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Mond-Pečarić Method in Operator Inequalities

Inequalities for bounded selfadjoint operators on a Hilbert space
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”Do you mean to say that the story has a moral?”
”Certainly,” said the Linnet.

”Well, really,” said the Water-rat, in a very angry manner, ”I think you should have told me that
before you began. If you had done so, I certainly would not have listened to you; in fact, I should

have said ’Pooh,’ like the critic. However, I can say it now;” so he shouted out ”Pooh,” at the top of
his voice, gave a whisk with his tail, and went back into his hole.

”The devoted Friend” by OSCAR WILDE





Who contributed to this book

This book is the results of several years of development of the Mond-Pečarić method and
its applications in the theory of matrices and bounded linear operators on a Hilbert space.
We select the most important and interesting topics, which have been introduced in many
mathematical journals, in books for operator and matrix theory and at several international
conferences.
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Preface

Jensen’s inequality for normalized positive linear maps between the algebras of bounded
linear operators on a Hilbert space is one of the most important inequalities in the func-
tional analysis as follows:

f (Φ(A)) ≤ Φ( f (A)) for every bounded selfadjoint operator A, (i)

where f is an operator convex function and Φ is a normalized positive linear map. As a
special case there is Jensen’s operator inequality:

f (X∗AX) ≤ X∗ f (A)X for every bounded selfadjoint operator A, (ii)

where X is an isometry and f is an operator convex function.
In this book the converses of Jensen’s inequality for bounded selfadjoint operators were

considered.
Mond and Pečarić showed several extensions of the Kantorovich type operator inequal-

ities on normalized positive linear maps and pointed out that the problem of determining
the upper estimates of the difference and the ratio in Jensen’s inequality is reduced to solv-
ing a single variable maximization or minimization problem by using the concavity of a
real valued function f . Based on the method, they showed the complementary inequalities
to the Hölder-McCarthy inequality and Kantorovich type one, gave the estimation of the
difference and ratio of means of operators, and discussed various converses of Jensen’s
inequality for normalized positive linear maps. In the concave case of f they obtained the
dual problem. The principle yields a rich harvest in the field of operator inequalities. We
call it the Mond-Pečarić method.

This book consists of eight chapters:

In Chapter 1 a very brief and rapid review of some basic topics in Jensen’s inequality for
positive linear maps and Kantorovich inequality for several types are given. Some
basic ideas and the viewpoints of the Mond-Pečarić method are given.

In Chapter 2 general converses of Jensen’s inequality (i) are considered. The Mond-
Pečarić method is used to obtain the bounds. Many interesting inequalities are par-
ticularly considered.
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In Chapter 3 a generalization of a theorem of Li-Mathias for the normalized positive lin-
ear maps as an application of Mond-Pečarić method is considered. Lower and upper
bounds in converses of Jensen’s type inequalities are given. The cases of the sharp
inequalities are investigated. The conversions of Jensen’s inequality and other in-
equalities are particularly considered.

In Chapter 4 the previous results and the same methods are applied to obtain the inequal-
ities for the means. Reverse inequalities of power operator means on positive linear
maps are studied. Several properties of power operator means under the chaotic or-
der are considered. New bounds in inequalities for power operator means are given.

In chapter 5 the theory of operator means established by Kubo and Ando assocaiated with
the operator monotone functions is introduced. Based on complementary inequali-
ties to Jensen’s inequalities on positive linear maps, complementary inequalities to
Ando’s inequalities assocaiated with operator means are studied.

In Chapter 6 the results and the same methods in the chapter 2 are applied to obtain
the inequalities for the Hadamard product. Then the reverses inequalities on the
Hadamard product of operators and operator means are considered. General in-
equalities for the Hadamard product of operators are observed.

In chapter 7 a brief survey of several applications of both Furuta inequality and general-
ized Furuta inequality is given.

In Chapter 8 the claims preserving the operator order and the chaotic order are consid-
ered as an application of the Mond-Pečarić method. The overall results on the func-
tions which preserve the operator order and the chaotic order are particularly con-
sidered.
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Notation

R the real numbers

C the complex numbers

λ ,μ ,ν, etc. scalars

F a field (usually R or C)

H,K, etc. Hilbert spaces over C

x,y,z, etc. vectors in H

(x,y) inner product of the vector x and the vector y

‖x‖ norm of the vector x

(H → H) algebra of all linear operators on Hilbert space H
to H with the operator norm

B(H) semi-algebra of all bounded linear operators
on a Hilbert space H to H

Bh(H) semi-space of all selfadjoint bounded operators
from B(H)

A,B,C, etc. linear operators in (H → H)

‖A‖ operator norm of A

1H identity operator in B(H)

1k identity matrix in Mk

0 zero scalar, vector or operator

Sp(A) spectrum of an operator A

A ≥ 0 positive operator, (Ax,x) ≥ 0 for all x ∈ H

xi



B+(H) set of all positive operators in Bh(H)

A > 0 strictly positive operator, exists m ∈ R, m > 0
such that (Ax,x) ≥ m(x,x) for all x ∈ H

B++(H) set of all strictly positive operators in Bh(H)

Φ,Ψ,Ω, etc. linear maps on B to K

P[B(H),B(K)] set of all positive linear maps, Φ : B(H) → B(K)
such that A ∈ B+(H) �→ Φ(A) ∈ B+(K)

PN [B(H),B(K)] set of all normalized positive linear maps
in P[B(H),B(K)] such that Φ(1H) = 1K

Mn algebra of all n-range complex square matrices
with matrix norm

Hn space of all n×n Hermitian matrices

H +
n set of all positive semi-definite matrices from Hn

H ++
n set of all positive definite matrices from Hn

σ ,τ , etc. operator means

σp,τq, etc. weighted operator means

σ0 transpose of mean σ ,
if A σ0 B = B σ A

σ∗ adjoint to mean σ ,
if A σ∗ B =

(
A−1 σ B−1

)−1
for every invertible A,B.

∇ arithmetic means

! harmonic means

� geometric means

◦ Hadamard product

⊗ Kronecker product or tensor product

� chaotic order,
A � B if logA ≥ logB for all A,B > 0

xii
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Chapter1
Fundamental inequalities
and Mond-Pečarić method

In this chapter, we have given a very brief and rapid review of some
basic topics in Jensen’s inequality for positive linear maps and the Kan-
torovich inequality for several types. We present some basic ideas and
the viewpoints of the Mond-Pečarić method for convex functions.

1.1 Classical Jensen’s inequality

In this section, we introduce a classical Jensen’s inequality associated with a convex func-
tion, and naturally extend it to an operator version. First we introduce some notations.

If a complex vector space H having the inner product is complete with respect to the
distance d(x,y) = ‖x− y‖ defined by the norm ‖x‖ := (x,x)1/2, then H is called a Hilbert
space. A linear operator A on a Hilbert space H is said to be bounded if

‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1,x ∈ H} < ∞.

Then ‖A‖ is said to be the operator norm of A. The adjoint operator A∗ of A is defined by
(Ax,y) = (x,A∗y) for x,y ∈ H. Then it follows that ‖A‖= ‖A∗‖ = ‖A∗A‖1/2. In an algebra
of all linear operators (H →H) on a Hilbert space H with the operator norm, we denote by

1



2 1 FUNDAMENTAL INEQUALITIES AND MOND-PEČARIĆ METHOD

B(H) a semi-algebra of all bounded (i.e., continuous) linear operators on H. The spectrum
of an operator A is the set

Sp(A) = {λ ∈ C : A−λ1H is not invertible in B(H)}.
The spectrum Sp(A) is nonempty and compact. A bounded linear operator A on a Hilbert
space H is said to be selfadjoint if A = A∗. An operator A∈B(H) is selfadjoint if and only
if (Ax,x) ∈ R for every vector x ∈ H. We denote by Bh(H) a semi-space of all selfadjoint
operators in B(H).

( )x2
y2

( )x1
y1

( )c d
a b

x

H

V 2

Ax

H

V 2

A

B(H)

M2

Figure 1.1: Graphic chart of space B(H)

We introduce a partial order in Bh(H) as follows:

Definition 1.1 An operator A ∈Bh(H) is positive semi-definite , (simply, positive) and
we write A ≥ 0, if (Ax,x) ≥ 0 for every vector x ∈ H. An operator A ∈ B(H) is positive if
and only if A = B∗B for some operator B ∈ B(H).

For operators A,B ∈ Bh(H) we write A ≤ B (or B ≥ A) if B−A ≥ 0, i.e., (Bx,x) ≥
(Ax,x) for every vector x ∈ H. We call it the operator order. In particular, for some
scalars m and M, we write m1H ≤ A ≤ M1H if m ≤ (Ax,x) ≤ M for every unit vector
x ∈ H. Notice that for a selfadjoint operator A, Sp(A) ⊂ [m,M] implies m1H ≤ A ≤ M1H.

A positive semi-definite operator A ∈ Bh(H) is positive definite (strictly positive)
and we write A > 0, if there is a real number m > 0 such that A ≥ m1H.

We denote by B+(H) the set of all positive operators and B++(H) the set of all strictly
positive operators (or positive invertible operators) in Bh(H). The set B+(H) is the
convex cone contained in Bh(H).

Now, we review the continuous functional calculus. A rudimentary functional calculus
for an operator A can be defined as follows: For a polynomial p(t) = ∑k

j=0 α jt j, define

p(A) = α01H + α1A+ α2A
2 + · · ·+ αkA

k.



1.1 CLASSICAL JENSEN’S INEQUALITY 3

The mapping p→ p(A) is a homomorphism from the algebra of polynomials to the algebra
of operators. The extension of this map to larger algebras of functions is really significant
in operator theory.

Let A be a selfadjoint operator on a Hilbert space H. Then the Gelfand map establishes
a ∗-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous functions on
Sp(A) and C∗-algebra C∗(A) generated by A and the identity operator 1H on H as follows:
For f ,g ∈C(Sp(A)) and α,β ∈ C

(i) Φ(α f + βg) = αΦ( f )+ β Φ(g).

(ii) Φ( f g) = Φ( f )Φ(g) and Φ( f ) = Φ( f )∗.

(iii) ‖Φ( f )‖ = ‖ f‖(:= supt∈Sp(A) | f (t)|).
(iv) Φ( f0) = 1H and Φ( f1) = A, where f0(t) = 1 and f1(t) = t.

With this notation, we define
f (A) = Φ( f )

for all f ∈ C(Sp(A)) and we call it the continuous functional calculus for a selfadjoint
operator A. This map is an extension of p(A) for a polynomial p. The continuous functional
calculus is applicable. For example, if A is a positive operator and f1/2(t) =

√
t, then

A1/2 = f1/2(A). If A is a selfadjoint operator and f (t) is a real valued continuous function
on Sp(A) such that f (t) ≥ 0 on Sp(A), then f (A) ≥ 0, i.e., f (A) is a positive operator.
Moreover, if g(t) is a real valued continuous function on Sp(A) such that f (t) ≥ g(t) on
Sp(A), then f (A) ≥ g(A).

Next, we shall introduce a spectral decomposition theorem for selfadjoint, bounded
linear operators on a Hilbert space H. For the sake of convenience, we recall the following
well known diagonalization of Hermitian matrices in matrix theory.

If A is a Hermitian k× k matrix, then there exists a unitary matrix U (i.e., U∗U =
UU∗ = 1k) such that

A = U∗ΛU, (1.1)

where Λ = diag(λ1, · · · ,λk) and the λi(∈ R) are the eigenvalues of A. If we put

E1 = U∗diag(1,0, · · · ,0)U, E2 = U∗diag(1,1,0, · · · ,0)U
· · ·

Ek = U∗diag(1,1, · · · ,1)U,

then (1.1) can be rewritten as follows:

A = λ1E1 + λ2(E2 −E1)+ · · ·+ λk(Ek −Ek−1) =
k

∑
j=1

λ jΔEj, (1.2)

where ΔEj = Ej −Ej−1 and E0 = 0. If f (t) is a real valued continuous function on the
spectrum Sp(A), then f (A) may be defined by

f (A) =
k

∑
j=1

f (λ j)ΔEj. (1.3)



4 1 FUNDAMENTAL INEQUALITIES AND MOND-PEČARIĆ METHOD

This result can be generalized to selfadjoint operators on a Hilbert space H.
Let A be a selfadjoint operator on a Hilbert space H and f (t) a real valued continuous

function defined on an interval [m,M], where m = inf‖x‖=1(Ax,x) and M = max‖x‖=1(Ax,x).
Then A can be expressed as follows:

A =
∫ M

m−0
λdEλ (1.4)

where {Eλ : λ ∈ R} is a family of projections such that Eλ ≤ Eμ if λ ≤ μ , Eλ+0 = Eλ ,
E−∞ = 0 and E∞ = 1H . Since a selfadjoint operator A on a Hilbert space H is an exten-
sion of a selfadjoint matrix, (1.4) can be naturally considered as an extension of (1.2).
Therefore, we have an extension of (1.3) under the above situation as follows:

f (A) =
∫ M

m−0
f (λ )dEλ . (1.5)

Next, we shall introduce a classical Jensen’s inequality as an inequality associated with
a convex function:

Theorem 1.1 (CLASSICAL JENSEN’S INEQUALITY) If f (t) is a convex function on an
interval [m,M] for some scalars m < M, then for every x1,x2, · · · ,xk ∈ [m,M] and every
positive real numbers t1,t2, · · · ,tk with ∑k

j=1 t j = 1,

f

(
k

∑
j=1

t jx j

)
≤

k

∑
j=1

t j f (x j). (1.6)

Proof. Since f (t) is convex, then for each point (s, f (s)) there exists a real number l
such that

l(x− s)+ f (s) ≤ f (x) for all x ∈ [m,M]. (1.7)

Put s0 = ∑k
j=1 t jx j ∈ [m,M], then it follows from (1.7) that

l(x j − s0)+ f (s0) ≤ f (x j) for j = 1,2, · · · ,k.
Multiplying this inequality with t j ∈ R+ and summing of j we have

k

∑
j=1

t j(l(x j − s0)+ f (s0)) ≤
k

∑
j=1

t j f (x j).

Since
k

∑
j=1

t j(l(x j − s0)+ f (s0)) = l

(
k

∑
j=1

t jx j − s0

k

∑
j=1

t j

)
+ f (s0) = f (s0),

we have a desired inequality. �

We rephrase it under matrix situation. If we put

A =

⎛
⎝ x1 0

. . .
0 xn

⎞
⎠ and x =

⎛
⎝

√
t1
...√
tn

⎞
⎠ ,
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then a classical Jensen’s inequality (1.6) in Theorem 1.1 is expressed as

f ((Ax,x)) ≤ ( f (A)x,x) for every unit vector x.

The following theorem is an operator version of Theorem 1.1 (classical Jensen’s in-
equality).

Theorem 1.2 Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊂ [m,M] for some
scalars m < M. If f (t) is a convex function on [m,M], then

f ((Ax,x)) ≤ ( f (A)x,x) (1.8)

for every unit vector x ∈ H.

Proof. If we put s = (Ax,x), then m ≤ s ≤ M. For a given ε > 0, there exist a straight
line l(t) such that (i) l(t) ≤ f (t) for all t ∈ [m,M] and (ii) l(s) ≥ f (s)− ε . Then (i) implies
l(A) ≤ f (A). Hence we have

( f (A)x,x) ≥ (l(A)x,x) = l(s) ≥ f (s)− ε

for every unit vector x ∈ H. Since ε is an arbitrary, we have ( f (A)x,x) ≥ f ((Ax,x)). �

The following theorem is a multiple operator version of Theorem 1.2:

Theorem 1.3 Let A j ∈Bh(H) be selfadjoint operators with Sp(Aj)⊂ [m,M] ( j = 1,2, · · · ,k)
for some scalars m < M. Let x1,x2, · · · ,xk ∈ H be any finite number of vectors such that
∑k

j=1 ‖x j‖2 = 1. If f (t) is a convex function on [m,M], then

f

(
k

∑
j=1

(Ajx j,x j)

)
≤

k

∑
j=1

( f (Aj)x j,x j). (1.9)

Proof. If we put

Ã =

⎛
⎝ A1 0

. . .
0 Ak

⎞
⎠ and x̃ =

⎛
⎝ x1

...
xk

⎞
⎠ ,

then we have Sp(Ã) ⊂ [m,M], ‖x̃‖ = 1 and ∑k
j=1(Ajx j,x j) = (Ãx̃, x̃). It follows from The-

orem 1.2 that f ((Ãx̃, x̃)) ≤ ( f (Ã)x̃, x̃) and hence we have (1.9). �

As a special case of Theorem 1.2, we have the following Hölder-McCarthy inequality.

Theorem 1.4 (HÖLDER-MCCARTHY INEQUALITY) Let A ∈Bh(H) be a positive oper-
ator on a Hilbert space H. Then

(i) (Arx,x) ≥ (Ax,x)r for all r > 1 and every unit vector x ∈ H.

(ii) (Arx,x) ≤ (Ax,x)r for all 0 < r < 1 and every unit vector x ∈ H.

(iii) If A is invertible, then (Arx,x) ≥ (Ax,x)r for all r < 0 and every unit vector x ∈ H.

Proof. Since the power function f (t) = tr is convex for r > 1 or r < 0, and concave for
0 < r < 1, this theorem follows from Theorem 1.2. �



6 1 FUNDAMENTAL INEQUALITIES AND MOND-PEČARIĆ METHOD

1.2 Operator convexity

In this section, we consider another operator version of a classical Jensen’s inequality (1.6)
in Theorem 1.1. We rephrase it under another matrix situation. If we put

A =

⎛
⎝ x1 0

. . .
0 xn

⎞
⎠ and V =

⎛
⎝

√
t1 0 · · · 0
...√
tn 0 · · · 0

⎞
⎠ ,

then a classic Jensen’s inequality is expressed as

f (V ∗AV ) ≤V ∗ f (A)V.

The formulation offers a fresh insight into the noncommutative case. Its noncommutative
version is considered in various way. We shall start with the following definition.

Definition 1.2 A real valued continuous function f (t) on an interval I is said to be op-
erator convex (resp. operator concave) if

f ((1−λ )A+ λB)≤ (1−λ ) f (A)+ λ f (B) (1.10)

(resp.
f ((1−λ )A+ λB)≥ (1−λ ) f (A)+ λ f (B)) (1.11)

for all λ ∈ [0,1] and for every selfadjoint operator A and B on a Hilbert space H whose
spectra are contained in I. Also, the condition (1.10) can be replaced by the more special
condition

f

(
A+B

2

)
≤ f (A)+ f (B)

2
. (1.12)

Notice that a function f is operator concave if − f is operator convex.
A real valued continuous function f (t) on an interval I is said to be operator mono-

tone if it is monotone with respect to the operator order, i.e.,

A ≤ B with Sp(A),Sp(B) ⊂ I implies f (A) ≤ f (B).

Before we present basic examples of such functions, we prove some lemmas needed
later.

Lemma 1.5 If A ∈ B+(H) is positive, then X∗AX ≥ 0 for every X ∈ B(H).

Proof. For every vector x ∈ H, (X∗AXx,x) = (AXx,Xx) ≥ 0. �
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Lemma 1.6 If A ∈ Bh(H) is selfadjoint and U is unitary, i.e. U∗U = UU∗ = 1H, then
f (U∗AU) = U∗ f (A)U for every f ∈C(Sp(A)).

Proof. Put B = U∗AU , then B is selfadjoint and Sp(B) = Sp(A). Since Bm = U∗AmU
for every integer m ≥ 0, we have p(B) = U∗p(A)U for every polynomial p(t). Since there
exist polynomials {p j} such that ‖ f − p j‖ �→ 0 as j → ∞ for a given f ∈ C(Sp(A)), we
have

‖ f (U∗AU) − U∗ f (A)U‖ ≤ ‖ f (U∗AU)− p j(U∗AU)‖
+ ‖p j(U∗AU)−U∗p j(A)U‖+‖U∗p j(A)U −U∗ f (A)U‖ �→ 0

as j → ∞ and so f (U∗AU) = U∗ f (A)U . �

Lemma 1.7 If A ∈ B(H) and f ∈C([0,‖A‖2]), then A f (A∗A) = f (AA∗)A.

Proof. Since A(A∗A)n = (AA∗)nA for every integer n≥ 0, we have Ap(A∗A) = p(AA∗)A
for every polynomial p(t). Since there exist polynomials {p j} such that ‖ f − p j‖ �→ 0 as
j → ∞ for a given f ∈C([0,‖A‖2]), we obtain A f (A∗A) = f (AA∗)A. �

Now, we study basic examples of such functions.

Example 1.1 The function f (t) = α + β t is operator monotone on every interval for all
α ∈ R and β ≥ 0. It is operator convex for all α,β ∈ R.

Example 1.2 If f ,g are operator monotone, and if α,β are positive real numbers, then
α f + βg is also operator monotone. If fn are operator monotone and fn(t) → f (t) as
n → ∞, then f is also operator monotone.

Example 1.3 The function f (t) = t2 on [0,∞) is not operator monotone though it is
monotone increasing. As a matter of fact, if we put

A =
(

2 1
1 1

)
and B =

(
1 0
0 0

)
,

then A ≥ B and A2 �≥ B2 since

A2−B2 =
(

4 3
3 2

)
�≥ 0

Example 1.4 The function f (t) = t2 is operator convex on every interval. To see it, for
any selfadjoint operators A and B,

A2 +B2

2
−
(

A+B
2

)2

=
1
4
(A2 +B2−AB−BA) =

1
4
(A−B)2 ≥ 0.

This shows that the function f (t) = αt2 +β t + γ is operator convex for all β ,γ ∈ R, α ≥ 0.
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Example 1.5 The function f (t) = t3 on [0,∞) is not operator convex though it is convex
on [0,∞). In fact, if we put

A =
(

2 1
1 1

)
and B =

(
1 0
0 0

)
,

then we have
A3 +B3

2
−
(

A+B
2

)3

=
1
4

(
11 9
9 7

)
�≥ 0.

Example 1.6 The function f (t) = 1
t is operator convex on (0,∞) and g(t) = − 1

t is oper-
ator monotone on (0,∞). In fact, for any positive invertible operators A and B

A−1 +B−1

2
−
(

A+B
2

)−1

=
A−1 +B−1−4(A(A−1 +B−1)B)−1

2

=
A−1 +B−1−4B−1(A−1 +B−1)−1A−1

2

=
(A−1 +B−1−2B−1)(A−1 +B−1)−1(2A−1− (A−1 +B−1))

2

=
(A−1−B−1)(A−1 +B−1)−1(A−1−B−1)

2
≥ 0.

The last inequality holds by Lemma 1.5.
This fact shows that f (t) = 1

t is operator convex.

Next, let A ≥ B ≥ 0. Then 1H ≥ A− 1
2 BA− 1

2 . Taking inverse both sides, we have IH ≤
A

1
2 B−1A

1
2 and hence A−1 ≤B−1. Therefore it follows that−A−1 ≥−B−1 and hence g(t) =

− 1
t is operator monotone on (0,∞).

To relate this, we introduce the following famous Löwner-Heinz inequality established
in 1934.

Theorem 1.8 (LÖWNER-HEINZ INEQUALITY) Let A and B be positive operators on a
Hilbert space H. If A ≥ B ≥ 0, then Ar ≥ Br for all r ∈ [0,1].

We need some elementary results in operator theory in order to prove it. The spectral
radius of an operator A is defined as

r(A) = max{|λ | : λ ∈ Sp(A)}.

Notice that r(A) ≤ ‖A‖ and r(A) = ‖A‖ if A is a selfadjoint operator. Moreover, it follows
that r(AB) = r(BA) for all A,B ∈ B(H), since Sp(AB)\{0} = Sp(BA)\{0}. Also, if A is
positive, then A ≤ 1H if and only if r(A) ≤ 1. An operator A is a contraction (‖A‖ ≤ 1) if
and only if A∗A ≤ 1H .
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Proof of Theorem 1.8. Let A ≥ B ≥ 0. Suppose that A is invertible. Put

Δ = {r ∈ R : Ar ≥ Br}.
Then the set Δ is closed since r → Ar,Br are norm continuous and 0 ∈ Δ obviously. The
hypothesis A ≥ B ≥ 0 ensures 1 ∈ Δ. Therefore, to prove [0,1] ⊂ Δ is sufficient to show
that r,s ∈ Δ implies r+s

2 ∈ Δ.

If r ∈ Δ, then 1H ≥ A− r
2 BrA− r

2 =
(
B

r
2 A− r

2

)∗(
B

r
2 A− r

2

)
and hence

∥∥∥B r
2 A− r

2

∥∥∥≤ 1.

By the same argument, if s ∈ Δ, then
∥∥∥B s

2 A− s
2

∥∥∥≤ 1.

So, we have∥∥∥A−(r+s)
4 B

r+s
2 A

−(r+s)
4

∥∥∥
= r
(
A

−(r+s)
4 B

r+s
2 A

−(r+s)
4

)
by A

−(r+s)
4 B

r+s
2 A

−(r+s)
4 ispositive

= r
(
A

r−s
4 A

−(r+s)
4 B

r+s
2 A

−(r+s)
4 A

s−r
4

)
by r(ST ) = r(TS)

= r
(
A

−s
2 B

r+s
2 A

−r
2

)
≤
∥∥∥A−s

2 B
r+s
2 A

−r
2

∥∥∥ by r(X) ≤ ‖X‖

≤
∥∥∥B r

2 A− r
2

∥∥∥∥∥∥B s
2 A− s

2

∥∥∥≤ 1.

Therefore we have
A

−(r+s)
4 B

r+s
2 A

−(r+s)
4 ≤ 1H

and hence
A

r+s
2 ≥ B

r+s
2 , i.e.,

r+ s
2

∈ Δ.

This fact shows the theorem under the assumption that A is invertible.
Suppose that A is not invertible. For each ε > 0, A+ε1H is invertible and A+ε1H ≥ B.

Therefore it follows from above argument that

(A+ ε1H)r ≥ Br for all 0 ≤ r ≤ 1.

By letting ε → 0, we have the desired inequality Ar ≥ Br. �

Now, we go back to Jensen’s inequality. We show some characterizations of operator
convexity and operator monotonicity based on the ideas due to Hansen-Pedersen. This
leads to some conditions equivalent to Jensen’s inequality.

Theorem 1.9 (JENSEN’S OPERATOR INEQUALITY) Let H and K be Hilbert space. Let
f be a real valued continuous function on an interval I. Let A and Aj be selfadjoint oper-
ators on H with spectra contained in I ( j = 1,2, · · · ,k). Then the following conditions are
mutually equivalent:
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(i) f is operator convex on I.

(ii) f (C∗AC) ≤C∗ f (A)C for every A ∈ Bh(H) and isometry C ∈ B(K,H), i.e., C∗C =
1K.

(iii) f (C∗AC) ≤C∗ f (A)C for every A ∈ Bh(H) and isometry C ∈ B(H).

(iv) f
(

∑k
j=1C∗

j A jCj

)
≤ ∑k

j=1C∗
j f (Aj)Cj for every A j ∈ Bh(H) and Cj ∈ B(K,H) with

∑k
j=1C∗

jCj = 1K ( j = 1, · · · ,k).

(v) f
(

∑k
j=1C∗

j A jCj

)
≤ ∑k

j=1C∗
j f (Aj)Cj for every A j ∈ Bh(H) and Cj ∈ B(H) with

∑k
j=1C∗

jCj = 1H ( j = 1, · · · ,k).

(vi) f
(

∑k
j=1 PjA jPj

)
≤∑k

j=1 Pj f (Aj)Pj for every A j ∈Bh(H) and projection Pj ∈Bh(H)

with ∑k
j=1 Pj = 1H ( j = 1, · · · ,k).

Proof. (i) ⇒ (ii): Let X =
(

A 0
0 B

)
∈ Bh(H ⊕K) for some selfadjoint operator B ∈

Bh(K) with σ(B) ⊂ I and

U =
(

C D
0 −C∗

)
,V =

(
C −D
0 C∗

)
∈ B(K⊕H,H⊕K),

where D =
√

1H −CC∗. SinceC∗D =
√

1K −C∗CC∗ = 0∈Bh(H,K) and DC =C
√

1K −C∗C =
0 ∈ Bh(K,H), it follows that both U and V are unitary operators of K ⊕H onto H ⊕K.
Then

U∗XU =
(

C∗AC C∗AD
DAC DAD+CBC∗

)
and

V ∗XV =
(

C∗AC −C∗AD
−DAC DAD+CBC∗

)
.

So, we have (
C∗AC 0

0 D∗AD+CBC∗
)

=
U∗XU +V ∗XV

2
.

Hence, it follows from the operator convexity of f and Lemma 1.6 that(
f (C∗AC) 0

0 f (D∗AD+CBC∗)

)
= f

(
C∗AC 0

0 D∗AD+CBC∗
)

= f

(
U∗XU +V ∗XV

2

)

≤ f (U∗XU)+ f (V ∗XV)
2

=
U∗ f (X)U +V ∗ f (X)V

2

=
(

C∗ f (A)C 0
0 D∗ f (A)D+C f (B)C∗

)
.

Thus we have f (C∗AC) ≤C∗ f (A)C by seeing the (1,1)-components.
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(ii) ⇒ (iv): Let

X =

⎛
⎜⎜⎝

A1 0
A2

. . .
0 Ak

⎞
⎟⎟⎠ ∈ Bh(H⊕·· ·⊕H), C̃ =

⎛
⎜⎜⎝

C1
C2
...

Ck

⎞
⎟⎟⎠ ∈ B(K,H ⊕·· ·⊕H).

Then C̃∗C̃ = 1K and hence it follow from (ii) that

f (
k

∑
j=1

C∗
j A jCj) = f (C̃∗XC̃) ≤ C̃∗ f (X)C̃ =

k

∑
j=1

C∗
j f (Aj)Cj.

(iv) ⇒ (vi): Obviously.

(vi) ⇒ (i): Let A and B be selfadjoint operators with spectrum in I and let 0 ≤ t ≤ 1.

Let X =
(

A 0
0 B

)
, P =

(
1H 0
0 0

)
and U =

(√
1− t −√

t√
t

√
1− t

)
. Then U is a unitary operator

on H⊕H. Thus we have(
f ((1− t)A+ tB) 0

0 f (tA+(1− t)B)

)
= f (PU∗XUP+(1H⊗H −P)U∗XU(1H⊗H −P))

≤ P f (U∗XU)P+(1H⊗H −P) f (U∗XU)(1H⊗H −P)
= PU∗ f (X)UP+(1H⊗H −P)U∗ f (X)U(1H⊗H −P)

=
(

(1− t) f (A)+ t f (B) 0
0 t f (A)+ (1− t) f (B)

)
.

Hence f is operator convex on I by seeing the (1,1)-components.
Therefore, we proved the implications (i) ⇒ (ii) ⇒ (iv) ⇒ (vi) ⇒ (i).

To complete the proof, we need the implication (iii) ⇒ (v) because it is non-trivial in
(i) ⇒ (ii) ⇒ (iii) ⇒ (v) ⇒ (vi) ⇒ (i).

(iii) ⇒ (v): We only show the case of k = 2, which is essential. Let

X =

⎛
⎜⎜⎝

A1 0
A2

A2

0
. . .

⎞
⎟⎟⎠ and C =

⎛
⎜⎜⎝

C1 0 · · · 0
C2 0 · · ·
0 1H 0
...

. . .
. . .

. . .

⎞
⎟⎟⎠ .

Then C is isometry in B(H ⊕H ⊕ ·· ·), i.e., C∗C = 1H⊕H⊕···. Hence it follows from (iii)
that ⎛

⎝ f (C∗
1A1C1 +C∗

2A2C2)
f (A2)

. . .

⎞
⎠

= f (C∗XC) ≤C∗ f (X)C

=

⎛
⎝C∗

1 f (A1)C1 +C∗
2 f (A2)C2

f (A2)
. . .

⎞
⎠ .
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Thus we have f (C∗
1A1C1+C∗

2A2C2)≤C∗
1 f (A1)C1 +C∗

2 f (A2)C2 by seeing the (1,1)-components.
�

By Theorem 1.9, we show the following Hansen-Pedersen type Jensen’s inequality.

Theorem 1.10 (HANSEN-PEDERSEN-JENSEN’S INEQUALITY) Let I be an interval con-
taining 0 and let f be a real valued continuous function defined on I. Let A and Aj be
selfadjoint operators on H with spectra contained in I ( j = 1,2, · · · ,k). Then the following
conditions are mutually equivalent:

(i) f is operator convex on I and f (0) ≤ 0.

(ii) f (C∗AC) ≤C∗ f (A)C for every A ∈ Bh(H) and contraction C ∈ B(H), i.e., C∗C ≤
1H.

(iii) f (∑k
j=1C∗

j A jCj)≤∑k
j=1C∗

j f (Aj)Cj for every A∈Bh(H) andCj ∈B(H) with ∑k
j=1C∗

jCj ≤
1H

(iv) f (PAP) ≤ P f (A)P for every A ∈ Bh(H) and projection P.

Proof. (i) ⇒ (ii): Suppose that f is operator convex and f (0) ≤ 0. For every con-
traction C, put D =

√
1H −C∗C. Since C∗C+D∗D = 1H , it follows from (v) of Theorem

1.9 that

f (C∗AC) = f (C∗AC+D∗0D)
≤ C∗ f (A)C +D∗ f (0)D = C∗ f (A)C by f (0) ≤ 0

and hence we have (ii).
(ii) ⇒ (iii): Put X and C̃ as in the proof (ii) ⇒ (iv) of Theorem 1.9, then C̃∗C̃ ≤ 1H

and hence we have (iii).
(iii) ⇒ (iv): obviously.
(iv) ⇒ (i): Under the same situation in the proof (iv) ⇒ (i) of Theorem 1.9, we have

(
f ((1− t)A+ tB) 0

0 f (0)

)
= f (PU∗XUP)

≤ PU∗ f (X)UP =
(

(1− t) f (A)+ t f (B) 0
0 0

)
.

Hence f is operator convex and f (0) ≤ 0. �

Theorem 1.11 Let f ∈ C ([0,∞). If f (t) ≤ 0 for all t ∈ [0,∞), then conditions (i)–(vi) in
Theorems 1.9 are again equivalent to the following condition

(vii) – f is an operator monotone function.
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Proof. Suppose that f is operator convex. Let A,B ∈ B(H), 0 ≤ A ≤ B. Then for any
0 < λ < 1 we can write

λB = λA+(1−λ )
λ

1−λ
(B−A).

Since f is operator convex, we have

f (λB) ≤ λ f (A)+ (1−λ ) f

(
λ

1−λ
(B−A)

)
.

Since − f (X) is positive for every positive operator X , it follows that f (λB) ≤ λ f (A).
Letting λ tend to 1, we have f (B) ≤ f (A). Hence − f is operator monotone.

Conversely, suppose that − f is operator monotone. Let C ∈ B(H) be an isometry.
Consider the unitary operator U on H⊕H given by

U =
(

C −D
0 C∗

)
where D =

√
1H −CC∗. We put

X =
(

A 0
0 0

)
∈ Bh(H ⊕H)

and note that
U∗XU =

(
C∗AC −C∗AD
−DAC DAD

)
.

Choose now a constant ε > 0 and set

Y =
(

C∗AC+ ε1H 0
0 2λ1H

)
,

where λ is a positive constant to be fixed later. We observe that

Y −U∗XU =
(

ε1H C∗AD
DAC 2λ1H −DAD

)

≥
( ε1H F

F∗ λ1H

)
for λ1H ≥ DAD,

where F = C∗AD. Furthermore let ξ , η ∈ H, then(( ε1H F
F∗ λ1H

)( ξ
η

)
,

(
ξ
η

))
= ε‖ξ‖2 +(Fξ ,η)+ (F∗ξ ,η)+ λ‖η‖2

≥ ε‖ξ‖2−2‖F‖‖ξ‖‖η‖+ λ‖η‖2

≥ 0 for λ ≥ ‖F‖2

ε
.

For a sufficiently large λ we thus obtain

U∗XU ≤ Y
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and consequently the operator monotonicity of − f implies

U∗ f (X)U = f (U∗XU) ≥ f (Y )

or written as matrices(
C∗ f (A)C −C∗ f (A)D
−Df (A)C∗ Df (A)D

)
≥
(

f (C∗AC+ ε1H) 0
0 f (2λ1H)

)
.

In particular we have C∗ f (A)C ≥ f (C∗AC+ ε1H). Letting ε tend to 0, we get the conclu-
sion of the theorem. �

Corollary 1.12 Let f be a real valued continuous function mapping the positive half line
[0,∞) into itself. Then f is operator monotone if and only if f is operator concave.

Theorem 1.13 Let f ∈ C ([0,r)) and r ≤ ∞. Then the following conditions are mutually
equivalent.

(i) f is operator convex and f (0) ≤ 0.

(ii) The function t �→ f (t)
t is operator monotone on (0,r).

Proof. Suppose that f is operator convex. Let A,B ∈ Bh(H) be selfadjoint oper-
ators with Sp(A),Sp(B) ⊂ (0,r) and A ≤ B. Then A and B are invertible. If we put
C = B−1/2A1/2, then CC∗ = B−1/2AB−1/2 ≤ 1H and ‖C‖ ≤ 1. Since A = C∗BC, it fol-
lows from (ii) in Theorem 1.10 that

f (A) = f (C∗BC) ≤C∗ f (B)C = A1/2B−1/2 f (B)B−1/2A1/2

and hence A−1/2 f (A)A−1/2 ≤ B−1/2 f (B)B−1/2. Therefore we have A−1 f (A) ≤ B−1 f (B)
and f (t)/t is operator monotone.

Conversely, suppose that f (t)/t is operator monotone on (0,r). Since f (t)/t ≤ f (β )/β
for 0 < t < β ≤ r, we have f (t) ≤ ( f (β )/β )t. Letting t �→ 0, we have f (0) ≤ 0. We
will show that f satisfies the condition (iv) of Theorem 1.10. Let P be any projection
and let A be any positive operator with spectrum in (0,r) and Sp((1+ ε)A) ⊂ (0,r) for a

sufficiently small ε > 0. Put Pε = P+ε1H and Xε = P
1
2

ε A
1
2 . Since Pε ≤ (1+ε)1H , we have

A
1
2 PεA

1
2 ≤ (1+ ε)A. Since(

f
t

)(
A

1
2 PεA

1
2

)
= f

(
A

1
2 PεA

1
2

)(
A

1
2 PεA

1
2

)−1

= f (X∗
ε Xε)(X∗

ε Xε)−1

= X−1
ε f (XεX

∗
ε )XεX

−1
ε X∗−1

ε

= X−1
ε f (XεX

∗
ε )X∗−1

ε ,

it follows from the operator monotonicity of f (t)/t that

X−1
ε f (XεX

∗
ε )X∗−1

ε =
(

f
t

)(
A

1
2 PεA

1
2

)

≤
(

f
t

)
((1+ ε)A)

= (1+ ε)−1A
1
2 f ((1+ ε)A)A

1
2 .
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Therefore we obtain

f (XεX
∗
ε ) ≤ (1+ ε)−1XεA

1
2 f ((1+ ε)A)A

1
2 X∗

ε

= (1+ ε)−1Pε f ((1+ ε)A)Pε .

Let ε → 0. This gives XεX∗
ε → A

1
2 PA

1
2 and hence we have f (APA) ≤ P f (A)P as desired.

�

From the previous theorem we obtain the following corollary.

Corollary 1.14 Let f ∈ C ([0,∞)) and f > 0. The function f is operator monotone if and
only if the function t/ f (t) is operator monotone.

Proof. Suppose that f is operator monotone. Since − f is operator convex, it fol-
lows from Theorem 1.13 that − f (t)/t is operator monotone on (0,∞). Hence t/ f (t) =
−(− f (t)/t)−1 is operator monotone on (0,∞). By the continuity of f , we have the desired
result.

Conversely, suppose that t/ f (t) is operator monotone. If we put g(t) = −t/ f (t), then
g(t) ≥ 0 and by Theorem 1.11 the operator monotonicity of −g(t) implies the operator
convexity of g(t) and g(0) ≤ 0. It follows from Theorem 1.13 that g(t)/t = −1/ f (t) is
operator monotone on (0,∞) and this fact is equivalent to the operator monotonicity of
f (t). �

In general, for a finite interval I, it seems that there is no conjunction between operator
concavity and operator monotonicity. For example, f (t) = tant is not operator concave
(or convex) on (−π/2,π/2) while it is operator monotone. However, they coincide if the
interval is infinite. The following theorem is a slight extension of Theorem 1.11.

Theorem 1.15 Let f be a real valued continuous function on an interval I = [α,∞) and
bounded below, i.e., there exists m ∈ R such that m ≤ f (t) for all t ∈ I. Then the following
conditions are mutually equivalent:

(i) f is operator concave on I

(ii) f is operator monotone on I

Proof. (i) ⇒ (ii): Let α1H ≤ A ≤ B. For every 0 < t < 1, we have

t(B−α1H)+ α1H = tA+(1− t)
(

t
1− t

(B−A)+ α1H

)

and
α1H ≤ t(B−α1H)+ α1H,

t
1− t

(B−A)+ α1H.

Therefore, it follows from the operator concavity of f that

f (t(B−α1H)+ α1H) ≥ t f (A)+ (1− t) f

(
t

1− t
(B−A)+ α1H

)
≥ t f (A)+ (1− t)m.
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Let t → 1 and hence f (B) ≥ f (A).

(ii) ⇒ (i): For every isometry C, put D =
√

1H −CC∗ and let

X =
(

A 0
0 α1H

)
, and U =

(
C D
0 −C∗

)
.

Then U is a unitary operator. For sufficiently large M > α and small ε > 0, we have

U∗XU =
(

C∗AC C∗AD
DAC DAD+ αCC∗

)
≤
(

C∗AC+ ε1H 0
0 M1H

)
≡ XM,ε .

Therefore it follows from an operator monotonicity of f that(
C∗ f (A)C C∗ f (A)D
Df (A)C Df (A)D+ f (α)CC∗

)
= U∗ f (X)U = f (U∗XU)

≤ f (XM,ε ) =
(

f (C∗AC+ ε1H) 0
0 f (M1H)

)

and hence C∗ f (A)C ≤ f (C∗(A+ ε1H)C). Letting ε → 0, we have C∗ f (A)C ≤ f (C∗AC),
namely f is operator concave by Theorem 1.9. �

Corollary 1.16 The function f (t) = tr is operator monotone on [0,∞) if and only if 0 ≤
r ≤ 1. The function f (t) = tr is operator convex on (0,∞) if either 1≤ r ≤ 2 or −1≤ r ≤ 0
and is operator concave on (0,∞) if 0 ≤ r ≤ 1.

Proof. If 0 ≤ r ≤ 1, then f (t) = tr is operator monotone by Theorem 1.8. If r is not in
[0,1], then f (t) = tr is not concave on (0,∞). Therefore, it cannot be operator monotone
by Corollary 1.12. Also, we can show directly that for each r > 1, there exist A ≥ B ≥ 0
such that Ar �≥ Br. In fact, if we put

A =
(

3
2 0
0 3

4

)
and B =

(
1
2

1
2

1
2

1
2

)
,

then A ≥ B ≥ 0 and

Ar −Br =
(

( 3
2 )r − 1

2 − 1
2

− 1
2 ( 3

4 )r − 1
2

)

det(Ar −Br) =
(

3
8

)r(
3r − 2r +4r

2

)
�> 0.

Therefore we have Ar �≥ Br.
Next, if 1 ≤ r ≤ 2, then it follows that tr/t = tr−1 is operator monotone on (0,∞) and

hence tr is operator convex on (0,∞) by Theorem 1.13. If −1 ≤ r ≤ 0, then tr = 1/t−r is
operator convex. �



1.3 OPERATOR CONVEXITY 17

Example 1.7 The logarithm function f (t) = log t is operator monotone on (0,∞). In fact,
by Löwner-Heinz inequality, it follows that for positive invertible operators A and B such
that A ≥ B > 0,

Ar −1H

r
≥ Br −1H

r
for 0 < r < 1.

Since limr→+0
xr−1

r = logx, we have logA ≥ logB.

Moreover, the function f (t) = logt is operator concave on (0,∞). In fact, since tr is
operator concave for 0 < r < 1, we have

(
A+B

2

)r ≥ Ar+Br

2 for 0 < r < 1 and hence

(
A+B

2

)r −1H

r
≥

Ar−1H
r + Br−1H

r

2
.

By letting r → 0, it follows that log
(

A+B
2

)≥ 1
2 (logA+ logB).

Example 1.8 The exponential function f (t) = et is neither operator convex nor operator
monotone. In fact, since f (t) is strictly convex, it follows from Corollary 1.12 that f (t) is
not operator monotone.

Example 1.9 The entropy function η(t) = −t logt is operator concave on (0,∞). Firstly
we recall the following result

lim
n→∞

(A− 1
n −1H)n = − logA for all A > 0.

Since tr is operator concave for r ∈ [0,1], then for A > 0, B > 0 and α,β ∈ [0,1] with
α + β = 1

(αA+ βB)1−
1
n ≥ αA1− 1

n + βB1− 1
n for any natural number n

and hence we obtain

(αA+ βB)
(
(αA+ βB)−

1
n −1H

)
n ≥ αA

(
A− 1

n −1H

)
n+ βB

(
B− 1

n −1H

)
n.

Letting n tend to ∞, we have

−(αA+ βB) log(αA+ βB)≥ (−αA logA−βB logB)

and hence

η(αA+ βB)≥ αη(A)+ β η(B).

Therefore, η(t) is operator concave.
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1.3 Positive linear maps

In this section, we state fundamental properties of positive linear maps and introduce a non-
commutative Davis-Choi type Jensen’s inequality which extends matrix version mentioned
in § 1.2.

The definition of a normalized positive linear map [24] is as follows:

Definition 1.3 A map Φ : B(H)→B(K) is linear if it is additive and homogeneous, i.e.
Φ(λX + μY) = λ Φ(X)+ μΦ(Y) for any λ ,μ ∈ C and for any X ,Y ∈ B(H).

A linear map Φ : B(H) → B(K) is positive if it preserves the operator order ≥, i.e.
A ∈ B+(H) implies Φ(A) ∈ B+(K).

A linear map Φ : B(H) → B(K) is normalized if it preserves the identity operator,
i.e. Φ(1H) = 1K.

We denote P[B(H),B(K)] as the set of all positive linear maps Φ : B(H) → B(K) and
PN [B(H),B(K)] as the set of all normalized positive linear maps Φ ∈ P[B(H),B(K)].

A positive linear map Φ ∈ P[B(H),B(K)] preserves order relation, that is, A ≤ B
implies Φ(A) ≤ Φ(B), and preserves adjoint operation, that is, Φ(A∗) = Φ(A)∗. If Φ ∈
P[B(H),B(K)] is normalized, then α1H ≤ A ≤ β1H implies α1K ≤ Φ(A) ≤ β1K.

Example 1.10 (I) An affine map Φ : B(H) → B(H),

Φ(A) = αA+ β1H for α,β ∈ R

is not a linear map generally. A map

Φ(A) = αA for α ∈ R+

is a positive linear map, but is not normalized positive linear map if α �= 1.
(II) Let Pj ∈ B(H), j = 1, . . . ,k be contractions with

k

∑
j=1

P∗
i Pi = 1H .

A map Φ : B(H) → B(H)

Φ(A) =
k

∑
j=1

P∗
j APj

is a normalized positive linear map. In particular, if V is isometry in B(H), i.e., V ∗V = 1H ,
then so is Φ(A) = V ∗AV .
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(III) We denote by Mn the set of all n×n square matrices, H +
n the set of all positive

semi-definite hermitian matrices in Mn and H ++
n the set of all positive definite matrices

in Mn. Compression map Φ : Mn → Mk, k < n,

Φ((ai j)1≤i, j≤n) = (ai j)1≤i, j≤k

is a normalized positive linear map.
(IV) Let K be a correlation matrix of X ∈ H ++

n , i.e.

K = (xi j/(xiix j j)1/2) for X = (xi j).

The matrix K is positive definite [107, Problem 5, p. 400]. We define a map Φ : Mn →Mn,
Φ(A) = K ◦A, where ◦ denotes the Hadamard product matrices. Then Φ is a normalized
positive linear map.

(V) We denote by Mn,k the space of all n× k complex matrices. Let Pi,Qj ∈ Mn,k,
1 ≤ i ≤ p, 1 ≤ j ≤ q, such that

p

∑
i=1

P∗
i Pi +

q

∑
j=1

Q∗
jQ j = 1k.

A map Φ : Mn → Mk defined as

Φ(A) =
p

∑
i=1

P∗
i APi +

q

∑
j=1

Q∗
jA

T Qj

is a normalized positive linear map [26]. In fact, the maps in the above two examples (III)
and (IV) are special cases of this map (V).

The normalized positive linear map Φ : Mn → Mk is decomposable if exist matrices
Pi,Qj ∈ Mn,k such that Φ(A) = ∑P∗

i APi +Q∗
jA

TQj, for all A ∈ Mn. There arises a natural
question: Must every positive linear map be decomposable? The answer is negative. Man-
Duen Choi [26] made the following example: a map Φ : M3 → M3 such that

Φ

([
a11 a12 a13
a21 a22 a23
a31 a32 a33

])
=

[
a11 −a12 −a13−a21 a22 −a23−a31 −a32 a33

]
+

[
a33 0 0
0 a11 0
0 0 a22

]

is the simplest example of the positive linear map which is not decomposable. More about
matrix maps can be seen in [24, 25, 26].

We show Kadison’s Schwarz inequalities on a positive linear map.

Theorem 1.17 (KADISON’S SCHWARZ INEQUALITY) Let Φ be a normalized positive
linear map in PN [B(H),B(K)]. Then Φ has the following properties.

(i) Φ(A2) ≥ Φ(A)2 for all selfadjoint operators A ∈ Bh(H).

(ii) Φ(A−1) ≥ Φ(A)−1 for all positive invertible operators A ∈ B++(H).
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To prove Theorem 1.17, we need the following Lemma:

Lemma 1.18 If A ∈ B+(H) is a positive operator and B ∈ Bh(H) is a selfadjoint oper-
ator, then (

A B
B 1H

)
≥ 0 =⇒ A ≥ B2.

Also, if A,B ∈ B++(H) are positive invertible operators, then(
A 1H
1H B

)
≥ 0 =⇒ B ≥ A−1.

Proof. Since ((
A B
B 1H

)(
x
y

)
,
(

x
y

))
≥ 0 for all x,y ∈ H,

we have
(Ax,x)+2Re(Bx,y)+ (y,y) ≥ 0,

where Rez = (z+ z)/2 is a real part of a complex number z. Replacing y by −Bx, since
(B2x,x) = Re(Bx,Bx), we have

(Ax,x)−2Re(Bx,Bx)+ (Bx,Bx) = (Ax,x)− (B2x,x) ≥ 0

and hence A ≥ B2.
Also, the latter follows as in the proof above. �

Proof of Theorem 1.17. (i): A selfadjoint operator A can be approximated uniformly
by a simple function A′ = ∑ j t jE j where {Ej} is a decomposition of the unit 1H . Since Φ
is normalized, we have ∑ j Φ(Ej) = 1K . Therefore, by Lemma 1.18 and the continuity of

Φ, it suffices to prove the positivity of

(
Φ(A′2) Φ(A′)
Φ(A′) Φ(1H)

)
. We have

(
Φ(A′2) Φ(A′)
Φ(A′) Φ(1H)

)
= ∑

j

(
t2j Φ(Ej) t jΦ(Ej)
t jΦ(Ej) Φ(Ej)

)

= ∑
j

(
t j 0
0 1

)(Φ(Ej) Φ(Ej)
Φ(Ej) Φ(Ej)

)(
t j 0
0 1

)
≥ 0,

because (
Φ(Ej) Φ(Ej)
Φ(Ej) Φ(Ej)

)
=
(

Φ(Ej)1/2 0
Φ(Ej)1/2 0

)(
Φ(Ej)1/2 Φ(Ej)1/2

0 0

)
≥ 0.

Hence we have (i).
(ii): By Lemma 1.18 and the continuity of Φ, it suffices to prove the positivity of(

Φ(A′) Φ(1H)
Φ(1H) Φ(A′−1)

)
. We have

(
Φ(A′) Φ(1H)
Φ(1H) Φ(A′−1)

)
= ∑

j

(
t jΦ(Ej) Φ(Ej)
Φ(Ej) t−1

j Φ(Ej)

)

= ∑
j

(
t1/2
j 0

0 t−1/2
j

)(
Φ(Ej) Φ(Ej)
Φ(Ej) Φ(Ej)

)(
t1/2
j 0

0 t−1/2
j

)
≥ 0
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Hence we have (ii). �

Remark 1.1 Inequality (i) in Theorem 1.17 implies the following inequality:

Φ
(
A

1
2

)
≤ Φ(A)

1
2 for all positive operators A ∈ B+(H). (1.13)

In fact, if we replace A by A1/2 in (i), then we have Φ
(
A

1
2

)2 ≤ Φ(A) and hence by Theo-

rem 1.8 (Löwner-Heinz inequality) we have the desired inequality.

The following theorem unifies Kadison’s Schwarz inequalities (Theorem 1.17) into a
single form without the presence of normalization.

Theorem 1.19 Let Φ be a positive linear map. Then for any positive invertible operators
A and B

Φ(B)Φ(A)−1Φ(B) ≤ Φ(BA−1B) (1.14)

holds.

Proof. Consider the map Ψ defined by

Ψ(X) = Φ(B)−
1
2 Φ(B

1
2 XB

1
2 )Φ(B)−

1
2 .

Then Ψ(1H) = 1K and Ψ is a positive linear map as Φ is so. By Theorem 1.17, we have

Φ(B)
1
2 Φ(A)−1Φ(B)

1
2 = Ψ

(
B− 1

2 AB− 1
2

)−1

≤ Ψ
(
B

1
2 A−1B

1
2

)
= Φ(B)−

1
2 Φ(BA−1B)Φ(B)−

1
2 .

�

The following theorem is the Davis-Choi-Jensen’s inequality for operator convex func-
tions. We present a proof by means of Kadison’s Schwarz inequalities and the integral
representation of the operator convex function.

Theorem 1.20 (DAVIS-CHOI-JENSEN’S INEQUALITY) If Φ is a normalized positive lin-
ear map in PN [B(H),B(K)], and f is an operator convex function on an interval I, then

Φ( f (A)) ≥ f (Φ(A))

for every selfadjoint operator A on H whose spectrum is contained in I.
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Proof. It suffices to consider the case I = (−1,1). Then f admits a representation

f (λ ) = a+bλ +
∫ 1

−1

λ 2

1−λ t
dm(t)

where b ≥ 0, a is a real number and m is a positive finite measure. For A with −1H ≤ A ≤
1H ,

Φ( f (A)) = a1K +bΦ(A)+
∫ 1

−1
Φ(A2(1H − tA)−1)dm(t)

and

f (Φ(A)) = a1K +bΦ(A)+
∫ 1

−1
Φ(A)2(1H − tΦ(A))−1dm(t).

By Theorem 1.17

Φ
(
A2(1H − tA)−1) = Φ

(
− 1

t2
1H − 1

t
A+

1
t2

(1H − tA)−1
)

= − 1
t2

1K − 1
t

Φ(A)+
1
t2

Φ
(
(1H − tA)−1)

≥ − 1
t2

1K − 1
t

Φ(A)+
1
t2

(1K − tΦ(A))−1

= Φ(A)2(1K − tΦ(A))−1.

This fact induces Φ( f (A)) ≥ f (Φ(A)). �

We show an alternative proof of Theorem 1.20 by means of the characterizations of the
operator convexity in Theorem 1.9.

Theorem 1.21 Let f be a real valued continuous function defined on an interval I. Then
the following conditions are equivalent:

(i) f is operator convex on I

(ii) f (Φ(A)) ≤ Φ( f (A)) for every normalized positive linear map Φ ∈
PN [B(H),B(K)] and every selfadjoint operator A with spectrum in I.

Proof. (i) ⇒ (ii): A selfadjoint operator A can be approximated uniformly by a simple
function A′ = ∑ j t jE j where {Ej} is a decomposition of the unit 1H . Since Φ is normalized,
we have ∑ j Φ(Ej) = 1K . Then applying (iv) of Theorem 1.9 to Cj =

√
Φ(Ej), it follows

that

f (Φ(A′)) = f

(
∑
j
t jΦ(Ej)

)
= f

(
∑
j
Cjt jCj

)
≤ ∑

j
Cj f (t j)Cj

= ∑
j

f (t j)Φ(Ej) = Φ

(
∑
j

f (t j)Ej

)
= Φ( f (A′)).

Therefore, we have (ii) by the continuity of Φ.
(ii) ⇒ (i): For every isometry C, putting Φ(X) = C∗XC, then it follows that Φ is a

normalized positive linear map. Hence we have (i) by (ii) in Theorem 1.9. �
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Remark 1.2 By Stinespring decomposition theorem, we have another proof of Theo-
rem 1.20. In fact, let A be a selfadjoint operator on a Hilbert space H. Then a C∗-algebra
C∗(A) generated by A and 1H is a commutative C∗-algebra. Then Φ restricted to C∗(A)
admits a decomposition Φ(X) = V ∗φ(X)V for all X ∈C∗(A), where φ is a representation
of C∗(A) ⊂ B(H), and V is an isometry from H into H. Hence it follows from Theorem 1.9
that

f (Φ(A)) = f (V ∗φ(A)V ) ≤V ∗ f (φ(A))V
= V ∗φ( f (A))V = Φ( f (A)).

Corollary 1.22 Let Φ be a normalized positive linear map in PN [B(H),B(K)] and A ∈
B++(H) a positive invertible operator. Then

(i) Φ(Ar) ≤ Φ(A)r for 0 ≤ r ≤ 1.

(ii) Φ(A)r ≤ Φ(Ar) for 1 ≤ r ≤ 2.

(iii) Φ(A) ≤ Φ(Ar)
1
r for 1 ≤ r < ∞.

(iv) Φ(Ar)
1
r ≤ Φ(A) for 1

2 ≤ r ≤ 1.

(v) Φ(logA) ≤ logΦ(A).

(vi) Φ(η(A)) ≤ η(Φ(A)).

Proof. By Corollary 1.16 and Theorem 1.20, we have (i) and (ii). Since t
1
r is operator

concave for 1 ≤ r < ∞, it follows from Theorem 1.20 that Φ(A
1
r ) ≤ Φ(A)

1
r and replacing

A by Ar, we have (iii):

Φ(A) ≤ Φ(Ar)
1
r .

Since t
1
r is operator convex for 1

2 ≤ r < 1, we have (iv) analogously. Finally (v) and
(vi) follow from Theorem 1.20 because of the operator concavity of log t and the entropy
function η(t). �

An operator convex function plays an essential role in the above result. The following
example shows that Theorem 1.21 would be false if we replace an operator convex function
by a general convex function: The function f (t) = t4 is convex but not operator convex.
It is sufficient to put dimX = 3 and in this case we have the following matrix case: For

Φ : M3 → M2 the contraction map Φ((ai j)1≤i, j≤3) = (ai j)1≤i, j≤2 and A =

[
1 0 1
0 0 1
1 1 1

]
we

have Φ(A)4 =
[

1 0
0 0

]
�≤
[

9 5
5 3

]
= Φ(A4).
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1.4 Kantorovich inequality

In this section, we shall introduce the celebrated Kantorovich inequality which is a start
point in our book. The Kantorovich inequality enables us to take another approach to study
Jensen’s inequalities associated with convex functions.

Theorem 1.23 (KANTOROVICH INEQUALITY) Let A be a positive operator on a Hilbert
space H satisfying M1H ≥ A ≥ m1H > 0 for some scalars m < M. Then

(Ax,x)(A−1x,x) ≤ (M +m)2

4Mm
(1.15)

for every unit vector x ∈ H.

To prove it, we need the following lemma:

Lemma 1.24 Let A be a positive operator on H satisfying M1H ≥ A≥m1H > 0 for some
scalars m < M. Then

(M +m)1H ≥ MmA−1 +A.

Proof. Since M1H −A≥ 0, 1
m1H −A−1 ≥ 0 by the hypothesis and M1H −A and 1

m1H −
A−1 commute, it follows that

(M1H −A)
(

1
m

1H −A−1
)
≥ 0

from which we find that
(M +m)1H ≥ MmA−1 +A.

�

Proof of Theorem 1.23. By Lemma 1.24, we have

(M +m)1H ≥ MmA−1 +A

and hence
M +m≥ Mm(A−1x,x)+ (Ax,x)

for every unit vector x ∈ H. By using the arithmetic-geometric mean inequality, it follows
that

M +m ≥ Mm(A−1x,x)+ (Ax,x) ≥ 2
√

Mm(A−1x,x)(Ax,x).

Square both sides, we obtain the desired inequality

(Ax,x)(A−1x,x) ≤ (M +m)2

4Mm
.

�

The following theorem is a multiple version of the Kantorovich inequality.
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Theorem 1.25 Let A j be positive operators on H satisfying M1H ≥ Aj ≥ m1H > 0 for
some scalars m < M ( j = 1,2, · · · ,k). Let x1,x2, · · · ,xk be any finite number of vectors in
H such that ∑k

j=1 ‖x j‖2 = 1. Then

(
k

∑
j=1

(Ajx j,x j)

)(
k

∑
j=1

(A−1
j x j,x j)

)
≤ (M +m)2

4Mm
. (1.16)

Proof. If we put

Ã =

⎛
⎝ A1 0

. . .
0 Ak

⎞
⎠ and x̃ =

⎛
⎝ x1

...
xk

⎞
⎠ ,

then we have Sp(Ã) ⊂ [m,M], ‖x̃‖ = 1 and ∑k
j=1(Ajx j,x j) = (Ãx̃, x̃). It follows from The-

orem 1.23 that (Ãx̃, x̃)(Ã−1x̃, x̃) ≤ (M+m)2
4Mm and hence we have the desired inequality (1.16).

�

Next, finding the square roots of both sides of the Kantorovich inequality, we have

{(Ax,x)(A−1x,x)} 1
2 ≤ M +m

2
√

Mm
(1.17)

for every unit vector x ∈ H. We show an extension of the form associated with a positive
linear map.

Theorem 1.26 Let Φ be a normalized positive linear map in PN [B(H),B(K)]. If A is a
positive operator on H satisfying M1H ≥ A ≥ m1H > 0 for some scalars m < M, then

Φ(A) � Φ(A−1) ≤ M +m

2
√

Mm
. (1.18)

To enter the proof, we need some explanations. The geometric mean A�B of positive
operators A and B is defined as

A � B = A
1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2

if A is invertible. If A and B commute, then A�B =
√

AB, i.e., A�B is the usual geometric
mean. The geometric mean is symmetric in the sense that A � B = B � A. In fact, let
C = A−1/2B1/2 =U |C| be the polar decomposition of A−1/2B1/2, where U is unitary. Then
we have

C(C∗C)−
1
2C∗ = U |C||C|−1|C|U = U |C|U = (CC∗)

1
2

and hence
A � B = A

1
2 (CC∗)

1
2 A

1
2 = B

1
2 (C∗C)−

1
2 B

1
2 = B � A.

Then the noncommutative arithmetic-geometric mean inequality holds.
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Theorem 1.27 The geometric mean is not greater than the arithmetic mean;

A � B ≤ A+B
2

for every positive operator A and B.

Proof. Since
√

t ≤ 1+t
2 for all t ≥ 0, it follows that

(
A− 1

2 BA− 1
2

) 1
2 ≤ 1H +A− 1

2 BA− 1
2

2

and multiplying both sides by A
1
2 we have

A
1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2 ≤ A+B

2
.

Therefore we have A � B ≤ A+B
2 . �

Proof of Theorem 1.26. Since M1H ≥ A ≥ m1H > 0, it follows from Lemma 1.24 that

(M +m)1H ≥ MmA−1 +A.

Since Φ is a normalized positive linear map, we have

Φ((M +m)1H) ≥ Φ(MmA−1)+ Φ(A)

and hence
(M +m)1K ≥ MmΦ(A−1)+ Φ(A).

By using Theorem 1.27, we have

(M +m)1K ≥ MmΦ(A−1)+ Φ(A) ≥ 2
√

Mm
(
Φ(A−1) � Φ(A)

)
.

Therefore it follows that

Φ(A−1) � Φ(A) = Φ(A) � Φ(A−1) ≤ M +m

2
√

Mm
,

since the geometric mean is symmetric, cf., Definition 5.2 in § 5.1. �

If we put Φ(X) = ∑k
j=1U∗

j XUj for contractions Uj with ∑k
j=1U∗

j Uj = 1H , then Φ is a
normalized positive linear map. Therefore, Theorem 1.26 implies the following corollary
which is another extension of the Kantorovich inequality.

Corollary 1.28 Let Uj be contractions with ∑k
j=1U∗

j Uj = 1H ( j = 1,2, · · · ,k). If A is a
positive operator on H satisfying M1H ≥ A ≥ m1H > 0 for some scalars m < M, then(

k

∑
j=1

U∗
j AUj

)
�

(
k

∑
j=1

U∗
j A

−1Uj

)
≤ M +m

2
√

Mm
.
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We investigate several operator inequalities obtained by a view of the Kantorovich
inequalities. Let A be a positive operator on H satisfying M1H ≥ A ≥ m1H > 0 for some
scalars m and M. By Cauchy-Scwarz inequality, we have

1 = (x,x)2 =
(
A

1
2 x,A− 1

2 x
)2 ≤

∥∥∥A 1
2 x
∥∥∥2∥∥∥A− 1

2 x
∥∥∥2

= (Ax,x)(A−1x,x)

for every unit vector x ∈ H. We can realize that the Kantorovich inequality estimates the
upper boundary of (Ax,x)(A−1x,x) by means of the spectrum of A. The Hölder-McCarthy
inequality implies

(Ax,x)2 ≤ (A2x,x)

for every unit vector x ∈ H. We show the following result by the Kantorovich inequlaity.

Theorem 1.29 Let A be a positive operator on H satisfying M1H ≥ A ≥ m1H > 0 for
some scalars m < M. Then

(A2x,x) ≤ (M +m)2

4Mm
(Ax,x)2

for every unit vector x ∈ H.

Proof. Substituting A
1
2 x

‖A 1
2 x‖

for a unit vector x in the Kantorovich inequality, we have

(
AA

1
2 x,A

1
2 x
)

∥∥∥A 1
2 x
∥∥∥2

(
A−1A

1
2 x,A

1
2 x
)

∥∥∥A 1
2 x
∥∥∥2 ≤ (M +m)2

4Mm

and hence

(A2x,x) ≤ (M +M)2

4Mm
(Ax,x)2.

�

Next, we investigate the estimations of the upper boundary of the difference (A2x,x)−
(Ax,x)2 by means of the spectrum of A.

Theorem 1.30 Let A be a selfadjoint operator on H satisfying M1H ≥ A≥m1H for some
scalars m < M. Then

(A2x,x)− (Ax,x)2 ≤ (M−m)2

4
for every unit vector x ∈ H.

Proof. We first note that (M − t)(t −m) ≤ (M−m
2

)2
for all real numbers t. Hence it

follows from (M1H −A)(A−m1H) ≥ 0 that

(A2x,x)− (Ax,x)2

= (M− (Ax,x))((Ax,x)−m)− ((M1H −A)(A−m1H)x,x)
≤ (M− (Ax,x))((Ax,x)−m)

≤ (M−m)2

4
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for every unit vector x ∈ H. �

Theorem 1.31 Let A be a positive operator on H satisfying M1H ≥ A ≥ m1H > 0 for
some scalars m < M. Then

(A−1x,x)− (Ax,x)−1 ≤ (
√

M−√
m)2

Mm

for every unit vector x ∈ H.

Proof. By Lemma 1.24, we have

(M +m)1H ≥ MmA−1 +A

and hence

(A−1x,x) ≤ M +m
Mm

− 1
Mm

(Ax,x)

for every unit vector x ∈ H. Then it follows that

(A−1x,x)− (Ax,x)−1

≤ (
1
m

+
1
M

)− 1
Mm

(Ax,x)− (Ax,x)−1

=
(

1√
m
− 1√

M

)2

−
(

1√
Mm

(Ax,x)
1
2 − (Ax,x)−

1
2

)2

≤
(

1√
m
− 1√

M

)2

and hence we have

(A−1x,x)− (Ax,x)−1 ≤ (
√

M−√
m)2

Mm
.

�

Similarly we have the following Kantorovich type inequalities for positive linear maps.

Theorem 1.32 Let Φ be a normalized positive linear map in PN [B(H),B(K)]. If A is a
positive operator on H satisfying M1H ≥ A ≥ m1H > 0 for some scalars m < M, then

(i) Φ(A2)−Φ(A)2 ≤ (M−m)2
4 1K.

(ii) Φ(A−1)−Φ(A)−1 ≤ (
√

M−√
m)2

Mm 1K.

(iii) Φ(A2) ≤ (M+m)2
4Mm Φ(A)2.

(iv) Φ(A−1) ≤ (M+m)2
4Mm Φ(A)−1.
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Proof. Since (M1K −Φ(A))(Φ(A)−m1K) ≥ 0, it follows that

Φ(A2)−Φ(A)2 = (M1K −Φ(A))(Φ(A)−m1K)−Φ((M1H −A)(A−m1H))
≤ (M1K −Φ(A))(Φ(A)−m1K)

≤ (M−m)2

4
1K

and so we have (i).
We have the proof of (ii) by the same method as in Theorem 1.31.
For (iii), since (M1H −A)(A−m1H) ≥ 0, we have

(M +m)A−A2−Mm1H ≥ 0

and so
(M +m)Φ(A)−Φ(A2)−Mm1K ≥ 0.

Also, ((M +m)Φ(A)−2Mm1K)2 ≥ 0 implies

(M +m)2Φ(A)2 −4Mm(M +m)Φ(A)+4M2m21K ≥ 0.

Combined with two inequalities above, we have

Φ(A2) ≤ (M +m)Φ(A)−Mm1K

≤ (M +m)2

4Mm
Φ(A)2

and so we have (iii).
Similarly we have (iv). �

1.5 Mond-Pečarić method

In this section, we shall introduce the Mond-Pečarić method which gives complementary
inequalities to Jensen’s type inequalities associated with convex functions.

Let f (t) be a real valued continuous convex function and A a selfadjoint operator on a
Hilbert space H. Then Jensen’s inequality for a vector state asserts that

f ((Ax,x)) ≤ ( f (A)x,x) (1.19)

for every unit vector x ∈ H. In particular, if f (t) = 1/t (resp. t2), then we have

(Ax,x)−1 ≤ (A−1x,x) (resp. (Ax,x)2 ≤ (A2x,x)) (1.20)

for every unit vector x ∈ H since f (t) = 1/t (resp. t2) is convex.
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The Kantorovich inequality asserts that if A is a positive operator on H satisfying
M1H ≥ A ≥ m1H > 0 for some scalars m and M, then

(Ax,x)(A−1x,x) ≤ (M +m)2

4Mm
(1.21)

for every unit vector x ∈ H. If we rephrase it by

(A−1x,x) ≤ (M +m)2

4Mm
(Ax,x)−1, (1.22)

then it can be recognized as a complementary inequality to Jensen’s inequality for the
convex function f (t)= 1/t. Namely, it estimates the upper boundary of the ratio in Jensen’s
inequality. Moreover, Theorem 1.31 says that

(A−1x,x)− (Ax,x)−1 ≤ (
√

M−√
m)2

Mm
. (1.23)

From this point of view, Theorem 1.31 can be recognized as an estimates of the upper
boundary of the difference in Jensen’inequality.

