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Preface

The classical Jensen inequality is a famous tool to construct new results in the theory
of inequalities. It has numerous applications in abstract and applied sciences. In this
monograph, some recent developments in theory of inequalities with respect to Jensen’s
inequality are collected and presented. Applications are given in information theory by
evaluating the estimates for different entropies and divergences via some recent and exist-
ing refinements of Jensen’s inequality. The results for convex functions in this context are
also generalized for higher order convex functions by means of interpolating polynomials.

In the first chapter, some basic notions and preliminary results are recalled which are
used in the sequel.

In the second chapter, we focus on the refinements of integral Jensen’s as well as dis-
crete Jensen’s inequalities. First we derive a refinement of integral Jensen’s inequality
associated to two functions whose sum is equal to unity. As applications of the refinement
of integral Jensen’s inequality we obtain refinements of Hölder, integral power means and
Hermite-Hadamard inequalities. We also give applications in information theory and pro-
vide a more general refinement of integral Jensen’s inequality. We establish a refinement
of discrete Jensen’s inequality concerning certain tuples and give applications to different
means. Finally, we give applications of discrete main result in information theory and
provide a more general refinement of discrete Jensen’s inequality.

In the third chapter, we derive refinements of discrete as well as integral Jensen-
Steffensen’s inequalities associated to certain tuples and functions respectively and also
present application to the Zipf Mandelbrot law. Some more general refinements are also
presented for Jensen-Steffensen’s inequality.

In the fourth chapter, we propose new refinements for the Jensen-Mercer as well as
for variant of the Jensen-Mercer inequalities associated to certain positive tuples. We give
some related integral versions and present applications for different means. Further gener-
alizations are given which are associated to m finite sequences.

In the fifth chapter, we give a refinement of Jensen’s inequality for convex functions
of several variables associated to certain tuples. As an application, we deduce refinements
of Beck’s inequality. At the end, further generalization has been presented for n finite
sequences.

In the sixth chapter, we present refinements of generalized Jensen’s inequalities given
by Jessen and McShane. As applications of the refinement of Jessen’s inequality, we de-
duce refinements of generalized means and Hölder inequalities. Also, as applications of
the refinement of McShane’s inequality, we obtain refinements of generalized Beck’s in-

v



equality and discuss their particular cases. At the end of this chapter, we give further
generalizations of Jessen’s and McShane’s inequalities pertaining n certain functions.

In the seventh chapter, we obtain a refinement of Jensen’s inequality for operator con-
vex functions. Some applications are presented for different means and also, deduced
refinement of operator inequality connected to the operator concavity of operator entropy
A logA−1. Further generalization is also given for operator Jensen’s inequality.

In the eighth chapter, estimation of f -divergence, Shannon entropy, Rényi divergence
and Rényi entropy are studied via refinements of Jensen’s inequality. The results show the
applications of Jensen’s inequality in information theory.

In the ninth chapter, Montgomery identity, Hermite interpolation, Lidstone polyno-
mial, Fink identity and Abel-Gontscharoff Green function, Taylor one point and Taylor
two point formula are used to generalize the refinements of Jensen, Rényi and Shannon
type inequalities for the class of higher order convex functions.

In the tenth chapter, an integral form of Popoviciu’s inequality involving samples with
repetitions and without repetitions is given with the refinement of the integral Jensen in-
equality. Applications to power means are studied with respect to monotonicity property.

In the eleventh chapter, the Jensen differences involving two types of data points are
refined for the class of 3-convex functions.

Authors
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Type Inequalities via Lidstone Polynomial . . . . . . . . . . . . . . . . . 100
9.5 Generalization of Refinement of Jensen’s, Rényi and Shannon
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Chapter1

Introduction

Convex functions have a significant role while dealing with optimization problems. Geom-
etry of convex functions leads to many important inequalities which are frequently used to
estimate and compare the values related to many physical problems in different branches
of mathematics and physics. Entropies and divergences are widely studied in informa-
tion theory. While dealing with many physical problems physicist have to deal with the
structure involving higher dimension convexity. Therefore there are two important gaps
first to estimate the entropies and divergences and second one is to study the inequalities
for higher dimension problems. Therefore we estimate different entropies and divergences
and secondly we generalize the related results for higher order convex functions.
It is of great interest for researchers to study inequalities of continuous data and arbitrary
weights. For example integral version of Popoviciu’s inequality are studied in the sequel.

1.1 Some Inequalities Involving Convex Functions

The first chapter contains: introduction to convex functions, various inequalities involving
convex functions, refinement of these inequalities given by various researchers in recent
years, the weighted version of Popoviciu’s inequality, some notions from information the-
ory containing entropies and divergences. These will be used frequently in the following
chapters while obtaining main results.
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2 1 INTRODUCTION

1.1.1 J-Convex Functions

In 1905–1906, J. L. W. V. Jensen began the systematic study of convex functions (see [75,
p.3]).

A function  : I →R is said to be J-convex or mid-convex function or convex in Jensen
sense on I if


(

u+ v
2

)
≤  (u)+ (v)

2
(1.1)

holds for all u,v ∈ I.
The (x) = x2 and (x) = |x| for all x ∈ R are the examples of J-convex functions.

1.1.2 Convex Functions

The notion of convex function is the generalization of J-convex function for the arbitrary
weight t ∈ [0,1]. In [87, p. 1] the formal definition is given as follows.
Suppose X is a real vector space, C ⊂ X is a convex set. A function  : C → R is said to
be convex if

(u+(1−)v)≤ (u)+ (1−)(v),

holds for all u,v ∈C and  ∈ [0,1].
The (x) = x2, (x) = |x|, − logx and ex for all x ∈ R are the examples of convex

functions.

1.1.3 Operator Convex Functions

Let I be an interval of real numbers and S(I) denotes the class of all self-adjoint bounded
operators defined on complex Hilbert space H whose spectra are in I. Also, assume that
Sp(A) denotes the spectrum of a bounded operator A defined on H. An operator A ∈ S(I)
is said to be strictly positive if it is positive and invertible, or equivalently, Sp(A)⊂ [d1,d2]
for 0 < d1 < d2.

Let  : I → R be a function defined on the interval I. Then  is said to be operator
convex if  is continuous and

(A1 +(1−  )A2) ≤ (A1)+ (1−  )(A2) (1.2)

for all A1,A2 ∈ S(I) and  ∈ [0,1]. If the function − is operator convex on I, then 
is said to be operator concave. The function  is said to be operator monotone on I if
 is continuous on I and A1,A2 ∈ S(I), A1 ≤ A2 (i.e. A2 −A1 is positive operator ), then
(A1) ≤ (A2).

1.1.4 Discrete Jensen’s Inequality

The Jensen inequality in discrete version [87, p. 43] generalizes the notion of convex
function. Here the function operates on the convex combination of any finite number of
points.



1.1 SOME INEQUALITIES INVOLVING CONVEX FUNCTIONS 3

Suppose X is a real vector space, C ⊂ X is a convex set, let  : C → R be a convex
function, 1, . . . ,n ∈ [0,1] are such that n

i=1 i = 1, and y1, . . . ,yn ∈C, then



(
n


=1

y

)
≤

n


=1

(y). (1.3)

In the Jensen inequality, it is natural to ask the question that is it possible to relax
the condition of nonnegative of  ( = 1,2, . . . ,n) at the expense of restricting y ( =
1,2, . . . ,n) more severely. The answer of this question was given by Steffensen [96]:

1.1.5 Discrete Jensen-Steffensen’s Inequality

Let  : I → R be a convex function defined on the interval I. Let y ∈ I,  ∈ R

( = 1,2, . . . ,n) with ̄ = n
=1  . If y1 ≤ y2 ≤ ·· · ≤ yn or y1 ≥ y2 ≥ ·· · ≥ yn and

0 ≤
k


=1

 ≤
n


=1

 k = 1,2, . . . ,n,
n


=1

 > 0, (1.4)

then



(
1

̄

n


=1

y

)
≤ 1

̄

n


=1

(y ). (1.5)

1.1.6 Integral Form of Jensen’s Inequality

The integral form of Jensen’s inequality [47] is defined as follows.
Let (X ,A,) be a probability space, consider an integrable function h : X → I. Also let
 : I → R be a convex function. Then



⎛⎝∫
X

hd

⎞⎠ ≤
∫
X

 ◦ hd . (1.6)

1.1.7 Integral Version of Jesnen-Steffensen’s Inequality

Integral version of Jensen-Steffensen’s inequality is given by:
Let I be an interval in R and g,h : [a,b] → R are integrable functions such that
g() ∈ I for all  ∈ [a,b]. Also, assume that  : I → R is convex function and h( ◦ g) is
integrable on [a,b]. If g is monotonic on [a,b] and h satisfies

0 ≤
∫ 

a
h()d ≤

∫ b

a
h()d ,  ∈ [a,b],

∫ b

a
h()d > 0, (1.7)

then



(∫ b
a g()h()d∫ b

a h()d

)
≤

∫ b
a h()( ◦ g)()d∫ b

a h()d
. (1.8)



4 1 INTRODUCTION

This means convex function and Jensen-type inequalities are linked to each other. In fact
definition of convex function involves inequality sign. Until now, inequalities have played
a major role in convex function development. In mathematics the role of inequalities is
very important, specially in approximation theory and analysis. The linear programming
is based on inequalities. A number of mathematicians have a keen interest in the study of
mathematical inequalities.

Jensen’s inequality is the fundamental inequality for convex function. Many classi-
cal inequalities (for instance Minkowski’s inequality, Hölder’s inequality etc.) and other
inequalities are the consequences of Jensen’s inequality.

L. Horváth and J. Pečarić in [49] used a refinement of discrete Jensen’s inequality to
construct a new refinement of (1.6), which is a generalization of a result given in [25].
They also gave new monotone quasi arithmetic means.

In a last few decades, many researcher papers have appeared in literature concerning
the refinement of discrete Jensen’s inequality (see [47]). However the refinement of dis-
crete Jensen’s inequality has been studied more compared to the refinement of its integral
version. The researchers used the refinements of (1.3) to construct new refinements of
(1.6). For instance we can see the following results [88].
Suppose that f is a J-convex function on an interval J, c j ∈ J, j = 1, . . . ,n. Then

r,n ≥ r−1,n r = 1, . . . ,n−1, (1.9)

where

r,n = k,n(c1, . . . ,cn) :=
1(n
r

) 
1≤ j1<...< jr≤n


(

1
r
(c j1 + . . .+ c jr)

)
.

For positive weights the above results are given in [84].
Suppose ̄ is convex function defined on an interval J, c j ∈ J ( j = 1, ...,n).

̄r,n(c1, . . . ,cn,1, . . . ,n):=
1(n−1

r−1

)
Pn


1≤ j1<...< jr≤n

( j1+ . . .+ jr)̄
(
 j1c j1+ . . .+ jr c jr

 j1+ . . .+ jk

)
where (1, . . . ,n) is suppose to be a positive n-tuple with r

j=1 j = Pr, then

̄r,n(c1, . . . ,cn,1, . . . ,n) ≥ ̄r+1,n(c1, . . . ,cn,1, . . . ,n) n = 1, . . . ,r−1. (1.10)

J. Pečarić and D. Svrtan noted that by considering the expresssion

̃r,n =
1(n+r−1

r−1

)
Pn


1≤ j1≤...≤ jk≤n

( j1 + . . .+ jr)
(
 j1c j1 + . . .+ jr c jr

 j1 + . . .+ jr

)
we have the same results



(
1
Pn

n


i=1

ici

)
≤ . . . ≤ ̃r+1,n ≤ ̃r,n ≤ . . . ≤ ̃1,n =

1
Pn

n


i=1

i(ci). (1.11)

The researchers have given the refinements of (1.3) by using different indexing sets (see
[50, 48]). Like many other researchers L. Horváth and J. Pečarić gave a refinement of
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(1.3) for convex functions (see [50]). They defined some essential notions to prove the
refinement given as follows:

Let X be a set, let P(X) and |X | represent the power set and number of elements of set
X respectively. Let N := {0}⋃{1,2, . . .}.
Suppose q ≥ 1 and r ≥ 2 are two fixed integers. Suppose

r(q) := {1, . . . ,q}r

Now let
Fr,s : r(q) → r−1(q) 1 ≤ s ≤ r,

Fr : r(q) → P(r−1(q)) ,

and
Tr : P(r(q)) → P(r−1(q)) ,

are functions defined by

Fr,s(i1, . . . , ir) := (i1, i2, . . . , is−1, is+1, . . . , ir) 1 ≤ s ≤ r,

Fr(i1, . . . , ir) :=
r⋃

s=1

{Fr,s(i1, . . . , ir)},

and

Tr(I) =

{
/0, I = /0;⋃
(i1,...,ir)∈I

Fr(i1, . . . , ir), I �= /0.

Next for all i ∈ {1, . . . ,q} consider

r,i : {1, . . . ,q}r → N,

defined by

r,i(i1, . . . , ir) is the number of occurences of i j in (i1, . . . , ir).

For each I ∈ P(r(q)) let

I,i := 
(i1,...,ir)∈I

r,i(i1, . . . , ir) 1 ≤ i ≤ q.

(H1) : Let n ∈ {1,2, . . .} and m ∈ {2,3, . . .}, suppose Im ⊂ m(n) such that for all i ∈
{1, . . . ,n}

Im ,i ≥ 1. (1.12)
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Introduce the set Il ⊂ l(n)(1 ≤ l ≤ m−1) inductively by

Il−1 := Tl(Il) m ≥ l ≥ 2.

Obviously the set I1is {1, . . . ,n}, by (H1) and this make certain that I1,i = 1(1 ≤ i ≤ n).
From (H1) we have Il ,i ≥ 1(1 ≤ i ≤ n,m−1≥ l ≥ 1).
For m ≥ l ≥ 2, and for any ( j1, . . . , jl−1) ∈ Il−1, let

HIl ( j1, . . . , jl−1) := {((i1, . . . , il),k)×{1, . . . , l}|Fl,k(i1, . . . , il) = ( j1, . . . , jl−1)}.
With the help of these sets they defined the functions Im,l : Il → N(m ≥ l ≥ 1) inductively
by

Im ,m(i1, . . . , im) := 1 (i1, . . . , im) ∈ Im;

Im ,l−1( j1, . . . , jl−1) := 
((i1,...,il),k)∈HIl

( j1,..., jl−1)
Im,l(i1, . . . , il).

They defined some special expressions for 1 ≤ l ≤ m, as follows

Am,l = Am,l(Im,x1, . . . ,xn, p1, . . . , pn; f ) :=
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

pi j

Im,i j

)
f

⎛⎜⎜⎜⎝
l

j=1

pi j
Im,i j

xi j

l

j=1

pi j
Im,i j

⎞⎟⎟⎟⎠ (1.13)

and constructed the following new refinement of (1.3).

Theorem 1.1 Assume (H1), consider a convex function f : I → R. If c1, . . . ,cn ∈ I,

1, . . . ,n ∈ R+ such that
n


s=1
s = 1, then

f

(
n


s=1

scs

)
≤ Am,m ≤ Am,m−1 ≤ . . . ≤ Am,2

≤ Am,1 =
n


s=1

s f (cs) . (1.14)

L. Horváth and J. Pečarić proved that (1.10) is the special case of Theorem 1.1.
In [25], I. Brnetić et al. gave the improvement of (1.6) as follows.

Suppose  : I → R is a convex function, let  : [a1,a2] → I and  : [a1,a2] → R+ be
functions. Suppose 1, . . . ,n ∈ R+ with n

i=1i = 1, and

̄ =
∫ a2

a1

(t)dt,

then


(

1
̄

∫ a2

a1

(t)(t)dt

)
≤ n,n ≤ . . . ≤ k+1,n ≤ k,n . . . ≤ 1,n
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=
1
̄

∫ a2

a1

(t)((t))dt,

where

k,n =
1(n−1

k−1

)
̄k 

1≤i1<...<ik≤n

k


r=1

ir

∫ a2

a1

. . .

∫ a2

a1

(
k


s=1

(cis)

)

×
(
k

j=1i j
(
ci j

)
k

j=1i j

)
dci1dci2 . . .dcik .

1.1.8 Jensen-Mercer’s Inequality

In 2003 Mercer proved the following variant of Jensen’s inequality, which is known as
Jensen-Mercer’s inequality.

Theorem 1.2 ([77]) Let  : [a,b] → R be a convex function and let y ∈ [a,b],  ∈ R+

be such that ̄ = n
=1  . Then


(

a+b− 1

̄

n


=1

y
)
≤ (a)+(b)− 1

̄

n


=1

(y). (1.15)

1.1.9 Variant of Jensen-Steffensen’s Inequality

The following variant of Jensen-Steffensen’s inequality has been given in [1].

Theorem 1.3 Let  : [a,b] → R be a convex function and y ∈ [a,b],  ∈ R, �= 0 for
 = 1,2, . . . ,n with ̄ = n

=1  . If y1 ≤ y2 ≤ ·· · ≤ yn or y1 ≥ y2 ≥ ·· · ≥ yn and

0 ≤
k


=1

 ≤
n


=1

 , k = 1,2, . . . ,n,
n


=1

 > 0, (1.16)

then


(

a+b− 1

̄

n


=1

y
)
≤ (a)+(b)− 1

̄

n


=1

(y). (1.17)

1.1.10 Jensen’s Inequality for Operator Convex Functions

The following Jensen’s inequality for operator convex function has been given in [43].

Theorem 1.4 (JENSEN’S OPERATOR INEQUALITY) Let  : I → R be an operator con-
vex function defined on the interval I. If Ap ∈ S(I) and p > 0 (p = 1, . . . ,n) such that
n

p=1p = 1, then



(
n


p=1

pAp

)
≤

n


p=1

p(Ap). (1.18)
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1.1.11 Hermite-Hadamard Inequality

The following inequality proved by Hermite and Hadamard for convex function [40]. This
inequality says that if the function  : [a,b] → R is convex function then


(

a+b
2

)
≤ 1

b−a

∫ b

a
(x)dx ≤ (a)+(b)

2
. (1.19)

If  is concave function then the inequalities in (1.19) will hold in reverse directions.

1.1.12 Hölder Inequality

The discrete form of well-known Hölder inequality is given below:
Let p,q > 1 with 1

p + 1
q = 1 and (a1,a2, · · · ,an), (b1,b2, · · · ,bn) be positive n-tuple.

Then
n


j=1

ajbj ≤
( n


j=1

ap
j

) 1
p
( n


j=1

bq
j

) 1
q

(1.20)

The integral form of Hölder inequality is given below:
Let p,q> 1 such that 1

p + 1
q = 1 and A,B : [a,b]→ R be integrable functions functions

such that |A(z)|p, |B(z)|q are also integrable on [a,b]. Then∫ b

a
|A(z)B(z)|dz≤

(∫ b

a
|A(z)|p dz

) 1
p
(∫ b

a
|B(z)|q dz

) 1
q
.

1.2 Power Means

In [75, p. 14] the power means are given as follows.
Suppose n is a natural number, let (c1, . . . ,cn) and (1, . . . ,n) belong to (0,)n such

that Pn := n
i=1i = 1. The power mean (of order s ∈ R) is defined by

P(c1, . . . ,cn;1, . . . ,n) =

⎧⎨⎩
(

1
Pn
n

i=1 cs
i

) 1
s
, s �= 0;

(n
i=1 ci)

1
Pn , s = 0.

(1.21)

For ci = 1
n , i = 1, . . . ,n, the power mean (1.21) is arithmetic mean, geometric mean and

harmonic mean for s = 1, s → 0 and s = −1 respectively.
The power means for the n-tuples of strictly positive operators A = (A1, . . . ,An) with

positive weights  := (1, . . . ,n) of order r ∈ R\ {0} is defined by:

Mr(A; ) =

(
1

̄

n


p=1

pA
r
p

) 1
r

, (1.22)

where ̄ := n
p=1p.
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1.2.1 Quasi-Arithmetic Means

The importance of quasi-arithmetic means has been well understood at least since the
1930’s and a number of writers have since then contributed to the characterization and
to the study of their properties.

Consider a continuous function  : I → R such that for all u,v ∈ I if u < v then (u) <
(v) (or if u > v then (u) > (v)). Let (1, . . . ,n) ∈ In, also let (1, . . . ,n) ∈ [0,)n .
Suppose Pn := n

i=1 pi. Then the quasi-arithmetic mean [75, p. 15] is

M[n]
 ( ;) = M (1, . . . ,n;a . . . ,n) = −1

(
1
Pn

n


i=1

i(i)

)
. (1.23)

If I = R+ and (t) = t p, then (1.23) is a power mean.
In the current century, the Popoviciu inequality is studied by many authors (see [31,

29, 32, 30]).
The Popoviciu inequality for arbitrary non-negativeweights given as follows (see [85]).
Let r and m are positive integers such that m ≥ 3, 2 ≤ r ≤ m− 1, let  : [a1,a2] → R

be convex function, (c1, . . . ,cm) ∈ [a1,a2]m and (1, . . . ,m) be non-negative m-tuple such
that n

j=1 j = 1, then

r,m (c1, . . . ,cm;1, . . . ,m) ≤ m− r
m−1

1,m (c1, . . . ,cm;1, . . . ,m)

+
r−1
m−1

m,m (c1, . . . ,cm;1, . . . ,m) , (1.24)

where

gr,m (c1, . . . ,cm;1, . . . ,m) :=
1

Cm−1
r−1


1≤i1<...<ir≤m

(
m


j=1

i j

)


⎛⎜⎜⎝
m

j=1

i j ci j

m

j=1

i j

⎞⎟⎟⎠ .

Higher order convex function was introduced by T. Popoviciu (see [87, p. 15]). The
inequalities involving higher order convex functions are used by physicists in higher di-
mensional problems. Many of the results that are true for convex functions are not true for
higher order convex functions, this fact convince us to study the results involving higher
order convexity (see [31]).

Let  : I → R be a continuous strictly monotone function. Then the quasi arithmetic
mean for operators is defined by

M̃ (A; ) = −1

(
1

n
p=1p

n


p=1

p(Ap)

)
, (1.25)

where Ap ∈ S(I) and p > 0 for p = 1,2, . . . ,n.
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1.3 Divided Differences

The tools of divided difference are used to define the higher order convex functions. Di-
vided difference is given in [87, p. 14] as follows.
Consider the function  : [a1,a2] → R. The r-th order divided difference for r +1 distinct
points u0,u1, . . . ,ur ∈ [a1,a2] is defined by the following recursive formula

[ui; ] = (ui) i = 0,1, . . . ,r,

and

[u0,u1, . . . ,ur; ] =
[u1,u2, . . . ,ur; ]− [u0,u1, . . . ,ur−1; ]

ur −u0
. (1.26)

This is equivalent to

[u0,u1, . . . ,ur; ] =
k


j=0

(u j)
w′(u j)

,

where w(u) =
k

j=0

(u− u j). This definition may be extended to include the case in which

some or all the points coincide. Namely, if all the points are same, then by taking limits in
(1.26) we obtain

[u,u, . . . ,u︸ ︷︷ ︸
l−times

; ] =
(l−1)(u)
(l−1)!

, (1.27)

where (l−1) is supposed to exist.

1.4 Higher Order Convex Functions

A function  : [a1,a2] → R is called r-convex function (r ≥ 0) on [a1,a2] if and only if

[u0,u1, . . . ,ur; ] ≥ 0 (1.28)

for all (r+1) distinct choices in [a1,a2] (see [87, p. 14]).
The function  is r-concave on [a1,a2] if inequality sign in (1.28) is reverse. The next

result is useful to examine the convexity of a function [87, p. 16].

Theorem 1.5 Suppose the (n) exists where  is a real valued function. Then  is n-
convex if and only if (n) is non-negative.
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In recent years many researchers have generalized the inequalities for m-convex func-
tions; like S. I. Butt et al. generalized the Popoviciu inequality for m-convex function
using Taylor’s formula, Lidstone polynomial, Montgomery identity, Fink’s identity, Abel-
Gonstcharoff interpolation and Hermite interpolating polynomial (see [31, 29, 32, 30, 33]).
S. I. Butt et al. constructed the linear functional from these generalized Popoviciu type
identities and using the inequalities for Cebysev functional and found some bounds for
the generalized identities. Also they constructed Grüss and Ostrowski type inequalities.
By using these new generalized Popoviciu type functionals they constructed new class of
m-exponentially convex functions.

1.5 Information Divergence Measures and Entropies

Information theory is the science of information, which scientifically deals with the stor-
age, quantification and communication of the information. Being an abstract entity infor-
mation cannot be quantified easily. In 1948 Claude shannon in [93], presented the concept
of information theory and introduced entropy as the fundamental measure of information
in his first of the two fundamental and important theorems. The information can also be
measured with the help of probability density function. Divergences are some important
tools for measuring the difference between two probability density functions. A class of
information divergence measures, which is one of the important divergence measures due
to its compact behavior, is the Csiszár divergence [36, 37].

Let  be a positive function defined on (0,), suppose p := (p1, . . . , pn) and q :=
(q1, . . . ,qn) are positive probability distributions. The Csiszár divergence ( f -divergence)
is defined as

I f (p, q) :=
n


i=1

qi f

(
pi

qi

)
. (1.29)

In [52], L. Horv́ath, et al. gave the following generalization of (1.29):
Let  : I → R be a function. Suppose p := (p1, . . . , pn) is real and q := (q1, . . . ,qn) is

positive n-tuple such that

p j

q j
∈ R, j = 1, . . . ,n. (1.30)

Then

Î(p, q) :=
n


j=1

q j
(

p j

q j

)
. (1.31)

They applied the cyclic refinement of Jensen’s inequality [52] to Î f (p, q) in order to
investigate the bounds for (1.31).
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Many well-known distance functions or divergences can be obtained for a suitable
choice of function f in (1.29), and which are frequently used in mathematical statistics,
signal processing, and information theory. One of the divergences is Kullback-Leibler
which is defined by

Let p := (p1, . . . , pn) and q := (q1, . . . ,qn) be two positive probability distributions.
Then the Kullback-Leibler divergence between p and q is defined as

D(p,q) :=
n


j=1

p j log

(
p j

q j

)
. (1.32)

One of the another important divergences associated to Csiszár divergence is Rényi diver-
gence which is defined as follows: Suppose  ∈ [0,) with  �= 1. Let r := (r1, . . . ,rn)
and q := (q1, . . . ,qn) be two positive probability distributions. Then the Rényi divergence
[89] of order  is

D (r,q) :=
1

 −1
log

(
n


i=1

qi

(
ri

qi

)
)

. (1.33)

The idea of the Shannon entropy [93] plays a key role in information theory, while
in some cases, it is denoted as measure of uncertainty. There are basically two methods
for understanding the Shannon entropy. Under one point of view, the Shannon entropy
quantifies the amount of information in regard to the value of X (after measurement). Un-
der another point of view, the Shannon entropy tells us the amount of uncertainty about
the variable of X before we learn its value (before measurement). The random variable,
entropy, is characterized regarding its probability distribution and it can appear as a bet-
ter measure of predictability or uncertainty. Shannon entropy permits the appraisal of the
normal least number of bits expected to encode a series of symbols based on the letters in
order of estimation and the recurrence of the symbols. The formula for Shannon entropy
given in [93], is as follows:

S = H(r) := −
n


j=1

r j logr j. (1.34)

where r1,r2, ...,rn ∈ R+ with n
i=1 ri = 1.

In the literature there are several generalizations of Shannon entropy. One of the im-
portant generalization is Rényi entropy. Rényi entropy is given as follows:

Suppose  ∈ [0,) such that  �= 1. Let r := (r1, . . . ,rn) is positive probability distri-
butions. Then the Rényi entropy [89] of order  of r is given by

H (r) :=
1

1−
log

(
n


i=1

ri

)
. (1.35)

If  → 1 in (1.33), we have the (1.32), and if  → 1 in (1.35), then we have the Shannon
entropy.
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1.5.1 Zipf-Mandelbrot Law

The most commonly used words, the largest cities of countries income of billionare can be
described in term of Zipf’s law. Many natural phenomena like distribution of wealth and
income in a society, distribution of face book likes, distribution of football goals follow
power law distribution (Zipf’s law). Like above phenomena, distribution of city sizes also
follows power law distribution. Auerbach [19] was the first to explore that the Pareto dis-
tribution can be used to approximate the distribution of city size. Later, many researchers
refined this idea but the work of Zipf [100] is remarkable regarding this field. Black and
Henderson [23], Anderson and Ge [18], Rosen and Resnick [90], Ioannides and Overman
[55], Bosker et al. [24] and Soo [95] also examined the distribution of city sizes. Zipf’s law
states that: “The rank of cities with a certain number of inhabitants varies proportional to
the city sizes with some negative exponent, say that is close to unit”. In other words, Zipf’s
law says that the product appears to be approximately constant in city sizes and their rank.
It gives the idea that the population of the n-th city is 1

n of the population of the city with
largest population. Let N denotes the number of elements, t denotes the exponent value
that characterizes the distribution, suppose s is the rank of N elements. Zipf’s law [100]
then predicts that normalized frequency of rank element from a population of N elements
is f (s,N, t) defined as

f (s,N,t) =
1
st

N
j=1

1
jt

. (1.36)

Let N ∈ {1,2, . . . ,}, q be a non-negative and t be a positive real number. Zipf-Mandelbrot
law [70] is defined as

f (s;N,q,t) :=
1

(s+q)tHN,q,t
, s = 1, . . . ,N, (1.37)

where

HN,q,t =
N


j=1

1
( j +q)t

. (1.38)

If the total mass of the law is taken over all N, then for q≥ 0, t > 1, s ∈ N, density function
of Zipf-Mandelbrot law becomes

f (s;q,t) =
1

(s+q)tHq,t
, (1.39)

where

Hq,t =



j=1

1
( j +q)t

. (1.40)

For q = 0, (1.37) becomes (1.36).
In [52], L. Horváth et al. introduced some new functionals based on the (1.30), and

estimated these new functionals. They obtained (1.30) and (1.33) divergence by applying
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a cyclic refinement of Jensen’s inequality. They also constructed some new inequalities
for (1.35) and (1.34) and used (1.37) to illustrate the results. Also in [13], M. A. Khan
et al. considered two refinements of (1.3) and investigated bounds for (1.34) and (1.37).
N. Lovričević et al. [70], applied (1.37) to different types of f-divergence and distances in
view of the monotonicity property of the Jensen functional and the deduced comparative
inequalities.



Chapter2
Refinements of Jensen’s
Inequality

In this chapter we present new refinements of the Jensen inequality in integral as well as
in discrete form. This chapter is also devoted to achieve numerous applications in infor-
mation theory. Some refinements have been obtained for quasi arithmetic means, Hölder
and Hermite-Hadamard inequalities. More general refinements of Jensen inequality are
presented. The results of this chapter are given in [2, 3].

2.1 Refinement of Integral Jensen’s Inequality

We start to derive new refinement of Jensen inequality associated to two functions whose
sum is equal to unity.

Theorem 2.1 Let  : I → R be a convex function defined on the interval I. Let p,u,v,g :
[a,b] → R be integrable functions such that g() ∈ I,u(),v(), p() ∈ R+ for all  ∈
[a,b] and v()+u() = 1, P =

∫ b
a p()d . Then

1
P

∫ b

a
p()(g())d ≥ 1

P

∫ b

a
u()p()d

(∫ b
a p()u()g()d∫ b

a p()u()d

)

15
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+
1
P

∫ b

a
p()v()d

(∫ b
a p()v()g()d∫ b

a p()v()d

)
≥ 

(
1
P

∫ b

a
p()g()d

)
. (2.1)

If the function  is concave then the reverse inequalities hold in (2.1).

Proof. Since u()+ v() = 1, therefore we have∫ b

a
p()(g())d =

∫ b

a
u()p()(g())d+

∫ b

a
v()p()(g())d . (2.2)

Applying integral Jensen’s inequality on both terms on the right side of (2.2) we obtain

1
P

∫ b

a
p()(g())d

≥ 1
P

∫ b

a
u()p()d

(∫ b
a u()p()g()d∫ b

a u()p()d

)
(2.3)

+
1
P

∫ b

a
v()p()d

(∫ b
a v()p()g()d∫ b

a v()p()d

)

≥ 
(

1
P

∫ b

a
u()p()g()d+

1
P

∫ b

a
v()p()g()d

)
(By the convexity of )

= 
(

1
P

∫ b

a
p()g()d

)
(2.4)

As a consequence of the above theorem we deduce the following refinement of Hölder
inequality.

