
Chapter1

Preliminaries

1.1 Continuous and Absolutely Continuous Functions

We start with definitions and properties of integrable functions, continuous functions, ab-
solutely continuous functions, and give required notation, terms and overview of some
important results (more details could be found in monographs [106, 133]).

Lp spaces

Let [a,b] be a finite interval in R, where−≤ a < b≤. We denote by Lp[a,b], 1≤ p <,
the space of all Lebesgue measurable functions f for which

∫ b
a | f (t)|p dt < , with the

norm

|| f ||p =
(∫ b

a
| f (t)|p dt

) 1
p

endowed, and by L[a,b] the set/space of all functions measurable and essentially bounded
on [a,b], equipped with the norm

|| f || = esssup{| f (x)| : x ∈ [a,b]} .
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2 1 PRELIMINARIES

Spaces of continuous and absolutely continuous functions

We denote by Cn[a,b], n ∈ N0, the space of functions which are n times continuously
differentiable on [a,b], that is

Cn[a,b] =
{

f : [a,b]→ R : f (k) ∈C[a,b] ,k = 0,1, . . . ,n
}

.

In particular, C0[a,b] =C[a,b] is the space of continuous functions on [a,b] with the norm

|| f ||Cn =
n


k=0

|| f (k)||C =
n


k=0

max
x∈[a,b]

| f (k)(x)| ,

and for C[a,b]
|| f ||C = max

x∈[a,b]
| f (x)| .

Lemma 1.1 The space Cn[a,b] consists of those and only those functions f which are
represented in the form

f (x) =
1

(n−1)!

∫ x

a
(x− t)n−1(t)dt +

n−1


k=0

ck(x−a)k , (1.1)

where  ∈C[a,b] and ck are arbitrary constants (k = 0,1, . . . ,n−1).
Moreover,

(t) = f (n)(t) , ck =
f (k)(a)

k!
(k = 0,1, . . . ,n−1) . (1.2)

The space of absolutely continuous functions on a finite interval [a,b] is denoted by
AC[a,b]. It is known that AC[a,b] coincides with the space of primitives of Lebesgue
integrable functions L1[a,b] (see Kolmogorov and Fomin [93, Chapter 33.2]):

f ∈ AC[a,b] ⇔ f (x) = f (a)+
∫ x

a
(t)dt ,  ∈ L1[a,b] ,

and therefore an absolutely continuous function f has an integrable derivative f ′(x) = (x)
almost everywhere on [a,b]. We denote by ACn[a,b], n ∈ N, the space

ACn[a,b] =
{

f ∈Cn−1[a,b] : f (n−1) ∈ AC[a,b]
}

.

In particular, AC1[a,b] = AC[a,b].

Lemma 1.2 The space ACn[a,b] consists of those and only those functions which can be
represented in the form (1.1), where  ∈ L1[a,b] and ck are arbitrary constants
(k = 0,1, . . . ,n−1).
Moreover, (1.2) holds.
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Theorem 1.1 (FUBINI’S THEOREM) Let (X ,M ,) and (Y,N ,) be  -finite measure
spaces and f ×-measurable function on X ×Y. If f ≥ 0, then next integrals are equal∫

X×Y
f (x,y)d(×)(x,y),

∫
X

(∫
Y

f (x,y)d(y)
)

d(x)

and ∫
Y

(∫
X

f (x,y)d(x)
)

d(y).

If f is a complex function, then above equalities hold with additional requirement∫
X×Y

| f (x,y)|d(×)(x,y) <  .

Fubini’s theorem and its consequences below have numerous applications involving mul-
tiple integrals: ∫ b

a
dx
∫ d

c
f (x,y)dy =

∫ d

c
dy
∫ b

a
f (x,y)dx;

∫ b

a
dx
∫ x

a
f (x,y)dy =

∫ b

a
dy
∫ b

y
f (x,y)dx. (1.3)

1.2 The Gamma and Beta Functions

The gamma function  is the function of complex variable defined by Euler’s integral of
second kind

(z) =
∫ 

0
tz−1 e−t dt , (z) > 0 . (1.4)

This integral is convergent for each z ∈ C such that (z) > 0. It has next property

(z+1) = z(z) , (z) > 0 ,

from which follows
(n+1) = n! , n ∈ N0 .

For domain (z) ≤ 0 we have

(z) =
(z+n)

(z)n
, (z) > −n; n ∈ N; z �∈ Z

−
0 = {0,−1,−2, . . .} , (1.5)

where (z)n is the Pochhammer’s symbol defined for z ∈ C and n ∈ N0 by

(z)0 = 1;
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(z)n =
(z+n)
(z)

= z(z+1) · · ·(z+n−1), n ∈ N . (1.6)

The generalized Pochhammer’s symbol is defined for z, ∈ C by

(z) =
(z+)
(z)

. (1.7)

The gamma function is analytic in complex plane except in 0,−1,−2, . . . which are simple
poles. Another interesting equality holds:

(z)m+n = (z+m)n (z)m , n,m ∈ N .