Many authors have been investigated on extensions of the Kantorovich inequality.
Among others, we pay our attentions to a long research series of Mond and Pečarić [141,
143, 144, 145, 146]. They established the method which gives complementary inequal-
ities to Jensen’s type inequalities associated with convex functions. Consequently they
gave complementary inequalities to the Hölder-McCarthy inequality and extensions of the
Kantorovich type one. Furuta [74, 76] moreover gave extensions of Ky Fan [30] and Mond-
Pečarić generalizations of the Kantorovich one by applying both ideas of Ky Fan, Mond
and Pečarić. On the other hand, in the integral expression, S.-E.Takahasi et al. [182] gave
another formula for a complementary inequality to Jensen’s inequality which includes the
Kantorovich inequality as a special case. By reconstructing both ideas of Furuta and Taka-
hasi, we discover new merits in the method established by Mond and Pečarić and apply it
to obtain complementary inequalities to Jensen’s inequality for convex functions.

We consider complementary inequalities to Jensen’s type inequalities associated with
convex functions in a general setting. More precisely, if a selfadjoint operator A on H
satisfies M1H ≥ A ≥ m1H > 0 for some scalars m and M and a real valued continuous
function f (t) is convex on [m,M], then there exists the most suitable real number β such
that for a given real number α and a real valued continuous function g(t)

( f (A)x,x) ≤ αg((Ax,x))+ β (1.24)

holds for every unit vector x∈H. The generalization gives us a unified view to the operator
inequalities (1.22) and (1.23). Plainly speaking, if we put α = 1 and g = f in (1.24), then
the upper estimation of the difference in Jensen’s inequality is given by

( f (A)x,x)− f ((Ax,x)) ≤ β . (1.25)

If we choose α such that β = 0 and g = f in (1.24), then the upper estimation of the ratio
in Jensen’s inequality is given by

( f (A)x,x) ≤ α f ((Ax,x)). (1.26)
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Thus, we consider the problem of determining the upper estimates of such a β in comple-
mentary inequalities to Jensen’s inequalities.

Since f (t) is convex on [m,M], then we have

f (t) ≤ l(t) ≡ μ f t + ν f on [m,M] (1.27)

where

μ f =
f (M)− f (m)

M−m
and ν f =

M f (m)−mf (M)
M−m

(1.28)

that is, a straight line l(t) is a linear function limiting f (t) from above. Using the operator
calculus it follows that

f (A) ≤ μ f A+ ν f 1H

and
f (m)1H ≤ μ f A+ ν f 1H ≤ f (M)1H

Then such a β is obtained as follows: The hypothesis ensures the inequality m≤ (Ax,x) ≤
M. Then it follows that

( f (A)x,x)−αg((Ax,x)) ≤ ((μ f A+ ν f )x,x)−αg((Ax,x))
= μ f (Ax,x)+ ν f −αg((Ax,x))
≤ max

m≤t≤M
{ f (m)+ μ f (t −m)−αg(t)}.

Therefore, if we put β = maxm≤t≤M{ f (m)+ μ f (t−m)−αg(t)}, then we have the desired
inequality.

By this view, we can realize that the problem of determining such a β is reduced to
solving a single variable maximization or minimization problem by using the convexity
of f (t). Based on the method, we shall deal with general complementary inequalities to
Jensen’s inequalities for convex functions. Under this formulation, the concept of comple-
mentary inequalities is simplified and, notions and proofs become clearer. This point of
view is quite available for the study of the Hadamard product, positive linear maps, opera-
tor means and order preserving operator inequalities. The principle yields a rich harvest in
the field of operator inequalities. We call it the Mond-Pečarić method.

1.6 Notes

Theorem 1.2 is due to Mond and Pečarić [141] and [148]. The original proof of The-
orem 1.4 is due to McCarthy [129] and another proof of Theorem 1.4 (ii) appeared in
Kitamura and Seo [119]. For fundamental results associated with C∗-algebras we refer to
Arveson [12].
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The examples in Section 1.2 are from a work of Bhatia [19] in Chapter V. For the
Löwner-Heinz inequality we refer a simplified proof in Pedersen [170]. A proof of The-
orem 1.8 is given in Heinz [102] and more general form of the Löwner-Heinz inequality
had been given in Löwner [125]. Theorem 1.9 and Theorem 1.15 are due to J.I.Fujii and
M.Fujii [39], Hansen and Pedersen [99]. The implication (iii)⇒ (v) of Theorem 1.9 is due
to M.Fujii [53]. The implication (ii) ⇒ (i) of Theorem 1.13 is due to M.Fujii, T.Furuta
and R.Nakamoto [56]. The main results concerning some characterizations of operator
concavity and operator monotonicity are due to Hansen and Pedersen [98]. Example 1.9 is
due to Furuta [82].

The study of positive linear maps on an algebra of bounded linear operators on a Hilbert
space has been developed by many authors (T.Ando, W.B.Arveson, M.D.Choi, T.Y.Lam,
E.G.Effres, C.Davis, R.V.Kadison, E.H.Lieb, M.B.Ruskai, W.E.Stinespring, E.Størmer,
S.L.Woronowicz). Theorem 1.17 and Theorem 1.20 are due to Ando [3]. Theorem 1.21
is due to J.I.Fujii and M.Fujii [39]. A proof of Theorem 1.20 in Remark 1.2 by using
the Stinespring decomposition theorem [180] is due to Davis [27] and Choi [25]. The
counterexample in Theorem 1.21 is due to Choi [25].

Kantorovich [115] firstly showed Theorem 1.23 in the case of sequences. Greub and
Rheinboldt [96] formulated an operator version (Theorem 1.23) of the inequality due to
Kantorovich and proved it by a somewhat different way. Nakamura [161] gave a simple
proof of Theorem 1.23 by using a convexity of f (t) = t−1, which is based on the idea of
Mond-Pečarić method. Equality problems on the Kantorovich inequality are considered
by Henrici [103] and Tsukada and Takahasi [188]. For another proof of the Kantorovich
inequality, we refer to M.Fujii, Furuta, Nakamoto and Takahasi [57]. An extension (The-
orem 1.26) of the Kantorovich inequality associated with a positive linear map is due to
Nakamoto and Nakamura [160]. Theorem 1.32 is due to Mond and Pečarić [140] and
[145]. Theorem 1.29 appeared in Krasnoselskii and Krein [120] (see, e.g., Mond [138]).
Theorem 1.30 is due to J.I.Fujii, M.Fujii, Nakamoto and Takahasi [57].



Chapter2
Converses of Jensen’s
inequalities

In this chapter, we study complementary inequalities to Jensen’s inequal-
ities for normalized positive linear maps in a more general setting. Un-
der this formulation, the concept of complementary inequalities is made
clear and proofs are unified and so become clearer.

2.1 Converses of Jensen’s inequalities for positive
linear maps

First, we give a generalization of Jensen’s inequality for normalized positive linear maps.
For convenience, we denote by C ([m,M]) the set of all real valued continuous functions
on an interval [m,M].

Lemma 2.1 Let A j ∈ Bh(H) be selfadjoint operators with Sp(Aj) ⊆ [m,M] for some
scalars m < M and Φ j ∈ PN [B(H),B(K)] normalized positive linear maps ( j = 1, . . . ,k).
Let ω1,ω2, · · · ,ωk ∈ R+ be any finite number of positive real numbers such that ∑k

j=1 ω j =
1. If f ∈ C ([m,M]) is operator convex on [m,M], then

33
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f

(
k

∑
j=1

ω jΦ j(Aj)

)
≤

k

∑
j=1

ω jΦ j ( f (Aj)) . (2.1)

Proof. Since f is operator convex, using mathematical induction, if ω j > 0 and ∑k
j=1 ω j =

1, then we have

f

(
k

∑
j=1

ω jA j

)
≤

k

∑
j=1

ω j f (Aj).

Moreover, Davis-Choi-Jensen’s inequality (Theorem 1.20) says that

f (Φ j(Aj)) ≤ Φ j ( f (Aj)) for j = 1,2, · · · ,k.

Using two inequalities above, we have

f

(
k

∑
j=1

ω jΦ j(Aj)

)
≤

k

∑
j=1

ω j f (Φ j(Aj)) ≤
k

∑
j=1

ω jΦ j ( f (Aj)) .

�

By using Lemma 2.1, we have the following Jensen’s type inequality associated with
two functions.

Lemma 2.2 Let A j, Φ j and ω j , j = 1, . . . ,k, be as in Lemma 2.1. Let f ,g ∈ C ([m,M])
and f ≤ g on [m,M]. If f is operator convex on [m,M], then

f

(
k

∑
j=1

ω jΦ j(Aj)

)
≤

k

∑
j=1

ω jΦ j (g(Aj)) . (2.2)

Proof. It follows from the spectral theorem and the map positivity of Φ j that f ≤ g
on [m,M] implies Φ j ( f (Aj)) ≤ Φ j (g(Aj)), j = 1, . . . ,k. Multiplying this inequality with
ω j ∈ R+ and summing of j we have

k

∑
j=1

ω jΦ j ( f (Aj)) ≤
k

∑
j=1

ω jΦ j (g(Aj)) .

Since f is operator convex, it follows from Lemma 2.1 that

f

(
k

∑
j=1

ω jΦ j(Aj)

)
≤

k

∑
j=1

ω jΦ j ( f (Aj)) .

Using two inequalities above, we have the desired inequality (2.2) as in Lemma 2.1. �

Here, we present converses of Jensen’s inequality for positive linear maps in general
form. This extremely shows the basic idea of Mond-Pečarić method. As a special case,
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we obtain many applications as mentioned after chapters. Notice that we don’t assume the
operator convexity of f .

For convenience, let k(t) be a real valued continuous function on the interval [m,M].
We define:

μk =
k(M)− k(m)

M−m
and νk =

Mk(m)−mk(M)
M−m

.

We remark that a straight line l(t) = μkt + νk is a line thought two points (m,k(m)) and
(M,k(M)).

Theorem 2.3 Let A j ∈ Bh(H) be selfadjoint operators with Sp(Aj) ⊆ [m,M] for some
scalars m < M, Φ j ∈ PN [B(H), B(K)] normalized positive linear maps ( j = 1, . . . ,k).
Let ω1, · · · ,ωk ∈ R+ be any finite number of positive real numbers such that ∑k

j=1 ω j = 1.
Let f ,g ∈ C ([m,M]) and F(u,v) be a real valued continuous function defined on U ×V,
where U ⊃ f [m,M], V ⊃ g[m,M]. If F(u,v) is operator monotone on a first variable u and
f is convex on [m,M], then

F

[
k

∑
j=1

ω jΦ j ( f (Aj)) ,g

(
k

∑
j=1

ω jΦ j(Aj)

)]
≤
{

max
m≤t≤M

F
[
μ f t + ν f ,g(t)

]}
1K . (2.3)

In the dual case (when f is concave) we have the opposite inequality with dual extreme
(min instead of max).

Proof. We only prove the case where f is convex on [m,M]. Since f (t) ≤ μ f t + ν f for
every t ∈ [m,M], it follows that f (Aj) ≤ μ f A j + ν f 1H for all j = 1, · · · ,k. Since Φ j is a
normalized positive linear map, we have

Φ j ( f (Aj)) ≤ Φ j(μ f A j + ν f 1H)
= μ f Φ j(Aj)+ ν f Φ j(1H)
= μ f Φ j(Aj)+ ν f 1K for j = 1, · · · ,k.

Further, multiplying them with ω j ∈R+, summing of all j = 1, . . . ,k, and using ∑k
j=1 ω j =

1 we have
k

∑
j=1

ω jΦ j ( f (Aj)) ≤ μ f

k

∑
j=1

ω jΦ j(Aj)+ ν f 1K . (2.4)

Since m1H ≤ Aj ≤ M1H we have m1K ≤ ∑k
j=1 ω jΦ j(Aj) ≤ M1K , i.e.

Sp
(

∑k
j=1 ω jΦ j(Aj)

)
⊆ [m,M]. Now, using an operator monotonicity of F(·,v), we obtain

F

[
k

∑
j=1

ω jΦ j ( f (Aj)) ,g

(
k

∑
j=1

ω jΦ j(Aj)

)]
≤

≤ F

[
μ f

k

∑
j=1

ω jΦ j(Aj)+ ν f 1K ,g

(
k

∑
j=1

ω jΦ j(Aj)

)]

≤
{

max
m≤t≤M

F
[
μ f t + ν f ,g(t)

]}
1K ,
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which is a desired inequality. �

We consider complementary problems to Jensen’s type inequality ( 2.2 ) in Lemma 2.2.

We attempt to determine upper estimates for ∑k
j=1 ω jΦ j ( f (Aj))−g

(
∑k

j=1 ω jΦ j(Aj)
)

by

means of scalar multiples of the identity operator 1K , that is,

k

∑
j=1

ω jΦ j ( f (Aj))−αg

(
k

∑
j=1

ω jΦ j(Aj)

)
≤ β1K

and upper estimates for ∑k
j=1 ω jΦ j ( f (Aj)) by means of scalar multiples of g

(
∑k

j=1 ω jΦ j(Aj)
)
,

that is,
k

∑
j=1

ω jΦ j ( f (Aj)) ≤ αg

(
k

∑
j=1

ω jΦ j(Aj)

)
.

To this goal, a particular choice of the function F in Theorem 2.3 implies the following
complementary inequality to Jensen’s inequality, by which is given the unified view of
upper estimates in two expressions above.

Theorem 2.4 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Theorem 2.3 and f ,g ∈ C ([m,M]). If
f is convex on [m,M], then for any real numbers α ∈ R

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ αg

(
k

∑
j=1

ω jΦ j(Aj)

)
+ β1K, (2.5)

where
β = max

m≤t≤M

{
μ f t + ν f −αg(t)

}
. (2.6)

Further, suppose that the function g satisfies either of the following conditions:

(i) αg is concave.

(ii) αg is strictly convex differentiable.

Then for the boundary β we have

β = max
s∈{m,M}

{ f (s)−αg(s)}

in the case (i) and

max
s∈{m,M}

{ f (s)−αg(s)} ≤ β

≤ min
s∈{m,M}

{
f (s)−αg(s)+

∣∣μ f −αg′(s)
∣∣ (M−m)}

in the case (ii).
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We can determine more precisely the value β ≡ β (m,M, f ,g,α) in (2.6) as follows:

β = μ f to + ν f −αg(to),

where
to =

{
M if μ f ≥ αμg,
m if μ f < αμg,

in the case (i),

and

to =

{
g′−1(μ f /α) if αg′(m) < μ f < αg′(M),
m if αg′(m) ≥ μ f ,
M if αg′(M) ≤ μ f ,

in the case (ii).

In the dual case we have the opposite inequality with dual extreme, with the dual esti-
mation for β and the opposite condition while determining to.

Proof. We only prove the convex case. Put T0 = ∑k
j=1 ω jΦ j(Aj), then the hypothesis

ensures the inequality m1K ≤ T0 ≤ M1K . Put

F(u,v) = u−αv.

Then F is operator monotone on u and hence it follows from Theorem 2.3 that

k

∑
j=1

ω jΦ j ( f (Aj))−αg

(
k

∑
j=1

ω jΦ j(Aj)

)
≤ max

m≤t≤M
F(μ f t + ν f ,g(t))1K

= max
m≤t≤M

{μ f t + ν f −αg(t)}1K,

which gives the desired inequality (2.5).
Put h(t) = μ f t + ν f −αg(t). Further, suppose (i), i.e., αg is a concave function on

[m,M]. Then h(t) is a convex function and hence β = maxm≤t≤M h(t) = max{h(m),h(M)}.
Next, suppose (ii), i.e., αg is a strictly convex differentiable function on [m,M]. Then

αg(t)−αg(s) > αg′(s)(t − s) for all t �= s, t,s ∈ [m,M]. Hence for t = to and s = m,M we
have

β = f (s)+ μ f (to− s)−αg(to) = f (s)−αg(s)+ [μ f (to − s)−αg(to)+ αg(s)]
≤ f (s)−αg(s)+ [μ f −αg′(s)](to − s) ≤ f (s)−αg(s)+

∣∣μ f −αg′(s)
∣∣(M−m),

so that we have an upper estimate of β . The lower estimate of β is evident.
More precisely, since h(t) is concave, h′(t) is evidently a strictly decreasing function on

[m,M]. Then we have one of three possibilities. If h′(m) > 0 and h′(M) < 0, in other words,
αg′(m) < μ f < αg′(M), then the equation h′(t) = 0 has exactly one solution to ∈ (m,M)
where the function h attains the maximum value for t0 = g′−1(μ f /α). If h′(m) ≤ 0, then
h′ ≤ 0 on [m,M], since h is a decreasing function on [m,M] and the maximum value is
attained for t = m. If h′(M) ≥ 0, then h′ ≥ 0 on [m,M], i.e., h is an increasing function on
[m,M] and the function h attains the maximum value for t = M. �
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Remark 2.1 Notice that the operator convexity of f and the condition f ≤ g on [m,M]
are not assumed in Theorem 2.4.

If we put g = f in Theorem 2.4, then we obtain the following complementary inequality
to Jensen’s inequality in Lemma 2.1.

Theorem 2.5 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Theorem 2.3. Let f ∈ C ([m,M]) be a
nonnegative real valued continuous strictly convex twice differentiable function on [m,M].
Then for any positive real numbers α(> 0) ∈ R

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ α f

(
k

∑
j=1

ω jΦ j(Aj)

)
+ β1K, (2.7)

where β = μ f to + ν f −α f (to) and

to =

{
f ′−1(μ f /α) if α f ′(m) < μ f < α f ′(M),
m if α f ′(m) ≥ μ f ,
M if α f ′(M) ≤ μ f .

.

In the dual case we have the opposite inequality with dual extreme, with the dual esti-
mation for β and the opposite condition while determining to.

Proof. Since α f is strictly convex twice differentiable, this theorem follows from The-
orem 2.4. �

Corollary 2.6 Let A j ∈ B+(H) be positive operators with Sp(Aj) ⊆ [m,M] for some
scalars 0 < m < M, Φ j ∈PN [B(H), B(K)] normalized positive linear maps ( j = 1, . . . ,k).
Let ω1, · · · ,ωk ∈ R+ be any finite number of positive real numbers such that ∑k

j=1 ω j = 1.
Let f ∈ C ([m,M]) and q,α ∈ R. If f is convex, then

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ α

(
k

∑
j=1

ω jΦ j(Aj)

)q

+ β 1K (2.8)

holds for

β =

{
α(q−1)

(
μ f
αq

) q
q−1 + ν f if m <

(
μ f
αq

) 1
q−1

< M and αq(q−1) > 0,

max{ f (m)−αmq, f (M)−αMq} otherwise.

If f is concave, then

k

∑
j=1

ω jΦ j ( f (Aj)) ≥ α

(
k

∑
j=1

ω jΦ j(Aj)

)q

+ β 1K (2.9)
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holds for

β =

{
α(q−1)

(
μ f
αq

) q
q−1 + ν f if m <

(
μ f
αq

) 1
q−1

< M and αq(q−1) < 0,

min{ f (m)−αmq, f (M)−αMq} otherwise.

In particular, if p ∈ R\[0,1], then

k

∑
j=1

ω jΦ j(A
p
j ) ≤ α

(
k

∑
j=1

ω jΦ j(Aj)

)q

+ β1 1K , (2.10)

where

β1 =

{
α(q−1)

(
μt p

αq

) q
q−1 + νt p if m <

(
μt p

αq

) 1
q−1

< M and αq(q−1) > 0,

max{ f (m)−αmq, f (M)−αMq} otherwise.

If p ∈ (0,1], then

k

∑
j=1

ω jΦ j(A
p
j ) ≥ α

(
k

∑
j=1

ω jΦ j(Aj)

)q

+ β1 1K (2.11)

where

β1 =

{
α(q−1)

(
μt p

αq

) q
q−1 + νt p if m <

(
μt p

αq

) 1
q−1

< M and αq(q−1) < 0,

min{ f (m)−αmq, f (M)−αMq} otherwise.

Proof. We only prove the case where f is convex on [m,M]. If we put g(t) = tq in

Theorem 2.4, then we obtain the boundary β = μ f to + ν f −αtqo , where to =
(

μ f
αq

) 1
q−1

if

αq(q−1) > 0 i.e., αtq is convex, and m < to < M; to = m,M if otherwise . Further, if we
put f (t) = t p, p ∈ R\[0,1) in (2.8), then we have (2.10). �

Corollary 2.7 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.6. Let f ∈ C ([m,M]) and
α ∈ R. If f is convex, then

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ α log

(
k

∑
j=1

ω jΦ j(Aj)

)
+ β1 1K (2.12)

where

β1 =
{

α + ν f + log( μ f
α )α if Mμ f < α < mμ f < 0,

max{ f (m)− logmα , f (M)− logMα} otherwise

and
k

∑
j=1

ω jΦ j ( f (Aj)) ≤ α exp

(
k

∑
j=1

ω jΦ j(Aj)

)
+ β2 1K (2.13)
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where

β2 =

{
ν f − μ f + log

(
μ f
α

)μ f
if 0 < αem < μ f < αeM,

max
{

f (m)−α em, f (M)−α eM
}

otherwise.

If f is concave, then we obtain the opposite inequalities with dual value of constants
β1 and β2.

Proof. This corollary follows from the Theorem 2.4 if we put g(t) = log t and
g(t) = et . �

The following corollary is complementary inequalities to the logarithmic function, the
exponential function and the power function.

Recall that the logarithmic mean L(m,M) is defined for 0 < m < M as

L(m,M) =
M−m

logM− logm
(M > m) and L(m,m) = m.

It is easy to see that m ≤ L(m,M) ≤ M.

Corollary 2.8 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.6. Let α ∈ R be a given
positive real number. Then

k

∑
j=1

ω jΦ j (log(Aj)) ≥ α log

(
k

∑
j=1

ω jΦ j(Aj)

)
+ β1 1K , (2.14)

where

β1 =

⎧⎨
⎩

α −α log(αL(m,M))+ M logm−m logM
M−m if m < αL(m,M) < M,

(1−α) logM if M ≤ αL(m,M),
(1−α) logm if αL(m,M) ≤ m

and

k

∑
j=1

ω jΦ j (exp(Aj)) ≤ α exp

(
k

∑
j=1

ω jΦ j(Aj)

)
+ β2 1K , (2.15)

where

β2 =

⎧⎪⎪⎨
⎪⎪⎩

eM−em

M−m log eM−em

α(M−m) + (M+1)em−(m+1)eM

M−m if m < log eM−em

α(M−m) < M,

(1−α)eM if M ≤ log eM−em

α(M−m) ,

(1−α)em if log eM−em

α(M−m) ≤ m.

If p ∈ R\[0,1], then

k

∑
j=1

ω jΦ j(A
p
j ) ≤ α

(
k

∑
j=1

ω jΦ j(Aj)

)p

+ β3 1K . (2.16)
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If p ∈ (0,1], then

k

∑
j=1

ω jΦ j(A
p
j ) ≥ α

(
k

∑
j=1

ω jΦ j(Aj)

)p

+ β3 1K , (2.17)

where

β3 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α(p−1)
(

μt p

α p

) p
p−1 + νt p if m <

(
μt p

α p

) 1
p−1

< M,

(1−α)Mp if M ≤
(

μt p

α p

) 1
p−1

,

(1−α)mp if
(

μt p

α p

) 1
p−1 ≤ m.

2.2 Ratio type reverse inequalities

In this section, as applications of our general theorem (Theorem 2.3), we show ratio type
reverse inequalities to Jensen’s inequalities and give the explicit expressions in the estima-
tions of the ratio.

If we choose the constant α such that β = 0 in Theorem 2.4, then we obtain the fol-
lowing ratio type reverse inequality as a complementary inequalities to Jensen’s type in-
equality.

Theorem 2.9 Let A j ∈ Bh(H) be selfadjoint operators with Sp(Aj) ⊆ [m,M] for some
scalars m < M, Φ j ∈ PN [B(H), B(K)] normalized positive linear maps ( j = 1, . . . ,k). Let
ω1, · · · ,ωk ∈ R+ be any finite number of positive real numbers such that ∑k

j=1 ω j = 1. Let
f ,g ∈ C ([m,M]) and suppose that either of the following conditions holds:

(i) g(t) > 0 for all t ∈ [m,M],

(ii) g(t) < 0 for all t ∈ [m,M].

If f is a convex function on [m,M], then

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ αo g

(
k

∑
j=1

ω jΦ j(Aj)

)
, (2.18)

where

αo = max
m≤t≤M

{
1

g(t)
(μ f t + ν f )

}
in the case (i),

or αo = min
m≤t≤M

{
1

g(t)
(μ f t + ν f )

}
in the case (ii)

and

μ f =
f (M)− f (m)

M−m
and ν f =

M f (m)−mf (M)
M−m

.

Furthermore, suppose that either of the additional conditions holds:
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(iii) f (m) > 0, f (M) > 0 and g(t) is a strictly concave differentiable function in the case
of (i),

(iv) f (m) < 0, f (M) < 0 and g(t) is a strictly convex twice differentiable function in the
case of (ii).

Then the boundary αo satisfies the following conditions:

αo ≥ max
s∈{m,M}

{
f (s)
g(s)

}
> 0 in the case (iii),

min
s∈{m,M}

{
f (s)
g(s)

}
≥ αo > 0 in the case (iv).

We can determine more precisely the value αo ≡ αo(m,M, f ,g) in (2.18) as follows:

αo =
μ f to + ν f

g(to)
,

where

to =

{
M if

μ f
μg

νg ≥ ν f ,

m if
μ f
μg

νg < ν f ,
in the case (iii),

or

to =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

the solution of
μ f g(t) =

(
μ f t + ν f

)
g′(t)

}
if f (m) g′(m)

g(m) < μ f < f (M) g′(M)
g(M) ,

M if μ f ≥ f (M) g′(M)
g(M) ,

m if μ f ≤ f (m) g′(m)
g(m) ,

in the case (iv).
In the dual case ( f concave, g strictly convex or strictly concave) we have the opposite

inequality with dual extreme, with the dual estimation for αo and the opposite condition
while determining to.

Proof. Suppose that (i). If we put F(u,v) = v−1/2uv−1/2 in Theorem 2.3, then we have

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ max
m≤t≤M

h(t,m,M, f ,g)g

(
k

∑
j=1

ω jΦ j(Aj)

)
,

where

h(t) ≡ h(t,m,M, f ,g) =
μ f t + ν f

g(t)
.

Moreover, suppose that (iii). We have h′(t) = H(t)/g(t)2, where

H(t) = μ f g(t)− (μ f t + ν f )g′(t).

Since f (m) > 0 and f (M) > 0, we have μ f t + ν f = f (m)(M−t)+ f (M)(t−m)
M−m > 0 for all t ∈

[m,M]. Since g(t) is a strictly concave twice differentiable function on [m,M], i.e. g′′(t) <
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0, it follows that H ′(t) = −(μ f t + ν f )g′′(t) > 0, so that H(t) is an increasing function on
[m,M]. If H(m) > 0, then h′(t) > 0 and hence the maximum value of h(t) is attained for
t = M. If H(M) < 0, then h′(t) < 0 and hence the maximum value of h(t) is attained for
t = m. If H(m) < 0 and H(M) > 0, then the maximum value of h(t) is attained for t = m
or t = M since H(t) is increasing. Since h(m) ≤ h(M) is equivalent to ν f μg ≤ μ f νg, the
proof in the case (i) and (iii) is complete.

Next, suppose that (ii). If we put g1(t) = −g(t) > 0 for all t ∈ [m,M], then as proved
above, we have

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ max
m≤t≤M

h(t,m,M, f ,g1)g1

(
k

∑
j=1

ω jΦ j(Aj)

)

= − max
m≤t≤M

h(t,m,M, f ,−g)g

(
k

∑
j=1

ω jΦ j(Aj)

)

= min
m≤t≤M

h(t,m,M, f ,g)g

(
k

∑
j=1

ω jΦ j(Aj)

)
.

Moreover, suppose that (iv). Since f (m)< 0 and f (M)< 0, we have μ f t+ν f = f (m)(M−t)+ f (M)(t−m)
M−m <

0 for all t ∈ [m,M]. Since g(t) is a strictly convex twice differentiable function on [m,M],
i.e. g′′(t) > 0, it follows that H ′(t) = −(μ f t + ν f )g′′(t) > 0, so that H(t) is an increasing

function on [m,M]. If H(m) ≥ 0, then μ f ≤ f (m) g′(m)
g(m) and h′(t) > 0 and hence the mini-

mum value of h(t) is attained for t = m. If H(M) ≤ 0, then μ f ≥ f (M) g′(M)
g(M) and h′(t) < 0

and hence the minimum value of h(t) is attained for t = M. If H(m) < 0 and H(M) > 0,
then the equation H(t) = 0 has exactly one solution t ∈ [m,M]. Hence the minimum value
of h(t) is attained for t = t, since h′(t) < 0 (t < t), h′(t) > 0 (t > t) and h′(t) = 0. Thus the
proof in the case (ii) and (iv) is complete. �

Remark 2.2 For αo in above theorem we have also the following estimation: αo g′(M) ≤
μ f ≤ αo g′(m) if g is strictly concave differentiable function or αo g′(m) ≤ μ f ≤ αo g′(M)
if g is strictly convex differentiable.

If we put g = f in Theorem 2.9, then we have the following corollary.

Corollary 2.10 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Theorem 2.9. Let f ∈ C ([m,M]) be a
strictly convex twice differentiable function on [m,M]. Suppose that either of the following
conditions holds

(i) f (t) > 0 for all t ∈ [m,M],

(ii) f (t) < 0 for all t ∈ [m,M].
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Then
k

∑
j=1

ω jΦ j ( f (Aj)) ≤ αo f

(
k

∑
j=1

ω jΦ j(Aj)

)
,

where the boundary αo satisfies the conditions αo > 1 in the case (i) and 1 > αo > 0 in the
case (ii).

More precisely the value αo is given by

αo =
μ f to + ν f

f (to)

for the unique solution to of the equation μ f f (t) = f ′(t)(μ f t + ν f ).

Proof. Suppose that (i). Then we have

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ max
m≤t≤M

h(t,m,M, f ) f

(
k

∑
j=1

ω jΦ j(Aj)

)
,

where

h(t) ≡ h(t,m,M, f ) =
μ f t + ν f

f (t)
.

Now, h′(t) = H(t)/ f (t)2, where

H(t) = μ f f (t)− (μ f t + ν f ) f ′(t).

Since f (m) > 0 and f (M) > 0, we have μ f t + ν f = f (m)(M−t)+ f (M)(t−m)
M−m > 0 for all t ∈

[m,M]. Since f (t) is a strictly convex twice differentiable function on [m,M], i.e. f ′′(t) > 0,
it follows that H ′(t) = −(μ f t + ν f ) f ′′(t) < 0, so that H(t) is a decreasing function on
[m,M]. Since f ′(m) ≤ μ f ≤ f ′(M), the condition H(m)H(M) < 0 automatically holds.
Therefore the equation H(t) = 0 has exactly one solution to ∈ [m,M] and hence the maxi-
mum value of h(t) is attained for t = to.

Suppose that (ii). Then we have this corollary by replacing g by f in Theorem 2.9. �

For the sake of convenience, we prepare some notations. Let f (t) be a real valued
continuous function on an interval [m,M]. We introduce the following constants:

K(m,M, f ,q) =
mf (M)−M f (m)
(q−1)(M−m)

(
(q−1)( f (M)− f (m)
q(mf (M)−M f (m))

)q

(2.19)

where q is a real number.
In particular, if we put f (t) = t p, then

K(m,M,t p,q) =
mMp−Mmp

(q−1)(M−m)

(
(q−1)(Mp−mp)
q(mMp−Mmp)

)q

. (2.20)
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Moreover, if we put q = p, then

K(m,M,t p, p) =
mMp−Mmp

(p−1)(M−m)

(
(p−1)(Mp−mp)
p(mMp −Mmp)

)p

. (2.21)

The constant K(m,M,t p,q) (resp. K(m,M,t p, p)) is denoted simply by K(m,M, p,q) (resp.
K(m,M, p)).

Corollary 2.11 Let A j ∈ B+(H) be positive operators with Sp(Aj) ⊆ [m,M] for some
scalars 0 < m < M, Φ j ∈PN [B(H), B(K)] normalized positive linear maps ( j = 1, . . . ,k).
Let ω1, · · · ,ωk ∈ R+ be any finite number of positive real numbers such that ∑k

j=1 ω j = 1.
If f ∈ C ([m,M]) is convex, then

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ α1

(
k

∑
j=1

ω jΦ j(Aj)

)q

(2.22)

holds for

α1 =

{
K(m,M, f ,q) if f (m)

m q < μ f <
f (M)
M q and μ f (q−1) > 0,

max
{

f (m)
mq , f (M)

Mq

}
otherwise.

If f ∈ C ([m,M]) is concave, then

k

∑
j=1

ω jΦ j ( f (Aj)) ≥ α1

(
k

∑
j=1

ω jΦ j(Aj)

)q

(2.23)

holds for

α1 =

{
K(m,M, f ,q) if f (m)

m q > μ f > f (M)
M q and μ f (q−1) < 0,

min
{

f (m)
mq , f (m)

mq

}
otherwise.

In particular, if p ∈ R\[0,1), then

k

∑
j=1

ω jΦ j(A
p
j ) ≤ α2

(
k

∑
j=1

ω jΦ j(Aj)

)q

(2.24)

holds for

α2 =
{

K(m,M, p,q) if qmp−1 < μt p < qMp−1 and q ∈ R\[0,1), pq > 0,
max{mp−q,Mp−q} otherwise,

and if p ∈ (0,1], then

k

∑
j=1

ω jΦ j(A
p
j ) ≥ α2

(
k

∑
j=1

ω jΦ j(Aj)

)q

(2.25)
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holds for

α2 =
{

K(m,M, p,q) if qMp−1 < μt p < qmp−1 and q ∈ (0,1],
min{mp−q,Mp−q} otherwise.

Proof. We only prove the case where f is convex. If we put h(t) = μ f t+ν f
tq , then we

have h′(t) = (1−q)μ f t−qν f

tq+1 and h′(to) = 0 if and only if to = q
1−q

ν f
μ f

. Suppose that 0 < m ≤
t0 ≤ M and μ f (q− 1) > 0. We remark that the condition 0 < m ≤ t0 ≤ M is equivalent

to f (m)
m q < μ f < f (M)

M q. Then we have h′′(t0) = qν f

tq+2
0

< 0 and hence the maximum value

of h(t) is attained for t = to. If t0 < m or M < t0, then h(t) is monotone on [m,M] and
its extreme occurs at m or M. If μ f (q− 1) < 0, then μ f (1− q) > 0 and hence h′(t) is
increasing on [m,M]. Therefore its extreme occurs at m or M. If μ f = 0 or q = 1, then h(t)
is evidently nonincreasing or nondecreasing on [m,M].

Next, we show (2.24). Suppose that p∈R\[0,1). Note that the condition μt p(q−1)> 0
is equivalent to p,q > 1 or p,q < 0 since we have t0 < 0 for 0 < q < 1. Therefore, if we
put f (t) = t p in (2.22), then we have (2.24). �

If we put p = q in inequalities (2.24) and (2.25), then since pmp−1 < μt p < pMp−1, we
have the following corollary.

Corollary 2.12 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.11. If p ∈ R\[0,1), then

k

∑
j=1

ω jΦ j(A
p
j ) ≤ K(m,M, p)

(
k

∑
j=1

ω jΦ j(Aj)

)p

(2.26)

and if p ∈ (0,1], then

k

∑
j=1

ω jΦ j(A
p
j ) ≥ K(m,M, p)

(
k

∑
j=1

ω jΦ j(Aj)

)p

. (2.27)

Corollary 2.13 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.11 and p ∈ R.
Then

k

∑
j=1

ω jΦ j(A−1
j ) ≤ α1

(
k

∑
j=1

ω jΦ j(Aj)

)−p

(2.28)

holds for

α1 =

{
pp

(p+1)p+1
(m+M)p+1

mM if m
M < p < M

m and p > 0,

max{mp−1,Mp−1} otherwise

and
k

∑
j=1

ω jΦ j(A2
j) ≤ α2

(
k

∑
j=1

ω jΦ j(Aj)

)p+1

(2.29)

holds for

α2 =

{
pp

(p+1)p+1
(m+M)p+1

(mM)p , if m
M < p < M

m and p > 0,

max{m1−p,M1−p} otherwise.
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Proof. The inequality (2.28) follows from (2.24) in Corollary 2.11 if we put f (t) = t−1

and replace q by −p. The inequality (2.29) follows from (2.24) if we put f (t) = t2 and
replace q by p+1 for p > 0. �

Remark 2.3 If we put p = 1 in Corollary 2.13, then we have a variant of Kantorovich
inequality:

(i) ∑k
j=1 ω jΦ j(A−1

j ) ≤ (M+m)2
4Mm

(
∑k

j=1 ω jΦ j(Aj)
)−1

.

(ii) ∑k
j=1 ω jΦ j(A2

j) ≤ (M+m)2
4Mm

(
∑k

j=1 ω jΦ j(Aj)
)2

.

In the next corollary we show ratio type reverse inequalities to Jensen’s type inequali-
ties for the exponential function analogous to the inequality (2.13).

Corollary 2.14 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Theorem 2.9 and λ ∈ R\{0}.
If f ∈ C ([m,M]) is convex, then

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ α1 exp

(
λ

k

∑
j=1

ω jΦ j(Aj)

)
(2.30)

holds for

α1 =

⎧⎨
⎩

μ f
λe exp

(
λ ν f
μ f

)
, if m < λ

1−λ
ν f
μ f

< M and μ f (λ −1) > 0,

max
{

f (m)
eλm ,

f (M)
eλM

}
otherwise.

If f is concave, then we obtain opposite inequality with dual value of the constant α1.
Additionally, if β ∈ R is such that λ β > 0, then

k

∑
j=1

ω jΦ j (exp(βAj)) ≤ α2 exp

(
λ

k

∑
j=1

ω jΦ j(Aj)

)
(2.31)

holds for

α2 =

⎧⎨
⎩

μ̄
λe exp

(
λ ν̄
μ̄

)
if λeβm < μ̄ < λeβM,

max
{

e(β−λ )m,e(β−λ )M
}

otherwise,

where

μ̄ =
eβM − eβm

M−m
and ν̄ =

Meβm−meβM

M−m
.

In particular, if A ∈ Bh(H) is a selfadjoint operator with Sp(A) ⊆ [m,M], then

Φ
(
eA)≤{ eM − em

e(M−m)
exp(

Mem −meM

eM − em )
}

eΦ(A). (2.32)

Proof. We can prove this corollary by a similar method as Corollary 2.11. �
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2.3 Difference type reverse inequalities

In this section, as applications of our general theorem (Theorem 2.3), we show difference
type reverse inequalities to Jensen’s inequalities and give the explicit expressions in the
estimations of the difference.

If we put α = 1 in Theorem 2.4 then we obtain the following difference type reverse
inequalities as a complementary inequality to Jensen’s inequality.

Corollary 2.15 Let A j ∈ Bh(H) be selfadjoint operators with Sp(Aj) ⊆ [m,M] for some
scalars m < M and Φ j ∈ PN [B(H),B(K)] normalized positive linear maps ( j = 1, . . . ,k).
Let ω1,ω2, · · · ,ωk ∈R+ be any finite number of positive real numbers such that ∑k

j=1 ω j =
1. If f ,g ∈ C ([m,M]) and f is a convex function on [m,M], then

k

∑
j=1

ω jΦ j ( f (Aj))−g

(
k

∑
j=1

ω jΦ j(Aj)

)
≤ β1K , (2.33)

where
β = max

m≤t≤M
{μ f t + ν f −g(t)} (2.34)

and

μ f =
f (M)− f (m)

M−m
and ν f =

M f (m)−mf (M)
M−m

.

Furthermore, if g is a strictly convex differentiable function on [m,M], then the constant β
satisfies the following condition:

f (m)−g(m) ≤ β ≤ f (m)−g(m)+ (μ f −g′(m))(M−m).

We can determine more precisely the value β ≡ β (m,M, f ,g) in (2.34) as follows:

β = μ f t0 + ν f −g(t0),

where

to =

⎧⎪⎨
⎪⎩

the solution of
g′(t) = μ f

}
if g′(m) ≤ μ f ≤ g′(M),

M if g′(M) < μ f ,
m if μ f < g′(m).

Proof. If we put F(u,v) = u− v in Theorem 2.3, then we have

k

∑
j=1

ω jΦ j ( f (Aj))−g

(
k

∑
j=1

ω jΦ j(Aj)

)
≤ max

m≤t≤M
h(t;m,M, f ,g)1K ,

where
h(t) ≡ h(t;m,M, f ,g) = μ f t + ν f −g(t).
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Since g(t) is a differentiable function and g′(t) is strictly increasing on [m,M], it follows
that h′(t) = μ f − g′(t) is strictly decreasing on [m,M]. If g′(m) ≤ μ f ≤ g′(M), then the
equation g′(t)− μ f = 0 has exactly one solution t0 ∈ [m,M] and the maximum value of
h(t) is attained for t = t0. If μ f < g′(m), then we have h′(t) < 0 on [m,M] because h′(t)
is a decreasing function. Therefore h(t) is a decreasing function and hence the maximum
value of h(t) is attained for t0 = m. Similarly, we have t0 = M if μ f > g′(M).

Next, since g(t) is a strictly convex function, it follows that

g(m)−g(t0) ≤ g′(m)(m− t0) if m ≤ t0 ≤ M

Then we have

β = μ f t0 + ν f −g(t0) = f (m)−g(m)+ (g(m)−g(t0)+ μ f (t0 −m))
≤ f (m)−g(m)+ (−g′(m)+ μ f )(t0 −m)
≤ f (m)−g(m)+ (−g′(m)+ μ f )(M−m).

Hence we have the upper boundary for β . The lower boundary is evident. �

If g ≡ f in Corollary 2.15, then we have the following corollary.

Corollary 2.16 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.15. If f ∈ C ([m,M]) is a
strictly convex differentiable convex function on [m,M], then

k

∑
j=1

ω jΦ j ( f (Aj))− f

(
k

∑
j=1

ω jΦ j(Aj)

)
≤ β1K , (2.35)

where
β = max

m≤t≤M
{μ f t + ν f − f (t)}. (2.36)

The constant β satisfies the condition 0 < β < (M−m)(μ f − f ′(m)).
More precisely, the constant β for (2.36) may be determined as follows: let t = t0 be

the unique solution in [m,M] of the equation f ′(t) = μ f . Then β = μ f t0 + ν f − f (t0).

For the sake of convenience, we prepare some notations. Let f (t) be a real valued
continuous function on an interval [m,M]. We introduce the following constants:

C(m,M, f ,q) =
M f (m)−mf (M)

M−m
+(q−1)

(
f (M)− f (m)
q(M−m)

) q
q−1

, (2.37)

where q is a real number.
In particular, if f (t) = t p, then

C(m,M,t p,q) =
Mmp−mMp

M−m
+(q−1)

(
Mp−mp

q(M−m)

) q
q−1

. (2.38)
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Moreover, if we put q = p, then

C(m,M,t p, p) =
Mmp −mMp

M−m
+(p−1)

(
Mp −mp

p(M−m)

) p
p−1

. (2.39)

The constant C(m,M,t p,q) (resp. C(m,M,t p, p)) is denoted simply by C(m,M, p,q) (resp.
C(m,M, p)).

If we put α = 1 in Corollary 2.6, then we have the following corollary.

Corollary 2.17 Let A j ∈ B+(H) be positive operators with Sp(Aj) ⊆ [m,M] for some
scalars 0 < m < M, Φ j ∈PN [B(H), B(K)] normalized positive linear maps ( j = 1, . . . ,k).
Let ω1, · · · ,ωk ∈ R+ be any finite number of positive real numbers such that ∑k

j=1 ω j = 1.
Let f ∈ C ([m,M]) and q ∈ R.

If f is convex, then

k

∑
j=1

ω jΦ j ( f (Aj))−
(

k

∑
j=1

ω jΦ j(Aj)

)q

≤ β1K , (2.40)

where

β =
{

C(m,M, f ,q) if qmq−1 ≤ μ f ≤ qMq−1 and q(q−1) > 0,
max{ f (m)−mq, f (M)−Mq} otherwise.

If f is concave, then

k

∑
j=1

ω jΦ j ( f (Aj))−
(

k

∑
j=1

ω jΦ j(Aj)

)q

≥ β1K , (2.41)

where

β =
{

C(m,M, f ,q) if qmq−1 ≤ μ f ≤ qMq−1 and q(q−1) < 0,
min{ f (m)−mq, f (M)−Mq} otherwise,

and C(m,M, f ,g) is defined as (2.37).

If we put f (t) = t p and q = p in Corollary 2.17, then the conditions in Corollary 2.17
automatically satisfies because m < ( 1

p μt p)1/p−1 < M holds. Therefore we have the fol-
lowing corollary.

Corollary 2.18 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.17.
If p < 0 or p ≥ 1, then

k

∑
j=1

ω jΦ j

(
Ap

j

)
≤
(

k

∑
j=1

ω jΦ j(Aj)

)p

+C(m,M, p)1K .

If 0 < p ≤ 1, then

k

∑
j=1

ω jΦ j

(
Ap

j

)
≥
(

k

∑
j=1

ω jΦ j(Aj)

)p

+C(m,M, p)1K ,

where C(m,M, p) is defined as ( 2.39 ).
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Moreover, we show some deformations of the Kantorovich inequality by Corollary 2.17.

Corollary 2.19 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.17 and p ∈ R. Then

k

∑
j=1

ω jΦ j(A−1
j )−

(
k

∑
j=1

ω jΦ j(Aj)

)−p

≤ β1 1K (2.42)

where

β1 =

{
M+m
mM − p+1

(pMm)p/(p+1) if mp

M < p < Mp

m and p(p+1) > 0,

max
{ 1

m − 1
mp , 1

M − 1
Mp

}
otherwise,

and
k

∑
j=1

ω jΦ j(A2
j)−

(
k

∑
j=1

ω jΦ j(Aj)

)p+1

≤ β2 1K (2.43)

where

β2 =

{
p
(

M+m
p+1

)(p+1)/p−mM if M+m
Mp < p+1 < M+m

mp and p(p+1) > 0,

max{m2−m1+p,M2 −M1+p} otherwise.

Additionally, if f ∈ C ([m,M]) is convex and α ∈ R, then

k

∑
j=1

ω jΦ j( f (Aj))+ α
k

∑
j=1

ω jΦ j(Aj) ≤ β3 1K (2.44)

holds for

β3 =
{

ν f if α = −μ f ,
max{ f (m)+ α m, f (M)+ α M} otherwise.

Proof. The inequality (2.42) follows from (2.40) in Corollary 2.17 if we put f (t) = t−1

and q =−p. The inequality (2.43) follows from (2.40) if we put f (t) = t2 and q = p+1 in
Corollary 2.17. The inequality (2.44) follows from Theorem 2.4, if we put g(t)=−αt. The
constant β3 is the maximum value on [m,M] of the linear function h(t) = (α + μ f )t + ν f .
�

Remark 2.4 If we put p = 1 in (2.42) and in (2.43), then we have a variant of the Kan-
torovich inequality (Theorem 1.32) :

(i) ∑k
j=1 ω jΦ j(A−1

j )−
(

∑k
j=1 ω jΦ j(Aj)

)−1 ≤ (
√

M−√
m)2

Mm 1K,

(ii) ∑k
j=1 ω jΦ j(A2

j)−
(

∑k
j=1 ω jΦ j(Aj)

)2 ≤ (M−m)2
4 1K.



52 2 CONVERSES OF JENSEN’S INEQUALITIES

Corollary 2.20 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.17, f ∈ C ([m,M]) be
convex, f > 0 on [m,M] and q ∈ R. Suppose that either of the following conditions holds:
(i) f (m) > f (M) if q < 0 or (ii) f (m) < f (M) if 0 < q ≤ 1. Let fmin = minm≤t≤M f (t),
fmax = maxm≤t≤M f (t). Then the following inequality

k

∑
j=1

ω jΦ j(Aj)−
(

k

∑
j=1

ω jΦ j( f (Aj))

)q

≤ β1 1K (2.45)

holds for

β1 =

⎧⎪⎪⎨
⎪⎪⎩

− ν f
μ f

+(q−1)(μ f q)q/(1−q) if 1
q f 1−q

max < μ f < 1
q f 1−q

min ,

− ν f
μ f

+ 1
μ f

fmin − f q
min if μ f ≥ 1

q f 1−q
min ,

− ν f
μ f

+ 1
μ f

fmax − f q
max if μ f ≤ 1

q f 1−q
max ,

≤ − ν f

μ f
+(q−1)(μ f q)q/(1−q),

in the case (i), and the following inequality(
k

∑
j=1

ω jΦ j( f (Aj))

)q

−
k

∑
j=1

ω jΦ j(Aj) ≤ β2 1K (2.46)

holds for

β2 =

⎧⎪⎪⎨
⎪⎪⎩

ν f
μ f

+(1−q)(μ f q)q/(1−q) if 1
q f 1−q

min < μ f < 1
q f 1−q

max ,
ν f
μ f

− 1
μ f

fmin + f q
min if μ f ≤ 1

q f 1−q
min ,

ν f
μ f

− 1
μ f

fmax + f q
max if μ f ≥ 1

q f 1−q
max ,

≤ ν f

μ f
+(1−q)(μ f q)q/(1−q),

in the case (ii).
In particular, if p > 0, then

k

∑
j=1

ω jΦ j(Aj)−
(

k

∑
j=1

ω jΦ j(A−1
j )

)−p

≤ β3 1K (2.47)

holds for

β3 =

⎧⎪⎨
⎪⎩

M +m− (1+ p)
(

mM
p

)p/(1+p)
if m

Mp < p < M
mp ,

M−Mp if p ≤ m
Mp ,

m−mp if p ≥ M
mp ,

≤ M +m− (1+ p)
(

mM
p

)p/(1+p)

,
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and if p > 1, then

(
k

∑
j=1

ω jΦ j(A2
j)

)1/p

−
k

∑
j=1

ω jΦ j(Aj) ≤ β4 1K (2.48)

holds for

β4 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− Mm
M+m + p−1

p

(
M+m

p

)1/(p−1)
if m2 <

(
M+m

p

)p/(p−1)
< M2

m2/p−m if
(

M+m
p

)p/(p−1) ≤ m2,

M2/p−M if
(

M+m
p

)p/(p−1) ≥ M2,

≤ − Mm
M +m

+
p−1

p

(
M +m

p

)1/(p−1)

.

Proof. Let (i) be satisfied. Since μ f < 0 and ∑k
j=1 ω jΦ j( f (Aj)) ≤

μ f ∑k
j=1 ω jΦ j(Aj)+ ν f 1K , we have

k

∑
j=1

ω jΦ j(Aj) ≤− ν f

μ f
1K +

1
μ f

k

∑
j=1

ω jΦ j ( f (Aj)) ,

and hence

∑k
j=1 ω jΦ j(Aj)−

(
∑k

j=1 ω jΦ j( f (Aj))
)q

≤− ν f
μ f

1K + 1
μ f

∑k
j=1 ω jΦ j ( f (Aj))−

(
∑k

j=1 ω jΦ j( f (Aj))
)q

.
(2.49)

Because 0 < fmin ≤ f (t) ≤ fmax holds, then the operator calculus give fmin 1H ≤ f (Aj) ≤
fmax 1H , j = 1, . . . ,k. It follows fmin 1K ≤ Φ j ( f (Aj)) ≤ fmax 1K , j = 1, . . . ,k. Multiplying

with ω j and summing, we have Sp
(

∑k
j=1 ω jΦ j ( f (Aj))

)
⊆ [ fmin, fmax]. From (2.49) it

follows that
k

∑
j=1

ω jΦ j(Aj)−
(

k

∑
j=1

ω jΦ j( f (Aj))

)q

≤ β1 1K

where β1 = maxt∈[ fmin, fmax]

{
− ν f

μ f
+ 1

μ f
t− tq

}
. Further we obtain the bound β1 by common

differential calculus.
We prove the case (ii) in the same way. We obtain the inequality (2.47) if we put

f (t) = t−1 in (2.45) and replace q by −p, and the inequality (2.48) we obtain if we put
f (t) = t2 in (2.46) and replace q by 1

p . �

Corollary 2.21 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.15, f ∈ C ([m,M]) be
convex. Suppose that either of the following conditions holds:

(i) f (m) < f (M) and α > 0 is a positive real number.
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(ii) f (m) > f (M) and α < 0 is a negative real number.

Then
k

∑
j=1

ω jΦ j( f (Aj))− exp

(
k

∑
j=1

αω jΦ j(Aj)

)
≤ β1 1K , (2.50)

where

β =

{
M f (m)−mf (M)

M−m + μ f
α

(
log

μ f
α −1

)
if αeαm ≤ μ f ≤ αeαM

max{ f (m)− eαm, f (M)− eαM} otherwise.

Corollary 2.22 Let A j,Φ j,ω j , j = 1, . . . ,k be as in Corollary 2.15. Then for any real
number α �= 0

k

∑
j=1

ω jΦ j(eαAj)− exp

(
k

∑
j=1

αω jΦ j(Aj)

)

≤
(

Meαm −meαM

M−m
+

eαM − eαm

α(M−m)
log

(
eαM − eαm

αe(M−m)

))
1K .

In particular, if A ∈ Bh(H) is a selfadjoint operator with Sp(A) ⊆ [m,M], then

Φ(eA)− eΦ(A) ≤
(

Mem −meM

M−m
+

eM − em

M−m
log

(
eM − em

e(M−m)

))
1K . (2.51)

2.4 A generalization of Ky Fan type inequalities

In this section we choose the map Φ j : B(H) → B(K) as follows: Let x1, . . . ,xk be
any finite number of vectors in a Hilbert space H such that ∑k

j=1‖x j‖2 = 1. For every
Aj ∈ B(H), j = 1, . . . ,k, define Φ j(Aj) = (Ajx j,x j)/(x j,x j). Then Φ j : B(H) → R is a
normalized positive linear functional. Further, if we get ω j ∈ R+ such that ω j = (x j,x j),
j = 1, . . . ,k, then we have ∑k

j=1 ω jΦ j(Aj) = ∑k
j=1(Ajx j,x j), so all statements from Sec-

tions 2.1 and 2.3 hold, when we replace ∑k
j=1 ω jΦ j(Aj) by ∑k

j=1(Ajx j,x j).
Because, in this case Φ j(Aj) ∈ R, then in statements before where we demanded func-

tions be operator convex or monotone, now we request some weaker conditions, i.e. we
demand (real) convex or monotone functions. Additionally, in this case we consider neces-
sary and sufficient conditions at which the equality holds. We cite more interesting results.
All of results from this section and many another results, besides the latest theorem, were
proved directly in [136].

First we restate the Jensen’s inequality for a convex function and its opposite inequality.
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Lemma 2.23 Let A j ∈Bh(H) be selfadjoint operators with Sp(Aj)⊆ [m,M] ( j = 1, . . . ,k)
for some scalars m < M. Let x1,x2, · · · ,xk ∈ H be any finite number of vectors such that
∑k

j=1 ‖x j‖2 = 1. If f ∈ C ([m,M]) is a convex function on [m,M], then

f

(
k

∑
j=1

(Ajx j,x j)

)
≤

k

∑
j=1

( f (Aj)x j,x j)

≤ f (M)− f (m)
M−m

(
k

∑
j=1

(Ajx j,x j)−m

)
+ f (m).

(2.52)

Proof. The first inequality follows from Theorem 1.3 and the second inequality follows
from the convexity of f . In fact, since f (t) ≤ f (M)− f (m)

M−m (t −m)+ f (m) for all t ∈ [m,M],

we have f (Aj) ≤ f (M)− f (m)
M−m (Aj −mj1H)+ f (m)1H for all j = 1, · · · ,k. Therefore we have

the desired inequality. �

The following theorem is a consequence of the main Theorem 2.3.

Theorem 2.24 Let A j ∈ Bh(H) be selfadjoint operators with Sp(Aj) ⊆ [m,M] for some
scalars m < M ( j = 1, . . . ,k), and x1,x2, · · ·xk ∈ H any finite number of vectors such that
∑k

j=1 ‖x j‖2 = 1. Let f ,g ∈ C ([m,M]) and F(u,v) be a real valued function defined on
U ×V , where U ⊃ f [m,M], V ⊃ g[m,M]. If F(u,v) is non-decreasing in u and f is a
convex function on [m,M], then

F

[
k

∑
j=1

( f (Aj)x j,x j) ,g

(
k

∑
j=1

(Ajx j,x j)

)]

≤ max
m≤t≤M

F

[
f (M)− f (m)

M−m
(t−m)+ f (m),g(t)

]

= max
0≤θ≤1

F [θ f (m)+ (1−θ ) f (M),g(θm+(1−θ )M)] .

(2.53)

Proof. The second expression on the right side of (2.53) follows from the change of
variable θ = M−t

M−m , so t = θm+(1−θ )M with 0 ≤ θ ≤ 1. �

Remark 2.5 In Theorem 2.24, if F is non-increasing in u and f is concave, then we
obtain the inequality (2.53) again. If F is non-increasing in u and f is convex or if F is
non-decreasing in u and f is concave, then we obtain the opposite inequality with dual
extreme.

As an application of Theorem 2.24, we discuss complementary inequalities to Jensen’s
type inequalities for convex functions, which gives us a unified view to several inequalities
due to Ky Fan, Furuta and Mond-Pečaić. Moreover we shall consider the conditions under
which the equality holds. For convenience, we define

μk =
k(M)− k(m)

M−m
and νk =

Mk(m)−mk(M)
M−m

for a real valued function k on an interval [m,M].
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Theorem 2.25 Let A j, x j, j = 1, . . . ,k, as in Theorem 2.24 and f ,g ∈ C ([m,M]). If f is
convex, then for any real number α ∈ R

k

∑
j=1

( f (Aj)x j,x j) ≤ αg

(
k

∑
j=1

(Ajx j,x j)

)
+ β (2.54)

where
β = max

m≤t≤M
{μ f t + ν f −αg(t)}.

Further, suppose in addition that the function g satisfies either of the following condi-
tions:

(i) αg is concave

(ii) αg is strictly convex differentiable.

Then we can determine more precisely the value of β ≡ β (m,M, f ,g,α) in (2.25) as fol-
lows:

β = μ f to + ν f −αg(to),

where

to =
{

M if μ f ≥ αμg,
m if μ f < αμg,

in the case (i),

or

to =

{
g′−1(μ f /α) if αg′(m) < μ f < αg′(M),
m if αg′(m) ≥ μ f ,
M if αg′(M) ≤ μ f ,

in the case (ii).

Moreover, suppose that β = μ f ∑k
j=1(Ajx j,x j)+ν f −αg(∑k

j=1(Ajx j,x j)) for some vec-

tors x j in H such that ∑k
j=1 ‖x j‖2 = 1. Then the equality is attained in (2.54) if and only if

there exist orthogonal vectors y j and z j such that

x j = y j + z j, Ajy j = myj, Ajz j = Mzj. (2.55)

Proof. This theorem follows from Theorem 2.4, with exception of conditions under
which the equality holds. We investigate this conditions. Put to = ∑k

j=1(Ajx j,x j), then the
hypothesis Sp(Aj) ⊆ [m,M] ensures the inequality m ≤ to ≤ M.

Suppose that the equality ∑k
j=1( f (Aj)x j,x j) = αg(t0) + β holds. By definition of β

in (2.54), notice that the equality ∑k
j=1( f (Aj)x j,x j) = αg(t0)+ β holds if and only if the

equality ∑k
j=1( f (Aj)x j,x j) = μ f to + ν f holds. Let Ej(t) be the spectral resolution of the

identity of Aj, that is, Aj =
∫M
m−0 tdE j(t). Put Pj = Ej(M)−Ej(M−0), Qj = Ej(M−0)−

Ej(m) and Rj = Ej(m)−Ej(m− 0). Then (AjPjx j,x j) = M (Pjx j,x j) and (AjR jx j,x j) =
m(Rjx j,x j). Notice also that

( f (Aj)Pjx j,x j) =
∫M
m−0 f (t)d(Ej(t)Pjx j,x j) = f (M)(Pjx j,x j)

= ((μ f M + ν f )Pjx j,x j)
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and
( f (Aj)Rjx j,x j) =

∫M
m−0 f (t)d(Ej(t)Rjx j,x j) = f (m)(Rjx j,x j)

= ((μ f m+ ν f )Rjx j,x j).

Since ∑k
j=1( f (Aj)x j,x j) = μ f to +ν f , it follows that ∑k

j=1((μ f A j +ν f − f (Aj))Qjx j,x j) =
0 and hence Qjx j = 0 for every j because μ f s+ ν f − f (s) > 0 for s ∈ (m,M). Thus we
obtain the desired decomposition of x j setting y j = Rjx j and z j = Pjx j.

Assume conversely (2.55). Then it follows that

μ f t0 + ν f = μ f ∑k
j=1(m‖y j‖2 +M‖z j‖2)+ ν f ∑k

j=1(‖y j‖2 +‖z j‖2)

= (μ f m+ ν f ) ∑k
j=1 ‖y j‖2 +(μ f M + ν f )∑k

j=1 ‖z j‖2

= ∑k
j=1( f (m)y j,y j)+ ∑k

j=1( f (M)z j ,z j) = ∑k
j=1( f (Aj)x j,x j),

which is the desired equality. �

Remark 2.6 If we put α = 1 in Theorem 2.25 and g(t) is a real valued strictly convex
twice differentiable function on [m,M], then

k

∑
j=1

( f (Aj)x j,x j) ≤ g

(
k

∑
j=1

(Ajx j,x j)

)
+ β (2.56)

where β = μ f t0 + ν f −g(t0) and

to =

{
g′−1(μ f ) if g′(m) < μ f < g′(M),
m if g′(m) ≥ μ f ,
M if g′(M) ≤ μ f .

If we choose α such that β = 0 in Theorem 2.25, then we have the following corollary.

Corollary 2.26 Let A j,x j, j = 1, . . . ,k, as in Theorem 2.24. Let f ,g ∈ C ([m,M]) and
suppose that either of the following conditions holds:

(i) g(t) > 0 for all t ∈ [m,M]

(ii) g(t) < 0 for all t ∈ [m,M].

If f (t) is convex, then

k

∑
j=1

( f (Aj)x j,x j) ≤ αog

(
k

∑
j=1

(Ajx j,x j)

)
(2.57)

holds for
αo = max

m≤t≤M

{
(μ f t + ν f )/g(t)

}
in the case (i),

or αo = min
m≤t≤M

{
(μ f t + ν f )/g(t)

}
in the case (ii).



58 2 CONVERSES OF JENSEN’S INEQUALITIES

Further, suppose that with (i) or (ii) the addition condition holds: (i+) f (m) > 0, f (M) > 0
if g > 0 or (ii+) f (m) < 0, f (M) < 0 if g < 0, and additionally let either of following con-
ditions be valid: (iii) g is a strictly concave differentiable or (iv) g is a strictly convex twice
differentiable function. Then the value of αo ≡ αo(m,M, f ,g) in (2.57) we can determine
as follows: αo = (μ f to + ν f )/g(to), where

to =

⎧⎨
⎩

M if
μ f
μg

νg ≥ ν f ,

m if
μ f
μg

νg < ν f ,
in the case (iii),

or

to =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

the solution of
μ f g(t) =

(
μ f t + ν f

)
g′(t)

}
if f (m) g′(m)

g(m) < μ f < f (M) g′(M)
g(M) ,

M if μ f ≥ f (M) g′(M)
g(M) ,

m if μ f ≤ f (m) g′(m)
g(m) ,

in the case (iv).
In the dual case we have the opposite inequality with dual extreme, with the dual esti-

mation for αo and the opposite condition while determining to.

If we put g ≡ f in Theorem 2.25, then we have the following theorem:

Theorem 2.27 Let A j,x j, j = 1, . . . ,k, as in Theorem 2.24. Let f ∈C ([m,M]) be a strictly
convex twice differentiable function on [m,M]. Then for any positive real number α ∈ R+

k

∑
j=1

( f (Aj)x j,x j) ≤ α f

(
k

∑
j=1

(Ajx j,x j)

)
+ β , (2.58)

where
β = μ f to + ν f −α f (to)

and

to =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ′−1(μ f /α) if m < f ′−1
(

μ f
α

)
< M,

M if M ≤ f ′−1
(

μ f
α

)
,

m if f ′−1
(

μ f
α

)
≤ m.

The equality is attained in (2.58) if and only if there exist orthogonal vectors y j and z j in
H such that

x j = y j + z j, Ajy j = myj,

Ajz j = Mzj and to = m ∑k
j=1 ‖y j‖2 +M ∑k

j=1 ‖z j‖2. (2.59)

Proof. Since the graph of α f (t)+ β touches the line of f (m)+ μ(to −m) at the point
to, it follows that the equality

k

∑
j=1

( f (Aj)x j,x j) = α f

(
k

∑
j=1

(Ajx j,x j)

)
+ β
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holds if and only if two equalities to = ∑k
j=1(Ajx j,x j) and ∑k

j=1( f (Aj)x j,x j) = f (m) +
μ(to−m) hold. Therefore we obtain Theorem 2.27 by the same proof as Theorem 2.25. �

Remark 2.7 If we put α = 1 in Theorem 2.27 and f is a strictly convex twice differen-
tiable function on [m,M], then

k

∑
j=1

( f (Aj)x j,x j) ≤ f

(
k

∑
j=1

(Ajx j,x j)

)
+ β , (2.60)

where
β = μ f to + ν f − f (to)

and to ∈ (m,M) is the unique solution of the equation f ′(t) = μ f .

Corollary 2.28 Let A j,x j, j = 1, . . . ,k, as in Theorem 2.24. Let f ∈ C ([m,M]) be a
strictly convex twice differentiable function on [m,M] and suppose that either of the fol-
lowing conditions holds:

(i) f (t) > 0 for all t ∈ [m,M].

(ii) f (t) < 0 for all t ∈ [m,M].

Then
k

∑
j=1

( f (Aj)x j,x j) ≤ αo f

(
k

∑
j=1

(Ajx j,x j)

)
(2.61)

holds for αo > 1 in the case (i), or 0 < αo < 1 in the case (ii). More precisely the value αo

may be determined as follows:

αo =
μ f to + ν f

f (to)

and to is the unique solution of the equation μ f f (t) = f ′(t)(μ f t + ν f ).

If we put a power function f (t) = t p and g(t) = tq in Theorems 2.25 and 2.27, then we
have the following three corollaries.

Corollary 2.29 Let A j ∈ B+(H) be positive operators with Sp(Aj) ⊆ [m,M] for some
scalars 0 < m < M, x j ∈ H such that ∑k

j=1 ‖x j‖2 = 1 ( j = 1, . . . ,k). If p ∈ R\[0,1] (resp.
p ∈ (0,1) ), then for any real number α ∈ R

k

∑
j=1

(
Ap

j x j,x j

)
≤ α

(
k

∑
j=1

(Ajx j,x j)

)q

+ β1, (2.62)

(resp.
k

∑
j=1

(
Ap

j x j,x j

)
≥ α

(
k

∑
j=1

(Ajx j,x j)

)q

+ β2),
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where

β1 =

{
α(q−1)

(
1

αq μt p

) q
q−1 + νt p if m <

(
μt p

αq

) 1
q−1

< M and αq(q−1) > 0,

max{mp−αmq,Mp −αMq} otherwise.

(resp.

β2 =

{
α(q−1)

(
1

αq μt p

) q
q−1 + νt p if m <

(
μt p

αq

) 1
q−1

< M and αq(q−1) < 0,

min{mp−αmq,Mp −αMq} otherwise).

Corollary 2.30 Let A j,x j, j = 1, . . . ,k, be as in Corollary 2.29. Let the constantC(m,M, p,q)
be defined by (2.38) and K(m,M, p,q) defined by (2.20).

If p ∈ R\[0,1), then

k

∑
j=1

(
Ap

j x j,x j

)
≤
(

k

∑
j=1

(Ajx j,x j)

)q

+ β , (2.63)

where

β =

{
C(m,M, p,q) if m <

(
1
q μt p

) 1
q−1

< M and q(q−1) > 0
max{mp−mq,Mp −Mq} otherwise

and
k

∑
j=1

(
Ap

j x j,x j

)
≤ α

(
k

∑
j=1

(Ajx j,x j)

)q

, (2.64)

where

α =
{

K(m,M, p,q) if m < q
1−q

νt p

μt p
< M and q ∈ R\[0,1), pq > 0

max{mp−q,Mp−q} otherwise.

But if p ∈ (0,1), then

k

∑
j=1

(
Ap

j x j,x j

)
≥
(

k

∑
j=1

(Ajx j,x j)

)q

+ β , (2.65)

where

β =

{
C(m,M, p,q) if m <

(
1
q μt p

) 1
q−1

< M and q(q−1) < 0

min{mp−mq,Mp −Mq} otherwise

and
k

∑
j=1

(
Ap

j x j,x j

)
≥ α

(
k

∑
j=1

(Ajx j,x j)

)q

, (2.66)

where

α =
{

K(m,M, p,q) if m < q
1−q

νt p

μt p
< M and q ∈ (0,1)

min{mp−q,Mp−q} otherwise.
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If we put q = p in Corollary 2.30, then we have the following corollary.

Corollary 2.31 Let A j,x j, j = 1, . . . ,k, be as in Corollary 2.29. Let the constantC(m,M, p)
be defined by (2.39) and K(m,M, p) defined by (2.21). If p �∈ [0,1], then

k

∑
j=1

(
Ap

j x j,x j

)
≤
(

k

∑
j=1

(Ajx j,x j)

)p

+C(m,M, p) (2.67)

and
k

∑
j=1

(
Ap

j x j,x j

)
≤ K(m,M, p)

(
k

∑
j=1

(Ajx j,x j)

)p

. (2.68)

If p ∈ (0,1), then we have the opposite inequalities.

If we put an exponential function f (t) = eαt in Theorems 2.27 and 2.28, then we have
the following two corollaries.

Corollary 2.32 Let A j ∈ Bh(H) be selfadjoint operators with Sp(Aj) ⊆ [m,M] for some
scalars m < M ( j = 1, . . . ,k) and x1,x2, · · · ,xk ∈ H any finite number of vectors such that
∑k

j=1 ‖x j‖2 = 1. Then for any real number α �= 0

k

∑
j=1

(eαAjx j,x j) ≤ eαM − eαm

αe(M−m)
exp

(
α(Meαm −meαM)

eαM − eαm

)
exp

(
α

k

∑
j=1

(Ajx j,x j)

)
.

Corollary 2.33 Let A j,x j, ( j = 1, . . . ,k) as in Corollary 2.32. Then for any real number
α �= 0

k

∑
j=1

(eαAjx j,x j)− exp

(
α

k

∑
j=1

(Ajx j,x j)

)

≤ Meαm −meαM

M−m
+

eαM − eαm

α(M−m)
log

(
eαM − eαm

αe(M−m)

)
.