Corollary 2.1 Let r1,r2 > 1 be such that 1
r1

+ 1
r2

= 1. If u,v,,g1 and g2 are non-negative

functions defined on [a,b] such that gr1
1 ,gr2

2 ,ugr2
2 ,vgr2

2 ,ug1g2,vg1g2,g1g2 ∈
L1([a,b]) and u()+ v() = 1 for all  ∈ [a,b], then(∫ b

a
()gr1

1 ()d
) 1

r1
(∫ b

a
()gr2

2 ()d
) 1

r2

≥
(∫ b

a
()gr2

2 ()d
) 1

r2

{(∫ b

a
u()()gr2

2 ()d
)1−r1(∫ b

a
u()()g1()g2()d

)r1

+
(∫ b

a
v()()gr2

2 ()d
)1−r1 (∫ b

a
v()()g1()g2()d

)r1
} 1

r1

≥
∫ b

a
()g1()g2()d . (2.5)

In the case when 0 < r1 < 1 and r2 = r1
r1−1 with

∫ b
a ()gr2

2 ()d > 0 or r1 < 0 and∫ b
a ()gr1

1 ()d > 0, then
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∫ b

a
()g1()g2()d

≥
(∫ b

a
u()()gr2

2 ()d
) 1

r2
(∫ b

a
u()()gr1

1 ()d
) 1

r1

+
(∫ b

a
v()()gr2

2 ()d
) 1

r2
(∫ b

a
v()()gr1

1 ()d
) 1

r1

≥
(∫ b

a
()gr1

1 ()d
) 1

r1
(∫ b

a
()gr2

2 ()d
) 1

r2
. (2.6)

Proof. Let
∫ b
a ()gr2

2 ()d > 0. Then by using Theorem 2.1 for () =  r1 , > 0,r1 >

1, p() = ()gr2
2 (),g() = g1()g

−r2
r1

2 (), we obtain (2.5). Let
∫ b
a ()gr1

1 ()d > 0.
Then applying the same procedure but taking r1,r2,g1,g2 instead of r2,r1,g2,g1, we obtain
(2.5).

Now we prove the inequality for the case when
∫ b
a ()gr2

2 ()d = 0 and
∫ b
a ()gr1

1 ()
d = 0.
Since we know that

0 ≤ ()g1()g2() ≤ 1
r1
()gr1

1 ()+
1
r2
()gr2

2 (). (2.7)

Therefore taking integral and then using the given conditionswe have
∫ b
a ()g1()g2()d

= 0.
For the case r1 > 1, the proof is completed .

The case when 0<r1<1, then M= 1
r1

>1 and applying (2.5) for M and N=(1−r1)−1,

g1 = (g1g2)r1 , g2 = g−r1
2 instead of r1,r2,g1,g2.

Finally, if r1 < 0 then 0 < r2 < 1 and we may apply similar arguments with r1,r2,g1,g2

replaced by r2,r1,g2,g1 provided that
∫ b
a ()gr1

1 ()d > 0. Another refinement of the
Hölder inequality is presented in the following corollary.

Corollary 2.2 Let r1 > 1, r2 = r1
r1−1 . Let u,v,,g1 and g2 be non-negative functions

defined on [a,b] such that gr1
1 ,gr2

2 ,ugr2
2 ,vgr2

2 ,g1g2 ∈ L1([a,b]) and u()+ v() = 1
for all  ∈ [a,b]. Also assume that

∫ b
a ()gr2

2 () > 0. Then

(∫ b

a
()gr1

1 ()d
) 1

r1
(∫ b

a
()gr2

2 ()d
) 1

r2

≥
(∫ b

a
u()()gr1

1 ()d
) 1

r1
(∫ b

a
u()()gr2

2 ()d
) 1

r2

+
(∫ b

a
v()()gr1

1 ()d
) 1

r1
(∫ b

a
v()()gr2

2 ()d
) 1

r2

≥
∫ b

a
()g1()g2()d . (2.8)
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In the case when 0 < r1 < 1 and r2 = r1
r1−1 with

∫ b
a ()gr2

2 ()d > 0 or r1 < 0 and∫ b
a ()gr1

1 ()d > 0, then

(∫ b

a
()gr1

1 ()d
) 1

r1
(∫ b

a
()gr2

2 ()d
) 1

r2

≤
(∫ b

a
()gr2

2 ()d
) 1

r2

{(∫ b

a
u()()gr2

2 ()d
)1−r1 (∫ b

a
u()()g1()g2()d

)r1

+
(∫ b

a
v()()gr2

2 ()d
)1−r1 (∫ b

a
v()()g1()g2()d

)r1
} 1

r1

≤
∫ b

a
()g1()g2()d . (2.9)

Proof. Assume that
∫ b
a ()gr2

2 ()d > 0. Let () = 
1
r1 ,  > 0,r1 > 1. Then clearly

the function  is concave. Therefore applying Theorem 2.1 for () = 
1
r1 , p = gr2

2 ,g =
gr1

1 g−r2
2 , we obtain (2.8). If

∫ b
a ()gr1

1 ()d > 0. Then applying the same procedure but
taking r1,r2,g1,g2 instead of r2,r1,g2,g1, we obtain (2.8).
If

∫ b
a ()gr2

2 ()d = 0 and
∫ b
a ()gr1

1 ()d = 0. Since we know that

0 ≤ ()g1()g2() ≤ 1
r1
()gr1

1 ()+
1
r2
()gr2

2 (), (2.10)

therefore taking integral and then using the given conditions we have
∫ b
a ()g1()g2()

d = 0.
When 0 < r1 < 1, then M = 1

r1
> 1 and applying (2.8) for M and N = (1− r1)−1, g1 =

(g1g2)r1 , g2 = g−r1
2 instead of r1,r2,g1,g2, we get (2.9).

Finally, if r1 < 0 then 0 < r2 < 1 and we may apply similar arguments with r1,r2,g1,g2

replaced by r2,r1,g2,g1 provided that
∫ b
a ()gr1

1 ()d > 0.

Remark 2.1 If we put u() = b−
b−a ,v() = −a

b−a in (2.8), then we deduce the inequalities
which have been obtained by Icscan in [56].

Let p and g be positive integrable functions defined on [a,b]. Then the integral power
means of order r ∈ R are defined as follows:

Mr(p;g) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1∫ b

a p()d

∫ b
a p()gr()d

) 1
r

, if r �= 0,

exp

(∫ b
a p() logg()d∫ b

a p()d

)
, if r = 0.

(2.11)

In the following corollary we deduce inequalities for power means.
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Corollary 2.3 Let p,u,v and g be positive integrable functions defined on [a,b] with
u()+ v() = 1 for all  ∈ [a,b]. Let s,t ∈ R be such that s ≤ t. Then

Mt(p;g) ≥ [
M1(u; p)Mt

s(u.p;g)+M1(v; p)Mt
s(v.p;g)

] 1
t ≥ Ms(p;g), t �= 0. (2.12)

Mt(p;g)≥exp(M1(u; p) logMs(u.p;g)+M1(v; p) logMs(v.p;g))≥Ms(p;g), t=0. (2.13)

Ms(p;g) ≤ [M1(u; p)Ms
t (u.p;g)+M1(v; p)Ms

t (v.p;g)]
1
s ≤ Mt(p;g), s �= 0. (2.14)

Ms(p;g)≤exp(M1(u; p) logMt(u.p;g)+M1(v; p) logMt(v.p;g))≤Mt(p;g), s=0. (2.15)

Proof. If s,t ∈ R and s,t �= 0, then using (2.1 ) for () = 
t
s ,  > 0, g → gs and then

taking power 1
t we get (2.12). For the case t = 0, taking limit t → 0 in (2.12) we obtain

(2.13).
Similarly taking (2.1) for()= 

s
t ,  > 0,s,t �= 0, g→ gt and then taking power 1

s we
get (2.14). For s = 0 taking the limit as above. Let p be positive integrable function defined
on [a,b] and g be any integrable function defined on [a,b]. Then for a strictly monotone
continuous function h whose domain belongs to the image of g, the quasi arithmetic mean
is defined as follows:

Mh(p;g) = h−1

(
1∫ b

a p()d

∫ b

a
p()h(g())d

)
. (2.16)

We give inequalities for quasi arithmetic mean.

Corollary 2.4 Let u,v, p be positive integrable functions defined on [a,b] such that u()+
v() = 1 for all  ∈ [a,b] and g be any integrable function defined on [a,b]. Also assume
that h is a strictly monotone continuous function whose domain belongs to the image of g.
If f ◦ h−1 is convex function then

1∫ b
a p()d

∫ b

a
p() f (g())d ≥ M1(u; p) f (Mh(p.u;g))

+M1(v; p) f (Mh(p.v;g)) ≥ f (Mh(p;g)) . (2.17)

If the function f ◦ h−1 is concave then the reverse inequalities hold in (2.17).

Proof. The required inequalities may be deduced by using (2.1) for g → h ◦ g and  →
f ◦ h−1.

The following refinement of Hermite-Hadamard inequality may be given:

Corollary 2.5 Let  : [a,b] → R be a convex function defined on the interval [a,b]. Let
u,v : [a,b] → R be integrable functions such that u(),v() ∈ R+ for all  ∈ [a,b] and
u()+ v() = 1. Then

1
b−a

∫ b

a
()d ≥ 1

b−a

∫ b

a
u()d

(∫ b
a u()d∫ b
a u()d

)

+
1

b−a

∫ b

a
v()d

(∫ b
a v()d∫ b
a v()d

)
≥ 

(
a+b

2

)
. (2.18)

For the concave function  the reverse inequalities hold in (2.18).

Proof. Using Theorem 2.1 for p() = 1,g() =  for all  ∈ [a,b], we obtain (2.18).
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2.1.1 Applications in Information Theory

In this section, we present some important applications of our main result for different
divergences and distances to information theory [67].

Definition 2.1 (CSISZÁR-DIVERGENCE) Let T : I →R be a function defined on the pos-
itive interval I. Also let u1,v1 : [a,b]→ (0,) be two integrable functions such that u1()

v1() ∈ I

for all  ∈ [a,b], then the integral form of Csiszár-divergence is defined as

Cd(u1,v1) =
∫ b

a
v1()T

(u1()
v1()

)
d .

Theorem 2.2 Let T : I → R be a convex function defined on the positive interval I. Let
u,v,u1,v1 : [a,b]→ R+ be integrable functions such that u1()

v1() ∈ I and u()+v() = 1 for

all  ∈ [a,b]. Then

Cd ≥
∫ b

a
u()v1()dT

(∫ b
a u()u1()d∫ b
a u()v1()d

)

+
∫ b

a
v()v1()dT

(∫ b
a v()u1()d∫ b
a v()v1()d

)
≥ T

(∫ b
a u1()d∫ b
a v1()d

)∫ b

a
v1()d .

(2.19)

Proof. Using Theorem 2.1 for  = T , g = u1
v1

and p = v1, we obtain (2.19).

Definition 2.2 (SHANNON ENTROPY) If v1() is positive probability density function
defined on [a,b], then the Shannon-entropy is defined by

SE(v1) = −
∫ b

a
v1() logv1()d .

Corollary 2.6 Let u,v,v1 : [a,b]→ R+ be integrable functions such that v1 is probability
density function and u()+ v() = 1 for all  ∈ [a,b]. Then

∫ b

a
v1() log(u1())d +SE(v1) ≤

∫ b

a
u()v1()d log

(∫ b
a u()u1()d∫ b
a u()v1()d

)

+
∫ b

a
v()v1()d log

(∫ b
a v()u1()d∫ b
a v()v1()d

)
≤ log

(∫ b

a
u1()d

)
. (2.20)

Proof. Taking T () = − log , ∈ R+, in (2.19), we obtain (2.20).

Definition 2.3 (KULLBACK-LEIBLER DIVERGENCE) If u1 and v1 are two positive prob-
ability densities defined on [a,b], then the Kullback-Leibler divergence is defined by:

KLd(u1,v1) =
∫ b

a
u1() log

(u1()
v1()

)
d .
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Corollary 2.7 Let u,v,u1,v1 : [a,b]→ R+ be integrable functions such that u1 and v1 are
probability density functions and u()+ v() = 1 for all  ∈ [a,b]. Then

KLd(u1,v1) ≥
∫ b

a
u()u1()d log

(∫ b
a u()u1()d∫ b
a u()v1()d

)

+
∫ b

a
v()u1()d log

(∫ b
a v()u1()d∫ b
a v()v1()d

)
≥ 0. (2.21)

Proof. Taking T () =  log , ∈ R+, in (2.19), we obtain (2.20).

Definition 2.4 (VARIATIONAL DISTANCE) If two u1 and v1 are positive probability den-
sity functions defined on [a,b], then the variational distance is defined by

Vd(u1,v1) =
∫ b

a
|u1()− v1()|d .

Corollary 2.8 Let u,v,u1,v1 be as stated in Corollary 2.7. Then

Vd(u1,v1) ≥
∣∣∣∫ b

a
u()(u1()− v1())d

∣∣∣
+

∣∣∣∫ b

a
v()(u1()− v1())d

∣∣∣. (2.22)

Proof. Using the function T () = |−1|, ∈ R+, in (2.19), we obtain (2.43).

Definition 2.5 (JEFFREY’S DISTANCE) If u1 and v1 are two positive probability density
functions defined on [a,b], then the Jeffrey distance is defined by

Jd(u1,v1) =
∫ b

a
(u1()− v1()) log

(
u1()
v1()

)
d .

Corollary 2.9 Let u,v,u1,v1 be as stated in Corollary 2.7. Then

Jd(u1,v1) ≥
∫ b

a
u()(u1()− v1())d log

(∫ b
a u()u1()d∫ b
a u()v1()d

)

+
∫ b

a
v()(u1()− v1())d log

(∫ b
a v()u1()d∫ b
a v()v1()d

)
≥ 0. (2.23)

Proof. Using the function T () = (−1) log , ∈ R+, in (2.19), we obtain (2.23).

Definition 2.6 (BHATTACHARYYA COEFFICIENT) If u1 and v1 are two positive proba-
bility density functions defined on [a,b], then the Bhattacharyya coefficient is defined by

Bd(u1,v1) =
∫ b

a

√
u1()v1()d .
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Corollary 2.10 Let u,v,u1,v1 be as stated in Corollary 2.7. Then

Bd(u1,v1) ≤
√∫ b

a
u()v1()d

∫ b

a
u()u1()d

+

√∫ b

a
v()v1()d

∫ b

a
v()u1()d. (2.24)

Proof. Using the function T () = −√ , ∈ R+, in (2.19), we obtain (2.24).

Definition 2.7 (HELLINGER DISTANCE) If u1 and v1 are two positive probability density
functions defined on [a,b], then the Hellinger distance is defined by

Hd(u1,v1) =
∫ b

a

(√
u1()−

√
v1()

)2
d .

Corollary 2.11 Let u,v,u1,v1 be as stated in Corollary 2.7. Then u()+ v() = 1 for all
 ∈ [a,b]. Then

Hd(u1,v1) ≥
⎛⎝√∫ b

a
u()u1()d−

√∫ b

a
u()v1()d

⎞⎠2

+

⎛⎝√∫ b

a
v()u1()d−

√∫ b

a
v()v1()d

⎞⎠2

≥ 0. (2.25)

Proof. Using the function T () = (
√−1)2, ∈ R+, in (2.19), we obtain (2.25).

Definition 2.8 (TRIANGULAR DISCRIMINATION) If u1 and v1 are two positive proba-
bility density functions defined on [a,b], then the triangular discrimination between u1 and
v1 is defined by

Td(u1,v1) =
∫ b

a

(u1()− v1())2

u1()+ v1()
d .

Corollary 2.12 Let u,v,u1,v1 be as stated in Corollary 2.7. Then

Td(u1,v1) ≥
(∫ b

a u()(u1()− v1())d
)2

∫ b
a u()(u1()+ v1())d

+

(∫ b
a (u1()− v1())v()d

)2

∫ b
a (u1()+ v1())v()d

≥ 0. (2.26)

Proof. Since the function () = (−1)2
+1 , ∈ R+ is convex. Therefore using the function

T () = (), in (2.19), we obtain (2.26).
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2.1.2 Further Generalization

In the following theorem we present further refinement of the Jensen inequality concerning
n functions whose sum is equal to unity.

Theorem 2.3 Let  : I → R be a convex function defined on the interval I. Let p,g,ul ∈
L[a,b] such that g()∈ I, p(),ul()∈R+ for all  ∈ [a,b] (l = 1,2, ...,n) and

n

l=1

ul() =

1, P =
∫ b
a p()d . Assume that L1 and L2 are non empty disjoint subsets of {1,2, ...,n}

such that L1∪L2 = {1,2, ...,n}. Then

1
P

∫ b

a
p()(g())d

≥ 1
P

∫ b

a

l∈L1

ul()p()d

(∫ b
a l∈L1

ul()p()g()d∫ b
a l∈L1

ul()p()d

)

+
1
P

∫ b

a

l∈L2

ul()p()d

(∫ b
a l∈L2

ul()p()g()d∫ b
a l∈L2

ul()p()d

)

≥ 
(

1
P

∫ b

a
p()g()d

)
. (2.27)

If the function  is concave then the reverse inequalities hold in (2.27).

Proof. Since
n

i=1

ul() = 1, therefore we may write

∫ b

a
p()(g())d =

∫ b

a

l∈L1

ul()p()(g())d+
∫ b

a

l∈L2

ul()p()(g())d .

(2.28)
Applying integral Jensen’s inequality on both terms on the right hand side of (2.28) we
obtain

1
P

∫ b

a
p()(g())d

≥ 1
P

∫ b

a

l∈L1

ul()p()d

(∫ b
a l∈L1

ul()p()g()d∫ b
a l∈L1

ul()p()d

)

+
1
P

∫ b

a

l∈L2

ul()p()d

(∫ b
a l∈L2

ul()p()g()d∫ b
a l∈L2

ul()p()d

)

≥ 

(
1
P

∫ b

a

l∈L1

ul()p()g()d+
1
P

∫ b

a

l∈L2

ul()p()g()d

)
(By the convexity of )

= 
(

1
P

∫ b

a
p()g()d

)
(2.29)
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Remark 2.2 If we take n = 2, in Theorem 2.3, we deduce Theorem 2.1. Also, analo-
gously as in the previous sections we may give applications of Theorem 2.3 for different
means, Hölder inequality and information theory.

2.2 Refinement of Discrete Jensen’s Inequality

We start to derive new refinement of discrete Jensen’s inequality associated to two partic-
ular finite sequences.

Theorem 2.4 Let  : I → R be a convex function defined on the interval I. Let y j ∈ I,
 j, j, j ∈ R+ ( j = 1,2, . . . ,n) such that  j + j = 1 for all j ∈ {1,2, . . . ,n}, ̄ =n

j=1  j .
Then



(
1

̄

n


j=1

 jy j

)
≤ 1

̄

n


j=1

 j j

(
n

j=1  j jy j

n
j=1 j j

)

+
1

̄

n


j=1

 j j

(
n

j=1  j jy j

n
j=1  j j

)
≤ 1

̄

n


j=1

 j(y j). (2.30)

If the function  is concave then the reverse inequalities hold in (2.30).

Proof. Since  j + j = 1 for all j ∈ {1,2, . . . ,n}, therefore we have



(
1

̄

n


j=1

 jy j

)
= 

(
1

̄

n


j=1

 j jy j +
1

̄

n


j=1

 j jy j

)

= 

(
n

j=1  j j

̄
n

j=1  j jy j

n
j=1  j j

+
n

j=1  j j

̄
n

j=1  j jy j

n
j=1 j j

)
. (2.31)

Applying convexity of  on the right side of (3.4) we obtain



(
1

̄

n


j=1

 jy j

)
≤ n

j=1 j j

̄


(
n

j=1  j jy j

n
j=1 j j

)
+
n

j=1  j j

̄


(
n

j=1  j jy j

n
j=1  j j

)

≤ 1

̄

n


j=1

 j j(y j)+
1

̄

n


j=1

 j j(y j) (By Jensen inequality)

=
1

̄

n


j=1

 j(y j). (2.32)

This proves the required result.
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Let y = (y1, . . . ,yn) and  = (1, . . . ,n) be two positive n-tuples such that ̄ =n
j=1 j.

Then the well known power means of order r ∈ R is defined as:

Mr( ;y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
̄ 

n
j=1 jyr

j

) 1
r
, if r �= 0,

(
n

j=1 y
 j
j

) 1
̄ , if r = 0.

(2.33)

In the following corollary we deduce inequalities for power means.

Corollary 2.13 Let y j, j, j, j ∈ R+ ( j = 1,2, . . . ,n) such that  j +  j = 1 for all j ∈
{1,2, . . . ,n}, ̄ = n

j=1  j . Let s,t ∈ R such that s ≤ t. Then

Mt( ;y) ≥ [
M1( ;)Mt

s( . ;y)+M1( ; )Mt
s( . ;y)

] 1
t ≥ Ms( ;y), t �= 0. (2.34)

Mt( ;y) ≥ exp(M1( ;) logMs( . ;y)+M1( ; ) logMs( . ;y)) ≥ Ms( ;y), t = 0.
(2.35)

Ms( ;y) ≤ [M1( ;)Ms
t ( .;y)+M1( ; )Ms

t ( . ;y)]
1
s ≤ Mt( ;y), s �= 0. (2.36)

Ms( ;y) ≤ exp(M1( ;) logMt( . ;y)+M1( ; ) logMt( . ;y)) ≤ Mt( ;y), s = 0.
(2.37)

Proof. If s, t ∈ R and s,t �= 0, then using (2.30 ) for () = 
t
s ,  > 0, y j → ys

j and then

taking power 1
t we get (2.34). For the case t = 0, taking limit t → 0 in (2.34) we obtain

(2.35).
Similarly taking (2.30) for() =

s
t ,  > 0,s,t �= 0, y j → yt

j and then taking power 1
s

we get (2.36). For s = 0 we take limit as above. Let y = (y1, . . . ,yn) and  = (1, . . . ,n)
be two positive n-tuples such that ̄ = n

j=1  j. If h is a continuous as well as strictly
monotone function, then the quasi arithmetic mean is defined by:

M̃h( ;y) = h−1

(
1

̄

n


j=1

 jh(y j)

)
. (2.38)

We give inequalities for quasi arithmetic mean.

Corollary 2.14 Let y j, j, j, j ∈ R+ ( j = 1,2, . . . ,n) such that  j +  j = 1 for all j ∈
{1,2, . . . ,n}, ̄ = n

j=1  j . Also assume that h is a strictly monotone continuous function.

If f ◦ h−1 is convex function, then

f
(
M̃h( ;y)

) ≤ M1( ;) f (M̃h( . ;y))

+M1( ; ) f (M̃h( . ;y)) ≤ 1

̄

n


j=1

 j f (y j). (2.39)

If the function f ◦ h−1 is concave then the reverse inequalities hold in (2.39).

Proof. The required inequalities may be deduced by using (2.30) for y j → h(y j) and
 → f ◦ h−1.
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2.2.1 Applications in Information Theory

Definition 2.9 (CSISZÁR F-DIVERGENCE) Let f : �0,) → R be a convex function,
also suppose that c = (c1,c2, . . . ,cn) and d = (d1,d2, . . . ,dn) are positive n-tuples, then
the Csiszár f-divergence functional is defined by

Mf (c,d) =
n


j=1

dj f
( cj

dj

)
.

Theorem 2.5 Let f : (0,)→R be a convex function and c = (c1,c2, . . . ,cn), d = (d1,d2,
. . . ,dn),  = (1,2, . . . ,n) and  = (1,2, . . . ,n) be positive n-tuples such that  j +
 j = 1 for j ∈ {1,2, . . . ,n}. Then

Mf (c,d) ≥
n


j=1

 jd j f

(
n

j=1 c j j

n
j=1 d j j

)

+
n


j=1

d j j f

(
n

j=1 c j j

n
j=1 d j j

)
≥ f

(
n

j=1 c j

n
j=1 d j

)
n


j=1

d j. (2.40)

Proof. Using Theorem 2.4 for  = f , y j = c j
d j

and  j = d j for j ∈ {1,2, . . . ,n}, we obtain

(2.40).

Definition 2.10 (SHANNON ENTROPY) Let q = (q1,q2, . . . ,qn) be positive probability
distribution then the Shannon entropy is defined as

S(q) = −
n


j=1

q j logq j.

Corollary 2.15 Let d = (d1,d2, . . . ,dn) be positive probability distribution. Also assume
that  = (1,2, . . . ,n) and  = (1,2, . . . ,n) be two positive n-tuples such that  j +
 j = 1 for j ∈ {1,2, . . . ,n}. Then

S(d) ≤
n


j=1

 jd j log

(
n

j=1 j

n
j=1 d j j

)
+

n


j=1

d j j log

(
n

j=1 j

n
j=1 d j j

)
≤ logn. (2.41)

Proof. Taking f () = − log , ∈ R+, c j = 1, for each j ∈ {1,2, . . . ,n}, in (2.40), we
obtain (2.41).

Definition 2.11 (KULLBACK-LEIBLER DIVERGENCE) Let c = (c1,c2, . . . ,cn) and d =
(d1,d2, . . . ,dn) be positive probability distributions then the Kullback-Leibler divergence
is defined by

Kd(c,d) =
n


i=1

ci log
( ci

di

)
.
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Corollary 2.16 Let c = (c1,c2, . . . ,cn), d = (d1,d2, . . . ,dn) be positive probability dis-
tributions and  = (1,2, . . . ,n),  = (1,2, . . . ,n) be positive n-tuples such that
 j + j = 1 for j ∈ {1,2, . . . ,n}. Then

Kd(c,d) ≥
n


j=1

 jc j log

(
n

j=1 c j j

n
j=1 d j j

)

+
n


j=1

c j j log

(
n

j=1 c j j

n
j=1 d j j

)
≥ 0. (2.42)

Proof. Taking f () =  log , ∈ R+, in (2.40), we obtain (2.42).

Definition 2.12 (VARIATIONAL DISTANCE) For two positive probability distributions
c = (c1,c2, · · · ,cn) and d = (d1,d2, · · · ,dn) the variational distance is defined by

Vd(c,d) =
n


j=1

∣∣c j −d j
∣∣ .

Corollary 2.17 Under the assumptions of Corollary 2.16, the following inequality holds:

Vd(c,d) ≥
∣∣∣ n


j=1

 j(c j −d j)
∣∣∣+ ∣∣∣ n


j=1

 j(c j −d j)
∣∣∣. (2.43)

Proof. Using the function f () = |−1|, ∈ R+, in (2.40), we obtain (2.43).

Definition 2.13 (JEFFREY’S DISTANCE) For two positive probability distributions c =
(c1,c2, · · · ,cn) and d = (d1,d2, · · · ,dn), the Jeffrey distance is defined by

Jd(c,d) =
n


j=1

(c j −d j) log
( c j

d j

)
.

Corollary 2.18 Under the assumptions of Corollary 2.16, the following inequality holds:

Jd(c,d) ≥
n


j=1

 j(c j −d j) log

(
n

j=1 jc j

n
j=1 jd j

)

+
n


j=1

 j(c j −d j) log

(
n

j=1 jc j

n
j=1  jd j

)
≥ 0. (2.44)

Proof. Using the function f () = (−1) log , ∈ R+, in (2.40), we obtain (2.44).

Definition 2.14 (BHATTACHARYYA COEFFICIENT) For two positive probability distri-
butions c = (c1,c2, · · · ,cn) and d = (d1,d2, · · · ,dn), the Bhattacharyya coefficient is de-
fined by

Bd(c,d) =
n


j=1

√
c jd j.
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Corollary 2.19 Under the assumptions of Corollary 2.16, the following inequality holds:

Bd(u1,v1) ≤
√

n


j=1

 jc j

n


j=1

 jd j +

√
n


j=1

 jc j

n


j=1

 jd j. (2.45)

Proof. Using the function f () = −√
 , ∈ R+, in (2.40), we obtain (2.45).

Definition 2.15 (HELLINGER DISTANCE) For two positive probability distributions c =
(c1,c2, · · · ,cn) and d = (d1,d2, · · · ,dn), the Hellinger distance is defined by

Hd(c,d) =
n


j=1

(√
c j −

√
d j

)2
.

Corollary 2.20 Under the assumptions of Corollary 2.16, the following inequality holds:

Hd(c,d) ≥
(√

n


j=1

 jc j −
√

n


j=1

 jd j

)2

+

(√
n


j=1

 jc j −
√

n


j=1

 jd j

)2

≥ 0. (2.46)

Proof. Using the function f () = (
√
−1)2, ∈ R+, in (2.40), we obtain (2.46).

Definition 2.16 (TRIANGULAR DISCRIMINATION) For two positive probability distri-
butions c = (c1,c2, · · · ,cn) and d =(d1,d2, · · · ,dn), the triangular discrimination is defined
by

Td(c,d) =
n


j=1

(c j −d j)2

c j +d j
.

Corollary 2.21 Under the assumptions of Corollary 2.16, the following inequality holds:

Td(c,d) ≥
(
n

j=1 j(c j −d j)
)2

n
j=1 j(c j +d j)

+

(
n

j=1(c j −d j) j

)2

n
j=1(c j +d j) j

≥ 0. (2.47)

Proof. Since the function () = (−1)2
+1 , ∈ R+ is convex. Therefore using the function

f () = (), in (2.40), we obtain (2.47).
Now we begin to derive bounds for Zipf-Mandelbrot entropy.

In the following corollary we present another bound for Zipf-Mandelbrot entropy.

Corollary 2.22 Let  ≥ 0, s,d j > 0, j = 1,2, ..,n with n
j=1 d j = 1. Also assume that

 = (1,2, . . . ,n),  = (1,2, . . . ,n) be positive n-tuples such that  j +  j = 1 for
j ∈ {1,2, . . . ,n}. Then

−Z(H, ,s)−
n


j=1

logd j

( j +)sHn, ,s
≥

n


j=1

 j

( j +)sHn, ,s
log

⎛⎝n
j=1

 j
( j+ )sHn, ,s

n
j=1 d j j

⎞⎠
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+
n


j=1

 j

( j +)sHn, ,s
log

⎛⎝n
j=1

 j
( j+ )sHn, ,s

n
j=1 d j j

⎞⎠ ≥ 0.

(2.48)

Proof. Let c j = 1
( j+ )sHn, ,s

, j ∈ {1,2, ...,n}, then

n


j=1

c j logc j =
n


j=1

1
( j +)sHn, ,s

log
1

( j +)sHn, ,s

= −
n


j=1

1
( j +)sHn, ,s

log(( j +)sHn, ,s)

= −
n


j=1

s
( j +)sHn, ,s

log( j +)−
n


j=1

logHn, ,s

( j +)sHn, ,s

= − s
( j +)sHn, ,s

n


j=1

log( j +)
( j +)s − logHn, ,s

Hn, ,s

n


j=1

1
( j +)s

= −Z(H, ,s).

Since Hn, ,s =
n

j=1

1
(+i)s , therefore

n

j=1

1
( j+ )sHn, ,s

= 1. Hence using (2.42) for c j =

1
( j+ )sHn, ,s

, j = 1,2, ..,n, we obtain (2.48). In the following corollary, we derive esti-

mation for Zipf-Mandelbrot entropy by using two Zipf’s law corresponding to different
parameters.

Corollary 2.23 Let 1,2 ≥ 0, s1,s2 > 0. Also assume that  = (1,2, . . . ,n),  =
(1,2, . . . ,n) be positive n-tuples such that  j + j = 1 for j ∈ {1,2, . . . ,n}. Then

−Z(H,1,s1)+
n


j=1

log(( j + 2)s2Hn,2,s2)
( j + 1)s1Hn,1,s1

≥
n


j=1

 j

( j + 1)s1Hn,1,s1

log

⎛⎝n
j=1

 j
( j+1)s1 Hn,1,s1

n
j=1

 j
( j+2)s2 Hn,2,s2

⎞⎠
+

n


j=1

 j

( j + 1)s1Hn,1,s1

log

⎛⎝n
j=1

 j
( j+1)s1Hn,1 ,s1

n
j=1

 j
( j+2)s2Hn,2 ,s2

⎞⎠ ≥ 0. (2.49)

Proof. Let c j = 1
( j+1)s1Hn,1,s1

and d j = 1
( j+2)s2Hn,2 ,s2

, j = 1,2, ...,n, then as in the proof

of Corollary 2.22, we have
n


j=1

c j logc j =
n


j=1

1
( j + 1)s1Hn,1,s1

log
1

( j + 1)s1Hn,1,s1

= −Z(H,1,s1).

n


j=1

c j logd j =
n


j=1

log 1
( j+2)s2Hn,2,s2

( j + 1)s1Hn,1,s1

= −
n


j=1

log(( j + 2)s1Hn,2,s2)
( j + 1)s1Hn,1,s1

.
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Also
n


j=1

c j =
n


j=1

1
( j + 1)s1Hn,1,s1

= 1 and
n


j=1

1
( j + 1)s1Hn,1,s1

= 1.

