (B)−E( f (Y ))

− A−E(X)
A−a

f (a)− E(X)−a
A−a

f (A)+E( f (X)).

Thus the theorem assertion is proved. �

Remark 7.1 One can see from the proof of the previous theorem that the inequality (7.8)
holds even if we replace the equality condition (7.7) with a weaker one

D
(B−E(Y )

B−b
b2 +

E(Y )−b
B−b

B2−E(Y 2)

− A−E(X)
A−a

a2− E(X)−a
A−a

A2 +E(X2)
)
≥ 0.

Since f ′′−(c) ≤ D ≤ f ′′+(c) (for details see [11]), if additionally the function f is convex
(respectively concave), this condition can be further weakened to

B−E(Y )
B−b

b2 +
E(Y )−b

B−b
B2−E(Y 2)

− A−E(X)
A−a

a2− E(X)−a
A−a

A2 +E(X2)≥ 0 (respectively ≤ 0 ).
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From (7.9) and (7.10) one can see that the inequality (7.8) can be also written as

A−E(X)
A−a

f (a)+
E(X)−a

A−a
f (A)−E( f (X))≤ 0

≤ B−E(Y )
B−b

f (b)+
E(Y )−b

B−b
f (B)−E( f (Y ))

or

A−E(X)
A−a

f (a)+
E(X)−a

A−a
f (A)−E( f (X))≤ D

2
C

≤ B−E(Y )
B−b

f (b)+
E(Y )−b

B−b
f (B)−E( f (Y )),

where C is equal to any of the sides in the equality (7.7).
Next result is a discrete version of the Levinson’s type generalization of the Edmund-

son-Lah-Ribarič inequality, and it is easily obtained as a simple consequence of the previ-
ous theorem.

Corollary 7.2 Let −∞ < a ≤ A ≤ c ≤ b ≤ B < +∞. If xi ∈ [a,A], y j ∈ [b,B], pi > 0,
q j > 0 for i = 1, ...,n i j = 1, ...,m are real numbers such that ∑n

i=1 pi = ∑m
j=1 q j = 1 and

A− x̄
A−a

a2 +
x̄−a
A−a

A2−
n

∑
i=1

pix
2
i =

B− ȳ
B−b

b2 +
ȳ−b
B−b

B2−
m

∑
j=1

q jy
2
j , (7.11)

where x̄ = ∑n
i=1 pixi and ȳ = ∑m

j=1 q jy j, then for every function f ∈K 1
c (a,B) we have

A− x̄
A−a

f (a)+
x̄−a
A−a

f (A)−
n

∑
i=1

pi f (xi)≤ B− ȳ
B−b

f (b)+
ȳ−b
B−b

f (B)−
m

∑
j=1

q j f (y j). (7.12)

Proof. Let X be a discrete random variable taking the value xi with probability pi for every
i = 1,2, ...,n and let Y be a discrete random variable taking the value y j with probability q j

for every j = 1,2, ...,m. It can be seen immediately that randon variables X and Y satisfy
the conditions from Theorem 7.3, so inequality (7.12) follows directly from (7.8). �
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7.3 Levinson’s type generalization of the operator
Edmundson-Lah-Ribarič inequality

In this section we consider a general form of the Edmundson-Lah-Ribarič inequality for
self-adjoint operators in Hilbert space.

Recall that if A is a self-adjoint operator and f is a continuous real function defined on
the spectrum Sp(A) of the operator A, then from f (t)≥ 0 for every t ∈ Sp(A) it follows that
f (A)≥ 0, that is, f (A) is a positive operator on H. Equivalently, if f and g are continuous
real functions on Sp(A), then the following property is valid:

from f (t) ≥ g(t) for every t ∈ Sp(A) it follows that f (A)≥ g(A) (7.13)

in the operator order of B(H).
Lower and upper bound of a self-adjoint operator X ∈B(H) is defined respectively as:

mX = inf
||ξ ||=1

〈Xξ ,ξ 〉 and MX = sup
||ξ ||=1

〈Xξ ,ξ 〉.

