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Introduction

1.1 Convex Functions

De�nition 1.1 (SEE [119, DEFINITION 1.1]) (a) Let I be an interval in R. Then  :
I → R is said to be convex if for all x,y ∈ I and all  ∈ [0,1],

(x+(1−)y)≤ (x)+ (1−)(y) (1.1)

holds. If (1.1) is strict for all x �= y and  ∈ (0,1), then  is said to be strictly
convex.

(b) If the inequality in (1.1) is reversed, then  is said to be concave. If it is strict for all
x �= y and  ∈ (0,1), then  is said to be strictly concave.

There are several equivalent ways to de�ne convex functions, sometimes it is better to
de�ne convex function in one way than the other.

Remark 1.1 (SEE [119, REMARKS 1.2]) (a) For x,y ∈ I, p,q ≥ 0, p+q > 0, (1.1) is
equivalent to


�

px+ qy
p+ q

�
≤ p(x)+q(y)

p+ q
.

(b) Let x1,x2,x3 be three points in I such that x1 < x2 < x3. Then (1.1) is equivalent to
������

x1 (x1) 1
x2 (x2) 1
x3 (x3) 1

������
= (x3− x2)(x1)+ (x1− x3)(x2)+ (x2− x1)(x3) ≥ 0,
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which is further equivalent to

(x2) ≤
x2− x3

x1− x3
(x1)+

x1− x2

x1− x3
(x3). (1.2)

More symmetrically and without the condition of monotonicity on x1,x2,x3, we can
write

(x1)
(x1 − x2)(x1− x3)

+
(x2)

(x2− x3)(x2 − x1)
+

(x3)
(x3 − x1)(x3 − x2)

≥ 0.

(c)  is both convex and concave if and only if

(x) = x+ c

for some  ,c ∈ R.

(d) Another way of writing (1.2) is instructive:

(x1)−(x2)
x1 − x2

≤ (x2)−(x3)
x2− x3

, (1.3)

where x1 < x3 and x1,x3 �= x2. Hence the following result is valid:

A function  is convex on I if and only if for every point c ∈ I, the function ((x)−
(c))/(x− c) is increasing on I (x �= c).

(e) By using (1.3), we can easily prove the following result:

If  is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2, then the
following inequality is valid:

(x2)−(x1)
x2 − x1

≤ (y2)−(y1)
y2− y1

.

The following two theorems concern derivatives of convex functions.

Theorem 1.1 (SEE [119, THEOREM 1.3]) Let I be an interval in R and  : I → R be
convex. Then

(i)  is Lipschitz on any closed interval in I;

(ii) �
+ and �

− exist and are increasing in I, and �
− ≤�

+ (if  is strictly convex, then
these derivatives are strictly increasing); and

(iii) � exists, except possibly on a countable set, and on the complement of which it is
continuous.

Remark 1.2 (SEE [119, THEOREM 1.4]) In Theorem 1.1, if �� exists on I, then  is
convex if and only if ��(x) ≥ 0. If ��(x) > 0, then  is strictly convex.



1.1 CONVEX FUNCTIONS 3

Theorem 1.2 (SEE [119, THEOREM 1.6]) Let I be an open interval in R.

(a)  : I → R is convex if and only if there is at least one line of support for  at each
x0 ∈ I, i.e.,

(x) ≥(x0)+ (x− x0) for all x ∈ (a,b),

where  depends on x0 and is given by  =�(x0) when � exists, and  ∈ [�
−(x0),

�
+(x0)] when �

−(x0) �= �
+(x0).

(b)  : I → R is convex if the function (x)−(x0)− (x−x0) (the difference between
the function and its support) is decreasing for x < x0 and increasing for x > x0.

When dealing with functions with different degree of smoothness, divided differences are
found to be very useful.