Therefore using (2.42) for c j = 1
( j+1)s1Hn,1,s1

and d j = 1
( j+2)s2Hn,2,s2

, j = 1,2, ..,n, we

obtain (2.49).

2.2.2 Further Generalization

In the following theorem, we present further refinement of the Jensen inequality concerning
m sequences whose sum is equal to unity.

Theorem 2.6 Let  : I → R be a convex function defined on the interval I. Let y j ∈ I,
 j, l

j ∈ R+ ( j = 1,2, . . . ,n, l = 1,2, . . . ,m) such thatm
l=1  l

j = 1 for each j ∈ {1,2, . . . ,n},
̄ = n

j=1 j . Assume that L1 and L2 are non empty disjoint subsets of {1,2, ...,m} such
that L1 ∪L2 = {1,2, ...,m}. Then

1

̄

n


j=1

 j(y j) ≥ 1

̄

n


j=1

l∈L1

 l
j j

(
n

j=1l∈L1
 l

j jy j

n
j=1l∈L1

 l
j j

)

+
1

̄

n


j=1

l∈L2

 l
j j

(
n

j=1l∈L2
 l

j jy j

n
j=1l∈L2

 l
j j

)
≥ 

(
1

̄

n


j=1

 jy j

)
. (2.50)

If the function  is concave then the reverse inequalities hold in (2.50).

Proof. Since m
l=1  l

j = 1 for each j ∈ {1,2, . . . ,n}, therefore we may write

1

̄

n


j=1

 j(y j) =
1

̄

n


j=1

l∈L1

 l
j j(y j)+

1

̄

n


j=1

l∈L2

 l
j j(y j). (2.51)

Applying Jensen’s inequality on both terms on the right hand side of (2.51) we obtain

1

̄

n


j=1

 j(y j)

≥ 1

̄

n


j=1

l∈L1

 l
j j

(
n

j=1l∈L1
 l

j jy j

n
j=1l∈L1

 l
j j

)
+

1

̄

n


j=1

l∈L2

 l
j j

(
n

j=1l∈L2
 l

j jy j

n
j=1l∈L2

 l
j j

)

≥ 

(
1

̄

n


j=1

l∈L1

 l
j j

n
j=1l∈L1

 l
j jy j

n
j=1l∈L1

 l
j j

+
1

̄

n


j=1

l∈L2

 l
j j

n
j=1l∈L2

 l
j jy j

n
j=1l∈L2

 l
j j

)
(By the convexity of )

= 

(
1

̄

n


j=1

 jy j

)
. (2.52)

Remark 2.3 If we take m = 2, in Theorem 2.6, we deduce Theorem 2.4. Also, analo-
gously as in the previous sections we may give applications of Theorem 2.6 for means and
in information theory.



Chapter3

Refinements of
Jensen-Steffensen’s
Inequality

The purpose of this chapter is to derive refinements of discrete Jensen-Steffensen’s as well
as integral Jensen-Steffensen’s inequality associated to certain tuples and functions respec-
tively. We present application to Zipf Mandelbrot law. Some more general refinements
have also been presented for Jensen-Steffensen’s inequality. The results of this chapter are
given in [4].

3.1 Refinements of Jensen-Steffensen’s Inequality

We begin to derive new refinement of discrete Jensen-Steffensen’s inequality associated to
two particular finite sequences.

Theorem 3.1 Let  : I → R be a convex function defined on the interval I. Let y ∈
I,  , , ∈ R ( = 1,2, . . . ,n) be such that  +  = 1 for all j ∈ {1,2, . . . ,n} and

31
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̄ = n
=1  . If y1 ≤ y2 ≤ ·· · ≤ yn or y1 ≥ y2 ≥ ·· · ≥ yn and

0 ≤
k


=1

 ≤
n


=1

 , k = 1,2, . . . ,n,
n


=1

 > 0 and (3.1)

0 ≤
k


=1

 ≤
n


=1

 , k = 1,2, . . . ,n,
n


=1

 > 0, (3.2)

then



(
1

̄

n


=1

y

)
≤ 1

̄

n


=1



(
n
=1 y
n
=1 

)

+
1

̄

n


=1



(
n
=1 y
n
=1 

)
≤ 1

̄

n


=1

(y). (3.3)

If the function  is concave then the reverse inequalities hold in (3.3).

Proof. Since  + = 1 for all j ∈ {1,2, . . . ,n}, therefore we have



(
1

̄

n


=1

y

)
= 

(
1

̄

n


=1

y +
1

̄

n


=1

y

)

= 

(
n
=1 
̄

n
=1 y
n
=1 

+
n
=1 
̄

n
=1 y
n
=1 

)
. (3.4)

Since n
=1  > 0 and n

=1  > 0, therefore n
=1  +n

=1  > 0. Which

gives that ̄ > 0.
Now by applying convexity of  to the right side of (3.4) one may obtain



(
1

̄

n


=1

y

)
≤ n

=1 
̄



(
n
=1 y
n
=1 

)
+
n
=1 
̄



(
n
=1 y
n
=1 

)

≤ 1

̄

n


=1

(y )+
1

̄

n


=1

(y)

(By Jensen-Steffensen’s inequality)

=
1

̄

n


=1

(y). (3.5)

This proves the required result.

Remark 3.1 If we add (3.1) and (3.2), then the Jensen-Steffensen inequality conditions
(1.16) will be obtained.

The integral version of the above theorem may be stated as:
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Theorem 3.2 Let  : I → R be a convex function defined on the interval I. Let h,u,v,g :
[a,b]→ R be integrable functions such that g()∈ I,u(),v(),h()∈ R for all  ∈ [a,b]
and v()+u() = 1, H =

∫ b
a h()d . If g is monotonic on [a,b] and

0 ≤
∫ 

a
h()u()d ≤

∫ b

a
h()u()d ,  ∈ [a,b],

∫ b

a
u()h()d > 0 and (3.6)

0 ≤
∫ 

a
h()v()d ≤

∫ b

a
h()v()d ,  ∈ [a,b],

∫ b

a
v()h()d > 0, (3.7)

then


(

1
H

∫ b

a
h()g()d

)
≤ 1

H

∫ b

a
u()h()d

(∫ b
a h()u()g()d∫ b

a h()u()d

)

+
1
H

∫ b

a
h()v()d

(∫ b
a h()v()g()d∫ b

a h()v()d

)
≤ 1

H

∫ b

a
h()(g())d . (3.8)

If the function  is concave then the reverse inequalities hold in (3.8).

Remark 3.2 By adding (3.6) and (3.7), one may obtain conditions (1.7).

In the following corollary we present result for Zipf-Mandelbrot law.

Corollary 3.1 Let  ≥ 0, s > 0 and  : R+ → R be a convex function defined on the in-
terval I. Let  , , ∈ R ( j = 1,2, . . . ,n) be such that  + = 1 for all  ∈ {1,2, . . . ,n}
and ̄ = n

=1  . If

0 ≤
k


=1

 ≤
n


=1

 , k = 1,2, . . . ,n,
n


=1

 > 0 and (3.9)

0 ≤
k


=1

 ≤
n


=1

 , k = 1,2, . . . ,n,
n


=1

 > 0, (3.10)

then



(
1

̄

n


=1

 f (,n, ,s)

)
≤ 1

̄

n


=1



(
n
=1  f (,n, ,s)

n
=1 

)

+
1

̄

n


=1



(
n
=1  f (,n, ,s)

n
=1 

)
≤ 1

̄

n


=1

 ( f (,n, ,s)) .

(3.11)

If the function  is concave then the reverse inequalities hold in (3.11).

Proof. Substituting y = f (,n, ,s),  ∈ {1,2, ...,n}, in (3.3) we obtain (3.11).
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3.2 Further Generalization

In the following theorem, we present further refinement of discrete Jensen-Steffensen’s
inequality associated to m sequences whose sum is equal to unity.

Theorem 3.3 Let  : I → R be a convex function defined on the interval I. Let y ∈ I,
 , l

 ∈R ( = 1,2, . . . ,n, l = 1,2, . . . ,m) be such thatm
l=1  l

 = 1 for each j ∈ {1,2, . . . ,n}
and ̄ =n

=1  . Assume that L1 and L2 are non empty disjoint subsets of {1,2, ...,m} such
that L1 ∪L2 = {1,2, ...,m}. If y1 ≤ y2 ≤ ·· · ≤ yn or y1 ≥ y2 ≥ ·· · ≥ yn and

0 ≤
k


=1

 l
 ≤

n


=1

 l
 , k = 1,2, . . . ,n,

n


=1

 l
 > 0, (3.12)

for each l ∈ {1,2, . . . ,m}.
Then

1

̄

n


=1

(y) ≥ 1

̄

n


=1


l∈L1

 l


(
n
=1l∈L1

 l
y

n
=1l∈L1

 l


)

+
1

̄

n


=1


l∈L2

 l


(
n
=1l∈L2

 l
y

n
=1l∈L2

 l


)
≥ 

(
1

̄

n


=1

y

)
. (3.13)

If the function  is concave then the reverse inequalities hold in (3.13).

Proof. Since m
l=1  l

 = 1 for each j ∈ {1,2, . . . ,n}, therefore we may write

n


=1

(y) =
n


=1


l∈L1

 l
(y)+

n


=1


l∈L2

 l
(y). (3.14)

Since n
=1  l

 > 0 for each l ∈ {1,2, . . . ,m}, therefore m
l=1

n
=1  l

 > 0. Also,

m
l=1  l

 = 1. Hence we conclude that ̄ > 0.
Now applying Jensen-Steffensen’s inequality to both terms on the right hand side of (3.14)
we obtain

1

̄

n


=1

(y)

≥ 1

̄

n


=1


l∈L1

 l


(
n
=1l∈L1

 l
y

n
=1l∈L1

 l


)
+

1

̄

n


=1


l∈L2

 l


(
n
=1l∈L2

 l
y

n
=1l∈L2

 l


)

≥ 

(
1

̄

n


=1


l∈L1

 l


n
=1l∈L1

 l
y

n
=1l∈L1

 l


+
1

̄

n


=1


l∈L2

 l


n
=1l∈L2

 l
y

n
=1l∈L2

 l


)
(By the convexity of )
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= 

(
1

̄

n


=1

y

)
. (3.15)

In the following theorem, we present further refinement of integral Jensen-Steffensen’s
inequality.

Theorem 3.4 Let  : I → R be a convex function defined on the interval I. Let h,g,ul ∈
L[a,b] be such that g() ∈ I,h(),ul() ∈ R for all  ∈ [a,b] (l = 1,2, ...,n) and
n

l=1

ul() = 1, H =
∫ b
a h()d . Assume that L1 and L2 are non empty disjoint subsets

of {1,2, ...,n} such that L1 ∪L2 = {1,2, ...,n}. If g is monotonic on [a,b] and

0 ≤
∫ 

a
h()ul()d ≤

∫ b

a
h()ul()d ,  ∈ [a,b],

∫ b

a
ul()h()d > 0, (3.16)

for each l ∈ {1,2, . . . ,n},

then

1
H

∫ b

a
h()(g())d

≥ 1
H

∫ b

a

l∈L1

ul()h()d

(∫ b
a l∈L1

ul()h()g()d∫ b
a l∈L1

ul()h()d

)

+
1
H

∫ b

a

l∈L2

ul()h()d

(∫ b
a l∈L2

ul()h()g()d∫ b
a l∈L2

ul()h()d

)

≥ 
(

1
H

∫ b

a
h()g()d

)
. (3.17)

If the function  is concave then the reverse inequalities hold in (3.17).

Corollary 3.2 Let  : I → R be a convex function defined on the interval I. Let h,g :
[a,b] → R be integrable functions such that g() ∈ I,h() ∈ R for all  ∈ [a,b] and H =∫ b
a h()d . If g is monotonic on [a,b] and

0 ≤
∫ 

a
h()(−a)d ≤

∫ b

a
h()(−a)d ,  ∈ [a,b],

∫ b

a
( −a)h()d > 0 and

(3.18)

0≤
∫ 

a
h()(b−)d ≤

∫ b

a
h()(b−)d ,  ∈ [a,b],

∫ b

a
(b−)h()d > 0, (3.19)

then


(

1
H

∫ b

a
h()g()d

)
≤ 1

H(b−a)

∫ b

a
(−a)h()d

(∫ b
a h()(−a)g()d∫ b

a h()(−a)d

)
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+
1

H(b−a)

∫ b

a
h()(b−)d

(∫ b
a h()(b−)g()d∫ b

a h()(b−)d

)
≤ 1

H

∫ b

a
h()(g())d .

(3.20)

If the function  is concave then the reverse inequalities hold in (3.20).

Proof. The proof follows from Theorem 3.2 by using u() = −a
b−a and v() = b−

b−a .

Remark 3.3 As in Corollary 3.1 we can give application of Theorem 3.3 for Zipf-Man-
delbrot law.



Chapter4
Refinements of
Jensen-Mercer’s and Variant
of Jensen-Steffensen’s
Inequalities

In this chapter, we propose new refinements for the Jensen-Mercer as well as variant of
the Jensen-Mercer inequalities associated to certain positive tuples. We give some related
integral version and present applications to different means. At the end of this chapter,
further generalizations have been given which are associated to m finite sequences. The
results of this chapter are given in [5].

4.1 Refinements

In the following theorem we present refinement of Jensen-Mercer’s inequality.

Theorem 4.1 Let  : [a,b] → R be a convex function and let y ∈ [a,b],  , , ∈ R+

be such that ̄ = n
=1  and  + = 1 for each  ∈ {1,2, . . . ,n}. Then

37
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(

a+b− 1

̄

n


=1

y
)

≤
n


=1


(
n
=1  (a+b− y)

n
=1 

)
+

n


=1


(
n
=1  (a+b− y)

n
=1 

)
≤ (a)+(b)− 1

̄

n


=1

(y). (4.1)

Proof. Since  + = 1 for  ∈ {1,2, . . . ,n}, therefore


(

a+b− 1

̄

n


=1

y
)

= 
(

1

̄

n


=1

(a+b− y)
)

=
(

1

̄

n


=1

 (a+b− y)+
1

̄

n


=1

(a+b− y)
)

=
(n

=1 
̄

n
=1  (a+b− y)

n
=1 

+
n
=1 
̄

n
=1  (a+b− y)

n
=1 

)
≤n

=1 
̄


(n

=1  (a+b− y)

n
=1 

)
+
n
=1 
̄


(
n
=1  (a+b− y)

n
=1 

)
≤n

=1 
̄

(
(a)+(b)− n

=1 (y)

n
=1 

)
+
n
=1 
̄

(
(a)+(b)− n

=1 (y )

n
=1 

)
≤(a)+(b)− 1

̄

n


=1

(y ).

The first inequality holds by using definition of convexity while the second inequality is
due to Jensen-Mercer’s inequality.

In the following theorem we present integral version of the above theorem.

Theorem 4.2 Let  : [a,b] → R be a convex function defined on the interval [a,b]. Let
p,u,v,g : [, ]→R be integrable functions such that g()∈ [a,b],u(),v(), p()∈R+

for all  ∈ [, ] and v()+u() = 1, P =
∫ 
 p()d . Then


(

a+b− 1
P

∫ 


p()g()d

)
≤ 1

P

∫ 


u()p()d

(∫ 
 p()u()(a+b−g())d∫ 

 p()u()d

)
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+
1
P

∫ 


p()v()d

(∫ 
 p()v()(a+b−g())d∫ 

 p()v()d

)

≤ (a)+(b)− 1
P

∫ 


p()(g())d . (4.2)

If the function  is concave then the reverse inequalities hold in (4.2).

The following variant of Jensen-Steffensen’s inequality has been given in [1].

Theorem 4.3 Let  : [a,b] → R be a convex function and y ∈ [a,b],  ∈ R, �= 0 for
 = 1,2, . . . ,n with ̄ = n

=1  . If y1 ≤ y2 ≤ ·· · ≤ yn or y1 ≥ y2 ≥ ·· · ≥ yn and

0 ≤
k


=1

 ≤
n


=1

 , k = 1,2, . . . ,n,
n


=1

 > 0, (4.3)

then


(

a+b− 1

̄

n


=1

y
)
≤ (a)+(b)− 1

̄

n


=1

(y). (4.4)

In the following theorem we present a refinement of variant of Jensen-Steffensen’s
inequality:

Theorem 4.4 Let  : [a,b] → R be a convex function. Let y ∈ [a,b],  , , ∈ R,

 , �= 0 for  = 1,2, . . . ,n, such that  +  = 1 for all  ∈ {1,2, . . . ,n} and ̄ =
n
=1  . If y1 ≤ y2 ≤ ·· · ≤ yn or y1 ≥ y2 ≥ ·· · ≥ yn and

0 ≤
k


=1

 ≤
n


=1

 , k = 1,2, . . . ,n,
n


=1

 > 0 and (4.5)

0 ≤
k


=1

 ≤
n


=1

 , k = 1,2, . . . ,n,
n


=1

 > 0, (4.6)

then



(
a+b− 1

̄

n


=1

y

)
≤ 1

̄

n


=1



(
a+b− n

=1  (a+b− y)

n
=1 

)

+
1

̄

n


=1



(
n
=1  (a+b− y)

n
=1 

)
≤ (a)+(b)− 1

̄

n


=1

(y). (4.7)

If the function  is concave then the reverse inequalities hold in (4.7).

Proof. Since  + = 1 for all  ∈ {1,2, . . . ,n}, therefore we have


(
a+b − 1

̄

n


=1

y
)

= 
(

1

̄

n


=1

(a+b− y)
)
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= 
(

1

̄

n


=1

 (a+b− y)+
1

̄

n


=1

 (a+b− y)
)

= 

(
n
=1 
̄

n
=1 (a+b− y)

n
=1 

+
n
=1 
̄

n
=1  (a+b− y)

n
=1 

)
.

(4.8)

Since n
=1  > 0 and n

=1  > 0, therefore n
=1  +n

=1  > 0. Which

gives that ̄ > 0.
Now by applying convexity of  to the right side of (4.8) one may obtain



(
1

̄

n


=1

(a+b− y)

)
≤ n

=1 
̄



(
n
=1 (a+b− y)

n
=1 

)

+
n
=1 
̄



(
n
=1  (a+b− y)

n
=1 

)

≤ 1

̄

n


=1



(
(a)+(b)− n

=1 (y )

n
=1 

)

+
1

̄

n


=1



(
(a)+(b)− n

=1 (y )

n
=1 

)

= (a)+(b)− 1

̄

n


=1

(y ).

The above inequality holds by using variant of Jensen-Steffensen’s inequality.

Remark 4.1 If we add (4.5) and (4.6), then the variant of Jensen-Steffensen inequality
conditions (4.3) will be obtained.

4.2 Applications to Means

Let y ∈ [a,b],( = 1,2, ..,n), where 0 < a < b, 1, ...,n > 0 with ̄ := n
=1  . Let

An(y; ), Ãn(y; ),Gn(y; ),G̃n(y; ), Hn(y; ),H̃n(y; ),M[r]
n (y; ) and M̃[r]

n (y; ) denote
the weighted arithmetic, geometric, harmonic and power means defined as:

An(y; ):=
1

̄

n


=1

y , Ãn := a+b− 1

̄

n


=1

y = a+b−An(y; ),
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Gn(y; ):=

(
n


=1

y



) 1
̄

, G̃n(y; ) :=
ab(

n

=1

y



) 1
̄

=
ab

Gn(y; )
,

Hn(y; ):=
1

̄

n


=1

y−1
 , H̃n(y; ) :=

(
a−1 +b−1−H−1

n (y; )
)−1

,

M[s]
n (y; ):=

⎧⎨⎩
(

1
̄ 

n
=1 ys



) 1
s
, s �= 0,

Gn(y; ), s = 0,

M̃[s]
n (y; ):=

⎧⎨⎩
(
as +bs−

(
M[s]

n (y; )
)s) 1

s
, s �= 0,

G̃n(y; ), s = 0.

Also, assume that  , ∈ R+ are such that  + = 1 for each  ∈ {1,2, . . . ,n}.
Under the above assumptions we give the following corollaries.

Corollary 4.1 The following inequality is valid

G̃n(y; ) ≤
n


=1

 G̃n(y; ...)+
n


=1

 G̃n(y; ...) ≤ Ãn(y; ). (4.9)

Proof. Use the function (x) = exp(x) and replacing a,b, and y by lna, lnb, and lny
in(4.1) we will get (4.9).

Corollary 4.2 By taking a → 1
a ,b → 1

b ,y → 1
y

, in (4.9) we have

1

G̃n(y; )
≤ n

=1 
G̃n(y; ...)

+
n
=1 

G̃n(y; ... )
≤ 1

H̃n(y; )
. (4.10)

Corollary 4.3 The following inequality holds

G̃n(y; ) ≤ (
Ãn(y; ...)

)n
=1 

(
Ãn(y; ... )

)n
=1  ≤ Ãn(y; ). (4.11)

Proof. Using the function f (x) = − lnx in(4.1) we will get (4.11).

Corollary 4.4 For s �= 0 and s ≤ 1, we have

M̃n
[s](y; ) ≤

n


=1

M̃n
[s](y; ...)+

n


=1

M̃n
[s](y; ... ) ≤ Ãn(y; ). (4.12)

Proof. Use the function (x) = x
1
s and replace a,b, and xi by as,bs, and xs

 respectively
in (4.1) to get (4.12).

Corollary 4.5 For t,s ∈ R with 0 < t ≤ s, we have(
M̃[t]

n (y; )
)s ≤

n


=1


(
M̃[t]

n (y; ...)
)s

+
n


=1


(
M̃[t]

n (y; ... )
)s ≤ M̃[s]

n (y; ). (4.13)
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Proof. Use the function (x) = x
s
t and replace a,b, and x by at ,bt , and xt

 respectively in
(4.1) to get (4.13). Now, we generalize the given applications for quasi-arithmetic mean.

Let  : [a,b] → R be a strictly monotonic and continuous function. Then for a given
n- tuple y = (y1, ...,yn) ∈ [a,b]n and positive n- tuple  = (1, ...,n) with ̄ = n

=1  ,
the value M[n]

 (y; ) is defined in (1.23) as quasi-arithmetic mean of y with wight  . If we
define

M̃[n]
 (y; ) = −1

(
(a)+(b)−

n


=1

(y )

)
,

then we have the following results.

Corollary 4.6 The following inequality holds


(

M̃
[n](y; )

)
≤

n


=1


(

M̃
[n](y; ...)

)
+

n


=1


(

M̃
[n](y; ... )

)
≤ 

(
M̃

[n](y; )
)

. (4.14)

provided that  ◦−1 is convex and  is strictly increasing.

Proof. Replacing (x) by  ◦ −1(x) and a, b,y by (a),(b),(y ) respectively in
(4.1), then apply −1 to get (4.14).

4.3 Further Generalizations

In this section, we present further refinement of the Jensen-Mercer as well as variant of the
Jensen-Mercer inequalities concerning to m sequences whose sum is equal to unity.

Theorem 4.5 Let  : [a,b] → R be a convex function defined on the interval [a,b]. Let
y ∈ [a,b],  , l

 ∈ R+ ( = 1,2, . . . ,n, l = 1,2, . . . ,m) be such that m
l=1  l

 = 1 for each

 ∈ {1,2, . . . ,n}, ̄ = n
=1  . Assume that L1 and L2 are non empty disjoint subsets of

{1,2, ...,m} such that L1 ∪L2 = {1,2, ...,m}. Then


(

a+b− 1

̄

n


=1

y
)

≤ 1

̄

n


=1


l∈L1

 l


(
n
=1l∈L1

 l
 (a+b− y)

n
=1l∈L1

 l


)

+
1

̄

n


=1


l∈L2

 l


(
n
=1l∈L2

 l
(a+b− y)

n
=1l∈L2

 l


)

≤ (a)+(b)− 1

̄

n


=1

(y ). (4.15)

If the function  is concave then the reverse inequalities hold in (4.15).
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Proof. Since m
l=1  l

 = 1 for each  ∈ {1,2, . . . ,n}, therefore we may write

a+b− 1

̄

n


=1

y =
1

̄

n


=1


l∈L1

 l
(a+b− y)+

1

̄

n


=1


l∈L2

 l
(a+b− y).

Therefore, we have



(
a+b− 1

̄

n


=1

y

)

= 

(
1

̄

n


=1


l∈L1

 l
 (a+b− y)+

1

̄

n


=1


l∈L2

 l
 (a+b− y)

)

= 

(
1

̄

n


=1


l∈L1

 l


n
=1l∈L1

 l
(a+b− y)

n
=1l∈L1

 l


+
1

̄

n


=1


l∈L2

 l


n
=1l∈L2

 l
(a+b− y)

n
=1l∈L2

 l


)

≤ 1

̄

n


=1


l∈L1

 l


(
n
=1l∈L1

 l
(a+b− y)

n
=1l∈L1

 l


)

+
1

̄

n


=1


l∈L2

 l


(
n
=1l∈L2

 l
 (a+b− y)

n
=1l∈L2

 l


)

= (a)+(b)− 1

̄

n


=1

(y ). (4.16)

The first inequality holds by using definition of convexity while the second holds by using
Jensen-Mercer’s inequality.

Remark 4.2 We can give applications of Theorem 4.5 for means as given in Section 4.2.

The following theorem is the integral analogue of Theorem 4.5.

Theorem 4.6 Let  : G→ R be a convex function defined on the interval G. Let p,g,ul ∈
L[a,b] such that g() ∈ G, p(),ul() ∈ R+ for all  ∈ [a,b] (l = 1,2, ...,n) and
n

l=1

ul() = 1, P =
∫ b
a p()d . Assume that L1 and L2 are non empty disjoint subsets

of {1,2, ...,n} such that L1 ∪L2 = {1,2, ...,n}. Then

1
P

∫ b

a
p()(g())d

≥ 1
P

∫ b

a

l∈L1

ul()p()d

(∫ b
a l∈L1

ul()p()g()d∫ b
a l∈L1

ul()p()d

)

+
1
P

∫ b

a

l∈L2

ul()p()d

(∫ b
a l∈L2

ul()p()g()d∫ b
a l∈L2

ul()p()d

)
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≥ 
(

1
P

∫ b

a
p()g()d

)
. (4.17)

If the function  is concave then the reverse inequalities hold in (4.17).

In the following theorem, we present further refinement of the variant of Jensen-Stef-
fensen’s inequality associated to m certain sequences.

Theorem 4.7 Let  : [a,b] → R be a convex function defined on the interval [a,b]. Let
y ∈ I,  , l

 ∈ R, , l
 �= 0 ( = 1,2, . . . ,n, l = 1,2, . . . ,m) such that m

l=1  l
 = 1 for

each  ∈ {1,2, . . . ,n} and ̄ = n
=1  . Assume that L1 and L2 are non empty disjoint

subsets of {1,2, ...,m} such that L1 ∪L2 = {1,2, ...,m}. If y1 ≤ y2 ≤ ·· · ≤ yn or y1 ≥ y2 ≥
·· · ≥ yn and

0 ≤
k


=1

 l
 ≤

n


=1

 l
 , k = 1,2, . . . ,n,

n


=1

 l
 > 0, (4.18)

for each l ∈ {1,2, . . . ,m},

then


(

a+b− 1

̄

n


=1

y
)
≤ 1

̄

n


=1


l∈L1

 l


(
n
=1l∈L1

 l
 (a+b− y)

n
=1l∈L1

 l


)

+
1

̄

n


=1


l∈L2

 l


(
n
=1l∈L2

 l
 (a+b− y)

n
=1l∈L2

 l


)
≤ (a)+(b)− 1

̄

n


=1

(y ).

(4.19)

If the function  is concave then the reverse inequalities hold in (4.19).

Proof. Since n
=1  l

 > 0 for each l ∈ {1,2, . . . ,m}, therefore m
l=1

n
=1  l

 > 0.

Also, m
l=1  l

 = 1. Hence we conclude that ̄ > 0.
Now proceeding in the same way as in the proof of Theorem 4.5 but use variant of Jensen-
Steffensen’s inequality instead of Jensen-Steffensen’s inequality, we will obtain (4.19).



Chapter5
Refinement of Jensen’s
Inequality for Convex
Functions of Several Variables

In this chapter we give a refinement of Jensen’s inequality for convex functions of several
variables associated to certain tuples. As applications we deduce refinements of Beck’s
inequality. At the end, further generalization has been presented for certain n finite se-
quences. The results of this chapter are given in [6].

5.1 Refinement of Jensen’s Inequality for Convex
Functions of Several Variables with Applications

The following Jensen inequality for convex functions of several variables has been given
in [87].

Theorem 5.1 Let I1, I2, . . . , Im be intervals in R and yi
j ∈ Ii, j ∈R+ for i = 1,2, . . . ,m, j =

1,2, . . . ,n. If  : I1× I2×·· ·× Im → R is a convex function, then



(
n

j=1  jy1
j

n
j=1  j

,
n

j=1  jy2
j

n
j=1  j

, . . . ,
n

j=1 jym
j

n
j=1  j

)
≤ 1

n
j=1  j

n


j=1

 j(y1
j ,y

2
j , . . . ,y

m
j ). (5.1)

45
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Let q : I → R be a continuous and strictly monotone function defined on the interval
I, then the quasi-Arithmetic mean (q-mean) of vector z = (z1,z2, . . . ,zn) ∈ In with posi-
tive weights  = (1,2, . . . ,n) is defined in (1.23). Similarly, integral quasi-arithmetic
mean q(g; p) for function g is defined in (2.16). The following weighted version of Beck’s
inequality has been given in [46].

Theorem 5.2 Let qi : Ii → R (i = 1,2, . . . ,m) be strictly monotone and P : IP → R be
continuous and strictly increasing functions whose domains are intervals in R, and  :
I1× I2×·· ·× Im → IP be a continuous function. Let yi = (yi

1,y
i
2, . . . ,y

i
n) ∈ I1× I2×·· ·× In,

i = 1,2, . . . ,m and  = (1,2, . . . ,n) be a nonnegative n-tuple such thatn
j=1  j = 1, then



(
q1(y1; ),q2(y2; ), . . . ,qm(ym; )

)
≥ P−1

(
n


j=1

 jP((y1
j ,y

2
j , . . . ,y

m
j ))

)
. (5.2)

holds for all possible yi(i = 1,2, . . . ,n) and  , if and only if the function D defined on
q1(I1)×q2(I2)×·· ·qm(Im) by

D(z1,z2, . . . ,zn) = P((q−1
1 (z1),q−1

2 (z2), . . . ,q−1
m (zm))

is concave.
The inequality in (5.2) is reversed for all possible yi(i = 1,2, . . . ,m) and  , if and only

if D is convex.

Beck’s original result (see [27, p. 249], [26, p. 300], [21],[75, p. 194]) was Theorem
5.2 for the case m = 2 which is stated as:

Theorem 5.3 Let K : IK → R, L : IL → R be strictly monotone and N : IN → R be con-
tinuous and strictly increasing functions whose domains are intervals in R, and let  :
IK× IL → IN be a continuous function. Let a = (a1,a2, . . . ,an)∈ In

K ,b = (b1,b2, . . . ,bn)∈ In
L

and  = (1,2, . . . ,n) be a nonnegative n-tuple such thatn
j=1  j = 1. Then the following

inequality holds

(K(a; ),L(b; )) ≥ M((a,b); ), (5.3)

where (a,b) = ((a1,b1),(a2,b2), . . . ,(an,bn)),

if and only if the function H(s,t) = M((K−1(s),L−1(t))), is concave.
The inequality (5.3) holds in reverse direction if and only if H is convex.

Corollary 5.1 [75, p. 194] If (x,y) = x+ y and H(s, t) = M(K−1(s)+L−1(t)), and if
E := K′

K′′ ,F := L′
L′′ ,G := N′

N′′ , where all K′,L′,N′,K′′,L′′,N′′ are all positive, then (5.3) holds
for all possible tuples a and b if and only if

E(x)+F(y) ≤ G(x+ y). (5.4)

Corollary 5.2 [75, p. 194] Let (x,y) = xy and H(s,t) = M(K−1(s)L−1(t)). If A(x) :=
K′(x)

K′(x)+xK′′(x) , B(x) := L′(x)
L′(x)+xL′′(x) ,C(x) := M′(x)

M′(x)+xN′′(x) , and if the functions K′,L′,N′,A,B,C
are all positive, then (5.3) holds for all possible tuples a and b if and only if

A(x)+B(y)≤C(xy). (5.5)
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Now we give refinement of Jensen’s inequality for convex functions of several variables.

