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Preface

At the beginning of the 20th century, the following inequalities in discrete and integral
forms have been established:
L 1
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The first inequality refers to non-negative sequences (@), . € 7 and (b,),, .y € 19 which
are not zero-sequences, while the second inequality holds for non-negative functions f €
LP(Ry) and g € LY(R.) which are not zero-functions. The common parameters, that is,
the exponents p and g appearing in both inequalities are mutually conjugate, that is, they
fulfill the condition % + Ll] =1, where p > 1. The above inequalities were first studied by
David Hilbert at the end of the nineteenth century, hence, in his honor, they are referred to
as the discrete and the integral Hilbert inequalities.

The Hilbert inequality is one of the most important inequalities in mathematical anal-
ysis. Applications of this inequality in diverse fields of mathematics have certainly con-
tributed to its importance.

After its discovery, the Hilbert inequality was studied by numerous authors, who ei-
ther reproved it using various techniques, or applied and generalized it in many different
ways. Such generalizations included inequalities with more general kernels, weight func-
tions and integration sets, extension to a multidimensional case, and so forth. The resulting
relations are usually referred to as the Hilbert-type inequalities. On the other hand, Hardy,
Littlewood and Pélya [33], noted that to every Hilbert-type inequality one can assign its
equivalent form, in the sense that one implies another and vice versa. Such forms are usu-
ally called Hardy-Hilbert-type inequalities, since they are closely connected with another
famous classical inequality, that is, the Hardy inequality. For a comprehensive inspection
of the initial development of the Hilbert inequality, the reader is referred to a classical
monograph [33].

Although classical, the Hilbert inequality is still of interest to numerous mathemati-
cians. Nowadays, more than a century after its discovery, this problem area offers diverse
possibilities for generalizations and extensions.

and




The present book is a crown of decennial research of several authors in this area. More
precisely, this book is based on some thirty significant papers dealing with Hilbert-type
inequalities, published in the course of the last ten years.

We tried to provide a unified approach to Hilbert-type inequalities. More precisely, the
original Hilbert inequality can be regarded in a more general setting, with integrals taken
over a 0-finite measure space, and with a general kernel and weight functions. In addition,
Hilbert-type inequalities can also be considered with exponents which are not mutually
conjugate. On the other hand, in recent time a special emphasis has been dedicated to
establishing methods for improving original Hilbert-type inequalities. These are the main
topics we deal with in this monograph. The book is divided into ten chapters.

In Chapter 1 a unified treatment of Hilbert-type inequalities with conjugate exponents
is established. The most general form of the Hilbert inequality involves integrals taken over
a o-finite measure space, a general kernel and the weight functions. A special emphasis
is given to Hilbert-type inequalities with homogeneous kernels. In addition, considerable
attention is dedicated to finding the best possible constant factors appearing in some classes
of inequalities. Observe here that a majority of results in this and other chapters will be
given in two equivalent forms.

In Chapter 2 we extend Hilbert-type inequalities derived in the previous chapter to the
case of non-conjugate exponents. It should be observed here that the problem of finding the
best possible constant factors is not considered in Chapter 2 since it seems to be very hard
and remains still open. Additionally, we study some operators between certain weighted
Lebesgue spaces, arising from the Hardy-Hilbert form of the corresponding Hilbert-type
inequality.

In Chapter 3 we consider Hilbert-type inequalities involving real valued kernel and
weight functions defined on R". Such results will be derived by virtue of the so-called
Selberg integral formula.

In Chapter 4 we derive two types of refined discrete Hilbert-type inequalities by means
of the Euler-Maclaurin summation formula, depending on whether the corresponding ker-
nel is of class C% or C*. In addition, some particular refinements are also established, due
to the above summation formula.

In Chapter S a different approach for improving discrete Hilbert-type inequalities is
presented. Such improvements are derived by virtue of the Hermite-Hadamard inequality.

In Chapter 6 we deal with refinements of some particular Hilbert-type inequalities
involving the Laplace transform.

In Chapter 7 a particular class of the so-called Hilbert-Pachpatte-type inequalities is
studied. These inequalities are closely connected with Hilbert-type inequalities.

In Chapter 8 another famous classical inequality, closely connected to the Hilbert
inequality, is studied. That is the Hardy inequality. A unified treatment of Hardy-type
inequalities with non-conjugate exponents is established.

In Chapter 9 Hilbert-type inequalities are considered in a more general function space.
Namely, all results in previous chapters were related to the weighted Lebesgue spaces. In
this chapter Hilbert-type inequalities are established in the weighted Orlicz spaces.

In Chapter 10 we list another set of recent results of numerous authors, interesting on
its own right, which are closely connected with the theory exposed in this book. Namely,
some related inequalities and refinements are given without the proof.
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Throughout the whole book, presented results are compared with previously known
from the literature. Moreover, at the end of a section or a chapter we cite the corresponding
references for the results presented there. In addition, we also quote references which are
closely connected with presented topics.

Since this monograph is based on numerous papers written by different authors, the
terminology in the book is not quite unified. On the other hand, we suppose that the reader
is very familiar with mathematical analysis and we mostly use the standard notation. How-
ever, to avoid misunderstandings, some extra notation and definitions are presented when it
is necessary. Further, in statements of some theorems, conditions concerning convergence
of series and integrals are omitted. If nothing else is explicitly stated, they are assumed to
be convergent.
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Chapter

Hilbert-type inequalities with
conjugate exponents

One of the most important inequalities in modern mathematics is the well-known Hilbert
inequality. Applications of this inequality in various branches of mathematics have cer-
tainly contributed to its importance. David Hilbert was the first mathematician who started
to deal with the Hilbert inequality, by considering its discrete form. He did not even think
that he had opened the space for numerous researches whose results will be far-reaching
and fruitful.

Shortly after discovering the discrete form, the integral form of the Hilbert inequality
was also established, as well as the generalization for the case of conjugate exponents.
During subsequent decades, the Hilbert inequality was also generalized in many different
ways by some famous authors. Nowadays, more than a century after Hilbert’s discovery,
this problem area is still of interest and provides some possibilities for further generaliza-
tions.

In this chapter we present some basic generalizations of the Hilbert inequality. After
the short historical overview, we expose a recent important generalization, which provides
a unified treatment to this inequality with conjugate exponents. In particular, in that result
the integrals are taken with o-finite measures, which includes both integral and discrete
case.

The above mentioned main result is then applied to homogeneous functions, which
yields numerous interesting examples. Also, the consideration of such examples in partic-
ular settings yields numerous results, previously known from the literature. Moreover, all
results presented in two-dimensional case can naturally be extended to a multidimensional
case.



2 1 HILBERT-TYPE INEQUALITIES WITH CONJUGATE EXPONENTS

Finally, numerous inequalities in this chapter include the corresponding constant factor
on their right-hand sides. By the classical Hilbert inequality such constant factor was the
best possible in the sense that it cannot be replaced with the smaller constant so that the
resulting inequality still remains valid. We shall also present here some recent results
which include such best possible constant factors.

1.1 Historical overview

We begin this overview with a bilinear form
55
)
m=1n=1 m-+n

associated to sequences of real numbers (ay),,.1y and (by), N, Which was first studied by
D. Hilbert at the end of the nineteenth century. Hilbert discovered a natural upper bound of
this double series and laid the foundations for the theory that will follow. Thus, we present
here some basic theorems which arose immediately from Hilbert’s considerations.

Theorem 1.1 Let p and q be mutually conjugate exponents, that is, %4— é =1 p>1
and let (ap),, . and (by), . be any two sequences of non-negative real numbers such
that 0 < Yy aly < o0and 0 < Yy bj < 0. Then

1 1
- — mbn T - g - !
$Eot . Sal Sl w

P =1
The integral form of the previous theorem reads as follows:

Theorem 1.2 Let % + é =1 p>1, andlet f,g: Ry — R be any two non-negative
Lebesgue measurable functions such that 0 < [y° fP(x)dx < e and 0 < [;°g9(y)dy < .

Then
= [ fx)g(y) T [ [~ 5[ e 1
/0 /0 Tty PV Gz UO fp(x)dx] [ /O gq(y)dy] . (1.2)

Remark 1.1 Suppose that p and g are mutually conjugate parameters, i.e. [lj + é =1, and
let p > 1. Then it follows that ¢ > 1. On the other hand, if 0 < p < I, then g < 0, and
analogously, if 0 < g < 1, then p < 0.

As we see, in the above theorems the same constant factor appears on the right-hand
sides of both inequalities. It was proved by Hardy and Riesz that this constant factor was
the best possible.

Theorem 1.3 The constant it /sin(r/p) appearing in (1.1) and (1.2) is the best possible.
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The previous three results are taken from the classical monograph [33], in a slightly
altered form. The case of p = ¢ =2 in Theorem 1.1 was first proved by Hilbert in his
lectures about integral equations. The lack of that old proof consisted in the fact that Hilbert
didn’t know to determine the optimal constant factor 7. That drawback was removed by
Shur in 1911, who also proved the integral version of the inequality. The extensions to
arbitrary pair of positive mutually conjugate exponents are due to G.H. Hardy and M.
Riesz.

Some other proofs, as well as various generalizations are due to the following mathe-
maticians: L. Fejér, E. Francis, G. H. Hardy, J. Littlewood, H. Mulholland, P. Owen, G.
Pélya, F. Riesz, M. Riesz, I. Schur, G. Szegé. Nevertheless, the inequalities (1.1) and (1.2)
remained known as the discrete and the integral Hilbert inequalities. For more details about
the initial development of the Hilbert inequality the reader is referred to [33, Chapter 9]. It
should be noticed here that generalizations of inequalities (1.1) and (1.2) will be referred
to as the Hilbert-type inequalities.

However, we provide two more results from the 1920s, which will also play an im-
portant role in further investigations. Namely, Hardy, Littlewood and Pélya noted that to
every Hilbert-type inequality one can assign its equivalent form, in the sense that one im-
plies another and vice versa. For example, the equivalent form assigned to inequality (1.1)
is contained in the following theorem.

Theorem 1.4 Let p > 1 and let (ap),, N be the sequence of non-negative real numbers
such that 0 < ¥;»_ aly, < eo. Then

,i(milmﬂ)p (s,ln_) Z“p (1.3)

Obviously, the integral analogue of inequality (1.3) is analogous, with the sum re-
placed with the integral, and a sequence with a non-negative real function. Such inequal-
ities, derived from the Hilbert-type inequalities will be referred to as the Hardy-Hilbert-
type inequalities. Moreover, the Hilbert-type and the Hardy-Hilbert-type inequalities will
sometimes simply be referred to as the Hilbert-type inequalities.

Already at that time, the sharper version of inequality (1.1) was also known. That
result is presented in the following theorem.

Theorem 1.5 Under the same assumptions as in Theorem 1.1, we have

amby, had é
S5 s ls 5l s

m=0n=

Inequalities (1.1) and (1.4) are known in the literature as “the Hilbert double series
theorems”.

These theorems were inspiration to numerous mathematicians. During the 20th century
numerous proofs, generalizations and applications of the Hilbert inequality were discov-
ered and it would be impossible to count them here.
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Nowadays, more than a century after the discovery of the Hilbert inequality, this re-
search area is still interesting to numerous authors. As an illustration, we indicate here
some generalizations obtained in the last ten years. One of the possible extensions arises
from studying various kernels. Namely, in presented results such kernel was the function
K(x,y) = (x+y)~1. In 1998, considering the kernel K (x,y) = (x+y) %, s > 0, B. Yang was
the first one to have included the well-known Beta function into the study of Hilbert-type
inequalities (see [138]). Recall that the Beta function is an integral function defined by

1
B(a,b):/ 1=, ab> 0. (1.5)
0

For example, in [152] one can find the following result in the integral form.

Theorem 1.6 Let %—Fé =1,p>1,andlets>2—min{p,q}. If f,g : RL — R are non-
negative measurable functions such that 0 < [ x' =5 fP(x)dx < o and 0 < [;"y'~*g%(y)dy

< oo, then
= e f(x)gly)
/0 /0 7(x—|—y)-" dxdy

-2 —2) [ [T s Pl g
<B(P+; ,q+; )[/0 xl.Xfp(x)dx] [/0 yl.\gq(y)dy:| L6

et I i C N

/Oy P {/0 (x—l—y)“'dx} dy

_2 gas—2\ [~
<B”<p+; ,q+; )/Oxl_sf”(x)dx. (1.7)

and

Moreover, these two inequalities are equivalent and include the best possible constant
factors on their right-hand sides.

The multidimensional extension of inequality (1.6), involving the usual Gamma function,
has also been derived in the above mentioned paper [152]. Recall that the Gamma function
is an integral

r(a):/ 1 le ldr, a>0. (1.8)
0

Theorem 1.7 Suppose that p; are mutually conjugate exponents, i.e. ¥\, % =1p>1
i=1,2,...,n,andlet s >n—min|<j<,{pi}. If fi : Ry =R, i=1,2,...,n, are non-negative
measurable functions satisfying 0 < [5°x" 17 7 (x;)dx; < oo, then

n
/ / I 1flxl —E= - dxidxy...dx,
i=1 l

1

b & pit+s—n “ n—1—s ¢epi( . . bi
< r(s)HF<7> [/0 X; fPxa)dxi | (1.9)

i=1 Di



1.2 A UNIFIED TREATMENT OF HILBERT-TYPE INEQUALITIES... 5

Remark 1.2 The above notation for the Beta and the Gamma function will be used
throughout the book. The basic relationship between the Beta and the Gamma functions is
given by @)
T'(a)['(b

Bla,b) = I'(a+0b)
and this formula will often be exploited. For more details about the Beta and the Gama
functions, as well as about their meromorphic extensions to the set of complex numbers,
the reader is referred to [1].

, a,b>0, (1.10)

It is interesting that the n-dimensional inequality (1.9) also posses its equivalent form,
which will be discussed in this chapter.

On the other hand, another possible generalization of the presented results is the in-
vestigation of the inequalities of the same type, but where the integrals are taken over a
bounded interval in R,.. Guided by that idea, K. Jichang and T. Rassias [42], obtained the
following result.

Theorem 1.8 Let % + Ll] =1, p>1, andlet K:Ri xRy — R be a non-negative ho-

mogeneous symmetric function of degree —s, where max{%, Ll]} <s. IfK(l,y) is strictly
decreasing iny and f,g : R, — R are non-negative measurable functions, then

b b
/a /a K(x,y)f(x)g(y)dxdy
: /“b (I(q) - (p(q’x>)xlsfp(x)dx] ; l/ab (I(P) - <p(p,Y)>yL.vg’1(y)dy ;
(1.11)

where

=5 1 +1-1 1 '
o= (2) " [ kouaus ()77 [ k(w2

I(r)= jS’°K(l7u)u_%du, re{p.q}, and0<a<b<eco.

In the next section, the integrals will be taken over more general sets.

1.2 A unified treatment of Hilbert-type inequalities
with conjugate exponents

In the previous historical overview we have seen the classical Hilbert inequality in both
discrete and integral case. Moreover, throughout years numerous extensions of these in-
equalities were derived. However, all these results were given in either integral form, with
respect to the Lebesgue measure, or in the discrete form.
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The main objective of this section is to present a general result which unifies the inte-
gral and discrete cases. This can be done by observing a more general integral. Namely,
the classical Hilbert inequality is a consequence of the Holder inequality and the Fubini
theorem. In general, the Fubini theorem holds for the integrals with o-finite measures,
therefore, such measures will be considered.

The most important examples of o-finite measures are the Lebesgue measure and the
counting measure. The Lebesgue measure yields the classical integral case, while the
counting measure provides the discrete case.

Further, it is well-known that if one of the mutually conjugate exponents in the Holder
inequality is negative, then the sign of the inequality is reversed (see [103]). Hence, we
shall also be concerned with the Hilbert-type inequalities with the reversed sign of inequal-
ity. Such inequalities will be referred to as the reverse inequalities.

Now we present the most general form of the Hilbert inequality in the setting described
above. It should be noticed here that we suppose that all integrals converge, and such
types of conditions will often be omitted. Moreover, integrals will be taken over a general
measure space. Results that follow are provided in two equivalent forms: the Hilbert and
the Hardy-Hilbert forms.

Theorem 1.9 Ler ,_1; + é =1, p > 1, and let Q be a measure space with positive C-finite
measures | and ly. Let K : Q x Q — R and ¢,y : Q — R be non-negative measurable
Sunctions. If the functions F and G are defined by F(x) = [ K(x,y)y P (y)dua(y) and
G(y) = [oK(x,y)0 1(x)du;(x), then for all non-negative measurable functions f and g
on Q the inequalities

L [ K gt)din (dua(y)

{Qmmwpwl]vw mmﬂq (1.12)
and
/Gl p( {/ny x)dpy (x )] dua(y)
/q)” P(x)dp (x) (1.13)

hold and are equivalent.
If0 < p < 1, then the reverse inequalities in (1.12) and (1.13) are valid, as well as the
inequality

/Fl (x [/ny y)dia(y )] dp (x)
< [ W0I60)g ). (1.14)
Proof. The left-hand side of inequality (1.12) can be rewritten in the following form:
o) Y
K(x duy (x)d / / —=du(x)d .
// Y)f(x)g(y)dp (x)dpa(y (y)g()’)(p(x) 1 (x)d iz (y)
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Now, applying the Holder inequality to the above relation yields

[ | Ky 0 (i)

[// x,) P (x Ex;dul( )d.uz(Y)]%

[ st 2 ]

Finally, using the Fubini theorem and definitions of functions F and G we obtain (1.12).
Now, we are going to show the equivalence of inequalities (1.12) and (1.13). For that
sake, suppose that inequality (1.12) holds. Defining the function g by

#1560 | [ Keestoasato]

taking into account that l + é =1, and using (1.12), we have

/Gl P(y)y P [/ny (x)dpy (x )} di(y)
_//ny (v)dp (x)d s (y)

[/fp” (x)dp (x } [/uﬂ (v)dpa(y )];
- [ e >du1<>} "
x[/gcw( o) [ [ K dul()rduz(y)r7

that is, we get (1.13).
On the other hand, suppose that inequality (1.13) holds. In that case, another use of
the Holder inequality yields

//ny (V)d (x)da(y)
:/ [ V)G /ny x)dp (x )] Y()G (1)g(v)dia(y)

< [/ G r(y (/nyf )l (x ))pduz(Y)]}’
[/vﬂ )i (y >]"
ST p——
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which implies (1.12). Therefore, inequalities (1.12) and (1.13) are equivalent.
The reverse inequalities, as well as their equivalence, are derived in the same way by
virtue of the reverse Holder inequality. U

Remark 1.3 The equality in the previous theorem is possible if and only if it holds in the
Holder inequality, that is, if

[f(x)w] g C {g(y)m} 47 a.e.onQ,

v(y) ¢(x)
where C is a positive constant. In that case we have
f(x)=Cio™(x) and g(y)=Cy P(y) ae onQ, (1.15)
for some constants C; and C,, which is possible if and only if
[P @dime) < and [ GOW O)dmb) <= (L16)

Otherwise, the inequalities in Theorem 1.9 are strict.

In some applications of the previous theorem it will be more convenient to bound the
functions F'(x) and G(y). Of course, such result follows immediately from Theorem 1.9.

Theorem 1.10 Suppose that the assumptions as in Theorem 1.9 are fulfilled and let
F1,Gy : Q — R be non-negative measurable functions such that F (x) < Fy(x) and G(y) <
G1(y), a. e. on Q. Then the inequalities

[ | Ky 00 (i)

< [[ownereme) [ vos oo o

and

/QGll”’( P Uny x)d (x )} dua(y)
< [ 0" @R (xdu () (L.18)

hold and are equivalent.
If0< p <1, F(x) > Fi(x), and G(y) < G1(y), then the reverse inequalities in (1.17)
and (1.18) hold, as well as the inequality

/Fll (x [/ny y)dua(y) dﬂl(x)
< [ WI0)GI0)g"0)dpa (). (1.19)
Q

The reverse inequalities are also equivalent.

Remark 1.4 The general Hilbert-type inequalities presented in this section have been
obtained by M. Krni¢ and J. Pecari¢ in [53].
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1.3 Applications to homogeneous kernels

Theorem 1.9 from the previous section has unified the classical integral and discrete cases
of the Hilbert inequality. In order to approach to some well-known results from the litera-
ture, we study here some particular choices of kernels and weight functions.

In this section we consider homogeneous kernels of negative degree of homogeneity,
equipped with some additional properties. Recall that a function K : Q x Q — R is said to
be homogeneous of degree —s, s > 0, if K(tx,7y) =t7*K(x,y) forevery x,y € Qandr € R
such that zx, ry € Q. In addition, for such homogeneous function we define k() as

k(o) = /O TR du, (1.20)

provided that the above integral converges for | —s < o < 1.

We study here the integral case, that is, the Lebesgue integral. The integrals are taken
over an arbitrary interval of non-negative real numbers, i.e. (a,b) CR;,0<a <b < oo,
and the weight functions are chosen to be power functions.

Theorem 1.11 Let %—l—é =1, p>1 andlet K : (a,b) X (a,b) — R be a non-negative
homogeneous function of degree —s, s > 0, strictly decreasing in both variables. If A| and
A, are real parameters such that A € (I;S, é) Ay € (%, %) then for all non-negative
measurable functions f,g : (a,b) — R the inequalities

/ab /ab K(x,y)f(x)g(y)dxdy
b

a

= [ / (k(pA2) — @1(pAz,x))x! 5 HPA1=42) fp(x)dx} ’

1
q

b
X [ / (k(z—s—qu)—<pz(2—s—qu7y))yl‘”q(AZ‘A”gq(y)dy] (121)
and
b
/(k(2—s—qA1)—@2(2—s—qu,y))lfpy“‘”“‘”“’(“l‘*‘”
a . »
<[ Koo as
b
< [ (K(pA) = pa(pza)) PO () (122)

hold and are equivalent, where

a l-a X sto—1 .
o1 (0,x) = (—) / K(1,u)u"%du+ (—) / K (u, 1)u' % 2du,
X 0 b 0
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a s+a—1 .1 y l-o 1
,(a,y) = (—) / K(u,l)u”o‘_zdu—i— (—) / K(1,u)u %du.
y 0 b 0

If0O< p <1, b=-oo, and K(x,y) is strictly decreasing in x and strictly increasing in
¥, then the reverse inequalities in (1.21) and (1.22) are valid for every A € (é, %) and
Ay € (%7 %), as well as the inequality

oo 00 q
|| (k(pA2) = gu(pz ) Ol et [ / K(w)g(y)dy] dx

< / (k(2—5— A1) — @2(2 — s — gA1,y) )y A A g (y)0qy.

Moreover, if 0 < p <1, a=0, and K(x,y) is strictly increasing in x and strictly de-

creasing in 'y, then the reverse inequalities in (1.21) and (1.22) hold for every A| € (57 %)
and A, € (%7 ;7), as well as the inequality

b b q
/0 (k(pA2) — @1 (pAa,x)) '~ Oxla= Dl Dalda—) [ /O K(w)g(y)dy} dx

b
< /0 (k(2 =5 —gA1) — @2(2— 5 — qA1,y))y' T H0 g (y)dy.
Proof. We only prove inequality (1.21). After substituting the power functions ¢ (x) = x41

and y(y) = y*? in (1.12), the homogeneity of the kernel K and the substitution u = ¥ yield
the following relation:

/ab /ab K(x,y)f(x)g(y)dxdy

1
’ : '
g [/ xl—s+p(A1—A2) (/{; K(l7u)u_PA2du>fp(x)dx‘|

1
b a ’
y {/ yls+q(AzA1)</v K(Lu)qu'“2du>gq(y)dY] :
a b

In addition, considering the function /(y) = y*~! [ K(1,u)u”%du, o < 1, the integration
by parts yields equality

/ N 2 Y l—aaK(L”)
I'y)y=y /Ou 5. du.

Since the kernel K is strictly decreasing in both variables, it follows that I’(y) < 0,y € R,
that is, [ is strictly decreasing on R .
On the other hand, since

b 00 a
/x K(1,u)u P2du = / K(Lu)u_pAzdu—/X K(1,u)uP*2du
a 0 0

—/h K (u, 1)uP>5=2qy,
0
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and due to the fact that [ is strictly decreasing on R, we obtain the estimate

b
/lx K(Lu)u_pfhdu < k(pAz) — ¢1(pAz,x)
and similarly,
/Va K(1,u)u™ 5724y < k(2 —s—qA;) — @22 — s — gAL,Y),
y

so the result follows from Theorem 1.9. Note also that the intervals defining the parameters
Ay and A; arise from the assumption on the convergence of integral (1.20). |

Remark 1.5 If the kernel K in the previous theorem is a symmetric function, then k(2 —
s—qA1) =k(qA). Then, setting A| = A, = pl—q in Theorem 1.11, provided that max { %7 é} <
s, we get Theorem 1.8 (see also [42]).

Remark 1.6 In order to justify the convergence interval (1 —s, 1) for the integral k(o)
defined by (1.20), observe that the homogeneity of the kernel K implies the following
sequence of identities:

= 1 . = .

k(o) :/ K(—,l) uf“faduz/ K(u, ) 2qu.
0 u 0

On the other hand, assuming that K is strictly decreasing in each argument, K is strictly

positive on R x R. In particular, for & > 1, monotonicity of K in the second argument

and the fact that K(1,1) > 0 yield

- 1 1
k(a) :/ K(1,u)u=%du > / K(1,u)u™%du > K(Ll)/ u=%du = oo.
0 0 0
Analogous result holds also for o < 1 — s, since
oo 1
k(o) = / K (u, D) ™ 2du > / K(u, )™ 2du
0 0

1
> K(1,1) / W2y = oo,
0

Therefore, the interval (1 —s,1), considered in definition (1.20), covers all arguments o
for which k(o) may converge. The same conclusion on convergence of k(¢t) can be drawn
if we consider a function K increasing in each argument and such that K(1,1) > 0.

It is interesting to consider a particular case of the previous theorem, that is, when
the integrals are taken over the whole set Ry. Then, a =0, b = «, and we obtain the
corresponding inequalities for an arbitrary non-negative homogeneous function of degree
—s.
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Corollary 1.1 Let ;74— é =1, p>1,andlet K: Ry x Ry — R be a non-negative ho-
mogeneous function of degree —s, s > 0. If A| and A, are real parameters such that
Al e (— —) Ay e (1115, L) then for all non-negative measurable functions f,g : R, — R
the lnequalmes

/ / K(x,y)f(x)g(y)dxdy

1
<L |:/mx1_5+P(A1_A2)fP(x)dx:| r [/ yl s+q(A2—A1) ,q gy )dy] ! (1.23)
0 0

and

00 (=} p
/0 P D=1 +pA1=42) [ /O K(x7y)f(X)dX] dy

<1 / T s tp(A1—Ag) £P(x)dx (1.24)
0

hold and are equivalent, where L = k7 (pAz)ké (2—5—qA)).

If 0 < p < 1, then the reverse inequalities in (1.23) and (1.24) are valid for every
A e (1 = ‘) and A, € ( 117)7 as well as the inequality

/mx(trl)(sfl)Jrq(ArAl) [/m K(x,y)g(y)dy} qu
0 0

<1 /0 YISt aA=A0 g8 (), (1.25)

Inequalities (1.23) and (1.24), as well as their reverse inequalities are equivalent. More-
over, equality in the above relations holds if and only if f =0 o0r g=0a.e. on R..

Proof.  The proof follows immediately from Theorem 1.11 by substituting ¢ = 0 and
b = . Moreover, condition (1.15) gives the nontrivial case of equality in (1.23), while
condition (1.16) leads to the divergent integrals. Hence, the observed inequalities are strict,
unless f=0org=0a.e.on R,. U

In the sequel we consider some generalizations of Theorem 1.11. For example, utiliz-
ing the substitution u =x+ g and v=y+ u, u > 0, we have:

Theorem 1.12 Ler L +1 =1, p> 1, and let K : (a+p,b+ ) X (a+p,b+p) — R
be a non-negative homogeneous function of degree —s, s > 0, strictly decreasing in both
variables. If Ay and A, are real parameters such that Ay € (=2, 1), Ay € (=5, 1) then

‘1"1 I”I’
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Sor all non-negative measurable functions f,g : (a,b) — R the inequalities
b b
[ [ Ky @)y

= [ / ’ (k(pA2) =y (pAz,x, ) (x + )~ FPATA) g (x)dx} !

a
1

x [/ab (k(2—s5—gA) —ya(2—s—gA1,y, 1)) (y + u)l“'*‘f(AzAl)g‘f(y)dy]

(1.26)
and

b
| (k2 =s= A1) = o2 = 5= gAr,y ) () 7DD

a b p

<[ ks wrwa @

b

< / (k(pA2) — wi (pAz,x, ) (x + p) = HPAI=42) £ () dx (1.27)

hold and are equivalent, where

_ a+A —o x+A sremto s+o—2
l//l(oc,x,l)—(x_FA) /Klu du +(b—|—l> /OK(u,l)u du,

a+z{ s+oa—1 a2 y_|_l 1 —a
Wz(a,y,l)—<m> /Kul du +(b+a) /OK(I,u)u du

If0<p <1, b=oo and K(x,y) is strictly decreasing in x and strictly increasing
in y, then the reverse inequalities in (1.26) and (1.27) hold for all A, € (é, %) and

Ay e (L

> p) as well as the inequality

[ elpz) =y (pzee, ) '  Gpr)o- D0o Dalzoan
oo q
<[ ket weia]

S/ (k(2—5—qA1) — ya(2 — s — gA1,y, 1)) (y+ p) 5 HaA-A0 ga () gy,
(1.28)

Moreover; inequalities (1.26) and (1.27), as well as their reverses, are equivalent.

Remark 1.7 Considering Theorem 1.12 with a symmetric kernel and parameters A} =
Ay = e prov1ded that0 < 1—22 <50 <1—2% <, we obtain the corresponding result

from [42]
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Remark 1.8 Some other ways of generalizing Theorem 1.11 arise from various substi-
tutions. For example, in [53] the authors also use the substitution u = Ax® and v = ByP,
where A,B, o, 3 > 0. Such results are here omitted. It should be noticed here that the
results in this section are taken from the above mentioned paper [53]. In addition, for some
more specific Hilbert-type inequalities with a homogeneous kernel the reader is referred to
[164] and [181].

1.4 Examples. The best possible constants

This section is dedicated to Hilbert-type inequalities with some particular homogeneous
kernels and weight functions. Numerous interesting examples will be given here. More-
over, the best possible constant factors will be derived in some particular settings.

1.4.1 Integral case

We start with the classical integral case. We are concerned here with Corollary 1.1 from
the previous section. It is not hard to see that this corollary covers Theorems 1.2 and 1.6,
presented in the historical overview at the beginning of this chapter.

Namely, if K(x,y) = (x+y) %, s > 0, then the integral (1.20) is expressed in terms of
the Beta function, that is, k(ar) = B(1 — ot,s + o« — 1). Hence, in this setting the constant
factor L on the right-hand sides of inequalities (1.23) and (1.24) takes the form

1 1
L=B?(1—pAy,s+pAr—1)Bi(1 —qAy,5+qA; — 1).

Moreover, if A} = Ay = %, then the above constant coincides with the constant factor
on the right-hand side of inequality (1.6). Hence, Corollary 1.1 can be regarded as an
extension of both Theorems 1.2 and 1.6.

Further, if K(x,y) = max{x,y} %, s > 0, then the above constant L, included in (1.23)
and (1.24), reads

N

(1= pA2)7(1—gAy) T (s+ pAy— 1)7 (s+qA — 1)7

L=

Similarly, forA| = A, = % the above constant factor reduces to

pPqs
(p+s—2)(g+s—2)

and the resulting Hilbert-type inequality coincides with the one from [42].
On the other hand, Hilbert-type inequalities in Theorems 1.2 and 1.6, as well as the
above mentioned result from [42], include the best possible constant factor.