De�nition 1.2 (SEE [119, PAGE 14]) Let be a real-valued function de�ned on [a,b]⊂
R. The kth-order divided difference of  at distinct points x0, . . . ,xk in [a,b] is de�ned
recursively by

[xi;] = (xi), i ∈ {0,1, . . . ,k}
and

[x0, . . . ,xk;] =
[x1, . . . ,xk;]− [x0, . . . ,xk−1;]

xk − x0
.

Remark 1.3 In De�nition 1.2, the value [x0, . . . ,xk;] is independent of the order of the
points x0, . . . ,xk. This de�nition may be extended to include the case in which some or all
of the points coincide by assuming that x0 ≤ . . . ≤ xk and letting

[x, . . . ,x;]
( j+1 times)

= ( j)(x)/ j!,

provided that ( j) exists.

De�nition 1.3 (SEE [119, PAGE 15]) A real-valued function  de�ned on [a,b] ⊂ R is
said to be n-convex, n ≥ 0, on [a,b] if and only if for all choices of (n+ 1) distinct points
in [a,b],

[x0, . . . ,xn;] ≥ 0.

Remark 1.4 A function  : I → R is convex if and only if for every choice of three
mutually different points x0,x1,x2 ∈ I, [x0,x1,x2;] ≥ 0 holds.

The de�nition of a convex function has a very natural generalization to real-valued
functions de�ned on Rn. Here we merely require that the domain U of  be convex, i.e.,
x+(1−)y∈U whenever x,y ∈U and  ∈ [0,1].

De�nition 1.4 Let U be a convex set in Rn. Then  : U → R is said to be convex if for
all x,y ∈U and all  ∈ [0,1], we have

(x+(1−)y)≤ (x)+ (1−)(y). (1.4)
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J-Convex Function

In the theory of convex functions, the most known case is that of J-convex functions, which
deals with the arithmetic mean.

De�nition 1.5 (SEE [119, DEFINITION 1.8]) Let I ⊂ R be an interval. A function  :
I →R is called convex in the Jensen sense (or J-convex) on I if for all x,y∈ I, the inequality


�

x+ y
2

�
≤ (x)+(y)

2
(1.5)

holds. A J-convex function  is said to be strictly J-convex if for all pairs of points (x,y),
x �= y, strict inequality holds in (1.5).

Remark 1.5 (SEE [119, THEOREM 1.10]) (i) It can be easily seen that a convex func-
tion is J-convex. For continuous functions, J-convex functions are equivalent to
convex functions.

(ii) The inequality (1.5) can easily be extended to the convex combination of �nitely
many points and next to random variables associated to arbitrary probability spaces.
These extensions are known as the discrete Jensen inequality and integral Jensen
inequality, respectively.

Log-Convex Function

An important sub-class of convex functions is that of log-convex functions.

De�nition 1.6 (SEE [119, DEFINITION 1.15]) A function  : I → R, I an interval in R,
is said to be log-convex, or multiplicative convex if log is convex, or equivalently if for
all x,y ∈ I and all  ∈ [0,1],

(x+(1−)y)≤(x)(y)1− . (1.6)

It is said to be log-concave if the inequality in (1.6) is reversed.

Remark 1.6 (a) If we take  = 1/2, then (1.6) becomes


�

x+ y
2

�2

≤(x)(y),

and the function  is said to be log-convex in the Jensen sense. If the function  is
log-convex in the Jensen sense and is continuous, then  is also log-convex.

(b) If x1,x2,x3 ∈ I such that x1 < x2 < x3, then (1.6) is equivalent to

[(x2)](x3−x1) ≤ [(x1)](x3−x2)[(x3)](x2−x1).

Furthermore, if x1,x2,y1,y2 ∈ I such that x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2, then

�
(x2)
(x1)

� 1
x2−x1 ≤

�
(y2)
(y1)

� 1
y2−y1

.
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(c)  : I → R is log-convex in the Jensen sense if and only if

2(x)+2
�

x+ y
2

�
+ 2(y) ≥ 0

holds for all , ∈ R and x,y ∈ I.