Theorem 5.4 Let I1, I2, . . . , Im be intervals in R,  : I1 × I2 × ·· ·× Im → R be a convex
function and yi

j ∈ Ii, j, j, j ∈ R+ for i = 1,2, . . . ,m, j = 1,2, . . . ,n. If  j + j = 1 for all
j ∈ {1,2, . . . ,n}, then



(
n

j=1  jy1
j

n
j=1  j

,
n

j=1  jy2
j

n
j=1  j

, · · · , 
n
j=1  jym

j

n
j=1  j

)

≤ n
j=1 j j

n
j=1 j



(
n

j=1  j jy1
j

n
j=1  j j

, · · · , 
n
j=1  j jym

j

n
j=1 j j

)

+
n

j=1  j j

n
j=1  j



(
n

j=1 j jy1
j

n
j=1 j j

, · · · , 
n
j=1 j jym

j

n
j=1  j j

)

≤ 1

n
j=1 j

n


j=1

 j(y1
j ,y

2
j , . . . ,y

m
j ). (5.6)

If the function  is concave then the reverse inequalities hold in (5.6).

Proof. Since  j + j = 1 for all j ∈ {1,2, . . . ,n}, therefore we have



(
n

j=1 jy1
j

n
j=1 j

,
n

j=1  jy2
j

n
j=1 j

, · · · , 
n
j=1 jym

j

n
j=1  j

)

= 

(
n

j=1  j jy1
j

n
j=1  j

+
n

j=1  j jy1
j

n
j=1 j

, · · · , 
n
j=1  j jym

j

n
j=1  j

+
n

j=1  j jym
j

n
j=1  j

)

= 

(
n

j=1 j j

n
j=1  j

n
j=1 j jy1

j

n
j=1 j j

+
n

j=1 j j

n
j=1  j

n
j=1 j jy1

j

n
j=1 j j

, · · · ,

n
j=1  j j

n
j=1  j

n
j=1  j jym

j

n
j=1 j j

+
n

j=1  j j

n
j=1  j

n
j=1  j jym

j

n
j=1 j j

)

≤ n
j=1 j j

n
j=1 j



(
n

j=1  j jy1
j

n
j=1  j j

, · · · , 
n
j=1  j jym

j

n
j=1 j j

)

+
n

j=1  j j

n
j=1 j



(
n

j=1 j jy1
j

n
j=1 j j

, · · · , 
n
j=1 j jym

j

n
j=1  j j

)

≤ 1

n
j=1 j

n


j=1

 j(y1
j ,y

2
j , . . . ,y

m
j ).

The first inequality has been obtained by using (5.1) for the case n = 2, while the second
inequality has been obtained by using (5.1) on both the terms. The integral version of the
above theorem can be stated as:
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Theorem 5.5 Let I1, I2, . . . , Im be intervals in R,  : I1 × I2 × ·· · × Im → R be a convex
function. Let u,v, p,gi : [a,b]→R be integrable functions such that gi()∈ Ii, u(), v(),
p() ∈ R+ for all  ∈ [a,b], i = 1,2, . . . ,m, and v()+u() = 1, P =

∫ b
a p()d . Then


(

1
P

∫ b

a
p()g1()d , . . . ,

1
P

∫ b

a
p()gm()d

)
≤ 1

P

∫ b

a
u()p()d

(∫ b
a p()u()g1()d∫ b

a p()u()d
, . . . ,

∫ b
a p()u()gm()d∫ b

a p()u()d

)

+
1
P

∫ b

a
u()p()d

(∫ b
a p()v()g1()d∫ b

a p()v()d
, . . . ,

∫ b
a p()v()gm()d∫ b

a p()v()d

)

≤ 1
P

∫ b

a
p()(g1(),g2(), . . . ,gm())d . (5.7)

If the function  is concave then the reverse inequalities hold in (5.7).

Remark 5.1 Analogously, related refinement can be given for Jensen’s inequality (2.8)
as given in [87].

In the following theorem we present refinement of the inequality (5.2).

Theorem 5.6 Let qi : Ii →R (i = 1,2, . . . ,m) be strictly monotone and P : IP →R be con-
tinuous and strictly increasing functions whose domains are intervals in R, and
 : I1 × I2 × ·· · × Im → IP be a continuous function. Let yi = (yi

1,y
i
2, . . . ,y

i
n) ∈ I1 × I2 ×

·· ·× In, i = 1,2, . . . ,m. If  j, j, j ∈ R+ such that  j + j = 1 for j = 1,2, . . . ,n, then


(

q1(y1; ) ,q2(y2; ), . . . ,qm(ym; )
)

≥ P−1

[
n

j=1  j j

n
j=1  j

P

(


(
q1(y1; .), · · · ,qm(ym; .)

))

+
n

j=1 j j

n
j=1  j

P

(


(
q1(y1; . ), · · · ,qm(ym; . )

))]

≥ P−1

(
1

n
j=1 j

n


j=1

 jP((y1
j ,y

2
j , . . . ,y

m
j ))

)
. (5.8)

if and only if the function D defined on q1(I1)×q2(I2)×·· ·qm(Im) by

D(z1,z2, . . . ,zm) = P((q−1
1 (z1),q−1

2 (z2), . . . ,q−1
m (zm)) (5.9)

is concave.
The inequalities in (5.8) hold in reverse direction for all possible yi(i = 1,2, . . . ,n) and

 , if and only if D is convex.
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Proof. Replace  by D and yi
j by q j(yi

j) (i = 1,2, . . . ,m, j = 1,2, . . . ,n) and then applying

the increasing function P−1 in the reverse inequality in (5.6), we obtain (5.8). The integral
version of the above theorem can be stated as:

Theorem 5.7 Let qi : Ii → R (i = 1,2, . . . ,m) be strictly monotone and T : IT → R be
continuous and strictly increasing functions whose domains are intervals in R, and  :
I1 × I2 × ·· · × Im → IT be a continuous function. Let u,v, p,gi : [a,b] → R be integrable
functions such that gi() ∈ Ii,u(),v(), p() ∈ R+ for all  ∈ [a,b], i = 1,2, . . . ,m, and
v()+u() = 1, P =

∫ b
a p()d . Then


(

q1(g1; p) ,q2(g2; p), . . . ,qm(gm; p)
)

≥ T−1

[
1
P

∫ b

a
u()p()dT

(


(
q1(g1; p.u), · · · ,qm(gm; p.u)

))

+
1
P

∫ b

a
v()p()dT

(


(
q1(g1; p.v), · · · ,qm(gm; p.v)

))]

≥ T−1
(

1
P

∫ b

a
p()T ((g1(),g2(), . . . ,gm())d

)
. (5.10)

if and only if the function D defined on q1(I1)×q2(I2)×·· ·qm(Im) by

D(z1,z2, . . . ,zm) = T ((q−1
1 (z1),q−1

2 (z2), . . . ,q−1
m (zm))

is concave.
The inequalities in (5.10) hold in reverse direction for all possible yi(i = 1,2, . . . ,n)

and  , if and only if D is convex.

As a consequence of the above theorem for the case m = 2, the following refinement
of Beck’s inequality holds:

Corollary 5.3 Let all the assumptions of Theorem 5.3 hold. If  j, j ∈ R+ such that
 j + j = 1 for j = 1,2, . . . ,n, then

(K(a; ),L(b; )) ≥ M−1

[
n

j=1  j j

n
j=1  j

M

(


(
K(a; .),L(b; .)

))

+
n

j=1  j j

n
j=1  j

M

(


(
K(a; . ),(L(a; . ))

))]
≥ M((a,b); ). (5.11)

if and only if the function H(s,t) = M((K−1(s),L−1(t))), is concave.
The inequality (5.11) holds in reverse direction if and only if H is convex.

Corollary 5.4 Let K,L,M be twice continuously differentiable and strictly monotone
functions such that K′,L′, M′,K′′,L′′,M′′ are all positive. If  j, j ∈R+ such that  j + j =
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1 for j = 1,2, . . . ,n, then

K(a; )+L(b; ) ≥ M−1

[
n

j=1 j j

n
j=1 j

M

(
K(a; .)+L(b; .)

)

+
n

j=1  j j

n
j=1  j

M

(
K(a; .)+L(a; .))

)]
≥ M(a+b; ). (5.12)

holds for all possible tuples a,b and positive tuple  if and only if

E(x)+F(y) ≤ G(x+ y), (5.13)

where E := K′
K′′ ,F := L′

L′′ ,G := M′
M′′ ,

Proof. Let H(s, t) = M(K−1(s)+L−1(t)). We prove that the function H is concave.
Since H is twice continuously differentiable function, therefore for the concavity of H, we
show that

a2
1
 2H
 s2 +2a1a2

 2H
 s t

+a2
2
 2H
 t2

≤ 0, for all a1,a2 ∈ R. (5.14)

But by taking partial derivatives of H of order 2 and using (5.13), we obtain (5.14).
Finally, using H and (x,y) = x+ y in (5.11), we deduce (5.12).

In the following corollary we present refinement of the inequality given in Corollary 5.2.
The idea of the proof is similar to the proof of Corollary 5.2.

Corollary 5.5 Let K,L,M be twice continuously differentiable and strictly monotone

functions and let A(x) := K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x) ,C(x) := M′(x)
M′(x)+xN′′(x) . Also, as-

sume that the functions K′,L′,N′,A,B,C are all positive. If  j, j ∈ R+ such that  j + j =
1 for j = 1,2, . . . ,n, then

K(a; )L(b; ) ≥ M−1

[
n

j=1 j j

n
j=1 j

M

(
K(a; .)L(b; .)

)

+
n

j=1  j j

n
j=1 j

M

(
K(a; .)(L(a; . ))

)]
≥ M(a.b; ). (5.15)

holds for all possible tuples a,b and positive tuple  if and only if

A(x)+B(y)≤C(xy). (5.16)

We give a refinement of the Minkowski inequality.

Corollary 5.6 Let I be an interval in R, y j = (y1
j ,y

2
j , . . . ,y

m
j ) ∈ Im,  j, j, j ∈ R+( j =

1,2, . . . ,n) such that  j +  j = 1 for all j ∈ {1,2, . . . ,n}, and M : I → R be a continuous
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and strictly monotone function. Consider the quasi-arithmetic mean function Mn : In → R

defined by

Mn(y; ) = M−1

(
1

n
j=1  j

n


j=1

 jM(y j)

)
is convex, then

Mm

(
1
n

n


j=1

y j;
)
≤ 1

n

n


j=1

 jMm
(
y ;

)
+

1
n

n


j=1

 jMm (y ; )

≤ 1
n

n


j=1

Mm(y j; ), (5.17)

where y =
(

n
j=1 jy1

j

n
j=1 j

, · · · , 
n
j=1  jym

j

n
j=1 j

)
,y =

(
n

j=1  jy1
j

n
j=1  j

, · · · , 
n
j=1  jym

j

n
j=1  j

)
.

Proof. The proof follows by using Theorem 5.4 for  j = 1 and then taking the function
Mm(; ) instead of  .

Remark 5.2 Analogously as above we can give the integral version of Corollaries 5.3–
5.6.

5.2 Further Generalization

In the following theorem, we present further refinement of the Jensen inequality related to
n sequences.

Theorem 5.8 Let I1, I2, . . . , Im be intervals in R,  : I1 × I2 × ·· ·× Im → R be a convex
function and yi

j ∈ Ii,  j, l
j ∈ R+ (i = 1,2, . . . ,m, j = 1,2, . . . ,n, l = 1,2, . . . ,t) such that

t
l=1  l

j = 1 for each j ∈ {1,2, . . . ,n}, ̄ = n
j=1  j . Assume that L1 and L2 are non empty

disjoint subsets of {1,2, ...,m} such that L1∪L2 = {1,2, ...,t}. Then



(
n

j=1  jy1
j

̄
,
n

j=1  jy2
j

̄
, · · · , 

n
j=1  jym

j

̄

)

≤ n
j=1l∈L1

 j l
j

̄ 

(
n

j=1l∈L1
 j l

j y
1
j

n
j=1l∈L1

 j l
j

, · · · , 
n
j=1l∈L1

 j l
jy

m
j

n
j=1l∈L1

 j l
j

)

+
n

j=1l∈L2
 j l

j

̄ 

(
n

j=1l∈L2
 j l

j y
1
j

n
j=1l∈L2

 j l
j

, · · · , 
n
j=1l∈L2

 j l
j y

m
j

n
j=1l∈L2

 j l
j

)
≤ 1

̄ 
n
j=1 j(y1

j ,y
2
j , . . . ,y

m
j ). (5.18)

If the function  is concave then the reverse inequalities hold in (5.18).
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Proof. Since t
l=1  l

j = 1 for each j ∈ {1,2, . . . ,n}, therefore we may write

1

̄

n


j=1

 j(y1
j ,y

2
j , . . . ,y

m
j ) =

1

̄

n


j=1

l∈L1

 l
j j(y1

j ,y
2
j , . . . ,y

m
j )

+
1

̄

n


j=1

l∈L2

 l
j j(y1

j ,y
2
j , . . . ,y

m
j ). (5.19)

Applying Jensen’s inequality (5.1) to both terms on the right hand side of (5.19) we obtain

1

̄

n


j=1

 j(y1
j ,y

2
j , . . . ,y

m
j )

≥ n
j=1l∈L1

 j l
j

̄


(
n

j=1l∈L1
 j l

jy
1
j

n
j=1l∈L1

 j l
j

, · · · , 
n
j=1l∈L1

 j l
jy

m
j

n
j=1l∈L1

 j l
j

)

+
n

j=1l∈L2
 j l

j

̄ 

(
n

j=1l∈L2
 j l

j y
1
j

n
j=1l∈L2

 j l
j

, · · · , 
n
j=1l∈L2

 j l
jy

m
j

n
j=1l∈L2

 j l
j

)

≥ 

[
n

j=1l∈L1
 j l

j

̄

(
n

j=1l∈L1
 j l

jy
1
j

n
j=1l∈L1

 j l
j

, · · · , 
n
j=1l∈L1

 j l
j y

m
j

n
j=1l∈L1

 j l
j

)

+
n

j=1l∈L2
 j l

j

̄

(
n

j=1l∈L2
 j l

j y
1
j

n
j=1l∈L2

 j l
j

, · · · , 
n
j=1l∈L2

 j l
jy

m
j

n
j=1l∈L2

 j l
j

)]
(By the convexity of )

= 

(
n

j=1  jy
1
j

̄ ,
n

j=1  jy
2
j

̄ , · · · , 
n
j=1  jy

m
j

̄

)
.

The integral version of the above theorem can be stated as:

Theorem 5.9 Let I1, I2, . . . , Im be intervals in R,  : I1 × I2 × ·· · × Im → R be a convex
function. Let p,gi,ul ∈ L[a,b] such that gi() ∈ Ii, p(),ul() ∈ R+ for all  ∈ [a,b]

(i = 1,2, ...,n, l = 1,2, ...,t) and
t

l=1

ul() = 1, P =
∫ b
a p()d . Assume that L1 and L2 are

non empty disjoint subsets of {1,2, ...,t} such that L1 ∪L2 = {1,2, ...,t}. Then


(

1
P

∫ b

a
p()g1()d , . . . ,

1
P

∫ b

a
p()gm()d

)
≤ 1

P

∫ b

a

l∈L1

ul()p()d

(∫ b
a l∈L1

ul()p()g1()d∫ b
a l∈L1

ul()p()d
, . . .

. . .

∫ b
a l∈L1

ul()p()gn()d∫ b
a l∈L1

ul()p()d

)
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+
1
P

∫ b

a

l∈L2

ul()p()d

(∫ b
a l∈L2

ul()p()g1()d∫ b
a l∈L2

ul()p()d
, . . .

. . . ,

∫ b
a l∈L1

ul()p()gn()d∫ b
a l∈L1

ul()p()d

)

≤ 1
P

∫ b

a
p()(g1(),g2(), . . . ,gm())d .

(5.20)

If the function  is concave then the reverse inequalities hold in (5.20).

Remark 5.3 All the results presented in this paper may also be generalized using Theo-
rem 5.8.





Chapter6
Refinements of Jessen’s and
McShane’s Inequalities

In this chapter we consider generalized forms of Jensen’s inequality for isotonic linear
functionals given by Jessen and McShane. We derive refinements of Jessen’s and Mc-
Shane’s inequalities connected to the certain functions from the linear space. As applica-
tions of the refinement of Jessen’s inequality, we deduce refinements of generalized means
and Hölder inequalities. Also, as applications of refinement of McShane’s inequality, we
obtain refinement of generalized Beck’s inequality and discuss their particular cases. At the
end of this chapter, we give further generalizations of Jessen’s and McShane’s inequalities
pertaining n certain functions. The results of this chapter are given in [7].

6.1 Refinement of Jessen’s Inequality with
Applications

The main focus of this section is to present refinements of generalized Jensen’s inequality
given by Jessen in 1931 [57] and McShane in 1937 [78] for isotonic linear functionals for
convex functions of single and multiple variables respectively. Before giving Jessen’s and
McShane’s results, we consider the following hypothesis and recall a definition.

Hypothesis H: For a non empty set M , let L be a class of real valued functions
f : M → R which satisfies the following properties:

55
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(i) : if g1,g2 ∈ L and 1,2 ∈ R, then 1g1 +2g2 ∈ L ,

(ii) : 1 ∈ L , that is if g(z) = 1 for all z ∈ M , then g ∈ L .

Definition 6.1 If G : L → R is a functional which satisfies the following conditions

(i) G (1g1 +2g2) = 1G (g1)+2G (g2) for g1,g2 ∈ L ,1,2 ∈ R,

(ii) g ∈ L ,g(t) ≥ 0 on M ⇒ G (g) ≥ 0,

then G is said to be isotonic linear functional.
In 1931, Jessen [57](also see [87, p-47]) constructed the functional version of Jensen’s

inequality for convex functions of one variable. In the following theorem we present
weighted version of Jessen’s inequality.

Theorem 6.1 Let the hypothesis H holds and G : L →R be an isotonic linear functional
and  : [a,b] → R be a continuous convex function. Then for all f , ∈ L such that

( f ), f ∈ L and G () > 0, we have G ( f )
G ( ) ∈ [a,b] and


(

G ( f )
G ()

)
≤ G (( f ))

G ()
. (6.1)

In 1937, McShane [78] further extended the above functional version of Jensen’s in-
equality from convex functions of one variable to the convex functions of several variables.
The following theorem is weighted version of McShane’s result.

Theorem 6.2 Let the hypothesis H holds and G : L → R be an isotonic linear func-
tional. Also let C be a convex closed subset of Rn and  be convex and continuous
function defined on C. Let 1(x),2(x), . . . ,n(x),(x) be functions from L such that
 (x) = (1(x),2(x), . . . ,n(x)) ∈ C for all x ∈ M , ( (x)),i ∈ L (i = 1,2, . . . ,n)
and G () > 0. Then


(

G (1)
G ()

,
G (2)
G ()

, . . . ,
G (n)
G ()

)
≤ 1

G ()
G ((1,2, . . . ,n)). (6.2)

In the following fundamental result we present a refinement of Jessen’s inequity.

Theorem 6.3 Under the assumptions of Theorem 6.1, if u,v∈L such that u(t)+v(t)= 1
for t ∈ M and u f ,v f ,u ,v ∈ L with G (u),G (v) > 0, then


(

G ( f )
G ()

)
≤ G (u)

G ()


(
G (u f )
G (u)

)
+

G (v)
G ()


(

G (v f )
G (v)

)
≤ G (( f ))

G ()
. (6.3)

Proof. Since u(t)+ v(t) = 1 for t ∈ M , therefore we have


(

G ( f )
G ()

)
= 

(
G ((u+ v) f )

G ()

)
= 

(
G (u f )
G ()

+
G (v f )
G ()

)
(As G is linear)
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= 
(

G (u)
G ()

G (u f )
G (u)

+
G (v)
G ()

G (v f )
G (v)

)
. (6.4)

Due to linearity of G , we have

G (u)
G ()

+
G (v)
G ()

=
G (u + v)

G ()
=

G ()
G ()

= 1.

Therefore using convexity of  on the right hand side of (6.4) we obtain


(

G ( f )
G ()

)
≤ G (u)

G ()


(
G (u f )
G (u)

)
+

G (v)
G ()


(

G (v f )
G (v)

)
(6.5)

Applying Jessen’s inequality (6.1) on both terms in (6.5), we deduce

G (u)
G ()


(

G (u f )
G (u)

)
+

G (v)
G ()


(

G (v f )
G (v)

)
≤ G (u)

G ()
G (u( f ))

G (u)
+

G (v)
G ()

G (v( f ))
G (v)

=
G (u( f ))

G ()
+

G (v( f ))
G ()

=
G (( f ))

G ()
. (6.6)

From (6.5) and (6.6), we derive (6.3). Now we demonstrate applications of the above
theorem to means.

Consider the generalization of classical power mean Mr( , f ;G ) for isotonic function-
als G , defined for r ∈ R by

Mr( , f ;G ) =

⎧⎪⎨⎪⎩
(

G ( f r)
G ( )

) 1
r
, if r �= 0,

exp
(

G ( log f )
G ( )

)
, if r = 0,

(6.7)

where f (x) > 0 for x ∈ M ,  , f r ∈ L for r ∈ R,  log f ∈ L and G () > 0.

Corollary 6.1 Let the hypothesis H hold and the functions f , ,u,v be defined on M
such that f , ,u,v,u ,v ,u f r,v f

r f r ∈ L (r ∈ R) and f (x) > 0 for x ∈ M . Let G
be an isotonic linear functional on L such that G (),G (u),G (v) > 0. Also assume
that u(x)+ v(x) = 1 for x ∈ M . If p, l ∈ R such that p ≤ l, then

Ml( , f ;G ) ≥
[
M1( ,u;G )Ml

p(u , f ;G )+M1( ,v;G )Ml
p(v , f ;G )

] 1
l

≥ Mp( , f ;G ); l �= 0. (6.8)
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Ml( , f ;G ) ≥ exp(M1( ,u;G ) logMp(u , f ;G )+M1( ,v;G ) logMp(v , f ;G ))
≥ Mp( , f ;G ); l = 0. (6.9)

Mp( , f ;G ) ≤ [
M1( ,u;G )Mp

l (u , f ;G )+M1( ,v;G )Mp
l (v , f ;G )

] 1
p

≤ Ml( , f ;G ); p �= 0. (6.10)

Mp( , f ;G ) ≤ exp(M1( ,u;G ) logMl(u , f ;G )+M1( ,v;G ) logMl(v , f ;G ))
≤ Ml( , f ;G ); p = 0. (6.11)

Proof. Let p, l ∈ R such that p, l �= 0, then using (6.3 ) for (z) = z
l
p , z > 0, f → f p and

taking the power 1
l we get (6.8). For the case l = 0, taking limit l → 0 in (6.8) we obtain

(6.9).
Similarly utilizing (6.3) for (z) = z

p
l , z > 0, p, l �= 0, f → f l and then taking power 1

p
we get (6.10). For p = 0 taking the limit in (6.10) we deduce (6.11). Let L satisfy L1 and
L2 on a nonempty set M and G be an isotonic linear functional on L . Let  ,h : [a,b]→R

be functions such that h is strictly monotone continuous function with h( f ) ∈ L for
f ∈ L with f (x) ∈ [a,b] and G () > 0, then the generalized quasi arithmetic mean ([87,
p-47]) is defined as:

Mh( , f ;G ) = h−1
(

G (h( f ))
G ()

)
. (6.12)

We give inequalities for generalized quasi arithmetic mean.

Corollary 6.2 Let the above hypotheses hold and g : [a,b] → R be strictly monotone
continuous function such that g( f ) ∈ L for f ∈ L with f (x) ∈ [a,b] and let u,v ∈ L
such that u(x)+ v(x) = 1 for x ∈ M and G (),G (u),G (v) > 0. If g ◦ h−1 is convex
function then

G (g( f ))
G ()

≥ M1( ,u;G )g(Mh(u, f ;G ))

+M1( ,v;G )g(Mh(v, f ;G )) ≥ g(Mh( , f ;G )) . (6.13)

Proof. Using (6.3) for f → h◦ f and → g◦h−1. In the following corollaries, we present
refinements of Hölder inequality as applications of Theorem 6.3.

Corollary 6.3 Let the hypothesis H hold and G : L →R be an isotonic linear functional.
Suppose r1 > 1, r2 = r1

r1−1 . If u,v,w,g1 and g2 are non-negative functions defined on M

such that wgr1
1 , wgr2

2 , uwgr2
2 , vwgr2

2 , uwg1g2, vwg1g2, wg1g2 ∈ L and u(x)+ v(x) = 1 for
x ∈ M , then

G (wg1g2)

≤ G
1
r2 (wgr2

2 )
{(

G (uwgr2
2 )

)1−r1 (G (uwg1g2))
r1
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+
(
G (vwgr2

2 )
)1−r1 (G (vwg1g2))

r1
} 1

r1

≤ G
1
r1 (wgr1

1 )G
1
r2 (wgr2

2 ). (6.14)

In the case when 0 < r1 < 1 and r2 = r1
r1−1 with G (wgr2

2 ) > 0 or r1 < 0 and G (wgr1
1 ) > 0,

then we have

G (wg1g2) ≥ G
1
r2 (uwgr2

2 )G
1
r1 (uwgr1

1 )+G
1
r2 (vwgr2

2 )G
1
r1 (vwgr1

1 )

≥ G
1
r1 (wgr1

1 )G
1
r2 (wgr2

2 ). (6.15)

Proof. Assume that G (wgr2
2 ) > 0. Since wgr2

2 g1g
−r2
r1

2 = wg1g2 ∈ L and wgr2
2 gr1

1 g−r2
2

= wgr1
1 ∈ L , therefore by using Theorem 6.3 for (z) = zr1 ,z > 0,r1 > 1,  = wgr2

2 , f =

g1g
−r2
r1

2 , we obtain (6.14). If G (wgr1
1 ) > 0. Then applying the same procedure but taking

r1,r2,g1,g2 instead of r2,r1,g2,g1, we obtain (6.14).
If G (wgr2

2 ) = 0 and G (wgr1
1 ) = 0 then, as we know that

0 ≤ wg1g2 ≤ 1
r1

wgr1
1 +

1
r2

wgr2
2 , (6.16)

it gives that G (wg1g2) = 0. The proof for the case r1 > 1 is completed.
The case when 0 < r1 < 1, then M = 1

r1
> 1 and utilizing (6.14) for M and N = (1−

r1)−1,g1 = (g1g2)r1 ,g2 = g−r1
2 instead of r1,r2,g1,g2.

Finally, if r1 < 0 then 0 < r2 < 1 and we may apply similar arguments with r1,r2,g1,g2

replaced by r2,r1,g2,g1 provided that G (wgr1
1 ) > 0.

Corollary 6.4 Let the hypothesis H hold and G : L →R be an isotonic linear functional.
Suppose r1 > 1, r2 = r1

r1−1 . If u,v,w,g1 and g2 are non-negative functions defined on

M such that wgr1
1 ,wgr2

2 ,uwgr2
2 ,vwgr2

2 ,uwg1g2,vwg1g2,wg1g2 ∈L and u(x)+v(x) = 1 for
x ∈ M , then

G (wg1g2) ≤ G
1
r1 (uwgr1

1 )G
1
r2 (uwgr2

2 )+G
1
r1 (vwgr1

1 )G
1
r2 (vwgr2

2 )

≤ G
1
r1 (wgr1

1 )G
1
r2 (wgr2

2 ). (6.17)

In the case when 0 < r1 < 1 and r2 = r1
r1−1 with G (wgr2

2 ) > 0 or r1 < 0 and G (wgr1
1 ) > 0,

then

G
1
r1 (wgr1

1 )G
1
r2 (wgr2

2 )

≤ G
1
r2 (wgr2

2 )
{(

G (uwgr2
2 )

)1−r1 (G (uwg1g2))
r1

+
(
G (vwgr2

2 )
)1−r1 (vwg1g2))

r1
} 1

r1

≤ G (wg1g2). (6.18)
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Proof. If G (wgr2
2 ) > 0. Let (z) = −z

1
r1 , z > 0,r1 > 1. Then obviously the function  is

convex. Therefore using Theorem 6.3 for (z) = −z
1
r1 , = wgr2

2 , f = gr1
1 g−r2

2 , we obtain
(6.17). If G (wgr1

1 ) > 0, then applying the same procedure but taking r1,r2,g1,g2 instead
of r2,r1,g2,g1, we obtain (6.17).
For the case when G (wgr2

2 ) = 0 and G (wgr1
1 ) = 0, we proceed in a similar fashion as in the

proof of Corollary 6.3.
When 0 < r1 < 1, then M = 1

r1
> 1 and applying (6.17) for M and N = (1− r1)−1,

g1 = (g1g2)r1 , g2 = g−r1
2 instead of r1,r2,g1,g2, we get (6.18).

Finally, if r1 < 0 then 0< r2 < 1, then we may proceed as above but instead r1,r2,g1,g2,
use r2,r1,g2,g1 respectively, provided that

∫ b
a w()gr1

1 ()d > 0.

6.2 Refinement of McShane’s Inequality with
Applications

We begin this section by giving a refinement of McShane’s inequality.

Theorem 6.4 Under the assumptions of Theorem 6.2, if u,v ∈ L are such that u(x)+
v(x) = 1 for x ∈ M and ((x)),ui,vi,u ,v ∈ L (i = 1,2, . . . ,n) with G (u),
G (v) > 0, then


(

G (1)
G ()

,
G (2)
G ()

, . . . ,
G (n)
G ()

)
≤ G (u)

G ()


(
G (u1)
G (u)

, . . . ,
G (un)
G (u)

)
+

G (v)
G ()



(
G (v1)
G (v)

, . . . ,
G (vn)
G (v)

)

≤ 1
G ()

G ((1,2, . . . ,n). (6.19)

Proof. Since u(x)+ v(x) = 1 for x ∈ M and G is linear, therefore we have


(

G (1)
G ()

,
G (2)
G ()

, . . . ,
G (n)
G ()

)
=

(
G (u1)

G ()
+

G (v1)
G ()

, . . . ,
G (un)

G ()
+

G (vn)
G ()

)
=

(
G (u)
G ()

G (u1)
G (u)

+
G (v)
G ()

G (v1)
G (v)

, . . . ,
G (u)
G ()

G (un)
G (u)

+
G (v)
G ()

G (vn)
G (v)

)
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= 

(
G (u)
G ()

(
G (u1)
G (u)

, . . . ,
G (un)
G (u)

)
+

G (v)
G ()

(
G (v1)
G (v)

, . . . ,
G (vn)
G (v)

))

≤ G (u)
G ()


(

G (u1)
G (u)

, . . . ,
G (un)
G (u)

)
+

G (v)
G ()


(

G (v1)
G (v)

, . . . ,
G (vn)
G (v)

)
≤ 1

G ()
G (u(1,1, . . . ,n)+

1
G ()

G (v(1,1, . . . ,n)

=
1

G ()
G ((1,2, . . . ,n).

The first inequality has been obtained by using definition of convex function while the
second inequality has been obtained by using (6.2) on both terms and at the end linearity
of G is utilized. The following theorem provides a refinement of the generalized Beck’s
inequality (4.50) given in [87, p-127].

Theorem 6.5 Let the hypothesis H hold, G : L → R be an isotonic linear functional
and i : Ii → R (i = 1,2, . . . ,n) be continuous and strictly monotonic,  : I → R be contin-
uous and increasing functions. Also, let g1,g2, . . . ,gn : M → R and  : I1 × I2 × ·· · ×
In → R be real valued functions such that g1(M ) ⊂ I1,g2(M ) ⊂ I2, . . . ,gn(M ) ⊂ In,
1(g1),2(g2), . . . ,n(gn), ((g1,g2, . . . ,gn)), u, v,  , u , v ∈L with u(x)+v(x) = 1
for x ∈ M and G () , G (u), G (v) > 0. Then the following inequalities hold


(
M1( ,g1;G ),M2( ,g2;G ), . . . ,Mn( ,gn;G )

)
≥ −1

[
G (u)
G ()


(


(
M1(u ,g1;G ), . . . ,Mn(u ,gn;G )

))

+
G (v)
G ()


(


(
M1(v ,g1;G ), . . . ,Mn(v ,gn;G )

))]
≥ M( ,(g1,g2, . . . ,gn);G ), (6.20)

if the function H defined by

H(s1,s2, . . . ,sn) = −((−1
1 (s1),−1

2 (s2), . . . ,−1
n (sn))

is convex.

