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Preface

Despite of the title, the main motivation for writing this book (and the papers from which
this book has grown) was presenting some aspects of generalizations, refinements, variants
of three famous inequalities (actually four). The first inequality is the Hermite-Hadamard

inequality
1(528) < L [ st 10210

2 “b—a 2 ’

which holds for a convex function f on [a,b] C R. The second inequality is the Ostrowski

inequality
1 b 1 1 a+b\?
d Z —
b—a/a Fodl <13+ 5oy (x 2 )

which holds for a L—Lipschitzian function f on [a,b] C R, and the third one is the Iyengar
inequality

‘f (x) — < (b—a)L,

Loy f(@) +f(b) fb)—f@))*| b-a
‘b—a/a f(x)dx 7 ‘<[l ( )1 y) L,
which also holds for a L—Lipschitzian function f on [a,b] C R.

Generalizations of the Ostrowski inequality are mainly given in Chapter 1, but related
results are scattered throughout the book (especially for the case x = (a+b)/2). Variants of
the Hermite-Hadamard inequality are given for some pairs of quadrature formulae (called
dual formulae) and refinements are given in the sense of the Bullen inequalities for higher
convex functions. The basic Bullen inequality

0< ﬁ/ﬂbf(ndx—f(“;b) <[]0 bia/abﬂx)dx

holds for a convex function f on [a,b] C R.

The book contains generalizations of many classical quadrature formulae such as Simp-
son, dual Simpson, Maclaurin, Gauss, Lobatto, Radau. Standard methods in deducing
these formulae are very different, spanning from Lagrange, Newton interpolation poly-
nomials to orthogonal polynomials such as Legendre, Chebyshev, Jacobi. The specific



feature of this book (regarded nevertheless as a book in numerical integration) is that the
unique method is used. This method is based on the, so called, Euler integral identities
expressing expansion of a function in Bernoulli polynomials proved by V. I. Krylov in [79]
as a generalization of the first and the second Euler-Maclaurin sum formula (for details see
Chapter 1). The Iyengar inequality is the exception. Although related to the Hermite-
Hadamard inequality in the same way as the Ostrowski inequality, Iyengar type inequali-
ties are, it seems, beyond the reach of methods based on the Euler integral identities. This
is the reason why generalizations of the Iyengar inequality are given in the Addendum.

vi
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Chapter

Euler integral identities

1.1 Introduction

Integral Euler identities extend the well known formula for the expansion of an arbitrary
function in Bernoulli polynomials (cf. [79] or Appendix) and were derived in [30]. To
prove them, the following lemma is needed:

Lemma 1.1 Leta,b € R, a < b, x € [a,b] and ¢ : R — R be defined by

o) =5i (3=4).

Then for every continuous function F : [a,b] — R we have

b

FO)do(t) = —— / F(t)di +F(x), for a<x<b
Jla,b) b—ala

and

1
F(t)do(t) = —
oy FOd00) = —5—

b
/ F(t)dt +F(a), for x=a or x=b,
a
with Riemann-Stieltjes integrals on the left hand sides.

Proof. If a < x < b the function ¢ is differentiable on [a,b]\{x} and its derivative is
equal to L, since By (t) = — 1/2. It has a jump of @(x+0) — ¢(x—0) = 1 at x, which

1



2 1 EULER INTEGRAL IDENTITIES

gives the first formula. For x =a or x = b the function ¢ is differentiable on (a,b) and
its derivative is equal to ;—. It has a jump of ¢@(a+0) — @(a) = 1 at the point a, while
o(b)—o(b—0)=0, Wthh gives the second formula. O

Here, as in the rest of the book, we write fol g(t)d(r) to denote the Riemann-Stieltjes

integral with respect to a function ¢ : [0, 1] — R of bounded variation, and fol g(t)dt for the
Riemann integral.

Theorem 1.1 Ler f : [a,b] — R be such that £V is continuous of bounded variation
on [a,b] for some n > 1. Then for every x € |a,b] we have

1 b
7 | f0d = 100~ T+ R, 1y
1 b
— / FO)dt = F(6) = Toor(x) + R2(x) (1.2)
where Ty(x) =0, and for | <m <n
m k 1
S (;:Z) [0 0) - 4@ (13)
k=1 !

Rl(x) = (b na!) /a B (;:;) dFr (),

R == [l (1) s (34 a0,

Proof. Using integration by parts we have

b—a)k- —~ b
R = a0
Rt A T (x_—f>
i BEAROLCA by} (1.4)

For every k > 1 and every x € [a,b) we have

B,’g(%):zz;;(z:“ 1) Bk<z Z):Bk<;:;>. (1.5)

Also, for k > 2 the above formula is valid for every x € [a,b]. The identity (1.4) for k =1

becomes
— b —
R =5 (322 ) 0| -~ [ roasi (=)

If x € [a,b), then using Lemma 1.1 and (1.5) we get

R = 81 (322 ) o) - sl + 5 [ 70— 1o




1.1 INTRODUCTION 3

If x = b, then using Lemma 1.1 we get

Ri(b)

1 b
Bi(O)f(6) = Bi(Df (@) + 5— [ (00— (@)

b
= L)+ A+ | = s

= 1)~ f(@) + o [ s)

= 1)+ [ - s0)

So, for every x € [a,b] we have

1 b
R = Ti(0)+ — [ (00— £, (1.6)
- a
which is just the identity (1.1) for n = 1. Further, for every k > 2

d x—t k x—t
— B - _ B -
dtk<b—a> b—a k*(b—a>’

except for 7 from discrete set x + (b — a)Z C R, since the Bernoulli polynomials satisfy
%Bk(t) = kBy_1(t). Using the above formula and the fact that B} (=) is continuous for
k> 2, we get

_(b—a)k_l (k—1) wf X1
T [a7b]f (0)dBy | »—

e (=5 ) £ Vioar

—a)k2 x—
= (lzk_ i)' /[a‘b] B, (bT;) df(k—2) (t)
:Ri—l(x)~

Using this formula and (1.5), from (1.4) we get the identity

—a)k1 X—a
T (G e @R,

RL(x) =

which holds for k = 2,....n and for every x € [a,b]. So, for n > 2 and for every x € [a,D]
we get

R =3 0=y (‘) D B) - F4 D (@) 4 R,

= k! b—a

which, in combination with (1.6), yields (1.1).
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To obtain the identity (1.2), note that

—a n—1 X—a
Rﬁ(x) = erz(x) o u n!) B (b—a) /[a,b] df(nil)(t)
(b_a)n—l

and apply (1.1). O

1.2 General Euler-Ostrowski formulae

The main results of this section are the general Euler-Ostrowski formulae which generalize
extended Euler identities (1.1) and (1.2), in a sense that the value of the integral is approx-
imated by the values of the function in m equidistant points, instead of by its value in just
one point. The results presented in this section were published in [63].

To derive these formulae, we will need an analogue of Multiplication Theorem, stated
for periodic functions Bj. Multiplication Theorem for Bernoulli polynomials B, states
(cf. [1] or Appendix):

n—lm_l k
By(mt)=m""" Y By(t+—), n>0, m>1 (1.7)
k=0 m

That (1.7) is true for Bj(z) and ¢t € [0,1/m) is obvious. For z € [j/m,(j+ 1)/m),
1<j<m—1:
m—1 k—]
B o) = By~ /m) =3 55 (1 1)
k=0 m
m—1
k
_ n—1 Z * ( _)
=m B (t+ ,
=6 n m
so the statement is true again. Thus, we have

* n—lm_l * k
Bymt)=m""" Y Bi(t+—], n>0, m>1. (1.8)
k=0 m

Interval [0, 1] is used for simplicity and involves no loss in generality.

The following theorem is crucial for our further investigations but is also of indepen-
dent interest. Namely, the remainder is expressed in terms of B} (x —mt).
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Theorem 1.2 Ler f:[0,1] — R be such that F=1 s continuous of bounded variation
on [0,1] for some n > 1. Then, for x € [0,1] and m € N, we have

! 17! k
/Of(t)dt=—2f<x+ ) b [ B mar V),
(1.9)
where
1) =3 20 (1) - 00 o)
= ]l.ml

Proof. From (1.8) we get
B (x—mt) =m""! ZB* (H—k—t>

Multiplying this with df"~1)(r) and integrating over [0,1] produces formula (1.9) after
applying (1.1). ]

Formula (1.9) can easily be rewritten as:

/Olf(l‘)dt = lmzlf <x+k> T-1(x)

1 /I[B,’:(x—mt) — B,(x)]df " V1), (1.10)

n!-m" Jo

with Ty(x) = 0.
We call formulae (1.9) and (1.10) the general Euler-Ostrowski formulae.

Theorem 1.3 Assume (p,q) is a pair of conjugate exponents, that is 1 < p, g < co,
1/p+1/qg=1. Let f:]0,1] — R be such that f") € L,[0,1] for some n > 1. Then,
forx€10,1] andm € N, we have

‘/Olf )i - lmzlf(”k) T()
‘/Olf )i - imzlf(”") T()

<K(n,q) || f™]|, (1.11)

<K*(n,q) || £, (1.12)

where
1

kg = | [ soral

K= | [ B0 - Borar]”

These inequalities are sharp for 1 < p < oo and the best possible for p = 1.
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Proof. Inequalities (1.11) and (1.12) follow immediately after applying Holder’s inequal-
ity to the remainders in formulae (1.9) and (1.10) and using the fact that functions B;(r)
are periodic. To prove that the inequalities are sharp, put

() = sgnBi (x —mt) - |Bi(x—mzt)|'/P7D for 1< p<e and

(1) =sgnBi(x—mt) for p=oco in (1.11),

FU(0) = sgn(By (x— mt) — By(x)) - | By (x — mt) — By(x)| /7Y

for 1 <p <o and

(1) = sgn(Bi(x —mt) — By(x)) for p=eo in (1.12).

For p = 1 it is easy to see that

’/OIB;(x—mt)fW(t)dt < max 1B;(0) |/ [ 0)| e

is the best possible inequality (compare with the proof of Theorem 2.2 in Section 2.3). O

Corollary 1.1 Let f : [0,1] — R be such that f") € L.[0,1]. Let x € [0,1]. If n is odd,
then we have

1 m—1
Lroa (5 o
and forn=1

1 m—1
‘/o £t d[_l 2f<x+k)

while forn >3

1 m—1
‘/Of (1)1 — + Zf(”")w_l(x)
- @

- m*-n!

(4—2""")[Bysi]|
m"-(n+1)!

1 2
i+ (+-3) ] Il 1)

< N, (1.13)

<

1
m

(1.15)

(1= 2bea - B0+ 2 B ()~ B 0] ).

where x| € [0, 1] is such that B, (x1) = B,(x) and x| # x, except when B,_1(x) =0. I[fx=0
orx=1, take x; = 1/2.

If n is even, then we have

1 m—1
S0 (1)di 2f<x+k> T, (x) (1.16)
AL en A4
S o B () = e max 1B (1)
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where B,(x1) =0, and

1 m—1
/Of (di — L Zf(”k)w_l(x)
- .

- m"-n!

(1.17)

(1720411720 B0+ B (1)

Proof. Put p = oo in Theorem 1.3. Inequality (1.13) follows straightforward since it
is known that, for an odd n, Bernoulli polynomials have constant sign on (0,1/2) and on
(1/2,1). (1.14) also follows by direct calculation.

To prove (1.15), assume first that 0 < x < 1/2. For an odd n we have B,(1 —1t)
= —B,(t), so we can rewrite K*(n,1) as

1/2 1/ 2
A IBA(1) |m+/ 1) + Ba(x)| dr.

The second integral has no zeros on (0, 1/2), so we can calculate it easily. The first integral,
however, has two zeros. One is obviously x and the other is x;, where x; € [0,1/2] and
B (x1) = Bu(x). When 1/2 < x < 1, the statement follows similarly.

Next, assume 0 < x < 1/2. Since B,(r) are symmetric about ¢ = 1/2 for an even n, we

can rewrite K*(n, 1) as 2 fo/ |Bn(t) — Bn(x)|dt. As Bernoulli polynomials are monotonous
on (0,1/2) for an even n, inequality (1.17) follows. For 1/2 < x < 1 the statement follows
analogously. Using similar arguments we get (1.16). O

Remark 1.1 Form = 1, formulae (1.9) and (1.10) reduce to (1.1) and (1.2), and thus give
all the results from [30] i.e. the generalizations of Ostrowski’s inequality; especially, (1.14)
produces the classical Ostrowski’s inequality for m = 1.

For m =1 and n = 2, (1.17) gives an improvement of a result obtained in [38]. This
was discussed in detail in [30].

Further, taking m = 1 and n = 3 in (1.15) produces a result obtained in [4]. These
results are therefore a generalization of the results from that paper.

Corollary 1.2 Ler f : [0,1] — R be such that f*) € L,[0,1] and x € [0,1]. Forn =1, we

have
[ s dr—l’"zlf(”k) B9 1) -y < 11, (L18)
A{fth_léff(x+k) W“1(§+P_%D, (1.19)
Foran odd n, n'> 3, we have
[ron St 2 o




8 1 EULER INTEGRAL IDENTITIES

‘/Olf(t)dt—ir?;f (Hk) F T (%) (1.21)

m
L1y 2n!
<t ((1-—2"w<zny1**3"‘”'>’

If n is even, then we have

m m"-n!

! 17! k .
‘/ a5 (5 )+Tn(x>‘s il o, (122)
0 m =0 ’

1 1=l x4k
‘/O f(t)dt — - ;be (7) +Tho1(x) (1.23)
- 1A

- m"-n!

((1=27")|By| + [27"By — Bu(x)|) -

Proof. Put p =1 in Theorem 1.3. Inequalities (1.18) and (1.19) follow by direct calcu-
lation. Using estimations of the maximal value of Bernoulli polynomials (cf. [1]), we get
(1.20), (1.21) and (1.22). Finally, since B,(¢) are symmetric about s = 1 /2 for an even n,
it is enough to consider them on (0,1/2) and there they are monotonous. So the maximal
value of |B,(¢) — B,(x)| is obtained either for 7 = 0 or for 7 = 1 /2. Using formula

max {|Al, B} = = (|A+B|+|A—B]),

N —

(1.23) follows. O

Corollary 1.3 Ler f : [0,1] — R be such that ") € 1,[0,1] and x € [0,1]. Then we have

! Lt (xtk £z ( 1Banl N
‘/0 f(’>d"zk§)f( )+Tn(x)‘§ ((M)!) . (124

m m

1 1=l x4k
‘/0 f(r)dr — . kzzbf (7) + T—1(x) (1.25)
£z ( (n1)? 2\
S m'-n! ((Zn)||B2”|+Bn(x)) )

Proof. Both inequalities follow by direct calculation after taking p = 2 in Theorem 1.3.
O

It is interesting to consider which x € [0, 1] gives the optimal estimation in inequalities
(1.15) and (1.17). In (1.14) it is obvious that x = 1/2 is such point. Differentiating the
function on the right-hand side of (1.17) — this is the case when 7 is even — it is easy to see
that it obtains its minimum for x = 1/4 and x = 3/4 (for n > 2) while its maximal value is
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in x =0 and x =1 (for n > 4). Of course, the minimal value is of greater interest. In that
case, the quadrature formulae take the following form

[ soar g (rw+ar (5) - 10)
[ sar= g (r0)+a7 (3) - 1)

Also, if we take these parameters and put them in (1.10), then add them up and divide by
2, we get a two-point formula where the integral is approximated by values of the function
in x=1/4 and x = 3/4. The error estimation for this formula can be deduced from the
following, more general, estimation. Using triangle inequality, we get

o ——2( (o)~ (55)

+ "22/2 Boi0) i (1) — (o)
(2))!- m21

o 4
< ”,f; L ((—1)"/20 4= 1/2) Ba) + B x >|) .
Therefore, this formula gives the best error estimate for x = 1/4.

On the other hand, inequality (1.15) behaves quite oppositely (this is the case when
n is odd and n > 3). Observe that x| is a decreasing function of x and it is differentiable
on (0,1/2). This is sufficient since the function on the right-hand side of that inequality
(denote it by F(x)) obtains the same value for x and 1 — x. For 0 < x < 1/2, we get

F'(x) = (=)D 01 = 2|x — x1)By_1 (x).

Since F’(x) changes sign from positive to negative when passing through point
o € (0,1/2) such that B,_; (o) = 0, we conclude that F(x) obtains maximal value at o.
Note that ¢ is close to 1/4, but a bit smaller. Minimum is then obtained at the end points of
the interval i.e. for x = 0 and x = 1/2 (the same value is obtained at both of these points).

1.2.1 Trapezoid formula

Choosing x =0 and x = 1 in (1.9) and (1.10) when m = 1, adding those two formulae up
and then dividing the resulting formula by 2, produces the Euler trapezoid formulae - and
all the other results - obtained in [25]. Here, we just state the error estimates for this type
of quadrature formulae. Namely, for p =« and p = 1, we have:

1
‘ [ 10di =310+ 7)) < Crma)- 1770 m=1.2
where

1 1 1
1 1 = — 1 ) = — 2 1 = — 200 = —
CT( ) ) 4 CT( ) ) K CT( ) ) 12 CT( ) ) ]’
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while form =2,3,4

[ 702 @+ £+ 5170~ £ )| < Crtma) 1

where
C(21)—; C(31)—L C(41)—i
ey =18 T T 19 MU T 00
1 1 1
Cr(2,0) = —, Cr(3,0)=——, Cr(4,00)=—.
T(? ) 12 T(? ) 72\/§7 T(7 ) 384

1.2.2 Midpoint formula

Form=1andx = 1/2in (1.9) and (1.10), we get the Euler midpoint formulae derived in
[23] and of course all other results from that paper follow directly. The error estimates for
this type of quadrature formulae, for p =0 and p = 1, are:

! I
[ r0a-5 ()| < Cutmar- 1 m=1.2
where
Cu(l) =1 Cu(lo) =2, Cu@1)=— Cy(2.0)= 1+
M ) _47 M ) _27 M ) _247 M ) -
while form =2,3,4

1
[ 101 (5) - 510 -7 01| < Culma)- 177,

where
) = — 1) = - Cu(d,1) = —
Me =g s MY T 19y MM YT 5607
1 1 1



Chapter

Euler two-point formulae

2.1 Introduction

In this chapter we study, for each real number x € [0, 1/2], the general two-point quadrature
formula

[ = 3 176+ 70 0] + 575, e

with E(f;x) being the remainder. This family of two-point quadrature formulae was con-
sidered by Guessab and Schmeisser in [68] and they established sharp estimates for the
remainder under various regularity conditions. The aim of this chapter is to establish gen-
eral two-point formula (2.1) using identities (1.1) and (1.2) and give various error estimates
for the quadrature rules based on such generalizations. In Section 2 we use the extended
Euler formulae to obtain two new integral identities. We call them the general Euler two-
point formulae. In Section 3, we prove a number of inequalities which give error estimates
for the general Euler two-point formulae for functions whose derivatives are from the
L,-spaces, thus we extend the results from [68] and we generalize the results from pa-
pers [25]-[27], [83] and [84]. These inequalities are generally sharp (in case p = 1 the best
possible). Special attention is devoted to the case where we have some boundary condi-
tions and in some cases we compare our estimates with the Fink’s estimates ([68], [45]).
In Section 4 we give a variant of the inequality proved in the paper [91] and we use those
results to prove some inequalities for the general Euler two-point formula. The general Eu-
ler two-point formulae are used in Section 5 with functions possessing various convexity
and concavity properties to derive inequalities pertinent to numerical integration. In Sec-
tion 6 we generalize estimation of two-point formula by using pre-Griiss inequality and in
Section 7 we give Hermite-Hadamard’s inequalities of Bullen type.

11
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2.2 General Euler two-point formulae

The results from this and next section are published in [98].
For k > 1 and fixed x € [0, 1/2] define the functions G} (r) and F{!(r) as

Gy(t)=Bi(x—t)+B(l1—-x—1),t€R

and F'(t) = G{(t) — B(x), t € R, where

Bi(x) =Br(x) +Br(1—x), x€[0,1/2], k> 1.

Especially, we get By(x) = 0, By(x) = 2x> —2x+1/3, B3(x) = 0. Also, for k > 2 we
have By(x) = G}(0), that is F{(t) = G{(t) — G{(0), k > 2, and F'(t) = G{(t), t € R.
Obviously, G;(r) and F*(¢) are periodic functions of period 1 and continuous for k > 2.

Let £ : [0,1] — R be such that f"~1) exists on [0, 1] for some 1 > 1. We introduce the
following notation for each x € [0,1/2]

1

Dx) = 2 [flx) +f (1 —x)].

Further, we define Ty(x) = 0 and, for | <m < n, x € [0,1/2]

Tm(x) = % [Tm(x) + T (1 _x)] )

where T,,(x) is given by (1.3). It is easy to see that

T = 5 3 2 [0 - Vo)) @2

In the next theorem we establish two formulae which play the key role in this chapter. We
call them the general Euler two-point formulae.

Theorem 2.1 Ler f:]0,1] — R be such that £ =1 s a continuous function of bounded
variation on [0, 1], for some n > 1. Then for each x € [0,1/2]

/Olf(t)dt = D(x) — T, (x) +RL(f) (2.3)

and
/O 1 f(t)dr = D(x) — T, (x) + R2(f), (2.4)

where
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Proof. Putx = x and x = 1 —x in formula (1.1) to get two new formulae. Then multiply
these new formulae by 1/2 and add them up. The result is formula (2.3). Formula (2.4) is
obtained from (1.2) by the same procedure. |

Remark 2.1 If in Theorem 2.1 we choose x = 0,1/2,1/3,1/4 we get Euler trapezoid
[25], Euler midpoint [23], Euler two-point Newton-Cotes [84] and Euler two-point Maclau-
rin formulae respectively.

By direct calculations for each x € [0,1/2], we get

—2t, 0<r<x
Ff)=Gi(t)={ —2t+1, x<t<l—-x, (2.5)
—2t4+2, 1—x<t<1
212 4 2x% — 2x+1/3, 0<t<x
() =< 262 =20+ 2> +1/3, x<t<l—x, (2.6)
2% — 4t +2x* —2x+7/3, 1—-x<t<1
212, 0<r<x
E¥(t) =14 2> —2t+2x, x<t<l—x 2.7

22— 4142, l—x<t<l1
and
—203 4 (—6x> +6x — 1)t, 0<r<x
263 4+ 312+ (=62 — 1)t +3x%, x<t<1l-x
263 4+ 61> 4 (—6x2 +6x — )t
+6x2—6x+3, 1—x<t<1.

F(t) = G3(t) = (2.8)

Now, we will prove some properties of the functions G} (¢) and F*(¢) defined above. The
Bernoulli polynomials are symmetric with respect to 1/2, that is

Bi(1—x)=(—1)*By(x), k>1. (2.9)
AISO, we have Bk(l) = Bk(O) = Bk, k >2, Bl(l) = —BI(O) = 1/2 and Bz.f*1 =0, ] > 2.

Therefore, we get By;_1(x) =0, j > 1 and By ;(x) = 2B,j(x), x € [0,1/2]. Now, we have
F (1) =Gy, (1), j>1,and

F5(1) = G3;(1) — Baj(x) = G5,(1) — 2Baj(x), x€[0,1/2], j> 1. (2.10)

Further, the points 0 and 1 are zeros of F(t) = G{(t) — G;(0), k > 2, that is
F(0) = F(1) =0, k > 1. As we shall see below, 0 and 1 are the only zeros of F3(r) for
j>2 and x € [0,%—%} U {21—\5,%} Next, setting ¢+ = 1/2 in (2.9) we get

By (1/2) = (—1)*Bx(1/2), k > 1, which implies that B;_; (1/2) =0, j > 1. Using the
above formulae, we get F3;_; (1/2) = G3;_(1/2) =0, j > 1. We shall see that 0, 1/2

and 1 are the only zeros of F3; (1) = G5;_;(t), for j > 2 and x € {0,% — L} U [ﬁ, %}

23
Also, note that forx € [0,1/2], j > 1 G5;(1/2) =2B,;(1/2—x) and

5 (1/2) =Gy, (1/2) —Byj(x) =2B2j(1/2 —x) —2By(x). (2.11)
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Lemma 2.1 For k > 2 we have Gi(1 —t) = (—1)*G{(t), 0 <t < land Ff(1 —1)
=(—DfFr@), 0<t < 1.

Proof. As the functions Bj(t) are periodic with period 1 and continuous for & > 2.
Therefore, for k > 2 and 0 <t < 1 we have

Gx(l_t Bk X_l+t)+Bk( x+t>
Bi(x+1)+ By (1 —x+1), 0<r<ux,
= Bk(x+t + By (—x+1), x<t<l1l-ux,
( I+x+1)+Bi(—x+1), 1l —x<t <1,

(—1)k
Bk (1—x—1)+By(x—1), 0<tr<ux,
Bi(1—=x—1)+Bp(l+x—1), x<t<1-—ux,
Bi(2—x—1t)+By(1+x—1), 1 —x<t <1,

= (—1)

which proves the first identity. Further, we have F}'(t) = G{(¢) — G{(0) and (—1)*G}(0)
= G¢(0), since G§j+1(0) =0, so that we have

FE(1=1)=G{ (1 -1) = G{(0) = (=1)" [G{(1) = G}(0)] = (= 1)*F{ (1),
which proves the second identity. O

Note that the identities established in Lemma 2.1 are valid for k = 1, too, except at the
points x, and 1 —x of discontinuity of Fj'(r) = G{(z).

Lemma 2.2 Fork>2andx e [07 I- ﬁ] U [2\/_, 2] the function G, _(t) has no zeros
in the interval (0,1/2). For 0 <t < 1/2 the sign of this function is determined by

(1165 400,52 [0, =5 and (1G5 40> 0.2 |3 07.5].

Proof. For k =2, G5(t) is given by (2.8) and it is easy to see that for each
1
X € [0, 273 \/E}

1
G3(1)<0,0<t< 3
1
and for each x € [W’f}
1
G3(1)>0,0<1< 5

Thus, our assertion is true for k = 2. Now, assume that k > 3. Then2k—1>5and G3,_, (1)
is continuous and at least twice differentiable function. Using (A-2) we get

Gy (1) = —(2k—1)G5; (1)
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and
G 1 (1) = (2k— 1)(2k = 2)GY; (1)

Let us suppose that G5, 5 has no zeros in the interval (O7 7). We know that 0 and % are
zeros of G5, _, (1). Let us suppose that some &, 0 < & < %, is also a zero of G5, _, (). Then
inside each of the intervals (0, ) and (e, §) the derivative G*5,_, (t) must have at least one
zero, say B1,0< By < aand B, a < B < 2 Therefore, the second derivative G5, (1)
must have at least one zero inside the interval (B, ;). Thus, from the assumption that
G5, (t) has a zero inside the interval (0 1), it follows that (2k — 1)(2k —2)G%,_;(t) also
has a zero inside this interval. Thus, G5, _,(¢) can not have a zero inside the interval (07 %) .
To determine the sign of G, _,(t), note that

Gy (x) = Bog—1 (1 —2x).
We have [1, 23.1.14]
1
(—=DfBy1(1) >0,0<1 < oz

which implies for x € [0, 1_ L}

(=D 'Gyy (0) = (=1 Byy (1= 2x) = (—1)*By—1 (2x) > 0
and

(—1)fGy (x) = (—=1)* B 1(1—2x)>0f0rx6[ 7 ;]

Consequently, we have

1 1 1
(-G, 1(£)>0,0<1< S forxe {0,———]

2 2V3
and .
(—DFGy_ (1) >0,0<1 < —forxe [ 7 2]

O

Corollary 2.1 Fork>2andx¢c [0, I- ﬁ] the functions (—1)*F5 (t) and (—1)*G5, (¢)
are strictly increasing on the interval (0,1/2), and strictly decreasing on the interval
(1/2,1). Also, forx € [ﬁ, %} the functions (—1)F "V Fy (1) and (—1)*1 G5, (t) are strictly

increasing on the interval (0,1/2), and strictly decreasing on the interval (1/2,1). Fur-
ther, for k > 2, we have

max [F ()] = 2|Bai (1/2— %) — Bau(x)|

1€[0,1]

and

tg%g’f] |G5(1)| = 2max {[By (x)], |Box (1/2 —x)|}.
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Proof. Using (A-2) we get
kpx ] k ! k-1
(D 0] = [(=D'650)] = 2k(=1) "G5 (0)

and (—1)*1G3,_ (1) >0for0 <t <1/2andx € [ 75—7] by Lemma 2.2. Thus,

(=D*F5 (t) and (—1)¥G3,(t) are strictly increasing on the interval (0,1/2). Also, by
Lemma 2.1, we have F3, (1 —t) = F5i (1), 0 <t <l and G5, (1 —1) = G%, (1), 0 <r < 1,
which implies that (—1)FFy,(¢) and (—1)*G3,(¢) are strictly decreasing on the interval
(1/2,1). The proof of second statement is similar. Further, F3(0) = F3, (1) = 0, which
implies that |F2"k(t)| achieves its maximum at 7 = 1/2, that is

max [F5(0)] = P (1/2)) = 21Bac (1/2 ) ~ ()]

Also

ma [G8(1)] = max{| G5 (0)] 1G5 (1/2)]) = 2max{|Ba ()] 1B (1/2 =9}, 212

which completes the proof. O

Corollary 2.2 Fork>?2,andx € {07% ] [7 %] we have

/|F2k1 (r)]dr = /|sz1 ()] dr = %sz(l/z—x)—sz(x)|.
Also, we have
[ 1 O1a = B3] = 2B 9] amd [ 1G5,0)]r <2 [Bo)] =418

Proof. Using Lemma 2.1 and Lemma 2.2 we get

12
[ 163 sl =2 [ a5 0a

1 2
_2’_2k (Do

= 168 (1/2) = G5,(0)] = 7 Ba(1/2~ )~ Bu(x)].

which proves the first assertion. By Corollary 2.1 and because F3; (0) = F3, (1) = 0, F3 (1)
does not change its sign on the interval (0, 1). Therefore, using (2.10) we get

[ im0l = | [ o

1
:’_m )2Ck+1()| — Byi(x

_ ’ /0 G4 () — Ba ()] dr

= [Bu)]

which proves the second assertion. Finally, we use (2.10) again and the triangle inequality
to obtain the third formula. O
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2.3 Inequalities related to the general Euler
two-point formulae

In this section we use formulae established in Theorem 2.1 to prove a number of inequal-
ities using L, norms for 1 < p < eo. These inequalities are generally sharp (in case p = 1
the best possible). Special attention is devoted to the case where we have some bound-
ary conditions and in some cases we compare our constants with the Fink constants ([68],
[45]).

Theorem 2.2 Assume (p,q) is a pair of conjugate exponents, 1 < p,q < o and
f:00,1] — R is such that f") € L,[0,1] for some n > 1. Then for every x € [0,1/2],
we have

‘/ f(0)dt —D(x)+ T, 1 (x)| < K(n,p,x)-|[F7 , (2.13)

[ s -pe) + 10
K(np) = 3o [/| |th] Knp) = 3o U G2 (¢ |‘1dt}

The constants K(n, p,x) and K*(n, p,x) are sharp for 1 < p < e and the best possible for
p=1

and
<K*(n,p,x) - [ £, (2.14)

where

Proof. Applying the Holder inequality we have

s, EEO7 0w < | [ M e,

Using the above inequality from (2.4) we get estimate (2.13). In the same manner, from
(2.3) we get estimate (2.14). Now, we consider the optimality of K(n, p,x). We shall find

a function f such that
[ Eosal = ([ |th> (fi |pd,>

For 1 < p < oo take f to be such that
1
F0(1) = sgnFy(c) - |Fy (1) 77 (2.15)

where for p = oo we put (") (1) = sgnF>(¢). For constant K*(n, p, x) the proof of sharpness
is analogous. For p = 1 we shall prove that

/ FX(t t)dt

K(n,p,x)- £

< max IF( |/ 1) ()|t (2.16)
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is the best possible inequality. Suppose that |F(¢)| attains its maximum at 7o € (0,1). First,
we assume that F,(19) > 0. For € small enough define fs("_l) () by

0, t<t
n—1
Ve =4 Yo—1), 1€ lo,t0+ €] -
1 t>t+ €

Then, for € small enough

1
| s
0

Now, from inequality (2.16) we have

1 to+€ fo+e |
[ RWa<Ew [ di=Fw).

€ Jy fo

10+€ 1 1 10+€
- / F,f(t)—dt‘ :-/ FX(1)d.
fo

€ Jy

Since,
1 to+E€
lim — F(t)dt = F}(to)
e—0 & Jy,

the statement follows. If F¥(#9) < 0, then we take

1, t<t
A = —Le—r—e), 1€ 1,10 +€]
0, t>1ty+¢€

and the rest of proof is the same as above. Proof of the best possibility of the second
inequality is similar. O

Remark 2.2 Basically we have three types of estimates

=3 </ G |th)%</01|f‘2")(t)|”dt)%7
—m(/ |Gy (1) |df) (/ | )|”a’t>1

[ 10+ Tt

‘/f )dt — D(x) + T (x)

oo ([ 1stomar) ([ 1)

In the following theorem we are interested in sharpness of the above estimates in the
presence of boundary conditions.

‘/f £)dt — D(x) + Tar(x)| <



2.3 INEQUALITIES 19

Theorem 2.3 Assume that (p,q) is a pair of conjugate exponents, 1 < p,q <eoandk € N.
Let f:[0,1] — R be such that f*=D(0) = f*=V(1) fori=1,....k and x € [0,1/2].

If f®X € L,[0,1], we have
yan ,
( / |G3(1) I‘fdr> ( /O |f<2k>(t>|”dr> .@1

‘/fdt

If f+1) € L,]0,1], we have
1

[ a0 < st (165w |dr) (freora)’. e

If fP+2) € 1,0, 1], we have

‘ / fo)d — fz(z,c oy (/ | P2 (1) |dr> (/ Tanat >|”dt) . (2.19)

Inequality (2.17) is sharp for p = 2 and inequalities (2.18) and (2.19) are sharp for
1 < p < oo and best possible for p = 1.

Proof. Inequality (2.17) is sharp since a function f for which we have equality in (2.14)
in case p =2, n = 2k is defined by f(?Y) (1) = G5, (), so we can choose f such that

1

1

Gk Dk )2k 3) )

f(Zk_l)(t) _ (1), f<2k—3)(t) —

and generally

1
Gi_ai i=1,...
(2k+1)(2k+2)...(4k—2i+1) tkoir1 (1), 0 seees

e =

which give f2~1D(0) = f®=1(1) =0, i = 1,...,k. With regard to the sharpness
or the best possibility of inequality (2.18), notice first that approximation jol 1)
~ D(x) — Ty(x) is exact of order 2k + 1. Take any function f which is optimal for in-
equality (2.13)incase n =2k+ 1, 1 < p <oo. Set

2k—1

—|—Zat = —|—a2kt —l—azk,lt —|—...—|—a2t2—|—a1t.

We have

g V() = fPN () + (2k)lagt + (2k — 1) lay

SO
0 =gV (0) = FPD(0) + 2k — 1)laz_,

0= g V(1) = (1) + (2Kk) lag + (2k — 1)laz—y
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which gives ay, a1 Using g?*3) and conditions g(*=3)(0) = 0 = g**~3)(1) we anal-
ogously obtain ay;_,a—3 and so on. So, the function g is also optimal for (2.13) and
satisfies boundary conditions g(* 1) (1) = g®~1(0), i = 1,... k. Inequality (2.19) can be
treated in the same way. g

In the following we calculate the optimal constants in cases p =1, p = and p = 2.

Corollary 2.3 Let f:[0,1] — R be L-Lipschitzian on [0, 1]. Then for each x € [0,1/2]

‘ / F()dt — M L. (2.20)

4

Proof. Using (2.5) for each x € [0,1/2] and applying (2.13) with n =1 and p = o we
get the above inequality. O

Remark 2.3 The inequality (2.20), has been proved by A. Guessab and G. Schmeisser on
interval [a,b] in [68] (see also [34]). They also proved that this inequality is sharp for each
admissible x. Equality is attained exactly in the case of equality in Theorem 2.2 where we

put f'(1) = senFy (1),
Corollary 2.4 Let f : [0,1] — R be such that f’ is L-Lipschitzian on [0, 1]. Then for each

xe[0,1/4]
/1 f(t)dt —D(x)| < [—1 (xz—x—l> +l(1—4x)3/2]L (2.21)
0" - 2 6 6 ’
and for each x € [1/4,1/2]
/f 1)dr — <—- <x2—x+é> L. (2.22)

Proof. Using (2.7) for each x € [0,1/4] and applying (2.13) with n =2 and p = o> we
get the above inequalities. O

Remark 2.4 The inequalities (2.21) and (2.22) have been proved by A. Guessab and G.
Schmeisser on interval [a,b] in [68]. They also proved that these inequalities are sharp for
each admissible x.

Corollary 2.5 Ler f: [0,1] — R be such that f’ is L-Lipschitzian on [0,1]. Then for each
xe [o, 1_ ﬁ}

—12:2)%L,

B3
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11
and for each x € [ﬁ’i}

! By(x) ., / 4 1 32
[ s0a -0+ Z - g < 3 (g ) L

1 1/2 1/2 J- v
/|G§(z)|dz=2/ \G3(1)|dr = 2 _/ G)z“(t)dH—Z/ Gy (1)dr
0 0 0 0

%_\/17\}2}{2 1 1 ¢
2
— 4/0 2 G()di = 4 <—§G’3‘(t)|o 273

for each x € B — ﬁ, ﬁ}

1 Vi1-12:2

/IIG"(t)|dr:4/7_ 22 Gy ()
0 2 H*Xer)H’é :

4 ) 1 (1 VI—1222
BT A AR R A i o
23

and for each x € {ﬁé} we get

6

1 ST 4 :
/ IG5 (1)] dr = _4/ﬁg)§(,)d¢: §G§< _xzﬂ__).
0 0

Therefore, applying (2.14) with n = 2 and p = o> we get the above inequalities. o

Remark 2.5 In Theorem 2.3 it was proved that inequality (2.17) is sharp just for p = 2.
We mention here that comparing the sharp constant from Guessab and Schmeisser in [68]
in case p = oo and our constant, we conclude that inequality (2.17) is not generally sharp.
Namely, our constant for boundary conditions f'(1) = f'(0), n=2andx = 01is 1/(18+/3),
while they have 1/32 (note that the sharpness of inequality (2.17) under conditions f’(1)
= f’(0) implies the sharpness of the same inequality under conditions f'(1) = f'(0) = 0).

Corollary 2.6 Let f:[0,1] — R be such that f" is L-Lipschitzian on [0, 1). Then for each

vefod-g

[ sow—pt+ 2 ) - o)) < (S-T+ e
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1 11
foreachx € [j - m,z}

’/Olf(t)dt —D(x)+ Bzz(x)

PR~ 1\?
< | =4 —=+-(-32+3x—2) |L
[6 8+192+6< A 2) ’

11
foreachx € {Z’ m}

By (x)
2

| [ e+ 23 —f’(O)]‘
X X 1 1 22
< [—€+§—@+%(1—12x) ]L,

L1
and for each x € [m, 5]

[ 7000+ 2 ) - 0y < (—ﬁﬁ—z )L

S—
S
—
N
-
o
~
I
\S)
33
~—~
-~
-
QU
-~
|
|
\®)
3
—
N
—
QU
-~
I
|
\S)
/T\
|
8
—
N
—
S~
=
[N
~_

|
[NSRe
| —|
N
7N
] =
~~
|
o
=~
~—
=
N—
_ 1
Il
| —
=
7N
] =
~__

1 -3
/ FE()|dt = —2 Fg(t)dz+4/
0 0

for each x € H, ﬁ}

1
/0|F3"(t)|dt:—2 oy TR
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1(ﬁ<3_4@<ggg;2ﬁ>+m@ﬂ

1 1 1—vV1—12x2
P A Y e P
2 2 2
and for each x € {ﬁé} we get

/|F3 (0)dr =2 12F3()dt:—%[G4<;>—§4(x)}:—%Ef(%).

Therefore, applying (2.13) with n = 3 and p = oo we get the above inequalities. a

Remark 2.6 Let f:[0,1] — be such that f"~1) is L-Lipschitzian on [0,1] for some
n > 3. Then for each x € {0, é } [2\/—, 2} from Corollary 2.2 we get

2% (% —x) — Bo(x)

|B2k(x)| and K(2k7l>07 )

2

K(2k— l7°o7x) = w B

K*(2k,00,x) = @ (;() | Bog (x)] -

If in the first inequality in Corollary 2.6 we put k = 2 we get the same inequalities as in
1
Corollary 2.6 when x is from intervals [ )3 m} and [ V3 2}

Remark 2.7 If in Corollaries 2.3, 2.4, 2.5, 2.6 and Remark 2.6 we choose x =0,1/2,1/3
we get inequalities related to trapezoid (see [14], [39], and [25]), midpoint (see [15], [40]
and [23]) and two-point Newton-Cotes (see [84]), respectively. For x = 1/4 in Corollaries
2.3,2.4,2.5 and 2.6 we get inequalities related to two-point Maclaurin formulae (see [34]).

Corollary 2.7 Let f: [0,1] — R be continuous of bounded variation on [0,1]. Then for
x€[0,1/2]

Vo (f)- (2.23)

1—|—|4x 1]
4

Proof. From (2.5) we have max, (o 1] |F{'(#)| = max {2x, —2x + 1} = max{A, B}, where
A=2x, B=—2x+1. Also, max{A,B} = 1(A+B+|A—B|), so using this formula apply-
ing (2.13) with n = 1 and p = 1 we get the above inequality. o

Remark 2.8 The inequality (2.23) has been proved by Dragomir in [35].

Corollary 2.8 Let [ :[0,1] — R be such that [’ is continuous of bounded variation on
[0,1]. Then for each x € [0,1/4]

‘ /0 ' H()dr — D)

4x —dx 14 |4x +dx — l|
16

Vo (f) (2.24)
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and for each x € [1/4,1/2]

x2
‘ /0 1 f(t)dr —D(x)| < > VE(). (2.25)

Proof. From (2.7) and for each x € [0,1/4] we have

1
max |F5(¢)| = max { 2x%, —2x+ =
t€[0.1]| 2()] { 2}

and for each x € [1/4,1/2], max,cjo 1) |F5 (1) = 2x%. So using these two formulae and
applying (2.13) with n = 2 and p = 1 we get the inequalities (2.24) and (2.25). O

Corollary 2.9 Ler f:[0,1] — R be such that [’ is continuous of bounded variation on
[0,1]. Then for each x € [0,1/2]

[ r0a-009+ ) - o)) < (#2355 ) B

(3]}

Therefore, applying (2.14) with n =2 and p = 1 we get the above inequality. O

Proof. Using (2.6) for each x € [0, 1/2] we get

max [G5(1)] = max{|Gz<o>|,|Gz<x>|,
1€[0,1]

Remark 2.9 We mention here that comparing the best possible constant from Guessab
and Schmeisser in [68] in case p = 1 and our constant, we conclude that inequality (2.17) is
not generally the best possible. Namely, our constant for boundary conditions
f(1) = f"(0), n=2and x =0 is 1/12, while they have 1/16.

Corollary 2.10 Let f: [0,1] — R be such that " is continuous of bounded variation on
[0,1]. Then for each x € [0,1/4]

Bz(x)
2

[ swa-pe+

F0)-7 0| < 2z (1-120) ()
and for each x € [1/4,1/2]

[ 100+ ) - o) < 5 (< N e,

Proof. Using (2.8) for each x € {07 % — L] we get

max |F5'(t)| = |F-
max |F50)
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1]
F =
tgl[g>;]l 3(0)] maX{

)

F =
tgl[gf]l 3(0)] maX{

"_‘

for each x € {% -5

P

2 23

)

(1 \/1—12x2>
j2) Y-

(D)
(D)

"_‘

for each x € H, 3

P

)

e 1 V1—1242
A

and for each x € {_f %} we get

1
Fi(t)| = |F —x>+x——||.
ES"E' 50 = |F (\/ X2t 6)‘
Therefore, applying (2.13) with n = 3 and p = 1 we get the above inequalities. o

Remark 2.10 Let f: [0, 1] — R be such that f*~1) is a continuous function of bounded
. . 1 1

variation on [0, 1] for some n > 3. Then for each x € [0, 5— m] U [2[’ 2} from Corol-

lary 2.1 we get

1
KQk—1,1,0) =~ P
(2= 110) = 5y treng);l Sic1(0)]
K (2k,1,%) = —— |By (X Bou(x)
, 1, X (2k> 2k 2 2k\X

and K(2k—1,1,x) = a0 maX{|BZk( s

n(-))

If in the first inequality in Corollary 2.10 we put £ = 2 we get the same inequalities as in

Corollary 2.10 when x is from intervals [0, % — ﬁ} and [2\/_, 2}

Remark 2.11 If in Corollaries 2.7, 2.8, 2.9, 2.10 and Remark 2.10 we choose x =0,1/2,
1/3 we get inequalities related to trapezoid (see [14], [39] and [25]), midpoint (see [15],
[40] and [23])) and two-point Newton-Cotes (see [84]), respectively. For x = 1/4 in Corol-
laries 2.7, 2.8, 2.9 and 2.10 we get inequalities related to two-point Maclaurin formulae
(see [35)).

Now, we calculate the optimal constant for p = 2.

Corollary 2.11 Ler f: [0,1] — R be such that ") € L,[0,1] for some n > 1. Then for
each x € [0,1/2], we have

’/f 1)dt — D(x) + T, (x)

( l)n—l 4 12 n
<L [W[Bszan(l—Zx)HWBﬁ(X) 17,

[\
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and

1/2
[anwznu—zx)]} £ .

‘ /O ' H(0)dr— D) + T ()

Proof. Using integration by parts and also using Lemma 1 from [30] we have

/olGﬁz()dt = )nl(n—l—l)n((nn—;;)) n—l{ /G aGi ]

1[2(-1)"!
<§[ 2n)!

_ (_l)n 12&(’1'))' |: 2/ Gzn d[+G2n( )+G2’1(1—2x):|
2
= (1)~ ((2,:)), (B2 + Bon(1 —2x)].

Now,

! x2 ! 2
/OF" /0 a(x)]” dt
= [ [620)-2630)B,x) + Bw) ar = /ze (1)dt + B2(x)

n—1 2( )
(2n)!

= (-1) [Ba, + Bau(1 — 2x)] + 4B (x).

O

Remark 2.12 For n = 2 we have boundary conditions f'(1) = f’(0). For x = 0 our con-
stant from Theorem 2.3 is 1/(12+/3). Guessab and Schmeisser in [68] also have 1/(12+/3)
which confirms the sharpness of our inequality in this case.

Finally, we give the values of optimal constant for n = 1 and arbitrary p from Theorem
2.2.

Remark 2.13 Note that K*(1,p,x) = K(1,p,x), for 1 < p < oo, since Gj(t) = F'(¢).
Also, for 1 < p < e we can easily calculate K(1, p,x). We get

1 [(2x)7F 4 (1 —2x)9t1 ]9

K(1 -
(1,p,x) 3 i1

L 1< p< oo, (2.26)

Remark 2.14 (2.26) has been proved by S.S. Dragomir on interval [a,b] in [34].

Remark 2.15 Ifin Remark 2.13 we chose x =0,1/2,1/3, 1 /4 we get inequality related to
trapezoid (see [25]), midpoint (see [23]), two-point Newton-Cotes (see [84]) and two-point
Maclaurin formulae (see [34]), respectively.

In the following theorem using the formula (2.3) and one technical result from the
recent paper [83] we obtain Griiss type inequalities related to the general Euler two-point
formula (see [83]).
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Theorem 2.4 Suppose that f : [0,1] — R is such that f") € Li[0,1] for some n > 1.
Assume that
m, < (1) <M,, 0<t <1,

for some constants my, and M,,. Then for x € [0,1/2]
‘/ F(0)dr — (0| < Ca(Myy —my) 2.27)

where C, = 4(%!) fol |G (1)]dt.

Remark 2.16 If in Theorem 2.4 we chose x = 0,1/2,1/3 we get inequalities related to
trapezoid, midpoint and two-point Newton-Cotes formulae (see [83]). For x = 1/4 we get
inequalities related to two-point Maclaurin formulae.

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

Theorem 2.5 If f : [0,1] — R is such that f**) is a continuous function on [0,1], for
some k > 2 then there exists a point 1 € [0, 1] such that

Bo) 00 porxe 0. L L[ L L
nyl (M EP? wﬂubﬁv} (228

Proof. We can rewrite R3, (f) for x € {0, 3 ﬁ} as RS, (f) = (_l)kz[(ék)] where

Jo = Jo (=D*EL(s)fPY)(s)ds. From Corollary 2.1 follows that (—1)*F3(s) > 0,
0 <s <1 and the claim follows from the mean value theorem for integrals and

Ro(f) =—

Corollary 2.2. The proof on interval [%, %] is similar. _

Remark 2.17 For k = 2 formulae (2.28) reduces to

By(x) (4

2 ),

respectively, which are formulae proved for x = 0 in [25], for x = 1/2 in [23] and for
x=1/31in[84].
Corollary 2.12 Let f € C[0,1] and A € R be such that 0 < A < 21 and | (1)
< A% fort € [0,1] and k > ko for some ko > 2. Then for x € {O 1 —] U [2\[7 2}
we have

| st = —%w&f eI — ). @)

Proof. From Theorem 2.5 when k > ky we have that
; Bo()l o Bl o o L, (2R o (ANF
R2 < | . p— —_—
IRz (£)] (2k)! A (2k) A 7 (2k)! 2 (27:)21«’1 \2x) >
so, (2.29) follows. O
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2.4 Integration of periodic function and application

on the general Euler two-point formula

In the paper [91] the following lemma has been proved:

Lemma 2.3 Let ¢(x) | 0. Then

- [ pwoar < 50 (0) (2.30)
0

where p(x) =x— [x] — 1.

The aim of this section is to give a variant of this inequality, which involves a periodic
function p, and use those results to prove some inequalities for the general Euler two-point
formula. The results from this section are published in [76].

Theorem 2.6 Letr ¢ : I — R, I C R, be a monotone function, and let p : R — R be a
periodic function with period P such that for some a € R and n € N, [a,a+nP] C I.
Suppose that there exists some xo € (a,a+ P) such that p (xg) =0, p (x) > 0 for all
x € [a,xo) and p (x) <0 for all x € (xo,a+ P]. Suppose also that [*“*F'p (x)dx = 0. If
function @ is increasing on [a,a+ nP], then

a-+nP 1 a-+nP
- [ pwoewdr< S (e@tnP)—p@) [ @iy, @31
a a
and this inequality is sharp. If function @ is decreasing on [a,a+ nP|, then inequality
(2.31) is reversed.

Proof. First we will consider the case of increasing function ¢.
Since function p is periodic with period P, from the conditions on p we can deduce
that for all k € {0, ....n — 1}

a+(k+1)P
/ p(x)dx = 0,
a-+kP
p(xx) = 0, xx=x0+kP
p(x) >0, x€la+kPx)
px) <0, x€ (xp,a+(k+1)P].

Using these properties, we can easily obtain

a+nP n—1 ra+(k+1)P
- [ pwewar==3 [ "
a k=0

n—1 X
-Zlf

) (@(x) — @) dx
a-+kP

(x) (@(xk) — @(a+kP))dx
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a+(k+1)P
= [T b o)~ plat (et DPYax
n—1

Xk

= [(¢(xk)—<p(a+kP))/ p(x)dx

k=0 a+kP

a+(k+1)P
+ (o)~ plat e+ 1)P) [ ploar o

Xk

< (ota+nP)— o) o= [ Ipwar+ T
s (o ¢ ), P P ks

where

a = [ p(x)(platkP) = g(x)dx
a-+kP

a+(k+1)P
~ [ P (9t~ plact (k+ 1P))dx.

Xk
Due to the fact that ¢ is increasing function on I, we can deduce that q; < 0 for all
ke {0,..,n—1}, ie. Y| ar <0. Immediately it follows that the inequality (2.31) is
valid.
In order to prove the sharpness we will define function ¢ : [a,a 4+ nP] — R with

(x) = a+ kP, X € [a+ kP, xy]
PYZVat (k+1)P, x € (xp,a+ (k+1)P)]

for all k € {0,...,n—1}. It is obvious that function ¢ is increasing on [a,a + nP], and for
any function p which fulfils the conditions of this theorem we have:

a+nP n—1 ra+(k+1)P
- [ pwewdr==3 [ pxeax
a k=0 a+kP

_:i; [(a+kP) / j‘kp p()dx+ (a+ (k+1)P) / e p(x)dx]

Xk

n-1ra+(k+1)P n=1rq+(k+1)P
— _(a+kP) Z/ p(x)dx—PY p(x)dx
k=0 a+kP k=0 Xk

pn=l rat(k+1)P
0+~ 2/

1 a+nP
> p)ldx= o= (pla+nP) = o(@) [ p(x)ldx,

kP

and this means that inequality (2.31) is sharp.
If function @ is decreasing on I, the reverse of (2.31) can be obtained in the similar way.
To prove the sharpness, we can simply choose a decreasing function ¢ : [a,a+nP] — R
defined with
(p(x):{a+(k+l)P’ X € |a+kP,xy]
a+kP, x€ (xg,a+(k+1)P]’

for all k € {0,...,n — 1}. This completes the proof.
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Remark 2.18 If we consider inequality (2.31) for a periodic function 7 with period P
such that 7(x) <0 on [a+kP,xp), T(x9) =0 and 7(x) > 0 on (xg,a+ (k+ 1)P], then we
can use inequality (2.31) with function p defined as p(x) = —7(x), forx € R.

Now we shall show how can Theorem 2.6 be used in order to obtain some inequali-
ties for general Euler two-point formula. Let f € C*~!([a,b],R) for some r > 2, and let
y € [a, (a+b)/2]. We have the general Euler two-point formula

/abf(t)dt = _a[f(y)+f(a+b—y)]_TH(y)
—a 2r—1 —a
! %/kﬁ (i_a)f () @32

where x = 5=2. Here we define Ty(y) = T1(y) = 0, and for k > 2

é o), (Z Z) [0 m) - 2 (a)]. (2.33)
Theorem 2.7 Let f : [a,b] — R be such that for some r > 2 derivative f* =Y is an
increasing function on [a,b]. Then for y € [ ah_ b A the following inequality holds
v { s =252 )+ a3+ 1)} @34

< % B, (;_;;3) —BQ,(Z{jZ) (£ ) - 0w,

Also, fory € [ +N‘31,#} we have

o [ ra- "ty s na) 2

o P (357 e (520 [l e e

These two inequalities are sharp.

Proof. We know that function F3,_, is periodic with period P = 1. It can be easily
checked that: F§_,(0) = F5_,(1/2) = F5_, (1) =0, (=1)""F5_ (1) > 0 for
1€(0,1/2), (—1)"'E_, (t) <Ofort € (1/2,1),and also [y F5._, (¢)dt = 0. This means
that if in Theorem 2.6 we choose p (1) = (—1)" ' F_, (1), @ (t) = f@ "V (t(b—a) +a)
and n = 1, we obtain

oy [ ()
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= ) [ B 0 )+
(£ )~ 2 (a) boa /01 B3y (1)) de

2
b—a 1
Bzr (5 —x) —Bzr(x)

.
and if we combine this with (2.32), we can easily obtain (2.35). The proof of the second
statement is similar. O

IN

Remark 2.19 If in (2.35) we let y = a, we obtain an inequality for trapezoid formula:

Cor{ [ a2 @+ o)+ 1)}

a)2r

(2=2") By | (1D (0) — 1 V(@)

If in (2.36) we let y = (a + b)/2, we obtain an inequality for mid-point formula:

i {/abf(t)dt — (b—a)f(a;b) YT (tHz—b)}

1
(b— a)2r 2- 21_2r) 1Bs, | <f(2r—1)(b) _f(2r—1)(a))

and also for y = (2a+b)/3 in inequality (2.36), we get inequality for two-point Newton-
Cotes formula:

1 {/abf(l‘)dt— b;a [f(m;ﬂ;) +f<a—;2b)] T <2a3+b)}
< (b(;rt)l?% (1-3"2)(1-27%)|By] (fmil) (5) =70 (a)> 7

which is an improvement of the Theorem 9 from [84].
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2.5 Hermite-Hadamard and Dragomir-Agarwal
inequalities and convex functions

One of the cornerstones of nonlinear analysis is the Hermite-Hadamard inequality, which
states that if [a,b] (a < b) is a real interval and f : [a,b] — R is a convex function, then

b 1 b b
f(“; ) <5 [ rwar< M (2.36)

Recently, S.S. Dragomir and R.P. Agarwal [36] considered the trapezoid formula for
numerical integration of functions f such that |f’|? is a convex function for some
g > 1. Their approach was based on estimating the difference between the two sides of
the right-hand inequality in (2.36). Improvements of their results were obtained in [97]. In
particular, the following result was established.

Suppose [ : [a,b] — R is differentiable and such that |f’|? is convex on [a, b] for some
q > 1. Then

fl@)+ /(b Lboa [If’(a)qurlf’(b)Iq v

S S

2 b—aL‘ﬂ”m ) 2 (2.37)
Some generalizations to higher-order convexities and applications of these results are given
in [32]. Related results for Euler midpoint, Euler-Simpson, Euler two-point, dual Euler-
Simpson, Euler-Simpson 3 /8 and Euler-Maclaurin formulae were considered in [105] (see
also [33] and [106]). !

In this section we consider some related results using the general Euler two-point for-
mulae and these results are published in [103]. We will use interval [0, 1] for simplicity
and since it involves no loss in generality.

Theorem 2.8 Suppose f:[0,1] — Ris (2r+2)-convex for r > 2. Then for x € [0, % — %]

the inequality

B2l oo (l) < (_1)"{/01f(z)dt—%[f(X)Jrf(l —X)]+Tr—1(f)}

(2r)! 2
_ [Bo)] 20 + 120(1)

- (2 2 (2.38)

'We recall that a function f : [a,b] — IR is said to be n-convex on [a,b] for some n > 0 if for any choice of
n+ 1 points xo, ..., X, from [a,b] we have
[x07 "'7xn]f >0,
where [x, ..., X, ] f is n-th order divided difference of f. If f is n-convex, then 7=2) exists and is convex function
in the ordinary sense. Also, if f' (1) exists, then [ is n-convex if and only if f' () > 0. For more details see for
example [100].

It should be noted that each continuous n-convex function on [a,b] is the uniform limit of a sequence of
the corresponding Bernstein’s polynomials (see for example [100, p. 293]). Bernstein’s polynomials of any
continuous n-convex function are also n-convex functions, so when stating our results for a continuous (2r)-
convex function f without any loss in generality we may assume that f<2’ ) exists and is continuous. Actually, our
results are valid for any continuous (2r)-convex function f.
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1

holds, while for x € , %} we have

|Bor(¥)] (20
G (

3

l)’_l{/Olf(t)dt—%[f(x)+f(l_x)]+Trl(f)}

(2r) (2r)
|B(22rr<)x!>| f (0>;f O} (2.39)

N =
~
IN
—~

If f is (2r+2)-concave, the inequalities are reversed.

Proof. For x € [0, 5 2\/_} from (2.4) and (2.33) we have
! 1
i f(t)dt—i[f(X)Jrf(l—X)]JrTr1(f)}
0

1 1
(1Y (2r) x
= ( 1) Zr /f (t)F3,(t 20201 /f 1)|Fy(t)|dt

@ )-041-1)|F ()| dt. (2.40)

Using the discrete Jensen inequality for the convex function f”), we have

/f2r ).t 1) |BL(1)] de
< /(0) /0 (=00l 1200 [ R0
= B2 ()| (£20) + £ (1)), (2.41)
since [y (1—1) |F5:(¢)|dt = [y t|F5i(t)|dt = L [ |F5.(¢)|dr. So, the second inequality in

(2.38) follows.
By Jensen’s integral inequality we have

/fz' )-0+1-1) [FE ()] dr
. o (oL =0)-04+1- 1) [FE ()] i
> ( [ IFzr(f)ldt)f ( P )
= 2| By (x)[f?") (%) : (2.42)

The first inequality in (2.38) now follows from (2.40).

The proof of inequality (2.39) is similar. |
Remark 2.20 If in Theorem 2.8 we choose x = 0,1/2,1/3, we get generalizations of
Hermite-Hadamard’s inequality for Euler trapezoid, Euler midpoint and Euler two-point
Newton-Cotes formulae respectively (see [32], [33] and [105]).
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Theorem 2.9 Suppose f:[0,1] — Ris n-times differentiable and x € [0, % — %} U [ﬁ, ﬂ
(a) If

q
I convex for some q > 1, then forn =2r—1, r > 2, we have

[ 703760+ 70 -0+ 1)
-1 o) 2| rer-1 ey 71
< % Bo, (%—x)—Bzr(x) [‘fz 1(0)’ —;‘fz 1(1)’ ] . (243)

Ifn=2rr>2, then

1Bay () ‘f2r ‘+‘f(2r) 1)‘q 1/q
f-a)+ 7| < B2 ;
(2.44)
and we also have
e o' 4 | ey 11"
[ 70 =315+ 11 =]+ 70| < 2220 [’f ) ;’f 0
(2.45)

(b) If

is concave, then forn =2r—1, r > 2, we have

'/ Fle)de —3[700) + F(1 )]+E-1(f)’

[32, (% ) Bz,-(xﬂ Al (%) ' (2.46)

[ 10 S 0=+ 1) <
0 r)!

<
- (2r).
Ifn=2r,r>2, then

and we also have

/f )i — 3 7() + 71 - )]+T(f)‘ %

Proof. First, let n = 2r — 1 for some r > 2. Then for convex function |f (2r) |7 using
Holder’s and Jensen’s inequality we have

By (x) - £ (%) ‘ . (48)

[ 1= 315+ 0=+ 7100)

_ﬁfolm, O] D@1 (1=1)-0)dr
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: ﬁ (f rcsota) ™ (] il oo e anof'ar)
= 2(2r—1 (/ [P (0 |dt)l_l/q

/o1 7 [ ’f ey ( +(1—t)‘f(2r71)(0)‘q} dt)l/q

o 1 (2r—1) 4 (! X
(zr_1/W5rl|“) [?Z?Tﬂf W [} el 1]
(2r-1) Va
+2 1)1 ‘f ‘ / (1—1)|F5_ (1 |dt]

() ) [ ()

B, (% —x) — By(x) ‘f(Zr—l)(O)‘fI] /q
1o 4 | per- )"
Bzr(%—X)—Bzr(X) sz 1(0)‘ ;‘J” 1(1)‘] |

On the other hand, if ’ F@r=0 ’ is concave, then

e

(Zr).

2
(2n)!

[ 10 36+ 51147100

< st [ 1O

2(21 1! (/1 |Ff,-1(t)|dt> flar1) (fo |75, O] (1 =1)- O+"1)dt>
r— . 0

Jo B3, ()] de
Sl (4wl )

so the inequality (2.43) and (2.46) are proved.
The proofs of the inequalities (2.44), (2.47), (2.45) and (2.48) are similar. O

IN

Remark 2.21 For (2.46) to be satisfied it is enough to suppose that | f(2*~1)] is a concave
function. For if |g|7 is concave na [0, 1] for some g > 1, then for x,y € [0,1] and A € [0,1]

lg(Ax+ (1=2)p)|? = Ag(x) 7+ (1 =) [g()|* = (Alg(x)[+ (1 = A)[g(¥)])?,
therefore |g| is also concave on [0, 1].

Remark 2.22 If in Theorem 2.9 we choose x = 0,1/2,1/3, we get generalizations of
Dragomir-Agarwal inequality for Euler trapezoid, Euler midpoint and Euler two-point
Newton-Cotes formulae respectively (see [32], [33], [105] and [106]).
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The resultant formulae in Theorems 2.8 and 2.9 when r = 2 are of special interest, so
we isolate them as corollaries.

Corollary 2.13 If f: [0,1] — R is 6-convex, then for x € [0, % — ﬁ} we have

1
s [ T2t _—’f ( )
1 1 1 / /
: /0 fO)d =51 @)+ (=] + 35 [7(1) = £10)]
< % x4_2x3+x2_31_0’w_

while for x € [%, %} the inequalities

1 1 1
_ S 2 CON (e
o o2 42 SO’f (2>

2
1
< 2[f< b= [ - 5170 - 710)]
1 1 f<4)(0)+f(4>(1)
< — -2 _.
S g 30’ 2
hold.
If f is 6-concave, the reversed inequalities apply.
Corollary 2.14 Suppose f: [0,1] — R is 4-times differentiable and x € [0,%— %]
L1
U203
q
(a) If ‘f@ is convex for some q > 1, then

12

’f ’ +‘f(3>(1)’q 1/q
i

S+ [f(l)—f’(o)]'

"1

and if ‘f(“) ’q is convex for some q > 1, then

[ 0= 47 =20+ 35 [0 -7 0]
/g

| L[]+ o)
<ﬂx4—2x3+x2—%'[ 2 .
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is concave, then

(b)1f |1

/Olf(t)dt_l[f(x)+f(1_x)]+_
< [” -3 +%]f<3> (%)‘

and if ’ f (4>’ is concave, then

7 (1) —f’<o>]|

[ £0a= 31 )+ 10+ 45 ) - 70|

[x“ R 31—0] @ (%) ’

Note that inequalities in Theorems 2.8 and 2.9 hold for » > 2. Now, we will give some
results of the same type in the case when r = 1.

1
<
— 24

Theorem 2.10 Suppose f : [0,1] — R is 4-convex. Then for x € [0,1/4] the following
inequalities hold

x>+ 6x — :
[ 6. 42—46 1+é(l 4 )3/2] f”<2> S%[f(x)‘f'f(l_x)]_ f(t)dt
—6x2+6x—1 1 ") +f"(0)
- [ 24 gl )3/2] 2

while for x € [1/4,1/2] we have

% (5)= / i = L1+ (1)

- —6x’46x—1 f(1 ) (0 )
= 24

Proof. It was already shown that for x € [0, 1 /4] we have

6246 2
/ IF3 (1) al J; i +§(l—4x)3/2,

while for x € [1/4,1/2]

—6x>46x—1
[ = =L

So, using identity (2.4) and following the proof of Theorem 2.8, we get above inequalities.
O
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Theorem 2.11 Suppose 1 : [0,1] — R is 2-times differentiable.
(a) If|f'|? is convex for some q > 1, then for x € [0,1/2] we have

’/ /) df——[f( )+ f(1— )]‘ 82 _jx+1 [|f’(0)|‘“2r|f’(1)|q]1/q.

If|f"14 is convex for some ¢ > 1 and x € [0,1/4], then

[ 70 3 1700-+701 )
0

—6x2—|—6x—1 1 32 |f//(0)|q+|fll(l)|q 1/q
g ] g

while for x € [1/4,1/2] we have

—6x2+6)€—1 |f”(0)|q+|f”(l)|q 1/q
24 2 '

[ 70 31700+ 700 -] <
0

(b) If || is concave for some q > 1, then for x € |0,1/2] we have

(1
/ <z>|'
< {—6x2+6x—1

Lo _ape
2 +6(l 4x) ]

8x2 —dx+1

[ r0a = 31r+ s < =

If|f"] is concave for some q > 1 and x € [0,1/4], then

[ 0= 31+ 1 -0
0

)

while for x € [1/4,1/2] we have

1 1 —6x% +6x— 1 1
r)dt — = 1-x)]| < | —————|f | = )|
[ roa- e+ a1 < [ ()]
Proof. It was already shown that for x € [0,1/ 2]
—4x+1
Fi(
/ | l 2 )
so, using identity (2.4) and following the proof of Theorem 2.12 we get first inequalities in
(a) and (b). The second inequality in (a) and (b) we prove similarly. O

Remark 2.23 Forx =0, x=1/3 and x = 1/2 in above theorems we get the results from
[105] and [106].
For x = 1/4 we get two-point Maclaurin formula and then we have

o 0) 1w ) ()] 2
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If | /|9 is convex for some g > 1, then

/Olf(t)dt—% [f (%) +f(%)] ‘ < é [|f’(0)|‘142- |f/(1)|q] 1/q

and if | f(?)|9 is convex for some ¢ > 1, then

‘/Olf(t)dt—%[f(%)+f(%)]‘gé ‘f@)(o)‘q:’f@)l

If |f'] is concave, then
1
/
()

SEIORIOIE:
()l

and if | f <2)| is concave for some g > 1, then
[ soa-2r(3)+r :
0 2 - 192

In the paper [73] Dah-Yan Hwang gave some new inequalities of this type and he
applied the result to obtain better estimates of the error in the trapezoidal formula.

Here we consider some related results using the general Euler two-point formulae
which are published in [118].

