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Preface

Fractional calculus is a theory of differential and integral operators of non-integer order.
In recent years, considerable interest in this theory has been stimulated due to its many
applications in almost all applied science, especially in numerical analysis and various
fields of physics and engineering. Fractional calculus enabled the adoption of a theoretical
model based on experimental data.

Inequalities which involve integrals of functions and their derivatives, whose study has
a history of about a century, are of great importance in mathematics, with far-reaching
applications in the theory of differential equations, approximations and probability, among
others. They occupy a central place in mathematical analysis and its applications.

Fractional differentiation inequalities have applications to fractional differential equa-
tions; the most important ones are in establishing uniqueness of the solution of initial
problems and giving upper bounds to their solutions. These applications have motivated
many researchers in the field of integral inequalities to investigate certain extensions and
generalizations using different fractional differential and integral operators. There are sev-
eral well-known forms of fractional operators: Riemann-Liouville, Weyl, Erdélyi-Kober,
Hadamard, Katugampola are just a few. All these forms of fractional operators in a special
case are reduced to the Riemann-Liouville fractional integrals J?, f of order ¢ defined as
in [92, 135] for f € Ly[a,b).

As a solution of fractional order differential or integral equations, the Mittag-Leffler
function with its generalizations appears. It is a function of one parameter defined by the
power series using the gamma function

Zn

Ep(Z):niom, (z,peC,fK(p)>0)

and it is a natural extension of the exponential, hyperbolic and trigonometric functions.
Extensions and generalizations of the Mittag-Leffler function enabled researchers to ob-
tain fractional integral inequalities of different types, for example inequalities of the Opial,
Pélya-Szegd, Chebyshev, Hermite-Hadamard and Fejér types, etc. Consequently, new re-
sults are produced for more generalized fractional integral operator containing the Mittag-
Leffler function in their kernels.



The book is divided in nine chapters. The first chapter presents notation, terms and
some important results for continuous and absolutely continuous functions. Definitions
and properties of different types of convex functions that will be used in the book are
given, as well as an overview of fractional calculus.

In Chapter 2 we define the extended and generalized Mittag-Leffler function and give
its properties. For different parameter choices, corresponding known generalizations of
the Mittag-Leffler function can be deduced: the Wiman generalization, also known as
Mittag-Leffler function of two parameters, Prabhakar’s function, Shukla-Prajapati’s func-
tion, Salim-Faraj’s function or recent extension defined by Rahman et al. We also present
the corresponding generalized fractional integral operators containing our extended gener-
alized Mittag-Leffler function in the kernel.

Motivated by Opial type inequalities, in Chapter 3 we use the extended generalized
Mittag-Leffler function with the corresponding fractional integral operator (in real domain)
to obtain fractional generalizations of Opial type inequalities due to Mitrinovi¢ and Pecaric.
For such inequalities we construct functionals and give their mean value theorems.

In Chapter 4, we present improved and generalized Pdlya-Szegd and Chebyshev types
fractional integral inequalities that are related to the Mittag-Leffler function. We also use
Karamata’s estimations of the Chebyshev quotient to obtain even better upper and lower
estimations.

Chapter 5 is dedicated to Minkowsky type inequalities. We present fractional gener-
alizations of integral inequality and its reverse versions for generalized fractional integral
operators containing our extended generalized Mittag-Leffler function.

Certain classical integral inequalities are presented in Chapter 6. We apply the results
from Chapter 2 to obtain improvements, extensions and generalizations of known inequal-
ities.

Famous Hadamard and Fejér-Hadamard inequalities are the main objects of Chap-
ter 7, where we give Hadamard and Fejér- Hadamard types fractional inequalities for con-
vex, relative convex, m-convex, (h — m)-convex, harmonically convex and harmonically
(a,h — m)-convex functions, which include our extended generalized Mittag-Leffler func-
tion.

In Chapter 8, fractional integral inequalities are given that provide the bounds of var-
ious kinds of fractional integral operators containing our extended generalized Mittag-
Leffler function. We also give estimations of these inequalities for different kinds of con-
vex functions. Results are applied on a certain function to establish recurrence relations
among Mittag-Leffler functions.

The last chapter begins with the bounds of unified integral operators given for convex
functions, continuing with results for the exponentially (s,m)-convex, strongly
(s,m)-convex and (o, m)-convex functions, which contain the Mittag-Leffler function.
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Chapter

Preliminaries

1.1 Continuous and Absolutely Continuous Functions

We start with definitions and properties of integrable functions, continuous functions, ab-
solutely continuous functions, and give required notation, terms and overview of some
important results (more details could be found in monographs [106, 133]).

L, spaces

Let [a,b] be a finite interval in R, where —eo <a < b <eo. We denote by L,[a,b], 1 < p < oo,
the space of all Lebesgue measurable functions f for which jf |f(#)|Pdt < oo, with the

norm
= ([ )’

endowed, and by L..[a, D] the set/space of all functions measurable and essentially bounded
on [a,b], equipped with the norm

[|f]lee = esssup{[f(x)[: x € [a,B]} .
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Spaces of continuous and absolutely continuous functions

We denote by C"[a,b], n € Ny, the space of functions which are n times continuously
differentiable on [a, b], that is

C'a,b] = {f: [a,b] — R: fO € Cla,b] k= 0,1,...,n} .

In particular, C°[a,b] = Cla, b] is the space of continuous functions on [a, b] with the norm
n k n k
1£ller =2 NPl = ¥, max |79 ()],
=0 k—0X€ [a,b]

and for Cla, D]

IIfIICZXIQgE]If(X)I-

Lemma 1.1 The space C"[a,b] consists of those and only those functions f which are
represented in the form

1 n—1

10 = G [, G0 e + 3 te-al (1.1

where @ € Cla,b] and ¢y are arbitrary constants (k =0,1,....n—1).
Moreover;,

f®(a)
TR

(k=0,1,....,n—1). (1.2)
The space of absolutely continuous functions on a finite interval [a,b] is denoted by

ACla,b]. Tt is known that ACla,b] coincides with the space of primitives of Lebesgue
integrable functions L, [a, b] (see Kolmogorov and Fomin [93, Chapter 33.2]):

FeAClab] & f(x)=fla)+ /a*q,(,)d,, ¢ €Lifa,b],

and therefore an absolutely continuous function f has an integrable derivative f'(x) = @(x)
almost everywhere on [a,b]. We denote by AC"[a, D], n € N, the space

AC"[a,b] = {f e C"Va,p): 1) ¢ AC[a,b]} :
In particular, AC'[a, b] = AC|a, b].
Lemma 1.2 The space AC"[a,b] consists of those and only those functions which can be
represented in the form (1.1), where @ € Lyla,b] and cy are arbitrary constants

(k=0,1,...,n—1).
Moreover, (1.2) holds.
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Theorem 1.1 (FUBINI’S THEOREM) Let (X,.# ,u) and (Y, NV ,Vv) be o-finite measure
spaces and f U X v-measurable function on X x Y. If f > 0, then next integrals are equal

S e dux vy,

L ([ renave) ) auc
J (ff (%.3) du<x>> av(y).

If f is a complex function, then above equalities hold with additional requirement

and

L 1wl vy <.

Fubini’s theorem and its consequences below have numerous applications involving mul-

tiple integrals:
b d d b
/dX/ f(x,y)dy:/ dy/ f(x,y)dx;
a JC c a

./a‘bdx/:f(X,y)dy./a‘bdy./y‘bf(x,y)dx. (1.3)

1.2 The Gamma and Beta Functions

The gamma function T is the function of complex variable defined by Euler’s integral of
second kind

F(z)z/:ﬂ*‘e*’dt, R(z) >0. (1.4)

This integral is convergent for each z € C such that R(z) > 0. It has next property
[(z+1)=2zI(z), R(z)>0,

from which follows
I'n+1)=n!, neNy.

For domain R(z) < 0 we have

I'(z+n)
(@Dn

where (z), is the Pochhammer’s symbol defined for z € C and n € Ny by

(2o=1

I(z) = R(z) > —n;neN; 2 ¢ Zy ={0,—1,-2,...}, (1.5)
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I'(z+
(2)n = 2+ n) =z(z+1)---(z+n—1),neN.
I(z)
The generalized Pochhammer’s symbol is defined for z, v € C by
[(z+v)
(Z)v = F(Z) .

(1.6)

(1.7)

The gamma function is analytic in complex plane exceptin 0, —1,—2,... which are simple

poles. Another interesting equality holds:

(D)mgn = (z+m), (2),,, n,meN.

The beta function is the function of two complex variables defined by Euler’s integral

of the first kind
1
B(z,w) :/ =0 tdr, R(z),R(w) >0.
0

It is related to the gamma function with

[(z)T(w) _
B =" Zn =40,—1,-2,...
(Z7W) F(Z+W) I Z7W¢ 0 { I ) I }7
which gives
B(z+1,w) = B(z,w).
(e+1w) = ——Blzw)

Further, we have an extension of the beta function (for more details see [31])

1 __p
B, (x,y) = /0 A= e T Tdr, Rx),RO),R(p) > 0.
Here we emphasize two equalities for the extended beta function:

B,(x,y+1)+Bp(x+1,y) =B,(x,y),

/:B,,(x,y)dp Bt 1y+1), RE),R()> 1.

(1.8)

(1.9)

Following examples of integrals will be often used in proofs and calculations in this book.

Example 1.1 Let o, f > 0 and x € [a, b]. Then by substitution 7 = x — s(x — a) we have

/x(x—t)o‘fl(t—a)ﬁfldt = /Ol(x—a)‘”ﬁ*lsa*](l —s)Plas
= B(a, B)(x—a)* P,

Analogously, by substitution ¢ = x + s(b — x), it follows

/b(t — ) b—1)PVdr = B(o, B) (b—x)* 1.
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Example 1.2 Let a8 >0, f € Li[a,b] and x € [a,b]. Then interchanging the order of
integration and evaluating the inner integral we obtain

./j(xft)afl /at (t — )P F(s)dsdr — /s;f(s) ./;(xft)“*l(t — )P drds

= Bl [ (k=9 f(s)ds.

Analogously,
b
X

/Xb(t —x)%! ./t.b(s—t)ﬁflf(s)dsdt = B(oc,ﬁ)./ (s—x)* P11 (s)ds.

1.3 Convex Functions and Classes of Convexity

Definitions and properties of convex functions, with more details, could be found in mono-
graphs [107, 110, 121].

Let / be an interval in R.

Definition 1.1 A function f : I — R is called convex if

FA=A)x+Ay) < (1=A)f(x) +Af(y) (1.10)

for all points x and y in I and all A € [0,1]. It is called strictly convex if the inequality
(1.10) holds strictly whenever x and y are distinct points and A € (0,1). If —f is convex
(respectively, strictly convex) then we say that f is concave (respectively, strictly concave).
If f is both convex and concave, then f is said to be affine.

Lemma 1.3 (THE DISCRETE CASE OF JENSEN’S INEQUALITY) A real-valued function
f defined on an interval I is convex if and only if for all xy,...,x, in I and all scalars
Alyooos Ay in [0,1] with Y7 Ay = 1 we have

f (2 /lkxk> <Y Aef (). (1.11)
k=1 k=1

The above inequality is strict if f is strictly convex, all the points x; are distinct and all
scalars Ay are positive.

Theorem 1.2 (JENSEN) Let f : 1 — R be a continuous function. Then f is convex if and
only if f is midpoint convex, that is,

f<x42ry) < f(X)ﬂsz(y) (1.12)

forallx,y € 1.
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Corollary 1.1 Let f : I — R be a continuous function. Then f is convex if and only if
Fcth)+ f(x—h) = 2f(x) > 0 (1.13)
forall x € I and all h > 0 such that both x+ h and x — h are in I.

Proposition 1.1 (THE OPERATIONS WITH CONVEX FUNCTIONS)

(i) The addition of two convex functions (defined on the same interval) is a convex func-
tion, if one of them is strictly convex, then the sum is also strictly convex.

(ii) The multiplication of a (strictly) convex function with a positive scalar is also a
(strictly) convex function.

(iii) The restriction of every (strictly) convex function to a subinterval of its domain is
also a (strictly) convex function.

(iv) If f : 1 — R is a convex (respectively a strictly convex) function and g : R — R is
a nondecreasing (respectively an increasing) convex function, then go f is convex
(respectively strictly convex)

(v) Suppose that f is a bijection between two intervals I and J. If f is increasing, then
f is (strictly) convex if and only if = is (strictly) concave. If f is a decreasing
bijection, then f and f~' are of the same type of convexity.

Definition 1.2 If g is strictly monotonic, then f is said to be (strictly) convex with respect
to g if fog ™V is (strictly) convex.

Proposition 1.2 If x{,xy,x3 € I are such that x| < x, < x3, then the function f : I — R
is convex if and only if the inequality

(X3 —x2) f(x1) + (01 —x3) f(x2) + (k2 —x1) f(x3) > 0O
holds.

Proposition 1.3 If f is a convex function on an interval I and if x; <y, xp < ya, X1 # X2,
Y1 # ya, then the following inequality is valid
J(2) =)

flxa) = f(x1) - .

X2 — X o Y2 —Yy1

If the function f is concave, then the inequality reverses.
The following theorems concern derivatives of convex functions.
Theorem 1.3 Let f: I — R be convex. Then

(i) f is Lipschitz on any closed interval in I (recall, a function f such that |f(x) —
F)| < Clx —y| for all x and y, where C is a constant independent of x and y, is
called a Lipshitz function);
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(it) f'. and f’ exist and are increasing in I, and f' < f' (if f is strictly convex, then
these derivatives are strictly increasing);

(iii) f' exists, except possibly on a countable set, and on the complement of which it is
continuous.

Proposition 1.4 Suppose that f : 1 — R is a twice differentiable function. Then
(i) f is convex if and only if f" > 0;

(ii) f is strictly convex if and only if " > 0 and the set of points where f” vanishes does
not include intervals of positive length.

Next we need divided differences, commonly used when dealing with functions that
have different degree of smoothness.

Definition 1.3 Ler f: I — R, n € Ny and let xy,x1, ... ,x, € I be mutually different points.
The n-th order divided difference of a function at xy, . .. ,x, is defined recursively by

[xi;f] = f(x,'), i=0,1,....n,
osf] =[xz f] — flxo) —f(x1)

[x0,x13 f] = =
X0 — X1 X0 — X
X0,X1; f] — [x1,x2;
o120 f] = £ 1Qﬂ[c; =0 (1.14)
oy Xeon f] =[x X f]
(%0, xus f] = o .

Remark 1.1 The value [xp,x;,x2; f] is independent of the order of the points xo, x; and
x. This definition may be extended to include the case in which some or all the points
coincide. Namely, taking the limit x; — x in (1.14), we get

J(x0) = f(x2) = f(x0) (x0 — %2)

2 7x27é-x0

lim [xo,x1,%2; f] = [x0,%0,%2; f] =
X1 —X0 (_X,'O 7}(2)
provided that f” exists, and furthermore, taking the limits x; — xp, i = 1,2 in (1.14), we

get
f// ( X0 )

lim lim [xo,x1,x2; f] = [x0,%0, %05 f] = ———
Xp—X( X| —X() 2

provided that f” exists.

Definition 1.4 A function f : I — R is said to be n-convex (n € Ny) if for all choices of
n+ 1 distinct points xo, . .. , X, € I, the n-th order divided difference of f satisfies

X0, ., Xn3 f] > 0. (1.15)
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Thus the 1-convex functions are the nondecreasing functions, while the 2-convex functions
are precisely the classical convex functions.

Definition 1.5 A function f : I — (0,0) is called log-convex if

FUL=A)x+2y) < f0)' 4 () (1.16)
for all points x and y in I and all A € 0,1].

If a function f : I — R is log-convex, then it is also convex, which is a consequence of the
weighted AG-inequality.

We continue with definitions and properties of other types of convex functions that will
be used in the book.

Definition 1.6 [112] Let T, be a set of real numbers. This set T, is said to be relative
convex with respect to an arbitrary function g : R — R if

(1-t)x+18(y) €T,
where x,y € R such that x,g(y) € T,, t € [0, 1].

Definition 1.7 [112] A function f : T, — R is said to be relative convex, if there exists
an arbitrary function g : R — R such that

F((A=0)x+1g(y)) < (1=1)f(x) +1f(g(3));
holds, where x,y € R such that x,g(y) € Ty, t € [0,1].

Note that if g is identity function, then convex set and convex function are reproduced from
relative convex set and relative convex function.

Definition 1.8 [73] Let I be an interval of real numbers. Then a function f : I — R is
said to be quasi-convex function, if for all a,b € I and 0 <t < 1 the following inequality
holds

f(ta+(1—1)b) <max{f(a),f(b)}. (1.17)
Example 1.3 [80] The function f : [—2,2] — R, given by

1 xe[-2,-1]
ﬂ”{ﬁ xe(—1,2]

is not a convex function on [—2,2], but it is quasi-convex function on [—2,2].

Definition 1.9 Let I be an interval of non-zero real numbers. A function f : I — R is said
to be harmonically convex function, if

f<51%%3%)§tﬂw+(lﬁﬂw (1.18)

holds for all a,b € I and t € [0,1]. If inequality in (1.18) is reversed, then f is said to be
harmonically concave function.
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Example 1.4 [76] Let f : (0,0c) — R be defined by f(#) = and g : (—,0) — R de-
fined by g(¢) =¢. Then f is harmonically convex function and g is harmonically concave
function.

Following results are obvious from above example.
(i) If1 C (0,00) and f is non-decreasing convex function, then f is harmonically convex.
(if) If I C (0,0) and f is non-increasing harmonically convex function, then f is convex.

(iii) IfI C (—e0,0) and f is non-decreasing harmonically convex function, then f is con-
vex.

(iv) If I C (—e0,0) and f is non-increasing convex function, then f is harmonically con-
vex.

Definition 1.10 [95] A function h : [a,b] C R\ {0} — R is said to be harmonically
symmetric about % if for all x € |a,b)

()i

We give another new notion of harmonically (h — m)-convex function by setting o = 1
as follows:

Definition 1.11 Let/:[0,1] CJ — R be a nonnegative function. A function f:J CR; —R
is said to be harmonically (h — m)-convex if

mxy
S (m) < h(t)f(x) +mh(1—1)f(y)

holds for all x,y € J, t € [0,1] and m € (0,1].
Next is a harmonically (¢, h — m)-convex function:

Definition 1.12 Let /1:[0,1] CJ — R be a nonnegative function. A function f:J CRL —R
is said to be harmonically (o,h — m)-convex if

mxy a o
f(m) < B £ (x) + mh(1 — %) £(y),

holds for all x,y € J, t, o € [0,1] and m € (0, 1].
This unifies the definitions of harmonically (o,m)-convexity and harmonically s-convexity

of functions. For different specific choices of o,h,m, almost all kinds of well-known
harmonically convex functions can be obtained:
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Remark 1.2 (i) If 4(¢) =1, then harmonically (c,m)-convex function can be obtained
[74].

(ii) If o = 1 and h(r) = *, then harmonically (s,m)-convex function can be obtained
[27].

(iii) If oe = 1 and h(¢) = ¢, then harmonically m-convex function can be obtained [27].
(iv) If o« = h(t) = m = 1, then harmonically P-function can be obtained [113].

(v) If oo = 1, h(t) = ¢* and m = 1, then harmonically s-convex function can be obtained
[113].

vi) fo =1, h(t) = ; and m = 1, then harmonically Godunova-Levin function can be
obtained [113].

(vii) If & = 1, h(t) = L and m = 1, then harmonically s-Godunova-Levin function can be
obtained [113].

(viii) If we set m = 1 and o = 1, then harmonically s-convex function can be achieved
[113].

(ix) By putting @ = 1, h(¢) =t and m = 1, then harmonically-convex function can be
obtained [76].

Definition 1.13 [147] A function f : [0,b] — R, b > 0 is said to be m-convex function if
Sforallx,y € [0,b] and t € [0,1]

flx+m(1=1)y) <tf(x) +m(1 =) f(y)
holds where m € [0, 1].

Example 1.5 [105] A function f : [0,e] — R given by
1
@) =1 (x* — 5% +9x — 5x)

is %—convex function. If m € (%, 1], then f is not m-convex.

For m = 1 the m-convex function reduces to convex function and for m = 0 it gives star-
shaped function. If set of m-convex functions on [0, 5] for which f(0) < 0 is denoted by
K, (b), then we have

K1 (b) C Kn(b) C Ko(b)

whenever m € (0, 1). In the class K; (b) there are convex functions f : [0,5] — R for which
£(0) <0 (see, [40]).

Definition 1.14 [130] A function f : [a,b] — R is said to be exponentially m-convex if
ef@AMI=2)Y) < 20/ ) 4 (1 — 2)ef0), (1.19)

forallx,y € [a,b] and z € [0,1] where m € (0,1].
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Definition 1.15 Ler J C R be an interval containing (0,1) and let h: J — R be a nonneg-
ative function. We say that f : [0,b] — Ris a (h—m)—convex function, if f is nonnegative
and for all x,y € [0,b], m € [0,1] and o« € (0,1), one has

flox+m(l = a)y) <h(e)f(x) +mh(l— ) f(y).

For suitable choices of & and m, class of (h — m)—convex functions is reduces to different
known classes of convex and related functions defined on [0,b] given in the following
remark:
Remark 1.3

(i) If m =1, then we get h—convex function.

(ii) If h(r) = a, then we get m—convex function.
(iii) If h(a) = oo and m = 1, then we get convex function.

)=
)=
(iv) If h(ar) = 1 and m = 1, then we get p—function.
) = o and m = 1, then we get s—convex function of second sense.
)=

(vi) If h(ox) = and m = 1, then we get Godunova-Levin function.

(

(
v) If h(at

(

(o)

(vii) If h s and m = 1, then we get s—Godunova-Levin function of second kind.

Definition 1.16 [103] A function f : [0,b] — R, b > 0 is said to be (ot,m)-convex, where

(or,m) € [0,1]* if
flex+m(1—1)y) <t*f(x) +m(l —1%)f(y) (1.20)

holds for all x,y € [0,b] and t € [0, 1].
Remark 1.4 (i) If we set oo = 1, then (1.20) gives the definition of m-convex function.
(i) If we put (a,m) = (1, 1), then (1.20) gives the definition of convex function.

(iii) If we put (cr,m) = (1,0), then (1.20) gives the definition of starshaped function.

Definition 1.17 [71] Ler s € [0,1]. A function f : [0,00) — R is said to be s-convex
function in the second sense if

flta+(1=0)b) <’ f(a) + (1 —1)'f (D),
holds for all a,b € [0,0) and t € [0,1].

Definition 1.18 [102] Let s € (0,1] and I C [0,0) be an interval. A function f:1 — R is
said to be exponentially s-convex in the second sense if

flta+(1—1)b) < f];(a‘? +(1 ft)fi(fb), (1.21)

holds for all a,b € I, 1 € [0,1] and a € R. If the inequality in (1.21) is reversed, then f is
called exponentially s-concave.
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Definition 1.19 [7] A function f : [0,0] — R, b > 0 is said to be (s,m)-convex function
where (s,m) € [0,1]%, if

fta+m(1—0)b) <’ f(a)+m(1—1°)f(b)
forallx,y € 10,b] and t € [0,1].

Definition 1.20 [125] Let s € [0,1] and I C [0,°0) be an interval. A function f : 1 — R is
said to be exponentially (s,m)-convex in second sense, if

f)

e(XX

+m(1 4)3% (1.22)

flex+m(1—1)y) <¢

forallm e (0,1] and o € R.
Remark 1.5
(i) Form =1, (1.22) produces the definition of exponentially s-convex function.
(ii) For a =0, (1.22) produces the definition of (s,m)-convex function.
(iii) For oo =0 and m = 1, (1.22) produces the definition of s-convex function.
(iv) For oo =0 and m = 1, (1.22) produces the definition of convex function.

(v) For ov =0 and s = 1, (1.22) produces the definition of m-convex function.

Definition 1.21 [75] Let I C (0,0) be a real interval and p € R\ {0}. Then a function
f 11— Rissaid to be p-convex, if

f (Ira? + (1 =0)p717) <1 (@) + (1 =1) ()

forall a,b € I and t € [0,1]. Note that for p =1 and p = —1, p-convexity reduces to
ordinary convexity and harmonically convexity, respectively.

Definition 1.22 [94] Let p € R\ {0}. Then a function f : [a,b] C (0,e0) — R is said to
1
be p-symmetric with respect to [#} "if
fe0) = f (la”+b7—1]7)

holds fort € |a,b).
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1.4 Fractional Calculus

Fractional calculus is a theory of differential and integral operators of non-integer order.
In recent years considerable interest in this theory has been stimulated by the applications
that this calculus finds in numerical analysis and different areas of physics and engineer-
ing. Fractional calculus made it possible to adopt a theoretical model on experimental
data. There are several well known forms of the fractional operators (meaning fractional
integral and fractional derivative) that have been studied extensively for their applications:
Riemann-Liouville, Weyl, Erdély-Kober, Hadamard, Katugampola are just a few.

Fractional integrals and fractional derivatives will be observed in the real domain. Let
[a,b] C R be afinite interval, that is —ee < @ < b < . For the integral part of a real number
o we use notation [ct].

1.4.1 The Riemann-Liouville Fractional Integrals and Derivatives

More on the Riemann-Liouville fractional integrals and derivatives can be found in mono-
graphs [21, 92, 135].

Definition 1.23 ([92]) Let o« > 0 and f € Li[a,b]. The left-sided and the right-sided
Riemann-Liouville fractional integrals J3, f and Ji}_f of order o are defined by

Jofx) = ﬁ/ax(x—t)“*lf(r)dr, x€lab], (1.23)
o 1 b o—1
BT = Fo / (t— 0% f(1)de, x€[ab]. (1.24)

For o« = n € N fractional integrals are actually n-fold integrals, that is

In—1

/th] /t1 dty--- f(tn)dtﬂ
1 N n—1
_ m/ (o=t f(0)dt, (1.25)

Jar f(x)

b b b
Ifx) = / iy / iy [ fan)dry
1 n—1
1

b
= W/x (t—x)""" f(t)dr. (1.26)

Lemma 1.4 Let o, > 0and f € Ly[a,b], 1 < p <eo. Then for almost every x € [a,b]
we have

1T ) =1 ), eIl ) =P ). (1.27)
If f € Cla,b] or o0+ B > 1, then equalities (1.27) hold for each x in [a,b].
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The homogeneous Abel integral equation has only trivial solution (see Samko et al.
[135], Section 2.4).

Lemma 1.5 Let o > 0 and f € Li[a,b]. Then integral equations J, f =0 and Ji* f =0
have only trivial solution f = 0 (almost everywhere).

Next result shows that the Riemann-Liouville fractional integral is bounded operator
on Lp[a,b).

Lemma 1.6 Ler a > 0 and 1 < p < oo, Then the Riemann-Liouville fractional integrals
are bounded on Ly|a,b), that is

W flle < KNAlps (Al < KAl (1.28)
where
~_ (b—a)®
S T(a+1)
For Cla,b] we have
Ve flle < Kliflles M- flle < KlIflle- (1.29)

We continue with definition and properties of the Riemann-Liouville fractional deriva-
tives.

Definition 1.24 Let a >0, n=[a]+ 1 and f : [a,b] — R. The left-sided and the right-
sided Riemann-Liouville fractional derivatives D, f and Dy_f of order o are defined by

dil

DE) = g ()

- ﬁ%_[(x—f)"*“"f(t)dt, (1.30)
Dy f(x) = (=1)" j}; T f(x)

- %%/x (t—x)"" " f(t)dr. (131)

In particular, if 0 < o < 1, then

DE,f(x) = ﬁ %/ax(x—t)*“f(t)dt, (132)
_ b
DY f(x) = 1"(17—105) % | / (t—x)"% f(1)dt. (1.33)

For ¢ = n € N we have

D fx)=f"(x), Dp_f(x)=(-1)"f"(x), (1.34)
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and for ¢ =0
DY, f(x) =D)_f(x) = f(x). (1.35)

The following result indicates that the functions (x —a)*~/ and (b —x)*~/, play the
same role for the Riemann-Liouville fractional derivatives as the constants do in usual
differentiation.

Lemma 1.7 Letr oo > 0andn=[o]+ 1.

n .

(i) The equality DY, f(x) = 0 is valid if and only if f(x) = ¥ cj(x—a)*"/, where
=1

cj €R (j=1,...,n) are arbitrary constants.

In particular, when 0 < oo < 1, the relation D, f(x) = 0 holds if and only if

f(x) = c(x—a)* ! with every c € R.

n .

(it) The equality Dy} f(x) = 0 is valid if and only if f(x) = ¥ dj(b—x)*"/, where
=1

dj €R (j=1,...,n) are arbitrary constants.

In particular, when 0 < o < 1, the relation Dy} f(x) = 0 holds if and only if

f(x) =d(b—x)*"" with everyd € R.
We end with conditions for the existence of fractional derivatives in the space AC"[a, b].

Theorem 1.4 Let oo > 0 and n =[] + 1. If f € AC"[a,b)], then the Riemann-Liouville
fractional derivatives DY, f and Dj_f exist almost everywhere on [a,b] and can be repre-
sented in the forms

1

R * _ n—a—1 g(n)
F(”—oc)/a(x ) fU(e)dr, (1.36)

n—1 (k) a
DES) = S, i oy e

DY f(x) :nfw(b—x)k*“ + L)H)/xb(t—x)"a]f(")(t)dt. (1.37)






Chapter

An Extended Generalized
Mittag-Leffler Function

The Mittag-Leffler function of one parameter is defined by the power series using the
gamma function I

Zn

Ey(z)=) =——, (zpeC,R(p)>0 2.1
and it is a natural extension of the exponential, hyperbolic and trigonometric functions.
For instance:

1
E = n_ __
0(2) =Y.z -

n=0
(=3t = 3L —explz)
Ei (z) = —_— = — =exp(z),
= I'n+1) !

E(z) = cosh(v/2),
E3(z) = % lexp (z%) + 2exp (%) cos (%\/515)1 ;

E4(z) = % [cos(z%) +cosh(z%)} ,
E>(—2%) = cosz.

This function and its generalizations appear as solutions of fractional order differential or
integral equations. First is the well known Wiman’s generalization, also known as Mittag-

17
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Leffler function of two parameters:

o 2
Epo(z)= ), ==, (zp,0€C,R(p)>0), (2.2)
po@=3 ey | (p)>0)
followed by Prabhakar’s function [123], i.e. Mittag-Leffler function of three parameters:
oo 6) Zn
B =3 O = §eC,R 0). 23
hold = 2w oy (P00 €CRP)>0) 23)

Next extension was introduced by Shukla and Prajapati in [143]:

o n
nq
< 24
2 pn—i—O')n'7 24)

=0
where z,0,0,8,q € C, R(p) > max{0,R(q) — 1},R(g) > 0, and (3),, denotes the gener-
alized Pochhammer symbol (1.6).
Further, Salim and Faraj presented in [134] the function

S,q,r < (5)nq 7
EST ()= ——21
7050 = 2 Fon- o) (01
where z,0,0,0,7 € C, min{R(p),R(c),R(5),R(t)} >0, ¢,r >0 and ¢ < R(p)+r
Another recent extension is defined by Rahman et al. in [127]

iB,,(Swan,c—S) (Qng 2"
n=0 B(67C*5) F(p}’l#»o')n'7

, 2.5)

ES8(zip) = (2.6)

where z,p,0,8,c € C, R(p),R(5),R(c) >0, p>0, g >0 with B, as an extension of the
beta function (1.9).

This chapter is based on our results from [15].

2.1 A Further Extension of the Mittag-Leffler Function

We define more extended and generalized Mittag-Leffler function Eg:g;?;"(z; p) as follows:
Definition 2.1 Let p,0,7,8,c € C, R(p),R(0),R(1) > 0, R(c) > R(5) > 0 with p >
0, r>0and 0 < g <r+R(p). Then the extended generalized Mittag-Leffler function
EY 5% (z:p) is defined by

1)

Eps (z:p) =

i BP(6+nQ7C_6) (C)nq 7
iy B(S,c=8) T(pn+0) (1)
For different parameter choices, the corresponding known generalizations of Mittag-Leffler
function can be deduced, as described below.

2.7
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Remark 2.1 Evidently, (2.7) is a generalization of the following functions:

(i) setting p =0, it reduces to (2.5), which is the Salim-Faraj function Eg:g’ff(z) defined
in [134],

(if) setting T = r = 1, it reduces to (2.6), which is the function Eg:g’c(z;p) defined by
Rahman et al. in [127],

(iii) setting p=0and T = r = 1, it reduces to (2.4), which is the Shukla-Prajapati function
EJ4(z) defined in [143],

(iv) setting p=0and 7 =r = g = 1, it reduces to (2.3), which is the Prabhakar function
EJ 5(z) defined in [123],

(v) setting p=0and T =r=¢g =0 = 1, it reduces to (2.2), i.e. the Wiman function
E, (z), which for o = 1 results with the Mittag-Leffler function Ej (z), the equation
@2.1).

Theorem 2.1 The series in (2.7) is absolutely convergent for all values of z provided that
r R
q < r+R(p). Moreover, if g =r+ R(p), then Eg,’g’?f’r(z;p) converges for |z| < rSR(giq)(ﬂ).

Proof. Let Egjg;?;"(z; p) =Y, a,Z", where
n=0
- B,(0 +ng,c—9) (€)ng _
B(8,c—8) T(pn+0)(T)n

Using the Cauchy-Hadamard formula for the radius of convergence

1
R=———
limsup {/|ay|

n—oo

and its alternative formula
an

R =limsup

n—oo

)

Ap+1

the asymptotic formula for gamma function

L(z+a) . (a—b)a+b—1) 1
F(Z-ﬁ-b)iz |:1+ 2z +0 Z2 ) |Z|*> ,|aIgZ|<7T

and the asymptotic behaviour of the generalized beta function for large x (with y and p
finite) by Chaudhry et al. ([30])

y—1

(5) 7 exp {—2(1?)6)

=
Hl—

:p

3
X4

l—

By (1) ~ ]

we obtain lim @, = 0 and

n—oo
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an | _ ‘ B,(0 +ng,c—9) ) (€)ng ) (T)(n+1)r.r(p(”+1)+o')’
Ap+1 Bp( +(n+1)g,c—9) (C)(nJrl)q (Tnr I'(pn+o0)
2c=0)+1
I —
~<1+5+nq prv%®+%q+®—2¢m5+n@}
_ —q(2c+q—1) 1
P A SV ¥
<1+ 22 o (0
r(2t4+r—1) 1
"1 (0]
<ory |1+ HET (wﬂ
p(2o+p—1) 1
xnpp[l+7+0 n— oo
(p) 2np (np)?
Hence,
r 5P
lim |2 | = fim “P e =R,
A
This means that the function Ep 55" (z;p) converges for all z provided that g < r+R(p),
and it is an entire function. Moreover if g = r+ R(p), then Ep 62" (z;p) converges for
%R (p)0)

o < ZRE— O

The following theorems list some basic properties of this function. First we have some
recurrence relations.

Theorem 2.2 [fp,0,7,8,c € C, R(p),R(0),R(7) >0, R(c) > R(5) > 0 with p > 0,
r>0and0 < q<r+R(p), then

S.c.ar Sear (.. ar d o seqr,. .
E@é%(zp)*EﬁéifﬁLp)::l ngEmgg(Lp), R(t) > 1; (2.8)
§.c.4, S d g5
Epsty (p) = OE, 11 (5p) + P2 Ep 611 (@ p)- (2.9)
Proof.
S.cqr,. Scqr (. < Bp(8+ng,c—38)  (c)ng [ 1 1 ] n
E zp)—E _(zp)= — Z
P,0,T ( p) p,0,T l( p) ngo B(5 C*S) F(pn+0') (T)nr (T*l)nr

p(8+nq,c—8) (c) I(7) nr] o,
—-El B(5,c—9) prnfa)ru+nn{1f}z

_ e 2 B, (8 +ng,c—8) (c)ng nz"!
l-74  B(6,c—6) TI(pn+0) (T
zr dESLqr(Z; )

T 1—tdz POF

which proves (2.8).
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Further,

i BP(5+H%C* 5) (C)nq I
28G5 Tonsol o
_ S Bp(0+ng,c—9) (C)n 2
7(pn+6)nzo } B(6,c—9) F(pn+;+1)(r)n,

d,¢.4,
Epst (zp) =

5 7
= (pn—|—0') chrqH T(Z p)

0, d 5
— OBIE fep) B (2,

hence (2.9) is proved. O
Next are some differential relations.

Theorem 2.3 [fme N, w,p,0,7,0,c € C, R(p),R(0),R(1) >0, R(c) > R(5) >0
withpzo,r>0and0<q<r+%( ), then

da mE(S,c,ql L qu p(8+(n+m)g,c=8)  (c+mqng  (n+1)m7"
dz P O-,T “p (T)ml n=| (6 C_(S) F(p(n—f—m) +0-) (T+mr)"r ’
(2.10)

d\" C\q.r Nl iy
(d_z> {ZG LED S (weP ,P)} 7 1Egcqmr(WZp;P), R(o) >m. (2.11)

Proof. We have

d\" s
(d—z) Ey o (zp)

_ i B,(0+ng,c—08) (C)ng [n(n—1)---(n—(m—1))]Z""™
n=m B((S,C—(S) F(pn+0- (T)nr

)

< BP(6 + (I’l +m)CIaC - 6) (C) n+m

n=0 B(5,c—9) [(p(n+m)+ o)

Ntm)(tm—1)-(n+1D]2"
(T)(ner)r

From (x)415 = (x+ a)p(x), follows (2.10).

Further,
d m 6 ;
(4) [ st

_ i BP((SJanvC*(S) (C)nq
27 BG.c-8) Tpn+o)
« [(pn+of 1)(pn+0'72)...(pn+o-7m)]wnzpn+o>mfl
(T)nr
_ w By(0+ng,c—96) (¢)ng WhzPnto—m=1
B ngo B(6,c—90) T(pn+o0—m) (T)nr : O
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Finally, we observe some special cases of the extended generalized Mittag-Leffler func-
tion that we will use to prove our inequalities in the forthcoming chapters.

e if z =0, then
B,(6,c—9) 1

B(5,c—d) I(0)’

d,¢,q,
Ep,'g‘?br(O;p) =

e if p =z7=0, then

ngg?fr(mo) = (o)

2.2 Fractional Integral Operators Associated
with the Mittag-Leffler Function

The corresponding generalized fractional integral operators, the left-sided swfpcg *f and

3,8, " f» which contain the extended generalized Mittag-Leffler function

the right-sided &,” o0
as its kernel, we deﬁne by:

Definition 2.2 Let w,p,0,7,6,c € C, R(p),R(0),R(7) > 0, R(c) > R(5) > 0 with
p>0,r>0and0<q<r+R(p). Let f € Li[a,b] and x € [a,b]. Then the left-sided
and the right-sided generalized fractional integral operator Sw’5 C’q’ f and SW,"S C’q’ f are
defined by

(examr) p) = [0 ERSE (we -0l O, @212)

b
(%07 s) wp) = [ =07 ERSY Wl —fip)sar. @13)

If we apply different parameter choices, then the corresponding known generalizations
of fractional integral operators can be deduced. We list those associated with the left-sided
fractional integral operator. Analogously holds for the right-sided.

Remark 2.2 (2.12) is a generalization of the following fractional integral operators:

(i) setting p = 0, it reduces to the Salim-Faraj fractional integral operator swfp"; J (x)
defined in [134],

(ii) setting T =r = 1, it reduces to the fractional integral operator ¢, ‘Sp" “f(x;p) defined
by Rahman et al. in [127],

(iii) setting p = O and T = r = 1, it reduces to the Srivastava-Tomovski fractional integral
operator € + s ! _f(x) defined in [144],
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(iv) setting p =0 and 7 = r = g = 1, it reduces to the Prabhakar fractional integral
operator £(p, 0;0;w)f(x) defined in [123],

(v) setting p =w =0, it reduces to the left-sided Riemann-Liouville fractional integral
JO. f of order o as in (1.23).

We follow with some properties of these operators.

Theorem 2.4 If w,p,0,7,8,c € C, R(p),R(0),R(r) >0, R(c) > R(6) >0, p>0,
r>00<g< r—|— R(p) with f € Lya, b] X € |a,b), then the left-sided fractional integral

operator € fp o1 and the right-sided Sw p‘ 4" are bounded on Ly |a,b] and
5,04,
wdears| <cisl, (2.14)
and s
|exsears| <clflh, (2.15)
where the constant C (0 < C < o) is given by
% n
C— (a5, [BrOna.c=0)] (€ wio-a™®)
a0 B(6,c=8)]  (R(p)n+R(0))[C(pnto)l ()
(2.16)

Proof. Using Fubini’s theorem we obtain

b X
=[] [ enr Es te) rya
[0 [0 et opi)|as
[iron | [ e g s a

b [ rb—a
/ 7)) / u @ Ey é‘ér(wu";z?)ldu} dt
0
2 {B 5+nq,675){ {(C)nq{ w"|
=4 IB(8.c—8) [T(on+0) (D)l
b—a
></0 et 1d””f“l
= C|Ifll;-

We can see that the constant C, defined by (2.16), is finite.
For the right-sided fractional integral operator, inequality (2.15) can be proved analogously.
O

w,8,¢,q,r
gaﬂp,o,r-f

dx

IN

IN

Next we have several results for a fractional integral operator applied on a power func-
tion.
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Theorem 2.5 If u,w,p,0,7,0,c € C, R(p),R(0),R(7) >0, R(c) > R(S) > 0 with
p>0,r>0and0 < q<r+R(p), thenfor f(t) = (t —a)*~! follows

w,0,¢,q,r — S,c,q,r
<£a+'7'p7g;r(tfa)“ 1)(x;p):F(u)(x—a)“+G ESCO (wx—a)’ip).  (2.17)

Proof. By definition for the left-sided fractional integral operator, we have

.0,¢,q, —
(%p,&’;(f—a)“ ]) (x;p)
X
= [l B )i e — ) e
Ja

/x )o- 12BP(5+”%C_5) (Chng  W'(x—1)P"

BB.c_8) Tonio) (o, -

= (6+nq’ ) (C)n w" X ol e
7;::0 pB(5,c—5) (pn—:a) (T)nr/a(x )Pt l(t W Ly

Now we use the substitution # = x — s(x — a), as in Example 1.1, to obtain
X
/ (=P (1 — @)t dt = (x— a)P" OB, prt 0),
a

from which follows

8.0, -1\ (4
(e —ay )(x,m

= (x—a)7TH! 2 plOtng.c=0) (chg __w" (x—a)p"—r(“)r<pn+a)
n=0 (5 675) F(pn+0) (T)nr F(anr O'+,LL)

8.0, .
=T(u)(x— a),u+cr 1Ep (cquu (w(x— a)’;p).

O

If we set a = 0 and x = 1 in the previous theorem, then we obtain a following result.
Corollary 2.1 If u,w,p,0,7,8,c € C, R(p),R(0),R(t) > 0, R(c) > R(S) > 0 with
p>0,r>0and0< q<r+R(p), then

1 b d,c 54
R o 0T RS (w1 e p)e = B o).

Setting u = 1, we get following identity for the constant function.

Corollary 2.2 [fw,p,0,7,0,c € C, R(p),R(0),R() >0, R(c) >R(S5) > 0withp >0,
r>0and0 < q<r+R(p), then

,0,¢,q, S,
(8;1,1),;21)()6;19) (x—a)°Ey g1 (wx—a)’:p). (2.18)
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Proof. Identity (2.18) is a direct consequence of the Theorem 2.5, but it can also be easily
obtain as follows:

(exyam) eup) = [ =07 ERG e
[y f&’?_’ T e o
B io Bpf(g,zlics) 2 r(;(;)'_f ) (;V;p / Sty
e s s o s

5,
= (x—a)°E, giir(w(x—a)p;p). O

dt

Similarly, for the right-sided fractional integral operator follows:

Theorem 2.6 If u,w,p,0,7,8,¢c € C, R(p),R(0),R(1) >0, R(c) > R(S) > 0 with
p>0,r>0and0 < q<r+R(p), thenforg(t) = (b—1t)*~! follows

.8,¢.,q, — d,c
(s o=0"") (up) = TG —x)" T E G (w(b—0)p).  (2.19)
Proof. By definition for the right-sided fractional integral operator, we have

,0,,g, - .

(a0 =0") Gp)

b yo-1gSe -1

=/<r EpS wle 0P p)(b— )" s

JX

_ b 0' (6 +ngq,c—9) (C)n Wn(t 7x)pn —
7/““ 12 B(8,¢—96) (Pnfa) (T)ur (b—1)*~ai

= (5+nq, ) (C)n w" b _ n+o— . _
7,;::0 pB(S,c—(S) (pn—fO') (T)nr/x (t —x)P"t 1(b 1" 1

For the right-sided integral operator we use the substitution z = x + s(b — x) (see Example
1.1), to obtain

b
/ (t=x)P™ 0 b — )"t = (b —x)P" OB (u, pn + 0),
X
from which we get
.0,¢,q,r - .
(e;i ;g (b—1)" 1) (x:p)

B ) ]2 54’}1(],6‘75) (g~ W' (bfx)P"F(‘u)r(pn—i_o-)
a B(3,c=8) T(pn+0) (T C(pn+o+p)

=T(1)(b—x)* O EN S (w(b—x)P;p).

Setting b = 1 and x = 0 in previous theorem we have the next result.
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€ C, R(p),R(0),R(7) >0, R(c) > R(S) > 0 with

c
), then

Corollary 2.3 If u,w,p,0,7,0,
p>0,r>0and0< q<r+R(

1 1 5 s
— t0'71 1—1¢ “71E G (P ) = BT D).
rm% (1=0)" " Ep 6% (wiPs p)dt = Ep g%, < (wip)

For the constant function, we obtain following identity.

Corollary 2.4 Ifw,p,0,7,8,c € C, R(p),R(0),R(7) >0, R(c) > R(6) >0with p >0,
r>0and0 < q<r—+R(p), then

S.car ) (1 s.cqr .
(81;”,,;, gﬂl) (x:p) = (b—x)PESST (w(b—x):p). (2.20)

2.3 Unified Integral Operators

In recent years considerable interest in fractional calculus has been stimulated by the
applications that this calculus finds in numerical analysis and different areas of physics
and engineering. All forms of the fractional operators that have been studied extensively
for their applications, in a special case are reduced to the left-sided and the right-sided
Riemann-Liouville fractional integrals J, f and J{_f of order ¢ defined as in [92, 135]
for f € Ly[a,b] with (1.23) and (1.24).

Further generalization of the fractional integral operator we give in [46, 101] as follows:
Definition 2.3 [46] Let w,0,7,0,c € C, R(0),R(1) > 0, R(c) > R(6) > 0 with p >0,
p,r>0and 0 < g<r+p. Let f € Li[a,b], 0 < a < b < o, be a positive function. Let

h: [a,b] — R be a differentiable function, strictly increasing. Also let % be an increasing
function on |a,°) and x € [a,b]. Then the left and the right generalized fractional integral

operators ¢FW’5’C’q’rf and 2Fbvf5’c’q’rf are defined by

h'atp.oT £,0,T

¢ -w,08,¢,q, .
(PEuoearr) ()

- / %Eﬁf%r(w(h(ﬂ —h(t))P;p)K' (1) f(r)dr (2.21)
and

(17 aer) )

B /b %Eﬁf%r(ﬂh(i ) = h(x))P:p) (1) f (t)dr (2.22)

Next is a special case of the above operator, setting ¢ (x) =x°, o > 0. This operator

w,8,¢,q,r £ (analogously hYW,&C,CIJ :

we denote atp.0,T b=,p,0,T
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Definition 2.4 [101] Lerw,0,7,8,c € C, R(0),R(7) >0, R(c) > R(5) > 0 with p >0,
p,r>0and0<q<r+p. Let f € Li[a,b], 0 < a < b < e, be a positive function. Let
h: la,b] — R be a differentiable function, strictly increasing and let x € [a,b]. Then the

left and the right generalized fractional integral operators hYW’S’C’q’r fand th,(S,c,q,r f are

defined by atpo P
(e s ()
- /x(h(x) —1(1))" DS (w(h(x) — h(1))P; p)H (1) £ (1)dt (2.23)
and
(imy7senr) )
b
B / (h(t) = h(x)° Ep 6% (w(h(r) = h(x))"s p)I (6)f (1)dr. (2.24)

If we set p = w = 0 in this definition, then (2.23) reduces to the left-sided Riemann-
Liouville fractional integral of a function f with respect to another function h of order &

(192, 135]):

1

IEaf0) = Fgy [ () @) W OF @), x€ (a

For the constant function we have following identities.

Proposition 2.1 Let w,0,7,8,¢c € C, R(0),R(7) >0, R(c) > R(5) > 0 with p > 0,
p,r>0and0<q<r+p. Let 0 < a<b <o andlet h: [a,b] — R be a differentiable
function, strictly increasing. Then

(2097 1) (33 ) = (h(x) — h(@) B 5% L (w(h(x) — ()3 p)

and
(2007 1) (x:p) = (h(B) — H(x)) B %7 (w(h(b) — h(x))P; ).

Proof. Analogously as in Corollary 2.2. O






Chapter

Opial Type Fractional Integral
Inequalities Associated with
the Mittag-Leffler Function

Inequalities which involve integrals of functions and their derivatives, whose study has a
history of about one century, are of great importance in mathematics, with far-reaching
applications in the theory of differential equations, approximations and probability, among
others. They occupy a central position in mathematical analysis and its applications.

In 1960. Opial published an inequality involving integrals of a function and its deriva-
tive, which now bears his name ([117]):

Theorem 3.1 (OPIAL’S INEQUALITY) Let f € C'[0,h] be such that f(0) = f(h) =0 and
f(x) >0 forx e (0,h). then

h h
[l relar<g [ 1), G.1)

where constant hi/4 is the best possible.

A monograph by Agarwal and Pang [6] is dedicated to the theory of Opial type inequal-
ities and its applications. We also did several papers involving various extensions, gener-
alizations and discrete analogues (see [8]-[25], [60]-[63]). To present Mitrinovié¢-Pecaric¢
generalizations of Opial type inequalities given in [121], we need the next characteriza-
tion: We say that a function u : [a,b] — R belongs to the class U(v,K) if it admits the
representation

u(x) = /ax K(x,t)v(t)drt,

29
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where v is a continuous function and K is an arbitrary nonnegative kernel such that v(x) > 0
implies u(x) > 0 for every x € [a,b]. We also assume that all integrals under consideration
exist and converge. In the following theorems we have Opial type inequalities.

Theorem 3.2 ([121, p. 236]) Let u; € U(v1,K), u, € U(v2,K) and v2(x) > O for every
X € |a,b]. Further, let ¢(u) and f(u) be convex and increasing for u > 0 and f(0) = 0. If
f is a differentiable function and M = max K (x,1), then

)) dt

w fn06 (|201) (st

< Mngm<vmn)m

) %) (l‘)

Theorem 3.3 ([121, p. 238]) Let ¢ : [0,00) — R be a differentiable function such that for

1
m > 1 the function (Z)(x%) is convex and ¢(0) =0. Letu € U(v,K) where ([} (K (x,1))'dt)" <
M, 7' +m~ ' =1. Then

If the function q)(x%) is concave, then the reverse inequality holds.

Ui (l)
175 (I)

V1 (l)
\%) (t)

In [8, 10], also [21], we gave the following generalizations of the above inequalities.

Theorem 3.4 (21, p. 86]) Let u; € U(vi,K), up € U(v2,K) and v2(x) > 0 for every
x € [a,b]. Further, let ¢(u) be convex, nonnegative and increasing for u > 0, f(u) be
convex foru > 0 and f(0) = 0. If f is a differentiable function and M = max K (x,t), then

”“)>f(mam<”“”>)m

va(1) uy(t)
) ) dt)
() )) a

b
< M t
<1 (o 00 (355
1 b
M(b—
s [ (0= (
Theorem 3.5 ([21, p. 101]) Let ¢ : [0,0) — R be a differentiable function such that for
m > 1 the function (Z)(x%) is convexand ¢(0) =0. Letu € U (v,K ), where (fj(l((x,t))ldt)% <
M and 1" +m~' = 1. Then

[ "6 () o) < o (M ([ eoras) )

< m/ab(p (b-ayrMpp])ax.  (32)

M bvz(t)d)(

vi(t)

. 1. . ..
If the function ¢ (xm) is concave, then the reverse inequalities hold.
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Fractional differentiation inequalities have applications to fractional differential equa-
tions; the most important ones are in establishing uniqueness of the solution of initial
problems and giving upper bounds to their solutions. These applications have motivated
many researchers in the field of integral inequalities to explore certain extensions and gen-
eralizations by using different fractional differential and integral operators.

The right-sided versions of following inequalities can be established and proved anal-

ogously by using the right-sided fractional integral operator sgvial’f’g’; f defined with (2.13).

This chapter is based on our results from [15].

3.1 Opial Type Fractional Integral Inequalities and
an Extended Generalized Mittag-Leffler Function

In this section we use the extended generalized Mittag-Leffler function ng;f’f with the

: : : 10,0,
corresponding fractional integral operator €} pcg .

generalizations of Opial type inequalities due to Mitrinovi¢ and Pecari¢.

f (in real domain) to obtain fractional

Here, for the reader’s convenience we will use a simplified notation

E(zp) = Eps% (zp) (3.3)
S Bp(0+ng,c—0)  (0)ng Vi

-3

n=0 B(57675) F(anrO') (T)nr7

(eNxp) = (£°5807) (v:p) (3.4)
[ =0 Bl -0 ) 0

The first result is a generalization of Theorem 3.4. As mentioned before, from Theorem
3.4 immediately follows Theorem 3.2.

Theorem 3.6 LetweR, ,p,7>0,¢>8 >0withp>0and0< g <r+p. Let uy,uy, ¢
and f be the same as in Theorem 3.4. Then for ¢ > 1 following inequalities hold

E(w(b—a)’:p)(b—a)°"

x /abvz(x)(p( vy (x) >f, ((er)(x;p)(p ( (ev) (xip)

va(x)
f (E<w<ba>P;p><ba>“ [ nwe ( dx> (3.5)
[0

>> dx. (3.6)

IN

IN
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Proof. Let us define the following kernel
[ (x—=t)° E(w(x—1t)P;p) a<t<x,
K(x,1) = { 0 x<t<b (3.7)

and denote the extended generalized fractional integral operators €v; and €v;, by u; and u;
as

wi(x) = (evi) (x:p) = / (=0T E(w(x—1)P: p)vilt)dt, (3.8)
for i = 1,2. Next we have

i Bp(8+n,c—0) (c)pgW" (x—1)"° i p(8+n,c—8) (¢)pgW' (b—a)™
= B(8,c—90) T(pn+0)(1)w = B(6,c—06) T(on+0)(T)ur
E(w(b—a)’;p),

where convergence of E(w(b — a)P; p) follows by Theorem 2.1. Using

(xft)CFI < (xfa)af1 < (bfa)afl, o>1,
we obtain
K(x,1) <E(w(b—a)’;p)(b—a)°"', o>1,q<r+R(p).

Finally, if we set
M =E(w(b—a)®;p)(b—a)’"

and use here the functions uy, u,, then respectively, by Theorem 3.4 inequalities (3.5) and
(3.6) follow. O

Remark 3.1 For different choices of parameters we can obtain the corresponding frac-
tional integral inequalities, such as:
(i) setting p =01in (3.5), we get [62, Theorem 2.2],

(if) setting p =0 in (3.6), we get [62, Theorem 2.3] (there is a misprint in the (2.5) in
[62, Theorem 2.3]: instead of (b — a)P~" it should be (b — a)P),

(iii) setting p=0and T =r =g = 1, we get Opial type inequalities for Prabhakar frac-
tional integral operator defined in [123],

(iv) setting p=0, 7 =r=¢g =1 and w = 0, we get the result for left-sided Riemann-
Liouville fractional integral in [10, Corollary 3.2].

If we set ¢(x) = x'*" in Theorem 3.6, then we have the following result.

Corollary 3.1 Letwe R, ,p,7>0,¢>0 >0withp >0and 0 < q < r+p. Let uj,uy
and f be the same as in Theorem 3.4. Let m,1 > 1 with ™' +m~' = 1. Then for ¢ > 1

following inequalities hold
E(w(b—a)P;p)(b—a)®!
b I+m i) G I+m
></a Vo (x) f ((evz) (x;p) % )dx

vi(x)
V2 (x)
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l+m
dx)
l+m
) dx.

The next result is a generalization of Theorem 3.5 from which immediately follows
Theorem 3.3.

vi(x)
Vo (x)

a

<f (E(W(b—a)p;p)(b—a)‘” /sz(X)

s bla/abf (E(W(b_a)p§l?)(b—a)6vz(x)

v (x)
Vo (x)

Theorem 3.7 Letwe R, r,p,7>0,¢>0>0withp>0and0 < g <r+p. Let l,m,u
and ¢ be the same as in Theorem 3.5. Then for ¢ > %following inequalities hold

b
[ e i) 0" (ev) () o) e

mlT (0'7 L)

m

(E(w(b—a);p)" (b—a)""!

w(b—a)P: (b_a)o;"% bvx m X nll
<o (B >,p>7l;(a_%)}(/a o) ax) 69)
o ity
= BOo-ar) o

M v(x)| | dx. (3.10)
It (o L)

m

< [0 Bwo-arip)

Proof.  Let us define the kernel K(x,7) as (3.7) and the extended generalized fractional
integral operators €v by u as (3.8). Using the same argument as in the proof of Theorem
3.6 we obtain

E(w(x—1)":p) <E(w(b—a)’;p)

from which follows

o
M:E(w(b—a)p;p)w (3.11)

o)

and u(x) = (&v) (x; p), then by Theorem 3.5 inequalities (3.9) and (3.10) follow, respec-
tively. O
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Remark 3.2 Let the assumptions of Theorem 3.7 hold. For o > 1 we have

m

[ 1€ )0 (en s ) o
<

(E(w(b—a)P;p)" (b—a)""

< m
~ (E(w(b—a):p)" (b—a)"®

< [ o ®wis—ap:p) a7 h)ax

These inequalities will follow if we use the next estimate
K(x,t) <Ewb—a)P;p)(b—a)°', o>1,q<r+R(p),

and set M to be

</ax(K(X,l‘))ldt>; < Ew(b—a);p)(b—a)°"! </:d;>}
< E(W(bia)p;P)(b—a)G*n% oy

Setting p = 0, we get [62, Theorem 2.5], hence Theorem 3.7 is a generalization and an
improvement of [62, Theorem 2.5].