The beta function is the function of two complex variables defined by Euler’s integral
of the first kind

B(z,w) =
∫ 1

0
tz−1 (1− t)w−1dt , (z),(w) > 0 . (1.8)

It is related to the gamma function with

B(z,w) =
(z)(w)
(z+w)

, z,w �∈ Z
−
0 = {0,−1,−2, . . .} ,

which gives

B(z+1,w) =
z

z+w
B(z,w) .

Further, we have an extension of the beta function (for more details see [31])

Bp(x,y) =
∫ 1

0
tx−1(1− t)y−1e

− p
t(1−t) dt, (x),(y),(p) > 0. (1.9)

Here we emphasize two equalities for the extended beta function:

Bp(x,y+1)+Bp(x+1,y) = Bp(x,y) ,∫ 

0
Bp(x,y)dp = B(x+1,y+1), (x),(y) > −1.

Following examples of integrals will be often used in proofs and calculations in this book.

Example 1.1 Let , > 0 and x ∈ [a,b]. Then by substitution t = x− s(x−a) we have

∫ x

a
(x− t)−1(t−a)−1dt =

∫ 1

0
(x−a)+−1 s−1(1− s)−1ds

= B(, )(x−a)+−1 .

Analogously, by substitution t = x+ s(b− x), it follows

∫ b

x
(t − x)−1(b− t)−1dt = B(, )(b− x)+−1 .
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Example 1.2 Let , > 0, f ∈ L1[a,b] and x ∈ [a,b]. Then interchanging the order of
integration and evaluating the inner integral we obtain∫ x

a
(x− t)−1

∫ t

a
(t− s)−1 f (s)dsdt =

∫ x

s=a
f (s)

∫ x

t=s
(x− t)−1(t− s)−1 dt ds

= B(, )
∫ x

a
(x− s)+−1 f (s)ds .

Analogously,∫ b

x
(t− x)−1

∫ b

t
(s− t)−1 f (s)dsdt = B(, )

∫ b

x
(s− x)+−1 f (s)ds .

1.3 Convex Functions and Classes of Convexity

Definitions and properties of convex functions, with more details, could be found in mono-
graphs [107, 110, 121].

Let I be an interval in R.

Definition 1.1 A function f : I → R is called convex if

f ((1− )x+y)≤ (1− ) f (x)+ f (y) (1.10)

for all points x and y in I and all  ∈ [0,1]. It is called strictly convex if the inequality
(1.10) holds strictly whenever x and y are distinct points and  ∈ (0,1). If − f is convex
(respectively, strictly convex) then we say that f is concave (respectively, strictly concave).
If f is both convex and concave, then f is said to be affine.

Lemma 1.3 (THE DISCRETE CASE OF JENSEN’S INEQUALITY) A real-valued function
f defined on an interval I is convex if and only if for all x1, . . . ,xn in I and all scalars
1, . . . ,n in [0,1] with n

k=1k = 1 we have

f

(
n


k=1

kxk

)
≤

n


k=1

k f (xk) . (1.11)

The above inequality is strict if f is strictly convex, all the points xk are distinct and all
scalars k are positive.

Theorem 1.2 (JENSEN) Let f : I → R be a continuous function. Then f is convex if and
only if f is midpoint convex, that is,

f

(
x+ y

2

)
≤ f (x)+ f (y)

2
(1.12)

for all x,y ∈ I.
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Corollary 1.1 Let f : I → R be a continuous function. Then f is convex if and only if

f (x+h)+ f (x−h)−2 f (x)≥ 0 (1.13)

for all x ∈ I and all h > 0 such that both x+h and x−h are in I.

Proposition 1.1 (THE OPERATIONS WITH CONVEX FUNCTIONS)

(i) The addition of two convex functions (defined on the same interval) is a convex func-
tion; if one of them is strictly convex, then the sum is also strictly convex.

(ii) The multiplication of a (strictly) convex function with a positive scalar is also a
(strictly) convex function.

(iii) The restriction of every (strictly) convex function to a subinterval of its domain is
also a (strictly) convex function.

(iv) If f : I → R is a convex (respectively a strictly convex) function and g : R → R is
a nondecreasing (respectively an increasing) convex function, then g ◦ f is convex
(respectively strictly convex)

(v) Suppose that f is a bijection between two intervals I and J. If f is increasing, then
f is (strictly) convex if and only if f−1 is (strictly) concave. If f is a decreasing
bijection, then f and f−1 are of the same type of convexity.