1
Our main task is to determine conditions under which the constant factor L = ké (pAy)ka
(2—s5—qA)) is the best possible in inequalities (1.23) and (1.24). Observe that inequalities
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(1.2) and (1.6) include the best possible constant factors without any exponent. Guided by
that fact we are going to simplify the constant factor L from Corollary 1.1. More precisely,
if we set the condition

pAr+qA; =2 —s5, (1.29)
then the constant factor L in Corollary 1.1 reduces to L = k(pA;).
In the sequel, we are going to show that, under the above condition (1.29) and assuming

some weak conditions on the kernel, inequalities in Corollary 1.1 include the best possible
constant factors. In order to prove that result we need the following lemma.

Lemma 1.1 Let p and q be conjugate parameters with p > 1. If K : Ry xRy — Risa
non-negative measurable function such that K(1,t) is bounded on (0, 1), then

oo 1/x 3
/ xsl( K(l,t)t”Az"d’) dx=0(1), e =07, (1.30)
1 0

where Ay < %.

Proof.  Using the assumptions, we have K(1,7) < C for some C > 0 and every 7 € (0,1).
Let € > 0 be such that £ < pq([lJ —Az). We have

oo 1/x e oo 1/x e
/ wlE ( K(Lt)t_pAz_th) dx < c/ e (/ t"’AZ‘th) dx
1 0 1 0

_ c ; /wpr2+§—e—2dx _ C 7
I—pA;— £ Ji (1-pa2—£) (1-pa2+)
wherefrom (1.30) follows. O

Theorem 1.13 Suppose that the assumptions of Corollary 1.1 are fulfilled. Additionally,
if the kernel K : Ry x Ry — R is such that K(1,t) is bounded on (0, 1), and if the param-
eters Ay and A, fulfill condition (1.29), then the constants L = k(pA;) and LP = kP (pA;)
are the best possible in both inequalities (1.23) and (1.24).

Proof.  For this purpose, with 0 < € < pq(}—y —Ay), set f(x) = xS A1) (x) and

gly) = y PG X[1,)(¥), where x4 is the characteristic function of a set A.
Now, suppose that there exists a smaller constant 0 < M < L such that inequality (1.23)
holds. Let I denote the right-hand side of (1.23). Then,

1
I:M(/ x“dx)p (/ y“dy>q = A;/I (1.31)
1 1
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Applying respectively the Fubini theorem, substitution 7 = ¥, and Lemma 1.1, we have

/O°° /O°° K(x,y)f(x)g(y)dxdy

:/ P (/ K(x,y)y_pAz_gdy> dx
1 1

oo oo £ x71
:/ x &1 / K(Lt)t”’Az’Edt—/

1 0 0

-1 [k (pA2+ 2) +0<1>] | (1.32)

K(Lt)tpAdet) dx

From (1.23), (1.31), and (1.32) we get
€
k<pA2+5> +o(1) <M. (1.33)

Now, letting € — 07, relation (1.33) yields a contradiction with the assumption M < L =
k(pAz).

Finally, equivalence of inequalities (1.23) and (1.24) means that the constant L =
kP (pA;) is also the best possible in (1.24). The proof is now completed. O

As we see, the previous theorem covers the problem of finding the best possible con-
stant factors for a quite weak condition on homogeneous kernel and parameters A;, A,
satisfying (1.29). We have already considered the kernel K(x,y) = (x+y)~*, s > 0. This
kernel fulfills the above mentioned condition from Theorem 1.13, hence, the best possible
constant in that case takes the form B(1 — pA;, 1 — gA;). Hilbert-type inequalities with this
kernel and parameters A, A, were extensively studied in recent papers [10], [11], [52],
[53], and [54].

Some other examples of the best possible constant factors arise from various choices
of kernels. For example, considering the kernel K (x,y) = (x+y+ max{x,y})~*, s > 0, the
best possible constant factor k(pA;) from Theorem 1.13 becomes

275' 27.\'
- - F Ay — 1 Az —1/2
Py = (s,s+pAs— Lis+ pAy—1/ )+l—pA2

F(s,1—pA2;2 —pAy—1/2),

where F (o, 3;7;z) denotes the Gaussian hypergeometric function, that is,

r(y) /1 P (1) P
0

F(a,Bi7iz) = FBT(r—B) 1) di,y>p>0,z<1. (1.34)

The above kernel with degree of homogeneity equal to —1 was also discussed in [81].
We conclude this subsection with some particular Hilbert-type inequalities equipped
with homogeneous kernels of degree —1, involving the best possible constant factors.
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Remark 1.9 Settings=1,A; = A, = i in Corollary 1.1, inequalities (1.23) and (1.24)
become respectively

/Ow /OwK(XJ)f(X)g(Y)dxdy <k(1/q) [/Omfp(x)dx] g [/Owg‘f(y)dy] g (1.35)

and

[ [/:K (x2)f (x)dx] Tay<i (1/q) /O Cf()dx. (1.36)

The following kernels K are homogenous with bounded K(1,7) on (0, 1). For each of these
functions we compute constants L =k (1/g) and L, = k(1/2), that is, when p = g = 2:

1
K 9 =
(x,) x+y+max{x,y}

1 1 1 1 1 1 1 1
L=—gF(l,—1+——= | +zpF(1,=14+——= |,
q q p p

2 2 2 2
Ly = V2(m — 2arctan V2);
1
K(x,y) =

x+y+min{x,y}’

1 1 1 1
L=gqgF (1,—;1+ —;—2) + pF (1, — 14 —;—2) Ly = Zx/iarctan\/i;
q q 14 p

1
K 9 = 9
() = E T maxtry)

L 1F<111+11)+1F<111+11)L 2 th1
_Z RS IR B ,—:1+—=;= ), L, =2artanh—;
2T\ ) TR\ e V2
1 _ 1 I3
x+y—min{x,y}  max{x,y}’

1 2
K(XJ):W7L2: gﬂ';
1

1
T3

=pq,lr =4

K(xvy) =

x+y_l,+l 2 CoS5;  COS7,
K(x.) 1 4r
X, ) =
STV AW
1 Y/
K.x, = s = —
@) ty—ym 33
A—1 A—1
T 1 1
K(x7y)_x )L+yl ’ _I< ”"‘. ”>7)L>19
Xt +y sinzo - singe
A—1 A—1
X =y V4 Y/ Y/
K(x,y) = p ’L:I<COtA_p+COtA ),A>1,
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logy —1 2
Kxy)=—22"08% ;T |, =n

27
y—x -
(sinZ)

Since parameters s = 1,A| = Ay = i fulfill condition pA, + gA; =2 — s, all these constant
factors are the best possible in both inequalities (1.35) and (1.36).

1.4.2 Discrete case

Discrete case of the Hilbert inequality is more complicated than the integral one. Namely,
in order to obtain discrete forms of the corresponding integral inequalities, it is necessary
to do some further estimates, which requires some additional conditions.

In Section 1.1 we encountered the Hilbert double series theorems, those were inequal-
ities (1.1) and (1.4). Moreover, the corresponding equivalent form assigned to (1.1) is
inequality (1.3), while the equivalent form assigned to (1.4) was derived in [142].

Recently, M. Krni¢ and J. Pecari¢ (see [52]), obtained the following discrete version of
the Hilbert inequality with conjugate parameters p, g > 1 and real parameters A, B, ¢, 3,5 >
0,

oo o0 oo P
2 2 <M 2 mo(1=s)+ap(d—Az)+(p—1)(1-a) ,p
=S (Ame —I—Bnﬁ) [ "

m=1

n=1

« [i nﬂ(ls)+ﬁq(AzA1)+(ql)(1ﬂ>b4 13
}

where (am),,cN- (bn),cN are non-negativereal sequences, A; € (max{ %7 e

(max {2 > ,ﬁﬂpl} 1) and

M=o ‘fﬁ LS+ -1 g2t a1
XBP (1= pAz,s— 1+ pA2)Bi (1 — gAy,s — 1 +gAy).

The equivalent form that corresponds to (1.37) is also derived in [52].
Similarly, considering parameters ¢, ¥, and A, such that 0 < ¢,y < l and ¢ +y = A4,
B. Yang [162], obtained the following pair of equivalent inequalities

2 1

o oo log(% amby T [w —o)— ] l ]
< nP(1=9)=1,p pd(1=w)—1pg
r;ngl m* — nt /'Lsin(’jli) ngi 2
(1.38)
and
oo =) 1 (m) b p » oo
Py 081, ) dm "] < ” aP(1-9)-1g0 (1 39)
ng‘l [m:l m* — nt A sin (Td)) ng‘l
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which hold for all non-negative conjugate exponents and non-negative sequences fulfilling
0< Yo nP1=9-1gP < coand 0 < 3 n9(1-¥)=1p? < oo, Moreover, the constant factors
included in the right-hand sides of inequalities are the best possible.

On the other hand, B. Yang and T. M. Rassias [152] (see also [149]), studied the kernel
expressed in terms of the logarithm function. They obtained the following pair of equiva-
lent inequalities,

1

li nq_le] q (1.40)

n=2

==

i i ambn < T [inp—la£‘|
n

=, S logmn ~sinm/p |5,

and

oo P D oo
Zl<—a’" ) <[—” } 3w lat, (1.41)

= n \ logmn sinm/p| <,

which hold for non-negative conjugate exponents and non-negative sequences such that
0<Y" nP~lal <eoand 0 < Y5, n?!bjl < 0o. Moreover, the constant factors 77/ sin(7/p)
and [rr/sin(m/p)]?, on the right-hand sides of inequalities (1.40) and (1.41), are the best
possible. Observe that the above inequality (1.40) for p = ¢ = 2 is also known as the
Mulholland inequality.

Clearly, the kernel involved in the previous two inequalities, as well as in (1.37) is
non-homogeneous, while the kernel in (1.38) and (1.39) is homogeneous.

However, utilizing suitable substitutions, these non-homogeneous kernels can also be
interpreted as the homogeneous ones. Thus, in the sequel we provide discrete forms of
Hilbert-type inequalities with a general homogeneous kernel. The same conditions as in
the integral case are assumed on the convergence of the integral k( o), defined by (1.20).

The following result contains discrete Hilbert-type inequalities for a homogeneous ker-
nel in both equivalent forms. Discrete weight functions involve here differentiable real
functions. In addition, for the reader’s convenience, we introduce here the following nota-
tion: H(r), r > 0, denotes the set of all non-negative differentiable functions u : Ry — R
satisfying the following conditions:

(i) u is strictly increasing on R and there exists xo € R such that u(xy) = 1,

(ii) limy_eo u(x) = oo, [Z;% is decreasing on R .

Theorem 1.14 Let %—l—é =1, p>1, and let s > 0. Further, suppose that

Al e (max{%,O}, é), Ay € (max{%,O},%), u€ H(qAy) and v € H(pA;). If K :
Ry xRy — R is a non-negative homogeneous function of degree —s, strictly decreasing
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in each argument, then the inequalities

3 fu(m)] P [u’(mn“’aﬁ:,]
m=1

x li [v(n)]l-"*’M””[v’(n)]lqbz] (1.42)
n=1

and

[v(n)] 6~ DP=D+pAi=A2) /()

M

n=1

=

<LP Y [u(m)) TP A A ()] P gl (1.43)

m=1

hold for all non-negative sequences (am),,.N» (bn),cN> Where

L= kP (pA2)kd (2 —s—qAy). (1.44)
Moreover; inequalities (1.42) and (1.43) are equivalent.

Proof. Rewrite inequality (1.12) for the counting measure on N, (¢ o u)(m) = [u(m)]"!

1 1
(W' (m)] "4, (yov)(n) = [v(n)]*2['(n)] 7, and the sequences (am), N and (bn), N-
Clearly, these substitutions are well-defined, since « and v are injective functions. Thus, in
this setting we have

m=1
x li ()0 ()] (G o v)(n)bz] " (1.45)
n=1
where = K(u(m).v(m)V (n)
(FOM)(m) = “~ [V(;’l)]pAZ
and
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Now, since the kernel K is strictly decreasing in each argument and u € H(gA;), v €
H(pA,), it follows that F ou and G o v are strictly decreasing. Hence, we have

°°Kum,v
(FOM)(m)</O W

since the left-hand side of this inequality is obviously the lower Darboux sum for the
integral on the right-hand side of inequality. Further, utilizing substitution v(y) = tu(m)
and homogeneity of the kernel K, we have

v (y)dy, (1.46)

o R 0)) e
JA e 0y = ()] e [TK(Lorar,

so by virtue of (1.20) and (1.46) we get
(F ou)(m) < [u(m)]' = "PA2k(pA,). (1.47)
By the similar arguments as for the function F o u, we obtain

(Gov)(m) < /:Wu’(x)dx

= )] K e
0
= )] R
0
= ()] M2 — 5 —gA)). (1.48)

Finally, relations (1.45), (1.47), and (1.48) imply inequality (1.42).

On the other hand, if we rewrite inequality (1.13) with the counting measure on N and
the same functions as in the proof of inequality (1.42), after using estimates (1.47) and
(1.48), we also obtain (1.43). O

Clearly, Theorem 1.14 covers discrete Hilbert and Hardy-Hilbert-type inequalities with
homogeneous kernels, decreasing in both arguments.

Remark 1.10 Suppose (am),,.y and (bn), .y are non-negative real sequences, not iden-
tically equal to trivial zero sequence. Then, according to estimates (1.47) and (1.48), it
follows that inequalities (1.42) and (1.43) are sharp. In other words, equalities in (1.42)
and (1.43) hold if and only if @,, =0 or b, = 0.

Remark 1.11 If the homogeneous kernel K : R} x Ry — R is a symmetric function, that
is, K(x,y) = K(y,x), for all x,y € R, then the constant L, defined by (1.44), simplifies to

1 1
L=kr(pAz)ki(qAr).

As emphasized above, inequalities (1.42) and (1.43) are sharp if the sequences (an),,.N
and (bn),.y are not identically equal to the zero sequence. Therefore, it is interesting to
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consider the problem of finding the best possible constant factors for inequalities (1.42)
and (1.43).

The main idea in obtaining the best possible constant factor is a reduction of constant
defined by (1.44) to the form without exponents, which was already considered in the
integral case. Thus, the parameters A; and A, fulfill (1.29), that is, pA, + gA; =2 —s,
which implies that k(pA,) = k(2 —s — gA1). In such a way, the constant factor L from
Theorem 1.14 becomes

L =k(pAy). (1.49)

Moreover, under assumption (1.29), inequalities (1.42) and (1.43) respectively read

1

M
M

K(u(m),v(n))anb, <L* [

ﬁ[\/]z

G e A O a%]

1

3
I

1

x li ~IHpadz| ()]lqbz] (1.50)

n=1

and

oo

z [v(n)]<”‘1)(1""1A2>v’(n)

n=1

< (@)Y ulm)]” P )P (1.51)

m=1

The following theorem shows that the constants on the right-hand sides of inequalities
(1.50) and (1.51) are the best possible.

Theorem 1.15 Suppose that parameters p, q, s, A\, A;, and the functions u,v: Ry — R,
K : R xRy — R are defined as in the statement of Theorem 1.14. If parameters A| and
Ay fulfill condition pAy 4+ gA| = 2 — s, then the constant factors L* and (L*)P are the best
possible in inequalities (1.50) and (1.51).

Proof. 1Tt is enough to show that L* is the best possible constant factor in inequality
(1.50), since (1. 50) and (1.5 1) are equivalent. For this purpose, we consider sequences
Gm = [u(m)]" ™ 751/ (m) and b, = [v(n)] ">~ 71/(n), where £ > 0 is sufficiently small
number. Since u € H(gA|) we may assume that u is strictly increasing in R, and there
exists xo € R4 such that u(xp) = 1. Therefore, considering integral sums, we have

= /1 )] < 3 o)) 5l )

€

I
H Mz
;

S

E‘

3
=
T

]

SN
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where the function { is defined by {(x) = [u(x)] "' ~¢u/(x). Hence, we have
S )] P ()] P, = - +0(1), (152)
m=1

and similarly,

M

[v(n)] "1 HPHA Y ()] 908 = é +0(1). (1.53)

n=1

Now, suppose that there exists a positive constant M, smaller than L*, such that (1.50) holds
after replacing L* with M. Then, combining relations (1.52) and (1.53) with inequality
(1.50), we get

Z z K(u 1) )ambn < 1(M+o(1)). (1.54)
m=1n=
On the other hand, we can also estimate the left-hand side of inequality (1.50). Namely,
inserting the above defined sequences (@), and (Zn)n cN in the left-hand side of (1.50),
we easily obtain

S . K(ulm).v(n) by

m=1n=1

. / )5 [ [ Kt v (y)]"”*z—%d(v@))} d(u(x)

Moreover, since the kernel K is strictly decreasing in both arguments, it follows that
K(1,0) > K(1,z), fort > 0, so we have

/ K(1,0)1 P4 th} d(u()). (1.55)
u(x)

1
/ K(1,0) P ddr >/ K(L,0) P2 adr — K(1, 0)/’“‘ PG gy
0

g
3 K(1,0) —14pAy+E

= k A — S Sk A, pA2
(p 2+q> 1—pA2—g[“(x)] .

and consequently

oo

K(l,t)t"Adet] d(u(x))

1 € (1,0)
= (pAHE) (1t g) (1-part ) 20

In other words, relations (1.55) and (1.56) yield the lower bound for the left-hand side of
inequality (1.50):

- 1

S K(u(m), v(n))amby > ~ (L*+o(1)) (1.57)

m=1n=1
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Finally, comparing relations (1.54) and (1.57), and letting € — 0, it follows that L* < M,
which contradicts the assumption that the constant M is smaller than L*. This means that
L* is the best possible constant in inequality (1.50). O

We conclude this discussion with a few remarks which connect Theorems 1.14 and
1.15 with particular results presented at the beginning of this subsection.

Remark 1.12 Observe that Theorem 1.14 is a generalization of inequality (1.37) (see
also [52]). Moreover, Theorem 1.15 yields the form of inequality (1.37) with the best
possible constant factor. Namely, putting the kernel K(x,y) = (x+y)~*, s > 0, and power
functions u(x) = Ax® and v(y) = By?, A, B, o, B > 0, in (1.50), we obtain the correspond-
ing form of inequality (1.37), with the best possible constant factor

1
o 9B P AT BT PA R pas | gAy).
Remark 1.13 If s = I, then parameters A = A, = i fulfill condition (1.29). Thus,
putting these parameters in (1.50) and (1.51), together with kernel K (x,y) = (x+y) ! and

differentiable functions u(x) = v(x) = log(x+ 1), we obtain inequalities (1.40) and (1.41)
with the best possible constants (see also [152]).

Remark 1.14 Since parameters A} = A, = %, where 2 —min{p,q} < s < 2, fulfill con-
dition (1.29), they can be substituted in inequalities (1.50) and (1.51). In addition, consid-
ering the kernel K (x,y) = (x+y) %, s > 0, and differentiable functions u(x) = v(x) = x+v,
0 < v < 1, inequalities (1.50) and (1.51) reduce to

1 1

oo =) oo P S q
<SS Sab 1=spa 1.58
g‘ g‘ m+n+2v) 1[,”21(m+v) ‘ 1 Z‘l(nw) ”] (19

and
- - Y P -
(p—1)(s—1) m 14

; (n+v) [2; T TIT 2; (m+v)'=5aP, (1.59)

where the constant factors S| = B( +32 ql ; (11 + = l) and S are the best possible. If s = 1,
then S| becomes 7/ sin(w/p). Thus, setting v = 4 and s = 1 in (1.58) and (1.59), we
obtain the sharper version of the Hilbert double series theorem, as well as its equivalent

form (see also [142]).

Remark 1.15 Some particular discrete Hilbert-type inequalities regarding homogeneous
kernels are also obtained in [54]. They can be derived as the consequences of Theorems
1.14 and 1.15. For example, setting K(x,y) = (x+y)7°, s > 0, u(x) = xa*, v(y) = ya’,
a > 1, inequalities (1.50) and (1.51) respectively read

1
P

Mg

(mam)_HPqA1 (@" +ma" loga)l_p aﬁl]

- amby *
z z (ma™ + na")* st L

m=1n=1 1
X
n

M s

(na”)_Hquz (@"+nd"loga) I=p bZ]

Il
—_
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and

Mx

I P
J=pado) (4" 4 ng"loga) [2 aim)s]

=, (ma™ +na"

3
Il

P 2 (mam)flerqu (am—l—mamloga)l*"ag”

where L* = B(1 — pAs, 1 — gA)).
Similarly, if K(x,y) = (x+y) %, s > 0, u(x) = xarctanx, v(y) = yarctany, then inequal-
ities (1.50) and (1.51) become

i i Gmbn <L* [i wp(m)a%] '

(marctanm + narctann)®

and

oo

Y (narctann) P~ D1=P442) (arctann + "
1+n?

n=1

oo 4
X lz am )S] )P Z Wy (m)an”,

= (marctanm + narctann

where L* = B(1 — pAy,1 —gA;) and

1—r
o, (x) = (xarctanx)' 742741 (arctanx—i— ﬁ) , red{p,q}.
X

Of course, the above inequalities include the best possible constants. For some other ex-
amples arising from various choices of weight functions, the reader is referred to [54].

1.4.3 Some further estimates

In this subsection we study a few particular Hilbert-type inequalities involving the homoge-
neous kernel K (x,y) = (x+y)~*, s > 0. In addition to the Hilbert inequality, the following
results will be derived with a help of some additional estimates that arise from this par-
ticular setting. More precisely, we shall use Theorems 1.9 and 1.10, as well as various
methods for estimating the integral of type

b
/lx K(1,u)u %du.

The first in the series of results is the following pair of inequalities.
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Corollary 1.2 Let % + (1} =1, p>1,andlet s> 0. If (a,b) C R, then the inequalities

[ [

s [-30 -1G) ]t e
T R M

and

: 07y g
Ll 50 e [ L] s
S ALHORG]

2] xFAPLr () ax (1.61)
b

hold for all non-negative measurable functions f,g : (a,b) — R. In addition, inequalities
(1.60) and (1.61) are equivalent.

Proof. Considering Theorem 1.9 with the kernel K(x,y) = (x+ y)~* and weight functions

o(x) = xzz;"s7 y(y) = y%x, we have

/ab/ab%dxdy
<[[rr () o]
X [/a”ysﬁ“rql(/; %du)gq(y)dy] 5.

Now, we are going to estimate integrals in the above inequality, dependent on variables x
and y. Taking into account an obvious relation

~1 ui—1

B(f i)—2/deu—2a%/w7du
22) 77 T ™% )y Tarap ™™

and inequality
1

oyl o 3l
g </ 2,
/a (o +u)’ “S o (1+u)’ !

5—-1

2 1 s s s
B —a_fB(—,—), o> 1. 1.62
/a Atup™” 2 22 - (1.62)

where o > 1, we have
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Finally, considering the relation

b5 w1 - 51

X uz2 S S u?2 u?

g :B(—,—)—/ g —/ g,
/ G+~ °\22) 7Gx ™ ) Grap

and (1.62), we obtain the estimate

b S_1 . S
s -360'-56))

which yields inequality (1.60). Equivalent form (1.61) follows in a similar way. O

=

=S

Remark 1.16 Combining the well-known arithmetic-geometric mean inequality

(D) +36) = 6)"

with inequalities (1.60) and (1.61), we have
b b
/ / FD80) 4y
a Ja (.7("'}))S
1
s s aNi| [ (P _wy, N
<8 (33) 1= () [ vera] [ [ oral

and

[ V Jfﬁydxrdy = {B (33) (1 -(5) zﬂp [

Putting p = g = 2 in these inequalities, we obtain a pair of inequalities derived in [152].
Moreover, if a = 0 and b = oo, the above inequalities reduce to corresponding relations
obtained in [11].

We finish this section with another specific Hilbert-type inequality referring to kernel
K(x,y)=(x+y)~%, s>0.
Corollary 1.3 Let %—I— Ll] =1, p>1, >0, and let A\ and A, be real parameters such
L 1
that Ay € (122, 1)y and Ay € (152, 1) IFQ = k) (pA2)k (qAr), L = 1222, 1 = 1=281, and

Aol
apl=T-d-T) U

ol i (I+u)s

h(},]*l,alfl)

—Q

k(o) = du,

then the inequalities
/” /” fx)s0) dy
a Ja (x+y)“'
1 1

sQ{ / bxl-"ﬂ’(f‘lAZ)f"(x)dx]p [/ s g (L6

a
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and

/ B CRR s [/ b (xfixy))sdx] <o / ) (e (1.64)

hold for all non-negative measurable functions f,g : (a,b) — R and are equivalent.

Proof. We start as in the proof of Corollary 1.2, but for the estimate of the integral

b o
/'X o du,
a (1+u)

we use the fact that the function f(x) = ff/j u (1 +u)*du, x € Ry, attains its maximum

abl—bd 7 _ 1-«
s === O

value at x =

Remark 1.17 SettingA; =A; = %, provided that s > 2 —min{p, g}, inequalities (1.63)
and (1.64) reduce respectively to

/ab /ab%dmy = Uabxl_sf p(x)dx]; [ /a byl‘sgq(y)dy];

1
2

and b b ( ) p b
(s—1)(p—1) / flx d dv < p/ 1—s ¢p d
/ay [Q(Hy)sx vy | x 17 (x)dx,
where . 5 1 5
> — - —
0=t (B (57
Similarly, if A; = 2. and A, = 3%, inequalities (1.63) and (1.64) respectively read
b b
/ / fx)g0) ;. dy
a Ja (x+y)s
1 1
2— b S, ? b S q
<t () | [rEeteral | [ #ertora]”
a a

and

by, b P 9 _ by
[ ol e () v

Remark 1.18 General results from this section, covering the best possible constant fac-
tors for Hilbert-type inequalities with a homogeneous kernel in integral and discrete case
are established in papers [63] and [111]. Particular inequalities in subsection 1.4.3 are
taken from paper [53]. For the similar problem area, the reader is referred to the follow-
ing references: [13], [36], [38], [80], [85], [101], [122], [126], [132], [135], [146], [149],
[155], [162], [164], [176], [181], [182], and [183].
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1.5 Refined Hilbert-type inequalities
via the refined Holder inequality

In this section we provide an interesting improvement of the general Hilbert-type inequality
based on the improvement of the Holder inequality, obtained by H. Leping et. al. in [75].

For the reader’s convenience, we first introduce some definitions. Let f and g be el-
ements of the inner product space of measurable functions, where the inner product is
denoted by (f,g). Further, let S,(f,u) be defined as

Sr(f,b{) = <f%7u>‘|f||r7%7

where u is the unit vector and ||f]|, = /(f2,f2). Clearly, S,(f,u) = 0 when the vector u

selected is orthogonal to f 7,
By virtue of the positive definiteness of the Gramm matrix, G. Mingzhe and L. Debnath
[98], derived an important inequality

201,112 201,112
(f.8)* < 1Al = ke = llglly)® = LA gl [L = r(h)], (1.65)
where r(h) = (HyTH - ﬁ)ax: (g,h),y=(f,h), ||h|]| =1, and xy > 0. Here, || - || denotes
the usual 2-norm in L? space. In addition, equality in (1.65) holds if and only if vectors
f and g are linearly dependent or vector £ is a linear combination of f and g, provided
xy =0, x # y. It should be noticed here that inequality (1.65) is a consequence of an earlier
result of Mitrovi¢ (see paper [104]).
Now, regarding the previous definitions, the above mentioned refinement of the Holder
inequality from [75] asserts that

(f,8) < pllgllq[L — R(R)]™, (1.66)

where L+ L =1, p > 1, R(h) = [S,(f,h) = S4(g,m)]* # O, ||n]| = 1, m = min{, 1},
provided f 5 g%, h are linearly independent.

In order to explain the idea from paper [75], we derive here improvement of the reverse
Holder inequality. Moreover, the integrals will be taken with o—finite measures, as in
Section 1.2, and the corresponding inner product will be defined as

(f:8) = JoK(x)f(x)g(x)dp(x).
Lemma 1.2 Let 11—7+§:1, O<p<landletK:Q—R, f:Q—R, g:Q—R,

h: Q — R be non-negative measurable functions such that f 5 g% and h are linearly
independent. Then,

=

(f.8) 2 If1lpllgllg [t = R(R)]7, (1.67)
where R(h) = [S,(f,h) — S,(g,h)]* # 0 and ||h|| = 1.
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Proof. The inner product (f, g) can be rewritten in the following form:
3 iy
9 = [ K@(rH0s00) s F ).

Now, since parameters A = 4 and B = _%5 are conjugate, that is, ¢ L4l 5 = 1, applying the
reverse Holder inequality to the above expressmn we have

1

>
= <f2,g AL (1.68)
On the other hand, replacing f and g with f 5 and g% in (1.65), we obtain
o4
(£2.82)> < If11p" gl [ = R(R), (1.69)
that is, (1.67). O

In the sequel we provide an extension of Theorem 1.9 via the above described improve-
ment of the Holder inequality. In the following two theorems, the exponent m indicates m =
min{;; é}, where p and ¢ are conjugate exponents. Moreover, regarding the above def-
initions, we denote R(f,g,h) = (S,(f,h) — S4(g,1))?, where S,(f,h) = (7§ S , ?
Obviously, S,(f, %) depends on the inner product. In order to obtain improved Hilbert-type
inequalities, the inner product will be defined as

7.8 = [ | Ke) Tt y)dum (dus () (1.70)

Theorem 1.16 Let % + é =1, p > 1, and let Q be a measure space with positive G-finite
measures ) and . Let K : Q x Q — R and ¢,y : Q — R be non-negative measurable
Sfunctions. If the functions F and G are defined by F(x) = [ K(x,y)y P (y)dus(y) and
G(y) = [oK(x,y)0™(x)du(x), then for all non-negative measurable functions f and g
on Q the inequality

| [ K sgt)din (dua(y)

<(-RT&H) [/ o F (7 W 1)

U YI)GO)8! ()i (y )F (1.71)

holds, where f(x,y) = f(x) q’(:) , glx,y) = g(y)%, and h(x,y) is such that

//K(x,y)ﬁz(x,y)dlil(x)dﬂz()’):
ala

If0 < p < 1, then the reverse inequality in (1.71) holds.
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Proof. Inequality (1.71) is an immediate consequence of the relation

/ / K(x,y)f(x)g(y)duy (x)dua (y / / K(x,y)f(x,y)8(x,y)dwi (x)dpa ()

and inequality (1.66). On the other hand, the reverse inequality is a consequence of Lemma
1.2 and the above relation. ]

In addition, replacing g in (1.71) with the function

#15)= 60 [ Keeseato))

we also obtain an improvement of the Hardy-Hilbert-type inequality (1.13).

Theorem 1.17 Let %—I— é =1, p> 1, and let functions K, @, y, F, G be defined as in the
statement of Theorem 1.16. Then the inequality

[ 00| [ Kot >] din ()
< (1=R(F.3.1)"™ / 0P (X)F (x) /7 (x) 1 (x) (1.72)

holds for all non-negative measurable functions f : Q — R, provided the functions f, g, h
are defined as in Theorem 1.16. If 0 < p < 1, then the reverse inequality in (1.72) is valid.

Proof. Since 5 + 1 = 1, utilizing (1.71) we have

/Gl r( (/ny xX)dpy (x ))pduz(y)

= [ | K r@z0dim @dua(y)

_Q—=

< (L-RGER)" [/Q o907 3] | [ v )0

o )dul()r
[/ 6y )| [ Kl ) dm(y)} |

that is, we get (1.72). The reverse inequality is derived in the same way, by virtue of
Lemma 1.2. U

_—=

Remark 1.19 Note that inequalities (1.71) and (1.72) present refinements of inequalities
(1.12) and (1.13) from Theorem 1.9.
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Remark 1.20 Clearly, the method developed in this section can be applied to results from
Sections 1.3 and 1.4. For more details about this problem area the reader is referred to [58].
Some other methods of improving Hilbert-type inequalities will be studied in Chapters 4,
5, and 6.