A mapping Φ : B(H)→B(K) is linear if it is additive and homogeneous, that is, if
we have Φ(αX + βY ) = αΦ(X)+ β Φ(Y ) for every α,β ∈ C and X ,Y ∈B(H). Linear
mapping Φ : B(H) → B(K) is positive if it preserves the operator order ≥, that is if
for a positive operator A ∈ B(H) the operator Φ(A) is also positive. Linear mapping
Φ : B(H) → B(K) is unital if it preserves the identity operator, that is if the relation
Φ(111H) = 111K holds.

A continuous function f : I→R is operator convex if

f (λX +(1−λ )Y)≤ λ f (X)+ (1−λ ) f (Y)

holds for each λ ∈ [0,1] and every pair of self-adjoint operators X and Y on Hilbert space
H with spectra in I. When the inequality sign is reversed, function f is operator concave.

If a function f : I→R is operator convex, then the Jensen operator inequality

f (Φ(X)) ≤Φ( f (X)) (7.14)

holds for every positive unital linear mapping Φ on B(H) and for every operator X ∈
Bh(H) with spectrum contained in the interval I.

Mičić Hot, Pečarić and Praljak in [100] proved a generalization of Levinson’s inequal-
ity for self-adjoint operators in Hilbert space. Since their result is based on the operator
convexity and concavity, before showing the mentioned result, we need to state definition
of the class ˚K 1

c (I) from [100].

Definition 7.2 Let f : I → R, and let the point c belong to the interior of the interval
I. We say that f ∈ ˚K 1

c (I) (that is f ∈ ˚K 2
c (I)) if there exists a constant D such that the

function F(x) = f (x)− D
2 x2 is operator concave (that is operator convex) on 〈−∞,c]∩ I,

and operator convex (that is operator concave) on [c,+∞〉∩ I.
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Theorem 7.4 ([100]) Let Xi,Yj ∈Bh(H), i = 1, ...,n, j = 1, ...,k be self-adjoint operators
with spectra contained in intervals [mX ,MX ] and [mY ,MY ] respectively such that mX <
MX ≤ c≤mY < MY . Let Φi,Ψ j : B(H)→B(K), i = 1, ...,n, j = 1, ...,k be positive linear
mappings such that ∑n

i=1 Φi(111H) = 111K and ∑k
j=1 Ψ j(111H) = 111K. Let f ∈ ˚K 1

c (mX ,MY ). If

C1 :=
D
2

[ n

∑
i=1

Φi(X2
i )−

( n

∑
i=1

Φi(Xi)
)2]≤C2 :=

D
2

[ k

∑
j=1

Ψ j(Y 2
j )−

( k

∑
j=1

Ψ j(Yj)
)2]

holds, then we have

n

∑
i=1

Φi( f (Xi))− f
( n

∑
i=1

Φi(Xi)
)
≤C1 ≤C2 ≤

k

∑
j=1

Ψ j( f (Yj))− f
( k

∑
j=1

Ψ j(Yj)
)
. (7.15)

The following generalization of the Edmundson-Lah-Ribarič inequality for self-adjoint
operators in Hilbert space is proved in [49].

Theorem 7.5 ([49]) Let A j ∈Bh(H) be self-adjoint operators with spectra contained in
the interval [m,M] for some scalars m < M, and let Φ j : B(H)→B(K) be positive linear
mappings for j = 1, ...,n such that ∑n

j=1 Φ j(111H) = 111K. If f : [m,M]→ R is a continuous
convex function, then we have

n

∑
j=1

Φ j( f (Aj))≤
M111K−∑n

j=1 Φ j(Aj)
M−m

f (m)+
∑n

j=1 Φ j(Aj)−m111K

M−m
f (M). (7.16)

First and main result in this section is a Levinson’s type generalization of the Edmund-
son-Lah-Ribarič inequality for operators in Hilbert space, and it was proved in [71] by
using a similar method as the one from the previous section.