By integration by parts, we have that the following identities:

(i) Ci) = Jo By (3)dy=—Jo 3,y (1= 3) dy =2 [Bar(x) = Boy (5 = )]
(i) Co(x) = o vF3y (3)dy=—fy yF3, (1= %) dy = —2B>, (5 — ),

(iii)) C3(x) = fo (1=y)B5,_ (3) dy=—Jo (1L =)F5,_ (1 - %) dy = 3Ba,(x),
(v) Ca(x) = [y 5 (3)dy = [y B (1— %) dy = 2By (x),

(v) Cs(x) :Sfol VB, (3)dy= Jo yB5, (1 %) dy
= ) [Byyy2(x) — Bzr+2( x)| = Bar(x

4D Colo) =fol(1—y>F§,-(%)dy=f&(l—y)Fz"r(l—%)dy
= Tme (B2 (3 7%) = B ()] = Bar(x),

(vii) c7(x)=f(}G’2‘,.(§)dy=fblG’z‘r( —3)dy=0,

(viii) Cs(x) = fo G5, (3)dy = fy G5, (1=%)dy=— [( (1 —)G5, (%) dy
y)

f (1 - gr( %)dy: m [B2r+2( ) B2)+2 (% )C)}
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Theorem 2.12 Suppose f : [0,1] — R is n-times differentiable and x € [0,%— %]
|
(a) If (] is convex for some q > 1, then forn =2r— 1, r > 2, we have
2 1 1-1/q
[ 50— 510+ 50 =+ )] < g [ (3 -5) ~ Bt
q q 1/q
N et G
: { §C3(x)" . + Ecz(x)’- ! (§> (249
Ifn=2rr>2, then
|Bar(x)|' 14
f—— x)+f(1- )]+T;'l(f)’<T
1/
‘f2r ’ +‘f<2'>(1)‘q 1 (2) 1\ |4 !
: ‘ Co(x 5 + ’ECS(X)‘ ! (5> (2.50)
and we also have
2|Ba, ()|
[ s +fu—ﬂ+nvﬂ<——§3r—- @51)
1\ |4 N\ 1Y
sa|(Jrof 2l (3)] + o))
8 2
(b) If m | is concave, then forn =2r—1, r > 2, we have
[ s +fu—ﬂ+nlvﬁ 252
Logr _ (2r1)< G2 (%) )‘ |G ) + 3G ()|
<@m2WWl o) T e '
Ifn=2rr>2, then
|Ca(x)]
[ sy +f0—-ﬂ+ﬂ;ﬂﬁ‘§4@”!
N pen (1G5 ()] )‘ |Co(x) + 3Cs5(x)| )53
l ()| (e | 259

Proof. First, let n = 2r — 1 for some r > 2. Then by Holder inequality

[ 70— 5700+ 1004 Ta(1)
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IN

sy, [ O]
m</01|172xr1(1)|dt> o (/ G ‘fz )’ d;)l/q
- - (3 Bz"@‘X) Pl

Now, by the convexity of | f(2"~1) |7 we have

/|F2 i ’fz V()| ar
= [P0 |-|f2 | [ F 0| [
:%/1‘2)6 1 X 21)( _).0+y.%>q

2/ ‘Fz (=5 ((1 y) 14y 1)

1
< 5[ A (l_y)Ferl 5 dy‘-‘f -
1
0-nB(1-3)a -\f@r*”(l)
|- (l) q}
2

On the other hand, if ‘ F&=0 ’q is concave, then

IN

dy

dy

q

()

(2) dy'_ It

+ !

+

! y
YF3, (1 - —) dy
0 2

~ U+ 710+ Ta ()
= m/o B ]| ar
1 1/2 1
= 3T UO B (1)) - ’f@"*”(t)’dhu/m B, (1)]- ’f<2"1)(t)’dt}
Y ((1— )~0+y%>’dy

- 2r11 Ul‘;lx
((1 y)-1+y- )’dy]

+/‘F2 - 1——
e (’fon 1 (3)((1=y)-04y-3 dy')

’fo 5 ( d)”
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2r 1 v 1
B (1-3)d]

so the inequality (2.49) and (2.52) are completely proved.
The proofs of the inequalities (2.50), (2.53) and (2.51) are similar. O

Remark 2.24 If in Theorem 2.12 we chose x = 0,1/2,1/3, we get generalizations of
Dragomir-Agarwal inequality for Euler trapezoid (see [73]) , Euler midpoint and Euler
two-point Newton-Cotes formulae respectively.

The resultant formulae in Theorem 2.12 when r = 2 are of special interest, so we isolate
it as corollary.

Corollary 2.15 Suppose f :[0,1] — R is 4-times differentiable and x € [O, % — L} U

2V3
L1
]!
(a)lf f(3> ‘q is convex for some q > 1, then
ey — L 1 Lira ’0<12*321H/q
[ 703w+ -0+ 5 1) - O] < gr[ae -3
1/q
‘f ‘ +’f(3> 1 “1 4 x2 7 1 q
_ N B 2 C)N
— 204 a7 — ’ > +’ x+2 240"1‘ (2>
and if f(4> is convex for some q > 1, then
! 1 1 / 1 4 3 2 1
[ 70 S04+ 35 [0 -0 < g |26 427 5

2x°

1 ol s

2
@ (1]
(3)

3x2
A 3_ 2
X +x 3

(b) If |

is concave, then

[ a3+ a0+ 5 - 7o)

4 3,582 23
f(3) %—2)6 +L_m

|—4x3 4322 — § ‘_2 3+ﬁ_%

4 2 7
3 1 ‘—x +5 — w0
2 — —x2+—’ s

<
- 2 16

1
24
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is concave, then

and if | f¥

Avmm—§[>+fu— +3{fm—fwﬂ

1
< ¥
— 48

— 25 +x {

+

—2x* 430 — “x +
f(4) 1
‘ | —2x4 4 43 — 2x2 =]

)|

Now, we will give some results of the same type in the case when r = 1.

Theorem 2.13 Suppose f : [0,1] — R is 2-times differentiable.
(a) If |f'|1 is convex for some q > 1, then for x € [0,1/2] we have

2 1-1/
[ s 100470y < BEEEEI
0
[l 2| LQIEO a1 ()
3 3 2

If |f"9 is convex for some g > 1 and x € [0,1/4], then

—6x24-6x— !
6 Jgrs 1+%(1_4x)3/2’

|

q] 1/q

—1/q

4x 3 522 11
+2x — 2+ 55
|—4x4—|—8x3 4x2 + 15|

1 1
[ 0= 31+ 1 -0 :
2 L 7O+ (W) (1
[ é\ +¢2 T m’f(ﬂ
while for x € [1/4,1/2] we have
1| -6 6x— 1]/
/f dt—— fx)+f(1=x)]| < Z‘f
2 L L)1 + " (W e
-[—x +x—§‘ > 4| =247+ 2x — o f (E)
(b) If|f'| is concave for some q > 1, then for x € [0,1/2] we have

2

4

1 1
S g'—3x2+3x—§‘

Lgf@ﬁ—%U@HﬁU—@]<%{/<

If |f"| is concave for some g > 1 and x € [0,1/2], then

|

N
6

[ ey~ 31769 + 701~

|—2x +2x—5
/!
Byl

X —x+—

Iz |—2x2+2x—%|
|-3x243x— 5| )

q} 1/q

q} 1/q

6

43

Dl
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Proof. Using identities the (2.3) and (2.4) with calculation of C;(x),i = 1,...,6, similar
as in Theorem 2.12, we get the inequalities in (a) and (b). O

Remark 2.25 For x =0 in the above theorem we have the trapezoid formula and for | f”|4
convex function and | f”| concave function we get the results from [73].
If | |7 is convex for some g > 1, then

/ / ./ l/q
‘/1f<t>dr—§[f<o>+f<1>]‘ <3 l'f O +1f (3%) |q+|f<1>|q]
0

@l @)

For x = 1/4 we get two-point Maclaurin formula and then if |f’|? is convex for some
q > 1, then

[roa-31r(3)+s(3)] <3 [7|f/(0)|‘1+34|f’g%) |q+7|f/(l)|q] Vo
0" 2 . <3 :

and if | "7 is convex for some g > 1, then

‘/Olf(t)dz_%{,o(%)if(%)”S% l3|f”(0)|q+l6|f”4(%)|q+3|f//(l)|q]l/q'

If |f'] is concave, then
17 31
! _ ! -
(@) (&)

s3]
G

and if |f”'| is concave for some g > 1, then
For x = 1/3 we get two-point Newton-Cotes formula and then if |f’|? is convex for

froaslo () o ()] =]
some g > 1, then

’/Olf(t)dz—% {f<%>+f<§>ﬂg35_6 llf’(0)|q+7|f/g%)|q+|f,(l)|qr/q

and if | "7 is convex for some g > 1, then

‘/Olf(t)dz_%{,o(%)if(%)”S% [7|f”(0)|q+34|f’1’6(%)|q+7|f//(l)|q]1/q'

and if | 7| is concave, then

[ s 50+ < |
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If || is concave, then

sG]

and if || is concave for some ¢ > 1, then

froa=sr(3) s G)]|=m

o
g

7|+
18
|+
48

45

(%)
&)

For x = 1/2 we get midpoint formula and then if | /|9 is convex for some g > 1, then

2)| 7 4 12

-2 < [0 ot

and if | /|7 is convex for some g > 1, then

<
2)1 7 24 8

[roa-r(5)]<5 l3|f”<0>|q+14|f"(%)|q+3|f"<1>|‘fr/q.

If || is concave, then

/Olf(t)dt—fe)‘éé[

and if | /"] is concave for some g > 1, then

Olf(t)dt—f(%)‘ < 95—6[

(5
f(ﬁ)*

2.6 Estimations of the error for two-point formula

via pre-Gruss inequality

In the paper [116] N. Ujevi¢ used the generalization of pre-Griiss inequality to derive some
better estimations of the error for Simpson’s quadrature rule. In fact, he proved the next as

his main result:

Theorem 2.14 Ifg,h,¥ € L,[0,1] and [, ¥(1)dt = O then we have

|Sw(g,h)| < Sw(g,g)"*Sw(h,n)'/2, (2.54)

where

Sw(g,h) = /0 ()i — /0 e(n)dr /O (Ve - /0 e Wo(r)dt /O e ot

and Wo(t) =¥ (0)/[|¥]2-
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Further, he gave some improvements of the Simpson’s inequality.

Theorem 2.15 Ler I C R be a closed interval and a,b € Intl, a <b. If f:1 — R is
continuous of bounded variation with f' € Ly|a,b), then we have

'bga [f( )+ 4f(a—|—b) ] / Fo)de
=17 ([ rwa) ([ rowma) s

and (1) =1 — 5L Py (1) =¥ (1) /|| ¥|l>-

(b— a)3/2

———Kj, (2.55)

where

In this section, using Theorem 2.14, we will give similar result for Euler two-point
formula and for functions whose derivative of order n, n > 1, is from L,[0, 1] space. We
will use interval [0, 1] because of simplicity and since it involves no loss in generality.

The results from this section are published in [104].

Theorem 2.16 If f: [0,1] — R is such that £ s continuous of bounded variation
function with f") € L,]0,1] then we have

n—1

e

= [IF)13 (/ Al dr) —(/Olf<">(r>‘1’o(r>dt)2. (2.58)

1, te0,1],
\P(t):{—meé,ﬂ

12
' / F(0)dr — D(x) + Ty(x)| < [Bay + Bou(1 —2x)]} K, (257

where
For n even

while for n odd we have

Byy1(3+x) 1

t+2(3n+z() )n+l( 3+x))’ 2
By 2+x 2By (x) 1

Mm@

Y(r) =
1+

Proof. 1t is not difficult to verify that
1
/ Go(t)di =0, (2.59)
0
1
/ W(1)dr =0, (2.60)
0

/0 LG ()W (1)t — 0. (2.61)
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From (2.3), (2.59) and (2.61) it follows that

1 1 1 . .
| 0a =)+ 7i6) = e | aiorwa
I ! /lGﬁ(t)dt/lf(’” (t)dt
- n,/Gx Yot dt/f

- x r(n)
- 2(n|)S (Gm ) (262)

Using (2.62) and (2.54) we get

Olf(t)dt—D(x)+T,,(x) < ——Sw(G,G5)28g(f), fm)1/2, (2.63)

1
2(n!)

We also have (see Section 3 of this chapter)

s, = G- [ G ) — ([ Giorwotnar)

_ n— 12(1’1')
= (1) 0! [Ban + Baa(1 —2x)] (2.64)
and
1 2
sutr ) =i ([ rona) ([ owen) =0 e
0
From (2.63)-(2.65) we easily get (2.57). O

Remark 2.26 Function ¥(¢) can be any function which satisfies conditions fol Y(r)dt =0
and fol Gi(1)¥(r)dt = 0. Because G;(1 —t) = (—1)"G}(¢) (see Section 3 of this chap-
ter), for n even, we can take function ¥(¢) such that ¥(1 —¢) = —W¥(¢). For n odd, we
have to calculate W(z) and with no lost in generality in our theorem we take the form

_ft+a,t€]0,1],
‘{l(t)_{t+b,te (3.1].

Remark 2.27 For n = 1 in Theorem 2.16 we have

‘/Olf(l‘)dt—

171 1/2
)| <5 [§—2x+4x2] K, (2.66)

while
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Also, for n = 2 we have

1
<= T4 K
<3 +

1 24y 4 12
—— - — 2.67
[ 180 3 3 3 ’ ( )

[ s —p
0

while [ 1]
1, reo,d],
\P(I)_{—l7te(%7l].

If in Theorem 2.16 we choose x = 0,1/2,1/3,1/4 we get inequality related to the
trapezoid, the midpoint, the two-point Newton-Cotes and the two-point Maclaurin formula:

Corollary 2.16 If f: [0,1] — R is such that f"~) is continuous of bounded variation
with £ € L5[0,1], then we have

[rwa- o)< [T 8] e e
0 2 UL @ey T ’ ’
where Tp(0) = 0,
T,(0) = L:ﬁj % [f(Zk—l)(l) _f(2k—1)(0)}
and 1 ) 1 5
K== ([ rowa) - ([ o)
For n even

1, relo,1],
vo={ 5103

while for n odd we have

(r) = t+42_:£—1‘},,7 ref0,4],
t+ 750, 1€ (5,1].

Remark 2.28 Forn =1 in Corollary 2.16 we have

Volf(t)dz— %[f(0)+f(1)]’ <55

while

Corollary 2.17 If f: [0,1] — R is such that f"~) is continuous of bounded variation
with f) € 1,0, 1], then we have

‘/01 f(e)de—f (%) + T (%) ‘ < {(_(21’2),_1 324 1/2K7 (2.69)
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where Ty (%) =0,

1 [n/2] (21—21{_ 1)B2k 3 3
n(3)- T S [ -]

and
2

K=l () 1f<”)(t)dt>2 ([ e

‘P(z):{ 1, 1€]0,5],

—-1,te(3,1],

For n even

— DI

while for n odd we have

¥() = t+ﬁ7 te0,1],
1432, 1€ (31].

Remark 2.29 Forn =1 in Corollary 2.17 we have
1 1 K
t)dr — - —_—
| rwa—g (2) ‘ e

_1 1
(i}

=3,

IN

while

Z =

Corollary 2.18 If f : [0,1] — R is such that !
with £ € L,[0,1], then we have

‘/Olf(t)dt—% [f (%) +f(§)] +T, (%)’ < % {(—(21’)1;’!1 (1+312H)an] 1/21(,
(2.70)

is continuous of bounded variation

where Ty (%) =0,

[n/2] (q1-2k _
T, (%) — % kgi % {f@k*l)(l)_f@k*l)(o)]

and
2

=1 ([ roa) - ([ fowwna)

For n even

while for n odd we have
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Remark 2.30 Forn =1 in Corollary 2.18 we have

while

Corollary 2.19 If f : [0,1] — R is such that f*"~Y) is continuous of bounded variation
with f") € 1,]0,1], then we have

‘/Olf(t)dt—% [f (%) +f (%)] + Do G)' < [@2—;7344 1/21{7 (2.71)

where Ty (%) =0,

- (l) _ i 2-2%(21-2% _ 1)y, [f(qu)(l)_f(zkfl)(o)}
4 k=1

(2K)!

and

K* = fem 35— ( /0 ' pom) (t)dt>2 - ( /0 ' pom (x)%(x)m)i

while

2.7 Hermite-Hadamard’s inequalities of Bullen type

Hermite-Hadamard’s inequality can be generalized in the following way.

Theorem 2.17 Let f : [a,b] — R be a convex function. Then for every x € [a, #}
b—
fla+ /f dt>—/f 1) di — +f(“+ Y 2
2 b—a
and for every x € [3“+b, agb}

/f 1) di — +f(“+b ) S0, 2.73)
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Proof. Letx € [a,“$] . Since £ is convex on [a, ], the right hand side of (2.36) gives

TRCE

b—a
1 a+b— x b
i [/ f dt+/ ft)de+ a+b_xf(t)dr]
< [ /@ >+(a+b 2y L@ b0,
+(x—a)

fla+b—x —|—f
2
X

b—

2| b—a

@‘

—a

_ 1[*‘“0‘( Y1)+ <f<x>+f(a+b—x>>]

Since f is convex on [a,b], for any A > 0 and x,x; € [a,b] such that x; < x, we have (see
for example [115, p. 5,6])

fr+h)—fx) < fla+h)—f(x). (2.74)

Consider now x € [a, “F2] . If we apply (2.74) on h =x—a,x; =aand x, = a+b —x, we
obtain

fx)—fla) < f(b)—flat+b—x), (2.75)
Forx € [a, 2] we have a+b—2x> 0, so for such x the inequality (2.75) can be rewritten

as
(a+b_2x)‘w S(a+b_2x)f(b)_£81:b—x)7

ie.,

)fi(x;:z(a) +(2x—a—b

From this, a simple calculation gives us

)~ flatbox)

(a+b—2x — <

29) (£ (a)+ £ (b)) + 220 [f (x) + f (a+ b —x)
< @+ £ B)+F 0+ flat b2, (2.76)

Combining (2.74) and (2.76) we obtain

b—a/abf(t)dtg f(a)+f(b)+fix)+f(a+b—x),

from which we get

fla+f®) 1 b L h f@)+flatb—x)
2 _b—a/a fyde= a

and this completes the proof of (2.72).
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Now let x € [34F2 2] Since f is convex on [a,b], the left hand side of (2.36) gives
g

1 b
— [ 1o

1 o5t b
- — [/ Fl)di+ th(t)dt]
1 {b—a (3a+b) b—a (a+3b)]

S + S

—a| 2 4 2 4

3a+b a+3b
)]

If we apply again (2.74) on 7 = #=34=0 | ) = 3atb

Y

N =

and x, = a+ b — x, we obtain

f(x)—f(3a+b) (a+3b) atb—2),

i.e.,

F@)+flat+b—x) ( ) <3a:b). (2.78)

Combining (2.78) with (2.77) we obtain

bia/abf(t)dtzf()c)—i—f(za—i—b—)c)7

so the inequality (2.73) is proved.

Remark 2.31 Ifin (2.72) and (2.73) we let x = —" , we obtain

f(a);'f( - a/f dt>—/f £ f<a+b)>07

which is Bullen’s result from [11]. His result was generalized for (2r)-convex functions
(r € N)in [28].

The next goal is to obtain a variant of inequalities (2.72) and (2.73) for (2r)-convex
functions (r € N). To achieve this goal we will construct a general closed 4-point rule
based on Euler-type identities (1.1) and (1.2).

For k > 1 and fixed x € [a,“£2] we define functions G{ and F{* as

x—t at+b—x—t a—t b—t

G, (t) = B B ——— B[ — B[ —

o = (=g ) e () e (5=~ (=)
L x—t fat+b—x—t Lfa—t
:Bk<b—a)+Bk<7b—a )+2Bk<b—a>
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and B
F (1) = Gy (1) = By,
for all # € R, where
Bi =By (5=4) +Br (3=2) + Be(0) + By (1)
= [1+ 1] [Be(122) + 8.

Of course, if kK > 2 we have
k ( ) k b—a k

Using the properties of the Bernoulli polynomials we can easily see that for any
x € [a, %3]

B, 0, r>1
B, = 2|:32r<z >+32r}, r>1
By (1) = Gy (1), i>1
(1) = G5, (1) 2[32,. (j; “)+B2,]r>1
F'(a) = FF(b)=0, k>1
Ha) = ’i(b)z[1+(—1)k}3k(2:‘;>+23k7 i1

We can also easily check that for all » > 1

a-+b a-+b
F2Xr71 ( 2 ) = 57’71 ( 2 ) :O

and

1 x—a xX—a 1
2B - — —B —_— B — | —B
|: 2r (2 b—a) Zr(b_a)+ 2r(2> 2r:|
1 x—a X—a o
2[Bz,<§—b_a>—Bzr(b_a)+2(z —1)34

Now let f : [a,b] — R be such that f("~1) exists on [a, b] for some n > 1. We introduce the

following notation for each x € [a, “F2]

D(x) =7 [f () +fla+b—x)+f(a)+f (D).

I
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Furthermore, we define
To(x) =0
1

T (x) = 1 [T (X) 4+ Tn(a+b—x)+Ty(a)+ T, (D)], 1 <m<n,

where T,, is given by (1.3). It can be easily checked that

SB[ () - 1Y @)

Ty () = B ,
TF — Tin(a) + T (b)
o 2
Obviously, ) .
T Tm (x) + Tm
Ty (x) = 2

Theorem 2.18 Let f : [a,b] — R, a < b, be such that for some n € N, F=D s aq
continuous function of bounded variation on [a,b] . Then for every x € |a, D]

b ~ ~
- / F)di =D(x) —T, (x)+ R (v) (2.79)
and
1 - .
| f0d =D ()~ T () + B (), 2.80)
where |
nl b an n—1)
Ry =S | G0
and

b nl
R =" J Fr OV ).

Proof. Put x = x,a+ b — x,a,b in the formula (1.1) to get four new formulae. Then
multiply these formulae by % and add them up. The resultis (2.79), and (2.80) is obtained
from (1.2) by the same procedure. O

Remark 2.32 If in Theorem 2.18 we choose x = a we obtain Euler trapezoid rule [25],

and if we choose x = “erb we obtain Euler bitrapezoid rule [28].
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Our next goal is to give an estimation of the remainder ﬁﬁ (x). For the sake of simplicity
we will temporarily introduce two new variables:
x—a  t—a

&= b—a ' b-a
It can be easily seen that for x, € [a,b] we have &,s € [0, 1]. Using direct calculations,
for each & € [0,3] we obtain

—4s+1 0<s<&
Gf(s):Flg(s): —4s+2E<s<1-§&
—4s+31-E<s<1

452 —25+282-26+% 0<s<E&
Gg(s)z 452 —4s+282+% E<s<1-¢&,
452 —6s+282-26+8 1-E<s<1

452 —2s 0<s<¢&
F2é (s) =1 45 —ds+2E E<s<1-E&
452 —6s+2 1-E<s<1

—453 4352 — 25 (362 —3E +1) 0<s<E&
G5 (s) = —453 4652 — 25 (3E2+ 1) + 32 E<s<1-—&
—453 4957 — 25 (362 —3E +4) + 682 —6E+3 1-E<s< 1

— Ff(s).

Next we present some properties of the functions G,‘}f and Fk‘g defined as above. First

we prove that the functions GE and F,f are symmetric for even k and skew-symmetric for
odd k with respect to %

Lemma 2.4 Let & € [0, 3] be fixed. Fork >?2 and s € [0,1] we have
Gi (1-5) = (-1"G{ (x),
Fo(1—s) = (—1)*FS (s).

Proof. As it is stated in the beginning of this section, for k > 2 and s € [0, 1] we have

G:(1—s) = B{(E—1+5)+ B} (—& +5)+ 2B (s)
Bi(§+s)+Bi(1-8+5)+2B(s) 0<s<&
Bi(§+s)+Bi(—E+s)+2Bk(s) E<s<1-8
Bi(E—1+s)+Br(=E+5)+2B(s) 1-E<s<1

= (-1)fx

Bk(l—é—s)—l—Bk(é—s)—|—2Bk(l—s) OSSS&
Bk(l—é—S)'FBk(l-f—é—S)-f—QBk(l—S)€<S§l—€
Bk(2—’g'—s)+Bk(1+§—s)+ZBk(1—s) 1—€<S§1

= (-D'GE (s),
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which proves the first identity. Further, we know that F,f (s) = GE (s) — G,f( ). If
k=2i—1,i>2,then G%fl (0) = G%Fl (1) =0, so we immediately have

Fz%q(l_s) :Ggifl(l_s)

= (~D)¥GE (5) = ()P E (s).

On the other hand, if k = 2i, i > 1, then (—I)Zi =1, so we obtain

F&(1—s) =G5, (1—5)+G5(0)

= (~1)% G5, (s) + (~1)¥ G, (0)

2
= (=17 F5(s),
and this proves the second identity.

Remark 2.33 It is obvious that analogous assertions hold true for the functions G}, and
F{, k> 2. In other words, if x € [a, 2] and ¢ € [a,b] we have

Gi(b—1) = (~1)} Gy 1),
(=D FE ().

3

—
S
|
~

~—
Il

Lemma 2.5 If& € {07 1- ﬁ) , than for all s € (0,3)

G5 (s) < 0.
Also

Proof. For the sake of the simplicity we will denote

G5 (s)

—4s% 4352 =25 (36> —3E+1), 0<s<é&
—453 4+ 657 — 25 (362 + 1) 4382 E<s<1-&
—453+957 — 25 (362 - 36 +4) +6E2-6E+3 1-E<s< 1
He(s) 0<s<&
Hi(s) E<s<1-¢&.
Hf(s) 1-§<s<l1
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If we write Hf (s) as
Hy (s) =5 [~45% +35—2 (362 =3 + 1)]

we can see that Hé( 0) = 0 and that Hé (&) = E(—10&2+9& —2), so if for a given
& € [0, 4] number —10&2+9& — 2 is negative it means that the joining point (5 H; (é)) =

<’g’,H2 (é)) is under the x axis. This will be true for & € [0, %). The sign of Hig (s) is de-

termined by the sign of the function y (s ) = —4s?+35—2 (362 —3&+1). This function
will have zeros s; = 3 — §v/D and s = 3 + § VD if D = —96£% 4+ 965 —23 > 0, i.e., if
Ee [ 4\/—, 2] Furthermore y(0) = —2(3&% —3& + 1) < 0 which means that (if they
exist) both zeros s; and s, are positive. Of course, if & = % — m the function y has only

one zero s = % We want to know is it possible for & € (% - L ) to have & < s; (be-

4675
cause this will imply that H ¢ (s) <0 for all 0 < s < &). This in fact is not possible because

if & <s) thanwehave & < 3, and 3 < 3 _F ThrsmeansthatH'E (s) <Oforalls e (0,&)
can be true only if D < 0, and this will be true for £ € [0, % — ﬁ} C [0, %) .

Now we must check H§ for such &.If & < s < J we have
H5'(s) =—128%+ 1252 (3E2+1),
HS" (s) = —24s+12=12(1 —2s) > 0,

which means that Hf is convex for any choice of such &. Since Hf () <0and Hf (3)=0

we can deduce that H§ (s) <Oforall s € (&,1). This means thatif § € {07 1-

Gg(s)<07s€<07%)7

\f) then

and for & = 1 — 4# we have

G5 (s)<0, s€¢ (0%)\{%}.

On the other hand, if £ € (% 1] the joining point (@Hf (5)) = (@Hzé (5)) is above the

S

x axis, and we want H ¢ (s ) to be positive for all s € (0,&). This, of course, can not be true

because (£,1] C (% 4\/—, 2} which means thatH‘g surely has a zero s; < 3 < 2 < &.

1
And in the end, we must separately investigate G; because in this special point & = 5

function G§ has only one branch for s € [0, %], i.e., we have

(s):s<—4s2+3s—%) S €E {0,%].

W o —

G
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We can easily see that

W ro—

G3 (s) <0, s€ (0,

)
).

G

L ro1—
= PRI

(s) >0,s¢€(

)

EST

Of course, from the above results we have

b
Gi(1) <0, re (a,%)

b

_ a

G, 46(s)<0,s€(a,a;—b)\{sa—g3b}7

ath
Gy (1) <0, 1€ (a,%2),
a+b

Gy? (1) >0, 1€ (342, 4b).

S

for any x € [a, ah i’%) , and also
ath
2

N

Lemma 2.6 For r > 2 and x € [a, # — i:/%) the function G3,_, has no zeros in the
interval (a, #) . The sign of this function is determined by

(1 G, ()50, 1€ (i’)

2
Also, L
| asb_ba b\ . (Sa-+3b
(—1)'Gye Yo (1) >0, re (a2 )\ {2202
r 2 g
e 3a+b
(—1)'Gy2 (1) > 0, 1€ <a7 a: )7
a+b 3 b b
(—1) Gy, (s) < 0, s € ( “4+ 7“; )

Proof. Letx € |a, # — 2‘7%) . If r =2 assertion follows from Lemma 2.5. Assume

now that 7 > 3. In that case we have 2r — 1 > 5 and the function G5, _, is continuous and
at least twice differentiable. We know that

(65-1)' () = =263, 1),
(G3,1)" (1) = % 53 (1), (2.81)
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a+b
1@=631(57) =0

Suppose that G5,_; has another zero o € (a, “+b ) . Then inside each of the intervals (a, &)

and that

and (o, L) the derivative (G3, )" must have at least one zero, say B € (a,0) and
B> € (. “”’ atb)  Therefore, the second derivative (G3, ;)" must have at least one zero
inside the 1nterval (B1,B2) C (a,%$2) . Thus, from the assumption that G3,_, has a zero
inside the interval ( “+b ) it follows that G5, _5 also has a zero inside the interval ( a, “erb ) .
From this we could deduce that the function G also has a zero inside of the interval
(a,%£2) which is not true. Thus, G5,_; can not have a zero inside the interval (a, <52).
Furthermore, if G5, ;(t) > 0 for ¢ € (a,%42), then from (2.81) follows that G5, , is
convex on (a, k), and hence G3,_, (1) < 0 for ¢ € (a,%$2). Similarly, if G, 5 (t) <0
for t € (a,%t2), then from (2.81) follows that G}, is concave on (a,%2), and hence
Gy, (1) > 0 fort € (a,%52) . Since G (t) < 0 fort € (a,“52) we can conclude that

(1) 'G5, 1()>07t€<a,a2ib>.

For the special cases x = # — i’% and x = “+b proof is similar so we skip the details.

O

Corollary 2.20 For r > 2 and x € [m# — i’%] the functions (—1)"F3, (1) and
atb

(—=1)" G, (1) are strictly increasing on the interval (a,*$2) and strictly decreasing on
the interval (#7b) . Consequently, a and b are the only zeros of Fy, in the interval |a,b]

and
1 x—a XxX—a
F =2|By, | = — —By | —— | +2(27"=1)By,],
lren[ax| 2 ()] 2 (2 b—a) 2 (b—a>+ ( ) B2
max |G5, (1)) = 4 2(Bay (“24) 4By | 2[Boy (2 - 229 1y, (
[)Ii] 2r - 2r b 2r| s 2r 2 h—a 2r ) .
Proof. Letr > 2 and x € [a,% 4[) ‘We know that

2r

b—a (_l)r_l )261'71 (t)v

()" F (@) = [(-1) G5, ()] =

and by Lemma 2.6 we also know that (—1)""' G}, | () > O forall 7 € (a,%52). Thus the
functions (—1)"F5 (¢) and (—1)"G3, (¢) are strictly increasing on the interval (a, <52).
Also, by Lemma 2.4, we have F3. (b—1t) = F;, (1) and G5, (b—1) = G} ,(t) for t € [a,b],

which implies that (—1)"F (1) and (—1)" G5, (¢) are strictly decreasing on the interval
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(45L.b) . Further, F3. (a) = F3, (b) = 0, which implies that |F3', (¢)| achieves its maximum
att =42 thatis

a+b
F = |F (/==
Jmax [P, ()] = ( 5 )‘
1 x—a xX—a 2
=2|B —B 2(27" = 1) By|.
2r(2 b_ a) (b— )+ ( ) 2r
Also,
a+b
G = G; | ——
max 165, (0] = max {63, (0 ( 2|}
= max{2|B 4By 2By (222 i, (L
= ma 2r 2r|» 2r ) b—ua 2r 2 .
The special case x = “J{b i\’/‘é can be investigated similarly. O

ath asp
Corollary 2.21 For r > 2 the functions (—1)"F,* (t) and (—1)" G,* (t) are strictly

increasing on the intervals (a, 3“I b ) and (”+b “fb) and strictly decreasing on the in-

a+h
,b) . Consequently, a “+b and b are the only zeros of F,,*

tervals (#, #) and (“Jfb

in the interval [a,b] and

ob ab (3a+Db
max |F,? (t)| = |F,? =222 (3 _21-2r) By, |,
tE[a,b] 2r ( ) 2r ( 4 ) ‘ ( ) | 2r|
a+h atb 3a+b
max |G,> (t)| =1|G,? — 922 (1 _pl=2r\ B, |
r€fa.b] 2r ( ) 2r ( 4 ) ‘ ( ) | 2r|

Proof. Similarly as in the proof of Corollary 2.20 and using the fact

atb fa+b 1
oy (%) :2[32,—32,(5>+2(2—2r—1)32, —0.

Corollary 2.22 Forr>2andx € [a7 “2ib — %] we have

5 J [Py ()| dt

= 5 i 1Ga 1 (0)]de = 1[5, (452)]
= 2 |Bor (5= 370) = Bar (550) +2(27 = 1) Bar |

X—a
By [ —— ) + By,
2 (b—a>+ 2

Also, we have
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X—d
BZr (b—) +BZr
—da
b—

Proof. Letr > 2 and x € [a, # — Wg} . Using Lemma 2.4 and Lemma 2.6 we get

and

b
m/ﬂ |Gy, (1)]dr < 4

atb

b atb
[leswla=2|[ " 63, 0a

b—a atb
oy 01| -

b—a . (a+b
r 2r 2 )

which proves the first assertion. Using Corollary 2.20 and the fact that F5\. (a) = F3, ()
=0, we can deduce that the function F3 does not change its sign on the interval (a,b).
Therefore we have

b—a

2|-

2 (%57) o5l

b -
GO
b b ~
- [ Bwa=|[ [0~
b—a Sx X
- [ 3556 0 - - 0B | = (60|
— 2(h—a)|By (g)+Bzr :

which proves the second assertion. Finally, we use the triangle inequality to obtain the
third formula. ]

Corollary 2.23 Forr > 2 we have

/ab A5 d’Z/ab Gy ()| = P00t (127 gy
Also,
bia /ab By (0)|di =22 By
" 1 b | atb
b_a/a Gy} (1) dt <277 |By|.

Proof. Similarly as in the proof of Corollary 2.22. o
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Lemma 2.7 Letx e [ + } If f : [a,b] — R is such that for some r > 2 derivative

@) is continuous on [a b] then there exists a point M € |a,b] such that

R, (x) = - (Z (_;))'2 [Bzr (;:Z) +Bzr} 27 ().

Proof. Letx € { ath _ b—} For n = 2r > 4 and f such that f (27) is continuous on

2 4/6
[a,b] we can rewrite R3_(f) as

_ b— 2r—1 b
B = (1 e [ R 07 war
B r(b_a)Zr—l
= (-1 T (2.82)
where .
I = / (1B () £ (1) . (2.83)
It
m= I[laubr]lf (1), M= r[lga;j&f”()
then

m< f2 (1) <M, 1 €ab].

From Corollary 2.20 we have

(_l)r Z)Cr(t)z()? tE[a,b],

SO
m/ t)dt <1, <M/ "Fs.(t)dt.
Since
b ~ xX—a
/ F5.(t)dt=—(b—a)B5, = —2(b—a) {By (b—a) +32r] ,
we obtain

(-1 0 | (3=2) 4 B
<L <2M(~1)""(b—a) {Bzr (;ﬂ) —|—B2,.] .

By the continuity of £(>) on [a,b] it follows that there must exist a point N € [a,b] such
that

L=2(-1)""(b—a) [Bz, (b_“) +Bzr} s ().
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From that we can easily obtain

O

Lemma 2.8 If [ : [a,b] — R is such that for some r > 2 derivative @) is continuous on
[a,b], then there exists a point N € [a,b] such that

_N\2r

Proof. Analogously as in the proof of Lemma 2.7. O

Theorem 2.19 Letx € [a7 “zib — i&%‘] . Assume that f : [a,b] — R is such that for some

r>2 f@) is continuous on |a,b]. If f is a (2r)-convex or (2r)-concave function, then
there exists a point ¥ € [0,1] such that

~ 1 x—a x—a o
R%r(x) =1 |:BZr (5_—19—61) _BZr<b_a>+2(2 : —I)BZr]

(b o a)2r—1
202!

{f(erl) (b) — f(2r71> (a)} ) (2.84)

Proof. By Corollary 2.20 for t € [a,b] we have

0ROy R (1),

The rest of the proof is similar as in the proof of Lemma 2.7. O

Using the Theorem 2.6 we can improve the above theorem in a way that the derivative
") need not to be continuous on [a, b] .

Theorem 2.20 Assume that the function f : [a,b] — R is such that for some r > 2 the

derivative f<2”1> is continuous and increasing on [a,b]. Then for every x € [a, “zib — i\’/%]
we have
1 b a)+fb)+f(x)+fla+b—x) =~
i [ LSO a0 )
a
(b_a)2r71

(2r—1) _ r(2r-1)
< e PN - (@)
1 _ _
R R

and this inequality is sharp.

)
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Proof. We know that the function F3,_, is periodic with the period P = b — a. From

Theorem 2.19 and Lemma 2.4 for r > 2 and x € {a7 # — Zﬁ] we have:

b

(1YY EE (1) >0, t€<a7a;— )
b

L0 <0 e (T50)

and also

b
[ Bwar=o

This means that if in Theorem 2.6 we choose p (1) = (= 1) " E&._, (1), o (1) = f& D (1)
and n = 1, then we obtain

[T L Ga
< %[f@rfl) (b 2; 1) / |F2r 1 !dl

and combining this with Corollary 2.22 we obtain
(—1 / By (1) fO ) (0)dt
< =2 ) - £ )]

r

1 x—a xX—a
-|By, — By, 2272 —1)B,,|.
2 (2 bh— a> (b— )+ ( ) B2

From Theorem 2.18 we know that

a)+f(b)+fx)+flat+b—x)
b— a/f £)di = 4

@‘

+ ATi2r71 ()C)

b— 2r—2 .

SO

i a/f par L@+ 1 0) fgx>+f<a+b—x>+fzrl(x)}

(b a2)
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O

Theorem 2.21 Assume that the function f : [a,b] — R is such that for some r > 2 the
derivative f*"=V) is continuous and increasing on |a,b] . Then we have

a atb) a
_Ur{bia[ffaﬁﬁ_f()+f@2+2f(z)<+BFJ< ;b)}

(b . a)2r71
= (2r)!

[f(Zr—l) (b) _f(zr_l) (a)] pl-2r (1 — 2_2r) |Ba, |,

and this inequality is sharp.

Proof. Similarly as in the proof of Theorem 2.20. O
Now we can give our main result in this section: a generalization of Hermite-Hadamard’s
inequalities for (2r)-convex functions, r > 2.

Theorem 2.22 Assume that f : [a,b] — R is such that for some r > 2 derivative 2"~V
is continuous on |a,b], and assume that f is (2r)-convex on |a,b]. If r is odd, then for all

xe a2t - glu{eg}

b)
ﬂiﬂ /fd,a“>
h— .
/ ) (2.85)
and for all x € [ bT %}
b _
— a/ F(e)dt — Hf(“ YT (x>0, (2.86)

If r is even the above inequalities are reversed.

Proof. Letx € { b Z—f} In case n = 2r > 4 from (2.80) we get

+ 2?2,’_1 (X) = 21}%) (f) ’

b a ) ) B
b—a/a f(t)dt_f( )+f(b)+f(2)+f( Chex)

where
2 (b—a 2r ' x (2r—1)
B = il [ s .

If f is (2r)-convex then df> 1) (r) > 0 on [a,b], and since by Corollary 2.20 we know
that
(=1)"F5,.(1) >0, 1 € a,b],
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we obtain R3, (x) > 0 for r even and R3, (x) < 0 for r odd. The same is true if x = 4%L.

This means that for » odd we have

2 a/ f (a)+f(b)+ f(zx)+f(a+b_x)+2ﬁr_1(x)SO,
ie.,
fla )+f( /f Vi —TE_ | >
- a/ f )+f(2a+b_x)+f2vr,1(X),

and the above inequality is reversed if r is even. This completes the proof of (2.85).

Now letx € { +3 \/‘317 “;b } and suppose that r is odd. We can use the analogous results

from Section 3 of this chapter to obtain

L[ rwa - TR gy g0,

b—a

and the reverse if r is even. This completes the proof.

The interested reader can find several sharper variants of (2.86) in [105].



Chapter

General 3-point quadrature
formulae of Euler type

The topic of this chapter are general 3-point quadrature formulae. More precisely, a family
of quadrature formulae which approximate the integral over [0, 1] by values of the function
in nodes x, 1/2, 1 —x, where x € [0,1/2), are studied. The results from the first section
were published in [59].

3.1 General approach

Letx € [0,1/2)and f:[0,1] — R be such that £(>") is continuous of bounded variation on
[0,1] for some n > 0. Put x =x, 1/2, 1 —x in (1.2), multiply by w(x), 1 —2w(x), w(x),
respectively, and add up. The following formula is produced:

[ 0= w709~ (120007 () w701 -0+ Tl
Jo 5 2n

1 1
= m/o F2n+2(X,f)df(2"H>(t), (3.1)

67
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where
2n
T = 3 37 Gl 0) V1)~ £40(0) 32
Gr(x,t) =w(x) [By(x—1)+B; (1 —x—1)]+ (1 —2w(x))B; (% —t) , (3.3)
Fk(xJ) = Gk(xJ) — Gk(x70) (3.4)

fork>1andt € R.
Using the properties of Bernoulli polynomials, it is easy to verify that:

Gk(xvl_t): (_l)ka(xvt)7 re [071]7 (35)
w = kG (x,1). (3.6)

Further, notice that Go;—1(0) = 0 for k > 2, and this is not affected by any choice of the
weight w(x). On the other hand, in general, Gy (x,0) # 0.
To obtain the 3-point quadrature formulae with the maximum degree of exactness
(which is equal to 3), it is clear from (3.1) that we have to impose a condition: G, (x,0) = 0.
This condition gives:

and formula (3.1) now becomes:

| 1f(t)dt—Q<x7 3 1—x)+T2%3<x>:% [ Fganar® e, e

(2n+2)!
where
0 <x7 % | —x> _ ﬁ {f(x)+24Bg(x) f (%) L0 —x)] (3.8)
120 =3 G%f (x,0) [fH#D (1) — A D(0)), (3.9)
k=2
1 1
GkQ3(X,Z‘) = m |:B]t (x—t)+24Bz(x) B;{< (5 —t> +BZ (1 —X—t):l (310)
F2 (x,t) = G (x,1) — G2 (x,0). 3.11)

If we assumed Gy (x,0) = Gopi2(x,0) = 0 for some k > 2, it would increase the degree
of exactness but the quadrature formulae thus produced would include values of up to
(2k — 3)-th order derivatives at the end points of the interval. When those values are easy
to calculate, this is not an obstacle. Furthermore, when f(*~1) (1) = f¥=1)(0) for k > 1,
we get a formula with an even higher degree of exactness. This type of quadrature formulae
- which include the values of the first derivative at the end points - are sometimes called
perturbed or corrected quadrature formulae and will be the topic of the next section.
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Changing the assumptions on function f, we can obtain two more identities with the
left-hand side equal to that in (3.7): assuming f(®*~1) is continuous of bounded variation
on [0, 1] for some n > 1, from (1.1) we get:

/lf(t)dz—Q<x, l, l—x) +T2(x) =
0 2

and assuming f (21) s continuous of bounded variation on [0,1] for some n > 0, from (1.1)
(or (1.2)) we get:

! 1 1
/0 f(t)dt—Q(x, 5 l—x) +T2(x) = D / G (x,0)dfP (1),  (3.13)

The key step for obtaining the best possible estimates of the error for this type of
quadrature formulae is the following lemma.

Lemma 3.1 Forxe {0}U[1/6,1/2) and k > 1, ng3+1 (x,1) has no zeros in variable t on
the interval (0,1/2). The sign of this function is determined by

93 d A1), (3.12)

(— l)kG2Q,:+l(xt)>0 za x€[1/6,1/2),
(—1*1GE, (x,1) >0 za x=0.

Proof. Observe G3Q3 (x,1). For 0 <t <x < 1/2, it takes the form
GP (x,1) = -1,

so its only zero is obviously 7 = 0. For 0 < x <t < 1/2, it takes the form

2
03 _ 3 (x—1)
Gy (x,1) = —t +72(2x—1)2'
Here it has three zeros:
1 . _x—x2—\/2x3—3x4 . _x—x2+\/2x3—3x4
2 T 2x—12 7 (2x—12

=

It is easy to check that #, < x which is opposite from our assumption. On the other hand,
t3 > x forall x € [0,1/2), but t3 > 1/2 only for x € [1/6,1/2). Thus, our assertion is true
for k = 1 (for x = O the assertion is trivial). Assuming the opposite, by induction it follows
easily that the assertion is true for all £ > 2.

It is elementary to determine the sign of G3Q3 since we know its form. In order to
determine the sign of nglf 1 in general, use their second derivatives and the fact that they
have no zeros on (0,1/2). g

Remark 3.1 From Lemma 3.1 it follows immediately that, for k > 1 and x € [1/6,1/2),
(— l)kJrleQ,:|r2 (x,2) is strictly increasing on (0,1/2) and strictly decreasing on (1/2,1).
Since F,; +2(x 0)= sz +2(x 1) =0, it has constant sign on (0, 1) and obtains its maximum

value at7 = 1/2. Analogous statement, but with the opposite sign, is valid in the case when
x=0.
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Denote:

3 3
RS ,(x,f) = 2n+ I / F2 (0,0) £ (1) dr. (3.14)

Theorem 3.1 Let f: [0,1] — R be such that f*"+2) is continuous on [0, 1] for some n > 2
andlet x € {0YU[1/6,1/2). If f*") and £*"*+2) have the same constant sign on [0, 1], then

the remainder Rgf (x, f) has the same sign as the first neglected term Agj (x, f) where

AL (x,f) == RS (x,f) —RE (. f) = — (x,0) [~V (1) — r2=D(0)).

(2n)! 2"

Furthermore,

106 )| < |AS (x, /)] and RS, (x, f)] < A5 (x, )]

Proof. From Remark 3.1 it follows that RZn (x,f) and Rgf 5 (%, f) have the same sign.
Therefore, A%l (x, f) has that same sign. Moreover, it follows that |R2 (x, )] < |A2n (x, )]

and |R2n+2(x f)' < |A2n( )| U

Theorem 3.2 If f: [0,1] — R is such that f*"*+2) is continuous on [0, 1] for some n > 1
and x € {0}U[1/6,1/2), then there exists & € [0,1] such that

3
G5 ,(x,0)

P ), (3.15)

R2Qn3+2( S)=-

where

1

03 _
Goin(%,0) = 31

[Bayso(x) + (1=272""Y Byyyn] — (1 =271 Byyin

(3.16)
If. in addition, f*"*2) does not change sign on [0, 1], then there exists 6 € [0,1] such
that

0 1
RS ,(x,f) = i P2, (x, 5) : [f(z'm)(l) —f<2"+1)(0)] , (3.17)

where
F2 1 - Bopga | X+ N Boyia(x) — (2—272"1 Byyun
2n+2 2 3(2)6 _ 1)2 2
+ (227" Boups (3.18)
Proof. From Remark 3.1 we know that function an +2(x7t) has constant sign on (0, 1), so

(3.15) follows from the mean value theorem for integrals.
Next, let x € [1/6,1/2) and suppose f(>**2)(¢) >0, 0 <t < 1. Then we have

1
0< / (— 1)/1+1F2%i2 (x,t)f(2'1+2)(t)dt < (_1)n+1F2%3+2 (x,1/2) / f(2n+2) (t)dt
0 0
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which means there exists 6 € [0, 1] such that

(2n+2)1- RS}, (x, ) = 0 F&' 5 (x,1/2) | F2 D (1) = £ D (0)]
When x = 0 or f2"+2)(z) < 0, the statement follows similarly. i

When (3.15) is applied to the remainder in formula (3.7) for n = 1, the following for-
mula is produced:

[ 10 g [0+ 2482005 (5) 710

). @
= 225" 1057+ 10x— 1) - fH(&). (3.19)

For an adequate choice of node x, formula (3.19) gives classical Simpson’s, dual Simp-
son’s and Maclaurin’s formula as special cases. Furthermore, for x = 0, results of this
section produce results obtained in [29], where Euler-Simpson formulae were derived. For
x = 1/4, results from [26] are produced, i.e. dual Euler-Simpson formulae and all related
results, and finally, for x = 1/6 Euler-Maclaurin formulae are obtained together with all
the results from [24].

Remark 3.2 Formula (3.19) is valid only for x € {0} U[1/6,1/2), so let us consider the
limit process when x tends to 1/2. The following quadrature formula is produced:

[ rwa-g (%) “al (%) SO

Of course, all other related results can be obtained as well. We have

5 (1 (1 k(k—1) . (1
G¢ (EJ =B 5-t)+ =5 Bia(51). k22

So, when f(™ Ly[—1,1] for p=-coor p=1andm=2,3,4 we get the following estima-

tions:
1 1 1, /1 m
i f(t)dt—f<§) ~ 5t <§>'<C(m7q)-|f‘ Nl

where

= C(4,00) = —.
13 =155

Comparing these estimations with those obtained for the trapezoid formula and the mid-
point formula (cf. subsections 1.2.1. and 1.2.2.) shows that for m = 4, these are better.

The following theorem gives an estimate of error for this type of quadrature formulae.
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Theorem 3.3 Letp,q€Rbesuchthat1 <p,g<eand1/p+1/q=1. Let f:[0,1] =R

be such that f?") € L,[0,1] for some n > 1. Then we have

‘/1f(t)dt_Q(X, l, l—x) +T2Qn3(x)
0 2

If f@r+) € L,[0,1] for some n > 0, then we have

‘/1f(r>dt—Q(x, L 1—x) +72 (x)
0 2

Iff(2ﬂ+2) € L,[0,1] for some n > 0, then we have

0wl has)rz

where

< Kgs(2n,q) - | F2V -

<Kp3(2n+1,q)- ||f(2”+1>”p~

< Kp3(2n+2,q) - | >,

Ko3(m,q) [/ |G (x,1 |th] 1

1
Kps(m,q) = [/ |FQ3xt ! dt]
These inequalities are sharp for 1 < p < e and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2.

(3.20)

(3.21)

(3.22)

O

Forx e {0} U[1/6,1/2)and n > 1, using Lemma 3.1 and Remark 3.1, we can calculate

the following constants as special cases from the previous Theorem:

1
03
P (3))

where G5 ,(x,0) and F2> , (x,1/2) are as in (3.16) and (3.18).

Ké3(2n—|-2,1) W’G2n+2 XO)’,

. 1
Koy (2n+2,00) = = Ko3(2n+1,1) =

(2n+2)!

Next, we shall consider which x gives the best estimation for p = e and p = 1. Assume

x € [1/6,1/2) and define function H (x) := |G2n+2(x,0)|, ie.

3(2x—1)2

10 = 550 e Dn+ 282t +4 (Baea (5) - B9 )|

m2(x) + (1 — m+2| — (1 — 2n+2
[Bansa() & (1—2- ) Byya] — (1272 1) B }
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We claim H'(x) > 0. To prove this, it suffices to check that A(x) < 0 where

h(x)=(=1)"|(2x—1)(2n+2)Ba,+1(x) + 4 (an+2 (%) —Bopio (x))] .
Now,
B'(x) = (2n+2)2n+1)(2n) - (2x—1) - (=1)"Ba,_1(x) <0,

so we conclude that /' is decreasing and since #'(1/2) = 0, we have /’(x) > 0. This means
h is increasing and since i(1/2) = 0, it follows that /(x) < 0 so our claim is true. H(x)
is therefore an increasing function and attains its minimal value at x = 1/6. Further, it is
easy to see (by induction) that |H(1/6)| < |H(0)|. This shows that Maclaurin formula,
i.e. its generalization - the Euler-Maclaurin formulae, give the best estimation out of all
quadrature formulae of the form

/l.f(t>dr~Q(x, L 1—x>
0 2

where O (x, 3, 1 —x) is as in (3.8).

It can be shown analogously that the integrand in Kp3(2n+ 1, 1) is also increasing and
attains its minimum value at x = 1/6, so the same conclusion is derived again. Furthermore,
the same conclusion follows if K{);(2n +2, ) is considered.

We will finish this section by considering Hermite-Hadamard’s and Dragomir-Agarwal’s
type inequality for this type of quadrature formulae (cf. Section 2.5.).

Theorem 3.4 Ler f:[0,1] — R be (2n+4)-convex for n > 1. Then for x € [1/6,1/2),
we have

1 gy (1
(2 +2) |G2n+2(x70)| f v (2>

< (—=1)"*! (/Olf(t)dt -0 (x, % 1 —x) + T2%3(x)> (3.23)
1 f(2n+2) (O)+f(2n+2)(1)
< Gy GOl ; ’

where G2Qn3+2(x,0) is as in (3.16), while

1 a—2n ny2) (1

( / F()di - ( )+T2%*(0)) (3.24)

f(2n+2 ( )+f(2n+2)(1)
) .

1

< (1-27"2")|By,
= 302n+2)! ( B2

If f is (2n+4)-concave, the inequalities are reversed.
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Proof. Analogous to the proof of Theorem 2.8. O

Theorem 3.5 Let x € {0} U[1/6,1/2) and f : [0,1] — R be m-times differentiable for
m > 3. If|f(’") |7 is convex for some q > 1, then

1/q
1 1 (m) () |4 (m) (14
[ s (x 3 1-3) + 70| < Lalm ('f O
0
(3.25)
while if | f")| is concave, then
1 1 1
‘ | roa—o <x7 5 l—x) +75(x)| < Los(m.x) | (5) . (26
where
2 03
Jor m=2n+1 LQ3(2n+ Lx)= (2n+2) |F2n+2(x7 1/2)]
1
and for m=2n+2 Lp3(2n+2,x)= 7o) |G2n+2(x,0)|
with G2Q2+2(x 0) and F2n+2 (x,1/2) asin (3.16) and (3.18), respectively.

Proof. Starting from (3.13) and applying Holder’s inequality and then Jensen’s inequality
for the convex function |f(2"+1)|4, we get

’/lf(t)dt—Q<x, % 1—x> + 72 (x)

03 1-1/q
2n_|_1 (/ |G2n+l xt |dt>

1/q
( [0 )6E nlar

03 1-1/q
2n_|_1 (/ |G2n+l xt |dt>

1/q
~(|f(2”“>(0)|‘1 [ =018 a1 [ 68, ol

< (2n+1)
< G 168wl ol

Further, it is not difficult to prove that
1
3 3
/ |F2Qk+2(x,t)|dt :2/ t|F2%+2(x7t)|dt =] 2k+2(x 0)], (3.27)
FY

2 1
/|G2k+1(XI|dt 2/ HGE, ) (x,1)|de = ST 2k+2< 2)‘ (3.28)

Applying (3.28), inequality (3.25) for an odd m easily follows. The assertion for an even
m follows similarly, starting from (3.7) and applying (3.27).
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To prove (3.26), apply Jensen’s integral inequality:

‘/1f(t)dt—Q (x, L —x> + T8 ()

ey [ 168 el O )0 1

pom (fol((l_z) 0+t 1)|G%f+1(x,t)|dt>
Jo 1G5, (x,1) |t

2n—|—1

03
2n+1 / |G2n+l Xl‘ |dt

Recalling (3.28), (3.26) is proved for an odd m. For an even m, the statement follows
similarly. O

Remark 3.3 Inequality (3.24) is in fact Hermite-Hadamard type estimate for the classical
Simpson’s formula and it was derived in [33]. For x = 1/4, (3.23) becomes a Hermite-
Hadamard type inequality for the dual Simpson’s formula, and for x = 1,/6 for Maclaurin’s
formula; these two cases were covered in [26] and [24], respectively.

Theorem 3.5 gives Dragomir-Agarwal type inequalities for Simpson’s formula (x = 0),
dual Simpson’s formula (x = 1/4) and Maclaurin’s formula (x = 1/6). These results were
already obtained in [33], [26] and [24], respectively.

3.1.1 Gauss 2-point formula

There is an interesting special case of the results from the previous section. Namely, if we
choose w(x) = 1/2, where w(x) is as in (3.7), we will get

1 1
2 23
Since % 3 < 35— 7 2, we can apply all the results in this case.

For thlS choice of the node x, formula (3.19) becomes the classical Gauss 2-point for-
mula stated on the interval [0,1]. Since it is customary to study Gauss formulae on the
interval [—1,1], in order to make use of the symmetry of the nodes and coefficients, by a
simple linear transformation we transform the interval [0, 1] we have so far worked with,
into [—1,1].

Formulae (3.12), (3.13) and (3.7) now become:

oy e 1)d b 3.29
[ fedt - 02+ 75 —(2,1),/_1 G W), (329)
1
/ S0 =06+ T = ey +1 / S (0 (), (3:30)
2n+1

1
[ 1f<t)alt—ch+T2?f— / 92 () d P (1), (3.31)
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where
Qa2 = f (-?) +f<?
n 2k _
m= Y o B (3 f) W) = D)
k=2 :

GP*(1) = B] (—?— ;) +Bj (?— ;) 7

EZ (1) =GP (1) - GP*(~1), k>1, reR.
Theorem 3.2 takes the form:

Corollary 3.1 If f : [~1,1] — R is such that f?"*2) is continuous on [—1,1] for some
n > 1, then there exists & € [—1, 1] such that

22n+3 3_ \/§
G2 e (2n42)
R3,2(f) 2n12)! Bonta ( z ) f (&). (3.32)
If. in addition, f*"+2) does not change sign on [—1,1], then there exists 6 € [0, 1] such
that
22n+2 \/§ 3 \/g
R§IH(f) = 9'7(2n+2)! Bopia <?> — Boni <—6

Applying (3.32) to the remainder in (3.31) for n = 1, produces the classical Gauss
2-point formula:

1 \/5 \/5 1
—fl -2 Y- — .4 ~1.11.
/_1f(t>dr f( 3>+f<3>+135f (&), sel-11]
Estimates of error from Theorem 3.3 are in this case:

Corollary 3.2 Ler p,q € R be such that 1 < p, g <o and 1/p+1/q=1. Let
f1[=1,1] = R be such that f®" € L,[—1,1] for some n > 1. Then we have

221171

= o)

1
! q
{ / 1 |G§if(t>|"dt] e, (334

’/11 f(t)dt — Qca + T2

If fOr+) € L,[—1,1] for some n > 0, then

1

1 1 7
[ 10 0o 41| < G | [ 16l a1, 63

2n
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If f2r42) ¢ Ly[—1,1] for some n > 0, then

2 LIRS () ; (2n+2)
= 2n+2)! U_l Fylo(1)] dt] | £, (3.36)
These inequalities are sharp for 1 < p < e and the best possible for p = 1.
1 4 g v . s
G2 _ @ _ V3\
/4 G571 (1)] di = i Fy75(0)] P Bont2 ( 6 ) Bonia ( z

By (3 _6\/§>

As direct consequences of this and Corollary 3.2, the following estimates of error can be
obtained for p =ccand p = 1:

[ swai—s (—?) -7 (?)

!
‘/_lf(f)dt —Qc + T2

It is easy to see that:

1
[ B0 dr =2[68 (-] = 4

< Cer(myq) - |f ™),y m=1,2,3,4,

where
Coa(1,1) = 5_5\/5 ~ 0.511966, Cga(1,) = ? ~ 0.57735,
CG2(271):‘9—1 263 —45 ~ 0.0811291,
Cn(2,00) = 2_3‘/§ ~ 0.0893164,
Csa(3,1) = 9_138\@ ~ 0.0191833,
Cea(3,00) = 2_9‘/§\/2\/§—3 ~ 0.0202823,
Cen(4,1) = 1:1;—5 ~ 0.00740741, Cgr(4,00) = % ~ 0.00959165.

Remark 3.4 The constant Cgy(1,0) was obtained in Theorem 1.1. in [47].

Remark 3.5 Gauss 2-point formulae of Euler type (3.29), (3.30) and (3.31) were derived
also in [98], as a special case of the general 2-point formulae that were studied there, but
this was not explicitly mentioned since a small mistake was made in the proof.

Finally, Theorem 3.4 gives the Hermite-Hadamard type inequality for the Gauss 2-point

formula:
(DY o L (3B L (315
Y (3) < [ roa—5r (== -5 (=%

1 f90)+ (1)
— 4320 2
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and the constants from Theorem 3.5 in this case are:

Los (37 3_\/§> _ 9_4\/57 Los (47 ﬂ) _ L

6 1728 6

3.1.2 Simpson’s formula

One of the special cases of the results from the previous section, obtained for x = 0, is the
classical Simpson’s formula. Results of this subsection were published in [29].
The quadrature formula is in this case:

0(0.5.1) =g [ro+ar(5) +rm].

Further,
G|
T =Ty (0) = 3, 7 O(0) 0 (1) = £#7(0)
k=2 :
Gi(1) = GkQ3(0,t) = % [B;(l —1)+2B; (% —t)} , k>1

FS(1)=F2(0,1) = G{(t) - G}(0), k>2 and t€R.

The remainder on the right-hand side of (3.7) for x = 0 and n > 2, can be written,
according to Theorem 3.2, as:

0

R§n+2(f) _ m(z _2—1—211)an+2 . [f(2n+l)(l) _f(211+1)(0)] , 0c [O7 1]
1
R, (f) = m(l — 2By fP (), melo,1]

Formula (3.19) becomes the classical Simpson’s formula:

[ rwa— [f<0>+4f<%> +f“>} = 255070 o

As special cases of Theorem 3.3, for p = o and p = 1 we get the following estimates
form=1,2,3,4:

/olf(t)dt—é {f(0)+4f (é) +f(l)} ’ =Gl 17

where
C(ll)—i C(21)—L C(31)—L Cs(4,1) 1
ST TR TR Y T s760 ST T 2880
Cs(lvoo)zgv CS(Zaw):ﬁ, CS(3,°°)_ﬂ7 CS(4700):m
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3.1.3 Dual Simpson’s formula

For x = 1/4, as a special case dual Euler-Simpson’s formulae are obtained. Results of this
subsection are published in [26]. We have:

o433/

1’ Tz%() i GBS (0) [fH (1) — r* V(o)
k=2

FA I

> FQ%( ) GPS(1)—GPS(0), k>1 and 1€R.

[\S]

GP(1) = G2 (1 |t

N

The remainder RY>, ,(f) = R2Q: " »(1/4,f), according to Theorem 3.2, can be written
as:

0
RS (f) = 312
1
T32nt2)!

(2—1—2n _2)an+2 f(2n+1)(l) _f(2n+1)(0) , 0c [07 l]
REYL(f) = (141 =27 "By f*2(m), n€0,1]

Formula (3.19) produces classical dual Simpson’s formula:

/olf(t)d’_% {Zf (%) _f(%> +2f (%)] = ﬁf@)(n). (3.38)

Estimate of error for p =ecand p =1 are form =1,2,3,4:

a5 2 (5) -1 (5) +20 (3)]| < cmtmar 1

where
5 5 1 7
Cps(1,1) = TR Cps(2,1) = 34’ , Cps(3,1) = 576 , Cps(4,1) = 23040°
5 1 5 1
Cps(1,) = 2’ Cps(2,) = TR Cps(3,) = 1296’ Cps(4,) = 152"

3.1.4 Maclaurin’s formula

The next interesting special case is Maclaurin’s formula, obtained for x = 1/6. Results of
this subsection are published in [24]. We have:

o184 () () D)
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F,f”(z):FkQ3 (— t)sz()—Gy(O), k>1 and t€R.

For n > 2, the remainder R} ,(f) can be written as:

M _, 2=27" (9"~ 1)Bouso
R2n+2(f) - 9 8(2n+2)'

(1=271220) (9~ — 1)By,.
8(2n+2)!

Formula (3.19) becomes Maclaurin’s formula:

=g ar(5) +2r(3) +2r (§)) = sz /o e

Estimates of error for p = 1 and p = oo are:

‘/Olf(l‘)dt—% {3f (é) +2f G) +3f (%)] ‘ < Cy(m,q)- £,

[0 (1) - 1D (0)], 6 € [0,1]

Ry (f) = e D(m),  nelo]

where
25 1 1 7
5 1 1 1
CM(17°°) - ﬁ? CM(27°°) - 57 CM(37°°) - ﬁ? CM(47°°) - %

3.1.5 Hermite-Hadamard-type inequality for the 3-point
quadrature formulae

The well-known Hermite-Hadamard-type inequality states that: for any convex function
f:10,1] — R, the following pair of inequalities holds

()/de f()

If f is concave, inequalities are reversed. The aim of this subsection is to provide this type
of inequality for the general 3-point quadrature formulae. The main result states:

Theorem 3.6 Ler f : [0,1] — R be 4-convex and such that f*) is continuous on [0,1].
Then, for x € [é, %)

m (f(x)+z432(x)f (%) +/01 —x)>

/f 6<f(0)+4f<%>+f(1)). (3.40)
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If f is 4-concave, the inequalities are reversed.

Proof. For a 4-convex function f, we have f (4) > 0, so the statement follows easily from
(3.19). |

The following corollaries give comparison between dual Simpson’s and Simpson’s
rule, Maclaurin’s and Simpson’s rule, and finally, the Gauss 2-point and Simpson’s rule.

Corollary 3.3 Ler f:[0,1] — R be 4-convex and such that f*) is continuous on [0, 1].
Then

o (3)-(2) ()= L0 =0 (3) )

If f is 4-concave, the inequalities are reversed.

Proof. Follows from (3.40) for x =1/4. O

Corollary 3.4 Lez f: [0,1] — R be 4-convex and such that f'*) is continuous on [0,1].
Then

: <3f<%) +2f<%> ey (%)) < /Olf(r>dt < (f(0>+4f G) +f(1)) .

If f is 4-concave, the inequalities are reversed.

Proof. Follows from (3.40) for x = 1/6. a

Corollary 3.5 Lez f : [0,1] — R be 4-convex and such that f®) is continuous on [0,1].
Then

%f<3_6ﬁ> +%f<3+6ﬁ> S/olf(’)‘” : é<f(0)+4f<%) +f(l))'

If f is 4-concave, the inequalities are reversed.

Proof. Follows from (3.40) for x = 1/2 —/3/6 < By(x) = 0. O

3.1.6 Bullen-Simpson’s inequality

For any function f : [0,1] — R, with continuous fourth derivative f*) on [0,1] and
fW(z) >0, €10,1], we have

P (3) () (5)]

IN

JA flyar
< é {f(0)+4f<%) +f(1)} (341

N
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In the case when f*) exists, the condition f(4)(z) >0, r € [0,1] is equivalent to the
requirement that f is 4-convex function on [0, 1]. However, a function f may be 4-convex
although f 4) does not exist.

P. S. Bullen in [11] proved that, if f is 4-convex, then (3.41) is valid. Moreover, he
proved that the dual Simpson’s quadrature rule is more accurate than the Simpson’s quadra-
ture rule, that is we have

0< /Olﬂr)dt—% [ZfG) —f(%) 2f(§)]
< [f(0)+4f (%) +f<1>} -/ o, (3.42)

provided f is 4-convex. We shall call this inequality Bullen-Simpson’s inequality.

The aim of this section is to establish a generalization of the inequalities (3.41) and
(3.42) for a class of (2r)-convex functions and also to obtain some estimates for the abso-
lute value of difference between the absolute value of error in the dual Simpson’s quadra-
ture rule and the absolute value of error in the Simpson’s quadrature rule. We shall make
use of the following five-point quadrature formula

/Olf(t)dm % [f(o)+4f (%) +2f<%) +4f<%> +f(1)] :

obtained by adding the Simpson’s and the dual Simpson’s quadrature formulae. It is suit-
able for our purposes to rewrite the inequality (3.41) in the form

/Olf(t)dt < % [.f(0)+4f (%) +2f (%) +4f (%) +f(1)] (3.43)

As we mentioned earlier, this inequality is valid for any 4-convex function f and we call it
the Bullen-Simpson’s inequality. The results from this section are published in [86].
We consider the sequences of functions (G (7))r>1 and (Fi(7))i> defined forz € R by

Gi(t) = Gy(1) + GP°(1), Filt) == F (1) + 5 (1),

where G} (1), GP5(t), F3(t) and FPS(t) are defined as in Section 3.1.2. and Section 3.1.3.,
respectively. So we have

Gi1(t)=F(t) =B (1 —t)+2B] G—t) + B} (%—t) +2Bj (%—I)

and, for k > 2,

1 1 3
Gi(t) = Bi(1 —1)+2B; (Z_t> +B; (E_t> +2B; (Z_t>’

where

. 1 1 3
B, :=Gi(0) =By + 2B | - By | = 2B, [ = ).
k (0) K+ k<4>+ k<2)+ k<4)
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Let f:[0,1] — R be such that £~ exists on [0, 1] for some n > 1. We introduce the
following notation

DO,1):= 112 {f(0)+4f(%> vy (%) +4f<%) +f(1)]

Further, we define To(f) = T1 (f) := 0 and, for 2 < m < [n/2],

Tu(f) =5 [T (N + T2 ()],

where T (f) and T25(f) are given in Section 3.1.2 and Section 3.1.3, respectively. It is
easy to see that

i —2—2k —4.27By, [f@k—l)(l)— =D ] (3.44)

In the next lemma we establish two formulae which play the key role here. We call them
Bullen-Simpson formulae of Euler type.

Lemma 3.2 Ler f:[0,1] — R be such that f<”’1> is a continuous function of bounded
variation on [0, 1], for some n > 1. Then we have

[ =po,0 + 1.0 + 20, (345)
where r = [n/2] and
1 1
1 _ n—1
W) = g , GO0
Also,
[ s =001+ 1)+ 20 (3.46)
where s =[(n—1)/2] and
2(f) = —— / B (a0,
n \v 6 (I’l') 0 g
Proof. We multiply Euler-Simpson’s and dual Euler-Simpson’s formulae by the factor 1/2
and then add them up to obtain the identities (3.45) and (3.46). O

Remark 3.6 The interval [0, 1] is used for simplicity and involves no loss in generality.
The results which follow will be applied, without comment, to any interval that is conve-
nient.

