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Preface

Two known inequalities provide the bounds of the integral [ f p(x)f(w(x))dx — while the
Jensen inequality gives the lower, the Lah-Ribari¢ inequality gives its upper bound:

The Jensen inequality. Let w : [a,b] — R be an integrable function and let
p: [a,b] — R be a nonnegative function. If f is a convex function given on an
interval I such that w([a,b]) C I, then

1 b 1 b
—_— xX)w(x)dx —_— x)f(w(x))dx.
f((ﬁ,p(x)dx/a pLOw() )Sf;p@dx/a PLO)S (W)

The Lah-Ribari¢ inequality. Let w : [a,b] — R be an integrable function such
thatm <w(x) <M forx € [a,b],m < M, and let p : [a,b] — R be a nonnegative
function. If f is a convex function given on an interval I such that [m,M] C I,
then

M—w w—m

)+ 2

o
J# p(x)dx

[ Pttty ax< F(u),

where

These two important inequalities are the motivation for this book, in which we want to
present recent progress and current trends involving them.

This book is divided in three chapters. The first chapter gives refinements of the Jensen
and the Lah-Ribari¢ inequality, for their discrete and integral forms. The technique used in
proving these refinements can be found in the proof of the Jensen-Boas inequality.

Using this results, a refinement of the integral Holder and discrete Holder inequality,
and refinements of some inequalities for power means and quasi arithmetic means are
obtained. Also from the refinement of the integral forms we get a refinement of the famous
Hermite-Hadamard inequality.

As applications of these refinements, in the last part of the chapter we give some inter-
esting estimates for the Csiszdr divergence (discrete and integral case), and for the discrete
case we also consider the Zipf-Mandelbrot law.



In Chapter 2, we consider a generalization of the Jensen-McShane inequality for nor-
malized positive isotonic linear functional and convex (concave) functions defined on a
rectangle. We present the sequences of inequalities involving McShane generalization of
Jensen’s inequality. As applications of these inequalities, for various choices of the func-
tional F, we present extensions of known inequalities: the Diaz-Metcalf type inequalities
for bounded random variables, the Feyér and the Lupas type inequalities for a function of
two variables and inequalities of the Petrovi¢ type for two non-negative real n-tuples.

A conversion of the Jensen-McShane inequality is obtained by the two-variables func-
tion. Under special conditions, the Gheorghiu-type inequality is proved.

The last chapter is dedicated to the recently introduced class of (k,g;m)-convex func-
tions, which unifies a certain range of convexity, thus allowing the generalizations of
known results. For this class, we present several types of inequalities such as Hermite-
Hadamard, Fejér, Lah-Ribari¢ and Jensen, which generalize and extend corresponding in-
equalities. From Lah-Ribari¢ type inequalities for (%, g;m)-convex functions we obtain
inequalities of Giaccardi, Popoviciu and Petrovi¢. We also point out some special refined
results.

At the end, we use fractional calculus to obtain fractional version of the Hermite-
Hadamard inequality, involving Riemann-Liouville fractional integral operators, which
contain extended generalized Mittag-Leffler functions as their kernel. As an application,
the upper bounds of fractional integral operators for (%, g;m)-convex functions are given.
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Chapter

Refinements of Jensen’s and
the Lah-Ribaric inequalities
and applications to the
Csiszar divergence

Research of the classical inequalities, such as the Jensen, the Holder and similar, has
experienced great expansion. These inequalities first appeared in discrete and integral
forms, and then many generalizations and improvements have been proved. Lately, they
are proven to be very useful in information theory.

Since all of these inequalities are related to the class of convex functions, we start with
the definition of convex functions.

Definition 1.1 Let I be an interval in R. Function f: I — R is said to be a convex
Sunction on I if for all x,y € I and all A € [0,1]

FOAx+1=A)y) <Af(x)+(1—-2)f(y)

holds. If inequality is strict for all x,y € I, x # y and for all A € (0,1), then f is said to be
strictly convex. If the inequality is reversed, then f is said to be concave.

Jensen’s inequality is one of the most famous inequalities in convex analysis, which
special cases are other well-known inequalities (such as Holder’s inequality, A-G-H in-
equality, etc.). Beside mathematics, it has many applications in statistics, information
theory and engineering.



2 1 REFINEMENTS OF JENSEN’S AND THE LAH-RIBARIC INEQUALITIES

Theorem 1.1 (JENSEN’S INEQUALITY) Let I be anintervalin R and f: I — R a convex
function. Ifx = (x1,...,X,) is any n-tuple in I and p = (p1, . .., pn) a nonnegative n-tuple
such that B, = Y| pi > 0, then the following inequality holds:

1 & 1 &
f(;nizlpixt) < szif(xi)- (1.1)

ni=1

If f is strictly convex then (1.1) is strict unless x; = ¢ for all i € {j: pj> 0}. If fis
concave, then (1.1) is reversed.

Strongly related to Jensen’s inequality is the converse Jensen inequality. One of the
most famous variants of the converse inequality is the Lah-Ribari¢ inequality (see [11]).

Theorem 1.2 (LAH-RIBARIC INEQUALITY) Let f: I — R be a convex function on I,
[m,M] C I, —eo <m < M < +oo. Let p be as in Theorem 1.1, x = (x1,...,X,) is any n-tuple
in [m,M]" and x = Pln Yo pixi. Then the following inequality holds:

M—x xX—m
Fom+ 2

1 n
5 2 bif () < fM). (1.2)
ni=1

<
3

If f is strictly convex then (1.2) is strict unless x; € {m,M} for all i € {] pj> 0}.

The Lah-Ribari¢ inequality has been largely investigated and the interested reader can
find many related results in the recent literature as well as in monographs such as [13] and
[16]. It is interesting to find further refinements of the above inequality.

Integral form of the Jensen inequality is given in the following theorem (see [2], [7], or
for example [8]).

Theorem 1.3 (INTEGRAL FORM OF JENSEN’S INEQUALITY) Let g: [a,b] — R be an
integrable function and let p: [a,b] — R be a nonnegative function. If f is a convex func-
tion given on an interval I that includes the image of g, then the following inequality
holds
1 b 1 b
(57 | p0star) < s [ pi0 st (13

where P(t) is defined as

P(t) = / p()dx.

Integral form of the Lah-Ribari¢ inequality is given in the following theorem.
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Theorem 1.4 (INTEGRAL FORM OF THE LAH-RIBARIC INEQUALITY) Ler g: [a,b] —
R be an integrable function such that m < g(t) < M, for all t € |a,b], m < M, and let
p: [a,b] — R be a nonnegative function. If f is a convex function given on an interval I
such that [m,M] C I, then the following inequality holds

%/abp(t)f(g(t))dt < ]]‘\/[/[:if(m)wL M—_mf(M)7 (1.4)

where P is defined as
1
Pt = [ plrax
a

and g is defined as
- Lpgta
P(b)

We give a new refinement of the Lah-Ribari¢ inequality (1.2), and using the same
technique we will give a refinement of the Jensen inequality (1.1) (see [17]).

We also give refinements of the integral form of Jensen’s inequality (1.3) and the Lah-
Ribaric¢ inequality (1.4).

The idea for proving can be also found in a well known result (see [16, pages 55 - 60]).
Refinement of the inequality on the interval is obtained by applying the same inequality on
subintervals.

Using obtained results we give a refinement of the famous Holder inequality and some
new refinements for the weighted power means and quasi arithmetic means.

Also, we give a historical remark about the Jensen-Boas inequality.

In the last section, we deal with the notion of f-divergences, the Csiszar f-divergences
in the first place, where by varying the generating functions we distinguish e.g. Jeffrey’s
distance, the KullbackLeibler divergence, the Hellinger distance, the Bhattacharyya dis-
tance. We deduce the relations for the mentioned f-divergences. In the discrete case, these
results are further examined for the Zipf-Mandelbrot law.

1.1 New refinements

The starting point for this consideration is the following lemma.

Lemma 1.1 Let f be a convex function on an interval 1. If a,b,c,d € I such that a < b <
¢ <d, then the inequality

c—u u—>b d—u u—a
+

c—bf(b)Jrc—b

holds for any u € [b,c|.
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Proof. We can write

1=ttt
c= Z:Ca + Ziad
and since f is convex, it follows that
7)< T2 (@) + =2 (@)
fle) < S @)+ =2 pta.
Now we have
)+ A
<Ml pay ZZf(d)] T [jZﬂaH ——10
= T )+ 5= ().

O

First main result is a refinement of the Lah-Ribari¢ inequality (1.2). As we will see, its
proof is based on the idea from the proof of the Jensen-Boas inequality.

Theorem 1.5 Let f: I — R be a convex function on I, [m,M] C I, —eo <m < M < o,
p is as in Theorem 1.1, x = (x1,...,x,) be any n-tuple in [m,M]" and x = %2;’:1pixi.
Let N; C {1,2,...,n}, i=1,...,m where NNNN; =0 for i # j, U" N; = {1,2,...,n},
Yjenpj >0, fori=1,...,mand m; = min{x;: j € N;}, M; = max{x;: j € Ni}, fori=
1,....,m. Then

= M; —x; Xi —m
2 i () < Ez(zp,> [Mij;ﬂmw S )

”z] i

IN

—f (M) (1.5)

holds, where

If f is concave on I, then the inequalities in (1.5) are reversed.

Proof. We have

1 & 1 | &
E;Pif(xi) = 5 lz

I
oo -
M=

7~

LM
3

S~
| — |

M
I
Py

L=
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Using the Lah-Ribari¢ inequality (1.2) for each of the subsets N;, we get

1 m
_2 219; ZPJf
Lt (jeN,- ) [ZJEN Pj jen; ]
Mi— <L 3. v pix; 3. vpixi—m
1 & 7 Sien, pj £IEN Pt Sjen; pi SN PiXi '
< — j ! m;) + : M;
Pn?%(jg%p]) [ M;—m; o M; —m 1o
1 & M; —x; Xi —m; }
_ . m;) + M) .
P"izzl (jezzvipj> [Mi—mif( ) Mi—mif( 0
Usingm <m; <x; <M; <M, m <M,m; < M; and Lemma 1.1, we get
1 M; — x; Xi —mj }
— . m;) 4+ (M
Pn,Zl(jeN,.”’) o )+ (o)
1 & M —Xx; X;i—m
<D Xpi { f(m)+ f(M)}
s (jeN,- ) M—m M—m
M—x xX—m
= M).
T )+ S (M)
O

Remark 1.1 If N, = {x ]} (|N;| = 1), the related term in the sum on the right-hand side of
the first inequality in the proof of Theorem 1.5 remains unaltered (i.e. is equal to f (x;)).

Using the same technique, we obtain the following refinement of the Jensen inequality

(1.1).

Theorem 1.6 Ler I be an interval in R and f: I — R a convex function. Let x =
(x1,...,%,) be any n-tuple in I" and p = (pi,...,pn) a nonnegative n-tuple such that
P, =3Y",pi>0.Let N;C{1,2,...,n},i=1,...,mwhere NNOAN; =0 fori# j, U" N;=
{1,2,...,n} and ¥ jen, pj >0, i=1,...,m. Then

< 2p1x1>_—2<2pj>f<w)s%n2pif<xi) (1.6)

JEN; YjeN; Pj

holds.

If f is concave on I, then the inequalities in (1.6) are reversed.

f (%ﬂﬁl‘mz') - f( 1 L;v,-ijjD

B N\ Zjen; PiXj
f( 1<Jezzvp’> jen; Pi )

Proof. We have

T =
v

=)~
M=

I
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Using Jensen’s inequality (1.1), we get

1 & 2jeN; PjXj
fl—= pi SN 7T <
Pni; jezNi ! ZjeN,-pj

=
Ms

i
N -/

2 jeN; p iXj
pj f( jE Jv
= ZjeNi pj

1 m
<=>1>p 2 pif (xj)
L JEN; ZJeN Pj je
1 m
ni=1jeN;
which is (1.6). 0

We can find this idea for proving the refinement of our main results (and the refinement
of the Jensen inequality) in one other well-known result (see [16, pages 55-60]).

In Jensen’s inequality there is a condition “p = (py,..., p,) @ nonnegative n-tuple such
that P, =Y | p; > 0”. In 1919. Steffensen gave the same inequality (1.1) with a slightly
relaxed conditions.

Theorem 1.7 (JENSEN-STEFFENSEN) [f f: I — Risa convex function, X is a real mono-
tonic n-tuple such that x; € I, i =1,...,n, and p is a real n-tuple such that
0<P <Py, k=1,....n, P,>0.

Then (1.1) holds. If f is strictly convex, then inequality (1.1) is strict unless x| =x, = --- =
Xp-

One of many generalizations of the Jensen inequality is the Riemann-Stieltjes integral
form of the Jensen inequality.

Theorem 1.8 (THE RIEMANN-STIELTJES FORM OF JENSEN’S INEQUALITY)

Let ¢ : I — R be a continuous convex function where I is a range of a continuous function
[ la,b] — R. The inequality

b
¢<faf(x)d ())_f 0 (/(x))d2 (x) (1.7)

I da(x) S dA(x)
holds, providing that A : [a,b] — R is increasing, bounded and A (a) # A (b).

Analogously, integral form of the Jensen-Steffensen inequality is given.

Theorem 1.9 (THE JENSEN-STEFFENSEN) If f is continuous and monotonic (either in-
creasing or decreasing) and A is either continuous or of bounded variation satisfying

Ala) <A(x) <A(D) forall x € la,b], A(a)<A(b),

then (1.7) holds.
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In 1970. Boas gave the integral analogue of Jensen-Steffensen’s inequality with slightly
different conditions.

Theorem 1.10 (THE JENSEN-BOAS INEQUALITY) [If A is continuous or of bounded vari-
ation satisfying

Ala) SA() SA() SAMn) < <A(n-1) SA(a) < A(D)

Sorall x; € (yk—1,yx), and A(b) > A(a), and if f: [a,b] — R is continuous and monotonic
(either increasing or decreasing) in each of the n — 1 intervals (yi_1,yx), then inequality
(1.7) holds for a continuous convex function ¢ : I — R, where I is the range of the function
I

In 1982. J. Pecari¢ gave the following proof of the Jensen-Boas inequality

Proof. IfA(a) <A(x1) <A(y1) <A(x2) <+ <A(yu—1) < A(xn) < A(b) with the notation

o R FWdAR)
pk_/yk,|dA<X)7 tk_ma =1,...,n,

Yk—1

fabf(x)d)t(x) _ 2k1y}<1f( )d/l() o ZZzlpkrk
¢< J2 dA(x) )"’( S ) )"’( ; >

Vi1 Yk—1DPk

we have

Using Jensen’s inequality (1.1), we get

ZZIPktk> < 1
¢ ( Zzzlpk Ek 1 Pk = ZPk(P tk

Lo fa (1 A
= Sm Lﬂ“"’( [ ) )]

Using the Jensen-Steffensen’s inequality (1.7) on each subinterval [y;_1,yx], k

_ ,k=1,....n
we get
L Ta 2 f()d ()
Sm lkzlpk‘p( T ) )]
! z [ b (p))da)
o Ek 1Pk P y};kldk( x) Sy : !
:221&]{1‘”“( 2 }’kl *) )

o) dA)
fPart)
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If A(yj—1) = A(yj), for some j, then dA(x) =0 on [y;_1,y;] and we can easily prove
that the Jensen-Boas inequality is valid. O

If we look at the previous proof, we see that the technique is the same as for our main
results and the refinement of the Jensen inequality.

Our next main result will be a refinement of the integral form of the Jensen inequality
(1.3).

Theorem 1.11 Let g be an integrable function defined on an interval [a,b], let ay,ay,
.,an_1,an be arbitrary such that a = ag < a; < -+ < an—1 < a, = b. If f is a convex
function given on an interval I that includes the image of g, then

(gt oo < 3 ([ o) (Er )
< o | PO w8

is valid, where p: [a,b] — R is nonnegative function and P is defined as

P(r) = /alp(x)dx.

Proof. Letag,ay,...,ay—1,a, be arbitrary such thata = a9 < a; < --- < a,—1 < a, = b.
Applying Jensen’s inequality, we have

f<$/abp(t)g(t)dt) = (#lil :. t)

IA Il
~ ~
@"—‘/—\
"U
M= -
A~
\ M=
\ 2
"3 \
'E
\/
~ E:
/_\v
%
?: 3:
L "B_ =
NG =~
QB?QB?
5= E’S
-
-~ -~
N——— ~~—

which is the left-hand side of (1.8).
Now we will use the inequality (1.3) on each of the subintervals [a;_1,q;].

A (L o) L o)

< S ( / l_“"lpmdf) T PO,

which is the right-hand side of (1.8). |

Last main result is a refinement of the integral form of the Lah-Ribari¢ inequality (1.4).
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Theorem 1.12 Let g be an integrable function defined on an interval [a,b], let ay,ay,

. an—1,ay be arbitrary suchthata =ap < a; < ++- < ay—1 < ay =b andm; < g(t) <M,
for allt € [ai,l,ai], mi<M;,i=1,....n,m= minlgignmi,M = maxlSiSnM,-. Iff is a
convex function given on an interval I that includes the image of g, then

1 Mifg g_l m;
: P(b) ,lepi {Mi—mif(mi)+ mf(Mi)
< Mfgf(m)#» Mf(M) (1.9)
m —m

and g, g;, p; are defined as

_ [Pp(ngdr  — o, ()
S0 ST pi= [ 0

Proof. We will use (1.4) on each of the subintervals [ai,l ,ail.

/ ple
2 g(1))dt
Mo— Jai_ p(t)g(0)dt oy PWDg()dr

1 a a Jai | p()d Jai_, p(t)dt
- ey e N e POE )
< P—(b) 2 (/ailp(l‘)dl) M, —m, f(ml) + M, —m; f(Ml) )

i=1
which is the left-hand side of inequality (1.9).
Since m <m; < g; < M; < M,m < M,m; < M;, then by Lemma 1.1 we get

1 & M; — g, gi—mj
P(b 2: {M m; m1)+Mi—mif( 2

1 piM — [ p(t)g(t)dt Ja p(t)g(t)dt — pim
Sp(b)Zl M—m f(m)+ M—m f(M)]
1 im1 piM— 3 att’,l p(t)g(t)dt i1 Jar o p(t)g(t)di—X1 pim
= 0 Y f(m)+ Fy— f(M)l
I Jip(t)g
M= O
*Mi_mf(m)ﬂL M —m f(M),

which is the right-hand side of (1.9). |
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1.1.1 The Hermite-Hadamard inequality

Another famous inequality established for the class of convex functions is the Hermite-
Hadamard inequality.

Theorem 1.13 (HERMITE-HADAMARD) Let f be a convex function on [a,b] C R, where

a <b. Then )
b 1 b
f(“; ) <5 | fear< M (1.10)

This double inequality was first discovered by Hermite in 1881. This result was later
incorrectly attributed to Hadamard who apparently was not aware of Hermite’s discovery
and today, when relating to (1.10), we use both names.

This result can be improved by applying (1.10) on each of the subintervals [a, azib],

[t2.b] and the following result is obtained (see [14, p. 37]):

f(““’)gzs ! /abf(X)dxﬁLSM (L11)

2 b—a 2 ’

(a)+f(b
where [ = 1 (f (32t 4 £ (2539)) and L= 1 (f(b%) 4 flares >>.
The following improvement of (1.11) is given in [3].

Theorem 1.14 Assume that f: I — R is a convex function on I. Then for all A € [0,1]
and a,b € I, we have

f(“;b) <)< 5 [ rears 2oy < LOTIO )
where
o) “</1b+(§/1)a> ‘a Mf((lm)b;u x)a)
and

L(A) =5 (f(Ab+ (1= A)a) + A f(a) + (1 =A)f (D))

| =

The inequality (1.12) for A = % gives inequality (1.11). Further improvement was
given in [4].

Theorem 1.15 Let I C R be an interval and f: I — R be a convex function. Let ®@: |a,b]
— I be such that f o ® is also convex, where a < b. Thenforn €N, Ay =0,A,.1 = 1 and
arbitrary 0 < Ay < -+ < A, < 1, we have

A

1 b L b
f(b_a/a qJ(x)dx) <Ay Ay) < b_a/a fo®(x)dx (1.13)

< LA, h) < foq)(a);rfodJ(b),

(1.14)
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where
< 1 (I=Agr1)atAiy1b
I ) =3 et — A / ® d>
a ) 1;::()( S k)f<(lk+1lk)(ba) (1= )a+A (x)dx
and
L(Ats. . 20) =Y (A _)Lk)fo(b((1 _)Lk)a"’_/lkb)"'f;oq)((l _Ak+1)a+/1k+1b)_
=0

Applying the previous theorem for ®(x) = x and n = 1, we get the inequality (1.12).
Using refinements of Jensen’s and the Lah-Ribari¢ inequality we obtain a refinement
of the Hermite-Hadamard inequality.

Remark 1.2 If we set p(r) = 1 in Theorem 1.11 we get (1.13) in the form

f(bl—a/abg(t)dt> < biai(ai—aiq)f <‘filga(:)ft>

i=1
o [ ey

IN

This gives for g(t) =t

b 1 ita; 1
f(a;L >§ b_aZ(aiail)f<a 12+a) < b—a/a f(t)at,

i=1

which is a refinement of the left-hand side of (1.12).
Analogously from Theorem 1.12, we have (for p(¢) = 1)

[ ey

. M Jal | g(t)dr Jal | g(t)dr .
< LY ai) | )+~
_bfaizl ! . M; —m; ! M; —m; !
M [P g(r)dr Jbe(tydr
< b—a b—a M
===y}
and for g(z) =1, m; = a;—1, M; = a;, we get
1 b
t)dt
— [ 10
1 n a;— ai—l;‘“i ai—12+ax —a;_
< . . .
= bfai:](al a; 1) [ ai—a;_ f(al 1)+ % — a1 f(al)
1 flai1) + flai)
7b—ai:2](aliah]) 2
_ f@)+£(b)
— 2 )

which is a refinement of the right-hand side of (1.12).
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1.1.2 Holder’s inequality

One of the most important special cases of the Jensen inequality is the Holder inequality.

Theorem 1.16 (DISCRETE HOLDER'S INEQUALITY) Let p,q > 1 such that § + & = 1.
Leta= (aj,ay,...,a,), b= (by1,bs,...,b,) such that a;,b; >0, i =1,...,n. Then:

n n ll’ n é
i= i= i=

By using Theorem 1.6 and Theorem 1.11, we obtain the following refinements of the
discrete Holder and the integral Holder inequality (for more about the Holder inequality
see [16]).

First we give the refinement of the discrete Holder inequality.

Corollary 1.1 Let p,q> lsuchthat%—i—é =1. Leta=(a,az,...,an), b= (b1,bs,...,b,)
such that a;,b; >0,i=1,...,n. Then:

T
2
S
IN
- N
i\
St
~
~
Q|
N
<
il gl
S
~
~
<
(—\
M
2
\G‘
~_—
~
<

117 n q
= =

_g _q
Proof.  We use Theorem 1.6 with p; = b? >0, x; =aib; " > 0. Then pix; = b?a,-bi P =

_4 1—1 1
aib? P = aib?( ») = aibfq = a;b; and from (1.6), we get
1 z 1 Z 2-€N.ajbj
fl =—— Za'b' < - 2 2 ) f SJEN 7T T
i’lzlb? i=1 o ?:Ib? i=1 \JEN; ! szNib?

1 & 4
< H—MZb?.f (aibi 1). (1.16)

P
B by jen; 4j bj
&)\ Zjen b}

p

For the function f(¢) = ¢” from (1.16), we get

1 i P 1
—— SNuab| <
;l:lblq i=1 o g lbq
S S

1
— P
- n bfl Zai .
i=1%i i=1

M=

Il
—

—
NIE
S
o
S
8
=,
<R
"

s |l
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Multiplying with ( o b?)p, and raising to the power of %, we get

m I=p P ’
i=1 \JEN; JEN;
1

M=
2
S
IN
N
\'Mm
S
=
~
~
M

IA
R
TP
S
=
v
T
-
R
Tp=
Q
Aalian]
N———
=1

which is (1.15). 0

Corollary 1.2 Using the same conditions as in previous corollary forp € R, p < 1, p #0,

we get
1 1 1
n P n q P
() (zb;f) <(zn) (54) <
i=1 i=1 JEN; JEN; i

Proof.  Let us consider the case 0 < p < 1. We use Theorem 1.6 with p; = bf’ > 0,
x; =alb; 1> 0. Then pix; = blal'b; ! = a” and from (1.6), we get

Sat) < 3 (Do) (20
’1 ?l 1 - lb?l 1 \JjeN; ZjeN,-b?

g S ().

lllll

aibi. (1.17)

M:

1

1
For the function f(z) =7, we get

1 1
1 n P 1 m 2 p r
2| < | ) (5
i:lbi i=1 i= lbt i=1 \JeN; z]E

1 n

< n b‘l Zb? (afb;q) .
i=1"% i=1

==

==

Multiplying with (3, b7) 7, 7, and then with (3L, b1

i=1"i

1 1 1 1
n 14 n q 14 n
(3) (1) <E(3#) (3) <Eon
i=1 i=1 jen; JjeN; i=1

which is (1.17).
If p <0, then 0 < g < 1, and the same result follows from symmetry. O

, we get

Now using Theorem 1.11 we give a refinement of the integral Holder inequality.
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Corollary 1.3 Let p,q € R such that 117 + é = 1. Let w, g1 and g be nonnegative functions
defined on [a,b] such that wg? ,wgd,wg1g2 € L' ([a,b]).
(i) If p> 1, then

[ vz 00

1

(o) (B son)” (] rmmn) )

(i) If p< 1, p#0, then

([ wortioa) ([uosgon)’ |
([

5 ([ worgtwan) ([ wiostoa )
/abw(t)gl (t)g2(t)dr.