Definition 1.2 If g is strictly monotonic, then f is said to be (strictly) convex with respect
to g if f ◦ g−1 is (strictly) convex.

Proposition 1.2 If x1,x2,x3 ∈ I are such that x1 < x2 < x3, then the function f : I → R

is convex if and only if the inequality

(x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) ≥ 0

holds.

Proposition 1.3 If f is a convex function on an interval I and if x1 ≤ y1, x2 ≤ y2, x1 �= x2,
y1 �= y2, then the following inequality is valid

f (x2)− f (x1)
x2− x1

≤ f (y2)− f (y1)
y2− y1

.

If the function f is concave, then the inequality reverses.

The following theorems concern derivatives of convex functions.

Theorem 1.3 Let f : I → R be convex. Then

(i) f is Lipschitz on any closed interval in I (recall, a function f such that | f (x)−
f (y)| ≤ C|x− y| for all x and y, where C is a constant independent of x and y, is
called a Lipshitz function);
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(ii) f ′+ and f ′− exist and are increasing in I, and f ′− ≤ f ′+ (if f is strictly convex, then
these derivatives are strictly increasing);

(iii) f ′ exists, except possibly on a countable set, and on the complement of which it is
continuous.

Proposition 1.4 Suppose that f : I → R is a twice differentiable function. Then

(i) f is convex if and only if f ′′ ≥ 0;

(ii) f is strictly convex if and only if f ′′ ≥ 0 and the set of points where f ′′ vanishes does
not include intervals of positive length.

Next we need divided differences, commonly used when dealing with functions that
have different degree of smoothness.

Definition 1.3 Let f : I →R, n∈N0 and let x0,x1, . . . ,xn ∈ I be mutually different points.
The n-th order divided difference of a function at x0, . . . ,xn is defined recursively by

[xi; f ] = f (xi) , i = 0,1, . . . ,n ,

[x0,x1; f ] =
[x0; f ]− [x1; f ]

x0− x1
=

f (x0)− f (x1)
x0 − x1

,

[x0,x1,x2; f ] =
[x0,x1; f ]− [x1,x2; f ]

x0− x2
, (1.14)

...

[x0, . . . ,xn; f ] =
[x0, . . . ,xn−1; f ]− [x1, . . . ,xn; f ]

x0− xn
.

Remark 1.1 The value [x0,x1,x2; f ] is independent of the order of the points x0, x1 and
x2. This definition may be extended to include the case in which some or all the points
coincide. Namely, taking the limit x1 → x0 in (1.14), we get

lim
x1→x0

[x0,x1,x2; f ] = [x0,x0,x2; f ] =
f (x0)− f (x2)− f ′(x0)(x0 − x2)

(x0 − x2)2 , x2 �= x0

provided that f ′ exists, and furthermore, taking the limits xi → x0, i = 1,2 in (1.14), we
get

lim
x2→x0

lim
x1→x0

[x0,x1,x2; f ] = [x0,x0,x0; f ] =
f ′′(x0)

2

provided that f ′′ exists.

Definition 1.4 A function f : I → R is said to be n-convex (n ∈ N0) if for all choices of
n+1 distinct points x0, . . . ,xn ∈ I, the n-th order divided difference of f satisfies

[x0, . . . ,xn; f ] ≥ 0 . (1.15)



8 1 PRELIMINARIES

Thus the 1-convex functions are the nondecreasing functions, while the 2-convex functions
are precisely the classical convex functions.

Definition 1.5 A function f : I → (0,) is called log-convex if

f ((1− )x+y)≤ f (x)1− f (y) (1.16)

for all points x and y in I and all  ∈ [0,1].

If a function f : I → R is log-convex, then it is also convex, which is a consequence of the
weighted AG-inequality.

We continue with definitions and properties of other types of convex functions that will
be used in the book.

Definition 1.6 [112] Let Tg be a set of real numbers. This set Tg is said to be relative
convex with respect to an arbitrary function g : R → R if

(1− t)x+ tg(y)∈ Tg

where x,y ∈ R such that x,g(y) ∈ Tg, t ∈ [0,1].

Definition 1.7 [112] A function f : Tg → R is said to be relative convex, if there exists
an arbitrary function g : R → R such that

f ((1− t)x+ tg(y))≤ (1− t) f (x)+ t f (g(y)),

holds, where x,y ∈ R such that x,g(y) ∈ Tg, t ∈ [0,1].

Note that if g is identity function, then convex set and convex function are reproduced from
relative convex set and relative convex function.