Also, others corresponding fractional integral inequalities can be obtain by fixing cer-
tain parameters in Theorem 3.7, such as:

(i) setting p=0and 7 =r =g =1, we get Opial type inequalities for Prabhakar frac-
tional integral operator defined in [123],

(if) setting p=0, T=r=¢g =1 and w =0, we get the result for left-sided Riemann-
Liouville fractional integral in [8, Theorem 3.1].

If we consider ¢(x) = x/*" in Theorem 3.7, then we have the following.

Corollary 3.2 Let we R, r,p,7>0,¢ >0 >0withp >0and 0 < g <r+p. Let I,m
and u be the same as in Theorem 3.5. Then for o > %following inequalities hold

[ 10 wpl v as

E(w(b—a)P;p)) b—al(G*T:Z) b . l

< B 1)2 (Z)) i) i (/a v(x)] dx)
—a)P: l 7alc

< B Ot [

m
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3.2 Properties of Associated Fractional
Linear Functional

Motivated by the inequalities given in Theorems 3.4 and 3.5, we have studied functionals
derived from them, and we applied them with respect to several types of fractional inte-
grals and fractional derivatives (see [9, 10], also [21]). Here we consider one of them, a
nonnegative difference in (3.2) define as follows

m

W (u,v) m/:q) ((bfa)%M|v(x|> dx

b
1—m m
— /a |u(x)| "o’ (‘u(x)|) |v(x)| "dx.
For this functional we have the following mean value theorems (given in [9], also [21]):
Theorem 3.8 ([21, p. 103]) Let ¢ : [0,0) — R be a differentiable function such that for
m > 1 the function q)(xr}T) is convex and ¢(0) =0. Let u € U(v,K) where (‘[;(K(x,t))ldt)% <

M and 17" +m=' = 1. If ¢ € C*(I), where I C [0,0) is closed interval, then there exists
& € I such that the following equality holds

&) —(m—1)9'(E)
- 2m§2m71

X ((b—a)M'"/ab |v(x)|2mdx—2/ab |u(x)|m|v(x)|mdx> .

Theorem 3.9 ([21, p. 104]) Let ¢y, ¢, : [0,00) — R be differentiable functions such that
for m > 1 the function (I)i(xr}_z) is convex and ¢;(0) =0,i =1,2. Let u € U(v,K), where
(fax(l((x,t))ldt)% <Mand 7' +m~' = 1. If ¢, € C*(I), where I C [0,c0) is closed
interval and

Vo (M,V)

b b
(b—a)m” [ (o dx =2 [ )| v dx £ 0.
a a
then there exists & € I such that we have

Vo, () _ £07(£) — (m— 1)of(&)
Vo (4,v) — £05(8)— (m— 1)ox(E)’

provided that denominators are not equal to zero.

Hence, we study a functional derived from the inequality (3.10), i.e. its nonnegative
difference, which we denote by ¥y :

__ mif(o—)" : .
lI"(l)(l'hv) - (E(w(b—a)ﬁ;p))m (b_a)ma X/a o E(w(b—a)p,p)

UL EWATI PR
11 (o—1)7

m

- [l ) e i) o) .
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A simplified notation E and €f as in (3.3) and (3.4) is used. For this functional we
present following mean value theorems.

Theorem 3.10 Lerw e R, ,p,7>0,¢> 8 >0 with p>0and 0 < g <r+p. Let

¢ : [0,0) — R be a differentiable function such that for m > 1 the function ¢ (x%) is convex
and $(0)=0. Let "' +m~ ' =1, 0 > % andv € Ly[a,b]. If ¢ € C*(I), where I C [0,) is
closed interval, then there exists & € I such that the following equality holds

_E9"() —(m-1)9'(®)

Zmé 2m—1

o ((€v) (), v(x))

X

m

B =@Pip)"(b=a)" [P o
TP ]

b
_2/a |(&v) (x;p)|m|v(x)|mdx1. (3.12)

Proof. Tt follows directly for M defined by (3.11), function u(x) = (¢v) (x; p) and Theo-
rem 3.8. o

Theorem 3.11 Lerw e R, r,p,7>0,¢>8 >0 with p>0and 0 < g <r+p. Let

@1, ¢ : [0,00) — R be differentiable functions such that for m > 1 the function (Z)i(xnlz) is
convexand ¢;(0) =0,i=1,2. Let "' +m™ ' =1, 0 > L andv € L [a,b]. If 1, ¢, € C*(1),
where I C [0,00) is closed interval, then there exists & € I such that the following equality

holds ,
Vo, ((&v) (s p),v(x)) — E¢y(8) — (m—1)9{(&)

- " ) (3‘ 1 3)
Vo, (((&v) (x:p),v(x)) £, (8) — (m—1)95(£)
provided that denominators are not equal to zero.
Proof. Tt follows directly for the function u(x) = (€v) (x; p) and Theorem 3.9. O

Remark 3.3 For different choices of parameters we can get corresponding fractional in-
tegral inequalities, such as:

(i) setting p =0 in (3.12) and (3.13), using the same arguments as in Remark 3.2 we
get improvements of Theorem 2.11 and Theorem 2.12 in [62], respectively,

(ii) settingp=0,T=r=¢g=1and w=0in (3.12) and (3.13), we get results for left-
sided Riemann-Liouville fractional integral in Theorem 4.1 and Theorem 4.2 in [9],
respectively.



Chapter 4

Pdolya-Szego and Chebyshev
Types Fractional Integral
Inequalities Associated with
the Mittag-Leffler Function

The Chebyshev functional T'(f, g) for two Lebesgue integrable functions f and g on inter-
val [a,b] is defined by

9= | ’ f g ( — bf(X)dX) (ﬁ / bg(x)dx) @

Majority of problems involving Chebyshev functional are to give a lower bound or an
upper bound for 7', under various assumptions. For instance, if f and g are monotonic in
the same sense (in the opposite sense) then we obtain a well-known Chebyshev inequality

([32))

T(f.g)=0 (<0). (4.2)
Also, if we have constants m,M,n,N € R such that for x € [a, D]
m< f(x) <M, n<gx)<N,
then the Griiss inequality ([68]) states

(M —m)(N—n)

7(7.0) < =

(4.3)

37
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For more recent inequalities see [28, 39, 41, 84, 114, 115, 120]. Following inequalities are
the subject of our research: the first one was introduced by Pélya and Szegd ([122])

et ><f e —

(J r(x)g(x)dx

Next is the inequality by Dragomir and Diamond ([43])

IT(f,8)| < (M4_n};)\/ﬁ(/]—]:;; n) (bla)2 /jf(x)dx./fg(x)dx. (4.5)

Using Karamata’s estimations of the Chebyshev quotient ([89]), Pecari¢ and Peri¢ give
generalized and improved inequality of (4.5) for positive normalized functional ® in ([120])

—%cmm < —%wmw < (fg) - D()(s)

- (M —m)(N—n)
"~ (Vma+VMN)

Motivated by the paper [114], where authors have proved Polya-Szegd and Chebyshev
types fractional integral inequalities for the Riemann-Liouville fractional integral operator,
we presents improved and generalized corresponding results using our extended general-
ized Mittag-Leffler function with its fractional integral operator.

The right-sided versions of following inequalities can be established and proved anal-
ogously by using the right-sided fractional integral operator sw,’i’f"gj; £ defined with (2.13).

This chapter is based on our results from [14]. o

@(fg) < (M- m)(N ) (VinN +Vbin) D(1)D(9). (4.6

4.1 Polya-Szego Type Fractional Integral
Inequalities and an Extended
Generalized Mittag-Leffler Function

In this section we use extended generalized Mittag-Leffler function Ep o2 with the corre-

sponding fractional integral operator & f oo f (in real domain) to obtain fractional gener-
alizations of inequalities due to Pdlya and Szego Following theorems are based on [114]
where this was done for the Riemann-Liouville fractional integral operator. The role of the
parameter 0 > 0 will be of great significance and for the reader’s convenience we will use
a simplified notation

Eo(zp) = Ep5% (z:p) @.7)
_ i Bp(6 +nq,c—5) (C)"q Zn
“  B(8,c—8) T(pn+0) ()

3
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(eaf)ip) i= (&757570S) p) 48)
= ./a'x(x—t)GflEo.(w(x_I)P;p)f(t)dt.

Theorem 4.1 Letwe R, r,p,0,7>0,¢c>0>0withp>0and 0 < q<r+p. Let
18, 01,02, W1 and Y, be positive integrable functions on [0,0) satisfying

0<@i(u)<flu)<@e(u), 0<y(u)<glu)<uyr(u), uclax. 4.9)
Then the following inequality holds
(eav1vaf?) (xp) (Eo@i2g®) (x;p)
(0 (@1v1 + @2v2) f2) (x:p))?

Proof. From the given conditions follows

(3-8 (5-28)

< (4.10)

that is

(@1 () w1 () + @2(u0) Y2 (w)) f ()g (1) = W () w2 () (f (1) > + @1 ()02 (10) (g (1))

Multiplying above inequality by (x — u)° 'Es(w(x — u)P; p) and integrating on [a,x] we
obtain

[ =07 Bl — 1)) (0101 () + @2(0) 20 g a)
> [ )7 B vt ) )y )y (f () Pl
# [ e B (w3 ) ()20 (80l
that is

(Eo(@rvw1 +@2un) fg) (x:p)
> (eowivnf?) (x:p) + (E5P19287) (x;p).

Since a+ b > 2+/ab for a,b € R (the AM-GM inequality), we have

(€ (@11 +¢212)f8) (x;p)
> 2y/(Ea ¥V 2) () (E591926%) (x:1).

which leads to the inequality (4.10) as required. O

Fixing the bounds on functions f and g we get the following special case of Theorem
4.1.
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Corollary 4.1 Letw e R, 1,0,0,7>0,¢>8>0withp>0and 0 < g<r+p. Let f
and g be two positive integrable functions on [0,0) satisfying

O<m< flu) <M <o, 0<n<gu)<N<oo, ucla,ux. (4.11)

Then the following inequality holds

(0f?) (:p) (€08®) (p) _ 1 [ [mn /MN
2 Z
[(5£2) (x:p)] SV
Remark 4.1 Choosing particular values of parameters in Theorem 4.1, known Pélya-
Szeg6 type inequalities for several fractional integral operators can be deduced (for more
details on fractional integral operators see [15] and references therein). For example, set-
ting w = p = 0 (and a = 0), we get Pdlya-Szegd inequality for the Riemann-Liouville
fractional integral operator given in [114, Lemma 3.1].

Now we prove the next Pélya-Szeg6 type inequality.

Theorem 4.2 Suppose that the assumptions of Theorem 4.1 hold with 3 > 0. Then

(E0192) (x:p) (8pw1y2) (%) (€0 f?) (x:p) (€p87) (53 p) <l un
[(Ec@1f) (x:p) (Epvig) (x:p) + (Ec@af) (x:p) (813 yg) (x:p )] 4
Proof. Under given conditions on f,g and @;, y;(i = 1,2) in (4.9), for u,v € [a,t] we have
() f( f)  @i(u)
AL a LY 0
me) g0 - M ) ) T
which imply

that is
o1 ()£ () w1 (v)g(v) + 2() f () w2 (V) (v) = Wi () w2 (V) (£ (1) > + 1 () @2 (1) (8 (v) .
Multiplying above inequality by
(=) e )P T E g (w(x— )P p)Eg (w(x—v)P: p)
and integrating, we obtain

[ [ e )P B el wPp)

xEg(w ( —v)P »P)‘Pl(u)f(u)lm(V)g(v)dudv
+/:/ax(xfu)o.il(xiV)BilEO'(W(xfu)p;p)
XEg(w(x—v)P; p) @2 (u) f (1) y2 (v)g (v)dudv
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XEg(w(x—v);p)yi (V)2 (v)(f (u))*dudv
+/ / x=u)? ! (x= )P Eq (w(x— 1) p)
XEg(w(x—v);p)@i (u) @2 () (g(v)) dudv,

that is

(ec1f) (x:p) (Egvig) (x:p) + (Ec @ f) (x:p) (EgW2g(x: p))
> (e6f°) (x:p) (Epviva) (x:p) + (E00192) (x:p) (£p87) (x:p).

Now if we apply the AM-GM inequality we get
(€o1f) (x:p) (Egwig) (x:p) + (Ec@af) (x:p) (EpWag) (x:p)
> 2\/(€af?) (x:p) (Epu1v2) (x:p) (€001 02) (x:) (£p?) (x:p)

which leads to the inequality (4.12). O

In the results that follow, we need next equality from Corollary 2.2:

(861) (x:p) = (x—a) Egs1 (w(x —a)’:p). (4.13)
We continue with a special case of Theorem 4.2.

Corollary 4.2 Suppose that the assumptions of Corollary 4.1 hold with 3 > 0. Then

(e51) (x:p) [(;ﬁcljz)((x p)((«:];))( )]z(eﬁg - (\/> \/W)

Theorem 4.3 Suppose that the assumptions of Theorem 4.1 hold with 3 > 0. Then

(6f?) (x:p) (£58°) (x:p)

/\

< (8o (@2fg/w)) (x;p) (eg(wafg/®)) (x:p). (4.14)
Proof. Under given conditions on f,g and @;, y;(i = 1,2) in (4.9), for u,v € [a,t] we have
P o B0 o
S (w20 ang VT (g2 >0,

hence
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and .
[ =) B w(x =) p) e(0)
< [ By vPin) B et
which imply
(£0f?) (v:p) < (€0 (92f8/w1)) (x:p),
(epg”) (:p) < (ep(¥afg/ 1)) (x:p).
Multiplying above inequalities we obtain (4.14). O

Corollary 4.3 Suppose that the assumptions of Corollary 4.1 hold with 3 > 0. Then

(0/?) (x:p) (p8?) (x:ip) _ MN

(€f8) (x:p) (epfg) (xip) — mn
Remark 4.2 As before, choosing particular values of parameters in Theorem 4.2 and
Theorem 4.3, known Pélya-Szegd type inequalities for several fractional integral operators

can be deduced, such as inequalities for the Riemann-Liouville fractional integral operator
in [114, Lemma 3.3, Lemma 3.4] if we set w = p = 0.

4.2 Chebyshev Type Fractional Integral
Inequalities and an Extended
Generalized Mittag-Leffler Function

Using P6lya-Szegd type inequality in Theorem 4.1, we obtain following Chebyshev in-
equalities based on [120] and [114].

A simplified notation E 5 and €5 f as in (4.7) and (4.8) is used here.

Theorem 4.4 Letw €R, r,p,0,7>0,¢>0>0withp>0and 0<q<r+p. Let
1,8, 01,02, W1 and Y, be positive integrable functions on [0,0) functions satisfying

0<@i(u) <flu) <@a(u), O<yi(u)<gu)<ya(u), ucla,x.
Suppose also § > 0. Then

[(€51) (x:p) (£p8) (x:p) + (ﬁﬁl)(X'P)(Eafg)(X' )
—(e6f) (x:p) (€8) (x;p) — (€68) (x:p) (€5f) (x;P)]

|Gcﬂ fa(pla )(xp)+Gﬂ, (fv‘Plv‘PZ)(pr)P
X |GO',[3(g7 wlvwz)(X;p)+Gﬂ,0'(g7 leWQ)(X;p”% ) (4.15)
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here (ep1) (x:p) [(0 (v +w)u) (x: )]

4(gqvw) (x;p)
—(&ou) (x:p) (£pu) (x:p). (4.16)

Proof. Let f and g be two positive integrable function on [0,e0). For u,v € [a,t] we define
A(u,v) as

Gop (u,v,w)(x;p) =

Au,v) = (f () = f(v))(g(u) = 8(v)),
that is
Au,v) = f(u)g(u) + f(v)g(v) = fu)g(v) — f(v)g(u).
Multiplying above equality by
(=) (= )P T E g (w(x — u)?; p)Eg (w(x —v)P; p)
and integrating, we obtain

/x/xx W)’ (x— )P E 5 (w(x—u)?; P)Eg (w(x—v)P; p)A(u,v)dudy

= (eﬁl) (x;p) (€cfg) (x;p) + (€51) (x;p) (Eﬁfg) (x;p)

—(eaf) (x:p) (epg) (x:p) — (pf) (x:p) (Eg) (x:p).
4.17)
By the Cauchy-Schwartz inequality for double integrals we have

/x/xx W)’ N x— )P E g (w(x —u)P; P)Eg(w(x—v)P:p)A(u,v)dudy

S R e T L IR
+/ / (x— )’ x = V)P E s (w(x—u)P ;p)Eﬁ(w(xfv)p;p)(f(v))zdudv

1
2

fZ/X/xx w)° N x =) Eg(wix —u)?; P)Eg(w(x— v)p;p)f(u)f(v)dudv]
X [/ / x— 1)’ x = )P E s (w(x—u)P; )Eﬁ(w(xfv)p;p)(g(u))zdudv

+/ / x— 1) x— )P E g (wlx —u)P; P)Eg(w(x—v)?;p)(g(v))*dudy

1
2

72/:/:)( u)°~ l(x V)B 1EG( (x—u)?;p)Eg(w(x— v)p;p)g(u)g(v)dudv]
= [(gp1) (x:p) (£6.S7) (x:p) + (€61) (x:p) (£5S7) (x:p)
~2(e0f) (x:p) (£pf) (x:p)]
x [(ep1) (x:p) (€08%) (x:p) + (€01) (x:p) (€p€°) (x:p)
} 1

—2(£08) (x:p) (£pg) (x:p (4.18)
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For v () = y»(¢) = g(¢) = 1 by Theorem 4.1 follows

[(es(e1 +¢2)f) (x:p))
4(ecp1m) (x:p)

(€af?) (ip) <
This implies

(ep1) (x;p) (Eof?) (x:p) — (€af) (x:p) (€5 f) (x;p)
. )2
= Gop(f,01,0)(x;p) (4.19)

and

(ec1) (x;p) (€pf7) (x;p) — (€6.f) (x;P) (E5f) (x:p)

2
< Elp )(E(:Z fz;)t(m){ JEOL ooy () (p) (x:p)

= Ggo(f,01,02)(x;p) (4.20)
Applying the same procedure for @) (1) = @2(¢) = f(¢) = 1, we get

(epl) (x:p) (€08?) (x:p) — (E6g) (x:p) (£88) (x:p)
<Gy p(gv1,v2)(x;p) (4.21)

(eol) (x:p) (£p8%) (x:p) — (€08) (x:p) (£pg) (x:p)

< Gp,(gv1,v2)(x:p) (4.22)
Finally, considering (4.17) to (4.22), we arrive at the desired result in (4.15). This com-
pletes the proof. O

Setting o = 3 in Theorem 4.4, next inequality follows.

Corollary 4.4 Suppose that the assumptions of Theorem 4.4 hold. Then

|(e51) (x:p) (€5./8) (x;P) = (€0 f) (x;p) (€58) (x:P))

l—

< |Goo(f,01,02)(x;p) Go.o (8, W1, ¥2)(x; p)|2 .

If we set ¢ =m, ¢ =M, y; =n and Yy, = N in the previous corollary, then we obtain

(M —m)*
dmM

Goo(f,mM)(x;p) = (g0 f) (x: )2,

(N—n)’

4nN

Go.o(g:n,N)(x;p) = [(e58) (x:p)].
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Corollary 4.5 Letwe R, 1,p0,0,7>0,¢>8>0withp>0and 0 < g<r+p. Let f
and g be two positive integrable functions on [0,0) satisfying

O<m< fu) <M <o, 0<n<gu)<N<eo, uct/la,uxl.

Then
(801) (x:p) (€5.8) (x:p) — (€5.f) (x:p) (E08) (x:P)]
(M —m)(N—n)
< —F— (€ ) € P)-
Remark 4.3 Setting w = p = 0 (and a = 0) in Theorem 4.4, Corollary 4.4 and Corollary

4.5 we get Polya-Szegd type inequalities for the Riemann-Liouville fractional integral op-
erator given in [114, Theorem 3.6, Theorem 3.7, Corollary 3.4].

Recently, in [111] Nikolova and VaroSanec generalized results from [114] for any two
linear isotonic functionals. Here, we will give another approach. In the next theorem we
will use Karamata’s estimations of the Chebyshev quotient ([89]),

1 (Fa k) (5 sas)

<K’ 423
K L7 fg(dx = (4.23)
where \/_ \/_
i+ /MN
K= Nt in 424
VmN ++/Mn’ (4.24)

and the result (4.6) by Pecari¢ and Peri¢ ([120]). In this way we will obtain even better
upper and lower estimations than those in Corollary 4.5.

Theorem 4.5 Suppose that the assumptions of Corollary 4.5 hold. Then

1 _ (eol)(x:p) (80/8) (X:p) _ 10
—< <K 4.25
K2 = (e0/) () (€08) (:p) 42
where K is given by (4.24).

Proof. Without loss of generality we can assume
L<flu) <p, 1<gu) <
for every u € [a,t] and some u;, Up > 1. From the obvious inequality
[ = f][f(v) = 1] [128(v) — g ()] = 0

we obtain

pitiaf(v)g(v) — titag(v) — i f(v)g(u) + uig(u)
—tof(u)f(v)g(v) + f(u)f(v)g(u) + o f (u)g(v) — f(u)g(u) > 0.

Multiplying above inequality by
(r—10)7 " (x=v) T Eg (wx — )P p)Eo (w(x —v)P:p)
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and then integrating, we have

pit (01) (x;p) (E0f8) (x;p) — i (€ al)(x, )
— 1 (o f) (x;p) (Ecg) (x;p) + pi (€ 1) )
—W2 (€6 f) (x;p) (Eofg) (x;p) + (Ecf) (x ,p) f )
+2 (€f) (x;p) (€58) (x;p) — (€o1) (x:p) (Ecfg) (X;p)

from which follows

to [wi (1) (v p) — (€ f) (v p)] + i [(Eaf) (v:p) — (o) (x:P)]

w2 [ (Es1) (x;p) — (€af) (x:p)] + (€a f) (x:p) — (E51) (x;p)
< (Esfg) (x;p)

(€sg) (x;p) (4.26)

Similarly, from

[ = f)} [f(v) = 1] [p2g (u) —g(v)] 2 0

follows

(eaf8) (x:p) _

(€6g) (xip) —
w1 (€q1) (x;p) — (€ f) (x;p) + 2 [(Ef) (x:p) — (E61) (x:p)] 427)
pi (Es1) (x:p) — (€6 f) (;p) + 2 (€5 f) (x;p) — (€5 1) (x;p)] '

Hence, from (4.26) and (4.27) we have

i [M _ izf XP}JF |:(50f xp) 71}

o [ - s+ 2153*1

(60 /) (xip) (0 f)(xip) _
_ (eafg)(up) _ M1~ Teaniiup) T H1K2 2|1 J

€ er)
Eog)(up) 4 Calllon) o, [(eaflnn)
(eog)(v:p) =y — eDlon gy, [ollon) 4]

Next, we define functions &, H : [1, ;] — (0,0) by

-t (1) _ 1
M= = rme—n " gy

Fort = % it is straightforward to check that

2
max H(t)=H(f) = (Hi V‘u]’uz) — K2
te[lm] VL

and

min k(1) =h(w /t;) = 1/H(t;) = 1/K>.
e[l
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Using (4.28) we obtain
(&af) (xip)\ _ (85l) (x;p) (€0f8) (x:p) (e0f) (x:p)
(ehes) < Chmeaeg < (che)
from which follows (4.25). O

Corollary 4.6 If the assumptions of Theorem 4.5 hold, then

_ (M-—m)(N—n)

(VmN + /Mn)*

~ (M-m)(N—n)

(v -+ VMN)®

(801) (x:p) (€0/8) (x:p) — (€0 f) (x;p) (E58) (x; )
% (€01 (x:p) (60 /2) (x:p)

- (M —m)(N —n)

~ (VmN+/Mn)’

Proof. As in [120, Corrolary 1], we see that direct consequences of (4.25) are the first and
the last inequality in (4.28). From the lower bound in (4.25) we have

(€o1) (x;p) (€6 f8) (x:p)

(€6f) (x:p) (€58) (x;P)

IN

IN

(6f) (x;p) (€58) (x; D). (4.28)

1ot ) (eass) i)

< (e01) (v;p) (€5f8) (x:p) — (€0 f) (x;P) (€8) (x: p)
from which follows the second inequality in (4.28). Analogously, from the upper bound in
(4.25) follows the third inequality in (4.28). O
Remark 4.4 If we observe results from Corollary 4.5 and Corollary 4.6 we can see that
the upper estimate from Corollary 4.6 is better, i.e. inequality
(M—m)(N=n) _ (M—m)(N—n)
(~/mN+~/Mn)2 - 4v/mMnN

is equivalent with inequality

2
0< (VMn—vmN)".
The upper estimates are equal if and only if M/m = N /n.
The lower estimate from Corollary 4.6 is also better, i.e. inequality
(M —m)(N—n) - (M —m)(N—n)

4v/mMnN — — (W+\/ATN)2

is equivalent with inequality

0< (\/m_—\/M—N>2.

The lower estimates are equal if and only if m = M and n = N.






Chapter S

Minkowski Type Fractional
Integral Inequalities
Associated with the
Mittag-Leffler Function

Motivated by the papers [29, 142], where authors have proved Minkowski type integral
inequalities, we present generalized corresponding results using our extended generalized
Mittag-Leffler function with its fractional integral operators. We will need the Minkowski
integral inequality and its reverse versions:

Theorem 5.1 (THE MINKOWSKI INTEGRAL INEQUALITY) Let p > 1 and let f,g €
Ly,la,b]. Then

(/f|f(x)+g(x)|”dx)% < (/ab |f(x)|pdx)%+ (/flg(xﬂpdx);_), 5.1)

Theorem 5.2 [29] Let p > 1 and let f,g € Lyla,b] be positive functions satisfying
0<m< % < M forx € [a,D]. Then

([ reoyrar) ' ([ tras) < s ([ +staras)”

49
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Theorem 5.3 [142] Let p > 1 and let f,g € Lya,b] be positive functions satisfying
0<m< ) < M forx € [a,b]. Then

e
<'/6;b(f(X))pdx) % * (/a b(g(x))l’dx) ’

> ML b(f(x))ﬂdx)’l_’ ([ tstrras) g

The right-sided versions of following inequalities can be established and proved anal-
ogously by using the right-sided fractional integral operators Sl:";i’fg’;f and hYZ’ng’Z’rf f
defined with (2.13) and (2.24) respectively.

This chapter is based on our results from [16, 17].

5.1 Reverse Minkowski Type Inequalities Involving
an Extended Generalized Mittag-Leffler Function

We start this section by presenting the reverse fractional Minkowski integral inequality us-
ing extended generalized Mittag-Leffler function E;f;f;fj with the corresponding fractional

integral operator &>

atp,(”f (in real domain).

Here, for the reader’s convenience we will use a simplified notation

E(zu) = E)GY (zu) (5.2)
B i B,(0+nmv,c—06) () 7"
- B((S,C*(S) F(pn+ O-) (T)nr’

n=0
(&f)(xu) = (swfp ’;’;f) (x;u0) (5.3)
/a C(e— )T E (w(x— 1)P:u) £ (¢)dr.

For proving our inequality, we follow methods as in the paper by L. Bougoffa ([29]),
which we supplement with the necessary steps to generalize Theorem 5.2.

Theorem 5.4 LetweR, 1,p0,0,7>0,¢>0>0withu>0and0<v<r+p. Let p>1
and let f,g € L,[a,b] be positive functions satisfying

0<m§@<M, X € [a,b]. (5.4)

g(x) ~
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Then
[(e7) ()] 7 + [(e8”) (vs10)] 7 < e [((f +8)7) ()] 7 , (5.5)
where
 M(m+2)+1
T mr M) (5.6)

Proof. From the hypothesis ﬁ_;) < M we have

=

f@) <M[f(e)+g@)] —=Mf(t), 1€ ab],
from which follows the inequality
(M+1)P(f(0)" <MP[f(1)+g@]", p=1,1€la,b].
Multiplying both sides of the above inequality by
(x—1)° E(w(x—1)P;u)
and integrating on [a,x] with respect to the variable ¢, we obtain
(M +1)P(ef?)(x;u) < MP(e(f +¢)") (x;u),

from which we get

]

[(e(f+8)") ()] 7 . 5.7)

~

(M) ml? < o

Further, for the lower bound Q—;) > m we have

8() < - [F0) + ()]~ gle), 1€ [a,h]

Sl

and

(1+2) @ < (5) 0+e0r, p21eles]

m

Similarly, if we multiply above inequality by (x —7)°~'E(w(x —)P;u) and integrate on
[a,x], then we get

(1+2) e < (+ ) (er+e) s,
from which follows

[(e(F+2)") (xu)] 7. (5.8)

==

[(eg”) (x;u)]

<

m+1
The resulting inequality (5.5) now follows by adding (5.7) and (5.8). O

Next theorem is a consequence of the Minkowski integral inequality (as shown by Set
et al. in [142]) and it is a generalization of Theorem 5.3.
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Theorem 5.5 Suppose that assumptions of Theorem 5.4 hold. Then

(€f7)(s0)]7 + [(€8”) ()] 7 > ca[(€f7) ()] (€ w)] 7, (5.9)
where u | |
¢y = <m_A)4+m+ . (5.10)
Proof. Taking the product of the inequalities (5.7) and (5.8) we obtain
M1 1 L L 2
DD e ) wsa] (e ea]F < (e +)7) (e
If we apply Minkowski’s inequality (5.1) on the right hand side, we get
M—+1 1 1 1
V0D e ) o) (o) )
1 112
< |(efP) ()P +[(e8") (xsu)] P
= (/") ()P +2((ef") ()] 7 [(£8) ()] + [(£8”) (x:a0)] 7
From this we can easily obtain the inequality (5.9). O

5.2 Related Minkowski Type Inequalities

In the following, we continue with the generalizations of the reverse Minkowski type inte-
gral inequalities. For more similar results related to the Minkowski inequality in fractional
calculus operators point of view, we refer the readers to see [37, 90, 91, 128, 149, 145, 146].
A simplified notation E and € f as in (5.2) and (5.3) is used here.

We start with two theorems involving parameters p,q > 1 such that % + é =1.

Theorem 5.6 Suppose that assumptions of Theorem 5.4 hold. Let p,q > 1 with % + é =1.
Then
1
1 1 M\ r4 11
(el eg)salh < (21)" elrhehsn. 5.11)

m

Proof. From the hypothesis % < M we obtain

<=

(F())T < Mi(g(1))F,

1
and after multiplication by (f(¢))? we get
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Multiplying both sides of the above inequality by (x —#)°~'E (w(x —¢)”;u) and integrating
on [a,x] with respect to the variable ¢, we derive

(6) () <M (e(f7g))(x:m),

and

< M7 [(e(Frgn)) ()] (5.12)

Sl

!

(&) (x:u)]
Further, we obtain
g(t) <m P (F(0)7 (g(1))7
by using lower bound m < % and multiplication by (g(7)) i, Multiplying above inequality
by (x —1)°'E(w(x —t)P;u) and integrating on [a,x] we have
(8)(xiu) < m ™7 (£(/7 7)) (10
from which we get

1

1
1 1 11 2
(eg)(xiu)]s < m 7 |(e(frg0) ()| (5.13)
The inequality (5.11) now follows from the product of inequalities (5.12) and (5.13). O

In the next theorem we will need the well known Young’s inequality for products of
x,y > 0 with p,q > 1 such that %—f— cl/ =1:

Xy < —+—, (5.14)

and following elementary inequality for x,y > 0 and p > 1:

(x+y)P <2P71(xP +yP). (5.15)
Theorem 5.7 Suppose that assumptions of Theorem 5.4 hold. Let p,q > 1 with %—i—% =1
Then
op-1 M \?
) < () e+ e )
21 1 \¢
+T (m—Jrl) (e(f1+g))(x;u). (5.16)

Proof. We follow the same steps as in the proof of Theorem 5.4 to obtain (5.7) and (5.8)
from which follow

Lemmu < —L(e(f+0)7) (vw) (5.17)

p eI = S e el |
and .

5(5811)()6;“) < m(e(f+g)q)(x§“)~ (5.18)
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Using Young’s inequality (5.14) we have

f()g(r) <

Multiplying both sides of the above inequality by (x —7)°~'E (w(x —)P;u) and integrating
on [a,x] we get

1 1
(e(f8))(xiu) < ];(Ef”)(x su) + a(ﬁg")(x;u)- (5.19)
From (5.17), (5.18) and (5.19) follows
MP
(&(fg))(x;u) < m(s(erg)p)(x,u) + m(b‘(erg)q)(x,u)- (5.20)
Using elementary inequality (5.15) we obtain
(E(f +8)")(xiu) <2771 (e(fP +87)) (x:) (5.21)
and
(e(f+8)") () <277 ((f7+ 7)) (x ). (5.22)
Hence, from (5.20), (5.21) and (5.22) follows (5.16). O

Theorem 5.8 Suppose that assumptions of Theorem 5.4 hold. Then

L (e(f9)) ) < (€(f +8))(x:w)

(m+1)(M+1)
1
< —(e(f8) (xiu). (523)
Proof. From0 <m < % <M an d% < % < %Weobatin
(m+1)g(r) < f(1) +¢(t) < (M+1)g(t) (5.24)
and M+1 1
+ +
(Mo ) 0 <5042 < (") ) (5.25)
Multiplying inequalities (5.24) and (5.25) we get
! (1) +8(0)°

080 < ~ (0s(e).

(M+1)(m+ 1)
Finally, multiplying above inequalities by (x —¢)° 'E(w(x —¢)”;u) and integrating on
[a,x] with respect to the variable z, we obtain inequalities (5.23). O

In the last theorem of this section, we will add a positive parameter y and assume
u<mie.

O<u<m<=—=<M, xE¢€la,b]
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Theorem 5.9 Suppose that assumptions of Theorem 5.4 hold. Let u > 0 be such that
u <min(5.4). Then

AA//[[i_lli(S(f—Hg)ll’)(x;u) < [(gf[’)(x;u)]ll) +[(8g”)(x;u)]1l)
SZj;@UfM@h@m) 5:26)

Proof. From the given condition 0 < u < m < M, we have
mit < My = mu+m<mu+M<Mu+M,

that is
m—Mu <M-—mu.

Now we have
m—Mu+Mm—u<M-—mu+Mm—pu

and
M+1 <m+1
M—u " m—pu
Easily we get
f(t)— t
e IO )
8(7)

from which we can obtain
[f(t) — ug(t)]”
(M —u)p

Multiplying above inequalities by (x —#)°~'E(w(x —¢)P;u) and integrating on [a,x] with
respect to the variable ¢, we obtain

<(g(1)" <

G U~ 1)) ) < (e
< o e ) i),
followed by
s [ =) )P < [(ea?) )
<l —ne) )b (27
Further, from 4; < 45 < L we get
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from which we have
MP[f(t) — pg(1))”
(M —p)r

Again, multiplying above inequalities by (x —#)° ~'E (w(x —¢)P;u) and integrating on [a, x|
we obtain

P 1)~ ug(0))”

<(f()’ < n— )7

M Yxiu) < P (%
W(b‘(f—ug) )(x;u) < (££7)(xiu)
mP
< W(E(f—ug)”)(x;u),
followed by
M | .
g EU ) xu]r < [(ef)(wu)r
< e e eu]E . (528
By adding the inequalities (5.27) and (5.28) follows the result (5.26). O

5.3 Further Generalizations of Minkowski
Type Inequalities

In this section we give further generalizations of reverse Minkowski type integral inequali-
w,0,c,v,r

ties for a generalized fractional integral operator , Y, Y po

f (2.23) containing an extended

Mittag-Leffler function Eg:g’ff in the kernel and then we prove some related fractional

Minkowski type integral inequalities.
For the reader’s convenience we will use a simplified notation
E(zu) == Epg¥ (zu),
WOf) () = (00 ) (o)
= [ ) = @) B () — (1)) s (1) (1)
Ja
Theorem 5.10 Letwe R, p,0,7,r >0, ¢ >0 >0withu>0and 0 <v <r-+p. Let
h:la,b] — R be a differentiable, strictly increasing function and let f,g, Q1,02 € Lp|a,b]

be positive functions satisfying

0< @ (x) <—=<@(x), x€]la,b].
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Then for p > 1 the following inequality holds
1
(A7) ()7 + [(hYsP) ()] 7

S R e e

Proof. Lett € [a,b]. From% @ (1) we have
@) <o) (1) + ()] = p2() f(2),

and forp > 1
e(r) \"
oy < (F295) v+ (5.30)
Multiplying both sides of the above inequality by
(h(x) —h(t))" " E (w(h(x) — h(1))P:u) K (1) (5.31)

and integrating on [a,x] with respect to the variable 7, we obtain

Wy < (00 ((22) () ) .

from which we get

1 P P
el < (i ((12) vreor) o] e
Further, from £ 8 > @y (¢) follows
1 1

£0) < s 0+ 8] = sl

and if p > 1, then
1 p
0P < (g ) U0+ 539

Similarly, if we multiply above inequality by (5.31) and integrate on [a,x], then we get

wren s < (e () ) ) e
ween alt < [ (s (5 ) +or) ) s >]%. (5.34)

By adding (5.32) and (5.34), the resulting inequality (5.29) follows. O

and also

Setting @; and @, to be constant functions, i.e. ¢@;(x) =m and @,(x) = M for all
X € [a,b], we obtain the following result.
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Corollary 5.1 Let w e R, p,0,7,r>0,¢ >0 >0 withu>0and 0 <v <r+p. Let
h: [a,b] — R be a differentiable, strictly increasing function and let f,g € Ly[a,b] be
positive functions satisfying the condition (5.4). Then for p > 1 the following inequality
holds

(WYA7) ()} 4+ (X)) 7
< e [6X( +8)") (k)]

where c is defined by (5.6).

Remark 5.1 If the function % is the identity function, then we obtain an inequality from

Theorem 5.4 for the generalized fractional operator "> f.

at,p,o,T

Next theorem is a fractional generalization of Theorem 5.3. It follows by the use of the
Minkowski integral inequality (5.1).

Theorem 5.11 Suppose the assumptions of Theorem 5.10 hold. Then
2 2
[@Xf7) (eu)]P + [(Xe") (vsu)] P

= Kﬂ < : sz)pf”) <x;u>] "G (L4 007 8) ()}
~2[(XF) ()] 7 [(5XgP) (xs0)] 7 (5.35)

Proof. For p > 1and t € [a,b], inequalities (5.30) and (5.33) can also be written as

1+<p(t) P ) )
(T(tz)) ((f(@)" < [f(1)+5(0)]

and
(L+@1(1)P (g(0)” < [f(1) +8@))".

If we multiply both sides of each inequality by (5.31), integrate on [a,x] with respect to the
variable ¢ and use power to the ;7, then we obtain

KhY ( ( 1 ;;Pz)”fp)) (x;”)} % < [(Y(f +8)7) (x))? (5.36)

and
1 1
(Y ((1+@1)"g")) (xu)]? < [WY(f +8)7) (x;u)]?. (5.37)
Taking the product of the inequalities (5.36) and (5.37) we obtain

Khr (<%>pfp)> (X;”)} : (Y (14 @1)P gP)) (x;u)];l)

< [WC(f +8)P) ()] 7 -
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If we apply Minkowski’s inequality on right hand side, we get

K"Y(C;@) fp))bc uﬂF[<hr(<1+<p1>”gp>>(x;u>ﬁ
< [ F7) ()P + (Y8 ()P ]
From this we can easily obtain the inequality (5.35). O

If @) (x) = m and @2 (x) = M for all x € [a, b], then the next inequality follows.

Corollary 5.2 Suppose the assumptions of Corollary 5.1 hold. Then

(A7) ()] + (6" (o)
> e [(0f7) ()] (6" (o)
where c; is defined by (5.10).
Remark 5.2 If the function /% is the identity function, then we obtain Theorem 5.5, an
inequality for the generalized fractional operator €2 " f.

at,p,0,T

We continue with the generalizations of the reverse Minkowski type integral inequali-
ties. Starting conditions that we will need in this section are those given in Corollary 5.1,
where we have 0 < m < fE; <M.

Theorem 5.12 Suppose that assumptions of Corollary 5.1 hold. Let p,q > 1 with % + é =

1. Then N
< (%) " (,,Y (f%gzi)) (xsu). (5.38)

Proof. Lett € [a,b]. From % < M we obtain

==

[0 ) ()] [(6Yg) (x50

1 1 1
(f(6))e <Ma(g(t))e,
and after multiplication by (f (t))% we get

F() < MT(£()7 (2(1)) 7.

If we multiply both sides of the above inequality by (5.31), integrate on [a,x] with respect
to the variable ¢ and use power to the %, then we obtain

G0 alb < w3 (7)) ] (5.39)

Next from the lower bound m < f(—) we have

1=

1

g(t) <m 7 (F(1))7 (2(t)) 1.
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Again, if we multiply both sides of the above inequality by (5.31), integrate on [a,x] with
respect to the variable ¢ and use power to the %, then we get

1

1 1 11
[0e) (ea)]7 <m0 [(50 (f787) ) ()] (5.40)
The inequality (5.38) now follows from the product of inequalities (5.39) and (5.40). O

In the next theorem we will need the inequality (5.15) along with Young’s inequality
(5.14).

Theorem 5.13 Suppose that assumptions of Corollary 5.1 hold. Let p,q > 1 with i + é =
1. Then

-1
WY (f3)) (i) < i( il )p(hY(f”+g”))(x;u)

p M+1
2 (LN (46 (v 5.41
+T<m—+1) WY (f7+g7)) (x;u). (5.41)

Proof. Lett € [a,b], p,q> 1 and%+}l: 1. From % <M we get

M

P
00 < (7)) U0+ e

If we multiply both sides of the above inequality by (5.31) and integrate on [a,x] with
respect to the variable ¢, then we obtain

(L)p(ﬂ(.ﬂg)")(x;u) (5.42)

Next from m < % we obtain

1

q
w0 < (7 ) U0+l

Again, if we multiply both sides of the above inequality by (5.31) and integrate on [a,x]
with respect to the variable ¢, then we get

L (0 (o) < ( )q<hr<f+g>q> (). (5.43)

m-+1

Using Young’s inequality (5.14) we have

)" ()"

f0)e) <= .

Multiplying both sides of the above inequality by (5.31) and integrating on [a,x] we get

(WX(f2) (i) < }? (WCFP) (i) + é (h0g%) (x:10). (5.44)
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From (5.42), (5.43) and (5.44) we obtain

WY (f9)) () < 1(

. p
< (5) WX G

1 1 d
+5 (m—ﬂ) (WY (f+8)7) (x;u).
Using elementary inequality (5.15) we obtain

(WY (f +8)") (rie) <277 (Y (f7 +87)) (xiu)

and

WY (f +8)T) (rau) <2971 (Y (7 +69)) (x00)-
Hence, from (5.45), (5.46) and (5.47) we obtain (5.41).
Next theorem needs a simple application of the given condition (5.4).
Theorem 5.14 Suppose that assumptions of Corollary 5.1 hold. Then

1 1

A—/I(hY(fg))(xm) < CENES) (WX(f+8)%) (xu)

Proof. From 0 <m < ﬁ_;) <M and

Z

and

Multiplying inequalities (5.49) and (5.50) we get

(F(0) (@) _ 1

m < Ef(f)g(f)-

0800 <

61

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

Inequalities (5.48) now follow if we multiply the above by (5.31) and integrate on [a,x]

with respect to the variable 7.

O

Theorem 5.15 Suppose that assumptions of Corollary 5.1 hold. Let © > 0 be such that

9 <min (5.4). Then

T (X - 09)7 ) ()

< [(WCFP) ()] 7 + [(6XgP) ()] 7

B (- 0907 )

IN

(5.51)
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Proof. From the given condition 0 < ¥ < m < M, we have
m—M9 <M —mi,

from which follow

and
[f() = Be@)]” p o ) =@
M=oy =8O =T

If we multiply above inequalities by (5.31), integrate on [a,x] with respect to the variable
and use power to the i, then we get

L (6~ 8 (e

M
< [(hYeP) (cu)]?
<

[W(f — 0g)P) ()] . (5.52)

m—9

Further, from

from which we have

MPf() — 9g(t)]”

m? [f(t) — Og(t)]"
(M —d)P '

(m—1)

<(f@)r <

Again, multiplying above inequalities by (5.31), integrating on [a,x] and using power to
the %, we obtain

[WX(f — D)) (x:u)]7

M-9
< [007) ()]
< L [6Y( - 0g)) ()] 5:53)
By adding the inequalities (5.52) and (5.53), we get (5.51). O

Remark 5.3 If in the obtained results we use the identity function for the function £, then
we obtain Theorem 5.6 - Theorem 5.9 .



Chapter

Classical Integral Inequalities
and the Mittag-Leffler
Function

This chapter is motivated with researches of classical integral inequalities by W. Liu et al.
[99] and by Z. Dahmani [38], such as:

Theorem 6.1 [99, Theorem 4] Let f,g be positive continuous functions on |a,b] such
that f is decreasing and g is increasing. Then the following inequality

[ raya
[ rayrar

JACOREGO:
[ ten® v ar

> (6.1)

holds for every o > 0 and B >y > 0. If f is increasing, then (6.1) is reversed.

Theorem 6.2 [38, Theorem 3.6] Let (fi)i=12..., and g be positive continuous functions
on la,b] such that (fi)i=1,,. n are decreasing and g is increasing. Then the following
inequality

98, T £ A2 (0] 92, [T £ ()
I |8 T 1 A2 (0] 9 [T £ )]

holds for every a <x <b, 0 >0, aa >0, B>y >0, where s is a fixed integer in
{1,2,...,n}.

(6.2)

63
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The aim is to present corresponding results using our extended generalized Mittag-
Leffler function with its fractional integral operators.

The right-sided versions of following inequalities can be established and proved anal-

W,0,¢,q,r
f

ogously by using the right-sided fractional integral operators sw,’i’i’g:; f and hYbap,a,r

defined with (2.13) and (2.24) respectively.

This chapter is based on our results from [18, 19].

6.1 Generalizations of Classical Integral Inequalities
Involving an Extended Generalized Mittag-Leffler
Function

In this section we present certain classical integral inequalities using our extended gener-

alized Mittag-Leffler function ng;f’f with the corresponding fractional integral operator

wd.cqr ¢ :
a+,p,c,rf’ in real domain.

Here, for the reader’s convenience we will use a simplified notation

E(zp) == EJ S‘Qr(zp) 6.3)
_ 2 5+nq,c75) (C)nq Zn
B3.c—8)  Tlpn+0) (O

(e)(x:p) i= (el f) (x:p) (6.4)
= [0 B 0Psp)feyar.

For proving our inequalities, we follow similar methods as in the paper by W. Liu et al.
([99]), which we supplement with the necessary steps to obtain generalized results.

Further extensions of these results are given in the following section.

Theorem 6.3 Let w € R, r,p,0,7>0,¢c >0 >0withp>0and 0 < g <r+p. Let
o>0,8>y>0andx € [a,b]. Let f,g be positive continuous functions, monotonic in the
opposite sense with f € Lgla,b] and g € Ly|a,b]. Then the following inequality holds

(/")) . (€(s“/")(x:p)
(&f7)(x:p) - (e(g®f" ) (x:p) (6.5)

If f and g are monotonic functions in the same sense, then the inequality (6.5) is reversed.



6.1 GENERALIZATIONS OF CERTAIN INTEGRAL INEQUALITIES 65

Proof. Let f, g be monotonic functions in the opposite sense, both positive and continuous.
Then for u,v € [a,x] we obtain

[(g))* = (g |(F W)Y = (f(w)P 7| =0, (6.6)
that is
() *(FONP + (gD (f ()P
> (8()*(f()P 7 + () *(F ()P
Multiplying both sides of the above inequality by
(x=v)TE(@(x—v)P:p) (f(0)
and integrating on [a,x] with respect to the variable v, we get
(g(u)*(f") (e p) + (£ )P 7 (e(sf")) (x:p)
> (g(w)* ()P (ef")(x:p) + (e(g” fP)) (x: p)-
Further multiplying by
(x—1)° " E(0(x —u): p) (f ()"

and then integrating on [a,x] with respect to the variable u, we have

(e(“ M xp)(eff)(sp) = (e(gf))(x:p)(Ef)(x:p)

from which follows (6.5).
If f and g are monotonic in the same sense, then the reverse inequality of (6.5) can be
proved analogously. O

For a special case of an increasing function on [a, b], g(x) = x —a, we have the following
corollary.

Corollary 6.1 Let we R, r,p,0,7>0,¢>8 >0withp>0and 0 < q<r+p. Let
a>0,B>y>0andxc (ab]. Let f € Lgla,b] be a positive continuous decreasing
function. Then the following inequality holds

) xip) _ (E(x=a)*fP)(x:p)
(&fM)x:p) — (((x—a)f"))(x:p)

If f is increasing, then the inequality (6.7) is reversed.

6.7)

Remark 6.1 If we consider special case of Mittag-Leffler function and its corresponding
generalized fractional integral operator for p = w = 0, given in Remark 2.2, we obtain the
left-sided Riemann-Liouville fractional integral

1) = oy [0 )
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If we also set o = 1, then inequality (6.5) implies Theorem 6.1. By verifying the condition
(6.6), it is easy to see that although Theorem 6.1 is stated only for the case of decreasing
function f and increasing function g, inequality (6.1) remains valid even if f is increasing
and g is decreasing function, hence monotone in the opposite sense.

Similarly, for p = w = 0 and o = 1, the inequality (6.7) implies [99, Theorem 3].

Theorem 6.4 Let w € R, r,p,0,7>0,¢>0>0withp>0and 0 < q<r+p. Let

a>0,B>y>0andx¢c [a,b]. Let f,g be positive continuous functions, f € Ly, gla,b],
g € Lyla,b|, such that for u,v € [a,x]

() (FON* = () (£ ()] |(F W) = (fw)P 7| = 0. (6.8)
Then the following inequality holds

(ef“P)(x;p) - (£(g*f?))(x:p)
(efe)(xp) — (e(g*f)(x:p)

If the condition (6.8) is reversed, then the inequality (6.9) is reversed.

(6.9)

Proof. According to condition (6.8) we arrive at
(@) *(FON P+ () (f ()P
> (g()*(F0)* (F@)P 7+ () * (f () * (F ()P 7.

Multiplying the above by

(=) 7 E(0(x—v)P;p)(f()
and integrating on [a,x] with respect to the variable v, we get
(8() ™€/ P) (e p) + ()P (e(g* 7)) (x:p)
> (g(u)* (F ()P T (€f* ) p) + () * (€(g” 7)) (x: ).

Once more, multiplying the above by

(x—1)7 " E(0(x —u)’sp) (f ()"

and then integrating on [a,x] with respect to the variable u, we obtain

(€8S p) (£ P)(xip) > ((8”P))(xsp) (%) (x:p)

from which follows (6.9).
If the condition (6.8) is reversed, then the reverse inequality of (6.9) can be proved analo-
gously. O

Again, we have the following corollary for a special case g(x) =x—a.
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Corollary 6.2 Let w e R, r,p,0,7>0,¢>8 >0withp>0and 0 < q<r+p. Let
a>0,B>y>0andx € [a,b]. Let f € Ly gla,b] be a positive continuous function such
that for u,v € |a,x]

(= @)*(F)* = (v=a)“(f )] |(F0))P 7 = (f(u))ﬁ’q > 0. (6.10)
Then the following inequality holds

EfP)p)  (E(r—a)*fP))(x:p)
(ef* ) (xp) — (e((x—a)*f7))(x:p)

If the condition (6.10) is reversed, then the inequality (6.11) is reversed.

6.11)

Remark 6.2 For p =w =0 and o = 1, inequalities (6.9) and (6.11) imply [99, Theorem
6] and [99, Theorem 5], respectively.

Next we present an essential integral inequality that we need in order to easily obtain
Theorem 6.7.

Theorem 6.5 Let we R, r,p,0,7>0,¢c >0 >0withp>0and 0 < q<r+p. Let
x € [a,b]. Let f,g,h € Li[a,b] be positive continuous functions such that f/h and g are
monotonic in the opposite sense. Then the following inequality holds

(Ef)xp)  (e(f8))xp)
(en)(x;p) — (e(hg))(x:p)

If f/h and g are monotonic in the same sense, then the inequality (6.12) is reversed.

(6.12)

Proof. From hypotheses on functions, for u,v € [a,x] we have

()~ )] |53 - 140 >0,

W) hw)
that is
@I + 628 > gD 44 L

Multiplying both sides of the above inequality by
(x=v)° " E(0(x—v)’;p)h(v)
and integrating on [a,x] with respect to the variable v, we get

s(w)(Ef)(xp) + %<e<gh>><x;p> > g“”%

Again, multiplying the above by

(&h)(x; p) + (€(8))(x; p)-

(x—u)E(@(x—u); p)h(u)
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and then integrating on [, x] with respect to the variable u, we arrive at

(e(gh)(x;p)(ef)(x:p) = (e(8f))(x;p)(Eh)(x;p)

from which follows (6.12).
If f/h and g are monotonic functions in the same sense, then the reverse inequality of
(6.12) can be proved analogously. ]

The counterpart of the previous result follows, where we assume f(x) < h(x). Hence,
inequality (6.12) remains satisfied if g is replaced by f*~!.

Theorem 6.6 Let w € R, r,p,0,7>0,¢c>0>0withp>0and 0 < q<r+p. Let
o >1and x € [a,b]. Let f,h € Ly[a,b] be positive continuous functions such that f/h
and f are monotonic in the opposite sense, with f(x) < h(x) on [a,b]. Then the following

inequality holds
Ef)lsp) o (€f%)xp)
(eh)(x:p) — (eh%)(x;p)’
If f/h and f are monotonic functions in the same sense, then the inequality (6.13) is re-
versed.

(6.13)

Proof. Assume that f/h is a decreasing function and f an increasing one. Then for o¢ > 1
function f*~! is also increasing. By applying Theorem 6.5 we obtain

€f)p) o _(EU%)sp)
(En)(xp) — (e(rf* 1)) (x:p)
This together with the assumption f(x) < h(x) lead to (6.13). Analogously we can prove

the case when f/h is increasing and f decreasing, and obtain reversed inequality if f/h
and f are monotonic in the same sense. O

In the last theorem of this section we involve a convex function in the inequality.

Theorem 6.7 Let w e R, r,p,0,7>0,¢c >0 >0withp>0and 0 < q<r+p. Let
X € [a,b]. Let f,g,h € Ly]a,b] be positive continuous functions such that f /h is decreasing
function and f, g are increasing, with f(x) < h(x) on |a,b]. Let ¢ be a convex function on
[0, 0] with ¢(0) = 0. Then the following inequality holds

€fN)lsp)  (€(90()g))(x:p)
(en)(xp) — (e(@(h)g))(x:p)

Proof. The function @ is increasing since ¢ is a convex function on [0, o] with ¢(0) = 0.
From the assumption f(x) < h(x) with the positivity of f and &, we get

0(f() _ 0(h(x))
o) h)

(6.14)

o)

Further, since f, g and are increasing then the following function
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is also increasing. Hence

(e@(Ne)xp) _ ECf)p) _ (E(TF18)(x:p)
E(@me)p)  (e(Lng))(xip) ~ (€(LLhg))(x;p)

h Nl
and by applying Theorem 6.5 for f, h, ¢(f )g we obtain
(€(9(f)8)x:p) _ (e(f))(x:p)
(&(@(n)g))(x;p) — (e(h)(x:p) -

Corollary 6.3 Let we R, r,p,0,7>0,¢>8 >0withp>0and 0 < q<r+p. Let
x € [a,b]. Let f,h € Li[a,b] be positive continuous functions such that f/h is decreasing
function and f is increasing, with f(x) < h(x) on [a,b]. Let ¢ be a convex function on
[0, 0] with ¢(0) = 0. Then the following inequality holds

€N)0sp) _ (EO)0sp) o5
€enwp) ~ ((0()xp) (1>
Remark 6.3 If we set p =w =0 and ¢ = 1, then Theorem 6.5, Theorem 6.6, Theorem

6.7 and Corollary 6.3 generalize Theorem 7, Theorem 8, Theorem 10 and Theorem 9 from
[99], respectively.

6.2 Extensions of Classical Integral Inequalities
Involving an Extended Generalized
Mittag-Leffler Function

We continue to further extend the previously presented integral inequalities. Again we use
our extended generalized Mittag-Leffler function with the corresponding fractional inte-
gral operator (in real domain) applied on (f;)i—12,.». A simplified notation E and €f as
in (6.3) and (6.4) is used here.

First theorem is an extension of Theorem 6.3.

Theorem 6.8 LetweR, r,p,6,7>0,¢>8>0withp>0and0< g<r+p. Let o >0,
B>v:>0fori=1,2,...,nandletx € [a,b]. Let (f;)i=12,..., and g be positive continuous
functions, such that (f,), 12,..n are decreasing and g is mcreasmg with (fi)i=1.2
Lgla,b]and g € Lo[a,b). Then for the fixed integer s € {1,2,...,n} the following inequality

holds
( ( tes SIS ))( P (8 (g“H&sﬁy"fsﬁ))(x;p)
(e(Miff) wp) — ("M f) p)

If(fi),-zlfzf_,_,n are increasing and g is decreasing, then the inequality (6.16) also holds.
If all functions are monotonic in the same sense, then the inequality (6.16) is reversed.