Theorem 7.6 Let Xi,Yj ∈Bh(H) for i = 1, ...,n and j = 1, ...,k be self-adjoint operators
with spectra contained in the intervals [mX ,MX ] and [mY ,MY ] respectively, where mX <
MX ≤ c≤mY < MY are some scalars. Let Φi,Ψ j : B(H)→B(K), i = 1, ...,n, j = 1, ...,k
be positive linear mappings such that ∑n

i=1 Φi(111H) = 111K and ∑k
j=1 Ψi(111H) = 111K hold. Let

f ∈K 1
c (mX ,MY ). If

D
2

[MX111K−∑n
i=1 Φi(Xi)

MX −mX
m2

X + ∑n
i=1 Φi(Xi)−mX111K

MX −mX
M2

X −
n

∑
i=1

Φi(X2
i )
]

= C1 ≤C2 =
D
2

[MY 111K−∑k
j=1 Ψ j(Yj)

MY −mY
m2

Y +
∑k

j=1 Ψ j(Yj)−mY111K

MY −mY
M2

Y −
k

∑
j=1

Ψ j(Y 2
j )
]

(7.17)

holds, then we have

MX111K−∑n
i=1 Φi(Xi)

MX −mX
f (mX )+ ∑n

i=1 Φi(Xi)−mX111K

MX −mX
f (MX )−

n

∑
i=1

Φi( f (Xi))
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≤C1 ≤C2 ≤
MY 111K−∑k

j=1 Ψ j(Yj)
MY −mY

f (mY )+
∑k

j=1 Ψ j(Yj)−mY111K

MY −mY
f (MY )−

k

∑
j=1

Ψ j( f (Yj)).

(7.18)

If f ∈K 2
c (mX ,MY ) and C1 ≥C2, then the inequality signs in (7.18) are reversed.

Proof. We will only prove the case when f ∈K 1
c (mX ,MY ). Let F(x) = f (x)− D

2 x2,
where D is the constant from Definition 7.1. Since the function F : [mX ,c]→R is concave,
the Edmundson-Lah-Ribarič inequality for operators in Hilbert space (7.16) immediately
gives us:

0≥ MX111K−∑n
i=1 Φi(Xi)

MX −mX
F(mX )+ ∑n

i=1 Φi(Xi)−mX111K

MX −mX
F(MX )−

n

∑
i=1

Φi(F(Xi))

=
MX111K−∑n

i=1 Φi(Xi)
MX −mX

f (mX )+ ∑n
i=1 Φi(Xi)−mX111K

MX −mX
f (MX )−

n

∑
i=1

Φi( f (Xi))

− D
2

[MX111K−∑n
i=1 Φi(Xi)

MX −mX
m2

X +
∑n

i=1 Φi(Xi)−mX111K

MX −mX
M2

X −
n

∑
i=1

Φi(X2
i )
]
,

that is, we obtained

MX111K−∑n
i=1 Φi(Xi)

MX −mX
f (mX )+

∑n
i=1 Φi(Xi)−mX111K

MX −mX
f (MX )−

n

∑
i=1

Φi( f (Xi))≤C1. (7.19)

In the same way, because the function F : [c,MY ]→ R is convex, we get

0≤ MY 111K−∑k
j=1 Ψ j(Yj)

MY −mY
F(mY )+

∑k
j=1 Ψ j(Yj)−mY111K

MY −mY
F(MY )−

k

∑
j=1

Ψ j(F(Yj))

=
MY 111K−∑k

j=1 Ψ j(Yj)
MY −mY

f (mY )+
∑k

j=1 Ψ j(Yj)−mY111K

MY −mY
f (MY )−

k

∑
j=1

Ψ j( f (Yj))

− D
2

[MY 111K−∑k
j=1 Ψ j(Yj)

MY −mY
m2

Y +
∑k

j=1 Ψ j(Yj)−mY111K

MY −mY
M2

Y −
k

∑
j=1

Ψ j(Y 2
j )
]
,

and after resetting the obtained relation we have

C2 ≤
MY 111K−∑k

j=1 Ψ j(Yj)
MY −mY

f (mY )+
∑k

j=1 Ψ j(Yj)−mY111K

MY −mY
f (MY )−

k

∑
j=1

Ψ j( f (Yj)).