Namely it is easy to transform the identities (3.45) and (3.46) to the identities which hold
for any function f : [a,b] — R such that £"~1) is a continuous function of bounded varia-
tion on [a, b], for some n > 1. We get

/ F(t)dt = D(a,b) + T,(f) + (’;(_n‘f)) /abGn (2:‘;) () (3.47)
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and

/abf(t)dt =D(a,b) +T;(f) + (z;(-;))n /;F,, (;‘TZ) dr=), (3.48)

where

D(a,b) = b1_2“ [f(a)+4 (3“:b) +2 (“;b> +4 (“tﬁb) +f(b)} :

while 7o(f) = Ty (f) =0 and

m —a 2k
) = 53 3, U2 M1 =42 N [ 0) - 2 V(@)
k=2 .

for2 <m<[n/2].

Now, we use Bullen-Simpson formulae of Euler type established in Lemma 3.2 to
obtain a generalization of Bullen-Simpson’s inequality for (2r)-convex functions. First,
we need some properties of the functions Gy (r) and Fi (7).

Since By (t) =t — (1/2), we have

—6r+1/2, t€10,1/4]
—61+5/2, te(1/4,1/2]
—6t+7/2, te€(1/2,3/4] "
—6r+11/2, 1 € (3/4,1]

Gi(r) =Fi(r) = (3.49)

Further, for k > 2 the functions B () are periodic with period 1 and continuous. We have
Gi(0) = Gx(1/2) = G¢(1) = By and F(0) = Fi(1/2) = Fi(1) =0.

Moreover, it is enough to know the values of the functions G () and Fi(¢), kK > 2 only on
the interval [0, 1/2] since for 0 <7 < 1/2 we have

= B} ! t)+2B; 3 t)+Bx(1—1)+2B; ! t
k 2 k 4 k k 4

= Gk(l).

For k=2 and k = 3 we have By(t) =1> — 1+ (1/6) and B3(t) = 1> — (3/2)t>+ (1/2)t, s0
that by direct calculation we get By = B3 = 0 and

B 62—t t€10,1/4]
GZ(I)_FZ(I)_{6t2—5t+17te(1/471/2] ' (3.50)
—613 +(3/2)1%, t€[0,1/4]
Gs(t) =F5(1) = { 63+ (15/2)2 =31+ (3/8), 1€ (1/4,1/2] - 3D
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The Bernoulli polynomials have the property of symmetry with respect to %7 that is [1,
23.1.8]

Bi(1—1)=(—1)*B(r), t €R, k> 1. (3.52)
Also, we have
1
Bi (1) =By (0) =By, k>2, Bi(1) = —B1(0) = 3
and
By 1=0,r>2.
This implies
By 1 =0,r>2 (3.53)
and

- 1 1
B2r :B2r+4B2r (Z) +B2r (E) , F 2 1.

Also, we have [1, 23.1.21, 23.1.22]

() =02 () = 212

which gives the formula

By =2-27%(4.27 —1)By,, r > 1. (3.54)
Now, by (3.53) we have
FZr—l(t) = G2r—1(t)7 r>1. (3.55)
Also,
For(t) = Gop(1) = 2272 (4272 — 1)By,, r > 1. (3.56)

Further, as we pointed out earlier, the points O and % are the zeros of Fy(r), k > 2. As we
shall see below, 0 and 1 are the only zeros of Fi(t) in [0,1] for k = 2r, r > 1, while for
k=2r—1,r>2wehave F5,_1 (§) = Ga_1 (1) = 0. We shall see that 0, § and } are the
only zeros of F>,_1(t) = Go,—1(2), in [0, %] for r > 2. Also, note that for » > 1 we have

1 - .
G2+ (0) = Gar (5) =By, =2-27"(4-27"—1)By,

and
1 1 1 —2r —2r
G2r Z = 2B2,~+232r Z +2B2,~ E =22 (2 -2 + 1)B2r7

while

1 3
P, (-) = Gy, (Z) — By, =4-272"(1-272)By,. (3.57)
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Lemma 3.3 For k> 2 we have

Gy (% —t) = (—D*Gy(r), 0<r <

and

Fy (% —t) =(-D)*FR@), 0<r < %

Proof. As the functions B} (t) are periodic with period 1 and continuous for k > 2, we get
these two identities. O

Note that the identities established in Lemma 3.3 are valid for k = 1, too, except at the
1

points 0, ; and %
Lemma 3.4 For r > 2 the function Ga,—i(t) has no zeros in the interval (0, %) . The sign
of this function is determined by

1
(=1)"Ga—1(1) >0,0<1t < 1

Proof. For r =2, G3(t) is given by (3.51) and it is easy to see that

1

G3(1)>0,0<r< 7 (3.58)
Thus, our assertion is true for » = 2. Now, using a simple induction we prove that can
not have a zero inside the interval (0, 1) . Further, if Go,_3(t) >0, 0 <t < 1, then from
Ghy_ 1 (t) = (2k—1)(2k—2)Go_3(¢) it follows that Gy, (t) is convex on (0, 1) and hence
Go—1(1) <0,0<t < %7 while in the case when Gy,_3(7) < 0,0 <t < ‘l‘ we have that
Goy—1(1) is concave and hence Gy, (1) > 0,0 <1 < %. Since (3.58) is valid we conclude
that

1
(=1)'Gar1 () >0,0<1 < 1

Corollary 3.6 For r > 2 the functions (—1) "' Fy,.(t) and (—1)"'G,,(t) are strictly in-

creasing on the interval (0, %), and strictly decreasing on the interval (%, %) Conse-

quently, 0 and % are the only zeros of F».(t) in the interval [O, %] and

max |Fa, (1) =4-272(1=272)|By|, r> 1.
t€[0,1]

Also, we have

max |Go (1) =2-272(2-272 +1) |Bay|, r > 1.
te[m]l 20(1)] ( ) |Ba|, r>
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Proof. We have

/

[(~1) " o) = [(~1) ' Gorl0)] = 2r(—~1) Gy 1)

and (—1)"Ga,—1(t) > 0for0 <t < %7byLemma3 4. Thus, (—1) " 1F,(t) and (— 1)1 Gy, (1)

are strictly increasing on the interval (0,1). Also, by Lemma 3.3, we have Fy, (3 —1) =
P (t),0<t < Yand Gy, (4 —1) = Gar(t), 0 <t < %, which implies that (— )r 'F,(t) an d
(—1)1Ga(t ) are strictly decreasing on the 1nterval ( T 2) Further, F5,(0) = F, (%)

which implies that |F,(¢)| achieves its maximum at ¢ = }, that is

max F0)] = [P (3) ' — 42 (127 By
Also,
max |G (1) = max{|G2r (0)|,|Gar <l> ‘} =2.27% (1 +2-2’2") |B2, |,
1€[0,1] 4
which completes the proof. |

Corollary 3.7 Assume r > 2. Then we have

1 8_2—2r 1_2—2r
[H6s =220 g

Also, we have

1
[0 = 1B =227 (142
0

and .
/ |Gar(r)] de <2|Bor| = 4-27 (1-4-27%) By .
0

Proof. Using Lemma 3.3, Lemma 3.4 we get
ol
=4|—=5- G (1)l

1
Ga, dr = Ga,
/0| 21t | / 21 2r

2 1 8.272r (1 =272
= - G2r (_> _GZr (0)‘ = ( ) |BZr|7
r 4 r

which proves the first assertion. By the Corollary 3.6, F,(¢) does not change the sign on
the interval (0, 1). Therefore, using (3.56) we get

=2 /01/2 [Go(t) — By ] dr

=|By| =2-27%(1—-4-27%) By /.

1/2
/|F2, )| dr = ’0 Fa(1)dt

1 12 Ly
=2|—— Gy, — =By,
‘ 2r+1 2+1()|0 2 2
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This proves the second assertion. Finally, we use (3.56) again and the triangle inequality
to obtain the third formula. O

In the following discussion we assume that f : [0,1] — R has a continuous derivative
of order n, for some n > 1. In this case we can use remainders 7. (f) and 72(f) as

1
T, (f) = ﬁ /O G (s) £ (s)ds (3.59)

and . 1
T, (f) = 6(n!)/0 Fo(s)£™ (s)ds. (3.60)

Lemma 3.5 If f: [0,1] — R is such that f*) is continuous on [0,1], for some r > 2, then
there exists a point 1 € [0, 1] such that

G (f) = ﬁz‘z’(l — 427 By (). (3.61)

Proof. Using (3.60) with n = 2r, we can rewrite 73, (f) as

1
7,.(f) = (—l)r_lmfn (3.62)
where .
hi= [ B ) s (.69

From Corollary 3.6 it follows that (—1)’_1F2,(s) >0, 0 <s <1 and the claim follows
from the mean value theorem for integrals and Corollary 3.81. O

Now, we prove the main result:

Theorem 3.7 Assume f : [0,1] — R is such that f?") is continuous on [0,1], for some
r > 2. If f is (2r)-convex function, then for even r we have

o< [row—g 2r(5) -1 (3)+2(3)] -2

< é{f(0)+4f<%) +f(l)] +T,.S,1—/01f(t)dt7 (3.64)

N

while for odd r we have reversed inequalities in (3.64).

Proof. Let us denote by LHS and RHS respectively the left hand side and the right hand
side in the second inequality in (3.64). Then we have

LHS = p3,(f)

and
RHS — LHS = —273.(f),
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For dual Euler-Simpson’s formula is proved that, under given assumption on f, there exists
apoint & € [0,1] such that

1 —zr —zr r
P, (f) = D (1=2-27%) (1—4-272)By, [P (). (3.65)
Also by Lemma 3.5 we know that
2 —4Zr —l r
“26(f) = =32 (=42 B P (), (3.66)

for some point 1 € [0, 1]. Finally, we know that [1, 23.1.15]
(=1)"'By, >0, r=1,2,---. (3.67)

Now, if f is (2r)-convex function, then f")(£) >0 and £>")(n) > 0 so that using (3.65),
(3.66) and (3.67) we get the inequalities

LHS >0, RHS — LHS > 0, when r is even;
LHS <0, RHS— LHS <0, when r is odd.

This proves our assertions. |

Remark 3.7 For r = 2 formula (3.61) reduces to

1
Tf(f) = —m.f<4)(n)~

Theorem 3.8 Assume f : [0,1] — R is such that f*") is continuous on [0,1], for some
r > 2. If f is either (2r)-convex or (2r)-concave function, then there exists a point ¥ € [0, 1]
such that

% () =ﬂﬁ2*2"<1—2*2")32r A ORS E O] B CES)

Proof. With (3.62) and using (3.57) we get (3.68). O

Remark 3.8 If we approximate jol f(t)dt by
IZr(f) = D(Ov 1) + Tr—l(.f)v

then the next approximation will be I+ (f). The difference

AZr(f) = 12r+2(f) - IZr(f)

is equal to the last term in I, (f), that is

Aoy (f) =

—2r(1 _q4.n—2r (2r-1) _ p(2r-1)
st =42 By [0 W) - /0]

We see that, under the assumptions of Theorem 3.8,

20 (1—=2"2%
7, (f) = IETZ,%)AZr(f)
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Theorem 3.9 Assume f : [0,1] — R is such that f*"+2) is continuous on [0,1], for some
r> 2. If f is either (2r)-convex and (2r+2)-convex or (2r)-concave and (2r +2)-concave
function, then the remainder 722r( f) has the same sign as the first neglected term Ay, (f)
and

|122r(f)| < |A2r(f)| :

Proof. We have

that is
Mor(f) = B (f) = Ta () (3.69)
By (3.60) we have

and
1 1
“Ball) = gy ) PRl s

It follows that
|3,(f)] < 182:(f)] and [=13,.5(f)| < [A2r(f)]-
|
Now, we use Bullen-Simpson formulae of Euler type established in Lemma 3.2 to
estimate the absolute value of difference between the absolute value of error in the dual
Simpson’s quadrature rule and the absolute value of error in the Simpson’s quadrature

rule. We do this by proving a number of inequalities for various classes of functions.
First, let us denote

1

Rsi= [ g0 ¢ |10)+ar (5) +0)

L3 (2) (2) )]

By the triangle inequality we have

and

||Rp| —|Rs|| < |Rp +Rs|.

Now, if we define R := Rp + Rg, then

}23: /Olf(t)dt_%[f(0)+4f<%)+2f<%>+4f<%>+f(l)}

- | ' f()d - D(0, 1), (3.70)
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Theorem 3.10 Ler f: [0,1] — R be such thar "~V is an L-Lipschitzian function on
[0,1] for some n > 1.
Ifn=2r—1,r>2, then

1 1 1
[ 7000 -14)| < gty [ Gl
N=2r(1 _n—2r
= %wzrlt. (3.71)
Ifn=2rr>2, then
1 1 1
[ a0 -1 < g [0l
277(1—4.27%)
=@ |Bay| - L (3.72)

and also

/1f(t)dt—D(0 l)—T(f)‘ < ;/1|G (1))de - L
0 ) r = 6(27‘)' 0 2r
2.2727(1—-4.27%)

Boy|- L. 7
< 320! |Bar| (3.73)
Proof. For any integrable function @ : [0,1] — R we have
1 1
[ ewar o)< [ewla-L. (3.74)
0 0

since f"~1) is L-Lipschitzian function. Applying (3.74) with ®(t) = Ga,_1 (), we get

1 1
< — - L.
= 6(2r—1)!/o (Gar-a (1) dr- L

Applying the above inequality and the identity (3.46), we get the inequality in (3.71).
Similarly, we can apply the inequality (3.74) with ®(z) = F,,(¢) and again the identity
(3.46) to get the inequality in (3.72). Finally, applying (3.74) with ®(z) = G, (¢) and the
identity (3.45), we get the first inequality in (3.73). The equalities in (3.71) and (3.72) and
the second inequality in (3.73) follow from Corollary 3.7. o

1
‘ m /o Gor_1 (1)df =2 (1)

Corollary 3.8 Ler f:[0,1] — R be such that f""~V) is an L-Lipschitzian function on [0, 1]
for somen > 1.
Ifn=2r—1,r>2, then

16-2727(1 —27%)
3(2r)!

1 1
IR—2T—1(f)] < m/o |Gop1(t)|dr - L= |Bar|- L. (3.75)
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Ifn=2rr>2,then

2.272(1—4.27%)

R=2T, \(f |,3 / [P (1) - L = Byl-L  (3.76)

3(2r)!
and also
R—2T,(f)| < —o— /|Gy OarL< 27042 b G
3(2 3(2r)!
Proof. Follows from Theorem 3.10 and (3.70). O

Corollary 3.9 Ler f :[0,1] — R be such that f" is L-Lipschitzian on [0,1]. Then

1

1
(O’l)' - 4608  IRI < 2304L

If " is L-Lipschitzian on [0, 1], then

L.

1)d Rl< ——
f " )' a6080 1= 33030

Proof. The first pair of inequalities follow from (3.71)and (3.75) with r = 2, while the
second pair follow from (3.72) and (3.76) with r = 2. O

Remark 3.9 If f is L-Lipschitzian on [0, 1], then, as above

‘/“f' 1)dt — D(0,1) ‘ /”|Gl )|dr - L.
[1Gi@a=

! 5 5
_ < . <= .L
Aﬂmtmmﬂ72mmw%L

Since

we get

If £’ is L-Lipschitzian on [0, 1], then

‘/Olf(t)dt—D(O,l)‘ < %/01 |F>(t)|dt - L.

Since

1 1
F =_
| IRl = .

1 1

we get

— 162
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Remark 3.10 Suppose that f : [0, 1] — R is such that f(*) exists and is bounded on [0, 1],
for some n > 1 In this case we have for all 7,5 € [0, 1]

PO = < Ul =l

which means that "~ is || £ | .-Lipschitzian function on [0,1]. Therefore, the in-
equalities established in Theorem 3.10 hold with L = || f(")||... Consequently, under ap-
propriate assumptions on f, the inequalities from Corollary 3.9 and Remark 3.9 hold with

L= loos 15" lleos 1" oo 179 e

Theorem 3.11 Let f: [0,1] — R be such that £~ is a continuous function of bounded
variation on [0, 1] for some n > 1.
Ifn=2r—1,r>2, then

‘/f 1)dt = D(0,1) — rl(f>’ 6(2r1_1) ax |Gar- OV (F272). 3.78)

Ifn=2rr>2, then

max, [Far ()] Vo (FPY)

s -po.n 10| <
22— —Zr)

(2r)
((; Bl - Vg (FO ). (3.79)

Also, we have
(Zr) tE[O 1]

_2 2r(2.2727 4 1)
3(2r)!

1
0 f(l‘)dl—D(()?l)—Tr(f)‘ < g 1 X| 2r( )|V01(f(2r—1))
|Bar| - Vg (F*Y). (3.80)

Here V) (f"=1)) denotes the total variation of f"=") on [0, 1].

Proof. If @ :[0,1] — R is bounded on [0,1] and the Riemann-Stieltjes integral
Jo @()df"=V(r) exists, then

/q> (H)df"N(r)

We apply this estimate to @(7) = G, () to obtain

< max |®(1)]- Vg (f ). (3.81)
1€[0,1]

max |Gar—1 ()] Vo (F22),

1 1 1
[ G () dfP ()| € — m
’6(2;’—1)!/0 21 (1)df ()*6( 2r—1)!refo.l
which is just the inequality (3.78), because of the identity (3.46). Similarly, we can apply
the estimate (3.81) with @(z) = F, () and use the identity (3.46) and Corollary 3.6 to
obtain (3.79). Finally, (3.80) follows from (3.81) with ®(r) = Gy, (¢), the identity (3.45)
and Corollary 3.6. O
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Corollary 3.10 Ler f: [0,1] — R be such that £ is a continuous function of bounded
variation on [0, 1] for some n > 1.
Ifn=2r—1,r>2, then

1 .
[R=2T ()] < 5,y max [Gor- O]V (F22). (3.82)
Ifn=2r,r>2, then
_ ! yl ()
IR—2T,1(f)] < 3 1]I Far(0)|- Vo (f77)
4_2—2r 2 2r
= #mﬂ Va (=1, (3.83)

Also, we have

1
R _ 27’;. . 1 (27‘71)
IR=2T1)| < 557 max 1o ()] V3 (/")
2.2727(2.2727 41 -
= 3( i o Vi (7). (3.84)
Proof. Follows from Theorem 3.11 and (3.70). O

Corollary 3.11 Ler f: [0,1] — R be such that f" is a continuous function of bounded
variation on [0,1]. Then

[ 700 D0.1)] < WU RIS W)

If f"" is a continuous function of bounded variation on [0, 1], then

! 1 111 1 111
[ 70 0u)| < WU, IRI< v o)

Proof. From (3.51), we get

G3(t)| = ==

E&’ﬁ' 301 ==,
so that the first pair of inequalities follow from (3.78) and (3.82) with r = 2. The second
pair of inequalities follow from (3.79) and (3.83) with r = 2. O

Remark 3.11 If f is a continuous function of bounded variation on [0, 1], then, as above

1
DO.1)| < ¢ max 610 V()

Since

Gi(1)| =1
tl;l[gﬁi]l (1) =1,
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we get

[ 700 -D0.0) < g Vi I < 30
0

If f/ is a continuous function of bounded variation on [0, 1], then

! 1 1 /
[ s, 1>| < 15 max 0] V(1)

Since

(o) = 1
max =,
1€[0,1] 2 8

we get

1 1 1
[ 7000000, < g Vi) ana R < v )

Remark 3.12 Suppose that £ : [0,1] — R is such that f") € L;[0,1] for some n > 1 In
this case f"~1) is a continuous function of bounded variation on [0,1] and we have

1
W) =[] a =17,
Therefore, the inequalities established in Theorem 3.11 hold with ||f]|; in place of
VOl (f"=1). However, a similar observation can be made for the results of Corollary 3.11
and Remark 3.11.

Theorem 3.12 Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q < oo,
é—i—é =1 or p=oo,q=1.Let f:[0,1] — R be such that f") € Lp[0,1] for some n > 1.
Ifn=2r—1,r>1, then

1
/0 f(t)dt —D(0,1) —Trl(f)’ <K(2r—1,p)| P, (3.85)

Ifn=2rr>1, then

1
[ 70801~ T1(5)| <K Crp)lF 356
Also, we have |
[ 700 -00.0) 14| < K2R 387
Here .
1 1 q
k)= o | [ 160l
and

1

K*(n,p) = % UOI IFn(t)|th} "
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Proof. Applying the Holder inequality we have

1

1
1 1 q
P — q =1 = _ (2r—1)
< =T [/0 Garr (1) dr] 0] = x@r=1p1re 0,

The above estimate is just (3.85), by the identity (3.47). The inequalities (3.86) and (3.87)
are obtained in the same manner from (3.46) and (3.45), respectively. O

Corollary 3.12 Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q < oo,
%—F é =1 or p=e,g=1.Let f:]0,1] — R be integrable function such that e L,[0,1]
for somen > 1.

Ifn=2r—1,r>1, then

IR—2T,1(f)| < 2K(2r— 1,p) |l f* V.

Ifn=2rr>1, then
IR —2T,_1(f)| < 2K*(2r,p) | £ -

Also, we have
IR—2T,(f)| < 2K(2r,p)|f"]|-

Proof. Follows from Theorem 3.12 and (3.70). O

Remark 3.13 Note that K*(1,p) =K (1, p), for 1 < p <eo, since G (r) = Fi(t). Also, for
1 < p < oo we can easily calculate K(1, p). We get

1

24271
ko) =¢|

3(1+q)

3
, 1 < p<oo.

At the end of this section we prove an interesting Griiss type inequality related to Bullen-
Simpson’s identity (3.45). To do this we use the following variant of the key technical
result from the paper [83]:

Lemma 3.6 Ler F,G : [0,1] — R be two integrable functions. If, for some constants

m,M € R
m<F(t)<M, 0<1<1
and |
/G(t)dt:O,
0
then | |
M_
/F(t)G(t)dt < 2’”/ G(1)|d. (3.88)
0 0
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Theorem 3.13 Suppose that f : [0,1] — R is such that f (") exists and is integrable on

[0,1], for some n > 1. Assume that
my < fO(1) <M, 0<1 <1,

for some constants m,, and M,,. Then

1
cn:/ 1Go(0)]dt, > 1.
0
Moreover, if n =2r—1,r > 2, then

4.27(1-27%)
3(2r)!

[ a0 -7100)| < Barl (Mo — 1),

Proof. We can rewrite the identity (3.45) in the form
1 1 1
t)dt —D(0,1) — T :—/ F(1)G(t)dt,
|} #0010 ~7(5) = o [T 060

F()=f"(), Gt)=G,(t),0<t < 1.

In [27, Lemma 2 (i)] it was proved that for all » > 1 and for every y € R

1
/ B:;()/—t)dt = 07
0

where

so that we have

/1 G(r)dr

/[ (1—1)+2B, (Z_t)+Bn(§_t>+ZBn(4 t)}dt—o.

(3.89)

(3.90)

(3.91)

Thus, we can apply (3.88) to the integral in the right hand side of (3.91) and (3.89) follows

immediately. The inequality (3.90) follows from (3.89) and Corollary 3.7.

Remark 3.14 Forn =1 and n = 2 we have already calculated

/|G1 )|di = /|G2 )|dr =

5

‘/Olf(t)dt—D(OJ)‘ < (M —m)

so that we have

0O
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and

— (M —mo).

1]

For n = 3 we apply (3.90) with r = 2 to get the inequality

‘/()1.f(t)dz—D(O,1)‘ < ﬁ(M:; —m3).

3.2 Corrected 3-point quadrature formulae

The aim of this section is to derive general 3-point quadrature formulae with a degree of
exactness higher than that which the formulae from the previous section had. Observe
identity (3.1) again. Imposing the condition G, (x,0) = 0 led us to a family of quadrature
formulae with a degree of exactness equal to 3 (assuming the values of the derivatives
of order 3 or higher are not included in the quadrature; otherwise, an arbitrary degree of
exactness can be achieved).

Now, impose a condition G4(x,0) = O (for function Gy(x,z) defined in (3.3) and
x € ]0,1/2)). Formulae thus obtained will include the values of the first derivative at the
end points of the interval and we will call them corrected quadrature formulae. This name
was first introduced in [117]. The weight is now of the form:

7
30(2x — 1)2(—4x2 +4x+1)

we(x) = (3.92)

Let £ : [0,1] — R be such that "1 is continuous of bounded variation on [0, 1] for some
n > 1. Similarly as before, we now obtain:

/lf(t)dt—Qc <x, L 1—x> +TEB ()
0 2

If f (21) is continuous of bounded variation on [0,1] for some n > 0, then:

SEen)dfe V(). (3.93)

1 1 1
/0 f(t)dt — Oc (9@ 2 1—x> +13,2 (x) = m/ G52 (x.0)df (1), (3.94)

and finally, if f (2n+1) i5 continuous of bounded variation on [0,1] for some n > 0, then:

! 1
/()f(t)dt—Qc(L X l—x>+T2le3( _ 2n+2 /in%xtdfz"ﬂ(),
(3.95)
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where

Oc (x, %, l—x) (3.96)

! 1
~ 302 — 1)2(—4x2—|—4x+ D [7f(x> —480B4(x) f (5) +7£(1 —x)]

CQ3 i

CQ3 70) [f(2k71)(1) _f-(2k71)(0)]

10x> — 10x+ 1 , ,
- 60(—4x2+4x+1)[f( )= /(0]

(3.97)

G52 (x,0) [F* V(1) — r#D(0)]

2k
GSP (x,1) = wc(x)[Bk (x—1)+B; (1 —x—1)] + (1 —2w(x))B} (1/2—1),
FEP 1) =GP (x,0) -GS (x,0), k>1, 1€R,

and w,(x) as in (3.92).

What follows is a lemma which is, similarly as before, key for obtaining the rest of the
results in this section.

Lemma 3.7 Forx e {0 5 — ‘{—1—05} U [é, é) and k > 2, Gg,gfl (x,t) has no zeros in variable

t on (0,1/2). The sign of the function is determined by:
(—1! G2 (x,1) >0 for x€[0,1/2—V15/10],
(~1f G5, (x,1) >0 for x€[1/6,1/2).

Proof. We start from GCQ and claim that GCQ3 (x,1) has constant sign for x € [0, I- \{—1_05}

U [6, 2) We will show that it is increasing in x for x € [0,1/2) and after considering its
behavior at the end points, the claim will follow. For 0 <1 < x < 1/2, we have

aG§Q3(xt)_ﬁ 4(1-29
dx 3 (4x2—4x—1)?

so our statement is true. For 0 < x <7 < 1/2, we have

Gs% 14x-(1—2)
o ) = 3 — a1y 8

where g(x,1) = 413 (x — 1) + 2(—8x> + 4x? + 3) + tx(8x> — 4x — 3) + x> + 2x> — 4x*. The
zeros of %(x,t) aret) = 1/2 and 1, = % and it is elementary to see that 7, < x.
Also, it is very simple to check that g(x,0) > 0 and g(x,1/2) > 0, so we have g(x,z) > 0.

Thus, it follows that G§Q3 (x,1) is increasing in x.
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Since GS%° (4= 2.1) < 0 (cf. [59]) and G5 (4,1) > 0 (ef. [55)) fort € (0,1/2),

we see that G52 (x,r) < 0 for x € [075 - £} and G5 (x,1) > 0 for x € [},1). So,

10 672
G?Q% (x,7) has constant sign, for an adequate choice of x, and our statement is therefore

valid for kK = 2. Assuming the opposite, the assertion follows for all k > 3 by induction.

Knowing the sign of GSCQ3 (x,t) allows us to see whether GCQ (x,t) is convex or con-
cave on (0,1/2). As it has no zeros there, that is enough to determme its sign. With this
procedure we can determine the sign of ngQH (x,t) for k > 4 which completes the proof.
O

Remark 3.15 Note that for x € (% - \{—1_5, %), G§Q3 (x,¢) has at least one zero in z on
(0,1/2). Namely, we have

9GE23 2GS
GSP (x,0) = =—(1,0) = —3—(x,0) = GS%(x,1/2) =0 (3.98)

and it is not difficult to see that

. (1_\/6 1) PRCA Plesa

3 W,g 8[3 (x,0)>0 & ot (X,1/2)>0

2652 Plerta . .
From —— (x,1/2) > 0 we conclude that —— (x,) > 0 in some neighborhood of r = 1/2,

and then from GSCQ3 (x,1/2) = 0 it follows that GCQ3 (x,#) < 0 in that neighborhood. On
3003 03
the other hand, from s (x,0) > 0 we conclude that —3— A G —3—(x,¢) > 0 in some neighbor-

Z -5
ot o3
hood of t = 0. Similarly as above, using (3.98), we conclude that GCQ%( t) >0 in this

neighborhood of 0. Therefore, it is now clear that for x € (l - 1—‘/; é) GCQ3( ,1) has at

least one zero in (0,1/2).

Remark 3.16 Similarly as for the function sz o k > 1 in the previous section, we con-

clude that for k > 2 and x € [0,1/2 —+/15/10], the function (—l)szck%z(x 1) is strictly

increasing in variable 7 on (0,1/2) and strictly decreasing on (1/2,1). Since F2k+2 (x,0)
= cm;ffz( 1) =0, it has constant sign on (0, 1) and attains its maximal value at 7 = 1/2.
Analogous statement, but with the opposite sign, is valid in the case when x € [1/6,1/2).

Denote by RS, (x, ) the right-hand side of (3.95) and let the weight we(x) be as in
(3.92).

Theorem 3.14 Ler f:[0,1] — R be such that f*"*+2) is continuous on [0,1] for some

n >3 and let x € [0,%— %} U [%,%) If f(zn) and f<2”+2) have the same constant

sign on [0, 1], then the remainder Rg?3 (x, f) has the same sign as the first neglected term
ACO3
on (X, f) where

ASP (x, ) == RSP (x, f) — RSZ (x, ) =

- )GC@( x,0) [0 (1) = f2=D(0)).
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CQ3 co3 CQ3 cQo3
Furthermore, |R2,§2 (x, )] < |A2,§2 (x,f)| and |R2,?+2(x7f)| < |A2nQ (x, f)-

Proof. Analogous to the proof of Theorem 3.1. O

Theorem 3.15 Ler f:[0,1] — R be such that f*"+2) is continuous on [0,1] for some
n>2andletx € [O7 % — g] U [é7 %) Then there exists & € [0, 1] such that

G52 (x,0
R ) = - S22 ) 399)

where
G52, (x,0) = 2we(x) [Bansa(x) + (1 =27 1By 0] — (1-272""H)By, 5. (3.100)

If. in addition, f?"2) has constant sign on [0, 1), then there exists 6 € [0,1] such that

6 1
CO3 _ CQO3 2n+1 2n+1
Ryt (x, f) = szn+2 (x7 E) [f( J(1) = £ >(0)} (3.101)
where
Fy. 2 (x,1/2) = 2we(x) [Bansa (1/2 = x) = Baysa(x) — (2= 272"71) By
+(2-2"""Y By (3.102)
Proof. Analogous to the proof of Theorem 3.2. O

When (3.99) is applied to the remainder in (3.95) for n = 2, the following formula is
produced:

1 1 10X —10x+1 /
[ 70 -e (x5 1)+ g S ) - r10)

98x* — 196x> +102x% —4x — 1

= (©)
= s —a—1) J &) (3.103)

For x = 0, formula (3.103) becomes corrected Simpson’s formula, for x = 1/4 corrected
dual Simpson’s formula and for x = 1/6 corrected Maclaurin’s formula. Furthermore, for

2 _l\éﬁ, (3.103) becomes the classical Gauss 3-point formula (stated on [0, 1]), while for

X = %%)572\/3—0) the corrected Gauss 2-point formula is produced. These quadrature

formulae will be the main topics of the sections that follow.

Note that x = 5’1‘06 is the unique solution of the equation G,(x,0) = 0. In fact, the

nodes and coefficients of the Gauss 3-point formula are the unique solution of the system:

X =

Gz(x70) = G4(x70) =0.

This would be the system one would set to obtain from (3.1) the quadrature formula which
is not corrected (i.e. does not include values of the first derivatives in the quadrature) and
has the highest possible degree of exactness, which is 5 in this case. That this is exactly
the classical Gauss 3-point formula is no surprise.
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Remark 3.17 Although only x € [0,1/2) were taken into consideration here, results for
x = 1/2 can easily be obtained by considering the limit process when x tends to 1/2.

Namely,
1 N 7 (1
I “-x)=—f (2 ) f (2
Jim Qe (x’z’ x) f(2)+240f (2)

1 7 1
lim G (x,t) =B (= —t |+ ——k(k—1)B;_, (= —1
Jim G o) = Bi{ 571 )+ 54k k= DBica ( 3

Consequently, from (4.14) it follows:

1 1 7 1 1 11
1)dt =" ) = =)= F(0)] = ———— (). (3.104
| s +f(2> ) (2) ()= 10 =~ 555259 (6). (3.104)
Next, some sharp estimates of error for this type of quadrature formulae are given.

Theorem 3.16 Let p,g € R be suchthat1 <p,g<eoandl/p+1/q=1.Iff:[0,1] =R
is such that f?") € L,[0,1] for some n > 1, then we have

< Kcgs (2n,q) . f" ). (3.105)

/Olf(t)dt —Qc <x7 %7 1 —x) + T£Q3 (x)

If fnth) ¢ L,[0,1] for some n > 0, then we have

< Kco3(2n+ 1,q) | /2|, (3.106)

/Olf(t)dt e (X, %, 1 —x> 4 T23Q3(x)

If f®r+2) € L,[0,1] for some n > 0, then we have
1 1
[ 0= c (x5 1-x) + T80 < Kegn+ 20012 G107

where

chg(m,q):$ U()l|(;fng3(x,z)|th]q

Kcos(m,q) = _ UOI |F§Q3(x7t)|qdf] % :

m!
These inequalities are sharp for 1 < p < e and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. O

For x € {0, 1- %} U[z,%) and n > 2, using Lemma 3.7 and Remark 3.16, we can

calculate the following constants for p = 1 and p = e from the previous Theorem:

» 1 C03

Kepn(Gn+2.1) = s ’GanH(x,O) , (3.108)
i 1 1

Ké3(2n+2,00) = 5 Keos(2n+1,1) = TN £ <x,§) ‘ ,(3.109)
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where G52, (x,0) and Fy, 25 (x,1/2) are as in (3.100) and (3.102).

The following two theorems give Hermite-Hadamard and Dragomir-Agarwal type in-
equalities for the general corrected 3-point quadrature formulae (cf. Section 2.5.).

Theorem 3.17 Ler f:]0,1] — R be (2n+4)-convex for n > 2. Then for x € [07 1- %},
we have
1 o3 ny2) (1
(2n+2)' |G2n+2('x70)| f 2
1
< (=1)" (/ f(1)dt — Oc (x, % l—x) +T2C,,Q3(x)) (3.110)
0
1 o3 f(2n+2) (O)+f(2n+2)(1)
< -
= (2n+2)! |G2n+2(x,0)| ) s

while for x € [%, %) we have
1

1 C03 eny2) (1
(2n+2)| |G2n+2(x70)| f 2

(=1t (/Olf(t)dt—Qc (x, % l—x) +T§,Q3(x)> (3.111)

f(2n+2) (0) + f(2n+2) ( 1)
2 b

IN

1 o3
< nt2) G50 (x,0)]

where Gg,gfz (x,0) is as in (3.100). If f is (2n+ 4)-concave, the inequalities are reversed.
O

Proof. Analogous to the proof of Theorem 2.8.

Theorem 3.18 Lerx € [O7 % — 1£05] U [%7 %) and f :[0,1] — R be m-times differentiable

form > 5. If | f"™|9 is convex for some q > 1, then

[0 0e (v 3 1-x) 475000

o)+ (e
< Lcos(m,x) ) (3.112)
while if || is concave, then
1
’/ ft)dt — Q¢ <x, % l—x) + 152 (x)| < Legs(m,x) | f™ (%)' (3.113)
0
where
2
for m=2n+1 Lcg3(2n+1,x)= iy |F26;3_32(x, 1/2)]
and for m=2n+2 Lco3(2n+2,x) = |ngsz(x,0)|

(2n+2)!
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with ngjz (x,0) and in(fz (x,1/2) as in (3.100) and (3.102), respectively.

Proof. Analogous to the proof of Theorem 3.5. O

3.2.1 Corrected Simpson’s formula

One of the special cases of the results from the previous section, obtained for x = 0, is
corrected Simpson’s formula. It was introduced for the first time in [117] and [80]. Results
of this subsection are in fact a generalization of the results from [117] and were published
in [50].

The quadrature formula is in this case:

Oc (0, %, 1) = % [7f(0)+16f(%> +7f(1)} .

Further,
1
15 = 10,2 (0) = 5 [/ (1) = f(0)]
o 1 e Qh=1) /1y #(2k—1)
+k§3(2k>'G 0) [F V(1) = 7 (0)]
GS() =GP (0,1) = 310 [14Bk(1—t)+1632(%—t)}, k>1 (3.114)

FE(t) = EC2(0,1) = G$5(1) — G§5(0), k>2 and 1€ R.

The remainder RS, ,(f) on the right-hand side of (3.95) for x = 0 and n > 2 can be
written, according to Theorem 3.15, as:

0

RSy (f) = m(Z—Tl*z")anu [f(an)(l) —f<2"+1)(0)} , 0 €10,1]
1

RSy (f) = m(l — 2By f (M), melo,1]

Formula (3.103) becomes:

1
604800

9m)
(3.115)

[ s 55 170 +167 (3) <770 + o1 - ) =

Formula (3.115) is called corrected Simpson’s formula.
As special cases of Theorem 3.16, (3.108) and (3.109), for p = <o and p = 1 we get the
following estimates for m = 1,2:

’ / flodi = 35 [7f( )+16f (%) +7f<1>] ‘ < Ces(ma)|lf™ |,
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where
113 1 4
1,1)= — l.oo) = |GSS (= )| =
Ces(1,1) 500" Ces(1,0) ‘Gl (2>’ 5
697 1 7 49
Cre(2.1) = ———. Cprg(2.00) = =|ESS | )| =
CS( ) ) 405007 CS( ) ) 2 2 (30)' 18007

while form =2,3,4,5,6

[ a5 [r0+167 (3) 4750+ gl - o)
< Cestm )£,

where

1919 1 1 1
Ces(2,1) = Ces(2,00) = 3 ‘GSS (‘)' =10

10125 2)] 40
Ces(3,1) = 362(;% Ces(3,20) = %
Ces(5,1) = 31@ Fg® (%)‘: ﬁ’
Ces(5,0) = % Gs® (%) ‘ - 58;—20
Ccs(6,1) 7;—O|Ggs( )| = 6041800’
Ccs(6,0) = % Fg® (%) ‘ - 2301400'

From (3.108) and (3.109), estimates can easily be obtained for m > 7. However, for those
m, the values of higher order derivatives at the end points are included in the quadrature.
The Hermite-Hadamard-type inequality for the corrected Simpson’s formula is:

L) (l)
604300 2
< /Olf(t)dt - % [7]“(0) +16f (%) +7f(1)} + 61—0[f’(1) —f'(0)]

_ L 90+
— 604800 2

while the constants from Theorem 3.18 are:

1 1

Lco3(5,0) = 115200° Lcg3(6,0) = 604300°
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3.2.2 Corrected dual Simpson’s formula

For x = 1/4, as a special case corrected dual Euler-Simpson’s formulae are obtained. Re-
sults of this subsection are published in [52]. We have

o (v2:3) =55 pr(a) () (3]
S =1, (ﬁ) = —%[f’(l) ~£'(0)]

+z 2k CDS [f(Zk—l)(l)_f(Zk—l)(O)}
1 1 1 1 3
CDS _~Cco3 (2 ok [ 2 L
o1 (1) - Lo (1) (o) oo ()]
FEPS(1) = FF9 (%7t):G§DS(t)—G§DS(0)7 k>1 and t€R.

The remainder RSPS, (f) = RS2, (1/4, f), according to Theorem 3.15, can be written
as:

0
CDS —1-2n (2n+1) 1y _ £(2n+1)
B2 = 5@~ DB [f ) - F0)] 6 < 0,1]
1
CDS —_ - (9.9 1-2n_Hl-dn_ . r(2n+2)
Rix(f) 15(2n+2)!(9 2 2 DBz f77 (), n€[0,1]  (3.116)

Formula (3.103) takes the form:

[ roa-sg s (5)-1(3) +3(3)] - meir-ron

31

_ 31 e
193536007 (™) (3.117)

Formula (3.117) is called corrected dual Simpson’s formula.
Estimate of error for p =ccip=1areform=1,2:

‘/f dt——[sf( ) f(%>+8f(§)”<CCDs(m761)||f(m)||p7

where
17 3 17
1.1) = — l,00) = |GSPS [ 2 )| = =
Ceps(1,1) 120’ Ccps(1,%) = |G} (4>’ 0’
31 1 eps (1 1
Ceps(2,1) = 3000° Ceps(2,%0) = 5 F 1= 32

while form =2,3,4,5,6

‘/Olf(t)dt -5 [8f (i) —f (%) s (%ﬂ sl —f’(O)]‘

< CCDS(mv‘])”f(m)HP?
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where
31v31+ 1515 — 46
Ceps(2,1) = 20250 ’
1 eps (1) 11
Ces(2, )_2‘G2 (4)‘_480’
11 3131 — 46
D= — o) = 22V T30
Ceps(3,1) 4200° Ccps(3,0) 31000
17 1 1 1
4,1) = ———— b4oo)=—|GSPS 2 )| = —
Ccps(4,1) 733780° Ccps(4,0) 7 Gy (2)‘ 5760’
1 1 1
Ceps(5,1 FEPS (2 )| = ——ns
cos(3,1) = 365 2 115200

1 1 17
Ceps(5,00) = —— |GEPS [ 2 )| = ———
cos(5,2) 12075 \3 933120’

1 31
Ceps (6,1 GEPS (0)] = s
cos(6,1) = 720170 (0) 19353600’

1 1 1
Ceps(6,00) = — |FEPS [ = )| = .
cos(6,2) 7201 ¢ \2 230400

Similary as before, (3.108) and (3.109) give estimates of error for m > 7.
The Hermite-Hadamard-type inequality for the corrected dual Simpson’s formula is:

_ 31 el
193536007 \2

< (/ rwar—z[sr(3) -1 (3) 7 (3)] - gl - o)

7 ()+f (1)
- 19353600 2

while the constants from Theorem 3.18 are:
1 1 1 31
L 5 - - L 6 — =
o’ ( ’ 4) 115200 o’ ( ’ 4) 19353600

3.2.3 Corrected Maclaurin’s formula

The next interesting special case is corrected Maclaurin’s formula, obtained for x = 1/6.
Results of this subsection were published in [55]. We have:

Qc(é re)w [27f( >+26f(%)+27f(%>}
(;) L) o)

- |:f(2k71)(1) _f(2k71)(0):|

k ’%
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1 1 1 1 5
CM (,\__~CO3 Z_ * 2 *
GM (1)=G$ ( = r) %0 [27Bk< c r) +26Bk<2 t) +27Bk<6 t)

1
FM (1) = EF9 <g,r> =GM(1)-GM(0), k>1 and t€R.

, (3.118)

For n > 2, the remainder RSM , (f) can be written as:

@2 (1322 Bowia [, (2n-1)
RSV () = 6 TR D) = Do), 6 € 0.1
o (1 - 27172”)(1 - 3272”)3211+2 (2n+2)

Formula (3.103) becomes corrected Maclaurin’s formula and is of the form:

/f dt——{27f( >+26f(%)+27f(%>}—ﬁ[f’(l)—f’(o)]

31
_ 31
s70012007 ) (3.120)

Estimates of error for p = 1 and p = oo are:

‘/ 70) dt—— {27f( )+26f<%>+27f(%)”SCCM(mv‘])”f(m)”p?

where
2401
Cem(1,1) = —— Cem(1,00) = |GFM —
CM( ) ) 288007 CM( ) ) 1 ( )‘ 07
827 Uoew /(1) 1
Com(21) = 1575000 Com(Z) =7 |12 (6)‘_72’

while form =2,3,4,5,6

'/ £t dz——[27f< )+26f(%>+27f(%)]—ﬁ[f’(l)—f/(o)]'

< Cem(m @)l

where

320/30+ 187+/561

Com(2,1) = 1728000 :
U e (1] 7

Com(2,) = 702 (6)‘_720’

48693 + 31331241
CCM(37 l) = )

491520000

1053 + 187+/361

Cem(3,0) = ——Fcri—

13824000 °



3.2 CORRECTED 3-POINT QUADRATURE FORMULAE

1

109

1

Com(41) = 72=c. Con(4:) = 35200
Cem(5,1) = 360 Fy (;) ‘ - 695%’
Com(5,%) = 15 G5 (%) = w13
Cen(6,1) = 7;0 G (0)] = m’
Cem(6,%0) = % Fg (%) - m

Let us mention again that from (3.108) and (3.109) estimates of error for m > 7 can also
be calculated.
The Hermite-Hadamard-type inequality for the corrected Maclaurin’s formula is:

_ 3l el
87091200 * 2
1 5 1, )
(/f 0)dt {27]“( )+26f<2>+27f<6)] 2l () f(O)])

- A ()+f ‘(1)

= 87091200 2

and the constants from Theorem 3.18 are:
1 1 1 31
Leos (5’ 8) = i00  eos (6’ 8) ~ 87091200°

3.2.4 Gauss 3-point formula

Perhaps the most interesting special case is the Gauss 3-point formula. Namely, if we put
x= 3215 i (3.103), we obtain

! 5— \/ 1 5+V15
| a1 |sr +8f(5)+5s
0 2 10
which is exactly the Gauss 3-point formula on the interval [0, 1]. Note once more that this
node is the unique solution of the system G§Q3 (x,0) = Gf@ (x,0) = 0. Again, we switch
to interval [—1, 1] for reasons mentioned in the subsection on the Gauss 2-point formula.

Let f: [~1,1] — R be such that f(2"~1) is continuous of bounded variation on [—1, 1]
for some n > 1. Then we have:

1

— (6)
2016000 776

1 2211—1
[ = 0cn+ 17 = / GSr (0d >V (0); (3.121)
—1 (2n)! J-1
if £2") is continuous of bounded variation on [—1 1] for some n > 0 then
1
Ll.f(t)dt—Qca+T2i3 = +1 / GS2 (0)d (1), (3.122)
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and finally, if f° (2n+1) {5 continuous of bounded variation on [—1,1] for some n > 0, then

1 2n+1
[ F0d =003+ T = s [ ERa@ar e, Ga2s)
where
1 15 15
Q63 =g [Sf <—§>+8f(0)+5f<§>1 (3.124)
n ~2k—1
63 2GR (=D N(1) - fAD(-1)) (3.125)
& (2k)!
G (1) = % [5137; (—% - %) 1 8B (—%) +5B; (% - %)] (3.126)
E (1) =GP (1) — GP(~1). (3.127)

The remainder in formula (3.123) RZn ') (f) can, for n > 2, be written as:

22n+2

RS} H(f) = Tt G, (1) [ (&), Ee[-1,1] (3.128)
2n+1
B2 a(f) = 0 sy F0) 12 0(0) = ()] o e o) 3129)

where

(3.130)

—V15 o
GS2o(—1) = 5 [1032n+2 (T) —(8—=2%""By,1»

V15 5-V15 _
l1032n+2 (W —10Bapo | —5— | + (16 —2*7*")Boyy2

(3.131)

From (3.128) and (3.123) for n = 2 the classical Gauss 3-point formula is produced:

[ = [f( m>+8f( >+5f<@)

Applying Holder’s inequality (see Theorem 3.16), sharp, i.e. the best possible, esti-
mates of error for the formulae (3.121)-(3.123) can be obtained. For p = and p = 1, and
n > 2, they are:

1

+mf(6>(5)7 Sel[-11].

. 22n+2
Kg3(2n+1,1) = 2K53(2n+2,00) = Gt ) |F2Gniz(0)|

GHBICEY

2n+2

)
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where F523,(0) and G$?,,(—1) as in (3.131) and (3.130).

Further, for 1 < m < 6 we have:

[ swar—g |ss (—@) F87(0) 45 (mﬂ

< Cas(m,q) |1,

5
where

1051 — 23415 4

Coa(1,1) = ——— 2= ~ 0.357338, Cgz(l,00) =~ ~ 0.444444,
405 9
8

Cs3(2,1) = m(18\/15—65)3/2 ~ 0.0374355,

9-2V15

160(6v/15 —23)3/2 + 6516115 — 25175
Cs3(3,1) = ( il ~ 0.00548184,

14580
18V/15 — 65)3/2 —108v/15 4422
C53(3,00) = ( ) + ~ 0.0063794,
2187
41515

C3(4,1) ~ 0.000908828,  Cg3(4,22) = ——— ~ 0.00136648,

25—-6V15
Co3(5:1) = 5550~ 7~ 0000195789,  Cas(5,e) ~ 0.000227207,
Cs3(6,1) = 5755 ™ 0.0000634921,

25—-6V15
Cg3(6,) 13000 0.00009789

Integral [ 1 |G$3(#)|dt is calculated only approximately, with the help of Wolfram’s Math-
ematica, because it is difficult to obtain the exact value of the zero of Gf3 (¢) (which is
t ~ 0.280949). Further, |GS*(¢)]| attains its maximal value in the zero of G$3(¢), so we
have the same problem again. Therefore, Cg3(5,0) is also calculated with the help of
Wolfram’s Mathematica.

Remark 3.18 It was shown previously that in the class of all 3-point quadrature formu-
lae where the integral is approximated by (3.8), the best estimation is obtained for x = 1/6
(when considering an integral over [—1, 1], forx =2/3), i.e. Maclaurin’s formula. Compar-
ing estimates C(m, 1) and C(m, o) obtained for Maclaurin’s formula and the Gauss 3-point
formula shows that, when p = oo, the Gauss 3-point formula gives better approximation for
m = 2,3,4, while when p = 1, it gives better approximation for m = 3 and m = 4.

Remark 3.19 The constant Cg3(1,0) coincides with the constant py (Rg;), obtained in
Theorem 1.1. in [47].

The Hermite-Hadamard-type inequality for the Gauss 3-point formula is:

_1 el
20160007 \2
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/f Nt - 12 [5]‘( \/_>+8f<%>+5f<75+18/6>]
L Y0 +90
= 2016000 2

and the constants from Theorem 3.18 are:

5—+/15 25— 615 5—15 1
Lcos (5, ) = , Lcgs (6, ) =

10 576000 10 2016000

3.2.5 Corrected Gauss 2-point formula

What if in formulae (3.93)-(3.95) a condition w(x) = 1/2 is imposed? The unique solution
X of this equation, such that xo € [0,1/2), is
1 1
= — — —1/15(15-2+/30).
X0 2730 5(15 30)
At the same time, B4 (xp) = 0, which means the quadrature formula thus obtained has only
two nodes. We will call this formula corrected Gauss 2-point formula.
The results are again transformed to the interval [—1,1]. Formulae (3.93)-(3.95) be-
come:

/1 f(t)dt — Qcga + TEC? = 2 /l GSP(1)d 2=V (1) (3.132)
e CcG2 2n (2}’1)' ) 2n ’ .
1
Ll.f(t)df—Qccz+TziGz— )] / GSO2, (1)d f> (1) (3.133)
1 22n+l
/Af(t)dt—QcchrTziG2 e 2‘5,% )d (1), (3.134)
where
- 2V/30 2V/30
Occr=f | — I_T +f I_T
cor 2 e (2k—1) (2k—1)
L, = Z (2k)! G (=D[f ()—f (=1)]
=1 :
5-30, , )
30y
n 22k 1

+ 3 G GO =)

GP?t) =B | —z\[1-———= | +B} | \/1-———

FEO (1) = Gi% (1) = GEP (= 1), k> 1.
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RC G2

The remainder in formula (3.134) R3”%,

(3.128) and (3.129), where

(f) for n > 2 can be written similarly as in

11 2v/30
G59% (1) =2 B2 55\ (3.135)
1 21/30 11 2v/30
FES2(0)=2 |Byia | =\/1 == | =Bous2 | = — =1/1 - = 3.136
2n12(0) w2 | 5 15 mi2| 575 5 ( )

Using this, from (3.134) for n = 2, the corrected Gauss 2-point formula is obtained:

1 5-30, , ) 144/30 90
[ 0 = 0cea = 51 (1) = (=)} + o ), E € -1.1)
(3.137)
Note that
14+/30—-90
0875 ~ —0.00018792.

Further, similarly as in the previous subsection where the Gauss 3-point formula was
considered, from Theorem 3.16 we get the sharp estimates of error for n > 2, with the
appropriate values of G52 (—1) and F{G3(0) as in (3.135) and (3.136). Specially, let us
see what these estimates are for p = and p = 1:

1
‘/l.f(t)df—Qccz < Ceaa(m @) f"™lp, m=1,2

where
Ceea(1,1) = 3—£—2 1—%53_0 ~ 0.500747,
Ceca(1,00) = 1—@ ~ 0.51933,
Ceen(2,1) = 43 [3\/_— 15+4\/15 (2\/%— 15+24/585 — 106\/3_0)
—2\/30\/225—30\/E—225] ~ 0.073765,
Ceca(2,0) = 1—\{—3_50— 1—%5_ ~ 0.115522,

while for2 <m <6

5-4/30

[ = 0ce: + 2200 0) - (1) < Coaalma)
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where
Ccca(2,1) = 0.0650208,

1
Ceaa(2,00) = s (20—2\/3— — 225—30\/3_0) ~ 0.083707,

1
Cca(3,1) = 50 (339 60v/30 — 4\/585—106\/3—0> ~ 0.0109032,

1 22745
Cegr(3,00) = E\/ 2\/ 25653825 — 464943030 + 1226v/30 - ==
~ 0.010905,
Ceen(4,1) ~ 0.00209577,
5 1 1/
C 4,o0)=—— ————1/585—106v30 ~ 0.002415
CGZ( 5 ) 24 \/ﬁ 90 3
24/392625 —71670+/304 150v/30 — 825
Ceea(5,1) = v + ~ 0.000503075,
27000
90 — 14+/30
CegalS,) ~ 0.000523942, Cega(6,1) = == = 0.00018792,

1 / 4778+/30
Ceaa(6,00) = 355 | 21/ 1745 - TJ_ +10v30—55 | ~ 0.000251537.

The exact values of Ccg2(2, 1) (for the case when the values of the first derivative are
included in the quadrature formula), Ccz (4, 1) and Cega (5,0) can be calculated (with the
help of Wolfram’s Mathematica) but obtained expressions are rather cumbersome so we
state only their approximate values.

Also, notice that when p = and m = 1,2, and when p = 1 and m = 1, corrected Gauss
2-point formulae give better estimations than Gauss 2-point formulae.

The Hermite-Hadamard-type inequality for the corrected Gauss 2-point formula is:

45 _7\/3_0)‘(6) 1
4536000 * 2

(/f dt—%f %_io‘/ (15— 2%3_0> ( 310 15(15—2\/3_0))

PERREL
60 Y

_ 45 —7+/30 £©)(0) + £ (1)
= 4536000 2

and the constants from Theorem 3.18 are:

11
Legs (5,5—% 15(15—2@))
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825 1501/30 — 461/225 — 30v/30 + 1201/30 — 41/30

1728000
1 1 45 —7/30
Legs (6, 5~ 35V 1515 —2\/3_0)) = 1536000 "

3.2.6 Hermite-Hadamard-type inequality for the corrected
3-point quadrature formulae

The main result of this section provides Hermite-Hadamard-type inequality for the cor-
rected 3-point quadrature formulae.

Theorem 3.19 Ler f: [0,1] — R be 6-convex and such that ' is continuous on [0,1].

Then, forx € [0,1 — %] andy € [£,%)

1 10x> —10x+1 ,
0c (x.5:1-3) - g p e (D =7 0]

1
5{4 Flr)de (3.138)

1 100~ 10y+1 /

where Q¢ (x, %7 1 —x) is defined in (3.96). If f is 6-concave, the inequalities are reversed.

Proof. First, note that

4 2
1, ; , B 1 45 1 33
98(98x 196x” 4+ 102x" — 4x l)—(x 2) x—3 +784
2
_ 045\ st
U2 196 | ~ 4802

(=R ()5

and therefore, we can find the zeros of this polynomial explicitly:

1 1
X1234 = 3 + ﬁ\/ 45+2+102.

Now, it is easy to determine the sign of the remainder in the formula (3.103). Finally, for a
6-convex function, we have f (6) > 0, and thus the statement follows. O

The following corollaries give comparison between corrected Simpson’s rule and cor-
rected dual Simpson’s rule, corrected Simpson’s rule and corrected Maclaurin’s rule, cor-
rected Simpson’s rule and the corrected Gauss 2-point rule, and then the Gauss 3-point rule
and corrected dual Simpson’s rule, the Gauss 3-point rule and corrected Maclaurin’s rule,
the Gauss 3-point rule and the corrected Gauss 2-point rule.
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Corollary 3.13 Ler f: [0,1] — R be 6-convex and such that f©) is continuous on [0,1].
Then

% (7f(0)+ 161 (%) +7f(1)) — 61—0[.1"(1) —f(0)]

< /Olf(t)dt

< 5 (3 (3)-r(5)+er(3)) + gl - o

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) forx=0and y = 1 /4. O

Corollary 3.14 Let £ :[0,1] — R be 6-convex and such that f©) is continuous on [0, 1].
Then

5 (17167 (3) +710) - G517 0) - 710
< /Olf(t)dt
< (710 (3) 4201 (3) + 21 (3) ) + gl - o

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) forx=0and y = 1 /6. O

Corollary 3.15 Lez f : [0,1] — R be 6-convex and such that f©) is continuous on [0,1].

Then
35 (110167 (3) +770)) - e - o)
g/olf(t)dt
< %f(%—% 225—30@)+%f(%+%\/m>
S V3055 1y o)

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) for x =0 and y = 1/2 — /225 — 30@/30 & By(y) =0.
O
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Corollary 3.16 Lez f : [0,1] — R be 6-convex and such that f©) is continuous on [0,1].

Then
1 5—-V15 1 5415
(v (557 v (3) o (57))
< lf(r)dt
0

< 5 (3 (3)-r(5)+er(3)) + gl -ron

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) forx = 1/2 —/15/10 <> 10x> — 10x+1=0and y = 1 /4. O

Corollary 3.17 Lez f : [0,1] — R be 6-convex and such that f©) is continuous on [0,1].

Then
1 5—15 1 5+V15
i (o (5 o (5) o (55))
1
g/o f(t)dt

< oo (217 (3) +20r (5) 4217 (2) ) 4 sglr 0 - roo

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) forx = 1/2 —/15/10 <> 10x> — 10x+1=0and y = 1/6. O

Corollary 3.18 Lez f : [0,1] — R be 6-convex and such that f© is continuous on [0,1].

Then
1 5—-V15 1 5+4/15
(o () (5) o (57) )
1
S/o f(t)de
1

11 1 /1 1
< —f(=—=1/225-30V 2+ =1/225-30V
_2f(2 35 V/225-30 30)+2f(2+30 5-30 30)

+ 02310y o)

If f is 6-concave, the inequalities are reversed.

Proof.  Follows from (3.138) for x = 1/2 —/15/10 < 10x> — 10x+ 1 = 0 and

y=1/2=v/225-30v30 /30 & By(y) =0. 0
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3.2.7 On corrected Bullen-Simpson’s inequality

In [70], it was shown by a simple geometric argument that for a convex function f the
following inequality is valid :

o< [l sioar—1(5) <« - [Lrioar o

An elementary analytic proof of (3.40) and (3.139) was given in [11]. Another interest-
ing result of a similar type was given in that same paper. Namely, provided f is 4-convex,

we have:
o< [ra (D) r(8) 2 (3)]

% [f(o)+4f (%) +f(1)} —/Olf(t)dt (3.140)

IN

This implies that dual Simpson’s quadrature rule is more accurate than Simpson’s quadra-
ture rule. Inequality (3.140) is sometimes called Bullen-Simpson’s inequality and was
generalized for a class of (2k)-convex functions in [86].

The aim here is to derive similar type inequalities, only this time starting from corrected
Simpson’s and dual corrected Simpson’s formula. The results of this subsection were
published in [53].

For k > 1 and r € R, we define functions

Gi(t) = G{2(0,1) + GL 2 (1/4,1) = GE (1) + GEPS(n),
Fi(r) = EE2(0,0) + ECP (1/4,1) = ESS (6) + FEP5 (1),

where GS5 (1) and G5 (1) are defined in (3.114) and (3.116), respectively. Thus,

Gy(r) =7B; (1 —1)+ 8B; (% —t) + 7By (% —t) +8B; (% —t) . k>1,
Fi(t) =Gi(t), F(t)=Gi(t)—Gp(0) for k>2.
Introduce notation By = Gy (0). By direct calculation we get
By=1/4 and By =B,=B5=0.

Using the properties of Bernoulli polynomials, it is easy to check that By;_; =0, k > 2.
Now, let £ : [0, 1] — R be such that f("~1) exists on [0, 1] for some n > 1. Introduce the
following notation

D(0,1) = % [7f(0)+16f<%> +14f<%) +16f<%> +7f(1)] .

Define To(f) =0andfor 1 <m<n

() = 5 [TS2(0) + 1$2(1/4)]
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where 7,59 (x) was given by (3.97). So, we have T;(f) =0,

BU) = T5(F) = Tlf) = B(f) = 5357/ (1) ~ £(0)]
and, form > 6,
() = 535/ (1) = £0)]
[m/2]
+11_5 2 (1232151(16'2,4;{_27216) [f(Zk—l)(l)_f(2k71)(0)} _
k=3 :

In the next theorem we establish two formulae which play the key role here. We call
them corrected Bullen-Simpson’s formulae of Euler type.

Theorem 3.20 Let f : [0,1] — R be such that F=1) s continuous of bounded variation
on [0, 1], for some n > 1. Then

/Olf(t)dt —D(0,1) = T(f) + R (), (3.141)
and 1
|| @ =)~ Ts(5) + B (), (3142
where 1
_ 1
B =55 [ Ga0ar™ V),
and 1
g 1
Ri(zz)(f) = W/o F (t)df(n_l>(l).

Proof. Apply (3.94) for x =0 and x = 1/4, add those two formulae, divide by 2 and identity
(3.141) is produced. Identity (3.142) is obtained analogously from (3.95). O

Remark 3.20 Interval [0, 1] is used for simplicity and involves no loss in generality. In
what follows, Theorem 3.20 and others will be applied, without comment, to any interval
that is convenient.

It is easy to see that if f : [a,b] — R is such that f"~1 is continuous of bounded
variation on [a, b], for some n > 1, then

/abf(”d’ = D(ab) - Ty() + L /abGn (I_a> arrv()

30n! b—a

and
b . h—a) [P _
[ 10—t -+ CpiE 6 (1=4) ar .
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where

D(a,b) = ”6%)“ [7f(a)+l6f<3a:b> +14f<“;b> +16f<‘”fb> +7f(b)] :

and form > 6

(b_a)z / /
o [0 =@

1 [m/2] (b_a)Zk
T s 2, (2k)!

k=3

Tu(f) =

(16-27% —2-2%)B,, [f(2k71)(b) _f(2k71)(a) '

Remark 3.21 Suppose that £ : [0,1] — R is such that f") exists and is integrable on
[0,1], for some n > 1. In this case (3.141) holds with

1
"~ 30n!

RO (p) f@mNmM

while (3.142) holds with

1
© 30n!

Remark 3.22 For n =6, (3.142) yields

1 U _ 1
/O f(t)dr—D(o,1)+f(1)246f ©_ 21200/0 Fs (1) df (1)

From this identity it is clear that corrected Bullen-Simpson’s formula of Euler type is exact
for all polynomials of order <'5.

B2 ) ﬂamﬂmm

Before the main result is stated, we will need to prove some properties of functions
Gy, and Fy. Notice that it is enough to know the values of those functions on the interval
[0,1/2], since G (1 +1/2) = Gy(¢).

Lemma 3.8 For k > 3, function Gy (t) has no zeros in the interval (O7 %) The sign of

this function is determined by

1
(—DfGy_1(1) >0, 0<r< T (3.143)

Proof. For k = 3, we have

Gs(1) = =306 435/2-1t*—5/2-13, 0<r<1/4
SV =305+ 115/2-14—85/2- 13+ 1512 —5/2-14+5/32, 1/4<1 < 1/2
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and it is elementary to see that
Gs(t) <0, 0<t<1/4, (3.144)

so our assertion is true for k = 3. Assuming the opposite, by induction, it follows easily
that the assertion is true for all k£ > 4.
Further, if Go;_3(r) >0, 0 <t < 1/4, then since

Gy (t) = (2k — 1)(2k — 2)Goy5(1)
it follows that Gy 1 is convex and hence G (t) <0 on (0,1/4). Similarly, we conclude

that if Go;_3(r) <0, then Gox—1(¢) > 0on (0,1/4). (3.143) now follows from (3.144). O

Corollary 3.19 For k > 3, functions (—1)* ' Fy(t) and (—1)¥"'Gy(t) are strictly in-
creasing on the interval (0,1/4) and strictly decreasing on the interval (1/4,1/2). Conse-
quently, 0 and 1/2 are the only zeros of Fy(t) on [0,1/2] and

max [Fy(1)| = 227(1 = 27%)[Bu,
t€[0,1]

max |Gy (1) = 2" (1+ 14-27%)[By.
t€[0,1]

Proof. Since
(D F(0) = (=D Gul0)] = (= 1)* -2k Gy (1),

from Lemma 3.8 we conclude that (— 1)~ Fy;(r) and (— 1)1 G (1) are strictly increasing
on (0,1/4). It is easy to check that fork >2and 0 <t < 1/2,

Gi(1/2=1)=(=1)fGy(r)  and  F(1/2—1) = (—1)'F(1).

From there we conclude that (— 1)1 F(r) and (—1)"'Gy(¢) are strictly decreasing on
(1/4,1/2). Further, F5;(0) = Fo(1/2) = 0, which implies |Fa(¢)| achieves maximum at

t = 1/4 and thus, the first assertion is proved.

On the other hand,

max |Goe(t)] = max 4 (G (0)][Gar (2 )|V = |G (

B 2%\)| = 2k |G| 7 =|6%\7 )|

The proof is now complete. ]

Corollary 3.20 Fork > 3, we have

3-2k

1 1 2

| 1P @ld = [ (G (@)]de = == (1-27%) 1B,
1

/o |[Por(1)|dt = |Boy | =22 (1 - 16'2_2k) | Ba|

1
/0 |Gau(1)| dr < 2|Bay| = 2272 (1 - 16-2*2’6) Bai|.
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Proof. Using the properties of functions Gy, i.e. properties of Bernoulli polynomials, we
get

1/4
Gop—1(t)dt

(1)

1
/ |Go—1(2)|dt = 4
0 k

0

which proves the first assertion. Since F>(0) = Fp(1/2) = 0, from Corollary 3.19 we
conclude that Fy(7) does not change sign on (0, 1/2). Therefore,

1/2

1 1. -
/0 |F2k(t)|dt:2‘ A sz(t)df—Esz = |Bal,

which proves the second assertion. Finally, we use the triangle inequality to obtain

1 1
[ 1G20)1de < [ B0l dr+ 1Bl = 218
which proves the third assertion. O

Theorem 3.21 If f : [0,1] — R is such that f?% is a continuous function on [0, 1], for
some k > 3, then there exists N € [0, 1] such that

5@ L iy (26)
R = 2 1-16-2 By - . 3.145
Proof. We can rewrite R’gg (f) as

52) (D !

R = J 3.146
where |

Jp = / (=1 1By (0) £ (1)dr. (3.147)

0
From Corollary 3.19 we know that (—1)¥"1Fy (1) >0, 0 < < 1, so the claim follows
from the mean value theorem for integrals and Corollary 3.20 O

Remark 3.23 For k = 3 formula (3.145) reduces to

1

__ L e
38707200/ (-

502
R (1)
Now, we prove our main result:

Theorem 3.22 Let f: [0,1] — R be such that f®%) is continuous on [0, 1] for some k > 3.
If f is a (2k)—convex function, then for an even k we have

o< [Lrwa-slsr(3)-r(5)+ (3)] #2000
< 55 |10+ 167 (3 ) 42| <100 [roa Gass)

while for an odd k the inequalities are reversed.
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Proof. Denote the middle part and the right-hand side of (3.148) by LHS and DH S, respec-
tively. Then we have

LHS=RSPS(f)  and  RHS—LHS=—2R\)(f)

where Rg) (f) is as in Theorem 3.20 and according to (3.116), RSPS(f) can be written in
the form:

1
15(2k)!

Recall that if f is (2k)—convex on [0, 1], then £(*Y)(x) >0, x € [0, 1]. Now, having in mind
that (—1)¥"1By; > 0 (k € N), from (3.149) and (3.145) we get

LHS >0, RHS—LHS >0, forevenk
LHS <0, RHS—LHS<O0, foroddk

RSPS(f) = (1-18-27%432.27%)By, . fP9(E), € [0,1]  (3.149)

and thus the proof is complete. ]

Remark 3.24 From (3.148) for k = 3 we get

o< [rwa—ic[sr(5)-1(3) 3 (3)] - i -ron

3o [0+ 167 (3) +770)| = golr =7 @1 [ sioar

Theorem 3.23 If f : [0,1] — R is such that f*) is a continuous function on [0,1] and f
is either (2k)—convex or (2k)—concave, for some k > 3, then there exists 0 € [0,1] such
that

IN

1-2k
02
15(2k)!

