Chapter

Introduction

1.1 Convex Functions

Definition 1.1 (SEE [119, DEFINITION 1.1])  (a) Let I be an interval in R. Then ® :
I — R is said to be convex if for all x,y € I and all o € [0, 1],

DO(ax+ (1 —a)y) <ad(x)+(1—a)d(y) (1.1

holds. If (1.1) is strict for all x #y and o € (0,1), then ® is said to be strictly
convex.

(b) Ifthe inequality in (1.1) is reversed, then @ is said to be concave. Ifit is strict for all
x#yand o € (0,1), then ® is said to be strictly concave.

There are several equivalent ways to define convex functions, sometimes it is better to
define convex function in one way than the other.

Remark 1.1 (SEE [119, REMARKS 1.2]) (a) Forx,y€l, p,g>0,p+g>0,(1.1)is
equivalent to
® <pX+qy> < pO(x) +4P()
p+q p+q

(b) Let x1,x2,x3 be three points in / such that x; < x < x3. Then (1.1) is equivalent to

X1 CD()C]) 1
X2 D(x2) 1| = (x3 —x2)P(x1) + (x1 — x3)P(x2) + (2 — x1)P(x3) > 0,
X3 q)()C3) 1
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which is further equivalent to

X2 —X3 X1 — X2

(D()Cz) <

<I>(x1) +

X1 —AX3 X1 —AX3

D(x3). (1.2)

More symmetrically and without the condition of monotonicity on x1,x3,x3, we can
write

D(x1) D(x2) D(x3)
(1 —=x2)(x1 —x3) (2 —x3)(2—x1) (3 —x1)(x3 —x2)

>0.

(c) @ is both convex and concave if and only if
®(x) =Ax+c
for some A,c € R.
(d) Another way of writing (1.2) is instructive:

Dlx1) —Px2) _ Plx2) — Ploxs)
X] — X2 - Xy — X3

(1.3)

where x| < x3 and x1,x3 # x. Hence the following result is valid:
A function @ is convex on [ if and only if for every point ¢ € I, the function (®(x) —
®(c))/(x—c) is increasing on I (x # ¢).
(e) By using (1.3), we can easily prove the following result:
If @ is a convex function on [ and if x; <y, x» <y, x| # X2, y| # Y2, then the

following inequality is valid:

Dlay) = D) _ Plya) = @(y1).

X2 — X1 Y2 =1

The following two theorems concern derivatives of convex functions.

Theorem 1.1 (SEE [119, THEOREM 1.3]) Let I be an interval in R and ® : I — R be
convex. Then

(1) @ is Lipschitz on any closed interval in I;

(i) @', and @’_ exist and are increasing in I, and @' < &', (if ® is strictly convex, then
these derivatives are strictly increasing); and

(iii) @' exists, except possibly on a countable set, and on the complement of which it is
continuous.

Remark 1.2 (SEE [119, THEOREM 1.4]) In Theorem 1.1, if ®” exists on I, then ® is
convex if and only if ®”(x) > 0. If ®”(x) > 0, then @ is strictly convex.
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Theorem 1.2 (SEE [119, THEOREM 1.6]) Let I be an open interval in R.

(a) @ :1— Ris convex if and only if there is at least one line of support for ® at each
xo €1, ie.,
D(x) > P(xo) +A(x—x0) forall xé€(a,b),

where A depends on xy and is given by A = @' (xy) when @' exists, and A € [®"_(xo),
&, (x0)] when ' (x0) # ¥, ().

(b) @ :1— Ris convex if the function ®(x) — D(xg) — A(x —xo) (the difference between
the function and its support) is decreasing for x < xo and increasing for x > x.

When dealing with functions with different degree of smoothness, divided differences are
found to be very useful.

Definition 1.2 (SEE [119, PAGE 14]) Let @ be a real-valued function defined on [a,b] C
R. The kth-order divided difference of ® at distinct points xo,...,x; in [a,b] is defined
recursively by

[xi; @] =D(x;), i€{0,1,...,k}

and
[xl,... ,xk;CD} — [xo,...,xk,l;CD]

[XQ, . ,xk;CD} =
Xk — X0
Remark 1.3 In Definition 1.2, the value [xo,...,x;; @] is independent of the order of the
points Xy, ..., x;. This definition may be extended to include the case in which some or all
of the points coincide by assuming that xo < ... < x; and letting

[x,...,.x;®] = ) (x) /!,
(j+1times)

provided that ®(/) exists.

Definition 1.3 (SEE [119, PAGE 15]) A real-valued function ® defined on [a,b] C R is
said to be n-convex, n > 0, on [a,b] if and only if for all choices of (n+ 1) distinct points
in |a,b),

[X0,- -, Xn; D] > 0.