1.6 Multidimensional Hilbert-type inequalities

1.6.1 General form

Regarding Theorem 1.9, in this section we derive multidimensional forms of the general
Hilbert-type and Hardy-Hilbert-type inequality. In such setting we deal with conjugate
parameters py, pa,...,pn, n > 2. Recall that these parameters fulfill condition Y}, 1% =1
If all parameters are non-negative, then p; > 1,i=1,2,...,n.

The following result includes integrals taken over general subsets of R, with respect
to o-finite measures.

Theorem 1.18 Let 3, 1% =1,pi>1,i=1,2,...,n and let Q be measure space with
o-finite measures ;, 1 =1,2,...,n. Further, suppose that K : Q" — R and ¢;; : Q — R,

i,j =1,....n, are non-negative measurable functions such that [T} ;_, ¢i; (xj) =1 If%] =
2;7:_11 i and functions F;, h are defined by
n .
E(-xi) - / 71K(X1,...,Xn) H Sl(x/)
@ =L

Xd[.l](xl) .. .d”ifl(xifl)duiJrl(xiJrl) ...d[,t,,(x,,), 1= 1727...,1’17

h= ¢;an117(,’ then for all non-negative measurable functions f; : Q — R, i =1,2,...,n,
the inequalities

L K(xl,...,xn)f[lﬁ(x,»)dul(xl)---dun(x,,)

Pi

< q [ [ Ews ol (x»dul»(x»] (1.73)

and

n—1

q
/Qn1K(Xu--.,xn)Hﬁ(xl')dul(m)---dun1(%1)1 d (xn)

i=1

/Q h(xn)

n—1

<[ [/Qﬁ(xi)ﬁ-p"(xi) lfi(xi)dui(xi)] g (1.74)

i=1

hold and are equivalent.
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Ifpi>0,i€{1,2,...,n}, and py <0, k # i, then the reverse inequality in (1.73) holds.
Moreover, if p; >0, i€ {1,2,...,n— 1}, and py <0, k # i, then the reverse inequality in
(1.74) holds. In addition, inequality (1.74) holds also when p,, > 0 and py < 0, k # n.

Proof. We first prove inequality (1.73). Applying the Holder inequality we have

L K(xl,...,x,,)ﬁﬁ(x,-)dul(xl)...dun(xn)

= [ K(xi,....x H(f, Xi H(Z),, ) d i (x1)...d s (xq)

Qn

pi
/ Kxh xn xl H‘P xj d.ul xl) d.un(xn) 5

<H

so the Fubini theorem and definitions of functions F;, i = 1,2,...,n, yield (1.73).
In order to prove inequality (1.74), we define I(x,) as

n—1

1(xn) / K(x1, ..y X Hfz xi)dy (x1)...dply—1(Xn—1)-

Now, putting function
fa (xn) = h(xn) : (I(xn))q_l

in inequality (1.73), we get

1 [ A0t < ﬁUﬁm %ﬂWMMﬂE

1—1
q
{ / hP(x, p"(q VF, 0 (Xn) O (Xn ) d L (xn)] .
Since h(x,) = Qp’ (x,l)Fn1 1 (xy) and ; L=ynl p, , the above inequality can be rewritten in

the form,
1 -
<TL| [, Aty of auto)| 11
i=1 L/Q

that is, we obtain (1.74).

Reverse inequalities are derived in the same way, by virtue of the reverse Holder in-
equality.

It remains to prove that inequalities (1.73) and (1.74) are equivalent. It is enough to
check that inequality (1.73) follows from (1.74). For this purpose, suppose that inequality
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(1.74) holds. Then we have

QnK X1yeeesXn Hﬁ Xi dﬂl xl) d.un(xn)

:/ ¢nn_l(xn)El_pL" (%)
Q

><anl” (x) fin (X ) D (20 ) i ().

n—1
/anlK(xh...,xn) T Gl (1)t (50 1)
i=1

In addition, the Holder inequality with conjugate exponents g and p,, yields

/Qn K(xh...7x,,)f[lfi(xi)dul(xl)...d/.tn(xn)

1
q

q
< {/Qh(x”) [/£2an SRR Hfl Xi d,ul xl) dun—l(xiz—l)] d,un(xn)}

| ot o) )|
Q

and the result follows from (1.74). O

Remark 1.21 Considering the proof of the previous theorem, it follows that the equality
in (1.73) and (1.74) is possible if and only if it holds in the Holder inequality. More pre-
cisely, this means that functions /7 (x;) 1 q)l.’;" (x;) are effectively proportional. Hence,
equality in (1.73) and (1.74) holds if and only if

i
ﬁ(x,-)zC,-(Z),',-(x,-)'*f’i, i= 1,...,}’1, (1.75)
for some constants C; > 0. That is possible only if the functions

e
Iy i 077 (%)) i1
Iy s 07 (%) Y

n,

are appropriate constants, and
1 i .
/Fxl i (x))dui(x;) <o, i=1,2,...n.
Otherwise, the inequalities in Theorem 1.18 are strict.

Remark 1.22 It should be emphasized here that Theorem 1.18 is a multidimensional
extension of Theorem 1.9 from Section 1.2.
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1.6.2 Application to homogeneous kernels

In the sequel we consider multidimensional versions of Hilbert inequality (i. e. Theo-
rem 1.18) equipped with Q = R, Lebesgue measures u;, i = 1,...,n, a non-negative
homogeneous kernel K : R, — R, and the weight functions ¢;;(x;) = x?ij , where A;; € R,
iL,j=1,...,n.

We define multidimensional version of integral k() (see definition (1.20)), but in this
section it will be more convenient to slightly change the definition:

k(ah...,a,,,l):/RnflK(Ltl...?tn,l)tf‘l---t,f‘f]‘dtl---dt,,,h (1.76)
+
where we assume that k (o, ...,0,_1) < e for aj,..., 0,1 > —1and o) + -+ 04— +

n<s+1.

Theorem 1.19 Ler 37, i =L pi>1i=12,...,n andlet K : R — R be a non-
negative measurable homogeneous function of degree —s, s > 0. Further, let A;j, i, ] =
1,...,n, be real parameters such that 3} A;j =0for j=1,....n. If fi 1Ry =R, f; #0,
i=1,...,n, are non-negative measurable functions, then the inequalities

1
L L w n—s— D; O D Fl
/]Rn K(x17~~~7xn)Hﬁ(xi)dxl cedx, < LH |:/O X H”a’fi”(xi)dxi] (1.77)
+ i=1 i=1
and

oo n—1 q
/ A= n=1=5)qan / K@) [T fi)d - doa | dxy
0 R i=1

n—1 oo pil
< 14 H [/0 x;z—l—s-&-[’iaifipi (xi)dxl} (1.78)
i=1
hold and are equivalent, where

1 1
L=k? (p1A12,...,P1A1n) kP2 (s —n — pa(0n — A22), p2As, ..., p2Ac)
1
ook (pnAn27 e PrApp—1,8—n _pn(an _Ann))7 (1.79)

é =y} 1% o; =Y Aij, pidij > —1, i # j, pi(Ai — ) >n—s— L.

Proof. Set ¢;j(xj) = x?ij in Theorem 1.18, where ' A;; =0 forevery j=1,...,n. Itis
enough to calculate the functions Fj(x;), i = 1,...,n. Using homogeneity of the kernel K
and obvious change of variables, we have

n
A .
Fl(xl):/RH,IK(xth,---axn)HX?I Yxy - dxy,
+ j=2

n
:/’Hxf“'K(l,xz/xl,...,x,,/xl)HxilA”dxz...dxn
R+ j=2

n—1—s+pi(og—A
¥ p1(oq “)k

=M (P1A12,~~~7P1A1n)~
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On the other hand, using homogeneity of K and the change of variables

1 t . d(x1,x3,...,x o
X1=X —, Xi=xp-—,i=3,....,n, sothatM =X, 1t2”,
1 1 d(t2,13,...,ty)
where W denotes the Jacobian of the transformation, we have

n
Fz(xz):/RnflK(xhxzw.wxn) IT X?ZAzjdX1dx3"'dxn
+ J=1,j#2

n
:/nflxl_sK(sz/xh...,xn/xl) H xl;zAzjdxldxy--dxn
RY J=lj#2

n—1—s+pr(op—A
=X palen 22)7‘(3 —n—pa(0 —A2),p2A23, ..., p2A%).
In a similar manner we obtain

Fi(x) = x° Pl 0i=Ai)

Xk(piAi; ..., PifAii-1,S —n— pi(0; — Aii), DiAiit1, - -, DiAin),

for i =3,...,n. This gives inequalities (1.77) and (1.78) with inequality sign <.
Finally, condition (1.75) immediately gives that nontrivial case of equality in (1.77)
and (1.78) leads to the divergent integrals. This completes the proof. |

Motivated by the ideas from Section 1.4, we can also establish conditions under which
the constant factors L and LY are the best possible in inequalities (1.77) and (1.78). In order
to obtain such factors, it is natural to impose the following conditions on the parameters
Al'ji

pjAji = s—n—pi(o;—Ay), i=2,....n, j#i,
pifix = PjAje, k#1,j, k# 1. (1.80)

The missing cases i = 1 and k = 1 can be deduced from (1.80) as follows:

pi(an —An) =piAj+p1 Y, Ai=s—n—pj(a;—Aj;)+p; D, Aji=s—n—pjAj,
i#1.j i#j,1
where j # 1. Thus, the complete set of conditions is
piAji = s—n—pi(oi—Ay), i,j=1,2,...,n, i # ],
Piik = PjAji, k#1,]. (1.81)

Theorem 1.20 Suppose that real parameters A;j, i,j = 1,....n, fulfill conditions from
Theorem 1.19 and conditions given in (1.81). If the kernel K : R", — R is as in Theorem
1.19 and for everyi=2,...,n

K(lL,tp,....ti,....t,) <CK(L,12,...,0,...,1,),0<£; < 1,1, >0, j#1i, (1.82)

for some C > 0, then the constants L and L9 are the best possible in inequalities (1.77) and
(1.78). In this case L = k(p1A12, p1A13, ..., P1A1n)-
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Proof. It is easy to see that n — s+ p;0; = —pigi, where Xi = p1Ay; for i # 1, and
Ay = ppA,1. Hence, inequality (1.77) can be rewritten as

>
/nK(xl,...,x,,)Hﬁ(x,-)dxl dx,,<LHU ~L-pid P () dx; " (1.83)
RY i=1 0

where L = k(Az,...,A,).

Now, suppose that the above constant factor L is not the best possible. Then, there
exists a positive constant M, smaller than L, such that inequality (1.83) still holds after
replacing L by M. For this purpose, set

7o) 0, xe(0,1) .
i\Xi) = Ai— £ ,1=1,...,n,
’ xiA’ Pi, x € [1,00)

where 0 < & < minj<;<,{pi + piA;}. If we substitute these functions in (1.83), then the
right-hand side of the inequality becomes %, since

1
n oo ~ i 1
H [/ xiflfmAifiP: (xi)dxi] - e (1.84)
0

i=1

Further, let J denotes the left-hand side of inequality (1.83), for the above choice of
functions f;. Utilizing substitutions u; = f—i, i=2,...,n,inJ, we find that

oo 0o oo n ~ €
J:/ x; ¢ [/1 /l K(l7u27...,un)Hul~AiP_iduz...dun] dxy. (1.85)
1 k= o i=2
1 1

Moreover, J can be estimated as

J Z/ xl %1‘%11 1 lu27 U )H lAl I%duz"'duﬂ‘| d-xl
—/ xl_l € ZI x1)dxy
1

j=2

1 ~ e ~ € <
- Ek(Az——7...7A,,——>—/l - 821 x1)dxy, (1.86)

P2 Pn j=2

where for j =2,...,n, I;(x1) is defined by

n Z—i
Ij(xl):/D K(17u27...7un)Hui’ Piduy .. .du,,
j 2

i=

with Dj = {(uz,u3,...,un);0 <u;j < &, 0 <wy < ook # j}.
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Without losing generality, it is enough to estimate the integral I, (x;). The case of n =2
was proved in Theorem 1.13 (see Section 1.4). For n > 3 we have

Iz(xl) <C

/ n—zK(l’O,ug,... ,u,,)Hu,'Ai_’%dM3 ...du,;|
R+ i=3

1

iy
X/ up 2 P2 duy
0

-1 -
€ ~ £ _A,— ~ € ~ €
=C<1——+A2) Xy lk< 3——,...,A,,——),
P2 P3 Pn

where k(gg — p%, . ,gn — i) is well-defined since obviously X3 + A, <s—n+2.

Hence, we have I;(x;) = x;&/?i~4i=10;(1) for € — 0%, j =2,...,n, and consequently
oo n
/1 x1 Y I )dxy = O(1). (1.87)
j=2

Therefore, taking into account (1.84), (1.86), and (1.87), it follows that L < M when
£ — 0T, which is an obvious contradiction. This means that the constant L is the best
possible in (1.83). Moreover, since the equivalence preserves the best possible constant,
the proof is completed. ]

Remark 1.23 If the parameters A;; are defined by A;; = (”_S)p(%_” and A;; = ;l_;p’j, i ],

i,j=1,...,n, then we have
i—1 — o1
+(I’l—s)p'] 5 :S n(Z——l):O,

n
Aijj=(s—n
i=21 N ( )z Pj \i=1Pi

it PiDPj Pj
for j =1,2,...,n. Obviously, due to the symmetry, it follows that ¢ = Z'}=1Aij =0, for

i =1,...,n. Moreover, parameters A;;, i,j = 1,...,n, fulfill the set of conditions (1.81),
hence, in this case Theorem 1.20 yields the following inequality

1
Jor KCetocoom T ) ---d, < LT [ |y (xl-)dx,-] "
+ i=1 i=1 L/0

where L = k(%, o Sp_—n") is the best possible constant. For s = n — 1 we obtain the non-
weighted case with the best possible constant L = k( — p%’ ey —pln) (compare with Re-
mark 1.9).

1.6.3 Examples

We proceed with various examples of multidimensional Hilbert-type inequalities. In order
to establish some particular results, we first indicate here a few lemmas. For the proof of
the following lemma the reader is referred to [152].
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Lemmai1.3 IfneN,r;, >0,i=1,...,n,then

n— 1 '1*1 n
r .
/R“( > ) ,.,du1~~~dun71:L(rl), (1.88)
1+ 30 ) = =17

where T is the usual Gama function.

Moreover, the trivial substitution u; = tl?L, i=1,...,n— 1, applied to relation (1.88), yields
another integral formula:

Lemma1.4 [fneN s A>0,8>—-1,i= L...,n—l,andzl'.'z_llﬁi<ls—n+l7then

,1,, ST [’ﬁr<ﬁl+l> ( g, Bl+l> (1.89)

The following lemma will be needed when considering a particular 3-dimensional case.

Lemma 1.5 Lets > 0,a >0, and b > 0. Further, let o, 0p > —1, 0y + 0p < s — 2, and

dtidt.

k(oy, o =/ ;
(on,00) R’ (amin{l,t;,} +bmax{1,11,5,})°

Then

—5

2

a
k(oy, = ot DD F(,i ;04 2;--)
(ou,m) CE) 062+llz{ 5,0+ 10i4+2; -5

b S
(g +1) (o +1)
K} 2 105 a
b~ t; "F(, — O — Lis— oy ;——t~)dt-
+ ;2{/0 P (05 = 01— Lis = 04— ot )

n b5(oy + o +2)
(u+1D)(+1)(s—ay—op—1)

F(S,OC1+062+2;061+052+3;—%>

X F(s7s—oc1 —062—2;S—061—oc2—1;—%)

2
1 a
s F( o~ Lis— q ;——),
Zi S e e YL G e Rl it A

(1.90)

where F denotes hypergeometric function (1.34) and the indices are taken modulo 2.

Proof. By virtue of the Fubini theorem we have k(o , 0n) = I} + I, where

1 oo tOCz
I = [ » / 2 dt, | dt
! /0 1 ( o (amin{t;,r,} +bmax{1,5,}) 2) !
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and

oo o [az
L= [ / 2 an ) .

In what follows, we shall express integral I; by a hypergeometric function. It is easy to see
that I} = I11 + 15, where

L o 1 ,gz ) d
1 Z/t / - 1 1
1101<0@m%hHW2>1

o, o 12
I :/ ! / —= _dv | dt.
S ( 1 (at1+b1r)’ 2) !

The integral I;; can be transformed in the following way:

1 o 1 tgz 1 o 1 tgz
I :/ t / —2 __dt, ) dt +/ 1 (/ S —T )dr. 1.91
= fo 1 (0 (aty + D)’ 2) P n (ati+b)’ 2) (151)

Applying the classical calculus, we have

1051 5] tgz
t —=——dtp | dt
/0 ! (/0 (aty +b)* 2) '

= /1t2“2 (/1 idm) dty = /1t2°‘2(at2+b)‘5 (/ltf‘ldtl) dt
0 %) (at2+b)s 0 %)
b—S

! o o +1 a -
' (1 -1, )<1+—t2) dt

and

o +1Jo b
b—* a
= F(,oc Lo 2;——)
atl|mel \WRthots—y
! F( 0 + 0ty + 250y + 0y + 3 a) (1.92)
061+052+2 s, 01 2 s U1 2 5 b ) .

and similarly,

L o 1 ,gz
t —=——dtp | dt
A ‘([;wm+m52> '

b—* 1 a
- —F(,a 1. 2;——)
oo 1 \Sathotzoy
! F( 0+ 0+ 2: 0 + 0y +3 “) (1.93)
- F|s ; —=) . .
o2 , 0 + 0 1+ 0 b

Now, setting (1.92) and (1.93) in (1.91), we obtain

b—S
hi=———
U g+ D(om+1

b—s
_mF (s,a1+a2+2;a1+a2+3;—%), (1.94)

2 a
ZF(s,ai+l;ai+2;——)
)5 b
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while the substitution u = ;- yields

1 o oo tgz
I :/ i / —=dr )dl
= 0! ( 1 (at; + btp)* ? !
1 o 1 a —s
=b" lll (/ w02 (1—|——t1u) du) dt
0 0 b

1
:b—S/O tf"F(s,s—aQ—l;s—az;—%rl)dtl. (1.95)
Finally, from (1.94) and (1.95) we have

Li=l+lp=
b~* 2 a
- F(s,oci+1;ai+2;——>
(a1+1)(oc2+l)i§1 b
b*S

a
——F(s,oc +on+2;004 o +3;——>
(on+ D(on+1) e e b

1
+b*“'/ tf‘lF(s,s—az— 1;s—a2;—gt1)dt1. (1.96)
0

Repeating the above procedure for the integrals

“ 1 tgfz
by = A / —=——dt, | dt
2! /1 ! ( o (aty+bty)’ 2) !

- o ?
5 [ o
n= | h (1 (a+bmax{n,nty -) !

since I + Iy = I, we obtain (1.90), as claimed. O

and

Multidimensional Hilbert-type inequalities that follow will be based on Theorems 1.19
and 1.20. More precisely, under the assumptions of Theorem 1.20, inequalities (1.77) and
(1.78) can be rewritten as

1

n n o oa i
/]R" K(xh...,x,,)Hﬁ(xi)dxl---dx,, < LH {/0 X; ! p’A’fi”(xi)dxi} (1.97)
" i=1 i=1

and

/m XS,l —‘1)(—1—1711;{")
0

n—1 q
/ ,,IK(X17--.7Xn)Hfi(xi)dx1---dxn;| dxn
R+ i=1

q
Pi

n—1 o0 -
< L] [ /O x; ik fl.p"(xi)dxi} " (1.98)
i=1
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where A; = p1Ay; fori # 1, Aj = ppAni, L ;=X ; s P1A1; > —1,i# j, and pi(A1 —

0q) > n—s— 1. Moreover, constant factors L = k(Az, e, ,,) and LY are the best possible
in inequalities (1.97) and (1.98).
We first consider a particular case of parameters A;;, i,j = 1,...,n, which fulfill the

set of conditions (1.81), necessary in establishing the inequalities with the best possible
constant factors. These are the parameters

—Ppj —pi)(1 —pi
Aj=""PI iz and A;= w. (1.99)
PiDj Di
Hence, considering inequalities (1.97) and (1.98) with parameters A;;, i,j = 1,...,n, de-

fined by (1.99), we have the following consequence:

Corollary 1.4 Ler 3 | % =1L p>1i=1,2,...,n and let =3 ! ll Further, sup-
pose that K : R’} — R is a non-negative measurable h()m()geneousfunctzon of degree —s,
s > 0, fulfilling condition (1.82). If fi : Ry — R, fi #0, i = 1,...,n, are non-negative
measurable functions, then inequalities

1

/ Kot o) [Tfi)dxr -dv < LT wag’f—f—lﬁf(xi)dx,] " (1.100)
R i=1 0

i=1

and
oo s n—1 q
/ X! / K, x) Hﬁ(xi)dxl coedxy—p | dxy
0 R i=1
n—1 oo ) ) i
< LT] [/ g (xi)dx,-] (1.101)

i=1 LJ0

hold and are equivalent, where the constant factors L = k(%, ey ‘pp 1) and LY are the

best possible in both inequalities.

Remark 1.24 Observe that the kernel K(xy,...,x,) = (x; +... +x,) %, s > 0, fulfills
condition (1.82) from Theorem 1.20 i.e. Corollary 1.4. In this case, having in mind integral
formula (1.88), the above constant factor L = k( Spf 20, Spp 1) can be expressed in terms
of the Gamma function i.e. L = ﬂ 11 T(5;). This partlcular case was studied by B.
Yang in paper [154]. Moreover, some other partlcular cases regarding this kernel were

extensively studied in [156].

Remark 1.25 Settingn =2, K(x,y) = (amin{x,y} +bmax{x,y})~!, p =g =2 in Corol-
lary 1.4, we obtain the result from [82] with the best possible constant factor D(a,b) =
k(—3%)=2F(1,%;3;—%). For each choice of parameters a, b we compute the best possi-
ble constant D(a,b):

() a=b=1,D(1,1) =, as in [82],
(i) a=0,b=1,D(0,1) =4, as in [82],



1.6 MULTIDIMENSIONAL HILBERT-TYPE INEQUALITIES 43

(iii) a= 1717227D(1,2)=2\/§arctan(%)7
(V) a=1,6=3,D(1,3) = 2%

(v) a=2,b=1,D(2,1) =2+/2arctan/2.

In order to exploit Lemma 1.4, in the sequel we consider the homogeneous kernel K (x7,
p SA-1)

S Xn) = W s,A > 0. Clearly, this kernel fulfills the assumptions of Corollary
i=1"
1.4, hence, as a consequence, we have the following pair of inequalities with the constant

factors expressed in terms of the Gamma function:

Corollary 1.5 Let Y, 1% =1Lpi>1,i=1,2,...,n andlet i =y 'L AR —R
fi #0,i=1,...,n, are non-negative measurable functions, then inequallltles

X n e ! i

/ ., %Hﬁ )Cl d)C1 dx,, < L1 H |:/ xg’i.xlf;,pi(xi)dxi:| (1102)
R 1X i= i=1 L/0

and

s(A-1) p %

n q
[/0 .7Cr1l’11—171 (/Ilerl ﬁ Hfl Xi d-xl dx,1_1> dxn‘|

i=1%

n—1 I ,Ll
<L ] { / Xl ppi (xi)dxl} ' (1.103)
i=1 L70

hold and are equivalent, where the constant factor

s spj(A—1)+s
L= — 2 ( ) -r(i (1.104)
/'L (s)An-1 =1 [(z ][_l[;éj pil pj/’l’
is the best possible in both inequalities.
Proof. 1t is enough to calculate the constant L; = k(s;f 2., S;f 1), Using definition
(1.76) of the integral k(¢ ,...,0,—1), L1 can be represented in the form
L= / el 1 N l{z l‘:nl dl‘] codt,_ = 241]<7
R (1+30 1 ) -
where .
I / fsz | t”” ldt .dt
0= | w7 sl -1
R+ ' (l +21 1 l ) !
and

s ;
! s(A- 1>Jrl’k+1 ! o

2t ..
Ik:/w ! k g d . for k=1,....n—1.
R™! (1+2?:1tl?“)s
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Now, taking into account Lemma 1.4, it follows that

fo= M T(s)An T lllr(pl )] (W)
and

1 n s spkH(/'L—l)—l—s)
L= —— r( )| (2t IS a1,
¢ [(s)An—! L:LI;IkH (pik>‘| ( P14 "

that is, we have (1.104). U

We conclude this subsection with some particular 3-dimensional Hilbert-type inequal-
ities with constant factors expressed in terms of a hypergeometric function. The fol-
lowing result arises from Corollary 1.4 for the case of kernel K(x,x2,x3) = (amin{x,
X2,x3} + bmax{x;,x2,x3}) "%, a > 0, b > 0. Clearly, K has degree of homogeneity —s,
s > 0, and fulfills condition (1.82).

Corollary 1.6 Let —|— +p—3—l pi>11=1.2,73 andlet = 11_1+_ Then in-
equalities
/ J1(x1) f2(x2) f3(x3) dvdoodoc
R? (amin{x|,xz,x3} +bmax{xi,xz,x3})* 16043
3T peo L
<L]] [ /O i fip"(x,')dx,} ’ (1.105)
i=1
and

1

T J1(x1)f2(x2) 1 a
Uo (/R amm{xhxz?xg}+bmax{x17xz7x3}>sd’”d’“2) d”]

L.
<L2H[/ A lf"’(xz)dxz} ! (1.106)
i=1

hold for all non-negative measurable functions f; : Ry — R, f; #£0, i =1,2,3, where

3
p2p3 s 8 a p2p3 s s a
L= Fls,——+1;——)— Fls,—+— —+—+1;——
2 bss2 z <s7 + b) bss2 ( + + + b)

i=2 pi pi 2 P% ‘P23
N N N a
+b~ /t”t (s —+—;—+—+l;——t)dt
Z pP1 pi P1 Ppi b
+MF<S;;LH;_9)
bis(s+p1) P P1 b
3
3~ 1 s
-~ Flss——s——+1;—-
b's* S pi—1 (H pi’ pz+ b)

Moreover, the constant factor Lj is the best possible in both inequalities.

In particular, for s =1, p1 = p) = p3 =3 anda=b =1, we have L, = —551;‘%2 — —3”2\5.
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Proof. Making use of Corollary 1.4 in the case of homogeneous kernel K (x,x2, x3) =
(amin{x;, x3,x3} + bmax{x;,x2,x3})"%, it is enough to calculate the constant

Ly = k(=22, %) Now the result follows from Lemma 1.5. |

Remark 1.26 Setting the kernel K(x1,x2,x3) = (x1 + x2 +x3 — min{xy,xp,x3}) %, s >
0, in Corollary 1.4, we obtain the corresponding Hilbert-type inequalities with the best
possible constant factor

ngk(S—p27S—p3) :p2+p3F(s i+i;14—i+1;—1>

p2 p3 s ‘P2 p3 P2 D3
S
+- s, —+ — —+ +1 -1
Zp’ ( pt pi'pL pi )
+P1(P22+P3)F(S,i;i+l;_l>
s P1 D1
prs e 1 s s
- Z F(ss——;s——+1;—-1].
s Spi—1 pi pi

In particular, if s = 1, p; = po» = p3 = 3, we have L3z = % +log4.

1.6.4 Inequalities with product-type homogeneous kernels
and Schur polynomials

In this subsection we study some particular product-type homogeneous kernels and investi-
gate associated Hilbert-type inequalities. In some cases, the corresponding constant factors
can be expressed in terms of Shur polynomials.

At the beginning, we shall be concerned with the homogeneous function K : R!, — R,
defined by K(xq, ...,x,) = [T\, Y(x) +a 2xi+1), where @; >0, i=1,....n— 1. Clearly,
kernel K has degree of homogeneity equal to —(n— 1), and, in addition, fulfills condi-
tion (1.82) from Theorem 1.20. In such a way, we obtain the corresponding Hilbert-type
inequalities with the best possible constant factors.

Corollary 1.7 Let 37 - =1, pi > 1,i=1.2,....n, andlet%lzz{l:lL_.Ifai>0,i=

i=1 p;
1,...,n—1,and f; : Ry — R, f; #0,i=1,...,n, are non-negative measurable functions,
then znequalltles

1

IT., fi(xi) "[/“’ i :|Pi
dxy...dx, <M O (xi)dx; 1.107
&n H:l 11 X1—|-(1 x1+1) 1 n IZ];II o fl ( l) i ( )

and

I

n—1 q
/]R" T H’ 1 fi(xi) dxl...dxnll dx,

Lo+ axig)

1=

n—1 -
MqH[/ 17 (x) dxl}l (1.108)
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hold and are equivalent, where

n a2(1 I’z)/[’z
Pl (P S (1.109)
i3 sin n/p,

Moreover, constant factors M| and M'{ are the best possible in inequalities (1.107) and
(1.108).

Proof. Considering parameters A;; = 11’7 and A;; = PiLPj’ i#j,i,j=1,...,n, we have

ZAZ‘A,'Z—ZL—FPJ'_Z] _ L (—Zl—Fl) =0,

i=1 izj PiPi  Pj Pj \ i=1Pi

for j=1,2,...,n, thatis, o = 27=1Aij =0,i=1,...,n, due to the symmetry. In addition,
these parameters satisfy the set of conditions (1.81), which is necessary in obtaining the
best possible constant factors.

Further, utilizing inequalities (1.97), (1.98), and the above parameters, we have —1 —
p,'g,' =0,i=1,...,n,and (1 —¢q)(—1 —pngn) = 0. Hence, it is enough to calculate the
constant M; = k(— p%"' , pl ) in the case when K (x1,...,x,) = [T (x4 xl+1)

Exploiting (1.76), we have

1 1

1 1 t] t Pn
M =k|l——, . ..,—— /,”7‘”1 dty_g
P2 Pn R H (1 + al l)
1
n—1 o 4 Pitl ( —Pi /I’t
— H / t— i 1 17

=1 \Jo 1+a2tl L sin(n/pi)’
and the proof is completed. ]
The rest of this subsection is dedicated to the two-dimensional kernel K (x,y) = [T (x
+ aizy)’l, where m is an integer and a; > 0, i = 1,...,m, are real parameters. Observe

that the function K(x,y) fulfills condition (1.82) from Theorem 1.20. In addition, we
shall derive here two-dimensional Hilbert-type inequalities whose constant factors can be
expressed in terms of Shur polynomials.