IN

i—

IN

TR

Proof. For the case p > 1 we use Theorem 1.11 with p(r) = w(r)gd(r), g(t) = g1(t)g,
and with the function f(x) = x” which is convex for x > 0, p > 1. From (1.8) we get

[ LS AN
(m /a w(t)g5(t)g1(1)g, df)

1 n
J2w(t)gi(r)dt ,-:21 <

1 b -4 p
a0 (a0s o)

Using g — 4 = 1, multiplying with byw(t g4(¢)dr and raising to the power of 1, we have
p a 2 P

IN

/ (gl (0)de

aj—|

A
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1
Now multiplying with (ffw(t)gg (t)dt) . we get

/abw(f)gl(f)gz(f)df

< ([ wston)* (B ([ wosion)” ([

< ([ woetoa) % ([ worctwa) %

For 0 < p < 1 we use Theorem 1.11 with p(r) = w(r)g3(¢), g(¢) = g{ (t)g, ?(r) and with
1
the function f(x) = x? which is convex for x > 0,0 < p < 1. From (1.8) we get

e [ wgg ) IL)
Jiwo)g(n)dr Ja

w<r>g1<r>gz<r>dr)p) !

Ja

1

[ w(r)ﬁ(r)df) <[ wir)es0e; (s, th) p

gy

ffW(t)gg(t)df =
<
2 w(t)gd(r)dt

Now using ¢ — £ = 1 and multiplying with JPw(t)gd(t)dr we have

([ wotoa)’ ([ustioar)’
<3 ([ worstoa) ([

< ["wia 00

If p < 0 then we have 0 < g < 1 and we have the same result from symmetry. O

ai1 Jai, w(t)g3(¢)dr

[ w0t (sh 7).

w(t)g{’(r)dt) ’

1.1.3 Power and quasi arithmetic means

It is interesting to show how the previously obtained results impact on the study of the
weighted power means and the weighted quasi arithmetic means.
First we look at the discrete cases.

LetneN,n>2,x=(x1,....%:), p= (pP1,---,Pn)> xi, piRT = (0,0]. The weighted
discrete power means of order r € R are defined as:

1

Lyn oy’
Mr(x,p) _ (Pn 2,:1171)6,) , T #0,

(I, )% r=0.
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Using Theorem 1.6, we obtain the following inequalities for the weighted discrete
power means. Let’s notice that the left hand side and right hand sides of both inequali-
ties are the same, only mixed means in the middle, which are a refinement, change.

Corollary 1.4 LetneN,n>2,x=(x1,...,Xn), P=(P1,---,Dn), Xipi ERT. Lets,t €R
such that s <t. Then

- 41
1 & !
M,(x,p) < ;2<2m> L pyy) (L18)
L " Mi=1 \JjeN; ]
< M;(x,p),
M,(x,p) < ;2<2m> (xn,. Py (1.19)
nj= JEN; ]
< Mi(x,p

where Xy, = (xj»l,...,x;kl_), PN = (pi-l,...,p;ki), ki = |Ni, ..,j};i},fori: 1,....,m

Proof. We use Theorem 1.6 with f(x) = xs forx > 0,s,t €R,t>0,5#0,s<t. From
(1.6), we get

L t

1 n N 1 m ZjEN' ijj s 1 n r

DN B DY 2m<_;_'§—ZWﬁ
(P" i=1 ) P i3 (jeN,- 2jeN;Pj =

Substituing x; with x}, and then raising to the power of tl we get
1 al ) ¢ L
; jeN; PjX; \ ¢ L
<IT Zpixf> < — 2 Pj) (7]) < —zpi(xf)ﬁ

ni—1 ni—1 ;

szN,' p]
which is (1.18).
Similarly, we use Theorem 1.6 with f(x) = xt forx>0,s,t€R, 5,t>0,5<t We get

g m ¥ N no

JEN; PJXJ) 1 ;

DiXi (7 > — ) Dix].

< nl'zl > z<j€21vl ) ZJGNPJ Pnizzl '

Substituing x; with x}, and then raising to the power of %, inequality (1.19) easily follows.
Other cases follow similarly. O

[

—_
3
 ~
(5
m
=z

Let I be an interval in R. Letn € N, n > 2, x = (x1,...,%,), p= (p1,-.-,pn), Xi € I,
pi € RT, and P, = ¥, p;. Then for a strictly monotone continuous function i: I — R the
discrete weighted quasi arithmetic mean is defined as:

My (x,p) = ( Zp, x,).
"il

Using Theorem 1.6, we obtain the following inequalities for quasi arithmetic means.
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Corollary 1.5 LetIbeanintervalinR. Letn € N,n >2,x= (x1,...,%n), = (P1,---,Pn)s
xi €1, pi € RY. Let h: I — R be a strictly monotone continuous function such that
foh~! convex. Let N; C {1,2,...,n}, i=1,...,m where N;(\N; = 0 for i # j, UL N; =
{1,2,...,n}and ¥ jen, pj >0, i=1,...,m. Then

f (My(x,p)) i(ZP;) (Mn(xn;, py,)) < —sz f (i)

JEN;

WherexNi:('x;lv" ) pN (p“? 7p3'ki): ki: "7j]icl-}:f0ri:17"'7m

Proof. Theorem 1.6 with f substituting with foh~! and x; with & (x;) gives:

1 1 L1 [ Zjen pih(x))
=S o) | ] < = . (hl(fiff))
1 n
< anlpif(xi)- -

Now we give results for the integral variants.
Let p and g be positive integrable functions defined on [a,b]. Then the integral power
means of order r € R are defined as follows:

( =L <x>g’<x>dx) " A0,
M, (g;p;a,b) = ‘

exp (7f“ 7 logg >d> , r=0.

Let x = (x1,...,x,) and w = (wy,...,wy) be positive n-tuples. The weighted power
mean (of the n-tuple x with the weight w) of order r € R is defined as

1 n r\’
(fZ:lww) , r#0,
M, (x;w) = Limwi '

1 Zn 1
i 2 wilogx; N T
eZimy i LTS ( ;le?}l)zzr'lzlwi , r=0.

We’ll use more suitable notation M, (x;;wy; 1,n) for M (x;w).
Using Theorem 1.11 we obtain following inequalities for integral power means.

Corollary 1.6 Let p and g be positive integrable functions defined on [a,b] and let ay,ay,
.,an_1,an be arbitrary such thata = ag < a; < --- < ay_1 < a, =b. Let s,t € R be such
that s <t. Then

aj -
M;(g;psa,b) < M, (Ms (g;p;aH,ai);/ p(X)dx;l,n> (1.20)
aj—1
< M (g;p;a,b),
M;(g;p;a,b) > M (Mt (g:psai-1,a / px)dx;1 n> (1.21)

Z Ms(g’p’aab)'
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Proof. We use Theorem 1.11 with f(x) = x5 for x > 0,s,t €R,s,t#0,s <t (convex on
(0,4-o0)). From (1.8) we get

(s )< 8 (o) (s [ s

1 b
< %/a p(x)g:

Substituing g with g* and raising to the power of %, we get the result.
Similarly, we use Theorem 1.11 with f(x) = xi for x > 0, s,t €R, 5,6 £0,5s<t
(concave on (0,+o0)). From (1.8) we get

(ﬁ / bP(x)g(X)dx)% . % $ ( r

i=1 i—

b
> %/a p(x)g’

Substituing g with g’ and raising to the power of %, we get the result.
Cases t = 0 or s = 0 follows from the inequalities (1.20) and (1.21) by simple limiting
process. O

L
s

A

(x)dx.

s
t

lp(x)dx) <w / 1 p(x)g(x)dx> 7

(x)dx.

Means of the type

aj _
M, <M (g:p3ai1,ai); / p(x)dx;l,n)
aj—1

can be regarded as mixed means.

Let p be positive integrable function defined on [a,b] and g be any integrable func-
tion defined on [a,b]. Then for a strictly monotone continuous function 4 whose domain
belongs to the image of g, the quasi arithmetic mean is defined as follows:

. - 1 b
My(g;psa,b) =h (m/a p(x)h(g(x))dx).

Using Theorem 1.11 we obtain the following inequalities for quasi arithmetic means.

Corollary 1.7 Let p be a positive integrable function defined on |a,b), g any integrable
function defined on |a,b] and let ay,ay,...,a,—1,a, be arbitrary such that a = ap < a1 <
co- < ap—1 < ap=>b. Also assume that h is a strictly monotone continuous function whose
domain belongs to the image of g. If f oh™! is convex function then

% 3 ( / 71 p(x)dx) f(My(g:prai—t,a;)
1

IN

f (My(g:; p;a,b))
i=1

= P0) /abp(x)f (g(x))dx.

Proof. We use Theorem 1.11 with f substituting with foh~! and g with ho g. O
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1.2 Applications in information theory

In this section we give some interesting estimates concerning the discrete and the integral
Csiszar f-divergence, and also for its important special cases (see for example [1], [5], [6],
[10], [12], [15]).

Also, in the discrete case bounds for the Zipf-Mandelbrot law divergence are obtained.

First we consider the discrete case.

Let us denote the set of all probability densities by P, i.e. p = (p1,...,pn) € P if

€0,1]fori=1,....nand ¥} | pi=1.
In [1] Csiszar introduced the f—divergence functional as

q)=Y.qif <‘Z—) : (1.22)
i—1 i

where f: [0,4-e0) is a convex function, and it represents a “distance function” on the set of
probability distributions PP.

In order to use nonnegative probability distributions in the f-divergence functional, we
assume as usual

£(0):= lim f(1), o-f(g):zo, O-f(g> 11mtf(>

t—0+ 1—0+
and the following definition of a generalized f-divergence functional D is given.

Definition 1.2 (THE CSISZAR f—DIVERGENCE FUNCTIONAL) Let J C R be an inter-
val, and let f: J — R be a function. Let p = (pi,...,pn) be an n-tuple of real numbers
and q = (q1,...,q,) be an n-tuple of nonnegative real numbers such that p;/q; € J for
everyi=1,...,n. The Csiszdr f-divergence functional is defined as

)= i‘lif (ﬁ) - (1.23)
i=1 qi

Theorem 1.17 Let I be an interval in R and f: I — R a convex function. Let p =
(p1s--.,pn) be an n-tuple of real numbers and g = (q1, . . . ,qu) be an n-tuple of nonnegative
real numbers such that p;/q; € I for every i =1,...,n, and P, =Y} | pi,On = Y11 qi.
Let N; C {1,2,...,n}, i=1,....m where NNNN; = 0 for i # j, U" N; = {1,2,...,n},

Yienq;>0i=1,.. mandzje—zzjél i=1,...,m. Then
! je

) | M) ! o
f<Q") ’Z<jezzviqj>f<zjem% =5, r(pa) (1.24)

holds.



20 1 REFINEMENTS OF JENSEN’S AND THE LAH-RIBARIC INEQUALITIES

Proof. Using Theorem 1.6 with p; substituting with g; and x; w1th , we get

| m ZjeN,-qjg_j 1 & <pi)
— j - | < — if{— |,
f(Qnil %) n2<j§vqj>f< 2jENqu' _Q"i:E:qu gi

which is (1.24). 0

"U

Corollary 1.8 If in the previous theorem we take p and q to be probability distributions,
we directly get the following result:

2 (2 fb> (M> < Dy(p,q)- (1.25)

f= YieN dj

Theorem 1.18 Ler f: I — R be a convex function on I, [m,M] C I, —eo < m < M < oo
Let p = (p1,--.,pn) be an n-tuple of real numbers and q = (qy,...,qn) be an n-tuple
of nonnegative real numbers such that m < Z" <M, i=1,...,n,and P, =Y} | pi,Qn =
Yrqi. Let Ny {1,2,...,n},i=1,...,m where N;NN; —(Dforl;é], ur Ni={1,2,...,n},
Yienqj >0, fori=1,....,m and m; —mm{pj/qj JENi}, M =max{p;/q;: j € N},
fori=1,...,m. Then

M Yjen; Pj YjeN; Pj )
N n L Yjen; 4) Flom) + Sien;dj lf(M)
D¢(p,q) < )| —— N ey 2N .
f(p q) 1:211 jg];]iq] Mi—””li ! Mi_mi 1
Mg g 1.26
< 1 = (M .
< By & ) (126

holds.

Proof. Using Theorem 1.5 with p; — ¢; and x; — %, we get

1 Dj
D U Y R
YjeN; dj Ljen; dj qj !

1 Dj
m Mi—s5——Yien 4+
Z/GN-‘]} JEN; Jq]
< — qj ’ fmi)+ J(M;
ni21<j§vi j) M;—m; - My =ty .
M- — 3 qi ST 2 il —m
i qi < 1 lq: , 1‘11 =191
< M
= M—m fm)+ M—m )

which is (1.26) 0
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Corollary 1.9 If in the previous theorem we take p and q to be probability distributions,
we directly get the following result:

M, — ZIENPI LN Pi
D) <Y (S a RN () 2y
S = i=1 \ jeN; / M;—m; l M —m; l
M—1 1—m
< — (M), 1.27
< oyl )+ o f (M) (1.27)

If p and g are probability distributions, the Kullback-Leibler divergence, also called
relative entropy is defined as

Dk.(p.q) Zpllog (p’)
— i

Next corollary provides the bound for the Kullback-Leibler divergence of two proba-
bility distributions.

Corollary 1.10 Let N; C {1,2,...,n}, i=1,...,m where Ny\(\N; = 0 for i # j, U |N; =
{1,2,...,n}and Y jen,q; > 0,i=1,...,m

o Letp=(p1,.--.Pn) 9= (q1,--.,qn) be n-tuples of nonnegative real numbers, P, =
Y1 Pi,On = X1 qi.. Then
P 1 & ZJEN Pj 1 & Di
pj|logo—— < — ) pilog—.
Q" Py 1:211 (]gllv j) ZJEN qj Qn, ' qi

o Letp=(p1,...,Pun), 9= (q1,.-.,qn) € P be probability distributions. Then

(2 p,) Zjek Pj < Dk1(p,q).

JEN; jen; 4j

HM=

Proof. Letp = (pi,...,pn) and ¢ = (q1,...,qn) be n-tuples of nonnegative real numbers.
Since the function ¢ — tlogt is convex, the first inequality follows from Theorem 1.17 by
setting f(¢) =tlogz.

The second inequality is a special case of the first inequality for probability distribu-
tions p and gq. O

Corollary 1.11 Let N; C {1,2,...,n}, i=1,...,m where Ny(\N; = 0 for i # j, U" |N; =
{1,2,...;n} and ¥ jen,q; > 0, fori=1,...,m
o Let p=(p1,...,pn) and @ = (q1,...,qn) be n-tuples of nonnegative real numbers.
Letm=min{p;/q;: i=1,....,n}, M=max{p;/q;: i=1,...,n}, mj =min{p;/q;:
JEN;}and M; =max{p;/qj: j € N;}, fori=1,...,m. Then

n b (M- ST g NS
ZPiIOg; < Z > aj
i=1

YjeN; d YieN: 4
log mi / IJM~ TN
1 jEN —m

< 1 log (mm(Mfﬁ)MM(S 7m)>.
M—m
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o Let p=(p1,...,pn) and @ = (qi,-..,qn) € P be probability distributions. Let m =

min{p;/q;: i=1,....n}, M =max{p;i/q;: i=1,...,n}, mj =min{p;/q;: j € N;j}
and M; =max{p;/q;j: j € N;i}, fori=1,...,m. Then

ZjeN; Pj ZjeN; Pj

m 1 mi (M i (
2<Z%>M_ log (my My T

—m;)

| A

Dk.(p,q)

i=1 \JEN;

IN

A—m log (m’”(M’l)MM(l””)) .

Proof. Letp = (p1,...,pn) and g = (q1,-..,qn) be n-tuples of nonnegative real numbers.
Since the function ¢ — tlog? is convex, the first inequality follows from Theorem 1.18 by
setting f(¢) = rlogt.

The second inequality is a special case of the first inequality for probability distribu-
tions p and q. O

Now we deduce the relations for some more special cases of the Csiszar f-divergence.

Definition 1.3 (JEFFREY’S DISTANCE) For p,q € P the discrete Jeffrey distance is de-
fined as

M:

Ju(p.q) = (p,»fq,»nog%.
l

i=1

Corollary 1.12 Let p,q € P. Let N; C {1,2,...,n}, i = 1,...,m where NN\ N;j = 0 for
i# j, UL Ni={1,2,...,n} and ¥ jcn,q; >0, i=1,...,m. Then

JEN; JEN; Yjen; 4;

<Z<Zm 2%»%me Ja(p.q). (1.28)

Proof. Using Corollary 1.8 with f(¢) = (t — 1)logt, t € R", we get

(1-1)logl < 2 (2 q,) (2]61\/ Dj l)longeNin

JEN; z]GN qj ZjeN,- qj
pPi Pi
< qi < )log—,
121 l qi qi

O

and (1.28) easily follows.

Corollary 1.13 Let m,M such that 0 < m < M < +oo, p,q € P such that m < % <
M,i=1,...,n. Let N;C {1,2,...,n}, i=1,...,m where NNNN; = 0 for i # j, U" N; =
{1,2,...,n}, ¥ jen,q; >0, fori=1,...,mand m; =min{p;/q;: j€N;}, M;=max{p;/q;:
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JEN}, fori=1,....,m. Then

, _ ZjeNPj XjeN; Pi
7 Sien 45 Yjen; 4 !
J < — = (m;— 1)1 i+ ————(M; — 1)logM;
d(P»‘I) = l:z] (jeleqj> Mi*mi (ml ) Og”’ll+ Mi*mi ( i ) 0gM;
(1=m)(M—1)
M M—m
< log (_) (1.29)
m
holds.
roof. sin orollary 1.9 wit t)=(t— ogt,t € , we get
P Using Corollary 1.9 with 1)log R* g
n
2 ( >log—
i=1 qi qi
" M — YjeN; Pj jeN;Pj
<D Y g ﬂ(m~—l)logm~+M(M~—l)logM~
— = JEN J leml 1 1 leml 1 1
M—1 1—
< M—m(m_ 1)logm+Arn’;(M— 1)logM,
and (1.29) easily follows. O

Definition 1.4 (THE HELLINGER DISTANCE) For p,q € P the discrete Hellinger dis-
tance is defined as

M:

Ha(p.q) = X (VPi— Vai)*.

i=1

Corollary 1.14 Let p,q € P. Let N; C {1,2,...,n}, i =1,...,m where N\ N; = 0 for
i#j, UL Ni={1,2,...,n} and ¥ jcn,q; >0, i=1,...,m. Then

0<2(1/2p1 /Z%) < Hy(p,q). (1.30)
JEN; JEN;

Proof. Using Corollary 1.8 with f(¢) = (v —1)%,¢t € R™ (1.30) follows.

]

Corollary 1.15 Let m,M such that 0 < m < M < oo, p,q € P such that m < % <
M,i=1,...,n. Let N; C {1,2,...,n}, i=1,...,m where NNN\N; = 0 for i # j, U" N; =
{1,2,...,n}, ¥jen,q; >0, fori=1,...,mand m; =min{p;/q;: j € N;}, Mi=max{p;/q;:
JEN;}, fori=1,...,m. Then

Yjen; Pj ZjeN; Pj
M,_ I I _ .
Hy(p,q) < i Y q; ﬂ( /m~—1)2+M( /M; —1)?
= i=1 \jeN; ! M; —m; l M; —m; l
M—1 1—m
< — 1)+ ——(M—-1)? 1.31
< o (Vm=1) 4 (VM - 1) (1.31)
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holds.

Proof. Using Corollary 1.9 with f(¢) = (v —1)%,t € R (1.31) follows. a

Definition 1.5 (BHATTACHARY YA DISTANCE) For p,q € P the discrete Bhattacharyya
distance is defined as

q) = 2 \V Piqi-
i=1

Corollary 1.16 Let p,q € P. Let N; C {1,2,...,n}, i =1,...,m where NN\ N; = 0 for
i# j, UL Ni={1,2,...,n} and ¥ jcn,q; >0, i=1,...,m. Then

Z > pi Y q; < —Ba(p.q). (1.32)

JEN;  JEN;

]

Proof. Using Corollary 1.8 with f(¢) = —/z, # € RT (1.32) follows.

Corollary 1.17 Let m,M such that 0 < m < M < +oo, p,q € P such that m < f]’— <
M,i=1,...,n. Let N;C {1,2,...,n}, i=1,...,m where NNNN; = 0 for i # j, U" N; =

{1,2,...,n}, ¥jen;q >0, fori=1,...,mand m;=min{p;/q;: j€N;}, Mi=max{p;/q;:
JEN} fori=1,....m. Then

YjeN; Pj o
—B4(p.q) i(Z%) (\/—+ Yjen; ‘11)(\/_ \/_)

= M; —m;
< WmM + )(Vim— VM) (133)
M—m
holds.
Proof. Using Corollary 1.9 with f(¢t) = —/t,t € R, (1.33) follows. O

Now we are going to derive the results from Theorems (1.17) and (1.18) for the Zipf-
Mandelbrot law.

The Zipf-Mandelbrot law is a discrete probability distribution and is defined by the
following probability mass function

1
iMst) = ————— i=1,....M,
M) = e

where
Moo

H =) —
M st Z:l (i—l—l)s

is a generalization of the hormonic number and M € N, s > 0 and ¢ € [0, ) are parameters.
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If we define q as a Zipf-Mandelbrot law M-tuple, we have

i=1 M

) R )

1
ql N (l + IZ)SZHM,Sz,tz

where
M 1
Hygyr, = Y ———)
M.sy,1n lzzl (i+t2)“2

and the Csiszar functional becomes

M
N ) 1
Df(pvlaMa*S‘Z?tZ) = f(pl(l+t2) HMSZJZ)
(
i=1

— i+t2)szHM-,S2J2
where f: I — R, I C R, and the parameters M € N, s, > 0, #, > 0 are such that p;(i +
0)2Hy s €L i=1,....M

If p and q are both defined as Zipf-Mandelbrot law M-tuples, then the Csiszar func-
tional becomes

) i+1)%2H,
Df(i7M7517S27t17t2 2 <(+ 2) NIJZJZ)7
i=1 l+t2 2HMSz 1 (l+t1)S'HM7S|Jl

where f: I — R,I C R, and the parameters M € N, 51,5, > 0, #1,, > 0 are such that

(i+12)2 Hp s 1 cl. ..M.

(i+11)° T Hy, 514 1=
Now from Theorem 1.17 we have the following result.

Corollary 1.18 Let I be an interval in R and f: I — R a convex function. Let p =
(p1,--.,pn) be an n-tuple of real numbers, P, =Y} pi, and q = (q1, . ..,qn) be an n-tuple
of nonnegative real numbers such that p;/q; € I foreveryi=1,...,n. Let N; C {1,2,...,n},
i=1,...,m where N;yN\N; = 0 for i # j, f”lN—{l,Z, n} Supposesz>0 t2>0
are such that p;(i+t)2Hys,p, €L, i=1,...,0, ¥ ey, pj(J +t2) ot €LT=1,.

Then

1 YjeN Dj
f(P) < & f Bl
2 Jg/%/ J+t2) 2Hn 182,02 ZjeNl- (j+t2)521Hn,s2.t2
< Dg(p,i,n,s1,02) (1.34)

holds.

Proof. If we define q as a Zipf-Mandelbrot law n-tuple with parameters s,,,, then from
Theorem 1.17 it follows

1 Yjen; Pj
_2<2 +t2)2Hns2t2>f ] 1

”1 1 ]eN ZJGN,' (j+12)2Hp 55 15

I ()

n 1

G o) H, o i+1
= (J +Z‘Z)szl'ln,sz,tzf(pl( 2) "52712)
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which is (1.34). ]

From Theorem 1.18 we have the following result.

Corollary 1.19 Let f: I — R be a convex function on I, [m,M] C I, —o <m < M <
+oo. Let p = (pi,...,pn) be an n-tuple of real numbers, B, = Y| pi.. Suppose sy >0,
1y > 0 are such that m < pi(i +1t)2Hy s, <M, i=1,...,n. Let N; C {1,2, .nt,
i=1,...,m where NyNN; =0 for i # j, U |N; = {1,2,.. n} pili+1)2Hy s, €1,

i=1,...,n % €lLi=1,....mandm;=min{p;/(j+12)?Hys, 1, j € Ni},
Yjen; m
M; = max{p;/(j + 12)2Hy 515 :
JEN;}, fori=1,...,m. Then
Dy (p,i n) < m 1
p,,,n,8,0) = PR
! i ] jEN ]+t2 2I"In 52,12
3jeN; Pj _ Xewhi
NN RN gy
n,sy,1 i (j+1)" Hnsy
M.
{ T f(mi) + M—m f(M;)
M—Pn 1 —m
< M 1.35
< S M_mf( ) (1.35)

holds.

Proof. 1f we define q as a Zipf-Mandelbrot law n-tuple with parameters s»,#,, then from
Theorem 1.18 it follows

1 . ,
f(pili+1)?Hys, 1)

1
< - -
B z:zl <]€ZN (j+12)%2Hy s, tz)

Z;eNl— Pj ZJEN' Pj .
- ZJENi (j+f2)S21Hn 52512 ZJEN’ (J+f2)S21Hn 8.1 o
X — ; M;
M—m, f(mi)+ M—m; f(M;)
M-t B m
< L f(m 1 M),
<L pm) = )
which is (1.35) d

Now from Theorem 1.17 we also have the following result.



1.2 APPLICATIONS IN INFORMATION THEORY 27

Corollary 1.20 Let I be an interval in R and f: I — R a convex function. Let N; C
{1,2,...,n}, i=1,...,m where N;OAN; =0 for i # j, U" N; = {1,2,...,n}. Suppose

(i412)*2 Hn 55 1 (j+12)2 Hy sy 1
S1,82 > O,ll,tz Z 0 are such that m S I = 1 , N, ZjENi m I,

SjeN; o
U+n) U e[ i=1,...,m. Then

ZJENi (j+tp )3'2 Hn,sz R

1
- 1 ZjENi (j‘Hl)Sl Hn,s R
F =g 2<2 +1)%2H, )f 3. 4
=1 \JjeN: +n 1522 JEN: (j+1)"2Hy sy 1
< Dy(i,n,s1,8,11,1) (1.36)

holds.
Proof. If we define p,q as a Zipf-Mandelbrot law n-tuples with parameters s1,71,52,%,
then from Theorem 1.17, we get (1.36). O

From Theorem 1.18 we have the following result.