Corollary 2.34 Let A j,x j, j = 1, . . . ,k be as in Corollary 2.29. Then

k

∑
j=1

ω jΦ j (logAj)− log

(
k

∑
j=1

ω jΦ j(Aj)

)

≥ 1− log(L(m,M))+
M logm−m logM

M−m
.
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2.5 Converses of Jensen’s inequality for selfadjoint
operators

In this section we choose the identical map Φ j ∈ PN [B(H),B(K)], j = 1, . . . ,k, in Sec-
tion 2.1, i.e. H = K and Φ j(Aj) = Aj for every Aj ∈ Bh(H), j = 1, . . . ,k. Then Jensen’s
inequality for many operator maps from Lemma 2.1 becomes Jensen’s inequality for sum
of operators:

f

(
k

∑
j=1

ω jA j

)
≤

k

∑
j=1

ω j f (Aj),

where Aj ∈ Bh(H) with Sp(Aj) ⊆ [m,M] for some scalars m < M, ω j ∈ R+ such that
∑k

j=1 ω j = 1 ( j = 1, . . . ,k) and f is an operator convex function on [m,M].
From the main Theorem 2.3 we obtain immediately the following corollary:

Corollary 2.35 Let A j ∈ Bh(H) be selfadjoint operators with Sp(Aj) ⊆ [m,M] for some
scalars m < M, ω j ∈ R+ such that ∑k

j=1 ω j = 1 ( j = 1, . . . ,k). Let f ,g ∈ C ([m,M]) and
F(u,v) be a real function define on U ×V, where U ⊃ f [m,M], V ⊃ g[m,M]. If F(u,v) is
an operator monotone on u and f is convex, then

F

[
k

∑
j=1

ω j f (Aj),g

(
k

∑
j=1

ω jA j

)]
≤
{

max
m≤t≤M

F
[
μ f t + ν f ,g(t)

]}
1H . (2.69)

If f is a concave function, then we have opposite inequality with dual extreme.

By Theorems 2.4 and Theorem 2.5, we have converses of Jensen’s inequality for sum
of operators as follows:

Corollary 2.36 Let A j,x j, j = 1, . . . ,k be as in Corollary 2.35 and f ,g ∈ C ([m,M]). If f
is convex on [m,M], then for α ∈ R we have

k

∑
j=1

ω j f (Aj) ≤ αg

(
k

∑
j=1

ω jA j

)
+ β 1H ,

where
β = max

m≤t≤M

{
μ f t + ν f −αg(t)

}
.

Additionally, let either of the following conditions be valid: (i) g > 0 on [m,M] or (ii)
g < 0 on [m,M]. Then

k

∑
j=1

ω j f (Aj) ≤ αo g

(
k

∑
j=1

ω jA j

)
,
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where
αo = max

m≤t≤M

{
(μ f t + ν f )/g(t)

}
in the case (i),

or αo = min
m≤t≤M

{
(μ f t + ν f )/g(t)

}
in the case (ii).

If f is concave on [m,M], then opposite inequalities hold with dual extreme in bound-
ary.

As an application, we estimate the boundary of the operator convexity for convex func-
tions.

Theorem 2.37 Let A j,x j, j = 1, . . . ,k be as in Corollary 2.35 and f ∈ C ([m,M]). If f is
convex on [m,M] such that f (t) > 0 on [m,M], then

1
α0

f

(
k

∑
j=1

ω jA j

)
≤

k

∑
j=1

ω j f (Aj) ≤ α0 f

(
k

∑
j=1

ω jA j

)
,

where α0 = max{ 1
f (t) (μ f t + ν f ) : t ∈ [m,M]}.

Proof. For a unit vector x ∈ H, put x j = √ω j x in Corollary 2.28, then we have

k

∑
j=1

ω j( f (Aj)x,x) ≤ αo f

(
k

∑
j=1

ω j(Ajx,x)

)
.

Hence it follows that(
k

∑
j=1

ω j f (Aj)x,x

)
≤ αo f

(
k

∑
j=1

ω j(Ajx,x)

)
≤ αo

(
f

(
k

∑
j=1

ω jA j

)
x,x

)

and the last inequality holds by the convexity of f . Therefore we have

k

∑
j=1

ω j f (Aj) ≤ α0 f

(
k

∑
j=1

ω jA j

)
.

Next, since f is convex, it follows from Thereom 1.3 that(
k

∑
j=1

ω j f (Aj)x,x

)
=

k

∑
j=1

ω j( f (Aj)x,x) ≥ f

(
k

∑
j=1

ω j(Ajx,x)

)
.

Since m ≤ ∑k
j=1 ω jA j ≤ M, it follows from Corollary 2.28 that

f

(
k

∑
j=1

ω j(Ajx,x)

)
= f

(((
k

∑
j=1

ω jA j

)
x,x

))
≥ 1

α0

(
f

(
k

∑
j=1

ω jA j

)
x,x

)
.
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Therefore we have
1

α0
f

(
k

∑
j=1

ω jA j

)
≤

k

∑
j=1

ω j f (Aj).

�

We have the following complementary result of Theorem 2.37 for concave functions.

Theorem 2.38 Let A j,x j, j = 1, . . . ,k be as in Corollary 2.35 and f ∈ C ([m,M]). If f is
concave on [m,M] such that f (t) > 0 on [m,M], then

1
α0

f

(
k

∑
j=1

ω jA j

)
≥

k

∑
j=1

ω j f (Aj) ≥ α0 f

(
k

∑
j=1

ω jA j

)
,

where α0 = min{ 1
f (t) (μ f t + ν f ) : t ∈ [m,M]}.

2.6 Determinant for positive operators

In this section, we shall extend the notion of the determinant to vector states in the manner
of Fuglede and Kadison. We discuss it as a continuous (weighted) geometric mean (with
the weighted x) and observe some inequalities around the determinant from this point of
view. By using the Mond-Pečarić method, we show an operator version of Specht’s theo-
rem which gave the ratio of the arithmetic mean to the geometric one.

There are some attempts to extend the notion of the determinant for matrices. In 1950s,
Fuglede and Kadison defined the determinant on invertible operators A in II1-factor M with
the canonical (normalized ) trace Tr as

Δ(A) = expTr(log |A|)
and discussed the properties of this determinant. Afterwards, Arveson developed it in
general von Neumann algebras and investigated some additional properties.

Here, note that the determinant of a positive definite matrix is the product of all eigen-
values, which contrasts with the fact that the trace of it is the sum of them. The normaliza-
tion of the trace in Δ(A) yields another view for the determinants. For a positive definite
n×n matrix A with the spectrum Sp(A) = {t1, · · · ,tk}, the determinant in their sense is just
the geometric mean

n

∏
i=1

t1/n
i

while the normalized trace is the arithmetic mean 1
k ∑k

i=1 ti . So their determinant for pos-
itive operators is considered as the the continuous geometric mean, which reminds us of
the product integral introduced by G.Birkhoff [20].
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Definition 2.1 Let A be a positive invertible operator on a Hilbert space H and x a unit
vector in H. The determinant Δx(A) for A at x is defined as

Δx(A) = exp( logAx,x).

Note that this definition is easily extended to that at a state on a suitable operator algebra
via the GNS representation.

It immediately follows by definition that

Δx(tA) = tΔx(A) and Δx(1H) = 1

for all positive numbers t. We also have the norm continuity for the maps x → Δx(A) and
A → Δx(A). Moreover the latter map is monotone by the operator monotonicity of the
logarithm function.

Theorem 2.39 The map A → Δx(A) is monotone:

A ≤ B implies Δx(A) ≤ Δx(B).

It is easy to see

Δx

(
n

∑
i=1

tiEi

)
=

n

∏
i=1

t(Eix,x)
i (2.70)

for the projections Ei with ∑i Ei = 1H . Then the equation (2.70) prompts us to consider
another ’product’ integral for a positive operator A after G.Birkhoff [20]. By the simple

function An = ∑n
i=1 t(n)

i E(n)
i of A converging uniformly to A =

∫M
m tdEt , we define

∏ ∫ M

m
td(Etx,x) := lim

n→∞

n

∏
i=1

t(n)(E
(n)
i x,x)

i .

This definition makes sense by the above properties and it also shows

∏ ∫ M

m
td(Etx,x) = Δx(A).

Thus we may say that the determinant for positive operators is a continuous weighted
geometric mean with the weighted x. Similarly we may consider (A−1x,x)−1 as a contin-
uous harmonic mean. Thereby a continuous version of the arithmetic-geometric-harmonic
mean inequality is the following basic one:

Theorem 2.40 The determinant Δx(A) is not greater (resp. smaller ) than (Ax,x) (resp.
(A−1x,x)−1).

(A−1x,x)−1 ≤ Δx(A) ≤ (Ax,x)

for every unit vector x ∈ H.

We immediately have the following inequalities:
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Corollary 2.41 If A ∈ B(H)++ is a positive invertible operator, then

‖A−1‖−1 ≤ Δx(A) ≤ r(A) = ‖A‖,

where r(A) is the spectral radius of A.

Moreover it is well-known that the power (arithmetic) means

Mr(x1, · · · ,xn) =
(

xr
1 + · · ·+ xn

k

n

)1/r

make a path of means from the harmonic one at r = −1 to the arithmetic one at r = 1 via
the geometric one at r = 0 (precisely the limit as r → 0). Since (Arx,x)1/r is considered
as a continuous power mean from the above viewpoint, we have an extension of Theorem
2.40:

Theorem 2.42 For a positive invertible operator A, the continuous power mean (Arx,x)1/r

converges monotone decreasingly (resp. increasingly) to Δx(A) as r ↓ 0 (resp. r ↑ 0).

Proof. For the case of r ↓ 0, the monotonicity follows from Jensen’s inequality: If
0 < r < s, then

1 ≤ s
r

implies (Arx,x)s/r ≤ (Ar(s/r)x,x) = (Asx,x),

therefore it follows that (Arx,x)1/r ≤ (Asx,x)1/s.
As for the convergence, the l’Hospital theorem shows

lim
t↓0

log(Atx,x)
t

= lim
t↓0

d(Atx,x)/dt
(Atx,x)

= lim
t↓0

(At logAx,x)
(Atx,x)

= (logAx,x),

so that we have the required convergence. Similarly we have the proof of the case of
r ↑ 0. �

In the Kubo-Ando theory of operator means in chapter 5, the notion of duality was
introduced. In terms of the power mean, Mr is the dual of M−r;

Mr(x−1
1 , · · · ,x−1

n ) = M−r(x1, · · · ,xn)−1.

In particular, the geometric mean is selfdual, which reflects the following property:

Corollary 2.43 For a positive invertible operator A,

Δx(A−1) = Δx(A)−1

for every unit vector x ∈ H.

We observe various inequalities around the determinant. First we pose the well-known
Ky Fan inequality, which follows from the operator concavity of the logarithm:
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Theorem 2.44 If A and B are positive invertible operators and α > 0, β > 0 such that
α + β = 1, then

Δx(αA+ βB)≥ Δx(A)α Δx(B)β

for every unit vector x ∈ H.

Next we discuss Arveson’s inequality, which is an extension of the Ky Fan inequality.
Note that Δx(AB) = Δx(A)Δx(B) for commuting A and B.

Theorem 2.45 The determinant Δx(A) is the infimum of the set

{(ABx,x) |Δx(B) ≥ 1,B ∈ {A}′}.
Proof. Since a positive operator B commutes with A and Δx(B) ≥ 1, we have

Δx(AB) = Δx(A)Δx(B) ≥ Δx(A).

On the other hand, consider B = Δx(A)A−1. Then Δx(B) = 1 and

(ABx,x) = Δx(A)(AA−1x,x) = Δx(A),

which shows the above formula. �

Corollary 2.46 If A and B commutes, then Δx(A+B)≥ Δx(A)+ Δx(B).

Following Turing, the condition number h = h(A) of an invertible operator A on H is
defined by h(A) = ‖A‖‖A−1‖. If a positive operator A satisfies the condition M1H ≥ A ≥
m1H > 0, i.e., Sp(A) ⊆ [m,M], then it may be thought as M = ‖A‖ and m = ‖A−1‖−1, so
that h = h(A) = M

m .

Also, Specht [178] estimated the upper boundary of the arithmetic mean by the geo-
metric one for positive numbers: For x1, · · · ,xn ∈ [m,M] with M ≥ m > 0,

(h−1)h
1

h−1

e logh
n
√

x1 · · ·xn ≥ x1 + · · ·xn

n
, (2.71)

where h = M
m (≥ 1). It is well known that

x1 + · · ·xn

n
≥ n

√
x1 · · ·xn (2.72)

holds for positive numbers x1,x2, · · · ,xk. Therefore, the Specht theorem (2.71) means a
ratio type reverse inequality of the arithmetic-geometric mean inequality (2.72).

So we define the following constant:

S(t, p) =
(t p−1)t

p
t p−1

pe logt
(2.73)
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for all p ∈ R and all positive numbers t. We call S(t, p) the Specht ratio. If we put t = h
and p = 1 in (2.73), then we have

S(h,1) =
(h−1)h

1
h−1

e logh
. (2.74)

We collect basic properties of the Specht ratio:

Lemma 2.47 Let t > 0 and p ∈ R.

(i) S(t, p) = S(t p,1) for all p ∈ R and t > 0.

(ii) S(1,1) = 1.

(iii) S(t, p) = S(t−1, p) for all p ∈ R and t > 0.

(iv) A function S(t,1) is strictly decreasing for 0 < t < 1 and strictly increasing for t > 1.

(v) limp→0 S(t, p)
1
p = 1.

(vi) limp→∞ S(t, p)
1
p = t for t > 1 and limp→∞ S(t, p)

1
p = t−1 for 1 > t > 0.

Proof. We have (i) by definition. We have by L’Hospital’s theorem

lim
t→1

logS(t,1) = lim
t→1

log
t

1
t−1

e log t
1

t−1

= lim
t→1

(
log t
t−1

−1− log
logt
t−1

)

= lim
t→1

(
1
t
−1− log

1
t

)
= 0,

and so S(1,1) = 1.

For (iii), we may assume that p = 1 by (i). Then the equation
( 1

t

) 1
1/t−1 = t

t
t−1 = t · t 1

t−1

implies the equation

S(t−1,1) =
(t−1)

1
t−1−1

e log(t−1)
1

t−1−1

=
t · t 1

t−1

e logt
1

t−1

= S(t,1).

Furthermore we have by a differential calculation

d
dt

logS(t,1) =
d
dt

(
logt
t−1

−1− log
logt
t−1

)

=
t−1(t−1)− logt

(t −1)2 − t−1
logt

t−1(t−1)− logt
(t −1)2

=
(log t− t +1)(1− t−1− logt)

(t −1)2 log t
.
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So for all t > 1, the function S(t,1) is strictly increasing from d
dt logS(t,1) > 0. On the

other hand, for 0 < t < 1 we see that a function S(t,1) is strictly decreasing.

For (v), put g(p) = t
p

t p−1 , then we have S(t, p) = g(p)
e logg(p) . It is easily obtained that

lim
p→+0

g(p) = t
1

log t = e

and

g′(p) =
{

t p−1− pt p logt
(t p−1)2

}
t

p
t p−1 logt.

Then g′(p) is bounded as p → +0 since

lim
p→+0

t p−1− pt p logt
(t p−1)2 = −1

2
.

Then we have

lim
p→+0

logS(t, p)
1
p = lim

p→+0

logg(p)− log(logg(p))−1
p

= lim
p→+0

g′(p)
g(p)

{
1− 1

logg(p)

}
= 0,

so that limp→+0 S(t, p)
1
p = 1.

For (vi), we mat assume that t > 1 by (iii). Since

t
p

t p−1
1
p → t0 = 1 and

(
t p−1
pe logt

) 1
p

→ t as p → ∞,

it follows that S(t, p)1/p → t as p → ∞.
�

We rephrase the Specht theorem (2.71) under matrix situation. If we put

A =

⎛
⎜⎜⎝

x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xn

⎞
⎟⎟⎠ and x =

1√
n

⎛
⎝ 1

...
1

⎞
⎠ ,

then the Specht theorem implies S(h,1)Δx(A) ≥ (Ax,x).

Then the following lemma is a geometric representation of the Specht theorem:

Lemma 2.48 Let A be a positive operator on H with 0 <m1H ≤A≤M1H. If a= L(m,M)
and b = m logM−M logm

logM−logm , then

(Ax,x) ≤ ae
b−a
a Δx(A)

and the equality holds if and only if ((logA)x,x) = (a−b)/a and a unit vector x is a linear
combination of eigenvectors corresponding to m and M.
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Proof. Since y = et is a convex function, then, for the line at +b crossing et at t = logm
and t = logM, we have

et ≤ at +b ≤ ae
b−a
a et

on [logm, logM]. In fact, F(t) = ae
b−a
a et −at−b is also a convex function with the mini-

mum zero at t = (a−b)/a by F ′((a−b)/a)= 0 and (a−b)/a∈ [logm, logM] is guaranteed
by the inequalities m≤ L(m,M)≤M. Thus we have the latter inequality. Putting S = logA,
we have

(eSx,x) ≤ ((aS+b)x,x) = a(Sx,x)+b≤ ae
b−a
a e(Sx,x),

so that, we have the required inequality. Since et < at+b for t ∈ (logm, logM), the equality
(eSx,x) = ((aS+b)x,x) holds if and only if x is a linear combination of eigenvectors cor-
responding to m and M. Moreover the only zero of F is (a−b)/a, and hence the equality

a(Sx,x)+b = ae
b−a
a e(Sx,x) holds if and only if (Sx,x) = (a−b)/a. �

Then the above inequality itself is an estimation of Specht’s type:

Theorem 2.49 Let A be a positive operator with 0 < m1H ≤ A ≤ M1H, x a unit vector
and h = M/m the condition number. Then the ratio of (Ax,x) to the determinant for A at x
is not greater than the Specht ratio:

(Ax,x) ≤ S(h,1)Δx(A)

and the equality holds if and only if both m and M are eigenvalues of A and

x =

√
h

h−1
− 1

logh
em +

√
1

logh
− 1

h−1
eM,

where em and eM are corresponding unit eigenvectors to m and M respectively.

Proof. The number ae
b−a
a in Lemma 2.48 is exactly the Specht ratio. In fact, a = (h−1)m

logh
and

b
a

=
m logM−M logm

M−m
=

logM−h logm
h−1

=
log(hm1−h)

h−1
,

and hence we have

ae
b−a
a =

(h−1)m
logh

(hm1−h)1/(h−1)e−1 =
(h−1)h1/(h−1)

e logh
.

To verify the equality condition, we can put x =
√

1− t2em + teM for a number 0 < t < 1
by Lemma 2.48. Then it follows from Lemma 2.48 again that

log
(
m1−t2Mt2

)
= (Sx,x) =

a−b
a

= 1− log(hm1−h)
h−1

= 1+ log(h1/(1−h)m),

or t2 logh = 1+ logh1/(1−h). Thus

t2 =
1+1/(1−h) logh

logh
=

1
logh

− 1
h−1

.

�

Incidentally we have a variation of our theorem:
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Corollary 2.50 In the notations in the above theorem,

(Apx,x) ≤ S(h, p)Δx(Ap)

for all real numbers p ∈ R.

Proof. Since the condition number of Ap is hp for p ≥ 0, we have the above inequality
immediately for p ≥ 0 by Theorem 2.49. Suppose p < 0. Then the condition number of
Ap is h−p and hence

(Apx,x) ≤ S(h−p,1)Δx(Ap).

However we have S(h−p,1) = S(h−1, p) = S(h, p) by Lemma 2.47. �

Remark 2.8 The above corollary is obtained by Corollary 2.32:
We can easily modify into the conditions m > 0 and all real nnumbers t. In fact, putting

B = logA, l = logm and L = logM in the above inequality, we have

(etBx,x) = (Atx,x) and exp(t(Bx,x)) = Δx(At)

and

etL − etl

te(L− l)
exp

(
t(Letl − letL)

etL − etl

)
=

Mt −mt

e loght exp

(
mt logMt −Mt logmt

Mt −mt

)

= mt ht −1
e loght exp

(
logMt −ht logmt

ht −1

)

= mt ht −1
e loght exp

(
t logh
ht −1

− logmt
)

=
(ht −1)ht/(ht−1)

e loght = S(h, t).

On the other hand, Mond and Shisha gave an estimate of the difference between the
arithmetic mean and the geometric one: For positive numbers x1, · · · ,xn ∈ [m,M] with
M > m > 0 and h = M

m ,

n
√

x1x2 · · ·xn +D(m,M) ≥ x1 + x2 + · · ·xn

n
(2.75)

where

D(m,M) = θM +(1−θ )m−Mθm1−θ and θ = log

(
h−1
logh

)
1

logh
. (2.76)

We call D(m,M) the Mond-Shisha difference. Notice that (2.75) means a difference type
reverse inequality of the arithmetic-geometric mean inequality.
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Lemma 2.51 The Mond-Shisha difference coincides with the following constant via the
Specht ratio: If M > m > 0 and h = M

m > 1, then

D(mp,Mp) = L(mp,Mp) logS(h, p) (2.77)

for all p ∈ R.

Proof. If we put θ = log
(

hp−1
p logh

)
1

p logh , then we have

L(mp,Mp) logS(h, p) =
mp(hp−1)

p logh

(
log

(
hp−1
p logh

)
+

p logh
hp−1

−1

)

= mp
(

log

(
hp−1
p logh

)
hp−1
p logh

+1− hp−1
p logh

)

= mp
(

θ (hp−1)+1−hpθ
)

= D(mp,Mp).

�

We show the following result, which is considered as a continuous version of the Mond-
Shisha result (2.75):

Theorem 2.52 Let A be a positive operator on H satisfying M1H ≥ A ≥ m1H > 0. Put
h = M

m . Then the difference between (Ax,x) and the determinant Δx(A) for A at a unit
vector x ∈ H is not greater than the Mond-Shisha difference:

(Ax,x)−Δx(A) ≤ D(m,M),

where D(m,M) is defined in (2.76) and the equality holds if and only if both m and M are
eigenvalues of A and

x =

√
1− log

(
h−1
logh

)
1

logh
em +

√
log

(
h−1
logh

)
1

logh
eM,

where em and eM are corresponding unit eigenvectors to m and M respectively.

Proof. Put S = logA, a = L(m,M) and b = m logM−M logm
logM−logm , then we have

(eSx,x) ≤ a(Sx,x)+b≤ e(Sx,x) +a loga+b−a.

The number a loga+b−a is exactly the Mond-Shisha difference. In fact, a = m(h−1)
logh and

hence we have

a loga+b−a = a

(
loga+

m(logM− logm)− (M−m) logm
M−m

−1

)

=
m(h−1)

logh

(
log(h−1)− log(logh)+

logh
h−1

−1

)

= m

(
(h−1) log

(
h−1
logh

)
1

logh
+1− h−1

logh

)
= m((h−1)θ +1−hθ)
= D(m,M),
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where θ = log
(

h−1
logh

)
1

logh .

To verify the equality condition, we can put x =
√

1− t2em + teM for a number 0 < t <
1. Then it follows that

logm1−t2Mt2 = (Sx,x) = loga = log
m(h−1)

logh
,

and so we have

t2 = log

(
h−1
logh

)
1

logh
(> 0).

�

2.7 A generalized Kantorovich constant

In this section, we investigate basic properties of a generalized Kantorovich constant. First
we recall the celebrated Kantorovich inequality: Let A be a positive operator on a Hilbert
space H satisfying M1H ≥ A ≥ m1H for some scalars 0 < m < M. Then

(Ax,x)−1 ≤ (A−1x,x) ≤ (M +m)2

4Mm
(Ax,x)−1

for every unit vector x ∈ H and this inequality is just equivalent to the following one

(Ax,x)2 ≤ (A2x,x) ≤ (M +m)2

4Mm
(Ax,x)2

for every unit vector x ∈ H. We remark that the constant (M+m)2
4Mm can be expressed as

follows:

(M +m)2

4Mm
=

(
M+m

2√
Mm

)2

,

that is, inside the bracket ( ), the numerator is the arithmetic mean and the denominator is
the geometric one of m and M, respectively. This constant is said to be the Kantorovich
constant.

By Corollary 2.31, we have the converse of Hölder-McCarthy inequality as an exten-
sion of the Kantorovich inequality.

Theorem 2.53 Let A be a positive operator on a Hilbert space H satisfying M1H ≥ A ≥
m1H for some scalars 0 < m < M. Then

(Ax,x)p ≤ (Apx,x) ≤ K(m,M, p)(Ax,x)p for p �∈ [0,1]
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and
(Ax,x)p ≥ (Apx,x) ≥ K(m,M, p)(Ax,x)p for p ∈ [0,1]

for every unit vector x ∈ H, where

K(m,M, p) =
(mMp −Mmp)
(p−1)(M−m)

(
p−1

p
Mp −mp

mMp−Mmp

)p

(2.78)

for any real number p ∈ R.

Definition 2.2 Let h > 0. A generalized Kantorovich constant K(h, p) is defined by

K(h, p) =
(hp−h)

(p−1)(h−1)

(
p−1

p
hp−1
hp−h

)p

(2.79)

for any real number p ∈ R and K(h, p) is sometimes denoted by K(p) briefly.

We remark that K(m,M, p) just coincides with K(h, p) by putting h = M
m > 1 and

K(m,M, p) is an extension of the Kantorovich constant (M+m)2
4Mm , in fact, K(m,M,2) =

K(m,M,−1) = (M+m)2
4Mm . We mention some important properties of K(h, p).

Theorem 2.54 Let h > 0 be given. Then a generalized Kantorovich constant K(h, p) has
the following properties.

(i) K(h, p) = K( 1
h , p) for all p ∈ R.

(ii) K(h, p) = K(h,1− p) for all p ∈ R.

(iii) K(h,0) = K(h,1) = 1 and K(1, p) = 1 for all p ∈ R.

(iv) K(h, p) is increasing for p > 1
2 and decreasing for p < 1

2 .

(v) K
(
hr, p

r

) 1
p = K

(
hp, r

p

)− 1
r

for pr �= 0.

(vi) K(h, p) ≤ hp−1 for all p ≥ 1 and h > 1.

We need the following lemma to give a proof of Theorem 2.54.

Lemma 2.55 Let h > 1 and p ≥ 1
2 . Then the following (i) and (ii) hold:

(i) δ hp(hp−1+p−ph)
(hp−1)(hp−h) ≥ 1

2 .

(ii) δ h
1
2 (p−1)(hp−1)

p(hp−h) ≥ 1.
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Proof. Recall hp−h ≥ 0 for p ≥ 1 and hp−h≤ 0 for 1 ≥ p ≥ 1
2 , so that we can divide

the case p ≥ 1
2 into the case p ≥ 1 and 1 ≥ p ≥ 1

2 to prove (i) and (ii).
(i). (i-a) in the case p ≥ 1. To prove (i) in this case, it suffices to show

2hp(hp−1+ p− ph)− (hp−1)(hp−h)
= hp(hp−h1−p− (2p−1)(h−1))≥ 0

and we have only to prove the following

f1(h) = hp−h1−p− (2p−1)(h−1)≥ 0 for h > 1 and p ≥ 1. (2.80)

In fact, f1(1) = 0 and f ′1(h) = php−1− (1− p)h−p− (2p−1), so that f ′1(1) = 0 and

f ′′1 (h) = p(p−1)(hp−2−h−p−1) ≥ 0 holds for p ≥ 1 (2.81)

therefore f ′1(h) ≥ 0 by f ′1(1) = 0 and (2.81), so that f1(h) ≥ 0 by f1(1) = 0 and f ′1(h) ≥ 0,
that is, we have (2.80).

(i-b) in the case 1 ≥ p ≥ 1
2 . To prove (i) in this case, it suffices to show by the same

way as (i-a)

2hp(−hp +1− p+ ph)− (hp−1)(h−hp)
= hp(−hp +h1−p +(2p−1)(h−1))≥ 0

and we have only to prove the following

f2(h) = −hp +h1−p +(2p−1)(h−1)≥ 0 for h > 1 and 1 ≥ p ≥ 1
2 . (2.82)

In fact, f2(1) = 0 and f ′2(h) = −php−1 +(1− p)h−p +(2p−1), so that f ′2(1) = 0 and

f ′′2 (h) = p(1− p)(hp−2−h−p−1) ≥ 0 for 1 ≥ p ≥ 1
2 (2.83)

therefore f ′2(h) ≥ 0 by f ′2(1) = 0 and (2.83), so that f2(h) ≥ 0 by f2(1) = 0 and f ′2(h) ≥ 0,
that is, we have (2.82). Whence the proof of (i) is complete by (i-a) and (i-b).

(ii). (ii-a) in the case p ≥ 1. To prove (ii) in this case, it suffices to show

h
1
2 (p−1)(hp−1)− p(hp−h)

=
{
(p−1)(hp−1)− p

(
hp− 1

2 −h
1
2

)}
h

1
2 ≥ 0

and we have only to prove the following

f3(h) = (p−1)(hp−1)− p
(
hp− 1

2 −h
1
2

)
≥ 0 for p ≥ 1. (2.84)

In fact, f3(1) = 0 and

f ′3(h) =
{

(p−1)php− 1
2 − p

(
p− 1

2

)
hp−1 +

p
2

}
h

−1
2 = g3(h)h

−1
2 (2.85)
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where g3(h) in (2.85) is defined by

g3(h) = (p−1)php− 1
2 − p(p− 1

2
)hp−1 +

p
2
.

We have g3(1) = 0 and

g′3(h) = p(p−1)
(

p− 1
2

)(
hp− 3

2 −hp−2
)
≥ 0 holds for p ≥ 1 (2.86)

so that g3(h) ≥ 0 by g3(1) = 0 and (2.86), so that f ′3(h) ≥ 0 by (2.85), therefore f3(h) ≥ 0
by f3(1) = 0 and f ′3(h) ≥ 0, so we have (2.84).

(ii-b) in the case 1 ≥ p ≥ 1
2 . To prove (ii) in this case, it suffices to show by the same

way as (ii-a)

h
1
2 (1− p)(hp−1)− p(h−hp)

=
{
(1− p)(hp−1)− p

(
h

1
2 −hp− 1

2

)}
h

1
2 ≥ 0

and we have only to prove the following

f4(h) = (1− p)(hp−1)− p
(
h

1
2 −hp− 1

2

)
≥ 0 for 1 ≥ p ≥ 1

2 . (2.87)

In fact, f4(1) = 0 and

f ′4(h) =
{

(1− p)php− 1
2 + p

(
p− 1

2

)
hp−1− p

2

}
h

−1
2 = g4(h)h

−1
2 (2.88)

where g4(h) in (2.88) is defined by

g4(h) = (1− p)php− 1
2 + p(p− 1

2
)hp−1− p

2
.

We have g4(1) = 0 and

g′4(h) = p(1− p)(p− 1
2
)(hp− 3

2 −hp−2) ≥ 0 holds for 1 ≥ p ≥ 1
2 (2.89)

so that g4(h) ≥ 0 by g4(1) = 0 and (2.89), so that f ′4(h) ≥ 0 by (2.88), therefore f4(h) ≥ 0
by f4(1) = 0 and f ′4(h) ≥ 0, so we have (2.87). Therefore the proof of (ii) is complete by
(ii-a) and (ii-b). Whence we have finished a proof of Lemma 2.55. �

Proof of Theorem 2.54. (i) By an easy calculation, we have

K

(
1
h
, p

)
=

(h−p−h−1)
(p−1)(h−1−1)

(
(p−1)(h−p−1)

p(h−p−h−1)

)p

=
(h1−p−1)

(p−1)(1−h)

(
(p−1)(1−hp)

p(1−hp−1)

)p

=
(hp−h)

(p−1)(h−1)

(
(p−1)(hp−1)

p(hp−h)

)p

= K(h, p).



2.7 A GENERALIZED KANTOROVICH CONSTANT 77

(ii) For all p ∈ R, we have

K(h,1− p) =
(h1−p−h)

((1− p)−1)(h−1)

(
((1− p)−1)(h1−p−1)

(1− p)(h1−p−h)

)1−p

=
h1−p−h
−p(h−1)

( −p(h1−p−1)
(1− p)(h1−p−h)

)1−p

=
h1−p−1

(h−1)(1− p)

(
(p−1)(h−hp+1)

p(h−hp)

)p

= K(h, p).

(iii) By (i) and (ii), it suffices to prove the case of h > 1. Then we have

logK(h, p) = log
hp−h

(p−1)(h−1)
+ p log

p−1
hp−h

+ p log
hp−1

p

→ log
1−h

(−1)(h−1)
+0× log

−1
1−h

+0× loglogh = 0,

as p → +0. Therefore we have K(h,0) = limp→0 K(h, p) = 1 and we obtain K(h,1) = 1
by (ii). Since

lim
h→1

hp−h
h−1

= lim
h→1

(php−1−1) = p−1

and

lim
h→1

hp−1
hp−h

= lim
h→1

php−1

php−1−1
=

p
p−1

by l’Hospital’s theorem, we have K(1, p) = limh→1 K(h, p) = 1.

(iv) We may assume h > 1 by (i). Let p ≥ 1
2 . Since hp−h

p−1 ≥ 0 for 1 ≥ p ≥ 1
2 and

hp−h
p−1 ≥ 0 for p ≥ 1, we have

hp−h
p−1

≥ 0 for any p ≥ 1
2 . (2.90)
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Differentiate K(p) by p, we obtain K′(p) as follows:

K′(p) =

( (p−1)
p

(hp−1)
(hp−h)

)p

(h−1)(hp−1)(p−1)
{
hp(hp−1+ p−hp) logh

+(hp−1)(hp−h) log
(p−1)(hp−1)

p(hp−h)

}

=

( (p−1)
p

(hp−1)
(hp−h)

)p

(h−1)
(hp−h)
(p−1)

{hp(hp−1+ p−hp)
(hp−1)(hp−h)

logh+ log
(p−1)(hp−1)

p(hp−h)

}

≥
( (p−1)

p
(hp−1)
(hp−h)

)p

(h−1)
(hp−h)
(p−1)

{1
2

logh+ log
(p−1)(hp−1)

p(hp−h)

}
by (i) of Lemma 2.55, (2.90) and logh > 0

=

( (p−1)
p

(hp−1)
(hp−h)

)p

(h−1)
(hp−h)
(p−1)

{
log

h
1
2 (p−1)(hp−1)

p(hp−h)

}
≥ 0 by (ii) of Lemma 2.55 and (2.90),

so that K(p) is an increasing function of p for p ≥ 1
2 , and this result implies that K(p) is a

decreasing function of p for p ≤ 1
2 by (ii).

(v) By a simple calculation, we have

K
(
hr,

p
r

) 1
p =

(
hp−hr

( p
r −1)(hr−1)

) 1
p
(

( p
r −1)(hp−1)

p
r (hp−hr)

) 1
r

=

(
hr −hp

( r
p −1)(hp−1)

)− 1
r
(

( r
p −1)(hr−1)

r
p(hr −hp)

)− 1
p

= K

(
hp,

r
p

)− 1
r

.

(vi) Let p > 1 and q > 1 such that 1
p + 1

q = 1. Then the inequality

(p−1)t− pt
1
q +1 ≥ 0 (2.91)

holds for t ≥ 1. Multiplying (2.91) by t
1
p , then

0 ≤ (p−1)tt
1
p − pt + t

1
p ,

that is,

t
1
p

t
t−1

t
1
p −1

≤ p for t ≥ 1. (2.92)
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Taking exponent 1
p in (2.92) and taking exponent 1

q in (2.92), respectively, we have

(
t

1
p

t
t−1

t
1
p −1

) 1
p

≤ p
1
p and

(
t

1
q

t
t −1

t
1
q −1

) 1
q

≤ q
1
q . (2.93)

Modifying (2.93), we have

t−1

(t1/p−1)1/p(t1/q−1)1/qt2/pq
≤ p

(p−1)(p−1)/p
for t ≥ 1.

Taking exponent p of both sides,

(t−1)p

(t1/p−1)(t1/q−1)pt2/q
≤ pp

(p−1)p−1 for t ≥ 1. (2.94)

Putting t = hp in (2.94), we have

(hp−1)p

(hp−1−1)p−1(h−1)h2p−2 ≤ pp

(p−1)p−1

and so K(h, p) ≤ hp−1 for p ≥ 1 and h > 1. �

We have the representation of the Specht ratio by the limit of Kantorovich constant.

Theorem 2.56 Let h > 0 be given. Then

(i) limr→0 K
(
hr, p

r

)
= S(h, p).

(ii) limr→0 K
(
hr, r+p

r

)
= S(h, p).

Proof. For (i), it follows that

K
(
hr,

p
r

)
=

hp−hr

p− r
r

hr −1

(
hp−1

p
p− r

hp−hr

) p
r

→ hp−1
p

1
logh

1
e
h

p
hp−1 = S(h, p) as r → 0,

where the convergence of the final term is assured by l’Hospital’s theorem as follows:

lim
r→0

p log
(

hp−1
p

p−r
hp−hr

)
r

= lim
r→0

p
p− r

−(hp−hr)+ (p− r)hr logh
hp−hr

= −1+
p

hp−1
logh = log

(
1
e
h

p
hp−1

)
.

For (ii), it follows that

K

(
hr,

p+ r
r

)
= K

(
hr,1− p+ r

r

)
= K

((
1
h

)−r

,
p
−r

)

�→ S(h−1, p) = S(h, p) as r �→ 0.
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�

0 p

S(p)

K(p)

1
2

1

S(p)

K(p)

K ′(1)

S(1) = eK ′(1)

(1, 1)1

Figure 2.1: Relation between K(p) and S(p)

�

Moreover, we have the following most crucial result on the Kantorovich constant.

Theorem 2.57 Let h > 1. Then

S(h,1) = e−K′(0) = eK′(1).

Proof. Differentiate K(p) by p, we obtain K′(p) as follows:

δK′(p) = (2.95)

δ

(
(p−1)

p
(hp−1)
(hp−h)

)p

(h−1)(hp−1)

⎧⎨
⎩

hp(hp−1+ p−hp) logh+(hp−1)(hp−h) log (p−1)(hp−1)
p(hp−h)

p−1

⎫⎬
⎭.
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By using l’Hospital’s theorem to (2.95), we have

lim
p→1

K′(p) =
h−1
h logh

1
(h−1)2

{
h logh(h logh+1−h)+ (h−1)h logh log

[ h−1
h logh

]}

= δ
h

h−1
logh−1+ log

[ h−1
h logh

]
= δ log

[ h
1

h−1

e logh
1

h−1

]
= δ logS(h,1)

so that we have S(h,1) = eK′(1) and also S(h,1) = e−K′(0) by the same way. �

Next, we observe the difference type of Kantorovich inequality. Let A be a positive
operator on a Hilbert space H satisfying M1H ≥ A≥m1H for some scalars 0 < m < M. By
Theorem 1.30 and Theorem 1.31, we have

0 ≤ (A−1x,x)− (Ax,x)−1 ≤
(√

M−√
m
)2

Mm

and

0 ≤ (A2x,x)− (Ax,x)2 ≤ (M−m)2

4
for every unit vector x ∈ H.

By using the Mond-Pečarić method, we have the difference type converse of Hölder-
McCarthy inequality by Corollary 2.31.

Theorem 2.58 Let A be a positive operator on a Hilbert space H satisfying M1H ≥ A ≥
m1H for some scalars m and M. Then

0 ≤ (Apx,x)− (Ax,x)p ≤C(m,M, p) for p �∈ [0,1]

and
0 ≥ (Apx,x)− (Ax,x)p ≥C(m,M, p) for p ∈ [0,1]

for every unit vector x ∈ H, where

C(m,M, p) = (p−1)
(

Mp−mp

p(M−m)

) p
p−1

+
Mmp −mMp

M−m
(2.96)

for any real number p ∈ R .

We collect basic properties of C(m,M, p):

Lemma 2.59 Let M > m > 0 and p ∈ R.

(i) C(m,M, p) = mMp−Mmp

M−m

{
K(m,M, p)

1
p−1 −1

}
.

(ii) 0 ≤C(m,M, p) ≤ M(Mp−1 −mp−1) for all p > 1.

(iii) C(m,M,1) = 0.
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(iv) limr→0C
(
mr,Mr, p

r

)
= L(mp,Mp) logS(h, p) for all p ∈ R and h = M

m .

Proof. (i) By a simple calculation, we have (i).
(ii) Since K(m,M, p) ≥ 1 for p ≥ 1, we have C(m,M, p) = mMp−Mmp

M−m{
K(m,M, p)

1
p−1 −1

}
≥ 0. By Theorem 2.54, we have

C(m,M, p) ≤ mMp −Mmp

M−m

(
M
m

−1

)
= M(Mp−1 −mp−1).

(iii) We have to only put p = 1 in (ii).
(iv) For all p ∈ R, we have

C(mr,Mr,
p
r
) =

mrMp −Mrmp

Mr −mr

{
K
(
mr,Mr,

p
r

) r
p−r −1

}

=
r

hr −1
mp(hp−hr)

K
(
mr,Mr, p

r

) r
p−r −1

r

→ 1
logh

(Mp−mp) logS(h, p)
1
p (as r → 0)

= L(mp,Mp) logS(h, p).

�

Finally, we study several inequalities on the continuous power mean.

Theorem 2.60 Let A be a positive invertible operator on a Hilbert space H and x a unit
vector in H. Then the continuous power mean (Arx,x)1/r is monotone increasing for r ∈R,
that is,

(Arx,x)1/r ≤ (Asx,x)1/s for r ≤ s.

Proof. The case of 0 < r < s and r < s < 0 are shown in Theorem 2.42. For the case of
r < 0 < s, by Theorem 1.4 (Hölder-McCarthy inequality)

s
r

< 0 implies (Arx,x)s/r ≤ (Ar(s/r)x,x) = (Asx,x).

By raising both sides to the power 1
s > 0, we have the desired inequality. �

By virtue of Theorem 2.53, we show a ratio type reverse inequality to Theorem 2.60.

Theorem 2.61 Let A be a positive invertible operator on a Hilbert space H such that
M1H ≥ A ≥ m1H > 0 for some scalars m and M. Then for r ≤ s

(Asx,x)1/s ≤ Δ(h,r,s)(Arx,x)1/r
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for every unit vector x ∈ H, where

Δ(h,r,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r

s− r
hs−hr

hr −1

)1/s( s
r− s

hr −hs

hs−1

)−1/r

if rs �= 0,(
h

s
hs−1

e logh
s

hs−1

)1/s

if r = 0,

(
h

r
hr−1

e logh
r

hr−1

)−1/r

if s = 0.

Proof. Suppose that s ≥ r > 0. By using Theorem 2.53 to Mr1H ≥ Ar ≥ mr1H > 0, we
have

K
(
mr,Mr,

s
r

)
(Arx,x)

s
r ≥ (Asx,x),

since s
r > 1. Therefore it follows that

K
(
mr,Mr,

s
r

) 1
s (Arx,x)

1
r ≥ (Asx,x)

1
s ,

since 1
s > 0.

Suppose that 0 > s ≥ r. By using Theorem 2.53 to ms1H ≥ As ≥ Ms1H > 0, we have

K
(
Ms,ms,

r
s

)
(Asx,x)

r
s ≥ (Arx,x),

since r
s > 1. Therefore it follows that

K
(
Ms,ms,

r
s

) 1
r (Asx,x)

1
s ≤ (Arx,x)

1
r ,

since 1
r < 0 and hence we have

K
(
mr,Mr,

s
r

) 1
s (Arx,x)

1
r = K

(
Ms,ms,

r
s

)− 1
r (Arx,x)

1
r

≥ (Asx,x)
1
s .

In the case s > 0 > r, we can show this theorem similarly. If we put r → 0, then notice that
(Arx,x)

1
r → Δx(A) by Theorem 2.42. In the case r = 0 < s, it follows from Corollary 2.50

that
(Asx,x) ≤ S(h,s)Δx(As).

Since s > 0, we have

(Asx,x)
1
s ≤ S(h,s)

1
s Δx(As)

1
s = S(h,s)

1
s Δx(A).

Similarly, in the case r < 0 = s, we have

Δx(A) ≤ S(h,r)−
1
r (Arx,x)

1
r .

�
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Remark 2.9 If we put s = 1 and r → 0 in Theorem 2.61, then we obtain a continuous
version of the Specht theorem (Theorem 2.49):

(Ax,x) ≤ S(h,1)exp(logAx,x) = S(h,1)Δx(A)

for every unit vector x ∈ H.

Therefore we have the following expression: Let h > 0 and r,s ∈ R. Then

Δ(h,r,s) =

⎧⎪⎨
⎪⎩

K(hr, s
r )

1
s if rs �= 0,

Δ(h,0,s) = S(hs)
1
s if r = 0,

Δ(h,r,0) = S(hr)−
1
r if s = 0.

(2.97)

In particular, if we put r = 0 and s = 1, then Δ(h,0,1) = S(h,1). Thus we call Δ(h,r,s) a
generalized Specht ratio. We investigate basic properties of a generalized Specht ratio,
also see Lemma 2.47.

Theorem 2.62 For given r ≤ s, a generalized Specht ratio have the following properties.

(i) For given r < s, a function Δ(h,r,s) is strictly decreasing for 0 < h < 1 and strictly
increasing for h > 1.

(ii) Δ(1,r,s) = 1 and Δ(h,r,s) = Δ(h−1,r,s) for all h > 0.

(iii) For h > 1, Δ(h,r,s) → h as s → ∞.

(iv) For 0 < h < 1, Δ(h,r,s) → 1
h as s → ∞.

(v) Δ(h,r,s) = Δ(h,s,r)−1.

(vi) Δ(h,−s,−r) = Δ(h,s,r).

(vii) Δ(h,r− s,s) = Δ(h,s,r)
−s
r−s for s > 0.

Proof. Let Δ(h) = Δ(h,r,s). Since

logΔ(h) =
1
s

log

(
r

s− r
hs−hr

hr −1

)
− 1

r
log

(
s

s− r
hs−hr

hs−1

)
,

it follows from L’Hospital’s theorem that

lim
h→1

logΔ(h) = lim
h→1

1
s

log

(
r

s− r
shs−1− rhr−1

rhr−1

)
− 1

r
log

(
s

s− r
shs−1− rhr−1

shs−1

)

=
1
s

log1− 1
r

log1

= 0

and so Δ(1) = 1. Also, we have Δ(h) = Δ
( 1

h

)
by a direct computation. Therefore, we have

(ii).
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Furthermore we have by a differential calculation

d
dh

logΔ(h) = hr−1k(h)
r(hs −1)− s(hr−1)

sr(hr −1)(hs−1)(hs−hr)

where
k(h) = (s− r)hs− shs−r + r.

Suppose that 0 < r < s. Then we have k(h) > 0 since k′(h) > 0 and k(1) = 0. Since hr−1
r

is strictly increasing for r ∈ R, it follows that 0 < r < s implies s(hr − 1) < r(hs − 1).
Therefore we have d

dh logΔ(h) > 0. Similarly we have d
dh logΔ(h) > 0 in the case of r <

0 < s or r < s < 0 and hence a function Δ(h) is strictly increasing for all h > 1. On the
other hand, we see that a function Δ(h) is strictly decreasing for all 0 < h < 1. Therefore
we have (i).

Suppose that h > 1. Then(
s

s− r
hs−hr

hs−1

)−1/r

=
(

1
1− r

s

1−hr−s

1−h−s

)−1/r

→ 1

as s → ∞ and by L’Hospital’s theorem

lim
s→∞

log

(
r

s− r
hs−hr

hr −1

)1/s

= lim
s→∞

log
(

r
s−r

hs−hr

hr−1

)
s

= lim
s→∞

(
hs

hs−hr logh− 1
s− r

)
→ logh.

Therefore we have Δ(h,r,s) → h as s → ∞. If 0 < h < 1, then 1/h > 1 and as we proved
above, we have Δ(h,r,s) = Δ(h−1,r,s) → h−1 as s→ ∞ by (ii). Therefore we have (iii) and
(iv).

By definition, we have (v),(vi) and (vii). �

Next, we show a difference type reverse inequalities to Theorem 2.60.

Theorem 2.63 Let A be a positive invertible operator on a Hilbert space H such that
M1H ≥ A ≥ m1H > 0 for some scalars m and M. Then for r ≤ s

(Asx,x)1/s − (Arx,x)1/r ≤ max
θ∈[0,1]

{
(θMs +(1−θ )ms)

1
s − (θMr +(1−θ )mr)

1
r

}
for every unit vector x ∈ H.

Proof. Suppose that 0 < r ≤ s. Since 0 < r
s < 1, we have

A
r
s ≥ M

r
s −m

r
s

M−m
A+

Mm
r
s −mM

r
s

M−m
1H .

Replacing A by As, we have

(μ(Asx,x)+ ν)
1
r ≤ (Arx,x)

1
r
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for every unit vector x ∈ H, where

μ =
Mr −mr

Ms −ms and ν =
Msmr −msMr

Ms −ms .

Therefore, it follows that

(Asx,x)1/s − (Arx,x)1/r ≤ (Asx,x)1/s − (μ(Asx,x)+ ν)
1
r

= max
t∈T

{
t

1
s − (μt + ν)

1
r

}
,

where T denotes the open interval joining ms to Ms and T is the closure of T . We set
θ = (t−ms)/(Ms −ms). Then a simple calculation implies μt + ν = θMr +(1−θ )mr.�

Remark 2.10 If we put s = 1 and r → 0 in Theorem 2.63, then we obtain a continuous
version of the Mond-Shisha theorem (Theorem 2.52):

(Ax,x)−Δx(A) = (Ax,x)− exp(logAx,x) ≤ D(m,M)

for every unit vector x ∈ H, because

max
θ∈[0,1]

{θM +(1−θ )m−Mθm1−θ} = D(m,M).

Finally, we show an alternative proof of Theorem 2.57 by means of a generalized
Specht ratio:

Theorem 2.64 The following property on K(p) = K(h, p) and S(h) = S(h,1) hold:

S(h) = eK′(1) = e−K′(0).

Proof. Since Δ(h,r,1) = K
(
hr, 1

r

)
= K(h,r)−1/r, we have

logS(h) = lim
r→0

logΔ(h,r,1) = lim
r→0

− logK(h,r)
r

= lim
r→0

− logK(h,r)− logK(h,0)
r−0

= −K′(0)
K(0)

= −K′(0)

and hence logS(h) = −K′(0). On the other hand,

Δ(h, p, p+1)p+1 → Δ(h,0,1) = S(h) as p → 0

and hence

logΔ(h, p, p+1)p+1 = logK

(
hp,

p+1
p

)
= logK(h, p+1)

1
p

=
logK(h, p+1)− logK(h,1)

p+1−1
→ K′(h,1)

K(h,1)
= K′(h,1)

as p → 0. Therefore we have logS(h) = K′(h,1). �
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2.8 Notes

A generalization of the Kantorovich inequality is firstly initiated by Ky Fan [30], a power
mean version generalization by Mond [138] and a matrix version generalization by Mond
and Pečarić [151] and [146]. Mond and Pečarić established the method which gives com-
plementary inequalities to Jensen’s type inequalities associated with convex functions in
[141] and [150]. Elementary proofs of both extensions of Ky Fan and Mond and Pečarić
generalizations of the Kantorovich type inequalities are given in Furuta [71, 72, 78]. On
the other hand, S.-E.Takahasi, Tsukada, Tanahashi and Ogiwara [182] discussed an inverse
type of Jensen’s inequality for convex functions in the framework of integral theory. By
reconstructing both ideas of Furuta and Takahasi, we rediscover new merits for the Mond-
Pečarić method and have many applications in operator inequalities.

The results included in Sections 2.1, 2.2 and 2.3 are essentially due to Mond and
Pečarić [144, 145]. For our exposition in Section 2.4 we have used [136]. The de-
terminant for invertible operators to the canonical trace was introduced by Fuglede and
Kadison [32, 33] and afterwards Arveson [11] developed it in general von Neumann al-
gebras. An extension of the notion of the determinant to vector states is due to J.I.Fujii
and Seo [49], and J.I.Fujii, Izumino and Seo [45]. The results in Section 2.6 are due to
[52, 186, 49, 45, 51]. Theorem 2.45 is due to Arveson [11]. The Specht ratio is due to
Specht [178] and rediscovered by Izumino [45]. Properties of the Specht ratio are due to
Tominaga [186] and J.I.Fujii, Seo and Tominaga [52]. Corollary 2.50 is essentially due to
[72]. Theorem 2.54 and Lemma 2.55 are due to Furuta [87] and J.I.Fujii, M.Fujii, Seo and
Tominaga [43]. Theorem 2.56 is due to Yamazaki and Yanagida [199]. Theorem 2.57 is
due to Furuta [88]. Lemma 2.59 is due to Yamazaki [197]. Difference and ratio inequalities
in power means are due to Mond [138], Mond and Shisha [158, 159, 177] and Yamazaki
[197]. The condition number is introduced by Turing [189].





Chapter3
Li-Mathias type inequality

In this chapter we develope a generalization of a theorem of Li-Mathias
as an application of Mond-Pečarić method. We study complementary
inequalities to Jensen’s type inequalities under a more general setting
without the assumption of the convexity and the concavity. Lower and
upper boundaries in converses of Jensen’s type inequalities are given. In
the finite dimensional case we see that boundaries on complementary in-
equalities are the optimum estimate in the sense that a non trivial positive
linear map attaining the equality is given.

3.1 Preliminary and Li-Mathias inequality

In this section we first introduce results due to Li and Mathias. Let Mn be an algebra of
all n× n complex square matrices with matrix norm and Hn subspace of all n× n Her-
mitian matrices with partial order. Li and Mathias showed the following complementary
inequalities to Jensen’s type inequalities under a more general setting:

Theorem 3.1 Let f ∈ C ([m,M]) be a real valued continuous function on an interval
[m,M] and A∈Hn a n×n Hermitian matrix with Sp(A)⊆ [m,M] for some scalars m < M.
Let Φ ∈ PN [Mn,Mk] be a normalized positive linear map. Then

89
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[
max

ϕ ∈ {conc.}
f ≤ ϕ

min
m≤t≤M

{ f (t)−ϕ(t)}
]

1k

≤ f (Φ(A))−Φ( f (A))

≤
[

min
ϕ ∈ {conx.}

f ≥ ϕ

max
m≤t≤M

{ f (t)−ϕ(t)}
]

1k.

(3.1)

Additionally, if f (t) > 0 for all t ∈ [m,M], then[
max

ϕ ∈ {conc.}
f ≤ ϕ

min
m≤t≤M

{ f (t)/ϕ(t)}
]

Φ( f (A))

≤ f (Φ(A))

≤
[

min
f ∈ {conx.}
f ≥ ϕ > 0

max
m≤t≤M

{ f (t)/ϕ(t)}
]

Φ( f (A)) ,

(3.2)

where {conx.} (resp. {conc.}) is the set of all matrix convex (resp. matrix concave) func-
tions on [m,M].

Furthermore, if f is concave or convex, then they showed that boundaries in Theorem
3.1 are the optimum estimate. We denote by λmin(A) = min{λ |λ ∈ Sp(A)} and λmax(A) =
max{λ |λ ∈ Sp(A)} for a Hermitian matrix A ∈ Hn.

Theorem 3.2 Let A ∈ Hn be a n×n Hermitian matrix with λmin(A) = m and λmax(A) =
M. Let f ∈ C ([m,M]) and put

h(t) =
f (M)− f (m)

M−m
(t−m)+ f (m).

If f is concave (resp. convex) on [m,M], then the minimum (resp. maximum) in the upper
(resp. lower) boundary in (3.1) in Theorem 3.1 are attained at the linear function h and
in each case there is a normalized positive linear map Φ for which f (Φ(A))−Φ( f (A)) is
equal to the upper (resp. lower) boundary.

Li and Mathias applied their inequalities to the power functions and obtained the fol-
lowing converses of Jensen’s type inequalities in Corollary 1.22 (i) and (ii): Let A ∈ Hn

be a Hermitian matrix with Sp(A) ⊆ [m,M] for some scalars m < M and Φ ∈ PN [Mn,Mk]
be a normalized positive linear map. Then real constants α j and β j ( j = 1,2) such that for
p ∈ R\{0}

β21k ≤ Φ(A)p −Φ(Ap) ≤ β11k, (3.3)

α2Φ(Ap) ≤ Φ(A)p ≤ α1Φ(Ap), (3.4)

are explicitly determined, which depends on m,M, p and h = M/m.
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Remark 3.1 The quantity

h(A) :=
{
‖A−1‖‖A‖ if A is nonsingular,
∞ if A is singular.

is called the condition number for matrix inversion with respect to the matrix norm ‖ · ‖
[107, pp. 336-340]. If A ∈ Hn is a Hermitian positive definite matrix with λmin(A) = m
and λmax(A) = M, then it follows that h(A) = M/m.

Moreover, Li and Mathias cited that the following two problems for continuous func-
tions f and g could be studied.

Problem 1. Determine β1,β2 such that for a given Hermitian matrix A with Sp(A) ⊆
[m,M],

β1 1k ≤ Φ( f (A))−g(Φ(A)) ≤ β2 1k.

For solution of this problem they said that we can let

β1 = max
g(t)≤ct+d

min
m≤t≤M

{
t− (c f−1(t)+d)

}
,

β2 = min
g(t)≥ct+d

max
m≤t≤M

{
t− (c f−1(t)+d)

}
if f−1 exists.

Problem 2. Determine α1,α2 such that for a given Hermitian matrix A with Sp(A) ⊆
[m,M],

α1 Φ( f (A)) ≤ g(Φ(A)) ≤ α2 Φ( f (A)) .

In the following section, we show converses of Jensen’s type inequalities as the solu-
tions of problems 1 and 2 due to Li and Mathias.

Though it is just a repetition of the previous chapter, we observe converses of Jensen’s
inequality in the framework of matrix theory as a special case of (3.1) in the remainder
of this section. We recall the famous Kantorovich inequality in the framework of matrix
theory, which is given by Nobel prize winner Leonid Vitalevič Kantorovič [2, 195] in 1948:
Let A ∈ Hn be a n× n Hermitian matrix with eigenvalues 0 < λ1 ≤ . . . ≤ λn and x ∈ C

n.
Then

x∗Ax · x∗A−1x
(x∗x)2 ≤ (λ1 + λn)2

4λ1λn
. (3.5)

The equality is attained if and only if

λ1 = . . . = λl < λl+1 ≤ . . . ≤ λn−h < λn−h+1 = . . . = λn, (3.6)

where l ≥ 1 and h ≥ 1 are multiple of λ1 and λn respectively and

x =
1√
2
(E1u1±E2u2).

Here E1 ∈ Mn,l and E2 ∈ Mn,h are matrices which columns contain orthogonal eigenvec-
tors of matrix A corresponding to λ1 and λn respectively, and u1 and u2 are unit vectors. A
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converse of the inequality (3.5) is: 1≤ x∗Ax ·x∗A−1x/(x∗x)2. This is the well know version
of Cauchy-Schwartz inequality: (x∗y)2 ≤ x∗x · y∗y, where x,y �= 0 are vectors.

In 1966 Ky Fan [30] proved the following inequality. Let A j ∈ Hn with Sp(Aj) ⊆
[m,M], j = 1, . . . ,k, x j ∈ C

n such that ∑k
j=1 x∗j x j = 1 and p �= 0,1 arbitrary integer number

(not necessarily positive). Then

∑k
j=1 x∗jApx j(

∑k
j=1 x∗jAx j

)p ≤ (p−1)p−1

pp

(Mp −mp)p

(M−m)(mMp−Mmp)p−1 . (3.7)

If we put p = −1 in (3.7) we obtain a generalized Kantorovich inequality (3.5):

k

∑
j=1

x∗jAx j ·
k

∑
j=1

x∗jA
−1x j ≤ (M +m)2

4Mm
,

which was proved by Ky Fan in 1959.
In 1997 Mond and Pečarić [154, Theorems 3, 4] gave the following two generalization

of Ky Fan inequality (3.7) :

Theorem 3.3 Let A j ∈ Hn with Sp(Aj) ⊆ [m,M], j = 1, · · · ,k and Uj ∈ Mr,n such that
∑k

j=1UjU∗
j = 1r. Let f be a strictly convex differentiable function on [m,M]. Then the

inequality
k

∑
j=1

Uj f (Aj)U∗
j ≤ β 1r +

k

∑
j=1

f
(
UjA jU

∗
j

)
(3.8)

holds for some β such that 0 < β < (M−m)(μ f − f ′(m)). The value of β (which depends
on m, M, f ) in (3.8) can be determined more precisely as follows: Let t = t̄ be the unique
solution of f ′(t) = μ , (m < t̄ < M); then β = f (m)− f (t̄)+ μ(t−m) is sufficient for the
inequality (3.8).

Theorem 3.4 Let A j,Uj, j = 1, · · · ,k be as in Theorem 3.3. Let f be a strictly convex
two differentiable function on [m,M]. Assume that, additionally, either of the following
conditions holds: (i) f > 0 on [m,M] or (ii) f < 0 on [m,M]. Then the inequality

k

∑
j=1

Uj f (Aj)U∗
j ≤ αo

k

∑
j=1

f
(
UjA jU

∗
j

)
(3.9)

holds for αo > 1 in case (i); or 0 < αo < 1 in case (ii). The value of αo in (3.9) can
be determined more precisely as follows: If μ f = 0, let t = t̄ be the unique solution of
f ′(t) = 0, (m < t̄ < M); then αo = f (m)/ f (t̄) is sufficient for the inequality (3.9). If μ f �= 0,
let t = t̄ be the unique solution of μ f f (t)− f ′(t)( f (m)+μ f (t−m)) = 0, (m < t̄ < M); then
αo = μ f / f ′(t̄) is sufficient for the inequality (3.9).

In the following section we give a generalization of the inequalities (3.1) and (3.2) due
to Li and Mathias in the framework of operator theory. In the last section we apply these
inequalities to power functions and obtain a generalization of Ky Fan type inequalities
(3.8) and (3.9). We moreover devote special attention to consideration the cases where the
equality holds.
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3.2 Generalization of Li-Mathias inequality

We first cite the following Jensen’s type inequality for two functions as a special case of
Lemma 2.2.

Lemma 3.5 Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊆ [m,M] for some
scalars m < M and Φ ∈ PN [B(H),B(K)] a normalized positive linear map. Let f ,g ∈
C ([m,M]) such that f ≤ g on [m,M]. If f ∈ C ([m,M]) is operator convex on [m,M], then

f (Φ(A)) ≤ Φ(g(A)). (3.10)

In the case where f is operator concave such that f ≥ g on [m,M], we have the opposite
inequality.

We shall generalize a theorem of Li-Mathias (Theorem 3.1). Notice that the convexity
of f is not assumed in Theorem 3.6. We denote by {conx.} (resp. {conc.}) the set of all
operator convex (resp. operator concave) functions on [m,M].

Theorem 3.6 Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊆ [m,M] for some
scalars m < M and Φ ∈ PN [B(H),B(K)] a normalized positive linear map. Let f ,g ∈
C ([m,M]) and F(u,v) a real valued function defined on U ×V, where U and V are in-
tervals such that U ⊃ f [m,M], V ⊃ g[m,M]. If F(u,v) is operator monotone in the first
variable u, then {

max
ϕ ∈ {conx.}

ϕ ≤ f

min
m≤t≤M

F [ϕ(t),g(t)]

}
1K

≤ F [Φ( f (A)) ,g(Φ(A))]

≤
{

min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

F [ϕ(t),g(t)]

}
1K .

(3.11)

Proof. We prove the right hand inequality of (3.11). Let ϕ be an operator concave
function on [m,M] such that f ≤ ϕ on [m,M]. It follows from Lemma 3.5 that Φ( f (A)) ≤
ϕ (Φ(A)) . Using the operator non-decreasing character of F(·,v), we have

F [Φ( f (A)) ,g(Φ(A))] ≤ F [ϕ (Φ(A)) ,g(Φ(A))]

≤
{

max
t∈Sp(Φ(A))

F [ϕ(t),g(t)]
}

1K ≤
{

max
m≤t≤M

F [ϕ(t),g(t)]
}

1K .

Therefore, we minimize this boundary over all operator concave functions ϕ on [m,M]
such that ϕ ≥ f to obtain the upper boundary in (3.11). We prove the left hand inequality
in the same way. �

As a complementary result, we cite the following theorem:
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Theorem 3.7 Under the same hypothesis as in Theorem 3.6, except that F is operator
non-increasing in its first variable, the following inequalities hold{

max
ϕ ∈ {conc.}

ϕ ≥ f

min
m≤t≤M

F [ϕ(t),g(t)]

}
1K

≤ F [Φ( f (A)) ,g(Φ(A))]

≤
{

min
ϕ ∈ {conx.}

ϕ ≤ f

max
m≤t≤M

F [ϕ(t),g(t)]

}
1K .

(3.12)

Proof. We prove this theorem in the same way as Theorem 3.6. �

If we put g ≡ f in Theorem 3.6, then we have the following corollary:

Corollary 3.8 Let A, Φ and F be as in Theorem 3.6. If f ∈ C ([m,M]), then{
max

ϕ ∈ {conx.}
ϕ ≤ f

min
m≤t≤M

F [ϕ(t), f (t)]

}
1K

≤ F [Φ( f (A)) , f (Φ(A))]

≤
{

min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

F [ϕ(t), f (t)]

}
1K .

(3.13)

Remark 3.2 Notice that the set {ϕ |ϕ ∈ {conc.}, ϕ ≥ f on [m,M]} is partial ordered with
relation≥. Because the constant function ϕ(t)= maxm≤s≤M f (s) and ψ(t)= minm≤s≤M f (s)
for all t ∈ [m,M] are matrix concave functions, this set is not-empty and is bounded from
above. We can show that there indeed is a function ϕ that attains the minimum at the
boundary of the right-hand side of (3.11) over all real valued continuous concave func-
tions. Then ϕ is a linear function which is equal to f at m and M.

If f is a convex function, then we can determine explicitly an operator concave function
ϕ on [m,M] in the right hand inequality of (3.11) which bounded f at upper side and for
which the minimum is attained. For the left hand inequality of (3.11) we similarly have the
dual result. This is contents of the following theorem.

Theorem 3.9 Let A, Φ, F, f and g be as in Theorem 3.6. If f is convex, then

F [Φ( f (A)) ,g(Φ(A))] ≤
{

max
m≤t≤M

F
[
μ f t + ν f ,g(t)

]}
1K . (3.14)

If f is concave, then

F [Φ( f (A)) ,g(Φ(A))] ≥
{

min
m≤t≤M

F
[
μ f t + ν f ,g(t)

]}
1K , (3.15)
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where

μ f =
f (M)− f (m)

M−m
and ν f =

M f (m)−mf (M)
M−m

.

Proof. If we put
(
h(t) = μ f t + ν f

)
, then h is operator concave. The convexity of f

ensures that f (t) ≤ h(t) for all t ∈ [m,M]. If ϕ ∈ {conc.} is an operator concave function
and f (t) ≤ ϕ(t) for all t ∈ [m,M] then h(m) = f (m) ≤ ϕ(m) and h(M) = f (M) ≤ ϕ(M).
Since an operator concave function is necessarily (real) concave, we have h(t) ≤ ϕ(t) for
all t ∈ [m,M]. Using the operator non-decreasing character of F(·,v), we have

F [h(t),g(t)] ≤ F [ϕ(t),g(t)] for all t ∈ [m,M].

It follows that the minimum in the right hand of (3.14) is attained at h. Thus we proved the
inequality (3.14). The inequality (3.15) is proved in the same way. �

Remark 3.3 Notice that in hypothesis of Theorem 3.9 we do not need the condition that
f is operator concave (resp. operator convex) .

3.3 Li-Mathias type complementary inequalities

As applications of Theorem 3.6, we discuss an extension of Theorem 3.1, which give us a
unified view to boundaries in two Li-Mathias inequalities (3.1) and (3.2). As a matter of
fact, if we choose an appropriate value of the constant α , then we obtain two converses of
Jensen’s type inequality. Moreover, we shall consider the optimality of our results.

Theorem 3.10 Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊆ [m,M] for some
scalars m < M and Φ ∈ PN [B(H),B(K)] a normalized positive linear map. Let f ,g ∈
C ([m,M]). Then for any real numbers α ∈ R

αg(Φ(A))+ β1 1K ≤ Φ( f (A)) ≤ αg(Φ(A))+ β2 1K , (3.16)

where

β1 = max
ϕ ∈ {conx.}

ϕ ≤ f

min
m≤t≤M

{ϕ(t)−αg(t)} ,

β2 = min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

{ϕ(t)−αg(t)} .

Proof. Let us put F(u,v) = u−αv in Theorem 3.6. Then it follows from the right-hand
side of (3.11) that

Φ( f (A))−αg(Φ(A)) ≤ min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

F[ϕ(t),g(t)]1K

= min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

{ϕ(t)−αg(t)}1K .
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We prove the left hand side inequality in (3.16) in the same way. �

Remark 3.4 Boundaries in Theorem 3.10 are rather hard to be evaluated in a general
way. One may consider only linear functions ϕ instead of all operator concave or operator
convex functions. This simplifies the evaluation of boundaries at the cost of the possibility
to get lower accuracy. For example, we observe the right hand inequality of (3.16) in
a special case when α ∈ R+ and f ≡ g is a concave function on [m,M]. Then we can
consider the graph of the linear function ϕr which satisfies ϕr ≥ f and

min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

{ϕ(t)−α f (t)} ≤ max
m≤t≤M

{ϕr(t)−α f (t)} ,

being a tangent to the graph of y = f (t) passing through a point (r, f (r)) with m ≤ r ≤ M,
that is,

ϕr(t) = f (r)+ f ′(r)(t − r).

The maximum value (maxm≤t≤M{ϕr(t)−α f (t)}) occurs at t = m or M. It follows that the
optimal solution of this maximization problem occurs at the function ϕr such that

ϕr(m)−α f (m) = ϕr(M)−α f (M).

We are not sure whether the obtained inequality

Φ( f (A))−α f (Φ(A)) ≤
[

max
m≤t≤M

{ϕr(t)−α f (t)}
]

1K = [ϕr(m)−α f (m)] 1K

is sharp or not in the sense of the following definition.

Definition 3.1 A right hand (a left hand) inequality of (3.16) is said to be sharp if for
any selfadjoint operator A ∈ Bh(H) with Sp(A) ⊆ [m,M] for some scalars m < M and
any two function f ,g ∈ C ([m,M]) there is a non-trivial normalized positive linear map
Φ0 ∈ PN [B(H),B(K)] for which the boundary is attained:

Φ0( f (A)) = αg(Φ0(A))+ β1K.

If we put α = 1 in Theorem 3.10, then we obtain a generalization of the inequality
(3.1) in Theorem 3.1. Furthermore, a simple differential calculus determines the point for
which the extreme value of function ϕ −g needed for Section 3.4 is attained.

Corollary 3.11 Let A, Φ, f and g as in Theorem 3.10. Then[
max

ϕ ∈ {conx.}
ϕ ≤ f

min
m≤t≤M

{ϕ(t)−g(t)}
]

1K

≤ Φ( f (A))−g(Φ(A))

≤
[

min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

{ϕ(t)−g(t)}
]

1K .

