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Preface

Despite of the title, the main motivation for writing this book (and the papers from which
this book has grown) was presenting some aspects of generalizations, refinements, variants
of three famous inequalities (actually four). The first inequality is the Hermite-Hadamard
inequality

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
,

which holds for a convex function f on [a,b] ⊂ R. The second inequality is the Ostrowski
inequality ∣∣∣∣ f (x)− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣≤
[

1
4

+
1

(b−a)2

(
x− a+b

2

)2
]

(b−a)L,

which holds for a L−Lipschitzian function f on [a,b]⊂R, and the third one is the Iyengar
inequality ∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤
[
1−
(

f (b)− f (a)
L(b−a)

)2
]

b−a
4

L,

which also holds for a L−Lipschitzian function f on [a,b] ⊂ R.
Generalizations of the Ostrowski inequality are mainly given in Chapter 1, but related

results are scattered throughout the book (especially for the case x = (a+b)/2). Variants of
the Hermite-Hadamard inequality are given for some pairs of quadrature formulae (called
dual formulae) and refinements are given in the sense of the Bullen inequalities for higher
convex functions. The basic Bullen inequality

0 ≤ 1
b−a

∫ b

a
f (x)dx− f

(
a+b

2

)
≤ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (x)dx

holds for a convex function f on [a,b] ⊂ R.
The book contains generalizations of many classical quadrature formulae such as Simp-

son, dual Simpson, Maclaurin, Gauss, Lobatto, Radau. Standard methods in deducing
these formulae are very different, spanning from Lagrange, Newton interpolation poly-
nomials to orthogonal polynomials such as Legendre, Chebyshev, Jacobi. The specific

v



feature of this book (regarded nevertheless as a book in numerical integration) is that the
unique method is used. This method is based on the, so called, Euler integral identities
expressing expansion of a function in Bernoulli polynomials proved by V. I. Krylov in [79]
as a generalization of the first and the second Euler-Maclaurin sum formula (for details see
Chapter 1). The Iyengar inequality is the exception. Although related to the Hermite-
Hadamard inequality in the same way as the Ostrowski inequality, Iyengar type inequali-
ties are, it seems, beyond the reach of methods based on the Euler integral identities. This
is the reason why generalizations of the Iyengar inequality are given in the Addendum.

vi
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Chapter1
Euler integral identities

1.1 Introduction

Integral Euler identities extend the well known formula for the expansion of an arbitrary
function in Bernoulli polynomials (cf. [79] or Appendix) and were derived in [30]. To
prove them, the following lemma is needed:

Lemma 1.1 Let a,b ∈ R, a < b, x ∈ [a,b] and ϕ : R → R be defined by

ϕ(t) = B∗
1

(
x− t
b−a

)
.

Then for every continuous function F : [a,b]→ R we have∫
[a,b]

F(t)dϕ(t) = − 1
b−a

∫ b

a
F(t)dt +F(x), for a < x < b

and ∫
[a,b]

F(t)dϕ(t) = − 1
b−a

∫ b

a
F(t)dt +F(a), for x = a or x = b,

with Riemann-Stieltjes integrals on the left hand sides.

Proof. If a < x < b the function ϕ is differentiable on [a,b]\{x} and its derivative is
equal to −1

b−a , since B1(t) = t −1/2. It has a jump of ϕ(x+0)−ϕ(x−0) = 1 at x, which

1



2 1 EULER INTEGRAL IDENTITIES

gives the first formula. For x = a or x = b the function ϕ is differentiable on (a,b) and
its derivative is equal to −1

b−a . It has a jump of ϕ(a+ 0)−ϕ(a) = 1 at the point a, while
ϕ(b)−ϕ(b−0) = 0, which gives the second formula. �

Here, as in the rest of the book, we write
∫ 1
0 g(t)dϕ(t) to denote the Riemann-Stieltjes

integral with respect to a function ϕ : [0,1]→ R of bounded variation, and
∫ 1
0 g(t)dt for the

Riemann integral.

Theorem 1.1 Let f : [a,b] → R be such that f (n−1) is continuous of bounded variation
on [a,b] for some n ≥ 1. Then for every x ∈ [a,b] we have

1
b−a

∫ b

a
f (t)dt = f (x)−Tn(x)+R1

n(x), (1.1)

1
b−a

∫ b

a
f (t)dt = f (x)−Tn−1(x)+R2

n(x) (1.2)

where T0(x) = 0, and for 1 ≤ m ≤ n

Tm(x) =
m

∑
k=1

(b−a)k−1

k!
Bk

(
x−a
b−a

)[
f (k−1)(b)− f (k−1)(a)

]
, (1.3)

R1
n(x) =

(b−a)n−1

n!

∫ b

a
B∗

n

(
x− t
b−a

)
d f (n−1)(t),

R2
n(x) =

(b−a)n−1

n!

∫ b

a

[
B∗

n

(
x− t
b−a

)
−Bn

(
x−a
b−a

)]
d f (n−1)(t).

Proof. Using integration by parts we have

R1
k(x) =

(b−a)k−1

k!
B∗

k

(
x− t
b−a

)
f (k−1)(t)

∣∣∣∣b
a

− (b−a)k−1

k!

∫
[a,b]

f (k−1)(t)dB∗
k

(
x− t
b−a

)
. (1.4)

For every k ≥ 1 and every x ∈ [a,b) we have

B∗
k

(
x−b
b−a

)
= B∗

k

(
x−a
b−a

−1

)
= B∗

k

(
x−a
b−a

)
= Bk

(
x− t
b−a

)
. (1.5)

Also, for k ≥ 2 the above formula is valid for every x ∈ [a,b]. The identity (1.4) for k = 1
becomes

R1
1(x) = B∗

1

(
x− t
b−a

)
f (t)
∣∣∣∣b
a
−
∫
[a,b]

f (t)dB∗
1

(
x− t
b−a

)
.

If x ∈ [a,b), then using Lemma 1.1 and (1.5) we get

R1
1(x) = B1

(
x−a
b−a

)
[ f (b)− f (a)]+

1
b−a

∫ b

a
f (t)dt − f (x)

= T1(x)+
1

b−a

∫ b

a
f (t)dt − f (x).
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If x = b, then using Lemma 1.1 we get

R1
1(b) = B∗

1(0) f (b)−B∗
1(1) f (a)+

1
b−a

∫ b

a
f (t)dt − f (a)

= −1
2

f (b)+
1
2

f (a)+
1

b−a

∫ b

a
f (t)dt − f (a)

=
1
2
[ f (b)− f (a)]+

1
b−a

∫ b

a
f (t)dt− f (b)

= T1(b)+
1

b−a

∫ b

a
f (t)dt − f (b).

So, for every x ∈ [a,b] we have

R1
1(x) = T1(x)+

1
b−a

∫ b

a
f (t)dt − f (x), (1.6)

which is just the identity (1.1) for n = 1. Further, for every k ≥ 2

d
dt

B∗
k

(
x− t
b−a

)
= − k

b−a
B∗

k−1

(
x− t
b−a

)
,

except for t from discrete set x +(b− a)Z ⊂ R, since the Bernoulli polynomials satisfy
d
dt Bk(t) = kBk−1(t). Using the above formula and the fact that B∗

k

(
x−t
b−a

)
is continuous for

k ≥ 2, we get

− (b−a)k−1

k!

∫
[a,b]

f (k−1)(t)dB∗
k

(
x− t
b−a

)
=

(b−a)k−2

(k−1)!

∫ b

a
B∗

k−1

(
x− t
b−a

)
f (k−1)(t)dt

=
(b−a)k−2

(k−1)!

∫
[a,b]

B∗
k−1

(
x− t
b−a

)
d f (k−2)(t)

= R1
k−1(x).

Using this formula and (1.5), from (1.4) we get the identity

R1
k(x) =

(b−a)k−1

k!
Bk

(
x−a
b−a

)
[ f (k−1)(b)− f (k−1)(a)]+R1

k−1(x),

which holds for k = 2, . . . ,n and for every x ∈ [a,b]. So, for n ≥ 2 and for every x ∈ [a,b]
we get

R1
n(x) =

n

∑
k=2

(b−a)k−1

k!
Bk

(
x−a
b−a

)
[ f (k−1)(b)− f (k−1)(a)]+R1

1(x),

which, in combination with (1.6), yields (1.1).
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To obtain the identity (1.2), note that

R2
n(x) = R1

n(x)−
(b−a)n−1

n!
Bn

(
x−a
b−a

)∫
[a,b]

d f (n−1)(t)

= R1
n(x)−

(b−a)n−1

n!
Bn

(
x−a
b−a

)
[ f (n−1)(b)− f (n−1)(a)]

= R1
n(x)+Tn(x)−Tn−1(x),

and apply (1.1). �

1.2 General Euler-Ostrowski formulae

The main results of this section are the general Euler-Ostrowski formulae which generalize
extended Euler identities (1.1) and (1.2), in a sense that the value of the integral is approx-
imated by the values of the function in m equidistant points, instead of by its value in just
one point. The results presented in this section were published in [63].

To derive these formulae, we will need an analogue of Multiplication Theorem, stated
for periodic functions B∗

n. Multiplication Theorem for Bernoulli polynomials Bn states
(cf. [1] or Appendix):

Bn(mt) = mn−1
m−1

∑
k=0

Bn

(
t +

k
m

)
, n ≥ 0, m ≥ 1 (1.7)

That (1.7) is true for B∗
n(t) and t ∈ [0,1/m) is obvious. For t ∈ [ j/m,( j + 1)/m),

1 ≤ j ≤ m−1:

B∗
n (mt) = B∗

n (m(t − j/m)) = mn−1
m−1

∑
k=0

B∗
n

(
t +

k− j
m

)

= mn−1
m−1

∑
k=0

B∗
n

(
t +

k
m

)
,

so the statement is true again. Thus, we have

B∗
n(mt) = mn−1

m−1

∑
k=0

B∗
n

(
t +

k
m

)
, n ≥ 0, m ≥ 1. (1.8)

Interval [0,1] is used for simplicity and involves no loss in generality.

The following theorem is crucial for our further investigations but is also of indepen-
dent interest. Namely, the remainder is expressed in terms of B∗

n(x−mt).
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Theorem 1.2 Let f : [0,1] → R be such that f (n−1) is continuous of bounded variation
on [0,1] for some n ≥ 1. Then, for x ∈ [0,1] and m ∈ N, we have∫ 1

0
f (t)dt =

1
m

m−1

∑
k=0

f

(
x+ k
m

)
−Tn(x)+

1
n! ·mn

∫ 1

0
B∗

n(x−mt)d f (n−1)(t),

(1.9)

where

Tn(x) =
n

∑
j=1

Bj(x)
j! ·mj [ f

( j−1)(1)− f ( j−1)(0)]

Proof. From (1.8) we get

B∗
n(x−mt) = mn−1

m−1

∑
k=0

B∗
n

(
x+ k
m

− t

)
Multiplying this with d f (n−1)(t) and integrating over [0,1] produces formula (1.9) after
applying (1.1). �

Formula (1.9) can easily be rewritten as:∫ 1

0
f (t)dt =

1
m

m−1

∑
k=0

f

(
x+ k
m

)
−Tn−1(x)

+
1

n! ·mn

∫ 1

0
[B∗

n(x−mt)−Bn(x)]d f (n−1)(t), (1.10)

with T0(x) = 0.
We call formulae (1.9) and (1.10) the general Euler-Ostrowski formulae.

Theorem 1.3 Assume (p,q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞,
1/p + 1/q = 1. Let f : [0,1] → R be such that f (n) ∈ Lp[0,1] for some n ≥ 1. Then,
for x ∈ [0,1] and m ∈ N, we have∣∣∣∣∣

∫ 1

0
f (t)dt− 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn(x)

∣∣∣∣∣≤ K(n,q) · ‖ f (n)‖p, (1.11)∣∣∣∣∣
∫ 1

0
f (t)dt− 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn−1(x)

∣∣∣∣∣≤ K∗(n,q) · ‖ f (n)‖p, (1.12)

where

K(n,q) =
1

n! ·mn

[∫ 1

0
|B∗

n(t)|q dt

] 1
q

,

K∗(n,q) =
1

n! ·mn

[∫ 1

0
|B∗

n(t)−Bn(x)|q dt

] 1
q

.

These inequalities are sharp for 1 < p ≤ ∞ and the best possible for p = 1.



6 1 EULER INTEGRAL IDENTITIES

Proof. Inequalities (1.11) and (1.12) follow immediately after applying Hölder’s inequal-
ity to the remainders in formulae (1.9) and (1.10) and using the fact that functions B∗

n(t)
are periodic. To prove that the inequalities are sharp, put

f (n)(t) = sgnB∗
n(x−mt) · |B∗

n(x−mt)|1/(p−1) for 1 < p < ∞ and

f (n)(t) = sgnB∗
n(x−mt) for p = ∞ in (1.11),

f (n)(t) = sgn(B∗
n(x−mt)−Bn(x)) · |B∗

n(x−mt)−Bn(x)|1/(p−1)

for 1 < p < ∞ and

f (n)(t) = sgn(B∗
n(x−mt)−Bn(x)) for p = ∞ in (1.12).

For p = 1 it is easy to see that∣∣∣∣∫ 1

0
B∗

n(x−mt) f (n)(t)dt

∣∣∣∣≤ max
t∈[0,1]

|B∗
n(t)|

∫ 1

0

∣∣∣ f (n)(t)
∣∣∣dt

is the best possible inequality (compare with the proof of Theorem 2.2 in Section 2.3). �

Corollary 1.1 Let f : [0,1] → R be such that f (n) ∈ L∞[0,1]. Let x ∈ [0,1]. If n is odd,
then we have∣∣∣∣∣

∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn(x)

∣∣∣∣∣≤ (4−21−n)|Bn+1|
mn · (n+1)!

· ‖ f (n)‖∞, (1.13)

and for n = 1∣∣∣∣∣
∫ 1

0
f (t)dt− 1

m

m−1

∑
k=0

f

(
x+ k
m

)∣∣∣∣∣≤ 1
m

[
1
4

+
(

x− 1
2

)2
]
· ‖ f ′‖∞, (1.14)

while for n ≥ 3∣∣∣∣∣
∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn−1(x)

∣∣∣∣∣ (1.15)

≤ ‖ f (n)‖∞

mn ·n!

(
(1−2|x− x1|) · |Bn(x)|+ 2

n+1
|Bn+1(x)−Bn+1(x1)|

)
,

where x1 ∈ [0,1] is such that Bn(x1) = Bn(x) and x1 
= x, except when Bn−1(x) = 0. If x = 0
or x = 1, take x1 = 1/2.

If n is even, then we have∣∣∣∣∣
∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn(x)

∣∣∣∣∣ (1.16)

≤ 4‖ f (n)‖∞

mn · (n+1)!
· |Bn+1(x1)| = 4‖ f (n)‖∞

mn · (n+1)!
max
t∈[0,1]

|Bn+1(t)|,
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where Bn(x1) = 0, and∣∣∣∣∣
∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn−1(x)

∣∣∣∣∣ (1.17)

≤ ‖ f (n)‖∞

mn ·n!

(
(−1)n/2 (1−4 |x−1/2|)Bn(x)+

4
n+1

|Bn+1(x)|
)

.

Proof. Put p = ∞ in Theorem 1.3. Inequality (1.13) follows straightforward since it
is known that, for an odd n, Bernoulli polynomials have constant sign on (0,1/2) and on
(1/2,1). (1.14) also follows by direct calculation.

To prove (1.15), assume first that 0 ≤ x ≤ 1/2. For an odd n we have Bn(1− t)
= −Bn(t), so we can rewrite K∗(n,1) as∫ 1/2

0
|Bn(t)−Bn(x)|dt +

∫ 1/2

0
|Bn(t)+Bn(x)|dt.

The second integral has no zeros on (0,1/2), so we can calculate it easily. The first integral,
however, has two zeros. One is obviously x and the other is x1, where x1 ∈ [0,1/2] and
Bn(x1) = Bn(x). When 1/2 ≤ x ≤ 1, the statement follows similarly.

Next, assume 0 ≤ x ≤ 1/2. Since Bn(t) are symmetric about t = 1/2 for an even n, we

can rewrite K∗(n,1) as 2
∫ 1/2
0 |Bn(t)−Bn(x)|dt. As Bernoulli polynomials are monotonous

on (0,1/2) for an even n, inequality (1.17) follows. For 1/2≤ x≤ 1 the statement follows
analogously. Using similar arguments we get (1.16). �

Remark 1.1 For m = 1, formulae (1.9) and (1.10) reduce to (1.1) and (1.2), and thus give
all the results from [30] i.e. the generalizations of Ostrowski’s inequality; especially, (1.14)
produces the classical Ostrowski’s inequality for m = 1.

For m = 1 and n = 2, (1.17) gives an improvement of a result obtained in [38]. This
was discussed in detail in [30].

Further, taking m = 1 and n = 3 in (1.15) produces a result obtained in [4]. These
results are therefore a generalization of the results from that paper.

Corollary 1.2 Let f : [0,1] → R be such that f (n) ∈ L1[0,1] and x ∈ [0,1]. For n = 1, we
have ∣∣∣∣∣

∫ 1

0
f (t)dt− 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+

B1(x)
m

[ f (1)− f (0)]

∣∣∣∣∣≤ ‖ f ′‖1

2m
, (1.18)∣∣∣∣∣

∫ 1

0
f (t)dt− 1

m

m−1

∑
k=0

f

(
x+ k
m

)∣∣∣∣∣≤ ‖ f ′‖1

m

(
1
2

+
∣∣∣∣x− 1

2

∣∣∣∣) , (1.19)

For an odd n, n ≥ 3, we have∣∣∣∣∣
∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn(x)

∣∣∣∣∣< 2‖ f (n)‖1

(1−2−n−1)(2πm)n , (1.20)
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∣∣∣∣∣
∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn−1(x)

∣∣∣∣∣ (1.21)

<
‖ f (n)‖1

mn ·n!

(
2n!

(1−2−n−1)(2π)n + |Bn(x)|
)

,

If n is even, then we have∣∣∣∣∣
∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn(x)

∣∣∣∣∣≤ |Bn|
mn ·n!

· ‖ f (n)‖1, (1.22)∣∣∣∣∣
∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn−1(x)

∣∣∣∣∣ (1.23)

≤ ‖ f (n)‖1

mn ·n!

(
(1−2−n)|Bn|+

∣∣2−nBn−Bn(x)
∣∣) .

Proof. Put p = 1 in Theorem 1.3. Inequalities (1.18) and (1.19) follow by direct calcu-
lation. Using estimations of the maximal value of Bernoulli polynomials (cf. [1]), we get
(1.20), (1.21) and (1.22). Finally, since Bn(t) are symmetric about t = 1/2 for an even n,
it is enough to consider them on (0,1/2) and there they are monotonous. So the maximal
value of |Bn(t)−Bn(x)| is obtained either for t = 0 or for t = 1/2. Using formula

max{|A|, |B|} =
1
2

(|A+B|+ |A−B|),

(1.23) follows. �

Corollary 1.3 Let f : [0,1]→ R be such that f (n) ∈ L2[0,1] and x ∈ [0,1]. Then we have∣∣∣∣∣
∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn(x)

∣∣∣∣∣≤ ‖ f (n)‖2

mn

( |B2n|
(2n)!

)1/2

, (1.24)∣∣∣∣∣
∫ 1

0
f (t)dt − 1

m

m−1

∑
k=0

f

(
x+ k
m

)
+Tn−1(x)

∣∣∣∣∣ (1.25)

≤ ‖ f (n)‖2

mn ·n!

(
(n!)2

(2n)!
|B2n|+B2

n(x)
)1/2

,

Proof. Both inequalities follow by direct calculation after taking p = 2 in Theorem 1.3.
�

It is interesting to consider which x ∈ [0,1] gives the optimal estimation in inequalities
(1.15) and (1.17). In (1.14) it is obvious that x = 1/2 is such point. Differentiating the
function on the right-hand side of (1.17) – this is the case when n is even – it is easy to see
that it obtains its minimum for x = 1/4 and x = 3/4 (for n ≥ 2) while its maximal value is
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in x = 0 and x = 1 (for n ≥ 4). Of course, the minimal value is of greater interest. In that
case, the quadrature formulae take the following form∫ 1

0
f (t)dt ≈ 1

4

(
f (1)+4 f

(
1
4

)
− f (0)

)
∫ 1

0
f (t)dt ≈ 1

4

(
f (0)+4 f

(
3
4

)
− f (1)

)
Also, if we take these parameters and put them in (1.10), then add them up and divide by
2, we get a two-point formula where the integral is approximated by values of the function
in x = 1/4 and x = 3/4. The error estimation for this formula can be deduced from the
following, more general, estimation. Using triangle inequality, we get∣∣∣∣∣

∫ 1

0
f (t)dt − 1

2m

m−1

∑
k=0

(
f

(
x+ k
m

)
+ f

(
1− x+ k

m

))

+
(n−2)/2

∑
j=1

B2 j(x)
(2 j)! ·m2 j [ f

(2 j−1)(1)− f (2 j−1)(0)]

∣∣∣∣∣
≤ ‖ f (n)‖∞

mn ·n!

(
(−1)n/2 (1−4 |x−1/2|)Bn(x)+

4
n+1

|Bn+1(x)|
)

.

Therefore, this formula gives the best error estimate for x = 1/4.
On the other hand, inequality (1.15) behaves quite oppositely (this is the case when

n is odd and n ≥ 3). Observe that x1 is a decreasing function of x and it is differentiable
on (0,1/2). This is sufficient since the function on the right-hand side of that inequality
(denote it by F(x)) obtains the same value for x and 1− x. For 0 ≤ x ≤ 1/2, we get

F ′(x) = (−1)(n+1)/2 ·n(1−2|x− x1|)Bn−1(x).

Since F ′(x) changes sign from positive to negative when passing through point
α ∈ (0,1/2) such that Bn−1(α) = 0, we conclude that F(x) obtains maximal value at α .
Note that α is close to 1/4, but a bit smaller. Minimum is then obtained at the end points of
the interval i.e. for x = 0 and x = 1/2 (the same value is obtained at both of these points).

1.2.1 Trapezoid formula

Choosing x = 0 and x = 1 in (1.9) and (1.10) when m = 1, adding those two formulae up
and then dividing the resulting formula by 2, produces the Euler trapezoid formulae - and
all the other results - obtained in [25]. Here, we just state the error estimates for this type
of quadrature formulae. Namely, for p = ∞ and p = 1, we have:∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (0)+ f (1)]

∣∣∣∣≤CT (m,q) · ‖ f (m)‖p, m = 1,2

where

CT (1,1) =
1
4
, CT (1,∞) =

1
2
, CT (2,1) =

1
12

, CT (2,∞) =
1
8
,
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while for m = 2,3,4∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (0)+ f (1)]+

1
12

[ f ′(1)− f ′(0)]
∣∣∣∣≤CT (m,q) · ‖ f (m)‖p,

where

CT (2,1) =
1

18
√

3
, CT (3,1) =

1
192

, CT (4,1) =
1

720
,

CT (2,∞) =
1
12

, CT (3,∞) =
1

72
√

3
, CT (4,∞) =

1
384

.

1.2.2 Midpoint formula

For m = 1 and x = 1/2 in (1.9) and (1.10), we get the Euler midpoint formulae derived in
[23] and of course all other results from that paper follow directly. The error estimates for
this type of quadrature formulae, for p = ∞ and p = 1, are:∣∣∣∣∫ 1

0
f (t)dt− f

(
1
2

)∣∣∣∣≤CM(m,q) · ‖ f (m)‖p, m = 1,2

where

CM(1,1) =
1
4
, CM(1,∞) =

1
2
, CM(2,1) =

1
24

, CM(2,∞) =
1
8
,

while for m = 2,3,4∣∣∣∣∫ 1

0
f (t)dt − f

(
1
2

)
− 1

24
[ f ′(1)− f ′(0)]

∣∣∣∣≤CM(m,q) · ‖ f (m)‖p,

where

CM(2,1) =
1

18
√

3
, CM(3,1) =

1
192

, CM(4,1) =
7

5760
,

CM(2,∞) =
1
12

, CM(3,∞) =
1

72
√

3
, CM(4,∞) =

1
384

.



Chapter2
Euler two-point formulae

2.1 Introduction

In this chapter we study, for each real number x∈ [0,1/2], the general two-point quadrature
formula ∫ 1

0
f (t)dt =

1
2

[ f (x)+ f (1− x)]+E( f ; ,x) (2.1)

with E( f ;x) being the remainder. This family of two-point quadrature formulae was con-
sidered by Guessab and Schmeisser in [68] and they established sharp estimates for the
remainder under various regularity conditions. The aim of this chapter is to establish gen-
eral two-point formula (2.1) using identities (1.1) and (1.2) and give various error estimates
for the quadrature rules based on such generalizations. In Section 2 we use the extended
Euler formulae to obtain two new integral identities. We call them the general Euler two-
point formulae. In Section 3, we prove a number of inequalities which give error estimates
for the general Euler two-point formulae for functions whose derivatives are from the
Lp-spaces, thus we extend the results from [68] and we generalize the results from pa-
pers [25]-[27], [83] and [84]. These inequalities are generally sharp (in case p = 1 the best
possible). Special attention is devoted to the case where we have some boundary condi-
tions and in some cases we compare our estimates with the Fink’s estimates ([68], [45]).
In Section 4 we give a variant of the inequality proved in the paper [91] and we use those
results to prove some inequalities for the general Euler two-point formula. The general Eu-
ler two-point formulae are used in Section 5 with functions possessing various convexity
and concavity properties to derive inequalities pertinent to numerical integration. In Sec-
tion 6 we generalize estimation of two-point formula by using pre-Grüss inequality and in
Section 7 we give Hermite-Hadamard’s inequalities of Bullen type.

11
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2.2 General Euler two-point formulae

The results from this and next section are published in [98].
For k ≥ 1 and fixed x ∈ [0,1/2] define the functions Gx

k(t) and Fx
k (t) as

Gx
k(t) = B∗

k (x− t)+B∗
k (1− x− t), t ∈ R

and Fx
k (t) = Gx

k(t)− B̃k(x), t ∈ R, where

B̃k(x) = Bk(x)+Bk (1− x), x ∈ [0,1/2] , k ≥ 1.

Especially, we get B̃1(x) = 0, B̃2(x) = 2x2 − 2x + 1/3, B̃3(x) = 0. Also, for k ≥ 2 we
have B̃k(x) = Gx

k(0), that is Fx
k (t) = Gx

k(t)−Gx
k(0), k ≥ 2, and Fx

1 (t) = Gx
1(t), t ∈ R.

Obviously, Gx
k(t) and Fx

k (t) are periodic functions of period 1 and continuous for k ≥ 2.
Let f : [0,1] → R be such that f (n−1) exists on [0,1] for some n ≥ 1. We introduce the

following notation for each x ∈ [0,1/2]

D(x) =
1
2

[ f (x)+ f (1− x)] .

Further, we define T̃0(x) = 0 and, for 1 ≤ m ≤ n, x ∈ [0,1/2]

T̃m(x) =
1
2

[Tm(x)+Tm (1− x)] ,

where Tm(x) is given by (1.3). It is easy to see that

T̃m(x) =
1
2

m

∑
k=1

B̃k(x)
k!

[
f (k−1)(1)− f (k−1)(0)

]
. (2.2)

In the next theorem we establish two formulae which play the key role in this chapter. We
call them the general Euler two-point formulae.

Theorem 2.1 Let f : [0,1] → R be such that f (n−1) is a continuous function of bounded
variation on [0,1], for some n ≥ 1. Then for each x ∈ [0,1/2]∫ 1

0
f (t)dt = D(x)− T̃n(x)+ R̃1

n( f ) (2.3)

and ∫ 1

0
f (t)dt = D(x)− T̃n−1(x)+ R̃2

n( f ), (2.4)

where

R̃1
n( f ) =

1
2(n!)

∫ 1

0
Gx

n (t)d f (n−1)(t), R̃2
n( f ) =

1
2(n!)

∫ 1

0
Fx

n (t)d f (n−1)(t).
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Proof. Put x≡ x and x≡ 1−x in formula (1.1) to get two new formulae. Then multiply
these new formulae by 1/2 and add them up. The result is formula (2.3). Formula (2.4) is
obtained from (1.2) by the same procedure. �

Remark 2.1 If in Theorem 2.1 we choose x = 0,1/2,1/3,1/4 we get Euler trapezoid
[25], Euler midpoint [23], Euler two-pointNewton-Cotes [84] and Euler two-point Maclau-
rin formulae respectively.

By direct calculations for each x ∈ [0,1/2], we get

Fx
1 (t) = Gx

1(t) =

⎧⎨⎩
−2t, 0 ≤ t ≤ x
−2t +1, x < t ≤ 1− x
−2t +2, 1− x < t ≤ 1

, (2.5)

Gx
2(t) =

⎧⎨⎩
2t2 +2x2−2x+1/3, 0 ≤ t ≤ x
2t2−2t +2x2 +1/3, x < t ≤ 1− x
2t2−4t +2x2−2x+7/3, 1− x < t ≤ 1

, (2.6)

Fx
2 (t) =

⎧⎨⎩
2t2, 0 ≤ t ≤ x
2t2−2t +2x, x < t ≤ 1− x
2t2−4t +2, 1− x < t ≤ 1

(2.7)

and

Fx
3 (t) = Gx

3(t) =

⎧⎪⎪⎨⎪⎪⎩
−2t3 +(−6x2 +6x−1)t, 0 ≤ t ≤ x
−2t3 +3t2 +(−6x2−1)t +3x2, x < t ≤ 1− x
−2t3 +6t2 +(−6x2 +6x−7)t

+6x2−6x+3, 1− x < t ≤ 1.

(2.8)

Now, we will prove some properties of the functions Gx
k(t) and Fx

k (t) defined above. The
Bernoulli polynomials are symmetric with respect to 1/2, that is

Bk (1− x) = (−1)kBk (x) , k ≥ 1. (2.9)

Also, we have Bk(1) = Bk(0) = Bk, k ≥ 2, B1(1) = −B1(0) = 1/2 and B2 j−1 = 0, j ≥ 2.
Therefore, we get B̃2 j−1(x) = 0, j ≥ 1 and B̃2 j(x) = 2B2 j(x), x ∈ [0,1/2] . Now, we have
Fx

2 j−1(t) = Gx
2 j−1(t), j ≥ 1, and

Fx
2 j(t) = Gx

2 j(t)− B̃2 j(x) = Gx
2 j(t)−2B2 j(x), x ∈ [0,1/2] , j ≥ 1. (2.10)

Further, the points 0 and 1 are zeros of Fx
k (t) = Gx

k(t) − Gx
k(0), k ≥ 2, that is

Fx
k (0) = Fx

k (1) = 0, k ≥ 1. As we shall see below, 0 and 1 are the only zeros of Fx
2 j(t) for

j ≥ 2 and x ∈
[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
. Next, setting t = 1/2 in (2.9) we get

Bk (1/2) = (−1)kBk (1/2) , k ≥ 1, which implies that B2 j−1 (1/2) = 0, j ≥ 1. Using the
above formulae, we get Fx

2 j−1 (1/2) = Gx
2 j−1 (1/2) = 0, j ≥ 1. We shall see that 0, 1/2

and 1 are the only zeros of Fx
2 j−1(t) = Gx

2 j−1(t), for j ≥ 2 and x ∈
[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
.

Also, note that for x ∈ [0,1/2] , j ≥ 1 Gx
2 j (1/2) = 2B2 j (1/2− x) and

Fx
2 j (1/2) = Gx

2 j (1/2)− B̃2 j(x) = 2B2 j (1/2− x)−2B2 j(x). (2.11)
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Lemma 2.1 For k ≥ 2 we have Gx
k(1 − t) = (−1)kGx

k(t), 0 ≤ t ≤ 1 and Fx
k (1 − t)

= (−1)kFx
k (t), 0 ≤ t ≤ 1.

Proof. As the functions B∗
k(t) are periodic with period 1 and continuous for k ≥ 2.

Therefore, for k ≥ 2 and 0 ≤ t ≤ 1 we have

Gx
k(1− t) = B∗

k (x−1+ t)+B∗
k (−x+ t)

=

⎧⎨⎩
Bk (x+ t)+Bk (1− x+ t), 0 ≤ t ≤ x,
Bk (x+ t)+Bk (−x+ t), x < t ≤ 1− x,
Bk (−1+ x+ t)+Bk (−x+ t) , 1− x < t ≤ 1,

= (−1)k ×⎧⎨⎩
Bk (1− x− t)+Bk (x− t) , 0 ≤ t ≤ x,
Bk (1− x− t)+Bk (1+ x− t), x < t ≤ 1− x,
Bk (2− x− t)+Bk (1+ x− t), 1− x < t ≤ 1,

= (−1)kGx
k(t),

which proves the first identity. Further, we have Fx
k (t) = Gx

k(t)−Gx
k(0) and (−1)kGx

k(0)
= Gx

k(0), since Gx
2 j+1(0) = 0, so that we have

Fx
k (1− t) = Gx

k (1− t)−Gx
k(0) = (−1)k [Gx

k(t)−Gx
k(0)] = (−1)kFx

k (t) ,

which proves the second identity. �

Note that the identities established in Lemma 2.1 are valid for k = 1, too, except at the
points x, and 1− x of discontinuity of Fx

1 (t) = Gx
1(t).

Lemma 2.2 For k≥ 2 and x∈
[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
the function Gx

2k−1(t) has no zeros

in the interval (0,1/2) . For 0 < t < 1/2 the sign of this function is determined by

(−1)k−1Gx
2k−1(t) > 0, x ∈

[
0,

1
2
− 1

2
√

3

]
and (−1)kGx

2k−1(t) > 0, x ∈
[

1

2
√

3
,
1
2

]
.

Proof. For k = 2, Gx
3(t) is given by (2.8) and it is easy to see that for each

x ∈
[
0, 1

2 − 1
2
√

3

]
Gx

3(t) < 0, 0 < t <
1
2

and for each x ∈
[

1
2
√

3
, 1

2

]
Gx

3(t) > 0, 0 < t <
1
2
.

Thus, our assertion is true for k = 2. Now, assume that k≥ 3. Then 2k−1≥ 5 and Gx
2k−1(t)

is continuous and at least twice differentiable function. Using (A-2) we get

Gx′
2k−1(t) = −(2k−1)Gx

2k−2(t)
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and
Gx′′

2k−1(t) = (2k−1)(2k−2)Gx
2k−3(t).

Let us suppose that Gx
2k−3 has no zeros in the interval

(
0, 1

2

)
. We know that 0 and 1

2 are
zeros of Gx

2k−1(t). Let us suppose that some α, 0 < α < 1
2 , is also a zero of Gx

2k−1(t). Then
inside each of the intervals (0,α) and

(
α, 1

2

)
the derivative Gx′

2k−1(t) must have at least one
zero, say β1, 0 < β1 < α and β2, α < β2 < 1

2 . Therefore, the second derivative Gx′′
2k−1(t)

must have at least one zero inside the interval (β1,β2) . Thus, from the assumption that
Gx

2k−1(t) has a zero inside the interval
(
0, 1

2

)
, it follows that (2k−1)(2k−2)Gx

2k−3(t) also
has a zero inside this interval. Thus, Gx

2k−1(t) can not have a zero inside the interval
(
0, 1

2

)
.

To determine the sign of Gx
2k−1(t), note that

Gx
2k−1 (x) = B2k−1 (1−2x).

We have [1, 23.1.14]

(−1)kB2k−1(t) > 0, 0 < t <
1
2
,

which implies for x ∈
[
0, 1

2 − 1
2
√

3

]
(−1)k−1Gx

2k−1 (x) = (−1)k−1B2k−1 (1−2x) = (−1)kB2k−1(2x) > 0

and

(−1)kGx
2k−1 (x) = (−1)kB2k−1 (1−2x) > 0 for x ∈

[
1

2
√

3
,
1
2

]
.

Consequently, we have

(−1)k−1Gx
2k−1(t) > 0, 0 < t <

1
2

for x ∈
[
0,

1
2
− 1

2
√

3

]
and

(−1)kGx
2k−1(t) > 0, 0 < t <

1
2

for x ∈
[

1

2
√

3
,
1
2

]
.

�

Corollary 2.1 For k≥ 2 and x∈
[
0, 1

2 − 1
2
√

3

]
the functions (−1)kFx

2k(t) and (−1)kGx
2k(t)

are strictly increasing on the interval (0,1/2), and strictly decreasing on the interval

(1/2,1). Also, for x∈
[

1
2
√

3
, 1

2

]
the functions (−1)k−1Fx

2k(t) and (−1)k−1Gx
2k(t) are strictly

increasing on the interval (0,1/2), and strictly decreasing on the interval (1/2,1). Fur-
ther, for k ≥ 2, we have

max
t∈[0,1]

|Fx
2k(t)| = 2 |B2k (1/2− x)−B2k(x)|

and
max
t∈[0,1]

|Gx
2k(t)| = 2max{|B2k (x)| , |B2k (1/2− x)|} .
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Proof. Using (A-2) we get[
(−1)kFx

2k(t)
]′

=
[
(−1)kGx

2k(t)
]′

= 2k(−1)k−1Gx
2k−1(t)

and (−1)k−1Gx
2k−1(t) > 0 for 0 < t < 1/2 and x ∈

[
0, 1

2 − 1
2
√

3

]
, by Lemma 2.2. Thus,

(−1)kFx
2k(t) and (−1)kGx

2k(t) are strictly increasing on the interval (0,1/2) . Also, by
Lemma 2.1, we have Fx

2k(1− t) = Fx
2k(t), 0 ≤ t ≤ 1 and Gx

2k(1− t) = Gx
2k(t), 0 ≤ t ≤ 1,

which implies that (−1)kFx
2k(t) and (−1)kGx

2k(t) are strictly decreasing on the interval
(1/2,1) . The proof of second statement is similar. Further, Fx

2k(0) = Fx
2k(1) = 0, which

implies that
∣∣Fx

2k(t)
∣∣ achieves its maximum at t = 1/2, that is

max
t∈[0,1]

|Fx
2k(t)| = |Fx

2k (1/2)| = 2 |B2k (1/2− x)−B2k(x)| .

Also

max
t∈[0,1]

|Gx
2k(t)| = max{|Gx

2k (0)| , |Gx
2k (1/2)|} = 2max{|B2k (x)| , |B2k (1/2− x)|} , (2.12)

which completes the proof. �

Corollary 2.2 For k ≥ 2, and x ∈
[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
we have

∫ 1

0

∣∣Fx
2k−1(t)

∣∣dt =
∫ 1

0

∣∣Gx
2k−1(t)

∣∣dt =
2
k
|B2k (1/2− x)−B2k(x)| .

Also, we have∫ 1

0
|Fx

2k(t)|dt =
∣∣B̃2k(x)

∣∣= 2 |B2k(x)| and
∫ 1

0
|Gx

2k(t)|dt ≤ 2
∣∣B̃2k(x)

∣∣= 4 |B2k(x)| .

Proof. Using Lemma 2.1 and Lemma 2.2 we get∫ 1

0

∣∣Gx
2k−1(t)

∣∣dt = 2

∣∣∣∣∫ 1/2

0
Gx

2k−1(t)dt
∣∣∣∣= 2

∣∣∣∣− 1
2k

Gx
2k(t)|1/2

0

∣∣∣∣
=

1
k
|Gx

2k (1/2)−Gx
2k (0)| = 2

k
|B2k (1/2− x)−B2k(x)| ,

which proves the first assertion. By Corollary 2.1 and because Fx
2k(0) = Fx

2k(1) = 0, Fx
2k(t)

does not change its sign on the interval (0,1). Therefore, using (2.10) we get∫ 1

0
|Fx

2k(t)|dt =
∣∣∣∣∫ 1

0
Fx

2k(t)dt
∣∣∣∣= ∣∣∣∣∫ 1

0

[
Gx

2k(t)− B̃2k(x)
]
dt

∣∣∣∣
=
∣∣∣∣− 1

2k+1
Gx

2k+1(t)
∣∣1
0− B̃2k(x)

∣∣∣∣= ∣∣B̃2k(x)
∣∣ ,

which proves the second assertion. Finally, we use (2.10) again and the triangle inequality
to obtain the third formula. �
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2.3 Inequalities related to the general Euler
two-point formulae

In this section we use formulae established in Theorem 2.1 to prove a number of inequal-
ities using Lp norms for 1 ≤ p ≤ ∞. These inequalities are generally sharp (in case p = 1
the best possible). Special attention is devoted to the case where we have some bound-
ary conditions and in some cases we compare our constants with the Fink constants ([68],
[45]).

Theorem 2.2 Assume (p,q) is a pair of conjugate exponents, 1 ≤ p,q ≤ ∞ and
f : [0,1] → R is such that f (n) ∈ Lp[0,1] for some n ≥ 1. Then for every x ∈ [0,1/2],
we have ∣∣∣∣∫ 1

0
f (t)dt −D(x)+ T̃n−1(x)

∣∣∣∣≤ K(n, p,x) · ‖ f (n)‖p, (2.13)

and ∣∣∣∣∫ 1

0
f (t)dt−D(x)+ T̃n(x)

∣∣∣∣≤ K∗(n, p,x) · ‖ f (n)‖p, (2.14)

where

K(n, p,x) =
1

2(n!)

[∫ 1

0
|Fx

n (t)|q dt

] 1
q

,K∗(n, p,x) =
1

2(n!)

[∫ 1

0
|Gx

n(t)|q dt

] 1
q

.

The constants K(n, p,x) and K∗(n, p,x) are sharp for 1 < p ≤ ∞ and the best possible for
p = 1.

Proof. Applying the Hölder inequality we have∣∣∣∣ 1
2(n!)

∫ 1

0
Fx

n (t) f (n)(t)dt
∣∣∣∣≤ 1

2(n!)

[∫ 1

0
|Fx

n (t)|q dt

] 1
q

·
∥∥∥ f (n)

∥∥∥
p
= K(n, p,x) · ‖ f (n)‖p.

Using the above inequality from (2.4) we get estimate (2.13). In the same manner, from
(2.3) we get estimate (2.14). Now, we consider the optimality of K(n, p,x). We shall find
a function f such that∣∣∣∣∫ 1

0
Fx

n (t) f (n)dt

∣∣∣∣= (∫ 1

0
|Fx

n (t)|qdt

) 1
q
(∫ 1

0
| f (n)(t)|pdt

) 1
p

.

For 1 < p < ∞ take f to be such that

f (n)(t) = sgnFx
n (t) · |Fx

n (t)| 1
p−1 (2.15)

where for p = ∞ we put f (n)(t) = sgnFx
n (t). For constant K∗(n, p,x) the proof of sharpness

is analogous. For p = 1 we shall prove that∣∣∣∣∫ 1

0
Fx

n (t) f (n)(t)dt

∣∣∣∣≤ max
t∈[0,1]

|Fx
n (t)|

∫ 1

0
| f (n)(t)|dt (2.16)
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is the best possible inequality. Suppose that |Fx
n (t)| attains its maximum at t0 ∈ (0,1). First,

we assume that Fx
n (t0) > 0. For ε small enough define f (n−1)

ε (t) by

f (n−1)
ε (t) =

⎧⎨⎩
0, t ≤ t0
1
ε (t− t0), t ∈ [t0,t0 + ε]
1, t ≥ t0 + ε

.

Then, for ε small enough∣∣∣∣∫ 1

0
Fx

n (t) f (n)
ε (t)dt

∣∣∣∣= ∣∣∣∣∫ t0+ε

t0
Fx

n (t)
1
ε
dt

∣∣∣∣= 1
ε

∫ t0+ε

t0
Fx

n (t)dt.

Now, from inequality (2.16) we have

1
ε

∫ t0+ε

t0
Fx

n (t)dt ≤ Fx
n (t0)

∫ t0+ε

t0

1
ε
dt = Fx

n (t0).

Since,

lim
ε→0

1
ε

∫ t0+ε

t0
Fx

n (t)dt = Fx
n (t0)

the statement follows. If Fx
n (t0) < 0, then we take

f (n−1)
ε (t) =

⎧⎨⎩
1, t ≤ t0
− 1

ε (t− t0− ε), t ∈ [t0,t0 + ε]
0, t ≥ t0 + ε

and the rest of proof is the same as above. Proof of the best possibility of the second
inequality is similar. �

Remark 2.2 Basically we have three types of estimates

∣∣∣∣∫ 1

0
f (t)dt−D(x)+ T̃2k(x)

∣∣∣∣≤ 1
2(2k)!

(∫ 1

0
|Gx

2k(t)|qdt

) 1
q
(∫ 1

0
| f (2k)(t)|pdt

) 1
p

,

∣∣∣∣∫ 1

0
f (t)dt −D(x)+ T̃2k(x)

∣∣∣∣≤ 1
2(2k+1)!

(∫ 1

0
|Gx

2k+1(t)|qdt

) 1
q
(∫ 1

0
| f (2k+1)(t)|pdt

) 1
p

and∣∣∣∣∫ 1

0
f (t)dt −D(x)+ T̃2k(x)

∣∣∣∣≤ 1
2(2k+2)!

(∫ 1

0
|Fx

2k+2(t)|qdt

) 1
q
(∫ 1

0
| f (2k+2)(t)|pdt

) 1
p

.

In the following theorem we are interested in sharpness of the above estimates in the
presence of boundary conditions.
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Theorem 2.3 Assume that (p,q) is a pair of conjugate exponents, 1≤ p,q≤∞ and k∈N.
Let f : [0,1]→ R be such that f (2i−1)(0) = f (2i−1)(1) for i = 1, . . . ,k and x ∈ [0,1/2].
If f (2k) ∈ Lp[0,1], we have

∣∣∣∣∫ 1

0
f (t)dt −D(x)

∣∣∣∣≤ 1
2(2k)!

(∫ 1

0
|Gx

2k(t)|qdt

) 1
q
(∫ 1

0
| f (2k)(t)|pdt

) 1
p

. (2.17)

If f (2k+1) ∈ Lp[0,1], we have

∣∣∣∣∫ 1

0
f (t)dt −D(x)

∣∣∣∣≤ 1
2(2k+1)!

(∫ 1

0
|Gx

2k+1(t)|qdt

) 1
q
(∫ 1

0
| f (2k+1)(t)|pdt

) 1
p

. (2.18)

If f (2k+2) ∈ Lp[0,1], we have

∣∣∣∣∫ 1

0
f (t)dt −D(x)

∣∣∣∣≤ 1
2(2k+2)!

(∫ 1

0
|Fx

2k+2(t)|qdt

) 1
q
(∫ 1

0
| f (2k+2)(t)|pdt

) 1
p

. (2.19)

Inequality (2.17) is sharp for p = 2 and inequalities (2.18) and (2.19) are sharp for
1 < p ≤ ∞ and best possible for p = 1.

Proof. Inequality (2.17) is sharp since a function f for which we have equality in (2.14)
in case p = 2, n = 2k is defined by f (2k)(t) = Gx

2k(t), so we can choose f such that

f (2k−1)(t) = − 1
2k+1

Gx
2k+1(t), f (2k−3)(t) = − 1

(2k+1)(2k+2)(2k+3)
Gx

2k+3(t)

and generally

f (2i−1)(t) = − 1
(2k+1)(2k+2) . . .(4k−2i+1)

Gx
4k−2i+1(t), i = 1, . . . ,k

which give f (2i−1)(0) = f (2i−1)(1) = 0, i = 1, . . . ,k. With regard to the sharpness
or the best possibility of inequality (2.18), notice first that approximation

∫ 1
0 f (t)

≈ D(x)− T̃2k(x) is exact of order 2k + 1. Take any function f which is optimal for in-
equality (2.13) in case n = 2k+1, 1 ≤ p ≤ ∞. Set

g(t) = f (t)+
2k

∑
i=1

ait
i = f (t)+a2kt

2k +a2k−1t
2k−1 + . . .+a2t

2 +a1t.

We have
g(2k−1)(t) = f (2k−1)(t)+ (2k)!a2kt +(2k−1)!a2k−1

so
0 = g(2k−1)(0) = f (2k−1)(0)+ (2k−1)!a2k−1

0 = g(2k−1)(1) = f (2k−1)(1)+ (2k)!a2k +(2k−1)!a2k−1
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which gives a2k,a2k−1. Using g(2k−3) and conditions g(2k−3)(0) = 0 = g(2k−3)(1) we anal-
ogously obtain a2k−2,a2k−3 and so on. So, the function g is also optimal for (2.13) and
satisfies boundary conditions g(2i−1)(1) = g(2i−1)(0), i = 1, . . . ,k. Inequality (2.19) can be
treated in the same way. �

In the following we calculate the optimal constants in cases p = 1, p = ∞ and p = 2.

Corollary 2.3 Let f : [0,1]→ R be L-Lipschitzian on [0,1]. Then for each x ∈ [0,1/2]∣∣∣∣∫ 1

0
f (t)dt −D(x)

∣∣∣∣≤ 4x2 +(1−2x)2

4
·L. (2.20)

Proof. Using (2.5) for each x ∈ [0,1/2] and applying (2.13) with n = 1 and p = ∞ we
get the above inequality. �

Remark 2.3 The inequality (2.20), has been proved by A. Guessab and G. Schmeisser on
interval [a,b] in [68] (see also [34]). They also proved that this inequality is sharp for each
admissible x. Equality is attained exactly in the case of equality in Theorem 2.2 where we
put f ′(t) = sgnFx

1 (t).

Corollary 2.4 Let f : [0,1]→ R be such that f ′ is L-Lipschitzian on [0,1]. Then for each
x ∈ [0,1/4] ∣∣∣∣∫ 1

0
f (t)dt−D(x)

∣∣∣∣≤ [−1
2

(
x2− x− 1

6

)
+

1
6

(1−4x)3/2
]
L (2.21)

and for each x ∈ [1/4,1/2]∣∣∣∣∫ 1

0
f (t)dt −D(x)

∣∣∣∣≤−1
2

(
x2− x+

1
6

)
L. (2.22)

Proof. Using (2.7) for each x ∈ [0,1/4] and applying (2.13) with n = 2 and p = ∞ we
get the above inequalities. �

Remark 2.4 The inequalities (2.21) and (2.22) have been proved by A. Guessab and G.
Schmeisser on interval [a,b] in [68]. They also proved that these inequalities are sharp for
each admissible x.

Corollary 2.5 Let f : [0,1]→ R be such that f ′ is L-Lipschitzian on [0,1]. Then for each

x ∈
[
0, 1

2 − 1
2
√

3

]
∣∣∣∣∫ 1

0
f (t)dt−D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣≤ 1

18
√

3
(1−12x2)3/2L,

for each x ∈
[

1
2 − 1

2
√

3
, 1

2
√

3

]
∣∣∣∣∫ 1

0
f (t)dt −D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣

≤
[

4
3

(
−x2 + x− 1

6

)3/2

+
1

18
√

3
(1−12x2)3/2

]
L
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and for each x ∈
[

1
2
√

3
, 1

2

]
∣∣∣∣∫ 1

0
f (t)dt −D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣≤ 4

3

(
−x2 + x− 1

6

)3/2

L.

Proof. Using (2.6) for each x ∈
[
0, 1

2 − 1
2
√

3

]
we get

∫ 1

0
|Gx

2(t)|dt = 2
∫ 1/2

0
|Gx

2(t)|dt = 2

⎡⎣−∫ 1/2

0
Gx

2(t)dt +2
∫ 1

2−
√

1−12x2

2
√

3

0
Gx

2(t)dt

⎤⎦
= 4

∫ 1
2−

√
1−12x2

2
√

3

0
Gx

2(t)dt = 4

(
−1

3
Gx

3(t)|
1
2−

√
1−12x2

2
√

3
0

)
= −4

3
Gx

3

(
1
2
−

√
1−12x2

2
√

3

)
,

for each x ∈
[

1
2 − 1

2
√

3
, 1

2
√

3

]
∫ 1

0
|Gx

2(t)|dt = 4
∫ 1

2−
√

1−12x2

2
√

3√
−x2+x+ 1

6

Gx
2(t)dt

=
4
3

[
Gx

3

(√
−x2 + x− 1

6

)
−Gx

3

(
1
2
−

√
1−12x2

2
√

3

)]

and for each x ∈
[

1
2
√

3
, 1

2

]
we get

∫ 1

0
|Gx

2(t)|dt = −4
∫ √−x2+x− 1

6

0
Gx

2(t)dt =
4
3
Gx

3

(√
−x2 + x− 1

6

)
.

Therefore, applying (2.14) with n = 2 and p = ∞ we get the above inequalities. �

Remark 2.5 In Theorem 2.3 it was proved that inequality (2.17) is sharp just for p = 2.
We mention here that comparing the sharp constant from Guessab and Schmeisser in [68]
in case p = ∞ and our constant, we conclude that inequality (2.17) is not generally sharp.
Namely, our constant for boundary conditions f ′(1) = f ′(0), n = 2 and x = 0 is 1/(18

√
3),

while they have 1/32 (note that the sharpness of inequality (2.17) under conditions f ′(1)
= f ′(0) implies the sharpness of the same inequality under conditions f ′(1) = f ′(0) = 0).

Corollary 2.6 Let f : [0,1]→ R be such that f ′′ is L-Lipschitzian on [0,1]. Then for each

x ∈
[
0, 1

2 − 1
2
√

3

]
∣∣∣∣∫ 1

0
f (t)dt −D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣ ≤ (

x3

6
− x2

8
+

1
192

)
L,
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for each x ∈
[

1
2 − 1

2
√

3
, 1

4

]
∣∣∣∣∫ 1

0
f (t)dt−D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣

≤
[

x3

6
− x2

8
+

1
192

+
1
6

(
−3x2 +3x− 1

2

)2
]

L,

for each x ∈
[

1
4 , 1

2
√

3

]
∣∣∣∣∫ 1

0
f (t)dt−D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣

≤
[
−x3

6
+

x2

8
− 1

192
+

1
96

(1−12x2)2
]
L,

and for each x ∈
[

1
2
√

3
, 1

2

]
∣∣∣∣∫ 1

0
f (t)dt −D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣≤ (−x3

6
+

x2

8
− 1

192

)
L.

Proof. Using (2.8) for each x ∈
[
0, 1

2 − 1
2
√

3

]
we get

∫ 1

0
|Fx

3 (t)|dt = 2
∫ 1/2

0
|Fx

3 (t)|dt = −2
∫ 1/2

0
Fx

3 (t)dt = −2

(
−1

4
Gx

4(t)|1/2
0

)
=

1
2

[
Gx

4

(
1
2

)
− B̃4(x)

]
=

1
2
Fx

4

(
1
2

)
,

for each x ∈
[

1
2 − 1

2
√

3
, 1

4

]
∫ 1

0
|Fx

3 (t)|dt = −2
∫ 1/2

0
Fx

3 (t)dt +4
∫ √−3x2+3x− 1

2

0
Fx

3 (t)dt

=
1
2

[
Gx

4

(
1
2

)
−2Gx

4

(√
−3x2 +3x− 1

2

)
+ B̃4(x)

]

=
1
2

[
Fx

4

(
1
2

)
−2Fx

4

(√
−3x2 +3x− 1

2

)]
,

for each x ∈
[

1
4 , 1

2
√

3

]
∫ 1

0
|Fx

3 (t)|dt = −2
∫ 1/2

0
Fx

3 (t)dt +4
∫ 1−

√
1−12x2
2

0
Fx

3 (t)dt
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=
1
2

[
Gx

4

(
1
2

)
−2Gx

4

(
1−√

1−12x2

2

)
+ B̃4(x)

]

=
1
2

[
Fx

4

(
1
2

)
−2Fx

4

(
1−√

1−12x2

2

)]

and for each x ∈
[

1
2
√

3
, 1

2

]
we get

∫ 1

0
|Fx

3 (t)|dt = 2
∫ 1/2

0
Fx

3 (t)dt = −1
2

[
Gx

4

(
1
2

)
− B̃4(x)

]
= −1

2
Fx

4

(
1
2

)
.

Therefore, applying (2.13) with n = 3 and p = ∞ we get the above inequalities. �

Remark 2.6 Let f : [0,1] → R be such that f (n−1) is L-Lipschitzian on [0,1] for some

n ≥ 3. Then for each x ∈
[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
, from Corollary 2.2 we get

K(2k−1,∞,x) =
2

(2k)!

∣∣∣∣B2k

(
1
2
− x

)
−B2k(x)

∣∣∣∣
K∗(2k,∞,x) =

1
(2k)!

|B2k(x)| and K(2k,∞,x) =
2

(2k)!
|B2k(x)| .

If in the first inequality in Corollary 2.6 we put k = 2 we get the same inequalities as in

Corollary 2.6 when x is from intervals
[
0, 1

2 − 1
2
√

3

]
and

[
1

2
√

3
, 1

2

]
.

Remark 2.7 If in Corollaries 2.3, 2.4, 2.5, 2.6 and Remark 2.6 we choose x = 0,1/2,1/3
we get inequalities related to trapezoid (see [14], [39], and [25]), midpoint (see [15], [40]
and [23]) and two-point Newton-Cotes (see [84]), respectively. For x = 1/4 in Corollaries
2.3, 2.4, 2.5 and 2.6 we get inequalities related to two-point Maclaurin formulae (see [34]).

Corollary 2.7 Let f : [0,1] → R be continuous of bounded variation on [0,1]. Then for
x ∈ [0,1/2] ∣∣∣∣∫ 1

0
f (t)dt−D(x)

∣∣∣∣≤ 1+ |4x−1|
4

·V 1
0 ( f ). (2.23)

Proof. From (2.5) we have maxt∈[0,1] |Fx
1 (t)|= max{2x,−2x+1}= max{A,B}, where

A = 2x, B = −2x+1. Also, max{A,B}= 1
2 (A+B+ |A−B|), so using this formula apply-

ing (2.13) with n = 1 and p = 1 we get the above inequality. �

Remark 2.8 The inequality (2.23) has been proved by Dragomir in [35].

Corollary 2.8 Let f : [0,1] → R be such that f ′ is continuous of bounded variation on
[0,1]. Then for each x ∈ [0,1/4]∣∣∣∣∫ 1

0
f (t)dt−D(x)

∣∣∣∣≤ 4x2−4x+1+ |4x2+4x−1|
16

·V 1
0 ( f ′) (2.24)
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and for each x ∈ [1/4,1/2] ∣∣∣∣∫ 1

0
f (t)dt −D(x)

∣∣∣∣≤ x2

2
·V 1

0 ( f ′). (2.25)

Proof. From (2.7) and for each x ∈ [0,1/4] we have

max
t∈[0,1]

|Fx
2 (t)| = max

{
2x2,−2x+

1
2

}
and for each x ∈ [1/4,1/2], maxt∈[0,1] |Fx

2 (t)| = 2x2. So using these two formulae and
applying (2.13) with n = 2 and p = 1 we get the inequalities (2.24) and (2.25). �

Corollary 2.9 Let f : [0,1] → R be such that f ′ is continuous of bounded variation on
[0,1]. Then for each x ∈ [0,1/2]∣∣∣∣∫ 1

0
f (t)dt−D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣≤ (x2 − x

2
+

1
12

)
V 1

0 ( f ′).

Proof. Using (2.6) for each x ∈ [0,1/2] we get

max
t∈[0,1]

|Gx
2(t)| = max

{
|G2(0)|, |G2(x)|,

∣∣∣∣G2

(
1
2

)∣∣∣∣} .

Therefore, applying (2.14) with n = 2 and p = 1 we get the above inequality. �

Remark 2.9 We mention here that comparing the best possible constant from Guessab
and Schmeisser in [68] in case p = 1 and our constant, we conclude that inequality (2.17) is
not generally the best possible. Namely, our constant for boundary conditions
f ′(1) = f ′(0), n = 2 and x = 0 is 1/12, while they have 1/16.

Corollary 2.10 Let f : [0,1] → R be such that f ′′ is continuous of bounded variation on
[0,1]. Then for each x ∈ [0,1/4]∣∣∣∣∫ 1

0
f (t)dt −D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣≤ 1

72
√

3

(
1−12x2)3/2

V 1
0 ( f ′′)

and for each x ∈ [1/4,1/2]∣∣∣∣∫ 1

0
f (t)dt−D(x)+

B2(x)
2

[ f ′(1)− f ′(0)]
∣∣∣∣≤ 1

3

(
−x2 + x− 1

6

)3/2

V 1
0 ( f ′′).

Proof. Using (2.8) for each x ∈
[
0, 1

2 − 1
2
√

3

]
we get

max
t∈[0,1]

|Fx
3 (t)| =

∣∣∣∣∣F3

(
1
2
−

√
1−12x2

2
√

3

)∣∣∣∣∣ ,
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for each x ∈
[

1
2 − 1

2
√

3
, 1

4

]
max
t∈[0,1]

|Fx
3 (t)| = max

{∣∣∣∣∣F3

(
1
2
−

√
1−12x2

2
√

3

)∣∣∣∣∣ ,
∣∣∣∣∣F3

(√
−x2 + x− 1

6

)∣∣∣∣∣
}

,

for each x ∈
[

1
4 , 1

2
√

3

]
max
t∈[0,1]

|Fx
3 (t)| = max

{∣∣∣∣∣F3

(
1
2
−

√
1−12x2

2
√

3

)∣∣∣∣∣ ,
∣∣∣∣∣F3

(√
−x2 + x− 1

6

)∣∣∣∣∣
}

and for each x ∈
[

1
2
√

3
, 1

2

]
we get

max
t∈[0,1]

|Fx
3 (t)| =

∣∣∣∣∣F3

(√
−x2 + x− 1

6

)∣∣∣∣∣ .
Therefore, applying (2.13) with n = 3 and p = 1 we get the above inequalities. �

Remark 2.10 Let f : [0,1] → R be such that f (n−1) is a continuous function of bounded

variation on [0,1] for some n ≥ 3. Then for each x ∈
[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
, from Corol-

lary 2.1 we get

K(2k−1,1,x) =
1

2(2k−1)!
max
t∈[0,1]

∣∣Fx
2k−1(t)

∣∣ ,
K∗(2k,1,x) =

1
(2k)!

∣∣∣∣B2k

(
1
2
− x

)
−B2k(x)

∣∣∣∣
and K(2k−1,1,x) =

1
(2k)!

max

{
|B2k(x)| ,

∣∣∣∣B2k

(
1
2
− x

)∣∣∣∣} .

If in the first inequality in Corollary 2.10 we put k = 2 we get the same inequalities as in

Corollary 2.10 when x is from intervals
[
0, 1

2 − 1
2
√

3

]
and

[
1

2
√

3
, 1

2

]
.

Remark 2.11 If in Corollaries 2.7, 2.8, 2.9, 2.10 and Remark 2.10 we choose x = 0,1/2,
1/3 we get inequalities related to trapezoid (see [14], [39] and [25]), midpoint (see [15],
[40] and [23])) and two-point Newton-Cotes (see [84]), respectively. For x = 1/4 in Corol-
laries 2.7, 2.8, 2.9 and 2.10 we get inequalities related to two-point Maclaurin formulae
(see [35]).

Now, we calculate the optimal constant for p = 2.

Corollary 2.11 Let f : [0,1] → R be such that f (n) ∈ L2[0,1] for some n ≥ 1. Then for
each x ∈ [0,1/2], we have∣∣∣∣∫ 1

0
f (t)dt−D(x)+ T̃n−1(x)

∣∣∣∣
≤ 1

2

[
2(−1)n−1

(2n)!
[B2n +B2n(1−2x)]+

4
(n!)2 B2

n(x)
]1/2

‖ f (n)‖2,
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and ∣∣∣∣∫ 1

0
f (t)dt −D(x)+ T̃n(x)

∣∣∣∣≤ 1
2

[
2(−1)n−1

(2n)!
[B2n +B2n(1−2x)]

]1/2

‖ f (n)‖2.

Proof. Using integration by parts and also using Lemma 1 from [30] we have∫ 1

0
Gx

n
2(t)dt = (−1)n−1 n(n−1) . . .2

(n+1)(n+2) . . .(2n−1)

[
1
2n

∫ 1

0
Gx

2n(t)dGx
1(t)
]

= (−1)n−1 2(n!)2

(2n)!

[
−2
∫ 1

0
Gx

2n(t)dt +Gx
2n(x)+Gx

2n(1−2x)
]

= (−1)n−1 2(n!)2

(2n)!
[B2n +B2n(1−2x)].

Now, ∫ 1

0
Fx

n
2(t)dt =

∫ 1

0

[
Gx

n(t)− B̃n(x)
]2

dt

=
∫ 1

0

[
Gx

n
2(t)−2Gx

n(t)B̃n(x)+ B̃2
n(x)

]
dt =

∫ 1

0
Gx

n
2(t)dt + B̃2

n(x)

= (−1)n−1 2(n!)2

(2n)!
[B2n +B2n(1−2x)]+4B2

n(x).

�

Remark 2.12 For n = 2 we have boundary conditions f ′(1) = f ′(0). For x = 0 our con-
stant from Theorem 2.3 is 1/(12

√
3). Guessab and Schmeisser in [68] also have 1/(12

√
3)

which confirms the sharpness of our inequality in this case.

Finally, we give the values of optimal constant for n = 1 and arbitrary p from Theorem
2.2.

Remark 2.13 Note that K∗(1, p,x) = K(1, p,x), for 1 < p ≤ ∞, since Gx
1(t) = Fx

1 (t).
Also, for 1 < p ≤ ∞ we can easily calculate K(1, p,x). We get

K(1, p,x) =
1
2

[
(2x)q+1 +(1−2x)q+1

q+1

] 1
q

, 1 < p ≤ ∞. (2.26)

Remark 2.14 (2.26) has been proved by S.S. Dragomir on interval [a,b] in [34].

Remark 2.15 If in Remark 2.13 we chose x = 0,1/2,1/3,1/4we get inequality related to
trapezoid (see [25]), midpoint (see [23]), two-point Newton-Cotes (see [84]) and two-point
Maclaurin formulae (see [34]), respectively.

In the following theorem using the formula (2.3) and one technical result from the
recent paper [83] we obtain Grüss type inequalities related to the general Euler two-point
formula (see [83]).
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Theorem 2.4 Suppose that f : [0,1] → R is such that f (n) ∈ L1[0,1] for some n ≥ 1.
Assume that

mn ≤ f (n)(t) ≤ Mn, 0 ≤ t ≤ 1,

for some constants mn and Mn. Then for x ∈ [0,1/2]∣∣∣∣∫ 1

0
f (t)dt −D(x)+ T̃n(x)

∣∣∣∣≤Cn(Mn −mn) (2.27)

where Cn = 1
4(n!)

∫ 1
0 |Gx

n(t)|dt.

Remark 2.16 If in Theorem 2.4 we chose x = 0,1/2,1/3 we get inequalities related to
trapezoid, midpoint and two-point Newton-Cotes formulae (see [83]). For x = 1/4 we get
inequalities related to two-point Maclaurin formulae.

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

Theorem 2.5 If f : [0,1] → R is such that f (2k) is a continuous function on [0,1], for
some k ≥ 2 then there exists a point η ∈ [0,1] such that

R̃2
2k( f ) = −B2k(x)

[(2k)!]
f (2k)(η) for x ∈

[
0,

1
2
− 1

2
√

3

]
∪
[

1

2
√

3
,
1
2

]
(2.28)

Proof. We can rewrite R̃2
2k( f ) for x ∈

[
0, 1

2 − 1
2
√

3

]
as R̃2

2k( f ) = (−1)k Jk
2[(2k)!] , where

Jk =
∫ 1
0 (−1)kFx

2k(s) f (2k)(s)ds. From Corollary 2.1 follows that (−1)kFx
2k(s) ≥ 0,

0 ≤ s ≤ 1 and the claim follows from the mean value theorem for integrals and

Corollary 2.2. The proof on interval
[

1
2
√

3
, 1

2

]
is similar.

�

Remark 2.17 For k = 2 formulae (2.28) reduces to

R̃2
4( f ) = −B4(x)

24
f (4)(η),

respectively, which are formulae proved for x = 0 in [25], for x = 1/2 in [23] and for
x = 1/3 in [84].

Corollary 2.12 Let f ∈ C∞[0,1] and λ ∈ R be such that 0 < λ < 2π and | f (2k)(t)|
≤ λ 2k for t ∈ [0,1] and k ≥ k0 for some k0 ≥ 2. Then for x ∈

[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
we have ∫ 1

0
f (t)dt = D(x)− 1

2

∞

∑
j=1

B2 j(x)
(2 j)!

[
f (2 j−1)(1)− f (2 j−1)(0)

]
. (2.29)

Proof. From Theorem 2.5 when k ≥ k0 we have that

|R̃2
2k( f )| ≤ |B2k(x)|

(2k)!
λ 2k ≤ |B2k|

(2k)!
λ 2k ≈ 1

(2k)!
·2 (2k)!

(2π)2k λ 2k = 2

(
λ
2π

)2k

,

so, (2.29) follows. �
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2.4 Integration of periodic function and application
on the general Euler two-point formula

In the paper [91] the following lemma has been proved:

Lemma 2.3 Let ϕ(x) ↓ 0. Then

−
∫ ∞

0
ρ(x)ϕ(x)dx <

1
8

ϕ(0), (2.30)

where ρ(x) = x−�x�− 1
2 .

The aim of this section is to give a variant of this inequality, which involves a periodic
function ρ , and use those results to prove some inequalities for the general Euler two-point
formula. The results from this section are published in [76].

Theorem 2.6 Let ϕ : I → R, I ⊂ R, be a monotone function, and let ρ : R → R be a
periodic function with period P such that for some a ∈ R and n ∈ N, [a,a+nP] ⊆ I.
Suppose that there exists some x0 ∈ (a,a+P) such that ρ (x0) = 0, ρ (x) ≥ 0 for all
x ∈ [a,x0) and ρ (x) ≤ 0 for all x ∈ (x0,a+P]. Suppose also that

∫ a+P
a ρ (x)dx = 0. If

function ϕ is increasing on [a,a+nP], then

−
∫ a+nP

a
ρ (x)ϕ (x)dx ≤ 1

2n
(ϕ (a+nP)−ϕ (a))

∫ a+nP

a
|ρ (x)|dx, (2.31)

and this inequality is sharp. If function ϕ is decreasing on [a,a+nP], then inequality
(2.31) is reversed.

Proof. First we will consider the case of increasing function ϕ .
Since function ρ is periodic with period P, from the conditions on ρ we can deduce

that for all k ∈ {0, ...,n−1}∫ a+(k+1)P

a+kP
ρ(x)dx = 0,

ρ (xk) = 0, xk = x0 + kP

ρ (x) ≥ 0, x ∈ [a+ kP,xk)
ρ (x) ≤ 0, x ∈ (xk,a+(k+1)P] .

Using these properties, we can easily obtain

−
∫ a+nP

a
ρ(x)ϕ(x)dx = −

n−1

∑
k=0

∫ a+(k+1)P

a+kP
ρ(x)(ϕ(x)−ϕ(xk))dx

=
n−1

∑
k=0

[∫ xk

a+kP
ρ(x)(ϕ(xk)−ϕ(a+ kP))dx
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+
∫ a+(k+1)P

xk

ρ(x)(ϕ(xk)−ϕ(a+(k+1)P))dx+ak

]
=

n−1

∑
k=0

[
(ϕ(xk)−ϕ(a+ kP))

∫ xk

a+kP
ρ(x)dx

+ (ϕ(xk)−ϕ(a+(k+1)P))
∫ a+(k+1)P

xk

ρ(x)dx+ak

]
≤ (ϕ(a+nP)−ϕ(a))

1
2n

∫ a+nP

a
|ρ(x)|dx+

n−1

∑
k=0

ak,

where

ak =
∫ xk

a+kP
ρ(x)(ϕ(a+ kP)−ϕ(x))dx

−
∫ a+(k+1)P

xk

ρ(x)(ϕ(x)−ϕ(a+(k+1)P))dx.

Due to the fact that ϕ is increasing function on I, we can deduce that ak ≤ 0 for all
k ∈ {0, ...,n−1}, i.e. ∑n−1

k=1 ak ≤ 0. Immediately it follows that the inequality (2.31) is
valid.

In order to prove the sharpness we will define function ϕ : [a,a+nP]→ R with

ϕ (x) =
{

a+ kP, x ∈ [a+ kP,xk]
a+(k+1)P, x ∈ (xk,a+(k+1)P]

for all k ∈ {0, ...,n−1}. It is obvious that function ϕ is increasing on [a,a+nP], and for
any function ρ which fulfils the conditions of this theorem we have:

−
∫ a+nP

a
ρ(x)ϕ(x)dx = −

n−1

∑
k=0

∫ a+(k+1)P

a+kP
ρ(x)ϕ(x)dx

= −
n−1

∑
k=0

[
(a+ kP)

∫ xk

a+kP
ρ(x)dx+(a+(k+1)P)

∫ a+(k+1)P

xk

ρ(x)dx

]

= −(a+ kP)
n−1

∑
k=0

∫ a+(k+1)P

a+kP
ρ(x)dx−P

n−1

∑
k=0

∫ a+(k+1)P

xk

ρ(x)dx

= 0+
P
2

n−1

∑
k=0

∫ a+(k+1)P

a+kP
|ρ(x)|dx =

1
2n

(ϕ(a+nP)−ϕ(a))
∫ a+nP

a
|ρ(x)|dx,

and this means that inequality (2.31) is sharp.
If function ϕ is decreasing on I, the reverse of (2.31) can be obtained in the similar way.

To prove the sharpness, we can simply choose a decreasing function ϕ : [a,a+nP] → R

defined with

ϕ (x) =
{

a+(k+1)P, x ∈ [a+ kP,xk]
a+ kP, x ∈ (xk,a+(k+1)P] ,

for all k ∈ {0, ...,n−1} . This completes the proof.
�
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Remark 2.18 If we consider inequality (2.31) for a periodic function τ with period P
such that τ(x) ≤ 0 on [a+ kP,x0), τ (x0) = 0 and τ(x) ≥ 0 on (x0,a+(k + 1)P], then we
can use inequality (2.31) with function ρ defined as ρ(x) = −τ(x), for x ∈ R.

Now we shall show how can Theorem 2.6 be used in order to obtain some inequali-
ties for general Euler two-point formula. Let f ∈ C2r−1([a,b],R) for some r ≥ 2, and let
y ∈ [a,(a+b)/2]. We have the general Euler two-point formula∫ b

a
f (t)dt =

b−a
2

[ f (y)+ f (a+b− y)]−Tr−1(y)

+
(b−a)2r−1

2(2r−1)!

∫ b

a
Fx

2r−1

(
z−a
b−a

)
f (2r−1)(z)dz, (2.32)

where x = y−a
b−a . Here we define T0(y) = T1(y) = 0, and for k ≥ 2

Tk(y) =
k

∑
j=2

(b−a)2 j

(2 j)!
B2 j

(
y−a
b−a

)[
f (2 j−1)(b)− f (2 j−1)(a)

]
. (2.33)

Theorem 2.7 Let f : [a,b] → R be such that for some r ≥ 2 derivative f (2r−1) is an

increasing function on [a,b]. Then for y ∈
[
a, a+b

2 − b−a
2
√

3

]
the following inequality holds

(−1)r
{∫ b

a
f (t)dt − b−a

2
[ f (y)+ f (a+b− y)]+Tr−1(y)

}
(2.34)

≤ (b−a)2r

(2r)!

∣∣∣∣B2r

(
1
2
− y−a

b−a

)
−B2r

(
y−a
b−a

)∣∣∣∣[ f (2r−1)(b)− f (2r−1)(a)
]
.

Also, for y ∈
[
a+ b−a

2
√

3
, a+b

2

]
we have

(−1)r−1
{∫ b

a
f (t)dt − b−a

2
[ f (y)+ f (a+b− y)]+Tr−1(y)

}
(2.35)

≤ (b−a)2r

(2r)!

∣∣∣∣B2r

(
1
2
− y−a

b−a

)
−B2r

(
y−a
b−a

)∣∣∣∣[ f (2r−1)(b)− f (2r−1)(a)
]
.

These two inequalities are sharp.

Proof. We know that function Fx
2r−1 is periodic with period P = 1. It can be easily

checked that: Fx
2r−1 (0) = Fx

2r−1 (1/2) = Fx
2r−1 (1) = 0, (−1)r−1 Fx

2r−1 (t) > 0 for

t ∈ (0,1/2), (−1)r−1 Fx
2r−1 (t) < 0 for t ∈ (1/2,1) , and also

∫ 1
0 Fx

2r−1 (t)dt = 0. This means

that if in Theorem 2.6 we choose ρ (t) = (−1)r−1 Fx
2r−1 (t), ϕ (t) = f (2r−1) (t(b−a)+a)

and n = 1, we obtain

(−1)r
∫ b

a
Fx

2r−1

(
z−a
b−a

)
f (2r−1)(z)dz
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= (−1)r(b−a)
∫ 1

0
Fx

2r−1 (t) f (2r−1)(t(b−a)+a)dt

≤
(

f (2r−1)(b)− f (2r−1)(a)
) b−a

2

∫ 1

0

∣∣Fx
2r−1 (t)

∣∣dt

=
b−a

r

∣∣∣∣B2r

(
1
2
− x

)
−B2r(x)

∣∣∣∣( f (2r−1)(b)− f (2r−1)(a)
)

.

and if we combine this with (2.32) , we can easily obtain (2.35). The proof of the second
statement is similar. �

Remark 2.19 If in (2.35) we let y = a, we obtain an inequality for trapezoid formula:

(−1)r
{∫ b

a
f (t)dt − b−a

2
[ f (a)+ f (b)]+Tr−1(a)

}
<

(b−a)2r

(2r)!
(2−21−2r) |B2r|

(
f (2r−1)(b)− f (2r−1)(a)

)
.

If in (2.36) we let y = (a+b)/2, we obtain an inequality for mid-point formula:

(−1)r−1
{∫ b

a
f (t)dt − (b−a) f

(
a+b

2

)
+Tr−1

(
a+b

2

)}
<

(b−a)2r

(2r)!
(2−21−2r) |B2r|

(
f (2r−1)(b)− f (2r−1)(a)

)
and also for y = (2a+b)/3 in inequality (2.36), we get inequality for two-point Newton-
Cotes formula:

(−1)r−1
{∫ b

a
f (t)dt − b−a

2

[
f

(
2a+b

3

)
+ f

(
a+2b

3

)]
+Tr−1

(
2a+b

3

)}
<

(b−a)2r

(2r)!
(1−31−2r)(1−2−2r) |B2r|

(
f (2r−1)(b)− f (2r−1)(a)

)
,

which is an improvement of the Theorem 9 from [84].
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2.5 Hermite-Hadamard and Dragomir-Agarwal
inequalities and convex functions

One of the cornerstones of nonlinear analysis is the Hermite-Hadamard inequality, which
states that if [a,b] (a < b) is a real interval and f : [a,b]→ R is a convex function, then

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
. (2.36)

Recently, S.S. Dragomir and R.P. Agarwal [36] considered the trapezoid formula for
numerical integration of functions f such that | f ′|q is a convex function for some
q ≥ 1. Their approach was based on estimating the difference between the two sides of
the right-hand inequality in (2.36). Improvements of their results were obtained in [97]. In
particular, the following result was established.

Suppose f : [a,b] → R is differentiable and such that | f ′|q is convex on [a,b] for some
q ≥ 1. Then∣∣∣∣ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣≤ b−a
4

[ | f ′(a)|q + | f ′(b)|q
2

]1/q

. (2.37)

Some generalizations to higher-order convexities and applications of these results are given
in [32]. Related results for Euler midpoint, Euler-Simpson, Euler two-point, dual Euler-
Simpson, Euler-Simpson 3/8 and Euler-Maclaurin formulae were considered in [105] (see
also [33] and [106]). 1

In this section we consider some related results using the general Euler two-point for-
mulae and these results are published in [103]. We will use interval [0,1] for simplicity
and since it involves no loss in generality.

Theorem 2.8 Suppose f : [0,1]→R is (2r+2)-convex for r≥ 2. Then for x∈
[
0, 1

2 − 1
2
√

3

]
the inequality

|B2r(x)|
(2r)!

f (2r)
(

1
2

)
≤ (−1)r

{∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

}
≤ |B2r(x)|

(2r)!
f (2r)(0)+ f (2r)(1)

2
(2.38)

1We recall that a function f : [a,b] → R is said to be n-convex on [a,b] for some n ≥ 0 if for any choice of
n+1 points x0, ...,xn from [a,b] we have

[x0, ...,xn ] f ≥ 0,
where [x0, ...,xn ] f is n-th order divided difference of f . If f is n-convex, then f (n−2) exists and is convex function
in the ordinary sense. Also, if f (n) exists, then f is n-convex if and only if f (n) ≥ 0. For more details see for
example [100].

It should be noted that each continuous n-convex function on [a,b] is the uniform limit of a sequence of
the corresponding Bernstein’s polynomials (see for example [100, p. 293]). Bernstein’s polynomials of any
continuous n-convex function are also n-convex functions, so when stating our results for a continuous (2r)-
convex function f without any loss in generality we may assume that f (2r) exists and is continuous. Actually, our
results are valid for any continuous (2r)-convex function f .
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holds, while for x ∈
[

1
2
√

3
, 1

2

]
we have

|B2r(x)|
(2r)!

f (2r)
(

1
2

)
≤ (−1)r−1

{∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

}
≤ |B2r(x)|

(2r)!
f (2r)(0)+ f (2r)(1)

2
. (2.39)

If f is (2r+2)-concave, the inequalities are reversed.

Proof. For x ∈
[
0, 1

2 − 1
2
√

3

]
from (2.4) and (2.33) we have

(−1)r
{∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

}
= (−1)r 1

2(2r)!

∫ 1

0
f (2r)(t)Fx

2r(t)dt =
1

2(2r)!

∫ 1

0
f (2r)(t) |Fx

2r(t)|dt

=
1

2(2r)!

∫ 1

0
f (2r)((1− t) ·0+ t ·1) |Fx

2r(t)|dt. (2.40)

Using the discrete Jensen inequality for the convex function f (2r), we have∫ 1

0
f (2r)((1− t) ·0+ t ·1) |Fx

2r(t)|dt

≤ f (2r)(0)
∫ 1

0
(1− t) |Fx

2r(t)|dt + f (2r)(1)
∫ 1

0
t |Fx

2r(t)|dt

= |B2r(x)|
(

f (2r)(0)+ f (2r)(1)
)

, (2.41)

since
∫ 1
0 (1− t) |Fx

2r(t)|dt =
∫ 1
0 t |Fx

2r(t)|dt = 1
2

∫ 1
0 |Fx

2r(t)|dt. So, the second inequality in
(2.38) follows.

By Jensen’s integral inequality we have∫ 1

0
f (2r)((1− t) ·0+ t ·1) |Fx

2r(t)|dt

≥
(∫ 1

0
|Fx

2r(t)|dt

)
f (2r)

(∫ 1
0 ((1− t) ·0+ t ·1) |Fx

2r(t)|dt∫ 1
0

∣∣Fx
2r(t)

∣∣dt

)

= 2|B2k(x)| f (2r)
(

1
2

)
. (2.42)

The first inequality in (2.38) now follows from (2.40).
The proof of inequality (2.39) is similar. �

Remark 2.20 If in Theorem 2.8 we choose x = 0,1/2,1/3, we get generalizations of
Hermite-Hadamard’s inequality for Euler trapezoid, Euler midpoint and Euler two-point
Newton-Cotes formulae respectively (see [32], [33] and [105]).
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Theorem 2.9 Suppose f : [0,1]→R is n-times differentiable and x∈
[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
.

(a) If
∣∣∣ f (n)

∣∣∣q is convex for some q ≥ 1, then for n = 2r−1, r ≥ 2, we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣
≤ 2

(2r)!

∣∣∣∣B2r

(
1
2
− x

)
−B2r(x)

∣∣∣∣
⎡⎣
∣∣∣ f (2r−1)(0)

∣∣∣q +
∣∣∣ f (2r−1)(1)

∣∣∣q
2

⎤⎦1/q

. (2.43)

If n = 2r, r ≥ 2, then

∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣≤ |B2r(x)|
(2r)!

⎡⎣
∣∣∣ f (2r)(0)

∣∣∣q +
∣∣∣ f (2r)(1)

∣∣∣q
2

⎤⎦1/q

(2.44)
and we also have

∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (x)+ f (1− x)]+Tr( f )

∣∣∣∣≤ 2|B2r(x)|
(2r)!

⎡⎣
∣∣∣ f (2r)(0)

∣∣∣q +
∣∣∣ f (2r)(1)

∣∣∣q
2

⎤⎦1/q

.

(2.45)

(b) If
∣∣∣ f (n)

∣∣∣ is concave, then for n = 2r−1, r ≥ 2, we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣
≤ 2

(2r)!

∣∣∣∣[B2r

(
1
2
− x

)
−B2r(x)

]
f (2r−1)

(
1
2

)∣∣∣∣ . (2.46)

If n = 2r, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣≤ 1
(2r)!

∣∣∣∣B2r(x) · f (2r)
(

1
2

)∣∣∣∣ (2.47)

and we also have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr( f )

∣∣∣∣≤ 2
(2r)!

∣∣∣∣B2r(x) · f (2r)
(

1
2

)∣∣∣∣ . (2.48)

Proof. First, let n = 2r− 1 for some r ≥ 2. Then for convex function | f (2r)|q using
Hölder’s and Jensen’s inequality we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣
≤ 1

2(2r−1)!

∫ 1

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t ·1+(1− t) ·0)
∣∣∣dt
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≤ 1
2(2r−1)!

(∫ 1

0

∣∣Fx
2r−1(t)

∣∣dt

)1−1/q(∫ 1

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t·1+(1−t)·0)
∣∣∣q dt

)1/q

≤ 1
2(2r−1)!

(∫ 1

0

∣∣Fx
2r−1(t)

∣∣dt

)1−1/q

·
(∫ 1

0

∣∣Fx
2r−1(t)

∣∣ · [t ∣∣∣ f (2r−1)(1)
∣∣∣q +(1− t)

∣∣∣ f (2r−1)(0)
∣∣∣q]dt

)1/q

=
(

1
2(2r−1)!

∫ 1

0

∣∣Fx
2r−1(t)

∣∣dt

)1−1/q

·
[

1
2(2r−1)!

∣∣∣ f (2r−1)(1)
∣∣∣q ∫ 1

0
t
∣∣Fx

2r−1(t)
∣∣dt

+
1

2(2r−1)!

∣∣∣ f (2r−1)(0)
∣∣∣q ∫ 1

0
(1− t)

∣∣Fx
2r−1(t)

∣∣dt

]1/q

=
(

2
(2r)!

∣∣∣∣B2r

(
1
2
−x

)
−B2r(x)

∣∣∣∣)1−1/q

·
[

1
(2r)!

∣∣∣∣B2r

(
1
2
−x

)
−B2r(x)

∣∣∣∣ ∣∣∣ f (2r−1)(1)
∣∣∣q

+
1

(2r)!

∣∣∣∣B2r

(
1
2
− x

)
−B2r(x)

∣∣∣∣ ∣∣∣ f (2r−1)(0)
∣∣∣q]1/q

=
2

(2r)!

∣∣∣∣B2r

(
1
2
− x

)
−B2r(x)

∣∣∣∣
⎡⎣
∣∣∣ f (2r−1)(0)

∣∣∣q +
∣∣∣ f (2r−1)(1)

∣∣∣q
2

⎤⎦1/q

.

On the other hand, if
∣∣∣ f (2r−1)

∣∣∣ is concave, then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣
≤ 1

2(2r−1)!

∫ 1

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣dt

≤ 1
2(2r−1)!

(∫ 1

0

∣∣Fx
2r−1(t)

∣∣dt

)∣∣∣∣∣ f (2r−1)

(∫ 1
0

∣∣Fx
2r−1(t)

∣∣((1− t) ·0+ t ·1)dt∫ 1
0

∣∣Fx
2r−1(t)

∣∣dt

)∣∣∣∣∣
=

2
(2r)!

∣∣∣∣[B2r

(
1
2
− x

)
−B2r(x)

]
f (2r−1)

(
1
2

)∣∣∣∣
so the inequality (2.43) and (2.46) are proved.

The proofs of the inequalities (2.44), (2.47), (2.45) and (2.48) are similar. �

Remark 2.21 For (2.46) to be satisfied it is enough to suppose that | f (2r−1)| is a concave
function. For if |g|q is concave na [0,1] for some q ≥ 1, then for x,y ∈ [0,1] and λ ∈ [0,1]

|g(λx+(1−λ )y)|q ≥ λ |g(x)|q +(1−λ )|g(y)|q ≥ (λ |g(x)|+(1−λ )|g(y)|)q,

therefore |g| is also concave on [0,1].

Remark 2.22 If in Theorem 2.9 we choose x = 0,1/2,1/3, we get generalizations of
Dragomir-Agarwal inequality for Euler trapezoid, Euler midpoint and Euler two-point
Newton-Cotes formulae respectively (see [32], [33], [105] and [106]).
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The resultant formulae in Theorems 2.8 and 2.9 when r = 2 are of special interest, so
we isolate them as corollaries.

Corollary 2.13 If f : [0,1] → R is 6-convex, then for x ∈
[
0, 1

2 − 1
2
√

3

]
we have

1
24

∣∣∣∣x4−2x3 + x2− 1
30

∣∣∣∣ f (4)
(

1
2

)
≤
∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+

1
12

[
f ′(1)− f ′(0)

]
≤ 1

24

∣∣∣∣x4−2x3 + x2− 1
30

∣∣∣∣ f (4)(0)+ f (4)(1)
2

.

while for x ∈
[

1
2
√

3
, 1

2

]
the inequalities

1
24

∣∣∣∣x4−2x3 + x2− 1
30

∣∣∣∣ f (4)
(

1
2

)
≤ 1

2
[ f (x)+ f (1− x)]−

∫ 1

0
f (t)dt − 1

12

[
f ′(1)− f ′(0)

]
≤ 1

24

∣∣∣∣x4−2x3 + x2− 1
30

∣∣∣∣ f (4)(0)+ f (4)(1)
2

.

hold.
If f is 6-concave, the reversed inequalities apply.

Corollary 2.14 Suppose f : [0,1] → R is 4-times differentiable and x ∈
[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
.

(a) If
∣∣∣ f (3)

∣∣∣q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+

1
12

[
f ′(1)− f ′(0)

]∣∣∣∣
≤ 1

12

∣∣∣∣2x3− 3
2
x2 +

1
16

∣∣∣∣
⎡⎣
∣∣∣ f (3)(0)

∣∣∣q +
∣∣∣ f (3)(1)

∣∣∣q
2

⎤⎦1/q

and if
∣∣∣ f (4)

∣∣∣q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+

1
12

[
f ′(1)− f ′(0)

]∣∣∣∣
≤ 1

24

∣∣∣∣x4−2x3 + x2− 1
30

∣∣∣∣
⎡⎣
∣∣∣ f (4)(0)

∣∣∣q +
∣∣∣ f (4)(1)

∣∣∣q
2

⎤⎦1/q

.
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(b) If
∣∣∣ f (3)

∣∣∣ is concave, then

∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+

1
12

[
f ′(1)− f ′(0)

]∣∣∣∣
≤ 1

12

∣∣∣∣[2x3− 3
2
x2 +

1
16

]
f (3)
(

1
2

)∣∣∣∣
and if

∣∣∣ f (4)
∣∣∣ is concave, then

∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+

1
12

[
f ′(1)− f ′(0)

]∣∣∣∣
≤ 1

24

∣∣∣∣[x4 −2x3 + x2− 1
30

]
f (4)
(

1
2

)∣∣∣∣ .
Note that inequalities in Theorems 2.8 and 2.9 hold for r ≥ 2. Now, we will give some

results of the same type in the case when r = 1.

Theorem 2.10 Suppose f : [0,1] → R is 4-convex. Then for x ∈ [0,1/4] the following
inequalities hold[−6x2 +6x−1

24
+

1
6
(1−4x)3/2

]
f ′′
(

1
2

)
≤ 1

2
[ f (x)+ f (1− x)]−

∫ 1

0
f (t)dt

≤
[−6x2 +6x−1

24
+

1
6
(1−4x)3/2

]
f ′′(1)+ f ′′(0)

2
,

while for x ∈ [1/4,1/2] we have

−6x2 +6x−1
24

f ′′
(

1
2

)
≤
∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

≤ −6x2 +6x−1
24

· f ′′(1)+ f ′′(0)
2

.

Proof. It was already shown that for x ∈ [0,1/4] we have

∫ 1

0
|Fx

2 (t)|dt =
−6x2 +6x−1

6
+

2
3
(1−4x)3/2,

while for x ∈ [1/4,1/2] ∫ 1

0
|Fx

2 (t)|dt =
−6x2 +6x−1

6
.

So, using identity (2.4) and following the proof of Theorem 2.8, we get above inequalities.
�



38 2 EULER TWO-POINT FORMULAE

Theorem 2.11 Suppose f : [0,1] → R is 2-times differentiable.
(a) If | f ′|q is convex for some q ≥ 1, then for x ∈ [0,1/2] we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤ 8x2−4x+1
4

[ | f ′(0)|q + | f ′(1)|q
2

]1/q

.

If | f ′′|q is convex for some q ≥ 1 and x ∈ [0,1/4], then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

∣∣∣∣
≤
[−6x2 +6x−1

24
+

1
6
(1−4x)3/2

][ | f ′′(0)|q + | f ′′(1)|q
2

]1/q

,

while for x ∈ [1/4,1/2] we have∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤ [−6x2 +6x−1
24

][ | f ′′(0)|q + | f ′′(1)|q
2

]1/q

.

(b) If | f ′| is concave for some q ≥ 1, then for x ∈ [0,1/2] we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤ 8x2−4x+1
4

∣∣∣∣ f ′(1
2

)∣∣∣∣ .
If | f ′′| is concave for some q ≥ 1 and x ∈ [0,1/4], then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤ [−6x2 +6x−1
24

+
1
6
(1−4x)3/2

]∣∣∣∣ f ′′(1
2

)∣∣∣∣ ,
while for x ∈ [1/4,1/2] we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤ [−6x2 +6x−1
24

]∣∣∣∣ f ′(1
2

)∣∣∣∣ .
Proof. It was already shown that for x ∈ [0,1/2]∫ 1

0
|Fx

1 (t)|dt =
8x2−4x+1

2
,

so, using identity (2.4) and following the proof of Theorem 2.12 we get first inequalities in
(a) and (b). The second inequality in (a) and (b) we prove similarly. �

Remark 2.23 For x = 0, x = 1/3 and x = 1/2 in above theorems we get the results from
[105] and [106].

For x = 1/4 we get two-point Maclaurin formula and then we have

1
192

f (2)
(

1
2

)
≤
∫ 1

0
f (t)dt − 1

2

[
f

(
1
4

)
+ f

(
3
4

)]
≤ 1

192
f (2)(0)+ f (2)(1)

2
.
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If | f ′|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt− 1

2

[
f

(
1
4

)
+ f

(
3
4

)]∣∣∣∣≤ 1
8

[ | f ′(0)|q + | f ′(1)|q
2

]1/q

and if | f (2)|q is convex for some q ≥ 1, then

∣∣∣∣∫ 1

0
f (t)dt− 1

2

[
f

(
1
4

)
+ f

(
3
4

)]∣∣∣∣≤ 1
192

⎡⎣
∣∣∣ f (2)(0)

∣∣∣q +
∣∣∣ f (2)(1)

∣∣∣q
2

⎤⎦1/q

.