Corollary 1.21 Let f: I — R be a convex functionon I, [m,M| C I, —eo <m < M < oo
()2 sty < M, = 1,....n. Let N; C

(H) T Hyg gy =
) (i+12)2 Hyy 55 1
’ (l’*HI)SI Hn.s|,t1

Suppose s1,s2 > 0,t1,tp > 0 are such that m <
{1,2,...,n},i=1,...,mwhere NO\N; =0 fori # j, U" N;={1,2,...,n

ZjeN ——— s
(1) Hnsy g . R (j+1) 2Hush ity |+ :
celi=1,. I el,i=1,...,mandm; = min (j+t|)‘1Hn,s1.xl‘J€N’ R

ZJEN (j+12)2 Hp,s5 1n

(tiz) 2Hnspsy Jj€ M},for i=1,...,m. Then

M; = max { (j+0)" Hpp 0 "

Dy(i,n,s1,52,11,12)

1
= 2 (1%3\/ (j+mn) 2Hn5212>

1 1
ZJENi (j+1y )SIHn,sl,tl ZJEN’ <]+f1) lHn S10
C SN, a— P ————
jENi <j+t2)52Hn 52,12 JEN; <]+t2) 2Hn 52,12
X = m; M;
R ) <2 (i)
M—1 1—m
< m)+———7fF(M 1.37
< T )+ 2 () (1.37)

holds.

Proof. If we define p,q as a Zipf-Mandelbrot law n-tuples with parameters s1,71,52,1,
then from Theorem 1.18, we get (1.37). O

. . 1 1 .
ince minj<; i} = ——w+—— and max;<; i} = ——+——, from the right-
Since 1991{6]1} (n+t2)52H1,S2‘,2 lgtgn{%} (1+t2)52H1,S2‘,2 s g

hand side of (1.34) and the left-hand side of (1.35), we get the following result.
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Corollary 1.22 Let f: I — R" be a convex function on I, [m,M] C I, —o <m < M <
+oo. Let p = (p1,...,pn) be an n-tuple of real numbers, P, = Y pi- Suppose s, >
0, 1 > 0 are such that m < p;(i+1)2Hy 5,1, <M, i=1,...,n. Let N; C {1,2,...,n},
i=1,...,m where NNNN; =0 for i # j, U \N; = {1,2,...,n}, pi(i+1)2Hy s, €1,
i=1,... _ TieNPi €li=1,....mandm;=min{p;/(j+1)?Hps, 1 j € Ni},

)1, o 1
JEN; (j+t2)52Hn,52,t2

M;=max{p;/(j+1)?Hussn: jEN;}, fori=1,....m. Then

& ZjENl‘ pj

INi| f
1
Py(n +0)2H, 5, 4 i=1 ZjeN,- G2 2 sy 1y

< Df(pa ivnvs27t2)

_ 1 2 [ M; |Ni| — (14+12)2Hy s, 1, 2,~eN,-p,~f(m_)
- (1 +t2)san,Sz,l2 i=1 Mi —m; !
n+1)2H, N Pi—m;i|N;
+( 2) n,s7,t ZJGN,p] l| l|f(Ml) (138)
M; —m;

holds.

Proof.  Using min|<;<,{q:i} = m and max;<;<,{q:} = m from the
right-hand side of (1.34) and the left-hand side of (1.35), we get

P 5 (n+12)*2Hy s, 1, Yjen; W

jENi ZHn‘Sz,tZ
< Df(pvianas2’t2)
m 1
Sy —L
i=1 (jeN,- (1 +t2)52Hn,s2,12
M; — ZNZ% zf% —m;
TN (4132 5 1 I (n+19) 2 Hp s 1
X ’ m;) + » M
Mi—mi f( l) Mi_mi f( l) )

and (1.38) follows.

Now we consider the integral case.

Definition 1.6 (CSISZAR DIVERGENCE) Let f: [ — R be a function defined on some
positive interval I and let p,q: [a,b] — R be two probability density functions such that

% €1, forallt € [a,b]. The Csiszdr divergence is defined as

Ca(p,q) = /abq(t)f (%) dr.
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Theorem 1.19 Let f: I — R be a convex function defined on some positive interval I, let
,q: |a, b] — R be probability density functions such that p(( el forallt € |a,b], and
let ag,ay,...,ay—1,a, be arbitrary such thata = ag < a; < -+ < ap—1 < ap =b. Then

n a; )d
1) < ;l </a,-. q(t)df) GZ 12&;) <Cu(p,q)-

Proof. Using Theorem 1.11 with p substituting with ¢ and g with 3 we obtain the result.
ja, 1 P t)dt

Jai-

everyi=1,...,n. O

The condition 8 €1, for all 7 € [a,b] obviously implies 1 € I and - €1 for

Theorem 1.20 Let f: I — R be a convex function defined on some positive interval I, let
P,q: |a,b] — R be probability density functions such that p( yel forallt € [a,b), and

let ag,ay,...,ay—1,a, be arbitrary such that a = ap < a; < - <an 1<a,=b>b. Let m; <
% <M, forallt € [a;-y,ai], m <My, i=1,....,n, m= mimgignmiaMZ max<i<n M.
Then
fu, p(t)d fu, p(t)d
< di Mi fa Ilqtd fa Ilqtd T
Ci(p,q) < / t)dt = : M
) < 3 ([ atonr) | 0 )+ St fa)
< ———f(m)+ ——f(M)

Proof. Using Theorem 1.12 with p substituting ¢ and g with % we obtain the result. O

Definition 1.7 (KULLBACK-LEIBLER DIVERGENCE) Let p,q: [a,b] — R™ be two prob-
ability density functions. The Kullback-Leibler divergence is defined as

KLy(p,q) = /abp(f)log (%) dt.

Corollary 1.23 Let p,q: [a,b] — R be probability density functions and let ay,ay,
., Qy_1,ay be arbitrary such that a = ag < ay < -+ < ay_1 < a, =b. Then

e Jai-, p(t)dt
0< (/ p(t)d )10g o | <KLa(p.q).
i:zl aj—1 fa, 1 q(t)dt
Proof. Using Theorem 1.19 with f(t) =tlogt,t € R™, we obtain the result. O

Corollary 1.24 Let p,q: [a,b] — R" be probability density functions, let ag,a, ...,
a,_1,a, be arbitrary such thata =ag < a; < -+ < ay— < a, = b and let m; < % <M,
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forallt € [a;—y,a;], mi <M;, i=1,...,n, m = min|<;<,mj, M = max<j<, M;. Then

_ Jal e Jai_y p(t)dt
“ b e d al d
(/ q(t)dt) Mmilogmﬁ_ Jaiyadr
ai—1 M

n
— M,-fm,- i— m;

KLs(p,q) <Y
i=1

—1

1—
< mlogm+—mM10gM.
m M—m

SN

Proof. Using Theorem 1.20 with f(t) = tlogt,t € R we obtain the result. |

Definition 1.8 (VARIATIONAL DISTANCE) Let p,q: [a,b] — R" be two probability den-
sity functions. The variational distance is defined by

Va(p,q) = /ab Ip(t) —q(t)|dt.

The following corollary can be also proved elementary by using the triangle inequality
for integrals.

Corollary 1.25 Let p,q: [a,b] — R be probability density functions and let ap,ay, ...,
ay—1,an be arbitrary suchthata =ag < a; < --- < ay—1 < a, =b. Then

n a; a;
0<y / p(t)dt—/ q(t)dt
i=117ai-1 aj—|

Proof. Using Theorem 1.19 with f(¢) = |t — 1],# € R we obtain the result. a

<Va(p,q)-

Corollary 1.26 Let p,q: [a,b] — RT be probability density functions, let ag,a,
..., ay_1,ay be arbitrary such thata = ap < a; < --- < ay—1 < a, =b and let m; < % <

M, forallt € [a;—y,a;], mi <M;, i=1,...,n, m = min|<;<, mj, M = max <<, M;. Then

b
IGROI

M; [ q(t)dt — [T p(t)dt “op(t)dt —m; [¢ q(t)dt
SZ lfa,,1q<) fal—lp() |mi—1|+fa171p() 14 a1 () |Ml—1|
i=1 M,'fm,' M,-fm,-
- 2(M71)(17m)_
- M—m
Proof.  Using Theorem 1.20 with f(¢) = |t — 1|, € RT and m < 1 < M we obtain the

result. O

Definition 1.9 (JEFFREY’S DISTANCE) Let p,q: [a,b] — R be two probability density
functions. The Jeffrey distance is defined by

utp.a)= [ () ~at0))1og (%) .
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Corollary 1.27 Let p,q: [a,b] — R be probability density functions and let ay,ay, . ..
a,_1,a, be arbitrary such thata = ag < ay < -+ < a,—1 < a, =b. Then

n a; a; faa,l,l p(t)dt
0< 3 ([ ptar= [ atey) e (W) <Jalp.q)

Proof. Using Theorem 1.19 with f(¢) = (t — 1)logt,t € R" we obtain the result. O

Corollary 1.28 Let p,q: [a,b] — R" be probability density functions, let ag,ai,...,
a,_1,a, be arbitrary such thata = ap < a; < --- < a,—1 < a, = b and let m; < % <M,

forallt e [ai,l,ai], mi<M,i=1,....n,m= minlgignmi,M = maxlSiSnMi.
o | Mi Jg q(0)de— [T p(t)d
J < S S .—1)logm;
4(p,q) < 1:21 [ T (m; — 1) logm;
Jai, p()dt —mi [51 q(t)dt
— — M; — 1)logM;
+ M —m; ( i ) log M;
M—-1)(1- M
S M=D-m) M
M—m m
Proof. Using Theorem 1.20 with f(¢) = (t — 1)logt,t € RT we obtain the result. O

Definition 1.10 (BHATTACHARY YA DISTANCE) Let p,q: [a,b] — R™ be two probabil-
ity density functions. The Bhattacharyya distance is defined by

Bi(p,q) = /ab p(t)q(t)d:.

Corollary 1.29 Let p,q: [a,b] — R be probability density functions and let ay,ay, ...,
a,_1,a, be arbitrary such thata =ag < ay < -+ < a,_1 < a, =b. Then

1S [ pwar [* g s Byip.a).
_izl\//a,-lp(t) t/qu(t) 1> By(p,q)

Proof. Using Theorem 1.19 with f(t) = —+/t,t € R we obtain the result. O

Corollary 1.30 Let p,q: [a,b] — R" be probability density functions, let agy,ai,...,
a,_1,a, be arbitrary such thata = ap < a; < -+- < a,—1 < a, = b and let m; < % <M,

forallt € [a;_1,ai], mi <M;, i=1,...,n, m =min|<;<,mj, M = max<;<, M;. Then
(M o q(e)de— [ p(e)dr Jai, p(@)dt —m; [5F q(t)dt
B > i—1 i—1 - ai—1 ai—1 M.
a(pq) > 2 M —m i+ — VM
1+ vmM

SN v
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Proof. Using Theorem 1.20 with f(t) = —+/t,t € R we obtain the result. O

Definition 1.11 (HELLINGER DISTANCE) Let p,q: [a,b] — R™ be two probability den-
sity functions. The Hellinger distance is defined by

Hi(pa) = [ (/@ /a0

Corollary 1.31 Let p,q: [a,b] — R be probability density functions and let ap,ai, ...
ay—1,an be arbitrary such thata =ag < a; < --- < ay—1 < a, =b. Then

Ogﬁi<\// 1)dt — \// t) <Hu(p,q)

Proof. Using Theorem 1.19 with f(z) —1)%,¢t € R" we obtain the result. O

Corollary 1.32 Let p,q: [a,b] — R" be probability density functions, let ag,ay,.
ay—1,an be arbitrary such thata =ag < a; < -+ < ay—1 < a, = b and let m; < pé)) < Ml,
forallt € [a;_1,a;), m; <M;, i=1,...,n, m = minj<;<,m;, M = maxy<;<, M;. Then

LM [y q()de— [o7 p()dt
21[ 1 Mi_mil

Jai- p(@)dt —m; [50 q(t)dt
Mi—ml
_ (VM- 1)(1 - m)
B vm+vM

Proof. Using Theorem 1.20 with f(z) = (v/t —1)%, € R* we obtain the result. O

(vmi—1)°

IN

Hd(paq)

+ (VM;i—1)°

Definition 1.12 (TRIANGULAR DISCRIMINATION) Let p,q: [a,b] — R be two proba-
bility density functions. The triangular discrimination between p and q is defined by

_ [P (p(e) —q(1))?
Td(P,CI)—/a Wdl

Corollary 1.33 Let p,q: [a,b] — R be probability density functions and let ap,ay, ...
a,_1,a, be arbitrary such thata =ag < ay < --- < ay_1 < a, =b. Then

Td(pvq)

2
" (f pl)d — J2 q(t)di)
; Lol )dl+fal.,lq(t)dt =

Proof. Using Theorem 1.19 with f(r) = - +1) ,t € R™ we obtain the result. O
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Corollary 1.34 Let p,q: [a,b] — R" be probability density functions, let ag,ai,...,
ay—1,an be arbitrary such thata = ag < a; < -+ < ay—1 < a, = b and let m; < % <M,

forallt € [a;—y,a;), mi <M;, i=1,...,n, m = min| <<, mj, M = max <<, M;. Then

Coa@)de— [ p(O)dt (m;—1)?
M; — m; m;+ 1

noM; [
Tu(p.g) < Y | —
i=1

Jai p(@)dt —m; [i7 q(t)dt (M; — 1)
+ M; — m; M;+1
_ 201-1)(-m)
- M+1D)(m+1) ’

Proof. Using Theorem 1.20 with f(¢) = (tl;—ll)z, t € R™ we obtain the result. O

A note on the Shannon entropy

After the concept of information theory, Shannon entropy is defined as

n
SE(p) = - pilogpi,
=1

where p € P in its discrete case.
Integral form of the Shannon entropy assumes the following form

b
SE(p) = —/a p(t)logp(t)dt,

where p: [a,b] — R be a probability density function.
The corresponding bounds for the Shannon entropy in its discrete form are given as
follows.

Corollary 1.35 LergeP. Let N; C{1,2,...,n},i=1,...,m where NNN\N; =0 fori # j,
UL N ={1,2,...,n} and ¥ jcy,q; > 0,i=1,...,m. Then

m
—logn< 3 (2 q;) (log )y qj'—logINi|> < —SE(q).
i=1 \jeM; JEN;
Proof. Using Theorem 1.17 with f(t) = —logt,t € R™ and q € P, we get
m Y. N D n .
—log(P) <Y, [ X gj (—log(ije : ’_))SZqi(—logP—'_)
i=1 \jeN; Y jen: 4 i—1 qi

For p; =1,i=1,...,n inequality (1.39) follows.
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Corollary 1.36 Let m,M such that 0 <m < M < +oo, q € P such that m < % <M,i=

I,...,n. Let N; € {1,2,...,n},i=1,...,mwhere NN\N; = 0 fori # j, U" \N;={1,2,...,n},
Yjen;qj >0, fori=1,...,m and m; = min{l/q;: j € N;}, M; = max{1/q;: j € N}, for

i=1,...,m. Then

A

m Nl g m;—|Nj|

YjeN; dj ! Y jeN; dj
—SE(q) < qj ———logm; + ———logM;
( ) 1:21 (jgfi j) M; —m; l M; —m; l

" logM (1.39)

IN

M 1 n m
o

M—m "y

holds.

Proof. Using Theorem 1.18 with f(t) = —logt,t € RT, g€ Pand p; = 1,...,n, we get

Sr( e
Si(Z%

i=1 \JEN;

(—logm;) +

Nl v
M; Yjen; 4j Yjen; 4j mi (—logM;)
M; —m; M; —m; 71

and (1.39) easily follows.
Now we consider the integral case.
In its integral form, analogous results are as follows.

Corollary 1.37 Letq: [a,b] — R" be a probability density function and let ag,ay, . .. ,a,_1,ay
be arbitrary such thata =ag < ay < --- < a,_1 < a, =b. Then

7 a; a.i d
—log(b—a) < 2 (/al q(t)dt) log (%) < —SE(q).

i=1
Proof. Using Theorem 1.19 with f(¢) = —logt,t € R* and p(t) = ﬁ,t € [a,b] we obtain
the result.

Corollary 1.38 Let q: [a,b] — R be a probability density function, let

ap,dy,...,ay—1,a, be arbitrary such thata =ag < a; < -+ < ap—1 < ap = b, and let m; <
q(l—l) < M; forallt € [a;—, a;], mi < M, i =1,...,n, m = minj<;<, m;, M = max; <<, M;.
Then

—SE(q) +1log(b—a)

ai—a;_| - M m — ai—aj—|
&[4 (b-a) fu  qar L)l qW)ar
< t)dt : logm; + : log M;
_§<Alﬂ)> M —m gmi M —m gM;
-M —1
< 7mlogm+ E—mIOgM'
Proof. Using Theorem 1.20 with f(r) = —logz,# € R* and p(t) = ;1,1 € [a,b] we obtain

the result.
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Chapter 2

Jensen-McShane type
inequalities on a rectangle
and applications

Let Q be a nonempty set and L be a linear class of real-valued functions
f:Q—R,

having the properties:
Ll: f,ge L= (af+Pg) €L, foral o, €R;
L2: 1 €L, ie.,if f(t) = 1forallz € Q, then f € L.

Throughout this chapter we consider normalized isotonic positive linear functional
F:L—R,

that is, we assume
Al: F(af+Bg)=aF(f)+PF(g) for f,g € L, o, € R (linearity);
A2: feL, f>00nQ= F(f) >0 (positive isotonicity);
A3: F(1)=1.

37
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For instance, some normalized linear positive functionals are:
_ 1 .. .
o F(f)= ] Jo fdv, for positive measure v on Q;

1

e F(f)= Y, fipx. for discrete measure on Q = {1,2,...},
Ykeq Pk jco
where 0 < Zpk<ooandpk20.
keQ

The Jensen inequality for concave (convex) functions is one of the most important in-
equalities in mathematics and statistics. There are many forms of this famous inequality
(discrete form, integral form, etc.). We will consider the McShane generalizations of the
Jensen inequality (see [13], [14, p. 48-49]).

Theorem A 1 (THE MCSHANE INEQUALITY) Let ¢ be a continuous concave function
on a closed convex set K in R" and F be a normalized isotonic positive linear functional
on L. Let g; be functions in L,i = 1,...,n, such that (g,(t),...,gn(¢)) is in K for all
t € Q and the components of ¢(g;) are in the class L. Then (F(gy),...,F(gn)) is in K,
0(F(g1),...,F(gn)) is defined and this inequality holds

F(p(g1):--,0(8n) < @(F(g1),---.F(gn)). (2.1)
If @ is a continuous convex function then the reverse inequality holds.

Note that Rasa in [16] pointed out that ¢ has to be continuous.

In this chapter we provide an extension of the McShane inequality for ¢ being a con-
cave (convex) function defined on a rectangle D = [a,A] x [b, B] and functions g;,g> € L
such that g (¢) € [a,A], g2(t) € [b,B] for all t € Q. The lower bound for F(¢(g1),(g2))
is obtained by geometrical consideration of the secant planes of the surface z = ¢ (x,y).

This chapter is based on the results from the papers [3], [8] and [9].

Notation will be our first issue for clarifications purposes. We are observing rectangle
D = [a,A] x [b, B] separated into triangles in the two different ways:

(i) D = A UA,, where A is a triangle with vertices (a,b), (A,b) and (a,B), and A, =
A((A,B),(a,B),(A,b)). Note that the following is valid:

ANAy = {(x,y): (A—a)y+ (B—b)x—AB+ab=0},
(x,y) €A} & (A—a)y+ (B—b)x—AB+ab<0, (2.2)
(x,y) €Ay & (A—a)y+ (B—Db)x—AB+ab> 0. (2.3)
(ii) D = A3 UAy4, where A3z is a triangle determined with vertices (a,b),(A,B) and

(a,B), while the A4 is determined with (a,b), (A,B) and (A,b). Note that the following is
valid

AsNAy = {(x,y): (A—a)y— (B—b)x—Ab+aB= 0},
(x,y) €A & (A—a)y— (B—b)x—Ab+aB> 0, (2.4)
(x,y) €Ay & (A—a)y— (B—b)x—Ab+aB<0. (2.5)
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For the continuous concave (convex) function ¢ we denote the vertices
Ti(a,b,9(a;b)), T2(A,B,@(A,B)), T3(a,B,¢(a,b)) and T4(A,b,¢(A,B))
and the planes I1; determined by the vertices as follows:
(1,15, Ty), a (15, T3, T4), 115 (T3, Ty, T5) and TI4(Ty,Tq,T3).

These planes are the graphs of affine functions 7 : D — R:

nk(an):)ka‘f'!-lkY‘i‘Vka k€{1727374} (26)
with the coefficients:
o o (p(Aab)f(p(aab) o o (p(avB)f(p(aab)
}“1*}“4*—A_a ) Ml—Ms——B_b ,
A,B)— ¢(a,B A,B)—@(A,b
A=y = 2 j 0(@B) = 2WB) -eAb) 2.7)
—a B—b

vi =@(a,b) — Aa— b, vi=@(A,B) — A — sB,
V3 =@(a,B) —Aza—w3B, vi=Q(A,b)—A4A — b
Let us denote
In this geometrical setting, a condition Ag > 0 means that the edge 7374 lies below the
edge T 1.
Let M;;,m;; : D — R, (i,j) € {(1,2),(3,4)} denote functions defined by
Mij(xay) = max{n’i(x,y),nj(x,y),
mij(x,y) = min{m;(x,y),7;(x,y)}. 2.9)
The compositions of functions M;;(g1,82) : @ — R and m;;(g1,82) : Q — R are well
defined for g1,g2 € L such that g;(¢) € [a,A],g2(¢) € [b,B] for all 1 € Q by
Mij(g1,82)(t) = Mij(81(2),82(1)) = max{m;(g1(2),82(r)), m;(g2(¢),82(1)) },
mij(g1,82)(t) = Mij(81(1),82(t)) = min{m;(g1(¢),82(¢)), 7 (g2(t),82(2)) }-

These functions M;;,m;; : D — R can be defined also as follows:

Ai+Ax+ Wi+ Wj)y+vi+v; Ai—A)x+ Wi— Wj)y+vi—v;
Mij(x,y):( ) (2 1) () (2 ) i

and

(Ai+2Ap)x+ (Wi + )y + Vit Vi [(Ai—Ajx+ (i — w)y+vi—v;
2 2 '

mjj ()C, y) =
We introduce the functions:

77:1(X,y), ('xvy) €A 77:3(x7y)a ('xvy) €Az
T (x,y) = and m34(x,y) = 2.10
s ={ ) () S M= mey), () ear. G0
The compsite functions 712(g1,82) : @ — R and m34(g1,82) : @ — R, are well defined for
81,82 € Lsuch that g;(¢) € [a,A], g2(¢) € [b,B] forall t € Q.
The following lemma integrates the previously presented relations.
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Lemma 2.1 Let M;j,m;; , m» and T34 be functions defined in (2.9) and (2.10). For a
Sunction ¢ : D — R and A@ defined by (2.8) we have
(i) if Ap > 0, then for all (x,y) € D

77?12()6,))) §7T34(X,y), (211)

and
mi2(x,y) = Mia(x,y) and m34(x,y) = mas(x,y); (2.12)

(ii) if A@p <0, then for all (x,y) € D
M2 (X,y) = M34(%,¥), (2.13)

and
mio(x,y) =ma(x,y) and maa(x,y) = Mzs(x,y). (2.14)

Proof. Using elementary algebra, we can obtain some convenient formulas. Namely, in
the term of A there exist relations:

(A—a)y+ (B—b)x—AB~+ab_

m(x,y) = m(x,y) = Ag- B bA_a) ; (2.15)
Ty (x,y) —m(x,y) = A<p'lyg;_l;; (2.16)
m3(x,y) — i (x,y) = A‘P'Z:Z; (2.17)
m(x,y) — m(x,y) = Ap- %; (2.18)
m4(x,y) = m(x,y) = Awﬁ:z; (2.19)
mi(x,y) — m;3(x,y) = A@- (A_a)y(;(i)_(z)x;)Ab+aB (2.20)

According to (2.16), (2.17), (2.18) and (2.19) for all (x,y) in D we have
mj(x,y) = m(x,y) >0 for je {3,4}, i€ {1,2},

and (2.11) holds by (2.10).

To prove the claims in expression (2.12), we check that for (x,y) € Ay, (2.2) and (2.15)
entail that 7} > m, and consequently M1, (x,y) = 1 (x,y) = m2(x,y).

If (x,y) € Ay, then (2.3) and (2.15) give us that m; < m,, and therefore M|, (x,y) =
m(x,y) = ma(x,y).

Furthermore, we note that for (x,y) € As, (2.4) and (2.20) entail that 74 > 73 and
m34(x,y) = m3(x,y) = m34(x, ).

Finally, for (x,y) € A4, (2.5) and (2.20) ensure that 74 < 73, S0 Mm34(x,y) = ma(x,y) =
m4(x,y) according to definitions (2.10), as previously mentioned. O
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2.1 Jensen-McShane type inequality on a rectangle

2.1.1 Main result

Here we state the basic result of this chapter, a refinement of the Jensen-McShane type
inequality on a rectangle proved in [3].

Theorem 2.1 Let F : L — R be a normalized isotonic positive linear functional, where
L is a linear space of real-valued functions defined on a nonempty set Q. Moreover, let
81,82 € L be functions such that g,(t) € [a,A], g2(¢t) € [b,B] for all t € Q and 713,34 be
functions defined by (2.10).

If ¢ : D = [a,A] x [b,B] — R is a continuous concave function then

max{F(m2(g1,82)),F(m4(g1,82))}
< F(max{m2(g1,82),m34(81,82)})
< F(o(g1,82)) < @(F(g1),F(g2)), (2.21)

and if ¢ : D — R is a continuous convex function then

min{F(712(g1,82)), F(m34(g1,82)) }
> F(min{712(g1,82), 734(81,82)})
> F(p(g1,82)) > 0(F(81),F(g2))- (2.22)

Proof. Note that from the property A1 we can obtain

Al F(l(g1,82,---,80)) =1(F(g1),F(g2),...,F(gn))

for every function [ that is linear on R".
So, for linear functions 7; defined by (2.6) we conclude that

F(ﬂ,’(gl,gz)) = ﬂi(F(g1,g2)), i= 1,...,4,

and F(max{m2(g1,82),m4(g1,82)}) is well defined. The statement of the McShane theo-
rem ensures that (F(g;),F(g2)) € D.