Remark 1.4 A function ® : I — R is convex if and only if for every choice of three
mutually different points xo,x1,x2 € I, [x0,x1,x2;P] > 0 holds.

The definition of a convex function has a very natural generalization to real-valued
functions defined on R”. Here we merely require that the domain U of @ be convex, i.e.,
ox+ (1 —a)y € U wheneverx,y € U and € [0, 1].

Definition 1.4 Ler U be a convex set in R". Then ® : U — R is said to be convex if for
allx,y € U and all o € [0, 1], we have

D(ax+ (1 —a)y) < ad(x)+ (1 —o)D(y). (1.4)
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J-Convex Function

In the theory of convex functions, the most known case is that of J-convex functions, which
deals with the arithmetic mean.

Definition 1.5 (SEE [119, DEFINITION 1.8]) Let I C R be an interval. A function ® :
I — R s called convex in the Jensen sense (or J-convex) on I if for all x,y € I, the inequality

o (x;y) < CD(x);fD(y) (1.5)

holds. A J-convex function ® is said to be strictly J-convex if for all pairs of points (x,y),
X #y, strict inequality holds in (1.5).

Remark 1.5 (SEE [119, THEOREM 1.10]) (i) Itcan be easily seen that a convex func-
tion is J-convex. For continuous functions, J-convex functions are equivalent to
convex functions.

(i) The inequality (1.5) can easily be extended to the convex combination of finitely
many points and next to random variables associated to arbitrary probability spaces.
These extensions are known as the discrete Jensen inequality and integral Jensen
inequality, respectively.

Log-Convex Function

An important sub-class of convex functions is that of log-convex functions.

Definition 1.6 (SEE [119, DEFINITION 1.15]) A function ® : I — R, I an interval in R,
is said to be log-convex, or multiplicative convex if log® is convex, or equivalently if for
all x,y € I and all a € [0,1],

D(ox+ (1 —a)y) < D(x)*D(y)' . (1.6)
It is said to be log-concave if the inequality in (1.6) is reversed.

Remark 1.6  (a) If we take o = 1/2, then (1.6) becomes

o (1) <o

and the function @ is said to be log-convex in the Jensen sense. If the function @ is
log-convex in the Jensen sense and is continuous, then @ is also log-convex.

(b) If x1,x2,x3 € I such that x; < xp < x3, then (1.6) is equivalent to
[ ()] @31 < [ ()] 572 [ (x3)] (2 1),

Furthermore, if x1,x2,y1,v2 € I such that x; <y, x < y2, X1 # X2, ¥| # 2, then

()= @)™




1.2 EXPONENTIAL AND n-EXPONENTIAL CONVEXITY 5

(c) @ :1— Rislog-convex in the Jensen sense if and only if

o*D(x) +2afd (’%) +B2D(y) >0

holds for all a;, € R and x,y € I.

1.2 Exponential and n-Exponential Convexity

Exponentially convex functions were introduced by S. N. Bernstein [31] over eighty years
ago and later D. V. Widder [132]. The notion of n-exponential convexity was introduced
by J. Pecari¢ and J. Peri¢ in [115] (see also [89, 78, 88]). Now we quote some definitions
and results about exponential and n-exponential convexity.

Definition 1.7 A function ® : I — R (I CR) is n-exponentially convex in the Jensen sense

onl, if
Y &g <x 2xj> >0

i,j=1

holds for all choices & € Randx; €1, i €{1,...,n}. A function ® : I — R is n-exponentially
convex if it is n-exponentially convex in the Jensen sense and continuous on I.

Remark 1.7 It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are in fact nonnegative functions. Also, n-exponentially convex functions in
the Jensen sense are k-exponentially convex in the Jensen sense for every k € N, k < n.

By definition of positive semi-definite matrices and some basic linear algebra, we have the
following proposition.

Proposition 1.1 If ® is an n-exponentially convex function in the Jensen sense, then

the matrix

O <x, erx]>} is positive semi-definite for all k € N, k < n. Particularly,

i,j=1

. . k
det {q)(x,;x])] >0forallk €N, k<n.
ij=1

Definition 1.8 A function ® : I — R is exponentially convex in the Jensen sense on I,
if it is n-exponentially convex in the Jensen sense for all n € N. A function ® : I — R is
exponentially convex if it is exponentially convex in the Jensen sense and continuous.