(6.16)
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Proof. Let (f;)i=12,..n be decreasing and g increasing, all positive and continuous. Let
s€{1,2,3,....,n}. Then for u,v € [a,x] we obtain

[(g(u))* = ()] | ()P~ y‘*(fs(u))ﬂfy‘} >0,

that is

() * ()P + (gD (fe)P 7 = () * ()P ¥ + () “ (£ ()P 7.
Multiplying both sides of the above inequality by

(=) B p) [T

i=1

and integrating on [a,x] with respect to the variable v, we get

(s(u))" (e (_1jn”f?>)<x;p>+<f< ) %( (“Hf”))
> (g(u)* ()P (e (Hlfy» (x:p) + (e (g“_li[ﬁ”f?)) (x:p).

Further multiplying by

n

(v —1u)°E(0(x—u)?;p) [T(fi(u))"

i=1

and then integrating on [a,x] with respect to the variable u, we have

<£ (g“ilﬁ!ﬁy")) (x:p) (8 (lli!ﬁ”ﬁﬁ )) (x:p)
o))

from which follows (6.16).
Analogously we can prove the case when (fj)i—1 2., are increasing and g is decreasing,
and obtain reversed inequality if all functions are monotonic in the same sense. a

Remark 6.4 For p = w = 0 we obtain the left-sided Riemann-Liouville fraction integral
JZ, of order o, as a special case of Mittag-Leffler function and its corresponding general-
ized fractional integral operator. Therefore, Theorem 6.8 generalizes Theorem 6.2.

On the other hand, if we set n = 1, then s = 1 which implies Theorem 6.3.

For g(x) = x — a, which is an increasing function on [a,b], we have the following
corollary. In this case, the inequality (6.17) implies [38, Theorem 3.1].
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Corollary 6.4 Let w e R, r,p,0,7>0,¢c>8 >0withp>0and 0 < q<r+p. Let
a>0,B>y;>0fori=1,2,...,nandlet x € (a,b]. Let (fi)i=1,2,..n be positive continuous
decreasing functions with (f;)i=12,..n € Lg|a, b]. Then for the fixed integers € {1,2,...,n}
the following inequality holds

(e ) en) (e (e mmsta) )
CE e e e

If (ﬁ)izl,z,,_,7n are increasing, then the inequality (6.17) is reversed.

Theorem 6.9 Let w € R, r,p,0,7>0,¢>0>0withp>0and 0 < qg<r+p. Let
a>0,B8>y>0fori=1,2,...,nandlet x € [a,b]. Let (f;)i=12..., and g be positive
continuous functions, (f;i)i=12,..n € Logla,b] and g € Lola,b]. Let s € {1,2,...,n} be
fixed integer and for u,v € [a,x]

[(g())* (s (1)) = (8(m)* (s (u))* ][(fs( )P *(fsv(u))ﬁ’%} > 0. (6.18)

Then the following inequality holds

( ( i i (Hﬁ))(x;l?) N (s (g“]‘[;’#ﬁ”fsﬁ))(x;p)
(e (M, A1) ) p) — (T L) i)

If the condition (6.18) is reversed, then the inequality (6.19) is reversed.

(6.19)

Proof. From the (6.18) we obtain

(g(u))“(fs(v))anLﬁst + (g(v))a(fs(u))“+ﬁ*"‘
> (8(u) () ()P~ (V) () *(fo(v))P 5.

Multiplying both sides of the above inequality by

(=) E(@x— v p) [T

i=1

and integrating on [a,x] with respect to the variable v, we get

(8(u))" (e (ﬁﬁ”. ﬁ)) (6:p) () 8% (e (g“ﬁﬁ”>> (x:p)
i#s i=1

> (g(u)*(f(u)P ™ (8 (ﬁﬁy" f‘”‘)) (x;p)

i#£s

+ (fi(u)® ((“];[f”fﬁ» p).
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Further multiplying by

(e — ) E(@(— 1) p) [T (i)

i=1

and then integrating on [a,x] with respect to the variable u, we have

)] o
) el o

from which follows (6.19).
If the condition (6.18) is reversed, then the reverse inequality of (6.19) can be proved
analogously. O

Remark 6.5 For p =w =0, Theorem 6.9 generalizes [38, Theorem 3.10].
Setting n = 1, Theorem 6.4 follows.

Corollary 6.5 Let w e R, r,p,0,7>0,¢>0>0withp>0and 0 < q<r+p. Let

a>0,B>y>0fori=1,2,.. nandletx € (a,b]. Let (fi)i=12...n € Lyipla,b] be
positive continuous functions. Let s € {1,2,...,n} be fixed integer and for u,v € [a,x]

(= a)* (i) = (=) () [(AODP T = (f@)P ] =0, (620)

Then the following inequality holds

( ( s a+ﬁ)) (8< ) Zésﬁy’f?))(x;p) 6o1)
(e (M “”‘))ocp) ) (e(( DT 1) (p) |

If the condition (6.20) is reversed, then the inequality (6.21) is reversed.

Theorem 6.10 Lerw e R, 1,p,0,7>0,¢ >0 >0withp>0and 0 < g <r+p. Let
a>0B>y>0fori=1,2,...,nandlet x € [a,b]. Let f,g,(hi)i=12..... € Li[a,b] be
positive continuous functions such that f/hs and g are monotonic in the opposite sense,
fors € {1,2,...,n}. Then the following inequality holds

( (fm# ))O“I’) ( (gf s ))(x;p)
(e(ITZ 1)) (x:p) 2 (e (g1 k) (x;p) (6.22)

If f/hs and g are monotonic in the same sense for s € {1,2,...,n}, the inequality (6.22) is
reversed.
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Proof. From hypotheses on functions, for u,v € [a,x] we have

[g(u) —g(v [f(v) - f(u)] >0,

hs(v)  hy(u)
that is
) ((Vv)) sL <[;)) > gl ((’) )L <(Vv’) |

Multiplying both sides of the above inequality by

(= )7 E(@(x—v)?:p) [T1i(v)

i=1

and integrating on [a,x] with respect to the variable v, we get

8(u) <€ <f ]i[m)) (x:p) + f];((b;)) (8 (gf[lhz)) (p)
f ((L;)) <e <H )) (x;p) + (8 <gf Hh>> (x;p)-
s i=1 i#£s

>
> g(u),
Again, multiplying the above by

(v — ) E(@(— 1) p) [ T )

i=1

and then integrating on [a,x] with respect to the variable u, we arrive at

) oo ) o
() el oo

from which follows (6.22).
If f/hs and g are monotonic in the same sense for s € {1,2,...,n}, then the reverse in-
equality of (6.22) can be proved analogously. O

Remark 6.6 For p =w = 0, Theorem 6.10 generalizes [38, Theorem 3.14].
Setting n = 1, Theorem 6.5 follows.
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6.3 Further Generalizations of Some Classical
Integral Inequalities

In this section we give further generalizations of several classical integral inequalities for a

"0.¢47 £ (D 93) containing an extended Mittag-

generalized fractional integral operator ;Y Y pot

Leffler function Eg:f;,qf’r in the kernel.

We use a simplified notation

d,c,q,
E(zp) == Eyg% (z:p),

WX p) = (0 r) (i)
-/ " (h(x) — h(£))° T EZE (w(h(x) — h(1))P: p)H (6 F (o).

Theorem 6.11 Lerw e R, p,0,7,r>0,¢c>8 >0withp >0and 0 < g <r+p. Let
h:[a,b] — R be a differentiable, strictly increasing function. Let o« >0, > v; > 0 for
i=1,2,...,nand let x € [a,b]. Let (fi)i=12,. and g be positive continuous functions,

.......... + € Lyla,b] and
g € Lyla,b]. Then for the fixed integer s € {1,2,...,n} the following inequality holds

(i (s ) ) ) (0 (87 TTs 1)) )
(Y (T, /7)) () - (Y (g1, /7)) (vsp) (6.23)

If (fi),-zl,z,_,_,n are increasing and g is decreasing, then the inequality (6.23) also holds.
If all functions are monotonic in the same sense, then the inequality (6.23) is reversed.

Proof. Letu,v € [a,x]. Let (fi)i=12,.., be decreasing and g increasing, all positive and
continuous. Let s € {1,2,3,...,n}. Then

[(2()* = (g() ]| (f5(m)P % = (fs(u))ﬁ’“‘} >0, (6.24)
hence

() * ()P + (gD (fs)P 7 = (g(w)* ()P ¥ + (g (/:(n)P .
Multiplying both sides of the above inequality by

(h(x) = h(v))*"'E (w(h(x) = h(»)*:p) [ T (/i) H (v) (6.25)

i=1
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and integrating on [a,x] with respect to the variable v, we get

(g(u))* (hY (_ﬁ[ﬁ”f?)) (s p) + (fs ()P (hY (g“ﬁffi)) (x
> (g()* (f(u))P (hY (ﬁfly>> (:p) + (hY (ﬁljﬁ”ff)) (x:p)-

Further multiplying by

n

(h(x) = h(u))°'E (w(h(x) — h(u))"s p) [ T(fi(u))"H' (u) (6.26)

i=1

and then integrating on [a,x] with respect to the variable u, we have

(v ) o or (12 oo
> (;J (g“ l;lfyf">> (x:p) (hr (m)) ().

from which follows (6.23).
Analogously we can prove the case when (f;)i—;. 2,...n are increasing and g is decreasing,
and obtain reversed inequality if all functions are monotonic in the same sense. a

Remark 6.7 If the function 4 is the identity function, then we obtain an inequality from

w,8,c,,r
Theorem 6.8 for the generalized fractional operator € ; .0 f.

Also, if the £ is the identity function and p = w = 0, then we obtain the left-sided
Riemann-Liouville fraction integral J7, of order o, i.e. a special case of Mittag-Leffler
function and its corresponding generalized fractional integral operator. Therefore, Theo-
rem 6.11 generalizes Theorem 6.2.

The conditions under which inequality (6.23) and reverse inequality hold are comple-
mented by the remaining cases of monotonicity of functions in the theorem.

Next inequality follows by setting g(x) = x — a and it is a generalization of [38, Theo-
rem 3.1].

Corollary 6.6 Letwe R, p,0,7,r >0,¢c>8>0withp>0and 0 < g <r+p. Let
h:[a,b] — R be a differentiable, strictly increasing function. Let o« > 0, > v; > 0 for
i=1,2,...,nand let x € (a,b]. Let (f;)i=12... be positive continuous decreasing func-
tions with (f;)i=12,..n € Lgla,b]. Then for the fixed integer s € {1,2,...,n} the following
inequality holds

( (l#f%fﬂ)>( p) (hY((x—) z;évf%fs)>( p)
G @) GG ) )

If (ﬁ)izl,z,,_,7n are increasing, then the inequality (6.27) is reversed.
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For the next result we set n = 1 in Theorem 6.11.

Corollary 6.7 Let w e R, p,0,7,r >0, ¢c>8>0withp>0and 0 < g <r+p. Let
h:[a,b] — R be a differentiable, strictly increasing function. Let o« >0, B >y > 0 and
X € [a,b]. Let f,g be positive continuous functions, monotonic in the opposite sense with
f € Lgla,b] and g € Ly[a,b]. Then the following inequality holds

WXfP) (sp) (WX (g%fP)) (xip)
WYfY)(sp) — WY(8%fY)) (xsp)

If f and g are monotonic functions in the same sense, then the inequality (6.28) is reversed.

(6.28)

If additionally g(x) = x — a, then the following corollary holds.

Corollary 6.8 Let we R, p,0,7,r >0, ¢>8>0withp>0and 0 < g <r+p. Let
h:[a,b] — R be a differentiable, strictly increasing function. Let o« >0, B >y > 0 and
x € (a,b]. Let f € Lgla,b] be a positive continuous decreasing function. Then the following
inequality holds

WXfP) (ip) _ WX ((x—=a)*fP)) (x:p)
WYXf7) (sp) — WY ((x—a)?f")) (x;p)

If f is increasing, then the inequality (6.29) is reversed.

(6.29)

Remark 6.8 If the function / is the identity function, p =w = 0 and o = 1, then inequal-
ities (6.28) and (6.29) imply Theorem 6.1 and [99, Theorem 3], respectively.

Further, from the condition (6.24) with n = 1 (i.e. we have only one function f) and
for u,v € [a,x] we obtain

[(g())* = ()T |(F 0P = (fF)P7| Z 0.

Now it is easy to see that although Theorem 6.1 is stated only for the case of decreasing
function f and increasing function g, inequality (6.1) remains valid even if f is increasing
and g is decreasing function g, hence monotone functions in the opposite sense.

Theorem 6.12 Lerw e R, p,0,7,r >0,¢>8 >0 with p >0and 0 < g <r+p. Let
h:[a,b] — R be a differentiable, strictly increasing function. Let o« >0, > v; > 0 for
i=1,2,...,nand let x € [a,b]. Let (fi)i=12,. and g be positive continuous functions,
(fi)i=12...n € Laypla,b] and g € Loa,b]. Let s € {1,2,...,n} be fixed integer and for
u,v € |a,x] let the condition (6.18) holds. Then

(00 (10 17 i) (00 (6T 7)) )
(o (M ) ) ) G T ) ()

(6.30)

If the condition (6.18) is reversed, then the inequality (6.30) is reversed.
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Proof. From the (6.18) we obtain

(g()*(f:()) 2P 4 (g(v) % (fs ()2 B0
> (g(u)* (fs(")*(fs () P75+ (g0))* (f () * (fo (v))P .

Multiplying both sides of the above inequality by (6.25) and integrating on [a,x] with
respect to the variable v, we get

(g(u))* (hY (li[.ﬁ” P )) (:p) + (fo(w)) *HP 0 (,,Y (g“ﬁﬁ”>> (x:p)
i#s i=1

> (g(w)* (fi(u))P ¥ (hY (f[f,-”f?‘”‘)) (x:p) + (f(u)” (hY (é"xlﬁ[f,-”ff3 )) (x;p)-

i#s i#s

Further multiplying the above by (6.26) and then integrating on [a,x] with respect to the
variable u, we obtain

(;,Y (g“ ny> ) (x;p) (:.Y (]jf,-” 2+p ) ) (x:p)
i=1 i#s
> (;J (g“ lﬁ[f,-y’ff} )) (x;p) (hY (ﬁfiy" f‘”‘)) (x;p).
i#s i#s

from which follows (6.30).
If the condition (6.18) is reversed, then the reverse inequality of (6.30) can be proved
analogously. O

Remark 6.9 If the function 4 is the identity function and p = w = 0, then Theorem 6.12
generalizes [38, Theorem 3.10].

Corollary 6.9 Letwe R, p,0,7,r >0,¢c>8>0withp>0and 0 < g <r+p. Let
h:[a,b] — R be a differentiable, strictly increasing function. Let o« > 0, B > v; > 0 for
i=1,2,...,nandlet x € (a,b]. Let (fi)i=12....n € Lo pla,b] be positive continuous func-
tions. Let s € {1,2,...,n} be fixed integer and for u,v € [a, x| let the condition (6.20) holds.

Then
L fTEP) ) e (0 (=@ T A ) ) ()
Gl ) R ')
(Y () om0 (G T A7) )

If the condition (6.20) is reversed, then the inequality (6.31) is reversed.

(6.31)

If we set n = 1 in Theorem 6.12, then we obtain the following inequality.

Corollary 6.10 Letw e R, p,0,7,r >0, ¢ >0 >0withp >0and 0 < g <r+p. Let
h: |a,b] — R be a differentiable, strictly increasing function. Let o, > 0, § >y > 0 and
x € [a,b]. Let f,g be positive continuous functions, f € Ly gla,b], g € Lq[a,b], such that
for u,v € [a,x] the condition (6.8) holds. Then
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WXrP) Gep) - (WX(*fP)) (p)
WY Y) (xp) = WX(g%fY)) (xip)

If the condition (6.8) is reversed, then the inequality (6.32) is reversed.

(6.32)

Corollary 6.11 Letwe R, p,0,7,r >0, ¢ >0 >0withp>0and 0 < g <r+p. Let
h:la,b] — R be a differentiable, strictly increasing function. Let o« >0, B >y > 0 and
x € (a,b]. Let f € Ly gla,b] be positive continuous function such that for u,v € [a,x] the
condition (6.10) holds. Then

(nXSP) (x;p) o (- a)*f?)) (x;p)
WXf ) (p) = (WX((x—a)®f?)) (xp)
If the condition (6.10) is reversed, then the inequality (6.33) is reversed.

(6.33)

Remark 6.10 If the function £ is the identity function, p = w = 0 and o = 1, then in-
equalities (6.32) and (6.33) imply [99, Theorem 6] and [99, Theorem 5], respectively.

Theorem 6.13 Lerw e R, p,0,7,r >0,¢>8 >0withp >0and 0 < g <r+p. Let
h:[a,b] — R be a differentiable, strictly increasing function. Let o« >0, > v; > 0 for
i=1,2,...,n and let x € [a,b]. Let f,g,(¢;)i=12,..n € Li]a,b] be positive continuous
functions such that /@y and g are monotonic in the opposite sense, for s € {1,2,... ,n}.
Then the following inequality holds

(e (M) sp) (Y (8T 0r)) ()
WY ITZ ) (ep)  — WY (T ¢0) (sp)

If f/®s and g are monotonic in the same sense for s € {1,2,...,n}, then the inequality
(6.34) is reversed.

(6.34)

Proof. From hypotheses on functions, for u,v € [a,x] we have

()~ )] | 200 - 80|

os(v)  os(u)
thatis ) ) ONNG
g(u)('ps(v)+g(V) o) > g(u )(ps( )+g(V) o)

Multiplying both sides of the above inequality by
n
(h(x) =h(v))°E(w(h(x) = h(»):p) [T@: ()R (v
i=1

and integrating on |a,x| with respect to the variable v, we get

<ﬂ]<f,1;w>> ooty 1) Joo
i (7 {f1e) o+ (e 1)) o»
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Again, multiplying the above by
(h(x) = h(u))” ™ 'E (w(h(x) = h(u))": p) ]} @i (u)h (1)

and then integrating on [a,x] with respect to the variable u, we arrive at

<hY (gf[1 <pi> ) (x:p) (hY (f 1;[ <pi> ) (x:p)
> (ﬂ“ (1_! <pi> ) (x:p) (hY (gf 1;[ ‘Pi) ) (x:p)-

from which follows (6.34).
If f/@s and g are monotonic in the same sense for s € {1,2,...,n}, then the reverse in-
equality of (6.34) can be proved analogously. O

Remark 6.11 If the function /% is the identity function and p = w = 0, then Theorem 6.13
generalizes [38, Theorem 3.14].

If we set n = 1 in Theorem 6.13, then we obtain the following generalization of [99,
Theorem 7].

Corollary 6.12 Letwe R, p,0,7,r >0,¢>0 >0withp>0and 0 < g<r+p. Let
h: [a,b] — R be a differentiable, strictly increasing function. Let x € [a,b]. Let f,g,¢ €
Li[a,b] be positive continuous functions such that f /¢ and g are monotonic in the opposite
sense. Then the following inequality holds

WYf)(xp) o WY(f8)) (x:p)
(Yo) (x;p) — (WY(9g)) (x;p)

If f/ @ and g are monotonic in the same sense, then the inequality (6.35) is reversed.

(6.35)

Next is a counterpart of the previous result, where we assume f(x) < @(x). Hence,
inequality (6.35) remains satisfied if g is replaced by f*~!.

Theorem 6.14 Letrw e R, p,0,7,r>0,¢c>8 >0withp >0and 0 < g <r+p. Let
h:[a,b] — R be a differentiable, strictly increasing function. Let o« > 1 and x € [a,b). Let
[, € Lyla,b] be positive continuous functions such that f /@ and f are monotonic in the
opposite sense, with f(x) < @(x) on [a,b]. Then the following inequality holds

WYf) (up) o WXS) (xip)
wYo) (x;p) — (WY0%)(x;p)

If /@ and f are monotonic functions in the same sense, then the inequality (6.36) is
reversed.

(6.36)

Proof. Assume that f/@ is a decreasing function and f an increasing one. Then for o > 1
function f*~! is also increasing. By applying Corollary 6.12 we obtain

WY ap) o GYU?)) (p)
wYo)(x:p) — WY (@f* 1)) (x;p)
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This together with the assumption f(x) < @(x) lead to (6.36). Analogously we can prove
the case when f/@ is increasing and f decreasing, and obtain reversed inequality if f/¢
and f are monotonic in the same sense. O

For the last theorem we involve a convex function in the inequality.

Theorem 6.15 Lerw e R, p,0,7,r>0,¢c>8 >0withp >0and 0 < g <r+p. Let
h:la,b] — R be a differentiable, strictly increasing function and x € [a,b]. Let f,g,¢ €
Li[a,b] be positive continuous functions such that f /@ is decreasing function and f,g are
increasing, with f(x) < @(x) on [a,b]. Let ¢ be a convex function on [0,0] with ¢(0) = 0.
Then the following inequality holds

WYf)(xp) o @Y(0(f)g)) (x:p)
®Yo)(x;ip) — WY(e(@)g)) (xip)

Proof. The function @ is increasing since ¢ is a convex function on [0, o] with ¢(0) = 0.

From the assumption f(x) < ¢(x) with the positivity of f and ¢, we get

(6.37)

O(f(x) _ (o)
f) 7 o)
Further, since f, g and @ are increasing then the following function
¢(f(¥)
7t ¢

is also increasing. Hence

WY (0(f)g) (x:p) _ (m@fg)) (p) . (ﬂ(@fg)) (x:p)

WXO@) wr)  (4x(eog)) (ep) (%L pg)) (rp)

and by applying Corollary 6.12 for f, @, @g we obtain

WY(9(N)e) (sp) _ WY(S)) (x:p)
WY(9(@)g)) (x:p) — @Y()) (x;p)

O

Corollary 6.13 LetweR, p,0,7,r>0,c¢>8 >0withp>0and0< qg<r+p. Leth:
[a,b] — R be a differentiable, strictly increasing function and x € [a,b]. Let f, @ € Ly|a,b]
be positive continuous functions such that f /@ is decreasing function and f is increasing,
with f(x) < @(x) on [a,b]. Let ¢ be a convex function on [0,0] with ¢(0) = 0. Then the
following inequality holds

WYf) (up) o Y(O(f))) (xip)
(1Y) (:p) — WY(0(9))) (x:p)
Remark 6.12 If the function # is the identity function, p = w = 0 and o = 1, then Theo-

rem 6.14, Theorem 6.15 and Corollary 6.13 generalize Theorem 8, Theorem 10 and Theo-
rem 9 from [99], respectively.

(6.38)



Chapter 7

Hadamard and
Fejéer-Hadamard Types
Fractional Integral Inequalities
Associated with the
Mittag-Leffler Function

In this chapter Hadamard and Fejér-Hadamard inequalities for convex, relative convex, m-
convex, (h — m)-convex, harmonically convex and harmonically (o,h — m)-convex func-
tions via fractional integrals involving Mittag-Leffler function are given.

This chapter is based on our results from [50, 58, 64, 83, 86, 87].

7.1 Hadamard and Fejér-Hadamard Inequalities
for Convex Functions

For a convex function f : I — R where [ is an interval in R, the following inequality holds

f(““’)< 1 /ab.f(x)dxsM (7.1)

2 “b—a 2

where a,b € I and a < b.
Inequality (7.1) is well known in literature as Hadamard inequality.

81
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Fejér gave generalization of the Hadamard inequality known as Fejér-Hadamard inequality
stated as follows [67].
For a convex function f : I — R where [ is an interval in R, the following inequality holds

£(457) [ etmavs o [ remar < KT s a2

where g is a function which is integrable, nonnegative and symmetric about "er—b.
For Riemann-Liouville fractional integrals the Hadamard inequality is given in next results.

Theorem 7.1 [140] Let f : [a,b] — R be a function with0 <a < b and f € Ly|a,b]. If f
is a convex function on |a, b, then the following inequality holds

1(50) = s o) LD

with o > 0.

Another version of the Hadamard inequality is given as follows.

Theorem 7.2 [141] Let f : [a,b] — R be a function with0 <a < b and f € Ly|a,b]. If f
is a convex function on |a,b], then the following inequality holds

b+a 207 (0 +1) & Y f(@)+ £(b)
f( 2 )S b—a) [J<w)+f(b)+l(#),f(a)]§ :

2

with o > 0.

The generalized Hadamard inequality containing Mittag-Leffler function is given in the
theorem. The following notations will be used frequently

d ",8,¢., . L) ',8.¢.4, .
Hy: o(xip) = (e, ) 1) (xip), Hy- o (xip) = (g, "7 1) (s p),
while notations of fractional integral operators will be followed as it is.

Theorem 7.3 Let w € R, r,p,0,7>0, § >0 with p>0and 0 < g <r+p. Let
f i la,b] = R be a positive function with 0 < a < b and f € Li[a,b]. If f is a convex
function on [a,b)], then the following inequality for extended generalized fractional inte-
gral holds

b /
7(“57) ot 4

w'.8.c.q,r w'.8.c,q,r

< (£a+,p,c,r Nbip)+ (Sb*,p,(jﬁ fla;p)

|
()
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Proof. Since f is convex function on [a,b], forz € [0, 1] we have

f <<ra+<1 _t)b);((l —t)a“b)) < flarll _t)b);f((l SUALLICE)

9 07117 (

Multiplying both sides of above inequality with £~ 1E tP;p) we get

S.c a+b
2 B i) (457

<17 ESGH (wiPs p) (flta+ (1 =1)b) + (1 —1)a-+1b)).

Integrating with respect to ¢ over [0, 1] we have

b
2f<a+ )/o 1 BN G (wiPs p)di

1
< / (O ES S (i p) f(ta+ (1 — 1)b)d

+/ o lEgéqrr (we?;p)f((1 —t)a+1b)dr.

If we putu = at + (1 —1)b, then t = 2= and if v = (1 —t)a +tb, then t = }=%. Therefore
by using Definition 2.2 one can have

W.8.q,r b w.8,q.r .
f (Clzib) a”l,a(b;p)s(ga*vpv“’ff i p)z(b o/ NP) (7.6)

Again by using that f is convex function on [a, b], and for ¢ € [0, 1] we have

flta+(1—1)b)+ f(1—1t)a+1tb) <tf(a)+ (1 —1)f(b)+ (1 —1)f(a)+1f(b). (7.7

Now multiplying with #7~ 1E5 o %" (wtP; p) and integrating over [0, 1] we get

1 1
| B ) flra (V=) [ 1T ESGY (P sp)f (1= attb)ds
1
d,c
< [f(@+£0)) [ T ERGY (ut” )
from which by using change of variables as for (7.6), we get

(e)5% F)(b:p)+ () 04 )laip) < (Fla)+ F(B)HY p(@p).  (78)

From the inequalities (7.6) and (7.8), the inequality (7.4) is obtained. O
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Remark 7.1 In Theorem 7.3
(i) if p =0, then we get [51, Theorem 2.1].
@ii) if w = p =0, then we get [140, Theorem 2].
(iii) if w=p =0and o = 1, then we get (7.1).
In the following we give the Fejér-Hadamard inequality for fractional integral operator
containing the extended generalized Mittag-Leffler function.

Theorem 7.4 Let w € R, r,p,0,7>0,¢>0>0withp>0and 0 < q<r+p. Let
fla,b] = R be a convex function with0 < a < band f € L[a,b]. Also, let g : [a,b] — R be
a function which is nonnegative, integrable and symmetric about azib. Then the following
inequality for the extended generalized fractional integral holds

+b w'.8.c.q,r
f(“2 )(sﬁia"fg)(b;p) (7.9)
_ (e ) bip) + (&) T f8) @)
- 2

b w'.8,c.q,r
< f(a) ';f( )(gb:j):(f:; g)(a;p)7

where w' = e
Proof. Multiplying (7.5) with tG’lEg:g?T’r(wtp;p)g(tb + (1 —1)a) we get

20 NG ( tp;p)f(a%rb) g(th+(1—1)a)

<t°~ IES o Wi p) (f(ta+ (1—1)b)+ f((1 —1)a+1b))g(tb+ (1 —1)a).

Integrating with respect to ¢ over [0, 1] we have

2f<a+b>/o 1O ED G (wiPip)g(th+ (1 —t)a)dt

</1 o= ‘Egg"f’(wtp;p)f(taJr(l—t)b)g(tb+(1—t)a)dt

+/ (O ES S (P p) £((1— t)a+ 1b)g(tb + (1 —1)a)d.

If we put u = at + (1 —t)b, then t = =% and if v = (1 —1)a+1b, then t = ;=2. Therefore
one can have

2f (a—i—b)/a (b—u)"*'Eg:ﬁ;fQ’ (w (%)p:p) gla+b—u)du

AP
S/b(bu)GIEgqu’r<w<lb)_Z> ;p)f(u)g(aeru)du

w [l (v (22) ) roletat vy
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a+b

From symmetry of function g about we have g(a+b—x) = g(x), x € [a,b], therefore

using this fact we have

(7.10)

w.8,q.r w.8,q,r .
f(a+b) (€99 ) (b p) < (&350 f8)(bip) + (&, ,p,g,,fg)(a,p)-

2 at,p,0,T 2

Now multiplying (7.7) with 19~ 1E5 o8 (wiP;p)g(ta+ (1 —1)b) and integrating with re-
spect to 7 over [0, 1] we get

/1 o ]Eg B (wiPsp)f(ta+ (1 —1)b)g(ta+ (1 —1)b)dt

+/ (O ES SO (wiP p) £((1 — )+ 1b)g(ra+ (1 — 1)b)d

< (fla)+£0) [ 17 B (P pglra+ (1~ )
By change of variables as for (7.10), we get

(2" Fo)(bip) + (e % fe)(a:p) < (f(a)+ f(B)) (&) 0% &)(aip).  (T.11)

From inequalities (7.11) and (7.10), we get inequality in (7.9). O

Remark 7.2 In Theorem 7.4
(i) if g =1, then we get Theorem 7.3.
(i) if p =0, then we get [51, Theorem 2.2].
(iii) if w = p =0, then we get [77, Theorem 2.2].
Another generalized version of the Hadamard inequality is given in next result.
Theorem 7.5 Let w € R, r,p,0,7>0,¢ >0 >0withp>0and 0 < qg<r+p. Let

f i ]a,b] — R be a function such that f € Ly[a,b] with a < b. If f is convex on |a,b), then
the following inequalities for extended generalized fractional integral operator holds

w.8,c,q,r . w.8,c,q,r i
[( Lear g ) <b,p>+< Lheer ) @)
f f( ) a+h) N (a7p)

0
where w' = (b{;")p.
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Proof. Since f is convex function, for z € [0, 1] we have

2f(a+b) _f(?a—i—%b)—i—f(—a—i—z—b) (7.13)
Also from convexity of f we have
2—t t t 2—t
2—t t t 2—t
< Tf(a)-i— Ef(b)‘i‘if(a)‘i‘Tf(b)
= f(a)+ f(b)

Multiplying (7.13) by 1%~ lES o %" (wtP; p) on both sides and then integrating on [0,1] we
have

27 (57 [ o B s 7.15)

1 2—t t
</ 1o 1Egg’qf’ (wtp,p)f< 5 aJrEb)dt
t

t 2—
+/ 0' 1ng,qfr th,p)f(§a+7b) dt.

Putting u = %5'a+ 4b and v = §a+ %4%b in (7.15), we have

2f<a+b) /L<b_ y)o- IESCC;qT, (W (b—v)P:p)dv (7.16)
< [ B B W B

atb

2
atb

+ 7 (=) BN (W (1 — @) p) £ () du

a

By simplifying we get the first inequality of (7.12).

Now multiplying (7.14) by t"’lEg;g’f’T(wt") on both sides and then integrating over [0, 1]

we have
‘c | 8. p. 2—t ¢
/ Ey 5% (wi’;p)f Ta+§b dt (7.17)

t 2—1
+/ o G p;p)f<§a+—2 b)

< 1)+ 0] [ 67 VESSA P .
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Putting u = Z*a+ b and v = Sa+ %2b in (7.17), we have
tl%»_b
8.0, .
[ =@ BRSO (- a)fsp)
a
b
d,c
+ [ =) EgGY (W (b—v)Pip) f(v)dv

atb
2

</

which gives the second inequality of (7.12).

atb
2

(u—a)" "EQSY (W (u— a)P; p)du,

Remark 7.3 In Theorem 7.5
(i) If p =0, then we get [4, Theorem 3.9].

(ii) If W = p = 0 in Theorem 7.5, we get [141, Theorem 4].

(iii) If w' = p =0and o = 1, then we get the classical Hadamard inequality.

87

(7.18)

In the next results generalized fractional integral operators by a monotone increasing func-

tion are utilized.

Theorem 7.6 Let f,g: [a,b] — R, 0 < a < b be such that f is positive, f € Ly[a,b] and
convex on [a,b] and g differentiable and strictly increasing. Then the following inequalities
for extended generalized fractional integral operator defined in (2.23) and (2.24) hold:

(MO (san) o

(s rog) Wi+ ()5 ros) twin)]

1
2
fg(a) +f(&®) ( wsear Y .\ s w

< ST () ek =

Proof. Considering the following identity

gla)+g(b) 1

+80) _ lig(a) + (1~ 08B+ 5 [(1- 1gla) +18(0)].

For convex function f we have

2f(87<“);g(”)) < f(tg(a)+ (1 —1)g(b)) + £ (1 — 1)g(a) + 12 (b))

(7.19)
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Further from (7.19) one can obtain the following inequality:
gla)+g®)\ [! ke
oy (HATE) [Tt s
1
nk,
< [ ) (8(@) + (1= 0g(b))a

+ /0 1 BT (wi?p) £ (1~ 1)g(a) +1g (b))t

Setting 7g(a) + (1 —1)g(b) = g(x) thatisr = )= 49 (1—r1)g(a)+1g(b) =

g(b)—gla)
ist = % in (7.20), we get the following inequality:

g(a)+g(b) S
(5922500 )
5, 0,
<[ (x5 pog) (bip)+ (X} 58 Fog) (asp)]
Further, by using the convexity of f, one can obtain

ftg(a)+ (1 —1)g(b)) + f((1 —1)g(a) +1g(b))
<tf(g(a))+(1—1)f(g(b))+(1—1)f(g(a) +1f(g(b)).

This leads to the following integral inequality:
/l TEDTRE (w ) f(rg(a) + (1 - 1)g(b))dr
4 [T B G p) (1~ 1)) + 150
< [ R () e g(@) + (1) (5 (0)))
4 [T BRI G p) (1 1) (gla) + 11 6))r

Settmg tg(a)+ (1 —1)g(b) = g(x) that is t = 8220 anq (1 —1)g(a) +1g(b)

g(b)—g(a)
St = gE % EZ; in (7.23), and after calculation we get

(x5 pog) (bup) + (o157 og) (aip)
< L) IO (1t )

b=.p,0,T
Combining (7.21) and (7.24), we get the required result.

The Fejér-Hadamard inequality is given in the following result.

(7.20)

g(y) that

(7.21)

(7.22)

(7.23)

= g(v) that

(7.24)
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Theorem 7.7 Let f,g,h: [a,b] — R, 0 < a < b be such that f and h are positive, | and
h € Li[a,b] and f convex on |a,b], while g is a differentiable and strictly increasing. If
f(g(a)+g(b) —g(x)) = f(g(x)), then the following inequalities for extended generalized
fractional integral operator defined in (2.23) and (2.24) hold:

b w.8,¢,q,r
f (g(a)—;g( )) (gYa#(Z’C’,.q‘;hog) (b,p)

[( TS (hog)(fog )) (bsp) + (gYZVi’fS,J,C&q,’;(h og)(fo g)) (a;p)}

1
=3
f(())+f(()) w.8.c.q,r . / w
8la 5 (ng;i)'bq"Thog) (a;p), w' = m.

Proof. Multiplying both sides of (7.19) by t° ~'h(rg(a) + (1 — t)g(b))Eg’;’%c(wtp; p) and
integrating on [0, 1], we get

2f (giw);g(b)) /0 o "EL S (i p)h(tg(a) + (1 —1)g(b))d (7.25)
</l TTED S (wiPs p)h(rg(a) + (1 —1)g(b)) f (tg(a) + (1 —1)g (b)) dr

+/ 17 BT (wiP s p)h(ig (@) + (1 1)g(b) f (1 —1)g(a) +1g (b)) dr.

Setting 1g(a) + (1 —1)g(b) = g(x) that is r = S5 and (1 —1)g(a) +1g(b)=g(a) +
g(b) — g(x) in (7.25), and using f(g(a)+ g(b) — g(x)) = f(g(x)), the following inequality

is obtained:

2

~

<g(a) erg(b)> ( Y:+(?)Caq;hog> (b:p) (7.26)

< (st hog)(fog)) (bip)+ (1) S8 (hog) (o) ) (@) -

Multiplying 1~ 'h((tg(a) + (1 — t)g(b))EX"*(wt®; p) on both sides of (7.22) and inte-

0,7,8
grating over [0, 1], we have

[ 1o B G pn(rgta) + (18 Fegla) + (1 )g)r (227
4 [T B G p)( (@) + (1~ 0g(8)) (1~ 1)gla) +185))

< [ BRI G (@) + (1~ 0g(8)) e (8(@)) + (1~ 1)1 5))

4 [T B G p (@) + (1~ 0g(8)) (1 1) (5(@) + 1/ (50
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Setting 7g(a) + (1 —1)g(b) = g(x) and using f(g(a) +g(b) — g(x)) = f(g(x)) we get

(a2t hog)(fog)) (bsp)+ (X)L (hog)(fog)) (asp) (7.28)

< f(ga)) erf(g(b)) (gYZi’%f&‘{:(hog)) (a;p).

Combining (7.26) and (7.28), we get the required result. O

Remark 7.4 The Hadamard and the Fejér Hadamard inequalities given in Theorems 2.1—
2.5 are special cases of theorems of this section.

7.2 Hadamard and Fejér-Hadamard Inequalities
for Relative Convex Functions

The following Hadamard inequality for relative convex functions via Riemann-Liouville
fractional integral operator is given in [112].

Theorem 7.8 Let f be a positive relative convex function integrable on [a,g(b)]. Then
the following inequality holds

a+g(b) I'(oc+1)
f( 2 > = 2s()—a)

fla)+ f(g(b))
2

e fe(b) +Jy fla)] <

with o > 0.

The generalized Hadamard inequality containing Mittag-Leffler function is given in the
following theorem.

Theorem 7.9 Let w € R, r,p,0,7>0,¢ >0 >0withp>0and 0 < g <r+p. Let
f]a,g(b)] — R be afunction such that f € Ly[a,g(b)] with a < b. If f is relative convex on

[a,g(D)], then for extended generalized fractional integral operator the following inequality
holds

P(“E) 2 Geton (729)

(57555 1) 60+ (e o) asp)]

!
-2
L@

!/ w
where w' = FOEIE
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Proof. Since f is relative convex function, for z € [0, 1] we have
a+g(b
27 () < par (1= £ -Natise). (30)

Multiplying (7.36) by 2:°~ lEg o %" (wtP; p) on both sides and then integrating over [0, 1]
we have

2f<a+§(b)) /Olt"*‘Eg,’é’f?r(th;p)dt (7.31)
1

< [ B () f 0+ (1= n)g(b)dr

+/ 1O EY S (wiP i p) £ (1 —1)a+1g(b))d.

Putting x =ra+ (1 —1)g(b) and y = (1 —t)a +tg(b) in the above inequality we have

(240 (5820 e (- () ) i) o
@ —x\°! —X —dx
<fo(or=s) = ((5=) 2o (%)

o1
+/ag(b)(g(yb)_aa) Eg:g%r@(g(yb;a )p’p)f (ba)’y )

From the above inequality we get

a+tg®)\ v ',8.c.q. ' 8.c.q.
2f< ( ) o o@(0)ip) < (55507 F) (gb)ip) + (€130 00 of ) (@sp). (7.33)
Again using the relative convexity of f we have

flta+(1=1)g(b))+f((1 —t)a+1g(b)) <t1f(a)+(1—1)f(g(b))+(1 —f)f(a)+tf(<(s’7(b3)i)-

Multiplying (7.34) by t"’]Egjf;?f(wtp;p) on both sides and then integrating over [0, 1] we
have

[ B ) faat (1 - (o))

4 [T B ) (1 )10
< [0 B P pyfta) + (1) g0
b [T B P (1 17(@) 1S a0
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Puttingx =rta+ (1 —1)g(b) and y = (1 —t)a+tg(b) in above we get

(2551 7) (s®):p) + (€430 f ) (@:p) < [F(@) + £ B)IHy - olaip). (7.35)

From (7.35) and (7.33), the inequality (7.29) is obtained. O

Remark 7.5
(i) If p =0 in above Theorem 7.9, then we get [1, Theorem 2.8].

(i) If w=p=0and g =1 in Theorem 7.9, then we get Theorem 7.8.

In the next theorem the generalization of previous result is proved.

Theorem 7.10 Letw e R, r,p,0,7>0,¢ > >0withp>0and 0 < g <r+p. Let
f:[g(a),g(b)] — R be a function such that f € Li[g(a),g(b)] with a < b. If f is rela-
tive convex on [g(a),g(b)], then for extended generalized fractional integral operator the
following inequality holds

f (L’) ;g (b)) HY\py+ o(2(b):p)

(G5 et) (60 (2575 of) )]

< S LSO i)

!/
where w' = o e

Proof. Since f is relative convex function on [g(a),g(b)], for ¢ € [0, 1] we have

gla)+g(b
2 (BOFE0) < gt + (1= 0e®) + £ (1 -gla) +1g5). (.36
Remaining proof of is on same lines as the proof of above theorem. O
Remark 7.6

(i) If p =0 in above Theorem 7.10, then we get [1, Theorem 2.10].

(i) If w = p = 0 in above Theorem 7.10, then we get [66, Corollary 1].
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7.3 Hadamard and Fejér-Hadamard Inequalities
for m-convex Functions

In this section we give Hadamard and Fejér-Hadamard inequalities for m-convex functions
via extended Mittag-Leffler function.

Theorem 711 Letw e R, 1,p,0,7>0,¢ >0 >0withp>0and 0 < qg<r-+p. Let
f:]0,00) = R be a positive function. Let a,b € [0,00) with 0 < a < mb and f € Ly[a,mb]. If
[ is m-convex function on [a, mb), then the following inequality for the extended generalized
fractional integral holds

f (”mb) HY. (b p) (737)

2
w’,(sngCIJ’ b o+l mpW/-,(S,C,q,r "
< (g‘ﬁ’p"”f £)mb; p) +m (gbip,c,r NGip)
- 2
2
< mP f(a)_m f(%) Hmpw, (ﬁp)
T2 mb—a b0+l \

F(rerem () s ()]

v
(mb—a)P*

where w =

Proof. Since f is m-convex function on [a,mb], for t € [0,1] we have

<<m+m<1 —1)b) + g m(( =05 +”’)> (7.38)

_ flta+m(1—1)b)+mf((1—1)% +1b)
< 5 .

f

Multiplying with 19~ 1E5 ‘o (wrP; p) the both sides of above inequality we get

a-+mb
2

< Eg:g?f*r(wtp;p) (f(ta+m(1 ft)b)erf((l *t)n%thb)) :

Integrating with respect to ¢ over [0, 1] we have
b r
2 (“*m ) [ ot e

1
</ t° 1ESg,qfr(wtp,p)f(ta—|—m(1—t)b)dt

S8,c.q.r
24 EyGh (wrp;p)f(

+m/ T ES S wtp;p)f((l—t)n%thb)dt.
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If we take u = at +m(1 — )b, then t = 22=% and if v = (1 — )% +1b, then t = —%.

Therefore one can have

, gw/,5,c,q,rf mb:, Jrmp+1 S"f)w/’ﬁ,c,q,rf a.
f (“ +2mb) e g(mb;p) < Carpoa ) m0:P) 5 (& poe 1) (i) . (7.39)
Again by using that f is m-convex function we have
ta+m(l—1)b)+m —t g+tb (7.40)
f 1 b (1 -

< tf(@)+m(1=0)f(b) +m*(1=1)f (=5 ) +mif(b).

Now multiplying with 1 ~'E, 3 o %" (wtP; p) and integrating with respect to 7 over [0, 1] we

get
1
/ 19 LES SO (i p) f(ta+ m(1 —1)b)dr
+m/ 1O ES S (P p) ((1 e +tb> dt
d,c
< [rt@—mr ()] [ R o phas
m 0
a ! (01 d,¢

+m[f(b)+mf(ﬁ>} /0 Ep g% (wiP;p)dt.

From which by using change of variables as did for (7.39), we get

',8,¢,q, . Pw'.8.c.q, .
(€20 £) (mb: p) +mP+ (g S0 f) (L1 p)

7.41
5 (7.41)
m2f (<
<mp+1 f(a) f( 2>Hmpwl (ﬁ. )
— 2 mb—a b—,0+1 P
a mPw' a X

@ ems () e (r) |-

From inequalities (7.39) and (7.41), we get the inequality (7.37). O

Remark 7.7 In Theorem 7.11
(i) if p =0, then we get [50, Theorem 3].
(i) if w= p =0, m = 1, then we get [140, Theorem 2].

(iii) if m = 1, then we get Theorem 7.3.
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Theorem 712 [etw eR, 1,0, 0,7 >0,¢ >0 >0withp>0and 0 < qg<r-+p. Let
f:[a,mb] — R be a function such that f € Li[a,mb] with 0 < a < mb. If f is m-convex on
[@,mb], then the following inequality for extended generalized fractional integral operator
holds

a+mb\ )
Zf( . )H(%_m,,)w(mb,p) (7.42)
w'.8,c,q,r . p+1 mPw .8,c,q,r ﬁ
S <£(a+mb) pGTf) (mb’p)+m <£(a+mb) pO'Tf) (I’I’l’p)
1 2 a w .
S (f(a)_m f(ﬁ))H(ll‘FZ—mh>+’o-+l<mb9p)

mb—a

ot (p o) (5 Vi ()

I 2Pw
where w' = b—a)P*

Proof. Since f is m-convex, fort € [0, 1] we have

b t 2—1t
2f “m <flza+==—mb)+mf —a+ Ly (7.43)
“\2 2 2
Also from m-convexity of f, we have
t 2—t
f(EaerTb) f<— +2b) (7.44)

<5 (Hr=n's (55)) +m () +mr (35))-

Multiplying (7.43) by t"’]ES:f;f’T’r(wtp;p) on both sides and then integrating on [0, 1] we
have

b
2f<a+m >/0 19 ES ST (wiP; p)di (7.45)
! 1 -0,¢.q.r 4 2—1
§/ [ Epjc;f? wt?;p)f | za+——mb | dt
0 o 2 2
1 o—1 5,C,q,r 0. 271‘ t
—I—m./ot Ey5% (wi”;p)f %a—i—zb dr.

Putting u = Sa+ %4mb and v = Z-La+ Lb in (7.45), we have

a+ mb .
2f< )xﬁmh(mb— W)TES L (W (mb — u)P; p)du
3

mb
< A (mb — u)cflEg:g’?T’r(w/(mb —u)P;p)f(u)du

+mb
2
atmb

2m a o—1 S
+ mPH/ (v _ _) EScar (mpw/(v _
« 0,

m

201 p) f(v)dy.

m
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By using (2.20) and Definition 2.2 we get first inequality of (7.42).

Now multiplying (7.44) by t"’lEg:f;,qT’r(wtp; p) on both sides and then integrating with

respect to 7 over [0, 1], we have

1 , t 2—t
/ %" IESCqT (wt?;p)f (Ea—l—me) dt

s. 2—t t
er/ t° ]Ep gc{[r W[p;p)f (m(l#‘ Eb)
1 2,0 @ ! p8.0.q.7 (. .p
<3 (@ -mr5) [ PESES (P pha

1
e (f0)+mf(Sg)) [T ERGY (wrPipar

Putting u = Sa+m2:Lb and v = Z-La+ Lb in (7.46), we have
mb 10,9, /. 1
/;mh (mb—u)°'Ey g% (W (mb—u)P;p) f(u)du
e
b a\o-l _scar a\p
+ (vf—) Ey gt (mPw <v7—> ;p)f(v)dv
m m

e (10 em) [ () B ! (v ) s

m m

By using (2.18) and Definition 2.2 we get second inequality of (7.42).

Remark 7.8 In Theorem 7.12.
(i) If p =0, then we get [53, Theorem 3.10].

(i) If m =1, then we get Theorem 7.5.

(7.46)

(7.47)

(i) fw=p=0,m=1and o = 1, then we get the classical Hadamard inequality.

Theorem 7.13 LetweR, r,p,0,7>0,¢>8>0withp>0and 0 < q <r+p. Let

f:[0,00) — R be a m-convex function, a,b € [0,0) with 0 < a < mb and f € Ly|a
Also, let g : [a,mb] — R be a function whzch is nonnegative and integrable on [a,m

,mb.
bl. If

fla+mb—mx) = f(x), then the following inequality for extended generalized fractional

integral holds

a+mb w.8.c.q.r a.

() gt (30 <
(1+m) w.8,c.q.r a

- 8.0, @,

= 3 (%*,p,aﬂ,rfg) (m,p>

7.48)
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2
1| fla)—m f(%> W 8.c.q.r a.
3| T b & potied) (E’p>

a

e (o) e (25)) €St (L)

<

where w' = ﬁ.
Proof. Proof of this theorem is on same lines as the proof of Theorem 7.18. O

In the next results generalized fractional integral operators by a monotone increasing
function are utilized.

Theorem 7.14 Let f,g: [a,b] — R, 0 < a < b, Range(g) C [a,b], be such that f is pos-
itive and f € Ly[a,b], g differentiable and strictly increasing. If f be m-convex m € (0,1]

and g(a) < mg(b), then the following inequalities for fractional operators (2.23) and (2.24)
hold:

(SO (rarte, 1) G o))

(0 (o9 (6 Omg)ip) 0 (17700 (r0g)) (6 (55) 0)
- 2

ot [ Flg(a) —mf (4

| ) s ) (e (e (500 0)

+(rteen +mr (55 (oxpmaconn) (1 (50)sn) | W = et

Proof. By definition of m-convex function f, we have

27 (2L < 1)+t ~00) 4 (1e(0) + (105 ) a9
Further, from (7.49), one can obtain the following integral inequality:
1
2f (ZL) +2mg (b)) / 19 VES SO (wiP; p)dr (7.50)
Jo T

1
< [ B ) f(rs(a) + m(1 ~1)g(b)ds
m

+m./0] 17 Ep 6% (wiP ) f (tg(b)+(1 —t)g(_“)) o

Setting g(x) =tg(a)+m(1 —1)g(b) and g(y) =1g(b) + (1 — t)% in (7.50), we get the
following inequality:

b rk.c _
oy (BEEEL) (rncts 1) (6 g0)i) (s1)

< (Y0 o0)) (¢ Ong@)ip) 0 (0 2007 o) (471 (E10) ).

m
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Also by using the m-convexity of f, we obtain

f(tg(@) + m(1 —1)g(b)) +mf <rg<b> - r>g<“)> (7.52)

m

<o (steton +mr (£9) )+ (stet@) -mir (£

This leads to the following integral inequality:

/01 oL ES LT (P p) F(tg(a) +m(1 — 1)g(b))dt (7.53)
+m/ 19 ES 4 wtp,pf<tg(b (1—1) %)dt

§m<f(g( +mf< >)/01t0 LESCAT (weP; )i
+ (stetan s (290)) [roEdcaonripar.

Again by setting g(x) =tg(a)+m(1—1)g(b), g(y) =1g(b)+ (1 —1) % in (7.53) and after
calculation, we get

(Yo o)) & Om@ip) £ (0 0 (o) (o (E2) )

(7.54)
flgla) —mf(48)
+1 m? mPw' .8,c.q,r —1 M .
< | e () (e (50 )
By combining (7.51) and (7.54), we get the desired result. O

Remark 7.9
(i) Setting m = 1 in Theorem 7.14, we obtain [132, Theorem 3.1].

(ii) Setting g = I in Theorem 7.14, we obtain [87, Theorem 3.1].

The following theorem gives the Fejér-Hadamard inequality for m-convex functions.

Theorem 7.15 Let f,g,h: [a,b] — R, 0 < a < b, Range(g), be such that f is positive and
f € Li|a,b], g differentiable and strictly increasing and h integrable and nonnegative. If f
is m-convex, m € (0, 1], g(a) < mg(b) and g(a)+mg(b) —mg(x) = g(x), then the following
inequalities for fractional operator (2.24) hold:

of (M) (1ot hog) <g1 (‘g;—a)> éP)

< (14m) (1} 55 (Fog) (o)) <g1 <@) ;p>

m
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Fls(a)) ~ zf(mz)( 5evnos) (o (£9).)

(g b ,p,0,T m

(o ems (52)) (o zznes) (o (52 )) o= s

Proof. Multiplying both sides of (7.49) by 2:7~ 1 (tg(b) (1 —t)g,(n—“>) ESC47 (wiP; p)

and integrating on [0, 1], we get

<

2f (g(a) +2mg(b)) /Olt"’lh (tg(b)Jr (1 t)ng’l—a)> ES S (wi p)dt (7.55)

< [ (rs0)+ 0 -0 2) B8 s st + 1 g0y

m
I /01 o <tg<b) +{ _’)g(a)) EpG% (wiP:p)f <tg(b) +(1 —r)i—a)) d.
Setting g(x) =tg(b)+(1—1) % and also using g(a)+mg(b) —mg(x) = g(x) the following

inequality is obtained:

2f (M) (132 hog) (g] (ﬁ—“)) ; p) (7.56)
< (L+m) (gY’Zi’i;i;‘f;’(.fog)(hog)) (gl (%) ;p) :

Multiplying both sides of inequality (7.52) with #Hh( g(b)+ (1 — 1)L )E5 S9T (wiP p)
tg(b) + (1 — )8 and also using g(a) +

m

and integrating on [0, 1], then setting g(x) =
mg(b) —mg(x) = g(x) we have

(14m) (gYZi’i;i;‘f;’(f og)(ho g)) (g' (ﬁ—a)) ;p) (7.57)
) <f<g<:zzb_) i12 ](e_)(),f,—>)> (cx3cmmos) (57 (52).p)

m
+m( f(g(b)+mf sa) ( Y Seary ) -1 (8@,
8 m2 8 b= .,0,0,T 8 8 m P ) -
By combining (7.56) and (7.57), we get the desired result.

Remark 7.10
(i) In the Theorem 7.15, if we put m = 1, then we get [132, Theorem 3.2].

(ii) Inthe Theorem 7.15, if we put g = I and p = 0, then we get [3, Theorem ].
(iii) In the Theorem 7.15, if we put g = I, then we get [57, Theorem ].
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7.4 Hadamard and Fejér-Hadamard Inequalities
for (h —m)-convex Functions

In this section the results proved in previous sections are generalized via (h — m)-convex
functions.

Theorem 7.16 Lerwe R, 1,0,0,7>0,¢>8>0withp>0and 0 < g <r+p. Let
f:]0,00) — R be an integrable and (h — m)-convex function with m € (0,1]. Then the
following inequality for extended generalized fractional integral holds

f (b’"”) o (mbp) (7.58)

0.3, a ' 8. .
( mf”1 ;”";,Mcq'f)(n—l;p)Jr(s;i,pif{f)(mb,p)}

()’”” 0 {[rs () +mr®)] L5 mp)
mf(b) + (@) (e} S5 m) (0:p) )

/ w
where w' = TP

Proof. Since f is (h —m)-convex function, we have

f (’””2” > <h (%) (mf () + £ (5). (7:59)

Setting x = (1 —1) - +tbandy = m(1 —t)b+ta,t € [0, 1], then integrating over [0, 1] after

multiply with 19~ 1E5 ok (WP p) we get

b 'l .
P(70) e b s

2

1 1 ,C\q,1
Sh(i) {/O 1o IESG‘IT (wtp;p)mf((l—t)%ﬂb)dt
+/ 19 ES S (wi p;p)f(’n(l—t)b—l—ta)dt}

By substituting s = (1 —¢) & 4-tb and z = m(1 — )b +ta we have

f <bm2+a> Hy. o (mb:p) (7.60)

1 1, W80 a. '8¢, )
<h (5) {mﬁ (5;[,,),66?17) (E,p) + (8;“+’p’0‘7’7’f)(mb,p) )
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This completes the proof of first inequality in (7.58). For the second inequality
(h — m)-convexity of f also gives
mf((1 e +tb) + fm(1—1)b+1a)
m
a
< (1 =) (5 ) -+ mh(0)f(b) +mh(1 =) (b) + h(r)f (@).

Multiplying both sides of above inequality with & (1) tG’lEgjg;?;r(wtp;p) and integrating

over [0, 1], then by change of variables we have
1 'mP S.cqr g (@ ' 8.4,
! (§> P 5 ) (i) + G A i)
1 1
<n(3) o { [ () +mro)] [ o L 0 pyi(1
m Jo 0,

Inf(B) + ()] | BN (s .

This gives us the second inequality in (7.58). O

Several known results are special cases of the above generalized fractional Hadamard
inequality shown in the following remark.

Remark 7.11
(i) If p =0, then we get [131, Theorem 2.1].

(ii) If A(r) = ¢, p=0and m = 1, then we get [51, Theorem 2.1].
(iii) If A(t) =1, p = 0, then we get [50, Theorem 3].

(iv) If a(t) = ¢, p =0 and w = 0, then we get [65, Theorem 2.1].

(v) Ifh(t) =t,p=0,m =1 and w = 0, then we get [140, Theorem 2].

(vi) Ifh(t) =t,p=0,m =1, 0 = 1 and w =0, then we get the Hadamard inequality.

Another generalized Hadamard inequality containing Mittag-Leffler function is given in
the following theorem.