Proof. Applying Theorem 6.4 for the function H instead of  , we obtain



(


(
−1

1

(
G (1)
G ()

)
,−1

2

(
G (2)
G ()

)
, . . . ,−1

n

(
G (n)
G ()

))

≥ G (u)
G ()



(


(
−1

1

(
G (u1)
G (u)

)
, . . . ,−1

n

(
G (un)
G (u)

)))
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+
G (v)
G ()



(


(
−1

1

(
G (v1)
G (v)

)
, . . . ,−1

n

(
G (vn)
G (v)

)))

≥ 1
G ()

G (((−1
1 (1),−1

2 (2), . . . ,−1
n (n))). (6.21)

Let i = i(gi) (i = 1,2, . . . ,n). Then (6.21) becomes


(


(
M1( ,g1;G ),M2( ,g2;G ), . . . ,Mn( ,gn;G )

))
≥ G (u)

G ()

(


(
M1(u ,g1;G ), . . . ,Mn(u ,gn;G )

))
+

G (v)
G ()


(


(
M1(v ,g1;G ), . . . ,Mn(v ,gn;G )

))
≥ 1

G ()
G (((g1,g2, . . . ,gn))). (6.22)

which is equivalent to (6.20). A refinement of Beck’s inequality ([27, p. 249]) is given in
the following corollary.

Corollary 6.5 Under the assumptions of Theorem 6.5 for n = 2, the following inequalities
hold


(
M1( ,g1;G ),M2( ,g2;G )

)
≥ −1

[
G (u)
G ()


(


(
M1(u ,g1;G ),M2(u ,g2;G )

))

+
G (v)
G ()


(


(
M1(v ,g1;G ),M2(v ,g2;G )

))]
≥ M( ,(g1,g2);G ), (6.23)

if the function H defined by H(s1,s2) = −((−1
1 (s1),−1

2 (s2)) is convex.

We discuss some particular cases of Corollary 6.5.

Corollary 6.6 Let all the assumptions of Theorem 6.5 hold for n = 2 with (z1,z2) = z1 +
z2 and1,2 and  be twice continuously differentiable such that ′

1,
′
2,

′, ′′
1 , ′′

2 , ′′ are
all positive then the following inequalities hold

M1( ,g1;G )+M2( ,g2;G )

≥ −1

[
G (u)
G ()


(

M1(u ,g1;G )+M2(u ,g2;G )
)

+
G (v)
G ()


(

M1(v ,g1;G )+M2(v ,g2;G )
)]
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≥ M( ,g1 +g2;G ), (6.24)

if and only if G(z1)+H(z2) ≤ K(z1 + z2), where G :=  ′
1

 ′′
1
,H :=  ′

2
 ′′

2
,K :=  ′

 ′′ .

Proof. The idea of the proof is similar to the proof of Corollary 3.2 given in [38]. Similar
to the idea of the proof of Corollary 6.6, we can state the following Corollary.

Corollary 6.7 Let all the assumptions of Theorem 6.5 hold for n = 2 with (z1,z2) = z1z2

and 1,2, be twice continuously differentiable and let L1(z) :=  ′
1(z)

 ′
1(z)+z ′′

1 (z) , L2(z) :=
 ′

2(z)
 ′

2(z)+z ′′
2 (z) ,L3(z) :=  ′(z)

 ′(z)+z ′′(z) . Also, assume that the functions ′
1, ′

2, ′, ′′, ′′
1 , ′′

2 ,L1,L2,L3

are all positive, then the inequalities

M1( ,g1;G )M2( ,g2;G )

≥ −1

[
G (u)
G ()


(

M1(u ,g1;G )M2(u ,g2;G )
)

+
G (v)
G ()


(

M1(v ,g1;G )M2(v ,g2;G )
)]

≥ M ( ,g1g2;G ), (6.25)

hold if L1(z1)+L2(z2) ≤ L3(z1z2).

6.3 Further Generalizations

The following theorem provides further generalization of the refinement of Jessen’s in-
equality associated to n certain functions.

Theorem 6.6 Let all the assumptions of Theorem 6.1 hold. Also, let ul ∈ L be such

that
n

l=1

ul = 1 and ul f ,ul ∈ L with G (ul) > 0 for all l ∈ {1,2, . . . ,n}. Assume

that S1,S2 ⊂ {1,2, . . . ,n} are such that S1 and S2 are non empty, S1 ∩S2 = /0 and
S1∪S2 = {1,2, . . . ,n}. Then


(

G ( f )
G ()

)

≤
G

(


l∈S1

ul
)

G ()


(G
(


l∈S1

ul f
)

G
(


l∈S1

ul
) )

+
G

(


l∈S2

ul
)

G ()


(G
(


l∈S2

ul f
)

G
(


l∈S2

ul
) )

≤ G (( f ))
G ()

. (6.26)
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Proof. Since G is linear and
n

l=1

ul = 1, therefore we may write


(

G ( f )
G ()

)
= 

(G
( n

l=1

ul f
)

G ()

)
= 

(G
(


l∈S1

ul f + 
l∈S2

ul f
)

G ()

)

= 

(G
(


l∈S1

ul f
)

+G
(


l∈S2

ul f
)

G ()

)

= 

(G
(


l∈S1

ul
)

G ()

G
(


l∈S1

ul f
)

G
(


l∈S1

ul
) +

G
(


l∈S2

ul
)

G ()

G
(


l∈S2

ul f
)

G
(


l∈S2

ul
) )

. (6.27)

By using definition of convex function in (6.27) we obtain


(

G ( f )
G ()

)
≤

G
(


l∈S1

ul
)

G ()


(G
(


l∈S1

ul f
)

G
(


l∈S1

ul
) )

+
G

(


l∈S2

ul
)

G ()


(G
(


l∈S2

ul f
)

G
(


l∈S2

ul
) )

(6.28)

≤
G

(


l∈S1

ul
)

G ()

G
(


l∈S1

ul ( f )
)

G
(


l∈S1

ul
) +

G
(


l∈S2

ul
)

G ()

G
(


l∈S2

ul ( f )
)

G
(


l∈S2

ul
) (6.29)

=
G

(


l∈S1

ul ( f )
)

G ()
+

G
(


l∈S2

ul ( f )
)

G ()

=
G

(


l∈S1

ul ( f )+ 
l∈S2

ul ( f )
)

G ()
=

G (( f ))
G ()

.

The inequality (6.29) has been obtained by applying Jessen’s inequality to both terms in

(6.28) while linearity of G and
n

l=1

ul = 1 have been further utilized for derivation of re-

quired result. Similarly to the above theorem, in the following theorem we present further
generalization of McShane’s inequality.

Theorem 6.7 Let all the assumptions of Theorem 6.2 hold and let ul ∈ L be such that
n

l=1

ul = 1 and ul((x)),vl((x)),ull ,ul ∈ L with G (ul) > 0 for all l ∈
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{1,2, . . . ,n}. If S1 and S2 are non empty and disjoint subsets of {1,2, . . . ,n} such that
S1∪S2 = {1,2, . . . ,n}, then


(

G (1)
G ()

,
G (2)
G ()

, . . . ,
G (n)
G ()

)
≤ l∈S1

G (ul)
G ()


(
l∈S1

G (ul1)
l∈S1

G (ul)
, . . . ,

l∈S1
G (uln)

l∈S1
G (ul)

)
+
l∈S2

G (vl)
G ()


(
l∈S2

G (vl1)
l∈S2

G (vl)
, . . . ,

l∈S2
G (vln)

l∈S2
G (vl)

)
≤ 1

G ()
G ((1,2, . . . ,n)).

Proof. Since n
l=1 ul(x) = 1 for x ∈ M and G is linear, therefore we have


(

G (1)
G ()

,
G (2)
G ()

, . . . ,
G (n)
G ()

)
=

(
l∈S1

G (ul1)
G ()

+
l∈S2

G (vl1)
G ()

, . . . ,
l∈S1

G (uln)
G ()

+
l∈S2

G (vln)
G ()

)

=

(
l∈S1

G (ul)
G ()

l∈S1
G (ul1)

l∈S1
G (ul)

+
l∈S2

G (vl)
G ()

l∈S2
G (vl1)

l∈S2
G (vl)

, . . .

. . . ,
l∈S1

G (ul)
G ()

l∈S1
G (uln)

l∈S1
G (ul)

+
l∈S2

G (vl)
G ()

l∈S2
G (vln)

l∈S2
G (vl)

)

=

(
l∈S1

G (ul)
G ()

(
l∈S1

G (ul1)
l∈S1

G (ul)
, . . . ,

G (l∈S1
uln)

l∈S1
G (ul)

)

+
l∈S2

G (vl)
G ()

(
l∈S2

G (vl1)
l∈S2

G (vl)
, . . . ,

l∈S2
G (vln)

l∈S2
G (vl)

))

≤ l∈S1
G (ul)

G ()


(
l∈S1

G (ul1)
l∈S1

G (ul)
, . . . ,

l∈S1
G (uln)

l∈S1
G (ul)

)
+
l∈S2

G (vl)
G ()


(
l∈S2

G (vl1)
l∈S2

G (vl)
, . . . ,

l∈S2
G (vln)

l∈S2
G (vl)

)
≤ 1

G ()
G

(


l∈S1

ul(1,1, . . . ,n)
)

+
1

G ()
G

(


l∈S2

vl(1,1, . . . ,n)
)

=
1

G ()
G ((1,2, . . . ,n)).

The first inequality has been obtained by using definition of convex function while the
second inequality has been obtained by using (6.2) on both terms and at the end linearity
of G is utilized.
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Remark 6.1 Analogously to the applications of Theorem 6.3 we may give applications
of Theorem 6.6. Also, we can give applications of Theorem 6.7 as given for Theorem 6.4.



Chapter7
Refinement of Jensen’s
Operator Inequality

In this chapter we present a new refinement of Jensen’s inequality for operator convex
function associated to certain n-tuples. Some applications are presented for different means
and also, deduced refinement of operator inequality connected to the operator concavity of
operator entropy A logA−1. At the end, further generalization is given related to certain m
finite sequences. The results of this chapter are given in [8].

7.1 Refinement of Jensen’s Operator Inequality with
Applications

In the following theorem we give a refinement of Jensen’s Operator Inequality.

Theorem 7.1 Let  : I → R be an operator convex function defined on the interval I.
Let Ap ∈ S(I) and p,p,p ∈ R+ (p = 1,2, . . . ,n) such that p + p = 1 for all p ∈
{1,2, . . . ,n} and n

p=1p = 1. Then



(
n


p=1

pAp

)
≤

n


p=1

pp

(
n

p=1ppAp

n
p=1pp

)

67
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+
n


p=1

pp

(
n

p=1ppAp

n
p=1pp

)
≤

n


p=1

p(Ap). (7.1)

Proof. Since p +p = 1 for all p ∈ {1,2, . . . ,n}, therefore we have



(
n


p=1

pAp

)
= 

(
n


p=1

ppAp +
n


p=1

ppAp

)

= 

(
n


p=1

pp
n

p=1ppAp

n
p=1pp

+
n


p=1

pp
n

p=1ppAp

n
p=1pp

)
. (7.2)

Applying convexity of  to the right side of (7.2) we obtain



(
n


p=1

pAp

)
≤

n


p=1

pp

(
n

p=1ppAp

n
p=1pp

)
+

n


p=1

pp

(
n

p=1ppAp

n
p=1pp

)

≤
n


p=1

pp(Ap)+
n


p=1

pp(Ap) (By Jensen operator inequality)

=
n


p=1

p(Ap). (7.3)

This proves the required result.

Remark 7.1 If z = (z1,z2, . . . ,zn) and z′ = (z′1,z
′
2, . . . ,z

′
n) are two tuples, then we define

z.z′ as z.z′ = (z1z′1,z2z′2, . . . ,znz′n).

As application of Theorem 7.1, in the following corollary we give a refinement of inequal-
ity (4.2) given in [42].

Corollary 7.1 Let A = (A1, . . . ,An) be an n-tuple of strictly positive operators and  :=
(1, . . . ,n), := (1, . . . ,n) and  := (1, . . . ,n) be positive n-tuples of real numbers
such that n

p=1p = 1 and p + p = 1 for all p ∈ {1,2, . . . ,n}. Then the following in-
equalities hold:

(i)

Mr(A, ) ≤ [M1( , )Mr
s (A, . )+M1( , )Mr

s (A, . )]
1
r

≤ Ms(A, ); if 1 ≤ r ≤ s . (7.4)

(ii)

Mr(A, ) ≤ [M1( , )Ms
r (A, . )+M1( , )Ms

r (A, . )]
1
s

≤ Ms(A, ), if r ≤ s ≤−1 or r ≤−1 ≤ s ≤ −1
2 . (7.5)

(iii)

Mr(A, ) ≤ [
M1( , )M−1

r (A, . )+M1( , )M−1
r (A, . )

]−1
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≤ M−1(A, ) ≤
(
M1( , )(M1(A, . ))−1 +M1( , )(M1(A, . ))−1

)−1

≤ M1(A, ) ≤ M1( , )Ms(A, . )+M1( , )Ms(A, . )
≤ Ms(A, ), if r ≤−1 and s ≥ 1 . (7.6)

(iv)

Mr(A, ) ≤ [M1( , )Mr(A, . )+M1( , )Mr(A, . )]
1
r

≤ Ms(A, ), if 1
2 ≤ r ≤ 1 ≤ s . (7.7)

Proof. In the proof we use the fact that function (x) = xt is operator convex on (0,) if
either 1 ≤ t ≤ 2 or −1 ≤ t ≤ 0, and operator concave on (0,) if 0 ≤ t ≤ 1 ([42]).

(i) Suppose 1 ≤ r ≤ s then 0 < r
s ≤ 1. Therefore using Theorem 7.1 for the operator

concave function (x) = x
r
s and taking Ap → As

p and then raising the power 1
r to both

sides, we obtain (7.4).
(ii) Suppose r ≤ s < −1 then 0 < s

r ≤ 1. Analogously as above using Theorem 7.1 for the
operator concave function (x) = x

s
r and taking Ap → Ar

p and then raising the power 1
s to

both sides, we obtain (7.5).
If r ≤ −1 ≤ s ≤ −1

2 , then 0 < s
r ≤ 1. Using Theorem 7.1 for the operator concave

function (x) = x
s
r , taking Ap → Ar

p and then raising the power to both sides 1
s we obtain

(7.5).
(iii) Suppose r≤−1 and s≥ 1 then using the operator convexity of the function(x) = x−1

in (7.1) we have

M1(A, ) ≥
(
M1( , )(M1(A, . ))−1

+M1( , )(M1(A, . ))−1
)−1 ≥ M−1(A, ). (7.8)

Using (7.4) for r = 1 we obtain

M1(A, ) ≤ M1( , )Ms(A, . )+M1( , )Ms(A, . ) ≤ Ms(A, ). (7.9)

Similarly using (7.5) for s = −1 we obtain

Mr(A, ) ≤ [
M1( , )M−1

r (A, . )+M1( , )M−1
r (A, . )

]−1 ≤ M−1(A, ). (7.10)

Combining (7.8)-(7.10) we obtain (7.6).
(iv) If 1

2 ≤ r ≤ 1 ≤ s, then 1 ≤ 1
r ≤ 2. Now using Theorem 7.1 for the operator convex

function (x) = x
1
r and taking Ap → Ar

p we obtain

Mr(A, ) ≤ [M1( , )Mr(A, . )+M1( , )Mr(A, . )]
1
r ≤ M1(A, ), (7.11)

But s ≥ 1, therefore M1(A, ) ≤ Ms(A, ). Combining these two inequalities we have
(7.7).

In the following corollary we present a refinement of the inequality given ([53, Theo-
rem 2.1]).
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Corollary 7.2 Let Ap ∈ S(I) and p,p,p ∈ R+ (p = 1,2, . . . ,n) be such that p +p =
1 for all p ∈ {1,2, . . . ,n} and n

p=1p = 1 and let f ,h : I → R be continuous and strictly
operator monotone functions. If one of the following conditions

(i) f ◦ h−1 : I → R is operator convex function and f−1 is operator monotone

(ii) f ◦ h−1 : I → R is operator concave function and − f−1 is operator monotone,

is satisfied, then

Mh( ;A) ≤ f−1
(
M1( ;) f (Mh( . ;A))

+M1( ; ) f (Mh( . ;A))
)
≤ Mf ( ;A). (7.12)

If one of the following conditions

(i) f ◦ h−1 : I → R is operator concave function and f−1 is operator monotone

(ii) f ◦ h−1 : I → R is operator convex function and − f−1 is operator monotone

is satisfied, then the reverse inequalities hold in (7.12).

Proof. (i) The required inequalities may be deduced by using (7.1) for Ap → h(Ap) and
 → f ◦ h−1 and then applying f−1.

Similarly we can prove inequalities for other conditions.
In the following theorem we obtain a refinement of integral operator inequality involv-

ing quasi-arithmetic mean as given in [53, Theorem 2.3] in discrete form.

Theorem 7.2 Let Ap ∈ S([m,M]) (p = 1,2, . . . ,n) and  , ∈ C[m,M], 0 < m < M, be
strictly monotone functions. Also assume that p,p,p ∈ R+ (p = 1,2, . . . ,n) are such
that p +p = 1 for all p ∈ {1,2, . . . ,n} and n

p=1p = 1.

(i) If −1 is operator convex and −1 is operator concave, then

M ( ;A) ≤ M1( ;)M ( .;A)+M1( ; )M ( . ;A) ≤ M1( ;A)
≤ M1( ;)M ( . ;A)+M1( ; )M ( . ;A)

≤ M ( ;A). (7.13)

(ii) If −1 is operator concave and −1 is operator convex, then the reverse inequalities
hold in (7.13).

Proof. (i). Using Theorem 7.1 for the operator convex function −1 on [m,M], where
m = min{(m),(M)}, M = max{(m),(M)}, we have

−1

(
n


p=1

p(Ap)

)
≤

n


p=1

pp−1

(
n

p=1 pp(Ap)

n
p=1pp

)

+
n


p=1

pp−1

(
n

p=1pp(Ap)

n
p=1 pp

)
≤

n


p=1

pAp, (7.14)
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i.e. M ( ;A) ≤ M1( ;)M ( . ;A)+M1( ;)M ( . ;A)
≤ M1( ;A). (7.15)

Similarly, since −1 is operator concave on I = [m,M], therefore we have

−1
(
n

p=1p(Ap)
)
≥ n

p=1pp−1

(
n

p=1 pp(Ap)
n

p=1 pp

)
+n

p=1pp−1

(
n

p=1 pp(Ap)
n

p=1 pp

)
≥n

p=1pAp. (7.16)

i.e. M ( ;A) ≥ M1( ;)M ( . ;A)
+M1( ; )M( . ;A) ≥ M1( ;A). (7.17)

Combining (7.15) and (7.17) we obtain (7.13).
In the following corollary we present a refinement of operator inequality given in ([43,

Theorem 5]) associated to the operator concavity of operator entropy A logA−1.

Corollary 7.3 Let Ap be strictly positive operators and p,p,p ∈ R+ (p = 1,2, . . . ,n)
such that p +p = 1 for all p ∈ {1,2, . . . ,n} and n

p=1p = 1. Then

n


p=1

pAp log
( n


p=1

pAp

)
≤

n


p=1

ppAp log

(
n

p=1ppAp

n
p=1pp

)

+
n


p=1

ppAp log

(
n

p=1ppAp

n
p=1pp

)
≤

n


p=1

pAp log(Ap). (7.18)

Proof. Since function (x) = x logx is operator convex, therefore utilizing (7.1) for the
function(x) = x logx, we obtain (7.18). In the following corollary we present refinement
of inequality given in ([43, Theorem 4].

Corollary 7.4 Let Ap be strictly positive operators and p,p,p ∈ R+ (p = 1,2, . . . ,n)
such that p +p = 1 for all p ∈ {1,2, . . . ,n} and n

p=1p = 1. Then

n


p=1

p log(Ap) ≤
n


p=1

pp log

(
n

p=1ppAp

n
p=1pp

)

+
n


p=1

pp log

(
n

p=1ppAp

n
p=1pp

)
≤ log

( n


p=1

pAp

)
. (7.19)

Proof. Since (x) = logx is an operator concave function, therefore utilizing reverse
inequalities in (7.1) for the function (x) = logx, we obtain (7.19).
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7.2 Further Generalization

In the following theorem, we present further refinement of the Jensen operator inequality
concerning m sequences whose sum is equal to unity.

Theorem 7.3 Let  : I → R be an operator convex function. Let Ap ∈ S(I), p, l
p ∈ R+

(l = 1,2, . . . ,m, p = 1,2, . . . ,n) be such that m
l=1  l

p = 1 for each p ∈ {1,2, . . . ,n} and
n

p=1p = 1. Assume that L1 and L2 are non empty disjoint subsets of {1,2, ...,m} such
that L1 ∪L2 = {1,2, ...,m}. Then



(
n


p=1

pAp

)
≤

n


p=1


l∈L1

 l
pp

(
n

p=1l∈L1
 l

ppAp

n
p=1l∈L1

 l
pp

)

+
n


p=1


l∈L2

 l
pp

(
n

p=1l∈L2
 l

ppAp

n
p=1l∈L2

 l
pp

)
≤

n


p=1

p(Ap). (7.20)

If  is concave function then the reverse inequalities hold in (7.20).

Proof. Since m
l=1  l

p = 1 for each p ∈ {1,2, . . . ,n}, therefore we may write

n


p=1

p(Ap) =
n


p=1


l∈L1

 l
pp(Ap)+

n


p=1


l∈L2

 l
pp(Ap). (7.21)

Apply Jensen’s operator inequality to both terms on the right hand side of (7.21) and
then using operator convexity of  in the obtained result, we have

n


p=1

p(Ap)

≥
n


p=1


l∈L1

 l
pp

(
n

p=1l∈L1
 l

ppAp

n
p=1l∈L1

 l
pp

)
+

n


p=1


l∈L2

 l
pp

(
n

p=1l∈L2
 l

ppAp

n
p=1l∈L2

 l
pp

)

≥ 

(
n


p=1


l∈L1

 l
pp

n
p=1l∈L1

 l
ppAp

n
p=1l∈L1

 l
pp

+
n


p=1


l∈L2

 l
pp

n
p=1l∈L2

 l
ppAp

n
p=1l∈L2

 l
pp

)

= 

(
n


p=1

pAp

)
. (7.22)

Remark 7.2 All the results presented in this paper may also be generalized using Theo-
rem 7.3.



Chapter8

Estimation of Different
Entropies and Divergences
via Refinement of Jensen’s
Inequality

Jensen’s inequality is important to obtain inequalities for divergences between probability
distributions. In this chapter, some suitable substitutions are used in (1.14) to construct new
inequalities. These new inequalities actually give: estimation of f -divergence, Shannon
entropy, Rényi divergence and Réyi entropy, and some relations among these entropies
and divergences. Also the bounds are investigated for the Zipf-Mandelbrot law and hybrid
Zipf-Mandelbrot law. The results of this chapter are published in [60].

8.1 Estimation of Csiszár Divergence

The first result gives the estimation for Î f (r,q) under different conditions by using some
suitable substitution in (1.14).

73
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Theorem 8.1 Assume (1.12), let I ⊂ R be an interval and let r = (r1, . . . ,rn) and q =
(q1, . . . ,qn) be in (0,)n such that

rs

qs
∈ I, s = 1, . . . ,n.

(i) If f : I → R is convex function, then

Î f (r,q) =
n


s=1

qs f

(
rs

qs

)
= A[1]

m,1 ≥ A[1]
m,2 ≥ . . . ≥ A[1]

m,m−1 ≥ A[1]
m,m ≥ f

(
n

s=1 rs

n
s=1 qs

) n


s=1

qs.

(8.1)

where

A[1]
m,l =

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im ,i j

)
f

⎛⎜⎜⎜⎝l
j=1

ri j
Im,i j

l

j=1

qi j
Im,i j

⎞⎟⎟⎟⎠ . (8.2)

The inequalities signs (8.1) are reverse when f is concave function.
(ii) If f : I → R be a function such that for all x ∈ I the function x → x f (x) is convex, then(

n


s=1

rs

)
f

(
n


s=1

rs

n
s=1 qs

)
≤ A[2]

m,m ≤ A[2]
m,m−1 ≤ . . . ≤ A[2]

m,2 ≤ A[2]
m,1

=
n


s=1

rs f

(
rs

qS

)
= Îid f (r,q),

(8.3)

where

A[2]
m,l =

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ f

⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ .

Proof. (i) Considering ps = qs
n

s=1 qs
and xs = rs

qs
in Theorem 1.1, we have

f

(
n


s=1

qs

n
s=1 qs

rs

qs

)
≤ . . . ≤ (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

⎛⎝ l


j=1

qi j

n
s=1 qs

Im,i j

⎞⎠ f

⎛⎜⎜⎜⎜⎝
l

j=1

qi j
n

i=1 qi
Im,i j

ri j
qi j

l

j=1

qi j
n

i=1 qi
Im,i j

⎞⎟⎟⎟⎟⎠ ≤ . . . ≤
n


s=1

qs

n
i=1 qs

f

(
rs

qs

)
. (8.4)

Multiplying n
s=1 qi we have (8.1).

(ii) Using f := id f (where “id” is the identity function) in Theorem 1.1, we have

n


s=1

psxs f

(
n


s=1

psxs

)
≤ . . . ≤ (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)
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(
l


j=1

pi j

Im ,i j

)⎛⎜⎜⎜⎝
l

j=1

pi j
Im,i j

xi j

l

j=1

pi j
Im,i j

⎞⎟⎟⎟⎠ f

⎛⎜⎜⎜⎝
l

j=1

pi j
Im,i j

xi j

l

j=1

pi j
Im,i j

⎞⎟⎟⎟⎠ ≤ . . . ≤
n


s=1

psxs f (xs). (8.5)

Now on using ps = qs
n

s=1 qs
and xs = rs

qs
, s = 1, . . . ,n, we get

n


s=1

qs

n
s=1 qs

rs

qs
f

(
n


s=1

qs

n
s=1 qs

rs

qs

)
≤ . . . ≤ (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

⎛⎝ l


j=1

qi j

n
s=1 qs

Im,i j

⎞⎠
⎛⎜⎜⎜⎝l

j=1

qi j
n

s=1 qs

Im,i j

ri j
qi j

l
j=1

qi j
n

s=1 qs

Im,i j

⎞⎟⎟⎟⎠ f

⎛⎜⎜⎜⎝l
j=1

qi j
n

s=1 qs

Im,i j

ri j
qi j

l
j=1

qi j
n

s=1 qs

Im,i j

⎞⎟⎟⎟⎠ ≤ . . . ≤
n


s=1

qs

n
s=1 qs

rs

qs
f

(
rs

qS

)
.

Multiplying n
s=1 qs on both sides, we get (8.3).

8.2 Estimation of Shannon Entropy

The second result estimates the bounds for Shannon entropy by using suitable substitution
in Theorem 8.1 for two different conditions.

Corollary 8.1 Assume (1.12).
(i) If q = (q1, . . . ,qn) ∈ (0,)n, and the base of log lies in the interval (1,), then

S ≤ A[3]
m,m ≤ A[3]

m,m−1 ≤ . . . ≤ A[3]
m,2 ≤ A[3]

m,1 = log

(
n

n
s=1 qs

) n


s=1

qs, (8.6)

where

A[3]
m,l = − (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)
log

(
l


j=1

qi j

Im,i j

)
. (8.7)

The inequalities in (8.6) are reversed if the base of log lies in interval (0,1).
(ii) Consider the positive probability distribution q = (q1, . . . ,qn) and let the base lies in
the interval (1,), then estimate for the Shannon entropy is given by

S ≤ A[4]
m,m ≤ A[4]

m,m−1 ≤ . . . ≤ A[4]
m,2 ≤ A[4]

m,1 = log(n), (8.8)

where

A[4]
m,l = − (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im ,i j

)
log

(
l


j=1

qi j

Im ,i j

)
.
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Proof. (i) Using f := log and r = (1, . . . ,1) in Theorem 8.1 (i), we get (8.6).
(ii) It is the special case of (i).

8.3 Estimation of Kullback-Leibler Divergence

The following result is the estimation of Kullback-Leibler divergence by using assumption
in Theorem 8.1.

Corollary 8.2 Assume (1.12).
(i) Let r = (r1, . . . ,rn) ∈ (0,)n and q := (q1, . . . ,qn) ∈ (0,)n. If the base of log is in
interval (1,), then

n


s=1

rs log

(
n


s=1

rs

n
s=1 qs

)
≤ A[5]

m,m ≤ A[5]
m,m−1 ≤ . . . ≤ A[5]

m,2 ≤ A[5]
m,1 =

n


s=1

rs log

(
rs

qs

)
= D(r,q),

(8.9)

where

A[5]
m,l =

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ log

⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ .

The inequalities in (8.9) are reversed, when the base of log lies in the interval (0,1).
(ii) Suppose two positive probability distributions r := (r1, . . . ,rn) and q := (q1, . . . ,qn)
and also let the base of log being in the interval (1,), then

D(r,q) = A[6]
m,1 ≥ A[6]

m,2 ≥ . . . ≥ A[6]
m,m−1 ≥ A[6]

m,m ≥ 0, (8.10)

where

A[6]
m,l =

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ log

⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ .

The inequalities in (8.10) are reversed when the base of log being in the inteval (0,1).

Proof. (i) On taking f := log in Theorem 8.1 (ii), we get (8.9).
(ii) It is a special case of (i).
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8.4 Inequalities for Rényi Divergence and Entropy

In this section we investigate the bounds for Rényi divergence and Rényi entropy by using
some suitable substitution in Theorem 1.14.

Theorem 8.2 Assume (1.12), let r = (r1, . . . ,rn) and q = (q1, . . . ,qn) be probability dis-
tributions.
(i) If 0 ≤  ≤  such that  , �= 1, and suppose that the base of log lies in (1,), then

D (r,q) ≤ A[7]
m,m ≤ A[7]

m,m−1 ≤ . . . ≤ A[7]
m,2 ≤ A[7]

m,1 = D(r,q), (8.11)

where

A[7]
m,l =

1
−1

log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)
⎛⎜⎜⎜⎜⎝

l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎠
The reverse inequalities hold in (8.11) if the base of log lies in (0,1).
(ii) Suppose 1 <  and the base of log lies in (1,), then

D1(r,q) = D(r,q) =
n


s=1

rs log

(
rs

qs

)
≤ A[8]

m,m ≤ A[8]
m,m−1 ≤ . . . ≤ A[8]

m,2 ≤ A[8]
m,1 = D(r,q),

(8.12)

where

A[8]
m,l =≤ 1

−1
log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)

exp

⎛⎜⎜⎜⎝
(−1)

l

j=1

ri j
Im,i j

log

(
ri j
qi j

)
l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

here the bases of exp and log are same, and if the base of log lies in (0,1) then the reverse
inequalities hold.
(iii) If  ∈ [0,1), and the base of log lies in (1,), then

D (r,q) ≤ A[9]
m,m ≤ A[9]

m,m−1 ≤ . . . ≤ A[9]
m,2 ≤ A[9]

m,1 = D1(r,q), (8.13)
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where

A[9]
m,l =

1
 −1

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)
log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠ .

(8.14)

Proof. Suppose f : (0,) → R is function defined as f (t) := t
−1
−1 . On using this function

in Theorem 1.1 together with substitution

ps := rs, xs :=
(

rs

qs

)−1

, s = 1, . . . ,n,

we get

(
n


s=1

qs

(
rs

qs

)
) −1

−1

=

(
n


s=1

rs

(
rs

qs

)−1
) −1

−1

≤

. . . ≤ (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
−1
−1

≤ . . . ≤
n


s=1

rs

((
rs

qs

)−1
) −1

−1

, (8.15)

if either 0 ≤  < 1 <  or 1 <  ≤  , and the reverse inequality in (8.15) holds if 0≤  ≤
 < 1. On taking power 1

−1 , we get

(
n


s=1

qs

(
rs

qs

)
) 1

−1

≤

. . . ≤

⎛⎜⎜⎜⎜⎜⎝
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎠

1
−1

≤ . . . ≤
⎛⎝ n


s=1

rs

((
rs

qs

)−1
) −1

−1

⎞⎠
1

−1

=

(
n


s=1

qs

(
rs

qs

)
) 1

−1

. (8.16)



8.4 INEQUALITIES FOR RÉNYI DIVERGENCE AND ENTROPY 79

If the base of log function lies in (1,), then log is increasing function, therefore (8.11) is
valid, and log is decreasing function if its base lies in (0,1). Thus reverse inequality holds
in (8.11). If  = 1 and  = 1, we have (ii) and (iii) respectively by taking limit.