(7.20)

Finally, by combining the inequalities (7.19) and (7.20), and taking into account (7.17), we
get exactly (7.18), and the claim of the theorem is proved. �

Remark 7.2 Condition (7.17) can be replaced by a stronger one:

(D≥ 0 i ΔX ≤ δY ) or (D≤ 0 and ΔY ≤ δX),
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where δX ≤ ΔX (respectively δY ≤ ΔY ) lower and upper bound of the positive operator X
(respectively Y ) defined as

X =
MX111K−∑n

i=1 Φi(Xi)
MX −mX

m2
X +

∑n
i=1 Φi(Xi)−mX111K

MX −mX
M2

X −
n

∑
i=1

Φi(X2
i )

(respectively

Y =
MY 111K−∑k

j=1 Ψ j(Yj)
MY −mY

m2
Y +

∑k
j=1 Ψ j(Yj)−mY111K

MY −mY
M2

Y −
k

∑
j=1

Ψ j(Y 2
j )
)
.

Remark 7.3 If in the addition the function f is convex (respectively concave), then we
have f ′′−(c)≤ D≤ f ′′+(c) (respectively f ′′+(c)≤ D≤ f ′′−(c)), so the condition (7.17) can be
weakened to (see [11])

X ≤ Y, (respectively Y ≤ X).

The next result is a simpler version of inequality (7.18).

Corollary 7.3 Let Xi,Yj ∈Bh(H), i = 1, ...,n, j = 1, ...,k be self-adjoint operators with
spectra contained in [mX ,MX ] and [mY ,MY ] respectively, where mX < MX ≤ c≤mY < MY

are some scalars. Let Φi,Ψ j : B(H)→B(K), i = 1, ...,n, j = 1, ...,k be positive linear
mappings such that ∑n

i=1 Φi(111H) = 111K and ∑k
j=1 Ψ j(111H) = 111K. Let f ∈K 1

c (mX ,MY ). If

C : =
MX111K−∑n

i=1 Φi(Xi)
MX −mX

m2
X + ∑n

i=1 Φi(Xi)−mX111K

MX −mX
M2

X −
n

∑
i=1

Φi(X2
i )

=
MY 111K−∑k

j=1 Ψ j(Yj)
MY −mY

m2
Y +

∑k
j=1 Ψ j(Yj)−mY111K

MY −mY
M2

Y −
k

∑
j=1

Ψ j(Y 2
j ) (7.21)

holds, then

MX111K−∑n
i=1 Φi(Xi)

MX −mX
f (mX )+ ∑n

i=1 Φi(Xi)−mX111K

MX −mX
f (MX )−

n

∑
i=1

Φi( f (Xi))

≤C ≤ MY 111K−∑k
j=1 Ψ j(Yj)

MY −mY
f (mY )+

∑k
j=1 Ψ j(Yj)−mY111K

MY −mY
f (MY )

−
k

∑
j=1

Ψ j( f (Yj)). (7.22)

If f ∈K 2
c (mX ,MY ), then the inequality signs in (7.22) are reversed.