Theorem 717 Letw e R, 1,0, 0,7 >0,¢ >0 >0withp>0and 0 < qg<r-+p. Let
f:]0,00) = R be an integrable and (h — m)-convex function with m € (0,1]. Then the
following inequality for extended generalized fractional integral holds

a+bm WP )
f< 2 ) Hlasmy o m05P) (7.61)
1 20 8 c.q.r w’(Zm)P Scar a
<h|= w2P.5.c.q, b p+1 ,8.,¢,q, (_. )
a <2) [(S(W)+’P’Gvf'f)(m p)m (8(%)7@,0,#0) m’p

<n(5) P (o () e mro) [ o i o (2 ) a

+[mf(B) + f@)] /0 OB (b ) (3) dt} .
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Proof. Putting x = 5b+ (2;'> Landy=1%

a-bm 1 t  (2-t)a ! (2-1)

< —_ p— —_ —_ .
175 =@ b (e 5 oo (oo
Multiplying (7.62) by folngg?T’r
have

(-1
2

(7.62)

(wtP; p) on both sides, then integrating over [0, 1]

b r
£S5 [ ehas v spar

1 1 . 9
Sh(i) [/0 17 ES G4 (i pymf (%a—i—m( t)b) dr

2

(o S 2—t
+/ VES ST (wi; )f<2b+( 5 )%>dt}

By substituting x = b+ @ Landy=

(2-1)
2

b, one gets

(7.63)
1 w'2P §.c,q,r 1, .w(2m)P .S.cq,r a
< - 0,6,4, . P+ ,0,6,4, (_)
=" <2> [(8( a4+2bm)+,P,G7Tf) (mb:p) =+ +m (8( u%ﬁ’ln’l)ip,c,ff) m'?
Again by using (h — m)—convexity of f, we have
t (2- ) (271‘) a
Sa+m—— = 64
f<2a+m . >+ f< o4 (7.64

<h (%) f(a)+mh (?) £(b)+mh (%) £(b)+m*h (?) £ ()
= [mf (55)+ £ (b)] (?) +mf(B)+ f@]n (%)

2
Multiplying (7.64) by h (%) t"’lEg:g’er(wtp;p) on both sides, then integrating over [0, 1]
we have

1 9 _
h(%) [/0 19 ES S (w, tp;P)f(%a—i—m( zt)b>dt

2—t
+/ 1o lEgqur wtp,p)mf< b+( )£>dt}
m

2
<n(5) {mbor Gi) 0] [ o= ek o (57

2
s (8)+ )] [ B s () ar}.

By using change of variables we conclude

(u+}{')lm) 05 O',T'

l w'2P 8 .c,q,r . pt+1lie w (2m)P .8 ,c.q.r a
n(5) @2t N+ ier n (%)



7.4 INEQUALITIES FOR (h —m)-CONVEX FUNCTIONS 103

<n(5) P o () 0] [ oo e s (25 ) ar
s 0)+ ()] [ BN s () ar}.

From above inequality and (7.63), we get the required inequality (7.61). O

Remark 7.12
(i) If we put p=01in (7.61), then [131, Theorem 2.2] is obtained.
(ii) If h(r) =, p =0and m = 1, then we get [131, Corollary 2.3].
(iii) If h(t) =1, then we get Theorem 7.12.
(iv) If a(t) = ¢, p =0 and w = 0, then we get Theorem 7.2.
(v) If m =1, then we get the inequality for s-convex function.

Theorem 7.18 Lerw e R, ,p,0,7>0,¢>8 >0withp>0and 0 < g < r+p. Let
fla,b] = R be a (h—m)-convex function with 0 < a < b and f € Li[a,b]. Also, let
g |a,b] = R be a function which is nonnegative, integrable and symmetric about “Z—mb. If
f(mb+a—mx) = f(x), then the following inequalities for extended generalized fractional
integrals hold

b w' . 8.c.q,r w'.8.c.q.r
f (mT“) (e 0tre) (S:p) <h (%) (m+1)(e 55 ) (sp)  (7.65)
1 w ,C
§h<§) {[m2r () +mr)] (e bt (1:p)
+Imf(b) + f(@)] ()0 ) (0:p) }
where w' = W.

Proof. Since f is (h —m)-convex function, for ¢ € [a,b] we have

f(bm;a) <h (%) {mf((l —t)%—l—tb) + f(m(1 —t)b—i—ta)]

Multiplying both sides of above inequality with #7~ 1E5 o (wiPip)g (tb+ (1 —1)%) and

integrating over [0, 1], we have

bm+a oIS . _a
f( )/0 Epgr(wtp,p)g(tb—i—(l t)m)dt

2
§h<%) [/01 BN Wi p)g (1b+ (L= =) mf (L=1) =+ 1b) dr

+/ 19 ES e ( t;p)g(tb—l—(l—t)%)f(m(l—t)b—i—ta)dt}
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If we set x = (1 —1) == +¢b and use the given condition f(mb+a—mx) = f(x), we conclude

bm+a ! 8.cqr a. 1 ' 8.cqor a.
()@ (o) < (5) o0 St (or). 09

This completes the proof of first inequality in (7.65). For the second inequality using
(h — m)-convexity of f we have

mf ((1 —t)%—i—tb) + fm(1 —1)b +1a)
<t h(1=0)1 (5 ) -+ mh(0)f (b) +mh(1 =) (b) +h(1)f (@)-

Multiplying both sides with & (1) 77~ 1ng,’?1’r(wtp ;p)g (tb+ (1 —1)%) and integrating over
[0,1], we have

h (%) (m+ 1)) 05 £g) (=:p)
<h (%){ f () + mf(b)}/oerES;g?f(wtp;p)h(l g (1b+(1-1) %) a
Hins )+ @) [ 17 B o) (4 -0 %}

By change of variables the second inequality in (7.65) can be obtained. O

Remark 7.13
(i) If we put p =01n (7.65), then [131, Theorem 2.5] is obtained.
(ii) If we put A(#) =¢,m =1 and p = 0 in (7.65), then [51, Theorem 2.2] is obtained.

7.5 Hadamard and Fejér-Hadamard inequalities
for Harmonically Convex Functions

In the following we give the Hadamard inequality for harmonically convex functions.

Theorem 7.19 [76] Let f: 1 C R\ {0} — R be harmonically convex function and a,b € 1
with a < b. If f € L[a,b] then the following inequality hold:

2ab ab  [? f(x) f(a)+ f(b)

A Fejér-Hadamard inequality for harmonically convex functions is stated as follows.
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Theorem 7.20 [33] Let f: 1 C R\ {0} — R be a harmonically convex function and
a,belwitha<b.If f €Lla,b] and Let u : [a,b] C R\ {0} — R is non negative integrable
] zab 5 then the following inequality for fractional

integral operator hold:

, <azj-bb) /ab g e /ab f(x));t(x) ge<? (a);f (b) /a” % ' (7.68)

A version of the Fejér-Hadamard inequality for harmonically convex functions via Riemann-
Liouville fractional integrals is stated as follows.

Theorem 7.21 [79] Let f : 1 C (0,00) — R be a function such that a,b € I with
a<b. If f € Lla,b] and f is harmonically convex function then the following inequal-
ity for fractional integral operator hold:

r(22) <D (L) o romy+ay-remp| < LD
(7.69)

where h(x) = 1 and x € [a,b].

Another version of the Fejér-Hadamard inequality for harmonically convex functions via
Riemann-Liouville fractional integrals is stated as follows.

Theorem 7.22 [95] Let f : I C (0,00) — R be a harmonically convex function on |a,b]
fora,b € I with a < b. If f € L[a,b] then the following inequalities for fractional integral

hold
2ab T(o+1) [ ab \° 1 1
(25T () (o o) ()

_ f@)+£(b)
- 2

where g(t) = 1 fort € [1,1].

The following Fejér-Hadamard inequality for harmonically convex functions via extended
Mittag-Leffler functions is the generalized version.

Theorem 7.23 Letw eR, 1,p0,0,T>0,¢> 0 >0withp>0and0< qg<r-+p. Let
f:la,b] C (0,00) — R be such that f € Ly|a,b] with a < b. If f is a harmonically con-
vex function on [a,b], then the following inequalities for extended generalized fractional
integral operators hold

HEZAVINGY
a+b Lo b’p
1 w.8,c.q.r 1. w.8,c.q.r 1
() (o)« (7000s) (o)
Hf0) (L
S 2 H%+7O_ 5,1) )

where w *W(b )P and g(t) = tlforte [%75]
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20 < 010,

Proof. Since f is harmonically convex function, for all x,y € [a,b], f (x+y 5

Forx = andy = we have

ab
ta+(1—1)b

2ab ab ab
2f<a+b) <f (m) +f(m) (7.70)

Multiplying (7.70) by t"*lEg;f;f’g’(th ; p) on both sides, and integrating over [0, 1] we have

2ab s 1 s ab
2 1O VESSLT (P dt</ 1O VESSLT (P — | dt
f(a—i—b)/ 0,0,T (wtP;p)dt < 0 0,0,T (wt?;p)f tb+(1—t)a

1 b
+/0 r“*lES;g?;’(wzp;p)f (ai)b) dt.

ta+(1—1

tb+(l —t)a

th+(1—t)a
ab

2f(a2jlrbb)-/; (babafl (x_%)dl (7.71)
i (%) (=3) ) (52)»
T () e (o () (-0) )
06 6%) G)

g («(5%5) (=) ) () (%)

After simplification we get

2ab a 1\ ! S p
A s e
1 1

If we put in above x = and y %, then we have the following inequality

By using Definition 2.2 we get
2ab w'.8.c.q.r ! w'.8.c.q.r !
2f<a+b> <gl',,p,c,fl pl) = gé,w,cﬁfog b’
d,c, 1
+( hp ‘”fog) ( p) (7.72)
p P,0,T
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Again by using that harmonically convexity of f forz € [0, 1] one can have

ab ab
_ — | < b). 7.73
f (tb+(1—t)a) +f(ta+(1—t)b) < fla)+ () (7.73)
Multiplying (7.73) by t"’]ng,’?T’r(wtp;p) on both sides, and integrating over [0, 1] we have

1
10— 1 ~0,¢,q,r P ab

E — | dt 7.74
/ pcr( ’p)f<tb+(1—t)a ( )

Lo ()
1
< (fla) + £(2)) / (T B (s )t

By putting in above x = w andy = W then after simplifications, we have
w.8,c,q,r 1 w.8,c,q,r 1
(4 aeres) () + () (o)
,0 "1 1
< (@) + o) (72201 (53p) 7.75)
Inequalities (7.72) and (7.75) provide the required inequality. O

Remark 7.14 In Theorem 7.23,

(i) if we put p = 0, then we get [2, Theorem 3.1],

(ii) if we putw = p =0, then we get [78, Theorem 4].
Another version is given in the next result.

Theorem 7.24 [Letw R, 1,p,0,T>0,¢> 0 >0withp>0and0< qg<r-+p. Let
f:]a,b] C (0,00) — R be a harmonically convex function such that f € Ly[a,b] with a < b.

If f is a harmonically symmetric about ‘;JFII; , then the following inequalities for extended

generalized fractional integral operators hold

2ab / 1

= g —.
f(a+b) “zii’ﬁ(b’p)

1 wécqr I wﬁcqr 1
Sz(( a+b+ fo Ep + ‘Zf,parfog E,p

_fla )erf( ’Hm% (L0).

where w = w(;)P and g(t) = 1, 1 € [, 1].



108 7 HADAMARD AND FEJER FRACTIONAL INTEGRAL INEQUALITIES

Proof. Multiplying (7.70) by 2t° ’1Egjf;?1’r(wtp ;p) on both sides, and integrating over
[0, 1] we have

2ab L L
o (255) [ o e iy < [0 R i

ab
ta+(1 —t)b) d
(7.76)

01 5c7q7 p ab
E t - )dt.
Jr/ poe (W ’p)f<tb+(1—t)a>

zb+(1 —t)a

Putting in above x = that is — +(1b 0= L_ then we have

1,1
5+Efx

2ab\ (52 ab \°( 1\ 4. ab \"( 1\°
) L Eocar - . d
f(a_i_b)/ll, (b—a) ()C b) p,0,T (W(b—a) (X b) ,P) X

atb c o—1 P p

2a ab 1 5,c,q,r ab 1 .
<G5 (i) me(G) (5) )

1 5%/ ab \° 1" s ab \*

d - E,C,q,r

(e 2 (2 () s (62

1\* 1
((=3) r)r(2)

b X

Since f is harmonically symmetric about ‘;*If , we replace % + 11—) — x by x in first term on
the right hand side of the above inequality and after simplification we have

2ab \ [%h N s, 1\

(25 (o5) me (v (sg) )
b

1 o—1 P

a 1 5c7q7 1 . 1
<o (o) B (v (G o) () o

atb o—1 P

2ab 1 8.cqor I\" 1
+ 1 (Z) Ep,c,r ( *E | f ; dx.

By using Definition 2.2 we get
2ab oV Sear 1
1
< WSqu WSqu .. )
—(ggwfog)( ')t (%:f: otes) (50)

Now multiplying (7.73) by t°~ lEg o %" (wtP;p) on both sides, and integrating over [0, %]
we have

car b
/ G lES q,; (Wl‘p,p)f(m) dl

01 5c7q7 . ab
E P —— ) dt 7.78
Jr/ poe (W p)f<ta+(l—t)b> (7.78)
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< (f(a)+ (b)) / (VBB (P p)d.

zb+(1 —t)a o

Putting in above x = that is —2

ta+(1-1)b —

- then we have

[STES L

% b ’ 1 ot C\q,r b p 1\” 1
/l <ba_a> <xz> Eg:(f?f <W(ba_a> <xz) §p>f<;>dx

eb soab \© 1\o! Sear b \P . p.
+/z', <b—d) <x5> Eplor <W(b—a> (xz) ,p>

1 ¢th ab \° 1 o—1
f(m)‘“(ﬂ“”ﬂ“% (%) (3)
P P

(2 2 e

Since f is harmonically symmetric about %Jrlf , using this fact by replacing % + ll_) —x with x

in first term of the left hand side of above inequality and after simple calculation, we have

(sfjfg; fog) (é;p) +( Ly o g) (%;p) (7.79)
1
<@+ o) (2,0 ) (530).

Inequalities (7.77) and (7.79) provide the required inequality. O

Remark 7.15 In Theorem 7.24,
(i) if p =0, then we get [2, Theorem 3.3],
@i1) if w= p =0, then we get Theorem 7.22.
The following lemma is needed to prove the next result.

Lemma 7.1 Let f: [a,b] CR\ {0} — R be integrable and harmonically symmetric about
a+h

5, Then we have the following equality for extended generalized fractional integral
operators holds

w,8.c.q.r L w,6.c.q.r L
o) = (gmse - 7.80
(rsnsos) (o) = (G soe) o) o
:l gw,ﬁ,c,q,r fog l,p + 8w5¢qr ng l,p
2 ¢ por a’ & po b’

where g(t) = %fort € [%, é]
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Proof. Since f is harmonically symmetric about 4*2, we have f (%) =f <;) By

2ab > £+ }1; —x
the definition of extended generalized fractional integral operator,

w,0,¢,q,r 1 % 1 ol 5,c,q,r 1 P 1
(o)) ) e
Sy PO a 4 \a a t

(7.81)

replace ¢ by + # —x in above we have

1
Swﬁcqr =
< 4" o feg) (P
a+b o—1 4]
2ab 8.c,q, 1 1
() et (o) e ()
atb o—1 P
Zab 8.c.q.r 1
P )
By using Definition 2.2 we get

1 5, 1
Sw,ﬁ,c,q,r - e ; . 7.82
( s o O )\ TP st pas °8) 57 T

By adding ( f:j’ oar fo g) (%;p) to both sides of above we have

2ab PO

8, 1 s, 1
2 <£Zv’+bi’q’ fog> (—;p) = (gzv;bi’q’ fog) (—;p) (7.83)
b PO a 2ap P07 a
w,0,c,q,r l
(e ee) ()

which is required. O

The next result provides the generalized version of Fejér-Hadamard inequality for har-
monically convex functions.

Theorem 7.25 Letw e R, r,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f:]a,b] C (0,0) = R be a harmonically convex function with a < b. Let f € Ly[a,b] and

also let g : [a,b] — R be a nonnegative, integrable and harmonically symmetric about “ZZ;)’

Then the following inequalities for extended generalized fractional integral operators hold
f (azibb) [(sw_‘sgagh) (é;p) + (e:,:f o ;,goh) (%p)] (7.84)
(g ) () (20 )

AL (e ) (éw) ez ()]

where w' = w(2)P and h(t) = 1 fort € [}, 1].
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Proof. Multiplying (7.70) by t°~ lEg ox (wtPip)g (%) on both sides, and inte-

grating over [0, 1] we have

2ab \ (3 S.caqr ab
2 (01 pScar 1P — = \ar 7.85
f(a—i—b)/o pio (W":p)g (tb+(1—t)a) (7:83)

1

0'1 5,c,q,r . ab ab
§/0 Epo ( tp’p)f<m+(1—t)b>g<fb+(1—’)“) ;

1
2 51 5,6,q,r p. ab ab
E , dt.
/o ! piove (W p)f<tb+(1t)a)g(tb+(1’)a '

zb+(1 —t)a

that is —%—— = L N then we have
b

ta+(1—1)b
2ab \ (%% [ ab \° N seas ab \* 1\”
’ =z EScar - 7.
f(a—i—b),/b <b—a) <x b> p,c,r( (b a> ( b) ,p> (7.86)
1 5% ([ ab \° N\N°"! ab \* 1
~)dx< - gScar -
(()es )7 (G22) (5) #a (0 (%) (5)
1 1 Sh [ ab \° NN 5. ab \*
1 L E2¢ar
(i) o [ G2 () i (2))
1\* 1 1
((=5) ) () (5) o=
b X X

Since f is harmonically symmetric about “;;7’ , after simplification (7.86) becomes

2ab \ (% N sear 1\ !
2f (a ) /}% ( - E) Epfﬂl'7 (W’ <x— Z) ;p) 8 <;) dx (7.87)

1 o—1 o

a (1 Sear (o1 . 1 1
S/;}f (;x) Epst (W ;*x ip | f T g T dx

atb o—1 0

2ab 1 S.cqr , 1 1 1

-5 Eplox —— - =) dx.

+/l|7 <x b> 0,0,T <W b P | f s g T X

By using Definition 2.2 we get
2ab W.8.c.q,r I
2f(a+b) (8"“’ P AV
1 S 1
< gw ,0.¢,q,r h gw €T h 1. )
- ( 53 pol S TG pad 8O\ 5P

Using Lemma 7.1 in above inequality, we have

2ab w'.8,c,q,r 1 . w.8.c.q.r 1 .
f(aer) [(%;, oS0\ g |+ g%ﬁp,mgOh s (7.88)
' 1 1
< w'.8,c,q,r L. w'.8,c,q,r _
< (g men) o)+ (8 een) (50)

Putting in above x =
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Now multiplying (7.73) by tcflEg:g;fl‘Er(wtp;p)g (M) on both sides, and integrating

over [0, 5] we have

1

10 10,0,q,r 0. ab ab
/o Byl (wt ’p)f<tb+(1—t)a>g<tb+(1—t)a) d (7.89)

jo1 5“,, 0. ab ab
E t dt
Jr/ pioz (v ’p)f(ta+(1—t)b)g(tb+(l—t)a

1

< (f(a)+ f(b ))/ 1 1E5"f’7’(wtp;p)g (ﬁ) dr.

0

and using harmonically symmetry of f with respect to 42 in

By putting x = SoF

above then after simplification we have

w'.8,c,q,r 1 w'.8,c,q,r 1
< %;£+, 0.0 fg0h> <a )+< z?»h pO'ngo ) (b9p) (790)
<

@)+ o) (o eon) (Gin).

2ab PO

tb+(1—1)a
ab

Using Lemma 7.1 in (7.90) we have

w',8,¢,q,r 1 wéic,q7 l
(et geon) (Gar ) + (eg s teon) (5:0) .
(fla)+ (b)) w'.8.c.q,r 1 w'.8,c,q,r 1
<~ S 0,64, =),
ST fup pocf M J\ G2 )T Pt 080 )\ QPP
Inequalities (7.88) and (7.91) provide the required inequality. O

Remark 7.16 In Theorem 7.25,
(i) if p =0, then we get [2, Theorem 3.6].
(ii) if w=p=0and g(x) = 1, then we get Theorem 7.22.

Corollary 7.1 In Theorem 7.25, if we put w = p = 0, then we get the following inequali-
ties via Riemann-Liouville fractional integral operator

1 (@58) [(5on) (2) (5 #4) ()
<(pessen) (3)+ (% 7228) ()
< Vaeeen) Q)+ (5 00) )]

In the next results generalized fractional integral operators by a monotone increasing func-
tion are utilized.
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Theorem 7.26 Let f,g: [a,b] — R, 0 < a < b, Range(g) C [a,b] be such that f is positive
and f € Ly|a,b] and g differentiable and strictly increasing. If f is a harmonically convex
function on |a,b], then for fractional integral operators (2.23) and (2.24) we have:

f(%) <gY’<“;5.’?%>)!pml> (g‘ (g(l—b)) ;p) (7.92)
(( Y?gslqur ) ,p,a,ffo“’> (gl (ﬁ) ;p)

8(a)

=3
) i)
< ) (¢ () )

where y(t) = g(]—,)for allt € [lla’ é] and w' =w (g(gb(;lz(gb()“JG.

Proof. Since f is harmonically convex on [a,b], for x,y € [a,b], the following inequality

holds: 26(050) \ _ fle@)+ £(s()
g)gly) ) + . 7.93
f < )+ <y>) 2 (7:9%)
By taking g(x) = % and g(y) = % in (7.93), we have

28(a)s(b). g(a)s(b) 2(a)g(b)
2 <g<a>+g<b)> =7 (rg<b>+(1t>g(a>> i (rg<a>+(1t>g(b>>' 759

Multiplying (7.94) by t“’lEg:f;,qT’f(w(tp ); p), and integrating over [0, 1] we get

M 16 | 5¢qrw .
o (g(a)+g(b))/ Ep sz, (wiP: p)dt (7.95)

S/l o lESCc)_qTr(er;p)f( gla)g b))g(a))d’

( t
o-tgbear g(a)g(b)
+/ 'Eg % ( wtp,p)f<tg< )+(1_,)g(b))dt.

By setting g(x) = W and g(y) = % in (7.95) and using (2.23),

(2.24), the first inequality of (7.92) can be obtained. On the other hand from harmoni-
cally convexity of f we have

g(a)g(b) g(a)g(b)
! (rg<b>+<1r>g<a>) 7 (rg<a>+<1r>g<b>

Multiplying (7.96) by tG’lEgjg;?;f(w(tp);p) and then integrating over [0, 1] we get

! (0 s . g(a)g(b)
fp o B s (rg<b>+<1—r>g<a>>”” (797

) < f(g(@)) + f(g(b).  (7.96)
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1 o—1196,0,q,r . g(a)g(b)
+/0 t IEP,O'?L'-, (th’p)f(tg(a)+(lt)g(b))dt

1 —_1-8,c,q.r
< (@) +£(2(0)) [ 17 EGE (ur”: .

By setting g(x) = W and g(y) = W in (7.97), and using (2.23),
(2.24), the second inequality of (7.92) can be obtained. O

Remark 7.17
(i) By setting p =0 and g =1, [2, Theorem 3.1] is obtained.
(i) By setting g = I, [64, Theorem 2.1] is obtained.
(iii) By settingw =p =0, g =1, [78, Theorem 4] is obtained.

Corollary 7.2 If we take y(x) = x in Theorem 7.26, then we get the following inequali-

ties.
2 s 1
= YW. ,C\q,T 1 L.
() (8 s0e) ()
< 1 Yw’,S,c,q,r f l + Yw/.éi,c,q,r f l
“2\\* (') oot »'? ) o J\a?

f(%)+f(11§) w'.8,c,q,r 1.
=T 2 <gY(gl<%>)+vPvG’fl> (E’IJ)’

where g is reciprocal function.

The following lemma is useful to give the next result.

Lemma 7.2 Let f,g: [a,b] — R, 0 < a < b, Range(g) C [a,b] be the functions such
that f be positive and f € Ly|a,b] and g be a differentiable and strictly increasing. If

N R S .
f (g(x)) f ( g(',,)ﬂ,('b)g(x))’ then for operators (2.23) and (2.24) we have:

yroear o (1 (L)) 7.98
(g (61 (5) !pwf w) & \z@)? (7.98)
_ Yw.S,c,q,r - o ( —1 (L), )
(g (e (k) wos ‘”) ¢ kw7

8

1 5 _ 1
I Yw. ,C\q,T f o lI/ (g 1 -
2 (( (1) poe ) 2@

(@)
oy ) ) )

g(a)

where y (1) = $forallt €[4, 1.
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Proof. By operators (2.23) and (2.24), we can write

<gY”<”':f’(‘%))+!pmf o w) (gl (ﬁ) ; p) (7.99)
= /gl(;;) (% —8(0)”‘5333?1’,’ (W (ﬁ —g(t))a;p) f (ﬁ) d(s(1))-

Replacing g(z) by L (L — g(x) in equation (7.99) and then using f (%)

a

g(a)
:f( ) have
FORE OIS

ywdedar ° (1 (L)) 7.100
(g () o "’) ¢ \s@)” 7100
_ Yw.ﬁ,c,q,r - o ( -1 (L), )
(g (1)) poe’ ‘”) ¢ )

By adding gY’W‘S’C’q’r . fowy (g*‘ (ﬁ) ;p) on both sides of (7.100), we have
(s () w0 &

1
2( Yoeer o foy <g1 <—) ;p> (7.101)
5 _ 1
= gYW T fowy (g ]<—)§P)
(! (zl)) w0t 8(@)
1
+ Yw.5,c,q,r - foy gfl (_) ;p)
(g (gfl(ﬁ)) 0,0, g(b)
The equations (7.100) and (7.101) give required result. O

Theorem 7.27 Ler f,g,h: [a,b] — R, 0 < a < b, Range(g),Range(h) C [a,b] be such
that f is positive and f € Lyla,b|, g differentiable, strictly increasing and h nonnegative

and integrable. If f is harmonically convex and f (L> =f| ——L——), then for
g(x) M+W7g(x)
fractional integral operators (2.23) and (2.24) we have:
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G (i ondon) (6 ()w) oo
(s o) (¢ (i)

(o o) () )
+ (gw(”':’f’(%),p,a,ff e "') (g] (ﬁ) ;p)

f(gla))+ f(g(b)) w.8,c.q,r o —1 L .
=T ((gY(g%oip,a,/“ o) (< (za) )

o) (2 Ga)e))

where (1) = ﬁforallt € [%,é], fhoy = (fow)(howy)andw :w( (g‘)‘) (())> .

Proof. Multiplying (7.94) by 19~ 'Eg on (wtPsp)h (lﬂbg(“%)a), then integrating over
[0,1] we get

M : 101 §,¢,q,r P g(a)g D)
f(g(a)+g(b)) / Ep'ox (wi”;p)h (tg(b)Jr(lt)g(a))dt (7.103)
h

§/01 o-1gdodr( tp;p)f< (a)gia) (_t) 5 ) < 8(a)g(b)

(1 (
L ot pbcary . p. g(a)s(b) g(a)s(b)
1 B b (rg<b>+<1r> @) e

By setting g(x) tg(b)+(1-1)g(a) ) (7.103) and using (2.23), (2.24), and the condition

gb)
f(ﬁ):' < u)*g(b )
wﬁc N —1 1 .
2f ( B ;) parholy>< <@),p) (7.104)
Ywchr + fl’lO p>
(s ') poot
Yw5cqr - ho < -1 <L>’ >
( (1) poe "’) ¢ aw)?

gla

we have

By using Lemma 7.2 in above inequality, we get first inequality in (7.102). For second

inequality of (7.102), multiplying (7.96) by 1*~'ES &% (wi?; p)h (7). then
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integrating over [0, 1] we get

ooipdear . p. 8(a)g(b) 8(a)g(b)
fre oo (oot i ) (st o) 0109
L ooipdear. p. g(a)g(b) g(a)g(b)
s (o ) (o)

< (@) + 00D [ 17 B8 s (£SO Yo

Setting g(x) = SLLHLAE i (7.105) and using (2.23), (2.24), and the condition f (%) -

1
S — h
f(ﬁjtﬁg(x)) we have
YPrke fhoy (g]( ) ) (7.106)
( oz, (s () (a)
+ gYw.5,c,q,r - fh " ( ( ) )
(gfl(ﬁ)) P.0,T

a w.0,c,q,r ° -1 L .
< (Fg(@) + F(g(8))) ( R R w) (¢ () )

Again using Lemma 7.2 in (7.106), we get the second inequality of (7.102). O

Remark 7.18
(i) By setting p =0, h(x) =1 and g =, [2, Theorem 3.1] is obtained.
(ii) By setting g =1 and h(x) = 1, [64, Theorem 2.1] is obtained.
(iii) By settingw =p =0, h(x) =1 and g =, [78, Theorem 4] is obtained.
(iv) By settingw =p =0, 0 =1 and g =1, [33, Theorem 8] is obtained.
(v) Bysettingw=p=0,0 =1, h(x) =1 and g =1, [95, Theorem 2.4] is obtained.

Theorem 7.28 Ler f,g:[a,b] =R, 0 <a < b, Range(g) C |a,b] be such that f is positive
and f € Lyla,b] and g differentiable and strictly increasing. If f is harmonically convex

on [a,b] and f (g(]—x)) =f (m), then for operators (2.23) and (2.24) we have:

zg(a g(b ) YW.(S,C,L],I‘ 1 (1 (L) ) 7.107
<g<a> T (0) ( (e rctao) poe )& @) P (7100

, 1
o fow (gl (—> ;p)
(Crrme @

<

M| —



118 7 HADAMARD AND FEJER FRACTIONAL INTEGRAL INEQUALITIES

w',8.c,q,r (L),
+{ Y ALY (g ( )’p)
(g (¢! ) wor ) e
f(g(a)) + f(g(b) [ w'dcqr < ! <—1 > >
S Y 10,64, 1 g 7p )
2\ e )

where y(t) = ﬁfort €[4, anaw' zw( g(a)g(b) )6'

g(b)—g(a)

Proof. Multiplying (7.94) by 2t0’1Egj§fo(wtp ;p) then integrating over [0, 1] we have

M ; G 1 5¢qrw .
2f(g(a)+g(b))/ Epoz. (wiip)di (7.108)

1 (0~ 5,c,q,r g(a)g b)
< [T e ) (rg<a>+<1r>g<b>>‘”
)

% o—1p90,c,q,r . g(a)g b
+/0 17 Ey 5w p)f (;g(b)+(1t)g(a))dt'

: tg(b)+(1-1)g _ 1
Setting g(x) = g(a)g(b in (7.108) and using f( ) = f(g(la)+g(lb)g(x)), (2.23)
and (2.24) the first inequality of (7.107) can be obtained.
For second inequality multiplying (7.96) by t”’lEgjg;?;f(wtp ; p) then integrating over

[0,1], we get
1
201 pbieqr g(a)g(b)
1O ESSCY (WP p) f ( (7.109)
b EE e (i r)()
+/§" 'E‘S“”wtp »)f dt
i 1g(a (b)
2 C
< (f(8(@) + (g)) [ 1 ELSH (m: par
Setting g(x) = g(b)+(1-1g(@) 4, (7.109) and using f( ) =fl —+——), 223
8(a)g(b) @ T s )’
and (2.24), the second inequality of (7.107) can be obtained. O
Remark 7.19

(i) By setting p =0 and g =1, [2, Theorem 3.3] is obtained.
(i) By setting g = I, [64, Theorem 2.3] is obtained.
(iii) By settingw =p =0 and g =1, [95, Theorem 4] is obtained.

To prove the next result the following lemma is needed:
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Lemma 7.3 Let f,g: [a,b] — R, 0 < a < b, Range(g) C [a,b] be the functions such
that f be positive and f € Ly[a,b] and g be a differentiable and strictly increasing. If f

is a harmonically convex and f (g(l—x)> =fl ———

=+ —=—g(x
operators (2.23) and (2.24) we have:

wa &)
( yrdcar fouf) <g1 (L) ;p) (7.110)
(%)) PO g(a)
(i onro) (7 (i) )
_%<< W’S,fqg& ;))*,p,a,ffow> <g1 ﬁ);p)
() (o)) = ]

Proof. By using Definition 7.65, we can write

), then for fractional integral

proear g (1 (L : ) 7.111

(g (st s ‘”) ¢ @) o
gil(g(ﬂ)) 1 —156 1 1

- =) ER G (W = () Tip)f ()

A oy Gy O B O s )P (a0

By replacing g(¢) by (L % —g(x) in equation (7.111) and using the condition f ($> =

f ( ) we have
g(a g(b
gYw,ﬁ,c,q,r o fO v <gl (L) ;p) (7.1 12)
(v Set) o o
(" (z1) )
¢ o))

By adding | (Y0 . fou <g71 (L> : p) on both sides of (7.112), we
(s Gss))) o st

I
S fou <g1 (_);p) (7.113)
(g (e D) poe s(a)

<

_ w,0,C,q,r
¢ - a)+g(b) \) fO
( (s (S5) pooe

have
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1
() ()
(g (¢ zip) oo <)
1
H T - fow <g1 <—);p>'
(. “

The equations (7.112) and (7.113) give the required result. O

Theorem 7.29 Ler f,g,h: [a,b] — R, 0 < a < b, Range(g),Range(h) C [a,b] be such
that f is positive and f € Ly[a,b], g differentiable, strictly increasing and h nonnegative

and integrable. If f is harmonically convex and f (L> = f| ————), then for
8(x) m{»mfg(x)
fractional integral operators (2.23) and (2.24) we have

Zg(a)g(b) w.8,c.q.r
f<7 ySea. how (7.114)
g(a)+g(d) P ) o
w . 8,c.q,r
Y ~ hoy < ’p>
(g (s Slssth) poe )
o))
(i) o «te)
( s ))
f

+
<

)

, 1
R B fho w) (gl <—> 'P)
8 a '
_ F(g(@) + S (&) [ rsear ho L
=~ D) 8 (gfl(g(”)i@ 0,0,T )
2g(a)g(b) ’
+ YW’,(S-,C-,CI-," B ho v ( - <—) 717) )
(g (s 28) e )

_ 1 11 _ I HONORN
where y(t) = s fort € (5> 5] fhow = (foy)(hoy)andw = w(g(b)ig(a)) .

+

Proof. Multiplying (7.94) by 19~ lEg on (WP p)h (%) then integrating over

[0, 1], we have

2f <72g(a)g(b) )/l gy é‘ér(wtp;p)h< g s

< [ orr (Gt ) (rgw) o
) ) st

t
(TS AT (b g(a)g(b)
+/ Epd (ip)f (rg<b>+<1r>g<a>

| /\

)
)

oQ
—~

Q

HOQ
=
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By choosing g(x) = % and using the condition f (g(]—x)> =f (W) ,
8

in (7.115) we have

2f(M) (gYW/’éfC’;ng(w)),p,a,rhow> (g] (ﬁ) ;p) (7o

gla)+g(b) (s (et
, ) 1
(o) (2 ()
(g (¢ (52558) o @
, ) 1
) (25
(g (D) e «

Using Lemma 7.3 in above inequality we obtain the first inequality of (7.114).

For second inequality of (7.114), multiplying (7.96) by

(0 1Eg B (wtP; p)h (% then integrating over [0, 1], we have

3 (0 S8,c,q,r g(a)g(b) g(a)g(b)
s (Gt i ) (et ) o

jo-1gbear. . g(a)g(b) g(a)g(b)
+/ Epot (wPip)f (rg<a>+<1r>g<b>)h(rg<b>+<1r>g<a>)d’

< (F(8(@) + (g®)) [ 17 BN (ur”: ) (tg@)i(a()lg (br)>g<a>> &

Setting g(x) = L8 in (7.117) and using (2.23), (2.24) and condition f (ﬁ) =

f( _—t ) we have
W ) 8 8(x)
w Squ —1 1
fhoy | (g (== |:p (7.118)
g1 gla)+ ) P.O.T g(a)
+

2g(a
Y.w5¢c/r ho (1(L), )
( (s Sma) Gvff W) * @)
W/ c.q,r - 1
< (F(g(a) + £(5(6))) <gY(g’5{(f<L>+g<w.>)* b ‘”) (g | (m) ;”) |
2asb) ) POF

Again using Lemma 7.3 in (7.118), the second inequality of (7.114) can be obtained. O

Remark 7.20
(i) By setting p =0 and g =1, [2, Theorem 3.6] is obtained.

(i) By setting g =1, [64, Theorem 2.6] is obtained.
(iii) By settingw =p =0, g=1and o = 1, [33, Theorem 8], is obtained.
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Corollary 7.3 When we set w = p = 0 and g = I in Theorem 7.29, then we get the fol-
lowing inequalities via Riemann-Liouville fractional integrals:

f(azibb) (( z:f*ho‘”> (1) ! ( z::’”"’) (11)))
: ( g:*”‘“”) (1)+( G ﬂ”‘”) (1)
<HE ((ggnew) (3) + (0ev) ()

7.6 Hadamard and Fejér-Hadamard Inequalities
for Harmonically («,# —m)-convex Functions

In this whole section the following notations are frequently used:
+ 8.c.q,r 5,c,q,r
(3‘1) (w, f)= ( e Tf) (bsp), ( ) (w, f)= ( X0l Tf) (a:p).

Theorem 7.30 Ler f,g:[a,b] = R, 0 <a < b, Range(g) C |a,b] be such that f is positive
and f € Ly[a,b] and g differentiable and strictly increasing. If f is harmonically (ct,h —m)-
convex on [a,b], then for operators (2.23) and (2.24) we have:

2e5(@s®) 5 (55) ) (o
f<g(a)+mg(b)> (gg1< 1 >,T (mPw', 1) (7.119)
)

(72,58 oo < (st
{n(n (5 ) 7 (B580) omn (1= 52 ) 7te0))) [ 1o BB ot o

(e ) a0+ (1= 52 ) rteta ) [ oo B e i 9}

0

o
where w =w (7’11?@)()“2;[’()‘1)) and y(t) = ﬁfor allt € [117 %]

Proof.  Since f is harmonically (o,h — m)-convex, for all x,y € [a,b], the following
inequality holds:

(B0 Y < (g ) rteta e (1- 32 ) ). 7120)



7.6 INEQUALITIES FOR HARMONICALLY (0, h —m)-CONVEX FUNCTIONS 123

By setting g(x) = tg(;i(?fi@(# and g(y) = m in (7.120), we have
2m?e(a)e(b 1 me(a)e(b
f< g(a)g( )) Sh(z—a)-f g(a)g(b) - (7.121)
g(a) +mg(b) tg(b) + (1 —1)84

1 mg(a)g(b) )
+mh|1—— .
(1-5) 1 (e En =
Multiplying (7.121) by tG’lEg:g?T’,r(w(tp);p), and integrating over [0, 1] we get

M ! Pl 1-0,¢,9,r .
! (g(a)+Mg(b)>/ Eplo'z, (WP p)dt (7.122)

1 L. 5,c,q,r Cl b
=h (2a>/ 17 Ep 6% (th;p)f< - 5@ )
tg(b)+ (1 —1)%

i (1 - 2L) [ o g e (rg< Eoe <b>) "

(a)
By setting g(x) = % and g(y) = £LLe) iy (7.122) and using (2.23) and

(2.24), the first inequality of (7.119) can be obtained. On the other hand from harmonically
(or,h — m)-convexity of f we have

o ms(@)g(b) mh(1- L mg(a)g(b)
h(za)f<tg(b)+(l_t)g(a>>+ h(l 5@ )f<tg(a)+m(lt)g(b)) (7.123)

” )

<5z ) (0= rtete) + meoor (£9))
(1 3 ) 001 =) (e(a) + e e(4)
() (s

(1 (3 ) steton o (3 —zia)ﬂg(a)))h(l 1),

Multiplying (7.123) by t"*lng,’?T”r(w(tp);p) and then integrating over [0, 1] we get

1 1 car mg(a)g(b)
" 10 ES S (i g d 7.124
(2(1)/ P, (Wt p)f ([g(b)+(1[)gr('?)> t ( )
“+mh (1 !

) B o (e )
<m(h(21a)f(g(“))+ h( i)f(g(b))) [ B e s
1

a
+(h 2a)f ) +mh (12ia>f(g(a))> /016 VESSA (wiP; p)h(t)h(1 — %) dr.
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e
By setting g(x) = % and g(y) = £lLLe0) iy (7.124) and using (2.23) and

(2.24), the second inequality of (7.119) can be obtained. O

Remark 7.21
(i) By setting p=0,x =m =1, h(t) =t and g =1, [2, Theorem 3.1] is obtained
(ii) By setting o =m =1, h(t) =t and g = I, [64, Theorem 2.1] is obtained.
(iii) By settingw=p=0,a=m =1, h(t) =t and g =1, [78, Theorem 4] is obtained.

Theorem 7.31 Let f,g,h: [a,b] — R, 0 < a < b, Range(g),Range(h) C [a,b] be such that
f is positive and f € Ly[a,b], g differentiable, strictly increasing and h nonnegative and

integrable. If f is harmonically (ot,h — m)-convex and f (ﬁ) =f (m>
then for operators (2.23) and (2.24) we have:

g(a) * mg(b)
2m2g(a)g(b) \ [ &' (i)
/ (g(a)—i—mg(b)) (ng 1

,T
m2g(b) )’

) (mPw' howy) (7.125)

< (h (2%) +mh (1 - 2%)) yg;l (mg'im ))T (mPwW, (Row)(fow))
5 )

< (%)T {m (h (2%) f (2—? +mh (1 - 2%) f(g(b)))

X/()lfalEgicC;,qff(W(tp);p)f_t( mg(dzgw) <a>>h(f“)dt

+ (h (%) f(g(b))+mh <1 - 2%) f(g(a)))

]G— 8,¢,q,r NT mg(a)g(b) o
x/oz LESCAT ((1P): p) (tg(b)—l—(l—t)g(“))h(l_t )dt},

(o2
where w' = w (7,11?@,()“2;[)()‘1)) ,u(t) = ﬁfor allt € [1,1].

Proof. Multiplying (7.121) by 1~ <%> ESS% (w(1P); p), and then inte-

grating over [0, 1] we get

M 1 o—110,0,q,r R mg(a)g(b)
f (g<a)+mg(b)>/o 19 Eplo. (wiPs p)h (tg(b)Jr(lt)g(a))dt (7.126)

LN [Nomtgbeari 0. vn mg(a)g(b) mg(a)g(b)
Sh<20‘>/o’ fos )h<rg<b>+(1t>M>f rg<b>+(1t>@>dt
8
1

m m

m N [l By (il N mg(a)g(b) mg(a)g(b)
+ h(l 2a>/0t Ep,a,r,( tp’p)h<tg(b)+(lt)% f (tg(a)+m( —t)g(b)) dt.
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_ps@
By choosing g(x) = 1g(b)+(1-1) 5 that is —_"8(@)s(b)

_ 1 H
ng(a5(0) @ -0g0) — LT T g 1 (7-126) and
ing (2.23) and (2.24), and the conditi (L): 1), the first in-
using (2.23) and ( ), and the condition f ) f(ﬁermg(x) e first in

equality of (7.125) can be obtained.
For the second inequality of (7.125), multiplying (7.123) by

taflEg:g?T’,r(wtp;p)E <%) , then integrating over [0, 1] we get
tg(b)+-(1—=1)=~

LN [N omtgdear o 0n mg(a)g(b) mg(a)g(b)
h(2°‘>-/o T Eale sk <tg(b)+(1t)w>f (tg(b)Jr(lt)g(a))dt

m m

(1= 0 ) [ e o <tg<;i(2g(€;%>f (i mi o)
) (S o (1= ) o0 [ 35 i)
i (tg(b’;%fzéj’gm ) w0+ (1 (3 ) 1160+ (1 37 et

! o—1-8,¢,q,r . o mg(a)g(b) L
X/ot Eg G (wiP; p)h(t*)h (tg(b)—i—(l—t)M)h(l t*)dt.

m

By setting g(x) = % in (7.127) and using (2.23) and (2.24), and the condition

f ($> =f (ﬁ) , the second inequality of (7.125) can be obtained. O

T
g(a) " mg(b)

Remark 7.22

(i) By setting p=0, « =m =1, h(t) =t h(x) =1 and g = I, [2, Theorem 3.1] is
obtained.

(ii) By setting g =1, a =m =1, h(t) =t and h(x) = 1, [64, Theorem 2.1] is obtained.

(iii) By settingw=p=0,h(x) =1, « =m=1, h(t) =t and g = I, [78, Theorem 4] is
obtained.

(iv) By settingw=p=0,0=1,a =m=1, h(t) =t and g = I, [33, Theorem 8] is
obtained.

(v) Bysettingw=p=0,0=1,h(x) =1, =m=1,h(t) =t and g =1, [95, Theorem
2.4] is obtained.
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Theorem 7.32 Ler f,g:[a,b] = R, 0 <a < b, Range(g) C |a,b] be such that f is positive
and f € Ly[a,b] and g differentiable and strictly increasing. If f is harmonically (ct,h —m)-
convex on [a,b), then for operators (2.23) and (2.24) we have:

2o () ) e, o
f(g(a)+mg(b) g71<+(b)>77 <( m) w, ) ( . )

g(a)+mg(b)

<n(3) (3? 5(5”> ) (2m)Wfow)
)

m2g(b)
—1( gla)+mg(b) +
Z8 (2mg<a>g<b>)
& 4(#) T
& \z@ )

(
ia) f (i—‘?) +mh <1 - 2%) f(g(b)))

<[ (1= (5)" b w = (G )

where y(t) = g() andt € [+, 1].

2°W, fow)

; — _ me(a)g(h) — mg(a)g(b) ;
Proof. By setting g(x) = PERTIC) and g(y) = T@+m(1-1)g) D (7.120), we have
; <2m2g(a)g(b)) - <L) ([ msla)g(d) (7.129)
T \gla)+meg(b)) — \2% )7\ Lg(b) 4 (1-1L)E@
1 mg(a)g(b)
+mh (1 - —) f ( .
20 )/ \ Tg(a) + m(1 - D)g(®)

Multiplying (7.129) by t“ilEgjf;?T’,r(wtp;p) and then integrating over [0, 1], we get

2m2e(a)e(b 1 car
! <%>/ (7B G ) (7.130)
! l 3, mg(a)g(b
= <_) [ e fqur(W’p;P)f< dr
20{ JO %g( (1 _% m
1 ! 50 ( g b)
+mh (1——)/ 10~ 1E 45" wtp,pf( g
20 0 ‘L'( ) zg() m(l—%) (b)
2 s m
By setting g(x) = % and g(y) = % in (7.130) and using (2.23)

and (2.24), first inequality of (7.128) can be obtained. On the other hand from harmonically
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(o, h — m)-convexity of f we have

() () om (o) i) oo

Multiplying (7.131) by tG’lEg:g?T’,r(wtp;p) and integrating over [0, 1], we get

LN [olisear, o mg(a)g(b)
h (2—a> /Ot Eph (wiPsp)f <%g(b) o %)M> dt (7.132)
7i 10-7] 5,c,q,r 0. < mg(a)g b) )
+mh (1 7 ) /Ot Ep,c,r, (Wl‘ ,p)f %g(a)—i—m(l —%)g(b) dt

(a

L _1y8@ Lola)m(1—L . .
By setting g(x) = % and g(y) = W in (7.132) and using (2.23)

and (2.24), second inequality of (7.128) can be obtained. O

Remark 7.23
(i) By setting p=0,a =m =1, h(t) =t and g = I, [2, Theorem 3.3] is obtained.
(ii) By setting o =m =1, h(t) =t and g = I, [64, Theorem 2.3] is obtained.

Theorem 7.33 Ler f,g.h: [a,b] — R, 0 < a < mb, Range(g),Range(h) C [a,b] be such

that f is positive and f € Lyla,b|, g differentiable, strictly increasing and h nonnegative
. . . 1 _ 1

and integrable. If f is harmonically (a,h-m)-convex and f (m> =f ( L+;mg(x))’

then for operators (2.23) and (2.24) we have:

g(a) " mg(b)
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7 ( 2m2g(a)g(b)) (ggl (5,(,;‘2);:2(5 > )

ow ho 7.133
s@+ms)) \ 7o (L), wihe) 71

N ;f ((2m)
(b)
< (#(56)+m (1-50)) (9(((—)(32))) ) (2m)W, (Fow)(fow))
m2g(b) )

( (
></O1 TENGH (w (tp);p)ﬁ< mg(a)g(b) >h<(%>a> di

+(h(zia)ﬂgwmmh(l—z%)ﬂg(a»

Proof.  Multiplying (7.129) by t°~'i (%) Eg:g’fﬁf(wtp;p) and integrating
28 2/ m
over [0,1] we get

B R = e L

2

1
/ 10 1E5 c,qr, (wt? p)R mg(a)g(b) g(a)g(b) dt+m
b o)+ (1- 2 -y

BEAYE (01 56qrw mg(a)g mg(a)g(b)
h<1 2)/ oo tp’p)h<gg<b>+(1_ >g5n_a>>f<ég< >+m<13>g<b>)‘”'

By choosing g(x) = % in (7.134) and using (2.23) and (2.24), and the condi-
78 “2)"m

. 1 _ 1 . . .
tion f (@) =f (7[{(,ll)+"lg,(mmg(x)),then first inequality of (7.133) can be obtained.
On the other hand by harmonically (o,h-m)-convexity of f, multiplying (7.131) by
~17 " S.c.q,r . : :
t°'h <%) Ep g% (wiP; p) and integrating over [0, 1], we get
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LY [ro-1gdear o i —_m8(@)s(b) mg(a)s(b)
h(za)./o’ fre ’p)h<%g<b>+<1—%>M>f<%g<b>+<1—%>@>dt

m m

(7.135)

1 -1 _ b
+mh (1 - 2_a) /raflES;g?;,’(wtp; )h (t ms(a)s( ,) (a)
Jo 38(0)+(1—3)%7

m

<t (grarentg) < (4 () 1 (5 + o (1 32) o)
X /O lt"’]Eg,’?f’r’,r (wiPsp)h (
+ (5 ) s (1= 52 ) stetan)

o ()

m

1
x /O 17 ESSL (P p) R

By choosing g(x) = - (Z;i(z?ﬂf’; _ in (7.135) and using (2.23) and (2.24), and the condi-
28 —2)7m

i 0 R R S : : .

tion f (g(x)> =f ( g(la ) +mgl(b) -~ (X)> second inequality of (7.133) can be obtained. O

Remark 7.24
(i) By setting p=0,x =m =1, h(t) =t and g =1, [2, Theorem 3.6] is obtained.
(ii) By setting oo =m =1, h(t) =t and g = I, [64, Theorem 2.6] is obtained.

7.6.1 Results for Harmonically (z — m)-convex Functions

By setting o = 1 in Theorem 7.30-Theorem 7.33, the results for harmonically (h — m)-
convex functions are obtained as follows:

Theorem 7.34 Under the assumptions of Theorem 7.30, the following inequality holds
for harmonically (h — m)-convex functions:

; (M) (jg%m;@)) T) (mPw', 1) (7.136)

g(a)+mg(b) g*(%

mg(b) )’
(3) Cortntr) (o (5) o)

/Olr"”ES:E;?J (w(t?):p)h(r)dr + (f(8(b)) +mf(g())) /0 1r°”ES:5;,"eT (w(t”); p)h(1 — t)dr} :

IN
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Theorem 7.35 Under the assumptions of Theorem 7.31, the following inequality holds

for harmonically (h — m)-convex functions:

2m’g(a)g(b) ) g l(mg(a ) -
_ F ho
f( ()+mgb (‘/gl mg<h> miw o w)

(7.137)

2
1Y (mgb) (@) f (L (g
(3) ( 10-19) {1 (22) i)
> 10'71 5,c,q,rw T mg(a)g(b)
/Ot EP,G,T,( (tp),p)h (tg(b)—i—(l—t)gr(n—@) (t)dt
10'71 5.c,q,r CNT mg(a)g(b)
+(1(g(0) +mi(e(a)) [ 17 ERS (wle? i) <,g ERNTET ) Al —t)dr}.

Theorem 7.36 Under the assumptions of Theorem 7.32, the following inequality holds

for harmonically (h — m)-convex functions:

“1 [ glaytme®) |
f<M) (g (22) ) (@mew ) <a(3) (7.138)

IN

@-+me®)) \ 7 (1)

f,if’ *z"fi’;i) ()’
) (@m)ew fow)+m! 2 (F L) 20w, foy)
. o (at)®
<h

g(b

(2> (Zmz o) (7 () motse) o e o ()

(@s(0)
) +mse(@) [ 17 B i) pn (1-5) d’}

Theorem 7.37 Under the assumptions of Theorem 7.33, the following inequality holds

for harmonically (h — m)-convex functions:

—1( glaytmev) )
m2g(b)
g(a+mg<h
Sh(;)(ler)( o ”g”) (Row)(fow))

IN

() (%){ < <g—>+ f<<>>>
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'o-tpdear .- mg(a)g(b) !
| e B <rﬂ>,p>h(%g(b)+ 1) %>h(i)dt+(f(g(b))+mf(g(a)))

/01 to'ilEg:g-’?E:‘(W(lp);p)]’_L ( t mg(a)g(bt) = > h (1 - %) dl} -

58(0)+(1—5)%5

7.6.2 Results for Harmonically (o, m)-convex Functions

By setting i(¢) = ¢ in Theorem 7.30-Theorem 7.33, the results for harmonically (o-m)-
convex functions are obtained as follows:

Theorem 7.38 Under the assumptions of Theorem 7.30, the following inequality holds
for harmonically (o, m)-convex functions:

f<g(a)+mg(b)) yg.<m2;(b)>ﬂ (mw', 1) (7.140)

< (5) {(ﬁggfé'"*f))) ) (P o) £ (20 1) (ﬁé;> ) .o u/)}
< (5) (ot f,, (f(ﬁ—i’)+m(2“—1>f<g<b>>)

x( g (mw ) (mPw', 1)+ (f(g(b)) +m (2% —1) f(g(a)))

g ! 2

3

1

((“”“< >) R NPT

Theorem 7.39 Under the assumptions of Theorem 7.31, the following inequality holds
for harmonically (o, m)-convex functions:

f(M) ﬁgl("’g](“or) (mPw hoy) < (2%) (14+m)  (7.141)

a)+mg(b —1 1
sl@)+mgb)) \ " ().

(ﬁ‘é(_))>) i Fowrow) < (57 ) (ZA_Ha))
7(59) me - nteen) [ B )

0

E( mg(a)g(b) )d,+(f(g(b>>+m<za—1>f<g<a>>>

! o— o+a— C.q,r CNT mg(a)g(b)
x./o (11—t 1)Eg7c,qf7 (w(tP);p)h (tg(b)Jr(lt)M)dt}.

m
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Theorem 7.40 Under the assumptions of Theorem 7.32, the following inequality holds
for harmonically (o, m)-convex functions:

f<M) (g(>) v < () .

@ s |7 ()

f,ffl +m)g<(’;>)) o (sme)
‘ (@m)°W foy)+m' 2T .F (Zg"gS“)g“’) (27", foy)
T 8 2@ T

g(b
S %) (Zmz o) (7 () +mee -0

) ((2m)°w', 1) + (f(8(b)) +m (2% = 1) f(g(a)))

o ! < g(t;)tm)g(f)) - 1 ! ( g(t&)tm)fe((b)) > -
2m*g(a)g(b 2m*g(a)g(b
A EaEE ((2m)cw/,1)—(2—a) Fo (2m)°w’, )] b
8 <m>:r 8 <m>,f+0{

Theorem 7.41 Under the assumptions of Theorem 7.33, the following inequality holds
for harmonically (o, m)-convex functions:

X
7N
o)
Q|"
~~_
/
. Q*m
- L
TN
[
N
— 9|
=
\_/%
Qa =
? =
Q

|
2
&

2ot N C) R P
AN 2 2 Ro 7.143
f(g(a)+mg(b) gq(mz;(b))J ((2m)°w', o yr) (7.143)
ot () .
< <2i> (1+m) (3} 1< S ) ) (2m)W, (o y)(fo))
()

<(3) Grtaty) {m(r(52) sme-nsaon)

1 _ mg(a ¢
e “p);”)h(%@)i(ig—(?)gﬁn—“))@ !
+(f(gb))+m(2* —1) f(g(a)))

X/o 17 Egt (w (f”);p)}_‘(%g(b?i(?zli))gm)) <1 - (%)a) dt}'

m




Chapter 8

Error Bounds of Hadamard
and Fejér-Hadamard
Inequalities and Bounds of
Fractional Integral Operators
Associated with
Mittag-Leffler Function

In this chapter fractional integral inequalities are given which provide bounds of various
kinds of fractional integral operators containing extended Mittag-Leffler functions. Also
estimations of Hadamard and Fejér-Hadamard inequalities are given for different kinds of
convex functions.

This chapter is based on our results from [35, 36, 55, 57, 54, 70, 101, 125, 132, 148,
150].

133
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8.1 Error Bounds Associated with Fractional
Integral Inequalities for Convex Functions

The following lemma is needed to prove the results of this section.

Lemma 8.1 Ler f : [a,b] — R be a differentiable function such that f' € Li[a,b] with
a<b. Alsolet g [a,b] — R be continuous on [a,b), then the following identity for extended
generalized fractional integral operators holds

([ s wsripias) Ir(@ + o) .
o1
o [ ([ B ipias) B8 i)
o1
o ([ swmssr ripas) B 0”0
o b/ b o
*/ (/g ”q’ wsp,p)ds> f'(t)dtf/ ( g(s)Eg:g;?;"(wsp;p)ds) f(t)dt.
Proof. On integrating by parts we have

/b (/t(s’(S)EES S"i”(ws";p)dS> Gf’(f)dt (8.2)

o o—1
£9ea . g0 .
(/ g(s)Ep sk wsp,p)d5> / (/g Epgh” wsp,p)d5>
S8.c,q,
g)Ep g% (wiP i p)f(t)dt,

and

b b o
/ ( / g(s)Eﬁé%”(wsp;p)ds) £ (¢)dr (8.3)

(e} o—1
(/ g()ESS"( ws";p)d5> / (/ g()ETSY( wsp;p)d5>
8.,c,q,
g EyGH (Wi p)f(t)d.

