Chapter

Difference type converses for
linear functionals

This chapter begins with an overview of some important results related to the Jensen and
Edmundson-Lah-Ribari¢ inequality for positive linear functionals which are known from
earlier. Further, some difference type converses of the mentioned results will be shown, as
well as their refinements and improvements. Finally, those improvements will be applied
to generalized means and some famous classical inequalities (the ones of Holder, Hermite-
Hadamard, Giaccardi and Petrovi¢). In that way we will get converses of listed inequalities
that provide us with an upper bound for the difference of their right and left sides.

1.1 Introduction

Let E be a non-empty set and L a vector space of real functions f: E — R with the follow-
ing properties:

(L1): f,geL= (af +bg) € Lforalla,beR;
(L2): 1 €L, thatis, if f(r) =1 foreveryt € E, then f € L.

(L3): if f,g € L, then min{ f,g} € L ormax{f,g} € L.
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Obviously, (RE ,<) (with standard ordering) is a lattice. It can also be easily verified that
a subspace (X C RF) is a lattice if and only if x € X implies |x| € X. This is a simple
consequence of the fact that for every x € X the functions |x|, x~ and x™* can be defined by

x| (2) = |x(t)], xT(t) =max{0,x(t)}, x (t) = —min{0,x(t)}, t € E

and
xTxT =y, xT—x =x,

minx,y} = 3 (b~ o)), maxfey} = g eyt b))
We also study positive linear functionals A: L — R, that is, we assume:
(A1): A(af+bg)=aA(f)+bA(g) for f,g € Land a,b € R;
(A2): feL,f(r)>0foreveryr € E = A(f) > 0.

We say that a functional A is normalized if A(1) = 1.

Throughout this chapter, if a function is defined on an interval [m,M] without any
further emphasis we assume that the bounds of that interval are finite.

Jessen [76] gave the following generalization of Jensen’s inequality for convex func-
tions (see also [124, p. 47]):

Theorem 1.1 ([76]) Let L be a vector space of real functions defined on a non-empty
set E that has properties (L1) and (L2), and let us assume that ¢ is a continuous convex

Sunction on an interval I C R. If A is a normalized positive linear functional, then for every
f € Lsuchthat ¢(f) € Lwe have A(f) €I and

P(A(f)) <A(O(S))- (1.1)

Next result is a generalization of the Edmundson-Lah-Ribari¢ inequality for linear
functionals and it was proved by Beesack and Pecari¢ in [14] (see also [124, p. 98]):

Theorem 1.2 ([14]) Let ¢ be a convex function on I = [m,M], let L be a vector space of
real functions defined on a non-empty set E that has properties (L1) and (L2), and let A
be a normalized positive linear functional. Then for every f € L such that ¢(f) € L (so
m < f(t) <M forallt € E), we have

M—A(f)

A(O(f) £ ——=0(m)+

o = p(M). (1.2)

Dragomir in [37] studied a measure space (Q,.</, 1) which consists of a set Q, o-
algebra o7 of subsets of Q and a countably additive and positive measure { on </ with
values in RU {eo}. For a y-measurable function w: Q — R such that w(x) > 0 for p-a.e.
(almost every) x € Q, he considered a Lebesgue space

Ly(Q.u):={f: Q—R,fis u—measurable and [ow(x)|f(x)|du(x) < eo},

and proved the following converse of Jensen’s inequality.



1.1 INTRODUCTION 3

Theorem 1.3 ([37]) Let ¢ : I — R be a continuous convex function on an interval of real
numbers I and let m,M € R, m < M be such that the interval [m,M| belongs to the interior
of I. Let w > 0 be such that [wdu = L. If f: Q — R is u-measurable, satisfies the bounds

—o<m < f(t) <M < oo for l-a.e. t € Q
and such that f,¢ o f € L,,(Q, 1), then

0< /Q w()9 (£(1))du(r) — 6(for)

9~ (M) — ¢’ (m)

< (M~ o) o —m) =20

< (M= m) (oL (M) — 0/, m), (1.3)

where fo, = Jow(t)f(t)du(t) € [m,M).

In [38] Dragomir obtained a refinement of the previous result that we state in the fol-
lowing theorem.