The first inequality (2.21) follows by applying the monotonicity property of the func-
tional F:

m12(g1,82) < max{m2(g1,82),m34(81,82)},

m34(g1,82) < max{m2(g1,82),M4(g1,82)},
F(m2(g1,82)) < F(max{m2(g1,82),m34(81,82)}):
F(m34(g1,82)) < F(max{mi»(g1,82),m34(81,82)})-

The concavity of @ : D — R provides that for all # € Q and (g;(¢),82(¢)) € As
i=1,...,4itholds:
mi(81(1),82(1)) < @(81(2),82(1))- (2.23)
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In the case of ¢ being a convex function, the inequalities are reversed.
Using (2.10) and inequalities (2.23) we show that the following inequalities hold for
concave functions ¢, for all € Q:

m12(81,82) < @(g1,82) and m34(g1,82) < 9(g1,82)-

Hence we have

max{72(g1,82),m4(81,82)} < @(g1,82)-

Applying the normalized positive linear functional F* we obtain the second inequality
in (2.21).

The third inequality in (2.21) is the well-known Jensen inequality which was modified
by Jessen and generalized by McShane (2.1).

To prove (2.22), note that if ¢ is convex, then —¢ is a concave function. O

By setting conditions A¢ > 0 or A¢@ < 0 then Theorem 2.1 can be generalized as fol-
lows.

Theorem 2.2 Let F : L — R be a normalized isotonic positive linear functional, where
L is a linear space of real-valued functions defined on a nonempty set Q. Moreover, let
81,82 € L be functions such that g(t) € [a,A), g2(t) € [b,B] for all t € Q, 15,734 be
functions defined by (2.10) and M;;, m;; be functions defined by (2.9).

(i) Suppose that ¢ : D = |a,A] X [b,B] — R is a continuous and concave function and
A@ is defined by (2.8).

(i1) If A > 0, then

My2(F(g1),F(g2)) < F(M12(g1,82))
max{F(m2(81,82)), F(m34(g1,82))}
F(max{m2(g1,82),m34(g1,82)})
F(m34(g1,82)) < F(9(g1,82))

¢(F(g1),F(g2))- (2.24)

IAIACIA

IN

(i2) If Agp <0, then

M34(F (g1),F(g2)) < F(Msa(g1,82))
max{F(m2(81,82)), F(m34(g1,82))}
F(max{m2(g1,82),m34(g1,82)})
F(mi2(g1,82)) < F(9(g1,82))

o(F(g1),F(g2))- (2.25)

IAIACIA

IN

(ii) Suppose that ¢ : D = [a,A] x [b,B] — R is a continuous and convex function and
A@ is defined by (2.8).
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(ii)) If Ap <0, then

F(mi2(g1,82))
min{F(m2(g1,82)), F (m34(81,82)) }
F(min{7m2(g1,82), m34(81,82)})
F(M34(g1,82)) = F(0(81,82))
?(F(81),F(g2))-

myz(F(g1),F(g2))

(AVARAVARLY]

Y

(ii2) If A > 0O, then

F(m34(g1,82))

min{F (m12(g1,82)),F (m34(81,82))}
F(min{m2(g1,82),34(81,82)})

= F(M2(g1,82)) > F(0(g1,82))

> @(F(g1),F(g2)).

m34(F(g1),F(g2))

(AYARAVARAY

Proof. (i) First, we consider a concave function ¢ : D — R.

(1) Since m(g1,82) < Mi2(g1,82) and m(g1,82) < Mi2(g1,82), properties of func-
tional /' ensure that

F(mi(g1,82)) = m(F(g1),F(g2)) < F(M12(81,82))

and
F(m(g1,82)) = m(F(81),F(82)) < F(M12(81,82)),

so the first inequality in (2.24) states.

Since ¢ is a concave function with Ag > 0, the second, fourth and fifth inequalities in
(2.24) are consequence of (2.11) and (2.12) in Lemma 2.1.

The third and the last inequality are rewritten from (2.21).

(i) If we assume that ¢ is a concave function with A@ < 0, the first inequality in (2.25)
is consequence of isotonicity.

The second, fourth and fifth inequalities in (2.25) are consequence of (2.13) and (2.14)
in Lemma 2.1.

The third and the last inequality are rewritten from (2.21).

(ii) Similarly we can prove (ii;) and (ii). O

Remark 2.1 The figure 2.1 visualises the Jensen-McShane type inequality on the rect-
angle D for linear isotonic positive functional E, and for a concave function ¢ such that
A¢ > 0 (Theorem 2.2 case (i})).
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@(4,B)

o(a,b)

(1,5)

Figure 2.1: Jensen-McShane type inequality on a rectangle

Remark 2.2 Let ¢ : D — R be a continuous and concave function and A¢ = 0. Then
holds

AF(g1)+uF(g2) +Vv < F(0(g1,82)) < @(F(g1),F(g2)),

withA =A, u=wandv=v,k=1,....4
Let ¢ : D — R be a continuous and convex function and Ag = 0. Then holds

AF(g1)+UF(g2)+Vv > F(p(g1,82)) < 0(F(g1),F(g2)),

withA =X, u=wandv=v,k=1,....4.

2.2 Applied results

In this section we present applied results proved in [3], the sequence of inequalities which
include the McShane generalization of the Jensen inequality on a rectangle for different
choices of the functional F.
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2.2.1 Diaz-Metcalf type inequalities

The results of this section were inspired by the research of V. Csiszar and T. F. Méri based
on the Diaz-Metcalf inequality in the probability settings ( see [2]. [15]). They got a result
related to the random variables, for the expectation E and for the concave function defined
on a rectangle.

For the random variables &, defined on a probability space (Q,Z,P) with P(m; <
E<My) =1,P(my <n <Mp) =1,M,M>,my,my >0, Diaz-Metcalf inequality holds [5]

szzE[éz] +m1M1E[n2] < (m]mZ +M1M2)E[én]

Csiszdr and Méri in [2] obtained the lower bound for E[E ] for known E[&2] and E[n?] as
follows:

AE[E%)+UE[n*]+v <E[En]. (2.26)

This result can be interpreted according to our investigation:

Theorem A 2 (THE DIAZ-METCALF TYPE INEQUALITY) Supposethat ¢ : D = [a,A] x

[b,B] — R is a concave function. Let (X,Y) be a random vector, P[(X,Y) € D] = 1 and

E[X],E[Y] be the expectations of random variables X and Y with respect to probability P.
If Ap > 0, then

My (EX],E[Y]) <E[p(X.Y)] < ¢(E[X],E[Y])
holds and if Ag < 0, then
M34(E[X].E[Y]) <E[p(X.Y)] < @(E[X],E[Y])
holds, where My, and Msy, are defined by (2.9) and Ag is defined by (2.8).

As an application of Theorem 2.2 for mathematical expectations and bounded random
variables X,Y : Q — R we obtain the following refinement of the Theorem A2.

Theorem 2.3 Suppose that ¢ : D = [a,A] X [b,B] — R is a concave function. Let (X,Y)
be a random vector with P[(X,Y) € D| = 1 and E[X|],E[Y] be the expectations of random
variables X and Y with respect to probability P.

If Ap >0, then

Mp(EX]E[Y]) < E(M2(X,Y))
max{E[m(X,Y)],E[m4(X,Y)]}
E[max{m(X,Y), m4(X,Y)}]
E[m3(X,Y)] <E[p(X,Y)]

o(E[X],E[Y]),

IAIACIA

IN

and if Ap <0, then
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M3 (E[X],E[Y]) < E[M3s(X,Y)]
< max{E[m2(X,Y)], E[m4(f,8)]}
< Elmax{m(X,Y),m4(X,Y)}]
= Emp(X.Y)] <E[p(X,Y)]
< ¢(E[X],E[Y]).

Remark 2.3 By substituting ¢(x,y) = (xy)%, a=m?, A=M}, b=m}and B=M? in
Theorem A2, we get the Csiszdr and Méri’s coefficients:
(i) If

(M5 —m3)E[E%] + (M} — m})E[n°] < M{M5 — mim3
holds, then Csiszar and Mori’s coefficients are:

nmy

mi
- =u =—— and v=v = (MM, —mmy)AU;.
Y2 u = u 1 = (MM, 1m2) A1t

A:A =
! my + M

(i) If
(M3 —m3)E[E%] + (M} —m})E[n*] < M{M3 — mim3
holds, then Csiszar and Mori’s coefficients are:

M,

M,
— =l =——— and Vv=v, = (mmy— MMl l,.
Ty U=l » = (mymy 1Ma) 22 o

A=A =
2 my + M,

Remark 2.4 Theorem 2.3 improves Csiszar and Mori’s result:
(i) If
(M3 —m3)E[E%] — (M{ —m})E[n°] < miM3 — Mim3,

holds, then Csiszar and Mori’s coefficients are:

M,

mi
—_— =g3=———— and Vv=r3= (Mimry—mM>)AzU3.
i M= 3 = (Mimy —miMp) A3 s

A=A =
’ my + M>

(ii) If
(M5 — m3)E[E*[— (M} —m})E[n*] > miM5 — Mim3
holds, then Csiszar and Mori’s coefficients are:

my

e and vV =ry = (mMy—Mimy)Aslis.
i+ M 4 = (miM, 1m2) Aq g

)L:p4: n=q4=

my + M

According to Lemma 2.1 for functional E we have that new lower bound for E[£ 7] is
greater than bound in Remark 2.3:

ME(E?] + WEM®] +vi S LE[E] + wEM® +v;, (i,)) €{(1,2),(3,4)}.
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2.2.2 Hadamard and Fejér type inequalities

In this section we obtain a refinement of Feyér type inequalities calculated by |A@| as an
application for a functional defined as weighted integral over the rectangle D.

In [10] authors obtained the following result considering the extension of the weighted
version of the Hadamard inequality known as by Fejér’s inequality for functions of two-
variables defined on a rectangle (see [7], [14, p. 138]).

Theorem A 3 (THE FEJER TYPE INEQUALITY) Letw:D = [a,A] X [b,B] — R be a non-
negative integrable function such that w(s,t) = u(s)v(t), where u : [a,A] — R is an in-
tegrable function such that [*u(s)ds =1, u(s) = u(a+A —s), for all s € [a,A], and
v : [b,B] — R is an integrable function such that [Pv(t)dt = 1, v(t) = v(b+ B —1) for
all s € [a,A]. If @ : D — R is a concave function, then

olab) olet) g/Dw<x><p<x>dxg(p(“§A,”+TB).

As an application of Theorem 2.1 for a functional defined as a weighted integral over
the rectangle D, we obtain a refinement of Feyér’s inequalities calculated by |A@|.

Theorem 2.4 Let w: D = [a,A] X [b,B] — R be a nonnegative integrable function such
that w(s,t) = u(s)v(t), where u : [a,A] — R is an integrable function, f; u(s)ds=1,u(s) =
u(a+A —s), for all s € [a,A], and v : [b,B] — R is an integrable function, [Fv(t)dr = 1,
v(t) =v(b+B—1t),forallt € [b,B]. If  : D — R is a continuous concave function, then

. { 06D oB) o)+ (e } ~0(ag))

< /Dw(x)(p(x)dx <@ (a—;A’ #)

If ¢ : D — R is a continuous convex function, then

(P(CHZ—A,¥) < /Dw(x)<p(x)dx

min{(p(a’b) +9(A,B) ¢(A,b)+¢(a,B)
2 ’ 2

(2.27)

IN

}+0<|A<p|>, (2.28)

where

|A(p| 1 A B*fi—:z(sfa)
0(|A(p|) = T E/a SM(S)(\/bng_b(sa) v(t)dt)ds

1 B A—4=4(1—b)
+ﬂ A tv(t)(/a o u(s)ds)dt}.

5

Proof. Suppose that ¢ : D — R is a concave function. We apply Theorem 2.1 and Lemma
2.1 for a functional F defined on L, the class of integrable real functions on & = D by
F(f)= [pwx)f(x)dx, for f: Q=D —R.
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Let g1,82 € L be such functions that g;(s,#) = s, g2(s,7) = ¢, for all (s,7) in Q = D.

Using the properties of functions w,u and v, we may check that F(g;) = “+A as follows:
A B
Flg1) = / w(x)g1 (X)dx = / / w(s, )sdsdt
a Jb
= / su(s / )dt) ds
uJEA
:/ ds+/ su(a+A—s)ds
a
= use the substltutlon at+A—s=x
atA a+A
2
:/ ds+/ (a+A—x)u(x)dx
a
atA
7 A
= (a+A)/ ’ u(x)dx = ata
a 2
Similarly, we can show that F(g>) = 235.

b—la—b
If Ap > 0, then we calculate F (m34(g1,g2)) using a fact that min{a,b} = a—i_fw':
1
F(m3a(g1,82)) = 3 /D[(M + A4)s + (U3 + Ua)t + v3+ valu(s)v(t)dsdt

- ; /D [(A3 — A4)s + (U3 — Ua)t + v3 — va|u(s)v(t)dsdt
¢(a;b)+ (A, B)

= PR o)
_ 9@b)+9(4,B)
= PP o(ag).

We obtain the final expression for O(A@) by elementary calculus as follows.

0(Ap) = / (A3 — Aa)s+ (s — 1)t + Vs — valu(s)v(r)dsdr.
For Ap > 0, (s,7) € Az implies
(A3 —Aq)s + (U3 — Ua)t +v3 — vy > 0,
and (s,#) € A4 implies that

(2.3 — A.4)S+ ([.13 — ,LL4)l‘ +v3—vy <O0.

0(Ap) = %/M (A3 — Aa)s+ (U3 — pa)t + v3 — valu(s)v(t)dsdt

1

-3 A [().3 — A.4)S+ (,Lh — [.14)1 +Vv;— V4]M(S)V(l‘)dsdt
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- AT(p{ (Aia) [/A3 su(s)v(t)dsdt — /A4 SM(S)v(t)dsdt}
(Bl_b) [/A3 tu(s)v(t)dsdt — /A4 tu(S)v(t)dsdt}

(Afi);(;b_b) [ /A (s)v(e)dsde /A 4 u(s)v(o)dsd)| }

= AT(/’{ (Aia) {/aA su(s)(/;(sa)wv(t)dt)ds

B A
_/b tv(t)(é_z(tb)mu(s)ds)dt}
aB — A
,7(14 _li)(gli 5 {/a u(s)(/:[l(sa)+bv(t)dt)ds
_ / Au(s)( /b = (SiaHbv(t)dt)ds }
A B B (s—a)+b
= %{ﬁ[/a su(s)(AB_z(SaHbv(t)dt—/b ' v(t)dt)ds}
B 44 (1-b)+a A
_(Bl—b) {/h tv(t)(/a ’ u(s)ds—A%a(lib)ﬂu(s)ds)dt}
aB — A B
7(14—311)7(217—19)[[1 M(S)(/Bz(sa)+bV(t)dt

_ /b”(saHbv(t)dt) ds} }

Since u(s) = u(a+A —s) for all s € [a,A] and v(t) = v(b+B—1t) for all r € [b,B], we
have

We use substitutions a+A —s = x, b+ B —t = y and calculate:
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0(Ap) = %{ﬁ{/jm“)(ﬁb( d,+/
_(Bib) [/bBtv(t)(/f;Z(tb)w (s)ds + AT, (x)dx)d}

_% [/aA u(s) (ﬁBb(s aHbv(t)dt + /BBH(Sa) v(y)dy)ds} }

A—a

BBb

dy) ds}

b

=G
= sl o (fpy ., o)

B — =5 (t=D)
+(Blfb)[/b tv(t)(/‘b’(zb) (s)ds)dt}

B

aB — A B—B=L(s—a)
(A_i)i(;b_b)[ [ s /B o (,W)ds}}.

It is easy to see that third integral equals to zero.
For A@ < 0 we have to calculate F (m2(g1,82)):

F(miz(g1,82)) = %/D[()«l +A2)s+ (U1 + )t + vi + voJu(s)v(r)dsdt

1
) /D [(A1 = A2)s+ (1 — o)t + Vi — Valu(s)v(t)dsdt

_ @Bt eAb) | gy - 2@BITolAD)
2

- o(lag).

Now, the inequalities in (2.21)

max{F(m12(g1,82)), F (m34(81,82))} < F(9(g1,82)) < @(F(g1),F(g2)),

Lemma 2.1, relations (2.12) and (2.14) imply (2.27).

In the case of ¢ being a convex one, note that —¢ is concave and we use the previous
proof. The term O(|A@|) is a consequence of (2.22), (2.14) and the fact that max{a,b} =
a+b+la—D|

> .

Special choice of u,v in Theorem 2.4 gives a refinement of the Hadamard inequality

for a concave and convex function of two variables obtained in [10].

O

Corollary 2.1 Suppose that ¢ : D = [a,A] x [b,B] — R is a continuous concave function.
(i) If A@ > O, then it holds

20(a,b) +20(A,B)+@(a,B) + @(A,b) _ [* [Eo(1,5)dds
6 (A—a)(B—Db)

at+A b+B
— . 2.2
<p( R ) (2:29)




2.2 APPLIED RESULTS 51

(ii) If Ap <0, then it holds

2¢(a,B)+2¢(A,b)+ ¢(a,b)+ ¢(A,B) ffb Q(t,s)dtds

6 -~ (A—a)(B-b)
a+A b+B
< — . 2.30
Co(HAD) o
Proof. Substituting u(s) = r- and v(t) = 7' in (2.28) and (2.27) one can get O(|A¢|) =
|Ag| O
e

Corollary 2.2 Suppose that ¢ : D = [a,A] x [b,B] — R is a continuous convex function.
(i) IfAg > 0, then

<a+A b+B) _ 1218 o(t,s)drds

27 2 )~ (A-a)(B—b)
. 2(p(a,B)+2(P(A»b)6+(P(avb)'HP(A’B)_ 2.31)
(ii) If A@ <0, then
(a+A b+B) i Jy @(t,5)dids
<
27 2 )~ (A-a)(B-b)
< 2<p(a,b)+2<P(A’B)6+‘p(a’3)+‘p“’b). (2.32)

Remark 2.5 Allasia in [1, Theorem 1] gave the Hermite-Hadamard inequality for a tri-
angle which implies our result in Corollary 2.2. The right side of the inequality in Theorem
1, for a convex function ¢ and for the special choice of triangles Aj,A; and Az, A4 gives

f;fb Q(s,1)dsdt

(A—a)(B—b)

- min{<p(a,b)+2<p(A,b)+2<p(a,B)+<p(A»B) 2¢(a,b) +@(A,b) +¢(a,B) +2¢(A,B)
6 ’ 6

2.2.3 Lupas type inequalities

In this section we apply normalized positive linear functional defined by

X1 +h y,+k
/ / f(s,1)-w(s,t)dsdt
X1— Vi—

x1+h  pyr+k
/ / w(s,t)dsdt

i=1,2, for f:Q=D—R. (2.33)

)
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A local property of concave functions inspired by the Feyér inequality has been given
by Vasié¢, Lackovié¢ (1974, 1976) and Lupas (1976), (see [6, p. 5]).

Theorem A 4 (THE LUPAS INEQUALITY) Let p,q be given positive real numbers and
a; < a < b < by. Moreover, let w: [a1,b;] — R be a positive symmetric function with

pa+gb
Vé‘Sp@Cf to X0 =

,.e. wxg+5) =w(xg—s),for 0 <s<h.

Then the inequalities

[ oo
w(x)Q(x)dx
b) S
p(p(a)iqw( ) < I - < o(x) (2.34)
pvd / w(x)dx
Xofh

hold for all continuous concave functions ¢ : [a;,bi;] — R if and only if h < ﬁ -min{p,q}.

Theorem A4 inspired us to give the following result related to Theorem 2.1.

Theorem 2.5 Let L be a linear space of real-valued functions defined on a nonempty set
Qand g1,82 € L be functions such that g (t) € [a,A], g2(t) € [b,B] for all t € Q. Moreover,
let F : L — R be a normalized isotonic positive linear functional such that

a+qgA b+ pB b+gB
Fle) =22 and F(e)=T—L2 o F(g) =L

(2.35)
P+q r+q P+q

where p,q > 0 and p*+ q*> > 0.
(i) Suppose @ : D = |a,A] x [b,B] — R is a concave continuous function. Then

max{pw(a,Bqu(A,b) po(a,b) +q¢(A,B) |A<p|}
p+aq ’ p+q 2
< F(o(g1,82))

A B A B
Smin{(p(pa—i—q ’pb—i—q )7(p(pa+q ’qb—i—p )} (236)
p+q P+q p+q P+q

(i) Suppose @ : D = [a,A] X [b,B] — R is a continuous convex function. Then

A pb+qB A gb+ pB
max{(p(paJrq P +q )7(p(pa+q K +p )}
pt+qa’ p+q p+q’ pt+q

< F(o(g1,82))
min{pw(a,B) +499(A,b) pp(a,b)+qp(A,B) |Ag| }
p+q ' p+q 2

A

IN

(2.37)

Proof. (i) First we suppose that ¢ : D — R is a concave continuous function, A@ > 0

b B
and F(gr) = 4 J—ir_p . According Theorem 2.1, Theorem 2.2 and Lemma 2.1, we have to
pP+q

calculate

Flma(g1,g0)) = F <7T3(gl,g2)+ﬂ4(gl,gz) —|m3(g1,82) — 7T4(81782)|> '

2



2.2 APPLIED RESULTS 53

The properties of F' and (2.7) enable us to continue with

1 a+ gA b+ pB
F(m34(g1,82)) = —(lzp A

+¢(a,B) — Aza— M33>

3
2 P+q P+q
1 pa-+qA qb+pB
=g + Uy +@(A,b) — A3A — u3b
2( pP+q p+tq (4.8)

1
—5F(Im(g1,82) — (g1, 82)1)-
Using some algebra operations with (2.20) we obtain

(p+q)(p(a,b)+@(A,B) + (p—q)(@(a,B) — p(A,b))
2(p+q)

F(|(A—a)ga— (B—Db)g1—Ab+abB|).

F(m34(81,82)) =

_L Aol
2(B—b)(A—a)

Note that the maximum value of |(A —a)g, — (B—b)g1 —Ab+aB|is (B—b)(A—a) so we
can claim that

(P+9)(9(a,b)+9(A,B))+(p—q)(¢(a,B) —¢(A,b)) Ag

F(m34(g1,82)) > 2t d) -5

Using Theorem 2.2 and (2.35) we have

a,B)+qp(A,b a+qgA gb+ pB

P9(aB) +q9( )SF«p(ghgz))g(p(u,u), (2.38)
p+q r+q p+tgq
b+¢gB

The same analysis can be used with the assumption that F(g;) = P>t , to prove:

a,b)+qp(A,B A a+qgA pb-+qB

P9(@.b) +q9(A.B) | ¢|§F((p(ghg2))§(p(u,u)_ (2.39)
p+q 2 ptq ptgq

Taking the maximum of (2.38) and (2.39), we obtain the desired inequality (2.36).
Very similar procedures for A@ < 0 give the same result (2.36).
For the convex case we use Theorem 2.1, Theorem 2.2, Lemma 2.1, and calculate

F(M12(g1,gz)) - F (ﬂl (g1,g2)+71'2(gl,gz)+ |7T1 (glagQ) - 7T2(g1a82)|) )

2
O

Generalization of Theorem A4 for concave functions of two variables is obtained in
the following corollary.

Corollary 2.3 Let w: D = [a,A] X [b,B] — R be a nonnegative integrable function such
that w(s,t) = u(s)v(t), where u : [a,A] — R and v : [b,B] — R are integrable functions
with properties: u(x) +s) = u(x; —s), for all s € [0,h], v(yi +1) = v(yi —1), i = 1,2, for
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gb+ pB

A b+ gB
patq Potyq and y, = m are fixed and determined
pP+q

» V1
r+q rt+q
with given numbers p,q > 0, p> 4+ q* > 0. For all h,k > 0 such that

all t € [0,k] where x; =

A—a B—b
0<h<=Lmin{p.g}, 0<k<—"min{p,q}, (2.40)
ot q {p,q} P {p.a}
it holds
(i) if  : D — R is a continuous concave function, then
xX1+h  pyr+k
(s,1)dsdt
pe(a,B)+q0(A.b)  Ap—[Ag| _ / / )
4 - x1+h )72+k
p+q / / w(s,t)dsdt
X1 ) k
S (P(xla)’Z) (241)

and

X1 +h 1+k
,t S t)dsdt
po(a.b) +qo(A.B) Ap+|Ag| _ L, L menet.nas
4 - x1+h  py1+k
p+q / / w(s,t)dtds
X1 ) k

< @ (x1,y1)5 (2.42)

(ii) if @ : D — R is a continuous convex function then

x1+h  py1+k ( ) ( )d J
wi(s,t)Q(s,t)dsdt
p9(a,b) +q9(A.B) Ap—|Ag| _ /xl /v. y

4 - x1+h  py1+k
p+q / / w(s,t)dsdt
x| 1
< @ (x1,1)
and
xX1+h  py2+k Jsd
t 1
po(a.B)+4p(A.b)  Ag+[ag| fia Jy ot
4 - x1+h )72+k
pra / / w(s,t)dsdt
X1 yo— k

IN

O (x1,y2)-

Proof. (i) To prove (2.41) we check that conditions [x; — ,x, + h] C [a,A] and [y; —
k,yi+ k] C [b,B] are satisfied by (2.40). We use Lemma 2.1 and Theorem 2.1 for Q = D,
functions g; (s,#) = s and g»(s,7) = . The functional is defined by

x1+h  pyi+k
/ f s,1)-w(s,t)dsdt
X

1~ Yi—
x1+h  ryr+k
/ / w(s,t)dsdt

,i=12, for f: Q=D R, (2.43)
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The functional (2.43) is positive, linear and F (1) = 1, so the proof is similar to the proof
of Theorem 2.5. O

—a

A B—b
Remark 2.6 In the cases p=¢, h= and k = — Theorem 2.3 is expressed as

the Corollary 3.1 in [10].

Integral version of Hadamard’s inequalities for concave function of two variables is a
consequence of Theorem 2.3.