Proof. Suppose f is (2k)—convex, so f2¥) (1) >0, 0 <t < 1. If Ji is given by (3.147),
using Corollary 3.19, we obtain

0<Jr<(-1 leZk( ) /ka

which means that there exists 6 € [0, 1] such that

J=6- (_l)kfl 92-2k (1 _2721{) By [f(2k71)(1) _f(2k71)(0)] '

RY () = (1-27%)By [f@"*”(l) —f<2k*1>(0)} . (3.150)

When f is (2k)—concave, the statement follows similarly. |
Now define
—2%k
Ax(f) = 1—16-272) By | fZ1(1) — £ 1(0)] .
%) = 501 B |0 (1)~ £ 0)|

Clearly,
Y 5(2) 2_2172k
Ry (f)=16" T Aogr(f)
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Theorem 3.24 Suppose that f : [0,1] — R is such that f (2k+2) is a continuous function
on [0,1] for some k > 3. If f is either (2k)-convex and (2k + 2)-convex or (2k)-concave

and (2k +2)-concave, then the remainder Iéﬁ) (f) has the same sign as the first neglected
term Ao (f) and

5(2
RS ()] < 8ak()]
Proof. We have
5(2 5(2
Boi(f) = R () = RG(f)
From Corollary 3.19 it follows that for all 7 € [0, 1]
(=1 'Fy(t) 20 and (=1)'[=Fyp2(1)] > 0,

so we conclude that Rg) (f) has the same sign as —Rg{)ﬂ( f). Therefore, Ay (f) must have

the same sign as Rg) (f) and —Rg)ﬂ( f). Moreover, it follows that

B2 ()] < 1A and R (1)] < |An(f)]-
O

In this subsection, using formulae derived in Theorem 3.20, we shall prove a number
of inequalities for various classes of functions.

Theorem 3.25 Assume (p,q) is a pair of conjugate exponents, that is 1 < p, g < oo,
%—Fé = L. If f:[0,1] — R is such that f") € L,[0,1] for some n > 1, then we have

1
[ 70t =D0.1) + 5,105 < KGrp) L5 G.15D)
and '

|Afmm—0mw+nqﬂerm»NMW (3.152)
where

q

Uolan(t)Vfdtr and K*(n7p):ﬁ|:/ol|Gn(t)|th]

Proof. Applying the Holder inequality we get

1
1 1 q
< q (n)
| [ o) s
K1l

Having in mind Remark 3.21, from (3.142) and the above inequality, we obtain (3.151).
Similarly, from (3.141) we obtain (3.152). O

1

1 1
(n)
‘mmAEﬁU (1)dr

)4
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Remark 3.25 Taking p = oo and n = 1,2 in Theorem 3.25, i.e. (3.151), we get

1
kﬁf@w—DmJﬂﬁwamﬂmu
where 113 697
(1) 1800’ (2,%) 162000
Taking p =1 and n = 1,2, we get

1
Léfmm—DwAﬂ<KmAnﬂMm

where
49

15 7200

Comparing these estimates with the analogous ones obtained for Bullen-Simpson’s
formula shows that these are better in all cases except forn =2 and p = eo.

Moreover, for p = e and n = 3,4,5 we obtain

K(1,1)= K(2,1) =

240

1
(&)+—{H0—f®w<KWMmﬂmw
where 253 | |
22 K(dee) = K(5,00) =
2880000’ ( ’ ) 233280’ ( ’ ) 3686400’
and for p =1 and n =3,4,5 we get

K(3,00) =

Vfdt mwﬁwnwﬂmkmmmwh

where
28 +1919 1 1

K4,1)=——, K(5,1)=-——.
643000 ’ (1) 92160’ (5.1) 1866240
Finally, for p =2 we get

K(3,1) =

1
[ 0y 00,1 < K0.2)7 s,

where

K(l,z)zg, K(272)=£7
and
‘/f 1)dr — 01)+m[f(1)—f/(0)]‘SK("72)||f(">|2,
where
K(3,):@ K(4,2) = V70 K(5,2) = V5005

1612800’ 212889600
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Remark 3.26 Note that K*(1,p) = K(1,p), for 1 < p <o, since Gi(r) = Fi(t). Also,
for 1 < p < oo, we can easily calculate K(1, p). Namely,

(1 1 [791 4 get1 ]
( ’p)_@[ 15(g+1) }

In the limit case when p — 1, that is when ¢ — o, we have

2
lim K(1.p) = — = K(1,1).
pmK(Lp) =15 =K1

Now we use formula (3.141) and a Griiss type inequality to obtain estimations of cor-
rected Bullen-Simpson’s formulae in terms of oscillation of derivatives of a function. To
do this, we need the following two technical lemmas. The first one was proved in [27] and
the second one is the key result from [83].

Lemma 3.9 Letk > 1and y € R. Then

1
/ Bi(y—1)dt =0.
0
Lemma 3.10 Let F,G : [0,1] — R be two integrable functions. If
m<F(t)<M, 0<r<1
and 1
/ G(t)dt =0,
0

then

M
<

1 —m
/0 FO)Gdr| < =2 /0 \G(1)|dt. (3.153)

Theorem 3.26 Let f : [0,1] — R be such that f\") exists and is integrable on [0,1), for
some n > 1. Suppose

my < fO@) <My, 0<1<1,
for some constants m,, and M,,. Then
1
‘ /0 F(0)di —D(0,1) +T,,(0, 1)’ < Co(My — my) (3.154)
where
113 ~19V19 253 o |
1736000 27 810007 O 5760000t 466560’
22—2k(1 _ 2—2k) 2—2k(1 —16- 2—2k)
Cyp 1=—— = JIB Cop = By, k>3.
2k—1 15(2]()! | 2k|7 2k 15(2]()! | 2k|7 =

Proof. Lemma 3.9 ensures that the second condition of Lemma 3.10 is satisfied. Hav-

ing in mind Remark 3.21, apply inequality (3.153) to obtain the estimate for |I§£,1>(f)|.
Now our statement follows easily from Corollary 3.20 for n > 5 and direct calculation for
n=1,2,34. O
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3.3 General Simpson formulae

3.3.1 General Euler-Simpson formulae

The results from this section are published in [65].
Here we study the general Simpson quadrature formula

/Olf(t)dl‘ = 2ul—|—v [uf(O)—i—vf (%) +uf(l)] +E(f;u,v) (3.155)

with E(f;u,v) being the remainder, u,v € 7 and the greatest common divisor of # and v
is 1. This quadrature formula was considered by V. Culjak, C. E. M. Pearce and J. Pecari¢
in [20]. The aim of this section is to establish general Simpson formula (3.155) using
identities (1.1) and (1.2) and give various error estimates for the quadrature rules based on
such generalizations. We use the extended Euler formulae for a = 0, b = 1 to obtain two
new integral identities. We call them the general Euler-Simpson formulae. After that we
prove a number of inequalities which give error estimates for the general Euler-Simpson
formulae for functions whose derivatives are in L,-spaces.
For k > 1 define the functions G, (¢) and Fy(¢) as

1
Gr(t) =2uB; (1 —1)+vBj (E—t) ,teR

and
Fk(t) :Gk(t)_glﬂ t ER,]{Z 17

where
. 1
Bk = MBk(O) +VBk <§> +MB]<(1)7 k > 1.
Using By (t) =1 — 1/2 we get B = 0. Also, for k > 2 we have B; = G;(0), that is
Fi(t) = Gi(t) = Gi(0), k > 2, and Fi(t) =Gy (t), t € R.

Obviously, Gy (¢) and F(r) are periodic functions of period 1 and continuous for k > 2.
Let f : [0,1] — R be such that f"~1) exists on [0, 1] for some n > 1. We introduce the
following notation

D(u,v) = [uf(O)—i—vf (%) +uf(l)].

2u+v
Further, we define 7y(u,v) = 0 and, for 1 < m <n,

1
2u+v

Ty (1) = [uTm(O)—i—va (%) +uTm(1)] ,
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where T,,(x) is given by (1.3) (fora =0, b=1). Form > 1

N‘|Udz

2 N (k-1)
T, 2M+V§ { — fl=Dgy] . (3.156)

In the next theorem we establish two formulae which play the key role in this paper.
We call them the general Euler-Simpson formulae.

Theorem 3.27 Let f:[0,1] — R be such that £V s a continuous function of bounded
variation on [0, 1], for some n > 1. Then

[} 00 = D)~ Tun) 4 R, (3.157)
and :

|| @b = D) = Tos(wn) + B, (3.158)
where X :

s1 - (n—1)
and

Gy f, O

Proof. Put x =0, 1/2, 1 in formula (1.1) to get three new formulae. Then multiply these
new formulae by u, v, u respectively, and add them up. The result is formula (3.157).
Formula (3.158) is obtained from (1.2) by the same procedure. O

Ry(f) =

Remark 3.27 If in Theorem 3.27 we chose u = 1 and v = 4 we get Euler Simpson for-
mulae [29], for u = 1 and v = 2 Euler bitrapezoid formulae [28] and for u =7 and v = 16
we get corrected Euler Simpson formulae [50].

By direct calculations we get

B | —Qu+v)t+u, 0<r<1/2
R =060)= { —Qu4v)ttu+v, 1/2<t <1’ (3.159)
f QuAv)e?—2ut + (4u—v)/12, 0<t<1/2
Ga(r) = { QuAv)? =2+ v)t+ (du+11v) /12, 1/2 <t <17 (3.160)
| Qutv)e?—2ut, 0<t<1/2
B() = { Qu+v)2—2w+v)t+v, 1/2<t <1 (3.161)

F([)—G (t)— —(2u+v)t3+3ut2—(4u—v)t/47 OSISI/Z
ST —QuA )+ Bu+3v)2 — (4u+ 11v)1 J4+3v/4, 1/2 <1< 1"
(3.162)
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Now, we will prove some properties of the functions Gi(r) and Fi(r) defined above. The

Bernoulli polynomials are symmetric with respect to 1/2, that is [1,23.1.8]

Bi(1—1)=(—1)*Bi(r), Vt €R, k> 1.

Also, we have

Bi(1) = Bi(0) = By, k22, Bi(1)=~Bi(0) = 5

and
Byj1=0,j=>2.

Therefore, using [1,23.1.21,23.1.22]

1 Y 1 by iy .
sz<§) =—(1-2""%) By, BZ/(Z) =2 (1-2"H) By j=1,
we get
Byj1=0,j>1
and

Now, by (3.164) we have
Fj_1(t) =Gaj1(1), j> 1,

and, by (3.165),

Fyj(t) = Gaj(t) = Baj = Gaj(1) — [2u—v(1=2""%)| By, j > 1.

Further, the points 0 and 1 are the zeros of Fi(1) = Gi(¢) — G¢(0), k > 2, that is

F(0)=F(1) =0, k> 2.

1 ,
Byj =2uByj+vBy; (E) = [2u—v(1-2""%)] By, j> 1.

(3.163)

(3.164)

(3.165)

(3.166)

(3.167)

As we shall see below, for j > 1, 0 and 1 are the only zeros of F»;(t) for v < u or v > 4u.

Next, setting # = 1/2 in (3.163) we get

Bk(%) = (—=1)*B; (%),kzl.

which implies that
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We shall see that for j > 2, 0, 1/2 and 1 are the only zeros of F>j_(t) = G2j—1(t), for
v <uorv>4u. Also, note that

1 1 .
Goj (5) =2uB); (§> +vByj = [v—2u(1-2""%)| By, j> 1,

1 1 - .
B <§> =G (5) —Byj=(v—2u)2-2""2)By;, j> 1. (3.168)
Lemma 3.11 For k > 2 we have

Gr(1—1)= (—DrGi(r), 0<1 <11,

and
F(1—=1)=(—1)*F (), 0<r < 1.

Proof. As we noted in introduction, the functions Bj(¢) are periodic with period 1 and
continuous for k > 2. Therefore, for k > 2 and 0 <t < 1 we have

1
Gi(1—1) =2uB} (1) + vB; (—5 —|—t>

[ 2uB(t)+vBi(3+1), 0<r<1/2,
T\ 2uBi (1) +vBp (=3 +1), 1/2<1 <1,

B 2uB(1—1)+vBi (3 —1),0<t<1/2,

= (-1~ {ZMBk(l—t)+ka(§—t), 1/2<t<1, = (=D"Gl0),

which proves the first identity. Further, we have Fy(t) = G (t) — Gx(0) and (—1)kG,(0)
= G¢(0), since G2;4+1(0) = 0, so that we have

F(1—1) = G¢ (1 —1) = G(0) = (= 1)* [Gi(1) = G(0)] = (=1)*Fic (1),

which proves the second identity. O

Note that the identities established in Lemma 3.11 are valid for k = 1, too, except at
the points 0, 1/2 and 1 of discontinuity of Fy(¢) = Gy (¢).

Lemma 3.12 For k > 2 and v < u or v > 4u the function Gy,_1(t) has no zeros in the
interval (0,1/2). The sign of this function is determined by

1
(=D G 1(1) >0,0<1 < S Jor v<u,
1
(—1)* Gy (1) >0,0<1 < Efor v>4u.
Proof. For k =2, G3(t) is given by (3.162) and it is easy to see that

1 1
—G3(t)>0,0<t<§,v§u7 G3(t)>070<t<§7v24u7
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Thus, our assertion is true for k = 2. Now, assume that k > 3. Then 2k — 1 > 5 and G (1)
is continuous and at least twice differentiable function. Using (A-2) we get

Gy (1) = = (2k = 1)Gy (1)

and
Gy (t) = (2k = 1)(2k = 2)Goy5(1).

Let us suppose that Go;—3 has no zeros in the interval (0,1/2). We know that 0 and 1/2
are the zeros of Gy;_1(¢). Let us suppose that some o, 0 < o < 1/2, is also a zero of
Go—1(t). Then inside each of the intervals (0,a) and (cr,1/2) the derivative G5, (1)
must have at least one zero, say i, 0 < f; < o and 35, o < B < 1/2. Therefore, the
second derivative G, () must have at least one zero inside the interval (B, 3,). Thus,
from the assumption that Gy, (¢) has a zero inside the interval (0,1/2), it follows that
(2k — 1)(2k — 2)Gox—3(¢) also has a zero inside this interval. Thus, Gy () can not have
a zero inside the interval (0,1/2). To determine the sign of G (¢), note that

Gok-1 (%) = (v—2u)By—y (%) .

1
(=1)"Ba1(1) >0, 0<r < 5,

We have [1,23.1.14]

which implies

Y
—
N~—
T
Q
[
T
7 N
=
N~~~
Il

1
(=1 (2u—v)By (Z) >0forv<u

and
1
(—=1)* Gy (Z) > 0 for v > 4u

So, we proved our assertions. O

Corollary 3.21 Fork > 2 and v < u, functions (—1)kFy(t) and (—1)*Goy (1) are strictly
increasing on the interval (0,1/2), and strictly decreasing on the interval (1/2,1). Also,
for k> 2 and v > 4u, functions (—1) " Fy(t) and (—1)¥"'Gy(t) are strictly increas-
ing on the interval (0,1/2), and strictly decreasing on the interval (1/2,1). Further, for
k>2,v<uorv>4uwe have

_ ([~ _~l-2k _
;g[%w%(rn—(z 2172 (v - 2u)B

and
_ [2u —v(l— 21_2")] |Box|, forv<u,
1001 = [ 220 . o
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Proof. Using (A-2) for v < u we get
(0 Fu)] = [(-1f6un)] =261/ G 1 0)

and (—1)*'Gy_(t) > 0 for 0 <t < 1/2, by Lemma 3.12. Thus, (—1)¥Fy(¢) and
(—1)%Gy(¢) are strictly increasing on the interval (0,1/2). Also, by Lemma 3.11, we
have For (1 —1) = Fy (1), 0 <t < 1and Gy (1 —1) = Gy(), 0 <1 < 1, which implies that
(—1)*Fo(r) and (—1)*Gy(t) are strictly decreasing on the interval (1/2,1). The proof of
the second assertion is similar. Further, F5;(0) = F5(1) = 0, which implies that |Fo(7)]
achieves its maximum at 7 = 1/2, that is

1 _
max |Fy(t)| = |Fax (-)’ = (2 —2! 2k) |(v—2u)Bay -
1€[0,1] 2
Also
1
max |G2k(t)| = max { |G2k (0)| Gk (—) ’}
1€[0,1] 2
[ [u—v(1=2""] By, forv<u,
T [v—2u(1 =220 ] By, forv>4u.
which completes the proof. O

Corollary 3.22 Fork>2,andv <u orv > 4u we have

1 1 (2_21—2k)
| 1Faald = [ (Gans ()] = = (=210 Ba.

Also, we have
/01 |Far(1)|dr = |Box| = |[2u = v(1 —2'7%/)]By|
and |
| 162(0]a <2[Ba] = 2|l2u—v(1 -2 )]
Proof. Using (A-2) it is easy to see that
G, (t)=—mGy_1(t), m>3. (3.169)

Now, using Lemma 3.11, Lemma 3.12 and (3.169) we get

|
/o |Gok—1(t)|dt

|
)
Q
[}
T
L
=
<
e
Y
By

1 12
:2’_56 GZk(t) 0/

E‘GM (1) Gy <o>| e Y]
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which proves the first assertion. By Corollary 3.21 and because F>;(0) = Fo (1) =0, F (1)
does not change sign on the interval (0, 1). Therefore, using (3.167) and (3.169), we get

/01 |Far(t)|dt = ’/Olek(t)df

— ‘/01 [Gok (1) — By dt

)

1 Lo
= |- —B
’ Y Gor1(t)]o — B

= |Bx

which proves the second assertion. Finally, we use (3.167) again and the triangle inequality
to obtain

1 1 N 1 . <
/0 |G2k(t)|df=/0 |F2k(f)+32k|dté/0 |Fo(t)|dt + |By| =2 | B,

which proves the third assertion. |

Now, we use formulae established in Theorem 3.27 to prove a number of inequalities
using L, norms for 1 < p < oo. These inequalities are generally sharp (in case p = 1 the
best possible).

Theorem 3.28 Assume (p,q) is a pair of conjugate exponents, 1 < p,q < e. If
£:[0,1] — R is such that f € L,[0,1] for some n > 1. Then we have

‘/01 F(6)dt —D(u,v) + Ty (u,v)| < K(my pu,v) - | £, (3.170)

and

[ 10 =Dl + Tl < K o) 1. (3.171)

where

1 1 1/q
K(I’hp;bﬁV) = W |:/0 |F;1(l‘)|qdl:| and

1 1 1/q
K (npiae) = s [/O |G,1(t)|‘1dt} .
The constants K (n, p;u,v) and K* (n, p;u,v) are sharp for 1 < p < oo and the best possible
forp=1.
Proof. The proof is analogous to the proof of Theorem 2.2. O

Corollary 3.23 Ler f: [0,1] — R be a L-Lipschitzian function on [0, 1]. Then

4u* 4?2

< TV
= 42u+v)?

/ ' H(0)dr — D(u.v)
0

If " is L-Lipschitzian on [0,1], then

- 4813 — 12uv +° .

1
/of(t)dt_D(”’v) =T 2402ut )}
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Proof. Using (3.159) and (3.160) we get

4u —|—v 4813 — 121y +°
Fi(t)|dr = d F>(t)|dr = .
/'1 ) A2u+v) " /'2 )|dr 122u~+v)2

Therefore, applying (3.170) with n = 1,2 and p = e we get the above inequalities. O

Remark 3.28 The estimation in the first inequality in Corollary 3.23 achieves minimum
of 1/8 for u =1 and v = 2, which is bitrapezoid formula (see [20] and [28]) and the second
achieves minimum of 1/81 for u = 1 and v = 4, which is Simpson’s formula (see [29]).

Remark 3.29 Let f:[0,1] — R be such that f"~1) is an L-Lipschitzian function on [0, 1]
for some n > 3. Then for v < u or v > 4u, from Corollary 3.22 we get

K(Zk_ 1,°°;M,V) = (2_2172k)|(v_2u)B2k|7

2
Qu+v)[(26)1]

K*(2k,001u,v) = ’[2u—v(l —21—2’<)]sz’

(Qu+v)[(2k)!]

and
2

K(2k,<>o;u,v) = W)[(Zk)']

‘[2u (1 - 21‘2")]sz’ .

Corollary 3.24 Ler f:[0,1] — R be a continuous function of bounded variation on [0, 1].

Then
‘ / f(t)dt — D(u,v)| <

If f is a continuous function of bounded variation on [0, 1], then

’/Olf(t)dt—D(u,v) <

~ 16(2u+v)?

[+ 5] o

V2 + 180 = V(] - Vo (f).

Proof. From (3.159) and (3.160), we get

v 1
Fi()] = max{u, >} = 212 2u— v[] and
trer%g)l(]| 1(1)] = max{u 3 4[ u+v+|2u—v|an

w?  v—2u 1
F(t)] = = 2 4 18u — ).
tgl[g)l(]| 2(0) maX{Zu—l—v7 4 } 8(2u+v)[v +[8u” =]

Therefore, applying (3.170) with n = 1,2 and p = 1 we get the above inequalities. O

Remark 3.30 The estimations in inequalities in Corollary 3.24 achieve minimuma of 1/4
and 1/32 for u = 1 and v = 2 which is bitrapezoid formula (see [28]).
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Remark 3.31 Let f: [0,1] — R be such that £*~1) is a continuous function of bounded
variation on [0, 1] for some n > 3. Then for v < u and v > 4u from Corollary 3.21 we get

1
K(Zk_ 17 l,M,V) = (2M+V) [(2](— l)'] tren[g,)I(] |F2k71(t)|7
. . B (2_2172k)
K*(2k,1;u,v) = But) [0 [(v—2u)Bay
and
o 1 [2u—v(1=2""2K] [By], forv<u,
K(2k Liuyv) = (2u+v)[(2k)!] { [v—2u(1—-2""2][By], forv>4u.

Now, we calculate the optimal constant for p = 2.

Corollary 3.25 Ler f: [0,1] — R be such that f) € 1,[0,1] for some n > 1. Then, we

have
’ /0 " H(0)de — D(u,v) + o (1)
1 —1 n—1 B2 1/2
= Quy) [((22)! [4“2+V2_4”V(1_212n>]BZ"+ﬁ] 171
and

/O ' F(0)dr — D) + To(u,v)

1 [(—1)"—1
~ Qu+v) [ (2n)!

1/2
[4u2—|—v2—4uv(1 —21_2")] an] Hf(n)||2.

Proof. Using integration by parts and also using Lemma 1 from [30] we have

nn—1)...2
(n+1)(n+2)...2n—1)

[ G = (-1

0
[—%GZn(I)GI(I)hI)—F %/01 Ga,(1)dGy (z)]

= (="' (Z’L); [—(2u+v) /0 1G2n(t)dt+2uG2,,(0)+vG2n (%)]

nl)? [4uszn (%) + (4u2+v2)32n]

[4142 +v2— duv(l — 21*2”)] By,.

(2n)!
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Now,

1 1 B
/OF,f(t)dt:/O (G(1)— B,  dt

1 1
- / [G2(t) — 26, (1) B, + B] dr = / G2(1)dt + B
0 0

_ (_l)n—l (n|)2

(2n)1 [4u2 +v? —duv(1 — 21_2”)] Bo, + B2

O

Finally, we give the values of optimal constant for n = 1 and arbitrary p from Theorem
3.28.

Remark 3.32 Note that K*(1, p;u,v) = K(1, p;u,v), for | < p <eo, since Gi(r) = Fi(z).
Also, for 1 < p < e we can easily calculate K(1, p;u,v). We get

K(L, psu,v) =

1 [(214)“1 +yatl

22u+) <2u+v><q+1>} ers

Now we use the formula (3.157) and one technical result from [83] to obtain Griiss
type inequality related to that general Euler-Simpson formula:

Theorem 3.29 Suppose that f : [0,1] — R is such that £ exists and is integrable on
[0,1], for some n > 1. Assume that

my < fO(1) <M, 0<1 <1,

for some constants m,, and M,,. Then
1
[ 700 Da) + )| < 08, - ), (3172
0

where C, = m Jo 1Gu(2)|dr.

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

Theorem 3.30 If f : [0,1] — R is such that f*¥) is a continuous function on [0,1], for
some k >2 andv < u orv > 4u, then there exists a point 1| € [0,1] such that

20— v(1 = 21-)]By,

Guroa) (3173)

R5(f) =~—

Proof.  We can rewrite R5,(f) for v < u as R3(f) = (—l)"m7 where

Jo = Jo (= 1)*Fy(s) @8 (s)ds. From Corollary 3.21 follows that (—1)*Fy(s) > 0,
0 < s <1 and the claim from the mean value theorem for integrals and Corollary 3.22.
The proof for v > 4u is similar. O
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Remark 3.33 For k = 2 formula (3.173) reduces to

16u—"7v

_Lou=Tv
s7602u 1)

Ri(f) =
Now we study, the general Simpson quadrature formula
1
/ f) u+v+w[ f(0)+vf<§)+wf(l)} +E(fiuvw) (3.174)

with E(f;u,v,w) being the remainder, u,v,w € Z* and we are using identities (2.36) and
(2.37) to get two new identities of Euler type (see [20]).

Theorem 3.31 Let f: [0,1] — R be such that £ is a continuous function of bounded
variation on [0, 1], for some n > 1. Then

/ f(0) D(u,v,w) — Ty (u, v, w)—|—R (f), (3.175)
and
/f D(u,v,w) — T 1 (u, v, w) + R2(f), (3.176)
where
Dlu) = s w407 (5 ) ()]
Rl — ; = (n—1)
R = ooy G040,
~ Y 1 = (n—1)
Rn(f)_ (M—FV—FW)(}’Z')/O Fn(t)df (t)7
Gi(t) = (u+w)B(1 —1)+vB} (%—z), tER,
I:_}((t) = G_k(t) _B_k7 IER7 k> L,
B_k = LtBk(O) +VBk (%) —f'WBk(l)7 k >1
and
Ty, v, w) = ﬁ [uTm(O)—Fva (%) —I—me(l)} )

Proof. Put x =0, 1/2, 1 in formula (1.1) to get three new formulae. Then multiply these
new formulae by u, v, w respectively, and add them up. The result is formula (3.175).
Formula (3.176) is obtained from (1.2) by the same procedure. O
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Theorem 3.32 Assume (p1,q1) and (p2,q2) are two pairs of conjugate exponents,
1 < p1,q1,p2,q2 < oo Let x € [0,1] and f : [0,1] — R be such that f") € L, [0,x] and
f(”> € Ly, [x,1], for some n > 1. Then, we have
1 _
’/ f(®)dt — D(u,v,w) + T,—1 (u, v, w)’ (3.177)
0

< K(nvpl;uvv7 va) ' ||f(n> ||LP1 [0,4] +K(n7p2;u7v7 W7-x) : Hf<n)||Lp2[x.l]7

and

1 —
‘/ f(t)dt—D(u7v7w)—|—Tn(u7v,w)’ (3.178)
0
< K" (n7p1;u7v7w7x) ’ ||f(n) ||L[’l [0,x] +K*(n7p2§u7V7W7x) ’ ||f(n)HLp2 [x,1]>

where

1 X /a1
K(nvpl;uvv7wvx):m|:/o |Fn(t)|q1dt:| 5

1 1 _ /g
K(n, pasu,v,w,x) = [CESE=nIEn) {/x | (2)]% dt] ,

* . 1 X . /a1
K*(n,p1;u,v,w,x) = o) [/0 }Gn(t)}q dt} and

K*(n, p2;u,v,w,x) = m {/xl |(3,1(t)|‘12 dt] 1/‘12'

The inequalities are sharp for 1 < py, pa < oo and the best possible for py =1 or py = 1.
Proof. Applying the Holder inequality we have

.
(u+v+w)(n!)
-
(u+v+w)(n!)

1 X g 1/q1 ()
- 1 n
< arvrron | L O] 1

1 Vaa
VAR T

= K(n7pl;u7v7w7x)||f(n>HLm [0,x] +K(n7p2;u7v7w7x)|‘f(n)HLpz[x,l]'

/olffz(f)f(”) (¢)dt

E (1) L TR
) B0 s [ R 0

Using the above inequality from (3.158) we get estimate (3.177). In the same manner, from
(3.157) we get estimate (3.178). The proof of sharpness and best possibility is similar as
in the proof of Theorem 2.2. O
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Remark 3.34 Forn=1,0<u <} <1-w<1landu+v+w=1ininequality (3.177)
we get inequality

171/4
uq1+1+(%_u)‘11+ l /
112, 10,172

'/Olf(t)dt—D(um,w)‘ < l -

1/q
. [Wﬂﬂw—%)qﬁl} |

Hil £ Ly, 11/2.1)5

which is inequality proved in [21] for t; = u, 1, = %, B=1—w.

Remark 3.35 Using formulae (3.177) and (3.178) we can also get the other inequalities
from [21].

3.3.2 General dual Euler-Simpson formulae

Results from this section are published in [102].
Here we study the general dual Simpson quadrature formula

/Olf(t)dt = zul_v [uf (%) —vf(%) +uf (%ﬂ +E(fiu,v) (3.179)

with E(f;u,v) being the remainder, u,v € Z", v < 2u and the greatest common divisor of
u and v is 1. The aim of this section is to establish general dual Simpson formula (3.179)
using identities (1.1) and (1.2) and give various error estimates for the quadrature rules
based on such generalizations. We use the extended Euler formulae fora =0, b =1 to
obtain two new integral identities. We call them the general dual Euler-Simpson formulae.
After that we prove a number of inequalities which give error estimates for the general dual
Euler-Simpson formulae for functions whose derivatives are from the L,-spaces.
For k > 1 define the functions G?(¢) and FP(¢) as

1 1 3
G?(t) = uB; (Z—t) —vB}, <§—t> +uBj, (Z_t> ,teR

FP(t)=GP(1)—BP, t c R, k> 1,

. 1 1 3
BP = uBy (Z) — vBy (§> + uBy (Z) k> 1.

Especially, using By () =1 —1/2 we get BY? = 0. Also, for k > 2 we have B? = GP(0),
that is

and

where

EP(t) =GP (1) - GP(0), k>2, and FP(t) =GP(r), t € R.

Obviously, G?(¢) and FP(r) are periodic functions of period 1 and continuous for k > 2.
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Let f : [0,1] — R be such that f"~1) exists on [0, 1] for some n > 1. We introduce the
following notation

=g [ (3) ()~ (3)]

Further, we define 7" (u,v) = 0 and, for 1 <m <n,

TP (u,v) = 2u1— - {uTm (%) — T, (%) +uTh, (%)] ;

where T,,(x) is given by (1.3). Form > 1

T2 (u,v) = > o - o). (3.180)
In the next theorem we establish two formulae which play the key role in this section.

We call them the general dual Euler-Simpson formulae.

Theorem 3.33 Let f: [0, 1] — R be such that £ =1 is a continuous function of bounded
variation on [0, 1], for some n > 1. Then

[} 0 = Fu) ~TP) + R (), G.181)
and |
|| Fa)dr = Flu) =2 ) + R, (3.182)
where
RS = m JA Gu)a ),
and

RP*(f) = m/(Jan () dfV ().

Proof. Put x=1/4, 1/2, 3/4 in formula (1.1) to get three new formulae. Then multiply
these new formulae by u, — v, u respectively, and add them up. The result is formula
(3.181). Formula (3.182) is obtained from (1.2) by the same procedure. O

Remark 3.36 If in Theorem 3.33 we chose u = 2 and v = 1 we get dual Euler Simpson
formulae [26] and for u = 8 and v = 1 we get corrected dual Euler Simpson formulae [52].

By direct calculations we get

v—2u)t, 0<r<1/4

( )
o -ato-{ 0SSR e
( )

v=2u)t+2u—v, 3/4<t <1
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(2u—v)t> + (2v —u) /24, 0<r<1/4
D (1) = (2u —v)t* —2ut + (11u+2v) /24, 1/4<t<1)2 (3.184)
2V Qu—v)P+ (2v—2u)t+ (11u—22v) /24, 1/2 <t < 3/4° :
(Qu—v)t2+ (2v —du)t + (47u —22v) /24, 3 /4 <t < 1
(2u —v)t?, 0<t<1/4
Do) Qu—v)t>—2ut+u/2, 1/4<t<1/2
B0 =3 uav)2+ v —2u)i+ (u—20)/2, 1/2 <1< 3/4 " (3.185)
(2u — )£+ (2v — 4u)t +2u — v, 3/4<t <1
(v—2u)t> + (u—2v)t/8, 0<t<1/4
(v—2u)t> + 3ut® — (1u+2v)t /8 +3u/16, 1/4 <t < 1/2
Din Do) (v=2u) 4 (Bu—3v)?
B0 =050 =3 L 220 = 11u)e/8 + (3u— 12v) /16, 1/2<1<3/4"
(v —2u)t* + (6u — 3v)*
+(22v —4Tu)t /8 + (15u— 6v) /8, 3/4<t<1

(3.186)
Now, we will prove some properties of the functions G?(t) and FP(t) defined above. The
Bernoulli polynomials are symmetric with respect to 1/2, that is [1,23.1.8]

Bi(1—1)=(=1)*B(t), Vi € R, k> 1. (3.187)

Also, we have .
Bi(1) = By (0) =By, k> 2, Bi(1)=—-B;(0) = 3

and
Byj1=0,j=>2.

Therefore, using [1,23.1.21,23.1.22]

1 . 1 , .
By, (E) =—(1-2"%)By;, By; (Z) =274 (1-2""%)By; j>1,

we get
B, =0,j>1 (3.188)
and for j > 1

. 1 1 3 . .
BY; = uB» (Z) —Byj <§> tubBaj (Z) =(—u-2"¥)(1-2""¥)By;. (3.189)

Now, by (3.188) we have

F_(0) =G51(1), j> 1, (3.190)
and, by (3.189),
FD(t) = GEi(t) — BY, = GB;(t) — (v—u-2""2)(1=2'"2))By;, j> 1. (3.191)

Further, the points 0 and 1 are the zeros of FP (1) = GP(t) — GP(0), k > 2, that is

EP0)=FP(1)=0, k>2.
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As we shall see below, for j > 1, 0 and 1 are the only zeros of Fg(t) for u/2 <v < 2u.
Next, setting # = 1/2 in (3.187) we get '

By (%) = (—1)*B; (%) k> 1.

which implies that

We shall see that for j > 2, 0, 1/2 and 1 are the only zeros of Fg_l(t) = G’z)j_l(t) for
u/2 <v < 2u. Also, note that

1 3 1 : .
G3; <§> = uBy; (Z) —VvByj+uBy; (Z) =[—v—u-2""¥(1-2""%)] By, j> 1,

1 A .
Fy (E) =G, <§> —BY =-2v(1-2"%)By;, j> 1. (3.192)

Lemma 3.13 For k > 2 we have

GP(1—1)=(-1D)*GP(r), 0<r <1,

and

FP(1—t)=(—D*FP(r), 0<t < 1.

Proof. As we noted in introduction, the functions Bj(¢) are periodic with period 1 and
continuous for k > 2. Therefore, for k > 2 and 0 <t < 1 we have

3 1 1
Gf(l—t):uBz <_Z+t) —VB; <_§ +l) +MB]t <_Z +l‘)

uB;(%—1+t)—vB,’;(%+t)+uBz(f—t—li—t)7 0<r<1/4,

_ uB;g(FLt) vB,’;(i—li—t)—l—uBz(—Z—li—t)? 1/4<1<1/2,
uB;;(Z;Lz)—vB;;(—§+t)+uB;;(—Z+z), 1/2<1<3/4,
uBj (—3+1) —vBy (=5 +1t)+uB; (% +1), 3/4 <t <1,

By (3—1) —vBj (5 —1) +uB; (}—1), 0 <1 < 1/4,
(1) uBj (3 —t) —vBj (5 —t) +uB; (3 —1), 1/4<t<1/2,

uBZ(%—t)—vBZ(%—t)—FuBZ(f—‘—t), 1/2<1<3/4,

uBy (I—1)—vB; (3 —1)+uBj (3 —1), 3/4<t <1,
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which proves the first identity. Further, we have FkD(t) = GE(;) — GkD(O) and (— 1)kaD(O)
= GE(O), since G2Dj+1(0) =0, so that we have

FP(1—=1) =GP (1-1)=GP(0) = (=1)* [GP(1) = GR(0)] = (=1)"FP (1),

which proves the second identity. ]
Note that the identities established in Lemma 3.11 are valid for k = 1, too, except at

the points 1/4, 1/2 and 3/4 of discontinuity of FP(t) = GP(1).

Lemma 3.14 For k > 2 and u/2 < v < 2u the function Glzjk_l(t) has no zeros in the
interval (0,1/2). The sign of this function is determined by

1
(~D1GE 1 (1)>0,0<1 < 5.
Proof. For k=2, G () is given by (3.186) and it is easy to see that for u/2 < v < 2u
1
~GY(1)>0,0<1< 5

Thus, our assertion is true for k = 2. Now, assume that k > 3. Then 2k—1 > 5 and Gé’,h 1 (1)
is continuous and at least twice differentiable function. Using (A-2) we get

Gy, (1) = —(2k— 1)G5 (1)

and
G (1) = (2k—1)(2k = 2)GL 5(1).

Let us suppose that G55 has no zeros in the interval (0,1/2). We know that 0 and 1/2
are the zeros of G, (¢). Let us suppose that some ¢, 0 < & < 1/2, is also a zero of
GY_(t). Then inside each of the intervals (0, ) and (a,1/2) the derivative G5, ()
must have at least one zero, say 1, 0 < f; < & and B, oo < B, < 1/2. Therefore, the
second derivative G5 | () must have at least one zero inside the interval (B, ;). Thus,
from the assumption that G5, (¢) has a zero inside the interval (0,1/2), it follows that
(2k — 1)(2k —2)GB,_5(t) also has a zero inside this interval. Thus, G5, _,(¢) can not have
a zero inside the interval (0,1/2). To determine the sign of G5, (), note that

1 1
D ) =— -
Gy ( ) vBor_1 ( ) .

1
(—=DfBy1(1) >0,0<1 < oz

(-D1GE (%) = (=1)"vBy_; (%) > 0.

So, we proved our assertions. O

We have [1,23.1.14]

which implies
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Corollary 3.26 For k > 2 and u/2 < v < 2u the functions (—1)*FR () and (—1)*GE) (r)
are strictly increasing on the interval (0,1/2), and strictly decreasing on the interval
(1/2,1). Further, for k > 2 and u/2 < v < 2u we have

max |F2(¢)] = 2v (1 - 2—2k) 1B,
1€[0,1]

and

max |G2Dk(t)| = {v+u-2172k(1 —21*21‘)} |Bax|-
1€[0,1]

Proof. Using (A-2) we get
(R0 = [(1/6R 0] = 26111 6B, )

and (—1)*1GD,_,(t) > 0 for 0 <t < 1/2, by Lemma 3.14. Thus, (—1)*FL(t) and
(—1)*GD (t) are strictly increasing on the interval (0,1/2). Also, by Lemma 3.13, we
have FL(1 —#) = FR(#), 0 <t <1 and G5 (1 —1) = G5(t), 0 <t < 1, which implies
that (—1)*FL (¢) and (—1)*GB,(¢) are strictly decreasing on the interval (1/2,1). Further,
FR(0) = FR(1) = 0, which implies that |F2Dk (t)} achieves its maximum at 7 = 1/2, that is

1
FP (5) ‘ —2 (1 —2*2’6) By

D _
max |[FR ()| =

Also

trerm]!G’z)k(t)! = maX{|G’z)k 0],

1
G (§> ’} = [V+u'21_2k(1 —21_2k)] B2kl
which completes the proof. O

Corollary 3.27 Fork>?2 andu/2 <v < 2u we have

[ 18w = [11650]a=2

1—-27%)|By.
Also, we have

[ 1RO ar = B = (v w2t )1 21y

and '
/O |GB (1) dt <2|BE | =2(v—u-2"2) (1 =272 [By.

Proof. Using (A-2) it is easy to see that

Gy (1) = =mGp_(t), m > 3. (3.193)
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Now, using Lemma 3.13, Lemma 3.14 and (3.193) we get

12

s D 1/2
/O|G2k—1(f)|df:2 A Gy (1)dt

0

_z’_ﬁc (1)

1 1 2v
1|68 (3) - eh 0| = Fa -2,

which proves the first assertion. By Corollary 3.26 and because F2(0) = FL (1) =0, FL (1)
does not change its sign on the interval (0, 1). Therefore, using (3.191) and (3.193), we get

/|F2k )| dr = ‘/sz £)dr| = ’/ 6B, )] dr

1 D nD nD
= ‘_2k—+1 sz+1(t)|o—32k =|B%

which proves the second assertion. Finally, we use (3.191) again and the triangle inequality
to obtain

1 1 -
/O|G’2)k(t)|dt:/0 |F{ (1) + BY| dt</ | (1)|de + |BY| = 2| BY,
which proves the third assertion. |

Now we use formulae established in Theorem 3.33 to prove a number of inequalities
using L, norms for 1 < p < eo. These inequalities are generally sharp (in case p = 1 the
best possible).

Theorem 3.34 Assume (p,q) is a pair of conjugate exponents, 1 < p,q < . Let f :
[0,1] — R be such that f") € L,[0,1] for some n > 1. Then, we have

'/f 0t — F(u) + 721 )| < K20 i) [F D0, (3.194)

and

— F(u,v) + TP (u,v)| < KP*(n, pyu,v) - | £, (3.195)

where

1/q
K (rupia) = s [ A |Fn<r>|‘fdr} and

KP* (n, piu,v) = m [/01 |G,1(t)|‘1dt} "

The constants KP (n, p;u,v) and KP* (n, p;u,v) are sharp for 1 < p < oo and the best pos-
sible for p = 1.
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Proof. Applying the Holder inequality we have

< m Uol }F,?(z)}th] l/q.Hﬂw
KP(n,piu,v)- wa”p'

B0 0

p

Using the above inequality from (3.182) we get estimate (3.194). In the same manner, from
(3.181) we get estimate (3.195). The proof of the optimality of K” (n, p;u,v) is analogous
to the proof of Theorem 2.2. O

Corollary 3.28 Ler f: [0,1] — R be a L-Lipschitzian function on [0,1]. Then

- 2u+v L

1
/O £ = F(u)| < g

If " is L-Lipschitzian on [0,1], then

u? (3v +2uv) + uv(5v — V2uv) + 202 (v + 3v/2uv)

2
< L.

482u —v) (v +v2uv)(2u+ v+ 2+/2uv)
Proof. Using (3.183) and (3.184) we get

| [ s r)

1 2
/ |F1D(t)|dt: uty and
0 8

/1 EP(1)] di = 202 (3v +V2uv) + uv(5v — v 2uv) + 2v* (v + 3v/2uv)
0o 7 B 24 (v +2uv) (2u +v + 21/ 2uv) '

Therefore, applying (3.194) with n = 1,2 and p = e we get the above inequalities. O

Remark 3.37 The estimation in the first inequality in Corollary 3.28 achieves an infimum
of 1/24 and the second inequality an infimum of O for u — o and v = 1.

Remark 3.38 Let f: [0,1] — R be such that £~ is an L-Lipschitzian function on [0, 1]
for some n > 3. Then from Corollary 3.27 for u/2 < v < 2u we get

2v _
KD(Zk—l,oo;u,v):m(l—Z 2 |Bog|
* . _ 1 — —
KP*(2k,o0u,v) = m(v—u-zl 2 (1 = 21725 | By
and
2

KP (2k,031,v) = (v—u-2"72) (12172 By

(2u—v)[(24)]
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Corollary 3.29 Ler f:[0,1] — R be a continuous function of bounded variation on [0, 1].
Then
2u+v 1

1
) 700 P < 5 ).

If " is a continuous function of bounded variation on [0, 1], then

1

1ggt
< m[2u+3v+|2u—5v|]-vo(f).

‘ /0 ' H(0)dr— Flu,)

Proof. From (3.183) and (3.184), we get

and

max] |FP(1)| = max{

2u—v 2u+v _ 2u+v
r€[0,1 N

4 4 4

2u—v v 1
FP()| = - b= —[2u+3v+2u—5v|].
tIél[&)](]‘ 2()| max{ } 32[ u—+3v+2u—5v|]

Therefore, applying (3.194) with n = 1,2 and p = 1 we get the above inequalities. a

Remark 3.39 The estimation in the first inequality in Corollary 3.29 achieves an infimum
of 1/4 and in the second inequality an infimum of O for u — cc and v = 1.

Remark 3.40 Let f: [0,1] — R be such that £*~1) is a continuous function of bounded
variation on [0, 1] for some n > 3. Then from Corollary 3.26 for u/2 <v < 2u we get

Dok — 1 L) — L D
K (Zk l,l,u,v)— (2u_v)[(2k_l),]trg&)l(]|F2k—l(t)|v

2v

KP* (2k, 1;u,v) = =020

(1—27%) | By

and

1

b UY) = ————————
KGOk L) = e

[v+u-21*2k(1 —21*2’()] B

Now, we calculate the optimal constant for p = 2.

Corollary 3.30 Ler ") € 1,0, 1] for some n > 1. Then, we have

/Olf(t)dt CF(u,v) + TP (u,v)
1

(_l)n—l

= (2u—v)[ (2n)!
5 11/2

+ o] 1,

[2u? +v* — (2u* — uv- 227" (1 - 2'2")] By,
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and
[0~ Fn) + 72()
1 (=1 12
= (2u—v)[ 2n)! [2“2+V2—(2u2—w222”)(1—212”)]324 LF 2.

Proof. Using integration by parts and also using Lemma 1 from [30] we have

[ @pwpar = (e U2

(n+1)(n+2)...2n—1)
5 GO0l + 5. [ et

12 1 1

— (—1)" 1(’21))' {v—Zu / G2 (1 dt+2uG2n(Z)—ngn(§>}
12 1 1

Zn))' —4uvB,, (Z) +2u232n <§> + (2u2+v2)B2n]

[2u% +v? — (2u® —uv-2272") (1 - 2'72")| By,

= / —2G,(t)BY + (BR)?] dt = /0 I(Gf,))z(t)dt—i— (BP)?

[2u +1? (2u2 —uv- 22_2")(1 — 21_2")] By, + (§3)2~

O

Finally, we give the values of optimal constant for n = 1 and arbitrary p from Theorem
3.34.

Remark 3.41 Note that KP* (1, p;u,v) = KP(1,p;u,v), for 1 < p < o, since GP(t) =
FP(t). Also, for 1 < p < e we can easily calculate K”(1, p;u,v). We get

1 (2u —v)att 4 (2u+v)atl —2at e+l

KoL piay) = (2u—v)(g+ )22+

, 1 < p<oo.

Now we use the formula (3.181) and one technical result from [83] to obtain Griiss
type inequality related to the general dual Euler-Simpson formula:

Theorem 3.35 Suppose that f : [0,1] — R is such that £\ exists and is integrable on
[0,1], for some n > 1. Assume that

my < fO(1) <M, 0<1 <1,



3.3 GENERAL SIMPSON FORMULAE 149

for some constants m,, and M,,. Then
1 ~
‘/O F(O)dt — F(u,v) + TP (u,v)| < Co(My, —my,), (3.196)

where Cn = mfo |GD( )|dt

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

Theorem 3.36 If f : [0,1] — R is such that f®*) is a continuous function on [0,1], for
some k > 2, then for u/2 <v < 2u there exists a point 1 € [0, 1] such that

RO(f)=~— ). (3.197)

(v =211 = 21y
(2u—v)[(26)!]

Proof. ,

We can rewrite RY?(f) as RD?(f) = (—l)kz[(z’;{)] where Ji = [3 (—1)FFR(s) f9) (5)ds.

From Corollary 3.26 follows that (—1)*F2(s) >0, 0 <s < 1 and the claim follows from

the mean value theorem for integrals and Corollary 3.27. O

Remark 3.42 For k = 2 formula (3.197) reduces to

7(8v—u)

@)
2608002u —v)) (M-

RP*(f) =

Now, we study, the general dual Simpson quadrature formula

/ fe)dt = ——, [”f (i) —vf (%) +Wf<%)] +E(f;u,v,w)  (3.198)

with E(f;u,v,w) being the remainder, u,v,w € Z* and u+w > v. We are using identities
(1.1) and (1.2) to get two new identities of Euler type.

Theorem 3.37 Let f:[0,1] — R be such that =V s a continuous function of bounded
variation on [0, 1], for some n > 1. Then

/ F(0)dt = F(u,v,w) = TP (u, v, w) + RE(f), (3.199)
and
/O () = Pl vw) — T2 () + R(1), (3.200)
where
st C) Q) )
R ) = o 1 G000,
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B2 = s [ P00,

= 1 3
GkD()—uBk< ) vBi | 5 >+ka<Z—t)7teR,

FPt)=GP(1)—BP, teR, k>1,

Bk—uBk< )—ka >+ka< ) k> 1
— 1 1 1 3
D _ 0y 1 3
Tm(u,v,w)—u_v+w [uTm(4) va(2)+me(4)].

Proof. Put x=1/4, 1/2, 3/4 in formula (1.1) to get three new formulae. Then multiply
these new formulae by u, — v, w respectively, and add them up. The result is formula
(3.199). Formula (3.200) is obtained from (1.2) by the same procedure. O

and

Theorem 3.38 Assume (p1,q1) and (p2,q2) are two pairs of conjugate exponents,
1 < p1,q1,p2,q2 < oo. Let x € [0,1] and f : [0,1] — R be such that f" € Ly, [0,x] and
f(”> € Ly, [x,1] for some n > 1. Then, we have

‘/ F(0)dr — F(u,v,w) + TP | (u,v,w) (3.201)
< K (nvpl;uvv7 va) ' ||f ||Lp1 [0,4] +KD(’17P2§M7V7 W7x) : Hf<n)HLp2[x.l]7
and
1 _
‘/ f(t)dt—F(u7v7w)+TnD(u7v7w)’ (3.202)
0
< KD* (n7p1;u7v7w7x) ’ ||f(n) ||L[’l [0,x] +KD*(n7P2§u7V7W7x) ’ ||f(n) ||L,,2[x,1]7
where
KP 1 “IEP (19 d ok
UV W X) = (¢ t ,
(n7l’1 MVW)C) (M—V—FW)(I’I') |:/0 | ()| :|

KD(n7p2;u,v7W7x)

s [ 1#oa]

/a1
KD*(n7p1;u7v7w7x) (M—T {/ |GD |111 dt} and

D 1 L /g2
K (n7p2§u7V7W7x): m |:/); |Gn (t)! dl:l

The constants KP (n, p1;u,v,w,x), KP(n, pa;u,v,w,x), KP*(n, p1;u,v,w,x) and
KP*(n, pa;u,v,w,x) are sharp for 1 < py, p» < o and the best possible for p; =1 or p; = 1.
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Proof. Applying the Holder inequality we have
1 1 _
| BP0 @y
0

(w—v+w)(n))
* 1_
- ﬁ/ MW+ e [ P05 0a

1/q1 )
q n
< oo | L @] 1, 0
. 1/q2
TG <t>|‘12dt} 17l

= KP(n,p1;u,v, W,x)”f(n)”L,,l [0.4] +KP(n, paiu,v, w,x)llf(”>|\Lp2[x71].

_|_

Using the above inequality from (3.182) we get estimate (3.201). In the same manner, from
(3.181) we get estimate (3.202). The proof of sharpness and best possibility is similar as
in the proof of Theorem 2.2. g

Remark 3.43 Forn=1,
inequality

/lf(t)dt — Flu,v,w)
0

and u —v+w = 1 in inequality (3.201) we get

r 1
- w—w) "+ (= w4+ D" 4 Guw— 1)1 4 (235 —w)n ! Ja
B 4ntl(q+1)
Az, 0.2
r 1
N —(w—u)2 - (w—u+ )2 4 Bwtu— 12T 4 (2 —u—3w)2 ! e
4021 (gy + 1)

Mz /2

3.3.3 Estimations of the error via pre-Griss inequality

In [116], N. Ujevi¢ used the generalization of pre-Griiss inequality to derive some better
estimations of the error for Simpson’s quadrature rule. In fact, he proved the next three
theorems:

Theorem 3.39 Ler I C R be a closed interval and a,b € Intl, a<b. If f:1 —Risa
continuous function of bounded variation with [’ € Ly|a, b], then we have

5 o (52 o] o] <22

k=15 ([ rwa) - () bf’(r)%(x)dr)z 3204

—F—Kj, (3.203)

where
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and (1) = 1 — 5 Wo (1) = W)/ ¥l

Theorem 3.40 Let I C R be a closed interval and a,b € Intl, a < b. If f : I — R is such
that [’ is a continuous function of bounded variation with f" € Ly|a,b), then we have

b—a a+b )5/2
‘ 3 {f(a)+4f( 5 ) } /f 1)dt| < 12\/_ ~ LK, (3.205)
where
5 5 1 b 2 b 2
=1y ([ roa) — ([ o) (3206)
[ 1, tefa,4?]
W(r) = { e (42 (3.207)

and Wo (1) =¥ () /¥l

Theorem 3.41 Let I C R be a closed interval and a,b € Intl, a < b. If f : I — R is such
that " is a continuous function of bounded variation with f"' € L;|a,b] then we have

b—a a+b )7/2
5 o (152) o o] < St
where
2 2 1 b g b 2
=By, ([ rwa) - ([ rrowoa) . e
_ TJa+3b +b
‘P(t)—{; 3a+°7;, ;EE ’,,24 (3.210)

and Wo(t) =(1)/||¥l2-

In this section using Theorem 2.14 we will give a similar result for general Euler-
Simpson formula and for functions whose derivative of order n, n > 1, is from L,[0,1]
space. We will also give related results for general dual Euler-Simpson formula. We will
use interval [0, 1] for simplicity and since it involves no loss in generality.

Theorem 3.42 If f:[0,1] — R is such that f"~Y) is a continuous function of bounded
variation with f) € 1,0, 1], then we have

’/Olf(t)dt —D(u,v) + T,(u,v) (3.211)

(—1)"_1 1/2
< T [ [4u2+v2—4uv(1—21_2”)] By,| K,
u+v !
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where
2

2
== ([ rowa) - ([ o) . e
0 0

For n even

while for n odd we have

21y dudy 1
‘P(t) — 1+ 21=ny_22-ny 4 8u—dy’ re [0’ 2] )
- r+ 21 (—v) 4 3v—6u te 1 l]

21=ny_22-ny 4 8u—4dy’ 25

Proof. 1t is not difficult to verify that

1

/OG,,(t)dt:O, (3.213)
1

/()‘{’(t)dt:Q (3.214)

/O G (0¥ (1)dt = . (3.215)

From (3.157), (3.213) and (3.215) it follows that

Lo | G0 war

1
[ 70 =Dl + o) =

— ;/1Gn(l‘)dt/olf(”)(t)dt

Qu+v)n! Jo
1 1 1
- m/o Gn(f)‘l’o(f)dl/o ()P (t)dr
= mST(Gm.f(m)' (3.216)

Using (3.216) and (2.54) we get

Sw(Gy,Go) 2Su(F, F0N2 - (3.217)

’/Olf(t)dt—D(u7v)+Tn(u7v) g(

2u+v)n!

We also have (see [65])

Sw(Gn,Gr) = [|Gall2 — (/OlG,,(t)dt)z— (/()lGn(t)‘I‘o(t)dt)

= (—1)"*1("!)2 [4u? +v? —4uv(1—-2'2")| B (3.218)
N (2n)! 2 ’

2
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and

1 2 1 2
Sw(f<”),f<”))=|f<”)|§—( / f<"><r>dr) —( / f(">(t)‘1’o(t)df) _K. (3219

From (3.217)-(3.219) we easily get (3.211). O

- 1/
Remark 3.44 The estimation in inequality (3.211) achieves minimum of [ <7(;1)1)! : 2_2"32,1]

for u = 1 and v = 2, which is bitrapezoid formula (see [28]). Forn =1 it is 1/4\/3.

Remark 3.45 For u =1 and v =4 in Theorem 3.42, we get Euler-Simpson formula (see
[29]) and then we have

1 1 (_l)n—l 1/2
/() f(l)dl‘—D(l74)+Tn(l74)' < g |: (l +23—2n)] an:| K, (3.220)

(2n)!
where | |
D)= ¢ 10 +47 (3 ) 5],
and
= 2 22k (2k-1) (2k-1)
T4 = 3] 5o (1= 28 [0 = N0
For n even

while for n odd we have

For n =1, 2 and 3 in the inequality (3.220) we get inequalities (3.203), (3.205) and
(3.208) respectively.

Theorem 3.43 If f: [0,1] — R is such that F=Y s a continuous function of bounded

variation with ) € L5[0, 1], then we have

’/Olf(t)dt—F(uy)—i—TnD(um) (3.221)

1 (—1)n! 1/2
[ [2142 +2 — (2u? —uv- 2272 (1 — 21*2”)] Bz,,} K,

where

2 2
K== ([ rowa) ~ ([ o) . e
0 0
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For n even

while for n odd we have

27Mu(1-27"")4v 1
(1) = l+m7 l6[0,§]7
- y(3—27"th) 27y (1-27")
I+ He ) L€

Proof. Similar as in Theorem 3.42. O

Remark 3.46 For u =2 and v = 1 in Theorem 3.43 we get dual Euler-Simpson formula
(see [26]) and then we have

1/2

/f ndr—F(2,1)+TP(2, 1)‘ %{((2131)!1 [9—(8-2""2)(1-2"""]By| K,
(3.223)
where . | . 3
ren =527 (5) - (3)+(3)]
and

22,1 =Y 301 (8~2’4k—6-2’2k+1> B [f(2k71)(1) _ )]
f) !

For n even

while for n odd we have

21—11(172—11)+1 1
N o 1+ 4(2—1—7:71) , L€ [075] )
(t) - 3_227)1_’_2172)1 1
S € (2 1]

Forn =1, 2 and 3 we get inequalities

312 (3) o (5) v (3)] - o] < 555
(D)D) ()]- /;fmd,<48¢g_5,{2

and

5 (3) = ()2 ()] o]

respectively.






Chapter

General 4-point quadrature
formulae of Euler type

The object of interest in this chapter are the general 4-point formulae which approximate
the integral over [0, 1] by values of the function in points 0, x, 1 —x and 1, withx € (0,1/2].
The results from this chapter were published in [56].

4.1 General approach

Let x € (0,1/2] and £ : [0,1] — R be such that f**1) is continuous of bounded vari-
ation on [0, 1] for some n > 0. We proceed similarly as in the previous chapter, since
the main idea of the method is the same: put x =0, x, 1 —x and 1 in (1.2), multiply by
1/2 —w(x), w(x), w(x), 1/2—w(x), respectively and add up. The following formula is
obtained:

/Olf(f)dt — (1/2=A))[F(0) + ()] =AX)[f (x) + f(1 = )] + Tan(x)

1

1
- m/o Fona(x,0)d f2 (), @.1)

157
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where, fort € R,

2n

P = 3,3 Gee ) [ (1) = £400),

Gk(x7t): [1—2A( VBL(1— 1)+ A [BL (x— 1)+ BL(1—x—1)], k> 1
Fk(xJ) :Gk(.)c7l‘)—Gk()C7())7 k>2.

Functions Gy have all the properties that functions G; from Chapter 3 had, including
(3.5) and (3.6). If one wants to obtain from (4.1) the quadrature formula with the maximum
degree of exactness (if values of derivatives at the end points are not to be included in the
quadrature, then it is equal to 3), similarly as before, a condition G;(x,0) = 0 has to be
imposed. In this way we get:

1
Formula (4.1) now becomes:
1 1 1
| @d = 0051 —x 1)+ T2} = ] | PEanar® ), @
where
1
0(0,x,1 —x,1) = (i —n) [—6B>(x)f(0) + f(x) + f(1 —x) —6Bs(x) f(1)], (4.4)
1
0= 2, gr O 0 (1) = £ 0] (4.5)
1
G (x,1) = =5 [Bf (x—1)— 12By(x) - B; (1 —t) + Bf (1 —x—1)], (4.6)
F& (x,1) = G2 (x,1) = G2 (x,0), k>2. 4.7

Assuming f (2n=1) is continuous of bounded variation on [0,1] for some n > 1, we get:

/O F(0)dt —0(0,x,1 —x,1) + T2 (x) = X ndfe e, (48)

while assuming f (27) fulfills the same condition for some 7 >0, we get:

04\ — (2n)
/0 F(1)dt —Q(0,x,1—x, 1)+ T2 (x) 2n+1 / G (0)df® (). (4.9)
The following lemma is the key step for obtaining sharp estimates of error for the

formulae (4.3), (4.8) and (4.9).

Lemma 4.1 Forx € (0,5 — ‘/Ti] U3, 3] and k> 1, G2Q,?H(x7t) has no zeros in variable t

on (0,1/2). The sign of thts function is determined by

(—1fGS  (x,1) >0 for x€(0,1/2—/3/6],
(—DFGEY (1) >0 for x € [1/3,1/2).
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Proof. Observe G3Q4 (x,1). For 0 <t <, it takes the form:

G (x,1) = —1 <t+ 72?12(_)61)) .

Its only zero, except 0, is #; = 21()5—<1)) It is easy to see that 0 < #; < xiff x € (3 — \/Tg,
1— @] Further, for x <7 < 1/2, function G3Q (x,1) takes the form:
312 t x

G () = _’+3“da—@+4u—@'

Here it has 3 zeros:

1 3x2—4x+1 1 3x2 —4x+1

i ST s R R T

It only needs to be checked if #, is a zero for x € (0,1/3) since t,,#3 € R iff x € (0,1/3]
and it is obvious that 73 > 1/2. That r, < 1/2 is trivial and it is easy to see that #, > x iff

xe[l- %, %) Therefore, our statement is valid for k = 1. Assuming the opposite, the
statement for k > 2 follows by induction. The rest of the proof is analogous to the same
part of the proof of Lemma 3.1 |

Remark 4.1 From Lemma 4.1 it follows immediately that for k > 1 and x € (0,1/2 —
\/3/6], function (—l)kHFsziz(x t) is strictly increasing in variable 7 on (0,1/2) and
strictly decreasing on (1/2,1). Since Fzgkiz(x 0) = F2Qk12(x7 1) = 0, it has constant sign
on (0, 1) and obtains its maximum at # = 1/2. Analogous statement, but with the opposite
sign, is valid in the case when x € [1/3,1/2].

Denote by RS 2 (x, f) the right-hand side of (4.3).

Theorem 4.1 Letf: [0,1] — R be such that f**+2) is continuous on [0, 1] for some n > 2
and let x € (0,5 — ‘/?i] U3, 31 If %) and f*"*2) have the same constant stgn on [0,1],
then the remainder R%l (x, f) has the same sign as the first neglected term A2n (x, f) where

AZ) (x,f) 1= RS} (v, f) — RS,y (3. f) = - (22)! S 0) [0 (1) = e D 0)].

Furthermore, |R2n (x, 1) < |Ag4(x )| and |R2n+2(x N < |AQ4( il

Proof. Analogous to the proof of Theorem 3.1. O

Theorem 4.2 If f : [0,1] — R is such that f*"+2) is continuous on [0,1] for some n > 1

1]
andx € (0,5 — %] U[%, 3], then there exists & € [0,1] such that

G5t 5 (x,0)

4 2n+2
R2Qn+2(x7f) _ 2n42V0 F)

Gt 2] fPm () (4.10)
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where

1
G%j‘+2(x7 0) = (=) [Bon+2(x) — Bopsa] + Boyyo- (4.11)

If. in addition, f*"*2) does not change sign on [0, 1], then there exists 6 € [0,1] such
that

0 1
R2Q:+2(x7f) - (2n+2)! 'FZQni2 (x, 5) ' {anH)(l) _f<2n+l)(0)] (+-12)

where

1 1 o
F2Qn4+2 (3@ 5) = ox(i—x) [Bani2(1/2—x) = Bopya(x) + (2 -2 : ") Byuia]
— (2-2"""Y By (4.13)

Proof. Analogous to the proof of Theorem 3.2. O

When (4.10) is applied to the remainder in formula (4.3) for n = 1, we obtain:

1

2_ o)
=g (57 = 5x+ 1) f9(E). (4.14)

1

/O Fe)dr —0(0,%,1—x,1) =
For x = 1/3, this formula becomes the classical Simpson’s 3/8 formula, for x = 1/2 it
becomes the well-known Simpson’s formula, and finally forx = 1/2—+/3/6 < w(x) = 1/2
it becomes the classical Gauss 2-point formula (stated on [0,1]). These three formulae
were studied and generalized using a similar technique as here, in [31], [29] and [59],
respectively. Of course, all related results from those papers follow as special cases of our
results.

Remark 4.2 Although only x € (0,1/2] were taken into consideration here, results for
x = 0 can easily be obtained by considering the limit process when x tends to 0. Namely,

. 1 L., /
imQ(0,x, 1 —x,1) = S[£(0) + f(1)] = ;7 [f' (1) = £ (0)]

1irr(1)G,?4(x7t) =Bi(1—1)

Consequently, from (4.14) it follows:

[} a1 150) + 50} 4 510 - 700 = 3
0

#)
=7/ () (4.15)

Theorem 4.3 Letp,g<€ Rbesuchthat 1 <p,g<ooandl/p+1/q=1.1ff:][0,1] >R
is such that f e L,[0,1] for some n > 1, then we have

1
’/0 f(t)dt —0(0,x,1 —x,1) + T2} (x)| < Kpa(2n,q) - || F"| - (4.16)
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If f2n ) ¢ L,[0,1] for some n > 0, then we have

1
'/0 F(0)dt — 0(0,x,1 —x, 1)+ T2} (x)| < Kpa(2n+1,q) - | F®V] . (4.17)

If f2n+2) ¢ L,[0,1] for some n > 0, then we have

1
/0 F(O)dt — Q(0,x,1—x,1) + T2 (x)| < Kpy(2n+2,q) - | f2" ]|, (4.18)

where

1 1 q l q
KQ4(m7q):%[/o |G,Qn4(x7t)|th} , Kpa(m,q) = - [/ |FQ4xt|th}

These inequalities are sharp for 1 < p < oo and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. O
For x € (0,5 — @] U[4,4] and n > 1, using Lemma 4.1 and Remark 4.1, we can

calculate the followmg constants as special cases of the previous Theorem:

K54(2n—|—2,1) W‘G2n+2x0)’,

1 . 1
Kpy(2n+2,00) = 5 Kpa(2n+1,1) = ———— | F}>
Q4( n-+ ’ ) ) Q4( n+ ’ ) (2n+2) 2n+2( 2) ’
where G2n+2(x,0) is as in (4.11) and FZQnA_'F2 (x,1/2) as in (4.13). In view of this, let us

consider inequalities (4.17) and (4.18) forn = 1 and p = oo:
1 |16 15x+3
‘/f 1)di — 0(0,x,1 — xl)' "Ci”

111
< g7 = -

|5x% —5x+ 1] - 1|

‘/f 1)di — 0(0,x,1 — xl)‘no

In order to find which admissible x gives the least estimate of error, we have to minimize the
functions on the right-hand side. It is easy to see that both those functions are decreasing
on (0,5 — £] and increasing on [%, 3] and that they reach their minimal Values atx=1/3.
In fact, the same is valid in the case whenn =1 and p = 1, since K, (4,%°) = 3 > Kos(3,1).

Therefore, the node that gives the least estimate of error in these three cases isx = 1/3,
i.e. the optimal closed 4-point quadrature formula is Simpson’s 3/8 formula.

The following two theorems give Hermite-Hadamard and Dragomir-Agarwal type in-
equalities for the general 4-point quadrature formulae:
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Theorem 4.4 Ler f:[0,1] — R be (2n+4)-convex for n > 1. Then for x € (0, % — %]

we have

1 o (1
G (x,0)] £+ (—)

(2n+2)! 2

< (—1)"H! (/Olf(t)dt —0(0,x,1—x,1)+ ng‘(x)) (4.19)
1 04 f(2n+2) (0)+f(2n+2)(1)

< nt2) 1G5, (x,0)] 2 ;

while for x € [%7 %] we have

1 04 any2) (1
(21’1-’-2)' |G2n+2('x70)|f 2

< (=1)" (/Olf(t)dt —0(0,x,1—x,1) + Tan4(x)) a0
1 04 f(2n+2)(0) +f(211+2)(1)
< ntan IG5, 5 (x,0)] . 7

where ng+2(x70) isasin (4.11).
If f is (2n+4)-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 2.8. O

Theorem 4.5 Ler x € (0,% - %} U [%, %] and f :[0,1] — R be m-times differentiable
form > 3. If|f(’") |7 is convex for some q > 1, then

) (0))9 + |f<m><1>|q> 1/,,

’/Olf(t)dt —0(0,x,1—x,1) + T2 (x) 5 4.21)

< LQ4(m7x) (
while if | ™| is concave, then

‘/Olf(t)dt—Q(Qm—x71)+T2%4(x) < Loa(m,x) 7 (4.22)

m) (1
™ (3)

4
P (x,1/2))]

where
2
(2n+2)!
1
(2n+2)!

for m=2n+1 Los(2n+1,x)=
and for m=2n+2 Lps(2n+2,x)= |G2Q:+2(x,0)|

with G%irz(x,O) and Fz%iz (x,1/2) asin (4.11) and (4.13), respectively.

Proof. Analogous to the proof of Theorem 3.5. O
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4.1.1 Simpson’s 3/8 formula

For x = 1/3, (4.14) becomes classical Simpson’s 3/8 formula:

/Olf(t)dt—é{f(0)+3f<%)+3f<§)+f(l)]:—6480 fAm). @23

The results from this subsection are published in [31]. We have:
1 1 2
Os3s = 3 [.f(0)+3f (—> +3f (—) +f(1)} ;
s3s _ o8 (1) _ g Qk—1) 1y p(2k—1)
=18 (5) = & i RO U V) - £ o)

2
GS8(1) = ; {33,c (; t) +3B; <§—t) +2B,t(l—t)} , k>1

The error Rgfliz( f) for n > 2 can be expressed as:

1 B )
s a0 )Bawia fP (), melo.1]

538 2271 (197 Bonya

R3S, (f) =

[f(2n+l)(l) _f(211+1)(0)] , 0e [07 l]
Estimates of error for p =1, p=ccand m = 1,2,3,4 are:

1
’/0 f(r)dr — Ocs3s SCszs(qu)'Hf(m)”p,

where
Cors(1,1) = 2 Cong(21) = —— Cyz(3,1) = ——, Csag(4,1) = ——
s38(1, 2y 538 192 $38 T725 Cs38 = 5180’
5 1 1 1
Cs3g(1,00) > Cs35(2,0) = Cs38(3,0) 768’ Cs3g(4,0) 3456

4.1.2 Hermite-Hadamard-type inequality for the 4-point
quadrature formulae

The main result of this subsection provides Hermite-Hadamard-type inequality for the
4-point quadrature formulae.

