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Introduction

Convex functions have a significant role while dealing with optimization problems. Geom-
etry of convex functions leads to many important inequalities which are frequently used to
estimate and compare the values related to many physical problems in different branches
of mathematics and physics. Entropies and divergences are widely studied in informa-
tion theory. While dealing with many physical problems physicist have to deal with the
structure involving higher dimension convexity. Therefore there are two important gaps
first to estimate the entropies and divergences and second one is to study the inequalities
for higher dimension problems. Therefore we estimate different entropies and divergences
and secondly we generalize the related results for higher order convex functions.
It is of great interest for researchers to study inequalities of continuous data and arbitrary
weights. For example integral version of Popoviciu’s inequality are studied in the sequel.

1.1 Some Inequalities Involving Convex Functions

The first chapter contains: introduction to convex functions, various inequalities involving
convex functions, refinement of these inequalities given by various researchers in recent
years, the weighted version of Popoviciu’s inequality, some notions from information the-
ory containing entropies and divergences. These will be used frequently in the following
chapters while obtaining main results.
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1.1.1 J-Convex Functions

In 1905–1906, J. L. W. V. Jensen began the systematic study of convex functions (see [75,
p.3]).

A function  : I →R is said to be J-convex or mid-convex function or convex in Jensen
sense on I if


(

u+ v
2

)
≤  (u)+ (v)

2
(1.1)

holds for all u,v ∈ I.
The (x) = x2 and (x) = |x| for all x ∈ R are the examples of J-convex functions.

1.1.2 Convex Functions

The notion of convex function is the generalization of J-convex function for the arbitrary
weight t ∈ [0,1]. In [87, p. 1] the formal definition is given as follows.
Suppose X is a real vector space, C ⊂ X is a convex set. A function  : C → R is said to
be convex if

(u+(1−)v)≤ (u)+ (1−)(v),

holds for all u,v ∈C and  ∈ [0,1].
The (x) = x2, (x) = |x|, − logx and ex for all x ∈ R are the examples of convex

functions.

1.1.3 Operator Convex Functions

Let I be an interval of real numbers and S(I) denotes the class of all self-adjoint bounded
operators defined on complex Hilbert space H whose spectra are in I. Also, assume that
Sp(A) denotes the spectrum of a bounded operator A defined on H. An operator A ∈ S(I)
is said to be strictly positive if it is positive and invertible, or equivalently, Sp(A)⊂ [d1,d2]
for 0 < d1 < d2.

Let  : I → R be a function defined on the interval I. Then  is said to be operator
convex if  is continuous and

(A1 +(1−  )A2) ≤ (A1)+ (1−  )(A2) (1.2)

for all A1,A2 ∈ S(I) and  ∈ [0,1]. If the function − is operator convex on I, then 
is said to be operator concave. The function  is said to be operator monotone on I if
 is continuous on I and A1,A2 ∈ S(I), A1 ≤ A2 (i.e. A2 −A1 is positive operator ), then
(A1) ≤ (A2).

1.1.4 Discrete Jensen’s Inequality

The Jensen inequality in discrete version [87, p. 43] generalizes the notion of convex
function. Here the function operates on the convex combination of any finite number of
points.
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Suppose X is a real vector space, C ⊂ X is a convex set, let  : C → R be a convex
function, 1, . . . ,n ∈ [0,1] are such that n

i=1 i = 1, and y1, . . . ,yn ∈C, then



(
n


=1

y

)
≤

n


=1

(y). (1.3)

In the Jensen inequality, it is natural to ask the question that is it possible to relax
the condition of nonnegative of  ( = 1,2, . . . ,n) at the expense of restricting y ( =
1,2, . . . ,n) more severely. The answer of this question was given by Steffensen [96]:

1.1.5 Discrete Jensen-Steffensen’s Inequality

Let  : I → R be a convex function defined on the interval I. Let y ∈ I,  ∈ R

( = 1,2, . . . ,n) with ̄ = n
=1  . If y1 ≤ y2 ≤ ·· · ≤ yn or y1 ≥ y2 ≥ ·· · ≥ yn and

0 ≤
k


=1

 ≤
n


=1

 k = 1,2, . . . ,n,
n


=1

 > 0, (1.4)

then



(
1

̄

n


=1

y

)
≤ 1

̄

n


=1

(y ). (1.5)

1.1.6 Integral Form of Jensen’s Inequality

The integral form of Jensen’s inequality [47] is defined as follows.
Let (X ,A,) be a probability space, consider an integrable function h : X → I. Also let
 : I → R be a convex function. Then