Proposition 1.2 [See [19, Proposition 1]] Let ® : (a,b) — R. The following are equiv-
alent:

(i) D is exponentially convex.
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(i1) D is continuous and

n . .
3 e (15 20

ij=1
foralln e N, v; e R, and x;+x; € (a,b), 1 <i,j<n.
(iii) P is continuous and
det |@ (XX >0, 1<m<n
2 ij=1
J
for all n € N and for every x; € (a,b), i € {1,...,n}.
Remark 1.8 Some examples of exponentially convex functions are:
(i) @ :1— R defined by ®(x) = ce, where ¢ > 0 and k € R.
(ii) ®@:R" — R defined by ®(x) = x~*, where k > 0.
(iii) ®:RT — R* defined by ®(x) = e *V*, where k > 0.
Remark 1.9 From Remark 1.6 (¢) it follows that a positive function is log-convex in the
Jensen sense if and only if it is 2-exponentially convex in the Jensen sense. Also, using

basic convexity theory, it follows that a positive function is log-convex if and only if it is
2-exponentially convex.

1.3 Superquadratic Functions

The concept of superquadratic functions in one variable, as a generalization of the class
of convex functions, was recently introduced by S. Abramovich, G. Jameson and G. Sin-
namon in [6] and [S]. More examples and properties of superquadratic functions can be
found in [1, 25, 26, 24] and its references.

Definition 1.9 A function ¥ : [0,00) — R is called superquadratic if there exists a func-
tion C : [0,0) — R such that

Y) =) -¥(y—x) = Cx)(y—x) forall xy=0. (1.7)

We say that ¥ is subquadratic if =¥ is superquadratic. If for all x,y > O with x # y, there
is strict inequality in (1.7), then Y is called strictly superquadratic.

For example, the function ¥(x) = x? is superquadratic for p > 2 and subquadratic for
p € (0,2].

The following lemma shows essentially that positive superquadratic functions are also
convex functions.
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Lemma 1.1 Let ¥ be a superquadratic function with C(x) as in Definition 1.9. Then
(i) ¥(0) <0;
(i) FY(0) =¥ (0) =0, then C(x) =Y (x) whenever ¥ is differentiable at x > 0;
(iil) if ¥ >0, then ¥ is convex and ¥(0) = ¥/ (0) = 0.

In the following theorem, some characterizations of superquadratic functions are given
analogous to the well-known characterizations of convex functions.

Theorem 1.3 (SEE [26, THEOREM 9]) For the function ¥ : [0,00) — R, the following
conditions are equivalent:

(1) The function ¥ is a superquadratic function, i.e., (1.7) holds.

n
(ii) Forany two nonnegative n-tuples (x1,...,x,) and (p1,...,pn) suchthat P, =Y, p; >
=1

L

0, the inequality

¥(F@) < Pinii]pi‘l’(xi) - Pi ipi‘l’(\xi —X)

ni=1

1 n
holds, where X = 7 S pixi.

ni=l1

(iii) The inequality

W(Ayr+(1=A)y2) SA¥(y1) +(1-2A)¥(y2)
—AY(1=A)[y1 = y2| = (1 =A)¥(A|y1—y2|)

holds for all yy,y, > 0 and A € [0,1].

(iv) Forall x,y1,y» > 0, such that y; < x < y,, we have

o) < S (P () =l yn)) 4 S (F () <P ),
W) YW W) _ W) - YW - Y-y
yi—x B y2—x .

__ In the following, for any function ¥ € C!([0,%0),R), we define an associated function
¥ € C'((0,),R) by

_ Wy
Y(x) = Fix forall x> 0. (1.8)
X
Lemma 1.2 (SEE [3, LEMMA 1]) Let ¥ € C'([0,%0),R) such that ¥(0) < 0. If ¥ is

increasing (strictly increasing) or V' is superadditive (strictly superadditive), then ¥ is
superquadratic (strictly superquadratic).
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Lemma 1.3 [See [3, Lemma 3]] Let ¥ € C%([0,0),R) be such that

X (x) — ¥’ (x)

= x2

mi <M; forall x>O0.

Let the functions V1,9, be defined by

3 m X3
:M;x W), Bh(x) = W) -

191 (x) 3

Then Oy, 0, are increasing. If also W(0) = 0, then O, 0, are superquadratic.

Lemma 1.4 Lets > 0and ¥y : [0,00) — R be defined by

X
2
S(S—z)’ S# )
Ws(x) =
2
%logx, s=2.

Then Y, is superquadratic, with the convention 0log0 := 0.

Lemma 1.5 Let s € R and @ : [0,00) — R be defined by

sxe™ — e 41

§3

) s # 07
@5(x) =

3
%, s=0.

Then @y is superquadratic.