If | f ′| is concave, then∣∣∣∣∫ 1

0
f (t)dt − 1

2

[
f

(
1
4

)
+ f

(
3
4

)]∣∣∣∣≤ 1
8

∣∣∣∣ f ′(1
2

)∣∣∣∣
and if | f (2)| is concave for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − 1

2

[
f

(
1
4

)
+ f

(
3
4

)]∣∣∣∣≤ 1
192

∣∣∣∣ f (2)
(

1
2

)∣∣∣∣ .
In the paper [73] Dah-Yan Hwang gave some new inequalities of this type and he

applied the result to obtain better estimates of the error in the trapezoidal formula.
Here we consider some related results using the general Euler two-point formulae

which are published in [118].
By integration by parts, we have that the following identities:

(i) C1(x) =
∫ 1
0 Fx

2r−1

( y
2

)
dy = −∫ 1

0 Fx
2r−1

(
1− y

2

)
dy = 2

r

[
B2r(x)−B2r

(
1
2 − x

)]
,

(ii) C2(x) =
∫ 1
0 yFx

2r−1

( y
2

)
dy = −∫ 1

0 yFx
2r−1

(
1− y

2

)
dy = − 2

r B2r
(1

2 − x
)
,

(iii) C3(x) =
∫ 1
0 (1− y)Fx

2r−1

( y
2

)
dy = −∫ 1

0 (1− y)Fx
2r−1

(
1− y

2

)
dy = 2

r B2r(x),

(iv) C4(x) =
∫ 1
0 Fx

2r

( y
2

)
dy =

∫ 1
0 Fx

2r

(
1− y

2

)
dy = −2B2r(x),

(v) C5(x) =
∫ 1
0 yFx

2r

( y
2

)
dy =

∫ 1
0 yFx

2r

(
1− y

2

)
dy

= 8
(2r+1)(2r+2)

[
B2r+2(x)−B2r+2

(
1
2 − x

)]−B2r(x),

(vi) C6(x) =
∫ 1
0 (1− y)Fx

2r

( y
2

)
dy =

∫ 1
0 (1− y)Fx

2r

(
1− y

2

)
dy

= 8
(2r+1)(2r+2)

[
B2r+2

( 1
2 − x

)−B2r+2(x)
]−B2r(x),

(vii) C7(x) =
∫ 1
0 Gx

2r

( y
2

)
dy =

∫ 1
0 Gx

2r

(
1− y

2

)
dy = 0,

(viii) C8(x) =
∫ 1
0 yGx

2r

( y
2

)
dy =

∫ 1
0 yGx

2r

(
1− y

2

)
dy = −∫ 1

0 (1− y)Gx
2r

( y
2

)
dy

=
∫ 1
0 (1− y)Gx

2r

(
1− y

2

)
dy = 8

(2r+1)(2r+2)

[
B2r+2(x)−B2r+2

( 1
2 − x

)]
,
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Theorem 2.12 Suppose f : [0,1] → R is n-times differentiable and x ∈
[
0, 1

2 − 1
2
√

3

]
∪
[

1
2
√

3
, 1

2

]
.

(a) If
∣∣∣ f (n)

∣∣∣q is convex for some q ≥ 1, then for n = 2r−1, r ≥ 2, we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣≤ 2
(2r)!

∣∣∣∣B2r

(
1
2
− x

)
−B2r(x)

∣∣∣∣1−1/q

·
⎡⎣∣∣∣ r

2
C3(x)

∣∣∣ ·
∣∣∣ f (2r−1)(0)

∣∣∣q +
∣∣∣ f (2r−1)(1)

∣∣∣q
2

+
∣∣∣ r
2
C2(x)

∣∣∣ · ∣∣∣∣ f (2r−1)
(

1
2

)∣∣∣∣q
⎤⎦1/q

. (2.49)

If n = 2r, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣≤ |B2r(x)|1−1/q

(2r)!

·
⎡⎣∣∣∣∣12C6(x)

∣∣∣∣
∣∣∣ f (2r)(0)

∣∣∣q +
∣∣∣ f (2r)(1)

∣∣∣q
2

+
∣∣∣∣12C5(x)

∣∣∣∣ ∣∣∣∣ f (2r)
(

1
2

)∣∣∣∣q
⎤⎦1/q

(2.50)

and we also have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr( f )

∣∣∣∣≤ 2|B2r(x)|1−1/q

(2r)!
(2.51)

·
[∣∣∣∣18C8(x)

∣∣∣∣(∣∣∣ f (2r)(0)
∣∣∣q +2

∣∣∣∣ f (2r)
(

1
2

)∣∣∣∣q +
∣∣∣ f (2r)(1)

∣∣∣q)]1/q

.

(b) If
∣∣∣ f (n)

∣∣∣q is concave, then for n = 2r−1, r ≥ 2, we have∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣ (2.52)

≤ 1
(2r)!

∣∣∣ r
2
C1(x)

∣∣∣ ·[∣∣∣∣ f (2r−1)
( |C2(x)|

2 |C1(x)|
)∣∣∣∣+

∣∣∣∣∣ f (2r−1)

(∣∣C3(x)+ 1
2C2(x)

∣∣
|C1(x)|

)∣∣∣∣∣
]

.

If n = 2r, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣ ≤ |C4(x)|
4(2r)!

·
[∣∣∣∣ f (2r)

( |C5(x)|
2|C4(x)|

)∣∣∣∣+
∣∣∣∣∣ f (2r)

(∣∣C6(x)+ 1
2C5(x)

∣∣
|C4(x)|

)∣∣∣∣∣
]

. (2.53)

Proof. First, let n = 2r−1 for some r ≥ 2. Then by Hölder inequality∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣
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≤ 1
2(2r−1)!

∫ 1

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣dt

≤ 1
2(2r−1)!

(∫ 1

0

∣∣Fx
2r−1(t)

∣∣dt

)1−1/q(∫ 1

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣q dt

)1/q

=
1

2(2r−1)!

(
2
r

∣∣∣∣B2r

(
1
2
− x

)
−B2r(x)

∣∣∣∣)1−1/q(∫ 1

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣q dt

)1/q

.

Now, by the convexity of | f (2r−1)|q we have∫ 1

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣q dt

=
∫ 1/2

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣q dt +

∫ 1

1/2

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣q dt

=
1
2

∫ 1

0

∣∣∣Fx
2r−1

( y
2

)∣∣∣ · ∣∣∣∣ f (2r−1)
(

(1− y) ·0+ y · 1
2

)∣∣∣∣q dy

+
1
2

∫ 1

0

∣∣∣Fx
2r−1

(
1− y

2

)∣∣∣ · ∣∣∣∣ f (2r−1)
(

(1− y) ·1+ y · 1
2

)∣∣∣∣q dy

≤ 1
2

[∣∣∣∣∫ 1

0
(1− y)Fx

2r−1

( y
2

)
dy

∣∣∣∣ · ∣∣∣ f (2r−1)(0)
∣∣∣q +

∣∣∣∣∫ 1

0
yFx

2r−1

( y
2

)
dy

∣∣∣∣ · ∣∣∣∣ f (2r−1)
(

1
2

)∣∣∣∣q
+
∣∣∣∣∫ 1

0
(1− y)Fx

2r−1

(
1− y

2

)
dy

∣∣∣∣ · ∣∣∣ f (2r−1)(1)
∣∣∣q

+
∣∣∣∣∫ 1

0
yFx

2r−1

(
1− y

2

)
dy

∣∣∣∣ · ∣∣∣∣ f (2r−1)
(

1
2

)∣∣∣∣q] .

On the other hand, if
∣∣∣ f (2r−1)

∣∣∣q is concave, then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]+Tr−1( f )

∣∣∣∣
≤ 1

2(2r−1)!

∫ 1

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣dt

=
1

2(2r−1)!

[∫ 1/2

0

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣dt +

∫ 1

1/2

∣∣Fx
2r−1(t)

∣∣ · ∣∣∣ f (2r−1)(t)
∣∣∣dt

]
=

1
2(2r−1)!

[∫ 1

0

∣∣∣Fx
2r−1

( y
2

)∣∣∣ · ∣∣∣∣ f (2r−1)
(

(1− y) ·0+ y · 1
2

)∣∣∣∣dy

+
∫ 1

0

∣∣∣Fx
2r−1

(
1− y

2

)∣∣∣ · ∣∣∣∣ f (2r−1)
(

(1− y) ·1+ y · 1
2

)∣∣∣∣dy

]

≤ 1
4(2r−1)!

⎡⎣∣∣∣∣∫ 1

0
Fx

2r−1

( y
2

)
dy

∣∣∣∣ ·
∣∣∣∣∣∣ f (2r−1)

⎛⎝
∣∣∣∫ 1

0 Fx
2r−1

( y
2

)
((1− y) ·0+ y · 1

2 )dy
∣∣∣∣∣∣∫ 1

0 Fx
2r−1

( y
2

)
dy
∣∣∣

⎞⎠
∣∣∣∣∣∣
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+
∣∣∣∣∫ 1

0
Fx

2r−1

(
1− y

2

)
dy

∣∣∣∣ ·
∣∣∣∣∣∣ f (2r−1)

⎛⎝
∣∣∣∫ 1

0 Fx
2r−1

(
1− y

2

)
((1− y) ·1+ y · 1

2)dy
∣∣∣∣∣∣∫ 1

0 Fx
2r−1

(
1− y

2

)
dy
∣∣∣

⎞⎠
∣∣∣∣∣∣
⎤⎦ ,

so the inequality (2.49) and (2.52) are completely proved.
The proofs of the inequalities (2.50), (2.53) and (2.51) are similar. �

Remark 2.24 If in Theorem 2.12 we chose x = 0,1/2,1/3, we get generalizations of
Dragomir-Agarwal inequality for Euler trapezoid (see [73]) , Euler midpoint and Euler
two-point Newton-Cotes formulae respectively.

The resultant formulae in Theorem 2.12 when r = 2 are of special interest, so we isolate
it as corollary.

Corollary 2.15 Suppose f : [0,1] → R is 4-times differentiable and x ∈
[
0, 1

2 − 1
2
√

3

]
∪[

1
2
√

3
, 1

2

]
.

(a)If
∣∣∣ f (3)

∣∣∣q is convex for some q ≥ 1, then

∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (x)+ f (1− x)]+

1
12

[
f ′(1)− f ′(0)

]∣∣∣∣≤ 1
12

∣∣∣∣2x3− 3
2
x2 +

1
16

∣∣∣∣1−1/q

·
⎡⎣∣∣∣∣x4 −2x3 + x2− 1

30

∣∣∣∣
∣∣∣ f (3)(0)

∣∣∣q +
∣∣∣ f (3)(1)

∣∣∣q
2

+
∣∣∣∣−x4 +

x2

2
− 7

240

∣∣∣∣ ∣∣∣∣ f (3)
(

1
2

)∣∣∣∣q
⎤⎦1/q

and if
∣∣∣ f (4)

∣∣∣q is convex for some q ≥ 1, then

∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (x)+ f (1− x)]+

1
12

[
f ′(1)− f ′(0)

]∣∣∣∣≤ 1
24

∣∣∣∣x4 −2x3 + x2− 1
30

∣∣∣∣1−1/q

·
⎡⎣∣∣∣∣2x5

5
− x4 + x3− 3x2

8
+

1
96

∣∣∣∣
∣∣∣ f (4)(0)

∣∣∣q +
∣∣∣ f (4)(1)

∣∣∣q
2

+
∣∣∣∣−2x5

5
+ x3− 5x2

8
+

11
480

∣∣∣∣ ∣∣∣∣ f (4)
(

1
2

)∣∣∣∣q]1/q

.

(b) If
∣∣∣ f (3)

∣∣∣ is concave, then∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (x)+ f (1− x)]+

1
12

[
f ′(1)− f ′(0)

]∣∣∣∣
≤ 1

24

∣∣∣∣2x3− 3
2
x2 +

1
16

∣∣∣∣
⎡⎣
∣∣∣∣∣∣ f (3)

⎛⎝
∣∣∣−x4 + x2

2 − 7
240

∣∣∣∣∣−4x3 +3x2− 1
8

∣∣
⎞⎠
∣∣∣∣∣∣+
∣∣∣∣∣∣ f (3)

⎛⎝
∣∣∣ x4

2 −2x3 + 5x2

4 − 23
480

∣∣∣∣∣∣−2x3 + 3x2

2 − 1
16

∣∣∣
⎞⎠
∣∣∣∣∣∣
⎤⎦
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and if
∣∣∣ f (4)

∣∣∣ is concave, then∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (x)+ f (1− x)]+

1
12

[
f ′(1)− f ′(0)

]∣∣∣∣
≤ 1

48

∣∣∣∣x4 −2x3 + x2− 1
30

∣∣∣∣
⎡⎣
∣∣∣∣∣∣ f (4)

⎛⎝
∣∣∣− 4x5

5 +2x3− 5x2

4 + 11
240

∣∣∣∣∣−4x4 +8x3−4x2 + 2
15

∣∣
⎞⎠
∣∣∣∣∣∣

+

∣∣∣∣∣∣ f (4)

⎛⎝
∣∣∣ 2x5

5 −2x4 +3x3− 11x2

8 + 7
160

∣∣∣∣∣−2x4 +4x3−2x2 + 1
15

∣∣
⎞⎠
∣∣∣∣∣∣
⎤⎦ .

Now, we will give some results of the same type in the case when r = 1.

Theorem 2.13 Suppose f : [0,1] → R is 2-times differentiable.
(a) If | f ′|q is convex for some q ≥ 1, then for x ∈ [0,1/2] we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤ |8x2−4x+1|1−1/q

4

·
[∣∣∣∣2x2−2x+

2
3

∣∣∣∣ | f ′(0)|q + | f ′(1)|q
2

+
∣∣∣∣−2x2 +2x+

1
3

∣∣∣∣ ∣∣∣∣ f ′(1
2

)∣∣∣∣q]1/q

.

If | f ′′|q is convex for some q ≥ 1 and x ∈ [0,1/4], then

∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤
∣∣∣−6x2+6x−1

3 + 2
3(1−4x)3/2

∣∣∣1−1/q

4

·
[∣∣∣∣−x2 + x− 1

8

∣∣∣∣ | f ′′(0)|q + | f ′′(1)|q
2

+
∣∣∣∣−2x2 +2x− 5

24

∣∣∣∣ ∣∣∣∣ f ′′(1
2

)∣∣∣∣q]1/q

,

while for x ∈ [1/4,1/2] we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤ 1
4

∣∣∣∣−6x2 +6x−1
3

∣∣∣∣1−1/q

·
[∣∣∣∣−x2 + x− 1

8

∣∣∣∣ | f ′′(0)|q + | f ′′(1)|q
2

+
∣∣∣∣−2x2 +2x− 5

24

∣∣∣∣ ∣∣∣∣ f ′′(1
2

)∣∣∣∣q]1/q

.

(b) If | f ′| is concave for some q ≥ 1, then for x ∈ [0,1/2] we have∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤ 1
8

[∣∣∣∣ f ′(∣∣∣∣−x2 + x+
1
6

∣∣∣∣)∣∣∣∣+ ∣∣∣∣ f ′(∣∣∣∣x2 − x+
5
6

∣∣∣∣)∣∣∣∣] .

If | f ′′| is concave for some q ≥ 1 and x ∈ [0,1/2], then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (x)+ f (1− x)]

∣∣∣∣≤ 1
8

∣∣∣∣−3x2 +3x− 1
3

∣∣∣∣
·
[∣∣∣∣∣ f ′′

(∣∣−2x2 +2x− 5
24

∣∣∣∣−6x2 +6x− 2
3

∣∣
)∣∣∣∣∣+

∣∣∣∣∣ f ′′
(∣∣−2x2 +2x− 11

48

∣∣∣∣−3x2 +3x− 1
3

∣∣
)∣∣∣∣∣
]

.
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Proof. Using identities the (2.3) and (2.4) with calculation of Ci(x), i = 1, . . . ,6, similar
as in Theorem 2.12, we get the inequalities in (a) and (b). �

Remark 2.25 For x = 0 in the above theorem we have the trapezoid formula and for | f ′′|q
convex function and | f ′′| concave function we get the results from [73].
If | f ′|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (0)+ f (1)]

∣∣∣∣≤ 1
4

[
| f ′(0)|q + | f ′ ( 1

2

) |q + | f ′(1)|q
3

]1/q

and if | f ′| is concave, then∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (0)+ f (1)]

∣∣∣∣≤ 1
8

[∣∣∣∣ f ′(1
6

)∣∣∣∣+ ∣∣∣∣ f ′(5
6

)∣∣∣∣] .

For x = 1/4 we get two-point Maclaurin formula and then if | f ′|q is convex for some
q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − 1

2

[
f

(
1
4

)
+ f

(
3
4

)]∣∣∣∣≤ 1
8

[
7| f ′(0)|q +34| f ′ ( 1

2

) |q +7| f ′(1)|q
24

]1/q

and if | f ′′|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − 1

2

[
f

(
1
4

)
+ f

(
3
4

)]∣∣∣∣≤ 1
96

[
3| f ′′(0)|q +16| f ′′ ( 1

2

) |q +3| f ′′(1)|q
4

]1/q

.

If | f ′| is concave, then∣∣∣∣∫ 1

0
f (t)dt − 1

2

[
f

(
1
4

)
+ f

(
3
4

)]∣∣∣∣≤ 1
8

[∣∣∣∣ f ′(17
48

)∣∣∣∣+ ∣∣∣∣ f ′(31
48

)∣∣∣∣]
and if | f ′′| is concave for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt− 1

2

[
f

(
1
4

)
+ f

(
3
4

)]∣∣∣∣≤ 11
384

[∣∣∣∣ f ′′( 4
11

)∣∣∣∣+ ∣∣∣∣ f ′′( 7
11

)∣∣∣∣] .

For x = 1/3 we get two-point Newton-Cotes formula and then if | f ′|q is convex for
some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt− 1

2

[
f

(
1
3

)
+ f

(
2
3

)]∣∣∣∣≤ 5
36

[
| f ′(0)|q +7| f ′ ( 1

2

) |q + | f ′(1)|q
5

]1/q

and if | f ′′|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − 1

2

[
f

(
1
3

)
+ f

(
2
3

)]∣∣∣∣≤ 1
36

[
7| f ′′(0)|q +34| f ′′ ( 1

2

) |q +7| f ′′(1)|q
16

]1/q

.



2.6 PRE-GRÜSS INEQUALITY 45

If | f ′| is concave, then∣∣∣∣∫ 1

0
f (t)dt − 1

2

[
f

(
1
3

)
+ f

(
2
3

)]∣∣∣∣≤ 1
8

[∣∣∣∣ f ′( 7
18

)∣∣∣∣+ ∣∣∣∣ f ′(11
18

)∣∣∣∣]
and if | f ′′| is concave for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − 1

2

[
f

(
1
3

)
+ f

(
2
3

)]∣∣∣∣≤ 1
24

[∣∣∣∣ f ′′(17
48

)∣∣∣∣+ ∣∣∣∣ f ′′(31
48

)∣∣∣∣] .

For x = 1/2 we get midpoint formula and then if | f ′|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − f

(
1
2

)∣∣∣∣≤ 1
4

[
| f ′(0)|q +10| f ′ ( 1

2

) |q + | f ′(1)|q
12

]1/q

and if | f ′′|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt− f

(
1
2

)∣∣∣∣≤ 1
24

[
3| f ′′(0)|q +14| f ′′ ( 1

2

) |q +3| f ′′(1)|q
8

]1/q

.

If | f ′| is concave, then∣∣∣∣∫ 1

0
f (t)dt − f

(
1
2

)∣∣∣∣≤ 1
8

[∣∣∣∣ f ′( 5
12

)∣∣∣∣+ ∣∣∣∣ f ′( 7
12

)∣∣∣∣]
and if | f ′′| is concave for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt − f

(
1
2

)∣∣∣∣≤ 5
96

[∣∣∣∣ f ′′( 7
20

)∣∣∣∣+ ∣∣∣∣ f ′′(13
20

)∣∣∣∣] .

2.6 Estimations of the error for two-point formula
via pre-Grüss inequality

In the paper [116] N. Ujević used the generalization of pre-Grüss inequality to derive some
better estimations of the error for Simpson’s quadrature rule. In fact, he proved the next as
his main result:

Theorem 2.14 If g,h,Ψ ∈ L2[0,1] and
∫ 1
0 Ψ(t)dt = 0 then we have

|SΨ(g,h)| ≤ SΨ(g,g)1/2SΨ(h,h)1/2, (2.54)

where

SΨ(g,h) =
∫ 1

0
g(t)h(t)dt−

∫ 1

0
g(t)dt

∫ 1

0
h(t)dt−

∫ 1

0
g(t)Ψ0(t)dt

∫ 1

0
h(t)Ψ0(t)dt

and Ψ0(t) = Ψ(t)/‖Ψ‖2.
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Further, he gave some improvements of the Simpson’s inequality.

Theorem 2.15 Let I ⊂ R be a closed interval and a,b ∈ IntI, a < b. If f : I → R is
continuous of bounded variation with f ′ ∈ L2[a,b], then we have∣∣∣∣b−a

6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
−
∫ b

a
f (t)dt

∣∣∣∣≤ (b−a)3/2

6
K1, (2.55)

where

K2
1 = ‖ f ′‖2

2−
1

b−a

(∫ b

a
f ′(t)dt

)2

−
(∫ b

a
f ′(t)Ψ0(t)dt

)2

(2.56)

and Ψ(t) = t− a+b
2 ,Ψ0(t) = Ψ(t)/‖Ψ‖2.

In this section, using Theorem 2.14, we will give similar result for Euler two-point
formula and for functions whose derivative of order n, n ≥ 1, is from L2[0,1] space. We
will use interval [0,1] because of simplicity and since it involves no loss in generality.

The results from this section are published in [104].

Theorem 2.16 If f : [0,1] → R is such that f (n−1) is continuous of bounded variation
function with f (n) ∈ L2[0,1] then we have∣∣∣∣∫ 1

0
f (t)dt −D(x)+Tn(x)

∣∣∣∣≤ 1
2

[
2(−1)n−1

(2n)!
[B2n +B2n(1−2x)]

]1/2

K, (2.57)

where

K2 = ‖ f (n)‖2
2−
(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

. (2.58)

For n even

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
,

while for n odd we have

Ψ(t) =

⎧⎪⎨⎪⎩
t +

Bn+1( 1
2 +x)

2(Bn+1(x)−Bn+1( 1
2+x)) , t ∈ [0, 1

2

]
,

t +
Bn+1( 1

2 +x)−2Bn+1(x)
2(Bn+1(x)−Bn+1( 1

2+x)) , t ∈ ( 1
2 ,1
]
.

Proof. It is not difficult to verify that∫ 1

0
Gn(t)dt = 0, (2.59)

∫ 1

0
Ψ(t)dt = 0, (2.60)

∫ 1

0
Gn(t)Ψ(t)dt = 0. (2.61)
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From (2.3), (2.59) and (2.61) it follows that∫ 1

0
f (t)dt −D(x)+Tn(x) =

1
2(n!)

∫ 1

0
Gx

n(t) f (n)(t)dt

− 1
2(n!)

∫ 1

0
Gx

n(t)dt
∫ 1

0
f (n)(t)dt

− 1
2(n!)

∫ 1

0
Gx

n(t)Ψ0(t)dt
∫ 1

0
f (n)(t)Ψ0(t)dt

=
1

2(n!)
SΨ(Gx

n, f (n)). (2.62)

Using (2.62) and (2.54) we get∣∣∣∣∫ 1

0
f (t)dt −D(x)+Tn(x)

∣∣∣∣≤ 1
2(n!)

SΨ(Gx
n,G

x
n)

1/2SΨ( f (n), f (n))1/2. (2.63)

We also have (see Section 3 of this chapter)

SΨ(Gx
n,G

x
n) = ‖Gx

n‖2
2−
(∫ 1

0
Gx

n(t)dt

)2

−
(∫ 1

0
Gx

n(t)Ψ0(t)dt

)2

= (−1)n−1 2(n!)2

(2n)!
[B2n +B2n(1−2x)] (2.64)

and

SΨ( f (n), f (n)) = ‖ f (n)‖2
2−
(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

= K2. (2.65)

From (2.63)-(2.65) we easily get (2.57). �

Remark 2.26 Function Ψ(t) can be any function which satisfies conditions
∫ 1
0 Ψ(t)dt = 0

and
∫ 1
0 Gx

n(t)Ψ(t)dt = 0. Because Gx
n(1− t) = (−1)nGx

n(t) (see Section 3 of this chap-
ter), for n even, we can take function Ψ(t) such that Ψ(1− t) = −Ψ(t). For n odd, we
have to calculate Ψ(t) and with no lost in generality in our theorem we take the form

Ψ(t) =
{

t +a, t ∈ [0, 1
2

]
,

t +b, t ∈ ( 1
2 ,1
]
.

Remark 2.27 For n = 1 in Theorem 2.16 we have∣∣∣∣∫ 1

0
f (t)dt −D(x)

∣∣∣∣≤ 1
2

[
1
3
−2x+4x2

]1/2

K, (2.66)

while

Ψ(t) =

{
t + 1−12x2

24x−6 , t ∈ [0, 1
2

]
,

t + 12x2−24x+5
24x−6 , t ∈ ( 1

2 ,1
]
.
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Also, for n = 2 we have∣∣∣∣∫ 1

0
f (t)dt−D(x)

∣∣∣∣≤ 1
2

[
1

180
− x2

3
+

4x3

3
− 4x4

3

]1/2

K, (2.67)

while

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
.

If in Theorem 2.16 we choose x = 0,1/2,1/3,1/4 we get inequality related to the
trapezoid, the midpoint, the two-point Newton-Cotes and the two-point Maclaurin formula:

Corollary 2.16 If f : [0,1] → R is such that f (n−1) is continuous of bounded variation
with f (n) ∈ L2[0,1], then we have∣∣∣∣∫ 1

0
f (t)dt− 1

2
[ f (0)+ f (1)]+Tn(0)

∣∣∣∣≤ [ (−1)n−1

(2n)!
B2n

]1/2

K, (2.68)

where T0(0) = 0,

Tn(0) =
�n/2�
∑
k=1

B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
and

K2 = ‖ f (n)‖2
2−
(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

.

For n even

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
,

while for n odd we have

Ψ(t) =

{
t + 2−n−1

4−21−n , t ∈ [0, 1
2

]
,

t + 2−n−3
4−21−n , t ∈ ( 1

2 ,1
]
.

Remark 2.28 For n = 1 in Corollary 2.16 we have∣∣∣∣∫ 1

0
f (t)dt − 1

2
[ f (0)+ f (1)]

∣∣∣∣≤ K

2
√

3
,

while

Ψ(t) =
{

t − 1
6 , t ∈ [0, 1

2

]
,

t − 5
6 , t ∈ ( 1

2 ,1
]
.

Corollary 2.17 If f : [0,1] → R is such that f (n−1) is continuous of bounded variation
with f (n) ∈ L2[0,1], then we have∣∣∣∣∫ 1

0
f (t)dt− f

(
1
2

)
+Tn

(
1
2

)∣∣∣∣≤ [ (−1)n−1

(2n)!
B2n

]1/2

K, (2.69)
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where T0
(

1
2

)
= 0,

Tn

(
1
2

)
=

�n/2�
∑
k=1

(21−2k −1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
and

K2 = ‖ f (n)‖2
2−
(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

.

For n even

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
,

while for n odd we have

Ψ(t) =

{
t + 1

21−n−4
, t ∈ [0, 1

2

]
,

t + 3−21−n

21−n−4
, t ∈ ( 1

2 ,1
]
.

Remark 2.29 For n = 1 in Corollary 2.17 we have∣∣∣∣∫ 1

0
f (t)dt− f

(
1
2

)∣∣∣∣≤ K

2
√

3
,

while

Ψ(t) =
{

t− 1
3 , t ∈ [0, 1

2

]
,

t− 2
3 , t ∈ ( 1

2 ,1
]
.

Corollary 2.18 If f : [0,1] → R is such that f (n−1) is continuous of bounded variation
with f (n) ∈ L2[0,1], then we have∣∣∣∣∫ 1

0
f (t)dt− 1

2

[
f

(
1
3

)
+ f

(
2
3

)]
+Tn

(
1
3

)∣∣∣∣≤ 1
2

[
(−1)n−1

(2n)!
(1+31−2n)B2n

]1/2

K,

(2.70)
where T0

(
1
3

)
= 0,

Tn

(
1
3

)
=

1
2

�n/2�
∑
k=1

(31−2k −1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
and

K2 = ‖ f (n)‖2
2−
(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

.

For n even

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
,

while for n odd we have

Ψ(t) =

{
t + 1−2n

22+n−2
, t ∈ [0, 1

2

]
,

t + 1−3·2n

22+n−2n
, t ∈ ( 1

2 ,1
]
.
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Remark 2.30 For n = 1 in Corollary 2.18 we have∣∣∣∣∫ 1

0
f (t)dt − 1

2

[
f

(
1
3

)
+ f

(
2
3

)]∣∣∣∣≤ K
6

,

while

Ψ(t) =
{

t − 1
6 , t ∈ [0, 1

2

]
,

t − 5
6 , t ∈ ( 1

2 ,1
]
.

Corollary 2.19 If f : [0,1] → R is such that f (2m−1) is continuous of bounded variation
with f (2m) ∈ L2[0,1], then we have∣∣∣∣∫ 1

0
f (t)dt− 1

2

[
f

(
1
4

)
+ f

(
3
4

)]
+T2m

(
1
4

)∣∣∣∣≤ [−2−4m

(4m)!
B4m

]1/2

K, (2.71)

where T0
( 1

4

)
= 0,

T2m

(
1
4

)
=

m

∑
k=1

2−2k(21−2k −1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
and

K2 = ‖ f (2m)‖2
2−
(∫ 1

0
f (2m)(t)dt

)2

−
(∫ 1

0
f (2m)(t)Ψ0(t)dt

)2

,

while

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
.

2.7 Hermite-Hadamard’s inequalities of Bullen type

Hermite-Hadamard’s inequality can be generalized in the following way.

Theorem 2.17 Let f : [a,b]→ R be a convex function. Then for every x ∈ [a, a+b
2

]
f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (t)dt ≥ 1

b−a

∫ b

a
f (t)dt− f (x)+ f (a+b− x)

2
, (2.72)

and for every x ∈ [ 3a+b
4 , a+b

2

]
1

b−a

∫ b

a
f (t)dt− f (x)+ f (a+b− x)

2
≥ 0. (2.73)
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Proof. Let x ∈ [a, a+b
2

]
. Since f is convex on [a,b] , the right hand side of (2.36) gives

1
b−a

∫ b

a
f (t)dt

=
1

b−a

[∫ x

a
f (t)dt +

∫ a+b−x

x
f (t)dt +

∫ b

a+b−x
f (t)dt

]
≤ 1

b−a

[
(x−a)

f (a)+ f (x)
2

+(a+b−2x)
f (x)+ f (a+b− x)

2
+

+(x−a)
f (a+b− x)+ f (b)

2

]
=

1
2

[
x−a
b−a

( f (a)+ f (b))+
b− x
b−a

( f (x)+ f (a+b− x))
]
.

Since f is convex on [a,b] , for any h > 0 and x1,x2 ∈ [a,b] such that x1 ≤ x2 we have (see
for example [115, p. 5,6])

f (x1 +h)− f (x1) ≤ f (x2 +h)− f (x2) . (2.74)

Consider now x ∈ [a, a+b
2

]
. If we apply (2.74) on h = x−a, x1 = a and x2 = a+b− x, we

obtain
f (x)− f (a) ≤ f (b)− f (a+b− x), (2.75)

For x∈ [a, a+b
2

]
we have a+b−2x≥ 0, so for such x the inequality (2.75) can be rewritten

as

(a+b−2x)
f (x)− f (a)

b−a
≤ (a+b−2x)

f (b)− f (a+b− x)
b−a

,

i.e.,

(a+b−2x)
f (x)− f (a)

b−a
+(2x−a−b)

f (b)− f (a+b− x)
b−a

≤ 0.

From this, a simple calculation gives us

2(x−a)
b−a [ f (a)+ f (b)]+ 2(b−x)

b−a [ f (x)+ f (a+b− x)]
≤ f (a)+ f (b)+ f (x)+ f (a+b− x). (2.76)

Combining (2.74) and (2.76) we obtain

1
b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)+ f (x)+ f (a+b− x)

4
,

from which we get

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt ≥ 1

b−a

∫ b

a
f (t)dt− f (x)+ f (a+b− x)

2
,

and this completes the proof of (2.72) .
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Now let x ∈ [ 3a+b
4 , a+b

2

]
. Since f is convex on [a,b] , the left hand side of (2.36) gives

1
b−a

∫ b

a
f (t)dt

=
1

b−a

[∫ a+b
2

a
f (t)dt +

∫ b

a+b
2

f (t)dt

]

≥ 1
b−a

[
b−a

2
f

(
3a+b

4

)
+

b−a
2

f

(
a+3b

4

)]
=

1
2

[
f

(
3a+b

4

)
+ f

(
a+3b

4

)]
. (2.77)

If we apply again (2.74) on h = 4x−3a−b
4 , x1 = 3a+b

4 and x2 = a+b− x, we obtain

f (x)− f

(
3a+b

4

)
≤ f

(
a+3b

4

)
− f (a+b− x),

i.e.,

f (x)+ f (a+b− x)≤ f

(
a+3b

4

)
+ f

(
3a+b

4

)
. (2.78)

Combining (2.78) with (2.77) we obtain

1
b−a

∫ b

a
f (t)dt ≥ f (x)+ f (a+b− x)

2
,

so the inequality (2.73) is proved.

�

Remark 2.31 If in (2.72) and (2.73) we let x = a+b
2 , we obtain

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt ≥ 1

b−a

∫ b

a
f (t)dt− f

(
a+b

2

)
≥ 0,

which is Bullen’s result from [11]. His result was generalized for (2r)-convex functions
(r ∈ N) in [28].

The next goal is to obtain a variant of inequalities (2.72) and (2.73) for (2r)-convex
functions (r ∈ N). To achieve this goal we will construct a general closed 4-point rule
based on Euler-type identities (1.1) and (1.2).

For k ≥ 1 and fixed x ∈ [a, a+b
2

]
we define functions Gx

k and Fx
k as

Gx
k (t) = B∗

k

(
x− t
b−a

)
+B∗

k

(
a+b− x− t

b−a

)
+B∗

k

(
a− t
b−a

)
+B∗

k

(
b− t
b−a

)
= B∗

k

(
x− t
b−a

)
+B∗

k

(
a+b− x− t

b−a

)
+2B∗

k

(
a− t
b−a

)
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and
Fx

k (t) = Gx
k (t)− B̃x

k ,

for all t ∈ R, where

B̃x
k = Bk

(
x−a
b−a

)
+Bk

(
b−x
b−a

)
+Bk (0)+Bk (1)

=
[
1+(−1)k

][
Bk
(

x−a
b−a

)
+Bk

]
.

Of course, if k ≥ 2 we have

B̃x
k =

[
1+(−1)k

]
Bk

(
x−a
b−a

)
+2Bk.

Using the properties of the Bernoulli polynomials we can easily see that for any
x ∈ [a, a+b

2

]
B̃x

k = Gx
k (a) , k ≥ 2

B̃x
2r−1 = 0, r ≥ 1

B̃x
2r = 2

[
B2r

(
x−a
b−a

)
+B2r

]
, r ≥ 1

Fx
2i−1 (t) = Gx

2i−1 (t) , i ≥ 1

Fx
2r (t) = Gx

2r (t)−2

[
B2r

(
x−a
b−a

)
+B2r

]
, r ≥ 1

Fx
k (a) = Fx

k (b) = 0, k ≥ 1

Gx
k (a) = Gx

k (b) =
[
1+(−1)k

]
Bk

(
x−a
b−a

)
+2Bk, k ≥ 1.

We can also easily check that for all r ≥ 1

Fx
2r−1

(
a+b

2

)
= Gx

2r−1

(
a+b

2

)
= 0

and

Gx
2r

(
a+b

2

)
= 2B2r

(
1
2
− x−a

b−a

)
+2B2r

(
1
2

)
Fx

2r

(
a+b

2

)
= Gx

2r

(
a+b

2

)
− B̃x

2r

= 2

[
B2r

(
1
2
− x−a

b−a

)
−B2r

(
x−a
b−a

)
+B2r

(
1
2

)
−B2r

]
= 2

[
B2r

(
1
2
− x−a

b−a

)
−B2r

(
x−a
b−a

)
+2
(
2−2r −1

)
B2r

]
Now let f : [a,b]→ R be such that f (n−1) exists on [a,b] for some n ≥ 1. We introduce the
following notation for each x ∈ [a, a+b

2

]
D(x) =

1
4

[ f (x)+ f (a+b− x)+ f (a)+ f (b)] .
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Furthermore, we define

T̃0 (x) = 0

T̃m (x) =
1
4

[Tm (x)+Tm (a+b− x)+Tm (a)+Tm (b)] , 1 ≤ m ≤ n,

where Tm is given by (1.3) . It can be easily checked that

T̃m (x) =
1
4

m

∑
k=1

(b−a)k−1

k!
B̃x

k

[
f (k−1) (b)− f (k−1) (a)

]
.

For the further use we will denote

T̃V
m (x) =

Tm (x)+Tm (a+b− x)
2

,

T̃ F
m =

Tm (a)+Tm (b)
2

.

Obviously,

T̃m (x) =
T̃V
m (x)+ T̃ F

m

2
.

Theorem 2.18 Let f : [a,b] → R, a < b, be such that for some n ∈ N, f (n−1) is a
continuous function of bounded variation on [a,b] . Then for every x ∈ [a,b]

1
b−a

∫ b

a
f (t)dt = D(x)− T̃n (x)+ R̃1

n (x) (2.79)

and
1

b−a

∫ b

a
f (t)dt = D(x)− T̃n−1 (x)+ R̃2

n (x) , (2.80)

where

R̃1
n (x) =

(b−a)n−1

4n!

∫
[a,b]

Gx
n (t)d f (n−1) (t)

and

R̃2
n (x) =

(b−a)n−1

4n!

∫
[a,b]

Fx
n (t)d f (n−1) (t) .

Proof. Put x ≡ x,a + b− x,a,b in the formula (1.1) to get four new formulae. Then
multiply these formulae by 1

4 and add them up. The result is (2.79) , and (2.80) is obtained
from (1.2) by the same procedure. �

Remark 2.32 If in Theorem 2.18 we choose x = a we obtain Euler trapezoid rule [25],
and if we choose x = a+b

2 we obtain Euler bitrapezoid rule [28].
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Our next goal is to give an estimation of the remainder R̃2
n (x). For the sake of simplicity

we will temporarily introduce two new variables:

ξ =
x−a
b−a

, s =
t−a
b−a

.

It can be easily seen that for x,t ∈ [a,b] we have ξ ,s ∈ [0,1] . Using direct calculations,
for each ξ ∈ [0, 1

2

]
we obtain

Gξ
1 (s) = Fξ

1 (s) =

⎧⎨⎩
−4s+1 0 ≤ s ≤ ξ
−4s+2 ξ < s ≤ 1− ξ
−4s+3 1− ξ < s < 1

,

Gξ
2 (s) =

⎧⎨⎩
4s2 −2s+2ξ 2−2ξ + 2

3 0 ≤ s ≤ ξ
4s2−4s+2ξ 2 + 2

3 ξ < s ≤ 1− ξ
4s2 −6s+2ξ 2−2ξ + 8

3 1− ξ < s < 1
,

Fξ
2 (s) =

⎧⎨⎩
4s2 −2s 0 ≤ s ≤ ξ

4s2−4s+2ξ ξ < s ≤ 1− ξ
4s2−6s+2 1− ξ < s < 1

,

Gξ
3 (s) =

⎧⎨⎩
−4s3 +3s2−2s

(
3ξ 2−3ξ +1

)
0 ≤ s ≤ ξ

−4s3 +6s2−2s
(
3ξ 2 +1

)
+3ξ 2 ξ < s ≤ 1− ξ

−4s3 +9s2−2s
(
3ξ 2−3ξ +4

)
+6ξ 2−6ξ +3 1− ξ < s < 1

= Fξ
3 (s) .

Next we present some properties of the functions Gξ
k and Fξ

k defined as above. First

we prove that the functions Gξ
k and Fξ

k are symmetric for even k and skew-symmetric for
odd k with respect to 1

2 .

Lemma 2.4 Let ξ ∈ [0, 1
2

]
be fixed. For k ≥ 2 and s ∈ [0,1] we have

Gξ
k (1− s) = (−1)k Gξ

k (s) ,

Fξ
k (1− s) = (−1)k Fξ

k (s) .

Proof. As it is stated in the beginning of this section, for k ≥ 2 and s ∈ [0,1] we have

Gξ
k (1− s) = B∗

k (ξ −1+ s)+B∗
k (−ξ + s)+2B∗

k (s)

=

⎧⎨⎩
Bk (ξ + s)+Bk (1− ξ + s)+2Bk (s) 0 ≤ s ≤ ξ
Bk (ξ + s)+Bk (−ξ + s)+2Bk (s) ξ < s ≤ 1− ξ

Bk (ξ −1+ s)+Bk (−ξ + s)+2Bk (s) 1− ξ < s ≤ 1

= (−1)k ×⎧⎨⎩
Bk (1− ξ − s)+Bk (ξ − s)+2Bk (1− s) 0 ≤ s ≤ ξ

Bk (1− ξ − s)+Bk (1+ ξ − s)+2Bk (1− s) ξ < s ≤ 1− ξ
Bk (2− ξ − s)+Bk (1+ ξ − s)+2Bk (1− s) 1− ξ < s ≤ 1

= (−1)k Gξ
k (s) ,



56 2 EULER TWO-POINT FORMULAE

which proves the first identity. Further, we know that Fξ
k (s) = Gξ

k (s) − Gξ
k (0) . If

k = 2i−1, i ≥ 2, then Gξ
2i−1 (0) = Gξ

2i−1 (1) = 0, so we immediately have

Fξ
2i−1 (1− s) = Gξ

2i−1 (1− s)

= (−1)2i−1 Gξ
2i−1 (s) = (−1)2i−1 Fξ

2i−1 (s) .

On the other hand, if k = 2i, i ≥ 1, then (−1)2i = 1, so we obtain

Fξ
2i (1− s) = Gξ

2i (1− s)+Gξ
2i (0)

= (−1)2i Gξ
2i (s)+ (−1)2i Gξ

2i (0)

= (−1)2i Fξ
2i (s) ,

and this proves the second identity. �

Remark 2.33 It is obvious that analogous assertions hold true for the functions Gx
k and

Fx
k , k ≥ 2. In other words, if x ∈ [a, a+b

2

]
and t ∈ [a,b] we have

Gx
k (b− t) = (−1)k Gx

k (t) ,

Fx
k (b− t) = (−1)k Fx

k (t) .

Lemma 2.5 If ξ ∈
[
0, 1

2 − 1
4
√

6

)
, than for all s ∈ (0, 1

2

)
Gξ

3 (s) < 0.

Also

G
1
2− 1

4
√

6
3 (s) < 0, s ∈

(
0,

1
2

)
\
{

3
8

}
,

G
1
2
3 (s) < 0, s ∈ (0, 1

4

)
,

G
1
2
3 (s) > 0, s ∈ ( 1

4 , 1
2

)
.

Proof. For the sake of the simplicity we will denote

Gξ
3 (s) =

⎧⎨⎩
−4s3 +3s2−2s

(
3ξ 2−3ξ +1

)
, 0 ≤ s ≤ ξ

−4s3 +6s2−2s
(
3ξ 2 +1

)
+3ξ 2 ξ < s ≤ 1− ξ

−4s3 +9s2−2s
(
3ξ 2−3ξ +4

)
+6ξ 2−6ξ +3 1− ξ < s < 1

=

⎧⎪⎨⎪⎩
Hξ

1 (s) 0 ≤ s ≤ ξ
Hξ

2 (s) ξ < s ≤ 1− ξ
Hξ

3 (s) 1− ξ < s ≤ 1

.
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If we write Hξ
1 (s) as

Hξ
1 (s) = s

[−4s2 +3s−2
(
3ξ 2−3ξ +1

)]
we can see that Hξ

1 (0) = 0 and that Hξ
1 (ξ ) = ξ

(−10ξ 2 +9ξ −2
)
, so if for a given

ξ ∈ [0, 1
2

]
number−10ξ 2+9ξ −2 is negative it means that the joining point

(
ξ ,Hξ

1 (ξ )
)

=(
ξ ,Hξ

2 (ξ )
)

is under the x axis. This will be true for ξ ∈ [0, 2
5

)
. The sign of Hξ

1 (s) is de-

termined by the sign of the function y(s) = −4s2 + 3s− 2
(
3ξ 2−3ξ +1

)
. This function

will have zeros s1 = 3
8 − 1

8

√
D and s2 = 3

8 + 1
8

√
D if D = −96ξ 2 + 96ξ − 23 ≥ 0, i.e., if

ξ ∈
[

1
2 − 1

4
√

6
, 1

2

]
. Furthermore, y(0) = −2

(
3ξ 2−3ξ +1

)
< 0 which means that (if they

exist) both zeros s1 and s2 are positive. Of course, if ξ = 1
2 − 1

4
√

6
the function y has only

one zero s = 3
8 . We want to know is it possible for ξ ∈

(
1
2 − 1

4
√

6
, 2

5

)
to have ξ < s1 (be-

cause this will imply that Hξ
1 (s) < 0 for all 0 ≤ s≤ ξ ). This in fact is not possible because

if ξ < s1 than we have ξ < 3
8 , and 3

8 < 1
2 − 1

4
√

6
. This means that Hξ

1 (s)≤ 0 for all s∈ (0,ξ )

can be true only if D ≤ 0, and this will be true for ξ ∈
[
0, 1

2 − 1
4
√

6

]
⊂ [0, 2

5

)
.

Now we must check Hξ
2 for such ξ . If ξ < s ≤ 1

2 we have

Hξ ′
2 (s) = −12s2 +12s−2

(
3ξ 2 +1

)
,

Hξ ′′
2 (s) = −24s+12 = 12(1−2s) > 0,

which means that Hξ
2 is convex for any choice of such ξ . Since Hξ

2 (ξ ) < 0 and Hξ
2

(
1
2

)
= 0

we can deduce that Hξ
2 (s) < 0 for all s∈ (ξ , 1

2

)
. This means that if ξ ∈

[
0, 1

2 − 1
4
√

6

)
, then

Gξ
3 (s) < 0, s ∈

(
0,

1
2

)
,

and for ξ = 1
2 − 1

4
√

6
we have

Gξ
3 (s) < 0, s ∈

(
0,

1
2

)
\
{

3
8

}
.

On the other hand, if ξ ∈ ( 2
5 , 1

2

]
the joining point

(
ξ ,Hξ

1 (ξ )
)

=
(

ξ ,Hξ
2 (ξ )

)
is above the

x axis, and we want Hξ
1 (s) to be positive for all s ∈ (0,ξ ) . This, of course, can not be true

because
( 2

5 , 1
2

]⊂ ( 1
2 − 1

4
√

6
, 1

2

]
, which means that Hξ

1 surely has a zero s1 < 3
8 < 2

5 < ξ .

And in the end, we must separately investigate G
1
2
3 because in this special point ξ = 1

2

function Gξ
3 has only one branch for s ∈ [0, 1

2

]
, i.e., we have

G
1
2
3 (s) = s

(
−4s2 +3s− 1

2

)
, s ∈

[
0,

1
2

]
.
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We can easily see that

G
1
2
3 (s) < 0, s ∈ (0, 1

4

)
,

G
1
2
3 (s) > 0, s ∈ ( 1

4 , 1
2

)
.

Of course, from the above results we have

Gx
3 (t) < 0, t ∈

(
a,

a+b
2

)
for any x ∈

[
a, a+b

2 − b−a
4
√

6

)
, and also

G
a+b
2 − b−a

4
√

6
3 (s) < 0, s ∈

(
a,

a+b
2

)
\
{

5a+3b
8

}
,

G
a+b
2

3 (t) < 0, t ∈ (a, a+b
4

)
,

G
a+b
2

3 (t) > 0, t ∈ ( 3a+b
4 , a+b

2

)
.

Lemma 2.6 For r ≥ 2 and x ∈
[
a, a+b

2 − b−a
4
√

6

)
the function Gx

2r−1 has no zeros in the

interval
(
a, a+b

2

)
. The sign of this function is determined by

(−1)r−1 Gx
2r−1 (t) > 0, t ∈

(
a,

a+b
2

)
.

Also,

(−1)r−1 G
a+b
2 − b−a

4
√

6
2r−1 (t) > 0, t ∈

(
a,

a+b
2

)
\
{

5a+3b
8

}
,

(−1)r−1 G
a+b
2

2r−1 (t) > 0, t ∈
(

a,
3a+b

4

)
,

(−1)r−1 G
a+b
2

2r−1 (s) < 0, s ∈
(

3a+b
4

,
a+b

2

)
.

Proof. Let x ∈
[
a, a+b

2 − b−a
4
√

6

)
. If r = 2 assertion follows from Lemma 2.5. Assume

now that r ≥ 3. In that case we have 2r−1 ≥ 5 and the function Gx
2r−1 is continuous and

at least twice differentiable. We know that(
Gx

2r−1

)′ (t) = −2r−1
b−a

Gx
2r−2 (t) ,(

Gx
2r−1

)′′ (t) =
(2r−1)(2r−2)

(b−a)2
Gx

2r−3 (t) , (2.81)
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and that

Gx
2r−1 (a) = Gx

2r−1

(
a+b

2

)
= 0.

Suppose that Gx
2r−1 has another zero α ∈ (a, a+b

2

)
. Then inside each of the intervals (a,α)

and
(
α, a+b

2

)
the derivative

(
Gx

2r−1

)′
must have at least one zero, say β1 ∈ (a,α) and

β2 ∈ (α, a+b
2

)
. Therefore, the second derivative

(
Gx

2r−1

)′′
must have at least one zero

inside the interval (β1,β2) ⊂
(
a, a+b

2

)
. Thus, from the assumption that Gx

2r−1 has a zero
inside the interval

(
a, a+b

2

)
it follows that Gx

2r−3 also has a zero inside the interval
(
a, a+b

2

)
.

From this we could deduce that the function Gx
3 also has a zero inside of the interval(

a, a+b
2

)
which is not true. Thus, Gx

2r−1 can not have a zero inside the interval
(
a, a+b

2

)
.

Furthermore, if Gx
2r−3 (t) > 0 for t ∈ (a, a+b

2

)
, then from (2.81) follows that Gx

2r−1 is
convex on

(
a, a+b

2

)
, and hence Gx

2r−1 (t) < 0 for t ∈ (a, a+b
2

)
. Similarly, if Gx

2r−3 (t) < 0
for t ∈ (a, a+b

2

)
, then from (2.81) follows that Gx

2r−1 is concave on
(
a, a+b

2

)
, and hence

Gx
2r−1 (t) > 0 for t ∈ (a, a+b

2

)
. Since Gx

3 (t) < 0 for t ∈ (a, a+b
2

)
we can conclude that

(−1)r−1 Gx
2r−1 (t) > 0, t ∈

(
a,

a+b
2

)
.

For the special cases x = a+b
2 − b−a

4
√

6
and x = a+b

2 proof is similar so we skip the details.

�

Corollary 2.20 For r ≥ 2 and x ∈
[
a, a+b

2 − b−a
4
√

6

]
the functions (−1)r Fx

2r (t) and

(−1)r Gx
2r (t) are strictly increasing on the interval

(
a, a+b

2

)
and strictly decreasing on

the interval
(

a+b
2 ,b

)
. Consequently, a and b are the only zeros of Fx

2r in the interval [a,b]
and

max
t∈[a,b]

|Fx
2r (t)| = 2

∣∣∣∣B2r

(
1
2
− x−a

b−a

)
−B2r

(
x−a
b−a

)
+2
(
2−2r −1

)
B2r

∣∣∣∣ ,
max
t∈[a,b]

|Gx
2r (t)| =

{
2

∣∣∣∣B2r

(
x−a
b−a

)
+B2r

∣∣∣∣ ,2 ∣∣∣∣B2r

(
1
2
− x−a

b−a

)
+B2r

(
1
2

)∣∣∣∣} .

Proof. Let r ≥ 2 and x ∈
[
a, a+b

2 − b−a
4
√

6

)
. We know that

[(−1)r Fx
2r (t)]

′ = [(−1)r Gx
2r (t)]

′ =
2r

b−a
(−1)r−1 Gx

2r−1 (t) ,

and by Lemma 2.6 we also know that (−1)r−1 Gx
2r−1 (t) > 0 for all t ∈ (a, a+b

2

)
. Thus the

functions (−1)r Fx
2r (t) and (−1)r Gx

2r (t) are strictly increasing on the interval
(
a, a+b

2

)
.

Also, by Lemma 2.4, we have Fx
2r (b− t) = Fx

2r (t) and Gx
2r (b− t) = Gx

2r (t) for t ∈ [a,b] ,
which implies that (−1)r Fx

2r (t) and (−1)r Gx
2r (t) are strictly decreasing on the interval
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(
a+b
2 ,b

)
. Further, Fx

2r (a) = Fx
2r (b) = 0, which implies that |Fx

2r (t)| achieves its maximum
at t = a+b

2 , that is

max
t∈[a,b]

|Fx
2r (t)| =

∣∣∣∣Fx
2r

(
a+b

2

)∣∣∣∣
= 2

∣∣∣∣B2r

(
1
2
− x−a

b−a

)
−B2r

(
x−a
b−a

)
+2
(
2−2r −1

)
B2r

∣∣∣∣ .
Also,

max
t∈[a,b]

|Gx
2r (t)| = max

{
|Gx

2r (a)| ,
∣∣∣∣Gx

2r

(
a+b

2

)∣∣∣∣}
= max

{
2

∣∣∣∣B2r

(
x−a
b−a

)
+B2r

∣∣∣∣ ,2 ∣∣∣∣B2r

(
1
2
− x−a

b−a

)
+B2r

(
1
2

)∣∣∣∣} .

The special case x = a+b
2 − b−a

4
√

6
can be investigated similarly. �

Corollary 2.21 For r ≥ 2 the functions (−1)r F
a+b
2

2r (t) and (−1)r G
a+b
2

2r (t) are strictly
increasing on the intervals

(
a, 3a+b

4

)
and

(
a+b
2 , a+3b

4

)
, and strictly decreasing on the in-

tervals
( 3a+b

4 , a+b
2

)
and

(
a+3b

4 ,b
)
. Consequently, a, a+b

2 and b are the only zeros of F
a+b
2

2r
in the interval [a,b] and

max
t∈[a,b]

∣∣∣∣F a+b
2

2r (t)
∣∣∣∣= ∣∣∣∣F a+b

2
2r

(
3a+b

4

)∣∣∣∣= 22−2r (2−21−2r) |B2r| ,

max
t∈[a,b]

∣∣∣∣Ga+b
2

2r (t)
∣∣∣∣= ∣∣∣∣Ga+b

2
2r

(
3a+b

4

)∣∣∣∣= 22−2r (1−21−2r) |B2r| .

Proof. Similarly as in the proof of Corollary 2.20 and using the fact

F
a+b
2

2r

(
a+b

2

)
= 2

[
B2r −B2r

(
1
2

)
+2
(
2−2r −1

)
B2r

]
= 0.

�

Corollary 2.22 For r ≥ 2 and x ∈
[
a, a+b

2 − b−a
4
√

6

]
we have

1
b−a

∫ b
a

∣∣Fx
2r−1 (t)

∣∣dt

= 1
b−a

∫ b
a

∣∣Gx
2r−1 (t)

∣∣dt = 1
r

∣∣Fx
2r

(
a+b
2

)∣∣
= 2

r

∣∣B2r
(

1
2 − x−a

b−a

)−B2r
(

x−a
b−a

)
+2
(
2−2r −1

)
B2r
∣∣ .

Also, we have
1

b−a

∫ b

a
|Fx

2r (t)|dt = 2

∣∣∣∣B2r

(
x−a
b−a

)
+B2r

∣∣∣∣
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and
1

b−a

∫ b

a
|Gx

2r (t)|dt ≤ 4

∣∣∣∣B2r

(
x−a
b−a

)
+B2r

∣∣∣∣ .
Proof. Let r ≥ 2 and x ∈

[
a, a+b

2 − b−a
4
√

6

]
. Using Lemma 2.4 and Lemma 2.6 we get

∫ b

a

∣∣Gx
2r−1 (t)

∣∣dt = 2

∣∣∣∣∣
∫ a+b

2

a
Gx

2r−1 (t)dt

∣∣∣∣∣
= 2

∣∣∣∣−b−a
2r

Gx
2r (s) |

a+b
2

a

∣∣∣∣= b−a
r

∣∣∣∣Gx
2r

(
a+b

2

)
−Gx

2r (a)
∣∣∣∣

=
b−a

r
Fx

2r

(
a+b

2

)
,

which proves the first assertion. Using Corollary 2.20 and the fact that Fx
2r (a) = Fx

2r (b)
= 0, we can deduce that the function Fx

2r does not change its sign on the interval (a,b) .
Therefore we have ∫ b

a
|Fx

2r (t)|dt

=
∣∣∣∣∫ b

a
Fx

2r (t)dt

∣∣∣∣= ∣∣∣∣∫ b

a

[
Gx

2r (t)− B̃x
2r

]
dt

∣∣∣∣
=
∣∣∣∣− b−a

2r+1
Gx

2r+1 (t) |ba −(b−a)B̃x
2r

∣∣∣∣= (b−a)
∣∣∣B̃x

2r

∣∣∣
= 2(b−a)

∣∣∣∣B2r

(
x−a
b−a

)
+B2r

∣∣∣∣ ,
which proves the second assertion. Finally, we use the triangle inequality to obtain the
third formula. �

Corollary 2.23 For r ≥ 2 we have∫ b

a

∣∣∣∣F a+b
2

2r−1 (t)
∣∣∣∣dt =

∫ b

a

∣∣∣∣Ga+b
2

2r−1 (t)
∣∣∣∣dt =

b−a
r

24−2r (1−2−2r) |B2r|

Also,
1

b−a

∫ b

a

∣∣∣∣F a+b
2

2r (t)
∣∣∣∣dt = 22−2r |B2r|

and
1

b−a

∫ b

a

∣∣∣∣Ga+b
2

2r (t)
∣∣∣∣dt ≤ 23−2r |B2r| .

Proof. Similarly as in the proof of Corollary 2.22. �
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Lemma 2.7 Let x∈
[
a, a+b

2 − b−a
4
√

6

]
. If f : [a,b]→R is such that for some r≥ 2 derivative

f (2r) is continuous on [a,b] , then there exists a point η ∈ [a,b] such that

R̃2
2r (x) = − (b−a)2r

2(2r)!

[
B2r

(
x−a
b−a

)
+B2r

]
f (2r) (η) .

Proof. Let x ∈
[
a, a+b

2 − b−a
4
√

6

]
. For n = 2r ≥ 4 and f such that f (2r) is continuous on

[a,b] we can rewrite R2
2r ( f ) as

R̃2
2r (x) = (−1)r (b−a)2r−1

4(2r)!

∫ b

a
(−1)r Fx

2r (t) f (2r) (t)dt

= (−1)r (b−a)2r−1

4(2r)!
Ir, (2.82)

where

Ir =
∫ b

a
(−1)r Fx

2r (t) f (2r) (t)dt. (2.83)

If
m = min

[a,b]
f (2r) (t) , M = max

[a,b]
f (2r) (t) ,

then
m ≤ f (2r) (t) ≤ M, t ∈ [a,b] .

From Corollary 2.20 we have

(−1)r Fx
2r (t) ≥ 0, t ∈ [a,b] ,

so

m
∫ b

a
(−1)r Fx

2r (t)dt ≤ Ir ≤ M
∫ b

a
(−1)r Fx

2r (t)dt.

Since ∫ b

a
Fx

2r (t)dt = −(b−a)B̃x
2r = −2(b−a)

[
B2r

(
x−a
b−a

)
+B2r

]
,

we obtain

2m(−1)r−1 (b−a)
[
B2r

(
x−a
b−a

)
+B2r

]
≤ Ir ≤ 2M (−1)r−1 (b−a)

[
B2r

(
x−a
b−a

)
+B2r

]
.

By the continuity of f (2r) on [a,b] it follows that there must exist a point η ∈ [a,b] such
that

Ir = 2(−1)r−1 (b−a)
[
B2r

(
x−a
b−a

)
+B2r

]
f (2r) (η) .
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From that we can easily obtain

R̃2
2r (x) = − (b−a)2r

2(2r)!

[
B2r

(
x−a
b−a

)
+B2r

]
f (2r) (η) .

�

Lemma 2.8 If f : [a,b]→ R is such that for some r ≥ 2 derivative f (2r) is continuous on
[a,b] , then there exists a point η ∈ [a,b] such that

R̃2
2r

(
a+b

2

)
= − (b−a)2r

(2r)!
2−2rB2r f (2r) (η) .

Proof. Analogously as in the proof of Lemma 2.7. �

Theorem 2.19 Let x ∈
[
a, a+b

2 − b−a
4
√

6

]
. Assume that f : [a,b] → R is such that for some

r ≥ 2 f (2r) is continuous on [a,b] . If f is a (2r)-convex or (2r)-concave function, then
there exists a point ϑ ∈ [0,1] such that

R̃2
2r (x) = ϑ

[
B2r

(
1
2
− x−a

b−a

)
−B2r

(
x−a
b−a

)
+2
(
2−2r −1

)
B2r

]
· (b−a)2r−1

2(2r)!

[
f (2r−1) (b)− f (2r−1) (a)

]
. (2.84)

Proof. By Corollary 2.20 for t ∈ [a,b] we have

0 ≤ (−1)r−1 Fx
2r (t) ≤ (−1)r−1 Fx

2r

(
a+b

2

)
.

The rest of the proof is similar as in the proof of Lemma 2.7. �

Using the Theorem 2.6 we can improve the above theorem in a way that the derivative
f (2r) need not to be continuous on [a,b] .

Theorem 2.20 Assume that the function f : [a,b] → R is such that for some r ≥ 2 the

derivative f (2r−1) is continuous and increasing on [a,b] . Then for every x∈
[
a, a+b

2 − b−a
4
√

6

]
we have

(−1)r
{

1
b−a

∫ b

a
f (t)dt− f (a)+ f (b)+ f (x)+ f (a+b− x)

4
+ T̃2r−1 (x)

}
≤ (b−a)2r−1

2(2r)!

[
f (2r−1) (b)− f (2r−1) (a)

]
·
∣∣∣∣B2r

(
1
2
− x−a

b−a

)
−B2r

(
x−a
b−a

)
+2
(
2−2r −1

)
B2r

∣∣∣∣ ,
and this inequality is sharp.
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Proof. We know that the function Fx
2r−1 is periodic with the period P = b− a. From

Theorem 2.19 and Lemma 2.4 for r ≥ 2 and x ∈
[
a, a+b

2 − b−a
4
√

6

]
we have:

Fx
2r−1

(
a+b

2

)
= 0,

(−1)r−1 Fx
2r−1 (t) > 0, t ∈

(
a,

a+b
2

)
(−1)r−1 Fx

2r−1 (t) < 0, t ∈
(

a+b
2

,b

)
and also ∫ b

a
Fx

2r−1 (t)dt = 0.

This means that if in Theorem 2.6 we choose ρ (t) = (−1)r−1 Fx
2r−1 (t), ϕ (t) = f (2r−1) (t)

and n = 1, then we obtain

−
∫ b

a
(−1)r−1 Fx

2r−1 (t) f (2r−1) (t)dt

≤ 1
2

[
f (2r−1) (b)− f (2r−1) (a)

]∫ b

a

∣∣Fx
2r−1 (t)

∣∣dt,

and combining this with Corollary 2.22 we obtain

(−1)r
∫ b

a
Fx

2r−1 (t) f (2r−1) (t)dt

≤ b−a
r

[
f (2r−1) (b)− f (2r−1) (a)

]
·
∣∣∣∣B2r

(
1
2
− x−a

b−a

)
−B2r

(
x−a
b−a

)
+2
(
2−2r −1

)
B2r

∣∣∣∣ .
From Theorem 2.18 we know that

1
b−a

∫ b

a
f (t)dt− f (a)+ f (b)+ f (x)+ f (a+b− x)

4
+ T̃2r−1 (x)

=
(b−a)2r−2

4(2r−1)!

∫
[a,b]

Fx
2r−1 (t) f (2r−1) (t)dt,

so

(−1)r
{

1
b−a

∫ b

a
f (t)dt− f (a)+ f (b)+ f (x)+ f (a+b− x)

4
+ T̃2r−1 (x)

}
=

(b−a)2r−2

4(2r−1)!
(−1)r

∫ b

a
Fx

2r−1 (t) f (2r−1) (t)dt

≤ (b−a)2r−1

2(2r)!

[
f (2r−1) (b)− f (2r−1) (a)

]
·
∣∣∣∣B2r

(
1
2
− x−a

b−a

)
−B2r

(
x−a
b−a

)
+2
(
2−2r −1

)
B2r

∣∣∣∣ .
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�

Theorem 2.21 Assume that the function f : [a,b] → R is such that for some r ≥ 2 the
derivative f (2r−1) is continuous and increasing on [a,b] . Then we have

(−1)r
{

1
b−a

∫ b

a
f (t)dt− f (a)+ f (b)+2 f

(
a+b
2

)
4

+ T̃2r−1

(
a+b

2

)}

≤ (b−a)2r−1

(2r)!

[
f (2r−1) (b)− f (2r−1) (a)

]
21−2r (1−2−2r) |B2r| ,

and this inequality is sharp.

Proof. Similarly as in the proof of Theorem 2.20. �

Now we can give our main result in this section: a generalization of Hermite-Hadamard’s
inequalities for (2r)-convex functions, r ≥ 2.

Theorem 2.22 Assume that f : [a,b] → R is such that for some r ≥ 2 derivative f (2r−1)

is continuous on [a,b] , and assume that f is (2r)-convex on [a,b] . If r is odd, then for all

x ∈
[
a, a+b

2 − b−a
4
√

6

]
∪{ a+b

2

}
f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (t)dt− T̃ F

2r−1,≥
1

b−a

∫ b

a
f (t)dt− f (x)+ f (a+b− x)

2
+ T̃V

2r−1 (x) , (2.85)

and for all x ∈
[
a+ b−a

2
√

3
, a+b

2

]
1

b−a

∫ b

a
f (t)dt− f (x)+ f (a+b− x)

2
+ T̃V

2r−1 (x) ≥ 0. (2.86)

If r is even the above inequalities are reversed.

Proof. Let x ∈
[
a, a+b

2 − b−a
4
√

6

]
. In case n = 2r ≥ 4 from (2.80) we get

2
b−a

∫ b

a
f (t)dt− f (a)+ f (b)+ f (x)+ f (a+b− x)

2
+2T̃2r−1 (x) = 2R̃2

2r ( f ) ,

where

R̃2
2r (x) =

(b−a)2r−1

4(2r)!

∫
[a,b]

Fx
2r (t)d f (2r−1) (t) .

If f is (2r)-convex then d f (2r−1) (t) ≥ 0 on [a,b] , and since by Corollary 2.20 we know
that

(−1)r Fx
2r (t) ≥ 0, t ∈ [a,b] ,



66 2 EULER TWO-POINT FORMULAE

we obtain R̃2
2r (x) ≥ 0 for r even and R̃2

2r (x) ≤ 0 for r odd. The same is true if x = a+b
2 .

This means that for r odd we have

2
b−a

∫ b

a
f (t)dt− f (a)+ f (b)+ f (x)+ f (a+b− x)

2
+2T̃2r−1 (x) ≤ 0,

i.e.,

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt− T̃ F

2r−1 ≥
1

b−a

∫ b

a
f (t)dt− f (x)+ f (a+b− x)

2
+ T̃V

2r−1 (x) ,

and the above inequality is reversed if r is even. This completes the proof of (2.85) .
Now let x∈

[
a+ b−a

2
√

3
, a+b

2

]
and suppose that r is odd. We can use the analogous results

from Section 3 of this chapter to obtain

1
b−a

∫ b

a
f (t)dt− f (x)+ f (a+b− x)

2
+ T̃V

2r−1 (x) ≥ 0,

and the reverse if r is even. This completes the proof.

�

The interested reader can find several sharper variants of (2.86) in [105].



Chapter3

General 3-point quadrature
formulae of Euler type

The topic of this chapter are general 3-point quadrature formulae. More precisely, a family
of quadrature formulae which approximate the integral over [0,1] by values of the function
in nodes x, 1/2, 1− x, where x ∈ [0,1/2), are studied. The results from the first section
were published in [59].

3.1 General approach

Let x ∈ [0,1/2) and f : [0,1]→ R be such that f (2n) is continuous of bounded variation on
[0,1] for some n ≥ 0. Put x ≡ x, 1/2, 1− x in (1.2), multiply by w(x), 1− 2w(x), w(x),
respectively, and add up. The following formula is produced:

∫ 1

0
f (t)dt −w(x) f (x)− (1−2w(x)) f

(
1
2

)
−w(x) f (1− x)+T2n(x)

=
1

(2n+2)!

∫ 1

0
F2n+2(x, t)d f (2n+1)(t), (3.1)

67
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where

T2n(x) =
2n

∑
k=2

1
k!

Gk(x,0) [ f (k−1)(1)− f (k−1)(0)], (3.2)

Gk(x, t) = w(x) [B∗
k (x− t)+B∗

k (1− x− t)]+ (1−2w(x))B∗
k

(
1
2
− t

)
, (3.3)

Fk(x, t) = Gk(x,t)−Gk(x,0) (3.4)

for k ≥ 1 and t ∈ R.
Using the properties of Bernoulli polynomials, it is easy to verify that:

Gk(x,1− t) = (−1)kGk(x,t), t ∈ [0,1], (3.5)

∂Gk(x,t)
∂ t

= −kGk−1(x,t). (3.6)

Further, notice that G2k−1(0) = 0 for k ≥ 2, and this is not affected by any choice of the
weight w(x). On the other hand, in general, G2k(x,0) 
= 0.

To obtain the 3-point quadrature formulae with the maximum degree of exactness
(which is equal to 3), it is clear from (3.1) that we have to impose a condition: G2(x,0) = 0.

This condition gives:

w(x) =
1

6(2x−1)2

and formula (3.1) now becomes:∫ 1

0
f (t)dt −Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x) =
1

(2n+2)!

∫ 1

0
FQ3

2n+2(x,t)d f (2n+1)(t), (3.7)

where

Q

(
x,

1
2
, 1− x

)
=

1
6(2x−1)2

[
f (x)+24B2(x) · f

(
1
2

)
+ f (1− x)

]
(3.8)

TQ3
2n (x) =

n

∑
k=2

1
(2k)!

GQ3
2k (x,0) [ f (2k−1)(1)− f (2k−1)(0)], (3.9)

GQ3
k (x, t) =

1
6(2x−1)2

[
B∗

k (x− t)+24B2(x) ·B∗
k

(
1
2
− t

)
+B∗

k (1− x− t)
]

(3.10)

FQ3
k (x, t) = GQ3

k (x,t)−GQ3
k (x,0). (3.11)

If we assumed G2k(x,0) = G2k+2(x,0) = 0 for some k≥ 2, it would increase the degree
of exactness but the quadrature formulae thus produced would include values of up to
(2k−3)-th order derivatives at the end points of the interval. When those values are easy
to calculate, this is not an obstacle. Furthermore, when f (2k−1)(1) = f (2k−1)(0) for k ≥ 1,
we get a formula with an even higher degree of exactness. This type of quadrature formulae
- which include the values of the first derivative at the end points - are sometimes called
perturbed or corrected quadrature formulae and will be the topic of the next section.
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Changing the assumptions on function f , we can obtain two more identities with the
left-hand side equal to that in (3.7): assuming f (2n−1) is continuous of bounded variation
on [0,1] for some n ≥ 1, from (1.1) we get:∫ 1

0
f (t)dt −Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x) =
1

(2n)!

∫ 1

0
GQ3

2n (x,t)d f (2n−1)(t), (3.12)

and assuming f (2n) is continuous of bounded variation on [0,1] for some n ≥ 0, from (1.1)
(or (1.2)) we get:∫ 1

0
f (t)dt −Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x) =
1

(2n+1)!

∫ 1

0
GQ3

2n+1(x,t)d f (2n)(t), (3.13)

The key step for obtaining the best possible estimates of the error for this type of
quadrature formulae is the following lemma.

Lemma 3.1 For x ∈ {0}∪ [1/6,1/2) and k ≥ 1, GQ3
2k+1(x,t) has no zeros in variable t on

the interval (0,1/2). The sign of this function is determined by

(−1)kGQ3
2k+1(x,t) > 0 za x ∈ [1/6,1/2),

(−1)k+1GQ3
2k+1(x, t) > 0 za x = 0.

Proof. Observe GQ3
3 (x,t). For 0 ≤ t ≤ x < 1/2, it takes the form

GQ3
3 (x,t) = −t3,

so its only zero is obviously t = 0. For 0 ≤ x ≤ t ≤ 1/2, it takes the form

GQ3
3 (x,t) = −t3 +

(x− t)2

2(2x−1)2 .

Here it has three zeros:

t1 =
1
2
, t2 =

x− x2−√
2x3−3x4

(2x−1)2 , t3 =
x− x2 +

√
2x3−3x4

(2x−1)2 .

It is easy to check that t2 < x which is opposite from our assumption. On the other hand,
t3 ≥ x for all x ∈ [0,1/2), but t3 ≥ 1/2 only for x ∈ [1/6,1/2). Thus, our assertion is true
for k = 1 (for x = 0 the assertion is trivial). Assuming the opposite, by induction it follows
easily that the assertion is true for all k ≥ 2.

It is elementary to determine the sign of GQ3
3 since we know its form. In order to

determine the sign of GQ3
2k+1 in general, use their second derivatives and the fact that they

have no zeros on (0,1/2). �

Remark 3.1 From Lemma 3.1 it follows immediately that, for k ≥ 1 and x ∈ [1/6,1/2),
(−1)k+1FQ3

2k+2(x,t) is strictly increasing on (0,1/2) and strictly decreasing on (1/2,1).
Since FQ3

2k+2(x,0) = FQ3
2k+2(x,1) = 0, it has constant sign on (0,1) and obtains its maximum

value at t = 1/2. Analogous statement, but with the opposite sign, is valid in the case when
x = 0.
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Denote:

RQ3
2n+2(x, f ) =

1
(2n+2)!

∫ 1

0
FQ3

2n+2(x,t) f (2n+2)(t)dt. (3.14)

Theorem 3.1 Let f : [0,1]→R be such that f (2n+2) is continuous on [0,1] for some n≥ 2
and let x ∈ {0}∪ [1/6,1/2). If f (2n) and f (2n+2) have the same constant sign on [0,1], then
the remainder RQ3

2n (x, f ) has the same sign as the first neglected term ΔQ3
2n (x, f ) where

ΔQ3
2n (x, f ) := RQ3

2n (x, f )−RQ3
2n+2(x, f ) = − 1

(2n)!
GQ3

2n (x,0)[ f (2n−1)(1)− f (2n−1)(0)].

Furthermore, |RQ3
2n (x, f )| ≤ |ΔQ3

2n (x, f )| and |RQ3
2n+2(x, f )| ≤ |ΔQ3

2n (x, f )|.

Proof. From Remark 3.1 it follows that RQ3
2n (x, f ) and −RQ3

2n+2(x, f ) have the same sign.

Therefore, ΔQ3
2n (x, f ) has that same sign. Moreover, it follows that |RQ3

2n (x, f )| ≤ |ΔQ3
2n (x, f )|

and |RQ3
2n+2(x, f )| ≤ |ΔQ3

2n (x, f )|. �

Theorem 3.2 If f : [0,1] → R is such that f (2n+2) is continuous on [0,1] for some n ≥ 1
and x ∈ {0}∪ [1/6,1/2), then there exists ξ ∈ [0,1] such that

RQ3
2n+2(x, f ) = −GQ3

2n+2(x,0)
(2n+2)!

· f (2n+2)(ξ ), (3.15)

where

GQ3
2n+2(x,0) =

1
3(2x−1)2

[
B2n+2(x)+

(
1−2−2n−1)B2n+2

]− (1−2−2n−1)B2n+2

(3.16)
If, in addition, f (2n+2) does not change sign on [0,1], then there exists θ ∈ [0,1] such

that

RQ3
2n+2(x, f ) =

θ
(2n+2)!

·FQ3
2n+2

(
x,

1
2

)
·
[
f (2n+1)(1)− f (2n+1)(0)

]
, (3.17)

where

FQ3
2n+2

(
x,

1
2

)
=

1
3(2x−1)2

[
B2n+2

(
x+

1
2

)
−B2n+2(x)−

(
2−2−2n−1)B2n+2

]
+
(
2−2−2n−1)B2n+2 (3.18)

Proof. From Remark 3.1 we know that function FQ3
2n+2(x, t) has constant sign on (0,1), so

(3.15) follows from the mean value theorem for integrals.
Next, let x ∈ [1/6,1/2) and suppose f (2n+2)(t) ≥ 0, 0 ≤ t ≤ 1. Then we have

0 ≤
∫ 1

0
(−1)n+1FQ3

2n+2 (x,t) f (2n+2)(t)dt ≤ (−1)n+1FQ3
2n+2 (x,1/2) ·

∫ 1

0
f (2n+2)(t)dt,
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which means there exists θ ∈ [0,1] such that

(2n+2)! ·RQ3
2n+2(x, f ) = θ ·FQ3

2n+2 (x,1/2)
[
f (2n+1)(1)− f (2n+1)(0)

]
.

When x = 0 or f (2n+2)(t) ≤ 0, the statement follows similarly. �

When (3.15) is applied to the remainder in formula (3.7) for n = 1, the following for-
mula is produced:∫ 1

0
f (t)dt − 1

6(2x−1)2

[
f (x)+24B2(x) · f

(
1
2

)
+ f (1− x)

]
=

1
2880

(−10x2 +10x−1) · f (4)(ξ ). (3.19)

For an adequate choice of node x, formula (3.19) gives classical Simpson’s, dual Simp-
son’s and Maclaurin’s formula as special cases. Furthermore, for x = 0, results of this
section produce results obtained in [29], where Euler-Simpson formulae were derived. For
x = 1/4, results from [26] are produced, i.e. dual Euler-Simpson formulae and all related
results, and finally, for x = 1/6 Euler-Maclaurin formulae are obtained together with all
the results from [24].

Remark 3.2 Formula (3.19) is valid only for x ∈ {0}∪ [1/6,1/2), so let us consider the
limit process when x tends to 1/2. The following quadrature formula is produced:∫ 1

0
f (t)dt − f

(
1
2

)
− 1

24
f ′′
(

1
2

)
=

1
1920

f (4)(ξ ).

Of course, all other related results can be obtained as well. We have

GQ3
k

(
1
2
,t

)
= B∗

k

(
1
2
− t

)
+

k(k−1)
24

B∗
k−2

(
1
2
− t

)
, k ≥ 2.

So, when f (m) ∈ Lp[−1,1] for p = ∞ or p = 1 and m = 2,3,4 we get the following estima-
tions: ∣∣∣∣∫ 1

0
f (t)dt− f

(
1
2

)
− 1

24
f ′′
(

1
2

)∣∣∣∣≤C(m,q) · ‖ f (m)‖p

where

C(2,1) =
1
24

, C(3,1) =
1

192
, C(4,1) =

1
1920

,

C(2,∞) =
1
8
, C(3,∞) =

1
48

, C(4,∞) =
1

480
.

Comparing these estimations with those obtained for the trapezoid formula and the mid-
point formula (cf. subsections 1.2.1. and 1.2.2.) shows that for m = 4, these are better.

The following theorem gives an estimate of error for this type of quadrature formulae.



72 3 GENERAL 3-POINT QUADRATURE FORMULAE OF EULER TYPE

Theorem 3.3 Let p,q∈R be such that 1≤ p, q≤∞ and 1/p+1/q= 1. Let f : [0,1]→R

be such that f (2n) ∈ Lp[0,1] for some n ≥ 1. Then we have∣∣∣∣∫ 1

0
f (t)dt −Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x)
∣∣∣∣≤ KQ3(2n,q) · ‖ f (2n)‖p. (3.20)

If f (2n+1) ∈ Lp[0,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

0
f (t)dt −Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x)
∣∣∣∣≤ KQ3(2n+1,q) · ‖ f (2n+1)‖p. (3.21)

If f (2n+2) ∈ Lp[0,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

0
f (t)dt −Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x)
∣∣∣∣≤ K∗

Q3(2n+2,q) · ‖ f (2n+2)‖p, (3.22)

where

KQ3(m,q) =
1
m!

[∫ 1

0

∣∣GQ3
m (x,t)

∣∣q dt

] 1
q

K∗
Q3(m,q) =

1
m!

[∫ 1

0

∣∣FQ3
m (x, t)

∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p ≤ ∞ and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. �

For x∈ {0}∪ [1/6,1/2) and n≥ 1, using Lemma 3.1 and Remark 3.1, we can calculate
the following constants as special cases from the previous Theorem:

K∗
Q3(2n+2,1) =

1
(2n+2)!

∣∣∣GQ3
2n+2(x,0)

∣∣∣ ,
K∗

Q3(2n+2,∞) =
1
2

KQ3(2n+1,1) =
1

(2n+2)!

∣∣∣∣FQ3
2n+2

(
x,

1
2

)∣∣∣∣ ,
where GQ3

2n+2(x,0) and FQ3
2n+2 (x,1/2) are as in (3.16) and (3.18).

Next, we shall consider which x gives the best estimation for p = ∞ and p = 1. Assume
x ∈ [1/6,1/2) and define function H(x) := |GQ3

2n+2(x,0)|, i.e.

H(x) = (−1)n
[

1
3(2x−1)2

[
B2n+2(x)+

(
1−2−2n−1)B2n+2

]− (1−2−2n−1)B2n+2

]
Then

H ′(x) =
(−1)n

3(2x−1)3

[
(2x−1)(2n+2)B2n+1(x)+4

(
B2n+2

(
1
2

)
−B2n+2 (x)

)]
.
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We claim H ′(x) > 0. To prove this, it suffices to check that h(x) < 0 where

h(x) = (−1)n
[
(2x−1)(2n+2)B2n+1(x)+4

(
B2n+2

(
1
2

)
−B2n+2 (x)

)]
.

Now,

h′′(x) = (2n+2)(2n+1)(2n) · (2x−1) · (−1)nB2n−1(x) < 0,

so we conclude that h′ is decreasing and since h′(1/2) = 0, we have h′(x) > 0. This means
h is increasing and since h(1/2) = 0, it follows that h(x) < 0 so our claim is true. H(x)
is therefore an increasing function and attains its minimal value at x = 1/6. Further, it is
easy to see (by induction) that |H(1/6)| < |H(0)|. This shows that Maclaurin formula,
i.e. its generalization - the Euler-Maclaurin formulae, give the best estimation out of all
quadrature formulae of the form∫ 1

0
f (t)dt ≈ Q

(
x,

1
2
, 1− x

)
where Q

(
x, 1

2 , 1− x
)

is as in (3.8).
It can be shown analogously that the integrand in KQ3(2n+1,1) is also increasing and

attains its minimum value at x = 1/6, so the same conclusion is derived again. Furthermore,
the same conclusion follows if K∗

Q3(2n+2,∞) is considered.
We will finish this section by consideringHermite-Hadamard’s and Dragomir-Agarwal’s

type inequality for this type of quadrature formulae (cf. Section 2.5.).

Theorem 3.4 Let f : [0,1] → R be (2n+ 4)-convex for n ≥ 1. Then for x ∈ [1/6,1/2),
we have

1
(2n+2)!

|GQ3
2n+2(x,0)| · f (2n+2)

(
1
2

)
≤ (−1)n+1

(∫ 1

0
f (t)dt−Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x)
)

(3.23)

≤ 1
(2n+2)!

|GQ3
2n+2(x,0)| · f (2n+2)(0)+ f (2n+2)(1)

2
,

where GQ3
2n+2(x,0) is as in (3.16), while

1
3(2n+2)!

(1−2−2n)|B2n+2| f (2n+2)
(

1
2

)
≤ (−1)n

(∫ 1

0
f (t)dt −Q

(
0,

1
2
, 1

)
+TQ3

2n (0)
)

(3.24)

≤ 1
3(2n+2)!

(1−2−2n)|B2n+2| f (2n+2)(0)+ f (2n+2)(1)
2

.

If f is (2n+4)-concave, the inequalities are reversed.
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Proof. Analogous to the proof of Theorem 2.8. �

Theorem 3.5 Let x ∈ {0}∪ [1/6,1/2) and f : [0,1] → R be m-times differentiable for
m ≥ 3. If | f (m)|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt −Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x)
∣∣∣∣ ≤ LQ3(m,x)

(
| f (m)(0)|q + | f (m)(1)|q

2

)1/q

(3.25)
while if | f (m)| is concave, then∣∣∣∣∫ 1

0
f (t)dt−Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x)
∣∣∣∣ ≤ LQ3(m,x)

∣∣∣∣ f (m)
(

1
2

)∣∣∣∣ , (3.26)

where

for m = 2n+1 LQ3(2n+1,x) =
2

(2n+2)!
|FQ3

2n+2(x,1/2)|

and for m = 2n+2 LQ3(2n+2,x) =
1

(2n+2)!
|GQ3

2n+2(x,0)|

with GQ3
2n+2(x,0) and FQ3

2n+2 (x,1/2) as in (3.16) and (3.18), respectively.

Proof. Starting from (3.13) and applying Hölder’s inequality and then Jensen’s inequality
for the convex function | f (2n+1)|q, we get∣∣∣∣∫ 1

0
f (t)dt −Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x)
∣∣∣∣ ≤ 1

(2n+1)!

∫ 1

0
|GQ3

2n+1(x, t)|| f (2n+1)(t)|dt

≤ 1
(2n+1)!

(∫ 1

0
|GQ3

2n+1(x,t)|dt

)1−1/q

·
(∫ 1

0
| f (2n+1)((1− t) ·0+ t ·1)|q|GQ3

2n+1(x,t)|dt

)1/q

≤ 1
(2n+1)!

(∫ 1

0
|GQ3

2n+1(x,t)|dt

)1−1/q

·
(
| f (2n+1)(0)|q

∫ 1

0
(1− t)|GQ3

2n+1(x,t)|dt + | f (2n+1)(1)|q
∫ 1

0
t|GQ3

2n+1(x,t)|dt

)1/q

Further, it is not difficult to prove that∫ 1

0
|FQ3

2k+2(x,t)|dt = 2
∫ 1

0
t|FQ3

2k+2(x,t)|dt = |GQ3
2k+2(x,0)|, (3.27)∫ 1

0
|GQ3

2k+1(x,t)|dt = 2
∫ 1

0
t|GQ3

2k+1(x,t)|dt =
2

2k+2

∣∣∣∣FQ3
2k+2

(
x,

1
2

)∣∣∣∣ . (3.28)

Applying (3.28), inequality (3.25) for an odd m easily follows. The assertion for an even
m follows similarly, starting from (3.7) and applying (3.27).



3.1 GENERAL APPROACH 75

To prove (3.26), apply Jensen’s integral inequality:∣∣∣∣∫ 1

0
f (t)dt−Q

(
x,

1
2
, 1− x

)
+TQ3

2n (x)
∣∣∣∣

≤ 1
(2n+1)!

∫ 1

0
|GQ3

2n+1(x,t)| · | f (2n+1)((1− t) ·0+ t ·1)|dt

≤ 1
(2n+1)!

∫ 1

0
|GQ3

2n+1(x,t)|dt ·
∣∣∣∣∣ f (2n+1)

(∫ 1
0 ((1− t) ·0+ t ·1)|GQ3

2n+1(x,t)|dt∫ 1
0 |GQ3

2n+1(x,t)|dt

)∣∣∣∣∣
Recalling (3.28), (3.26) is proved for an odd m. For an even m, the statement follows
similarly. �

Remark 3.3 Inequality (3.24) is in fact Hermite-Hadamard type estimate for the classical
Simpson’s formula and it was derived in [33]. For x = 1/4, (3.23) becomes a Hermite-
Hadamard type inequality for the dual Simpson’s formula, and for x = 1/6 for Maclaurin’s
formula; these two cases were covered in [26] and [24], respectively.

Theorem 3.5 gives Dragomir-Agarwal type inequalities for Simpson’s formula (x = 0),
dual Simpson’s formula (x = 1/4) and Maclaurin’s formula (x = 1/6). These results were
already obtained in [33], [26] and [24], respectively.

3.1.1 Gauss 2-point formula

There is an interesting special case of the results from the previous section. Namely, if we
choose w(x) = 1/2, where w(x) is as in (3.7), we will get

x =
1
2
− 1

2
√

3
.

Since 1
6 < 1

2 − 1
2
√

3
< 1

2 , we can apply all the results in this case.

For this choice of the node x, formula (3.19) becomes the classical Gauss 2-point for-
mula stated on the interval [0,1]. Since it is customary to study Gauss formulae on the
interval [−1,1], in order to make use of the symmetry of the nodes and coefficients, by a
simple linear transformation we transform the interval [0,1] we have so far worked with,
into [−1,1].

Formulae (3.12), (3.13) and (3.7) now become:

∫ 1

−1
f (t)dt −QG2 +TG2

2n =
22n−1

(2n)!

∫ 1

−1
GG2

2n (t)d f (2n−1)(t), (3.29)∫ 1

−1
f (t)dt −QG2 +TG2

2n =
22n

(2n+1)!

∫ 1

−1
GG2

2n+1(t)d f (2n)(t), (3.30)∫ 1

−1
f (t)dt −QG2 +TG2

2n =
22n+1

(2n+2)!

∫ 1

−1
FG2

2n+2(t)d f (2n+1)(t), (3.31)
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where

QG2 = f

(
−
√

3
3

)
+ f

(√
3

3

)

TG2
2n =

n

∑
k=2

22k

(2k)!
·B2k

(
3−√

3
6

)[
f (2k−1)(1)− f (2k−1)(−1)

]
,

GG2
k (t) = B∗

k

(
−
√

3
6

− t
2

)
+B∗

k

(√
3

6
− t

2

)
,

FG2
k (t) = GG2

k (t)−GG2
k (−1), k ≥ 1, t ∈ R.

Theorem 3.2 takes the form:

Corollary 3.1 If f : [−1,1] → R is such that f (2n+2) is continuous on [−1,1] for some
n ≥ 1, then there exists ξ ∈ [−1,1] such that

RG2
2n+2( f ) = − 22n+3

(2n+2)!
·B2n+2

(
3−√

3
6

)
· f (2n+2)(ξ ). (3.32)

If, in addition, f (2n+2) does not change sign on [−1,1], then there exists θ ∈ [0,1] such
that

RG2
2n+2( f ) = θ · 22n+2

(2n+2)!

[
B2n+2

(√
3

6

)
−B2n+2

(
3−√

3
6

)]
·
[
f (2n+1)(1)− f (2n+1)(−1)

]
. (3.33)

Applying (3.32) to the remainder in (3.31) for n = 1, produces the classical Gauss
2-point formula:

∫ 1

−1
f (t)dt = f

(
−
√

3
3

)
+ f

(√
3

3

)
+

1
135

· f (4)(ξ ), ξ ∈ [−1,1].

Estimates of error from Theorem 3.3 are in this case:

Corollary 3.2 Let p,q ∈ R be such that 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. Let
f : [−1,1]→ R be such that f (2n) ∈ Lp[−1,1] for some n ≥ 1. Then we have∣∣∣∣∫ 1

−1
f (t)dt−QG2 +TG2

2n

∣∣∣∣≤ 22n−1

(2n)!

[∫ 1

−1

∣∣GG2
2n (t)

∣∣q dt

] 1
q

‖ f (2n)‖p. (3.34)

If f (2n+1) ∈ Lp[−1,1] for some n ≥ 0, then∣∣∣∣∫ 1

−1
f (t)dt −QG2 +TG2

2n

∣∣∣∣≤ 22n

(2n+1)!

[∫ 1

−1

∣∣GG2
2n+1(t)

∣∣q dt

] 1
q

‖ f (2n+1)‖p. (3.35)
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If f (2n+2) ∈ Lp[−1,1] for some n ≥ 0, then∣∣∣∣∫ 1

−1
f (t)dt −QG2 +TG2

2n

∣∣∣∣≤ 22n+1

(2n+2)!

[∫ 1

−1

∣∣FG2
2n+2(t)

∣∣q dt

] 1
q

‖ f (2n+2)‖p. (3.36)

These inequalities are sharp for 1 < p ≤ ∞ and the best possible for p = 1.

It is easy to see that:∫ 1

−1

∣∣GG2
2n+1(t)

∣∣dt =
4

2n+2

∣∣FG2
2n+2(0)

∣∣= 8
2n+2

∣∣∣∣∣B2n+2

(√
3

6

)
−B2n+2

(
3−√

3
6

)∣∣∣∣∣∫ 1

−1

∣∣FG2
2n+2(t)

∣∣dt = 2
∣∣GG2

2n+2(−1)
∣∣= 4

∣∣∣∣∣B2n+2

(
3−√

3
6

)∣∣∣∣∣ .
As direct consequences of this and Corollary 3.2, the following estimates of error can be
obtained for p = ∞ and p = 1:∣∣∣∣∣

∫ 1

−1
f (t)dt − f

(
−
√

3
3

)
− f

(√
3

3

)∣∣∣∣∣≤CG2(m,q) · ‖ f (m)‖p, m = 1,2,3,4,

where

CG2(1,1) =
5−2

√
3

3
≈ 0.511966, CG2(1,∞) =

√
3

3
≈ 0.57735,

CG2(2,1) =
4
9

√
26

√
3−45 ≈ 0.0811291,

CG2(2,∞) =
2−√

3
3

≈ 0.0893164,

CG2(3,1) =
9−4

√
3

108
≈ 0.0191833,

CG2(3,∞) =
2−√

3
9

√
2
√

3−3 ≈ 0.0202823,

CG2(4,1) =
1

135
≈ 0.00740741, CG2(4,∞) =

9−4
√

3
216

≈ 0.00959165.

Remark 3.4 The constant CG2(1,∞) was obtained in Theorem 1.1. in [47].

Remark 3.5 Gauss 2-point formulae of Euler type (3.29), (3.30) and (3.31) were derived
also in [98], as a special case of the general 2-point formulae that were studied there, but
this was not explicitly mentioned since a small mistake was made in the proof.

Finally, Theorem 3.4 gives the Hermite-Hadamard type inequality for the Gauss 2-point
formula:

1
4320

f (4)
(

1
2

)
≤
∫ 1

0
f (t)dt − 1

2
f

(
3−√

3
6

)
− 1

2
f

(
3+

√
3

6

)

≤ 1
4320

f (4)(0)+ f (4)(1)
2
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and the constants from Theorem 3.5 in this case are:

LQ3

(
3,

3−√
3

6

)
=

9−4
√

3
1728

, LQ3

(
4,

3−√
3

6

)
=

1
4320

.

3.1.2 Simpson’s formula

One of the special cases of the results from the previous section, obtained for x = 0, is the
classical Simpson’s formula. Results of this subsection were published in [29].

The quadrature formula is in this case:

Q

(
0,

1
2
, 1

)
=

1
6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
.

Further,

TS
2n = TQ3

2n (0) =
n

∑
k=2

1
(2k)!

GS
2k(0) [ f (2k−1)(1)− f (2k−1)(0)]

GS
k(t) = GQ3

k (0,t) =
1
3

[
B∗

k (1− t)+2B∗
k

(
1
2
− t

)]
, k ≥ 1

FS
k (t) = FQ3

k (0,t) = GS
k(t)−GS

k(0), k ≥ 2 and t ∈ R.

The remainder on the right-hand side of (3.7) for x = 0 and n ≥ 2, can be written,
according to Theorem 3.2, as:

RS
2n+2( f ) =

θ
3(2n+2)!

(2−2−1−2n)B2n+2 ·
[
f (2n+1)(1)− f (2n+1)(0)

]
, θ ∈ [0,1]

RS
2n+2( f ) =

1
3(2n+2)!