1.2 Exponential and n-Exponential Convexity

Exponentially convex functions were introduced by S. N. Bernstein [31] over eighty years
ago and later D. V. Widder [132]. The notion of n-exponential convexity was introduced
by J. Pe�carić and J. Perić in [115] (see also [89, 78, 88]). Now we quote some de�nitions
and results about exponential and n-exponential convexity.

De�nition 1.7 A function : I →R (I ⊆R) is n-exponentially convex in the Jensen sense
on I, if

n


i, j=1

i j
�

xi + x j

2

�
≥ 0

holds for all choices i ∈R and xi ∈ I, i∈ {1, . . . ,n}. A function : I →R is n-exponentially
convex if it is n-exponentially convex in the Jensen sense and continuous on I.

Remark 1.7 It is clear from the de�nition that 1-exponentially convex functions in the
Jensen sense are in fact nonnegative functions. Also, n-exponentially convex functions in
the Jensen sense are k-exponentially convex in the Jensen sense for every k ∈ N, k ≤ n.

By de�nition of positive semi-de�nite matrices and some basic linear algebra, we have the
following proposition.

Proposition 1.1 If  is an n-exponentially convex function in the Jensen sense, then

the matrix
�


�
xi + x j

2

��k

i, j=1
is positive semi-de�nite for all k ∈ N, k ≤ n. Particularly,

det
�


�
xi + x j

2

��k

i, j=1
≥ 0 for all k ∈ N, k ≤ n.

De�nition 1.8 A function  : I → R is exponentially convex in the Jensen sense on I,
if it is n-exponentially convex in the Jensen sense for all n ∈ N. A function  : I → R is
exponentially convex if it is exponentially convex in the Jensen sense and continuous.

Proposition 1.2 [See [19, Proposition 1]] Let  : (a,b) → R. The following are equiv-
alent:

(i)  is exponentially convex.



6 1 INTRODUCTION

(ii)  is continuous and
n


i, j=1

viv j
�

xi + x j

2

�
≥ 0

for all n ∈ N, vi ∈ R, and xi + x j ∈ (a,b), 1 ≤ i, j ≤ n.

(iii)  is continuous and

det
�


�
xi + x j

2

��m

i, j=1
≥ 0, 1 ≤ m ≤ n

for all n ∈ N and for every xi ∈ (a,b), i ∈ {1, . . . ,n}.

Remark 1.8 Some examples of exponentially convex functions are:

(i)  : I → R de�ned by (x) = cekx, where c ≥ 0 and k ∈ R.

(ii)  : R+ → R de�ned by (x) = x−k, where k > 0.

(iii)  : R+ → R+ de�ned by (x) = e−k
√

x, where k > 0.

Remark 1.9 From Remark 1.6 (c) it follows that a positive function is log-convex in the
Jensen sense if and only if it is 2-exponentially convex in the Jensen sense. Also, using
basic convexity theory, it follows that a positive function is log-convex if and only if it is
2-exponentially convex.

1.3 Superquadratic Functions

The concept of superquadratic functions in one variable, as a generalization of the class
of convex functions, was recently introduced by S. Abramovich, G. Jameson and G. Sin-
namon in [6] and [5]. More examples and properties of superquadratic functions can be
found in [1, 25, 26, 24] and its references.

De�nition 1.9 A function  : [0,) → R is called superquadratic if there exists a func-
tion C : [0,) → R such that

(y)−(x)−(|y− x|)≥C(x)(y− x) for all x,y ≥ 0. (1.7)

We say that  is subquadratic if − is superquadratic. If for all x,y > 0 with x �= y, there
is strict inequality in (1.7), then  is called strictly superquadratic.

For example, the function (x) = xp is superquadratic for p ≥ 2 and subquadratic for
p ∈ (0,2].