(3.17)
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Moreover if g is a strictly convex differentiable function on [m,M], then for any differ-
entiable function ϕ ∈ {conc.} such that ϕ ≥ f on [m,M]

max
m≤t≤M

{ϕ(t)−g(t)}= ϕ(to)−g(to),

where to ∈ (m,M) is defined as the unique solution of ϕ ′(t) = g′(t) if ϕ ′(m) > g′(m) and
ϕ ′(M) < g′(M), otherwise to is defined as m or M according as ϕ ′(m)≤ g′(m) or ϕ ′(M)≥
g′(M).

In the dual case, i.e. if g is strictly concave and ϕ is operator convex on [m,M], the
conditions determining to change their order.

Proof. The inequality (3.17) follows from Theorem 3.10 if we put α = 1. Next, let g
be strictly convex and ϕ (operator) concave and both differentiable. Let h(t) = ϕ(t)−g(t).
Obviously h′(t) is strictly decreasing on [m,M]. Then we have one of three possibilities. If
h′(m) > 0 and h′(M) < 0, then the equation h′(t) = 0 has exactly one solution to ∈ (m,M)
and hence the function h has the maximum value on [m,M] which is attained for t = to. If
h′(m)≤ 0, then h′ ≤ 0 on [m,M]. It follows that h is decreasing on [m,M] and its maximum
(on [m,M]) is attained for t = m. If h′(M) ≥ 0 then h′ ≥ 0 on [m,M], i.e. h is increasing on
[m,M] and it has the maximum value for t = M. The case when g is a strictly concave and
ϕ a strictly convex both differentiable function is proved in the same way. �

Remark 3.5 If we put g ≡ f and F(u,v) = u− v in Theorem 3.6, then we obtain the first
inequality (3.1) in Theorem 3.1 due to Li-Mathias.

If we choose the constant α such that β = 0 in Theorem 3.10, then we obtain a general-
ization of an inequality (3.2) in Theorem 3.1. Furthermore, we determine the point where
we have the extreme value of function ϕ/g that is needed for Section 3.4.

Corollary 3.12 Let A, Φ, f and g as in Theorem 3.10. Suppose in addition that either of
the following conditions holds:
(i) g(t) > 0 for all t ∈ [m,M]
or
(ii) g(t) < 0 for all t ∈ [m,M].

Then [
max

ϕ ∈ {conx.}
ϕ ≤ f

min
m≤t≤M

{
ϕ(t)
g(t)

}]
g(Φ(A))

≤ Φ( f (A))

≤
[

min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

{
ϕ(t)
g(t)

}]
g(Φ(A))

(3.18)
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in the case (i), or [
max

ϕ ∈ {conx.}
ϕ ≤ f

max
m≤t≤M

{
ϕ(t)
g(t)

}]
g(Φ(A))

≤ Φ( f (A))

≤
[

min
ϕ ∈ {conc.}

ϕ ≥ f

min
m≤t≤M

{
ϕ(t)
g(t)

}]
g(Φ(A))

(3.19)

in the case (ii).
Furthermore, if g is a strictly convex twice differentiable function on [m,M] and if

f/g > 0 on [m,M] under (i) or (ii), then for any strictly operator concave twice differen-
tiable function ϕ ∈ {conc.} such that ϕ ≥ f on [m,M]

max
m≤t≤M

{
ϕ(t)
g(t)

}
=

ϕ(to)
g(to)

(
resp. min

m≤t≤M

{
ϕ(t)
g(t)

}
=

ϕ(to)
g(to)

)
,

where to ∈ [m,M] is defined as the unique solution of ϕ ′(t)g(t) = ϕ(t)g′(t) if ϕ ′(m) >

ϕ(m) g′(m)
g(m) and ϕ ′(M)< ϕ(M) g′(M)

g(M) , otherwise to is defined as m or M according to ϕ ′(m)≤
ϕ(m) g′(m)

g(m) or ϕ ′(M) ≥ ϕ(M) g′(M)
g(M) .

In the dual case, i.e. if g is strictly concave, f/g < 0 on [m,M] and ϕ is operator convex
on [m,M], the conditions determining to change their order.

Proof. Inequalities (3.18) and (3.19) follow from Theorem 3.10 if we put the value of
constant α j such that β j = 0 ( j = 1,2). By the simple differential calculus, we obtain the
corollary. �

Remark 3.6 If we put g ≡ f > 0 in Corollary 3.12 and we take into consideration that
t �→ −t−1, t > 0, is an operator monotone function, then we obtain the second inequality
(3.2) in Theorem 3.1 due to Li and Mathias.

When we add new hypothesis about convexity or concavity of f in Theorem 3.10 we
obtain sharp inequalities in the sense of Definition 3.1 in the matrix case.

To prove that complementary inequalities are sharp, we need the following lemma.
We denote by

μk =
k(M)− k(m)

M−m
and νk =

Mk(m)−mk(M)
M−m

for a real valued function k on an interval [m,M].

Lemma 3.13 Let A ∈ Hn be a n×n Hermitian matrix with λmin(A) = m and λmax(A) =
M. Let f ,g ∈ C ([m,M]) and F(u,v) a real function defined on U ×V, where U ⊃ f [m,M]
andV ⊃ g[m,M]. Then for any t∗ ∈ [m,M] there is a real valued normalized positive linear
map Φ ∈ PN [Mn,C] such that

F [Φ( f (A)) ,g(Φ(A))] = F
[
μ f t

∗ + ν f ,g(t∗)
]
.
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Proof. Let U be a unitary matrix such that

U∗AU = diag(λ1,λ2, . . . ,λn),

where (λ1 = m) and (λ2 = M.) For t∗ ∈ [m,M], we denote θ = (M − t∗)/(M−m). We
define a map Φ : Hn → C by

Φ(X) =
(√

θe1 +
√

1−θe2

)∗
X
(√

θe1 +
√

1−θe2

)
, (3.20)

where e1 and e2 are unit eigenvectors of A corresponding to λ1 and λ2, respectively. Then
it follows that the map Φ is a normalized positive linear map (see Example 1.10-V). Now
we have

g(Φ(A)) = g
((√

θe1 +
√

1−θe2

)∗
A
(√

θe1 +
√

1−θe2

))
= g(θλ1 +(1−θ )λ2) = g(θm+(1−θ )M) = g(t∗)

and

Φ( f (A)) =
(√

θe1 +
√

1−θe2

)∗
f (A)

(√
θe1 +

√
1−θe2

)
= θ f (m)+ (1−θ ) f (M) =

M− t∗

M−m
f (m)+

t∗ −m
M−m

f (M) = μ f t
∗ + ν f .

Thus we have
F [Φ( f (A)) ,g(Φ(A))] = F

[
μ f t

∗ + ν f ,g(t∗)
]
,

as required. �

By using Lemma 3.13, we show that the upper boundary of complementary inequalities
are the optimum estimate in the matrix case. We cite Theorem 2.4 in § 2.1 for the case of
k = 1 as follows:

Theorem 3.14 Let A ∈ Bh(H) be a selfadjoint operator with Sp(A) ⊆ [m,M] for some
scalars m < M, Φ∈PN [B(H),B(K)] a normalized positive linear map and f ,g∈C ([m,M]).
If f is convex (resp. concave) on [m,M], then for any real numbers α ∈ R

Φ( f (A)) ≤ αg(Φ(A))+ β 1K (resp. Φ( f (A)) ≥ αg(Φ(A))+ β 1K), (3.21)

where

β = max
m≤t≤M

{μ f t + ν f −αg(t)}
(

resp. β = min
m≤t≤M

{μ f t + ν f −αg(t)}
)

.

Suppose in addition that either of the following conditions holds (i) αg is concave
(resp. convex), or (ii) αg is strictly convex (resp. strictly concave) differentiable. Then

β = μ f to + ν f −αg(to),
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where

to =
{

M if μ f ≥ αμg, (resp. μ f ≤ αμg),
m if μ f < αμg, (resp. μ f > αμg),

in the case (i),

or

to =

{
g′−1(μ f /α) if αg′(m) < μ f < αg′(M), (resp.αg′(M) < μ f < αg′(m)),
m if αg′(m) ≥ μ f , (resp. αg′(m) ≤ μ f ),
M if αg′(M) ≤ μ f , (resp. αg′(M) ≥ μ f ),

in the case (ii).
The inequality (3.21) is sharp in the sense of Definition 3.1, that is, for any Hermitian

matrix A with λmin(A) = m and λmax(A) = M there is a real valued normalized positive
linear map Φ such that

Φ( f (A))−αg(Φ(A)) = β .

Proof. If we put F(u,v) = u−αv in Theorem 3.9, then the inequality (3.21) follows
from (3.14) in the case of convexity of f and from (3.15) in the case of concavity.

To prove that the inequality (3.21) is sharp in the matrix case, let to ∈ [m,M] be the
point at which an extreme value is reached

μ f to + ν f −αg(to) = max
m≤t≤M

{μ f t + ν f −αg(t)}

(resp. μ f to + ν f −αg(to) = min
m≤t≤M

{μ f t + ν f −αg(t)}).

Denote Φ : Mn → R a normalized positive linear map defined by

Φ(X) =
(√

θe1 +
√

1−θe2

)∗
X
(√

θe1 +
√

1−θe2

)
,

where θ = (M − to)/(M − m), e1 and e2 are unit eigenvectors of A corresponding to
λmin(A) = m and λmax(A) = M respectively. Applying Lemma 3.13 for t∗ = to, we obtain
Φ( f (A))−αg(Φ(A)) = μ f to + ν f −αg(to). This implies the inequality (3.21) is sharp.�

Remark 3.7 Considering in the same way as in Remark 3.4, we can obtain the inequality
opposite to the first inequality (3.21). Let Φ and A be as in Theorem 3.14, f ,g ∈C ([m,M])
be differentiable and f be convex. For the sake of convenience let α = 1. Then from
the left hand inequality of (3.16) in Theorem 3.10 we have β 1K ≤ Φ( f (A))−g(Φ(A)) for
β = max

ϕ ∈ {conx.}
ϕ ≤ f

min
m≤t≤M

{ϕ(t)−g(t)} . Instead of maximizing over all operator convex functions

we took an easier route over the favorable chosen linear functions. If f ′(m) ≤ μg ≤ f ′(M),
then

{ f (r)− μgr−νg}1K ≤ Φ( f (A))−g(Φ(A)),

when g is strictly convex or

{ f (r)−g(to)+ μg(to − r)}1K ≤ Φ( f (A))−g(Φ(A)),
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when g is strictly concave, where r = f ′−1(μg) and to = g′−1(μg). Otherwise, if μg < f ′(m)
or f ′(M) < μg, then[

max
s∈{m,M}

min
m≤t≤M

{
f (s)+ f ′(s)(t − s)−g(t)

}]
1K ≤ Φ( f (A))−g(Φ(A)).

Indeed, because f is convex, we have

[
min

m≤t≤M
{hr(t)}

]
1K ≤

[
max

ϕ ∈ {conx.}
ϕ ≤ f

min
m≤t≤M

{ϕ(t)−g(t)}
]

1K

≤ Φ( f (A))−g(Φ(A)),

where hr(t)= f (r)+ f ′(r)(t−r)−g(t), r∈ [m,M]. We choose r = f ′−1(μg), when f ′(m)≤
μg ≤ f ′(M); r = m when μg < f ′(m) or r = M when f ′(M) < μg. In the case of convexity
of g the function hr is concave and its minimum is attained at m or M. (Particularly, we
have hr(m) = hr(M) when r = f ′−1(μg)). In the case of concavity of g the function hr is
convex and so its minimum is attained at to ∈ [m,M].

We can obtain the opposite inequality to the second inequality (3.21) in the same way.

Remark 3.8 If we put α = 1 in Theorem 3.14, then we obtain a generalization of Theo-
rem 3.2 due to Li and Mathias.

Further, in the case when α = 1, we have the next estimate for the boundary β from the
inequality (3.21) (see Theorem 2.4): β = maxs∈{m,M} { f (s)−αg(s)} in the case (i) and
f (m)−g(m) ≤ β ≤ f (m)−g(m)+

[
μ f −g′(m)

]
(M−m) in the case (ii); or if g ≡ f then(

0 < β <
[
μ f − f ′(m)

]
(M−m).

)
By Theorem 3.14, we show that boundaries of the ratio type reverse inequalities in

Theorem 2.9 of § 2.2 are optimal in the matrix case as follows:

Corollary 3.15 Let A and Φ as in Theorem 3.14. Let f ,g ∈ C ([m,M]) and either of the
following conditions holds:
(i) g(t) > 0 for all t ∈ [m,M]
or
(ii) g(t) < 0 for all t ∈ [m,M].

If f is convex on [m,M], then

Φ( f (A)) ≤ αo g(Φ(A)) , (3.22)

where

αo = max
m≤t≤M

{
μ f t + ν f

g(t)

}
in the case (i),

or αo = min
m≤t≤M

{
μ f t + ν f

g(t)

}
in the case (ii).

Suppose in addition that either of the following conditions holds: f (m) > 0, f (M) > 0
in the case of (i) or f (m) < 0, f (M) < 0 in the case of (ii) and g is a strictly convex twice
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differentiable function on [m,M]. Then the inequality (3.22) is sharp in the matrix case,
that is, for any Hermitian matrix A with λmin(A) = m and λmax(A) = M the equality is
attained for a real valued normalized positive linear map Φ defined by (3.20) and

to =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

the solution of
μ f g(t) =

(
μ f t + ν f

)
g′(t)

}
if f (m) g′(m)

g(m) < μ f < f (M) g′(M)
g(M) ,

M if μ f ≥ f (M) g′(M)
g(M) ,

m if μ f ≤ f (m) g′(m)
g(m) .

(3.23)

In the dual case ( f concave, g strictly concave) we have the sharp opposite inequality
with dual extreme, with the dual estimation and the opposite condition while determining
to.

Proof. To prove that the inequality (3.22) is sharp for a convex function f and a strictly
convex function g, we only proceed with the case (i) since the proof in the case (ii) is
essentially the same.

Since f (m) > 0, f (M) > 0 and g(t) > 0, we have (μ f t +ν f )/g(t) > 0. It follows from

Corollary 3.12 that maxm≤t≤M{ μ f t+ν f
g(t) } = μ f t0+ν f

g(t0)
for t0 ∈ [m,M] determined by (3.23).

Using Lemma 3.13 for t∗ = t0 and the map Φ defined by (3.20) in Lemma 3.13, we have

Φ( f (A)) =
μ f t0 + ν f

g(t0)
g(Φ(A)) =

[
max

m≤t≤M
{μ f t + ν f

g(t)

]
g(Φ(A)).

�

Remark 3.9 Similarly to Remark 3.7, we obtain the opposite inequality of (3.22). Let Φ
and A be as in Corollary 3.15, f ,g ∈ C ([m,M]) be twice differentiable, f > 0, g > 0 on

[m,M] and f be convex. If g(m) f ′(m)
f (m) ≤ μg ≤ g(M) f ′(M)

f (M) , then

f (r)
μgr+ νg

g(Φ(A)) ≤ Φ( f (A)),

when g is a strictly convex function or

f (r)
μgr+ νg

μgto + νg

f (to)
g(Φ(A)) ≤ Φ( f (A)),

when g is strictly concave, where r ∈ [m,M] is the unique solution of f ′(r)
f (r) = μg

μgr+νg
and

to ∈ [m,M] is the unique solution of g′(t)
g(t) = μg

μgt+νg
. Otherwise, if μg

g(m) < f ′(m)
f (m) or f ′(M)

f (M) <
μg

g(M) , then

max
s∈{m,M}

min
m≤t≤M

{
f (s)+ f ′(s)(t − s)

g(t)

}
g(Φ(A)) ≤ Φ( f (A)).

Similarly, we can obtain inequality opposite to (3.22) when f ,g < 0.
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Remark 3.10 Further, we have the following estimate for the boundary αo in the in-

equality (3.22) (see Theorem 2.9): max
{

f (m)
g(m) ,

f (M)
g(M)

}
≤ αo in the case (i) or 0 ≤ αo ≤

min
{

f (m)
g(m) ,

f (M)
g(M)

}
in the case (ii); but if g ≡ f then 1 < αo in the case (i) or 0 < αo < 1 in

the case (ii).

3.4 Application to power functions

In this section we shall consider the upper and lower boundary of the difference and ratio
of Jensen’s type inequalities in the power function. Firstly, we give a generalization of the
inequalities (3.3) and (3.4) due to Li and Mathias.

Theorem 3.16 Let A ∈ B+(H) be a positive operator with Sp(A) ⊆ [m,M] for some
scalars 0 < m < M and Φ ∈ PN [B(H),B(K)] a normalized positive linear map and α,q∈
R . If f is convex on [m,M], then

Φ( f (A)) ≤ αΦ(A)q + β 1K (3.24)

where

β =

{
α(q−1)

(
μ f
αq

) q
q−1 + ν f if m <

(
μ f
αq

) 1
q−1

< M and αq(q−1) > 0,

max{ f (M)−αMq, f (m)−αmq} otherwise.

If f is concave on [m,M], then

Φ( f (A)) ≥ αΦ(A)q + β 1K (3.25)

where

β =

{
α(q−1)

(
μ f
αq

) q
q−1 + ν f if m <

(
μ f
αq

) 1
q−1

< M and αq(q−1) < 0,

min{ f (M)−αMq, f (m)−αmq} otherwise.

Moreover, if p ∈ R\[0,1) (resp. p ∈ (0,1]), then

Φ(Ap) ≤ αΦ(A)q + β1 1K (resp. Φ(Ap) ≥ αΦ(A)q + β2 1K), (3.26)

where

β1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(q−1)
(

1
αq μt p

) q
q−1 + νt p

if m <
(

1
αq μt p ,

) 1
q−1

< M and αq(q−1) > 0,

max{mp−αmq,Mp−αMq} otherwise.
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(resp.

β2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(q−1)
(

1
αq μt p

) q
q−1 + νt p

if m <
(

1
αq μt p

) 1
q−1

< M and αq(q−1) < 0,

min{mp−αmq,Mp −αMq} otherwise.)

Proof. Suppose that f is convex. If we put g(t) = tq in Theorem 3.14, then we obtain
the inequality (3.24). In fact, if αq(q− 1) > 0, then αg(t) is strictly convex and we have

β = μ f to + ν f −αg(to) for to =
(

μ f
αq

) q
q−1

if m < to < M, otherwise to = m or to = M. If f

is concave, then we apply Theorem 3.14 in the dual case. Moreover, if we put f (t) = t p in
these inequalities, then we obtain (3.26). �

Remark 3.11 All inequalities in Theorem 3.16 are sharp in the matrix case.

Next, we shall show the following two theorems, which are extensions of the inequali-
ties (3.3) and (3.4) due to Li and Mathias:

Theorem 3.17 Let A ∈ B+(H) be a positive operator with Sp(A) ⊆ [m,M] for some
scalars 0 < m < M and Φ ∈ PN [B(H),B(K)] a normalized positive linear map. If p ∈
R\{0} and q ∈ R, then

β2 1K ≤ Φ(Ap)−Φ(A)q ≤ β1 1K (3.27)

where

β1 =

{
C(m,M, p,q) if m <

(
1
q μt p

) 1
q−1

< M and q(q−1) > 0,

max{mp−mq,Mp−Mq} otherwise,

if p ∈ R\[0,1],

β1 =

{(
q
p

) p
p−q −

(
q
p

) q
p−q

if m <
(

q
p

) 1
p−q

< M and 0 < p < q,

max{mp−mq,Mp−Mq} otherwise,

if p ∈ (0,1]

and

β2 =

{
C(m,M, p,q) if m <

(
1
q μt p

) 1
q−1

< M and q(q−1) < 0,

min{mp−mq,Mp −Mq} otherwise,

if p ∈ (0,1),

β2 =

{(
q
p

) p
p−q −

(
q
p

) q
p−q

if m <
(

q
p

) 1
p−q

< M and q(p−q) > 0,

min{mp−mq,Mp −Mq} otherwise,

if p ∈ [−1,0) or p ∈ [1,2],
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β2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−C(m,M,q, p) if m ≤
(

1
p μtq

) 1
p−1 ≤ M and q(q−1) > 0,

(1− p)
(

1
p μtq

) p
p−1 +(q−1)

(
1
q μtq

) q
q−1

if m ≤
(

1
p μtq

) 1
p−1 ≤ M and q(q−1) < 0,

maxs∈{m,M}minm≤t≤M
{
(1− p)sp + psp−1t − tq

}
otherwise,

if p < −1 or p > 2,

where C(m,M, p,q) is defined as (2.38) in Section 2.3:

C(m,M, p,q) = (q−1)
(

μt p

q

) q
q−1

+ νt p

=
Mmp −mMp

M−m
+(q−1)

(
Mp −mp

q(M−m)

) q
q−1

.

Proof. First we consider β1.
Case 1. Suppose p > 1 or p < 0. Put α = 1 in the first inequality (3.26) in Theorem 3.16
and we obtain β1.
Case 2. Suppose 0 < p ≤ 1. Then f (t) = t p is operator concave, so we can take that ϕ ≡ f
at the right hand inequality of (3.17) in Corollary 3.11. Hence we determine β1 in the usual
way.

Next, we consider β2.
Case 1. Suppose 0 < p < 1. Put α = 1 in the second inequality (3.26) in Theorem 3.16
and we obtain β2.
Case 2. Suppose −1 ≤ p < 0 or 1 ≤ p ≤ 2. Then f (t) = t p is operator concave, so we can
take that ϕ ≡ f in the left hand inequality of (3.17) in Corollary 3.11. Hence we determine
β2 in the usual way.
Case 3. Suppose p > 2 or p <−1. Then f (t) = t p is convex and we can applied Remark 3.7
for determination of β2. �

Remark 3.12 The right hand inequality of (3.27) in Theorem 3.17 is sharp for all values
of p and the left hand inequality is sharp when p ∈ [−1,2] in the matrix case.

Remark 3.13 If we put p = q in Theorem 3.17, then we obtain the inequality (3.3) due
to Li and Mathias for

β1 =

{
C(m,M, p) if p > 2 or p < −1,

0 if −1 ≤ p < 0 or 1 ≤ p ≤ 2,
−C(m,M, p) if 0 < p < 1,

β2 =
{
−C(m,M, p) if p > 1 or p < 0,
0 if 0 < p ≤ 1,
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where C(m,M, p) is defined as ( 2.39 ) in § 2.3:

C(m,M, p) = (p−1)
(

μt p

p

) p
p−1

+ νt p

= Mp 1−h1−p

1−h
+mp(p−1)

{
p(h−1)
hp−1

} p
1−p

, h =
M
m

.

Theorem 3.18 Let A ∈ B+(H) be a positive operator with Sp(A) ⊆ [m,M] for some
scalars 0 < m < M and Φ ∈ PN [B(H),B(K)] a normalized positive linear map. If p ∈
R\{0} and q ∈ R, then

α2Φ(A)q ≤ Φ(Ap) ≤ α1Φ(A)q, (3.28)

where

α1 =

⎧⎨
⎩

K(m,M, p,q)
if m < q

1−q
νt p

μt p
< M and q(q−1) > 0 and pq > 0,

max{mp−q,Mp−q} otherwise,

if p ∈ R\[0,1],

α1 =
{

mp−q if p < q,
Mp−q if p ≥ q,

if p ∈ (0,1],

and

α2 =
{

K(m,M, p,q) if m < q
1−q

νt p

μt p
< M and 0 < q < 1,

min{mp−q,Mp−q} otherwise,

if p ∈ (0,1),

α2 =
{

mp−q if p > q,
Mp−q if p ≤ q,

if p ∈ [−1,0) or p ∈ [1,2],

α2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K(m,M,q, p)−1 if pmq−1 ≤ μtq ≤ pMq−1 and q(q−1) > 0,
1−p
1−q K(m,M,q, p)−1K(m,M,q)

if pmq−1 ≤ μtq ≤ pMq−1 and 0 < q < 1,

maxs∈{m,M}minm≤t≤M

{
(1−p)sp+psp−1t

tq

}
otherwise,

if p < −1 or p > 2,

where K(m,M, p,q) is defined as (2.20) in Section 2.2:

K(m,M, p,q) =
mMp −Mmp

(q−1)(M−m)

(
(q−1)(Mp−mp

q(mMp−Mmp)

)q

.
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Proof. The proof is similar to the proof of Theorem 3.17. �

Remark 3.14 The right hand inequality (3.28) in Theorem 3.18 is sharp for all values of
p and the left hand inequality is sharp when p ∈ [−1,2] in the matrix case.

Remark 3.15 If we put p = q in Theorem 3.18, then we obtain Li-Mathias inequality
(3.4) for

α1 =

{
K(m,M, p)−1 if p > 2 or p < −1,
1 if −1 ≤ p < 0 or 1 ≤ p ≤ 2,
K(m,M, p) if 0 < p < 1,

α2 =
{

K(m,M, p) if p > 1 or p < 0,
1 if 0 < p ≤ 1,

where K(m,M, p) is defined as ( 2.21 ) in § 2.2:

K(m,M, p) =
mMp −Mmp

(p−1)(M−m)

(
(p−1)(Mp−mp)
p(mMp−Mmp)

)p

=
hp−h

(p−1)(h−1)

(
p−1

p
hp−1
hp−h

)p

, h =
M
m

.

3.5 Matrix inequalities of Ky Fan type

In this section we give a generalization of Mond-Pečarić matrix inequalities (3.8) and (3.9)
of Ky Fan type in the matrix case. It follows from Theorem 3.6 for a special choice of
maps. Throughout this section, it assumes that H is a finite dimensional Hilbert space.

Corollary 3.19 Let A j ∈ Hn with Sp(Aj) ⊆ [m,M], j = 1, · · · ,k and Uj ∈ Mt,n such that

∑k
j=1UjU∗

j = 1t . Let f ,g∈C ([m,M]) and F(u,v) be real function defined onU×V, where
U ⊃ f [m,M], V ⊃ g[m,M]. If F(u,v) is matrix monotone in u, then

{
max

ϕ ∈ {conx.}
ϕ ≤ f

min
m≤t≤M

F [ϕ(t),g(t)]

}
1t

≤ F [
k

∑
j=1

Uj f (Aj)U∗
j ,g(

k

∑
j=1

UjA jU
∗
j )]

≤
{

min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

F [ϕ(t),g(t)]

}
1t .

(3.29)
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Proof. Let U ∈ Mt,n·k be an unitary matrix. Let a map Φ : Mn·k → Mt be defined by
Φ(A) = UAU∗. Obviously, Φ is normalized positive linear map (see Example 1.10-II). It
follows from Theorem 3.6 that an inequality{

max
ϕ ∈ {conx.}

ϕ ≤ f

min
m≤t≤M

F [ϕ(t),g(t)]

}
1t

≤ F [U f (A)U∗,g(UAU∗)]

≤
{

min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

F [ϕ(t),g(t)]

}
1t ,

(3.30)

holds for any matrix A ∈ Hn·k with Sp(A) ⊆ [m,M]. For Aj and Uj, j = 1, · · · ,k from the
hypothesis of this corollary we have ∑k

j=1UjA jU∗
j = UAU∗, where A = A1+̇A2+̇ · · · +̇Ak,

U = [U1U2 · · ·Uk] and ∑k
j=1Uj f (Aj)U∗

j = U f (A)U∗. If we put A and U in (3.30), then we
obtain the desired inequality (3.29). �

In the same way, applying theorem 3.9 we have the next corollary:

Corollary 3.20 Let A j, Uj, , j = 1, · · · ,k, f , g and F(u,v) as in Corollary 3.19. If f is
convex, then

F

[
k

∑
j=1

Uj f (Aj)U∗
j ,g

(
k

∑
j=1

UjA jU
∗
j

)]
≤ β 1t ,

for β = max
m≤t≤M

F
[
μ f t + ν f ,g(t)

]
. If f is concave, then the opposite inequality holds with

β = min
m≤t≤M

F
[
μ f t + ν f ,g(t)

]
.

If we put F(u,v) = u−αv, α ∈ R in Corollaries 3.19 and 3.20 we have the next two
corollaries:

Corollary 3.21 Let A j ∈ Hn with Sp(Aj) ⊆ [m,M], j = 1, · · · ,k and Uj ∈ Mt,n such that

∑k
j=1UjU∗

j = 1t . If f ,g ∈ C ([m,M]) and α ∈ R, then

α g

(
k

∑
j=1

UjA jU
∗
j

)
+ β2 1t ≤

k

∑
j=1

Uj f (Aj)U∗
j ≤ α g

(
k

∑
j=1

UjA jU
∗
j

)
+ β1 1t ,

holds for

β1 = min
ϕ ∈ {conc.}

ϕ ≥ f

max
m≤t≤M

{ϕ(t)−αg(t)} ,

β2 = max
ϕ ∈ {conx.}

ϕ ≤ f

min
m≤t≤M

{ϕ(t)−αg(t)} .

Corollary 3.22 Let A j, Uj, j = 1, · · · ,k, f and g be as in Corollary 3.21. If f is convex
and α ∈ R, then

k

∑
j=1

Uj f (Aj)U∗
j ≤ α g

(
k

∑
j=1

UjA jU
∗
j

)
+ β 1t ,
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holds for β = max
m≤t≤M

{
μ f t + ν f −αg(t)

}
. If f is concave, then the opposite inequality

holds with β = min
m≤t≤M

{
μ f t + ν f −αg(t)

}
.

Remark 3.16 We put α = 1 in Corollary 3.22 and obtain a generalization of Theorem 3.3
with boundary as in Theorem 3.14. If we choose the value of constant α such that β = 0
in Corollary 3.22, then we obtain a generalization of Theorem 3.4 with boundary as in
Corollary 3.15.

In the same way we can apply map Φ : A �→ UAU∗ (A ∈ Mn·k) to the remainder of
results in § 3.3 and in particular on power functions in § 3.4.

3.6 Notes

Theorem 3.1 and Theorem 3.2 are due to Li and Mathias [122].
For our exposition we have used [135]. Mićić, Pečarić, Seo and Tominaga discussed

Li-Mathias type inequalities in the framework of matrix theory. However, we discuss in
the framework of operator theory for the sake of convenience.





Chapter4
Power mean

In this chapter we study reverse inequalities of power operator means on
positive linear maps. We investigate several properties of power operator
means under the chaotic order.

4.1 Preliminary

For positive numbers x j ∈ R+, the power (arithmetic) means

Mr(x1, · · · ,xk) =
(

xr
1 + · · ·+ xr

k

k

)1/r

make a path of means from the harmonic one at r =−1 to the arithmetic one ar r = 1 via the
geometric one at r = 0 (precisely the limit as r → 0). We consider the traditional averaging
operation which is a natural noncommutative operator version of the power arithmetic
mean: For positive invertible operators Aj ∈ B++(H) ( j = 1, · · · ,k)

A = (A1, · · · ,Ak) �→ Mr(A) :=

(
1
k

k

∑
j=1

Ar
j

)1/r

with r ∈ R\{0}.

This operation Mr(A) is not an operatormean except for r = 1 in the sense of Definition 5.1.
In fact, this mean does not satisfy the monotonicity condition (S1) and nor the transformer

111
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inequality (S3) in Definition 5.1. However, by the operator monotonicity of the function tr

for 0 < r ≤ 1 it follows that

Ms(A) ≥ Mr(A) whenever s ≥ r ≥ 1

as observed in Bhagwat and Subramanian [18]. The limit of Mr(A) as r �→ 0 exists and

equals exp
(

1
k ∑k

j=1 logAj

)
as mentioned later in Theorem 4.19. Contrary to the scalar

case or the case of commuting A and B, this limit does not coincide with the geometric

mean A � B in general. The map A = (A1, · · · ,Ak) �→ exp
(

1
k ∑k

j=1 logAj

)
is not operator

monotone in A.

In this chapter, we study the (weighted) power operator mean on positive linear maps
in a more general setting: Let Aj ∈ Bh(H) be positive invertible operators with Sp(Aj) ⊆
(0,∞), Φ j ∈ PN [B(H),B(K)] normalized positive linear maps and ω j ∈ R+ such that
∑k

j=1 ω j = 1 ( j = 1, . . . ,k). Then the power operator mean is defined as

A = (A1, · · · ,Ak) �→ M[r]
k (A;ΦΦ,w) :=

(
k

∑
j=1

ω j Φ j
(
Ar

j

))1/r

with r ∈ R\{0}. (4.1)

The power operator mean has the following monotonicity. More detailed consideration
is given in after theorem (Theorem 4.4 and Theorem 4.7).

Theorem 4.1
M[r]

k (A;ΦΦ,w) ≤ M[s]
k (A;ΦΦ,w) (4.2)

holds if either r ≤ s,r �∈ (−1,1),s �∈ (−1,1) or 1
2 ≤ r ≤ 1 ≤ s or r ≤−1 ≤ s ≤− 1

2 .

Proof. Suppose that 1 ≤ r ≤ s. Since 0 < r
s ≤ 1, it follows from the operator con-

cavity of tr/s that Φ j(A
r
s
j ) ≤ Φ j(Aj)

r
s by Davis-Choi-Jensen’s inequality (Theorem 1.20).

Multiplying them with ω j ∈ R+ and summing of all j = 1, · · · ,k, we have

k

∑
j=1

ω j Φ j

(
A

r
s
j

)
≤

k

∑
j=1

ω j Φ j (Aj)
r
s ≤

(
k

∑
j=1

ω j Φ j (Aj)

) r
s

.

Replacing Aj by As
j and raising both sides to the power 1

r (≤ 1), it follows from Theorem 1.8
(Löwner-Heinz inequality) that

(
k

∑
j=1

ω j Φ j
(
Ar

j

)) 1
r

≤
(

k

∑
j=1

ω j Φ j
(
As

j

)) 1
s

for 1 ≤ r ≤ s. (4.3)

Suppose that r ≤ s ≤−1. Since 0 < s
r ≤ 1, as we prove above, it follows that

k

∑
j=1

ω j Φ j
(
As

j

)≤
(

k

∑
j=1

ω j Φ j
(
Ar

j

)) s
r

.
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Raising both sides to the power −1 ≤ 1
s < 0, we have

(
k

∑
j=1

ω j Φ j
(
Ar

j

)) 1
r

≤
(

k

∑
j=1

ω j Φ j
(
As

j

)) 1
s

for r ≤ s ≤−1. (4.4)

Suppose that r ≤−1,1 ≤ s. By the operator convexity of t−1, we have

k

∑
j=1

ω j Φ j

(
A−1

j

)
≥
(

k

∑
j=1

ω j Φ j (Aj)

)−1

and hence (
k

∑
j=1

ω j Φ j

(
A−1

j

))−1

≤
k

∑
j=1

ω j Φ j (Aj) .

If we put r = 1 in ( 4.3 ) and s = −1 in ( 4.4 ), then it follows that

(
k

∑
j=1

ω j Φ j
(
Ar

j

)) 1
r

≤
(

k

∑
j=1

ω j Φ j

(
A−1

j

))−1

≤
k

∑
j=1

ω j Φ j (Aj)

≤
(

k

∑
j=1

ω j Φ j
(
As

j

)) 1
s

.

Therefore the desired inequality holds for r ≤−1,1 ≤ s.
Suppose that 1

2 ≤ r ≤ 1 ≤ s. Since 1 ≤ 1
r ≤ 2, it follows from the operator convexity of

t
1
r that (

k

∑
j=1

ω j Φ j (Aj)

) 1
r

≤
k

∑
j=1

ω j Φ j (Aj)
1
r ≤

k

∑
j=1

ω j Φ j

(
A

1
r
j

)
.

Replacing Aj by Ar
j, we have

(
k

∑
j=1

ω j Φ j
(
Ar

j

)) 1
r

≤
k

∑
j=1

ω j Φ j (Aj) .

The assumption s ≥ 1 implies

(
k

∑
j=1

ω j Φ j
(
Ar

j

)) 1
r

≤
k

∑
j=1

ω j Φ j (Aj) ≤
(

k

∑
j=1

ω j Φ j
(
As

j

)) 1
s

.

Therefore the desired inequality holds for 1
2 ≤ r ≤ 1 ≤ s.

The case of r ≤−1 ≤ s ≤− 1
2 is proved in the same way. �
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4.2 Complementary inequality to power means

In this section, we investigate the lower and upper estimates of the difference and ratio
in the power operator means on a positive linear map: For a positive invertible operator
A ∈ B++(H) and a normalized positive linear map Φ ∈ PN [B(H),B(K)] consider

Φ(Ar)
1
r for r ∈ R\{0}

in the case of k = 1 in (4.1).
By using Theorem 4.1 for the case of k = 1, it follows that this mean has the following

monotonicity:

Lemma 4.2
Φ(Ar)1/r ≤ Φ(As)1/s (4.5)

holds if either r ≤ s,r �∈ (−1,1),s �∈ (−1,1) or 1
2 ≤ r ≤ 1 ≤ s or r ≤−1 ≤ s ≤− 1

2 .

First we prepare the following intervals given in Figure 4.1 and Table 4.1.
Based on the theory of extended operator inequalities displayed in Chapter 2, we show

the complementary inequalities to (4.5).
First, we recall the following result (see Remark 3.15):

Lemma 4.3 Let Φ ∈ PN [B(H),B(K)] be a normalized positive linear map and A ∈
B++(H) a positive invertible operator with Sp(A) ⊆ [m,M] for some scalars 0 < m < M.
Then

α2Φ(A)p ≤ Φ(Ap) ≤ α1Φ(A)p (4.6)

for

α2 =

{
K(m,M, p)−1 if p < −1 or 2 < p,
1 if −1 ≤ p < 0 or 1 ≤ p ≤ 2,
K(m,M, p) if 0 < p < 1,

α1 =
{

K(m,M, p) if p < 0 or 1 < p,
1 if 0 < p ≤ 1,

where a generalized Kantorovich constant K(m,M, p) is defined as ( 2.21 ) in § 2.2:

K(m,M, p) =
mMp−Mmp

(p−1)(M−m)

(
p−1

p
Mp −mp

mMp −Mmp

)p

=
hp−h

(p−1)(h−1)

(
p−1

p
hp−1
hp−h

)p

, h =
M
m

.

If we put p = s/r or p = r/s in (4.6) of Lemma 4.3 and replace A by Ar or A by As

respectively we obtain the following ratio type inequalities as complementary inequalities
to the power means given in Theorem 4.4.
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Figure 4.1: Intervals (i)–(iv)

(i) r ≤ s, s �∈ (−1,1), r �∈ (−1,1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤−1 ≤ s ≤−1/2,
(ii) s ≥ 1, −1 < r < 1/2, r �= 0 or r ≤−1, −1/2 < s < 1, s �= 0,
(iii) −1 ≤−s ≤ r ≤ s ≤ 1, r �= 0 or −1 ≤ r ≤ s ≤ r/2 < 0,
(iv) −1/2 ≤ r/2 < s < −r ≤ 1, s �= 0.

Table 4.1: Intervals from (i) to (iv)

Theorem 4.4 Let Φ ∈ PN [B(H),B(K)] be a normalized positive linear map and A ∈
B++(H) a positive invertible operator with Sp(A) ⊆ [m,M] for some scalars 0 < m < M.
Let r,s ∈ R, r ≤ s and rs �= 0.

(i) If r ≤ s, s �∈ (−1,1), r �∈ (−1,1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤ −1 ≤ s ≤ −1/2
then

Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Φ(As)1/s.
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(ii) If 1 ≤ s, −1 < r < 1/2, r �= 0 or r ≤−1, −1/2 < s < 1, s �= 0 then

Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ(h,r,s)Φ(As)1/s.

(iii) If −1 ≤−s ≤ r ≤ s ≤ 1, r �= 0 or −1 ≤ r ≤ s ≤ r/2 < 0 then

Δ(h,r,1)−1Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ(h,r,1)Φ(As)1/s.

(iv) If −1/2 ≤ r/2 < s < −r ≤ 1, s �= 0 then

Δ(h,s,1)−1Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ(h,s,1)Φ(As)1/s,

where a generalized Specht ratio Δ(h,r,s) is defined as ( 2.97 ) in § 2.7:

Δ(h,r,s) =
{

r(hs−hr)
(s− r)(hr −1)

} 1
s
{

s(hr −hs)
(r− s)(hs−1)

}− 1
r

and h =
M
m

.

The left hand inequality is sharp when r and s satisfy (i) or (ii) and the right hand
inequality when r and s satisfy (i) in the matrix case.

Proof. Suppose that s ≥ 1 and r < 1. We put p = s
r . If 0 < r < 1 then Lemma 4.3 for

1 ≤ p ≤ 2 or p > 2 gives

Φ(A)s/r ≤ Φ(As/r) ≤ K
(
m,M, s

r

)
Φ(A)s/r if s/2 ≤ r ≤ s,

K
(
m,M, s

r

)−1 Φ(A)s/r ≤ Φ(As/r) ≤ K
(
m,M, s

r

)
Φ(A)s/r if 0 < r < s/2.

Replacing A by Ar we have

Φ(Ar)s/r ≤ Φ(As) ≤ K
(
mr,Mr, s

r

)
Φ(Ar)s/r if s/2 ≤ r ≤ s,

K
(
mr,Mr, s

r

)−1 Φ(Ar)s/r ≤ Φ(As) ≤ K
(
mr,Mr, s

r

)
Φ(Ar)s/r if 0 < r < s/2.

By raising above inequalities to the power 0 < 1/s ≤ 1, it follows from the Löwner-Heinz
theorem that

Φ(Ar)1/r ≤ Φ(As)1/s ≤ K
(
mr,Mr,

s
r

)1/s
Φ(Ar)1/r

if s/2 ≤ r ≤ s, and

K
(
mr,Mr,

s
r

)−1/s
Φ(Ar)1/r ≤ Φ(As)1/s ≤ K

(
mr,Mr,

s
r

)1/s
Φ(Ar)1/r

if 0 < r < s/2. Notice that

K
(
mr,Mr,

s
r

)1/s
= K(hr,

s
r
)1/s

=
{

r(hs −hr)
(s− r)(hr −1)

}1/s { s(hr −hs)
(r− s)(hs −1)

}−1/r

= Δ(h,r,s)
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(see Theorem 2.61 and ( 2.97 )). If we put s = 1 or r = 1 in (4.5), then we have

Φ(Ar)1/r ≤ Φ(A) ≤ Φ(As)1/s for 1/2 ≤ r ≤ 1 and s ≥ 1.

Therefore for s > 1 we have

Φ(Ar)1/r ≤ Φ(As)1/s ≤ Δ̃(h,r,s)Φ(Ar)1/r if 1/2 ≤ r ≤ 1,

Δ̃(h,r,s)−1Φ(Ar)1/r ≤ Φ(As)1/s ≤ Δ̃(h,r,s)Φ(Ar)1/r if 0 < r < 1/2.

So, we obtain

Δ̃(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Φ(As)1/s if 1/2 ≤ r ≤ 1, 1 ≤ s,

Δ̃(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ̃(h,r,s)Φ(As)1/s if 0 < r < 1/2, 1 ≤ s.

If r < 0 then Lemma 4.3 for −1 ≤ p < 0 or p < −1 with the Löwner-Heinz theorem
gives

Φ(Ar)1/r ≤ Φ(As)1/s ≤ K(Mr ,mr, s
r )

1/sΦ(Ar)1/r if r ≤−s,

K
(
Mr,mr, s

r

)−1/s Φ(Ar)1/r ≤ Φ(As)1/s ≤ K
(
Mr,mr, s

r

)1/s Φ(Ar)1/r

if −s < r < 0, where K
(
Mr,mr, s

r

)1/s = K
(
mr,Mr, s

r

)1/s = Δ̃(h,r,s) by Theorem 2.54 (i)
and Theorem 2.62 (ii). Therefore, similarly to above we have

Φ(Ar)1/r ≤ Φ(As)1/s ≤ Δ̃(h,r,s)Φ(Ar)1/r if r ≤−1,

Δ̃(h,r,s)−1Φ(Ar)1/r ≤ Φ(As)1/s ≤ Δ̃(h,r,s)Φ(Ar)1/r if −1 < r < 0.

So, we obtain

Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Φ(As)1/s if r ≤−1, 1 ≤ s,

Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ(h,r,s)Φ(As)1/s if −1 < r < 0, 1 ≤ s.

Now, suppose that 1 ≤ r ≤ s. We put p = r
s . Then Lemma 4.3 for 0 < p ≤ 1 with the

Löwner-Heinz theorem gives

K
(
ms,Ms,

r
s

)1/r
Φ(As)1/s ≤ Φ(Ar)1/r ≤ Φ(As)1/s.

Since K
(
ms,Ms, r

s

)1/r = K
(
mr,Mr, s

r

)−1/s = Δ(h,r,s)−1 by Theorem 2.54 (v), we obtain

Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Φ(As)1/s if 1 ≤ r ≤ s.

Therefore, we have the desired results in the case (i) and (ii) for 1 ≤ s.
Next we shall prove the desired results in the case (i) and (ii) for r ≤−1.
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If −1 < s < 1 we put p = r
s . If 0 < s < 1 then Lemma 4.3 for p < −1 gives

K
(
ms,Ms,

r
s

)−1
(Φ(As))r/s ≤ Φ(Ar) ≤ K

(
ms,Ms,

r
s

)
(Φ(As))r/s.

Since the function f (t) = t1/r is operator decreasing for r ≤−1, we obtain

K
(
ms,Ms,

r
s

)−1/r
Φ(As)1/s ≥ Φ(Ar)1/r ≥ K

(
ms,Ms,

r
s

)1/r
Φ(As)1/s,

so we have

Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ(h,r,s)Φ(As)1/s if 0 < s < 1, r ≤−1.

If −1 < s < 0 then Lemma 4.3 for 1 ≤ p ≤ 2 or p > 2, with the fact that the function
f (t) = t1/r is operator decreasing for r ≤−1, gives

Φ(As)1/s ≥ Φ(Ar)1/r ≥ K
(
Ms,ms, r

s

)1/r Φ(As)1/s if −1 < s ≤ r/2,

K
(
Ms,ms, r

s

)−1/r Φ(As)1/s ≥ Φ(Ar)1/r ≥ K
(
Ms,ms, r

s

)1/r Φ(As)1/s

if r/2 < s < 0, where K
(
Ms,ms, r

s

)1/r = K
(
ms,Ms, r

s

)1/r = Δ(h,r,s)−1 by Theorem 2.54
(i). If we put s = −1 or r = −1 in (4.5), then we have

Φ(Ar)1/r ≤ Φ(A−1)−1 ≤ Φ(As)1/s for r ≤−1 and −1 < s ≤−1/2,

so we have
Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Φ(As)1/s

if −1 < s ≤−1/2, r ≤−1 and

Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ(h,r,s)Φ(As)1/s

if −1/2 < s < 0, r ≤−1.
If r ≤ s ≤ −1 then we put p = s

r . Lemma 4.3 for 0 < p ≤ 1, with the fact that the
function f (t) = t1/s is operator decreasing for s ≤−1, gives

K
(
Mr,mr,

s
r

)1/s
Φ(Ar)1/r ≥ Φ(As)1/s ≥ Φ(Ar)1/r,

so we have

Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Φ(As)1/s if r ≤ s ≤−1.

We have the desired results in the case (i) and (ii) for r ≤−1.

(iii) If 0 < r ≤ s ≤ 1 then 0 < r
s ≤ 1. If we put p = r

s in Lemma 4.3 for 0 < p ≤ 1 and
replace A by As, then we obtain

K
(
ms,Ms,

r
s

)
Φ(As)r/s ≤ Φ(Ar) ≤ Φ(As)r/s.
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By raising above inequality to the power 1/r(≥ 1) it follows from Theorem 8.3 and mr1K ≤
Φ(Ar) ≤ Mr1K that

K

(
mr,Mr,

1
r

)−1

K
(
ms,Ms,

r
s

)1/r
Φ(As)1/s ≤ Φ(Ar)1/r ≤ K

(
mr,Mr,

1
r

)
Φ(As)1/s.

So, we have

Δ(h,r,1)−1Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ(h,r,1)Φ(As)1/s.

If −1 ≤ −s ≤ r < 0 then −1 ≤ r
s < 0, but if −1 ≤ r ≤ s ≤ r/2 < 0 then 1 ≤ r

s ≤ 2. If
we put p = r

s in Lemma 4.3 for −1 ≤ p < 0 or 1 ≤ p ≤ 2 and replace A by As, then we
obtain

Φ(As)r/s ≤ Φ(Ar) ≤ K
(
ms,Ms, r

s

)
Φ(As)r/s if −1 ≤−s ≤ r < 0,

Φ(As)r/s ≤ Φ(Ar) ≤ K
(
Ms,ms, r

s

)
Φ(As)r/s if −1 ≤ r ≤ s ≤ r/2 < 0.

Using that K
(
Ms,ms, r

s

)
= K

(
ms,Ms, r

s

)
by Theorem 2.54 (i) and by raising above inequal-

ities to the power 1/r≤−1, then it follows from Corollary 8.51 and Mr1K ≤Φ(Ar)≤mr1K

that

K

(
mr,Mr,

1
r

)
Φ(As)1/s ≥ Φ(Ar)1/r ≥ K

(
mr,Mr,

1
r

)−1

K
(
ms,Ms,

r
s

)1/r
Φ(As)1/s

if −1 ≤−s ≤ r < 0 or −1 ≤ r ≤ s ≤ r/2 < 0. So, we have

Δ(h,r,1)−1Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ(h,r,1)Φ(As)1/s

if −1 ≤−s ≤ r ≤ s ≤ 1, r �= 0 or −1 ≤ r < s ≤ r/2 < 0 and hence we prove (iii).

(iv) Next, let −1≤ r <−s < 0 or −1/2≤ r/2 < s < 0. Then −1 < s
r < 0 or 0 < s

r < 1
2 .

If we put p = s
r in Lemma 4.3 for −1 ≤ p < 0 or 0 < p ≤ 1 and replace A by Ar, then we

obtain

Φ(Ar)s/r ≤ Φ(As) ≤ K
(
Mr,mr, s

r

)
Φ(Ar)s/r if −1 ≤ r < −s < 0,

K
(
Mr,mr, s

r

)
Φ(Ar)s/r ≤ Φ(As) ≤ Φ(Ar)s/r if −1/2≤ r/2 < s < 0.

By raising above inequalities to the power 1/s, it follows from Theorem 8.3 and Corol-
lary 8.51 that

K

(
ms,Ms,

1
s

)−1

Φ(Ar)1/r ≤ Φ(As)1/s ≤ K

(
ms,Ms,

1
s

)
K
(
Mr,mr,

s
r

)1/s
Φ(Ar)1/r

if −1 ≤ r < −s < 0 and

K

(
Ms,ms,

1
s

)
K
(
Mr,mr,

s
r

)1/s
Φ(Ar)1/r ≥ Φ(As)1/s ≥ K

(
Ms,ms,

1
s

)−1

Φ(Ar)1/r
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if −1/2 ≤ r/2 < s < 0. Since K
(
Ms,ms, 1

s

)
= K

(
ms,Ms, 1

s

)
= Δ(h,1,s)−1 = Δ(h,s,1) by

Theorem 2.62 (v), we have

Δ(h,s,1)−1Φ(Ar)1/r ≤ Φ(As)1/s ≤ Δ(h,s,1)Δ(h,r,s)Φ(Ar)1/r

if −1/2≤ r/2 < s < −r ≤ 1, s �= 0. So, we have

Δ(h,s,1)−1Δ(h,r,s)−1Φ(As)1/s ≤ Φ(Ar)1/r ≤ Δ(h,s,1)Φ(As)1/s

if −1/2≤ r/2 < s < −r ≤ 1, s �= 0.
Hence the proof of (i) ∼ (iv) in Theorem 4.4 is now complete.
In the matrix case, by Theorem 3.18 all inequalities in the case (i) and (ii) are sharp

except when the right hand boundary is Δ. �

Similarly to above, we shall give the estimate of the difference Φ(As)1/s−Φ(Ar)1/r for
r ≤ s. We recall the following result (see Remark 3.13 in § 3.4):

Lemma 4.5 Let Φ ∈ PN [B(H),B(K)] be a normalized positive linear map and A ∈
B++(H) a positive invertible operator with Sp(A) ⊆ [m,M] for some scalars 0 < m < M.
Then

β21K ≤ Φ(Ap)−Φ(A)p ≤ β11K , (4.7)

where

β1 =
{

C(m,M, p) if p < 0 or 1 < p,
0 if 0 < p ≤ 1,

β2 =

{−C(m,M, p) if p < −1 or 2 < p,
0 if −1 ≤ p < 0 or 1 ≤ p ≤ 2,
C(m,M, p) if 0 < p < 1,

and C(m,M, p) is defined as (2.39):

C(m,M, p) =
Mmp−mMp

M−m
+(p−1)

(
1
p

Mp −mp

M−m

)p

= Mp 1−h1−p

1−h
+mp(p−1)

{
p(h−1)
hp−1

} p
1−p

, and h =
M
m

.

Lemma 4.6 Let the hypothesis of Theorem 4.4 be satisfied.
(a) If 1 ≤ r ≤ s or r ≤−1 ≤ s, then

[μ̄Φ(As)+ ν̄1K ]1/r ≤ Φ(Ar)1/r

≤
{ [

μ̄Φ(As)+
(
1− r

s

)(
s
r μ̄
) r

r−s 1K

]1/r
if −1/2 < s < 1,s �= 0,

Φ(As)1/s otherwise.
(4.8)
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(b) If r ≤ s ≤−1 or r ≤ 1 ≤ s, then

[
1
μ̄ Φ(Ar)− ν̄

μ̄ 1K

]1/s ≥ Φ(As)1/s

≥
{ [

1
μ̄ Φ(Ar)− 1

μ̄
(
1− r

s

)(
s
r μ̄
) r

r−s 1K

]1/s
if −1 < r < 1/2,r �= 0,

Φ(Ar)1/r, otherwise.
(4.9)

(c) If −1 ≤−s ≤ r ≤ s ≤ 1, r �= 0 or −1 ≤ r ≤ s ≤ r/2 < 0 then

[μ̄Φ(As)+ ν̄1K ]1/r −C
(
mr,Mr , 1

r

)
1K ≤ Φ(Ar)1/r

≤ Φ(As)1/s +C
(
mr,Mr, 1

r

)
1K .

(d) If −1/2≤ r/2 < s < −r ≤ 1, s �= 0 then

[μ̄Φ(As)+ ν̄1K ]1/r −C
(
mr,Mr , 1

r

)
1K ≤ Φ(Ar)1/r

≤
[

μ̄Φ(As)+
(
1− r

s

)(
s
r μ̄
) r

r−s 1K

]1/r
+C

(
mr,Mr , 1

r

)
1K ,

where
(

μ̄ = Mr−mr

Ms−ms

)
and

(
ν̄ = Msmr−Mrms

Ms−ms

)
.

Proof. The following two inequalities hold: If 0 < p ≤ 1, then

μt pΦ(A)+ νt p1K ≤ Φ(Ap) ≤ Φ(A)p. (4.10)

If p < 0 or 1 < p, then

μt pΦ(A)+ νt p1K ≥ Φ(Ap) ≥
{

Φ(A)p if −1 ≤ p < 0 or 1 ≤ p ≤ 2,
μt pΦ(A)+ ν∗

t p1K if p < −1 or 2 < p, (4.11)

where
(

ν∗
t p = (1− p)(μt p/p)p/(p−1).

)
Indeed, the right hand inequalities of (4.10) for 0 < p ≤ 1 and (4.11) for −1 ≤ p < 0

or 1 ≤ p ≤ 2 follow directly from (4.7) in Lemma 4.5. The right hand inequality of (4.11)
for p <−1 or 2 < p follows from Remark 3.7 for functions f (t) = t p and g(t) = μt pt. The
left hand inequalities of (4.10) and (4.11) follow from Theorem 3.14 for f (t) = t p, α = μt p

and g(t) = t.
Firstly we prove (a). Let r �∈ (−1,1). We put p = r

s in (4.10)–(4.11) and replace A by
As. Then

Φ(As)r/s ≤ Φ(Ar) ≤ μ̄Φ(As)+ ν̄1K if r ≤−1 and (r ≤ s ≤ r/2 or −r ≤ s),
μ̄Φ(As)+ ν∗1K ≤ Φ(Ar) ≤ μ̄Φ(As)+ ν̄1K if r ≤−1, r/2 < s < −r, s �= 0,
μ̄Φ(As)+ ν̄1K ≤ Φ(Ar) ≤ Φ(As)r/s if 1 ≤ r ≤ s,

where ν∗ =
(
1− r

s

)(
s
r μ̄
)r/(r−s)

. Using the fact that the function f (t) = t
1
r is operator

increasing for r ≥ 1 and operator decreasing for r ≤−1, we have

Φ(As)1/s ≥ Φ(Ar)1/r ≥ [μ̄Φ(As)+ ν̄1K ]1/r
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if r ≤−1 and (r ≤ s ≤ r/2 or −r ≤ s),

[μ̄Φ(As)+ ν∗1K ]1/r ≥ Φ(Ar)1/r ≥ [μ̄Φ(As)+ ν̄1K ]1/r

if r ≤−1, r/2 < s < −r, s �= 0,

[μ̄Φ(As)+ ν̄1K ]1/r ≤ Φ(Ar)1/r ≤ Φ(As)1/s if 1 ≤ r ≤ s.

If we put s = −1 or r = −1 in (4.5), then we have

Φ(Ar)1/r ≤ Φ(A−1)−1 ≤ Φ(As)1/s for r ≤−1 and −1 < s ≤−1/2.

So, we obtain
[μ̄Φ(As)+ ν̄1K ]1/r ≤ Φ(Ar)1/r ≤ Φ(As)1/s

if r ≤−1 ≤ s ≤−1/2 or ( r ≤−1, 1 ≤ s) or 1 ≤ r ≤ s,

[μ̄Φ(As)+ ν̄1K ]1/r ≤ Φ(Ar)1/r ≤ [μ̄Φ(As)+ ν∗1K ]1/r

if r ≤−1, −1/2 < s < 1, s �= 0. Therefore we have (a).

Next we prove (b). Let s �∈ (−1,1). We put p = s
r in (4.10)–(4.11) and replace A by

Ar. Then

Φ(Ar)s/r ≤ Φ(As) ≤ μ̃Φ(Ar)+ ν̃1K if s ≥ 1 and (s/2 ≤ r ≤ s or r ≤−s),
μ̃Φ(Ar)+ ν̃∗1K ≤ Φ(As) ≤ μ̃Φ(Ar)+ ν̃1K if s ≥ 1, −s < r < s/2, r �= 0,
μ̃Φ(Ar)+ ν̃1K ≤ Φ(As) ≤ Φ(Ar)s/r if r ≤ s ≤−1,

where μ̃ = Ms−ms

Mr−mr = 1
μ̄ , ν̃ = Mrms−Msmr

Mr−mr =− ν̄
μ̄ , ν̃∗ =

(
1− s

r

)(
r
s μ̃
) s

s−r =− ν∗
μ̄ . By rais-

ing above inequalities to the power 1
s we obtain

Φ(Ar)1/r ≤ Φ(As)1/s ≤
[

1
μ̄

Φ(Ar)− ν̄
μ̄

1K

]1/s

if s ≥ 1 and (s/2 ≤ r ≤ s or r ≤−s),

[
1
μ̄

Φ(Ar)− ν∗

μ̄
1K

]1/s

≤ Φ(As)1/s ≤
[

1
μ̄

Φ(Ar)− ν̄
μ̄

1K

]1/s

if s ≥ 1, −s < r < s/2, r �= 0,

Φ(Ar)1/r ≤ Φ(As)1/s ≤
[

1
μ̄

Φ(Ar)− ν̄
μ̄

1K

]1/s

if r < s ≤−1.

If we put s = 1 or r = 1 in (4.5), then we have

Φ(Ar)1/r ≤ Φ(A) ≤ Φ(As)1/s for s ≥ 1 and 1/2 ≤ r ≤ 1.
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So, we obtain

Φ(Ar)1/r ≤ Φ(As)1/s ≤
[

1
μ̄

Φ(Ar)− ν̄
μ̄

1K

]1/s

if 1/2 ≤ r ≤ 1 ≤ s or (s ≥ 1, r ≤−1) or r ≤ s ≤−1,[
1
μ̄

k

∑
j=1

ω jΦ(Ar)− ν∗

μ̄
1K

]1/s

≤ Φ(As)1/s ≤
[

1
μ̄

Φ(Ar)− ν̄
μ̄

1K

]1/s

if s ≥ 1, −1 < r < 1/2, r �= 0. Therefore we have (b).

Next we prove (c). If 0 < r ≤ s ≤ 1 then 0 < r
s ≤ 1 and by (4.10) we obtain

μ̄
k

∑
j=1

ω jΦ(As)+ ν̄1K ≤ Φ(Ar) ≤ Φ(As)r/s.

Using Theorem 8.3 for p = 1
r , and since mr1K ≤ μ̄Φ(As) + ν̄1K ≤ Mr1K and mr1K ≤

Φ(Ar) ≤ Mr1K we obtain

[μ̄Φ(As)+ ν̄1K ]1/r −C

(
mr,Mr,

1
r

)
1K ≤ Φ(Ar)1/r ≤ Φ(As)1/s +C

(
mr,Mr,

1
r

)
1K .

If (−1≤ r < 0 < s ≤ 1 and −1 ≤ r
s < 0) or (−1≤ r ≤ s < 0 and 1 ≤ r

s ≤ 2) then by (4.11)
we obtain

Φ(As)r/s ≤ Φ(Ar) ≤ μ̄Φ(As)+ ν̄1K .

Using Corollary 8.51 for p = 1
r < −1, and since mr1K ≤ μ̄Φ(As) + ν̄1K ≤ Mr1K and

mr1K ≤ Φ(Ar) ≤ Mr1K we obtain

Φ(As)1/s +C

(
Mr,mr,

1
r

)
I ≥ Φ(Ar)1/r ≥ [μ̄Φ(As)+ ν̄1K ]1/r −C

(
Mr,mr,

1
r

)
1K .

Since C
(
Mr,mr, 1

r

)
= C

(
mr,Mr, 1

r

)
, it follows that

[μ̄Φ(As)+ ν̄1K ]1/r −C

(
mr,Mr,

1
r

)
1K ≤ Φ(Ar)1/r ≤ Φ(As)1/s +C

(
mr,Mr,

1
r

)
1K

holds if −1 ≤−s ≤ r ≤ s ≤ 1, r �= 0 or −1 ≤ r ≤ s ≤ r/2 < 0. Therefore we have (c).

Next we prove (d). If (−1≤ r < 0 < s ≤ 1 and r
s <−1) or (−1≤ r < s < 0 and r

s > 2)
then from (4.11) we obtain

μ̄Φ(As)+ ν∗1K ≤ Φ(Ar) ≤ μ̄Φ(As)+ ν̄1K .

Using Corollary 8.51 for p = 1
r < −1 we have that

[μ̄Φ(As)+ ν̄1K ]1/r −C
(
mr,Mr, 1

r

)
I ≤ Φ(Ar)1/r

≤ [μ̄Φ(As)+ ν∗1K ]1/r +C
(
mr,Mr, 1

r

)
1K

holds if −1/2 ≤ r/2 < s < −r ≤ 1, s �= 0. Therefore we have (d). �
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Remark 4.1 Let Φ ∈ PN [Mn,Mk] be a normalized positive linear map and A ∈ H ++
n

strictly positive Hermitian matrix with Sp(A) ⊆ [m,M].
In (4.8), the left hand inequality is sharp for all values of r,s and the right hand in-

equality for 1 ≤ r ≤ s or r ≤−1 ≤ s ≤−1/2 or r ≤−1,1 ≤ s.
In (4.9), the left hand inequality is sharp for all values of r,s and the right hand in-

equality when r ≤ s ≤−1 or 1/2 ≤ r ≤ 1 ≤ s or r ≤−1,1 ≤ s.

By Lemma 4.6, we obtain the following difference type inequalities as a complemen-
tary inequality to the inequality (4.5) in Lemma 4.2.

Theorem 4.7 Let Φ j ∈ PN [B(H),B(K)] be a normalized positive linear map and A ∈
B++(H) a positive invertible operator with Sp(A) ⊆ [m,M] for some scalars 0 < m < M.

(i) If r ≤ s, s �∈ (−1,1), r �∈ (−1,1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤−1 ≤ s ≤−1/2
then

0 ≤ Φ(As)1/s −Φ(Ar)1/r ≤ Δ̃1K . (4.12)

(ii) If s ≥ 1, −1 < r < 1/2, r �= 0 or r ≤−1, −1/2 < s < 1, s �= 0 then

Δ̃∗1K ≤ Φ(As)1/s −Φ(Ar)1/r ≤ Δ̃1K . (4.13)

(iii) If −1 ≤−s ≤ r ≤ s ≤ 1, r �= 0 or −1 ≤ r ≤ s ≤ r/2 < 0 then

−C

(
mr,Mr,

1
r

)
1K ≤ Φ(As)1/s−Φ(Ar)1/r ≤ Δ̃1K +C

(
mr,Mr,

1
r

)
1K .

(iv) If −1/2 ≤ r/2 < s < −r ≤ 1, s �= 0 then

Δ̃∗1K −C

(
mr,Mr,

1
r

)
1K ≤ Φ(As)1/s −Φ(Ar)1/r ≤ Δ̃1K +C

(
mr,Mr,

1
r

)
1K ,

where

Δ̃ = max
θ∈[0,1]

{
[θMs +(1−θ )ms]

1
s − [θMr +(1−θ )mr]

1
r

}
,

Δ̃∗ = min
θ∈[0,1]∪[ d

Mr−mr , d
Mr−mr +1]

{
[θMs +(1−θ )ms]

1
s

− [θMr +(1−θ )mr−d]
1
r

}
,

d =
Msmr −Mrms

Ms −ms −
(
1− r

s

)( s
r
Mr −mr

Ms −ms

) r
r−s

.

Proof. By Lemma 4.6 (a) we obtain that

Φ(As)1/s− [μ̄Φ(As)+ ν∗1K ]1/r ≤ Φ(As)1/s −Φ(Ar)1/r

≤ Φ(As)1/s − [μ̄Φ(As)+ ν̄1K ]1/r (4.14)

holds if −1/2 < s < 1, s �= 0, r ≤−1 and

0 = Φ(As)1/s −Φ(As)1/s ≤ Φ(As)1/s−Φ(Ar)1/r

≤ Φ(As)1/s − [μ̄Φ(As)+ ν̄1K ]1/r (4.15)
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holds if 1 ≤ r ≤ s or (r ≤−1, s ≥ 1) or r ≤−1 ≤ s ≤−1/2.
By Lemma 4.6 (b) we obtain that[

1
μ̄ Φ(Ar)− ν∗

μ̄ 1K

]1/s−Φ(Ar)1/r ≤ Φ(As)1/s−Φ(Ar)1/r

≤
[

1
μ̄ Φ(Ar)− ν̄

μ̄ 1K

]1/s−Φ(Ar)1/r (4.16)

holds if −1 < r < 1/2, r �= 0, s ≥ 1 and

0 = Φ(Ar)1/r − (Ar)1/r ≤ Φ(As)1/s −Φ(Ar)1/r

≤
[

1
μ̄ Φ(Ar)− ν̄

μ̄ 1K

]1/s−Φ(Ar)1/r (4.17)

holds if r ≤ s ≤−1 or (r ≤−1, s ≥ 1) or 1/2 ≤ r ≤ 1 ≤ s.
It follows from the right hand inequalities of (4.14) and (4.15) that

Φ(As)1/s−Φ(Ar)1/r ≤ Φ(As)1/s− [μ̄Φ(As)+ ν̄1K ]1/r

≤ maxt∈T̄

{
t1/s− [μ̄ t + ν̄]1/r

}
1K

holds, where T̄ denotes the close interval joining ms to Ms. We set t = θMs +(1−θ )ms for

some θ ∈ [0,1]. Then we have μ̄ ·t+ ν̄ = θMr +(1−θ )mr and hence maxt∈T̄

{
t1/s− [μ̄ t + ν̄]1/r

}
=

Δ̃. Therefore, we obtain Φ(As)1/s −Φ(Ar)1/r ≤ Δ̃1K if 1 ≤ r ≤ s or r ≤−1 ≤ s.
It follows from the right hand inequalities of (4.16) and (4.17) that

Φ(As)1/s−Φ(Ar)1/r ≤
[

1
μ̄ Φ(Ar)− ν̄

μ̄ 1K

]1/s−Φ(Ar)1/r

≤ maxt∈T̄1

{[
1
μ̄ t− ν̄

μ̄

]1/s− t1/r

}
1K

holds, where T̄1 denotes the close interval joining mr to Mr. We set t = θMr +(1−θ )mr for

some θ ∈ [0,1]. Then we have 1
μ̄ ·t− ν̄

μ̄ = θMs+(1−θ )ms and hence maxt∈T̄1

{[
1
μ̄ t − ν̄

μ̄

]1/s− t1/r

}
=

Δ̃. Therefore, we obtain Φ(As)1/s −Φ(Ar)1/r ≤ Δ̃1K if r ≤ s ≤−1 and r ≤ 1 ≤ s.
Then we have the right hand inequalities of (i) and (ii) in this theorem.
By the left hand inequalities of (4.15) and (4.17) we have the left hand inequality of

(i).
By the left hand inequality of (4.14) we obtain that

Φ(As)1/s−Φ(Ar)1/r ≥ Φ(As)1/s− [μ̄Φ(As)+ ν∗1K ]1/r

≥ mint∈T̄

{
t1/s− [μ̄ t + ν∗]1/r

}
1K = mint∈T̄

{
t1/s− [μ̄ t + ν̄ −d]1/r

}
1K

= minθ∈[0,1]

{
[θMs +(1−θ )ms]1/s− [θMr +(1−θ )mr−d]1/r

}
1K

≥ Δ̃∗1K (4.18)

holds if −1/2 < s < 1, s �= 0, r ≤−1.
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By the left hand inequality of (4.16) we obtain that

Φ(As)1/s−Φ(Ar)1/r ≥
[

1
μ̄ Φ(Ar)− ν∗

μ̄ 1K

]1/s−Φ(Ar)1/r

≥ mint∈T̄1

{[
1
μ̄ t− ν∗

μ̄

]1/s− t1/r

}
1K

= minθ∈[0,1]

{
[θMs +(1−θ )ms + d

μ̄ ]1/s− [θMr +(1−θ )mr]1/r
}

1K

= minθ∈[ d
Mr−mr , d

Mr−mr +1]

{
[θMs +(1−θ )ms]1/s− [θMr +(1−θ )mr−d]1/r

}
1K

≥ Δ̃∗1K (4.19)

holds if −1 < r < 1/2, r �= 0, s ≥ 1.
Combined with two inequalities (4.18) and (4.19), we have the left hand inequality of

(ii) in this theorem. Therefore we have (i) and (ii) in this theorem.

By Lemma 4.6 (c) we obtain

−C
(
mr,Mr , 1

r

)
1K ≤ Φ(As)1/s −Φ(Ar)1/r

≤ Φ(As)1/s− [μ̄Φ(As)+ ν̄1K ]1/r +C(mr,Mr, 1
r )1K

≤ maxt∈T̄

{
t1/s− [μ̄ t + ν̄]1/r

}
1K +C

(
mr,Mr, 1

r

)
1K

= Δ̃1K +C
(
mr,Mr, 1

r

)
1K

if −1≤−s≤ r ≤ s≤ 1, r �= 0 or −1≤ r ≤ s≤ r/2 < 0. Then we have (iii) in this theorem.