(1−2−2n)B2n+2 · f (2n+2)(η), η ∈ [0,1]

Formula (3.19) becomes the classical Simpson’s formula:∫ 1

0
f (t)dt − 1

6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
= − 1

2880
f (4)(η) (3.37)

As special cases of Theorem 3.3, for p = ∞ and p = 1 we get the following estimates
for m = 1,2,3,4:∣∣∣∣∫ 1

0
f (t)dt − 1

6

[
f (0)+4 f

(
1
2

)
+ f (1)

]∣∣∣∣≤CS(m,q) · ‖ f (m)‖p,

where

CS(1,1) =
5
36

, CS(2,1) =
1
81

, CS(3,1) =
1

576
, CS(4,1) =

1
2880

,

CS(1,∞) =
1
3
, CS(2,∞) =

1
24

, CS(3,∞) =
1

324
, CS(4,∞) =

1
1152

.
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3.1.3 Dual Simpson’s formula

For x = 1/4, as a special case dual Euler-Simpson’s formulae are obtained. Results of this
subsection are published in [26]. We have:

Q

(
1
4
,

1
2
,

3
4

)
=

1
3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
,

TDS
2n = TQ3

2n

(
1
4

)
=

n

∑
k=2

1
(2k)!

GDS
2k (0)

[
f (2k−1)(1)− f (2k−1)(0)

]
GDS

k (t) = GQ3
k

(
1
4
,t

)
=

1
3

[
2B∗

k

(
1
4
− t

)
−B∗

k

(
1
2
− t

)
+2B∗

k

(
3
4
− t

)]
,

FDS
k (t) = FQ3

k

(
1
4
,t

)
= GDS

k (t)−GDS
k (0), k ≥ 1 and t ∈ R.

The remainder RDS
2n+2( f ) = RQ3

2n+2(1/4, f ), according to Theorem 3.2, can be written
as:

RDS
2n+2( f ) =

θ
3(2n+2)!

(2−1−2n−2)B2n+2

[
f (2n+1)(1)− f (2n+1)(0)

]
, θ ∈ [0,1]

RDS
2n+2( f ) = − 1

3(2n+2)!
(1−4−n)(1−2−1−2n)B2n+2 · f (2n+2)(η), η ∈ [0,1]

Formula (3.19) produces classical dual Simpson’s formula:∫ 1

0
f (t)dt − 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
=

7
23040

f (4)(η). (3.38)

Estimate of error for p = ∞ and p = 1 are for m = 1,2,3,4 :∣∣∣∣∫ 1

0
f (t)dt − 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]∣∣∣∣≤CDS(m,q) · ‖ f (m)‖p,

where

CDS(1,1) =
5
24

, CDS(2,1) =
5

324
, CDS(3,1) =

1
576

, CDS(4,1) =
7

23040
,

CDS(1,∞) =
5
12

, CDS(2,∞) =
1
24

, CDS(3,∞) =
5

1296
, CDS(4,∞) =

1
1152

.

3.1.4 Maclaurin’s formula

The next interesting special case is Maclaurin’s formula, obtained for x = 1/6. Results of
this subsection are published in [24]. We have:

Q

(
1
6
,

1
2
,

5
6

)
=

1
8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]
,
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TM
2n = TQ3

2n

(
1
6

)
=

n

∑
k=2

1
(2k)!

GM
2k(0)

[
f (2k−1)(1)− f (2k−1)(0)

]
GM

k (t) = GQ3
k

(
1
6
,t

)
=

1
8

[
3B∗

k

(
1
6
− t

)
+2B∗

k

(
1
2
− t

)
+3B∗

k

(
5
6
− t

)]
,

FM
k (t) = FQ3

k

(
1
6
,t

)
= GM

k (t)−GM
k (0), k ≥ 1 and t ∈ R.

For n ≥ 2, the remainder RM
2n+2( f ) can be written as:

RM
2n+2( f ) = θ

(2−2−1−2n)(9−n−1)B2n+2

8(2n+2)!

[
f (2n−1)(1)− f (2n−1)(0)

]
, θ ∈ [0,1]

RM
2n+2( f ) =

(1−2−1−2n)(9−n−1)B2n+2

8(2n+2)!
· f (2n+2)(η), η ∈ [0,1]

Formula (3.19) becomes Maclaurin’s formula:∫ 1

0
f (t)dt − 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]
=

7
51840

f (4)(η) (3.39)

Estimates of error for p = 1 and p = ∞ are:∣∣∣∣∫ 1

0
f (t)dt− 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]∣∣∣∣≤CM(m,q) · ‖ f (m)‖p,

where

CM(1,1) =
25
288

, CM(2,1) =
1

192
, CM(3,1) =

1
1728

, CM(4,1) =
7

51840
,

CM(1,∞) =
5
24

, CM(2,∞) =
1
72

, CM(3,∞) =
1

768
, CM(4,∞) =

1
3456

.

3.1.5 Hermite-Hadamard-type inequality for the 3-point
quadrature formulae

The well-known Hermite-Hadamard-type inequality states that: for any convex function
f : [0,1] → R, the following pair of inequalities holds

f

(
1
2

)
≤
∫ 1

0
f (t)dt ≤ f (0)+ f (1)

2
.

If f is concave, inequalities are reversed. The aim of this subsection is to provide this type
of inequality for the general 3-point quadrature formulae. The main result states:

Theorem 3.6 Let f : [0,1] → R be 4-convex and such that f (4) is continuous on [0,1].
Then, for x ∈ [ 1

6 , 1
2

)
1

6(2x−1)2

(
f (x)+24B2(x) f

(
1
2

)
+ f (1− x)

)
≤
∫ 1

0
f (t)dt ≤ 1

6

(
f (0)+4 f

(
1
2

)
+ f (1)

)
. (3.40)
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If f is 4-concave, the inequalities are reversed.

Proof. For a 4-convex function f , we have f (4) ≥ 0, so the statement follows easily from
(3.19). �

The following corollaries give comparison between dual Simpson’s and Simpson’s
rule, Maclaurin’s and Simpson’s rule, and finally, the Gauss 2-point and Simpson’s rule.

Corollary 3.3 Let f : [0,1] → R be 4-convex and such that f (4) is continuous on [0,1].
Then

1
3

(
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

))
≤
∫ 1

0
f (t)dt ≤ 1

6

(
f (0)+4 f

(
1
2

)
+ f (1)

)
.

If f is 4-concave, the inequalities are reversed.

Proof. Follows from (3.40) for x = 1/4. �

Corollary 3.4 Let f : [0,1] → R be 4-convex and such that f (4) is continuous on [0,1].
Then

1
8

(
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

))
≤
∫ 1

0
f (t)dt ≤ 1

6

(
f (0)+4 f

(
1
2

)
+ f (1)

)
.

If f is 4-concave, the inequalities are reversed.

Proof. Follows from (3.40) for x = 1/6. �

Corollary 3.5 Let f : [0,1] → R be 4-convex and such that f (4) is continuous on [0,1].
Then

1
2

f

(
3−√

3
6

)
+

1
2

f

(
3+

√
3

6

)
≤
∫ 1

0
f (t)dt ≤ 1

6

(
f (0)+4 f

(
1
2

)
+ f (1)

)
.

If f is 4-concave, the inequalities are reversed.

Proof. Follows from (3.40) for x = 1/2−√
3/6 ⇔ B2(x) = 0. �

3.1.6 Bullen-Simpson’s inequality

For any function f : [0,1] → R, with continuous fourth derivative f (4) on [0,1] and
f (4)(t) ≥ 0, t ∈ [0,1], we have

1
3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
≤
∫ 1

0
f (t)dt

≤ 1
6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
. (3.41)
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In the case when f (4) exists, the condition f (4)(t) ≥ 0, t ∈ [0,1] is equivalent to the
requirement that f is 4-convex function on [0,1]. However, a function f may be 4-convex
although f (4) does not exist.

P. S. Bullen in [11] proved that, if f is 4-convex, then (3.41) is valid. Moreover, he
proved that the dual Simpson’s quadrature rule is more accurate than the Simpson’s quadra-
ture rule, that is we have

0 ≤
∫ 1

0
f (t)dt− 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
≤ 1

6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
−
∫ 1

0
f (t)dt, (3.42)

provided f is 4-convex. We shall call this inequality Bullen-Simpson’s inequality.
The aim of this section is to establish a generalization of the inequalities (3.41) and

(3.42) for a class of (2r)-convex functions and also to obtain some estimates for the abso-
lute value of difference between the absolute value of error in the dual Simpson’s quadra-
ture rule and the absolute value of error in the Simpson’s quadrature rule. We shall make
use of the following five-point quadrature formula∫ 1

0
f (t)dt ≈ 1

12

[
f (0)+4 f

(
1
4

)
+2 f

(
1
2

)
+4 f

(
3
4

)
+ f (1)

]
,

obtained by adding the Simpson’s and the dual Simpson’s quadrature formulae. It is suit-
able for our purposes to rewrite the inequality (3.41) in the form∫ 1

0
f (t)dt ≤ 1

12

[
f (0)+4 f

(
1
4

)
+2 f

(
1
2

)
+4 f

(
3
4

)
+ f (1)

]
(3.43)

As we mentioned earlier, this inequality is valid for any 4-convex function f and we call it
the Bullen-Simpson’s inequality. The results from this section are published in [86].

We consider the sequences of functions (Gk(t))k≥1 and (Fk(t))k≥1 defined for t ∈ R by

Gk(t) := GS
k(t)+GDS

k (t), Fk(t) := FS
k (t)+FDS

k (t),

where GS
k(t), GDS

k (t), FS
k (t) and FDS

k (t) are defined as in Section 3.1.2. and Section 3.1.3.,
respectively. So we have

G1(t) = F1(t) = B1(1− t)+2B∗
1

(
1
4
− t

)
+B∗

1

(
1
2
− t

)
+2B∗

1

(
3
4
− t

)
and, for k ≥ 2,

Gk(t) = Bk(1− t)+2B∗
k

(
1
4
− t

)
+B∗

k

(
1
2
− t

)
+2B∗

k

(
3
4
− t

)
,

Fk(t) := Gk(t)− B̃k ,

where

B̃k := Gk(0) = Bk +2Bk

(
1
4

)
+Bk

(
1
2

)
+2Bk

(
3
4

)
.
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Let f : [0,1] → R be such that f (n−1) exists on [0,1] for some n ≥ 1. We introduce the
following notation

D(0,1) :=
1
12

[
f (0)+4 f

(
1
4

)
+2 f

(
1
2

)
+4 f

(
3
4

)
+ f (1)

]
Further, we define T0( f ) = T1( f ) := 0 and, for 2 ≤ m ≤ [n/2] ,

Tm( f ) :=
1
2

[
TS
m ( f )+TDS

m ( f )
]
,

where TS
m( f ) and TDS

m ( f ) are given in Section 3.1.2 and Section 3.1.3, respectively. It is
easy to see that

Tm( f ) =
1
3

m

∑
k=2

1
(2k)!

2−2k(1−4 ·2−2k)B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
. (3.44)

In the next lemma we establish two formulae which play the key role here. We call them
Bullen-Simpson formulae of Euler type.

Lemma 3.2 Let f : [0,1] → R be such that f (n−1) is a continuous function of bounded
variation on [0,1], for some n ≥ 1. Then we have∫ 1

0
f (t)dt = D(0,1)+Tr( f )+ τ1

n ( f ), (3.45)

where r = [n/2] and

τ1
n ( f ) =

1
6(n!)

∫ 1

0
Gn (t)d f (n−1)(t).

Also, ∫ 1

0
f (t)dt = D(0,1)+Ts( f )+ τ2

n ( f ), (3.46)

where s = [(n−1)/2] and

τ2
n ( f ) =

1
6(n!)

∫ 1

0
Fn (t)d f (n−1)(t).

Proof. We multiply Euler-Simpson’s and dual Euler-Simpson’s formulae by the factor 1/2
and then add them up to obtain the identities (3.45) and (3.46). �

Remark 3.6 The interval [0,1] is used for simplicity and involves no loss in generality.
The results which follow will be applied, without comment, to any interval that is conve-
nient.
Namely it is easy to transform the identities (3.45) and (3.46) to the identities which hold
for any function f : [a,b] → R such that f (n−1) is a continuous function of bounded varia-
tion on [a,b], for some n ≥ 1. We get∫ b

a
f (t)dt = D(a,b)+ T̃r( f )+

(b−a)n

6(n!)

∫ b

a
Gn

(
t−a
b−a

)
d f (n−1)(t) (3.47)
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and ∫ b

a
f (t)dt = D(a,b)+ T̃s( f )+

(b−a)n

6(n!)

∫ b

a
Fn

(
t−a
b−a

)
d f (n−1)(t), (3.48)

where

D(a,b) :=
b−a
12

[
f (a)+4

(
3a+b

4

)
+2

(
a+b

2

)
+4

(
a+3b

4

)
+ f (b)

]
,

while T̃0( f ) = T̃1( f ) = 0 and

T̃m( f ) =
1
3

m

∑
k=2

(b−a)2k

(2k)!
2−2k(1−4 ·2−2k)B2k

[
f (2k−1)(b)− f (2k−1)(a)

]
,

for 2 ≤ m ≤ [n/2] .

Now, we use Bullen-Simpson formulae of Euler type established in Lemma 3.2 to
obtain a generalization of Bullen-Simpson’s inequality for (2r)-convex functions. First,
we need some properties of the functions Gk(t) and Fk(t).

Since B1(t) = t− (1/2), we have

G1(t) = F1(t) =

⎧⎪⎪⎨⎪⎪⎩
−6t +1/2, t ∈ [0,1/4]
−6t +5/2, t ∈ (1/4,1/2]
−6t +7/2, t ∈ (1/2,3/4]
−6t +11/2, t ∈ (3/4,1]

. (3.49)

Further, for k ≥ 2 the functions B∗
k(t) are periodic with period 1 and continuous. We have

Gk(0) = Gk(1/2) = Gk(1) = B̃k and Fk(0) = Fk(1/2) = Fk(1) = 0.

Moreover, it is enough to know the values of the functions Gk(t) and Fk(t), k ≥ 2 only on
the interval [0,1/2] since for 0 ≤ t ≤ 1/2 we have

Gk

(
t +

1
2

)
= Bk

(
1
2
− t

)
+2B∗

k

(
−1

4
− t

)
+B∗

k (−t)+2B∗
k

(
1
4
− t

)
= B∗

k

(
1
2
− t

)
+2B∗

k

(
3
4
− t

)
+Bk (1− t)+2B∗

k

(
1
4
− t

)
= Gk (t) .

For k = 2 and k = 3 we have B2(t) = t2− t +(1/6) and B3(t) = t3− (3/2)t2 +(1/2)t, so
that by direct calculation we get B̃2 = B̃3 = 0 and

G2(t) = F2(t) =
{

6t2− t, t ∈ [0,1/4]
6t2−5t +1, t ∈ (1/4,1/2]

, (3.50)

G3(t) = F3(t) =
{−6t3 +(3/2)t2, t ∈ [0,1/4]
−6t3 +(15/2)t2−3t +(3/8), t ∈ (1/4,1/2] . (3.51)
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The Bernoulli polynomials have the property of symmetry with respect to 1
2 , that is [1,

23.1.8]
Bk(1− t) = (−1)kBk(t), t ∈ R, k ≥ 1. (3.52)

Also, we have

Bk (1) = Bk (0) = Bk, k ≥ 2, B1(1) = −B1(0) =
1
2

and
B2r−1 = 0, r ≥ 2.

This implies
B̃2r−1 = 0, r ≥ 2 (3.53)

and

B̃2r = B2r +4B2r

(
1
4

)
+B2r

(
1
2

)
, r ≥ 1.

Also, we have [1, 23.1.21, 23.1.22]

B2r

(
1
2

)
= −(1−21−2r)B2r, B2r

(
1
4

)
= −2−2r (1−21−2r)B2r, r ≥ 1,

which gives the formula

B̃2r = 2 ·2−2r(4 ·2−2r−1)B2r, r ≥ 1. (3.54)

Now, by (3.53) we have
F2r−1(t) = G2r−1(t), r ≥ 1. (3.55)

Also,
F2r(t) = G2r(t)−2 ·2−2r(4 ·2−2r−1)B2r, r ≥ 1. (3.56)

Further, as we pointed out earlier, the points 0 and 1
2 are the zeros of Fk(t), k ≥ 2. As we

shall see below, 0 and 1
2 are the only zeros of Fk(t) in

[
0, 1

2

]
for k = 2r, r ≥ 1, while for

k = 2r−1, r ≥ 2 we have F2r−1
(

1
4

)
= G2r−1

(
1
4

)
= 0. We shall see that 0, 1

4 and 1
2 are the

only zeros of F2r−1(t) = G2r−1(t), in
[
0, 1

2

]
for r ≥ 2. Also, note that for r ≥ 1 we have

G2r (0) = G2r

(
1
2

)
= B̃2r = 2 ·2−2r(4 ·2−2r−1)B2r

and

G2r

(
1
4

)
= 2B2r +2B2r

(
1
4

)
+2B2r

(
1
2

)
= 2 ·2−2r(2 ·2−2r +1)B2r,

while

F2r

(
1
4

)
= G2r

(
1
4

)
− B̃2r = 4 ·2−2r(1−2−2r)B2r. (3.57)
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Lemma 3.3 For k ≥ 2 we have

Gk

(
1
2
− t

)
= (−1)kGk(t), 0 ≤ t ≤ 1

2
,

and

Fk

(
1
2
− t

)
= (−1)kFk(t), 0 ≤ t ≤ 1

2
.

Proof. As the functions B∗
k(t) are periodic with period 1 and continuous for k ≥ 2, we get

these two identities. �

Note that the identities established in Lemma 3.3 are valid for k = 1, too, except at the
points 0, 1

4 and 1
2 .

Lemma 3.4 For r ≥ 2 the function G2r−1(t) has no zeros in the interval
(
0, 1

4

)
. The sign

of this function is determined by

(−1)rG2r−1(t) > 0, 0 < t <
1
4
.

Proof. For r = 2, G3(t) is given by (3.51) and it is easy to see that

G3(t) > 0, 0 < t <
1
4
. (3.58)

Thus, our assertion is true for r = 2. Now, using a simple induction we prove that can
not have a zero inside the interval

(
0, 1

4

)
. Further, if G2r−3(t) > 0, 0 < t < 1

4 , then from
G′′

2k−1(t) = (2k−1)(2k−2)G2k−3(t) it follows that G2r−1(t) is convex on
(
0, 1

4

)
and hence

G2r−1(t) < 0, 0 < t < 1
4 , while in the case when G2r−3(t) < 0, 0 < t < 1

4 we have that
G2r−1(t) is concave and hence G2r−1(t) > 0, 0 < t < 1

4 . Since (3.58) is valid we conclude
that

(−1)rG2r−1(t) > 0, 0 < t <
1
4
.

�

Corollary 3.6 For r ≥ 2 the functions (−1)r−1F2r(t) and (−1)r−1G2r(t) are strictly in-
creasing on the interval

(
0, 1

4

)
, and strictly decreasing on the interval

(
1
4 , 1

2

)
. Conse-

quently, 0 and 1
2 are the only zeros of F2r(t) in the interval

[
0, 1

2

]
and

max
t∈[0,1]

|F2r(t)| = 4 ·2−2r(1−2−2r) |B2r| , r ≥ 1.

Also, we have

max
t∈[0,1]

|G2r(t)| = 2 ·2−2r (2 ·2−2r +1
) |B2r| , r ≥ 1.
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Proof. We have [
(−1)r−1F2r(t)

]′
=
[
(−1)r−1G2r(t)

]′
= 2r(−1)rG2r−1(t)

and (−1)rG2r−1(t)> 0 for 0 < t < 1
4 , by Lemma 3.4. Thus, (−1)r−1F2r(t) and (−1)r−1G2r(t)

are strictly increasing on the interval
(
0, 1

4

)
. Also, by Lemma 3.3, we have F2r

( 1
2 − t

)
=

F2r(t), 0≤ t ≤ 1
2 and G2r

(
1
2 − t

)
= G2r(t), 0≤ t ≤ 1

2 , which implies that (−1)r−1F2r(t) and
(−1)r−1G2r(t) are strictly decreasing on the interval

(
1
4 , 1

2

)
. Further, F2r(0) = F2r

(
1
2

)
= 0,

which implies that |F2r(t)| achieves its maximum at t = 1
4 , that is

max
t∈[0,1]

|F2r(t)| =
∣∣∣∣F2r

(
1
4

)∣∣∣∣= 4 ·2−2r(1−2−2r) |B2r| .

Also,

max
t∈[0,1]

|G2r(t)| = max

{
|G2r (0)| ,

∣∣∣∣G2r

(
1
4

)∣∣∣∣}= 2 ·2−2r (1+2 ·2−2r) |B2r| ,

which completes the proof. �

Corollary 3.7 Assume r ≥ 2. Then we have∫ 1

0
|G2r−1(t)|dt =

8 ·2−2r
(
1−2−2r

)
r

|B2r| .

Also, we have ∫ 1

0
|F2r(t)|dt =

∣∣B̃2r
∣∣= 2 ·2−2r (1−4 ·2−2r) |B2r|

and ∫ 1

0
|G2r(t)|dt ≤ 2

∣∣B̃2r
∣∣= 4 ·2−2r (1−4 ·2−2r) |B2r| .

Proof. Using Lemma 3.3, Lemma 3.4 we get

∫ 1

0
|G2r−1(t)|dt = 4

∣∣∣∣∣
∫ 1

4

0
G2r−1(t)dt

∣∣∣∣∣= 4

∣∣∣∣− 1
2r

G2r(t)|
1
4
0

∣∣∣∣
=

2
r

∣∣∣∣G2r

(
1
4

)
−G2r (0)

∣∣∣∣= 8 ·2−2r
(
1−2−2r

)
r

|B2r| ,

which proves the first assertion. By the Corollary 3.6, F2r(t) does not change the sign on
the interval

(
0, 1

2

)
. Therefore, using (3.56) we get∫ 1

0
|F2r(t)|dt = 2

∣∣∣∣∫ 1/2

0
F2r(t)dt

∣∣∣∣= 2

∣∣∣∣∫ 1/2

0

[
G2r(t)− B̃2r

]
dt

∣∣∣∣
= 2

∣∣∣∣− 1
2r+1

G2r+1(t)|1/2
0 − 1

2
B̃2r

∣∣∣∣= ∣∣B̃2r
∣∣= 2 ·2−2r (1−4 ·2−2r) |B2r| .
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This proves the second assertion. Finally, we use (3.56) again and the triangle inequality
to obtain the third formula. �

In the following discussion we assume that f : [0,1] → R has a continuous derivative
of order n, for some n ≥ 1. In this case we can use remainders τ1

n ( f ) and τ2
n ( f ) as

τ1
n ( f ) =

1
6(n!)

∫ 1

0
Gn(s) f (n)(s)ds (3.59)

and

τ2
n ( f ) =

1
6(n!)

∫ 1

0
Fn(s) f (n)(s)ds. (3.60)

Lemma 3.5 If f : [0,1]→R is such that f (2r) is continuous on [0,1] , for some r ≥ 2, then
there exists a point η ∈ [0,1] such that

τ2
2r( f ) =

1
3(2r)!

2−2r(1−4 ·2−2r)B2r f (2r)(η). (3.61)

Proof. Using (3.60) with n = 2r, we can rewrite τ2
2r( f ) as

τ2
2r( f ) = (−1)r−1 1

6(2r)!
Jr, (3.62)

where

Jr =
∫ 1

0
(−1)r−1F2r(s) f (2r)(s)ds. (3.63)

From Corollary 3.6 it follows that (−1)r−1F2r(s) ≥ 0, o ≤ s ≤ 1 and the claim follows
from the mean value theorem for integrals and Corollary 3.81. �

Now, we prove the main result:

Theorem 3.7 Assume f : [0,1] → R is such that f (2r) is continuous on [0,1] , for some
r ≥ 2. If f is (2r)-convex function, then for even r we have

0 ≤
∫ 1

0
f (t)dt − 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
−TD

r−1( f )

≤ 1
6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
+TS

r−1−
∫ 1

0
f (t)dt, (3.64)

while for odd r we have reversed inequalities in (3.64).

Proof. Let us denote by LHS and RHS respectively the left hand side and the right hand
side in the second inequality in (3.64). Then we have

LHS = ρ2
2r( f )

and
RHS−LHS = −2τ2

2r( f ),
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For dual Euler-Simpson’s formula is proved that, under given assumption on f , there exists
a point ξ ∈ [0,1] such that

ρ2
2r( f ) = − 1

3(2r)!
(
1−2 ·2−2r)(1−4 ·2−2r)B2r f (2r)(ξ ). (3.65)

Also by Lemma 3.5 we know that

−2τ2
2r( f ) = − 2

3(2r)!
2−2r(1−4 ·2−2r)B2r f (2r)(η), (3.66)

for some point η ∈ [0,1]. Finally, we know that [1, 23.1.15]

(−1)r−1B2r > 0, r = 1,2, · · · . (3.67)

Now, if f is (2r)-convex function, then f (2r)(ξ ) ≥ 0 and f (2r)(η) ≥ 0 so that using (3.65),
(3.66) and (3.67) we get the inequalities

LHS ≥ 0, RHS−LHS ≥ 0, when r is even;

LHS ≤ 0, RHS−LHS ≤ 0, when r is odd.

This proves our assertions. �

Remark 3.7 For r = 2 formula (3.61) reduces to

τ2
4 ( f ) = − 1

46080
f (4)(η).

Theorem 3.8 Assume f : [0,1] → R is such that f (2r) is continuous on [0,1] , for some
r≥ 2. If f is either (2r)-convex or (2r)-concave function, then there exists a point ϑ ∈ [0,1]
such that

τ2
2r( f ) = ϑ

2
3(2r)!

2−2r(1−2−2r)B2r

[
f (2r−1)(1)− f (2r−1)(0)

]
. (3.68)

Proof. With (3.62) and using (3.57) we get (3.68). �

Remark 3.8 If we approximate
∫ 1
0 f (t)dt by

I2r( f ) := D(0,1)+Tr−1( f ),

then the next approximation will be I2r+2( f ). The difference

Δ2r( f ) = I2r+2( f )− I2r( f )

is equal to the last term in I2r+2( f ), that is

Δ2r( f ) =
1

3(2r)!
2−2r(1−4 ·2−2r)B2r

[
f (2r−1)(1)− f (2r−1)(0)

]
.

We see that, under the assumptions of Theorem 3.8,

τ2
2r( f ) =

2ϑ
(
1−2−2r

)
1−4 ·2−2r Δ2r( f )
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Theorem 3.9 Assume f : [0,1]→ R is such that f (2r+2) is continuous on [0,1] , for some
r ≥ 2. If f is either (2r)-convex and (2r+2)-convex or (2r)-concave and (2r+2)-concave
function, then the remainder τ2

2r( f ) has the same sign as the first neglected term Δ2r( f )
and ∣∣τ2

2r( f )
∣∣ ≤ |Δ2r( f )| .

Proof. We have
Δ2r( f )+ τ2

2r+2( f ) = τ2
2r( f ),

that is
Δ2r( f ) = τ2

2r( f )− τ2
2r+2( f ). (3.69)

By (3.60) we have

τ2
2r( f ) =

1
6(2r)!

∫ 1

0
F2r(s) f (2r)(s)ds

and

−τ2
2r+2( f ) =

1
6(2r+2)!

∫ 1

0
[−F2r+2(s)] f (2r+2)(s)ds.

It follows that ∣∣τ2
2r( f )

∣∣≤ |Δ2r( f )| and
∣∣−τ2

2r+2( f )
∣∣≤ |Δ2r( f )| .

�

Now, we use Bullen-Simpson formulae of Euler type established in Lemma 3.2 to
estimate the absolute value of difference between the absolute value of error in the dual
Simpson’s quadrature rule and the absolute value of error in the Simpson’s quadrature
rule. We do this by proving a number of inequalities for various classes of functions.

First, let us denote

RS :=
∫ 1

0
f (t)dt− 1

6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
and

RD :=
∫ 1

0
f (t)dt − 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
.

By the triangle inequality we have

||RD|− |RS|| ≤ |RD +RS|.

Now, if we define R := RD +RS, then

R
2

=
∫ 1

0
f (t)dt− 1

12

[
f (0)+4 f

(
1
4

)
+2 f

(
1
2

)
+4 f

(
3
4

)
+ f (1)

]
=
∫ 1

0
f (t)dt−D(0,1). (3.70)
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Theorem 3.10 Let f : [0,1] → R be such that f (n−1) is an L-Lipschitzian function on
[0,1] for some n ≥ 1.
If n = 2r−1, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr−1( f )

∣∣∣∣ ≤ 1
6(2r−1)!

∫ 1

0
|G2r−1(t)|dt ·L

=
8 ·2−2r(1−2−2r)

3(2r)!
|B2r| ·L. (3.71)

If n = 2r, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr−1( f )

∣∣∣∣ ≤ 1
6(2r)!

∫ 1

0
|F2r(t)|dt ·L

=
2−2r(1−4 ·2−2r)

3(2r)!
|B2r| ·L (3.72)

and also ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr( f )

∣∣∣∣ ≤ 1
6(2r)!

∫ 1

0
|G2r(t)|dt ·L

≤ 2 ·2−2r(1−4 ·2−2r)
3(2r)!

|B2r| ·L. (3.73)

Proof. For any integrable function Φ : [0,1] → R we have∣∣∣∣∫ 1

0
Φ(t)d f (n−1)(t)

∣∣∣∣≤ ∫ 1

0
|Φ(t)|dt ·L, (3.74)

since f (n−1) is L-Lipschitzian function. Applying (3.74) with Φ(t) = G2r−1(t), we get∣∣∣∣ 1
6(2r−1)!

∫ 1

0
G2r−1(t)d f (2r−2)(t)

∣∣∣∣≤ 1
6(2r−1)!

∫ 1

0
|G2r−1 (t)|dt ·L.

Applying the above inequality and the identity (3.46), we get the inequality in (3.71).
Similarly, we can apply the inequality (3.74) with Φ(t) = F2r (t) and again the identity
(3.46) to get the inequality in (3.72). Finally, applying (3.74) with Φ(t) = G2r (t) and the
identity (3.45), we get the first inequality in (3.73). The equalities in (3.71) and (3.72) and
the second inequality in (3.73) follow from Corollary 3.7. �

Corollary 3.8 Let f : [0,1]→R be such that f (n−1) is an L-Lipschitzian function on [0,1]
for some n ≥ 1.
If n = 2r−1, r ≥ 2, then

|R−2Tr−1( f )| ≤ 1
3(2r−1)!

∫ 1

0
|G2r−1(t)|dt ·L =

16 ·2−2r(1−2−2r)
3(2r)!

|B2r| ·L. (3.75)
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If n = 2r, r ≥ 2, then

|R−2Tr−1( f )| ≤ 1
3(2r)!

∫ 1

0
|F2r(t)|dt ·L =

2 ·2−2r(1−4 ·2−2r)
3(2r)!

|B2r| ·L (3.76)

and also

|R−2Tr( f )| ≤ 1
3(2r)!

∫ 1

0
|G2r(t)|dt ·L ≤ 4 ·2−2r(1−4 ·2−2r)

3(2r)!
|B2r| ·L. (3.77)

Proof. Follows from Theorem 3.10 and (3.70). �

Corollary 3.9 Let f : [0,1]→ R be such that f ′′ is L-Lipschitzian on [0,1]. Then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
4608

L, |R| ≤ 1
2304

L.

If f ′′′ is L-Lipschitzian on [0,1], then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
46080

L, |R| ≤ 1
23040

L.

Proof. The first pair of inequalities follow from (3.71)and (3.75) with r = 2, while the
second pair follow from (3.72) and (3.76) with r = 2. �

Remark 3.9 If f is L-Lipschitzian on [0,1], then, as above∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
6

∫ 1

0
|G1(t)|dt ·L.

Since ∫ 1

0
|G1(t)|dt =

5
12

,

we get ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 5
72

·L and |R| ≤ 5
36

·L.

If f ′ is L-Lipschitzian on [0,1], then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
12

∫ 1

0
|F2(t)|dt ·L.

Since ∫ 1

0
|F2(t)|dt =

1
27

,

we get ∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
324

·L and |R| ≤ 1
162

·L.
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Remark 3.10 Suppose that f : [0,1]→ R is such that f (n) exists and is bounded on [0,1],
for some n ≥ 1 In this case we have for all t,s ∈ [0,1]∣∣∣ f (n−1)(t)− f (n−1)(s)

∣∣∣≤ ‖ f (n)‖∞ · |t− s| ,

which means that f (n−1) is ‖ f (n)‖∞-Lipschitzian function on [0,1]. Therefore, the in-
equalities established in Theorem 3.10 hold with L = ‖ f (n)‖∞. Consequently, under ap-
propriate assumptions on f , the inequalities from Corollary 3.9 and Remark 3.9 hold with
L = ‖ f ′‖∞, ‖ f ′′‖∞, ‖ f ′′′‖∞, ‖ f (4)‖∞.

Theorem 3.11 Let f : [0,1]→ R be such that f (n−1) is a continuous function of bounded
variation on [0,1] for some n ≥ 1.
If n = 2r−1, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr−1( f )

∣∣∣∣≤ 1
6(2r−1)!

max
t∈[0,1]

|G2r−1(t)| ·V 1
0 ( f (2r−2)). (3.78)

If n = 2r, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr−1( f )

∣∣∣∣ ≤ 1
6(2r)!

max
t∈[0,1]

|F2r(t)| ·V 1
0 ( f (2r−1))

=
2 ·2−2r(1−2−2r)

3(2r)!
|B2r| ·V 1

0 ( f (2r−1)). (3.79)

Also, we have∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr( f )

∣∣∣∣ ≤ 1
6(2r)!

max
t∈[0,1]

|G2r(t)| ·V 1
0 ( f (2r−1))

=
2−2r(2 ·2−2r +1)

3(2r)!
|B2r| ·V 1

0 ( f (2r−1)). (3.80)

Here V 1
0 ( f (n−1)) denotes the total variation of f (n−1) on [0,1].

Proof. If Φ : [0,1] → R is bounded on [0,1] and the Riemann-Stieltjes integral∫ 1
0 Φ(t)d f (n−1)(t) exists, then∣∣∣∣∫ 1

0
Φ(t)d f (n−1)(t)

∣∣∣∣≤ max
t∈[0,1]

|Φ(t)| ·V 1
0 ( f (n−1)). (3.81)

We apply this estimate to Φ(t) = G2r−1 (t) to obtain∣∣∣∣ 1
6(2r−1)!

∫ 1

0
G2r−1 (t)d f (2r−2)(t)

∣∣∣∣≤ 1
6(2r−1)!

max
t∈[0,1]

|G2r−1 (t)| ·V 1
0 ( f (2r−2)),

which is just the inequality (3.78), because of the identity (3.46). Similarly, we can apply
the estimate (3.81) with Φ(t) = F2r (t) and use the identity (3.46) and Corollary 3.6 to
obtain (3.79). Finally, (3.80) follows from (3.81) with Φ(t) = G2r (t) , the identity (3.45)
and Corollary 3.6. �
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Corollary 3.10 Let f : [0,1]→R be such that f (n−1) is a continuous function of bounded
variation on [0,1] for some n ≥ 1.
If n = 2r−1, r ≥ 2, then

|R−2Tr−1( f )| ≤ 1
3(2r−1)!

max
t∈[0,1]

|G2r−1(t)| ·V 1
0 ( f (2r−2)). (3.82)

If n = 2r, r ≥ 2, then

|R−2Tr−1( f )| ≤ 1
3(2r)!

max
t∈[0,1]

|F2r(t)| ·V 1
0 ( f (2r−1))

=
4 ·2−2r(1−2−2r)

3(2r)!
|B2r| ·V 1

0 ( f (2r−1)). (3.83)

Also, we have

|R−2Tr( f )| ≤ 1
3(2r)!

max
t∈[0,1]

|G2r(t)| ·V 1
0 ( f (2r−1))

=
2 ·2−2r(2 ·2−2r +1)

3(2r)!
|B2r| ·V 1

0 ( f (2r−1)). (3.84)

Proof. Follows from Theorem 3.11 and (3.70). �

Corollary 3.11 Let f : [0,1] → R be such that f ′′ is a continuous function of bounded
variation on [0,1]. Then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
2592

V 1
0 ( f ′′), |R| ≤ 1

1296
V 1

0 ( f ′′).

If f ′′′ is a continuous function of bounded variation on [0,1], then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
18432

V 1
0 ( f ′′′), |R| ≤ 1

9216
V 1

0 ( f ′′′).

Proof. From (3.51), we get

max
t∈[0,1]

|G3(t)| = 1
72

,

so that the first pair of inequalities follow from (3.78) and (3.82) with r = 2. The second
pair of inequalities follow from (3.79) and (3.83) with r = 2. �

Remark 3.11 If f is a continuous function of bounded variation on [0,1], then, as above∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
6

max
t∈[0,1]

|G1(t)| ·V 1
0 ( f ).

Since
max
t∈[0,1]

|G1(t)| = 1,
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we get ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
6
·V 1

0 ( f ) and |R| ≤ 1
3
·V 1

0 ( f ).

If f ′ is a continuous function of bounded variation on [0,1], then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
12

max
t∈[0,1]

|F2(t)| ·V 1
0 ( f ′).

Since

max
t∈[0,1]

|F2(t)| = 1
8
,

we get ∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
96

·V 1
0 ( f ) and |R| ≤ 1

48
·V 1

0 ( f ).

Remark 3.12 Suppose that f : [0,1] → R is such that f (n) ∈ L1[0,1] for some n ≥ 1 In
this case f (n−1) is a continuous function of bounded variation on [0,1] and we have

V 1
0 ( f (n−1)) =

∫ 1

0

∣∣∣ f (n)(t)
∣∣∣dt = ‖ f (n)‖1,

Therefore, the inequalities established in Theorem 3.11 hold with ‖ f (n)‖1 in place of
V 1

0 ( f (n−1)). However, a similar observation can be made for the results of Corollary 3.11
and Remark 3.11.

Theorem 3.12 Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q < ∞,
1
p + 1

q = 1 or p = ∞, q = 1. Let f : [0,1]→ R be such that f (n) ∈ Lp[0,1] for some n ≥ 1.
If n = 2r−1, r ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr−1( f )

∣∣∣∣≤ K(2r−1, p)‖ f (2r−1)‖p. (3.85)

If n = 2r, r ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr−1( f )

∣∣∣∣≤ K∗(2r, p)‖ f (2r)‖p. (3.86)

Also, we have ∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr( f )

∣∣∣∣ ≤ K(2r, p)‖ f (2r)‖p. (3.87)

Here

K(n, p) =
1

6n!

[∫ 1

0
|Gn(t)|q dt

] 1
q

and

K∗(n, p) =
1

6n!

[∫ 1

0
|Fn(t)|q dt

] 1
q

.
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Proof. Applying the Hölder inequality we have∣∣∣∣ 1
6(2r−1)!

∫ 1

0
G2r−1 (t) f (2r−1)(t)dt

∣∣∣∣
≤ 1

6(2r−1)!

[∫ 1

0
|G2r−1 (t)|q dt

] 1
q

·
∥∥∥ f (2r−1)

∥∥∥
p
= K(2r−1, p)‖ f (2r−1)‖p

The above estimate is just (3.85), by the identity (3.47). The inequalities (3.86) and (3.87)
are obtained in the same manner from (3.46) and (3.45), respectively. �

Corollary 3.12 Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q < ∞,
1
p + 1

q = 1 or p = ∞, q = 1. Let f : [0,1]→R be integrable function such that f (n) ∈ Lp[0,1]
for some n ≥ 1.
If n = 2r−1, r ≥ 1, then

|R−2Tr−1( f )| ≤ 2K(2r−1, p)‖ f (2r−1)‖p.

If n = 2r, r ≥ 1, then
|R−2Tr−1( f )| ≤ 2K∗(2r, p)‖ f (2r)‖p.

Also, we have
|R−2Tr( f )| ≤ 2K(2r, p)‖ f (2r)‖p.

Proof. Follows from Theorem 3.12 and (3.70). �

Remark 3.13 Note that K∗(1, p) = K(1, p), for 1 < p≤ ∞, since G1(t) = F1(t). Also, for
1 < p ≤ ∞ we can easily calculate K(1, p). We get

K(1, p) =
1
6

[
2+2−q

3(1+q)

] 1
q

, 1 < p ≤ ∞.

At the end of this section we prove an interesting Grüss type inequality related to Bullen-
Simpson’s identity (3.45). To do this we use the following variant of the key technical
result from the paper [83]:

Lemma 3.6 Let F,G : [0,1] → R be two integrable functions. If, for some constants
m,M ∈ R

m ≤ F(t) ≤ M, 0 ≤ t ≤ 1

and ∫ 1

0
G(t)dt = 0,

then ∣∣∣∣∫ 1

0
F(t)G(t)dt

∣∣∣∣≤ M−m
2

∫ 1

0
|G(t)|dt. (3.88)
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Theorem 3.13 Suppose that f : [0,1] → R is such that f (n) exists and is integrable on
[0,1], for some n ≥ 1. Assume that

mn ≤ f (n)(t) ≤ Mn, 0 ≤ t ≤ 1,

for some constants mn and Mn. Then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tk( f )

∣∣∣∣≤ 1
12(n!)

Cn(Mn −mn), (3.89)

where k =
[

n
2

]
and

Cn =
∫ 1

0
|Gn(t)|dt, n ≥ 1.

Moreover, if n = 2r−1, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr−1( f )

∣∣∣∣≤ 4 ·2−2r
(
1−2−2r

)
3(2r)!

|B2r|(M2r−1−m2r−1). (3.90)

Proof. We can rewrite the identity (3.45) in the form∫ 1

0
f (t)dt−D(0,1)−Tk( f ) =

1
6(n!)

∫ 1

0
F(t)G(t)dt, (3.91)

where
F(t) = f (n)(t), G(t) = Gn (t) , 0 ≤ t ≤ 1.

In [27, Lemma 2 (i)] it was proved that for all n ≥ 1 and for every γ ∈ R∫ 1

0
B∗

n(γ − t)dt = 0,

so that we have∫ 1

0
G(t)dt

=
∫ 1

0

[
Bn(1− t)+2B∗

n

(
1
4
− t

)
+B∗

n

(
1
2
− t

)
+2B∗

n

(
3
4
− t

)]
dt = 0.

Thus, we can apply (3.88) to the integral in the right hand side of (3.91) and (3.89) follows
immediately. The inequality (3.90) follows from (3.89) and Corollary 3.7. �

Remark 3.14 For n = 1 and n = 2 we have already calculated

C1 =
∫ 1

0
|G1(t)|dt =

5
12

, C2 =
∫ 1

0
|G2(t)|dt =

1
27

,

so that we have ∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 5
144

(M1−m1)
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and ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
648

(M2−m2).

For n = 3 we apply (3.90) with r = 2 to get the inequality∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
9216

(M3 −m3).

3.2 Corrected 3-point quadrature formulae

The aim of this section is to derive general 3-point quadrature formulae with a degree of
exactness higher than that which the formulae from the previous section had. Observe
identity (3.1) again. Imposing the condition G2(x,0) = 0 led us to a family of quadrature
formulae with a degree of exactness equal to 3 (assuming the values of the derivatives
of order 3 or higher are not included in the quadrature; otherwise, an arbitrary degree of
exactness can be achieved).

Now, impose a condition G4(x,0) = 0 (for function Gk(x,t) defined in (3.3) and
x ∈ [0,1/2)). Formulae thus obtained will include the values of the first derivative at the
end points of the interval and we will call them corrected quadrature formulae. This name
was first introduced in [117]. The weight is now of the form:

wc(x) =
7

30(2x−1)2(−4x2 +4x+1)
. (3.92)

Let f : [0,1]→R be such that f (2n−1) is continuous of bounded variation on [0,1] for some
n ≥ 1. Similarly as before, we now obtain:

∫ 1

0
f (t)dt−QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x) =
1

(2n)!

∫ 1

0
GCQ3

2n (x,t)d f (2n−1)(t). (3.93)

If f (2n) is continuous of bounded variation on [0,1] for some n ≥ 0, then:

∫ 1

0
f (t)dt −QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x) =
1

(2n+1)!

∫ 1

0
GCQ3

2n+1(x, t)d f (2n)(t), (3.94)

and finally, if f (2n+1) is continuous of bounded variation on [0,1] for some n ≥ 0, then:

∫ 1

0
f (t)dt −QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x) =
1

(2n+2)!

∫ 1

0
FCQ3

2n+2(x, t)d f (2n+1)(t),

(3.95)
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where

QC

(
x,

1
2
, 1− x

)
(3.96)

=
1

30(2x−1)2(−4x2 +4x+1)

[
7 f (x)−480B4(x) f

(
1
2

)
+7 f (1− x)

]
TCQ3
2n (x) =

n

∑
k=1

1
(2k)!

GCQ3
2k (x,0) [ f (2k−1)(1)− f (2k−1)(0)]

=
10x2−10x+1

60(−4x2 +4x+1)
[ f ′(1)− f ′(0)] (3.97)

+
n

∑
k=3

1
(2k)!

GCQ3
2k (x,0) [ f (2k−1)(1)− f (2k−1)(0)]

GCQ3
k (x,t) = wc(x)[B∗

k (x− t)+B∗
k (1− x− t)]+ (1−2wc(x))B∗

k (1/2− t),

FCQ3
k (x,t) = GCQ3

k (x,t)−GCQ3
k (x,0), k ≥ 1, t ∈ R,

and wc(x) as in (3.92).
What follows is a lemma which is, similarly as before, key for obtaining the rest of the

results in this section.

Lemma 3.7 For x ∈
[
0, 1

2 −
√

15
10

]
∪[ 1

6 , 1
2

)
and k ≥ 2, GCQ3

2k+1(x,t) has no zeros in variable

t on (0,1/2). The sign of the function is determined by:

(−1)k+1GCQ3
2k+1(x,t) > 0 for x ∈ [0,1/2−

√
15/10],

(−1)kGCQ3
2k+1(x,t) > 0 for x ∈ [1/6,1/2).

Proof. We start from GCQ3
5 and claim that GCQ3

5 (x,t) has constant sign for x ∈
[
0, 1

2 −
√

15
10

]
∪ [ 1

6 , 1
2

)
. We will show that it is increasing in x for x ∈ [0,1/2) and after considering its

behavior at the end points, the claim will follow. For 0 ≤ t ≤ x < 1/2, we have

∂GCQ3
5

∂x
(x,t) =

t3

3
· 14(1−2x)
(4x2−4x−1)2 > 0

so our statement is true. For 0 ≤ x ≤ t ≤ 1/2, we have

∂GCQ3
5

∂x
(x,t) =

14x · (1−2t)
3(1−2x)3(4x2−4x−1)2 ·g(x,t),

where g(x,t) = 4t3(x− 1)+ t2(−8x3 + 4x2 + 3)+ tx(8x2− 4x− 3)+ x2 + 2x3− 4x4. The

zeros of ∂g
∂ t (x,t) are t1 = 1/2 and t2 = 8x3−4x2−3x

6(x−1) and it is elementary to see that t2 < x.

Also, it is very simple to check that g(x,0) > 0 and g(x,1/2) > 0, so we have g(x,t) > 0.
Thus, it follows that GCQ3

5 (x,t) is increasing in x.
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Since GCQ3
5

(
1
2 −

√
15

10 ,t
)

< 0 (cf. [59]) and GCQ3
5

(
1
6 ,t
)

> 0 (cf. [55]) for t ∈ (0,1/2),

we see that GCQ3
5 (x,t) < 0 for x ∈

[
0, 1

2 −
√

15
10

]
and GCQ3

5 (x,t) > 0 for x ∈ [ 1
6 , 1

2

)
. So,

GCQ3
5 (x, t) has constant sign, for an adequate choice of x, and our statement is therefore

valid for k = 2. Assuming the opposite, the assertion follows for all k ≥ 3 by induction.
Knowing the sign of GCQ3

5 (x,t) allows us to see whether GCQ3
7 (x, t) is convex or con-

cave on (0,1/2). As it has no zeros there, that is enough to determine its sign. With this
procedure we can determine the sign of GCQ3

2k+1(x, t) for k ≥ 4 which completes the proof.
�

Remark 3.15 Note that for x ∈
(

1
2 −

√
15

10 , 1
6

)
, GCQ3

5 (x,t) has at least one zero in t on

(0,1/2). Namely, we have

GCQ3
5 (x,0) =

∂GCQ3
5

∂ t
(x,0) =

∂ 2GCQ3
5

∂ t2
(x,0) = GCQ3

5 (x,1/2) = 0 (3.98)

and it is not difficult to see that

x ∈
(

1
2
−

√
15

10
,
1
6

)
⇔ ∂ 3GCQ3

5

∂ t3
(x,0) > 0 &

∂GCQ3
5

∂ t
(x,1/2) > 0.

From
∂GCQ3

5
∂ t (x,1/2)> 0 we conclude that

∂GCQ3
5

∂ t (x,t) > 0 in some neighborhood of t = 1/2,

and then from GCQ3
5 (x,1/2) = 0 it follows that GCQ3

5 (x,t) < 0 in that neighborhood. On

the other hand, from
∂ 3GCQ3

5
∂ t3

(x,0) > 0 we conclude that
∂ 3GCQ3

5
∂ t3

(x, t) > 0 in some neighbor-

hood of t = 0. Similarly as above, using (3.98), we conclude that GCQ3
5 (x, t) > 0 in this

neighborhood of 0. Therefore, it is now clear that for x ∈
(

1
2 −

√
15

10 , 1
6

)
, GCQ3

5 (x,t) has at

least one zero in (0,1/2).

Remark 3.16 Similarly as for the function FQ3
2k+2, k ≥ 1 in the previous section, we con-

clude that for k ≥ 2 and x ∈ [0,1/2−√
15/10], the function (−1)kFCQ3

2k+2(x, t) is strictly

increasing in variable t on (0,1/2) and strictly decreasing on (1/2,1). Since FCQ3
2k+2(x,0)

= FCQ3
2k+2(x,1) = 0, it has constant sign on (0,1) and attains its maximal value at t = 1/2.

Analogous statement, but with the opposite sign, is valid in the case when x ∈ [1/6,1/2).

Denote by RCQ3
2n+2(x, f ) the right-hand side of (3.95) and let the weight wc(x) be as in

(3.92).

Theorem 3.14 Let f : [0,1] → R be such that f (2n+2) is continuous on [0,1] for some

n ≥ 3 and let x ∈
[
0, 1

2 −
√

15
10

]
∪ [ 1

6 , 1
2

)
. If f (2n) and f (2n+2) have the same constant

sign on [0,1], then the remainder RCQ3
2n (x, f ) has the same sign as the first neglected term

ΔCQ3
2n (x, f ) where

ΔCQ3
2n (x, f ) := RCQ3

2n (x, f )−RCQ3
2n+2(x, f ) = − 1

(2n)!
GCQ3

2n (x,0)[ f (2n−1)(1)− f (2n−1)(0)].
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Furthermore, |RCQ3
2n (x, f )| ≤ |ΔCQ3

2n (x, f )| and |RCQ3
2n+2(x, f )| ≤ |ΔCQ3

2n (x, f )|.
Proof. Analogous to the proof of Theorem 3.1. �

Theorem 3.15 Let f : [0,1] → R be such that f (2n+2) is continuous on [0,1] for some

n ≥ 2 and let x ∈
[
0, 1

2 −
√

15
10

]
∪ [ 1

6 , 1
2

)
. Then there exists ξ ∈ [0,1] such that

RCQ3
2n+2(x, f ) = −GCQ3

2n+2(x,0)
(2n+2)!

f (2n+2)(ξ ). (3.99)

where

GCQ3
2n+2(x,0) = 2wc(x)

[
B2n+2(x)+ (1−2−2n−1)B2n+2

]− (1−2−2n−1)B2n+2. (3.100)

If, in addition, f (2n+2) has constant sign on [0,1], then there exists θ ∈ [0,1] such that

RCQ3
2n+2(x, f ) =

θ
(2n+2)!

FCQ3
2n+2

(
x,

1
2

)[
f (2n+1)(1)− f (2n+1)(0)

]
(3.101)

where

FCQ3
2n+2 (x,1/2) = 2wc(x)

[
B2n+2 (1/2− x)−B2n+2(x)−

(
2−2−2n−1)B2n+2

]
+
(
2−2−2n−1)B2n+2. (3.102)

Proof. Analogous to the proof of Theorem 3.2. �

When (3.99) is applied to the remainder in (3.95) for n = 2, the following formula is
produced:∫ 1

0
f (t)dt −QC

(
x,

1
2
, 1− x

)
+

10x2−10x+1
60(−4x2 +4x+1)

[ f ′(1)− f ′(0)]

=
98x4−196x3 +102x2−4x−1

604800(4x2−4x−1)
f (6)(ξ ). (3.103)

For x = 0, formula (3.103) becomes corrected Simpson’s formula, for x = 1/4 corrected
dual Simpson’s formula and for x = 1/6 corrected Maclaurin’s formula. Furthermore, for

x = 5−√
15

10 , (3.103) becomes the classical Gauss 3-point formula (stated on [0,1]), while for

x = 15−
√

15(15−2
√

30)
30 the corrected Gauss 2-point formula is produced. These quadrature

formulae will be the main topics of the sections that follow.

Note that x = 5−√
15

10 is the unique solution of the equation G2(x,0) = 0. In fact, the
nodes and coefficients of the Gauss 3-point formula are the unique solution of the system:

G2(x,0) = G4(x,0) = 0.

This would be the system one would set to obtain from (3.1) the quadrature formula which
is not corrected (i.e. does not include values of the first derivatives in the quadrature) and
has the highest possible degree of exactness, which is 5 in this case. That this is exactly
the classical Gauss 3-point formula is no surprise.
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Remark 3.17 Although only x ∈ [0,1/2) were taken into consideration here, results for
x = 1/2 can easily be obtained by considering the limit process when x tends to 1/2.
Namely,

lim
x→1/2

QC

(
x,

1
2
,1− x

)
= − f

(
1
2

)
+

7
240

f ′′
(

1
2

)
lim

x→1/2
GCQ3

k (x,t) = B∗
k

(
1
2
− t

)
+

7
240

k(k−1)B∗
k−2

(
1
2
− t

)
Consequently, from (4.14) it follows:∫ 1

0
f (t)dt + f

(
1
2

)
− 7

240
f ′′
(

1
2

)
− 1

80
[ f ′(1)− f ′(0)] = − 11

3225600
f (6)(ξ ). (3.104)

Next, some sharp estimates of error for this type of quadrature formulae are given.

Theorem 3.16 Let p,q∈R be such that 1≤ p, q≤∞ and 1/p+1/q= 1. If f : [0,1]→R

is such that f (2n) ∈ Lp[0,1] for some n ≥ 1, then we have∣∣∣∣∫ 1

0
f (t)dt −QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x)
∣∣∣∣≤ KCQ3(2n,q)‖ f (2n)‖p. (3.105)

If f (2n+1) ∈ Lp[0,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

0
f (t)dt−QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x)
∣∣∣∣≤ KCQ3(2n+1,q)‖ f (2n+1)‖p. (3.106)

If f (2n+2) ∈ Lp[0,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

0
f (t)dt−QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x)
∣∣∣∣≤ K∗

CQ3(2n+2,q)‖ f (2n+2)‖p, (3.107)

where

KCQ3(m,q) =
1
m!

[∫ 1

0

∣∣GCQ3
m (x,t)

∣∣q dt

] 1
q

K∗
CQ3(m,q) =

1
m!

[∫ 1

0

∣∣FCQ3
m (x,t)

∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p ≤ ∞ and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. �

For x ∈
[
0, 1

2 −
√

15
10

]
∪ [ 1

6 , 1
2

)
and n ≥ 2, using Lemma 3.7 and Remark 3.16, we can

calculate the following constants for p = 1 and p = ∞ from the previous Theorem:

K∗
CQ3(2n+2,1) =

1
(2n+2)!

∣∣∣GCQ3
2n+2(x,0)

∣∣∣ , (3.108)

K∗
CQ3(2n+2,∞) =

1
2

KCQ3(2n+1,1) =
1

(2n+2)!

∣∣∣∣FCQ3
2n+2

(
x,

1
2

)∣∣∣∣ , (3.109)
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where GCQ3
2n+2(x,0) and FCQ3

2n+2 (x,1/2) are as in (3.100) and (3.102).
The following two theorems give Hermite-Hadamard and Dragomir-Agarwal type in-

equalities for the general corrected 3-point quadrature formulae (cf. Section 2.5.).

Theorem 3.17 Let f : [0,1]→R be (2n+4)-convex for n≥ 2. Then for x∈
[
0, 1

2 −
√

15
10

]
,

we have

1
(2n+2)!

|GCQ3
2n+2(x,0)| f (2n+2)

(
1
2

)
≤ (−1)n

(∫ 1

0
f (t)dt −QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x)
)

(3.110)

≤ 1
(2n+2)!

|GCQ3
2n+2(x,0)| f (2n+2)(0)+ f (2n+2)(1)

2
,

while for x ∈ [ 1
6 , 1

2

)
we have

1
(2n+2)!

|GCQ3
2n+2(x,0)| f (2n+2)

(
1
2

)
≤ (−1)n+1

(∫ 1

0
f (t)dt −QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x)
)

(3.111)

≤ 1
(2n+2)!

|GCQ3
2n+2(x,0)| f (2n+2)(0)+ f (2n+2)(1)

2
,

where GCQ3
2n+2(x,0) is as in (3.100). If f is (2n+4)-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 2.8. �

Theorem 3.18 Let x ∈
[
0, 1

2 −
√

15
10

]
∪ [ 1

6 , 1
2

)
and f : [0,1]→ R be m-times differentiable

for m ≥ 5. If | f (m)|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt −QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x)
∣∣∣∣

≤ LCQ3(m,x)

(
| f (m)(0)|q + | f (m)(1)|q

2

)1/q

(3.112)

while if | f (m)| is concave, then∣∣∣∣∫ 1

0
f (t)dt −QC

(
x,

1
2
, 1− x

)
+TCQ3

2n (x)
∣∣∣∣ ≤ LCQ3(m,x)

∣∣∣∣ f (m)
(

1
2

)∣∣∣∣ , (3.113)

where

for m = 2n+1 LCQ3(2n+1,x) =
2

(2n+2)!
|FCQ3

2n+2(x,1/2)|

and for m = 2n+2 LCQ3(2n+2,x) =
1

(2n+2)!
|GCQ3

2n+2(x,0)|
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with GCQ3
2n+2(x,0) and FCQ3

2n+2 (x,1/2) as in (3.100) and (3.102), respectively.

Proof. Analogous to the proof of Theorem 3.5. �

3.2.1 Corrected Simpson’s formula

One of the special cases of the results from the previous section, obtained for x = 0, is
corrected Simpson’s formula. It was introduced for the first time in [117] and [80]. Results
of this subsection are in fact a generalization of the results from [117] and were published
in [50].

The quadrature formula is in this case:

QC

(
0,

1
2
, 1

)
=

1
30

[
7 f (0)+16 f

(
1
2

)
+7 f (1)

]
.

Further,

TCS
2n = TCQ3

2n (0) =
1
60

[ f ′(1)− f ′(0)]

+
n

∑
k=3

1
(2k)!

GCS
2k (0) [ f (2k−1)(1)− f (2k−1)(0)]

GCS
k (t) = GCQ3

k (0,t) =
1
30

[
14B∗

k (1− t)+16B∗
k

(
1
2
− t

)]
, k ≥ 1 (3.114)

FCS
k (t) = FCQ3

k (0,t) = GCS
k (t)−GCS

k (0), k ≥ 2 and t ∈ R.

The remainder RCS
2n+2( f ) on the right-hand side of (3.95) for x = 0 and n ≥ 2 can be

written, according to Theorem 3.15, as:

RCS
2n+2( f ) =

θ
15(2n+2)!

(2−2−1−2n)B2n+2

[
f (2n+1)(1)− f (2n+1)(0)

]
, θ ∈ [0,1]

RCS
2n+2( f ) =

1
15(2n+2)!

(1−22−2n)B2n+2 f (2n+2)(η), η ∈ [0,1]

Formula (3.103) becomes:∫ 1

0
f (t)dt − 1

30

[
7 f (0)+16 f

(
1
2

)
+7 f (1)

]
+

1
60

[ f ′(1)− f ′(0)] =
1

604800
f (6)(η)

(3.115)
Formula (3.115) is called corrected Simpson’s formula.

As special cases of Theorem 3.16, (3.108) and (3.109), for p = ∞ and p = 1 we get the
following estimates for m = 1,2:∣∣∣∣∫ 1

0
f (t)dt− 1

30

[
7 f (0)+16 f

(
1
2

)
+7 f (1)

]∣∣∣∣≤CCS(m,q)‖ f (m)‖p,
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where

CCS(1,1) =
113
900

, CCS(1,∞) =
∣∣∣∣GCS

1

(
1
2

)∣∣∣∣= 4
15

,

CCS(2,1) =
697

40500
, CCS(2,∞) =

1
2

∣∣∣∣FCS
2

(
7
30

)∣∣∣∣= 49
1800

,

while for m = 2,3,4,5,6∣∣∣∣∫ 1

0
f (t)dt − 1

30

[
7 f (0)+16 f

(
1
2

)
+7 f (1)

]
+

1
60

[ f ′(1)− f ′(0)]
∣∣∣∣

≤CCS(m,q)‖ f (m)‖p,

where

CCS(2,1) =
19

√
19

10125
, CCS(2,∞) =

1
2

∣∣∣∣GCS
2

(
1
2

)∣∣∣∣= 1
40

,

CCS(3,1) =
253

360000
, CCS(3,∞) =

28+19
√

19
81000

CCS(4,1) =
1

14580
, CCS(4,∞) =

1
24

∣∣∣∣GCS
4

(
1
2

)∣∣∣∣= 1
5760

CCS(5,1) =
1

360

∣∣∣∣FCS
6

(
1
2

)∣∣∣∣= 1
115200

,

CCS(5,∞) =
1

120

∣∣∣∣GCS
5

(
1
3

)∣∣∣∣= 1
58320

CCS(6,1) =
1

720

∣∣GCS
6 (0)

∣∣= 1
604800

,

CCS(6,∞) =
1

720

∣∣∣∣FCS
6

(
1
2

)∣∣∣∣= 1
230400

.

From (3.108) and (3.109), estimates can easily be obtained for m ≥ 7. However, for those
m, the values of higher order derivatives at the end points are included in the quadrature.

The Hermite-Hadamard-type inequality for the corrected Simpson’s formula is:

1
604800

f (6)
(

1
2

)
≤
∫ 1

0
f (t)dt − 1

30

[
7 f (0)+16 f

(
1
2

)
+7 f (1)

]
+

1
60

[ f ′(1)− f ′(0)]

≤ 1
604800

f (6)(0)+ f (6)(1)
2

while the constants from Theorem 3.18 are:

LCQ3(5,0) =
1

115200
, LCQ3(6,0) =

1
604800

.
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3.2.2 Corrected dual Simpson’s formula

For x = 1/4, as a special case corrected dual Euler-Simpson’s formulae are obtained. Re-
sults of this subsection are published in [52]. We have

QC

(
1
4
,

1
2
,

3
4

)
=

1
15

[
8 f

(
1
4

)
− f

(
1
2

)
+8 f

(
3
4

)]
,

TCDS
2n = TCQ3

2n

(
1
4

)
= − 1

120
[ f ′(1)− f ′(0)]

+
n

∑
k=3

1
(2k)!

GCDS
2k (0)

[
f (2k−1)(1)− f (2k−1)(0)

]
GCDS

k (t) = GCQ3
k

(
1
4
,t

)
=

1
15

[
8B∗

k

(
1
4
− t

)
−B∗

k

(
1
2
− t

)
+8B∗

k

(
3
4
− t

)]
,

FCDS
k (t) = FCQ3

k

(
1
4
,t

)
= GCDS

k (t)−GCDS
k (0), k ≥ 1 and t ∈ R.

The remainder RCDS
2n+2( f ) = RCQ3

2n+2(1/4, f ), according to Theorem 3.15, can be written
as:

RCDS
2n+2( f ) =

θ
15(2n+2)!

(2−1−2n−2)B2n+2

[
f (2n+1)(1)− f (2n+1)(0)

]
, θ ∈ [0,1]

RCDS
2n+2( f ) =

1
15(2n+2)!

(9 ·2−1−2n−21−4n−1)B2n+2 · f (2n+2)(η), η ∈ [0,1] (3.116)

Formula (3.103) takes the form:∫ 1

0
f (t)dt− 1

15

[
8 f

(
1
4

)
− f

(
1
2

)
+8 f

(
3
4

)]
− 1

120
[ f ′(1)− f ′(0)]

= − 31
19353600

f (6)(η) (3.117)

Formula (3.117) is called corrected dual Simpson’s formula.
Estimate of error for p = ∞ i p = 1 are for m = 1,2 :∣∣∣∣∫ 1

0
f (t)dt − 1

15

[
8 f

(
1
4

)
− f

(
1
2

)
+8 f

(
3
4

)]∣∣∣∣≤CCDS(m,q)‖ f (m)‖p,

where

CCDS(1,1) =
17
120

, CCDS(1,∞) =
∣∣∣∣GCDS

1

(
3
4

)∣∣∣∣= 17
60

,

CCDS(2,1) =
31

3000
, CCDS(2,∞) =

1
2

∣∣∣∣FCDS
2

(
1
4

)∣∣∣∣= 1
32

,

while for m = 2,3,4,5,6∣∣∣∣∫ 1

0
f (t)dt− 1

15

[
8 f

(
1
4

)
− f

(
1
2

)
+8 f

(
3
4

)]
− 1

120
[ f ′(1)− f ′(0)]

∣∣∣∣
≤CCDS(m,q)‖ f (m)‖p,
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where

CCDS(2,1) =
31

√
31+15

√
15−46

20250
,

CCDS(2,∞) =
1
2

∣∣∣∣GCDS
2

(
1
4

)∣∣∣∣= 11
480

,

CCDS(3,1) =
11

14400
, CCDS(3,∞) =

31
√

31−46
81000

,

CCDS(4,1) =
17

233280
, CCDS(4,∞) =

1
24

∣∣∣∣GCDS
4

(
1
2

)∣∣∣∣= 1
5760

,

CCDS(5,1) =
1

360

∣∣∣∣FCDS
6

(
1
2

)∣∣∣∣= 1
115200

,

CCDS(5,∞) =
1

120

∣∣∣∣GCDS
5

(
1
3

)∣∣∣∣= 17
933120

,

CCDS(6,1) =
1

720

∣∣GCDS
6 (0)

∣∣= 31
19353600

,

CCDS(6,∞) =
1

720

∣∣∣∣FCDS
6

(
1
2

)∣∣∣∣= 1
230400

.

Similary as before, (3.108) and (3.109) give estimates of error for m ≥ 7.
The Hermite-Hadamard-type inequality for the corrected dual Simpson’s formula is:

31
19353600

f (6)
(

1
2

)
≤−

(∫ 1

0
f (t)dt − 1

15

[
8 f

(
1
4

)
− f

(
1
2

)
+8 f

(
3
4

)]
− 1

120
[ f ′(1)− f ′(0)]

)
≤ 31

19353600
f (6)(0)+ f (6)(1)

2

while the constants from Theorem 3.18 are:

LCQ3

(
5,

1
4

)
=

1
115200

, LCQ3

(
6,

1
4

)
=

31
19353600

.

3.2.3 Corrected Maclaurin’s formula

The next interesting special case is corrected Maclaurin’s formula, obtained for x = 1/6.
Results of this subsection were published in [55]. We have:

QC

(
1
6
,

1
2
,

5
6

)
=

1
80

[
27 f

(
1
6

)
+26 f

(
1
2

)
+27 f

(
5
6

)]
,

TCM
2n = TCQ3

2n

(
1
6

)
= − 1

240
[ f ′(1)− f ′(0)]

+
n

∑
k=3

1
(2k)!

GCM
2k (0)

[
f (2k−1)(1)− f (2k−1)(0)

]
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GCM
k (t)=GCQ3

k

(
1
6
,t

)
=

1
80

[
27B∗

k

(
1
6
−t

)
+26B∗

k

(
1
2
−t

)
+27B∗

k

(
5
6
−t

)]
, (3.118)

FCM
k (t) = FCQ3

k

(
1
6
,t

)
= GCM

k (t)−GCM
k (0), k ≥ 1 and t ∈ R.

For n ≥ 2, the remainder RCM
2n+2( f ) can be written as:

RCM
2n+2( f ) = −θ

(2−2−1−2n)
(
1−32−2n

)
B2n+2

80(2n+2)!

[
f (2n−1)(1)− f (2n−1)(0)

]
, θ ∈ [0,1]

RCM
2n+2( f ) = − (1−2−1−2n)(1−32−2n)B2n+2

80(2n+2)!
f (2n+2)(η), η ∈ [0,1] (3.119)

Formula (3.103) becomes corrected Maclaurin’s formula and is of the form:∫ 1

0
f (t)dt− 1

80

[
27 f

(
1
6

)
+26 f

(
1
2

)
+27 f

(
5
6

)]
− 1

240
[ f ′(1)− f ′(0)]

= − 31
87091200

f (6)(η) (3.120)

Estimates of error for p = 1 and p = ∞ are:∣∣∣∣∫ 1

0
f (t)dt − 1

80

[
27 f

(
1
6

)
+26 f

(
1
2

)
+27 f

(
5
6

)]∣∣∣∣≤CCM(m,q)‖ f (m)‖p,

where

CCM(1,1) =
2401
28800

, CCM(1,∞) =
∣∣∣∣GCM

1

(
5
6

)∣∣∣∣= 41
240

,

CCM(2,1) =
827

192000
, CCM(2,∞) =

1
2

∣∣∣∣FCM
2

(
1
6

)∣∣∣∣= 1
72

,

while for m = 2,3,4,5,6∣∣∣∣∫ 1

0
f (t)dt− 1

80

[
27 f

(
1
6

)
+26 f

(
1
2

)
+27 f

(
5
6

)]
− 1

240
[ f ′(1)− f ′(0)]

∣∣∣∣
≤CCM(m,q)‖ f (m)‖p,

where

CCM(2,1) =
320

√
30+187

√
561

1728000
,

CCM(2,∞) =
1
2

∣∣∣∣GCM
2

(
1
6

)∣∣∣∣= 7
720

,

CCM(3,1) =
48693+3133

√
241

491520000
,

CCM(3,∞) =
1053+187

√
561

13824000
,
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CCM(4,1) =
1

73728
, CCM(4,∞) =

1
38400

,

CCM(5,1) =
1

360

∣∣∣∣FCM
6

(
1
2

)∣∣∣∣= 1
691200

,

CCM(5,∞) =
1

120

∣∣∣∣GCM
5

(
1
4

)∣∣∣∣= 1
294912

,

CCM(6,1) =
1

720

∣∣GCM
6 (0)

∣∣= 31
87091200

,

CCM(6,∞) =
1

720

∣∣∣∣FCM
6

(
1
2

)∣∣∣∣= 1
1382400

.

Let us mention again that from (3.108) and (3.109) estimates of error for m ≥ 7 can also
be calculated.

The Hermite-Hadamard-type inequality for the corrected Maclaurin’s formula is:

31
87091200

f (6)
(

1
2

)
≤−

(∫ 1

0
f (t)dt − 1

80

[
27 f

(
1
6

)
+26 f

(
1
2

)
+27 f

(
5
6

)]
− 1

240
[ f ′(1)− f ′(0)]

)
≤ 31

87091200
f (6)(0)+ f (6)(1)

2

and the constants from Theorem 3.18 are:

LCQ3

(
5,

1
6

)
=

1
691200

, LCQ3

(
6,

1
6

)
=

31
87091200

.

3.2.4 Gauss 3-point formula

Perhaps the most interesting special case is the Gauss 3-point formula. Namely, if we put
x = 5−√

15
10 in (3.103), we obtain∫ 1

0
f (t)dt− 1

18

[
5 f

(
5−√

15
10

)
+8 f

(
1
2

)
+5 f

(
5+

√
15

10

)]
=

1
2016000

f (6)(ξ )

which is exactly the Gauss 3-point formula on the interval [0,1]. Note once more that this
node is the unique solution of the system GCQ3

2 (x,0) = GCQ3
4 (x,0) = 0. Again, we switch

to interval [−1,1] for reasons mentioned in the subsection on the Gauss 2-point formula.
Let f : [−1,1] → R be such that f (2n−1) is continuous of bounded variation on [−1,1]

for some n ≥ 1. Then we have:∫ 1

−1
f (t)dt −QG3 +TG3

2n =
22n−1

(2n)!

∫ 1

−1
GG3

2n (t)d f (2n−1)(t); (3.121)

if f (2n) is continuous of bounded variation on [−1,1] for some n ≥ 0 then∫ 1

−1
f (t)dt −QG3 +TG3

2n =
22n

(2n+1)!

∫ 1

−1
GG3

2n+1(t)d f (2n)(t), (3.122)
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and finally, if f (2n+1) is continuous of bounded variation on [−1,1] for some n ≥ 0, then∫ 1

−1
f (t)dt −QG3 +TG3

2n =
22n+1

(2n+2)!

∫ 1

−1
FG3

2n+2(t)d f (2n+1)(t), (3.123)

where

QG3 =
1
9

[
5 f

(
−
√

15
5

)
+8 f (0)+5 f

(√
15
5

)]
(3.124)

TG3
2n =

n

∑
k=3

22k−1

(2k)!
GG3

2k (−1)[ f (2k−1)(1)− f (2k−1)(−1)] (3.125)

GG3
k (t) =

1
9

[
5B∗

k

(
−
√

15
10

− t
2

)
+8B∗

k

(
− t

2

)
+5B∗

k

(√
15

10
− t

2

)]
(3.126)

FG3
k (t) = GG3

k (t)−GG3
k (−1). (3.127)

The remainder in formula (3.123) RG3
2n+2( f ) can, for n ≥ 2, be written as:

RG3
2n+2( f ) = − 22n+2

(2n+2)!
GG3

2n+2(−1) f (2n+2)(ξ ), ξ ∈ [−1,1] (3.128)

RG3
2n+2( f ) = θ

22n+1

(2n+2)!
FG3

2n+2(0)
[
f (2n+1)(1)− f (2n+1)(−1)

]
,θ ∈ [0,1] (3.129)

where

GG3
2n+2(−1) =

1
9

[
10B2n+2

(
5−√

15
10

)
− (8−22−2n)B2n+2

]
(3.130)

FG3
2n+2(0) =

1
9

[
10B2n+2

(√
15

10

)
−10B2n+2

(
5−√

15
10

)
+(16−22−2n)B2n+2

]
(3.131)

From (3.128) and (3.123) for n = 2 the classical Gauss 3-point formula is produced:

∫ 1

−1
f (t)dt =

1
9

[
5 f

(
−
√

15
5

)
+8 f (0)+5 f

(√
15
5

)]
+

1
15750

f (6)(ξ ), ξ ∈ [−1,1].

Applying Hölder’s inequality (see Theorem 3.16), sharp, i.e. the best possible, esti-
mates of error for the formulae (3.121)-(3.123) can be obtained. For p = ∞ and p = 1, and
n ≥ 2, they are:

KG3(2n+1,1) = 2K∗
G3(2n+2,∞) =

22n+2

(2n+2)!

∣∣FG3
2n+2(0)

∣∣
K∗

G3(2n+2,1) =
22n+2

(2n+2)!

∣∣GG3
2n+2(−1)

∣∣ ,
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where FG3
2n+2(0) and GG3

2n+2(−1) as in (3.131) and (3.130).
Further, for 1 ≤ m ≤ 6 we have:∣∣∣∣∣
∫ 1

−1
f (t)dt− 1

9

[
5 f

(
−
√

15
5

)
+8 f (0)+5 f

(√
15
5

)]∣∣∣∣∣≤CG3(m,q)‖ f (m)‖p,

where

CG3(1,1) =
1051−234

√
15

405
≈ 0.357338, CG3(1,∞) =

4
9

≈ 0.444444,

CG3(2,1) =
8

2187
(18

√
15−65)3/2 ≈ 0.0374355,

CG3(2,∞) =
9−2

√
15

18
≈ 0.0696685,

CG3(3,1) =
160(6

√
15−23)3/2 +6516

√
15−25175

14580
≈ 0.00548184,

CG3(3,∞) =
(18

√
15−65)3/2−108

√
15+422

2187
≈ 0.0063794,

CG3(4,1) ≈ 0.000908828, CG3(4,∞) =
4
√

15−15
360

≈ 0.00136648,

CG3(5,1) =
25−6

√
15

9000
≈ 0.000195789, CG3(5,∞) ≈ 0.000227207,

CG3(6,1) =
1

15750
≈ 0.0000634921,

CG3(6,∞) =
25−6

√
15

18000
≈ 0.0000978944.

Integral
∫ 1
−1 |GG3

4 (t)|dt is calculated only approximately, with the help of Wolfram’s Math-
ematica, because it is difficult to obtain the exact value of the zero of GG3

4 (t) (which is
t ≈ 0.280949). Further, |GG3

5 (t)| attains its maximal value in the zero of GG3
4 (t), so we

have the same problem again. Therefore, CG3(5,∞) is also calculated with the help of
Wolfram’s Mathematica.

Remark 3.18 It was shown previously that in the class of all 3-point quadrature formu-
lae where the integral is approximated by (3.8), the best estimation is obtained for x = 1/6
(when considering an integral over [−1,1], for x = 2/3), i.e. Maclaurin’s formula. Compar-
ing estimates C(m,1) and C(m,∞) obtained for Maclaurin’s formula and the Gauss 3-point
formula shows that, when p = ∞, the Gauss 3-point formula gives better approximation for
m = 2,3,4, while when p = 1, it gives better approximation for m = 3 and m = 4.

Remark 3.19 The constant CG3(1,∞) coincides with the constant ρV (RG
3 ), obtained in

Theorem 1.1. in [47].

The Hermite-Hadamard-type inequality for the Gauss 3-point formula is:

1
2016000

f (6)
(

1
2

)
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≤
∫ 1

0
f (t)dt− 1

18

[
5 f

(
5−√

15
10

)
+8 f

(
1
2

)
+5 f

(
5+

√
15

10

)]

≤ 1
2016000

f (6)(0)+ f (6)(1)
2

and the constants from Theorem 3.18 are:

LCQ3

(
5,

5−√
15

10

)
=

25−6
√

15
576000

, LCQ3

(
6,

5−√
15

10

)
=

1
2016000

.

3.2.5 Corrected Gauss 2-point formula

What if in formulae (3.93)-(3.95) a condition w(x) = 1/2 is imposed? The unique solution
x0 of this equation, such that x0 ∈ [0,1/2), is

x0 =
1
2
− 1

30

√
15(15−2

√
30).

At the same time, B4(x0) = 0, which means the quadrature formula thus obtained has only
two nodes. We will call this formula corrected Gauss 2-point formula.

The results are again transformed to the interval [−1,1]. Formulae (3.93)-(3.95) be-
come: ∫ 1

−1
f (t)dt −QCG2 +TCG2

2n =
22n−1

(2n)!

∫ 1

−1
GCG2

2n (t)d f (2n−1)(t), (3.132)∫ 1

−1
f (t)dt −QCG2 +TCG2

2n =
22n

(2n+1)!

∫ 1

−1
GCG2

2n+1(t)d f (2n)(t) (3.133)∫ 1

−1
f (t)dt −QCG2 +TCG2

2n =
22n+1

(2n+2)!

∫ 1

−1
FCG2

2n+2(t)d f (2n+1)(t), (3.134)

where

QCG2 = f

⎛⎝−
√

1− 2
√

30
15

⎞⎠+ f

⎛⎝√1− 2
√

30
15

⎞⎠
TCG2
2n =

n

∑
k=1

22k−1

(2k)!
GCG2

2k (−1)[ f (2k−1)(1)− f (2k−1)(−1)]

=
5−√

30
15

[ f ′(1)− f ′(−1)]

+
n

∑
k=3

22k−1

(2k)!
GCG2

2k (−1)[ f (2k−1)(1)− f (2k−1)(−1)]

GCG2
k (t) = B∗

k

⎛⎝−1
2

√
1− 2

√
30

15
− t

2

⎞⎠+B∗
k

⎛⎝1
2

√
1− 2

√
30

15
− t

2

⎞⎠
FCG2

k (t) = GCG2
k (t)−GCG2

k (−1), k ≥ 1.
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The remainder in formula (3.134) RCG2
2n+2( f ) for n ≥ 2 can be written similarly as in

(3.128) and (3.129), where

GCG2
2n+2(−1) = 2 B2n+2

⎛⎝1
2
− 1

2

√
1− 2

√
30

15

⎞⎠ (3.135)

FCG2
2n+2(0) = 2

⎡⎣B2n+2

⎛⎝1
2

√
1− 2

√
30

15

⎞⎠−B2n+2

⎛⎝1
2
− 1

2

√
1− 2

√
30

15

⎞⎠⎤⎦ (3.136)

Using this, from (3.134) for n = 2, the corrected Gauss 2-point formula is obtained:∫ 1

−1
f (t)dt = QCG2 − 5−√

30
15

[ f ′(1)− f ′(−1)]+
14

√
30−90

70875
f (6)(ξ ), ξ ∈ [−1,1]

(3.137)
Note that

14
√

30−90
70875

≈−0.00018792.

Further, similarly as in the previous subsection where the Gauss 3-point formula was
considered, from Theorem 3.16 we get the sharp estimates of error for n ≥ 2, with the
appropriate values of GCG2

2n+2(−1) and FCG2
2n+2(0) as in (3.135) and (3.136). Specially, let us

see what these estimates are for p = ∞ and p = 1:∣∣∣∣∫ 1

−1
f (t)dt −QCG2

∣∣∣∣≤CCG2(m,q)‖ f (m)‖p, m = 1,2

where

CCG2(1,1) = 3− 4
√

30
15

−2

√
1− 2

√
30

15
≈ 0.500747,

CCG2(1,∞) =

√
1− 2

√
30

15
≈ 0.51933,

CCG2(2,1) =
2
45

[
3
√

30−15+4

√
15

(
2
√

30−15+2

√
585−106

√
30

)

−2

√
30
√

225−30
√

30−225

]
≈ 0.073765,

CCG2(2,∞) = 1−
√

30
15

−
√

1− 2
√

30
15

≈ 0.115522,

while for 2 ≤ m ≤ 6∣∣∣∣∣
∫ 1

−1
f (t)dt−QCG2 +

5−√
30

15
[ f ′(1)− f ′(−1)]

∣∣∣∣∣≤CCG2(m,q)‖ f (m)‖p,
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where

CCG2(2,1) ≈ 0.0650208,

CCG2(2,∞) =
1
15

(
20−2

√
30−

√
225−30

√
30

)
≈ 0.083707,

CCG2(3,1) =
1

180

(
339−60

√
30−4

√
585−106

√
30

)
≈ 0.0109032,

CCG2(3,∞) =
1
45

√
2

√
25653825−4649430

√
30+1226

√
30− 22745

3
≈ 0.010905,

CCG2(4,1) ≈ 0.00209577,

CCG2(4,∞) =
5
24

− 1√
30

− 1
90

√
585−106

√
30 ≈ 0.002415,

CCG2(5,1) =
2
√

392625−71670
√

30+150
√

30−825
27000

≈ 0.000503075,

CCG2(5,∞) ≈ 0.000523942, CCG2(6,1) =
90−14

√
30

70875
≈ 0.00018792,

CCG2(6,∞) =
1

3600

⎛⎝2

√
1745− 4778

√
30

15
+10

√
30−55

⎞⎠ ≈ 0.000251537.

The exact values of CCG2(2,1) (for the case when the values of the first derivative are
included in the quadrature formula),CCG2(4,1) and CCG2(5,∞) can be calculated (with the
help of Wolfram’s Mathematica) but obtained expressions are rather cumbersome so we
state only their approximate values.

Also, notice that when p = ∞ and m = 1,2, and when p = 1 and m = 1, corrected Gauss
2-point formulae give better estimations than Gauss 2-point formulae.

The Hermite-Hadamard-type inequality for the corrected Gauss 2-point formula is:

45−7
√

30
4536000

f (6)
(

1
2

)
≤−

(∫ 1

0
f (t)dt − 1

2
f

(
1
2
− 1

30

√
15(15−2

√
30)
)
− 1

2
f

(
1
2

+
1
30

√
15(15−2

√
30)
)

+
5−√

30
60

[ f ′(1)− f ′(0)]

)

≤ 45−7
√

30
4536000

f (6)(0)+ f (6)(1)
2

and the constants from Theorem 3.18 are:

LCQ3

(
5,

1
2
− 1

30

√
15(15−2

√
30)
)
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=
825−150

√
30−46

√
225−30

√
30+120

√
30−4

√
30

1728000

LCQ3

(
6,

1
2
− 1

30

√
15(15−2

√
30)
)

=
45−7

√
30

4536000
.

3.2.6 Hermite-Hadamard-type inequality for the corrected
3-point quadrature formulae

The main result of this section provides Hermite-Hadamard-type inequality for the cor-
rected 3-point quadrature formulae.

Theorem 3.19 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then, for x ∈ [0, 1

2 −
√

15
10 ] and y ∈ [ 1

6 , 1
2

)
QC

(
x,

1
2
,1− x

)
− 10x2−10x+1

60(−4x2 +4x+1)
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt (3.138)

≤ QC

(
y,

1
2
,1− y

)
− 10y2−10y+1

60(−4y2 +4y+1)
[ f ′(1)− f ′(0)],

where QC
(
x, 1

2 ,1− x
)

is defined in (3.96). If f is 6-concave, the inequalities are reversed.

Proof. First, note that

1
98

(98x4−196x3 +102x2−4x−1) =
(

x− 1
2

)4

− 45
98

(
x− 1

2

)2

+
33
784

=

((
x− 1

2

)2

− 45
196

)2

− 51
4802

=

((
x− 1

2

)2

− 45+2
√

102
196

)((
x− 1

2

)2

− 45−2
√

102
196

)
and therefore, we can find the zeros of this polynomial explicitly:

x1,2,3,4 =
1
2
± 1

14

√
45±2

√
102.

Now, it is easy to determine the sign of the remainder in the formula (3.103). Finally, for a
6-convex function, we have f (6) ≥ 0, and thus the statement follows. �

The following corollaries give comparison between corrected Simpson’s rule and cor-
rected dual Simpson’s rule, corrected Simpson’s rule and corrected Maclaurin’s rule, cor-
rected Simpson’s rule and the corrected Gauss 2-point rule, and then the Gauss 3-point rule
and corrected dual Simpson’s rule, the Gauss 3-point rule and corrected Maclaurin’s rule,
the Gauss 3-point rule and the corrected Gauss 2-point rule.
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Corollary 3.13 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
30

(
7 f (0)+16 f

(
1
2

)
+7 f (1)

)
− 1

60
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1
15

(
8 f

(
1
4

)
− f

(
1
2

)
+8 f

(
3
4

))
+

1
120

[ f ′(1)− f ′(0)].

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) for x = 0 and y = 1/4. �

Corollary 3.14 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
30

(
7 f (0)+16 f

(
1
2

)
+7 f (1)

)
− 1

60
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1
80

(
27 f

(
1
6

)
+26 f

(
1
2

)
+27 f

(
5
6

))
+

1
240

[ f ′(1)− f ′(0)].

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) for x = 0 and y = 1/6. �

Corollary 3.15 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
30

(
7 f (0)+16 f

(
1
2

)
+7 f (1)

)
− 1

60
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1
2

f

(
1
2
− 1

30

√
225−30

√
30

)
+

1
2

f

(
1
2

+
1
30

√
225−30

√
30

)
+

7
√

30−5
420

[ f ′(1)− f ′(0)].

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) for x = 0 and y = 1/2−
√

225−30
√

30
/

30 ⇔ B4(y) = 0.
�



3.2 CORRECTED 3-POINT QUADRATURE FORMULAE 117

Corollary 3.16 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
18

(
5 f

(
5−√

15
10

)
+8 f

(
1
2

)
+5 f

(
5+

√
15

10

))

≤
∫ 1

0
f (t)dt

≤ 1
15

(
8 f

(
1
4

)
− f

(
1
2

)
+8 f

(
3
4

))
+

1
120

[ f ′(1)− f ′(0)].

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) for x = 1/2−√
15/10 ⇔ 10x2−10x+1 = 0 and y = 1/4. �

Corollary 3.17 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
18

(
5 f

(
5−√

15
10

)
+8 f

(
1
2

)
+5 f

(
5+

√
15

10

))

≤
∫ 1

0
f (t)dt

≤ 1
80

(
27 f

(
1
6

)
+26 f

(
1
2

)
+27 f

(
5
6

))
+

1
240

[ f ′(1)− f ′(0)].

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) for x = 1/2−√
15/10 ⇔ 10x2−10x+1 = 0 and y = 1/6. �

Corollary 3.18 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
18

(
5 f

(
5−√

15
10

)
+8 f

(
1
2

)
+5 f

(
5+

√
15

10

))

≤
∫ 1

0
f (t)dt

≤ 1
2

f

(
1
2
− 1

30

√
225−30

√
30

)
+

1
2

f

(
1
2

+
1
30

√
225−30

√
30

)
+

7
√

30−5
420

[ f ′(1)− f ′(0)].

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (3.138) for x = 1/2 − √
15/10 ⇔ 10x2 − 10x + 1 = 0 and

y = 1/2−
√

225−30
√

30
/

30 ⇔ B4(y) = 0. �
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3.2.7 On corrected Bullen-Simpson’s inequality

In [70], it was shown by a simple geometric argument that for a convex function f the
following inequality is valid :

0 ≤
∫ 1

0
f (t)dt − f

(
1
2

)
≤ f (0)+ f (1)

2
−
∫ 1

0
f (t)dt. (3.139)

An elementary analytic proof of (3.40) and (3.139) was given in [11]. Another interest-
ing result of a similar type was given in that same paper. Namely, provided f is 4-convex,
we have:

0 ≤
∫ 1

0
f (t)dt − 1

3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
≤ 1

6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
−
∫ 1

0
f (t)dt (3.140)

This implies that dual Simpson’s quadrature rule is more accurate than Simpson’s quadra-
ture rule. Inequality (3.140) is sometimes called Bullen-Simpson’s inequality and was
generalized for a class of (2k)-convex functions in [86].

The aim here is to derive similar type inequalities, only this time starting from corrected
Simpson’s and dual corrected Simpson’s formula. The results of this subsection were
published in [53].

For k ≥ 1 and t ∈ R, we define functions

Gk(t) = GCQ3
k (0,t)+GCQ3

k (1/4,t) = GCS
k (t)+GCDS

k (t),

Fk(t) = FCQ3
k (0,t)+FCQ3

k (1/4,t) = FCS
k (t)+FCDS

k (t),

where GCS
k (t) and GCDS

k (t) are defined in (3.114) and (3.116), respectively. Thus,

Gk(t) = 7B∗
k(1− t)+8B∗

k

(
1
4
− t

)
+7B∗

k

(
1
2
− t

)
+8B∗

k

(
3
4
− t

)
, k ≥ 1,

F1(t) = G1(t), Fk(t) = Gk(t)−Gk(0) for k ≥ 2.

Introduce notation B̃k = Gk(0). By direct calculation we get

B̃2 = 1/4 and B̃3 = B̃4 = B̃5 = 0.

Using the properties of Bernoulli polynomials, it is easy to check that B̃2k−1 = 0, k ≥ 2.
Now, let f : [0,1]→ R be such that f (n−1) exists on [0,1] for some n≥ 1. Introduce the

following notation

D(0,1) =
1
60

[
7 f (0)+16 f

(
1
4

)
+14 f

(
1
2

)
+16 f

(
3
4

)
+7 f (1)

]
.

Define T0( f ) = 0 and for 1 ≤ m ≤ n

Tm( f ) =
1
2

[
TCQ3
m (0)+TCQ3

m (1/4)
]
,
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where TCQ3
m (x) was given by (3.97). So, we have T1( f ) = 0,

T2( f ) = T3( f ) = T4( f ) = T5( f ) =
1

240
[ f ′(1)− f ′(0)]

and, for m ≥ 6,

Tm( f ) =
1

240
[ f ′(1)− f ′(0)]

+
1
15

[m/2]

∑
k=3

B2k

(2k)!
(16 ·2−4k−2−2k)

[
f (2k−1)(1)− f (2k−1)(0)

]
.

In the next theorem we establish two formulae which play the key role here. We call
them corrected Bullen-Simpson’s formulae of Euler type.

Theorem 3.20 Let f : [0,1] → R be such that f (n−1) is continuous of bounded variation
on [0,1], for some n ≥ 1. Then∫ 1

0
f (t)dt = D(0,1)−Tn( f )+ R̃(1)

n ( f ), (3.141)

and ∫ 1

0
f (t)dt = D(0,1)−Tn−1( f )+ R̃(2)

n ( f ), (3.142)

where

R̃(1)
n ( f ) =

1
30n!

∫ 1

0
Gn (t)d f (n−1)(t),

and

R̃(2)
n ( f ) =

1
30n!

∫ 1

0
Fn (t)d f (n−1)(t).

Proof. Apply (3.94) for x = 0 and x = 1/4, add those two formulae, divide by 2 and identity
(3.141) is produced. Identity (3.142) is obtained analogously from (3.95). �

Remark 3.20 Interval [0,1] is used for simplicity and involves no loss in generality. In
what follows, Theorem 3.20 and others will be applied, without comment, to any interval
that is convenient.

It is easy to see that if f : [a,b] → R is such that f (n−1) is continuous of bounded
variation on [a,b], for some n ≥ 1, then

∫ b

a
f (t)dt = D(a,b)− T̃n( f )+

(b−a)n

30n!

∫ b

a
Gn

(
t −a
b−a

)
d f (n−1)(t)

and ∫ b

a
f (t)dt = D(a,b)− T̃n−1( f )+

(b−a)n

30n!

∫ b

a
Fn

(
t −a
b−a

)
d f (n−1)(t),
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where

D(a,b) =
b−a
60

[
7 f (a)+16 f

(
3a+b

4

)
+14 f

(
a+b

2

)
+16 f

(
a+3b

4

)
+7 f (b)

]
,

T̃0( f ) = T̃1( f ) = 0,

T̃2( f ) = T̃3( f ) = T̃4( f ) = T̃5( f ) =
(b−a)2

240

[
f ′(b)− f ′(a)

]
and for m ≥ 6

T̃m( f ) =
(b−a)2

240

[
f ′(b)− f ′(a)

]
+

1
15

[m/2]

∑
k=3

(b−a)2k

(2k)!
(16 ·2−4k−2−2k)B2k

[
f (2k−1)(b)− f (2k−1)(a)

]
.

Remark 3.21 Suppose that f : [0,1] → R is such that f (n) exists and is integrable on
[0,1], for some n ≥ 1. In this case (3.141) holds with

R̃(1)
n ( f ) =

1
30n!

∫ 1

0
Gn (t) f (n)(t)dt,

while (3.142) holds with

R̃(2)
n ( f ) =

1
30n!

∫ 1

0
Fn (t) f (n)(t)dt.

Remark 3.22 For n = 6, (3.142) yields∫ 1

0
f (t)dt−D(0,1)+

f ′(1)− f ′(0)
240

=
1

21600

∫ 1

0
F6 (t)d f (5)(t).

From this identity it is clear that corrected Bullen-Simpson’s formula of Euler type is exact
for all polynomials of order ≤ 5.

Before the main result is stated, we will need to prove some properties of functions
Gk and Fk. Notice that it is enough to know the values of those functions on the interval
[0,1/2], since Gk (t +1/2) = Gk(t).