Remark 2.7 Using Corollary 2.3 for w(s,7) = u(s) = v(r) = 1 the functional acquires the

shape
x1+h  pyr+k
F dsdt = xi.
(1) = 37 - /y sdsdt = x;

The inequalities obtained from Corollary 2.3 with the mentioned shape of the functional,
show how the local feature from the Hadamard inequality is enlarged on the functions of
two variables.

A—a B—b A B
Remark 2.8 Forp=g¢, h= 5 k= — Y such that / u(s)ds = / v(t)dt =1
a b

one can get Corollary 3.2 in [10].

2.2.4 Petrovi¢ type inequalities

In this section we present a refinement of one discrete generalization of the Petrovi¢ in-
equality as an application of Theorem 2.2 in a discrete case including the special choice
of Qand F.

In [10] authors achieved the following generalization of the famous Petrovi¢ inequality.

Theorem A 5 (THE PETROVIC TYPE INEQUALITY) Let p = (p1,...,pn) and q =
(q1,---,qn) be n-tuples of nonnegative real numbers with P, :== ¥, p; (> 0) and Q,, :=
Yi_1q;j (>0). Suppose that x = (x1,...,%,) and 'y = (y1,...,y) are n-tuples of non-
negative real numbers such that 0 < x; < 37" | pix; <c and 0 < y; < 2’}11 qjy; <d, for
k=1,2,....n

Let ¢ : [0,c] x [0,d] — R be a concave function.

(i) Suppose that

n n n n
¢(0,0)+¢ (Zpixz', D 61ij> >0 <2pixl',0> +o <0» D q,~y,~> .
i=1 j=1 i=1 j=1

1 1

n n

1 [ 1 : 11

—o( Xpxi0 |+ =00, Y gy | +(1-5 =) 00,0

p,,‘p<l.1p ) Qn<p< ’qm> < P Qn)q)( )
1

n n

ni=1j=1
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1 1

n n

1 1 n n
(Pn'i‘@_l)(p(izlpixi»jZIQij) + (1 Qn) (izplxu )
1 n
+ <1 - Fn) Q (0712161]')’]')

Z Z Pigq;Q(xi,y;)-

(ii) Suppose that

n n n n
?(0,0)+ ¢ (Zpixz-, > qm) <¢ <2Pixi;0> +¢ (0, D qm) :
i-1 i=1 i=1 =1

If P, > Qp, then

1 [ n 11 n 1
R4 (Zpixi, Z qm) + (@ - E) 0 (0,]_21%%) <1 - @) ®(0,0)

n n

ni=1j=1

If O > Py, then

Qn (lzlple, ) C]/YJ> (Qn Pn) ¢ (épm,O) + (1 — I%) 0(0,0)

n n

< Piq;®(xi;y;)
EIQHIZ]JZ] Y ' !

We obtain a refinement of Theorem A5 as an application of Theorem 2.2 in a discrete
case including the special choice of Q and F.

Theorem 2.6 Let p = (pi,...,pn) and q = (q1,--.,qn) be n-tuples of nonnegative real
numbers with Py := ¥i_; p; (> 0) and Qn == ¥'i_, q; (> 0). Suppose that x = (x1,...,x,)
andy = (y1,...,yn) are n-tuples of nonnegative real numbers such that 0 < x; <X} | pix; =
A<cand0 <y §Z’}:lqjyj:B§d,fork: 1,2,....n

Let ¢ : [0,¢) X [0,d) — R be a concave function.

(@) If

n n n n
0] <2pixl', > qj'yj) >0 <2pixz',0> +o (0, D 61ij> )
i=1 j=1 i=1

j=1
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then
0,0)+ =22 — |+
¢(0.0) 2 0. 2 P O
AP & xa X Yy
9,0, 2 &
1 n n
< 2 2 pl‘h(p(xu)’j) (2.44)
P”Q”i:lj:l
(id) If
n n n n
o Y pixi. Yayi | e XY pxi0|+0(0,Y gy,
i=1 j=1 i=1 j=1
then
0,0)+ 22— — | e
¢(0.0) 2 P 0 2 P O
Ao 1 LS X Vj
Ao, T
2[ IR
Xi, 2.45
_PQniZUZPICIJ(P z)’j ( )

Proof. We use Theorem 2.2. Let L be a linear class of real-valued functions defined on
Q% ={1,2,...,n} x {1,2,...,n} having the conditions L1 and L2. We consider a func-
tional F on L defined by

i1 X1 pigjh(i j)
2;1:1171'2?:1611' ,

where p = (p1,p2,...,pn) and q = (q1,92, - .. ,qn) are given nonnegative n-tuples.

Let's put a = b =0, A =37, pixi, B=3¥/}_;q;y; and define g;,g2: Q> — R by
g1(i,j) =x; and g2(i, j) = y;.

Usi .. S PiXi A

sing definition (2.46) we have F(g;) = =5 and F(g2) =

If Ag > 0 then we obtain the result in (2.44) us1’111g the 1nenquahty Q24 F (m;4( g1,82)) <
F(¢(g1,82)) in Theorem 2.2.

Similarly, if Ap < 0, the inequality in (2.45) we obtain using the inequality (2.25) for
F(m2(81,82))- 0

F(h) = for h:Q* >R (2.46)

Remark 2.9 The left side of (2.44) can be rewritten as:

11 1 1
0,0)(1———— A,0)+—@(0,B
(p( ' )( Pn Qn)+ n(p< ' )+Qn(p( ' )

1 1 1 noi Vi ’
On  POn i=1j=1 -
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1 1
Note that for A¢@ > 0 and P + — < 1 in Theorem A5 there is the similar right side.
According to Theorem 2.2 we obta;;l

1 1 1 &

+ Xi i
Py On PnQn, 1j=1

“_ 2.

Similarly, for all cases in Theorem A5 we can obtain the following results as the conse-
quences of Theorem 2.2

11 1 & Y
1-|=— +—1‘ USRS
On P.On &
11 1 &S,y
Il — -3 Y |24 % 4] > 0.
O P PRO.AAIATB

We obtain the following estimations as a consequence of the refinement made in Re-
mark 2.9.

Corollary 2.4 Letp = (p1,...,pn) and q = (q1,-..,qu) be n-tuples of nonnegative real
numbers. Suppose that x = (x1,...,x,) and'y = (y1,...,yn) are n-tuples of nonnegative
real numbers such that 0 < x; <Y | pix; and 0 <y, < 2?:1 qjyj.fork=1,2,....n. Then

n on
Xi j

Zzzl Xk Pk Zk 1 Y9k

n
< 2 ZPZQJ

i=1j=

yj n n
-1 < piqj—
Zk 1 Xk Pk 2211)’ka ‘ = 121 Y

n
221%% Zpiqui ;
=1 i=1

9
i=1j=

n n
Zl’i - 2 qj
i=1 =1

—_

i=1j=1

>3

i=1j=1

2.3 Advanced conversion

In this section, the conversion of the Jensen-McShane inequality by a two-variable func-
tion is given. Under the special conditions the Gheorghiu-type inequality is proven. The
following results are given in [8] and [9]. More general conversion and refinement in
Theorem 2.2 is proven in [4].

2.3.1 Main result

In this subsection, the conversion of the Jensen-McShane inequality, which was considered
in Theorem 2.2, is given by functions of two variables .#
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Theorem 2.7 Let ¢,y : D = [a,A] x [b,B] — R be continuous and @ be concave with
the notation Ap = @(a,b)+ @(A,B) — @(A,b) — ¢(a,B) and M;j, m;; are defined by (2.9).
For g1,8> € L assume that (g1(1),g2(t)) € D forall t € Q. Let F be a normalized isotonic
positive linear functional on L. Suppose that ¢(D) C U and y(D) CV and suppose that
Z : U xV CR? = R is increasing in the first variable.

(i) If Ap > 0 then

min F (Mi2(1,5),y(t,5)) <7 (F(@(g1,82)), w(F(81),F(82))) -

(t,5)eD
(i) If Ap <O, then

($igDﬂ(M34(t,s), v(t,s)) < ($12D9(F(¢(g1782))71//(17(81)71”(82))).

Proof. Since (F(g1),F(g2)) € D, then

(lrgigDy(Mm(t,S),ll/(I,S)) <F ((M2(F(g1),F(g2)), w(F(g1),F(g2)))-

If Ap > 0, then by Theorem 2.2 we have that

M2(F(g1),F (82)) < F(9(g1,82))-

Since .# is increasing in the first variable, we get

(;gigﬁ (Mia(t,5),w(t,5)) < .7 (F(9(g1,82)), w(F(g1),F(g2)))

and obtain the desired inequality. ]
A multiplicative conversion is made by taking .7 (x,y) = )
y

Corollary 2.5 Suppose that the assumptions of Theorem 2.7 hold with @ (D) > 0 addi-

tionally.
If Ap > 0, then

M12(tas)
min
(t5)ep @(1,5)
In opposite, if ¢(a,b)+ @(A,B) — ¢(A,b) — ¢(a,B) <0, then

“@(F(g1),F(g2)) <F(9(g1,82)) < @(F(g1),F(g2))-

M34(1,5)

(t’s>€Dm'(l)(F(gl)7F(gz)) <F(p(g1,82)) < 0(F(g1),F(g2))-

Proof. According to Theorem 2.7 with assumption that @ (D) C V we have that holds

min .7 (Ma(1,5), ¢(1,5)) < 7 (F(@(g1,82)),9(F (21),F (82))) -

(t,5)eD
By taking .# (x,y) = < we obtain conversion (i). a
y

A conversion by medium value is given by the next lemma.
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Lemma 2.2 Assume that ¢,g1,82 and F are as in Theorem 2.7 and A;, u; andv;, i €
{1,...,4} are defined by (2.7). Let o, 3 > 0 be such that a.+ 3 = 1.
If Ap > 0 then

(A1 +BA2)F (g1) + (otps + B ) F (g2) + avi + Bva < F(9(g1,82))-
If Ap <0, then
(A3 + BA4)F (g1) + (aus + Bus)F (g2) + ovs + Bva < F(9(81,82))-
Proof. Considering that

Mi2(F(g1),F (g2) = max{A1F (g1) + i F (g1) + Vi, MaF (1) + taF (82) + Vo,
we obtain the first inequality if Ag > 0. |

A conversion with a very special condition is given bellow.

Proposition 2.1 Suppose that the assumptions of Lemma 2.2 hold.
(i) If Ap > 0 and v| - v, < 0, then

UinF(g1) +VioF (g2) < F(9(81,82)) < @(F(g1),F(82)),

where:
WA — Vidy Vol — Vi Lo
- Vop=—7"7-—7-—".
Vo — Vi Vo — Vi

V4As — v3dy Va3 — V3l
ETEE— Viy = ——.
V4— V3 Va—V3
o+p=1
avi+pv; =0
and oy + Bz = Via. 0

Proof.  Solving the system { by o, we obtain that oA + fAy = Uy

Considering Corollary 2.5, the next proposition is given.

Proposition 2.2 Letr ¢ : D — R be a continuous concave positive function, g1,8, € L
and F normalised positive linear functional on L.
(i) If Ap > 0 and vy - v, < 0, then:

Upat +Vias
mm —————-
(ts)ep  ©(t,s)
(i) If Ap <0 and v - v4 <0, then:
Usat + V3us
mmnm —— -
(ts)ed  @(t,5)

where values Uy, V12, Usg and V34 are given in Proposition 2.1.

¢(F(g1),F(g2)) < F(o(g1,82)) < @(F(g1),F(g2))- (2.47)

@(F(81),F(82)) < F(9(81:82)) < @(F(g1),F(g2)),

Remark 2.10 The figures 2.2 and 2.3 visualise the conversion of the Jensen-McShane
type inequalities on a rectangle D for linear isotonic positive functional E.
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P(E(g1),E(g2))
@(4,B)
p(a,b)
S AB(e)+ uB(g)+v
B
b (E(g)-E(g2)
al A
Figure 2.2: Conversion by Csiszdr and Mori
@(4,B)

@(a,b)
o(4,b)
/( 21-* BA)E(g) + (ap) + fuy)E(gy)i+ av, + pv,
B
(E(gl),E<gz))
b
a A

Figure 2.3: Conversion by a medium value
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2.3.2 Gheorghiu type inequality

The Gheorghiu type inequality is a converse of Holder’s type inequality. In this section a
proof for a refinement is presented.

The original Gheorghiu inequality from [17] can be expressed as follows:

Suppose that ay,az,...a,, by,bs,...b, are given positive real numbers. Let the pair
(a,A) represents the minimal and maximal number among ay,a,...,a, and in the same
manner let (b, B) be the pair of those among the by,by,...,b,. Assume that p is a real
number greater than 1. Then we have

p \P-1
@2mbﬁmmzﬁ

1< <u, (2.48)
(22:1 akbk)p
where
PN\P
1_ apbp—l )
(p—p' A" B ( APBT

1= (2.49)

-1 1 1
pp ab b 1— abP—1 1— al—1p p=l
ABPT Ar-iB

The left inequality has been demonstrated by Holder and Jensen. This inequality could
be presented in the terms that are given in the introduction of this chapter.

Theorem A 6 (THE GHEORGHIU INEQUALITY) Suppose that Q = {1,2,3,...,n} and
81,82 Q — Rare given real functions. Let a = min{g, (k),k € Q}, A = max{g(k),k € Q},
n

b = min{ga(k),k € Q} and B — max{ga(k),k € Q}. Let F(g) = % 3 (k).
k=1

1 1
Ifp,gq>1, —+— =1, then
P 4

S =

!

1
| < Fel)7 - F(gh)

1
< Z8UPTI)T
F(g1-82)

) (2.50)

where W is given by (2.49).
Inequality (2.50) can be expressed as the chain of inequalities:
1 1 1 1 1
wor-F(gh)r -F(g3)s < F(g1-g2) < F(g])7-F(gh)a. (2.51)
The next theorem is a refinement of Theorem A6.

Theorem 2.8 Let F be a normalized isotonic positive linear functional on L and for
81,82 € L let us assume that g1(Q) C [a,A] and g,(Q) C [b,B] for positive real numbers

1
a,b. Let p,q be positive real numbers such that — + — = 1 holds. Then
P 4

phab aoaB)h (4B} - (@)})” ((4B)} - (@)t
AB —ab

éF@?é)g@@mﬂn&». (25

(F(21))7 (F(g2))7

Q=
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1 1
Proof. The function ¢(x,y) = xry4 is continuous, concave and positive for all (x,y) €
1 1 1 1
[a,A] x [b, B]. Because (AT’ - aF) (B5 - bi) > 0, for application of Proposition 2.2 it is

enough to prove that

1 1 1 1
1AP —qp 1 B4 —ba

11
vi =arbi —abi —arb >0
1=a T YT B T
and
11 1A%—apl 1 B%—b%
vV, =ArBi —ABi —— — APB <0
A—a B—b

L, . . .
Since the function f(x) = x? is concave for p > 1, f’(x) is continuous and decreasing.
1 1

AP —qar

So there exists ¢ € [a,A] such that f'(c) = T and f'(a) > f'(c) > f'(A) which gives
—a

lall,q > Apr — > lA;q
p A— p
1 1
Multiplying with ab4 and AB7 we get
1.1 ALt At aAlpt
Ppa 1 P —qpr 1 P —qpr Ppa
00 s ape Y and AB S >
)4 A—a A—a )4
1
Similar consideration on f(x) = x4 gives
Lo
11;5*1 5 Br—bi lA%*I.
q - B-b Tp

1 1
Multiplying with a? b and A? B we get

B

1
— ba

1
rb 1 B 1 Ba—pa  ArBa
o7 > arb and A7 B
B—-b B—-b q
Now we have , . . ,
11 1AP —qv 1 Bd—ba
Vi =arbi —aba —arb
1=a a e a —

11 11
11 rba Pba 11 1 1
14 q

11 1A1%—a1% 1 B4 —ba
V), =ArPBi —AB4— —APB
A—a B—b
A?Bi AV Bi 11
1 1 Pp4 Ppa 1 1
vy <APBY — - Ann<1—_>g
p q P g
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) |

==

. .. Upt+Vis . t é K
It is necessary to minimize ————— = min | Uj>- (—) +Via- (—)
(75 (t.5)eD s t

t
Supstitution z = - and easy calculus provide
s
Upat +Vias
min ———— =
(ts)edD  Q(t,s)
Note that (2.52) is equal to (2.47) by coefficients

Lol
ULhVisprqe.

Bibi ((AB)7 — (ab)? ) Arar ((AB)1 — (ab)7)
AB— ab and Viz = AB— ab
Applying the inequality (2.47) we get (2.52) and the proof is done. O

U, =

Remark 2.11 Using substitutions g; — g7 and g> — g7 in the previous Theorem 2.8 we
get the following Gheorghiu type inequality:

1 1 1 1
prqi (AbB! — ab’B)? (APaB — aPbA)4
APBI— aP b <(F(gl))7 (F(g3))

<F(gr-g2) < (F(gh)7 (F(gd)a. (2.53)

Remark 2.12 Theorem 2.8 is refinement of Theorem A6. The next lemma shows that
left inequality in (2.53) is better than the left inequality in (2.51).

]
Q=

!

Lemma 2.3 Under the assumptions of Theorem 2.8 and using Remark 2.11, the next is
valid:

1 1 1 1
p?q? (AbBY — abB)» (APaB — aP’bA)4 _1
APBT— arhi =p-u r. (2.54)

Proof. Using elementary algebra for (2.49) we get

L1l g aNp [ P 2 \§
. qiadbr (ABPfabP) (A‘lea‘ib)

mer L Lyl-p Lil—g
piAZ B (APB4 — aPb?)
1 1
Separately, using relation p — 1 = E, we have % 4+1—p=——and % +1—qg=——.
q q p 4

The proof is prolonging with

Q=

L1111/ g aNp [ P ?
. q?AiaiBrbr (ABPfabl’) (A‘lea‘lb)
’LL P =

1
pé (Aqu — apbq)

By selective multiplying factors and brackets with the same exponent we have

1 ) 1
L g (AbB%“ —ab%“B)” (aA’a“B—ag“bA)"
wor = :

1
pé (Aqu — apbq)
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Considering that 4 +1=gqgand P + 1 = g we finally obtain that
p q

1 1 1
pPq? (AbBY— abiB)r (aAPB — aPbA )4
p(APB‘I —alb?) :

1
“P:

The last equation is the same as (2.54) and the proof is finished. a

Remark 2.13 As an application of Theorem 2.8 we get a refinement of normalized Ghe-
orghiu inequality in [11]. Let (Q,X, P) be a probability space, functions g; =X and g, =Y
be random variables and functional F(g;) = E[X] be the mathematical expectation of ran-
dom variable X.

Corollary 2.6 Suppose that random variables X and Y capture their values 0 < o <X <
1 1
1and 0 < B <Y < 1. Equality — + — = 1 implies
P 4
1

p7qi(B— aB®)r (o — a’B)
lfaﬂﬁél

==
==

(E[X7])7 (E[Y))7 < E[XY] < (E[X"])7 (E[Y?))7

in the case of positive p and q.

In [12] author proved the converse of the Holder inequality for a measure space.
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Chapter

Class of (/,g;m)-convex
functions and certain
types of inequalities

A convex function is one whose epigraph is a convex set, or, as in the basic definition:

A function f : 1 C R — R is said to be convex function if
FAx+(1=2)y) SAf(x)+(1=2A)f(y) 3.1
holds for all points x and y in I and all A € [0,1].

It is called strictly convex if the inequality (3.1) holds strictly whenever x and
y are distinct points and A € (0,1). If —f is convex (respectively, strictly
convex) then we say that f is concave (respectively, strictly concave). If f is
both convex and concave, then f is said to be affine.

Motivated by a large number of different classes of convexity, we present a new con-
vexity that unifies a certain range of them. Starting from the above convex function up to
a recent convexity [27]:

A function f : I C R — R is called exponentially (s,m)-convex in the second
sense if the following inequality holds

FOxtm(1—A)y) < o g+ LA

e0x ey

mf(y) (3.2)

forallx,y € I and all A € [0,1], where a2 € R, s,m € (0, 1].

67
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we noticed that the whole range in-between could be covered if we use on the right-hand
side functions 4 and g in a form

fAx+m(1=2A)y) <h(A)f(x)g(x) +mh(1 —A)f(y)g(y).

We named this convexity an (h, g;m)-convexity.
Here are several more varieties of convexity that will be generalized with this:

e A non-negative function f : I C R — R is called P-function if the inequality holds

fAx+(1=24)y) < f()+f0)
forall x,y € Iand all A € [0, 1].

e A function f : [0,00) — [0,0) is called s-convex in the second sense if the inequality
holds

fAx+(1=2)y) SAfx)+(1-A) ()
forall x,y € [0,0) and all A € [0,1], where s € (0,1].
e A non-negative function f : I C R — R is called Godunova-Levin function if the
inequality holds
NACORAR)
1-— <L I
fAx+(1=2)y) € ==+
forall x,y € I and all A € (0,1).

e A non-negative function f : I C R — R is called A-convex if the inequality holds
fAx+(1=24)y) <h(A)f(x) +h(1=2)f(y)

forall x,y € I and all A € (0,1), where & : J — R is a non-negative function, 1 # 0,
0,1)CJ.

e A function f : [0,b] — R is called m-convex if the inequality holds
fAx+m(1=24)y) <Af(x)+m(1=2)f(y)
forall x,y € [0,b] and all A € [0,1], where m € [0, 1].

e A non-negative function f : [0,b] — R is called (h — m)-convex if the inequality
holds
fAx+m(1=A)y) <h(A)f(x)+mh(1—A)f(y)

for all x,y € [0,b] and all A € (0,1), where i : J — R is a non-negative function,
h£0,(0,1) CJandm € [0,1].

e A non-negative function f : I C R — R is called (s,m)-Godunova-Levin function of
the second kind if the inequality holds

fx+m(1=24)y) <

forall x,y € I and all A € (0,1), where m € (0,1], s € [0,1].
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e A function f: I C R — R is called exponential convex if the inequality holds

PGt (1= A)) € 2 )+ 22 1)

forall x,y € I and all A € [0, 1], where o € R.

e A function f: I C R — R is called exponentially s-convex in the second sense if the
inequality holds

fAx+(1-2)y) < e%f(x)Jr (l;f)sf(y)

forall x,y € I and all A € [0,1], where oc € R, s € (0, 1].

More detailed information may be found in [8, 10, 12, 15, 20, 23, 24, 27, 35, 36].
Furthermore, recall that a real valued function f on the interval / is said to be starshaped

if
f(Ax) <Af(x)
whenever x € [,Ax € I and A € [0,1].
This chapter is based on our results from [1], [2], [3], [6] and [7].

3.1 Aclass of (h,g;m)-convex functions

Definition 3.1 Ler i be a nonnegative function on J C R, (0,1) CJ, h # 0 and let g be a
positive function on I CR. Furthermore, let m € (0,1]. A function f : I — R is said to be
an (h,g;m)-convex function if it is nonnegative and if

fOx+m(1=A)y) <h(A)f(x)g(x) +mh(1=2A)f(y)g(y) (3.3)

holds for all x,y € I and all A € (0,1).
If (3.3) holds in the reversed sense, then f is said to be an (h,g;m)-concave function.

Remark 3.1 For different choices of functions %, g and parameter m in (3.3), we can
obtain corresponding convexity, e.g., if we set aA(A) = A%, s € (0,1], g(x) = e~ *, o € R,
then (h, g;m)-convexity reduces to exponentially (s,m)-convexity in the second sense (3.2).

Lemma 3.1 Iff: I — [0,) is an (h,g;m)-convex function such that f(0) =0, g(x) <1
and h(A) < A, then f is starshaped.

Proof. Let f be an (h, g;m)-convex function. Then we have
f(Ax) = f(Ax+m(1—2)0)
< h(A)f(x)g(x) +mh(1—2)f(0)g(0)
< Af(x).

Therefore, f is a starshaped. |
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Remark 3.2 Let g be a positive function such that g(x) > 1. If f is a nonnegative (h—m)-
convex function on [0,e), then we have

fAx+m(1=2A)y) < h(A)f(x)+mh(1=2)f(y)

(A)f(x)g(x) +mh(1 = A)f(y)8(y).

<h
<h

Hence, f is an (h, g;m)-convex function.
If additionally #(A) > A, then for nonnegative m-convex function f on [0, ) we have

Afx)+m(1=2)f()
(A)f () +mh(1=2)f(y)
(A)f ()g(x) +mh(l =) f(v)g(y),

i.e., f is an (h,g;m)-convex function. An example of a function that satisfies #(1) > A is
h(A) = Ak, where k < 1and A € (0,1).

Similarly, if g(x) < 1, then all nonnegative (h — m)-concave functions are (h,g;m)-
concave functions on [0, ). Furthermore, if g(x) < 1 and 4(A) < A, then all nonnegative
m-concave functions are (h, g;m)-concave functions on [0, ).

fAx+m(1=2A)y)

IA A IA

h
h

Proposition 3.1 Let hy,hy be nonnegative functions on J C R, (0,1) C J, hy,hy £0,
such that
ho(A) <hi(4), A€(0,1).

Let g be a positive functionon I CR andm € (0,1). If f : I — [0,00) is an (hy,g;m)-convex
function, then f is (hy,g;m)-convex.
If f: 1 —[0,00) is an (hy,g;m)-concave function, then f is (hy,g;m)-concave.

Proof. Let f be an (hy, g;m)-convex function. Then we have

fAx+m(1=2A)y) < ha(A)f(x)g(x) +mha(1—A)f(v)g(y)
< hi(A)f(x)g(x) +mhy(1=24)f(y)g(y).

Hence, f is an (hy, g;m)-convex function.
If f is an (hy,g;m)-concave function, then analogously follows that f is (ha,g;m)-
concave. O

Proposition 3.2 Let h be a nonnegative function on J CR, (0,1) CJ, h#£ 0 and g be a
positive function on I CR. Furthermore, let m € (0,1] and a > 0. If fi, f> : I — [0,00) are
(h,g;m)-convex functions, then fi + f> and ofy are (h,g;m)-convex.

If f1, /2 : 1 —[0,00) are (h,g;m)-concave functions, then f| + f» and a.fi are (h,g;m)-
concave.