⎛⎝∫
X

hd

⎞⎠ ≤
∫
X

 ◦hd . (1.6)

1.1.7 Integral Version of Jesnen-Steffensen’s Inequality

Integral version of Jensen-Steffensen’s inequality is given by:
Let I be an interval in R and g,h : [a,b] → R are integrable functions such that
g() ∈ I for all  ∈ [a,b]. Also, assume that  : I → R is convex function and h( ◦g) is
integrable on [a,b]. If g is monotonic on [a,b] and h satisfies

0 ≤
∫ 

a
h()d ≤

∫ b

a
h()d ,  ∈ [a,b],

∫ b

a
h()d > 0, (1.7)

then



(∫ b
a g()h()d∫ b

a h()d

)
≤

∫ b
a h()( ◦g)()d∫ b

a h()d
. (1.8)
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This means convex function and Jensen-type inequalities are linked to each other. In fact
definition of convex function involves inequality sign. Until now, inequalities have played
a major role in convex function development. In mathematics the role of inequalities is
very important, specially in approximation theory and analysis. The linear programming
is based on inequalities. A number of mathematicians have a keen interest in the study of
mathematical inequalities.

Jensen’s inequality is the fundamental inequality for convex function. Many classi-
cal inequalities (for instance Minkowski’s inequality, Hölder’s inequality etc.) and other
inequalities are the consequences of Jensen’s inequality.

L. Horváth and J. Pečarić in [49] used a refinement of discrete Jensen’s inequality to
construct a new refinement of (1.6), which is a generalization of a result given in [25].
They also gave new monotone quasi arithmetic means.

In a last few decades, many researcher papers have appeared in literature concerning
the refinement of discrete Jensen’s inequality (see [47]). However the refinement of dis-
crete Jensen’s inequality has been studied more compared to the refinement of its integral
version. The researchers used the refinements of (1.3) to construct new refinements of
(1.6). For instance we can see the following results [88].
Suppose that f is a J-convex function on an interval J, c j ∈ J, j = 1, . . . ,n. Then

r,n ≥ r−1,n r = 1, . . . ,n−1, (1.9)

where

r,n = k,n(c1, . . . ,cn) :=
1(n
r

) 
1≤ j1<...< jr≤n


(

1
r
(c j1 + . . .+ c jr)

)
.

For positive weights the above results are given in [84].
Suppose ̄ is convex function defined on an interval J, c j ∈ J ( j = 1, ...,n).

̄r,n(c1, . . . ,cn,1, . . . ,n):=
1(n−1

r−1

)
Pn


1≤ j1<...< jr≤n

( j1+ . . .+ jr)̄
(
 j1c j1+ . . .+ jr c jr

 j1+ . . .+ jk

)
where (1, . . . ,n) is suppose to be a positive n-tuple with r

j=1 j = Pr, then

̄r,n(c1, . . . ,cn,1, . . . ,n) ≥ ̄r+1,n(c1, . . . ,cn,1, . . . ,n) n = 1, . . . ,r−1. (1.10)

J. Pečarić and D. Svrtan noted that by considering the expresssion

̃r,n =
1(n+r−1

r−1

)
Pn


1≤ j1≤...≤ jk≤n

( j1 + . . .+ jr)
(
 j1c j1 + . . .+ jr c jr

 j1 + . . .+ jr

)
we have the same results



(
1
Pn

n


i=1

ici

)
≤ . . . ≤ ̃r+1,n ≤ ̃r,n ≤ . . . ≤ ̃1,n =

1
Pn

n


i=1

i(ci). (1.11)

The researchers have given the refinements of (1.3) by using different indexing sets (see
[50, 48]). Like many other researchers L. Horváth and J. Pečarić gave a refinement of
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(1.3) for convex functions (see [50]). They defined some essential notions to prove the
refinement given as follows:

Let X be a set, let P(X) and |X | represent the power set and number of elements of set
X respectively. Let N := {0}⋃{1,2, . . .}.
Suppose q ≥ 1 and r ≥ 2 are two fixed integers. Suppose

r(q) := {1, . . . ,q}r

Now let
Fr,s : r(q) → r−1(q) 1 ≤ s ≤ r,

Fr : r(q) → P(r−1(q)) ,

and
Tr : P(r(q)) → P(r−1(q)) ,

are functions defined by

Fr,s(i1, . . . , ir) := (i1, i2, . . . , is−1, is+1, . . . , ir) 1 ≤ s ≤ r,

Fr(i1, . . . , ir) :=
r⋃

s=1

{Fr,s(i1, . . . , ir)},

and

Tr(I) =

{
/0, I = /0;⋃
(i1,...,ir)∈I

Fr(i1, . . . , ir), I �= /0.