Subtracting (8.3) from (8.2) we get (8.1) which is required identity. O

In [15] Andri¢ et al. proved the absolute convergence of the function Eg ;%C(t, p). If

we set -
= 215

then |E§’;’%’C(t;p)| < M. We use this and the the identity (8.1) to prove the next results.

ﬁp p+nk c—p)(c)umt"
—p)L(on+7)(8)nr

)
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Theorem 8.1 Let w e R, r,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f i la,b] — R be a differentiable function such that f' € Ly|a,b] with a < b. Also let
g : |a,b] — R be a continuous function on [a,b). If |f'| is convex function on [a,b), then the
following inequality for extended generalized fractional integral operators holds

’ ( / bg(s)Esz;’fQ’(wsp; p)ds) ’ [f(a)+ (b)) 8.4)
o—1

_o-/ab (/alg(S)Eg,’f;’?{r(wsP;p)ds> g(t)ngg?r’r(Wlp;p)f(t)dt

_ (b—a)gll2m

orn @I )]

for g <r+R(p) and || g [l== sup |g(r)].

t€la,b]

Proof. From Lemma 8.1, we have
([ ctrmisontspias) @ + 0o 5
o [/ ([[smtsnsipias)” sz s

o [ ([ etz wsp;mds)a1g<r>E§:3%’<wrp;p>f<r>dr

v 8,79
< g(s )Epcr(ws ;p)ds
a a

Using absolute convergence of Mittag-Leffler function and || g [|= sup |g(¢)|, we have
t€la,b]

o
5, ,
Ep,’ g‘f(ws ;p)ds| |f(¢)|dt

([ stz weipias) i+ 1) 56

b " o—1
o [ ([ swies gwwsﬂ,p)ds) SOESEY (w:p) f(e)dr
a

o—1
d,c,q,r
o [ ([ 0B wriphas) B (i)

<lelzm® | [ -l @lar+ [ 60717 0)ar].

As | f'] is convex function, for € [a,b] we have

a

If(0)] < If( )+ TaIf’(b)L (8.7)
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Using (8.7) in (8.6), we have
b (e}
([ ewsbssipas) 1@+ se) 8)
5c,q, 0. ot S.cqr (. .p
/ (/g pcr WS 7P)d5) g(t)Epcr (Wt ,P)f( )d

p—1
~o [ ([ B8 uipas ) eSS s

a

< lelzm | | b(r—a)“ (L @i+ =i o) ) ar

b b—t t—a
b—1)° | —|f ——|f(b)| ) dt| .
#0607 (=t @I+ =20
After simple calculation of the above inequality, (8.4) can be obtained. O

Remark 8.1 In Theorem 8.1.
(i) If p =0, then we get [4, Theorem 3.2].
(i) If w = p =0, then we get [137, Theorem 6].
(iii) If g(s) = 1 along with w = p = 0, then we get [137, Corollary 2].

Corollary 8.1 In Theorem 8.1, for w =0, 0 = u and g(s) = 1 we have the following
inequality for Riemann-Liouville fractional integral operator

fla)+f() T(u+1)
2 2(b—a)P

R FB) I fl@)] < 22

< 2(u+1)“f< a)|+1f ()]

u>0.

Theorem 8.2 Let we R, r,p,0,7>0,¢c>0>0withp>0and 0< q<r+p. Let
f :la,b] — R be a differentiable function such that ' € Li[a,b] with a < b. Also let
g: la,b] — R be a continuous function on |a,b]. If | f'|1 is convex function on [a,b), then
for g > 0 the following inequality for extended generalized fractional integral operators
holds

‘ ( / bg(s)E;?;z;f#’(wsp; p)ds) ’ [f (@) + f(b)] (8.9)

o—1

_G./ab (/atg(s)ES,’f;f’T’r(wsP;p)ds) g(ESSE (P p) £ (¢)dt

26 —a)7" gz [If/( )|q+|f/(b)|qr
(6p+1) 2
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forq <+ R(p) and |[g == sup [&0) and L +1=1
tela,b

Proof. The proof is on the same lines as the proof of Theorem 8.1. O

Remark 8.2 In Theorem 8.2.
(i) If p =0, then we get [4, Theorem 3.5].
(i) If w= p =0, then we get [137, Theorem 7].
(i) fw=p=0,0 =1, then we get [137, Corollary 3].
(iv) If g(s) = 1 and w = p = 0, then we get [42, Theorem 2.3].

Corollary 8.2 In Theorem 8.2, if we take w = 0 and g(s) = 1, then we have the following
inequality of Riemann-Liouville integral for fractional integral operator

fla)+ () Tutl) " oel b—a [lf@I+|f(B)]e
5 26 —ayp L O) + 95 fla)]| < i)} [ 5

u>0.

Lemma 8.2 Ler f,g: [a,b] — R, 0 < a < b be the functions such that f be positive and
f € Li[a,b] and g be a differentiable and strictly increasing. If the function g is symmetric

about “erb, then we have

(chp;’rékécw,wf og) (bip) = (g oot og) (a:p) (8.10)
- ; [( Ygrfkf;wﬁfog) ( Yg'f:kgwb ng) (aép)} .

Proof.  Since g is symmetric about #, by Definition 2.4 of extended generalized frac-
tional integral operator, we have

prkc

b ke
(Y205 o o) (i) = /a (8(b) —8(0)" ™ EG (w(g(b) = 8(1)7:p)f(8(0)d(8(1)-
@.11)

If we replace t by a+ b —t in (8.11), then we get

b
(V2785 T 08) (i) = [ (8(0) = g(a))™" ES7 v (5(0) = 8(@)7: ) (50 ().
This implies
(7525 o8) i) = (7075, F08) (@) 8.12)
By adding equations (8.11) and (8.12), we get (8.10). O
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Lemma 8.3 Ler f,g,h: [a,b] — R, 0 < a < b be the functions such that f be positive and
fog € Li[a,b], where g be a differentiable and strictly increasing and h be continuous.
For f'og € Ly|a,b], the following equality for extended generalized fractional integral
operators (2.23) and (2.24) holds:

<f (g(a)) +f (g(b))> { (gYP,r,k,c

: O ) ip)+ (YO ) @p)] 813
(s a1 08)) Bip) + (X0, (F08)) (a:p)]
=[] [ 60 - 00 B 0ote(6) - (0D 505)
= )~ sl B Oolels) 605N 606D £ a0

Proof. To prove this lemma, we take its right hand side. On integrating by parts and after
simplification, we have

[ | )67 B Oolet)— )% )0
b —1 -p.1rkc
— 168D ([ (616) 61" EL 5 (a0~ ¢(5) T pAS)e05))
- /ab ((e(B) = g™ EL T (w(g(b) — 8(6))%:p) ) h() £ (8(1))d(g(1)
= 1(8(0)) (X075 1) (Bsp) = (X545 h(Fog)) (Bip).
By using Lemma 8.2, we have

[ | )67 B olelb)— 615666 | £ e0)el0) 514

= LD [(xnre o) i) (X075, 1) (@) = (X525 T 00)) (i),

Similarly

L[ [t~ stan B2 otets) - st smsiatetsn)| £ ehateo)

(8.15)

f(g(a)) 0.1k, ) 0.7k, . 0,1k, .
= 2 |:(ng’17§?‘,\;7[1+ h) (b’ p)+ (gY(jJ’(;w’b* h) (a’ p)i| - (gYo"'r’SC"Mb*h(fo g)) (a’ p)
Summing (8.14) and (8.15), we get (8.13). O

Theorem 8.3 Let w e R, r,p,0,7>0,¢c >0 >0withp>0and 0 < q<r+p. Let
fr8,h:la,b] = R, 0 < a< b be the functions such that  be positive and (f og)' € Ly[a,b),
where g be a differentiable and strictly increasing and h be continuous and symmetric
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about #. Also let fog be symmetric about “zib and if |(fog)'| is convex. Then for
k <r+R(o), the following inequality holds:

’<f(g(a)) +f(g(b))> (0 ) i)+ (25, ) ()]

2 0,7,0,wat 0,7,0,w,b™
ik, . ks .
- KgY";,T,afw,a+ (fo g)h> (bip) + (gYﬁ,T,afw,bf (fo g)h> (a,p)} '

—o(a))*!
< L “wM%bll)g( P (1-®)[[f (g(@) + f'(g®)I],

where || I ||= sup |h(t)| and

t€la,b]

Proof. By using Lemma 8.3, we have

’ (f(g(a)) +f(g(b))) [(gYp,r,k,c h) (bip)+ (gYp,r-,k,c ,h) (a;p)} (8.16)

2 0,7,0,wat 0,7,0,w,b

(X0 (Fo IR (i) + (X275 (For)h) (@ip)] |

= /ab { / (g(b) — 8(s))" " ELTS (w(g(b) — 8(5))%5 p)h(s)d (g(s))

b
— [ (6t~ gl EL T st g(a))“;p>h<s>d<g<s>>] £ (g)ld(g(0)).
Using the convexity of |f’(g)| on [a,b], we have
() < S04 gy 4 SOED g e fan) @17

g(b) —g(a) g(b) —g(a)

The symmetry of & implies h(t) = h(a+b —1), h(s) = h(a+ b —s) and replacing ¢ by
a+b—t,sby a+b—sin second integral, we get
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[ (6) — (s EL T 0(a(0) — 8(5)%: pI(s)ag(5)

[ 66) ~ (@)™ B (w(a(s) — @) pIACS)a8(5)

= | [ (68~ (6T B (w(e(5) ~ £(5)%:p)(5)d(5(5))

_/amil(g(b) —g(9)) EY S (w(g(b) — g(5))%: p)h(s)d(g(s))

a+b—t L nS.car
/, (8(b) —g(s))" Epa (w(g(b) —g(5))%:p)h(s)d(g(s))

T (8(b) — g(s)) T ED 6% (w(g(b) — 8(5)) % p)h(s)[d(g(5)), 1 € [a, 5]

IN

S| (8(0) = 8(5)) ™ Eg 64" (w(g(b) — g(s))%: p)(s)|d (g(s)), 1 € [452,B].
(8.18)

By (8.16), (8.17), (8.18) and absolute convergence of Mittag-Leffler function, we have

’(f(g(a));rf(g(b))> [( Y‘;’Tk5cwa+h) (b:p) + ( ke h) (a;p)} (8.19)

[( Y’;rfkacwa+ (fog) ) i)+ (Y”;’Tkgcwb (fog)h) (a;p)H

< / ( /"*b (g(b) — g(s))ED: %’(w(g(b)—g<s>>0;p>h<s>|d<g<s>>)

8(b) —8(t) gt)—gla),
< (E0=E |+g(b), i) ) )
b 1
w0 ([ a1 oo B3 (nlo(6) - o) spts ate(s)

£0)=80) o E) =gl
< (E=E |+g(b)_g(a)|f(g(b))|>d(g(t))~

< % [ [ (6= 50))" 610 ~ (@) (610~ ()| (5(a)) D510

+ /aT ((g(b) —g(1))" — (g(t) — g(a))"((r) — gla)|f (g(b))])d(g(r))
+/;((g(t) —g(a))"— (g(b) — g(1))"(g(b) — (1)) | f (¢(a)))d(g())

b

+ /.., (g(t) = 2(a)" = (g(b) — (1)) " (2(t) — g(a))| £ (3(B)) )l (g (1)) | -
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After solving the terms of above inequality, we have the following values

and

(s(442) —g(a)™" a+b

T i T+1 ( )

L (8(0) —s(@)™  (s(*5) - )”2 (s —g() ™
G B S (%) T2

Using the above calculations of integrals in (8.19), we get the required inequality.

Remark 8.3
(i) In Theorem 8.3 if we put g = I, we get [33, Theorem 2.3],
(ii) In Theorem 8.3 if we put p =0 and g = I, we get [1, Theorem 2.3].

(iii) In Theorem 8.3 if we putw = p =0 and g = I, we get [94, Theorem 2.36].

141

O

Theorem 8.4 Let we R, r,p,0,7>0,¢c>0>0withp>0and 0 < q<r+p. Let
f,8.h:a,b] = R, 0 < a< b be the functions such that f be positive and (fog)' € Li[a,b],
where g be a differentiable and strictly increasing and h be continuous and symmetric

+b

about “32. Also let f o g be symmetric about # and if |(fog)'|9, g > 1 is convex on

[@,b]. Then for k < r+R(0), the following inequality holds:

’(f(g(a));f(g(b))> (045, ) (i) + ( YOk o) (@p)]

- {(ng;ﬁﬁ%c’w,aJr (f o g)h) (b§ p)+ ( Yl; Z-k(scw b ) } '

og)h
<20l M) @)™ 1y iy - ( )l"+|f((b))|")‘lf’

- (7 +1)

b ah T+1 by o T+1
where || h Hw:zeSEB;} |h(2)], ¥ = (%) + (%) and
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1 1
(a5 -g@\ T [ eb)-s(22) L (s ((s)-s(3t) o
g(b)—gla g(b)—g(a) g(b)—g(a g(b)—g(a) :

Proof. Using Lemma 8.3, Holder inequality, (8.18) and convexity of | f/(g)|? respectively,
we get

2 o‘,‘r,ﬁ,w,a*h) (b;p) + (gY’;’f;f‘gfw,,,fh) (a; p)} (8.21)

(X0 e (o)) (Bip) + (X075, (Fog)h) (@p)]|
|

Since |f”(g)|? is convex on [a, b], we have

8(b) —g(t) | g(t) —gla)
b sl COI el 322

Using || 2 ||«= sup |A(z)|, and absolute convergence of Mittag-Leffler function, inequality

t€la,b]
(8.21) becomes

’f(g(a)) IO [ vocke 1) i)+ (10755, ) )]

2 o0,7,0,wat 0,7,0,w,b

(X0 Fo@h) (ip)+ (X075, (Fop)h) (asp)]|

’ <f(g(a)) +f(g(b))> KgYp,r,k,c

atslo)

/ab (/ " el — o) B (tsl0) - g<s)>“>) h(s)d(s(s))

If’(g(t))lqd(g(t))] "

/ab ( /l elo) ()7 N (w(g(b) - g(S))")> h(s)d(g(s))

f (8@ <

T

< L [/aT {(g(b) —(1))" — (8(r) —g(b)) "} d(8(t))

g(b) —8(1) (1) —gla)
8 (g(b) —g(a) | (g(a))|* + ¢(b)—gla) |f (g(b))|q> d(g(?))
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1

/ t)— , q
O st ERZES 1 e ate()]
After integrating and simplifying above inequality, we get (8.20). O

Remark 8.4
(i) In Theorem 8.4 if we put g = I, we get [33, Theorem 2.5].
(i) In Theorem 8.4 if we put p =0 and g = I, we get [1, Theorem 2.6].

(iii) In Theorem 8.4 if we putw = p =0 and g = I, we get [94, Theorem 2.8].

8.2 Error Bounds Associated with Fractional
Integral Inequalities for m-convex Functions

The following lemma is needed to prove results of this section.

Lemma 8.4 Let f : [a,mb] — R be a differentiable function such that f' € Li[a,mb] with
0 <a<mb. Alsolet g : [a,mb] — R be a continuous function on [a,mb), then the following
identity for extended generalized fractional integral operators holds

( / g($)ES 5% ws”,p)d)c[f(anf(mb)] (8.23)

mb o-1
d,¢.4, d,¢.4,
o ( [ OB s ) OB (uPp) )
—1

) " </ " GBS (we?; p)ds) T OIS i)

-mb o) mb -mb c
7/ (/g ”q’ wsp,p)ds) f'(t)dtf/ (/ g(s)Eg:g?T’r(wsp;p)ds> f(t)dr.

Proof. Proof is similar to the proof of Lemma 8.1. O

Theorem 8.5 Let w e R, r,p,0,7>0,¢c>0>0withp>0and 0 < q<r+p. Let
f : [a,mb] — R be a differentiable function such that f' € Lyla,mb] with 0 < a < mb.
Also let g : [a,mb] — R be a continuous function on [a,mb). If |f'| is m-convex function on

[@,mb), then the following inequality for extended generalized fractional integral operators
holds
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mb o

|< s )E‘”’?f(wsp,p)d) (F(a) + £(mb)) (8.24)
m o—1

—o [ ([ B urspas) B (i) 0
mb mb o—1

—o [7 ([ ewEnsr ipas)  eBLEY g

_ (mb—a) ! glZm

Gy (1 (@] +mlf'(B)])

forq<r+R(p)and || g |l~= e g (t)]-
tela,mb

Proof. From Lemma 2.22, we have

(/ mbg(S)Egig,r’r(WSp,P)d ) @+ o) 829
o [ ([ swmsronina) sBsE i s

o ["(f mbg<s>E5 C’%”(wsp;p)ds) " RS s o
< [" s [

Using absolute convergence of Mittag-Leffler function and || g [|= sup |g(¢)|, we have
t€la,b]

(o) o

\f'(®)]dt.

/g j’,qf’ (wsP;p)ds

mb d.c,q,r
g()Ep s (wsP; p)ds
t

mb o

([ srmss ooripias) (1@ + o) (5.26)
m o—1

o b</ 8 Wsp;mds) §(ER G (s p) f(r)de
m mi o-1

_G/ b(/ bg(S)Eg,’gf?r(wsp;p)ds) 8(f)ES,’f;’?T’r(wtp;p)f(¢)d;

< lgllem® ( [ e-ariwlars | mb(mb—rmf'(r)wr) .

As | f'| is convex function, for 7 € [a,mb] we have

FO1< 2278 @)+ m

(b)) (8.27)
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Using (8.27) in (8.26), we have

o

’ ( /ambg(s)ES;Q%’(wsp;p)ds) (f(a) + f(mb)) (8.28)

mb o-1
3.c.q, . 8.c.q,r .
o / ( / LY (nip)ds ) e(BEY (uPp) )

mb b— / — /
< lglzme [ (ta)"<Zb_t|f(a)l+m%|f(b)l>dt

+/amb(mb7t)o- (n”z:_; /(a)|+m%|f'(b)|) dt>.

After simple calculation of above inequality we get (8.24) which is required. O

Remark 8.5

(i) If p =0 in Theorem 8.5, then we get [53, Theorem 3.2]. For m = 1, Theorem 8.1 is
obtained. Also form = 1.

(i) If w= p =0, then we get [137, Theorem 6].
(iii) If g(s) =1 along with w = p =0 and o = u, then we get [137, Corollary 2].
Next we give another fractional integral inequality.

Theorem 8.6 Let we R, r,p,0,7>0,¢c>0>0withp>0and 0 < q<r+p. Let
[t [a,mb] — R be a differentiable function such that f € Li[a,mb] with 0 < a < mb. Also
let g : [a,mb] — R be a continuous function on [a,mb]. If |f'|1 is convex function on

[@,mb], then for q > O the following inequality for extended generalized fractional integral
operators holds

’ </ g ’ ’q’ wsp;p)ds) (f(a) +f(mb)) (8.29)
m o—1
*G/ ' </ g(s 33"%’ wsp;p)ds> g(’)ngg?r’r(th;p)f(t)dt

m m o—1
_G/a ' (/t bg(S)Eg,’gf?r(wsp;p)ds) g(t)Eg:gfgr(W,p;p)f(t)dt

_ 2(mb—a)7*|g]2M° <|f’(a)|‘1+m|f’(b)l"> ‘l'
T (op+1) ?

forq<r+R(p)and | g|l= sup |g(t)|and 5+ =1.
t€la,mb)
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Proof. From Lemma 2.22, we have

mb o

< g(S)Eg,’S’,qr’r(wsp;p)dS) (f(a) + f(mb)) (8.30)
mb o—1

—o [ ([ eERs onipias) eSS (i) 0
m 7 o—1

—G/ b(/ bg(S)Eg,’é’,‘?’(Wsp;p)dS> g(1)ESS4" (wiP's p) f(¢)dt

<[" O
+ / "

By using Holder inequality we have

t
5,09,
/ g(s)Ep;f,'?T'r(wsp;p)ds
a

mb
8

o

f'(®)]dt.

VED G4 (wsP; p)ds

’( "ats VED 4 (wsP: p)ds )G(f(a)+f(mb)) (8.31)
o | : </ g(s)Epct wsp,p)d>c]g(t)Eg,’é’f’r’r(Wfp;P)f (r)at

mb mb o—1
_G/ (/t g(S)Eg,’gf?r(wsp;p)dQ 8(f)ES,’f;’?T’r(wtp;p)f(t)d;
a

(/" " ) : ([ rwpea) %
([ Gpdr) : ([ 1rwpa) :

Using absolute convergence of Mittag-Leffler function and || g [|= sup |g(¢)|, we have
t€la,b]

t
8,c.q,
[ 80BS54 twsPs )
a

mb 5,c,q,r
8()Ep 57 (ws”; p)ds

t

mb o
\( g(s)ES:Q?e’<wsP;p>ds> (F(a) + £(mb)) (8.32)

mb o—1
g9, . 80,4, .
co [ ([ eomE o ipias) LS i) 0
o—1

mb mb
d,c,q, d,c,q,
—o [ ([ B uspas) B i)
a

As |f'(¢)|? is m-convex, for 7 € [a,mb] we have

£ <

(@4 m— | (b)), (833)
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Using (8.33) in (8.32), we have
mb (¢
’ < g(s)ES:f;?ﬂwsP;p)ds) (F(a) + F(mb)) (8:34)

o—1

o [ ([ B Ouipas) B (i)

mb % mb %
<|lgllem® t—al|®Pdt) + mb —t|°Pdt
Il
a Ja

1
mb omb —1t t—a q
4 "(b)|? .
“(/ F@l o))

mb—a

mb o-1
g9, . 5.¢,q,r .
—o [ ([ eoEbsr onipias) eSS (i)
d

After simple calculation of above inequality, the inequality (8.29) which is obtained. O

Remark 8.6

(i) If p =0in Theorem 8.6, then we get [53, Theorem 3.6]. For m = 1, we get Theorem
8.2. Also form = 1.

(i) If w=p =0, then we get [137, Theorem 7].
(iii) If g(s) =1 and w = p = 0, then we get [42, Theorem 2.3].
@iv) If w=p =0and o = 1, then we get [42, Corollary 3].

To find error estimates first we prove the following two lemmas.

Lemma 8.5 Ler f,g: [a,mb] — R, 0 < a < mb, Range (g) C [a,mb] be the functions
such that f be positive and f o g € L[a,mb] and g be a differentiable and strictly increas-
ing. Also if f(g(x)) = f(g(a)+ g(mb) — g(x)), then the following equality for fractional
operators (2.23) and (2.24) holds:

k, k,
(g I;'}:rgcwaJrng) (Wlb,p) = ( Y’;’;;w,mb ng) (a;p)

rk, rk,
(g ﬁTSCW,a+ng> (mb;p) ( Yﬁ"rﬁcwmb fog> (a;p)
= > .

(8.35)

Proof. By the definition of generalized fractional integral operator containing extended
Mittag-Leffler function by a monotone function, we have

(Y2755 i F o 8) (i p) (8.36)

:/amb(g(mb)f (0) BRI (w(g(mb) — g(x))%: p) £(8(x))d (8(x)),
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I?e;a)lacing g(x) by g(a) + g(mb) — g(x) in (8.36) and using f(g(x)) = f(g(a) + g(mb) —
g(x)), we have

0,1k,c i mb T—1 P, nkc c.
(X055, o) () = [ (606) —sla)) ™ BES Ow(g(x) —8(60)%: ) (600502

This implies

1k, . 1k, .
(chp;,f,sc,w,wf ° g) (mb; p) = (gY’f,,T,gfw,m,,ff ° g) (a;p). (8.37)

By adding (8.36) and (8.53), we get (8.35). a

Lemma 8.6 Ler f,g,h: [a,mb] — R, 0 < a < mb, Range (g), Range (h) C [a,mb] be
the functions such that f be positive and fog,hog € Li[a,mb], g be a differentiable
and strictly increasing and h be nonnegative and continuous. If ' og € Ly[a,mb] and
h(g(t)) =h(g(a)+g(mb)—g(t)), then the following equality for the generalized fractional
integral operators (2.23) and (2.24) holds:

f(g(a) +2f<g<mb)) [(gY'ﬁ’,’;f‘éfW,w ho g> (mb; p) + (ng’;gC’w’mbih o g) (a; p)] (8.38)

(X0 o (Fog)(hog)) (mbip)+ (YOS, (Fog)(hog)) (aip)]
(

[ [ (glonb) = (5))7 EL 15 Ov(glonb) — (5)): )hlg())d ()

[ (gt
g(s) — (@)™ EL (w(g(s) — (@) p)h(g(s))d (g(S))} f'(g(1))d(g(1)).

/mb
b

[
Proof. To prove the lemma, we have

[ tt0n0) =t B2 ) — 60)°: P9 (60

= 1m0 [ (smb) — 5(5))" B (w(g(mb) — (55 Hg(5) ()

- /amb ((g(mb) —g(1)" BRI (w(g(mb) - g(t))";p)) f(8(1)h(g(r))d(g(r))

= 1(80mb)) (X075 (o hog) (mbip) = (X045 (Fog)(hog)) (mbip).
By using Lemma 8.5, we have

[ teton0) )7 L )~ 60)% a9l )0

_ flg(mb) (X0 o g) mbip) + (X045 hog) (aip)]

2 0,7,8,wat 0,7,8,wmb_

rk, )
(107 (Fog)(hog)) (mbip)
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In the same way we have

[ [ 60— et B lat6) — @)1 e06D)| o)t

- ng(a)) [(ng”rT’%fMﬁhog) (mb; p) + ( R hog) (a;P)}

,nk,c
(gY'ﬁ'},s,w,mb, (fog)(ho g)) (a;p).
By adding (8.39) and (8.39), we get (8.38). O
By using Lemma 8.6, we prove the following theorem.

Theorem 8.7 Let w € R, r,p,0,7>0,¢ >0 >0withp>0and 0 < g <r+p. Let
f,8,h: [a,mb] = R, 0<a<mb, Range (g), Range (h) C [a,mb] be the functions such that
f be positive and (f og)' € Ly|a,mb], where g be a differentiable and strictly increasing and
h be nonnegative and continuous. Also let h(g(t)) = h(g(a)+g(mb) —g(r)) and |(fog)'| is
m-convex on [a,b]. Then for k < r+R(0), the following inequality for fractional integral
operators (2.23) and (2.24) holds:

0D (9785 ) )+ (05 1o8) )] 53

[( Yﬁrfkg‘wa+(fog)(hog)) (mb; p) + (Yﬁiks‘w,mb (fog)(hog)) (a;p)H
[ Metnh) D™ (1) 1 g1a) +ms (55D

where || I ||o= sup |h(z)| and

t€la,mb]

2 T+2
N g(e) g\ glmb)—g(L)
@=7h H <7g<rﬁb>g<a> > IR
et | (=) e\ (et o
T+2 g(mb)—g(a) g(mb)—g(a)
- g<a+'"” N A P C O AN P DA
o o B —2(a) <Tmb)—2(4) :

Proof. Using Lemma 8.6, we have

’ (f(g( Yff rfkécwﬁhog) (mb; p) + ( Ty, rfkacw,mb,hog) (a;p)}
[( Yg;kgwﬁ(fog)(hog)) (mb;p) + ( Ygrrk(;wmb (fog)(hog)) (a;P)} ’
= /am [/a (8(mb) —(s))™ " Ep 75" (w(g(mb) — 8(5)) %+ p)((5))d (5(5))

- " (6() — ¢(a) T ER T n((s) g(a))%p)h(g(s))d(g(s»} ] £ ()l (0)).
(8.40)
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Using the m-convexity of |(f o g)’| on [a,b], we have

/ g(mb) —g(t) p mg(t)*g(a)
If'(g()| < o(mb)—g(a) |f'(g(a))| + 2mb) — 2(d)

If we replace g(s) by g(a) + g(mb) — g(s) and using h(g(s)) = h(g(a) + g(mb) — g(s)),
' =g ! (g(a) + g(mb) — g(t)), in second integral in the followings, we get

|f'(g(b))];t € [a,b].  (8.41)

/ (g(mb) - 2(5))" T ED T (w(g(mb) — g(5))%: p)h(g(s))d (g (5))

a

/ mb(g(S) —8(a)) T EY S (w(g(s) — 8(a)): p)h(g(s))d(g(s))

|- o) )" B l0n8) (95 P50 )

— [ (smb) = g(5)) ™ B (w(g(mb) — 8(5))": (s (s))d ()

a

/l t (g(mb) — g(s)" ' Ep% (w(g(mb) — g(s))%: p)h(g(s))d(g(s))

<

{ S |(g(mb) — g(5) ED 6% (w(g(mb) — g(5))%: p)h(g(s)|d(g(s)), 1 € a, L]

_110,c,g,r .
Jv |(g(mb) —g(5))* ' Ep 5% (w(g(mb) — g(s))7: p)h(g(s))|d(g(s)), 1 € [“4"2,mb].
(8.42)
By (8.40), (8.41), (8.42) and using absolute convergence of extended Mittag-Leffler func-
tion, we have

Tl 3 S)) ((yorkenog) (mbip)+ (1005, hog) (aip)
(X0 (Fo@) o g)) (mbsp) + (Y075 (Fo8)(hog)) (@ )|
<[ (7 etm) 617 B2 ol — 609)7:pbGs(o) ()

(B0, g B8 g )t

(mb) — g(a) g(mb) —g(a
b t
s ( L stomb) = g(6)) " L T vl mb) ~ g(s))%p)h(g(s»|d<g<s>>)
glmb) —g(t) o0y, 80 —8(a)
. <g(mb)g<a> sl tme e e <g<b>>|) d(g(1)

atmb

| A [l z . : /
< @) l |7 (atmb)=g(0)"~(e(0)=(a)) N glonb)~g (1) f (s(a))a(s(0))

a+mb
2

+m/ ((g(mb) —g(1))" = ((t) — g(a)))m(g(¢) — g(a))|f'(8(b))ld(s(t))

a
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+/Tbb ((8(t) = (@)™ — (g(mb) — g(1))*)(g(mb) — g(1))|f'(g(a))|d(g(t))

+m L((g(t)*g(a))“(g(mb)*g(t))’)m(g(t)*g(a))lf'(g(b))ld(g(t)) . (843)

After some calculations, we get

atmb
2

((g(mb) —g(1))" = (8(1) — g(a))*) (g(mb) — g(1))d(g(1))

a

= [ ((s(0)  8la))" ~ (smb)  £00))%) (50) — (@) (500)

2

 (g(mb)—g(a)™  (g(mb) — g(“H) " (g(«gL) —g(a))""

T+2 T+2 T+1
a+mb (g(m)—g(a))T+2
(stmb) — 5 ) - B SO
and
|7 (Gemb) —2(0)" = (5(0) ~ 8())") (5(0) ~ s(a))d(5(0)
mb
= /+_m,, ((8(1) = 8(a))* — (g(mb) — g(1))*) (g(mb) — g(1))d(g(1))
(a() — g(a) ™" atmb\  (gmb) — g(a)"
T 21+1 (g(mb)_g( 2 ))+ (t+1)(t42)
(g(et) —g(@)" (g(mb) — g(=g)"?
(t+1)(t+2) T+2 '
Using the above evaluations of integrals in (8.43), we get the required inequality (8.39).
O
Remark 8.7

(i) In Theorem 8.7, if we put m = 1, we get [132, Theorem ]
(i) In Theorem 8.7, if we put g =1 and p =0, we get [3, Theorem 2.3].
(i1i) In Theorem 8.7,if we putg =1, p =0 and m = 1, we get [1, Theorem 2.3].
(iv) In Theorem 8.7, if we put g = I, we get [57, Theorem ].
(v) In Theorem 8.7, if we put g =1, m = 1, we get [33, Theorem 2.3].

(vi) In Theorem 8.7, forw =p =0, g=1and h = 1 along with T =m = 1, we get [42,
Theorem 2.2].

(vii) In Theorem 8.7,if we putw =p =0, g =1 and h = 1 with m = 1, then we get [ 140,
Theorem 3].
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Theorem 8.8 Let w e R, r,p,0,7>0,¢c>0>0withp>0and 0 < q<r+p. Let
1,8,k : [a,mb] — R, 0 < a < mb, Range (g), Range (h) C [a,mb] be the functions such
that f be positive, (fog) € Li|a,mb)], g be a differentiable and strictly increasing and h be
continuous. Also let h(g(t)) = h(g(a) + g(mb) — g(t)) and |(f 0 g)'|7', q1 > 1 is m-convex.
Then for k < r+R(0), the following inequality for fractional integral operators (2.23)
and (2.24) holds:

(Pl [(xpete o) i)+ (Y05 o) ()]

= [(X0s s o) (h0g)) (i) + (YOS, (FoR)(h0)) (aip)] |

< I Ms) @) (1 1) (If’(g(a))lq' | (b)) | ) i

T(T+ 1) 2 )
(8.44)
where || h ||°°: sup |h([) , L1 1
t€la,mb) i a1
1 T+1
_ [ glmb)—g(L52) o g( by _go(q)
= <7g<mb>g<i> + S ) ad

2 T+2
o g(e0) g\ 7 glmb)—g(4320)
@=h H( 2@ ) N
et | (=) e\ (et o
T+2 g(mb)—g(a) g(mb)—g(a)
(e g@)\ ([ g —g(ege) () (el —p) o
g(mb)—g(a) g(mb)—g(a) g(mb)—g(a) g(mb)—g(a) )

Proof. Using Lemma 8.6, power mean inequality, (8.42) and m-convexity of |(f o g)’|?!
respectively, we have

’ (f (g(a)) + f(g(mb)) ) [(gYp,r,kA,c

. p,rk.c .
2 o,r,ﬁ,w,zﬁhog) (mb,p) + (gYo,;,Sc,w,mb,hog) (a,p)]

- [(Jﬁﬁf‘é‘;ww (fog)(h og)) (mb; p) + (ng,’,rféfw,mbf (fog)(h og)) (a;p)] ‘

< [ / "
N

a+mb—t 1ok
[ (lmb) =5 B (wlglmb) — £(6)) % p)h(s(9))d (5(5))

a(s(0)]

€1
91

a+mb—t 1ok
[ (elmb)—g(5)  ELT Ow(elmb)—g(5)) s pI(s(5))ds(s))

o
(8.45)
Since |(fog)'|7" is m-convex, we have
o < D) 8@ ) —g(a)
o) < ST @)+ ELE G . s46)

Using || i ||.= sup |h(¢)|, and absolute convergence of extended Mittag-Leffler function,
t€la,mb]

inequality (8.45) becomes
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(LT [(ororke hog) i) + (X5 o) @in)

(X0 (Fo)(h0g)) Ombsp) + (Y25, (FoR)(h08) ) (@)

<h e [ L5 ) o ataton ) o
L

-+ﬁb (L’ (g@w)—gﬁnfld@@n)d@@»} a

b +mb—t

L 1 b a+mb—t

< wa [ L7 ([ e st ateo)

g(mb) —g(t) oy v, 80 —8@) 1
 (EEEL 7 sl +m EO S o ) ateto)

b t
o ([, e =) el )

8(mb) = () v vy 80 =8@) g 0
(SIS P alanlo + B E L (o ) atetn)]

After integrating and simplifying above inequality, we get (8.44). O

Remark 8.8
(i) In Theorem 8.8, if we put m = 1, we get [132, Theorem ].
(i) In Theorem 8.8, if we put g =1 and p =0, we get [3, Theorem 2.6].
(iii) In Theorem 8.8, if we put g =1, p =0 and m = 1 we get [1, Theorem 2.6].
(iv) In Theorem 8.8, if we put g =1, we get [57, Theorem .

(v) In Theorem 8.8, if we put g = I,m = 1 we get [33, Theorem 2.5].
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8.3 Bounds of Fractional Integral Operators
for (h —m)-convex Functions

In this section the bounds of extended generalized fractional integral operators for (h —m)-
convex functions are given.

Theorem 8.9 Let w e R, r,p,0,7>0,¢>0>0withp>0and 0 < q<r+p. Let
fi]a,b) = R, 0 < a < mb, be areal valued function. If f is positive and (h — m)-convex,
then for 6,06’ > 1, the following inequality for extended generalized fractional integral
operators holds

75, q,r ,5, g,
(er2ear p) (ep)+ (%55 f ) (:p) (8.47)

< (=@ f@H: o1 (6:p)+ (b= X)f DI 51 (x:p)
+mf (%) ((x— a)Hy. ; (xp)+ (b _x)Hl;V*,a'q(x;p)) )/Ol h(z)dz.
Proof. Letx € [a,b]. Then first we observe the function f on the interval [a, x]; for ¢ € [a,x]
and o > 1, we have the following inequality:
(x— t)C’*lEgjg’?T’r(w(x —1)P;p) < (x— a)G*IES;E;?;’(w(x —a)’;p). (8.48)

As fis (h —m)-convex, for 7 € [a,x]|, we have

f(r)gh(j‘i)f(a)mh(’_“)f(ﬁ). (8.49)

X—a m

Multiplying (8.48) and (8.49), then integrating over [a,x], we get
X
—1 8,0,
[ =0 B (= 0P p) o) (8.50)
a
< o—10,¢q,r p. ‘xh xX—t d
< fla)(x—a)° Epysx (wx—a)’;p) I e t

+mf (%) (xfa)cflEg:g?T’r(w(xfa)P;p) /axh (t—a) dt.

X—a

By using (2.2), we have

(e08e17r) o) < et oy C5) (@) +mr (2)) [ 0tz @m

Now on the other hand we observe the function f on the interval [x,b]; for 7 € [x,b] and
o’ > 1, we get the following inequality:

(t—x) 7 ESCI (w(r —x)P; p) < (b—x)7 LEZST (w(b — x)P: p). (8.52)

p,o’T p,o’T
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Again from (h — m)-convexity of f for ¢ € [x,b], we have

X b—t X
< e — . .
£0) < h(bx)f(b>+mh(bx)f(m) (8.53)
Similarly multiplying (8.52) and (8.53), then integrating over [x,b], we get
8.0,
(epscarr) (ep) < 69y oo top) (50 +mr (1)) [h0a @59
Adding (8.51) and (8.54), inequality (8.47) is obtained. O

If m =1 and h(z) = z in (8.47), then the following result holds for convex functions:

Corollary 8.3 Ler f : [a,b] — R, a < b, be a real valued function. If f is positive and
convex, then for 6,06’ > 1, we have

(225220 o (52
) (=@ f(@H, | (5p)+ (- BIHY o, ()

- 2

X f(x)[(“’)Hfﬂ“(’“”) 2<b HY g, (20)]

Remark 8.9 If w = p =01in (8.55), then [47, Theorem 1] is obtained.

Lemma 8.7 [45] Let f: [0,00) — R be a (h— m)-convex function. If 0 < a < mb and
fx)=f (“*b X), then the following inequality holds:

f (“;b) < (m+ h (%) f(); x€ fab]. (8:30)

Theorem 8.10 Lerw e R, ,p,0,7>0,¢>8 >0withp>0and 0 < g<r+p. Let
fa,b] = R, 0 < a< b, be a real valued function. If f is positive, (h —m)-convex and
fx)=f (“erﬂ) then for o,0’ > 0,the following inequality for extended generalized
[fractional integral operators holds

I
D)D) {Hb a/+1(a,P)+Ha+,a+1(b,p)} (8.57)

< (658 of ) @)+ (615547, f) (i)
< (b 7(1)2 {HZV*,O"fl(a;p) JrHc:VJr,O'fl(b;p)} (f( +mf ( ))/ h
Proof. For x € [a,b], we have

(x—a)? EXS8 (w(x —a)P;p) < (b— )T EXS8 (w(b—a)Psp), o' >0.  (8.58)

p.0’T p.0’,
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As fis (h — m)-convex, for x € [a,b] we have

£(x) < mh (Z_Z)f (n%) +h<2_z>f(a)~ (8.59)

Multiplying (8.58) and (8.59), then integrating over [a, b], we get

b ! 8.c,q,r
/a(xfa)cEpfc’ff’r(W( a)?;p)f(x)dx

! C\q,r b b
Sm(b—a)"ES:(;,‘f*T( f(E)/a h(x Z)
b

b
N b—
+(b—a)0Ep7'd,‘{,’[r(w(b—a) (b )

From which we have

(s, of ) (@p) < (b= a)*Hy oy (aip) (f( )+ mf < )) / h(z)dz. (8.60)
On the other hand for x € [a,b], we have
(b—x)°EpS% (w(b—x)P;p) < (b—a)°ES 5% (w(b—a)®;p) o > 0. (8.61)
Similarly multiplying (8.59) and (8.61), then integrating over [a, b], we get
(Jﬁ;giu f) (b;p) < (b—a)*H): 4_y(bip) ( f(a)+mf (%)) /0 l h(z)dz.  (8.62)
Adding (8.60) and (8.62), we get
(& af ) (@p)+ (25587 o) (i)

< = (1 s @)+ o)) (100 +mr (2)) [ G

Multiplying (8.56) with (x — a)® E2 ¢ 7(w(x—a)P; p), then integrating over [a,b], we get

p.o'.T

1(552) [ o Ehssrvte—apipyax
<t (3) [ 6= 0 B e i),

by using (2.2), we get

f(m) w . w,0,¢,q,r .
TR o @p) < (e%eer, of ) @p). (8.63)
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Similarly multiplying (8.56) with (b—x)°E}

and using (2.2), we get

o8 (w(b—x)P; p), then integrating over [a, b]

.5,¢.4,
HY, ;. (bip) < (8;1,p,§il,ff> (bsp). (8.64)
Adding (8.63) and (8.64), we get

(5 1w . y _
m [Hb—,arﬂ (@:p) +Hys o4 (b,p)} (8.65)

,8,¢,q,r . ,8,¢,q.r .
< (epocar, f) (@p)+ (55537, f) bip).
From inequalities (8.63) and (8.65), inequality (8.57) is obtained. O

If m = 1 and h(z) = z in (8.57), then the following result holds for convex function:

Corollary 8.4 Let f : [a,b] — R, a < b, be a real valued function. If f is positive, convex

and symmetric about #, then for 6,06’ > 0, we have

b
f (%) [Hgv—,a/“(a;p)+H;”+’G+1(b;p)} (8.66)
< (e f) @)+ (2558 f) (bip)
b
<(b-a’ {H,ji,c,,l (@:p)+Hi 5y (b;p)} {w] :

Remark 8.10
(i) If w=p =01n (8.66), then [47, Theorem 3] is obtained.

(ii) If 0,06’ — 0 and w = p = 0, then from above inequality, we get the Hadamard
inequality.

Theorem 8.11 Letw e R, r,p,0,7>0,c¢> 8 >0withp>0and0< qg<r+p. Let f :
[a,b] — R, 0 < a < mb, be a real valued function. If f is differentiable and |f'| is (h —m)-

convex, then for 6,06’ > 1, the following inequality for extended generalized fractional
integral operators holds

|(er2ar, f) )+ (65000 of ) () (8.67)
— (F@H gy (52)+ FOH - (x:P))|
< (=P @I oy (50)+ b= F ) (i)

o100 )

+m
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Proof. Letx € [a,b] and t € [a,x]. Then using (h — m)-convexity of | /|, we have

/ X—1 / t—a ;[ X
If(f)lﬁh(xa)If(a)|+mh(xa) 7 ()] (8.68)
From (8.68) follows
Fle)<h (j_;) (@) +mh (;_Z) ()| (8.69)

Multiplying (8.48) and (8.69), then integrating over [a,x], we get

/ax(x—t)"*‘ES:f;f’ﬂw(x—t)P;p)f/(t)dr (8.70)

< (- a)" ENSY (wx—a)sp)
/:h (i_‘;) dr].

i@ [n( Y ()

The left hand side is calculated as:

/a X(xﬂ)‘”Eﬁ:E%”(w(xft)p;p)f’(t)dr, (8.71)

put x —¢ = z that is t = x — z, also using the derivative property of Mittag-Leffler function,
we have

X—d
/0 ZG*]ES;(‘;?T’r(wzp;p)f’ (x—2)dz
o—10,¢q,r 0 T 5 d,¢,q,r o
= (=) B s —a)fip)f(@) = [T RENE (wip) (s — )
now put x — z =1t in second term of the right hand side of the above equation, we get
"X
[ = ERS (wlr— 1)) (0t (8.72)
a
ra 10 r
= / T Ey g (wiip)f (x—z2)dz
0
—18,¢,, .5,¢.4,
= (=) ESSY (wix—a)sp)fla) — (158, f ) ()
10,6,
HY oy (o) f(@)— (615507, f) (p).

Therefore, (8.70) takes the form as follows:
,0,C,q,T
F@H o (:p) = (e1%54", f) (i) (8.73)

7 (5)) /O‘h@dz.

< (=Y. o (p) (1f (@) +m
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Also, from (8.68) we obtain

)= (h (j;) ' (@)| +mh (lZ)

Following the same procedure as did for (8.69), we also have

7 (%) D . (8.74)

(roear, f) (ep) = F@HY o (x:p) (8.75)
< @y o o) (1P @1 mly (2)]) [ noae

From (8.73) and (8.75), we get
|(e12ar, f) (5p) = F@H o (5:p)| (8.76)

1
f (%) ‘) /0 h(z)dz.
Now letz € [x,b]. Then using (h — m)-convexity of | /7|, we have
_ b—
ol (=) e (=)

On the same lines as we have done for (8.48), (8.69) and (8.74), from (8.52) and (8.77) we
have the following inequality:

< (=)t} gy (ep) (I (@] +m

(%) ’ . (8.77)

m

.0..4,r . .
‘ (53,7 < g_mf) (x:p) — FBD)HY o1 (x: p)‘ (8.78)
1
< 0=H i) (I @) +mlr (5)]) [ )z
From (8.76) and (8.78) via triangular inequality, inequality (8.67) is obtained. O

If m =1 and h(z) = z in (8.67), then the following result holds for convex function:
Corollary 8.5 Ler f: [a,b] — R, a < b, be a real valued function. If f is differentiable
and |f'| is convex, then for 6,6" > 1, we have

,0.¢,q,r . ,8.¢,q,r .
|(exoear, ) sp)+ (%58, of ) (i) (8.79)
~ (F@H: o1 (sp) + PO ooy (i) )|
_ (x—a)lf'(@)lHy. 5 (x:p)+ L =x)|f (B)IHy- ;i (x:p)
- 2
x—a)H" __ (xp)+(b—x)H" ,  (vp
@)l <( gt 2( 2ILIAY

Remark 8.11
(i) If w=p =0 andreplace o by ac+ 1 in (8.79), then [47, Theorem 2] is obtained.

(i) fw=p=0, o = =1 and f’ passes through x = #, then from (8.79) [42,
Theorem 2.2] is obtained.
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8.4 Inequalities for the Extended Generalized
Mittag-Leffler Function

In this section, results of previous section are applied for the function f(x) = x2. Function f
is convex and | f'(x)| = 2|x| which is also convex. By virtue of this function we succeeded
to establish recurrence relations among Mittag-Leffler functions useful in the solutions
of fractional boundary value problems and fractional differential equations. Ullah et al.
computed generalized fractional integral operators for the function f(x) = x?, in [148], as
follows:

,0,¢,q,7 8,¢.q.r
(g;vtpc,g,rf) (xp)=(x—a)° {azEp,;jl,T(w(x—a)p;p) (8.80)
3,¢,9; d.c.q,
+2a(x— a)Ep;df’F;T(w(x —a)’;p)+2(x— a)zEp,'gig,T(w(x - a)p;p)} )
,8,¢,q, d,¢,q,
(57 f) (ip) = (b—2)7 [DPES 54 (w(b—x)°:p) (8.81)
d.,c,q,r . 8.¢.q.r .
“2b(b—x)ESSTs (w(b—x)P:p) +2(b—xESST: (w(b—x)P; p)} .

Theorem 8.12 Mittag-Leffler functions satisfy the following recurrence relation:

(@ +b%) 5cq, S,

b—a) Ey oty W (b —a)fip) + Eg gty (W (b —a)fip) (8.82)
(2m+1)(a® +b*) +2ab) _5.cq, I See

< 2m(b—a)? Ep;d,%r(w/(b*a)pm)/o h(z)quLEp,'gi;’T(w'(bfa)p;p)

where W' = 3.
Proof. By using (8.80), (8.81) and f(x) = in (8.47) of Theorem 8.9, we have

d,¢.4, 3,¢,9;
(x—a)® [azEp;di]rﬂ(w(x— a)’;p) +Za(x—a)Ep;df’F;T(w(x—a)p;p) (8.83)

8.c.q,r . ! 8.c.q,r .
+2(xfa)zEp’gi&T(w(xfa)p,p)} +(b—x)° {szp,cC;/qH,r(W(b —x)";p)

8,c,q,r . §,0,q,r .
~2b(b—X)ES S, (w(b—x)Pip) +2(b—xES S, (w(b—x)P; p)}
2 x2 o -0,0,q,r
s\ @+ ) —a) By (wx—a)’sp)
2

+ (bz + %) (b —x)G/Egv’CC;,q”Tr(w(b —x)p;p)> /01 h(z)dz.

Now by putting x = # and o = o’ in (8.83), then after simplification, inequality

(8.82) is obtained. O



8.4 INEQUALITIES FOR THE GENERALIZED MITTAG-LEFFLER FUNCTION 161

Corollary 8.6 Ifm =1 and h(z) = zin (8.82), then we have

(a2+b2) d,c,q, d,c,q,
G —ap Erotta W (b= afsp) + Bt (W (b —a)’sp) (8.84)

(3a* +3b>+2ab) _s.c.q, Se
= 4(b—a)? Epag?fr(wl(b*a)pm)JrEp"digJ(w/(bfa)p;p),

Theorem 8.13 Mirtag-Leffler functions satisfy the following recurrence relation:

d,c., 8.c,q,
Ep et (W (b—a)ip) —ES 51T (W (b—a)f:p)| (8.85)
1

< ooy mact mb o+ (@t ) Ep S (w/ (b= a)'sp) IREE

where w' = 5.
Proof. By using (8.80), (8.81) and |f’(x)| = 2|x| in (8.67) of Theorem 8.11, we have

‘ (x—a)° {az(x — a)flEg”f,’?T’r(w(x —a)f;p)+ ZaEg:g’ﬂ’T(w(x —a)P;p) (8.86)

F2(x = @) 1% L(w(x — @) p) | +(b = x) |62 (b~ ) B 5 (w(b — )P p)

p.o'.T

d,c,q, d,¢.4,
beEp;d,‘f:l,T(w(bfx)p;p) +2(bfx)Ep;d,‘{é’T(w(bfx)p;P)}

(=@ T ESGY (wlr— )i p+bA (b= )T EY S (w(b—x)P5p) ) |

0,0\t
|x| o 0,048 0.
<2 |a|Jr (xfa) Ep,G,T (w(xfa) ,P)

m

[ o gd.car p. 1
12 <|b| + 5 (b —0)7 ES 8 w(b )3 p) /0 h(z)dz.
Now by putting x = azib and 0 = ¢’ in (8.86), then after simplification, inequality (8.85)
is obtained. o

Corollary 8.7 Ifm =1 and h(z) = z in (8.85), then we have

d,¢.4, 3,¢,9;
E) ol (W (b—a)’sp) —E gt (W (b—a)’;p) (8.87)

< ——(a+b)ESSY (W (b—a)P;p).

b—a

Theorem 8.14 Mittag-Leffler functions satisfy the following recurrence relation:

c,q,r 1 c,q,r !
ESS4t (w(b—a)’ip)— (1 +E)Egia’f? (W(b—a)p;l?)/o h(z)dz  (8.88)

Z(b,a)Z 5 r S r
S (a2+b2) (Ep:cci’:{’Z,r(W(b*a)p;p) 72Ep:ccr7:{73,r(w(b7a)p;p)) .
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Proof. In (8.83), putting x = a and x = b, then adding for o = o', inequality (8.88) is
obtained. O

Corollary 8.8 Ifm =1 and h(z) = z in (8.88), then we have

8,c,q,r 8,c,q,r
Ep;im(w(b—a)p;p) —Ep6% (w(b—a)P;p) (8.89)
2(b—a) (L 5.cq 5.4,
< Ty (BN —a)'sp) 2505 w(b ~):p))
Theorem 8.15 Mittag-Leffler functions satisfy the following recurrence relation:
8.c,q, 1 5cq,
Ep,'gig,r(w(b —a)f;p)— EEp;dilr,r(W(b —a)P;p) (8.90)
(1 + l) d,c,q, !
< 305 2y @ HDESSH (wlb—a)sp) [ h(z)dz
Proof. In (8.86), putting x = a and x = b, then adding for o = ¢, inequality (8.90) is
obtained. m]

Corollary 8.9 Ifm =1 and h(z) = zin (8.90), then we have

d.cqr oy Lpdear .
Ep,(cquZ,r(W<b —a)Pip)— EEp,cC)'f]H,T(W<b - a)p,p)‘ (8.91)
1 d.,c,q,r
< 2b—a) (a+D)Ep7T (w(b—a):p).
Theorem 8.16 Mirtag-Leffler functions satisfy the following recurrence relation:
d.c,q, 1 d,¢,q, !
Epioth2(wip) = (1+—)Ep g (wip) /0 h(z)dz (8.92)

8.¢., . 8.¢.4, .
<2(EpEtt (wip) —2E5 515 (wip))

Proof. In (8.88), putting a = 0 and b = 1, then inequality (8.92) is obtained. O

Corollary 8.10 Ifm =1 and h(z) = z in (8.92), then we have

d.¢,9, d.¢,9, d.¢,9, d.¢,9,
Ey ot ((wip) — Ep'g (wip) <2 (Ep,'f;ié,f(w;p) - 2Ep,'f;fi§,f(w;p)) . (893
Theorem 8.17 Mittag-Leffler functions satisfy the following recurrence relation:
8.ca, 5.0, L. s, !
2655 wip) B wip)| < (1 DB (wip) [ (5.94)
Proof. In (8.90), putting a = 0 and b = 1, then inequality (8.94) is obtained. O

Corollary 8.11 [fm =1 and h(z) = z in (8.94), then we have

‘ZES’C"” (w;p)—Es’C’q’r (w;p) SEg:g%r(w;p). (8.95)

p,0+2,T p,o+1,T

By applying Theorem 8.10 similar relations can be established which we leave for the
reader.
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8.5 Error Bounds of Fractional Integral Operators
for Quasi-convex Functions

The very first result provides the upper bound of the sum of the left sided and right sided
fractional integrals via quasi-convex functions.

Theorem 8.18 Lerw e R, ,p,0,7>0,¢>8>0withp>0and 0 < g<r-+p. Let
f:]a,b] = R be a function such that f € Ly[a,b] with a < b. If f is quasi-convex on |a, D),
then the following inequality holds

/.8.,¢,q, '.8.c.q, ! !
(g r) ip)+ (625500 ) (p) < max{f(a), F0)} (! o(b:p) + Hy (i)
(8.96)
where w' = o
Proof. By using quasi-convexity in the form f((1 —¢)a+tb) < max{f(a),f(b)} the
following inequality can be obtained

1
/0 t° 1Eg gqfr(wtp;p)f(taJr (1 —1)b)dt < max{f(a) }/ t° 1Eg f;"fr (we?;p)dt.
(8.97)

Making substitution x = ra+ (1 —7)b thatis t = b%; in the inequality (8.97). Then it takes

b
the form

b /3 o\ O] \p

/(Zz) Epdd (W(Zz) ;p)f(x)bdxa (8.98)
b—x\"" sear( (b=x\". | d

< max{f(a) }/ ( x) Epo% (w(bZ) ;p)bxa.

From above inequality follows
/75, g,
(550 £) (i) < HY. o (s p) max {f(a), £ (8) }. (8.99)

Also by using quasi-convexity in the form f((l —t)a+1tb) <max{f(a),f(b)} the follow-
ing inequality can be obtained

1
/0 1o 1Eg B (wis p) f(1 —1)a+1b)dt < max{f(a) }/ 1o 1Eg B (wiP; p)dt.

(8.100)

Now making substitution of y = (1 —#)a+tb thatist = m the inequality (8.100). Then
it takes the form

b o—1 P
y—a d,c,q,r y—a . dy
E, ; 8.101
/a (b—a) 0,0,T (W<b—a) p)f(y) s ( )

b
<mats@.s00 [ (3= ) e (w32
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From above inequality we obtain

(s,ﬁ”i’fz,’;;?jf) (a:p) <H)' o (asp)max{f(a),f(b)}. (8.102)

Adding (8.99) and (8.102), we get (8.96) which is required. O

Corollary 8.12 Setting 0 = ¢’ in (8.96), then we get the following inequality

(5ot r) iy (e 05r) (aip)< max (fla). ()} (H). o (bip) + HyY oa:p)).
(8.103)

Corollary 8.13 [118] Setting w = p = 0in (8.103), then we get the following inequality
for Riemann-Liouville fractional integrals

2(b—a)?
I(o+1)
Remark 8.12 If we take o = 1 in (8.104), then we get the following inequality for quasi-

convex function which is related to the Hadamard inequality given by Dragomir and Pearce
in [44]

Jo f(b) + - fa) < ——ymax{f(a),f(b)}. (8.104)

b
[ e < mar{ (@£ 0)) (8.105)

8.5.1 Recurrence Inequalities for Mittag-Leffler Functions

Let us consider the function f(x) = x?. The function f is convex on [a,b] and |f'(x)| = 2|x|
which is again convex function on [a,b]. Since f and |f’| are convex and finite on [a,b],
therefore are quasi-convex. Results of previous section are applied for this function and
inequalities among the generalized extended Mittag-Leffler function are established.