Theorem 1.4 ([38]) Let ¢ : I — R be a continuous convex function on an interval of real
numbers I and let m,M € R, m < M be such that the interval [m,M| belongs to the interior
of I. Let w > 0 be such that [ wdu = 1. If f: Q — R is u-measurable, satisfies the bounds

—o<m < f(t) <M < oo for l-a.e. t € Q
and such that f,¢ o f € L,,(Q, 1), then

0= [ w00 (1)du() ~ 9 fan)
< (M — fQ,W)(fQ,w m)

sup Wy (t:m,M)

= M—m te(m,M)
< (M*f_Q,w)(ﬁLW 7m)%:i+(m)
< L=yt 1) - g1 ), (4

where f_g,w = Jow(t) f(t)du(t) € [m,M] and ¥y (-;m,M): (m,M) — R is defined by

wyem ) = 2009090 0(m)

We also have inequalities
0< [ Wid (O — o) < 7 —m)ofesm,M)
< (M= m) (oL (M) — 0/, m), (15)

where f_g,w € (m,M).
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1.2 Converses of the Jensen and Edmundson-Lah-
-Ribaric¢ inequality for linear functionals

Results that follow are obtained in [68] and they give an upper bound for the difference
between the right and left side of the Jensen and Edmundson-Lah-Ribari¢ inequality re-
spectively. First theorem is also a generalization of Dragomir’s result (1.3) for linear func-
tionals.

Theorem 1.5 Let ¢ be a continuous convex function on the interval I whose interior
contains interval [m,M), let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1) and (L2). Let A be any normalized positive linear
functional on L. Then for every function f € L such that ¢(f) € L and which satisfies the
bounds m < f(t) < M for everyt € E we have

0<A0() ~ 9(A(F))
< (M~ A(F)A() —m)
< (M= m) (oL (M) — 6/, m). (1.6)
If the function @ is concave on I, then the inequality signs in (1.6) are reversed.

Proof. Let ¢ be a convex function. The first inequality follows directly from Theorem 1.1.
According to Theorem 1.2 we have

M—A(f)

AU - oA < 2

¢(m)+
Because of the convexity of the function ¢, the gradient inequality
o(t) — (M) = " (M)(t — M)
holds for every ¢ € [m,M]. If we multiply this inequality by (z —m) > 0, we get
(t=m)¢(t) = (t —m)$p(M) > ¢" (M)(t —M)(t —m), € [m,M] (1.7)
In a similar manner we obtain:
(M —1)¢(t) = (M —1)p(m) = ¢"(m)(t =m)(M —1), 1€ [m,M] (1.8)

When we add up (1.7) and (1.8) and then divide by (m — M), we get that for every ¢ € [m, M|
it holds:

(t—m)o(M)+(M—1)p(m)
M—m

(M=1)(t—m)
M—m

—0(1) < (¢~ (M) — ¢’ (m)). (1.9)
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Since A(f) € [m,M], in the previous relation we can replace 7 with A(f) and obtain the
following

_ (M= A AG) —m)
z
- M—m
what is exactly the second inequality in (1.6).
To prove the third inequlity in (1.6), we need to notice that inequality

(02.(M) — ¢/, (m)),

[

1
—M—-t)t—m) < —(M—
e (M=) (t—m) < 5 (M —m),
holds for every ¢ € [m,M], and this proves the claim of the theorem.
If ¢ is a concave function, then the function —¢ is convex, and we can apply inequali-
ties (1.6) to the function —¢, and reversed inequalities follow after multiplying by —1.
O

Remark 1.1 Observe that in the statement of Theorem 1.5 interval [m, M] needs to belong
to the interior of the interval /. This condition assures finiteness of the one-sided derivatives
in (1.6). Without this assumption these derivatives might be infinite.

Theorem 1.6 Ler ¢ be a continuous convex function on the interval 1 whose interior
contains interval [m,M), let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1) and (L2). Let A be any normalized positive linear
functional on L. Then for every function f € L such that ¢ (f) € L and which satisfies the
bounds m < f(t) < M for every t € E we have

0< XA o) A= 0y (o)
< CODZ0E 5 1 i —mi)
< EOZ 0 iy a ) acH) - m
< 304 = m) (6L (M) /. (m)). (1.10)

If ¢ is concave, then the inequality signs in (1.10) are reversed.