In order to establish the corresponding inequalities, we need the following auxiliary
result. For the reader’s convenience, let f[xj,...,x,] denote the well-known divided differ-
ence defined by

(xi)

S (i — x))

Lemma 1.6 Let m be an integer. If —1 <o <m—1, o0 #0,1,....m—2, and a; > 0,
i=1,...,m, then

M=

flxis. . xa] =

%d
Wj—az):(_l)msingxﬂ)f[a%"”’ai]’ fla) =% (1.110)
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Fork:07l7...m—2,wehave
| s e = Ul ) i) = o (1.111)
=1

Proof. The proof is based on mathematical induction. First, for m = 1, using the substitu-
tion = %, we obtain
aj
o Otd 00
/ x—’;:a%“/ (1 +1)"dr, (1.112)
0 x+ay 0

where —1 < o < 0. Further, by using the substitution x = IL-H’ relation (1.112) and the
definition of the usual Beta function, we have

S 1
/ a x2 = a%a/ (1—x)%x % dx
0 X+aj 0

200 20 T
=ai*B(l+a,—a) =ai* ———. 1.113
ay ( + ) ap Sll’l(—aﬂ') ( )
Starting from the following induction hypothesis
= x%dx T
— = (1)l a,....a> ], flx)=x% (1.114)
b it~ OO i) S
where -1l <a<m—2,o 7é 0, 1,...,m— 3, we shall calculate the integral
5 —l<o<m—1, aa#0,1,.... m—2.
/ Hl lx—i—a 7
We treat three cases. If —1 < or < 0, we use (1.113) and find that
i 1 > x%dx
I = /
" Zil'lﬁez(a j—al) o x+at
_ i 1 2 T
S jpila; —af) " sin(—om)
m__ T 2 2 o
= (-1 =x* 1.115
( ) SlIl(OHT) f[alv 7am]7 f(X) X ( )

If m—2 < oo < m— 1, we use the substitution x = ll and (1.115). More precisely, we have

oo tm7a72
bn= | T %
o T (5 +1)
1 m T

- (_ - 2 2
_H?Lla%( 1) Sin[(m_a_z)n]g[l/al,...,l/am], (1.116)

where g(x) = x"~%~2_ It is easy to check that the following relation is valid:

m (T az-) a’*
2 21 _ ( =)
g[l/ai,....1/a%) _Zi M@ (1.117)
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Now, relations (1.116), (1.117), and the formula sin[(m — a — 2)x] = (—1)""!sin(ar)
imply (1.110).
On the other hand, if 0 < o¢ < m — 2, we again use the induction hypothesis and obtain

l 0o
In = —5—> / /
az —aj |Jo H’.” (x+a?) ITL 2x+a

= (—1)" n fla3,....a;)—flai,...,ap )]
sin(an) a%,l_a%
= (_l)mﬁf[ai”'varzn]? fx) =x.

At the end of the proof, it is necessary to consider the critical cases of the integrals

/ dx k=0,1,...,m—2.
Hl 1x—|—a

Applying the classical calculus, we have

/ xkdx /
Hl ((x+a?) OHk Hl 1x—|—a

= (—1)"x lim o
( ) o—k sln(OCTE) lzl H;#l( (13)
—1 m m a.ZkIO a‘
_ (= R = ()" dl),
cos(km) S T1ji(a; —a5)

where f;(x) = x*logx. That completes the proof. O

The previous lemma enables us to derive the following two-dimensional Hilbert-type
inequalities with the kernel K (x,y) = [T/, (x+a?y) "}, a; > 0,i=1,...,m

Corollary 1.8 Let m be an integer; let 11—7—1— é =1, p > 1, and let o be real parameter such
that —1 < o« <m — 1. Further, let

foroa#£0,1,....m—2,and
Ly=(—1)""%fy[a},...,d2%)], fo(x)=x%logx,

foroo=0,1,....m—2.Ifa; >0,i=1,....m, and fi, > : Ry — R, f1,f>» # 0, are non-
negative measurable functions, then the inequalities

// x+a1y Ecy—)kaz )dxdy

<h [/()""xla,,f f (x)dx] : [ /Omyfl%’"*“*z)"fzq (wdy|" (1.118)




1.6 MULTIDIMENSIONAL HILBERT-TYPE INEQUALITIES 49

and

o P
(I-p)(—1=(m—0—2)q) / fl(x) d d
/ Y {0 (x+aky)...(x+d2y) ol

< Lg/o x 1O P (x)dx (1.119)

hold and are equivalent. Moreover, the constant factors Ly and Lg are the best possible in
(1.118) and (1.119).

Proof.  Exploiting inequalities (1.97) and (1.98), for n = 2, with the kernel K(x,y) =
17, (x+a?y)~! and parameters p; = p, pr = ¢, A1 =0, Ay =m— a—2, we see that it is

enough to calculate the constant L, = k(A5). Utilizing substitution u = )_1(7 we have
oo m—o— 2d
Ly =k(m—oa—2)= . . /
0 1 +a2u) Hl ((x+a?
and the result follows from Lemma 1.6. |

A class of Hilbert-type inequalities derived in the previous corollary involves the best
possible constant factor

/H x” dx :(—1)m%f[a%7...,a51]7 (1.120)

m x+a sin (am

where f(x) =x%, —1 < a < m— 1. In the sequel we study some other forms of expression
(1.120), which will bring us to Shur polynomials.

It is well-known that the divided difference can be expressed via determinants:

ICORRACH () T
2(m=2) 2(m-2) 2(m—2)
1 a2 e am
det :
2 & 2
1 1 1
2 27 - -
flat,....ap) = ST 2T T (1.121)
al a2 e Ay
a%(m 2) ag(m 2) aan(m—Z)
det :
a 4 ay,
i 1 1 1 ]
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Calculating the Vandermonde determinant, we have

2(m—1)  2(m—1 2(m—1) ] _ _ -

al(m )az(m ) am(m ) a" 1ar2n 1 an!

2m—2)  2(m-2) 2(m—2 m=2 m=2 - m=2

al( az( c Ay ) a; * a, an

det : : : : = det . H (ai—i—aj).

‘ | ' ; 1<i<j<m
a% a% a,zn a  dz - dm
1 1 1 1 r - 1

(1.122)
Setting m =3 and o = %, we have (see also [133]):

/"" x2 dx _ T
0 (x+af) (x+a3) (x+a3) (a1+a)(ar+as)(ax+as)

Similarly, for m =4 and o = %, by calculating the integral in (1.120) or resolving the
above determinants, we have

/°° X} dx B >a -
o TIL, (x+af)  Theicjea(aita))

Suppose that o = %, 1=2,...,m(for] = 1 see below). The numerator of (1.121) is for
| <mequal to

2(m-2) a2(m72) a2(m72) T

al 2 .. m
2-3 213 2-3 : : : :
al a2 .. a B B -~
Am=2) 2m-2) a2g'ln72) af(l 1) ag(l n aﬁfz 1)
1 2 m 21-3 21-3 21-3)
det . . . . _ (_l)m—ldet aj ay e Ay
: : : : ALu-y 202 20
a% a% e ai 1 ' 2 m
1 1 . 1 . . . :
a% a% .. a%’l
1 (T
(1.123)
Using sin 227 = (—1)/, we have
- a%(m72) ag(m72) . a3n<m72) B
af(Fl) ag(l%) a%il:))
2-3 213 -
det gll 2 cézl 2 azmz 2
al(*> az(*> mam(f)
2 2P
R P T
X N
Ly = - L 47 (1.124)

o MM~ (x+a?) V(a,az,....am) Ti<ic j<m (ai+a;)
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where V (aj,ay,...,a,) denotes the Vandermonde determinant.
Recall that the Schur polynomial of a given integer partition d =d| +dy + - +dp,
dy>dy>--->dy > 0,is defined by
d1+m 1 d1+m—l di+m—1
e xm

X X2
d -2 d -2 d -2
12+m X 2+m xm2+m

det :
S ( | e s
X1,X2, .y X)) = .
(d1,dp;ecsdm) \ A5 A2 m xrln—l x;n—l xm—l
x’l’l*2 x?ﬁ X2
det| -~ .
1 1 - 1
The Schur polynomial can be expanded as a sum of monomials
Sy i) K152 Xg) = Xl (1.126)
T

where the summation is over all semi-standard Young tableaux T of shape (d,da, ... ,dy).
The exponents ?1,...,t, give the weight of T, in which each #; counts the occurrences of
the number i in T (see [3] and [89]).

It is obvious from (1.121) (the case [ = 2m — 3), (1.124) and (1.125) that

/ ~ Sm-2m-2m-3..10) (@1,a,...,am)

I 1 X+a) [licj(ai+aj) ’

/ _ ~ Sm-3m-a..1-21-21-2,.10) (al7a27-'-7am)n_7 =3 m—1,
T2, x+a) M (ai+ay)

/ x? dx ~ S(m-3m-4,..1000) (a17a27...,am)n
e x—|—ai) [Ti<j(ai +aj) ’

where d = Wéﬁ +2(1-2),1=2,...,m,is degree of the obtained Schur polynomials.
To illustrate the above results we provide the following examples:

(i) For m = 2 the only admissible case is ot = % It follows:

/ x? dx ~ S00) (ahaZ)n_ T
M2, (x+a?)  at+a ay+ay

(i1) For m = 3, the admissible cases are or = % and o = %, that is, we have

/ xzdx  So00) (al,az,a3)n B T
I, (x+a?) [licj(ai+ay) i) (@i +a;)’

/ X2 dx S(1,10) (a1,a2,a3) Yicjaia;
I, (x+a?)  Iicj(aita)) [i<; (@i +aj)
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(iii)) For m = 4, the admissible cases are o = %, o= %, and o0 = %, that is,
1d N (a1,a2,a3,a4) 4 a
/ X2 dx _ 20.000){41,42,43,d4) D1 di
ML, (x+a?) i< (ai +aj) [icj(ait+a;) ™
/ X2 dx S0 (a1,a2,a3,a4) Yo jpaiajag
= T = s
H, 1 x+a ) Hi<j(ai+aj) Hi<j(ai+aj)
/ x3 dx ~ Spaa0)(a,a,a3,a4)
H x—I— ai) [Ti<j (@i +aj)
2i<j<k a?a?ak + aizajai + a,a?a,% +2%ic kel aizajaka; .
[li<;j(ai+aj)

aia?akal + aiajaial + a,-ajakal2
[li<j(ai+aj)

The above method doesn’t work in the case o¢ = — % We proceed as follows. By virtue of
the substitution x = [l, using the case / = 2m — 3 and the basic properties of determinants,
we have:

o x_% dx
o I, (x+af)

nm—. 1 1
1 /w 3 o Sn—2m-2.m-3,..1,0) (E""’E) N
m m T, a2
S @ o e (4 le) ML, @ Mo (4 +2)
2m—3
m 1
1 i=1 (a_) Sim— 2m 3,..,1,0,0) (@15 - ,am)n

= 2 —1
H:'n=lai Hm (l)m m - m— m m—1 Hl<] (al+a )
i=1 a; i=1 l

1 Sme2m-3..100 (@,....am)
T2 a; ITi<; (aitaj)

Remark 1.27 A general form of multidimensional Hilbert-type inequality (Subsection
1.6.1) is established in [156], while the application to homogeneous kernels and the exis-
tence of the best possible constant factors (Subsection 1.6.2) is derived in [111]. Most of
the examples in Subsection 1.6.3 are taken from [113], while inequalities including Shur
polynomials can be found in [112]. For some related results, the reader can also consult
the following papers: [19], [23], [37], [52] [128], [152], and [156].

.




Chapter

Hilbert-type inequalities with
non-conjugate exponents

The previous chapter was dedicated to a unified treatment of Hilbert-type inequalities and
numerous applications of general results. All these results included conjugate exponents.

The question is whether it is possible to establish the corresponding inequalities related
to Hilbert-type inequalities where the exponents are not conjugate. The answer to that
question appeared to be true. This problem was dealt by some famous mathematicians,
such as F. E. Bonsall, G. H. Hardy, V. Levin, J. Littlewood, G. Pdlya, in the first half of
the twentieth century, an later, by E. K. Godunova. This bring us to the concept of non-
conjugate parameters.

Suppose that p and g are real parameters, such that

> 1, 2.1

p>1l,g>1, —+

SR
|~

andlet p’ = p%l andq = # respectively be their conjugate exponents, that is, % + # =1

and é + % = 1. Further, define

1 1
A= v + 7 (2.2)
and observe that 0 < A < 1 holds for all p and ¢ as in (2.1). In particular, equality A =
1 holds in (2.2) if and only if g = p/, that is, only if p and g are mutually conjugate.
Otherwise, we have 0 < A < 1, and such parameters p and g will be referred to as non-
conjugate exponents.

58
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Considering p, ¢, and A as in (2.1) and (2.2), Hardy, Littlewood, and Pélya [33],
proved that there exists a constant Cp 4, dependent only on the parameters p and g, such
that the following Hilbert-type inequality holds for all non-negative functions f € L (R.)

and g € LY(Ry):
/ / dxdy<C

However, the original proof did not bring any information about the value of the best
possible constant Cp, 4. That drawback was improved by Levin [79], who obtained an
explicit upper bound for Cp, 4,

Ry) HgHLq Ry (2.3)

. A
Cpq < (n cosec ?L—p’> . 2.4)
This was an interesting result, since the right-hand side of (2.4) reduces to the previously
known sharp constant 7 cosec (7/p’) when the exponents p and g are conjugate (see The-
orem 1.2, Chapter 1). A simpler proof of (2.4), based on a single application of the Holder
inequality, was given later by F. F. Bonsall [9].

In spite of its trivial appearance, Bonsall’s idea was useful for investigating the in-
equalities for multiple integrals involving non-conjugate parameters. So, he obtained the
following inequality for n = 3: Let - +5; + 1 > 1 with p; > 1, 1 + L —l i=1,2,3,

P
and A = 2( +pz+ ) Then,

[ R iy < s, Vel Wil @)

with an explicit upper bound expressed in terms of the usual Gamma function:

< [r () (i) ()]

Although Bonsall established the concept of n non-conjugate parameters, there were no
results in that direction.

Moreover, in the same paper, with p, ¢ and A as in (2.1) and (2.2), Bonsall proved
another interesting Hilbert-type inequality,

I B’L(;, VI Ve

1-2

xi’
<[] x+y,1f” Ngl(y)dxdy| 2.6)

with the best possible constant factor B (ﬁ, %), expressed in terms of the usual Beta
function.
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Remark 2.1 In the above relations, L” (R ) denotes the Lebesgue space consisting of all

1
measurable functions f : R, — R with a finite norm || f| R, = o |f(x)|Pdx]?. More
generally, when considering a measure space £ with a positive o-finite measure (i, the
corresponding Lebesgue space will be denoted by L” (i), or simply L”.

Although inequality (2.6) involves the best possible constant factor, there is still no
evidence that the constant factors in inequalities (2.3) and (2.5) are the best possible. This
problem seems to be very hard and remains still open. Hence, the problem of the best
possible constant factors will not be considered in this chapter.

The main objective of this chapter is to extend Hilbert-type inequalities with conjugate
exponents to the setting of non-conjugate exponents. First we derive the general forms of
Hilbert-type inequalities with non-conjugate exponents in two-dimensional, and later on,
in multidimensional case. Accordingly, all results from the previous chapter can be ex-
tended to this non-conjugate setting. In addition, we are going to consider some particular
non-homogeneous kernels, yielding the constant factors expressed in terms of generalized
hypergeometric functions. At the end of this chapter, we study some particular operators
between the weighted Lebesgue spaces, that naturally arise from the established Hardy-
Hilbert-type inequalities.

2.1 General form

To provide a basis for main results, in this section we first discuss general inequalities of
the Hilbert-type and Hardy-Hilbert-type with non-conjugate exponents. These equivalent
relations are stated and proved in the following theorem.

Theorem 2.1 Ler p, q, and A be real parameters as in (2.1) and (2.2), and let Q1 and
Q, be measure spaces with positive G-finite measures [ and [l respectively. Let K be a
non-negative measurable function on Q| x Qj, @ a measurable, a.e. positive function on
Q,, and y a measurable, a.e. positive function on Q. If the functions F on Q1 and G on
Q, are defined by

Flx) = [ [ Ky o) duz(y)] xeq, @7

and

Gly) = [ [, Koo du1<x>] 7 e, 28)

then for all non-negative measurable functions f on Qy and g on L the inequalities

L[ K s 080) duas (dias) < [ 0F L) [V Gluagy  29)
1 2
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and

a

{/ [ / K (6, 0)f () dp (x )r/dﬂz(y)}q <QFfllrwy — (2:10)

hold and are equivalent.

Proof. 'We prove inequality (2.9) first. Let K, ¢, and y be as in the statement of The-
orem 2.1 and let f and g be arbitrary non-negative measurable functions on Q; and Q;
respectively. Since %—F [%—H —A=1, the left-hand side of relation (2.9) can be written as

/Q1 / K*(x,9) f(x)g(y) di (x)dpa (v)
_/Ql /Qz (e )W () (@PFP~ f7)(x )} [K(x7y)go”’/(x)(w‘iGH’gq)(y)}

x [(QF f)" (x) (wGg)* ()] * dptr (x)dpa (y). @.11)

Now, utilizing the Holder inequality, either with the parameters ¢', p’, ﬁ > 1 in the case
of non-conjugate exponents p and g, or with the parameters p and p’ when ¢’ = p (that is,
when A = 1), and then applying the Fubini theorem, we obtain that the right-hand side of
(2.11) is not greater than

L
7

= |-

{ /Q 1 { o, K(xy)y () d,u2(y):| (@PFP~ ) (x) dpuy (x)}q'f

{/g [/ K)o @ dp(x >] (¥'G""g")(v) duz(y)}

x { /91 (Ff)” (x) dul(x)} o { /Q 2 (VG2 () duz(y)] -2

P

#H—)L

=, @y au o] . [, e 0]

= QF fll 1o (u) WGl La(1r)

so (2.9) is proved. The further step is to prove that (2.9) implies (2.10) to hold for all
non-negative measurable functions f on Q. In particular, for any such f and the function
g defined by

vl
q
g() |:/K xy d.ul():l 7)’6927
applying the Fubini theorem, the left-hand side of (2.9) becomes
vl
q
L= [ [ K rwwe) o) [ Koo ] dumdeo)
1 2

= [ /K x,y)f d.ul()} dua(y),
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that is, the integral on the left-hand side of (2.10), while on the right-hand side of (2.9) we
have

r ||¢Ff|”<m{/g (VG U K (x,) £ (x) dpay (x )] ,duz(y)}q

= lQF fl|1r ()L
Hence,
1
L<||@F f|lLru)L?,

which directly yields (2.10), so the implication (2.9) = (2.10) is proved. Conversely, by
using the Holder inequality for the conjugate exponents g and ¢, together with the relation
(2.10), for arbitrary f,g > 0 we have

/ K*(x,) F(0)g(y) di (x)dia (y)
Q) JQ)
:/Qz(ng)(y { / K*(x,9).f (x) dpn (x )} dz(y)

1

S 7. { [ |woron [, eosman ol /dm(y)}‘/

<N QFfller(u) 1 WG8l| auy) -

Thus, (2.10) implies (2.9), so these inequalities are equivalent. The proof is now com-
pleted. U

Remark 2.2 The sign of inequality in (2.9) depends only on the parameters p’, ¢’, and
A, since the crucial step in proving this relation was in applying the Holder inequality.
Therefore, we can consider exponents which provide the reverse inequality in (2.9). In
particular, if the parameters p and g from Theorem 2.1 are such that

1 1
p<0,0<g<l, —+-<1, (2.12)
P q
and A is defined by (2.2), we have 0 < p’ < 1, ¢’ <0, and 1 — A < 0, so the inequality

in (2.9) is reversed as a direct consequence of the reversed Holder inequality. The same
result is achieved also with the parameters p and ¢ satisfying

1 1
0<p<1,q<0,;+5§1, (2.13)

since from (2.13) we obtain p’ < 0,0 < ¢ < 1, and 1 — A < 0. Moreover, by using the
same arguments, parameters p,q € (0,1) give another sufficient condition for the reverse
inequality in (2.9). In that case we have p’,¢’ <0,and 1 — A > 0.
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Remark 2.3 Equality in (2.9) holds if and only if it holds in the Holder inequality, that is,
if the functions Ky 4 P FP~4 {7 Ko P wiGi 7 g4, and (¢F f)? (yGg)? are effectively
proportional on ; x ;. Of course, this trivially happens if at least one of the functions
involved in the left-hand side of (2.9) is the zero-function. To discuss other non-trivial
cases of equality in (2.9), we can without loss of generality assume that the functions K,
f, and g are positive. Under such assumptions, equality in (2.9) occurs if and only if there
exist positive real constants ¢, 1, and i, such that the relations

oK (x,3)y =7 () (9P FP~7 17)(x) = BiK (x,) 0" (1) (WG4 7' g)(y)
=71 (QFf)" (x) (yGg)’ (v)
hold for a. e. (x,y) € Q; x Q,. These equalities can be written in a more suitable form, as
o (PP EP f7)(x) = By (T GIT ) (), forae. (ry) €QuxQ,  (214)

and
K (x,y) = nF7 (x) (YT Gl (y), forae. (x,y) €QxQ. (215
Since the left-hand side of (2.14) depends only on x € Q;, while the right-hand side is a
single-variable function of y € Q,, (2.14) holds only if
PP FP=4 P — o = const. a.e.onQ,
and

! /!
Yt GI7P g1 = BP = const. a.e. on Qy,

/ !
for some positive real constants ¢ and . Taking into account 1 + % =p'and 1+ % =4,
these identities can be finally transformed to

f= 05(p_”'Fq?_1 ae.onQ and g= Bl//_q,G%_l a.e. on (. (2.16)
Moreover, combining (2.16) with (2.15), we obtain
K=7vF'G" ae.onQ xQy, (2.17)

for some positive constant y. Therefore, we proved that the conditions (2.16) and (2.17)
are necessary and sufficient for equality in (2.9). Moreover, it is clear that the equality in
(2.10) holds only if it holds in (2.9).

As an example of the function K which fulfills (2.17), here we mention

o (x)y? (y)
w1 (Q1)p2(Q2)’

where the sets Q) and Q, are such that 1 (Q1), > (Q5) < oo and the functions ¢ and y are
arbitrary, as in Theorem 2.1. In particular, in this setting we have

K(xvy): (x7y)€QI XQZ7

/ /

q
/

yr,

_1 p _
7

F=u(Q1) 797 and G=pup(Q) »

oz
so K fulfills (2.17) with y = 1. Equality in (2.9) is attained for f = a¢ "7 and g=

-1-4 .
By ¥, where o and 3 are positive constants.
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Remark 2.4 Considering the case of conjugate exponents, that is, when g = p’ and A =1,
Theorem 2.1 reduces to Theorem 1.9 from Section 1.2. In other words, Theorem 2.1 is the
non-conjugate extension of Theorem 1.9. This extension was established recently in [16].

2.2 The case of a homogeneous kernel

Similarly as in Section 1.3, we apply here general results from Theorem 2.1 to non-negative
homogeneous functions K : Q C R x Ry — R with a negative degree of homogeneity.
Recall that K : Q C Ry xRy — R is assumed to be homogeneous of degree —s, s > 0,
such that k(o) = [o” K(1,u)u™%du < oo for 1 —s < o < 1 (see (1.20), Section 1.3).

In this way all results from Section 1.3 can be extended to the case of non-conjugate
exponents. For example, non-conjugate version of Theorem 1.11 reads as follows.

Theorem 2.2 Let p, g, and A be as in (2.1) and (2.2), and let K : (a,b) x (a,b) — R
be a non-negative homogeneous function of degree —s, s > 0, strictly decreasing in both

arguments. Further, suppose that Ay and A, are real parameters such that A € ( 7, pl ),

Ay € ( 707 ) If the functions @ and @, are defined as in the statement of Theorem 1.11,
then for all non-negative measurable functions f and g on (a,b) the inequalities

/ab /ab K*(x,y)f (x)g(y)dxdy

1
b £
< [/ (k(q/Az)—(pl(q’Az,x))ixﬁ’(l 5)+p(A1—Ay) PO ]p

1

b
x [/ (k(2—s— p'Ay) — @a(2— s — plAy,y)) 7 yrr 0 Fald A ‘f(y)dy]

(2.18)
and
b 4 Ioa q
[/ y%(\ 1)+4' (A AZ)(k(Z—s—p/Al)—(p2(2—s—p’A1,y)) Z/
7
q
(/ K)L (x,v)f dx) dy]
1
2 Py _ )
< U (k(q/A2) — @1(q'An,x)) 7 7 17 HPATA) g ) (2.19)

hold and are equivalent.



60 2 HILBERT-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS

Proof. In order to prove (2.18) set @(x) = 1 and y(y) = y*? in general inequality (2.9).
Taking into account the substitution u = i , We obtain

/ab /ab K*(x,y)f (x)g(y)dxdy
- [/b 5 (1=5)+p(A1=A2) </ k(L qudu)

« [/by%(l 5)+q(Ar—Ay) (/ K 1 u)uPAHrs 2du) v

Now, the rest of the proof follows the same lines as the proof of Theorem 1.11. ]

L
g

ey ]

1
q

"(y)dy]

Remark 2.5 According to Remark 2.2, we discuss here conditions under which the re-
verse inequalities in Theorem 2.2 are fulfilled. Firstly, if 0 < p <1,0<¢g <1 and K is
as in the statement of Theorem 2.2, then the reverse inequalities in (2.9) and (2.10) hold.
On the other hand, if the conditions (2.12) are satisfied, then the reverse inequalities in
Theorem 2.2 are valid if a = 0 and K is strictly increasing in first argument and strictly
decreasing in second argument, or if b = oo and K is strictly decreasing in first argument
and strictly increasing in second argument. The remaining case (2.13) which also provides
reverse inequalities is analyzed similarly. Observe that in the case of reversed inequalities
we have to adjust the intervals for parameters A; and Aj.

Of course, the most important case of Theorem 2.2 is with integrals over R, that is,
when a = 0 and b = 0. The corresponding equivalent Hilbert-type and Hardy-Hilbert-type
inequalities are given in the following corollary.

Corollary 2.1 Assume that p, q, and A are as in (2.1) and (2.2), and K : R x Ry — R

is a non-negative homogeneous function of degree —s, s > 0. Then the inequalities

/Om /0 K*(x,9)f ()3 (y)dxdy

1
< [/ xqp,(ls)er(AlAz)fp(x)dx] Z [/ y%(l $)+q(A2—Ar) q(y)dy} " 220
0

0

and
1

) q/ q/
[ O y—,(s D+q'(A1—-A2) (/ K*( xy)f(x)dx> dy]

1
<1 |:/ x;/(l-"Hp(AlAz)fp(x)dx} ! (2.21)
0

hold for all parameters A € (

™ ) A € ( =5 i,) andfor all non-negative measur-
1

able functions f and g on R, where L' = k9 (g ’Az)kﬂ (2—s5—p'A1). Moreover, these
inequalities are equivalent. In addition, reverse inequalities are valid under conditions
appearing in Remark 2.2.



2.2 THE CASE OF A HOMOGENEOUS KERNEL 61

Remark 2.6 Considering the above Corollary 2.1, equipped with the kernel K(x,y) =
(x+y)~*, s> 0, the constant on the right-hand sides of (2.20) and (2.21) is expressed in
terms of the Beta function, i.e.

1
7

1
L'=B7(1—qAy,s+qAy—1)BY (1 —p'Ay,s+p'AL—1).

For the kernel K (x,y) = max{x,y} %, s > 0, this constant reads

A
5
L'= I T i
(1 — /Az) (1 - /Al) v (S—Fq/Az — 1) d (S—I—p/Al — I)P'
while for the homogeneous kernel of degree —1, given by K(x,y) = M , we have

[ro
Jro

(Azq/).

Note that in the conjugate case, these three constants coincide with the constants obtained
in Subsection 1.4.1 (see Chapter 1).

L'=n*sin 7 (Ap')sin

Remark 2.7 As we have already mentioned, all results from Section 1.3 can be extended
to non-conjugate case. Here they are omitted, and for more details the reader is referred
to [16]. Moreover, diverse methods presented in Section 1.4, except the theorems with the
best possible constant factors, can be combined with a general method for non-conjugate
Hilbert-type inequalities. Namely, the problem of determining the best possible constants
in non-conjugate case is not resolved yet and still remains open.

As an illustration, we only provide non-conjugate extension of Corollary 1.2. Namely,
if p, g, and A are as in (2.1) and (2.2), and s > 0, then the non-conjugate versions of
inequalities (1.60) and (1.61) respectively read as

[ [ {5
<;;>{/f -

N =
~
=12
~—
S
I
N =
~~
S| =
~—
[ )
—_—
U
><|
(]
<
=
+
S
|
=
Rad
L
=
——
=

and

q / q

PEaE 30 o [ ]

P
s 7
2:| q x*%l’lﬂ'*lf”(x) dx}

L
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We conclude this section with some discrete examples. Namely, Theorem 2.1, rewrit-
ten with the counting measure on N, leads to some interesting Hilbert-type inequalities
related to sequences of non-negative real numbers. The following results include homoge-
neous kernel strictly decreasing in each argument.

Theorem 2.3 Let p, g, and A be as in (2.1) and (2.2), A,B, o, > 0, and let n,n' € N,
n < n'. Further, suppose that K : R, x R — R is a non-negative homogeneous function of

degree —s, s > 0, strictly decreasing in both arguments. If the functions i, {, are defined
by

BB-o

o(l-y) B
)

a\Petr=1)  4q0-B y B(1-y) ,Bpp-o
&(r.y) = (—) / K(u, D) 2du+ (5) / K(1,u)u""du,
0 0

1 1 1-s 1 1-s 1
I Py pois Wy = Sy Py PR & . ..
dAd TNV B Y TN then the inequalities

¥ o(s+y—1) %ba*ﬁ
K(1,u)u Ydu+ (E) / K(u, )’ 2du,
0

> Y KA, B )ab,
i=n+1j=n+1

==

<w [ Y (Kg42) ~ Ei(g/a.) 5i?’p“‘s’*“”"“"‘”‘“"”‘“‘”a{-’]
i=n+1

n 4 Bg(q_g o B q
% l z (k(2—s—p’A1) o C2(2—S—pIA17j)) Z,j’j (1 ‘)+ﬁq(Az Al) (‘1 1)(ﬁ 1)b£]1‘|
j=n+1

and

—
M=
=
Q\
>
|
LS
L
+
~JF
=
|
-
=
L
—
k‘
~—
\S)
|
5
|
’.U\
=
—
S~—"
|
oy
—
(V]
|
5
|
%\
=
<.
=
SN—
|
e

i=n+1

1
, . p DG (1) tap(A—Ay)—(p—1)(a—1) |
<M'| Y (k(q'Ar) — Ci(q'Az, i) 7 i al (2.23)
i=n+1

hold for all real parameters Ay, Ay such that Ay € (max %7 O‘a;,l 1 #), Ay € (max{%7
B—1

W}’ %), and for all non-negative sequences (ay), N and (b,),.N- In addition, these
inequalities are equivalent.
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Proof. In order to prove inequality (2.22), rewrite Theorem 2.1 for the counting measure
1L L

on N, K;j = K(Ai% BjP), ¢; = (Ai*)"  Wa ™V |y, = (BjB) T 757, and the sequences

(an) e and (bn), - In this setting, inequality (2.9) becomes

nl

D i K*(Ai% BjP) aib;

i=n+1j=n+1
1
q

)

/ F / -~
< i (Aia)pAIJr(p—l)‘jT"‘Epalp i (BjB)quJr(q*l)lTﬁGt]{bl;
i=n+1 j=n+1 C

where

X K(Ai%BjP) |7

1 L
7 Lo KA BjPY |7
] wd G| & KB
et (Bjﬂ)qu-ﬁ-*—l

>

F; = ; 1
i=nr1 (Ai¢)PAITg—1

Now, since the kernel K is strictly decreasing in both variables and p’A; + é —1>0,
qAs + B 1 > 0, we have that

pe [ KABD g gy [ KOER)
T ey T ey

)

so the result follows due to the homogeneity of kernel K. U

An important consequence of Theorem 2.3 is the following corollary for infinite series.

Corollary 2.2 Let p, g, and A be as in (2.1) and (2.2), A,B,ct, B > 0, and let K : R, X
Ry — R be a non-negative homogeneous function of degree —s, s > 0, strictly decreasing
in both variables. Then the inequalities

i iKA(Ai“,BjB)aibj
]

1

ii%(1_S>+ap(A1_A2)_(p_1)(a_1)a[7‘| 3

i

1

q

> Bgy A (a1 (B
X [ij?(l )+ﬁq(A2 Al) (q 1)(13 1>b7] (224)

and

li A1 A2 ﬁ—,(& 1)+B I(ZK)L Bjﬁ)a.)q‘|q,

i=1

o [zijﬂlswpmwﬁ<p1><a1>ag (225)
i=1
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hold for all real parameters Ay, Ay such that Ay € (max{%7 O&—;} , #), Ay € (max{%7
%;,1 1, %) and for all non-negative sequences (a),.N and (bn), N, where L' and M" are
defined respectively in Corollary 2.1 and Theorem 2.3. Moreover, these inequalities are

equivalent.