Next for all i ∈ {1, . . . ,q} consider

r,i : {1, . . . ,q}r → N,

defined by

r,i(i1, . . . , ir) is the number of occurences of i j in (i1, . . . , ir).

For each I ∈ P(r(q)) let

I,i := 
(i1,...,ir)∈I

r,i(i1, . . . , ir) 1 ≤ i ≤ q.

(H1) : Let n ∈ {1,2, . . .} and m ∈ {2,3, . . .}, suppose Im ⊂ m(n) such that for all i ∈
{1, . . . ,n}

Im ,i ≥ 1. (1.12)
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Introduce the set Il ⊂ l(n)(1 ≤ l ≤ m−1) inductively by

Il−1 := Tl(Il) m ≥ l ≥ 2.

Obviously the set I1is {1, . . . ,n}, by (H1) and this make certain that I1,i = 1(1 ≤ i ≤ n).
From (H1) we have Il ,i ≥ 1(1 ≤ i ≤ n,m−1≥ l ≥ 1).
For m ≥ l ≥ 2, and for any ( j1, . . . , jl−1) ∈ Il−1, let

HIl ( j1, . . . , jl−1) := {((i1, . . . , il),k)×{1, . . . , l}|Fl,k(i1, . . . , il) = ( j1, . . . , jl−1)}.
With the help of these sets they defined the functions Im,l : Il → N(m ≥ l ≥ 1) inductively
by

Im ,m(i1, . . . , im) := 1 (i1, . . . , im) ∈ Im;

Im ,l−1( j1, . . . , jl−1) := 
((i1,...,il),k)∈HIl

( j1,..., jl−1)
Im,l(i1, . . . , il).

They defined some special expressions for 1 ≤ l ≤ m, as follows

Am,l = Am,l(Im,x1, . . . ,xn, p1, . . . , pn; f ) :=
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

pi j

Im,i j

)
f

⎛⎜⎜⎜⎝
l

j=1

pi j
Im,i j

xi j

l

j=1

pi j
Im,i j

⎞⎟⎟⎟⎠ (1.13)

and constructed the following new refinement of (1.3).

Theorem 1.1 Assume (H1), consider a convex function f : I → R. If c1, . . . ,cn ∈ I,

1, . . . ,n ∈ R+ such that
n


s=1
s = 1, then

f

(
n


s=1

scs

)
≤ Am,m ≤ Am,m−1 ≤ . . . ≤ Am,2

≤ Am,1 =
n


s=1

s f (cs) . (1.14)

L. Horváth and J. Pečarić proved that (1.10) is the special case of Theorem 1.1.
In [25], I. Brnetić et al. gave the improvement of (1.6) as follows.

Suppose  : I → R is a convex function, let  : [a1,a2] → I and  : [a1,a2] → R+ be
functions. Suppose 1, . . . ,n ∈ R+ with n

i=1i = 1, and

̄ =
∫ a2

a1

(t)dt,

then


(

1
̄

∫ a2

a1

(t)(t)dt

)
≤ n,n ≤ . . . ≤ k+1,n ≤ k,n . . . ≤ 1,n
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=
1
̄

∫ a2

a1

(t)((t))dt,

where

k,n =
1(n−1

k−1

)
̄k 

1≤i1<...<ik≤n

k


r=1

ir

∫ a2

a1

. . .

∫ a2

a1

(
k


s=1

(cis)

)

×
(
k

j=1i j
(
ci j

)
k

j=1i j

)
dci1dci2 . . .dcik .

1.1.8 Jensen-Mercer’s Inequality

In 2003 Mercer proved the following variant of Jensen’s inequality, which is known as
Jensen-Mercer’s inequality.

Theorem 1.2 ([77]) Let  : [a,b] → R be a convex function and let y ∈ [a,b],  ∈ R+

be such that ̄ = n
=1  . Then


(

a+b− 1

̄

n


=1

y
)
≤ (a)+(b)− 1

̄

n


=1

(y). (1.15)

1.1.9 Variant of Jensen-Steffensen’s Inequality

The following variant of Jensen-Steffensen’s inequality has been given in [1].