Theorem 8.19 The Mittag-Leffler function satisfies the following recurrence inequality

8,¢,q,7 8,6,9,r .
2E)’ 213 (W (b—a)l;p)— Ep’gjz!r(w/(b —a)’;p) (8.106)
max{a*,b*} — (a® +b?)

5 "M .
SEp 331 (W '(b—a)’;p) 2(b—a)?

r_
where w' = -

Proof. For the function f(t) = > the generalized fractional integral operator is evaluated
as follows

(eﬁ‘?ﬁﬁﬁf) () (5107
_/ )7 Ep Gt (wlx—1)Ps p)d

_ yo-1 Bp(8+ng,r—38) (rag  w'(x—1)" ,

7/51 2 6 7—6) F(pn+0') (T)nc i
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= g Po(d+ng,r—58) () w' * n+o—
_ngo pﬁ(5,r75) I‘(pn:a) (T)nC/a(x—t)P+ 124

8.0, . 8., .
=(x—a)® {azEp,gfilr,T(w(x—a)p,p) +2a(x—a)Ep7g?r£T(w(x—a)p,p)

+2(x— a)zES’C’q’r (w(x— a)p§P)} )

0,0+3,7T
Similarly
8.c.q,r 8,c,q,r
(g,;t! ar f) (x;p) = (b—x)° {szp7gil7T(w(b —X)P;p) —2b(b—x) (8.108)

8,¢,q, 8,0,9,
EDS2(0(b—0)%3p) + 20 —PES 41 (w(b—2)3p)].

Using (8.96) of Theorem 8.18 for the function 12 takes the form

(b—a)° [azEg:g’i’]rﬂ(w/(b —a)?;p)+2a(b— a)Eg:g’i’;,T(w/(b —a)?;p) (8.109)

+2(b—a)EY ST (W (b~ a)Ps p)} +(b—a) [szﬁ;f;f’fm(w’(b —a)’;p)

d.c,q,r . d.,c,q,r .
~2b(b— @)EXA (W (b—a)Psp)+2(b—aESS, (W (b—a)’; p)}

< 2max{a2’b2} ((b _a)GES,C,q,r (W/(b _ a)P;p)

p,o+1,7
! 1-8,¢.,
+b-a)T Byt (W (b—a)ip)).
Now taking o = ¢’ in (8.109), then after simplification we get (8.106). O

Theorem 8.20 The Mittag-Leffler function satisfies the following recurrence inequality

a* + b? 1
T S p0.car
2 2Ep,ccf,qr (w;p
8,c,q,r . 5,0,q,r .
+2(b—aPRENELE (W (b= a)ip) — ENELT (W (b—a)ip))] |
2(b—a)M

= 8.0,q.r (. .
O-Ep,(cfzrr(w’p)

| (@ +P)ESSY (W (b—a):p) (8.110)

max{|al, b}

(blva)p .

where w =

Proof. By using (8.107), (8.108) and f(¢) =2, |f'(t)| = 2| in (8.119) of Theorem 8.23,
we have

2 2
1
@“ b — 8.111)
2 2(b—a)° ' Ep g% (wip)

<[00 (6 '@ +#ELE W 0 - aPip)
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d,¢,q, d,c.,

—2(b—a)E 1 (W (b—a)P;p) +4(b—a)Ep;aiS,Aw/(b—“)p;l’))} ’
b—a)M

< (Scif)max{2|a|,2|b|}.

OEp % (Wip)

After simplification we get (8.110). O

Theorem 8.21 The Mittag-Leffler function satisfies the following recurrence inequality
a’+b? 1
-

2 2E;5% (wip)

3,0,q, JORER7A
+2(b - a)2<2Ep;o;i£,T<W/<b - a)p;p) - Ep,'gilr,r(w/(b - a)p;p))} ’

[(a2 —i—bz)ES:f;f’T’r(w/(b—a)p;p) (8.112)

2(b—a)M 1 (el o
- Egiﬁ}’f?r(w;p) ((O‘—l)p+1)%< {lal?, |7}

r_
where w' = -

Proof.
By using (8.107), (8.108) and f(¢) = ¢2, | f'(¢)| = 2|¢| in (8.123) of Theorem 8.24, we
have

2 b2 1
- S.car (8.113)
2 26— ) EpSE (wip)
< (b= (-0 @+ ESEY O (0~ apip)
8.c.q.r . 8,c,q,r .
2(b— ESS (00 (b —aip) + 4 — S 0 (b — )|
(b—a)M 1 1
— 0,045 1 (max{(2|a|)‘1,(2|b|)‘1})q
Eps (wip) ((c=1)p+1)r
After simplification we get (8.112). 0

Theorem 8.22 The Mittag-Leffler function satisfies the following recurrence inequality

a’+b? 1
2 2EGH (wip
3,¢,9; d.c.q,
+2(b - a)2<2Ep;o;i£,T<W/<b - a)p;p) - Ep,'gilr,r(w/(b - a)p;p))} ’
2(b—a)M

T GENSY (wip)

) [(az+b2)Eg:f;f’T’r(w/(b—a)p;p) (8.114)

(max{|al?, |b|7})7

where w' = (blva)P'
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Proof. By using (8.107), (8.108) and f(t) =2, |f'(t)| = 2|¢| in (7.29) of Theorem 8.25,
we have

2 b2 1
a ; _ — (8.115)
2(b—a)° Ey 5% (wip)
x [(b=a)7 ((b—a) ™ (@ +P)ESEY (W (b—a):p)
8,c,q,r . d,c.q,r .
—2(b— a)EP,CC)'fI{l,T(W/(b —a)’;p) +4(b— a)Ep,g'ZZ,T(W/(b - a)p’p))} ’
2b—a)M 1
< 2O M flaft, b))
sCqsT .
O-Ep,c,r (W7p)
After simplification we get (8.114). g

8.5.2 Error Bounds of Hadamard and
Fejér-Hadamard Inequalities

The following identity is very important to give the Hadamard type inequalities.
Lemma 8.8 Let f : [a,b] — R be a function such that f' € Ly|a,b] with a < b, then for
generalized fractional integral operators the following identity holds
w'.8.c,q,r . w'.8.c,q,r .
F@+ £y (85 1) Bip)+ (67055, 1) (@p)
B —1p0car . .
2 2(b—a)* Ep5% (wip)

b —d 1 _ S - _ S -
s [ (007 B =)= S )
0,0, WP

X f'(ta+ (1 —1t)b)dt

(8.116)

!/ w
where w' = -

Proof. We have
b—a 1 o—1p-0,c,q,r I3 o—1p0.cq,7 P
W/o ((14) Epa® (w(l—1)P;p) =17 Ep g% (we ;p)) (8.117)
p.or (Wip
X f'(ta+ (1 —1t)b)dt

b*a 1 _ S r
= o [ =0 BN w1~ sp)f (rat (1~ )b
2E, 5% (wip) /0
b—a 1 p
— W/‘ to.ilEg:g-’?E (W[p;p)f/(ta+ (1 *t)b)d[
2E, 5% (wip) 70

We first consider the first term of right hand side of (8.117): putting z = 1 —¢ that is
t = 1 —z and using the derivative property of Mittag-Leffler function, it takes form
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b—a

b*(l 1 r
/ CENGY (w5 p)f (1= 2)at tb)dz= —5o ———
) Jo 2E, 5% (wip)

S,e,q.r (.
2Ep’c,,qf (w;p) -

S.eqr .
Epox (wip)f(b) 1 ! Sk
* [ pGTb—a 7b—a/ . zEgler(WZp?P)f((l*Z)a+zb)dz .

Making substitution x = (1 — z)a + zb in above we get

bh— 1
%/ O1ESCr (2P p) (1 — 2)a + 2b)dz (8.118)
2Ep 5% (wip) /0
S

_ b-a lEp:f;?f(w;p).f(b) L (e ) (a.p)]
- d,¢.4, ’ .
2Ep 5% (wip)

b—a (b_a)c b—.p,0—1,7"

Similarly consider the second term of right hand side of (8.117), we get

b— 1
_%/ 19 VES S (wiP s p) f (ra+ (1 — 1)b)dr
2Ep)5% (wip) /0

S.cqr
- b—a l Epo% (wip)f(a) L] (
2Ep 5% (wip)

!.8.c,q,r .
b—a (b—a)° gc:v*,p,ccrqfl,rf) (b’P)l )

here we use substitution x =ra + (1 —1)b.
Now by using final form of both terms in (8.117), identity (8.116) is established. O
In the following we give Hadamard type inequality by using the above lemma.

Theorem 8.23 Lerw e R, ,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f :|a,b] — R be a differentiable function such that f' € Ly[a,b] with a < b. If | f'| is quasi-
convex on |a,b], then for generalized fractional integral operators the following inequality
holds

!,8.c.q,r . !.8,0,q,r .
Far+r) (805 1) Bsp)+ (8705 1) (@p)
N _1p8.0qr .
2 2(b—a)o 1Ep Y (wip)

(8.119)

< (fc_qi‘szmax{If’(a)l, ol

oE, 57 (w;p

for g <r+R(p), where w = (bfa)p.

Proof. Using Lemma 8.8 and properties of modulus, we have

fa) sy (Eseted) o)+ (0 6h ) @p)
2 2(b—a)o ES G4 (wsp)

(8.120)

5, 5,
S T Sear 2E50qr / ' 0 ]Ep é'qrr( (1 *t)pQP) 1" lEp gqrr(wtp;p)
0,0,T W p

x |f (ta+ (1 —1)b|dt
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< / ‘ )o~ 1pdcqr (w(1—1)":p)
2E50’qf’ (w;p) ( Pt
+/ ‘ 1 IESQ‘IT’ p)’) |f'(ta+ (1 —1)b|dt.

Since | f’| is quasi-convex, also using absolute convergence of Mittag-Leffler function, we
have

fla)+f(b) (edear £) (ip)+ (75507 f ) (@p)

: (8.121)
2 2(b—a)" ES 64 (wip)
1
< au,r ( [0 ars [ ) el @ G,
2Epc” w;p) 0
After simple calculation we get (8.119) which is required. o

Corollary 8.14 Setting w = p = 0 in (8.119), then we get the following inequality for
Riemann-Liouville fractional integrals

‘f(a)+f(b) ~_ I(o)
2 2(b—a)

ot 204557 1(@) | < 2 a7 @)L )
(8.122)

Corollary 8.15 If we take 6 = 2 in (8.122), then we get the following inequality for
quasi-convex function

i

< 2= Emax{| @I O]}

In the following we give the Hadamard type inequality by using Lemma 8.8, Holder’s
inequality and quasi-convexity of | /'|9.

Theorem 8.24 [etrw e R, r,p,0,7>0,¢>8>0withp>0and 0 < g<r-+p. Let
f:[a,b] — R be a differentiable function such that f' € Li[a,b] with a < b. If |f']4, ¢ > 1
is quasi-convex on [a,b), then for generalized fractional integral operators the following
inequality holds

flay 45 (Bt of ) (i) + (67557 of) () (8.123)
2 2(b—a)oESS%" (wp) .
(b—a)M 1 g

= = (max{|f' (a)|9,|f (b)|?
Eg,gqr,r(w,p) ((O’—l)p+])ﬁ ( {| ( )| | ( )l })

forqg<r+R(p) and % + cl/ =1, where w' = (b,wa)p-
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Proof. From Lemma 8.8, properties of modulus and Holder’s inequality, we have

f@+rb) (55 ) i)+ (67557 ) @p)
i 20— a7 B (w:p)

(8.124)

b—a 1 o—11-0,c.q,r P 10~ LpS.e.qr i 0.
< —= . (1-1) Episr (w (w(l—1)P;p) — EpGT (wt?;p)
2Ep 5% (wip) Jo

|f’(ta+(1 —1)b|dt
<2l ([a-nT s e
2E50’f17’ (w;p) ( por
oA
1
8.0, P\
S —Sear 5“,, ((/ ‘ )" 'Ep;fff’r'r(W(l—t)p;p)‘ dt)
2E, 5% (wip)
1 1
P 1 q
+</0 ‘z“ES;ng;p;p)’”dt)’) (/0 |f’(ta+(1—t)b|‘ldt)q

Since | |4 is quasi-convex, also using absolute convergence of Mittag-Leffler function, we
have

o R i) ) I o+ (1=

fla)+f(b) (enidear 1) bip)+ (&5 f ) (@ip)

5 (8.125)
2 Z(b—a)"”Ep’c’qT’r(W‘p)
<ol (([a-orra) = ([ira))
2Ep7 o (Wip
x (max{|f' (a)l",lf’(b)l")zf
After simple calculation we get (8.123) which is required. O

Corollary 8.16 Setting w = p = 0 in (8.123), then we get the following inequality for
Riemann-Liouville fractional integrals
fla)+f(b)  T(o)
2 2(b—a)°!

o () +IT f(a)] (8.126)
b—a
(6—1)p+1)r

Corollary 8.17 If we take 6 =2 in (8.126), then we get the following inequality for
quasi-convex. function

f(a)2 Cb— a/f £)dt

Q=

<

(max{|f (a)|%,|f (b)|7}) 7.

==

(max{|f( N9 1f (B )|q})
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Theorem 8.25 Lerw e R, 1,p,0,7>0,¢ >0 >0withp>0and 0 < g<r+p. Let
f:[a,b] — R be a differentiable function such that f' € Li[a,b] with a < b. If |f']4, ¢ > 1
is quasi-convex on |a,b], then for generalized fractional integral operators the following
inequality holds

fa)t o) (Ernatial) )+ (2050, of ) (ap)

8.127

2 2(b—a)*ESST (wip) o
(bfa)M / / 1
< — D (max{|f (@) 7.1 (B)]))
GESSHT (w ' )

Jorg <r+R(p), where w = ﬁ.

Proof. From Lemma 8.8, properties of modulus and power mean inequality, we have

/75, q.r 5 s .
fla)+f(b) (féi,p,iil,ff) (b:p) + ( & ”f) (a:p) (8.128)
2 26— ) ELGY (wip) |
S.c d.c
ZEacqr / (1= )T D4 (w(1 = 1)1 p) — 17 DG4 (wis p)
pox (Wip)
x|f (ta+ (1 —t)bldt
< bma [(1=1)° ' ES G4 (w(1 —1)P; p)
5c7q7 (/ p,0,T ?
2E w;p)
pGT >

1

O e plar) (/ (=07 B2 w(1 =)
1
(TES G (P p) | (ra (1= )bl )

Since |f’|7 is quasi-convex, also using absolute convergence of Mittag-Leffler function, we
have

)t ) (Eopatid) )+ (g 55", of ) (@)

; (8.129)
2 2(b—a)7 ERGE (wip)
1 1
<A ( [ =07 ares [ ) Gradl @l @)
2Ey ch (w;p) 0
After simple calculation we get (8.127) which is required. o

Corollary 8.18 Setting w = p = 0 in (8.127), then we get the following inequality for
Riemann-Liouville fractional integrals

T s 2 1) 49810 < 25 (e @I P 0))
(8.130)

B
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Corollary 8.19 If we take o =2 in (8.130), then we get the following inequality for
quasi-convex function

fla)+f(b) 1

b b—a
5 _bfaL*ﬂ”m

2

Q=

<

(max{|f'(a)|%,|f'(b)|7})% .

8.6 Bounds of Fractional Integral Operators
for s-convex Functions

In this section bounds of fractional integral operators are proved for s-convex functions.

Theorem 8.26 Lerwe R, 1,0,0,7>0,¢>8>0withp>0and 0 < g <r+p. Let
f :|a,b] — R be a real valued function. If f is positive and s-convex, then for 6,6’ > 1,
the following fractional integral inequality for generalized integral operators holds:

(er2earr) (ep)+ (%8 f ) (k:p) (8.131)
< (M9 - oy i)
b
+ (W) (b—x)HZ“ic,fl(x;p),x € la,b].
Proof. As f is s-convex so for t € [a,x], we have
< (220) s+ (22) 5o (5.132)
x—a x—a

First multiplying (8.48) and (8.132). Then integrating over [a,x], we get

[ =0 B (wx 1)) £

—1p0.cq.r
(x—a) 'Egi (w(x—a)Pip)
- (x—a)*

(@) [ =rpar g [ - ayany,
and then we have

(8.133)

(s:“f;fﬁ‘;;f ) (x;p) < (x—a)Hy' 51 (x;p) (fi(as) j: {(x) ) :

Again for 7 € [x,b] using convexity of f we have

Ok (;_fc)sf(bw (%)Sf(x) (8.134)
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Multiplying (8.52) and (8.134), then integrating over [x,b], we get

b s,
[ =0T B e =) ) (1)

1 18,0,q,r .
(b—x)7 " ESH (w(b—x)P:p)

X X
< e ) [[a—xpars s [[o-iyan,
(b *X)‘S a Ja
and then we have
5.0, f(b)+ f(x)
(slji’ bfg;ff_f) (x:p) < (b—2)HY- o1 (x:p) (T . (8.135)
Adding (8.133) and (8.135), the required inequality (8.131) is obtained. O
Some special cases are studied in the following corollaries.
Corollary 8.20 Ifwe set 6 = ¢’ in (8.131), then we get following inequality:
,8,¢,q,r . ,0,C,q,r .
(er2earr) (ap)+ (%0800 ) (:p) (8.136)

< (W) (x—a)H}, 5_,(x:p)

n (W) (b—)HY o\ (x:p)x € [a,b].

Corollary 8.21 Along with assumption of Theorem 1, if f € Loo|a,b], then we get follow-
ing inequality:

(ex0ear p) (ep) + (20 £) (i) (8.137)
< Wl [y o ) + (08 o (2p)].

Corollary 8.22 [fo = ¢’ in (8.137), then we get following result:

(s r) ap)+ (8527 f) (ep) (8.138)
M [y o)+ 00 5]

Corollary 8.23 [fs = 1in (8.137), then we get following result:
1) r 5,
(eroearf) (ep)+ (%58 f ) (x:p) (8.139)
Slleo
< % [(x—a)H:’ﬂGil(x;p) (b—x)Hy" 5 (x; p)}
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Theorem 8.27 With the assumption of Theorem 8.26 if f € L|a,b], then operators de-
fined in (2.12) and (2.13) are bounded and continuous.

Proof. Let f € Le[a,b]. Then from (8.133) we have
2b—a)Hy_, . (b;p)l|fll

,0.,¢.,9,
(2037 1) ()| < 20 Al = el o (3:) <

s+ 1
(8.140)
That is 5
| (1829 £) ()| < M
2(b— a)H; . L (b:p)
where M = —— 27—
Therefore (Swf pc’g’ f ) (x; p) is bounded also it is easy to see that it is linear, hence this

is continuous operator. On the other hand, from (8.135) we obtain

.8.,¢,q,
[(ep2car 1) ()| < Kl

(b—a)

where K = —”’(p) Therefore ( w’5 o f) (x;p) is bounded and linear, hence

s+1
it is continuous operator. O

Lemma 8.9 Ler f: [a,b] — R be a s-convex function. If f is symmetric about “+b , then
the following inequality holds

+b 1
f<a2 ) < 5. (8.140)

Theorem 8.28 Lerw e R, ,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f:la,b] — R, a > b, be a real valued function. If f is positive, s-convex and symmetric
about #, then for o,0’ > 0, the following fractional integral inequality for generalized
integral operators holds:

_ a+b
2¢ ‘f( 3 ) [H,Y G,+1(a;p)+H+G+1 (b; p} (8.141)
,0,¢,q,7 . 18.6,q.r
< (530, 0) )+ (25520, O
f

s[wa—,aq(a;lﬂ)+Haw+,c—l(bP 2( s+1 >

Proof. As f is s-convex so for x € [a,b], we have:

flx) < <x—a)~‘f(b)+ (i_z)sf(a). (8.142)

b—a
Multiplying (8.58) and (8.142), then integrating over [a, ], we get
b o' -0.,c,q,r p
| =T Dt = i pf(x)ax

(b-a)” g(i?;(av;sgba)p;p) {f(b) ./ab(x—a)sdx—i—f(a) /ab(b—x)“'dx] )

<
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From which we have

(%5 of) t@ip) = -0 B - aip) (FEI) g4

b—,p,0'+1,T p,0'\T s+ 1

w,8,c,q.r w b
(et of) i) = 0 P (i) (FETOD) 0 aan

Multiplying (8.61) and (8.142), then integrating over [a, ], we get
b S
| 0= ES (o073 p) f(0)dn
a

. (b— )GES(%‘I; (av;s(ba)p;p) [f(b)/ab(xa)sdﬁf(a)/ab(bx)fdx}

From which we have

(8W,5,C,q,r f) (b p) (b a)0'+1Eg g_qrr(w(b - a)P;p) <M) (8.145)

at.p,o+1,T s+ 1
w,8,¢,q,r + (b
(%fﬁ,’gll,pf) (b;p) < (b—a)’H: ;. (b;p) (%) : (8.146)
Adding (8.144) and (8.146), we get
(et of ) (@sp)+ (15007, 1) (bip) (8.147)
+ f(b
<[ sty 2 i) 0P (KO,

Multiplying (8.140) by (x — @)% E>“4" (w(x — a)P; p) and integrating over [a, b]

p.o’.T

(a+b) ) Eyoity (wlx—a)°s p)dx (8.148)

/x a)® ggf’r(w(x—a)p;p)f(x)dx.

By using (2.2), we get

a-+b 1 5.0,
(57 ) . alan) < g (5580 ) (@) 8149)

Multiplying (8.140) with (b fx)"Eg:f;,qT’r(w(b —x)P;p) and integrating over [a,b], also
using (2.2), we get

a+b 1 5.0,
F(557) H o 0) < 5 (25587, o) (i) (8.150)



176 8 BOUNDS OF HADAMARD AND FEJER-HADAMARD INEQUALITIES

By adding (8.149) and (8.150), we get;

_ a+b
2! 1f< > )[HZ”,0/+1(a;p)+H;”+,a+1(b;p)} (8.151)
,0,C,q,r . ,0,C,q,r .
< (erear, o) (@p)+ (575037, f ) ip).
By adding (8.147) and (8.151), inequality (8.141) is obtained. O

Corollary 8.24 I[fwe take o = ¢’ in (8.141), then we get

- a+b
> 1f< 2 ) (HY i1 (@p) + Y oy (B30)] (8.152)
8.¢.4q, 8,c.4,
< (eear, ) @p)+ (2287, ) (i)

< [HZ?H (a:p) +H:+,071(b;p)} b-ay (W) |

Theorem 8.29 Lerw e R, r,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f:la,b] — R be a real valued function. If f is differentiable and | | is s-convex, then for
0,0’ > 1, the following fractional integral inequality for generalized integral operators

holds:

,0,,g, .5,¢.4,
’(5347;;?1177]") (x:p) + (6Z;,p,'§;’+l7ff> (x:p) (8.153)

B (H;i,cq (6 p)f(a) +Hy oy (X;p)f(b)> ’

< (PR oy )

Proof. Letx € [a,b] and 1 € [a,x], by using s-convexity of ||, we have

rons (0) @i+ (25 1ol (5.154
From (8.154) we have
ro < (Z0) i@l (24) o (5,155

The product of (8.48) and (8.155), gives the following inequality

(x—1)° T ESSL (wx — )P p) f(1)dr (8.156)
< (x—a)"2Ep g% (wix—a)P:p) (If (@) (x— 1)+ | f ()|t — @) .
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After integrating above inequality over [a, x|, we get
X
/ (x— 1)V ESS (w(x —1)P: p)f (1)dt (8.157)
a
X X
< (=) ERGY =@ ip) (I (@) [ (= e+ 1F W] [ (- a)ar}
a a

= (x—a) Ep &% (w(x—1)";p) <WM) :

By using (8.72), (8.157) takes the following form
. S.c.qr . @]+ ()]
(H(vyvfl,ﬁ(x’p)) fla)— (8;1,;(3“,1.)”) (x;p) < (x—a) ;/,Lﬁ(xyp) <s—|——1 .
(8.158)

Also, from (8.154) we get

roz-((Z2) @i+ (22) o). (8.159)

Following the same procedure as we did for (8.155), we also have

(eroear, f) (ep) = HY o (v:p) (@) (8.160)
<(x—a) :;Vf],w (x;p) (—|f (a)!i |1f (x)|> :

From (8.158) and (8.160), we get

,8,¢,q,
(25800 ) (0) ~ HY o () (@

(x:p) (If/(a)l + If’(X)I) _

’ s+ 1

(8.161)

<(x—a)HY

o—1l,at

Now we letx € [a,b] and ¢ € [x,b]. Then by using s-convexity of | /'| we have

ror= (52) rens (=) 1ol .16

On the same lines as we have done for (8.48), (8.155) and (8.159) one can get from (8.52)
and (8.162), the following inequality:

|(&%ar, of ) Gep) = Hyi_ - () f(0)] (8.163)
/ b /
<(b—=x)Hg_, (xp) (Mﬂ) .

From inequalities (8.161) and (8.163) via triangular inequality (8.153) is obtained. O
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Corollary 8.25 Ifwe take o = ¢’ in (8.153), then we get
,8,¢,q, .8,¢.,q,
‘ (%W%,p ot ) (x;p) + (62’;7;;;’117Tf) (x:p) (8.164)
et )@ T Hy o () (D) |

- (a2
(L) -y o)
(

IN

s+ 1

+

H !Jﬂf |>(b XHy- 5 (xp).x € [a,b].

8.7 Bounds of Fractional Integral Inequalities
for (s,m)-convex Functions

The results of this section are generalizations of results of previous section.

Theorem 8.30 Lerw e R, ,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f:[a,b] — R be a real valued function. If f is positive and (s,m)-convex, then for
0,0’ > 1, the following fractional integral inequality holds:

(er2earr) (ep)+ (%08 f ) (x:p) (8.165)
< (L) -y i)
+(W> (b—)HY 0\ (6:p),x € [a,b].
Proof. Since f is (s,m)-convex, we obtain
f) < (;C_Z)Sf(aHm (;_Z)Sf(x). (8.166)

By multiplying (8.48) and (8.166) and then integrating over [a, x], we get
X
d,c
[ =0T B el =) p) 0
a

"X

< - B te— i) (L [y
a

=
+mf(x) /x (;_Z>sdt) ,

that is, the left integral operator satisfies the following inequality:

(2007 1) (vip) < (x— )M 1(X'p)<'7f(a)stﬁf(x))-

(8.167)
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Again from (s,m)-convexity of f, we have

£0) < (%)Sﬂb)m <b—i)sf<x)- (8.168)

By multiplying (8.52) and (8.168) and then integrating over [x, b], we have
b 5
[ =07 B wte — 2P sp) (0
X
—10,c fCl b
< 0= Bt Outo—2sp) (L [ vy

by
+mf(x)/xb (2") dt)

that is, the right integral operator satisfies the following inequality:

emoedr W [ fB)+mf(x)
( ~p.0, f>( p) < (b—x)H 5 (x; p)( | : (8.169)
By Adding (8.167) and (8.169), the required inequality (8.165) is established. O

Some particular results are stated in the following corollaries.

Corollary 8.26 If we set 6 = ¢’ in (8.165), then the following inequality is obtained:
.8.c.4,r . .8.c.4,r .
(5f+,pc,§,ff ) (x:p) + (8;3,pf§,1f) (x:p) (8.170)

< (W) (x—a)HY, ;i (x:p)

4 <W) (b—x)Hy" 5 (x;p),x € [a,b].

Corollary 8.27 Along with assumptions of Theorem 1, if f € Les|a, D], then the following
inequality is obtained:

(e )+ (675870 ) ) 170

< WALEM [y, )+ 608y ()]

Corollary 8.28 [f we take 6 = ¢’ in(8.171), then we get the following result:
5,007 S,
(grtpc,g,rf ) (x:p) + ( e S ) (x:p) (8.172)

< W) g ) 60 )]
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Corollary 8.29 Ifwe take s = 1 in (8.171), then we get the following result:

.8.c.4,r . .8.0.4,r .

(er2earp) (ep) + (%08 f ) (x:p) (8.173)
1+ m)

< B [ H oy (550) + (b= X)HY 1y (x:p)]

Theorem 8.31 With the assumptions of Theorem 1 if f € Le|a,b], then operators defined
in(2.12) and (2.13) are bounded and continuous.

Proof. If f € Ls[a,b], then from (8.167) we have

‘( w,a,c,q,rf) (x;p)‘ - 2{|fllee(X+m)|x—alH}. ;(x:p) (8.174)

at,p,0,T s+1
_ 2/|flle(d—a)HY ; (bip)(1+m)

s+1 ’
that is
(2597 5) )| < MIIfl
2b-a)HY, | (bip)(1+m) Wb car o N
where M = P . Therefore <£a+7p7a,rf> (x; p) is bounded also it is easy

to see that it is linear, hence this is continuous operator. Also on the other hand from
(8.169) we can obtain:

5,04,
[(epcar.r) ()| < Kl

2b-a)ty’ , (a:p)(1+m)
bt . Therefore (SZV;‘?‘big;rT.f) (x;p) is bounded also it is

linear, hence continuous. O

where K =

The following lemma is needed to prove the next result.

Lemma 8.10 Let f : [a,mb] — R be (s,m)-convex function. If f is f(a+mb —x) = f(x)
and (s,m) € [0, 1]%, then the following inequality holds:

f<a+2mb) _a +l:s)f(X)' (8.174)

Proof. As f is (s,m)-convex function, we have

f(a+2mb) < f((lft;?+mtb)+mf(ta+;:(lft)b). (8.175)
Let x = a(l —t) + mtb. Then we have a+mb —x=ta+m(1l —1)b.
a-+mb f(x) fla+mb—x)
f( 5 )g R (8.176)

Hence by using f(a+mb —x) = f(x), the inequality (8.174) can be obtained. a
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Theorem 8.32 LetweR, 1,p,0,T>0,¢>0>0withp>0and0< qg<r-+p. Let
f:la,b) — R, a > b, be a real valued function. If f is positive, (s,m)-convex and
fla+mb—x)= f(x), then for 6,6’ > 0, the following fractional integral inequality holds:

14+m - 2
,0,¢,q, ,0,¢,q,
< (8;”;,g,'§z’+mf> (a:p)+ (8;1',;@11,1}”) (b:p)

Zs(ba)f<a+mb> [H;Qa,(a;p)+ 21,0(1’?1’)} (8.177)

b
3[ﬁﬁw@ﬂﬁ+Hﬁﬁwuﬂ(b—@(iL%E%ﬂﬂ)_
Proof. As f is (s,m)-convex so for x € [a,b|, we have:
fx) < (ZZ) f(b)+m (bz) fla). (8.178)

By multiplying (8.58) and (8.178) and then integrating over [a, D], we get

b , i
| =T ES S8 (wle—a):p) f(d

p,0'+1,7

+mf@)lb<z:z>:u>.

from which we have

\8.,¢,q, . d 3,¢,9; .
(erear, £) @) < (b—a)” VESSH, (w(b—a)?p) (

< (0= B (o6 (L2 [ emaya

f(b) +msf(a)

I ) (8.179)

that is

w,0,C,q,r w . b .
(sb;‘l’)”g;“rf) (a:p) < (b—a)Hy ,(a:p) (W) : (8.180)

By multiplying (8.178) and (8.61)and then integrating over [a,b], we get

b
=07 E S =)

< (b—a)°Epgt1 [(w(b—a)’:p) ( = /ab<x —a)'dx

p,o+1,7 (bfa)s

st [ (222 ).

from which we have

f(b) +mf(a)

T ) (8.181)

,0,0,q,1 . 5,¢,q,r .
(Sc:vﬂpc,gﬂ,r-f) (bip) < (b7a)GHEp-,chil,r(W(bia)p’p) <
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that is
w,0,c,q,r A w . f(b) +msf(a)
(287, f ) bip) < (b—a@)H o (b:p) (T) - (8.182)
Adding (8.180) and (8.182), we get;
(e, o) (@sp)+ (15527, o) (bip) (8.183)
b)+
< [ gtz )] - (LE20L),

Multiplying (8.174) with (x — a)G/Eg:CC;,qu (w(x —a)P;p) and integrating over [a,b], we
get

a+mb\ [P ' S
f( 2 )/<x_“)6Egic"q#l,r(W(x—a)p;P)dx (8.184)

1+m b 1 8.c.a.
< T /a (xfa)cEp"gf:f]’f(w(xfa)p;p)f(x)dx,

a-+mb 1+m 8.0,
f( . >(ba)HZ"76,(a;p)§ = (81;”;@2,';1’1]”) (@ p). (8.185)

By multiplying (8.174) with (b —x)"Eg:g’i’lrﬁ(w(b —x)P; p) and integrating over [a, b], and
after simplification we get

a-+mb 1+m 5.0
f( 5 )(ba) it o(bip) < —; (s;i',p,gimf) (b;p). (8.186)

By adding (8.185) and (8.186), we get;

2 a-+mb
g < 5 ) (b—a) [H,;QG, (a:p) + H:’ta(b;p)} (8.187)
8.4, .8,¢,4,
< (epear ) (@p)+ (e300, f) (b:p),
By combining (8.183) and (8.187), inequality (8.177) can be obtained. O

Corollary 8.30 Ifwe take o = ¢’ in (8.177), then the following inequality is obtained:

2°(b—a) a-+mb
14+m - ( 2 ) [HZV:G(“?PH aw+,c(b;p)} (8.188)
.8.,¢,q, S.c.0.
< (eyPear, ) (@p)+ (e15547, f) (bip)

0 +mf(a)) |

< [H;V,,G(a;p)—i—Hfta(b;P)} (b—a)( T
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Theorem 8.33 LetweR, 1,p0,0,7>0,¢>0>0withp>0and0< qg<r-+p. Let
S la,b] — R be a real valued function. If f is differentiable and | f'| is (s,m)-convex, then
for o,0' > 1, the following fractional integral inequality for generalized integral operators
holds:

(et f) (sp)+ (8,§Vi‘?;§’§}1uf> (x:p) (8.189)
— (M} g s (ep)f (@) HY g1, ()1 (D)) |
(|f’ a)| +ms|f'(x |)(x—a)H;V+’Gl(x;p)

IN

s+1

lf'(D)] + ms|f' (x)|
s+1

+

) (b—x)Hy- 511 (x;p),x € [a,D].

Proof. Let x € [a,b] and 1 € [a,x), by using (s,m)-convexity of |f’|, we have
', t—a
o) r@lem (=

a)slf’(x)l- (8.190)
) @ (=

The product of (8.48) and (8.191), gives the following inequality:

OB <;‘j

From (8.190) follows

f) < ( ) 1 (x)]. (8.191)

(x—1)T B G (wx —1)P;p) ' (¢)dr (8.192)

< - B =) ((22) 1@l em (22 ) 1)

After integrating above inequality over [a,x], we get

/x(x DO ESSL (w(x—1)P; p) £ (1)dt (8.193)
S(x—a)aflEg”f,’f]T’r(w(x a)? ( |/

sl [ (22 )

— (v— @) ESSY (wlx— )P p) ('f ()l +mlf <x>|) |

By using (8.72), (8.193) takes the following form:

H o (i) f(a) = (55507, ) (kip) (8.194)
< G (o p)<|f(a)|+mSIf(X)l>'

s+ 1
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Also, from (8.190) we have

fle) =~ ((j_;) (@)l +m (i_Z)SIf%x)I) : (8.195)

Following the same procedure as we did for (8.191), we obtain:

d.,c,q,r . .
(eear 1) p) —HY o () (@) (5.196)

< G asp) (ELEAEET),

From (8.194) and (8.196), we get

.0,¢,q, . .
€t paiil ) p) —HE o (v p)f(a)
0,0+1, :

< (. gy (p) (LRI

(8.197)

Now we let x € [a,b] and t € (x,b]. Then by using (s, m)-convexity of | f’| we have

ol (= )|f< em (5= )|f< ) (8.198)

On the same lines as we have done for (8.48), (8.191) and (8.195) one can get from (8.52)
and (8.198), the following inequality:

5,04,
(%07, of ) (ip) = By g0 (5:2)£2)]| (8.199)
[f'(B)] +ms|f'(x)]
< (b—x)H)" o (x:p) ( T )
From inequalities (8.197) and (8.199) via triangular inequality (8.189) is obtained. O

Corollary 8.31 Ifwe take o = ¢’ in (8.189), then the following inequality is obtained:

,0,C,q,T 5,64, .
|(eoar, o) (sp)+ ( ,,W oot of ) () (8.200)

(Ha+ o (EPIF(@) +H o (p)f(D))]
rms ),

<(=
(If/ )|+ mslf'(x)]

s+1

H;}* o— 1(X;p)

_|_

) (b—x)H," 5 (x;p),x € [a,b].
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8.8 Bounds of Fractional Integral Operators
for Exponentially s-convex Functions

The generalizations of results proved for s-convex functions are given in this section.

Theorem 8.34 LerweR, ,p,0,7>0,¢>8>0withp>0and 0 < g<r+p. Let
f i [a,b] — R be a real valued function. If f is positive and exponentially s-convex, then
for 6,06’ > 1, the following upper bound for generalized integral operators holds:

(ersanr) ep)+ (55 ars) () 5.200)
< (L0 L)) (1)

e — edx s+1

f0) £\ (b—0HY , (xp)
+(eﬂb+eﬂx> sb+1 1

,x € |a,bl], a,B €R.

Proof. Since f is exponentially s-convex, we obtain

o< (E) 10 (o) 10 5202

X—a X—a

By multiplying (8.48) and (8.202) and then integrating over [a, x|, we get
" s
[ =0 BRG0P p) o)
a

o—10.¢4,r . X X
L =a) it (W(X7a)p’p){£(oi)/a (Xfl‘)sdl‘Jr%/a (t —a)'dt},

= (—ay

that is, the left integral operator follow the upcoming inequality:

(x—a)Hy_; . (x:p) (f(a) Jrf(X))'

o o (8.203)

,0,6,4, .
(oearf) (xp) <

Again from exponentially s-convexity of f, we have

o S b b o N
(2GR o

By multiplying (8.52) and (8.204) and then integrating over [x,b], we get

[T B ) )

(b—x)G'flEﬁ:g,c{,Tr(W(b—x)P;p) f(b) b . oW )
(pb—x)s Copp /x (t—x) d“rew/x (b—1)'dt}

<
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that is, the right integral operator satisfies the following inequality:

b—x)H}, | ,-(x:p) [ f(b

w,8,¢,q,r ( o'—1,b~ f( ) f(x)

(b o, f>( p) < T (eﬁb+eﬁx . (8.205)
By adding (8.203) and (8.205), the required inequality (8.201) can be obtained. O

Some particular results are stated in the following corollaries.

Corollary 8.32 Ifwe set 6 = o’ in (8.201), then the following inequality is obtained:
,0,6,4, 5.0,
(#,pc,g;;f ) (x:p) + (%fé,p,ﬁﬁf) (x:p) (8.206)
< (L9 160 Lo goie)

e — edx s+1

fb)  fx)\ G—x)H  (xp)
N ( o eﬁx) sb+1 l "

Corollary 8.33 Along with assumption of Theorem 1, if f € Lo|a,b], then the following
inequality is obtained:

,0,0,q,1 . ,0,C,q,T

(Sftpc,g,rf ) (6 p)+ ( &y f) (x:p) (8.207)
Al [( 1 1 ‘

St [\ o | e oo (p)

AT P —|

€ [a,b].

Corollary 8.34 Ifwe take o = ¢’ in (8.207), then we get following result:
,0,6,4, 8.0,
(ex0ear 7Y (ep) + (1507 7) (xp) (3.208)
Wl [ 1 1 |
<ot \ema tm ) m Ol o (p)

+<,13,,+ }3)@ OHY l(xp)]

Corollary 8.35 Ifwe take s =1 in (8.207), then following result for exponentially convex
Sfunctions hold:

(&) o)+ (67557 ) ) (8209
o 1 1

< @ [(ﬁ"" E) (x—a)Hyi 51 (x:p)
1 1

+< TR T )<b Xy a1 1(“7)}
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Theorem 8.35 With the assumptions of Theorem 1 if f € Lw|a,b], then operators defined
in(2.12) and (2.13) are linear, bounded and continuous.

Proof. If f € Lo[a,b], then from (8.167) we have

’(Qtvf,’f,’g’,;f) (X;p)’ < At g () <L+ : ) (8.210)

Ky + 1 eoca eﬁ
_20—aHy ,(Bip) (1 NERT
- s+ 1 eda | pOx )
; Scqr 2b-a)HY,  (bip)
that is | (25597 1) ()| < MIfl|o. where ¢ = et g > 0 and for

2b-a)H”,  (bip) : .
a<0,M= ¢ ;’I‘l"’l ! Lt e%) Therefore (82’;5;;’?;]”) (x;p) is bounded also

it is easy to see that it is linear, hence this is continuous operator. On the other hand, from
(8.169) we obtain:

10,0, .
(22 ) ()| < K11l

20—y, (@p) 2o-aly (@)
WhereK:W,BZOadeOI‘B<0,K=S+—'l(6ﬁ—a+eTh>.
Therefore (sﬁi’f"g;; ) (x; p) is bounded also it is linear, hence continuous. O

Definition 8.1 Ler f : [a,b] — R be a function, we say f is exponentially symmetric about
atb -
o

f&) _ flatb—x)

eox elatb—x) ’

eR. (8.211)

It is required to give the following lemma which will be helpful to produce Hadamard type
estimations.

Lemma 8.11 Ler f : [a,b] — R be an exponentially s-convex function. If f is exponen-
tially symmetric, then the following inequality holds:

f<a+b) < S () (8.212)

2 — zsfleax !

Proof. For [a,b] C R be a closed interval, ¢ € [0,1] and o € R, we have
f(#) —f (az+(éfz)b T a(l—zz)+bz)

Since f is exponentially s-convex, so

atb\ _ fla+(1-0)b)  fla(l—1)+bi)
f ( 2 ) < 25 po(at+(1-1)b) + 2sela(l—t)+bt) * (8.213)
Let x = at + (1 — )b, where x € [a,b]. Then we have a+b —x= bt + (1 —r)a and we get
a+b) _ fx)  flatb-x)
f< 2 > < 250(x) + 2seo(at+b—x) (8.214)

Now using the fact of exponentially symmetric we will get (8.212). O
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Theorem 8.36 LerweR, ,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f:la,b] — R, a > b, be a real valued function. If f is positive, exponentially s-convex
and symmetric about “erb, then for 0,7 > 0, the following fractional integral inequality for

generalized integral operators holds:

, +b
2571 ox a
e f( >
< 8w,5,c,q,r ) (a;p) + 8w,5,c,q,r ) (b;p)
= \"b,p,0/+1,1: P at,p,0+1,1° P

(b (L2220,

s+ 1 ela eﬁb

) [HZ”—,G/H (@p)+HY 50, (b; p)} (8.215)

< |:H;V+’Gfl (a;p) + H;}*”o‘f] (b;P)}

Proof. As f is exponentially s-convex, for x € [a,b], we have:
x—a\’ f(b) b—x\" f(a)
< : . 21
fx) < (ba) ePb +<ba) ea (8.216)

By multiplying (8.58) and (8.216) and then integrating over [a, b], we get

b S8,c,q,r
[ ar B sp) s

<(b- a)GLsES’C’q’r(w(b —a)’;p) {& /ab(x —a)’dx+ fla) /ab (b —x)“'dx] .

p,0'T ePb e0a

From which we have

w,0,¢,q,r (b_a)G/Jr]Es,gj’q:rr(W(b_a)p;p) b
(45007 (i) < s (L2 +557). wam
w,0,C,4,1 b— 2 W . . b
(sb;‘l;,’g;%ff) (a:p) < (Hi) Hgr y4-(@:p) (%ﬁL%) (8.218)

By multiplying (8.216) and (8.61) and then integrating over [a,b], we get
b S
| =BG (b0 p) f(0)dx
a

eBb ea

<(b— a)"”ES:f;f’T’r(w(b —a)’;p) [ﬂb) /ab (x—a)*dx+ f(@) /ab(b - x)sdx} :

From which we have

(b—a)7" EysY (w(b—a)sp) (L, 1)
s+1 e Bb

.5,¢.4,
(exocar £) @ip) < ). G2

W,0,C,q,I" b— 2 w b
(eaf;,jg;l,ff) (bip) < (s ;i) o—1.q+(b:P) (C(aaa) + %) (8.220)
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Adding (8.218) and (8.220), we get;
(e%ar, of ) (@p)+ (e1502r, 1) (bip) (8.221)
< [yt ey )] S (L LOD),

Multiplying (8.212) with (x — a)’ES oy (w(x —a)P; p) and integrating over [a,b], we get

1(452) [ areszztemarin

(8.222)
1 S r
<  Tgux /a (xfa)tEp:ff’,‘{’T (w(x—a)?; p)f(x)dx.
By using Definition (2.2), we get
ath 1 S.e.q.r .
£S5 s @) € st (5580 ) ) @229

Multiplying (8.212) with (b fx)GEg,’g’?T’r(w(b —x)P; p) and integrating over [a,b], we get

a+b 1 S r
f<?) o+1, a+(b p) < 2s—1 g0x <8W7 o f) (b;p).

o p ol (8.224)
By adding (8.223) and (8.224), we get;
a+b
2 ey ( 5 ) [H§/+1,b— (@:p)+Hy 4 (b;p)} (8.225)
,0,C,q,T . ,8,¢,q.r .
< (epear, ) @p)+ (55080, f) (Bip).
By combining (8.221) and (8.225), inequality (8.215) can be obtained O

Corollary 8.36 Ifwe take o = ¢’ in (8.215), then the following inequality is obtained

a+b
2716 (L) (B s ai) g (50)]
8,047 8.4, .
< (erear, ) twp)+ (2557, 1) (i)

(8.226)

at,p,0+1,1°
< |ay-

b oo1(@p)+H o l(b;p)} (b—ay (ﬂa) f(b)).

s+1 ela eﬁb
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Theorem 8.37 Letwe R, r,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f:la,b] — R, be a real valued function. If f is differentiable and |f’| is exponentially
s-convex, then for 6,0’ > 1, the following fractional integral inequality for generalized
integral operators holds:

|(eoear, o) ap)+ (65508, of ) (i) (8.227)
— (o r () (@) + Y o () F(D))|
<|f( a)l |f'<x>|> (=) 5, (5P)

e e s+1
' ' (b—x)H}. ; (x:p)
7O, ) Fonr)
ePb ePx S+1
Proof. Letx € [a,b] and t € [a,x], by using exponentially s-convexity of | f'|, we have
—t\'|f'(@]  (t—a\"|f()
o)<~ . 8.228
rons (S0) L (=2 12 (8.228)
From (8.228) follows
—t\'If (@) (t—a\"|f' )
< (2 . 22
f()_<x—a> exd + xX—a e%x (8:229)
The product of (8.48) and (8.229), gives the following inequality
(x =) ESSL (w(x—1)P; p) £ (1)dt (8.230)
s , f(a o (x ,
<(x—a)’! ‘Egéqf (wx—a)”;p) <—| e‘g‘“” (x—1)+ ) eix” (t—a)’).

After integrating above inequality over [a,x], we get
X
/( — 1) ES S (w(x —1)P; p) f (t)dr (8.231)
a
/ /
< - s oo s S [ ryare L [ apany
d,¢c
_ o0 B eVl (1) )

s+ 1 ea eox

By using (8.72), (8.231) takes the following form:

(Héil a (x;p)) fla)— (83;5,;“%’,}() (x;p) (8.232)
o aHy ) (i )(If/( ).

K + 1 eaa eO{x
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Also from (8.228) we have

£ > - (C:;)S |fe/i‘;)| + <;:Z>S |ng)|> : (8.233)

Following the same procedure as we did for (8.229), one can obtain:

(eoear, f) ep)—HY o (e:p)f(@) (8.234)
< e P) (I ALY,
- s+1 e%d e

From (8.232) and (8.234), we get
‘ (Sff;;‘iil ] f> (x:p) — HY_, o (x:p)f (@) ‘ (8.235)
_ (x—a)H7 | i (x:p) (If’(a)l n |f'(x)|) _
- s+ 1 ea eox

Now we letx € [a,b] and ¢ € [x,b]. Then by exponentially s-convexity of | f/| we have

, _ N / b b _ N /
o () ERL ()

On the same lines as we have done for (8.48), (8.229) and (8.233) one can get from
(8.52) and (8.236), the following inequality:

.0.¢.q, . .
(%00, o) ) = oy (6p)f()] < o R

(8.237)

(b—x)Hg - (x:p )(If/(b)l LS (x )I)_

From inequalities (8.235) and (8.237) via triangular inequality (8.227) can be obtained. O

Corollary 8.37 Ifwe take o = ¢’ in (8.227), then the following inequality is obtained:

,0,C,q,T 5,64, .
[(eear, 1) )+ ( ,,W oot of ) ) (8.238)

—(H o 1(x PI(@)+Hy o (:p)f(8))]

F@l 0l (x—a)H} 5 (x:p)
( eaa eo{x ) S+1
EAQINEC)] (b—0)H ; ,(x:p)
+< eﬁb Px ) o € la,b].
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8.9 Bounds of Fractional Integral Operators
for Strongly (s,m)-convex Functions

The first result provides an upper bound of sum of left and right fractional integrals for
strongly (s,m)-convex functions.

Theorem 8.38 Lerwe R, ,p,7>0,¢c>8>0withp>0and 0 < g <r+p. Let
f€Li[a,b],0 <a<b. If f is a positive and strongly (s,m)-convex function on [a,mb] with
modulus A > 0, m € (0,1], then for 6,6’ > 1, the following fractional integral inequality
for generalized integral operators holds:

(exanr) )+ (7550s) (in) (8239
+mf (% —ma)’
< (f @i y) 3 &—ma) ) (c—aH oy (5)
b)+mf (% b—x)’
- (f( )sf{(m) Al 6mX) ) (b—x)Hy- 51 (6p), x € [a,b].

Proof. The function f is strongly (s,m)-convex function with modulus A, therefore one
can obtain

o) < (x_t)sf<a)+m(;_“)sf(f) PN Gl (Ut (L) PPV

xX—a a m m(x —a)?

By multiplying (8.48) and (8.240) and then integrating over [a,x], we get
X
—1.-6 r
[ =07 B w0 ) f(e)ar
a

< (=) ESY (wx— )P p) ( 1 [ ety

(x—a)*

—Hm‘(%)/ (;_Z)Sdt—l%/ax(x—t)(t—a)dt).

Therefore, the left fractional integral operator satisfies the following inequality:

a)+mf (< x—ma)?
(sw"s’c’q’rf) (x;p) < (x—a)H", __ (x;p) (f( )ms () */1( ) ) (8.241)

+ . + o—
at,p,0,T at,o—1 s+ 1 6m

Again, from strongly (s, m)-convexity of f, we have
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By multiplying (8.52) and (8.242) and then integrating over [x, b], we have

b o' —110.c,q,r
[ =07 By wle =P p) £ 1)

<(b—x)° *'Eggf”( (b—x)p;p)<(l;f(a)z)s./xb(t—x)sdt

+mf(%)./xb <2’_;>Sdrx%/xb(;x)(bt)dt).

Therefore, we have that, the right integral operator satisfies the following inequality:

mf (= mb —x)?
(;”’5;;‘5; f)( p) < (b—x)Hy" o (x:p) <f<b)+ f("’)—/1< b )>. (8.243)

s+ 1 6m

By adding (8.241) and (8.243), the required inequality (8.239) can be obtained. O

Some particular cases are given in the following results:

Theorem 8.39 LerweR, np,7>0,¢c>8>0withp>0and 0 < g<r+p. Let
f € Li[a,b],0 <a<b. If f is a positive and (s,m)-convex function on [a,mb], m € (0,1],
then for o,6’ > 1, the following fractional integral inequality for generalized integral
operators holds:

.8,¢,q,r ,8,¢,q,r .
(er2earr) (ep)+ (%508 f ) (kip) (8.244)

< (%) (x— ) o (50)

_’_(]((lj)%n/{(%)) (b )C) b=, — I(XP) xe[a,b].

Proof.  For (s,m)-convex functions the inequality (8.241) holds as follows (by setting
A =0):

(8.245)

(ex%sr) () < (@ oy (ip) (%) .

Also, for (s,m)-convex functions the inequality (8.243) holds as follows (by setting A = 0):

( wﬁpcg,r f)( p) < (b—x)H b ol 1( xp) (%7’%{(”%)) ) (8.246)

By adding (8.245) and (8.246) the inequality (8.244) can be obtained. O
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Corollary 8.38 The following inequality holds for strongly convex functions by taking
s=m=11in(8.239):

(exaas) o+ (a52500) o
a X X—da 2
< (f( );’f( )_x( 5 ) )(x—a)H;V+’o-1<x§P)
X —x)?
+ (f(b);f( L 6 ) )(b—x)Jal,b(x;p)’xe [a,).

Corollary 8.39 The following inequality holds for convex functions by taking s = m =
1, A =0in (8.239) which is proved in [36, Corollary 1]:

(i es) o+ (6555508) (o) 8249
< (1579 et oo i)
n (’M) (b= ) 1p-(0)x € [a,5].

Remark 8.13 The inequality (8.247) provides refinement of inequality (8.248).

Corollary 8.40 Ifwe set 6 = o’ in (8.239), then the following inequality is obtained:

(erearr) up)+ (&% f) (i) (8.249)
S(f( a)+mf (£)

s (x —ma)?
s+1 6m

(x—a)H 51 (xp)

(b_x)']ocfl,b* (x;p),x € [a’b]'

. (f(b)+mf(%) _/l(mb—x)2>

s+ 1 6m

Corollary 8.41 Ifwe set 6 = ¢’ and A = 0 in (8.239), then the following inequality is
obtained for (s,m)-convex function:

(er2earp) (ep)+ (55 f ) (:p) (8.250)

g(ﬁJ§§§i2>@ DH. o, (:p)

. (f(b)erf(%)

s+1 ) (b—x)Jgy—1p-(x;p),x € [a,b].
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Corollary 8.42 Along with assumptions of Theorem 1, if f € Les|a, D], then the following
inequality is obtained:

(05t ) o)+ (875550 ) ) 823
g“ﬂ':’iilf””[(x—a)#,a,l( P)+ (b= o1 (x:p)]

x—ma)*(x—a mo—x —-X
-l Dy e+ Oy )]

Corollary 8.43 Along with assumptions of Theorem 1, if f € Lo[a,b], A =0, then the
following inequality is obtained for (s,m)-convex function:

(&) bom)+ (6755 ) tep) 23
< WCEM) et )+ (0= )
Corollary 8.44 For 6 = ¢’ in (8.251), we get the following result:
(&) (o + (6755508) (o) 239
g”f'ti(‘_il:rm)[(x—a) Mo (6p)+ (b =Xy (x;p)}
- [k W#Hﬁa,l(x;p) +A(Wlb_?#]a71,b* (x;p)} :

Corollary 8.45 Foro=0', A =0in(8.251), we get the following result for (s,m)-convex

Sfunction:
(e r) (o) + (e f)< ) (8239
(1

Corollary 8.46 Fors=1in(8.251), we get the following result:

S r S r
(er2earp) (ap)+ (%08 f ) (x:p) (8.255)

< WA=Gm) 1y )+ 5= )]

B L (x_m?#mﬁ,m (x:p) +24 WW*“’” (x;p)} '
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Corollary 8.47 Fors=1,A =01in(8.251), we get the following result for (s,m)-convex

function:
() (e + (675508) (o) 8230
(1
< W= Ty, )+ (0 0H o0 p)]

Remark 8.14 The inequality (8.255) provides refinement of inequality (8.256).

Theorem 8.40 Letrw eR, r,p,7>0,¢>8>0withp>0and 0 < g <r+p. Let
f€Lila,b],0<a<b. If f is a differentiable and | f'| is a strongly (s,m)-convex function
on [a,mb| with modulus A > 0, m € (0,1], then for 0,06’ > 1, the following fractional
integral inequality for generalized integral operators holds:

'(gyff;;‘,gim f) (v:p)+ ( etear f) (x:p) (8.257)
— (Hy oo s D)@+ HY oy (0)S(2)) |
< ( @)+ m s ()l —A - ma)2> (x—a)H}: 5 (x:p)

s+1 6m

. (If’(b)|+M|f’(%)| L mb—a)?
s+ 1 6m

)(b x)H) S ((x;sp), x€la,b].

Proof. Asx € [a,b] and t € [a,x), by using strongly (s,m)-convexity of | f’|, we have

o< (220) ir@len (2

From (8.258) we get

) vr@ien(24) |

The product of (8.48) and (8.259), gives the following inequality:

7 (1) ' a (xft)(tfa)(xfma)z. (8.258)

m m(x—a)?

/ (1) ‘ _p G0 —a)—ma)? oo

m m(x —a)?

O <jj_

(x =) ES S (wlx—1)Ps p) f (1)dt (8.260)
(x—a) T Ep S (wx—a)P:p)

<
<<;_;> |f/(a)|+m<;_z)s.

7)) A<xr><ra><xma>2) |

m m(x —a)?
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After integrating the above inequality over [a,x], we get
X
/ (x— 1) EQ % (wx — )P p)f' (1)t (8.261)
a
/
<(x—a)°" IES o2 (w(x—a)P ( (@) / x—1t)'dt

7 () /(i )d l%./:(x—t)(t—a)dx)

a)|+ml|f (£ x—ma)?
(xa)“ES:é?e’(w(xa)P;m('“)” /Gl )>.