The following lemma shows essentially that positive superquadratic functions are also
convex functions.
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Lemma 1.1 Let  be a superquadratic function with C(x) as in De�nition 1.9. Then

(i) (0) ≤ 0;

(ii) if (0) = �(0) = 0, then C(x) = �(x) whenever  is differentiable at x > 0;

(iii) if ≥ 0, then  is convex and (0) = �(0) = 0.

In the following theorem, some characterizations of superquadratic functions are given
analogous to the well-known characterizations of convex functions.

Theorem 1.3 (SEE [26, THEOREM 9]) For the function  : [0,) → R, the following
conditions are equivalent:

(i) The function  is a superquadratic function, i.e., (1.7) holds.

(ii) For any two nonnegative n-tuples (x1, . . . ,xn) and (p1, . . . , pn) such that Pn =
n

i=1

pi >

0, the inequality

(x) ≤ 1
Pn

n


i=1

pi(xi)−
1
Pn

n


i=1

pi(|xi − x|)

holds, where x =
1
Pn

n

i=1

pixi.

(iii) The inequality

(y1 +(1− )y2) ≤ (y1)+ (1− )(y2)
−(1− )|y1− y2|− (1− )( |y1− y2|)

holds for all y1,y2 ≥ 0 and  ∈ [0,1].

(iv) For all x,y1,y2 ≥ 0, such that y1 < x < y2, we have

(x) ≤ y2− x
y2 − y1

((y1)−(x− y1))+
x− y1

y2− y1
((y2)−(y2− x)) ,

i.e.,
(y1)−(x)−(x− y1)

y1− x
≤ (y2)−(x)−(y2− x)

y2− x
.

In the following, for any function  ∈ C1([0,),R), we de�ne an associated function
 ∈ C1((0,),R) by

(x) =
�(x)

x
for all x > 0. (1.8)

Lemma 1.2 (SEE [3, LEMMA 1]) Let  ∈ C1([0,),R) such that (0) ≤ 0. If  is
increasing (strictly increasing) or � is superadditive (strictly superadditive), then  is
superquadratic (strictly superquadratic).



8 1 INTRODUCTION

Lemma 1.3 [See [3, Lemma 3]] Let  ∈ C2([0,),R) be such that

m1 ≤
x��(x)−�(x)

x2 ≤ M1 for all x > 0.

Let the functions 1,2 be de�ned by

1(x) =
M1x3

3
−(x), 2(x) = (x)− m1x3

3
. (1.9)

Then 1,2 are increasing. If also (0) = 0, then 1,2 are superquadratic.

Lemma 1.4 Let s > 0 and s : [0,) → R be de�ned by

s(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

xs

s(s−2)
, s �= 2,

x2

2
logx, s = 2.

(1.10)

Then s is superquadratic, with the convention 0log0 := 0.

Lemma 1.5 Let s ∈ R and s : [0,) → R be de�ned by

s(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

sxesx − esx + 1
s3 , s �= 0,

x3

3
, s = 0.

(1.11)

Then s is superquadratic.

1.4 Time Scales Theory

The theory of time scales was introduced by Stefan Hilger in his PhD thesis [69] in 1988
as a uni�cation of the theory of difference equations with that of differential equations,
unifying integral and differential calculus with the calculus of �nite differences, extending
to cases �in between�, and offering a formalism for studying hybrid discrete-continuous
dynamic systems. It has applications in any �eld that requires simultaneous modelling of
discrete and continuous data. Now, we brie�y introduce the time scales calculus and refer
to [70, 71] and the monograph [45] for further details.

By a time scale T we mean any nonempty closed subset of R. The two most popular
examples of time scales are the real numbers R and the integers Z. Since the time scale T
may or may not be connected, we need the concept of jump operators.
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For t ∈ T, we de�ne the forward jump operator  : T → T by

(t) = inf{s ∈ T : s > t}

and the backward jump operator by

(t) = sup{s ∈ T : s < t} .