Proof. Let ¢ be a convex function. The first inequality from (1.10) is obtained from
(1.2) by subtracting ¢ (A(f)) from both sides of the inequality. Since () € [m,M], we can
replace 7 by f(¢) i the relation (1.9), which gives us

M—f@) (M — f(2))(f(t) —m)
M—m o (m)+ M—m

2 9M) —¢(f(1) < (9. (M) — ¢ (m)).
Function A(t) = (M —t)(t — m) is concave on [m,M], so when we apply the functional A
to the previous inequality, because of its linearity and Jensen’s inequality (1.1) we get the
second inequality from (1.10):
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M), AU

A g oy 4 A 01y — o)
< WD Z0L0) g v 11y —m)
< 0D 41 ) at) -m)

To prove the last inequality from (1.10), we need to notice that for every 7 € [m,M] we
1
have A(t) < Z(M—m)z. Since A(f) € [m,M], we also have

—_

h(A(f)) < 7(M —m)?,

4;

which completes the proof. |

Remark 1.2 Under the assumptions from the previous two theorems, let [ be a linear
function through points (m, f(m)) and (M, f(M)). Since ¢ is a convex function on [m, M],
the following relation

P(A(S)) <A(9(F)) <UA(S))

holds for every f € L such that ¢(f) € L
From Theorem 1.5 and Theorem 1.6 we see that both differences

A(9(f)) — o(A(f)) and I(A(f)) —A(e(f))

have the same estimation, so one can see that, in a weak sense, A(¢(f)) is almost the mid
point point between ¢ (A(f)) and [(A(f)).

The following results are proved in [69], and they give refinements of sequences of
inequalities obtained in Theorem 1.5 and Theorem 1.6. The first theorem that follows is
also a generalization of Dragomir’s results (1.4) and (1.5).

Theorem 1.7 Let ¢ be a continuous convex function on the interval 1 whose interior
contains interval [m,M), let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1) and (L2). Let A be any normalized positive linear
functional on L. Then for every function f € L such that ¢(f) € L and which satisfies the
bounds m < f(t) < M for every t € E we have

0<A(9(f) —9(A(f)
<M ( D(A(f) —m) sup Wy(t;m,M)

re(mM)
< (- A1) A () - m) D L)
< 3 (1= m) (9" (M)~ ', (m). (L1
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We also have inequalities

0

IN

N

(0() — 9(A(f)) < =(M —m)* ¥4 (A(f):m, M)

(M —m) (¢~ (M) — ¢/ (m)), (1.12)

B

<
where Wy (-;m,M): (m,M) — R is defined by

L oM)—9(r) ¢o@)—9(m)
M—m( M—t  t-m ) (1.13)

Wy (t;m,M) =
If ¢ is concave on I, then the inequality signs are reversed.

Proof. Let ¢ be a convex function. If A(f) = m or A(f) = M, inequalities are trivial. Let
us assume that A(f) € (m,M).

The first inequality from (1.11) 1 (1.12) follows directly from Theorem 1.1. According
to Theorem 1.2 we have

AN - o) < = Lom + B o) — g (a(r))
_ (AU —m) (900 04 A1) =0
M—m M=A(f) A()—m

and we see that the second inequality from (1.11) holds. Further,

{(b(M) —0() (1) ¢(M)}

1
sup Wy (r;m,M) = —— sup

1€(m,M) M —m e mmy M—t t—m
! o(M) — () —(9(1) —9(m))
< (o, S s S )
L (p SO0 400
M—m t€<m€%> M—t te(m,M) t—m
_ 9L (M) — ¢ (m)

M—m ’
which proves the third inequality from (1.11). The last inequality in (1.11) follows from the

M—1t)(t— 1
fact that for every ¢ € [m,M] we have (M)M < Z(M —m). Since A(f) € [m,M],
—m
we can replace ¢ with A(f) in the previous inequality.

The proof for inequalities (1.12) is obvious from the proof for (1.11). O

Remark 1.3 Observe that Wy (-;m, M), defined in (1.13), is actually second order divided
difference [m,t,M]¢ of the function ¢ in points m, r and M for every ¢t € (m,M).
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In order to prove a converse of the Edmundson-Lah-Ribari¢ inequality, first we need
the following result from [69].