Theorem 4.6 Let f: [0,1] — R be 4-convex and such that f*) is continuous on [0, 1].
Then, for x € (0 5 — i] andy € [3, 2]

0(0,5,1-x,1) < /O F)dt < 0(0,y.1-y,1), (4.24)

where Q (0,x,1 —x, 1) is defined in (4.4). If f is 4-concave, the inequalities are reversed.
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Proof. Analogous to the proof of Theorem 3.6. O

The following corollary gives comparison between the Gauss 2-point and Simpson’s
3/8 rule.

Corollary 4.1 Ler f:[0,1] — R be 4-convex and such that f*) is continuous on [0, 1].
Then

%f<3_6\/§>+%f<3+6\/§> g/olf(ﬁdf < %(f(o)+3f(%>+3f(§) +f(1)>.

If f is 4-concave, the inequalities are reversed.

Proof. Follows from (4.24) for x = 1/2 —+/3/6 <> By(x) =0 and y = 1/3. O

Remark 4.3 The result of Corollary 3.5 can be recaptured from (4.24) for x = 1/2 —
V3/6andy=1/2.

4.1.3 Bullen-Simpson’s 3/8 inequality

For function f : [0,1] — R such that f®* is continuous on [0, 1] and f™*) () >0, € [0, 1],
we have

1 1 1 5 1
X {3f (6>+2f (§)+3f<6)] < /0 F()de (4.25)
. {f(0)+3f (1) +3f (g) +f(l)} .
- 8 3 3
In the case when f*) exists, the condition f(*)(z) >0, r € [0,1] is equivalent to the
requirement that f is 4-convex function on [0, 1]. However, a function f may be 4-convex
although f (4) does not exist.
P. S. Bullen in [11] proved that, if f is 4-convex, then (4.26) is valid. Moreover, he

proved that the Maclaurin quadrature rule is more accurate than the Simpson’s 3/8 quadra-
ture rule, that is we have

0 < /Olf(ﬂdt—é {3f<é>+2f<%>+3f<%)]

s[ror(3) s (3) 4] - [ e (4.26)

provided f is 4-convex. We shall call this inequality Bullen-Simpson’s 3/8 inequality.
The aim of this section is to establish a generalization of the inequalities (4.26) and
(4.26) for a class of (2r)-convex functions and also to obtain some estimates for the ab-
solute value of difference between the absolute value of error in the Maclaurin quadrature
rule and the absolute value of error in the Simpson’s 3/8 quadrature rule. Let us define

D(0,1)

- % {f(0)+3f<é> +3f<%> +2f<%> +3f<§) +3f<%) +f(1)].

N

N

IN
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We shall make use of the following seven-point quadrature formula

A}@mQDmU,

obtained by adding the Simpson 3/8 and the Maclaurin quadrature formulae. It is suitable
for our purposes to rewrite the second inequality in (4.26) in the form

Avmmgnmn. 4.27)

As we mentioned earlier, this inequality is valid for any 4-convex function f and we call it
the Bullen-Simpson’s 3/8 inequality. The results from this section are published in [87].
We consider the sequences of functions (G (7))r>1 and (Fi(7))z> defined forr € R by

Gi(t) =G (1) + G (1), Fi(t) = F7 (1) + B (1),

where G*8(t), GY (1), F33%(r) and FM(t) are defined as Section 4.1.1 and Section 3.1.4
respectively. So we have

1 1
Gut) = 251 ~0)+38; (g 1) +383 (1)
(1 (2 (s
+ 2By (E_t) +3B;, <§—t) + 3By, <g—t) ,tER

Fy(t) = Gy(1) =By, r € R

and

where

B = B+ BY

— Bi(0)+ 3By (é) +3B; (%) +2B, (%) +3B; (%) + 3By (%) +Bi(1).

For any function f : [0,1] — R such that F=1) exists on [0,1] for some n > 1 let
D(0,1) be defined as in Introduction. Further, we define To(f) = 7;(f) := 0 and, for
2<m<|n/2],

T(f) =5 [ () + T (),

where T.538(f) and TY(f) are given in Section 4.1.1 and Section 3.1.4, respectively. It is
easy to see that

LS b (2h=1) (1) _ pl2k-1)
W) =5 X g2 H0-F e[V -2 0]

oo | —

In the next lemma we establish two formulae which play the key role in this paper. We
call them the Euler Bullen-Simpson 3/8 formulae.
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Lemma 4.2 Ler f:[0,1] — R be such that £ is a continuous function of bounded
variation on [0, 1], for some n > 1. Then we have

/ F(O)dr = D(0,1) + T(f) + 5 (f), (4.29)

where r = [n/2] and
1

1
16(n!)/o G, (1) df"= ().

T (f) =
Also,
/ F(6)dr = D(0,1) + Ty(f) + 72(f), (4.30)

where s = [(n—1)/2] and

Proof. We multiply Euler-Simpson’s 3/8 and Euler-Maclaurin’s formulae by the factor 1/2
and then add them up to obtain the identities (4.29) and (4.30). O

Remark 4.4 In the case when f : [0,1] — R is such that £ exists and is integrable
on [0, 1], then the Riemann-Stieltjes integral folH (1)df"=V(r) is equal to the Riemann
integral jol H(t)f"(r)dr. Therefore, if f") exists for some n > 1 and is integrable on
[0,1], then (4.29) and (4.30) reduce to

/ F(6)d = D(O 1)+T(f)—|—ﬁ/olGn(t)ﬂ”)(t)dt. 4.31)

and

/ F(e)dt = D(0,1)+ Ty(f) + ﬁ / R () £ (). (4.32)

Remark 4.5 The interval [0, 1] is used for simplicity and involves no loss in generality.
The results which follow will apply, without comment, to any interval that is convenient.
Namely it is easy to transform the identities (4.29) and (4.30) to the identities which hold
for any function f : [a,b] — R such that f (=1) is a continuous function of bounded varia-
tion on [a, b], for some n > 1. We get

/ f(t)dt = D(a,b) + T,(f) + (fé_(:!))n /abGn (%) df=(r) (4.33)

and

/ f(0)dr = D(a,b) + Ti(f) + (56_(5!))" /abFn (;:‘;) =), (4.34)
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where

while To(f) = Ty (f) =0 and

for2 <m<[n/2].

Now, we use the Euler Bullen-Simpson 3/8 formulae established in Lemma 4.2 to
extend the Bullen-Simpson’s 3/8 inequality for (2r)-convex functions. First, we need some
properties of the functions G (¢) and Fi(r).

First note that it is enough to know the values of the functions Gy (¢) and F(¢), k > 1
only on the interval [0,1/2]. Namely, the functions B} (¢) are periodic with period 1 so that
for 0 <r < 1/2 we have

Gy (t+%> = 2B; (%—I)+3BZ (—%—t)+3BZ (—é—t)
1 1
+2B; (— )+3Bk< )+3B;;<§—t)
o (3 wam (2 ) s (3
+2B; (1 +3Bk<1 )+3Bk<l )
6 3

= G (1)

F, (I—I—%) =Gy (H—%) —Bi=Gi(t)- By =F. (1).

Since By (t) =t — (1/2), we get B; = 0 and

and

~1, t=0
T e 17 Ao

—6r+11/2, 1€ (1/3,1/2]

Further, for k > 2 the functions B () are continuous and the same is true for Gi(r) and
Fi(t), k> 2. Also we have for k > 2

G(0) = Gi(1/2) = Gi(1) = By
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and
F(0) = Fi(1/2) = F(1) = 0.
For example, for k =2 and k = 3 we have B, (¢) =t> —¢+(1/6) and B3(t) =13 — (3/2)¢> +

(1/2)t, so that by direct calculation we get B, = B3 = 0 and

1612 —2t, t€[0,1/6]
Gy(t) =F(t) =1 161> —8t+1, te(1/6,1/3], (4.36)
1612 — 14t 43, t € (1/3,1/2]

—16t + 312, t€[0,1/6]
Gi(t)=F3(t) =< —1663+121> =3t +(1/4), t € (1/6,1/3] . (4.37)
—163 +2112 -9t +(5/4), t € (1/3,1/2]

The Bernoulli polynomials of even order are symmetric and those of odd order skew-
symmetric about 1/2, that is [1, 23.1.8]

Bi(1—1)=(=1)*By(t), 0<r <1, k> 1. (4.38)

Also, we have
1
By (1) =By (0) =By, k>2, Bi(1) = —B1(0) = 3

and
BZr—l :0, rZ 2.

Therefore, for r > 1 we have
By 1 =0 (4.39)

~ 1 1 1 2 5
By, =2B>,+3By, | = 3By, | = 2By, | = 3By, | = 3By | = |.
2 2+ 2(6)+ 2<3>+ 2(2)+ 2<3>+ 2(6)

Also, we have [1, 23.1.21, 23.1.23, 23.1.24]

1 1 1
BZr (5) = - (1 _21—2r) Ber BZr (5) - _5 (1 _31—21’) B2r7

and

and
By, (é) = % (1-2'2") (1-3""2)B,,,
which gives the formula
By = —272(1-327By,, r> 1. (4.40)
Now, using (4.39) and (4.40) we get

By 1(t) =Gory(t), r>1 (4.41)
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and
For(t) = Go (1) 4272 (1 = 3272)By,, r > 1. (4.42)

Further, as we pointed out earlier, the points 0 and 1/2 are the zeros of Fy(¢), k > 2. As we
shall see below, 0 and 1/2 are the only zeros of Fi(¢) in [0,1/2] for k = 2r, r > 2, while for
k=2r—1,r>2, using (4.38) we easily get

1 1
Gor1 (Z) =k (Z) =0.

We shall see that 0, 1/4 and 1/2 are the only zeros of F,_(t) = Ga,—1(¢), in [0,1/2] for
r > 2. Also, note that for » > 1 we have

1 _
G2, (0) = Gy, <§> =By, = 21721 -3272)B,,.

The values G,(1/4) and F»,(1/4) can also be evaluated exactly.
Lemma 4.3 Forr > 1 we have

1 . .
G2r (Z) — 2172) (1 _ 21727’)(1 _ 3272))327'7
and .
P, (Z) =22"2(1 =272 (1 -3272)By,. (4.43)

Proof. We use the formula [1, 23.1.10]
m—1 l
By, (mx) = m* ! z B>, <x+ —) ,r>0, m>1.
i=0 m

Setting m =3, x = 1/12 we get

() (2) o s (35) o () )]

which can be rewritten as

o () 0-(3) o+ o ()

since By,(3/4) = By,(1/4), by (4.38). Now we have (see [1, 23.1.22])

1
B2r (Z) — _2—2r(1 _ 21_2r)B2)'

and using again (4.38) we get

Ga, G) = 4By, (%) +6 {Bﬂ (é) o (f_zﬂ

_ 1
= 2(3? 2r—1)B2,<Z>
— 2172)’(1 _ 2172}’)(1 _ 3272}’)B2r'
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Also using (4.40) we get (4.43)

1 1\
P, (Z) =G, (Z) — By, =221 -272)(1 =3%2")By,.

O

Now we prove that the functions Gy (¢) and Fj(¢) are symmetric for even k and skew-
symmetric for odd k, about 1/4.

Lemma 4.4 For k> 2 we have

1 1
Gl =—t)=(—DFG (1), 0<t< =
(3-1) =0 0z < g,

and

Fy (% —z) =(—D)*FR@), 0<1r <

Proof. As we already noted, the functions Bj(r) are periodic with period 1 and continuous
for k > 2. Also, from (4.38) we get

Bi(1—1)=(—1)*Bi(t), 1 e R, k>2.

Therefore, fork > 2 and 0 <t < % we have

1 /1 1 1
6 (1) = 2 (L) (L) s (1)

1 1

= (—1)f [23; (% —t) +3B; (; —t) +3B; (% —r)

+ 2B (1—1)4 3B (% —t) +3B; (% —t)]
= (=D*G(),

which proves the first identity. Further, we have By = (—1)*By, k > 2, since (4.39) holds,
so that

SV

B (% —I) =G (% —t> — B = (=" [Ge(t) = Bi] = (—1)'Fe (1),

which proves the second identity. O

Note that the identities established in Lemma 4.4 are valid for k = 1, too, except at the
points 0, 1/6, 1/3 and 1/2.

Lemma 4.5 For r > 2 the function Gy, (t) has no zeros in the interval (0, %) . The sign
of this function is determined by

1
(=1)"Ga—1(1) >0,0<1t < 1
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Proof. For r =2, G3(t) is given by (4.37) and it is easy to see that
1
G3(t)>0,0<t< T (4.44)

Thus, our assertion is true for r = 2. Now, assume that r > 3. Then 2r — 1 > 5 and G,_1(¢)
is continuous and twice differentiable function. We get

Gy (1) = =(2r=1)Gar2(1)

and

Gy (1) = (2r = 1)(2r = 2)Gar3(t). (4.45)
We know that 0 and % are the zeros of Gy, (). Let us suppose that some ¢, 0 < o < %7 is
also a zero of Gy, (t). Then inside each of the intervals (0, ) and (e, }) the derivative
G),_,(t) must have at least one zero, say i, 0 < B; < ot and fr, o0 < B < ‘l‘. Therefore,
the second derivative G, () must have at least one zero inside the interval (B, ).

Thus, from the assumption that G,,_;(¢) has a zero inside the interval (O, %) , it follows
that (2r — 1)(2r — 2)Ga,—3(¢) also has a zero inside this interval. From this it follows that
Gs(t) would have a zero inside the interval (0, 1), which is not true. Thus, G, (f) can

not have a zero inside the interval (0,1). Further, if G5,_3(r) > 0,0 < < 1, then from
(4.45) it follows that G,,_(t) is convex on (0, 1) and hence G,,1(1) < 0,0 <t < 1,
while in the case when Gy, 3(f) < 0,0 <1 < % we have that G,,_(f) is concave and
hence Go,—1(t) > 0,0 <1t < 41—1. Since (4.44) is valid we conclude that

1
(=1)"Gar—1(t) >0, 0<1 < 1

O

Corollary 4.2 For r > 2 the functions (—1) "' Fy,(t) and (—1)""'G,,(t) are strictly in-
creasing on the interval (O7 %)7 and strictly decreasing on the interval (%7 %) Conse-

quently, 0 and % are the only zeros of F»,(t) in the interval [0, %] and

max |Fo,(1)] = 2272 (1 =272 (1= 3272 |By,|, r > 2.
1€[0,1]

Also, we have
max |Ga,(1)] = 21727 (1 = 3272)(By,|, r > 2.
1€(0,1]

Proof. We have
[(—1)"71Fzr(¢)]/ = [(—1)r7102r(1)]/ =2r(—1)"Gar—1(t)

and (—1)"Gy—1(t) > 0 for 0 <t < I, by the Lemma 4.5. Thus, (—1)""'F,(¢) and
(—1)""'Gy,(t) are strictly increasing on the interval (0, ;). Also, by the Lemma 4.4, we
have Py, (5 —1) = Fo(t), 0 <1 < 3 and Ga, (5 —1) = Gp(1), 0 <t < %, which implies
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that (—1)""'F,(¢) and (—1)""1G,,(¢) are strictly decreasing on the interval (,1). Fur-
ther, F2,(0) = F>. () = 0, which implies that |F(r)| achieves its maximum at 7 = {, that
is

1 —Zr —Zr —Zr
max |Fa,(1)| = FQ,(—)‘:ﬁ (1 =272 (1=3272)|By, .
1€[0,1] 4
Also,
1 —2r —2r
max |Gy, (7)| :max{|G2,(0)|, Gor (—) ‘} =2172r(1 = 327%)|By, |,
1€(0,1] 4
which completes the proof. O

Corollary 4.3 Assume r > 2. Then we have

1 2372r 1— 272r 1— 32721'
[ 162 s0)ar =202 0 D g

Also, we have
/01 |For(t)|dt = |Byy| = 2" 72 (1= 377%") |Byy|
and
/01 |Go(t)|dt <2|Boy| =227 (1-37) By
Proof. 1t is easy to see that
G, (t)=—mGp_(t), m>3. (4.46)

By (4.41) we have fol |Far—1(1)|dt = fol |Go,—1(t)|dt. Now, using Lemma 4.4, Lemma 4.5
and (4.46) we get
/ Gar—1(

[ 162101 =

2 1 2372r 1— 272r 1— 3272r
= - Gor (‘) —G2r(0)‘ = ( i ) |B2r|7

1 1
at| =43 Ga0)

4 r

which proves the first assertion. By the Corollary 4.2, F,(¢) does not change the sign on
the interval (0, 1). Therefore, using (4.42) and (4.46), we get

1 1/2
[ et =2| [ R
0 0

1 12 14
) e ~ 2B,
’ 2+1 2+1()|O 22

=2 /o 2 (G (t) — By ] dr

_ |B2r| — 21—2r (1 _ 32—2!‘) |B2r| .
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This proves the second assertion. Finally, we use (4.42) again and the triangle inequality
to obtain

1 1 .
/0|G2,(t)|dt:/o |Far(1) + Bay|
1
< /0 |For(t)|dt + |Bay| = 2|Boy| = 27727 (1-327%) |Byy |,

which proves the third assertion. O

In the following discussion we assume that f : [0, 1] — R has a continuous derivative of
order n, for some n > 1. In this case we can use formulae (4.31) and (4.32) from Remark
4.4 so that remainders 7! (f) and 72(f) are given as

(=L [ (n)

D) = 1gip Gl s (447)
and | 1

20— L ()

7, (f) = 16(n!)/0 Fo(s)f\" (s)ds. (4.48)

Lemma 4.6 If f:[0,1] — R is such that f?") is continuous on [0, 1], for some r > 2, then
there exists a point 1 € [0, 1] such that

300 = 53

277 (1= 3272By, £ (). (4.49)

Proof. Using (4.48) with n = 2r, we can rewrite rzzr( f) as

1
7.(f) = (-1) 1716(20!1” (4.50)
where .
J, = / (=1 ()2 (5)ds. 4.51)
0
If
_ . (2r) M — (2r)
m zg[lé,r}]f (t), lrgl[gﬁ]f (t),
then

m<fP(s)<M, 0<s<1.

On the other side, from Corollary 4.2 it follows that
(—1)"'"Fy(s) >0, 0<s< 1,

which implies

1 1
m/ (=1 Fyy (s)ds < J, gM/ (—1)"'Fyy (5)ds.
0 0
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Similarly as we have already calculated in the proof of Corollary 4.3, we get
1
/ Fop(s)ds = —By, =212 (1 = 3272"B,,,
0

so that
m(_])l’*lzlfzr(l _3272}’)B2r S Jr S M(_])I’*lzlfzr(l _3272}’)32’“

By the continuity of £(>”)(s) on [0, 1], it follows that there must exist a point 17 € [0, 1] such
that
Jr= (=112 (1 =327, O (),

Combining this with (4.50) we get (4.49). O

Now, we prove the main result:

Theorem 4.7 Assume f : [0,1] — R is such that f?") is continuous on [0,1], for some
r > 2. If f is (2r)-convex function, then for even r we have

0 < /Olf(t)dt—% [3f (é) +2f(%> +3f (%ﬂ T\ (f)
< % {f(0)+3f<§> +3f<§> +f(1)} +Til—/01f(r>dt, (4.52)

while for odd r we have reversed inequalities in (4.52).

Proof. Let us denote by LHS and RHS respectively the left hand side and the right hand
side in the second inequality in (4.52). Then we have

LHS = p3,(f)

and
RHS — LHS = —273,(f),

For Euler-Maclaurin formula, under given assumption on f, there exists a point & € [0, 1]
such that

1
2 _ = (1 _~nl-2r _ R2-2r (2r) ) )
Also by Lemma 4.6 we know that

1
25N =—ggm2 =3B (), (4.54)

for some point 1 € [0, 1]. Finally, we know that [1, 23.1.15]

(=1)""'By, >0, r=1,2,---. (4.55)
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Now, if f is (2r)-convex function, then f")(&) >0 and £(>)(n) > 0 so that using (4.53),
(4.54) and (4.55) we get the inequalities

LHS >0, RHS — LHS > 0, when r is even;

LHS <0, RHS — LHS <0, when r is odd.

This proves our assertions. |

Remark 4.6 In the case when r = 2 we have B4 = —1/30 and formula (4.49) reduces to

1

ol w
103680’ M)

3 (f) =

Note that in this case the result stated in Theorem 4.7 reduces to Bullen’s result that we
mentioned in Introduction.

Theorem 4.8 Assume f : [0,1] — R is such that f*") is continuous on [0,1], for some
r > 2. If f is either (2r)-convex or (2r)-concave function, then there exists a point © € [0, 1]
such that

1

5 =9 335

272r(1 _ 272r)(1 _ 3272r)B2r |:f-(2r71) (l) o f(2r71)(0) ) (4.56)

Proof. First, consider the case when f is (2r)-convex, that is f (2r) (r)>0,0<r<1.By
Corollary 4.2 we get

1
0< (=) 'B(s) < (=1)" B, (Z) , 0<s<1.

Therefore, if J, is given by (4.51), then
1 1
0<J<(—1)"'R, (Z)/ ) (s)ds
0
_ 1yl N T2y p2r-1)
= (1 () [PE VW) = D).

So, there must exist a point ¥ € [0, 1] such that

=01y () [ V) - ).

Combining this with (4.50) and using (4.43) we get (4.56). The argument is the same when
f is (2r)-concave since in that case f>")(r) < 0,0 < < 1 and we get

1

0 E (5) [0 - o) < <o,



176 4 GENERAL 4-POINT QUADRATURE FORMULAE

Remark 4.7 If we approximate jol f(¢)dt by

Ly (f) :==D(0,1)+T,_1(f),

then the next approximation will be L,,»(f). The difference

Aor(f) = L2 (f) — Lr(f)
is equal to the last term in I, (f), that is

1

AZF(f) = 8(2}’)'

We see that, under the assumptions of Theorem 4.8,

7,(f) =20 (1-27) Ay, ().

2727‘(1 _ 3272)’)32’. |:f<2r71) (1) _ f(2r71) (0) .

Theorem 4.9 Assume f : [0,1] — R is such that f*"+2) is continuous on [0,1], for some
r> 2. If f is either (2r)-convex and (2r+2)-convex or (2r)-concave and (2r +2)-concave
function, then the remainder 722r( f) has the same sign as the first neglected term Ay, (f)

and

|5.(1)| < 182, (f)]
Proof. We have

that is

By (4.48) we have

1 1
B = 11 |, Prlos®(5)ds
and . '
“Beal) = gy ) POl s

Under the assumptions made on f, we have for all s € [0, 1] either
fP7(s) = 0and f2+2)(s) > 0

or
£P9(s) <0and f2)(s) < 0.

Also, from Corollary 4.2 it follows that for all s € [0, 1]

(=) Ry (s) > 0and (—1) ' [=F4a(s)] > 0.

(4.57)

We conclude that 73,(f) has the same sign as —73,,,(f). Therefore, because of (4.57),

Ay, (f) must have the same sign as 73,(f) and —13,,,(f). Moreover, it follows that

|G(f)] < 182:(f)] and [=13,.,5(f)| < [A2r(f)] -
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Now, we use the Euler Bullen-Simpson 3/8 formulae established in Lemma 4.2 to deter-
mine the absolute value of difference between the absolute value of error in the Maclaurin
quadrature rule and the absolute value of error in the Simpson’s 3/8 quadrature rule. We
do this by proving a number of inequalities for various classes of functions.

First, let us denote

Rei= [ 10 g [r0)+37 (5) +37 (3 ) + 500

o [rom- () (2) 2]

By the triangle inequality we have

and

[[Ru| — [Rsl| < |Rum + Rs|.

Now, if we define R := Ry + Ry, then

125 = /Olf(t)dt —D(0,1) (4.58)

where D(0, 1) denotes the same expression as in Introduction.

Theorem 4.10 Ler f: [0,1] — R be such that f""~V) is an L-Lipschitzian function on
[0,1] for some n > 2.
Ifn=2r—1,r>2, then

1 1 1
| rwar—p,1)- T,-l(f)‘ < BE=T [ 1Ga@larr @59
2721' 1— 272r 1— 32721'
Ifn=2rr>2,then
1 1 1
[ r0a-00.0 =140 < i [Nm0L o
2—2r(1 _ 32—2}’)
= W|B’2r| -L.
and also
1 1 1
/O F(0)dr —D(0, 1) — Tr(f)’ < W/o 1Goy(1)dt - L (4.61)
—2r 2-2r
< M“_gﬁ L.

4(2r)!
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Proof. For any integrable function @ : [0, 1] — R we have

\ [ wwar v

since f("~1) is L-Lipschitzian function. Applying (4.62) with ®(1) = Ga,_1(z), we get

1 1
(2r-2)
’16(2r—1)!/o Cort (A0 < 65— 16( 2r

1
< / IB(1)| dr - L, (4.62)
0

/ \Goy1 (1)]di - L.

Applying the above inequality and the identity (4.30), we get the inequality in (4.59).
Similarly, we can apply the inequality (4.62) with ®(r) = F,,(¢) and again the identity
(4.30) to get the inequality in (4.60). Finally, applying (4.62) with ®(z) = G, (¢) and the
identity (4.29), we get the first inequality in (4.61). The equalities in (4.59) and (4.60) and
the second inequality in (4.61) follow from Corollary 4.3. o

Corollary 4.4 Let f :[0,1] — R be such that f" is L-Lipschitzian on [0,1], then

/f d = )‘ 13824 ||*6912

Iff/// is L-Lipschitzian on [07 1]7 then

1 1 1
— < < —F—7»L.
‘/0 fe)di D(O’l)‘ < T03680" RI= Sigao”

Proof. The first pair of inequalities follows from (4.59) with r = 2, while the second pair
follows from (4.60) with r = 2. O

Remark 4.8 If f is L-Lipschitzian on [0, 1], then, as above

Sf(r)dt —D(0,1 G (r)|dr- L.
[0 )| <5 [ 1ol

1 25

Gi(t)|dt = —

| 16w = 32,
25

1 25
_ < — < —
/0 F(o)dr D(O,l)‘ - Land [R| < 2o L.

Since

we get

If £’ is L-Lipschitzian on [0, 1], then

‘/Olf(f)df—D(O,l)‘ < %/01|F2(t)|dt~L.

1 1
F dr = —

Since
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we get

1 1
£)df —D(0,1)| < —-Land |R| < —— - L.
‘/f #=D( )' 768 Land IRI < 353

Theorem 4.11 Let f: [0,1] — R be such that =1 s a continuous function of bounded
variation on [0, 1] for some n > 2.
Ifn=2r—1,r > 2, then

‘/f £)dt —D(0,1) — T, (f)

- (2r-2)
< 16(2r—1) |G2r O]V (£2772). (4.63)

Ifn=2rr>2, then

ax |Fo,(1)] - Vg (£ 1) (4.64)

1
/ ) =D(0, 1) =T, l(f)‘ = l6(2r) te[Ol

2—2r 1=2 2r 1_32—2r .
- 2 A )

Also, we have

ax |Gor(1)]- Vg (fPY)  (4.65)

1 1
[ 00 -D0.)~17) < 1o max

27r(1-3*7) (2r—1)
= W'BM Ve (f¢ )-

Here V} (f"=1)) denotes the total variation of f=1 on [0,1].

Proof. If @ :[0,1] — R is bounded on [0,1] and the Riemann-Stieltjes integral
fol @(1)d "~V (t) exists, then

/cp (1)df"=N(

We apply this estimate to ®(¢) = G, (¢) to obtain

(2r—
o=y G040 <

which is just the inequality (4.63), because of the identity (4.30). Similarly, we can apply
the estimate (4.66) with @(7) = F, () and use the identity (4.30) and Corollary 4.2 to
obtain (4.64). Finally, (4.65) follows from (4.66) with ®(r) = Gy, (¢), the identity (4.29)
and Corollary 4.2. O

< max |c1>( )| -Va (F=1). (4.66)

|G2r LO]-Vo (f%72)

1
= 16(2r— 1)l el
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Corollary 4.5 Let f: [0,1] — R be such that f" is a continuous function of bounded
variation on [0, 1], then

[ 10 D0.1)| < GV, IR < )

If [ is a continuous function of bounded variation on [0, 1], then

! l /// 1 1 111
[ 1001 < g WU, IR )

Proof. From (4.37), we get

1

max |G =—

1€lo, 1]| 30l = 64
so that the first pair of inequalities follow from (4.63) with r = 2. The second pair of
inequalities follow from (4.64) with r = 2. O

Remark 4.9 If f is a continuous function of bounded variation on [0, 1], then, as above
1
t)dr —D(0,1)| < — max |G ()] Vg (f).
[0 ) < g max 16101

Since

G _
Il;l[gf]l ()] = 3

we get

1 5 5
[ 10| < 2 ma k< w0

If f’ is a continuous function of bounded variation on [0, 1], then

1 ,
[ 001 < 55 max 120 V0
Since
max IB0)=75
we get

1 1 1 )
‘/O f(t)dt—D(O71)‘<ﬁ Vi (') and [R| < = Vi (/).

Theorem 4.12 Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q < oo,
Ltl=1o0r p=co,q=1.Let f:[0,1] = Rbe suchthat ") € L,[0,1] for some n > 1.
Ifn—Zr—l r>1, then

1
‘ /0 f(t)dt —D(0,1) — z»(f)‘ <KQr—1,p)[I £ V. (4.67)
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Ifn=2rr>1, then

1
[ 10w =01~ 15| <K @l .68)
Also, we have |
[ 700 -00.0) 14| < K@r 469)
Here 1
1 1 q
Kn) = | [ 16,0070
and

K0p) = s | [ 070 i’

Proof. Applying the Holder inequality we have

’m /01 Gori (1) fO V(1) dr

1
1 1 q
< - _ q Al — B @2r—1)
< temi | 162 a0 k-1

The above estimate is just (4.67), by the identity (4.33). The inequalities (4.68) and (4.69)
are obtained in the same manner from (4.32) and (4.31), respectively. O
Remark 4.10 For p = o we have

1
16n!

1 » 1 1
/O 1Go(1)| dr and K*(n,o0) = 16n!/o \F(r)| dr.

K(n,oo) =

The results established in Theorem 4.12 for p = o coincide with the results of Theorem
4.10 with L = || f"” ... Moreover, by Remark 4.8 and Corollary 4.4, we have

/0 ' f(0)d—D(O, 1) —Tr_1<f)’ <K(2r—1Leo)|[f* V|, r=1.2,

where
25 1

(1) 576’ (3,) 13824

Also, we have

[ 70w =00~ i) < K Ry =12,
where 1 1
= 768" K4 = 153680°
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Remark 4.11 Let us define for p =1

1
K(n,1) ma)l(]|G,,(t)| and K*(n,1) = — mg)i]|F,,(t)|.

= 16n! e 160! 1e|

Then, using Corollary 4.5, Remark 4.9 and Theorem 4.11, we can extend the results estab-
lished in Theorem 4.12 to the pair p = 1, g = o. This means that if we set é =0, then
(4.67) and (4.68) hold for p = 1. Also, by Corollary 4.5, we have

/Olf(t)dt—D(OJ) —Trl(f)’ <KQ2r—1,D)|f% Yy, r=1,2,

where

Also, we have
1
[ 0@ D01 1) < K @RI, =12
0

where
1

* 1 *

288
Remark 4.12 Note that K*(1,p) = K(1,p), for 1 < p < o, since G;(z) = F(t). Also, for
1 < p < oo we can easily calculate K(1, p). We get

3q+1+4q+1+54+1
4(g+ 1)34+!

k(1) = 56 |

é 1
L 1< p<oo.
L |" 1=

So, from (4.67) with r = 1 we get the following inequality

1 [34“ +44+1 4 5941

1
q
!
16| 4(g+1)3eT }'”f""

’/Olﬂr)dr—D(o,l)‘ <

In the limit case when p — 1, that is when ¢ — oo, we have

1 [39F! 449t 4 59+ 5_ 5
48

4(q+1)34t1 =35~ KLL).

At the end of this section we prove an interesting Griiss type inequality related to to
Euler Bullen-Simpson’s 3/8 identity (4.31). To do this we use the following variant of the
key technical result from the paper [83]:

Lemma 4.7 Let F,G : [0,1] — R be two integrable functions. If, for some constants
m,M € R
m<F(@t)<M, 0<r<1
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and |
/ G(r)dt =0,
0

then
M

1 —m
/O F()Gd] < = /O IG(1)]dr. (4.70)

Theorem 4.13 Suppose that f : [0,1] — R is such that ") exists and is integrable on
[0,1], for some n > 1. Assume that

my < fW(1) <M,, 0<1 <1,

for some constants m,, and M,,. Then

G (Mn _mn)v 4.71)

[ s —po.1) - Tk<f>| <

where k = [g] and
1
cn:/ 1Go(0)]dt, > 1.
0

Moreover, ifn =2r—1,r > 2, then

[ 7000, 1)
2—2}’ (1 _ 2—2r) (1 _ 32—2}’)

< 212 |Boy| (M1 —ma—1). 4.72)
Proof. We can rewrite the identity (4.31) in the form
1 1 1
|| 10 =000 1) = e [ P0G (4.73)

where
F(t) = f"(1), G(t) = G, (), 0<t < 1.

In [27, Lemma 2 (i)] it was proved that for all » > 1 and for every y € R

1
[ Bitr—nar=o,
0

so that we have

1 1 1 1
[ e = [ s -3, (55 ) +355 (5 )
0 0 6 3
1 2
+2B, (5 —S> +3B, (5 —s) +3B, (% —s)} ds=0.

Thus, we can apply (4.70) to the integral in the right hand side of (4.73) and (4.71) follows
immediately. The inequality (4.72) follows from (4.71) and Corollary 4.3. O
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Remark 4.13 Forn =1 and n = 2 we have already evaluated

C = / Gy (1)|dr = / 1Ga(1))dt =

’/Olf(t)dt—D(O,l)' < %(M1 —m)

so that we have

and

‘/Olf(t)dt—D(O,l)‘ < ﬁ(Mz—mz)

For n = 3 we apply (4.72) with r = 2 to get the inequality

[ 100001 < g -

4.2 Closed corrected 4-point quadrature formulae

In this section, we follow the same idea as in section on corrected 3-point quadrature for-
mulae. Let us observe formula (4.1) again. Instead of the condition G;(x,0) = 0, we im-
pose condition G4(x,0) = 0, thus leaving the values of the first derivative in the quadrature
formula and removing the values of the third. This new condition produces the following
weight:

By B 1
2(B4(x) —By)  60x2(1 —x)2

we(x) :=w(x) = — (4.74)

Now, assuming f (2n=1) {5 continuous of bounded variation on [0,1] for some n > 1, we
have:

1
/Of(r)dt—QC(o,x,l—x,1)+TCQ4 o4 Ndf (), (4.75)

assuming f (27) is continuous of bounded variation on [0,1] for some n > 0, we have:
1
CO4, \ CQ4 2n
/O F@)dt = Qc(0,x,1 —x, 1) + T3, (x) = W / G52 (x,0)d P (1), (4.76)

and finally, assuming f(?**1) is continuous of bounded variation on [0,1] for some n > 0,
we have:

1
[ = 0c0x 1 =)+ 1520 = s S [ S wnar ), @7
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where
Qc(0,x,1—x,1) (4.78)
= m[w&(x)f(o) + f(x) + f(1—x) +30B4(x) f(1)],
1,2 () = 22" 1 O @0 [PV = 40 (0) (479)
=S - po s SO e - ey
G2 (01) = gy = [60BS(0) B (1 =)+ B (x 1)+ B (1 -x 1),

k>1
FE% (x,0) = GE% (x,1) — G2 (x,0), k>2.

What follows is the key lemma.

Lemma 4.8 Forxe (0,3 ‘1/05] U, 3landk>2, ngQH(x,t) has no zeros in variable t

in the interval (0,1/2). The sign of the function is determined by:

(1 G52 (x,1) >0 for x€(0,1/2—+/5/10],
(—1)FGS2 (x,1) >0 for x€[1/3,1/2].

Proof. We start from G €0%(x,1) and claim that for x € (1/2—+/5/10,1/3), G CQ4(x7t)
has at least one zero in variable ¢ in (0,1/2). To prove this, first notice that G§Q4 (x,0) =

2 ~CO4
157 0y =2 [f;z (x,0) = GCQ4(x 1/2) =0 and that x € (1/2—+/5/10,1/3) is equiva-
3GCQ4 o 236 CQ4

lent to —3—(x,0) <0 and (x,3) < 0. From —5—(x,0) < 0 we conclude

235 . . 9265
=5 (x,7) <0 in some neighborhood of 7 = 0. Therefore, —3—

25004

in some neighborhood of + = 0 and since aG—Sz(x,O) =0, it follows that there we have
2 GCQ4 ¢9GCQ4 QGCQ4

—— (x, ) < 0. Further, (x,7) is then also decreasing and since —— (x,0) =0, we

(x,1) is decreasing

CQ4
conclude a} (x,7) < 0 in some neighborhood of # = 0. Finally, from here we see that
G§Q4 (x,1) is decreasing and since G§Q4 (x,0) = 0 we have G§Q4 (x,7) < 0 in some neigh-

Fle S 9GE .
borhood of 0. On the other hand, from —— (x, 5) < 0 we conclude that ——(x,#) <0 in
some neighborhood of 7 = 1/2. Then G§Q4 (xx,t) is decreasing and since GCQ4 (x,1/2)=0

3 CQ4
$2( —— (x,0) <0

CQ4( ) (/—\/—/ /) C4( )
>— (X, 3 <0,1i.e. whenx € (1/2 5/10,1/3 ,GSQ x,t) has at least one zero on
(071/2).

It is left to prove that for x € (0,

we see that G5~ (x,7) > 0 in that neighborhood. Now it is clear that when 76

I- %] U3, 3 G§Q4(x,t) has constant sign. This will
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be done by showing that G§Q4 (x,7) is decreasing in the variable x and after checking its
behavior at the end points, our statement will follow. First assume 0 < # <x < 1/2. Then
2G5 iy L=

X — R

ax 6x3(1 —x)3

r—2x(1—x)].

o4
Since r < x < 2x(1 —x), it follows that 3%5)( (x,1) < 0 on this interval. When

0<x<t<1/2,wehave

aGgg“( = (122
ox T 51— x)3

[x—2¢(1—7)].

Similarly as before, now x <t < 2¢(1 —¢). Therefore GCQ4 (x,1) is decreasing in x. To

complete our proof, we need to consider the sign of GCQ4 (5 ’1(‘( , ) and GCQ4 ( ) As-

sume 0 < 7 < x < 1/2. Then G5%*(x,7) = m g(x,1) where g(x,1) = 12¢>(1 —x)? -

x% +1(—30x* 4+ 60x> — 30x% + 1) + 4x(5x> — 10x% 4 6x — 1). Now, it is trivial to see that

GSe (5 1(\)/_, ) > 0 and that G5%* (1,7) < 0. Similarly, when 0 < x <7 < 1,2, we have

GS% (x,1) = Bty - hlx,r) where h(x,1) = 6*(1 —x)” — 1231 —x)° +17(4x” — 8x +

6) + 2t - x(x — 2) + x> and again G§Q4 (5 1(\)/—, ) >0 and GCQ4 ( t) < 0. Therefore, since
t

G§Q4(x ) is decreasing in x, it follows that GSCQ4 (x,#) > 0 for x € (0,4 — \1/—(;] and that
G5% (x,1) < Oforx &[5, 5].

Thus, the assertion is true for k = 2. For k£ > 3 it follows by induction. As for the sign

of functions ngQf | (x,1), the proof is analogous to the same part of the proof of Lemma 3.1

O

Denote by Rganz( ,f) the right-hand side of (4.77).

Theorem 4.14 Let f :[0,1] — R be such that f*"+?) is continuous on [0,1] for some

n>3and let x € (0,5 — £] U3, 3l If £ and f*"*+2) have the same constant sign

n [0,1], then the remamder RCQ4(x, f) has the same sign as the first neglected term
AC04
o (X, f) where

NS94 (x, £) := RS (x, f) — RS, (v, f) =

G G O (1)~ 7 V(o).

Furthermore, |Rgn (x, 1) < |ACQ4(x f)| and |R2n+2(x NI< gnQA'(x il

Proof. Analogous to the proof of Theorem 3.1. O

Theorem 4 15 Iff:

[0,1] — R is such that f?"+2) is continuous on [0, 1] for some n > 2
andx € (0,5 — ﬁ] U3, 3], then there exists & € [0,1] such that

10
CO4
RS (x, f) = — S22 iy (4.80)

(2n+2)!
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where

1
CQO4
G524 (x,0) = 302(1 —x)2 [Ban+2(x) — Bopyo] + Bopta. (4.81)

If. in addition, f?"+2) does not change sign on [0,1], then there exists 6 € [0,1] such
that

6 1
4 4
RgnQ+2(x7f) — m cm;,gz (x, 5) [f(2n+l)(1) _f(2n+1)(0)] (4.82)
where
1
CO4 _ —2n—1
F2n+2 ()C7 1/2) - 30x2(1 —x)2 [B2n+2 (1/2 —)C) - B2n+2(x) + (2 -2 ) an+2]

— (227" Y By (4.83)

Proof. Analogous to the proof of Theorem 3.2. O

When we apply (4.80) to the remainder in formula (4.77) for n = 2, we obtain:

1 5x2—5x+1., ,
) 70— 0c0.5 1 —x. 1) 4 eI (1)~ £ 0]
AP —14x43
03300 ") (4.84)

For x = 1/2, formula (4.84) produces corrected Simpson’s formula which was already
studied some sections earlier. For x = 1/3 corrected Simpson’s 3/8 formula is produced.
Imposing condition w,(x) = 1/2, where w.(x) is as in (4.74), gives a 2-point quadra-
ture formula (since w¢(x) = 1/2 < By(x) = 0), and the corrected Gauss 2-point formula,
which was also already studied here. Possible the most interesting special case is for the
x = 1/2—+/5/10 which produces the Lobatto 4-point formula. The following subsections
will be dedicated to these special cases.

Remark 4.14 Similarly as in Remark 4.2, one might wonder if similar results can be
obtained for x = 0. By considering the limit process we get:

. 5x2—5x+1, ,
lim (Qc(()’x,l —x,1) —m[f (H-f (0)]>
1 1., / 1 1 1
= SUFO)+ (1) = 151 (1) = £/ (O)] + T [£(0) + /(1)
)1613(1)0594@,:) =Bi(1—-1)+ %BZ_Z(I —1)
Consequently, from (4.84) it follows:
[} £t 3170+ £+ 55 17(1) ~ 7O))— gl )+ 5" (1] = —@fﬁf )

Note that quadrature formulae (4.15) and (4.85) were derived in [22], by integrating the
two-point Taylor interpolation formula.
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Theorem 4.16 Let p,g<€Rbe suchthat1 <p,g<eoand1/p+1/q=1.Iff:[0,1] =R

is such that f e L,[0,1] for some n > 1, then we have

1
‘ /O f(t)dt — Qc(0,x,1 —x, 1)+ T5.2* (x)| < Kcoa(2n,q) - |17 - (4.86)
If f@r+) € L,[0,1] for some n > 0, then we have
1
/0 F0)dt =Qc(0.x,1 —x, 1) + T, ()| < Kega(2n+ 1.g) - [lF* V], (487)
and iff<2”+2) € L,[0,1] for some n > 0, then we have
1
‘ /0 F@O)dt = 0c(0,x, 1= x,1) + T, ()| < Kega(2n+2.9) - [If ]|y, (4.88)
where
q
Kcoa(m,q) {/ |GCQ4 (x,1 |th}
1
and Ktps(m,q) = ! 1 |FCQ4(x t)!th ’
coa\m,q m o Im )
These inequalities are sharp for 1 < p < oo and the best possible for p = 1.
Proof. Analogous to the proof of Theorem 2.2. O
Similarly as in the previous section, for x € (0,1 — %] U[4,3] and n > 2, we can

calculate the following constants as spec1a1 cases of the previous Theorem:

1
CO4
s (x, 5)

where ngQH(x 0) and F26r‘3»42 (x,1/2) are as in (4.81) and (4.83), respectively.

Kigs(2n+2,1) =

CQ4
’G2n+2 0) ’ )

(2n +2
1
(2n+2)!

)

1
KéQ4(2n—|—2,00) = 3 KCQ4(2n—|— 1,1) =

We now seek for the optimal corrected closed 4-point quadrature formula for

x€ (0,4 — \{—g] U[}, 3], n=2and p = c. Theorem 4.16 gives:

1 5x2—5x+1., ,
[ 10 gelox1 x4 22 ) - o)
|32x% — 55x% +30x — 5|
- 115200( ) Hf ”w

5x2—5x+1. ,
W - o)

- |14x% — 14x+ 3|
= 302400

‘/Olf(t)dt —0c(0,x,1—x,1)+

ANl
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It is not hard to see that functions on the right-hand sides of both of these inequalities
are decreasing on (0, % — ‘l/—g] and increasing on [%7 %] and they reach their minimum at
x = 1/3. The same goes for the case whenn =2 and p = 1.

Thus, once again, we conclude that the node which gives the best estimation of error in
these three cases is x = 1/3, i.e. the optimal corrected closed 4-point quadrature formula
is corrected Simpson’s 3/8 formula.

The following two theorems give Hermite-Hadamard and Dragomir-Agarwal type in-
equalities for the general corrected 4-point quadrature formulae:

Theorem 4.17 Let f:[0,1] — R be (2n+4)-convex for n > 2. Then for x € (0,% — 1—‘/05}

we have

1 n 1
|ngQf2(x70)| fent2) <5>

< (=1t ( /01 F()dt — Qc(0,x,1 —x, 1) + TE2* (x)) ws9)
# CQ4 f(2n+2)(0) +f(2n+2)(l)
< Gnray [Fnile0) : 7

while for x € [%7 %] we have

1 n 1
G52 o) 722 (7

(2n+2)!
1
< (=1 ( / f(t)dt — Qc(0,x,1 —x,1)+ Tz‘;;Q“(x)) (4.90)
0
Lo fEr2(0) + (1)
< nt2) G525 (x,0)] 7 :
where Gg,gfz (x,0) is as in (4.81).
If f is (2n+4)-concave, the inequalities are reversed.
Proof. Analogous to the proof of Theorem 2.8. O

Theorem 4.18 Lerx € (O7 % — ‘1/—03] U [%7 %] and f :[0,1] — R be m-times differentiable
form > 5. If | f"™|9 is convex for some q > 1, then

/Olf(t)dt —0c(0,x,1—x, 1) + TS ()

(m) (m) Va
<LCQ4(m7X)'<|f (O)|‘1—;|f (1)|q> (4.91)

while if | f"™)| is concave, then

, (4.92)

< Lega(m,x) - ‘f(m) (%)

[ 70001 Qc(0x1 x4 75
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where
2 co4
for m=2n+1 Leoa(2n+1,x) = TR [Fyl(x,1/2)]
and for m=2n+2 Lcos(2n+2,x) = o) |Gg?f2(x,0)|

with ngsz (x,0) and Fgg’z (x,1/2) as in (4.81) and (4.83), respectively.

Proof. Analogous to the proof of Theorem 3.5. O

4.2.1 Lobatto 4-point formula

If one wants to obtain from (4.77) the quadrature formula with the maximum degree of
exactness, and for that formula not to be “corrected” at the same time, one has to impose
the condition:
CO4 CO4
G52 (x,0) = G (x,0) = 0.

The unique solution to this system are exactly the nodes (xo = 1/2 —+/5/10) and the
weights of the Lobatto 4-point formula (on the interval [0, 1]), which was to be expected.
The same is obtained from (4.3) when considering the system: G2Q4 (x,0) = G%‘ (x,0) =0,
where the functions G,?4 are as in (4.6).

Let us now see the results and the estimates for the Lobatto 4-point formula. We move
to [—1,1]. Formulae (4.75)-(4.77) now become:

! w220 (2n-1)

[ =0t =T [ dB0dr® ), 493)
! L4 2% b (2n)

[ s Qu i = s [ @), @94)
! a2t (2n+1)

[ f0d o = s [ sV, (495)

where

)

Ou=1¢ lf(—1>+5f (—?) +5f (?) (1)

n 22k—1

L4 _ _GL4 —1 (2k—1) 1) — (2k—1) —1 ,
T = 3, gy GO0 - )

1 1 t 5 \/§ t \/§ t
L4 * * *

G ==B (=—= |+ |B | = - | +B [ -~ —=
k (t) 3 k (2 2) 6 [ k ( 10 2) k( 10 2)

FP () =G (1) - G (-1), k>2.



4.2 CLOSED CORRECTED 4-POINT QUADRATURE FORMULAE 191

Theorem 4.15 becomes:

Corollary 4.6 If f : [—1,1] — R is such that f*"*?) is continuous on [—1,1] for some
n > 2, then there exists & € [—1,1] such that

4 22n+2 4 S
Ryua(f) = T Ghpia(—1) - f22)(E) (4.96)
where
1 1 V5
Ghria(—1) = 3 [an+2 + 5B 12 (E - ﬁ)] . (4.97)
Applying (4.96) for n = 2 to the remainder in (4.95) produces Lobatto 4-point formula:
! 2
_ - _ (6) 4
[ $0)de = Qus= =3 £OE) 498)

Using Holder’s inequality one can easily obtain the analogue of Theorem 4.16 for
this quadrature formula. As a direct consequence, for p = 1 and p = oo the following
estimations are obtained:

1
Llf(t)dt_QM‘ = ClA(m7q) ’ ||f(m)||[77 m= 17"'76

where
Cra(1,1) ~0.376866,  Cra(l,o0) = ‘G?‘ (1/\6) ’ — 1//5 ~0.447214,
Cra(2,1) ~0.0417772,  Cpa(2,00) = G¥* (1/[5) ~ 0.0606553,
Cra(3,1) ~0.0064048,  Cpa(3,00) ~ 0.00735788
Cra(4,1) ~0.00113265,  Cra(4,00) = GE*(0)/3 ~ 0.00146629,
Cra(5,1) = 4[FF4(0)] /45 ~ 0.000248452,  Cr4(5, ) ~ 0.000283162,
Cra(6,1) = 4|GH*(—1)] /45 ~ 0.0000846561,

Cr4(6,00) = 2|F(0)] /45 = v/5/18000 ~ 0.000124226.

The Hermite-Hadamard type inequality for the Lobatto 4-point formula is:
L el
1512000 * 2

<- (/Olfmdt—g [f(0)+5f<5_186> +5f<5+10ﬁ> +f(l)D

_ 1 909
— 1512000 2 '
The constants from Theorem 4.18 are:

Leos (5, 5_‘6> V5 Leos (6, 5_\6> _ !

10 = 576000 10 1512000
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4.2.2 Corrected Simpson’s 3/8 formula

For x = 1/3, (4.84) becomes corrected Simpson’s 3/8 formula:

Lo gl (3 v (3) o]

1 / ! 1 (6)
— —[f(1)— —_ . . 4.
ol (D) = (O] + 557 () (499)
The results from this subsection are published in [51]. We have:
1 1 2
Ocszs = o= [13f(0) +27f | = | +27f( 7 ) +13f(1)],
80 3 3
l 2n 1
CS38 __ 7CQ4 _ L 838 (k=1) (1Y _ £(k—1)
5x% —5x+1 GCS38 k1)
_ X ot 1) — £2%k=1) 0
538 1 1 « 2 .
G770 (1) = 30 27B} 3 —t ) +27B; §_t +26B;(1—1)|, k>1 (4.100)

FE (1) = 68%() - GE¥(0), k>2

The error RS335(f) for n > 2 can be expressed as:

1
RCS38 ()

2_27172n 1_3272n Bon
rs =0 OB U B ey o] g o

(1=3°"Bayya- f2"2(m), me(0,1]

Estimates of error for p =1, p =ec and m = 1,2 are:

< Ccs3g(m,q) - Hf(m> llp

2401 _ | ges3s 1y _ 41
! 3 240’

1,1 1.00) =
Cesas(1,1) = 28800 Ces3s(1,90)
597 +3201/10 1] o (13 169
cs38(2,1) 192000’ cs38(2,0) 5B 30 12300

|
‘/o f(t)dt — Qcs3s

where

Comparing these estimates with the ones the classical Simpson’s 3/8 formula provides,

shows that the corrected formula gives better estimates for m = 1.
Furthermore, for p = 1,0 and m = 2,3,4,5,6 we get:

1
[ 10~ Qesss 15171 =7 01| < Cesstma)- L7
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where

o2 l)_szo\/%+187\/561 (2,00) = L|gess (L) = L
CS38\ 4, - 1728000 3 CS38\ 4, - 2 2 3 - 720’
Com(3.1) = 48693 + 31331241 (3.00) = 1053 + 187/561
CR T 491520000 0 T T 13824000

1 1
Cesss(41) = = Cosys(d,00) = =
CS38( ) ) 73728’ CS38( ! ) 38400

1 b essg (LY 1

CCS38(57 l) - 691200’ CCS38(57 )_ 51 GS 4 o 294912

1 1 1 1
Ces3s(6,1) = 5oy Cosas(6,00) = — [FEH (S ) [ = ———.
CS38( ) ) 2721600’ CS38( ’ ) 6! 6 2 1382400

The Hermite-Hadamard type inequality for the corrected Simpson’s 3/8 formula is:

L el
2721600/ (2)
< /Olf(t)dt— % {l3f(0)+27f (%) +27f (%) + 13f(1)} + %Zo[f’(l) —f(0)]

__ L 90+
— 2721600 2

and the constants from Theorem 4.18 are:

1 1 1 1
Leos (5’ 3) = o000 Leos (6’ 3) ~ 2721600
4.2.3 Hermite-Hadamard-type inequality for the corrected

4-point quadrature formulae

The main result of this section provides Hermite-Hadamard-type inequality for the cor-
rected 4-point quadrature formulae.

Theorem 4.19 Let f: [0,1] — R be 6-convex and such that 1) is continuous on [0,1].
Then, for x € (0, % — \1/—05] andy € [%, %]

5y —5y+1_, ,
Qc(07y71—yal)—m[f(l)—f(o)]
1
< /0 Flt)dr (.101)
5x2 —5x+1_, ,
< 0c(0x 1~ 1) = G I (1)~ £ (0))

where Q¢ (0,x,1 — x, 1) is defined in (4.78). If f is 6-concave, the inequalities are reversed.
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Proof. Analogous to the proof of Theorem 3.6. O

The following corollaries give comparison between corrected Simpson’s 3/8 and the
corrected Gauss 2-point rule, corrected Simpson’s 3/8 and the Lobatto 4-point, and finally
corrected Simpson’s and the Lobatto 4-point.

Corollary 4.7 Let f : [0,1] — R be 6-convex and such that f©) is continuous on [0,1].
Then

% (13f(0)-|-27f (%) +27f (%) + 13f(1)) - %[f/(l) — f(0)]

1

1 1 1 1 1 1
< — _— — — — — —
2f (2 3 \/ 225 30\/30) + 2f (2 +3 \/ 225 30\/30)

YA = £(0)].
+ D2 () - £0)]
If f is 6-concave, the inequalities are reversed.

Proof. Follows from (4.101) for x = 1/2 — /225 — 30\/3_0/30 & By(y)=0andy=1/3.
O

A
.
B

Corollary 4.8 Ler f : [0,1] — R be 6-convex and such that f© is continuous on [0, 1].
Then

g0 (13704277 (5) +207 (3) +1370) ) = 3 00) - £ 0)

/Olf(t)dt

1 55 5445
2 (rovssr(558) (555 o).

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (4.101) for x = 1/2—+/5/10 < 5x*> —5x+1=0andy=1/3. O

IN

Corollary 4.9 Ler f : [0,1] — R be 6-convex and such that f©) is continuous on [0,1].
Then

3o (104167 (3) 477 0) - gl - 701

60
/lf(t)dt
0

1 5-V5 54+45
E(.f(0)+5f< o >+5f< o >+.f(1)>-

If f is 6-concave, the inequalities are reversed.

IN

IN
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Proof. Follows from (4.101) forx =1/2 —+/5/10 < 5x*> = 5x+1=0andy=1/2. O

Remark 4.15 The result of Corollary 3.15 can be recaptured from (4.101) forx = 1/2 —

V225 - 30\/3_0/30 andy=1/2.

4.2.4 On corrected Bullen-Simpson’s 3/8 inequality

In [11], an elementary analytic proof of the following inequality was given: provided f is
4-convex, we have

o< [rina[sr(3) <2 (1) vsr(3)]

s [rowsr(3) 43 (3) e - [roa @i

IN

This implies that, for a 4-convex function, Maclaurin’s quadrature rule is more accu-
rate than Simpson’s 3/8 quadrature rule. Inequality (4.102) is sometimes called Bullen-
Simpson’s 3/8 inequality and was generalized for a class of (2k)-convex functions in [87].
The aim is to derive an inequality of similar type, only this time starting from corrected
Simpson’s 3/8 and corrected Maclaurin’s formula. The results of this subsection were
published in [54].
For k > 1 and t € R, we define functions

Gr(r) = G{2H(1/3,1) + GL2(1/6,1) = GE3¥ (1) + GEM (1),
Fi(t) = FC9(1/3,0) + F 2 (1/6,1) = FE38 (1) + EEM (1),

where G$538 (1) and G{M (1) where defined as in (4.100) and (3.118), respectively. So,

1 1 1
Gi(t) = 27B; (8 —t) +27B} (§ —z) +26B; (5 —t>

+ 27B; (%—t>+27BZ(g—t)+26B,t(1—t), k>1,
Fi(t) = Gi(t),  F(1) =Gt) = G(0), k=2
Introduce notation By, = G (0). By direct calculation we get
B,=2/3 and B3;=B4=Bs=0

Using the properties of Bernoulli polynomials, it is easy to check that Bo,_; =0, k > 2.
Now, let £ : [0,1] — R be such that £f("~1) exists on [0, 1] for some n > 1. Introduce the
following notation

D(0,1)

= % [13f(0)+27f<%) +27f (%) +26f (%) +27f (%) +27f<%) + 13f(1)] :
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Define To(f) =0and for 1 <m <n

Tf) = 5 (1524113, 1) + 15201 /6. 7)),

where T,59* (x,f) and 759 (x, f) are given by (4.79) and (3.97), respectively. So, we have

Ti(f) =0,
1

IL(f) = L) = Ta(f) = T5(f) Lf'(1) = f'(0)]

~ 480
and form > 6,
1 | m/2)
Tn(f) = 355l D= F O+ g5 % %T%“k—l) FED W)= 1% D).
k=3 :

In the next theorem we establish two formulae which we call corrected Bullen-Simpson’s
3/8 formulae of Euler type.

Theorem 4.20 Let f: [0,1] — R be such that £ =1 is a continuous function of bounded
variation on [0, 1], for some n > 1. Then

1
| s =)= 70) + &), (4.103)
and |
[ (1) = D(O.1) = T, 1 () + R (F), (4.104)
where . .
5(1) _ (n—1)
B = 1g5 | Gu0rar™ D),
and ) |
52) / (n—1)
R;, = — F, .
()= a0 |, B-Oar" V)
Proof. Apply (3.94) for x = 1/6 and (4.76) for x = 1/3, add them and divide by 2. Identity
(4.103) is produced. Identity (4.104) is obtained similarly from (3.95) and (4.77). O

Remark 4.16 Interval [0, 1] is used for simplicity and involves no loss in generality. In
what follows, Theorem 4.20 and others will be applied, without comment, to any interval
that is convenient.

It is easy to see that if f : [a,b] — R is such that f"~1) is continuous of bounded
variation on [a, b], for some n > 1, then

/abf(”d’ = pab) T+ L /abGn (t_a> af" )

160n! b—a

and
b g\t rb _
[ 1=t -+ G [h (1= ) ar .
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where

b—a Sa+b 2a+b a+b
D(a,b):m[13f(a)+27f<T>+27f< 3 >+26f< 5 )

+27f (““;Zb) +27f (“2517) + 13f(b)] ,

and form > 6

_a)?
() = L [76) - a)
1 [m/2] (b—a)Zk

30 70! K32 gy [f(Zk—l)(b)_f(Zk—l)(a) .

k=3

Remark 4.17 Suppose that f: [0,1] — R is such that f") exists and is integrable on
[0,1], for some n > 1. In this case (4.103) holds with

1
B0 = g1, G0

while (4.104) holds with

1 1
_ - F (n)
160n! /o n(1) £ ).

Remark 4.18 For n =6, (4.104) yields

RP(f)

[ 1@ =001+ 1l 1) - £O) = s [ RS0,

From this identity it is clear that corrected Bullen-Simpson’s 3/8 formula of Euler type is
exact for all polynomials of order < 5.

Before we state our main result, we will need to prove some properties of functions Gy
and Fy. Notice that it is enough to know the values of those functions on the interval [O7 %] ,

since Gy (t +5) = Gi(1).

Lemma 4.9 For k > 3, function Gyx_1(t) has no zeros in the interval (0,1/4). The sign
of this function is determined by

(—=DfGy_1(1) >0,  0<r<1/4. (4.105)
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Proof. For k = 3 we have

—1608° +65* —20/3-13, 0<r<1/6
Gs(t) = { —1608> +200e* —290/3 13 +45/2-1> —5/2-1 +5/48, 1/6<t<1/3
—160r° +335t* —830/3-13 +225/2-12 —45/2-1 +85/48, 1/3<1<1/2

and it is elementary to see that
Gs(t) <0, 0<t<1/4, (4.106)

so our first assertion is true for k = 3. Assuming the opposite, by induction, it follows
easily that the assertion is true for all £ > 4.
Further, if Gy;_3(¢) >0, 0 <t < 1/4, then since

G (1) = (2k— 1)(2k = 2)Gy5(7)

it follows that Gy, is convex and hence Go;—1(t) < 0 on (0,1/4). Similarly, we conclude
that if Go;—3(¢) <0, then Gox—1(7) > 0 on (0,1/4). (4.105) now follows from (4.106). O

Corollary 4.10 For k > 3, functions (—1)* 1 Fy(t) and (—1)*"'Gy(t) are strictly in-
creasing on the interval (0,1/4) and strictly decreasing on the interval (1/4,1/2). Conse-
quently, 0 and 1/2 are the only zeros of Fy(t) on [0,1/2] and

max [Fy (1) = 2°7(1 =272 (1= 3" By,
1€(0,1]
max |G (1)] = 2' (1= 372 |By.
1€[0,1]
Proof. Since
(=D Fn(0)) = (=)' Gu(0)] = (=1)* - 2k- Gy 1 (1),

from Lemma 4.9 we conclude that (— 1)1 F(r) and (— 1)1 Go,(¢) are strictly increasing
on (0,1/4). It is easy to check that fork > 2 and 0 <7 < 1/2,

Gi(1/2=1)=(-1)fGy(r) ~ and  F(1/2—1) = (~1)'F(t).

From there we conclude that (— 1)1 F5(7) and (—1)¥"1Gy(¢) are strictly decreasing on
(1/4,1/2). Further, F5(0) = F5(1/2) = 0, which implies |F>;(¢)| achieves maximum at
t = 1/4 and thus, the first assertion is proved.
On the other hand,
1

max [Go(1)| = max { |G (0)[, |G | 7 || ¢ =G« (0)].

1€[0,1] 4
The proof is now complete. O
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Corollary 4.11 Fork > 3, we have

23—2k

! ! —2k 42k
| 1P ldr= [ 160l = == (1-27%) (1-32) B,

1
/o |Fa(1)|dt = |Boy| =272 (1 —3472]6) |Bax|

1
/0 Gon(1)|dit < 2|Boy| =222 (1 - 34*2") Bl

Proof. Using the properties of functions Gy, i.e. properties of Bernoulli polynomials, we
get

1 1/4
/0 |Ga—1(1)|dt = 4’ A Gy (t)dt

(3]

k

which proves the first assertion. Since F5;(0) = Fo(1/2) = 0, from Corollary 4.10 we
conclude that Fy () does not change sign on (0, 1/2). Therefore,

1/2

1 1. -
/0 |F2k(f)|dt=2’ A sz(t)df—Esz = B,

which proves the second assertion. Finally, we use the triangle inequality to obtain
1 1 . .
1601 ar < [ 1Pe)ldr + Bl = 24,

which proves the third assertion. |

Theorem 4.21 If f : [0,1] — R is such that f®% is a continuous function on [0,1], for
some k > 3, then there exists M € [0, 1] such that

N 2—2k
RY(f) = R0020)1 (13428 F2R (). (4.107)
Proof. We can rewrite Iégg (f) as
52 o _ (D!
where :
Je= / (=) Far(0) £ 29 (1)t (4.109)
0

From Corollary 4.10 we know that (—1)"1Fy (1) > 0, 0 <t < 1, so the claim follows
from the mean value theorem for integrals and Corollary 4.11 ]
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Remark 4.19 For k = 3 formula (4.107) reduces to

1

R )
T7atg2a00 (M)

(2
R (f) =
Now, we prove our main result:

Theorem 4.22 Let f: [0,1] — R be such that {9 is a continuous function on [0,1] for
some k > 3. If f is a (2k)—convex function, then for even k we have

0</f dt——[27f< >+26f(%)+27f<2>]+T2’i_1(f) (4.110)
< % [13f(0)+27f<§) +27f<§> +13f(1)} —Tzsk,l(f)—/olf(r)dt

while for odd k inequalities are reversed.

Proof. Denote the middle part and the right-hand side of (4.110) by LHS and DH S, respec-
tively. Then we have

LHS=R$"(f) and RHS—LHS=—2RS)(f)

where jo (f) is defined in Theorem 4.20 and according to (3.119), RSM (f) can be written
in a form
1

e 217 (1= 342 By - fOR(€), £ € 0,1] 4.111)

R (f) =~

Recall that if f is (2k)—convex on [0, 1], then £(*¥)(x) >0, x € [0, 1]. Now, having in mind
that (— 1)~ !'By; > 0 (k € N), from (4.111) and (4.107), it follows

LHS >0, RHS—LHS>0, forevenk
LHS <0, RHS—LHS<0, foroddk

and thus the proof is complete. O

Remark 4.20 From (4.110) for k = 3 it follows

0 </ [ dt——{27f( )+26f<%)+27f(%>}—ﬁ[f’(l)—f’(o)]

< g5 |02 (3) 4217 (3) + 137 0)] - gl -r 01 [ sa

Theorem 4.23 If f : [0,1] — R is such that £ is a continuous function on [0,1] and f
is either (2k)—convex or (2k)—concave, for some k > 3, then there exists 0 € [0, 1] such
that

A

272]6
20(24)!

R(f)=6- (1-272) (1-3*2) By [/ (1) - /3 V(o). @4112)
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Proof. Suppose f is (2k)—convex, so f2X) (1) >0, 0 <t < 1. If Ji is given by (4.109),
using Corollary 4.10, we obtain

0<Jr<(-1 leZk( ) /ka

which means there exists 6 € [0, 1] such that

Jo=0-(—1)1.22% (1 _2721{) (1 _3472k) Bo [f(2k71)(1) _f(2k71)(0)] .

When f is (2k)—concave, the statement follows similarly. |

Now define

Aor(f) =

(1=3 )y [fD (1) — £ D))

Clearly,
R (1) =0-(2—2"%) Mgy ().

Theorem 4.24 Suppose that f : [0,1] — R is such that f (2k+2) is a continuous function
on [0,1] for some k > 3. If f is either (2k)-convex and (2k + 2)-convex or (2k)-concave

and (2k +2)-concave, then the remainder I?S{) (f) has the same sign as the first neglected
term Aoi(f) and

R ()] < [A(F)].

Proof. We have

Ax(f) = R (1) — B2, (f).

From Corollary 4.10 it follows that for all 7 € [0, 1]
(=1 'Fy(t) >0 and (=1 (=Fas2(1)) >0,

so we conclude I?g? (f) has the same sign as —I?S{)H(f ). Therefore, Ay (f) must have the

same sign as RS{) (f) and R§k>+2( /). Moreover, it follows that

B2 ()] < |Aak(f)] and R (F)] < |Aak(f)]-
O

Using formulae derived in Theorem 4.20, we shall prove a number of inequalities for
various classes of functions.

Theorem 4.25 Assume (p,q) is a pair of conjugate exponents, that is 1 < p, g < oo,
1%+$ = 1. Let f:[0,1] — R be such that f € L,[0,1] for some n > 1. Then we have

1
[ 700001+ 1) < K ) 1 (@.113)
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and |
‘ /0 f(t)dt —D(0,1) + n(f)‘ <K (n,p)- | FI, (4.114)

where

1
1 1 q 1 1 7
K(n,p)=——| [ |F()] K = / ()]
00) = gy | [} 0P and k)= g | Gt al
Proof. Applying the Holder inequality we get
' 1

1
1 1 1 q
L (n) < / age|* ||
160n!/o B0 w0dt) < 15 [ ) 150 d’] |7

Having in mind Remark 4.17, from (4.104) and the above inequality, we obtain (4.113).
Similarly, from (4.103) we obtain (4.114). O

Remark 4.21 Taking p =« and n = 1,2 in Theorem 4.25, i.e. (4.113), we get

1
\Afmm—DwJﬂ<mevau7

where
2401 ~597+320v/10

K 1 Q) = ——— o) =
(1) 57600’ <) 768000
Taking p=1andn = 1,2, we get

‘Avmm—DwAﬂ<anwﬂmh

where
41 169

Comparing these estimates with the analogous ones obtained for the Bullen-Simpson’s
3/8 formula shows that these are better in all cases except for n =2 and p = co.
Moreover, for p = e and n = 3,4,5 we obtain

‘/f $di — on+&§ﬂw—ﬁ®]éﬁmﬂwﬂmu

48693 +3133v/241 _ 1 1

(3,%) 3932160000 ’ (4,%) 1179648’ (5,%) 22118400’

and for p =1 and n = 3,4,5 we get

[ 7001 D(0.1) + 251~ FO] < K1) 1
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where

1053 +187v/561 (4,1) = 1 K(5,1) = 1
110592000 ’ 7614400 79437184

K(3,1) =

Finally, for p =2 we get

‘ / 1f<t>dr—D<o,1>‘ <K(m,2)- £,

where
K(1,2) = %, K(2,2) = %7
and
/Olf(l‘)dt—D(Q 1)+ ﬁ[f’(l) —f’(o)]‘ <Km,2)-1If s,
where
K(3,2) = 1\2/(50’ K(4,2) = %, K(5,2) V116655

~ 5748019200
Remark 4.22 Note that K*(1,p) = K(1,p), for 1 < p < eo, since G(t) = Fi(¢). Also,
for 1 < p < oo, we can easily calculate K(1,p). Namely,

1 [399+1 44001 4 410+17 4
T 480 120(g+ 1)

K(1,p)

In the limit case when p — 1, that is when ¢ — oo, we have

41
limK(1,p) = — =K(1,1).
K (Lp) = g0 = K(LD)
Now we use formula (4.103) and a Griiss type inequality to obtain estimations of cor-
rected Bullen-Simpson’s 3/8 formulae in terms of oscillation of derivatives of a function.