By Lemma 4.6 (d) we obtain

Φ(As)1/s− [μ̄Φ(As)+ ν∗1K ]1/r −C
(
mr,Mr, 1

r

)
1K

≤ Φ(As)1/s−Φ(Ar)1/r

≤ Φ(As)1/s− [μ̄Φ(As)+ ν̄1K ]1/r +C
(
mr,Mr, 1

r

)
1K

if −1/2≤ r/2 < s < −r ≤ 1, s �= 0. Then

Δ̃∗1K −C
(
mr,Mr, 1

r

)
1K ≤ mint∈T̄

{
t1/s− [μ̄ t + ν̄ −d]1/r

}
1K

−C
(
mr,Mr, 1

r

)
1K ≤ Φ(As)1/s−Φ(Ar)1/r ≤ maxt∈T̄

{
t1/s− [μ̄ t + ν̄]1/r

}
1K

+C
(
mr,Mr , 1

r

)
1K = Δ̃1K +C

(
mr,Mr, 1

r

)
1K

and we have (iv) in this theorem. �

Remark 4.2 In the matrix case, let Φ ∈ PN [Mn,Mk] be a normalized positive linear
map and A ∈ H ++

n a positive definite Hermitian matrix with Sp(A) ⊆ [m,M]. Then the
inequalities (4.12) are sharp and the right hand inequality of (4.13) is sharp.
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If we put s = 1 and r = p in Theorems 4.4 and 4.7 we obtain the following two corol-
laries, which are complementary inequalities to (iii) and (iv) of Corollary 1.22.

Corollary 4.8 Let Φ j ∈ PN [B(H),B(K)] and A ∈ B++(H) with Sp(A) ⊆ [m,M] for
some scalars 0 < m < M. If p ∈ R\{0}, then

α2Φ(Ap)1/p ≤ Φ(A) ≤ α1Φ(Ap)1/p

holds for

α2 =

{
Δ−1

1 if −1 < p < 0 or 0 < p < 1/2,
1 if p ≤−1 or 1/2 ≤ p ≤ 1,
Δ1 if 1 < p,

α1 =
{ Δ1 if p < 0 or 0 < p < 1,

1 if 1 ≤ p,

where

Δ1 = (h−1)
1
p

p
hp−1

{
p−1
hp−h

} 1−p
p

and h =
M
m

.

Corollary 4.9 Let the hypothesis of Corollary 4.8 be satisfied. Then

β21K ≤ Φ(A)−Φ(Ap)1/p ≤ β11K

holds for

β2 =

{−Δ2 if −1 < p < 0 or 0 < p < 1/2,
0 if p ≤−1 or 1/2≤ p ≤ 1,
Δ2 if 1 < p,

β1 =
{ Δ2 if p < 0 or 0 < p < 1,

0 if 1 ≤ p,

where

Δ2 = M
1−hp−1

1−hp +m

(
1
p
−1

){
p(h−1)
hp−1

} 1
1−p

and h =
M
m

.

4.3 Ky Fan type inequalities

Now, in the matrix case, we observe the matrix power mean: Let Aj ∈ H ++
n be a positive

definite Hermitian matrices with Sp(Aj)⊆ [m,M] andUj ∈Mt,n be such that ∑k
j=1UjU∗

j =
1t ( j = 1, . . . ,k). Then we denote by

M[r]
k (A;U) :=

(
k

∑
j=1

U∗
j A

r
jUj

)1/r

for r ∈ R\{0}.

As applications of Theorems 4.4 and 4.7 we obtain the following results for matrix
power mean.
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Corollary 4.10 Let A j ∈H ++
n with Sp(Aj)⊆ [m,M] andUj ∈Mt,n be such that ∑k

j=1UjU∗
j =

1t ( j = 1, . . . ,k). If r,s ∈ R, r ≤ s, then

α2M
[s]
k (A;U) ≤ M[r]

k (A;U) ≤ α1M
[s]
k (A;U)

holds for same boundaries α1 and α2 as in Theorems 4.4 (i)–(iv).

Proof. For Aj and Uj ( j = 1, . . . ,k) in the hypothesis of the corollary we denote by
A = A1+̇A2+̇ · · · +̇Ak andU = [U1U2 · · ·Uk]. ThenUAU∗ = ∑k

j=1UjA jU∗
j . In the same way

as in proof of Corollary 3.19, we define the map Φ ∈ PN [Mn·k,Mt ] whit Φ(A) = UAU∗,
where U ∈ Mt,k·n is unitary matrix. It follow from Theorem 4.4 that

α2(UArU∗)1/r ≤ (UAsU∗)1/s ≤ α1(UArU∗)1/r.

Taking into account that (UArU∗)1/r = M[r]
k (A;U) we obtain the desired inequality. �

Corollary 4.11 Let A j, Uj ( j = 1, . . . ,k) and r, s be as in Corollary 4.10. Then

β21t ≤ M[s]
k (A;U)−M[r]

k (A;U) ≤ β11t

holds for same boundaries β1 and β2 as in Theorems 4.7 (i)–(iv).

Proof. We obtain the desired inequality by virtue of Theorem 4.7 when we take the
map Φ ∈ PN [Mn·k,Mt ] as we did in proof of Corollary 4.10. �

4.4 Inequalities for power means

In this section we shall generalize Theorems 4.4 and 4.7 to obtain complementary inequal-
ities to inequalities for the power operator mean on positive linear maps

M[r]
k (A;ΦΦ,w) =

(
k

∑
j=1

ω j Φ j
(
Ar

j

))1/r

for r ∈ R\{0}.

As we mentioned in Remarks 3.8 and 3.10, we can obtain analogous statements as in
Theorems 4.4 and 4.7 if we replace Φ(A) by ∑k

j=1 ω jΦ j (Aj). First we give the following
generalization of Theorem 3.10:

Theorem 4.12 Let Φ j ∈ PN [B(H),B(K)], A j ∈ B++(H) with Sp(Aj) ⊆ [m,M] and
ω j ∈ R+ be such that ∑k

j=1 ω j = 1 ( j = 1, . . . ,k). If f ,g ∈ C ([m,M]) and α ∈ R then

α g
(

∑k
j=1 ω jΦ j(Aj)

)
+ max

ϕ ∈ {conx.}
ϕ ≤ f

min
m≤t≤M

{ϕ(t)−αg(t)} 1K

≤ ∑k
j=1 ω jΦ j ( f (Aj)) (4.20)

≤ α g
(

∑k
j=1 ω jΦ j(Aj)

)
+ min

ϕ ∈ {conc.}
ϕ ≥ f

max
m≤t≤M

{ϕ(t)−αg(t)} 1K .
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Proof. We only prove the right hand inequality of (4.20). Let ϕ be operator con-
cave function on [m,M] such that f (t) ≤ ϕ(t) for every t ∈ [m,M]. Then Φ j ( f (Aj)) ≤
Φ j (ϕ(Aj)) holds. Multiplying this inequality by ω j ∈ R+ and summing over j = 1, . . . ,k,
we have

k

∑
j=1

ω jΦ j ( f (Aj)) ≤
k

∑
j=1

ω jΦ j (ϕ(Aj)) .

It follows from Jensen’s inequality for many operator maps (Lemma 2.1) that

k

∑
j=1

ω jΦ j (ϕ(Aj)) ≤ ϕ

(
k

∑
j=1

ω jΦ j(Aj)

)
.

Combined with the two inequalities above we have

k

∑
j=1

ω jΦ j ( f (Aj)) ≤ ϕ

(
k

∑
j=1

ω jΦ j(Aj)

)
.

Since m1H ≤ Aj ≤ M1H we have m1K ≤ ∑k
j=1 ω jΦ j(Aj) ≤ M1K and

∑k
j=1 ω jΦ j ( f (Aj))−α g

(
∑k

j=1 ω jΦ j(Aj)
)

≤ ϕ
(

∑k
j=1 ω jΦ j(Aj)

)
−αg

(
∑k

j=1 ω jΦ j(Aj)
)
≤ max

m≤t≤M
{ϕ(t)−αg(t)} 1K .

When we minimize this boundary over all operator concave function on [m,M] such that
ϕ ≥ f , we obtain the upper boundary in (4.20). �

Applying (4.20) to the power functions we obtain a generalization of (4.6) and (4.7) in
the same way we made it for k = 1 using Theorems 3.18 and 3.17.

Lemma 4.13 Let Φ j ∈ PN [B(H),B(K)], A j ∈ B++(H) with Sp(Aj)⊆ [m,M] and ω j ∈
R+ be such that ∑k

j=1 ω j = 1 ( j = 1, . . . ,k). If p ∈ R then

α2

(
k

∑
j=1

ω jΦ j(Aj)

)p

≤
k

∑
j=1

ω jΦ j(A
p
j ) ≤ α1

(
k

∑
j=1

ω jΦ j(Aj)

)p

(4.21)

holds for

α1 =

{
K(h, p)−1 if p < −1 or 2 < p,
1 if −1 ≤ p < 0 or 1 ≤ p ≤ 2,
K(h, p) if 0 < p < 1,

α2 =
{

K(h, p) if p < 0 or 1 < p,
1 if 0 < p ≤ 1,

where a generalized Kantorovich constant K(h, p) is defined as (2.79) in Definition 2.2:

K(h, p) =
hp−h

(p−1)(h−1)

(
(p−1)(hp−1)

p(hp−h)

)p

, h =
M
m

.
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Lemma 4.14 Let the hypothesis of Theorem 4.13 be satisfied. Then

β2 1K ≤
k

∑
j=1

ω jΦ j(A
p
j )−

(
k

∑
j=1

ω jΦ j(Aj)

)p

≤ β1 1K (4.22)

holds for

β2 =

{−C(m,M, p) if p < −1 or 2 < p,
0 if −1 ≤ p < 0 or 1 ≤ p ≤ 2,
C(m,M, p) if 0 < p < 1,

β1 =
{

C(m,M, p) if p < 0 or 1 < p,
0 if 0 < p ≤ 1,

where C(m,M, p) is defined as (2.96):

C(m,M, p) = Mp 1−h1−p

1−h
+mp(p−1)

{
p(h−1)
hp−1

} p
1−p

, h =
M
m

.

We have the following inequalities for power operator means on positive linear maps.

Theorem 4.15 Let Φ j ∈ PN [Mn,Mt ], A j ∈ Hn with Sp(Aj) ⊆ [m,M] and ω j ∈ R+ be
such that ∑k

j=1 ω j = 1 ( j = 1, . . . ,k). If r,s ∈ R, r ≤ s, then

α2M
[s]
k (A;ΦΦ,w) ≤ M[r]

k (A;ΦΦ,w) ≤ α1M
[s]
k (A;ΦΦ,w)

holds for same boundaries α1 and α2 as in Theorems 4.4 (i)–(iv).

Proof. Desired inequalities follows from (4.21) in the same way as inequalities in
Theorems 4.4 follows from (4.6) for k = 1. �

Theorem 4.16 Let the hypothesis of Theorem 4.15 be satisfied. Then

β21K ≤ M[s]
k (A;ΦΦ,w)−M[r]

k (A;ΦΦ,w) ≤ β11K

holds for same boundaries β1 and β2 as in Theorems 4.7 (i)–(iv).

Proof. First we obtain the following inequalities in the same way we obtain inequalities
in Lemma 4.6 (a)–(d) for k = 1.

(a) If 1 ≤ r ≤ s or r ≤−1 ≤ s then

[
μ̄ ∑k

j=1 ω jΦ j(As
j)+ ν̄1K

]1/r ≤
(

∑k
j=1 ω jΦ j(Ar

j)
)1/r

≤

⎧⎪⎨
⎪⎩
[
μ̄ ∑k

j=1 ω jΦ j(As
j)+

(
1− r

s

)(
s
r μ̄
) r

r−s 1K

]1/r
if −1/2 < s < 1,s �= 0,(

∑k
j=1 ω jΦ j(As

j)
)1/s

otherwise.
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(b) If r ≤ s ≤−1 or r ≤ 1 ≤ s then

[
1
μ̄ ∑k

j=1 ω jΦ j(Ar
j)− ν̄

μ̄ 1K

]1/s ≥
(

∑k
j=1 ω jΦ j(As

j)
)1/s

≥

⎧⎪⎨
⎪⎩
[

1
μ̄ ∑k

j=1 ω jΦ j(Ar
j)− 1

μ̄
(
1− r

s

)(
s
r μ̄
) r

r−s 1K

]1/s
if −1 < r < 1/2,r �= 0,(

∑k
j=1 ω jΦ j(Ar

j)
)1/r

otherwise.

(c) If −1 ≤−s ≤ r ≤ s ≤ 1, r �= 0 or −1 ≤ r ≤ s ≤ r/2 < 0 then

[
μ̄ ∑k

j=1 ω jΦ j(As
j)+ ν̄1K

]1/r −C
(
mr,Mr, 1

r

)
1K ≤

(
∑k

j=1 ω jΦ j(Ar
j)
)1/r

≤
(

∑k
j=1 ω jΦ j(As

j)
)1/s

+C
(
mr,Mr, 1

r

)
1K .

(d) If −1/2 ≤ r/2 < s < −r ≤ 1, s �= 0 then

[
μ̄ ∑k

j=1 ω jΦ j(As
j)+ ν̄1K

]1/r −C
(
mr,Mr, 1

r

)
1K ≤

(
∑k

j=1 ω jΦ j(Ar
j)
)1/r

≤
[
μ̄ ∑k

j=1 ω jΦ j(As
j)+

(
1− r

s

)(
s
r μ̄
) r

r−s 1K

]1/r
+C

(
mr,Mr, 1

r

)
1K .

In the above inequalities we denote
(

μ̄ = Mr−mr

Ms−ms

)
and

(
ν̄ = Msmr−Mrms

Ms−ms

)
.

Further we obtain the desired inequality from these inequalities in the same way we
obtained inequalities in Theorems 4.7 from inequalities in Lemma 4.6 for k = 1.

�

Remark 4.3 In the case when Φ j, j = 1, . . . ,k, are identity maps, by Theorems 4.15

and 4.16 we have inequalities for power matrix means M[r]
k (A;w) :=

(
∑k

j=1 ω jAr
j

)1/r
, r ∈

R\{0}, where Aj ∈ H ++
n and ω j ∈ R+ such that ∑k

j=1 ω j = 1 ( j = 1, . . . ,k). These results
are an extension of results from [168].

4.5 Chaotic order among power means

In this section, we study several properties of the weighted power mean of positive
invertible operators as an application.

Definition 4.1 For positive invertible operators A and B in B++(H), we denote by A�B
if logA ≥ logB and we call it the chaotic order.
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The chaotic order is based on the fact that logt is operator monotone on (0,∞), by
which it is weaker than the usual operator order ≥.

Let Aj ∈ B++(H) be positive invertible operators on H ( j = 1, . . . ,k) and ω j ∈ R+ be
such that ∑k

j=1 ω j = 1. We define

F(r) :=

⎧⎪⎪⎨
⎪⎪⎩
(

∑k
j=1 ω jAr

j

)1/r
if r ∈ R\{0},

exp
(

∑k
j=1 ω j logAj

)
if r = 0.

(4.23)

First of all, we discuss the monotonicity of the operator function F(r).

Lemma 4.17 The operator function F(r) is monotone increasing on the following in-
tervals, i.e. F(r) ≤ F(s) for r ≤ s with (i) r,s �∈ (−1,1), (ii) 1/2 ≤ r ≤ 1 ≤ s and (iii)
r ≤−1 ≤ s ≤−1/2. In addition F(r) is not monotone increasing on (0,1] generally.

Proof. The first assertion follows if we put the identity map Φ j for all j = 1, · · · ,k in
Theorem 4.15.

We give a simple counterexample to the second one as follows: Put

A =
(

2 1
1 1

)3
and B =

(
2 1
1 3

)3
.

Then

F(1) =
1
2
(A+B) =

(
14 14
14 20

)
and

F

(
1
3

)
=

1
8

(
A

1
3 +B

1
3

)3
=
(

2 1
1 2

)3
=
(

14 13
13 14

)
so that

F(1)−F

(
1
3

)
=
(

0 1
1 6

)
�≥ 0

�

Moreover, if we put the identity map Φ j for all j = 1, · · · ,k in Theorem 4.15, then we
have the following complementary inequalities to Lemma 4.17:

Lemma 4.18 If r,s ∈ R, r ≤ s, then

α2F(s) ≤ F(r) ≤ α1F(s)

holds for boundaries α1 and α2 given in Theorem 4.15.

Next, we discuss it under the chaotic order.
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Theorem 4.19 The operator function F(r) is monotone increasing under the chaotic or-
der, i.e. F(r) � F(s) if r ≤ s. In particular,

s− lim
r→0

F(r) = exp

(
k

∑
j=1

ω j logAj

)

Proof. It suffices to show that for r < s with r,s �= 0

1
r

log

(
k

∑
j=1

ω jA
r
j

)
≤ 1

s
log

(
k

∑
j=1

ω jA
s
j

)
.

To prove this, the operator concavity of tr for r ∈ [0,1] is available. We first assume
0 < r < s. Then

log

(
k

∑
j=1

ω jA
s
j

)r/s

≥ log

(
k

∑
j=1

ω jA
r
j

)
,

and so logF(s) ≥ logF(r). Next, if r < s < 0, then s/r ∈ (0,1) and hence

log

(
k

∑
j=1

ω jA
r
j

)s/r

≥ log

(
k

∑
j=1

ω jA
s
j

)
.

Noting s < 0, we have logF(r) ≤ logF(s).
Now, we prove the second assertion. By the operator concavity of logt and the Krein

inequality t−1 ≥ logt, it implies that for any r > 0

(
k

∑
j=1

ω j logAj

)
=

1
r

(
k

∑
j=1

ω j logAr
j

)
≤ 1

r
log

(
k

∑
j=1

ω jA
r
j

)

≤ 1
r

(
k

∑
j=1

ω jA
r
j −1

)
=

(
k

∑
j=1

ω j
Ar

j −1

r

)

→
(

k

∑
j=1

ω j logAj

)

as r → +0. Therefore it follows that

s− lim
r→+0

log

(
k

∑
j=1

ω jA
r
j

)1/r

=
k

∑
j=1

ω j logAj,

so that

s− lim
r→+0

(
k

∑
j=1

ω jA
r
j

)1/r

= exp

(
k

∑
j=1

ω j logAj

)
.
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On the other hand, it follows from the expression obtained above that for r > 0

F(−r) =

(
k

∑
j=1

ω jA
−r
j

)−1/r

→ exp

(
k

∑
j=1

ω j logA−1
j

)−1

= exp

(
k

∑
j=1

ω j logAj

)
.

Hence we have the second assertion, which says that s− limh→0 F(h) can be regarded as
F(0). Therefore, if r < 0 < s, then

F(r) � F(0) � F(s).

Consequently we have the monotonicity of F(r) under the chaotic order. �

Theorem 4.20 Let A j ∈ B++(H) be positive invertible operators with Sp(Aj) ⊆ [m,M]
for some scalars 0 < m < M and ω j ∈ R+ such that ∑k

j=1 ω j = 1 ( j = 1, . . . ,k). Denote

h = M
m . If r ≤ s, r,s ∈ R then

Δ(h,r,s)−1F(s) � F(r) (4.24)

where a generalized Specht ratio Δ(h,r,s) is defined as (2.97):

Δ(h,r,s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K
(
hr, s

r

)1/s
if r < s, r,s �= 0,

(
e logh

p
hp−1

h
p

hp−1

) sign(p)
p

if r = 0 < s = p or r = p < s = 0.

(4.25)

Proof. We first show that for r,s ∈ R\ {0}, r < s,

log
(
Δ(h,r,s)−1F(s)

)≤ logF(r).

We assume 0 < r < s. Then m1H ≤Aj ≤M1H ( j = 1, . . . ,k) implies ms1H ≤∑k
j=1 ω jAs

j ≤
Ms1H . By putting p = r

s (0 < p < 1) in Lemma 4.3 and replacing Aj by As
j, we have

K
(
hs,

r
s

)( k

∑
j=1

ω jA
s
j

)r/s

≤
k

∑
j=1

ω jA
r
j.

As the function f (t) = logt is operator monotone on (0,∞) we have

r log

⎛
⎝K

(
hs,

r
s

)1/r
(

k

∑
j=1

ω jA
s
j

)1/s
⎞
⎠≤ log

(
k

∑
j=1

ω jA
r
j

)

and so
log
(
Δ(h,r,s)−1F(s)

)≤ logF(r). (4.26)
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where K
(
hs, r

s

)1/r = Δ(h;r,s)−1.

Next, we assume r < s < 0. Then Mr1H ≤ Ar
j ≤ mr1H , ( j = 1, . . . ,k) and so Mr1H ≤

∑k
j=1 ω jAr

j ≤ mr1H . By putting p = s
r (0 < p < 1) in Lemma 4.3 and replacing Aj by Ar

j,
we have

K
(
hr,

s
r

)( k

∑
j=1

ω jA
r
j

)s/r

≤
k

∑
j=1

ω jA
s
j,

and so

log

(
K
(
hr,

s
r

)1/s
F(r)

)
≥ logF(s), (4.27)

where K
(
hr, s

r

)1/s = Δ(h,r,s).
Next, we assume r < 0 < s. If 0 < −r < s or 0 < s < −r, we put p = r

s or p = s
r in

Lemma 4.3 (−1 ≤ p < 0), respectively. Then we have

k

∑
j=1

ω jA
r
j ≤ K

(
hs,

r
s

)( k

∑
j=1

ω jA
s
j

)r/s

or

k

∑
j=1

ω jA
s
j ≤ K

(
hr,

s
r

)( k

∑
j=1

ω jA
r
j

)s/r

.

So we obtain

logF(r) ≥ log

(
K
(
hs,

r
s

)1/r
F(s)

)
, (4.28)

with K
(
hs, r

s

)1/r = Δ(h,r,s)−1, or

logF(s) ≤ log

(
K
(
hr,

s
r

)1/s
F(r)

)
, (4.29)

with K
(
hr, s

r

)1/s = Δ(h,r,s). Then the inequality (4.24) holds when r < s, r,s �= 0.

At the end, if r → 0 in (4.26), then

Δ(h,0,s)−1 F(s) � F(0).

Similarly, if s → 0 in (4.27), then

F(0) � Δ(h,r,0) F(r).

Then the inequality (4.24) holds when r = 0 < s or r < s = 0. �
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4.6 Notes

Alić, Mond, Pečarić and Volenec [1, 168] studied the power matrix mean: M[r]
k (A;w) :=(

∑k
j=1 ω jCr

j

)1/r
, r∈R\{0}, whereCj ∈H ++

n , j = 1, . . . ,k and ω j ∈R+ such that ∑k
j=1 ω j =

1 and they obtained the complementary inequalities to the power matrix mean.

Additionally, Mond and Pečarić [149] observed the power operatormean: M[r]
k (A;X) :=(

∑k
i=1 X∗

j A
r
jXj

)1/r
, r ∈ R\{0}, where Aj ∈ Bh(H) with Sp(Aj) ⊆ (0,∞), j = 1, . . . ,k and

Xj ∈ B(H) are contractions, such that ∑k
j=1 X∗

j Xj = 1H . They proved the monotonicity
of the power operator mean in an interval (i) [149, Theorem 2], and its converses in an
interval (ii) [149, Theorem 4]. They [168] obtained same results for matrix means same
type.

The results in Section 4.2 are due to [135] and the results in Section 4.5 are due to
[68, 166].

M.Fujii and Nakamoto [68] call F(0)= s− limr→0 F(r) the chaotically geometric mean.
Further topics related to it are contained in [64] and [66].



Chapter5
Operator means

In this chapter, we introduce the theory of operator means established by
Kubo and Ando associated with the operator monotone functions. Based
on several complementary inequalities to Jensen’s inequalities on posi-
tive linear maps, we study complementary inequalities to Ando’s inequal-
ities associated with operator means.

5.1 Operator means

The theory of operator means for positive (bounded linear) operators on a Hilbert space is
initiated by T.Ando and established by F.Kubo and T.Ando in connection with Lowner’s
theory for the operator monotone functions. Throughout this chapter, we use the capital
letter A,B,C,D as positive (bounded linear) operators on a Hilbert space.

Definition 5.1 A binary operation (A,B) ∈ B+(H)×B+(H) → A σ B ∈ B+(H) in the
cone of positive operators on a Hilbert space H is called a connection if the following
conditions are satisfied:

(S1) monotonicity: A ≤C and B ≤ D imply A σ B ≤C σ D,

(S2) upper continuity: An ↓ A and Bn ↓ B imply An σ Bn ↓ A σ B,

(S3) transformer inequality: T ∗(A σ B)T ≤ (T ∗AT ) σ (T ∗BT ) for every operator T .

137
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An operator mean is a connection with normalized condition

(S4) normalized condition: 1H σ 1H = 1H.

Here we denote by An ↓ A a series of operators {An}, An ∈ Bh(H) such that A1 ≥ A2 ≥ . . .
and An → A in the strong operator topology for A ∈ Bh(H).

Lemma 5.1 Let σ be a connection. If T is invertible, then σ satisfies the transformer
equality:

T ∗(A σ B)T = (T ∗AT ) σ (T ∗BT ). (5.1)

In particular, σ is positively homogeneous in the sense:

α(A σ B) = (αA) σ (αB) (5.2)

for all α > 0.

Proof. It follows from the transformer inequality (S3) that

T ∗−1{(T ∗AT ) σ (T ∗BT )}T−1 ≤ (T ∗−1T ∗ATT−1) σ (T ∗−1T ∗BTT−1) = A σ B,

and hence (T ∗AT ) σ (T ∗BT ) ≤ T ∗(A σ B)T . Therefore we have (5.1). Also, if we put
T = α1/21H for α > 0, then we have (5.2). �

Simple examples of operator means are the arithmetic mean, in symbol ∇,

A ∇ B :=
1
2
(A+B).

Left trivial mean ωl and right trivial mean ωr are by definition

A ωl B = A and A ωr B = B.

For invertible A,B, the parallel sum A : B is given by

A : B = (A−1 +B−1)−1.

The normalized parallel sum is called the harmonic mean, in symbol !

A ! B := 2(A : B) =
(

1
2
(A−1 +B−1)

)−1

.

For invertible A,B, the geometric mean A � B is given by

A � B := A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .

A positive linear combination of two connections is defined in a natural way. If σ ,τ
are connections and a,b are positive numbers, then the connection aσ +bτ is defined by

A (aσ +bτ) B = a(A σ B)+b(A τ B).

Then the class of means becomes a convex set.
A partial order≥ between two connections is introduced in a natural way. σ ≥ τ means

by definition that A σ B ≥ A τ B for all positive operators A and B. Then an important
inequality is ! ≤ � ≤ ∇ (see Theorem 1.27).

We investigate some properties of the parallel sum.
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Lemma 5.2 The parallel sum has the following properties.

(i) If A,B,C,D ∈ B+(H) are invertible and A ≤C, B ≤ D, then A : B ≤C : D.

(ii) Let A,B ∈ B+(H). If An,Bn ∈ B+(H) are invertible and An ↓ A and Bn ↓ B, then
s− limn→∞ An : Bn exists. The strong limit does not depend on the choice of {An}
and {Bn}.

Proof. (i) Since A ≤C and B ≤ D, we have A−1 ≥C−1 and B−1 ≥ D−1, and hence
(A−1 +B−1)−1 ≤ (C−1 +D−1)−1. Therefore it follows that A : B ≤C : D.

(ii) Suppose that A and B are invertible and An ↓ A and Bn ↓ B. Since Sp(A), Sp(An),
Sp(B), Sp(Bn) ⊆ [α,β ] where 0 < α < β < ∞, we have A−1

n �→ A−1,B−1
n �→ B−1 and

A−1
n + B−1

n �→ A−1 + B−1 in the strong operator topology. Moreover, since Sp(A−1
n +

B−1
n ),Sp(A−1 +B−1)⊆ [2β−1,2α−1], it follows that An : Bn �→ A : B in the strong operator

topology.
Suppose that A and B are noninvertible. If An,Bn ∈ B+(H) are invertible and An ↓ A

and Bn ↓ B, then {An : Bn} is monotone decreasing by (i) and {An : Bn} is bounded below
by 0. Hence it follows that s-limn→∞ An : Bn exists.

Next, we show that the strong limit does not depend on the choice of {An} and {Bn}.
Suppose that A

′
n,B

′
n ∈B+(H) are invertible and A

′
n ↓ A and B

′
n ↓ B. Since An ≤ An +A

′
m−A

and Bn ≤ Bn +B
′
m−B for all n,m ∈ N, we have

An : Bn ≤ (An +A
′
m−A) : (Bn +B

′
m−B).

Since An +A
′
m−A ↓ A

′
m and Bn +B

′
m−B ↓ B

′
m as n �→ ∞, as we see above, we have

(An +A
′
m−A) : (Bn +B

′
m−B) ↓ A

′
m : B

′
m.

Therefore it follows that s− limn→∞ An : Bn ≤ A
′
m : B

′
m and hence

s− lim
n→∞

An : Bn ≤ s− lim
n→∞

A
′
n : B

′
n.

By symmetry, we have
s− lim

n→∞
An : Bn = s− lim

n→∞
A

′
n : B

′
n.

�

By Lemma 5.2, for positive A,B ∈ B+(H) the parallel sum is given by

A : B = s− lim
ε↓0

(A+ ε1H) : (B+ ε1H).

The parallel sum for positive operators is characterized as follows.

Lemma 5.3

((A : B)x,x) = inf{(Ay,y)+ (Bz,z) : y,z ∈ H,y+ z = x}
for ever vector x ∈ H.
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Proof. If A and B are invertible, then

A : B = {B−1(A+B)A−1}−1 = {(A+B)−B}(A+B)−1B

= B−B(A+B)−1B.

Therefore we have

(Ay,y) + (B(x− y),x− y)− ((A : B)x,x)
= (Bx,x)+ ((A+B)y,y)−2Re(Bx,y)− ((A : B)x,x)
= (B(A+B)−1Bx,x)+ ((A+B)y,y)−2Re(Bx,y)

= ‖(A+B)−1/2Bx‖2 +‖(A+B)1/2y‖2

−2Re((A+B)−1/2Bx,(A+B)1/2y)
≥ 0

for every vector x,y ∈ H, where Rez = (z+ z)/2 is a real part of a complex number z. If
we put y = (A+B)−1Bx, then the above expression is equal to 0 and hence we obtain this
Lemma in the case that A and B are invertible. Next, for positive A,B, we have

((A : B)x,x) = inf
ε>0

(((A+ ε1H) : (B+ ε1H))x,x)

= inf
ε>0

inf
y
{((A+ ε1H)y,y)+ ((B+ ε1H)(x− y),x− y)}

= inf
y
{(Ay,y)+ (B(x− y),x− y)}.

�

Lemma 5.4 The parallel sum A : B is a connection.

Proof. (S1) of Definition 5.1 follows from (i) of Lemma 5.2. For (S2), suppose that
An ↓ A and Bn ↓ B. Since A : B ≤ An : Bn, we have A : B ≤ s− limAn : Bn. Also, since
An : Bn ≤ (An + ε1H) : (Bn + ε1H) for all ε > 0, it follows from (ii) of Lemma 5.2 that
s− limAn : Bn ≤ (A + ε1H) : (B + ε1H) and hence s− limAn : Bn ≤ A : B. Therefore we
have An : Bn ↓ A : B.

Finally we show (S3). If y+ z = x, then it follows from Lemma 5.3 that

(T ∗(A : B)Tx,x) = ((A : B)Tx,Tx)
≤ (ATy,Ty)+ (BTz,T z)
= (T ∗ATy,y)+ (T ∗BTz,z)

and hence T ∗(A : B)T ≤ (T ∗AT ) : (T ∗BT ) for every operator T . Therefore the parallel sum
satisfies the transformer inequality. Thus, the parallel sum is a connection. �

Now, we state the principal result in the Kubo-Ando theory.
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Theorem 5.5 (KUBO-ANDO THEOREM) For each connection σ , if we put

f (t)1H = 1H σ (t1H) (t ≥ 0), (5.3)

then f (t) is a nonnegative number and f (t) is operator monotone on [0,∞). Then the
following assertions hold.

(i) A map σ �→ f establishes a one-to-one afine isomorphism between the class of connec-
tions and the class of nonnegative operator monotone functions on [0,∞). Moreover,
a map σ �→ f preserves the order in the sense

A σ1 B ≤ A σ2 B (A,B ∈ B+(H)) ⇐⇒ f1(t) ≤ f2(t) (t ≥ 0).

(ii) If A is invertible, then

A σ B = A
1
2 f
(
A− 1

2 BA− 1
2

)
A

1
2 . (5.4)

(iii) A connection σ is an operator mean if and only if f is normalized in the sense f (1) =
1.

Proof. Let σ be a connection. Firstly we show that if a projection P commutes with
positive operators A and B, then it commutes with A σ B and

(AP σ BP)P = (A σ B)P. (5.5)

Since commutativity implies

PAP = AP ≤ A and PBP = BP ≤ B,

it follows from (S1) and (S3) that

P(A σ B)P ≤ (PAP) σ (PBP)
= (AP) σ (BP)
≤ A σ B.

Then the operator A σ B−P(A σ B)P is positive and

(
{A σ B−P(A σ B)P} 1

2 P
)2

= P(A σ B−P(A σ B)P)P = 0.

Therefore we have
{A σ B−P(A σ B)P} 1

2 P = 0

and hence
(A σ B)P = P(A σ B)P,

which implies the commutativity of P and A σ B. AnalogouslyP commutes with (AP) σ (BP).
These together prove (5.5).

Now, since 1H and t1H commutes with all projections for every t ≥ 0, so does the
operator 1H σ (t1H), and hence 1H σ (t1H) is a scalar. Thus (5.3) determines a nonnegative
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function f on [0,∞). It follows from (S2) that f (t) is right continuous on [0,∞). By the
positively homogenity, we have t−1 f (t)1H = (t−11H) σ 1H (t > 0). Hence f (t) is left
continuous on (0,∞) by (S2). Therefore it follows that f (t) is continuous on [0,∞).

Let us show that f is operator monotone. In the case of

A = ∑
j

t jE j ≤ B = ∑
i

siFi,

where {Ej} and {Fi} are decomposition of the unit 1H and t j,si > 0, it follows from (5.5)
that

1H σ A = ∑
j

(1H σA)Ej = ∑
j

(Ej σAEj)Ej

= ∑
j
(Ej σ (t jE j))Ej = ∑

j
(1H σ t j1H)Ej

= ∑
j

f (t j)Ej = f (A)

and similarly 1H σ B = f (B). Since every positive operator A can be approximated uni-
formly by simple functions An with An ↓ A, it follows from (S2) that

1H σ A = s− lim
n→∞

1H σ An = s− lim
n→∞

f (An) = f (A).

Therefore A ≤ B implies

f (A) = 1H σ A ≤ 1H σ B = f (B)

and hence f is operator monotone.
For invertible A, we have

A σ B = A
1
2

(
1H σA− 1

2 BA− 1
2

)
A

1
2

= A
1
2 f
(
A− 1

2 BA− 1
2

)
A

1
2 .

Also, 1H σ 1H = 1H implies f (1) = 1 and so we have (ii) and (iii).
It remains only to prove that every operator monotone function is obtained in the form

(5.3). Take an operator monotone function f with integral representation

f (t) = a+bt +
∫

(0,∞)

t(1+ λ )
t + λ

dm(λ ),

where a = m({0}) and b = m({∞}). Recall that A : B is the parallel sum of A and B.
Define a binary operation σ by

A σ B = aA+bB+
∫
(0,∞)

1+ λ
λ

{(λA) : B}dm(λ ).

In fact,

(λA) : B ≤ (λ‖A‖1H) : (‖B‖1H) =
‖A‖‖B‖λ

‖A‖λ +‖B‖1H
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implies
1+ λ

λ
‖(λA) : B‖ ≤ ‖A‖‖B‖(1+ λ )

‖A‖λ +‖B‖
and hence λ−1(1 + λ ){(λA) : B} is uniformly bounded for λ > 0. Therefore A σ B ∈
B+(H). Since the parallel sum and trivial means satisfy conditions (S1), (S2) and (S3) by
Lemma 5.4, the operation σ satisfies (S1) and (S3). For (S2), if An ↓ A and Bn ↓ B, then
(λAn) : Bn ↓ (λA) : B and by the monotone convergence theorem in the integral theory

lim
n→∞

((An σ Bn)x,x)

= lim
n→∞

(
a(Anx,x)+b(Bnx,x)+

∫
(0,∞)

(((λAn) : Bn)x,x)dm(λ )
)

= a(Ax,x)+b(Bx,x)+
∫
(0,∞)

(((λA) : B)x,x)dm(λ )

= ((A σ B)x,x).

Hence we have An σ Bn ↓ A σ B and σ is a connection. Finally for t > 0

1H σ t1H = a+bt +
∫
(0,∞)

t(1+ λ )
t + λ

dm(λ ) = f (t).

Thus the function f is obtained from the connection σ . This completes the proof. �

Here the operator monotone function f produced from a connection σ by (5.3) is called
the representing function for σ . In this case, notice that a function f > 0 on [0,∞) is
operator monotone if and only if it is operator concave (see Corollary 1.14).

The representing functions of left trivial mean ωl and right trivial mean ωr are 1 and
t, respectively. The representing functions of the arithmetic mean ∇, the harmonic mean !
and the geometric mean � are as follows:

f∇(t) =
1+ t

2
for the arithmetic mean ∇.

f!(t) =
2t

1+ t
for the harmonic mean !.

f�(t) =
√

t for the geometric mean �.

Then f∇(t)≥ f�(t)≥ f!(t) implies the arithmetic-geometric-harmonicmean inequality ∇≥
� ≥!.

Notice that every representing function f of an operator mean σ satisfies

t ≤ f (t) ≤ 1 for 0 ≤ t ≤ 1,

1 ≤ f (t) ≤ t for t ≥ 1.

In fact, the derivative f ′(1) is not greater than 1 since f is a nonnegative and concave
function with f (1) = 1. Moreover f ′(1) ≥ 0 since f is monotone nondecreasing. Then
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the required inequalities are obtained by using nonnegativity, monotonicity and concavity
again.

By the theory of the operator mean, we can show the following Hansen’s theorem (see
Theorem 1.9):

Theorem 5.6 (HANSEN’S THEOREM) If f is a nonnegative operator monotone function
on [0,∞), then

C∗ f (A)C ≤ f (C∗AC) (5.6)

for every contraction C and every positive operator A.

Proof. By the Kubo-Ando theory, for a nonnegative operator monotone function f ,
there exists an operator mean σ such that f (t) = 1H σ t1H . Then the transformer inequality
(S3) implies

C∗ f (A)C =C∗(1H σ A)C ≤ (C∗C) σ (C∗AC) ≤ 1H σ C∗AC = f (C∗AC).

�

Here we state some properties of operator means:

Theorem 5.7 Every operator mean σ is subadditive:

A σ C+B σ D ≤ (A+B) σ (C+D)

and jointly concave:

λ (A σ C)+ (1−λ )(B σ D) ≤ (λA+(1−λ )B) σ (λC+(1−λ )D)

for 0 ≤ λ ≤ 1.

Proof. By the upper continuity of σ , we may assume that the above positive operators
are invertible. Put

X = A1/2(A+B)−1/2 and Y = B1/2(A+B)−1/2

V = A−1/2CA−1/2 and W = B−1/2DB−1/2.

Since X∗X +Y ∗Y = 1H , it follows that
(

X 0
Y 0

)
is a contraction. For the representing

function f for an operator mean σ , it follows from Theorem 5.6 (Hansen’s theorem) that(
X∗ f (V )X +Y ∗ f (W )Y 0

0 0

)
=
(

X 0
Y 0

)∗
f
((

V 0
0 W

))(
X 0
Y 0

)

≤ f

((
X 0
Y 0

)∗(V 0
0 W

)(
X 0
Y 0

))

=
(

f (X∗VX +Y∗WY ) 0
0 f (0)

)
.
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Thus we have X∗ f (V )X +Y∗ f (W )Y ≤ f (X∗VX +Y∗WY ) and consequently

A σ C+B σ D = (A+B)1/2{(X∗XσX∗VX)+ (Y ∗YσY ∗WY )}(A+B)1/2

= (A+B)1/2(X∗ f (V )X +Y ∗ f (W )Y )(A+B)1/2

≤ (A+B)1/2 f (X∗VX +Y∗WY )(A+B)1/2

= (A+B)1/2(1H σ (X∗VX +Y ∗WY )(A+B)1/2

= (A+B) σ (A1/2VA1/2 +B1/2WB1/2)
= (A+B) σ (C+D)

Since σ is positively homogeneous, we have the jointly concavity:

λ (A σ C)+ (1−λ )(B σ D) = (λA) σ (λC)+ (1−λ )B σ (1−λ )D
≤ (λA+(1−λ )B) σ (λC+(1−λ )D).

�

Ando showed the following property of a positive linear map in connection with an
operator mean. If Φ is a normalized positive linear map in PN [B(H),B(K)], then for any
positive operators A and B

Φ(A � B) ≤ Φ(A) � Φ(B) and Φ(A ! B) ≤ Φ(A) ! Φ(B). (5.7)

It is considered as a natural extension of Remark 1.1 and (i) in Theorem 1.17

Φ(A
1
2 ) ≤ Φ(A)

1
2 and Φ(A)−1 ≤ Φ(A−1) (5.8)

by putting B = 1H in (5.7). The inequality (5.7) is extended to an operator mean as follows:

Theorem 5.8 If Φ is a normalized positive linear map in PN [B(H),B(K)], then for
every operator mean σ

Φ(A σ B) ≤ Φ(A) σ Φ(B). (5.9)

Proof. Suppose that A is invertible. Then so does Φ(A). Define a map

Ψ(X) = Φ(A)−
1
2 Φ(A

1
2 XA

1
2 )Φ(A)−

1
2 .

Then Ψ is a normalized positive linear map. So we have by Theorem 1.20 (Davis-Choi-
Jensen’s inequality)

Ψ( f (X)) ≤ f (Ψ(X))

for every operator concave function f on [0,∞). Let f be the representing function for σ
and by Corollary 1.12 f is operator concave. Therefore it follows that

Φ(A σ B) = Φ
(
A

1
2 f (X)A

1
2

)
= Φ(A)

1
2 Ψ( f (X))Φ(A)

1
2

≤ Φ(A)
1
2 f (Ψ(X))Φ(A)

1
2

= Φ(A) σ Φ(B)
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for X = A−1/2BA−1/2.
Suppose that A is not invertible. Since ‖Φ(A+ε1H)−Φ(A)‖ = ‖εΦ(1H)‖ = ε → 0 as

ε ↓ 0, we have Φ(A+ ε1H) ↓ Φ(A) as ε ↓ 0. As we proved in the preceding paragraph,

Φ(A σ B) ≤ Φ((A+ ε1H) σ B)
≤ Φ(A+ ε1H) σ Φ(B),

and let ε → 0, we have (5.9). �

Let σ be an operator mean with representing function f . Then it follows that f > 0
on (0,∞). In fact, suppose that there is α > 0 such that f (α) = 0. Since f is monotone
increasing, we have f (t) = 0 for 0 ≤ t ≤ α and hence f ≡ 0 because f is concave. This
contradicts the fact f (1) = 1. Therefore, the functions f (t−1)−1, t/ f (t) and t f (t−1) are
operator monotone on [0,∞). Hence we can define the adjoint, transpose and dual of a
given operator mean as follows:

Definition 5.2 Let σ be an operator mean with representing function f .

(i) The operator mean with representing function f (t−1)−1 is called the adjoint of σ
and denoted by σ∗. Formula (5.4) gives an explicit form to the adjoint

A σ∗ B = (A−1 σ B−1)−1 for invertible A and B.

(ii) The operator mean with representing function t f (t−1) is called the transpose of σ
and denoted by σ0. Formula (5.4) gives an explicit form to the transpose

A σ0 B = B σ A for every A and B.

An operator mean σ is called symmetric if σ = σ0.

(iii) The operator mean with representing function t/ f (t) is called the dual of σ and
denoted by σ⊥.

The adjoint formation is involutive, (σ∗)∗ = σ . The adjoint mean of the arithmetic
mean is the harmonic mean, i.e. ∇∗ =! and the geometric mean are selfadjoint, i.e. (�)∗ = �.
The dual formation is involutive, (σ⊥)⊥ = σ , and it follows that

σ⊥ = (σ0)∗ = (σ∗)0 and σ0 = (σ∗)⊥ = (σ⊥)∗.

We have the weighted means correspondent to above means: the weighted arithmetic
mean ∇p, the weighted harmonic mean !p and the p-power mean (the weighted geo-
metric mean) defined for 0 < p < 1:

A ∇p B := (1− p)A+ pB,

A !p B :=
(
(1− p)A−1 + pB−1

)−1
,

A �p B := A
1
2

(
A− 1

2 BA− 1
2

)p
A

1
2 .

Then it follows that (�p)0 = �1−p and (�p)∗ = �p.
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Finally, Mond et al. studied inequalities for mixed operator means and mixed matrix
means in 1996-1997 (for example see [153], [157], [1]). A simple inequalities of this type
are:

A �μ (A ∇λ B) ≥ A ∇λ
(
A �μ B

)
,

A !λ
(
A �μ B

)≥ A �μ (A !λ B) ,
A !μ (A ∇λ B) ≥ A ∇λ

(
A !μ B

)
,

(5.10)

where A,B ∈ B+(H) are invertible and λ ,μ ∈ (0,1).

5.2 Relative operator entropy

In this section, we introduce the relative operator entropy defined by Fujii-Kamei and show
the entropy-like properties.

Nakamura and Umegaki extended the notion of the entropy formulated by J.von Neu-
mann and gave the operator entropy by −A logA for a positive operator A on a Hilbert
space H. Also, Umegaki introduced the relative entropy as a noncommutative version of
the Kullback-Leibler entropy, which is given by the trace of A logA−A logB, i.e.

τ(A logA−A logB)

for positive operators A,B affiliated with a semifinite von Neumann algebra.
J.I.Fujii and Kamei introduced the relative operator entropy which is a relative version

of the operator entropy defined by Nakamura-Umegaki:

Definition 5.3 For positive invertible operators A and B, then the relative operator en-
tropy is defined by

S(A|B) = A
1
2

(
logA− 1

2 BA− 1
2

)
A

1
2 . (5.11)

Generally S(A|B) = s− limε→+0S(A+ ε1H|B) if it exists.

For the entropy function η(t) =−t logt, the operator entropy has the following expres-
sion:

η(A) = −A logA = S(A|1H) ≥ 0 (5.12)

for positive contraction A. This shows that the relative operator entropy (5.11) is a relative
version of the operator entropy.

Now, we give variational forms of (5.11).

Lemma 5.9 If A and B are positive invertible, then

S(A|B) = −A
1
2

(
logA

1
2 B−1A

1
2

)
A

1
2 , (5.13)

and
S(A|B) = B

1
2 η
(
B− 1

2 AB− 1
2

)
B

1
2 . (5.14)
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Proof. The formula (5.13) is obtained by log(1/t)=− logt. Since X f (X∗X)= f (XX∗)X
by Lemma 1.7, applying it for X = A

1
2 B− 1

2 , we have

S(A|B) = −A
1
2

(
logA

1
2 B−1A

1
2

)
A

1
2

= −A
1
2 log(XX∗)XB

1
2 = −A

1
2 X log(X∗X)B

1
2

= −B
1
2 X∗X log(X∗X)B

1
2 = B

1
2 η(X∗X)B

1
2

= B
1
2 η
(
B− 1

2 AB− 1
2

)
B

1
2 ,

as desired. �

The above lemma says that if B is invertible, then one can define S(A|B) by (5.14) even
if A is not invertible. Thus, considering the operator monotonicity with respect to B, we
redefine the relative operator entropy as follows.

Definition 5.4 For positive operators A and B, then the relative operator entropy is de-
fined by

S(A|B) = −s− lim
ε→0

A
1
2

(
logA

1
2 (B+ ε1H)−1A

1
2

)
A

1
2 (5.15)

if the strong limit exists.

Furthermore, if A and B commute, then

S(A|B) = −A logA+A logB

if the strong limit exists. The relative operator entropy for noninvertible positive operators
does not always exist. In fact, S(1H|ε1H) = (logε)1H is not bounded below and hence
S(1H |0) does not make sense. However, if B majorizes A in the sense of Douglas, i.e.,
λA ≤ B for some positive number λ , then S(A|B) always exists. But the majorization
is only a sufficient condition to the existence. For example, even in a commutative case
B = A2, B cannot majorize A but S(A|B) exists:

S(A|B) = −A logA+A logB = −A logA+2A logA = A logA.

Now, we characterize the domain of the relative operator entropy.

Lemma 5.10 The strong limit of S(A|B + ε1H) as ε ↓ 0 exists if and only if H(α) =
αB− (logα)A is bounded below for α > 0.

Proof. For ε > 0, put X = (B+ ε1H)−1/2A(B+ ε1H)−1/2. Suppose that S(A|B) exists.
Since η(t) = −t logt is concave, the tangent line Gα of η(t) at α is

Gα(t) = −(logα +1)(t−α)+ η(α) = −(logα +1)t + α ≥ η(t).

It follows that

S(A|B) ≤ S(A|B+ ε1H) = (B+ ε1H)1/2η(X)(B+ ε1H)1/2

≤ (B+ ε1H)1/2Gα(X)(B+ ε1H)1/2 = −(logα +1)A+ α(B+ ε1H),
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hence we have S(A|B)≤ αB− (logα)A for all α > 0.

Conversely, suppose that αB− (logα)A is bounded below for α > 0. Then there exists
a negative number c with

c(B+ ε1H) ≤−(logα +1)A+ α(B+ ε1H) = (B+ ε1H)1/2Gα(X)(B+ ε1H)1/2.

Therefore, c1H ≤ Gα(X). Then the inequality c1H ≤ infα>0 Gα(X) = η(X) implies that
c(B+ ε1H) ≤ S(A|B+ ε1H), hence S(A|B+ ε1H) is bounded below. �

Now we show that the relative operator entropy has many desirable properties like
operator means under the existence.

Theorem 5.11 The relative operator entropy S(A|B) has the following properties.

(right monotonicity) : B ≤C implies S(A|B)≤ S(A|C).
(right lower continuity) : Bn ↓ B implies S(A|Bn) ↓ S(A|B).
(homogenity) : S(αA|αB) = αS(A|B) for α > 0.

(transformer inequality) : T ∗S(A|B)T ≤ S(T ∗AT |T ∗BT ) for every operator T .

Proof. Since f (t) = logt is operator monotone, the formula (5.11) implies the required
monotonicity. The homogenity is clear by (5.11).

Next, we show the transformer inequality. Since S(A|B) exists, as we show in Lemma 5.10,
we have

S(A|B)≤ αB− (logα)A for all α > 0.

Raising both sides to operators T ∗ and T , we have

T ∗S(A|B)T ≤ αT ∗BT − (logα)T ∗AT

for α > 0 and hence it follows from Lemma 5.10 that S(T ∗AT |T ∗BT ) exists. By using
Theorem 5.18, we have

S(T ∗AT |T ∗BT ) = s− lim
α→0

T ∗AT �α T ∗BT −T∗AT
α

≥ s− lim
α→0

T ∗(A �α B−A)T
α

= T ∗S(A|B)T,

since the geometric mean �α satisfies the transformer inequality (S3).

Finally, we show the right lower continuity. Suppose that B is invertible. Then B
1
2
n ↓ B

1
2

and Cn = B
− 1

2
n AB

− 1
2

n �→C = B− 1
2 AB− 1

2 strongyly, so that

S(A|Bn) = B
1
2
n η(Cn)B

1
2
n ↓ B

1
2 η(C)B

1
2 = S(A|B)

by the continuity of η and the right monotonicity of S.
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Next, suppose that B is not invertible. Since S(A|B)≤ S(A|Bn+1) ≤ S(A|Bn), we have

0 ≤ S(A|Bn)−S(A|B)
= S(A|Bn)−S(A|Bn + δ1H)+S(A|Bn + δ1H)−S(A|B+ δ1H)

+S(A|B+ δ1H)−S(A|B)
≤ S(A|Bn + δ1H)−S(A|B+ δ1H)+S(A|B+ δ1H)−S(A|B).

Since S(A|B+ δ1H) ↓ S(A|B) as δ ↓ 0 by definition, for ε > 0 and a unit vector x ∈ H, we
can choose δ > 0 such that 0 ≤ ((S(A|B+ δ1H)−S(A|B))x,x) ≤ ε

2 . Moreover, for this δ ,
there exists n0 such that n ≥ n0 implies 0 ≤ ((S(A|Bn +δ1H)−S(A|B+δ1H))x,x) < ε

2 by
the above invertible case. So we have

0 ≤ ((S(A|Bn)−S(A|B))x,x)
≤ ((S(A|Bn + δ1H)−S(A|B+ δ1H))x,x)+ ((S(A|B+ δ1H)−S(A|B))x,x)

<
ε
2

+
ε
2

= ε.

Therefore we have S(A|Bn) ↓ S(A|B). �

The upper boundaries of the relative operator entropy is always guaranteed.

Theorem 5.12 The relative operator entropy is upper bounded:

S(A|B) ≤ −A logA+A log‖B‖,
S(A|B) ≤ B−A.

Proof. By the operator monotonicity, we have

S(A|B) ≤ S(A|‖B‖) = −A logA+A log‖B‖.
It follows from the Klein inequality logt ≤ t −1 that

S(A|B) = A
1
2

(
logA− 1

2 BA− 1
2

)
A

1
2

≤ A
1
2

(
A− 1

2 BA− 1
2 −1H

)
A

1
2 = B−A.

�

By Theorem 5.12, we have a simple condition that S(A|B) is negative.

Corollary 5.13 If A ≥ B, then S(A|B)≤ 0.

Corollary 5.14 For positive operators A,B with A ≥ B, S(A|B) = 0 if and only if A = B.

Proof. Suppose that S(A|B) = 0. Then it follows from Theorem 5.12 that 0 = S(A|B)≤
B−A ≤ 0, which implies A = B. Conversely, we have S(A|A) = A logsuppA = 0, where
suppC is the support projection of C. �

In addition, the relative operator entropy has entropy like properties.
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Theorem 5.15 The relative operator entropy is subadditive.

S(A+B|C+D)≥ S(A|C)+S(B|D).

Proof. We may assume that both C and D are invertible. Put X =C1/2(C+D)−1/2 and
Y = D1/2(C+D)−1/2. Since X∗X +Y ∗Y = 1H , it follows from Theorem 1.9 that

S(A+B|C+D) = (C+D)1/2η((C+D)−1/2(A+B)(C+D)−1/2)(C+D)1/2

= (C+D)1/2η(X∗C−1/2AC−1/2X +Y ∗D−1/2BD−1/2Y )(C+D)1/2

≥ (C+D)1/2
(
X∗η

(
C−1/2AC−1/2

)
X +Y ∗η

(
D−1/2BD−1/2

)
Y
)

(C+D)1/2

= C1/2η
(
C−1/2AC−1/2

)
C1/2 +D1/2η

(
D−1/2BD−1/2

)
D1/2

= S(A|C)+S(B|D).

�

Theorem 5.16 The relative operator entropy is jointly concave. If A = tA1 +(1− t)A2

and B = tB1 +(1− t)B2 for 0 ≤ t ≤ 1, then

S(A|B) ≥ tS(A1|B1)+ (1− t)S(A2|B2).

Proof. By subadditivity and homogenity of the relative operator entropy, we have

S(A|B) = S(tA1 +(1− t)A2|tB1 +(1− t)B2)
≥ S(tA1|tB1)+S((1− t)A2|(1− t)B2)
= tS(A1|B1)+ (1− t)S(A2|B2).

�

The relative operator entropy has informational monotonicity.

Theorem 5.17 Let Φ ∈ PN [B(H),B(K)] be a normalized positive linear map. Then

Φ(S(A|B)) ≤ S(Φ(A)|Φ(B)). (5.16)

Proof. Suppose that B is invertible. Then so does Φ(B). Define a normalized positive
linear map by

ΦB(X) = Φ(B)−1/2Φ
(
B1/2XB1/2

)
Φ(B)−1/2.

So we have by Davis-Choi-Jensen’s inequality ( Theorem 1.20)

ΦB(F(X)) ≤ F(ΦB(X))

for every operator concave function F on (0,∞). Then it follows from Lemma 5.9 that

Φ(S(A|B)) = Φ
(
B1/2η

(
B−1/2AB−1/2

)
B1/2

)
= Φ(B)1/2ΦB

(
η
(
B−1/2AB−1/2

))
Φ
(
B1/2

)
≤ Φ(B)1/2η

(
ΦB

(
B−1/2AB−1/2

))
Φ
(
B1/2

)
= S(Φ(A)|Φ(B)).
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We prove (5.16) in the same way in the proof of Theorem 5.8 if B is not invertible. �

Finally, we discuss the relation between the relative operator entropy and the rela-
tive entropy which introduced by Umegaki and developed by Araki, Uhlmann and Pusz-
Woronowicz.

Now we recall the relative entropy S(ϕ |ψ) for states ϕ , ψ on an operator algebra.
Derived from the Kullback-Leibler information ( divergence):

k

∑
j=1

p j log
p j

q j
for probability vectors p =

⎛
⎝ p1

...
pk

⎞
⎠ and q =

⎛
⎝ q1

...
qk

⎞
⎠ .

Umegaki introduced a relative entropy S(ϕ |ψ) for states ϕ , ψ on a semifinite von Neumann
algebra, which is defined as

S(ϕ |ψ) = τ(A logA−A logB)

where A and B are density operators of ϕ and ψ respectively, i.e.,

ϕ(X) = τ(AX) and ψ(X) = τ(BX).

Araki generalized it by making use of the Tomita-Takesaki theory, Uhlmann by the quadratic
interpolation, Pusz-Woronoxicz by their functional calculus. These generalization are all
equivalent. The quadratic interpolation QIt(p,q) for seminorms p(x) = (Ax,x)1/2 and
q(x) = (Bx,x)1/2 is the seminorm defined by A �t B for commuting A and B:

QIt(p,q)(x) = (A �tBx,x)
1
2 . (5.17)

Uhlmann’s relative entropy is based on the interpolation theory of positive linear forms.
For positive linear forms ϕ , ψ on a unital ∗−algebra A , put a sesquilinear form

(x,y) = ϕ(xy∗)+ ψ(y∗x). (5.18)

Let x �→ xo be the usual map from A to H which is the Hilbert space with the linear
product corresponding to (5.18). Then there exists derivatives A, B on H with

(Axo,yo) = ϕ(xy∗) and (Bxo,yo) = ψ(y∗x).

It follows from (5.17) that A and B are commuting positive contraction with A+B = 1H .
In this situation, Uhlmann’s relative entropy S(ϕ |ψ)U is expressed by

S(ϕ |ψ)U = − liminf
t→0

(
A �t B−A

t
1o,1o

)
.

According to this definition, we can construct S(A|B) by a similar way.

Theorem 5.18 The relative operator entropy S(A|B) is constructed by Uhlmann’s way.

S(A|B) = s− lim
t→0

A �t B−A
t

.
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Proof. For invertible A, put X = A− 1
2 BA− 1

2 . Since limt→0
xt−1

t = logx, we have

A
1
2

(
s− lim

t→0

Xt −1H

t

)
A

1
2 = A

1
2 (logX)A

1
2 = S(A|B).

�

Hiai and Petz discussed a bridge between the relative entropy and the relative operator
entropy. Note that if the density operators A and B commute, then

S(ϕ |ψ) = S(ϕ |ψ)U = −τ(S(A|B)).

They showed that
S(ϕ |ψ)≥−τ(S(A|B))

for states on a finite dimensional C∗-algebra.

5.3 Interpolational path

In this section, we study an operator version of Uhlmann’s interpolation. We recall that an
operator mean σ is symmetric if A σ B = B σ A for all positive operators A and B. For a
symmetric operator mean σ , a parameterized operator mean σt is called an interpolational
path for σ if it satisfies

(1) A σ0 B = A, A σ1/2 B = A σ B and A σ1 B = B
(2) (A σp B) σ (A σq B) = A σ p+q

2
B for all p,q ∈ [0,1]

(3) the map t ∈ [0,1] �→ A σt B is norm continuous for each A and B.

Typical interpolational means are so-called power means;

A mr B = A
1
2

⎛
⎝1+

(
A− 1

2 BA− 1
2

)r

2

⎞
⎠

1
r

A
1
2 for r ∈ [−1,1]

and their interpolational paths are

A mr,t B = A
1
2

(
1− t + t

(
A− 1

2 BA− 1
2

)r) 1
r
A

1
2 for t ∈ [0,1].

For each r ∈ [−1,1], A mr,t B (t ∈ [0,1]) is a path from A to B via A mr B. In particular,

A m1,t B = A ∇t B = (1− t)A+ tB,

A m0,t B = A �t B = A
1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2 ,

A m−1,t B = A !t B = ((1− t)A−1 + tB−1)−1.
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They are called the arithmetic, geometric and harmonic interpolations respectively.
Here generally, for positive invertible operators A and B on a Hilbert space H, we define

a norm continuous path of positive invertible operators A mr,t B by

A mr,t B = A
1
2

(
1− t + t

(
A− 1

2 BA− 1
2

)r) 1
r
A

1
2

for all real numbers r ∈ R and t with 0 ≤ t ≤ 1 as an extension of mr,t . We also define the
representing function Fr,t for mr,t by

Fr,t(x) = 1 mr,t x = (1− t + txr)
1
r for all x > 0.

Then we have
Amr,tB = A

1
2 Fr,t

(
A− 1

2 BA− 1
2

)
A

1
2 .

First of all, we see the convexity for representing functions.

Lemma 5.19 Every function Fr,t(x) is strictly increasing and strictly convex (resp. strictly
concave) for r > 1 (resp. r < 1).

Proof. It is increasing since

d
dx

Fr,t(x) = txr−1 (1− t + txr)
1−r
r > 0 for t ∈ (0,1)

Moreover the latter part is shown by

d2

dx2 Fr,t(x) = txr−2 (1− t + txr)
1−2r

r (r−1)(1− t +2txr).

�

The adjoint for mr,t and Fr,t are as follows.

A m∗
r,t B = (A−1 mr,t B−1)−1 = A

1
2 Fr,t

(
A

1
2 B−1A

1
2

)−1
A

1
2

and

F∗
r,t(x) =

1

Fr,t( 1
x )

.

Since F∗
r,t = F−r,t , it follows that this operation preserves the operator monotonicity, so that

the above lemma shows that Fr,t cannot be operator monotone for |r| > 1.

Theorem 5.20 The inequality |r| ≤ 1 is the equivalent condition that mr,t is operator
mean, or equivalently Fr,t is operator monotone.

Proof. Every function Fr,t for r > 1 cannot be operator monotone since it is strictly
convex. Though Fr,t is concave for r < −1, it cannot be either. In fact, if it is operator
monotone, then so is a convex function F∗

r,t = F−r,t , which is a contradiction. �
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Theorem 5.21 For each t ∈ (0,1) a path A mr,t B is nondecreasing and norm continuous
for r ∈ R: For r ≤ s

A mr,t B ≤ A ms,t B.

Proof. By Lemma 5.19, for r ≤ s Fr,t(x) ≤ Fs,t(x) implies

A mr,t B = A
1
2 Fr,t

(
A− 1

2 BA− 1
2

)
A

1
2 ≤ A

1
2 Fs,t

(
A− 1

2 BA− 1
2

)
A

1
2 = A ms,t B.

�

The transformer equality makes operator means easy to handle. Though A mr,t B is no
longer an operator mean in general, the transformer equality also holds unexpectedly.

Lemma 5.22 If X is an invertible operator, then

X∗Fr,t(Y )X = X∗X mr,t X∗YX

for all real numbers r ∈ R.

Proof. For the unitary U in the polar decomposition of X = U |X |, we have

X∗X mr,t X∗YX = |X |Fr,t(|X |−1X∗YX |X |−1)|X | = |X |Fr,t(U∗YU)|X |
= |X |U∗Fr,t(Y )U |X | = X∗Fr,t(Y )X .

�

Theorem 5.23 The transformer equality holds for mr,t for all real numbers r ∈ R.

Proof. For invertible X , the above lemma implies

X∗(A mr,t B)X = X∗A
1
2 Fr,t

(
A− 1

2 BA− 1
2

)
A

1
2 X = X∗AX mr,t X∗BX .

�

Theorem 5.24 A path A mr,t B is interpolational that

(A mr,p B) mr,t (A mr,q B) = A mr,(1−t)p+tq B

for all real numbers r ∈ R and 0 ≤ p,q,t ≤ 1. In particular, the transposition formula
holds:

B mr,t A = A mr,1−t B.

Proof. Since

Fr,p(x)Fr,t

(
Fr,q(x)
Fr,p(x)

)
= (1− p+ pxr)1/r

(
1− t + t

(
1−q+qxr

1− p+ pxr

))1/r

= ((1− t)(1− p+ pxr)+ t(1−q+qxr))1/r = Fr,(1−t)p+tq(x),

we have the required result by the transformer equality. The transposition formula is the
case for p = 1 and q = 0. �

We investigate estimates of the upper boundary for the ratio between extended interpo-
lational paths mr,t by terms of a generalized Specht ratio.



156 5 OPERATOR MEANS

Theorem 5.25 Let A and B be positive invertible operators on H such that M1H ≥A,B≥
m1H > 0 for some scalars M > m > 0. Put h = M

m . Then for r ≤ s and t ∈ (0,1)

A ms,t B ≤ Δ(h,r,s) A mr,t B,

where a generalized Specht ratio Δ(h,r,s) is defined as (2.97) in § 2.7.

Proof. Let C be a positive invertible operator on H satisfying M1H ≥ C ≥ m1H > 0.
Then it follow from Theorem 2.61 that

(1− t + tCs)1/s ≤ max
m≤x≤M

Δ(x,r,s)(1− t + tCr)1/r

for all r ≤ s and t ∈ [0,1]. Since the maximum of Δ(x,r,s) in x ∈ [m,M] is given by
max{Δ(m,r,s),Δ(M,r,s)} by Theorem 2.62, we have

(1− t + tCs)1/s ≤ max{Δ(m,r,s),Δ(M,r,s)}(1− t + tCr)1/r

Since 0 < m1H ≤ A,B ≤ M1H , we obtain 1
h1H ≤ A− 1

2 BA− 1
2 ≤ h1H . Replacing C by

A− 1
2 BA− 1

2 in above inequality, we have for t ∈ [0,1]

(
1− t + t

(
A− 1

2 BA− 1
2

)s)1/s
≤ Δ(h,r,s)

(
1− t + t

(
A− 1

2 BA− 1
2

)r)1/r

since Δ
( 1

h ,r,s
)

= Δ(h,r,s) by Theorem 2.62. Multiplying both sides by A1/2, we have

A ms,t B ≤ Δ(h,r,s)A mr,t B

for r ≤ s. �

We investigate the order relation between the arithmetic mean, the geometric one and
the harmonic one:

Corollary 5.26 Let A and B be positive operators on H such that M1H ≥ A,B≥m1H > 0
for some scalars M > m > 0. Put h = M

m . Then for r < 0 < s and t ∈ (0,1)

S(hs)−1/sA ms,t B ≤ A �t B ≤ S(hr)−1/rA mr,t B,

where the Specht ratio S(h) = S(h,1) is defined as (2.74) in § 2.6.
In particular,

S(h)−1A ∇t B ≤ A �t B ≤ S(h)A !t B.
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5.4 Converses of Ando type operator means
inequalities

In this section, applying the Mond-Pečarić method to normalized positive linear maps, we
show several complementary inequalities to Jensen’s inequality on positive linear maps
and consequently obtain complementary inequalities to Ando’s inequality (Theorem 5.8)
associated with an operator mean.

Throughout this section, we assume that 0 < m1 < M1 and 0 < m2 < M2. First we start
with an extension of Theorem 5.8:

Lemma 5.27 Let Φ ∈ P[B(H),B(K)]. Suppose that operator means σ and τ have rep-
resenting functions f and g respectively. Then the following statements are mutually equiv-
alent:

(i) Φ(A σ B) ≤ Φ(A) τ Φ(B) for every A,B ∈ B+(H).

(ii) Φ( f (A)) ≤ g(Φ(A)) for every A ∈ B+(H).

(iii) f ≤ g on [0,∞).

Proof. It is sufficient to prove that (ii) implies (i). We consider the map Ψ by

Ψ(X) = Φ(A)−
1
2 Φ(A

1
2 XA

1
2 )Φ(A)−

1
2 .

Since Ψ ∈ PN [B(H),B(K)], it follows from the assumption of (ii) that

Ψ( f (A− 1
2 BA− 1

2 )) ≤ g(Ψ(A− 1
2 BA− 1

2 )). Then we have

Φ(A σ B) = Φ(A)
1
2 Ψ
(

f
(
A− 1

2 BA− 1
2

))
Φ(A)

1
2

≤ Φ(A)
1
2

(
g
(

Ψ
(
A− 1

2 BA− 1
2

)))
Φ(A)

1
2

= Φ(A) τ Φ(B).

�

Remark 5.1 If we put σ = τ in Lemma 5.27, then we have Theorem 5.8, because the
representing function f = g is operator concave.

Since the representing functions f and g have no order relation, it follows that Φ(A σ B)
and Φ(A) τ Φ(B) have no relation to the operator order generally. Thus we apply Lemma 5.27
to consider the following complementary theorem:

Theorem 5.28 Suppose that operator means σ and τ have representing functions f and
g respectively, which are not affine. Let Φ ∈ P[B(H),B(K)], A,B∈B+(H) with Sp(A)⊆
[m1,M1], Sp(B) ⊆ [m2,M2] and m = m2/M1, M = M2/m1. Then for a given α ∈ R+

Φ(A σ B) ≥ αΦ(A) τ Φ(B)+ β Φ(A), (5.19)
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where β = β (m,M, f ,g,α) = μ f to + ν f −αg(to) and to ∈ [m,M] is defined as the unique
solution of g′(t) = μ f /α when g′(M) < μ f /α < g′(m), otherwise to is defined as M or m
according to μ f /α ≤ g′(M) or g′(m) ≤ μ f /α .

Proof. As in Lemma 5.27, we consider a map Ψ ∈ PN [B(H),B(K)] given by Ψ(X) =
Φ(A)−

1
2 Φ
(
A

1
2 XA

1
2

)
Φ(A)−

1
2 . Since the representing functions f , g are nonnegative oper-

ator concave functions, it follows from Theorem 2.4 that for k = 1 and a given α > 0

Ψ
(

f
(
A− 1

2 BA− 1
2

))
≥ αg

(
Ψ
(
A− 1

2 BA− 1
2

))
+ β1H

holds for β = β ( m2
M1

, M2
m1

, f ,g,α) defined as it was in Theorem 2.4. Therefore we have

Φ(A σ B) = Φ(A)
1
2 Ψ
(

f
(
A− 1

2 BA− 1
2

))
Φ(A)

1
2

≥ Φ(A)
1
2

(
αg
(

Ψ(A− 1
2 BA− 1

2 )
)

+ β1H

)
Φ(A)

1
2

= αΦ(A) τ Φ(B)+ β Φ(A).

�

Remark 5.2 If we put α = 1 in Theorem 5.28 we obtain the following inequality:

−β Φ(A) ≥ Φ(A) τ Φ(B)−Φ(A σ B),

where
β = min

m2
M1

≤t≤M2
m1

{μ f t + ν f −g(t)}.