Lemma 3.8 For k ≥ 3, function G2k−1(t) has no zeros in the interval
(
0, 1

4

)
. The sign of

this function is determined by

(−1)kG2k−1(t) > 0, 0 < t <
1
4
. (3.143)

Proof. For k = 3, we have

G5(t) =
{−30t5 +35/2 · t4−5/2 · t3, 0 ≤ t ≤ 1/4
−30t5 +115/2 · t4−85/2 · t3+15t2−5/2 · t+5/32, 1/4 ≤ t ≤ 1/2



3.2 CORRECTED 3-POINT QUADRATURE FORMULAE 121

and it is elementary to see that

G5(t) < 0, 0 < t < 1/4, (3.144)

so our assertion is true for k = 3. Assuming the opposite, by induction, it follows easily
that the assertion is true for all k ≥ 4.

Further, if G2k−3(t) > 0, 0 < t < 1/4, then since

G′′
2k−1(t) = (2k−1)(2k−2)G2k−3(t)

it follows that G2k−1 is convex and hence G2k−1(t) < 0 on (0,1/4). Similarly, we conclude
that if G2k−3(t) < 0, then G2k−1(t) > 0 on (0,1/4). (3.143) now follows from (3.144). �

Corollary 3.19 For k ≥ 3, functions (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly in-
creasing on the interval (0,1/4) and strictly decreasing on the interval (1/4,1/2). Conse-
quently, 0 and 1/2 are the only zeros of F2k(t) on [0,1/2] and

max
t∈[0,1]

|F2k(t)| = 22−2k(1−2−2k)|B2k|,

max
t∈[0,1]

|G2k(t)| = 21−2k(1+14 ·2−2k)|B2k|.

Proof. Since

[(−1)k−1F2k(t)]′ = [(−1)k−1G2k(t)]′ = (−1)k ·2k ·G2k−1(t),

from Lemma 3.8 we conclude that (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly increasing
on (0,1/4). It is easy to check that for k ≥ 2 and 0 ≤ t ≤ 1/2,

Gk(1/2− t) = (−1)kGk(t) and Fk(1/2− t) = (−1)kFk(t).

From there we conclude that (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly decreasing on
(1/4,1/2). Further, F2k(0) = F2k(1/2) = 0, which implies |F2k(t)| achieves maximum at
t = 1/4 and thus, the first assertion is proved.

On the other hand,

max
t∈[0,1]

|G2k(t)| = max

{
|G2k (0)| ,

∣∣∣∣G2k

(
1
4

)∣∣∣∣}=
∣∣∣∣G2k

(
1
4

)∣∣∣∣ .
The proof is now complete. �

Corollary 3.20 For k ≥ 3, we have∫ 1

0
|F2k−1(t)|dt =

∫ 1

0
|G2k−1(t)|dt =

23−2k

k

(
1−2−2k

)
|B2k| ,∫ 1

0
|F2k(t)|dt = |B̃2k| = 21−2k

(
1−16 ·2−2k

)
|B2k|∫ 1

0
|G2k(t)|dt ≤ 2|B̃2k| = 22−2k

(
1−16 ·2−2k

)
|B2k| .
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Proof. Using the properties of functions Gk, i.e. properties of Bernoulli polynomials, we
get ∫ 1

0
|G2k−1(t)|dt = 4

∣∣∣∣∫ 1/4

0
G2k−1(t)dt

∣∣∣∣= 2
k

∣∣∣∣F2k

(
1
4

)∣∣∣∣ ,
which proves the first assertion. Since F2k(0) = F2k(1/2) = 0, from Corollary 3.19 we
conclude that F2k(t) does not change sign on (0,1/2). Therefore,∫ 1

0
|F2k(t)|dt = 2

∣∣∣∣∫ 1/2

0
G2k(t)dt− 1

2
B̃2k

∣∣∣∣= |B̃2k|,

which proves the second assertion. Finally, we use the triangle inequality to obtain∫ 1

0
|G2k(t)|dt ≤

∫ 1

0
|F2k(t)|dt + |B̃2k| = 2|B̃2k|,

which proves the third assertion. �

Theorem 3.21 If f : [0,1] → R is such that f (2k) is a continuous function on [0,1], for
some k ≥ 3, then there exists η ∈ [0,1] such that

R̃(2)
2k ( f ) =

1
15(2k)!

2−2k(1−16 ·2−2k)B2k · f (2k)(η). (3.145)

Proof. We can rewrite R̃(2)
2k ( f ) as

R̃(2)
2k ( f ) =

(−1)k−1

30(2k)!
Jk, (3.146)

where

Jk =
∫ 1

0
(−1)k−1F2k(t) f (2k)(t)dt. (3.147)

From Corollary 3.19 we know that (−1)k−1F2k(t) ≥ 0, 0 ≤ t ≤ 1, so the claim follows
from the mean value theorem for integrals and Corollary 3.20 �

Remark 3.23 For k = 3 formula (3.145) reduces to

R̃(2)
6 ( f ) =

1
38707200

f (6)(η).

Now, we prove our main result:

Theorem 3.22 Let f : [0,1]→R be such that f (2k) is continuous on [0,1] for some k ≥ 3.
If f is a (2k)−convex function, then for an even k we have

0 ≤
∫ 1

0
f (t)dt − 1

15

[
8 f

(
1
4

)
− f

(
1
2

)
+8 f

(
3
4

)]
+TD

2k−1( f )

≤ 1
30

[
7 f (0)+16 f

(
1
2

)
+7 f (1)

]
−TS

2k−1( f )−
∫ 1

0
f (t)dt (3.148)

while for an odd k the inequalities are reversed.
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Proof. Denote the middle part and the right-hand side of (3.148) by LHS and DHS, respec-
tively. Then we have

LHS = RCDS
2k ( f ) and RHS−LHS = −2R̃(2)

2k ( f )

where R̃(2)
2k ( f ) is as in Theorem 3.20 and according to (3.116), RCDS

2k ( f ) can be written in
the form:

RCDS
2k ( f ) = − 1

15(2k)!
(1−18 ·2−2k +32 ·2−4k)B2k · f (2k)(ξ ), ξ ∈ [0,1] (3.149)

Recall that if f is (2k)−convex on [0,1], then f (2k)(x) ≥ 0, x ∈ [0,1]. Now, having in mind
that (−1)k−1B2k > 0 (k ∈ N), from (3.149) and (3.145) we get

LHS ≥ 0, RHS−LHS ≥ 0, for even k

LHS ≤ 0, RHS−LHS ≤ 0, for odd k

and thus the proof is complete. �

Remark 3.24 From (3.148) for k = 3 we get

0 ≤
∫ 1

0
f (t)dt − 1

15

[
8 f

(
1
4

)
− f

(
1
2

)
+8 f

(
3
4

)]
− 1

120
[ f ′(1)− f ′(0)]

≤ 1
30

[
7 f (0)+16 f

(
1
2

)
+7 f (1)

]
− 1

60
[ f ′(1)− f ′(0)]−

∫ 1

0
f (t)dt

Theorem 3.23 If f : [0,1]→ R is such that f (2k) is a continuous function on [0,1] and f
is either (2k)−convex or (2k)−concave, for some k ≥ 3, then there exists θ ∈ [0,1] such
that

R̃(2)
2k ( f ) = θ

21−2k

15(2k)!
(1−2−2k)B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
. (3.150)

Proof. Suppose f is (2k)−convex, so f (2k)(t) ≥ 0, 0 ≤ t ≤ 1. If Jk is given by (3.147),
using Corollary 3.19, we obtain

0 ≤ Jk ≤ (−1)k−1F2k

(
1
4

)
·
∫ 1

0
f (2k)(t)dt.

which means that there exists θ ∈ [0,1] such that

Jk = θ · (−1)k−1 ·22−2k
(
1−2−2k

)
B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

When f is (2k)−concave, the statement follows similarly. �

Now define

Δ2k( f ) =
2−2k

15(2k)!
(1−16 ·2−2k)B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

Clearly,

R̃(2)
2k ( f ) = θ · 2−21−2k

1−24−2k
·Δ2k( f ).
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Theorem 3.24 Suppose that f : [0,1] → R is such that f (2k+2) is a continuous function
on [0,1] for some k ≥ 3. If f is either (2k)-convex and (2k + 2)-convex or (2k)-concave

and (2k +2)-concave, then the remainder R̃(2)
2k ( f ) has the same sign as the first neglected

term Δ2k( f ) and

|R̃(2)
2k ( f )| ≤ |Δ2k( f )|.

Proof. We have
Δ2k( f ) = R̃(2)

2k ( f )− R̃(2)
2k+2( f ).

From Corollary 3.19 it follows that for all t ∈ [0,1]

(−1)k−1F2k(t) ≥ 0 and (−1)k−1[−F2k+2(t)] ≥ 0,

so we conclude that R̃(2)
2k ( f ) has the same sign as −R̃(2)

2k+2( f ). Therefore, Δ2k( f ) must have

the same sign as R̃(2)
2k ( f ) and −R̃(2)

2k+2( f ). Moreover, it follows that

|R̃(2)
2k ( f )| ≤ |Δ2k( f )| and |R̃(2)

2k+2( f )| ≤ |Δ2k( f )|.

�

In this subsection, using formulae derived in Theorem 3.20, we shall prove a number
of inequalities for various classes of functions.

Theorem 3.25 Assume (p,q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞,
1
p + 1

q = 1. If f : [0,1] → R is such that f (n) ∈ Lp[0,1] for some n ≥ 1, then we have∣∣∣∣∫ 1

0
f (t)dt−D(0,1)+Tn−1( f )

∣∣∣∣≤ K(n, p)‖ f (n)‖p, (3.151)

and ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)+Tn( f )

∣∣∣∣≤ K∗(n, p)‖ f (n)‖p, (3.152)

where

K(n, p) =
1

30n!

[∫ 1

0
|Fn(t)|q dt

] 1
q

and K∗(n, p) =
1

30n!

[∫ 1

0
|Gn(t)|q dt

] 1
q

.

Proof. Applying the Hölder inequality we get∣∣∣∣ 1
30n!

∫ 1

0
Fn(t) f (n)(t)dt

∣∣∣∣ ≤ 1
30n!

[∫ 1

0
|Fn(t)|qdt

] 1
q ∥∥∥ f (n)

∥∥∥
p

= K(n, p)‖ f (n)‖p

Having in mind Remark 3.21, from (3.142) and the above inequality, we obtain (3.151).
Similarly, from (3.141) we obtain (3.152). �
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Remark 3.25 Taking p = ∞ and n = 1,2 in Theorem 3.25, i.e. (3.151), we get∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ K(n,∞)‖ f (n)‖∞,

where

K(1,∞) =
113
1800

, K(2,∞) =
697

162000
.

Taking p = 1 and n = 1,2, we get∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ K(n,1)‖ f (n)‖1,

where

K(1,1) =
2
15

, K(2,1) =
49

7200
.

Comparing these estimates with the analogous ones obtained for Bullen-Simpson’s
formula shows that these are better in all cases except for n = 2 and p = ∞.

Moreover, for p = ∞ and n = 3,4,5 we obtain∣∣∣∣∫ 1

0
f (t)dt −D(0,1)+

1
240

[ f ′(1)− f ′(0)]
∣∣∣∣≤ K(n,∞)‖ f (n)‖∞,

where

K(3,∞) =
253

2880000
, K(4,∞) =

1
233280

, K(5,∞) =
1

3686400
,

and for p = 1 and n = 3,4,5 we get∣∣∣∣∫ 1

0
f (t)dt−D(0,1)+

1
240

[ f ′(1)− f ′(0)]
∣∣∣∣≤ K(n,1)‖ f (n)‖1,

where

K(3,1) =
28+19

√
19

648000
, K(4,1) =

1
92160

, K(5,1) =
1

1866240
.

Finally, for p = 2 we get∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ K(n,2)‖ f (n)‖2,

where

K(1,2) =
√

19
60

, K(2,2) =
√

3
360

,

and ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)+

1
240

[ f ′(1)− f ′(0)]
∣∣∣∣≤ K(n,2)‖ f (n)‖2,

where

K(3,2) =
√

105
100800

, K(4,2) =
√

70
1612800

, K(5,2) =
√

5005
212889600

.
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Remark 3.26 Note that K∗(1, p) = K(1, p), for 1 < p ≤ ∞, since G1(t) = F1(t). Also,
for 1 < p ≤ ∞, we can easily calculate K(1, p). Namely,

K(1, p) =
1
60

[
7q+1 +8q+1

15(q+1)

] 1
q

.

In the limit case when p → 1, that is when q → ∞, we have

lim
p→1

K(1, p) =
2
15

= K(1,1).

Now we use formula (3.141) and a Grüss type inequality to obtain estimations of cor-
rected Bullen-Simpson’s formulae in terms of oscillation of derivatives of a function. To
do this, we need the following two technical lemmas. The first one was proved in [27] and
the second one is the key result from [83].

Lemma 3.9 Let k ≥ 1 and γ ∈ R. Then∫ 1

0
B∗

k(γ − t)dt = 0.

Lemma 3.10 Let F,G : [0,1]→ R be two integrable functions. If

m ≤ F(t) ≤ M, 0 ≤ t ≤ 1

and ∫ 1

0
G(t)dt = 0,

then ∣∣∣∣∫ 1

0
F(t)G(t)dt

∣∣∣∣≤ M−m
2

·
∫ 1

0
|G(t)|dt. (3.153)

Theorem 3.26 Let f : [0,1] → R be such that f (n) exists and is integrable on [0,1], for
some n ≥ 1. Suppose

mn ≤ f (n)(t) ≤ Mn, 0 ≤ t ≤ 1,

for some constants mn and Mn. Then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)+Tn(0,1)

∣∣∣∣≤Cn(Mn −mn) (3.154)

where

C1 =
113
3600

, C2 =
19

√
19

81000
, C3 =

253
5760000

, C4 =
1

466560
,

C2k−1 =
22−2k(1−2−2k)

15(2k)!
|B2k|, C2k =

2−2k(1−16 ·2−2k)
15(2k)!

|B2k|, k ≥ 3.

Proof. Lemma 3.9 ensures that the second condition of Lemma 3.10 is satisfied. Hav-

ing in mind Remark 3.21, apply inequality (3.153) to obtain the estimate for |R̃(1)
n ( f )|.

Now our statement follows easily from Corollary 3.20 for n ≥ 5 and direct calculation for
n = 1,2,3,4. �
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3.3 General Simpson formulae

3.3.1 General Euler-Simpson formulae

The results from this section are published in [65].
Here we study the general Simpson quadrature formula∫ 1

0
f (t)dt =

1
2u+ v

[
u f (0)+ v f

(
1
2

)
+u f (1)

]
+E( f ;u,v) (3.155)

with E( f ;u,v) being the remainder, u,v ∈ Z
+ and the greatest common divisor of u and v

is 1. This quadrature formula was considered by V. Čuljak, C. E. M. Pearce and J. Pečarić
in [20]. The aim of this section is to establish general Simpson formula (3.155) using
identities (1.1) and (1.2) and give various error estimates for the quadrature rules based on
such generalizations. We use the extended Euler formulae for a = 0, b = 1 to obtain two
new integral identities. We call them the general Euler-Simpson formulae. After that we
prove a number of inequalities which give error estimates for the general Euler-Simpson
formulae for functions whose derivatives are in Lp-spaces.

For k ≥ 1 define the functions Gk(t) and Fk(t) as

Gk(t) = 2uB∗
k (1− t)+ vB∗

k

(
1
2
− t

)
, t ∈ R

and
Fk(t) = Gk(t)− B̃k, t ∈ R, k ≥ 1,

where

B̃k = uBk(0)+ vBk

(
1
2

)
+uBk(1), k ≥ 1.

Using B1(t) = t−1/2 we get B̃1 = 0. Also, for k ≥ 2 we have B̃k = Gk(0), that is

Fk(t) = Gk(t)−Gk(0), k ≥ 2, and F1(t) = G1(t), t ∈ R.

Obviously, Gk(t) and Fk(t) are periodic functions of period 1 and continuous for k ≥ 2.
Let f : [0,1] → R be such that f (n−1) exists on [0,1] for some n ≥ 1. We introduce the

following notation

D(u,v) =
1

2u+ v

[
u f (0)+ v f

(
1
2

)
+u f (1)

]
.

Further, we define T̃0(u,v) = 0 and, for 1 ≤ m ≤ n,

T̃m(u,v) =
1

2u+ v

[
uTm(0)+ vTm

(
1
2

)
+uTm(1)

]
,
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where Tm(x) is given by (1.3) (for a = 0, b = 1). For m ≥ 1

T̃m(u,v) =
1

2u+ v

m

∑
k=1

B̃k

k!

[
f (k−1)(1)− f (k−1)(0)

]
. (3.156)

In the next theorem we establish two formulae which play the key role in this paper.
We call them the general Euler-Simpson formulae.

Theorem 3.27 Let f : [0,1]→ R be such that f (n−1) is a continuous function of bounded
variation on [0,1], for some n ≥ 1. Then∫ 1

0
f (t)dt = D(u,v)− T̃n(u,v)+ R̃1

n( f ), (3.157)

and ∫ 1

0
f (t)dt = D(u,v)− T̃n−1(u,v)+ R̃2

n( f ), (3.158)

where

R̃1
n( f ) =

1
(2u+ v)(n!)

∫ 1

0
Gn (t)d f (n−1)(t),

and

R̃2
n( f ) =

1
(2u+ v)(n!)

∫ 1

0
Fn (t)d f (n−1)(t).

Proof. Put x = 0, 1/2, 1 in formula (1.1) to get three new formulae. Then multiply these
new formulae by u, v, u respectively, and add them up. The result is formula (3.157).
Formula (3.158) is obtained from (1.2) by the same procedure. �

Remark 3.27 If in Theorem 3.27 we chose u = 1 and v = 4 we get Euler Simpson for-
mulae [29], for u = 1 and v = 2 Euler bitrapezoid formulae [28] and for u = 7 and v = 16
we get corrected Euler Simpson formulae [50].

By direct calculations we get

F1(t) = G1(t) =
{−(2u+ v)t +u, 0 < t ≤ 1/2
−(2u+ v)t +u+ v, 1/2 < t ≤ 1

, (3.159)

G2(t) =
{

(2u+ v)t2−2ut +(4u− v)/12, 0 ≤ t ≤ 1/2
(2u+ v)t2−2(u+ v)t +(4u+11v)/12, 1/2 < t ≤ 1

, (3.160)

F2(t) =
{

(2u+ v)t2−2ut, 0 ≤ t ≤ 1/2
(2u+ v)t2−2(u+ v)t + v, 1/2 < t ≤ 1

, (3.161)

F3(t) = G3(t) =
{−(2u+ v)t3 +3ut2− (4u− v)t/4, 0 ≤ t ≤ 1/2
−(2u+ v)t3 +(3u+3v)t2− (4u+11v)t/4+3v/4, 1/2 < t ≤ 1

.

(3.162)
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Now, we will prove some properties of the functions Gk(t) and Fk(t) defined above. The
Bernoulli polynomials are symmetric with respect to 1/2, that is [1,23.1.8]

Bk(1− t) = (−1)kBk(t), ∀t ∈ R, k ≥ 1. (3.163)

Also, we have

Bk(1) = Bk(0) = Bk, k ≥ 2, B1(1) = −B1(0) =
1
2

and
B2 j−1 = 0, j ≥ 2.

Therefore, using [1,23.1.21,23.1.22]

B2 j

(
1
2

)
= −(1−21−2 j)B2 j, B2 j

(
1
4

)
= −2−2 j (1−21−2 j)B2 j j ≥ 1,

we get
B̃2 j−1 = 0, j ≥ 1 (3.164)

and

B̃2 j = 2uB2 j + vB2 j

(
1
2

)
=
[
2u− v(1−21−2 j)

]
B2 j, j ≥ 1. (3.165)

Now, by (3.164) we have
F2 j−1(t) = G2 j−1(t), j ≥ 1, (3.166)

and, by (3.165),

F2 j(t) = G2 j(t)− B̃2 j = G2 j(t)−
[
2u− v(1−21−2 j)

]
B2 j, j ≥ 1. (3.167)

Further, the points 0 and 1 are the zeros of Fk(t) = Gk(t)−Gk(0), k ≥ 2, that is

Fk(0) = Fk(1) = 0, k ≥ 2.

As we shall see below, for j ≥ 1, 0 and 1 are the only zeros of F2 j(t) for v ≤ u or v ≥ 4u.
Next, setting t = 1/2 in (3.163) we get

Bk

(
1
2

)
= (−1)kBk

(
1
2

)
, k ≥ 1.

which implies that

B2 j−1

(
1
2

)
= 0, j ≥ 1.

Using the above formulae, we get

F2 j−1

(
1
2

)
= G2 j−1

(
1
2

)
= 0, j ≥ 1.
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We shall see that for j ≥ 2, 0, 1/2 and 1 are the only zeros of F2 j−1(t) = G2 j−1(t), for
v ≤ u or v ≥ 4u. Also, note that

G2 j

(
1
2

)
= 2uB2 j

(
1
2

)
+ vB2 j =

[
v−2u(1−21−2 j)

]
B2 j, j ≥ 1,

F2 j

(
1
2

)
= G2 j

(
1
2

)
− B̃2 j = (v−2u)(2−21−2 j)B2 j, j ≥ 1. (3.168)

Lemma 3.11 For k ≥ 2 we have

Gk(1− t) = (−1)kGk(t), 0 ≤ t ≤ 1,

and
Fk(1− t) = (−1)kFk(t), 0 ≤ t ≤ 1.

Proof. As we noted in introduction, the functions B∗
k(t) are periodic with period 1 and

continuous for k ≥ 2. Therefore, for k ≥ 2 and 0 ≤ t ≤ 1 we have

Gk(1− t) = 2uB∗
k (t)+ vB∗

k

(
−1

2
+ t

)
=
{

2uBk (t)+ vBk
( 1

2 + t
)
, 0 ≤ t ≤ 1/2,

2uBk (t)+ vBk
(− 1

2 + t
)
, 1/2 < t ≤ 1,

= (−1)k ×
{

2uBk (1− t)+ vBk
(

1
2 − t

)
, 0 ≤ t ≤ 1/2,

2uBk (1− t)+ vBk
(

3
2 − t

)
, 1/2 < t ≤ 1,

= (−1)kGk(t),

which proves the first identity. Further, we have Fk(t) = Gk(t)−Gk(0) and (−1)kGk(0)
= Gk(0), since G2 j+1(0) = 0, so that we have

Fk (1− t) = Gk (1− t)−Gk(0) = (−1)k [Gk(t)−Gk(0)] = (−1)kFk (t) ,

which proves the second identity. �

Note that the identities established in Lemma 3.11 are valid for k = 1, too, except at
the points 0, 1/2 and 1 of discontinuity of F1(t) = G1(t).

Lemma 3.12 For k ≥ 2 and v ≤ u or v ≥ 4u the function G2k−1(t) has no zeros in the
interval (0,1/2). The sign of this function is determined by

(−1)k−1G2k−1(t) > 0, 0 < t <
1
2

for v ≤ u,

(−1)kG2k−1(t) > 0, 0 < t <
1
2

for v ≥ 4u.

Proof. For k = 2, G3(t) is given by (3.162) and it is easy to see that

−G3(t) > 0, 0 < t <
1
2
, v ≤ u, G3(t) > 0, 0 < t <

1
2
, v ≥ 4u,



3.3 GENERAL SIMPSON FORMULAE 131

Thus, our assertion is true for k = 2. Now, assume that k≥ 3. Then 2k−1≥ 5 and G2k−1(t)
is continuous and at least twice differentiable function. Using (A-2) we get

G′
2k−1(t) = −(2k−1)G2k−2(t)

and
G′′

2k−1(t) = (2k−1)(2k−2)G2k−3(t).

Let us suppose that G2k−3 has no zeros in the interval (0,1/2). We know that 0 and 1/2
are the zeros of G2k−1(t). Let us suppose that some α, 0 < α < 1/2, is also a zero of
G2k−1(t). Then inside each of the intervals (0,α) and (α,1/2) the derivative G′

2k−1(t)
must have at least one zero, say β1, 0 < β1 < α and β2, α < β2 < 1/2. Therefore, the
second derivative G′′

2k−1(t) must have at least one zero inside the interval (β1,β2) . Thus,
from the assumption that G2k−1(t) has a zero inside the interval (0,1/2) , it follows that
(2k−1)(2k−2)G2k−3(t) also has a zero inside this interval. Thus, G2k−1(t) can not have
a zero inside the interval (0,1/2) . To determine the sign of G2k−1(t), note that

G2k−1

(
1
4

)
= (v−2u)B2k−1

(
1
4

)
.

We have [1,23.1.14]

(−1)kB2k−1(t) > 0, 0 < t <
1
2
,

which implies

(−1)k−1G2k−1

(
1
4

)
= (−1)k(2u− v)B2k−1

(
1
4

)
> 0 for v ≤ u

and

(−1)kG2k−1

(
1
4

)
> 0 for v ≥ 4u

So, we proved our assertions. �

Corollary 3.21 For k ≥ 2 and v ≤ u, functions (−1)kF2k(t) and (−1)kG2k(t) are strictly
increasing on the interval (0,1/2) , and strictly decreasing on the interval (1/2,1) . Also,
for k ≥ 2 and v ≥ 4u, functions (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly increas-
ing on the interval (0,1/2) , and strictly decreasing on the interval (1/2,1) . Further, for
k ≥ 2, v ≤ u or v ≥ 4u we have

max
t∈[0,1]

|F2k(t)| =
(
2−21−2k

)
|(v−2u)B2k| ,

and

max
t∈[0,1]

|G2k(t)| =
{ [

2u− v(1−21−2k)
] |B2k|, for v ≤ u,[

v−2u(1−21−2k)
] |B2k|, for v ≥ 4u.
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Proof. Using (A-2) for v ≤ u we get[
(−1)kF2k(t)

]′
=
[
(−1)kG2k(t)

]′
= 2k(−1)k−1G2k−1(t)

and (−1)k−1G2k−1(t) > 0 for 0 < t < 1/2, by Lemma 3.12. Thus, (−1)kF2k(t) and
(−1)kG2k(t) are strictly increasing on the interval (0,1/2) . Also, by Lemma 3.11, we
have F2k(1− t) = F2k(t), 0 ≤ t ≤ 1 and G2k(1− t) = G2k(t), 0 ≤ t ≤ 1, which implies that
(−1)kF2k(t) and (−1)kG2k(t) are strictly decreasing on the interval (1/2,1) . The proof of
the second assertion is similar. Further, F2k(0) = F2k(1) = 0, which implies that |F2k(t)|
achieves its maximum at t = 1/2, that is

max
t∈[0,1]

|F2k(t)| =
∣∣∣∣F2k

(
1
2

)∣∣∣∣= (2−21−2k
)
|(v−2u)B2k| .

Also

max
t∈[0,1]

|G2k(t)| = max

{
|G2k (0)| ,

∣∣∣∣G2k

(
1
2

)∣∣∣∣}
=
{ [

2u− v(1−21−2k)
] |B2k|, for v ≤ u,[

v−2u(1−21−2k)
] |B2k|, for v ≥ 4u.

which completes the proof. �

Corollary 3.22 For k ≥ 2, and v ≤ u or v ≥ 4u we have

∫ 1

0
|F2k−1(t)|dt =

∫ 1

0
|G2k−1(t)|dt =

(
2−21−2k

)
k

|(v−2u)B2k| .

Also, we have ∫ 1

0
|F2k(t)|dt =

∣∣B̃2k
∣∣= ∣∣[2u− v(1−21−2 j)]B2k

∣∣
and ∫ 1

0
|G2k(t)|dt ≤ 2

∣∣B̃2k

∣∣= 2
∣∣[2u− v(1−21−2 j)]B2k

∣∣ .
Proof. Using (A-2) it is easy to see that

G′
m(t) = −mGm−1(t), m ≥ 3. (3.169)

Now, using Lemma 3.11, Lemma 3.12 and (3.169) we get∫ 1

0
|G2k−1(t)|dt = 2

∣∣∣∣∫ 1/2

0
G2k−1(t)dt

∣∣∣∣= 2

∣∣∣∣− 1
2k

G2k(t)|1/2
0

∣∣∣∣
=

1
k

∣∣∣∣G2k

(
1
2

)
−G2k (0)

∣∣∣∣=
(
2−21−2k

)
k

|(v−2u)B2k| ,
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which proves the first assertion. By Corollary 3.21 and because F2k(0) = F2k(1) = 0, F2k(t)
does not change sign on the interval (0,1). Therefore, using (3.167) and (3.169), we get∫ 1

0
|F2k(t)|dt =

∣∣∣∣∫ 1

0
F2k(t)dt

∣∣∣∣= ∣∣∣∣∫ 1

0

[
G2k(t)− B̃2k

]
dt

∣∣∣∣
=
∣∣∣∣− 1

2k+1
G2k+1(t)|10− B̃2k

∣∣∣∣= ∣∣B̃2k
∣∣ ,

which proves the second assertion. Finally, we use (3.167) again and the triangle inequality
to obtain ∫ 1

0
|G2k(t)|dt =

∫ 1

0

∣∣F2k(t)+ B̃2k

∣∣dt ≤
∫ 1

0
|F2k(t)|dt +

∣∣B̃2k

∣∣= 2
∣∣B̃2k

∣∣ ,
which proves the third assertion. �

Now, we use formulae established in Theorem 3.27 to prove a number of inequalities
using Lp norms for 1 ≤ p ≤ ∞. These inequalities are generally sharp (in case p = 1 the
best possible).

Theorem 3.28 Assume (p,q) is a pair of conjugate exponents, 1 ≤ p,q ≤ ∞. If
f : [0,1]→ R is such that f (n) ∈ Lp[0,1] for some n ≥ 1. Then we have∣∣∣∣∫ 1

0
f (t)dt−D(u,v)+ T̃n−1(u,v)

∣∣∣∣≤ K(n, p;u,v) · ‖ f (n)‖p, (3.170)

and ∣∣∣∣∫ 1

0
f (t)dt−D(u,v)+ T̃n(u,v)

∣∣∣∣≤ K∗(n, p;u,v) · ‖ f (n)‖p, (3.171)

where

K(n, p;u,v) =
1

(2u+ v)(n!)

[∫ 1

0
|Fn(t)|q dt

]1/q

and

K∗(n, p;u,v) =
1

(2u+ v)(n!)

[∫ 1

0
|Gn(t)|q dt

]1/q

.

The constants K(n, p;u,v) and K∗(n, p;u,v) are sharp for 1 < p ≤ ∞ and the best possible
for p = 1.

Proof. The proof is analogous to the proof of Theorem 2.2. �

Corollary 3.23 Let f : [0,1] → R be a L-Lipschitzian function on [0,1]. Then∣∣∣∣∫ 1

0
f (t)dt −D(u,v)

∣∣∣∣≤ 4u2 + v2

4(2u+ v)2 ·L.

If f ′ is L-Lipschitzian on [0,1], then∣∣∣∣∫ 1

0
f (t)dt −D(u,v)

∣∣∣∣≤ 48u3−12u2v+ v3

24(2u+ v)3 ·L.
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Proof. Using (3.159) and (3.160) we get

∫ 1

0
|F1(t)|dt =

4u2 + v2

4(2u+ v)
and

∫ 1

0
|F2(t)|dt =

48u3−12u2v+ v3

12(2u+ v)2 .

Therefore, applying (3.170) with n = 1,2 and p = ∞ we get the above inequalities. �

Remark 3.28 The estimation in the first inequality in Corollary 3.23 achieves minimum
of 1/8 for u = 1 and v = 2, which is bitrapezoid formula (see [20] and [28]) and the second
achieves minimum of 1/81 for u = 1 and v = 4, which is Simpson’s formula (see [29]).

Remark 3.29 Let f : [0,1]→ R be such that f (n−1) is an L-Lipschitzian function on [0,1]
for some n ≥ 3. Then for v ≤ u or v ≥ 4u, from Corollary 3.22 we get

K(2k−1,∞;u,v) =
2

(2u+ v) [(2k)!]
(2−21−2k) |(v−2u)B2k| ,

K∗(2k,∞;u,v) =
1

(2u+ v) [(2k)!]

∣∣∣[2u− v(1−21−2k)]B2k

∣∣∣
and

K(2k,∞;u,v) =
2

(2u+ v) [(2k)!]

∣∣∣[2u− v(1−21−2k)]B2k

∣∣∣ .
Corollary 3.24 Let f : [0,1]→R be a continuous function of bounded variation on [0,1].
Then ∣∣∣∣∫ 1

0
f (t)dt−D(u,v)

∣∣∣∣≤ 1
4

[
1+

|2u− v|
2u+ v

]
·V 1

0 ( f ).

If f ′ is a continuous function of bounded variation on [0,1], then∣∣∣∣∫ 1

0
f (t)dt −D(u,v)

∣∣∣∣≤ 1
16(2u+ v)2 [v2 + |8u2− v2|] ·V 1

0 ( f ′).

Proof. From (3.159) and (3.160), we get

max
t∈[0,1]

|F1(t)| = max
{

u,
v
2

}
=

1
4
[2u+ v+ |2u− v|] and

max
t∈[0,1]

|F2(t)| = max

{
u2

2u+ v
,
v−2u

4

}
=

1
8(2u+ v)

[v2 + |8u2− v2|].

Therefore, applying (3.170) with n = 1,2 and p = 1 we get the above inequalities. �

Remark 3.30 The estimations in inequalities in Corollary 3.24 achieve minimuma of 1/4
and 1/32 for u = 1 and v = 2 which is bitrapezoid formula (see [28]).
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Remark 3.31 Let f : [0,1] → R be such that f (n−1) is a continuous function of bounded
variation on [0,1] for some n ≥ 3. Then for v ≤ u and v ≥ 4u from Corollary 3.21 we get

K(2k−1,1;u,v) =
1

(2u+ v) [(2k−1)!]
max
t∈[0,1]

|F2k−1(t)| ,

K∗(2k,1;u,v) =

(
2−21−2k

)
(2u+ v) [(2k)!]

|(v−2u)B2k|

and

K(2k,1;u,v) =
1

(2u+ v) [(2k)!]

{ [
2u− v(1−21−2k)

] |B2k|, for v ≤ u,[
v−2u(1−21−2k)

] |B2k|, for v ≥ 4u.

Now, we calculate the optimal constant for p = 2.

Corollary 3.25 Let f : [0,1] → R be such that f (n) ∈ L2[0,1] for some n ≥ 1. Then, we
have ∣∣∣∣∫ 1

0
f (t)dt−D(u,v)+ T̃n−1(u,v)

∣∣∣∣
≤ 1

(2u+ v)

[
(−1)n−1

(2n)!
[
4u2 + v2−4uv(1−21−2n)

]
B2n +

B̃2
n

(n!)2

]1/2

‖ f (n)‖2,

and ∣∣∣∣∫ 1

0
f (t)dt−D(u,v)+ T̃n(u,v)

∣∣∣∣
≤ 1

(2u+ v)

[
(−1)n−1

(2n)!
[
4u2 + v2−4uv(1−21−2n)

]
B2n

]1/2

‖ f (n)‖2.

Proof. Using integration by parts and also using Lemma 1 from [30] we have∫ 1

0
G2

n(t)dt = (−1)n−1 n(n−1) . . .2
(n+1)(n+2) . . .(2n−1)

·
[
− 1

2n
G2n(t)G1(t)|10 +

1
2n

∫ 1

0
G2n(t)dG1(t)

]
= (−1)n−1 (n!)2

(2n)!

[
−(2u+ v)

∫ 1

0
G2n(t)dt +2uG2n(0)+ vG2n

(
1
2

)]
= (−1)n−1 (n!)2

(2n)!

[
4uvB2n

(
1
2

)
+(4u2 + v2)B2n

]
= (−1)n−1 (n!)2

(2n)!
[
4u2 + v2−4uv(1−21−2n)

]
B2n.



136 3 GENERAL 3-POINT QUADRATURE FORMULAE OF EULER TYPE

Now, ∫ 1

0
F2

n (t)dt =
∫ 1

0

[
Gn(t)− B̃n

]2
dt

=
∫ 1

0

[
G2

n(t)−2Gn(t)B̃n + B̃2
n

]
dt =

∫ 1

0
G2

n(t)dt + B̃2
n

= (−1)n−1 (n!)2

(2n)!
[
4u2 + v2−4uv(1−21−2n)

]
B2n + B̃2

n.

�

Finally, we give the values of optimal constant for n = 1 and arbitrary p from Theorem
3.28.

Remark 3.32 Note that K∗(1, p;u,v) = K(1, p;u,v), for 1 < p ≤ ∞, since G1(t) = F1(t).
Also, for 1 < p ≤ ∞ we can easily calculate K(1, p;u,v). We get

K(1, p;u,v) =
1

2(2u+ v)

[
(2u)q+1 + vq+1

(2u+ v)(q+1)

] 1
q

, 1 < p ≤ ∞.

Now we use the formula (3.157) and one technical result from [83] to obtain Grüss
type inequality related to that general Euler-Simpson formula:

Theorem 3.29 Suppose that f : [0,1] → R is such that f (n) exists and is integrable on
[0,1], for some n ≥ 1. Assume that

mn ≤ f (n)(t) ≤ Mn, 0 ≤ t ≤ 1,

for some constants mn and Mn. Then∣∣∣∣∫ 1

0
f (t)dt−D(u,v)+ T̃n(u,v)

∣∣∣∣≤Cn(Mn−mn), (3.172)

where Cn = 1
(2u+v)(n!)

∫ 1
0 |Gn(t)|dt.

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

Theorem 3.30 If f : [0,1] → R is such that f (2k) is a continuous function on [0,1] , for
some k ≥ 2 and v ≤ u or v ≥ 4u, then there exists a point η ∈ [0,1] such that

R̃2
2k( f ) = − [2u− v(1−21−2k)]B2k

(2u+ v)[(2k)!]
f (2k)(η). (3.173)

Proof. We can rewrite R̃2
2k( f ) for v ≤ u as R̃2

2k( f ) = (−1)k Jk
(2u+v)[(2k)!] , where

Jk =
∫ 1
0 (−1)kF2k(s) f (2k)(s)ds. From Corollary 3.21 follows that (−1)kF2k(s) ≥ 0,

0 ≤ s ≤ 1 and the claim from the mean value theorem for integrals and Corollary 3.22.
The proof for v ≥ 4u is similar. �
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Remark 3.33 For k = 2 formula (3.173) reduces to

R̃2
4( f ) =

16u−7v
5760(2u+ v)

f (4)(η).

Now we study, the general Simpson quadrature formula∫ 1

0
f (t)dt =

1
u+ v+w

[
u f (0)+ v f

(
1
2

)
+wf (1)

]
+E( f ;u,v,w) (3.174)

with E( f ;u,v,w) being the remainder, u,v,w ∈ Z
+ and we are using identities (2.36) and

(2.37) to get two new identities of Euler type (see [20]).

Theorem 3.31 Let f : [0,1]→ R be such that f (n−1) is a continuous function of bounded
variation on [0,1], for some n ≥ 1. Then∫ 1

0
f (t)dt = D(u,v,w)− T̄n(u,v,w)+ R̄1

n( f ), (3.175)

and ∫ 1

0
f (t)dt = D(u,v,w)− T̄n−1(u,v,w)+ R̄2

n( f ), (3.176)

where

D(u,v,w) =
1

u+ v+w

[
u f (0)+ v f

(
1
2

)
+wf (1)

]
,

R̄1
n( f ) =

1
(u+ v+w)(n!)

∫ 1

0
Ḡn (t)d f (n−1)(t),

R̄2
n( f ) =

1
(u+ v+w)(n!)

∫ 1

0
F̄n (t)d f (n−1)(t),

Ḡk(t) = (u+w)B∗
k(1− t)+ vB∗

k

(
1
2
− t

)
, t ∈ R,

F̄k(t) = Ḡk(t)− B̄k, t ∈ R, k ≥ 1,

B̄k = uBk(0)+ vBk

(
1
2

)
+wBk(1), k ≥ 1

and

T̄m(u,v,w) =
1

u+ v+w

[
uTm(0)+ vTm

(
1
2

)
+wTm(1)

]
.

Proof. Put x = 0, 1/2, 1 in formula (1.1) to get three new formulae. Then multiply these
new formulae by u, v, w respectively, and add them up. The result is formula (3.175).
Formula (3.176) is obtained from (1.2) by the same procedure. �
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Theorem 3.32 Assume (p1,q1) and (p2,q2) are two pairs of conjugate exponents,
1 ≤ p1,q1, p2,q2 ≤ ∞. Let x ∈ [0,1] and f : [0,1] → R be such that f (n) ∈ Lp1 [0,x] and
f (n) ∈ Lp2 [x,1], for some n ≥ 1. Then, we have∣∣∣∣∫ 1

0
f (t)dt −D(u,v,w)+ T̄n−1(u,v,w)

∣∣∣∣ (3.177)

≤ K(n, p1;u,v,w,x) · ‖ f (n)‖Lp1 [0,x] +K(n, p2;u,v,w,x) · ‖ f (n)‖Lp2 [x,1],

and ∣∣∣∣∫ 1

0
f (t)dt −D(u,v,w)+ T̄n(u,v,w)

∣∣∣∣ (3.178)

≤ K∗(n, p1;u,v,w,x) · ‖ f (n)‖Lp1 [0,x] +K∗(n, p2;u,v,w,x) · ‖ f (n)‖Lp2 [x,1],

where

K(n, p1;u,v,w,x) =
1

(u+ v+w)(n!)

[∫ x

0
|F̄n(t)|q1 dt

]1/q1

,

K(n, p2;u,v,w,x) =
1

(u+ v+w)(n!)

[∫ 1

x
|F̄n(t)|q2 dt

]1/q2

,

K∗(n, p1;u,v,w,x) =
1

(u+ v+w)(n!)

[∫ x

0

∣∣Ḡn(t)
∣∣q1 dt

]1/q1

and

K∗(n, p2;u,v,w,x) =
1

(u+ v+w)(n!)

[∫ 1

x

∣∣Ḡn(t)
∣∣q2 dt

]1/q2

.

The inequalities are sharp for 1 < p1, p2 ≤ ∞ and the best possible for p1 = 1 or p2 = 1.

Proof. Applying the Hölder inequality we have∣∣∣∣ 1
(u+ v+w)(n!)

∫ 1

0
F̄n(t) f (n)(t)dt

∣∣∣∣
=
∣∣∣∣ 1
(u+ v+w)(n!)

∫ x

0
F̄n(t) f (n)(t)dt +

1
(u+ v+w)(n!)

∫ 1

x
F̄n(t) f (n)(t)dt

∣∣∣∣
≤ 1

(u+ v+w)(n!)

{[∫ x

0
|F̄n(t)|q1dt

]1/q1

‖ f (n)‖Lp1 [0,x]

+
[∫ 1

x
|F̄n(t)|q2dt

]1/q2

‖ f (n)‖Lp2 [x,1]

}
= K(n, p1;u,v,w,x)‖ f (n)‖Lp1 [0,x] +K(n, p2;u,v,w,x)‖ f (n)‖Lp2 [x,1].

Using the above inequality from (3.158) we get estimate (3.177). In the same manner, from
(3.157) we get estimate (3.178). The proof of sharpness and best possibility is similar as
in the proof of Theorem 2.2. �
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Remark 3.34 For n = 1, 0 ≤ u ≤ 1
2 ≤ 1−w ≤ 1 and u+ v+w = 1 in inequality (3.177)

we get inequality

∣∣∣∣∫ 1

0
f (t)dt−D(u,v,w)

∣∣∣∣ ≤
[

uq1+1 +
(1

2 −u
)q1+1

q1 +1

]1/q1

‖ f ′‖Lp1 [0,1/2]

+

[
wq2+1 +

(
w− 1

2

)q2+1

q2 +1

]1/q2

‖ f ′‖Lp2 [1/2,1],

which is inequality proved in [21] for t1 = u, t2 = 1
2 , t3 = 1−w.

Remark 3.35 Using formulae (3.177) and (3.178) we can also get the other inequalities
from [21].

3.3.2 General dual Euler-Simpson formulae

Results from this section are published in [102].
Here we study the general dual Simpson quadrature formula∫ 1

0
f (t)dt =

1
2u− v

[
u f

(
1
4

)
− v f

(
1
2

)
+u f

(
3
4

)]
+E( f ;u,v) (3.179)

with E( f ;u,v) being the remainder, u,v ∈ Z
+, v < 2u and the greatest common divisor of

u and v is 1. The aim of this section is to establish general dual Simpson formula (3.179)
using identities (1.1) and (1.2) and give various error estimates for the quadrature rules
based on such generalizations. We use the extended Euler formulae for a = 0, b = 1 to
obtain two new integral identities. We call them the general dual Euler-Simpson formulae.
After that we prove a number of inequalities which give error estimates for the general dual
Euler-Simpson formulae for functions whose derivatives are from the Lp-spaces.

For k ≥ 1 define the functions GD
k (t) and FD

k (t) as

GD
k (t) = uB∗

k

(
1
4
− t

)
− vB∗

k

(
1
2
− t

)
+uB∗

k

(
3
4
− t

)
, t ∈ R

and
FD

k (t) = GD
k (t)− B̃D

k , t ∈ R, k ≥ 1,

where

B̃D
k = uBk

(
1
4

)
− vBk

(
1
2

)
+uBk

(
3
4

)
, k ≥ 1.

Especially, using B1(t) = t − 1/2 we get B̃D
1 = 0. Also, for k ≥ 2 we have B̃D

k = GD
k (0),

that is
FD

k (t) = GD
k (t)−GD

k (0), k ≥ 2, and FD
1 (t) = GD

1 (t), t ∈ R.

Obviously, GD
k (t) and FD

k (t) are periodic functions of period 1 and continuous for k ≥ 2.
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Let f : [0,1] → R be such that f (n−1) exists on [0,1] for some n ≥ 1. We introduce the
following notation

F(u,v) =
1

2u− v

[
u f

(
1
4

)
− v f

(
1
2

)
+u f

(
3
4

)]
.

Further, we define T̃ D
0 (u,v) = 0 and, for 1 ≤ m ≤ n,

T̃ D
m (u,v) =

1
2u− v

[
uTm

(
1
4

)
− vTm

(
1
2

)
+uTm

(
3
4

)]
,

where Tm(x) is given by (1.3). For m ≥ 1

T̃ D
m (u,v) =

1
2u− v

m

∑
k=1

B̃k

k!

[
f (k−1)(1)− f (k−1)(0)

]
. (3.180)

In the next theorem we establish two formulae which play the key role in this section.
We call them the general dual Euler-Simpson formulae.

Theorem 3.33 Let f : [0,1]→ R be such that f (n−1) is a continuous function of bounded
variation on [0,1], for some n ≥ 1. Then∫ 1

0
f (t)dt = F(u,v)− T̃D

n (u,v)+ R̃D1
n ( f ), (3.181)

and ∫ 1

0
f (t)dt = F(u,v)− T̃D

n−1(u,v)+ R̃D2
n ( f ), (3.182)

where

R̃D1
n ( f ) =

1
(2u− v)(n!)

∫ 1

0
Gn (t)d f (n−1)(t),

and

R̃D2
n ( f ) =

1
(2u− v)(n!)

∫ 1

0
Fn (t)d f (n−1)(t).

Proof. Put x = 1/4, 1/2, 3/4 in formula (1.1) to get three new formulae. Then multiply
these new formulae by u, − v, u respectively, and add them up. The result is formula
(3.181). Formula (3.182) is obtained from (1.2) by the same procedure. �

Remark 3.36 If in Theorem 3.33 we chose u = 2 and v = 1 we get dual Euler Simpson
formulae [26] and for u = 8 and v = 1 we get corrected dual Euler Simpson formulae [52].

By direct calculations we get

FD
1 (t) = GD

1 (t) =

⎧⎪⎪⎨⎪⎪⎩
(v−2u)t, 0 ≤ t ≤ 1/4
(v−2u)t +u, 1/4 < t ≤ 1/2
(v−2u)t +u− v, 1/2 < t ≤ 3/4
(v−2u)t +2u− v, 3/4 < t ≤ 1

, (3.183)
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GD
2 (t) =

⎧⎪⎪⎨⎪⎪⎩
(2u− v)t2 +(2v−u)/24, 0 ≤ t ≤ 1/4
(2u− v)t2−2ut +(11u+2v)/24, 1/4 < t ≤ 1/2
(2u− v)t2 +(2v−2u)t +(11u−22v)/24, 1/2 < t ≤ 3/4
(2u− v)t2 +(2v−4u)t +(47u−22v)/24, 3/4 < t ≤ 1

, (3.184)

FD
2 (t) =

⎧⎪⎪⎨⎪⎪⎩
(2u− v)t2, 0 ≤ t ≤ 1/4
(2u− v)t2−2ut +u/2, 1/4 < t ≤ 1/2
(2u− v)t2 +(2v−2u)t +(u−2v)/2, 1/2 < t ≤ 3/4
(2u− v)t2 +(2v−4u)t +2u− v, 3/4 < t ≤ 1

, (3.185)

FD
3 (t) = GD

3 (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(v−2u)t3 +(u−2v)t/8, 0 ≤ t ≤ 1/4
(v−2u)t3 +3ut2− (11u+2v)t/8+3u/16, 1/4 < t ≤ 1/2
(v−2u)t3 +(3u−3v)t2

+(22v−11u)t/8+(3u−12v)/16, 1/2 < t ≤ 3/4
(v−2u)t3 +(6u−3v)t2

+(22v−47u)t/8+(15u−6v)/8, 3/4 < t ≤ 1

.

(3.186)
Now, we will prove some properties of the functions GD

k (t) and FD
k (t) defined above. The

Bernoulli polynomials are symmetric with respect to 1/2, that is [1,23.1.8]

Bk(1− t) = (−1)kBk(t), ∀t ∈ R, k ≥ 1. (3.187)

Also, we have

Bk(1) = Bk(0) = Bk, k ≥ 2, B1(1) = −B1(0) =
1
2

and
B2 j−1 = 0, j ≥ 2.

Therefore, using [1,23.1.21,23.1.22]

B2 j

(
1
2

)
= −(1−21−2 j)B2 j, B2 j

(
1
4

)
= −2−2 j (1−21−2 j)B2 j j ≥ 1,

we get
B̃D

2 j−1 = 0, j ≥ 1 (3.188)

and for j ≥ 1

B̃D
2 j = uB2 j

(
1
4

)
− vB2 j

(
1
2

)
+uB2 j

(
3
4

)
= (v−u ·21−2 j)(1−21−2 j)B2 j. (3.189)

Now, by (3.188) we have
FD

2 j−1(t) = GD
2 j−1(t), j ≥ 1, (3.190)

and, by (3.189),

FD
2 j(t) = GD

2 j(t)− B̃D
2 j = GD

2 j(t)− (v−u ·21−2 j)(1−21−2 j)B2 j, j ≥ 1. (3.191)

Further, the points 0 and 1 are the zeros of FD
k (t) = GD

k (t)−GD
k (0), k ≥ 2, that is

FD
k (0) = FD

k (1) = 0, k ≥ 2.
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As we shall see below, for j ≥ 1, 0 and 1 are the only zeros of FD
2 j(t) for u/2 ≤ v < 2u.

Next, setting t = 1/2 in (3.187) we get

Bk

(
1
2

)
= (−1)kBk

(
1
2

)
, k ≥ 1.

which implies that

B2 j−1

(
1
2

)
= 0, j ≥ 1.

Using the above formulae, we get

FD
2 j−1

(
1
2

)
= GD

2 j−1

(
1
2

)
= 0, j ≥ 1.

We shall see that for j ≥ 2, 0, 1/2 and 1 are the only zeros of FD
2 j−1(t) = GD

2 j−1(t) for
u/2 ≤ v < 2u. Also, note that

GD
2 j

(
1
2

)
= uB2 j

(
3
4

)
− vB2 j +uB2 j

(
1
4

)
=
[−v−u ·21−2 j(1−21−2 j)

]
B2 j, j ≥ 1,

FD
2 j

(
1
2

)
= GD

2 j

(
1
2

)
− B̃D

2 j = −2v(1−2−2 j)B2 j, j ≥ 1. (3.192)

Lemma 3.13 For k ≥ 2 we have

GD
k (1− t) = (−1)kGD

k (t), 0 ≤ t ≤ 1,

and
FD

k (1− t) = (−1)kFD
k (t), 0 ≤ t ≤ 1.

Proof. As we noted in introduction, the functions B∗
k(t) are periodic with period 1 and

continuous for k ≥ 2. Therefore, for k ≥ 2 and 0 ≤ t ≤ 1 we have

GD
k (1− t) = uB∗

k

(
−3

4
+ t

)
− vB∗

k

(
−1

2
+ t

)
+uB∗

k

(
−1

4
+ t

)

=

⎧⎪⎪⎨⎪⎪⎩
uB∗

k

( 1
4 + t

)− vB∗
k

( 1
2 + t

)
+uB∗

k

( 3
4 + t

)
, 0 ≤ t ≤ 1/4,

uB∗
k

( 1
4 + t

)− vB∗
k

( 1
2 + t

)
+uB∗

k

(− 1
4 + t

)
, 1/4 < t ≤ 1/2,

uB∗
k

(
1
4 + t

)− vB∗
k

(− 1
2 + t

)
+uB∗

k

(− 1
4 + t

)
, 1/2 < t ≤ 3/4,

uB∗
k

(− 3
4 + t

)− vB∗
k

(− 1
2 + t

)
+uB∗

k

(− 1
4 + t

)
, 3/4 < t ≤ 1,

= (−1)k ×

⎧⎪⎪⎨⎪⎪⎩
uB∗

k

( 3
4 − t

)− vB∗
k

( 1
2 − t

)
+uB∗

k

( 1
4 − t

)
, 0 ≤ t ≤ 1/4,

uB∗
k

(
3
4 − t

)− vB∗
k

(
1
2 − t

)
+uB∗

k

(
5
4 − t

)
, 1/4 < t ≤ 1/2,

uB∗
k

(
3
4 − t

)− vB∗
k

(
3
2 − t

)
+uB∗

k

(
5
4 − t

)
, 1/2 < t ≤ 3/4,

uB∗
k

(
7
4 − t

)− vB∗
k

(
3
2 − t

)
+uB∗

k

(
5
4 − t

)
, 3/4 < t ≤ 1,

= (−1)kGD
k (t),
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which proves the first identity. Further, we have FD
k (t) = GD

k (t)−GD
k (0) and (−1)kGD

k (0)
= GD

k (0), since GD
2 j+1(0) = 0, so that we have

FD
k (1− t) = GD

k (1− t)−GD
k (0) = (−1)k [GD

k (t)−GD
k (0)

]
= (−1)kFD

k (t) ,

which proves the second identity. �

Note that the identities established in Lemma 3.11 are valid for k = 1, too, except at
the points 1/4, 1/2 and 3/4 of discontinuity of FD

1 (t) = GD
1 (t).

Lemma 3.14 For k ≥ 2 and u/2 ≤ v < 2u the function GD
2k−1(t) has no zeros in the

interval (0,1/2). The sign of this function is determined by

(−1)k−1GD
2k−1(t) > 0, 0 < t <

1
2
.

Proof. For k = 2, GD
3 (t) is given by (3.186) and it is easy to see that for u/2 ≤ v < 2u

−GD
3 (t) > 0, 0 < t <

1
2
,

Thus, our assertion is true for k = 2. Now, assume that k≥ 3. Then 2k−1≥ 5 and GD
2k−1(t)

is continuous and at least twice differentiable function. Using (A-2) we get

GD′
2k−1(t) = −(2k−1)GD

2k−2(t)

and
GD′′

2k−1(t) = (2k−1)(2k−2)GD
2k−3(t).

Let us suppose that GD
2k−3 has no zeros in the interval (0,1/2). We know that 0 and 1/2

are the zeros of GD
2k−1(t). Let us suppose that some α, 0 < α < 1/2, is also a zero of

GD
2k−1(t). Then inside each of the intervals (0,α) and (α,1/2) the derivative GD′

2k−1(t)
must have at least one zero, say β1, 0 < β1 < α and β2, α < β2 < 1/2. Therefore, the
second derivative GD′′

2k−1(t) must have at least one zero inside the interval (β1,β2) . Thus,
from the assumption that GD

2k−1(t) has a zero inside the interval (0,1/2) , it follows that
(2k−1)(2k−2)GD

2k−3(t) also has a zero inside this interval. Thus, GD
2k−1(t) can not have

a zero inside the interval (0,1/2) . To determine the sign of GD
2k−1(t), note that

GD
2k−1

(
1
4

)
= −vB2k−1

(
1
4

)
.

We have [1,23.1.14]

(−1)kB2k−1(t) > 0, 0 < t <
1
2
,

which implies

(−1)k−1GD
2k−1

(
1
4

)
= (−1)kvB2k−1

(
1
4

)
> 0.

So, we proved our assertions. �
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Corollary 3.26 For k ≥ 2 and u/2 ≤ v < 2u the functions (−1)kFD
2k(t) and (−1)kGD

2k(t)
are strictly increasing on the interval (0,1/2) , and strictly decreasing on the interval
(1/2,1) . Further, for k ≥ 2 and u/2 ≤ v < 2u we have

max
t∈[0,1]

∣∣FD
2k(t)

∣∣= 2v
(
1−2−2k

)
|B2k| ,

and
max
t∈[0,1]

∣∣GD
2k(t)

∣∣= [v+u ·21−2k(1−21−2k)
]
|B2k|.

Proof. Using (A-2) we get[
(−1)kFD

2k(t)
]′

=
[
(−1)kGD

2k(t)
]′

= 2k(−1)k−1GD
2k−1(t)

and (−1)k−1GD
2k−1(t) > 0 for 0 < t < 1/2, by Lemma 3.14. Thus, (−1)kFD

2k(t) and
(−1)kGD

2k(t) are strictly increasing on the interval (0,1/2) . Also, by Lemma 3.13, we
have FD

2k(1− t) = FD
2k(t), 0 ≤ t ≤ 1 and GD

2k(1− t) = GD
2k(t), 0 ≤ t ≤ 1, which implies

that (−1)kFD
2k(t) and (−1)kGD

2k(t) are strictly decreasing on the interval (1/2,1). Further,
FD

2k(0) = FD
2k(1) = 0, which implies that

∣∣FD
2k(t)

∣∣ achieves its maximum at t = 1/2, that is

max
t∈[0,1]

∣∣FD
2k(t)

∣∣= ∣∣∣∣FD
2k

(
1
2

)∣∣∣∣= 2v
(
1−2−2k

)
|B2k| .

Also

max
t∈[0,1]

∣∣GD
2k(t)

∣∣ = max

{∣∣GD
2k (0)

∣∣ , ∣∣∣∣GD
2k

(
1
2

)∣∣∣∣}=
[
v+u ·21−2k(1−21−2k)

]
|B2k|,

which completes the proof. �

Corollary 3.27 For k ≥ 2 and u/2 ≤ v < 2u we have∫ 1

0

∣∣FD
2k−1(t)

∣∣dt =
∫ 1

0

∣∣GD
2k−1(t)

∣∣dt =
2v
k

(1−2−2k) |B2k| .

Also, we have ∫ 1

0

∣∣FD
2k(t)

∣∣dt =
∣∣B̃D

2k

∣∣= (v−u ·21−2 j)(1−21−2 j) |B2k|

and ∫ 1

0

∣∣GD
2k(t)

∣∣dt ≤ 2
∣∣B̃D

2k

∣∣= 2(v−u ·21−2 j)(1−21−2 j) |B2k| .

Proof. Using (A-2) it is easy to see that

GD′
m (t) = −mGD

m−1(t), m ≥ 3. (3.193)
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Now, using Lemma 3.13, Lemma 3.14 and (3.193) we get

∫ 1

0

∣∣GD
2k−1(t)

∣∣dt = 2

∣∣∣∣∫ 1/2

0
GD

2k−1(t)dt
∣∣∣∣= 2

∣∣∣∣− 1
2k

GD
2k(t)

∣∣1/2
0

∣∣∣∣
=

1
k

∣∣∣∣GD
2k

(
1
2

)
−GD

2k (0)
∣∣∣∣= 2v

k
(1−2−2k) |B2k| ,

which proves the first assertion. By Corollary 3.26 and because FD
2k(0) = FD

2k(1) = 0, FD
2k(t)

does not change its sign on the interval (0,1). Therefore, using (3.191) and (3.193), we get

∫ 1

0

∣∣FD
2k(t)

∣∣dt =
∣∣∣∣∫ 1

0
FD

2k(t)dt
∣∣∣∣= ∣∣∣∣∫ 1

0

[
GD

2k(t)− B̃D
2k

]
dt

∣∣∣∣
=
∣∣∣∣− 1

2k+1
GD

2k+1(t)
∣∣1
0 − B̃D

2k

∣∣∣∣= ∣∣B̃D
2k

∣∣ ,
which proves the second assertion. Finally, we use (3.191) again and the triangle inequality
to obtain ∫ 1

0

∣∣GD
2k(t)

∣∣dt =
∫ 1

0

∣∣FD
2k(t)+ B̃D

2k

∣∣dt ≤ ∫ 1

0

∣∣FD
2k(t)

∣∣dt + ∣∣B̃D
2k

∣∣= 2
∣∣B̃D

2k

∣∣ ,
which proves the third assertion. �

Now we use formulae established in Theorem 3.33 to prove a number of inequalities
using Lp norms for 1 ≤ p ≤ ∞. These inequalities are generally sharp (in case p = 1 the
best possible).

Theorem 3.34 Assume (p,q) is a pair of conjugate exponents, 1 ≤ p,q ≤ ∞. Let f :
[0,1] → R be such that f (n) ∈ Lp[0,1] for some n ≥ 1. Then, we have∣∣∣∣∫ 1

0
f (t)dt−F(u,v)+ T̃D

n−1(u,v)
∣∣∣∣≤ KD(n, p;u,v) · ‖ f (n)‖p, (3.194)

and ∣∣∣∣∫ 1

0
f (t)dt−F(u,v)+ T̃D

n (u,v)
∣∣∣∣≤ KD∗(n, p;u,v) · ‖ f (n)‖p, (3.195)

where

KD(n, p;u,v) =
1

(2u− v)(n!)

[∫ 1

0
|Fn(t)|q dt

]1/q

and

KD∗(n, p;u,v) =
1

(2u− v)(n!)

[∫ 1

0
|Gn(t)|q dt

]1/q

.

The constants KD(n, p;u,v) and KD∗(n, p;u,v) are sharp for 1 < p ≤ ∞ and the best pos-
sible for p = 1.
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Proof. Applying the Hölder inequality we have∣∣∣∣ 1
(2u− v)(n!)

∫ 1

0
FD

n (t) f (n)(t)dt

∣∣∣∣ ≤ 1
(2u− v)(n!)

[∫ 1

0

∣∣FD
n (t)

∣∣q dt

]1/q

·
∥∥∥ f (n)

∥∥∥
p

= KD(n, p;u,v) · ‖ f (n)‖p.

Using the above inequality from (3.182) we get estimate (3.194). In the same manner, from
(3.181) we get estimate (3.195). The proof of the optimality of KD(n, p;u,v) is analogous
to the proof of Theorem 2.2. �

Corollary 3.28 Let f : [0,1]→ R be a L-Lipschitzian function on [0,1]. Then∣∣∣∣∫ 1

0
f (t)dt −F(u,v)

∣∣∣∣≤ 2u+ v
8(2u− v)

·L.

If f ′ is L-Lipschitzian on [0,1], then∣∣∣∣∫ 1

0
f (t)dt−F(u,v)

∣∣∣∣≤ 2u2(3v+
√

2uv)+uv(5v−√
2uv)+2v2(v+3

√
2uv)

48(2u− v)(v+
√

2uv)(2u+ v+2
√

2uv)
·L.

Proof. Using (3.183) and (3.184) we get∫ 1

0

∣∣FD
1 (t)

∣∣dt =
2u+ v

8
and

∫ 1

0

∣∣FD
2 (t)

∣∣dt =
2u2(3v+

√
2uv)+uv(5v−√

2uv)+2v2(v+3
√

2uv)
24(v+

√
2uv)(2u+ v+2

√
2uv)

.

Therefore, applying (3.194) with n = 1,2 and p = ∞ we get the above inequalities. �

Remark 3.37 The estimation in the first inequality in Corollary 3.28 achieves an infimum
of 1/24 and the second inequality an infimum of 0 for u → ∞ and v = 1.

Remark 3.38 Let f : [0,1]→ R be such that f (n−1) is an L-Lipschitzian function on [0,1]
for some n ≥ 3. Then from Corollary 3.27 for u/2 ≤ v < 2u we get

KD(2k−1,∞;u,v) =
2v

(2u− v) [(2k)!]
(1−2−2k) |B2k| ,

KD∗(2k,∞;u,v) =
1

(2u− v) [(2k)!]
(v−u ·21−2k)(1−21−2k) |B2k|

and

KD(2k,∞;u,v) =
2

(2u− v) [(2k)!]
(v−u ·21−2k)(1−21−2k) |B2k| .
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Corollary 3.29 Let f : [0,1]→R be a continuous function of bounded variation on [0,1].
Then ∣∣∣∣∫ 1

0
f (t)dt−F(u,v)

∣∣∣∣≤ 2u+ v
4(2u− v)

·V 1
0 ( f ).

If f ′ is a continuous function of bounded variation on [0,1], then∣∣∣∣∫ 1

0
f (t)dt−F(u,v)

∣∣∣∣≤ 1
64(2u− v)

[2u+3v+ |2u−5v|] ·V1
0 ( f ′).

Proof. From (3.183) and (3.184), we get

max
t∈[0,1]

∣∣FD
1 (t)

∣∣ = max

{
2u− v

4
,
2u+ v

4

}
=

2u+ v
4

and

max
t∈[0,1]

∣∣FD
2 (t)

∣∣ = max

{
2u− v

16
,
v
4

}
=

1
32

[2u+3v+ |2u−5v|].

Therefore, applying (3.194) with n = 1,2 and p = 1 we get the above inequalities. �

Remark 3.39 The estimation in the first inequality in Corollary 3.29 achieves an infimum
of 1/4 and in the second inequality an infimum of 0 for u → ∞ and v = 1.

Remark 3.40 Let f : [0,1] → R be such that f (n−1) is a continuous function of bounded
variation on [0,1] for some n ≥ 3. Then from Corollary 3.26 for u/2 ≤ v < 2u we get

KD(2k−1,1;u,v) =
1

(2u− v) [(2k−1)!]
max
t∈[0,1]

∣∣FD
2k−1(t)

∣∣ ,
KD∗(2k,1;u,v) =

2v
(2u− v) [(2k)!]

(1−2−2k) |B2k|

and

KD(2k,1;u,v) =
1

(2u− v) [(2k)!]

[
v+u ·21−2k(1−21−2k)

]
|B2k|

Now, we calculate the optimal constant for p = 2.

Corollary 3.30 Let f (n) ∈ L2[0,1] for some n ≥ 1. Then, we have∣∣∣∣∫ 1

0
f (t)dt −F(u,v)+ T̃D

n−1(u,v)
∣∣∣∣

≤ 1
(2u− v)

[
(−1)n−1

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n

+
B̃2

n

(n!)2

]1/2

‖ f (n)‖2,
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and ∣∣∣∣∫ 1

0
f (t)dt −F(u,v)+ T̃D

n (u,v)
∣∣∣∣

≤ 1
(2u− v)

[
(−1)n−1

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n

]1/2

‖ f (n)‖2.

Proof. Using integration by parts and also using Lemma 1 from [30] we have∫ 1

0
(GD

n (t))2dt = (−1)n−1 n(n−1) . . .2
(n+1)(n+2) . . .(2n−1)

·
[
− 1

2n
GD

2n(t)G
D
1 (t)|10 +

1
2n

∫ 1

0
GD

2n(t)dGD
1 (t)

]
= (−1)n−1 (n!)2

(2n)!

[
(v−2u)

∫ 1

0
GD

2n(t)dt +2uGD
2n

(
1
4

)
− vGD

2n

(
1
2

)]
= (−1)n−1 (n!)2

(2n)!

[
−4uvB2n

(
1
4

)
+2u2B2n

(
1
2

)
+(2u2 + v2)B2n

]
= (−1)n−1 (n!)2

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n.

Now,∫ 1

0
(FD

n (t))2dt =
∫ 1

0

[
GD

n (t)− B̃D
n

]2
dt

=
∫ 1

0

[
(Gn(t))2−2Gn(t)B̃D

n +(B̃D
n )2]dt =

∫ 1

0
(GD

n )2(t)dt +(B̃D
n )2

= (−1)n−1 (n!)2

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n +(B̃D

n )2.

�

Finally, we give the values of optimal constant for n = 1 and arbitrary p from Theorem
3.34.

Remark 3.41 Note that KD∗(1, p;u,v) = KD(1, p;u,v), for 1 < p ≤ ∞, since GD
1 (t) =

FD
1 (t). Also, for 1 < p ≤ ∞ we can easily calculate KD(1, p;u,v). We get

KD(1, p;u,v) =
1

(2u− v)

[
(2u− v)q+1 +(2u+ v)q+1−2q+1vq+1

(2u− v)(q+1)22q+1

] 1
q

, 1 < p ≤ ∞.

Now we use the formula (3.181) and one technical result from [83] to obtain Grüss
type inequality related to the general dual Euler-Simpson formula:

Theorem 3.35 Suppose that f : [0,1] → R is such that f (n) exists and is integrable on
[0,1], for some n ≥ 1. Assume that

mn ≤ f (n)(t) ≤ Mn, 0 ≤ t ≤ 1,
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for some constants mn and Mn. Then∣∣∣∣∫ 1

0
f (t)dt −F(u,v)+ T̃D

n (u,v)
∣∣∣∣≤Cn(Mn−mn), (3.196)

where Cn = 1
(2u−v)(n!)

∫ 1
0 |GD

n (t)|dt.

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

Theorem 3.36 If f : [0,1] → R is such that f (2k) is a continuous function on [0,1] , for
some k ≥ 2, then for u/2 ≤ v < 2u there exists a point η ∈ [0,1] such that

R̃D2
2k ( f ) = − (v−u ·21−2k)(1−21−2k)B2k

(2u− v)[(2k)!]
f (2k)(η). (3.197)

Proof.
We can rewrite R̃D2

2k ( f ) as R̃D2
2k ( f ) = (−1)k Jk

2[(2k)!] , where Jk =
∫ 1
0 (−1)kFD

2k(s) f (2k)(s)ds.

From Corollary 3.26 follows that (−1)kFD
2k(s) ≥ 0, 0 ≤ s ≤ 1 and the claim follows from

the mean value theorem for integrals and Corollary 3.27. �

Remark 3.42 For k = 2 formula (3.197) reduces to

R̃D2
4 ( f ) =

7(8v−u)
46080(2u− v)

f (4)(η).

Now, we study, the general dual Simpson quadrature formula∫ 1

0
f (t)dt =

1
u+−v+w

[
u f

(
1
4

)
− v f

(
1
2

)
+wf

(
3
4

)]
+E( f ;u,v,w) (3.198)

with E( f ;u,v,w) being the remainder, u,v,w ∈ Z
+ and u+w > v. We are using identities

(1.1) and (1.2) to get two new identities of Euler type.

Theorem 3.37 Let f : [0,1]→ R be such that f (n−1) is a continuous function of bounded
variation on [0,1], for some n ≥ 1. Then∫ 1

0
f (t)dt = F(u,v,w)− T̄D

n (u,v,w)+ R̄D1
n ( f ), (3.199)

and ∫ 1

0
f (t)dt = F(u,v,w)− T̄D

n−1(u,v,w)+ R̄D2
n ( f ), (3.200)

where

F(u,v,w) =
1

u− v+w

[
u f

(
1
4

)
− v f

(
1
2

)
+wf

(
3
4

)]
,

R̄D1
n ( f ) =

1
(u− v+w)(n!)

∫ 1

0
ḠD

n (t)d f (n−1)(t),
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R̄D2
n ( f ) =

1
(u− v+w)(n!)

∫ 1

0
F̄D

n (t)d f (n−1)(t),

ḠD
k (t) = uB∗

k

(
1
4
− t

)
− vB∗

k

(
1
2
− t

)
+wB∗

k

(
3
4
− t

)
, t ∈ R,

F̄D
k (t) = ḠD

k (t)− B̄D
k , t ∈ R, k ≥ 1,

B̄D
k = uBk

(
1
4

)
− vBk

(
1
2

)
+wBk

(
3
4

)
, k ≥ 1

and

T̄D
m (u,v,w) =

1
u− v+w

[
uTm

(
1
4

)
− vTm

(
1
2

)
+wTm

(
3
4

)]
.

Proof. Put x = 1/4, 1/2, 3/4 in formula (1.1) to get three new formulae. Then multiply
these new formulae by u, − v, w respectively, and add them up. The result is formula
(3.199). Formula (3.200) is obtained from (1.2) by the same procedure. �

Theorem 3.38 Assume (p1,q1) and (p2,q2) are two pairs of conjugate exponents,
1 ≤ p1,q1, p2,q2 ≤ ∞. Let x ∈ [0,1] and f : [0,1] → R be such that f (n) ∈ Lp1 [0,x] and
f (n) ∈ Lp2 [x,1] for some n ≥ 1. Then, we have∣∣∣∣∫ 1

0
f (t)dt−F(u,v,w)+ T̄D

n−1(u,v,w)
∣∣∣∣ (3.201)

≤ KD(n, p1;u,v,w,x) · ‖ f (n)‖Lp1 [0,x] +KD(n, p2;u,v,w,x) · ‖ f (n)‖Lp2 [x,1],

and ∣∣∣∣∫ 1

0
f (t)dt−F(u,v,w)+ T̄D

n (u,v,w)
∣∣∣∣ (3.202)

≤ KD∗(n, p1;u,v,w,x) · ‖ f (n)‖Lp1 [0,x] +KD∗(n, p2;u,v,w,x) · ‖ f (n)‖Lp2 [x,1],

where

KD(n, p1;u,v,w,x) =
1

(u− v+w)(n!)

[∫ x

0

∣∣F̄D
n (t)

∣∣q1 dt

]1/q1

,

KD(n, p2;u,v,w,x) =
1

(u− v+w)(n!)

[∫ 1

x

∣∣F̄D
n (t)

∣∣q2 dt

]1/q2

,

KD∗(n, p1;u,v,w,x) =
1

(u− v+w)(n!)

[∫ x

0

∣∣ḠD
n (t)

∣∣q1 dt

]1/q1

and

KD∗(n, p2;u,v,w,x) =
1

(u− v+w)(n!)

[∫ 1

x

∣∣ḠD
n (t)

∣∣q2 dt

]1/q2

.

The constants KD(n, p1;u,v,w,x), KD(n, p2;u,v,w,x), KD∗(n, p1;u,v,w,x) and
KD∗(n, p2;u,v,w,x) are sharp for 1 < p1, p2 ≤∞ and the best possible for p1 = 1 or p2 = 1.
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Proof. Applying the Hölder inequality we have∣∣∣∣ 1
(u− v+w)(n!)

∫ 1

0
F̄D

n (t) f (n)(t)dt

∣∣∣∣
=
∣∣∣∣ 1
(u− v+w)(n!)

∫ x

0
F̄D

n (t) f (n)(t)dt +
1

(u− v+w)(n!)

∫ 1

x
F̄D

n (t) f (n)(t)dt

∣∣∣∣
≤ 1

(u− v+w)(n!)

{[∫ x

0
|F̄D

n (t)|q1dt

]1/q1

‖ f (n)‖Lp1 [0,x]

+
[∫ 1

x
|F̄D

n (t)|q2dt

]1/q2

‖ f (n)‖Lp2 [x,1]

}
= KD(n, p1;u,v,w,x)‖ f (n)‖Lp1 [0,x] +KD(n, p2;u,v,w,x)‖ f (n)‖Lp2 [x,1].

Using the above inequality from (3.182) we get estimate (3.201). In the same manner, from
(3.181) we get estimate (3.202). The proof of sharpness and best possibility is similar as
in the proof of Theorem 2.2. �

Remark 3.43 For n = 1, 1
4 ≤ u ≤ w ≤ 1

2 and u− v+w = 1 in inequality (3.201) we get
inequality∣∣∣∣∫ 1

0
f (t)dt−F(u,v,w)

∣∣∣∣
≤
[

(w−u)q1+1 +(u−w+1)q1+1 +(3u+w−1)q1+1 +(2−3u−w)q1+1

4q1+1(q1 +1)

]1/q1

· ‖ f ′‖Lp1 [0,1/2]

+

[
−(w−u)q2+1 +(w−u+1)q2+1 +(3w+u−1)q2+1 +(2−u−3w)q2+1

4q2+1(q2 +1)

]1/q2

· ‖ f ′‖Lp2 [1/2,1].

3.3.3 Estimations of the error via pre-Grüss inequality

In [116], N. Ujević used the generalization of pre-Grüss inequality to derive some better
estimations of the error for Simpson’s quadrature rule. In fact, he proved the next three
theorems:

Theorem 3.39 Let I ⊂ R be a closed interval and a,b ∈ IntI, a < b. If f : I → R is a
continuous function of bounded variation with f ′ ∈ L2[a,b], then we have∣∣∣∣b−a

6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
−
∫ b

a
f (t)dt

∣∣∣∣≤ (b−a)3/2

6
K1, (3.203)

where

K2
1 = ‖ f ′‖2

2−
1

b−a

(∫ b

a
f ′(t)dt

)2

−
(∫ b

a
f ′(t)Ψ0(t)dt

)2

(3.204)
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and Ψ(t) = t− a+b
2 ,Ψ0(t) = Ψ(t)/‖Ψ‖2.

Theorem 3.40 Let I ⊂ R be a closed interval and a,b ∈ IntI, a < b. If f : I → R is such
that f ′ is a continuous function of bounded variation with f ′′ ∈ L2[a,b], then we have∣∣∣∣b−a

6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
−
∫ b

a
f (t)dt

∣∣∣∣≤ (b−a)5/2

12
√

30
K2, (3.205)

where

K2
2 = ‖ f ′′‖2

2−
1

b−a

(∫ b

a
f ′′(t)dt

)2

−
(∫ b

a
f ′′(t)Ψ0(t)dt

)2

, (3.206)

Ψ(t) =
{

1, t ∈ [a, a+b
2

]
−1, t ∈ ( a+b

2 ,b
] (3.207)

and Ψ0(t) = Ψ(t)/‖Ψ‖2.

Theorem 3.41 Let I ⊂ R be a closed interval and a,b ∈ IntI, a < b. If f : I → R is such
that f ′′ is a continuous function of bounded variation with f ′′′ ∈ L2[a,b] then we have∣∣∣∣b−a

6

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
−
∫ b

a
f (t)dt

∣∣∣∣≤ (b−a)7/2

48
√

105
K3, (3.208)

where

K2
3 = ‖ f ′′′‖2

2−
1

b−a

(∫ b

a
f ′′′(t)dt

)2

−
(∫ b

a
f ′′′(t)Ψ0(t)dt

)2

, (3.209)

Ψ(t) =
{

t − 7a+3b
10 , t ∈ [a, a+b

2

]
t − 3a+7b

10 , t ∈ ( a+b
2 ,b

] (3.210)

and Ψ0(t) = Ψ(t)/‖Ψ‖2.

In this section using Theorem 2.14 we will give a similar result for general Euler-
Simpson formula and for functions whose derivative of order n, n ≥ 1, is from L2[0,1]
space. We will also give related results for general dual Euler-Simpson formula. We will
use interval [0,1] for simplicity and since it involves no loss in generality.

Theorem 3.42 If f : [0,1] → R is such that f (n−1) is a continuous function of bounded
variation with f (n) ∈ L2[0,1], then we have∣∣∣∣∫ 1

0
f (t)dt −D(u,v)+ T̃n(u,v)

∣∣∣∣ (3.211)

≤ 1
2u+ v

[
(−1)n−1

(2n)!
[
4u2 + v2−4uv(1−21−2n)

]
B2n

]1/2

K,
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where

K2 = ‖ f (n)‖2
2−
(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

. (3.212)

For n even

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
,

while for n odd we have

Ψ(t) =

{
t + 21−nu−2u+v

21−nv−22−nu+8u−4v
, t ∈ [0, 1

2

]
,

t + 21−n(u−v)+3v−6u
21−nv−22−nu+8u−4v

, t ∈ ( 1
2 ,1
]
.

Proof. It is not difficult to verify that∫ 1

0
Gn(t)dt = 0, (3.213)

∫ 1

0
Ψ(t)dt = 0, (3.214)

∫ 1

0
Gn(t)Ψ(t)dt = 0. (3.215)

From (3.157), (3.213) and (3.215) it follows that∫ 1

0
f (t)dt−D(u,v)+ T̃n(u,v) =

1
(2u+ v)n!

∫ 1

0
Gn(t) f (n)(t)dt

− 1
(2u+ v)n!

∫ 1

0
Gn(t)dt

∫ 1

0
f (n)(t)dt

− 1
(2u+ v)n!

∫ 1

0
Gn(t)Ψ0(t)dt

∫ 1

0
f (n)(t)Ψ0(t)dt

=
1

(2u+ v)n!
SΨ(Gn, f (n)). (3.216)

Using (3.216) and (2.54) we get∣∣∣∣∫ 1

0
f (t)dt−D(u,v)+ T̃n(u,v)

∣∣∣∣≤ 1
(2u+ v)n!

SΨ(Gn,Gn)1/2SΨ( f (n), f (n))1/2. (3.217)

We also have (see [65])

SΨ(Gn,Gn) = ‖Gn‖2
2−
(∫ 1

0
Gn(t)dt

)2

−
(∫ 1

0
Gn(t)Ψ0(t)dt

)2

= (−1)n−1 (n!)2

(2n)!
[
4u2 + v2−4uv(1−21−2n)

]
B2n (3.218)
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and

SΨ( f (n), f (n)) = ‖ f (n)‖2
2−
(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

= K2. (3.219)

From (3.217)-(3.219) we easily get (3.211). �

Remark 3.44 The estimation in inequality (3.211) achieves minimum of
[

(−1)n−1

(2n)! 2−2nB2n

]1/2

for u = 1 and v = 2, which is bitrapezoid formula (see [28]). For n = 1 it is 1/4
√

3.

Remark 3.45 For u = 1 and v = 4 in Theorem 3.42, we get Euler-Simpson formula (see
[29]) and then we have∣∣∣∣∫ 1

0
f (t)dt−D(1,4)+Tn(1,4)

∣∣∣∣≤ 1
3

[
(−1)n−1

(2n)!
(
1+23−2n)

]
B2n

]1/2

K, (3.220)

where

D(1,4) =
1
6

[
f (0)+4 f

(
1
2

)
+ f (1)

]
,

and

T̃n(1,4) =
�n/2�
∑
k=2

1
3(2k)!

(1−22−2k)B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

For n even

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
,

while for n odd we have

Ψ(t) =

⎧⎨⎩ t + 2−n+1
4(2−1−n−1) , t ∈ [0, 1

2

]
,

t + 3(1−2−n)
4(2−1−n−1) , t ∈ ( 1

2 ,1
]
.

For n = 1, 2 and 3 in the inequality (3.220) we get inequalities (3.203), (3.205) and
(3.208) respectively.

Theorem 3.43 If f : [0,1] → R is such that f (n−1) is a continuous function of bounded
variation with f (n) ∈ L2[0,1], then we have∣∣∣∣∫ 1

0
f (t)dt −F(u,v)+ T̃D

n (u,v)
∣∣∣∣ (3.221)

≤ 1
2u− v

[
(−1)n−1

(2n)!
[
2u2 + v2− (2u2−uv ·22−2n)(1−21−2n)

]
B2n

]1/2

K,

where

K2 = ‖ f (n)‖2
2−
(∫ 1

0
f (n)(t)dt

)2

−
(∫ 1

0
f (n)(t)Ψ0(t)dt

)2

. (3.222)
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For n even

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
,

while for n odd we have

Ψ(t) =

⎧⎨⎩ t + 2−nu(1−2−n)+v
4v(2−n−1−1) , t ∈ [0, 1

2

]
,

t + v(3−2−n+1)−2−nu(1−2−n)
4v(2−n−1−1) , t ∈ ( 1

2 ,1
]
.

Proof. Similar as in Theorem 3.42. �

Remark 3.46 For u = 2 and v = 1 in Theorem 3.43 we get dual Euler-Simpson formula
(see [26]) and then we have∣∣∣∣∫ 1

0
f (t)dt−F(2,1)+ T̃D

n (2,1)
∣∣∣∣≤ 1

3

[
(−1)n−1

(2n)!
[
9− (8−23−2n)(1−21−2n)

]
B2n

]1/2

K,

(3.223)
where

F(2,1) =
1
3

[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
,

and

T̃D
n (2,1) =

�n/2�
∑
k=2

1
3(2k)!

(
8 ·2−4k−6 ·2−2k +1

)
B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

For n even

Ψ(t) =
{

1, t ∈ [0, 1
2

]
,

−1, t ∈ ( 1
2 ,1
]
,

while for n odd we have

Ψ(t) =

⎧⎨⎩ t + 21−n(1−2−n)+1
4(2−1−n−1) , t ∈ [0, 1

2

]
,

t + 3−22−n+21−2n

4(2−1−n−1) , t ∈ ( 1
2 ,1
]
.

For n = 1, 2 and 3 we get inequalities∣∣∣∣13
[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
−
∫ 1

0
f (t)dt

∣∣∣∣≤ 1

3
√

2
K1,

∣∣∣∣13
[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
−
∫ 1

0
f (t)dt

∣∣∣∣≤
√

13

48
√

15
K2

and ∣∣∣∣13
[
2 f

(
1
4

)
− f

(
1
2

)
+2 f

(
3
4

)]
−
∫ 1

0
f (t)dt

∣∣∣∣≤
√

13

192
√

70
K3

respectively.





Chapter4

General 4-point quadrature
formulae of Euler type

The object of interest in this chapter are the general 4-point formulae which approximate
the integral over [0,1] by values of the function in points 0, x, 1−x and 1, with x∈ (0,1/2].
The results from this chapter were published in [56].

4.1 General approach

Let x ∈ (0,1/2] and f : [0,1] → R be such that f (2n+1) is continuous of bounded vari-
ation on [0,1] for some n ≥ 0. We proceed similarly as in the previous chapter, since
the main idea of the method is the same: put x ≡ 0, x, 1− x and 1 in (1.2), multiply by
1/2−w(x), w(x), w(x), 1/2−w(x), respectively and add up. The following formula is
obtained:

∫ 1

0
f (t)dt − (1/2−A(x))[ f (0)+ f (1)]−A(x)[ f (x)+ f (1− x)]+T2n(x)

=
1

(2n+2)!

∫ 1

0
F2n+2(x,t)d f (2n+1)(t), (4.1)

157
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where, for t ∈ R,

T2n(x) =
2n

∑
k=2

1
k!

Gk(x,0) [ f (k−1)(1)− f (k−1)(0)],

Gk(x, t) = [1−2A(x)]B∗
k (1− t)+A(x) [B∗

k (x− t)+B∗
k (1− x− t)] , k ≥ 1

Fk(x, t) = Gk(x,t)−Gk(x,0), k ≥ 2.

Functions Gk have all the properties that functions Gk from Chapter 3 had, including
(3.5) and (3.6). If one wants to obtain from (4.1) the quadrature formula with the maximum
degree of exactness (if values of derivatives at the end points are not to be included in the
quadrature, then it is equal to 3), similarly as before, a condition G2(x,0) = 0 has to be
imposed. In this way we get:

w(x) =
1

12x(1− x)
. (4.2)

Formula (4.1) now becomes:∫ 1

0
f (t)dt −Q(0,x,1− x,1)+TQ4

2n (x) =
1

(2n+2)!

∫ 1

0
FQ4

2n+2(x, t)d f (2n+1)(t), (4.3)

where

Q(0,x,1− x,1) =
1

12x(1− x)
[−6B2(x) f (0)+ f (x)+ f (1− x)−6B2(x) f (1)] , (4.4)

TQ4
2n (x) =

n

∑
k=2

1
(2k)!

GQ4
2k (x,0) [ f (2k−1)(1)− f (2k−1)(0)], (4.5)

GQ4
k (x, t) =

1
12x(1− x)

[B∗
k (x− t)−12B2(x) ·B∗

k (1− t)+B∗
k (1− x− t)] , (4.6)

FQ4
k (x, t) = GQ4

k (x,t)−GQ4
k (x,0), k ≥ 2 . (4.7)

Assuming f (2n−1) is continuous of bounded variation on [0,1] for some n ≥ 1, we get:∫ 1

0
f (t)dt −Q(0,x,1− x,1)+TQ4

2n (x) =
1

(2n)!

∫ 1

0
GQ4

2n (x,t)d f (2n−1)(t), (4.8)

while assuming f (2n) fulfills the same condition for some n ≥ 0, we get:∫ 1

0
f (t)dt−Q(0,x,1− x,1)+TQ4

2n (x) =
1

(2n+1)!

∫ 1

0
GQ4

2n+1(x,t)d f (2n)(t). (4.9)

The following lemma is the key step for obtaining sharp estimates of error for the
formulae (4.3), (4.8) and (4.9).

Lemma 4.1 For x ∈ (0, 1
2 −

√
3

6 ]∪ [ 1
3 , 1

2 ] and k ≥ 1, GQ4
2k+1(x,t) has no zeros in variable t

on (0,1/2). The sign of this function is determined by

(−1)kGQ4
2k+1(x,t) > 0 for x ∈ (0,1/2−

√
3/6],

(−1)k+1GQ4
2k+1(x,t) > 0 for x ∈ [1/3,1/2].
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Proof. Observe GQ4
3 (x,t). For 0 ≤ t ≤ x, it takes the form:

GQ4
3 (x,t) = −t2

(
t +

3B2(x)
2x(1− x)

)
.

Its only zero, except 0, is t1 = 3B2(x)
2x(x−1) . It is easy to see that 0 < t1 ≤ x iff x ∈ ( 1

2 −
√

3
6 ,

1−
√

2
2 ]. Further, for x ≤ t ≤ 1/2, function GQ4

3 (x,t) takes the form:

GQ4
3 (x,t) = −t3 +

3t2

2
− t

2(1− x)
+

x
4(1− x)

.

Here it has 3 zeros:

t =
1
2
, t2 =

1
2
−

√
3x2−4x+1
2(1− x)

, t3 =
1
2

+

√
3x2−4x+1
2(1− x)

.

It only needs to be checked if t2 is a zero for x ∈ (0,1/3) since t2,t3 ∈ R iff x ∈ (0,1/3]
and it is obvious that t3 ≥ 1/2. That t2 < 1/2 is trivial and it is easy to see that t2 ≥ x iff

x ∈ [1−
√

2
2 , 1

3 ). Therefore, our statement is valid for k = 1. Assuming the opposite, the
statement for k ≥ 2 follows by induction. The rest of the proof is analogous to the same
part of the proof of Lemma 3.1 �

Remark 4.1 From Lemma 4.1 it follows immediately that for k ≥ 1 and x ∈ (0,1/2−√
3/6], function (−1)k+1FQ4

2k+2(x,t) is strictly increasing in variable t on (0,1/2) and

strictly decreasing on (1/2,1). Since FQ4
2k+2(x,0) = FQ4

2k+2(x,1) = 0, it has constant sign
on (0,1) and obtains its maximum at t = 1/2. Analogous statement, but with the opposite
sign, is valid in the case when x ∈ [1/3,1/2].

Denote by RQ4
2n+2(x, f ) the right-hand side of (4.3).

Theorem 4.1 Let f : [0,1]→R be such that f (2n+2) is continuous on [0,1] for some n≥ 2

and let x ∈ (0, 1
2 −

√
3

6 ]∪ [ 1
3 , 1

2 ]. If f (2n) and f (2n+2) have the same constant sign on [0,1],
then the remainder RQ4

2n (x, f ) has the same sign as the first neglected term ΔQ4
2n (x, f ) where

ΔQ4
2n (x, f ) := RQ4

2n (x, f )−RQ4
2n+2(x, f ) = − 1

(2n)!
GQ4

2n (x,0)[ f (2n−1)(1)− f (2n−1)(0)].

Furthermore, |RQ4
2n (x, f )| ≤ |ΔQ4

2n (x, f )| and |RQ4
2n+2(x, f )| ≤ |ΔQ4

2n (x, f )|.
Proof. Analogous to the proof of Theorem 3.1. �

Theorem 4.2 If f : [0,1] → R is such that f (2n+2) is continuous on [0,1] for some n ≥ 1

and x ∈ (0, 1
2 −

√
3

6 ]∪ [ 1
3 , 1

2 ], then there exists ξ ∈ [0,1] such that

RQ4
2n+2(x, f ) = −GQ4

2n+2(x,0)
(2n+2)!

· f (2n+2)(ξ ) (4.10)
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where

GQ4
2n+2(x,0) =

1
6x(1− x)

[B2n+2(x)−B2n+2]+B2n+2. (4.11)

If, in addition, f (2n+2) does not change sign on [0,1], then there exists θ ∈ [0,1] such
that

RQ4
2n+2(x, f ) =

θ
(2n+2)!

·FQ4
2n+2

(
x,

1
2

)
·
[
f (2n+1)(1)− f (2n+1)(0)

]
(4.12)

where

FQ4
2n+2

(
x,

1
2

)
=

1
6x(1− x)

[
B2n+2 (1/2− x)−B2n+2(x)+

(
2−2−2n−1)B2n+2

]
− (

2−2−2n−1)B2n+2. (4.13)

Proof. Analogous to the proof of Theorem 3.2. �

When (4.10) is applied to the remainder in formula (4.3) for n = 1, we obtain:∫ 1

0
f (t)dt−Q(0,x,1− x,1) =

1
720

(5x2 −5x+1) · f (4)(ξ ). (4.14)

For x = 1/3, this formula becomes the classical Simpson’s 3/8 formula, for x = 1/2 it
becomes the well-knownSimpson’s formula, and finally for x = 1/2−√

3/6⇔w(x) = 1/2
it becomes the classical Gauss 2-point formula (stated on [0,1]). These three formulae
were studied and generalized using a similar technique as here, in [31], [29] and [59],
respectively. Of course, all related results from those papers follow as special cases of our
results.

Remark 4.2 Although only x ∈ (0,1/2] were taken into consideration here, results for
x = 0 can easily be obtained by considering the limit process when x tends to 0. Namely,

lim
x→0

Q(0,x,1− x,1) =
1
2
[ f (0)+ f (1)]− 1

12
[ f ′(1)− f ′(0)]

lim
x→0

GQ4
k (x,t) = B∗

k(1− t)

Consequently, from (4.14) it follows:∫ 1

0
f (t)dt − 1

2
[ f (0)+ f (1)]+

1
12

[ f ′(1)− f ′(0)] =
1

720
f (4)(ξ ). (4.15)

Theorem 4.3 Let p,q∈ R be such that 1≤ p, q≤ ∞ and 1/p+1/q= 1. If f : [0,1]→ R

is such that f (2n) ∈ Lp[0,1] for some n ≥ 1, then we have∣∣∣∣∫ 1

0
f (t)dt−Q(0,x,1− x,1)+TQ4

2n (x)
∣∣∣∣≤ KQ4(2n,q) · ‖ f (2n)‖p. (4.16)
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If f (2n+1) ∈ Lp[0,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

0
f (t)dt −Q(0,x,1− x,1)+TQ4

2n (x)
∣∣∣∣≤ KQ4(2n+1,q) · ‖ f (2n+1)‖p. (4.17)

If f (2n+2) ∈ Lp[0,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

0
f (t)dt −Q(0,x,1− x,1)+TQ4

2n (x)
∣∣∣∣≤ K∗

Q4(2n+2,q) · ‖ f (2n+2)‖p, (4.18)

where

KQ4(m,q) =
1
m!

[∫ 1

0

∣∣GQ4
m (x,t)

∣∣q dt

] 1
q

, K∗
Q4(m,q) =

1
m!