Theorem 4.26 Let f : [0,1] — R be such that f\") exists and is integrable on [0,1), for
some n > 1. Suppose
my < () <My,  0<t<1,

for some constants m,, and M,,. Then

1
/Of(t)dt—D(O,l)—FTn(O,l) < Cp(My —my) 4.115)
where
2401 ~ 320V/30+ 187v/561

1 2

~ 115200 27648000
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B 48693 + 3133241 B 1
3 7864320000 ’ 4= 2359296’
2—2k
Cop1 = 1—272(1 =3*25By|, k>3
2k—1 20(2]()'( )( )| 2k|7 = I,
2% 42k

Cor = 1-3""")|B k> 3.

% 80(2k)!( )Bal, k>

Proof. Similarly as in the proof of Theorem 3.26, Lemma 3.9 ensures that the second con-
dition of Lemma 3.10 is satisfied. Having in mind Remark 4.17, apply inequality (3.153)
to obtain the estimate for |I?£,1) (f)]- Now our statement follows easily from Corollary 4.11
for n > 5 and direct calculation forn = 1,2,3,4. O

4.3 Gauss 4-point formula

One of the most interesting properties to consider when studying the quadrature formulae
is the maximum degree of exactness. It is well-known that the formulae that have property
are the Gauss formulae.

The Gauss 4-point formula is an open quadrature formula and is furthermore exact for
all polynomials of order < 7, so it is clear why it has not appeared as a special case of the
two families of closed 4-point quadrature formulae considered in this chapter. Neverthe-
less, we are going to consider it separately, using the same technique as before. The results
from this section are published in [58].

Let f: [—1,1] — R be such that (> is continuous of bounded variation on [—1,1]
for some n > 0. Assume 0 < x <y < 1. Putx = —y, —x, x, y in (1.2), multiply by
w(x,y), L —w(x,y), 1—w(x,y), w(x,y), respectively, and add. The following formula is
obtained:

[ 0= D)+ 760 = (0w A0+ )+ Tas)

22n+l 1 nt)
= m[len+2(x7y7t)df( (), (4.116)
where, fork > 1 andt € R,
& 2k k-1 k-1
T2n(x7y) = 2 T Gk(x7y7_l) [f< B )(l)_f< B )(_l)]
k=1 :

Gi(x,y,1) = w(x,y) {Bi (—yz—t> +By (yT_t)}

+ et 5 (25 ) +8 (5]

Fk(xvyvt) = Gk(%)’a’) - Gk(x7y7_1)'
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Functions Gy have the same properties again as the analogous functions from previ-
ous sections. In order to produce the quadrature formula with the maximum degree of

exactness, impose conditions:

Ga(x,y,—1) = Ga(x,y,—1) = Ge(x,y — 1) = 0.
The solution of this system is:
15230 [15+2V/30 Wi )_18—\/3_0
=\ T35 =\ T35 0:Y0) = —=g
and from there
18— J_ 15+2+/30 15+2v/30
/f ~ A"z |+ 35—
35 35
184+ +/30 15—2v/30 15—2+/30
L 18HVB0 1 15-2v50 L [15-2v30
36 35 35

which is exactly the classical Gauss 4-point formula. To shorten notation, denote the right-
hand side of the upper expression with Og4. Now we have:

T3' = Tan(xo.0) = i Z;l GREDFH M) -V @)
Ge(r) = Gk(xO,yo,t) (4.118)
FE*(t) = Fi(x0,y0,1) — Fe(x0,50, 1), (4.119)
so formula (4.116) becomes
1 2n+1
/ 0= 0at T = s [ G 0ar ) (4.120)

Assuming f(>*=1) is continuous of bounded variation on [—1,1] for some n > 1 we
obtain analogously:

1 22n71 1
Lﬂt)dt — Qg4+ TS5 = ol L GSH (D) d PV (1), (4.121)
and if f(®") satisfies the same property for some n > 0, then
1 Ga 22n (2n)
L.f(t)dt — Q6+ Ty = m/ GSt (0)dfP (1), (4.122)

Lemma 4.10 For k > 3, G§. (1) has no zeros in (0,1). The sign of this function is
determined by

(~D)GEL (1) >0, 0<r<1.
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Proof. We start from G$*(r). For t € [yo, 1), G$*(r) = & (1—1)’, so obviously it has no
zeros there. It is easy to check that (G)(0) > 0. Now, assume G$* has at least one zero
in (0,1). Then G$* has at least 3 local extrema in (0,1). This means GS* has at least 3
zeros and therefore at least 3 local extrema, since G6G4(1) = 0. This implies GSG4 has at
least 3 zeros and since G§*(0) = Gs(1) = 0, it has at least 4 local extrema. From there
we conclude G¢* has at least 4 zeros and as G$*(1) = 0, G$* has at least 4 local extrema
as well. Therefore, G{* has at least 4 zeros and since G§*(0) = G§*(1) = 0, it has at
least 5 local extrema in this interval. Finally, this implies G§4 has at least 5 zeros which
is obviously impossible - we know it has none on [yo, 1), so it could have 4 zeros at most.
Thus, we conclude G§* has no zeros and G$*(¢) > 0 on (0,1). Assuming the opposite, by
induction, it follows easily that the assertion is true for all k > 4. The sign of the functions
G5 (1), k> 5 can be determined analogously as in Lemma 3.1 O

Remark 4.23 From Lemma 4.10 it follows immediately that for k > 3, (—1)**'E4 (1)
is strictly increasing on (—1,0) and strictly decreasing on (0,1). Since F,(—1) =

ngz(l) =0, it has constant sign on (—1, 1) and attains maximum at ¢ = 0.

Using Holder’s inequality, estimates of error for this type of quadrature formulae are
obtained:

Theorem 4.27 Let p,g € Rbesuchthat1 <p,q<oo, 1/p+1/q=1.Letf:[-1,1] =R
be such that f*" € L,[—1,1] for some n > 1. Then we have

1
‘ /_ S0 =06y + T9 < Kga(2n,q) - || 27 - (4.123)

If fOr+) € Ly[—1,1] for some n > 0, then we have

1
‘ [ 0= Q64+ T < Koa(2n+ 1) | £+ . (4.124)

If f2+2) € L,[—1,1] for some n > 0, then we have

1
‘/lf(t)dt—QerTzG,,“ <K&y (2n+2,9) - 11122, 4.125)
where
i 1
m—1 1 G4 q q N 2m71 1 c J 7
KG4(m7‘]) = ) |:/1 !Gm (t)| dt:l 5 KG4(m7CI) = oy |:/1 |Fm (I)! dt:| )

These inequalities are sharp for 1 < p < oo and the the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. O
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Using Lemma 4.10 and Remark 4.23, for p = 1 and p = « we get:

2n+2
* G4
Ko (2n+2.1) = 7y [GEa (-1 (4.126)
1 22n+1 G
Kia(2n+2,00) = 5 Key(2n+1,1) = T F3t5(0)], (4.127)
where
18 —/30 1- 184+1/30 1—x
GSa(—1) = T32n+2< 2y0> + I8 an+2< > 0) (4.128)
18 — /30 1—
Fyt5(0) = BT {Bzmz (%0) —an+2( 2}’0)] (4.129)
18 + \/3_ X0 1—x¢
+ — 3 {anﬂ ( 2 ) —Bonyo (T .

The following theorem shows how the remainder R2n +2( f) in formula (4.120) can be
expressed.

Theorem 4.28 If f : [—1,1] — R is such that f?"*2) is continuous on [—1,1] for some
n >3, then there exists & € [—1,1] such that

20 (2n+2)
R§L(f) = T Gopa(=1) - f (&), (4.130)
where G5t ,(—1) is as in (4.128).
If. in addition, f®"2) does not change sign on [—1,1], then there exists 0 € [0, 1] such
that

22n+1 Ga
_p._ = (2n+1) _ e(2n+1)
BELalf) = 0 sy Fa(0) |70 () — 0] @
where Fgt 5(0) is as in (4.129).
Proof. Analogous to the proof of Theorem 3.2. O

Applying (4.130) to the remainder in (4.120) for n = 3 produces the classical Gauss
4-point formula:

1
[ 10001 = 5 FOE), Gl

As direct consequences of Theorem 4.27, i.e. (4.126) and (4.127), the following esti-

mations are obtained for p = e and p = 1:

< Caa(m,q)- || f™ ], 1<m<8

‘/llf(f)dt—Qm
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where
Ca(1,1) =~ 2759941071, Cga(1,00) =xp ~ 3.39981-107",
Ca(2,1) ~ 2.18566- 1072, Cpa(2,0) = |G5*(x0)| = 3.65261-102,
Ca(3,1) ~ 2.3501-1073,  Cga(3,0) ~ 2.92413-107,
Coa(4,1) ~ 2.69484-10~ 4 Cea(4,00) = |GF*(0)|/3 ~ 3.73171-1074,
Coa(5,1) ~ 3.48131-10~ 5 C4(5,00) ~ 4.89802-1077,
Coa(6,1) ~ 5.25522-107°,  Cgu(6,%0) =2|G§*(0)| /45 ~ 8.498485-10"°,
Ce4(7,1) =2|EZ*(0)|/315 =~ 9.941993-1077,  Cga(7,%0) ~ 1.313805-1079,
Coa(8,1) :2|GG4( 1)|/315 = 1/3472875 ~ 2.8794587-107,
Ci4(8,00) = |FEH(0)] /315 ~ 4.971-107".

Above constants are obtained with the help of Wolfram’s Mathematica, as the expres-
sions involved are rather cumbersome. Similar estimations can be obtained for m > 9
from (4.126) and (4.127). However, the values of derivatives (starting from the 7th) in
the end points of the interval are then also included in the quadrature formula. In cases
when those values are easy to calculate, this is not an obstacle. Furthermore, in cases when
FO(1) = f¥W(=1) for k > 7, we get a formula with an even higher degree of exactness.

Form=1and 1 < p <o, we get:

g+1 g+1
2 18 ++/30 18+ +/30
Cou(l,q)= | —=— | x4t [ 2 V72 B 1 —yo)et!
G4(1,9) il R +< 36 xo) +<yo % ) + (1 —=o)

1/q

When p = 1, i.e. when g = oo, we obtain Cga(1,°0) = x¢, as we did before by calculating
directly.

Remark 4.24 The constant Cgs(1,0) coincides with the constant py (R{) from Theorem
1.1. in [47].

Estimations for m =2 and 1 < p < o are expressed in terms of hypergeometric func-
tions. Namely,

1 2
Cs4(2,9) = 3 [m

2 5 1
= (Pt — 1:g+2:~
+q+1( (q,q+ gt 2)

(1—yo)* ™ +2(y—B)*"'B(g+1,q+1)

—
+(x0 — o) (20)7F (—q,q+ Lig+2; —xoza )

B - pF (~aq+tig+2-E=)

+0o0 =71 (v B)IF (—q,q+ 1;q+2;—y;__ﬁy)ﬂ Uq?
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where o, 8 and y are zeros of G () such that 0 < ot < x9 < B < ¥ < yo. Here, the integral
representation of a hypergeometric function was used. It is given by:

1 1
Fla,b;c;x) = / P — 1) (1 = x) %,

B(b,c—D) Jo

if c > b > 0and |x| < 1. B is the well-known Beta function.
Similar estimations could be obtained for higher derivatives but it is difficult to calcu-
late the zeros of the integrand for m > 3.






Chapter

General 5-point quadrature
formulae of Euler type

This chapter is dedicated to the closed 5-point quadrature formulae, i.e. quadratures which
estimate the integral over [0, 1] with the values of the function at nodes 0, x, 1/2,1—x and
1, where x € (0,1/2). The results from this chapter can be found in [60].

5.1 General approach

Let x € (0,1/2) and f : [0,1] — R be such that f2"+1) is continuous of bounded varia-
tion on [0, 1] for some n > 0. Analogously as before: put x =0, x, 1/2,1 —x and 1 in
(1.2), multiply by wy (x), wa(x), w3(x), wa(x), wi (x) respectively, where 2w (x) 4+ 2wy (x)
+ws3(x) =1, and add up. The following formula is obtained:

1 1 1 1
/0 f(t)dt—Q (O,x, Sl 1) + T (x) = m/o Fonia(x,1)df 2 (1),

(5.1
where

Q(Oaxaéal_)@l) (52)

211
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= wi(0)[£(0) + F ()] +w2(x) [f (x) + f (1 = x)] +- w3 (x).f <l> ,

2
) = 3, i G 0) [0 (1) = 70, 53
k=1 :
Gr(x,1) =2w; (x)B; (1 — 1) +wa(x) [By (x —1) + By (1 —x—1)]
+w3(x)B; (1/2—1), (5.4)
Fk(x7t):Gk(x7t)_Gk(x7O)' (5.5)

To obtain the formula with the maximum degree of exactness from (5.1), impose the
condition:
Gz(x,()) = G4(x,0) =0.

Then:

()_10x2—10x—|—1 () = 1

M Teor—1) 0 Y T sl —x) (2 — 1)2

8(5x2 —5x+1)
152x—1)2

w3 (x) =1 =2w(x) — 2wy (x) = (5.6)
these are the weights we shall work with in this section.

Changing the assumptions on function f, we can obtain two more identities with the
left-hand side equal to that in (5.1). Namely, assuming f (2n-1) s continuous of bounded
variation on [0, 1] for some n > 1, from (1.1) we get:

1

1 1 1 -
/0f(t)dt—Q(O,x,E,l—x,l)+T2Qns(x):(2n)!/0 GL (x,)df* V1), (5.7

and assuming f° (21) is continuous of bounded variation on [0,1] for some n > 0, from (1.1)
(or (1.2)) we get:

1 1 1 1 i
[ 0= 0 (0 5151 ) + T80 = 5 [ 68 wnar®)

(5.8)
where ngs ()C)7Ggf ()c7t)7F2Qn5 (x,1) are as in (5.3)-(5.5) with weights as in (5.6).

Lemma 5.1 Forxe (0, Sfl\éﬁ] U[$,5) andk > 2, GszsJrl (x,1) has no zeros in the variable

t on (0,1/2). The sign of the function is determined by:
()G, (r,) >0 za xe (07 12— \/B/lo] 7
(—l)ngksH(x,t) >0 za xe[l/5,1/2).

Proof. First, note that

5-V15 1 PGP IG® [/ 1
xe(li\o/_, 5) & 8t45 (x,00>0 & a; (x,—)>0.
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Further, G,?S (x,0) =0 for 2 <k <5 and Ggs (x7 %) = 0. The claim is that for x €
(5_‘/E 1), Ggs(x,t) has at least one zero in variable 7 on (0,1/2). Assume first

0 3
6P . 6% . .
alf (x,0) > 0. This means Tj > 0 in some neighborhood of zero so we conclude
(93GQ5

(%35 is increasing in this neighborhood. Now, similarly as in the proof of Lemma 3.7,
knowing the values of the k-th derivative in 0 and the sign of the (k+ 1)-th derivative of

GSQS, we conclude on the sign of the k-th derivative (for k = 0,1,2,3). Thus it follows

05
G (x,1) > 0 in this neighborhood of zero. From the assumption ag? (x,1) >0, analo-

gously follows that GSQ5 (x,7) < 0 in some neighborhood of 1/2. Now it is clear that for

X e (5 _l‘éﬁ %), GSQ5 has at least one zero.

The next step is to prove GSQ5 (x,1) is monotonous (in x). Assume first 0 <7 <x < 1/2.
Then
IGL (x,1)  1*(1-2w)

ox  12x(x—1)2’
so obviously GSQ5 is strictly increasing. Next, let 0 < x <¢ < 1/2. Then
9GP (x,1) 1-2 he)
= nix,t),
dx 12(x—1)2(2x—1)3

where h(x,t) = 8¢3(x — 1)? +12(4x> + 4x — 6) + 2¢(4x — 5x%) +x*(4x — 3). We claim
h(x,1) < 0. It is easy to see that

dh(x,t) 0oy 1 - 4x — 5x°
a P72 2T ek —1)2

>
but we also have 7, < x, so h(x,7) is strictly decreasing for ¢ € [x,1/2]. Since h(x,x) < 0,
our claim follows, and from there it is clear that Ggs is strictly increasing in x on this
interval.

Further, since G?S(S’l\éﬁJ) < 0 for ¢t € (0,1/2) (see [39]), GSQS(%J) =
1*(5/16 —1) > 0 for 1 € (0,1/5] and G2 (L,1) = 745 (1 —20)3 (54> — 141 + 1) > 0 for

t € [1/5,1/2), we conclude GZ(x,1) < 0 for x € (0, ﬁﬁﬂ and G&(x,1) > 0 for
11
x€[5,3)-
The rest of the proof is analogous to the proof of Lemma 3.1 o

Denote by Rgns 5 (x, f) the right-hand side of (5.1) with weights as in (5.6).

Theorem 5.1 Ler f:[0,1] — R be such that f*"+?) is continuous on [0, 1] for some n >3

and let x € (0, % — g] U [%, %) If £ and f"+2) have the same constant sign on [0,1],

then the remainder R2Qn5 (x, f) has the same sign as the first neglected term Agns (x, f) where

AL (x,f) = RS (x5, f) — RS o (6, f) = — =G5 (x,0)[f2"~ V(1) — r*=D(0)).

1
(2n)!
R (x,f)| <A (x.f)| and RS, (x, f)| < AT (x, f)|-

Furthermore,



214 5 GENERAL 5-POINT QUADRATURE FORMULAE

Proof. Analogous to the proof of Theorem 3.1. O

Theorem 5.2 If f: [0,1] — R is such that f*"+2) is continuous on [0,1] for some n > 2
and x € (0,1 — \{—1_05] U[%, ), then there exists & € [0,1] such that

G2, (x,0)
05 __ Fowp2\MY) i 0n42)
where
G 5 (x,0) = 2wa(x) - Bayia(x) + 2w (x) — w3 (0)(1 = 272" V]Byin. (5.10)

If. in addition, f?"*2) has constant sign on [0,1], then there exists a point 6 € [0,1]
such that

R (xf) = ﬁ P (x, %) ) re oy (5.11)
where
Fz%iz (x,1/2) = 2wz (x)[Bant2 (1/2 — x) — Bany2 (¥)] (5.12)
+ [w3(x) = 2w (0)](2— 272" )Bapsa.
Proof. Analogous to the proof of Theorem 3.2. O

When (5.9) is applied to (5.1) for n = 2, the following formula is produced:

1 1 1
Ndi—Q(0,x,=,1—x,1) = 7 —Tx+1) - FO(&). 5.13
For x = 1/4, (5.13) produces the classical Boole’s formula. When wy(x) = 0, which is
equivalent to x = 5’1\05, formula (5.13) becomes the Gauss 3-point formula (stated on

[0,1]). When w3(x) =0, i.e. when x = 5%6, (5.13) gives the Lobatto 4-point formula (on
[0,1] again). Note that wy(x) # 0 for every x what could be expected since if x such that
ws (x) = 0 existed, that x would generate a closed 3-point quadrature formula with a degree
of exactness equal to 5, and we know that such a formula does not exist - unless of course
it is corrected, but we do not deal with that kind of quadrature formulae just yet.

Remark 5.1 Although only x € (0,1/2) were taken into consideration here, results for
x =0and x = 1/2 can be obtained by considering the limit processes. Namely,

1

- G- 7o)

im0 (07%%,1 —m) — L 75(0)+ 16f(§) L7£(1)

7 8 1
: 05 _ % «
lim Gy (v1) = 7581 = 1)+ 155 (5 —’>
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Consequently, from (5.13) it follows:

[ 10 550000+ 167 (3) + 7701+ g1 (1) - 7 0)
1

_ (6)
n 604800f (&)

which is exactly corrected Simpson’s formula (cf. (3.115)).
Furthermore,

1 1 1 1 1
xliﬂr}zQ(Ox x71> =m[f(0)+8f<§)+f(1)]+@f” (§>

1 4 (1 k(k—1) 1
lim G% —Bi(1—-1)+ =B} = — B ,(=—
Jim G (w) = 5Bi1=1) + 3 k(z t)+ 60 “(2 t)

and then from (5.13):

[ 10— ggtro+s7(5) +101- 55" (3) =~ o ©)

The next theorem gives some sharp estimates of error for this type of quadrature for-
mulae.

Theorem 5.3 Letp,q€ R be suchthat 1 <p,g<ooand1/p+1/q=1.1ff:]0,1] >R
is such that f(2”) € L,[0,1] for some n > 1, then

‘/Olf(t)dt_Q (O,X,%,l—x’l) _|_T2QnS(x)

if 1) € L,]0,1] for some n > 0, then

1
‘/O f(t)dt—Q (o,x, %71 —X, 1) + 130 (x)

and finally, if f?"+2) € L,[0,1] for some n > 0, then

‘/1f(t)dt -0 (mx? S 1) + T (%)
0

< Kos(2n,¢,x) - || £, (5.14)

< Kos(2n+1,q,x) - [ f2" V]|, (5.15)

<Kps(2n+2,q.x)- | f* |, (5.16)

1 1
Kos(m,q,x = {/ ‘GQS Xt ‘ dt} , Kps(m,q,x = {/ ‘FQS xt)‘ dtr

These inequalities are sharp for 1 < p < oo and best possible for p = 1.
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Proof. Analogous to the proof of Theorem 2.2. O
For x € (0 5 — %] U [%, %) and n > 2, using the previous theorem, the following

constants can be calculated:

1
* _ 05
Kos(2n+2,1,x) = Gt G2n+2(x70)’ ,

)

. 1
Kps(2n+2,00,x) = 3 Kos(2n+1,1,x) =

1
05
F2n+2 ( 2)

where G5 ,(x,0) and F,, (x, 1) are as in (5.10) and (5.12), respectively. In view of this,
let us consider inequalities (5.15) and (5.16) for n =2 and p = oo:

! 1 8 =Tx+1] | s
‘/0 f(f)dt—Q(07x7§7 —X, 1)’ = 11520001 —x) 1]

1 1 |7)C —7X+l| (6)
_ 21— <2 T -
\ [ sy Q(o,x,2,1 x,1)|_ ey

In order to find which admissible x gives the least estimate of error, the functions of the
right-hand sides have to be minimized. It is easy to verify that both functions are decreasing
on (0,1/2 —+/15/10], increasing on [1/5,1/2) and reach their minimal value at x = 1/5.
Since Kos(5,1) = 2Kps(6,°0), the same conclusion applies for n =2 and p = 1. For
x=1/5,(5.13) readily gives:

/f t—m(27f(0)+125f<é>+128f<%)+125f<%)+27f(1)>

1

I S (!
n 5040000f (&)-

1
(2n+2)!

For functions with the degree of smoothness lower than 6, this formula gives the following
error estimates (cf. Theorem 5.3):

/f dt—m(27f(0)+125f<é>+128f<%)+125f<%)+27f(1)>‘

< C(m,q,1/5)- I f"lp, m=1.....6

where

C(1,1,1/5) ~ 6.78194-1072,

C(1,00,1/5) =G (1/5,4/5)] ~ 0.151852,

C(2,1,1/5) ~ 2.58029-103,

C(2,00,1/5) = %|G2Q5(1/5,1/5)| ~ 751073,

C(3,1,1/5) ~ 1.34151-10%, C(3,00,1/5) ~ 2.96195-10~*
C(4,1,1/5) ~ 8.68677-107°, C(4,00,1/5) ~ 1.71661-107>,
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C(5,1,1/5) ~ 8.68056-1077, (C(5,00,1/5) ~ 2.17169-107°,
C(6,1,1/5) ~ 1.98413-1077,
1
F25(1/5,1/2)] ~ 4.34028 10",

6!

C(6,00,1/5) =

The following two theorems give the Hermite-Hadamard and Dragomir-Agawal type
inequalities for the general 5-point quadrature formulae:

Theorem 5.4 Let f:[0,1] — R be (2n+4)-convex for n > 2. Then for x € (07 1- %],
we have

1 1
GSY 5 (x,0)] fO+2) <§> (5.17)

@21
< (-1 (/Olf(t)dt -0 (o,x, %,1 —x, 1) +TanS(x))

f(2n+2) (0) + f(2n+2) ( 1 )
2

1
< -
~ (2n+2)!

GS, (x,0)]

)

while for x € [%7 %) we have

1 05 (nt2) (1

< (<1y! (/Olf(t)dt 0 <O7x7 % 1—x, 1) + T2 (x))

f(2n+2) (O) +f(2ﬂ+2)(l)
2

)

1
05
< i G5, 12(x,0)]

with G2Qn5+2(x,0) as in (5.10) and wy (x),wz(x) and wz(x) as in (5.6).
If f is (2n+4)-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 2.8.

Theorem 5.5 Ler x € (O7 % — %] U [%7 %) and f : [0,1] — R be m-times differentiable

form > 5. If | f"™)|9 is convex for some q > 1, then

‘/Olf(t)dt -0 (o,x, % 1—x, 1) + 72 (x)

(m) (m) /4
SLQS(m’@_(v (o>|q;|f <1>|q> 5.19)

while if | ™| is concave, then
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, (5.20)

< Lostma) |1 (3)

'/f Nt —Q ( “1-x, 1>+T2%5(x)

where

|Fi2 o (x,1/2)]

for m=2n+1 Los(2n+1,x) = 242

2
(2n +2)!

1
and for m=2n+2 Lgs(2n+2,x) = 7o) |G2n+2(x70)|

with G¢ (x,0) as in (5.10) and F2 (x,1/2) asin (5.12).

2n+2 2n+2

5.1.1 Boole’s formula

The special case which is considered in this subsection is the case when x = 1/4. These
results are published in [99].
For x = 1/4, formula (5.13) becomes the classical Boole’s formula:

/f dt——{7f()+32f<%>+12f<%)+32f<%>+7f(1)}

1
400
= 1035360 /(&) SE€0] (5.21)

We now have:

0= g5 | 170 +327 (3 ) 127 (5) 4327 (3 ) #7000

1, -1 (1) = 3 g GO U0 - /%00
2 G5
14, 12 1

320 (1 L (3
*%[Bk(rf)wk(z”ﬂ’

Note that
1 —n —n
ng+2(0):G2Q;15+2(1/470):E(l_s'4 +4-16 )B2n+27
1
5 _on—
Fp o (1/2) = F2, (1/4,1/2) = —z5(2-2 By

Finally, let us see what the estimates of error for functions with a low degree of smooth-
ness for this type of formula are:

1
| [ ey~ ocs| < Cotma)- 171
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where
239 11
CB(171)_%7 CB(L‘”)—@;
1018 17
G20 =735 @)= 145

For x = 1/4 and n = 2, (5.18) gives Hermite-Hadamard type estimate for Boole’s for-
mula:

# f(ﬁ) 1
1935360 ° 2

<— (/ 1(0) dt——{7f( )+32f<%>+12f<%)+32f<%>+7f(1)D

) 90 + (1)
- 1935360 2

The Dragomir-Agarwal estimates for Boole’s formula are:

1 1 1 1
Los <5 ’Z) = 3456000 Lo (6’Z> ~ 1935360

5.1.2 Hermite-Hadamard-type inequality for the 5-point quadra-
ture formulae

The main result of this section provides Hermite-Hadamard-type inequality for the 5-point
quadrature formulae.

Theorem 5.6 Let f: [0,1] — R be 6-convex and such that f© is continuous on [0, 1].
Then, for x € (0,1 — ‘ﬁ] andy € [1,3)

1 1
Q(Ox 271—x71> g/o fltydr < Q<07y7§71—y,1)7 (522)

where Q (0 X, 2, —X, 1) is definedin (5.2). If f is 6-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 3.6. O

The following corollaries give comparison between the Gauss 3-point and the Lobatto
4-point, and the Gauss 3-point and Boole’s rule.

Corollary 5.1 Lez f : [0,1] — R be 6-convex and such that ' is continuous on [0,1].

Then
1 5—15 1 5415
(v (7)) (M50))
/lf(t)dt
0

s%(f(HSf(S f) 5f<5+\[>+f( )>-

IN
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If f is 6-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2 —/15/10 < 10x*> — 10x+ 1 = 0 and
y=1/2—+5/10 & 58> —5x+1=0. |

Corollary 5.2 Ler f : [0,1] — R be 6-convex and such that f© is continuous on [0,1].

Then
1 515 1 54415
f (v (57 () (50
[ stya
0

< 91—0 <7f(0)+32f G) +12f (%) +32f (%) +7f(1)) .

If f is 6-concave, the inequalities are reversed.

IN

Proof. Follows from (5.22) for x = 1/2—+/15/10 < 10x> —10x+1=0and y = 1/4.
O

5.2 Closed corrected 5-point quadrature formulae

The idea is now to derive a family of closed 5-point quadrature formulae with a degree
of exactness higher than what the family from the previous section had. Observe formula
(5.1) again. If we choose weights such that

G4(X,O) = Gﬁ(xvo) =0,

it will increase the degree of exactness but it will also include values of the first derivative
of the integrand in the quadrature - i.e. “corrected” quadrature formulae will be produced.
The weights thus produced are:

w1 () = 98x* — 196x° 4+ 102x% —4x — 1
e 420x2(1 —x)2 ’
1 16(14x% — 14x+3)
= 2 2 2 w3 (x) = 2
420x*(1 —x)%(1 —2x) 105(2x—1)

(5.23)

wo(x)

All related results from the previous section can now be obtained completely analo-
gously, just having in mind that we are now working with the weights from (5.23). These



5.2 CLOSED CORRECTED 5-POINT QUADRATURE FORMULAE 221

results are therefore not going to be stated explicitly, except for the key lemma. To empha-

size the weights we are using, denote the notions from (5.3)-(5.5) by TziQS( ), Gg,?s( 1)

and cmnQS (x,1), and the quadrature itself by Q¢ (O,x, %, 1—x, 1). Note that

520 = 3 57 G52°0) (1) - /0]

- X2 —Tx+1
B 420x(x—1)

+ Z o G w0 W) = fED o)

Lf'(1) = f'(0)]

Lemma 5.2 For x € (0, #] U [3 V2 1) and k > 3, ngQJfl(x t) has no zeros in the
variable t on the interval (0,1/2). The sign of this function is determined by:

(— 1)k+1G§,?f1(x7t) >0 forxe (0, 1/2—\/2_1/14] ,
(—1*GS% (x,1) > 0 for x € [3/7-@/7, 1/2).

Proof. The concept is the same as in the proof of Lemma 5.1: first show that for
xe (=2t \/—, = \/—) GCQ5 has at least one zero on (0,1/2). It is easy to check that

7-V21 3-2 PGP IGSP [ 1
el ——, —=| & —L—-(x,00<0 & / =] <o.
* ( 14 7 ) 55 *0) ar (x 2)
. 5G9 . 25659 .
From the assumpt1on —5—(x,0) <0, itfollows that —t— < 0 on some neighborhood of

zero. Recall 2 G2 (x,0) =0 for 0 < k < 4. Knowing the sign of the (k + 1)-th derivative,
we can conclude on the monotonicity of the k-th derivative, and from its behavior in zero
we can conclude what its sign is. In short, all derivatives (for 0 < k < 4) are strictly
decreasing and have negative sign. Therefore, G?QS (x,#) < 0 on some neighborhood of

. 8G$Q5 1 CQ5 .
zero. Similarly, from —J— (x, 3) < 0, we conclude G5 (x,7) > 0 on some neighborhood

of 1/2, and it is now obvious that for x € (7’1“@, 3%5), GS9 has at least one zero.

It is left to prove that G?QS is monotonous (more precisely: strictly decreasing) in x and
to check its behavior at the end points in order to determine its sign. Let 0 <7 <x < 1/2.
Then

0G w1 _ JR S BV  C T TR
dx 2’ 2 2(2t-3)
1 3(412 -8t +3)

BES T )

9GE% (x1)

Obviously, x, > 1/2, and it is not hard to see x3 < t. So, —L has constant sign and
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G?QS (x,7) is therefore strictly decreasing in x. Next, let 0 < x <t < 1/2. Then

9GP (x,1) 1—21 1)
ox 30022 —3xy1p KW

where p(x,1) = 16¢°(x — 1)3 4 £*(—16x> + 48x> — 60x + 25) — 263 (4x> — 122 + 5)
+12(—4x> — 18x% 4 15x) +1(13x> — 9x?) + (2 — 3x)x°. Further,

d
BSD (1 20) (e,
ui(x,t) 1 300 —9x?+ 5x
R Sl MR T TS

But, 1, < x, s0 U (x,7) is strictly decreasing in 7 on this interval, and since ;(x,x) < 0, we
conclude pt; (x,7) < 0. From here it follows that p(x,¢) is strictly decreasing in 7 and since
W(x,x) <0, we see that GgQS is strictly decreasing on this interval as well. Finally, it is not
difficult to verify that GgQS(%,t) > 0 and G$Q5(3%ﬁ,t) < 0fort e (0,1/2), so we
conclude G?QS (x,2) > 0 forx € (07 71@] and G?QS (x,7) <O forx e {3’7—\/57 %) This
completes the proof of the statement for k = 3. The rest of the proof is analogous to the
proof of Lemma 3.1 O

Applying the analogue of (5.9) for n =3 and x € (0, %ﬁ] U [#57 1) the following
formula is produced:

1 1 Txr—Tx+1_, ,
| sa—oc <O7x7§71—x71>+m[f(l)—f(0)]
1

— (6P 46x—1)-f®
= soma1zso0 0¥ T —1)-/Y(E), S €[0,1] (5.24)

This formula has several interesting special cases that are worth studying: for x = 1/4 it
gives corrected Boole’s formula; when wj(x) = 0 it becomes the corrected Gauss
3-point formula while when ws(x) = 0, it produces the corrected Lobatto’s 4-point for-
mula. As an especially interesting case, the classical Lobatto 5-point formula is obtained
(upon taking GgQS (x,0) = 0). Once again, as it could be expected, wy (x) # 0 for every x.
If x such that wy(x) = 0 existed, it would generate a corrected closed 3-point quadrature
formula with a degree of exactness equal to 7, and such a formula does not exist. The
only 3-point quadrature formula that has a degree of exactness that high is the corrected
Gauss 3-point formula (and that is an open quadrature formula). We will investigate these
formulae further in the following subsections.

Remark 5.2 Here, only x € (0,1/2) were considered, but results for x =0 and x = 1/2
can be obtained by considering the limit processes. Namely,

. 1 Tx2—Tx+1 / /
tim (0c (0 31 -x1) + S 0) - r(0)])
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= 259704327 (5 ) +1970)] = (1) = £+ gl 0)+ (1)

. 19 16, (1 k(k—1)
CQO5
)ICE}T(I)G]C ()CJ) 35Bk(1_t)+353k< >+ 420 Bk 2(1—[)

Consequently, from (5.24) it follows:
! 1 1 Lo
[ 10 = 251970)+327 (5 ) #1950+ 557 (1) - £(0)

_L 11 11 _ 1 (8)
sl O)+ 1 (D] = =5 I E).

Furthermore,
tim (o (0 St )+ BT ) o)
= 04487 (5) + 1] = gl =7 O+ 157 (3)
Jlim GE% ) = %BZ(I 0+ i:Bk (1 z) 4 %Bz,z(l 9

and then from (5.24):

[ 70 S5l 4487 (5 ) + 1L+ 1) - 7O
0 70 2 140

e\
105 (2)_406425600f (&)-

Next, for x € (0, 7’1\45] U [3’7—27 %) and n > 3, using Lemma 5.2, from the analogue of
Theorem 5.3 we get:

* 1 S5
KCQ5(2n—|-2, l,x) = m ‘ngQJr2(.x 0)‘

1
Kigs(2n+2,00,x) = 7 Kcos(2n+1,1,x) =

1
cos
£, <x7 E) ’ )

where G2n +2(x 0) and cmngsz (x,1/2) are similar as in (5.10) and (5.12) but with weights

wi(x), wa(x), w3(x) as in (5.23). For n =3 and p = e we obtain:
T —Tx+1
)
420x(x—1)

(2n+2)!

() —f’(O)]‘

1f(r)alt Qe (o,x, 1

|128x —215x% + 110x —
= 7 541900800(1 — x)2

[ - (0x a1 )+ BT ) - 0]

15
L

6x° —6x-+1
Y Gl (NPT
203212800

e
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In order to find which admissible x gives the least estimate of error for this kind of formulae,
the functions on the right-hand sides have to be minimized. It is elementary to establish

that both functions are decreasing on (0, 71@], increasing on [3 \[ ) and reach their
minimal value at xop := 3’7—\/5 Thus, the nodes of the quadrature formula that gives the

least estimate of error are
0, xop = 0.226541, 1/2, 1 —xop ~= 0.773459, 1
and the weights are
Wi (xop) & 0.10143, wy(xop) & 0.259261, w3(xep) ~ 0.278617.
The formula itself is

1
[ 70008 (31 5g)700) 0] )+ (1 =)+ s ())
+3.07832-1073- [f'(1) — f(0)] = 2.52547 - 107 10. f(®)(&)

Sharp error estimates for functions with low degree of smoothness are as follows:

[ 01— 01 7(0) 4+ 70)] 1) )+ (1 )

1
swatin)f (3))| < COmag) 1 m=1.2
where
C(1,1,x0p) ~ 6.3344-1072,  C(1,00,%0p) = | G2 (xop, 1/2)| = 0.139309,
C(2,1,x0p) ~ 3.49012-1073,  C(2,%0,%0p) ~ 6.31576-107>

and
1
|00 = (1 ) F0) + FD] + walt) [ () + (1 = 32)]
1
+w3(Xop) f (5» +3.07832-1073- [f'(1) — £'(0)]| < C(m,q,x0p) - |1/,
m=2,...,8
where
C(2,1,x0p) ~ 2.09749-107,
C(2,00,%x0p) = §|G§QS(xo,,7 1/2)] ~ 6.46602-1072,
C(3,1,x0p) ~ 9.0368-107°, C(3,50,x0p) ~ 1.74082-107%
C(4,1,x0p) ~ 3.99829-107°, C(4,00,x0p) = 7.90283-107°,
C(5,1,x0p) ~ 1.95347-1077, C(5,00,x0p) = 4630081077,
C(6,1,x0p) ~ 1.21228-107%,  C(6,%0,%0p) = 2.52003-10"%,
C(7,1,x0p) ~ 1.15271-107°,  C(7,%0,%0p) = 3.03071-1077,
C(8,1,x0p) ~2.52547-10710  (C(8,00,x0p) ~ 5.76355-10'°.
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5.2.1 Lobatto 5-point formula

To obtain from (5.1) the node x which generates the quadrature formula with the maximum
degree of exactness, clearly conditions

Gz(x70) = G4(x70) = G6(x70) =0

have to be imposed. As a matter of fact, the same node will be produced if the condition:

GS%(x,0) =0 (5.25)
is imposed (thus, here the weights are as in (5.23)). From (5.25) we get:
1-V21 ( )_1 ( )_49 ( )_16
X0 = 14 , Wi1(Xo _207 W2 (X0 _1807 w3{(Xo _45

With this node and these weights, (5.24) becomes the classical Lobatto 5-point formula
stated on [0, 1]. Once again, we switch to [—1, 1].
Analogues of the formulae (5.7), (5.8) and (5.1) in this case are:

1 2n—1 1
[ s —ous i = [ GE0ar V), (526)
1 2n 1
/_lf(t)df — Qs+ Ty = m/_l G5 (0)d (), (5.27)
! s 2t s (2n+1)
[ s =0+ 18 = s [ wa ), (5.28)
where
1 3 3
015 = ;5 [9f(—1)+49f (-\/?) +64/(0)+49f (\/?) +9f(1)1 ;
15w 22 s (2k—1) (2k—1)
By =, Gy (=1 [f (H-r (=1,

= (k)
1 1—1t¢ 32 t
L5 _ o " & px _
Gy (t)_53k< 5 ) 255k (1 2)

49| (V21 ¢ V21
+%[B’<<T_E>+B’<<_ﬁ_§>1’

FE(@0) =GP (1) =GP (-1).

Using the analogue of Theorem 5.2, for n > 3 the remainder RS, ,(f) in (5.28) can be
written as:

2211+2
RéSJrZ(f) (2n+2)' G§2+2(_1) 'f(2n+2>(§)7 é S [_17 1]7 (529)
L5 22 (2nt1) (2n+1)
Ry (f)=0- ns2) Fyy 0 (0) | f (H-r (—1)] ; (5.30)

6 €10,1]
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where
Gﬁ+x—i>=a%[4m%+2(%—3§?>+%4*"—2$BM+47 (5.31)
Fy 5 (0) = % [an+2 (%) — Btz (% - %)] (5.32)
+% (2-27*""YBya.

Finally, from (5.28) and (5.29) for n = 3 the Lobatto 5-point formula is produced:

1 1
/_1 Fe)dt = Ous = = 752350

Applying Holder’s inequality, sharp estimates for the formulae (5.26)-(5.28) can easily
be obtained (cf.Theorem 5.3); especially, for n > 3 and p = o, i.e. p = 1, we have

). (5.33)

. 2211+2 Is
K/s(2n+2,1)= nt2) ‘G2n+2(_l)’ )

2211+1
2 0)],

. 1
Kis(2n+2,00) = 5 Kis(2n+1,1) = m‘ t2

where G53,,(—1) and FL’,, (0) are as in (5.31) and (5.32). Further,

1
Mfwwﬁus%wmiwm,mﬁwﬁ

where

10943 — 203421

5670

16
Cus(1,00) = ’G? (0)’ = 73 ~0.355556,

Cus5(2,1) ~ 0.0234146,

Crs(1,1) = ~ 0.286074,

C1s5(2,) =G5 (0)| =

% ~ 0.0435774,

9
Cr5(3,1) ~2.58631-1073,  (Cy5(3,00) ~23.10461-1073,
Crs(4,1) ~3.05134-104,

2V21-9
Crs5(4,%0) = |G5(0)|/3 = 360

Crs5(5,1) ~ 4.0538 .10, Crs5(5,00) ~ 5.46895-1073,
Cr5(6,1) ~ 6.21866- 1079,

~ 4.58754-1074,

14 —3v21

~1.00108-107
55900 001081073,

C15(6,00) =2|GE>(0)| /45 =
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124/21 — 49
5 0
_ VS T 12129310
C15(7,1) = 2|Fg~(0)[ /315 4939200 7
C15(7,0) ~ 1.55466 - 10°°,
1
L5 -
_ B — 735993210
Crs(8,1) =2|Gg> (—1)[/315 2778300 ’
124/21 — 49

Cr5(8,00) = |FF(0)|/315 = ~ 6.06465-107".

9878400

The Hermite-Hadamard type estimate for the Lobatto 5-point formula is:

b F® (l)
14224896007 \2
1
- / fodi

T [9;‘( )+49f<#> +64f<%) +49f<%> +9f(1)]

_ L 00
~ 1422489600 2

and the Dragomir-Agarwal type estimates for this formula are:

7-v21 1221 —49 7—+21 1
Ccos (77 ) = ) Ccos (87 ) =

14 1264435200 14 1422489600

5.2.2 Corrected Lobatto 4-point formula

What happens if the condition w3 (x) = 0 is imposed, where w3 (x) is as in (5.23)? The node
Xg = 7_14‘fﬁ is produced. This node generates from (5.24) the corrected closed
4-point quadrature formula with the maximum degree of exactness for this type of formula
(i.e. with this number of nodes and the necessity of the end points being included), so we
call it the corrected Lobatto 4-point formula. The results are transformed to the interval

[—1,1] again. Analogues of the formulae (5.7), (5.8) and (5.1) are in this case:

! ca 21 GSIA (2n—1)
[ s = Qeus v 1514 = [ 66 s ), (534)
2211
/ A0~ Qi+ THH = o / GSH, (1) fO (1), (5.35)
2n+1 1
c4 . =« (2n+1)
[ s - Qe 15 = o [ ESES ), (536)

where

Ocrs = % l37f(—1)+98f (—?) +98f (g) +37f(1)] ;
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2n ~Hk—
1 = 3 2 G 00 - )

n ~2k—1
= U O =F 01+ X 7 G5 () 2 -,
k=4 :

74 1—1t 98 NG N
GCL4 — g — i L A Bl Y- _Z
e ) 135"(2)“\35["(14 2>+’<< 12 2)1

FE (1) = GER (1) — GEH (- 1).

The remainder RS, (f) for n > 3 in (5.36) can be written as:

2n+2
CL4 2 t2 CL4 (2n+2)
R2n+2(f):_mG2n+2(_l)'f (é)? é € [_171]7 (537)
CL4 22l CL4 (2n+1) (2n+1)
R3H(f)=6- Gnt2) F5,15(0) [f H-r (—1)] ) (5.38)
0 <€[0,1]
where
1 1 V7
Gota(=1) = 33 ll%BM (5 - 1—) +74Bo2 | (5.39)
196 V7 1 V7
CL4 _ 150 viy 1 v/
Fy 5 (0) = 35 [an+2 ( 12 ) Bonya (2 1 )1 (5.40)
74 o
135 (2-2 1)B’Zn+2-
From (5.36) and (5.37) we get the corrected Lobatto 4-point formula:
[ 0=t gl ()P0 = e FU©). 64D
1 AT 45 1389150 ' ’

Estimates of error for this formula for n > 3 and p = oo, i.e. p = 1, are:

2n+2 cia
Képa(2n+2,1) = nt2) G5 (=1,
. 1 2n+1 cia
Kipa(2n+2,00) = 3 Kera(2n+1,1) = [ES)] |3t (0)].

Further, we have

[ 70008 Qewa| < Censoma)- 15 m=1.2
where
Cera(1,1) ~0.339051, Cepa(l,e0) = ’Gf“ (1/\5) ’ = 1/V/7 ~0.377964,
Cera(2,1) ~ 00506718, Cepa(2,00) = |ESH4(0)] ~ 0.0484483
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and
‘/ f@) dt—QaAJr:S[f(l)—f’(—l)]‘<Ccm(m761)-|f<’”>|p7 m=2,..8

where

Cera(2,1) ~3.03418 - 102,

Cera(2,0) = |GSH (1/\ﬁ) | ~4.52025-10°2,
Cera(3,1)~3.59487-1073,  Ccpa(3,00) ~ 4.00427 - 1073,
Cera(4,1) ~4.55146 - 1074,

Cera(4,00) = |GSH4(0)| /3 &~ 5.66046 - 104,

Ccra(5,1) = 6.49236- 107, Cera(5,00) ~ 8.23873- 1072,
Cera(6,1) ~ 1.08105-107,

Cera(6,0) = 2|GEH(0 )|/45~1.57981-10*5,

Cera(7,1) = 2|FFH4(0)] /315 ~ 2.254586 - 1079,
Cera(7,00) = 2.70262- 1076,

Cera(8,1) = 2|GSH(—1)[/315 = 1/1389150 ~ 7.19865 - 107,
Cera(8,00) = |[FEH4(0)[ /315 ~ 1.12729 - 107°.

The Hermite-Hadamard type estimate for the corrected Lobatto 4-point formula is:

_ L el
711244800 ° 2

/f dt—— [37f(0)+98f<7_\ﬁ>+98f<7+\/7>+37f(1)]

270 14 14

L - £

180
RS B A (R AC))
— 711244800 2

and the Dragomir-Agarwal type estimates for this formula are:

717 343 — 16V/7 77 1
Ceos | 7, = ; Ceos | 8, = .
14 34139750400 14 711244800

5.2.3 Corrected Gauss 3-point formula

Consider the case when wy (x) = 0, with wy (x) as in (5.23). Then x = Y4 2VI102 V“Sllz‘/m. For
this choice of x, we obtain from (5.24) the corrected open 3-point quadrature formula with
the maximum degree of exactness, so we call it the corrected Gauss 3-point formula. It
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should be mentioned that this formula was also consider in [47] but not in as much detail.
We have:

1 2211—1 1
| f0de—0cos + 757 = o [ G5P0ar ), (542
7.CG3 2% b o (2n)
/ ft)dt —Qce3 + T, ” = m/ Gy, ()df = (1), (5.43)
2n+l
/_ 0= Qe + 157 = / FE3 (1)d £ V1), (5.44)
where
Xp = % 45— 2/102,
1977 + 16102 2976 — 32+/102
Ocgs = T[f(-Xo)ﬂLf(xo)H Tf(()%
2n 2k 1 5 B
T30 = kzz 0 GEB3 (—1) [F& (1) — fD(=1)]
9_ /102 n 22k 1 B B
= T[f’(l +z 20! G5 (—1) [fA 1 (1) — fHD (1)),
2976 — 32+/102 t 1977 4+ 16102 xXo—t —xg—1t
CG3 () _ B (1—— B Bl | ——
G (1) 3465 k( 2>+ 3465 W\ ) TR ’

FEP(1) = GEP (1) — GEP (- 1).

The remainder RSS2, (f) for n > 3 can be written as:

2n+2
REZH(f) = o G55 (—1)- (), Ee[-1,1] (5.45)
n—+ (2n+2), n—+ ) ) )
ROLf) = 0 o ESS ) [f 0 (1) — /)], Befo]  (S46)
n+ (2n+2) n-+ ’ 9
where
3954 4+ 32+/102 1—xo
GSO(-1)=—"—_"""""B,, 5.47
aia(—1) 3465 2 +2< 3 ) (5.47)
2976 —32+/102 o1
_T(l _2 )B2n+27
3954 4 32+/102 X0 1—xp
Fz(fgz 0) = 3165 {ann (?) — By ( 3
2976 —32+/102 on—
s (2-27""YByn (5.48)

Now, from (5.44) and (5.45) for n = 3 the corrected Gauss 3-point formula is produced:
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10 , 3102 —43
/“.f 1)t — Ocea + lgg__Uf<> .f<—1n::-g§;;gﬂi;.f@na>. (5.49)

Similarly as before, error estimates can be obtained which, for n > 3 and p = o or
p =1, can be expressed through the values of G577, (—1) and Fy5,G% (0). For functions with
lower degree of smoothness, the appropriate estimates can also be explicitly calculated. We
have

1
’/_lf(f)dt—Qcm < Ceas(myq) - || F™ ), m=1,2

where
CCG3(1,1) ~ 0.337807, CCG3(17°°) =~ 0.382802,
Cea3(2,1) ~ 0.0313153, Cegz(2,00) &~ 0.0609023,
and
9—-/102
‘/ f@)dt — Qcz + ——7— 105 [F'(1) = f(=1)]| < Cegs(m.q)- |F™ |,
2<m<38
where
Cca3(2,1) ~ 0.0300722, Ccgs(2,00) &~ 0.0504308,
Cco3(3,1) ~ 0.00351347, Ccgs(3,00) ~ 0.00386067
Cco3(4,1) ~ 0.000438656, Ccgs(4,00) ~ 0.000610086,
Cca3(5,1) ~ 0.0000618111, Ceg(5,00) ~ 0.000077903,
Cca3(6,1) ~ 1.00553-107°,  Cegz(6,00) ~ 0.0000151755,
Ceea(7,1) & 2.077547-1075,  Cegs(7,00) ~ 2.513835-107°,
Cco3(8,1) ~ 6.530965-1077,  Ccga(8,0) ~ 1.038773-10°.

The Hermite-Hadamard type estimate for the corrected Gauss 3-point formula (on
[0,1]) is:

43—3\/@f(8> G)

9957427200
1 1977 + 16102 7T —V45-2+102 7+/45—-2/102
s—(ﬁf@w— o P( — >+f< = )]

1488—16\/102f 1 +9—\/102
3465 T\ 2

43 -3y/102 f®(0)+ f®)(1)
= 9957427200 2
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and the Dragomir-Agarwal type estimates are:

c (7 7- 45-2«102) 24/60933 — 6014+/102 — 49(87 — 8,/102)
cos | 7, =

14 3793305600 ’
7—v45—-2+102 43 —3+/102
CCQ5 8, = .
14 9957427200

5.2.4 Corrected Boole’s formula

The last special case which is to be considered is the case when x = 1/4. For this x, formula
(5.24) becomes:

/f dr—@{znf( )+512f<%)+432f<%)+512f<%>+217f(1)}

3l ()= FO)] = oo /), E€01] (550

252

We call formula (5.50) corrected Boole’s formula. We now have:

1 1
@ |, Ssrwar® v, (5.51)

1
[ 10— 0en+ 57 = s [ 658 (0, (552)

1
/O F(t)dt — Qcy+TEE =

1
[ 10— 0ca+ 750 = s [ S 0ar 0, (559

(2n+2)!

where

1 1 1 3
Ocs = Tgo5 [217f( )+512f<1> +432f <§> +512f<1) +217f(1)]

4

= zé—z[f%l) —f O+ Z % GSE(0) [F* (1) — r* D)),

1
GSB(1) = GEP (ZJ) = 1353k (1—1)

256 1 8 1
Bi(~—t)+B B =—
s 73 )ﬂ( )] ai(a)
FkCB( FCQS (l , ) G B GCB (0)

0= 162 () = X 4 GO V0 - 40

~

Note that

1 B -
GSE.,(0) = G52,(1/4,0) = 945(1—20 47464167 Baysa,
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1
5 Con_
F5l,(1/2) = 2(51%2(1/471/2)2%(2 21 2V Boyia.

Finally, let us see what the estimates of error for functions with a low degree of smooth-
ness for this type of formula are.

1
| #@)de = 0ca| < Centm.a)- 1. m=1.2

where
89927
Cep(1,1) = TRsI0 ~0.0629371,
19
Cep(1,0) = |G{B(3/4)| = T35 = 0135714,
21454879 + 2856061/5289
Cep(2,1) = ~ 0.00416966
cs(2,1) 10126903500 ’
1 27 1763
Cep(2,00) = = |FFB( == )| = ~ 0.00666289
c8(2,%2) = 5 (70)‘ 264600
and further
1
[ 7001~ Gen+ 5517 (1) - 7O)| < Cenlma)- 1", 25 m <8
where
57753v/2139 + 18739+/18739
Ce(2,1) = i ~ 0.00206824,
2531725875
1 1 197
C, 2. 00) = — CB ( _ = — ~0.00651455
c8(2,%2) = 5 (4) 30240 ’
Cep(3,1) ~9.15728-107°,  Ccp(3,00) ~21.91051- 1074
Ccp(4,1) ~5.05748 - 10~ 6 Cep(4,00) ~ 1.22339-107,
Cep(5,1) ~ 3.47811- 10—7
1 1 1
Cep(5, GP ()| = —— ~8.16513-107
c8(3:22) = 57 |Cs (3) 1224720 ’
1
Cep(6,1) = ———— ~3.17533-1078
cs(6,1) = 31492800 :
1 1 1
Cep(6,00) = — |GSB (= )| = ——— ~6.88933-1078
c(6,%2) = G |Cs (2) 14515200 ’
17
7,1)=—— " ~3.48567-10°
Ces(7:1) = Je77107200 = 248567 10
1 1 1
Cep(7,00) = — G5B ()| = ———— ~7.93832-107°
cp(7,) = 77|67 (3) 125971200 ’
1
Cep(8,1)= ———— ~6.15119-1071°
cs(8,1) = 1625702400 ’
1 1 17
Cep(8,00) = — |[FEB [ = )| = —— ~1.74284-107°.
cp(8,2) = 51| (2) 9754214400
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The Hermite-Hadamard type estimate for the corrected Boole’s formula is:

(L
16257024007 \2

1 1 1 1 3
S/o f(0)dt — 18390 {217]‘(0)4—512}‘(‘—1) +432f (5) +512f (Z) +217f(1)}
1

55517/ (1) = £/(0)

SR S I (VR AILY
~ 1625702400 2

and the Dragomir-Agarwal type estimates for this formula are:

1 17 1 1
Ceps (7’ Z) = Ww77i072000 O (8’ Z) ~ 1625702400°
5.2.5 Hermite-Hadamard-type inequality for the corrected

5-point quadrature formulae

The main result of this subsection provides Hermite-Hadamard-type inequality for the cor-
rected 5-point quadrature formulae.

Theorem 5.7 Ler f:[0,1] — R be 8-convex and such that F®) is continuous on [0,1].
Then, for x € (0, % — %] andy € [3%57 %)

1 TV —=Ty+1_, ,
0c (055131 = BEPES ) - )
: 54
g/of(t)dt (5.54)
1 Txr—Tx+1_, ,
< 0c (03 -1 ) - T - 00

where

1
QC (07x7 571 —X,1>

1
©420x2(1 —x)2(1 — 2x)

+£(x)+ (1 —x) +64x*(1 —x)? (146 — 14x + 3)f<%)) .

5 ((98x* — 1965 + 102x* — 4x — 1) (1 — 2x)[£(0) + £(1)]

If f is 8-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 3.6. O
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The following corollaries give comparison between the corrected Lobatto 4-point and
the Lobatto 5-point rule, corrected Boole’s and the Lobatto 5-point rule, the corrected
Lobatto 4-point and the corrected Gauss 3-point rule, corrected Boole’s and the corrected
Gauss 3-point rule.

Corollary 5.3 Ler f:[0,1] — R be 8-convex and such that f®) is continuous on [0, 1].
Then

% (37f(0)+98f<7_1;ﬁ> +98f<7+14ﬁ> +37f(1)> B ﬁ[f/(l) )
1
< /O fe)dr
< = <9f(0)+49f<#> +64f (%) +49f (%) +9f(1)> |

If f is 8-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2 —/21/14 < 7x*—=7x+1=0andy=1/2—
V7/14 & 52 —5y+1=0. ]

Corollary 5.4 Let f:[0,1] — R be 8-convex and such that f®) is continuous on [0, 1].
Then

lgﬁ(znf(onslzf(%) +432f(%> +512f(§) +217f(1)) N S OE0)

/Olf(l‘)dt
% (9f(0)+49f<#> +o64f (%) +49f <M> +9f(1)> :

IN

14
If f is 8-concave, the inequalities are reversed.

Proof. Follows from (5.22) forx =1/2 —/21/14 < 7x* —7x+1=0andy=1/4. O

Corollary 5.5 Lez f : [0,1] — R be 8-convex and such that f®) is continuous on [0,1].
Then

- (37.f(0)+98f<7_12ﬁ> +98f <7t4ﬁ> +37f(1)> g/ () -/ 0)

/Olf(t)dt
19774+ 161/102 7 —/45—-2102 7+/45—2102
= 6930 ! 14 +f 14

IN

2976 —32v/102 /1\ 9—+102 , ,
e et - = OO
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If f is 8-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2 — \/45 —21/102 / 14 < 98x* — 196x° + 102x% —
4x—1=0andy=1/2—-+7/14 < 5y> —5y+1=0. O

Corollary 5.6 Lez f : [0,1] — R be 8-convex and such that f®) is continuous on [0,1].

Then
! 217£(0)+512 ! 432 ! 512 3\ L o17101 Lo (0
g (2770 #5127 (3) sy () iz (3) 210 - st - o)
1
g/of(t)dt
1977 4+ 161/102 7 — /45 -2/102 74+ /45 —2/102
= 6930 ! 14 +f 4

2976 —32v/102 /1\ 9-+102 , ,
BT (1) - T ) - 100

If f is 8-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2 — /45 — 2/102 / 14 < 98x* — 196x> + 102x2
—4x—1=0andy=1/4. O

5.3 Corrected Lobatto 5-point formula

One of the concepts of this book was to adjoin the classical quadrature formulae with the
corresponding corrected one. This was done for all closed 5-point formulae except for the
Lobatto 5-point formula.
Recall how the classical Lobatto 5-point formula was derived: starting from (5.1) and
setting the system
Gz(x,()) = G4(x,0) = Gﬁ(X,O) =0.

The classical Lobatto 5-point formula belongs to the family of the corrected closed 5-point
formulae, studied in the previous section, which are exact for all polynomials of order
< 7. What we want to do now is derive the closed 5-point quadrature formula that has
a degree of exactness higher than the classical Lobatto 5-point formula but on the other
hand includes in the quadrature the values of the first derivative. To do this, we impose the
conditions:

G4(x70) = GG(X,O) = Gg(x,O) =0.

Formula thus obtained will have the maximum degree of exactness for this type of formula
(which is 9) so we call it the corrected Lobatto 5-point formula.
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Instead of on the interval [0, 1], we shall work on [—1,1]. Having this transformation
in mind, we get

_\/§7 10_1057 20_357 30_1059

these are the node and the weights of the corrected Lobatto 5-point formula.
So, if f (2n=1) {5 continuous of bounded variation on [—1,1] for some n > 1, then:

2n—1
(2n)!

if f (2n) satisfies the same condition for some 7 > 0, then:

1 1
[ = 0as+ 150 = [ G5B @0ar): (559)

1 22n
[ = Qcus+ 151 = GTEm] / Gali(0)df (@), (5.56)

and, finally, if f (2n+1) gatisfies the same condition for some n > 0, then:

1 2n+1
/_lf(t)df—QCLerTzCnLS 2nt 2! / FLE (0)d (), (5.57)

where

Qcrs = 1(1)5 [19]”( )—1—54f<—%>—l—64f(0)+54<\/ig>—|—19f(1)}7

1 , 22k 1 B B
Tz?;m:ﬁ[f(l +2 el GSP (= 1) [f#D (1) — D (1)),
crs oy 38 (1t V33t V33t
; @_W(TM (522 ()]

64 t
— B (1-

105 k( 2)’

FEB (1) = G (1) — GE- (—1).

To prove the rest of the results for these formulae, we need the following lemma:

Lemma 5.3 For k >4, G55, (t) has no zeros on (0,1). The sign of this function is

determined by (—1 )ng;fJSrl( ) > 0.

Proof. We start from G§&. For 1/v/3 <t < 1,

1
GSB (1) = 1—1) (35> — 13t +2

so it is trivial to see that here GS2 (1) > 0. For 0 < ¢ < 1/+/3, it is a bit more complicated:

'
G§P (1) = 060 ¥®),
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where
k(t) = =358 49617 +36(12v/3 —23)10 +42(24+/3 — 41)t* +84(4/3 — 7)t> +161/3 - 27.
We have:

K(t)=—8t-ki(t) and Kj(t) =6t ka(t),
where ky(t) = 35t* — 7063 + (414 — 216+/3)1> + 287 — 168+1/3. It is easy to check that
K,(¢) > 0 which, together with k>(1/+/3) < 0, leads to a conclusion that ky < 0. From
ki (1/+/3) > 0 it follows that k; > 0. Finally, we conclude that k > 0 since k(1/+/3) > 0.

Therefore, it is now clear that GgLS (r) > 0 on this interval. This proves the assertion for
k = 4. The rest of the proof is analogous to the same part of the proof of Lemma 5.1. O

Denote by RS, (f) the remainder in (5.57).

Theorem 5.8 Let f: [—1,1] — R be such that f*"*+2) is continuous on [—1,1] for some
n > 4. Then there exists & € [—1,1] such that

22n+2
CL5 _ CL5 (1. p(2n+2)
R2n+2(f) - (2n+2)' G2n+2( 1) f " (é) (558)
where
36 3-V3 1
GSE3 (1) = =Bopin | ——= | + — (272" —26)Ba 2. 5.59
2n+2( ) 35 2+2< 6 >+105( ) 242 ( )

If. in addition, f?"*2) has constant sign on [—1,1], then there exists 6 € [0, 1] such that

22n+1

RS =0 oy B O [0 = 0] 60
where
F5,25(0) = % [anm (?) — B2 (3 _6\/§>1
+11R (52—13-272")By,4» (5.61)
Proof. Analogous to the proof of Theorem 3.2. O

The corrected Lobatto 5-point formula is produced after applying (5.58) for n = 4:

1

— - .00 B
Di= 589396500 (&), &el-11]. (5.62)

[ = Qaus + gl (1) -~

Using Holder’s inequality, sharp error estimates can easily be obtained for these for-
mulae (cf. Theorem 5.3). Especially, we have

|
‘/lf(t)dt_QCLS < Cers(m,q)- || f™|,, m=12
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where

3431 — 16523

CCLj(l, 1) = 2205 ~ 0.258346, CCLS (2, 1) ~ 0.0253504,
1 35v3-32
Cers(1,00) = ‘GICLS (%) ‘ = \/I—T ~0.272588,
cs (32 3780v/3 — 6011
Ccr5(2,0) = |, 0= 200~ 0.0243153

and
’/llf(t)df—QCLs-Fi[f/(l) —f/(—l)]’ < Cers(m,q) - | f™ |, m

105
where

Cers(2,1) ~ 1.78428 - 1072,

23-12V/3
==
Cers(3,1) = 1.63266- 10, Ceys(3,00) ~ 190589107,
Ccrs(4,1) ~ 1552311074,

Cers(2,00) = ’GgLS (0)‘ ~3.16484 1072,

Cers(4,00) = |G$E(0)| /3 = 24\2/3726‘” A~ 2.25881-107%,

Cers(5,1) =~ 1.60278-107%,  Ceps(5,00) ~2.19844 - 107>,

Cers(6,1) = 1.79762-107°,

Cers(6,00) = 2|GEE(0)| /45 = 743 ~2.84908-107°,
25200

Cers(7,1)~2.25172-1077,  Cers(7,00) ~ 3.30395 1077,
Cers(8,1) ~ 3277081078,

1613 —27

~5.61235-107%
12700800 3-61235-10

Cers(8,0) = |Gg(0)[ /315 =

=2,...

239

,10

943
Cers(9,1) = ﬁ ~6.0416-107°, Ccrs5(9,00) ~ 8.19271-107°,
1 -9

9443

o) — CL5 —
Cers(10,00) = 2|F5°(0)/14175 685843200

~3.0208-107°.



240 5 GENERAL 5-POINT QUADRATURE FORMULAE

5.4 General Euler-Boole’s and dual Euler-Boole’s for-
mulae

The aim of this section is to derive general Euler-Boole’s and dual Euler-Boole’s for-
mulae. The idea is to obtain Boole type quadrature formulae such that Gy, _»(1/4,0) =
G2,(1/4,0) =0, where Gy are as in (5.4), thus achieving an arbitrary degree of exactness.
Dual Euler-Boole’s formulae are derived by analogy with Simpson’s and dual Simpson’s
formula, and Simpson’s 3/8 and its dual formula - Maclaurin’s formula. Results from this
section are published in [64].

5.4.1 General Euler-Boole’s formulae

To start with, a quadrature formula with the nodes: 0, 1/4, 1/2, 3/4, 1 and general
weights, needs to be derived. The technique is the same as in deriving (5.1), only with
x=1/4. Then, for f : [0,1] — R such that f2"~1) is continuous of bounded variation on
[0,1] for some n > 1, we have

1 1
i, GO0 (5.63

if £(7) has that same property for some n > 0, then:

!
/0 f(t)dt — Qg+ Tol =

1 1 1
/() f(t)df — QGB + T2GnB = m /0 ngB+l (l)df(zn) (l), (564)
and finally, if £2"*1) has it for some n > 0, then:

1 1
|| 0= Qen+ 757 m | a0, (5.65)
where, fort € R,
Qcp = M[f(0) + f()] +Aa[f(1/4) + f(3/4)] + A3/ (1/2),

Lol
I = kg,l 201 GSE(0) [0 (1) — r# Do),

GOB(t) =204 By (1 —1) + Aa[Bj(1/4 — 1) + B{(3/4 —1)] + A3Bj(1/2 — 1),
FEP(t) = G2 (r) — GZ#(0),
and 241 +24, + A3 = 1.

Formulae (5.63), (5.64) and (5.65) shall be called general Euler-Boole’s formulae.
Now, for n > 2, set the following linear system:

G52 ,(0) =G5 (0) =0.
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These conditions will provide that the formula thus obtained has the maximum degree of
exactness and includes the values of up to (2n — 5)-th derivative at the endpoints (which is
why n > 2). Using properties of Bernoulli polynomials and numbers, it is not difficult to
find the solutions of this system:

16 — 104"+ 42" 421 (4" —10)-4"1

T 8@ 1) —4y o= Ay =

and these are the weights we will work with.
What follows is a lemma that is a key step for all the results in this section.

Lemma 5.4 For n > 2, GS2 (1) has no zeros in the interval (0,1/2). The sign of the
function is determined by

(-1)"GSE (1) >0, O0<t<1/2.
Proof. Applying (1.8), we can rewrite G, () as

GSP (1) = mw;nﬂ(

41) — 10B3,, 1 (20) + 16B5,,1(1)]. (5.66)

There cannot exist 7 € (1/4,3/8) such that G$5_| () = 0 because B3, (1), —B3,.(2t)

and B3, | (4¢) have the same sign on (1/4,3/8).