Remark 2.8 The Hilbert-type inequalities in Corollary 2.2 represent non-conjugate ex-
tensions of the corresponding inequalities from [52] and [53]. The results presented in this
section are a part of the recent paper [16] by CiZmeSija et. al.

2.3 Godunova-type inequalities

So far, we have considered integrals taken over certain subsets of R, that is, one-dimensio-
nal case. Since Theorem 2.1 covers more general settings, we apply that result to n-
dimensional space R’ . Before presenting such results, it is necessary to introduce some
notation for this section. For x,y € R'}, X = (x1,x2,...,X,), ¥y = (y1,¥2,---,Yn), we define

y iy Yn oy :
S=(=,—=,...,— ] and x=x"x"2---x,".
X X1 X2 Xn

Moreover, 1 denotes the n-tuple (1, 1,...,1), and the vector is multiplied by a scalar in the
usual way.
Motivated by the one-dimensional case (see relation (1.20), Chapter 1), we also define

k(a) = /R” K(0)tdt,

where the function K : R} — R and the parameter a € R"} are such that the above integral
converges.

Now, considering the weight functions @(x) = xA1, y(y) =y where
A1 = (A11,A1, ... A1), Ay = (A21,An,...,Ay,), and replacing K(x,y) with x °K ()
in Theorem 2.1, we get the following result.

Az
9

Theorem 2.4 Suppose that p, q, and A are as in (2.1) and (2.2). Ifsc R, K: R — R
is a non-negative measurable function, and the parameters A1,Ay € R" are such that L' =

kd

1
(q'A2)k? (2-1—s— p'Ay) < o, then the inequalities

/R,,+ /R,,+ x MK* (,y—()f(X)g(Y)dxdy

1
<t [ Jee Xi(l_s”"(A‘_AZ)f”(x)d"} p [ oy M giyyay |
R" R
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and

1

7 (s-1)+4/(A-As) ~Asph (Y ‘17
/Zy (/Rix K (X)f(x)dx> dy]

1
< {/Rn 5 (1-8)+p(A1 - AZ)f(x)dxr

hold for all non-negative measurable functions f,g : R — R and are equivalent.

~

Remark 2.9 For n = 1 we have that x *K (f) is a homogeneous function of degree —s,
hence Theorem 2.4 may be regarded as an n-dimensional generalization of Corollary 2.1.

We explicitly state two particular cases of Theorem 2.4, obtained for some special
choices of parameters. The first one considers s = s1, A; = A1, and A, = A1, where
s,A1,A, are real numbers.

Corollary 2.3 Suppose that p, q, and A are as in (2.1) and (2.2). Ifs€ Ry, K : R} - R
is a non-negative measurable function, and the parameters Ay,A; € R are such that L' =

1 €1
ke (¢'Ax1)k? ((2—s— p'A1)1) < oo, then the inequalities
1

Jer Joe X () S Igwpanay

ﬁ, 1—s)+p(A; Az} p :| |:/ i/ 1—s5)+q(Ax— Al)] :| q
x)d A(y)d
[ /R n x| [y §/(y)dy

and

L

/Rn "—, (s—1)+¢' (A —A3) (/R,, s (i)f(x)dx)q,dy] 7

< U nx[ﬂ,(l $)+p(A1-A2)[1 ey }

hold for all non-negative measurable functions f,g : R — R and are equivalent.

The second special case of Theorem 2.4, and also the concluding result in this section,
presents an inequality of E. K. Godunova from [24]. Namely, if we put A| = =0,
K =u’ in Corollary 2.3, and consider the functions f,g : R — R, defined by f(x) =
[~ +-Da]1

1.
X f(x),gly)=y" 1g(y), we get the following result.

Corollary 2.4 Let p, g, and A be as in (2.1) and (2.2). Ifs€ Ry andu: R, —Risa
non-negative measurable function, then the inequalities

Jee /Rn Iyt (Y) rget)andy <l ey oy e gl ey
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and

1
P

<lull 4 g A1l e
1(RY)

o (g () 0

hold for all non-negative measurable functions f,g : R — R and are equivalent.

Remark 2.10 Since the first inequality in Corollary 2.4 was proved by E. K. Godunova in
[24], all inequalities presented in this section will be referred to as the Godunova-type in-
equalities. These inequalities are established in [16]. In addition, Hilbert-type inequalities
with vector variables will be extensively studied in Chapter 3.

2.4 Multidimensional case

The main objective of this section is to extend Theorem 2.1 to a multidimensional case.
The three-dimensional version of the Hilbert-type inequality, that is, the relation (2.5), was
given by EF. Bonsall [9], in 1950s. Although Bonsall also established conditions for the
set of n non-conjugate parameters, there were no results in that direction.

In order to obtain our general results we introduce here n-dimensional extension of non-

conjugate exponents, defined in [9]. Let n € N, n > 2, and let real parameters py,..., p, be
such that
21
Plopn>1, Y —>1. (2.26)
i=1 Pi
Define
1 1
— and —=A——, i=1,...,n, (2.27)
-l 21 P} qi P
where p— p— =1,i=1,...,n. On the other hand, for any choice of parameters as in

(2.26), it follows from (2. 27) that

1 1
—+(l-A)=—, i=1,...,n, (2.28)
qi Di
and
Z +(1—-24)=1. (2.29)
i=19i
Hence, in order to apply the Holder inequality with exponents ¢y, ...,qx, ﬁ, we need to
require
1
—>0, i=1,...,n. (2.30)

qi
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Note that for n > 3 conditions (2.26) and (2.27) do not automatically imply (2.30). More
precisely, since (2.26) and (2.27) give only

1 2—-n1 |
—>———, i=1,...,n,
qi n_lp,'

some of g; may be negative. For example, for p; =2 and pr, = p3 = % we have % =

—é < 0. Therefore, the condition (2.30) is not redundant.

Observe that for A = 1 the above parameters reduce to the conjugate case, that is,
721[%: land pi=gqi,i=1,2,...,n.
Now, we are ready to state and prove general forms of multidimensional Hilbert-type
inequalities with non-conjugate exponents. These inequalities will include integrals taken
over general subsets of R, equipped with o-finite measures. Of course, the following

extension may also be regarded as a non-conjugate version of Theorem 1.18.

Theorem 2.5 Let A,pi,plqi, i = 1,2,...,n, n > 2, fulfill relations (2.26), (2.27) and
(2.30), and let Q be a measure space with o-finite measures [, i = 1,2,...,n. Further,
suppose that K : Q" — R and ¢;; : Q — R, i,j = 1,...,n, are non-negative measurable
functions such that T1} ;_, ¢ij(x;) = 1 a.e. on Q". If the functions Fj, i = 1,2,...,n, are
defined by

Fi(x;) = L K(xenxa) [T 6 ()dp (). dujoi (xj-1)
@ =Lt

q;
xdpjs1(Xj1).- .d,u,,(x,,)‘| )
then for all non-negative measurable functions f; : Q — R, i =1,2,...,n, the inequalities

/Qn K}L(X17...7Xn)Hﬁ(X[)du1 (xl)mdﬂn(xn) < HH‘PltFlﬁ“Lpt(p,) (2.3D)
i=1

i=1

and
1 N n-1 Pn A
{/Q m/@u[( (xlam;xn)ll}fi(xi)d.ul(xl)-"d.un—l(xn—l)‘| dun(xn)}
< ﬁ @i Fifill i (ya) (2.32)

hold and are equivalent.
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Proof. The left-hand side of inequality (2.31) can be rewritten as

/Qn K2 (et o) [ )t (1) i)

i=1

n n 4i
= | TT|KGrsex)ea () TT oF (c)FP =% () £i7 (xi)
Qi J=L#

1-2
X [H(¢iiﬂﬁ)lli(xi)] dpty(x1)...dn (xn)-

i=1

In addition, since Y, % +1—-A=1,¢q;>1,0<A <1, applying the Holder inequality
to the above relation yields

n

K (x1, ...,x,,)Hﬁ(x,-)d/,Ll (x1)...d iy (xn)

Q! i=1

= H [/ (iFifi)” (xi)dui(xi)]q%ﬁ [/Q(%Fiﬁ)pi (xi)dﬂi(xi)]l_l~

i=1

Finally, since - Li1-A= p , we obtain inequality (2.31).

Now, we show that inequalities (2.31) and (2.32) are equivalent. Suppose that inequal-
ity (2.31) is valid. Setting the function f, : Q — R, defined by
Ph

Pn

Sn(xn) = K (xp,x Hﬁ xi)d g (x1).- d.un—l(xn—l)‘| ;

1
l(¢nizEz)p"(xiz) Qn-l1
in inequality (2.31), we have

Pi A

x,l :’ < lj |:/ ¢llF.fl (xl')d”i(xi) ll(x")p_n7

where I(x,) denotes the left-hand side of inequality (2.32). Clearly, this relation represents
inequality (2.32).

It remains to prove that inequality (2.31) is a consequence of (2.32). Assume, there-
fore, that inequality (2.32) holds. The left-hand side of (2.31) can be rewritten as

/QnKl(xl,...,x,,)ﬁﬁ(x,-)dul(xl)...dun(xn)

= [ O o [ K

n—1
X Hﬁ(xl)d[.ll (xl)...dunl(xnl)] du,,(x,,)7
i=1
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hence, applying the Holder inequality with conjugate exponents p, and p,, we have

/Qn Kl(xh-~-axn)Hﬁ(xi)dlil(xl)mdﬂn(xn) < Hd’nnannHLl’n(y,,)I(xn)a
i=1

and the result follows from (2.32). O

Remark 2.11 Since the crucial step in proving the previous theorem was in applying the
Holder inequality, equality in (2.31) holds if and only if the functions

n

K(x,eoxa)@i” () [T 0 ) B () i (xi), i=1,2,...n,
=LA

and [T7, (¢ Fifi)P (x;) are effectively proportional. Clearly, this trivially happens if at least

one of the functions f;, i = 1,2,...,n, is a zero-function. Otherwise, these conditions can

be rewritten in a more suitable form, yielding the explicit expressions for the functions
9i )

and kernel, that is, f;(x;) = Ci@;(x;) "7 E(xi)(l_k)q’, i=1,2,...n,and K(x1,x2,...,%,) =

CTI., F%(x;), where C and C; are positive constants. It is possible only if the functions

7qu
Iy i (x))
Ty o 079 (x))

=1,2,...,n,

are appropriate constants, and

i

| o] wdptx) <o i=1.2.n.

Otherwise, the inequalities in Theorem 2.5 are strict.
Remark 2.12 If the parameters p;, i = 1,2,...,n, are chosen in such a way that
q;>0,je{1,2,...n}, ¢i<0,i#j, and A<I, (2.33)
or
qi<0, i=12,...,n, (2.34)

then the reverse inequalities in (2.31) and (2.32) hold, due to the reverse Holder inequality.

As an application of Theorem 2.5, we consider the case of homogeneous kernel K :
R — R, defined by K(x1,...,x,) = (x1 +---+x,) %, s > 0, and the power weight functions
0 RY =R, ¢yj(x;) = x;‘"j,Aij € IR, with respect to Lebesgue measures dx;, i =1,2,...,n
on R.. The parameters A;; fulfill relations Y} A;; =0, j = 1,...,n, so that the condition
IT; i=19ij (xj) = Lis fulfilled. Regarding the form of the kernel, we obtain inequalities with
the constant factor expressed in terms of the Gamma function.
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Theorem 2.6 Let A,p;,pl.qi, i=1,2,...,n, n > 2, be as in (2.26), (2.27), and (2.30),
and let A;j, 1,j = 1,...,n, be real parameters such that 3} A;; =0for j=1,....,n. If

S>0,0€i:2 1A”,A”> z;éJ’ nqs L and
l 1
K:r HF (s —n+1—qiog+qiAii) H Fq’ qlAl/+1)
i,j=1,i#j

then the inequalities

1
2

/n - 1fz Xz Ty J5) i, <KH [/ i D1~ s)+p,a,fp, (Xz)dx,] Pi 2.35)
R i1 LJo
and
, Sl
o Pn [’:1
(19} (n=1=5)= )t (/ ITi= fz(de d )
e -aX]...dXp—1 dx,
l/o R*! ﬂ ].)l.\ n
1
Pi
< KH |:/ (n—1-s +plalfpl(x1)dxl:| (236)
hold for all non-negative measurable functions f; : Ry — R, f; #0,i=1,...,n. Moreover,

these inequalities are equivalent.

Another way of extending Hilbert-type inequalities with non-conjugate exponents to
the multidimensional setting arises from inequality (2.6), presented at the beginning of
this chapter.

Theorem 2.7 Letn €N, n> 2, and let parameters A, p;,q;, i=1,2,...,n, be as in (2.26),
(2.27), and (2.30). Let Uy,..., 1, be positive o-finite measures on Q. If K : Q" — R,
Fi: Q"= R, ¢;;: Q— 1R, i,j=1,...,n are non-negative measurable functions such that

n

I 9i(x)) =1, ae onQ", (2.37)
ij=1

then the inequality

/QnK(xh...,xn)f[lfi(xi)dul(xl)...du,,(x,,)

/Q’1 (KF}II,'*II") (1o ey 0) (D3 fi) P (xi H(P” Xj Y (xy).. d'un(xn)‘| !
J#i

n
<I1
i=1

-1
/le, X, HFP’(xl, ,,,)(q)iiﬁ)”i(xi)dul(xl)...du,,(x,,)] (2.38)

holds for all non-negative measurable functions f; : Q —R,i=1,...,n.
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Proof.  Note that from (2.28) we have % +pi(l1—24)=1,i=1,...,n. Using this and
(2.29), the left-hand side of (2.38) can be written as

[ KGa,on) f[ﬁ(x,-) i (1) .- ditn ()

no By pi(1-2)
— KZ, lq,+1 )L qu, l x[)
Qn

—1+pi(1-1) n p’+p, 1-1)

XHFq’ x17 <5 Xn H‘P xl)

><H¢z; d,ul xl d.un(xn)

J#i
= Qng (Kﬂpi_qi> (x17---7xn)(¢iiﬁ)pi(Xi)£[i iqj"(xj)] l

1-1
x17 X HFlpl X1yeeesXn (¢uft) ( z)‘| di (xl)-'-dﬂn(xn)-

X
i=1

The inequality (2.38) now follows by using the Holder inequality with the exponents
1
qis---s4qn; 7—p - U

Remark 2.13 Observe that without loss of generality the condition (2.37) from the state-
ment of Theorem 2.7 can be replaced by [T%; ¢;j(x;) =1 a.e.onQ, for j=1,...,n, since
(2.37) implies that

n
[1¢:(xj) =c; = const, j=1,....n, (2.39)
i=1

wherec;---¢c, = 1.

Remark 2.14 Obviously, (2.38) becomes equality if at least one of the functions involved
in its left-hand side is a zero-function. Otherwise, equality holds if and only if it holds in
the Holder inequality, that is, only if the functions KF™ (¢ f;)" 12 ¢, i = 1,...,n,
and KTT | (Fi¢ifi)? are effectively proportional. Therefore, equality in (2.38) occurs if

and only if there exist positive constants ¢, [3,-(,', i,j=1,...,n, j # i, such that

KEP™ U (0uf)" T 0 = ek [T(Fioufi)”, i=1,....n, (2.40)

I#i =1

and - _

KEP™ " (gufi)" T o5 = ByKE;" " (95" T o5, i # J. (2.41)

i [y
Moreover, the relation (2.40) is equivalent to
F=o[]o; " (Foufi)™, i=1,...n (2.42)

I£i
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In the special case when F; = Fi(x;), i = 1,...,n, the functions f; and ¢;; from (2.41) and
(2.42) can be expressed explicitly in terms of ¢;;. More precisely, from (2.42) we have

Fi=const, i=1,...,n, (2.43)

directly, since the right-hand side of this relation depends on x;, [ # i, while its left-hand
side in this setting is a function of x;. Considering this, (2.41) becomes

(@) 0" =i (00" T1 05 T16a™, i# . (2.44)
1#£i,] I#i
for some positive constants ;. Thus,
(9afi)" 9" =const, i=1,....n, j#i, (2.45)

where again we exploited the fact that the left-hand side of (2.44) depends only on x;,
while its right-hand side is a function of x;, [ = 1,...,n, [ #i. The relation (2.45) further
implies that (Z)j?f ¢, " = const,i=1,...,n, j,I # i, which combined with (2.39) gives

‘1121#1 9

0

Since by (2.27) and (2.29) we have g; ¥, i = %, the relation (2.46) can be transformed
into l

=const, i=1,....,n, j#£Ii. (2.46)

oF q)”f:const i=1,...,n, j#Ii, (2.47)

while (2.45) becomes
=G, P =1, (2.48)
for some positive constants C;, i = 1,...,n. Hence, if F; = F;(x;), the conditions (2.43),

(2.47), and (2.48) are necessary and sufficient for equality in (2.38).

Remark 2.15 If the parameters p;, i = 1,2,...,n, in Theorem 2.7 are such that

0<pi<l, =1,....n, (2.49)

and A, and g;, i = 1,2,...,n, are defined by (2.27), then the sign of inequality in (2 38) is
reversed To justify thls assertion, observe that the first inequality in (2.49) glves ; <0,

i=1,...,n,sowehave A < 0. Similarly, from the second relation in (2.49) it follows that
1 -1 o1
——/'L——— 1= — <0, i=1,...n
qi p; n—=1\ pi 1P

Therefore, g; <0,i=1,...,n,and 0 < y A < 1,50 (2.38) holds with the reverse inequality
as a direct consequence of the reverse Holder inequality. The same result is also achieved
with the parameters p;, i = 1,2, ..., n, satisfying

n

1
2—<1 and 0<p; <1,
i=1 Pi = 11’1

(2.50)

for some I € {1,...,n}, since from (2.50) we obtain ; A <0,¢9;>0,and ¢; <0,i# 1.
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To conclude this section, we restate Theorem 2.7 in the case of n = 2. This result is
interesting in its own right, since it will be applied in the next chapter, where we shall
consider Hilbert-type inequalities in some particular cases.

Theorem 2.8 Let p, g, and A be as in (2.1) and (2.2). Let | and Uy be positive G-finite
measures on Q. IfK, F, and G are non-negative measurable functions on Q* and ¢ and y
are non-negative measurable functions on Q, then the inequality

[ K37 050) dun (9 )

&\‘ —_

< | L& T 0) o s a3
Q

~ |-

o L 6 ) 0 w0 s s )|

1-2
| L &G )0 () ) b )| @5
holds for all non-negative measurable functions f and g on Q.

Proof. The proof follows directly from Theorem 2.7 using substitutions p; = p, p» = ¢,

a1=¢,q=7p, ¢11 = @, and ¢op = y. Observe that from ¢;;¢; = 1 and ¢12¢2, = 1 we
have ¢p; = % and ¢ = # O
Remark 2.16 If we rewrite Theorem 2.8 with Q = R, Lebesgue measures, the kernel

L 1
K(x,y) = (x+y)~*, and with functions F (x,y) = G(x,y) = 1, @(x) =x77 , and y(y) = ya«
we obtain (2.6). Hence, Theorem 2.8 can be viewed as a generalization of the mentioned
Bonsall result (2.6) from [9].

Remark 2.17 Theorem 2.5 and its consequences are taken from [12], while Theorem 2.7
is obtained in [17].

2.5 Examples with hypergeometric functions

We have already discussed that the general method with non-conjugate exponents, devel-
oped in this chapter, can be combined with particular settings and diverse methods pre-
sented in Section 1.4. In addition, we have seen some Hilbert-type inequalities involving
hypergeometric functions.

Therefore, we consider here some particular settings in which hypergeometric func-
tions occur in a more general manner. We start with a classic example.
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2.5.1 Hilbert-type inequalities and Gaussian hypergeometric
function

Gaussian hypergeometric function is the formal power series in z € C with three parame-
ters, defined in terms of rising factorial powers:

kpk k

a'b® 7

F(a,b;c;z):Z—E-—,, a,b,c,z€R, |z] < 1. (2.52)

Here, the rising factorial power is a* = a(a+1)(a+2)---(a+k—1), k€N, and a® = 1,
a#0.

To avoid division by zero, ¢ is neither zero nor negative integer. The series (2.52) is
often called the Gaussian hypergeometric function, because many of its interesting prop-
erties were first proved by Gauss. In fact, it was the only hypergeometric series until the
second half of nineteenth century, when everything was generalized to arbitrary number of
parameters. For more details, the reader is referred to [26].

Relation (1.34) from Chapter 1 represents the integral representation of the above
power series. Moreover, knowing the relation between the Gamma and the Beta function,
(1.34) can also be rewritten as

1
F(a,b;c;z) = m/o A1 =) (1 = ), 2.53)

where ¢ > b > 0 and |z] < 1.
In order to obtain Hilbert-type inequality with constant factor expressed in terms of
F (a,b;c;z), we are going to rewrite relation (2.53) in a more suitable form.

Lemma 2.1 Suppose a,b,c,o, v € R are such thata+c>b > 0and 0 < o < 2y. Then,

/w e dx = ’bB(ba—l—c—b)F(a b-a+c-1—9) (2.54)
o (toma(ltme =7 ’ Ty ) '

Proof. Consider the integral I = [y 1~ (1 —1)*~>=1(1 — zr)~%dt. Using the substitutions
1 —¢= -, u=1yx, y>0, and the abbreviation o = (1 — z)7, we obtain

T+u
oo xb—l
1= d
yb/o 1+ o)1+ )™

Now, utilizing (2.53) we have

oo _Xb71 i o
=v “B —_b\F el — 2.
/O (14 ox)e(1+ yx)C—adx Y (b,c—D) (a,b,c, )/)

Finally, replacing ¢ — a with ¢ in the previous formula, we get (2.54). |

Now, considering Corollary 2.1 with the homogeneous kernel

K(x,y) = (x+aqy) " (x+ 0ny) 2, (2.55)
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where o, 00 > 0, % < g—; < 2, and s1 + 52 > 0, it follows that the corresponding constant
factor is a product of two integrals of the form (2.54). Moreover, the degree of homogene-
ity of the above kernel is —(s1 + s7), so Corollary 2.1 yields the following consequence.

Corollary 2.5 Let p, g, and A be as in (2.1) and (2.2), and let 01,0 > 0, % <4 <2

[
s1+s2>0.If f,g : Ry — R are non-negative measurable functions, then the inequalities

e f(x)g()
/0 /O (x+ 0y) 51 (x + 0ny) A2 dxdy

< K/ |:/oox5/(1_51_52)+p(Al_A2>fp(x)dx:| F
0

o [/0 y%(1—51—52)+q(A2—A1)gq(y)dy] I (2.56)

and

1

IS ’ °° ! ’
/ y%(n-&-sz—l)-&-q (A1—Az) (/ l].:(X) T dx) dy
0 0 (x+ony)*(x+ opy)*e

<K { / g (1msmm2) tp=a) fp(x)dx} ' (2.57)
0

hold for all A, € (l_sli,_sz , #) and Ay € (l_sql,_s2 ) %), where

1-s1

_ 1 5 1
K = o o AlazAz 7 ”’Bq/(l—qlA27S1+S2+q/A2—1)
1 1 o
XBY (1 — p'Ay,s1+s2+ p'Ay — )F7 (sl,l—q’Az;sl+sz;1—a—1>
2
5 / o
o (s27l—pA1;s1+s2;l—a—). (2.58)
2

Moreover; inequalities (2.56) and (2.57) are equivalent.

Remark 2.18 Every hypergeometric series always has the value 1 when z = 0. Hence,
if a; = 05, then the hypergeometric part of the above constant (2.58) takes the value of 1
and inequalities (2.56) and (2.57) reduce to already known cases, considered in Section
1.4.

On the other hand, hypergeometric series (2.52) converges also for z = 1 when b is a
non-positive integer or ¢ > a + b. In addition, since

I'c—a—b)T(c)

Flabiel) = 5= are—b)

(2.59)
(see [26]), relation (2.54) also holds for oc = 0 and reduces to the well-known formula for
the Beta function:

1

/ (ERE yx)cdx =y ’B(b,c—b), where ¢>b>0. (2.60)
0
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Therefore, if oy = 0 or op = 0, the previous corollary also yields inequalities without
hypergeometric part. Such cases are omitted here.

We conclude the previous discussion with a remark about the best possible constant
factors appearing in inequalities (2.56) and (2.57), which can be achieved in the conjugate
case.

Remark 2.19 If p and g are conjugate exponents, then the kernel (2.55) fulfills con-
ditions as in Theorem 1.13 (Chapter 1). Moreover, since K is homogeneous of degree
—(s1 4 s2), the parameters A; and A,, that provide the best possible constant factor, must
fulfill the relation pA; + gA; = 2 — 51 — s2. Under the above assumptions and utilizing
the so-called Euler identity F (a,b;c;z) = (1 —z)¢ “"F (c —a,c — b;c;z) (see [26]), the
constant factor K’ from Corollary 2.5 reduces to

o
00" B(1— pAa, 1 = gA)F (31,1~ pAais +52:1 = o1

and is the best possible.

2.5.2 Hilbert-type inequalities and generalized hypergeometric
functions ,,F;,

Gaussian hypergeometric function is naturally extended to an arbitrary number of param-
eters, which gives generalized hypergeometric function. Such generalized series also have
integral representations. More precisely, we shall use the so-called Poisson-type integral
representations, in order to obtain multidimensional Hilbert-type inequalities in such set-
tings.

Hence, before obtaining such multidimensional inequalities, we introduce the notion
of a generalized hypergeometric function ,,F;, as well as its integral representations.

By a generalized hypergeometric function ,,F, we mean the sum of the series

o Kk ok k
ayas...d, 2

mFa(ar,....am;by, ... bysz) = Z 7
o bibE .. bk K

where af.‘, bf.‘ are the rising factorial powers and z € C, in domain of its convergence: Q =
{lz] < oo} for m < n and Q = {|z| < 1} for m = n+ 1, or its analytical continuation in
{|z| > 1,|arg(1 —z)| < 7}, in the latter case. One may also consider z as a real variable
7€ [0,0).

The paper [50] provides a unified treatment of generalized hypergeometric functions
by means of a generalized fractional calculus. More precisely, hypergeometric functions
mF, are separated into three classes depending on whether m < n, m =n orm =n-+ 1.
Further, hypergeometric functions of each class are represented as generalized fractional
integrals or derivatives of three basic elementary functions:

€o8y_m+1(z) (m<n), %expz (m=n), 2(1—2)P (m=n+1).
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Here, cos; (z) is the so-called generalized cosine function of order ¢ > 2, defined as

o (DR
cos,(z)—kgb ko)1 , 12>2,

where cosz = cos; (z) . The above mentioned representations lead to several new integral
formulas for ,, F, functions and allow their study in a unified way. Moreover, the general-
ized fractional calculus is developed in [49].

Now, we introduce the Poisson-type integral representations of the above classes of
hypergeometric functions ,, F,, established in [50].

1° First case: m < n. If the conditions

k
by> —— k=1,2,....n—m, by—mix>ar>0k=12,...,m, (2.61)
n—m+1
are fulfilled, then the following Poisson-type integral representation is valid:

mIn ah amiby, .. by, Z)
_ C/ /ln m l—l‘k bk (k/(n—m+1))— ltk(k/(n—m-&-l))—l
(k= (k/ (n—m+1)))

— ok ak—nm—1
% H [(1 )

k=n—m+1 (bk B akfner)

X COSn_ms [(n mt ) (zn .t,,)l/<”—’"+1>] di, ...d,. (2.62)

: _ n—m+1 H?:lr(bj)
The constant C is defined by C = , / () T, Ta)”

2° Second case: m = n. Assuming that

tkakn+111_1:|

by>a;>0,k=1,2,...,n, (2.63)
we have
w(ar,...,an;by,...,bys2)
= E/ /1 n [ | — )b gt ol e
k=1 L(by —ay)
L))

where the constant £ is defined by £ =[1_, )

3° Third case: m = n+ 1. If the conditions
bk>ak+1>07 k=1,2,...,n, (2.65)
are satisfied, then the following Poisson-type integral representation is valid:

n+1F (ah an+l;bl7 bn;iZ)

_M/ / ]‘[ 1 — )=l @ = (L 2y )" dty .ty (2.66)
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(b))

The constant M is defined by M =T, T e
J J J

Clearly, the above integral representations are valid for complex numbers z in the cor-
responding domains of convergence. These representations will be crucial in obtaining
examples with multidimensional Hilbert-type inequalities. More precisely, our next step is
to find appropriate kernels such that the formulas for the functions F;, i = 1,2,...,n, from
Theorem 2.5, reduce to the above stated Poisson-type integral representations.

The kernel involving exponential function

We are going to ﬁnd a more suitable form of integral representation (2.64). Namely,
utilizing substitutions 1 — =1,2,...,n, and the well-known relationship between
COT()

1+x

the Beta and the Gamma functlon, i.e. B(x, y) = , X,y >0, we have

Txty)
dxidx,...d
=,F, (a;b;x)HB(ai7bi—ai)7 (2.67)
=1
where a = (aj,dy,...,a,) and b = (by,bs,...,b,). However, the coordinates a; and b;

fulfill conditions as in (2.63).
Considering Theorem 2.5 with the kernel K : ]R'jr — R, defined by

X,
exp (T2 1)

T )b (2.68)

K(x1,x2,...,%,) =

and the power weight functions ¢;; : R, — R, i,j = 1,2,...,n, the above integral rep-
resentation appears when calculating the constant factors involved in the corresponding
inequality.

Theorem 2.9 Let A,p;,pl,qi, i =1,2,...,n, n > 2, be real parameters fulfilling (2.26),
(2.27), and (2.30), and let A;j, i j =1,...,n, be real parameters such that ¥} A;; = 0 for

j=ln IfB =11} ;- 1#13% (1 —I—qA,,,b —qiAij)and f;i Ry — R, i=1,...,n
are non-negative measurable functions, then the mequalities

M) o (2
/ T (i P <H1+ )dxldxz o

i=1

< B H [/ x P (1 4 ) I A)Pibi=bi

L

. pPi
X1 FpyTUAIP (1 +qiAi; bi; 1%) fi (m)dxf] (2.69)



2.5 EXAMPLES WITH HYPERGEOMETRIC FUNCTIONS 79

and

1+x,

Ph
] filx) Al X
— = eX — | dxidxy...dx,_ dx,
/RY:I ?=1(1+xi)“’i P l.l:[11+xl~ 1852 el

/ x;PiAdi (1 _|_xl.)(1*l)17ibi*bi
0

°° i i ’ X,
{/0 xn_PnAnn(l_Fxn)bn()Lpn —l)n_an_ll_)LPn <1+ann’bn’ n )

-

X

n—1

< B[]

i=1

1

. pi
Xy Fpy (AP (1+q,»Ai;bi; i ) £ (x,-)dx,-] (2.70)
1+x;
hold for all parameters A;j, i # j, such that qA;; € (=1,b; — 1), where
1 + gA; = (I+qAn,1+qAp,....1+qAii1,1+qAii1,.... 1 +qAin)  and
b; = (b1,b2,...,bi—1,bii1,...,by). Moreover, these inequalities are equivalent.