[∫ 1

0

∣∣FQ4
m (x,t)

∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p ≤ ∞ and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. �

For x ∈ (0, 1
2 −

√
3

6 ]∪ [ 1
3 , 1

2 ] and n ≥ 1, using Lemma 4.1 and Remark 4.1, we can
calculate the following constants as special cases of the previous Theorem:

K∗
Q4(2n+2,1) =

1
(2n+2)!

∣∣∣GQ4
2n+2(x,0)

∣∣∣ ,
K∗

Q4(2n+2,∞) =
1
2

KQ4(2n+1,1) =
1

(2n+2)!

∣∣∣∣FQ4
2n+2

(
x,

1
2

)∣∣∣∣ ,
where GQ4

2n+2(x,0) is as in (4.11) and FQ4
2n+2 (x,1/2) as in (4.13). In view of this, let us

consider inequalities (4.17) and (4.18) for n = 1 and p = ∞:∣∣∣∣∫ 1

0
f (t)dt −Q(0,x,1− x,1)

∣∣∣∣≤ 1
576

∣∣∣∣16x2−15x+3
1− x

∣∣∣∣ · ‖ f ′′′‖∞∣∣∣∣∫ 1

0
f (t)dt −Q(0,x,1− x,1)

∣∣∣∣≤ 1
720

∣∣5x2−5x+1
∣∣ · ‖ f (4)‖∞

In order to find which admissible x gives the least estimate of error, we have to minimize the
functions on the right-hand side. It is easy to see that both those functions are decreasing

on (0, 1
2 −

√
3

6 ] and increasing on [ 1
3 , 1

2 ] and that they reach their minimal values at x = 1/3.
In fact, the same is valid in the case when n = 1 and p = 1, since K∗

Q4(4,∞) = 1
2 KQ4(3,1).

Therefore, the node that gives the least estimate of error in these three cases is x = 1/3,
i.e. the optimal closed 4-point quadrature formula is Simpson’s 3/8 formula.

The following two theorems give Hermite-Hadamard and Dragomir-Agarwal type in-
equalities for the general 4-point quadrature formulae:
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Theorem 4.4 Let f : [0,1] → R be (2n+4)-convex for n ≥ 1. Then for x ∈
(
0, 1

2 −
√

3
6

]
,

we have

1
(2n+2)!

|GQ4
2n+2(x,0)| f (2n+2)

(
1
2

)
≤ (−1)n+1

(∫ 1

0
f (t)dt −Q(0,x,1− x,1)+TQ4

2n (x)
)

(4.19)

≤ 1
(2n+2)!

|GQ4
2n+2(x,0)| f (2n+2)(0)+ f (2n+2)(1)

2
,

while for x ∈ [ 1
3 , 1

2

]
we have

1
(2n+2)!

|GQ4
2n+2(x,0)| f (2n+2)

(
1
2

)
≤ (−1)n

(∫ 1

0
f (t)dt −Q(0,x,1− x,1)+TQ4

2n (x)
)

(4.20)

≤ 1
(2n+2)!

|GQ4
2n+2(x,0)| f (2n+2)(0)+ f (2n+2)(1)

2
,

where GQ4
2n+2(x,0) is as in (4.11).

If f is (2n+4)-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 2.8. �

Theorem 4.5 Let x ∈
(
0, 1

2 −
√

3
6

]
∪ [ 1

3 , 1
2

]
and f : [0,1] → R be m-times differentiable

for m ≥ 3. If | f (m)|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt −Q(0,x,1− x,1)+TQ4

2n (x)
∣∣∣∣ ≤ LQ4(m,x)

(
| f (m)(0)|q + | f (m)(1)|q

2

)1/q

(4.21)

while if | f (m)| is concave, then∣∣∣∣∫ 1

0
f (t)dt−Q(0,x,1− x,1)+TQ4

2n (x)
∣∣∣∣ ≤ LQ4(m,x)

∣∣∣∣ f (m)
(

1
2

)∣∣∣∣ , (4.22)

where

for m = 2n+1 LQ4(2n+1,x) =
2

(2n+2)!
|FQ4

2n+2(x,1/2)|

and for m = 2n+2 LQ4(2n+2,x) =
1

(2n+2)!
|GQ4

2n+2(x,0)|

with GQ4
2n+2(x,0) and FQ4

2n+2 (x,1/2) as in (4.11) and (4.13), respectively.

Proof. Analogous to the proof of Theorem 3.5. �



4.1 GENERAL APPROACH 163

4.1.1 Simpson’s 3/8 formula

For x = 1/3, (4.14) becomes classical Simpson’s 3/8 formula:∫ 1

0
f (t)dt − 1

8

[
f (0)+3 f

(
1
3

)
+3 f

(
2
3

)
+ f (1)

]
= − 1

6480
· f (4)(η). (4.23)

The results from this subsection are published in [31]. We have:

QS38 =
1
8

[
f (0)+3 f

(
1
3

)
+3 f

(
2
3

)
+ f (1)

]
,

TS38
2n = TQ4

2n

(
1
3

)
=

n

∑
k=2

1
(2k)!

GS38
2k (0) [ f (2k−1)(1)− f (2k−1)(0)]

GS38
k (t) =

1
8

[
3B∗

k

(
1
3
− t

)
+3B∗

k

(
2
3
− t

)
+2B∗

k (1− t)
]
, k ≥ 1

FS38
k (t) = GS38

k (t)−GS38
k (0), k ≥ 2

The error RS38
2n+2( f ) for n ≥ 2 can be expressed as:

RS38
2n+2( f ) =

1
8(2n+2)!

(1−9−n)B2n+2 · f (2n+2)(η), η ∈ [0,1]

RS38
2n+2( f ) = θ

(2−2−1−2n)(1−9−n)B2n+2

8(2n+2)!

[
f (2n+1)(1)− f (2n+1)(0)

]
, θ ∈ [0,1]

Estimates of error for p = 1, p = ∞ and m = 1,2,3,4 are:∣∣∣∣∫ 1

0
f (t)dt−QCS38

∣∣∣∣≤CS38(m,q) · ‖ f (m)‖p,

where

CS38(1,1) =
25
288

, CS38(2,1) =
1

192
, CS38(3,1) =

1
1728

, CS38(4,1) =
1

6480
,

CS38(1,∞) =
5
24

, CS38(2,∞) =
1
72

, CS38(3,∞) =
1

768
, CS38(4,∞) =

1
3456

.

4.1.2 Hermite-Hadamard-type inequality for the 4-point
quadrature formulae

The main result of this subsection provides Hermite-Hadamard-type inequality for the
4-point quadrature formulae.

Theorem 4.6 Let f : [0,1] → R be 4-convex and such that f (4) is continuous on [0,1].
Then, for x ∈ (0, 1

2 −
√

3
6 ] and y ∈ [ 1

3 , 1
2

]
Q(0,x,1− x,1)≤

∫ 1

0
f (t)dt ≤ Q(0,y,1− y,1) , (4.24)

where Q(0,x,1− x,1) is defined in (4.4). If f is 4-concave, the inequalities are reversed.
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Proof. Analogous to the proof of Theorem 3.6. �

The following corollary gives comparison between the Gauss 2-point and Simpson’s
3/8 rule.

Corollary 4.1 Let f : [0,1] → R be 4-convex and such that f (4) is continuous on [0,1].
Then

1
2

f

(
3−√

3
6

)
+

1
2

f

(
3+

√
3

6

)
≤
∫ 1

0
f (t)dt ≤ 1

8

(
f (0)+3 f

(
1
3

)
+3 f

(
2
3

)
+ f (1)

)
.

If f is 4-concave, the inequalities are reversed.

Proof. Follows from (4.24) for x = 1/2−√
3/6 ⇔ B2(x) = 0 and y = 1/3. �

Remark 4.3 The result of Corollary 3.5 can be recaptured from (4.24) for x = 1/2−√
3/6 and y = 1/2.

4.1.3 Bullen-Simpson’s 3/8 inequality

For function f : [0,1] → R such that f (4) is continuous on [0,1] and f (4)(t) ≥ 0, t ∈ [0,1],
we have

1
8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]
≤
∫ 1

0
f (t)dt (4.25)

≤ 1
8

[
f (0)+3 f

(
1
3

)
+3 f

(
2
3

)
+ f (1)

]
.

In the case when f (4) exists, the condition f (4)(t) ≥ 0, t ∈ [0,1] is equivalent to the
requirement that f is 4-convex function on [0,1]. However, a function f may be 4-convex
although f (4) does not exist.

P. S. Bullen in [11] proved that, if f is 4-convex, then (4.26) is valid. Moreover, he
proved that the Maclaurin quadrature rule is more accurate than the Simpson’s 3/8 quadra-
ture rule, that is we have

0 ≤
∫ 1

0
f (t)dt − 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]
≤ 1

8

[
f (0)+3 f

(
1
3

)
+3 f

(
2
3

)
+ f (1)

]
−
∫ 1

0
f (t)dt, (4.26)

provided f is 4-convex. We shall call this inequality Bullen-Simpson’s 3/8 inequality.
The aim of this section is to establish a generalization of the inequalities (4.26) and

(4.26) for a class of (2r)-convex functions and also to obtain some estimates for the ab-
solute value of difference between the absolute value of error in the Maclaurin quadrature
rule and the absolute value of error in the Simpson’s 3/8 quadrature rule. Let us define

D(0,1)

: =
1
16

[
f (0)+3 f

(
1
6

)
+3 f

(
1
3

)
+2 f

(
1
2

)
+3 f

(
2
3

)
+3 f

(
5
6

)
+ f (1)

]
.
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We shall make use of the following seven-point quadrature formula∫ 1

0
f (t)dt ≈ D(0,1),

obtained by adding the Simpson 3/8 and the Maclaurin quadrature formulae. It is suitable
for our purposes to rewrite the second inequality in (4.26) in the form∫ 1

0
f (t)dt ≤ D(0,1). (4.27)

As we mentioned earlier, this inequality is valid for any 4-convex function f and we call it
the Bullen-Simpson’s 3/8 inequality. The results from this section are published in [87].

We consider the sequences of functions (Gk(t))k≥1 and (Fk(t))k≥1 defined for t ∈ R by

Gk(t) := GS38
k (t)+GM

k (t), Fk(t) := FS38
k (t)+FM

k (t),

where GS38
k (t), GM

k (t), FS38
k (t) and FM

k (t) are defined as Section 4.1.1 and Section 3.1.4
respectively. So we have

Gk(t) = 2B∗
k(1− t)+3B∗

k

(
1
6
− t

)
+3B∗

k

(
1
3
− t

)
+ 2B∗

k

(
1
2
− t

)
+3B∗

k

(
2
3
− t

)
+3B∗

k

(
5
6
− t

)
, t ∈ R

and
Fk(t) = Gk(t)− B̃k, t ∈ R

where

B̃k = B̃S38
k + B̃M

k

= Bk(0)+3Bk

(
1
6

)
+3Bk

(
1
3

)
+2Bk

(
1
2

)
+3Bk

(
2
3

)
+3Bk

(
5
6

)
+Bk(1).

For any function f : [0,1] → R such that f (n−1) exists on [0,1] for some n ≥ 1 let
D(0,1) be defined as in Introduction. Further, we define T0( f ) = T1( f ) := 0 and, for
2 ≤ m ≤ [n/2],

Tm( f ) :=
1
2

[
TS38
m ( f )+TM

m ( f )
]
,

where TS38
m ( f ) and TM

m ( f ) are given in Section 4.1.1 and Section 3.1.4, respectively. It is
easy to see that

Tm( f ) =
1
8

m

∑
k=2

1
(2k)!

2−2k(1−32−2k)B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
. (4.28)

In the next lemma we establish two formulae which play the key role in this paper. We
call them the Euler Bullen-Simpson 3/8 formulae.
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Lemma 4.2 Let f : [0,1] → R be such that f (n−1) is a continuous function of bounded
variation on [0,1], for some n ≥ 1. Then we have

∫ 1

0
f (t)dt = D(0,1)+Tr( f )+ τ1

n ( f ), (4.29)

where r = [n/2] and

τ1
n ( f ) =

1
16(n!)

∫ 1

0
Gn (t)d f (n−1)(t).

Also, ∫ 1

0
f (t)dt = D(0,1)+Ts( f )+ τ2

n ( f ), (4.30)

where s = [(n−1)/2] and

τ2
n ( f ) =

1
16(n!)

∫ 1

0
Fn (t)d f (n−1)(t).

Proof. We multiply Euler-Simpson’s 3/8 and Euler-Maclaurin’s formulae by the factor 1/2
and then add them up to obtain the identities (4.29) and (4.30). �

Remark 4.4 In the case when f : [0,1] → R is such that f (n) exists and is integrable
on [0,1], then the Riemann-Stieltjes integral

∫ 1
0 H(t)d f (n−1)(t) is equal to the Riemann

integral
∫ 1
0 H(t) f (n)(t)dt. Therefore, if f (n) exists for some n ≥ 1 and is integrable on

[0,1], then (4.29) and (4.30) reduce to

∫ 1

0
f (t)dt = D(0,1)+Tr( f )+

1
16(n!)

∫ 1

0
Gn (t) f (n)(t)dt. (4.31)

and ∫ 1

0
f (t)dt = D(0,1)+Ts( f )+

1
16(n!)

∫ 1

0
Fn (t) f (n)(t)dt. (4.32)

Remark 4.5 The interval [0,1] is used for simplicity and involves no loss in generality.
The results which follow will apply, without comment, to any interval that is convenient.
Namely it is easy to transform the identities (4.29) and (4.30) to the identities which hold
for any function f : [a,b] → R such that f (n−1) is a continuous function of bounded varia-
tion on [a,b], for some n ≥ 1. We get

∫ b

a
f (t)dt = D(a,b)+ T̃r( f )+

(b−a)n

16(n!)

∫ b

a
Gn

(
t−a
b−a

)
d f (n−1)(t) (4.33)

and ∫ b

a
f (t)dt = D(a,b)+ T̃s( f )+

(b−a)n

16(n!)

∫ b

a
Fn

(
t−a
b−a

)
d f (n−1)(t), (4.34)
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where

D(a,b) :=
b−a
16

[
f (a)+3

(
5a+b

6

)
+3

(
2a+b

3

)
+ 2

(
a+b

2

)
+3

(
a+5b

6

)
+3

(
a+2b

3

)
+ f (b)

]
,

while T̃0( f ) = T̃1( f ) = 0 and

T̃m( f ) =
1
8

m

∑
k=2

(b−a)2k

(2k)!
2−2k(1−32−2k)B2k

[
f (2k−1)(b)− f (2k−1)(a)

]
,

for 2 ≤ m ≤ [n/2] .

Now, we use the Euler Bullen-Simpson 3/8 formulae established in Lemma 4.2 to
extend the Bullen-Simpson’s 3/8 inequality for (2r)-convex functions. First, we need some
properties of the functions Gk(t) and Fk(t).

First note that it is enough to know the values of the functions Gk(t) and Fk(t), k ≥ 1
only on the interval [0,1/2]. Namely, the functions B∗

k(t) are periodic with period 1 so that
for 0 ≤ t ≤ 1/2 we have

Gk

(
t +

1
2

)
= 2B∗

k

(
1
2
− t

)
+3B∗

k

(
−1

3
− t

)
+3B∗

k

(
−1

6
− t

)
+2B∗

k (−t)+3B∗
k

(
1
6
− t

)
+3B∗

k

(
1
3
− t

)
= 2B∗

k

(
1
2
− t

)
+3B∗

k

(
2
3
− t

)
+3B∗

k

(
5
6
− t

)
+2B∗

k (1− t)+3B∗
k

(
1
6
− t

)
+3B∗

k

(
1
3
− t

)
= Gk (t)

and

Fk

(
t +

1
2

)
= Gk

(
t +

1
2

)
− B̃k = Gk (t)− B̃k = Fk (t) .

Since B1(t) = t − (1/2), we get B̃1 = 0 and

G1(t) = F1(t) =

⎧⎪⎪⎨⎪⎪⎩
−1, t = 0
−16t +1, t ∈ (0,1/6]
−16t +4, t ∈ (1/6,1/3]
−6t +11/2, t ∈ (1/3,1/2]

. (4.35)

Further, for k ≥ 2 the functions B∗
k(t) are continuous and the same is true for Gk(t) and

Fk(t), k ≥ 2 . Also we have for k ≥ 2

Gk(0) = Gk(1/2) = Gk(1) = B̃k
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and
Fk(0) = Fk(1/2) = Fk(1) = 0.

For example, for k = 2 and k = 3 we have B2(t) = t2− t +(1/6) and B3(t) = t3−(3/2)t2+
(1/2)t, so that by direct calculation we get B̃2 = B̃3 = 0 and

G2(t) = F2(t) =

⎧⎨⎩
16t2−2t, t ∈ [0,1/6]
16t2−8t +1, t ∈ (1/6,1/3]
16t2−14t +3, t ∈ (1/3,1/2]

, (4.36)

G3(t) = F3(t) =

⎧⎨⎩
−16t3 +3t2, t ∈ [0,1/6]
−16t3 +12t2−3t +(1/4), t ∈ (1/6,1/3]
−16t3 +21t2−9t +(5/4), t ∈ (1/3,1/2]

. (4.37)

The Bernoulli polynomials of even order are symmetric and those of odd order skew-
symmetric about 1/2, that is [1, 23.1.8]

Bk(1− t) = (−1)kBk(t), 0 ≤ t ≤ 1, k ≥ 1. (4.38)

Also, we have

Bk (1) = Bk (0) = Bk, k ≥ 2, B1(1) = −B1(0) =
1
2

and
B2r−1 = 0, r ≥ 2.

Therefore, for r ≥ 1 we have
B̃2r−1 = 0 (4.39)

and

B̃2r = 2B2r +3B2r

(
1
6

)
+3B2r

(
1
3

)
+2B2r

(
1
2

)
+3B2r

(
2
3

)
+3B2r

(
5
6

)
.

Also, we have [1, 23.1.21, 23.1.23, 23.1.24]

B2r

(
1
2

)
= −(1−21−2r)B2r, B2r

(
1
3

)
= −1

2

(
1−31−2r)B2r,

and

B2r

(
1
6

)
=

1
2

(
1−21−2r)(1−31−2r)B2r,

which gives the formula

B̃2r = −21−2r(1−32−2r)B2r, r ≥ 1. (4.40)

Now, using (4.39) and (4.40) we get

F2r−1(t) = G2r−1(t), r ≥ 1 (4.41)
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and
F2r(t) = G2r(t)+21−2r(1−32−2r)B2r, r ≥ 1. (4.42)

Further, as we pointed out earlier, the points 0 and 1/2 are the zeros of Fk(t), k ≥ 2. As we
shall see below, 0 and 1/2 are the only zeros of Fk(t) in [0,1/2] for k = 2r, r ≥ 2, while for
k = 2r−1, r ≥ 2, using (4.38) we easily get

G2r−1

(
1
4

)
= F2r−1

(
1
4

)
= 0.

We shall see that 0, 1/4 and 1/2 are the only zeros of F2r−1(t) = G2r−1(t), in [0,1/2] for
r ≥ 2. Also, note that for r ≥ 1 we have

G2r (0) = G2r

(
1
2

)
= B̃2r = −21−2r(1−32−2r)B2r.

The values G2r(1/4) and F2r(1/4) can also be evaluated exactly.

Lemma 4.3 For r ≥ 1 we have

G2r

(
1
4

)
= 21−2r(1−21−2r)(1−32−2r)B2r,

and

F2r

(
1
4

)
= 22−2r(1−2−2r)(1−32−2r)B2r. (4.43)

Proof. We use the formula [1, 23.1.10]

B2r(mx) = m2r−1
m−1

∑
i=0

B2r

(
x+

i
m

)
, r ≥ 0, m ≥ 1.

Setting m = 3, x = 1/12 we get

B2r

(
1
4

)
= B2r

(
3
12

)
= 32r−1

[
B2r

(
1
12

)
+B2r

(
5
12

)
+B2r

(
3
4

)]
,

which can be rewritten as

B2r

(
1
12

)
+B2r

(
5
12

)
= (31−2r −1)B2r

(
1
4

)
since B2r(3/4) = B2r(1/4), by (4.38). Now we have (see [1, 23.1.22])

B2r

(
1
4

)
= −2−2r(1−21−2r)B2r

and using again (4.38) we get

G2r

(
1
4

)
= 4B2r

(
1
4

)
+6

[
B2r

(
1
12

)
+B2r

(
5
12

)]
= 2(32−2r−1)B2r

(
1
4

)
= 21−2r(1−21−2r)(1−32−2r)B2r.
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Also using (4.40) we get (4.43)

F2r

(
1
4

)
= G2r

(
1
4

)
− B̃2r = 22−2r(1−2−2r)(1−32−2r)B2r.

�

Now we prove that the functions Gk(t) and Fk(t) are symmetric for even k and skew-
symmetric for odd k, about 1/4.

Lemma 4.4 For k ≥ 2 we have

Gk

(
1
2
− t

)
= (−1)kGk(t), 0 ≤ t ≤ 1

2
,

and

Fk

(
1
2
− t

)
= (−1)kFk(t), 0 ≤ t ≤ 1

2
.

Proof. As we already noted, the functions B∗
k(t) are periodic with period 1 and continuous

for k ≥ 2. Also, from (4.38) we get

B∗
k(1− t) = (−1)kB∗

k(t), t ∈ R, k ≥ 2.

Therefore, for k ≥ 2 and 0 ≤ t ≤ 1
2 we have

Gk

(
1
2
− t

)
= 2B∗

k

(
1
2

+ t

)
+3B∗

k

(
−1

3
+ t

)
+3B∗

k

(
−1

6
+ t

)
+ 2B∗

k (t)+3B∗
k

(
1
6

+ t

)
+3B∗

k

(
1
3

+ t

)
= (−1)k

[
2B∗

k

(
1
2
− t

)
+3B∗

k

(
4
3
− t

)
+3B∗

k

(
7
6
− t

)
+ 2B∗

k (1− t)+3B∗
k

(
5
6
− t

)
+3B∗

k

(
2
3
− t

)]
= (−1)kGk(t),

which proves the first identity. Further, we have B̃k = (−1)kB̃k, k ≥ 2, since (4.39) holds,
so that

Fk

(
1
2
− t

)
= Gk

(
1
2
− t

)
− B̃k = (−1)k [Gk(t)− B̃k

]
= (−1)kFk (t) ,

which proves the second identity. �

Note that the identities established in Lemma 4.4 are valid for k = 1, too, except at the
points 0, 1/6, 1/3 and 1/2.

Lemma 4.5 For r ≥ 2 the function G2r−1(t) has no zeros in the interval
(
0, 1

4

)
. The sign

of this function is determined by

(−1)rG2r−1(t) > 0, 0 < t <
1
4
.
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Proof. For r = 2, G3(t) is given by (4.37) and it is easy to see that

G3(t) > 0, 0 < t <
1
4
. (4.44)

Thus, our assertion is true for r = 2. Now, assume that r ≥ 3. Then 2r−1≥ 5 and G2r−1(t)
is continuous and twice differentiable function. We get

G′
2r−1(t) = −(2r−1)G2r−2(t)

and
G′′

2r−1(t) = (2r−1)(2r−2)G2r−3(t). (4.45)

We know that 0 and 1
4 are the zeros of G2r−1(t). Let us suppose that some α, 0 < α < 1

4 , is
also a zero of G2r−1(t). Then inside each of the intervals (0,α) and

(
α, 1

4

)
the derivative

G′
2r−1(t) must have at least one zero, say β1, 0 < β1 < α and β2, α < β2 < 1

4 . Therefore,
the second derivative G′′

2r−1(t) must have at least one zero inside the interval (β1,β2) .
Thus, from the assumption that G2r−1(t) has a zero inside the interval

(
0, 1

4

)
, it follows

that (2r−1)(2r−2)G2r−3(t) also has a zero inside this interval. From this it follows that
G3(t) would have a zero inside the interval

(
0, 1

4

)
, which is not true. Thus, G2r−1(t) can

not have a zero inside the interval
(
0, 1

4

)
. Further, if G2r−3(t) > 0, 0 < t < 1

4 , then from
(4.45) it follows that G2r−1(t) is convex on

(
0, 1

4

)
and hence G2r−1(t) < 0, 0 < t < 1

4 ,

while in the case when G2r−3(t) < 0, 0 < t < 1
4 we have that G2r−1(t) is concave and

hence G2r−1(t) > 0, 0 < t < 1
4 . Since (4.44) is valid we conclude that

(−1)rG2r−1(t) > 0, 0 < t <
1
4
.

�

Corollary 4.2 For r ≥ 2 the functions (−1)r−1F2r(t) and (−1)r−1G2r(t) are strictly in-
creasing on the interval

(
0, 1

4

)
, and strictly decreasing on the interval

( 1
4 , 1

2

)
. Conse-

quently, 0 and 1
2 are the only zeros of F2r(t) in the interval

[
0, 1

2

]
and

max
t∈[0,1]

|F2r(t)| = 22−2r(1−2−2r)(1−32−2r)|B2r|, r ≥ 2.

Also, we have
max
t∈[0,1]

|G2r(t)| = 21−2r(1−32−2r)|B2r|, r ≥ 2.

Proof. We have [
(−1)r−1F2r(t)

]′
=
[
(−1)r−1G2r(t)

]′
= 2r(−1)rG2r−1(t)

and (−1)rG2r−1(t) > 0 for 0 < t < 1
4 , by the Lemma 4.5. Thus, (−1)r−1F2r(t) and

(−1)r−1G2r(t) are strictly increasing on the interval
(
0, 1

4

)
. Also, by the Lemma 4.4, we

have F2r
(

1
2 − t

)
= F2r(t), 0 ≤ t ≤ 1

2 and G2r
(

1
2 − t

)
= G2r(t), 0 ≤ t ≤ 1

2 , which implies
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that (−1)r−1F2r(t) and (−1)r−1G2r(t) are strictly decreasing on the interval
(

1
4 , 1

2

)
. Fur-

ther, F2r(0) = F2r
(

1
2

)
= 0, which implies that |F2r(t)| achieves its maximum at t = 1

4 , that
is

max
t∈[0,1]

|F2r(t)| =
∣∣∣∣F2r

(
1
4

)∣∣∣∣= 22−2r(1−2−2r)(1−32−2r)|B2r|.

Also,

max
t∈[0,1]

|G2r(t)| = max

{
|G2r (0)| ,

∣∣∣∣G2r

(
1
4

)∣∣∣∣}= 21−2r(1−32−2r)|B2r|,

which completes the proof. �

Corollary 4.3 Assume r ≥ 2. Then we have

∫ 1

0
|G2r−1(t)|dt =

23−2r(1−2−2r)(1−32−2r)
r

|B2r| .

Also, we have ∫ 1

0
|F2r(t)|dt =

∣∣B̃2r
∣∣= 21−2r (1−32−2r) |B2r|

and ∫ 1

0
|G2r(t)|dt ≤ 2

∣∣B̃2r
∣∣= 22−2r (1−32−2r) |B2r| .

Proof. It is easy to see that

G′
m(t) = −mGm−1(t), m ≥ 3. (4.46)

By (4.41) we have
∫ 1
0 |F2r−1(t)|dt =

∫ 1
0 |G2r−1(t)|dt. Now, using Lemma 4.4, Lemma 4.5

and (4.46) we get

∫ 1

0
|G2r−1(t)|dt = 4

∣∣∣∣∣
∫ 1

4

0
G2r−1(t)dt

∣∣∣∣∣= 4

∣∣∣∣− 1
2r

G2r(t)|
1
4
0

∣∣∣∣
=

2
r

∣∣∣∣G2r

(
1
4

)
−G2r (0)

∣∣∣∣= 23−2r(1−2−2r)(1−32−2r)
r

|B2r| ,

which proves the first assertion. By the Corollary 4.2, F2r(t) does not change the sign on
the interval

(
0, 1

2

)
. Therefore, using (4.42) and (4.46), we get

∫ 1

0
|F2r(t)|dt = 2

∣∣∣∣∫ 1/2

0
F2r(t)dt

∣∣∣∣= 2

∣∣∣∣∫ 1/2

0

[
G2r(t)− B̃2r

]
dt

∣∣∣∣
= 2

∣∣∣∣− 1
2r+1

G2r+1(t)|1/2
0 − 1

2
B̃2r

∣∣∣∣= ∣∣B̃2r
∣∣= 21−2r (1−32−2r) |B2r| .
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This proves the second assertion. Finally, we use (4.42) again and the triangle inequality
to obtain∫ 1

0
|G2r(t)|dt =

∫ 1

0

∣∣F2r(t)+ B̃2r
∣∣dt

≤
∫ 1

0
|F2r(t)|dt +

∣∣B̃2r
∣∣= 2

∣∣B̃2r
∣∣= 22−2r (1−32−2r) |B2r| ,

which proves the third assertion. �

In the following discussion we assume that f : [0,1]→R has a continuous derivative of
order n, for some n ≥ 1. In this case we can use formulae (4.31) and (4.32) from Remark
4.4 so that remainders τ1

n ( f ) and τ2
n ( f ) are given as

τ1
n ( f ) =

1
16(n!)

∫ 1

0
Gn(s) f (n)(s)ds (4.47)

and

τ2
n ( f ) =

1
16(n!)

∫ 1

0
Fn(s) f (n)(s)ds. (4.48)

Lemma 4.6 If f : [0,1]→R is such that f (2r) is continuous on [0,1] , for some r ≥ 2, then
there exists a point η ∈ [0,1] such that

τ2
2r( f ) =

1
8(2r)!

2−2r(1−32−2r)B2r f (2r)(η). (4.49)

Proof. Using (4.48) with n = 2r, we can rewrite τ2
2r( f ) as

τ2
2r( f ) = (−1)r−1 1

16(2r)!
Jr, (4.50)

where

Jr =
∫ 1

0
(−1)r−1F2r(s) f (2r)(s)ds. (4.51)

If
m = min

t∈[0,1]
f (2r)(t), M = max

t∈[0,1]
f (2r)(t),

then
m ≤ f (2r)(s) ≤ M, 0 ≤ s ≤ 1.

On the other side, from Corollary 4.2 it follows that

(−1)r−1F2r(s) ≥ 0, 0 ≤ s ≤ 1,

which implies

m
∫ 1

0
(−1)r−1F2r(s)ds ≤ Jr ≤ M

∫ 1

0
(−1)r−1F2r(s)ds.
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Similarly as we have already calculated in the proof of Corollary 4.3, we get∫ 1

0
F2r(s)ds = −B̃2r = 21−2r(1−32−2r)B2r,

so that

m(−1)r−121−2r(1−32−2r)B2r ≤ Jr ≤ M(−1)r−121−2r(1−32−2r)B2r.

By the continuity of f (2r)(s) on [0,1], it follows that there must exist a point η ∈ [0,1] such
that

Jr = (−1)r−121−2r(1−32−2r)B2r f (2r)(η).

Combining this with (4.50) we get (4.49). �

Now, we prove the main result:

Theorem 4.7 Assume f : [0,1] → R is such that f (2r) is continuous on [0,1] , for some
r ≥ 2. If f is (2r)-convex function, then for even r we have

0 ≤
∫ 1

0
f (t)dt− 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]
−TM

r−1( f )

≤ 1
8

[
f (0)+3 f

(
1
3

)
+3 f

(
2
3

)
+ f (1)

]
+TS

r−1−
∫ 1

0
f (t)dt, (4.52)

while for odd r we have reversed inequalities in (4.52).

Proof. Let us denote by LHS and RHS respectively the left hand side and the right hand
side in the second inequality in (4.52). Then we have

LHS = ρ2
2r( f )

and
RHS−LHS = −2τ2

2r( f ),

For Euler-Maclaurin formula, under given assumption on f , there exists a point ξ ∈ [0,1]
such that

ρ2
2r( f ) = − 1

8(2r)!
(
1−21−2r)(1−32−2r)B2r f (2r)(ξ ). (4.53)

Also by Lemma 4.6 we know that

−2τ2
2r( f ) = − 1

8(2r)!
21−2r(1−32−2r)B2r f (2r)(η), (4.54)

for some point η ∈ [0,1]. Finally, we know that [1, 23.1.15]

(−1)r−1B2r > 0, r = 1,2, · · · . (4.55)
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Now, if f is (2r)-convex function, then f (2r)(ξ ) ≥ 0 and f (2r)(η) ≥ 0 so that using (4.53),
(4.54) and (4.55) we get the inequalities

LHS ≥ 0, RHS−LHS ≥ 0, when r is even;

LHS ≤ 0, RHS−LHS ≤ 0, when r is odd.

This proves our assertions. �

Remark 4.6 In the case when r = 2 we have B4 = −1/30 and formula (4.49) reduces to

τ2
4 ( f ) = − 1

103680
f (4)(η).

Note that in this case the result stated in Theorem 4.7 reduces to Bullen’s result that we
mentioned in Introduction.

Theorem 4.8 Assume f : [0,1] → R is such that f (2r) is continuous on [0,1] , for some
r≥ 2. If f is either (2r)-convex or (2r)-concave function, then there exists a point ϑ ∈ [0,1]
such that

τ2
2r( f ) = ϑ

1
4(2r)!

2−2r(1−2−2r)(1−32−2r)B2r

[
f (2r−1)(1)− f (2r−1)(0)

]
. (4.56)

Proof. First, consider the case when f is (2r)-convex, that is f (2r)(t) ≥ 0, 0 ≤ t ≤ 1. By
Corollary 4.2 we get

0 ≤ (−1)r−1F2r(s) ≤ (−1)r−1F2r

(
1
4

)
, 0 ≤ s ≤ 1.

Therefore, if Jr is given by (4.51), then

0 ≤ Jr ≤ (−1)r−1F2r

(
1
4

)∫ 1

0
f (2r)(s)ds

= (−1)r−1F2r

(
1
4

)[
f (2r−1)(1)− f (2r−1)(0)

]
.

So, there must exist a point ϑ ∈ [0,1] such that

Jr = ϑ(−1)r−1F2r

(
1
4

)[
f (2r−1)(1)− f (2r−1)(0)

]
.

Combining this with (4.50) and using (4.43) we get (4.56). The argument is the same when
f is (2r)-concave since in that case f (2r)(t) ≤ 0, 0 ≤ t ≤ 1 and we get

(−1)r−1F2r

(
1
4

)[
f (2r−1)(1)− f (2r−1)(0)

]
≤ Jr ≤ 0.

�
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Remark 4.7 If we approximate
∫ 1
0 f (t)dt by

I2r( f ) := D(0,1)+Tr−1( f ),

then the next approximation will be I2r+2( f ). The difference

Δ2r( f ) = I2r+2( f )− I2r( f )

is equal to the last term in I2r+2( f ), that is

Δ2r( f ) =
1

8(2r)!
2−2r(1−32−2r)B2r

[
f (2r−1)(1)− f (2r−1)(0)

]
.

We see that, under the assumptions of Theorem 4.8,

τ2
2r( f ) = 2ϑ

(
1−2−2r)Δ2r( f ).

Theorem 4.9 Assume f : [0,1]→ R is such that f (2r+2) is continuous on [0,1] , for some
r ≥ 2. If f is either (2r)-convex and (2r+2)-convex or (2r)-concave and (2r+2)-concave
function, then the remainder τ2

2r( f ) has the same sign as the first neglected term Δ2r( f )
and ∣∣τ2

2r( f )
∣∣ ≤ |Δ2r( f )| .

Proof. We have
Δ2r( f )+ τ2

2r+2( f ) = τ2
2r( f ),

that is
Δ2r( f ) = τ2

2r( f )− τ2
2r+2( f ). (4.57)

By (4.48) we have

τ2
2r( f ) =

1
16(2r)!

∫ 1

0
F2r(s) f (2r)(s)ds

and

−τ2
2r+2( f ) =

1
16(2r+2)!

∫ 1

0
[−F2r+2(s)] f (2r+2)(s)ds.

Under the assumptions made on f , we have for all s ∈ [0,1] either

f (2r)(s) ≥ 0 and f (2r+2)(s) ≥ 0

or
f (2r)(s) ≤ 0 and f (2r+2)(s) ≤ 0.

Also, from Corollary 4.2 it follows that for all s ∈ [0,1]

(−1)r−1F2r(s) ≥ 0 and (−1)r−1[−F2r+2(s)] ≥ 0.

We conclude that τ2
2r( f ) has the same sign as −τ2

2r+2( f ). Therefore, because of (4.57),
Δ2r( f ) must have the same sign as τ2

2r( f ) and −τ2
2r+2( f ). Moreover, it follows that∣∣τ2

2r( f )
∣∣≤ |Δ2r( f )| and

∣∣−τ2
2r+2( f )

∣∣≤ |Δ2r( f )| .
�
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Now, we use the Euler Bullen-Simpson 3/8 formulae established in Lemma 4.2 to deter-
mine the absolute value of difference between the absolute value of error in the Maclaurin
quadrature rule and the absolute value of error in the Simpson’s 3/8 quadrature rule. We
do this by proving a number of inequalities for various classes of functions.

First, let us denote

RS :=
∫ 1

0
f (t)dt− 1

8

[
f (0)+3 f

(
1
3

)
+3 f

(
2
3

)
+ f (1)

]
and

RM :=
∫ 1

0
f (t)dt− 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]
.

By the triangle inequality we have

||RM|− |RS|| ≤ |RM +RS|.

Now, if we define R := RM +RS, then

R
2

=
∫ 1

0
f (t)dt−D(0,1) (4.58)

where D(0,1) denotes the same expression as in Introduction.

Theorem 4.10 Let f : [0,1] → R be such that f (n−1) is an L-Lipschitzian function on
[0,1] for some n ≥ 2.
If n = 2r−1, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr−1( f )

∣∣∣∣ ≤ 1
16(2r−1)!

∫ 1

0
|G2r−1(t)|dt ·L (4.59)

=
2−2r(1−2−2r)(1−32−2r)

(2r)!
|B2r| ·L.

If n = 2r, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr−1( f )

∣∣∣∣ ≤ 1
16(2r)!

∫ 1

0
|F2r(t)|dt ·L (4.60)

=
2−2r(1−32−2r)

8(2r)!
|B2r| ·L.

and also ∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr( f )

∣∣∣∣ ≤ 1
16(2r)!

∫ 1

0
|G2r(t)|dt ·L (4.61)

≤ 2−2r(1−32−2r)
4(2r)!

|B2r| ·L.
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Proof. For any integrable function Φ : [0,1]→ R we have∣∣∣∣∫ 1

0
Φ(t)d f (n−1)(t)

∣∣∣∣≤ ∫ 1

0
|Φ(t)|dt ·L, (4.62)

since f (n−1) is L-Lipschitzian function. Applying (4.62) with Φ(t) = G2r−1(t), we get∣∣∣∣ 1
16(2r−1)!

∫ 1

0
G2r−1(t)d f (2r−2)(t)

∣∣∣∣≤ 1
16(2r−1)!

∫ 1

0
|G2r−1 (t)|dt ·L.

Applying the above inequality and the identity (4.30), we get the inequality in (4.59).
Similarly, we can apply the inequality (4.62) with Φ(t) = F2r (t) and again the identity
(4.30) to get the inequality in (4.60). Finally, applying (4.62) with Φ(t) = G2r (t) and the
identity (4.29), we get the first inequality in (4.61). The equalities in (4.59) and (4.60) and
the second inequality in (4.61) follow from Corollary 4.3. �

Corollary 4.4 Let f : [0,1]→ R be such that f ′′ is L-Lipschitzian on [0,1], then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
13824

L, |R| ≤ 1
6912

L.

If f ′′′ is L-Lipschitzian on [0,1], then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
103680

L, |R| ≤ 1
51840

L.

Proof. The first pair of inequalities follows from (4.59) with r = 2, while the second pair
follows from (4.60) with r = 2. �

Remark 4.8 If f is L-Lipschitzian on [0,1], then, as above∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
16

∫ 1

0
|G1(t)|dt ·L.

Since ∫ 1

0
|G1(t)|dt =

25
36

,

we get ∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 25
576

·L and |R| ≤ 25
288

·L.

If f ′ is L-Lipschitzian on [0,1], then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
32

∫ 1

0
|F2(t)|dt ·L.

Since ∫ 1

0
|F2(t)|dt =

1
24

,
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we get ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
768

·L and |R| ≤ 1
384

·L.

Theorem 4.11 Let f : [0,1]→ R be such that f (n−1) is a continuous function of bounded
variation on [0,1] for some n ≥ 2.
If n = 2r−1,r ≥ 2, then ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr−1( f )

∣∣∣∣
≤ 1

16(2r−1)!
max
t∈[0,1]

|G2r−1(t)| ·V 1
0 ( f (2r−2)). (4.63)

If n = 2r,r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr−1( f )

∣∣∣∣ ≤ 1
16(2r)!

max
t∈[0,1]

|F2r(t)| ·V 1
0 ( f (2r−1)) (4.64)

=
2−2r(1−2−2r)(1−32−2r)

4(2r)!
|B2r| ·V 1

0 ( f (2r−1)).

Also, we have∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr( f )

∣∣∣∣ ≤ 1
16(2r)!

max
t∈[0,1]

|G2r(t)| ·V 1
0 ( f (2r−1)) (4.65)

=
2−2r(1−32−2r)

8(2r)!
|B2r| ·V 1

0 ( f (2r−1)).

Here V 1
0 ( f (n−1)) denotes the total variation of f (n−1) on [0,1].

Proof. If Φ : [0,1] → R is bounded on [0,1] and the Riemann-Stieltjes integral∫ 1
0 Φ(t)d f (n−1)(t) exists, then∣∣∣∣∫ 1

0
Φ(t)d f (n−1)(t)

∣∣∣∣≤ max
t∈[0,1]

|Φ(t)| ·V 1
0 ( f (n−1)). (4.66)

We apply this estimate to Φ(t) = G2r−1 (t) to obtain∣∣∣∣ 1
16(2r−1)!

∫ 1

0
G2r−1 (t)d f (2r−2)(t)

∣∣∣∣≤ 1
16(2r−1)!

max
t∈[0,1]

|G2r−1 (t)| ·V 1
0 ( f (2r−2))

which is just the inequality (4.63), because of the identity (4.30). Similarly, we can apply
the estimate (4.66) with Φ(t) = F2r (t) and use the identity (4.30) and Corollary 4.2 to
obtain (4.64). Finally, (4.65) follows from (4.66) with Φ(t) = G2r (t) , the identity (4.29)
and Corollary 4.2. �
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Corollary 4.5 Let f : [0,1] → R be such that f ′′ is a continuous function of bounded
variation on [0,1], then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
6144

V 1
0 ( f ′′), |R| ≤ 1

3072
V 1

0 ( f ′′).

If f ′′′ is a continuous function of bounded variation on [0,1], then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
55296

V 1
0 ( f ′′′), |R| ≤ 1

27648
V 1

0 ( f ′′′).

Proof. From (4.37), we get

max
t∈[0,1]

|G3(t)| = 1
64

so that the first pair of inequalities follow from (4.63) with r = 2. The second pair of
inequalities follow from (4.64) with r = 2. �

Remark 4.9 If f is a continuous function of bounded variation on [0,1], then, as above∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
16

max
t∈[0,1]

|G1(t)| ·V 1
0 ( f ).

Since

max
t∈[0,1]

|G1(t)| = 5
3
,

we get ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 5
48

·V 1
0 ( f ) and |R| ≤ 5

24
·V 1

0 ( f ).

If f ′ is a continuous function of bounded variation on [0,1], then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
32

max
t∈[0,1]

|F2(t)| ·V 1
0 ( f ′).

Since

max
t∈[0,1]

|F2(t)| = 1
9
,

we get ∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
288

·V 1
0 ( f ′) and |R| ≤ 1

144
·V 1

0 ( f ′).

Theorem 4.12 Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q < ∞,
1
p + 1

q = 1 or p = ∞, q = 1. Let f : [0,1] → R be such that f (n) ∈ Lp[0,1] for some n ≥ 1.
If n = 2r−1,r ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr−1( f )

∣∣∣∣≤ K(2r−1, p)‖ f (2r−1)‖p. (4.67)
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If n = 2r,r ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr−1( f )

∣∣∣∣≤ K∗(2r, p)‖ f (2r)‖p. (4.68)

Also, we have ∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr( f )

∣∣∣∣ ≤ K(2r, p)‖ f (2r)‖p. (4.69)

Here

K(n, p) =
1

16n!

[∫ 1

0
|Gn(t)|q dt

] 1
q

,

and

K∗(n, p) =
1

16n!

[∫ 1

0
|Fn(t)|q dt

] 1
q

.

Proof. Applying the Hölder inequality we have∣∣∣∣ 1
16(2r−1)!

∫ 1

0
G2r−1 (t) f (2r−1)(t)dt

∣∣∣∣
≤ 1

16(2r−1)!

[∫ 1

0
|G2r−1 (t)|q dt

] 1
q

·
∥∥∥ f (2r−1)

∥∥∥
p
= K(2r−1, p)‖ f (2r−1)‖p

The above estimate is just (4.67), by the identity (4.33). The inequalities (4.68) and (4.69)
are obtained in the same manner from (4.32) and (4.31), respectively. �

Remark 4.10 For p = ∞ we have

K(n,∞) =
1

16n!

∫ 1

0
|Gn(t)|dt and K∗(n,∞) =

1
16n!

∫ 1

0
|Fn(t)|dt.

The results established in Theorem 4.12 for p = ∞ coincide with the results of Theorem
4.10 with L = ‖ f (n)‖∞. Moreover, by Remark 4.8 and Corollary 4.4, we have∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr−1( f )

∣∣∣∣≤ K(2r−1,∞)‖ f (2r−1)‖∞, r = 1,2,

where

K(1,∞) =
25
576

, K(3,∞) =
1

13824
.

Also, we have∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr−1( f )

∣∣∣∣≤ K∗(2r,∞)‖ f (2r)‖∞, r = 1,2,

where

K∗(2,∞) =
1

768
, K∗(4,∞) =

1
103680

.
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Remark 4.11 Let us define for p = 1

K(n,1) =
1

16n!
max
t∈[0,1]

|Gn(t)| and K∗(n,1) =
1

16n!
max
t∈[0,1]

|Fn(t)| .

Then, using Corollary 4.5, Remark 4.9 and Theorem 4.11, we can extend the results estab-
lished in Theorem 4.12 to the pair p = 1, q = ∞. This means that if we set 1

q = 0, then
(4.67) and (4.68) hold for p = 1. Also, by Corollary 4.5, we have∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr−1( f )

∣∣∣∣≤ K(2r−1,1)‖ f (2r−1)‖1, r = 1,2,

where

K(1,1) =
5
48

, K(3,1) =
1

6144
.

Also, we have∣∣∣∣∫ 1

0
f (t)dt −D(0,1)−Tr−1( f )

∣∣∣∣≤ K∗(2r,1)‖ f (2r)‖1, r = 1,2,

where

K∗(2,1) =
1

288
, K∗(4,1) =

1
55296

.

Remark 4.12 Note that K∗(1, p) = K(1, p), for 1 < p≤ ∞, since G1(t) = F1(t). Also, for
1 < p ≤ ∞ we can easily calculate K(1, p). We get

K(1, p) =
1
16

[
3q+1 +4q+1 +5q+1

4(q+1)3q+1

] 1
q

, 1 < p ≤ ∞.

So, from (4.67) with r = 1 we get the following inequality

∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
16

[
3q+1 +4q+1 +5q+1

4(q+1)3q+1

] 1
q

· ‖ f ′‖p.

In the limit case when p → 1, that is when q → ∞, we have

lim
q→∞

1
16

[
3q+1 +4q+1 +5q+1

4(q+1)3q+1

] 1
q

=
5
48

= K(1,1).

At the end of this section we prove an interesting Grüss type inequality related to to
Euler Bullen-Simpson’s 3/8 identity (4.31). To do this we use the following variant of the
key technical result from the paper [83]:

Lemma 4.7 Let F,G : [0,1] → R be two integrable functions. If, for some constants
m,M ∈ R

m ≤ F(t) ≤ M, 0 ≤ t ≤ 1
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and ∫ 1

0
G(t)dt = 0,

then ∣∣∣∣∫ 1

0
F(t)G(t)dt

∣∣∣∣≤ M−m
2

∫ 1

0
|G(t)|dt. (4.70)

Theorem 4.13 Suppose that f : [0,1] → R is such that f (n) exists and is integrable on
[0,1], for some n ≥ 1. Assume that

mn ≤ f (n)(t) ≤ Mn, 0 ≤ t ≤ 1,

for some constants mn and Mn. Then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tk( f )

∣∣∣∣≤ 1
32(n!)

Cn(Mn −mn), (4.71)

where k =
[

n
2

]
and

Cn =
∫ 1

0
|Gn(t)|dt, n ≥ 1.

Moreover, if n = 2r−1, r ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt−D(0,1)−Tr−1( f )

∣∣∣∣
≤ 2−2r

(
1−2−2r

)(
1−32−2r

)
2 [(2r)!]

|B2r| (M2r−1−m2r−1). (4.72)

Proof. We can rewrite the identity (4.31) in the form∫ 1

0
f (t)dt −D(0,1)−Tk( f ) =

1
16(n!)

∫ 1

0
F(t)G(t)dt, (4.73)

where
F(t) = f (n)(t), G(t) = Gn (t) , 0 ≤ t ≤ 1.

In [27, Lemma 2 (i)] it was proved that for all n ≥ 1 and for every γ ∈ R∫ 1

0
B∗

n(γ − t)dt = 0,

so that we have∫ 1

0
G(t)dt =

∫ 1

0

[
2B∗

n(1− s)+3B∗
n

(
1
6
− s

)
+3B∗

n

(
1
3
− s

)
+2B∗

n

(
1
2
− s

)
+3B∗

n

(
2
3
− s

)
+3B∗

n

(
5
6
− s

)]
ds = 0.

Thus, we can apply (4.70) to the integral in the right hand side of (4.73) and (4.71) follows
immediately. The inequality (4.72) follows from (4.71) and Corollary 4.3. �
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Remark 4.13 For n = 1 and n = 2 we have already evaluated

C1 =
∫ 1

0
|G1(t)|dt =

25
36

, C2 =
∫ 1

0
|G2(t)|dt =

1
24

,

so that we have ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 25
1152

(M1 −m1)

and ∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ 1
1536

(M2 −m2).

For n = 3 we apply (4.72) with r = 2 to get the inequality∣∣∣∣∫ 1

0
f (t)dt−D(0,1)

∣∣∣∣≤ 1
27648

(M3 −m3).

4.2 Closed corrected 4-point quadrature formulae

In this section, we follow the same idea as in section on corrected 3-point quadrature for-
mulae. Let us observe formula (4.1) again. Instead of the condition G2(x,0) = 0, we im-
pose condition G4(x,0) = 0, thus leaving the values of the first derivative in the quadrature
formula and removing the values of the third. This new condition produces the following
weight:

wc(x) := w(x) = − B4

2(B4(x)−B4)
=

1
60x2(1− x)2 . (4.74)

Now, assuming f (2n−1) is continuous of bounded variation on [0,1] for some n≥ 1, we
have:∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TCQ4

2n (x) =
1

(2n)!

∫ 1

0
GCQ4

2n (x,t)d f (2n−1)(t), (4.75)

assuming f (2n) is continuous of bounded variation on [0,1] for some n ≥ 0, we have:∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TCQ4

2n (x) =
1

(2n+1)!

∫ 1

0
GCQ4

2n+1(x, t)d f (2n)(t), (4.76)

and finally, assuming f (2n+1) is continuous of bounded variation on [0,1] for some n ≥ 0,
we have:∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TCQ4

2n (x) =
1

(2n+2)!

∫ 1

0
FCQ4

2n+2(x,t)d f (2n+1)(t), (4.77)
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where

QC(0,x,1− x,1) (4.78)

=
1

60x2(1− x)2 [30B4(x) f (0)+ f (x)+ f (1− x)+30B4(x) f (1)],

TCQ4
2n (x) =

2n

∑
k=2

1
k!

GCQ4
k (x,0) [ f (k−1)(1)− f (k−1)(0)] (4.79)

=
5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)]+
n

∑
k=3

GCQ4
2k (x,0)
(2k)!

[ f (2k−1)(1)− f (2k−1)(0)]

GCQ4
k (x,t) =

1
60x2(1− x)2 [60B4(x) ·B∗

k (1− t)+B∗
k (x− t)+B∗

k (1− x− t)] ,

k ≥ 1

FCQ4
k (x,t) = GCQ4

k (x,t)−GCQ4
k (x,0), k ≥ 2.

What follows is the key lemma.

Lemma 4.8 For x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ] and k ≥ 2, GCQ4
2k+1(x, t) has no zeros in variable t

in the interval (0,1/2). The sign of the function is determined by:

(−1)kGCQ4
2k+1(x,t) > 0 for x ∈ (0,1/2−

√
5/10],

(−1)k+1GCQ4
2k+1(x,t) > 0 for x ∈ [1/3,1/2].

Proof. We start from GCQ4
5 (x,t) and claim that for x ∈ (1/2−√

5/10,1/3), GCQ4
5 (x,t)

has at least one zero in variable t in (0,1/2). To prove this, first notice that GCQ4
5 (x,0) =

∂GCQ4
5

∂ t (x,0) = ∂ 2GCQ4
5

∂ t2
(x,0) = GCQ4

5 (x,1/2) = 0 and that x ∈ (1/2−√
5/10,1/3) is equiva-

lent to
∂ 3GCQ4

5
∂ t3

(x,0) < 0 and
∂GCQ4

5
∂ t (x, 1

2 ) < 0. From
∂ 3GCQ4

5
∂ t3

(x,0) < 0 we conclude
∂ 3GCQ4

5
∂ t3

(x,t) < 0 in some neighborhood of t = 0. Therefore,
∂ 2GCQ4

5
∂ t2

(x,t) is decreasing

in some neighborhood of t = 0 and since
∂ 2GCQ4

5
∂ t2

(x,0) = 0, it follows that there we have
∂ 2GCQ4

5
∂ t2

(x,t) < 0. Further,
∂GCQ4

5
∂ t (x,t) is then also decreasing and since

∂GCQ4
5

∂ t (x,0) = 0, we

conclude
∂GCQ4

5
∂ t (x,t) < 0 in some neighborhood of t = 0. Finally, from here we see that

GCQ4
5 (x, t) is decreasing and since GCQ4

5 (x,0) = 0 we have GCQ4
5 (x, t) < 0 in some neigh-

borhood of 0. On the other hand, from
∂GCQ4

5
∂ t (x, 1

2 ) < 0 we conclude that
∂GCQ4

5
∂ t (x,t) < 0 in

some neighborhood of t = 1/2. Then GCQ4
5 (x,t) is decreasing and since GCQ4

5 (x,1/2) = 0

we see that GCQ4
5 (x,t) > 0 in that neighborhood. Now it is clear that when

∂ 3GCQ4
5

∂ t3
(x,0) < 0

and
∂GCQ4

5
∂ t (x, 1

2 ) < 0, i.e. when x ∈ (1/2−√
5/10,1/3), GCQ4

5 (x,t) has at least one zero on
(0,1/2).
It is left to prove that for x ∈ (0, 1

2 −
√

5
10 ]∪ [ 1

3 , 1
2 ], GCQ4

5 (x,t) has constant sign. This will
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be done by showing that GCQ4
5 (x,t) is decreasing in the variable x and after checking its

behavior at the end points, our statement will follow. First assume 0 < t ≤ x ≤ 1/2. Then

∂GCQ4
5

∂x
(x,t) = t3 · 1−2x

6x3(1− x)3 [t−2x(1− x)].

Since t ≤ x ≤ 2x(1 − x), it follows that
∂GCQ4

5
∂x (x, t) < 0 on this interval. When

0 < x ≤ t < 1/2, we have

∂GCQ4
5

∂x
(x,t) =

(1−2t)
6(1− x)3 [x−2t(1− t)].

Similarly as before, now x ≤ t ≤ 2t(1− t). Therefore GCQ4
5 (x, t) is decreasing in x. To

complete our proof, we need to consider the sign of GCQ4
5

(
5−√

5
10 , t

)
and GCQ4

5

( 1
3 , t
)
. As-

sume 0 < t ≤ x ≤ 1/2. Then GCQ4
5 (x,t) = −t3

12x2(1−x)2 ·g(x,t) where g(x, t) = 12t2(1− x)2 ·
x2 + t(−30x4 + 60x3 − 30x2 + 1)+ 4x(5x3 − 10x2 + 6x− 1). Now, it is trivial to see that

GCQ4
5

(
5−√

5
10 , t

)
> 0 and that GCQ4

5

( 1
3 ,t
)

< 0. Similarly, when 0 < x ≤ t ≤ 1/2, we have

GCQ4
5 (x, t) = 1−2t

12(1−x)2 · h(x,t) where h(x,t) = 6t4(1− x)2 − 12t3(1− x)3 + t2(4x2 − 8x +

6)+2t ·x(x−2)+ x2 and again GCQ4
5

(
5−√

5
10 ,t

)
> 0 and GCQ4

5

(
1
3 ,t
)

< 0. Therefore, since

GCQ4
5 (x, t) is decreasing in x, it follows that GCQ4

5 (x,t) > 0 for x ∈ (0, 1
2 −

√
5

10 ] and that

GCQ4
5 (x, t) < 0 for x ∈ [ 1

3 , 1
2 ].

Thus, the assertion is true for k = 2. For k ≥ 3 it follows by induction. As for the sign
of functions GCQ4

2k+1 (x,t), the proof is analogous to the same part of the proof of Lemma 3.1
�

Denote by RCQ4
2n+2(x, f ) the right-hand side of (4.77).

Theorem 4.14 Let f : [0,1] → R be such that f (2n+2) is continuous on [0,1] for some

n ≥ 3 and let x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ]. If f (2n) and f (2n+2) have the same constant sign

on [0,1], then the remainder RCQ4
2n (x, f ) has the same sign as the first neglected term

ΔCQ4
2n (x, f ) where

ΔCQ4
2n (x, f ) := RCQ4

2n (x, f )−RCQ4
2n+2(x, f ) = − 1

(2n)!
GCQ4

2n (x,0)[ f (2n−1)(1)− f (2n−1)(0)].

Furthermore, |RCQ4
2n (x, f )| ≤ |ΔCQ4

2n (x, f )| and |RCQ4
2n+2(x, f )| ≤ |ΔCQ4

2n (x, f )|.
Proof. Analogous to the proof of Theorem 3.1. �

Theorem 4.15 If f : [0,1]→ R is such that f (2n+2) is continuous on [0,1] for some n ≥ 2

and x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ], then there exists ξ ∈ [0,1] such that

RCQ4
2n+2(x, f ) = −GCQ4

2n+2(x,0)
(2n+2)!

· f (2n+2)(ξ ) (4.80)
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where

GCQ4
2n+2(x,0) =

1
30x2(1− x)2 [B2n+2(x)−B2n+2]+B2n+2. (4.81)

If, in addition, f (2n+2) does not change sign on [0,1], then there exists θ ∈ [0,1] such
that

RCQ4
2n+2(x, f ) =

θ
(2n+2)!

·FCQ4
2n+2

(
x,

1
2

)[
f (2n+1)(1)− f (2n+1)(0)

]
(4.82)

where

FCQ4
2n+2 (x,1/2) =

1
30x2(1− x)2

[
B2n+2 (1/2− x)−B2n+2(x)+

(
2−2−2n−1)B2n+2

]
− (

2−2−2n−1)B2n+2. (4.83)

Proof. Analogous to the proof of Theorem 3.2. �

When we apply (4.80) to the remainder in formula (4.77) for n = 2, we obtain:∫ 1

0
f (t)dt −QC(0,x,1− x,1)+

5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)]

= −14x2−14x+3
302400

· f (6)(ξ ). (4.84)

For x = 1/2, formula (4.84) produces corrected Simpson’s formula which was already
studied some sections earlier. For x = 1/3 corrected Simpson’s 3/8 formula is produced.
Imposing condition wc(x) = 1/2, where wc(x) is as in (4.74), gives a 2-point quadra-
ture formula (since wc(x) = 1/2 ⇔ B4(x) = 0), and the corrected Gauss 2-point formula,
which was also already studied here. Possible the most interesting special case is for the
x = 1/2−√

5/10 which produces the Lobatto 4-point formula. The following subsections
will be dedicated to these special cases.

Remark 4.14 Similarly as in Remark 4.2, one might wonder if similar results can be
obtained for x = 0. By considering the limit process we get:

lim
x→0

(
QC(0,x,1− x,1)− 5x2−5x+1

60x(x−1)
[ f ′(1)− f ′(0)]

)
=

1
2
[ f (0)+ f (1)]− 1

10
[ f ′(1)− f ′(0)]+

1
120

[ f ′′(0)+ f ′′(1)]

lim
x→0

GCQ4
k (x,t) = B∗

k(1− t)+
k(k−1)

60
B∗

k−2(1− t)

Consequently, from (4.84) it follows:∫ 1

0
f (t)dt− 1

2
[ f (0)+ f (1)]+

1
10

[ f ′(1)− f ′(0)]− 1
120

[ f ′′(0)+ f ′′(1)] =− 1
100800

f (6)(ξ ).

(4.85)
Note that quadrature formulae (4.15) and (4.85) were derived in [22], by integrating the
two-point Taylor interpolation formula.
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Theorem 4.16 Let p,q∈R be such that 1≤ p, q≤∞ and 1/p+1/q= 1. If f : [0,1]→R

is such that f (2n) ∈ Lp[0,1] for some n ≥ 1, then we have∣∣∣∣∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TCQ4

2n (x)
∣∣∣∣≤ KCQ4(2n,q) · ‖ f (2n)‖p. (4.86)

If f (2n+1) ∈ Lp[0,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TCQ4

2n (x)
∣∣∣∣≤ KCQ4(2n+1,q) · ‖ f (2n+1)‖p (4.87)

and if f (2n+2) ∈ Lp[0,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TCQ4

2n (x)
∣∣∣∣≤ K∗

CQ4(2n+2,q) · ‖ f (2n+2)‖p, (4.88)

where

KCQ4(m,q) =
1
m!

[∫ 1

0

∣∣GCQ4
m (x,t)

∣∣q dt

] 1
q

and K∗
CQ4(m,q) =

1
m!

[∫ 1

0

∣∣FCQ4
m (x,t)

∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p ≤ ∞ and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. �

Similarly as in the previous section, for x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ] and n ≥ 2, we can
calculate the following constants as special cases of the previous Theorem:

K∗
CQ4(2n+2,1) =

1
(2n+2)!

∣∣∣GCQ4
2n+2(x,0)

∣∣∣ ,
K∗

CQ4(2n+2,∞) =
1
2

KCQ4(2n+1,1) =
1

(2n+2)!

∣∣∣∣FCQ4
2n+2

(
x,

1
2

)∣∣∣∣ ,
where GCQ4

2n+2(x,0) and FCQ4
2n+2 (x,1/2) are as in (4.81) and (4.83), respectively.

We now seek for the optimal corrected closed 4-point quadrature formula for

x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ], n = 2 and p = ∞. Theorem 4.16 gives:∣∣∣∣∫ 1

0
f (t)dt−QC(0,x,1− x,1)+

5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)]
∣∣∣∣

≤ |32x3−55x2 +30x−5|
115200(1− x)2 · ‖ f (5)‖∞∣∣∣∣∫ 1

0
f (t)dt−QC(0,x,1− x,1)+

5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)]
∣∣∣∣

≤ |14x2−14x+3|
302400

· ‖ f (6)‖∞
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It is not hard to see that functions on the right-hand sides of both of these inequalities

are decreasing on (0, 1
2 −

√
5

10 ] and increasing on [ 1
3 , 1

2 ] and they reach their minimum at
x = 1/3. The same goes for the case when n = 2 and p = 1.

Thus, once again, we conclude that the node which gives the best estimation of error in
these three cases is x = 1/3, i.e. the optimal corrected closed 4-point quadrature formula
is corrected Simpson’s 3/8 formula.

The following two theorems give Hermite-Hadamard and Dragomir-Agarwal type in-
equalities for the general corrected 4-point quadrature formulae:

Theorem 4.17 Let f : [0,1]→R be (2n+4)-convex for n≥ 2. Then for x ∈
(
0, 1

2 −
√

5
10

]
,

we have

1
(2n+2)!

|GCQ4
2n+2(x,0)| f (2n+2)

(
1
2

)
≤ (−1)n+1

(∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TCQ4

2n (x)
)

(4.89)

≤ 1
(2n+2)!

|GCQ4
2n+2(x,0)| f (2n+2)(0)+ f (2n+2)(1)

2
,

while for x ∈ [ 1
3 , 1

2

]
we have

1
(2n+2)!

|GCQ4
2n+2(x,0)| f (2n+2)

(
1
2

)
≤ (−1)n

(∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TCQ4

2n (x)
)

(4.90)

≤ 1
(2n+2)!

|GCQ4
2n+2(x,0)| f (2n+2)(0)+ f (2n+2)(1)

2
,

where GCQ4
2n+2(x,0) is as in (4.81).

If f is (2n+4)-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 2.8. �

Theorem 4.18 Let x ∈
(
0, 1

2 −
√

5
10

]
∪ [ 1

3 , 1
2

]
and f : [0,1] → R be m-times differentiable

for m ≥ 5. If | f (m)|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt−QC(0,x,1− x,1)+TCQ4

2n (x)
∣∣∣∣

≤ LCQ4(m,x) ·
(
| f (m)(0)|q + | f (m)(1)|q

2

)1/q

(4.91)

while if | f (m)| is concave, then∣∣∣∣∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TCQ4

2n (x)
∣∣∣∣ ≤ LCQ4(m,x) ·

∣∣∣∣ f (m)
(

1
2

)∣∣∣∣ , (4.92)
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where

for m = 2n+1 LCQ4(2n+1,x) =
2

(2n+2)!
|FCQ4

2n+2(x,1/2)|

and for m = 2n+2 LCQ4(2n+2,x) =
1

(2n+2)!
|GCQ4

2n+2(x,0)|

with GCQ4
2n+2(x,0) and FCQ4

2n+2 (x,1/2) as in (4.81) and (4.83), respectively.

Proof. Analogous to the proof of Theorem 3.5. �

4.2.1 Lobatto 4-point formula

If one wants to obtain from (4.77) the quadrature formula with the maximum degree of
exactness, and for that formula not to be ”corrected” at the same time, one has to impose
the condition:

GCQ4
2 (x,0) = GCQ4

4 (x,0) = 0.

The unique solution to this system are exactly the nodes (x0 = 1/2−√
5/10) and the

weights of the Lobatto 4-point formula (on the interval [0,1]), which was to be expected.
The same is obtained from (4.3) when considering the system: GQ4

2 (x,0) = GQ4
4 (x,0) = 0,

where the functions GQ4
k are as in (4.6).

Let us now see the results and the estimates for the Lobatto 4-point formula. We move
to [−1,1]. Formulae (4.75)-(4.77) now become:

∫ 1

−1
f (t)dt −QL4 +TL4

2n =
22n−1

(2n)!

∫ 1

−1
GL4

2n(t)d f (2n−1)(t), (4.93)∫ 1

−1
f (t)dt −QL4 +TL4

2n =
22n

(2n+1)!

∫ 1

−1
GL4

2n+1(t)d f (2n)(t), (4.94)∫ 1

−1
f (t)dt −QL4 +TL4

2n =
22n+1

(2n+2)!

∫ 1

−1
FL4

2n+2(t)d f (2n+1)(t), (4.95)

where

QL4 =
1
6

[
f (−1)+5 f

(
−
√

5
5

)
+5 f

(√
5

5

)
+ f (1)

]
,

TL4
2n =

n

∑
k=3

22k−1

(2k)!
GL4

2k (−1) [ f (2k−1)(1)− f (2k−1)(−1)],

GL4
k (t) =

1
3
B∗

k

(
1
2
− t

2

)
+

5
6

[
B∗

k

(√
5

10
− t

2

)
+B∗

k

(
−
√

5
10

− t
2

)]
, k ≥ 1

FL4
k (t) = GL4

k (t)−GL4
k (−1), k ≥ 2.



4.2 CLOSED CORRECTED 4-POINT QUADRATURE FORMULAE 191

Theorem 4.15 becomes:

Corollary 4.6 If f : [−1,1] → R is such that f (2n+2) is continuous on [−1,1] for some
n ≥ 2, then there exists ξ ∈ [−1,1] such that

RL4
2n+2( f ) = − 22n+2

(2n+2)!
GL4

2n+2(−1) · f (2n+2)(ξ ) (4.96)

where

GL4
2n+2(−1) =

1
3

[
B2n+2 +5B2n+2

(
1
2
−

√
5

10

)]
. (4.97)

Applying (4.96) for n = 2 to the remainder in (4.95) produces Lobatto 4-point formula:∫ 1

−1
f (t)dt −QL4 = − 2

23625
f (6)(ξ ) (4.98)

Using Hölder’s inequality one can easily obtain the analogue of Theorem 4.16 for
this quadrature formula. As a direct consequence, for p = 1 and p = ∞ the following
estimations are obtained:∣∣∣∣∫ 1

−1
f (t)dt −QL4

∣∣∣∣≤CL4(m,q) · ‖ f (m)‖p, m = 1, . . . ,6

where

CL4(1,1) ≈ 0.376866, CL4(1,∞) =
∣∣∣GL4

1

(
1/

√
5
)∣∣∣= 1/

√
5 ≈ 0.447214,

CL4(2,1) ≈ 0.0417772, CL4(2,∞) = GL4
2

(
1/

√
5
)
≈ 0.0606553,

CL4(3,1) ≈ 0.0064048, CL4(3,∞) ≈ 0.00735788

CL4(4,1) ≈ 0.00113265, CL4(4,∞) = GL4
4 (0)/3 ≈ 0.00146629,

CL4(5,1) = 4|FL4
6 (0)|/45 ≈ 0.000248452, CL4(5,∞) ≈ 0.000283162,

CL4(6,1) = 4|GL4
6 (−1)|/45≈ 0.0000846561,

CL4(6,∞) = 2|FL4
6 (0)|/45 =

√
5/18000≈ 0.000124226.

The Hermite-Hadamard type inequality for the Lobatto 4-point formula is:

1
1512000

f (6)
(

1
2

)
≤−

(∫ 1

0
f (t)dt − 1

12

[
f (0)+5 f

(
5−√

5
10

)
+5 f

(
5+

√
5

10

)
+ f (1)

])

≤ 1
1512000

f (6)(0)+ f (6)(1)
2

.

The constants from Theorem 4.18 are:

LCQ4

(
5,

5−√
5

10

)
=

√
5

576000
, LCQ4

(
6,

5−√
5

10

)
=

1
1512000

.
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4.2.2 Corrected Simpson’s 3/8 formula

For x = 1/3, (4.84) becomes corrected Simpson’s 3/8 formula:∫ 1

0
f (t)dt =

1
80

[
13 f (0)+27 f

(
1
3

)
+27 f

(
2
3

)
+13 f (1)

]
− 1

120
[ f ′(1)− f ′(0)]+

1
2721600

· f (6)(η). (4.99)

The results from this subsection are published in [51]. We have:

QCS38 =
1
80

[
13 f (0)+27 f

(
1
3

)
+27 f

(
2
3

)
+13 f (1)

]
,

TCS38
2n = TCQ4

2n

(
1
3

)
=

2n

∑
k=2

1
k!

GCS38
k (0) [ f (k−1)(1)− f (k−1)(0)]

=
5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)]+
n

∑
k=3

GCS38
2k (0)
(2k)!

[ f (2k−1)(1)− f (2k−1)(0)]

GCS38
k (t) =

1
80

[
27B∗

k

(
1
3
− t

)
+27B∗

k

(
2
3
− t

)
+26B∗

k (1− t)
]
, k ≥ 1 (4.100)

FCS38
k (t) = GCS38

k (t)−GCS38
k (0), k ≥ 2

The error RCS38
2n+2( f ) for n ≥ 2 can be expressed as:

RCS38
2n+2( f ) =

1
80(2n+2)!

(1−32−2n)B2n+2 · f (2n+2)(η), η ∈ [0,1]

RCS38
2n+2( f ) = θ

(2−2−1−2n)
(
1−32−2n

)
B2n+2

80(2n+2)!

[
f (2n+1)(1)− f (2n+1)(0)

]
, θ ∈ [0,1]

Estimates of error for p = 1, p = ∞ and m = 1,2 are:∣∣∣∣∫ 1

0
f (t)dt −QCS38

∣∣∣∣≤CCS38(m,q) · ‖ f (m)‖p,

where

CCS38(1,1) =
2401
28800

, CCS38(1,∞) =
∣∣∣∣GCS38

1

(
1
3

)∣∣∣∣= 41
240

,

CCS38(2,1) =
597+320

√
10

192000
, CCS38(2,∞) =

1
2

∣∣∣∣FCS38
2

(
13
80

)∣∣∣∣= 169
12800

.

Comparing these estimates with the ones the classical Simpson’s 3/8 formula provides,
shows that the corrected formula gives better estimates for m = 1.

Furthermore, for p = 1,∞ and m = 2,3,4,5,6 we get:∣∣∣∣∫ 1

0
f (t)dt −QCS38 +

1
120

[ f ′(1)− f ′(0)]
∣∣∣∣≤CCS38(m,q) · ‖ f (m)‖p,
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where

CCS38(2,1) =
320

√
30+187

√
561

1728000
, CCS38(2,∞) =

1
2

∣∣∣∣GCS38
2

(
1
3

)∣∣∣∣= 7
720

,

CCS38(3,1) =
48693+3133

√
241

491520000
, CCS38(3,∞) =

1053+187
√

561
13824000

,

CCS38(4,1) =
1

73728
, CCS38(4,∞) =

1
38400

CCS38(5,1) =
1

691200
, CCS38(5,∞) =

1
5!

∣∣∣∣GCS38
5

(
1
4

)∣∣∣∣= 1
294912

CCS38(6,1) =
1

2721600
, CCS38(6,∞) =

1
6!

∣∣∣∣FCS38
6

(
1
2

)∣∣∣∣= 1
1382400

.

The Hermite-Hadamard type inequality for the corrected Simpson’s 3/8 formula is:

1
2721600

f (6)
(

1
2

)
≤
∫ 1

0
f (t)dt − 1

80

[
13 f (0)+27 f

(
1
3

)
+27 f

(
2
3

)
+13 f (1)

]
+

1
120

[ f ′(1)− f ′(0)]

≤ 1
2721600

f (6)(0)+ f (6)(1)
2

and the constants from Theorem 4.18 are:

LCQ4

(
5,

1
3

)
=

1
691200

, LCQ4

(
6,

1
3

)
=

1
2721600

.

4.2.3 Hermite-Hadamard-type inequality for the corrected
4-point quadrature formulae

The main result of this section provides Hermite-Hadamard-type inequality for the cor-
rected 4-point quadrature formulae.

Theorem 4.19 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then, for x ∈ (0, 1

2 −
√

5
10 ] and y ∈ [ 1

3 , 1
2

]
QC (0,y,1− y,1)− 5y2−5y+1

60y(y−1)
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt (4.101)

≤ QC (0,x,1− x,1)− 5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)],

where QC (0,x,1− x,1) is defined in (4.78). If f is 6-concave, the inequalities are reversed.
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Proof. Analogous to the proof of Theorem 3.6. �

The following corollaries give comparison between corrected Simpson’s 3/8 and the
corrected Gauss 2-point rule, corrected Simpson’s 3/8 and the Lobatto 4-point, and finally
corrected Simpson’s and the Lobatto 4-point.

Corollary 4.7 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
80

(
13 f (0)+27 f

(
1
3

)
+27 f

(
2
3

)
+13 f (1)

)
− 1

120
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1
2

f

(
1
2
− 1

30

√
225−30

√
30

)
+

1
2

f

(
1
2

+
1
30

√
225−30

√
30

)
+

7
√

30−5
420

[ f ′(1)− f ′(0)].

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (4.101) for x = 1/2−
√

225−30
√

30
/

30 ⇔ B4(y) = 0 and y = 1/3.
�

Corollary 4.8 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
80

(
13 f (0)+27 f

(
1
3

)
+27 f

(
2
3

)
+13 f (1)

)
− 1

120
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1
12

(
f (0)+5 f

(
5−√

5
10

)
+5 f

(
5+

√
5

10

)
+ f (1)

)
.

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (4.101) for x = 1/2−√
5/10 ⇔ 5x2−5x+1 = 0 and y = 1/3. �

Corollary 4.9 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
30

(
7 f (0)+16 f

(
1
2

)
+7 f (1)

)
− 1

60
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1
12

(
f (0)+5 f

(
5−√

5
10

)
+5 f

(
5+

√
5

10

)
+ f (1)

)
.

If f is 6-concave, the inequalities are reversed.
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Proof. Follows from (4.101) for x = 1/2−√
5/10 ⇔ 5x2−5x+1 = 0 and y = 1/2. �

Remark 4.15 The result of Corollary 3.15 can be recaptured from (4.101) for x = 1/2−√
225−30

√
30
/

30 and y = 1/2.

4.2.4 On corrected Bullen-Simpson’s 3/8 inequality

In [11], an elementary analytic proof of the following inequality was given: provided f is
4-convex, we have

0 ≤
∫ 1

0
f (t)dt − 1

8

[
3 f

(
1
6

)
+2 f

(
1
2

)
+3 f

(
5
6

)]
≤ 1

8

[
f (0)+3 f

(
1
3

)
+3 f

(
2
3

)
+ f (1)

]
−
∫ 1

0
f (t)dt (4.102)

This implies that, for a 4-convex function, Maclaurin’s quadrature rule is more accu-
rate than Simpson’s 3/8 quadrature rule. Inequality (4.102) is sometimes called Bullen-
Simpson’s 3/8 inequality and was generalized for a class of (2k)-convex functions in [87].

The aim is to derive an inequality of similar type, only this time starting from corrected
Simpson’s 3/8 and corrected Maclaurin’s formula. The results of this subsection were
published in [54].

For k ≥ 1 and t ∈ R, we define functions

Gk(t) = GCQ4
k (1/3,t)+GCQ3

k (1/6,t) = GCS38
k (t)+GCM

k (t),

Fk(t) = FCQ4
k (1/3,t)+FCQ3

k (1/6,t) = FCS38
k (t)+FCM

k (t),

where GCS38
k (t) and GCM

k (t) where defined as in (4.100) and (3.118), respectively. So,

Gk(t) = 27B∗
k

(
1
6
− t

)
+27B∗

k

(
1
3
− t

)
+26B∗

k

(
1
2
− t

)
+ 27B∗

k

(
2
3
− t

)
+27B∗

k

(
5
6
− t

)
+26B∗

k (1− t), k ≥ 1,

F1(t) = G1(t), Fk(t) = Gk(t)−Gk(0), k ≥ 2.

Introduce notation B̃k = Gk(0). By direct calculation we get

B̃2 = 2/3 and B̃3 = B̃4 = B̃5 = 0

Using the properties of Bernoulli polynomials, it is easy to check that B̃2k−1 = 0, k ≥ 2.
Now, let f : [0,1]→ R be such that f (n−1) exists on [0,1] for some n ≥ 1. Introduce the

following notation

D(0,1)

=
1

160

[
13 f (0)+27 f

(
1
6

)
+27 f

(
1
3

)
+26 f

(
1
2

)
+27 f

(
2
3

)
+27 f

(
5
6

)
+13 f (1)

]
.
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Define T0( f ) = 0 and for 1 ≤ m ≤ n

Tm( f ) =
1
2

[
TCQ4
m (1/3, f )+TCQ3

m (1/6, f )
]
,

where TCQ4
m (x, f ) and TCQ3

m (x, f ) are given by (4.79) and (3.97), respectively. So, we have
T1( f ) = 0,

T2( f ) = T3( f ) = T4( f ) = T5( f ) =
1

480
[ f ′(1)− f ′(0)]

and for m ≥ 6,

Tm( f ) =
1

480
[ f ′(1)− f ′(0)]+

1
80

[m/2]

∑
k=3

B2k

(2k)!
2−2k(34−2k−1)

[
f (2k−1)(1)− f (2k−1)(0)

]
.

In the next theoremwe establish two formulaewhich we call corrected Bullen-Simpson’s
3/8 formulae of Euler type.

Theorem 4.20 Let f : [0,1]→ R be such that f (n−1) is a continuous function of bounded
variation on [0,1], for some n ≥ 1. Then∫ 1

0
f (t)dt = D(0,1)−Tn( f )+ R̃(1)

n ( f ), (4.103)

and ∫ 1

0
f (t)dt = D(0,1)−Tn−1( f )+ R̃(2)

n ( f ), (4.104)

where

R̃(1)
n ( f ) =

1
160n!

∫ 1

0
Gn (t)d f (n−1)(t),

and

R̃(2)
n ( f ) =

1
160n!

∫ 1

0
Fn (t)d f (n−1)(t).

Proof. Apply (3.94) for x = 1/6 and (4.76) for x = 1/3, add them and divide by 2. Identity
(4.103) is produced. Identity (4.104) is obtained similarly from (3.95) and (4.77). �

Remark 4.16 Interval [0,1] is used for simplicity and involves no loss in generality. In
what follows, Theorem 4.20 and others will be applied, without comment, to any interval
that is convenient.

It is easy to see that if f : [a,b] → R is such that f (n−1) is continuous of bounded
variation on [a,b], for some n ≥ 1, then∫ b

a
f (t)dt = D(a,b)− T̃n( f )+

(b−a)n

160n!

∫ b

a
Gn

(
t−a
b−a

)
d f (n−1)(t)

and ∫ b

a
f (t)dt = D(a,b)− T̃n−1( f )+

(b−a)n

160n!

∫ b

a
Fn

(
t−a
b−a

)
d f (n−1)(t),
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where

D(a,b) =
b−a
160

[
13 f (a)+27 f

(
5a+b

6

)
+27 f

(
2a+b

3

)
+26 f

(
a+b

2

)
+ 27 f

(
a+2b

3

)
+27 f

(
a+5b

6

)
+13 f (b)

]
,

T̃0( f ) = T̃1( f ) = 0,

T̃2( f ) = T̃3( f ) = T̃4( f ) = T̃5( f ) =
(b−a)2

480

[
f ′(b)− f ′(a)

]
and for m ≥ 6

T̃m( f ) =
(b−a)2

480

[
f ′(b)− f ′(a)

]
+

1
80

[m/2]

∑
k=3

(b−a)2k

(2k)!
·2−2k(34−2k −1)B2k

[
f (2k−1)(b)− f (2k−1)(a)

]
.

Remark 4.17 Suppose that f : [0,1] → R is such that f (n) exists and is integrable on
[0,1], for some n ≥ 1. In this case (4.103) holds with

R̃(1)
n ( f ) =

1
160n!

∫ 1

0
Gn (t) f (n)(t)dt,

while (4.104) holds with

R̃(2)
n ( f ) =

1
160n!

∫ 1

0
Fn (t) f (n)(t)dt.

Remark 4.18 For n = 6, (4.104) yields∫ 1

0
f (t)dt −D(0,1)+

1
480

[ f ′(1)− f ′(0)] =
1

115200

∫ 1

0
F6 (t)d f (5)(t).

From this identity it is clear that corrected Bullen-Simpson’s 3/8 formula of Euler type is
exact for all polynomials of order ≤ 5.

Before we state our main result, we will need to prove some properties of functions Gk

and Fk. Notice that it is enough to know the values of those functions on the interval
[
0, 1

2

]
,

since Gk
(
t + 1

2

)
= Gk(t).

Lemma 4.9 For k ≥ 3, function G2k−1(t) has no zeros in the interval (0,1/4). The sign
of this function is determined by

(−1)kG2k−1(t) > 0, 0 < t < 1/4. (4.105)
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Proof. For k = 3 we have

G5(t) =

⎧⎨⎩−160t5 +65t4 −20/3 · t3 , 0 ≤ t ≤ 1/6
−160t5 +200t4 −290/3 · t3 +45/2 · t2 −5/2 · t +5/48, 1/6 ≤ t ≤ 1/3
−160t5 +335t4 −830/3 · t3 +225/2 · t2 −45/2 · t +85/48, 1/3 ≤ t ≤ 1/2

and it is elementary to see that

G5(t) < 0, 0 < t < 1/4, (4.106)

so our first assertion is true for k = 3. Assuming the opposite, by induction, it follows
easily that the assertion is true for all k ≥ 4.

Further, if G2k−3(t) > 0, 0 < t < 1/4, then since

G′′
2k−1(t) = (2k−1)(2k−2)G2k−3(t)

it follows that G2k−1 is convex and hence G2k−1(t) < 0 on (0,1/4). Similarly, we conclude
that if G2k−3(t) < 0, then G2k−1(t) > 0 on (0,1/4). (4.105) now follows from (4.106). �

Corollary 4.10 For k ≥ 3, functions (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly in-
creasing on the interval (0,1/4) and strictly decreasing on the interval (1/4,1/2). Conse-
quently, 0 and 1/2 are the only zeros of F2k(t) on [0,1/2] and

max
t∈[0,1]

|F2k(t)| = 22−2k(1−2−2k)(1−34−2k)|B2k|,

max
t∈[0,1]

|G2k(t)| = 21−2k(1−34−2k)|B2k|.

Proof. Since

[(−1)k−1F2k(t)]′ = [(−1)k−1G2k(t)]′ = (−1)k ·2k ·G2k−1(t),

from Lemma 4.9 we conclude that (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly increasing
on (0,1/4). It is easy to check that for k ≥ 2 and 0 ≤ t ≤ 1/2,

Gk(1/2− t) = (−1)kGk(t) and Fk(1/2− t) = (−1)kFk(t).

From there we conclude that (−1)k−1F2k(t) and (−1)k−1G2k(t) are strictly decreasing on
(1/4,1/2). Further, F2k(0) = F2k(1/2) = 0, which implies |F2k(t)| achieves maximum at
t = 1/4 and thus, the first assertion is proved.

On the other hand,

max
t∈[0,1]

|G2k(t)| = max

{
|G2k (0)| ,

∣∣∣∣G2k

(
1
4

)∣∣∣∣}= |G2k (0)| .

The proof is now complete. �
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Corollary 4.11 For k ≥ 3, we have

∫ 1

0
|F2k−1(t)|dt =

∫ 1

0
|G2k−1(t)|dt =

23−2k

k

(
1−2−2k

)(
1−34−2k

)
|B2k| ,∫ 1

0
|F2k(t)|dt = |B̃2k| = 21−2k

(
1−34−2k

)
|B2k|∫ 1

0
|G2k(t)|dt ≤ 2|B̃2k| = 22−2k

(
1−34−2k

)
|B2k| .

Proof. Using the properties of functions Gk, i.e. properties of Bernoulli polynomials, we
get ∫ 1

0
|G2k−1(t)|dt = 4

∣∣∣∣∫ 1/4

0
G2k−1(t)dt

∣∣∣∣= 2
k

∣∣∣∣F2k

(
1
4

)∣∣∣∣ ,
which proves the first assertion. Since F2k(0) = F2k(1/2) = 0, from Corollary 4.10 we
conclude that F2k(t) does not change sign on (0,1/2). Therefore,

∫ 1

0
|F2k(t)|dt = 2

∣∣∣∣∫ 1/2

0
G2k(t)dt− 1

2
B̃2k

∣∣∣∣= |B̃2k|,

which proves the second assertion. Finally, we use the triangle inequality to obtain∫ 1

0
|G2k(t)|dt ≤

∫ 1

0
|F2k(t)|dt + |B̃2k| = 2|B̃2k|,

which proves the third assertion. �

Theorem 4.21 If f : [0,1] → R is such that f (2k) is a continuous function on [0,1], for
some k ≥ 3, then there exists η ∈ [0,1] such that

R̃(2)
2k ( f ) =

2−2k

80(2k)!
(1−34−2k)B2k · f (2k)(η). (4.107)

Proof. We can rewrite R̃(2)
2k ( f ) as

R̃(2)
2k ( f ) =

(−1)k−1

160(2k)!
Jk, (4.108)

where

Jk =
∫ 1

0
(−1)k−1F2k(t) f (2k)(t)dt. (4.109)

From Corollary 4.10 we know that (−1)k−1F2k(t) ≥ 0, 0 ≤ t ≤ 1, so the claim follows
from the mean value theorem for integrals and Corollary 4.11 �
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Remark 4.19 For k = 3 formula (4.107) reduces to

R̃(2)
6 ( f ) =

1
174182400

· f (6)(η).

Now, we prove our main result:

Theorem 4.22 Let f : [0,1] → R be such that f (2k) is a continuous function on [0,1] for
some k ≥ 3. If f is a (2k)−convex function, then for even k we have

0 ≤
∫ 1

0
f (t)dt − 1

80

[
27 f

(
1
6

)
+26 f

(
1
2

)
+27 f

(
5
6

)]
+TD

2k−1( f ) (4.110)

≤ 1
80

[
13 f (0)+27 f

(
1
3

)
+27 f

(
2
3

)
+13 f (1)

]
−TS

2k−1( f )−
∫ 1

0
f (t)dt

while for odd k inequalities are reversed.

Proof. Denote the middle part and the right-hand side of (4.110) by LHS and DHS, respec-
tively. Then we have

LHS = RCM
2k ( f ) and RHS−LHS = −2R̃(2)

2k ( f )

where R̃(2)
2k ( f ) is defined in Theorem 4.20 and according to (3.119), RCM

2k ( f ) can be written
in a form

RCM
2k ( f ) = − 1

80(2k)!
(1−21−2k)(1−34−2k)B2k · f (2k)(ξ ), ξ ∈ [0,1] (4.111)

Recall that if f is (2k)−convex on [0,1], then f (2k)(x)≥ 0, x ∈ [0,1]. Now, having in mind
that (−1)k−1B2k > 0 (k ∈ N), from (4.111) and (4.107), it follows

LHS ≥ 0, RHS−LHS ≥ 0, for even k

LHS ≤ 0, RHS−LHS ≤ 0, for odd k

and thus the proof is complete. �

Remark 4.20 From (4.110) for k = 3 it follows

0 ≤
∫ 1

0
f (t)dt − 1

80

[
27 f

(
1
6

)
+26 f

(
1
2

)
+27 f

(
5
6

)]
− 1

240
[ f ′(1)− f ′(0)]

≤ 1
80

[
13 f (0)+27 f

(
1
3

)
+27 f

(
2
3

)
+13 f (1)

]
− 1

120
[ f ′(1)− f ′(0)]−

∫ 1

0
f (t)dt

Theorem 4.23 If f : [0,1] → R is such that f (2k) is a continuous function on [0,1] and f
is either (2k)−convex or (2k)−concave, for some k ≥ 3, then there exists θ ∈ [0,1] such
that

R̃(2)
2k ( f ) = θ · 2−2k

40(2k)!
(1−2−2k)

(
1−34−2k

)
B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
. (4.112)
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Proof. Suppose f is (2k)−convex, so f (2k)(t) ≥ 0, 0 ≤ t ≤ 1. If Jk is given by (4.109),
using Corollary 4.10, we obtain

0 ≤ Jk ≤ (−1)k−1F2k

(
1
4

)
·
∫ 1

0
f (2k)(t)dt.

which means there exists θ ∈ [0,1] such that

Jk = θ · (−1)k−1 ·22−2k
(
1−2−2k

)(
1−34−2k

)
B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

When f is (2k)−concave, the statement follows similarly. �

Now define

Δ2k( f ) =
2−2k

80(2k)!
· (1−34−2k)B2k

[
f (2k−1)(1)− f (2k−1)(0)

]
.

Clearly,

R̃(2)
2k ( f ) = θ · (2−21−2k) ·Δ2k( f ).

Theorem 4.24 Suppose that f : [0,1] → R is such that f (2k+2) is a continuous function
on [0,1] for some k ≥ 3. If f is either (2k)-convex and (2k + 2)-convex or (2k)-concave

and (2k +2)-concave, then the remainder R̃(2)
2k ( f ) has the same sign as the first neglected

term Δ2k( f ) and

|R̃(2)
2k ( f )| ≤ |Δ2k( f )|.

Proof. We have
Δ2k( f ) = R̃(2)

2k ( f )− R̃(2)
2k+2( f ).

From Corollary 4.10 it follows that for all t ∈ [0,1]

(−1)k−1F2k(t) ≥ 0 and (−1)k−1(−F2k+2(t)) ≥ 0,

so we conclude R̃(2)
2k ( f ) has the same sign as −R̃(2)

2k+2( f ). Therefore, Δ2k( f ) must have the

same sign as R̃(2)
2k ( f ) and −R̃(2)

2k+2( f ). Moreover, it follows that

|R̃(2)
2k ( f )| ≤ |Δ2k( f )| and |R̃(2)

2k+2( f )| ≤ |Δ2k( f )|.
�

Using formulae derived in Theorem 4.20, we shall prove a number of inequalities for
various classes of functions.

Theorem 4.25 Assume (p,q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞,
1
p + 1

q = 1. Let f : [0,1] → R be such that f (n) ∈ Lp[0,1] for some n ≥ 1. Then we have∣∣∣∣∫ 1

0
f (t)dt −D(0,1)+Tn−1( f )

∣∣∣∣≤ K(n, p) · ‖ f (n)‖p, (4.113)
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and ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)+Tn( f )

∣∣∣∣≤ K∗(n, p) · ‖ f (n)‖p, (4.114)

where

K(n, p) =
1

160n!

[∫ 1

0
|Fn(t)|q dt

] 1
q

and K∗(n, p) =
1

160n!

[∫ 1

0
|Gn(t)|q dt

] 1
q

.

Proof. Applying the Hölder inequality we get∣∣∣∣ 1
160n!

∫ 1

0
Fn(t) f (n)(t)dt

∣∣∣∣ ≤ 1
160n!

[∫ 1

0
|Fn(t)|qdt

] 1
q

·
∥∥∥ f (n)

∥∥∥
p

Having in mind Remark 4.17, from (4.104) and the above inequality, we obtain (4.113).
Similarly, from (4.103) we obtain (4.114). �

Remark 4.21 Taking p = ∞ and n = 1,2 in Theorem 4.25, i.e. (4.113), we get∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ K(n,∞) · ‖ f (n)‖∞,

where

K(1,∞) =
2401
57600

, K(2,∞) =
597+320

√
10

768000
.

Taking p = 1 and n = 1,2, we get∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ K(n,1) · ‖ f (n)‖1,

where

K(1,1) =
41
480

, K(2,1) =
169

51200
.

Comparing these estimates with the analogous ones obtained for the Bullen-Simpson’s
3/8 formula shows that these are better in all cases except for n = 2 and p = ∞.

Moreover, for p = ∞ and n = 3,4,5 we obtain∣∣∣∣∫ 1

0
f (t)dt−D(0,1)+

1
480

[ f ′(1)− f ′(0)]
∣∣∣∣≤ K(n,∞) · ‖ f (n)‖∞,

where

K(3,∞) =
48693+3133

√
241

3932160000
, K(4,∞) =

1
1179648

, K(5,∞) =
1

22118400
,

and for p = 1 and n = 3,4,5 we get∣∣∣∣∫ 1

0
f (t)dt −D(0,1)+

1
480

[ f ′(1)− f ′(0)]
∣∣∣∣≤ K(n,1) · ‖ f (n)‖1,
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where

K(3,1) =
1053+187

√
561

110592000
, K(4,1) =

1
614400

, K(5,1) =
1

9437184
.

Finally, for p = 2 we get∣∣∣∣∫ 1

0
f (t)dt −D(0,1)

∣∣∣∣≤ K(n,2) · ‖ f (n)‖2,

where

K(1,2) =
√

534
480

, K(2,2) =
√

5
960

,

and ∣∣∣∣∫ 1

0
f (t)dt−D(0,1)+

1
480

[ f ′(1)− f ′(0)]
∣∣∣∣≤ K(n,2) · ‖ f (n)‖2,

where

K(3,2) =
√

1155
1209600

, K(4,2) =
√

210
14515200

, K(5,2) =
√

116655
5748019200

.