Let us assume there exists 7, € (0,1/4] such that G$&_, (1) = 0. Since G52, | (0) =0,

we conclude there must exist 7> € (0,11) such that (G“%)}, . (1) = 0. So, we must have
B;n(4t2) - SBEn(ZIZ) +4B;n(t2) =0,

which is equivalent to

B5,(412) = B5,(212) _

33,1(212) — Bén (l‘z)
since for z € (0,1/2), B},(2z) = B3, (z) iff z=1/3 and that cannot be the case. Define
functions

f(x) = B3, (2x12),  8(x) = By, (xt2),  x€[1,2].
Note that g’(x) # 0 for x € [1,2], since 0 < xt, < 1/2. From Cauchy’s mean value theorem
we know there exists x| € (1,2) such that

B3, (4n) —B3,(26)  f'(x1)

B;,(26) = B3, (12)  &'(x1)

:47

and from there

an—l (2)61[2)

-2
B3, (xit2)

, forsome 0<xjrp<1/2. (5.67)

Next, define a function
h(t) =2Bj,_(t) — B3,_(2t).



242 5 GENERAL 5-POINT QUADRATURE FORMULAE

From (5.67) it follows that h(x;7,) = 0. To obtain a contradiction, we will prove h(r) # 0
for r € (0,1/2). First, assume ¢ € (0,1/4]. Suppose there exists 73 € (0,1/4] such that
h(t3) = 0. Since 7(0) = 0, we conclude there must exist 74 € (0,73) such that #'(z4) = 0. But
from there it would follow that B3, ,(t4) = B3, _,(2t4) which cannot be the case. When
te€(1/4,1/2), B}, ,(t) and —B}, ,(2t) have the same sign, so our statement follows
easily.

Finally, consider the case 7 € [3/8,1/2). We have

B3,11(41) — 10B3, 11 (2t) + 1683, (t) = k(t) — 8B, (2t) + 16B3,.. (1),
where
k(t) = B3, 1(4t) — 2B3,,1(2t) = 2B, (1 = 2t) — B3, [2(1 — 21)].

It follows from the previous proof for the function A(z), that k(¢) has no zeros on [3/8,1/2).
Furthermore, k(t), —B3,,,(2t) and B3, ,(t) have the same sign on this interval. So, in
conclusion, the function G§2, | (r) has no zeros on (0,1/2).

It is clear now that GS, | (r) has constant sign on (0,1/2). To determine the sign, it is

enough to calculate the value of that function in any point from the interval (0,1/2), e.g.
t=1/4. )

The proof of the previous Lemma, compared to the proof of Lemma 2 in [99], is much
more difficult, since we cannot reduce it to the case where we can explicitly calculate zeros
of the function.

Remark 5.3 It follows immediately from the previous Lemma that for n > 2,
(—=1)"*LFZE (1) is strictly increasing on (0,1/2) and strictly decreasing on (1/2,1) and
since F78 (0) = F28 (1) = 0, we have:

2n+2
2(4—47")
FCB (1) = |FZ8,(1/2)| = —————|Ban1|.
llgg}lg]| 2n+2( )! | 2n+2( / )! (4,,_1)(4”_4)' 2+2|
Furthermore,
1GGB d_lFGB d—l F.GB 1
A | 2n+1(t)| = b | 2n+1(t)| t—m w2\ 5

. 2(4—4_")|32n+2|
C (n+ D)4 —1)(4n—4)’

1 45 - |Bansa|
ESE ()| di = |GSP,,(0)] = T
/O | 2n+2(t)| t | 2n+2( )| 16(4" _ 1)(4n _4)

Theorem 5.9 Lerp,g€ Rbesuchthat 1 <p,g<ooandl/p+1/q=1.1ff:][0,1] >R
is such that f e L,[0,1] for some n > 2, then:

|
‘/o f(0)dt — Qgp + TS| < Kgp(2n,9) - || £, (5.68)
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if £ € L,]0,1] for some n > 2, then

1
/O f(0)dt — Qgp+ TS| < Kgp(2n+1,q) - | f* ), (5.69)

if f2r+2) e L,[0,1] for some n > 2, then

1
/O f(t)dt — Qap+ TS| < KGp(2n+2,9) - || f22) |, (5.70)

where

1 1
L[/t a . 1 [/t q
Kaslmg) =~ | [1GE @) ar|" and Keplmq) = — | ["|FS" @) ar| "
m! |Jo m! |Jo
These inequalities are sharp for 1 < p < e and best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. O

Using Remark 5.3 it is easy to calculate Kgp(2n+ 1,1), Kjz(2n+ 2,1), and
K(p(2n+2,00). Further, using Lemma 1 from [30] for p = 2 we obtain using integra-
tion by parts:

1/2
(2374 _25.2172n 4 42)} 7

1 B
KGB(2n72): |:| 4n|

(41— 1)(4"—4) [ (4n)!

1/2

KGB(2n+ 172) = 4(411 — 15(4}[ — 4) |:(£l4jl:§)' (23—411 —85 ,21—2n+357):| 7
1

16(2n12)!(4"— 1)@ —4) [

[(2n+2)1)?

Kip(2n+2,2) = 202583, ,

1/2
(2374 — 325217271 4497) |B4n+4|] ~

Theorem 5.10 Ler f : [0,1] — R be such that f*"+?) is continuous on [0,1] for some
n > 2, then there exists £ € [0,1] such that

45-Boyi2

where RS®,,(f) is the remainder in (5.65).

If. in addition, f*"*2) does not change sign on [0, 1), then there exists 6 € [0,1] such
that
0- 2(4 — 4_") -Bonio

RSZH(f) = N ETeTE Ty [f(z”“)(l)—f(z"*l)(O) . (5.72)

Proof. Analogous to the proof of Theorem 3.2. O

Remark 5.4 Applying (5.71) for n = 2, from (5.65) classical Boole’s formula is pro-
duced, while for n = 3 corrected Boole’s formula (5.50) is obtained.
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5.4.2 General dual Euler-Boole’s formulae

Boole’s formula is a quadrature formula of closed type, and so are the general Euler-
Boole’s formulae. When the value of the function at the end point of the interval cannot be
computed, formulae of closed type cannot be applied. For such functions, open formulae
are much more effective. That is why quadrature formulae are usually considered in pairs:
a closed and a corresponding open one, both with the same degree of exactness. For ex-
ample, the well-known Simpson’s rule (cf. subsection 3.1.2.) is sometimes studied in pair
with the dual Simpson’s formula (cf. subsection 3.1.3.). Another such pair of formulae
is Simpson’s 3/8 formula (cf. subsection 4.1.1.) and Maclaurin’s formula (cf. subsection
3.1.4).

Similar reasoning can be applied for corrected quadrature formulae: corrected Simp-
son’s (3.115) and corrected dual Simpson’s (3.117) can be considered dual quadrature
formulae, as well as corrected Simpson’s 3/8 (4.99) and corrected Maclaurin’s (3.120).

So, now the idea is to derive a formula of open type that will be dual to Boole’s formula
in this sense, or, more generally, open formulae dual to general Euler-Boole’s formulae.
We shall call those formulae general dual Euler-Boole’s formulae.

It can easily be checked that in all of these cases we have

GP (1) =2 %G (21) — G(1), (5.73)

where Gy is obtained in case when a closed quadrature formula is considered and G? in
case of the corresponding dual quadrature formula. We will use this identity as a definition
of a dual formula, since from the function G; we can deduce the quadrature formula itself.
Especially, using (1.8) and (5.73) gives
1
GPP(1) = [4*"B; (1/8 —1)— 10-4"B} (1/4 —1
0 = s B0/ ((1/4-1)

42"B; (3/8 — 1)+ 16B; (1/2 —1)+4°"B; (5/8 —1)
10-4"B; (3/4—1)+4*"B; (7/8 —1)], (5.74)

_|_

fork>1andt € R.

The procedure is from now on similar as before: take f : [0,1] — R such that f (2n)
is continuous of bounded variation on [0, 1] for some n > 2; putx = 1/8, 1/4, 3/8, 1/2,
5/8,3/4,7/8 in (1.1), multiply by 4%", —10-4", 42" 16, 4" —10-4", 4°", respectively;
add those formulae up and divide by 4(4" — 1)(4" —4). We obtain:

1 1 1
/O f(t)dt — Qgpp + TPB = ETEm /0 GSPB (1)d > (1), (5.75)

where
Qi = m [42F (1/8) — 10-4°F (1/4) + 47" £ (3/8)
+ 16f(1/2)+42£(5/8) —10-4"f (3/4) + 47" (7/8)]
noo]

L = kg,l a0 G5PP(0) [FHD (1) — FHD(0)].
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Assuming f (2n=1) {5 continuous of bounded variation on [0,1] for some n > 2, we get:

L [ e war0), (5.76)

1
GDB _
/o f@t)dt — Qepp+Tr, " = 21 Jo

and if f"+1 satisfies the same property, we get:

/ f(@)dt — Qepp+ Ty," o +2 / FSRE(n)d 2V (n), (5.77)

where FCPB(1) = GEPB(1) — GYPB(0), k > 2. Formulae (5.75)-(5.77) are general dual
Euler-Boole’s formulae.

Lemma 5.5 For n > 2, G$P8 (1) has no zeros in (0,1/2). The sign of the function is
determined by
(—1)"'GEPE (1) >0,  0<r<1/2.
Proof. We have GS2, (1 —1) = —G$5, | (1), so from Lemma 5.4 it follows that GS%, | (21)
and —G$5_| (1) have the same sign on (1/4,1/2) so from (5.73) we conclude G525 (1)
cannot have any zeros here.
Next, we can rewrite GSPB (1) as

2n+1
-1 i
GSA (1) = A@ D@ =) [B3,41 (41 —1/2)
— 10B5,, (2t —1/2)+16B5,  (t —1/2)]. (5.78)

Using this in the case when ¢ € (0, 1/4], the proof is completely analogous to the same part
of the proof of Lemma 5.4. As for the sign of the function, again it is enough to calculate
the value of the function in any point of the interval (0,1/2),e.g. r =1/4. O

Notice the analogy of the form of the dual function Ggffl in (5.78) with the form of the

function G§2, | in (5.66). One can easily deduce one from the other having this connection

in mind. Therefore, (5.78) can also be used as a definition of the dual function G55 .

Theorem 5.11 Let p,qg € R be suchthat 1 <p, g<oo, 1/p+1/g=1.1If f:[0,1] = R
is such that f(zn) € L,[0,1] for some n > 2, then

1
'/0 f(t)dt — Qcpp + TzanB' < Kepr(2n,q) - ||f(2n)||p7 (5.79)

if 1) € L,]0,1] for some n > 2, then

1
/0 f(t)dt — Qcpr + TzG,,DB’ < Kgpp(2n+1,q)- Hf<2"+l)||p7 (5.80)
and finally, if f3"+2) ¢ L,[0,1] for some n > 2, then

1
‘ /0 f(t)dt — Qcps + Tﬁ”’ < Kgpp(2n+2,q) -1, (5.81)



246 5 GENERAL 5-POINT QUADRATURE FORMULAE

where

Kepp(m,q) = ”17 [/01 |G2DB(t)|th] !

1
* 1 ! a
Kepp(m,q) = — |FmGDB(t)|th .
m! |Jo
These inequalities are sharp for 1 < p < oo and best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. O

One can easily find that:

45(1—272-1h
16(2n+2)!1(4"—1)(4"—4)
2(4 —47")[Bans2|
(2n+2)!1(4n —1)(4n —4)’

KGpp(2n+2,1) = |Bays2,

1
KGpp(2n+2,00) = 3 Kepe(2n+1,1) =

KGDB(ZI’[,Z)
1 |B4n| 4-—8 2—6 3—4 1-2 172
= 2480 _95.02-6n_p3=dny p5. 01204 4p
<4"—1><4"—4>{<4n>!( " 2

KGDB (2I’l + 172)

_ 1 Buni2
C4(4n—1)(4n—4) [(4n—|—2)!

1/2
(22—811 _85.96n_o3—4n +85. pl=2n + 357):| : s

Kpp(2n+2,2) = [2025(1—2"*"1?B3, ,,

16(2n 1 2)1(4" — 1)(d"—4)
[(2n+2)']2 (2—8}1 325 2—2—6}1 23—4n_|_325 21—2n+4497) |B | 1/2

(dn+4)! ntdl]
Theorem 5.12 Ler f:[0,1] — R be such that f*"*+2) is continuous on [0,1] for some
n > 2. Then there exists & € [0,1] such that

6B oy 451271 By 00

where RSPE, (f) is the remainder in (5.77).

If, in addition, f (21+2) does not change sign on [0, 1] for some n > 2, then there exists
0 € [0,1] such that

2(4 — 47") -Bonio
(2n+2)1(47—1)(4"—4)

RZGrBrBZ(f) -0 |:f(2n+l)(l) _f(2’1+1>(0)] ) (5.83)

Proof. Analogous to the proof of Theorem 3.2. O
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From (5.82) for n = 2 dual Boole’s formula is obtained:

Y e G
B e o
and for n = 3, corrected dual Boole’s formula:
e
(s (3)+(3)) 7 (3)] - salr-ro)

127
M s () 0 1
2080899072007 (&) <6<
Note that
31 127
— = ~500553-1077 and ———— ~6.10313-1071°,
61931520 ¢ 308089907200

5.4.3 General Bullen-Boole’s inequality

Several prior subsections were devoted to the generalizations and variants of the Bullen’s
inequality. In this subsection we derive an inequality of similar type, only this time starting
from general Boole’s formula and its dual formula. We call it general Bullen-Boole’s
inequality.

First, add (5.65) and (5.77) then divide by 2. We get:

/fdt D(0.1) + Ta,(f) = Ransal ). (5.86)
where
D(0,1) = R @) [(24”1—5-4”+8)f(0)+42”f (%)
+ 4"(4"—10)f (%) + 4% f (%) + (4% —10-4"+16)f (%)
+ 42f (%) +4m(4" —10) f (%) +42nf (%) + (@241 =5 -4”+8)f(1)]
) = E R0 -0 1< ms
Gy(1) ] ! (42" —10-4"+16)B;(1 —1) +4*"B} (1/8 —1)

TEEnE-9
+ 4"(4" —10)B; (1/4 —1)+4°"B; (3/8 —1)
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+ (4" —10-4"+16)B; (1/2—1)

4B (5/8 —1)+4"(4" — 10)B; (3 /4 —1)+4™"B} (1/8 —1)]
=0, Bi=G0), k>2

):GA()—E’,G k>1

/ F2n+2 df (2n+1) ( )

&
+

/-\

R2n+2( ) 2n+2

The function Gy has the property Gy (t +1/2) = G(r) so it is enough to study it on the
interval (0,1/4).

Lemma 5.6 For n > 2, Go,.1(t) has no zeros in the interval (0,1/4). The sign of the
function is determined by

(=1)"Gops1(t) >0,  0<t<1/4.

Proof. As (5.73) implies that Gzn_;,_l(t) =272"71G,,, {(2t), the statement follows im-
mediately from Lemma 5.4. O

Theorem 5.13 I f: [0,1] — R is such that f*"+2) is continuous on [0, 1] for some n > 2,
then there exists a point ) € [0,1] such that

45- 47”73 : BZn+2

. pant2)
Gnr @@ —a ' (). (5.87)

Ié2n+2(f) =

Proof. Analogous to the proof of Theorem 3.2. O

Theorem 5.14 Ler f: [0,1] — R be such that f*"+2) is continuous on [0,1] for some
n>2.If fis a (2n+ 2)—convex function, then for an even n we have

0</ F(0)dr — D0, 1)+ TE(f) < D(0,1) — Tou(f / £0) (5.88)
For an odd n inequalities are reversed.
Proof. Denote the middle part of (5.88) by LHS and the right-hand side by RHS. Then
LHS=R5,,(f) and RHS—LHS= 2Ry, 2(f).
Now, applying (5.82) and (5.87), we conclude

LHS >0, RHS—LHS>0, forevenn
LHS <0, RHS—LHS<0, foroddn

and thus the proof is complete. O
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Remark 5.5 Forn =2, (5.88) becomes

0</ f@) dt—— [16(f(1/8)+ f(3/8)+/(5/8)+/(7/8))
— 10 (1/4)+f(3/4))+f(1/2)]
< %W( )+32f (1/4)+12f(1/2)+32f(3/4)+7£ (1 / f(t)

which implies dual Boole’s formula is more accurate than classical Boole’s formula. For
n =13, (5.88) becomes

0 < 5uz [256(7 (1/8)-+ F(3/8) + £ (5/8)+ £(7/8) ~40(£ (1/4)+  (3/4)

1 1
12+ 55l =)= [ o

/f dt—@pﬁf( )+ 512 (1/4) + 432 (1/2) + 5127 (3/4) +217f (1)]

IN

s F ()~ £(0)].

Therefore, dual corrected Boole’s formula is more accurate than corrected Boole’s formula.

For this new quadrature formula (5.86), similar results as those obtained for general
Euler-Boole’s and general dual Euler-Boole’s formulae can be derived analogously.






Chapter

Radau-type quadrature
formulae

In the previous chapters, Gauss, Lobatto and Newton-Cotes quadrature formulae were ob-
tained, using the extended Euler formulae. It is natural to wonder if Radau quadrature
formulae can be obtained using the same technique. The results from this chapter were
published in [48].

Radau-type quadrature formulae involve one end of the interval as a node (cf. [22]):

[ e 2w 1) 4w )

and .
[ F @) w00+ =) £(1).

Thus, let x € (—1,1] and f : [~1,1] — R be such that f"=1 is continuous of bounded

variation on [—1,1] for some n > 1. Put x = —1, x in (1.2), multiply by 2 — w(x), w(x)
respectively and add up. The following formula is produced:
/_11 F(O)dt = O(—1,%) + Ty (x) = 2:!1 /_11 Eu(x,t)d "V 0), ©.1)
where
O(—1,x) = (2—w(x)) f(=1) +w(x)f(x) (6.2)
haw =Y % Gi(xr 1) [P () = f4D (1] o) =0 (63)
=1

251
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Gofr) =il (150) +weom; (5. 64)
Fo(x,1) = Gn(x,t) — Gu(x,1). (6.5)
Note that L
d"Gy(x,1) n!
ey e TR

The following theorem gives the best possible estimate of error for this type of quadra-
ture formulae.

Theorem 6.1 Let p,q € R be such that 1 < p, g < e and 1/p+1/q=1. If
f1[=1,1] = Ris such that f"") € L,[—1,1] for some n > 1, then

<

1 on—1 1 q é (n)
[ a0+ 1) < 2 | [ moral 1, 6o

The inequality is sharp for 1 < p < e and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. O

6.1 The first family of Radau-type quadratures

As the coefficient w(x) is arbitrary, it can be chosen so that:

2

Gi(x,1)=0 <« =—. 6.7
(1) W) = — ©7)
This coefficient removes the values of the function at the end points of the interval out of
T,—1(x) and thus provides the highest possible degree of exactness (namely, such a quadra-
ture rule is exact for all first degree polynomials), without the values of the derivatives
being included in the quadrature. To emphasize the coefficient we are working with, we

denote notions (6.2)-(6.5) by Ogi (—1,x), TR, (x), GR'(x,r) and FF'(x,1).

Lemma 6.1 Forx e (—1,0]U{1}, FER\(x,t) has no zeros in the variable t on (—1,1). The
sign of the function is determined by:

Ef(x,1) >0 for x€ (=1,0] and Ff'(1,r) <O0.

Proof. We have:

2x 1—1¢ 1 2 L[ x—t x+1
=l (7)) e [ () (5]
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It is obvious that FX! (x,—1) = FR(x,1) = 0. Assume: —1 <7 < x < 1. Then:

1+1¢ 3x—1
FRY (x,1) = 1(1 x4+ 1)=0 1 ="—.
F1(0e0) = 5 (0142 =34 )

It is elementary to see that t* < x, but r* > —1 iff x > 0. Also,x=1=¢"=1. If

—1<x<t<1,Ff(x,1)=3(1—1)? >0, so the assertion is proved. i

Theorem 6.2 Let [ : [—1,1] — R be such that " is continuous on |—1,1] and let
x € (=1,0)/U{1}. Then there exists & € [—1,1] such that

1 x
[ 10d = 21 - =) = 31 -307) ©3)
and
! x
[ rwdr = =0 - 25 = 503078, (69

Proof. (6.8) follows after applying the Mean Value Theorem for integrals and Lemma 6.1
to the remainder in (6.1) for n = 2 and coefficients from (6.7). Note that f_ll FRU(x,t)dt =
—2GR(x,1). (6.9) follows analogously for f(—x). |

Remark 6.1 When considering the limit process x — — 1, we obtain the following quadra-
ture rules:

[ =21 =27 (-0 =3@)
and

! 4
[ Fodi=21(0)+27/(1) = 37"(=8)
Theorem 6.3 If f: [—1,1] — Ris such that f' € Le|—1,1], then for x € (—1,0]

< (1 =2 f'||-e (6.10)

1 X
[ 0= 25 -

while for x € [0,1]

! 2x 2 1—|—X2 2 ,
[ 2o 2ol < (B5) e e

The node which provides the smallest error here is x = /2 — 1 ~ 0.4142 and we have
1
[ 70 @V FD) = VEAVE 1) < (12-8VD) £

(12 — 82 ~ 0.6863).
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Furthermore, if f : [—1,1] — R is such that f" € Lo[—1,1], then for x € (—1,0]U{1}
we have

1
< 310=30- (17 (6.12)

1 2x
[ 2 - 2
while for x € (0,1)

1 — 6x2 4 24x3 — 3x*
3(l—|—x)3 Hf//”‘x’ (613)

The node which provides the smallest error in this case is x* := 22 -1-2V2—-V2 =~
0.2977 and we have:

’/1 F(t)dt —0.4588 - f(—1) — 1.5412- f(x*)| < 0.1644 - || f"||
-1

Proof. (6.10) and (6.11) follow after taking p = o and n = 1 in (6.6) with coefficients from
(6.7). (6.12) and (6.13) follow similarly, for n = 2.

In order to find the nodes which provide the smallest error, the functions on the right-
hand sides of all four inequalities have to be minimized. Routine calculation confirms the
claims. When trying to minimize the function on the right-hand side of (6.13), note that
x4+ 4x? —26x% +4x+ 1= (x+ 1)* — 32x%, so the zeros can be found analytically. O

Theorem 6.4 Let f: [—1,1] — R be 2-convex and such that f" is continuous on [—1,1],
and let x € (—1,0]. Then

)+f( )
< 2/ f() (6.14)

If f is 2-concave, the inequalities are reversed.

— /(=D +

x—|—1 x+1

Proof. For a 2-convex function f, we have f” > 0, so the statement follows easily from
(6.8). O

As a special case, we now obtain the classical Hermite-Hadamard inequality.

Corollary 6.1 If f : [-1,1] — R is 2-convex and such that f" is continuous on [—1,1],

then
)+f( ).
_2/ o)

If f is 2-concave, the inequalities are reversed.

Proof. Take x = 0 in (6.14). O

Remark 6.2 All the results obtained here easily follow for the quadrature rule with the
right-end of the interval as the preassigned node, therefore we will not state them explicitly.
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6.2 The second family of Radau-type quadratures

Suppose we want to obtain a quadrature rule exact for all polynomials of order < 2, in-
stead of < 1, as were (6.8) and (6.9). Observe (6.1) again. We considered the case
when G (x,1) = 0. Now, impose another condition and choose the coefficient so that
Gy(x,1)=0.

4
3(1—x2)
This will produce a quadrature rule with the desired degree of exactness, however, as a
downside, the value of the function at the right end of the interval will now also be included

in the quadrature. To emphasize the coefficient we are working with, we denote notions
(6.2)-(6.5) by Qra(—1,x), TR, (x), GR%(x,t) and FR?(x,t) for this specific coefficient.

Go(x,1) =0 < w(x) = (6.15)

Lemma 6.2 Forx € (—1,—1/3]U[1/3,1), FR(x,t) has no zeros int on (—1,1). The
sign of this function is determined by:

Ff(x,1) >0 for x€[1/3,1)
Ff(x,1) <0 for xe (—1,-1/3].

Proof. For —1 <t < x < 1, we have

1+x 1+x
and —1 <r* <xiff -1/3<x<0.If -1 <x<r<1,
1—-1)> [ 2x
FR (1) = ¢ —1)=0 &=
3 t) 4 1—x 1—x

Now, x < " < 1iff 0 < x < 1/3. Therefore, the claim follows. O

2 2
FR(x 1) = (141)° (_" _t) _0ero 2

Theorem 6.5 Let [ : [—1,1] — R be such that " is continuous on [—1,1] and let
x € (=1,-1/3]U[1/3,1). Then there exists & € [—1,1] such that

1 14 3x 4 1—3x 2x
[ F0de = 5 ) = 5 ) - 3 (D =5 1) 616
Proof. Analogous to the proof of Theorem 6.2. O

Remark 6.3 Forx = 1/3 and x = —1/3, from (6.16) we get the Radau 2-point formulae:

[ s 350-31(5) = 51"

and
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Remark 6.4 When considering the limit processes x — 1 and x — —1, the following
quadrature rules are produced:

[ rwa-2en-trms2ra=2me)
and
[ wa-3nen -3 -3ren=-2r@).

Next, we consider the error estimates for this type of quadrature rules.

Theorem 6.6 If f: [—1,1] — R is such that f" € L.[—1,1], then for x € (—1,—1/3]
U[1/3,1)

[ o= s e - 5 f(x)—;(l‘fj)f(l)’

| 1 3|’(| ’ /!
< — oo 6.17

while for x € (—1/3,1/3)

1—|—3x 4 1—3x
[ 0= 5 ) = S ) - 5 1)
8(1—3x2)(1+3x%)?
=T8I 2)3
Further, if f:[—1,1] — R is such that " € L.|—1,1], then for x € (—1,—1/3]
u[1/3,1),

(Wi (6.18)

[0 5o ) - s - s | < 2 619
while for x € (—1/3,1/3)
[ 700 55 ) - 5 ) - s )

_ 8x|° +49x* — 60|x|> +22x% — 4|x| + 1
- 36(1—|x])*

In both cases, the node which provides the smallest error is x = 0. The quadrature rule
thus obtained is the classical Simpson’s rule. More precisely, we have:

1" e (6.20)

[0 3110 = 3700 370 < -

- 81

and

’/_llf(t)dt—%f(—l)—%f(())_gf(l)’ %Hmeoo
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Proof. (6.17) and (6.18) follow after taking p = o and n = 2 in (6.6) with coefficients from
(6.15). (6.19) and (6.20) follow similarly, for n = 3.

As for finding the node which provides the smallest error, the functions on the right-
hand sides of all four inequalities have to be minimized. The claim follows after somewhat
lengthy but routine calculation. g

Corollary 6.2 Ler f : [—1,1] — R be such that f") € La[—1,1] for n = 1,2 or 3. Then

we have:
1 1 3. /1
‘ [ a3y (3)' <G e =123 62D
-1
where 55 . 5
o 2%7 G 267 G :ﬁ-

Proof. For n =2 and n = 3 the assertions follow directly after taking x = 1/3 in (6.17) and
(6.19). Asforn=1,take n =1 and p = e in (6.6). O

Corollary 6.3 Ler f : [~1,1] — R be such that f") € Li[—1,1] for n=1,2 or 3. Then

we have:
1 1 3 1
’ [ f0di=3r-1=31 (5) ‘ <G If"Mh, n=1.23 (6:22)
where s 5 .
1_ 2 1_ = 1 b
=g G=y G=1y

Proof. Take p =1 and n = 1,2, 3, respectively, in (6.6) and then find sup |F,(1/3,7)]. O
re[—1,1]

Theorem 6.7 Let f:[—1,1] — R be 3-convex and such that " is continuous on [—1,1],
and let x € (—1,1/3] andy € [1/3,1). Then

1+3y 4 13y

S D+ 5 )+ 3 /(1)

< [ llf(t>dr (6.23)
< ;(j fi)f<—1>+ o fxz)ﬂx) 31(1‘ fi)fu)

If f is 3-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 6.4. o
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Corollary 6.4 If f : [—1,1] — R is 3-convex and such that f" is continuous on [—1,1],
then

Y2 (3) < [ rwan< 3 (<X)+ 1) (624)
2 2°\3) 7 Ja -2 3 2 '
If f is 3-concave, the inequalities are reversed.

Proof. Take x = —1/3 and y = 1/3 in (6.23). O

Remark 6.5 Using another, more general approach, the inequality (6.24) was also ob-
tained in [10], i.e. [9].

6.3 Radau 3-point formulae

Let x,y € (—1,1], x <y, and let f : [~1,1] — R be such that f*~1) is continuous and
of bounded variation on [—1,1] for some n > 1. Put x = —1, x, y in (1.2), multiply by
2 —wi(x,y) —wa(x,y), wi(x,y), wa(x,y) respectively and add up. The following formula
is produced:

[ 0o 1xn 4 1ty = 2 [ EGennast e, 629

where
O(~1x.y) = 2= wi(x.9) = wax. )] F(=1) +wi () f() Fwa () fG) (6.26)
T (x,y) = kzi 2 Gulea ) L)~ D) T =0 6.27)
o) = 2= ax) a5 (5 ) 4w (5 (628)
Fwa(x,y)BY (yT_t) (6.29)
Fu(x,y,1) = Gp(x,3,1) — Gu(x,, 1). (6.30)

Now, impose conditions:
Gi(x,y,1) = G2(x,y,1) = G3(x,y,1) = G4(x,y,1) = 0.
The unique solution of this system

1-v6 1+v6 16 +6 16— /6
X = 5 , Y= 5 5 Wl(x7y) = 18 P WZ(x7y) = 18

are the nodes and the coefficients of the Radau 3-point formula.

(6.31)
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To emphasize the nodes and the coefficients we are going to be working with in this
subsection, denote notions (6.27)- (6.30) by 7R3, GR3(¢), F®(t) and

2 16+\/6f<1—5\/6>+16—\/6f<1+\/6>_

Ors = = f(=1)+ 3 3 5

9

Lemma 6.3 FF(t) has no zeros in (—1,1) and its sign is determined by FX3 (1) > 0.

Proof. For —1 <t < (1—+/6)/5, we have FR3(t) = 7 (1+1)*(1 — 9) so the claim is
obvious. Soitisfor(l+\/6)/5§t<l,sincethereFm t)=1(1—1)3. For (1-v6)/5 <
t < (1++/6)/5, the function is a bit more complicated:

1

F5R3(t)=ﬁ

k(1)

where

k(1) = —18° +5(vV642)t* +20(3v6 — 7)1 — 30(v/6 — 2)1> + 10(2v/6 — 5)t + 10 — 31/6.
We have to prove that k(z) > 0. From

K" (1) = —10802 + 120(V6 +2)1 + 120(3vV6 — 7)

we conclude that k¥’ increases on (z1,f;) and decreases on [ 1-V/6 1) U (1, 1 ] where
~ —0.068755 and 1, ~ 0.563143 . This, together with the fact that k”( \/—) <0,
k”(tl) <0, k(1) >0, k”(”s—\/a) > 0, shows that k” has only one zero t** € (t1,1,). This

means k' is decreasing on [I_T\/EJ**) and increasing on (** 1+‘[] Since k' (128 ‘f) >0

and K/ (%6) < 0, it follows that k¥’ has only one zero t* € (¢1,t). From there we con-
clude that k increases on [1 /6 t*) and decreases on (r* 1+\/—] Since k(1=° \/_) >0 and
k( 1J”[) > 0, the claim follows. 0

Theorem 6.8 If f:[—1,1] — Ris such that f® is continuous on [—1, 1], then there exists
& € [—1,1] such that

/ F0)dt — Qgs = —— fO(&)

1125

and

1 16—6 1+v6\ 164+6 1-v6\ 2
[ f0a- =1 f(— - )— - f(— - )——f(l)

Proof. Analogous to the proof of Theorem 6.2. O
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Theorem 6.9 If f : [—1,1] — R is 5-convex and such that f©) is continuous on [—1,1],

then
2pen) 4 1000, (1 ff) L (”f)
|
g[lf(t)dt
_ 161—8\/6f (_1+5\/6> . 16;L8\/€f (_1—5\/6> +§f(l)
Proof. Follows trivially from Theorem 6.8 O

Theorem 6.10 Let p,q € R be such that 1 < p, g <o and 1/p+1/q=1. If
fi]=1,1] = Ris such thatf(”> € Lp[—1,1] for some n > 1, then

n—1

1
2 1 !
= [/_1 |F’53(’)|qd’] 17 - (6.32)

n!

1
/_ 1 f(t)dt — Qs + TR,

The inequality is sharp for 1 < p < e and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. O

Corollary 6.5 Ler f : [—1,1] — R be such that f*) € L..[-1,1] for k = 1,2,3,4 or 5.
Then we have

[ 00| <G 10
where
Cr ~0.434014, C5 ~0.0566841, C5 ~0.0106218,
Cy ~=0.00247235, C5 = ﬁ ~ 0.000888889.
Proof. Take p =ecand n = 1,2,3,4,5 in (6.32). O

Corollary 6.6 Ler f: [—1,1] — R be such that f¥) € Li[—1,1] for k = 1,2,3,4 or 5.
Then we have

F (—1 _5\@>

C} ~0.0131784, C}=

< 1P

FR <—1 _5\/6>

1
FR <_§) ‘ ~0.00274348, C!~0.00123618.

’/llf(f)dt—Qm

where

Cl = ~0.537092, Ci= ~0.094322,

Proof. Take p=1andn=1,2,3,4,5in (6.32). O



Chapter 7

A general problem of
non-vanishing of the kernel
in the quadrature formulae

7.1 Introduction

From the previous chapters it is clear that the procedure of deducing the quadrature formu-
lae can be summarized as follows. Using symmetric (with respect to 1/2) nodes 0 < x| <
Xy < -ooxp <1/2 <xpyq < -+ < xr < 1 and affine combinations of (1.1) it follows

1 2% o -
/o f(f)df:i;?tif(xi)—Tn-Fa/o <i217ti3n(xi—f)>df (1), (7.1)

where 7, = Y1, & [f“’”(l) —f<2"’1)(0)}7 B = Y35 4;Bi(x)), 3 A =1 and A; =

Aks1—j, j=1,... k. Notice that chosen symmetry implies Byi_1=0,i€N, consequently
(7.1) is usually written as

! < A T 1 ! (2n)
/0 f(f)dfzgi if(xi)—Tzn+m/o Gony 1 ()df (1), (7.2)

1 d—Zk)L- ) —T- ! lF dferth) 7.3
/0 f(t) t—i; if (xi) — 2n+m/0 np2(t)df (), (7.3)

261
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where T, = S, (gf)' {f G (1) — f3Y (0)} Gt (1) = X7 MiBB5, (% —1), Fansa (1) =
2412£1 /’Li [BEnJrZ(xl‘ - ) - B§n+2(xi)] .

To produce quadrature formulae for preassigned nodes the following conditions are
usually imposed:

Bow=Boy 2 ="-=By_t42)=0,n>k—1. (7.4)
Unperturbed (uncorrected) quadrature formulae are obtained for n = k — 1, i.e. formulae
which do not involve derivatives at boundary points. Notice that (7.4) is equivalent to

Gl

M0 =65, 0)=--- =62 Y0y =0. (7.5)

2n+1
The main step in obtaining the best possible error estimates is to prove that

2k

Gons1(t) =D AiB5, . (xi—1)
i-1

has some “nice” zeros in (0,1/2) (usually G, has no zeros at all in (0,1/2)). We for-
mulate the following problem which seems to be interesting independently of the present
context.

Problem 7.1 Find the distribution of nodes 0 < x1 < xp < -+ < x; < 1/2, such that
Gons1(t) = Z?kl AiB3,, . (x; —1t) has no zeros in (0,1/2), ile-zil Ai=1 X jr1=1—xp
. 3 2%k—3

J= 1k, G (0) =G (0) = = GZ ) (0) = 0, where n > k— 1.

Some partial results can be found in previous chapters, where nodes and weights are ex-
plicitly calculated or a priori given, thus allowing explicit expression of Gy, for some
small n. An exception is Section 5.4, where some elementary motivations for the present
chapter can be found.

To prove some special cases of Problem 7.1 (but of a general nature as stated above),
we found the “frequency” variant of identities (1.1) and (1.2) more tractable. An easy
consequence of Multiplication Theorem for periodic Bernoulli functions B}, in the form

k
B (x — mi) "IZB*<)i—t) n>0m>1,

is the following theorem (see Section 1.2):

Theorem 7.1 Ler f: [0,1] — R be such that £~ is continuous of bounded variation
on [0,1] for some n > 1. Then, for x € [0,1] and m € N, we have

/olf(t) Ilef (Hk) Ta(x) + / By(x—m)df" (), (1.6)

n!-mn

where
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Setting x = 0 in (7.6) and using that B = —1/2, By;—1 =0, i > 2, we write (7.6), with
appropriate assumptions, in a more convenient form:

o= B )

1

S By, (2i—1) _2(2i-1)
+ X o [0 =700
1 1
Tt D /O B3y (mt)d fP" (1), (1.7)

Affine combinations of (7.7) with frequencies my =1 <m; < ---mg, m; € N, s € N, and
weights A, ..., Ag, Xi_o A =1 give:

1 1 s )L
- W/O (2 2"+132n+1(m 1) | dfen (o). (7.8)

j=0Mm;

Analogously,

1 ! 5 Aj * n
- m/o (Z mT’j*z (B3 42(mjt) —an+2)> dfe ().

J=0"")
(7.9)

It is clear that identities (7.8) and (7.9) can be written in the form of identities (7.2) and
(7.3), respectively. Also, it is easy to see that there are identities of the type (7.2) and (7.3)
which cannot be of a type (7.8) and (7.9), respectively.

Again, as in (7.4) and (7.5), to produce quadrature formulae it is natural to impose the
following conditions:

5 s A s A
) z’n Lo == X e =02 (7.10)
J

m; j=0m;

or equivalently:
1 3 25—1
Gyl1(0) = G5, (0) = -+ = 65)(0) =0, (7.11)
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where
o A
G2n+1(t) = z T—H3211+1(mjt)' (7.12)
j=01;

Now, we can state the following special case of Problem 7.1.

Problem 7.2 Find the distribution of frequencies my = 1 < my < mp < --- < my,

m; €N, suchthat Gon11(t) =X %B;Hl (mjt) has no zerosin (0,1/2), if ¥5_oA; =1,
J

G;l) (25—1)

1 (0) =G5 (0) =+ = GV (0) = 0, where n > .

7.2 Some preliminary considerations

To obtain quadrature formulae based on identities (7.8) and (7.9), we determine weights
Ao, A, ..., As from the linear system

MA =b, (7.13)
where
1
1 1
m%” my
M = . , (7.14)
L1
1 m2(n7s+l) e mZ(nf_H»l)
1 s
A= A - AT andb=(1 0 --- 0)". Itis easy to see that DetM # 0 (see also
[108]), so the system (7.13) has a unique solution. Cramer’s rule and (7.12) immediately
imply:
- A
G2n+l(t) = 2 THB2n+l(mjt)
j=0M;
« B3, (m1) B3, (mgt)
BZn+1 (t) 2,;21:”11 e 2m+%}1+1
1 1 iz %
= ' " 7.15
Detl] : : : ) (7.15)
1 2(nlx+l) 2(n£s+l)
my my
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which gives

Ll 1 B0
( l)s m mi m?_i B§n+l (mlt)
- - e S— *
Gony1(t) = iy m) 2 et ”?2 ”?2 mz' an+1.(m2t) . (7.16)
g m? m?s—l B3, (myt)
Define
*
1. 21 . BZn+1(t)
my mz m%“f1 B3, ., (mt)
S— *
Hopyr (1) = | M2 my - m3’ B3, (mat) | (7.17)
my m? m.%kl BEnH(mst)

In this way Problem 7.2 is equivalent to the following problem.

Problem 7.3 Find the distribution of frequencies such that Hy,1(t) has no zeros in
(0,1/2) forn > s.

Example 7.1 Suppose that my =1 <my; =3 <my =4, n =15 = 2. Using Wolfram’s
1 1 Bir)

Mathematica, for Hs(t) = |3 3% Bi(3t) |, Hs(0.45) = 1.11285 and Hs(0.3) = —3.3996,
4 43 Bs(41)

so Hs has zeros in (0,1/2).

For a given sequence of functions ay, ...,a, defined on some real interval / and given
sequence Xy, ..., X, in I, we introduce

aogxog algxog a,lgxog
ap -+ anot ay )\ |@001) ar(xi) < an(x
D( >_ : : :

)

X0 Xp—1 Xn
aO(xn) al(xn) an(xn)

and, if ao, . .. ,a, are sufficiently smooth, we denote by W (ao, . . .,a,)(x) the Wronskian of
the sequence ay,...,a, atx € I.

To transform the functions H»,,1| in a more suitable form, the following General Mean
Value theorem from [66] appears to be useful.

Theorem 7.2 Let ay,...,a, be a sequence of real functions of a real variable x, pos-

sessing derivatives up to the order n, and further such that the Wronskians W (ay, . .. ,ay),
k=0,1,...,n, do not vanish on a certain interval 1. Let f(x) be a function possessing
derivatives up to the order n in I. Finally let xo,x1,...,x, be a system of (n+ 1) values of
x in I. There exists at least one value & in I such that
D<a0 ceapy f )
X0 Xno1 X W (ao,. - an-1,f) (§)

D<a0 e dp—q an> - W(ao,...,an,l,an) (é) (718)

Xo tr Xn—1 Xn
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To apply Theorem 7.2 we set:

J(x) = Byyy (1) = g(xt),
xo=1,x; =my,...,x; =mg, [ =[1,my].
Assumptions of Theorem 7.2 are obviously satisfied, so there is an & € [1,m;] such that

3 2s—1

H2n+1<t>=p(” e g(xr))

1 my - mg_1 my
D(x B g2l x2s+1)
Lmy - mg_y my
W (6, x3,... xB+1) (&)
g & - gt 8(&1)

1382...  (25—1)E¥2 1g'(E1)
10 31E - (25— 1) (25 —2)EF 73 12g" (&)

0 o e o IS S (3))

Denote the last determinant in (7.19) by Ha,41(¢,&). Multiplying the kth row of this de-
terminant by £=1, k =2, ... s, then extracting from the /th column 2=, 1 =1,... s, we
have

L1 1 f(&1)
13 - 2s—1 Erf'(&Er)
Ry (1.8) = 1|0 31 (=2 (G0
6 % (g,)sf(s)(gt)
ap(l) ai(l) - as1(1)  f(u)

1
ap(1) ay(1) - ag_y (1) uf'(u)
L | ag(1) (1) - dl (1) W) | (7.19)

ag’ (1) @ (1) -+ a, (1) w O w)

where u = &r. Note that 0 < u < my/2 for 0 < u < 1/2. It remains to investigate the sign
of the function given by the last determinant in (7.19). Using the Laplace expansion of
determinants, this function is up to the sign equal to the function

Flu) = i(—i)jChmuj F9 (), (7.20)
j=0
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where Ch(/) (Ch stands for Chebyshev) is the determinant of the matrix obtained from the
(s+ 1) x s matrix

a1y V(1) - a (1)

by deleting the (j+ 1)th row. The sequence of functions ag,ay,...,ds can be obtained by
using the universal construction of Chebyshev systems (S. Karlin, W. J. Studden, Tcheby-
scheff systems with applications in analysis and statistics, Interscience, New York, 1966.).
Take wy(x) = x, 01 (x) = 2x,..., ©s(x) = 2sx. Then

a0(x) = an(x), ar(x) = an(x) [ (1),

(%) = @ (x) /0 o (rl)/otl o (t2)dbrdty, ..,

a5(x) = oo (x) /O "o (1) 0” () /O " oyt )t - diady.

Using this and properties of determinants (manipulating with columns of Ch"), straight-
forward calculation reveals that

(2s— !

D) — ). _Gs—pt
Ch =Ch 7125 —2))1

(25_.])' s— s—
M:Z 14 2(23'—4)2(2.9—2)

(for the case j = s see [75]).

Lemma 7.1 Let (Fy);_ be the sequence of functions defined by:

s—1 N )
F(u) = ¥ (=1)Ch wd = FUH0 () 4 (—1°ChO s * f6 0 ), we R, (7.21)
=k

where
' (2s—j—k)

! .
-Ch), j=k,....s. 7.22
G-or @ T o

chl/) =
Then
(i) Fo(u) = F(u) where F(u) is given by (7.20)
(i) Fy(u) = (—1)*Ch® ) (u),

(iii) F(u) = uFjs1(u), k=0,...5—1.
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Proof. The first two properties are obvious. Let us prove the third property. Simple rear-
ranging gives:

Fk/(u) _ (—l)k [Chlgk) _ Ch](ckJrl)] f<2k+1>(u)

s—1 . . ) .
+ Y (~1y [Ch,(j) —(j+1- k)Ch,i””] =k D) ()
j=k+1

+( )Ch( s— kfs-‘rk-'rl)( )
(7.23)

It is obvious that Ch(k) Ch(kJrl) (25 — 2k — 1)!!. It remains to show that Ch,gj ) (j+

1—k)Chi Y = cnl >1 Using (7.22) and that Ch+!) = 22/ —Ch(/) we have:

chl) — (j+1-kchy ™Y

B J! (2S—] k) (j+l)!(2s—j—k—l)! j
=G o e e

_Chm{ skl DI @s—j—k-1)! 252
(j_k)! (2S_j)! (j—k)! (2s—j_1)! (j+l)(2s—j)
et @s—j—k=D )
e (j—k=1! (25— ))! Chly-
We can write
s—1 . ' '
Fkl(”):u[ Y (~1)/Chy) WAl )
J=k+1

+(_ 1 )sCh(s) us—k—lf(s+k+l) (u)i|

= qu+l (Lt)
]

Theorem 7.3 Suppose that my =1 < my <my < --- < mg, m; € N and ZS] ohi=1,

Aj € R. Then the function Gau1(t) = Xy 2,,HBMH(m it) such that nglrl(O)

= nglrl(O) == G;i‘:ln(O) =0, s <n, has no zeros in (0 L]

' 2my |°

Proof. Suppose that 0 <t < 5— IR .Then 0 <u==E&r <1 7 (see the discussion and notation
below Theorem 7.2). The clalm follows from previous reductions and because Lemma
7.23 implies

u 1 Is—1
u):/ tl/ tz---ts_l/ ts(—1)*Ch) By, | o (t)dts---dndry.  (7.24)
0 0 0

O
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Remark 7.1 Notice that Fk(u) (— l)kCh 20 (u) 4 u-[---]. Consequently F¢(0) =0
for functions for which f2¥)(0) =0, k=0,...,s. From Lemma 7.23 follows:
u 1y ls—1
Fu) = Fo(u) = / h / fye- / 1(=1°Ch®) F2) (1), -dindrr. (125
o Jo 0

7.3 Case m; = m'

In the previous section we proved that the function Gy, 1(¢), defined in (7.12) such that
conditions (7.11) hold and ¥%_, A; # 0, has no zeros on (0, ﬁ] ‘

In the present section we give the complete answer for the case m; = m', i =0,...s,
m > 2, m € N, in the sense that we prove that the function H,, | defined in (7.17), using
frequencies 1,m,m?, ... ,m*, has no zeros on (0,1/2).

Theorem 7.4 Lets € Nand m € N, m > 2. Then the function

o1 )
m m33 m2"'2’1_l f(mt)

K (1 f) = "?2 (m.z) (mz? ' f(njzf) (7.26)
e ) ) ()

has no zeros on (0,1/2), for any odd function f : R — R which is periodic with period
T =1, such that f*=2) is continuous on R and strictly concave (convex) on (0,1/2).

Proof. The proofis by induction. Suppose that f is continuous on R and strictly concave on
(0,1/2). We shall prove that K, (z; f) = f(mt) —mf(¢) is strictly negative for t € (0,1/2).
Using strict concavity f(mt) < mf(t) for 0 <t < 5. Now, we split the proof into two
cases.
Case m = 2k + 1: Suppose that % — ﬁ <t < % Set g(x) = f(% —x). Obviously g is
strictly concave on (0,1/2) and g(0) = 0. This implies g(mx) < mg(x) for x = % —t,
which gives f(=k+mt) = f(mt) <mf(r). In this way we conclude that f(mr) < mf(t)
fort € (0,5=]U[3 — 2, 3).

Set M = max,(o,1/2f(¢). There is #; € (0, 5-) such that f(mt;) = M, and there is

t € (3 — 2=, %) such that f(mt,) = M. Suppose that € (5,5 — 5

there is A € (0, 1) such thatz = Az; + (1 — A)z,. Finally:

Flmt) <M =2 f(m)+ (1= 2) flmtz) < f (m(Any + (1= 2)a)) = f(m).

Case m = 2k: Notice that f(mr) < 0 for % — ﬁ <t < % Arguing as in the final step of
the proof for the case m = 2k + 1, it is enough to prove that f (m (r — 5=)) < mf(r) for

) is arbitrary. Then
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1
2 2

(0) so g(mx) < mg(x) for 0 < x < 5. This implies for x = § —¢ that g(% —mt) <
mg(3—1),s0 f(mt+5—k) = f(mt — ) <mf(t).

The proof when f is convex is analogous.

To prove the inductive step we use the Sylvester identity for determinants with the
first and the last row and with the two last columns. It follows (where we denote by
Vlay,...,a,] the Vandermonde determinant):

t < 1. Set again g(x) = f(4 —x). Obviously g is strictly concave on (0,1/2) and

II=

<
09

oQ o=

;n_y ' .(ms)l\'fl m‘ .(m“')3 '(m“')z-"*3 'f(m“'t)

mem?-mS WL m?, . m261)] Ko 1(1:f)
m-m*--mNm?mt L om®] mem3 e m®TK (it f)

mz V[1,m%,... m2s1)] K1 (t;1)
m-2 -mE=sy {1 m2,...,m2<“"1)} m<“"1)2KS_1(mt;f)

[
&

)

) > 2<H>} I K
—-m 2 V[l,m,...,m m> =V K, (mt; f)

which gives

K (1 f) = %V[l’mz"“’mml)} 1 Koa(sf)
s(t:f) =m VLm2, w262 | w7t Ky (mt: f)
1 1 1 f(mt) —m>~1f (1)
m m m>s=3 f(mzt) _mzklf(mt)

=C

ms.—l (ms'—l)?’ (ms—l')z-"*?’ f(mst)_mZ.s—lf(ms—lt)

— CK,-1(138), (7.27)
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where g(t) = f(mt) —m*~! £(¢). To use the inductive assumption we only have to prove
that g(>=%) is strictly concave or strictly convex on (0,1/2). We have

g V() = m> [ FE Y (me) —m? fED (e )} .

Seth(r) = f25~ 4)(mt)—m3f(25_4)(t).Sinceh”(t) [ 2 (mt) — mf@=D(1)|, using

)—
assumption (f(3=2) is strictly concave or strictly convex on (0, 1 /2)) and the basis of
induction, we conclude that 2" has no zeros on (0,1/2). Since f' (25-2) § is continuous, 4" has
constant sign on (0,1/2). It follows that /, and consequently g2~ is strictly concave
or strictly convex on (0,1/2). Using inductive assumption, K;_;(z;g) has no zeros on
(0,1/2), s0 by (7.27), K;(t; f) has no zeros on (0,1/2). The proof is complete. ad

Obvious examples of the functions which satisfy conditions in the previous theorem
are f(t) = B3, (t) and f(t) = sin27nz.

Example 7.2 The Boole and Simpson formula can be easily deduced using above proce-
dure.

7.4 Using the Fourier expansion of the periodic
Bernoulli functions

In this section we present yet another method to study zeros of the functions defined as
the function H,, 1. This method is motivated by the Fourier expansion of the periodic
Bernoulli functions given by

. (1)1 (2n+1)! & sin (2knt)
By, () = Qm)2 T )y K2

,n>1xeR n=0,x#k. (7.28)

Recall that we reduced the problem of zeros of the function G»,,+1 to the one of the function
Hjp,41. Using (7.28) we can write

1 1 - 1 sin (2krt)
m m% m%"*l sin (2km 7t)
3 2s—1
H2n+l =Cy Z k2n+1 n,fz " mz. o (Zk.mznt) ' 7:29)
mg m3 - m2~ sin (2kmymt)
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We consider the case with no gaps in frequencies i.e. case with (s — 1)-nontrivial frequen-
ciesm; =2<mpy=3<---<my_ | =s. In that case we have

11 -+ 1 sin(2kmt)
2 2% ... 2273 gin(4knt)

| 3 25—3
H2n+l(t) :C”]; J2n+1 333 ) SlIl(6'kﬂ,'t) . (7.30)

s 8% - §273 sin(2skmt)

To simplify terms in the above expansion set:

11 - 1 sina Ll 11
223 ... 253 gindg 223 ... 0573 snsa

S(a)= |33 3% sindo | _ ]330 o 300 W

3 ... 253 3 ... (2s—3 sinsa
s 8 N simso s S N sino

Recall that the Chebyshev polynomials of the second kind are defined by

sin(n+1)a
Un(x) = sin o

We will need the following properties of the Chebyshev polynomials U,,:

, oo =arccosx, n=0,1,....

)
Up(1) =n+1
(1)
)y (k1! ®) oy — o ® (k=1)
Un (1)—WCUH (x)—xUn_l(x)—i—(k—i—n)Un_l ()C)
(iif)
|U,(x)] <n+1
Set:
11 - 1 1

223 ... 2273 Uy(x)
S(x)= |33 377 ()

s §3 ... g3 Us—l(x)
Obviously S(1) = 0, S“ V(1) = (s 1)!V[1,2%,...,(s — 1)?]. We want to prove that
SY(1)=0fork=1,...,s— 2. We have:
11 -+ 1 0
223 ... 2573 U(x)
333 .35 Ul(x)

58 UL ()
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We have U/(1) = % Multiplying the first column with —1 and adding to the second

column, we have in the (I + 1)th row:
(1+2)!
(-1

(I+13—(4+1)=(I+1)(1+2) =

which obviously implies that gl(l) = 0. To make a general argument we compare Ul(f)l (1),
k <1—1, with the Ith row in the (k4 1)th column after reducing the first k+ 1 columns on
the lower trapezoid form. Using properties of the polynomials U,, we have:

) _ (l—|—k)!
Ui )= Qk+DN(I—k—1)"

After reducing the first £+ 1 columns on the lower trapezoid form in the /th row and the
(k+ 1)th column, using inductive property of the Vandermonde determinant applied on
determinant

2 23 22k+1
].Ck'?’ k2l;+l
Ji l3 l2k+l

we obtain
1= = (k=12 (P=2H)(P-1)

(I+k)!

=1(1=k)(I+k) (I +k=1)(I—k+1)---(14+2)(1=2))(I+1)(I—1)= I—k=D

This finishes the proof that g(k) (I)=0fork=0,1,...,5—2.
Since S is the polynomial of degree s — 1, we conclude

S(x)=V[1,2%... (s— 1) (x—1)*"1.

It follows
S(er) =sinaV[1,2%,...,(s— 1)} (x—1)""!

= (—=1)*"'V[1,2%,... (s — 1)*sinor(1 — cosax)* L.

Finally, we can write
o1 !
H2n+1 (t) = Dn 2 W sin (Zkﬂ:t)(l — COS (Zkﬂ:t))sil .
k=1

To illustrate how this expression helps in proving that H,, | has no zeros in (0,1/2), we
will prove that

! - 1 '
sin (27)(1 — cos (272))* ' > = Y Wsin (2kmt) (1 — cos (2kme))* !, s < n.
k=2
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Rearranging this is obviously equivalent to inequality

—i 1 sin(2kmt) (sin (km))2-"2 L
k

& k2 +1 sin(2me) \ sinmr

sinko
sin o

Since | | < k, it is enough to prove that

| - 1
E Kl = E — < L.
= J2n+1 = k2 (n—s)+2

Recall that s < n, so it is enough to prove that

and this is obvious since the LHS is equal to 7>/6 — 1.
The method of this section can give more information in negative direction. Let us
consider Example 1 from Section 2 i.e.

11 B*() = |1 L sin(2km)
Hs(t)=[3 3% B(3) | = 2 . 3 33 sin(6knt) |,

4 43 35(4 ) 4 43 sin (8kmt)
and consider the first term
1 1 sin(2mr) 11 1
3 33 sin(6mt) | =sin(271) | 3 3% Up(x) | = sin (271)S(x).
4 43 sin (87t) 4 43 Us(x)

It can be shown easily that
S(x) = (x—1)%(144 + 192x),
which implies

1 1 sin(2mt)
3 33 sin(67t) | = sin (27¢)(1 — cos (27¢))? (144 4 192 cos (27t)).
4 4% sin (87t)

It can be shown easily that terms with higher frequencies (and small amplitudes) cannot
remove the zeros in the basic term.



Chapter 8

Euler’s method for
weighted integral formulae

8.1 Introduction

In this chapter we will consider the remainder of the quadrature formula

[0 £ = 3, A5+ ), @

k=1

where Y} Ar = 1.

In [79] V.ILKrylov assumed that this formula is exact for all polynomials of degree
m — 1, and using the representation by the Taylor series, transformed this formula into an
equation of Euler’s form:

[ = 3 s 4o [0 s @] 4

k=1
Gt [F A () — S @) + B, (8.2)

275
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1, x>0

where for E(x) = ¢ 5, x=0 , we have

0, x<0

G = (b—a)*lbe,»(r)dt,
b

(x_ t)m—l n (x _ t)m—l
de— IZIA](E(X]{ —l‘)ﬁ,

L) = [ G- Liwlax, 83)

Lo(t) = K() = [ wi

E,(f) = / ’ LU ()L (1) d.

Equations (8.3) give a method for sequentially calculating the C; and L;(¢). However,
V.IKrylov found a representation for C; and L;(¢) directly from the kernel K(¢). To do this
he returned to the initial quadrature formula (8.1) with the integral representation for the
remainder

5= [ @K@

with replacing f") (1) by its expansion in terms of Bernoulli polynomials. Then

(b—a)"ti! t—a
C=—"—-+"E Buti| —
(m+1)! T\b—a
(b —a)mti-1 /b t—a 1 Xy —a
= — 1)Biti dt — Y ApBp+i . 8.4
(m+i)! aW() m-+i b—a kg,l kDPm-+i b—a ( )
Similarly he obtained for L(¢) the expression

b— m+s—1 —t _
Ls(t) = _%En,x |:B:1+s (ZT(I) _B:FnJrs (%)] ’ (8-5)

where E, , indicates the remainder when the quadrature formula is applied with respect to
the variable x.
He also gave the series in (8.3) for increasing the precision of quadrature formula

[ 09t 0P e 3 A ()

-1 k=1
+ Co [ (M) = (D) + 6 [fE 1) - 2 (-1 +
where o/, > —1 and the nodes are the zeros of the Jacobi polynomial. So,

o 2048+ 2 Do+ B+n+ D(o+n+ DT(B+n+1)
0~ n)(a+B+2n+ )T (a+B+2n+ D2
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C =

B—o { o+p
a+B+2n|oa+pf+2n+2

n1 202 (o4 B+ n4+ D) (oc+n+ 1DD(B+n+1)
' (2n+ )'T(a+ B +2n+ D) (a+ B +2n+2)

+ Zn]

For the special ultraspherical case, oo = 3, the C; with odd subscripts are zero:

oo Pl QRotn+1) [2'T(o+n+1) 2
T ) Qa+2n+1) |[TQo+2n+1)]

22000+ n+ 1) [2'T(a4n+1)]
2 (2n+2)! (2o +2n+1)
212 +22a+ )n+20—1 n(n—1) (n+1)2n+1)

Qo+ 22— D2a+2nt D2at2n+3) T Qat2—Da+2n+1)  320+2n+1)

8.2 Main results

Let us suppose f"~1) is a continuous function of bounded variation on [a,b] for some
r>1andletw: [a,b] — [0,o0) be some probability density function, that is, an integrable
function satisfying [”w(r)ds = 1.

A. Agli¢ Aljinovi¢ and J. Pecari¢ (in [5]) have proved the following two identities

r —a k—1
flx) = /bw(t)f(t)dt—i—]; % (8.6)
a —1 :

(Bk (Z:Z) - / " w(0)Be (;%‘;) dz) [.f<"">(b) —f”“”(a)}
- [ (=) - [ v (=) ae)ar—0

and

r—1 —a k—
70 = [Mwiosoa+ 3P0 5.7
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Now, using the identities (8.6) i (8.7), we will consider the remainder E, (f) of the
quadrature formula (8.1).

Theorem 8.1 Let us suppose fUV) is a continuous function of bounded variation on
[a,b] for some r > 1. If w: [a,b] — [0,0) is some probability density function, that is, an
integrable function satisfying fabw(t)dt = 1, then the following formulae hold

/ab (f ZAkka LY

i=1

(/abw(twi(; )dr Y 4B, (ij_‘» [f“‘*”(b)—f“*”(a)}

=1

et ( [ wws; (5=t )au= s (= )) ar)

k=1

(b—a)~!

- (8.8)
i!

and

n r—1 —a i—1
/a w70 = 3, At () + 2 b (8.9)

(b a) / (/abw(u)<3*(g_;>_Br<Z:Z>)du
$a (B:f (2) s, (’;f_‘;‘))) 4.

Proof. First, we put x = x; in the identity (8.6). Then multiplying it by A; and summing up
from 1 to n, we obtain identity (8.8).
The proof of formula (8.9) is similar. O

Corollary 8.1 Let us suppose "5~V is a continuous function of bounded variation on
[a,b] for some (m+s) > 1. If w: [a,b] — [0,0) is some probability density function, that
is, an integrable function satisfying |, f w(t)dt = 1, then the following formulae hold

b aj+ml

b
/ ZAkf Xg +z (8.10)

=0 (m+j)!

</abw(,)Bj+m (g) dt — Z’AkBHm (%)) [f(erjfl)(b) _f(m+jfl>(a)}

1

([ (gt S (352) ot
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and

/b z f i b a j+m 1
W Ak )Ck (81 1)
— =0 (m+j)!

( /"w By ;_‘;) I (ij_a)>[f<m+«f1><b>—f<m+-“><a>}
-t (w0 (s (5 = (52 )
_ zAk( mH( - ;)—Bmﬂ (ﬁjj)))dﬂm“”(r).

These formulae are exact for all polynomials of degree < m — 1.

Proof. First, we put r = m+ s in the identity (8.8). Now, if we put f(t) = P(r) (I<m—1)
in the identity (8.8) we get

l

/abw(t)Pl(t)dt _ iAkPl(xk)"_zCi {f(i_n(b) _f(i—l)(a)] ,

k=1 i=1

where C; = (b_la# (fbw(t)B,-(li%‘;)dt—ZZ:lAkB (=) )

a b—a
If formula (8. 8) has to be exact for polynomial P;(¢), m — 1, by induction
we getC; =C) = m—1=0.
So, with substltutlon i = j+ m in formula (8.8) we obtain formula (8.10).
The proof of formula (8.11) is similar. O

Remark 8.1 The formula (8.11) was proved by V.I. Krylov in [79].

Remark 8.2 If we put s = 0 in the identity (8.11), then for m; < m we get

/ab w(t)f(t)dt = k’ilAkf(xk) 8.12)
. %/ab (wa(u) (BLI (%) — By, (g))d”
_ kilAk< B (b ;) B, (ﬁ:j)))df(ml—l)(t).

In the following discussion we assume that f : [a,b] — R has a continuous derivative of
order m+ s, for some m+ s > 1. In this case we will use (8.11) and we define

Fuslt) = [ ) (B:;H (%) By (%)) du
g, ( mts (%) — Bpys (%)) (8.13)
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Theorem 8.2 Let f : [a,b] — R be such that f"+9) is a continuous function on |a,b] and
Fis(t) > 0,t € [a,b]. Then there exists a point | € (a,b) such that

a/+m1

b n —
[t =3 s+ 3 L0 (8.14)
a k=1 Jj=0

(m+ j)!

(/abW(t)Bjer (2 )dt— zAkBj+m (%)) [f(m+j—1>(b) —f(m+j—1>(a)}

. %ﬂmm(n) (/abw(u)Bers(Z “) du—ZAkBm+s (ﬁ:;))

Proof. From the mean value theorem for integrals we have
/ab ZAkf ) + go & ma+/]+m 1
(/abw(t)Bj+m (;}%‘;) di — IZIAkBj+m (%)) |70 () — D @)
- Lo e [ ([ o (B (1) = B ()
(e (i50) e (65) )

/bB* y! dt—/yB dt+/b YL ) dar=0, yeab]
g m+s b—a - g m+s b— m+.\' h—a =V, y a,

we get identity (8.14). O

Remark 8.3 We can rewrite the identity (8.14) as
b n s—1 . )
[ wlf@di= 3 A+ 3,6 [ 0®) — 7D @)+ ) (b - a),
a k=1 j=0

where

(b—a)itm-1 /b t—a i Xp—a
Ci=—-—""7F7"— t)B; —— |dt— ) AiB; .
T (m+ ) OB (5 ,Z‘l Erm\b—a
For f(t) = Py(t) = amx™ + apm_1 X" '+ +ajx+ ap we get

/bw(t)Pm(t)dt = i AP (xz) + Comlay, (b—a).
a k=1
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8.3 Related inequalities

In this section we use formulae established in Corollary 8.1 to prove a number of inequal-
ities using L, norms for 1 < p < eo. These inequalities are generally sharp (in case p = 1
the best possible).

Theorem 8.3 Assume (p7q) is a pair of conjugate exponents, 1 < p,q < oo. Let f:
[a,b] — R be such that f'"*%) € Ly[a,b] for some m+s > 1. Then we have

b n S, (b— aj+m1
/ W) ()i — 3 A~ 3 e
a k=1

=0 m—|—]

( [ w08 (=5 )= 3 i (;%)) [0 0) = 50457 )]

1
< Ku(m,s,p,w) - | F"9, (8.15)

and

b n — b a ,+m 1
[ wsoa—3 a3 L0
a k=1

=0 m—|—]
b r—a Xr—a i o
([eomen (i) o (3)) -
< K (m,s,p,w) - [ £, (8.16)
where
b—a m+s—1 b b . u— —t
Kn(m,S,P,W):W [/a /a W(M)Bm+s (b )du—ZAkBm+s (kaa>

Kimspo = Lo 1

[ w0 (B (32 s ()
- S (2 e (32)) 0]

The constants K, (m,s, p,w) and K\ (m,s,p,w) are sharp for 1 < p < o and the best pos-
sible for p = 1.

Proof. The proof is analogous to the proof of Theorem 2.2. O
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8.4 Chebyshev-Gauss formulae of the first kind
of Euler type

1

If the weight function is w(zr) = T t € [—1,1], we have Chebyshev-Gauss formulae
T —t
given by
AY
dt =1 Af(x) + En(f), (8.17)
[iimm=r2
where |
Ay = — k= 17 )1,
n

and x; are zeros of Chebyshev polynomials of the first kind defined as
T, (x) = cos (narccos (x)) .

T, (x) has exactly n distinct zeros, all of which lie in the interval [—1, 1] and

Xy, = COs (W) .

Error of approximation formula (8.17) is given by
T n
f(2 )(77)7 775(_171)~

En(f):m

In the next theorem we establish Chebyshev-Gauss formulae of the first kind of Euler type
which are exact for all polynomials of degree < m — 1.

Theorem 8.4 Let us suppose £V is a continuous function of bounded variation on
[—1,1] for some (m+s) > 1. Then the following formulae hold

/1 f( _ i TS (f.n) + 2mtsl / GSG (1, m)df" (1) (8.18)
—-1vV1— s (m+s)! e '

and
Lf@) T < CG1 2mts—l CGl
dr == x) 4+ TECL /Fm‘ n)d s
/_1 V1—12 nkg‘lf( ¥ sl (m+s)! + Jaf ((8) 9
where

2f+m ! t+1
CGl
-5 25 (a5

J=

- XY B (xk; 1)) D) = D (-
k=1
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cG1( X —t L . [u—t
Gers ZBers( >_/_1 ﬁBers T du

T —t xp+1
anfsl = _kX,( m+s< ) >_Bm+5< ) ))
1 1 » u—t u+1
/—1 V1—u? (BmH( 2 >_Bm+s< 2 ))du

These formulae are exact for all polynomials of degree < m — 1.

and

N

Proof. This is a special case of Corollary 8.1 fora=—1, b =1, w(t) =

A =1 O

Theorem 8.5 Assume (p,q) is a pair of conjugate exponents, 1 < p,q < oo. Let
£ [=1,1] = R be such that f""+) € L,[~1,1] for some m+s > 1. Then we have

0 !
o TCGI )| < nk, <m757 , ) || £(m+s) -
/l \/— n kzlf m-+s f ) = p nm ||f H[
(8.20)
and
L 1) T 1 .
dr — — xx) =TS (f,n)| < mK; <m7s7 77) A .
/;1 m nkg,lf( k) —+ l(f ) = n p nm Hf ||P
(8.21)
1 * 1
The constants K, (m,s7p7 W) and K, <m7s,p, W) are sharp for 1 < p < oo

and the best possible for p = 1.

. . . . . . 1 . 1
ID’roof. This is a special case of Theorem 8.3 fora=—1,b=1, w(t) = py and A = .

Remark 8.4 For n =1 and x; = 0 we get one-point Chebyshev-Gauss formulae of the
first kind of Euler type

1 omts—1 1 ]
/ %(_)t di = mf(0) + Tos (£ )+ oy / Gyt df ()

and

i 7CG1 2l cG1( (m+s—1)
[ = @+ 78 )+ s [ ESE 10 ),

Especially for m =1 and s = 0 we get

. .