Proof. The proof is based on a simple use of Theorem 2.5. Taking into account notation
from Theorem 2.5, as well as considering the kernel defined by (2.68) and the power

. . A ..
weight functions ¢;;(x;) = x;",i,j=1,2,...,n, we have

n . (1+qiAij)—1 . n .
Xj 7 X Xj
/Rnle (l+ N\bj €xXp 1 H 1 .
i1l X\ +x; o L+x;

i i

b:

F(x) = (1+x) @

Uy
J

a;
Xd)C1 .. .dx,',ldx,qu .. .dx,l

Clearly, the above power functions are well-defined, that is, Hzr'l.jzl O; j(xj) =1, since
Y 1Aij=0for j=1,...,n. Now, exploiting integral representation (2.67), we have

_bi 1 Xi
Fi(x;) = (1 i) 9Py an g (1 A’b’— ,
i(xi)=+x) %Bn 1 ( + qiAi; by 1+xi)
that is, after substituting the expressions for Fj(x;), i =1,2,...,n,in (2.31) and (2.32) (see
Theorem 2.5), we obtain desired inequalities. It should be noticed here that parameters
Ajj, i # j, fulfill conditions ¢;A;; € (—1,b;—1),i,j=1,2,...,n, since the arguments of
the Beta function are positive. |

Remark 2.20 Considering some particular values of parameters A;;, i, j = 1,2,...,n, we
can simplify the constant 8’ from Theorem 2.9. For example, taking the arithmetic mean of

. . .. bi—2
the borders of intervals defining parameters A;;, i 7 j, we have A;; = é—q,, hence the con-

1
stant factor becomes 8’ =[]/, B»/ (%7 %) . Inthat case, the parameters A;;, i =1,2,...,n,

are defined by A;; = — %
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Since 0 < 1+t <1,t € Ry, we have that ,,_1F,,_ 1(1+qlA,,b,, l+x < p—1F—1

(1+qiA;j;bi;1). Applying this estimate to inequalities (2.69) and (2.70), we obtain the
constant factor expressed in terms of the hypergeometric function ,_ F,,_.

Corollary 2.6 Under the assumptions of Theorem 2.9, the inequalities

l lfl l) A - Xi
) exp H— dxidx,...dx,
/R T, (1 +x;)*i (l P 1+x )

1

<ﬁHH [/ xl’t ii 1+x)(1 A)pibi bfpl(xl)dx1‘| l (271)

and

T P A bu(Apa'—1
{/0 X P (1+x,) (Apa'=1)

Ph
) n X;
/Rnl n 1+x,l)/1b exp7L H1+ dxidxy...dx,—1| dx,

1

-

n—1

Pi
< ﬁHH [/ xl’t i 1_|_x)(1 A)Ptb —b; f[’t(xl)dxl‘| (272)
hold and are equivalent, where

I 1
By =B TIn-1F-1% (1+qiAisbiz 1) (2.73)

i=1
and B’ is defined in Theorem 2.9.

It remains to investigate the other two integral representations (2.62) and (2.66). We
use the same procedure as for the kernel involving the exponential function.

The kernel involving cosine function

We consider here integral representation (2.62) for m = n— 1. Applying the substitu-
tions 1 —t; = ﬂ i=1,2,...,n, this representation can be expressed in a more suitable
form

l

) dxldxz...dx,,

a, 1— 1
o ©08 2
/R+l 1 l—l—xl (xH

1 11

_1
_) ? L \Fy(ash;—x)B (bl > 2)]‘[B aivbi—ai1), (274

:<7r+2

where a = (ay,az,...,a,-1),b=(b1,bs,...,b,) and ap = % Of course, the coordinates of
vectors a and b fulfill conditions as in (2.61).
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The previous integral formula will be needed when applying Theorem 2.5 to the kernel
K : R’ — R defined by

1

) = COS(—”L‘)Z (2.75)

K(x1,x2,...,x ,
( )

and the power weight functions ¢;; : Ry — R, i,j=1,2,....n

Theorem 2.10 Let l7pl~7p§7ql~, i=1,2,....n, n>2, be as in (2.26), (2.27) and (2.30),

and let A;j, i j =1,...,n, be real parameters such that 3 A;; =0 for j=1,...,n. If
7/:( ) B T B‘h (biy1 — 2,2) (B’ is defined in Theorem 2.9), and f; : R+—>R
i=1,...,n, are non- negattve measurable functions, then the inequalities

fx) IR :
l 1Ji\Ai i

-cos — | dxidxy...d
Jee T (wai) xids...dx,
< ’}/H [/ xpt il l_’_x)(l_z’)pibi_bi

1

Pi
e yee Xi _
Xy obpy 17U <1+CliAi7i+1§bi§ ' ))fip’(xi)dxi} (2.76)

4(1+x;

and

- 7l’n,Ann 1 bn(lpn,*n F 17117/ 1 A.1:bn: Xn
{/O Xn ( +xn) n—20n—1 + gnAni; 11774(1_'_)%)

/
1 Pn

/ M=/ /) & ﬁ . 2a’ d d d
cos —_— x1dxy .. .dx,_ X
Rn 1 1+x)7ub 1 l—|—xl~ 14A2 n—1

< ,J/H l/ xpl i l+x)(1_}">pibi_bi

-

Pi
(1= p: Xi .

XuoFy 1~ <1+ini’i+l;bi;4(174l—xi)) f,-”'(xi)dxi] 2.77)
hold for all parameters A;j, i,j = 1,2,...,n, and b;, i = 1,2,...,n, such that qiA;; €
(=L,bj—1), j—i¢{0,1,1 —n}, qAiir1 = —%, b; > %, i=1,2,...,n, and where
1+ qAjin = (14+gilin, ..., 1+ qiAii—1,1 +qiliisa, ..., 1+ qilAin),
b; = (b1,b2,...,bi1,bii1,-..,by). Moreover, these inequalities are equivalent.

Proof.  Considering Theorem 2.5 with the kernel defined by (2.75) and the functions
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A ..
¢ij(x;) :xj”, i,j=1,2,...,n, we have

b; (i‘i“ItAqul) 1 n xj(lJrinij)*l
Fi(x) = (1+x) @ / a2
z( z) ( l) R’i 1 (l+xi+1)b"“ i (l—l—x]')b/
it
1

2 1

i
dx1 ...dx,-,ldx,qu ...dxn} .

Xi )Cj

4(1 —|—x,~) i 1 +X;j
Jj#i

X cos |2

Hence, the above integral representation (2.74) yields

b 1\-2 L 11
Fi(x;) = (1+x;) %J (ﬂ‘f' 5) B (bi+1_§7§)

1 Xi
XpolF,_19 | 1 Ajir1: by —— |,
n—20n—1 ( +ql i,i+1> i 4(1+x1)>
where f’ is defined in Theorem 2.9, and the result follows. Note also that we assume
congruence modulo n for the parameters A;;, i.e. A, 11 = Ap1. 0

Remark 2.21 Taking into account the obvious estimate

Xi

_— n—F—1(1 Ajir1:bis 1),
4(1+xi)> <n-2 1( + giAji+1;bj )

n—2Fn_1 (1 +qiAiir1bis
which holds for all x; € R, we also obtain the inequalities as those from Corollary 2.6,
with the kernel (2.75) and the corresponding constant factor

n L
Y[ n—2F1% (1+ qiAisisbis 1),
i=1

where ¥ is defined in Theorem 2.10.

Fractional kernel
It remains to consider the remaining case, that is, the integral representation (2.66). It
can be rewritten in a more convenient form, that is,

aiy1—1 n Xi -
1-— — dxidx;...d
‘/[R+l l 1+X xil;[1+xi e .

n

= nr1F (a;b;x) HB (ai+1 ,bi— ai+1) s (2.78)
i=1

where a = (aj,ay,...,a,+1) and b = (by,by,...,b,) are such that b; > a;; >0, i =
1,2,....n
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The previous integral representation is essential when considering Theorem 2.5 with
the fractional kernel K : ]R’}r — R, defined by

(1)

K(x1,x2,...,x -
( ()

, s>0, (2.79)

and the power weight functions.

Theorem 2.11 Let A, p;,pl,qi, i=1,2,...,n, n > 2, be as in (2.26), (2.27) and (2.30),
andlet Ajj, i,j=1,...,n, be real parameters such that 3} A;j =0 for j=1,...,n. If the
constant ' is as in Theorem2.9 and f; : R, — R, i=1,...,n, are non-negative measurable
functions, then the inequalities

—As
llflxl) - Xi
1— dxidxy . ..dx,
fe i) ( glm) s d

< ﬁ/H l/o leAn(l_|_xl.)(1*/1)17ibi*bi

i=1
. Pi
X pFp TR (s,l +qiAi; by x—) dxi] (2.80)
14 x;

and

/ xn_p”,A”" (1 +Xn)bn(lpn,_l>nFn—ll_lpn, (S 1+ anl]’bl'U )
A 1 + Xn

=) £ o .

—1 le

it Jid dxpdxs...dx, 1| d
/R”[' 17, (1+x;)*bi ( Hl ) AR X"}

/ xl.PiAii(l_|_xl.)(1—7t)17ibi—bi
0

4
7
n

S

n—1

<B'T1

i=1

L
Pi

X pFy 1R (s,1+q,»Ai;bi;%) dx; (2.81)
1

hold for all parameters A;j, i # j, such that qiA;; € (—1,b;—1), i,j =1,2,...,n, where
1+giAi = (1 +qidin, 1 +qidin, ..., 1+ qidii—1, 1+ GiAiiv1s .- 1+ qiAin) and

b; = (b1,ba,...,bi_1,bit1,...,by). Moreover, these inequalities are equivalent.

Proof.  Applying Theorem 2.5 with the fractional kernel (2.79) and the power weight
functions ¢;;(x;) = x?” ,i,j=1,2,...,n, and taking into account the integral representation
(2.78), we have that

_bi 1 Xi
Fi(xi) = (1+2x;) 4 BBy (571+QiAi§bi§ m) ;
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so the result follows. O

Remark 2.22 It is obvious that the estimate

X
nFa—t (S, 1+giAs;bi; Tlx,) <pFu-1(s,14qiAi; by 1)

holds for all x; € R... Therefore, we also obtain the inequalities as those from Corollary 2.6,

with the fractional kernel (2.79) and the corresponding constant factor

1
BT nFu—1% (5,14 qiAs;b;; 1), where 8’ is defined in Theorem 2.9.

Remark 2.23 Regarding Remark 2.11, it follows that the equality in any of inequalities
from this subsection is possible if and only if at least one of the functions f; : Ry — R,
i=1,...,n, is the zero function. Namely, the equality is possible only for the kernels with
separated variables, which is not the case here.

Remark 2.24 Hilbert-type inequalities from this section related to Gaussian hypergeo-
metric function are derived in [62], while the multidimensional extension via the Poisson-
type integral representations is developed in [60].

2.6 Hilbert-type inequalities and related operators

So far, we have considered Hilbert-type inequalities with homogeneous kernels of negative
degree of homogeneity. The reason for this was in the fact that we required the kernel to be
decreasing in both arguments (see Remark 1.6, Chapter 1). Such requirement was essential
in order to obtain some estimates when considering inequalities with integrals taken over
bounded intervals in R;. However, when considering the integrals taken over R, such
requirement was redundant.

On the other hand, assuming the convergence, Hilbert-type inequalities with integrals
taken over the set R can also be considered for homogeneous kernels of zero-degree.

In this section we shall be more concerned with an equivalent form of the Hilbert-type
inequality, that is, with the Hardy-Hilbert-type inequality. Namely, the Hardy-Hilbert form
of inequality provides the possibility of defining certain integral operators between the
weighted Lebesgue spaces and determining their norms in some particular cases.

The previous program will be carried out for the Hardy-Hilbert-type inequalities in-
cluding a homogeneous kernel with zero-degree of homogeneity. First, we are going to
derive appropriate inequalities, and then, to consider the related operators between the
weighted Lebesgue spaces, which naturally arise from these inequalities.

2.6.1 Hilbert-type inequalities involving a homogeneous
function of zero-degree

In this subsection we give a unified treatment of Hilbert-type inequalities with homoge-
neous kernels of zero-degree.
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The results that follow are considered in the setting with non-conjugate exponents, in a
slightly generalized form. More precisely, the kernel includes two differentiable functions
with some additional properties. We start with some definitions and notation that will be
valid throughout this section.

Let (a,b) be an interval on the real line and let u,v : (a,b) — R be non-negative mea-
surable functions satisfying the following conditions:

(1) u and v are differentiable on (a,b);
(ii) u and v are strictly increasing on (a,b);
(iii) lim wu(r) =v(r) =0and lim u(z) = v(t) = oo.
x—at x—b~

In this section, by ky : Ry x Ry — R we denote a non-negative measurable homoge-
neous function of zero-degree. Also, we deal with the integral

o) = /Owko(l,t)t_adt. (2.82)

We consider only the parameters o such that (2.82) converges.

The above functions u, v and ko will be essential in defining the corresponding kernel.
More precisely, Ky : (a,b) x (a,b) — R denotes a non-negative measurable function defined
by

Ko(x,y) = ko (u(x),v(y)), (2.83)

where u and v are assumed to fulfill conditions (i)-(iii).
First we provide Hilbert-type and Hardy-Hilbert-type inequalities involving the above
kernel K.

Theorem 2.12 Let p, g, and A be as in (2.1) and (2.2), and let u,v : (a,b) — R be non-
negative measurable functions fulfilling conditions (1)-(iii). If Ko : (a,b) x (a,b) — R is a
non-negative measurable function defined by (2.83), and A1, A, are real parameters such
that co(2 — p'A1) < o0, co(q'A2) < o, then the inequalities

b b ) y
[ [ K e figt)dnay < eff 2= paned (¢42)

1
A —A>)p+L Ay—Aq)g+L q
b I/t( 1—A2)p b (x) b v( 2-A1)g pl(

/Ilwfp(x)dx] [/ﬂ qu(y)dy] (2.84)

X

and

1
7

b
/ (A e [/ KO x50 f dx} dy
a 2 1

M(Al *AZ)I’JFﬁ (x)

(u")P=1(x)

L
P

b
5 (2—p'Ar)c§ (q’Az) [ /a fp(x)dx] (2.85)
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hold for all non-negative measurable functions f,g : (a,b) — R and are equivalent. Equal-
ities in (2.84) and (2.85) hold if and only if f =0 or g =0 a.e. on (a,b).

Proof.  Similarly as for homogeneous kernels of negative degree, this theorem is also a
consequence of Theorem 2.1. Namely, using notation from Theorem 2.1, we put the kernel
Ko, defined by (2.83), and the weight functions

o) =——7— VO =—7— x€(ab),
() 7" (x) ()7 )

in inequalities (2.9) and (2.10). Then, defining v(y) = ru(x) and using the change of
variable, we get

U

P = | [ttty 0 ey

I oo , . 1
= yd Az(x) |:/ ko(l,l)t_qudt:| ! = C([)I (q/Az)uq' Az(x)v RS (a7b)'
0

Using the same argument, we also have

4 14
G(y)=c§ 2—p'Av’ "'(x), ye(ab),

which proves relations (2.84) and (2.85).
The case of equality follows immediately from Remark 2.3. |

We continue with some basic examples of functions u and v, fulfilling conditions (i)-
(iii). For example, functions u,v : Ry — R, defined by u(x) = Ax*, v(y) = By", where
A, B, u,v > 0, fulfill the above mentioned conditions, hence the following result is a direct
consequence of Theorem 2.12.

Corollary 2.7 Suppose p, q, and A are as in (2.1) and (2.2), and ko : Ry x R, — R
is a non-negative measurable homogeneous function of zero-degree. Let A}, Ay be real
parameters such that co(2 — p'Ay) < o and co(q'Ay) < o, and let A,B, [, v > 0. Then the
inequalities

/0"° /0°° ks (AxH, By") £ (x)g(y) dxdy

& 7 © (A—Ayt+ L 11—
< @i @ane | [l g a

1
Ie5) _ L o _ a
. UO J(macsh)avea-no v>gq(y)dy]" (2.86)
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and

1
7

o LY,/ o q q
{/ y(Al—Ar7>q v+v—1 |:/ k(})”(Axu7Byv)f(x)dx:| dy}
0 0
7 7 > (A —A +i) p+(p—1)(1-p) Z
<cf 2—-p'Ar)cg (4'A2)Co [ / x\ITRTy PR F7(x) dx} (2.87)
0

hold for all non-negative measurable functions f,g : Ry — R, where

[.l p v qAAl A2+77 BA2 ArF**i.
Moreover, these inequalities are equivalent. In addition, equalities in (2.86) and (2.87)

holdif and only if f =0o0r g =0a.e. on R,.

In the sequel we consider another interesting kernel dependent on homogeneous func-
tion ko : Ry x Ry — R of zero-degree. Namely, let Ko : (a,b) x (a,b) — R be a non-
negative measurable function defined by

Ko(x,y) = ko (1,u(x)v(y)), (2.88)

where the functions « and v fulfill conditions (i)-(iii). The following result is an analogue
of Theorem 2.12.

Theorem 2.13 Let p, q, and A be as in (2.1) and (2.2), and let u,v : (a,b) — R be non-
negative measurable functions fulfilling conditions (i)-(iii). Further, suppose Ky : (a,b) X
(a,b) — R is a non-negative measurable function defined by (2.88), and Ay, A, are real
parameters such that co(p'Ay) < o, co(q'A2) < oo. Then the inequalities

b 5 Y
| [ R s eists) asdy < off (raned (¢'a)

_Pr
u(A1+A2)I’ J ()C)

b
X [/a Wf”(x)dx}

b V(AH’AZ)‘I*[% (y) . é
_— d 2.89
[/a o) ¢ (v)dy| (2.89)

and

L
7

b
K (x x)dx| d
/a (A 1+A42)q"— Z |:/ 0 y :| Y

)

1

r

SP(x) dx} (2.90)

u(A1+A2>P_y ()C)

5 L b
<cf (P'Ar)eg (4'A2) [/a WG

hold for all non-negative measurable functions f,g : (a,b) — R and are equivalent. Equal-
ities in (2.89) and (2.90) hold if and only if f =0 or g =0 a.e. on (a,b).
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Proof. It follows directly from Theorem 2.1. ]

As an application of Theorem 2.13, we consider exponential functions u,v: R — R,
that is, u(x) = expx and v(y) = expy.

Corollary 2.8 Suppose p, q, and A are as in (2.1) and (2.2), and ky : Ry xR, — R is
a non-negative measurable homogeneous function of zero-degree. If A1 and A, are real
parameters such that co(p'A1) < e and co(q'Az) < oo, then the inequalities

[ B et sty < i (Pane] (¢a2)

x[/_:exp{((Al—FAz) +1-2p+= ) ]f”() ]p

X [/m exp K(A1+Az)q+1—2q+%>y} g‘f(y)dy] ' (2.91)

—oo

and

{/_:exp{(l_ml“m +P) } [/ K ( leXp(xﬂLY))f(x)dx]q,dy}%

1 1
<l (p'Ar)cd (4'Az)

x Um exp{((Al—l—Az)p—l—l—Zp—l— ) }f”() ] (2.92)

—oo

hold for all non-negative measurable functions f,g : R — R and are equivalent. Equalities
in (2.91) and (2.92) hold if and only if f =00rg=0a.e on R.

2.6.2 On some related Hilbert-type operators

The Hardy-Hilbert-type inequalities (2.85) and (2.90) allow us precise definition of Hilbert-
type operators and some conclusions about their norms as well. We consider here the
weighted Lebesgue space L/ (a,b) consisting of all measurable functions f : (a,b0) — R
1

with a finite norm || f{|r (4.0) = [fabw(x)|f"(x)| dx]". Here, r > land w: (a,b) > Risa
non-negative measurable weight function.

Hence, in the setting with p, g and A as in (2.1) and (2.2), the kernel K defined by
(2.83), and the weight functions

Ayt P _ a
M(Al A)p +q/ (x) (A2—A1)q+ I (y)

()P4 (x) (V)atly)

we can define the operator % : L (a,b) — L iy (D) as

D(x) = and ¥Y(y) = x,y € (a,b),

(Sf) &y / Ko x,y)f(x)dx, ye€(a,b). (2.93)
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Clearly, the operator .7 is well-defined since inequality (2.85) implies that 9 f € L?;.H/
(a,b). Moreover, considering the norm of operator %, that is,

||<%fHLq/17 ,(a.b)
1%l = sup  —mrt——, (2.94)
feLh(ab).f#0 I/ HLg(a.b)

it follows that the operator  is bounded. In other words, inequality (2.85) yields the
upper bound for the norm of this operator, i.e.

; 3
7]l < cf (2= p'Av)eg (d'As).

The same type of discussion can also be applied when considering the Hilbert-type
operator related to kernel Ky, defined by (2.88). More precisely, if we denote

(A1+A2)p—15 (A1+A2)g— %
G U 7 (%) G — " ()
CD()C) - (u/)pfl(x) and ‘{l(y) - (V’)qil(y) ’ X,y € (a7b)7
we can define the operator Ty : Lg(a,b) — L?{;lfq, (a,b) as
— b _
(FN0) = [ Kens@ds, ye(@b). (295)

q/

The operator p is well-defined since inequality (2.90) implies Tof € qu:p (a,b). In

addition, since the norm of operator % is defined by
(BLVA .

yl-g

%l = sup

T7 (2.96)
fELg)(a.b) JS#0 Lg(mb)

inequality (2.90) yields the upper bound for the norm, that is,

1

(P'AV)e] (d'A).

We consider now some particular cases in which we are able to find the norm of op-
erators T and 7y. Obviously, this problem is equivalent to the problem of finding the best
possible constants in inequalities (2.85) and (2.90).

The problem of finding the best possible constants in Hilbert-type inequalities with
non-conjugate exponents is still open. We solved the mentioned problem in the case of
conjugate exponents, as in Section 1.4 (Chapter 1).

Hence, in order to obtain the best possible constants in Theorems 2.12 and 2.13, in the
case of conjugate exponents, we exploit Theorem 1.13. The parameters A; and A, should
fulfill condition (1.29) for s = 0, that is, pA; +gA; = 2, and the homogeneous kernel of
zero-degree should be such that k(1,#) is bounded on (0, 1). Under these assumptions, the
constant factor on the right-hand sides of inequalities (2.84) and (2.85) reduces to ¢y (pA»).

%] < cf
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Theorem 2.14 Let % + é =1, p>1, let A| and A be real parameters such that qgA| +

PAz =2, and let co(pAz) < oo. If the function ko(1,t) is bounded on (0, 1), then the constant
co(pAz) is the best possible in both inequalities (2.84) and (2.85).

According to the above discussion, the previous result also provides the norm of the
operator .7, defined by (2.93), in the case of conjugate exponents.

Corollary 2.9 Suppose that the assumptions of Theorem 2.14 are fulfilled. Then the norm

of operator Fy:Lg(a,b)—Ly,,_,(a,b), defined by the formula (% f) ()= /" Ko (x,y) f (x)dx,

ye (a7b)7 is H%H = C()(pAz).

Utilizing a suitable change of variables, Theorem 1.13 can also be adjusted in estab-
lishing the best possible constant in Theorem 2.13. It turns out that the parameters A; and
Aj satisfy pA, = gAj, providing the same constant factor c¢o(pA;) as in the previous case.

Theorem 2.15 Lert 11—7—|— é =1, p>1, let A} and A, be real parameters such that gA| =

pAy, and let co(pAy) < . If the function ko(1,t) is bounded on (0,1), then the constant
Jactor co(pAz) is the best possible in both inequalities (2.89) and (2.90).

We conclude this subsection with the operator analogue of Theorem 2.15.
Corollary 2.10 Suppose that the assumptions as in Theorem 2.15 are fulfilled. Then, the

norm of the operator D Lg (a,b) — Lp@fp (a,b), defined by (%f) ()= [ Ko(x,y) f(x)dx,
y € (a,b), is || %|| = co(pA2).

2.6.3 On some related Hardy-type operators

In the previous subsection we have considered two examples of Hilbert-type operators.
We can also generate some other operators related to inequalities (2.85) and (2.90). More
precisely, if kg : R+ x Ry — R is a homogeneous function of zero-degree, then the function
ko: R, xR, — R, defined by

- 0, <y,
Ro(x,y) = Ko(¥.y) ey (,7) = { k(). x>y (2.97)

is also homogeneous of zero-degree. Now, we use the same procedure as in the previous
subsection, but with this function ky. The kernel kg looks like the classical Hardy ker-
nel (see Chapter 8), so the corresponding operators will be referred to as the Hardy-type
operators. Moreover, since

—_ 1
co(a):/o ko(l,t)fadtz/o ko(1,8)r~%dt,

we define |
2o(a) = / ko(1,0)1dr. (2.98)
0
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Bearing in mind the notation from the previous subsection, we define the operator
J— /
To:Lg(a,b) = L, ,(a,b) by

—-q

b

Ton0)= [, B0 ve (@) 2.99)

and T : Lg(a,b) — Lq({nf (a,b) by

_ )
(Zof) ) = / K} (x.y)f(x)dx, y€ (ab), (2.100)

a

where u(~!) denotes the inverse of the function u.

The following two corollaries show that these definitions are meaningful. In other
words, we provide the corresponding analogues of Theorems 2.12 and 2.13 for the above
Hardy-type kernel of zero-degree.

Corollary 2.11 Let p, g, and A be as in (2.1) and (2.2), and let u,v : (a,b) — R be non-
negative measurable functions fulfilling conditions (i)-(iii). Further, suppose Ky : (a,b) X
(a,b) — R is a non-negative measurable function defined by (2.83). If A| and A, are real
parameters such that ¢o(2 — p'A;) < e and ¢y(q'A2) < oo, then the inequalities

1

b b 3 y
L K ) s ddy < 2= p'aney (642
a Ju v(y

byhAIrty G P q
u i (x) 12 4 (y)
X [/a Wﬂ’(x) dx] l/a qu(y)dy] (2.101)

and

1

/ab (V’(—Y), [/ub Ky (x,9)f (x) dx] q,dy ‘1

A=A+ L Dy
2=ANG+ ) ()

1
P

17 (x) dx] (2.102)

1

o v b u
<cj (2—p'Ar)cy (4'Az) [/a TIT=I

(A *AZ)I’JFf (x)

hold for all non-negative measurable functions f,g : (a,b) — R and are equivalent. Equal-
ities in (2.101) and (2.102) hold if and only if f =0 or g =0 a.e. on (a,b).

Corollary 2.12 Let p, g, and A be as in (2.1) and (2.2), and let u,v : (a,b) — R be non-
negative measurable functions fulfilling conditions (i)-(iii). Further, suppose Ky : (a,b) X
(a,b) — R is a non-negative measurable function defined by (2.88) and Ay, A, are real
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parameters such that ¢o(p'A;) < e and ¢y(q'Az) < eo. Then the inequalities

1

b uD L\, ~ L’ 4
/a / () K} (x,3)f(0)8(y) dxdy <] (p'AE] (4'A2)

1
(A1+A2)P_§( P

by X)
X [/a Wf”(x)dx}

1
(A1+A2)g— 4% q
P (

Uab qu(y) dy] (2.103)

and

1
, =
7

/ ul Ly 9
/ab—v< w0l [/ ("“”)K&(x,y)f(x)dx] &

A+As)q =4

L
P

SP(x) dx} (2.104)

1

1 1 b u<Al+A2)I}7§ .
< Az (dA2) [ / )
a

(u")P=1(x)

hold for all non-negative measurable functions f,g : (a,b) — R and are equivalent. Equal-
ities in (2.103) and (2.104) hold if and only if f =0 or g =0 a.e. on (a,b).

Remark 2.25 Regarding Corollaries 2.11 and 2.12, one can easily obtain analogues of
Corollaries 2.7 and 2.8. It suffices to replace the constant factor co(or) with ¢o(or) and
change the integration intervals according to definitions (2.99) and (2.100). For example,
if u(x) = expx and v(y) = expy, then u(~V (v(y)) =y and u{~V) (ﬁ) =—y.

Remark 2.26 The discussion about the best constants, carried out in the previous sub-
section, holds for the Hardy-type operators (2.99) and (2.100), as well. More precisely, if
p,q > 1 are conjugate exponents and Aj,A; are such that pA; + gA; = 2, then ¢o(pA;) is
the best possible constant in inequalities (2.101) and (2.102). Moreover, the same constant
is also the best possible in (2.103) and (2.104), provided that gA; = pA; in the conjugate

setting. Of course, under the above assumptions, the norms of operators .7 and .7 are
both equal to ¢o(pAy).

2.6.4 Applications

We conclude this section with some consequences of Theorem 2.12, Theorem 2.13, Corol-
lary 2.11 and Corollary 2.12, obtained by a suitable choice of parameters A; and A,.
Namely, if A} = 171, and A, = %, then the inequalities (2.84) and (2.85) respectively read
as

/ab /ab G (u(x), v(9) £ (x)g(v) dxdy

<) [/b (%)H ()£ (x) dX] ,, [ / b (%)H (s*) dy] @105
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and
1
b/ b q 7
[ (%) o] [ damaonrmad o
b 1 ’
u\P- [
<ch(1) U (—,) (x)f”(x)dx} . (2.106)
a u
Remark 2.27 For the same choice of parameters A; and A;, i.e. A = ﬁ and A, =

1, Theorem 2.13 yields the same inequalities as (2.105) and (2.106), with the kernel
ko(L,u(x)v(y)) instead of ko(u(x),v(y)). In other words, inequalities (2.105) and (2.106)
also hold after replacing the kernel ko (u(x), v(y)) with ko(1,u(x)v(y)).

The same setting also yields the corresponding result for the Hardy-type kernel (2.97).
Namely, for A| = 1% and Ap = %, Corollary 2.11 yields inequalities

b b
/a /’4(’1)(v(y)) ké (M(X)N(y))f(x)g(y) dxdy

<dm| [ (5)" (X)fp(X)dxr [ () osva] cion

u Vv

and

<zh(1) [/ab (l,)p_l(x)fp(x)dx] %. (2.108)

u

Remark 2.28 According to Corollary 2.12, inequalities (2.107) and (2.108) also hold
after replacing the kernel ko(u(x),v(y)) with ko(1,u(x)v(y)) and replacing integration in-

terval (1= (v(y)),b) with (a7”(71>($))

Remark 2.29 Considering the conjugate case, parameters that generate inequalities
(2.105), (2.106), (2.107), and (2.108) become A} = é and Ay = %. These parameters
fulfill condition gA; + pA, = 2, providing the best possible constant factors c¢o(1) and

co(1).

In order to complete the previous discussion, we provide some examples of homoge-
neous kernels with zero-degree of homogeneity, which generate the corresponding constant
factors expressed in terms of the Beta and the Gamma function.

Example 2.1 Let o >0, B > —1 and

ko(x,y) = (M)a ’log (%) ‘B

max{x,y}
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Then,
= (min{1,r}\“ B -1 /1 a-1 B /w —o-1 B
—_— logt|Ft™ ' dt = t —logt)Pdt t logt)”dt.
[ () ot [ CrognPar+ [717¢og)

Since,

: - > r 1
/ 1%~ (~logt)Pdt :/ = (logr)Par :/ e yBay = B+ ),
0 1 0 aﬁ-’rl

the above constant factors become

_2T(B+1)

_I(B+1)
aB+! :

co(1) and  ¢o(1) = poEs

Example 2.2 For the homogeneous function defined by

max{x,y} X
we have

° min{1,r} _ 1 o
yt Varctantdt = / arctantdt + / 2 arctantdt.
0 max{Lt} 0 1

Clearly, the above two integrals can be resolved by using integration by parts, yielding the

constant factors
log2

T
co(l)== and Eo(l):Z 5

Example 2.3 Let 0 < o < 1 and
. o
min4x,
kO(x7y):< { y}> .

lx =yl
Then,

oo . 1 o 1 oo
/ (m) fldt:/ t"‘*l(l—t)*“dt+/ e —1)"%r.
0 [1—1¢] 0 1

| w
0 1

we obtain the constant factors expressed in terms of the Beta function:

Since

co(1)=2B(1—a,a) and  Ty(1)=B(1—a,a).