7.3.1 Results on scalar product

Mičić Hot, Pečarić and Praljak in [100] also proved a generalization of Levinson’s inequal-
ity for scalar product of self-adjoint operators in Hilbert space. Unlike their previously
stated result, where operator convexity or concavity was required, this result only requires
convexity or concavity in the classical sense.
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Theorem 7.7 ([100]) Let Xi,Yj ∈Bh(H), i = 1, ...,n, j = 1, ...,k be self-adjoint operators
with spectra contained in the intervals [mX ,MX ] and [mY ,MY ] respectively such that mX <
MX ≤ c≤mY < MY . Let zi,wj ∈H, i = 1, ...,n, j = 1, ...,k be vectors such that ∑n

i=1 ||zi||2 =
1 and ∑k

j=1 ||wj||2 = 1. Let f ∈K 1
c (mX ,MY ). If

C1 :=
D
2

n

∑
i=1

〈(Xi− X̄111H)2zi,zi〉 ≤C2 :=
D
2

k

∑
j=1

〈(Yj− Ȳ111H)2wj,wj〉

holds, then

n

∑
i=1
〈 f (Xi)zi,zi〉− f (X̄)≤C1 ≤C2 ≤

k

∑
j=1
〈 f (Yj)wj,wj〉− f (Ȳ ), (7.23)

where X̄ = ∑n
i=1〈Xizi,zi〉 and Ȳ = ∑k

j=1〈Yjwj,wj〉.
In this subsection we will derive a Levinson’s type generalization of the scalar Edmund-

son-Lah-Ribarič inequality for operators in Hilbert space. In order to state our assertions,
first we need to state a generalized version of the Edmundson-Lah-Ribarič inequality for
scalar product which we will need in the proof of the mentioned assertion.

Theorem 7.8 ([49]) Let A1, ...,An be self-adjoint operators on Hilbert space H with spec-
tra contained in the interval [m,M] for some scalars m < M. If f is a convex function on
[m,M], then

n

∑
i=1

〈 f (Ai)xi,xi〉 ≤ M−∑n
i=1〈Aixi,xi〉
M−m

f (m)+ ∑n
i=1〈Aixi,xi〉−m

M−m
f (M) (7.24)

holds for every n-tuple of vectors x1, ...,xn ∈ H such that ∑n
i=1 ‖xi‖2 = 1.

The technique used in the proof of the following result is analogous to the one used in
the proof of Theorem 7.6, but for the sake of completeness we give it in full.

Theorem 7.9 Let Xi,Yj ∈Bh(H), i = 1, ...,n, j = 1, ...,k be self-adjoint operators with
spectra contained in the intervals [mX ,MX ] and [mY ,MY ] respectively such that mX < MX ≤
c ≤ mY < MY . Let zi,wj ∈ H, i = 1, ...,n, j = 1, ...,k be vectors such that ∑n

i=1 ‖zi‖2 = 1

and ∑k
j=1

∥∥wj
∥∥2 = 1. Let f ∈K 1

c (mX ,MY ). If

D
2

[MX −∑n
i=1〈Xizi,zi〉

MX −mX
m2

X +
∑n

i=1〈Xizi,zi〉−mX

MX −mX
M2

X −
n

∑
i=1
〈X2

i zi,zi〉
]

= C1 ≤C2 =
D
2

[MY −∑k
j=1〈Yjwj,wj〉

MY −mY
m2

Y +
∑k

j=1〈Yjwj,wj〉−mY

MY −mY
M2

Y −
k

∑
j=1

〈Y 2
j w j,wj〉

]
(7.25)

holds, then we have

MX −∑n
i=1〈Xizi,zi〉

MX −mX
f (mX )+ ∑n

i=1〈Xizi,zi〉−mX

MX −mX
f (MX )−

n

∑
i=1
〈 f (Xi)zi,zi〉
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≤C1≤C2≤
MY−∑k

j=1〈Yjwj,wj〉
MY −mY

f (mY )+
∑k

j=1〈Yjwj,wj〉−mY

MY−mY
f (MY )−

k

∑
j=1

〈 f (Yj)wj,wj〉.