Remark 4.22 Note that K∗(1, p) = K(1, p), for 1 < p ≤ ∞, since G1(t) = F1(t). Also,
for 1 < p ≤ ∞, we can easily calculate K(1, p). Namely,

K(1, p) =
1

480

[
39q+1 +40q+1 +41q+1

120(q+1)

] 1
q

.

In the limit case when p → 1, that is when q → ∞, we have

lim
p→1

K(1, p) =
41
480

= K(1,1).

Now we use formula (4.103) and a Grüss type inequality to obtain estimations of cor-
rected Bullen-Simpson’s 3/8 formulae in terms of oscillation of derivatives of a function.

Theorem 4.26 Let f : [0,1] → R be such that f (n) exists and is integrable on [0,1], for
some n ≥ 1. Suppose

mn ≤ f (n)(t) ≤ Mn, 0 ≤ t ≤ 1,

for some constants mn and Mn. Then∣∣∣∣∫ 1

0
f (t)dt −D(0,1)+Tn(0,1)

∣∣∣∣≤Cn(Mn−mn) (4.115)

where

C1 =
2401

115200
, C2 =

320
√

30+187
√

561
27648000

,
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C3 =
48693+3133

√
241

7864320000
, C4 =

1
2359296

,

C2k−1 =
2−2k

20(2k)!
(1−2−2k)(1−34−2k)|B2k|, k ≥ 3,

C2k =
2−2k

80(2k)!
(1−34−2k)|B2k|, k ≥ 3.

Proof. Similarly as in the proof of Theorem 3.26, Lemma 3.9 ensures that the second con-
dition of Lemma 3.10 is satisfied. Having in mind Remark 4.17, apply inequality (3.153)

to obtain the estimate for |R̃(1)
n ( f )|. Now our statement follows easily from Corollary 4.11

for n ≥ 5 and direct calculation for n = 1,2,3,4. �

4.3 Gauss 4-point formula

One of the most interesting properties to consider when studying the quadrature formulae
is the maximum degree of exactness. It is well-known that the formulae that have property
are the Gauss formulae.

The Gauss 4-point formula is an open quadrature formula and is furthermore exact for
all polynomials of order ≤ 7, so it is clear why it has not appeared as a special case of the
two families of closed 4-point quadrature formulae considered in this chapter. Neverthe-
less, we are going to consider it separately, using the same technique as before. The results
from this section are published in [58].

Let f : [−1,1] → R be such that f (2n) is continuous of bounded variation on [−1,1]
for some n ≥ 0. Assume 0 < x < y < 1. Put x ≡ −y, −x, x, y in (1.2), multiply by
w(x,y), 1−w(x,y), 1−w(x,y), w(x,y), respectively, and add. The following formula is
obtained:∫ 1

−1
f (t)dt −w(x,y)[ f (−y)+ f (y)]− (1−w(x,y))[ f (−x)+ f (x)]+T2n(x,y)

=
22n+1

(2n+2)!

∫ 1

−1
F2n+2(x,y,t)d f (2n+1)(t), (4.116)

where, for k ≥ 1 and t ∈ R,

T2n(x,y) =
2n

∑
k=1

2k−1

k!
Gk(x,y,−1) [ f (k−1)(1)− f (k−1)(−1)]

Gk(x,y,t) = w(x,y)
[
B∗

k

(−y− t
2

)
+B∗

k

(
y− t

2

)]
+ (1−w(x,y))

[
B∗

k

(−x− t
2

)
+B∗

k

(
x− t

2

)]
,

Fk(x,y,t) = Gk(x,y,t)−Gk(x,y,−1).
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Functions Gk have the same properties again as the analogous functions from previ-
ous sections. In order to produce the quadrature formula with the maximum degree of
exactness, impose conditions:

G2(x,y,−1) = G4(x,y,−1) = G6(x,y−1) = 0.

The solution of this system is:

x0 =

√
15−2

√
30

35
, y0 =

√
15+2

√
30

35
, w(x0,y0) =

18−√
30

36

and from there

∫ 1

−1
f (t)dt ≈ 18−√

30
36

⎡⎣ f

⎛⎝−
√

15+2
√

30
35

⎞⎠+ f

⎛⎝√15+2
√

30
35

⎞⎠⎤⎦
+

18+
√

30
36

⎡⎣ f

⎛⎝−
√

15−2
√

30
35

⎞⎠+ f

⎛⎝√15−2
√

30
35

⎞⎠⎤⎦ ,

which is exactly the classical Gauss 4-point formula. To shorten notation, denote the right-
hand side of the upper expression with QG4. Now we have:

TG4
2n = T2n(x0,y0) =

n

∑
k=4

22k−1

(2k)!
GG4

2k (−1)[ f (2k−1)(1)− f (2k−1)(−1)] (4.117)

GG4
k (t) = Gk(x0,y0,t) (4.118)

FG4
k (t) = Fk(x0,y0,t)−Fk(x0,y0,−1), (4.119)

so formula (4.116) becomes∫ 1

−1
f (t)dt−QG4 +TG4

2n =
22n+1

(2n+2)!

∫ 1

−1
FG4

2n+2(t)d f (2n+1)(t). (4.120)

Assuming f (2n−1) is continuous of bounded variation on [−1,1] for some n ≥ 1 we
obtain analogously:∫ 1

−1
f (t)dt −QG4 +TG4

2n =
22n−1

(2n)!

∫ 1

−1
GG4

2n (t)d f (2n−1)(t), (4.121)

and if f (2n) satisfies the same property for some n ≥ 0, then∫ 1

−1
f (t)dt −QG4 +TG4

2n =
22n

(2n+1)!

∫ 1

−1
GG4

2n+1(t)d f (2n)(t). (4.122)

Lemma 4.10 For k ≥ 3, GG4
2k+1(t) has no zeros in (0,1). The sign of this function is

determined by

(−1)k+1GG4
2k+1(t) > 0, 0 < t < 1.
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Proof. We start from GG4
7 (t). For t ∈ [y0,1), GG4

7 (t) = 1
64(1− t)7, so obviously it has no

zeros there. It is easy to check that (GG4)′7(0) > 0. Now, assume GG4
7 has at least one zero

in (0,1). Then GG4
7 has at least 3 local extrema in (0,1). This means GG4

6 has at least 3
zeros and therefore at least 3 local extrema, since GG4

6 (1) = 0. This implies GG4
5 has at

least 3 zeros and since GG4
5 (0) = G5(1) = 0, it has at least 4 local extrema. From there

we conclude GG4
4 has at least 4 zeros and as GG4

4 (1) = 0, GG4
4 has at least 4 local extrema

as well. Therefore, GG4
3 has at least 4 zeros and since GG4

3 (0) = GG4
3 (1) = 0, it has at

least 5 local extrema in this interval. Finally, this implies GG4
2 has at least 5 zeros which

is obviously impossible - we know it has none on [y0,1), so it could have 4 zeros at most.
Thus, we conclude GG4

7 has no zeros and GG4
7 (t) > 0 on (0,1). Assuming the opposite, by

induction, it follows easily that the assertion is true for all k ≥ 4. The sign of the functions
GG4

2k+1(t), k ≥ 5 can be determined analogously as in Lemma 3.1 �

Remark 4.23 From Lemma 4.10 it follows immediately that for k ≥ 3, (−1)k+1FG4
2k+2(t)

is strictly increasing on (−1,0) and strictly decreasing on (0,1). Since FG4
2k+2(−1) =

FG4
2k+2(1) = 0, it has constant sign on (−1,1) and attains maximum at t = 0.

Using Hölder’s inequality, estimates of error for this type of quadrature formulae are
obtained:

Theorem 4.27 Let p,q∈R be such that 1≤ p, q≤∞, 1/p+1/q= 1. Let f : [−1,1]→R

be such that f (2n) ∈ Lp[−1,1] for some n ≥ 1. Then we have∣∣∣∣∫ 1

−1
f (t)dt −QG4 +TG4

2n

∣∣∣∣≤ KG4(2n,q) · ‖ f (2n)‖p. (4.123)

If f (2n+1) ∈ Lp[−1,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

−1
f (t)dt−QG4 +TG4

2n

∣∣∣∣≤ KG4(2n+1,q) · ‖ f (2n+1)‖p. (4.124)

If f (2n+2) ∈ Lp[−1,1] for some n ≥ 0, then we have∣∣∣∣∫ 1

−1
f (t)dt−QG4 +TG4

2n

∣∣∣∣≤ K∗
G4(2n+2,q) · ‖ f (2n+2)‖p, (4.125)

where

KG4(m,q) =
2m−1

m!

[∫ 1

−1

∣∣GG4
m (t)

∣∣q dt

] 1
q

, K∗
G4(m,q) =

2m−1

m!

[∫ 1

−1

∣∣FG4
m (t)

∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p ≤ ∞ and the the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. �
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Using Lemma 4.10 and Remark 4.23, for p = 1 and p = ∞ we get:

K∗
G4(2n+2,1) =

22n+2

(2n+2)!

∣∣GG4
2n+2(−1)

∣∣ , (4.126)

K∗
G4(2n+2,∞) =

1
2

KG4(2n+1,1) =
22n+1

(2n+2)!

∣∣FG4
2n+2 (0)

∣∣ , (4.127)

where

GG4
2n+2(−1) =

18−√
30

18
B2n+2

(
1− y0

2

)
+

18+
√

30
18

B2n+2

(
1− x0

2

)
(4.128)

FG4
2n+2(0) =

18−√
30

18

[
B2n+2

(y0

2

)
−B2n+2

(
1− y0

2

)]
(4.129)

+
18+

√
30

18

[
B2n+2

(x0

2

)
−B2n+2

(
1− x0

2

)]
.

The following theorem shows how the remainder RG4
2n+2( f ) in formula (4.120) can be

expressed.

Theorem 4.28 If f : [−1,1] → R is such that f (2n+2) is continuous on [−1,1] for some
n ≥ 3, then there exists ξ ∈ [−1,1] such that

RG4
2n+2( f ) = − 22n+2

(2n+2)!
GG4

2n+2(−1) · f (2n+2)(ξ ), (4.130)

where GG4
2n+2(−1) is as in (4.128).

If, in addition, f (2n+2) does not change sign on [−1,1], then there exists θ ∈ [0,1] such
that

RG4
2n+2( f ) = θ · 22n+1

(2n+2)!
FG4

2n+2(0)
[
f (2n+1)(1)− f (2n+1)(−1)

]
, (4.131)

where FG4
2n+2(0) is as in (4.129).

Proof. Analogous to the proof of Theorem 3.2. �

Applying (4.130) to the remainder in (4.120) for n = 3 produces the classical Gauss
4-point formula: ∫ 1

−1
f (t)dt−QG4 =

1
3472875

f (8)(ξ ), ξ ∈ [−1,1].

As direct consequences of Theorem 4.27, i.e. (4.126) and (4.127), the following esti-
mations are obtained for p = ∞ and p = 1:∣∣∣∣∫ 1

−1
f (t)dt −QG4

∣∣∣∣≤CG4(m,q) · ‖ f (m)‖p, 1 ≤ m ≤ 8
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where

CG4(1,1) ≈ 2.75994 ·10−1, CG4(1,∞) = x0 ≈ 3.39981 ·10−1,

CG4(2,1) ≈ 2.18566 ·10−2, CG4(2,∞) = |GG4
2 (x0)| ≈ 3.65261 ·10−2,

CG4(3,1) ≈ 2.3501 ·10−3, CG4(3,∞) ≈ 2.92413 ·10−3,

CG4(4,1) ≈ 2.69484 ·10−4, CG4(4,∞) = |GG4
4 (0)|/3 ≈ 3.73171 ·10−4,

CG4(5,1) ≈ 3.48131 ·10−5, CG4(5,∞) ≈ 4.89802 ·10−5,

CG4(6,1) ≈ 5.25522 ·10−6, CG4(6,∞) = 2|GG4
6 (0)|/45 ≈ 8.498485 ·10−6,

CG4(7,1) = 2|FG4
8 (0)|/315 ≈ 9.941993 ·10−7, CG4(7,∞) ≈ 1.313805 ·10−6,

CG4(8,1) = 2|GG4
8 (−1)|/315 = 1/3472875 ≈ 2.8794587 ·10−7,

CG4(8,∞) = |FG4
8 (0)|/315 ≈ 4.971 ·10−7.

Above constants are obtained with the help of Wolfram’s Mathematica, as the expres-
sions involved are rather cumbersome. Similar estimations can be obtained for m ≥ 9
from (4.126) and (4.127). However, the values of derivatives (starting from the 7th) in
the end points of the interval are then also included in the quadrature formula. In cases
when those values are easy to calculate, this is not an obstacle. Furthermore, in cases when
f (k)(1) = f (k)(−1) for k ≥ 7, we get a formula with an even higher degree of exactness.

For m = 1 and 1 < p ≤ ∞, we get:

CG4(1,q)=

⎡⎣ 2
q+1

⎛⎝xq+1
0 +

(
18+

√
30

36
− x0

)q+1

+

(
y0− 18+

√
30

36

)q+1

+(1− y0)q+1

⎞⎠⎤⎦1/q

When p = 1, i.e. when q = ∞, we obtain CG4(1,∞) = x0, as we did before by calculating
directly.

Remark 4.24 The constant CG4(1,∞) coincides with the constant ρV (RG
4 ) from Theorem

1.1. in [47].

Estimations for m = 2 and 1 < p ≤ ∞ are expressed in terms of hypergeometric func-
tions. Namely,

CG4(2,q) =
1
2

[
2

2q+1
(1− y0)2q+1 +2(γ −β )2q+1B(q+1,q+1)

+
2

q+1

(
α2q+12qF

(
−q,q+1;q+2;

1
2

)
+(x0−α)q+1(2α)qF

(
−q,q+1;q+2;−x0−α

2α

)
+(β − x0)q+1(γ −β )qF

(
−q,q+1;q+2;−β − x0

γ −β

)
+(y0− γ)q+1(γ −β )qF

(
−q,q+1;q+2;−y0− γ

γ−β

))]1/q

,
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where α, β and γ are zeros of G2(t) such that 0 < α < x0 < β < γ < y0. Here, the integral
representation of a hypergeometric function was used. It is given by:

F(a,b;c;x) =
1

B(b,c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− xt)−adt,

if c > b > 0 and |x| < 1. B is the well-known Beta function.
Similar estimations could be obtained for higher derivatives but it is difficult to calcu-

late the zeros of the integrand for m ≥ 3.





Chapter5
General 5-point quadrature
formulae of Euler type

This chapter is dedicated to the closed 5-point quadrature formulae, i.e. quadratures which
estimate the integral over [0,1] with the values of the function at nodes 0, x, 1/2,1−x and
1, where x ∈ (0,1/2). The results from this chapter can be found in [60].

5.1 General approach

Let x ∈ (0,1/2) and f : [0,1] → R be such that f (2n+1) is continuous of bounded varia-
tion on [0,1] for some n ≥ 0. Analogously as before: put x ≡ 0, x, 1/2,1− x and 1 in
(1.2), multiply by w1(x), w2(x), w3(x), w2(x), w1(x) respectively, where 2w1(x)+2w2(x)
+w3(x) = 1, and add up. The following formula is obtained:

∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
+T2n(x) =

1
(2n+2)!

∫ 1

0
F2n+2(x,t)d f (2n+1)(t),

(5.1)
where

Q

(
0,x,

1
2
,1− x,1

)
(5.2)

211
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= w1(x)[ f (0)+ f (1)]+w2(x)[ f (x)+ f (1− x)]+w3(x) f

(
1
2

)
,

T2n(x) =
n

∑
k=1

1
(2k)!

G2k(x,0) [ f (2k−1)(1)− f (2k−1)(0)], (5.3)

Gk(x,t) = 2w1(x)B∗
k (1− t)+w2(x) [B∗

k (x− t)+B∗
k (1− x− t)]

+w3(x)B∗
k (1/2− t), (5.4)

Fk(x,t) = Gk(x,t)−Gk(x,0). (5.5)

To obtain the formula with the maximum degree of exactness from (5.1), impose the
condition:

G2(x,0) = G4(x,0) = 0.

Then:

w1(x) =
10x2−10x+1

60x(x−1)
, w2(x) =

1
60x(1− x)(2x−1)2 ,

w3(x) = 1−2w1(x)−2w2(x) =
8(5x2−5x+1)

15(2x−1)2 ; (5.6)

these are the weights we shall work with in this section.
Changing the assumptions on function f , we can obtain two more identities with the

left-hand side equal to that in (5.1). Namely, assuming f (2n−1) is continuous of bounded
variation on [0,1] for some n ≥ 1, from (1.1) we get:∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
+TQ5

2n (x) =
1

(2n)!

∫ 1

0
GQ5

2n (x, t)d f (2n−1)(t), (5.7)

and assuming f (2n) is continuous of bounded variation on [0,1] for some n ≥ 0, from (1.1)
(or (1.2)) we get:

∫ 1

0
f (t)dt−Q

(
0,x,

1
2
,1− x,1

)
+TQ5

2n (x) =
1

(2n+1)!

∫ 1

0
GQ5

2n+1(x,t)d f (2n)(t),

(5.8)
where TQ5

2n (x),GQ5
2n (x,t),FQ5

2n (x,t) are as in (5.3)-(5.5) with weights as in (5.6).

Lemma 5.1 For x∈ (0, 5−√
15

10 ]∪ [ 1
5 , 1

2 ) and k≥ 2, GQ5
2k+1(x,t) has no zeros in the variable

t on (0,1/2). The sign of the function is determined by:

(−1)k+1GQ5
2k+1(x,t) > 0 za x ∈

(
0, 1/2−

√
15/10

]
,

(−1)kGQ5
2k+1(x,t) > 0 za x ∈ [1/5, 1/2) .

Proof. First, note that

x ∈
(

5−√
15

10
,

1
5

)
⇔ ∂ 4GQ5

5

∂ t4
(x,0) > 0 &

∂GQ5
5

∂ t

(
x,

1
2

)
> 0.
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Further, GQ5
k (x,0) = 0 for 2 ≤ k ≤ 5 and GQ5

5

(
x, 1

2

)
= 0. The claim is that for x ∈(

5−√
15

10 , 1
5

)
, GQ5

5 (x,t) has at least one zero in variable t on (0,1/2). Assume first

∂ 4GQ5
5

∂ t4
(x,0) > 0. This means

∂ 4GQ5
5

∂ t4
> 0 in some neighborhood of zero so we conclude

∂ 3GQ5
5

∂ t3
is increasing in this neighborhood. Now, similarly as in the proof of Lemma 3.7,

knowing the values of the k-th derivative in 0 and the sign of the (k + 1)-th derivative of
GQ5

5 , we conclude on the sign of the k-th derivative (for k = 0,1,2,3). Thus it follows

GQ5
5 (x, t) > 0 in this neighborhood of zero. From the assumption

∂GQ5
5

∂ t

(
x, 1

2

)
> 0, analo-

gously follows that GQ5
5 (x,t) < 0 in some neighborhood of 1/2. Now it is clear that for

x ∈
(

5−√
15

10 , 1
5

)
, GQ5

5 has at least one zero.

The next step is to prove GQ5
5 (x,t) is monotonous (in x). Assume first 0 ≤ t ≤ x < 1/2.

Then
∂GQ5

5 (x,t)
∂x

=
t4(1−2x)

12x2(x−1)2 ,

so obviously GQ5
5 is strictly increasing. Next, let 0 < x ≤ t ≤ 1/2. Then

∂GQ5
5 (x,t)
∂x

=
1−2t

12(x−1)2(2x−1)3 ·h(x,t),

where h(x,t) = 8t3(x − 1)2 + t2(4x2 + 4x− 6) + 2t(4x− 5x2) + x2(4x− 3). We claim
h(x, t) < 0. It is easy to see that

∂h(x,t)
∂ t

= 0 ⇔ t1 =
1
2
, t2 =

4x−5x2

6(x−1)2

but we also have t2 < x, so h(x,t) is strictly decreasing for t ∈ [x,1/2]. Since h(x,x) < 0,
our claim follows, and from there it is clear that GQ5

5 is strictly increasing in x on this
interval.

Further, since GQ5
5 ( 5−√

15
10 ,t) < 0 for t ∈ (0,1/2) (see [59]), GQ5

5 ( 1
5 ,t) =

t4(5/16− t) > 0 for t ∈ (0,1/5] and GQ5
5 ( 1

5 ,t) = 1
432(1− 2t)3(54t2 − 14t + 1) > 0 for

t ∈ [1/5,1/2), we conclude GQ5
5 (x,t) < 0 for x ∈

(
0, 5−√

15
10

]
and GQ5

5 (x,t) > 0 for

x ∈ [ 1
5 , 1

2

)
.

The rest of the proof is analogous to the proof of Lemma 3.1 �

Denote by RQ5
2n+2(x, f ) the right-hand side of (5.1) with weights as in (5.6).

Theorem 5.1 Let f : [0,1]→R be such that f (2n+2) is continuous on [0,1] for some n≥ 3

and let x ∈ (0, 1
2 −

√
15

10 ]∪ [ 1
5 , 1

2 ). If f (2n) and f (2n+2) have the same constant sign on [0,1],
then the remainder RQ5

2n (x, f ) has the same sign as the first neglected term ΔQ5
2n (x, f ) where

ΔQ5
2n (x, f ) := RQ5

2n (x, f )−RQ5
2n+2(x, f ) = − 1

(2n)!
GQ5

2n (x,0)[ f (2n−1)(1)− f (2n−1)(0)].

Furthermore, |RQ5
2n (x, f )| ≤ |ΔQ5

2n (x, f )| and |RQ5
2n+2(x, f )| ≤ |ΔQ5

2n (x, f )|.
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Proof. Analogous to the proof of Theorem 3.1. �

Theorem 5.2 If f : [0,1] → R is such that f (2n+2) is continuous on [0,1] for some n ≥ 2

and x ∈ (0, 1
2 −

√
15

10 ]∪ [ 1
5 , 1

2 ), then there exists ξ ∈ [0,1] such that

RQ5
2n+2(x, f ) = −GQ5

2n+2(x,0)
(2n+2)!

· f (2n+2)(ξ ) (5.9)

where

GQ5
2n+2(x,0) = 2w2(x) ·B2n+2(x)+ [2w1(x)−w3(x)(1−2−2n−1)]B2n+2. (5.10)

If, in addition, f (2n+2) has constant sign on [0,1], then there exists a point θ ∈ [0,1]
such that

RQ5
2n+2(x, f ) =

θ
(2n+2)!

·FQ5
2n+2

(
x,

1
2

)
·
[
f (2n+1)(1)− f (2n+1)(0)

]
(5.11)

where

FQ5
2n+2 (x,1/2) = 2w2(x)[B2n+2 (1/2− x)−B2n+2 (x)] (5.12)

+ [w3(x)−2w1(x)](2−2−2n−1)B2n+2.

Proof. Analogous to the proof of Theorem 3.2. �

When (5.9) is applied to (5.1) for n = 2, the following formula is produced:∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
=

1
604800

(7x2−7x+1) · f (6)(ξ ). (5.13)

For x = 1/4, (5.13) produces the classical Boole’s formula. When w1(x) = 0, which is

equivalent to x = 5−√
15

10 , formula (5.13) becomes the Gauss 3-point formula (stated on

[0,1]). When w3(x) = 0, i.e. when x = 5−√
5

10 , (5.13) gives the Lobatto 4-point formula (on
[0,1] again). Note that w2(x) 
= 0 for every x what could be expected since if x such that
w2(x) = 0 existed, that x would generate a closed 3-point quadrature formula with a degree
of exactness equal to 5, and we know that such a formula does not exist - unless of course
it is corrected, but we do not deal with that kind of quadrature formulae just yet.

Remark 5.1 Although only x ∈ (0,1/2) were taken into consideration here, results for
x = 0 and x = 1/2 can be obtained by considering the limit processes. Namely,

lim
x→0

Q

(
0,x,

1
2
,1− x,1

)
=

1
30

[7 f (0)+16 f

(
1
2

)
+7 f (1)]− 1

60
[ f ′(1)− f ′(0)]

lim
x→0

GQ5
k (x,t) =

7
15

B∗
k(1− t)+

8
15

B∗
k

(
1
2
− t

)
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Consequently, from (5.13) it follows:∫ 1

0
f (t)dt − 1

30
[7 f (0)+16 f

(
1
2

)
+7 f (1)]+

1
60

[ f ′(1)− f ′(0)]

=
1

604800
f (6)(ξ )

which is exactly corrected Simpson’s formula (cf. (3.115)).
Furthermore,

lim
x→1/2

Q

(
0,x,

1
2
,1− x,1

)
=

1
10

[ f (0)+8 f

(
1
2

)
+ f (1)]+

1
60

f ′′
(

1
2

)
lim

x→1/2
GQ5

k (x,t) =
1
5
B∗

k(1− t)+
4
5
B∗

k

(
1
2
− t

)
+

k(k−1)
60

B∗
k−2

(
1
2
− t

)
and then from (5.13):∫ 1

0
f (t)dt − 1

10
[ f (0)+8 f

(
1
2

)
+ f (1)]− 1

60
f ′′
(

1
2

)
= − 1

806400
f (6)(ξ ).

The next theorem gives some sharp estimates of error for this type of quadrature for-
mulae.

Theorem 5.3 Let p,q∈ R be such that 1≤ p, q≤ ∞ and 1/p+1/q= 1. If f : [0,1]→R

is such that f (2n) ∈ Lp[0,1] for some n ≥ 1, then

∣∣∣∣∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
+TQ5

2n (x)
∣∣∣∣≤ KQ5(2n,q,x) · ‖ f (2n)‖p, (5.14)

if f (2n+1) ∈ Lp[0,1] for some n ≥ 0, then

∣∣∣∣∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
+TQ5

2n (x)
∣∣∣∣≤ KQ5(2n+1,q,x) · ‖ f (2n+1)‖p, (5.15)

and finally, if f (2n+2) ∈ Lp[0,1] for some n ≥ 0, then

∣∣∣∣∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
+TQ5

2n (x)
∣∣∣∣≤ K∗

Q5(2n+2,q,x) · ‖ f (2n+2)‖p, (5.16)

where

KQ5(m,q,x) =
1
m!

[∫ 1

0

∣∣∣GQ5
m (x,t)

∣∣∣q dt

] 1
q

, K∗
Q5(m,q,x) =

1
m!

[∫ 1

0

∣∣∣FQ5
m (x,t)

∣∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p ≤ ∞ and best possible for p = 1.
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Proof. Analogous to the proof of Theorem 2.2. �

For x ∈ (0, 1
2 −

√
15

10 ]∪ [ 1
5 , 1

2 ) and n ≥ 2, using the previous theorem, the following
constants can be calculated:

K∗
Q5(2n+2,1,x) =

1
(2n+2)!

∣∣∣GQ5
2n+2(x,0)

∣∣∣ ,
K∗

Q5(2n+2,∞,x) =
1
2

KQ5(2n+1,1,x) =
1

(2n+2)!

∣∣∣∣FQ5
2n+2

(
x,

1
2

)∣∣∣∣ ,
where GQ5

2n+2(x,0) and FQ5
2n+2

(
x, 1

2

)
are as in (5.10) and (5.12), respectively. In view of this,

let us consider inequalities (5.15) and (5.16) for n = 2 and p = ∞:∣∣∣∣∫ 1

0
f (t)dt−Q

(
0,x,

1
2
,1− x,1

)∣∣∣∣≤ |8x2−7x+1|
115200(1− x)

· ‖ f (5)‖∞∣∣∣∣∫ 1

0
f (t)dt−Q

(
0,x,

1
2
,1− x,1

)∣∣∣∣≤ |7x2−7x+1|
604800

· ‖ f (6)‖∞

In order to find which admissible x gives the least estimate of error, the functions of the
right-hand sides have to be minimized. It is easy to verify that both functions are decreasing
on (0,1/2−√

15/10], increasing on [1/5,1/2) and reach their minimal value at x = 1/5.
Since KQ5(5,1) = 2K∗

Q5(6,∞), the same conclusion applies for n = 2 and p = 1. For
x = 1/5, (5.13) readily gives:∫ 1

0
f (t)dt− 1

432

(
27 f (0)+125 f

(
1
5

)
+128 f

(
1
2

)
+125 f

(
4
5

)
+27 f (1)

)
= − 1

5040000
f (6)(ξ ).

For functions with the degree of smoothness lower than 6, this formula gives the following
error estimates (cf. Theorem 5.3):∣∣∣∣∫ 1

0
f (t)dt− 1

432

(
27 f (0)+125 f

(
1
5

)
+128 f

(
1
2

)
+125 f

(
4
5

)
+27 f (1)

)∣∣∣∣
≤C(m,q,1/5) · ‖ f (m)‖p, m = 1, . . . ,6

where

C(1,1,1/5) ≈ 6.78194 ·10−2,

C(1,∞,1/5) = |GQ5
1 (1/5,4/5)| ≈ 0.151852,

C(2,1,1/5) ≈ 2.58029 ·10−3,

C(2,∞,1/5) =
1
2
|GQ5

2 (1/5,1/5)| ≈ 7.5 ·10−3,

C(3,1,1/5) ≈ 1.34151 ·10−4, C(3,∞,1/5) ≈ 2.96195 ·10−4

C(4,1,1/5) ≈ 8.68677 ·10−6, C(4,∞,1/5) ≈ 1.71661 ·10−5,
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C(5,1,1/5) ≈ 8.68056 ·10−7, C(5,∞,1/5) ≈ 2.17169 ·10−6,

C(6,1,1/5) ≈ 1.98413 ·10−7,

C(6,∞,1/5) =
1
6!
|FQ5

6 (1/5,1/2)| ≈ 4.34028 ·10−7.

The following two theorems give the Hermite-Hadamard and Dragomir-Agawal type
inequalities for the general 5-point quadrature formulae:

Theorem 5.4 Let f : [0,1]→ R be (2n+4)-convex for n≥ 2. Then for x ∈
(
0, 1

2 −
√

15
10

]
,

we have

1
(2n+2)!

|GQ5
2n+2(x,0)| f (2n+2)

(
1
2

)
(5.17)

≤ (−1)n
(∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
+TQ5

2n (x)
)

≤ 1
(2n+2)!

|GQ5
2n+2(x,0)| f (2n+2)(0)+ f (2n+2)(1)

2
,

while for x ∈ [ 1
5 , 1

2

)
we have

1
(2n+2)!

|GQ5
2n+2(x,0)| f (2n+2)

(
1
2

)
(5.18)

≤ (−1)n+1
(∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
+TQ5

2n (x)
)

≤ 1
(2n+2)!

|GQ5
2n+2(x,0)| f (2n+2)(0)+ f (2n+2)(1)

2
,

with GQ5
2n+2(x,0) as in (5.10) and w1(x),w2(x) and w3(x) as in (5.6).

If f is (2n+4)-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 2.8. �

Theorem 5.5 Let x ∈
(
0, 1

2 −
√

15
10

]
∪ [ 1

5 , 1
2

)
and f : [0,1] → R be m-times differentiable

for m ≥ 5. If | f (m)|q is convex for some q ≥ 1, then∣∣∣∣∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
+TQ5

2n (x)
∣∣∣∣

≤ LQ5(m,x) ·
(
| f (m)(0)|q + | f (m)(1)|q

2

)1/q

(5.19)

while if | f (m)| is concave, then
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∣∣∣∣∫ 1

0
f (t)dt −Q

(
0,x,

1
2
,1− x,1

)
+TQ5

2n (x)
∣∣∣∣ ≤ LQ5(m,x) ·

∣∣∣∣ f (m)
(

1
2

)∣∣∣∣ , (5.20)

where

for m = 2n+1 LQ5(2n+1,x) =
2

(2n+2)!
|FQ5

2n+2(x,1/2)|

and for m = 2n+2 LQ5(2n+2,x) =
1

(2n+2)!
|GQ5

2n+2(x,0)|

with GQ5
2n+2(x,0) as in (5.10) and FQ5

2n+2 (x,1/2) as in (5.12).

5.1.1 Boole’s formula

The special case which is considered in this subsection is the case when x = 1/4. These
results are published in [99].

For x = 1/4, formula (5.13) becomes the classical Boole’s formula:∫ 1

0
f (t)dt − 1

90

[
7 f (0)+32 f

(
1
4

)
+12 f

(
1
2

)
+32 f

(
3
4

)
+7 f (1)

]
= − 1

1935360
· f (6)(ξ ), ξ ∈ [0,1] (5.21)

We now have:

QB =
1
90

[
7 f (0)+32 f

(
1
4

)
+12 f

(
1
2

)
+32 f

(
3
4

)
+7 f (1)

]
TB
2n = TQ5

2n

(
1
4

)
=

n

∑
k=3

1
(2k)!

GB
2k(0) [ f (2k−1)(1)− f (2k−1)(0)]

GB
k (t) = GQ5

k

(
1
4
,t

)
=

14
90

B∗
k (1− t)+

12
90

B∗
k

(
1
2
− t

)
+

32
90

[
B∗

k

(
1
4
− t

)
+B∗

k

(
3
4
− t

)]
,

FB
k (t) = FQ5

(
1
4
,t

)
= GB

k (t)−GB
k (0).

Note that

GB
2n+2(0) = GQ5

2n+2(1/4,0) =
1
45

(1−5 ·4−n +4 ·16−n)B2n+2,

FB
2n+2 (1/2) = FQ5

2n+2 (1/4,1/2) = − 1
45

(2−2−2n−1)B2n+2.

Finally, let us see what the estimates of error for functions with a low degree of smooth-
ness for this type of formula are:∣∣∣∣∫ 1

0
f (t)dt −QCB

∣∣∣∣≤CB(m,q) · ‖ f (m)‖p,
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where

CB(1,1) =
239
3240

, CB(1,∞) =
11
60

,

CB(2,1) =
1018

273375
, CB(2,∞) =

17
1440

.

For x = 1/4 and n = 2, (5.18) gives Hermite-Hadamard type estimate for Boole’s for-
mula:

1
1935360

f (6)
(

1
2

)
≤−

(∫ 1

0
f (t)dt − 1

90

[
7 f (0)+32 f

(
1
4

)
+12 f

(
1
2

)
+32 f

(
3
4

)
+7 f (1)

])
≤ 1

1935360
f (6)(0)+ f (6)(1)

2

The Dragomir-Agarwal estimates for Boole’s formula are:

LQ5

(
5,

1
4

)
=

1
345600

, LQ5

(
6,

1
4

)
=

1
1935360

.

5.1.2 Hermite-Hadamard-type inequality for the 5-point quadra-
ture formulae

The main result of this section provides Hermite-Hadamard-type inequality for the 5-point
quadrature formulae.

Theorem 5.6 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then, for x ∈ (0, 1

2 −
√

15
10 ] and y ∈ [ 1

5 , 1
2

)
Q

(
0,x,

1
2
,1− x,1

)
≤
∫ 1

0
f (t)dt ≤ Q

(
0,y,

1
2
,1− y,1

)
, (5.22)

where Q
(
0,x, 1

2 ,1− x,1
)
is defined in (5.2). If f is 6-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 3.6. �

The following corollaries give comparison between the Gauss 3-point and the Lobatto
4-point, and the Gauss 3-point and Boole’s rule.

Corollary 5.1 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
18

(
5 f

(
5−√

15
10

)
+8 f

(
1
2

)
+5 f

(
5+

√
15

10

))

≤
∫ 1

0
f (t)dt

≤ 1
12

(
f (0)+5 f

(
5−√

5
10

)
+5 f

(
5+

√
5

10

)
+ f (1)

)
.



220 5 GENERAL 5-POINT QUADRATURE FORMULAE

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2 −√
15/10 ⇔ 10x2 − 10x + 1 = 0 and

y = 1/2−√
5/10 ⇔ 5x2−5x+1 = 0. �

Corollary 5.2 Let f : [0,1] → R be 6-convex and such that f (6) is continuous on [0,1].
Then

1
18

(
5 f

(
5−√

15
10

)
+8 f

(
1
2

)
+5 f

(
5+

√
15

10

))

≤
∫ 1

0
f (t)dt

≤ 1
90

(
7 f (0)+32 f

(
1
4

)
+12 f

(
1
2

)
+32 f

(
3
4

)
+7 f (1)

)
.

If f is 6-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2−√
15/10 ⇔ 10x2−10x+1 = 0 and y = 1/4.

�

5.2 Closed corrected 5-point quadrature formulae

The idea is now to derive a family of closed 5-point quadrature formulae with a degree
of exactness higher than what the family from the previous section had. Observe formula
(5.1) again. If we choose weights such that

G4(x,0) = G6(x,0) = 0,

it will increase the degree of exactness but it will also include values of the first derivative
of the integrand in the quadrature - i.e. ”corrected” quadrature formulae will be produced.

The weights thus produced are:

w1(x) =
98x4−196x3 +102x2−4x−1

420x2(1− x)2 , (5.23)

w2(x) =
1

420x2(1− x)2(1−2x)2 , w3(x) =
16(14x2−14x+3)

105(2x−1)2

All related results from the previous section can now be obtained completely analo-
gously, just having in mind that we are now working with the weights from (5.23). These



5.2 CLOSED CORRECTED 5-POINT QUADRATURE FORMULAE 221

results are therefore not going to be stated explicitly, except for the key lemma. To empha-
size the weights we are using, denote the notions from (5.3)-(5.5) by TCQ5

2n (x), GCQ5
2n (x,t)

and FCQ5
2n (x,t), and the quadrature itself by QC

(
0,x, 1

2 ,1− x,1
)
. Note that

TCQ5
2n (x) =

n

∑
k=1

1
(2k)!

GCQ5
2k (x,0) [ f (2k−1)(1)− f (2k−1)(0)]

=
7x2−7x+1
420x(x−1)

[ f ′(1)− f ′(0)]

+
n

∑
k=4

1
(2k)!

GCQ5
2k (x,0) [ f (2k−1)(1)− f (2k−1)(0)].

Lemma 5.2 For x ∈ (0, 7−√
21

14 ]∪ [ 3−√
2

7 , 1
2 ) and k ≥ 3, GCQ5

2k+1(x, t) has no zeros in the
variable t on the interval (0,1/2). The sign of this function is determined by:

(−1)k+1GCQ5
2k+1(x,t) > 0 for x ∈

(
0, 1/2−

√
21/14

]
,

(−1)kGCQ5
2k+1(x,t) > 0 for x ∈

[
3/7−

√
2/7, 1/2

)
.

Proof. The concept is the same as in the proof of Lemma 5.1: first show that for

x ∈ ( 7−√
21

14 , 3−√
2

7 ), GCQ5
7 has at least one zero on (0,1/2). It is easy to check that

x ∈
(

7−√
21

14
,

3−√
2

7

)
⇔ ∂ 5GCQ5

7

∂ t5
(x,0) < 0 &

∂GCQ5
7

∂ t

(
x,

1
2

)
< 0.

From the assumption
∂ 5GCQ5

7
∂ t5

(x,0) < 0, it follows that
∂ 5GCQ5

7
∂ t5

< 0 on some neighborhood of

zero. Recall
∂ kGCQ5

7
∂ tk

(x,0) = 0 for 0 ≤ k ≤ 4. Knowing the sign of the (k+1)-th derivative,
we can conclude on the monotonicity of the k-th derivative, and from its behavior in zero
we can conclude what its sign is. In short, all derivatives (for 0 ≤ k ≤ 4) are strictly
decreasing and have negative sign. Therefore, GCQ5

7 (x,t) < 0 on some neighborhood of

zero. Similarly, from
∂GCQ5

7
∂ t

(
x, 1

2

)
< 0, we conclude GCQ5

7 (x,t) > 0 on some neighborhood

of 1/2, and it is now obvious that for x ∈
(

7−√
21

14 , 3−√
2

7

)
, GCQ5

7 has at least one zero.

It is left to prove that GCQ5
7 is monotonous (more precisely: strictly decreasing) in x and

to check its behavior at the end points in order to determine its sign. Let 0 ≤ t ≤ x < 1/2.
Then

∂GCQ5
7 (x,t)
∂x

= 0 ⇔ x1 =
1
2
, x2 =

1
2
−
√

3(4t2−8t +3)
2(2t−3)

,

x3 =
1
2

+

√
3(4t2−8t +3)
2(2t−3)

.

Obviously, x2 > 1/2, and it is not hard to see x3 < t. So,
∂GCQ5

7 (x,t)
∂x has constant sign and
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GCQ5
7 (x, t) is therefore strictly decreasing in x. Next, let 0 < x ≤ t ≤ 1/2. Then

∂GCQ5
7 (x,t)
∂x

=
1−2t

30(2x2−3x+1)3 ·μ(x,t),

where μ(x, t) = 16t5(x − 1)3 + t4(−16x3 + 48x2 − 60x + 25) − 2t3(4x3 − 12x2 + 5)
+ t2(−4x3−18x2 +15x)+ t(13x3−9x2)+ (2−3x)x3. Further,

∂ μ(x,t)
∂ t

= (1−2t) ·μ1(x,t),

∂ μ1(x,t)
∂ t

= 0 ⇔ t1 =
1
2
, t2 =

3x3−9x2 +5x
10(1− x)3 .

But, t2 < x, so μ1(x,t) is strictly decreasing in t on this interval, and since μ1(x,x) < 0, we
conclude μ1(x, t) < 0. From here it follows that μ(x,t) is strictly decreasing in t and since
μ(x,x) < 0, we see that GCQ5

7 is strictly decreasing on this interval as well. Finally, it is not

difficult to verify that GCQ5
7 ( 7−√

21
14 ,t) > 0 and GCQ5

7 ( 3−√
2

7 ,t) < 0 for t ∈ (0,1/2), so we

conclude GCQ5
7 (x,t) > 0 for x ∈

(
0, 7−√

21
14

]
and GCQ5

7 (x,t) < 0 for x ∈
[

3−√
2

7 , 1
2

)
. This

completes the proof of the statement for k = 3. The rest of the proof is analogous to the
proof of Lemma 3.1 �

Applying the analogue of (5.9) for n = 3 and x ∈ (0, 7−√
21

14 ]∪ [ 3−√
2

7 , 1
2 ) the following

formula is produced:∫ 1

0
f (t)dt −QC

(
0,x,

1
2
,1− x,1

)
+

7x2−7x+1
420x(x−1)

[ f ′(1)− f ′(0)]

=
1

203212800
(−6x2 +6x−1) · f (8)(ξ ), ξ ∈ [0,1] (5.24)

This formula has several interesting special cases that are worth studying: for x = 1/4 it
gives corrected Boole’s formula; when w1(x) = 0 it becomes the corrected Gauss
3-point formula while when w3(x) = 0, it produces the corrected Lobatto’s 4-point for-
mula. As an especially interesting case, the classical Lobatto 5-point formula is obtained
(upon taking GCQ5

2 (x,0) = 0). Once again, as it could be expected, w2(x) 
= 0 for every x.
If x such that w2(x) = 0 existed, it would generate a corrected closed 3-point quadrature
formula with a degree of exactness equal to 7, and such a formula does not exist. The
only 3-point quadrature formula that has a degree of exactness that high is the corrected
Gauss 3-point formula (and that is an open quadrature formula). We will investigate these
formulae further in the following subsections.

Remark 5.2 Here, only x ∈ (0,1/2) were considered, but results for x = 0 and x = 1/2
can be obtained by considering the limit processes. Namely,

lim
x→0

(
QC

(
0,x,

1
2
,1− x,1

)
+

7x2−7x+1
420x(1− x)

[ f ′(1)− f ′(0)]
)
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=
1
70

[19 f (0)+32 f

(
1
2

)
+19 f (1)]− 1

35
[ f ′(1)− f ′(0)]+

1
840

[ f ′′(0)+ f ′′(1)]

lim
x→0

GCQ5
k (x,t) =

19
35

B∗
k(1− t)+

16
35

B∗
k

(
1
2
− t

)
+

k(k−1)
420

B∗
k−2 (1− t)

Consequently, from (5.24) it follows:∫ 1

0
f (t)dt − 1

70
[19 f (0)+32 f

(
1
2

)
+19 f (1)]+

1
35

[ f ′(1)− f ′(0)]

− 1
840

[ f ′′(0)+ f ′′(1)] = − 1
203212800

f (8)(ξ ).

Furthermore,

lim
x→1/2

(
QC

(
0,x,

1
2
,1− x,1

)
+

7x2−7x+1
420x(1− x)

[ f ′(1)− f ′(0)]
)

=
1
70

[11 f (0)+48 f

(
1
2

)
+11 f (1)]− 1

140
[ f ′(1)− f ′(0)]+

1
105

f ′′
(

1
2

)
lim

x→1/2
GCQ5

k (x,t) =
11
35

B∗
k(1− t)+

24
35

B∗
k

(
1
2
− t

)
+

k(k−1)
105

B∗
k−2 (1− t)

and then from (5.24):∫ 1

0
f (t)dt − 1

70
[11 f (0)+48 f

(
1
2

)
+11 f (1)]+

1
140

[ f ′(1)− f ′(0)]

− 1
105

f ′′
(

1
2

)
=

1
406425600

f (8)(ξ ).

Next, for x ∈ (0, 7−√
21

14 ]∪ [ 3−√
2

7 , 1
2 ) and n ≥ 3, using Lemma 5.2, from the analogue of

Theorem 5.3 we get:

K∗
CQ5(2n+2,1,x) =

1
(2n+2)!

∣∣∣GCQ5
2n+2(x,0)

∣∣∣ ,
K∗

CQ5(2n+2,∞,x) =
1
2

KCQ5(2n+1,1,x) =
1

(2n+2)!

∣∣∣∣FCQ5
2n+2

(
x,

1
2

)∣∣∣∣ ,
where GCQ5

2n+2(x,0) and FCQ5
2n+2 (x,1/2) are similar as in (5.10) and (5.12) but with weights

w1(x), w2(x), w3(x) as in (5.23). For n = 3 and p = ∞ we obtain:∣∣∣∣∫ 1

0
f (t)dt−QC

(
0,x,

1
2
,1− x,1

)
+

7x2−7x+1
420x(x−1)

[ f ′(1)− f ′(0)]
∣∣∣∣

≤ |128x3−215x2 +110x−15|
541900800(1− x)2 · ‖ f (7)‖∞∣∣∣∣∫ 1

0
f (t)dt−QC

(
0,x,

1
2
,1− x,1

)
+

7x2−7x+1
420x(x−1)

[ f ′(1)− f ′(0)]
∣∣∣∣

≤ |6x2−6x+1|
203212800

· ‖ f (8)‖∞
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In order to find which admissible x gives the least estimate of error for this kind of formulae,
the functions on the right-hand sides have to be minimized. It is elementary to establish

that both functions are decreasing on (0, 7−√
21

14 ], increasing on [ 3−√
2

7 , 1
2 ) and reach their

minimal value at xop := 3−√
2

7 . Thus, the nodes of the quadrature formula that gives the
least estimate of error are

0, xop ≈ 0.226541, 1/2, 1− xop ≈ 0.773459, 1

and the weights are

w1(xop) ≈ 0.10143, w2(xop) ≈ 0.259261, w3(xop) ≈ 0.278617.

The formula itself is∫ 1

0
f (t)dt −

(
w1(xop)[ f (0)+ f (1)]+w2(xop)[ f (xop)+ f (1− xop)]+w3(xop) f

(
1
2

))
+3.07832 ·10−3 · [ f ′(1)− f ′(0)] = 2.52547 ·10−10 · f (8)(ξ )

Sharp error estimates for functions with low degree of smoothness are as follows:∣∣∣∣∫ 1

0
f (t)dt − (w1(xop)[ f (0)+ f (1)]+w2(xop)[ f (xop)+ f (1− xop)]

+w3(xop) f

(
1
2

))∣∣∣∣≤C(m,q,xop) · ‖ f (m)‖p, m = 1,2

where

C(1,1,xop) ≈ 6.3344 ·10−2, C(1,∞,xop) = |GCQ5
1 (xop,1/2)| ≈ 0.139309,

C(2,1,xop) ≈ 3.49012 ·10−3, C(2,∞,xop) ≈ 6.31576 ·10−3

and ∣∣∣∣∫ 1

0
f (t)dt − (w1(xop)[ f (0)+ f (1)]+w2(xop)[ f (xop)+ f (1− xop)]

+w3(xop) f

(
1
2

))
+3.07832 ·10−3 · [ f ′(1)− f ′(0)]

∣∣∣∣≤C(m,q,xop) · ‖ f (m)‖p,

m = 2, . . . ,8

where

C(2,1,xop) ≈ 2.09749 ·10−3,

C(2,∞,xop) =
1
2
|GCQ5

2 (xop,1/2)| ≈ 6.46602 ·10−3,

C(3,1,xop) ≈ 9.0368 ·10−5, C(3,∞,xop) ≈ 1.74082 ·10−4

C(4,1,xop) ≈ 3.99829 ·10−6, C(4,∞,xop) ≈ 7.90283 ·10−6,

C(5,1,xop) ≈ 1.95347 ·10−7, C(5,∞,xop) ≈ 4.63008 ·10−7,

C(6,1,xop) ≈ 1.21228 ·10−8, C(6,∞,xop) ≈ 2.52003 ·10−8,

C(7,1,xop) ≈ 1.15271 ·10−9, C(7,∞,xop) ≈ 3.03071 ·10−9,

C(8,1,xop) ≈ 2.52547 ·10−10, C(8,∞,xop) ≈ 5.76355 ·10−10.
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5.2.1 Lobatto 5-point formula

To obtain from (5.1) the node x which generates the quadrature formula with the maximum
degree of exactness, clearly conditions

G2(x,0) = G4(x,0) = G6(x,0) = 0

have to be imposed. As a matter of fact, the same node will be produced if the condition:

GCQ5
2 (x,0) = 0 (5.25)

is imposed (thus, here the weights are as in (5.23)). From (5.25) we get:

x0 =
7−√

21
14

, w1(x0) =
1
20

, w2(x0) =
49
180

, w3(x0) =
16
45

.

With this node and these weights, (5.24) becomes the classical Lobatto 5-point formula
stated on [0,1]. Once again, we switch to [−1,1].

Analogues of the formulae (5.7), (5.8) and (5.1) in this case are:∫ 1

−1
f (t)dt −QL5 +TL5

2n =
22n−1

(2n)!

∫ 1

−1
GL5

2n(t)d f (2n−1)(t), (5.26)∫ 1

−1
f (t)dt −QL5 +TL5

2n =
22n

(2n+1)!

∫ 1

−1
GL5

2n+1(t)d f (2n)(t), (5.27)∫ 1

−1
f (t)dt −QL5 +TL5

2n =
22n+1

(2n+2)!

∫ 1

−1
FL5

2n+2(t)d f (2n+1)(t), (5.28)

where

QL5 =
1
90

[
9 f (−1)+49 f

(
−
√

3
7

)
+64 f (0)+49 f

(√
3
7

)
+9 f (1)

]
,

TL5
2n =

n

∑
k=4

22k−1

(2k)!
GL5

2k (−1) [ f (2k−1)(1)− f (2k−1)(−1)],

GL5
k (t) =

1
5
B∗

k

(
1− t

2

)
+

32
45

B∗
k

(
1− t

2

)
+

49
90

[
B∗

k

(√
21

14
− t

2

)
+B∗

k

(
−
√

21
14

− t
2

)]
,

FL5
k (t) = GL5

k (t)−GL5
k (−1).

Using the analogue of Theorem 5.2, for n ≥ 3 the remainder RL5
2n+2( f ) in (5.28) can be

written as:

RL5
2n+2( f ) = − 22n+2

(2n+2)!
GL5

2n+2(−1) · f (2n+2)(ξ ), ξ ∈ [−1,1], (5.29)

RL5
2n+2( f ) = θ · 22n+1

(2n+2)!
FL5

2n+2 (0)
[
f (2n+1)(1)− f (2n+1)(−1)

]
, (5.30)

θ ∈ [0,1]
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where

GL5
2n+2(−1) =

1
45

[
49B2n+2

(
1
2
−

√
21

14

)
+(42−n−23)B2n+2

]
, (5.31)

FL5
2n+2 (0) =

49
45

[
B2n+2

(√
21

14

)
−B2n+2

(
1
2
−

√
21

14

)]
(5.32)

+
23
45

(
2−2−2n−1)B2n+2.

Finally, from (5.28) and (5.29) for n = 3 the Lobatto 5-point formula is produced:∫ 1

−1
f (t)dt −QL5 = − 1

2778300
f (8)(ξ ). (5.33)

Applying Hölder’s inequality, sharp estimates for the formulae (5.26)-(5.28) can easily
be obtained (cf.Theorem 5.3); especially, for n ≥ 3 and p = ∞, i.e. p = 1, we have

K∗
L5(2n+2,1) =

22n+2

(2n+2)!

∣∣∣GL5
2n+2(−1)

∣∣∣ ,
K∗

L5(2n+2,∞) =
1
2

KL5(2n+1,1) =
22n+1

(2n+2)!

∣∣∣FL5
2n+2 (0)

∣∣∣ ,
where GL5

2n+2(−1) and FL5
2n+2 (0) are as in (5.31) and (5.32). Further,∣∣∣∣∫ 1

−1
f (t)dt−QL5

∣∣∣∣≤CL5(m,q) · ‖ f (m)‖p, m = 1, . . . ,8

where

CL5(1,1) =
10943−2034

√
21

5670
≈ 0.286074,

CL5(1,∞) =
∣∣∣GL5

1 (0)
∣∣∣= 16

45
≈ 0.355556,

CL5(2,1) ≈ 0.0234146,

CL5(2,∞) = |GL5
2 (0) | = 36−7

√
21

90
≈ 0.0435774,

CL5(3,1) ≈ 2.58631 ·10−3, CL5(3,∞) ≈ 3.10461 ·10−3,

CL5(4,1) ≈ 3.05134 ·10−4,

CL5(4,∞) = |GL5
4 (0)|/3 =

2
√

21−9
360

≈ 4.58754 ·10−4,

CL5(5,1) ≈ 4.0538 ·10−5, CL5(5,∞) ≈ 5.46895 ·10−5,

CL5(6,1) ≈ 6.21866 ·10−6,

CL5(6,∞) = 2|GL5
6 (0)|/45 =

14−3
√

21
25200

≈ 1.00108 ·10−5,
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CL5(7,1) = 2|FL5
8 (0)|/315 =

12
√

21−49
4939200

≈ 1.21293 ·10−6,

CL5(7,∞) ≈ 1.55466 ·10−6,

CL5(8,1) = 2|GL5
8 (−1)|/315 =

1
2778300

≈ 3.59932 ·10−7,

CL5(8,∞) = |FL5
8 (0)|/315 =

12
√

21−49
9878400

≈ 6.06465 ·10−7.

The Hermite-Hadamard type estimate for the Lobatto 5-point formula is:

1
1422489600

f (8)
(

1
2

)
≤−

∫ 1

0
f (t)dt

+
1

180

[
9 f (0)+49 f

(
7−√

21
14

)
+64 f

(
1
2

)
+49 f

(
7+

√
21

14

)
+9 f (1)

]

≤ 1
1422489600

f (8)(0)+ f (8)(1)
2

and the Dragomir-Agarwal type estimates for this formula are:

CCQ5

(
7,

7−√
21

14

)
=

12
√

21−49
1264435200

, CCQ5

(
8,

7−√
21

14

)
=

1
1422489600

.

5.2.2 Corrected Lobatto 4-point formula

What happens if the condition w3(x) = 0 is imposed, where w3(x) is as in (5.23)? The node

x0 = 7−√
7

14 is produced. This node generates from (5.24) the corrected closed
4-point quadrature formula with the maximum degree of exactness for this type of formula
(i.e. with this number of nodes and the necessity of the end points being included), so we
call it the corrected Lobatto 4-point formula. The results are transformed to the interval
[−1,1] again. Analogues of the formulae (5.7), (5.8) and (5.1) are in this case:∫ 1

−1
f (t)dt −QCL4 +TCL4

2n =
22n−1

(2n)!

∫ 1

−1
GCL4

2n (t)d f (2n−1)(t), (5.34)∫ 1

−1
f (t)dt −QCL4 +TCL4

2n =
22n

(2n+1)!

∫ 1

−1
GCL4

2n+1(t)d f (2n)(t), (5.35)∫ 1

−1
f (t)dt −QCL4 +TCL4

2n =
22n+1

(2n+2)!

∫ 1

−1
FCL4

2n+2(t)d f (2n+1)(t), (5.36)

where

QCL4 =
1

135

[
37 f (−1)+98 f

(
−
√

7
7

)
+98 f

(√
7

7

)
+37 f (1)

]
,
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TCL4
2n =

2n

∑
k=2

2k−1

k!
GCL4

k (−1) [ f (k−1)(1)− f (k−1)(−1)]

=
1
45

[ f ′(1)− f ′(−1)]+
n

∑
k=4

22k−1

(2k)!
GCL4

2k (−1) [ f (2k−1)(1)− f (2k−1)(−1)],

GCL4
k (t) =

74
135

B∗
k

(
1− t

2

)
+

98
135

[
B∗

k

(√
7

14
− t

2

)
+B∗

k

(
−
√

7
14

− t
2

)]
,

FCL4
k (t) = GCL4

k (t)−GCL4
k (−1).

The remainder RCL4
2n+2( f ) for n ≥ 3 in (5.36) can be written as:

RCL4
2n+2( f ) = − 22n+2

(2n+2)!
GCL4

2n+2(−1) · f (2n+2)(ξ ), ξ ∈ [−1,1], (5.37)

RCL4
2n+2( f ) = θ · 22n+1

(2n+2)!
FCL4

2n+2 (0)
[
f (2n+1)(1)− f (2n+1)(−1)

]
, (5.38)

θ ∈ [0,1]

where

GCL4
2n+2(−1) =

1
135

[
196B2n+2

(
1
2
−

√
7

14

)
+74B2n+2

]
, (5.39)

FCL4
2n+2 (0) =

196
135

[
B2n+2

(√
7

14

)
−B2n+2

(
1
2
−

√
7

14

)]
(5.40)

− 74
135

(
2−2−2n−1)B2n+2.

From (5.36) and (5.37) we get the corrected Lobatto 4-point formula:∫ 1

−1
f (t)dt −QCL4 +

1
45

[ f ′(1)− f ′(−1)] =
1

1389150
f (8)(ξ ). (5.41)

Estimates of error for this formula for n ≥ 3 and p = ∞, i.e. p = 1, are:

K∗
CL4(2n+2,1) =

22n+2

(2n+2)!

∣∣GCL4
2n+2(−1)

∣∣ ,
K∗

CL4(2n+2,∞) =
1
2

KCL4(2n+1,1) =
22n+1

(2n+2)!

∣∣FCL4
2n+2 (0)

∣∣ .
Further, we have∣∣∣∣∫ 1

−1
f (t)dt−QCL4

∣∣∣∣≤CCL4(m,q) · ‖ f (m)‖p, m = 1,2

where

CCL4(1,1) ≈ 0.339051, CCL4(1,∞) =
∣∣∣GCL4

1

(
1/

√
7
)∣∣∣= 1/

√
7 ≈ 0.377964,

CCL4(2,1) ≈ 0.0506718, CCL4(2,∞) = |FCL4
2 (0)| ≈ 0.0484483
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and∣∣∣∣∫ 1

−1
f (t)dt −QCL4 +

1
45

[ f ′(1)− f ′(−1)]
∣∣∣∣≤CCL4(m,q) · ‖ f (m)‖p, m = 2, . . . ,8

where

CCL4(2,1) ≈ 3.03418 ·10−2,

CCL4(2,∞) = |GCL4
2

(
1/

√
7
)
| ≈ 4.52025 ·10−2,

CCL4(3,1) ≈ 3.59487 ·10−3, CCL4(3,∞) ≈ 4.00427 ·10−3,

CCL4(4,1) ≈ 4.55146 ·10−4,

CCL4(4,∞) = |GCL4
4 (0)|/3 ≈ 5.66046 ·10−4,

CCL4(5,1) ≈ 6.49236 ·10−5, CCL4(5,∞) ≈ 8.23873 ·10−5,

CCL4(6,1) ≈ 1.08105 ·10−5,

CCL4(6,∞) = 2|GCL4
6 (0)|/45 ≈ 1.57981 ·10−5,

CCL4(7,1) = 2|FCL4
8 (0)|/315≈ 2.254586 ·10−6,

CCL4(7,∞) ≈ 2.70262 ·10−6,

CCL4(8,1) = 2|GCL4
8 (−1)|/315 = 1/1389150≈ 7.19865 ·10−7,

CCL4(8,∞) = |FCL4
8 (0)|/315 ≈ 1.12729 ·10−6.

The Hermite-Hadamard type estimate for the corrected Lobatto 4-point formula is:

1
711244800

f (8)
(

1
2

)
≤
∫ 1

0
f (t)dt − 1

270

[
37 f (0)+98 f

(
7−√

7
14

)
+98 f

(
7+

√
7

14

)
+37 f (1)

]

+
1

180
[ f ′(1)− f ′(0)]

≤ 1
711244800

f (8)(0)+ f (8)(1)
2

and the Dragomir-Agarwal type estimates for this formula are:

CCQ5

(
7,

7−√
7

14

)
=

343−16
√

7
34139750400

, CCQ5

(
8,

7−√
7

14

)
=

1
711244800

.

5.2.3 Corrected Gauss 3-point formula

Consider the case when w1(x) = 0, with w1(x) as in (5.23). Then x = 7−
√

45−2
√

102
14 . For

this choice of x, we obtain from (5.24) the corrected open 3-point quadrature formula with
the maximum degree of exactness, so we call it the corrected Gauss 3-point formula. It
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should be mentioned that this formula was also consider in [47] but not in as much detail.
We have: ∫ 1

−1
f (t)dt −QCG3 +TCG3

2n =
22n−1

(2n)!

∫ 1

−1
GCG3

2n (t)d f (2n−1)(t), (5.42)∫ 1

−1
f (t)dt −QCG3 +TCG3

2n =
22n

(2n+1)!

∫ 1

−1
GCG3

2n+1(t)d f (2n)(t), (5.43)∫ 1

−1
f (t)dt −QCG3 +TCG3

2n =
22n+1

(2n+2)!

∫ 1

−1
FCG3

2n+2(t)d f (2n+1)(t), (5.44)

where

x0 =
1
7

√
45−2

√
102,

QCG3 =
1977+16

√
102

3465
[ f (−x0)+ f (x0)]+

2976−32
√

102
3465

f (0),

TCG3
2n =

2n

∑
k=2

2k−1

k!
GCG3

k (−1) [ f (k−1)(1)− f (k−1)(−1)]

=
9−√

102
105

[ f ′(1)− f ′(−1)]+
n

∑
k=4

22k−1

(2k)!
GCG3

2k (−1) [ f (2k−1)(1)− f (2k−1)(−1)],

GCG3
k (t) =

2976−32
√

102
3465

B∗
k

(
1− t

2

)
+

1977+16
√

102
3465

[
B∗

k

(
x0 − t

2

)
+B∗

k

(−x0− t
2

)]
,

FCG3
k (t) = GCG3

k (t)−GCG3
k (−1).

The remainder RCG3
2n+2( f ) for n ≥ 3 can be written as:

RCG3
2n+2( f ) = − 22n+2

(2n+2)!
GCG3

2n+2(−1) · f (2n+2)(ξ ), ξ ∈ [−1,1], (5.45)

RCG3
2n+2( f ) = θ · 22n+1

(2n+2)!
FCG3

2n+2 (0)
[
f (2n+1)(1)− f (2n+1)(−1)

]
, θ ∈ [0,1] (5.46)

where

GCG3
2n+2(−1) =

3954+32
√

102
3465

B2n+2

(
1− x0

2

)
(5.47)

−2976−32
√

102
3465

(1−2−2n−1)B2n+2,

FCG3
2n+2 (0) =

3954+32
√

102
3465

[
B2n+2

(x0

2

)
−B2n+2

(
1− x0

2

)]
+

2976−32
√

102
3465

(
2−2−2n−1)B2n+2. (5.48)

Now, from (5.44) and (5.45) for n = 3 the corrected Gauss 3-point formula is produced:
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∫ 1

−1
f (t)dt −QCG3 +

9−√
102

105
[ f ′(1)− f ′(−1)] =

3
√

102−43
19448100

f (8)(ξ ). (5.49)

Similarly as before, error estimates can be obtained which, for n ≥ 3 and p = ∞ or
p = 1, can be expressed through the values of GCG3

2n+2(−1) and FCG3
2n+2 (0). For functions with

lower degree of smoothness, the appropriate estimates can also be explicitly calculated. We
have ∣∣∣∣∫ 1

−1
f (t)dt −QCG3

∣∣∣∣≤CCG3(m,q) · ‖ f (m)‖p, m = 1,2

where

CCG3(1,1) ≈ 0.337807, CCG3(1,∞) ≈ 0.382802,

CCG3(2,1) ≈ 0.0313153, CCG3(2,∞) ≈ 0.0609023,

and ∣∣∣∣∣
∫ 1

−1
f (t)dt −QCG3 +

9−√
102

105
[ f ′(1)− f ′(−1)]

∣∣∣∣∣≤CCG3(m,q) · ‖ f (m)‖p,

2 ≤ m ≤ 8

where

CCG3(2,1) ≈ 0.0300722, CCG3(2,∞) ≈ 0.0504308,

CCG3(3,1) ≈ 0.00351347, CCG3(3,∞) ≈ 0.00386067

CCG3(4,1) ≈ 0.000438656, CCG3(4,∞) ≈ 0.000610086,

CCG3(5,1) ≈ 0.0000618111, CCG3(5,∞) ≈ 0.000077903,

CCG3(6,1) ≈ 1.00553 ·10−5, CCG3(6,∞) ≈ 0.0000151755,

CCG3(7,1) ≈ 2.077547 ·10−6, CCG3(7,∞) ≈ 2.513835 ·10−6,

CCG3(8,1) ≈ 6.530965 ·10−7, CCG3(8,∞) ≈ 1.038773 ·10−6.

The Hermite-Hadamard type estimate for the corrected Gauss 3-point formula (on
[0,1]) is:

43−3
√

102
9957427200

f (8)
(

1
2

)
≤−

(∫ 1

0
f (t)dt − 1977+16

√
102

6930

[
f

(
7−
√

45−2
√

102
14

)
+ f

(
7+
√

45−2
√

102
14

)]

− 1488−16
√

102
3465

f

(
1
2

)
+

9−√
102

420
[ f ′(1)− f ′(0)]

)

≤ 43−3
√

102
9957427200

f (8)(0)+ f (8)(1)
2
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and the Dragomir-Agarwal type estimates are:

CCQ5

(
7,

7−
√

45−2
√

102
14

)
=

24
√

60933−6014
√

102−49(87−8
√

102)
3793305600

,

CCQ5

(
8,

7−
√

45−2
√

102
14

)
=

43−3
√

102
9957427200

.

5.2.4 Corrected Boole’s formula

The last special case which is to be considered is the case when x = 1/4. For this x, formula
(5.24) becomes:∫ 1

0
f (t)dt − 1

1890

[
217 f (0)+512 f

(
1
4

)
+432 f

(
1
2

)
+512 f

(
3
4

)
+217 f (1)

]
+

1
252

[ f ′(1)− f ′(0)] =
1

1625702400
· f (8)(ξ ), ξ ∈ [0,1] (5.50)

We call formula (5.50) corrected Boole’s formula. We now have:∫ 1

0
f (t)dt −QCB +TCB

2n =
1

(2n)!

∫ 1

0
GCB

2n (t)d f (2n−1)(t), (5.51)∫ 1

0
f (t)dt −QCB +TCB

2n =
1

(2n+1)!

∫ 1

0
GCB

2n+1(t)d f (2n)(t), (5.52)∫ 1

0
f (t)dt −QCB +TCB

2n =
1

(2n+2)!

∫ 1

0
FCB

2n+2(t)d f (2n+1)(t), (5.53)

where

QCB =
1

1890

[
217 f (0)+512 f

(
1
4

)
+432 f

(
1
2

)
+512 f

(
3
4

)
+217 f (1)

]
TCB
2n = TCQ5

2n

(
1
4

)
=

2n

∑
k=2

1
k!

GCB
k (0) [ f (k−1)(1)− f (k−1)(0)]

=
1

252
[ f ′(1)− f ′(0)]+

n

∑
k=4

1
(2k)!

GCB
2k (0) [ f (2k−1)(1)− f (2k−1)(0)],

GCB
k (t) = GCQ5

k

(
1
4
,t

)
=

31
135

B∗
k (1− t)

+
256
945

[
B∗

k

(
1
4
− t

)
+B∗

k

(
3
4
− t

)]
+

8
35

B∗
k

(
1
2
− t

)
,

FCB
k (t) = FCQ5

(
1
4
,t

)
= GCB

k (t)−GCB
k (0).

Note that

GCB
2n+2(0) = GCQ5

2n+2(1/4,0) =
1

945
(1−20 ·4−n+64 ·16−n)B2n+2,
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FCB
2n+2 (1/2) = FCQ5

2n+2 (1/4,1/2) =
1

945
(2−2n−1−2)B2n+2.

Finally, let us see what the estimates of error for functions with a low degree of smooth-
ness for this type of formula are.∣∣∣∣∫ 1

0
f (t)dt−QCB

∣∣∣∣≤CCB(m,q) · ‖ f (m)‖p, m = 1,2

where

CCB(1,1) =
89927

1428840
≈ 0.0629371,

CCB(1,∞) = |GCB
1 (3/4)|= 19

140
≈ 0.135714,

CCB(2,1) =
21454879+285606

√
5289

10126903500
≈ 0.00416966,

CCB(2,∞) =
1
2

∣∣∣∣FCB
2

(
27
70

)∣∣∣∣= 1763
264600

≈ 0.00666289

and further∣∣∣∣∫ 1

0
f (t)dt−QCB +

1
252

[ f ′(1)− f ′(0)]
∣∣∣∣≤CCB(m,q) · ‖ f (m)‖p, 2 ≤ m ≤ 8

where

CCB(2,1) =
57753

√
2139+18739

√
18739

2531725875
≈ 0.00206824,

CCB(2,∞) =
1
2

∣∣∣∣GCB
2

(
1
4

)∣∣∣∣= 197
30240

≈ 0.00651455,

CCB(3,1) ≈ 9.15728 ·10−5, CCB(3,∞) ≈ 1.91051 ·10−4

CCB(4,1) ≈ 5.05748 ·10−6, CCB(4,∞) ≈ 1.22339 ·10−5,

CCB(5,1) ≈ 3.47811 ·10−7,

CCB(5,∞) =
1
5!

∣∣∣∣GCB
5

(
1
3

)∣∣∣∣= 1
1224720

≈ 8.16513 ·10−7,

CCB(6,1) =
1

31492800
≈ 3.17533 ·10−8,

CCB(6,∞) =
1
6!

∣∣∣∣GCB
6

(
1
2

)∣∣∣∣= 1
14515200

≈ 6.88933 ·10−8,

CCB(7,1) =
17

4877107200
≈ 3.48567 ·10−9

CCB(7,∞) =
1
7!

∣∣∣∣GCB
7

(
1
3

)∣∣∣∣= 1
125971200

≈ 7.93832 ·10−9,

CCB(8,1) =
1

1625702400
≈ 6.15119 ·10−10,

CCB(8,∞) =
1
8!

∣∣∣∣FCB
8

(
1
2

)∣∣∣∣= 17
9754214400

≈ 1.74284 ·10−9.
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The Hermite-Hadamard type estimate for the corrected Boole’s formula is:

1
1625702400

f (8)
(

1
2

)
≤
∫ 1

0
f (t)dt − 1

1890

[
217 f (0)+512 f

(
1
4

)
+432 f

(
1
2

)
+512 f

(
3
4

)
+217 f (1)

]
+

1
252

[ f ′(1)− f ′(0)]

≤ 1
1625702400

f (8)(0)+ f (8)(1)
2

and the Dragomir-Agarwal type estimates for this formula are:

CCQ5

(
7,

1
4

)
=

17
4877107200

, CCQ5

(
8,

1
4

)
=

1
1625702400

.

5.2.5 Hermite-Hadamard-type inequality for the corrected
5-point quadrature formulae

The main result of this subsection provides Hermite-Hadamard-type inequality for the cor-
rected 5-point quadrature formulae.

Theorem 5.7 Let f : [0,1] → R be 8-convex and such that f (8) is continuous on [0,1].
Then, for x ∈ (0, 1

2 −
√

21
14 ] and y ∈

[
3−√

2
7 , 1

2

)
QC

(
0,y,

1
2
,1− y,1

)
− 7y2−7y+1

420y(y−1)
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt (5.54)

≤ QC

(
0,x,

1
2
,1− x,1

)
− 7x2−7x+1

420x(x−1)
[ f ′(1)− f ′(0)],

where

QC

(
0,x,

1
2
,1− x,1

)
=

1
420x2(1− x)2(1−2x)2

(
(98x4−196x3 +102x2−4x−1)(1−2x)2[ f (0)+ f (1)]

+ f (x)+ f (1− x)+64x2(1− x)2(14x2−14x+3) f

(
1
2

))
.

If f is 8-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 3.6. �
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The following corollaries give comparison between the corrected Lobatto 4-point and
the Lobatto 5-point rule, corrected Boole’s and the Lobatto 5-point rule, the corrected
Lobatto 4-point and the corrected Gauss 3-point rule, corrected Boole’s and the corrected
Gauss 3-point rule.

Corollary 5.3 Let f : [0,1] → R be 8-convex and such that f (8) is continuous on [0,1].
Then

1
270

(
37 f (0)+98 f

(
7−√

7
14

)
+98 f

(
7+

√
7

14

)
+37 f (1)

)
− 1

180
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1
180

(
9 f (0)+49 f

(
7−√

21
14

)
+64 f

(
1
2

)
+49 f

(
7+

√
21

14

)
+9 f (1)

)
.

If f is 8-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2−√
21/14 ⇔ 7x2 − 7x+ 1 = 0 and y = 1/2−√

7/14 ⇔ 5y2−5y+1 = 0. �

Corollary 5.4 Let f : [0,1] → R be 8-convex and such that f (8) is continuous on [0,1].
Then

1
1890

(
217 f (0)+512 f

(
1
4

)
+432 f

(
1
2

)
+512 f

(
3
4

)
+217 f (1)

)
− 1

252
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1
180

(
9 f (0)+49 f

(
7−√

21
14

)
+64 f

(
1
2

)
+49 f

(
7+

√
21

14

)
+9 f (1)

)
.

If f is 8-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2−√
21/14 ⇔ 7x2−7x+1 = 0 and y = 1/4. �

Corollary 5.5 Let f : [0,1] → R be 8-convex and such that f (8) is continuous on [0,1].
Then

1
270

(
37 f (0)+98 f

(
7−√

7
14

)
+98 f

(
7+

√
7

14

)
+37 f (1)

)
− 1

180
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1977+16
√

102
6930

(
f

(
7−
√

45−2
√

102
14

)
+ f

(
7+
√

45−2
√

102
14

))

+
2976−32

√
102

6930
f

(
1
2

)
− 9−√

102
420

[ f ′(1)− f ′(0)].



236 5 GENERAL 5-POINT QUADRATURE FORMULAE

If f is 8-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2−
√

45−2
√

102
/

14 ⇔ 98x4−196x3 +102x2−
4x−1 = 0 and y = 1/2−√

7/14 ⇔ 5y2−5y+1 = 0. �

Corollary 5.6 Let f : [0,1] → R be 8-convex and such that f (8) is continuous on [0,1].
Then

1
1890

(
217 f (0)+512 f

(
1
4

)
+432 f

(
1
2

)
+512 f

(
3
4

)
+217 f (1)

)
− 1

252
[ f ′(1)− f ′(0)]

≤
∫ 1

0
f (t)dt

≤ 1977+16
√

102
6930

(
f

(
7−
√

45−2
√

102
14

)
+ f

(
7+
√

45−2
√

102
14

))

+
2976−32

√
102

6930
f

(
1
2

)
− 9−√

102
420

[ f ′(1)− f ′(0)].

If f is 8-concave, the inequalities are reversed.

Proof. Follows from (5.22) for x = 1/2−
√

45−2
√

102
/

14 ⇔ 98x4 − 196x3 + 102x2

−4x−1 = 0 and y = 1/4. �

5.3 Corrected Lobatto 5-point formula

One of the concepts of this book was to adjoin the classical quadrature formulae with the
corresponding corrected one. This was done for all closed 5-point formulae except for the
Lobatto 5-point formula.

Recall how the classical Lobatto 5-point formula was derived: starting from (5.1) and
setting the system

G2(x,0) = G4(x,0) = G6(x,0) = 0.

The classical Lobatto 5-point formula belongs to the family of the corrected closed 5-point
formulae, studied in the previous section, which are exact for all polynomials of order
≤ 7. What we want to do now is derive the closed 5-point quadrature formula that has
a degree of exactness higher than the classical Lobatto 5-point formula but on the other
hand includes in the quadrature the values of the first derivative. To do this, we impose the
conditions:

G4(x,0) = G6(x,0) = G8(x,0) = 0.

Formula thus obtained will have the maximum degree of exactness for this type of formula
(which is 9) so we call it the corrected Lobatto 5-point formula.
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Instead of on the interval [0,1], we shall work on [−1,1]. Having this transformation
in mind, we get

x0 =
1√
3
, w1(x0) =

19
105

, w2(x0) =
18
35

, w3(x0) =
64
105

;

these are the node and the weights of the corrected Lobatto 5-point formula.
So, if f (2n−1) is continuous of bounded variation on [−1,1] for some n ≥ 1, then:∫ 1

−1
f (t)dt−QCL5 +TCL5

2n =
22n−1

(2n)!

∫ 1

−1
GCL5

2n (t)d f (2n−1)(t); (5.55)

if f (2n) satisfies the same condition for some n ≥ 0, then:∫ 1

−1
f (t)dt−QCL5 +TCL5

2n =
22n

(2n+1)!

∫ 1

−1
GCL5

2n+1(t)d f (2n)(t), (5.56)

and, finally, if f (2n+1) satisfies the same condition for some n ≥ 0, then:∫ 1

−1
f (t)dt −QCL5 +TCL5

2n =
22n+1

(2n+2)!

∫ 1

−1
FCL5

2n+2(t)d f (2n+1)(t), (5.57)

where

QCL5 =
1

105

[
19 f (−1)+54 f

(
− 1√

3

)
+64 f (0)+54

(
1√
3

)
+19 f (1)

]
,

TCL5
2n =

1
105

[ f ′(1)− f ′(−1)]+
n

∑
k=5

22k−1

(2k)!
GCL5

2k (−1) [ f (2k−1)(1)− f (2k−1)(−1)],

GCL5
k (t) =

38
105

B∗
k

(
1− t

2

)
+

18
35

[
B∗

k

(√
3−3t
6

)
+B∗

k

(
−√

3−3t
6

)]

+
64
105

B∗
k

(
1− t

2

)
,

FCL5
k (t) = GCL5

k (t)−GCL5
k (−1).

To prove the rest of the results for these formulae, we need the following lemma:

Lemma 5.3 For k ≥ 4, GCL5
2k+1(t) has no zeros on (0,1). The sign of this function is

determined by (−1)kGCL5
2k+1(t) > 0.

Proof. We start from GCL5
9 . For 1/

√
3 ≤ t < 1,

GCL5
9 (t) =

1
8960

(1− t)7(35t2−13t +2),

so it is trivial to see that here GCL5
9 (t) > 0. For 0 < t ≤ 1/

√
3, it is a bit more complicated:

GCL5
9 (t) =

t
8960

· k(t),
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where
k(t) =−35t8+96t7+36(12

√
3−23)t6+42(24

√
3−41)t4+84(4

√
3−7)t2+16

√
3−27.

We have:
k′(t) = −8t · k1(t) and k′1(t) = 6t · k2(t),

where k2(t) = 35t4 − 70t3 + (414− 216
√

3)t2 + 287− 168
√

3. It is easy to check that
k′2(t) > 0 which, together with k2(1/

√
3) < 0, leads to a conclusion that k2 < 0. From

k1(1/
√

3) > 0 it follows that k1 > 0. Finally, we conclude that k > 0 since k(1/
√

3) > 0.
Therefore, it is now clear that GCL5

9 (t) > 0 on this interval. This proves the assertion for
k = 4. The rest of the proof is analogous to the same part of the proof of Lemma 5.1. �

Denote by RCL5
2n+2( f ) the remainder in (5.57).

Theorem 5.8 Let f : [−1,1] → R be such that f (2n+2) is continuous on [−1,1] for some
n ≥ 4. Then there exists ξ ∈ [−1,1] such that

RCL5
2n+2( f ) = − 22n+2

(2n+2)!
GCL5

2n+2(−1) · f (2n+2)(ξ ) (5.58)

where

GCL5
2n+2(−1) =

36
35

B2n+2

(
3−√

3
6

)
+

1
105

(25−2n−26)B2n+2. (5.59)

If, in addition, f (2n+2) has constant sign on [−1,1], then there exists θ ∈ [0,1] such that

RCL5
2n+2( f ) = θ · 22n+1

(2n+2)!
·FCL5

2n+2 (0) ·
[
f (2n+1)(1)− f (2n+1)(−1)

]
, (5.60)

where

FCL5
2n+2 (0) =

36
35

[
B2n+2

(√
3

6

)
−B2n+2

(
3−√

3
6

)]

+
1

105
(52−13 ·2−2n)B2n+2 (5.61)

Proof. Analogous to the proof of Theorem 3.2. �

The corrected Lobatto 5-point formula is produced after applying (5.58) for n = 4:

∫ 1

−1
f (t)dt −QCL5 +

1
105

[ f ′(1)− f ′(−1)] =
1

589396500
· f (10)(ξ ), ξ ∈ [−1,1]. (5.62)

Using Hölder’s inequality, sharp error estimates can easily be obtained for these for-
mulae (cf. Theorem 5.3). Especially, we have∣∣∣∣∫ 1

−1
f (t)dt−QCL5

∣∣∣∣≤CCL5(m,q) · ‖ f (m)‖p, m = 1,2
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where

CCL5(1,1) =
3431−1652

√
3

2205
≈ 0.258346, CCL5(2,1) ≈ 0.0253504,

CCL5(1,∞) =
∣∣∣∣GCL5

1

(
1√
3

)∣∣∣∣= 35
√

3−32
105

≈ 0.272588,

CCL5(2,∞) =
∣∣∣∣FCL5

2

(
32
105

)∣∣∣∣= 3780
√

3−6011
22050

≈ 0.0243153

and∣∣∣∣∫ 1

−1
f (t)dt −QCL5 +

1
105

[ f ′(1)− f ′(−1)]
∣∣∣∣≤CCL5(m,q) · ‖ f (m)‖p, m = 2, . . . ,10

where

CCL5(2,1) ≈ 1.78428 ·10−2,

CCL5(2,∞) =
∣∣∣GCL5

2 (0)
∣∣∣= 23−12

√
3

70
≈ 3.16484 ·10−2,

CCL5(3,1) ≈ 1.63266 ·10−3, CCL5(3,∞) ≈ 1.90589 ·10−3,

CCL5(4,1) ≈ 1.55231 ·10−4,

CCL5(4,∞) = |GCL5
4 (0)|/3 =

24
√

3−41
2520

≈ 2.25881 ·10−4,

CCL5(5,1) ≈ 1.60278 ·10−5, CCL5(5,∞) ≈ 2.19844 ·10−5,

CCL5(6,1) ≈ 1.79762 ·10−6,

CCL5(6,∞) = 2|GCL5
6 (0)|/45 =

7−4
√

3
25200

≈ 2.84908 ·10−6,

CCL5(7,1) ≈ 2.25172 ·10−7, CCL5(7,∞) ≈ 3.30395 ·10−7,

CCL5(8,1) ≈ 3.27708 ·10−8,

CCL5(8,∞) = |GCL5
8 (0)|/315 =

16
√

3−27
12700800

≈ 5.61235 ·10−8

CCL5(9,1) =
9−4

√
3

342921600
≈ 6.0416 ·10−9, CCL5(9,∞) ≈ 8.19271 ·10−9,

CCL5(10,1) =
1

589396500
≈ 1.69665 ·10−9,

CCL5(10,∞) = 2|FCL5
10 (0)|/14175 =

9−4
√

3
685843200

≈ 3.0208 ·10−9.
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5.4 General Euler-Boole’s and dual Euler-Boole’s for-
mulae

The aim of this section is to derive general Euler-Boole’s and dual Euler-Boole’s for-
mulae. The idea is to obtain Boole type quadrature formulae such that G2n−2(1/4,0) =
G2n(1/4,0) = 0, where Gk are as in (5.4), thus achieving an arbitrary degree of exactness.
Dual Euler-Boole’s formulae are derived by analogy with Simpson’s and dual Simpson’s
formula, and Simpson’s 3/8 and its dual formula - Maclaurin’s formula. Results from this
section are published in [64].

5.4.1 General Euler-Boole’s formulae

To start with, a quadrature formula with the nodes: 0, 1/4, 1/2, 3/4, 1 and general
weights, needs to be derived. The technique is the same as in deriving (5.1), only with
x = 1/4. Then, for f : [0,1] → R such that f (2n−1) is continuous of bounded variation on
[0,1] for some n ≥ 1, we have∫ 1

0
f (t)dt −QGB +TGB

2n =
1

(2n)!

∫ 1

0
GGB

2n (t)d f (2n−1)(t); (5.63)

if f (2n) has that same property for some n ≥ 0, then:∫ 1

0
f (t)dt−QGB +TGB

2n =
1

(2n+1)!

∫ 1

0
GGB

2n+1(t)d f (2n)(t), (5.64)

and finally, if f (2n+1) has it for some n ≥ 0, then:∫ 1

0
f (t)dt −QGB +TGB

2n =
1

(2n+2)!

∫ 1

0
FGB

2n+2(t)d f (2n+1)(t), (5.65)

where, for t ∈ R,

QGB = λ1[ f (0)+ f (1)]+ λ2[ f (1/4)+ f (3/4)]+ λ3 f (1/2),

TGB
2n =

n

∑
k=1

1
(2k)!

GGB
2k (0) [ f (2k−1)(1)− f (2k−1)(0)],

GGB
k (t) = 2λ1B

∗
k(1− t)+ λ2[B∗

k(1/4− t)+B∗
k(3/4− t)]+ λ3B

∗
k(1/2− t),

FGB
k (t) = GGB

k (t)−GGB
k (0),

and 2λ1 +2λ2 + λ3 = 1.
Formulae (5.63), (5.64) and (5.65) shall be called general Euler-Boole’s formulae.

Now, for n ≥ 2, set the following linear system:

GGB
2n−2(0) = GGB

2n (0) = 0.
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These conditions will provide that the formula thus obtained has the maximum degree of
exactness and includes the values of up to (2n−5)-th derivative at the endpoints (which is
why n ≥ 2). Using properties of Bernoulli polynomials and numbers, it is not difficult to
find the solutions of this system:

λ1 =
16−10 ·4n+42n

8(4n−1)(4n−4)
, λ2 =

42n−1

(4n−1)(4n−4)
, λ3 =

(4n−10) ·4n−1

(4n−1)(4n−4)

and these are the weights we will work with.
What follows is a lemma that is a key step for all the results in this section.

Lemma 5.4 For n ≥ 2, GGB
2n+1(t) has no zeros in the interval (0,1/2). The sign of the

function is determined by

(−1)nGGB
2n+1(t) > 0, 0 < t < 1/2.

Proof. Applying (1.8), we can rewrite GGB
2n+1(t) as

GGB
2n+1(t) =

−1
4(4n−1)(4n−4)

[B∗
2n+1(4t)−10B∗

2n+1(2t)+16B∗
2n+1(t)]. (5.66)

There cannot exist t ∈ (1/4,3/8) such that GGB
2n+1(t) = 0 because B∗

2n+1(t), −B∗
2n+1(2t)

and B∗
2n+1(4t) have the same sign on (1/4,3/8).

Let us assume there exists t1 ∈ (0,1/4] such that GGB
2n+1(t1) = 0. Since GGB

2n+1(0) = 0,
we conclude there must exist t2 ∈ (0,t1) such that (GGB)′2n+1(t2) = 0. So, we must have

B∗
2n(4t2)−5B∗

2n(2t2)+4B∗
2n(t2) = 0,

which is equivalent to
B∗

2n(4t2)−B∗
2n(2t2)

B∗
2n(2t2)−B∗

2n(t2)
= 4

since for z ∈ (0,1/2), B∗
2n(2z) = B∗

2n(z) iff z = 1/3 and that cannot be the case. Define
functions

f (x) = B∗
2n(2xt2), g(x) = B∗

2n(xt2), x ∈ [1,2].

Note that g′(x) 
= 0 for x ∈ [1,2], since 0 < xt2 < 1/2. From Cauchy’s mean value theorem
we know there exists x1 ∈ (1,2) such that

B∗
2n(4t2)−B∗

2n(2t2)
B∗

2n(2t2)−B∗
2n(t2)

=
f ′(x1)
g′(x1)

= 4,

and from there

B∗
2n−1(2x1t2)

B∗
2n−1(x1t2)

= 2, for some 0 < x1t2 < 1/2. (5.67)

Next, define a function
h(t) = 2B∗

2n−1(t)−B∗
2n−1(2t).
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From (5.67) it follows that h(x1t2) = 0. To obtain a contradiction, we will prove h(t) 
= 0
for t ∈ (0,1/2). First, assume t ∈ (0,1/4]. Suppose there exists t3 ∈ (0,1/4] such that
h(t3) = 0. Since h(0) = 0, we conclude there must exist t4 ∈ (0,t3) such that h′(t4) = 0. But
from there it would follow that B∗

2n−2(t4) = B∗
2n−2(2t4) which cannot be the case. When

t ∈ (1/4,1/2), B∗
2n−1(t) and −B∗

2n−1(2t) have the same sign, so our statement follows
easily.

Finally, consider the case t ∈ [3/8,1/2). We have

B∗
2n+1(4t)−10B∗

2n+1(2t)+16B∗
2n+1(t) = k(t)−8B∗

2n+1(2t)+16B∗
2n+1(t),

where

k(t) = B∗
2n+1(4t)−2B∗

2n+1(2t) = 2B∗
2n+1(1−2t)−B∗

2n+1[2(1−2t)].

It follows from the previous proof for the function h(t), that k(t) has no zeros on [3/8,1/2).
Furthermore, k(t), −B∗

2n+1(2t) and B∗
2n+1(t) have the same sign on this interval. So, in

conclusion, the function GGB
2n+1(t) has no zeros on (0,1/2).

It is clear now that GGB
2n+1(t) has constant sign on (0,1/2). To determine the sign, it is

enough to calculate the value of that function in any point from the interval (0,1/2), e.g.
t = 1/4. �

The proof of the previous Lemma, compared to the proof of Lemma 2 in [99], is much
more difficult, since we cannot reduce it to the case where we can explicitly calculate zeros
of the function.

Remark 5.3 It follows immediately from the previous Lemma that for n ≥ 2,
(−1)n+1FGB

2n+2(t) is strictly increasing on (0,1/2) and strictly decreasing on (1/2,1) and
since FGB

2n+2(0) = FGB
2n+2(1) = 0, we have:

max
t∈[0,1]

∣∣FGB
2n+2(t)

∣∣= ∣∣FGB
2n+2 (1/2)

∣∣= 2(4−4−n)
(4n−1)(4n−4)

|B2n+2|.

Furthermore, ∫ 1

0

∣∣GGB
2n+1(t)

∣∣dt =
∫ 1

0

∣∣FGB
2n+1(t)

∣∣dt =
1

n+1

∣∣∣∣FGB
2n+2

(
1
2

)∣∣∣∣
=

2(4−4−n)|B2n+2|
(n+1)(4n−1)(4n−4)

,∫ 1

0

∣∣FGB
2n+2(t)

∣∣dt = |GGB
2n+2(0)| = 45 · |B2n+2|

16(4n−1)(4n−4)
.

Theorem 5.9 Let p,q∈ R be such that 1≤ p, q≤ ∞ and 1/p+1/q= 1. If f : [0,1]→ R

is such that f (2n) ∈ Lp[0,1] for some n ≥ 2, then:∣∣∣∣∫ 1

0
f (t)dt −QGB +TGB

2n

∣∣∣∣≤ KGB(2n,q) · ‖ f (2n)‖p, (5.68)
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if f (2n+1) ∈ Lp[0,1] for some n ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt −QGB +TGB

2n

∣∣∣∣≤ KGB(2n+1,q) · ‖ f (2n+1)‖p, (5.69)

if f (2n+2) ∈ Lp[0,1] for some n ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt −QGB +TGB

2n

∣∣∣∣≤ K∗
GB(2n+2,q) · ‖ f (2n+2)‖p, (5.70)

where

KGB(m,q) =
1
m!

[∫ 1

0

∣∣GGB
m (t)

∣∣q dt

] 1
q

and K∗
GB(m,q) =

1
m!

[∫ 1

0

∣∣FGB
m (t)

∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p ≤ ∞ and best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. �

Using Remark 5.3 it is easy to calculate KGB(2n + 1,1), K∗
GB(2n + 2,1), and

K∗
GB(2n + 2,∞). Further, using Lemma 1 from [30] for p = 2 we obtain using integra-

tion by parts:

KGB(2n,2) =
1

(4n−1)(4n−4)

[ |B4n|
(4n)!

(23−4n−25 ·21−2n +42)
]1/2

,

KGB(2n+1,2) =
1

4(4n−1)(4n−4)

[
B4n+2

(4n+2)!
(
23−4n−85 ·21−2n+357

)]1/2

,

K∗
GB(2n+2,2) =

1
16(2n+2)!(4n−1)(4n−4)

[
2025B2

2n+2

+
[(2n+2)!]2

(4n+4)!
(
23−4n−325 ·21−2n+4497

)|B4n+4|
]1/2

.

Theorem 5.10 Let f : [0,1] → R be such that f (2n+2) is continuous on [0,1] for some
n ≥ 2, then there exists ξ ∈ [0,1] such that

RGB
2n+2( f ) = − 45 ·B2n+2

16(2n+2)!(4n−1)(4n−4)
· f (2n+2)(ξ ), (5.71)

where RGB
2n+2( f ) is the remainder in (5.65).

If, in addition, f (2n+2) does not change sign on [0,1], then there exists θ ∈ [0,1] such
that

RGB
2n+2( f ) = − θ ·2(4−4−n) ·B2n+2

(2n+2)!(4n−1)(4n−4)

[
f (2n+1)(1)− f (2n+1)(0)

]
. (5.72)

Proof. Analogous to the proof of Theorem 3.2. �

Remark 5.4 Applying (5.71) for n = 2, from (5.65) classical Boole’s formula is pro-
duced, while for n = 3 corrected Boole’s formula (5.50) is obtained.



244 5 GENERAL 5-POINT QUADRATURE FORMULAE

5.4.2 General dual Euler-Boole’s formulae

Boole’s formula is a quadrature formula of closed type, and so are the general Euler-
Boole’s formulae. When the value of the function at the end point of the interval cannot be
computed, formulae of closed type cannot be applied. For such functions, open formulae
are much more effective. That is why quadrature formulae are usually considered in pairs:
a closed and a corresponding open one, both with the same degree of exactness. For ex-
ample, the well-known Simpson’s rule (cf. subsection 3.1.2.) is sometimes studied in pair
with the dual Simpson’s formula (cf. subsection 3.1.3.). Another such pair of formulae
is Simpson’s 3/8 formula (cf. subsection 4.1.1.) and Maclaurin’s formula (cf. subsection
3.1.4.).

Similar reasoning can be applied for corrected quadrature formulae: corrected Simp-
son’s (3.115) and corrected dual Simpson’s (3.117) can be considered dual quadrature
formulae, as well as corrected Simpson’s 3/8 (4.99) and corrected Maclaurin’s (3.120).