Remark 2.30 Results in this section are taken from [166]. However, similar Hilbert-type
and Hardy-type operators can also be derived for homogeneous kernels of arbitrary degree
of homogeneity. For more details about similar results, the reader is referred to [37], [158],
[160], [163], [165], [167].



Chapter

Hilbert-type inequalities with
vector variables

This chapter deals with Hilbert-type inequalities involving real valued functions with vec-
tor arguments. We start this overview with the so-called doubly weighted Hardy-Littlewood-
Sobolev inequality of Stein and Weiss, [118],

f(x)g(y)
0 fon Tooe — o olp 44y = G a L el g 1wy (3.1)
/R /R |x|*]x — y|[y|B ®Pp.a. @®"ITE N R")

which holds forn € N, p,q > 1 such that %—I—é >1,Aasin (2.2),0< o< ﬁ, 0<B< %,
s =nA —a — B, and all non-negative functions f € L?(R") and g € LY(R"). Here, and
throughout this chapter, |x| denotes the Euclidean norm of the vector x € R".

In [83], Lieb proved the existence of optimizers for (3.1), that is, functions f and g
which, when inserted into (3.1), yield equality with the smallest possible constant C,, B.p.qn
Moreover, for p = g and oo = § = 0, the constant and maximizing functions were explicitly
computed in [83]. In particular, Lieb proved that

2
n n -1
;T(-5) [rw]”
Co0.ppn =17 ’
) L
P
where T is the Gamma function. Unfortunately, neither Cy, g , , , nOr the optimizers are

known for any other choice of the parameters appearing in (3.1). It was only shown (see e.
g. [84]) that for the classical Hardy-Littlewood-Sobolev inequality, that is, for (3.1) with

95
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o =B =0 and s = nA, the estimate

P+ @ (A \
Co0pgn <~ =|S" 3.2
0.0,p.q, (l—l)pq n| | ( )
holds, where
273
ISt = (3.3)
r' (%)

is the area of the unit sphere S"~! in R". For more details about the Hardy-Littlewood-
Sobolev inequality, the reader is referred to [83] and [84].

One of the most important tasks in this chapter is to derive the explicit upper bounds for
the general case of the doubly weighted Hardy-Littlewood-Sobolev inequality (3.1). This
can be done by virtue of Theorem 2.8 from the previous chapter and the Selberg integral
formula (see e. g. [119]). Moreover, the Selberg integral formula and the appropriate results
from the previous chapter will also be utilized in deriving numerous particular Hilbert-type
inequalities with vector variables.

On the other hand, some vector extensions of the usual Beta function will also be
utilized in obtaining some particular Hilbert-type inequalities. Finally, at the end of this
chapter we shall present some multidimensional Hilbert-type inequalities including a gen-
eral homogeneous kernel and power weight functions whose arguments are norms of the
corresponding vectors.

3.1 Explicit upper bounds for the doubly weighted
Hardy-Littlewood-Sobolev inequality

The main goal of this section is to derive a form of the doubly weighted Hardy-Littlewood-
Sobolev inequality (3.1) with an explicit constant factor on its right-hand side. In fact, we
derive explicit upper bounds for the sharp constant Cy, g , 4, in (3.1).

Main results in this section will be based on Theorem 2.8 (see Section 2.4), and the
well-known Selberg integral formula

i=1

k—1
/Rkll |xk|ak_n (H |xl+1 _'xt'|ai_n> |x1 _y|ao_n d.x] . .d.Xk

_ l—‘n(O(O) o 'rn(ak) |y|a0+.4.+ak7n

Ta(00+...+0y) 34)

for arbitrary k,n € N, y € R", and 0 < o, ...,04 < n such that 0 < 2?:0 o; < n, where

()= % is the n-dimensional Gamma function. For k = 1, the product appearing
1%

in (3.4) is defined to be equal to 1. In [119], Stein derived the above Selberg integral
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formula with two parameters using the Riesz potential (see also [25]). It should be noticed
here that (21)
T n
In—o)= To(a)’ O<a<n. (3.5)
The Selberg integral formula is very useful in numerous parts of mathematics, especially
in representation theory and in mathematical physics.
In order to establish our main results, we first reformulate (3.4) in a form which will

be more suitable for our computations.

Lemma 3.1 Suppose k,n € N, 0 < By,...,Bx,s < n are such that Zileﬁi—ks > kn, and
vy € R". Then

=B x|~ B
/k |XI| |Xk| dxl...dxk
R |x1 4+ ... +x+y|*

_ rn (n - ﬁl) e rn(n B ﬁk)rfl(n B S) |y|kn—Bl—...—Bk—S. (3 6)
C((k+1)n—B1—...— Be—s)
Proof. Set o =n—Biy1,i=0,...,k—1,and og = n—s. Substituting first 1; = x; + y and
then #, =t + x,, the left-hand side of (3.6) becomes

=Bt .. |y, | Br
/k |XI| |Xk| dxl...dxk
R |x1 4+ ... +x+y|*

_ [,
JRM lt; 4 X2+ ... 4 x| %
_/ L L T e S o
- JRM |ty + X3+ ...+ x| %
After the sequence of similar substitutions #; =#;,_ + x;, i = 2,...,k, the last line of (3.7)
is finally equal to

dridx, . . .dx;

dtidtydxs . . .dxy. (3.7

k-1
/]R"” || %" (H [ti+1 —fi|ai_"> |ty —y|%7"dty ... diy
=1

o Fn(a()) te Fn(ak) |y|0(0+4.4+0£k7n

Ty(on+...+0y)
RS DR TR AVICE PR

L((k+Dn—B1—...— B —)
where the last two equalities are obtained by the Selberg integral formula (3.4) and by
replacing oy by the corresponding expressions including ;. ]

Since the case k = 1 of Lemma 3.1 will be of our special interest, we state it as a separate
result.

Lemma 3.2 Letn € Nandy € R". If0 < B,s < n are such that B +s > n, then

/ |Jc|*l3 e Tu(n—B)Tu(n—s) |y|”7ﬁ""
R" [x+y|* I,(2n—B —s) :
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We can now obtain the doubly weighted Hardy-Littlewood-Sobolev inequality (3.1)
mentioned above. More precisely, we utilize Theorem 2.8, that is, inequality (2.51) with
Q = R" and the kernel K (x,y) = |x|~*|x — y| ~*|y| P.

The first step is to consider the case when the function g € LY(R") on the left-hand
side of (2.51) is symmetric-decreasing, that is, g(x) > g(v) whenever |x| < |y|. For such
function and y € R", y # 0, we have

1
g(y) < —/ g(x)dx
IB(IyI /B(y)

1
W/R"gq(x) r= |§n 1| |y|—n H 8 ”q (3.8)

where B(|y|) denotes the ball of radius |y| in R”", centered at the origin, and |B(|y|)| =
S

is its volume.

[y["

Theorem 3.1 Lern E N, p>1 andq > 1 be such that l +3 L'>1, and let A be defined by
(2.2). Let 0 < o < ,0< B < b, and s = nk — o — . Then the inequality

fx)g)
oo Jeo e i

< . (Sn 1)1 1

(2 0) T (24 B) 1) 1 1yl 8 oy (3.9)

holds for all non-negative functions f € LP(R") and symmetric-decreasing functions g €
L4(R™).

Proof. Suppose that in Theorem 2.8 (see Section 2.4) we have Q =R", K(x,y) = |x|~%|x—

YR, Fx,y) = Glx,y) = 1, o(x) = |x|ﬁ, y(y) = |y|ﬁ, and the Lebesgue measure
dx. In this case, the left-hand side of inequality (2.51) reads

_ f()g(y)
= Je Jee e 310

11
while its right-hand side is a product I{" I,/ 13171, where

x| |y| |7 [y|o
= [ fP(x)dxdy, I = / T g &§7() dxdy,
/Rz [x[ox —y]s[y[P R |x|*[x — y|*|y|P

= [ DY gy anay
R x| e = yI°ly]
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Therefore, applying the Fubini theorem, Lemma 3.2, identity (3.5), and the fact that o +
B +s=ni, we have

yl
I / xi” ¢ P( / | ddx
1 R"' [P - x_y y

/R” ) | Tx |S “

T <2n—q—[3—s)
(27.5)2n »
- — £ 1P
r (E+a>1“ (q+ﬁ) .
Analogously,
(271.)211
L= gl mn
O (G ra)r (2 p)re
and, by (3.8),
n - |Y|
L < —— M / / 75151
3 > |Sn,1| HgHquR) R" |X|p R |x_ |S yax

N n (271.)211 » g
IE, (24 o)L (24 8)ulo) 1714 ey

Finally, (3.9) follows by combining (3.10) and the expressions we have obtained for the
integrals I, I, and I3. U

To obtain an analogous result for arbitrary non-negative functions f € LP(R") and
g € L1(R"), we utilize the general rearrangement inequality. Recall that for a Borel set
A C R" of finite Lebesgue measure, we define A*, the symmetric rearrangement of A, to
be the open ball centered at origin whose volume is that of A. The symmetric-decreasing
rearrangement of a characteristic function of a set A is y; = ya+, soif f:R" - Cis a
Borel measurable function vanishing at infinity, the symmetric-decreasing rearrangement

f* of a function f is defined by
x) = /O X{jsi>n ()t

Now, the general rearrangement inequality asserts that

I(.f17f27"'7fm)Sl(frvf;w--?f:'t)? (311)
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where f1, f>, ..., fm are non-negative functions on R", vanishing at infinity, and

m k
If7f7"'7fm = f b['i dxidxy...d s
(f1, /2 ) /R” /Rn]]_[l,(; ,x) x1dxs . ..dxy

k<m,bjjcR, 1<i<k 1< j<m. Inthe following result we also use the fact that
for parameter y > 0 the function i : R" — R, h(x) = |x| 7%, is symmetric-decreasing and
vanishes at infinity, which implies that #* = h. For more details about rearrangements of
sets and functions, the reader is referred to [84].

Theorem 3.2 LetneN p>landg>1 besuchthatl—k1 > 1, and set A as in (2.2).
Suppose 0 < o < & p 0<p< q,, and s =nA — o — . Then the inequality (3.9) holds for
all non-negative functions f € LP(R") and g € L1(R").

Proof.  Since x — |x|~%, x — |x| %, and x — |x| P are symmetric-decreasing functions
vanishing at infinity, the general rearrangement inequality (3. 1 l) implies that

W xdy < /n/n dxdy. (3.12)
/R /R x| Ix yl Iylﬂ R" JR" x| Ix yl Iylﬁ

Clearly, by Theorem 3.1, the right-hand side of (3.12) is not greater than

Ka7[3,p7q7n H f* ”Lp(]R”)” g* HLq(]R”): Ka7ﬁ,p7q7n H f HLP(R”)H 8 ||L‘1(R”)7 (3.13)

where K, g , 5. is the constant from the right-hand side of (3.9). To obtain equality in
(3.13), we have used the fact that the symmetric-decreasing rearrangement is norm pre-
serving (see e.g. [84]). g

Remark 3.1 Note that Cy g , 40 < Ko . p.g.n Where Cy g, 4, is the sharp constant for

(3.1) and K, g, 4« is the constant factor involved in the right-hand side of (3.9). Hence,
Theorem 3.2 provides new explicit upper bounds for the doubly weighted Hardy-Littlewood-
Sobolev inequality. In particular, for &« = § = 0 we have

i\ Al
(2m)% (S—)
Ko,0.p.gn = r. (%) . (g) T n) ) (3.14)

while for p = ¢ the above constant reduces to

2z

" Srkl p' 2

e () ) )] e,

KO.O.p.p.n: =nr {1"( )] P
e r2(z\r, (2 n

"(1') "(P’)

Although (3.2) provides a better estimate for Co ,, 4., than (3.14), it is important to note
that Theorem 3.2 covers all admissible choices of the parameters p, g, o, and 8 in (3.1), so
the main contribution of this section is in extending the mentioned Lieb result, presented
at the beginning of this chapter.
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3.2 Trilinear version of standard Beta integral

Considering Lemma 3.2, we may regard the Selberg integral formula as the k—fold gener-
alization of the standard Beta integral on R". On the other hand, by virtue of the Fourier
transform (see [25]), the so-called trilinear version of the standard Beta integral is obtained,

that is,
|t|o‘+B —2n |x_y|n—oc—B
) dr = B(a,Bn) =2 (3.15)
/R [x—t[o[y—1|P [x[n=P|y[n-c
where x,y e R, x Ay #0,0< a, <n, o+ > n, and
— n— +p—n
T2 (52 r(==2)
Bl o) =t A
F(%)F(7>r("—7)

Taking into account definition (3.5) of n-dimensional Gamma function, the previous for-
mula can be rewritten as

B(ot, B,n) = é (ané(nﬁ)ﬁ). (3.16)

It is still unclear whether or not there is a corresponding k—fold analogue of (3.15). In
spite of that, we shall use the trilinear formula (3.15) to obtain a 2—fold inequality of the
Hilbert-type for the kernel K (x,y) = |x —y|*"[x+y|P~", where 0 < o, 8 < n, o+ < n.
Of course, we shall rewrite formula (3.15) in a more suitable form. Namely, replacing y
with —x in (3.15), we obtain

/ =P dt =2%P="B* (o, B,n)|x| " (3.17)
R" fx— 1%+ 1P R
where L@ ()
a n
B*(a, B,n) = Tt p) (3.18)

Now, the corresponding Hilbert-type inequality and its equivalent form are the imme-
diate consequences of Theorem 2.1 and the above relation (3.17).

Theorem 3.3 Let p, g, and A be as in (2.1) and (2.2), and let o and B be real parameters
satisfying 0 < o, B < n and 0.+ B < n. Then, the inequalities

/ 2 fx)gly) iy (3.19)
R* [x — y[A(1=@)|x 4 y|A(1=B
1

< N|:/ |x|(p7 )(a+B+n) pn)pr( dx] [/ |y|q 1)(a+B+n)— qn)L ()dy
- ]Rn Rl‘l
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and

, 1
q q
n(Aqg'—1)—a—p / f( )dx :| d 3.20
{/R . e ) o
1
<N |:/ |x| p—1)(a+p+n) pnlfp( )dx:l P
- R"

hold and are equivalent, where N = 2@ +B=1B* (o, B n)*.

atp atB
Proof. Putting K(x,y) = |x —y[*"|x+yP ", (x) = |x| 7", y(y) = |y| 7 in(2.9) and
(2.10) (see Theorem 2.1), and utilizing the formula (3.17), we obtain (3.19) and (3.20)
respectively, as claimed. g

Real parameters o and 3 from the previous theorem fulfill the condition ot + 3 < n. In
what follows we shall obtain similar inequalities which are, in some way, complementary
to inequalities (3.19) and (3.20). Such inequalities will be derived by virtue of Theorem
2.8 (see Section 2.4).

Theorem 3.4 Let p, g, and A be as in (2.1) and (2.2), and let o and B be real parameters
satisfying 0 <o <n, 0< B <n o+ =n (1% + é) >n. If f and g are non-negative

Sunctions such that f € LP(R"), g € LY(R"), then the following inequalities hold and are
equivalent:

/ fx)g(y)
R

1-2
n
2n |x_y|n—a|x+y|n—[3 xdyé <|Sn1|) C(PJ]’OC,BW)”JCHL;J(R")HgHLq(R”),

(3.21)
1
x)dx a 7 n \'
d < Tan—11 Cc ,q,0,psn p (TR™Y -
{/R" UR lx — yl" “IX+yI" ] y} (IS”1|> (pogs. Bim) 1Ly
(3.22)
Here,
|x|73dx
C(p,q;0,B;n) = , 3.23
(p,q; 0, Bsn) /Rn ley — x|"=%|e; +x|1—P ( )

where e; = (1,0,...,0) € R" and |S""| is the Lebesgue measure of the unit sphere in R".

Proof.  Since we shall use the general rearrangement inequality (3.11), it is enough to
prove the inequalities for symmetric-decreasing functions f and g. First, applying Theorem
2.8, we have

1 1
S8 () dxdy <19 17 1}, (3.24)
R [x — y[r=®|x+y|n=P b
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where

b= foo A o) dy
R* [x — y|"~ %+ y|1=P ’

L :/ bl g%(y) dxdy
R* Ix—yl”“"liryl”‘ﬁ ’

x| [y|
I :/ P(x)g%(y) dxdy.
3 R |X—y|n a|x—|—y|”_ﬁf ( )g (y) y

Further, using the change of variables y = |x|u (so dy = |x|"du) and rotational invariance
of the Lebesgue integral in R”, we easily get:

1 Iy "
I z/ x| fP(x / dydx
1 Rn| | .f ( ) Rn |x_y|n7a|x+y|n7ﬁ y

_/ i’JHHﬁ "r / i dudx
R” R" n—ao n—p
MU W +uf

-/ ey
R" Jey —ul""%|ey +ul" P ®y’

Analogously,

Sy p— . T—"
R" |e —ul"~* e +uf*P " LR’

and by (3.8),

p q
b= " /]R" ler —ul""*|ey +u" P Ml 1ol

It remains to prove that

/ |x|_%dx _/ |x|_sdx
R |ey —x|"~%e; +-x["=B  JR" |e; — x|"~%|e; +x|n—P

We transform the left integral in polar coordinates using x =160, ¢ >0, 0 € |S”’1 |, and
t= % to obtain:

x|~ Pdx > Tl
/n — — :/nflde/‘ — —
R" |e] —x|"~%|ej + x| 0 |eg—t8]%|e; +10|"P

B

a0 ] .
S 0 (14+12—21(e1,0))"T* (L +12+21(e1,0)) 2
u

_/ de/ a—B n ldu
o (1+u2_2u(e179))”—5ﬁ(1+u2+2u(e1,9))"—5ﬁ

_/ |x| " 9dx
= R" |€1 —X|n_a|€1 +x|n—ﬁ
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To complete the proof, we need to consider the general case, that is, arbitrary non-
negative functions f and g. Since x — |x|"~%, x — |x|"~P are symmetric-decreasing func-
tions vanishing at infinity, the general rearrangement inequality implies that

f(x)g(y) g ()
R™ [x — y|["=%|x + y|[*—P = Jr x — yl” "‘Ix+y|”

dxdy. (3.25)

Clearly, by (3.24), the right-hand side of (3.25) is not greater than

1-1
n « *
(@ﬁa Clpgsor Bim) [ o 18 e,

1-A

n

~(g)  Cogabn Il g, G20

where C(p,q; o, B;n) is the constant from the right-hand side of (3.21). To get equality in

(3.26), we used the fact that the symmetric-decreasing rearrangement is norm preserving.
On the other hand, substituting the function

QR

B f()
R" |x _y|n—oc|x+y|n—/3

n (3.21), we obtain inequality (3.22). To show that inequality (3.22) implies (3.21), we
proceed in the same way as in the proof of Theorem 2.1. ]

It is very interesting to consider the case n = 1 in the previous theorem. Namely, in that
case the constant C(p,q; o, B;n) can be expressed in terms of the usual Beta function and
the Gaussian hypergeometric function (see formulas (1.5) and (1.34), Chapter 1). More
precisely, utilizing the above mentioned definitions, it follows easily that the following
identity holds for 0 < dy,d»,d3 < l and d; +dr+dz > 1:

/R|t|‘dz|1—t|‘d3|l+t|‘d1dt:

B(1—dy,1 —d3)F(dy,1 —dp;2 —dy — d3;—1)
+B(1 —dy, 1 —d\)F(d3,1 —dp;2 —dr—dy;—1)
+B(d1 +dr+d;—1,1 —d3)F(d17d1 +dr+d;— l;dl—l—dz;—l)
+B(di+dry+ds— 1,1 —d\)F(ds,dy +dr +d3s — 1;d3 +dy; —1).

Hence, for n = 1 we have:

Corollary 3.1 Let p, g, and A be as in (2.1) and (2.2), and let o and B be real parameters
satisfying 0 < o< 1,0< < l,and a+ = Il—7+$ > 1 IffeLl’(R)and g € L1(R) are
non-negative functions, then the inequalities

fx)g(y)
R* |x =y x4y =P

dxdy < 2171C(P7‘]§a7ﬁ)|‘f||Lp(R)HgHLq(R) (3.27)
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and

N
f(x)dx q q .
/R R |x—y[l=%[x 4 y|1-B dy <2°7°C(pq:o B fll o (w) (3.28)

hold and are equivalent, where

1 1
C(Pﬂm@ﬁ)=B(J,a)F(1—ﬁ7?;q/+a;_l)
1 11 1 11
—i—B(zaﬁ)F(l—a,?;g—kﬁ;—l)—i—B(?,a)F(l—[37[7;?+a;_1)
1 1.1
B P =0 3.29
(PP - g Bit). (3.29)

The following corollary should be compared with Theorem 3.3.

Corollary 3.2 If p, g, and A are as in (2.1) and (2.2), and f € LP(R), g € LY(R) are
non-negative functions, then the following inequalities hold and are equivalent:

f(x)g()dxdy _ ;- Al A
/Rzilgz’l ! B(I_E7Z_]?/)+B(l bR 2 ,) Hf”Lp HgHLq(]R)

2 —y2[7
(3.30)
1
q q
Al A1
dyl <22 '(B1-Z%2 ) )+B1-Z2 —
/]R(/R |x2—y2|7> Y - ( ( 2’ p’)+ ( 272q/)>|f”Lﬂ(R)
(3.31)
Proof. Setaa=f =1~ % in the previous corollary. 0O

It should be noticed here that inequalities (3.30) and (3.31) could not be obtained from
Theorem 3.3. In other words, there are no o and 3 for which the kernel appearing in

inequalities (3.19) and (3.20) would reduce to |x* — y2|_%.

3.3 Multiple Hilbert-type inequalities via the Selberg
integral formula

In this section we derive some multidimensional versions of Hilbert-type inequalities with
the help of the Selberg integral formula. The following result can be regarded as the corre-
sponding analogue of Theorem 2.6.
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Theorem 3.5 Let A,p;,pl,qi, i = 1,2,....k, k > 2, be real numbers satisfying (2.26),
(2.27), and (2.30), and let A;j, i,j = 1,... .k, be real parameters such that Zi-;lAij =0 for

J=lo k fneN0<s<nAje(-2,0) 0 A”<Mand

1 Lo o
K = r7L— H F,Z' (n—!—q,'A,'j)Hl",Z’ (S — (k— l)n —qi0y —I—q,‘A,’l‘),
7 (s) ij=1,i#] i=1

then the inequalities

1
>

k Jn— pi\k=1)n—pjs i
/R o 1 filx dxldxz -dy < K[| [ /R” |x,| Tic fp’(x,)dx,}[ (3.32)
i=1

|Zk 1x1|/l
an
P L
[kln s|—pi o / fl( i) Pk
X ————dxidxy - dx;_ dx
{[]j%n| k| R(k )n |2k x1|}L 2° k—1 k
k L pitk=n=pis +pity %
<K [ / n|x,| pich fp’(x,)dx,] (3.33)
i=1 R
hold for all non-negative measurable functions f; : R" — R, i =1,...,k. Here o =
ZIJC»ZIAU, i=1,2,....k. Moreover, these inequalities are equivalent.

Proof. We use the general result in the non-conjugate multidimensional setting, that is,
Theorem 2.5. Namely, we consider inequalities (2.31) and (2.32) with Q =R", ¢;;(x;) =
x4, i, j=1,....k K(x1,...,Xx) = |x1 + - + x| %, and the Lebesgue measure.

Now, using the notation from Theorem 2.5, the Selberg integral formula (3.6) yields

1
Hljc'=17j7eirn(n+CIiAij)rn(n_S) 9 Ix; C=Dn=s | o Ay
Ly (kn + giog — qiAii — s) l 7

Fi(x;) =
so inequalities (2.31) and (2.32) reduce to (3.32) and (3.33) respectively. O

Remark 3.2 Observe that, according to Remark 2.11, equalities in (3.32) and (3.33)
hold if and only if at least one of the functions f; is equal to zero a.e. on R". Otherwise,
inequalities (3.32) and (3.33) are strict.

As an application of Theorem 3.5, we consider some particular choices of parameters
Ajj, i,j=1,2,... k. For example, if A; = (nk—s))“f{’ and A;j = (s —nk)ﬁ, i # ],
idj
i,j=1,2,...,k, then

Agi—1 s —nk 1
Ajj = S)( J'z )Z ] 2__l
i=1 z;éj 4qj qj i—19i

for j = 1,2,...,k, that is, these parameters fulfill conditions of Theorem 3.5. Moreover,
due to the symmetry, we also have o; = le‘»:lA,-j =0fori=1,2,...,k, and hence, as a
consequence we obtain the following result.
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Corollary 3.3 Let A,p;, pl,qi, i = 1,2,...,k k > 2, be real numbers satisfying (2.26),
(2.27), and (2.30). If n € N, 0 < nk—s < nmin{p;,q;,i,j =1,2,...k}, and

pl ( nk—s) ﬁrq% (n_nk—s>
qi i—1 ! Pi '

then the inequalities

1

/R Hz 1 fl( )dx dxy - dxg < LH [/ |)Cl|_(’(*Tlh)ﬂ*pi‘_v fipi (xl')dxl.:l Pi (3.34)

kn |2 lxl|)L

and
((k=1)n—s] fl xl) o pik/
/R" /]R“( D |2k xl|l dxldx2 o -dxk_l dxk
pilk—D)n—p;s _ ?i

< LH [ /R e (xi)dxi] (3.35)
hold for all non-negative measurable functions f; : R"* — R, i =1,... k. Moreover, these
inequalities are equivalent. The equality in both inequalities holds if and only if at least
one of the functions f;, i = 1,2,...,k, is equal to zero a.e. on R".

Remark 3.3 Similarly as in the previous corollary, defining A; = "()Lf;; U and 4; ;=
— A i#j.i,j=1.2,...k wehave l
iqj

k k n n(Ag;j—1) n kol
ZIAU:ZAU:Z_ + ;Léjz =24 XM=

=1 7z Mg i-14i

for j = 1,2,...,k. Hence, substituting these parameters in Theorem 3.5, assuming that
(k—n—s< lipl <n,i=1,2,...,k, we obtain the same inequalities as in Corollary 3.3,
with the constant

k

1 & AL/ L n
U= g I ()T (s 50t n).

i=1 i

instead of L.

Inequalities in Corollary 3.3 and Remark 3.3 are interesting since they provide the best
possible constant factors in the conjugate case. This will be explained in the next section. It
should also be noticed here that these inequalities can be regarded as the n-fold extensions
of the corresponding results from [12] and [156].

We proceed with multidimensional Hilbert-type inequalities related to those in Sec-
tion 3.1. Namely, in Section 3.1, by virtue of Theorem 2.8 and Lemma 3.2, we have
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obtained Hardy-Littlewood-Sobolev inequality which includes a pair of non-conjugate pa-
rameters. However, the method used in deriving Hardy-Littlewood-Sobolev inequality can
also be extended to a multidimensional non-conjugate setting. More precisely, we shall uti-
lize Theorem 2.7 applied to the kernel K (xy,...,x;) = |x1 + ...+ x|~ * 1" on R¥ and
Lemma 3.1. The corresponding Hilbert-type inequality is given in the following theorem.

Theorem 3.6 Lern €N, k€ N, k > 2, and assume that A, p;,q;, i = 1,2,...,k, are as in
(2.26), (2.27), and (2.30). If 0 < A < ﬁ, then the inequality

Sr(xr) - fi(x)
dxi...d
~/1Rkn |xl+...+xk|(k71)nl X1 Xk
. k—1)(A-1
(277.')k" (S l)( )
< || N HLpl @R" H Jr ||ka(R") (3.36)

(k= DA T (2)
holds for all non-negative functions f; € LPi(R"), i =1,... k.

Proof.  First, we consider a simpler special case of the functions appearing in (3.36).

Namely, suppose that f5,..., f; are symmetric-decreasing functions. To prove the above
assertion, we rewrite Theorem 2.7 with Q = R, K(xy,...,x;) = |x1 + ... 4+ x| kDA,
Fi(x1,. .. ,x0) = 1, ¢(x;) = |x;[4%, where
n .
7 J
PiD;
Aij = (3.37)
n . .
- ) 1 7é Js
qiPj

and with Lebesgue measures dx;, for i, j = 1,...,k. Then the left-hand side of (2.38) in
Theorem 2.7 becomes

L= /k filer) - i) R (3.38)
R™ |X1+ +xk| (k=1)n

while the right-hand side of this inequality is the product of k + 1 factors,

R:If“ 1"k1,§+f7 (3.39)
where
Ile H#Ile 7
I~:/ / xi)dxy...dxg, i=1,...k,
CTIRM x| DAA ()
and

e, il 7 ko
Ik+1:/Rk,, i i — T1/7 (i) dxy ... dx.
i=1

1+ o Dk L
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Before calculating these integrals observe that from (2.26), (2.27), and (2.30) (see Section
2.4), we obtain that 0 <, <n and

pw oo () 3l

i#P J# J#i
:(k—ln—|—n2—> — Dn,
7 i
forall i € {1,...,k}. Moreover, the conditions of Theorem 3.6 imply also that 0 < (k —

1)nA < n. Therefore, applying the Fubini theorem, Lemma 3.1, and (3.5), fori = 1,.. .k,
we get

) H i1 |x/‘|7F
I = /]Rn |x;] 7 fpl(xl)/R(k o . +/ _|_xk|k D d 1...dxi_1dxiyy ... .dxpdx;

fp.(xl)dxz

Lu(n— (k—1)nA) 14T ( pj / ,+(k D=3 g5~ (k=1)n2
T, (kn—z#ipij—( —1)n/1) R
e 1515,
J1 Pi nyo.
Lk = DnA) T T () 7 )

To estimate the last integral I;,; in (3.39), we use the assumption that the functions
f2,..., fr are symmetric-decreasing. Hence, we can use relation (3.8) to obtain that

fzpl (xi) <

(3.40)

— p
e L 1 g

holds for all x; € R", x; # 0. Again, according to the Fubini theorem, Lemma 3.1, and
identity (3.5), similarly to the procedure used in (3.40), we obtain

n pz
fryy < <|S"‘1|> H | fil iR

i=2

|x1|P1 K 2|Xl| N
g x1)dxy...dx
/Rk" 1+ ... 4 x| k= Dna 71 (x1) dxy .

n k=1 k
:(|Sn—l|> ll_IHf‘ ri(R"

i k|ﬂﬁ
X x ”’1 (x / Il |xi dx ...dxgdx
/R”| 1 1) Jtem bt 2 kdxi

( . >kll"n(n—(k—1)n/1)r[i=2 (n_’7’>]'[|f|”'
~ s rn(kn—zf;z,%—(k— nx) R

(o M (2m)kn
_Qwﬂ> r«—mmmlr()H"“WR“ (34D
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Now, we arrive at inequality (3.36) for this case by combining (3.38), (3.39), (3.40), and
(3.41). To complete the proof, we need to consider the general case, that is, arbitrary non-
negative functions f», ..., fy. Since the function x — |x|~*~1"4 is symmetric-decreasing
and vanishes at infinity, by the general rearrangement inequality we have

/R filn):+ fulh) dx1...dxkg/ fl*(m).“f;(x}() dxy...dx;

x4 x| (md R [xy + ... 4 x; | (k= Dnd =0

- k—1)(A—-1
(27r)k”<|Sn 1|>< )(a-1)

Tu((k=DnA)TTE T (2)

Pi

net N (=121

(27‘[)](” <|S l|>< ! )
- 1A gy I A e
Tul(k— DnA) T, T (2) o o

< ” fl* HUH(]R”) ” flj HLPk(]R")

pi

As in the proof of Theorem 3.2, here we used the fact that f5,..., f" are symmetric-
decreasing functions and that the mapping f — f* is norm preserving. |

Remark 3.4 Note that the proof of Theorem 3.6 is, in fact, based on the Selberg integral
formula (3.4). Some further applications of this formula can be found in [25].