Proof. Let f1, f> be (h,g;m)-convex functions and o > 0. Then we have

SilAx+m(1=2A)y) < h(A)fi1(x)g(x) +mh(1=A)fi(y)g(y)



3.1 A CLASS OF (h,g;m)-CONVEX FUNCTIONS 71

and

Sr(Ax+m(1=2A)y) <h(A) f2(x)g(x) +mh(1 =) f2(y)g(y)-
Adding the above we obtain

14 ] Ax+m(1=2A)y) < h(A)[f1 + f2] (x)g(x) + mh(1 = A) [fi + f2] (v)g(y).

Furthermore,

[ofi] (Ax+m(1=2A)y)

IN

oh(A) fi(x)g(x) +omh(1 —4) fi(y)g(v)
= h(A)[afi] (x)g(x) +mh(1 = A)[afi] (y)g(y)-

We conclude that f| + f> and o f; are (hy,g;m)-convex.
If f1, f> : I — [0,%0) are (h, g;m)-concave functions, then analogously follows that f +
f» and af; are (h,g;m)-concave. O

Proposition 3.3 Let h be a nonnegative function on J C R, (0,1) CJ, h £ 0 and g be a
positive increasing function on I C R. Furthermore, let 0 <n<m < L. If f : 1 — [0,00) is
an (h,g;m)-convex function such that f(0) =0, g(x) < L and h(A) < A, then f is (h,g;n)-

convex.

Proof. Let f be an (h,g;m)-convex function. From f(0) =0, g(x) < 1 and 2(A) < A by
Lemma 3.1 follows f(Ax) < Af(x). Considering also that g is an increasing function, we
obtain

FAx+n(1—2A)y) = f().erm(lfl)(%y))

which proves that f is (h, g;n)-convex. a

Proposition 3.4 Let hy,hy be nonnegative functions on J C R, (0,1) C J, hy,hy #Z0 and
let
h(r) = max{h(¢),ha(t)}, t€J.

Let g1,82 be positive functions on I C R and let my,m; € (0,1]. Fori=1,2, let f;: I —
[0,00) be (hy,gi;m;)-convex functions. If the functions fi g\ and f> g> are monotonic in the
same sense, 1.e.

i)g1(x) = i)er ] [2()g2(x) = 2(1)g2(0)] =20, xy €l

and if ¢ > 0 such that
h(A)+mh(1—A)<c, A€(0,1),

where m = max{my,my}, then f| f> is a (ch,g1g2;m)-convex function.
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Proof. Let f; : I — [0,°0) be (hj,gi;m;)-convex functions, i = 1,2. From hypotheses on
functions, for x,y € I we have

fi(x)g1(x) f2(x)g2(x) + f1(y)g1(¥) f2(¥)82(¥)
> fix)g1(x)2(0)g2(y) + f1(v)g1(v) f2(x)g2(x)-

Let o and B > 0 be positive numbers such that o + 3 = 1. Then we have

fifa(ox+By)
< [m(a)fi(x)gi(x) +mihi(B)fi1(y)g1(y)]
X [ha() f2(x)g2(x) +maha(B) f2(¥)82(v)]
< [h(a) fi(x)g1(x) +mh(B) f1(y)g1(y)]
x[h(e) f2(x)g2(x) +mh(B) f2()g2(y)]
= 1*() f1 (0)g1 (%) f2(x)g2(x) + mh(c)h(B) f1(x)g1 (x) f2 () g2 ()
+mh(0)h(B) fi(v)g1(y)f2(x)g2(x) +m*H* (B) f1 ()81(0) f2(¥)g2(»),
hence

fifa(ox+By)
< 1P (o) f1(xX)g1 (%) f2(xX) g2 (x) + mh()h(B) f1 (x)g1 (x) f(x) g2 (x)
+mh(a)h(B) f1(y)81(0) f2(»)82(y) +m > (B) i (v)g1 () 2 () g2()
= [h(a) +mh(B)]
x [h(a) f1(x) f2(x)g1(x)g2(x) +mh(B) fi(v) f2(v)g1(¥)g2(¥)]
ch(a) fi(x) f2(x)g1(x)g2(x) +mch(B) fi(y) £2(¥)g1(¥)g2(y)-

This proves that f| f> is (ch, g1 g2;m)-convex. O

Analogously follows the following proposition.

Proposition 3.5 Let hy,hy be nonnegative functions on J CR, (0,1) C J, hy,hy # 0 and
let

h(t) =min{h;(2),ha ()}, t€J.

Let g1,82 be positive functions on I C R and let my,m; € (0,1]. Fori=1,2, let f;: 1 —
[0,00) be (hi,gi;mi)-concave functions. If the functions fi g1 and f> g2 are monotonic in
the opposite sense, i.e.

[fi()g1(x) = fi)g1 ()] [f2(x)g2(x) — 2()g2()] <0, x,y €T,

and if ¢ > 0 such that
h(A)+mh(1—A)>c, A€(0,1),

where m = min{my,my}, then f| f> is a (ch,g182;m)-concave function.
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3.2 Hermite-Hadamard type inequalities for
(h,g;m)-convex functions

The famous Hermite-Hadamard inequality gives us an estimate of the (integral) mean value
of a continuous convex function.

Theorem 3.1 (THE HERMITE-HADAMARD INEQUALITY) Let f : [a,b] — R be a con-
tinuous convex function. Then

$(25) gt s B 10

Of course, equality holds in either side only for affine functions. In this section we
prove the Hermite-Hadamard inequality for (%, g;m)-convex functions and we point out
some special results. Furthermore, several known inequalities are improved.

Recall, by L,[a,b], 1 < p < oo, the space of all Lebesgue measurable functions f for
which | f?| is Lebesgue integrable on [a, b] is denoted.

Theorem 3.2 Let f be a nonnegative (h,g;m)-convex function on [0,00) where h is a
nonnegative function on J C R, (0,1) CJ, h £ 0, g is a positive function on [0,0) and
m e (0,1]. If f,g,h € Ly[a,b], where 0 < a < b < oo, then the following inequalities hold

f(a;rb) - ’;(j/b [0+ mr () (X))
- M/bh(u) g(x)dx

= b—ua b—a
+mh(%)£(i)g(%) /”h <z_cal)g(x)dx
+mh(%)££ﬁa)g(%) /a”h(z_z)g(%) dx
+m2h(%),f;(_,f—;)g(%) /a”h(z_z)g(%)dx. (34)

Proof. Let f be an (h, g;m)-convex function. Then for A = % we have

752 <a(3) oo+ mr0)e0)

Choosing y = < we obtain

f (’%) gh(%) e +mr (2 ()] (3.5)
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Letx=Aa+ (1—A)bandy = (1—A)a+ Ab. Then

f(“;b) < h(%) [FGa+ (1=2)b)g(rar+ (1= 2)b)

vmf <(1 ).)%Jr).%)g ((11)%%%)]

In the following step we will need to integrate the above over A € [0, 1]. From

1 1 b
/0f()La—l—(l—)L)b)g(/la—i—(l—)L)b)d/l:bia/a F(w)g(u) du
and
frr(amgean)e(o-n e )ans g [ () ;) a
we obtain
£(452) <58 [ st sms ()6 ()] 36)
By (h,g;m)-convexity of f we have
(1= 208) < WA @ela) + (1~ 0f (2 ) o (2).

Multiplying the above inequality by g(Aa+ (1 — A)b) and integrating over A € [0,1] we
obtain

u)du < f(a)g(a gha+(1—-A)b)dA

)
+mf %

) —2)g(Aa+(1—A)b)dA

\

)

S

Jy
)e(i) ]
(Zg( / ( )(u)du

b b b _
+mf(bm_a(m)/a h<Z_Z)g(u)du. (3.7)

Again, by (h,g;m)-convexity of f we have

a

r(a-ngeag)<na-nr(n)e () emoor () s (7)



3.2 H-H TYPE INEQUALITIES FOR (h,g;m)-CONVEX FUNCTIONS 75

and if we multiply above inequality by g (1 —A)% + A 2) and integrate over A € [0, 1] we
obtain

1

bia/abf(,%ﬁ( )du<f( g( )Oh(ll)g((lk)}%+x}%)d1

G L1022, e

Now from (3.6), (3.7) and (3.8) we obtain (3.4). O

In the sequel we state several corollaries, using special functions for # and/or g, and
choosing the parameter m. We start with the first special case: if g = 1, then we have the
Hermite-Hadamard inequality for (7 — m)-convex functions.

Corollary 3.1 Let f be a nonnegative (h — m)-convex function on [0,%0) where h is a

nonnegative function on J C R, (0,1) CJ, h#£ 0 and m € (0,1]. If f,h € Li[a,b], where
0 < a < b < oo, then the following inequalities hold

(45) < PG 1 [0 ()] ax
<)/h dx[ +mf(b)+mf(%>+m2f<%)]. (3.9)

| /\

Proof. We use

O

Remark 3.3 In [24, Theorem 9] authors gave the following Hermite-Hadamard type in-
equality for (h — m)-convex functions:

r(5) = 5 [ T ()
a) frerems () ems () oo (33)] - o0

For all functions & such that [01 h(x)dx < 1, our result (3.9) will improve (3.10).

IN

If g = 1 and m = 1, then we have the Hermite-Hadamard inequality for 4-convex func-
tions ([36]):
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Corollary 3.2 Let f be a nonnegative h-convex function on [0,e0) where h is a nonnega-
tive functionon J CR, (0,1) CJ, h £0. If f,h € Ly[a,b], where 0 < a < b < o, then the
following inequalities hold

—f(““’) < %/abf(x)dx
h(%) [F(a)+ Fb)] /0 Un) . 3.11)

IN

For h being identity and g = 1, the Hermite-Hadamard type inequality for m-convex
functions holds ([11]):

Corollary 3.3 Ler f be a nonnegative m-convex function on [0,00) with m € (0,1]. If
f € Li|a,b], where 0 < a < b < o, then the following inequalities hold

! (a;b) Z(bl—a) /ab £ +mf(%)} dx

sl sms () oms G eoos ()]

Of course, if 4(x) = x, g = 1 and m = 1, then we have the Hermite-Hadamard inequality
given in Theorem 3.1.
An interesting Hermite-Hadamard type inequality follows if 7 is an identity.

IN

Corollary 3.4 Suppose that assumptions of Theorem 3.2 hold and let h(x) = x. Then

1(42) = gt [ et oo (3)s (3]

f(a

INA
\./
QQ
—~

IS}
~—

3
o -
g
SN@-
N—
oQ
Sl N
N|°‘

" >/ab(xa) (m>dx (3.12)

Next we use h(A) =A%, s € (0,1] and a special case of a positive function g(x) = e~ **,
o € R, to obtain a following new Hermite-Hadamard inequality for exponentially (s,m)-
convex functions in the second sense.

Corollary 3.5 Let f be a nonnegative exponentially (s,m)-convex function in the second
sense on [0,o0) where s,m € (0,1]. If f € Li[a,b], where 0 < a < b < oo, then the following
inequalities hold
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f (a;b> < ZS(bl— a) /ab [f(x)e*aermf (%) e*%} dx
fla)e /ab (b—x) e dx

- Zs(b,a)erl
ab
mf(B)e oo
mf(i)ei% b s —ox
_ab
()
+W/a (X7a) e mdx. (313)

The next result is for exponentially convex functions: a special case of Theorem 3.2
when A(A)=A,g(x) =e *andm = 1.

Corollary 3.6 Let f be a nonnegative exponentially convex function, oo 0. If f €
Li[a,b], where 0 < a < b < oo, then the following inequalities hold

b 1 b
f(a; ) < b_a/a Flx)e ™ dx

_ (@) — e ()
- o(b—a)

+ {efab 76‘70‘“}

e f(@)— e fb) i

o2(b—a)?

Proof. The second part of (3.14) follows from
e % f(a) b —ax eiabf(b) b —ax
W/ﬂ (b—x)e dx+wfa (x—a)e dx
- 672aaf(a) _ e*20€bf(b)
B o(b—a)

+ {efab 7870‘“}

e (a) — e f(b)

a?(b—a)?

O

Remark 3.4 In [8, Theorem 1] authors gave the following Hermite-Hadamard type in-
equality for an exponentially convex function

b 1 b
f(“; ) < b_a/a Flx)e ™ dx

e”“f(a) + e *f(b)
5 :

IN



78 3 (h,g;m)-CONVEX FUNCTIONS AND CERTAIN TYPES OF INEQUALITIES

Actually, this result holds only for ¢ > 0 (not for all A € R, as the authors stated). In that
case, our result (3.14) is an improvement of the above inequality since

G IY) [ peea] €A = D)

Ot(b—a) OCz(b—a)z
e*OCa a b e—ab b )
- (b—ij;()z)/a (bx)eaxd”(b_ij;()z)/a (x —a)e”*dx

e % f(q b e~ f£(p b
< (l)ijiz()z)/a (b—x)dx—i-(bij;()z)/a (x—a)dx

_ e %f(a)+e *f(b)
: _

We use the basic property of the exponential function: e~ ** < 1 for x € [0,0) and & > 0.
Next we present few other inequalities of the Hermite-Hadamard type.

Theorem 3.3 Let f be a nonnegative (h,g;m)-convex function on [0,00) where h is a
nonnegative function on J C R, (0,1) CJ, h #0, g is a positive function on [0,°) and
€ (0,1). If f,g,h € Li[a,b], where 0 < a < b < oo, then the following inequality holds

bia/abf(x)dx

< min{s@sta) +ms (1) () es@s@)+mr () e ()}

m m

I
></0 h(x)dx. (3.15)

Proof. Let f be an (h,g;m)-convex function on [0,c0), m € (0,1] and A € (0,1). Then

f(Aa+(1=A)b) = f ()La+m(1 _)L)ﬁ)

m

< h(A)f(a)g(a)+mh(1 —’WG) § (2)

m m

and

fOb+(1=2)a) < h(2)f(B)g(b) +mh(1-A)f (£ ) g (L)

m m

Integrating on [0, 1] with respect to the variable A we obtain

/Olf().a+ (1= 2A)b)dA
< sl | 1h<x>dx+mf<§>g<§> [ - a
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and
/lf(xb+<1—x) "
0
< f /h d).+mf /hl 2)d

The inequality (3.15) now follows from fo h(A)dA = fo h(1—A)dA and

/f).a+1 A)b)dA = /f/lb+1 Aa

O

Theorem 3.4 Suppose that the assumptions of Theorem 3.3 hold with f,g,h € Ly[ma,b.
Then

1 mb 1 b
mbfa/a f(x)dx—i—bima/maf(x)dx

I
< (m+ ) [f(a)s(@)+£®)s®)] [ Hxjax. (3.16)
Proof. Let f be an (h, g;m)-convex function on [0,e0), m € (0,1] and A € (0,1). Then

f(Aa+m(1—2A)b)

<h
F((1=A)a+mAb) < h

and

fAb+m(1—A)a) < h ;
f((L=A)b+mla) < h(1=2)f(b)g(b) +mh(L)f(a)g(a).

Next we add the above inequalities

f(Aa+m(1—=2)b)+ f((1—A)a+mAb)
+ f(Ab+m(1—A)a)+ f((1—A)b+mAa)
< (m+1)[f(a)g(a)+ f(b)g(b)] [h(A) +h(1 —A)]

and integrate to obtain
/lf(laer(l fl)b)d}wr/lf((l —M)a+mAb)dA
0 0
/lf(/lb+m(1 fl)a)d}wr/lf((l _ )b+ mAa)dA
0 0

< (m+1)[f(a)g(a) +f(b)g(b)]/0] [(A) +h(1 = A)}dA.
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The inequality (3.16) now follows from

1 | mb
/Of(/la—i—m(l—/l)b)a%:/o f((l—/l)a—i—m)tb)d)tzmblia/a F(x)dx

and

1 1 b
/Of().bwLm(lf).)a)d).:/O F((1 = A)b+ ma)dn = ! / f(x)dx.

—ma Jma

O

Remark 3.5 For / being identity and g = 1, (h,g;m)-convexity reduces to m-convexity.
Therefore, Theorems 3.3 and 3.4 generalize [11, Theorem 2, Theorem 5], respectively.

Notice, if m € (0, 1] then ma < b, but there is no guarantee that a < mb, so the resulting
inequality from [11, Theorem 5]

mb mb—a (b a
L { ; F(x)dx+ bb / f(x)dx] < (mbfa)w

m+1 —ma Jma

should not be multiplied with (mb — a).

‘We emphasize that all other corresponding Hermite-Hadamard inequalities for different
types of convexity, which follow from this section, can be done analogously.

3.3 Fejér type inequalities for (4, g;m)-convex
functions

The Fejér inequality is a weighted version of the Hermite-Hadamard inequality:

Theorem 3.5 (THE FEJER INEQUALITY) Let f : [a,b] — R be a convex function and
w: [a,b] — R nonnegative, integrable and symmetric about #. Then

(452 [ wear < [ reweoan < FOHO Puga e

Here we prove the Fejér inequality for an (h, g;m)-convex function and give some similar
results.

Theorem 3.6 (THE SECOND FEJER INEQUALITY FOR (%, g;m)-CONVEX FUNCTIONS)
Let f be a nonnegative (h,g;m)-convex function on [0,0) where h is a nonnegative func-
tionon J CR, (0,1) CJ, h #0, g is a positive function on [0,o) and m € (0,1]. Let
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0<a<b<eandf,gh€ Lia,b]. Furthermore, let w: [a,b] — R be a nonnegative,

integrable and symmetric about “;b . Then the following inequality holds

[f<a>g<a> +1@)Re)+mr ()8 () +mf <§> 8 (n%ﬂ

x/abh@;’) w(x)dx. (3.18)

Proof. Let f be an (h,g;m)-convex function on [0,e0), m € (0,1] and x € [a,b]. First we

use b b
—X X—d
f(x)f<b—aa+mb—a%>’

f(a—i—b—x):f(lb)_xb—i—mz_‘;%).

M| —

Next, since [ f(x)dx = [ f(a+b—x)dx and w is symmetric with respect to 2, i.e.
w(x) =w(a+ b —x), we have

/abf(x)w(x)dx _ %[/bf( w( dx+/ (a+b—x)w(a+b— x)dx]

- 2/ X)+ fla+b—x)w(x)dx
[ (Eami =) s (2 mi =t ) iy
Applying (h, g;m)-convexity of f, we obtain
[ s < 3 [ [n(25) rreon (2) () (2)
o () st (50 1 (2)5 (5) e

— S U@s(@+ 7)) [ (7= ) wioas

2o (@) o (2)e(B)] ()

From symmetric property of w and with suitable substitution we obtain

/ab" <Z_2> wix)dx = /abh <Zfz> w(a+b—x)dx

b (x—a
/ah<b—a> w(x)dx. (3.19)
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Hence, the inequality (3.18) is proved. O

Remark 3.6 If ¢ = 1 and m = 1, then (h, g;m)-convexity reduces to h-convexity. There-
fore, Theorem 3.6 generalizes [31, Theorem 5].

Next we have two similar results.

Theorem 3.7 Suppose that the assumptions of Theorem 3.6 hold. Then

/abf(x)w(x)dx

< [r@s@+mr (2)e(2)] [1(3=2 ) wtan 620

Proof. Let f be an (h,g;m)-convex function on [0,e0), m € (0,1] and A € (0,1). Then, as
before,

Flaat (1= 2)8) < W@ (@s(a) + (1~ 0f (2 ) ().

m

If we multiply the above with w(Aa + (1 — A)b) and integrate on [0, 1] we obtain

/Olf(/la—i— (1= M)b)w(ra+ (1—A)b)dA

< [ [prs@sta 200 (2) e (2)| wira+ (1~ 2ypan

= fla)g(a)

1
+mf< )0 ( )/hl w(ha+ (1—A)b)dA.

1 1 b
/ Fha+ (1= Mbywlka+ (1-2)b)dA = - / FOw(x)dx.
0

—aJa

h(A)w(Aa+ (1—2)b)dA

Of course,

From the symmetry of the weight w it follows w(Aa+ (1 —A)b) = w((1 —A)a+ Ab) which
gives us

/h w(da+ ( lfl)b)dlf/hlf ~A)a+Ab)dA

Therefore,

bia/abf(x)w(x)dx < bi f(a)g(a)/abh<z_z> w(x)dx
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from which we obtain (3.20). O

Theorem 3.8 Suppose that the assumptions of Theorem 3.6 hold. Then

[ smear < [rerse)+mr (2) ()] [ 0(3=2 ) weoar @2n

a
m m
Proof. We start with

fa+(1—A)b) = f (mxn%+(1 fl)b> <h(1 f).)f(b)g(b)erh().)f(%)g(£>

m

and following the same steps as in the proof of the previous theorem we obtain the inequal-
ity (3.21). ]

Remark 3.7 If we use (3.19) and add inequalities (3.20) and (3.21), then we obtain (3.18).

Theorems 3.7 and 3.8 both generalize [36, Theorem 3] — the second Fejér inequality
for an h-convex function.

Furthermore, if we apply the symmetry of w and suitable substitution, we can see that
[31, Theorem 5] and [36, Theorem 3] are the same results.

We continue with the first part of the Fejér inequality.

Theorem 3.9 (THE FIRST FEJER INEQUALITY FOR (h, g;m)-CONVEX FUNCTIONS)
Suppose that the assumptions of Theorem 3.6 hold. Then

f(a—;b) /abw(x)dx

< h(%) /abf(x)g(x)w(x)dx—i—mh(%) /abf(%)g(%)w(x)dx. (3.22)

Proof. Let f be an (h, g;m)-convex function on [0,e0), m € (0, 1] and x € [a,b]. Applying
(h, g;m)-convexity of f and

a+b 1 1x
we obtain

£(%52) [ wioas

= /abf (%(a+bx)+m%n%) w(x)dx
b

g/a {h (%)f(awbe)g(aerx)erh <%>f(%)g(%>}w(x)dx.
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Now from the above and
b b
/ fla+b—x)g(a+b—x)w(x)dx = / fla+b—x)gla+b—x)w(a+b—x)dx
a a

b
~ [ 1Wgtwx)ax
a
where we use the symmetry of w, follows the inequality (3.22). O
Next we give a lemma that will be used in the last given Fejér type inequality.

Lemma 3.2 Let f be a nonnegative (h,g;m)-convex function on [0,00) where h is a
nonnegative function on J C R, (0,1) CJ, h #0, g is a positive function on [0,°) and
m € (0, 1]. Then for all x € (a,b) C [0,0) there exists A € (0,1) such that

Flatb=2) < )+ 101 - )] | et +mr (2) e (2)] - 0 623

m
If f is an (h,g;m)-concave function, then the reversed inequality holds.

Proof. Let f be an (h,g;m)-convex function on [0,e0), m € (0,1] and x € (a,b). Then
there exists A € (0,1) such that x = Aa+ (1 — A)b. Therefore

fla+b—x) = f((1-A)a+Ab)
< (1 =2)f(a)g(a) +mh(2)f

I
oyl
-
[
=
&,’
=
o
=
_|_
3
=
>
&,’
7~ N N
SERSISEESS
N— ~—
oo
VRS

Theorem 3.10 Suppose that the assumptions of Theorem 3.6 hold. Then for every A €
(0, 1) there is the representation

[ roomoa
< M g ms (2) e (2)] [ weas c20

2 m
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Proof. Let f be an (h,g;m)-convex function on [0,), m € (0,1] and A € (0,1). Set
x=Aa+ (1—A)b. If we multiply the inequality (3.23) with w(x) and integrate we obtain

/abf(aerfx)W(x)dx < [(h(A)+h(1—A)] {f(a)g(a)erf(b)g(é)] /Q”W(x)dx

- /abf(x)w(x)dx.

If we use the symmetry of w and

b b
/ fla+b—x)wla+b—x)dx= / Fx)w(x)dx
a a
then we obtain the inequality (3.24). O
Remark 3.8 If we set ¢ = 1 and m = 1, then Theorems 3.9 and 3.10 generalize the in-
equalities for an h-convex function in [31, Theorem 6].

Using special functions for 4 and/or g, as well as choosing a fixed parameter for m,
inequalities for other different types of convexity can be derived from results of this section.

3.4 Lah-Ribaric¢ type inequalities for (%, g;m)-convex
functions

Two known inequalities provide bounds of the integral [ ab p(x)f(w(x))dx. While the Jensen
inequality gives the lower, the Lah-Ribari€ inequality gives its upper bound:

Theorem 3.11 (THE JENSEN INEQUALITY) Letw: [a,b] — R be an integrable function
and let p : [a,b] — R be a nonnegative function. If f is a convex function given on an
interval I such that w([a,b]) C I, then

f (W / ’ paw() dx> < m / ” p(0) £ () .

Theorem 3.12 (THE LAH-RIBARIC INEQUALITY, [19]) Let w: [a,b] — R be an inte-
grable function such that m < w(x) < M for x € [a,b], m < M, and let p : [a,b] — R be a
nonnegative function. If f is a convex function given on an interval I such that [m,M] C I,
then

1 b M—w w—m
e | PO S )+ ), G29)
where
f:p(x)w(x)dx
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The Lah-Ribari¢ inequality derives certain results of Hermite-Hadamard, Fejér, Gi-
accardi, Popoviciu and Petrovi¢ (see [21, 25]), which was the main motivation for this
section. We want to prove these inequalities in a more general setting, using the recently
introduced class of (h,g;m)-convex functions ([6]).

We have already investigated certain Hermite-Hadamard and Fejér type inequalities
for (h,g;m)-convex functions, but here we will observe those that we can obtain from the
Lah-Ribari¢ inequality.

First we prove the Lah-Ribari¢ inequality for an (A, g;m)-convex function.

Theorem 3.13 (THE LAH-RIBARIC INEQUALITY FOR (/,g;m)-CONVEX FUNCTIONS)
Let w: [a,b] — R be an integrable function such that 0 < a < b < e, u < w(x) < M for
X € [a,b], u <M, and let p : [a,b] — R be a nonnegative function. Let f be a nonnega-
tive (h,g;m)-convex function on [0,) such that [u,M] C [0,o0), where h is a nonnegative
Sunction on J C R, (0,1) CJ, h £0, g is a positive function on [0,00), m € (0,1] and
f,8,h € Ly]a,b]. Then the following inequality holds

/17 xX))dx < f(p)gl ( L)
+mf( ) < >/] h< lf)dx (3.26)

Proof. For x € |a,b] we have

f<x>f<;‘j_;u+ — *;f‘nj)

Applying (h, g;m)-convexity of f, we obtain

M —x

100 <= ) st +on (5= ) (30 o (2.