Theorem 8.3 Assume (1.12), let r = (r1, . . . ,rn) and q = (q1, . . . ,qn) be probability dis-
tributions. If either 0 ≤  < 1 and the base of log is greater than 1, or 1 <  and the base
of log is between 0 and 1, then

1

n
s=1 qs

(
rs
qs

)

n


s=1

qs

(
rs

qs

)
log

(
rs

qs

)
= A[10]

m,1 ≤ A[10]
m,2 ≤ . . . ≤ A[10]

m,m−1 ≤ A[10]
m,m

≤ D (r,q) ≤ A[11]
m,m ≤ A[11]

m,m ≤ . . . ≤ A[11]
m,2 ≤ A[11]

m,1 = D1(r,q)

(8.17)

where

A[10]
m,m =

1

( −1)n
s=1 qs

(
rs
qs

) (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

⎛⎝ l


j=1

ri j

Im,i j

(
ri j

qi j

)−1
⎞⎠

× log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
(8.18)

and

A[11]
m,m =

1
 −1

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)
log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠ .

(8.19)

The inequalities in (8.17) are reversed if either 0≤  < 1 and the base of log lies in interval
(0,1), or 1 <  and the base of log lies in interval (1,).

Proof. We only give the proof for the case when 0 ≤  < 1 and base of log lies in
the interval (1,). Following the similar technique one can prove the other cases. Since

1
−1 < 0 and the function log is concave then choosing I = (0,), f := log, ps = rs,

xs :=
(

rs
qs

)−1
in Theorem 1.1, we have

D (r,q) =
1

 −1
log

(
n


s=1

qs

(
rs

qs

)
)

=
1

 −1
log

(
n


s=1

rs

(
rs

qs

)−1
)
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≤ . . . ≤ 1
 −1

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)
log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
≤ . . . ≤ 1

 −1

n


s=1

rs log

((
rs

qs

)−1
)

=
n


s=1

rs log

(
rs

qs

)
= D1(r,q) (8.20)

and it is giving the upper bound for the Rényi divergence D (r,q).
Since for all x ∈ (0,) the function x �→ x f (x) is convex, also base of log lies in interval
(0,) and 1

1− < 0, therefore Theorem 1.1 provides

D (r,q) =
1

 −1
log

(
n


s=1

qs

(
rs

qs

)
)

(8.21)

=
1

 −1

(
n

s=1 qs

(
rs
qs

)) (
n


s=1

qs

(
rs

qs

)
)

log

(
n


s=1

qs

(
rs

qs

)
)

≥ . . . ≥ 1

 −1

(
n

s=1 qs

(
rs
qs

)
) (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
⎛⎜⎜⎜⎜⎝

l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠ log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠ =

1

 −1

(
n

s=1 qs

(
rs
qs

)) (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

⎛⎝ l


j=1

ri j

Im ,i j

(
ri j

qi j

)−1
⎞⎠ log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠ ≥ . . . ≥

1
 −1

n


s=1

rs

(
rs

qs

)−1

log

(
rs

qs

)−1 1

n
s=1 rs

(
rs
qs

)−1

=
1

n
s=1 qs

(
rs
qs

)

n


s=1

qs

(
rs

qs

)
log

(
rs

qs

)
. (8.22)

This completes the proof.
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8.5 Relation Between Shannon Entropy and
Divergence

The next result gives the relation between Shannon entropy and divergence by using suit-
able substitution in Theorem 8.2 and Theorem 8.3. First consider the discrete probability
distribution 1

n = ( 1
n , . . . , 1

n ).

Corollary 8.3 Assume (1.12), let r = (r1, . . . ,rn) and q = (q1, . . . ,qn) be positive proba-
bility distributions.
(i) If 0 ≤  ≤  ,  , �= 1, and the base of log lies in the interval (1,), then

H (r) = log(n)−D

(
r,

1
n

)
≥ A[12]

m,m ≥ A[12]
m,m ≥ . . .A[12]

m,2 ≥ A[12]
m,1 = H(r), (8.23)

where

A[12]
m,l =

1
1− 

log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il) ×
(

l


j=1

ri j

Im,i j

)⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎠ .

The reverse inequalities hold in (8.23) if the base of log lies in (0,1).
(ii) If 1 <  and base of log lies in (1,), then

S = −
n


s=1

pi log(pi) ≥ A[13]
m,m ≥ A[13]

m,m−1 ≥ . . . ≥ A[13]
m,2 ≥ A[13]

m,1 = H(r) (8.24)

where

A[13]
m,l = log(n)+

1
1− 

log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)

exp

⎛⎜⎜⎜⎝
(−1)

l

j=1

ri j
Im,i j

log
(
nri j

)
l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

the bases of exp and log are same. The inequalities in (8.24) are reversed if the base of log
lies in (0,1).
(iii) If 0 ≤  < 1, and the base of log lies in interval (1,), then

H (r) ≥ A[14]
m,m ≥ A[14]

m,m−1 ≥ . . . ≥ A[14]
m,2 ≤ A[14]

m,1 = S, (8.25)
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where

A[14]
m,m =

1
1−

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
log

⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠ . (8.26)

The inequalities in (8.25) are reversed if the base of log lies in interval (0,1).

Proof. (i) Suppose q = 1
n then from (1.33), we have

D (r,q) =
1

 −1
log

(
n


s=1

n−1rs

)
= log(n)+

1
 −1

log

(
n


s=1

rs

)
, (8.27)

therefore we have

H (r) = log(n)−D(r,
1
n

). (8.28)

Now using Theorem 8.2 (i) and (8.28), we get

H (r) = log(n)−D

(
r,

1
n

)
≥ . . . ≥ log(n)− 1

−1
log

(
n−1 (m−1)!

(l−1)!


(i1,...,il)∈Il

Im,l(i1, . . . , il) ×
(

l


j=1

ri j

Im,i j

)⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎠ ≥ . . . ≥

log(n)−D(r,q) = H(r).

(8.29)

Relations (ii) and (iii) can be proved similarly.

Corollary 8.4 Assume (1.12) and let r =(r1, . . . ,rn) and q= (q1, . . . ,qn) be positive prob-
ability distributions.
If either 0 ≤  < 1 and the base of log is greater than 1, or 1 <  and the base of log is
between 0 and 1, then

− 1

n
s=1 rs

n


s=1

rs log(rs) = A[15]
m,1 ≥ A[15]

m,2 ≥ . . . ≥ A[15]
m,m−1 ≥ A[15]

m,m ≥ H (r)

≥ A[16]
m,m ≥ A[16]

m,m−1 ≥ . . .A[16]
m,2 ≥ A[16]

m,1 = H (r) ,

(8.30)

where

A[15]
m,l =

1

( −1)n
s=1 rs

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j
Im,i j

)

log

⎛⎜⎜⎜⎝n−1

l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
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and

A[16]
m,1 =

1
1−

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
log

⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠ . (8.31)

The inequalities in (8.30) are reversed if either 0≤  < 1 and the base of log lies in interval
(0,1), or 1 <  and the base of log lies in (1,).

Proof. It can be proved similarly by following similar steps of Corollary 8.3 and using
Theorem 8.3.

8.6 Inequalities by Using Zipf-Mandelbrot Law

The following results give the estimates for Rényi entropy and Shannon entropy and also
the relation between them.

Conclusion 8.1 Assume Im ,i j ≥ 1, let r be a Zipf-Mandelbrot law and if 0≤  < 1, and
the base of log lies in interval (1,). Then by Corollary 8.3 (iii), we get

H (r) =
1

1−
log

(
1

H
N,q,t

n


s=1

1

(s+q) s

)
≥ . . . ≥

1
1−

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

1
Im ,i j (i j +q)HN.q,t

)

log

⎛⎜⎜⎜⎝ 1

H−1
N,q,t

l

j=1

1
Im,i j (i j−q)s

l

j=1

1
Im,i j (i j−q)s

⎞⎟⎟⎟⎠ ≥ . . . ≥

t
HN,q,t

N


s=1

log(s+q)
(s+q)t

+ log(HN,q,t) = S.

(8.32)

The inequalities in (8.32) are reversed if the base of log is between 0 and 1.

Conclusion 8.2 Assume Im ,i j ≥ 1, let r1 and r2 be the Zipf-Mandelbort laws with pa-
rameters N ∈ {1,2, . . .}, q1,q2 ∈ [0,) and s1,s2 > 0, respectively. Also if the base of log
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lies in interval (1,), then from Corollary 8.2 (ii), we have

D(r1,r2) =
n


s=1

1
(s+q1)t1HN,q1,t1

log

(
(s+q2)t2HN,q2,t2

(s+q1)t1HN,q2,t1

)
≥ . . . ≥

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

⎛⎝ l


j=1

1
(i j+q2)t2HN,q2 ,t2

Im,i j

⎞⎠
⎛⎜⎜⎜⎝l

j=1

1
(i j+q1)t1HN,q1,t1

Im,i j

l
j=1

1
(i j+q2)t2HN,q2,t2

Im,i j

⎞⎟⎟⎟⎠

log

⎛⎜⎜⎜⎝l
j=1

1
(i j+q1)t1HN,q1,t1

Im,i j

l
j=1

1
(i j+q2)t2HN,q2,t2

Im,i j

⎞⎟⎟⎟⎠ ≥ . . . ≥ 0.

(8.33)

The inequalities in (8.33) are reversed if base of log is between 0 and 1.

8.7 Relation Between Shannon Entropy and
Zipf-Mandelbrot Law

Here we maximize the Shannon entropy using method of Lagrange multiplier under some
equations constraints and get the Zipf-Mandelbrot law.

Theorem 8.4 If J = {1,2, . . . ,N}, for a given q ≥ 0 a probability distribution that maxi-
mizes the Shannon entropy under the constraints


s∈J

rs = 1, 
s∈J

rs (ln(s+q)) := ,

is Zipf-Mandelbrot law.

Proof. If J = {1,2, . . . ,N}. Set the Lagrange multipliers  and t and consider the expres-
sion

S̃ = −
N


s=1

rs lnrs −

(
N


s=1

rs −1

)
− t

(
N


s=1

rs ln(s+q)−

)
.

Just for the sake of convenience, replace  by ln −1, thus the last expression gives

S̃ = −
N


s=1

rs lnrs − (ln −1)

(
N


s=1

rs−1

)
− t

(
N


s=1

rs ln(s+q)−

)
.
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From S̃rs = 0, for s = 1,2, . . . ,N, we get

rs =
1

 (s+q)t
,

and on using the constraint N
s=1 rs = 1, we have

 =
N


s=1

(
1

(s+1)t

)
,

where t > 0, concluding that

rs =
1

(s+q)tHN,q,t
, s = 1,2, . . . ,N.

Remark 8.1 Observe that the Zipf-Mandelbrot law and Shannon Entroy can be bounded
from above (see [74]).

S = −
N


s=1

f (s,N,q,t) ln f (s,N,q,t) ≤−
N


s=1

f (s,N,q,t) lnqs

where (q1, . . . ,qN) is a positive N-tuple such that N
s=1 qs = 1.

8.8 Relation Between Shannon Entropy and Hybrid
Zipf-Mandelbrot Law

Here we maximize the Shannon entropy using method of Lagrange multiplier under some
equations constraints and get the hybrid Zipf-Mandelbrot law.

Theorem 8.5 If J = {1, . . . ,N}, then probability distribution that maximizes Shannon
entropy under constraints


s∈J

rs = 1, 
s∈J

rs ln(s+q) := , 
s∈J

srs := 

is hybrid Zipf-Mandelbrot law given as

rs =
ws

(s+q)kJ(k,q,w)
, s ∈ J,

where

J(k,q,w) = 
s∈J

ws

(s+q)k .
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Proof. First consider J = {1, . . . ,N}, we set the Lagrange multiplier and consider the
expression

S̃ = −
N


s=1

rs lnrs + lnw

(
N


s=1

srs −

)
− (ln −1)

(
N


s=1

rs −1

)
− k

(
N


s=1

rs ln(s+q)−

)
.

On setting S̃rs = 0, for s = 1, . . . ,N, we get

− lnrs + s lnw− ln − k ln(s+q) = 0,

after solving for rs, we get

 =
N


s=1

ws

(s+q)k
,

and we recognize this as the partial sum of Lerch’s transcendent that we denote with

∗
N (k,q,w) =

N


s=1

ws

(s+q)k

with w ≥ 0,k > 0.

Remark 8.2 Observe that for Zipf-Mandelbrot law, Shannon entropy can be bounded
from above (see [74]).

S = −
N


s=1

fh (s,N,q,k) ln fh (s,N,q,k) ≤−
N


s=1

fh (s,N,q,k) lnqs

where (q1, . . . ,qN) is any positive N-tuple such that N
s=1 qs = 1.



Chapter9

Divergence and Entropy
Results via Interpolating
Polynomials for m-convex
Function

This chapter contains the generalization of refinement of Jensen’s, Rényi and Shannon
type inequalities via different interpolation for m-convex function. For this we construct
the non-negative functionals from these inequalities and use various interpolation like:
Abel-Gontscharoff Green function, Montgomery identity, Hermite interpolation, Lidstone
polynomial, Fink’s identity and Abel-Gontscharoff Green function, Taylor one point and
Taylor two point formulas. The results of this chapter can be found in [60, 83, 64, 59, 82,
63].

9.1 New Generalized Functionals

We define following functionals by taking non-negative differences from the inequalities
given in (1.14).

87
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1( f ) = Am,r − f

(
n


s=1

psxs

)
, r = 1, . . . ,m, (9.1)

2( f ) = Am,r −Am,k, 1 ≤ r < k ≤ m. (9.2)

If the suppositions of Theorem 1.1 hold, we have

i( f ) ≥ 0, i = 1,2. (9.3)

Inequalities (9.3) are reversed if f is concave on I.
By using the conditions of Theorem 8.1 (i), define the non-negative functionals as fol-

lows.

3( f ) = A
[1]
m,r − f

(
n

s=1 rs

n
s=1 qs

) n


s=1

qs, r = 1, . . . ,m, (9.4)

4( f ) = A
[1]
m,r −A

[1]
m,k, 1 ≤ r < k ≤ m. (9.5)

By using the conditions of Theorem 8.1 (ii), define the non-negative functionals as follows.

5( f ) = A
[2]
m,r −

(
n


s=1

rs

)
f

(
n

s=1 rs

n
s=1 qs

)
, r = 1, . . . ,m, (9.6)

6( f ) = A
[2]
m,r −A

[2]
m,k, 1 ≤ r < k ≤ m. (9.7)

Under the assumption of Corollary 8.1 (i), define the following non-negative functionals.

7( f ) = A[3]
m,r +

n


i=1

qi log(qi), r = 1, . . . ,m, (9.8)

8( f ) = A[3]
m,r −A[3]

m,k, 1 ≤ r < k ≤ m. (9.9)

Under the assumption of Corollary 8.1 (ii), define the following non-negative functionals
given as.

9( f ) = A[4]
m,r −S, r = 1, . . . ,m, (9.10)

10( f ) = A[4]
m,r −A[4]

m,k, 1 ≤ r < k ≤ m. (9.11)

Under the assumption of Corollary 8.2 (i), let us define the non-negative functionals as
follows.

11( f ) = A[5]
m,r −

n


s=1

rs log

(
n


s=1

log
rn

n
s=1 qs

)
, r = 1, . . . ,m, (9.12)

12( f ) = A[5]
m,r −A[5]

m,k, 1 ≤ r < k ≤ m. (9.13)



9.1 NEW GENERALIZED FUNCTIONALS 89

By using the conditions of Corollary 8.2 (ii), define the non-negative functionals as follows.

13( f ) = A[6]
m,r −A[6]

m,k, 1 ≤ r < k ≤ m. (9.14)

Under the assumption of Theorem 8.2 (i), consider the following functionals.

14( f ) = A[7]
m,r −D (r,q), r = 1, . . . ,m, (9.15)

15( f ) = A[7]
m,r −A[7]

m,k, 1 ≤ r < k ≤ m. (9.16)

Under the assumption of Theorem 8.2 (ii), consider the following functionals.

16( f ) = A[8]
m,r −D1(r,q), r = 1, . . . ,m, (9.17)

17( f ) = A[8]
m,r −A[8]

m,k, 1 ≤ r < k ≤ m. (9.18)

Under the assumption of Theorem 8.2 (iii), consider the following functionals.

18( f ) = A[9]
m,r −D (r,q), r = 1, . . . ,m, (9.19)

19( f ) = A[9]
m,r −A[9]

m,k, 1 ≤ r < k ≤ m. (9.20)

Under the assumption of Theorem 8.3 consider the following non-negative functionals.

20( f ) = D (r,q)−A[10]
m,r , r = 1, . . . ,m, (9.21)

21( f ) = A[10]
m,k −A[10]

m,r , 1 ≤ r < k ≤ m, (9.22)

22( f ) = A[11]
m,r −D (r,q), r = 1, . . . ,m, (9.23)

23( f ) = A[11]
m,r −A[11]

m,r , 1 ≤ r < k ≤ m, (9.24)

24( f ) = A[11]
m,r −A[10]

m,k , r = 1, . . . ,m, k = 1, . . . ,m. (9.25)

(9.26)

Under the assumption of Corollary 8.3 (i), consider the following non-negative functionals.

25( f ) = H (r)−A[12]
m,r , r = 1, . . . ,m, (9.27)

26( f ) = A[12]
m,k −A[12]

m,r , 1 ≤ r < k ≤ m. (9.28)

(9.29)

Under the assumption of Corollary 8.3 (ii), consider the following functionals

27( f ) = S−A[13]
m,r , r = 1, . . . ,m, (9.30)

28( f ) = A[13]
m,k −A[13]

m,r , 1 ≤ r < k ≤ m. (9.31)

Under the assumption of Corollary 8.3 (iii), consider the following functionals.

29( f ) = H (r)−A[14]
m,r , r = 1, . . . ,m, (9.32)
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30( f ) = A[14]
m,k −A[14]

m,r , 1 ≤ r < k ≤ m. (9.33)

Under the assumption of Corollary 8.4, defined the following functionals.

31 = A[15]
m,r −H (r), r = 1, . . . ,m, (9.34)

32 = A[15]
m,r −A[15]

m,k , 1 ≤ r < k ≤ m, (9.35)

33 = H (r)−A[16]
m,r , r = 1, . . . ,m, (9.36)

34 = A[16]
m,k −A[16]

m,r , 1 ≤ r < k ≤ m, (9.37)

35 = A[15]
m,r −A[16]

m,k , r = 1, . . . ,m, k = 1, . . . ,m. (9.38)

9.2 Generalization of Refinement of Jensen’s, Rényi
and Shannon Type Inequalities via Montgomery
Identity

The following two results contain the Montgomery identity using Taylor’s formula [16,
17].

Theorem 9.1 Let m ∈ N, f : (a,b) → R be such that f (m−1) is absolutely continuous
1,2 ∈ (a,b), 1 < 2. Then

f (x) =
1

2 −1

∫ 2

1

f (u)du+
m−2


k=0

f (k+1)(1)(x−1)k+2

k!(k+2)(2−1)
−

m−2


k=0

f (k+1)(2)(x−2)k+2

k!(k+2)(2−1)

+
1

(m−1)!

∫ 2

1

Rm(x,u) f (m)(u)du (9.39)

where

Rm(x,u) =

{
− (x−u)m

m(2−1)
+ x−1

2−1
(x−u)m−1, 1 ≤ u ≤ x;

− (x−u)m
m(2−1)

+ x−2
2−1

(x−u)m−1, x ≤ u ≤ 2.
(9.40)

Theorem 9.2 Let m∈N, f : I →R be such that f (m−1) is absolutely continuous,1,2 ∈
I, 1 < 2. Then

f (x) =
1

2 −1

∫ 2

1

f (u)du+
m−2


k=0

f (k+1)(x)
(1 − x)k+2− (2− x)k+2

(k+2)!(2−1)

+
1

(m−1)!

∫ 2

1

R̂(x,u) f (m)(u)du (9.41)
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where

R̂(x,u) =

{
− 1

m(2−1)
(1 −u), 1 ≤ u ≤ x;

− 1
m(2−1)

(2 −u), x ≤ u ≤ 2.
(9.42)

In case m = 1, the sum m−2
k=0 . . . is empty, so (9.39) and (9.41) reduce to well-known

Montgomery identity (see [75])

f (x) =
1

2 −1

∫ 2

1

f (t)dt +
1

2−1

∫ 2

1

p(x,u) f ′(u)du,

where p(x,u) denotes the Peano kernel which is defined as

p(x,u) =

{
u−1
2−1

, 1 ≤ u ≤ x;
u−2
2−1

, x ≤ u ≤ 2.

We construct some new identities the with the help of generalized Montgomery identity
(9.39).

Theorem 9.3 Let f : [1,2]→R be a function. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn

are positive real numbers such that
n

i=1

pi = 1, and Rm(x,u) be the same as defined in (9.40),

then the following identity holds.

i( f ) =
1

2 −1

m−2


k=0

(
1

k!(k+2)

)(
f (k+1)(1)i((x−1)k+1)− f (k+1)(2)

×2((x−2)k+1)
) 1

(m−1)!

∫ 2

1

i(Rm(x,u)) f (m)(u)du, , i = 1, . . . ,35. (9.43)

Proof. Using (9.39) in (9.1), (9.2) and (9.4)-(9.38), we get the result.

Theorem 9.4 Let f : [1,2]→R be a function. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn

are positive real numbers such that
n

i=1

pi = 1, and Rm(x,u) be the same as defined in (9.40).

Let for m ≥ 2

i(Rm(x,u)) ≥ 0 for all u ∈ [1,2] i = 1, . . . ,35.

If f is m-convex such that f (m−1) is absolutely continuous, then

i( f ) ≥ 1
2 −1

m−2


k=0

1
k!(k+2)

(
f (k+1)(1)i((x−1)k+1)

− f (k+1)(2)i((x−2)k+1
)

, i = 1, . . . ,35. (9.44)

Proof. As f (m−1) is absolutely continuous on [1,2], therefore f (m) exists almost every-
where. As f is m-convex, so f (m)(u) ≥ 0 for all u ∈ [1,2](see [87, p.16]). Hence using
Theorem 9.3, we get (9.44).
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Theorem 9.5 Let f : [1,2]→R be a function. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn

are positive real numbers such that
n

i=1

pi = 1, let f : [1,2] → R be a convex function.

(i) If m ≥ 2 is even, then (9.44) holds.
(ii) Let (9.44) is valid. If the function

 (x) =
1

2−1

m−2


l=0

(
f (l+1)(1)(x−1)l+2 − f (l+1)(2)(x−2)l+2

l!(l +2)

)
is convex, then the smaller side of (9.44) is non-negative and

i( f ) ≥ 0 i = 1, . . . ,35.

Proof. (i) The function Rm(·,v) is convex (see [33]). Hence for even integers m ≥ 2

i(Rm(u,v)) ≥ 0,

therefore from Theorem 9.4, we have (9.44).
(ii) By using the linearity of i( f ) we can write the smaller side of (9.44) in the form
i( ). As  is supposed to be convex therefore the smaller side of (9.44) is non-negative,
so i( f ) ≥ 0.

Theorem 9.6 Let f : [1,2]→R be a function. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn

are positive real numbers such that
n

i=1

pi = 1, and R̂m(x,u) be the same as defined in (9.42),

then the following identity holds.

i( f ) =
1

2 −1

m−2


k=0

1
k!(k+2)

(
i( f (k+1)(x)(1 − x)k+1)−i( f (k+1)(x)(2 − x)k+1

)
+

1
(m−1)!

∫ 2

1

i(R̂m(x,u)) f (m)(u)du i = 1, . . . ,35. (9.45)

Proof. Using (9.41) in (9.1), (9.2) and (9.4)-(9.38), we get the identity (9.45).

Theorem 9.7 Let f : [1,2]→R be a function. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn

are positive real numbers such that
n

i=1

pi = 1, and Rm(x,u) be the same as defined in (9.42).

Let for m ≥ 2

i(R̂m(x,u)) ≥ 0 for all u ∈ [1,2] i = 1, . . . ,35.

Suppose f is m-convex and let f (m−1) be an absolutely continuous function, then for i =
1, . . . ,35

i( f ) ≥ 1
2−1

m−2


k=0

(
1

k!(k+2)

)(
i( f (k+1)(x)(1 − x)k+1)

−i( f (k+1)(x)(2 − x)k+1
)

. (9.46)
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Proof. As f (m−1) is absolutely continuous on [1,2], therefore f (m) exists almost every-
where. As f is m-convex, so f (m)(u) ≥ 0 for all u ∈ [1,2](see [87, p.16]). Hence using
Theorem 9.6, we get (9.46).

Remark 9.1 We can give related mean value theorems, also construct the new families
of m-exponentialy convex functions and Cauchy means related to the functionals i, i =
1, . . . ,35 as given in [29].

9.3 Generalization of Refinement of Jensen’s,
f-divergence, Shannon and Rényi type
Inequalities via Hermite Interpolating
Polynomial

In [15], the Hermite interpolating polynomial is given as follows.
Let 1,2 be two real numbers such that 1 = c1 < c2 < .. . < cl =2(l ≥ 2) be the points.

For f ∈C2m[1,2], a unique polynomial  (i)
H (s) of degree (m−1) exists and satisfies any

of the following conditions:
Hermite Conditions

 (i)
H (c j) = f (i)(c j); 0 ≤ i ≤ k j, 1 ≤ j ≤ l,

l


j=1

k j + l = m.

It is noted that Hermite conditions include the following particular cases.
Lagrange Conditions (l = m, k j = 0 for all i)

L(c j) = f (c j), 1 ≤ j ≤ m.

Type (q,m−q) Conditions(l = 2, 1 ≤ q ≤ m−1, k1 = q−1, k2 = m−q−1)

 (i)
(q,m)(1) = f (i)(1), 0 ≤ i ≤ q−1

 (i)
(q,m)(2) = f (i)(2), 0 ≤ i ≤ m−q−1.

Two Point Taylor Conditions (m = 2q, l = 2, k1 = k2 = q−1)

 (i)
2T (1) = f (i)(1), f (i)

2T (2) = f (i)(2). 0 ≤ i ≤ q−1

In [15], the following result is given.
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Theorem 9.8 Let − < 1 < 2 <  and 1 ≤ c1 < c2 < .. . < cl ≤ 2 (l ≥ 2) are the
given points and f ∈Cm([1,2]). Then we have

f (u) = H(u)+RH( f ,u), (9.47)

where H(u) is the Hermite interpolation polynomial that is

H(u) =
l


j=1

k j


i=0

Hij (u) f (i)(c j);

the Hi j are the fundamental polynomials of the Hermite basis given as

Hij (u) =
1
i!

(u)
(u− c j)k j+1−i

k j−i


k=0

1
k!

dk

duk

(
(u− c j)k j+1

(u)

)∣∣∣∣∣
u=c j

(u− c j)k, (9.48)

with

(u) = l
j=1(u− c j)k j+1,

and the remainder is given by

RH( f ,u) =
∫ 2

1

GH,m(u,s) f (m)(s)ds,

where GH,m(u,s) is defined by

GH,m(u,s) =

⎧⎨⎩l
j=1

k j
i=0

(c j−s)m−i−1

(m−i−1)! Hij (u), s ≤ u;

−l
j=r+1

k j
i=0

(c j−s)m−i−1

(m−i−1)! Hij (u), s ≥ u.
, (9.49)

for all cr ≤ s ≤ cr+1; r = 0,1, . . . , l, with c0 = 1 and cl+1 = 2.

Remark 9.2 In particular cases, for Lagrange condition from Theorem 9.8, we have

f (u) = L(u)+RL( f ,u),

where L(u) is the Lagrange interpolating polynomial that is

L(u) =
m


j=1

m


k=1,k �= j

(
u− ck

c j − ck

)
f (c j),

and the remainder RL( f ,u) is given by

RL( f ,u) =
∫ 2

1

GL(u,s) f (m)(s)ds,

with

GL(u,s) =
1

(m−1)!

⎧⎪⎪⎨⎪⎪⎩
r

j=1(c j − s)m−1
m


k=1,k �= j

(
u−ck
c j−ck

)
, s ≤ u;

−m
j=r+1(c j − s)m−1

m


k=1,k �= j

(
u−ck
c j−ck

)
, s ≥ u.

, (9.50)

cr ≤ s ≤ cr+1 r = 1,2, . . . ,m−1, with c1 = 1 and cm = 2,
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for type (q,m−q) condition, from Theorem 9.8, we have

f (u) = (q,m)(u)+Rq,m( f ,u),

where (q,m)(u) is (q,m−q) interpolating that is

(q,m)(u) =
q−1


i=0

i(u) f (i)(1)+
m−q−1


i=0

i(u) f (i)(2),

with

i(u) =
1
i!

(u−1)i
(

u−1

1−2

)m−q q−1−i


k=0

(
m−q+ k−1

k

)(
u−1

2−1

)k

(9.51)

and

i(u) =
1
i!

(u−1)i
(

u−1

2 −1

)q m−q−1−i


k=0

(
q+ k−1

k

)(
u−2

2 −1

)k

, (9.52)

and the remainder R(q,m)( f ,u) is defined as

R(q,m)( f ,u) =
∫ 2

1

Gq,m(u,s) f (m)(s)ds,

with

G(q,m)(u,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q−1
j=0

[
q−1− j

p=0

(m−q+p−1
p

)(
u−1
2−1

)p]
× (u−1) j(1−s)m− j−1

j!(m− j−1)!

(
2−u
2−1

)m−q
, 1 ≤ s ≤ u ≤ 2;

−m−q−1
j=0

[
m−q− j−1
=0

(q+−1


)(
2−u
2−1

)]
× (u−2) j(2−s)m− j−1

j!(m− j−1)!

(
u−1
2−1

)q
, 1 ≤ u ≤ s ≤ 2.

(9.53)

From type Two-point Taylor condition from Theorem 9.8, we have

f (u) = 2T (u)+R2T ( f ,u),

where

2T (u) =
q−1


i=0

q−1−i


k=0

(
q+ k−1

k

)[
(u−1)i

i!

(
u−2

1 −2

)q (
u−1

2 −1

)k

f (i)(1)

− (u−2)i

i!

(
u−1

2 −1

)q (
u−1

1 −2

)k

f (i)(2)

]

and the remainder R2T ( f ,u) is given by

R2T ( f ,u) =
∫ 2

1

G2T (u,s) f (m)(s)ds
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with

G2T (u,s) =

{ (−1)q

(2q−1)! p
m(u,s)q−1

j=0

(q−1+ j
j

)
(u− s)q−1− j j(u,s), 1 ≤ s ≤ u ≤ 2;

(−1)q

(2q−1)!
m(u,s)q−1

j=0

(q−1+ j
j

)
(s−u)q−1− j p j(u,s), 1 ≤ u ≤ s ≤ 2.

(9.54)

where p(u,s) = (s−1)(2−u)
2−1

,  (u,s) = p(u,s) for all u,s ∈ [1,2].
In [22] and [68] the positivity of Green’s functions is given as follows.

Lemma 9.1 For the Green function GH,m(u,s) as defined in (9.49), the following results
hold. (i)

GH,m(u,s)
(u)

> 0 c1 ≤ u ≤ cl, c1 ≤ s ≤ cl.

(ii)

GH,m(u,s) ≤ 1
(m−1)!(2−1)

|(u)| .

(iii) ∫ 2

1

GH,m(u,s)ds =
(u)
m!

.

Theorem 9.9 Let f : [1,2]→R be a function. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . ,

pn ∈ (0,) be such that
n

i=1

pi = 1. Also let 1 = c1 < c2 < .. . < cl = 2 (l ≥ 2) be the

points and f ∈Cm([1,2]). Moreover Hi j and GH,m are as defined by (9.48) and (9.49)
respectively. Then for i = 1, . . . ,35 we have

i( f (u)) =
l


j=1

k j


i=0

f (i)(c j)i(Hij (u))+
∫ 2

1

i (GH,m(u,s)) f (m)(s)ds. (9.55)

Proof. Using (9.47) and (9.2) and by the linearity of i( f ) we get (9.55).