If we choose a value of constant α such that β = 0 in Theorem 5.28, then we obtain
the following corollary.

Corollary 5.29 Let the hypothesis of Theorem 5.28 be satisfied. Then

Φ(A σ B) ≥ α1 Φ(A) τ Φ(B),

where α1 =
(
μ f to + ν f

)
/g(to) and to ∈ [m,M] is defined as the unique solution of μ f g(t) =

g′(t)(μ f t + ν f ) when f (M)g′(M)/g(M) < μ f < f (m)g′(m)/g(m), otherwise to is defined
as M or m according to μ f ≤ f (M)g′(M)/g(M) or f (m)g′(m)/g(m) ≤ μ f .

By virtue of Theorem 5.28, we obtain lower estimates for complementary inequalities to
Jensen’s type inequalities on a positive linear map under a general setting.

Theorem 5.30 Suppose that two operator means σ and τ have representing functions
f and g respectively, which are not affine. Let Φ ∈ P[B(H),B(K)], A,B ∈ B+(H) with

Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. For a given α > 0, put β = β
(

m2
M1

, M2
m1

, f ,g,α
)

and
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β 0 = β
(

m1
M2

, M1
m2

, f 0,g0,α
)

defined as it was in Theorem 5.28.

(i) If β ≥ 0 and β 0 ≥ 0, then for every operator mean ρ

Φ(A σ B)−αΦ(A) τ Φ(B) ≥ (β Φ(A)) ρ
(
β 0Φ(B)

)
. (5.20)

(ii) If β < 0 and β 0 < 0, then for every operator mean ρ

(Φ(A σ B)−β Φ(A)) ρ
(
Φ(A σ B)−β 0Φ(B)

)≥ α Φ(A) τ Φ(B). (5.21)

(iii) If β β 0 < 0, then

Φ(A σ B)−αΦ(A) τ Φ(B) ≥ max{β Φ(A),β 0 Φ(B)}. (5.22)

Proof. By Theorem 5.28, we have that for a given α > 0

Φ(A σ B) ≥ αΦ(A) τ Φ(B)+ β Φ(A)

holds for β = β
(

m2
M1

, M2
m1

, f ,g,α
)
. By applying Theorem 5.28 to the transpose σo and τo,

we have that
Φ(B σo A) ≥ αΦ(B) τo Φ(A)+ β oΦ(B) (5.23)

holds for β 0 = β
(

m1
M2

, M1
m2

, f 0,g0,α
)
, where f 0 and g0 are the transpose representing func-

tions for f and g respectively. Therefore we have

Φ(A σ B) ≥ αΦ(A) τ Φ(B)+ β oΦ(B).

Suppose that β ≥ 0 and β 0 ≥ 0. Then we have

Φ(A σ B)−αΦ(A) τ Φ(B) ≥ β Φ(A) ≥ 0 (5.24)

and
Φ(A σ B)−αΦ(A) τ Φ(B) ≥ β 0 Φ(B) ≥ 0. (5.25)

Combining (5.24) and (5.25), it follows from the normalization of ρ that

Φ(A σ B)−αΦ(A) τ Φ(B)
= (Φ(A σ B)−αΦ(A) τ Φ(B)) ρ (Φ(A σ B)−αΦ(A) τ Φ(B))
≥ (β Φ(A)) ρ

(
β 0Φ(B)

)
,

which implies (5.20).
Suppose that β < 0 and β 0 < 0. Then we have

Φ(A σ B)−β Φ(A) ≥ αΦ(A) τ Φ(B) ≥ 0 (5.26)

and
Φ(A σ B)−β 0 Φ(B) ≥ αΦ(A) τ Φ(B) ≥ 0. (5.27)
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Combining (5.26) and (5.27), we have

(Φ(A σ B)−β Φ(A)) ρ
(
Φ(A σ B)−β 0Φ(B)

)≥ α Φ(A) τ Φ(B), (5.28)

which implies (5.21).
Finally, if β β 0 < 0, then β Φ(A) ≥ 0 ≥ β 0Φ(B) or β 0Φ(B) ≥ 0 ≥ β Φ(A). Hence we

have the desired result (5.22). �

Corollary 5.31 Assume that the conditions of Theorem 5.28 hold. If σ ≤ τ , then for
every operator mean ρ

(−β Φ(A)) ρ (−β oΦ(B)) ≥ Φ(A) τ Φ(B)−Φ(A σ B) ≥ 0

holds for β = β
(

m2
M1

, M2
m1

, f ,g,α = 1
)

and β 0 = β
(

m1
M2

, M1
m2

, f 0,g0,α = 1
)

defined as it was

in Theorem 5.28.

Proof. If we put α = 1 in Theorem 5.28, then it follows from σ ≤ τ that

μ f t0 + ν f ≤ f (t0) ≤ g(t0),

that is, β < 0. Similarly we have β 0 < 0 since σ0 ≤ τ0. �

Further, if we choose α such that β = 0 in (5.19) of Theorem 5.28, then we have the
following corollary:

Corollary 5.32 Assume that the conditions of Theorem 5.28 hold. Then

Φ(A σ B) ≥ max

⎧⎨
⎩ min

m2
M1

≤t≤M2
m1

{
μ f t + ν f

g(t)

}
, min

m1
M2

≤s≤M1
m2

{
a f os+b f o

go(s)

}⎫⎬
⎭ Φ(A) τ Φ(B).

Proof. Since the representing function of an operator mean is a not affine and a non-
negative operator concave function, Corollary 5.32 follows from Corollary 5.29. In fact, it
follows from Corollary 5.29 that

Φ(A σ B) ≥
⎛
⎝ min

m2
M1

≤t≤M2
m1

{
μ f t + ν f

g(t)

}⎞⎠Φ(A) τ Φ(B).

In a similar way we obtain

Φ(A σ B) ≥
⎛
⎝ min

m1
M2

≤s≤M1
m2

{
a f os+b f o

go(s)

}⎞⎠ Φ(A) τ Φ(B).

Since (α1X) ρ (α2X) = (α1 ρ α2)X for α1,α2 > 0 and X ≥ 0, we have that for every
operator mean ρ

Φ(A σ B) ≥
⎛
⎝ min

m2
M1

≤t≤M2
m1

{
μ f t + ν f

g(t)

}⎞⎠ρ

⎛
⎝ min

m1
M2

≤s≤M1
m2

{
a f os+b f o

go(s)

}⎞⎠ Φ(A) τ Φ(B).



5.4 CONVERSES OF ANDO TYPE OPERATOR MEANS INEQUALITIES 161

Therefore, we obtain the desired result. �

Next, we shall consider how the weighted geometric mean modifies when filtered
through a positive linear map.

Corollary 5.33 Let Φ∈P[B(H),B(K)], A,B∈B+(H) with Sp(A)⊆ [m1,M1], Sp(B)⊆
[m2,M2]. Let p,q ∈ (0,1) be given. Then for a given α > 0

Φ(A �p B)−αΦ(A) �q Φ(B) ≥ β Φ(A)

holds for β = β (m,M,t p,tq,α) =

{
α(q−1)

(
1

αq
Mp−mp

M−m

) q
q−1 + Mmp−mMp

M−m if qmq−1 ≥ 1
α

Mp−mp

M−m ≥ qMq−1,

min{Mp−αMq,mp−αmq} otherwise,

where m = m2
M1

and M = M2
m1

, and

Φ(A �p B)−αΦ(A) �q Φ(B) ≥ β 0Φ(B)

holds for β 0 = β
(

m1
M2

, M1
m2

,t1−p,t1−q,α
)

which is defined just as above.

Proof. This corollary follows from Theorem 5.28 since the representing function of the
p-power mean �p and the q-power mean �q are f (t) = t p and g(t) = tq respectively. �

Corollary 5.34 Let Φ∈P[B(H),B(K)], A,B∈B+(H) with Sp(A)⊆ [m1,M1], Sp(B)⊆
[m2,M2]. Let p,q ∈ (0,1) be given. Then

Φ(A �p B) ≥ max{α1, α2} Φ(A) �q Φ(B)

holds for

α1 =

{
1

1−q
Mmp−mMp

M−m

(
1−q
q

Mp−mp

Mmp−mMp

)q
if m ≤ q

1−q
Mmp−mMp

Mp−mp ≤ M,

min{mp−q,Mp−q} otherwise,

where m = m2
M1

and M = M2
m1

,
and

α2 =

{
1
q

Mm1−p−mM1−p

M−m

(
q

1−q
M1−p−m1−p

Mm1−p−mM1−p

)1−q
if m ≤ 1−q

q
Mm1−p−mM1−p

M1−p−m1−p ≤ M,

min{mq−p,Mq−p} otherwise,

where m = m1
M2

and M = M1
m2

.
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Remark 5.3 If we put p = q in Corollary 5.33 we obtain converses of the inequality
Φ(A �p B) ≤ Φ(A) �p Φ(B). In particular, for p = 1

2 we obtain the following converses of
Ando inequality Φ(A � B) ≤ Φ(A) � Φ(B):

Φ(A) � Φ(B) ≤
√

M1M2 +
√

m1m2

2 4
√

m1m2M1M2
Φ(A � B),

Φ(A) � Φ(B)−Φ(A � B) ≤ min

{√
M1

m1
,

√
M2

m2

}
(
√

M1M2−√
m1m2)2

4(
√

M1M2 +
√

m1m2)
1K .

In the case when Φ is the identity map in Corollary 5.33, we obtain the estimation of
the difference of the geometric interpolation.

Corollary 5.35 Let A,B ∈ B+(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2] and m =
m2/M1, M = M2/m1. If p,q ∈ (0,1), then

−β ′A ≥ A�pB−A�qB ≥ βA,

where β = β (m,M,t p,tq,α = 1) and β ′ = β (m,M, tq, t p,α = 1) are defined as in Corol-
lary 5.33.

In the next corollary we give the estimation of the difference of two path A ∇p B and
A �p B:

Corollary 5.36 Let A, B, M and m be as in Corollary 5.35. If p ∈ (0,1), then

max{1− p+ pm−mp,1− p+ pM−Mp}A ≥ A ∇p B−A �p B ≥ 0.

Proof. It is obvious

xp− (1− p+ px)≥
{

mp− (1− p+ pm), if p ≤ Mp−mp

M−m ,

Mp − (1− p+ pM), if p ≥ Mp−mp

M−m .

If β = max{1− p+ pm−mp,1− p+ pM−Mp}, then(
A− 1

2 BA− 1
2

)p−
(
(1− p)+ pA− 1

2 BA− 1
2

)
≥−β 1H .

Now we have A �p B−A ∇p B ≥−βA. �

Remark 5.4 In the same way as above we have that for α ∈ R+

Φ(A�B)−αΦ(A)∇Φ(B) ≥ min le f t
√

m− α(m+1)
2

,
√

M− α(M +1)
2

rightΦ(A)

holds if Φ ∈ P[B(H),B(K)], A,B∈B+(H) with Sp(A)⊆ [m1,M1], Sp(B)⊆ [m2,M2] and
m = m2/M1, M = M2/m1.
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Next, if we put q = 1
2 in Corollary 5.33 and use the fact that the geometric mean is

symmetric then we have the following corollary:

Corollary 5.37 Let Φ∈P[B(H),B(K)], A,B∈B+(H) with Sp(A)⊆ [m1,M1], Sp(B)⊆
[m2,M2] and m = m2/M1, M = M2/m1. If p ∈ (0,1), then

Φ(A �p B)−Φ(A) � Φ(B) ≥ β Φ(A),
Φ(A �p B) ≥ αΦ(A) � Φ(B)

hold for

β ≡ β (m,M, p) =
{− 1

4
M−m

Mp−mp + Mmp−mMp

M−m , if 2
√

m < M−m
Mp−mp < 2

√
M,

min{Mp−√
M,mp −√

m} otherwise,

α =

{
2
√

(Mp−mp)(Mmp−mMp)
M−m , if m < Mmp−mMp

Mp−mp < M,

min{mp−1/2,Mp−1/2} otherwise.

Also

Φ(B �p A)−Φ(A) � Φ(B) ≥ β Φ(B),
Φ(B �p A) ≥ αΦ(A) � Φ(B)

hold for β and α which are defined just as above with m = m1
M2

and M = M1
m2

.

Remark 5.5 It can be easily checked that for β (m,M, p) from Corollary 5.37 holds:
β (m,M, p) < 0 if 0 < p < 1

2 and β (m,M, p) > 0 if 1
2 < p < 1.

Corollary 5.38 Let Φ, A, B, M and m be as in Corollary 5.37. If q ∈ (0,1), then

Φ(A ! B)−Φ(A) �q Φ(B) ≥ β Φ(A),
Φ(A ! B) ≥ α1Φ(A) �q Φ(B)

hold for

β =

⎧⎪⎪⎨
⎪⎪⎩

α(q−1)
[

q(1+m)(1+M)
2

] q
1−q + 2Mm

(1+m)(1+M)

if m1−q/q < α(1+m)(1+M)
2 < M1−q/q,

min{ 2M
1+M −Mq, 2m

1+m −mq} otherwise,

α1 =

⎧⎨
⎩

2
q(1+M)(1+m)

(
q

1−qMm
)1−q

if m < 1−q
q < M,

min{ 2m1−q

1+m , 2M1−q

1+M } otherwise.

Also

Φ(A ! B)−αΦ(B) �q Φ(A) ≥ β Φ(B),
Φ(A ! B) ≥ α1Φ(B) �q Φ(A)

hold for β and α1 which are defined just as above with m = m1
M2

and M = M1
m2

.



164 5 OPERATOR MEANS

Proof. If we put σ = ! and τ = �q in Theorem 5.28 and Corollary 5.29, then we have
this corollary, since the representing functions of the harmonic mean ! is f (t) = 2t/(1+ t)
and the harmonic mean is symmetric. �

By virtue of Corollary 5.38, we can obtain the converse of Φ(A!B)≤Φ(A�B)≤Φ(A)�Φ(B).

Corollary 5.39 Let Φ∈P[B(H),B(K)], A,B∈B+(H) with Sp(A)⊆ [m1,M1], Sp(B)⊆
[m2,M2] and m = m2/M1, M = M2/m1. If α ∈ R+, then

Φ(A ! B)−αΦ(A) � Φ(B) ≥ β Φ(A)

holds for β = β (m,M,α) ={
−α2 (1+m)(1+M)

8 + 2Mm
(1+m)(1+M) if

√
m < α(1+m)(1+M)

4 <
√

M,

min
{

2M
1+M −α

√
M, 2m

1+m −α
√

m
}

otherwise.

In particular,
Φ(A ! B) ≥ α1Φ(A) � Φ(B)

holds for

α1 =

⎧⎨
⎩

4
√

m1m2M1M2
(M2+m1)(M1+m2)

if m1 < M2 and m2 < M1,

min
{

2
√

m2M1
m2+M1

, 2
√

m1M2
m1+M2

}
otherwise,

and
Φ(A ! B)−Φ(A) � Φ(B) ≥ β11K (5.29)

holds for

β1 = max{ 1
m1

,
1
m2

}
[
− (M2 +m1)(M1 +m2)

8
+

2M1m1M2m2

(M2 +m1)(M1 +m2)

]
.

Proof. If we put q = 1/2 in Corollary 5.38 then we have the first two inequalities.
Now, we prove the inequality (5.29). If we put α = 1 in the first inequality then we have
β (m,M,1)≤ μ f m+ν f −g(m)= 2m/(1+m)−√

m < 0 where f (t) = 2t/(1+t) and g(t)=√
t. We denote β2(m,M) = − (1+m)(1+M)

8 + 2
(1+m)(1+M) . Then

β2 ≡ β2(m2/M1,M2/m1) =
1

m1M1

(
− (M2 +m1)(M1 +m2)

8
+

2M1m1M2m2

(M2 +m1)(M1 +m2)

)

and 0 > β (m,M,1) ≥ β2. As following we have Φ(A ! B)−Φ(A) � Φ(B) ≥ β2Φ(A) ≥
β2M1. Similarly we have Φ(A ! B)−Φ(A) � Φ(B)≥ β3Φ(B)≥ β3M2, for β3 = β2(m1/M2,M1/m2)=

1
m2M2

(
− (M2+m1)(M1+m2)

8 + 2M1m1M2m2
(M2+m1)(M1+m2)

)
. Combining these two inequalities we obtain

the desired inequality:

Φ(A ! B)−Φ(A) � Φ(B) ≥ max{β2M1,β3M2}1H = β1 1K .

�
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Remark 5.6 If we put σ = τ = ! in Theorem 5.28 then we obtain converses of Ando
inequality Φ(A ! B) ≤ Φ(A) ! Φ(B), which are proved directly in [130, Corollary 3.8].

In the same way we can obtain inequalities for the weighted harmonic mean !λ , except
the case when we need the condition of symmetric mean.

5.5 Mixed operator means

In this section we shall give inequalities for mixed operator means based on the inequality
(5.19) in Theorem 5.28 and on the following simple inequalities for mixed operator means
of type (5.10) in § 5.1.

Lemma 5.40 Let Φ ∈ P[B(H),B(K)], A,B ∈ B++(H) and σ be an operator mean. If
λ ,μ ∈ (0,1), then

Φ(A) σ (Φ(A) ∇λ Φ(B)) ≥ Φ(A) ∇λ (Φ(A) σ Φ(B)) , (5.30)

Φ(A)−1 σ
(
Φ(A)−1 !λ Φ(B)−1) ≤ Φ(A)−1 !λ

(
Φ(A)−1 σ Φ(B)−1) . (5.31)

In particular,

Φ(A) �μ (Φ(A) ∇λ Φ(B)) ≥ Φ(A) ∇λ
(
Φ(A) �μ Φ(B)

)
,

Φ(A)−1 �μ
(
Φ(A)−1 !λ Φ(B)−1) ≤ Φ(A)−1 !λ

(
Φ(A)−1 �μ Φ(B)−1) ,

Φ(A) !μ (Φ(A) ∇λ Φ(B)) ≥ Φ(A) ∇λ
(
Φ(A) !μ Φ(B)

)
.

Proof. By homogenity and subadditivity of the operator mean, we have

Φ(A) σ (Φ(A) ∇λ Φ(B)) = (λ Φ(A)+ (1−λ )Φ(A)) σ (λ Φ(A)+ (1−λ )Φ(B))
≥ λ (Φ(A) σ Φ(A))+ (1−λ )(Φ(A) σ Φ(B)) = Φ(A) ∇λ (Φ(A) σ Φ(B)) ,

that proves (5.30). If we replace σ by the adjoint mean σ∗ in (5.30) then

Φ(A) σ∗ (Φ(A) ∇λ Φ(B)) ≥ Φ(A) ∇λ (Φ(A) σ∗ Φ(B)) .

By using the fact that the function t →−t−1 is operator monotone on (0,∞), we have

(
Φ(A)−1 σ (Φ(A) ∇λ Φ(B))−1

)−1 ≥ Φ(A) ∇λ
(
Φ(A)−1 σ Φ(B)−1

)−1

=
(
Φ(A)−1 !λ

(
Φ(A)−1 σ Φ(B)−1

))−1
,

that proves (5.31).
If we replace σ by �μ in (5.30) and (5.31), and we replace σ by !μ in (5.30), then we

obtain the remainder. �

In the next theorem we show the converse of the inequality (5.30).
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Theorem 5.41 Suppose that any two operator means σ and τ have representing func-
tions f and g respectively. Let Φ ∈ P[B(H),B(K)], A,B∈B+(H) with Sp(A)⊆ [m1,M1],
Sp(B) ⊆ [m2,M2]. Let λ ∈ (0,1). Then for a given α ∈ R+

Φ(A σ (A ∇λ B)) ≥ α Φ(A) ∇λ (Φ(A) τ Φ(B))+ β Φ(A), (5.32)

holds for β = μ f to + ν f − αg(to) and to ∈ [mλ ,Mλ ] is defined as the unique solution
of g′(t) = μ f /α when g′(Mλ ) < μ f /α < g′(mλ ), otherwise t0 is defined as Mλ or mλ

according to μ f /α ≤ g′(Mλ ) or g′(mλ ) ≤ μ f /α , where mλ = λm1+(1−λ )m2
M1

and Mλ =
λM1+(1−λ )M2

m1
and

Φ(A σ (A ∇λ B)) ≥ αΦ(A) ∇λ (Φ(A) τ Φ(B))+ β 0Φ(A ∇λ B)

holds for β 0 which is defined just as above with mλ = m1
λM1+(1−λ )M2

, Mλ = M1
λm1+(1−λ )m2

and f 0,g0.

Proof. If we replace B by (A ∇λ B) in Theorem 5.28, then

Φ(A σ (A ∇λ B)) ≥ α Φ(A) τ Φ(A∇λ B)+ β Φ(A)
= α Φ(A) τ (Φ(A)∇λ Φ(B))+ β Φ(A),

holds for β as above. It implies by (5.30) that

αΦ(A) τ (Φ(A)∇λ Φ(B))+ β Φ(A) ≥ αΦ(A) ∇λ (Φ(A) τ Φ(B))+ β Φ(A).

Combining these two inequalities we obtain

Φ(A σ (A ∇λ B)) ≥ αΦ(A) ∇λ (Φ(A) τ Φ(B))+ β Φ(A).

On the other hand, if we replace σ , τ by the transpose σ0, τ0, then we have that

Φ
(
(A ∇λ B)σ0 A

)≥ αΦ(A ∇λ B) τ0 Φ(A)+ β 0Φ(A∇λ B)

holds for β 0 as above. By Lemma 5.40, we have

Φ(A σ (A ∇λ B)) ≥ αΦ(A) ∇λ (Φ(A) τ Φ(B))+ β 0Φ(A ∇λ B).

�

Corollary 5.42 Let Φ,σ ,τ,A,B,m1,M1,m2,M2 and λ be as in Theorem 5.41. Then
Φ(A σ (A ∇λ B)) ≥

max

{
min

mλ≤t≤Mλ

{
μ f t + ν f

g(t)

}
, min

m0
λ≤t≤M0

λ

{
a f 0t +b f 0

g0(t)

}}
Φ(A) ∇λ (Φ(A) τ Φ(B)) ,

where mλ = λm1+(1−λ )m2
M1

, Mλ = λM1+(1−λ )M2
m1

, m0
λ = m1

λM1+(1−λ )M2
and M0

λ = M1
λm1+(1−λ )m2

.
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A value of α = minmλ≤t≤Mλ {
μ f t+ν f

g(t) } is given by

α =
μ f t0 + ν f

g(t0)
,

where t0 ∈ [mλ ,Mλ ] is defined as the unique solution of μ f g(t) = g′(t)(μ f t + ν f ) when
f (Mλ )g′(Mλ )/g(Mλ ) ≤ μ f ≤ f (mλ )g′(mλ )/g(mλ ), otherwise t0 is defined as Mλ or mλ
according to μ f ≤ f (M)g′(M)/g(M) or f (m)g′(m)/g(m) ≤ μ f .

Proof. This corollary follows from Corollary 5.32 and the inequality (5.30). �

If we put σ = �p or σ = ! and τ = �p in Theorem 5.41 and Corollary 5.42, then we
have the next corollary:

Corollary 5.43 Let Φ,A,B,m1,M1,m2,M2 and λ be as in Theorem 5.41. Let q, p∈ (0,1).
Then for a given α ∈ R+

Φ(A �p (A ∇λ B)) ≥ α Φ(A) ∇λ (Φ(A) �q Φ(B))+ β1Φ(A),
Φ(A ! (A ∇λ B)) ≥ α Φ(A) ∇λ (Φ(A) �q Φ(B))+ β2Φ(A)

hold for

β1 =
{

α(q−1)(αq/μt p)
q

1−q + νt p if m1−q/q ≤ α/μt p ≤ M1−q/q,
min{Mp−αMq,mp−αmq} otherwise,

β2 =

⎧⎪⎪⎨
⎪⎪⎩

α
1

1−q (q−1)
[

q(1+m)(1+M)
2

] q
1−q + 2Mm

(1+m)(1+M)

if m1−q

q ≤ α(1+m)(1+M)
2 ≤ M1−q

q ,

min
{

2M
1+M −αMq, 2m

1+m −αmq
}

otherwise,

where m = mλ = λm1+(1−λ )m2
M1

and M = Mλ = λM1+(1−λ )M2
m1

.
In particular,

Φ(A �p (A ∇λ B)) ≥ α1Φ(A) ∇λ (Φ(A) �q Φ(B)) ,

Φ(A ! (A ∇λ B)) ≥ α2Φ(A) ∇λ (Φ(A) �q Φ(B))

hold for

α1 =
{

K(m,M, p,q) if m < q
1−qνt p/μt p < M,

min{mp−q,Mp−q} otherwise,

α2 =

⎧⎨
⎩

2
q(1+M)(1+m)

(
q

1−qMm
)1−q

if m ≤ 1−q
q ≤ M,

min
{

2m1−q

1+m , 2M1−q

1+M

}
otherwise.
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5.6 Notes

The theory of operator means for positive operators on a Hilbert space is established by
Kubo and Ando [121] and we refer to Hiai and Yanagi [106] and J.I.Fujii [36].

The relative operator entropy as a generalization of operator means which is called
solidarities, appeared in the works of J.I.Fujii and Kamei [46], J.I.Fujii [36] and Kamei
[112]. Further topics associated with the relative operator entropy are [35], [41], [79], [86]
and [9].

Topics associated with the relative entropy are Araki [10], Pusz-Woronowicz [172],
Hiai-Petz [104] and Ohya-Petz [164]. Uhlmann [191] discussed the quadratic interpola-
tion and introduced the relative entropy for states on an operator algebra. His quadratic
interpolation is reduced to a path generated by the geometric mean and the relative entropy
is the derivative of this path. J.I.Fujii and Kamei [47, 48] introduced interpolational paths
generated by an operator mean based on Uhlman’s method. Further topics are [113], [42]
and [38].



Chapter6
Inequalities on the Hadamard
product

In this chapter, we discuss complemetary results to Jensen’s type inequal-
ities on the Hadamard product of positive operators on a Hilbert space,
which is based on the Mond-Pečarić method. As a result, we extend a
theorem by Liu and Neudecker and moreover show Hadamard product
versions of operator inequalities associated with extensions of Hölder-
McCarthy and Kantorovich inequalities.

6.1 Preliminaries

We discuss several fundamental inequalities on the Hadamard product. The Hadamard
product is expressed as the deformation of the tensor product, which is one of the most
powerful tools for the study of the Hadamard product of operators on a separable Hilbert
space.

Definition 6.1 Let {e j} be an orthogonal basis of a Hilbert space H and A⊗B be tensor
product of operators A and B on H regarding to {e j}. Let U : H → H⊗H be the isometry
such that Ue j = e j ⊗ e j. The Hadamard product A◦B regarding to {e j} is expressed as

A◦B = U∗(A⊗B)U. (6.1)

169
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In the finite dimension case if operators A and B have the matrices A = [ai j] ∈ Mn

and B = [bi j] ∈ Mn regarding to same basis, then the Hadamard product A ◦ B has an
associated matrix A◦B = [ai jbi j] ∈ Mn and tensor product A⊗B has an associated matrix
A⊗B = [ai jB] ∈ Mn2 ( sometimes called the Kronecker product).

The following formulas for tensor products are well known:

(A⊗B)(C⊗D) = (AC)⊗ (BD)

and
(A⊗B)∗ = A∗ ⊗B∗.

Since 1H ⊗1H = 1H ,
(A⊗B)−1 = A−1⊗B−1

whenever both A and B are invertible. They imply that if both A and B are positive op-
erators, so is their tensor product. More generally, A1 ≥ A2 ≥ 0 and B1 ≥ B2 ≥ 0 imply
A1 ⊗ B1 ≥ A2 ⊗ B2 ≥ 0. Moreover, we obtain that if Aj and Bj are positive invertible
operators ( j = 1,2), then

(A1⊗B1) �α (A2 ⊗B2) = (A1 �α A2)⊗ (B1 �α B2)

for all α ∈ [0,1].

Now, the Hadamard product differs from the usual product in many ways. The most
important is commutativity of Hadamard multiplication:

A◦B = B◦A.

The diagonal operator formed from an operator A can be obtained by Hadamard multipli-
cation with the identity operator and the following holds

(A◦B)◦ 1H = (A◦ 1H)(B◦ 1H).

The first application is the following theorem of Schur.

Theorem 6.1 (SCHUR) If A and B are positive operators on a Hilbert space, then the
Hadamard product A ◦B is also positive. More generally, A1 ≥ A2 ≥ 0 and B1 ≥ B2 ≥ 0
imply A1 ◦B1 ≥ A2 ◦B2 ≥ 0.

Proof. It easily follows that if X and Y are positive and commutes, then XY is positive.
Since A⊗1H and 1H ⊗B commutes, it follows that A⊗B= (A⊗1H)(1H ⊗B) is positive and
hence by Definition 6.1 the Hadamard product A◦B is positive. Also, the monotonicity of
the Hadamard product follows from the monotonicity of the tensor product and Definition
6.1. �

Definition 6.2 Let I be an interval in R. A function f ∈ C (I) is super-multiplicative
on I if f (xy) ≥ f (x) f (y) for every x,y ∈ I. If the inequality is opposite then f is sub-
multiplicative on I.
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Lemma 6.2 If a function f ∈ C (I) is super-multiplicative (resp. sub-multiplicative) on
[0,∞), then

f (A⊗B)≥ f (A)⊗ f (B) (resp. f (A⊗B) ≤ f (A)⊗ f (B))

for every positive operator A and B.

Proof. Let A =
∫

λdEλ and B=
∫

μdFμ be the spectral decompositions. Then it follows
that

f (A⊗B) =
∫ ∫

f (λ μ)dEλ ⊗Fμ

≥
(∫

f (λ )dEλ

)
⊗
(∫

f (μ)dFμ

)
= f (A)⊗ f (B).

�

We have the following inequality of Jensen’s type for the Hadamard product.

Theorem 6.3 Let A, B ∈ B+(H) be positive operators and Φ ∈ PN [B(H),B(K)] a
normalized positive linear map. If f is a sub-multiplicative operator convex function (resp.
a super-multiplicative operator concave function) on (0,∞), then

f (Φ(A◦B)) ≤ Φ( f (A)◦ f (B)) (resp. f (Φ(A◦B)) ≥ Φ( f (A)◦ f (B))). (6.2)

In particular,

f (A◦B) ≤ f (A)◦ f (B) (resp. f (A◦B) ≥ f (A)◦ f (B)). (6.3)

Proof. We show the sub-multiplicative operator convex case only. By Lemma 6.2 and
Theorem 1.20 (Davis-Choi-Jensen’s inequality), we have

f (A◦B) = f (U∗(A⊗B)U)≤U∗ f (A⊗B)U
≤ U∗ ( f (A)⊗ f (B))U = f (A)◦ f (B).

It follows from Davis-Choi-Jensen’s inequality again that

f (Φ(A◦B)) ≤ Φ( f (A◦B)) ≤ Φ( f (A)◦ f (B)).

�

Since the power function is sub-multiplicative and super-multiplicative, we have the
following Hölder-McCarthy type inequality on the Hadamard product.

Corollary 6.4 Let A, B∈B++(H) be positive invertible operators and Φ∈PN [B(H),B(K)]
a normalized positive linear map. Then

(i) (Φ(A◦B))p ≤ Φ(Ap ◦Bp) if −1 ≤ p ≤ 0 or 1 ≤ p ≤ 2.

(ii) (Φ(A◦B))p ≥ Φ(Ap ◦Bp) if 0 ≤ p ≤ 1.
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Proof. By Theorem 6.3, the proof depends upon the facts that the function f (t) = t p is
operator convex on (0,∞) for −1 ≤ p ≤ 0 or 1 ≤ p ≤ 2 and is operator concave on (0,∞)
for 0 ≤ p ≤ 1 by Corollary 1.16 in § 1.2. �

Corollary 6.5 Let A,B and Φ be as in Corollary 6.4. Then

(Φ(Ar ◦Br))
1
r ≤ (Φ(As ◦Bs))

1
s

for r ≤ s with (i) r,s �∈ (−1,1), (ii) 1/2 ≤ r ≤ 1 ≤ s and (iii) r ≤−1 ≤ s ≤−1/2.

Proof. Assume that 1 ≤ r ≤ s. Then by (ii) of Corollary 6.4, we have

Φ(Ar ◦Br) ≤ (Φ(As ◦Bs))
r
s .

Since 1 ≤ r, the above inequality implies

(Φ(Ar ◦Br))
1
r ≤ (Φ(As ◦Bs))

1
s

by the Löwner-Heinz inequality. The remainders of the proof are similar to that of Theo-
rem 4.1. �

Next, we show several inequalities for the Hadamard product involving operator means.

Theorem 6.6 If A and B are positive operators, then

A◦B ≥ (A �α B)◦ (A �1−α B) and A◦B≥ (A !1−α B)◦ (A ∇α B) (6.4)

for all α ∈ [0,1].

Proof. By the commutativity of the Hadamard product, we have A◦B = (A◦B) �α(B◦
A). Then it follows from the transformer inequality that

A◦B = U∗(A⊗B)U �α U∗(B⊗A)U ≥U∗(A⊗B) �α (B⊗A)U
= U∗(A �α B)⊗ (B �α A)U = (A �αB)◦ (B �α A)
= (A �α B)◦ (A �1−α B).

Next, since it is easily seen from the definition of the geometric mean that (XY−1X) �Y =X
for any positive operators X and Y , we have

A{(1−α)A+ αB}A◦ {(1−α)A+αB}
≥ (

A{(1−α)A+ αB}−1A � {(1−α)A+ αB})
◦(A{(1−α)A+ αB}−1A � {(1−α)A+ αB})

= A◦A.
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Since
(
αA−1 + α−1(1−α)B−1

)(
A− (1−α)A{(1−α)A+αB}−1A

)
= 1H , we have

{αA−1 +(1−α)B−1}−1 ◦ {(1−α)A+ αB}
= α−1{A− (1−α)A{(1−α)A+αB}−1A} ◦ {(1−α)A+ αB}
= α−1(1−α)A◦A+A◦B

−α−1(1−α)A{(1−α)A+ αB}−1A◦ {(1−α)A+ αB}
≤ α−1(1−α)A◦A+A◦B−α−1(1−α)A◦A = A◦B

as desired. �

Recall that the transpose σ0 with f 0 is defined by

A σ0 B = B σ A and f 0(t) = t f

(
1
t

)

for an operator mean σ with the representing function f .

Remark 6.1 The first expression of (6.4) in Theorem 6.6 is restated as follows.

A◦B ≥ (A �α B)◦ (A (�α)0 B).

We have the following extension by virtue of the transpose of the operator mean. If σ
is an operator mean with a supermultiplicative representing function f , then

A◦B ≥ (A σ B)◦ (A σ0 B)

holds for positive operators A and B. As a matter of fact, it follows from the transformer
inequality that

A◦B = (A◦B) σ (B◦A) = U∗(A⊗B)U σ U∗(B⊗A)U
≥ U∗(A⊗B σ B⊗A)U.

Put X = A−1/2BA−1/2 and Y = B−1/2AB−1/2, then we have

(A⊗B) σ (B⊗A) = (A⊗B)
1
2 f (X ⊗Y )(A⊗B)

1
2

≥ (A⊗B)
1
2 f (X)⊗ f (Y )(A⊗B)

1
2

=
(
A

1
2 f (X)A

1
2

)
⊗
(
B

1
2 f (Y )B

1
2

)
= (A σ B)⊗ (B σ A)

by the super-multiplicativity of f . Hence we have

A◦B ≥ U∗(A σ B)⊗ (B σ A)U
= (A σB)◦ (B σ A) = (A σB)◦ (A σ0 B).
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Aujla and Vasudeva show the following inequality involving the Hadamard product
and the operator mean, which is an extension of results due to Ando and Fiedler.

(A◦B) � (C ◦D) ≥ (A � C)◦ (B � D). (6.5)

The following theorem is a generalization of (6.5).

Theorem 6.7 If σ is an operator mean with a super-multiplicative representing function
f , then

(A σ C)◦ (B σ D) ≤ (A◦B) σ (C ◦D) (6.6)

holds for A,B,C,D ∈ B+(H).

Proof. Putting X = A−1/2CA−1/2 and Y = B−1/2DB−1/2, it follows from Lemma 6.2
that

(A σ C)⊗ (B σ D) = (A⊗B)1/2( f (X)⊗ f (Y ))(A⊗B)1/2

≤ (A⊗B)1/2( f (X ⊗Y ))(A⊗B)1/2

= (A⊗B) σ (C⊗D).

So the transformer inequality shows

(A σ C)◦ (B σ D) = U∗ ((A σ C)⊗ (B σ D))U = U∗ ((A⊗B) σ (C⊗D))U
≤ U∗(A⊗B)U σ U∗(C⊗D)U = (A◦B) σ (C ◦D).

�

As an application of Theorem 6.6, we have the following Fiedler inequality .

Theorem 6.8 (FIEDLER INEQUALITY) If A is a positive invertible operator on a Hilbert
space H, then

A◦A−1 ≥ 1H

Proof. By Theorem 6.6, we have

A◦A−1 ≥ (A � A−1)◦ (A � A−1) = 1H ◦ 1H = 1H .

�

By virture of Theorem6.7, we show an extension of the Fiedler inequality for operators.

Corollary 6.9 If a,b ∈ R and t + s = 1 for nonnegative numbers t and s, then

Aa ◦Ab ≥ Ata+sb ◦Asa+tb

for every positive operator A. In particular,

A◦A−1 ≥ 1H .
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Proof. In Theorem 6.7, replacing both A and D by Aa, both B and C by Ab and applying
the operator mean with the representing function f (t) = ts, we have

Aa ◦Ab = (Aa ◦Ab) �s (Ab ◦Aa)
≥ (Aa �s Ab)◦ (Ab �s Aa)
= Ata+sb ◦Asa+tb.

If we put a = 1, b = −1 and t = s = 1
2 in the expression above, then we have the Fiedler

inequality. �

Theorem 6.10 If f is a super-multiplicative nonnegative operator monotone function on
(0,∞), then

f (A)◦ f 0(B) ≤ (B◦ 1H) f
(
(A◦ 1H)(B◦ 1H)−1) (6.7)

for every positive invertible operators A and B.

Proof. Let σ be the operator mean corresponding to f . Since both A ◦ 1H and B ◦ 1H

are diagonal operators and hence commutes, it follows from Theorem 6.7 that

f (A)◦ f 0(B) = (1H σ A)◦ (B σ 1H) ≤ (1H ◦B) σ (A◦ 1H)
= (B◦ 1H) σ (A◦ 1H) = (B◦ 1H) f

(
(A◦ 1H)(B◦ 1H)−1) .

�

Corollary 6.11 If r+ s = 1 for nonnegative numbers r and s, then

Ar ◦Bs ≤ (A◦ 1H)r(B◦ 1H)s

for every positive operator A and B.

Proof. If we put f (t) = tr in Theorem 6.10, then we have this corollary. �

By Corollary 6.11, we have the following Hölder’s inequality for the Hadamard prod-
uct, which gives an estimate by the diagonal operators.

Corollary 6.12
A◦B≤ (Ar ◦ 1H)

1
r (Bs ◦ 1H)

1
s (6.8)

for r,s ≥ 1 with 1
r + 1

s = 1.

Next, we consider the Kantorovich inequality on the Hadamard product.

Lemma 6.13 Let A and B be positive operators such that 0 < m11H ≤ A ≤ M11H and
0 < m21H ≤ B ≤ M21H. Then

M2

m1
(A⊗B−1)+

M1

m2
(A−1⊗B) ≤

(
1+

M1M2

m1m2

)
1H⊗H .
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Proof. Since m1
M2

1H⊗H ≤ A⊗B−1 ≤ M1
m2

1H⊗H and m2
M1

1H⊗H ≤ A−1⊗B ≤ M2
m1

1H⊗H , we
have (

M2

m1
1H⊗H −A−1⊗B

)(
M1

m2
1H⊗H −A⊗B−1

)
≥ 0,

which is equivalent to the desired inequality. �

The following theorem gives an estimate from above to the Fiedler inequality.

Theorem 6.14 If A is a positive operator on a Hilbert space H such that 0 < m1H ≤ A≤
M1H, then

A◦A−1 ≤ (A2 ◦ 1H)
1
2 (A−2 ◦ 1H)

1
2 ≤ M2 +m2

2Mm
1H =

1
2
(h+h−1)1H ,

where h = M
m .

Proof. Applying Lemma 6.13 for B = 1H , we have

1
m2 (A2⊗1H)+M2(A−2⊗1H) ≤

(
1+

M2

m2

)
1H⊗H ,

so that Definition 6.1 implies

1
m2 (A2 ◦ 1H)+M2(A−2 ◦ 1H) ≤

(
1+

M2

m2

)
1H .

Since A2 ◦ 1H and A−2 ◦ 1H commute, the arithmetic-geometric mean inequality ensures

M
m

(A2 ◦ 1H)
1
2 (A−2 ◦ 1H)

1
2 =

1
m2 (A2 ◦ 1H) � M2(A−2 ◦ 1H)

≤ 1
2

(
1
m2 (A2 ◦ 1H)+M2(A−2 ◦ 1H)

)

≤ M2 +m2

2m2 1H ,

which is the desired inequality. The former inequality follows from Corollary 6.12. �

The following corollary is the Kantorovich inequality on the Hadamard product.

Corollary 6.15 If A is a positive operator on H such that 0 < m1H ≤ A ≤ M1H, then

A◦A−1 ◦ 1H ≤ (M +m)2

4Mm
1H .

Proof. By Theorem 6.14, we have

(A2 ◦A−2)◦ 1H = (A2 ◦ 1H)◦ (A−2 ◦ 1H) = (A2 ◦ 1H)(A−2 ◦ 1H) ≤
(

M2 +m2

2Mm

)2

,

which is equivalent to the desired inequality, replacing A by A
1
2 . �
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Remark 6.2 It follows that Corollary 6.15 implies the Kantorovich inequality. In fact,
for a given unit vector x, we take a complete orthogonal basis {e j} with e1 = x, then
Corollary 6.15 ensures

(Ax,x)(A−1x,x) = ((A⊗A−1)Ux,Ux) = (A◦A−1x,x)(x,x)
= ((A◦A−1)⊗1H)Ux,Ux) = ((A◦A−1 ◦ 1H)x,x)

≤ (M +m)2

4Mm
.

Thus we may call Corollary 6.15 the Kantorovich inequality on the Hadamard product.
Also, it follows that under the hypothesis of Theorem 6.14

((A◦A−1)ei,ei) ≤ (M +m)2

4Mm

whereas

A◦A−1 ≤ (M +m)2

4Mm
1H

does not hold in general: If A =
(

2 1
1 1

)
, then m = 3−√

5
2 ≤A≤ 3+

√
5

2 = M and so (M+m)2
4Mm =

9
4 . On the other hand, we have ‖A◦A−1‖= 3 > 9

4 . This example might clarify the meaning
of Corollary 6.15 and consequently Theorem 6.14 .

Finally we present Kantorovich type inequalities on the Hadamard product, which is
initiated by Liu and Neudecker in the matrix case.

Theorem 6.16 Let A and B be positive operators such that 0 < m1H⊗H ≤ A ⊗ B ≤
M1H⊗H. Then

(i) A2 ◦B2− (A◦B)2 ≤ 1
4(M−m)21H.

(ii) A◦B− (A−1◦B−1)−1 ≤ (
√

M−√
m)21H.

(iii) (A2 ◦B2)
1
2 ≤ M+m

2
√

Mm
A◦B.

(iv) (A2 ◦B2)
1
2 −A◦B≤ (M−m)2

4(M+m)1H.

Proof. By Definition 6.1, we have (i):

A2 ◦B2− (A◦B)2 = U∗(A2⊗B2)U − (U∗(A⊗B)U)2

= U∗(A⊗B)2U − (U∗(A⊗B)U)2

≤ 1
4
(M−m)21H

and the last inequality holds by (i) of Theorem 1.32.
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For (iii), we have

A2 ◦B2 = U∗(A⊗B)2U

≤ (M +m)2

4Mm
(U∗(A⊗B)U)2

=
(M +m)2

4Mm
(A◦B)2

by (iii) of Theorem 1.32. Rasing both sides to the power 1/2, it follows from Theorem 1.8
(the Löwner-Heinz inequality) that

(A2 ◦B2)
1
2 ≤ M +m

2
√

Mm
A◦B.

Similarly (ii) follows from Theorem 1.32 and (iv) from Corollary 2.20. �

6.2 Converses of Jensen’s type inequalities

In this section, we discuss complementary results to Jensen’s type inequalities on the
Hadamard product of positive operators (Theorem 6.3). We show Hadamard product ver-
sions of operator inequalities associated with extensions of Hölder-McCarthy and Kan-
torovich inequalities.

For the sake of convenience, we prepare some notations and definitions. Let A,B ∈
B+(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. We assume that in the whole chapter
0 < m1 ≤ M1 and 0 < m2 ≤ M2 and we denote by

m = m1m2, M = M1M2 and Iu = [m1,M1]∪ [m2,M2]∪ [m,M].

Theorem 6.17 Let A,B∈ B+(H) be positive operators with Sp(A) ⊆ [m1,M1], Sp(B)⊆
[m2,M2], f ∈ C (Iu) and g ∈ C ([m,M]), where m = m1m2,M = M1M2 and Iu = [m1,M1]∪
[m2,M2]∪ [m,M]. Let F(u,v) be a real valued continuous function defined on U ×V, op-
erator monotone in u, where U ⊃ { f (t) f (s) : t ∈ [m1,M1],s ∈ [m2,M2]}, V ⊃ {g(t) : t ∈
[m,M]}. If f is a super-multiplicative convex function (resp. a sub-multiplicative concave
function) on Iu, then

F[ f (A)◦ f (B),g(A◦B)]≤
{

max
m≤t≤M

F[μ f t + ν f ,g(t)]
}

1H(
resp. F [ f (A)◦ f (B),g(A◦B)]≥ min

m≤t≤M
F [μ f t + ν f ,g(t)]1H

)
,

(6.9)

where

μ f =
f (M)− f (m)

M−m
and ν f =

M f (m)−mf (M)
M−m

.
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Proof. We prove the case when f is a super-multiplicative convex function. Since
f is convex we have f (t) ≤ μ f t + ν f for every t ∈ [m,M]. Thus we obtain f (A⊗B) ≤
μ f A⊗B + ν f 1H⊗H since m1H⊗H ≤ A⊗B ≤ M1H⊗H , so that it follows from the super-
multiplicativity of f that

f (A)◦ f (B) = U∗( f (A)⊗ f (B))U ≤U∗ f (A⊗B)U
≤ U∗(μ f A⊗B+ ν f1H⊗H)U = μ f A◦B+ ν f1H .

By the monotonicity of F(·,v) and m1H ≤ A◦B≤ M1H we have

F [ f (A)◦ f (B),g(A◦B)] ≤ F [μ f A◦B+ ν f1H ,g(A◦B)]

≤
{

max
m≤t≤M

F[μ f t + ν f ,g(t)]
}

1H .

Thus we obtain the desired inequality. The proof in the sub-multiplicative concave case is
essentially the same. �

Remark 6.3 Notice that we do not assume the operator convexity or the operator concav-
ity of the function f in Theorem 6.17.

In the following theorem we give a generalization of converses of Theorem 6.3:

Theorem 6.18 Let the hypothesis of Theorem 6.17 be satisfied and Φ∈PN [B(H), B(K)]
a normalized positive linear map. If f is a super-multiplicative convex function on Iu, then

F [Φ( f (A)◦ f (B)),g(Φ(A◦B))] ≤
{

max
m≤t≤M

F[μ f t + ν f ,g(t)]
}

1K .

In the dual case (when f is sub-multiplicative concave function on Iu) we have the
opposite inequality with dual extreme (min instead of max).

Proof. Since f is the super-multiplicative convex function, then it follows from the
proof of Theorem 6.17 that f (A) ◦ f (B) ≤ μ f (A ◦B)+ ν f 1H⊗H . Since Φ is a normalized
positive linear map we have Φ( f (A)◦ f (B)) ≤ μ f Φ(A◦B)+ν f 1K and m1K ≤ Φ(A◦B) ≤
M1K . Using the operator monotonicity of F(·,v) we obtain

F[Φ( f (A)◦ f (B)),g(Φ(A◦B)] ≤ F [μ f Φ(A◦B)+ ν f1K ,g(Φ(A◦B)]

≤
{

max
m≤t≤M

F [μ f t + ν f ,g(t)]
}

1K .

�

If we put F(u,v) = u−αv, α ∈ R, in Theorem 6.17 we obtain the following general-
ization of converses of (6.3) in Theorem 6.3:

Theorem 6.19 Let A,B ∈ B+(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2], f ∈ C (Iu)
be a super-multiplicative convex function and g ∈ C ([m,M]). Then for a given α ∈ R

f (A)◦ f (B) ≤ αg(A◦B)+
{

max
t∈[m,M]

{μ f t + ν f −αg(t)}
}

1H .

In the dual case we have the opposite inequality with dual extreme.
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Remark 6.4 Let f ∈C (Iu) be a super-multiplicative convex function (resp. a sub-multiplicative
concave function). If we put α = 1 in Theorem 6.19, then we have the following:

f (A)◦ f (B)−g(A◦B)≤ (μ f to + ν f −g(to)
)
1H(

resp. f (A)◦ f (B)−g(A◦B)≥ (μ f to + ν f −g(to)
)
1H
)
,

where

to =

⎧⎨
⎩

g′−1(μ f ) if g′(m) < μ f < g′(M)
(
resp. g′(m) > μ f > g′(M)

)
,

m if g′(m) ≥ μ f
(
resp. g′(m) ≤ μ f ,

)
,

M if g′(M) ≤ μ f
(
resp. g′(M) ≥ μ f

)
,

in the case when g ∈ C ([m,M]) is strictly convex differentiable or

to =
{

M if μ f ≥ μg
(
resp. μ f ≤ μg

)
,

m if μ f < μg
(
resp. μ f > μg

)
,

in the case when g ∈ C ([m,M]) is strictly concave.

If we put g≡ f in Theorem 6.19 then we obtain complementary inequalities to Jensen’s
type inequalities on the Hadamard product (6.3) in Theorem 6.3:.

Corollary 6.20 Let A,B∈B+(H) with Sp(A)⊆ [m1,M1], Sp(B)⊆ [m2,M2]. If f ∈C (Iu)
is a super-multiplicative convex function (resp. a sub-multiplicative concave function),
then for a given α ∈ R

f (A)◦ f (B) ≤ α f (A◦B)+ β1H (resp. f (A)◦ f (B) ≥ α f (A◦B)+ β1H) ,

where β = −α f (to)+ μ f to + ν f , and

to =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M if M ≤ f ′−1
(

μ f
α

)
,

m if f ′−1
(

μ f
α

)
≤ m,

f ′−1
(

μ f
α

)
otherwise.

Further if we choose α such that β = 0 in Theorem 6.19 and if g is strictly convex
differentiable function or strictly concave function on [m,M] then we have one more gen-
eralization of converse of (6.3):

Corollary 6.21 Let A,B ∈ B+(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. Let f ∈
C (Iu) be a super-multiplicative convex (resp. sub-multiplicative concave) function and g∈
C ([m,M]). Assume that either of the following conditions holds: (i) f (m) > 0, f (M) > 0,
g > 0 on [m,M] or (ii) f (m) < 0, f (M) < 0, g < 0 on [m,M]. Then

f (A)◦ f (B) ≤ α1 g(A◦B) (resp. f (A)◦ f (B) ≥ α1 g(A◦B)) ,
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holds for

α1 = max

{
f (m)
g(m)

,
f (M)
g(M)

} (
resp. α1 = min

{
f (m)
g(m)

,
f (M)
g(M)

})
,

if g is strictly concave (resp. strictly convex) differentiable or

α1 =

⎧⎨
⎩

(μ f to + ν f )/g(to) if f (m) g′(m)
g(m) < μ f < f (M) g′(M)

g(M) ,

max
{

f (m)
g(m) ,

f (M)
g(M)

} (
resp. min

{
f (m)
g(m) ,

f (M)
g(M)

})
otherwise,

if g is strictly convex (resp. strictly concave) twice differentiable, where to is defined as the
unique solution of μ f g(t) =

(
μ f t + ν f

)
g′(t).

If we put g ≡ f in Corollary 6.21, then we obtain the following ratio type inequalities.

Corollary 6.22 Let the hypothesis of Corollary 6.20 be satisfied. If f > 0 on Iu, then

f (A)◦ f (B) ≤ α f (A◦B) (resp. f (A)◦ f (B) ≥ α f (A◦B))

and if f < 0 on Iu, then

f (A)◦ f (B) ≥ α f (A◦B) (resp. f (A)◦ f (B) ≤ α f (A◦B)) ,

where α = (μ f to + ν f )/ f (to) and to is the unique solution of
(
μ f f (t) = f ′(t)(μ f t + ν f )

)
.

6.3 Application to some functions

In this section we shall apply Theorem 6.19 and Corollary 6.21 to the power function
and the exponential function. We observe that the power function f (t) = t p is super-
multiplicative strictly convex (resp. sub-multiplicative strictly concave) if p �∈ [0,1] (resp.
p ∈ (0,1)).

If we put g(t) = tq in Theorem 6.19, then we obtain the following corollary, which is a
step between the desired inequalities.

Corollary 6.23 Let A,B∈B++(H) be positive invertible operators with Sp(A)⊆ [m1,M1],
Sp(B)⊆ [m2,M2], f ∈C (Iu) and q∈R. If f is super-multiplicative convex, then for a given
α ∈ R

f (A)◦ f (B) ≤ α(A◦B)q + β1H

holds for

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(q−1)
(

μ f
αq

) q
q−1 + ν f

if m <
(

μ f
αq

) 1
q−1

< M and αq(q−1) > 0,

max{ f (m)−αmq, f (M)−αMq} otherwise.
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If f is sub-multiplicative concave, then

f (A)◦ f (B) ≥ α(A◦B)q + β1H

holds for

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(q−1)
(

μ f
αq

) q
q−1

+ ν f

if m <
(

μ f
αq

) 1
q−1

< M and αq(q−1) < 0,

min{ f (m)−αmq, f (M)−αMq} otherwise.

Proof. The estimation of β is similar to that in Corollary 2.6. Thus we obtain the
desired results by virtue of Theorem 6.19. �

Further if we choose α such that β = 0 in Corollary 6.23, then we have the following
corollary.

Corollary 6.24 Let the hypothesis of Corollary 6.23 be satisfied. If f is super-multiplicative
convex (resp. sub-multiplicative concave), then

f (A)◦ f (B) ≤ α1(A◦B)q (resp. f (A)◦ f (B) ≥ α1(A◦B)q)

holds for

α1 =
{

K(m,M, f ,q) if m < q
1−q

ν f
μ f

< M and μ f (q−1) > 0,

max{ f (m)/mq, f (M)/Mq} otherwise,

(resp.

α2 =
{

K(m,M, f ,q) if m < q
1−q

ν f
μ f

< M and μ f (q−1) < 0,

min{ f (m)/mq, f (M)/Mq} otherwise)

where K(m,M, f ,q) = μ f
q

(
ν f
μ f

q
1−q

)1−q
is defined in (2.19).

Proof. This proof is quite similar to one as Corollary 2.11. �

If we put f (t) = t p in Corollary 6.23 we obtain the following corollary.

Corollary 6.25 Let A,B ∈ B++(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. If p ∈
R\(0,1) (resp. p ∈ (0,1) and q ∈ R, then for a given α ∈ R

Ap ◦Bp ≤ α(A◦B)q + β 1H (resp. Ap ◦Bp ≥ α(A◦B)q + β 1H),

holds for

β1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(q−1)
(

1
αq μt p

) q
q−1 + νt p

if m <
(

1
αq μt p

) 1
q−1

< M and αq(q−1) > 0,

max{mp−αmq,Mp −αMq} otherwise,
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(resp.

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(q−1)
(

1
αq μt p

) q
q−1 + νt p

if m <
(

1
αq μt p

) 1
q−1

< M and αq(q−1) < 0,

min{mp−αmq,Mp−αMq} otherwise.)

If we put α = 1 and if we choose α such that β = 0 in Corollary 6.25, then we have
the following corollary.

Corollary 6.26 Let A,B ∈ B++(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. If p,q ∈
R\[0,1], p ·q > 0, then

(i) Ap ◦Bp ≤ (A◦B)q + β1H

(ii) Ap ◦Bp ≤ α (A◦B)q

hold for

β =

{
C(m,M, p,q) if m <

(
1
q μt p

) 1
q−1

< M,

max{mp−mq,Mp −Mq} otherwise,

and α =
{

K(m,M, p,q) if m < q−1
q μt p/νt p < M,

max{mp/mq,Mp/Mq} otherwise.

Also, if p,q ∈ (0,1), then

(iii) Ap ◦Bp ≥ (A◦B)q + β1H

(iv) Ap ◦Bp ≥ α (A◦B)q

hold for

β =

{
C(m,M, p,q) if m <

(
1
q μt p

) 1
q−1

< M,

min{mp−mq,Mp −Mq} otherwise,

and α =
{

K(m,M, p,q) if m < q−1
q μt p/νt p < M,

min{mp/mq,Mp/Mq} otherwise.

HereC(m,M, p,q)= Mmp−mMp

M−m +(q−1)
(

Mp−mp

q(M−m)

) q
q−1

is defined in (2.38) and K(m,M, p,q)=

mMp−Mmp

(q−1)(M−m)

(
(q−1)(Mp−mp

q(mMp−Mmp)

)q
is defined in (2.20).

We have the following converses of Hölder-McCarthy type inequalities on the Hadamard
product ( Corollary 6.4).

Corollary 6.27 Let A,B ∈ B++(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. Then for
p ∈ R\[0,1]
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(i) Ap ◦Bp− (A◦B)p ≤C(m,M, p)1H .

(ii) Ap ◦Bp ≤ K(m,M, p)(A◦B)p.

If p ∈ (0,1) we have the opposite inequalities.

HereC(m,M, p)= (p−1)
(

Mp−mp

p(M−m)

) p
p−1 + Mmp−mMp

M−m is defined in (2.39) and K(m,M, p)=

mMp−Mmp

(p−1)(M−m)

(
p−1
p

Mp−mp

mMp−Mmp

)p
is defined in (2.21).

Proof. (i) If we put q = p in (i) in Corollary 6.26, then we have the desired constant
β since mp−1p ≤ Mp−mp

M−m ≤ Mp−1p.
(ii) If we put q = p in (ii) in Corollary 6.26, then the constant α coincides with

K(m,M, p). In this case m ≤ Mmp−mMp

Mp−mp ≤ M holds. �

Remark 6.5 If we put p = 2 in Corollary 6.27, then we have

A2 ◦B2− (A◦B)2 ≤ 1
4
(M−m)21H and (A2 ◦B2) ≤ (M +m)2

4Mm
(A◦B)2.

We directly can prove the second inequality by using Kijima’s theorem in [119]: Since
(M1H⊗H −A⊗B)(A⊗B−m1H⊗H) ≥ 0 for 0 < m1H⊗H ≤ A⊗B ≤ M1H⊗H, we have

A2⊗B2 = (A⊗B)2 ≤ (M +m)(A⊗B)−Mm1H⊗H.

Since (M +m)2X2 − 4Mm(M +m)X + 4M2m21H = ((M +m)X − 2Mm1H)2 ≥ 0 for any
positive operator X, we have

A2 ◦B2 ≤ (M +m)(A◦B)−Mm1H ≤ (M +m)2

4Mm
(A◦B)2.

As an application of Theorem 4.4, we have the following theorem, which is a power
mean version on the Hadamard product.

Theorem 6.28 Let A,B ∈ B++(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. Let r,s ∈
R, r ≤ s and rs �= 0.

(i) If r ≤ s, s �∈ (−1,1), r �∈ (−1,1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤ −1 ≤ s ≤−1/2
then

Δ(h,r,s)−1(As ◦Bs)
1
s ≤ (Ar ◦Br)

1
r ≤ (As ◦Bs)

1
s .

(ii) If 1 ≤ s, −1 < r < 1/2, r �= 0 or r ≤−1, −1/2 < s < 1, s �= 0 then

Δ(h,r,s)−1(As ◦Bs)
1
s ≤ (Ar ◦Br)

1
r ≤ Δ(h,r,s)(As ◦Bs)

1
s .

(iii) If −1 ≤−s ≤ r ≤ s ≤ 1, r �= 0 or −1 ≤ r ≤ s ≤ r/2 < 0 then

Δ(h,r,1)−1Δ(h,r,s)−1(As ◦Bs)
1
s ≤ (Ar ◦Br)

1
r ≤ Δ(h,r,1)(As ◦Bs)

1
s .
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(iv) If −1/2≤ r/2 < s < −r ≤ 1, s �= 0 then

Δ(h,s,1)−1Δ(h,r,s)−1(As ◦Bs)
1
s ≤ (Ar ◦Br)

1
r ≤ Δ(h,s,1)(As ◦Bs)

1
s ,

where a generalized Specht ratio Δ(h,r,s) is defined as ( 2.97 ) in § 2.7:

Δ(h,r,s) = K(hr,
s
r
)

1
r and h =

M
m

.

Proof. The proof follows from Theorem 4.4 and Definition 6.1. �

As an application of Theorem 4.7, we have the following theorem, which is the differ-
ence type inequality to the power mean version on the Hadamard product. theorem [155,
Theorem 2.4]:

Theorem 6.29 Let A,B ∈ B++(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2].
(i) If r ≤ s, s �∈ (−1,1), r �∈ (−1,1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤−1 ≤ s ≤−1/2

then
0 ≤ (As ◦Bs)

1
s − (Ar ◦Br)

1
r ≤ Δ̃1H .

(ii) If s ≥ 1, −1 < r < 1/2, r �= 0 or r ≤−1, −1/2 < s < 1, s �= 0 then

Δ̃∗1H ≤ (As ◦Bs)
1
s − (Ar ◦Br)

1
r ≤ Δ̃1H .

(iii) If −1 ≤−s ≤ r ≤ s ≤ 1, r �= 0 or −1 ≤ r ≤ s ≤ r/2 < 0 then

−C

(
mr,Mr,

1
r

)
1H ≤ (As ◦Bs)

1
s − (Ar ◦Br)

1
r ≤ Δ̃1K +C

(
mr,Mr,

1
r

)
1H .

(iv) If −1/2≤ r/2 < s < −r ≤ 1, s �= 0 then

Δ̃∗1H −C

(
mr,Mr ,

1
r

)
1H ≤ (As ◦Bs)

1
s − (Ar ◦Br)

1
r ≤ Δ̃1H +C

(
mr,Mr,

1
r

)
1H ,

where

Δ̃ = max
θ∈[0,1]

{
[θMs +(1−θ )ms]

1
s − [θMr +(1−θ )mr]

1
r

}
,

Δ̃∗ = min
θ∈[0,1]∪[ d

Mr−mr , d
Mr−mr +1]

{
[θMs +(1−θ )ms]

1
s

− [θMr +(1−θ )mr−d]
1
r

}
,

d =
Msmr −Mrms

Ms −ms −
(
1− r

s

)( s
r
Mr −mr

Ms −ms

) r
r−s

.

Proof. The proof follows from Theorem 4.7 and Definition 6.1. �

We state the following corollary obtained by applying g(t) = eλ t to Theorem 6.19 (see
Remark 6.4) and Corollary 6.21.
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Corollary 6.30 Let A,B ∈ Bh(H) selfadjoint operators with Sp(A) ⊆ [m1,M1], Sp(B) ⊆
[m2,M2]. If f ∈ C (Iu) is a super-multiplicative strictly convex function and λ ∈ R such
that λ μ f > 0, then

f (A)◦ f (B)− exp{λ A◦B} ≤ β 1H

and
f (A)◦ f (B) ≤ α exp{λ A◦B},

hold for

β =
{ μ f

λ log( μ f
λ e )+ ν f if m < λ−1 log(μ f /λ ) < M,

max{ f (m)− eλm, f (M)− eλM} otherwise,

α =
{ μ f

λ ·e exp{λ ν f /μ f} if [μ f −λ f (m)] [μ f −λ f (M)] < 0,

max{ f (m)/eλm, f (M)/eλM} otherwise.

Corollary 6.31 Let A,B ∈ Bh(H) selfadjoint operators with Sp(A) ⊆ [m1,M1], Sp(B) ⊆
[m2,M2]. Let f ∈ C (Iu) be a strictly convex function such that f (xy) ≥ f (x) + f (y) for
every x,y ∈ Iu. If λ ∈ R such that λ μ f > 0, then

exp{ f (A)} ◦ exp{ f (B)}− exp{λ A◦B} ≤ β1H

and
exp{ f (A)} ◦ exp{ f (B)} ≤ α exp{λ A◦B},

hold for

β =
{ μ̄

λ log( μ̄
λ e )+ ν̄ if m < λ−1 log(μ̄/λ ) < M,

max{e f (m)− eλm,e f (M) − eλM} otherwise,

α =
{ μ̄

λ ·e exp{λ ν̄/μ̄} if [μ̄ −λe f (m)] [μ̄ −λe f (M)] < 0,

max{e f (m)−λm,e f (M)−λM} otherwise,

where μ̄ = (e f (M) − e f (m))/(M−m) and ν̄ = (Mef (m) −mef (M))/(M−m).

Proof. Since f is a strictly convex function and f (xy) ≥ f (x) + f (y), we have that
exp{ f (x)} is super-multiplicative strictly convex. Replacing f (x) by exp{ f (x)} in Corol-
lary 6.30 will give the desired inequalities. �

6.4 Inequalities on Hadamard product and operator
means

In this section we study several inequalities on the Hadamard product associated with op-
erator means. As an application of chapter 5 on positive linear maps, we obtain gen-
eral complementary estimates for the results by Ando, Aujla-Vasudeva and J.I.Fujii on the
Hadamard product and operator means.



6.4 INEQUALITIES ON HADAMARD PRODUCT AND OPERATOR MEANS 187

We begin with the following complementary inequality by virtue of Theorem 5.28 for
one mean:

Theorem 6.32 Let σ be an operator mean with the representing function f which is
sub-multiplicative and not affine. Let A,B,C,D ∈ B+(H) such that Sp(A⊗B) ⊆ [m1,M1],
Sp(C⊗D)⊆ [m2,M2]. Let m = m2

M1
, M = M2

m1
. Then for a given α(> 0) ∈ R+

(A σ C)◦ (B σ D) ≥ α(A◦B) σ (C ◦D)+ β (A◦B) (6.10)

holds for β = μ f to +ν f −α f (to) and to ∈ [m,M] is defined as the unique solution of f ′(t) =
μ f /α when f ′(M) < μ f /α < f ′(m), otherwise to is defined as M or m according to μ f /α ≤
f ′(M) or f ′(m) ≤ μ f /α and

(C σ A)◦ (D σ B) ≥ α(C ◦D) σ (A◦B)+ β (C◦D)

holds for above β where m = m1
M2

and M = M1
m2

.

Proof. By putting X = A− 1
2CA− 1

2 and Y = B− 1
2 DB− 1

2 , then it follows from the sub-
multiplicativity of f that

(A σ C)⊗ (B σ D) = (A⊗B)
1
2 ( f (X)⊗ f (Y ))(A⊗B)

1
2

≥ (A⊗B)
1
2 ( f (X ⊗Y ))(A⊗B)

1
2

= (A⊗B) σ (C⊗D).

Since the representing function f is not affine, by Theorem 5.28 when σ = τ , for a given
α(> 0) ∈ R+ the following inequality

(A σ C)◦ (B σ D) = U∗((A σ C)⊗ (B σ D))U
≥ U∗((A⊗B) σ (C⊗D))U
≥ α U∗(A⊗B)U σ U∗(C⊗D)U + β U∗(A⊗B)U
= α (A◦B) σ (C ◦D)+ β (A◦B)

holds for β = β
(

m2
M1

, M2
m1

, f ,α
)

= μ f to + ν f −α f (to) defined in Theorem 5.28. �

Remark 6.6 If we put α = 1 in Theorem 6.32 then

−β (A◦B)≥ (A◦B) σ (C ◦D)− (A σ C)◦ (B σ D)
(resp. −β (C ◦D) ≥ (C ◦D) σ (A◦B)− (C σ A)◦ (D σ B))

holds for β = μ f to + ν f − f (to) and to = f ′−1(μ f ), where m = m2
M1

and M = M2
m1

(resp.

m = m1
M2

and M = M1
m2

).

If we choose α such that β = 0 in Theorem 6.32 or if we apply Corollary 5.29 when
σ = τ then we have the following corollary:
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Corollary 6.33 Let the hypothesis of Theorem 6.32 be satisfied. Then

(A σ C)◦ (B σ D) ≥ α1 (A◦B) σ (C ◦D) (6.11)

holds for α1 =
(
μ f to + ν f

)
/ f (to) and to ∈ [m,M] is defined as the unique solution of

μ f f (t) = f ′(t)(μ f t + ν f ).

As we assume the sub-multiplicativity of f in Theorem 6.32, the inequality (6.10) is not
always a converse of the inequality (6.6) in Theorem 6.7. However, since the representing
function f (x) = xp of the p-power mean is sub-multiplicative and super-multiplicative, we
have the following complementary inequalities to the inequality (6.5) of the p-power mean
by virtue of Theorem 6.32.

Corollary 6.34 Let A,B,C,D∈B+(H) be such that Sp(A⊗B)⊆ [m1,M1], Sp(C⊗D)⊆
[m2,M2]. Let m = m2

M1
, M = M2

m1
. If p ∈ (0,1), then for a given α ∈ R+

(A �p C)◦ (B �p D) ≥ α(A◦B) �p (C ◦D)+ β A◦B (6.12)

holds for

β =

⎧⎪⎨
⎪⎩

α(p−1)
(

1
α p

Mp−mp

M−m

) p
p−1 + Mmp−mMp

M−m

if pmp−1 > 1
α

Mp−mp

M−m > pMp−1,
min{(1−α)Mp,(1−α)mp} otherwise.

In particular,

(A◦B) �p (C ◦D) − (A �p C)◦ (B �p D)

≤
(

(1− p)
(

1
p

Mp −mp

M−m

) p
p−1

− Mmp−mMp

M−m

)
A◦B

and

(A �p C)◦ (B �p D) ≥ Mmp −mMp

(1− p)(M−m)

(
1− p

p
Mp−mp

Mmp−mMp

)p

(A◦B) �p (C ◦D).

We show the following converses of (6.4) in Theorem 6.6 by means of Corollary 6.34:

Corollary 6.35 Let A,B ∈ B+(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. Then the
following inequalities hold

(i) A◦B− (A � B)◦ (A � B) ≤ 1
4

√
M1M2
m1m2

(M1M2−m1m2)2
M1M2+m1m2

1H,

(ii) A◦B ≤ M1M2+m1m2
2
√

M1M2m1m2
(A � B)◦ (A � B),

(iii) A◦B− (A ! B)◦ (A ∇ B) ≤ M1
4m1(m1+m2)2

((M1+M2)2M2
1−(m1+m2)2m2

1)2

(M1+M2)2M2
1+(m1+m2)2m2

1
1H.
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Proof. Replacing bothC and D by B and A in (6.12) and putting p = 1
2 , then for a given

α ∈ R+ we give

(A � B)◦ (B � A) ≥ α(A◦B) � (B◦A)+
4m1m2M1M2 −α2(M1M2 +m1m2)2

4
√

m1m2M1M2(M1M2 +m1m2)
A◦B.