If we substitute x with w(x), multiply the above with p(x) and integrate on [a,b], then we
obtain (3.26). O

Analogous inequality can be obtain for an (4, g;m)-concave function.
Interesting results arise for (h,g;m)-convex (concave) functions if we set & to be a
super(sub)multiplicative function. For this we need the following definition.

Definition 3.2 A function h: J — R is said to be a supermultiplicative function if

h(xy) > h(x)h(y) (3.27)

forallx,y € J.
If the inequality (3.27) is reversed, then h is said to be a submultiplicative function. If
the equality holds in (3.27), then h is said to be a multiplicative function.
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Theorem 3.14 Suppose that assumptions of Theorem 3.13 hold and let h be a supermul-
tiplicative function with M — w(x),w(x) — u,M — u € J. Then

b
[ pswtnar < TEE 7 ponn —waax
m M M\ [P
+mf (E)g(z>/a p(x)h(w(x) —p)dx.  (3.28)
If additionally
WA +h(1—2)< 1, A € (0,1), (3.29)
then

[ P < et | [ pae— ot / PO - )

erjf( ) ( >/p —wdx.  (330)

Proof. For x € |a,b] we have

M —w(x)

wx) —u
T €(0,1)CJ, €(0,1)CJ

M- u

Since A is a supermultiplicative function, and M —w(x), w(x) — u, M — u are in J, we have

wioa —wie) = () = (S Y wiaa )

and

Hence, (3.28) is proved.
If we apply the condition (3.29), then

, (Mw<x>> . (1 B w(x)u) _ 1h<w(x)u) oy k@) )
M—p M—p M—p h(M — )
which proves the inequality (3.30). O

Next we present several corollaries of Theorems 3.13 and 3.14, using special functions
for h and/or g, as well as choosing a fixed parameter for m. We start with the first special
case: Lah-Ribari¢ type inequalities for (2 —m)-convex functions, obtained by setting g = 1.

Corollary 3.7 Let w: [a,b] — R be an integrable function such that 0 < a < b < oo,
U <w(x) <M forx € [a,b], u <M, and let p : [a,b] — R be a nonnegative function. Let
f be a nonnegative (h — m)-convex function on [0,0) such that [, M] C [0,00), where h is
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a nonnegative functionon J CR, (0,1) CJ, h 20, m € (0,1] and f,h € L,|a,b]. Then the
following inequality holds

/p X))dx < f(u /p (%)dx
+mf<%> /abp(x)h<%> dx.

Corollary 3.8 Suppose that assumptions of Corollary 3.7 hold and let h be a supermulti-
plicative function with M —w(x),w(x) — u,M — u € J. Then

/p dx<m/p h(M —w(x))dx
M b
+%f<;)/a p(X)h(w(x) — p)dx.
If additionally (3.29) holds, then

[ pswtnar < s | [ pie— ot [ pnon - was

M b
F——f| = / x)h(w(x) — u)dx.
s (o) [ plannte) - 0
If g =1 and m = 1, then we have Lah-Ribari¢ type inequalities for 4-convex functions.

Corollary 3.9 Let w: [a,b] — R be an integrable function such that 0 < a < b < oo,
u <wx) <M for x € [a,b], u <M, and let p : [a,b] — R be a nonnegative function.
Let f be a nonnegative h-convex function on [0,0) such that [u,M] C [0,0), where h is a
nonnegative function on J C R, (0,1) CJ, h 20 and f,h € Ly|a,b]. Then the following
inequality holds

[ sostote < /,, (%)dx
o o (g5

Corollary 3.10 Suppose that assumptions of Corollary 3.9 hold and let h be a supermul-
tiplicative function with M — w(x),w(x) — u,M — u € J. Then

/P m/P h(M —w(x))dx

f(M)

b
+h(M7“)/a p(x)h(w(x) — w)dx.

If additionally (3.29) holds, then

/p x))dx < f(u [/p dfo‘u/p — W)dx

+m/a p(X)h(w(x) — u)dx.
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Finally, Lah-Ribari¢ type inequality for m-convex functions holds for 4 being an iden-
tity and g = 1.

Corollary 3.11 Let w: [a,b] — R be an integrable function such that 0 < a < b < o,
u <w(x) <M forxé€ [a,b], u <M, andlet p : [a,b] — R be a nonnegative function. Let f
be a nonnegative m-convex function on [0,°) such that [i,M] C [0,00) with m € (0,1] and
f € Li[a,b]. Then the following inequality holds

1 b M—w Weu (M
T [ P e < ) el g (¥,

where
2 plowlx)d
i) ab p(x)dx

Of course, if h(x) = x, g(x) = 1 and m = 1, then we have the Lah-Ribari¢ inequality
for a convex function, as given in (3.25).

Mj:

3.4.1 Obtaining Hermite-Hadamard and Fejér inequalities

From the Lah-Ribari¢ inequality given in Theorem 3.13, we can deduce the right Hermite-
Hadamard inequality for an (h, g;m)-convex function as follows.

Theorem 3.15 Let f be a nonnegative (h,g;m)-convex function on [0,0), where h is a
nonnegative function on J C R, (0,1) CJ, h #0, g is a positive function on [0,0) and
m e (0,1]. If f,g,h € Li[a,b], where 0 < a < b < oo, then following inequality holds

: /abf(x)dx < [f(a)g(a)+mf(£) 8 (2” /01 h(x)dx. (3.31)

b—a m

Proof. If we set M = b, i = a with p(x) = 1 and w(x) = x on [a,b] in Theorem 3.13, then

we obtain
[ 1w < @ [n(5=2)as

b _
+mf <2> g (2> / h (x a> dx.
m m) Ja b—a
Now (3.31) follows from

[(Gzs)a= 055 = [ o

O

Remark 3.9 In addition to the inequalities already obtained in Theorems 3.2 and 3.3, the
above theorem gives us yet another inequality of Hermite-Hadamard type.
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A weighted version of the Hermite-Hadamard inequality is the Fejér inequality, also
known in literature as the Hermite-Hadamard-Fejér inequality. If we add the symmetry
of the weight p, then we can obtain one of the Fejér type inequality for (h,g;m)-convex
functions.

Theorem 3.16 Let f be a nonnegative (h,g;m)-convex function on [0,0), where h is a
nonnegative Sunction on J C R, (0,1) CJ, h #0, g is a positive function on [0,0) and

€(0,1]. Let0<a< b <eand f,g,h € L|a,b]. Furthermore, let p : [a,b] — R be a
nonneganve integrable and symmetric about “+b . Then the following inequality holds

b
/p dx<{f( g (a)+mf<%>g< ﬂ/ plx ( >dx (332)
Proof. If we set M = b, u = a with w(x) = x on [a, ], then from (3.26) we obtain
/ p(x)f(x)dx < f(a / p(x < ) dx
b b b —
+mf (—) g (—) / p(x)h (x a) dx.
m m) Ja b—a
From symmetric property of p and with suitable substitution we have
b b b b—x
/a p(x)h (b—a> dx = /a pla+b—x)h (b—a> dx
b x—a
= /a p(x)h (b a) dx, (3.33)

which gives us the inequality (3.32). O

Remark 3.10 The previous result, as well as the similar one

/ P f()dx < [£(D)g(b) +mf (2 / plx ( )dx, (3.34)

are proved in Theorems 3.7 and 3.8. If we use weight’s symmetry (3.33) and add inequal-
ities (3.32) and (3.34), then we obtain (3.18) in Theorem 3.6.

3.4.2 Inequalities of Giaccardi, Popoviciu and Petrovi¢

We present applications of previous results from this section to inequalities of Giaccardi,
Popoviciu and Petrovié.
Let f be a convex function on an interval /, p a nonnegative n-tuple with

2 pi#0
=1
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and x a real n-tuple. If x € I and x( € I are such that

n

Y pxi=xel, X#x

i=1
and
(xi*xo)(xixi)zoa izlv"'?”?
then the Lah-Ribari¢ inequality (3.25) with m = xo and M = ¥ yields the Giaccardi inequal-
ity
n n
N pif(xi) SAFE) +B( D, pi—1| f(x0),
i=1 i=1
where ) ;
A = “i=l pi(x;i —xo) B— Y1 PiXi
S pixi—Xxo Y1 PiXi — Xo
When x; > 0 (i =1,...,n) are such that they satisfy

n
xjgzpixiv j:17"'7n7
i=1
then from the Lah-Ribari¢ inequality (3.25) with m = 0 and M = X follows the Popoviciu
inequality

ipif(xi) < f(®+ <ipi — 1) £(0).

Ifx; >0(i=1,...,n) and f is a convex function of [0, ¥, x;], then we obtain the Petrovi¢
inequality from the Lah-Ribari¢ inequality (3.25) by settingm =0, M = ¥ x; and p; = 1
fori=1,...,n,1i.e.

n

Y f)<f (im) +(n—1)£(0).

i=1
More on the above inequalities can be found in [21, 25].

Now we present these inequalities for an (4, g;m)-convex function using Theorem 3.13
as follows.

Theorem 3.17 (THE GIACCARDI INEQUALITY FOR (h,g;m)-CONVEX FUNCTIONS)
Let p be a nonnegative n-tuple with ¥, p; # 0 and x be a real n-tuple. Let x € I" and
xo € I be such that

n

Y pxi=xel, #x

i=1
and

(xi —x0)(X—x;) >0, i=1,...,n.

Let f be a nonnegative (h,g;m)-convex function on [0,00) such that I C [0,c0), where h is
a nonnegative function on J C R, (0,1) CJ, h £ 0, g is a positive function on [0,%0) and
m € (0,1]. Then the following inequality holds
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ZPz -xl <fx0 xO sz <)~in)

X — X0
. 3.35
w(@e(gmlez) o
Proof. Proof follows directly from Theorem 3.13 for u = xg and M = *. O

Corollary 3.12 (THE POPOVICIU INEQUALITY FOR (h, g;m)-CONVEX FUNCTIONS)
Let p and x be nonnegative n-tuples with Y} pi # 0. Let x € [0,a]", 0 < a < oo, be such
that

n

Y pixi=%€ (0,4

i=1
and

X—x;>0, i=1,...,n.

Let f be a nonnegative (h,g;m)-convex function on [0,), where h is a nonnegative func-
tiononJ CR, (0,1) CJ, h £0, g is a positive function on [0,o0) and m € (0,1]. Then the
following inequality holds

21?1 f(xi) < f(0 2191 (x le)
+mf(%)g<%)21ph(§) (3.36)

Corollary 3.13 (THE PETROVIC INEQUALITY FOR (%, g;nm)-CONVEX FUNCTIONS)
Let x be a nonnegative n-tuple. Let f be a nonnegative (h,g;m)-convex function on [0, )
such that [0, X7, xi] C [0,e0), where h is a nonnegative functiononJ CR, (0,1) CJ, h#0,
g is a positive function on [0,00) and m € (0,1]. Then the following inequality holds

1x1 Xi

i:l

) -

Next we observe Giaccardi’s inequality for an (h,g;m)-convex function, where £ is a
supermultiplicative function.

Theorem 3.18 Suppose that assumptions of Theorem 3.17 hold and let h be a supermul-
tiplicative function with X —xo € J and X — x;, xi —xo € J fori=,1,...,n. Then

<o - f(xo)g(x0) xn e
lzzlplf( l) S h(ffxo) lzplh( l)
+~—)f( )g( )Zpl Xi —X0). (3.38)

h(x—xo m
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If additionally (3.29) holds, then

Zplf xi) < f(xo)g lZpl M]

i=1 (x xO)
m X i\ &
—f | — — ih(xi —xp). 3.39
! (1) (B Bosem e
Proof. Proof follows from Theorem 3.14 for 4 = xg and M = X. Here, fori =1,...,n we
have .
Xi — X0
0,1 €(0,1)CJ
—e@ncs Treonc

Since h is a supermultlphcatlve function, with assumptions that ¥ — x¢, ¥ — x;, x; — xo for
alli=1,...,narein J, we obtain (3.38).
The second inequality (3.39) follows from

(B2 1 o)

X—Xx0 h(X—xo

O

Remark 3.11 Setting g =1 and m = 1 in (3.39) we obtain the result for #-convex function
given in [29, Theorem 2.1]:

lh i
sz f(xi) < f(xo) [sz Li1p (x XO)] x ) sz

= h(x—xp)

Taking xp = 0 gives us [29, Theorem 2.2]:

zn:pif(xi) < f(0)

i=1

Pi pe
i=1 h(Z)

Corresponding inequalities can be stated using special functions for 4 and/or g, and
choosing a fixed parameter for m. However, the details are omitted.

zn: 21 1plh j zn:pt]’l Xz
1:1

3.4.3 Applications: Converses of the Jensen inequality

We consider converses of Jensen’s inequality, using an analogue of the Mond-Pecarié
method in operator inequalities, to obtain the bounds. Numerous applications of the fol-
lowing theorem can be given as in monographs [13, 14] involving operators, or for real
variables as in [25].

Theorem 3.19 Let w : [a,b] — R be an integrable function such that 0 < a < b < oo,
U <w(x) <M forx € la,b], u <M, and let p : [a,b] — R be a nonnegative function. Let
f be a nonnegative (h,g;m)-convex function on [0,°0) such that [u,M] C [0,00), where h
is a nonnegative function on J CR, (0,1) CJ, h #£0, g is a positive function on [0,e),
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m € (0,1] and f,g,h € Li[a,b]. Furthermore, let F : U x U — R be a function such that
f([u,M]) CU. If F is increasing in the first variable and h is a concave function, then the
following inequality holds

1 b 1
" [ffp(x)dx /a P/ (w(x)d ( (x)dx/a )]

< max | gt +mt = (3 ) (5)700).

xe[u,M] M—pu —u
(3.40)
Proof. Since h is a concave function, then from Theorem 3.13 we obtain
b
| peosowa)ax
b M—w(x M w(x)—pu
< -
< rweto) [ pn (S )avrms (M) (50) [ pton (M ) as

< flu)g(m) </abp(x)dx> <f pzx) /bp(X) M WL) x)
o () () ([ o)

that is
Ji P)F(w(x)dx _ h(M —w) hw—p) (MY (M
[Ppydx T M-—p Fle(w) +m M—u f(’”)g(m)
where
— [ pwdx
J2 p(x)

Using the increasing property of F(-,y) we have

[
< P |1 et +m =0 (M) o (M) .50
< max |0 gt +m =y (M) (30 o)

which gives us the inequality (3.40). O
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Remark 3.12 If we apply Theorem 3.19 on the function F (x,y) = x —y, then a difference
type of converse of Jensen’s inequality for (%, g;m)-convex functions follows

1 b 1 b
o | plosontoyd - ( T / p(x)w(x)dx>

< max [Mf(u)g(uHmLﬁ)f (ﬂ) 8 (ﬂ) —f<x)] :

xeluM] | M—u M m m

Setting U = (0,e°) and F(x,y) = x/y in Theorem 3.19, we obtain a ratio type converse of
Jensen’s inequality for (A, g;m)-convex functions

o Ja PO (wx))dx
1
/ <f,§’p<x)d

b (x)w(x)dx>

< i e s g () G

Therefore, a particular choice of the function F' in Theorem 3.19 implies complementary
inequality to Jensen’s inequality, by which is given the unified view of upper estimates.
Thus the problem of determining the upper estimates is reduced to solving a single variable
maximization problem.

3.5 Jensen type inequalities for (i, g;m)-convex
functions

The following lemma is equivalent to the definition of a convex function (3.1).

Lemma 3.3 ([25]) Let x1,x2,x3 € I be such that x|y < x < x3. The function f:1 — R is
convex if and only if the following inequality holds

(x3 = x2) f (1) + (1 —x3) f (x2) + (32 —x1) f(x3) > 0.

By mathematical induction, we can extend the inequality (3.1) to the convex combi-
nations of finitely many points in / and next to random variables associated to arbitrary
probability spaces. These extensions are known as the discrete Jensen inequality and the
integral Jensen inequality, respectively.

Theorem 3.20 (THE DISCRETE JENSEN INEQUALITY) A real-valued function f defined
on an interval I is convex if and only if for all xi,...,x, in I and all scalars Ay, ..., Ay in

[0,1] with ¥ | A; = 1 we have

f (i&%‘) < ilif(xi)-
i=1 i=1



96 3 (h,g;m)-CONVEX FUNCTIONS AND CERTAIN TYPES OF INEQUALITIES

The above inequality is strict if f is strictly convex, all the points x; are distinct and all
scalars A; are positive.

Here we will obtain Schur and Jensen type inequalities for (%, g;m)-convex functions,
which will generalize and extend corresponding inequalities for the classes of convex func-
tions that already exist in literature. We will use super(sub)multiplicative functions as in
Definition 3.2.

3.5.1 Schur type inequalities

We start with a result related to the definition of (%, g;m)-convex functions.

Proposition 3.6 Let f be a nonnegative (h,g;m)-convex function on I C R, where h is a
nonnegative supermultiplicative functiononJ CR, (0,1) CJ, h#£0, g is a positive function
on I and m € (0,1]. Then for xi,x3,x3 € I, x1 < xp < x3 With x3 —X3,X) — X1,x3 — x| €J
the following inequality holds

h(xs —x2) f(x1)g(x1) — h(xz —x1) f(x2) + mh(xp — x1) f (%) g (%) >0. (3.41)

If f is an (h,g;m)-concave function where h is a submultiplicative function, then inequality
(3.41) is reversed.

Proof. Let f be an (h,g;m)-convex function and x;,x,x3 € I. From the assumptions, we
have

SR c0,1)cy, 2 e1)Cy
X3 — X| X3 — X1
and
R td G

X3 — X1 X3 — X1

Since h is a supermultiplicative function and x3 — x3,x, — x1,x3 — X1 € J, we obtain

h(xs—x2) =h ("3 i, —xl)) >h <x3 _x2) h(xs —x1)

X3 —X| X3 — X1
and also
h(xa—x1) >h (xz _xl) h(xs —xp).
X3 — X
Assume h(xz —x1) > 0. If we setin (3.3) A = ﬁ:ﬁf , X = X1, y = X3, then we obtain

fln) = f(/lx—i—m(l—)L)%)
B g +mn(1 - 2)7 (L) (2)

m

P22 et +mn (222 1 (2)e(2) a

X3 — X1 X3 — X1 m

< PO (o) i () g (22

h(xs —xp) h(x3—x1)" \m m

IN
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Hence, (3.41) is proven.
Analogously follows reversed inequality (3.41) if f is an (h,g;m)-concave function
where £ is a submultiplicative function. O

Recall the Schur inequality:
If x,y, 7z are positive numbers and if A is real, then
Fx=y)x=)+Y (=) =0+ =x)(z—y) 20
with equality if and only if x =y =z.

This inequality follows from (3.41) for f(x) =x*, A € R, h(x) = %, g=landm=1.
A related inequality was proved in [22] by Mitrinovi¢ and Pecari¢:

(1 —2x2) (1 —x3) f (1) + (2 —x1) (32 — x3) f(x2) + (%3 — x1) (x3 — x2) f(x3) > O

where f is a Godunova-Levin function, that is an (h,g;m) = (x~!,1;1)-convex function:

[ f0)
A 1—-A)y) < —F+ L.
JOx+(1=2)y) £ ==+ 1%
Next inequality is of Schur type for (x’k,g;m)—convex (and concave) functions, ob-
tained for h(x) = ﬁ, keRR:

Corollary 3.14 Let f be a positive (x %, g;m)-convex function on I C R, where k € R, g
is a positive function on I and m € (0, 1]. Then for x1,x3,x3 € I, x; < xp < x3 the following
inequality holds

Fe)g () (e3 — x1 ) (2 — x1)K — f o) (33 — x2) (22 — 1)
+omf (%) g (’%) (63 — 31k (x5 —x2 )k > 0. (3.43)

If the function f is a positive (x| g;m)-concave function, then inequality (3.43) is re-
versed.

As an example of a special case, if we set i(x) =x*, s € (0,1], g(x) = e~ *, @ € R, then
we obtain following Schur type inequality for convexity (3.2), i.e., exponentially (s,m)-
convex functions in the second sense.

Corollary 3.15 Let f be an exponentially (s,m)-convex function in the second sense on
I C R, where s,m € (0,1]. Then, for x;,x2,x3 € I, x| < xp < x3, the following inequality
holds ( ) ( )

X3 —X2) _ _ s m(x, —X1)" )ﬁ

oy ) (s’ fn) + BT f(m) > 0. (3.44)
If the function f is an exponentially (s,m)-concave function in the second sense, then

inequality (3.44) is reversed.

Remark 3.13 Using special functions for /& and/or g, as well as choosing a fixed param-
eter for m, Schur type inequalities for different types of convexity can be derived. For
instance, setting ¢ = 1 and m = 1 in (3.41) and (3.43), we obtain results for h-convex
functions given in [36].
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3.5.2 Jensen type inequalities

We continue with Jensen type inequalities for (h, g;m)-convex functions, where / is super-
multiplicative function. In the following, for n € N, let

n
P.=Y pi, (3.45)
i=1
1 n
Xo=1 Y pixi, (3.46)
=1
n
G =[]s(x)), i=1. (3.47)

n
We will set empty products equal to 1, for example G} | = H g(X;) =1
j=n+1
Notice that P, = pi, X; = x; and G? = g(X,). Furthermore, the following recursive
formulas hold

G =g(X;)-G},, i=1,....n, (3.48)
G'=G""g(X,), i=1,...n (3.49)
Theorem 3.21 (THE JENSEN INEQUALITY FOR (%,g;m)-CONVEX FUNCTIONS)
Let py,...,pn be positive real numbers. Let f be a nonnegative (h,g;m)-convex function on
[0,00) such that I C [0,00), where h is a nonnegative supermultiplicative function on J C R,

(0,1) CJ, h#£0, g is a positive function on [0,00) and m € (0,1]. Then, for x,...,x, € I,
the following inequality holds

1 & p1 nl o, [ Di X Xi\ n—1
f(Eizlpixi>Sh(E)f<x1)Gl +mi22h<ﬁn)f(a)g(a)(;i . (350)

If f is an (h,g;m)-concave function where h is a submultiplicative function, then inequality
(3.50) is reversed.

Proof. We will prove the theorem by the mathematical induction.

If n = 2, then (3.50) is equivalent to (3.3) with A = ’f’,—;, 1—A= ’f’,—;, x=xjandy=:2
(notice, G1 = g(X;) = g(x1) and G} = 1).

Assume that (3.50) holds for n — 1. Then, for py,...,p, and x1,...,x, we have

I DnXn | Paoi ol Pi
— Xi | = m——+— Xi
f(&%"”) f( A AP
o (1)1 (2)(2)
P, m m
Pnl) S opi "Spi
+h X; X;
( B f i—1 Pnfl )8 1:2] Pnfl l

IN
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< ()1 G)e()
P, m m
Pt D1 )
h{— ) |h G/
(B () e
() (s (e
m — — A
b AN m) &\ ) i
Since £ is a supermultiplicative function, we obtain

/ (pi 2p> < (5)r () e () (5 ) rtenst o

n

S () () (2) 05 v

m

g(xnfl)-

Now, we apply the recursive formula (3.49) to find inequality (3.50). O

Remark 3.14 As before, if we use special 4, g and m in (3.50), then we obtain Jensen
type inequalities for different types of convexity. Hence, Theorem 3.21 is a generalization
of Jensen’s inequality for h-convex functions given in [36].

The last result is a conversion of Jensen’s inequality.

Theorem 3.22 Let py,...,p, be a positive real numbers and [, M] C [0,00). Let f be a
nonnegative (h,g;m)-convex function on [0,0), where h is a nonnegative supermultiplica-
tive function on (0,0), g is a positive function on [0,o0) and m € (0,1]. Then for x; € (u,M)
and M — 31 >0 (i=1,...,n), the following inequalities hold

f (%ﬂipi%’) —h (%) f)Gi!
w3 () ()G er
<m3n (5 | (52 ) st

T M M Xi\ n
(G DDl o

If f is an (h,g;m)-concave function where h is a submultiplicative function, then inequality
(3.51) is reversed.

IN

Proof. From (3.42) in Proposition 3.6 we have

X3 — X2

o) < 1 (222 et +mn (2220) 7 (2) 6 (2).
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which gives us for x; =y, x =t and x3 =M fori=1,...,n

f(%)gh(%—%)fwmuo+mh(%—%)f<%)g(%>'

Notice, since m < 1, then u < )n‘—i, and by the assumption we have % < M. With this, h
function can by applied.
If we multiply the above with

Pi Xi 1
n( 2 (—) G,
" (&)g m)
then, after adding all inequalities, from Theorem 3.21, (3.51) follows. O

Remark 3.15 Corresponding conversions of Jensen’s inequality for different types of
convexity can be stated. However, the details are omitted.

If, in (3.42), we let x; = U, x» = x;, x3 = M and if we multiply such inequality with
pi, then after adding all inequalities for i = 1,...,n we obtain the discrete Lah-Ribari¢
inequality for an (A, g;m) convex function

,;pif(xi) = %;pihw_mHﬁf (ﬂ)g(%)izlpih(xi—u).

m

Integral version of this inequality is given in Theorem 3.14.

3.6 Fractional inequalities of the Hermite-Hadamard
type for (i, g;m)-convex functions

In recent years, in the field of applied sciences, fractional calculus has been used with
different boundary conditions to develop mathematical models relating to real-world prob-
lems. This significant interest in the theory of fractional calculus has been stimulated by
many of its applications, especially in the various fields of physics and engineering.

Inequalities involving integrals of functions and their derivatives are of great impor-
tance in mathematical analysis and its applications. Inequalities containing fractional
derivatives have applications in regard to fractional differential equations, especially in es-
tablishing the uniqueness of the solutions of initial value problems and their upper bounds.
This kind of application motivated the researchers towards the theory of integral inequali-
ties, with the aim of extending and generalizing classical inequalities using different frac-
tional integral operators.

The motivation for this research on Hermite-Hadamard-type integral inequalities was
provided by recent studies on these inequalities for different types of integral operators
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(see [4, 5, 26, 28, 30, 33, 34, 37]) and different classes of convexity (see [2, 6, 12, 20, 23,
24,27, 35, 36]).