Theorem 9.10 Let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈ [1,2] and

p1, . . . , pn ∈ (0,) be such that
n

i=1

pi = 1. Also let 1 = c1 < c2 ≤ . . . < cl = 2 (l ≥ 2)

be the points and f ∈Cm([1,2]). Moreover Hi j and GH,m are as defined by (9.48) and
(9.49) respectively. Assume f is m-convex function and

i (GH,m(u,s)) ≥ 0 for all s ∈ [1,2], i = 1, . . . ,35.,

then

i( f (u)) ≥
l


j=1

k j


i=0

f (i)(c j)i(Hij (u)), i = 1, . . . ,35. (9.56)
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Proof. As it is given that f is m-convex therefore f (m)(u) ≥ 0 for all u ∈ [1,2]. Hence
by applying Theorem 9.9 we get (9.56).

Remark 9.3 If (9.56) is reversed then (9.56) is reversed under the assumption of Theorem
9.10.

Lagrange conditions give following results.

Corollary 9.1 Let all the assumptions of Theorem 9.9 hold. Let GL be as defined in
(9.50), f be m-convex function and

i (GL(u,s)) ≥ 0 for all s ∈ [1,2], i = 1, . . . ,35.,

then

i( f (u)) ≥
m


j=1

f (i)(c j)i

(
m


k=1,k �= j

(
u− c j

c j − ck

))
, i = 1,2, . . . ,35.

On using the type (q,m−q) conditions we have the following result.

Corollary 9.2 Let all the assumptions of Theorem 9.9 hold, G(q,m) be a Green function
as defined in (9.53) and i and i as defined in (9.51) and (9.52) respectively. Also let f be
m-convex function and

i
(
G(q,m)(u,s)

) ≥ 0 for all s ∈ [1,2], i = 1, . . . ,35.,

then

i( f (u)) ≥
q−1


i=0

f (i)(1)i(i(u))+
m−q−1


i=0

f (i) (2)i(i(u)), i = 1, . . . ,35.

Two-point Taylor condition is used in order to obtain the following result.

Corollary 9.3 Let all the assumptions of Theorem 9.9 hold, G2T be a Green function as
defined in (9.54). Also let f be m-convex function and

i (G2T (u,s)) ≥ 0 for all s ∈ [1,2], i = 1, . . . ,35.,

then

i( f (u)) ≥
q−1


i=0

q−1−i


k=0

(
q+ k−1

k

)[
f (i)(1)i

(
(u−1)i

i!

(
u−2

1−2

)q (
u−1

2 −1

)k
)

+ f (i)(2)i

(
(u−2)i

i!

(
u−1

2−1

)q (
u−2

1 −2

)k
)]

, i = 1, . . . ,35.
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Theorem 9.11 Let all the assumptions of Theorem (9.9) hold, f : [1,2] → R be m-
convex function.
(i) If k j is odd for each j = 2, . . . , l then (9.56) holds.
(ii) Let (9.56) be satisfied and the function

F(u) =
l


j=1

k j


i=1

f (i)(c j)Hij (u)

is supposed to be convex. Then the smaller side of (9.56) is non-negative and we have

i( f (u)) ≥ 0, i = 1, . . . ,35.

Proof. (i) Since k j is odd for all j = 2, . . . , l so we have (u)≥ 0, we have GH,m−2(u,s)≥
0, so GH,m is convex, therefore i (GH,m(u,s)) ≥ 0, using Theorem 9.10, we get (9.56).
(ii) By using the linearity of i( f ) we can write the smaller side of (9.56) in the form
i( ). As  is supposed to be convex therefore the smaller side of (9.56) is non-negative,
so i( f ) ≥ 0.

Theorem 9.12 Let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈ [1,2] and

p1, . . . , pn ∈ (0,) be such that
n

i=1

pi = 1. Also let 1 = c1 < c2 < .. . < cl = 2 (l ≥ 2) be

the points and f ∈Cm([1,2]). Furthermore let Hi j , GH,m and G be as defined in (9.48),
(9.49) and (9.93) respectively. Then we have

i ( f (u)) =
∫ 2

1

i (G(u,t))
l


j=1

k j


i=0

f (i+2) (c j)Hij (t)dt

+
∫ 2

1

∫ 2

1

i (G(u,t))GH,m−2(t,s) f (m)(s)dsdt, i = 1,2, . . . ,35. (9.57)

Proof. Using (9.94) and (9.2) and following the linearity of i(.), we have

i( f (u)) =
∫ 2

1

i (G(u,t)) f ′′(t)dt. (9.58)

By Theorem 9.8, f ′′(t) can be expressed as

f ′′(t) =
l


j=1

k j


i=0

Hij (t) f (i+2)(c j)+
∫ 2

1

GH,m−2(t,s) f (m)(s)ds. (9.59)

Using (9.59) in (9.58), we get (9.57).

Theorem 9.13 Let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈ [1,2] and

p1, . . . , pn be positive real numbers such that
n

i=1

pi = 1. Also let 1 = c1 < c2 < .. . <

cl = 2 (l ≥ 2) be the points and f ∈Cm([1,2]). Furthermore let Hi j , GH,m and G be as
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defined in (9.48), (9.49) and (9.93) respectively. Let f : [1,2]→ R be m-convex function
and ∫ 2

1

i(G(u,t))GH,m−2(t,s)dt ≥ 0 t ∈ [1,2], i = 1,2, . . . ,35. (9.60)

Then

i( f (u)) ≥
∫ 2

1

i (G(u,t))
l


j=1

k j


i=0

f (i+2)(c j)Hij (u)du, i = 1,2, . . . ,35. (9.61)

Proof. Since the function f is m-convex therefore f (m)(u) ≥ 0 for all u ∈ [1,2]. Hence
by applying Theorem 9.12 we obtain (9.61).

Theorem 9.14 Let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈ [1,2] and

p1, . . . , pn ∈ (0,) be such that
n

i=1

pi = 1. Also let 1 = c1 < c2 < .. . < cl = 2 (l ≥ 2)

be the points and f ∈Cm([1,2]). Let f : [1,2] → R be m-convex function. Then the
following holds.
(i) If k j is odd for each j = 2, . . . , l then (9.61) holds.
(ii) Let the inequality (9.61) be satisfied

F(.) =
l


j=1

k j


i=0

f (i+2)(c j)Hij (.) (9.62)

is non-negative. Then i( f (u)) ≥ 0, i = 1, 2, . . . , 35.

Proof. (i) Since G(u,t) is convex and weights are positive, so i (G(u,t)) ≥ 0. Also
as k j is odd for all j = 2, . . . , l, therefore (t) ≥ 0 and by using Lemma 9.1 (i), we have
GH,m−2(u,s) ≥ 0 so (9.60) holds. Now using Theorem 9.13 we have (9.61).
(ii) Using (9.62) in (9.61), we get i( f (u)) ≥ 0. For the particular case of Hermite
conditions, we can give the following corollaries to above Theorem 9.14. By using type
(q,m−q) conditions we give the following results.

Corollary 9.4 Let i,i be as defined in (9.51) and (9.52) respectively. Let f : [1,2]→
R be m-convex function.
(i) If m−q is even, then the inequality

i( f (u)) ≥
∫ 2

1

i (G(u,t))

(
q−1


i=0

i(t) f (i+2)(1)+
m−q−1


i=0

i(t) f (i+2)(2)

)
dt,

holds for i = 1,2, . . . ,35.
(ii) Let the inequality (9.63) be satisfied

F(·) =
q−1


i=0

i(·) f (i+2)(1)+
m−q−1


i=0

i(·) f (i+2)(2)

is non-negative. Then i( f (u)) ≥ 0, i = 1, 2, . . . , 35.
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Two points Taylor conditions give help to derive following results.

Corollary 9.5 Let f : [1,2] → R be m-convex function.
(i) If m is even, then

i( f (u)) ≥
∫ 2

1

i(G(u,t))
q−1


i=0

q−i−1


k=0

(
q+ k−1

k

)
[

(t −1)i

i!

(
t−2

1 −2

)q (
t −1

2 −1

)k

f (i+2)(1)

+
(t−2)i

i!

(
t−1

2 −1

)q (
t−2

1 −2

)k

f (i+2)(2)

]
dt, i = 1,2, . . . ,35.

(ii) Let the inequality (9.63) be satisfied and

F(t) =
q−1


i=0

q−i−1


k=0

(
q+ k−1

k

)[
(t−1)i

i!

(
t−2

1 −2

)q (
t−1

2−1

)k

f (i+2)(1)

+
(t−2)i

i!

(
t−1

2 −1

)q (
t−2

1 −2

)k

f (i+2)(2)

]
is non-negative. Then i( f (u)) ≥ 0, i = 1, 2, . . . , 35.

9.4 Generalization of Refinement of Jensen’s, Rényi
and Shannon Type Inequalities via Lidstone
Polynomial

In this section refinement of Jensen’s inequality is generalized for higher order convex
functions using Lidstone interpolating polynomial.

Lemma 9.2 If g ∈C([0,1]), then

g(u) =
m−1


l=0

[
g(2l)(0)Fl(1−u)+g(2l)(0)Fl(t)

]
+

∫ 1

0
Gm(u,s)g(2m)(s)ds

where Fl is a polynomial of degree 2l +1 defined by the relation

F0(u) = u, F′′
m(u) = Fm−1(u), Fm(0) = Fm(1) = 0, m ≥ 1, (9.63)

and

G1(u,s) = G(u,s) =
{

(u−1)s, 1 ≤ s ≤ u ≤ 2;
(s−1)u, 1 ≤ u ≤ s ≤ 2,
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is a homogeneous Green function of the differential operator d2

d2s
on [0,1], and with the

iterates of G(u,s)

Gm(u,s) =
∫ 1

0
G1(u, p)Gm−1(p,s)dp, m ≥ 2.

The Lidstone polynomial can be expressed in terms of Gm(u,s) as

Fm(u) =
∫ 1

0
Gm(u,s)sds.

Lidstone series representation of g ∈C2m[1,2] is given by

g(u) =
m−1


l=0

(2 −1)2lg(2l)(1)Fl

(
2−u
2 −1

)
+

m−1


l=0

(2 −1)2lg(2l)(2)Fl

(
u−1

2 −1

)
+ (2 −1)2l−1

∫ 2

1

Gm

(
u−1

2 −1
,

t−1

2 −1

)
g(2l)(t)dt. (9.64)

We construct some new identities with the help of generalized Lidstone polynomial
(9.64).

Theorem 9.15 Let f : [1,2]→ R be a function be such that f ∈C2m[1,2] for m≥ 1.

Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn ∈ (0,) such that
n

i=1

pi = 1, and Fm(t) be the

same as defined in (9.63), then

i( f ) =
m−1


k=1

(2 −1)2k f (2k)(1)i

(
Fl

(
2 − x
2 −1

))
+

m−1


k=1

(2 −1)2k f (2k)(2)i

(
Fl

(
x−1

2−1

))
+(2−1)2k−1

∫ 2

1

i

(
Gm

(
x−1

2 −1
,

t−1

2−1

))
f (2m)(t)dt, i = 1,2, . . . ,35.

(9.65)

Proof. Using (9.64) in place of f in i( f ), i = 1,2, . . . ,35, we get (9.65).

Theorem 9.16 Let f : [1,2] → R be a function such that f ∈ C2m[1,2] for m ≥ 1.

Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn ∈ (0,) be such that
n

i=1

pi = 1, and Fm(t) be

the same as defined in (9.63), let for m ≥ 1

i

(
Gm

(
x−1

2 −1
,

t−1

2−1

))
≥ 0, for all t ∈ [1,2]. (9.66)

If f is 2m-convex function then we have

i( f ) ≥
m−1


k=1

(2 −1)2k f (2k)(1)i

(
Fl

(
2 − x
2 −1

))
+

m−1


k=1

(2 −1)2k f (2k)(2)i

(
Fl

(
x−1

2 −1

))
, i = 1,2, . . . ,35.

(9.67)
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Proof. Since f is 2m-convex therefore f (2m) ≥ 0 for all x ∈ [1,2], then by using (9.66)
in (9.65) we get (9.67).

Theorem 9.17 Let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈ [1,2] and

p1, . . . , pn ∈ (0,) be such that
n

i=1

pi = 1, also let f : [1,2] → R be 2m-convex func-

tion then following results are valid.
(i) If m is odd integer, then for every 2m-convex function (9.67) holds.
(ii) Suppose (9.67) holds, if the function

 (u) =
m−1


l=0

(2 −1)2lg(2l)(1)Fl

(
2 −u
2 −1

)
+

m−1


l=0

(2 −1)2lg(2l)(2)Fl

(
u−1

2−1

)
is convex, then the smaller side of (9.67) is non-negative and we have

i( f ) ≥ 0, i = 1,2, . . . ,35. (9.68)

Proof. (i) Note that G1(u,s) ≤ 0 for 1 ≤ u,s,≤ 1 and also note that Gm(u,s) ≤ 0 for
odd integer m and Gm(u,s) ≥ 0 for even integer m. As G1 is convex function and Gm−1 is
positive for odd integer m, therefore

d2

d2u
(Gm(u,s)) =

∫ 1

0

d2

d2u
G1(u, p)Gm−1(p,s)dp ≥ 0, m ≥ 2.

This shows that Gm is convex in the first variable u if m is convex. Similarly Gm is concave
in the first variable if m is even. Hence if m is odd then

i

(
Gm

(
x−1

2 −1
,

t −1

2 −1

))
≥ 0,

therefore (9.68) is valid.
(ii) By using linearity of i( f ) we can write the smaller side of (9.67) in the form i( ).
As  is supposed to be convex therefore the smaller side of (9.67) is non-negative, so
i( f ) ≥ 0.

9.5 Generalization of Refinement of Jensen’s, Rényi
and Shannon Type Inequalities via Fink Identity
and Abel-Gontscharoff Green Fuction

In [41], A. M. Fink gave the following result.
Let f : [1,2] → R be a function such that f (n−1) is absolutely continuous then we

have the following identity:

f (z) =
n

2−1

∫ 2

1

f ( )d
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+
n−1


=1

n−
 !

(
f (−1)(2)(z−2) − f (−1)(1)(z−1)

2 −1

)
+

1
(n−1)!(2−1)

∫ 2

1

(z−  )n−1F2
1 ( ,z) f (n)( )d , (9.69)

where

F2
1 ( ,z) =

{
 −1, 1 ≤  ≤ z ≤ 2;

 −2, 1 ≤ z <  ≤ 2.
(9.70)

The complete reference about Abel-Gontscharoff polynomial and theorem for ‘two-
point right focal’ problem is given in [15].

The Abel-Gontscharoff polynomial for ‘two-point right focal’ interpolating polynomial
for n = 2 can be given as

f (z) = f (1)+ (z−1) f ′(2)+
∫ 2

1

G1(z,w) f ′′(w)dw, (9.71)

where

G1(z,w) =

{
1 −w, 1 ≤ w ≤ z;

1 − z, z ≤ w ≤ 2.
(9.72)

In [31], S. I. Butt et al. gave some new types of Green functions defined as

G2(z,w) =

{
2 − z, 1 ≤ w ≤ z;

2 −w, z ≤ w ≤ 2,
(9.73)

G3(z,w) =

{
z−1, 1 ≤ w ≤ z;

w−1, z ≤ w ≤ 2,
(9.74)

G4(z,w) =

{
2 −w, 1 ≤ w ≤ z;

2 − z, z ≤ w ≤ 2.
(9.75)

They also introduced some new Abel-Gontscharoff type identities by using these new
Green functions in the next result.

Lemma 9.3 Let f : [1,2] be a function such that f ′′ exists and Gk (k = 2,3,4) be the
two-point right focal problem-type Green functions defined by (9.73)-(9.75). Then the
following identities hold:

f (z) = f (2)− (2− z) f ′(1)−
∫ 2

1

G2(z,w) f ′′(w)dw, (9.76)

f (z) = f (2)− (2−1) f ′(2)+ (z−1) f ′(1)+
∫ 2

1

G3(z,w) f ′′(w)dw, (9.77)

f (z) = f (1)+ (2−1) f ′(1)− (2− z) f ′(2)+
∫ 2

1

G4(z,w) f ′′(w)dw. (9.78)
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Theorem 9.18 Let f : [1,2]→ R be a function such that for m≥ 3 (an integer) f (m−1)

is absolutely continuous. Also, let x1, . . . ,xn ∈ [1,2], p1, . . . , pn ∈ (0,) be such that
n

i=1 pi = 1. Assume that F2
1 , Gk (k = 1,2,3,4) and i (i = 1, . . . ,35) are the same as

defined in (9.70), (9.72)-(9.75), (9.1), (9.2), (9.4)-(9.38) respectively. Then:

(i) For k = 1,3,4 we have the following identities:

i( f ) = (m−2)
(

f ′(2)− f ′(1)
2 −1

)∫ 2

1

i
(
Gk(·,w)

)
dw

+
1

2 −1

∫ 2

1

i
(
Gk(·,w)

)
×

m−3


=1

(
m−2−

 !

)(
f (+1)(2)(w−2) − f (+1)(1)(w−1)

)
dw

+
1

(m−3)!(2−1)

∫ 2

1

f (m)( )

×
(∫ 2

1

i
(
Gk(·,w)

)
(w−  )m−3F2

1 ( ,w)dw

)
d , i = 1, . . . ,35.

(9.79)

(ii) For k = 2 we have

i( f ) = (−1)(m−2)
(

f ′(2)− f ′(1)
2−1

)∫ 2

1

i
(
G2(·,w)

)
dw

+
(−1)

2 −1

∫ 2

1

i
(
G2(·,w)

)
×

m−3


=1

(
m−2−

 !

)(
f (+1)(2)(w−2) − f (+1)(1)(w−1)

)
dw

+
(−1)

(m−3)!(2−1)

∫ 2

1

f (m)( )

×
(∫ 2

1

i
(
G2(·,w)

)
(w−  )m−3F2

1 ( ,w)dw

)
d , i = 1, . . . ,35.

(9.80)

Proof. (i) Using Abel-Gontsharoff-type identities (9.71), (9.77), (9.78) in i( f ), i =
1, . . . ,35, and using properties of i( f ), we get

i( f ) =
∫ 2

1

i
(
Gk(·,w)

)
f ′′(w)dw, i = 1,2. (9.81)

From identity (9.69), we get

f ′(w) = (m−2)
(

f ′(2)− f ′(1)
2−1

)
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+
m−3


=1

(
m−2−

 !

)(
f ( )(2)(w−2)−1− f ( )(2)(w−2)−1

2 −1

)
+

1
(m−3)!(2−1)

∫ 2

1

(w−  )m−3F2
1 ( ,w) f (m)( )d . (9.82)

Using (9.81) and (9.82) and applying Fubini’s theorem we get the result (9.79) for
k = 1,3,4.

(ii) Substituting Abel-Gontsharoff-type inequality (9.76) in i( f ), i = 1, . . . ,35, and
following similar steps to (i), we get (9.80).

Theorem 9.19 Let f : I = [1,2] → R be a function such that for m ≥ 3 (an integer)
f (m−1) is absolutely continuous. Also, let x1, . . . ,xn ∈ I, p1, . . . , pn be positive real numbers
such that n

i=1 pi = 1. Assume that F2
1 , Gk (k = 1,2,3,4) and i (i = 1,2) are the same

as defined in (9.70), (9.72)-(9.75) (9.1), (9.2), (9.4)-(9.38) respectively. For m ≥ 3 assume
that∫ 2

1

i
(
Gk(·, )

)
(w−  )m−3F2

1 ( ,w)dw ≥ 0,  ∈ [1,2], i = 1, . . . ,35. (9.83)

If f is an m-convex function, then

(i) For k = 1,3,4, the following holds:

i( f ) ≥ (m−2)
(

f ′(2)− f ′(1)
2−1

)∫ 2

1

i
(
Gk(·,w)

)
dw

+
1

2−1

∫ 2

1

i
(
Gk(·,w)

)
×

m−3


=1

(
m−2−

 !

)(
f (+1)(2)(w−2)

− f (+1)(1)(w−1)
)
dw, i = 1, . . . ,35. (9.84)

(ii) For k = 2, we have

i( f ) ≤ (−1)(m−2)
(

f ′(2)− f ′(1)
2−1

)∫ 2

1

i
(
G2(·,w)

)
dw

+
(−1)

2 −1

∫ 2

1

i
(
G2(·,w)

)
×

m−3


=1

(
m−2−

 !

)(
f (+1)(2)(w−2)

− f (+1)(1)(w−1)
)
dw, i = 1, . . . ,35. (9.85)

Proof. (i) Since f (m−1) is absolutely continuous on [1,2], f (m) exists almost everywhere.
Also, since f is m-convex therefore we have f (m)( ) ≥ 0 for a.e. on [1,2]. So, applying
Theorem 9.18, we obtain (9.84).

(ii) Similar to (i).
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9.6 Generalization of Refinement of Jensen’s, Rényi
and Shannon type Inequalities via Taylor’s one
and two point Polynomials

In [29], the well known Taylor formula is given as follows:
Let m be a positive integer and f : [1,2] → R be such that f (m−1) is absolutely continu-
ous, then for all u ∈ [1,2] the Taylor formula at point c ∈ [1,2] is

f (u) = Tm−1( f ;c;u)+Rm−1( f ;c;u), (9.86)

where

Tm−1( f ;c;u) =
m−1


l=0

f (l)(c)
l!

(u− c)l,

and the remainder is given by

Rm−1( f ;c;u) =
1

(m−1)!

∫ u

c
f (m)(t)(u− t)m−1

+ dt,

for

(u− v)+ :=
{

(u− v), v ≤ u;
0, v > u.

The Taylor formula at points 1 and 2 is given by:

f (u) =
m−1


l=0

f (l)(1)
l!

(u−1)l +
1

(m−1)!

∫ 2

1

f (m)(t)
(
(u− t)m−1

+
)
dt. (9.87)

f (u) =
m−1


l=0

(−1)l f (l)(2)
l!

(2 −u)l +
(−1)m−1

(m−1)!

∫ 2

1

f (m)(t)
(
(t −u)m−1

+
)
dt. (9.88)

We construct some new identities with the help of Taylor polynomial (9.86).

Theorem 9.20 Let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈ [1,2] and

p1, . . . , pn ∈ (0,) be such that
n

i=1

pi = 1. Then for i = 1, . . . ,35 we have the following

identities:
(i)

i( f ) =
m−1


l=2

f (l)(1)
l!

i

(
(u−1)l

)
+

1
(m−1)!

∫ 2

1

f (m)(t)i
(
(u− t)m−1

+
)
dt. (9.89)

(ii)

i( f )=
m−1


l=2

(−1)l f (l)(2)
l!

i

(
(2−u)l

)
+

(−1)m−1

(m−1)!

∫ 2

1

f (m)(t)i
(
(t−u)m−1

+
)
dt. (9.90)
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Proof. Using (9.87) and (9.88) in (9.2), we get (9.89) and (9.90).

Theorem 9.21 Assume (H1), let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈
[1,2] and p1, . . . , pn ∈ (0,) be such that

n

i=1

pi = 1. Let f be a m-convex function such

that f (m−1) is absolutely continuous. Then we have the following results:
(i) If

i
(
(u− t)m−1

+
) ≥ 0 t ∈ [1,2], i = 1,2, . . . ,35,

then

i( f (u)) ≥
m−1


l=2

f (l)(1)
l!

i

(
(u−1)l

)
, i = 1,2, . . . ,35. (9.91)

(ii) If

(−1)m−1i
(
(t −u)m−1

+
) ≤ 0 t ∈ [1,2], i = 1,2, . . . ,35,

then

i( f (u)) ≥
m−1


l=2

(−1)l f (l)(2)
l!

i

(
(2 −u)l

)
, i = 1,2, . . . ,35. (9.92)

Proof. Since f (m−1) is absolutely continuous on [1,2], f (m) exists almost everywhere.
As f is m-convex therefore f (m)(u)≥ 0 for all u ∈ [1,2]. Hence using Theorem 9.20 we
obtain (9.91) and (9.92).

Theorem 9.22 Let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈ [1,2] and

p1, . . . , pn ∈ (0,) be such that
n

i=1

pi = 1. Then we have the following three results.

(i) If f is m-convex, then (9.91) holds. Also if f (l)(1) ≥ 0 for l = 2, . . . ,m− 1, then
the smaller side of (9.91) will be non-negative.
(ii) If m is even and f is m-convex, then (9.92) holds. Also if f (l)(1)≤ 0 for l = 2, . . . ,m−
1 and f (l) ≥ 0 for l = 3, . . . ,m−1, then smaller side of (9.92) will be non-negative.
(iii)If m is odd and f is m-convex function then (9.92) is valid. Also if f (l)(2) ≥ 0 for
l = 2, . . . ,m− 1 and f (l)(2) ≤ 0 for l = 2, . . . ,m− 2, then smaller side of (9.92) will be
non positive.

In [32, p.20] the Green function G : [1,2]× [1,2] → R is defined as

G(u,v) =

{
(u−2)(v−1)

2−1
, 1 ≤ v ≤ u;

(v−2)(u−1)
2−1

, u ≤ v ≤ 2.
(9.93)

We can check that G is convex as well as continuous function with respect to both variables
u and v. The function G is convex and continuous with respect to v, since G is symmetric
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therefore it is also convex and continuous with respect to variable u.
Let  ∈C2 ([1,2]), then

 (t) =
2− t
2 −1

(1)+
t−1

2 −1
(2)+

2∫
1

G(t,v) ′′(v)dv. (9.94)

Theorem 9.23 Let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈ [1,2] and

p1, . . . , pn ∈ (0,) be such that
n

i=1

pi = 1. Then we have the following results:

(i) For i = 1,2, . . . ,35,

i( f ) =
2∫
1

i(G(t,v))

(
n−1


l=1

f (l)(1)(v−1)l−2

(l−2)!

)
dv

+
1

(n−3)!

2∫
1

f (m)(s)

⎛⎝ 2∫
1

i(G(t,v))(v− s)n−3dv

⎞⎠ds. (9.95)

(ii) For i = 1,2, . . . ,35,

i( f ) =
2∫
1

i(G(t,v))

(
n−1


l=1

f l(2)(v−2)l−2

(l−2)!

)
dv

− 1
(n−3)!

2∫
1

f (m)(s)

⎛⎝ 2∫
1

i(G(t,v))(v− s)n−3dv

⎞⎠ds. (9.96)

Proof. Using (9.94) in i, i = 1,2, . . . ,35, we get

i( f ) =
2∫
1

i (G(t,v)) f ′′(v)dv. (9.97)

Differentiating (9.87) twice, we get

f ′′(v) =
n−1


l=2

f (l)(1)
(l−2)!

(v−1)l−2 +
1

(m−3)!

2∫
1

f (m)(v−u)m−3du. (9.98)

Using (9.98) in (9.97) and using Fubini’s theorem, we get (9.95). Similarly using second
derivative of (9.88) in (9.97) and applying Fubini’s theorem, we get (9.96). The next result
contains the generalization of refinement of Jensen’s inequality for higher order convex
function. Now we obtain generalization of refinement of Jensen’s inequality for n-convex
function.
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Theorem 9.24 Let f : [1,2] → R be a function. Also let x1, . . . ,xn ∈ [1,2] and

p1, . . . , pn ∈ (0,) be such that
n

i=1

pi = 1. Let f is m-convex function such that f (m−1)

is absolutely continuous. Then we have the following results:
(i) If

2∫
u

i (G(t,v))(v−u)n−3dv ≥ 0 u ∈ [1,2], i = 1,2, . . . ,35, (9.99)

then

i( f ) ≥
2∫
1

i (G(t,v))

(
n−2


l=2

f (l)(1)(v−1)l−2

(l−2)!

)
dv, i = 1,2, . . . ,35, (9.100)

and if

u∫
1

i (G(t,v))(v−u)n−3dv ≤ 0 u ∈ [1,2], i = 1,2, . . . ,35, (9.101)

then

i( f ) ≥
2∫
1

i(G(t,v))

(
n−2


l=2

f (l)(2)(v−2)l−2

(l−2)!

)
dv i = 1,2, . . . ,35. (9.102)

Proof. It can be proved in similar manner as Theorem 9.21.

Corollary 9.6 Let f : [1,2]→R be a function. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . ,

pn ∈ (0,) be such that
n

i=1

pi = 1. Then the following two results are valid.

(i) Suppose f is m-convex function, then (9.100) holds. Also if

n−1


l=2

f (l)(1)(v−1)l−2

(l−2)!
≥ 0, (9.103)

then

i ( f ) ≥ 0, i = 1,2, . . . ,35. (9.104)

(ii) If m is even and f is m-convex, then (9.102) holds. Also if

n−1


l=2

f (l)(2)(v−2)l−2

(l−2)!
≥ 0, (9.105)

then (9.104) holds.
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Remark 9.4 We can discover the bounds for the identities given in (9.43), (9.45), (9.55),
(9.57), (9.65), (9.79), (9.80), (9.89) and (9.90). By using and some new results related to
the Gr̈uss and Ostrowski type inequalities can be constructed by using inequalities for the
C̆ebys̆ev functional as given in Section 3 of [29]. Also we can construct the non-negative
functionals using inequalities (9.44), (9.46), (9.56), (9.61), (9.67), (9.84), (9.85), (9.91)
and (9.92) and give related mean value theorems and we can construct the new families of
m-exponentially convex functions and Cauchy means related to these functionals as given
in Section 4 of [29].

9.7 Bounds for the Identities Related to
Generalization of Refinement of
Jensen’s Inequality

For two Lebesgue integrable functions f1, f2 : [1,2]→ R, the Čebyšev functional [29] is
defined as

( f1, f2)

=
1

2 −1

∫ 2

1

f1(t) f2(t)dt− 1
(2 −1)2

∫ 2

1

f1(t)dt ·
∫ 2

1

f2(t)dt, (9.106)

where the integrals are assumed to exist.
In [34], the following theorems are given.

Theorem 9.25 Suppose functions f1, f2 : [1,2]→R, where f1 is a Lebesgue integrable
function and f2 is an absolutely continuous function such that (.− 1)(.− 2)[ f

′
2]

2 ∈
L[1,2]. Then the following inequality holds:

|( f1, f2)| ≤ 1√
2
[( f1, f1)]

1
2

1√
 −

(∫ 2

1

(x−1)(2 − x)[ f ′2(x)]
2dx

) 1
2

. (9.107)

The constant 1√
2

in (9.107) is the best possible.

Theorem 9.26 Suppose functions f1, f2 : [1,2] → R, such that f1 is absolutely contin-
uous with f

′
1 ∈ L[1,2] and f2 is a monotonic non-decreasing on interval [1,2]. Then

the following inequality holds:

|( f1, f2)| ≤ 1
2(2 −1)

|| f ′1||
∫ 2

1

(x−1)(2 − x)[ f ′2(x)]
2d f2(x), (9.108)

where the constant 1
2 is best possible in (9.108).
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Now we consider Theorem 9.25 and Theorem 9.26 to generalize results given in previ-
ous section. Let us first denote for  ∈ [1,2]

K ( ) =
∫ 2

1

i(Gk(·,w)(w−  )n−3F2
1 ( ,w)dw k = 1,3,4., (9.109)

ˆK ( ) = (−1)
∫ 2

1

i(G2(·,w))(w−  )n−3F2
1 ( ,w)dw, i = 1,2. (9.110)

In the next two results bounds are investigated for the generalized identities related to the
refinement of Jensen’s inequality using Theorem 9.25 and Theorem 9.26.

The following results investigate the bounds for the identities related to generaliza-
tion of refinement of Jensen’s inequality using inequalities for Čebyšev function given in
Theorem 9.25 and Theorem 9.26.

Theorem 9.27 Let m≥ 3 be an integer, and f : [1,2]→ R be a function such that f (m)

is absolutely continuous with (.−1)(2 − .)[ f (m+1)]2 ∈ L[1,2]. Let p1, . . . , pn ∈ (0,)
be such that n

i=1 pi = 1. Also, assume F2
1 and i(i = 1,2) are the same as defined in

(9.70) and (9.1)-(9.2) respectively. Then
(i) for Gk(·,w)(k = 1,3,4) as defined in (9.72), (9.74) and (9.75) respectively, we have

i( f ) = (m−2)
(

f ′(2)− f ′(1)
2 −1

)∫ 2

1

i(Gk(·,w))dw+
1

2 −1

∫ 2

1

i(Gk(·,w))

×
m−3


=1

(
m−2−

 !