So, now the idea is to derive a formula of open type that will be dual to Boole’s formula
in this sense, or, more generally, open formulae dual to general Euler-Boole’s formulae.
We shall call those formulae general dual Euler-Boole’s formulae.

It can easily be checked that in all of these cases we have

GD
k (t) = 21−kGk(2t)−Gk(t), (5.73)

where Gk is obtained in case when a closed quadrature formula is considered and GD
k in

case of the corresponding dual quadrature formula. We will use this identity as a definition
of a dual formula, since from the function Gk we can deduce the quadrature formula itself.
Especially, using (1.8) and (5.73) gives

GGDB
k (t) =

1
4(4n−1)(4n−4)

[
42nB∗

k (1/8− t)−10 ·4nB∗
k (1/4− t)

+ 42nB∗
k (3/8− t)+16B∗

k (1/2− t)+42nB∗
k (5/8− t)

− 10 ·4nB∗
k (3/4− t)+42nB∗

k (7/8− t)
]
, (5.74)

for k ≥ 1 and t ∈ R.
The procedure is from now on similar as before: take f : [0,1] → R such that f (2n)

is continuous of bounded variation on [0,1] for some n ≥ 2; put x = 1/8, 1/4, 3/8, 1/2,
5/8, 3/4, 7/8 in (1.1), multiply by 42n, −10 ·4n, 42n, 16, 42n, −10 ·4n, 42n, respectively;
add those formulae up and divide by 4(4n−1)(4n−4). We obtain:∫ 1

0
f (t)dt −QGDB +TGDB

2n =
1

(2n+1)!

∫ 1

0
GGDB

2n+1(t)d f (2n)(t), (5.75)

where

QGDB =
1

4(4n−1)(4n−4)
[
42n f (1/8)−10 ·4n f (1/4)+42n f (3/8)

+ 16 f (1/2)+42n f (5/8)−10 ·4n f (3/4)+42n f (7/8)
]

TGDB
2n =

n

∑
k=1

1
(2k)!

GGDB
2k (0) [ f (2k−1)(1)− f (2k−1)(0)].
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Assuming f (2n−1) is continuous of bounded variation on [0,1] for some n ≥ 2, we get:∫ 1

0
f (t)dt −QGDB +TGDB

2n =
1

(2n)!

∫ 1

0
GGDB

2n (t)d f (2n−1)(t), (5.76)

and if f (2n+1) satisfies the same property, we get:∫ 1

0
f (t)dt−QGDB +TGDB

2n =
1

(2n+2)!

∫ 1

0
FGDB

2n+2(t)d f (2n+1)(t), (5.77)

where FGDB
k (t) = GGDB

k (t)−GGDB
k (0), k ≥ 2. Formulae (5.75)-(5.77) are general dual

Euler-Boole’s formulae.

Lemma 5.5 For n ≥ 2, GGDB
2n+1(t) has no zeros in (0,1/2). The sign of the function is

determined by
(−1)n−1GGDB

2n+1(t) > 0, 0 < t < 1/2.

Proof. We have GGB
2n+1(1− t) = −GGB

2n+1(t), so from Lemma 5.4 it follows that GGB
2n+1(2t)

and −GGB
2n+1(t) have the same sign on (1/4,1/2) so from (5.73) we conclude GGDB

2n+1(t)
cannot have any zeros here.

Next, we can rewrite GGDB
2n+1(t) as

GGDB
2n+1(t) =

−1
4(4n−1)(4n−4)

[
B∗

2n+1 (4t−1/2)

− 10B∗
2n+1 (2t−1/2)+16B∗

2n+1 (t−1/2)
]
. (5.78)

Using this in the case when t ∈ (0,1/4], the proof is completely analogous to the same part
of the proof of Lemma 5.4. As for the sign of the function, again it is enough to calculate
the value of the function in any point of the interval (0,1/2), e.g. t = 1/4. �

Notice the analogy of the form of the dual function GGDB
2n+1 in (5.78) with the form of the

function GGB
2n+1 in (5.66). One can easily deduce one from the other having this connection

in mind. Therefore, (5.78) can also be used as a definition of the dual function GGDB
2n+1.

Theorem 5.11 Let p,q ∈ R be such that 1 ≤ p, q ≤ ∞, 1/p+1/q = 1. If f : [0,1] → R

is such that f (2n) ∈ Lp[0,1] for some n ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt −QGDB +TGDB

2n

∣∣∣∣≤ KGDB(2n,q) · ‖ f (2n)‖p, (5.79)

if f (2n+1) ∈ Lp[0,1] for some n ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt−QGDB +TGDB

2n

∣∣∣∣≤ KGDB(2n+1,q) · ‖ f (2n+1)‖p, (5.80)

and finally, if f (2n+2) ∈ Lp[0,1] for some n ≥ 2, then∣∣∣∣∫ 1

0
f (t)dt−QGDB +TGDB

2n

∣∣∣∣≤ K∗
GDB(2n+2,q) · ‖ f (2n+2)‖p, (5.81)
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where

KGDB(m,q) =
1
m!

[∫ 1

0

∣∣GGDB
m (t)

∣∣q dt

] 1
q

K∗
GDB(m,q) =

1
m!

[∫ 1

0

∣∣FGDB
m (t)

∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p ≤ ∞ and best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. �

One can easily find that:

K∗
GDB(2n+2,1) =

45(1−2−2n−1)
16(2n+2)!(4n−1)(4n−4)

|B2n+2|,

K∗
GDB(2n+2,∞) =

1
2

KGDB(2n+1,1) =
2(4−4−n)|B2n+2|

(2n+2)!(4n−1)(4n−4)
,

KGDB(2n,2)

=
1

(4n−1)(4n−4)

[ |B4n|
(4n)!

(24−8n−25 ·22−6n−23−4n +25 ·21−2n+42)
]1/2

,

KGDB(2n+1,2)

=
1

4(4n−1)(4n−4)

[
B4n+2

(4n+2)!

(
22−8n−85 ·2−6n−23−4n +85 ·21−2n+357

)]1/2

,

K∗
GDB(2n+2,2) =

1
16(2n+2)!(4n−1)(4n−4)

[
2025(1−2−2n−1)2B2

2n+2

+
[(2n+2)!]2

(4n+4)!

(
2−8n−325 ·2−2−6n−23−4n +325 ·21−2n+4497

)
|B4n+4|

]1/2

.

Theorem 5.12 Let f : [0,1] → R be such that f (2n+2) is continuous on [0,1] for some
n ≥ 2. Then there exists ξ ∈ [0,1] such that

RGDB
2n+2( f ) =

45(1−2−2n−1) ·B2n+2

16(2n+2)!(4n−1)(4n−4)
· f (2n+2)(ξ ), (5.82)

where RGDB
2n+2( f ) is the remainder in (5.77).

If, in addition, f (2n+2) does not change sign on [0,1] for some n ≥ 2, then there exists
θ ∈ [0,1] such that

RGDB
2n+2( f ) = θ

2(4−4−n) ·B2n+2

(2n+2)!(4n−1)(4n−4)

[
f (2n+1)(1)− f (2n+1)(0)

]
. (5.83)

Proof. Analogous to the proof of Theorem 3.2. �
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From (5.82) for n = 2 dual Boole’s formula is obtained:∫ 1

0
f (t)dt − 1

45

[
16

(
f

(
1
8

)
+ f

(
3
8

)
+ f

(
5
8

)
+ f

(
7
8

))
(5.84)

−10

(
f

(
1
4

)
+ f

(
3
4

))
+ f

(
1
2

)]
=

31
61931520

f (6)(ξ ), 0 < ξ < 1

and for n = 3, corrected dual Boole’s formula:∫ 1

0
f (t)dt− 1

945

[
256

(
f

(
1
8

)
+ f

(
3
8

)
+ f

(
5
8

)
+ f

(
7
8

))
(5.85)

−40

(
f

(
1
4

)
+ f

(
3
4

))
+ f

(
1
2

)]
− 1

504
[ f ′(1)− f ′(0)]

= − 127
208089907200

f (8)(ξ ), 0 < ξ < 1

Note that

31
61931520

≈ 5.00553 ·10−7 and
127

208089907200
≈ 6.10313 ·10−10.

5.4.3 General Bullen-Boole’s inequality

Several prior subsections were devoted to the generalizations and variants of the Bullen’s
inequality. In this subsection we derive an inequality of similar type, only this time starting
from general Boole’s formula and its dual formula. We call it general Bullen-Boole’s
inequality.

First, add (5.65) and (5.77) then divide by 2. We get:∫ 1

0
f (t)dt − D̂(0,1)+ T̂2n( f ) = R̂2n+2( f ), (5.86)

where

D̂(0,1) =
1

8(4n−1)(4n−4)

[
(24n−1−5 ·4n +8) f (0)+42n f

(
1
8

)
+ 4n(4n−10) f

(
1
4

)
+42n f

(
3
8

)
+(42n−10 ·4n +16) f

(
1
2

)
+ 42n f

(
5
8

)
+4n(4n−10) f

(
3
4

)
+42n f

(
7
8

)
+(24n−1−5 ·4n +8) f (1)

]
T̂m( f ) =

m

∑
k=1

B̂k

k!
[ f (k−1)(1)− f (k−1)(0)], 1 ≤ m ≤ 2n

Ĝk(t) =
1

8(4n−1)(4n−4)
[
(42n−10 ·4n +16)B∗

k(1− t)+42nB∗
k (1/8− t)

+ 4n(4n−10)B∗
k (1/4− t)+42nB∗

k (3/8− t)
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+ (42n−10 ·4n +16)B∗
k (1/2− t)

+ 42nB∗
k (5/8− t)+4n(4n−10)B∗

k (3/4− t)+42nB∗
k (7/8− t)

]
B̂1 = 0, B̂k = Ĝk(0), k ≥ 2

F̂k(t) = Ĝk(t)− B̂k, k ≥ 1

R̂2n+2( f ) =
1

(2n+2)!

∫ 1

0
F̂2n+2(t)d f (2n+1)(t)

The function Ĝk has the property Ĝk(t + 1/2) = Ĝk(t) so it is enough to study it on the
interval (0,1/4).

Lemma 5.6 For n ≥ 2, Ĝ2n+1(t) has no zeros in the interval (0,1/4). The sign of the
function is determined by

(−1)nĜ2n+1(t) > 0, 0 < t < 1/4.

Proof. As (5.73) implies that Ĝ2n+1(t) = 2−2n−1G2n+1(2t), the statement follows im-
mediately from Lemma 5.4. �

Theorem 5.13 If f : [0,1]→R is such that f (2n+2) is continuous on [0,1] for some n≥ 2,
then there exists a point η ∈ [0,1] such that

R̂2n+2( f ) = − 45 ·4−n−3 ·B2n+2

(2n+2)!(4n−1)(4n−4)
· f (2n+2)(η). (5.87)

Proof. Analogous to the proof of Theorem 3.2. �

Theorem 5.14 Let f : [0,1] → R be such that f (2n+2) is continuous on [0,1] for some
n ≥ 2. If f is a (2n+2)−convex function, then for an even n we have

0 ≤
∫ 1

0
f (t)dt − D̃(0,1)+TD

2n( f ) ≤ D(0,1)−T2n( f )−
∫ 1

0
f (t)dt. (5.88)

For an odd n inequalities are reversed.

Proof. Denote the middle part of (5.88) by LHS and the right-hand side by RHS. Then

LHS = RD
2n+2( f ) and RHS−LHS = −2R̂2n+2( f ).

Now, applying (5.82) and (5.87), we conclude

LHS ≥ 0, RHS−LHS ≥ 0, for even n

LHS ≤ 0, RHS−LHS ≤ 0, for odd n

and thus the proof is complete. �
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Remark 5.5 For n = 2, (5.88) becomes

0 ≤
∫ 1

0
f (t)dt− 1

45
[16( f (1/8)+ f (3/8)+ f (5/8)+ f (7/8))

− 10( f (1/4)+ f (3/4))+ f (1/2)]

≤ 1
90

[7 f (0)+32 f (1/4)+12 f (1/2)+32 f (3/4)+7 f (1)]−
∫ 1

0
f (t)dt

which implies dual Boole’s formula is more accurate than classical Boole’s formula. For
n = 3, (5.88) becomes

0 ≤ 1
945

[256( f (1/8)+ f (3/8)+ f (5/8)+ f (7/8))−40( f (1/4)+ f (3/4))

+ f (1/2)]+
1

504
[ f ′(1)− f ′(0)]−

∫ 1

0
f (t)dt

≤
∫ 1

0
f (t)dt − 1

1890
[217 f (0)+512 f (1/4)+432 f (1/2)+512 f (3/4)+217 f (1)]

+
1

252
[ f ′(1)− f ′(0)].

Therefore, dual corrected Boole’s formula is more accurate than corrected Boole’s formula.

For this new quadrature formula (5.86), similar results as those obtained for general
Euler-Boole’s and general dual Euler-Boole’s formulae can be derived analogously.





Chapter6
Radau-type quadrature
formulae

In the previous chapters, Gauss, Lobatto and Newton-Cotes quadrature formulae were ob-
tained, using the extended Euler formulae. It is natural to wonder if Radau quadrature
formulae can be obtained using the same technique. The results from this chapter were
published in [48].

Radau-type quadrature formulae involve one end of the interval as a node (cf. [22]):∫ 1

−1
f (t)dt ≈ (2−w(x)) f (−1)+w(x) f (x)

and ∫ 1

−1
f (t)dt ≈ w(x) f (x)+ (2−w(x)) f (1).

Thus, let x ∈ (−1,1] and f : [−1,1] → R be such that f (n−1) is continuous of bounded
variation on [−1,1] for some n ≥ 1. Put x ≡ −1, x in (1.2), multiply by 2−w(x), w(x)
respectively and add up. The following formula is produced:∫ 1

−1
f (t)dt −Q(−1,x)+Tn−1(x) =

2n−1

n!

∫ 1

−1
Fn(x,t)d f (n−1)(t), (6.1)

where

Q(−1,x) = (2−w(x)) f (−1)+w(x) f (x) (6.2)

Tn−1(x) =
n−1

∑
k=1

2k−1

k!
Gk(x,1) [ f (k−1)(1)− f (k−1)(−1)], T0(x) = 0 (6.3)

251
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Gn(x,t) = [2−w(x)]B∗
n

(
1− t

2

)
+w(x)B∗

n

(
x− t

2

)
, (6.4)

Fn(x,t) = Gn(x,t)−Gn(x,1). (6.5)

Note that
∂ kGn(x,t)

∂ tk
=

n!
(−2)k(n− k)!

Gn−k(x,t).

The following theorem gives the best possible estimate of error for this type of quadra-
ture formulae.

Theorem 6.1 Let p,q ∈ R be such that 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. If
f : [−1,1]→ R is such that f (n) ∈ Lp[−1,1] for some n ≥ 1, then

∣∣∣∣∫ 1

−1
f (t)dt −Q(−1,x)+Tn−1(x)

∣∣∣∣≤ 2n−1

n!

[∫ 1

−1
|Fn(x,t)|q dt

] 1
q

‖ f (n)‖p . (6.6)

The inequality is sharp for 1 < p ≤ ∞ and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. �

6.1 The first family of Radau-type quadratures

As the coefficient w(x) is arbitrary, it can be chosen so that:

G1(x,1) = 0 ⇔ w(x) =
2

x+1
. (6.7)

This coefficient removes the values of the function at the end points of the interval out of
Tn−1(x) and thus provides the highest possible degree of exactness (namely, such a quadra-
ture rule is exact for all first degree polynomials), without the values of the derivatives
being included in the quadrature. To emphasize the coefficient we are working with, we
denote notions (6.2)-(6.5) by QR1(−1,x), TR1

n−1(x), GR1
n (x,t) and FR1

n (x, t).

Lemma 6.1 For x∈ (−1,0]∪{1}, FR1
2 (x,t) has no zeros in the variable t on (−1,1). The

sign of the function is determined by:

FR1
2 (x,t) > 0 for x ∈ (−1,0] and FR1

2 (1, t) < 0.

Proof. We have:

FR1
2 (x, t) =

2x
x+1

[
B2

(
1− t

2

)
− 1

6

]
+

2
x+1

[
B∗

2

(
x− t

2

)
−B2

(
x+1

2

)]
.
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It is obvious that FR1
2 (x,−1) = FR1

2 (x,1) = 0. Assume: −1 < t ≤ x ≤ 1. Then:

FR1
2 (x,t) =

1+ t
2(1+ x)

(t(1+ x)−3x+1)= 0 ⇔ t∗ =
3x−1
x+1

.

It is elementary to see that t∗ ≤ x, but t∗ > −1 iff x > 0. Also, x = 1 ⇒ t∗ = 1. If
−1 < x ≤ t < 1, FR1

2 (x,t) = 1
2 (1− t)2 > 0 , so the assertion is proved. �

Theorem 6.2 Let f : [−1,1] → R be such that f ′′ is continuous on [−1,1] and let
x ∈ (−1,0]∪{1}. Then there exists ξ ∈ [−1,1] such that∫ 1

−1
f (t)dt − 2x

x+1
f (−1)− 2

x+1
f (x) =

1
3
(1−3x) f ′′(ξ ) (6.8)

and ∫ 1

−1
f (t)dt− 2

x+1
f (−x)− 2x

x+1
f (1) =

1
3
(1−3x) f ′′(−ξ ). (6.9)

Proof. (6.8) follows after applying the Mean Value Theorem for integrals and Lemma 6.1
to the remainder in (6.1) for n = 2 and coefficients from (6.7). Note that

∫ 1
−1 FR1

n (x,t)dt =
−2GR1

n (x,1). (6.9) follows analogously for f (−x). �

Remark 6.1 When considering the limit process x→−1, we obtain the following quadra-
ture rules: ∫ 1

−1
f (t)dt −2 f (−1)−2 f ′(−1) =

4
3

f ′′(ξ )

and ∫ 1

−1
f (t)dt −2 f (1)+2 f ′(1) =

4
3

f ′′(−ξ ).

Theorem 6.3 If f : [−1,1]→ R is such that f ′ ∈ L∞[−1,1], then for x ∈ (−1,0]∣∣∣∣∫ 1

−1
f (t)dt − 2x

x+1
f (−1)− 2

x+1
f (x)

∣∣∣∣≤ (1− x)2‖ f ′‖∞ (6.10)

while for x ∈ [0,1]∣∣∣∣∫ 1

−1
f (t)dt − 2x

x+1
f (−1)− 2

x+1
f (x)

∣∣∣∣≤ (1+ x2

1+ x

)2

‖ f ′‖∞ (6.11)

The node which provides the smallest error here is x =
√

2−1 ≈ 0.4142 and we have∣∣∣∣∫ 1

−1
f (t)dt − (2−

√
2) f (−1)−

√
2 f (

√
2−1)

∣∣∣∣≤ (12−8
√

2) ‖ f ′‖∞

(12−8
√

2 ≈ 0.6863).
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Furthermore, if f : [−1,1] → R is such that f ′′ ∈ L∞[−1,1], then for x ∈ (−1,0]∪{1}
we have ∣∣∣∣∫ 1

−1
f (t)dt − 2x

x+1
f (−1)− 2

x+1
f (x)

∣∣∣∣≤ 1
3
|1−3x| · ‖ f ′′‖∞ (6.12)

while for x ∈ (0,1)∣∣∣∣∫ 1

−1
f (t)dt− 2x

x+1
f (−1)− 2

x+1
f (x)

∣∣∣∣≤ 1−6x2 +24x3−3x4

3(1+ x)3 ‖ f ′′‖∞ (6.13)

The node which provides the smallest error in this case is x∗ := 2
√

2− 1− 2
√

2−√
2 ≈

0.2977 and we have:∣∣∣∣∫ 1

−1
f (t)dt −0.4588 · f (−1)−1.5412 · f (x∗)

∣∣∣∣≤ 0.1644 · ‖ f ′′‖∞

Proof. (6.10) and (6.11) follow after taking p = ∞ and n = 1 in (6.6) with coefficients from
(6.7). (6.12) and (6.13) follow similarly, for n = 2.

In order to find the nodes which provide the smallest error, the functions on the right-
hand sides of all four inequalities have to be minimized. Routine calculation confirms the
claims. When trying to minimize the function on the right-hand side of (6.13), note that
x4 +4x3−26x2 +4x+1 = (x+1)4−32x2, so the zeros can be found analytically. �

Theorem 6.4 Let f : [−1,1]→ R be 2-convex and such that f ′′ is continuous on [−1,1],
and let x ∈ (−1,0]. Then

x
x+1

f (−1)+
1

x+1
f (x) ≤ 1

2

∫ 1

−1
f (t)dt ≤ f (−1)+ f (1)

2
. (6.14)

If f is 2-concave, the inequalities are reversed.

Proof. For a 2-convex function f , we have f ′′ ≥ 0, so the statement follows easily from
(6.8). �

As a special case, we now obtain the classical Hermite-Hadamard inequality.

Corollary 6.1 If f : [−1,1] → R is 2-convex and such that f ′′ is continuous on [−1,1],
then

f (0) ≤ 1
2

∫ 1

−1
f (t)dt ≤ f (−1)+ f (1)

2
.

If f is 2-concave, the inequalities are reversed.

Proof. Take x = 0 in (6.14). �

Remark 6.2 All the results obtained here easily follow for the quadrature rule with the
right-end of the interval as the preassigned node, therefore we will not state them explicitly.
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6.2 The second family of Radau-type quadratures

Suppose we want to obtain a quadrature rule exact for all polynomials of order ≤ 2, in-
stead of ≤ 1, as were (6.8) and (6.9). Observe (6.1) again. We considered the case
when G1(x,1) = 0. Now, impose another condition and choose the coefficient so that
G2(x,1) = 0.

G2(x,1) = 0 ⇔ w(x) =
4

3(1− x2)
(6.15)

This will produce a quadrature rule with the desired degree of exactness, however, as a
downside, the value of the function at the right end of the interval will now also be included
in the quadrature. To emphasize the coefficient we are working with, we denote notions
(6.2)-(6.5) by QR2(−1,x), TR2

n−1(x), GR2
n (x,t) and FR2

n (x, t) for this specific coefficient.

Lemma 6.2 For x ∈ (−1,−1/3]∪ [1/3,1), FR2
3 (x,t) has no zeros in t on (−1,1). The

sign of this function is determined by:

FR2
3 (x,t) > 0 for x ∈ [1/3,1)

FR2
3 (x,t) < 0 for x ∈ (−1,−1/3].

Proof. For −1 < t ≤ x < 1, we have

FR2
3 (x,t) = (1+ t)2

(
2x

1+ x
− t

)
= 0 ⇔ t∗ =

2x
1+ x

,

and −1 < t∗ ≤ x iff −1/3 < x ≤ 0. If −1 < x ≤ t < 1,

FR2
3 (x,t) =

(1− t)2

4

(
2x

1− x
− t

)
= 0 ⇔ t∗∗ =

2x
1− x

.

Now, x ≤ t∗∗ < 1 iff 0 ≤ x < 1/3. Therefore, the claim follows. �

Theorem 6.5 Let f : [−1,1] → R be such that f ′′′ is continuous on [−1,1] and let
x ∈ (−1,−1/3]∪ [1/3,1). Then there exists ξ ∈ [−1,1] such that∫ 1

−1
f (t)dt − 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1) =

2x
9

f ′′′(ξ ). (6.16)

Proof. Analogous to the proof of Theorem 6.2. �

Remark 6.3 For x = 1/3 and x = −1/3, from (6.16) we get the Radau 2-point formulae:∫ 1

−1
f (t)dt− 1

2
f (−1)− 3

2
f

(
1
3

)
=

2
27

f ′′′(ξ )

and ∫ 1

−1
f (t)dt − 3

2
f

(
−1

3

)
− 1

2
f (1) = − 2

27
f ′′′(ξ )
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Remark 6.4 When considering the limit processes x → 1 and x → −1, the following
quadrature rules are produced:∫ 1

−1
f (t)dt − 2

3
f (−1)− 4

3
f (1)+

2
3

f ′(1) =
2
9

f ′′′(ξ )

and ∫ 1

−1
f (t)dt − 4

3
f (−1)− 2

3
f (1)− 2

3
f ′(−1) = −2

9
f ′′′(ξ ).

Next, we consider the error estimates for this type of quadrature rules.

Theorem 6.6 If f : [−1,1] → R is such that f ′′ ∈ L∞[−1,1], then for x ∈ (−1,−1/3]
∪ [1/3,1) ∣∣∣∣∫ 1

−1
f (t)dt − 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1)

∣∣∣∣
≤ 4

81

(
1+3|x|
1+ |x|

)3

‖ f ′′‖∞ (6.17)

while for x ∈ (−1/3,1/3)∣∣∣∣∫ 1

−1
f (t)dt − 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1)

∣∣∣∣
≤ 8(1−3x2)(1+3x2)2

81(1− x2)3 ‖ f ′′‖∞ (6.18)

Further, if f : [−1,1] → R is such that f ′′′ ∈ L∞[−1,1], then for x ∈ (−1,−1/3]
∪ [1/3,1),∣∣∣∣∫ 1

−1
f (t)dt − 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1)

∣∣∣∣≤ 2|x|
9

‖ f ′′′‖∞ (6.19)

while for x ∈ (−1/3,1/3)∣∣∣∣∫ 1

−1
f (t)dt − 1+3x

3(1+ x)
f (−1)− 4

3(1− x2)
f (x)− 1−3x

3(1− x)
f (1)

∣∣∣∣
≤ 8|x|5 +49x4−60|x|3 +22x2−4|x|+1

36(1−|x|)4 ‖ f ′′′‖∞ (6.20)

In both cases, the node which provides the smallest error is x = 0. The quadrature rule
thus obtained is the classical Simpson’s rule. More precisely, we have:∣∣∣∣∫ 1

−1
f (t)dt− 1

3
f (−1)− 4

3
f (0)− 1

3
f (1)

∣∣∣∣≤ 8
81

‖ f ′′‖∞

and ∣∣∣∣∫ 1

−1
f (t)dt − 1

3
f (−1)− 4

3
f (0)− 1

3
f (1)

∣∣∣∣≤ 1
36

‖ f ′′′‖∞



6.2 THE SECOND FAMILY OF RADAU-TYPE QUADRATURES 257

Proof. (6.17) and (6.18) follow after taking p = ∞ and n = 2 in (6.6) with coefficients from
(6.15). (6.19) and (6.20) follow similarly, for n = 3.

As for finding the node which provides the smallest error, the functions on the right-
hand sides of all four inequalities have to be minimized. The claim follows after somewhat
lengthy but routine calculation. �

Corollary 6.2 Let f : [−1,1] → R be such that f (n) ∈ L∞[−1,1] for n = 1,2 or 3. Then
we have: ∣∣∣∣∫ 1

−1
f (t)dt − 1

2
f (−1)− 3

2
f

(
1
3

)∣∣∣∣≤C∞
n ‖ f (n)‖∞, n = 1,2,3 (6.21)

where

C∞
1 =

25
36

, C∞
2 =

1
6
, C∞

3 =
2
27

.

Proof. For n = 2 and n = 3 the assertions follow directly after taking x = 1/3 in (6.17) and
(6.19). As for n = 1, take n = 1 and p = ∞ in (6.6). �

Corollary 6.3 Let f : [−1,1] → R be such that f (n) ∈ L1[−1,1] for n = 1,2 or 3. Then
we have: ∣∣∣∣∫ 1

−1
f (t)dt − 1

2
f (−1)− 3

2
f

(
1
3

)∣∣∣∣≤C1
n ‖ f (n)‖1, n = 1,2,3 (6.22)

where

C1
1 =

5
6
, C1

2 =
2
9
, C1

3 =
1
12

.

Proof. Take p = 1 and n = 1,2,3, respectively, in (6.6) and then find sup
t∈[−1,1]

|Fn(1/3,t)|. �

Theorem 6.7 Let f : [−1,1]→ R be 3-convex and such that f ′′′ is continuous on [−1,1],
and let x ∈ (−1,1/3] and y ∈ [1/3,1). Then

1+3y
3(1+ y)

f (−1)+
4

3(1− y2)
f (y)+

1−3y
3(1− y)

f (1)

≤
∫ 1

−1
f (t)dt (6.23)

≤ 1+3x
3(1+ x)

f (−1)+
4

3(1− x2)
f (x)+

1−3x
3(1− x)

f (1)

If f is 3-concave, the inequalities are reversed.

Proof. Analogous to the proof of Theorem 6.4. �
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Corollary 6.4 If f : [−1,1] → R is 3-convex and such that f ′′′ is continuous on [−1,1],
then

1
2

f (−1)+
3
2

f

(
1
3

)
≤
∫ 1

−1
f (t)dt ≤ 3

2
f

(
−1

3

)
+

1
2

f (1) (6.24)

If f is 3-concave, the inequalities are reversed.

Proof. Take x = −1/3 and y = 1/3 in (6.23). �

Remark 6.5 Using another, more general approach, the inequality (6.24) was also ob-
tained in [10], i.e. [9].

6.3 Radau 3-point formulae

Let x,y ∈ (−1,1], x < y, and let f : [−1,1] → R be such that f (n−1) is continuous and
of bounded variation on [−1,1] for some n ≥ 1. Put x ≡ −1, x, y in (1.2), multiply by
2−w1(x,y)−w2(x,y), w1(x,y), w2(x,y) respectively and add up. The following formula
is produced:∫ 1

−1
f (t)dt −Q(−1,x,y)+Tn−1(x,y) =

2n−1

n!

∫ 1

−1
Fn(x,y,t)d f (n−1)(t), (6.25)

where

Q(−1,x,y) = [2−w1(x,y)−w2(x,y)] f (−1)+w1(x,y) f (x)+w2(x,y) f (y) (6.26)

Tn−1(x,y) =
n−1

∑
k=1

2k−1

k!
Gk(x,y,1) [ f (k−1)(1)− f (k−1)(−1)], T0(x) = 0 (6.27)

Gn(x,y, t) = [2−w1(x,y)−w2(x,y)]B∗
n

(
1− t

2

)
+w1(x,y)B∗

n

(
x− t

2

)
(6.28)

+w2(x,y)B∗
n

(
y− t

2

)
(6.29)

Fn(x,y, t) = Gn(x,y,t)−Gn(x,y,1). (6.30)

Now, impose conditions:

G1(x,y,1) = G2(x,y,1) = G3(x,y,1) = G4(x,y,1) = 0.

The unique solution of this system

x =
1−√

6
5

, y =
1+

√
6

5
, w1(x,y) =

16+
√

6
18

, w2(x,y) =
16−√

6
18

(6.31)

are the nodes and the coefficients of the Radau 3-point formula.
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To emphasize the nodes and the coefficients we are going to be working with in this
subsection, denote notions (6.27)- (6.30) by TR3

n−1, GR3
n (t), FR3

n (t) and

QR3 =
2
9

f (−1)+
16+

√
6

18
f

(
1−√

6
5

)
+

16−√
6

18
f

(
1+

√
6

5

)
.

Lemma 6.3 FR3
5 (t) has no zeros in (−1,1) and its sign is determined by FR3

5 (t) > 0.

Proof. For −1 ≤ t ≤ (1−√
6)/5, we have FR3

5 (t) = 1
144(1 + t)4(1− 9t) so the claim is

obvious. So it is for (1+
√

6)/5≤ t < 1, since there FR3
5 (t) = 1

16(1−t)5. For (1−√
6)/5≤

t ≤ (1+
√

6)/5, the function is a bit more complicated:

FR3
5 (t) =

1
288

k(t)

where

k(t) = −18t5+5(
√

6+2)t4 +20(3
√

6−7)t3−30(
√

6−2)t2 +10(2
√

6−5)t +10−3
√

6.

We have to prove that k(t) > 0. From

k′′′(t) = −1080t2 +120(
√

6+2)t +120(3
√

6−7)

we conclude that k′′ increases on (t1,t2) and decreases on [ 1−√
6

5 ,t1)∪ (t2, 1+
√

6
5 ], where

t1 ≈ −0.068755 and t2 ≈ 0.563143 . This, together with the fact that k′′( 1−√
6

5 ) < 0,

k′′(t1) < 0, k′′(t2) > 0, k′′( 1+
√

6
5 ) > 0, shows that k′′ has only one zero t∗∗ ∈ (t1,t2). This

means k′ is decreasing on [ 1−√
6

5 ,t∗∗) and increasing on (t∗∗, 1+
√

6
5 ]. Since k′( 1−√

6
5 ) > 0

and k′( 1+
√

6
5 ) < 0, it follows that k′ has only one zero t∗ ∈ (t1, t2). From there we con-

clude that k increases on [ 1−√
6

5 ,t∗) and decreases on (t∗, 1+
√

6
5 ]. Since k( 1−√

6
5 ) > 0 and

k( 1+
√

6
5 ) > 0, the claim follows. �

Theorem 6.8 If f : [−1,1]→R is such that f (5) is continuous on [−1,1], then there exists
ξ ∈ [−1,1] such that ∫ 1

−1
f (t)dt −QR3 =

1
1125

f (5)(ξ )

and ∫ 1

−1
f (t)dt− 16−√

6
18

f

(
−1+

√
6

5

)
− 16+

√
6

18
f

(
−1−√

6
5

)
− 2

9
f (1)

= − 1
1125

f (5)(−ξ ).

Proof. Analogous to the proof of Theorem 6.2. �
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Theorem 6.9 If f : [−1,1] → R is 5-convex and such that f (5) is continuous on [−1,1],
then

2
9

f (−1)+
16+

√
6

18
f

(
1−√

6
5

)
+

16−√
6

18
f

(
1+

√
6

5

)

≤
∫ 1

−1
f (t)dt

≤ 16−√
6

18
f

(
−1+

√
6

5

)
+

16+
√

6
18

f

(
−1−√

6
5

)
+

2
9

f (1)

Proof. Follows trivially from Theorem 6.8 �

Theorem 6.10 Let p,q ∈ R be such that 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1. If
f : [−1,1]→ R is such that f (n) ∈ Lp[−1,1] for some n ≥ 1, then∣∣∣∣∫ 1

−1
f (t)dt −QR3 +TR3

n−1

∣∣∣∣≤ 2n−1

n!

[∫ 1

−1

∣∣FR3
n (t)

∣∣q dt

] 1
q

‖ f (n)‖p . (6.32)

The inequality is sharp for 1 < p ≤ ∞ and the best possible for p = 1.

Proof. Analogous to the proof of Theorem 2.2. �

Corollary 6.5 Let f : [−1,1] → R be such that f (k) ∈ L∞[−1,1] for k = 1,2,3,4 or 5.
Then we have ∣∣∣∣∫ 1

−1
f (t)dt −QR3

∣∣∣∣≤C∞
k ‖ f (k)‖∞

where

C∞
1 ≈ 0.434014, C∞

2 ≈ 0.0566841, C∞
3 ≈ 0.0106218,

C∞
4 ≈ 0.00247235, C∞

5 =
1

1125
≈ 0.000888889.

Proof. Take p = ∞ and n = 1,2,3,4,5 in (6.32). �

Corollary 6.6 Let f : [−1,1] → R be such that f (k) ∈ L1[−1,1] for k = 1,2,3,4 or 5.
Then we have ∣∣∣∣∫ 1

−1
f (t)dt −QR3

∣∣∣∣≤C1
k ‖ f (k)‖1

where

C1
1 =

∣∣∣∣∣FR3
1

(
1−√

6
5

)∣∣∣∣∣≈ 0.537092, C1
2 =

∣∣∣∣∣FR3
2

(
1−√

6
5

)∣∣∣∣∣≈ 0.094322,

C1
3 ≈ 0.0131784, C1

4 =
∣∣∣∣FR3

4

(
−1

3

)∣∣∣∣≈ 0.00274348, C1
5 ≈ 0.00123618.

Proof. Take p = 1 and n = 1,2,3,4,5 in (6.32). �



Chapter7
A general problem of
non-vanishing of the kernel
in the quadrature formulae

7.1 Introduction

From the previous chapters it is clear that the procedure of deducing the quadrature formu-
lae can be summarized as follows. Using symmetric (with respect to 1/2) nodes 0 ≤ x1 <
x2 < · · ·xk ≤ 1/2 ≤ xk+1 < · · · < x2k ≤ 1 and affine combinations of (1.1) it follows∫ 1

0
f (t)dt =

2k

∑
i=1

λi f (xi)− T̃n +
1
n!

∫ 1

0

(
2k

∑
i=1

λiB
∗
n(xi − t)

)
d f (n−1)(t), (7.1)

where T̃n = ∑n
i=1

B̃i
i!

[
f (i−1)(1)− f (2i−1)(0)

]
, B̃i = ∑2k

j=1 λ jBi(x j), ∑2k
i=1 λi = 1 and λ j =

λ2k+1− j, j = 1, . . . ,k. Notice that chosen symmetry implies B̃2i−1 = 0, i ∈ N, consequently
(7.1) is usually written as∫ 1

0
f (t)dt =

2k

∑
i=1

λi f (xi)− T̃2n +
1

(2n)!

∫ 1

0
G2n+1(t)d f (2n)(t), (7.2)

∫ 1

0
f (t)dt =

2k

∑
i=1

λi f (xi)− T̃2n +
1

(2n+2)!

∫ 1

0
F2n+2(t)d f (2n+1)(t), (7.3)

261
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where T̃2n = ∑n
i=1

B̃2i
(2i)!

[
f (2i−1)(1)− f (2i−1)(0)

]
, G2n+1(t)= ∑2k

i λiB∗
2n+1(xi−t), F2n+2(t)=

∑2k
i=1 λi

[
B∗

2n+2(xi − t)−B∗
2n+2(xi)

]
.

To produce quadrature formulae for preassigned nodes the following conditions are
usually imposed:

B̃2n = B̃2n−2 = · · · = B̃2(n−k+2) = 0, n ≥ k−1. (7.4)

Unperturbed (uncorrected) quadrature formulae are obtained for n = k− 1, i.e. formulae
which do not involve derivatives at boundary points. Notice that (7.4) is equivalent to

G(1)
2n+1(0) = G(3)

2n+1(0) = · · · = G(2k−3)
2n+1 (0) = 0. (7.5)

The main step in obtaining the best possible error estimates is to prove that

G2n+1(t) =
2k

∑
i=1

λiB
∗
2n+1(xi− t)

has some ”nice” zeros in (0,1/2) (usually G2n+1 has no zeros at all in (0,1/2)). We for-
mulate the following problem which seems to be interesting independently of the present
context.

Problem 7.1 Find the distribution of nodes 0 ≤ x1 < x2 < · · · < xk ≤ 1/2, such that
G2n+1(t) = ∑2k

i=1 λiB∗
2n+1(xi − t) has no zeros in (0,1/2), if ∑2k

i=1 λi = 1, x2k− j+1 = 1− xk,

j = 1, ...,k, G(1)
2n+1(0) = G(3)

2n+1(0) = · · · = G(2k−3)
2n+1 (0) = 0, where n ≥ k−1.

Some partial results can be found in previous chapters, where nodes and weights are ex-
plicitly calculated or a priori given, thus allowing explicit expression of G2n+1 for some
small n. An exception is Section 5.4, where some elementary motivations for the present
chapter can be found.

To prove some special cases of Problem 7.1 (but of a general nature as stated above),
we found the ”frequency” variant of identities (1.1) and (1.2) more tractable. An easy
consequence of Multiplication Theorem for periodic Bernoulli functions B∗

n in the form

B∗
n(x−mt) = mn−1

m−1

∑
k=0

B∗
n

(
x+ k
m

− t

)
, n ≥ 0, m ≥ 1,

is the following theorem (see Section 1.2):

Theorem 7.1 Let f : [0,1] → R be such that f (n−1) is continuous of bounded variation
on [0,1] for some n ≥ 1. Then, for x ∈ [0,1] and m ∈ N, we have∫ 1

0
f (t)dt =

1
m

m−1

∑
k=0

f

(
x+ k
m

)
−Tn(x)+

1
n! ·mn

∫ 1

0
B∗

n(x−mt)d f (n−1)(t), (7.6)

where

Tn(x) =
n

∑
j=1

Bj(x)
j! ·mj

[
f ( j−1)(1)− f ( j−1)(0)

]
.
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Setting x = 0 in (7.6) and using that B1 = −1/2, B2i−1 = 0, i ≥ 2, we write (7.6), with
appropriate assumptions, in a more convenient form:

∫ 1

0
f (t)dt =

1
m

f (0)+ f (1)
2

+
1
m

m−1

∑
i=1

f

(
i
m

)
+

n

∑
i=1

B2i

(2i)!m2i

[
f (2i−1)(1)− f (2i−1)(0)

]
− 1

(2n+1)!m2n+1

∫ 1

0
B∗

2n+1(mt)d f (2n)(t). (7.7)

Affine combinations of (7.7) with frequencies m0 = 1 < m1 < · · ·ms, mi ∈ N, s ∈ N, and
weights λ0, . . . ,λs, ∑s

i=0 λi = 1 give:

∫ 1

0
f (t)dt =

f (0)+ f (1)
2

s

∑
j=0

λ j

m j
+

s

∑
j=0

λ j

m j

mj−1

∑
i=1

f

(
i

m j

)
+

n

∑
i=1

B2i

(2i)!

[
f (2i−1)(1)− f (2i−1)(0)

] s

∑
j=0

λ j

m2i
j

− 1
(2n+1)!

∫ 1

0

(
s

∑
j=0

λ j

m2n+1
j

B∗
2n+1(mjt)

)
d f (2n)(t). (7.8)

Analogously,

∫ 1

0
f (t)dt =

f (0)+ f (1)
2

s

∑
j=0

λ j

m j
+

s

∑
j=0

λ j

m j

mj−1

∑
i=1

f

(
i

m j

)
+

n

∑
i=1

B2i

(2i)!

[
f (2i−1)(1)− f (2i−1)(0)

] s

∑
j=0

λ j

m2i
j

− 1
(2n+2)!

∫ 1

0

(
s

∑
j=0

λ j

m2n+2
j

(
B∗

2n+2(mjt)−B2n+2
))

d f (2n+1)(t).

(7.9)

It is clear that identities (7.8) and (7.9) can be written in the form of identities (7.2) and
(7.3), respectively. Also, it is easy to see that there are identities of the type (7.2) and (7.3)
which cannot be of a type (7.8) and (7.9), respectively.

Again, as in (7.4) and (7.5), to produce quadrature formulae it is natural to impose the
following conditions:

s

∑
j=0

λ j

m2n
j

=
s

∑
j=0

λ j

m2(n−1)
j

= · · · =
s

∑
j=0

λ j

m2(n−s+1)
j

= 0, n ≥ s, (7.10)

or equivalently:

G(1)
2n+1(0) = G(3)

2n+1(0) = · · · = G(2s−1)
2n+1 (0) = 0, (7.11)
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where

G2n+1(t) =
s

∑
j=0

λ j

m2n+1
j

B∗
2n+1(mjt). (7.12)

Now, we can state the following special case of Problem 7.1.

Problem 7.2 Find the distribution of frequencies m0 = 1 < m1 < m2 < · · · < ms,

mi ∈N, such that G2n+1(t)= ∑s
j=0

λ j

m2n+1
j

B∗
2n+1(mjt) has no zeros in (0,1/2), if ∑s

j=0 λ j = 1,

G(1)
2n+1(0) = G(3)

2n+1(0) = · · · = G(2s−1)
2n+1 (0) = 0, where n ≥ s.

7.2 Some preliminary considerations

To obtain quadrature formulae based on identities (7.8) and (7.9), we determine weights
λ0,λ1, . . . ,λs from the linear system

Mλ = b, (7.13)

where

M =

⎛⎜⎜⎜⎜⎜⎝
1 1 · · · 1
1 1

m2n
1

· · · 1
m2n

s

...
... · · · ...

1 1

m2(n−s+1)
1

· · · 1

m2(n−s+1)
s

⎞⎟⎟⎟⎟⎟⎠ , (7.14)

λ = (λ0 λ1 · · · λs)
T and b = (1 0 · · · 0)T . It is easy to see that DetM 
= 0 (see also

[108]), so the system (7.13) has a unique solution. Cramer’s rule and (7.12) immediately
imply:

G2n+1(t) =
s

∑
j=0

λ j

m2n+1
j

B∗
2n+1(mjt)

=
1

DetM

∣∣∣∣∣∣∣∣∣∣∣∣

B∗
2n+1(t)

B∗
2n+1(m1t)
m2n+1

1
· · · B∗

2n+1(mst)
m2n+1

s

1 1
m2n

1
· · · 1

m2n
s

...
... · · · ...

1 1

m
2(n−s+1)
1

· · · 1

m
2(n−s+1)
s

∣∣∣∣∣∣∣∣∣∣∣∣
, (7.15)
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which gives

G2n+1(t) =
(−1)s

(m1 · · ·ms)2n+1DetM

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 B∗
2n+1(t)

m1 m3
1 · · · m2s−1

1 B∗
2n+1 (m1t)

m2 m3
2 · · · m2s−1

2 B∗
2n+1 (m2t)

...
... · · · ...

...
ms m3

s · · · m2s−1
s B∗

2n+1 (mst)

∣∣∣∣∣∣∣∣∣∣∣
. (7.16)

Define

H2n+1(t) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 B∗
2n+1(t)

m1 m3
1 · · · m2s−1

1 B∗
2n+1 (m1t)

m2 m3
2 · · · m2s−1

2 B∗
2n+1 (m2t)

...
... · · · ...

...
ms m3

s · · · m2s−1
s B∗

2n+1 (mst)

∣∣∣∣∣∣∣∣∣∣∣
. (7.17)

In this way Problem 7.2 is equivalent to the following problem.

Problem 7.3 Find the distribution of frequencies such that H2n+1(t) has no zeros in
(0,1/2) for n ≥ s.

Example 7.1 Suppose that m0 = 1 < m1 = 3 < m2 = 4, n = s = 2. Using Wolfram’s

Mathematica, for H5(t) =

∣∣∣∣∣∣
1 1 B∗

5(t)
3 33 B∗

5(3t)
4 43 B5(4t)

∣∣∣∣∣∣, H5(0.45) = 1.11285 and H5(0.3) = −3.3996,

so H5 has zeros in (0,1/2).

For a given sequence of functions a0, . . . ,an defined on some real interval I and given
sequence x0, . . . ,xn in I, we introduce

D

(
a0 · · · an−1 an

x0 · · · xn−1 xn

)
=

∣∣∣∣∣∣∣∣∣
a0(x0) a1(x0) · · · an(x0)
a0(x1) a1(x1) · · · an(x1)

...
... · · · ...

a0(xn) a1(xn) · · · an(xn)

∣∣∣∣∣∣∣∣∣
,

and, if a0, . . . ,an are sufficiently smooth, we denote by W (a0, . . . ,an)(x) the Wronskian of
the sequence a0, . . . ,an at x ∈ I.

To transform the functions H2n+1 in a more suitable form, the following General Mean
Value theorem from [66] appears to be useful.

Theorem 7.2 Let a0, . . . ,an be a sequence of real functions of a real variable x, pos-
sessing derivatives up to the order n, and further such that the Wronskians W (a0, . . . ,ak),
k = 0,1, . . . ,n, do not vanish on a certain interval I. Let f (x) be a function possessing
derivatives up to the order n in I. Finally let x0,x1, . . . ,xn be a system of (n+1) values of
x in I. There exists at least one value ξ in I such that

D

(
a0 · · · an−1 f
x0 · · · xn−1 xn

)
D

(
a0 · · · an−1 an

x0 · · · xn−1 xn

) =
W (a0, . . . ,an−1, f ) (ξ )
W (a0, . . . ,an−1,an) (ξ )

. (7.18)
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To apply Theorem 7.2 we set:

a0(x) = x,a1(x) = x3, . . . ,as(x) = x2s+1,

f (x) = B∗
2n+1(xt) = g(xt),

x0 = 1,x1 = m1, . . . ,xs = ms, I = [1,ms].

Assumptions of Theorem 7.2 are obviously satisfied, so there is an ξ ∈ [1,ms] such that

H2n+1(t) = D

(
x x3 · · · x2s−1 g(xt)
1 m1 · · · ms−1 ms

)

=
D

(
x x3 · · · x2s−1 x2s+1

1 m1 · · · ms−1 ms

)
W (x,x3, . . . ,x2s+1)(ξ )

·

∣∣∣∣∣∣∣∣∣∣∣∣

ξ ξ 3 · · · ξ 2s−1 g(ξ t)
1 3ξ 2 · · · (2s−1)ξ 2s−2 tg′(ξ t)
0 3!ξ · · · (2s−1)(2s−2)ξ 2s−3 t2g′′(ξ t)
...

... · · · ...
...

0 · · · · · · (2s−1)!
(s−1)! ξ s−1 tsg(s)(ξ t)

∣∣∣∣∣∣∣∣∣∣∣∣
Denote the last determinant in (7.19) by H̃2n+1(t,ξ ). Multiplying the kth row of this de-
terminant by ξ k−1, k = 2, . . . ,s, then extracting from the lth column ξ 2l−1, l = 1, . . . ,s, we
have

H̃2n+1(t,ξ ) = ξ
s(s+1)

2

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 f (ξ t)
1 3 · · · 2s−1 ξ t f ′(ξ t)
0 3! · · · (2s−1)(2s−2) (ξ t)2 f ′′(ξ t)
...

... · · · ...
...

0 · · · · · · (2s−1)!
(s−1)! (ξ t)s f (s)(ξ t)

∣∣∣∣∣∣∣∣∣∣∣

= ξ
s(s+1)

2

∣∣∣∣∣∣∣∣∣∣∣

a0(1) a1(1) · · · as−1(1) f (u)
a′0(1) a′1(1) · · · a′s−1(1) u f ′(u)
a′′0(1) a′′1(1) · · · a′′s−1(1) u2 f ′′(u)

...
... · · · ...

...

a(s)
0 (1) a(s)

1 (1) · · · a(s)
s−1(1) us f (s)(u)

∣∣∣∣∣∣∣∣∣∣∣
, (7.19)

where u = ξ t. Note that 0 < u < ms/2 for 0 < u < 1/2. It remains to investigate the sign
of the function given by the last determinant in (7.19). Using the Laplace expansion of
determinants, this function is up to the sign equal to the function

F(u) =
s

∑
j=0

(−i) jCh( j)u j f ( j)(u), (7.20)
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where Ch( j) (Ch stands for Chebyshev) is the determinant of the matrix obtained from the
(s+1)× s matrix

Ch =

⎛⎜⎜⎜⎝
a0(1) a1(1) · · · as−1(1)
a′0(1) a′1(1) · · · a′s−1(1)

...
... · · · ...

a(s)
0 (1) a(s)

1 (1) · · · a(s)
s−1(1)

⎞⎟⎟⎟⎠
by deleting the ( j +1)th row. The sequence of functions a0,a1, . . . ,as can be obtained by
using the universal construction of Chebyshev systems (S. Karlin, W. J. Studden, Tcheby-
scheff systems with applications in analysis and statistics, Interscience, New York, 1966.).
Take ω0(x) = x, ω1(x) = 2x,. . ., ωs(x) = 2sx. Then

a0(x) = ω0(x), a1(x) = ω0(x)
∫ x

0
ω1(t1)dt1,

a2(x) = ω0(x)
∫ x

0
ω1(t1)

∫ t1

0
ω2(t2)dt2dt1, . . . ,

as(x) = ω0(x)
∫ x

0
ω1(t1)

∫ t1

0
ω2(t2) · · ·

∫ ts−1

0
ωs(ts)dts · · ·dt2dt1.

Using this and properties of determinants (manipulating with columns of Ch( j)), straight-
forward calculation reveals that

Ch( j) = Ch(s) · (2s− j)!
j!(2s−2 j)!!

= 2s−1 ·4s−2 · · ·(2s−4)2 · (2s−2) · (2s− j)!
j!(2s−2 j)!!

(for the case j = s see [75]).

Lemma 7.1 Let (Fk)s
k=0 be the sequence of functions defined by:

Fk(u) =
s−1

∑
j=k

(−1) jCh( j)
k u j−k f ( j+k)(u)+ (−1)sCh(s)us−k f (s+k)(u), u ∈ R, (7.21)

where

Ch( j)
k =

j!
( j− k)!

(2s− j− k)!
(2s− j)!

Ch( j), j = k, . . . ,s. (7.22)

Then

(i) F0(u) = F(u) where F(u) is given by (7.20)

(ii) Fs(u) = (−1)sCh(s) f (2s)(u),

(iii) F ′
k(u) = uFk+1(u), k = 0, . . .s−1.
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Proof. The first two properties are obvious. Let us prove the third property. Simple rear-
ranging gives:

F ′
k(u) = (−1)k

[
Ch(k)

k −Ch(k+1)
k

]
f (2k+1)(u)

+
s−1

∑
j=k+1

(−1) j
[
Ch( j)

k − ( j +1− k)Ch( j+1)
k

]
u j−k f ( j+k+1)(u)

+(−1)sCh(s)us−k f (s+k+1)(u).
(7.23)

It is obvious that Ch(k)
k = Ch(k+1)

k = (2s− 2k− 1)!!. It remains to show that Ch( j)
k − ( j +

1− k)Ch( j+1)
k = Ch( j)

k+1. Using (7.22) and that Ch( j+1) = 2s−2 j
( j+1)(2s− j)Ch( j) we have:

Ch( j)
k − ( j +1− k)Ch( j+1)

k

=
j!

( j− k)!
(2s− j− k)!

(2s− j)!
Ch( j)− ( j +1)!

( j− k)!
(2s− j− k−1)!

(2s− j−1)!
Ch( j+1)

= Ch( j)
[

j!
( j− k)!

(2s− j− k)!
(2s− j)!

− ( j +1)!
( j− k)!

(2s− j− k−1)!
(2s− j−1)!

2s−2 j
( j +1)(2s− j)

]
= Ch( j) j!

( j− k−1)!
(2s− j− k−1)!

(2s− j)!
= Ch( j)

k+1.

We can write

F ′
k(u) = u

[
s−1

∑
j=k+1

(−1) jCh( j)
k+1u

j−k−1 f ( j+k+1)(u)

+(−1)sCh(s)us−k−1 f (s+k+1)(u)
]

= uFk+1(u).

�

Theorem 7.3 Suppose that m0 = 1 < m1 < m2 < · · · < ms, mi ∈ N and ∑s
j=0 λ j = 1,

λ j ∈ R. Then the function G2n+1(t) = ∑s
j=0

λ j

m2n+1
j

B∗
2n+1(mjt) such that G(1)

2n+1(0)

= G(3)
2n+1(0) = · · · = G(2s−1)

2n+1 (0) = 0, s ≤ n, has no zeros in
(
0, 1

2ms

]
.

Proof. Suppose that 0 < t ≤ 1
2ms

. Then 0 < u = ξ t ≤ 1
2 (see the discussion and notation

below Theorem 7.2). The claim follows from previous reductions and because Lemma
7.23 implies

F(u) = F0(u) =
∫ u

0
t1

∫ t1

0
t2 · · ·ts−1

∫ ts−1

0
ts(−1)sCh(s)B∗

2n+1−2s(ts)dts · · ·dt2dt1. (7.24)

�
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Remark 7.1 Notice that Fk(u) = (−1)kCh(k)
k f (2k)(u)+ u · [· · ·]. Consequently Fk(0) = 0

for functions for which f (2k)(0) = 0, k = 0, . . . ,s. From Lemma 7.23 follows:

F(u) = F0(u) =
∫ u

0
t1

∫ t1

0
t2 · · ·

∫ ts−1

0
ts(−1)sCh(s) f (2s)(ts)dts · · ·dt2dt1. (7.25)

7.3 Case mi = mi

In the previous section we proved that the function G2n+1(t), defined in (7.12) such that
conditions (7.11) hold and ∑s

j=0 λ j 
= 0, has no zeros on (0, 1
2ms

].
In the present section we give the complete answer for the case mi = mi, i = 0, . . .s,

m ≥ 2, m ∈ N, in the sense that we prove that the function H2n+1 defined in (7.17), using
frequencies 1,m,m2, . . . ,ms, has no zeros on (0,1/2).

Theorem 7.4 Let s ∈ N and m ∈ N, m ≥ 2. Then the function

Ks(t; f ) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 f (t)
m m3 · · · m2s−1 f (mt)
m2
(
m2
)3 · · · (m2

)2s−1
f
(
m2t
)

...
... · · · ...

...
ms (ms)3 · · · (ms)2s−1 f (mst)

∣∣∣∣∣∣∣∣∣∣∣
(7.26)

has no zeros on (0,1/2), for any odd function f : R → R which is periodic with period
T = 1, such that f (2s−2) is continuous on R and strictly concave (convex) on (0,1/2).

Proof. The proof is by induction. Suppose that f is continuous on R and strictly concave on
(0,1/2). We shall prove that K1(t; f ) = f (mt)−mf (t) is strictly negative for t ∈ (0,1/2).
Using strict concavity f (mt) < mf (t) for 0 < t ≤ 1

2m . Now, we split the proof into two
cases.
Case m = 2k + 1: Suppose that 1

2 − 1
2m ≤ t < 1

2 . Set g(x) = f ( 1
2 − x). Obviously g is

strictly concave on (0,1/2) and g(0) = 0. This implies g(mx) < mg(x) for x = 1
2 − t,

which gives f (−k +mt) = f (mt) < mf (t). In this way we conclude that f (mt) < mf (t)
for t ∈ (0, 1

2m ]∪ [ 1
2 − 1

2m , 1
2 ).

Set M = maxt∈[0,1/2] f (t). There is t1 ∈ (0, 1
2m) such that f (mt1) = M, and there is

t2 ∈
(

1
2 − 1

2m , 1
2

)
such that f (mt2) = M. Suppose that t ∈ ( 1

2m , 1
2 − 1

2m

)
is arbitrary. Then

there is λ ∈ (0,1) such that t = λ t1 +(1−λ )t2. Finally:

f (mt) ≤ M = λ f (mt1)+ (1−λ ) f (mt2) < f (m(λ t1 +(1−λ )t2)) = f (mt).

Case m = 2k: Notice that f (mt) < 0 for 1
2 − 1

2m < t < 1
2 . Arguing as in the final step of

the proof for the case m = 2k + 1, it is enough to prove that f
(
m
(
t− 1

2m

))
< mf (t) for
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1
2 − 1

2m ≤ t < 1
2 . Set again g(x) = f ( 1

2 −x). Obviously g is strictly concave on (0,1/2) and
g(0) = 0, so g(mx) < mg(x) for 0 < x ≤ 1

2m . This implies for x = 1
2 − t that g(m

2 −mt) <

mg( 1
2 − t), so f (mt + 1

2 − k) = f (mt − 1
2 ) < mf (t).

The proof when f is convex is analogous.
To prove the inductive step we use the Sylvester identity for determinants with the

first and the last row and with the two last columns. It follows (where we denote by
V[α1, . . . ,αn] the Vandermonde determinant):

Ks(t; f ) ·

∣∣∣∣∣∣∣∣∣
m m3 · · · m2s−3

m2 (m2)3 · · · (m2)2s−3

...
... · · · ...

ms−1
(
ms−1

)3 · · · (ms−1
)2s−3

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
m · · · m2s−1

...
... · · · ...

ms−1 · · · (ms−1
)2s−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1 1 · · · 1 f (t)
m m3 · · · m2s−3 f (mt)
...

... · · · ...
...

ms−1
(
ms−1

)3 · · · (ms−1
)2s−3

f (ms−1t)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
m · · · m2s−1

m2 · · · (m2)2s−1

...
... · · · ...

ms · · · (ms)2s−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
m m3 · · · m2s−3 f (mt)
m2 (m2)3 · · · (m2)2s−3 f (m2t)
...

... · · · ...
...

ms (ms)3 · · · (ms)2s−3 f (mst)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣m ·m2 · · ·ms−1V[1,m2, . . . ,m2(s−1)] Ks−1(t; f )

m ·m2 · · ·msV[m2,m4, . . .m2s] m ·m3 · · ·m2s−3Ks−1(mt; f )

∣∣∣∣
=

∣∣∣∣∣∣ m
(s−1)s

2 V[1,m2, . . . ,m2(s−1)] Ks−1(t; f )

m
s(s+1)

2 ·m(s−1)sV
[
1,m2, . . . ,m2(s−1)

]
m(s−1)2Ks−1(mt; f )

∣∣∣∣∣∣
= m

(s−1)(3s−2)
2 V

[
1,m2, . . . ,m2(s−1)

]∣∣∣∣ 1 Ks−1(t; f )
m2s−1 Ks−1(mt; f )

∣∣∣∣ ,
which gives

Ks(t; f ) = m
(s−1)(s+2)

2

V
[
1,m2, . . . ,m2(s−1)

]
V
[
1,m2, . . . ,m2(s−2)

] ∣∣∣∣ 1 Ks−1(t; f )
m2s−1 Ks−1(mt; f )

∣∣∣∣
= C

∣∣∣∣∣∣∣∣∣
1 1 · · · 1 f (mt)−m2s−1 f (t)
m m3 · · · m2s−3 f (m2t)−m2s−1 f (mt)
...

... · · · ...
...

ms−1
(
ms−1

)3 · · · (ms−1
)2s−3

f (mst)−m2s−1 f (ms−1t)

∣∣∣∣∣∣∣∣∣
= CKs−1(t;g), (7.27)
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where g(t) = f (mt)−m2s−1 f (t). To use the inductive assumption we only have to prove
that g(2s−4) is strictly concave or strictly convex on (0,1/2). We have

g(2s−4)(t) = m2s−4
[
f (2s−4)(mt)−m3 f (2s−4)(t)

]
.

Set h(t)= f (2s−4)(mt)−m3 f (2s−4)(t). Since h′′(t) =m2
[
f (2s−2)(mt)−mf (2s−2)(t)

]
, using

assumption ( f (2s−2) is strictly concave or strictly convex on (0,1/2)) and the basis of
induction, we conclude that h′′ has no zeros on (0,1/2). Since f (2s−2) is continuous, h′′ has
constant sign on (0,1/2). It follows that h, and consequently g(2s−4), is strictly concave
or strictly convex on (0,1/2). Using inductive assumption, Ks−1(t;g) has no zeros on
(0,1/2), so by (7.27), Ks(t; f ) has no zeros on (0,1/2). The proof is complete. �

Obvious examples of the functions which satisfy conditions in the previous theorem
are f (t) = B∗

2n+1(t) and f (t) = sin2πt.

Example 7.2 The Boole and Simpson formula can be easily deduced using above proce-
dure.

7.4 Using the Fourier expansion of the periodic
Bernoulli functions

In this section we present yet another method to study zeros of the functions defined as
the function H2n+1. This method is motivated by the Fourier expansion of the periodic
Bernoulli functions given by

B∗
2n+1(t) =

(−1)n+1(2n+1)!
(2π)2n+1

∞

∑
k=1

sin (2kπt)
k2n+1 , n ≥ 1,x ∈ R, n = 0, x 
= k. (7.28)

Recall that we reduced the problem of zeros of the function G2n+1 to the one of the function
H2n+1. Using (7.28) we can write

H2n+1(t) = Cn

∞

∑
k=1

1
k2n+1

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 sin(2kπt)
m1 m3

1 · · · m2s−1
1 sin(2km1πt)

m2 m3
2 · · · m2s−1

2 sin(2km2πt)
...

... · · · ...
...

ms m3
s · · · m2s−1

s sin(2kmsπt)

∣∣∣∣∣∣∣∣∣∣∣
. (7.29)
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We consider the case with no gaps in frequencies i.e. case with (s−1)-nontrivial frequen-
cies m1 = 2 < m2 = 3 < · · · < ms−1 = s. In that case we have

H2n+1(t) = Cn

∞

∑
k=1

1
k2n+1

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 sin(2kπt)
2 23 · · · 22s−3 sin(4kπt)
3 33 · · · 32s−3 sin(6kπt)
...

... · · · ...
...

s s3 · · · s2s−3 sin(2skπt)

∣∣∣∣∣∣∣∣∣∣∣
. (7.30)

To simplify terms in the above expansion set:

S(α) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 sinα
2 23 · · · 22s−3 sin2α
3 33 · · · 32s−3 sin3α
...

... · · · ...
...

s s3 · · · s2s−3 sin sα

∣∣∣∣∣∣∣∣∣∣∣
= sinα

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
2 23 · · · 22s−3 sin2α

sinα
3 33 · · · 32s−3 sin3α

sinα
...

... · · · ...
...

s s3 · · · s2s−3 sinsα
sinα

∣∣∣∣∣∣∣∣∣∣∣
.

Recall that the Chebyshev polynomials of the second kind are defined by

Un(x) =
sin(n+1)α

sinα
, α = arccosx, n = 0,1, . . . .

We will need the following properties of the Chebyshev polynomials Un:

(i)
Un(1) = n+1

(ii)

U (k)
n (1) =

(n+ k+1)!
(2k+1)!!(n− k)!

⇐U (k)
n (x) = xU (k)

n−1(x)+ (k+n)U (k−1)
n−1 (x)

(iii)
|Un(x)| ≤ n+1

Set:

S(x) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
2 23 · · · 22s−3 U1(x)
3 33 · · · 32s−3 U2(x)
...

... · · · ...
...

s s3 · · · s2s−3 Us−1(x)

∣∣∣∣∣∣∣∣∣∣∣
.

Obviously S(1) = 0, S
(s−1)(1) = (s− 1)!V[1,22, . . . ,(s − 1)2]. We want to prove that

S
(k)(1) = 0 for k = 1, . . . ,s−2. We have:

S
′(x) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0
2 23 · · · 22s−3 U ′

1(x)
3 33 · · · 32s−3 U ′

2(x)
...

... · · · ...
...

s s3 · · · s2s−3 U ′
s−1(x)

∣∣∣∣∣∣∣∣∣∣∣
.
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We have U ′
l (1) = (l+2)!

3!!(l−1)! . Multiplying the first column with −1 and adding to the second

column, we have in the (l +1)th row:

(l +1)3− (l +1) = (l +1)(l +2)l =
(l +2)!
(l−1)!

,

which obviously implies that S
′(1) = 0. To make a general argument we compareU (k)

l−1(1),
k ≤ l−1, with the lth row in the (k+1)th column after reducing the first k+1 columns on
the lower trapezoid form. Using properties of the polynomialsUn we have:

U (k)
l−1(1) =

(l + k)!
(2k+1)!!(l− k−1)!

.

After reducing the first k + 1 columns on the lower trapezoid form in the lth row and the
(k + 1)th column, using inductive property of the Vandermonde determinant applied on
determinant ∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
2 23 · · · 22k+1

...
... · · · ...

k k3 · · · k2k+1

l l3 · · · l2k+1

∣∣∣∣∣∣∣∣∣∣∣
,

we obtain
l(l2 − k2)(l2 − (k−1)2 · · · (l2 −22)(l2 −1)

= l(l− k)(l + k)(l + k−1)(l− k+1) · · ·(l +2)(l−2))(l +1)(l−1) =
(l + k)!

(l− k−1)!
.

This finishes the proof that S
(k)(1) = 0 for k = 0,1, . . . ,s−2.

Since S is the polynomial of degree s−1, we conclude

S(x) = V[1,22, . . . ,(s−1)2](x−1)s−1.

It follows
S(α) = sinαV[1,22, . . . ,(s−1)2](x−1)s−1

= (−1)s−1V[1,22, . . . ,(s−1)2]sinα(1− cosα)s−1.

Finally, we can write

H2n+1(t) = Dn

∞

∑
k=1

1
k2n+1 sin (2kπt)(1− cos(2kπt))s−1.

To illustrate how this expression helps in proving that H2n+1 has no zeros in (0,1/2), we
will prove that

sin (2πt)(1− cos(2πt))s−1 > −
∞

∑
k=2

1
k2n+1 sin(2kπt)(1− cos(2kπt))s−1, s ≤ n.
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Rearranging this is obviously equivalent to inequality

−
∞

∑
k=2

1
k2n+1

sin(2kπt)
sin(2πt)

(
sin(kπt)
sinπt

)2s−2

< 1.

Since
∣∣ sinkα

sinα
∣∣≤ k, it is enough to prove that

∞

∑
k=2

1
k2n+1 k2s−1 =

∞

∑
k=2

1

k2(n−s)+2
< 1.

Recall that s ≤ n, so it is enough to prove that

∞

∑
k=2

1
k2 < 1,

and this is obvious since the LHS is equal to π2/6−1.
The method of this section can give more information in negative direction. Let us

consider Example 1 from Section 2 i.e.

H5(t) =

∣∣∣∣∣∣
1 1 B∗

5(t)
3 33 B∗

5(3t)
4 43 B∗

5(4t)

∣∣∣∣∣∣= Cn

∞

∑
k=1

1
k5

∣∣∣∣∣∣
1 1 sin(2kπt)
3 33 sin(6kπt)
4 43 sin(8kπt)

∣∣∣∣∣∣ ,
and consider the first term∣∣∣∣∣∣

1 1 sin(2πt)
3 33 sin(6πt)
4 43 sin(8πt)

∣∣∣∣∣∣= sin(2πt)

∣∣∣∣∣∣
1 1 1
3 33 U2(x)
4 43 U3(x)

∣∣∣∣∣∣= sin(2πt)S(x).

It can be shown easily that

S(x) = (x−1)2(144+192x),

which implies∣∣∣∣∣∣
1 1 sin (2πt)
3 33 sin (6πt)
4 43 sin (8πt)

∣∣∣∣∣∣= sin(2πt)(1− cos(2πt))2(144+192cos(2πt)).

It can be shown easily that terms with higher frequencies (and small amplitudes) cannot
remove the zeros in the basic term.



Chapter8

Euler’s method for
weighted integral formulae

8.1 Introduction

In this chapter we will consider the remainder of the quadrature formula

∫ b

a
w(x) f (x)dx =

n

∑
k=1

Ak f (xk)+En( f ), (8.1)

where ∑n
k=1 Ak = 1.

In [79] V.I.Krylov assumed that this formula is exact for all polynomials of degree
m−1, and using the representation by the Taylor series, transformed this formula into an
equation of Euler’s form:

∫ b

a
w(x) f (x)dx =

n

∑
k=1

Ak f (xk)+C0

[
f (m−1)(b)− f (m−1)(a)

]
+ · · ·

+ Cs−1

[
f (m+s−2)(b)− f (m+s−2)(a)

]
+Es

n( f ), (8.2)

275
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where for E(x) =

⎧⎨⎩
1, x > 0
1
2 , x = 0
0, x < 0

, we have

Ci = (b−a)−1
∫ b

a
Li(t)dt,

L0(t) = K(t) =
∫ b

t
w(x)

(x− t)m−1

(m−1)!
dx−

n

∑
k=1

AkE(xk − t)
(xk− t)m−1

(m−1)!
,

Li+1(t) =
∫ t

a
[Ci −Li(x)]dx, (8.3)

Es
n( f ) =

∫ b

a
f (m+s)(t)Ls(t)dt.

Equations (8.3) give a method for sequentially calculating the Ci and Li(t). However,
V.I.Krylov found a representation for Ci and Li(t) directly from the kernel K(t). To do this
he returned to the initial quadrature formula (8.1) with the integral representation for the
remainder

En( f ) =
∫ b

a
f (m)(t)K(t)dt,

with replacing f (m)(t) by its expansion in terms of Bernoulli polynomials. Then

Ci =
(b−a)m+i−1

(m+ i)!
En

[
Bm+i

(
t−a
b−a

)]
=

(b−a)m+i−1

(m+ i)!

{∫ b

a
w(t)Bm+i

(
t−a
b−a

)
dt−

n

∑
k=1

AkBm+i

(
xk −a
b−a

)}
. (8.4)

Similarly he obtained for Ls(t) the expression

Ls(t) = − (b−a)m+s−1

(m+ s)!
En,x

[
B∗

m+s

(
x− t
b−a

)
−B∗

m+s

(
x−a
b−a

)]
, (8.5)

where En,x indicates the remainder when the quadrature formula is applied with respect to
the variable x.

He also gave the series in (8.3) for increasing the precision of quadrature formula∫ −1

−1
(1− x)α(1+ x)β f (x)dx ≈

n

∑
k=1

Ak f (xk)

+ C0

[
f (2n−1)(1)− f (2n−1)(−1)

]
+C1

[
f (2n)(1)− f (2n)(−1)

]
+ . . .

where α,β > −1 and the nodes are the zeros of the Jacobi polynomial. So,

C0 =
2α+β+2nn!Γ(α + β +n+1)Γ(α +n+1)Γ(β +n+1)

(2n)!(α + β +2n+1)[Γ(α + β +2n+1)]2
,
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C1 =
β −α

α + β +2n

[
α + β

α + β +2n+2
+2n

]
· n!2α+β+2nΓ(α + β +n+1)Γ(α +n+1)Γ(β +n+1)

(2n+1)!Γ(α + β +2n+1)Γ(α + β +2n+2)
.

For the special ultraspherical case, α = β , the Ci with odd subscripts are zero:

C0 =
22αn!Γ(2α +n+1)
(2n)!(2α +2n+1)

[
2nΓ(α +n+1)
Γ(2α +2n+1)

]2

,

C2 =
22αn!Γ(2α +n+1)

(2n+2)!

[
2nΓ(α +n+1)
Γ(2α +2n+1)

]2

·
[

2n2 +2(2α +1)n+2α−1
(2α +2n−1)(2α +2n+1)(2α +2n+3)

+
n(n−1)

(2α +2n−1)(2α +2n+1)
− (n+1)(2n+1)

3(2α +2n+1)

]
.

8.2 Main results

Let us suppose f (r−1) is a continuous function of bounded variation on [a,b] for some
r ≥ 1 and let w : [a,b] → [0,∞) be some probability density function, that is, an integrable
function satisfying

∫ b
a w(t)dt = 1.

A. Aglić Aljinović and J. Pečarić (in [5]) have proved the following two identities

f (x) =
∫ b

a
w(t) f (t)dt +

r

∑
k=1

(b−a)k−1

k!
(8.6)

·
(

Bk

(
x−a
b−a

)
−
∫ b

a
w(t)Bk

(
t−a
b−a

)
dt

)[
f (k−1)(b)− f (k−1)(a)

]
− (b−a)r−1

r!

∫ b

a

(
B∗

r

(
x− t
b−a

)
−
∫ b

a
w(u)B∗

r

(
u− t
b−a

)
du

)
d f (r−1)(t)

and

f (x) =
∫ b

a
w(t) f (t)dt +

r−1

∑
k=1

(b−a)k−1

k!
(8.7)

·
(

Bk

(
x−a
b−a

)
−
∫ b

a
w(t)Bk

(
t −a
b−a

)
dt

)[
f (k−1)(b)− f (k−1)(a)

]
− (b−a)r−1

r!

∫ b

a

(
B∗

r

(
x− t
b−a

)
−Br

(
x−a
b−a

)
−
∫ b

a
w(u)

(
B∗

r

(
u− t
b−a

)
−Br

(
u−a
b−a

))
du
)
d f (r−1)(t).
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Now, using the identities (8.6) i (8.7), we will consider the remainder En( f ) of the
quadrature formula (8.1).

Theorem 8.1 Let us suppose f (r−1) is a continuous function of bounded variation on
[a,b] for some r ≥ 1. If w : [a,b] → [0,∞) is some probability density function, that is, an
integrable function satisfying

∫ b
a w(t)dt = 1, then the following formulae hold

∫ b

a
w(t) f (t)dt =

n

∑
k=1

Ak f (xk)+
r

∑
i=1

(b−a)i−1

i!
(8.8)

·
(∫ b

a
w(t)Bi

(
t −a
b−a

)
dt−

n

∑
k=1

AkBi

(
xk −a
b−a

))[
f (i−1)(b)− f (i−1)(a)

]
− (b−a)r−1

r!

∫ b

a

(∫ b

a
w(u)B∗

r

(
u− t
b−a

)
du−

n

∑
k=1

AkB
∗
r

(
xk − t
b−a

))
d f (r−1)(t)

and ∫ b

a
w(t) f (t)dt =

n

∑
k=1

Ak f (xk)+
r−1

∑
i=1

(b−a)i−1

i!
(8.9)

·
(∫ b

a
w(t)Bi

(
t−a
b−a

)
dt−

n

∑
k=1

AkBi

(
xk −a
b−a

))[
f (i−1)(b)− f (i−1)(a)

]
− (b−a)r−1

r!

∫ b

a

(∫ b

a
w(u)

(
B∗

r

(
u− t
b−a

)
−Br

(
u−a
b−a

))
du

−
n

∑
k=1

Ak

(
B∗

r

(
xk − t
b−a

)
−Br

(
xk −a
b−a

)))
d f (r−1)(t).

Proof. First, we put x = xk in the identity (8.6). Then multiplying it by Ak and summing up
from 1 to n, we obtain identity (8.8).

The proof of formula (8.9) is similar. �

Corollary 8.1 Let us suppose f (m+s−1) is a continuous function of bounded variation on
[a,b] for some (m+ s) ≥ 1. If w : [a,b] → [0,∞) is some probability density function, that
is, an integrable function satisfying

∫ b
a w(t)dt = 1, then the following formulae hold

∫ b

a
w(t) f (t)dt =

n

∑
k=1

Ak f (xk)+
s

∑
j=0

(b−a) j+m−1

(m+ j)!
(8.10)

·
(∫ b

a
w(t)Bj+m

(
t−a
b−a

)
dt−

n

∑
k=1

AkBj+m

(
xk −a
b−a

))[
f (m+ j−1)(b)− f (m+ j−1)(a)

]
− (b−a)m+s−1

(m+ s)!

∫ b

a

(∫ b

a
w(u)B∗

m+s

(
u− t
b−a

)
du−

n

∑
k=1

AkB
∗
m+s

(
xk − t
b−a

))
d f (m+s−1)(t)
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and ∫ b

a
w(t) f (t)dt =

n

∑
k=1

Ak f (xk)+
s−1

∑
j=0

(b−a) j+m−1

(m+ j)!
(8.11)

·
(∫ b

a
w(t)Bj+m

(
t−a
b−a

)
dt−

n

∑
k=1

AkBj+m

(
xk −a
b−a

))[
f (m+ j−1)(b)− f (m+ j−1)(a)

]
− (b−a)m+s−1

(m+ s)!

∫ b

a

(∫ b

a
w(u)

(
B∗

m+s

(
u− t
b−a

)
−Bm+s

(
u−a
b−a

))
du

−
n

∑
k=1

Ak

(
B∗

m+s

(
xk − t
b−a

)
−Bm+s

(
xk −a
b−a

)))
d f (m+s−1)(t).

These formulae are exact for all polynomials of degree ≤ m−1.

Proof. First, we put r = m+ s in the identity (8.8). Now, if we put f (t) = Pl(t) (l ≤ m−1)
in the identity (8.8) we get∫ b

a
w(t)Pl(t)dt =

n

∑
k=1

AkPl(xk)+
l

∑
i=1

Ci

[
f (i−1)(b)− f (i−1)(a)

]
,

where Ci = (b−a)i−1

i!

(∫ b
a w(t)Bi

(
t−a
b−a

)
dt−∑n

k=1 AkBi
( xk−a

b−a

))
.

If formula (8.8) has to be exact for polynomial Pl(t), l = 1,2, . . . ,m−1, by induction
we get C1 = C2 = · · · = Cm−1 = 0.

So, with substitution i = j +m in formula (8.8) we obtain formula (8.10).
The proof of formula (8.11) is similar. �

Remark 8.1 The formula (8.11) was proved by V.I. Krylov in [79].

Remark 8.2 If we put s = 0 in the identity (8.11), then for m1 < m we get∫ b

a
w(t) f (t)dt =

n

∑
k=1

Ak f (xk) (8.12)

− (b−a)m1−1

m1!

∫ b

a

(∫ b

a
w(u)

(
B∗

m1

(
u− t
b−a

)
−Bm1

(
u−a
b−a

))
du

−
n

∑
k=1

Ak

(
B∗

m1

(
xk − t
b−a

)
−Bm1

(
xk −a
b−a

)))
d f (m1−1)(t).

In the following discussion we assume that f : [a,b] → R has a continuous derivative of
order m+ s, for some m+ s≥ 1. In this case we will use (8.11) and we define

Fm+s(t) =
∫ b

a
w(u)

(
B∗

m+s

(
u− t
b−a

)
−Bm+s

(
u−a
b−a

))
du

−
n

∑
k=1

Ak

(
B∗

m+s

(
xk − t
b−a

)
−Bm+s

(
xk −a
b−a

))
. (8.13)
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Theorem 8.2 Let f : [a,b]→ R be such that f (m+s) is a continuous function on [a,b] and
Fm+s(t) > 0, t ∈ [a,b]. Then there exists a point η ∈ (a,b) such that

∫ b

a
w(t) f (t)dt =

n

∑
k=1

Ak f (xk)+
s−1

∑
j=0

(b−a) j+m−1

(m+ j)!
(8.14)

·
(∫ b

a
w(t)Bj+m

(
t−a
b−a

)
dt−

n

∑
k=1

AkBj+m

(
xk −a
b−a

))[
f (m+ j−1)(b)− f (m+ j−1)(a)

]
+

(b−a)m+s

(m+ s)!
f (m+s)(η)

(∫ b

a
w(u)Bm+s

(
u−a
b−a

)
du−

n

∑
k=1

AkBm+s

(
xk −a
b−a

))
.

Proof. From the mean value theorem for integrals we have

∫ b

a
w(t) f (t)dt =

n

∑
k=1

Ak f (xk)+
s−1

∑
j=0

(b−a) j+m−1

(m+ j)!

·
(∫ b

a
w(t)Bj+m

(
t−a
b−a

)
dt−

n

∑
k=1

AkBj+m

(
xk −a
b−a

))[
f (m+ j−1)(b)− f (m+ j−1)(a)

]
− (b−a)m+s−1

(m+ s)!
f (m+s)(η)

∫ b

a

(∫ b

a
w(u)

(
B∗

m+s

(
u− t
b−a

)
−Bm+s

(
u−a
b−a

))
du

−
n

∑
k=1

Ak

(
B∗

m+s

(
xk − t
b−a

)
−Bm+s

(
xk −a
b−a

)))
dt.

Because∫ b

a
B∗

m+s

(
y− t
b−a

)
dt =

∫ y

a
Bm+s

(
y− t
b−a

)
dt +

∫ b

y
Bm+s

(
y− t
b−a

+1

)
dt = 0, y ∈ [a,b]

we get identity (8.14). �

Remark 8.3 We can rewrite the identity (8.14) as

∫ b

a
w(t) f (t)dt =

n

∑
k=1

Ak f (xk)+
s−1

∑
j=0

Cj

[
f (m+ j−1)(b)− f (m+ j−1)(a)

]
+Cs f (m+s)(η)(b−a),

where

Cj =
(b−a) j+m−1

(m+ j)!

(∫ b

a
w(t)Bj+m

(
t−a
b−a

)
dt−

n

∑
k=1

AkBj+m

(
xk −a
b−a

))
.

For f (t) = Pm(t) = amxm +am−1xm−1 + · · ·+a1x+a0 we get∫ b

a
w(t)Pm(t)dt =

n

∑
k=1

AkPm(xk)+C0m!am (b−a).



8.4 RELATED INEQUALITIES 281

8.3 Related inequalities

In this section we use formulae established in Corollary 8.1 to prove a number of inequal-
ities using Lp norms for 1 ≤ p ≤ ∞. These inequalities are generally sharp (in case p = 1
the best possible).

Theorem 8.3 Assume (p,q) is a pair of conjugate exponents, 1 ≤ p,q ≤ ∞. Let f :
[a,b] → R be such that f (m+s) ∈ Lp[a,b] for some m+ s≥ 1. Then we have∣∣∣∣∣

∫ b

a
w(t) f (t)dt −

n

∑
k=1

Ak f (xk)−
s

∑
j=0

(b−a) j+m−1

(m+ j)!

·
(∫ b

a
w(t)Bj+m

(
t−a
b−a

)
dt−

n

∑
k=1

AkBj+m

(
xk −a
b−a

))[
f (m+ j−1)(b)− f (m+ j−1)(a)

]∣∣∣∣∣
≤ Kn(m,s, p,w) · ‖ f (m+s)‖p, (8.15)

and ∣∣∣∣∣
∫ b

a
w(t) f (t)dt −

n

∑
k=1

Ak f (xk)−
s−1

∑
j=0

(b−a) j+m−1

(m+ j)!

·
(∫ b

a
w(t)Bj+m

(
t−a
b−a

)
dt−

n

∑
k=1

AkBj+m

(
xk −a
b−a

))[
f (m+ j−1)(b)− f (m+ j−1)(a)

]∣∣∣∣∣
≤ K∗

n (m,s, p,w) · ‖ f (m+s)‖p, (8.16)

where

Kn(m,s, p,w)=
(b−a)m+s−1

(m+ s)!

[∫ b

a

∣∣∣∣∣
∫ b

a
w(u)B∗

m+s

(
u− t
b−a

)
du−

n

∑
k=1

AkB
∗
m+s

(
xk − t
b−a

)∣∣∣∣∣
q

dt

] 1
q

,

K∗
n (m,s, p,w) =

(b−a)m+s−1

(m+ s)!

[∫ b

a

∣∣∣∣∫ b

a
w(u)

(
B∗

m+s

(
u− t
b−a

)
−Bm+s

(
u−a
b−a

))
du

−
n

∑
k=1

Ak

(
B∗

m+s

(
xk − t
b−a

)
−Bm+s

(
xk −a
b−a

))∣∣∣∣∣
q

dt

] 1
q

.

The constants Kn(m,s, p,w) and K∗
n (m,s, p,w) are sharp for 1 < p ≤ ∞ and the best pos-

sible for p = 1.

Proof. The proof is analogous to the proof of Theorem 2.2. �
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8.4 Chebyshev-Gauss formulae of the first kind
of Euler type

If the weight function is w(t) = 1

π
√

1−t2
, t ∈ [−1,1], we have Chebyshev-Gauss formulae

given by ∫ 1

−1

f (t)√
1− t2

dt = π
n

∑
k=1

Ak f (xk)+En( f ), (8.17)

where

Ak =
1
n
, k = 1, . . . ,n,

and xk are zeros of Chebyshev polynomials of the first kind defined as

Tn (x) = cos(narccos(x)) .

Tn (x) has exactly n distinct zeros, all of which lie in the interval [−1,1] and

xk = cos

(
(2k−1)π

2n

)
.

Error of approximation formula (8.17) is given by

En( f ) =
π

22n−1(2n)!
f (2n)(η), η ∈ (−1,1).

In the next theorem we establish Chebyshev-Gauss formulae of the first kind of Euler type
which are exact for all polynomials of degree ≤ m−1.

Theorem 8.4 Let us suppose f (m+s−1) is a continuous function of bounded variation on
[−1,1] for some (m+ s) ≥ 1. Then the following formulae hold∫ 1

−1

f (t)√
1− t2

dt =
π
n

n

∑
k=1

f (xk)+TCG1
m+s ( f ,n)+

2m+s−1

(m+ s)!

∫ 1

−1
GCG1

m+s(t,n)d f (m+s−1)(t) (8.18)

and∫ 1

−1

f (t)√
1− t2

dt =
π
n

n

∑
k=1

f (xk)+TCG1
m+s−1( f ,n)+

2m+s−1

(m+ s)!

∫ 1

−1
FCG1

m+s (t,n)d f (m+s−1)(t),

(8.19)
where

TCG1
m+s ( f ,n) =

s

∑
j=0

2 j+m−1

(m+ j)!
·
(∫ 1

−1

1√
1− t2

Bj+m

(
t +1

2

)
dt

− π
n

n

∑
k=1

Bj+m

(
xk +1

2

))[
f (m+ j−1)(1)− f (m+ j−1)(−1)

]
,
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GCG1
m+s(t,n) =

π
n

n

∑
k=1

B∗
m+s

(
xk − t

2

)
−
∫ 1

−1

1√
1−u2

B∗
m+s

(
u− t

2

)
du

and

FCG1
m+s (t,n) =

π
n

n

∑
k=1

(
B∗

m+s

(
xk − t

2

)
−Bm+s

(
xk +1

2

))
−
∫ 1

−1

1√
1−u2

(
B∗

m+s

(
u− t

2

)
−Bm+s

(
u+1

2

))
du.

These formulae are exact for all polynomials of degree ≤ m−1.

Proof. This is a special case of Corollary 8.1 for a = −1, b = 1, w(t) = 1

π
√

1−t2
and

Ak = 1
n . �

Theorem 8.5 Assume (p,q) is a pair of conjugate exponents, 1 ≤ p,q ≤ ∞. Let
f : [−1,1]→ R be such that f (m+s) ∈ Lp[−1,1] for some m+ s≥ 1. Then we have∣∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt− π
n

n

∑
k=1

f (xk)−TCG1
m+s ( f ,n)

∣∣∣∣∣≤ πKn

(
m,s, p,

1

π
√

1− t2

)
· ‖ f (m+s)‖p,

(8.20)
and∣∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt− π
n

n

∑
k=1

f (xk)−TCG1
m+s−1 ( f ,n)

∣∣∣∣∣≤ πK∗
n

(
m,s, p,

1

π
√

1− t2

)
· ‖ f (m+s)‖p.

(8.21)

The constants Kn

(
m,s, p, 1

π
√

1−t2

)
and K∗

n

(
m,s, p, 1

π
√

1−t2

)
are sharp for 1 < p ≤ ∞

and the best possible for p = 1.

Proof. This is a special case of Theorem 8.3 for a =−1, b = 1, w(t) = 1

π
√

1−t2
and Ak = 1

n .

�

Remark 8.4 For n = 1 and x1 = 0 we get one-point Chebyshev-Gauss formulae of the
first kind of Euler type∫ 1

−1

f (t)√
1− t2

dt = π f (0)+TCG1
m+s ( f ,1)+

2m+s−1

(m+ s)!

∫ 1

−1
GCG1

m+s(t,1)d f (m+s−1)(t)

and ∫ 1

−1

f (t)√
1− t2

dt = π f (0)+TCG1
m+s−1( f ,1)+

2m+s−1

(m+ s)!

∫ 1

−1
FCG1

m+s (t,1)d f (m+s−1)(t).

Especially for m = 1 and s = 0 we get

GCG1
1 (t,1) = FCG1

1 (t,1) =
{− π

2 − arcsint, −1 ≤ t ≤ 0,
π
2 − arcsint, 0 < t ≤ 1.
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Now, inequalities (8.20) and (8.21) reduce to∣∣∣∣∫ 1

−1

f (t)√
1− t2

dt−π f (0)
∣∣∣∣≤ πK1

(
1,0, p,

1

π
√

1− t2

)
· ‖ f ′‖p

and ∣∣∣∣∫ 1

−1

f (t)√
1− t2

dt−π f (0)
∣∣∣∣≤ πK∗

1

(
1,0, p,

1

π
√

1− t2

)
· ‖ f ′‖p,

where K1

(
1,0,∞, 1

π
√

1−t2

)
= K∗

1

(
1,0,∞, 1

π
√

1−t2

)
= 2

π , K1

(
1,0,2, 1

π
√

1−t2

)
=

K∗
1

(
1,0,2, 1

π
√

1−t2

)
=

√
2π−4
π ≈ 1.51102

π and K1

(
1,0,1, 1

π
√

1−t2

)
= K∗

1

(
1,0,1, 1

π
√

1−t2

)
= 1

2 .
The first and third constant have also been obtained in [77].
If the presumptions of the Theorem 8.2 hold, for m = 2 and s = 0 we get∫ 1

−1

f (t)√
1− t2

dt = π f (0)+
π
4

f ′′ (η) , η ∈ (−1,1) , (8.22)

which is the well known one-point Chebyshev-Gauss formula of the first kind.

Remark 8.5 For n = 2, x1 = −
√

2
2 and x2 =

√
2

2 we get two-point Chebyshev-Gauss for-
mulae of the first kind of Euler type∫ 1

−1

f (t)√
1− t2

dt =
π
2

[
f

(
−
√

2
2

)
+ f

(√
2

2

)]
+TCG1

m+s ( f ,2)

+
2m+s−1

(m+ s)!

∫ 1

−1
GCG1

m+s(t,2)d f (m+s−1)(t)

and ∫ 1

−1

f (t)√
1− t2

dt =
π
2

[
f

(
−
√

2
2

)
+ f

(√
2

2

)]
+TCG1

m+s−1( f ,2)

+
2m+s−1

(m+ s)!

∫ 1

−1
FCG1

m+s (t,2)d f (m+s−1)(t).

Especially, for m1 < 4 and s = 0 inequalities (8.20) and (8.21) reduce to∣∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt− π
2

[
f

(
−
√

2
2

)
+ f

(√
2

2

)]∣∣∣∣∣
≤ πK2

(
m1,0, p,

1

π
√

1− t2

)
· ‖ f (m1)‖p,

∣∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt− π
2

[
f

(
−
√

2
2

)
+ f

(√
2

2

)]∣∣∣∣∣
≤ πK∗

2

(
m1,0, p,

1

π
√

1− t2

)
· ‖ f (m1)‖p,
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where

K2

(
1,0,∞, 1

π
√

1−t2

)
= K∗

2

(
1,0,∞, 1

π
√

1−t2

)
= 2

√
2−2
π ≈ 0.828427

π ,

K2

(
1,0,2, 1

π
√

1−t2

)
= K∗

2

(
1,0,2, 1

π
√

1−t2

)
=

√
π
√

2−4
π ≈ 0.665495

π ,

K2

(
1,0,1, 1

π
√

1−t2

)
= K∗

2

(
1,0,1, 1

π
√

1−t2

)
= 1

4 ,

K2

(
2,0,∞, 1

π
√

1−t2

)
= K∗

2

(
2,0,∞, 1

π
√

1−t2

)
≈ 0.138151

π ,

K2

(
2,0,2, 1

π
√

1−t2

)
= K∗

2

(
2,0,2, 1

π
√

1−t2

)
≈ 0.11295

π ,

K2

(
2,0,1, 1

π
√

1−t2

)
= K∗

2

(
2,0,1, 1

π
√

1−t2

)
≈ 0.151746

π ,

K2

(
3,0,∞, 1

π
√

1−t2

)
= K∗

2

(
3,0,∞, 1

π
√

1−t2

)
≈ 0.0371021

π ,

K2

(
3,0,2, 1

π
√

1−t2

)
= K∗

2

(
3,0,2, 1

π
√

1−t2

)
≈ 0.0472213

π ,

K2

(
3,0,1, 1

π
√

1−t2

)
= K∗

2

(
3,0,1, 1

π
√

1−t2

)
≈ 0.0345377

π .

The constants K2

(
2,0,∞, 1

π
√

1−t2

)
and K2

(
2,0,1, 1

π
√

1−t2

)
are better than the con-

stants obtained in [77].
If the presumptions of the Theorem 8.2 hold, for m = 4 and s = 0 we get

∫ 1

−1

f (t)√
1− t2

dt =
π
2

[
f

(
−
√

2
2

)
+ f

(√
2

2

)]
+

π
192

f (4) (η) , η ∈ (−1,1) , (8.23)

which is the well known two-point Chebyshev-Gauss formula of the first kind.

Remark 8.6 For n = 3, x1 = −
√

3
2 ,x2 = 0 and x3 =

√
3

2 we get three-point Chebyshev-
Gauss formulae of the first kind of Euler type

∫ 1

−1

f (t)√
1− t2

dt =
π
3

[
f

(
−
√

3
2

)
+ f (0)+ f

(√
3

2

)]
+TCG1

m+s ( f ,3)

+
2m+s−1

(m+ s)!

∫ 1

−1
GCG1

m+s(t,3)d f (m+s−1)(t)

and

∫ 1

−1

f (t)√
1− t2

dt =
π
3

[
f

(
−
√

3
2

)
+ f (0)+ f

(√
3

2

)]
+TCG1

m+s−1( f ,3)

+
2m+s−1

(m+ s)!