+m

s+1 6m

By using (8.72), (8.261) takes the following form:

(H2 o1 (op)) fla) = (€257, ) (i) (8.262)
'(a m|f (2 x—ma)?
<@, () ('“ el ()] ) )

Also, from (8.258) follows

roz- () raiem(2L)

f,(ﬁﬂ_/l(x—t)(t—a)(x—ma)2

m m(x —a)?
(8.263)
Following the same procedure as we did for (8.259), one can obtain:
10,6,
(8;1,p,§il,ff> (;p) —Hy 5 (xp)f(a) (8.264)
@l +mlf ()], —ma)?
< (xa)HZi,adxm)( 1 em :
From (8.262) and (8.264), we get
S.0.q.r . .
[(eear, f) ep) — HY o (2p)f @ (8.265)

al+mlf ()], (x—ma)’
s+1 —A 6m '

< (x—a)H;lG (s )('f

Now, we let x € [a,b] and ¢ € (x,b]. Then by using strongly (s,m)-convexity of |f’| we
have

o= (52) rwlen (1)

F(Z)]-2 4 _X),(:(;i)i’;b —9 (8.266)
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Similarly, from (8.52) and (8.266) the following inequality can be obtained:
5,04,
(et of ) (i) = By 1))

/ mlf (X m —xz
< (b—x) 1;'1,6/,1(3@17) <|f (b)|:r+1|f (m)’ 7)'( b6m : )

(8.267)

From inequalities (8.265) and (8.267) via triangular inequality, (8.257) is obtained. O

Theorem 8.41 Letw e R, r,p,7>0,¢>8 >0withp>0and 0< g <r+p. Let
f € Lila,b],0<a<b. If fis adifferentiable and | f'| is a (s,m)-convex function on [a,mb),
m € (0,1), then for 6,6’ > 1, the following fractional integral inequality for generalized
integral operators holds:

8,0, .5,¢.4,
(200, f) )+ (65000, of ) () (8.268)

B (H;jr,cfl (x;p)f(a) +H1;V*,6’71 (x;p)f(b)) ’

_ (If (a) mf () |> — Qo p)

. (If’(b)l +m|f’(%)!> T

s+1 ~0'-1

(x;p), x€la,b].

Proof.  For the (s,m)-convex function |f’| the inequality (8.265) holds as follows (by
setting A = 0):

[(18ea, ) Cop) =B o (6P f(@)
|f' (@] +ml|f (%)|> |

(8.269)

< (=@M oy () ( -

Also, for the (s,m)-convex function |f’| the inequality (8.267) holds as follows (by
setting A = 0):

5,04,
(%t of ) (ep) = B o0 () £2)] (8.270)
(o) +m|f ()]
< (b=x)H 5 (x;p) ( P
By adding (8.269) and (8.270), the inequality (8.268) can be obtained. O

Remark 8.15 The inequality (8.257) provides refinement of inequality (8.268).

Corollary 8.48 Ifwe put 6 = ¢’ in (8.257), then the following inequality is obtained:

.8.,¢.,q, .8.,¢.,q,
‘(5347;;?1177]") (x:p) + (ff;ﬁfﬂlﬂf) (x:p) (8.271)
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—(H} o1 (p)f(a) +Jo 14 (x:p) f(b)
( )

"a)|+ml|f (£ x—ma)?
_ (w emly ()] (=ma >(x_a>H;+,al<x;p>

/ m|f (£ mb — x)?
F(VUMi+lfﬂﬁ|A(im1)>(bﬂhlu,@mxxepﬁy

Corollary 8.49 If we put 6 = 6’ and A =0 in (8.257), then the following inequality is
obtained for (s,m)-convex function:

(et of) sp)+ (65580 f ) (i) (8.272)
~(H o s @+ a0 () D))

= (l |Jsrf1|f )|> (= a)Hy: oy (x:p)

+<|f |+m )|>(b X) o l,b*(X;p)axe[avb]'

s+ 1

Remark 8.16 The inequality (8.271) provides refinement of the inequality (8.272).

Corollary 8.50 If we put s =m =1 in (8.257), then the following inequality is obtained
for strongly convex function:

[(erdear f) tep)+ (20087, ) () 8.273)
— (M o (5@ H 1 (52 0)|

f;<uwan;u%m|_lcv;w )Qﬁﬁﬂﬂﬁﬁdmp)

/ " (x — )2
(LB 6y, sl

Corollary 8.51 Ifwe putrs=m=1and A =0 in (8.257), then the following inequality
is obtained for convex function which is proved in [36, Corollary 2]:

’(8345,%1’;1 Tf) (:p) + (82”1‘?;’?’“,7.)‘) (x:p) (8.274)
ﬁalxpfw+de4@mvw0|

-
< |+|fx|>( a)H}. 5 1 (x%;p)
(

IN

(b |+ f (x

_|_

|)(b X)Hy" oy (x;p), x € [a,b].
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The following lemma is useful to prove the next result.
Lemma 8.12 Ler f : [a,mb] — R be strongly (s,m)-convex function with modulus A. If
f(%) = f(x) and (s,m) € [0,1]%, m # 0, then the following inequality holds:

s (a +2mb> < (14+m)f(x)

1
> fﬂ.ﬂ(aqubfxfmx)z. (8.275)

Proof. As f is strongly (s,m)-convex function, we have

¥ <“+2mb> < 21 <f((1 t)a+mrb)+mf(m+m(71t)b)> (8.276)
- %(t(qum)(afmb)wLmbfma)z.

Let x = a(1 —t) + mtb. Then we have a +mb —x=ta+m(1 —1)b.

a-+mb f(x) f(4tmbex) 1 5
f( 5 ) < > +m ZT —Aﬂ(a—i-mb—x—mx) . (8.277)
Hence, by using f(420=2) = f(x), the inequality (8.275) can be obtained. O

Theorem 8.42 [erw e R, r,p,7>0,¢c>8>0withp>0and 0 < g <r+p. Let
f€Lia,b],0<a<b.If fis apositive and strongly (s, m)-convex function on [a,mb] with
modulus A > 0, m € (0,1] and f(“2=2) = f(x), then for o,
o' >0, the following fractional integral inequality for generalized integral operators holds:

2 +mb A
1+m (f(a 2m ) (H;V+,a+1(b;l?)+HX,’G/+1(a;P))+E(K1 +K2)) (8.278)

8.4, . 8.4, .
< (g:ﬂpc,c(i]jil,rf) (b,p) + (gl:v*,pc,g’ll,‘rf) (a,p)

f(b)+mf (L) _x(mb—a)2>-

< (Hy lap)+ H: o (b:p)) (b a) ( s+l 6m

Ki=(b—a)® ?H) o\ (aip)—2(1+m)(b—a)" T HY o (aip) +2(1+m)’H) o (ap),
Ky = (b—a)°H). oy (bsp) = 2(1+m)(b—a) ' HY, o (bip) +2(1+m)*H)s  5(bip).
Proof. As f is strongly (s,m)-convex so for x € [a,b], we have:

fx) < (x_a)sf(b)qu (b_x)sf(ﬁ) @b -x)mb—a) (8.279)

b—a b—a m m(b—a)?

By multiplying (8.58) and (8.279) and then integrating over [a,b], we get

b
| G aPERe (=i p)f ()
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/ b
< (bfa)"ng;f’fl’f(w(bfa)p;m <(éf£bc)l)s/a (x—a)’dx

mf (£ /ab (Z_z)sdx—l%/ab(x—a)(b—x)dx).

From which we have

(s;”;‘?;g;;lmf) (a:p) (8.280)
a V)
< (b-a)EYE (w(b—a)p) (f Ot (5) _ bmb—e) ) ,
that is
W, C. r w b + % bi 2
(en°ar,, of ) (@p) < (b= a)Hy (a:p) (f ( )Hm{ (B) _)Lm 6m") ) (8281)

Now, on the other hand by multiplying (8.61) and (8.279)and then integrating over [a, b],
we get

b
o= 54 (b= 0P sp)

< (0= aPELE o0 aip) (20 [ apax

p,o+1,7 (bfa)s

+mf(%) ./ab (Z_z)sdx—l%./ab(x—a)(b—x)dx).

From which we have

(Sfi%f’gil,ff ) (b:p) (8.282)
o+ gdean f®)+mf (), (mb—a)’
<(b-a) HEg:a’«qﬁl,T(w(bia)p;p) ( | s+ 1 ( ) 71( 6m ) ’

that is

mf (& mb — a)?
(g:f?ii’gil,fﬁ (b:p) < (b—a)H}: ;(bip) (f(bH /() plmbma)

. 2
s+ 1 6m ) (8.283)

By adding (8.281) and (8.283), the second inequality of (8.278) is obtained.

To prove the first inequality; multiplying (8.275) with (x — a)ﬁEg’g,"fl [(wx—a)?:p)

and integrating over [a,b], we get

b
F(52) [ el ote- s w2

a
1+m [ S
=y /a <x_a)ﬁEp;dfl+rl,r(W(X—a)p;P)f(x)dx
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*4m/ x—@PESSH (w(x—a)P: p)(a+mb—x—mx)dx.

By using (2.13) and integrating by parts, we get

a+mb\
f( 3 )Hb g/+1(a§l7)

I+m ,0,¢,q, A .8,¢.,q,
S 25 (g;iapag/';laff> <a,p) B % (gbvv;vbig};la'r(a + mb —x — mX)z) <a,p)

The integral operator appearing in the last term of the right hand side is calculated as
follows:

.5,¢,9,
(SZV;,g,g,';l,T(a +mb—x— mx)2> (a;p)

_ i Bp(5+nq,c—5) (c) nq 1 /b o‘+pn
=0 B(6,c—68) T(pn+0o'+1)(T)u Ja

(a+mb — x — mx)dx

— i BP(6+nQ7C_5) (C nq 1 b a O'+pn+3
n=0 B<67C_5) (pn—|—0"+1 T)nr o' +pn+1
B 2(1+m)(b—a)0/+0"+3 2(1+m) (bfa) o' +pn+2
(6’ +pn+1)(c’+pn+2) (o' +pn+1)(c’+pn+2)(c'+pn+3)

= (-a) Yy (ap) =21+ m)(b-a)” TV HY. oy o(@p) + 201+ mPHY. o (aip)

i.e

a+mb 1+m S.car A /
f( . )waﬁ,ﬂ(a;p)g > (eocar, 1) (@p)~ =((b—a)°'*  (8.285)

X HY oy (@ip) =214 m)(b—a) Y (@ p)+ 201+ mPHY o (ap)).

By multiplying (8.275) with (b —x)“ES’f;ﬂ (w(b—x)P; p) and integrating over [a, b], we
get

b
f (a+2m > " i1 (b:p) (8.286)

l+m d,¢.q,r A 8,c,q,r
< (e ) (i) = 2 (€100 (atmb—x—mn)?) (bip).

The integral operator appearing in last term of right hand side is calculated as follows:

,0,¢,,
(8:4’p’g11 Lla+mb—x— mx)2> (b;p)

— (b= )" H. .y (bip) ~ 201+ m)(b— @)™ HY oy (bip) +2(1 4 mPH 5 (b:p).

By using it in (8.286) then adding resulting inequality in (8.285), the first inequality of
(8.278) can be obtained. O
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Theorem 8.43 Letw e R, p,7>0,¢>8>0withp>0and 0 < g <r+p. Let
f€Lila,b],0 <a<b. If f is a positive and (s,m)-convex function on [a,mb], m € (0,1]
and f(%) = f(x), then for 6,6" > 0, the following fractional integral inequality for
generalized integral operators holds:

2’ +mb
L+m (f(a - >( ;V+’G'+1(b;p)+H1;V,c’+1(a?P))) (8.287)

8,0, . 0.4, .
< (St ) Gin)+ (65580 of ) ()

f(b)+mf (4
< (15t . t0) - PO EL)
7 ’ s+1
Proof. For the (s,m)-convex function f the inequality (8.281) holds as follows (by setting
A =0):

(8.288)

f(b)+mf(%)>
s+ 1 ’

(e, f ) (@p) < (b= p(aip) (

Also, for the (s,m)-convex function f the inequality (8.283) holds as follows (by setting
A =0):

M) | (8.289)

.8.,¢,q,
(er2ear, o) (b:p) < (b= @)Hy: o (b:p) ( -

By adding (8.288) and (8.289), the second inequality in (8.287) can be obtained. For first
inequality using (8.285) for A = 0 we have

a+mb 1+m S.c.a.
P it < 5 (00 ) @ 200
Also, from (8.286) for A = 0 we have
a+mb 1+m S
f (T) Hy'r it (b3p) < —5 (%},f}gﬂ’ff) (b:p). (8.291)

From inequalities (8.290) and (8.291), the first inequality in (8.287) can be obtained. O

Remark 8.17 The inequality (8.278) provides refinement of inequality (8.287).

If s =m = 11in (8.278), then the following result obtained for strongly convex function.

Corollary 8.52 Ler f: [a,b] — R, 0 < a < b, be a real valued function. If f is a posi-
tive, strongly convex and f(a+b—x) = f(x), then for 6,6’ > 0, the following fractional
integral inequality holds:

aer W w ). / W
f( 5 >(Ha+’0/+l(b;p)+Hb,G,H(a;p))JrZ((ba)6+2Hb,0,+l(a;p) (8.292)
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_4(b_a)0',+lHW

b:a’+2(a§l’) +8H, 515 (a;p)+(b—a)®*?

XH)\ o,y (bip) —4(b— a)6+lH:’+’0+2(b;p) + 8H;V+’G+3(b;p))

.8,¢,q, S
Y s

< (Hy o)+ 2 i) (- (FOFLD (”6“>2) |

Remark 8.18 For A = 0 in (8.292) we get [36, Corollary 3]. Therefore (8.292) is the
refinement of [36, Corollary 3].

8.10 Bounds of Fractional Integral Operators
for Exponentially (s,)-convex Functions

In this section the generalizations of results given in aforementioned sections are proved.

Theorem 8.44 [etrw e R, r,p,7>0,¢c>8>0withp>0and 0 < g <r+p. Let
f K C[0,00) — R be a real valued function. If f is positive and exponentially (s,m)-
convex, then for a,b € K,a < b and o,0’ > 1, the following fractional integral inequality
for generalized integral operators holds:

.5,¢,9, 8.c.0.
(ersiacr) op)+ (6580 r) (o) (8.293)
_(fla)  mf)\ Gy, (p)
T\ e em s+1
fb)  mf(%)\ G—0HL 5 (xp)
’ R.
+<eﬁb + e% s+ 1 X € la,bl,a,B €
Proof. Since f is exponentially (s,m)-convex, we obtain
— s _ s X
f) < <—x t> f—Efa) +m (t—a> M) e (8.294)
X—a e XxX—a em

By multiplying (8.48) and (8.294) and then integrating over [a, x|, we get

[ =07 ER G twtx— 1)) f ey

—1776.¢,4, .
_ (= @) B (w(x—a)fsp)
- (r—ay

X (f(a) /ax(x—t)sdt + mfg:i") /ax(t —a)sdt) ,

eta em
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that is, the left integral operator satisfies the following inequality:

() e < ) (10 )Y

+ +m—g
at,p,o,t s+1 eo0a eTf

(8.295)
Again from exponentially (s, m)-convexity of f, we have

0 () Ben(2) Saex wme

em

By multiplying (8.52) and (8.296) and then integrating over [x, b], we get

b s,
= *lEp L Ow(e =05 p)f (1)

1 0,0,g,r
)T S )

(b—x)

x(igz)/f( x)’dt + éﬂi /x(b—t)sdt>

that is, the right integral operator satisfies the following inequality:

b—x / 5 mf(x
(55539t < O S0 (1) E))

s+ 1 eBb eﬁ

(8.297)

By adding (8.295) and (8.297), the required inequality (8.293) can be obtained. O

Some special cases are given in the following corollaries.

Corollary 8.53 Ifwe set 0 = 0’ in (8.293), then the following inequality is obtained:

(er2earr) (ap)+ (%58 f ) (kip) (8.298)
< (Ha, ) (@), ()

- eOCa S+ 1

N (f(b) N mf(,%)) (b H o ()

ePb eﬁn—f s+1

em

€ [a,b].

Corollary 8.54 Along with assumption of Theorem 1, if f € Les[a,b), then the following
inequality is obtained:

w,8,¢.q,r w,8,0,q,r

(erears) op)+ (5297 1) (i) .29
e (1, m L

= s+1 ﬁ—‘_e% (x—a)Ha+707](x,p)

+<eﬁ%b+ rg})(b x) S ](xp)>
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Corollary 8.55 Ifwe take o = ¢’ in (8.299), then we get the following result:
.8.¢,q, S.ca.
(erlsans) p)+ () Gep) (8.300)
|1.f1]eo 1 m
= s+1 WJre% (x—a)H;V+707](x;p)

Jr(e;WJr ’Zi)(b x)H," o ](xp)>

Corollary 8.56 If we take s = 1 in (8.299), then we get the following result:

(ehans) Gm)+ (60580) ) (5300
- 1 w
< <(w+ m) = @01 (5P)

+<E;W+ ﬁx>(b x)H)" o 1(xp)>

Theorem 8.45 With the assumptions of Theorem 1 if f € Lo[a, b, then operators defined
in(2.12) and (2.13) are continuous.

Proof. If f € Ls[a,b], then from (8.295) we have

2/|flle(x—a)Hy | 1+ (x:p) (1
w,8.¢,q,r . o—1la m
’(gﬁ,p,a,ff) (x,p)‘ ] (WJF o ) (8.302)
- 2(b—a)HY o—1a +(b;p) L+£ I
- s+1 eva o J I
atis | (€257 ) ()| < Ml where M = 22500 (14 ) Tyere
+.,0,0,T ’ = il S+ et ar |-

w,0,c,q,r
fore (gﬁ’p’aﬁ

tinuous operator. On the other hand, from (8.297) we obtain:

f) (x; p) is bounded also it is easy to see that it is linear, hence this is con-

(%8 f) (o) | < KNI fles

2(b—a)H, (a:p) .
where K = —— 12—~ e,%a + % |- Therefore (egvlsl’)cg;rr ) (x; p) is bounded also
i 0.0,
it is linear, hence continuous. O

Definition 8.2 Ler f: [a,b] — R be a function, we will say f is exponentially m-symmetric

about a+b L if
fo) _ F57)
Py = m,a eR. (8302)
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It is required to give the following lemma which will be helpful to produce Hadamard type
estimations for the generalized fractional integral operators.

Lemma 8.13 Let f: K C [0,00) — R, a,b € K,a < mb be an exponentially (s,m)-convex
function. If f is exponentially m-symmetric about “*b , then the following inequality holds:

250X ’

f(“zib) <+mI% ger. (8.303)

Proof. Since f is exponentially (s,m)-convex, we have

1—1)+bt
a+b\ _ flar+(1—1)b) mﬂﬂ_ﬁ_q
f ( > ) = et mnp g ! €[0,1]. (8.304)
Let x = at + (1 — )b, where x € [a,b]. Then we have a+b —x= bt + (1 —)a and we get
at+b\ _ flx) ()
< . 8.305
f< 2 > _Zsé‘ax—i_ste (a+:'71 ,\) ( )
Now using that f is exponentially m-symmetric we will get (8.303). O

Theorem 8.46 Letrw e R, r,p,7>0,¢>0>0withp>0and 0 < qg<r+p. Let f:
K C[0,0) — R, a,b € K,a < b, be a real valued function. If f is positive exponentially
(s,m)-convex and exponentially m-symmetric about “+b , then for ,0’ > 0, the following
fractional integral inequality for generalized integral operators holds:

Ph(ct) . [(a+b) [, . Y .
1+mf< . )[Hb G,H(a,p)-l—Hﬁ,GH(b,p)} (8.306)

,0,6,q,r ,0,6,4, .
< (epocar, ) (@p)+ (55080, f) (B:p)

(b—a)* ()
s+ 1 ( Ga T

em

ng})) ,a,B eR,

< {Hb .0/ — 1<a p)+Hz:v+,o>1<b;p)}

where h(a) = e* for o < 0 and h(at) = e*® for a0 > 0.

Proof. As f is exponentially (s,m)-convex, for x € [a,b], we have:

flx) < (x“)sifi)m(bx)sﬂa_%),aeR. (8.307)

b—a b—a em

By multiplying (8.58) and (8.307) and then integrating over [a,b], we get

b d,¢.q.r
| =By (wx— i pfx)ax

< - et w6 —asp) (LG [ ayans ") [o—ayar).
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from which we have

b a)c’+lE57c7q7r<W(b —a)P;p) a
w,0,c,q,r . ( p,0'.T ’ f(b) m ( )
(sb,7p7c,+mf) (a;p) < P ( o + e%m , (8.308)
w.c.q.r . (b—a)’ [ fB)  mfG)
(gb’,P,G’Jrl,Tf) (@:p) < 1 Hg 1 p-(a:p) oob e%m - (8.309)

By multiplying (8.307) and (8.61) and then integrating over [a, b], we get

b 8.,¢,q,r
[ =BG tu(o 0P p)

<(b- a)afsEgjf;’qT’r(w(b —a)’;p) <J;Ei) /ab(x —a)’dx+ mf;"%) /ab(b x)sdx) .

em

From which we have

8,¢,q,r . a
8.0, . (b*a)GHEp,G,T (w(b—a)?;p) f(b) mf ()
(s:+7p‘:g+r]7ff) (bsp) < . T ) (8310)
5.0, (b—a)? fb)  mf(;)
(«s;ﬁ"pgimf) (b:p) < ST Hy (0 (T + = ) (8.311)
Adding (8.309) and (8.311), we get;
S r S r
(e %ar, of ) (@p)+ (15027, ) (bip) (8.312)
(b—a)* (f(b)  mf(3)
= [H;V,ilvb,(a;p)+H¥71’a+(b;p)} s+1 eab * e%m '

Multiplying (8.303) with (x — a)'ES 4" (w(x — a)P; p) and integrating over [a, b], we get

p,o'.T
a+b b
/ ( 2 )/ (x—a) Ep 67 (w(x — a)°: p)dx (8.313)
m+1 r° .. fx)
S 2S / (X7a)lEpvg/q:Tr(w(X7a)p;p) g(XX dx?
a
ath m+1( wseq. .
f( 2 )H:;V/H,b (a;P) < T (8;,’7;?;1’1]‘) (a,p). (8.314)

Multiplying (8.303) with (b — x)"Eg:g’er(w(b —x)P; p) and integrating over [a,b], we get

a+b w m—+1 w,8,¢,q,r .
f (T) Hyorar (020) < 550 (ga{p’gﬂ’rf) (bip). (8.315)
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By adding (8.314) and (8.315), we get;

2°h +b\ 1,0
1+<O,;)f(az ) [HG’Hb (@:p) +Hgy ot (B3 p)} (8.316)

,8,¢,q,r . ,0,C,q,r .
< (epcar, f) (@p)+ (15580, f) bip).
By combining (8.312) and (8.316), inequality (8.306) can be obtained. O

Corollary 8.57 Ifwe take 6 = ¢’ in (8.306), then the following inequality is obtained:

25 (a+b
lerf (T) [Hl?) 0.+1(a;p)+H;V+’o_+1(b;p)} (8.317)

< (&5 of) @)+ (2550l of ) (bip)
(hwf<ﬂw mﬂ%».

S+1 e“b + e%

< (Hy 1 (@p)+HY o (b:p)
Next result provides boundedness of sum of left and right integrals at an arbitrary point for
functions whose derivatives in absolute values are exponentially (s,m)-convex.

Theorem 8.47 Letwe R, np,7>0,¢ >8>0 withp>0and 0 < g <r+p. Let
f:K C[0,00) — R be a real valued function. If f is differentiable and | f'| is exponentially
(s,m)-convex, then for a,b € K,a < b and 0,6’ > 1, the following fractional integral
inequality for generalized integral operators holds:

’ (5345%11 of ) (v:p) + (%Vié,,f,’gﬁil,ff) (x:p) (8.318)
ﬁalxp<>+ ot () 1))]

~(
< Mf(ﬂ)@-@ﬂﬁaﬂnm

eOCa em S + 1
@) mlf G (b—X)H 5 1(XP)
+ € la,b], a,B € R.
gﬁb e nf s+ 1 [ ] B
Proof. Proof is on the same lines as the proof of Theorem 8.33. O

Corollary 8.58 If we take 6 = ¢’ in (8.318), then the following inequality is obtained:
,0,¢,, ,0,¢,4,

‘ (enoear, f) (ep)+ (85080, f) (:p) (8.319)

(ﬁclxp<>+H;mummﬂmN

L (% 1\ G- @HG 5 (5p)

e

( :

+

ca em S+1
b

m|f( )|> (b _X)Hgvaafl(x;p),xe [a,b],a, B € R.

PBx

em

B s+1
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8.11 Bounds of Fractional Integral Operators
for Exponentially m-convex Functions

First we give the fractional Hadamard inequality for exponentially m-convex functions via
generalized fractional integral operators.

Theorem 8.48 Letrwe R, r,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f:la,mb] CR — R be a function such that f € Ly [a,mb] with a < mb. If f is exponentially
m-convex function, then the following inequalities hold:

/F R, (mb: p) (8.320)
S.c P S,
) (£:+7p c"rref> (mb; p) +m° ! (gw e e f) (4:p)
= 2
f(%) ' mP a,
= 2 mbfa K Tz )H,;”,;H (E’p)

+(mb — a)( F) 4 me f(%))HlﬁVl’ﬁ

where m € (0,1] and w' = (mbv,va)n-

Proof. Since f is exponentially m-convex, we have

o/ (55) < M, X,y € [a,mb] and m € (0,1]. (8.321)
Putting x = za+m(1 —z)band y = (1 —z) & +zb in (8.321), we get
20/ (532) < ofGatm(1=2)b) | F(1=2)ft2b). (8.322)
Also from exponentially m-convexity of f, we have
ofzatm(1=2)b) o o f((1=2) 5 +2b) (8.323)
<ze/ @ +m(1-2z)e/® )+m(m(1 —2)e! 7 4 zel® )>

— (ef(a) ,mzef(ﬁ)) m (ef(b) +mef(nj—2)) .

Multiplying both sides of (8.334) with z°~ IES 0% (wzf; p) and integrating over [0, 1], we
have

~( a-+m ‘1 r
2¢/ (%) /0 CESSY (we p)dz (8.324)

.1 i
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+m/ o— lEgcc)_qL_r WZp;p)ef((l Z)"l+2b)dZ
Putting u = za+m(1 —z)band v = (1 —z) - +zb in (8.336), we get
atm mb
20/ (*5 b)/ (mb—u)G*IEgjg;?;r(w'(mb—u)p;p)du
a
mb 5
< [ b ) B O (b — ) p)e
a

b o—-1 ) .
+m°t! / (vf ﬁ) Epsfér’,‘?r (mpw/(vf g)p;p) ey,
a m m

From above, the first inequality of (8.320) is achieved.

Now multiplying both sides of (8.335) with z°~ lEg o %" (wzP; p) and integrating over [0, 1],
we have

1
/ TR (e p)el et m1-0b) g (8.325)

+m / o— lEg 8’%’ sz;p)ef((lfz)%+zb)dz
a 1
< (e ) [ B tpla
a ] "
+m( ()—l—mef(_Z))/O Zcflngzr’%r(WZp;P)dZ-

Putting u = za+m(1 —z)band v = (1 —z) & +zb in (8.337), we get

mb .
[ b= B O b — )P p)e
a

b o—1 N .
+m° ! / (v— ﬁ) Eg,’é’f?r (mpw’(v— ﬁ)p;p) /My

m m
o+1

(e ) [ o 2 e (- )

+(mb —a) (ef(b) —l—mef(ﬁ)) /ﬂb (v— %)GflES;g,‘g’ (mpw’(v— %)p;p) dv] .

By using the definition of generalized integral operators, second inequality of (8.320) is
achieved. ]

Corollary 8.59 Suppose that assumptions of Theorem 8.48 hold and let m = 1. Then
following inequalities for exponentially convex function hold:

IR (bip) (8.326)

8.0, d,c,q,r .
_(mpaen) e+ (75w @)
o 2
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(@) 4 of()

<y (@)

*
where w* = Tap

The following Hadamard inequality for exponentially m-convex function is proved which
have several misprints.

Theorem 8.49 [129] Let f : [a,mb] C R — R be a function such that f € Ly [a,mb] with
a < mb. If f is exponentially m-convex function, then the following inequalities hold:

a+mb
28 ( ) (a+mb) (mb7p) (8327)
’2”50qr o+l [ W2 Seqr f (“.)
< —
G L R Gt [
< — (mb ) (e —mre’ a2 )H<a+mb) s l(mb;p)

Lot (ef(b) eref(ﬁ))H

(52) o
The correct form of the above theorem is stated and proved in the following theorem.

Theorem 8.50 Lerw e R, r,p,0,7>0,¢>0>0withp>0and 0 < g <r+p. Let
f:|a,mb] CR — R be a function such that f € Ly[a,mb] with a < mb. If f is exponentially
m-convex function, then the following inequalities hold:

-(atmb /
/(43 )H(Waizi)#a(mb; ») (8.328)

w2P.8.c.q,r . +1 w (2m)P . 8.c,q,r i
e o L Gt e L
< WM m

= 2

mo+1 . N - .
< fla) _ 2 1 12> HW (2m) a.
< s (7 )G ()

2m

+(mb—a) ( fib >+mef(%)>HW/(2m)p, (%?P)]

(“5) o

where m € (0,1] and w' is defined in (8.320).
(2—2)
2

Proof. Putting x = % bandy = 2b+ 252 4 in (8.321), we get

26l (“42) < of GarmB2b) 4 ol (30+E558). (8.329)

Multiplying both sides of (8.329) with z“’lEgjg;?;r(wzp;p) and integrating over [0, 1], we
have

a-tm ]
2¢/(“3*) /0 LB (Wi p)dz (8.330)
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1
Zq4 22
< [ B (watspel Bt
0 10

1 . 3 2—z
+m/ OTELGY (wePp)el GP T g,
A .

Putting u = Fa+ m(zzjb andv=5b+ (27) & in (8.330), we get
<a+mb) mb o St )
2¢/ [Hmb (mb—u)®"Eps7 (2°w(mb —u)’; p)du
2

mb .
S /ﬂ+mb <mb B u)o-ilEgg'qF%sz(mb - M)p;p)ef(u)dl/t
2

a

+T'?h o—1
+ mGH/ ’ (v - —) Eg,’f;’,qf’r ((Zm)pw(v — E)'D;P> e’May,
a m m

m

first inequality of (8.328) is achieved.
From exponentially m-convexity of f, we have

of GamE2p) sh+ i ay

<

z f<a>+muef<b>+m<£ef<b>+m(2Z) f(%))
2 2 2
_ % (ef(a) 7mzef(ﬁ>> +m(ef(b)+mef(r:_2)).

Multiplying both sides of (8.331) with z0 1 ES %"

have
1 22
/O fo 1Eg 8’%’ (sz;p)ef( fa+m=52 b)dz
' oo1pdcar f(3p+32 2)
—|—m/0 T Ey 5y (wePip)e! 2 m)dz
1 . a 1 .
< 5 (ef(a) 2 G >> /0 z"ES:é;er(wzp;p)dz
. 1
+m< f(b )eref(_Z))/O o lEgécér(wzp;p)dz.
Putting u = Sa+m5Lb and v = $b+ 252 2 in (8.332), we get

mb .
/f;+mh (mb — )"~ ENG% (2P w(mb — u)P; p)e W du
2
atmb

m o—1
+ mGH/ ’ (v — ﬁ) Eg:ccf’,qr’r ((Zm)pw(v - ﬁ)p§P> /Wy
a m m

m

213

(8.331)

oo (wzP;p) and integrating over [0, 1], we

(8.332)

= mb—a [(ef(a) 7m2€f(':_2)) /a " (Vﬁ %)GES,’;? ((Zm)pw(vf %)p;p> dv
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) a a+:;rllb o—1
+(mb — a) (ef(b)—l—mef(mz))/ ’ (v— ﬁ) Egjcc,’flf’r ((2m)pw(v— ﬁ)p;p) dv] )
a m " m
second inequality of (8.328) is achieved. O

Corollary 8.60 Suppose that assumptions of Theorem 8.50 hold and let m = 1. Then
following inequalities for exponentially convex function hold:

IN

where w* is defined in (8.59).
Remark 8.19 If we take w = p = 0 in (8.328), then [130, Theorem 3.3] is obtained.

In the following we give Fejér-Hadamard inequality for exponentially m-convex functions
via generalized fractional integral operators.

Theorem 8.51 LetweR, 1,p,0,7>0,¢>0>0withp>0and0< qg<r+p. Let f:
[@a,mb] C R — R be a function such that f € Ly[a,mb] with a <mb. Also, let g : [a,mb] — R
be a function which is nonnegative and integrable. If f is exponentially m-convex function
and f(v) = f(a+mb —mv), then the following inequalities hold:

/() (gm0 cares) (Lip) (8.333)

_ e (877000 ()

B 2
< m [(er@ - melG0) (g dcrer) (Lp)
) (727) ()

where m € (0,1] and w' is defined in (8.320).

3

Proof. Putting x = za+m(1 —z)band y = (1 —z) - +zbin (8.321), we get
20/ (“5™) < flaatm(1=2b) 4 1 F((1=2) +2b) (8.334)

Also from exponentially m-convexity of f, we have

oS Gatm(1=2b) o f(1-2) & +2b) (8.335)
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<ze/@ £ m(1 —z)e/ )+m(m(1 —2)e/ ) 4 2ol ))
=2z (ef(a) — mzef(ﬁ)> +m (ef(b) +me‘f(r:_2)) .

Multiplying both sides of (8.334) with 70~ 1E5 &% (wzf; p) and integrating over [0, 1], we
have

a-tm ]
2¢/(“3*) /0 B (Wi p)dz (8.336)
1
< / TED S (wP; p)ef et m1=ab) g
0
1
+m/ zaflEgjf;’qT’r(wzp;p)ef(“’z)%“b)dz.
0
Putting u = za+m(1 —z)band v = (1 —z) & +zb in (8.336), we get
atm mb
2¢/( +2}7)/ (mb—u)°~ ]Egcc,’qf’ (w(mb —u)P; p)du
a
mb 5
< [ b~ ) B Gwlomb P p)e e
a
b o—1
+m0+1/ (vf 2) Eg,’f;’f’f’r (mpw(vf £)p§p) Vv,
g m m
first inequality of (8.320) is achieved.

Now multiplying both sides of (8.335) with z°~ lEg &% (wzP; p) and integrating over
[0,1], we have

I
/ o 1E5 SO (2P pel Catm1-9b) 4 (8.337)
+M/ S e R Al
. 1
< (ef(“) — mzef(m>> /0 GES qur(WZp;p)dZ
" a 1
+m (ef ®) 4 e’ (ﬁ)> /0 TEY S (W s p)dz.
Putting u = za+m(1 —z)band v = (1 —z) & +zb in (8.337), we get
mb Se .
[ b= )7 ESEY (om0 el
a

b o—1
+mot! / (v - 2) ngcc;’,qr’r (mpw(v - ﬂ)p;P) ey
a o m

m
ma+1

< m [(ef(a) *ngf(m%)) /ﬂb (vf %)GEg:g%r (mpw(v7 n%)p;p) dv
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+(mb —a) (ef(b) +mef(r:_2)) /b (v— £>671Eg:§’f’f’r (mpw(v— n%)p;p) dv] )

a m

second inequality of (8.320) is achieved. O

Corollary 8.61 Suppose that assumptions of Theorem 8.51 hold and let m = 1. Then
following inequalities for exponentially convex function hold:

atb .5, .5,
o/ (452) (g - qureg> (a;p) < (SW o gqrref ) (a;p)

fla) L of(b)
e e *.8,c.4,
= 2 (glzv’;p§d7freg) (a:p)

where w* is defined in (8.59).

Theorem 8.52 [erwe R, 1,0,0,7>0,¢>8>0withp>0and 0 < g <r+p. Let
f,8: la,mb] C R — R be the functions such that f,g € Li[a,mb] with a < mb. If f and g
are exponentially m-convex functions, then the following inequality holds:

(s;jb Bt of ) (a: p)+( f+,‘f)’fc;‘f;’€g> (mb; p) (8.338)
< m Keg(“) +mef(b)) (sﬁigﬂrﬁJ (mb; p)
+ (ef(“) +meg(b)> {(mb - a)H o (mbip) — a+ ot (mb;p)H

where m € (0,1] and w' is defined in (8.320).

Proof. Since f and g are exponentially m-convex, we have

ol (I=atmzb) | pezatm(1-2b) < (1 _ 7 (ef(a) i meg(b)) 1y (egm) i me.f(b)) . (8.339)

Multiplying both sides of (8.339) with 70~ lEg o %" (wzP; p) and integrating over [0,1], we
have

1
/ OV RS (yyoh: p)el (1-Datmb) g, (8.340)
+ / CEp S (wef s p)estert =g
! 3,
< (ef(a)+meg(b))/() (1-2)z°~ lEp o (wz;p)dz
+ (eg<")+m€f (b)) /0 TEpg% (weip)dz.

Putting u = (1 —z)a+mzband v =za+m(1 —z)bin (8.340), inequality (8.338) is achieved.
O



8.11 BOUNDS FOR EXPONENTIALLY m-CONVEX FUNCTIONS 217

Corollary 8.62 Suppose that assumptions of Theorem 8.52 hold and let m = 1. Then
following inequality for exponentially convex function holds:

*8.c, ,0.¢,
(g7 0cares) (@p) + (e 06e et ) (bip)
1 .

< = | {e8la) L pf(B)

= (b-a) (4 OV H g Bip)

I (ef(a) +eg<b)) {(b —a)HY. (bip)—H ., (b p)H
where w* is defined in (8.59).
Remark 8.20 If we take w = p = 0 in (8.338), then [130, Theorem 3.2] is obtained.

Further generalizations of above proved results are given in the forthcoming results.

Theorem 8.53 Lerw e R, ,p,0,7>0,¢>8>0withp>0and 0 < g<r-+p. Let
foh:[amb) CR — R, 0 < a < mb be the real valued-functions. If f be a integrable
and exponentially m-convex and h be a differentiable and strictly increasing. Then the
following inequalities hold:

~( h(a)+mh(b) Js .
2o/ (“52) (thii)’f&",’Trl) (=" (mh(b)); p) (8.341)

w'.8.c.q.r  fo — wmP.8.c.q.r fo h a
(e srer) 6 (o)) 7 (g coer ) (0t (M)

ma+1 h(a) h(

- f(h(a)) 2 f( ) D i 'mP 8 ,c,q,r 1 h,1

(mh(b) — h(a)) [ ¢ ) ( b=.p,0,T m P

f(n(b)) f(lel)) wmP 8 ,c,q,r h a

+ (e me’ U ) ) i (b) — ha)) (5 " 240" 0

IN

IN

m
w

where W/ = W

Proof. Since f is exponentially m-convex function on [a,mb], forz € [0, 1], we have

2o (M) rtantayem1-0h(0) | 1o (10" 410(5)) (8342)
Also, from exponentially m-convexity, we have
ef(lh(a)+m(lfl)h(b)) + mef((] t) ha) +th(b)) (8343)

St(ef(h(a)) 2ot (g )) _i_m(ef(h(b))_’_mef(%)).

Multiplying both sides of (8.342) with 19~ IES o2 (wrP; p) and integrating over [0,1], w
have

h(a)+mh(b) |
Zef( 2 >/0 tcflEg:f;?.;r(wtp;p)dt (8.344)
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S/l o 1E5 ST (1P p)e Flth(@)+m(1-0)h(b)) 4
0

m / 10 ESCOT (41 ) (10 4100) g
0 0,
Putting h(u) = th(a) +m(1 —t)h(b) and h(v) = (1 — t)@ +th(b) in (8.344), we get

2/ ) [ o) ) B3 O )~ )P ) 0)

! (mh(b)) :
< /ah ") () — () ES S (o () — )3 p)e P ()
b a o—1 a)\ P
Lot /hl(@) <h(v) - %) Eg:g,?r,r <me' <h(v) - %) ;p) SN d(h(v)).

By using the definitions of involved fractional integral operators, the first inequality of
(8.341) is obtained.

Now multiplying both sides of (8.343) with #° ’1Egjf,’?7’r(wtp; p) and integrating over
[0,1], we have

/1 T EBCAT (1 ) W@ tm(1-0h(0) gy (8.345)
+M/ 19 ES 4 (Wi p)e! (1) M) 4 1(5)) gy

(@) 1
< (ef(h(a)) 7ngf(m2 ))/0 GES é—‘{rr( [p;p)d[

h(a) 1
+m(ef(h( ))+mef<m ))/0 G 1E5 c,(i[, (Wlp,p)d

Putting h(u) = th(a) +m(1 —1)h(b) and h(v) = (1 — 1) th(b) in (8.345), then by using
the definition of involved fractional integral operators, the second inequality of (8.341) is
obtained. ]

Corollary 8.63 Under the assumptions of Theorem 8.53 if we take m = 1, then we get
following inequalities for exponentially convex function:

5 (A3) (hYW/,s,C,q,rl) (b:p) (8.346)

at,p,0,T
8,c,q, oh 0, oh .
< (ST ™) (bip) + (40} 5547 ) (as p)

< (ef( ) 4o <h<a>>> (hY’ZVi’fs,féf; 1) (@:p)
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Remark 8.21

(i) If h(u) = u in (8.341), then Theorem 8.48 is obtained.
(ii) If h(u) = u and m = 1 in (8.341), then [87, Corollary 2.2] is obtained.
(iii) If h(u) = u in (8.346), then [87, Corollary 2.2] is obtained.

In the following we give another version of the Hadamard inequality for generalized
fractional integral operators.

Theorem 8.54 LetweR, 1,p,0,T>0,¢>0>0withp>0and0< qg<r-+p. Let
fyh:[amb) CR — R, 0 < a< mb be the real-valued functions. If f be a integrable

and exponentially m-convex and h be a differentiable and strictly increasing. Then the
following inequalities hold:

~( h(a)+mh(b) ’
2¢’ (M) Y2 Sear L 1| (kY (mh(b)):p) (8.347)
<h7| (h(a)+2r;lh(b)>) PO

< (r‘* . f) (™" (mh(8)): p)

(h,l (M)) ,0,0,T

o+l w' (2m)P ,8,¢.q,r foh “1(ha) .
+m (hY(h ( (u)+":llh(b))>7,p,a,re ) (h ( p 3D
me+1 h(a) , o h )
<« M| ()2 s (55 )> P Sear . <h1< ) )
= mh(b)=h(a)) K e " (M) m )P
F(h(b)) r(Me) W (2m)P 8 c.q.r _1(h(a)
+ <e + me (mh(b)—h(a)) hY(h—l (h(");’:h“’)))f,p,c . h ol B

where w' = 7(mh(b)vfh(a))p.

Proof. Since f is exponentially m-convex function on [a,mb)], forr € [0, 1], we have

2o/ (M) S (sm@em ) | r(sne)+ C5 )

+ me

(8.348)
Also, from exponentially m-convexity, we have

ef(%h(a)er(zz;t)h(b)) f(%h(b)Jr(ZZ;t) @)

—+ me

<L (ef(h(a)) _mzef(%)) m (ef(h(b)) +me.f(};f1—‘§))) .
-2

Multiplying both sides of (8.348) with tG’lEg:g’er(wtp ;p) and integrating over [0, 1], we
have

(8.349)

h(a)+mh(b) |
2o () /0 19 ES ST (Wi p)dt (8.350)
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| . (1)
S/ (TESS (it p)el (B0 gy
0
‘ 2-1) hia)
+M/ to-7]ES:SJ?‘L:r<Wlp;p)€'f(2h(b)+ =) ar
A o,

(2

=

Putting () = Lh(a) + mZLh(b) and h(v) = Lh(b) + 5219 in (8.350), we get

f(w) = (mh(b)) o—1p90,0,qr
2¢ / — (mh(b) —h(u))° "Ep5% (2Pw(mh(b) — h(u))’; p)d(h(u))
ot (M)

11 (mh(b)) o .
< [ v (796) = H0) 7 EDS 2Pwmh(B) — h(a))Ps p)el )
ot ()

nl h(a);r;;lzh(b) a o—1 ) a .
+m0+1/h—1 ((”(,,‘;)) ><h(v) - %) Epafé’,‘?r<(2m)pw(h(v) - %)p; )ef(h(v))d(h(v))~

By using (2.4), the first inequality of (8.347) is obtained. Now multiplying both sides of
(8.349) with tG’lEgjf;?;r(wtp;p) and integrating over [0, 1], we have

1 (1t (2-1)

[ 1o e me e (S 0) g (8.351)
0

1 i (2-1) h(a)
+m/ t0'7lEg:gf]ér<th;p)e.f(2h(b)+ ) ”‘)dl

17y

) h(a) 1
< 5 (erto -2 G2 [Liogha o sphar
o

h(a) 1
+m<ef(h( ))+mef(1n )>/0 t°" 1E5 c’%-7 (Wlp,p)d

Putting h(u) = Lh(a) + mZLh(b) and h(v) = Lh(b) + 25214 in (8.351), then by using
(2.4), the second inequality of (8.347) is obtained. O

Corollary 8.64 Under the assumptions of Theorem 8.54 if we take m = 1, then we get
following inequalities for exponentially convex function:

ha) +h(b) ) .
2! (15 )(,lw{h“f’z’j;;;(b)))+M!T1> (b;p) (8.352)

" '(2)P 8,c.q.r foh . w (2)P .8,c,q,r foh .
[ (1 (515 o >(””’”<”<w<w>>,p,of Joen
< (¢ ) (ﬂ’(”f.’zﬁ;ifgfb)))WI) @

IN
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Remark 8.22
(i) If h(u) = u in (8.347), then Theorem 8.49 is obtained.
(ii) If A(u) = u and m = 1 in (8.347), then [87, Corollary 2.5] is obtained.
(iii) If h(u) = u in (8.352), then [87, Corollary 2.5] is obtained.

Theorem 8.55 LerweR, ,p,0,7>0,¢>8>0withp>0and 0 < g<r+p. Let
fyh:[a,mb) CR — R, 0 < a < mb be the real-valued functions. If f be a integrable,
exponentially m-convex and f(h(v)) = f(h(a)+mh(b) —mh(v)) and h be a differentiable
and strictly increasing. Also, let y : [a,mb] — R be a function which is nonnegative and
integrable. Then the following inequalities hold:

h(a)+mh(b) P S.c o - hla
2o/ () (/e bear o (h '(—fn));p) (8.353)
w'mP 8,c.q,r foh oroh 1 h<a)
§(1+m)(Yb o € ) h™ - P

. m Keﬂh(a)) mzef('iff?)> (s oererh) (h ! (hl(z)) ,p)
. <ef(h( ))+mef(h<a)>) (mh(b) — h(a)) (10} 2 04" el < <%> ’pﬂ

where w' = m.

Proof  Multiplying both sides of (8.342) with 17~ 1ES 4" (P p)e? (1= +74(0)) ang
integrating over [0, 1], we have

h(a)+mh(b) 1 a
20/ (M) / 1O ES G (il p)eV (1= (b)) gy (8.354)
JO o
|
</ (o= lEﬁcqr<th,p) o (Th(@)+m(1=0)h(B)) 1(1-0) "2 2 (b)) 4,

p,0,T

+m/ o1 pdcar (P p)e! ~0)M9 - 1n(b)) (1-0) ) 1 h(b)) gy

pGT

Putting h(v) = (1 — )4 7h(b) in (8.354), we get

Zef(hmHth(b) )/;1 (M (h(v) - @) GilEg,’g?T’r <mpw(h(v) — %)p;p)eﬂh(v))d(h(v))

b h h
<[ (P 3 () 2y s )0 g )
h*l((T)) m

m
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By using (2.4) and given condition f(h(v)) = f(h(a)+mh(b) —mh(v)), the first inequality
of (8.353) is obtained.

Now multiplying both sides of (8.343) with 19~ ESS%" (1P, p)eV(1-0 5 +7h(8)) and inte-
grating over [0, 1], we have

h(a)

/1 o 1E5cqr(wtp’p)ef(‘rh(a)+m(l7z)h(b))ey((l —0) ") ven(b)) 4y

0,0,T
er/ (o= 1E5 L (wiP; p)e FO=0) B 2n(b)) y(1-0) S 4 2n(b)) g,

< (ef(h(a))_m2ef((—z))) / 1 D007 (g e (10 i eh(e) gy
0

+m<ef<h<b>>+mef(’2§‘?)) [ OB T (1 ) (10 S Th(5) g
0

From above the second inequality of (8.353) is achieved. O

Corollary 8.65 Under the assumptions of Theorem 8.55 if we take m = 1, then we get
following inequalities for exponentially convex function:

zef(h(w—;h(b)) (hY /i)ccq reyoh> (a;p) < 2( sz (Zco_qrrefoheyoh) (a:p) (8.355)
< (e.f(h(b)) Lol (a») (hy'w 6p car y0h> (@p),

where w' = (COEIOIE

Remark 8.23
(i) If h(u) = u in (8.353), then Theorem 8.51 is obtained.

(ii) If A(u) = u and m = 1 in (8.353), then [87, Corollary 2.8] is obtained.

(iil) If A(u) = u in (8.355), then [87, Corollary 2.8] is obtained.
In the following we give another generalized fractional version of the Fejér-Hadamard
inequality.

Theorem 8.56 Lerwe R, 1,0,0,7>0,¢>8>0withp>0and 0 < g <r+p. Let
fyh:[a,mb) CR — R, 0 < a < mb be the real-valued functions. If f be a integrable,
exponentially m-convex and f(h(v)) = f(h(a)+mh(b) —mh(v)) and h be a differentiable
and strictly increasing. Also, let y : [a,mb] — R be a function which is nonnegative and
integrable. Then the following inequalities hold:

f(w) wl(zm)p’57c7q7r yoh 1 h(a) .
) (e ) (0 (B)) e
w (2m)P .8 .c,q,r foh yoh -1 h(a) .
< (L+m) (hY(hl(hw)Z'fh(b))),P,G,Te ¢ ) (h ( m )
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< m [(ef(h(a» B mzef(‘;f;))>
(s, o) (10 (19).)
+< 1O 4 el (5

, L, (hla)
i) (2]

where w' = 7(mh(b)vﬁh(a))p.

L (2-1) hla)
Proof. Multiplying both sides of (8.348) with (7~ 1 ES¢%" (P p)ey(zh(”>+ 5) and
integrating over [0, 1], we have
(a)+mh(b) 1 r (2—1) h(a)
2ef( 2 >/ t‘HE,‘fjf;f’f(wtp;p)ey(Zh(b>+ 2 ’”)dt (8.357)
o 0,
1 (2-1) 2-1) h(a)
</ (T TES SO (P p)e £(5ntaytmC32nm)) y(5ae)+ 0D

(2—1) h(a) (2—1) h(a)
er/ 10— IES car th;p)ef(%h(bH ) 7>ey(§h(b)+ 2 T‘)dt.
Putting h(v) = 5(b) + E52 14 i (8.357), we get

(@) Lmh(b -l h(u);f:llh(b) a o—1
5o/ (MY w/,ﬁ(é) ) (h(v)m)

< EDSe ((2m)pw(h(v) =2y ) D a(h(v))
- h(a);,:h(b) )\ ! ) a
<[ (,é)) ) (102 ==Y g (Cmpuie) - “yip)

. (11 (Mg )\ O
s o M@+ mh(B) -1 (0)) 0D 4 (1) /h ) (h<v) _ Q)
h(a

M ip ) el DO a(1),

x Eyetr <(2m)pw(h(v) -

By using (2.4) and given condition f(k(v)) = f(h(a) +mh(b) —mh(v)), the first inequality
of (8.356) is obtained.

Now multiplying both sides of (8.349) with 1o~ IES ox (wiP;p)e y(
tegrating over [0, 1], we have

Ln(b (21) h(a) .
b+ '">and1n-
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1 (2—1) 2-1) hla)
/ 10 LESCT (1P ,p)e.f(%h(a)erTh(b))eY(%h(b)JrTn_l)dt

+m/ o1 pdcar th;p)ej~(%h(b)+(2;t) hgs))ey(%h(bﬂ zgt)%bt'

pcr

ha) 1 (2—1) h(a)
< (ef(h(“”mzef(n@))/ 1B % (wiPs p)e” (501 ) 4y
0

' -( h(a) 1 . i @2=1) ia)
+m (ef(h(b))—i—mef(m2 >)/0 t"’'Elg:;’,‘@r(wtp;p)ey(Zh(b)Jr z m >dt.

From above the second inequality of (8.356) is achieved. O

Corollary 8.66 Under the assumptions of Theorem 8.56 if we take m = 1, then we get
following inequalities for exponentially convex function:

-( h(a)+h(b) / N
2o/ (M )(,,W”-fmhr ) e7°h> (a:p) (8.358)

(h,l (M)) ,0,0,T

! . 0.
2 (hYV(thpl‘E:(ggh<b>>>’p’wey h) (a;p)

a w'2P .5.c.q,r o .
< (ef(h(b)) 1 ofh >>> (ﬂ(hl(mg;hw))),pvafy h) (a;p),

IN

where w = m.



Chapter

Bounds of Unified Integral
Operators Containing
Mittag-Leffler Function

In this chapter bonds of unified integral operators are given for different kinds of convex
functions. The results are further deducible for various types of fractional integral opera-
tors.

This chapter is based on our results from [56, 98, 72, 109].

9.1 Bounds of Unified Integral Operators
of Convex Functions

In this section bounds bonds of unified integral operators are given for convex functions.

Theorem 9.1 Let f: [a,b] — R be a positive convex function, 0 <a < band g: [a,b] — R
be differentiable and strictly increasing function. Also let % be an increasing function on
[a,b] and ¢,0,7,r € C, p,p,c >0,and 0 < g < ¢+ p. Then for x € [a,b] we have

(FE5 ) (vowip) < B (w(g(x) — 2(a)):p) (9(8() — 8(a)) (f () + £ (@)

8% at p,o,1
9.1

225
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and
(P20 f) (ewsp) < B (w(g(b) — 8()°5p) (9((6) — 8()) () + £(5)
9.2)
hence
(F227F) Ceowsp) + (FLO527F) (ewip) 9.3)

< EJS% (w(g(x) — 2(a)?;p) (9 (g(x) — g(a)))
(f(x) + f(@) + E 5% (w(g(b) — 8(x))°: p) (6 (8(b) — 8(x)) (f(x) + £(b)) -

Proof.  The function g is increasing, therefore for 7 € [a,x],x € (a,b), g(x) — g(¢)
< g(x) — g(a). The function % is increasing, therefore one can obtain:

P(g(x) —g())
g(x) —g(t)

< 9.4)

Now by multiplying with Egjg’?f’r(w(g(x) —g(2))P; p)g (¢) the following inequality is yielded:

O(g(x)—gl(1)) ,
500 —g(0) ¢ VE

S~—
S
an
ANEN
%
—
=
N
o
N
=
=
\
o
s
=
=
Nt}
©
<
<

g (NENSS (w(g(x) — g(1)°:p). ©.5)

Also Egjg;?;r(w(g(x) —g(t))P; p) is series of positive terms, therefore
t

Eg:g’f@r(w(g(x) —g(t))P;p) < Egjf;f’gr(w(g(x) —g(a))P; p) so the following inequality holds:

g (VENSY (w(g(x) — g(a))Psp). (9.6)

Using convexity of f on [a,x] for x € (a,b) we have

xX—t t—a

16 < = fla) +

£(x). ©.7)

X—da
Multiplying (9.6) and (9.7), then integrating with respect to 7 over [a,x] we have

[ S 11 B2 5% (o)~ l0) P

t
< f(a) (P(g(x) 7g(a)) 5:c,7q,r

Do i) —eta)sn) [ e-agan. 09
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By using (2.21), and integrating by parts we get
8.c.4, . .c.4, .
(EL5500F) (eowsp) < EDS% (w(g(x) — 8(@)P:p)

)
 ($al—l)) (100 (o) [t

8(x)—gla) ) \x—a

Jr% ((x —a)g(x) — /:g(t)dt))

which further simplifies as follows:

(F220F) (ewip) < Egrg (w(gl) — 8(a))5p) (9(8(3) — 8(a)) (F(x) + F(a)).

9.9)
Now on the other hand for 7 € (x,b], x € (a,b) the following inequality holds true:
(P(g(t) 7g(x)) / 8,c,q,r .
mg (1)Eps% (w(g(t) —g(x))’;p)
¢(g(b) 7g(x)) / d,c,q,r - 3
< S8 B (e(e(0)— 2. ©.10)

Also Eg:g;?;r(w(g(t) — g(x))P; p) is series of positive terms, therefore
Eg:g’fﬁr(w(g(t) —g(x)P;p) < Eg:g’fﬁr(w(g(b) — g(x))?;p), so the following inequality is
valid:

S8 )R (w(att) ~ £))ip)

1) —
< S B B () - 604)p) 11

The following inequality also holds for convex function f:

— b—
O < g fB)+ 1 —

f(x). 9.12)

Multiplying (9.11) and (9.12), then integrating with respect to 7 over (x,b] and adopting
the same pattern of simplification as we did for (9.8), the following inequality is obtained:

FPTOOFY (xwip) < EDSY (w(g(b) — g(x))P:p)

() 5aer)

() (A2 (o9 )
+% ((x—b)g(x) +./ng(t)dt))

which further simplifies as follows:

(ng‘zi’fSl;f;ﬁ’ff) (x,w3p) < ED % (w(g(b) — 2(0)P5p) (8(2(b) — g(x))) (£ (x) + £ (b))
9.13)
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By adding (9.9) and (9.13), (9.3) can be achieved.
Henceforth we give consequences of above theorem for fractional calculus and integral
operators defined in [47, 34, 81, 92, 108, 139]. O

Proposition 9.1 Let ¢(r) =1° and p=w = 0. Then (2.21) and (2.22) produce the the
following bound for fractional integral operators defined in [92], as follows:

(gt 1)) + (G- 1) () < =— ((8(x) —g(a))®

(f(x) + f(a)) + (g(b) — () (f(x) + f())) o = 1.