)(
f (+1)(2)(w−2) − f (+1)(1)(w−1)

)
dw

+
f (m−1)(2)− f (m−1)(1)

(m−3)!(2−1)2

∫ 2

1

K ( )d +R1
m(1,2; f ), i = 1,2, (9.111)

where the remainder R1
m(1,2; f ) satisfies the bound

|R1
m(1,2; f )| ≤ 1√

2(m−3)!
[(K ,K )]

1
2

1√
2 −1(∫ 2

1

( −1)(2 −  )[ f (m+1)( )]2d
) 1

2

. (9.112)

(ii) for G2(z,w) as defined in (9.73), we have

i( f ) = (−1)(m−2)
(

f ′(2)− f ′(1)
2 −1

)∫ 2

1

i(G2(·,w))dw+
(−1)

2 −1

∫ 2

1

i(G2(·,w))

×
m−3


=1

(
m−2−

 !

)(
f (+1)(2)(w−2) − f (+1)(1)(w−1)

)
dw

+
f (m−1)(2)− f (m−1)(1)

(m−3)!(2−1)2

∫ 2

1

K ( )d +R2
m(1,2; f ), i = 1,2, (9.113)

where the remainder R2
m(1,2; f ) satisfies the bound
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|R2
m(1,2; f )| ≤ 1√

2(m−3)!
[( ˆK , ˆK )]

1
2

1√
2 −1(∫ 2

1

( −1)(2 −  )[ f (m+1)( )]2d
) 1

2

.

Proof. (i) Setting f1 �→ K and f2 �→ f (m) in Theorem 9.25, we get∣∣∣∣ 1
2−1

∫ 2

1

K ( ) f (m)( )d − 1
2 −1

∫ 2

1

K ( )d · 1
2 −1

∫ 2

1

f (m)( )d
∣∣∣∣

≤ 1√
2
[(K ,K )]

1
2

1√
2−1

(∫ 2

1

( −1)(2 −  )[ f (m+1)( )]2d
) 1

2

.

Hence, we have

1
(m−3)!(2−1)

∫ 2

1

K ( ) f (m)d

=
f (m−1)(2)− f (m−1)(1)

(m−3)!(2−1)2

∫ 2

1

K ( )d +R1
m(1,2; f )

where the remainder satisfies the estimation (9.112). Using identity (9.79) we get (9.111).
(ii) Similar to the above part. The Grüss type inequalities can be obtained by using
Theorem 9.26.

Theorem 9.28 Let m ≥ 3 be an integer, f : [1,2] → R be a function such that f (m) is
absolutely continuous function and f (m+1) ≥ 0 a.e on [1,2] and let the function K and

ˆK be defined as in (9.109) and (9.110). Then we have
(i) identity (9.111) where the remainder satisfies the estimation

|R1
m(1,2; f )| ≤ 1

(m−3)!
||K ′||[

f (m−1)(2)+ f (m−1)(1)
2

− f (m−1)(2)− f 8(m−1)(1)
2 −1

]
.

(ii) identity (9.113) where the remainder satisfies the estimation

|R1
m(1,2; f )| ≤ 1

(m−3)!
|| ˆK ||[

f (m−1)(2)+ f (m−1)(1)
2

− f (m−1)(2)− f (m−1)(1)
2 −1

]
.

Proof. (i) Setting f1 �→ K and f2 �→ f (m) in Theorem 9.26, we get∣∣∣∣ 1
2−1

∫ 2

1

K ( ) f (m)( )d − 1
2 −1

∫ 2

1

K ( )d · 1
2 −1

∫ 2

1

f (m)( )d
∣∣∣∣
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≤ 1
2
||K ′|| 1

2 −1

∫ 2

1

( −1)(2 −  )[ f (m+1)( )]2d . (9.114)

Since ∫ 2
1

( −1)(2 −  )[ f (m+1)( )]2d =
∫ 2
1

[2 −1−2] f m( )d

= (2 −1)[ f (m−1)(2)+ f (m−1)(1)]−2( f (m−1)(2)− f (m−1)(1)), (9.115)

using (9.79), (9.114) and (9.115), we have (9.114).
(ii) Similar to above part.

Theorem 9.29 Let f : [1,2] → R be a function such that f (m−1) is absolutely con-
tinuous, let x1, . . . ,xn ∈ [1,2], p1, . . . , pn ∈ (0,) be such that n

i=1 pi = 1. Also, let
F2
1 , Gk(k = 1,2,3,4) and i(i = 1,2) are the same as defined in (9.70), (9.72)-(9.75) and

(9.1)-(9.2) respectively. Moreover, assume (p,q) such that 1 ≤ p,q,≤ , 1
p + 1

q = 1 (pair

of conjugate exponent). Let | f (m)|p : [1,2] → R be Riemann integrable function. Then
(i) for k = 1,3,4, we have∣∣∣∣∣i( f )−

∫ 2

1

[
(m−2)

(
f ′(2)− f ′(2)

2 −1

)
+

1
2 −1

m−3


=1

(
m−2−



)
(

f (+1)(2)(w−2)− f (+1)(2)(w−2)
)]

i(Gk(·,w))dw

∣∣∣∣∣
≤ 1

(2 −1)(m−3)!
|| f (m)||p

(∫ 2

1

∣∣∣∣∫ 2

1

i(Gk(·,w))(w−  )m−3F2
1 ( ,w)dw

∣∣∣∣q) 1
q

,

i = 1,2. (9.116)

(ii) for k = 2, we have∣∣∣∣i( f )−
∫ 2

1

[
(−1)(m−2)

(
f ′(2)− f ′(2)

2 −1

)
+

1
2−1

m−3


=1

(
m−2−



)
( f (+1)(2)(w−2)− f (+1)(2)(w−2))

]
i(G2(·,w))dw

∣∣∣∣
≤ (−1)

(2 −1)(m−3)!
|| f (m)||p

(∫ 2

1

∣∣∣∣∫ 2

1

i(G2(·,w))(w−  )m−3F2
1 ( ,w)dw

∣∣∣∣q) 1
q

,

i = 1,2. (9.117)

Proof. It can be proved similarly as Theorem 3.5 in [29].

Remark 9.5 We can construct the non-negative functional by taking the differences of
(9.79) and (9.80). By using the idea of Section 4 and Section 5 of [28], we can construct
new class of n-exponential convexity. A new class of monotonic Cauchy means can be
constructed by using the related mean value theorem.
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Remark 9.6 Following the similar way as above we can find the bounds related to the
generalized f-divergence, Shannon and Rényi type inequalities. Further by using the gen-
eralized f-divergence, Shannon and Rényi we can construct the results related to Grüss and
Owstrowski type inequalities.

Remark 9.7 Analogous to the results presented in this chapter by using different inter-
polating polynomials we may use inequalities (2.1), (2.27), (2.30) and (2.50) to present
related results.



Chapter10
Integral form of Popoviciu’s
Inequality for Convex
Functions

This chapter contains a new integral form of Popoviciu’s inequality. We construct new
refinement for the integral Jensen’s inequality. Also a new class of quasi-arithmetic means
along with their monotonicity property is given. These results are published in paper (see
[61]).

10.1 Integral form of Popoviciu’s Inequality

First consider some hypotheses which we use in our work given as follow.
(H1) Let (X ,E ,) be a probability space, suppose p1, . . . , pn ∈ (0,) such thatn

i=1 pi = 1.
(H2) Let h : X → I ⊂ R be an integrable function.
(H3) Let g be a convex function on interval I, suppose such that the composition g ◦ h is
integrable.
Let m ≥ 2 be a fixed integer. The  -algebra in Xk generated by the projection mapping
prl : Xm → X (l = 1, . . . ,m)

prl(x1, . . . ,xm) := xl (10.1)

115
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is denoted by E k. And m is defined as the product measure on E , this measure is uniquely
( is  -finite) specified by

m(B1× . . .×Bm) := (B1) . . .(Bk), Bl ∈ E , l = 1, . . . ,m. (10.2)

Theorem 10.1 Assume (H1)-(H3), then the following inequalities hold.

(i)

1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

) ∫
Xm

g

⎛⎜⎜⎝
m

j=1

pi j h(xi j )

m

j=1

pi j

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

≤ n−m
n−1

n


i=1

pi

∫
X

g(h(xi))d(xi)

+
m−1
n−1

∫
Xn

g

(
n


i=1

pih(xi)

)
dn(xi1 , . . . ,xin).

(ii)

1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

) ∫
Xm

g

⎛⎜⎜⎝
m

j=1

pi j h(xi j )

m

j=1

pi j

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

≤
n


i=1

pi

∫
X

g(h(xi))d(xi).

Proof. (i) On integrating the inequality (1.24) over Xn and replacing xi j by h(xi j ), we
have

1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)∫
Xn

g

⎛⎜⎜⎝
m

j=1

pi j h(xi j)

m

j=1

pi j

⎞⎟⎟⎠dn(xi1 , . . . ,xin)

≤ n−m
n−1

n


i=1

pi

∫
Xn

g(h(xi))dn(xi1 , . . . ,xin)

+
m−1
n−1

∫
Xn

g

(
n


i=1

pih(xi)

)
dn(xi1 , . . . ,xin).
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On simplification we have

1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

) ∫
Xm

g

⎛⎜⎜⎝
m

j=1

pi jh(xi j )

m

j=1

pi j

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

×
∫
X

d(xim+1) . . .
∫
X

d(xin)

≤ n−m
n−1

n


i=1

pi

∫
X

g ◦ h(xi)d(xi)×
∫
X

d(xi1) . . .
∫
X

d(xim)
∫
X

d(xim+1) . . .
∫
X

d(xin)

+
m−1
n−1

∫
Xn

g

(
n


i=1

pih(xi)

)
dn(xi1 , . . . ,xin).

This gives

1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

) ∫
Xm

g

⎛⎜⎜⎝
m

j=1

pi jh(xi j )

m

j=1

pi j

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

≤ n−m
n−1

n


i=1

pi

∫
X

g(h(xi))d(xi)

+
m−1
n−1

∫
Xn

g

(
n


i=1

pih(xi)

)
dn(xi1 , . . . ,xin)

(ii) Applying discrete Jensen’s inequality to the last term of inequality given in (i) and on
solving, we have

1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

) ∫
Xm

g

⎛⎜⎜⎝
m

j=1

pi jh(xi j )

m

j=1

pi j

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

≤ n−m
n−1

n


i=1

pi

∫
X

g(h(xi))d(xi)

+
m−1
n−1

(
p1

∫
Xn

g(h(x1))dn(xi1 , . . . ,xin)+ . . .+ pn

∫
Xn

g(h(xn))dn(xi1 , . . . ,xin)

)
,

this gives
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1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

) ∫
Xm

g

⎛⎜⎜⎝
m

j=1

pi j h(xi j)

m

j=1

pi j

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

≤
n


i=1

pi

∫
X

g(h(xi))d(xi).

10.2 New Refinement of the Integral form of
Jensen’s Inequality

Under the hypothesis (H1), (H2) and (H3), define the function Hm(t) on [0,1] given by

Hm(t) =
1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)

×
∫
Xm

g

⎛⎜⎜⎝t

m

j=1

pi j h(xi j)

m

j=1

pi j

+(1− t)
∫
X

hd

⎞⎟⎟⎠dm(xi1 , . . . ,xim) (10.3)

Theorem 10.2 Assume (H1)-(H3), then

(i) Hm is convex.

(ii) min
t∈[0,1]

Hm(t) = Hm(0) = g

(∫
X

hd
)

(iii) max
t∈[0,1]

Hm(t) = Hm(1)

(iv) Hm is increasing.

Proof. (i) Suppose , ∈ [0,1] with + = 1 and u,v∈ [0,1], then from (10.3) we have

Hm(u+v) =
1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)

×
∫
Xm

g

⎛⎜⎜⎝(u+v)

m

j=1

pi j h(xi j)

m

j=1

pi j

+(+ −u−v)
∫
X

hd

⎞⎟⎟⎠dm(xi1 , . . . ,xim).
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On simplification we have

Hm(u+v) =
1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)

×
∫
Xm

g

(


⎛⎜⎜⎝u

m

j=1

pi j h(xi j )

m

j=1

pi j

+(1−u)
∫
X

hd

⎞⎟⎟⎠+



⎛⎜⎜⎝v

m

j=1

pi jh(xi j )

m

j=1

pi j

+(1− v)
∫
X

hd

⎞⎟⎟⎠)
dm(xi1 , . . . ,xim).

By convexity of g, we have

Hm(u+v)≤ 
1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)

×
∫

Xm

g

⎛⎜⎜⎝u

m

j=1

pi j h(xi j)

m

j=1

pi j

+(1−u)
∫
X

gd

⎞⎟⎟⎠dm(xi1 , . . . ,xim)+


1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

) ∫
Xm

g

⎛⎜⎜⎝v

m

j=1

pi j h(xi j)

m

j=1

pi j

+(1− v)
∫
X

hd

⎞⎟⎟⎠dm(xi1 , . . . ,xim),

that is
Hm(u+v)≤ Hm(u)+Hm(v).

Therefore Hm is convex function.
(ii) Integral from of Jensen’s inequality yields

Hm(t) ≥ 1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)

×g

⎛⎜⎜⎝∫
Xm

⎛⎜⎜⎝t

m

j=1

pi j h(xi j )

m

j=1

pi j

+(1− t)
∫
X

gd

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

⎞⎟⎟⎠
or

Hm(t) ≥ 1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)
g(I) (10.4)
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where

I =
∫

Xm

⎛⎜⎜⎝t

m

j=1

pi j h(xi j)

m

j=1

pi j

+(1− t)
∫
X

gd

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

= t
∫

Xm

m

j=1

pi jh(xi j )

m

j=1

pi j

dm(xi1 , . . . ,xim)+ (1− t)
∫

Xm

⎛⎝∫
X

gd

⎞⎠dm(xi1 , . . . ,xim)

=
t

m

j=1

pi j

m


i=1

pi

∫
X

gd+(1− t)
∫
X

gd

=
∫
X

gd

so from (10.4), we have

Hm(t) ≥ 1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)
g

⎛⎝∫
X

gd

⎞⎠ = Hm(0), ∀ t ∈ [0,1].

(iii)

Hm(t) = Hm(1.t +(1− t)0) ≤ tHm(1)+ (1− t)Hm(0)
≤ tHm(1)+ (1− t)Hm(1)
= Hm(1), ∀ t ∈ [0,1].

(iv) Since Hm(t) is convex and Hm(t)≥ Hm(0)(t ∈ [0,1]), therefore for 0 ≤ t1 < t2 ≤ 1, we
have

Hm(t2)−Hm(t1)
t2− t1

≥ Hm(t2)−Hm(0)
t2

≥ 0,

so

Hm(t2) ≥ Hm(t1).

Theorem 10.3 Assume (H1), (H2) and (H3), then

g

⎛⎝∫
X

hd

⎞⎠ ≤ Hm(t) ≤ Hm(1) ≤
∫
X

g ◦ hd . (10.5)
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Proof. Using (ii) and (iii) of Theorem 10.2 we get first two inequalities, and for the last
inequality

Hm(1) =
1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)
×

∫
Xm

g

⎛⎜⎜⎝
m

j=1

pi jh(xi j )

m

j=1

pi j

⎞⎟⎟⎠dm(xi1 , . . . ,xim).

Using discrete Jensen’s inequality, we have

Hm(1) ≤ 1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)
×

m

j=1

pi j

m

j=1

pi j

∫
Xm

g
(
h(xi j)

)
dm(xi1 , . . . ,xim),

this gives

Hm(1) ≤
∫
X

g ◦ hd .

Remark 10.1 A refinement similar to (10.5) of integral form of Jensen’s inequality is
proved in Proposition 7 of [49].

10.3 New Quasi-Arithmetic Means

Now we introduce some new quasi arithmetic means. First we assume the following con-
ditions:
(H4) Let h : X → I, where I ⊂ R be an interval, is measurable.
(H5) Let  and  be two real valued, continuous and strictly monotone functions defined
on interval I.

Definition 10.1 Assume (H1), (H4) and (H5).
For t ∈ [0,1] we define the class of quasi-arithmetic means given by

M ,(t,g,) := −1
(

1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)

×
∫

Xm

 ◦−1

⎛⎜⎜⎝t

m

j=1

pi j (g(xi j ))

m

j=1

pi j

+(1− t)
∫
X

 (g)d

⎞⎟⎟⎠dm(xi1 , . . . ,xim)
)

(10.6)

where the integrals are supposed to exist.
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Assume (H6), let  be a real valued, continuous and strictly monotone function defined
on interval I such that the composition  ◦ h is integrable on X , and M(h,) is the quasi-
arithmetic mean defined in (2.16).

Theorem 10.4 Assume (H1),(H4), (H5) and assume that  ◦ h and  ◦ h are integrable
on X.
(i) If  ◦−1 is convex with  is increasing or  ◦−1 is concave with  is decreasing,
then

M (h,) ≤ M , (t,h,) ≤ M(h,), (10.7)

holds for all t ∈ [0,1].
(ii) If  ◦−1 is convex with  is decreasing or  ◦−1 is concave with  is increasing,
then

M (h,) ≥ M , (t,h,) ≥ M(h,), (10.8)

holds for all t ∈ [0,1].

Proof. (i) Using pair of functions  ◦−1 and  (h) ( (I) is an interval) in Theorem 10.3,
we have

 ◦−1

⎛⎝∫
X

 (h)d

⎞⎠ ≤ 1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)

×
∫
Xm

 ◦−1

⎛⎜⎜⎝t

m

j=1

pi j (h(xi j ))

m

j=1

pi j

+(1− t)
∫
X

 (h)d

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

≤ 1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

) ∫
Xm

 ◦−1

⎛⎜⎜⎝
m

j=1

pi j (h)

m

j=1

pi j

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

Using the discrete Jensen inequality on the larger side of last inequality we get

 ◦−1

⎛⎝∫
X

 (h)d

⎞⎠ ≤ 1

Cn−1
m−1


1≤i1<...<im≤n

(
m


j=1

pi j

)

×
∫
Xm

 ◦−1

⎛⎜⎜⎝t

m

j=1

pi j (h(xi j ))

m

j=1

pi j

+(1− t)
∫
X

 (h)d

⎞⎟⎟⎠dm(xi1 , . . . ,xim)

≤
∫
X

(h)d

On taking −1 on both sides we have (10.7).
(ii) Similarly using the pair of functions − ◦ −1 and  (h) in Theorem 1.14, where
 ◦−1 is concave. On taking −1 we have (10.8).



Chapter11
Refinement of Jensen’s
Inequality for 3-convex
Functions

We use (1.14) and establish the inequalities for classes of functions K a
1 (I) and K a

2 (I), as
it was done for convex functions. We also improve these inequalities. These results can be
found in [62].

11.1 Refinement of Jensen’s Inequality for 3-convex
Functions at a Point

In [25], I. A. Baloch et al. introduced the new classes of functions that are K a
1 (I) and

K a
2 (I) given in the following definition.

Definition 11.1 Let f : I → R and a ∈ I◦ (I◦ denotes the interior of I). Consider the
classes

K a
1 (I) :=

{
f : there exists a real number B such that f (x)− B

2
x2is concave on

I∩ (−,a]and convex onI∩ [a,)}
(11.1)

123
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and

K a
2 (I) :=

{
f : there exists a real number B such that f (x)− B

2
x2is convex on

I∩ (−,a]and concave onI∩ [a,)} .

(11.2)

The function f ∈ K a
1 (I) is called 3-convex function at the point a. The function f ∈

K a
2 (I)) is called 3-concave function at the point a.

They also showed that the K a
1 (I)(K a

2 (I)) is larger class of functions than the class of all
3-convex (3-concave) functions in the following result (see [25], Theorem 2.4).

Theorem 11.1 If g∈K a
1 (I)(g ∈K a

2 (I)) for every a∈ I, then g is 3-convex (3-concave).

In [25], I. A. Baloch et al. gave the Levinson inequality for the classes K a
1 (I) and

K a
2 (I).

Theorem 11.2 Let I = [, ] be an interval. Consider x = (x1, . . . ,xn) ∈ [, ]n and
y = (y1, . . . ,ys) ∈ [, ]s. Also let there exist a ∈ I such that

max
i

xi ≤ a ≤ min
j

y j.

Suppose p = (p1, . . . , pn) ∈ (0,)n, q = (q1, . . . ,qs)s ∈ (0,)s such that
n

j=1

p j =
s

i=1

qi = 1

and

Am,r(Im,x,p, id2)−Am,k(Im,x,p, id2) =

Am,r(Im,y,q, id2)−Am,k(Im,y,q, id2). (11.3)

If f ∈ K a
1 (I), then

Am,r(Im,x,p, f )−Am,k(x,p, f ) ≤ Am,r(y,q, f )−Am,k(y,q, f ) (11.4)

holds for Am,r defined in (1.13).

Proof. Since H1(x) := f (x)− B
2 x2 is concave on I∩ [,a], therefore from Remark 9.3, we

have

0 ≥ Am,r(x,p,H1)−Am,k(x,p,H1)

= Am,r(x,p, f )−Am,k(x,p, f )− B
2

[
Am,r(x,p, id2)

− Am,k(x,p, id2)
]
. (11.5)

As H2(y) := f (y)− B
2 y2 is convex on [a, ], therefore from Remark 9.3, we get

0 ≤ Am,r(y,p,H2)−Am,k(y,p,H2)
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= Am,r(y,p, f )−Am,k(y,p, f )− B
2

[
Am,r(y,p, id2)

− Am,k(y,p, id2)
]
. (11.6)

From (11.5) and (11.6), we have

Am,r(x,p, f )−Am,k(x,p, f )− B
2

[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
≤ Am,r(y,p, f )−Am,k(y,p, f )− B

2

[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
.

Using the assumption (11.3), we get (11.4).

Corollary 11.1 Let I = [0,2a] be an interval, x = (x1, . . . ,xn) ∈ [0,a]n, y = (y1, . . . ,ym) ∈
[a,2a]m and p = (p1, . . . , pn) be positive n-tuple such that

n

j=1

p j = 1, also let

x1 + y1 = . . . = xn + yn = 2a.

If f ∈ K a
1 (I), then the inequality (11.4) holds for n = m and p = q.

Proof. Note that

id2

⎛⎜⎜⎜⎝
k

j=1

pi j yi j

k

j=1

pi j

⎞⎟⎟⎟⎠ = id2

⎛⎜⎜⎜⎝
k

j=1

pi j (c− xi j)

k

j=1

pi j

⎞⎟⎟⎟⎠ (11.7)

= c2−2c

k

j=1

pi j xi j

k

j=1

pi j

+

⎛⎜⎜⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

⎞⎟⎟⎟⎠
2

. (11.8)

We can observe that

Am,r(x,p, id2)−Am,k(x,p, id2) = Am,r(y,p, id2)−Am,k(y,p, id2).

Following the same steps as in Theorem 11.2, we get (11.4).

Remark 11.1 Using (11.5) and (11.6) from proof of Theorem 11.2, we have

Am,r(x,p, f ) − Am,k(x,p, f ) ≤ B
2

[
Am,r(x,p, id2) − Am,k(x,p, id2)

]
(11.9)

and
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B
2

[
Am,r(y,p, id2) − Am,k(y,p, id2)

]
≤ Am,r(y,p, f ) − Am,k(y,p, f ). (11.10)

Using (11.9) and (11.10), we have the refinement of (11.4) given by

Am,r(x,p, f )−Am,k(x,p, f ) ≤ B
2

[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
(

=
B
2

[
Am,r(y,p, id2)−Am,k(y,p, id2)

])
≤ Am,r(y,p, f )−Am,k(y,p, f ).

The next result is the generalization of Theorem 11.2, with weaker assumptions on (11.3).

Theorem 11.3 Let I = [, ] be an interval, x = (x1, . . . ,xn) ∈ [, ]n, y = (y1, . . . ,ys) ∈
[, ]s with

max
i

xi ≤ min
j

y j. (11.11)

Also let p = (p1, . . . , pn) ∈ (0,)n, q = (q1, . . . ,qs) ∈ (0,)s such that
n

j=1

p j =
s

i=1

qi = 1

and f ∈ K a
1 (I) for some a ∈ [maxxi,miny j]. Then if

(i)
f ′′−(maxxi) ≥ 0

and
Am,r(x,p, id2)−Am,k(x,p, id2) ≤ Am,r(y,q, id2)−Am,k(y,q, id2)

(ii)
f ′′+(miny j) ≤ 0

and
Am,r(x,p, id2)−Am,k(x,p, id2) ≥ Am,r(y,q, id2)−Am,k(y,q, id2)

(iii) f ′′−(maxxi) < 0 < f ′′+(miny j) and f is 3-convex,

then (11.4) holds.

Proof. Since f ∈ K a
1 [, ] for some a ∈ [maxxi,maxy j], therefore there exists a constant

B such that H1(x) := f (x)− B
2 x2, is concave on [,a], such that for x1, . . . ,xn ∈ I∩ [,a],

we have

0 ≥ Am,r(x,p,H1)−Am,k(x,p,H1),

that is

0 ≥ Am,r(x,p, f )−Am,k(x,p, f )− B
2

[
Am,r(x,p, id2)

− Am,k(x,p, id2)
]
. (11.12)
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Also H2(y) := f (y)− B
2 y2 is convex on [a, ], for y1, . . . ,ys ∈ [a, ], we have

0 ≤ Am,r(y,p,H2)−Am,k(y,p,H2),

that is

0 ≥ Am,r(y,p, f )−Am,k(y,p, f )− B
2

[
Am,r(y,p, id2)

− Am,k(y,p, id2)
]
. (11.13)

From (11.12) and (11.13), we have

Am,r(x,p, f )−Am,k(x,p, f )− B
2

[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
≤ Am,r(y,p, f )−Am,k(y,p, f )− B

2

[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
.

So

B
2

[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
≤ Am,r(y,p, f )−Am,k(y,p, f )−Am,r(x,p, f )−Am,k(x,p, f ). (11.14)

Now due to concavity of H1 and convexity of H2 for every distinct point x̃ j ∈ [,maxxi]
and ỹ j ∈ [minyi, ], j = 1,2,3, we have

[x̃1, x̃2, x̃3, f ] ≤ B ≤ [ỹ1, ỹ2, ỹ3, f ]. (11.15)

Letting x̃ j ↗ maxxi and ỹ j ↘ miny j, we get the inequalities if derivatives exist

f ′′−(maxxi) ≤ B ≤ f ′′+(minyi). (11.16)

Since from assumption (a), f ′′(maxxi) ≥ 0, therefore B ≥ 0, so using the assumption[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

] ≥ 0,

the expression

B
2

[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
is non-negative and on using it on left side of (11.14) we have the result (11.4). And simi-
larly for assumption (b), the inequality f ′′+(miny j) ≤ 0 gives B ≤ 0, so the expression with
assumption of (b) is also non-negative, this gives the result (11.4). Under the assumption
of (c), f ′′− and f ′′+ are both left and right continuous respectively and both are nondecreas-
ing with f ′′− ≤ f ′′+, so their exists a point ã ∈ [maxxi,miny j] such that f ∈ K ã

1 [, ] with
constant B̃ = 0, and thus we have the inequality (11.4).
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Remark 11.2 From the proof of Theorem 11.3, we have

Am,r(x,p, f )−Am,k(x,p, f ) ≤ B
2

[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
and

Am,r(y,p, f )−Am,k(y,p, f ) ≥ B
2

[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
.

In Theorem 11.3, B is positive, negative and zero for the assumptions (a), (b) and (c)
respectively as discussed in proof. Therefore, we have the better improvement of (11.4)
than (11.11) given as

Am,r(x,p, f )−Am,k(x,p, f ) ≤ B
2

[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
≤ B

2

[
Am,r(y,p, id2)−Am,k(y,p, id2)

] ≤ Am,r(y,p, f )−Am,k(y,p, f ).

If the assumptions of Theorem 11.2 with f ∈ K a
2 [, ], the reverse of inequality (11.4)

holds. The generalization of this result is proven in the following result.

Theorem 11.4 Let I = [, ]⊂R be an interval, x= (x1, . . . ,xn)∈ [, ]n, y = (y1, . . . ,ys)∈
[, ]s with

max
i

xi ≤ min
j

y j. (11.17)

Also let p = (p1, . . . , pn) ∈ (0,)n, q = (q1, . . . ,qs) ∈ (0,)s such that
n

j=1

p j = 1 =
s

i=1

qi

and f ∈ K a
2 (I) for some a ∈ [maxxi,miny j]. Then if

(i)
f ′′−(maxxi) ≤ 0

and
Am,r(x,p, id2)−Am,k(x,p, id2) ≤ Am,r(y,q, id2)−Am,k(y,q, id2)

(ii)
f ′′+(miny j) ≥ 0

and
Am,r(x,p, id2)−Am,k(x,p, id2) ≥ Am,r(y,q, id2)−Am,k(y,q, id2)

(iii) f ′′−(maxxi) < 0 < f ′′+(miny j) and f is 3-concave,

then the inequality

Am,r(x,p, f )−Am,k(x,p, f ) ≥ Am,r(y,q, f )−Am,k(y,q, f ) (11.18)

holds.
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Proof. Since f ∈ K a
2 [, ] for some a ∈ [maxxi,maxy j], therefore there exists a constant

B such that H1(x) = f (x)− B
2 x2, is convex on I ∩ (−,a], such that for x1, . . . ,xn ∈ I ∩

(−,a], we have

0 ≤ Am,r(x,p,H1)−Am,k(x,p,H1),

that is

0 ≤ Am,r(x,p, f )−Am,k(x,p, f )− C
2

[
Am,r(x,p, id2)

− Am,k(x,p, id2)
]
. (11.19)

Also H2(y) = f (y)− B
2 y2 is concave on I∩ [a,), for y1, . . . ,ys ∈ [a,), we have

0 ≥ Am,r(y,p,H2)−Am,k(y,p,H2),

that is

0 ≥ Am,r(y,p, f )−Am,k(y,p, f )− B
2

[
Am,r(y,p, id2)

− Am,k(y,p, id2)
]
. (11.20)

From (11.19) and (11.20), we have

Am,r(x,p, f )−Am,k(x,p, f )− B
2

[
Am,r(x,p, id2)−Am,k(x,p, id2)

]
≥ Am,r(y,p, f )−Am,k(y,p, f )− B

2

[
Am,r(y,p, id2)−Am,k(y,p, id2)

]
.

So

B
2

[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
≥ Am,r(y,p, f )−Am,k(y,p, f )−Am,r(x,p, f )−Am,k(x,p, f ). (11.21)

Now due to convexity of H1 and concavity of H2 for every distinct point x̃ j ∈ [,maxxi]
and ỹ j ∈ [minyi, ], j = 1,2,3, we have

[x̃1, x̃2, x̃3, f ] ≥ B ≥ [ỹ1, ỹ2, ỹ3, f ]. (11.22)

Letting x̃ j ↗ maxxi and ỹ j ↘ miny j, we get the inequalities if derivatives exist

f ′′−(maxxi) ≥ B ≥ f ′′+(minyi). (11.23)

Since from assumption (a), f ′′(maxxi) ≤ 0, therefore B ≥ 0, using the assumption[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

] ≥ 0
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we have

B
2

[
Am,r(y,p, id2)−Am,k(y,p, id2)−Am,r(x,p, id2)−Am,k(x,p, id2)

]
is negative and on using it on left side of (11.21) we have the result (11.4). And similarly
for assumption (b), the inequality f ′′+(miny j) ≥ 0 gives B > 0, so the expression with
assumption of (b) is also positive, this gives the result (11.4). Under the assumption of (c),
f ′′− and f ′′+ are left and right continuous respectively and both are decreasing with f ′′− ≥ f ′′+,
so there exists a point ã∈ [maxxi,miny j] such that f ∈K ã

1 [, ] with constant B̃ = 0, and
thus we have the inequality (11.18).

Remark 11.3 In Theorem 11.4, B is negative or positive or zero under the assumption
(i),(ii) and (iii) respectively as discussed earlier in the proof of the Theorem 11.4. There-
fore we get the improvement of (11.18) as follows.

Am,r(x,p, f )−Am,k(x,p, f ) ≥ Am,r(x,p, id2)−Am,k(x,p, id2)

≥ Am,r(y,q, id2)−Am,k(y,q, id2) ≥ Am,r(y,q, f )−Am,k(y,q, f ).

Remark 11.4 Theorem 11.2, Remark 11.1, Theorem 11.3, Remark 11.2 and Theorem
11.4 are also valid for the differences given in (9.1) and (9.2) for r = 1, . . . ,m and 1 ≤ r <
k ≤ m respectively.
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[27] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their inequalities, Kluwer
Academic Publisher, (1988).
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Lidstone polynomial using Jensen type functionals, Arabian J. Math., (2018), 1–19.
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and estimation of f-and Rényi divergence via Montgomery identity, J. Inequal.Appl.,
2018(1) (2018), 22 pages.
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