∫ 1

−1
FCG1

m+s (t,3)d f (m+s−1)(t).
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Especially, for m1 < 6 and s = 0 inequalities (8.20) and (8.21) reduce to∣∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt− π
3

[
f

(
−
√

3
2

)
+ f (0)+ f

(√
3

2

)]∣∣∣∣∣
≤ πK3

(
m1,0, p,

1

π
√

1− t2

)
· ‖ f (m1)‖p,

∣∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt− π
3

[
f

(
−
√

3
2

)
+ f (0)+ f

(√
3

2

)]∣∣∣∣∣
≤ πK∗

3

(
m1,0, p,

1

π
√

1− t2

)
· ‖ f (m1)‖p,

where

K3

(
1,0,∞, 1

π
√

1−t2

)
= K∗

3

(
1,0,∞, 1

π
√

1−t2

)
≈ 0.535898

π ,

K3

(
1,0,2, 1

π
√

1−t2

)
= K∗

3

(
1,0,2, 1

π
√

1−t2

)
≈ 0.4345

π ,

K3

(
1,0,1, 1

π
√

1−t2

)
= K∗

3

(
1,0,1, 1

π
√

1−t2

)
=

1
6
,

K3

(
2,0,∞, 1

π
√

1−t2

)
= K∗

3

(
2,0,∞, 1

π
√

1−t2

)
≈ 0.0578

π ,

K3

(
2,0,2, 1

π
√

1−t2

)
= K∗

3

(
2,0,2, 1

π
√

1−t2

)
≈ 0.0487106

π ,

K3

(
2,0,1, 1

π
√

1−t2

)
= K∗

3

(
2,0,1, 1

π
√

1−t2

)
≈ 0.0931

π ,

K3

(
3,0,∞, 1

π
√

1−t2

)
= K∗

3

(
3,0,∞, 1

π
√

1−t2

)
≈ 0.009162

π ,

K3

(
3,0,2, 1

π
√

1−t2

)
= K∗

3

(
3,0,2, 1

π
√

1−t2

)
≈ 0.0077668

π ,

K3

(
3,0,1, 1

π
√

1−t2

)
= K∗

3

(
3,0,1, 1

π
√

1−t2

)
≈ 0.00959813

π ,

K3

(
4,0,∞, 1

π
√

1−t2

)
= K∗

3

(
4,0,∞, 1

π
√

1−t2

)
≈ 0.00165293

π ,

K3

(
4,0,2, 1

π
√

1−t2

)
= K∗

3

(
4,0,2, 1

π
√

1−t2

)
≈ 0.00146947

π ,

K3

(
4,0,1, 1

π
√

1−t2

)
= K∗

3

(
4,0,1, 1

π
√

1−t2

)
≈ 0.002251

π ,

K3

(
5,0,∞, 1

π
√

1−t2

)
= K∗

3

(
5,0,∞, 1

π
√

1−t2

)
≈ 0.0003867

π ,

K3

(
5,0,2, 1

π
√

1−t2

)
= K∗

3

(
5,0,2, 1

π
√

1−t2

)
≈ 0.000348327

π ,

K3

(
5,0,1, 1

π
√

1−t2

)
= K∗

3

(
5,0,1, 1

π
√

1−t2

)
≈ 0.000413232

π .
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The constants for p = ∞ and p = 1 are obtained in [78].
If the presumptions of Theorem 8.2 hold, for m = 6 and s = 0 we get∫ 1

−1

f (t)√
1− t2

dt =
π
3

[
f

(
−
√

3
2

)
+ f (0)+ f

(√
3

2

)]
+

π
23040

f (6) (η) , (8.24)

which is the well known three-point Chebyshev-Gauss formula of the first kind.

8.5 Chebyshev-Gauss formulae of the second kind
of Euler type

If the weight function is w(t) = 2
√

1−t2

π , t ∈ [−1,1], we have Chebyshev-Gauss formulae
given by ∫ 1

−1

√
1− t2 f (t)dt =

π
2

n

∑
k=1

Ak f (xk)+En( f ), (8.25)

where

Ak =
2

n+1
sin2

(
kπ

n+1

)
, k = 1, . . . ,n,

xk are zeros of Chebyshev polynomials of the second kind defined as

Un (x) =
sin [(n+1)arccos(x)]

sin [arccos(x)]
.

Un (x) has exactly n distinct zeros, all of which lie in the interval [−1,1] and

xk = cos

(
kπ

n+1

)
.

Error of approximation formula (8.25) is given by

En( f ) =
π

22n+1(2n)!
f (2n)(η), η ∈ (−1,1).

In the next theorem we establish Chebyshev-Gauss formulae of the second kind of Euler
type which are exact for all polynomials of degree ≤ m−1.

Theorem 8.6 Let us suppose f (m+s−1) is a continuous function of bounded variation on
[−1,1] for some (m+ s)≥ 1. Then the following formulae hold∫ 1

−1

√
1− t2 f (t)dt =

π
n+1

n

∑
k=1

sin2
(

kπ
n+1

)
f (xk)+TCG2

m+s ( f ,n)

+
2m+s−1

(m+ s)!

∫ 1

−1
GCG2

m+s(t,n)d f (m+s−1)(t) (8.26)
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and ∫ 1

−1

√
1− t2 f (t)dt =

π
n+1

n

∑
k=1

sin2
(

kπ
n+1

)
f (xk)+TCG2

m+s−1( f ,n)

+
2m+s−1

(m+ s)!

∫ 1

−1
FCG2

m+s (t,n)d f (m+s−1)(t), (8.27)

where

TCG2
m+s ( f ,n) =

s

∑
j=0

2 j+m−1

(m+ j)!
·
(∫ 1

−1

√
1− t2Bj+m

(
t +1

2

)
dt

− π
n+1

n

∑
k=1

sin2
(

kπ
n+1

)
Bj+m

(
xk +1

2

))[
f (m+ j−1)(1)− f (m+ j−1)(−1)

]
,

GCG2
m+s(t,n) =

π
n+1

n

∑
k=1

sin2
(

kπ
n+1

)
B∗

m+s

(
xk − t

2

)
−
∫ 1

−1

√
1−u2B∗

m+s

(
u− t

2

)
du

and

FCG2
m+s (t,n) =

π
n+1

n

∑
k=1

sin2
(

kπ
n+1

)(
B∗

m+s

(
xk − t

2

)
−Bm+s

(
xk +1

2

))
−
∫ 1

−1

√
1−u2

(
B∗

m+s

(
u− t

2

)
−Bm+s

(
u+1

2

))
du.

These formulae are exact for all polynomials of degree ≤ m−1.

Proof. This is a special case of Corollary 8.1 for a = −1, b = 1, w(t) = 2
√

1−t2

π and
Ak = 2

n+1 sin2 ( kπ
n+1

)
. �

Theorem 8.7 Assume (p,q) is a pair of conjugate exponents, 1 ≤ p,q ≤ ∞. Let
f : [−1,1]→ R be such that f (m+s) ∈ Lp[−1,1] for some m+ s≥ 1. Then we have∣∣∣∣∣

∫ 1

−1

√
1− t2 f (t)dt − π

n+1

n

∑
k=1

sin2
(

kπ
n+1

)
f (xk)−TCG2

m+s ( f ,n)

∣∣∣∣∣
≤ π

2
Kn

(
m,s, p,

2
√

1− t2

π

)
· ‖ f (m+s)‖p (8.28)

and ∣∣∣∣∣
∫ 1

−1

√
1− t2 f (t)dt− π

n+1

n

∑
k=1

sin2
(

kπ
n+1

)
f (xk)−TCG2

m+s−1 ( f ,n)

∣∣∣∣∣
≤ π

2
K∗

n

(
m,s, p,

2
√

1− t2

π

)
· ‖ f (m+s)‖p. (8.29)
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The constants Kn

(
m,s, p, 2

√
1−t2

π

)
and K∗

n

(
m,s, p, 2

√
1−t2

π

)
are sharp for 1 < p≤∞ and

the best possible for p = 1.

Proof. This is a special case of Theorem 8.3 for a = −1, b = 1, w(t) = 2
√

1−t2

π and
Ak = 2

n+1 sin2 ( kπ
n+1

)
. �

Remark 8.7 For n = 1 and x1 = 0 we get one-point Chebyshev-Gauss formulae of second
kind of Euler type∫ 1

−1

√
1− t2 f (t)dt =

π
2

f (0)+TCG2
m+s ( f ,1)+

2m+s−1

(m+ s)!

∫ 1

−1
GCG2

m+s(t,1)d f (m+s−1)(t)

and∫ 1

−1

√
1− t2 f (t)dt =

π
2

f (0)+TCG2
m+s−1( f ,1)+

2m+s−1

(m+ s)!

∫ 1

−1
FCG2

m+s (t,1)d f (m+s−1)(t).

Specially for m = 1 and s = 0 we get

GCG2
1 (t,1) = FCG2

1 (t,1) =
{− π

4 − 1
2 (t

√
1− t2 + arcsint), −1 ≤ t ≤ 0,

π
4 − 1

2(t
√

1− t2 + arcsint), 0 < t ≤ 1.

Now, inequalities (8.28) and (8.29) reduce to∣∣∣∣∫ 1

−1

√
1− t2 f (t)dt− π

2
f (0)

∣∣∣∣≤ π
2

K1

(
1,0, p,

2
√

1− t2

π

)
· ‖ f ′‖p

and ∣∣∣∣∫ 1

−1

√
1− t2 f (t)dt− π

2
f (0)

∣∣∣∣≤ π
2

K∗
1

(
1,0, p,

2
√

1− t2

π

)
· ‖ f ′‖p,

where K1

(
1,0,∞, 2

√
1−t2

π

)
= K∗

1

(
1,0,∞, 2

√
1−t2

π

)
= 4

3π , K1

(
1,0,2, 2

√
1−t2

π

)
=

K∗
1

(
1,0,2, 2

√
1−t2

π

)
≈ 1.15946

π and K1

(
1,0,1, 2

√
1−t2

π

)
= K∗

1

(
1,0,1, 2

√
1−t2

π

)
= 1

2 .

The first and the third constant have also been obtained in [77].
If the presumptions of the Theorem 8.2 hold, for m = 2 and s = 0 we get∫ 1

−1

√
1− t2 f (t)dt =

π
2

f (0)+
π
16

f ′′ (η) , η ∈ (−1,1) , (8.30)

which is the well known one-point Chebyshev-Gauss formula of the second kind.

Remark 8.8 For n = 2, x1 =− 1
2 and x2 = 1

2 we get two-point Chebyshev-Gauss formulae
of the second kind of Euler type∫ 1

−1

√
1− t2 f (t)dt =

π
4

[
f

(
−1

2

)
+ f

(
1
2

)]
+TCG2

m+s ( f ,2)+
2m+s−1

(m+ s)!

∫ 1

−1
GCG2

m+s(t,2)d f (m+s−1)(t)
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and∫ 1

−1

√
1− t2 f (t)dt =

π
4

[
f

(
−1

2

)
+ f

(
1
2

)]
+TCG2

m+s−1( f ,2)+
2m+s−1

(m+ s)!

∫ 1

−1
FCG2

m+s (t,2)d f (m+s−1)(t).

Specially for m1 < 4 and s = 0 inequalities (8.28) and (8.29) reduce to∣∣∣∣∫ 1

−1

√
1− t2 f (t)dt− π

4

[
f

(
−1

2

)
+ f

(
1
2

)]∣∣∣∣≤ π
2

K2

(
m1,0, p,

2
√

1− t2

π

)
· ‖ f (m1)‖p,

∣∣∣∣∫ 1

−1

√
1− t2 f (t)dt− π

4

[
f

(
−1

2

)
+ f

(
1
2

)]∣∣∣∣≤ π
2

K∗
2

(
m1,0, p,

2
√

1− t2

π

)
· ‖ f (m1)‖p,

where

K2

(
1,0,∞, 2

√
1−t2

π

)
= K∗

2

(
1,0,∞, 2

√
1−t2

π

)
≈ 0.741144

π ,

K2

(
1,0,2, 2

√
1−t2

π

)
= K∗

2

(
1,0,2, 2

√
1−t2

π

)
≈ 0.643534

π ,

K2

(
1,0,1, 2

√
1−t2

π

)
= K∗

2

(
1,0,1, 2

√
1−t2

π

)
≈ 0.95661

π ,

K2

(
2,0,∞, 2

√
1−t2

π

)
= K∗

2

(
2,0,∞, 2

√
1−t2

π

)
≈ 0.109429

π ,

K2

(
2,0,2, 2

√
1−t2

π

)
= K∗

2

(
2,0,2, 2

√
1−t2

π

)
≈ 0.0968132

π ,

K2

(
2,0,1, 2

√
1−t2

π

)
= K∗

2

(
2,0,1, 2

√
1−t2

π

)
≈ 0.1259202

π ,

K2

(
3,0,∞, 2

√
1−t2

π

)
= K∗

2

(
3,0,∞, 2

√
1−t2

π

)
≈ 0.023439

π ,

K2

(
3,0,2, 2

√
1−t2

π

)
= K∗

2

(
3,0,2, 2

√
1−t2

π

)
≈ 0.0218954

π ,

K2

(
3,0,1, 2

√
1−t2

π

)
= K∗

2

(
3,0,1, 2

√
1−t2

π

)
≈ 0.0273572

π .

The constants K2

(
1,0,∞, 2

√
1−t2

π

)
, K2

(
1,0,1, 2

√
1−t2

π

)
and K2

(
2,0,1, 2

√
1−t2

π

)
have

also been obtained in [77].
If the presumptions of the Theorem 8.2 hold, for m = 4 and s = 0 we get∫ 1

−1

√
1− t2 f (t)dt =

π
4

[
f

(
−1

2

)
+ f

(
1
2

)]
+

π
768

f (4) (η) , η ∈ (−1,1) , (8.31)

which is the well known two-point Chebyshev-Gauss formula of the second kind.

Remark 8.9 For n = 3, x1 = −
√

2
2 ,x2 = 0 and x3 =

√
2

2 we get three-point Chebyshev-
Gauss formulae of second kind of Euler type∫ 1

−1

√
1− t2 f (t)dt =

π
8

[
f

(
−
√

2
2

)
+2 f (0)+ f

(√
2

2

)]
+TCG2

m+s ( f ,3)
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+
2m+s−1

(m+ s)!

∫ 1

−1
GCG2

m+s(t,3)d f (m+s−1)(t)

and ∫ 1

−1

√
1− t2 f (t)dt =

π
8

[
f

(
−
√

2
2

)
+2 f (0)+ f

(√
2

2

)]
+TCG2

m+s−1( f ,3)

+
2m+s−1

(m+ s)!

∫ 1

−1
FCG2

m+s (t,3)d f (m+s−1)(t).

Specially for m1 < 6 and s = 0 inequalities (8.28) and (8.29) reduce to∣∣∣∣∣
∫ 1

−1

√
1− t2 f (t)dt− π

8

[
f

(
−
√

2
2

)
+2 f (0)+ f

(√
2

2

)]∣∣∣∣∣
≤ π

2
K3

(
m1,0, p,

2
√

1− t2

π

)
· ‖ f (m1)‖p,

∣∣∣∣∣
∫ 1

−1

√
1− t2 f (t)dt− π

8

[
f

(
−
√

2
2

)
+2 f (0)+ f

(√
2

2

)]∣∣∣∣∣
≤ π

2
K∗

3

(
m1,0, p,

2
√

1− t2

π

)
· ‖ f (m1)‖p,

where

K3

(
1,0,∞, 2

√
1−t2

π

)
= K∗

3

(
1,0,∞, 2

√
1−t2

π

)
≈ 0.53833976

π ,

K3

(
1,0,2, 2

√
1−t2

π

)
= K∗

3

(
1,0,2, 2

√
1−t2

π

)
≈ 0.478324

π ,

K3

(
1,0,1, 2

√
1−t2

π

)
= K∗

3

(
1,0,1, 2

√
1−t2

π

)
=

1
4
,

K3

(
2,0,∞, 2

√
1−t2

π

)
= K∗

3

(
2,0,∞, 2

√
1−t2

π

)
≈ 0.053417328

π ,

K3

(
2,0,2, 2

√
1−t2

π

)
= K∗

3

(
2,0,2, 2

√
1−t2

π

)
≈ 0.0493938

π ,

K3

(
2,0,1, 2

√
1−t2

π

)
= K∗

3

(
2,0,1, 2

√
1−t2

π

)
≈ 0.111306298

π ,

K3

(
3,0,∞, 2

√
1−t2

π

)
= K∗

3

(
3,0,∞, 2

√
1−t2

π

)
≈ 0.007288942

π ,

K3

(
3,0,2, 2

√
1−t2

π

)
= K∗

3

(
3,0,2, 2

√
1−t2

π

)
≈ 0.0067384

π ,

K3

(
3,0,1, 2

√
1−t2

π

)
= K∗

3

(
3,0,1, 2

√
1−t2

π

)
≈ 0.00925848

π ,

K3

(
4,0,∞, 2

√
1−t2

π

)
= K∗

3

(
4,0,∞, 2

√
1−t2

π

)
≈ 0.001123902

π ,
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K3

(
4,0,2, 2

√
1−t2

π

)
= K∗

3

(
4,0,2, 2

√
1−t2

π

)
≈ 0.001081414

π ,

K3

(
4,0,1, 2

√
1−t2

π

)
= K∗

3

(
4,0,1, 2

√
1−t2

π

)
≈ 0.001835586

π ,

K3

(
5,0,∞,

2
√

1−t2

π

)
= K∗

3

(
5,0,∞,

2
√

1−t2

π

)
≈ 0.00022568

π ,

K3

(
5,0,2, 2

√
1−t2

π

)
= K∗

3

(
5,0,2, 2

√
1−t2

π

)
≈ 0.000218644

π ,

K3

(
5,0,1, 2

√
1−t2

π

)
= K∗

3

(
5,0,1, 2

√
1−t2

π

)
≈ 0.000280976

π .

The constants for p = ∞ and p = 1 were obtained in [78].
If the presumptions of the Theorem 8.2 hold, for m = 6 and s = 0 we get

∫ 1

−1

√
1− t2 f (t)dt =

π
8

[
f

(
−
√

2
2

)
+2 f (0)+ f

(√
2

2

)]
+

π
92160

f (6) (η) , (8.32)

which is the well known three-point Chebyshev-Gauss formula of the second kind.



Addendum

Iyengar’s inequality

8.5.1 Weighted generalizations of Iyengar type inequalities

In 1938. K.S.K.Iyengar proved the following inequality (see [74]):

Theorem 8.8 Let f be a differentiable function on [a,b] and | f ′(x)| ≤ M. Then∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ M(b−a)
4

− ( f (b)− f (a))2

4M(b−a)
. (1)

Inequality (1) can be written in a form:∣∣∣∣A( f ;1)− f (a)+ f (b)
2

∣∣∣∣≤ M(b−a)
4

(1−q2), (2)

where

A( f ;w) =
∫ b
a w(x) f (x)dx∫ b

a w(x)dx
(3)

and

q =
| f (b)− f (a)|

M(b−a)
. (4)

In [89], G.Milovanović generalized Theorem 8.8. He proved the following:

Theorem 8.9 Let f be such that f ∈ LipM
1, let w be an integrable function on (a,b) and

let there exist λ ≥ 1 such that 0 < c ≤ w(x) ≤ λc for each x ∈ [a,b]. Then∣∣∣∣A( f ;w)− 1
2
( f (a)+ f (b))

∣∣∣∣≤ M(b−a)
2

· (λ +q)(1−q2)+2(λ −1)q
2λ (1+q)− (λ −1)(1+q2)

(5)

where A( f ;w) and q are defined by (3) and (4), respectively.

1Recall that for a function f defined on an interval [a,b], we write f ∈ LipM(α) with M > 0 and 0 < α ≤ 1
and say that f satisfies a Lipschitz condition of order α with the Lipschitz constant M, if

| f (t2)− f (t1)| ≤ M|t2 − t1|α , f or each t1,t2 ∈ [a,b].

For notational convenience, the class LipM(1) is denoted simply LipM .

293
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Upon taking w(x) = 1(⇒ λ = 1), (5) reduces to (2).
In [90], G.V.Milovanović and J.Pečarić proved another generalization of Iyengar’s in-

equality.

Theorem 8.10 Let function f : [a,b]→ R satisfy the following conditions:

1◦ f (n−1) ∈ LipM(α)

2◦ f (k)(a) = f (k)(b) = 0, k = 1,2, . . . ,n−1 (n ∈ N).

Then we have∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− 1

2
( f (a)+ f (b))

∣∣∣∣
≤ M(b−a)α+n−1

(α +n)(n)

{
ζ α+n−1− q

2
[1+(α +n−1)(2ζ −1)]

}
(6)

where ζ is the real root of the equation

ζ α+n−1− (1− ζ )α+n−1 = q,

q =
(α +n−1)(n−1)

M(b−a)α+n−1 | f (b)− f (a)|, p(n) = p(p−1) . . .(p−n+1). (7)

Taking α = 1 and n = 1 in (6), produces Iyengar’s inequality (1).
For α = 1 and n = 2, inequality (6) reduces to∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− 1

2
( f (a)+ f (b))

∣∣∣∣≤ M(b−a)2

24
− 1

2M

(
f (b)− f (a)

b−a

)2

. (8)

This inequality is called the Milovanović - Pečarić inequality.
The weighted version of Theorem 8.10 was given in [57] by Franjić, Pečarić and Perić.

Theorem 8.11 Let function f : [a,b]→ R satisfy the following conditions:

1◦ f (n−1) ∈ LipM(α)

2◦ f (k)(a) = f (k)(b) = 0, k = 1,2, . . . ,n−1 (n ∈ N).

Let w be a non-negative and integrable function on [a,b]. Then we have∣∣∣∣∫ b

a
f (x)w(x)dx− 1

2
( f (a)+ f (b))

∫ b

a
w(x)dx

+
1
4

∫ b

a
(| f (b)− f (a)−G(x)+F(x)|− | f (b)− f (a)+G(x)−F(x)|)w(x)dx

∣∣∣∣
≤ 1

2

(∫ b

a

(
F(x)+G(x)

)
w(x)dx− 1

2

∫ b

a

(
| f (b)− f (a)−G(x)+F(x)|

+| f (b)− f (a)+G(x)−F(x)|
)
w(x)dx

)
(9)
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where

F(x) = M
(x−a)α+n−1

(α +n−1)(n−1) , G(x) = M
(b− x)α+n−1

(α +n−1)(n−1) . (10)

Proof. From condition 1◦ it follows:

−M(x−a)α ≤ f (n−1)(x)− f (n−1)(a) ≤ M(x−a)α ,

−M(b− x)α ≤ f (n−1)(b)− f (n−1)(x) ≤ M(b− x)α .

Using condition 2◦ and (n− 1)-times successive integration of these two inequalities
on (a,x) and (x,b), respectively, we get

f (a)−M
(x−a)α+n−1

(α +n−1)(n−1) ≤ f (x) ≤ f (a)+M
(x−a)α+n−1

(α +n−1)(n−1) ,

f (b)−M
(b− x)α+n−1

(α +n−1)(n−1) ≤ f (x) ≤ f (b)+M
(b− x)α+n−1

(α +n−1)(n−1) . (11)

Introducing notation from (10), we conclude

max{ f (a)−F(x), f (b)−G(x)} ≤ f (x) ≤ min{ f (a)+F(x), f (b)+G(x)}. (12)

It is easy to check that for each α,β ∈ R we have:

min{α,β} =
1
2
(α + β −|β −α|), max{α,β} =

1
2
(α + β + |β −α|). (13)

Applying (13) to (12) gives

1
2

(
−F(x)−G(x)+ | f (b)−G(x)− f (a)+F(x)|

)
≤ f (x)− 1

2

(
f (a)+ f (b)

)
≤ 1

2

(
F(x)+G(x)−| f (b)+G(x)− f (a)−F(x)|

)
. (14)

Now, multiply (14) by w(x) and then integrate over (a,b). We get:

−1
2

∫ b

a

(
F(x)+G(x)

)
w(x)dx+

1
2

∫ b

a
| f (b)− f (a)−G(x)+F(x)|w(x)dx

≤
∫ b

a
f (x)w(x)dx− 1

2

(
f (a)+ f (b)

)∫ b

a
w(x)dx (15)

≤ 1
2

∫ b

a

(
F(x)+G(x)

)
w(x)dx− 1

2

∫ b

a
| f (b)− f (a)+G(x)−F(x)|w(x)dx.

Applying

A ≤ B ≤C ⇔
∣∣∣∣B−C+A

2

∣∣∣∣≤ C−A
2

(16)

to (15) produces (9). Thus, the proof is complete. �
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Corollary 8.2 Let the assumptions of Theorem 8.11 be valid. Let function w be symmetric
about the mid-point a+b

2 , i.e. let w(x) = w(a+b− x) for every x ∈ [a, a+b
2 ]. Then we have∣∣∣∣∫ b

a
f (x)w(x)dx− f (a)+ f (b)

2

∫ b

a
w(x)dx

∣∣∣∣ (17)

≤
∫ b

a
F(x)w(x)dx− 1

2

∫ b

a
| f (b)− f (a)+G(x)−F(x)|w(x)dx

where F(x) and G(x) are defined by (10).

Proof. First, note that

F(a+b− x) = M
(a+b− x−a)α+n−1

(α +n−1)(n−1) = G(x),

G(a+b− x) = M
(b−a−b+ x)α+n−1

(α +n−1)(n−1) = F(x). (18)

Now, using the substitution x = a+ b− t, the symmetric-property of function w, together
with (18), from the left-hand side of (15) we get

−1
2

∫ b

a

(
F(x)+G(x)

)
w(x)dx+

1
2

∫ b

a
| f (b)− f (a)−G(x)+F(x)|w(x)dx

= −
∫ b

a
F(x)w(x)dx+

1
2

∫ b

a
| f (b)− f (a)−F(t)+G(t)|w(t)dt

which is equal to the negative value of the right-hand side of (15). Therefore, (17) is
proved. �

Remark 8.10 Taking w(x) = 1 in Corollary 8.2, produces Theorem 8.10.

For the proof of the next corollary (which generalizes Theorem 8.9), we need the fol-
lowing result (cf. [101]).

Theorem 8.12 Let f be an integrable function on (a,b) and m ≤ f (x) ≤ M for each
x ∈ (a,b). Let w be an integrable function on (a,b) and let there exist λ ≥ 1 such that
0 < c ≤ w(x) ≤ λc for each x ∈ [a,b]. Then

λm(M− μ)+M(μ −m)
λ (M− μ)+ (μ −m)

≤ A( f ;w) ≤ m(M− μ)+ λM(μ −m)
(M− μ)+ λ (μ −m)

(19)

where A( f ,w) is defined by (3) and μ = 1
b−a

∫ b
a f (t)dt.

Corollary 8.3 Let the assumptions of Corollary 8.2 be valid and let there exist λ ≥ 1
such that 0 < c ≤ w(x) ≤ λc for each x ∈ [a,b]. Then∣∣∣∣A( f ;w)− 1

2
( f (a)+ f (b))

∣∣∣∣ (20)

≤ F(b)
2

[
(α +n)(1−λ )+ λ2α+n−1−2

(α +n)(2α+n−2−λ )+2α+n−1(λ −1)
− (q+1)μ

F(b)λ (q+1)− (λ −1)μ

]
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where F(x) and G(x) are defined in (10), q =
| f (b)− f (a)|

F(b)
,

ζ is the real root of the equation ζ α+n−1− (1− ζ )α+n−1 = q,

and μ =
2F(b)
α +n

(
1− ζ α+n−1 +

q
2

[1+(α +n−1)(2ζ −1)]
)
.

Proof. We start from (17). Using the symmetric property of function w and (18), write it
in a form∣∣∣∣∫ b

a
f (x)w(x)dx− f (a)+ f (b)

2

∫ b

a
w(x)dx

∣∣∣∣
≤ 1

2

∫ b

a
[F(x)+G(x)]w(x)dx− 1

2

∫ b

a
| f (b)− f (a)+G(x)−F(x)|w(x)dx

and then divide it by
∫ b
a w(x)dx. It follows∣∣∣∣A( f ;w)− f (a)+ f (b)

2

∣∣∣∣
≤ 1

2

∫ b
a [F(x)+G(x)]w(x)dx∫ b

a w(x)dx
− 1

2

∫ b
a | f (b)− f (a)+G(x)−F(x)|w(x)dx∫ b

a w(x)dx
.

Set

B =
∫ b
a [F(x)+G(x)]w(x)dx∫ b

a w(x)dx
.

We have
4F(b)
2α+n ≤ F(x)+G(x) ≤ F(b), x ∈ [a,b]

and

μ =
1

b−a

∫ b

a
(F(x)+G(x))dx =

2F(b)
α +n

.

Now we can apply (the right side of) (19). We get:

B ≤ F(b)
[

4
2α+n

(
1− 2

α+n

)
+ λ

(
2

α+n − 4
2α+n

)](
1− 2

α+n

)
+ λ

(
2

α+n − 4
2α+n

)
= F(b)

(α +n)(1−λ )+ λ2α+n−1−2
(α +n)(2α+n−2−λ )+2α+n−1(λ −1)

. (21)

Similarly, for

C =
∫ b
a | f (b)− f (a)+G(x)−F(x)|w(x)dx∫ b

a w(x)dx
,

applying the left side of (19) we get

C ≥ (| f (b)− f (a)|+F(b))μ
λ (| f (b)− f (a)|+F(b))− (λ −1)μ

=
F(b)(q+1)μ

F(b)λ (q+1)− (λ −1)μ
. (22)
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Namely, we have

0 ≤ | f (b)− f (a)+G(x)−F(x)| ≤ | f (b)− f (a)|+F(b) = F(b)(1+q)

and

μ =
1

b−a

∫ b

a
| f (b)− f (a)+G(x)−F(x)|dx

= F(b)
∫ 1

0

∣∣q+(1− t)α+n+1− tα+n+1
∣∣dt.

From (11) it follows that |q| ≤ 1. On the other hand, function

h(t) = tα+n+1− (1− t)α+n+1

is strictly increasing and h(0) = −1, h(1) = 1. Therefrom we conclude there exists a real
zero ζ ∈ [0,1] of the integrand. Simple calculation now gives

μ =
2F(b)
α +n

(
1− ζ α+n−1 +

q
2

[1+(α +n−1)(2ζ −1)]
)

.

Our statement now follows from (21) and (22). �

Remark 8.11 Taking w(x) = 1 in Corollary 8.3, produces Theorem 8.10 again.

Remark 8.12 It should be noted that the first expression on the right side of (20) is of
the indeterminate form ( 0

0 ) for n = 1 and α = 1, but the limit of that expression, as α +n
approaches 2, is equal to 1, so this Corollary really is a generalization of Theorem 8.9.

8.5.2 Improvements of the Milovanović - Pečarić inequality

Yet another generalization of Iyengar’s inequality was given in [68] by A.Guessab and
G.Schmeisser. They studied, for each real number x ∈ [a, 1

2(a + b)], the more general
quadrature formula

1
b−a

∫ b

a
f (t)dt =

1
2

( f (x)+ f (a+b− x))+E( f ;x), (23)

with E( f ;x) being the remainder. Before their main result is stated, a remark is needed.

Remark 8.13 Let f ∈ LipM and suppose that the graph of f passes through the point
(ξ ,η). Then from

| f (t)− f (ξ )| ≤ M|t − ξ |
it follows

ϕ(ξ ,η ;t) := η −M|t− ξ | ≤ f (t) ≤ η +M|t− ξ |=: ψ(ξ ,η ; t). (24)
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The functions ϕ(ξ ,η ;t) and ψ(ξ ,η ;t) themselves belong to LipM . Moreover, if we know
k points (ξ1,η1),(ξ2,η2), . . . ,(ξk,ηk) on the graph of f , then the estimate (24) can be
refined. In fact, defining

ϕ(t) := max
1≤ j≤k

ϕ(ξ j,η j;t) and ψ(t) := min
1≤ j≤k

ψ(ξ j,η j; t)

we have
ϕ(t) ≤ f (t) ≤ ψ(t)

and again ϕ ,ψ ∈ LipM .

Theorem 8.13 Let f be a function defined on [a,b] and belonging to LipM. Then, for
each x ∈ [a, 1

2 (a+b)], the remainder in (23) satisfies:

|E( f ;x)| ≤ M
4
· (2x−2a)2 +(a+b−2x)2

b−a
− ( f (a+b− x)− f (x))2

4M(b−a)
. (25)

This inequality is sharp for each admissible x. Equality is attained if and only if f =
±M f∗(δ ; ·)+ c (c ∈ R) and

f∗(δ ;t) :=

⎧⎪⎪⎨⎪⎪⎩
x− t a ≤ t ≤ x
t− x, x ≤ t ≤ 1

2 (a+b+ δ )
a+b− x− t+ δ , 1

2 (a+b+ δ )≤ t ≤ a+b− x
t−a−b+ x+ δ , a+b− x≤ t ≤ b,

(26)

where δ ∈ R is any real number satisfying |δ | ≤ a+b−2x.

Proof. Let u,v ∈ R. Denote by FM(u,v) the class of all functions which belong to LipM

on [a,b] and satisfy f (x) = u and f (a+b− x) = v. In view of Remark 8.13 with k = 2, we
have

max{u−M|t− x|,v−M|t−a−b+ x|}
≤ f (t) ≤ min{u+M|t− x|,v+M|t−a−b+ x|}.

To shorten notation put

max{ϕ1(t),ϕ2(t)} ≤ f (t) ≤ min{ψ1(t),ψ2(t)}.

The assumption f ∈ LipM yields

|u− v| ≤ M|2x−a−b|= M(a+b−2x)

and therefrom

−M(a+b−2x)−M|t− x|+M|t−a−b+ x|
≤ u−M|t− x|− v+M|t−a−b+ x|
≤ M(a+b−2x)−M|t− x|+M|t−a−b+ x|



300 8 ADDENDUM

The middle part is equal to ϕ1(t)−ϕ2(t), so

ϕ1(t) ≥ ϕ2(t), t ∈
[
a,

1
2

(
a+b+

u− v
M

)]
,

while

ϕ1(t) ≤ ϕ2(t), t ∈
[
1
2

(
a+b+

u− v
M

)
, b

]
.

Further, note that

v−M|t−a−b+ x|= u−M f∗
(

u− v
M

;t

)
, x ∈

[
1
2

(
a+b+

u− v
M

)
,b

]
where f∗ is as in (26).

We conclude that

ϕ(t) = max{ϕ1(t),ϕ2(t)} = u−M f∗
(

u− v
M

; t

)
, t ∈ [a,b]

and analogously,

ψ(t) = min{ψ1(t),ψ2(t)} = u+M f∗
(

v−u
M

; t

)
, t ∈ [a,b].

Thus, we have proved that for every f ∈ FM(u,v) we have ϕ(t) ≤ f (t) ≤ ψ(t). Func-
tions ϕ and ψ are both in FM(u,v).

Now

|E( f ;x)| =
∣∣∣∣ 1
b−a

∫ b

a
f (t)dt − u+ v

2

∣∣∣∣
≤ sup

g∈FM(u,v)

∣∣∣∣ 1
b−a

∫ b

a
g(t)dt− u+ v

2

∣∣∣∣
= max{|E(ϕ ;x), |E(ψ ;x)|}.

and also

|E(ϕ ;x)| = |E(ψ ;x)|

=
M[(2x−2a)2 +(a+b−2x)2]

4(b−a)
− (u− v)2

4M(b−a)

which proves (25), as well as the sharpness. �

Remark 8.14 Note that from Theorem 8.13 for x = a, we obtain the conclusion of The-
orem 8.8 under a weaker hypothesis.
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Next, we give an alternative proof of Theorem 8.13 which was published in [57] by
I.Franjić, J.Pečarić and I.Perić. First, notice that

b−a
2

( f (x)+ f (a+b− x)) (27)

= (x−a) f (x)+
a+b−2x

2
( f (x)+ f (a+b− x))+ (x−a) f (a+b− x).

The idea is to apply Ostrowski’s inequality to the first and the last expression on the right-
hand side and Iyengar’s inequality to the middle one.

The well-known Ostrowski’s inequality (cf. [96]) states that for a differentiable func-
tion f on (a,b) such that | f ′(x)| ≤ M for each x ∈ (a,b), we have∣∣∣∣ 1

b−a

∫ b

a
f (x)dx− f (x)

∣∣∣∣≤ M(b−a)

(
1
4

+

(
x− a+b

2

)2
(b−a)2

)
, x ∈ (a,b) (28)

Now,

|(b−a)E( f ;x)| =
∣∣∣∣∫ b

a
f (t)dt − b−a

2
( f (x)+ f (a+b− x))

∣∣∣∣
≤
∣∣∣∣(x−a) f (x)−

∫ x

a
f (t)dt

∣∣∣∣
+
∣∣∣∣a+b−2x

2
( f (x)+ f (a+b− x))−

∫ a+b−x

x
f (t)dt

∣∣∣∣
+
∣∣∣∣(x−a) f (a+b− x)−

∫ b

a+b−x
f (t)dt

∣∣∣∣
≤ M(x−a)2

(
1
4

+

(
x− a+x

2

)2
(x−a)2

)

+
M
4

(a+b−2x)2− 1
4M

( f (a+b− x)− f (x))2

+ M(b−a−b+ x)2

(
1
4

+

(
a+b− x− a+b−x+b

2

)2
(b−a−b+ x)2

)

=
M
4
· (2x−2a)2 +(a+b−2x)2

b−a
− ( f (a+b− x)− f (x))2

4M(b−a)

which is exactly (25).
Applying this technique of proof, the same authors gave the weighted generalization of

the inequality (25) for the class of functions whose derivatives are in LipM(α). Of course,
the weighted generalization of Ostrowski’s inequality is needed in this case. It was given
by Matić, Pečarić and Ujević in [85]:

Theorem 8.14 Assume f (n) exists for each t ∈ [a,b] while n ∈ N ∪ {0}. Let f (n) ∈
LipM(α) and let w be a non-negative and integrable function on [a,b]. Then, for x ∈ [a,b],
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we have ∣∣∣∣∣
∫ b

a
f (t)w(t)dt −

n

∑
j=0

f ( j)(x)
j!

∫ b

a
(t− x) jw(t)dt

∣∣∣∣∣
≤ M

Γ(α +1)
Γ(α +n+1)

∫ b

a
|t− x|α+nw(t)dt, (29)

where Γ is the standard Gamma function.

For w(x) = 1, (29) reduces to∣∣∣∣∣
∫ b

a
f (t)dt −

n

∑
j=0

f ( j)(x)
( j +1)!

[
(b− x) j+1− (a− x) j+1]∣∣∣∣∣

≤ MΓ(α +1)
Γ(α +n+2)

[
(b− x) j+1 +(x−a) j+1] . (30)

Now everything is set for:

Theorem 8.15 Let function f : [a,b]→ R satisfy the following conditions:

1◦ f (n−1) ∈ LipM(α)

2◦ f (k)(x) = f (k)(a+b− x) = 0, x ∈
[
a,

a+b
2

]
, k = 1,2, . . . ,n−1.

Let w be a non-negative and integrable function on [a,b] and such that w(x) = w(a+b−x),
for each x ∈ [a, a+b

2

]
. Then we have∣∣∣∣∫ b

a
f (t)w(t)dt − 1

2
( f (x)+ f (a+b− x))

∫ b

a
w(t)dt

∣∣∣∣
≤
∫ a+b−x

x
F(t)w(t)dt− 1

2

∫ a+b−x

x
| f (a+b− x)− f (x)+G(t)−F(t)|w(t)dt

+
2M

(α +n−1)(n−1)

∫ x

a
|t− x|α+n−1w(t)dt (31)

where

F(t) = M
(t− x)α+n−1

(α +n−1)(n−1) , G(t) = M
(a+b− x− t)α+n−1

(α +n−1)(n−1) .

Proof. We start from the left side of (31)

I =
∣∣∣∣∫ b

a
f (t)w(t)dt − 1

2
( f (x)+ f (a+b− x))

∫ b

a
w(t)dt

∣∣∣∣
=
∣∣∣∣∫ a+b−x

x
f (t)w(t)dt − 1

2
( f (x)+ f (a+b− x))

∫ a+b−x

x
w(t)dt

+
∫ x

a
f (t)w(t)dt +

∫ b

a+b−x
f (t)w(t)dt

− 1
2
( f (x)+ f (a+b− x))

(∫ x

a
w(t)dt +

∫ b

a+b−x
w(t)dt

)∣∣∣∣ .
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Function w is symmetric about the midpoint so we have∫ x

a
w(t)dt =

∫ b

a+b−x
w(t)dt.

Therefore

I =
∣∣∣∣∫ a+b−x

x
f (t)w(t)dt − 1

2
( f (x)+ f (a+b− x))

∫ a+b−x

x
w(t)dt

+
∫ x

a
f (t)w(t)dt +

∫ b

a+b−x
f (t)w(t)dt − ( f (x)+ f (a+b− x))

∫ x

a
w(t)dt

∣∣∣∣
≤
∣∣∣∣∫ a+b−x

x
f (t)w(t)dt − 1

2
( f (x)+ f (a+b− x))

∫ a+b−x

x
w(t)dt

∣∣∣∣
+
∣∣∣∣∫ x

a
f (t)w(t)dt − f (x)

∫ x

a
w(t)dt

∣∣∣∣
+
∣∣∣∣∫ b

a+b−x
f (t)w(t)dt − f (a+b− x)

∫ b

a+b−x
w(t)dt

∣∣∣∣ .
Now, apply the weighted generalization of Iyengar’s inequality (17) to the first expression
on the right side and the weighted generalization of Ostrowski’s inequality (29) to the
second and the third. It follows

I ≤
∫ a+b−x

x
F(t)w(t)dt − 1

2

∫ a+b−x

x
| f (a+b− x)− f (x)+G(t)−F(t)|w(t)dt

+ M
Γ(α +1)
Γ(α +n)

∫ x

a
|t− x|α+n−1w(t)dt

+ M
Γ(α +1)
Γ(α +n)

∫ b

a+b−x
|t− (a+b− x)|α+n−1w(t)dt.

Using the symmetric property of function w, it is easy to check that the second and the
third expression on the right side are equal and thus inequality (31) is proved. �

Corollary 8.4 Let function f satisfy the assumptions of Theorem 8.15. Then we have

|E( f ;x)| ≤ M

(b−a)(α +n)(n)

[
2(x−a)α+n (32)

+ (a+b−2x)α+n
(

ζ α+n−1− q
2

[1+(α +n−1)(2ζ −1)]
)]

where ζ is defined as in Theorem 8.10.

Proof. Statement follows from Theorem 8.15 by taking w(x) = 1. It can, of course, be
proved directly, using the same idea and applying inequalities (6) and (30). �

Remark 8.15 Taking n = 1 and α = 1 in Corollary 8.4 produces Theorem 8.13.
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If we weaken the condition f (n−1) ∈ LipM(α) to f (n−1) being continuous and satisfying

| f (n−1)(t1)− f (n−1)(t2)| ≤ M1|t1 − t2|α , t1,t2 ∈ [a,x]

| f (n−1)(t1)− f (n−1)(t2)| ≤ M2|t1 − t2|α , t1,t2 ∈ [x,a+b− x] (33)

| f (n−1)(t1)− f (n−1)(t2)| ≤ M3|t1 − t2|α , t1,t2 ∈ [a+b− x,b]

by an analogous proof we would get:∣∣∣∣∫ b

a
f (t)w(t)dt − 1

2
( f (x)+ f (a+b− x))

∫ b

a
w(t)dt

∣∣∣∣
≤
∫ a+b−x

x
F(t)w(t)dt− 1

2

∫ a+b−x

x
| f (a+b− x)− f (x)+G(t)−F(t)|w(t)dt

+
M1 +M3

(α +n−1)(n−1)

∫ x

a
|t− x|α+n−1w(t)dt (34)

where

F(t) = M2
(t− x)α+n−1

(α +n−1)(n−1) , G(t) = M2
(a+b− x− t)α+n−1

(α +n−1)(n−1) . (35)

Inequality (31) follows upon taking M1 = M2 = M3 and using concavity of function tα for
α ∈ (0,1].

Another interesting result from [68] is the following theorem.

Theorem 8.16 Let f be a differentiable function defined on [a,b] with f ′ ∈ LipM. Let
x ∈ [a, a+b

2

)
, and suppose that f ′(x) = f ′(a + b− x) = 0. Then the remainder in (23)

satisfies

|E( f ;x)| ≤ 1
b−a

[
M
3

(x−a)3 +
M
32

(a+b−2x)3− ( f (a+b− x)− f (x))2

2M(a+b−2x)

]
. (36)

The inequality is sharp for each x ∈ [a, a+b
2

)
. Equality is attained for

f (t) = ±M
∫

f ′∗(t)dt + c with c ∈ R and

f ′∗(t) :=

⎧⎨⎩
x− t, a ≤ t ≤ 1

4(a+b+2x)− δ =: x1

t− 1
2(a+b)+2δ , x1 ≤ t ≤ 1

4 (3a+3b−2x)− δ =: x2

a+b− x− t, x2 ≤ t ≤ b,

where δ ∈ R is any real number satisfying |δ | ≤ 1
4 (a+b−2x).

Proof. Denote by F ′
M(Δ) the class of all functions which are differentiable on [a,b] with

f ′ belonging LipM and which satsify

f (a+b− x)− f (x) = Δ and f ′(x) = f ′(a+b− x) = 0.

We want to determine for each x ∈ [a, a+b
2

)
the supremum od |E( f ;x)| over all f ∈

F ′
M(Δ). Using integration by parts, it is easy to check the following formula

E( f ;x) =
1

b−a

∫ b

a
K(t) f ′(t)dt,
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where

K(t) :=

⎧⎨⎩
a− t, a ≤ t ≤ x
1
2(a+b)− t, x < t ≤ a+b− x
b− t, a+b− x < t ≤ b.

Applying this yields
sup

f∈F ′
M(Δ)

|E( f ;x)| = S1 +S2 +S3, (37)

where

S1 = sup
f∈F ′

M(Δ)

∣∣∣∣ 1
b−a

∫ x

a
(a− t) f ′(t)dt

∣∣∣∣ ,
S2 = sup

f∈F ′
M(Δ)

∣∣∣∣ 1
b−a

∫ a+b−x

x

(
1
2
(a+b)− t

)
f ′(t)dt

∣∣∣∣ ,
S3 = sup

f∈F ′
M(Δ)

∣∣∣∣ 1
b−a

∫ b

a+b−x
(b− t) f ′(t)dt

∣∣∣∣ .
In view of Remark 8.13, it follows

S1 = S3 =
M

b−a

∫ x

a
(t−a)(x− t)dt =

M(x−a)3

6(b−a)
. (38)

What is left is to calculate S2. Use a substitution

t �→ x+
a+b−2x

2
(t +1)

and introduce the function

g(t) :=
2

M(a+b−2x)
· f ′
(

x+
a+b−2x

2
(t +1)

)
.

Now ∫ a+b−x

x

(
1
2
(a+b)− t

)
f ′(t)dt = −M

(
a+b−2x

2

)3 ∫ 1

−1
tg(t)dt.

The condition f ∈ F ′
M(Δ) implies that the function g is defined on [−1,1] and satisfies

g ∈ Lip1, g(−1) = g(1) = 0 and
∫ 1

−1
g(t)dt = D (39)

where

D :=
Δ
M

(
2

a+b−2x

)2

(40)

We can assume D is non-negative; otherwise, take −g instead of g. Furthermore, assume∫ 1
−1 tg(t)dt is non-negative; otherwise, replace g by g(−.), which is again a function satis-

fying (39). Now

S2 =
M

b−a

(
a+b−2x

2

)3

Ω, (41)

where Ω is the solution of the following optimization problem:
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Maximize Φ(g) :=
∫ 1

−1
tg(t)dt under the constraints (39).

The solution of this problem is the function (for details see [68])

G∗(t) =

⎧⎨⎩
−1− t, −1 ≤ t ≤− 1

2 (1+D)
t +D, − 1

2(1+D)≤ t ≤ 1
2 (1−D)

1− t, 1
2 (1−D)≤ t ≤ 1.

and the maximal value of this functional Φ is

Ω := Φ(G∗) =
1−D2

4
.

Now, combining (37)-(41), we readily obtain (36). Functions f for which equality is at-
tained are easily deduced from G∗. The proof is thus completed. �

Remark 8.16 For x = a, inequality (36) is obviously an improvement of inequality (8).

Though A.Guessab and G.Schmeisser proved Theorem 8.16 for x ∈ [a, 1
2(a+b)), it is

in fact enough to prove their statement for x = a. From that, the more general case when
x ∈ [a, 1

2 (a+b)) follows. So, suppose we have∣∣∣∣ 1
b−a

∫ b

a
f (t)dt − 1

2
( f (a)+ f (b))

∣∣∣∣≤ M
32

(b−a)2− ( f (b)− f (a))2

2M(b−a)2 . (42)

We will use, again, the same idea as in proof of Theorem 31, or more precisely, we will
now start from (29). To the middle part we apply (42):∣∣∣∣∫ a+b−x

x
f (t)dt− a+b−2x

2
( f (x)+ f (a+b− x))

∣∣∣∣
≤ M

32
(a+b−2x)3− ( f (a+b− x)− f (x))2

2M(a+b−2x)
. (43)

To the first and the last part, we apply (30) for n = 1 and α = 1. In that case (30) reduces
to ∣∣∣∣∫ b

a
f (t)dt − f (x)(b−a)− f ′(x)(b−a)(b+a−2x)

∣∣∣∣≤ M
2

∫ b

a
|t− x|2dt (44)

By assumption, function f satisfies f ′(x) = f ′(a+b− x) = 0, so from (44) follows∣∣∣∣∫ x

a
f (t)dt − (x−a) f (x)

∣∣∣∣≤ M
6

(x−a)3, (45)∣∣∣∣∫ b

a+b−x
f (t)dt − (x−a) f (a+b− x)

∣∣∣∣≤ M
6

(x−a)3. (46)

Addition of estimations (43), (45) and (46) produces (36).
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Once again, replacing condition f (n−1) ∈ LipM(α) with condition (33), gives us

|E( f ;x)| ≤ 1
b−a

[
M1 +M3

6
(x−a)3 +

M2

32
(a+b−2x)3− ( f (a+b− x)− f (x))2

2M2(a+b−2x)

]
.

Again, taking M1 = M2 = M3 produces (36).
We will finish this subsection with another generalization of Iyengar’s inequality, ob-

tained by X.L.Cheng and J.Sun in [18].

Theorem 8.17 Let f : I → R, I ⊆ R, be twice differentiable in the interior I◦ of I and let
a,b ∈ I◦, a < b. If | f ′′(x)| ≤ M for every x ∈ [a,b], then∣∣∣∣∫ b

a
f (x)dx− 1

2
(b−a)( f (a)+ f (b))+

1
8
(b−a)2( f ′(b)− f ′(a))

∣∣∣∣
≤ M

24
(b−a)3−

√
|Δ|3(b−a)3

72M
, (47)

where

Δ = f ′(a)−2
f (b)− f (a)

b−a
+ f ′(b). (48)

Proof. Denote

Jf =
∫ b

a
f (x)dx− 1

2
(b−a)( f (a)+ f (b))+

1
8
(b−a)2( f ′(b)− f ′(a)).

It is easy to see that

Jf =
1
2

∫ b

a

(
x− a+b

2

)2

f ′′(x)dx

and

Δ =
2

b−a

∫ b

a

(
x− a+b

2

)
f ′′(x)dx. (49)

Now, for any ε such that |ε| ≤ 1
8 we have

Jf + ε(b−a)2Δ =
∫ b

a

[
1
2

(
x− a+b

2

)2

+2ε(b−a)
(

x− a+b
2

)]
f ′′(x)dx

≤ M(b−a)3F(ε), (50)

where

F(ε) =
1

(b−a)3

∫ b

a

∣∣∣∣∣12
(

x− a+b
2

)2

+2ε(b−a)
(

x− a+b
2

)∣∣∣∣∣dx

=
∫ 1

0

∣∣∣∣∣12
(

x− 1
2

)2

+2ε
(

x− 1
2

)∣∣∣∣∣dx.



308 8 ADDENDUM

The zeros of the integrands are x1 = 1/2 and x2 = 1/2− 4ε , so 0 ≤ x2 ≤ 1/2 when
0 ≤ ε ≤ 1/8, while 1/2 ≤ x2 ≤ 1 when −1/8 ≤ ε ≤ 0. Thus, for 0 ≤ ε ≤ 1

8 :

F(ε) =
∫ 1

2−4ε

0

(
1
2

(
x− 1

2

)2

+2ε
(

x− 1
2

))
dx

−
∫ 1

2

1
2−4ε

(
1
2

(
x− 1

2

)2

+2ε
(

x− 1
2

))
dx+

∫ 1

1
2

(
1
2

(
x− 1

2

)2

+2ε
(

x− 1
2

))
dx

=
1
24

+
32
3

ε3.

Analogously, for − 1
8 ≤ ε ≤ 0, it follows

F(ε) =
1
24

− 32
3

ε3.

It is not difficult to check that

ε∗ = sgn(Δ)

√
|Δ|

32M(b−a)

is the point in which the function

f (ε) = M(b−a)3F(ε)− ε(b−a)2Δ

achieves its minimal value. (49) implies

|Δ| ≤ 2M
b−a

∫ b

a

∣∣∣∣ x− a+b
2

∣∣∣∣dx =
M
2

(b−a),

and therefrom |ε∗| ≤ 1/8.
From (50) it follows

Jf ≤ f (ε∗) =
M
24

(b−a)3−
√

|Δ|3(b−a)3

72M
.

Replacing f with − f , analogously we get

J− f = −Jf ≤ M
24

(b−a)3−
√

|Δ|3(b−a)3

72M

and thus

|Jf | ≤ M
24

(b−a)3−
√

|Δ|3(b−a)3

72M
.

�
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Remark 8.17 We have shown that |Δ|
M ≤ b−a

2 . If we use this in estimating the right-hand
side of (47), it easily follows∣∣∣∣∫ b

a
f (x)dx− 1

2
(b−a)( f (a)+ f (b))+

1
8
(b−a)2( f ′(b)− f ′(a))

∣∣∣∣
≤ M

24
(b−a)3− |Δ|(b−a)

6

√
b−a

2

√
|Δ|
M

≤ M
24

(b−a)3− b−a
6M

Δ2.

Assume now that we have f ′(a) = f ′(b) = 0. Then

Δ = −2
f (b)− f (a)

b−a
,

and (47) reduces to∣∣∣∣∫ b

a
f (x)dx− 1

2
(b−a)( f (a)+ f (b))

∣∣∣∣≤ M
24

(b−a)3− 2
3

( f (b)− f (a))2

M(b−a)
(51)

This inequality is sharper than the inequality (8).

Remark 8.18 With the additional assumption f ′(a)= f ′(b)= 0, the estimate of the trape-
zoid formula in (47) is weaker than the one in (36) with x = a, i.e. (42). We claim:

M
32

(b−a)2− ( f (b)− f (a))2

2M(b−a)2 ≤ M
24

(b−a)2− |Δ|
6

√
|Δ|(b−a)

2M
,

=
M
24

(b−a)2− | f (b)− f (a)|
3(b−a)

√
| f (b)− f (a)|

M

since now Δ = −2 f (b)− f (a)
b−a . The claim is equivalent to

| f (b)− f (a)|
3(b−a)

√
| f (b)− f (a)|

M
− ( f (b)− f (a))2

2M(b−a)2 ≤ M
96

(b−a)2

Introduce the function g(x) =
f (x)
M

. Now

|g(b)−g(a)|
3(b−a)

√
|g(b)−g(a)|− (g(b)−g(a))2

2(b−a)2 ≤ (b−a)2

96
. (52)

Denote t = |g(b)−g(a)| and

h(t) =
t3/2

3(b−a)
− t2

2(b−a)2 .

It is easy to check that t = (b− a)2/4 is the point in which the function h(t) attains its
maximal value which is (b−a)2/96. This proves (52), and our claim.
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An estimate of a similar type, i.e. an estimate of the functional Jf , was given by
X.L.Cheng in [17].

Theorem 8.18 Let f ∈C2([a,b]) and | f ′′(x)| ≤ M. Then∣∣∣∣∫ b

a
f (x)dx− 1

2
(b−a)( f (a)+ f (b))+

1
8
(b−a)2( f ′(b)− f ′(a))

∣∣∣∣
≤ M

24
(b−a)3− b−a

16M
Δ2, (53)

where Δ is as in (48).

Proof. By Taylor’s expansion formula, for x ∈ [a,b] we get

f (x) ≤ f (a)+ f ′(a)(x−a)+
M
2

(x−a)2

and

f (x) ≤ f (b)− f ′(b)(b− x)+
M
2

(b− x)2.

Using this, for c = (a+b)/2 and |δ | ≤ (b−a)/2, we obtain∫ c+δ

a
f (x)dx ≤ f (a)

(
b−a

2
+ δ
)

+
1
2

f ′(a)
(

b−a
2

+ δ
)2

+
M
6

(
b−a

2
+ δ
)3

∫ b

c+δ
f (x)dx ≤ f (b)

(
b−a

2
− δ
)
− 1

2
f ′(b)

(
b−a

2
− δ
)2

+
M
6

(
b−a

2
− δ
)3

.

Then ∫ b

a
f (x)dx =

∫ c+δ

a
f (x)dx+

∫ b

c+δ
f (x)dx ≤ F0 + δF1 + δ 2F2,

where

F0 =
b−a

2
( f (a)+ f (b))+

(b−a)2

8
( f ′(a)− f ′(b))+

M
24

(b−a)3,

F1 = f (a)− f (b)+
b−a

2
( f ′(a)+ f ′(b)),

F2 =
1
2
( f ′(a)− f ′(b)+M(b−a)).

Introduce F̃2 = M(b− a). Then F2 ≤ F̃2. Now, we find the minimal value of F(δ ) =
F0 + δF1 + δ 2F̃2 for |δ | ≤ (b−a)/2:

F ′(δ ) = f (a)− f (b)+
b−a

2
( f ′(a)+ f ′(b))+2M(b−a)δ = 0,

F ′′(δ ) = 2M(b−a) > 0.

Thus, the point in which F(δ ) attains minimal value is

δ0 =
2( f (b)− f (a))/(b−a)− f ′(a)− f ′(b)

4M
= − Δ

4M
,
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where Δ is as in (48). Using Taylor’s expansion formula it is not difficult to verify that
|δ0| ≤ (b−a)/2. Thus,

∫ b

a
f (x)dx ≤ F(δ0)

=
b−a

2
( f (a)+ f (b))+

(b−a)2

8
( f ′(a)− f ′(b))+

M
24

(b−a)3− b−a
16M

Δ2.

To obtain the lower bound, apply Taylor’s expansion formula again:

f (x) ≥ f (a)+ f ′(a)(x−a)− M
2

(x−a)2

and

f (x) ≥ f (b)− f ′(b)(b− x)− M
2

(b− x)2.

Now, analogously as before we obtain

∫ b

a
f (x)dx ≥ b−a

2
( f (a)+ f (b))+

(b−a)2

8
( f ′(a)− f ′(b))− M

24
(b−a)3 +

b−a
16M

Δ2

which in conclusion proves (53). �

Remark 8.19 Minimizing the polynomial F(δ ) = F2δ 2 +F1δ +F0 which estimates the
right-hand side and the appropriate polynomial which estimates the left-hand side, would
produce ∣∣∣∣∫ b

a
f (x)dx− 1

2
(b−a)( f (a)+ f (b))+

1
8
(b−a)2( f ′(b)− f ′(a))

∣∣∣∣
≤ M

24
(b−a)3− (b−a)2Δ2

8[M(b−a)+ f ′(a)− f ′(b)]
(54)

which is exactly inequality (65) from Corollary 8.6 for m =−M, only written in somewhat
different form. Obviously, the estimate (54) is better than the one in (53).

8.5.3 Weighted generalizations of Iyengar’s inequality
through Taylor’s formula

The results of this subsection were obtained by F.Qi in [111]. Introduce notation:

hs,k(t) =
∫ t

s
(x− s)kw(x)dx, s,t ∈ [a,b], k ∈ N. (55)

where the function w in non-negative and integrable on [a,b].
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Theorem 8.19 Let f be continuous on [a,b] and differentiable on (a,b). Suppose f (a) =
f (b) = 0 and m≤ f ′(x)≤M for every x∈ (a,b). Let w(x) > 0 for every x∈ [a,b]. If f 
= 0,
then m < 0 < M and

mha,1(t1)−Mhb,1(t1) ≤
∫ b

a
w(x) f (x)dx ≤ Mha,1(t0)−mhb,1(t0), (56)

where t0 = Ma−mb
M−m ∈ (a,b), t1 = Mb−ma

M−m ∈ (a,b).

Proof. m < 0 < M is a direct consequence of the Rolle’s Mean Value Theorem. The idea
is to apply Lagrange’s Mean Value Theorem in order to estimate the weighted integral.

Let Θ ∈ (a,b). Now,∫ b

a
w(x) f (x)dx =

∫ Θ

a
w(x)[ f (x)− f (a)]dx+

∫ b

Θ
w(x)[ f (x)− f (b)]dx

=
∫ Θ

a
w(x)(x−a) f ′(ξ1)dx+

∫ b

Θ
w(x)(x−b) f ′(ξ2)dx,

where a < ξ1 < Θ < ξ2 < b. Using the fact that the first derivative is bounded we get∫ b

a
w(x) f (x)dx ≤ M

∫ Θ

a
(x−a)w(x)dx+m

∫ b

Θ
(x−b)w(x)dx

= Mha,1(Θ)−mhb,1(Θ). (57)

We wish to determine the minimal value of the upper bound. From (55) it follows

dhs,k(t)
dt

= (t − s)kw(t),

i.e.
d(Mha,1(Θ)−mhb,1(Θ))

dΘ
= [(M−m)Θ +(bm−aM)]w(Θ).

It is easy to check that the minimal value is attained for Θ = Ma−mb
M−m = t0 ∈ (a,b).

Similarly, ∫ b

a
w(x) f (x)dx ≥ m

∫ Θ

a
(x−a)w(x)dx+M

∫ b

Θ
(x−b)w(x)dx

= mha,1(Θ)−Mhb,1(Θ).

The lower bound attains its maximal value for Θ = Mb−ma
M−m = t1 ∈ (a,b). This completes

the proof. �

Theorem 8.20 Let f be continuous on [a,b] and differentiable on (a,b). Assume f is not
a constant function and that m ≤ f ′(x) ≤ M for every x ∈ (a,b). Let w(x) > 0 for every
x ∈ [a,b]. Then[

f (b)− f (a)
b−a

−M

]
hb,1(t3)−

[
f (b)− f (a)

b−a
−m

]
ha,1(t3)

≤
∫ b

a
w(x) f (x)dx− f (a)ha,0(b)− f (b)− f (a)

b−a
ha,1(b) (58)

≤
[

f (b)− f (a)
b−a

−m

]
hb,1(t2)−

[
f (b)− f (a)

b−a
−M

]
ha,1(t2)
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where t2 = Ma−mb+ f (b)− f (a)
M−m ∈ (a,b), t3 = Mb−ma− f (b)+ f (a)

M−m ∈ (a,b).

Proof. For x ∈ [a,b] define function

Φ(x) = [ f (x)− f (a)](b−a)− [ f (b)− f (a)](x−a).

Obviously, Φ(a) = Φ(b) = 0. Furthermore,

Φ′(x) = (b−a) f ′(x)− f (b)+ f (a),

and therefrom

(b−a)m− f (b)+ f (a)≤ Φ′(x) ≤ (b−a)M− f (b)+ f (a).

Now, notice that∫ b

a
w(x)Φ(x)dx = (b−a)

∫ b

a
w(x)[ f (x)− f (a)]dx− [ f (b)− f (a)]

∫ b

a
(x−a)w(x)dx

= (b−a)
[∫ b

a
w(x) f (x)dx− f (a)ha,0(b)

]
− [ f (b)− f (a)]ha,1(b).

Applying Theorem 8.19 to the function Φ(x) now yields the statement. �

Further results are given without proof. For details see [111].

Theorem 8.21 Let f be differentiable, f ∈ Cn−1([a,b]) and such that m ≤ f (n)(x) ≤ M
for every x ∈ (a,b). Let w(x) > 0 for x ∈ [a,b]. If n is odd, then for every t ∈ (a,b)

mha,n(t)−Mhb,n(t)
n!

≤
∫ b

a
w(x) f (x)dx+

n−1

∑
i=0

f (i)(b)hb,i(t)− f (i)(a)ha,i(t)
i!

≤ Mha,n(t)−mhb,n(t)
n!

; (59)

while for an even n

m(ha,n(t)−hb,n(t))
n!

≤
∫ b

a
w(x) f (x)dx+

n−1

∑
i=0

f (i)(b)hb,i(t)− f (i)(a)ha,i(t)
i!

≤ M(ha,n(t)−hb,n(t))
n!

. (60)

Corollary 8.5 Let f ∈Cn([a,b]) and m ≤ f (n) ≤ M for x ∈ [a,b]. Denote

Sn(u,v,w) =
n−1

∑
k=1

(−1)k

k!
·uk f (k−1)(v)+

w
n!

· (−1)nun, (61)

∂ kSn

∂uk = S(k)
n (u,v,w). (62)
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Then, for every t ∈ [a,b], when n is even we have

n+1

∑
i=0

(−1)i

i!

(
S(i)

n+1(a,a,m)−S(i)
n+1(b,b,m)

)
ti ≤

∫ b

a
f (x)dx

≤
n+1

∑
i=0

(−1)i

i!

(
S(i)

n+1(a,a,M)−S(i)
n+1(b,b,M)

)
ti; (63)

while when n is odd

n+1

∑
i=0

(−1)i

i!

(
S(i)

n+1(a,a,m)−S(i)
n+1(b,b,M)

)
ti ≤

∫ b

a
f (x)dx

≤
n+1

∑
i=0

(−1)i

i!

(
S(i)

n+1(a,a,M)−S(i)
n+1(b,b,m)

)
ti. (64)

Corollary 8.6 Let f ∈C2([a,b]) and m ≤ f ′′(x) ≤ M. Then

m(b3−a3)
6

+

[
f (b)− f (a)−b f ′(b)+a f ′(a)+ m

2 (b2−a2)
]2

2 [ f ′(b)− f ′(a)+m(a−b)]

≤
∫ b

a
f (x)dx−b f (b)+a f (a)+

b2 f ′(b)−a2 f ′(a)
2

(65)

≤ M(b3 −a3)
6

+

[
f (b)− f (a)−b f ′(b)+a f ′(a)+ M

2 (b2−a2)
]2

2 [ f ′(b)− f ′(a)+M(a−b)]
.

Corollary 8.7 Let f be continuous on [a,b] and differentiable on (a,b). Suppose f is not
a constant function and m ≤ f ′(x) ≤ M for every x ∈ (a,b). Then

mM(b−a)2 +2(b−a)[M f (a)−mf (b)]+ [ f (b)− f (a)]2

2(M−m)

≤
∫ b

a
f (x)dx (66)

≤−mM(b−a)2 +2(b−a)[mf (a)−M f (b)]+ [ f (b)− f (a)]2

2(M−m)

Remark 8.20 The inequality (66) was also derived by R.P.Agarwal and S.S. Dragomir
in [3]. Note that for m = −M, (66) recaptures Iyengar’s inequality (1).

Remark 8.21 In [114], F.Qi, P.Cerone and S.S.Dragomir gave a generalization of Iyen-
gar’s inequality using a generalized Taylor’s formula with an integral remainder. The main
tool used is a harmonic sequence of polynomials. A sequence of polynomials {Pi(x)}∞

i=0
is called harmonic if

P′
i (x) = Pi−1(x), i ∈ N; P0(x) = 1.
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8.5.4 Weighted generalizations of Iyengar’s inequality
through Steffensen’s inequality

Through the years, Iyengar’s inequality has been generalized in various ways. General-
izations that are of interest in this subsection are the ones obtained using Hayashi’s mod-
ification of the well-known Steffensen’s inequality. For example, in [3] R.P.Agarwal and
S.S.Dragomir first proved:

Theorem 8.22 Let function f be differentiable on [a,b] and m ≤ f ′(x) ≤ M. Then∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣
≤ [ f (b)− f (a)−m(b−a)][M(b−a)− f (b)+ f (a)]

2(M−m)(b−a)
. (67)

Inequality (67) is in fact inequality (66), only written in somewhat different form.
In [12], P.Cerone proved the following result for the trapezoidal rule:

Theorem 8.23 Let f : I ⊆ R → R be such that f (n−1) is absolutely continuous on I◦ (I◦
being the interior od I) and [a,b] ⊂ I◦. Assume m = infx∈[a,b] f (n)(x) > −∞ and

M = supx∈[a,b] f (n)(x) < ∞. Then∣∣∣∣∣
∫ b

a
f (x)dx−

n

∑
k=1

Ek(Θ;a,b)+R− M−m
2(n+1)!

(U +L)

∣∣∣∣∣≤ M−m
2(n+1)!

(U −L) (68)

where

Ek(Θ;a,b) =
1
k!

[(Θ−a)k f (k−1)(a)− (Θ−b)k f (k−1)(b)] (69)

R =
m

(n+1)!
[
(Θ−b)n+1− (Θ−a)n+1] (70)

L =
{

(λ a
n )n+1 +(λ b

n )n+1, n even
(Θ−b+ λ 0

n )n+1− (Θ−b)n+1, n odd
(71)

U =
{

(Θ−b+ λ b
n )n+1− (Θ−a−λ a

n)n+1 +(Θ−a)n+1− (Θ−b)n+1, n even
(Θ−a)n+1− (Θ−a−λ 0

n)n+1, n odd

(72)

λ 0
n =

1
M−m

[
f (n−1)(b)− f (n−1)(a)−m(b−a)

]
, (73)

λ a
n =

1
M−m

[
f (n−1)(Θ)− f (n−1)(a)−m(Θ−a)

]
, (74)

λ b
n =

1
M−m

[
f (n−1)(b)− f (n−1)(Θ)−m(b−Θ)

]
. (75)

Taking n = 1 and Θ = (a+b)/2 in (68), produces (67).
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In [67], H.Gauchman proved two inequalities involving Taylor’s remainder. He denotes
by Rn, f (c,x) the nth Taylor’s remainder of function f (x) with center c:

Rn, f (c,x) = f (x)−
n

∑
k=0

f (k)(c)
k!

(x− c)k.

Theorem 8.24 Let f : I → R and w : I → R be two functions, a,b ∈ I◦, a < b and let
f ∈Cn+1([a,b]) and w ∈C([a,b]). Assume that m ≤ f (n+1)(x) ≤ M, m 
= M and w(x) ≥ 0
for each x ∈ [a,b]. Then

(i)
1

(n+1)!

∫ b

b−λ 0
n

(x−b+ λ 0
n )n+1w(x)dx (76)

≤ 1
M−m

∫ b

a

[
Rn, f (a,x)−m

(x−a)n+1

(n+1)!

]
w(x)dx

≤ 1
(n+1)!

∫ b

a
[(x−a)n+1− (x−a−λ 0

n)n+1]w(x)dx

+
(−1)n+1

(n+1)!

∫ a+λ 0
n

a
(a+ λ 0

n − x)n+1w(x)dx;

(ii)
1

(n+1)!

∫ a+λ 0
n

a
(a+ λ 0

n − x)n+1w(x)dx (77)

≤ (−1)n+1

M−m

∫ b

a

[
Rn, f (b,x)−m

(x−b)n+1

(n+1)!

]
w(x)dx

≤ 1
(n+1)!

∫ b

a
[(b− x)n+1− (b−λ 0

n − x)n+1]w(x)dx

+
(−1)n+1

(n+1)!

∫ b

b−λ 0
n

(x−b+ λ 0
n )n+1w(x)dx;

where λ 0
n is defined by (73).

Addition of (76) and (77) upon taking n = 0 and w(x) = 1 followed by division by 2,
produces (67) again. Of course, as a special case we get Iyengar’s inequality once more.

Now, we give a generalization of both Theorem 8.23 and Theorem 8.24 in a sense
that an inequality involving both the weight w(x) and the parameter Θ is given. This was
published in [61].

Before we proceed, it should be mentioned that using the same technique similar in-
equalities were proved in a number of papers. In [2], R.P.Agarwal, V.Čuljak and J.Pečarić
derived inequality (68) for an odd n. For an even n, using a somewhat different tech-
nique, they obtained a result which involves only the midpoint. In [44], only the case
n = 2 was considered. In [19], an even more special case was considered. The results
obtained there follow from (68) by taking Θ = (a+ b)/2 again and assuming function f
satisfies f (k)(a) = (−1)k+1 f (k)(b), for 1 < k < n. Results obtained in [13] by P.Cerone and
S.S.Dragomir are special cases of Theorem 8.24 produced after taking n = 0.

For the proof of our main result we use the Hayashi modification of the well-known
Steffensen’s inequality, so we state it first (cf. [93]).
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Theorem 8.25 Let F : [a,b] → R be a nonincreasing function and G : [a,b] → R an
integrable function such that 0 ≤ G(x) ≤ A for each x ∈ [a,b]. Then

A
∫ b

b−λ
F(x)dx ≤

∫ b

a
F(x)G(x)dx ≤ A

∫ a+λ

a
F(x)dx, (78)

where λ = 1
A

∫ b
a G(x)dx.

We introduce:

hk(s,t) =
1
k!

∫ t

s
(x− s)kw(x)dx (79)

for s, t ∈ [a,b] and k ∈ N.
Now we state our main result:

Theorem 8.26 Let f : [a,b] → R be such that f (n−1) is absolutely continuous on [a,b].
Assume that m≤ f (n)(x)≤ M for each x ∈ [a,b]. Let w : I → R be integrable and such that
w(x) ≥ 0 for each x ∈ [a,b]. Let Θ ∈ [a,b]. Then, when n is odd we have

(M−m)hn(b−λ 0
n ,Θ)−Mhn(b,Θ)+mhn(a,Θ)

≤
∫ b

a
f (x)w(x)dx+

n−1

∑
k=0

[
f (k)(b)hk(b,Θ)− f (k)(a)hk(a,Θ)

]
(80)

≤ Mhn(a,Θ)−mhn(b,Θ)− (M−m)hn(a+ λ 0
n ,Θ)

and when n is even we have

(M−m)[hn(Θ−λ a
n ,Θ)−hn(Θ + λ b

n ,Θ)]+m[hn(a,Θ)−hn(b,Θ)]

≤
∫ b

a
f (x)w(x)dx+

n−1

∑
k=0

[
f (k)(b)hk(b,Θ)− f (k)(a)hk(a,Θ)

]
(81)

≤ M[hn(a,Θ)−hn(b,Θ)]+ (M−m)[hn(b−λ b
n ,Θ)−hn(a+ λ a

n ,Θ)],

where λ 0
n , λ a

n and λ b
n are defined by (73), (74) and (75), respectively.

Proof. For Θ ∈ [a,b], set

Gk(x) = f (k)(x)−m, k = 0,1, . . .n

Fk(x) =
1
k!

∫ Θ

x
(t − x)kw(t)dt k = 0,1, . . .n−1

for each x ∈ [a,b]. Now we have: 0 ≤ Gn(x) ≤ M −m, for each x ∈ [a,b] , so Gn(x)
satisfies the conditions of Theorem 8.25. It is easy to prove that

F ′
k(x) = −Fk−1(x)

and from there we conclude that for x ≤ Θ, function Fn−1(x) is nonincreasing. For x ≥ Θ
and odd n, Fn−1(x) is again nonincreasing. However, for x ≥ Θ and even n, Fn−1(x) is
nondecreasing. Therefore, inequality (78) is in that case reversed.
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Let us assume first that n is odd. From (78) we get

(M−m)
∫ b

b−λ 0
n

Fn−1(x)dx ≤
∫ b

a
Fn−1(x)Gn(x)dx ≤ (M−m)

∫ a+λ 0
n

a
Fn−1(x)dx.

where

λ 0
n =

1
M−m

∫ b

a
( f (n)(x)−m)dx

as defined in (73). Using integration by parts and the fact that F ′
n−1(x) = −Fn−2(x), we

easily obtain

In =
∫ b

a
Fn−1(x)Gn(x)dx (82)

=
∫ b

a
f (x)w(x)dx+

n−1

∑
k=0

[ f (k)(b)hk(b,Θ)− f (k)(a)hk(a,Θ)]

−mhn(a,Θ)+mhn(b,Θ).

The upper bound is

Uo =
M−m
(n−1)!

∫ a+λ 0
n

a

[∫ Θ

x
(t − x)n−1w(t)dt

]
dx.

Assume first that Θ ≤ a+ λ 0
n . Changing the order of integration, we obtain

Uo = (M−m)[hn(a,Θ)−hn(a+ λ 0
n ,Θ)]. (83)

Assuming Θ ≥ a+ λ 0
n , we get the same expression for the upper bound again.

Analogously, after changing the order of integration in the case when Θ ≥ b−λ 0
n , the

lower bound equals

Lo =
M−m
(n−1)!

∫ b

b−λ 0
n

[∫ Θ

x
(t − x)n−1w(t)dt

]
dx

= (M−m)[hn(b−λ 0
n ,Θ)−hn(b,Θ)]. (84)

For Θ ≤ b−λ 0
n , we get the same expression and thus, once again, obtain the same expres-

sion in both cases. Inequality (80) is produced by combining (82), (83) and (84), so the
statement is proved for the case when n is odd.

Assume now n is even. Fn−1(x) is nonincreasing on [a,Θ] so inequality (78) gives us:

La
e ≤

∫ Θ

a
Fn−1(x)Gn(x)dx ≤Ua

e , (85)

It is easy to check that a+λ a
n ≤ Θ. We calculate both lower and upper bound by changing

the order of integration:

Ua
e = (M−m)

∫ a+λ a
n

a
Fn−1(x)dx = (M−m)[hn(a,Θ)−hn(a+ λ a

n ,Θ)], (86)

La
e = (M−m)

∫ Θ

Θ−λ a
n

Fn−1(x)dx = (M−m)hn(Θ−λ a
n ,Θ), (87)



8.5 IYENGAR’S INEQUALITY 319

where

λ a
n =

1
M−m

∫ Θ

a
( f (n)(x)−m)dx

as defined in (74).
On [Θ,b], Fn−1(x) is nondecreasing so inequality (78) is reversed. We have:

Lb
e ≤

∫ b

Θ
Fn−1(x)Gn(x)dx ≤Ub

e . (88)

This time b−λ b
n ≥ Θ, so it follows

Ub
e = (M−m)

∫ b

b−λ b
n

Fn−1(x)dx = (M−m)[hn(b−λ b
n ,Θ)−hn(b,Θ)], (89)

Lb
e = (M−m)

∫ Θ+λ b
n

Θ
Fn−1(x)dx = −(M−m)hn(Θ + λ b

n ,Θ), (90)

where

λ b
n =

1
M−m

∫ b

Θ
( f (n)(x)−m)dx

as defined in (75).
Addition of (85) and (88) gives:

Le ≤ In ≤Ue

where

Ue = Ua
e +Ub

e and Le = La
e +Lb

e,

and thus inequality (81) is produced. The proof of this theorem is now complete. �

Remark 8.22 Taking w(x) = 1 in Theorem 8.26 recaptures Theorem 8.23. Taking Θ = b
produces inequality (76) and Θ = a produces inequality (77). Of course, for w(x) = 1,
n = 1 and Θ = (a+b)/2, we get inequality (67) again.

Next, we prove an alternative inequality for an even n and thus generalize results from
[2]. Taking Θ = (a+b)/2 and w(x) = 1 will produce results from there.

Theorem 8.27 Assume assumptions of Theorem 8.26 are valid. Then, for Θ ∈ [a,b] and
even n, we have

m(hn(a,Θ)−hn(b,Θ))+ (M−m)|hn(b−λn,Θ)|

≤
∫ b

a
f (x)w(x)dx+

n−1

∑
k=0

[
f (k)(b)hk(b,Θ)− f (k)(a)hk(a,Θ)

]
≤ M(hn(a,Θ)−hn(b,Θ))− (M−m)|hn(a+ λn,Θ)| (91)

where λn = λ a
n −λ b

n +b−Θ, 0 ≤ λn ≤ b−a.
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Proof. We use Hayashi’s modification of Steffensen’s inequality again. Set

Fn−1(x) =

{
1

(n−1)!
∫ Θ
x (t − x)n−1w(t)dt, a ≤ x ≤ Θ,

1
(n−1)!

∫ x
Θ(t− x)n−1w(t)dt, Θ ≤ x ≤ b.

(92)

From the proof of Theorem 8.26 it is clear that Fn−1 is decreasing on [a,b]. Taking

Gn(x) =
{

f (n)(x)−m, a ≤ x ≤ Θ,
M− f (n)(x), Θ ≤ x ≤ b.

(93)

produces our statement. �

Remark 8.23 Estimates for an even n from Theorem 8.26 are better than the ones from
Theorem 8.27. To prove this, we have to check that

|hn(a+ λn,Θ)| ≤ hn(a+ λ a
n ,Θ)−hn(b−λ b

n ,Θ), (94)

|hn(b−λn,Θ)| ≤ hn(Θ−λ a
n ,Θ)−hn(Θ + λ b

n ,Θ). (95)

After introducing notation

c1 = a+ λ a
n , c2 = b−λ b

n , d1 = Θ−λ a
n , d2 = Θ + λ b

n ,

(94) and (95) become

|hn(c1 + c2−Θ,Θ)| ≤ hn(c1,Θ)−hn(c2,Θ), (96)

|hn(d1 +d2−Θ,Θ)| ≤ hn(d1,Θ)−hn(d2,Θ). (97)

We already know that c1 ≤ Θ and c2 ≥ Θ and it is clear that d1 ≤ Θ and d2 ≥ Θ, so we
have c1 ≤ c1 + c2−Θ ≤ c2 and d1 ≤ d1 +d2−Θ ≤ d2. For an even n, function hn(x,Θ) is
decreasing. Also, hn(Θ,Θ) = 0. Let us consider (96). First assume c1 +c2−Θ ≤ Θ. Then
hn(c1 + c2−Θ,Θ)≥ 0 and

hn(c1 + c2−Θ,Θ)≤ hn(c1,Θ) ≤ hn(c1,Θ)−hn(c2,Θ)

since hn(c2,Θ) ≤ 0. Next, suppose c1 + c2−Θ ≥ Θ. Then hn(c1 + c2−Θ,Θ)≤ 0 and

hn(c1 + c2−Θ,Θ)≥ hn(c2,Θ) ≥ hn(c2,Θ)−hn(c1,Θ)

since hn(c1,Θ) ≥ 0. Proof of (97) is analogous.

Finally, we give a comparison between Theorem 8.26 and Theorem 8.21. The connec-
tion is obvious - under the same assumptions, the same expression is estimated. The claim
is that the estimation given in Theorem 8.26 is better than the one in Theorem 8.21.

First, consider the case when n is odd. The upper bound in (80) is

US = Mhn(a,Θ)−mhn(b,Θ)− (M−m)hn(a+ λ 0
n ,Θ)
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and in (59)
UT = Mhn(a,Θ)−mhn(b,Θ),

so obviously US ≤UT . Similarly, the lower bound in (80) is

LS = (M−m)hn(b−λ 0
n ,Θ)−Mhn(b,Θ)+mhn(a,Θ)

and in (59)
LT = mhn(a,Θ)−Mhn(b,Θ),

so LS ≥ LT .
Next, consider the case when n is even. The upper bound in (81) is

US = M[hn(a,Θ)−hn(b,Θ)]+ (M−m)[hn(b−λ b
n ,Θ)−hn(a+ λ a

n ,Θ)]

and in (60)
UT = M[hn(a,Θ)−hn(b,Θ)].

Again, US ≤UT . Finally, the lower bound in (81) is

LS = (M−m)[hn(Θ−λ a
n ,Θ)−hn(Θ + λ b

n ,Θ)]+m[hn(a,Θ)−hn(b,Θ)]

and in (60)
LT = m[hn(a,Θ)−hn(b,Θ)],

so LS ≥ LT .
This completes the proof of the claim.

8.5.5 Comparison between different generalizations of Iyen-
gar’s inequality

We give yet another comparison between generalizations of Iyengar’s inequality obtained
through different methods, for a function f such that f ∈ C2[a,b] and | f ′′(x)| ≤ M. The
results given here were published in [62].

For w(x) = 1, m = −M, n = 2 and Θ = (a+b)/2, (81) from Theorem 8.26 yields:

−M(b−a)3

24
+

M
3

(
λ 3

a + λ 3
b

)
≤
∫ b

a
f (x)dx− b−a

2
( f (a)+ f (b))+

(b−a)2

8
( f ′(b)− f ′(a)) (98)

≤ M(b−a)3

24
− M

3

[(
b−a

2
−λa

)3

+
(

b−a
2

−λb

)3
]

,

where

λa =
1

2M

(
f ′
(

a+b
2

)
− f ′(a)

)
+

b−a
4

, (99)

λb =
1

2M

(
f ′(b)− f ′

(
a+b

2

))
+

b−a
4

. (100)
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For the same parameters, (91) from Theorem 8.27 yields:∣∣∣∣∫ b

a
f (x)dx− b−a

2
( f (a)+ f (b))+

(b−a)2

8
( f ′(b)− f ′(a))

∣∣∣∣
≤ M

24
(b−a)3− |Δ1|3

24M2 , (101)

where Δ1 = f ′(a)−2 f ′( a+b
2 )+ f ′(b).

Another result of a similar type was given by Cheng in [17] (cf. Theorem 8.18 and
Remark 8.19):∣∣∣∣∫ b

a
f (x)dx− b−a

2
( f (a)+ f (b))+

(b−a)2

8
( f ′(b)− f ′(a))

∣∣∣∣
≤ M

24
(b−a)3− (b−a)2Δ2

2

8[M(b−a)+ f ′(a)− f ′(b)]
(102)

where Δ2 = f ′(a)−2 f (b)− f (a)
b−a + f ′(b).

In the same paper, Cheng showed that, for some classes of functions, inequality (102)
gives better estimations than inequality (101). Now, we prove that (98) is always better
than (101) and better than (102) for the same class of functions for which (102) is better
than (101).

Define:

H(x) =
M
3

(
a+b

2
− x

)3

, for x ∈ [a,b].

Now we can write (101) and (98) in a following form:∣∣∣∣∫ b

a
f (x)dx− b−a

2
( f (a)+ f (b))+

(b−a)2

8
( f ′(b)− f ′(a))

∣∣∣∣
≤ M(b−a)3

24
−|H(a+ λ )|, (103)

and

−M(b−a)3

24
+H(Θ−λa)−H(Θ + λb)

≤
∫ b

a
f (x)dx− b−a

2
( f (a)+ f (b))+

(b−a)2

8
( f ′(b)− f ′(a)) (104)

≤ M(b−a)3

24
−H(a+ λa)+H(b−λb),

where λ = λa−λb + b−a
2 .

H(x) is decreasing, H(Θ) = 0 and a + λa ≤ Θ ≤ b− λb, 0 ≤ λa,λb ≤ b−a
2 . Also,

a+ λa ≤ a+ λ ≤ b−λb. Assume first λa ≤ λb. Then H(a+ λ )≥ 0 and

H(a+ λ )≤ H(a+ λa) ≤ H(a+ λa)−H(b−λb),
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since H(b−λb) ≤ 0. Suppose λa ≥ λb. Then H(a+ λ )≤ 0 and

H(a+ λ )≥ H(b−λb) ≥ H(b−λb)−H(a+ λa),

since H(a+ λa) ≥ 0. The proof that the lower bound in (104) is also better is analogous:
just note |H(b−λ )|= |H(a+ λ )|.

Finally, we give some classes of functions for which (98) gives better estimates than
(102). We claim that

(b−a)2Δ2
1

8[M(b−a)+ f ′(a)− f ′(b)]
≤ M

3

[(
b−a

2
−λa

)3

+
(

b−a
2

−λb

)3
]

(105)

(b−a)2Δ2
1

8[M(b−a)+ f ′(a)− f ′(b)]
≤ M

3

(
λ 3

a + λ 3
b

)
, (106)

for f (x) = xn, n ≥ 5 on [0,1]. Inequalities (105) and (106) in this case reduce to

n−2
8n

≤ n(n−1)
3

[(
1
4
− 1−21−n

2(n−1)

)3

+
(

1
4
− 21−n

2(n−1)

)3
]

, (107)

n−2
8n

≤ n(n−1)
3

[(
1
4

+
1−21−n

2(n−1)

)3

+
(

1
4

+
21−n

2(n−1)

)3
]

. (108)

Routine calculation shows that (107) is valid for n≥ 5 (for n = 2 we get equality) and (108)
is valid for n ≥ 2. Thus, we have shown that (98) is better than (102) for the same class of
functions for which (102) is better than (101).

Further, with no loss in generality, we can consider functions on [0,1] such that f (0) =
f ′(0) = 0 and | f ′′(x)| ≤ 1. Inequalities (105) and (106) turn to:

[2 f (1)− f ′(1)]2

1− f ′(1)
≤ 1

24

[(
1−2 f ′

(
1
2

))3

+
(

1−2 f ′(1)+2 f ′
(

1
2

))3
]

, (109)

[2 f (1)− f ′(1)]2

1− f ′(1)
≤ 1

24

[(
1+2 f ′

(
1
2

))3

+
(

1+2 f ′(1)−2 f ′
(

1
2

))3
]

. (110)

When f (1) = f ′(1) = 0, or, more generally, when 2 f (1) = f ′(1) and f ′(1) 
= 1, (98) gives
better estimates than (102), since the right-hand sides of (109) and (110) are obviously
positive. If we take f ′(1/2) = t, 0 ≤ t ≤ 1/2, when f ′(1) = 0, (109) and (110) reduce to

4 f 2(1) ≤ t2 +1/12. (111)

Maximizing the left-hand side of (111) using continuous piecewise linear function with
| f ′′(x)| = 1 (where f ′′ exists), (111) will follow if

(t2− t−1/4)2 ≤ t2 +1/12. (112)
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Using Wolfram’s Mathematica 5.0, we see that the approximate solutions on [0,1/2] of the
equation in (112) are t1 = 0.044 and t2 = 0.395, so for 0 ≤ t ≤ t1 or t2 ≤ t ≤ 1/2, (98) is
better than (102). For t1 < t < t2, (102) may give better estimates.

Remark 8.24 Related results on Iyengar type inequalities can be found in: [16, 43, 69,
81, 82, 88, 95, 109, 110, 112, 113, 119, 120].



Appendix

Bernoulli polynomials and Bernoulli numbers

The Bernoulli polynomial Bk(x) of the kth degree is defined as the coefficient of tk/k! in
the expansion

text

et −1
=

∞

∑
k=0

tk

k!
Bk(x). (A-1)

The first ten Bernoulli polynomials are

B0(x) = 1

B1(x) = x−1/2

B2(x) = x2− x+1/6

B3(x) = x3−3/2 x2 +1/2 x

B4(x) = x4−2x3 + x2−1/30

B5(x) = x5−5/2 x4 +5/3 x3 −1/6 x

B6(x) = x6−3x5 +5/2 x4 −1/2 x2 +1/42

B7(x) = x7−7/2 x6 +7/2 x5 −7/6 x3 +1/6 x

B8(x) = x8−4x7 +14/3 x6−7/3 x4 +2/3 x2−1/30

B9(x) = x9−9/2 x8 +6x7−21/5 x5 +2x3−3/10 x

B10(x) = x10−5x9 +15/2 x8 −7x6 +5x4−3/2 x2 +5/66.

Differentiating (A-1) with respect to x gives

t
text

et −1
=

∞

∑
k=0

tk

k!
B′

k(x).

From (A-1) it follows

t
text

et −1
=

∞

∑
k=0

tk+1

k!
Bk(x).

325



326 APPENDIX

Therefore
B′

k(x)
k!

=
Bk−1(x)
(k−1)!

and thus
B′

k(x) = kBk−1(x). (A-2)

Bernoulli polynomials Bk(t) are uniquely determined by (A-2) and

B0(t) = 1, Bk(t +1)−Bk(t) = ktk−1, k ≥ 0.

Let m ∈ N. Then

emxt t
et −1

=
∞

∑
k=0

tk

k!
Bk(mx)

and furthermore

emxt t
et −1

=
emxt

m

[
mt(1+ et + . . .+ e(m−1)t)

emt −1

]

=
1
m

m−1

∑
j=0

mt e

(
x+ j

m

)
mt

emt −1
=

1
m

m−1

∑
j=0

∞

∑
k=0

(mt)k

k!
Bk

(
x+

j
m

)
.

Now, similarly as before

Bk(mx) = mk−1
m−1

∑
j=0

Bk

(
x+

j
m

)
. (A-3)

The (A-3) is called the Multiplication Theorem for Bernoulli polynomials.

Some properties of Bernoulli polynomials

• For the kth Bernoulli polynomial we have

Bk(1− x) = (−1)kBk(x), x ∈ R, k ≥ 1 (A-4)

so the graph of B2k(x) is symmetric with respect to the line x = 1/2, while the graph
of B2k−1(x) is centrally symmetric with respect to the point x = 1/2.

• The kth Bernoulli number Bk is defined by the relation Bk = Bk(0). From (A-4) it
follows that

B2k(1) = B2k

and
B2k−1(1) = −B2k−1,

and therefore for k ≥ 2, we have

Bk(1) = Bk(0) = Bk.
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Note that
B2k−1 = 0, k ≥ 2

and
B1(1) = −B1(0) = 1/2.

• For k ∈ N

Bk

(
1
2

)
= −(1−21−k)Bk.

• For 0 < x < 1/2, we have

(−1)k[B2k(x)−B2k] > 0

and

(−1)kB2k−1(x) > 0

Periodic functions related to Bernoulli polynomials

B∗
k(x) are periodic functions of period 1 defined by the condition

B∗
k(x+1) = B∗

k(x), x ∈ R,

and related to Bernoulli polynomials as

B∗
k(x) = Bk(x), 0 ≤ x < 1.

B∗
0(x) is a constant equal to 1, while B∗

1(x) is a discontinuous function with a jump of
−1 at each integer. For k ≥ 2, B∗

k(t) is a continuous function.
Direct calculations give the following results:

B∗
2k(x) =

(−1)k−1(2k)!
22k−1 π2k

∞

∑
m=1

cos2πmx
m2k (A-5)

B∗
2k+1(x) =

(−1)k−1(2k+1)!
22k π2k+1

∞

∑
m=1

sin2πmx
m2k+1 . (A-6)

For further details on Bernoulli polynomials and Bernoulli numbers see [1] or [79].
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[28] Lj. Dedić, M. Matić, J. Pečarić, A.Vukelić, Hadamard type inequalities via some
Euler type identities - Euler bitrapezoid formulae, Nonlinear Stud. 8(3) (2001), 343–
372.
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[57] I. Franjić, J. Pečarić , I. Perić, Weighted generalizations of Iyengar type inequalities,
Indian J.Pure Appl. Math. 38(4) (2007), 291–304.
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[84] M. Matić, C. E. M. Pearce, J. Pečarić, Two-point formulae of Euler type, ANZIAM
J. 44 (2002), 221–245.
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[98] J. Pečarić, I. Perić, A. Vukelić, Sharp integral inequalities based on general Euler
two-point formulae, ANZIAM J 46 (2005), 1–20.
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[105] J. Pečarić, A. Vukelić, Hadamard and Dragomir-Agarwal inequalities, the Euler
formulae and convex functions, Functional Equations, Inequalities and Applications
/ Rassias, Themistocles M. (ed.), Dordrecht, Kluwer Academic Publishers, 2003.

[106] J. Pečarić, A. Vukelić, On generalizations of Dragomir-Agarwal inequality via some
Euler-type identities, Bulletin de la Société des Mathématiciens de R. Macédoine
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[107] G. Pôlya, On the mean value theorem corresponding to a given linear homogeneous
differential equation, Trans. Am. Math. Soc. 24 (1922) 312–324.
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