If we put α = 1 then we have the first inequality (i). If we choose α such that β = 0,
then we have the second one (ii). Finally, since (m1 + m2)1H ≤ A +B ≤ (M1 +M2)1H ,

m2
1

M1+M2
1H ≤ A(A+B)−1A ≤ M2

1
m1+m2

1H and (XY−1X) � Y = X for positive operators X and
Y , then we have

(A−1 +B−1)−1 ◦ (A+B) = (A−A(A+B)−1A)◦ (A+B)
= A◦A+A◦B− (A(A+B)−1A)◦ (A+B)
≥ A◦A+A◦B− (A◦A+β1H)
= A◦B−β1H,

where β = M1
4m1(m1+m2)2

((M1+M2)2M2
1−(m1+m2)2m2

1)
2

(M1+M2)2M2
1+(m1+m2)2m2

1
, which implies the desired inequality

(iii). �

We show the following complementary inequalities to an extension of Fiedler’s type
inequality (Corollary 6.9).

Corollary 6.36 Let A ∈ B+(H) with Sp(A) ⊆ [m,M]. If a,b ∈ R and t + s = 1 for non-
negative numbers t,s, then for a given α > 0

Ata+sb ◦Asa+tb ≥ (α + β )(Aa ◦Ab)

holds for

β = α(s−1)
(

1
αs

h2s−1
hs−1(h2−1)

) s
s−1

+
1−h2s−1

hs−2(h2−1)
,

where h =
(

M
m

)a+b
. In particular,

Ata+sb ◦Asa+tb ≥ 1
1− s

1−h2s−2

hs−2(h2−1)

(
1− s

s
h2s−1

h−h2s−1

)s

(Aa ◦Ab),

where h =
(

M
m

)a+b
.

Proof. In Theorem6.32, replacing both A andC by Aa, both B and D by Ab and applying
the operator mean with the representing function f (x) = xs, we have this corollary. �

Remark 6.7 If we put a = 1, b = −1, s = t = 1
2 in Corollary 6.36, then we have an

estimate from above to the Fiedler inequality ( Theorem 6.14): A◦A−1 ≤ M2+m2

2mM 1H .

Moreover, we show the following converse inequality of (6.7) in Theorem 6.10
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Theorem 6.37 Let A,B∈B+(H) with Sp(A)⊆ [m1,M1], Sp(B)⊆ [m2,M2]. If f is a sub-
multiplicative nonnegative operator monotone strictly concave function on (0,∞), then for
a given α > 0

f (A)◦ f o(B) ≥ α(B◦ 1H) f
(
(A◦ 1H)(B◦ 1H)−1)+ β (B◦ 1H)

holds for β = μ f to +ν f −α f (to) and to ∈ [m,M] is defined as the unique solution of f ′(t) =
μ f /α when f ′(M) < μ f /α < f ′(m), otherwise to is defined as M or m according to μ f /α ≤
f ′(M) or f ′(m) ≤ μ f /α , where m = m1

M2
and M = M1

m2
.

Proof. Let σ be the operator mean corresponding to f , then it follows from Theorem
6.32 that

f (A)◦ f o(B) = (1H σ A)◦ (B σ 1H)
≥ α(1H ◦B) σ (A◦ 1H)+ β (1H ◦B)
= α(B◦ 1H) f

(
(A◦ 1H)(B◦ 1H)−1)+ β (B◦ 1H),

where β = β
(

m1
M2

, M1
m2

, f ,α
)

as in the theorem. �

Remark 6.8 If we put α = 1 in Theorem 6.37, then

−β (B◦ 1H) ≥ (B◦ 1H) f
(
(A◦ 1H)(B◦ 1H)−1)− f (A)◦ f o(B)

holds for β = μ f to + ν f − f (to)(< 0) and to such that f ′(to) = a f , where m = m1
M2

and

M = M1
m2

.

Further if we choose α such that β = 0 in Theorem 6.37, then we have the following
corollary:

Corollary 6.38 Let A,B, f ,m and M be as in Theorem 6.37. Then

f (A)◦ f o(B) ≥ min
m≤t≤M

{
μ f t + ν f

f (t)

}
(B◦ 1H) f

(
(A◦ 1H)(B◦ 1H)−1) .

We have the following converse inequality of (6.8) in Corollary 6.12, since the power
function f (x) = xs is super-multiplicative and sub-multiplicative:

Corollary 6.39 Let A,B ∈ B+(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. If t + s = 1
for nonnegative numbers t and s, then for a given α > 0

A◦B≥ α(A1/s ◦ 1H)s(B1/s ◦ 1H)t + β (B◦ 1H)

holds for

β =

⎧⎨
⎩ α(s−1)

(
1

αs
Ms−ms

M−m

) s
s−1 + Mms−mMs

M−m if sms−1 ≥ 1
α

Ms−ms

M−m ≥ sMs−1

min{(1−α)Ms,(1−α)ms} otherwise,
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where m = m1/s
1 M−1/t

2 and M = M1/s
1 m−1/t

2 .
In particular,

A◦B− (A1/s◦ 1H)s(B1/t ◦ 1H)t

≥
(

(s−1)
(

1
s

Ms−ms

M−m

) s
s−1 + Mms−mMs

M−m

)
(B◦ 1H)

and

A◦B≥ Mms −mMs

(1− s)(M−m)

(
1− s

s
Ms −ms

Mms −mMs

)s

(A1/s ◦ 1H)s(B1/t ◦ 1H)t .

Proof. Put f (x) = xs and f o(x) = xt in Theorem 6.37. �

Putting s = t = 1/2 in Corollary 6.39, we have the next corollary:

Corollary 6.40 Let A,B ∈ B+(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. Then

A◦B≤ (A2 ◦ 1H)
1
2 (B2 ◦ 1H)

1
2 ≤ M1M2+m1m2

2
√

m1m2M1M2
A◦B,

(A2 ◦ 1H)
1
2 (B2 ◦ 1H)

1
2 − (A◦B)≤ min

{
1

m1
, 1

m2

}
(M1M2−m1m2)2

4(M1M2+m1m2)
1H .

By using Theorem 1.19, we have the following Ando-Styan inequality , which extends
to the result for correlation matrices by Styan.

Theorem 6.41 (ANDO-STYAN INEQUALITY) If A is a positive invertible operator on H,
then

2(A◦ 1H)(A−1 ◦A+1)−1(A◦ 1H) ≤ A◦A.

Proof. Put X = A⊗A, Y = A⊗1H +1H ⊗A and

Z = YX−1Y = 2(A⊗A−1 +1H ⊗1H).

Then since X = YZ−1Y , Theorem 1.19 yield

Φ(X) ≥ Φ(Y )Φ(Z)−1Φ(Y )

for a positive linear map Φ and hence Definition 6.1 implies

A◦A ≥ (A◦ 1H +1H ◦A)
(
2(A◦A−1 +1H)

)−1
(A◦ 1H +1H ◦A)

= 2(A◦ 1H)(A−1 ◦A+1)−1(A◦ 1H).

�

We give the converse inequality of the Ando-Styan inequality on the Hadamard prod-
uct. For this proof we need the next two results.
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Corollary 6.42 Let A∈B++(H) with Sp(A)⊆ [m,M] and Φ j ∈ PN [B(H),B(K)]. Then
for a given α > 0

Φ(A−1) ≤ αΦ(A)−1 + β1H

holds for β = β (m,M,x−1,α)

=

{
M+m
Mm −2

√
α

Mm if m
M ≤ α ≤ M

m

max
{

1−α
m , 1−α

M

}
if either 0 < α < m

M or M
m < α.

In particular,

Φ(A−1)−Φ(A)−1 ≤ (
√

M−√
m)2

Mm 1H ,

Φ(A−1) ≤ (M+m)2
4Mm Φ(A)−1.

Proof. Put k = 1 and p = q = −1 in (2.10) in Corollary 2.6. �

By using Corollary 6.42, we show the following converse inequality of Theorem 1.19.

Corollary 6.43 Let A,B ∈ B+(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2] and Φ j ∈
PN [B(H),B(K)]. Then for a given α > 0

Φ(BA−1B) ≤ αΦ(B)Φ(A)−1Φ(B)+ β Φ(B)

holds for

β =

{
M+m
Mm −2

√
α

Mm if m
M ≤ α ≤ M

m ,

max
{ 1−α

m , 1−α
M

}
if either 0 < α < m

M or M
m < α,

where m = m1
M2

and M = M1
m2

. In particular,

Φ(BA−1B) ≤ (m1m2 +M1M2)2

4m1m2M1M2
Φ(B)Φ(A)−1Φ(B),

Φ(BA−1B)−Φ(B)Φ(A)−1Φ(B) ≤ M2

(√
M1M2−√

m1m2
)2

M1m1
Φ(1H).

Proof. By a similar method as in Theorem 5.28, we have from Corollary 6.42 that

Φ(BA−1B) = Φ(B)
1
2 Ψ
((

B− 1
2 AB− 1

2

)−1
)

Φ(B)
1
2

≤ Φ(B)
1
2

(
αΨ

(
B− 1

2 AB− 1
2

)−1
+ β1H

)
Φ(B)

1
2

= αΦ(B)Φ(A)−1Φ(B)+ β Φ(B).

�

By using Corollary 6.42 and Corollary 6.43, we obtain the following complementary
inequality to the Ando-Styan inequality on the Hadamard product.
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Theorem 6.44 Let A ∈ B+(H) with Sp(A) ⊆ [m,M] for some scalars 0 < m < M. Then
for a given α > 0 the following inequality holds

A◦A ≤ 2α(A◦ 1H)(A−1 ◦A+1H)−1(A◦ 1H)+
2(m2 +M2−2

√
αmM)

m+M
(A◦ 1H).

In particular,

A◦A≤ 1
2

(
M2 +m2

Mm

)2

(A◦ 1H)(A−1 ◦A+1H)−1(A◦ 1H)

and

A◦A−2(A◦ 1H)(A−1 ◦A+1H)−1(A◦ 1H) ≤ 2(M−m)2

M +m
(A◦ 1H).

Proof. Put X = A⊗A−1 +A−1⊗A+2 1H⊗H and Y = A⊗1H +1H ⊗A. Then we have( 2m
M +2

)
1H⊗H ≤ X ≤ ( 2M

m +2
)
1H⊗H , 2m1H⊗H ≤ Y ≤ 2M1H⊗H and A⊗ A = YX−1Y .

Consider the map Φ from B(H ⊗H) to B(H) by Φ(X) = U∗XU for an isometry U , then
by Corollary 6.43 we have

Φ(A⊗A) = Φ(YX−1Y ) ≤ αΦ(Y )Φ(X)−1Φ(Y )+ β Φ(Y )

holds for β = β
(

M+m
M2 , M+m

m2 ,x−1,α
)

in Corollary 6.42. �

Moreover, we show the following converses inequality of the Ando-Styan inequality
for two positive operators.

Corollary 6.45 Let A,B ∈ B+(H) with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2] for some
scalars 0 < m1 < M1 and 0 < m2 < M2. Then for a given α > 0

A◦B ≤ α((A+B)◦ 1H){A−1 ◦B+A◦B−1+2 1H}−1

×((A+B)◦ 1H)+ β ((A+B)◦ 1H)

holds for

β =
(M1 +M2)M1M2

m1M1 +m2M2 +2M1M2
+

(m1 +m2)m1m2

m1M1 +m2M2 +2m1m2

−2

√
α

m1M1 +m2M2 +2M1M2

(M1 +M2)M1M2

m1M1 +m2M2 +2m1m2

(m1 +m2)m1m2
.

Proof. Put X = B⊗ A−1 + B−1 ⊗ A + 21H⊗H and Y = B⊗ 1H + 1H ⊗ A. Then we

have
(

m1
M2

+ m2
M1

+2
)

1H⊗H ≤ X ≤
(

M1
m2

+ M2
m1

+2
)

1H⊗H , (m1 + m2)1H⊗H ≤ Y ≤ (M1 +

M2)1H⊗H and X = Y (A⊗B)−1Y . Just as in the proof of Theorem 6.44 we have

Φ(A⊗B)≤ αΦ(Y )Φ(X)−1Φ(Y )+ β Φ(Y)
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for

β = β
(

m1M1 +m2M2 +2M1M2

M1M2(M1 +M2)
,
m1M1 +m2M2 +2m1m2

m1m2(m1 +m2)
,x−1,α

)
.

�

In the rest part of this section we give the inequalities on the Hadamad product and two
operator mean which are a generalization of the inequality (6.10). Let σ and τ be operator
means with the super-multiplicative representing functions f and g respectively. If f ≤ g,
then

(A σ C)◦ (B σ D) ≤ (A◦B) τ (C ◦D) (6.13)

for operators A,B,C,D ≥ 0. Since the inequality (6.13) does not hold in general, we con-
sider the following complementary inequality to (6.13) by virtue of Theorem 5.28:

Theorem 6.46 Let A,B,C and D be positive operators such that 0 < m1I ≤ A⊗B≤ M1I
and 0 < m2I ≤ C⊗D ≤ M2I. Let σ and τ be two operator means with the representing
functions f and g which are not affine. Moreover, suppose that f is sub-multiplicative.
For a given α > 0, put β = β ( m2

M1
, M2

m1
, f ,g,α) and β 0 = β ( m1

M2
, M1

m2
, f 0,g0,α) defined in

Theorem 5.28.
(i) If β ≥ 0 and β 0 ≥ 0, then for every operator mean ρ

(A σ C)◦ (B σ D)−α(A◦B) τ (C ◦D) ≥ (β (A◦B)) ρ
(
β 0(C ◦D)

)
.

(ii) If β < 0 and β 0 < 0, then for every operator mean ρ

((A σ C)◦ (B σ D)−β (A◦B)) ρ
(
(A σ C)◦ (B σ D)−β 0(C ◦D)

)
≥ α(A◦B) τ (C ◦D).

(iii) If β β 0 < 0, then

(A σ C)◦ (B σ D) ≥ α(A◦B) τ (C ◦D)+max{β (A◦B),β 0(C ◦D)}.

Proof. We put X = A− 1
2CA− 1

2 and Y = B− 1
2 DB− 1

2 . Then we have from the sub-
multiplicativity of f

(A σ C)⊗ (B σ D) = (A⊗B)
1
2 ( f (X)⊗ f (Y ))(A⊗B)

1
2

≥ (A⊗B)
1
2 ( f (X ⊗Y ))(A⊗B)

1
2

= (A⊗B) σ (C⊗D).

Since the representing function f is not affine, by Theorem 5.28 the following inequality

(A σ C)◦ (B σ D) = U∗((A σ C)⊗ (B σ D))U
≥ U∗((A⊗B) σ (C⊗D))U
≥ αU∗(A⊗B)U τ U∗(C⊗D)U + βU∗(A⊗B)U
= α(A◦B) τ (C ◦D)+ β (A◦B)
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holds for β = β
(

m2
M1

, M2
m1

, f ,g,α
)

defined as in Theorem 5.28.

Similarly,
(A σ C)◦ (B σ D) ≥ α(A◦B) τ (C ◦D)+ β 0(C ◦D)

holds for β 0 = β
(

m1
M2

, M1
m2

, f 0,g0,α
)
.

The remainder of the proof is the same as the proof in Theorem 5.30. �

If we put α = 1 in Theorem 6.46, then we have the following generalization of Re-
mark 6.6 :

Corollary 6.47 Assume that the conditions of Theorem 6.46 hold. If σ ≤ τ , then for
every symmetric mean ρ

(−β (A◦B))ρ (−β 0(C ◦D)) ≥ (A◦B) τ (C ◦D)− (A σ C)◦ (B σ D) ≥ 0.

Proof. Since α = 1 and f ≤ g, we have that β < 0 and β 0 < 0. �

Further if we choose α such that β = 0 in Theorem 6.46, then we have the following
generalization of Corollary 6.33.

Corollary 6.48 Assume that the conditions of Theorem 6.46 hold. Then

(A σ C)◦ (B σ D)

≥ max

⎧⎨
⎩ min

m2
M1

≤t≤M2
m1

{
a f t +b f

g(t)

}
, min

m1
M2

≤s≤M1
m2

{
a f 0s+b f 0

g0(s)

}⎫⎬
⎭ (A◦B) τ (C ◦D).

Proof. Since the representing function f of σ is a non affine and a nonnegative operator
concave function, Corollary 6.48 follows from Corollary 5.32. �

Furthermore, since the representing function f (x) = xp of the p-power mean is sub-
multiplicative and super-multiplicative, we have the following converse inequality of in-
equality of the p-power mean by virtue of Theorem 6.46.

Corollary 6.49 Let A,B,C and D be positive operators such that 0 < m11H⊗H ≤ A⊗B≤
M11H⊗H and 0 < m21H⊗H ≤C⊗D ≤ M21H⊗H. Let 0 < p,q < 1. Then for a given α > 0

(A �p C)◦ (B �p D) ≥ α(A◦B) �q (C ◦D)+ β (A◦B)

holds for β = β (m,M,t p,tq,α) ={
α(q−1)

(
1

αq
Mp−mp

M−m

) q
q−1 + Mmp−mMp

M−m if qmq−1 ≥ 1
α

Mp−mp

M−m ≥ qMq−1

min{Mp−αMq,mp −αmq} otherwise,

where m = m2
M1

, M = M1
m2

and

(A �p C)◦ (B �p D) ≥ α(A◦B) �q (C ◦D)+ β 0(C ◦D)

holds for β 0 = β
(

m1
M2

, M1
m2

,t1−p,t1−q,α
)

which is defined just as above.
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6.5 Generalization of Hadamard product of matrices

In this section we give the Li-Mathias type inequality (3.11) on the Hadamard product of
matrices. For the sake of convenience, we denote {supcc.} (resp. {subcx.}) the set of all
real continues super-multiplicative function and matrix concave (resp. sub-multiplicative
function and matrix convex) on [m,M]. We denote again m = m1m2, M = M1M2 and Iu =
[m1,M1]∪ [m2,M2]∪ [m,M].

Theorem 6.50 Let A,B ∈ H +
n with Sp(A) ⊆ [m1,M1], Sp(B) ⊆ [m2,M2]. Let Φ1,Φ2 ∈

PN [Mn,Mk], f ∈ C (Iu) and g ∈ C ([m,M]). Let F(u,v) real value function defined on
U ×V matrix monotone in u, where U ⊃ { f (t) f (s) : t ∈ [m1,M1],s ∈ [m2,M2]} and V ⊃
{g(t) : t ∈ [m,M]}. Then {

max
ϕ ∈ {subcx.}

ϕ ≤ f

min
m≤t≤M

F [ϕ(t),g(t)]

}
1k

≤ F [Φ1 ( f (A)) ◦Φ2 ( f (B)) ,g(Φ1(A)◦Φ2(B))]

≤
{

min
ϕ ∈ {supcc.}

ϕ ≥ f

max
m≤t≤M

F [ϕ(t),g(t)]

}
1k.

(6.14)

Proof. The proof is similar to the proof of Theorem 3.6. We prove only the right hand
inequality (6.14). Since ϕ is a real value continuous super-multiplicative function and
matrix concave such that f (t) ≤ ϕ(t) for all t ∈ Iu, we have f (A) ≤ ϕ(A). Using the posi-
tivity of Φ1 and Jensen’s inequality for a matrix map (Theorem 1.20) we have Φ1 ( f (A))≤
Φ1 (ϕ(A)) ≤ ϕ (Φ1(A)). From the same function ϕ we have (Φ2 ( f (B)) ≤ ϕ (Φ2(B))).
Using monotonity of Kronecker product [4, str. 216]) we obtain

Φ1 ( f (A)) ◦Φ2 ( f (B)) = PT (Φ1 ( f (A))⊗Φ2 ( f (B)))P

≤ PT (ϕ (Φ1(A))⊗ϕ (Φ2(B)))P = ϕ (Φ1(A))◦ϕ (Φ2(B)) .

From super-multiplicativity and matrix concavity of ϕ follows

ϕ (Φ1(A))◦ϕ (Φ2(B)) = PT (ϕ (Φ1(A))⊗ϕ (Φ2(B)))P

≤ ϕ(PT ((Φ1(A))⊗ (Φ2(B)))P) = ϕ (Φ1(A)◦Φ2(B)) .

Using the matrix non-decreasing character of F(·,v), we have

F[Φ1 ( f (A))◦Φ2 ( f (B)) ,g(Φ1(A)◦Φ2(B))]

≤ F [ϕ (Φ1(A)◦Φ2(B)) ,g(Φ1(A)◦Φ2(B))] ≤
{

max
m≤t≤M

F [ϕ(t),g(t)]
}

1k.

Now we minimize this boundary over all continuous super-multiplicative matrix concave
function ϕ ≥ f , to obtained the right hand (6.14). �

A version of Theorem 3.10 with Hadamard product follows from Theorem 6.50:
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Theorem 6.51 Let the hypothesis of Theorem 6.50 be satisfied. If f ∈C(Iu) is a convex
function and a function

h(t) ≡ h(t;m,M, f ) = μ f · t + ν f

is super-multiplicative, then

F [Φ1 ( f (A))◦Φ2 ( f (B)) ,g(Φ1(A)◦Φ2(B))] ≤
{

max
m≤t≤M

F [h(t),g(t)]
}

1k,

but, if f ∈C(Iu) is a concave function and a function h is sub-multiplicative, then

F [Φ1 ( f (A))◦Φ2 ( f (B)) ,g(Φ1(A)◦Φ2(B))] ≥
{

min
m≤t≤M

F [h(t),g(t)]
}

1k.

6.6 Notes

Marcus and Khan [126] and Toyama [187] showed that the Hadamard product for metrices
is the image of the tensor product by a positive map. Paulsen [165] and J.I.Fujii [37] ex-
tended above fact to the infinite case as in Definition 6.1. Ando [4] showed Jensen’s type
inequalities on the Hadamard product of positive definite matrices by applying concavity
and convexity theorems. Also, Furuta [75], Aujla and Vasudeva [14, 13], J.I.Fujii [37]
and Mond and Pečarić [155] showed another Jensen’s type inequalities on the Hadamard
product. The fundamental results for tensor products are due to Marcus and Minc [127].
Theorem 6.1 is due to Styan [179]. Definition 6.2 is due to J.I.Fujii [37]. Lemma 6.2, The-
orem 6.3, Corollary 6.4 and 6.5, Theorem 6.7, Corollary 6.9 are due to Aujla and Vasudeva
[14] for the matrix case and J.I.Fujii [37] for the operator case. Theorem 6.6 is essentially
due to Ando [4]. Theorem 6.8 is due to Fiedler [31]. Theorem 6.10, Corollary 6.11 and
6.12 are due to J.I.Fujii [37]. Lemma 6.13 is due to Kijima [117]. Theorem 6.14 and
Corollary 6.15 are due to Kitamura and Seo [119]. Theorem 6.16 (i) and (iii) are due to
Liu and Neudecker [124], and (ii) and (iv) due to Mond and Pečarić [155].

Liu and Neudecker [124] showed several matrix Kantorovich type inequalities on the
Hadamard product and Mond and Pečarić [155] moreover extended them. The results in
Sections 6.2 and 6.3 are due to [176]. The results in Section 6.4 are due to [130, 133].





Chapter7
Furuta inequality and its
application

The main purpose of this chapter is to give a brief survey of several ap-
plications of Furuta inequality. According to remarkable achievements
of many mathematicians who have interested with operator inequalities,
at present we have been finding a lot of applications of Furuta inequality
in operator theory.

7.1 Furuta inequality

Let A and B be positive operators on a Hilbert space H. The Löwner-Heinz theorem (The-
orem 1.8) asserts that A ≥ B ≥ 0 ensures Ap ≥ Bp for all p ∈ [0,1]. However A ≥ B does
not always ensure Ap ≥ Bp for p > 1 in general. In order to consider operator inequalities,
the Löwner-Heinz theorem is very useful, but the above fact is inconvenient because the
condition ”p ∈ [0,1]” is too restrictive to calculate operator inequalities in the process of
operator transformations and operator inequalities. The following Theorem F has been ob-
tained from this point of view. Readers may understand its utility of Theorem F throughout
this chapter after reading many applications of Theorem F.

199
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Theorem F (Furuta inequality)

If A ≥ B ≥ 0, then for each r ≥ 0

(i)
(
B

r
2 ApB

r
2

) 1
q ≥

(
B

r
2 BpB

r
2

) 1
q

and

(ii)
(
A

r
2 ApA

r
2

) 1
q ≥

(
A

r
2 BpA

r
2

) 1
q

hold for p ≥ 0 and q ≥ 1 with

(1+ r)q ≥ p+ r.
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Figure 7.1

In Theorem F, it follows that (i) is equivalent to (ii) which will be shown at the end of
the proof of Theorem F. The domain drawn for p,q and r in Figure 7.1 is the best possible
one for Theorem F, that is, we can not extend the domain drawn for p,q and r in Figure 7.1
to ensure two inequalities (i) and (ii) in Theorem F.

Theorem F yields the Löwner-Heinz inequality if we put r = 0 in (i) or (ii) of Theorem
F.

Consider two magic boxes

f (�) =
(
B

r
2 �B

r
2

) 1
q

and g(�) =
(
A

r
2 �A

r
2

) 1
q
.

Theorem F can be regarded as follows. Although A ≥ B ≥ 0 does not always ensure
Ap ≥ Bp for p > 1 in general, but Theorem F asserts the following two order preserving
operator inequalities

f (Ap) ≥ f (Bp) and g(Ap) ≥ g(Bp)

hold whenever A ≥ B ≥ 0 under the condition p , q and r in Figure 7.1.

In order to prove Furuta inequality, we need the following lemma.

Lemma 7.1 Let X be a positive invertible operator and Y be an invertible operator. For
any real number λ ,

(YXY ∗)λ = YX
1
2 (X

1
2Y ∗YX

1
2 )λ−1X

1
2Y ∗.

Proof. Let YX
1
2 = UH be the polar decomposition of YX

1
2 , where U is unitary and

H =
∣∣∣YX

1
2

∣∣∣. Then we have

(YXY ∗)λ = (UH2U∗)λ = YX
1
2 H−1H2λH−1X

1
2Y ∗

= YX
1
2

(
X

1
2Y ∗YX

1
2

)λ−1
X

1
2Y ∗
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for any real bunber λ . �

It easily turns out that we don’t require the invertibility of X and Y in the case λ ≥ 1 in
Lemma 7.1 which is obviously seen in the proof. Lemma 7.1 is very simple with its proof
stated above, but quite useful tool in order to treat operator transformation in operator
theory.

Proof of Theorem F. At first we prove (ii). In the case 1 ≥ p ≥ 0, the result is obvious
by the Löwner-Heinz inequality. We have only to consider p ≥ 1 and q = p+r

1+r since (ii)

of Theorem F for values q larger than p+r
1+r follows by the Löwner-Heinz inequality, that is,

we have only to prove the following

A1+r ≥ (A
r
2 BpA

r
2 )

1+r
p+r for any p ≥ 1 and r ≥ 0. (7.1)

We may assume that A and B are invertible without loss of generality. In the case
r ∈ [0,1], A ≥ B ≥ 0 ensures Ar ≥ Br holds by the Löwner-Heinz inequality. Then we have

(
A

r
2 BpA

r
2

) 1+r
p+r

= A
r
2 B

p
2

(
B

−p
2 A−rB

−p
2

) p−1
p+r

B
p
2 A

r
2 by Lemma 7.1

≤ A
r
2 B

p
2

(
B

−p
2 B−rB

−p
2

) p−1
p+r

B
p
2 A

r
2

= A
r
2 BA

r
2 ≤ A1+r,

and the first inequality follows by B−r ≥ A−r and the Löwner-Heinz inequality since p−1
p+r ∈

[0,1] holds, and the last inequality follows by A ≥ B ≥ 0, so we have the following

A1+r ≥
(
A

r
2 BpA

r
2

) 1+r
p+r

for p ≥ 1 and r ∈ [0,1]. (7.2)

Put A1 = A1+r and B1 =
(
A

r
2 BpA

r
2

) 1+r
p+r

in (7.2). Repeating (7.2) again for A1 ≥B1 ≥ 0,

r1 ∈ [0,1] and p1 ≥ 1,

A1+r1
1 ≥

(
A

r1
2

1 Bp1
1 A

r1
2

1

) 1+r1
p1+r1

.

Put p1 = p+r
1+r ≥ 1 and r1 = 1, then

A2(1+r) ≥
(
Ar+ 1

2 BpAr+ 1
2

) 2(1+r)
p+2r+1

for p ≥ 1 and r ∈ [0,1]. (7.3)

Put s
2 = r + 1

2 in (7.3). Then 2(1+r)
p+2r+1 = 1+s

p+s since 2(1+ r) = 1+ s, so that (7.3) can be
rewritten as follows;

A1+s ≥
(
A

s
2 BpA

s
2

) 1+s
p+s

for p ≥ 1, and s ∈ [1,3]. (7.4)
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Consequently (7.2) and (7.4) ensure that (7.2) holds for any r ∈ [0,3] since r ∈ [0,1]
and s = 2r + 1 ∈ [1,3]. Repeating this process, we should obtain that (7.1) holds for any
r ≥ 0 and so (ii) is shown.

If A≥B > 0, then B−1 ≥A−1 > 0. Then by (ii), for each r≥ 0, B
−(p+r)

q ≥
(
B

−r
2 A−pB

−r
2

) 1
q

holds for each p and q such that p ≥ 0, q≥ 1 and (1+ r)q ≥ p+ r. Taking inverses of both
sides, we have (i) and so the proof of Theorem F is complete.

�

Theorem 7.2 If A ≥ B ≥ 0, then the following inequalities hold.

(i)
(
B

r
2 ApB

r
2

) 1+r
p+r ≥ B1+r

(ii) A1+r ≥
(
A

r
2 BpA

r
2

) 1+r
p+r

for p ≥ 1 and r ≥ 0.

Proof. We have only to put q = p+r
1+r ≥ 1 if p ≥ 1 and r ≥ 0 in Theorem F. �

Remark 7.1 Theorem 7.2 is the essential part of Theorem F since Theorem F in case
p ∈ [0,1] is trivial by the Löwner-Heinz inequality, and we shall state several applications
of Theorem 7.2 in the forthcoming sections.

We show that Theorem F is equivalent to the following Theorem 7.3.

Theorem 7.3 If A ≥C ≥ B ≥ 0, then for each r ≥ 0

(�)
(
C

r
2 ApC

r
2

) 1
q ≥

(
C

r
2CpC

r
2

) 1
q ≥

(
C

r
2 BpC

r
2

) 1
q

for p ≥ 0 and q ≥ 1 with (1+ r)q≥ p+ r.

Proof of equivalence between Theorem F and Theorem 7.3.
Theorem F =⇒ Theorem 7.3.
The first inequality of (�) follows by (i) of Theorem F and also the second one of (�)

follows by (ii) of Theorem F.

Theorem 7.3 =⇒ Theorem F.
Put B =C in (�) of Theorem 7.3, then we have (i) of Theorem F. Also put A = C in (�)

of Theorem 7.3, then we have (ii) of Theorem F.
Whence a proof of equivalence relation between Theorem F and Theorem 7.3 is com-

plete. �

Theorem 7.3 implies the following equivalence relation;
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Theorem 7.4 (CHARACTERIZATION OF C IN THEOREM 7.3) A ≥ C ≥ B ≥ 0 holds if
and only if

(♣)
(
C

r
2 ApC

r
2

) 1
q ≥

(
C

r
2CpC

r
2

) 1
q ≥

(
C

r
2 BpC

r
2

) 1
q

holds for all r ≥ 0, p ≥ 0 and q ≥ 1 with (1+ r)q ≥ p+ r.

Proof. A proof of “only if” part follows by Theorem 7.3 and also a proof of “if” part
follows by putting r = 0 and p = q = 1 in (♣). �

We remark that Theorem 7.4 is a characterization of C satisfying A ≥ C ≥ B ≥ 0 by
using the operator inequality (♣).

We state the best possibility of Theorem F as follows. We omit the proof.

Theorem 7.5 (TANAHASHI) Let p > 0, q > 0 and r > 0. If (1+r)q < p+r or 0 < q < 1,
then there exist positive invertible operators A and B with A ≥ B ≥ 0 which do not satisfy
the inequality

A
p+r
q ≥

(
A

r
2 BpA

r
2

) 1
q
.

Theorem 7.5 asserts that the domain drawn for p, q and r in the Figure 7.1 of Theorem
F is the best possible domain.

Notice that Theorem 7.5 easily ensures the following result.

Theorem 7.6 Let p > 1 and r > 0. If α > 1, there exist positive invertible operators A
and B such that A ≥ B > 0 and

A(1+r)α �≥ (A
r
2 BpA

r
2 )

(1+r)α
p+r .

Theorem G (GENERALIZED FURUTA INEQUALITY). If A ≥ B ≥ 0 with A > 0, then
for t ∈ [0,1] and p ≥ 1

(G-1) A1−t+r ≥
{

A
r
2

(
A

−t
2 BpA

−t
2

)s
A

r
2

} 1−t+r
(p−t)s+r

for s ≥ 1 and r ≥ t.

Theorem G can be regarded as an extension of Theorem 7.2.

Proof of Theorem G. We may assume that B is invertible. First of all, we prove that if
A ≥ B ≥ 0 with A > 0, then

A ≥
{

A
t
2

(
A

−t
2 BpA

−t
2

)s
A

t
2

} 1
(p−t)s+t

for t ∈ [0,1], p ≥ 1 and s ≥ 1. (7.5)
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In the case of 2 ≥ s ≥ 1, as s− 1, 1
(p−t)s+t ∈ [0,1] and At ≥ Bt by the Löwner-Heinz

inequality, so by Lemma 7.1 and the Löwner-Heinz inequality we have

B1 =
{

A
t
2

(
A

−t
2 BpA

−t
2

)s
A

t
2

} 1
(p−t)s+t =

{
B

p
2

(
B

p
2 A−tB

p
2

)s−1
B

p
2

} 1
(p−t)s+t

≤
{

B
p
2

(
B

p
2 B−tB

p
2

)s−1
B

p
2

} 1
(p−t)s+t

= B ≤ A = A1 (7.6)

for t ∈ [0,1], p ≥ 1 and 2 ≥ s ≥ 1. Repeating (7.6) for A1 ≥ B1 ≥ 0, then we have

A1 ≥
{

A
t1
2
1

(
A

−t1
2

1 Bp1
1 A

−t1
2

1

)s1
A

t1
2
1

} 1
(p1−t1)s1+t1

(7.7)

for t1 ∈ [0,1], p1 ≥ 1 and 2 ≥ s1 ≥ 1.
Put t1 = t ∈ [0,1] and p1 = (p− t)s+ t ≥ 1 in (7.7). Then we obtain

A ≥
{

A
t
2

[
A

−t
2 A

t
2

(
A

−t
2 BpA

−t
2

)s
A

t
2 A

−t
2

]s1
A

t
2

} 1
(p−t)ss1+t

=
{

A
t
2

(
A

−t
2 BpA

−t
2

)ss1
A

t
2

} 1
(p−t)ss1+t

(7.8)

for t ∈ [0,1], p ≥ 1 and 4 ≥ ss1 ≥ 1.
Repeating this process from (7.6) to (7.8), we obtain (7.5) for t ∈ [0,1] , p ≥ 1 and

any s ≥ 1. Put A2 = A and B2 =
{

A
t
2

(
A

−t
2 BpA

−t
2

)s
A

t
2

} 1
(p−t)s+t

in (7.5). Applying (ii) of

Theorem F for A2 ≥ B2 ≥ 0 by (7.5) for t ∈ [0,1], p ≥ 1 and s ≥ 1, so we have

A1+r2
2 ≥

(
A

r2
2

2 Bp2
2 A

r2
2

2

) 1+r2
p2+r2

for p2 ≥ 1 and r2 ≥ 0. (7.9)

We have only to put r2 = r− t ≥ 0 and p2 = (p− t)s + t ≥ 1 in (7.9) to obtain the
desired inequality (G-1) in Theorem G, so the proof of Theorem G is complete. �

Recall that for positive invertible operators A and B, the order logA ≥ logB is said to
be the chaotic order (denoted by A � B ) and this order is weaker than the usual order
A ≥ B > 0 as seen in Example 1.7, that is, logt is operator monotone.

Theorem 7.7 Let A and B be positive invertible operators. Then the following (i), (ii)
and (iii) are mutually equivalent:

(i) A � B (i.e., logA ≥ logB).

(ii) Ar ≥
(
A

r
2 BpA

r
2

) r
p+r

for all p ≥ 0 and r ≥ 0.

(iii)
(
B

r
2 ApB

r
2

) r
p+r ≥ Br for all p ≥ 0 and r ≥ 0.
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Proof. (i) =⇒ (ii). We recall the following obvious and crucial formula

(��) δ limn→∞
(
1H + 1

n logX
)n = X for any X > 0.

The hypothesis logA ≥ logB ensures

δA1 = 1H + logA
n ≥ 1H + logB

n = B1

for sufficiently large natural number n. Applying (ii) of Theorem F to A1 and B1, we have

Anr
1 ≥

(
A

nr
2
1 Bnp

1 A
nr
2
1

) nr
np+nr

for all p ≥ 0 and r ≥ 0 (7.10)

since q = np+nr
nr satisfies the required condition of Theorem F. When n→ ∞, (7.10) ensures

(ii) by (��).

(ii) =⇒ (i). Taking logarithm of both sides of (ii) and refining, we have

r(p+ r) logA ≥ r log
(
A

r
2 BpA

r
2

)
for all p ≥ 0 and r ≥ 0

by the operator monotonicity of the logarithm, and tending r → +0, we obtain logA ≥
logB.

The implication (i) ⇐⇒ (iii) is shown by the same way of the proof of (i) ⇐⇒ (ii). �

In order to prove the best possibility of Theorem G, we prepare the following result
which is nothing but a slight modification of Theorem 7.5.

Theorem 7.8 Let p > 0, q > 0, r > 0 and δ > 0. If 0 < q < 1 or (δ + r)q < p+ r, then
there exist positive invertible operators A and B such that Aδ ≥ Bδ and

A
p+r
q �≥

(
A

r
2 BpA

r
2

) 1
q
. (7.11)

Proof. Assume 0 < q < 1 or (δ + r)q < p+ r. Put p1 = p
δ > 0 and r1 = r

δ > 0, then
(δ + r)q < p+ r is equivalent to (1+ r1)q < p1 + r1. By Theorem 7.5, there exist positive
invertible operators A1 and B1 such that A1 ≥ B1 > 0 and

A
p1+r1

q
1 �≥

(
A

r1
2

1 Bp1
1 A

r1
2

1

) 1
q

. (7.12)

Here we put A = A
1
δ
1 > 0 and B = B

1
δ
1 > 0, then A1 = Aδ and B1 = Bδ , so that A1 ≥ B1

is equivalent to Aδ ≥ Bδ and (7.12) is equivalent to (7.11). Therefore A and B satisfy both
Aδ ≥ Bδ and (7.11). Hence the proof is complete. �

Theorem 7.9 Let p > 0, q > 0 and r > 0. If rq < p+r, then there exist positive invertible
operators A and B such that logA ≥ logB and

A
p+r
q �≥

(
A

r
2 BpA

r
2

) 1
q
. (7.13)
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Proof. Assume rq < p+ r. Since 0 < p+r
q − r, there exists a δ > 0 such that 0 < δ <

p+r
q − r, that is, (δ + r)q < p+ r. By Theorem 7.8, there exist positive invertible operators

A and B such that Aδ ≥ Bδ and (7.13).
Aδ ≥ Aδ ensures logA ≥ logB by the operator monotonicity of the logarithm function

and δ > 0, so that A and B satisfy both logA ≥ logB and (7.13). Hence the proof is
complete. �

Theorem 7.9 can be easily rewritten in the following form.

Theorem 7.10 Let p > 0 and r > 0. If α > 1, then there exist positive invertible operators
A and B such that logA ≥ logB and

Arα �≥
(
A

r
2 BpA

r
2

) rα
p+r

. (7.14)

Next we prove the best possibility of Theorem G as follows.

Theorem 7.11 Let p ≥ 1, t ∈ [0,1], r ≥ t and s ≥ 1. If

δ
1− t + r

(p− t)s+ r
< α, (7.15)

then there exist positive invertible operators A and B such that A ≥ B > 0 and

A{(p−t)s+r}α �≥
{

A
r
2

(
A

−t
2 BpA

−t
2

)s
A

r
2

}α
. (7.16)

Proof. (a) In the case of t ∈ [0,1). Assume that

S ≥ T > 0 ensures S(1−t+r)α ≥
{

S
r
2

(
S

−t
2 T pS

−t
2

)s
S

r
2

} 1−t+r
(p−t)s+r α

(7.17)

for p ≥ 1, t ∈ [0,1), r ≥ t, s ≥ 1 and α > 1.
On the other hand, A ≥ B > 0 ensures the following (7.18) by (ii) of Theorem F:

A1+r1 ≥
(
A

r1
2 Bp1A

r1
2

) 1+r1
p1+r1 for p1 ≥ 1 and r1 ≥ 0. (7.18)

Put p1 = p−t
1−t ≥ 1 and r1 = t

1−t ≥ 0 in (7.18). Then (7.18) implies

A
1

1−t ≥
(
A

t
2(1−t) B

p−t
1−t A

t
2(1−t)

) 1
p
. (7.19)

Put S = A
1

1−t and T =
(
A

t
2(1−t) B

p−t
1−t A

t
2(1−t)

) 1
p
. Then S ≥ T > 0 by (7.19) and applying

(7.17), we have

S(1−t+r)α ≥
{

S
r
2

(
S

−t
2 T pS

−t
2

)s
S

r
2

} 1−t+r
(p−t)s+r α

. (7.20)
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(7.20) is equivalent to the following

A(1+ r
1−t )α ≥

[
A

r
2(1−t)

{
A

−t
2(1−t)

(
A

t
2(1−t) B

p−t
1−t A

t
2(1−t)

) p
p
A

−t
2(1−t)

}s

A
r

2(1−t)

] 1−t+r
(p−t)s+r α

=
(
A

r
2(1−t) B

p−t
1−t sA

r
2(1−t)

) 1+ r
1−t

p−t
1−t s+ r

1−t
α

. (7.21)

Put r2 = r
1−t ≥ 0 and p2 = p−t

(1−t) s ≥ 1 in (7.21). Then (7.21) is equivalent to

A(1+r2)α ≥
(
A

r2
2 Bp2A

r2
2

) 1+r2
p2+r2

α
for p2 ≥ 1, r2 ≥ 0 and α > 1. (7.22)

This contradiction proves the result in the case of t ∈ [0,1) by Theorem 7.6.

(b) In the case of t = 1. Assume that

S ≥ T > 0 ensures Srα ≥
{

S
r
2

(
S

−1
2 T pS

−1
2

)s
S

r
2

} r
(p−1)s+r α

. (7.23)

for p ≥ 1, r ≥ 1, s ≥ 1 and α > 1.

For positive invertible operators A and B, logA ≥ logB ensures the following (7.24) by
Theorem 7.7

A ≥
(
A

1
2 Bp−1A

1
2

) 1
p
. (7.24)

Put S = A and T =
(
A

1
2 Bp−1A

1
2

) 1
p
. Then S ≥ T > 0 by (7.24) and applying (7.23), we

have

Srα ≥
{

S
r
2

(
S

−1
2 T pS

−1
2

)s
S

r
2

} r
(p−1)s+r α

. (7.25)

(7.25) is equivalent to the following

Arα ≥
[
A

r
2

{
A

−1
2

(
A

1
2 Bp−1A

1
2

) p
p
A

−1
2

}s

A
r
2

] r
(p−1)s+r α

=
(
A

r
2 B(p−1)sA

r
2

) r
(p−1)s+r α

(7.26)

Put p3 = (p−1)s > 0 in (7.26). Then we have

Arα ≥
(
A

r
2 Bp3A

r
2

) r
p3+r α

for p3 > 0, r ≥ 1 and α > 1.

This contradiction proves the result in the case of t = 1 by Theorem 7.10.

Hence the proof is complete by (a) and (b). �
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7.2 Operator functions associated with Theorem G

We show the following equivalence relation between Theorem G and related operator func-
tions.

Theorem 7.12 The following (i),(ii),(iii) and (iv) hold and follow from each other.
(i) If A ≥ B ≥ 0 with A > 0, then for each t ∈ [0,1] and p ≥ 1,

A1−t+r ≥
{

A
r
2

(
A

−t
2 BpA

−t
2

)s
A

r
2

} 1−t+r
(p−t)s+r

for r ≥ t and s ≥ 1.

(ii) If A ≥ B ≥ 0 with A > 0, then for each 1 ≥ q ≥ t ≥ 0 and p ≥ q,

Aq−t+r ≥
{

A
r
2

(
A

−t
2 BpA

−t
2

)s
A

r
2

} q−t+r
(p−t)s+r

for r ≥ t and s ≥ 1.

(iii) If A ≥ B ≥ 0 with A > 0, then for each t ∈ [0,1] and p ≥ 1,

Fp,t(A,B,r,s) = A
−r
2

{
A

r
2

(
A

−t
2 BpA

−t
2

)s
A

r
2

} 1−t+r
(p−t)s+r

A
−r
2

is a decreasing function for r ≥ t and s ≥ 1 .

(iv) If A ≥ B ≥ 0 with A > 0, then for each t ∈ [0,1], q ≥ 0 and p ≥ t,

Gp,q,t(A,B,r,s) = A
−r
2

{
A

r
2

(
A

−t
2 BpA

−t
2

)s
A

r
2

} q−t+r
(p−t)s+r

A
−r
2

is a decreasing function for r ≥ t and s ≥ 1 such that (p− t)s≥ q− t .

Proof. We may assume that both A and B are invertible.

(iv) =⇒ (iii). We have only to put q = 1 in (iv).

(iii) =⇒ (i). A ≥ B ≥ 0 and the monotonicity of Fp,t(A,B,r,s) ensure

A1−t ≥ A
−t
2 BA

−t
2 = Fp,t(A,B,t,1) ≥ Fp,t(A,B,r,s)

so that we have (i).

(i) =⇒ (ii). Put A1 = Aq and B1 = Bq for q∈ [0,1]. Then A1 ≥ B1 ≥ 0 holds by the Löwner-
Heinz theorem (Theorem 1.8) in Section 1.2. Put p1 = p

q ≥ 1, t1 = t
q and r1 = r

q . Then we
have only to apply (i) on A1 ≥ B1.

(ii) =⇒ (iv). Put q = t in (ii). Then if A ≥ B ≥ 0, then for each t ∈ [0,1] and p ≥ t
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Ar ≥
{

A
r
2

(
A

−t
2 BpA

−t
2

)s
A

r
2

} r
(p−t)s+r

for r ≥ t and s ≥ 1. (7.27)

(a) Decreasing of Gp,q,t(A,B,r,s) for s. Put D = A
−t
2 BpA

−t
2 . Applying Lemma 7.1 to (7.27)

and the Löwner-Heinz theorem (Theorem 1.8) in Section 1.2, we obtain for each t ∈ [0,1],
p ≥ t, s ≥ 1 and r ≥ t

(
D

s
2 ArD

s
2

) (p−t)w
(p−t)s+r ≥ Dw for s ≥ w ≥ 0. (7.28)

Then we have

f (s) =
{

A
r
2

(
A

−t
2 BpA

−t
2

)s
A

r
2

} q−t+r
(p−t)s+r

=
(
A

r
2 DsA

r
2

) q−t+r
(p−t)s+r

=

{(
A

r
2 DsA

r
2

) (p−t)(s+w)+r
(p−t)s+r

} q−t+r
(p−t)(s+w)+r

=

{
A

r
2 D

s
2

(
D

s
2 ArD

s
2

) (p−t)w
(p−t)s+r

D
s
2 A

r
2

} q−t+r
(p−t)(s+w)+r

by Lemma 7.1

≥
(
A

r
2 Ds+wA

r
2

) q−t+r
(p−t)(s+w)+r

= f (s+w)

and the last inequality holds by (7.28) and the Löwner-Heinz theorem since q−t+r
(p−t)(s+w)+r ∈

[0,1] holds, so the proof of (a) is complete since Gp,q,t(A,B,r,s) = A
−r
2 f (s)A

−r
2 .

(b) Decreasing of Fp,q,t(A,B,r,s) for r. Applying the Löwner-Heinz theorem to (7.27), if
A ≥ B ≥ 0, then for each t ∈ [0,1], p ≥ t, s ≥ 1 and r ≥ t

Au ≥
(
A

u
2 DsA

u
2

) u
(p−t)s+r for r ≥ u ≥ 0. (7.29)

Then we have
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Gp,q,t(A,B,r,s) = A
−r
2

{
A

r
2

(
A

−t
2 BpA

−t
2

)s
A

r
2

} q−t+r
(p−t)s+r

A
−r
2

= D
s
2

(
D

s
2 ArD

s
2

) q−t−(p−t)s
(p−t)s+r

D
s
2 by Lemma 7.1

= D
s
2

{(
D

s
2 ArD

s
2

) (p−t)s+r+u
(p−t)s+r

} q−t−(p−t)s
(p−t)s+r+u

D
s
2

= D
s
2

{
D

s
2 A

r
2

(
A

r
2 DsA

r
2

) u
(p−t)s+r

A
r
2 D

s
2

} q−t−(p−t)s
(p−t)s+r+u

D
s
2 by Lemma 7.1

≥ D
s
2

(
D

s
2 Ar+uD

s
2

) q−t−(p−t)s
(p−t)s+r+u

D
s
2

= Gp,q,t(A,B,r+u,s)

and the last inequality holds by (7.29) and the Löwner-Heinz theorem since q−t−(p−t)s
(p−t)s+r+u ∈

[−1,0]. Consequently we obtain (iv) by (a) and (b), so the proof is complete. �

Corollary 7.13 If A ≥ B > 0, then the following inequalities (i) and (ii) hold

(i) δ
{

B
t
2

(
B

−t
2 ApB

−t
2

)s
B

t
2

} 1
(p−t)s+r ≥ A ≥ B ≥

{
A

t
2

(
A

−t
2 BpA

−t
2

)s
A

t
2

} 1
(p−t)s+r

(ii) δB
−(r−t)

2

(
B

r−t
2 ApB

r−t
2

) 1−t+r
p−t+r

B
−(r−t)

2 ≥ A ≥ δB ≥ A
−(r−t)

2

(
A

r−t
2 BpA

r−t
2

) 1−t+r
p−t+r

A
−(r−t)

2

for each t ∈ [0,1], p ≥ 1, r ≥ t and s ≥ 1.

Proof. (i) Theorem 7.12 yields

Fp,t(A,B,t,1) ≥ Fp,t(A,B,t,s) ≥ Fp,t(A,B,r,s)

for t ∈ [0,1], p ≥ 1, r ≥ t and s ≥ 1, so that we have the latter half inequality, and the
former one follows by the letter one by taking inverses of both sides as seen in the proof of
(i) via (ii) of Theorem F.

(ii) Theorem 7.12 yields

Fp,t(A,B,t,1) ≥ Fp,t(A,B,r,1) ≥ Fp,t(A,B,r,s)

for t ∈ [0,1], p ≥ 1, r ≥ t and s ≥ 1, so that we have the latter half inequality, and the
former is easily shown as the same way as in (i). �
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Corollary 7.14 If A ≥ B > 0, then the following inequality holds

δB
−r
2

(
B

r
2 ApB

r
2

) 1+r
p+r

B
−r
2 ≥ A ≥ B ≥ A

−r
2

(
A

r
2 BpA

r
2

) 1+r
p+r

A
−r
2

for p ≥ 1 and r ≥ 0.

Proof. We have only to put t = 0 in (ii) of Corollary 7.13. �

Remark 7.2 Corollary 7.14 easily yields Theorem 7.2.

Corollary 7.15 If A ≥ B > 0, then the following (i) and (ii) hold:

(i) δ f (p,r) = B
−r
2

(
B

r
2 ApB

r
2

) 1+r
p+r

B
−r
2 is an increasing function of both p ≥ 1 and r ≥ 0.

(ii) δg(p,r) = A
−r
2

(
A

r
2 BpA

r
2

) 1+r
p+r

A
−r
2 is a decreasing function of both p ≥ 1 and r ≥ 0.

Proof. (ii) Put t = 0 and p = 1 in (iii) of Theorem 7.12, and then replace s by p.

(i) Since B−1 ≥ A−1 holds, (ii) yields that

δB
r
2 (B

−r
2 A−pB

−r
2 )

1+r
p+r B

r
2

is a decreasing function of both p ≥ 1 and r ≥ 0, so that we have (i) by taking inverse. �

Remark 7.3 Corollary 7.15 easily implies Corollary 7.14.

Corollary 7.16 If A ≥ B > 0, then the following (i) and (ii) hold:

(i) For any fixed t ≥ 0,

δ f (p,r) = B
−r
2

(
B

r
2 ApB

r
2

) t+r
p+r

B
−r
2 is an increasing function of both p ≥ t and r ≥ 0.

(ii) For any fixed t ≥ 0,

δg(p,r) = A
−r
2

(
A

r
2 BpA

r
2

) t+r
p+r

A
−r
2 is a decreasing function of both p ≥ t and r ≥ 0.

Proof. (i) (i) of Corollary 7.15 ensures that if A ≥ B > 0, then

δ f (p′,r′) = B
−r′
2 (B

r′
2 Ap′B

r′
2 )

1+r′
p′+r′ B

−r′
2

is an increasing function of both p′ ≥ 1 and r′ ≥ 0. We have only to put p′ = p
t ≥ 1 and

r′ = r
t ≥ 0

(ii) It follow from the same way as one in (i) by using (ii) of Corollary 7.15. �
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7.3 Chaotic order and the relative operator entropy

In this section, as applications of Furuta inequality, we pick up several inequalities for
the relative operator entropy.

We recall that the relative operator entropy S(A|B) is defined by

S(A|B) = A
1
2

(
logA− 1

2 BA− 1
2

)
A

1
2

for invertible positive operators A and B on a Hilbert space H.
We begin with characterizations of the chaotic order.

Theorem 7.17 Let A and B be positive invertible operators. Then the following asser-
tions are mutually equivalent.

(I) A � B (i.e., logA ≥ logB).

(II1) Au ≥
(
A

u
2 BpA

u
2

) u
p+u

for all p ≥ 0 and all u ≥ 0,

(II2) Au ≥
(
A

u
2 Bp0A

u
2

) u
p0+u

for a fixed positive number p0 and for all u such that u∈ [0,u0],
where u0 is a fixed positive number.

(III1) logAp+u ≥ log
(
A

u
2 BpA

u
2

)
for all p ≥ 0 and all u ≥ 0.

(III2) logAu+p0 ≥ log
(
A

u
2 Bp0A

u
2

)
for a fixed positive number p0 and for all u such that

u ∈ [0,u0], where u0 is a fixed positive number.

Proof. (I)⇐⇒(II1) is shown in Theorem 7.7.
(III2)=⇒(I). We have only to put u = 0 in (III2).
(II1)=⇒(II2)=⇒(III2) and (II1)=⇒(III1)=⇒(III2) are obviously since log t is operator

monotone. Hence the proof is complete. �

Theorem 7.18 Let A, B andC be positive invertible operators. Then the following asser-
tions are mutually equivalent.

(I) C � A � B (i.e., logC ≥ logA ≥ logB).

(II1)
(
A

u
2CpA

u
2

) u
p+u ≥ Au ≥

(
A

u
2 BpA

u
2

) u
p+u

for all p ≥ 0 and all u ≥ 0.

(II2)
(
A

u
2Cp0A

u
2

) u
p0+u ≥ Au ≥

(
A

u
2 Bp0A

u
2

) u
p0+u

for a fixed positive number p0 and for all

u such that u ∈ [0,u0], where u0 is a fixed positive number.
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(III1) log
(
A

u
2CpA

u
2

)
≥ logAp+u ≥ log

(
A

u
2 BpA

u
2

)
for all p ≥ 0 and all u ≥ 0,

(III2) log
(
A

u
2Cp0A

u
2

)
≥ logAp0+u ≥ log

(
A

u
2 Bp0A

u
2

)
for a fixed positive number p0 and

for all u such that u ∈ [0,u0], where u0 is a fixed positive number.

(IV1) S(A−u|Cp) ≥ S(A−u|Ap) ≥ S(A−u|Bp) for all p ≥ 0 and all u ≥ 0 .

(IV2) S(A−u|Cp0) ≥ S(A−u|Ap0) ≥ S(A−u|Bp0) for a fixed positive number p0 and for all u
such that u ∈ [0,u0] ,where u0 is a fixed positive number.

Proof. (I)⇐⇒(II1)⇐⇒(II2)⇐⇒(III1)⇐⇒(III2) is easy by Theorem 7.17.
(III1)⇐⇒(IV1) and (III2)⇐⇒(IV2) are obtained by the definition of the relative opera-

tor entropy. �

Corollary 7.19 Let A,B and C be positive invertible operators. If C � A−1 � B, then

S(A|C) ≥−2A logA ≥ S(A|B).

Proof. Put p = u = 1 and replace A by A−1 in (IV1) of Theorem 7.18. Then

S(A|C)≥ S(A|A−1) ≥ S(A|B)

and the proof is complete since S(A|A−1) = −2A logA. �

The following theorem is an improvement of Theorem 5.12.

Theorem 7.20 Let A and B be positive invertible operators. For any positive number x0,
the following inequality holds;

(logx0−1)A+ δ
1
x0

B ≥ S(A|B) ≥ (1− logx0)A− δ
1
x0

AB−1A.

In particular, S(A|B) = 0 holds if and only if A = B.

Proof. First of all, we cite the following obvious inequality for any positive numbers x
and x0

logx0 −1+
x
x0

≥ logx ≥ 1− logx0− 1
x0x

. (7.30)

We can interchange x with positive operator A− 1
2 BA− 1

2 in (7.30), then

A
1
2

(
logx0−1+

1
x0

A− 1
2 BA− 1

2

)
A

1
2 ≥ A

1
2

(
logA− 1

2 BA− 1
2

)
A

1
2

≥ A
1
2

(
1− logx0− 1

x0
A

1
2 B−1A

1
2

)
A

1
2 ,
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that is,

(logx0−1)A+ δ
1
x0

B ≥ S(A|B) ≥ (1− logx0)A− δ
1
x0

AB−1A.

For the proof of the latter part, put x0 = 1 and S(A|B) = 0, then

−A+B≥ 0 ≥ A−AB−1A,

that is, B ≥ A and AB−1A ≥ A. The latter inequality is equivalent to A ≥ B, so that A = B
holds. That is, S(A|B) = 0 ensures A = B, and the reverse implication is trivial by the
definition of S(A|B). Hence the proof is complete. �

Next, we study operator functions associated with the chaotic order.

Theorem 7.21 Let A and B be positive invertible operators. Then the following asser-
tions are mutually equivalent.

(I) A � B (i.e., logA ≥ logB).

(II) For any fixed t ≥ 0,

F(p,r) = B
−r
2

(
B

r
2 ApB

r
2

) t+r
p+r

B
−r
2 is an increasing function of both p ≥ t and r ≥ 0.

(III) For any fixed t ≥ 0,

G(p,r) = A
−r
2

(
A

r
2 BpA

r
2

) t+r
p+r

A
−r
2 is a decreasing function of both p ≥ t and r ≥ 0.

Proof. (I) =⇒ (III) logA ≥ logB is equivalent to the following (1) by Theorem 7.18

(1) Ar ≥
(
A

r
2 BpA

r
2

) r
p+r

for all r ≥ 0 and p ≥ 0

and (1) is also equivalent to the following (2) by Lemma 7.1

(2)
(
B

p
2 ArB

p
2

) p
r+p ≥ Bp for all p ≥ 0 and r ≥ 0.

Applying the Löwner-Heinz theorem to (1) and (2), we have the following (3) and (4)
respectively

(3) Au ≥
(
A

r
2 BpA

r
2

) u
p+r

for all r ≥ u ≥ 0 and p ≥ 0

(4)
(
B

p
2 ArB

p
2

) w
r+p ≥ Bw for all p ≥ w ≥ 0 and r ≥ 0.

(a) G(p,r) is a decreasing function of p.

g(p,r) =
(
A

r
2 BpA

r
2

) t+r
p+r
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=
{(

A
r
2 BpA

r
2

) p+w+r
p+r

} t+r
p+w+r

=
{

A
r
2 B

p
2

(
B

p
2 ArB

p
2

) w
p+r

B
p
2 A

r
2

} t+r
p+w+r

by Lemma 7.1

≥
(
A

r
2 Bp+wA

r
2

) t+r
p+w+r

= g(p+w,r)

and the last inequality holds by (4) and the Löwner-Heinz theorem since t+r
p+w+r ∈ [0,1],

so that = g(p,r) is a decreasing of p, and G(p,r) = A
−r
2 g(p,r)A

−r
2 is also a decreasing

function of p.

(b) G(p,r) is a decreasing function of r.

G(p,r) = A
−r
2

(
A

r
2 BpA

r
2

) t+r
p+r

A
−r
2

= B
p
2

(
B

p
2 ArB

p
2

) t−p
p+r

B
p
2 by Lemma 7.1

= B
p
2

{(
B

p
2 ArB

p
2

) r+u+p
p+r
} t−p

r+u+p

B
p
2

= B
p
2

{
B

p
2 A

r
2

(
A

r
2 BpA

r
2

) u
p+r

A
r
2 B

p
2

} t−p
r+u+p

B
p
2 by Lemma 7.1

≥ B
p
2

(
B

p
2 Ar+uB

p
2

) t−p
r+u+p

B
p
2

= G(p,r+u)

and the last inequality holds by (3) and the Löwner-Heinz theorem since t−p
r+u+p ∈ [−1,0],

so that G(p,r) is a decreasing function of r. Whence the proof of (I) =⇒ (III) is complete
by (a) and (b).

(III) =⇒ (I) Assume (III). Then G(p,0) ≥ G(p,r) with t = 0, that is,

1H ≥ A
−r
2

(
A

r
2 BpA

r
2

) r
p+r

A
−r
2 for all p ≥ 0 and r ≥ 0,

that is,

Ar ≥
(
A

r
2 BpA

r
2

) r
p+r

for all p ≥ 0 and r ≥ 0,
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so that logA ≥ logB by Theorem 7.7. Therefore (I) ⇐⇒ (III) is proved.

(I) ⇐⇒ (II) Since logA ≥ logB is equivalent to logB−1 ≥ logA−1, so that by applying
this latter condition to (I) ⇐⇒ (III), (I) is equivalent to the following (5).

(5) For any fixed t ≥ 0

B
r
2

(
B

−r
2 A−pB

−r
2

) t+r
p+r

B
r
2 is a decreasing function of p ≥ t and r ≥ 0,

(5) is equivalent to the following (6)

(6) For any fixed t ≥ 0

F(p,r) = B
−r
2

(
B

r
2 ApB

r
2

) t+r
p+r

B
−r
2 is an increasing function of p ≥ t and r ≥ 0,

so that (I) ⇐⇒ (II). Whence the proof of Theorem 7.21 is complete. �

7.4 Notes

A proof of the Furuta inequality is due to [70] and we also refer to [54], [111] and [73].
Theorem 7.3 and Theorem 7.4 are due to Cho, Furuta, J.I.Lee and W.Y.Lee [23]. An
excellent and tough proof of the best possibility of the Furuta inequality is obtained in
Tanahashi [183].

A proof of the generalized Furuta inequality is due to [76] and we refer to [62], [94] and
[81]. The best possibility of the generalized Furuta inequality is contained in Tanahashi
[184] and alternative proofs are in [196] and [65].

The spacial case of Theorem 7.7 appeared in Ando [5]. Theorem 7.12 is due to Furuta,
Hashimoto and Ito [90]. Corollary 7.16 is due to Furuta [74] and M.Fujii, Furuta and
Kamei [55].

For our exposition we have used a work of Furuta [84] and [85].



Chapter8
Mond-Pečarić ideas in
operator order

In this chapter, we observe the operator order ≥ and the chaotic order
� in the algebra B(H) according to Definition 1.1 and Definition 4.1.
We study some characterizations of the operator order and the chaotic
one by virtue of the Kantorovich inequality. We call them Kantorovich
type inequalities of the operator order and the chaotic one.

8.1 Fundamental results

When we observe the inequalities which preserve the operator order, we recall the Hansen-
Pedersen theorem (Theorem 1.11). For a function f ∈ C ([0,∞)), if f (t) ≥ 0 for all t ∈
[0,∞), then f is operator monotone if and only if it is operator concave. So if f is a convex
function, then it can not be an operator monotone function. For example, the Löwner-Heinz
Theorem asserts that A,B ∈ B+(H), A ≥ B ≥ 0 imply Ap ≥ Bp for 1 ≥ p ≥ 0. However,
A ≥ B ≥ 0 does not imply A2 ≥ B2 in general. As an application of the Kantorovich
inequality we show that a function f (t) = t2 preserves the operator order in the following
sense:

Theorem 8.1 Let A,B∈B+(H) be positive operators on a Hilbert space H with Sp(B)⊆

217
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[m,M] for some scalars M > m > 0. Then

A ≥ B > 0 imply
(M +m)2

4Mm
A2 ≥ B2.

Proof. By the Kantorovich inequality (Theorem 1.29), we have

(B2x,x) ≤ (M +m)2

4Mm
(Bx,x)2 by M1H ≥ B ≥ m1H > 0

≤ (M +m)2

4Mm
(Ax,x)2 by A ≥ B ≥ 0

≤ (M +m)2

4Mm
(A2x,x) by the Hölder-McCarthy inequality

for every unit vector x ∈ H. Therefore it follows that (M+m)2
4Mm A2 ≥ B2. �

The number (M+m)2
4Mm is called the Kantorovich constant.

Moreover, we have the following complementary result to Theorem 8.1.

Theorem 8.2 Let A,B ∈ B++(H) be positive invertible operators on H with Sp(A) ⊆
[n,N] for some scalars N > n > 0. Then

A ≥ B > 0 imply
(N +n)2

4Nn
A2 ≥ B2.

Proof. Since B−1 ≥ A−1 and 1
n1H ≥ A−1 ≥ 1

N 1H > 0, it follows from Theorem 8.1 that

(N +n)2

4Nn
B−2 =

( 1
N + 1

n )2

4 1
N

1
n

B−2 ≥ A−2

and hence (N+n)2
4Nn A2 ≥ B2. �

Generally, though the power function f (t) = t p (0 ≤ p ≤ 1) is operator monotone, it
follows that A ≥ B ≥ 0 does not always ensure Ap ≥ Bp for any p > 1. Related to this
result, we have an extension of Theorem 8.1 and Theorem 8.2, which plays a fundamental
role in this chapter.

Theorem 8.3 Let A,B ∈ B+(H) be positive operators on H with Sp(A) ⊆ [m1,M1] and
Sp(B)⊆ [m2,M2] for some scalars Mj > mj > 0( j = 1,2). If A≥ B > 0, then the following
inequalities hold:

(
M1

m1

)p−1

Ap ≥ K(m1,M1, p)Ap ≥ Bp, (8.1)

(
M2

m2

)p−1

Ap ≥ K(m2,M2, p)Ap ≥ Bp (8.2)
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for all p ≥ 1, where K(m,M, p) is defined by (2.78) in § 2.7:

K(m,M, p) =
(mMp−Mmp)
(p−1)(M−m)

(
p−1

p
Mp−mp

mMp−Mmp

)p

. (8.3)

Proof. Put h = M1
m1

> 1. By (vi) of Theorem 2.54, we have the first inequality in (8.1)
and (8.2). Next, since M21H ≥ B ≥ m21H > 0, it follows from Theorem 2.53 that

K(m2,M2, p)(Bx,x)p ≥ (Bpx,x)

for every unit vector x ∈ H. Therefore, we have for all p > 1

(Bpx,x) ≤ K(m2,M2, p)(Bx,x)p

≤ K(m2,M2, p)(Ax,x)p by A ≥ B ≥ 0

≤ K(m2,M2, p)(Apx,x) by the Hölder-McCarthy inequality

for every unit vector x ∈ H. Therefore it follows that K(m2,M2, p)Ap ≥ Bp.
On the other hand, since B−1 ≥ A−1 and 1

m1
1H ≥ A−1 ≥ 1

M1
1H > 0, it follows that

K

(
1

M1
,

1
m1

, p

)
B−p ≥ A−p for p > 1.

Since K
(

1
M1

, 1
m1

, p
)

= K(m1,M1, p) by Theorem 2.54, taking inverse of both sides we

have K(m1,M1, p)−1Bp ≤ Ap and hence we have the desired inequality. �

For positive invertible operators A and B, we denote the chaotic order by A � B if
logA ≥ logB. We give some characterizations of the chaotic order by applying Theo-
rem 8.3 and Theorem 7.7.

Firstly, we show Kantorovich type operator inequalities of the chaotic order which are
parallel to Theorem 8.3.

Theorem 8.4 Let A,B ∈ B++(H) be positive invertible operators with Sp(B) ⊆ [m,M]
for some scalars M > m > 0. If logA ≥ logB, then(

M
m

)p

Ap ≥ K(m,M, p+1)Ap ≥ Bp for all p ≥ 0,

where the Kantorovich constant K(m,M, p) is defined by (8.3).

Proof. Put r = 1 in (iii) of Theorem 7.7, then logA ≥ logB ensures the following
inequality (

B
1
2 ApB

1
2

) 1
p+1 ≥ B for all p ≥ 0.

Put A1 =
(
B

1
2 ApB

1
2

) 1
p+1

and B1 = B, then A1 and B1 satisfy A1 ≥ B1 > 0 and M1H ≥ B1 ≥
m1H > 0. Applying Theorem 8.3 to A1 and B1, we have(

M
m

)p1−1(
B

1
2 ApB

1
2

) p1
p+1 ≥ K(m,M, p1)

(
B

1
2 ApB

1
2

) p1
p+1 ≥ Bp1 (8.4)
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for p ≥ 0 and p1 ≥ 1.
Put p1 = p+1 ≥ 1 in (8.4) and multiply B− 1

2 on both sides, then we have(
M
m

)p

Ap ≥ K(m,M, p+1)Ap ≥ Bp for all p ≥ 0.

Hence the proof of Theorem 8.4 is complete. �

Theorem 8.5 Let A,B ∈ B++(H) be positive invertible operators with Sp(B) ⊆ [m,M]
for some scalars M > m > 0. Then the following assertions are mutually equivalent:

(i) logA ≥ logB.

(ii) (Mp+mp)2
4Mpmp Ap ≥ Bp for all p ≥ 0.

Proof. (i) =⇒ (ii). Put r = p in (iii) of Theorem 7.7, then logA ≥ logB ensures the
following inequality (

B
p
2 ApB

p
2

) 1
2 ≥ Bp for all p ≥ 0.

Put A1 =
(
B

p
2 ApB

p
2

) 1
2

and B1 = Bp, then A1 and B1 satisfy A1 ≥ B1 > 0 and Mp1H ≥ B1 ≥
mp1H > 0. Applying Theorem 8.3 to A1 and B1, we have

K(mp,Mp, p1)
(
B

p
2 ApB

p
2

) p1
2 ≥ (Bp)p1 (8.5)

for p ≥ 0 and p1 ≥ 1.
Put p1 = 2 ≥ 1 in (8.5) and multiply B− p

2 on both sides, then we have

(Mp +mp)2

4Mpmp Ap = K(mp,Mp,2)Ap ≥ Bp for all p ≥ 0.