—Z —arcsint, —1 <t <0
GCGIZI_FCGIZI— 2 ; ) >t > Y,
Il i (1) T —arcsinz, 0<r<l.
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Now, inequalities (8.20) and (8.21) reduce to

e nf()‘ & (10— =) 17,

and

0N ‘ ( ;> /
‘/_1 mdf ﬂ:f(o) gﬂ:Kl 17071’7 7[\/?1‘2 ||f ||[77

where K 1ooo— 1ooo— =2 K (1,02, ——) =
1-12 1-12 K 7\ 1-12

K*(1,0,2, —1 = ¥2n=d o LSU02 ynq Ky (1,0,1 =K*(1,0,1, ——
1(777nm) T T an 1 77\/: 1 777” 2

The first and third constant have also been obtained in [77].
If the presumptions of the Theorem 8.2 hold, for m = 2 and s = 0 we get

o L _
/. Sl = O+ L (), nE (L), (822)

which is the well known one-point Chebyshev-Gauss formula of the first kind.

Remark 8.5 Forn=2, x| = —@ and x; = \/— we get two-point Chebyshev-Gauss for-
mulae of the first kind of Euler type

i0) n V2 V2
LS9

A e (m+s—1)
+m/ Gyis(t,2)df (t)

Q) n V2 V2
/, NI lf (‘7) +f<7>
i omts 1 /- F”C;_fsl ([72)df(m+s_l)(t)'

(m+s)!
Especially, for m; < 4 and s = 0 inequalities (8.20) and (8.21) reduce to

0! m V2 V2
e s (3) ()]

1
<1k [ my,0, p, ——= ) - |L£™)],,
> 2( 1 14 nm) ||f ||[7

a0 V2 V2
Lt sl(2) ()

1
< k3 ( m1,0,p, ——— ) - ||,
< 2( 0 *1-:2) £

+ T (f,2)

and

Cfxl 1(f7 )
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~ 0 0345377

W
\'O
—

K>

where
K> (170700,7r 11t2>:K§‘ <I,O,<>o77r 1“2) 222, 0828427
K, (1 0,2, 1“2> =K; (1,0,2,7r 1“2> — ”\[2—4%0466;495’
K> (1,0,1,n 11_12> =K; (1,0,1,n 11_t2> =1,
K> (2,0,oo, 1_ >=K§‘ (270700 1 ) 038151,
n\/1-12 v/ 1-12

K> (2,072,7r 1“2> =K; (270727 ”\/11_> ~ 011295
K> (2,0,1,” 1112>:K; (270’1’”\/11_> 0151746
K> (3,0,00, m/11_7> —K; (370700 - 11 z2) 00371021

(

&

w
=
Ql\.)
3
=
|
S
N—
Il
33
N N
w
=
»
3
- —_
“ﬁa

I
5

) 0. 047221?

112

N
|

4
I\)

N

The constants K, (2 0,00, ) and K, (2 0, l7 - 2) are better than the con-
t

[

11
stants obtained in [77].
If the presumptions of the Theorem 8.2 hold, for m =4 and s = 0 we get

Lof) n V2 V2
[t sl (5) (%)

which is the well known two-point Chebyshev-Gauss formula of the first kind.

+@f ( )7 776(—171)7 (823)

Remark 8.6 Forn =3, x| = —?,xz =0and x3 = ‘f we get three-point Chebyshev-
Gauss formulae of the first kind of Euler type

/ J%dr -z lf (—?) )+ f (?)

sl CGl1 (m+s—1)
+(m—|—s) / Gm+s(t73)df (t)

+ IS0 (f.3)

and

rgfsl 1(.f7 )

/_11 %dr =2 [f (—?) +1(0)+ f (?)

2m+‘ ' CGl (m+s—1)
e /Fm+st3df =1 (p).
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Especially, for m; < 6 and s = 0 inequalities (8.20) and (8.21) reduce to

SR

1
1—1

T

7'[[(3 <m1707p7

<

)1

<m1707p7
T

1—1¢

*
3

<nK

where

- 'S IN - - % - —/7 5 Q
% © & o = a S -~ o & &
D - S o Nej © Va) [N} — 0 0 o
A ) (S = - 2 2 2 o & Sk e Ik
als g Nl SR = 3& Kr Zr 2 I Qe 8 S =
] |k =] < e S = = S o =3 S S S
S < N S < < S < < = < < S < <
2 =) — |\© 2 = =) 2 = = 2 =) S 2 S S
L I S S SR
o~ NN o NN o NN a7 NN o~ NN
I L L I N L I N U ] RN N ] L N
—l— | | —l— | | —|— | | —l— | | — (= | |
= =~ == == = == )= == = ==
R R R R R
- R R - R R - R R - R R - R R
§ & = 8§ a4 = § a4 o 8 a4 o 8N =

< o o < =) o < o = < o o < = o

— — = N S BN n en T <+ <+ " woon
N NN N N AN N N

X *on *en [ *en *on T *en *en ¥ *en *en ¥ *on *en
XK K XK K X K K X K XK K K X

l [ [ l [ [ l [ [ I [ [ I [ [
TN~ N~ N~ /T N/ —

N I I RS o a X o o L I a % I a
, T T , T T , T T | T T | T T

— — — — —
| R — | — == — — — —|l— — ==

— — — — — — — — —

& S S & 9 S & 9 S & 9 9 & S 9

8§ o = 8§ o = 8 ol = 8 o — 8 o o~
S & o o S o o o © S 9 <© 9 © <o o <o
— — — (@\] N N o o o <t <t <t e} e} e}
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MO X X X X X X XM KX X X X ¥ x
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The constants for p = e and p = 1 are obtained in [78].
If the presumptions of Theorem 8.2 hold, for m = 6 and s = 0 we get

[tz (03) rrons (5] [ rparton o0

which is the well known three-point Chebyshev-Gauss formula of the first kind.

8.5 Chebyshev-Gauss formulae of the second kind
of Euler type

If the weight function is w(z) = 71;’2, t € [—1,1], we have Chebyshev-Gauss formulae
given by
1 o
| V=20 = T Y At 5+ Eal), (8.25)
- k=1
where

2 km
A= k=1,...
k— +1 sin ( +1>) ) )1,

x;. are zeros of Chebyshev polynomials of the second kind defined as

sin[(n+ 1)arccos (x)]

Un (%) = — GnTarccos (4]

U, (x) has exactly n distinct zeros, all of which lie in the interval [—1, 1] and

X = COS k_rc
k= n+1)°

Error of approximation formula (8.25) is given by

Ed(f) = sz fP0(n), me(=1,1).

22n+1 (2n) |

In the next theorem we establish Chebyshev-Gauss formulae of the second kind of Euler
type which are exact for all polynomials of degree < m — 1.

Theorem 8.6 Let us suppose f (m+s=1) s a continuous function of bounded variation on
[—1,1] for some (m+s) > 1. Then the following formulae hold

1 k
IR lesinz(ﬁ’fl)f( 0+ T(fm)

2m+ﬂ ! CG2 m+s—1)
e / GSP2 (1, myd ) 1) (8.26)
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and
1
le/l—tzf(t) = —Z sin ( )f( W)+ T (fon)
2m+s 1 G2 ( m+s—1)
T / FS92 (1, n)d fomts=1)p), (8.27)
where
CcG2 2/+m-l \/ t+1
Tm+s (fvn)_jzo m+] / l—l‘B,er —— | dt

k 1 . .
_ n+1 sz (nf1>B/+m (xk;‘ )) [f(m+j—l)(1)—f(m+j—1)(_1)]7
iem =y S (5 ) o (57) = [ VI8 (15
m+s = n_|_1 m+s m-+s

and
R 2 B (1) s (35 e (557
) e (5

These formulae are exact for all polynomials of degree < m — 1.

2y/1-12

Proof. This is a special case of Corollary 8.1 for a = —1, b =1, w(t) = =— and
A = 2o sin? (450 O
nt+1 n+l1/°

Theorem 8.7 Assume (p,q) is a pair of conjugate exponents, 1 < p,q < oo. Let
f1[=1,1] = R be such that f"+) € L,[—1,1] for some m+s > 1. Then we have

1 T <« .. k¢ cG2
'/_1 V l—lzf(l)dt—mkg‘lsn’l (m) f( ) TmJﬂ (f)n)

T 2V1—1¢2 s
< =K, (m,s,p,T> S Fakasd[P (8.28)

2

and

1 noo k
/_1 V1—=12f(t)dt — Fnlk;lsmz (Fnl) fa) =Ty (f.n)

. 2V1—1? s
Kn (mvsvva> : ||f( Jﬁ)Hp. (829)

<

S
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The constants K, | m,s, p, 2y ) and K} (m S, P, 2y ) are sharp for 1 < p <eoand
the best possible for p = 1.

Proof. This is a special case of Theorem 8.3 fora = —1, b =1, w(t) = 2—V71;t2 and
Ak - 21 Sll’l2 (nlii’-rl) =

Remark 8.7 Forn =1 and x; = 0 we get one-point Chebyshev-Gauss formulae of second
kind of Euler type

1 T m+s—1 1
_ 72 _ = CG2 CG2 (m+s—1)
[ VR = SO+ TR+ oy [ B D)
and
m+s—1
/\/1—t2f t)dt = Zf(0)+ TSS9 | (f, 2+ /F,,ff?rldﬂmﬂ—l)(t).
m S

Specially form = 1 and s = 0 we get

_r_ 1 _ 1<t <
Glccz(t,l):FICGZ(t7l):{ I V1 t+arcsmt) 1<t <0,

Now, inequalities (8.28) and (8.29) reduce to
T 2¢/1—12
‘/ VI=2f (-2 )' < ki (17071777) AF N

and
21 —12
’/ V1—=12f(1) dt——f )‘< —K7 (1,0,17,T>,”f/”p7
where & (1000 250) < i (100 25) = (102,24 -
K (10227 ) ~ 12w (101,27 ) <k (104,24 -

The first and the third constant have also been obtained in [77].
If the presumptions of the Theorem 8.2 hold, for m =2 and s = 0 we get

/ VI—2f () 0)+12" (M), me(-11), (8.30)

which is the well known one-point ChebysheV-Gauss formula of the second kind.

Remark 8.8 Forn=2, x; = —% and x; = % we get two-point Chebyshev-Gauss formulae
of the second kind of Euler type

Lo ()

m+\ 1
+TCG2( / GCG2 t 2 df<m+x71)(t)

m-+s m-+s
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and

/i\/ffﬁﬂOdﬁzg[f(—%)+f<%)] TSG2 (£.2)+ Eff;i/'Eﬁ?tszmﬂ Dy,

(m+s)
Specially for m; < 4 and s = 0 inequalities (8.28) and (8.29) reduce to

'/ VI-2f (1) dt——{ (——)+f( )H< K2<m1,o,p,E>.||f<ml>|p’

T
v, 1 1 2V/1—12
’/1 1—t2f(f)df—§ [f <—§> +f<§>} ‘ < gKS‘ <m1707p7Tt> O,
where
K> (1 0,00, 2—“’2> =K} (170700 2y 1= t2) 0741144

~ 0 643534

) 0. 95661

=

>
(3]

N\ N Y e o NS N N N
o
o

2 (1,02, 2 >:K§‘ 1,0,2, 2122

(
1,0,1,2\/_> :K;(

K> 1,0,1, \/_

K> (2,0,00, 2\/_> =K} (2’0700, t2) 0109420
2m> =K; (270727 2\/W> 009681%2

K> 12,0,1, 2m> =K; (270717 2m> 0. 1259202

K> | 3,0, 00, 2” ) =K; (3,0,00 t2) ~ 0.02;439’
K> ( 3,0,2, 2\/ ) =K (370,2, 2¢/1- ) ~ 0.0271189547
K> (3,0,1, 2= lz) (3 0,1, 2= 2 ~ 00273572

The constants K, (1 0,00, 2V ) (l 0,1, 2V ) and K, (2707172V71[’2> have

also been obtained in [77].
If the presumptions of the Theorem 8.2 hold, for m =4 and s = 0 we get

/IIMf(l)dtzg|:f<_%)+f<%)]+—f (), ne(=11), (@831

768

which is the well known two-point Chebyshev-Gauss formula of the second kind.

Remark 8.9 Forn =3, x| = —@,xz =0and x3 = @ we get three-point Chebyshev-
Gauss formulae of second kind of Euler type

Lllvl—tz.f(t)dt = % [f <—£> +21(0)+f (?)

5 +T59(1.3)

m+s
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2m+s 1
T / GSP(1.3)dr" (1)

(2) s ()]

m+s—1 1
T ),
m-=s).:

and

+ T80 (f:3)

/jl V1I=12f(t)dt =

T
8
2

Specially for m; < 6 and s = 0 inequalities (8.28) and (8.29) reduce to

‘/11 Vimera-T |y (—?) +2f<0)+f<§>] '

2v/1—1¢2 m
K3 <m1707P77> : Hf< I)HP7

/(03) ()]

T, 2v1—1¢2
S §K3 <m1707p7T> ’ Hf(ml)”l”

<

S

24/1-12 2y/1-12 0.53833976
1(3 1707007 T ) :K;; (170’00’ T ) ~ ’

n

K31 1,0,2 2“’2> =Kj (1 0.2.2 112) ~ 0478324
s Uy &y 9y &y T N

2
—
o
—
[3e)
= 3
j
NI\)

=

T

0. o0 2\/1—t2) ~ 0053417328
T b

s
™)

T

24/1-12 '\ __ 0.0493938

= ):K;‘ (2,0,2, ” >N ,
24/1-12 24/1-12 0.111306298

1 ):Ké‘ (2,0,17 )% - ,

/s

V12 2\/1-12 0.007288942
K3 3707007 T ) = K; (3707007 - ) ~ - s
_ 42 )
K3 (3,0,2, 2 ) —k; (370727 212 ) o 00067384

~ 0.00925848
~ P ,

7
24/ 112 24/ 112 001123902
4707007 ) = Kék (4707007 ) ~ 000 390 9

=

>
(98]

/\/—\/—\/\/I\)\/-\/-\/—\/—\/-\
=)

w
=
—
3]
T
s
N~
Il
£
7 N
w
=
—
3]
T
s
N~

X

T
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n

24/1-12\ __ 0.001835586
:K§(4,0,1, = >~ - R

2¢/1-12\ __ 0.001081414
:ng (470727 = ) =~ R

VAL 2112\ __ 0.00022568
1(3 5’0’00’ T ) _K; (5707°°7 3 ) ~ 3 5
2y _ 2112\ __ 0.000218644
K3 570727 T ) _K; (570727 T ~ T s
K3 (5,0,1, 2 71["2> =K; (5,0,1, 2\/71[—z2> ~ 0.0003[80976.

The constants for p = e and p = 1 were obtained in [78].
If the presumptions of the Theorem 8.2 hold, for m = 6 and s = 0 we get

fvisron-2 [ (-2) ars(2)

2 2

T
92160

+ Om), 832

which is the well known three-point Chebyshev-Gauss formula of the second kind.



Addendum

lyengar’s inequality

8.5.1 Weighted generalizations of lyengar type inequalities
In 1938. K.S.K.Iyengar proved the following inequality (see [74]):
Theorem 8.8 Let [ be a differentiable function on [a,b] and |f'(x)| < M. Then

Lo fla)+f®)| _ Mb—a) (f(b)~f(a)’

’b—a./a Jl)dx == ’S 4 aM(b-a) M

Inequality (1) can be written in a form:
‘A(f;l)—f(“);f(b)‘<M(b4_“)(1—q2)7 @

where jb 5
w(x) f(x)dx

A(f;w) =4 : 3
(fsw) P 3)

and )

In [89], G.Milovanovié generalized Theorem 8.8. He proved the following:

Theorem 8.9 Let f be such that f € Lipy ', let w be an integrable function on (a,b) and
let there exist A > 1 such that 0 < ¢ < w(x) < Ac for each x € [a,b]. Then

Mb—a) (A+q)(1-¢°)+2(2—1)q
2 2A(14+q)— (A —1)(1+4?)

where A(f;w) and q are defined by (3) and (4), respectively.

A(fw) — 5 (f(a) + 7(0))| < ®

IRecall that for a function f defined on an interval [a,b], we write f € Lipy(cr) with M >0and 0 < ax < 1
and say that f satisfies a Lipschitz condition of order o with the Lipschitz constant M, if

|[f(t2) — f(t1)] < M|ty —11|%, for each t1.,1; € [a,b].

For notational convenience, the class Lipy (1) is denoted simply Lipyy.

293
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Upon taking w(x) = 1(= A = 1), (5) reduces to (2).
In [90], G.V.Milovanovi¢ and J.Pecari¢ proved another generalization of Iyengar’s in-
equality.

Theorem 8.10 Let function f : [a,b] — R satisfy the following conditions:

1° = e Lipy(a)
2° fWa)=f®B)=0, k=1,2,....n—1 (neN).

Then we have

o [ a5 @+ 1)

—q)otn—l1
e G (YO S

‘ 1

where { is the real root of the equation

Coﬂrnfl _ (1 _ C)tﬁrn*l =q,

(Oc—l—n—l)(”’l) (n)
‘]:W|f(b)—f(a)|7 p"=plp—1)...(p—n+1). (N
Taking & = 1 and n = 1 in (6), produces Iyengar’s inequality (1).
For oo = 1 and n = 2, inequality (6) reduces to

M(b—a)? 1(M) ®

1 b 1
[ oL sty + oy < ME L (1O

b—a

This inequality is called the Milovanovi¢ - Pecari¢ inequality.
The weighted version of Theorem 8.10 was given in [57] by Franji¢, Pecari¢ and Peri¢.

Theorem 8.11 Let function f : [a,b] — R satisfy the following conditions:
1° fi e Lipy(a)
2 fO@)=fRb)=0, k=1,2,....n—1 (neN).
Let w be a non-negative and integrable function on [a,b]. Then we have

b

Fw(as— 3(7ta) + 76) [ o

g 2
i3 [ 150) 1@~ G + P9I 1 (8) — Fla)+ G — FOo i
<3 ([ (o 6)wtnas 1 [ (100 0~ 609+ )

+f(b) ~ (@) + G(x) ~ F ()] w(x)dx> ©)
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where
(b _ x)oc-'rn—l

Flxy=M (@+n—1)r D’

_ No+n—1
(x—a)*t L G- (10)

(o4n—1)0-1

Proof. From condition 1° it follows:

~M(x—a)* < V() — 7D (a) < M(x—a)",
~M(b—x)* < fD(b) — £ () < M(b - x)°.

Using condition 2° and (n — 1)-times successive integration of these two inequalities
on (a,x) and (x,b), respectively, we get

fla) - O < ) < e o D
(a+n—1)n=1) (OH—n— 1)(n=1)’
—x o+n—1 —x o+n—1

Introducing notation from (10), we conclude
max {f(a) — F(x), f(b) —G(x)} < f(x) <min{f(a) + F(x), f(b) +G(x)}. (12)
It is easy to check that for each ¢, 3 € R we have:
min{o, B} = 3(c+ B —al), max{epy=3(@tptp-o). 13

Applying (13) to (12) gives

3 (—F0) = G0 +176) ~ 60— @)+ ) < 1) — 5 (£(@) +£0)

2
1
<5 (FO+6(0) = 1£(6) + G — @~ F()]).  (14)
Now, multiply (14) by w(x) and then integrate over (a,b). We get:

| (Fe 6t >) avt 3 [170)~ 1l@) ~ 6 + o

b
< [ st 1 (1@ +5®) [ wias 15)
SEL F()+G M——/Lf G(x) — F(x) | w(x)dx.
Applying
a<p<ce|p- A A (16)

to (15) produces (9). Thus, the proof is complete. O
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Corollary 8.2 Let the assumptions of Theorem 8.11 be valid. Let function w be symmetric

about the mid-point “”’ , i.e. let w(x) =w(a+ b —x) for every x € |a, “”’] Then we have
b
dx — JM/ w(x)dx (17)
b
< / F(x)w(x)dx — —/ 1£(b) G(x) — F(x)|w(x)dx
where F(x) and G(x) are defined by (10).
Proof. First, note that
B (a_'_b_x_a)oh‘rn*l B
Flatb=x=M (a+n—1)=1 Gx),
B (b_a_b+x)a+iz—l -
Gla+b—x)=M (@ tn—1)0D =F(x). (18)

Now, using the substitution x = a + b — ¢, the symmetric-property of function w, together
with (18), from the left-hand side of (15) we get

—% ’ (F(x) + G(x)) w(x)dx + % / ’ |£(b) — f(a) — G(x) + F(x)|w(x)dx

/F X)dx+ = /|f —F()+G()|wlt)dt

which is equal to the negative value of the right-hand side of (15). Therefore, (17) is
proved. O
Remark 8.10 Taking w(x) = I in Corollary 8.2, produces Theorem 8.10.

For the proof of the next corollary (which generalizes Theorem 8.9), we need the fol-
lowing result (cf. [101]).

Theorem 8.12 Let f be an integrable function on (a,b) and m < f(x) <M for each
€ (a,b). Let w be an integrable function on (a,b) and let there exist A > 1 such that
0 < c <w(x) <Acforeachx € [a,b]. Then

Am(M — ) +M(p —m) m(M — )+ AM(p —m)
AM =)+ (n—m) (M —p)+A(p—m)

where A(f,w) is defined by (3) and 1 = ﬁfabf(t)dt

<A(fiw) <

19)

Corollary 8.3 Let the assumptions of Corollary 8.2 be valid and let there exist A > 1
such that 0 < ¢ < w(x) < Ac for each x € [a,b]. Then

2
. F) { (¢+n)(1-A)+A20 12 (g+1)u
2 [(a+n) 02— Q) 42014 —1)  F(b)A(g+1)—(A—Du

|A<f;w> L) +f<b>>| 0)
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where F(x) and G(x) are defined in (10), = W,

{ is the real root of the equation o=l (1= )*l =g,
2F (b

and ==aﬁ%(I—C“W*+gﬂ+%a+n—U@C—UD~

Proof. We start from (17). Using the symmetric property of function w and (18), write it
in a form

X)dx — M/ w(x)dx

< %/[ 09+ GLwx)ax— 2 [ 17(8) ~ fla) + 60— Flwiriax
and then divide it by fa w(x)dx. It follows
'A(f;w) fa 11t >’
_ LFW +Gwxdx 1 [21£(b) ~ f(a) + G(x) = FW)wlx)dx
m 2 Jif wix)dx 2 Ji wix)dx
Set
5 [P +Gw(dx
b
[ w(x)dx
We have
“Zi(f) <F(0)+G) <F(b), x€ab]
and 1 b 2F (b
w= b_a/a (F(x) +G(x))dx = aiz

Now we can apply (the right side of) (19). We get:

F(b) [t (1= 525) T2 (55 — o)
B <
B (1 - OH-H) +A (Ot-zi-n 20‘4Jr )
B (oc+n)(1—24)+A20 =12
- F(b) (a—|—n)(2°‘+”*2—l)+20‘+”71(/1—1)'

21

Similarly, for
J21f(b) = f(a) + G(x) = F(x)|w(x)dx
J wix)dx

C =

applying the left side of (19) we get

(£ () = f(a)| + F(b)) u _ F(b)(g+1u 22)

CZ AW — @+ FB) — (- Di  F@)Ala+ 1) — (A — D
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Namely, we have

0<[f(b) = fla) +G(x) = F(x)| < |f(b) — fla)| + F(b) = F(b)(1 +q)
and

1 b

|f(b) = f(a) + G(x) — F(x)|dx

(1 _ t)a+n+1 _ ta+n+1 } dr.

Il
k!
S
o\’_
Sy
+

From (11) it follows that |g| < 1. On the other hand, function
h(l) _ Z‘oc-',-n+l _ (1 _t)oc-&-n+l

is strictly increasing and #(0) = —1, h(1) = 1. Therefrom we conclude there exists a real
zero § €[0,1] of the integrand. Simple calculation now gives

2F (b) 1,4

= (1-¢*m 12 —1)(2¢-1)]).

=2 (1= A (- D26 - 1)

Our statement now follows from (21) and (22). O

Remark 8.11 Taking w(x) = 1 in Corollary 8.3, produces Theorem 8.10 again.

Remark 8.12 It should be noted that the first expression on the right side of (20) is of
the indeterminate form (8) for n =1 and o = 1, but the limit of that expression, as o +n
approaches 2, is equal to 1, so this Corollary really is a generalization of Theorem 8.9.

8.5.2 Improvements of the Milovanovi¢ - Pecari¢ inequality

Yet another generalization of Iyengar’s inequality was given in [68] by A.Guessab and
G.Schmeisser. They studied, for each real number x € [a, %(a +b)], the more general
quadrature formula

1 b 1 .
= [ £0dr =5 (1) + fla+b=0)+ E(:0), 23)

with E(f;x) being the remainder. Before their main result is stated, a remark is needed.

Remark 8.13 Let f € Lipy and suppose that the graph of f passes through the point
(£,m). Then from

|f(6) = () <Mt = &|

it follows

@S, m1) =N =Mt =& < f(t) <n+Mli = 5| = w(§,n:1). (24)
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;1) themselves belong to Lipy. Moreover, if we know

The functions @(&,n;¢) and w(&, 13t
©) on the graph of f, then the estimate (24) can be

k POintS (517171)7 (527772)7 ceey ( ks
refined. In fact, defining

n
n
o(t) = lrgjgkwénm;t) and  y(t):= lgl}gkw(éf,nj;t)

we have
e(t) < f(t) < wyl(r)
and again @,y € Lipy,.

Theorem 8.13 Let f be a function defined on [a,b] and belonging to Lipy. Then, for
each x € [a, X (a+ b)), the remainder in (23) satisfies:

(25)

E(fr)] < %4' (2x—2a)*+ (a+b—2x)* (f(a+b—x)—f(x))2'

b—a 4M(b —a)

This inequality is sharp for each admissible x. Equality is attained if and only if f =
EMf.(6;-)+c (ceR)and

x—t a<t<x
£u(831) = t—x, xgtg%(a+b+5)
AT a+b—x—1+9, %(a+b+5)§t§a+b—x
t—a—b+x+6,a+b—x<r<b,

(26)

where 6 € R is any real number satisfying |6| < a+ b —2x.

Proof. Let u,v € R. Denote by .%y(u,v) the class of all functions which belong to Lipy
on [a,b] and satisty f(x) =u and f(a+ b —x) = v. In view of Remark 8.13 with k = 2, we
have

max{u — M|t —x|,v— M|t —a—Db+x|}
< f(t) <min{u+ M|t —x|,v+ M|t —a—b+x|}.

To shorten notation put

max{@; (1), @2(1)} < (1) < min{y (2), ya (1)}
The assumption f € Lipy, yields
lu—v| <M|2x—a—b|=M(a+b—2x)
and therefrom

—M(a+b—2x)—M|t—x|+ M|t —a—b+x|
u—M|t—x|—v+M|t—a—b+x|

<
< M(a+b—2x)—Ml|t—x|+M|t—a—b+x|
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The middle part is equal to @ () — @2(¢), so

01(t) > @a(1), t € [a7 % <a+b+uﬁj[v>} ,

V) , b] .
M
Further, note that

_ 1 _
v—M|t—a—b+x|=u—Mf, (%;t), X€E [5 <a+b+u v) ,b]

while

1

01(1) < (1), 1 € [5 (a+b+”

M

where f is as in (26).
‘We conclude that

u—vy

o0) = max(p1 (). 02()) =u—M7. (5

;t) , t € la,b]

and analogously,

vV—Uu

(o) = min{ya (1), ya ()} = ut M. (73) re b,

Thus, we have proved that for every f € %y (u,v) we have ¢(r) < f(¢) < y(r). Func-
tions @ and y are both in Fyy(u,v).

Now
B = |5 [ a3
T b—ala 2
1 b u+v
< sup / g(t)dr —
geFy(uw) b—ala 2
= max{|E(@;x),|E(y:x)|}.
and also
[E(@:x)| = [E(y:x)]
_ M[(2x—2a)*+ (a+b—2x)?] B (u—v)?
B 4(b—a) 4M(b—a)
which proves (25), as well as the sharpness. O

Remark 8.14 Note that from Theorem 8.13 for x = a, we obtain the conclusion of The-
orem 8.8 under a weaker hypothesis.
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Next, we give an alternative proof of Theorem 8.13 which was published in [57] by
I.Franji¢, J.Pecari¢ and I.Perié. First, notice that

b—a
2

= (x—a)f(x)+

(f(x)+ fla+b—x)) (27)
a+b—2x

5 @)+ flatb—x))+(x—a)fla+b—x).

The idea is to apply Ostrowski’s inequality to the first and the last expression on the right-
hand side and Iyengar’s inequality to the middle one.

The well-known Ostrowski’s inequality (cf. [96]) states that for a differentiable func-
tion f on (a,b) such that |f'(x)| <M for each x € (a,b), we have

x—atb :
’bia/abf(x)dx—f(x) <M(b—a) <%+ﬁ>, x € (a,b) (28)
Now,

o—aE(0l=| [ 10ar- 222 )+ ftatn-)
< |- - [ fwa
2w ptarr—) - [ rwar

b
+ (x—a)f(a+b—x)—/a+b_xf(t)dt

1 (x—“—“)2
< M(x—a)2 (Z—'_ﬁ)
+ Slab-207 - o (flatb—x) ~ ()
1 (a+b_x_a+b—x+b)2
+ M(b—a—b+x)2<z+ (b—a—b+§c)2 )
M (2x—2a)+(a+b—2x)* (fla+b—x)—f(x))?
T4 b—a B 4M(b—a)
which is exactly (25).

Applying this technique of proof, the same authors gave the weighted generalization of
the inequality (25) for the class of functions whose derivatives are in Lipys(cor). Of course,
the weighted generalization of Ostrowski’s inequality is needed in this case. It was given
by Mati¢, Pecari¢ and Ujevi¢ in [85]:

Theorem 8.14 Assume f) exists for each t € [a,b] while n € NU{0}. Ler f) ¢
Lipy (@) and let w be a non-negative and integrable function on [a,b]. Then, for x € [a,b],
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we have

- Z 10x) / (¢~ xYw(e)d

j!

o+1)
- oc+++1 / = 29

where T is the standard Gamma function.

For w(x) = 1, (29) reduces to

[ "0 [ — X~ (a—x) 1]
< Fﬂgfnilz)) [(b—x)t+ (x—a)t!]. (30)

Now everything is set for:
Theorem 8.15 Let function f : [a,b] — R satisfy the following conditions:

19 sV e Lipy(a)
2° f(k>(x) :f(k>(a+b—x):07 X € [aflzib} , k=1,2,....n—
=w(a+b—x),

1.

Let w be a non-negative and integrable function on [a,b] and such that w(x)
for each x € [ “+b] Then we have

b
/f dt—— ()—|—f(a—|—b—x))/a w(r)dt
- /x““’ ’ () ()dt—% /a+b_x|f(a+b %) = () + G(r) (1) w(o)dr

Ry / e = (31)
where
(t_x)oc-'rn—l (a—i—b—x—t)“"‘”_l
O =M e O = e

Proof. We start from the left side of (31)
b
/f dt—— ()+f(a+b—x))/ w(t)dt

a+b—x

1=

fwlayar - l<f(x>+f<a+b—x>> [

+ / Fowndi+ [ fewe)dr

a-+b—x

~ S+ flatb- x))(/{jw(t)dt—k/aibxw(t)dt) .
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Function w is symmetric about the midpoint so we have

/:w(t)dt = /aibxw(t)dt.

Therefore
a-+b—x

I = /xa+be(t)w(t)dt—%(f(x)+f(a+b—x))/ w(t)dt

X

s [roworas [ gm0+ st b -2) [wioa

<[ s - 2o s pasn—y [ wtra
| [ rowoan =) [Cwiar
+ /aib_xf(t)w(t)dt—f(a—i—b—x) /b w(t)dt|.

a+b—x

Now, apply the weighted generalization of Iyengar’s inequality (17) to the first expression
on the right side and the weighted generalization of Ostrowski’s inequality (29) to the
second and the third. It follows

< /“*’” Flaw(o)de & /a+b7x|f(a+b—x)—f(x)+G(t)—F(t)|W(’)d’
1

y e+l a-tn—

MG [l e

Fla+1) atn-
+Mm/+b x|t—(a+b—x)| + 1W(l‘)dl.

Using the symmetric property of function w, it is easy to check that the second and the
third expression on the right side are equal and thus inequality (31) is proved. O

Corollary 8.4 Let function f satisfy the assumptions of Theorem 8.15. Then we have

M
(b—a)(o+n)m
+ (a+b—2x)%H (cw"*l - g [+ (otn—1)(2¢ - 1)])}

|E(f;x)] < 2(x—a)**™" (32)

where { is defined as in Theorem 8.10.

Proof. Statement follows from Theorem 8.15 by taking w(x) = 1. It can, of course, be
proved directly, using the same idea and applying inequalities (6) and (30). ]

Remark 8.15 Taking n =1 and o = 1 in Corollary 8.4 produces Theorem 8.13.
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If we weaken the condition f"~1) ¢ Lipy (o) to f ("=1) being continuous and satisfying
F V@) = V) < Miln—nl® nn € (o]
1F0 V() = F V()| < Moty — 1%, 11,10 € [x,a+b—x] (33)

() — f V() < Mslt —nl|®, f,n € la+b—x,b]

by an analogous proof we would get:

b
/f t——(f(x)+f(a+b—x))/a w()dr

< [ Rt 5 [T ak b0 - 70+ 6l0) ~ FO(ar

M1+M3 e
e, e (34
where
_ y\a+n—1 v o4n—1
F(t) =M, (t—x) 7G(t):M2(a+b x—1) (35)

(¢ +n—1)=1 (o¢+n—1)-1

Inequality (31) follows upon taking M; = M, = M3 and using concavity of function t* for
o€ (0,1].

Another interesting result from [68] is the following theorem.
Theorem 8.16 Ler f be a differentiable function defined on |a,b] with f' € Lipy. Let

x € [a,%$2), and suppose that f'(x) = f'(a+b—x) = 0. Then the remainder in (23)
satisfies

1 |M M (fla+b—x)—f(x))
E(f:x)] < —(x—a)+ b—2x 36
Bl s g | g w—ar + 550 y- 2M(a+b—2x) (36)
The inequality is sharp for each x € [ ) Equality is attained for
f) = :I:Mff;()dt—l—cwztthRand
x—t, aStS%(a—i—b—i—Zx)—S::xl
fit):=q 1= %(a+b)+28, x; <t < 1Ba+3b—2x)—6=:x;

a+b—x—t, X <t<b,
where & € R is any real number satisfying |6| < t(a+b—2x).

Proof. Denote by .%'y(A) the class of all functions which are differentiable on [a, b] with
f’ belonging Lipy; and which satsify

fla+b—x)—f(x)=A and fx)=f(a+b—x)=0.
We want to determine for each x € [a, #) the supremum od |E(f;x)| over all f €
Z'u(A). Using integration by parts, it is easy to check the following formula

B = 5 [k
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where
a—t, a<t<x
K(t):={ %(a+b)—t,x<t<a+b—x
b—t, a+b—x<t<h.
Applying this yields
sup |E(f;x)| =81+ 52+ 83, (37)
F€F (M)
where
1

S1 = sup
reFua)1b—a

1 a+b—x 1
Sy = sup (—(a+b)—t> f()ar
reFu@)|b—als :

)

[ a-nrwa

)

S

1 b
S; = sup / (b—1)f'(0)dt
reF @) |b—alatb—x

In view of Remark 8.13, it follows

M [ M(x—a)?
S1=8;= t— —)dt = ————. 38
1= 8y= g [ a) =T (38)
What is left is to calculate S,. Use a substitution
b—2
t»—>x—|—a+#x(t—|—l)
and introduce the function
2 , a+b—2x
) =———— —(t+1)).
s = S o2 f(” ;U )>

/:HH (%(a+b) —t> f@)dt = -M (#)3/_11 1g(t)dr.

The condition f € .%’y(A) implies that the function g is defined on [—1, 1] and satisfies

1
gelipn g(-D=g)=0 ad [ g)dr=D (39)
—1
where )
A 2
Di=—|—F 40
M(a—!—b—Zx) (“40)

We can assume D is non-negative; otherwise, take —g instead of g. Furthermore, assume
I 1 tg(t)dt is non-negative; otherwise, replace g by g(—.), which is again a function satis-

fying (39). Now
3
S5 M <a+b Zx) Q. @1

“b-a 2
where Q is the solution of the following optimization problem:
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1
Maximize D(g) := / tg(t)dt under the constraints (39).
-1

The solution of this problem is the function (for details see [68])

—1-t,-1<t<-3(1+D)
G'(t)= t+D, —1(1+D)<r<Ll(1-D)
1-t, (1-D)<r<1.

and the maximal value of this functional ® is

1-D?
Q:=0(G") = T

Now, combining (37)-(41), we readily obtain (36). Functions f for which equality is at-
tained are easily deduced from G*. The proof is thus completed. O

Remark 8.16 For x = a, inequality (36) is obviously an improvement of inequality (8).

Though A.Guessab and G.Schmeisser proved Theorem 8.16 for x € [a, 1 (a+b)), it is
in fact enough to prove their statement for x = a. From that, the more general case when
x € [a, §(a+Db)) follows. So, suppose we have

M (b—a)*— 7("; (]Z)( ; _f (a))2) . (42)

<
32

1
b—a

[ a3 + 1)

We will use, again, the same idea as in proof of Theorem 31, or more precisely, we will
now start from (29). To the middle part we apply (42):

a+b—x a —2x
/j f(t)dt—#(f(x)+f(a+b—x))‘

3 (flatb—x) = f(x)
2M(a+b—2x)

<

< —(a+b—2x)

> (43)

oM

To the first and the last part, we apply (30) for n = 1 and o = 1. In that case (30) reduces
to

/abf(t)dt—f(x)(b—a) W b-a)(b+a—2x)| < %/ﬂb|t—x|2dt (44)

By assumption, function f satisfies f'(x) = f’(a+ b —x) = 0, so from (44) follows

M e—ap, (45)

| rwar - x-aysi
b

< Ag(x —a)’. (46)

/a , J@di——a)fla+b-x)

Addition of estimations (43), (45) and (46) produces (36).
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Once again, replacing condition f"~1) ¢ Lipy (o) with condition (33), gives us

1

B3] < 5—

6 32 2M;(a+ b — 2x)

M M (x—a)3+%(a+b—2x)3— (f(a—i—b—x)—f(x))zl .

Again, taking M| = M, = M3 produces (36).
We will finish this subsection with another generalization of Iyengar’s inequality, ob-
tained by X.L.Cheng and J.Sun in [18].

Theorem 8.17 Let f: 1 — R, I C R, be twice differentiable in the interior I° of I and let
a,bel°, a<b. If|f"(x)| <M for every x € a,D), then

b
[ 1= 5= @)+ 10 + 6~ P 0) - 1)
M a6 —ay

+ f'(b). (48)

where

Proof. Denote

b 1 1 2/ 4 /
Jf:/a FE)dx= 3 (b=a)(f(a) + f(b)) +5 (b= (F () — f(@)):

1 b \? ,
=3[ (=257 7w

2 b a+b\
A= b—a/a (x—T)f (x)dx. (49)

Now, for any € such that |e| < % we have

Jr+eb—aPA = /ab l% (x—a;b>2+28(b—a)< _“erb)

< M(b—a)’F(e), (50)

~ g [ 3 (57 oo (- 2)
2

1
2
1 1 1
—(x== 2 _Z
/0 2(x 2) +2e| x 2)

It is easy to see that

and

£ (x)dx

where

B
—
™
N
|

dx

dx.
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The zeros of the integrands are x; = 1/2 and x; = 1/2 —4¢, so 0 < x; < 1/2 when
0<e<1/8 while1/2<x,<1when—1/8<¢e<0. Thus, for0<e< g:

F@)14f48<;<x;)2+28< —%))dx
Ll ) f () )

1 +_3283
240 377

Analogously, for —% < e <0, it follows

1 32 4
F(e) = — — =¢.
(€)=51"3
It is not difficult to check that
|A|
e = Ay | s
& ="M\ 35315 —a)

is the point in which the function
fle) =M(b—a)*F(e)—e(b—a)*A
achieves its minimal value. (49) implies

b
A < 2M / a+b

“b—a T

’dﬁ:%w—a%

and therefrom |e.| < 1/8.
From (50) it follows

3(b—a)3
Iy < fle) = b —ap -/ BELZ D

Replacing f with — f, analogously we get

= — <
J,f Jf 3 (b a) \/ 772
M 3 /|A|3(b—a)3
< —(b—a)’ — -
|Jf| 24 (b ) 2M

and thus
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Remark 8.17 We have shown that %‘ < b%“ If we use this in estimating the right-hand

side of (47), it easily follows

[/ e 30— a)r@)+ o) + g 6-aP(B) - @)

M

3 |Al(b—a) [b—a []A|
b= 6 2 Vm

M 3 b—a
YA sy

Assume now that we have f'(a) = f'(b) = 0. Then

f(b)—fla)
b—a

<

A%

<

A=-=-2

and (47) reduces to

M
=24

9ax= 30~ a)(s(a) +10)| <

This inequality is sharper than the inequality (8).

Remark 8.18 With the additional assumption f(a) = f’(b) =0, the estimate of the trape-
zoid formula in (47) is weaker than the one in (36) with x = q, i.e. (42). We claim:

M (f(b)— f(@)® _ M Al [1Al(b—a)
ﬁ(b—a)z—mgﬂ(b—a)z—— T

6 2M
_M 2 f) = fla)| [1f(b)—f(a)|
= 57 (b—a)
24 3(b—a) M
since now A = —2%. The claim is equivalent to

2
[f(b) = fa)| [1f(b)=fla)] _ (f(b) = fla)) §19W_6(b_a)2

3(b—a) M 2M (b —a)?
Introduce the function g(x) = %
2 —_aq)?
50) 80 gy - sl ¢ .

Denote ¢t = |g(b) — g(a)| and
[3/2 2

") =300 " 3p—ar

It is easy to check that t = (b —a)?/4 is the point in which the function A(¢) attains its
maximal value which is (b — a)?/96. This proves (52), and our claim.
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An estimate of a similar type, i.e. an estimate of the functional J¢, was given by
X.L.Cheng in [17].

Theorem 8.18 Let f € C*([a,b]) and |f"(x)| < M. Then

[ g 30— a)(7t) + 7)) + 30~ 0) - (@)

A2, (53)

where A is as in (48).

Proof. By Taylor’s expansion formula, for x € [a,b] we get

10 < F@) + (@) a) + 5 (x—a)?

and
F0) < FB)~ £ ()b ) + 5 (b~

Using this, for ¢ = (a+b)/2 and |§| < (b —a)/2, we obtain
s b—a 1 b—a 2 M (b-a 3
< —f —
/a f(x)dxf(a)( 7 +3)+2f(a)< 3 ) + 5 ( 5 +3)

o () (o) (50

e /  ydx = / 0 rdr+ / ; F(0)dx < Fo+ 8F + 8°F,
where
Ro= 2200 +10)+ L @) - )+ o —a
Fi= fa) = f0) + 252 (@) + 1 0),
By = 1(7'(@) — £/ (0) + M(b—a).

Introduce F» =M(b—a). Then F, < F,. Now, we find the minimal value of F(8) =
Fo+ 8F + 8%F, for |8| < (b—a)/2:
b—a

2 (f'(@)+f(b))+2M(b—a)5 =0,

F'(8) = f(a)— f(b)+
F"(8)=2M(b—a) >

(
Thus, the point in which F(§) attains minimal value is
(

&= 2(f(b)—fla))/(b—a) = f'(a) = f'(B) _ A
4M 4M’
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where A is as in (48). Using Taylor’s expansion formula it is not difficult to verify that
|60 < (b—a)/2. Thus,

[ reoax < F(&)

_b—a (b—a)? y M 3 b—a ,
= ——(fl@+f0) +——(f(a) = (b)) + 5 (b—a)” — 7= A
To obtain the lower bound, apply Taylor’s expansion formula again:
M
f@) = fla)+ f(@)(x—a) - 5 (x—a)?
and
/ M 2
f@x) 2 f(b) = £(B)(b—x) = = (b—x)".
Now, analogously as before we obtain
b b— b—a)?, , y M b—
| ey = 2 @+ 1) + O () )~ o+ DO
which in conclusion proves (53). O

Remark 8.19 Minimizing the polynomial F(8) = F>8° + F| 8 + Fy which estimates the
right-hand side and the appropriate polynomial which estimates the left-hand side, would
produce

(b—a)’A?
8[M(b—a)+f'(a) = f'(b)]

(54)

which is exactly inequality (65) from Corollary 8.6 for m = —M, only written in somewhat
different form. Obviously, the estimate (54) is better than the one in (53).

8.5.3 Weighted generalizations of lyengar’s inequality
through Taylor’s formula

The results of this subsection were obtained by F.Qi in [111]. Introduce notation:
!
hey(t) = / (x —s)*w(x)dx, s,t € [a,b], k€ N. (55)
)

where the function w in non-negative and integrable on [a, b].
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Theorem 8.19 Let f be continuous on [a,b] and differentiable on (a,b). Suppose f(a) =
f(b)=0andm < f'(x) <M forevery x € (a,b). Let w(x) > 0 for every x € [a,b]. If [ #0,
then m <0 <M and

b
mhg (1) —Mhy 1 (21) S/ w(x) f(x)dx < Mhg,(to) —mhy 1 (10), (56)

where ty = Mﬁjzb € (a,b), 1= % € (a,b).

Proof. m < 0 < M is a direct consequence of the Rolle’s Mean Value Theorem. The idea
is to apply Lagrange’s Mean Value Theorem in order to estimate the weighted integral.
Let © € (a,b). Now,

b (C] b
| st = [“wilrt) - @+ [ wlr - fo)ds
= [T @ [

where a < & < © < & < b. Using the fact that the first derivative is bounded we get

/abw(x)f(x)dx < M/ae(x—a)w(x)dx—l—m/@b(x—b)w(x)dx

= Mhy(©) —mhy1(©). (57)
We wish to determine the minimal value of the upper bound. From (55) it follows
dhg i (t
) (1 st
d(Mh,1(©) —mhy (O
e, AWMt @ 01O _ 131 )o 4 (b —anjw(o).

It is easy to check that the minimal value is attained for © = % =19 € (a,b).

Similarly,

b <) b
/ w(x)f(x)dx > m/ (x—a)w(x)dx+M/ (x —b)w(x)dx
a a (€]
= mhm(@) —Mh;%l(@).
The lower bound attains its maximal value for @ = % =11 € (a,b). This completes
the proof. U

Theorem 8.20 Let f be continuous on |a,b] and differentiable on (a,b). Assume f is not
a constant function and that m < f'(x) < M for every x € (a,b). Let w(x) > 0 for every
x € [a,b]. Then

LO=LE ] at) - | PO s
< ["we e plapmao(e) - LTy, 68)
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Ma—mb+f(b)—f(a) c (a,b)

sl Mb—ma—f(b)+f(a) c (a7b).

where t) = , 3= M=

Proof. For x € [a,b] define function
O(x) = [f(x) = f(@))(b—a) = [f(b) - fa)](x - a).
Obviously, ®(a) = ®(b) = 0. Furthermore,
' (x) = (b—a)f'(x) - f(b) + f(a),
and therefrom
(b—aym—f(b)+f(a) <@ (x) < (b—a)M— f(b) + f(a).

Now, notice that
b b b
[ e = (b-a) [Twiolr) - f@lds—r®) - @) [ = apwixax
= (0= | [ W) S(@hao®)| - 1)~ Fl@iar 0),

Applying Theorem 8.19 to the function ®(x) now yields the statement. |

Further results are given without proof. For details see [111].

Theorem 8.21 Let f be differentiable, f € C"~(|a,b]) and such that m < ) (x) <M
forevery x € (a,b). Let w(x) > 0 for x € [a,b]. If n is odd, then for everyt € (a,b)

Mhap(t) — Mhy, (1)

n!
’ 'S SO (0)hwi(r) — £ (@)hai(r)
</a w(x)f(x)dx + Z(') i
Mhg (1) — mhy (1)
< Py (59)
while for an even n
M(hap(t) —hpa(t))
n!
b b)hpi(t) = f1 (@)hailt)
,/a xX)dx+ 2 b i
< M(ham( ) hb,n( )) . (60)
n!
Corollary 8.5 Let f € C"([a,b]) andm < f") < M for x € [a,b]. Denote
n—1 -1 k
Siluvw) = X ( k,> ~u"f"“”<v)+%(—U”u’% (61)
k
9Sn _ g (u, v, w). (62)

duk
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Then, for everyt € [a,b], when n is even we have

n+l ()i ; ; . b
z( - ) (S,(lil(ma?m)—S,(lil(hb?m)) t’S/a Sf(x)dx

i!

i=0
n+1 -1 i ; ; ;
< 2%-£7?2—(Sﬁid(a,a,ﬁl)——S£l4(b7b7ﬁl))t; (63)

while when n is odd

(Sf,’ll(a,a,M) - S,E’L(b,b,m)) . (64)

Corollary 8.6 Let f € C*([a,b]) and m < f"(x) < M. Then

m(b® —a®) . [£(b) = f(a) —bf (b) +af'(a) + 2(b* — d?)]
6 2[f'(b) — f'(a) +m(a—b)]

2 ¢! _a2 "(a
< [ by (9) +asia) + DT

ME —a’) | [f(b)~ fla) ~bf'(b) +af (@) + 4 (5>~ )]’
6 207(6) ~ /(@) + Ma—b)] |

(65)

<

Corollary 8.7 Let f be continuous on [a,b] and differentiable on (a,b). Suppose f is not
a constant function and m < f'(x) < M for every x € (a,b). Then

mM(b—a)*+2(b—a)[Mf(a) —mf(b)] +[f(b) - f(a)]?
2(M —m)

é/?@w (66)

o _mM(b—a)*+2(b—a)lmf(a) - Mf(b)] +[f(b) - f(a)]?
- 2(M —m)

Remark 8.20 The inequality (66) was also derived by R.P.Agarwal and S.S. Dragomir
in [3]. Note that for m = —M, (66) recaptures Iyengar’s inequality (1).

Remark 8.21 In [114], F.Qi, P.Cerone and S.S.Dragomir gave a generalization of Iyen-
gar’s inequality using a generalized Taylor’s formula with an integral remainder. The main
tool used is a harmonic sequence of polynomials. A sequence of polynomials {P;(x)}7,
is called harmonic if

P(x)=P_1(x), ieN; Py(x) = 1.
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8.5.4 Weighted generalizations of lyengar’s inequality
through Steffensen’s inequality

Through the years, Iyengar’s inequality has been generalized in various ways. General-
izations that are of interest in this subsection are the ones obtained using Hayashi’s mod-
ification of the well-known Steffensen’s inequality. For example, in [3] R.P.Agarwal and
S.S.Dragomir first proved:

Theorem 8.22 Let function f be differentiable on [a,b] and m < f'(x) < M. Then

o [ o L0200
[f(b) = fla) —m(b—a)|[[M(b—a) - f(b) + f(a)]
2(M —m)(b—a)

< . (67)

Inequality (67) is in fact inequality (66), only written in somewhat different form.
In [12], P.Cerone proved the following result for the trapezoidal rule:

Theorem 8.23 Ler f: 1 C R — R be such that £~V is absolutely continuous on I° (I°
being the interior od I) and [a,b] C I°. Assume m = infc[,y) F(x) > —oo and
M = sup,c(,5) F)(x) < co. Then

b n M—m M—m

/a f(x)dx—k;Ek(@,a,b)JrR—W(UH) Ssarm@D 6
where

E(©:a.b) = L1007 ()~ (0~ b (o) )
R= ﬁ [(©@—b)" —(@—a)t!] (70)

{0 G,  even
L= { (O —b+ 20" — (@ —b)" | nodd 71
U (O@—b+ AN — (@ —a— A" +(©@—a)" T — (@ —b)"t!, neven

Tl (©@—a)"t = (@—a— A0t n odd

(72)

30 = [F ) F @) - m(b—a)] 73)
3= [0 (0)  f V@) - m(© - a)] (74)
3=t [F0 ) - (@)~ mib - ©)]. 75)

Taking n = 1 and © = (a+ b)/2 in (68), produces (67).
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In [67], H.Gauchman proved two inequalities involving Taylor’s remainder. He denotes
by R, ¢(c,x) the nth Taylor’s remainder of function f(x) with center c:

n ),
—Zf (c)

o (x—c)~.

Ruf(c,x) = f(x)

k=0

Theorem 8.24 [Let f:1 — R andw:1— R be two functions, a,b € I°, a < b and let

feC"™([a,b]) andw € C([a,b]). Assume that m < fU"+1)(x) <M, m # M and w(x) >0
for each x € a,b]. Then

j ! ’ b+ 29" w(x)d 76
) Gyt oA (i 6)

1 b (x_a)nJrl
< M—m/a [Rmf(a,x)—mm w(x)dx

b
S T A e

((; 21;'1 / 20—
(if) ﬁ / A0 () (77)
< CL [ [Rusto -2 s
< o [ 6= = 6= -2 )
+% AN SRR

where AY is defined by (73).

Addition of (76) and (77) upon taking n = 0 and w(x) = 1 followed by division by 2,
produces (67) again. Of course, as a special case we get Iyengar’s inequality once more.

Now, we give a generalization of both Theorem 8.23 and Theorem 8.24 in a sense
that an inequality involving both the weight w(x) and the parameter © is given. This was
published in [61].

Before we proceed, it should be mentioned that using the same technique similar in-
equalities were proved in a number of papers. In [2], R.P.Agarwal, V.Culjak and J.Pe&ari¢
derived inequality (68) for an odd n. For an even n, using a somewhat different tech-
nique, they obtained a result which involves only the midpoint. In [44], only the case
n = 2 was considered. In [19], an even more special case was considered. The results
obtained there follow from (68) by taking ® = (a + b)/2 again and assuming function f
satisfies ) (a) = (—1)**1 f®)(b), for 1 < k < n. Results obtained in [13] by P.Cerone and
S.S.Dragomir are special cases of Theorem 8.24 produced after taking n = 0.

For the proof of our main result we use the Hayashi modification of the well-known
Steffensen’s inequality, so we state it first (cf. [93]).
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Theorem 8.25 Let F : [a,b] — R be a nonincreasing function and G : [a,b] — R an
integrable function such that 0 < G(x) < A for each x € [a,b]. Then

b a+A
Al Pl dx</F dng/ F(x)dx, (78)

where A = %ff G(x)dx.

‘We introduce:

hi(s,1) = %/St (x — 5)*w(x)dx (79)

for s,t € [a,b] and k € N.
Now we state our main result:

Theorem 8.26 Ler f : [a,b] — R be such that f""~) is absolutely continuous on |a,b).
Assume that m < f) (x) <M for each x € [a,b]. Let w: I — R be integrable and such that
w(x) > 0 for each x € [a,b]. Let © € [a,b]. Then, when n is odd we have

(M —m)hy(b — 4,,©) = Mhy(b,©) + mhy(a, ©)
< / FOow(x)dx + Z [ D) (5,0) — F® (@)he(a, ©) (80)
thn(m@)—mhn(b@)—( —m)hy(a+2,,0)
and when n is even we have
(M —m)[hn(© — 2y, )— #(© + 2y, ©)] + mlhy(a,0) — h(b, )]
< / () + 2 [ D) (b,0) — £ (a)he(a,©) 81)
< Mlhy(a,©) = hy(b,©)] + (M — m) [l (b — 2/, ©) — hy(a+ A;,©)],
where 0, A% and AP are defined by (73), (74) and (75), respectively.

Proof. For © € [a,b], set

Gi(x) = X (x) — m, k=0,1,...n
(€]
Fk(x):%/ (t—x)wd  k=0,1,.n—1

for each x € [a,b]. Now we have: 0 < G,(x) <M —m, for each x € [a,b], so G,(x)
satisfies the conditions of Theorem 8.25. It is easy to prove that

Fl(x) = —F1 (%)

and from there we conclude that for x < ©, function F,,_;(x) is nonincreasing. For x > ©
and odd n, F,_;(x) is again nonincreasing. However, for x > O and even n, F,_(x) is
nondecreasing. Therefore, inequality (78) is in that case reversed.
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Let us assume first that n is odd. From (78) we get

b b a0
(M —m) /b LRCEE / Fy 1 (0)Go (x)dx < (M —m) / B ().
where . .
2= [ @) —myax

as defined in (73). Using integration by parts and the fact that F,_,(x) = —F,_2(x), we
easily obtain

b
I = / Fy1 (1) G (x)dx (82)

= [ romas T emb,0) O (e 0)
—mhy(a,®) +mh,t(?i®).
The upper bound is
0
U, = % / o [ / ® (6= x)Vw(o)dr | dx.
Assume first that © < a + A9. Changing the order of integration, we obtain
Up = (M —m)[hy(a,0) — hu(a+A),0)]. (83)

Assuming © > a+ A?, we get the same expression for the upper bound again.
Analogously, after changing the order of integration in the case when © > b — l,?, the

lower bound equals
M—m [P © ne1
Lo = m/}),l’? |:‘/)C (t—x) W(f)dl dx

(M —m)[hn(b—A).©) — hy(b,©)]. (84)

For ® < b— 12, we get the same expression and thus, once again, obtain the same expres-
sion in both cases. Inequality (80) is produced by combining (82), (83) and (84), so the
statement is proved for the case when 7 is odd.

Assume now n is even. F,_;(x) is nonincreasing on [a, ©] so inequality (78) gives us:

(C]
Ly < / Fy1(x)Gu(x)dx < U, (85)

It is easy to check that a + A% < ©. We calculate both lower and upper bound by changing
the order of integration:

a+Af
Ul =(M— m)/ ' Fo_1(x)dx = (M —m)[hy(a,0) — hy(a+ A, 0)], (86)
LZ = (M—m) /961 Fn,l(x)dx = (M—m)h,;(@ — A&@% (87)
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n - M m / dx
as defined in (74).
On [©,5], F,—1(x) is nondecreasing so inequality (78) is reversed. We have:

where

1< / Fy1 ()G (x)dx < UP. (88)

This time b — A2 > ©, so it follows

n —

vl = —m) [ :b Fo 1 (x)dx = (M —m)[ha(b— A2, ©) —ha(b,0)],  (89)

LY = (M—m) /9 ot Fy_ 1 (X)dx = —(M — m)h,(© + A2, ©), (90)
where

A = T M- m/ dx
as defined in (75).
Addition of (85) and (88) gives:
Le<I,<U,
where
U=U+U> and L, =L¢+1L

and thus inequality (81) is produced. The proof of this theorem is now complete. o

Remark 8.22 Taking w(x) = 1 in Theorem 8.26 recaptures Theorem 8.23. Taking © = b
produces inequality (76) and © = a produces inequality (77). Of course, for w(x) = 1,
n=1and © = (a+b)/2, we get inequality (67) again.

Next, we prove an alternative inequality for an even n and thus generalize results from
[2]. Taking © = (a+b)/2 and w(x) = 1 will produce results from there.

Theorem 8.27 Assume assumptions of Theorem 8.26 are valid. Then, for © € [a,b] and
even n, we have

(1 (@,0) o (5,©)) + (M = m) (b~ 2, 0)|
n—1
/ f@wdr+ 3 [ B)h(b,0) ~ 1P @)@, )
k=0
M(1(@,0) o (b,©)) ~ (M =)o (a+2,0)| 1)

where/l,,zxg—l,f+b—®, 0<A, <b—a.
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Proof. We use Hayashi’s modification of Steffensen’s inequality again. Set

L O —x)" w(t)dt, a<x <O,
Fya(x) =< 00 el o (92)
ng(t—x) W(t)df7 @ngb
From the proof of Theorem 8.26 it is clear that F,,_ is decreasing on [a, b]. Taking
_ [ @)—m, a<x<8,
G"(x) - {]M_f(n)(x)7 [e) <x< b. (93)
produces our statement. O

Remark 8.23 Estimates for an even n from Theorem 8.26 are better than the ones from
Theorem 8.27. To prove this, we have to check that

)
)

pa+28,0) —hy(b—2L,0), (94)
2(0—1%,0) —h,(0+10,0). (95)

| (a+ Ay,

@) < h
(b — 2,0)| < h

After introducing notation
cr=a+A%, ca=b—Ab, dy=0-1% dy=0+Ab,
(94) and (95) become

hn(cl7®) _hn(027®)7 (96)
h

| (ci +c2—0,0)]
| ,,(dl,(a)—h,,(dz,@). 97)

|hn(dy +dr — ©,0)
We already know that ¢; < © and ¢, > © and it is clear that d; < © and d, > ©, so we
have ¢; <c1+¢; —0O < ¢ and dy < d; +dy — O < d,. For an even n, function h,(x, ®) is

decreasing. Also, /,(©,0) = 0. Let us consider (96). First assume ¢ + ¢, — © < ©. Then
hy(c1+¢,—0,0)>0and

hu(c1+c2—0,0) < hy(c1,0) < hy(c1,0) — hy(c,0)

since 1, (c2,0) < 0. Next, suppose ¢; + ¢ — © > ©. Then h,(c; + ¢, —0,0) <0 and
hu(c1+c2—0,0) > hy(c2,0) > hy(cz,0) — hy(cy,0)

since ,(c1,0) > 0. Proof of (97) is analogous.

Finally, we give a comparison between Theorem 8.26 and Theorem 8.21. The connec-
tion is obvious - under the same assumptions, the same expression is estimated. The claim
is that the estimation given in Theorem 8.26 is better than the one in Theorem 8.21.

First, consider the case when 7 is odd. The upper bound in (80) is

Us = Mhy(a,®) — mh,(b,0) — (M —m)h,(a+A0,0)
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and in (59)
Ur = Mhy,(a,©) —mh,(b,0),

so obviously Ug < Ur. Similarly, the lower bound in (80) is
Ls = (M —m)h,(b— 12,0) — Mh,(b,©) + mh,(a,®)
and in (59)
Ly = mhy(a,0) — Mh,(b,0),

SO LS Z LT.
Next, consider the case when 7 is even. The upper bound in (81) is

Us = M[hy(a,0) — hy(b,0)] + (M — m) [hy(b— ?L,f, O) —hy(a+Af,0)]
and in (60)
Ur = M[h,(a,®) — h,(b,0)].
Again, Us < Ur. Finally, the lower bound in (81) is
Ls = (M —m)[h,(© — A%, 0) — h,(© + AL ©)] + m[h,(a,©) — hy(b,0)]
and in (60)
Ly = mlhy(a,0) — h,(b,0)],

SO LS Z LT.
This completes the proof of the claim.

8.5.5 Comparison between different generalizations of lyen-
gar’s inequality

We give yet another comparison between generalizations of Iyengar’s inequality obtained

through different methods, for a function f such that f € C?[a,b] and |f”(x)| < M. The

results given here were published in [62].
Forw(x) =1, m=—-M, n=2and © = (a+b)/2, (81) from Theorem 8.26 yields:

g (f(b) = f(a) (98)

where
1 ,(a+Db , b—a
Aa = i (f ( 2 )‘f(@)"‘ R (99)
1 , ,(a+b b—a
Ab=w<f(b>—f< 5 )>+ o (100)
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For the same parameters, (91) from Theorem 8.27 yields:

(b=aP
[ o= s+ 1) + P 0 - )
3
g%(b— >*—2|jj‘|427 (101)

where Ay = f'(a) — 2f'(%42) + f'(b).
Another result of a similar type was given by Cheng in [17] (cf. Theorem 8.18 and
Remark 8.19):

b —a —a)?
[ sewax= "2 @+ o)+ E 5 0) - s a)
M. (b—a)*A3
RN T e B
where A = f'(a) - 2251 1 p/(3).

In the same paper, Cheng showed that, for some classes of functions, inequality (102)
gives better estimations than inequality (101). Now, we prove that (98) is always better
than (101) and better than (102) for the same class of functions for which (102) is better
than (101).

Define:

M (a+b

3
> —x) , for x € [a,b].

Now we can write (101) and (98) in a following form:

—a)?
" rwac—"2 0@+ o)+ L) @)
< % H(a+ 1)), (103)
and
3
—W+H(®—M)—H(@+Ab)
_a)?
< [ rwar- @+ s+ S e - @) aow
gb274“) H(a+A)+ H(b—Ay),

where?tzla—?tb—kb%
H(x) is decreasing, H©®) =0and a+ 4, <O <b—A;, 0< A4 < ]% Also,
a+2ds<a+A<b—A. Assume first A, < 4. Then H(a+ 4) > 0 and

H(a+A)<H(a+A) <H(a+A,) —H(b—2),
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since H(b — Ap) < 0. Suppose A, > Ap. Then H(a+ A) < 0 and
H(a+A)>H(b—2Ay) >H(b—Ay) —H(a+A,),

since H(a+ A,) > 0. The proof that the lower bound in (104) is also better is analogous:
justnote |[H(b—A)| = |H(a+ 1)|.

Finally, we give some classes of functions for which (98) gives better estimates than
(102). We claim that

(b—a)’A? M| (b—a 3 b—a 3
< — — A —A 105
SMG—a)+ @ —ro)] - 3 |\ 2 7 (1o
(b—a)’A} _M
8M(b—a)+ f(a)—f(b)] — 3
for f(x) =x", n > 5 on [0,1]. Inequalities (105) and (106) in this case reduce to
—2 — [/ =2\ o ot P
n nn—1) /1 Lo 7 (107)
8n 3 4 2(n-1) 4 2(n—-1)
3 3
n—2 nn—1)|/1 1-2"" 1 2
< - - . 108
g1 = 3 [(4+2(n—1)) +<4+2(n—1) (108)
Routine calculation shows that (107) is valid for n > 5 (for n = 2 we get equality) and (108)
is valid for n > 2. Thus, we have shown that (98) is better than (102) for the same class of
functions for which (102) is better than (101).

Further, with no loss in generality, we can consider functions on [0, 1] such that f(0) =
f/(0)=0and |f”(x)| < 1. Inequalities (105) and (106) turn to:

(A3 +243), (106)

IN

Rrm-rmpF _ (11]0(1()1)] _24[(1_210( )>3+(1—2f’(1)+2f’(%))3], (109)
RAY=FWF (;g”] L (1+2f’<%)>3+(1+2f’(1)—2f’(%))31- (110)

When f(1) = f'(1) =0, or, more generally, when 2f(1) = f’(1) and f'(1) # 1, (98) gives
better estimates than (102), since the right-hand sides of (109) and (110) are obviously
positive. If we take f/(1/2) =¢, 0 <7 <1/2, when f'(1) =0, (109) and (110) reduce to

4£2(1) < 41/12. (111)

Maximizing the left-hand side of (111) using continuous piecewise linear function with
|/ (x)| = 1 (where f” exists), (111) will follow if

(P —1—1/42<>+1/12. (112)
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Using Wolfram’s Mathematica 5.0, we see that the approximate solutions on [0, 1/2] of the
equation in (112) are #; = 0.044 and 1, = 0.395, so for 0 <t <7 orrp, <1 <1/2,(98) is
better than (102). For #; <t < #, (102) may give better estimates.

Remark 8.24 Related results on Iyengar type inequalities can be found in: [16, 43, 69,
81, 82, 88,95, 109, 110, 112, 113, 119, 120].



Appendix

Bernoulli polynomials and Bernoulli numbers

The Bernoulli polynomial By (x) of the kth degree is defined as the coefficient of ¥ /k! in
the expansion

=Y —By(x). (A-1)

B()(x) =1

Bi(x)=x—1/2

By(x)=x*—x+1/6

B3(x) =x—3/2x"+1/2x

By(x) =x* -2+ x> —1/30
Bs(x)=x>—5/2x*+5/3x—1/6x

Bs(x) =x%—3x° +5/2x* —1/2x% +1/42
Bi(x)=x"—7/2x4+7/2x -7/6x>+1/6x

Bg(x) =x® —4x" +14/3x° —7/3x* +2/3x* —1/30
Bo(x) =x"—9/2x% +6x" —21/5x° +2x> —3/10x

Bio(x) =x'0—5x7 +15/2x8 — 7x° 4+ 5x* —3/2 x> + 5 /66.

Differentiating (A-1) with respect to x gives

From (A-1) it follows
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Therefore )
B (x) _Bii(®)
k! (k—1)!
and thus
Bi(x) = kBy—1(x). (A-2)

Bernoulli polynomials By (7) are uniquely determined by (A-2) and
Bo(t)=1,  Bp(t+1)—Bi(t) =ki*" ' k>0.

Let m € N. Then

and furthermore

gma 1 ¢ mt(1+e 4 ...+ elm=1n)
ed—1  m em — 1
J
ot e<k+’")mt 1 i (mt)kB L
T m em—1  m A ™
j=0 j=0k=0 "
Now, similarly as before
m—1 ]
By(mx) =m"' Y By (x+ —) ) (A-3)
j=0 "

The (A-3) is called the Multiplication Theorem for Bernoulli polynomials.

Some properties of Bernoulli polynomials

e For the kth Bernoulli polynomial we have
Bi(1—x)=(—1)*Bi(x), xeR, k>1 (A-4)

so the graph of By (x) is symmetric with respect to the line x = 1/2, while the graph
of By;_1(x) is centrally symmetric with respect to the pointx = 1/2.

e The kth Bernoulli number By, is defined by the relation By = By (0). From (A-4) it
follows that

By (1) = By

and
By—1(1) = —By—1,

and therefore for k > 2, we have

By(1) = Bx(0) = By.
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Note that
By 1=0, k>2
and
Bi(1)=—B(0)=1/2.
e Forke N

e For 0 < x < 1/2, we have

(—l)k[sz(x) —sz] >0
and

(—1)*Bayy—1(x) >0
Periodic functions related to Bernoulli polynomials
Bj(x) are periodic functions of period 1 defined by the condition
Bi(x+1)=B;(x), x€R,
and related to Bernoulli polynomials as
Bi(x) =Bi(x), 0<x<l.
B;(x) is a constant equal to 1, while B} (x) is a discontinuous function with a jump of

—1 at each integer. For k > 2, B;(t) is a continuous function.
Direct calculations give the following results:

—1)k1 > mx
B (1) = (= 1)FH(2k)! > cos2m

A-5
2T g2k AT (A-5)

. (=D 2k +1)! & sin2mmx
By (x) = 22K 72kt > 2k (A-6)

For further details on Bernoulli polynomials and Bernoulli numbers see [1] or [79].
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