Theorem 1.3 Let  : [a,b] → R be a convex function and y ∈ [a,b],  ∈ R, �= 0 for
 = 1,2, . . . ,n with ̄ = n

=1  . If y1 ≤ y2 ≤ ·· · ≤ yn or y1 ≥ y2 ≥ ·· · ≥ yn and

0 ≤
k


=1

 ≤
n


=1

 , k = 1,2, . . . ,n,
n


=1

 > 0, (1.16)

then


(

a+b− 1

̄

n


=1

y
)
≤ (a)+(b)− 1

̄

n


=1

(y). (1.17)

1.1.10 Jensen’s Inequality for Operator Convex Functions

The following Jensen’s inequality for operator convex function has been given in [43].

Theorem 1.4 (JENSEN’S OPERATOR INEQUALITY) Let  : I → R be an operator con-
vex function defined on the interval I. If Ap ∈ S(I) and p > 0 (p = 1, . . . ,n) such that
n

p=1p = 1, then



(
n


p=1

pAp

)
≤

n


p=1

p(Ap). (1.18)
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1.1.11 Hermite-Hadamard Inequality

The following inequality proved by Hermite and Hadamard for convex function [40]. This
inequality says that if the function  : [a,b] → R is convex function then


(

a+b
2

)
≤ 1

b−a

∫ b

a
(x)dx ≤ (a)+(b)

2
. (1.19)

If  is concave function then the inequalities in (1.19) will hold in reverse directions.

1.1.12 Hölder Inequality

The discrete form of well-known Hölder inequality is given below:
Let p,q > 1 with 1

p + 1
q = 1 and (a1,a2, · · · ,an), (b1,b2, · · · ,bn) be positive n-tuple.

Then
n


j=1

ajbj ≤
( n


j=1

ap
j

) 1
p
( n


j=1

bq
j

) 1
q

(1.20)

The integral form of Hölder inequality is given below:
Let p,q> 1 such that 1

p + 1
q = 1 and A,B : [a,b]→ R be integrable functions functions

such that |A(z)|p, |B(z)|q are also integrable on [a,b]. Then∫ b

a
|A(z)B(z)|dz≤

(∫ b

a
|A(z)|p dz

) 1
p
(∫ b

a
|B(z)|q dz

) 1
q
.

1.2 Power Means

In [75, p. 14] the power means are given as follows.
Suppose n is a natural number, let (c1, . . . ,cn) and (1, . . . ,n) belong to (0,)n such

that Pn := n
i=1i = 1. The power mean (of order s ∈ R) is defined by

P(c1, . . . ,cn;1, . . . ,n) =

⎧⎨⎩
(

1
Pn
n

i=1 cs
i

) 1
s
, s �= 0;

(n
i=1 ci)

1
Pn , s = 0.

(1.21)

For ci = 1
n , i = 1, . . . ,n, the power mean (1.21) is arithmetic mean, geometric mean and

harmonic mean for s = 1, s → 0 and s = −1 respectively.
The power means for the n-tuples of strictly positive operators A = (A1, . . . ,An) with

positive weights  := (1, . . . ,n) of order r ∈ R\ {0} is defined by:

Mr(A; ) =

(
1

̄

n


p=1

pA
r
p

) 1
r

, (1.22)

where ̄ := n
p=1p.
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1.2.1 Quasi-Arithmetic Means

The importance of quasi-arithmetic means has been well understood at least since the
1930’s and a number of writers have since then contributed to the characterization and
to the study of their properties.

Consider a continuous function  : I → R such that for all u,v ∈ I if u < v then (u) <
(v) (or if u > v then (u) > (v)). Let (1, . . . ,n) ∈ In, also let (1, . . . ,n) ∈ [0,)n .
Suppose Pn := n

i=1 pi. Then the quasi-arithmetic mean [75, p. 15] is

M[n]
 ( ;) = M (1, . . . ,n;a . . . ,n) = −1

(
1
Pn

n


i=1

i(i)

)
. (1.23)

If I = R+ and (t) = t p, then (1.23) is a power mean.
In the current century, the Popoviciu inequality is studied by many authors (see [31,

29, 32, 30]).
The Popoviciu inequality for arbitrary non-negativeweights given as follows (see [85]).
Let r and m are positive integers such that m ≥ 3, 2 ≤ r ≤ m− 1, let  : [a1,a2] → R

be convex function, (c1, . . . ,cm) ∈ [a1,a2]m and (1, . . . ,m) be non-negative m-tuple such
that n

j=1 j = 1, then

r,m (c1, . . . ,cm;1, . . . ,m) ≤ m− r
m−1

1,m (c1, . . . ,cm;1, . . . ,m)

+
r−1
m−1

m,m (c1, . . . ,cm;1, . . . ,m) , (1.24)

where

gr,m (c1, . . . ,cm;1, . . . ,m) :=
1

Cm−1
r−1


1≤i1<...<ir≤m

(
m


j=1

i j

)


⎛⎜⎜⎝
m

j=1

i j ci j

m

j=1

i j

⎞⎟⎟⎠ .