(7.26)

If f ∈K 2
c (mX ,MY ) and C1 ≥C2, then th inequality signs in (7.26) reversed.

Proof. As before, we will only prove the case when f ∈ K 1
c (mX ,MY ). Let F(x) =

f (x)− D
2 x2, where D is the constant from the Definition 7.1. Since F : [mX ,c]→ R is a

concave function, the generalized Edmundson-Lah-Ribarič inequality for scalar product
(7.24) implies

0≥ MX −∑n
i=1〈Xizi,zi〉

MX −mX
F(mX)+ ∑n

i=1〈Xizi,zi〉−mX

MX −mX
F(MX )−

n

∑
i=1

〈F(Xi)zi,zi〉

=
MX −∑n

i=1〈Xizi,zi〉
MX −mX

f (mX )+ ∑n
i=1〈Xizi,zi〉−mX

MX −mX
f (MX )−

n

∑
i=1
〈 f (Xi)zi,zi〉

− D
2

[MX −∑n
i=1〈Xizi,zi〉

MX −mX
m2

X + ∑n
i=1〈Xizi,zi〉−mX

MX −mX
M2

X −
n

∑
i=1

〈X2
i zi,zi〉

]
,

whereby we get

MX −∑n
i=1〈Xizi,zi〉

MX −mX
f (mX )+ ∑n

i=1〈Xizi,zi〉−mX

MX −mX
f (MX )−

n

∑
i=1

〈 f (Xi)zi,zi〉 ≤C1. (7.27)

Due to convexity of F : [c,MY ]→ R, in a similar way we get

0≤ MY −∑k
j=1〈Yjwj,wj〉

MY −mY
F(mY )+

∑k
j=1〈Yjwj,wj〉−mY

MY −mY
F(MY )−

k

∑
j=1
〈F(Yj)wj,wj〉

=
MY −∑k

j=1〈Yjwj,wj〉
MY −mY

f (mY )+
∑k

j=1〈Yjwj,wj〉−mY

MY −mY
f (MY )−

k

∑
j=1

〈 f (Yj)wj,wj〉

− D
2

[MY −∑k
j=1〈Yjwj,wj〉

MY −mY
m2

Y +
∑k

j=1〈Yjwj,wj〉−mY

MY −mY
M2

Y −
k

∑
j=1
〈Y 2

j w j,wj〉
]
,

and after resetting, the upper relation becomes

C2 ≤
MY −∑k

j=1〈Yjwj,wj〉
MY −mY

f (mY )+
∑k

j=1〈Yjwj,wj〉−mY

MY −mY
f (MY )−

k

∑
j=1

〈 f (Yj)wj,wj〉.

(7.28)

Inequality (7.26) directly follows as a combination of the inequalities (7.27) and (7.28) and
taking into account the condition (7.25). �

Remark 7.4 Mappings Φi,ΨJ : B(H)→B(K), i = 1, ...,n, j = 1, ...,k from the previous
section can be chosen in the following way. Let z1, ...,zn i w1, ...,wk be vectors from H such
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that ∑n
i=1 ‖zi‖2 = 1 and ∑k

j=1

∥∥wj
∥∥2 = 1. For any A ∈B(H) we define a mapping Φi with

Φi(A) = 〈Azi,zi〉, and a mapping Ψ j with Ψ j(A) = 〈Awj,wj〉. Then Φi,Ψ j : B(H)→ R

are positive linear functionals such that ∑n
i=1 Φi(111H) = ∑k

j=1 Ψ j(111H) = 1. Now we see that

∑n
i=1 Φi(Xi) = ∑n

i=1〈Xizi,zi〉 i ∑k
j=1 Ψ j(Yj) = ∑k

j=1〈Yjwj,wj〉 holds. That way Theorem 7.9
directly follows from Theorem 7.6 (see [49]).
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[65] R. Jakšić, M. Krnić, J. Pečarić, On some new converses of the Jensen and Lah-
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