Proposition 9.2 Let g(x) =I(x) =xand p=w=0. Then (2.21) and (2.22) produce the
following bound for fractional integral operators defined in [138] as follows:

(atJo.S)) + (T ) (%)
<o(x—a)(f(x)+f(a) + o(b—x)(f(x) + £ (D))-

Corollary 9.1 If we take ¢(t) = 7 2 ) and p=w =0. Then (2.21) and (2.22) produce
the following bound for the fractional integral operators defined in [97] as follows:

(@TE ) )+ (CTE ) (%)
< o7 (60 — @) (0 + Fl@)

+ (g(b) — g(x)) ¥ (f(b) + f(x)).
Corollary 9.2 [fwe take ¢(t) =t* and g(x) = I(x) =x with p=w =0. Then (2.21) and

(2.22) produce the following bound for left and right Riemann-Liouville fractional integral
defined in [92] as follows:

=a

o
k

(O £)(x) + (OTp- ) (x)
1 - .
< oy (- @ UW + @)+ (b= B) + () 0 > k.

Corollary 9.3 Ifwe take ¢(t) = (( >) and g(x) =1I1(x) =x, p=w=0. Then (2.21) and

(2.22) produce the following bound for the fractional integral operators define in [108] as
follows:

(I F) ) + (T ()
1 o
< e (- 0T ¢ +(@)

+(b—x)*(f(b)+f(x) o >k
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Corollary 9.4 If we take ¢(t) =1°,0 > 0 and g(x) = %p, p >0 with p=w=0. Then
(2.21) and (2.22) produce following bound for the fractional integral operators defined in
[34], as follows:

Iz ) @)+ CT ) (x)

1 o
< m((xp —d”)(f(x) + f(a))

+ (07 =x)7(f(b) + £ (x)))-

Corollary 9.5 Ifwe take ¢(t) =1°,0 > 0and g(x) = ¥+1 §s>0,p=w=0. Then(2.21)
and (2.22) produce following bound for the fractional integral operators define as follows:

CIZ ) (x) + CI-f) (x)
1 S S o

< Gy (@ e ) + fla)

+ (bs+1 *XYH)G(f(b) +f(x)))

Corollary 9.6 If we take ¢(r) = lkr(( )) and g(x) = JS‘:, s>0, p=w=0. Then (2.21)

and (2.22) produce following bound for the fractional integral operators defined in [139],
as follows:

(=) () + Gy ) (x)

1 X a s+L s+l g
< —(s+1)%krk(o)((f( )+ f(a))(b )

+ (@ =@ E(f(b) + f(¥) 0 = k.

Corollary 9.7 Ifwe take ¢(t) =1° and g(x) = Y2 B.s>0, p=w=0. Then(2.21) and

o+s’
(2.22) produce following bound for the fractional integral operators defined as follows:

(pJa+ ) (X) + (I3 1) (x)

1 O+s§ O-+5\0O
< m((x T =a")(f(x) + f(a)

+ (7T X7 (f(b) + f(x)))-
Corollary 9.8 If we take g(x) = %, p>0in(2.21) and g(x) = %bex)p, p>0in

(2.22) with ¢(t) =t°,06 >0, p=w=0. Then (2.21) and (2.22) produce the fractional
integral operators defined in [81], as follows:

-0 px
I = T | (e = =) —a~ o

and
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Further they satisfy the following bound:

1
p°l'(o)

Corollary 9.9 Ifwe take g(x) = M, p>0in(2.21)and g(x) = M, p>0in

PIZ N + CT) < ((x=a)?*(f(x) + f(a)) + (b= x)P*(f (D) + [ (x)))-

(2.22) with ¢(t) = 2 Q‘ ; o>k p=w=0. Then (2.21) and (2.22) produce the fractional
integral operators deﬁned as follows:

(I ) ) + (I f) ()

1 pa
sm((x a) * (f(x)+ f(a)) + (b—x)

pa
k

(f(b) + f(x)))-

b
Lemma 9.1 [47] Let f : [a,b] — R be a convex function. If f is symmetric about a—; ,

then the following inequality holds:

£(%57) <700, xelasl ©.14

The following theorem provides the Hadamard type estimation of integral operators (2.21)
and (2.22).

Theorem 9.2 Let f : [a,b] — R be a positive convex function,0 < a < band g : [a,b] — R
be differentiable and strictly increasing function. Also let % be an increasing function on

[a,b] and c,0,T,r € C, p,p,c >0,and 0 < q < c+ p, if in addition f is symmetric about
a+b

. Then for x € [a,b] we have

f(a;rb> ((ngd’;?p’f;f”T’l) (a;p)+(( Foocar )(b;p)>
< ((F2Satrr) (amsp) + (FE5577) (b))
< 20(3(b) — 8(a) Eg6% (w(g(b) — 8(a))": p) (F(a) + £(b)). (9.15)

Proof. For x € (a,b), under the assumption on g and 0 the following inequality holds:

%g%xw&%’(wgu) ~ g(@)):p) 9.16)
P =) (B (w(s(0) @)

Using convexity of f on [a,b] for x € (a,b) we have

xX—a b—x
bfaf(b)—i—bfa

) < fa). 9.17)
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Multiplying (9.16) and (9.17) and then integrating with respect to x over [a, b], the follow-
ing inequality is obtained:

[ SR g w(sta) - (e i) () )
b

—gla
_ f(b) ¢<g< :
b

ESS% (w(g(b) — g(a))P;p) / (x—a)g'(x)dx

a
b

p,c,r (W(g(b)*g(a))p;P)/ (b—x)g'(x)dx.

a

) —8(a))
b—a g(b)—gla)
L f(@) 9(s(b) —8(a)) ;s
b—a g(b)—gla)

By using (2.21) and integrating by parts we get

(FEocarr) (b.wsp) < ESGE (w(g(b) = 8(@)):p) (9(3(6) — 8(a)) (f(@) + £ (1)

(9.18)
On the other hand the following inequality holds:
(Z)(g(b)—g(x)) / 5,¢,q,r .
mé’ (V)Ep 5% (w(g(b) —8(x))";p)
< KR8] ()B4 (w(a(0)  8(a))"5p). ©.19)

8(b) —g(a)

Multiplying (9.17) and (9.19) and then integrating with respect to x over [a, b] and simpli-
fying on the same pattern as we did for (9.16) and (9.17), following inequality is obtained:

(RS20 F) (awsp) < Eg (wlg(b) — 8(a))s ) (9((b) — g(@) (f(@) + £(8)).
(9.20)
By adding (9.18) ) and (9.20), we have

(gFﬁiiz’;f) (b,w;p) + ( Fb¢ ‘;C;Trf) (a,w;p)
<20(g(b) — g(a)Ep 5% (w(g(b) — g(a))P: p)(f(a) + £(b)). (9.21)

¢(g(x) 7g(a)) / d,¢c,q.r

Multiplying both sides of 9.14 by g X)Ey 57 (w(g(x) —g(a))?;p), then
g(x)_g(a) ()pGT( (() ()) )

integrating over [a,b] we get

a+b bo(g(x)—gla)) , S .
f< 2 >/a g(x) —g(a) g (0)EpsH (w(g(x) —g(a))P; p)dx
b X)—8la / c,q,r
</ %g () FOED 5% (w(8(x) — 8())"s p) £ (x)dx
By using 2.22 we get

F(50) (i) n= (52 wen) 02
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P(g(b) —g(x))

Multiplying both sides of 9.14 by
g(b) —g(x)

g'(x) Ep g% (w(g(b) — g(x))P: p) and in-

tegrating over [a, b] we have

f(a;rb) ( Ff*icf} >(b§l’) < ( Fﬁ‘iff;f) (b,w:p) (9.23)

by adding 9.22 and 9.23, the following inequality is obtained:

a+b Sear sean
(252 (eton bz o)

(( F¢ ii’f}f) (a,wip) + ( Fffpi’f’ff) (b,w;p)) . (9.24)

Combining 9.21 and 9.24, inequality 9.15 can be achieved. O

Theorem 9.3 Let f : [a,b] — R be a differentiable function. If |f'| is convex, 0 < a < b
and g : [a,b] — R be differentiable and strictly increasing function. Also let % be an
increasing function and c,0,7,r € C, p,p,c >0, and 0 < g < ¢+ p. Then for x € (a,b)
we have

|(F22 feg) rowsp) + (B0 ) (xowip)|

<ED % (w(g(x) — 8(@))Ps p)o(g(x) — g(@) (| ()| + | (@)])+

ESSS (w(g(b) — g(x))P:p)d(2(b) — g(x)(|f ()| + |1 (B)]). (9.25)
Where

(cFfsarrve) o) = [ (pig@)Eg,’é,‘?’(w(g(x)*g(t))";p)g’(t).f/(t)dt

(s ve) towip) i [ HED—EE EC utelr) - ()il (0 (Vs
Proof. Using the convexity of | f/| over [a,b] for ¢ € [a,x] we have

/ x—1, ,
TOEE=r

t—a,,
— | @)l (9.26)

From which we can write

-(Zhira

we consider the right hand side inequality of the above inequality i.e.

CHE

W) <ro= (i Slrm) o

—|f'(a)| +

’:Z_ '(x)|>. (9.28)
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Further the following inequality holds true:

P(glx)—g() ,
g(x) —g(t)

& ()Ep Y (w(g(x) —g(a)’;p). (9.29)

Multiplying (9.28) and (9.29) and integrating with respect to ¢ over [a,x], the following
inequality is obtained:

/ (pig st g (O f ()Ep 5% (w(g(x) — (1)) p)d
(@) o(g (X) g(a))

< O S SRS (wls) ~@):p) [ e 1)g

(@
/()] 0(s(x) — g(a)
a2 —z@

ESSY (w(g() — g@)p) [ (= a)g 0)ds
which gives

(+F8507 g owsp) < EDE4 (wle()—8(@)Psp)
< 6(60) ~ @) + 1)), .30

If we consider the left hand side inequality from the inequality (9.27) and proceed as we
did for the right hand side inequality we have

(F2207 ) (v, wip) > —EREY (w(g(x) — g(@))’sp)
x 9(2(x) —g(@)(If W) + If (@)]) ©.31)

Combining (9.30) and (9.31), the following inequality is obtained:

|(FEcarpg) (rowip)| < Eps% (w(g(x) — 8(a))":p)
x ¢(g(x) — g(a)) (1f' ()| +f (@)]). (9.32)
On the other hand using convexity of |f(r)| over [a,b] for ¢ € (x,b] we have

POl S0+ 2= ) 0.33)

Further the following inequality holds true:

S50 )75 (w(elo) —0))

< S B BLE (e(0) ~ 6(0)ip) 034
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By adopting the same treatment as we did for (9.26) and (9.29), one can obtain the follow-
ing inequality from (9.33) and (9.34):

(R0 f g ) (rows )| < EQSY (w(g(b) — ()P )
x ¢(g(b) = g())(If' ()| + £ (®)))- (9.35)
Combining (9.32) and (9.35), inequality (9.25) can be achieved.

9.2 Bounds of Unified Integral Operators
for Exponentially (s,m)-Convex Functions

Theorem 9.4 Let f: [a,b] — R, 0 < a < b, be a positive exponentially (s,m)-convex
function with m € (0,1] and g : [a,b] — R be a differentiable and strictly increasing func-

tion. Also let ¢ be an increasing function on [a,b]. If 6,7,8,¢c € C, p,p > 0, ¢ > 0 and
X
0< g <c+p, then forx € (a,b) we have

(gFa¢+5pC§ of ) (x,wip) + (g f ‘Spccf Trf) (x,w;p) (9.36)
< K{(Ep6% g:0 (( e(;?g(a)>
A (D st &U))

KESY 550) ((%gw) —m%?g(m)

[(s+1) (f(b) ), )
Proof. Using exponentially (s,m)-convexity of f, we have

b—x) \ e T8 =ML
flo) < (xr>s";($ +m(ta)sf(%)- 937)

X—a x—a) %)

x*g(b)

N—

Multiplying (9.6) and (9.37) and integrating over [a,x], we can obtain:

[ ke o) < Ly wo) [ (250) ate) 039

el g [ a0

X—a
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By using Definition 2.3 and integrating by part, the following inequality is obtained:

(EE207) (rowip) < KEESSY :0) ((mf oo - C&‘?g@)) 0.39)

8 atp,0,T %G

BVEER) (mfcf(%i e ela) - fj%)m@)) -

(x—a)*

Using exponentially (s,m)-convexity of f, we have

t—x\"f(b) b—t\"f(
1) <
QRS (bx) e%b +m b—x) e«
Adopting the same pattern as we did for (9.6) and (9.37), we obtained the following in-
equality from (9.11) and (9.40):

3 . (9.40)

S1=|3 =

c.q.r c.q.r b o
( Fhoca f) (x,w:p) < K} (Ep 6% ,:0) ((%g(b)—M%g(xo 04D

8" b~ ,p,0,7
s+ 1) (f(b) s ) s
- (b,x)s ( e0b Jb*g(x) _mea(%) Jx+g(b) :
By adding (9.39) and (9.41), (9.36) can be obtained. o
Remark 9.1

(1) If we take p =w = 0 = 0in (9.36), then we get [96, Theorem 1].
(i) If we take (s,m) = (1,1) and o =0 in (9.36), then we get [98, Theorem 1].
(iii) If we take (s,m) = (1,1) and p =w = 0in (9.36), then we get [155, Theorem 1].

)=
(iv) If we take (s,m) = (1,1), p=w=0and o =0 in (9.36), then we get [104, Theorem
1].

(v) If we take ¢(z) =t°,p >0, 0 =0, p=w =0 and (s,m) =(1,1) in (9.36), then we
get [59, Corollary 1].

(vi) If we take ¢(¢) =1°,p >0, g(x) =x,c =0, p=w =0 and (s,m) =(1,1) in (9.36),
then we get [47, Corollary 1].

Proposition 9.3 Let ¢(r) =, and p = w = 0. Then (9.36) gives the following bound
for p > 1 defined in [92]:

(G D)+ (G- ) ()
x) —g(a))P! L a
- (80) —5(a)P ((mf(,%gg(x)_ig 2g<a>>

- I(p)
F(S+1)< J;( zijg(a)ig(i)s']a*g(x)))

=3 =

(x _ a)s mn ol
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+ EO—sr - <<f<b>g<,,)_m@g(x)>

e0b ea(n—l)

s+1) L
3 (i)

Proposition 9.4 Let g(x) =I(x) =x and p =w = 0. Then (9.36) gives the following
bound defined in [138]:

(a+of)(x) + (b-To ) (x)
< 2 (e (Bt L)
f

F(S + 1) ( ea((%%z S‘lx*g(a) - C(CZ) SJa+g(x)>>
e ((bxf (f 0 o6) - mL 2] g<x>>

X
K

o

—I(s+1) (%Sjbg(x) m%s X+g(b)>> .

p
Corollary 9.10 If we take ¢ (1) = )( y and p=w =0, then (9. 36) gives the following
bound holds for p > k defined in [97]

(B ) () + (B f) (x)

. <g<x>k—rkg(<g)>>"?' (<mf o - L
e R )

NCCELOIR ((’;ﬁ)g@) m:cf(@g(”)

) (- L)

Corollary 9.11 If we take ¢(t) =1, p =w =0 and g(x) = I(x) = x, then (9.36) gives
the following bound for p > 1 defined in [92]:

(PJa 1) () + (T f) (x)
(o200

6+ <mf ), g(a)- %m@))

(xia)s ea(%
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—x)P-1 X
o (oL

B (s

P
Corollary 9.12 [f we take ¢(r) = k(ri)(tpk) p=w=0and g(x) = I(x) = x, then (9.36)
gives the following bound for p > k defined in [108]:

CTar H)@) + (O ) ()

(x—a))f! () f(a)
=T ) ((mea«;wg(x) T eaa g(“)>
- EEHQ;? (m fa(éz Je-gla) — J;(OZ) SJa+g(X)> )
o1 X
+ (bkl");zi)) (J;Ez,)g(b) m%g(ﬂ)

) (00880

Corollary 9.13 If we take ¢(t) =t°, p=w=0and g(x) =
the following bound defined in [34]:

I+ CT)(x)

P —aP)P-1 b a
< ((mf(("z € C(“")g(a)>
?< L <mf ) s, g(a)- fe(T“)sJa+g<x>>>
bp xP)P-1 (%
pc 1 (( eab nizg(x)>

((er; ( eoi _g(x)— m];x(éz s x+g(b)>> )

Corollary 9.14 Ifwetake ¢(t) =t°, p=w=0and g(x) = %, n >0, then (9.36) gives
the following bound:

(IO ) (x) + (T f) ()
(x”“ _an+l)p71 f(%) f(a)
= T) kT ((’"eamg(") ~ e 8(a)>

o) (o8 L)

237

%p, p >0, then (9.36) gives
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n+l _  nt+l\p—1 X
LA ((ﬂ”)g(b)—m“—*f%g(x))

Tyt T\ e R

D+ ) (f@vbgoc) —m%”ﬁg@» |

(x _ a)“' eb
The following lemma is essential to prove the next result.

Lemma 9.2 Let f:[0,00] — R, be an exponentially (s,m)-convex function with m € (0, 1].

atb—x
If0<a<band f = M then the following inequality holds:
d P 8

e (a+b x)
b 1
f(‘“zL ) (1 +m)f<x), x€fa,b]. (9.42)
. () S5
Theorem 9.5 Under the assumptions of Theorem 9.4, in addition if — = = ()
e e

then we have

s fa+b
h(o)2 f( > > (( F¢5qu1)(a,w;p)+(F(Pécqu)(b’w;p)) (9.43)

(1+m) ,0,0,T at,p,0,T

,0,¢,q, s )
< (ng¢;7pf£'Tr,f) (a,w;p)+ ( Faq: pccg;f) (b,w;p)

, b a
<akg(E 620) ( (L2 () - m8) g(a)
e e (m)

(b _ a)s eb
Proof. Using exponentially (s, m)-convexity of f, we have

s < (3=4) L0 m(f) L), 044

Multiplying (9.16) and (9.44) and integrating the resulting inequality over [a,b], we can
obtain obtain:

[ Ke(ESs g )ats)
<l iy s [ (1) atw)

I =L
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By using Definition 2.3 and integrating by parts, the following inequality is obtained:
,0,0,q,r §.c.q, f b f a
(gFjl,pfcf, Tf) (b,w:p) < Ky (Ep'sy'.8:9) (( e(a,,)g(b) —m (’f) gla) |(b—a)’ (9:45)

%)
D(s+1) (£(b) F(G),
o (b,a)s ( eab Jb*g<a)_m a(L) a+g<b)))-

e

Adopting the same pattern of simplification as we did for (9.16) and (9.44), the following
inequality can be observed for (9.44) and (9.19)

C r a ,C o b e %
(et cars) tamip) < K3 o) (Lohon) - mL o) 00
LC(s+1) (f(b) £ s
S (L s -n D).
By adding (9.45) and (9.46), following inequality can be obtained:

0.c,q.r ,0.¢,q,r
(F 227 f) bowsp) + (FL25A7F ) (awip) (9.47)
a 5(, r f b f %
< K3ER o) (- eib)gw)me(%?g(a))
Cla+1) (f(b) £
- W< oab Jp-g(b) —m— 2% ) *Ja+8(b)
Multiplying both sides of (9.42) by Kf(ES:f;f’T’r,g; ¢)d(g(x)), and integrating over [a, b] we
have
a+b a (SC r
(57 [ kemtay soratet)
1 car X
< (5 ) e [ reEss o) L atet)
From Definition 2.3, the following inequality is obtained:

b 2 c.q,r c.q.r
h(a)f (%) m (ng(p:fi;,c’?,’rl) (a,w;p) < ( Fb(p 5p ;’Tf) (a,w;p). (9.48)

Similarly multiplying both sides of (9.42) by K}, (Eg:f;,qf’r, g:¢)d(g(x)), and integrating over
[a,b] we have

a+b 2% 1.8k, 5.k,
(o) f < . > = (gFj’,gJﬂfl) (bw;p) < ( FoT aff) (bywip)  (9.49)
by adding (9.48) and (9.49) following inequality is obtained:
atb\ 2 B.c.ar Bk,
(o) f <T> T ((ng“’,pf;,Tl) (a,w;p) + ( chflafl) (b,w;p)) (9.50)
,0.¢,q,r . ,0.k, .
< (F2 1) (@wip) + (FETECT) (bowi).

Using (9.47) and (9.50), inequality (9.43) can be achieved. O
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Remark 9.2
(i) If (s,m) = (1,1) and o = 0 in (9.43), then we get [98, Theorem 2].
(ii) If (s,m) = (1,1) and p = w = 0 in (9.43), then we get [155, Theorem 4].
(iii) If p=w =0 =01n(9.43), then we get [96, Theorem 3].
(iv) If (s,m) = (1,1) and p = w = or = 0 in (9.43), then we get [104, Theorem 3].

P

Corollary 9.15 If we take ¢(t) = k%‘ )(p) and p =w = 0, then the inequality (9.43) pro-

duces the following Hadamard inequality defined in [97]:

27 (417)

(8(0) — (@) < (2 fl@)+£ Ik fB)) (05D

PTe(p)(m+1)
2(g(b) —g(a)f~" (( f(b) /(%)

<Ly (G0 o)
C(s+1 b), I s

R (st )l a) ) ).

Corollary 9.16 If we take ¢(t) = tP and p = w = 0, then the inequality (9.43) produces
the following Hadamard inequality defined in [92]:

27 (43)
om0 —s@)" < (575 f(a) +6 Jur £(b)) 9.52)

- z(g(b)r(;g;ga))p1 ((');(Ci)g(b) —m];ff:g g(a))
vel®))).

_F<s+1>(f<b)sj FG),
%
Corollary 9.17 If we take ¢ (1) = Doy & p =w =0 and g as identity function, then the

(b—a) \ e b-8la) - ()
ki (p)?

inequality (9.43) produces the following Hadamard inequality defined in [108]:

h( )2s+1f (a—;b

HFk(P)(m+ )

200—a)f" ([ £(b) ()
= T () (<ea” g(b)_mmg(“)>

Cis+1) (£(b), F),
a (b,a)s (ﬁ Jb*g(a) _mea(%) a*g(b)))-

) (b—a)’* < (%f,f(a) +° J§+f(b)) (9.53)
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Corollary 9.18 If we take ¢(¢r) =t°, p =w = 0 and g as identity function then the in-
equality (9.43) produces the following Hadamard inequality defined in [92]:

s+1 at+b
h( )2 f( 2 ) (g(b) 7g(a))p < (pr f(a) Ly +f(b)) (9.54)
ul(p)(m+1) = U at.
2(b—a)P”! ([ f(b) f(2)
T(p) (( oo 8(8) —mmg(a))
Lis+1) (f(b), F(4),
- (b—a) (W Jb*g(“)—mﬁ Ja+g(b)))-

Theorem 9.6 Let f: 1 — R be a differentiable function. If || is exponentially (s,m)-
convex with m € (0,1] and g : I — R be a differentiable and strictly increasing function.

Also let g be an increasing function on I then for a,b €I, a <b. If 6,7,8,c € C, p,p >
0,¢c>0and0 < g <c+p, then for x € (a,b) we have

8,c,q,r 8,c,q,r
‘(g adi,p GqTf*g) (x,w;p)+( F‘Z’ p;ff*gﬂ(x,w;p) (9.55)

< KIEDSY :0) <<m Il 'g<x> - 'fei‘;)'gw))

)
)

r (b (
+ Ky (Ept,8:9) ((%g(b)— ()|

T(s+1) <|f’<b)|sjbg(x)_m|f/ % -

- (x—a) 20b

s\«§|><

)

(F3sarreg) towp) 1= [ KUEDSY g:0)f (0d(5(0),

where

(23 og) (owip) = [ KBRS 0:0)1 (0)dls0).

Proof. Using exponentially (s,m)-convexity of | f'| we have

()] < (x—t) @+m<’“> |fa((§))|. (9.56)
X—da e X—d e \'m
(9.56) can be written as follows:
x—t\"|f'(a)] t—a\'lf' (;) '
_((xa) eda +m(xa) als) )Sf(t) ©.57)
|

e
B S| ol _ S|fl (X
< ()l (e
X—a e%a X—a prde
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Let we consider the second inequality of (9.57)

OE (j_;)s ) +m<i_2) 'f(<

Multiplying (9.6) and (9.58) and integrating over [a,x], we can obtain:

)) | . (9.58)

S=[3 =

X—a

x K4(ES: S‘Qr,g;m/ax (t_a)sd(g(t))-

X—a

< keisgsy o) [ (24) atotn +mlCl)

By using Definition 2.3 and integrating by parts, the following inequality is obtained:

,0.,¢,q,r 54
(gFﬁﬂfg,Tf) (x,w;p) < KY(Ep 0'6{L'rvg ) (9.59)

(el o
BRACERY (ml-f;;é} e a+g<x>)) -

(x—a)*

Now we consider the left hand side from the inequality (9.57) and adopting the same pat-
tern as we did for the right hand side inequality we have

0,0, 5 4,
(FS5000 1) (eowip) = KBRS 430 (9.60)

. (<m—'f Gl - —'f;fjj"gw))

B (8 - )

From (9.59) and (9.60), following inequality is observed:

|(FE058(f28)) (rowip)| < KEESSY 839) (9.61)

. (<m B IR '-’Zﬁi)'gw))
_EE L (mlf ((?glijg<a)_|fe'gi>|s,a+g<x)>>_

Now using exponentially (s,m)-convexity of |f’|, we have

— SIF(h bt \*|f (=
If' (1) < (;_’;) |fe§b)| +m<b_i> |fa((2?|. (9.62)

s|«§|><

e



9.2 BOUNDS FOR EXPONENTIALLY (s,m)-CONVEX FUNCTIONS 243

On the same pattern as we did for (9.6) and (9.56), one can obtain following inequality
from (9.11) and (9.62):

Y50k, 8,
(FSETE () ) Cowsp)| < K (EDEY 550) (9.63)

. (('-’:Eﬁ)'gw) 1) 'g<x>>
- ()Esja;s) ('Cibﬂ Jbg(x)ml];a(é))"‘fx+g(b)>>-

By adding (9.61) and (9.63), inequality (9.55) can be achieved. O

Remark 9.3
(i) If we take o0 = 01n (9.55), then we get [96, Theorem 2].
(i) If we take (s,m) = (1,1) in (9.55), then we get [155, Theorem 3].
(iii) If we take (s,m) = (1,1) and o = 0 in (9.55), then we get [98, Theorem 3].

Theorem 9.7 Under the assumptions of Theorem 1, the following inequality holds for
m-convex functions:

(FL27 1) (ews )+ (FP ST ) (v wip) (9.64)
<KUESSY 8:9)(6) — 8(a)) (mf (=) + /(@)
+ K(ESY 2:0)(8(6) — () (mf () +£(2)).

Proof. If we put s = 1 in (9.38), we have

[ KUERSE 001 () d(5(0) < Fla)KE(ESH :0) 9.65)

[ (E2E )t (£) kecedst o [ (122 ateton.

Further simplification of (9.65), the following inequality holds:

(FE00F) (owsp) < KEESEE 8:0) () — g(a)) (mf (=) +fl@) . (9:66)

Similarly from (9.41), the following inequality holds:

(L35 F) (rwp) < KRELSAS 650 (a(6) ~8(0) (mf (5) +£8)) . 0:67)

From (9.66) and (9.67), (9.64) can be obtained. O
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Corollary 9.19 If we take m = 1 in Theorem 4, then the following inequality holds for
convex functions:

(P20 f) Ceowsp) + (FPO2TT) (v wip) (9.68)
< KI(ENS% 8:0)(8(x) —g(a) (f(x) + f(a))
+KHEDSY,8:0)(8(b) — (%)) (F(x) + £(b)).

Theorem 9.8 With assumptions of Theorem 4, if f € L.|a,b), then unified integral oper-
ators for m-convex functions are bounded and continuous.

Proof. From (9.66) we have

|(FEr) (ws) | < K (ESES8:0)(8(8) — 8(@)) (m+ DI

which further gives
8.c.q, .
|(oF82c22r) Gowsp)| < KU,

5 r
where K = (g(b) — g(a))(m+ DKJ(Ey 5% ,8:9).-
Similarly, from (9.67) the following inequality holds:

|(F25e2F) (eowip)| < KIIFle

O

Corollary 9.20 Ifwe take m = 1 in Theorem 5, then unified integral operators for convex
functions are bounded and continuous and following inequalities hold:

S,c,q,r X
|(F25507F) owip)| < K
where K = 2(g(b) — g(a))KL(ES 5%, 8:¢) and

10,6,
|(F25527F) (eowip)| < KILfle
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9.3 Bounds of Unified Integral Operators
for Strongly (s,m)-Convex Functions

1
In this section the notation I(a,b,g) =: % / ab g(#)dt is used frequently.
—a

Theorem 9.9 Let f: [a,mb] — R, 0 < a < mb be a positive integrable and strongly (s,m)-
convex function, m # 0. Then for unified integral operators, the following inequality holds:

(P850 ) (rowip) + (FPOC4T ) (ewip) (9.69)
< KUE Y 5:0) (mf () 800~ fl@)s(a)

. EE_ - ;3 (mf (2) " s(a) ~ (@) Vg ()

A(x —ma)?
TTea)

+KHENH :0) (F()g(b) —mf (=) 8(x)

(2(a,x.1gg)  (a +x>1<a,x,g>>>

[(s+1) s

- (106) 0 st - (2) 0 0)
A(mb —x)?

“b—w)  HDilag) = (x+b)I(xb, g))) .

Proof.  For strongly (s,m)-convex function the following inequalities hold for a < ¢ < x
and x <t < b receptively:

£l) < <Xt)sf(a)+m(ta>sf(£> 7l(xft)(tfa)(x27ma)27 ©.70)

x—a X—a m m2(x—a)
RN A _ _ Y
flt) < (Zi) f(b)—l—m(%) f(%) Al xr)n(zb(bt)gzb e
From (9.6) and (9.70), one can have
| KUENSY 0:0)f(0d(6(0)) < @KL ENS 20) ©.72)
<[ (x ;) d(g(t))+mf(%) KUEDSY 0 [ (;_Z ) d(5(1))

g5
—K{(Epistt g8 Nk
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i.e,
(FE5cr) (eowsp) < KEESES 20 (mf (2) g() — fl@)gla)  ©73)

T (i () - sl0) 1) 0050
A(x —ma)?
Ga

On the other hand from (9.11) and (9.71), one can have

+ (2I(a,x,1;8) — (a er)I(a,x,g))) .

[ KBS 0:0)r0)a6(0) < FORHES 1 :0) ©.74)

<[ (522) atstonme (2) ristrgo [ (14 ) et

m b
KBRS 0) = [0 =2)(6—00(s(0),

(ng"’"Z";;’;; ) (eowip) < KYESS :0) (F)e(0) =msf (D) gl)  (075)
”1 (f Uy g(0) = mf (=) i g(0))

< —xp?
Ty

By adding (9.73) and (9.75), (9.69) can be obtained. O

(21(x,b,1;8) — (x+b)I(x, b,g))) .

Corollary 9.21 Serting p =w = 0 in (9.69) we can obtain the following inequality in-
volving fractional integral operators defined in [49]:
(F2 1) @)+ (FS, 1) (6p) 9.76)
X
< K(ax:9) (mf (=) g(x) — fla)g(a)

g 0 () et st
2
0 o) o)
+ Ko (x,b50) (f(b)g<b) —mf (%) 8(x)
- (1009 ) = (£) 000
Amb —x)*
(b—x)

+ (21(x,b,1;8) — (x—i—b)](x,b,g))) .
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Remark 9.4

(1) If we consider A = 0 in (9.69), then [69, Theorem 3.1] can be obtained, for A > 0
we get its refinement.

(i) If we consider ¢(z) =1° and g(x) = x in (9.69), then [55, Theorem 1] can be ob-
tained.

(iii) If we consider s = m = 1 in the result of (ii), then [55, Corollary 1] can be obtained.
(iv) If we consider o = ¢’ in the result of (ii), then [55, Corollary 3] can be obtained.
(v) If we consider f € Lo[a, b] in the result of (ii), then [55, Corollary 5] can be obtained.
(vi) If we consider o = ¢ in the result of (v), then [55, Corollary 7] can be obtained.
(vii) If we consider s = 1 in the result of (ii), then [55, Corollary 5] can be obtained.
(viii) If we consider (s,m)= (1,1) in (9.69), then [82, Theorem 2] is obtained.
(ix) If we consider 0 = 0/, A =0 and (s,m)= (1,1) in (9.69), then [98, Theorem 8] is
obtained.
(x) If we consider A =0 and p =w = 0in (9.69), then [96, Theorem 1] is obtained.
(xi) If we consider A =0, ¢(z) =T'(0)t°, p=w =0 and (s,m)= (1,1) in (9.69), then
[59, Theorem 1] is obtained.
(xii) If we consider o = ¢ in the result of (xi), then [59, Corollary 1] is obtained.
(xiii) If we consider A =0, ¢(¢) =1°, g(x) = x and m = 1 in (9.69), then [35, Theorem
2.1] is obtained.
(xvi) If we consider & = ¢ in the result of (xiii), then [35, Corollary 2.1] is obtained.

(xv) If we consider A =0, ¢ (1) = % (s,m)=(1,1), g(x) =xand p=w = 01n (9.69),

then [48, Theorem 1] can be obtained.
(xvi) If we consider 0 = ¢ in the result of (xv), then [48, Corollary 1] can be obtained.
(xvii) If we consider A =0, ¢(¢t) =T'(0)°, g(x) =x and p =w =0 and (s,m)= (1,1) in
(9.69), then [47, Theorem 1] is obtained.
(xviii) If we consider o = ¢’ in the result of (xvii), then [47, Corollary 1] can be obtained.

(xviii) If we consider 0 = 6’ = 1 and x = a or x = b in the result of (xvii), then [47,
Corollary 2] can be obtained.

b
(xix) If we consider 60 = ¢’ =1 and x = at in the result of (xvii), then [47, Corollary

3] can be obtained.
The following lemma is very helpful in the proof of upcoming theorem, see [55].

Lemma 9.3 Let f : [a,mb] — R be strongly strongly (s,m)-convex function, 0 < a < mb.
Iffis f(%) = f(x), m # 0, then the following inequality holds:

f<a+2mb) _ G +;1S)f(x)

- %(a—l—mb—x—mx)z. (9.77)
m

By using above lemma, the following inequality for strongly (s,m)-convex functions is
obtained.
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b_
Theorem 9.10 Under the assumptions of Theorem 9.9, in addition if f (x) = f <M> ,

m
then the following inequality holds:

a+mb 25 0.8, ]
(52 o (g o

A r
+ o (ngd’,’Sp’C(’f’T(a—i-mb —x— mx)2> (a,w;p) + ( F¢ d.cqr 1) (a,w;p)
m L i)

0,0,T
A ¢.8.¢.q,r 2
+ - ( Fii ool (a+mb —x—mx) ) (b,w;p)
.0,0,q, .0,0,q,
L) (bowp) (ST ) (anwep)

b=,p,0,T:

4
(

< (Ke(ER5Y 0+ KE 5 50)) (0)) - mr (2 )ata)
N

e GOR TR AR

A(mb —a)?
W (2I(a,b,1,8) — (a+ b)I(a,b,g))) .

Proof.  For strongly (s,m)-convex function satisfies the following inequalities hold for
a<x<b:

70 < (220 sy em(1=2) (&) -2l omal o7

m m2(b—a)?
From (9.16) and (9.79), one can have

b
3.4
[ KHES S 80/ () (s()
Ja
a d,c,
<mf (—) Ky (Epis%' 8.0 ( ) (x))
m
d,c,
FOKLESSY 550 ( 1) e
8.c.4, b —ma)
- RUESSY i) 0 [ - atet)
Further, the aforementioned inequality takes the form which involves Riemann-Liouville

fractional integrals in the right hand side, thus we have upper bound of the unified left
sided integral operator as follows:

(ercacs) onip) < K E35Y 600 (r01e0) -mr ()o@ 050

o (10 @i () )

mb — a)?
+M<bbT)) (21(a,b,148) — (a+ b)I(a,b,g))) :
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On the other hand
5 c,q,r 5 c,q,r
Kx( pg’»f?g(p) ()SK(I( po"f?g(p) ()a<‘x<b’ (9’81)
from (9.81) and (9.79), the following inequality holds which involves Riemann-Liouville
fractional integrals on the right hand side, gives estimate of the unified right sided integral
operator:

(25es) bowip) < KB 560) (10)60)-mr (£ )sta) 082
[(s+1
e GOROR CRAO)
A(mb —a)?
(b—a)
By adding (9.80) and (9.82), following inequality can be obtained:

( F¢ 5pccf;f> (a,w;p)+ ( Fffp";’,r f) (b,w; p) (9.83)
< (KBS o)+ KD 6:0)) 1010) - mr (£ )sta)

4 () 50)
b—a)

Multiplying both sides of (9.77) by Kf(Eg:f;?T’r,g;mg’(x), and integrating over [a,b] we
have b b
a S.cqr .
£(“57) [ keemlar ssoratet)
a

b
< <21s)( +m)/a K (Epe%,2:0)f(0)d(g(x))
A
dm

From which the followmg inequality is obtained:

a+mb 28 ¢,0,c,q,r . 0.8.c.q,r )
f< 2 > m (ng*,p,c,Tl) (07va) < <ng,,p,G7Tf> (a,w,p) (9.84)

(21(a,b,1;8) — (a+ b)I(a,b,g))> )

(2I(a,b,1;8) — (a+ b)I(a,b,g))) )

K“(ES 0%,8:9)(a+mb—x—mx)’d(g(x)).

A
- (ng¢;fSp’féf,’:(a +mb—x— mx)z) (a,w;p).

Squ
p,0', T

Similarly multiplying both sides of (9.77) by Kj{(E
[a,b] we have

a-+mb 28 Sear 5o
f< 2 ) rm) (F 227 1) (bowsp) < (FESELF) (bowsp)  (9.89)

g;0)g'(x), and integrating over

A s
I (gFﬂ,p’fff’; (a+mb—x— mX)Z) (b,w;p).
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By adding (9.84) and (9.85) the following inequality is obtained:

a+mb 2 $.8,c.9. )

! ( 2 ) T (A5 owep) ©-50)
A 8,c,q,r 5,6,

+ e ( F‘P ,pc(jqf(a—l—mb—x—mx)Z) (a,w;p) + ( F¢ ,pc(ffl) (a,w;p)
A ¢

+— ( Fa‘ﬁsp o (atmb—x— mx)2> (b,w;p))

dm
(F““” ) (b,w;p) + (F,,")ifcf{f) (a,w;p).

Using (9.83) and (9.86), inequality (9.78) can be obtained. O

Corollary 9.22 Setting p =w = 0 in (9.78) we can obtain the following inequality in-
volving fractional integral operators defined in [49]:

! <a+sz) ﬁ ((et) @) (9.87)
41 (F<2> (aerbfxfmx)Z) (a;p)+ (Fc‘fb,l) (a:p)

+% (Fc’ at (@+mb—x— mx)2> (b;p))

¢
< (Fgof) Wip)+ (F2, f) (@p)
< (K,
r

«(a.0:9) + Kela,b: ¢))< mf<n%)
(s+1) s
S (e st - (%) ses0)
2

%(ZI(a,b,ldg) (a+b)I(a,b,g) >

Remark 9.5

(i) If we consider ¢(r) = ¢° and g(x) = x in (9.78), then [55, Theorem 7] can be ob-
tained.

(ii) If we consider A = 0 in the result of (i), then [55, Theorem 8] can be obtained.
(iii) If we consider (s,m)= (1,1) in (9.78), then [82, Theorem 3] is obtained.
(iv) If we consider A = 0 and (s,m)= (1,1) in (9.78), then [98, Theorem 22] is obtained.
(v) If we consider A =0, ¢(¢t) =I'(0)t°*!, p=w=0and (s,m)= (1,1) in (9.78), then
[59, Theorem 3] is obtained.
(vi) If we consider 0 = ¢’ in the result of (v), then [59, Corollary 3] is obtained.
(vii) If we consider A =0, ¢(¢) = (ot g(x) =xand m = 1in (9.78), then [35, Theorem
2.4] is obtained.
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(viii) If we consider o = ¢’ in the result of (vii), then [35, Corollary 2.6] is obtained.
(ix) If we consider A =0, ¢(r) = [(a)t T+, (s,m)= (1,1), g(x) =xand p=w =0 in
(9.78), then [48, Theorem 3] can be obtained.
(x) If we consider 0 = ¢ in the result of (ix), then [48, Corollary 6] can be obtained.
(xi) If we consider A =0, ¢(t) ='(0)t°!, p=w=0, (s,m) = 1 and g(x) = x in (9.78),
then [47, Theorem 3] can be obtained.

(xii) If we consider o = ¢ in the result of (xi), then [47, Corrolary 6] can be obtained.

Theorem 9.11 Ler f: [a,mb] — R, 0 < a < mb be differential function such that |f'| is
strongly (s,m)-convex function, m # 0. Then for unified integral operators, the following
inequality holds:

|(E25e07 1 58) (eowsp) + (F2 5550 f 5 8) (eowip)| 989
<KUESSY 8:0) ((m|r (3) e~ 1 @ls(@

i (ol (5) | sta) 17 @00

+A(;CTGC:’)1)2 (2l(a,x,1;8) — (a +x)1(a,x,g))>

+ K3(Ey 172:0) (17 ®le®) —m|f ()] s0)
At e ISJb—g(x)—mf’(%> Vyeg(0))

(b—x)
+W (21(x,b,1;8) — (x+ b)I(x,b,g))) )

A(mb —x)?
Proof. For strongly (s,m)-convex function | f’|, the following inequalities hold for a < 7 <

xand x < 1 < b receptively:
rols (Z0) ir@em(20) | (2)|- Ll os)

rol< () iroren(222) 14(2)

From (9.6) and (9.89), the following inequality is obtained:

[(cF22e00(rg)) (o p)| < KEEDSY :0) ( (m

—x)(b—1t)(mb—x)?
A ;(f’(b ’))E)zb . 00

7 ()] e -1 @lg(a)

(9.91)
- (ol (5) | st - 17 @)
2
% (21(a,x,1a8) — (a+x)l(a,x,g))) .
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Similarly, from (9.11) and (9.90), the following inequality is obtained:

(B2 28)) Cowsp)| < KREDSH 8:0) (1 0)]g®) —m]r (2] |sx)
I(s+1)

(9.92)
T (|f’(b)|SJb,g(x) _mlp (%)

A(mb —x)?
~b= (21(x,b,1,8) — (x+b)l(x,b,g))) :

Jerg(b))

By adding (9.91) and (9.92), inequality (9.88) can be achieved. O

Corollary 9.23 Serting p =w = 0 in (9.88) we can obtain the following inequality in-
volving fractional integral operators defined in [49]:

‘(Ff,a+f*g)( )+ (2 bff*g> () o
Kelax:0) ((m]f (2)] g0 =17 (@)lg@)
s+1 ( ) sJ-gla)—|f'(@)|® a+g(X)>
(( ")1)2 (21(a,x, Ig) — (a+x)l(a,x,g)))

+ Kp(x,b:0) ((If’(b)lg(b) —m|f (%)‘g(x))

- Zﬁsjs) (17 @1 -g)=m|f ()] 9 5(0)

’l((”;bi))z (21(x,b, Iag) - (Hb)’(x””g))) '

Remark 9.6

(1) If we consider A = 0 in (9.88), then [69, Theorem 3.4] can be obtained.

(i) If we consider ¢(r) =° and g(x) = x in (9.88), then [55, Theorem 6] can be ob-
tained.

(iii) If we consider s = m = 1 in the result of (ii), then [55, Corollary 13] can be obtained.
(iv) If we consider o = ¢’ in the result of (ii), then [55, Corollary 11] can be obtained.
(v) If we consider (s,m)=(1,1) in (9.88), then [82, Theorem 3] is obtained.

(vi) If we consider A = 0 and (s,m)= (1,1) in (9.88), then [98, Theorem 25] is obtained.

(vii) If we consider A =0 and p = w = 0 in (9.88), then [96, Theorem 2] is obtained.

(viii) If we consider A =0, ¢(¢t) =T'(0)t°*!, p=w=0and (s,m)= (1,1) in (9.88), then
[59, Theorem 2] is obtained.

(ix) If we consider o = ¢ in the result of (viii), then [59, Corollary 2] is obtained.
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(x) If we consider A =0, ¢(¢) =1°, g(x) =x and m = 1 in (9.88), then [35, Theorem
2.3] is obtained.
(xi) If we consider o = ¢ in the result of (x), then [35, Corollary 2.5] is obtained.
(xii) If we consider A = 0, ¢(r) = T(a)r ', (s,m)= (1,1), g(x) =x and p =w =0 in
(9.88), then [48, Theorem 2] can be obtained.

(xiii) If we consider 6 = ¢’ in the result of (xii), then [48, Corollary 4] can be obtained.

(xiv) If we considerc =0’ =k=1andx = #, in the result of (xii), then [48, Corollary
5] can be obtained.

(xv) If we consider A =0, ¢(t) =T'(0)t°*!, g(x) =xand p=w = 0and (s,m)=(1,1) in
(9.88), then [47, Theorem 2] is obtained.

(xvi) If we consider & = ¢ in the result of (xv), then [47, Corollary 5] can be obtained.

9.4 Bounds of Unified Integral Operators
for (o, m)-Convex Functions

In this section bounds of unified integral operators of (¢, m)-convex functions are estab-
lished.

Theorem 9.12 Let f : [a,b] — R be a positive integrable (o, m)-convex function with

€ (0,1). Let g: [a,b] — R be differentiable and strictly increasing function, also let g
be an increasing function on [a,b]. If o,l,7,c € C, R(a),R(1) > 0, R(c) > R(y) >0
Py, 0 >0and 0 < k < 8+, then for x € (a,b) we have

(eF2Scmrr) eowsp) < KEESSY 8:0) ((mf (2) )~ fl@)gla))  9.9%)

T (o (2) - 11@) st

(eF25earr) (eowsp) < Ki(EGY :0) ((F)s®) —mf (Z)5)  (999)
% (@) -mr () %g(x))
and hence
(B850 p) oows) + (oF57F) (i) (9:96)
< KUERGY 5:0) ((mr () 80— flas(@)

R s () - st0) st
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+ K (EREH 8:0) ((f(D)g(v) —mf (2) g())

B (1o -mr (2)) e et0).

Proof. Using definition of (o, m)-convexity for f the following inequality is valid:

o) < (;:;)af(a)m(l - (j:;)a)f(%) (9.97)

Multiplying (9.6) with (9.97) and integrating over [«,x], one can obtain

[ ks o) rwatso) < ki o) [ (24) dtetn)

xX—a

smp (2) kst o) (1 (325) ) dteton,

By using Definition 2.3 and integrating by parts, the following inequality is obtained:
(FL05aF) (eowip) < KHESSY 8:0) (k=) (mf (5) e0) — f(@)s(@)) ©.98)
r 1
D (o ()~ fta) a+g(x>> :

(x—a)

Using (o, m)-convexity of f, we have

£ < (l’)—’;)af(bwm(l - (li_—i)a)f(%) (9.99)

Adopting the same procedure as we did for (9.6) and (9.97), the following inequality from
(9.11) and (9.99) can be obtained:

(eFyatnr) eowsp) < K (Ep . :0) ((£(0)s(B) —mf () 5())  (9.100)
B (r-mr (X)) et

By adding (9.98) and (9.100), (9.96) can be obtained. O

Remark 9.7
(i) If we consider (o,m) =(1,1) in (9.96), [98, Theorem 1] is obtained.

u v
(ii) If we consider ¢ () = l,:(r‘: )(’“k) for left hand integral and ¢ (r) = i(ri)(tvk) for right hand

integral and p = w = 0 in (9.96), then [88, Theorem 1] can be obtained.

(iii) If we consider p = v in the result of (ii), then [88, corollary 1] can be obtained.

(iv) If we consider ¢ (¢) = T'(u)t*, p=w=0and (a,m) =(1,1) in (9.96), [59, Theorem
1] is obtained.
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(v) If we consider u = v in the result of (iv), [59, Corollary 1] is obtained.
uw
k

(vi) If we consider ¢(¢) = I];(r‘: )(tu) for left hand integral and ¢ () = i(rz)('f) for right hand

integral, (or,m) =(1,1), g(x) = x and p = w = 0, then [48, Theorem 1] can be ob-
tained.

(vii) If we consider u = v in the result of (vi), then [48, Corollary 1] can be obtained.

(viii) If we consider ¢ () = I'(u)r* for left hand integral and ¢ () = I'(v)¢" for right hand
integral, g(x) =x and p =w =0 and (ot,m) =(1,1) in (9.96), then [47, Theorem 1]
is obtained.

(ix) By setting u = v in the result of (viii), [47, Corollary 1] can be obtained.

(x) By setting 4 = v =1 and x = a or x = b in the result of (ix), [47, Corollary 2] can
be obtained.

b
(xi) By setting u =v=1and x = at

in the result of (ix), [47, Corollary 3] can be
obtained.

To prove the the next result we need the following lemma [88].

Lemma 9.4 Ler f: [0,00] — R, be an (a,m)-convex function with m € (0,1]. If f(x) =
f (%), 0 < a < b, then the following inequality holds:

f<““’) < (14 m(2% — 1) f(), 9.101)

forall x € [a,b] and m € (0,1].

b
Theorem 9.13 With the assumptions of Theorem 9.12 in addition if f(x) = f (HTX> ,

then we have
(%)
m ((ng@i;f’gg) (a,w;p) + (gFﬁifc’z’;o (b, p)) 9.102)
< (B0 F) (@owip)+ (FESETF) (b,wip)
<2KG(ESSY 8:9) ((1(0)e) —mf () g(a))
——Zﬂo‘z){f (1) -ms (£)) %g(a)) -

Proof. Using (cot,m)-convexity of f for x € (a,b), we have

o< (o) seen(-(G) )r(i) o
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Multiplying (9.16) and (9.103) and integrating the resulting inequality over [a, b], one can
obtain

b
[ KB :0)7 W ((x)

<mr () kpESsy o) [ (1-(2) ) dtetw)
b

+10) 2 ED =D it uieto) st [ (5=2) et

By using Definition 2.3 and integrating by parts, the following inequality is obtained:

(sr2sacs) o) < K (LS o) ((701e0) -mr (£ )et@)) 0109

) - 2)) ).

Adopting the same pattern of simplification as we did for (9.16) and (9.103), the following
inequality can be observed from (9.103) and (9.19)

(sritacs) @) < K252 o) (70160 -mr (2 )s@) 0109

- (2)) ).

By adding (9.104) and (9.105), following inequality can be obtained:
8.,¢,q, 0,¢.9,
(F25087r) (awp)+ (FE500F) (b,wsp) (9.106)
5 c a
< KBy :0) ((F(0)e0) —mf (=) 8(@)

B (ro-mr (2)) (@),

Multiplying both sides of (9.101) by Kf(ES:f;f’T’r,g;(p)d(g(x)), and integrating over [a, b]
we have

7(“57) [ kel woateto < (5 ) (14w - 1)
< [ ReES 20 £(0a509).

From Definition 2.3, the following inequality is obtained:

+b 20 o s
f<a2 ) (1+m(2%—1)) ( Ffi,;’Tl) (a:p) < ( qu)i,;’,f) (a,w;p).  (9.107)
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Similarly multiplying both sides of (9.101) by Kg(ES:f;?T’r,g;md(g(x)), and integrating

over [a,b] we have

a+b 2a ¢’5777r . ¢5 WMy .
f( 2 ) (1+m(2%—1)) (gFatpfcf,rl) (b;p) < ( Fo pccfrf) (b,w3p). (9.108)

By adding (9.107) and (9.108) following inequality is obtained:

a+b 20 65car ‘ 05car, ‘
f( 2 ) (I+m(2%—1)) (( F- pccffl) (a,w,p)+( Floeary )(b,w,p)) (9.109)
0, S.c
< (FP5r) (awip)+ (F0587) (i)
Using (9.106) and (9.109), inequality (9.102) can be achieved. O
Remark 9.8

(i) If we consider (o,m) =(1,1) in (9.102), [98, Theorem 2] is obtained.
(i) If we consider ¢(r) = T'(u)t ¥ for left hand integral and ¢(f) = T'(v)t%+! and
p=w =01n (9.102), then [88, Theorem 3] can be obtained.
(iii) If we consider u = v in the result of (ii), then [88, corollary 3] can be obtained.

(iv) If we consider ¢ (¢) = I'(u)t**! for left hand integral and ¢ (r) = ['(v)¢¥* for right
hand integral in (9.102), p = w = 0 and (ct,m) =(1,1) in (9.102), [59, Theorem 3] is
obtained.

(v) If we consider u = v in the result of (iv), [59, Corollary 3] is obtained.

(vi) If we consider ¢ () =T'(u)r ©+1 for left hand integral and ¢ (¢) = I'(v)t £ " for right
hand integral, (o,m) =(1,1), g(x) = x and p = w =0 in (9.102), then [48, Theorem
3] can be obtained.
(vii) If we consider u = v in the result of (vi), then [48, Corollary 6] can be obtained.
(viii) By setting ¢(¢) = I'(u)t**! for left hand integral and ¢(¢) = I'(v)s¥*! for right
hand integral p=w =0, (or,m) =1 and g(r) = ¢ in (9.102), [47, Theorem 3] can be
obtained.

(ix) By setting u = v in the result of (viii), [47, Corrolary 6] can be obtained.

Theorem 9.14 Let f : [a,b] — R be a differentiable function. If |f'| is (or,m)-convex
withm € (0,1] and g : [a,b] — R be differentiable and strictly increasing function, also let
% be an increasing function on [a,b]. If a,l,y,c € C, R(ct), R(I) >0, R(c) > R(y) >0
p,u,0 >0and0 < k <0+ U, then for x € (a,b) we have

(P25 p) Ceawsp) + (F25587 1) | vowip) (9.110)
< KUESSY 8:0) ((m|r (2)]e0) - 17 @lg(@)

e o ()] ) o)




258 9 BOUNDS OF UNIFIED INTEGRAL OPERATORS

mlr ()] sw)
- s (o= (2)]) e

roof. Letx € (a,b) andt € |a,x|. en using (o, m)-convexity o we have
P L b) and Th ing ity of | £/ h

F'0l < <;_;>a|f’(a)l+m<1 (j_;)a> f<%>’ 9.111)

The inequality (9.111) can be written as follows:
f<f>’> < 1) 9.112)
m

(=) varen(r- (=)
)

<(5=0) (- (52))
£ < (j_;)a|f’(a>|+m<1 - <j_;>a) f(n%)‘ ©.113)

Let we consider the second inequality of (9.112)
Multiplying (9.6) and (9.113) and integrating over [a,x], we can obtain:

+KHESSY g0 (1 (b)lg (o) -

xX—1

/ K{(ESSY 0 )(g(t))Slf(a)lK?(Egiff?f’r7g;‘7’),/a (x_a

el (2)|keeSs o) [ (1- (222 ) atst

By using Definition 2.3 and integrating by parts, the following inequality is obtained:

) )

(F22a7 ) (xowip) < KBRS :0) ©.114)
< ((m|r (Z)] g0 - 17 @ls(@)

G ol ()t )

If we consider the left hand side from the inequality (9.112) and adopt the same pattern as
did for the right hand side inequality, then

.0, d.¢,9,
(FSTONE(F0)) (rowip) = —KE(EDSY g:6) ©.115)

< ((m]r §)|g> f'(a)lg(a))

B ()E a)o‘( 7 ()| = @) a’ﬂ*g("))'




9.4 BOUNDS OF OPERATORS FOR (ct,m)-CONVEX FUNCTIONS 259

From (9.114) and (9.115), following inequality is observed:
5, 5 c
‘(gﬂ%sz(f*g)) (x,w;p) ‘<K“( EyG% . g:0 (9.116)

(ol ()0 o)
B )

(x—a)®

Now using (ot,m)-convexity of |f’| on (x,b] for x € (a,b) we have

roi (522) rensn(i- (522) )] (2)]

On the same procedure as we did for (9.6) and (9.111), one can obtain following inequality
from (9.11) and (9.117):

‘(gF;%?:C(f*g) X, Wi p ‘ HENGY ,8:9) (9.118)

< ((1r e —m|r (2)|sw)

(9.117)

F(a + 1) / / X o
**w_ﬂaOf@N*mf<mﬂ>Jrﬂ@-
By adding (9.116) and (9.118), inequality (9.110) can be achieved. O

Remark 9.9
(i) If we consider (a,m) =(1,1) in (9.110), then [98, Theorem 3] is obtained.
(ii) If we consider ¢ (r) = I'(u)t £ ! for left hand integral and ¢ (¢) = I'(v)r £ 1 for right
hand integral and p = w = 0 in (9.110), then [88, Theorem 2] can be obtained.
(iii) If we consider u = v in the result of (ii), then [88, Corollary 2] can be obtained.

(iv) If we consider ¢(¢) = I'(u)t**! for left hand integral and ¢ () = I'(v)zV*! for right
hand integral, p = w = 0 and (o,m) =(1,1) in (9.110), then [59, Theorem 2] is
obtained.

(v) If we consider 1 = v in the result of (iv), then [59, Corollary 2] is obtained.

(vi) If we consider ¢ (1) = 1"(/.1)t%+l for left hand integral and ¢ (1) = I'(v)z % +! for right
hand integral, (o,m) =(1,1), g(x) = x and p = w =0 in (9.110), then [48, Theorem
2] can be obtained.

(vii) If we consider u = v in the result of (vi), then [48, Corollary 4] can be obtained.

b
(viii) If weconsideru=v=k=1andx= 4t ,

in the result of (vii)], then [48, Corollary
5] can be obtained.

(ix) If we consider ¢ () = I['(u)t**! for left hand integral and ¢ (r) = T'(v)¥*! for right
hand integral, g(x) = x and p =w = 0 and (ct,m) =(1,1) in (9.110), then [47, Theo-
rem 2] is obtained.

(x) By setting i = v in the result of (ix), then [47, Corollary 5] can be obtained.
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