We observe the Hermite-Hadamard inequality given in Theorem 3.1, and its fractional
version, involving Riemann-Liouville fractional integrals, given in [32]:

Theorem 3.23 ([32]) Let f: [a,b] — R be a convex function with f € Ly[a,b]. Then for

c>0
£(442) < et e o) +9gpta) < LOHO),

Recall that the left-sided and the right-sided Riemann-Liouville fractional integrals of
order o > 0 are defined as in [18] for f € L;[a,b] with

JO f(x) = ﬁ/:(x—r)c”f(t)dt, x € (a,b], (3.52)
o 1 b o—1
I = Fes / (=X F()dt, x€[ab). (3.53)

Our aim is to prove Hermite-Hadamard’s inequality in more general settings, and for
this we need an extended generalized Mittag-Leffler function with its fractional integral
operators and a class of (%, g;m)-convex functions.

An extended generalized form of the Mittag-Leffler function

The Mittag-Leffler function

Zn

Ep(x) = ), == (2€C, R(p)>0)
. 2::0 L(pn+1)
with its generalizations appears as a solution of fractional differential or integral equations.
The first generalization for two parameters was carried out by Wiman [37]:

0 n

Epo(z) =), i <

— = zp,0€C, R(p)>0, 3.54
2 Tpnt o) ZP (p) (3.54)

after which Prabhakar defined the Mittag-Leffler function of three parameters [26]:

Bol0)= % oo

pnto)nl’ z,0,0,0 €C, R(p)>0. (3.55)
n=0 :

Recently we presented in [4] (see also [5]) an extended generalized form of the Mittag-
S,cr

Leffler function Ey 57 (z;p):

Definition 3.3 ([4]) Letp,0,7,0,c € C, R(p),R(0),R(1) >0, R(c) > R(S) > 0 with
p>0,r>0and0< g <r+R(p). Then the extended generalized Mittag-Leffler function
ESS%" (23 p) is defined by

¢ Bp(d+ng,c=8) (g 2"

Sicar..
E o,T 5 = .
par (&p) 20 B(S,c—8) TD(pn+ o) (O)n

(3.56)
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Note, we use the generalized Pochhammer symbol (c¢),q = F(If(i';‘” and an extended

beta function B, (x,y) = Jort(1— t)y’lefﬁdt, where R(x), R(y),R(p) > 0.

Remark 3.16 Several generalizations of the Mittag-Leffler function can be obtained for
different parameter choices. For instance, the function (3.56) is reduced to

(i) the Salim-Faraj function ng,‘i(z) for p =0 [30],

(if) the Rahman function EJ4°(z; p) for T = r = 1 [28],

1) the Shukla-Prajapati function £, 5(z) forp =0and 7 =r = s

jii) the Shukla-Prajapati f i ng] for p=0and 1[33]

1v) the Prabhakar function Z)forp=0and T =r=¢qg = s

] he Prabhakar fi i ES,G for p =0 and q=11[26]

V) the Wiman function sg)forp=0and T=r=qg=0 = ,
he Wi fi ion Ep fi 0 and o =11[37]

(vi) the Mittag-Leffler function E,(z) forp=0,7=r=g=8 =1land o = 1.

Next we have corresponding fractional integral operators, the left-sided saiépcaq; fand

wﬁcqr

the right-sided ¢, f where the kernel is a function Ep o "(zp):

Definition 3.4 ([4]) Let w,p,0,7,8,c € C, R(p),R(0),R(1) > 0, R(c) > R(5) >0
withp >0,r>0and0<q<r+R(p). Let f € Ly[a,b] and x € [a,b]. Then the left-sided
and the right-sided generalized fractional integral operators €;° 5.4, "fand e w d.c, " f are

dﬁ Jb at.p,0,T ~,0,0,T
efined by
(e05arr) i) = [ =0 'ERS¥ (@Ge—0Pip)f0dr, B.5T)
N b
(ccars) (em = [0  BEY (0l —Pisdr. G39)

Remark 3.17 If we apply different parameter choices, then (3.57) is a generalization of

(i) the Salim-Faraj fractional integral operator & +5p oo/ (x (x) for p =0 [30],
(i) the Rahman fractional integral operator €/ Sp" “flx;p) fort=r=1[28],

(iii) the Srivastava-Tomovski fractional integral operator £, - p"c f(x)forp=0and 7 =
r=11[34],

(iv) the Prabhakar fractional integral operator €(p,0;0;®)f(x) for p=0and 7 =r =
q=1126],

(v) the left-sided Riemann-Liouville fractional integral J7, f(x) for p = @ = 0, that is,
(3.52).



3.6 FRACTIONAL INEQUALITIES OF THE HERMITE-HADAMARD TYPE 103

We listed reductions for the left-sided fractional integral operator, whereas the analogs
are valid for the right-sided.

More details on this generalized form of the Mittag-Leffler function and its fractional
integral operators can be found in [4, 5]. Here are some results we will use in this study:

Theorem 3.24 ([4]) Ifo,,w,p,0,7,8,¢c € C, R(p),R(0),R(t) >0, R(c) > R(0) >0
withp >0, r>0and0 < q < r+R(p), then for power functions (t —a)*~' and (b—1)*~!
follow

(25— @) ) (5p) = (@) (v = @)™ T B (0(x—a)fsp),  (3:59)

atp,ot

,0,¢,q,r — . —10,c,q,r A
(s,ﬁ”,’pf(fj(b—t)“ 1) (6:p) = T(@) (b —x)* P ESCU (0(b—x)Pip).  (3.60)

If we set a =0 and x =1 in (3.59), or b =1 and x = 0 in (3.60), then we obtain the
following corollary.

Corollary 3.16 ([4]) Ifo,w,p,0,7,8,c € C, R(p),R(0),R(7) >0, R(c) >R(S) >0
withp>0,r>0and0 < q<r+R(p), then

L - —1gdcar S.c.q.r
F(oc)/o Y1 —1)° lEp:CC;fIT’ (“’(1*’)p;p)dt:Ep,’gﬂmT(w;p).

Setting o = 1 in theorem 3.24, we obtain following identities for the constant function:

Corollary 3.17 ([5]) Let the assumptions of Theorem 3.24 hold with o. = 1. Then

,0.¢,q, d,c,q,

(s:i,pf;{; 1) (p) = (x—a)7E, 51 [(@(x—a)f:p), (3.61)
Scart) (v s.car .

(8,?,@?211) (:p) = (b—x)°ESS (0(b—x)";p). (3.62)

Here we will use simplified notation to avoid a complicated manuscript form:

8.,c,q,
E(zp) := Eyjg% (z:p)

and

(62 /) xip) = (e255071) (vp),

(e Nwp) = (&5 1) (x:p).

Of course, the conditions on all parameters p, 0,7, ®,9,c,q,r are essential and will be
added to all theorems.

Another direction for the generalization of the Hermite-Hadamard inequality is the use
of different classes of convexity. For this we need a class of (h,g;m)-convex functions.
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3.6.1 Fractional Hermite-Hadamard inequalities

Hermite-Hadamard type inequalities for (%, g;m)-convex functions are obtained in Section
3.2, where some special results are pointed out and several known inequalities are improved
upon. Here we will obtain their fractional generalizations, using (3.56)—(3.58), that is, the
extended generalized Mittag-Leffler function E with fractional integral operators €2, f and
€, f in the real domain.

In this section, it is necessary to introduce the following conditions on the parameters
and the interval [a, b]:

Assumption 3.1 Ler w € R, p,0,7>0, ¢ >8>0 with p>0and 0 < g <r+np.
Furthermore, let 0 < a < b < oo

We start with the left side, i.e., the first Hermite-Hadamard fractional integral inequality
for (h, g;m)-convex functions involving the extended generalized Mittag-Leffler function.

Theorem 3.25 Let Assumption 3.1 hold. Let f be a nonnegative (h,g;m)-convex function
on [0,00), where h is a nonnegative function on J C R, (0,1) CJ, h #£0, g is a positive
Sunction on [0,00) and m € (0,1]. If f,g € Li][a, %] then the following inequality holds

m

£(457) e < (3 ) | €@ s mo (L se) (S0)] . 9

where

[0)

(3.64)

Proof. Let f be an (h, g;m)-convex function on [0,0), m € (0,1]. Then for ¢ = % we have

7(52) <a(3) £+ 3) 70260

Choosing y = £ we obtain

(52 0 (3) oo s (2)e(2)-

Letx=ta+ (1 —¢)band y = (1 —¢)a+1rb. Then

f<“;b) < h(%) [+ (1=0)b)g(ra+ (1~ 1)b)

+mf ((11‘)}%+t}%)g<(1 t)%qtt%)}.
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In the following step we will need to multiply both sides of the above inequality by
t°~'E(wtP; p) and integrate on [0, 1] with respect to the variable ¢, which gives us

b |
f(chzL )/o 1" E(0wtP;p)dt

<h <%> /0] flta+ (1 —0)b)g(ta+ (1 —1)b)" 'E(wi; p)dt

Fmh <%) /Olf <(1 —t)% +t%>g ((1 4)% +t}%) 19 E (0P p)dt.

With substitutions u =ta+ (1 —t)band v = (1 — )£ +¢2 we obtain

ﬁf <a;b) /ab(b* u)? 'E(@(b—u)’; p)du

e b
< B [ st o0 B @0 pa
moH (L) b aNol—(  ayp
+7(b—a)" /,“,, fg) (vf%> E(a) (vf%) ;p)dv.
Since m € (0,1], then a < a/m, b < b/m and [a,b] C [a, 2]. Therefore, the condition
f,8 € Li]a, ] is stated in this theorem. The above inequality can be written as

! (7))

< (bh_(%a))ﬁ [<8§’+fg)(b;p)+ " (el 2 re) (o >]

Note that with Corollary 3.17 we can obtain the constant (sf+ 1)(b; p). This completes
the proof. O

Next we have the second Hermite-Hadamard fractional integral inequality.

Theorem 3.26 Let the assumptions of Theorem 3.25 hold with f,g,h € Li]a, —] Then
(€% £8)(b:p) +m° ! (8?; fg) (—;p)
< f@ea@ [ 1(5=2 ) s 007 E@(o -0l

+mf< ) ( )/hb(z 2) )(b—x)° " E@(b —x)":p)dx
(s G () () BBl ) e
s () () [ (5 )t () B (B ) )i

(3.65)
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where @ and @ are defined by (3.64).
Proof. Due to the (h,g;m)-convexity of f we have

flea+ (1 - 1)b) < h()(a)g(a) + mh(1 t)f<%> ¢ <3> .

m

Multiplying both sides of above inequality by g(ta+ (1 —1)b)t°'E(wt”; p) and inte-
grating on [0, 1] with respect to the variable ¢, we obtain

/Olf(ta—i— (1—0)b)g(ta+ (1 —1)b)° 'E(wtP;p)dt
< fl@sla) [ H0)g(ra+ (103 Bl

+mf( > ( )/hlt (ta+ (1= )by E(wi®; p)di.

With the substitution u = ra+ (1 — )b we obtain

L [ 1@ sw 607 E@ )i

o= J
f@gla) (b e
< DS 1) (224 (o) B @0~
mf(z)e(x) 7, (u=a ot .
P 2EE) 1 (U22) gt -0 B @i

that is
(5:f8)(bip)
b —u
< fl@sla) [ n(7=2 ) elwb- 1w E@0H 1) spu

+m f <%> g <%> /abh (Z_Z) g(u)(b—u)°'E(@(b—u)’; p)du.

(3.66)

Again, due to the (h,g;m)-convexity of f we have

f<(1 t)%thn%) <n(-07(2)g(%) +mh(t)f(%>g (%) .

Multiplying both sides of above inequality by g ((1 —1)< + t%) t°E(wt?;p) and in-
tegrating on [0, 1] with respect to the variable 7, we obtain

/01f<(1 t)%+t%>g <(1 < th%)talE(wtp;p)dt
( ) (%)/ (1—1) g((l—t)%—i—t%)tclE(wtp;p)dt
+mf<W)g(W) i h(t)g<(1I)%th%)tGlE(wtp;p)dt.
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With the substitution v = (1 —#)£ 472 we obtain
m° " a\o-1_ /— a\p
(ba)"/% ) (v=1 ) E(@ (v ) sp)av
nof(8)e(8) (5 (bom @yl (= ay
= (b—a)° /’% h( b—a )g(‘))(‘)_i) E(w(V_E) ,p)dv

) () ) o 2 R (-2 )

b—a m m

that is

(2 73) (o0)

<o (s () (5 s ) (o ) )
o ()5 () J H () (=) B (@ (o ) )

(3.67)

Inequality (3.65) now follows from (3.66) and (3.67). O

In the following we derive fractional integral inequalities of Hermite-Hadamard type
for different types of convexity, and state several corollaries, using special functions for &
and/or g, and the parameter m. The first consequence of Theorems 3.25 and 3.26 obtained
via the setting g = 1 (i.e., g(x) = 1) is the Hermite-Hadamard fractional integral inequality
for (h — m)-convex functions given in ([16], Theorem 2.1):

Corollary 3.18 Ler Assumption 3.1 hold. Let f be a nonnegative (h —m)-convex function
on [0,00) where h is a nonnegative function on J C R, (0,1) CJ, h 20 and m € (0,1]. If
f€Lila,2] and h € L,[0, 1], then the following inequalities hold

£(“57) €0 < n(3) @@ emes (6.1) (L)

m

n(5) -0 {|r@+nir ()| e mon)
+ [Mf(%) +mf(%)] <sgah>(1;p>}, (3.68)

IN

IN

where @ and @ are defined by (3.64).

Proof. First we use substitutions = 2%2 and z = %"= in Theorem 3.26, after which we
apply identities
1
/0 h(t)t°'E(wt?; p)dt = (€2-h)(0;p) (3.69)
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and
/l h(1— 1)t 'E(owt’; p)dt
—/ )" E(0(1 - 2)";p)dz = (g§:h)(1:p). (3.70)
The result now follows from the above and Theorem 3.25. o

By setting the function g = 1 and the parameter m = 1, the previous result is reduced
to the Hermite-Hadamard fractional integral inequality for #-convex functions:

Corollary 3.19 Let Assumption 3.1 hold. Let f be a nonnegative h-convex function on

[0,00) where h is a nonnegative function on J C R, (0,1) CJ, h #0. If f € Li[a, 2] and
h € L1]0,1], then the following inequalities hold
f<a;rb> (g 1)(b:p)
< n(5) [0+ & pan)]
< i(3) -0 lr@ @) 2O + GNP BT

where @ is defined by (3.64).

In the following, we set the function 4 = id, the identity function. With g =1 we
obtain the Hermite-Hadamard fractional integral inequality for m-convex functions from
([17], Theorem 3.1):

Corollary 3.20 Let Assumption 3.1 hold. Let f be a nonnegative m-convex function on
[0,00) with m € (0,1]. If f € Ly]a, %], then the following inequalities hold

paE
+mf( )}(11‘1)(0’1’)

{
{ ( >+mf( )} £o+id)(1;p)}, (3.72)

A
< wi=
| — |
=
Q
2 8
\
S~—
=
w

IN

where @ and @ are defined by (3.64).

The Hermite-Hadamard fractional integral inequality for convex functions is given in
([17], Theorem 2.1). Here it is a merely a consequence for h =id, g =1andm = 1:
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Corollary 3.21 Let Assumption 3.1 hold. Let f be a nonnegative convex function on

[0,00). If f € Ly[a,b], then the following inequalities hold

£(“52) €@ 06i0) < 5 [ N0+ €T Naip)

< M(Ea@l)(b;m,
where @ is defined by (3.64).
Proof. Here we use
(£g+ id)(1;p) + (€7 id)(0; p)
_/ t°E(wt’;p dt+/ )TE(w(1 —1)P;p)dt
_/ (1-1)°E(o(1—1)P;p dt+/ VE(w(1—1)P; p)dt

7/ YE(w(1 —1)P;p)dt
= (£0+1)(1,p)

- (b_%)c(egl)(b;p).

(3.73)

O

We have presented several Hermite-Hadamard-type inequalities for the (h, g;m)-convex
function using fractional integral operators, where the kernel is an extended generalized
Mittag-Leffler function. If we apply different parameter choices, as in Remark 3.17, then

we obtain corresponding inequalities for different fractional operators.

Several properties of fractional integral operators ¢7, f and ¢ f

At the end of this section we give several results for fractional integral operators.

Proposition 3.7 Let w,p,0,7,8,¢ € C, R(p),R(0),R(7) >0, R(c) > R(5) > 0 with

p>0,r>0and0<q<r+R(p).
(i) If the function f € Ly[a,b] is symmetric about “52, then

(£ 1)(b:p) = (&} f)(a;p)-

In particular,
(&g 1)(bsp) = () 1)(a;p).

(ii) Furthermore,
(2.t — )" 1) (bip) = (€2 (b— 1)) (aip).

(€5~ (0 —1)*"") (bsp) = (&5~ (t —a)* ") (a:p).

(3.74)

(3.75)

(3.76)

(3.77)
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In particular,
(e~ ") (1;p) = (67 (1—=1)*"1)(0: p), (3.78)
(e (1=0)*"") (1:p) = (€717 1)(0: p). (3.79)

Proof. (i) If the function £ is symmetric about 42, i.e., f(¢) = f(a+b—1) forallt € [a,b],
then, substituting z = a+ b —t, (3.74) easily follows

(g f)(bip) = /ab(b—f)"’lE(w(b—t)p;p)f(t)df
- /b(zfa)"’lE(w(zfa)p;p)f(a+b72)dz

- /ab(z —a)° 'E(0(z—a)’;p)f(2)dz
= (g)-f)(ap).

Note that (3.75) also follows directly from Corollary 3.17 if we set x = b in (3.61) and
x=ain (3.62).

(ii) Equations (3.76) and (3.77) follow with the substitution z = a+ b — . Furthermore,
(3.76) follows directly from Theorem 3.24 if we set x = b in (3.59) and x = a in (3.60).
The final two equations are obtained fora =0 and b = 1. O

Remark 3.18 To obtain the Hermite-Hadamard inequality for convex functions involving

Riemann-Liouville fractional integrals, given in Theorem 3.23, first we need to set p = @ =
0 in (3.56)

0 n

-y L

=T pn+o)( ar

Since E(0;0) = Eg,’f;’?f’ (0,0) = ( 7» setting p = @ = 0 in (3.57) we obtain Riemann-
Liouville fractional integrals

(€0 = o [ =07 0 = IZ s,

1 b
0 . _ -1 _
(€} 1)0) = gy [ =07 f0ar = I 1)
Note that a direct consequence of Theorem 3.24 is
. 5
(€+ id) (1:p) = Ej 645 (w3 p). (3.80)

For the reader’s convenience, we will directly prove this:

(e 10)(1:p) = [ 10107 E(o(1 1) p)ai

7/ 0' 12 5+nq,c—6) ((;)nq w"(l—t)"p
B(6,c—98) TI(pn+0) (T)ur

dt
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o Bp(8+ng,c=8) (c)g " ! np+o—
,EO pB(S,cch) F(anfG) (r)m/o (1 —aPreds
_ i B,(8 +ng,c—38) (C)ng "
= B(5,c—90) T(on+0) (0
_ i B,(0+ng,c—38) (C)ng o" T(2)T(np+o0)
= B(d,c—06) TI(pn+o0)(t)y I'2+np+o0)
S Bp(0+ng,c—9) (€)ng "

-3

= B(6,c—0) T(pn+(0+2)) ()

B(2,np+0)

8,c,q,r .
= Ep,g'f]kz,‘r(w’p)'
Hence, |
0 .
d)(1;0) = ——
(80+1 )( ) F(G+2)
and 1
. 1
from which follows
. . 1
(€- id) (1;0) + (]- id)(0;0) = ot D)

Finally, if we set h(x) =x, g =1, m =1 and p = @ = 0, then Theorems 3.25 and 3.26
are reduced to Theorem 3.23.

3.6.2 Applications: Bounds of fractional integral operators for
(h,g;m)-convex functions

As an application, we obtain the upper bounds of fractional integral operators for (4, g;m)-
convex functions.

Assumption 3.2 Lerw €R, p,0,7>0,¢>0>0withp>0and0< g <r+p. Let f
be a nonnegative (h,g;m)-convex function on [0,e0) where h is a nonnegative function on
JCR, (0,1)CJ, h#£0, g is a positive function on [0,°0), and m € (0,1]. Furthermore, let
0<a<b<eoo

Theorem 3.27 Let Assumption 3.2 hold. If f,g € Li[a,b] and h € L,[0,1], then for x €
[a, D] the following inequality holds
1
(x—a)?
X
< f@g@EnO:p) +mf (>)e(S) €nn(ip).  (G82)

X
m

(e f)(x:p)

where

(3.83)
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Proof. Let f be an (h,g;m)-convex function on [0,0), x € [a,b],m € (0,1] and z € (0, 1).
Then, similarly to Theorem 3.26, we use

X X
flta+(1=1)x) < ho)f (@)g(@) +mh(1=1)f (=) g ().
Multiplying both sides of the above inequality by 1 'E(wt”;p) and integrating on

[0, 1] with respect to the variable 7, we obtain

/01 fta+ (1 —=0)x)t°'E(wtP; p)dr

< fl@)g(@) [ o) E i pa

1
x x _ )01 p.
+mf(m)g(m)/o h(1 — 1)t E(wi®; p)dr.
With the substitution u = ra+ (1 —#)x and identities (3.69), (3.70), we obtain the inequality
(3.82). |

Theorem 3.28 Let Assumption 3.2 hold. If f,g € Li[a,b] and h € L,[0,1], then for x €
[a, D] the following inequality holds

G

< F@)eB)ELn©O:p)+mf (S) e (S) (efm(lip),  (.84)
where
w
wp = b—xp (3.85)
Proof. Using
Ftb-+(1=12) < h(0)f(B)g(b) +mh(1—1)f (=) g (=),
the proof follows analogously to that of Theorem 3.27. O

From the two previous theorems we can directly obtain the following result.

Corollary 3.22 Ler Assumption 3.2 hold. If f,g € Ly[a,b] and h € L[0,1], then for x €
[a, D] the following inequality holds

1 Wa . 1 Wp .
(x, a)O' (szﬁf)(x’p) + W(sbff)(x»p)

< [f(a)g(a) + f(b)g(b)] (€1-1)(0;p)
+2mf () e () €5n)(1:p). (3.86)

where @, and wy, are defined by (3.83) and (3.85).
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If we set x = b in Theorem 3.27 and x = a in Theorem 3.28, then we obtain the next
fractional integral inequality of the Hermite-Hadamard type.

Theorem 3.29 Let Assumption 3.2 hold. If f,g,h € Ly[a,b), then the following inequali-
ties hold

G (€2 b + (65 ) (e

< [f(a)g(a)+ f(b)g(b)] (&7-1)(0: p)

+m [f (%) g (%) +f (%) g (%)} (&g-h)(L;p), (3.87)

where @ is defined by (3.64).

In the following we will extend our interval to [ma,b]. Since m € (0,1], then ma < a,
mb < b, and |a,b] C [ma,b].

Theorem 3.30 Let Assumption 3.2 hold. If f,g € Li[ma,b] and h € L,]0,1], then the
following inequality holds

L (e ) tmbip) + (2 1) (@)

(mb—a)°
e [(€2) Onaip) + (685 ()]
< (m+1)[f(a)g(a)+ f(b)g(b)] [(€7-1)(0:p) + (€9:h)(1:p)] , (3.88)
where
T T as)

Proof. Let f be an (h, g;m)-convex function on [0,e0), m € (0,1] and 7 € (0,1). Then
fltatm(1—1)b) <h(t)f(a)g(a) +mh(1 —1)f(b)g(b),
(I =t)a+mtb) < h(1—1)f(a)g(a) +mh(1)f(b)g(b)
and
f(tb+m(1—t)a) <h(1)f(b)g(b) +mh(l —1)f(a)g(a),
(1 =1)b+mta) <h(1—1)f(b)g(b) +mh(1)f(a)g(a).
First we add the above inequalities, i.e.,
flta+m(l—1)b)+ f(1 —t)a+mtb)+ f(tb+m(1 —t)a) + f((1 —t)b+mta)
< (m+1)[f(a)g(a) +f(b)g(b)]h(t) + (m+1)[f(a)g(a) + f(b)g(b)|A(1 —1).

Then we use multiplication by 1 ~'E(wt”; p) and integration on [0, 1] with respect to
the variable ¢ to obtain

/1f(ta+m(1 —1)b)t° E(wtP; p)dt
0

+/lf((1 —t)a+mtb)t°'E(wt’; p)dt
0
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+ [ 760+ m(1 00y B (0
+/ (1 —1)b+mta)t® 'E(wt®;p)dt

< (m+ ) (@) + 1 B)0)] [ 10 B sp)a
o+ ) [7(@g@) + 7 0)] [ (00 B p)ar

For the left side of the inequality we need several substitutions. For instance, if we set
u=ta+m(l —1)b,then we get

/0 ' Fleatm(1 = 0)b)oE (or® p)dr
mb
= m/a f(u)(mb—u)°'E (ﬁ(mb—u)p;p)du.
Hence,

1 0]

e |, 7m0 (s
b | mbf(u)(u—a)“'E(ﬁw—aw;p)du

! o-1 Lufma u
e o 10— B (- maip)d
ot Y . 3
e (e WLCIO E(<b_m)p<b " )d
< (m+ 1) [f(@)g(a) + FB)g(B)] (€2 )(0: p)
(1) [f(a)sgla) + (B)g(b)] (€% ) (1:p),

that is
1 (mb?u)p b: 1 (mb(i)a)p .
(mb —a)°® €+ f) (mb:p)+ (mb —a)° Epp (a:p)

e (e ) i) + s (6077 ) G
< (D (@g(@)+ FB)B)][(€ 1)(0:p) + (1) (1:)]

This provides the required inequality. O

Remark 3.19 With an extended generalized Mittag-Leffler function from Definition 3.3
and a class of (h,g;m)-convex functions as in Definition 3.1, for different parameters p, ,
r, g, ® and for different choices of functions /4, g and parameter m, we obtain corresponding
upper bounds of different fractional operators for different classes of convexity.
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