Higher order convex function was introduced by T. Popoviciu (see [87, p. 15]). The
inequalities involving higher order convex functions are used by physicists in higher di-
mensional problems. Many of the results that are true for convex functions are not true for
higher order convex functions, this fact convince us to study the results involving higher
order convexity (see [31]).

Let  : I → R be a continuous strictly monotone function. Then the quasi arithmetic
mean for operators is defined by

M̃ (A; ) = −1

(
1

n
p=1p

n


p=1

p(Ap)

)
, (1.25)

where Ap ∈ S(I) and p > 0 for p = 1,2, . . . ,n.
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1.3 Divided Differences

The tools of divided difference are used to define the higher order convex functions. Di-
vided difference is given in [87, p. 14] as follows.
Consider the function  : [a1,a2] → R. The r-th order divided difference for r +1 distinct
points u0,u1, . . . ,ur ∈ [a1,a2] is defined by the following recursive formula

[ui; ] = (ui) i = 0,1, . . . ,r,

and

[u0,u1, . . . ,ur; ] =
[u1,u2, . . . ,ur; ]− [u0,u1, . . . ,ur−1; ]

ur −u0
. (1.26)

This is equivalent to

[u0,u1, . . . ,ur; ] =
k


j=0

(u j)
w′(u j)

,

where w(u) =
k

j=0

(u− u j). This definition may be extended to include the case in which

some or all the points coincide. Namely, if all the points are same, then by taking limits in
(1.26) we obtain

[u,u, . . . ,u︸ ︷︷ ︸
l−times

; ] =
(l−1)(u)
(l−1)!

, (1.27)

where (l−1) is supposed to exist.

1.4 Higher Order Convex Functions

A function  : [a1,a2] → R is called r-convex function (r ≥ 0) on [a1,a2] if and only if

[u0,u1, . . . ,ur; ] ≥ 0 (1.28)

for all (r+1) distinct choices in [a1,a2] (see [87, p. 14]).
The function  is r-concave on [a1,a2] if inequality sign in (1.28) is reverse. The next

result is useful to examine the convexity of a function [87, p. 16].

Theorem 1.5 Suppose the (n) exists where  is a real valued function. Then  is n-
convex if and only if (n) is non-negative.
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In recent years many researchers have generalized the inequalities for m-convex func-
tions; like S. I. Butt et al. generalized the Popoviciu inequality for m-convex function
using Taylor’s formula, Lidstone polynomial, Montgomery identity, Fink’s identity, Abel-
Gonstcharoff interpolation and Hermite interpolating polynomial (see [31, 29, 32, 30, 33]).
S. I. Butt et al. constructed the linear functional from these generalized Popoviciu type
identities and using the inequalities for Cebysev functional and found some bounds for
the generalized identities. Also they constructed Grüss and Ostrowski type inequalities.
By using these new generalized Popoviciu type functionals they constructed new class of
m-exponentially convex functions.

1.5 Information Divergence Measures and Entropies

Information theory is the science of information, which scientifically deals with the stor-
age, quantification and communication of the information. Being an abstract entity infor-
mation cannot be quantified easily. In 1948 Claude shannon in [93], presented the concept
of information theory and introduced entropy as the fundamental measure of information
in his first of the two fundamental and important theorems. The information can also be
measured with the help of probability density function. Divergences are some important
tools for measuring the difference between two probability density functions. A class of
information divergence measures, which is one of the important divergence measures due
to its compact behavior, is the Csiszár divergence [36, 37].

Let  be a positive function defined on (0,), suppose p := (p1, . . . , pn) and q :=
(q1, . . . ,qn) are positive probability distributions. The Csiszár divergence ( f -divergence)
is defined as

I f (p, q) :=
n


i=1

qi f

(
pi

qi

)
. (1.29)

In [52], L. Horv́ath, et al. gave the following generalization of (1.29):
Let  : I → R be a function. Suppose p := (p1, . . . , pn) is real and q := (q1, . . . ,qn) is

positive n-tuple such that

p j

q j
∈ R, j = 1, . . . ,n. (1.30)

Then

Î(p, q) :=
n


j=1

q j
(

p j

q j

)
. (1.31)

They applied the cyclic refinement of Jensen’s inequality [52] to Î f (p, q) in order to
investigate the bounds for (1.31).