Hence the proof of (i) =⇒ (ii) is complete.
(ii) =⇒ (i). Taking logarithm of both sides of (ii) since logt is operator monotone, we

have

log

⎧⎨
⎩
(

(Mp +mp)2

4Mpmp

) 1
p

A

⎫⎬
⎭≥ logB for all p ≥ 0. (8.6)

Noting that

lim
p→+0

(
Mp +mp

2

) 1
p

=
√

Mm,

we have

lim
p→0

(
(Mp +mp)2

4Mpmp

) 1
p

= lim
p→0

1
Mm

(
Mp +mp

2

) 2
p

=
1

Mm

(√
Mm
)2

= 1.

Therefore, letting p → 0 in (8.6), we have logA ≥ logB . �
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Theorem 8.6 Let A,B ∈ B++(H) be positive invertible operators with Sp(B) ⊆ [m,M]
for some scalars M > m > 0. If logA ≥ logB, then

K

(
mr,Mr,

p+ r
r

)
Ap ≥ Bp for all p ≥ 0 and r ≥ 0,

where K(m,M, p) is defined by (8.3).

Proof. It follows from Theorem 7.7 that logA ≥ logB is equivalent to the following
inequality (

B
r
2 ApB

r
2

) r
p+r ≥ Br for all p > 0 and r > 0.

Put A1 =
(
B

r
2 ApB

r
2

) r
p+r

and B1 = Br, then A1 and B1 satisfy A1 ≥ B1 > 0 and Mr1H ≥
B1 ≥ mr1H > 0. Applying Theorem 8.3 to A1 and B1, we have

K(mr,Mr , p1)A
p1
1 ≥ Bp1

1 for all p1 ≥ 1. (8.7)

Put p1 = p+r
r ≥ 1 in (8.7), then we have

K

(
mr,Mr,

p+ r
r

)
B

r
2 ApB

r
2 ≥ Bp+r. (8.8)

By multiplying B− r
2 on both sides of (8.8), we have

K
(
mr,Mr,1+

p
r

)
Ap ≥ Bp for all p ≥ 0 and r > 0.

Hence the proof of Theorem 8.6 is complete. �

Theorem 8.7 Let A,B ∈ B++(H) be positive invertible operators with Sp(B) ⊆ [m,M]
for some scalars M > m > 0. Then the following assertions are mutually equivalent:

(i) logA ≥ logB.

(ii) S(h, p)Ap ≥ Bp for all p ≥ 0,

where h = M/m and the Specht ratio S(h, p) is defined as (2.73).

Proof. (i) =⇒ (ii). By Theorem 8.6, the chaotic order logA ≥ logB implies

K

(
mr,Mr,

p+ r
r

)
Ap ≥ Bp for all p ≥ 0 and r ≥ 0.

Letting r → 0, we have S(h, p)Ap ≥ Bp for all p > 0 since K
(
mr,Mr, p+r

r

)→ S(h, p) as
r → 0 by Theorem 2.56.

(ii) =⇒ (i). By taking logarithm of both sides of (ii), we have

log
(
S(h, p)

1
p A
)
≥ logB for all p > 0.

Then letting p→ 0, we have logA≥ logB since S(h, p)
1
p → 1 as p→ 0 by (v) of Lemma 2.47.

Hence the proof of Theorem 8.7 is complete. �
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Remark 8.1 Theorem 8.7 gives a more precise sufficient condition for the chaotic order
than Theorem 8.5 and Theorem 8.6 since

(Mp +mp)2

4Mpmp = K(mp,Mp,2) = K

(
mp,Mp,

p+ p
p

)
≥ S(h, p) for all p > 0

and

hp =
(

M
m

)p

≥ K

(
mr,Mr,

p+ r
r

)
≥ S(h, p) for all p > 0 and r > 0.

Using a generalized Furuta inequality, we have the following results on the chaotic
order and the operator one.

Theorem 8.8 Let A,B ∈ B++(H) be positive invertible operators with Sp(A) ⊆ [m,M]
for some scalars M > m > 0. Then the following assertions are mutually equivalent.

(i) logA ≥ logB.

(ii) For each α ∈ [0,1], p ≥ 0 and u ≥ 0,

(M(p+αu)s +m(p+αu)s)2

4M(p+αu)sm(p+αu)s A(p+αu)s ≥
(
A

αu
2 BpA

αu
2

)s

for all s ≥ 1 and (p+ αu)s≥ (1−α)u.

(iii) For each α ∈ [0,1], p ≥ u ≥ 0,

(M(p+αu)s +m(p+αu)s)2

4M(p+αu)sm(p+αu)s A(p+αu)s ≥
(
A

αu
2 BpA

αu
2

)s

for all s ≥ 1.

(iv)
(Mp +mp)2

4Mpmp Ap ≥ Bp for all p ≥ 0.

Proof. (i) =⇒ (ii). For each p ≥ 0 and u ≥ 0, put A1 = Au and B1 =
(
A

u
2 BpA

u
2

) u
p+u

in (ii) of Theorem 7.7. Then we have A1 ≥ B1 ≥ 0. By the generalized Furuta inequality,
it follows that for each t ∈ [0,1]

A
(p1−t)s+r

q
1 ≥

{
A

r
2
1

(
A
− t

2
1 Bp1

1 A
− t

2
1

)s
A
− r

2
1

} 1
q

for all s ≥ 1, p1 ≥ 1, q ≥ 1 and the following conditions

r ≥ t, (8.9)

(1− t + r)q ≥ (p1 − t)s+ r. (8.10)
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Put p1 = p+u
u ≥ 1 in the case u > 0, q = 2, r = (p1 − t)s and also put α = 1− t in (8.9)

and (8.10). Then (8.10) is satisfied, so the only required condition (8.9) is equivalent to the
following

(p+ αu)s ≥ (1−α)u. (8.11)

Therefore, we have for each α ∈ [0,1], p ≥ 0 and u ≥ 0

A(p+αu)s ≥
{

A
(p+αu)s

2

(
A

αu
2 BpA

αu
2

)s
A

(p+αu)s
2

} 1
2

for s ≥ 1 and the condition (8.11). Since M(p+αu)s ≥ A(p+αu)s ≥ m(p+αu)s > 0, it follows
from Theorem 8.2 that

(M(p+αu)s +m(p+αu)s)2

4M(p+αu)sm(p+αu)s A(p+αu)s ≥
(
A

αu
2 BpA

αu
2

)s

for all s ≥ 1 and (p+ αu)s≥ (1−α)u.

(ii) =⇒ (iii). Put p ≥ u ≥ 0 in (ii). Then the required condition (p+ αu)s ≥ (1−α)u
is satisfied, so we have (iii).

(iii) =⇒ (iv). We have only to put u = 0 or α = 0 and s = 1 in (iii).

(iv) =⇒ (i) is shown by Theorem 8.5. �

Theorem 8.9 Let A,B ∈ B+(H) be positive operators with Sp(A) ⊆ [m,M] for some
scalars M > m > 0. Then the following assertions are mutually equivalent.

(i) A ≥ B.

(ii) For each t ∈ [0,1],

(M(p−t)s +m(p−t)s)2

4M(p−t)sm(p−t)s A(p−t)s ≥
(
A− t

2 BpA− t
2

)s

for all p ≥ 1 and s ≥ 1 such that (p− t)s≥ t.

(iii) (
(M(p−1)s +m(p−1)s)2

4M(p−1)sm(p−1)s

) 1
s

Ap ≥ Bp

for all s ≥ 1 and p ≥ 1
s +1.

(iv) (
M
m

)p−1

Ap ≥ Bp for all p ≥ 1.

To prove Theorem 8.9, we need the following lemma.
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Lemma 8.10 If M > m > 0, then

lim
s→+∞

(
(Ms +ms)2

4Msms

) 1
s

=
M
m

.

Proof. Put x = M
m > 1, then it follows from L’Hospital’s theorem that

lim
s→+∞

log(1+ xs)2

s
= lim

s→+∞

2xs logx
1+ xs = logx2.

Therefore we have

lim
s→+∞

(
(Ms +ms)2

4Msms

) 1
s

= lim
s→+∞

(
(1+ xs)2

4xs

) 1
s

= lim
s→+∞

(1+ xs)
2
s

41/sx
=

M
m

�

Proof of Theorem 8.9.
(i) =⇒ (ii). Since A ≥ B ≥ 0 and A > 0, if we put q = 2 in a generalized Furuta

inequality, then for p ≥ 1, s ≥ 1 and t ∈ [0,1]

A
(p−t)s+r

2 ≥
{

A
r
2

(
A− t

2 BpA− t
2

)s
A

r
2

} 1
2

holds under the following conditions (8.12) and (8.13)

r ≥ t (8.12)

2(1− t + r) ≥ (p− t)s+ r. (8.13)

If we moreover put r = (p− t)s, then (8.13) is satisfied and (8.12) is equivalent to the
following

(p− t)s≥ t. (8.14)

Therefore we have for t ∈ (0,1], p ≥ 1 and s ≥ 1

A(p−t)s ≥
{

A
(p−t)s

2

(
A− t

2 BpA− t
2

)s
A

(p−t)s
2

} 1
2

for the condition (8.14). Since M(p−t)s ≥ A(p−t)s ≥ m(p−t)s > 0, the proof is complete by
Theorem 8.2.

(ii) =⇒ (iii). If we put t = 1 in (ii), then we have (iii) by the Löwner-Heinz theorem.
(iii) =⇒ (iv). If we put s → +∞, then we have (iv) by Lemma 8.10.
(iv) =⇒ (i). If we put p = 1, then we have (i). �

By Theorem 8.9, we have the following corollary which is a parallel result with Theo-
rem 8.5.
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Corollary 8.11 Let A,B ∈ B+(H) be positive operators with Sp(A) ⊆ [m,M] for some
scalars M > m > 0. If A ≥ B ≥ 0, then

(Mp−1 +mp−1)2

4Mp−1mp−1 Ap ≥ Bp for all p ≥ 2.

Proof. Put s = 1 in (iii) of Theorem 8.9. �

Let A and B be positive invertible operators on H. We consider an order Aδ ≥ Bδ

for δ ∈ (0,1] which interpolates the operator order A ≥ B and the chaotic order A � B
continuously. The following theorem is easily obtained by Theorem 8.9.

Theorem 8.12 Let A,B ∈ B++(H) be positive invertible operators with Sp(A) ⊆ [m,M]
for some scalars M > m > 0. If Aδ ≥ Bδ for δ ∈ (0,1], then

(
(M(p−δ )s +m(p−δ )s)2

4M(p−δ )sm(p−δ )s

) 1
s

Ap ≥ Bp for all s ≥ 1 and p ≥ ( 1
s +1)δ .

Remark 8.2 Theorem 8.12 interpolates Theorem 8.3 and Theorem 8.4 by means of the
Kantorovich constant. Let A and B be positive invertible operators with Sp(A) ⊆ [m,M]
for some scalars M > m > 0. Then the following assertions holds.

(i) A ≥ B implies
(

M
m

)p−1
Ap ≥ Bp for all p ≥ 1.

(ii) Aδ ≥ Bδ implies
(

(M(p−δ )s+m(p−δ )s)2

4M(p−δ )sm(p−δ )s

) 1
s
Ap ≥ Bp

for all s ≥ 1 and p ≥ ( 1
s +1)δ .

(iii) A � B implies
(

M
m

)p
Ap ≥ Bp for all p ≥ 0.

It follows that the Kantorovich constant of (ii) interpolates the scalar of (i) and (iii)
continuously. In fact, if we put δ = 1 and s → ∞ in (ii), then we have (i), also if we put
δ → 0 and s → ∞ in (ii), then we have (iii).

Moreover, Theorem 8.12 interpolates Theorem 8.5 and Corollary 8.11 by means of the
Kantorovich constant.

(i) A ≥ B implies (Mp−1+mp−1)2

4Mp−1mp−1 Ap ≥ Bp for all p ≥ 2.

(ii) Aδ ≥ Bδ implies
(

(M(p−δ )s+m(p−δ )s)2

4M(p−δ )sm(p−δ )s

) 1
s
Ap ≥ Bp for all s ≥ 1 and p ≥ ( 1

s +1)δ .

(iii) A � B implies (Mp+mp)2
4Mpmp Ap ≥ Bp for all p > 0.

The Kantorovich constant of (ii) interpolates the scalar of (i) and (iii). In fact, if we
put δ = 1 and s = 1 in (ii), then we have (i), also if we put s = 1 and δ → 0 in (ii), then we
have (iii).
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We have the following result on preserving the operator order, which is parallel to
Theorem 8.3.

Theorem 8.13 If A,B ∈ B+(H), Sp(B) ⊆ [m,M], M > m > 0 and A ≥ B > 0, then

Ap +C(m,M, p)1H ≥ Bp, for all p > 1,

where

C(m,M, p) =
mMp −Mmp

M−m

{
K(m,M, p)

1
p−1 −1

}
≥ 0.

Moreover, these extensions are discussed by many authors and a distinction between the
usual order and the chaotic one is clarified in the framework of Kantorovich type inequali-
ties.

8.2 General form preserving the operator order

We show the order preserving operator inequalities under a more general setting, based on
Kantorovich type inequalities for convex functions due to Mond-Pečarić in § 2.4. In this
section, we assume that M > m > 0.

Theorem 8.14 Let A,B ∈ Bh(H) with Sp(B) ⊆ [m,M], f ∈ C ([m,M]) be a convex func-
tion and g ∈ C (U), where U ⊇ [m,M]∪Sp(A). Suppose that either of the following condi-
tions holds: (i) g is increasing convex on U or (ii) g is decreasing concave on U. If A ≥ B,
then for a given α ∈ R+ in the case (i) or α ∈ R− in the case (ii)

αg(A)+ β 1H ≥ f (B) (8.15)

holds for β = maxm≤t≤M
{

μ f t + ν f −αg(t)
}
, where

μ f =
f (M)− f (m)

M−m
and ν f =

M f (m)−mf (M)
M−m

.

Proof. Let x ∈ H be such that (x,x) = 1. Since αg is convex, then it follows from
Theorem 1.2 that

α(g(A)x,x) ≥ αg((Ax,x)).

On the other hand, since f is convex, then it follows from Theorem 2.25 that

αg((Bx,x))+ β ≥ ( f (B)x,x)

for β = maxm≤t≤M{μ f t + ν f −αg(t)}. By the increase of αg we have

αg((Ax,x)) ≥ αg((Bx,x)).

Therefore, combining three inequalities above we have

α(g(A)x,x)+ β ≥ αg((Ax,x))+ β ≥ αg((Bx,x))+ β ≥ ( f (B)x,x).

�
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Remark 8.3 Let the hypothesis of Teorema 8.14 be satisfied. If αg is a strictly convex
differentiable function on [m,M], then by Theorem 2.25 the constant β may be defined as
the unique solution of f ′(t) = μ f /α when f ′(m) < μ f /α < f ′(M), otherwise to is defined
as M or m according to μ f /α ≥ f ′(M) or f ′(m) ≥ μ f /α .

The following theorem is a complementary result to Theorem 8.14:

Theorem 8.15 Let A,B∈Bh(H) with Sp(A)⊆ [m,M], f ∈C ([m,M]) be a concave func-
tion and g∈ C (U), where U ⊇ [m,M]∪Sp(B). Suppose that either of the following condi-
tions holds: (i) g is increasing concave on U or (ii) g is decreasing convex on U. If A≥ B,
then for a given α ∈ R+ in the case (i) or α ∈ R− in the case (ii)

f (A) ≥ αg(B)+ β 1H , (8.16)

holds for β = minm≤t≤M
{

μ f t + ν f −αg(t)
}
.

Remark 8.4 Let the hypothesis of Teorema 8.15 be satisfied. If αg is a strictly concave
differentiable function on [m,M], then the constant β may be defined as the unique solution
of f ′(t) = μ f /α when f ′(M) < μ f /α < f ′(m), otherwise to is defined as M or m according
to μ f /α ≤ f ′(M) or f ′(m) ≤ μ f /α .

If we put α = 1 in Theorems 8.14 and 8.15 we have the following corollary.

Corollary 8.16 Let A,B ∈ Bh(H), Sp(B) ⊆ [m,M] (resp. Sp(A) ⊆ [m,M]). Let f ∈
C ([m,M]) be a convex (resp. concave) function and g ∈ C (U) be an increasing convex
(resp. increasing concave) function, where U ⊇ [m,M]∪Sp(A)∪Sp(B). If A ≥ B, then

g(A)+ β 1H ≥ f (B) (resp. f (A) ≥ g(B)+ β 1H),

holds for

β = max
m≤t≤M

{
μ f t + ν f −g(t)

}
(resp. β = min

m≤t≤M

{
μ f t + ν f −g(t)

}
).

If we choose α such that β = 0 in Theorems 8.14 and 8.15, then we have the following
corollary:

Corollary 8.17 Let A,B ∈ Bh(H), Sp(B) ⊆ [m,M] (resp. Sp(A) ⊆ [m,M]). Let f ∈
C ([m,M]) be a convex (resp. concave) function and g ∈ C (U), where U ⊇ [m,M] ∪
Sp(A)∪Sp(B). Suppose that either of the following conditions holds:
(I) g is increasing convex (resp. concave) on U, g > 0 on [m,M] and f (m) > 0, f (M) > 0,
(II) g is increasing convex (resp. concave) on U, g < 0 on [m,M] and f (m) < 0, f (M) < 0,
(III) g is decreasing concave (resp. convex) onU, g> 0 on [m,M] and f (m) < 0, f (M) < 0,
(IV) g is decreasing concave (resp. convex) on U, g < 0 on [m,M] and f (m) > 0, f (M) >
0.
If A ≥ B, then

α1 g(A) ≥ f (B) (resp. f (A) ≥ α2 g(B))
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holds for

α1 = max
m≤t≤M

{
μ f t + ν f

g(t)

} (
resp. α2 = min

m≤t≤M

{
μ f t + ν f

g(t)

})

in case (I) and (III), or

α1 = min
m≤t≤M

{
μ f t + ν f

g(t)

} (
resp. α2 = max

m≤t≤M

{
μ f t + ν f

g(t)

})

in case (II) and (IV).

Remark 8.5 Let the hypothesis of Corollary 8.17 be satisfied. Suppose that additionally
either of the following conditions holds: (a) g is a strictly convex twice differentiable
function on [m,M] in case (I) or (II) or (b) g is strictly concave two differentiable on [m,M]
in case (III) or (IV), then by Corollary 2.26 α1 and α2 may be defined more precisely as
follows: α1 = α2 =

(
μ f to + ν f

)
/g(to), where to ∈ [m,M] is defined as the unique solution

of μ f g(t) = g′(t)(μ f t +ν f ) if f (M)g′(M)/g(M) > μ f > f (m)g′(m)/g(m), otherwise to is
defined as M or m according to μ f ≥ f (M)g′(M)/g(M) or f (m)g′(m)/g(m) ≥ μ f .

8.3 Form preserving the operator order for convex
function

Applying results in § 8.2, in this section we show function order preserving operator
inequalities.

We recall that if f is a convex function, then it can not be operator monotone. We show
that a convex function preserves the operator order in the following sense:

Theorem 8.18 Let A,B ∈ Bh(H), Sp(B) ⊆ [m,M], f ∈ C (U) be a strictly convex in-
creasing differentiable function, where U ⊇ [m,M]∪ Sp(A). If A ≥ B, then for a given
α ∈ R+

α f (A)+ β1H ≥ f (B),

hold for β = μ f to + ν f − α f (to) and to ∈ [m,M] is defined as the unique solution of
f ′(t) = μ f /α when f ′(m) < μ f /α < f ′(M), otherwise t0 is defined as M or m accord-
ing to f ′(M) ≤ μ f /α or μ f /α ≤ f ′(m).

Proof. If we put g = f in Theorem 8.14 and Remark 8.3, then we have this theorem.�

Though a concave increasing function is not always operator monotone, we have the
following theorem which is a complementary result to Theorem 8.18.
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Theorem 8.19 Let A,B ∈ Bh(H), Sp(A) ⊆ [m,M], f ∈ C (U) be a strictly concave in-
creasing differentiable function, where U ⊇ [m,M]∪ Sp(B). If A ≥ B, then for a given
α ∈ R+

f (A) ≥ α f (B)+ β1H

holds for β = μ f to + ν f − α f (to) and to ∈ [m,M] is defined as the unique solution of
f ′(t) = μ f /α when f ′(M) < μ f /α < f ′(m), otherwise t0 is defined as M or m accord-
ing to f ′(M) ≥ μ f /α or μ f /α ≥ f ′(m).

If we put g ≡ f in Corollaries 8.16 and 8.17 then we have the following two results on
functions preserving the operator order.

Corollary 8.20 Let A,B∈Bh(H), Sp(B)⊆ [m,M] (resp. Sp(A)⊆ [m,M]). Let f ∈C (U)
be a strictly convex (resp. strictly concave) increasing differentiable function, where U ⊇
[m,M]∪Sp(A)∪Sp(B). If A ≥ B, then

f (A)+ β 1H ≥ f (B) (resp. f (A) ≥ f (B)+ β 1H),

where β = μ f to + ν f − f (to) and to ∈ (m,M) is the unique solution of f ′(t) = μ f .

Corollary 8.21 Let A,B ∈ Bh(H), Sp(B) ⊆ [m,M] (resp. Sp(A) ⊆ [m,M]). Let f ∈
C (U) be a convex (resp. concave) increasing function, where U ⊇ [m,M]∪Sp(A)∪Sp(B).
Suppose that either of the following conditions holds: (i) f > 0 on [m,M] or (ii) f < 0 on
[m,M]. If A ≥ B, then

α1 f (A) ≥ f (B) (resp. f (A) ≥ α2 f (B)) ,

where

α1 = max
m≤t≤M

{
μ f t + ν f

f (t)

} (
resp. α2 = min

m≤t≤M

{
μ f t + ν f

f (t)

})
, in case (i)

or

α1 = min
m≤t≤M

{
μ f t + ν f

f (t)

} (
resp. α2 = max

m≤t≤M

{
μ f t + ν f

f (t)

})
, in case (ii).

Moreover, if f is a twice differentiable function on U, then a value of α1,2 may be deter-

mined more precisely as follows: α1,2 = μ f t0+ν f
f (t0)

, where t0 ∈ [m,M] is the unique solution

of μ f f (t) = f ′(t)(μ f t + ν f ).

We show a function order version of Theorem 8.3:

Corollary 8.22 Let A,B ∈ Bh(H), Sp(B) ⊆ [m,M], f ∈ C (U) be a strictly convex in-
creasing twice differentiable function, where U ⊇ [m,M]∪Sp(A)∪Sp(B). Let f > 0 on U.
If A ≥ B, then:

f ′(M)
f ′(m)

f (A) ≥ α f (A) ≥ f (B),

where α =(μ f to+ν f )/ f (to) and to ∈ (m,M) is the unique solution of μ f f (t) = f ′(t)(μ f t+
ν f ).
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Proof. By the assumption of f , we have μ ≤ f ′(M) and 0 < f ′(m) ≤ f ′(to), where
to ∈ (m,M) is such that μ f (to) = f ′(to)( f (m)+ μ(to −m)). Then we have

0 < α =
f (m)+ μ(to−m)

f (to)
=

μ
f ′(to)

≤ f ′(M)
f ′(m)

.

Therefore Corollary 8.21 implies f ′(M)
f ′(m) f (A) ≥ α f (A) ≥ f (B). �

Remark 8.6 If we put f (t) = t p in Corollary 8.22, then we have

f ′(M)
f ′(m)

=
(

M
m

)p−1

.

If we put f (t) = t p for p > 1 in Theorem 8.18, then we have the following corollary.

Corollary 8.23 Let A,B ∈ Bh(H) with Sp(B) ⊆ [m,M]. If A ≥ B, then for a given α > 0

αAp + β1H ≥ Bp for all p > 1,

where

β =

{
α(p−1)

(
1

α p
Mp−mp

M−m

) p
p−1 + Mmp−mMp

M−m if pmp−1 ≤ Mp−mp

α(M−m) ≤ pMp−1,

max{Mp−αMp,mp−αmp} otherwise.

Remark 8.7 We have Theorem 8.13 if we put α = 1 in Corollary 8.23 and Theorem 8.3
if we choose α such that β = 0 in Corollary 8.23. As a matter of fact, if we put β =

α(p− 1)
(

1
α p

Mp−mp

M−m

) p
p−1 + Mmp−mMp

M−m = 0, then we obtain that the constant α coincides

with K(m,M, p) defined as (8.3). Also, since m ≤ p
p−1

mMp−Mmp

M−m ≤ M for M > m > 0,

we have that α satisfies the condition pmp−1 ≤ Mp−mp

α(M−m) ≤ pMp−1. Therefore we have
Theorem 8.3.

If we put f (t) = et in Theorem 8.18, we have the following corollary.

Corollary 8.24 Let A,B∈Bh(H) with Sp(B)⊆ [m,M]. If A≥B, then for a given α ∈R+

αeA + β1H ≥ eB,

holds for

β =

⎧⎪⎪⎨
⎪⎪⎩

eM−em

M−m log eM−em

α(M−m) + (M+1)em−(m+1)eM

M−m if m ≤ log eM−em

α(M−m) ≤ M,

(1−α)eM if M < log eM−em

α(M−m) ,

(1−α)em if log eM−em

α(M−m) < m.
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In particular,
S(eM−m,1)eA ≥ eB

and
eA +L(em,eM) logS(eM−m,1)1H ≥ eB,

where the Specht ratio and the Mond-Shisha difference are as follows:

S(eM−m,1) =
eM − em

M−m
exp

(
(M +1)em− (m+1)eM

eM − em

)

and

L(em,eM) logS(eM−m,1) =
(M +1)em− (m+1)eM

M−m
+

eM − em

M−m
log

(
eM − em

M−m

)
.

8.4 Kantorovich type inequalities under the opera-
tor order

In this section, as applications of our results in § 8.2 on power functions, we show a gen-
eralization of Theorem 8.3, Theorem 8.13 and two variable versions of Kantorovich type
operator inequalities under the operator order.

We start with the following corollary, which follows from Theorem 8.14 if we put
f (t) = t p, p ∈ R\[0,1) and g(t) = tq, q > 1.

Corollary 8.25 Let A,B ∈ B+(H) with Sp(B) ⊆ [m,M]. If A ≥ B > 0, then for a given
α ∈ R+

αAq + β1H ≥ Bp for all p ∈ R\[0,1), q > 1,

where

β =

{
α(q−1)

(
1

αq
Mp−mp

M−m

) q
q−1 + Mmp−mMp

M−m if m <
(

1
αq μt p

) 1
q−1

< M,

max{mp−αmq,Mp −αMq} otherwise.

The following theorem is a two variable version of Theorem 8.3.

Theorem 8.26 Let A,B ∈ B+(H) with Sp(B) ⊆ [m,M]. If A ≥ B > 0, then

Mp−1

mq−1 Aq ≥ K(m,M, p,q)Aq ≥ Bp for all p > 1, q > 1, (8.17)

where
K(m,M, p,q)
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=

⎧⎪⎪⎨
⎪⎪⎩

(q−1)q−1

qq

(Mp −mp)q

(M−m)(mMp−Mmp)q−1 if qmp−1 < Mp−mp

M−m < qMp−1,

mp−q if Mp−mp

M−m ≤ qmp−1,

Mp−q if qMp−1 ≤ Mp−mp

M−m .

(8.18)

In particular,

(Mp −mp)2

4mM(M−m)(Mp−1−mp−1)
A2 ≥ Bp for all p > 1. (8.19)

Remark 8.8 We recall that the constant K(m,M, p,q) is defined as

K(m,M,t p,q) =
mMp−Mmp

(q−1)(M−m)

(
q−1

q
Mp −mp

mMp −Mmp

)q

in (2.20) of § 2.2. However, for the sake of convenience, we define K(m,M, p,q) by (8.18)
above. Because expression (8.18) has arisen no confusion and is simplified.

To prove Theorem 8.26, we need the following lemma.

Lemma 8.27 Let p > 1,q > 1 and h > 1. If q ≤ hp−1
h−1 ≤ qhp−1, then

hp−1 ≥ (q−1)q−1

qq

(hp−1)q

(h−1)(hp−h)q−1 . (8.20)

Proof. Let l(t) = μt + ν , to = q
q−1

−ν
μ and g(t) = tq, where μ = hp−1

h−1 , ν = h−hp

h−1 . Since

p,q,h > 1, then μ ≥ 0 and ν ≤ 0. We see that the condition q≤ hp−1
h−1 ≤ qhp−1 is equivalent

to the condition 1 ≤ to ≤ h and we have

max
1≤to≤h

{
l(t)
g(t)

}
=

μto + ν
tqo

=
(q−1)q−1

qq

(hp−1)q

(h−1)(hp−h)q−1 .

Put l1(t) = μt+ν
t and g1(t) = tq−1. Then l1(t) and g1(t) are increasing and we have l1(h)≥

l1(to) > 0 and g1(to) ≥ g1(1) > 0. Hence we have

hp−1 =
l1(h)
g1(1)

≥ l1(to)
g1(to)

=
μto + ν

to

1

tq−1
o

,

as desired inequality (8.20). �

Proof of Theorem 8.26. We prove (8.17). Put h = M
m > 1. If qmp−1 ≤ Mp−mp

M−m ≤ qMp−1,
then it follows from (8.20) that

Mp−1

mq−1 = mq−php−1 ≥ mq−p (q−1)q−1

qq

(hp−1)q

(h−1)(hp−h)q−1 = K(m,M, p,q).
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Otherwise, we see that Mp−1

mq−1 ≥ mp−1

mq−1 and Mp−1

mq−1 ≥ Mp−1

Mq−1 . Then we have the left hand in-
equality of (8.17). We have the right hand inequality of (8.17) if we choose α such that
β = 0 in Corollary 8.25. The inequality (8.19) follows from (8.17) if we put p = 2 and if
we take into account that

(Mp −mp)2

4mM(M−m)(Mp−1−mp−1)
≥ K(m,M, p,2)

holds for all p > 1. �

Remark 8.9 (i) If we put q = p in Theorem 8.26, then the assumption pmp−1 ≤ Mp−mp

M−m ≤
pMp−1 is automatically satisfied by the convexity of f (t) = t p and then the constant
K(m,M, p, p) coincides with K(m,M, p). Therefore we have Theorem 8.3.

(ii) If we put p = 2 in (8.19) then the constant in it coincides with the Kantorovich

constant (M+m)2
4Mm .

(iii) We remark that the following inequality

(q−1)q−1

qq

(Mp −mp)q

(M−m)(mMp−Mmp)q−1 ≥ K(m,M, p,q)

generally holds for all p > 1 and q > 1.

Constants in the next theorem are considered as two variable versions of the Kan-
torovich constant. The heart of the extension is exactly the Furuta inequality (Theorem
F).

Theorem 8.28 If A ≥ B > 0 with Sp(B) ⊆ [m,M], then

(Mp+q−2−mp+q−2)2

4mq−1Mq−1(Mq−1−mq−1)(Mp−1 −mp−1)
Aq ≥ Bp for all p > 1 and q > 2.

Proof. It follows from the Furuta inequality that for each r > 0

(
B

r
2 AqB

r
2

) 1
2 ≥ Br+1

holds for q > 2 such that q = r + 2. If we put A1 =
(
B

r
2 AqB

r
2

) 1
2

and B1 = Br+1, then

A1 ≥ B1 > 0 and Mr+11H ≥ B1 ≥ mr+11H > 0. Applying (8.19) to A1 and B1 gives(
(M1+r)

p+r
1+r − (m1+r)

p+r
1+r

)2

4m1+rM1+r(M1+r −m1+r)
(
(M1+r)

p−1
1+r − (m1+r)

p−1
1+r

)A2
1 ≥ B

p+r
1+r
1

for all p > 1. Therefore, we have

(Mp+r −mp+r)2

4m1+rM1+r(M1+r −m1+r)(Mp−1−mp−1)
B

r
2 AqB

r
2 ≥ Bp+r
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for all p > 1 and q > 2. Multiplying by B
−r
2 on both sides gives

(Mp+q−2−mp+q−2)2

4mq−1Mq−1(Mq−1−mq−1)(Mp−1−mp−1)
Aq ≥ Bp for all p > 1 and q > 2.

�

Remark 8.10 If we put p = 2 and q = 2 in Theorem 8.28, then it follows that the constant

in Theorem 8.28 coincides with the Kantorovich constant (M+m)2
4Mm .

We show the next theorem as a generalization of Theorem 8.26.

Theorem 8.29 If A ≥ B > 0 and Sp(B) ⊆ [m,M], then

K(mr,Mr,
p−1+ r

r
,
q−1+ r

r
)Aq ≥ Bp for all p > 1, q > 1 and r > 1,

where K(m,M, p,q) is defined as (8.18) in Theorem 8.26.

Proof. By the Furuta inequality, we have that A ≥ B ensures(
B

r
2 AqB

r
2

) 1+r
q+r ≥ B1+r for all q > 1 and r > 0.

If we put A1 =
(
B

r
2 AqB

r
2

) 1+r
q+r

and B1 = B1+r, then A1 ≥ B1 > 0 and M1+r 1H ≥ B1 ≥
m1+r1H > 0. Applying Theorem 8.26 to A1 and B1, we obtain

K(m1+r,M1+r, p1,q1)A
q1
1 ≥ Bp1

1 for all p1 > 1 and q1 > 1.

We put p1 = p+r
1+r > 1 and q1 = q+r

1+r > 1 and have

K

(
m1+r,M1+r,

p+ r
1+ r

,
q+ r
1+ r

)
B

r
2 AqB

r
2 ≥ Bp+r for all p > 1 and q > 1.

Multiplying by B
−r
2 on both sides and replacing r by r−1 give

K

(
mr,Mr,

p−1+ r
r

,
q−1+ r

r

)
Aq ≥ Bp for all p > 1, q > 1 and r > 1.

�

8.5 Chaotic order version

In this section, we show Kantorovich type order preserving operator inequalities associated
with the chaotic order, which are parallel to the operator order versions in § 8.4.

We first show a chaotic order version of Theorem 8.26.
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Theorem 8.30 Let A,B ∈ B++(H) and Sp(B) ⊆ [m,M]. If logA ≥ logB, then

Mp

mq Aq ≥ K(m,M, p+1,q+1)Aq ≥ Bp for all p > 0 and q > 0,

where K(m,M, p,q) is defined as (8.18) in Theorem 8.26.

Proof. If we put r = 1 in Theorem 7.7, then logA ≥ logB ensures

(
B

1
2 AqB

1
2

) 1
q+1 ≥ B for all q > 0.

If we put A1 =
(
B

1
2 AqB

1
2

) 1
q+1

and B1 = B, then A1 ≥ B1 > 0 and M1H ≥ B1 ≥ m1H > 0.

Applying Theorem 8.26 to A1 and B1, we obtain

M(p+1)−1

m(q+1)−1
Aq+1

1 ≥ K(m,M, p+1,q+1)Aq+1
1 ≥ Bp+1

1 for all p > 0 and q > 0.

Multiplying by B
−1
2 on both sides, it follows that

Mp

mq Aq ≥ K(m,M, p+1,q+1)Aq ≥ Bp for all p > 0 and q > 0.

�

Next, we shall show a chaotic order version of Theorem 8.28.

Theorem 8.31 Let A,B ∈ B++(H) with Sp(B) ⊆ [m,M]. If logA ≥ logB, then

(Mp+q−mp+q)2

4mqMq(Mq −mq)(Mp−mp)
Aq ≥ Bp for all p > 0 and q > 0.

Proof. If we put r = p in Theorem 7.7, then logA ≥ logB ensures

(B
q
2 AqB

q
2 )

1
2 ≥ Bq for all q > 0.

If we put A1 = (B
q
2 AqB

q
2 )

1
2 and B1 = Bq, then A1 ≥ B1 > 0 and Mq1H ≥ B1 ≥ mq1H > 0.

Applying (8.19) to A1 and B1, we obtain

(
(Mq)

p+q
q − (mq)

p+q
q

)2

4mqMq(Mq −mq)
(
(Mq)

p
q − (mq)

p
q

)A2
1 ≥ B

p+q
q

1 for all p > 0 and q > 0.

By rearranging this inequality, we have

(Mp+q−mp+q)2

4mqMq(Mq −mq)(Mp −mp)
B

q
2 AqB

q
2 ≥ Bp+q for all p > 0 and q > 0.
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Multiplying by B
−q
2 on both sides, it follows that

(Mp+q −mp+q)2

4mqMq(Mq −mq)(Mp −mp)
Aq ≥ Bp for all p > 0 and q > 0.

�

We show the following result as a generalization of Theorem 8.30.

Theorem 8.32 Let A,B ∈ B++(H) and Sp(B) ⊆ [m,M]. If logA ≥ logB, then

K

(
mr,Mr,

p+ r
r

,
q+ r

r

)
Aq ≥ Bp for all p > 0, q > 0 and r > 0,

where K(m,M, p,q) is defined as (8.18) in Theorem 8.26.

Proof. By Theorem 7.7, logA ≥ logB ensures(
B

r
2 AqB

r
2

) r
q+r ≥ Br for all q > 0 and r > 0.

If we put A1 =
(
B

r
2 AqB

r
2

) r
q+r

and B1 = Br, then A1 ≥ B1 > 0 and Mr1H ≥ B1 ≥mr1H > 0.

Applying Theorem 8.26 to A1 and B1, we obtain

K(mr,Mr, p1,q1)A
q1
1 ≥ Bp1

1 for all p1 > 1 and q1 > 1.

If we put p1 = p+r
r > 1 and q1 = q+r

r > 1, then we have

K

(
mr,Mr,

p+ r
r

,
q+ r

r

)
B

r
2 AqB

r
2 ≥ Bp+r.

Multiplying by B
−r
2 on both sides, it follows that

K

(
mr,Mr,

p+ r
r

,
q+ r

r

)
Aq ≥ Bp for all p > 0, q > 0 and r > 0.

�

The following result is a two variable version of a characterization of the chaotic order
via the Specht ratio by Theorem 8.7.

Theorem 8.33 Let A,B ∈ B++(H) with Sp(B) ⊆ [m,M]. Then logA ≥ logB is equiva-
lent to

S(h, p,q)Aq ≥ Bp for all p > 0 and q > 0

where h = M
m > 1 and

S(h, p,q) =

⎧⎪⎪⎨
⎪⎪⎩

mp−q (hp−1)h
q

hp−1

eq logh if q < hp−1
logh < qhp,

mp−q if hp−1
logh ≤ q,

Mp−q if qhp ≤ hp−1
logh .

(8.21)
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Proof. For given p > 0 and q > 0, suppose that q < hp−1
logh < qhp. Then q+r

r < hp+r−1
hp−1 <

q+r
r hp holds for sufficient small r > 0. It follows from Theorem 8.32 that logA ≥ logB

implies K(mr,Mr, p+r
r , q+r

r )Aq ≥ Bp. Since
(

q
q+r

) 1
r → 1

e1/q and
(

hp+r−1
hp−1

)1/r → h
hp

hp−1 as

r → +0, we have

K

(
mr,Mr,

p+ r
r

,
q+ r

r

)
=

( q
r

) q
r( q+r

r

) q+r
r

(Mp+r −mp+r)
q+r
r

(Mr −mr)(mrMp+r −Mrmp+r)
q
r

=

( q
r

) q
r( q+r

r

) q+r
r

mp−q (hp+r−1)
q+r
r

(hr −1)(hp+r−hr)
q
r

= mp−q

( q
r

) q
r( q+r

r

) q
r
( q+r

r

) (hp+r −1)(hp+r−1)
q
r

(hr −1)hq(hp−1)
q
r

=
mp−q

hq

((
r

q+ r
hp+r−1
hr −1

) 1
q
(

q
q+ r

hp+r −1
hp−1

) 1
r
)q

→ mp−q

hq

((
1

logh
hp−1

q

) 1
q
(

1

e1/q
h

hp
hp−1

))q

= mp−q (hp−1)h
q

hp−1

eq logh
,

as r → +0. Therefore we have

mp−q (hp−1)h
q

hp−1

eq logh
Aq ≥ Bp.

Suppose that hp−1
logh ≤ q. Then hp+r−1

hr−1 ≤ q+r
r holds for sufficient small r > 0 and we have

K
(
mr,Mr, p+r

r , q+r
r

)
= mp−q. Similarly we have K(mr,Mr, p+r

r , q+r
r ) = Mp−q in the case

qhp ≤ hp−1
logh . Therefore we have the desired inequalities by Theorem 8.32.

Conversely, suppose that S(h, p,q)Aq ≥ Bp for all p > 0 and q > 0. If we put q = p,
then we have that p ≤ hp−1

logh ≤ php holds for all p > 0. Therefore the constant S(h, p, p)
coincides with the Specht ratio S(h, p) defined by (2.73). Then it follows from Theorem 8.7
that S(h, p)Ap ≥ Bp for all p > 0 implies logA ≥ logB. �
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8.6 Kantorovich type inequalities via generalized
Furuta inequality

In this section, as an application of both Furuta inequality and the generalized Furuta in-
equality we show a generalization of Kantorovich type order preserving operator inequali-
ties by means of a generalized Kantorovich constant.

Let A,B ∈ B++(H). We consider the class of orders Aδ ≥ Bδ for δ ∈ (0,1], which
interpolates the usual order A ≥ B and the chaotic order A � B continuously.

Theorem 8.34 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0.
Then the following statements are mutually equivalent for each δ ∈ (0,1]:

(i) Aδ ≥ Bδ .

(ii) For each n > 0 and α ∈ [0,1]

K
(
m

(p−δ+αu)s−αu
n ,M

(p−δ+αu)s−αu
n ,n (q−δ+αu)s−αu

(p−δ+αu)s−αu +1,n+1
)

A(q−δ+αu)s

≥
(
A

αu−δ
2 BpA

αu−δ
2

)s

holds for s ≥ 1, p ≥ δ , q ≥ δ and u ≥ δ with (p− δ + αu)s ≥ (α +n)u.

(iii) For each n > 0

K

(
m

(p−δ )s
n ,M

(p−δ )s
n ,n

q− δ
p− δ

+1,n+1

)1
s

Aq ≥ Bp

holds for s ≥ 1, p ≥ δ and q ≥ δ with (p− δ )s ≥ nδ .

(iv) Mp−δ

mq−δ Aq ≥ Bp holds for p ≥ δ and q ≥ δ .

Here the constant K(m,M, p,q) = Mq−pmq−pK(m,M, p,q) where K(m,M, p,q) is de-
fined in (8.18), i.e.,
K(m,M, p,q)

=

⎧⎪⎪⎨
⎪⎪⎩

(q−1)q−1

qq

(Mp −mp)qMq−pmq−p

(M−m)(mMp−Mmp)q−1 if qmp−1 < Mp−mp

M−m < qMp−1,

Mq−p if Mp−mp

M−m ≤ qmp−1,

mq−p if qMp−1 ≤ Mp−mp

M−m .

(8.22)

In order to prove Theorem 8.34, we need the following lemma and theorem. The fol-
lowing lemma shows that Furuta inequality interpolates the operator order and the chaotic
one.

Lemma 8.35 Let A,B∈B++(H). Then the following statements are mutually equivalent
for each δ ∈ [0,1]:
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(i) Aδ ≥ Bδ , where the case δ = 0 means A � B.

(ii) Ap+δ ≥
(
A

p
2 Bp+δ A

p
2

) p+δ
2p+δ

for all p ≥ 0.

(iii) Au+δ ≥
(
A

u
2 Bp+δ A

u
2

) u+δ
p+u+δ

for all p ≥ 0 and u ≥ 0.

Proof. In the case of 0 < δ ≤ 1, Furuta inequality ensures Lemma 8.35. In the case of
δ = 0, Theorem 7.7 implis Lemma 8.35. �

By Theorem 8.26 we obtain the following theorem.

Theorem 8.36 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0. If
A ≥ B > 0, then

Mq−1

mp−1 Ap ≥ K(m,M, p,q)Ap ≥ Bq for all p > 1 and q > 1, (8.23)

where K(m,M, p,q) is defined in (8.22).

Proof. As 0 < A−1 ≤ B−1 and M−11H ≤ A−1 ≤ m−11H , by applying Theorem 8.26 we
have

A−p ≤ (q−1)q−1

qq

(m−p−M−p)q

(m−1−M−1)(M−1m−p−m−1M−p)q−1 B−q

if qM−(p−1) ≤ m−p−m−p

m−1−M−1 ≤ qm−(p−1),

A−p ≤ M−(p−q)B−q if m−p−M−p

m−1−M−1 < qM−(p−1)

and
A−p ≤ m−(p−q)B−q if qm−(p−1) < m−p−M−p

m−1−M−1 .

Then a simple calculation implies

A−p ≤ (q−1)q−1

qq

(Mp −mp)qMq−pmq−p

(M−m)(mMp−Mmp)q−1 B−q = Mq−pmq−pK(m,M, p,q)B−q

if qmp−1 ≤ Mp−mp

M−m ≤ qMp−1,

A−p ≤ Mq−pB−q = Mq−pmq−pmp−qB−q = Mq−pmq−pK(m,M, p,q)B−q

if Mp−mp

M−m < qmp−1 and

A−p ≤ mq−pB−q = Mq−pmq−pMp−qB−q = Mq−pmq−pK(m,M, p,q)B−q

if qMp−1 < Mp−mp

M−m .
We obtain the right hand inequality in (8.23) by taking inverses in both sides of in-

equalities above. As we have from Theorem 8.26 that K(m,M, p,q) ≤ Mp−1

mq−1 , we obtain

Bq ≤ Mq−pmq−pK(m,M, p,q)Ap ≤ Mq−1

mp−1 Ap for all p > 1 and q > 1,

so the proof of theorem is complete. �
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Proof of Theorem 8.34.

(i)=⇒(ii). For given p ≥ δ and u ≥ δ , put A1 = Au and B1 =
(
A

u−δ
2 BpA

u−δ
2

) u
p+u−δ

in

(iii) of Lemma 8.35. Then we have A1 ≥ B1 ≥ 0. By the generalized Furuta inequality, it
follows that for each δ ∈ [0,1],

A
(p1−t)s+r

q1
1 ≥

{
A

r
2
1

(
A
− t

2
1 Bp1

1 A
− t

2
1

)s
A

r
2
1

} 1
q1

(8.24)

holds for all s ≥ 1, p1 ≥ 1, q1 ≥ 1 satisfying the following two conditions

r ≥ t, (8.25)

(1− t + r)q1 ≥ (p1− t)s+ r. (8.26)

For given n > 0, α ∈ [0,1] and s ≥ 1, we put p1 = p+u−δ
u , q1 = n+1 ≥ 1, α = 1− t and

r = (p−δ+αu)s
nu − n+1

n α . Then (8.25) is equivalent to the assumption in (ii)

(p− δ + αu)s≥ (n+ α)u. (8.27)

and (8.26) is satisfied as the equality holds.
Therefore (8.24) implies that

A
(p−δ+αu)s−αu

n ≥
{

A
(p−δ+αu)s−(n+1)αu

2n

(
A

αu−δ
2 BpA

αu−δ
2

)s
A

(p−δ+αu)s−(n+1)αu
2n

} 1
n+1

(8.28)

holds for n > 0, p ≥ δ , α ∈ [0,1] and s ≥ 1 with the condition (8.27). By raising the left

hand side to power n (q−δ+αu)s−αu
(p−δ+αu)s−αu + 1 for some q ≥ δ and the right hand side to power

n+1, it follows from Theorem 8.36 that

K
(
m

(p−δ+αu)s−αu
n ,M

(p−δ+αu)s−αu
n ,n (q−δ+αu)s−αu

(p−δ+αu)s−αu +1,n+1
)

·A(q−δ+αu)s−αu+ (p−δ+αu)s−αu
n

≥ A
(p−δ+αu)s−(n+1)αu

2n

(
A

αu−δ
2 BpA

αu−δ
2

)s
A

(p−δ+αu)s−(n+1)αu
2n . (8.29)

By rearranging (8.29), we have the desired inequality

K
(
m

(p−δ+αu)s−αu
n ,M

(p−δ+αu)s−αu
n ,n (q−δ+αu)s−αu

(p−δ+αu)s−αu +1,n+1
)

A(q−δ+αu)s

≥
(
A

αu−δ
2 BpA

αu−δ
2

)s
,

so that (i) =⇒ (ii) is proved.
(ii) =⇒ (iii). If we put α = 0 and u = δ in (ii), then we obtain (iii).
(iii) =⇒ (iv). If we put x = M

m in (iii), then we have

K
(
m

(p−δ )s
n ,M

(p−δ )s
n ,n q−δ

p−δ +1,n+1
)1

s

=
(

nn

(n+1)n+1 M
(p−q)s (x(q−δ )s+ (p−δ )s

n −1)n+1

(x
(p−δ )s

n −1)(x(q−δ )s+ (p−δ )s
n −x

(p−δ )s
n )n

) 1
s

→ 1 ·Mp−q x(n+1)(q−δ+ p−δ
n )

x
p−δ

n xp−δ xn(q−δ )
= Mp−δ

mq−δ as s → ∞
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if (n+1)m(q−δ )s ≤ M(q−δ )s+(p−δ )s/n−m(q−δ )s+(p−δ )s/n

M(p−δ )s/n−m(p−δ )s/n ≤ (n+1)M(q−δ )s.

But, if M(q−δ )s+(p−δ )s/n−m(q−δ )s+(p−δ )s/n

M(p−δ )s/n−m(p−δ )s/n < (n+1)m(q−δ )s, then

K
(
m

(p−δ )s
n ,M

(p−δ )s
n ,n q−δ

p−δ +1,n+1
)1

s

=

((
M

(p−δ )s
n

)n−n q−δ
p−δ

) 1
s

= Mp−q ≤ Mp−δ

mq−δ .

Similarly, if (n+1)M(q−δ )s < M(q−δ )s+(p−δ )s/n−m(q−δ )s+(p−δ )s/n

M(p−δ )s/n−m(p−δ )s/n , then

K

(
m

(p−δ )s
n ,M

(p−δ )s
n ,n

q− δ
p− δ

+1,n+1

)1
s

= mp−q ≤ Mp−δ

mq−δ .

Hence it follows from (iii) that

Mp−δ

mq−δ Aq ≥ Bp holds for all p ≥ δ and q ≥ δ .

(iv) =⇒ (i). If we put p = q = δ in (iv), then we obtain (i). �

By Theorem 8.34, we obtain the following Kantorovich type order preserving operator
inequalities under the operator order and the chaotic one.

Corollary 8.37 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0.
Then the following statements are mutually equivalent:

(i) A ≥ B.

(ii) For each n > 0 and α ∈ [0,1]

K
(
m

(p−1+αu)s−αu
n ,M

(p−1+αu)s−αu
n ,n (q−1+αu)s−αu

(p−1+αu)s−αu +1,n+1
)

A(q−1+αu)s

≥
(
A

αu−1
2 BpA

αu−1
2

)s

holds for s ≥ 1, p ≥ 1, q ≥ 1 and u ≥ 1 with (p−1+ αu)s≥ (α +n)u.

(iii) For each n > 0

K

(
m

(p−1)s
n ,M

(p−1)s
n ,n

q−1
p−1

+1,n+1

)1
s

Aq ≥ Bp

holds for s ≥ 1, p ≥ 1 and q ≥ 1 with (p−1)s≥ n.

(iv) Mp−1

mq−1 Aq ≥ Bp holds for p ≥ 1 and q ≥ 1,

where K(m,M, p,q) is defined in (8.22).
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Proof. Put δ = 1 in Theorem 8.34. �

Corollary 8.38 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0.
Then the following statements are mutually equivalent:

(i) A � B.

(ii) For each n > 0 and α ∈ [0,1]

K
(
m

(p+αu)s−αu
n ,M

(p+αu)s−αu
n ,n (q−1+αu)s−αu

(p−1+αu)s−αu +1,n+1
)

A(q+αu)s

≥
(
A

αu−1
2 BpA

αu−1
2

)s

holds for s ≥ 1, p ≥ 0, q ≥ 0 and u ≥ 0 with (p+ αu)s≥ (α +n)u.

(iii) For each n > 0

K

(
m

ps
n ,M

ps
n ,n

q
p

+1,n+1

)1
s

Aq ≥ Bp holds for s ≥ 1, p ≥ 0 and q ≥ 0,

where K(m,M, p,q) is defined in (8.22).

Proof. By virtue of Theorem 8.34, if we put δ = 0 in (i), (ii) and (iii) in Theorem 8.34,
then we have (i)⇒ (ii) ⇒ (iii) of Corollary 8.38. If we put p = q and s = 1 in (iii), then

K
(
m

p
n ,M

p
n ,n+1

)
Ap ≥ Bp for all p ≥ 1 and n > 0.

Since

K
(
m

p
n ,M

p
n ,n+1

)
= K

(
m

p
n ,M

p
n ,

p
n + p

p
n

)
�→ S(h, p) as n → ∞,

we have (i) by Theorem 8.7. �

By Theorem 8.34, we have the following parameterized result.

Corollary 8.39 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0.
Then the following statements are mutually equivalent for each δ ∈ (0,1]:

(i) Aδ ≥ Bδ .

(ii) K
(
mr,Mr,1+ q−δ

r ,1+ p−δ
r

)
Aq ≥ Bp for all p ≥ δ , q ≥ δ and r ≥ δ .

Proof. (i) =⇒ (ii). If we put n = p−δ
n and s = 1 in (iii) of Theorem 8.34, then we

obtain (ii) of Corollary 8.39.
(ii) =⇒ (i). It follows from Theorem 8.36 that

K

(
mr,Mr,1+

q− δ
r

,1+
p− δ

r

)
≤ (Mr)

p−δ
r

(mr)
q−δ

r

=
Mp−δ

mq−δ .

Hence we have (i) of Corollary 8.39 by (iv) =⇒ (iii) of Theorem 8.34. �

We obtain the following theorem if we put p = q in Theorem 8.34.
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Theorem 8.40 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0.
Then the following statements are mutually equivalent for each δ ∈ (0,1]:

(i) Aδ ≥ Bδ .

(ii) For each n ∈ N and α ∈ [0,1]

K
(
m

(p−δ+αu)s−αu
n ,M

(p−δ+αu)s−αu
n ,n+1

)
A(p−δ+αu)s ≥

(
A

αu−δ
2 BpA

αu−δ
2

)s

holds for s ≥ 1, p ≥ δ and u ≥ δ with (p− δ + αu)s ≥ (n+ α)u.

(iii) For each n ∈ N

K
(
m

(p−δ )s
n ,M

(p−δ )s
n ,n+1

)1
s
Ap ≥ Bp

holds for s ≥ 1 and p ≥ δ with (p− δ )s ≥ nδ .

We prove that we can not obtain better constant than 1+n in

K
(
m

(p−δ+αu)s−αu
n ,M

(p−δ+αu)s−αu
n ,n+1

)
in Theorem 8.40, i.e. if we replace n+1 with T +R

for some T,R ∈ R, then we obtain that T > 0 and R ≥ 1.

Lemma 8.41 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0. For
each α ∈ [0,1]

K
(
m

(p−δ+αu)s−αu
T ,M

(p−δ+αu)s−αu
T ,T +R

)
A(p−δ+αu)s ≥

(
A

αu−δ
2 BpA

αu−δ
2

)s

holds for T > 0, R ≥ 1, s ≥ 1, p ≥ δ and u ≥ δ with R(p− δ + αu)s ≥ (α +T )u and we
have

K
(
m

(p−δ+αu)s−αu
T ,M

(p−δ+αu)s−αu
T ,T +R

)
≥ K

(
m

(p−δ+αu)s−αu
T ,M

(p−δ+αu)s−αu
T ,T +1

)
.

To prove Lemma 8.41 we need the following proposition. We omit the proof.

Proposition 8.42 (YAMAZAKI-YANAGIDA) Let K(m,M, p) be defined in (8.18). Then

F(p,r,m,M) = K
(
mr,Mr ,

p
r

+1
)

is an increasing function of p, r and M, and also a decreasing function of m for p > 0,
r > 0 and M > m > 0. And the following inequality holds:

(
M
m

)p

≥ K
(
mr,Mr,

p
r

+1
)
≥ 1 for all p > 0, r > 0 and M > m > 0.



244 8 MOND-PEČARIĆ IDEAS IN OPERATOR ORDER

Proof of Lemma 8.41. We have that the inequality (8.24) holds for s ≥ 1, p1 ≥ 1
and q1 ≥ 1 with conditions (8.25) and (8.26). For given T,R ∈ R, α ∈ [0,1] and s ≥ 1,
we put p1 = p+u−δ

u , q1 = T + R ≥ 1 and α = 1− t. As we desire that the power of M

and m in K
(
m

(p−δ+αu)s−αu
T ,M

(p−δ+αu)s−αu
T ,T +R

)
be (p−δ+αu)s−αu

T , we have (p1−t)s+r
u(R+T) =

(p−δ+αu)s−αu
T . It follows that r = R(p−δ+αu)s

Tu − R+T
T α . The condition (8.25) is equivalent

to the assumption in this lemma

R(p− δ + αu)s ≥ (α +T)u (8.30)

and (8.26) is equivalent to

(R−1)
(R+T)

u
(p− δ + αu)s−αu

T
≥ 0. (8.31)

Because (R−1) (R+T)
u

(p−δ+αu)s−αu
T = (R−1)[(p1− t)s+ r] and (p1− t)s+ r ≥ 0 for p1 ≥

1 ≥ t ≥ 0, s ≥ 1 and r ≥ t, then we obtain R ≥ 1 from the condition (8.31). Next, because
(p−δ +αu)s−αu = (p−δ )+αu(s−1)≥ 0 for p ≥ δ , u ≥ δ , α ∈ [0,1] and s≥ 1, then
we obtain T > 0 from the condition (8.31).

Therefore (8.24) implies that

A
(p−δ+αu)s−αu

T ≥
{

A
R(p−δ+αu)s−(R+T )αu

2T

(
A

αu−δ
2 BpA

αu−δ
2

)s
A

R(p−δ+αu)s−(R+T )αu
2T

} 1
T+R

holds for T > 0, R ≥ 1, p ≥ δ , α ∈ [0,1] and s ≥ 1 with the condition (8.30). By raising
each sides to power T +R , it follows from Theorem 8.40 that

K
(
m

(p−δ+αu)s−αu
T ,M

(p−δ+αu)s−αu
T ,T +R

)
A(p−δ+αu)s−αu+R (p−δ+αu)s−αu

T

≥ A
R(p−δ+αu)s−(R+T )αu

2T

(
A

αu−δ
2 BpA

αu−δ
2

)s
A

R(p−δ+αu)s−(R+T )αu
2T . (8.32)

By rearranging (8.32), we have the desired inequality

K
(
m

(p−δ+αu)s−αu
T ,M

(p−δ+αu)s−αu
T ,T +R

)
A(p−δ+αu)s ≥

(
A

αu−δ
2 BpA

αu−δ
2

)s
.

From Proposition 8.42, we have that F(p,r,m,M) =K(mr,Mr, p
r +1) is an increasing func-

tion of p for p > 0, r > 0 and M > m > 0. It follows that K
(
m

(p−δ+αu)s−αu
T ,M

(p−δ+αu)s−αu
T ,T +R

)
is the increasing function of R for R ≥ 1, T > 0, p ≥ δ , u ≥ δ , α ∈ [0,1], δ ∈ [0,1], s ≥ 1
and M > m > 0. Then

K
(
m

(p−δ+αu)s−αu
T ,M

(p−δ+αu)s−αu
T ,T +R

)
≥ K

(
m

(p−δ+αu)s−αu
T ,M

(p−δ+αu)s−αu
T ,T +1

)
.

�

If we put n = 1 in Theorem 8.40, then we obtain the following Kantorovich type in-

equalities, since k(mp,Mp,2) = (mp+Mp)2
4mpMp .
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Corollary 8.43 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0.
Then the following statements are mutually equivalent for each δ ∈ (0,1]:

(i) Aδ ≥ Bδ .

(ii) For each α ∈ [0,1]

(
M(p−δ+αu)s−αu +m(p−δ+αu)s−αu

)2

4m(p−δ+αu)s−αuM(p−δ+αu)s−αu
A(p−δ+αu)s ≥

(
A

αu−δ
2 BpA

αu−δ
2

)s

holds for s ≥ 1, p ≥ δ and u ≥ δ with (p− δ + αu)s ≥ (1+ α)u.

(iii) (
(M(p−δ )s +m(p−δ )s)2

4m(p−δ )sM(p−δ )s

) 1
s

Ap ≥ Bp

holds for s ≥ 1 and p ≥ δ with (p− δ )s ≥ δ .

(iv)
(

M
m

)p−δ
Ap ≥ Bp holds for p ≥ δ .

Corollary 8.43 interpolates the following two corollaries by means of the Kantorovich
constant.

Corollary 8.44 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0.
Then the following statements are mutually equivalent:

(i) A ≥ B.

(ii) For each α ∈ [0,1]

(M(p−1+αu)s−αu +m(p−1+αu)s−αu)2

4m(p−1+αu)s−αuM(p−1+αu)s−αu
A(p−1+αu)s ≥

(
A

αu−1
2 BpA

αu−1
2

)s

holds for s ≥ 1, p ≥ δ and u ≥ δ with (p−1+ αu)s≥ (1+ α)u.

(iii) (
(M(p−1)s +m(p−1)s)2

4m(p−1)sM(p−1)s

) 1
s

Ap ≥ Bp

holds for s ≥ 1 and p ≥ δ with (p−1)s≥ 1.

(iv) (M
m )p−1Ap ≥ Bp holds for p ≥ 1.

Proof. Put δ = 1 in Corollary 8.43. �

Corollary 8.45 Let A,B ∈ B++(H) with Sp(A) ⊆ [m,M] for some scalars M > m > 0.
Then the following statements are mutually equivalent:
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(i) A � B.

(ii) For each α ∈ [0,1]

(M(p+αu)s−αu +m(p+αu)s−αu)2

4m(p+αu)s−αuM(p+αu)s−αu
A(p+αu)s ≥

(
A

αu
2 BpA

αu
2

)s

holds for s ≥ 1, p ≥ 0 and u ≥ 0 with (p+ αu)s≥ (1+ α)u.

(iii)
(

(Mps+mps)2
4mpsMps

) 1
s
Ap ≥ Bp holds for s ≥ 1 and p ≥ 0.

Proof. By virtue of Lemma 8.35 and Corollary 8.43, if we put δ = 0 in (i), (ii) and
(iii) of Corollary 8.43, then we have (i)⇒ (ii) ⇒ (iii) of Corollary 8.45. Also, (iii)⇒(i) is
shown in Theorem 8.8 if we put s = 1. �

8.7 Form reversing the operator order

The object of this section is to pursue further the study of functions reversing the order
of positive operators under a more general setting, which is complementary results to our
previous results given in § 8.2–8.4.

The following theorem is similar to Theorem 8.14 but for the reversing order.

Theorem 8.46 Let A,B ∈ Bh(H) with Sp(A) ⊆ [m,M], f ∈ C ([m,M]) be a convex func-
tion and g ∈ C (U), where U ⊇ [m,M]∪Sp(B). Suppose that either of the following con-
ditions holds: (i) g is is decreasing convex on U or (ii) g is increasing concave on U. If
A ≥ B, then for a given α ∈ R+ in the case (i) or α ∈ R− in the case (ii)

αg(B)+ β 1H ≥ f (A) (8.33)

holds for β = maxm≤t≤M
{

μ f t + ν f −αg(t)
}
, where

μ f =
f (M)− f (m)

M−m
and ν f =

M f (m)−mf (M)
M−m

.

Proof. Proof of Theorem 8.46 is quite similar to the proof of Theorem 8.14 gave in
Section 8.2. �

The following theorem is a complementary result to Theorem 8.46 and similar to The-
orem 8.15, but for the reversing order.

Theorem 8.47 Let A,B ∈ Bh(H), Sp(B) ⊆ [m,M], f ∈ C ([m,M]) be a concave function
and g ∈ C (U), where U ⊇ [m,M]∪Sp(A). Suppose that either of the following conditions
holds: (i) g is decreasing concave on U or (ii) g is increasing convex on U. If A ≥ B, then
for a given α ∈ R+ in the case (i) or α ∈ R− in the case (ii)

f (B) ≥ αg(A)+ β 1H , (8.34)

holds for β = minm≤t≤M
{

μ f t + ν f −αg(t)
}
.
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Remark 8.11 If we put α = 1 in Theorems 8.46 and 8.47, then we have the following:
Let A,B ∈ Bh(H), Sp(A) ⊆ [m,M] (resp. Sp(B) ⊆ [m,M]). Let f ∈ C ([m,M]) be a con-
vex (resp. concave) function and g ∈ C (U) be an decreasing convex (resp. decreasing
concave) function, where U ⊇ [m,M]∪Sp(A)∪Sp(B). If A ≥ B, then

g(B)+ β 1H ≥ f (A) (resp. f (B) ≥ g(A)+ β 1H),

holds for

β = max
m≤t≤M

{
μ f t + ν f −g(t)

}
(resp. β = min

m≤t≤M

{
μ f t + ν f −g(t)

}
).

If we choose α such that β = 0 in Theorems 8.46 and 8.47, then we have the following
corollary:

Corollary 8.48 Let A,B ∈ Bh(H), Sp(A) ⊆ [m,M] (resp. Sp(B) ⊆ [m,M]). Let f ∈
C ([m,M]) be a convex (resp. concave) function and g ∈ C (U), where U ⊇ [m,M] ∪
Sp(A)∪Sp(B). Suppose that either of the following conditions holds:
(I) g is decreasing convex (resp. concave) on U, g > 0 on [m,M] and f (m) > 0, f (M) > 0,
(II) g is decreasing convex (resp. concave)onU, g < 0 on [m,M] and f (m) < 0, f (M) < 0,
(III) g is increasing concave (resp. convex) onU, g > 0 on [m,M] and f (m) < 0, f (M) < 0,
(IV) g is increasing concave (resp. convex) onU, g < 0 on [m,M] and f (m) > 0, f (M) > 0.
If A ≥ B, then

α1 g(B) ≥ f (A) (resp. f (B) ≥ α2 g(A))

holds for

α1 = max
m≤t≤M

{
μ f t + ν f

g(t)

} (
resp. α2 = min

m≤t≤M

{
μ f t + ν f

g(t)

})

in case (I) and (III), or

α1 = min
m≤t≤M

{
μ f t + ν f

g(t)

} (
resp. α2 = max

m≤t≤M

{
μ f t + ν f

g(t)

})

in case (II) and (IV).

Remark 8.12 If we put f ≡ g in Theorems 8.46 and 8.47 and Corollary 8.48 then we
can obtain results similar to Theorems 8.18 and 8.19 and Corollary 8.21, but for reversing
order.

In particular, we have the following corollary, which follows from Theorem 8.46 if we
put f (t) = t p, p ∈ R\[0,1) and g(t) = tq, q < 0.

Corollary 8.49 Let A,B∈B+(H), Sp(A)⊆ [m,M]. If A≥B> 0, then for a given α ∈R+

αBq + β1H ≥ Ap, for all p ∈ R\[0,1), q < 0,

where

β =

{
α(q−1)

(
1

αq μt p

) q
q−1 + νt p if m <

(
1

αq μt p

) 1
q−1

< M,

max{mp−αmq,Mp −αMq} otherwise.
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The following two corollaries follow from Corollary 8.49.

Corollary 8.50 Let A,B ∈ B+(H), Sp(A) ⊆ [m,M]. If A ≥ B > 0, then

K(m,M, p,q)Bq ≥ Ap, for all p < 0, q < 0,

where K(m,M, p,q) is defined in (8.18).

Corollary 8.51 Let A,B∈B+(H) be positive operators on H with Sp(A)⊆ [m1,M1] and
Sp(B)⊆ [m2,M2] for some scalars Mj > mj > 0( j = 1,2). If A≥ B > 0, then the following
inequalities hold

K(m1,M1, p)Bp ≥ Ap,

K(m2,M2, p)Bp ≥ Ap

for all p < −1, where K(m,M, p) is defined by (8.3).

8.8 Notes

Theorem 8.1 and Theorem 8.2 are due to M.Fujii, Izumino, Nakamoto and Seo [59]. Kan-
torovich type inequalities of the operator order are firstly considered by Furuta [80] and
that of the chaotic order by Yamazaki and Yanagida [199]. Proposition 8.42 is due to
[199].

For our exposition we have used [132] and [134].
Further results related to the Kantorovich type inequalities are contained in [92], [175],

[51], [52], [58], [63], [89], [101] and [114].



Bibliography
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[71] T.Furuta, Extensions of Mond-Pečarić generalization of Kantorovich inequality,
manuscript

[72] T.Furuta, Two extensions of Ky Fan generalization and Mond-Pečarić matrix version
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[78] T.Furuta, Extensions of Hölder-McCarthy and Kantorovich inequalities and their ap-
plications, Proc. Japan Acad., Ser.A 73 (1997), 38–41.

[79] T.Furuta, Applications of order preserving operator inequalities to a generalized rel-
ative operator entropy, General Inequalities 7, Birkhäuser, 123 (1997), 65–76.
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[100] G.Hardy, J.E.Littlewood and G.Pólya, Inequalities(2nd. Ed.), Cambridge Univ.
Press, 1951.

[101] M.Hashimoto and T.Yamazaki, Further extensions of characterizations of chaotic
order associated with Kantorovich type inequalities, Sci. Math., 3 (2000), 127–136.

[102] E.Heinz, Beitrage zur Storungstheorie der Spectralzegung, Math. Ann., 123 (1951),
415–438.

[103] P.Henrici, Two remarks on the Kantorovich inequality, Amer. Math. Monthly, 68
(1961), 904–906.

[104] F.Hiai and D.Petz, The proper formula for relative entropy and its asymtotics in
quantum probability, Comm. Math. Phys., 143 (1991), 99–114.

[105] F.Hiai and D.Petz, The Golden-Thompson trace inequality is complemented, Linear
Algebra Appl., 181 (1993), 153–185.

[106] F.Hiai and K.Yanagi, Hilbert spaces and Linear Operators, Makino shoten (in
Japanese), 1995.

[107] R. A. Horn and C. R. Johnson, Matric analysis, Cambridge University Press, 1985.

[108] S.Izumino and R.Nakamoto, Functional orders of positive operators induced from
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[169] J.E.Pečarić, F.Prochan and Y.Tong, Convex functions, partial orderings and statisti-
cal applications, Academic Press, 1992.

[170] G.K.Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc.,
36(1972), 309–310.

[171] V.Ptak, The Kantorovich inequality, Amer. Math. Monthly, 102 (1995), 820–821.

[172] W.Pusz and S.L.Woronowicz, Form convex functions and the WYDL and other in-
equalities, Let. in Math. Phys., 2 (1978), 505–512.

[173] B.C.Rennie, An inequality which includes that of Kantorovich, Amer. Math.
Monthly, 70 (1963), 982.

[174] Y.Seo, Specht’s ratio and complementary inequalities to Golden-Thompson type in-
equalities on the Hadamard product, Linear Algebra Appl., 320 (2000), 15–22.

[175] Y.Seo, A characterization of operator order via grand Furuta inequality, J. Inequal.
Appl., 6 (2001), 473–481.
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