Lemma 1.1 Let ¢ be a convex function on an interval of real numbers I, and let m,M € R,
m < M be such that the interval [m,M] belongs to the interior of I. Then for everyt € [m,M|
the following inequalities hold:
t—m M —t
Ap(tmM) = ——p(M —o(t
o 1:m,M) = <= (M) + T 9(m) — 61

< (M—t)(t—m) sup Wy(r;m,M)
te(m,M)

< WD (1 () — 0, )

(M —m) (¢~ (M) — ¢/ (m)). (1.14)

<

ENJ

We also have

Bo(tsm,M) < (M —m)¥y (t5m,M) < (M —m)(0".(M) ~ 0}, (m))

I

where Wy (-;m,M): (m,M) — R is defined by (1.13) If the function ¢ is concave, then the
inequality signs are reversed.

Proof. Let ¢ be a convex function. If + = m or t = M, inequalities are trivial. For any
t € (m,M) it holds

Bo(tm, M) = S0 (M) + +—p(m) - 9(1
(M= m) [9(M) ~9) _ 9(1) ~ 9(m)
M —m M—t t—m

= (M —1)(t —m)¥s (1;m,M)
< (M—1)(t—m) ?u%w(r;m,M),

which is exactly the first inequality from (1.14). The second inequality follows directly
from:

sup Wy (t:m,M) = L sup >{‘P(M)¢(t) _00) *‘P(m)}

r€(mM) M —m i m M—t t—m
1 (M) —o(1) —(¢(t) —o(m))
= M—m (zeizg\ﬂ M—t +l€§f:l18\/l> I—m )
L (L 200200 0000l
M—m ze<m,11)\/l> M —t re(mM) t—m

0L~ ¢ (m)
M—m
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The last inequality from (1.14) follows directly from

M—1)(t— 1
# < Z(M_m) for every r € [m,M].

The proof of the inequalities (1.1) is clear from the proof of (1.14). O

Theorem 1.8 Ler ¢ be a continuous convex function on the interval 1 whose interior
contains interval [m,M), let L be a vector space of real functions defined on a non-empty
set E such that it has properties (L1) and (L2). Let A be any normalized positive linear
functional on L. Then for every function f € L such that ¢(f) € L and which satisfies the
bounds m < f(t) < M for everyt € E we have

(i)
0< A= 41y 4 YA g ) ao()
AL 1) —m)] sup Woltsm, M)
re(m,M)
< A DU =) 41 (1) — o, ()
< WZAINCUIZ (41 (1) g1 )
< ZOM—m)(9(M) . (m) (1.15)
(ii)
0< A= 1) 4 VAU gy g )
SALM 1) —m)] sup Woltsm M)
re(m,M)
< (1A —m) s Woim )
< WZAUDAD =) (41 (11) — g, (o)
< S —m)(@(M) . (m) (1.16)
(iii)
0< A= 1) 4 YA ) )

IN IN
= A=

(1.17)

<
|
3
=
=
~
=
|
<
+ ~
—
g

(
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where Wy (-;m,M): (m,M) — R is defined in (1.13). If the function ¢ is concave, then the
inequality signs are reversed.

Proof. Let ¢ be a convex function. The first inequalities from (1.15), (1.16) and (1.17)
follow directly from Theorem 1.2.

Since f satisfies the bounds m < f(z) < M for every ¢ € [m,M], we can replace ¢ with
f(t)in (1.14) and (1.1) from Lemma 1.1 and obtain

Oy 01y 2T g 01y — g 500

and

Next, we apply linear functional A, which is normalized, to the previous sequences of
inequalities, and that gives us (1.17) and first three inequalities from (1.15) respectively.

M—=1)(t—m) 1
M—m

Since for every ¢ € [m, M] we have < 1 (M — m), the same inequality holds

for A(f) € [m,M]. In that way we get the last inequality from (1.15).
The first inequality from (1.16) is the same as the first inequality from (1.15). Function
g(t) = (M —1)(t — m) is concave, so according to Jessen’s inequality (1.1) we have

A(IM = fIIf —m]) < (M =A(f)(A(S) —m),

which provides the second inequality from (1.16). In the proof of Lemma 1.1 we showed

that , ,
sup Wy (r;m,M) < ¢~ (M) — ¢', (m)

re(m,M) M—m 7

so the third inequality from (1.16) easily follows. As before, the last inequality in (1.16)
M—-A A(f)— 1
(M —AUNAF)=m) 1 -
M—m 4

follows from

Remark 1.4 The function ¢ is defined on the interval / whose interior contains the inter-
val [m,M]. This condition ensures finiteness of the one-sided derivatives in points m and

M. Then :
M _
lim Wy (t:m, M) = o(M) — ¢ (m)
t—mt M—m M—m

—¢'(m)