In this de�nition, the convention is inf /0 = supT and sup /0 = infT.
If (t) > t, then we say that t is right-scattered, and if (t) < t, then we say that t is

left-scattered. Points that are right-scattered and left-scattered at the same time are called
isolated. Also, if (t) = t, then t is said to be right-dense, and if (t) = t, then t is said to
be left-dense. Points that are simultaneously right-dense and left-dense are called dense.

If T has a left-scattered maximum M1, then we de�ne T = T\{M1}; otherwise T =
T. If T has a right-scattered minimum M2, then we de�ne T = T \ {M2}; otherwise
T = T. Finally we de�ne T∗ = T ∩T .

The mappings  , : T → [0,) de�ned by

(t) = (t)− t and (t) = t −(t)

are called the forward and backward graininess functions, respectively.
In the following considerations, T will denote a time scale, IT = I ∩T will denote a

time scale interval (for any open or closed interval I in R), and [0,)T will be used for the
time scale interval [0,)∩T.

De�nition 1.10 Assume f : T → R is a function and let t ∈ T . Then we de�ne f (t)
to be the number (provided it exists) with the property that given any  > 0, there is a
neighborhoodUT of t such that

���( f ((t))− f (s))− f (t) [(t)− s]
��� ≤  |(t)− s| for all s ∈UT.

We call f (t) the delta derivative of f at t. We say that f is delta differentiable on T

provided f (t) exists for all t ∈ T .

De�nition 1.11 Assume f : T → R is a function and let t ∈ T . Then we de�ne f(t)
to be the number (provided it exists) with the property that given any  > 0, there is a
neighborhoodUT of t such that

���( f ((t))− f (s))− f(t) [(t)− s]
��� ≤  |(t)− s| for all s ∈UT.

We call f(t) the nabla derivative of f at t. We say that f is nabla differentiable on T
provided f(t) exists for all t ∈ T .

Example 1.1 (i) If T = R, then

f (t) = f(t) = f �(t).
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(ii) If T = Z, then
f (t) = f (t +1)− f (t)

is the forward difference operator, while

f(t) = f (t)− f (t − 1)

is the backward difference operator.

(iii) Let h > 0. If T = hZ, then

f (t) =
f (t + h)− f (t)

h
and f(t) =

f (t)− f (t−h)
h

are the h-derivatives.

(iv) Let q > 1. If T = qN0 , where N0 = {0,1,2, . . .}, then

f (t) =
f (qt)− f (t)

(q−1)t
and f(t) =

q( f (t)− f (t/q))
(q−1)t

are the q-derivatives (or Jackson derivatives).

De�nition 1.12 Assume f : T → R is a function and let t ∈ T
 . Then we de�ne f ✸ (t)

to be the number (provided it exists) with the property that given any  > 0, there is a
neighborhoodUT of t such that

| ( f ((t))− f (s)) [(t)− s]+ (1−)( f ((t))− f (s)) [(t)− s]
− f ✸ (t) [(t)− s] [(t)− s]|≤  |[(t)− s] [(t)− s]| for all s ∈UT.

We call f ✸ (t) the diamond- derivative of f at t. We say that f is diamond- differen-
tiable on T

 provided f ✸ (t) exists for all t ∈ T
 .

Remark 1.10 If f : T → R is differentiable on T in the sense of  and , then f is
diamond- differentiable at t ∈ T

 , and the diamond- derivative is given by

f ✸ (t) =  f (t)+ (1−) f(t), 0 ≤  ≤ 1.

Remark 1.11 From De�nition 1.12, it is clear that f is diamond- differentiable for
0 ≤  ≤ 1 if and only if f is  and  differentiable. It is obvious that for  = 1, the
diamond- derivative reduces to the standard  derivative, and for  = 0, the diamond-
derivative reduces to the standard  derivative.

For all t ∈ T , we have the following properties of delta derivative.

Theorem 1.4 (SEE [45, THEOREM 1.16]) (i) If f is delta differentiable at t, then f
is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is delta differentiable at t with
f (t) = f ((t))− f (t)

(t) .