Definition 1.8 [73] Let I be an interval of real numbers. Then a function f : I → R is
said to be quasi-convex function, if for all a,b ∈ I and 0 ≤ t ≤ 1 the following inequality
holds

f (ta+(1− t)b)≤ max{ f (a), f (b)}. (1.17)

Example 1.3 [80] The function f : [−2,2]→ R, given by

f (x) =
{

1 x ∈ [−2,−1]
x2 x ∈ (−1,2]

is not a convex function on [−2,2], but it is quasi-convex function on [−2,2].

Definition 1.9 Let I be an interval of non-zero real numbers. A function f : I → R is said
to be harmonically convex function, if

f

(
ab

ta+(1− t)b

)
≤ t f (b)+ (1− t) f (a) (1.18)

holds for all a,b ∈ I and t ∈ [0,1]. If inequality in (1.18) is reversed, then f is said to be
harmonically concave function.
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Example 1.4 [76] Let f : (0,) → R be defined by f (t) = t and g : (−,0) → R de-
fined by g(t) = t. Then f is harmonically convex function and g is harmonically concave
function.

Following results are obvious from above example.

(i) If I ⊂ (0,) and f is non-decreasing convex function, then f is harmonically convex.

(ii) If I ⊂ (0,) and f is non-increasing harmonically convex function, then f is convex.

(iii) If I ⊂ (−,0) and f is non-decreasing harmonically convex function, then f is con-
vex.

(iv) If I ⊂ (−,0) and f is non-increasing convex function, then f is harmonically con-
vex.

Definition 1.10 [95] A function h : [a,b] ⊂ R \ {0} → R is said to be harmonically
symmetric about a+b

2ab if for all x ∈ [a,b]

h

(
1
x

)
= h

(
1

1
a + 1

b − x

)
.

We give another new notion of harmonically (h−m)-convex function by setting  = 1
as follows:

Definition 1.11 Let h : [0,1]⊆J→R be a nonnegative function. A function f :J⊆R+→R

is said to be harmonically (h−m)-convex if

f

(
mxy

mty+(1− t)x

)
≤ h(t) f (x)+mh(1− t) f (y)

holds for all x,y ∈ J, t ∈ [0,1] and m ∈ (0,1].

Next is a harmonically (,h−m)-convex function:

Definition 1.12 Let h : [0,1]⊆J→R be a nonnegative function. A function f :J⊆R+→R

is said to be harmonically (,h−m)-convex if

f

(
mxy

mty+(1− t)x

)
≤ h(t) f (x)+mh(1− t) f (y),

holds for all x,y ∈ J, t,  ∈ [0,1] and m ∈ (0,1].

This unifies the definitions of harmonically ( ,m)-convexity and harmonically h-convexity
of functions. For different specific choices of ,h,m, almost all kinds of well-known
harmonically convex functions can be obtained:
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Remark 1.2 (i) If h(t) = t, then harmonically ( ,m)-convex function can be obtained
[74].

(ii) If  = 1 and h(t) = ts, then harmonically (s,m)-convex function can be obtained
[27].

(iii) If  = 1 and h(t) = t, then harmonically m-convex function can be obtained [27].

(iv) If  = h(t) = m = 1, then harmonically P-function can be obtained [113].

(v) If  = 1, h(t) = ts and m = 1, then harmonically s-convex function can be obtained
[113].

(vi) If  = 1, h(t) = 1
t and m = 1, then harmonically Godunova-Levin function can be

obtained [113].

(vii) If  = 1, h(t) = 1
ts and m = 1, then harmonically s-Godunova-Levin function can be

obtained [113].

(viii) If we set m = 1 and  = 1, then harmonically h-convex function can be achieved
[113].

(ix) By putting  = 1, h(t) = t and m = 1, then harmonically-convex function can be
obtained [76].

Definition 1.13 [147] A function f : [0,b] → R, b > 0 is said to be m-convex function if
for all x,y ∈ [0,b] and t ∈ [0,1]

f (tx+m(1− t)y)≤ t f (x)+m(1− t) f (y)

holds where m ∈ [0,1].

Example 1.5 [105] A function f : [0,] → R given by

f (x) =
1
12

(x3 −5x2 +9x−5x)

is 16
17 -convex function. If m ∈ ( 16

17 ,1], then f is not m-convex.

For m = 1 the m-convex function reduces to convex function and for m = 0 it gives star-
shaped function. If set of m-convex functions on [0,b] for which f (0) < 0 is denoted by
Km(b), then we have

K1(b) ⊂ Km(b) ⊂ K0(b)

whenever m ∈ (0,1). In the class K1(b) there are convex functions f : [0,b]→ R for which
f (0) ≤ 0 (see, [40]).

Definition 1.14 [130] A function f : [a,b] → R is said to be exponentially m-convex if

e f (zx+m(1−z)y) ≤ ze f (x) +m(1− z)e f (y). (1.19)

for all x,y ∈ [a,b] and z ∈ [0,1] where m ∈ (0,1].