1.4 Time Scales Theory

(1.9)

(1.10)

(1.11)

The theory of time scales was introduced by Stefan Hilger in his PhD thesis [69] in 1988
as a unification of the theory of difference equations with that of differential equations,
unifying integral and differential calculus with the calculus of finite differences, extending
to cases “in between”, and offering a formalism for studying hybrid discrete-continuous
dynamic systems. It has applications in any field that requires simultaneous modelling of
discrete and continuous data. Now, we briefly introduce the time scales calculus and refer

to [70, 71] and the monograph [45] for further details.

By a time scale T we mean any nonempty closed subset of R. The two most popular
examples of time scales are the real numbers R and the integers Z. Since the time scale T

may or may not be connected, we need the concept of jump operators.
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Fort € T, we define the forward jump operator o : T — T by
ot)=inf{s€T: s>t}
and the backward jump operator by
p(t)=sup{seT: s<t}.

In this definition, the convention is inf@ = sup T and sup® = infT.

If o(¢) > ¢, then we say that 7 is right-scattered, and if p(¢) < ¢, then we say that 7 is
left-scattered. Points that are right-scattered and left-scattered at the same time are called
isolated. Also, if o(¢) =1, then 7 is said to be right-dense, and if p(z) = ¢, then ¢ is said to
be left-dense. Points that are simultaneously right-dense and left-dense are called dense.

If T has a left-scattered maximum M, then we define T* = T\ {M, }; otherwise T* =
T. If T has a right-scattered minimum M>, then we define T = T \ {M}; otherwise
T, = T. Finally we define T* = T* N'T\.

The mappings i, v : T — [0, o) defined by

u@)=o@)—t and v(t)=1t—p(r)

are called the forward and backward graininess functions, respectively.

In the following considerations, T will denote a time scale, IT =/ NT will denote a
time scale interval (for any open or closed interval 7 in R), and [0,0) will be used for the
time scale interval [0,o0) N T.

Definition 1.10 Assume f : T — R is a function and let t € T*. Then we define f*(t)
to be the number (provided it exists) with the property that given any € > 0, there is a
neighborhood Ut of t such that

(f(6(0) = £(5) = A1) [o(t)—s)| < e|o(t)—s| forall seUr.

We call f2(t) the delta derivative of f att. We say that f is delta differentiable on T*
provided f*(t) exists for all t € T*.

Definition 1.11 Assume f : T — R is a function and let t € Ty. Then we define f (t)
to be the number (provided it exists) with the property that given any € > 0, there is a
neighborhood Ut of t such that

(f(p@)=f() =Y @) @) =sl| <elp()—s| forall seUr.

We call f¥ (t) the nabla derivative of f att. We say that f is nabla differentiable on T
provided fV (t) exists for all t € Ty.

Example 1.1 (i) If T =R, then
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(ii) If T = Z, then
A = fe+1) = f(t)

is the forward difference operator, while
) =f0)—fr-1)
is the backward difference operator.
(iii) Leth > 0. If T = hZ, then

fl+h) - f() f) = ft—h)
h

and V(1) = 5

1) =
are the h-derivatives.
(iv) Letg> 1. If T = ¢™o, where Ny = {0,1,2,...}, then

sy F@ =10 e a0~ f/4)
S =" 1176 (g— 1)

are the g-derivatives (or Jackson derivatives).
Definition 1.12 Assume f: T — R is a function and let t € TX. Then we define f<(t)

to be the number (provided it exists) with the property that given any € > 0, there is a
neighborhood Ut of t such that

(£ (a(0) = f(5)) [p(t) =s]+ (1 =) (f (p(2) = f(s)) [o(r) — 5]
—f20)[p(t) = sl[o(t) sl < ellp(t) =s][o(t) = s]|  forall s€Uy.

We call £« (t) the diamond-o. derivative of f att. We say that f is diamond-o. differen-
tiable on T provided f°*(t) exists for all t € TE.

Remark 1.10 If f : T — R is differentiable on T in the sense of A and V, then f is
diamond-o differentiable at # € Tk, and the diamond-¢ derivative is given by

o) =aff ) +(1-a)fY(1), 0<a<l.

Remark 1.11 From Definition 1.12, it is clear that f is diamond-c differentiable for
0 < a < 1if and only if f is A and V differentiable. It is obvious that for o = 1, the
diamond-« derivative reduces to the standard A derivative, and for o = 0, the diamond-&
derivative reduces to the standard V derivative.

For all 1 € T*, we have the following properties of delta derivative.

Theorem 1.4 (SEE [45, THEOREM 1.16]) (i) If f is delta differentiable at t, then f
is continuous at t.

(i) If f is continuous at t and t is right-scattered, then f is delta differentiable at t with
fA(t) _ f(U(t)())*f(f)
u(t )