Setting k = 2 and k = 3 in Theorem 3.6, we get the following consequences.

Corollary 3.4 Letn €N, p > 1 and g > 1 be such that 1% + é > 1, and let A be defined
by (2.2). Then

2 ‘gnfl‘ A-1
2m)=" (—)
F(x)g(y) n

n n n d.xdy S f nl & a(R" (342)
/R /R x + y|"* T (nA)T (%)rn (g) | ||LP(R )H Il R"

holds for all non-negative functions f € LP(R") and g € LY(R"). In particular, if n = 1,
then (3.42) becomes

- - L) T(3-4
R i L

Corollary 3.5 Let n € Nand assume that parameters py, p2, p3, A, q1,q2,q3 satisfy (2.26),
(2.27), and (2.30). If 0 < A < 3, then

/ fXgOhz)
RY |x+y 4 z[*

_ 2(A—1
(27’[)3n (SY; 1) ( )
N B B ” f ||LP1 (R”)H 8 HLpz(R”)H h H[}}(]R”) (3.43)
() () T (%)

1 P

dydz

<
(20T,
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holds for all non-negative functions f € LP'(R"), g € LP2(R"), and h € LP3(R"). In par-
ticular, if n = 1, then (3.43) reads

[ R v
()

3
< eyl )H 1 @) 8 Dyl 2 g
= (217:)

Remark 3.5 Note that in all presented applications of Theorem 2.7 we considered F; = 1,
i=1,...,k, while Theorem 2.8 was applied with F = G = 1 (see Section 3.1). Obviously,
according to the conditions from the statements of these theorems, we can use any other
non-negative functions F; and, consequently, take the infimum of the right-hand sides of
the obtained inequalities over all such functions. Therefore, to conclude this section, we
mention the following open problem: Can this approach give sharp Hilbert-type inequali-
ties, that is, do there exist such functions F; that the related inequalities are obtained with
the best possible constants on their right-hand sides?

3.4 The best constants

In this section we are focused on Theorem 3.5 in the conjugate setting, that is, when
>k, 1%, =1 and A = 1. The main task is to determine the conditions on parameters
Ajj, i,j = 1,...,k, under which the constant factor on the right-hand sides of inequali-
ties (3.32) and (3.33) is the best possible. In the conjugate case, the constant K, involved
in the above mentioned inequalities, reduces to

k 1 k 1
TT 8 n poti) [T (5 (6= D= pici+ pid).
i.j=L,i#] i=1

1
(s)

K:

Taking into account the method as in Section 1.6 (Chapter 1), we are going to simplify
the above constant K, to obtain the expression without exponents. Hence, we impose the
following conditions on the parameters A, ;:

5_(k_1)n+pzAn_pz(xz:n+P/A/n ]7&17 Z7J:17277k (344)

In this case the above constant K reads

k ~
K* = ) Hrn(n +A), (3.45)

where B
Ai=pjAj, j#i, and —n<A <0. (3.46)
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It follows easily that then

k ~
Y Ai=s—kn, (3.47)
i=1

so that inequalities (3.32) and (3.33) with the parameters A;; fulfilling (3.44), reduce to

k _ L
/Rk" = lﬁ dx 1dxy--dx <K' T [/R” ;| P fP (xi)dxi] " (3.48)
i=1

1x1|

and

1
{ o

kfl (x: e p
/ (k—1)n fl( )dxldxz---dxk_l dxk
R |2 1 xil*
k—1

1
<K [ /Rn e ey (xi)dxi} " (3.49)

i=1

Inequalities (3.48) and (3.49) involve the best possible constant factor K* on their
right-hand sides. To show our assertion, we first need to establish some auxiliary results.

Lemma 3.3 Let k > 2 be an integer, x; € R", and x; # 0. We define

= [, bl

where € > 0, K"(€) is the closed n-dimensional ball of radius €, and parameters Aj, i=
. k, are defined by (3.46). Then there exists a positive constant Cy such that

2 il
%I‘Qk 2)n 7):|dx2...d)(fk_l d.Xl7
1 Xi

£ (x) < Cee™ A | |72 1A ywhen g — 0. (3.50)

Proof. We distinguish two cases. If k =2 we have

X Ay
If(xz)Z/Kn( _plt dx

e) X1 +x2f*

Letting € — 0, it follows that there exist a positive constant ¢, such that I§ (x2) < ¢z [x2|™*

fKn(s) |x1 |‘Xl dx. The previous integral can be calculated by using n-dimensional spherical
coordinates. More precisely, we have

/( |X1| 'dx1
—/ / / /rﬂ+A1 Isin™ 20, sin"36,_» -~ sin Gdrd6, ...d6,_,

n—1 n+A1
_/ Ay, /nl S e (3.51)
S n+A;
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Consequently,
(o)) |Sn_1 |£n+A'

IF(x) <
1( ) n+Aj

|x2|7S7

so the inequality holds when € — 0, since —2n —A 1— Xz = —s holds for k = 2. Further, if
k > 2, then by letting € — 0, since |x;| — 0, we easily conclude that there exists a positive
constant ¢ such that

_ A;
I(x) < i U |x1|A'dx1} /sz 2 it —=2 0y dxgy | (3.52)

|2k 2 %il*

We have already calculated the first integral in inequality (3.52), and the second one is the
Selberg integral. Namely, utilizing formulas (3.5), (3.6) (see Section 3.1), and (3.47) we
have

Tt A;
/ (k=2)n %d)@ .. .dxk_l
R | X il
= Fn(zn +4 +Ak) Hf;Zl F”(n +Ai) |xk|72n751*;{k
L(s)

Finally, combining (3.51), (3.52), and (3.53) we obtain inequality (3.50) and the proof is
completed. U

(3.53)

Lemma 3.4 Let k > 2 be an integer and x; € R". We define

K = /R"\K”(s*l

where € > 0, K"(e71) is the closed n-dimensional ball of radius €', and parameters A;,
i=1,2,... k are defined by (3.46). Then there exists a positive constant Dy, such that

)
/Rk Dn 1x1|‘ dXQ...dxk,1 dxl,

1

£ () < Dee"™™,  when € —0. (3.54)
Proof. We again consider two cases. If k =2 we have

_ Ay
If (x2) / de
R"\kn(e-1) |x1 +x2]5

If € — 0, then |x|| — oo, hence there exist a positive constant d; such that
Iffl(xz) < dz/ ., |1 |Xl_sdx1.
R"\k7(e=1)

Now, utilizing spherical coordinates for calculating the integral on the right-hand side of
the above inequality, we obtain

-1 N
B x2) < L|Sn~ |8"+A2.

n+A
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Moreover, for k > 2, using (3.5), (3.6), and (3.47) we have

IS
= dxp...dx;_
/R(H)" P o
T 7 k—1 " o
_ rn (2]’[ +A1 +Ak)(1—§l‘2 F,, (n +Al) |x1 +xk|_2n_A1_Ak. (355)
T.(s

Therefore, we obtain

o T, (2n+A; +A) [T Ta(n +Ay)
Il (Xk) = T (S)
n

X/ ; |x1 |‘Zl |x1 +xk|_2”_gl_g"dx1. (3.56)
R"\kn(e~1)

Letting € — 0, it follows that |x;| — oo, so there exist a positive constant di such that
—1 e
If () < dk/ X1 72n7Akdxl.
oS

Finally, since
|Sn71 |8”+Ak

/ |x1 |—2n—gkdxl _ ~_ ,
R"\k"(e~1) n—+Ag

inequality (3.54) holds. O

Now, we are able to obtain the best possible constant factors in (3.48) and (3.49).
Clearly, inequalities (3.48) and (3.49) do not contain parameters A;;, i,j = 1,2,...,k, so
we can regard these inequalities with A;, i = 1,2,. ..k, as primitive parameters.

Theorem 3.7 The constant K* is the best possible in both inequalities (3.48) and (3.49).

Proof. Let K"(€) be the closed n-dimensional ball of radius €, centered at the origin, and
let 0 < &€ < 1. We define the functions f; : R" — R, i =1,2,... k, in the following way:

};(Xi) = { |xi|gi7 Xi € K"(g—l) \Kn(e)

0, otherwise.
Inserting the above functions in (3.48), the right-hand side of (3.48) becomes
k

1
i
K* / |xi|”dxi> = K*/ |x,'|7”dx,-.
E( K"(e~1)\K" () K" (e~ 1)\K" ()

In addition, utilizing n-dimensional spherical coordinates we have

g1

1
/ |xi] " dx; :/ rildr/ L, dS= |S”*1|10g—27
K" (e71)\K"(e) € IS") €



3.4 THE BEST CONSTANTS 115

so that the right-hand side of inequality (3.48) reads
I 1
K*|S" ! log = (3.57)

Now, let J denotes the left-hand side of inequality (3.48). Using the Fubini theorem, for
the above choice of functions f;, we have

k A;
= / Hl 1|xl| dxldxz...dxk
Kn(e-\Kn(e))* | 3K xfs
i —1| |.Z,
= |xk| k / Al dxldx2...dxk_1 dxk.
Kn(e~1)\K"(e) (ke )\K ()" | 2K il

Note that the integral J can be transformed in the following way: J = J; — J» — J3, where
A

J:/ Ak/ =L dxdxs .. dxg_y | dxg,
! K"(e=1)\K" (e) < RED" |3k s R 1] *

J2 = |xk|Ak Is xk dxk,
Kn(e=1)\K" (e 2

~ k=1

J3 = / |Xk|Ak 18 )Ck dxk
Kn(e71)\K"(e) Z1

Here, for j =1,2,...,k— 1, the integrals If(xk) and If»il (xy) are defined by

/ | l|A ldxz...dxk_17
PP; |z 1 xil*

where Pj = {(U17U27...7Uk_1);Uj :Kn(8)7Ul :Rn?l 75]}7 and
1| i|A-

/@, |Zl Xl

dxldXQ “e .dxk,l,

where Q; = {(U1,Us,...,Uy1);U; =R"\K"(e7'),U = R",1 # j}.
Now, our aim is to ﬁnd the lower bound for J. The first integral J; can easily be
computed by virtue of the Selberg integral formula (3.6). More precisely, since parameters

A, fulfill relation (3.47), it follows that
/ k=1)n :{ | l|Ad ldx2-..d)(:k_l :K*|.Xk|_gk_n7
R | Xy xil*

and consequently,
1
_ % -1
Ji =K*|S" " |log pok (3.58)
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In the sequel, we show that the parts J, and J3 converge when € — 0. For that sake,
without loss of generality, it is enough to estimate the integrals

AgE (x)dx  and / Acge™! () dxr.
/K”(s’l)\K”(s) eI (e ) oy S x| I (oo ) dxg

Utilizing Lemma 3.4 and n-dimensional spherical coordinates we have

/ |xk|§k]1€(xk)dxk < Ck8n+ﬁl/ |Xk|72"7/§1dxk
Kt k(e )\ )
-1

~ £ ~
_ Ck|Sn—1|8n+A1/ r—n—Al—ldV

€

_ %”jll(l_gzmm).
n—+Ap

Similarly, we also have

Tl
/I(n(fl)\m(e) Do |18 (o )

IN

Dk8n+gk / |xk |‘K"dxk
K (e7h)\K"(¢)

~1 N

_ DS (1 _82<n+Ak>) .
n+Ag

Clearly, since n —h& >0,i=1,2,...,k, the above computation shows that J, +J3 < O(1),

when € — 0. Hence, taking into account relation (3.58), it follows that J is bounded from

below by

1
K*|S"!|log = O(1), when &—0. (3.59)
Now, suppose that there exists a positive constant L*, 0 < L* < K*, such that inequal-
ity (3.48) holds with the constant L* instead of K*. In that case, for the above choice
of functions f;, the right-hand side of inequality (3.48) becomes L*|S"~!|log 8% Since
L*|S" ! log S% > J, relation (3.59) implies that

1
(K*—L*) |S”_1|10g8—2 <0(1), when &—0. (3.60)

Finally, letting € — 0, we obtain a contradiction, since the left-hand side of inequality
(3.60) goes to infinity. This shows that the constant K* is the best possible in (3.48). Due
to the equivalence, K* is also the best possible in inequality (3.49). ]

Remark 3.6 A straightforward computation shows that the parameters A;;, providing the
inequalities from Corollary 3.3, fulfill the set of conditions (3.44) in the conjugate case.
Then, the constant L from Corollary 3.3 becomes

1 £ —
L= T (-0,
Tu(s) i=1 Di

and that is the best possible constant in the corresponding inequalities.

Remark 3.7 Hilbert-type inequalities from this chapter, obtained by virtue of the Selberg
integral formula, are taken from [17] and [61].
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3.5 Some related inequalities with norms

So far, in this chapter we have studied Hilbert-type inequalities established by virtue of
the Selberg integral formula. As distinguished from the previous sections, we consider
here multidimensional Hilbert-type inequalities with a homogeneous kernel and the power
weight functions whose arguments are o.-norms of the corresponding vectors. Recall, if
t=(t1,t2,...,ty) € R", then a-norm (& > 1) of vector # is |t|¢ = (1;% + 1,* 4—~~~+tn‘")é )

We shall be concerned here with a general homogeneous kernel Ky, : Rﬁ — R of degree
—s, s > 0. Hence, the constant factors in the corresponding inequalities will include the
integral

Ka(l,l‘l ,l‘kfl)l‘fgl "'lff]ldtl ceedty .

ka(ﬁl,---,ﬁk—l)Z/RH

The above integral is assumed to converge for fBy,...,Br_1 > —land Bi+ -+ Br_1 +k <
s+ 1 (see relation (1.76), Section 1.6, Chapter 1).

On the other hand, since the arguments of the kernel and the weight functions will be
expressed by means of ¢.-norm, constant factors in the corresponding Hilbert-type inequal-
ities will also include the area of the unit sphere in R". The area of the unit sphere in view
of the or-norm, denoted here by |S”’1 | 18

- o) (3.61)

It should be noticed here that the above formula (3.61) coincides with (3.3) when o = 2.
The following Theorem can be regarded as a vector extension of Theorem 1.19 (see
Section 1.6, Chapter 1), in view of oc-norm.

Theorem 3.8 Let A,p;,pl.qi, i =1,2,....k k > 2, be parameters satisfying conditions
(2.26), (2.27), and (2.30), and let A;j, i,j = 1,...,k, be such that ZleAij =0 for j =
1,....k qiAij > —n, i # j, and qi(Ai — 0y) > (k—1)n—s, where n € N, s > 0, and
o = Zl;zlAij, i=12,...0k IfKy : Rﬁ — R is a non-negative measurable homogeneous
function of degree —s and

|Sn71|(k71>l s
= W o (n=1+qiAn,....n—1+qiAn)
1

Xk (s — (k—1)n—1—ga(0n — Aza)yn— 1+ @oA3,...,n — 1+ rAs)

L

n
kot (n—1+qlia, ... .n— 1+ @l -1, — (k—1)n — 1 — g0 — Age) )
(3.62)
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then the inequalities

k

o Kislareoo bl [T i) .y
R+ i=1
1

k n B i . i
H{ /R,, Ile e Hpaf”’(x»dxi]p (3.63)

and

[(k 1)n—s]— pkak l
Jo bl ( Jreo Kbl bl
k—1 Pk i
X Hﬁ(x,-)dxl .. .dxk,1 dxk
i=1

k—1
<L / X
1|, b

hold for all non-negative measurable functions f; : R, =R, fi #0,i=1,..., k. Moreover,
these inequalities are equivalent.

Pi

i (xi)dxi:| (3.64)

[(k—1)n—s]+p;oy

Proof. We utilize Theorem 1.18 (see Section 1.6) with the homogeneous kernel
Ko(|x1]os-- -5 [Xk|e), the weight functions ¢;;(x;) = |x;[47, and Lebesgue measures on
R’ . Using notation from Theorem 1.18, it is enough to calculate the functions Fi(x;),
i =1,...,k. Utilizing n-dimensional spherical coordinates we find that

k
R0 = foery Kl ble) TT s -ty
=2

|Sn 1| k nlhqiAy
- 2(k=1)n Rk IKO‘ |x1|0ﬂ7t27 H dty ---dty.

Moreover, due to homogeneity of the kernel K, and using the change of variables u; =

i i=2,...,k, we obtain
|x1|a’ ’ s vy

Fl'(xp) = 51l Ko (1
V) = ﬁ R L le Ko (L ua, . ug)

k
X H(|X1 |auj)n71+qlAU |X1 |1&71du2 ...duy
=2

|Sn—l|k71 (kil) o (a ) )
= 72(;{_1?,1 1x1 o ATk (n =14+ qiAr, ... on— L+ qiA ).



3.5 SOME RELATED INEQUALITIES WITH NORMS 119

Similarly,

k
quz(x2) = /n(k—l)Ka(|x1|0‘""7|xk|0‘) H |x.,-|’12A21'dx1dX3...dxk
i J=Li#2
|Sn—1|k*1
_ o -5
= W/]le:ltl Ko (1, |%2la/tit3/th, - 10 /11)

k
1424

< [1 & "™ands...dy.

J=Lj#2

Hence, the change of variables#; = |x2|au2_1, t = |x2|au2_1u,-, i=3,...,k, with the Jacobian

A(11,13,...,1y)

_ k=1 —k
d(uz,uz,. .. u) = bealouy
yields
k—1
|S* 1 k—1)n—s+ —A
F(x)) = 2(k—1?n x |5x Jn—s+q2(—A)

k
(k=1)n—qa(0p—A22) —14+q2Az;
/Rk lKa(l U, .., k)uz I I duy . ..duy
j:

= _|Sn 1|a X g—l)ﬂ—s—fh(az—flzz)
2(k=1)n

Xka(S— (k— l)l’l— 1 —qz(OCz —Azz),n— 1 —|—q2A23,...,n— 1 —|—q2A2k).

In a similar manner we obtain
| n 1/{ 1
F,'qi(xi) _ | z| (k—1)n—s+qi(ai—Ai)
Xka(n—1—|—q,A,2,...,n—l—l—q,‘Al'J_l,S—(k—l)n—l—q,'(OC,'—A,','),
n—l—l—in,-’,-_,_l,...,n—l—l—q,-Al-k), i=3,...,k,

which yields inequalities (3.63) and (3.64) with the sign <. Finally, Remark 1.21 (see
Section 1.6) provides the sharpness of the obtained inequalities. U

In order to obtain the best constants in (3.63) and (3.64), we consider now these in-
equalities in the conjugate setting. Similarly to the previous section, we impose certain
conditions on parameters A;;, i, j = 1,2,...,k, to obtain a simpler form of the constant L
defined by (3.62). More precisely, if the parameters A;; fulfill conditions

n+ijji=s—(k—l)n—pi(oc,-—Aii)7 j#h i,j=1,2,...k, (3.65)
then, in the conjugate case, constant L reduces to
|Sn—1|<k*1) " "
L'=——2% ko(n—1+A4,,....,n—1+A), (3.66)

2(k=1)n
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where Xi =piAy,i# 1, and Xl = prAy1- Moreover, inequalities (3.63) and (3.64) reduce
to

k

/ nkKOﬂ(|xl|Ot7- (N |xk|a)Hﬁ(xj)dx1 .. .d.Xk
R+ i=1
1

k ~ N
<] [ / \ lxz'l&"_”"A"f,-”"(xi)dxi] ! (3.67)
i=1 R+

and

(1=p}) (—n—piAy)
~/1Ri |xk|0£ (ART[(I)Ka(|xl|a7'~~7|xk|a)

4
7

k—1 Pk A
X Hfi(xi)dxl codxe dxy
i=1
k—1 . pil_
<L'T] { /Rn bl (xi)dxi} . (3.68)
i=1 +

The following result asserts that L* is the best possible constant in inequalities (3.67)
and (3.68), under some weak conditions on the kernel K.

Theorem 3.9 Suppose that real parameters A;j, i,j = 1,...,k, fulfill conditions of The-
orem 3.8 (conjugate case) and conditions given in (3.65). If the kernel Ky : ]R]f|r - R
satisfies conditions of Theorem 3.8 and for everyi=2,... k,

Ko(L,to,. . tiy. o ty) SCKg(1,12,...,0,...,1), 0<1; < 1,1, >0, j#1,
for some C > 0, then L* is the best possible constant in inequalities (3.67) and (3.68).

Proof.  Suppose that inequality (3.67) holds for all non-negative measurable functions
fi» i=1,2,... .k, when L* is replaced with a smaller positive constant ;. To prove our
assertion, we consider inequality (3.67) with the constant L; and the functions fj . : R, —

R, defined by
ie\Xi) = A._ & s i:l7...7k7
fl7£( z) { |xi|0¢Al ” |xi|0¢ > 1

where 0 < & < min|<;<;{pi + piA;}. Utilizing n-dimensional spherical coordinates, the
right-hand side of (3.67) becomes

k LS, Li[S"
LIT| [ dleean| " = 2 [Ftea = 2 —e 369
1g |: ‘xi‘azl | l|0( l:| on 1 ong ( )
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Further, let J denote the left-hand side of inequality (3.67), for the above choice of
functions f; . Using the change of variables u; = ;_iv i # 2, we have

k A £
J :/ / Ka([xtlar- - Poelo) [T iloe "y ... dxe
[rife>1 xele:>1 i=1
k _
St n—1+A;—£
_ | 2kn|“/ / Ko(t,... ot Ht Y Pide L dy

|Sn_1|]:x « _1__ 11—1+X,-—§
- kn /1 h / / KOt 1 y U250 U )Hu “duy...duy | dty,

so, J can be estimated from below as follows:

k
Sk n—1+A;—
J> an|°‘/ - 8(/ / Ko(L,us,...,u )]‘[ P duy .duk>dt1
1

Snfl
n an|“/l . 521 H)dry, (3.70)

where

n— 1+A, I’z .
duy...duy, j=2,....k,

lf(tl)Z/D‘Ka(l,uz,.. U Hu
J

and D; = {(ua,...,ux);0 <uj < %70 <wu <ool#j}.

Now, the rest of the proof follows the same lines as the proof of Theorem 1.20 (see
Section 1.6, Chapter 1). Namely, utilizing the estimate ;"¢ !¢ 21}:2 Ii(t1)dn < O(1),
(3.69), and (3.70), it follows that L* < L, which contradicts assumption that L; is smaller
than L*. |

Observe that Theorem 3.9 may be regarded as an extension of Theorem 1.20 from
Section 1.6.

Remark 3.8 Let &; : Ri — R be a non-negative homogeneous kernel of degree —s,
s > 0, and let parameters A; and A, fulfill relation gA; + pA; = m+n —s, where p
and ¢ are conjugate parameters, and m,n € N. Assuming that there exists & > 0 such
that c;(n) = [y ks(1,2)t7dt < oo for n € [pAy+1—n—3,pA>+ 1 —n|, Yang and Krni¢
[167], obtained a pair of equivalent inequalities

1
< [ met i wa” | Jee D0
+
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and

1
S —m)—n p n
{/IRZ |y|ﬁqu1+Il(A ) |:/]RrJt k_\' (|X|0{7 MB)f(x)dx] dy}
<G [ ! ’
Rm

IXIﬁqu_mf”(x)dx] .
b
with the best possible constant expressed in terms of the usual Gamma function:
. 1
(L q ™ (L) i
C, = (a)m P co(pAy+1—n).
am T () /3"*11“(%)

It should be noticed here that these inequalities include two different norms |- |, and |- |g.
Obviously, the above inequalities may also be extended to a multidimensional setting, as
in Theorem 3.8.

To conclude this section we consider Theorem 3.8 for some particular choices of the
kernel K, and parameters A;;, i, j = 1,2,...k. More precisely, we are concerned here with

the homogeneous kernel Ky (1,2, ...,1;) = (Zi-‘zltlp)_s of degree —Bs. In this case we

have
k—1
kamh...,ﬁk_l):mF(S ZB'H) Hr(ml)

i=1

(see Lemma 1.4, Section 1.6, Chapter 1), so Theorem 3.8 yields the following result:

Corollary 3.6 Let A,p;,pl.qi, i=1,2,....k k> 2, be parameters satisfying (2.26), (2.27),

and (2.30), and let A;j, i,j = 1,...,k, be real parameters such that Z{'C:1Aij =0forj=

.k qiAij > —n, i # J, and q,'(A,',' — OC,‘) > (k— l)n — Bs, where o = lec»zlA,‘j, =
Lk neN ands>O0.If

r‘l(kfl)n (é)
ﬁl(kfl)al(nfl)(kfl)l"l(kfl) (%) IR2 (S)

k1 —1 0 — qiAi k 1 iAij
A ) ().
1

i=1 =Lt

K =

then the inequalities

k
/R"k Hl lfl XL) dxldXQ dxk

1|xl|0t

Pt(k Dn—p;Bs

1
Pi
<K H[ /R e w PP () (3.71)
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and
7& —1)n—ps|— /
{/ ele [(k=1)n—Bs]—pi' o4
R
i’ .
k=1 £ '
/Rn(k—l) Hl:il fitx) deldxz cdxpy dxk}
" (zi‘{:l |xi|aﬂ>
k=1 pilk=1)n—p;Bs . ) »i
§ KH |:/ " |xi|oc qi +P:0hfi[h (.xi)dxl':| (372)
i—1 /R
hold for all non-negative measurable functions fi : R, — R, i=1,...,k, and are equiva-
lent.

Remark 3.9 Introducing the parameters A;; = (nk — s) A‘;’;l and A;; = (s _nk)q,%],-’ i,

it follows that ZLIA,;,- = Zl;:lAij =0fori,j=1,2,...,k Hence, in this setting inequali-
ties (3.71) and (3.72) become

" k =1 p; 7
K pitk=Dn—pifs Pi
/Rnk M(’)deld)q...dxk < LH |:/]R” |xi|or 4 fl'h(xi)dxz':|
“ (5K bila®) s
i—1 Xilo

and

1
i’

i’ k=1 £ .. P’
/n |xk|a_%[(k_1)"_ﬂs]{/ ) l—Lzl—fl(xl))deldxz---dxk_l] dx;
R (R et (zk |x;| B) :
i=1 I"vjo

k-1 Pk Dnpis 7
< LH l:/ N |xl-|a [ flp’ (x,-)dx,} s
i=1 R+

with the constant factor

L L ) &k (Bstn(pi—k)
_ﬁ)t(k—l)a?u(n—l)(k—l)r‘)t(k—l)(%)FA(S)H ‘\ T35,

)
i=1 i

where we assume that nk — Bs < nmin{p;,q;,i,j =1,2,...k}.

Observe that the above parameters A;; fulfill the set of conditions (3.65) in the conju-
gate case, that is, when A = 1 and p; = ¢;, i = 1,2,...,n. Therefore, in the conjugate case,
the above constant L is the best possible in the corresponding inequalities.
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Remark 3.10 LetA; € R,i=1,2,... k. Defining the parameters A;; = A;, Ajiy1 = —Ait1,
Ajj=0for|i—j|>1,i,j=1,2,...k, where indices are taken modulo k, we have Y} | A;; =
Aj_1j+Ajj=—A;+A;=0. Hence, Corollary 3.6 yields

/ Hl lfl(Xl) dXIdxz dxk
( illa?) ™
k (k= ln plﬁéﬂh(A'—A,H , I’Lz
H /Rn il P ) (3.73)

and

{/ el [(k—1)n—PBs]—pi’ (Ax—A1)
Rn
pk, 1

Hf lfl i o
/]R"k 1) 1 ( ) dxldxz dxk_l dxk

k |xl|OC

1
pilk=)n—p;Bs D

n pPi
< MH [ / P lid (x,)dx,] , (3.74)
with the constant factor

AHk=Dn (L) A= 2)( ) k rs Bs+qiAiv1 — (k—1)n
B/l(kfl)al(nfl)( —DA(k-1) (%)F’l(s) lljl l B

I ().

provided that A; € (%7%’1—71), i=1,2,... k

==

M =

Remark 3.11 Hilbert-type inequalities in this section are established in [59] and [127].
For some related particular results, the reader is referred to [125] and [174]. In addition,
results from this section for n = 1 and 8 = 1 were also studied in [12], [111], and [156].



Chapter

Applying the Euler-Maclaurin
summation formula

The starting point in this chapter is the well-known Euler-Maclaurin summation formula
which asserts that

[ rar = LD (1@ + g0

n—1 (b—a)2k
-y o B [f<2k—1>(b) —f(zk—n(a)} +om(f), @D
k=1 :

where B, is the corresponding Bernoulli number and the remainder py,(f) is
(b—a)*! . b —1t
pan(f) = ﬁ/ A, dt

or

b 211
p2n( - a /on bn( — >

depending on whether the function f : (a,b) — R has a continuous derivative of order
2n— 1 or 2n, that is, f is of class C>*~! or C?". Here, ¥ denotes the periodic function
Yi(x) = B} (x) — By, where B};(x) and B, are the corresponding Bernoulli polynomial and
the Bernoulli number. For a comprehensive inspection on Bernoulli polynomials and num-
bers, as well as on the above summation formula, the reader is referred to [1] and [67].

125
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The Euler-Maclaurin summation formula is a very useful tool in obtaining refinements
of discrete Hilbert-type inequalities. Recently, Mingzhe and Xuemei [100], obtained the
following refinement of the Hilbert-type inequality by means of the above summation for-
mula.

Theorem 4.1 Suppose p > q > 1 are conjugate exponents. If 1 — % < s < 2, then the
inequality

1 1

q

O - ambn ©° P |
mg,ogom < LZ,O @, (s,m)a, L;O a),,(s,n)bZ] (4.2)

holds for all non-negative sequences (am)meNO, (b”)nENO # 0, where

1\ I- -2 -2 2— 2—
o(s,7) = (n+_) " (p +s761 +s> B (2—s)(r+2—s) _
2 p q 4r(r+s—2)2n+1)*"7

Since B (’J_I—%H7 ‘FTZJ“) = 1r/sin(x/p) for s = 1, the above inequality (4.2) yields a refine-

ment of the Hilbert double series theorem (1.4) (see Chapter 1).
On the other hand, Jichang and Debnath obtained in [41] the following refinement
dealing with a symmetric homogeneous kernel of class C*.

Theorem 4.2 Suppose %—l—é =1 p>1, and % <u< %min{pﬂ}. Further, let K :
Ry xRy — R be a non-negative homogeneous symmetric function of degree —s, s > 0,

n n m ,2l
and of class C*. If (—1) %7’5(1,y) >0, n=0,1,2,3.4, and %}—,I,,((l,y)y * — 0 when
y — oo, m= 0,1, then the inequality

oo oo

z z K(m+ﬂ7n+ﬂ)ambn

m=0n=0

< { i [1(517#)—%("1,5,;1)] (m—|—u)1Sagl}[)

X {i [1(p. 1) — 9p(n,s,10)] (n+u)”b3} (4.3)

n=0

holds for all non-negative sequences (am),,cN,» (bn),cN, 7 0, where
-2

(M K L 1.t
Orlmsobt) = <m+u> {K<l’m+u> -2 2p <l+3r)
1 oK u
S ( g 0
24u(m+ ) 9y ( ’m+u) } g

and I(r,p) = [ K(1u)u~ "+ du < eo.
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Motivated by Theorems 4.1 and 4.2, in this chapter we develop some general meth-
ods for improving discrete Hilbert-type inequalities via the Euler-Maclaurin summation
formula. More precisely, the method used in the proof of Theorem 4.1 can be utilized
in obtaining refinements of Hilbert-type inequalities with a general homogeneous kernel
of class C2, fulfilling some additional properties. Similarly, Theorem 4.2 can also be ex-
tended to include homogeneous kernels of class C* which are generally not symmetric.
Such extensions will be given in both equivalent forms, as in the previous chapters, and in
the setting of non-conjugate parameters.

Finally, the last section of this chapter is dedicated to some particular refinements of
Hilbert-type inequalities with the kernel K (x,y) = (x+y)~%, s > 0. Such extensions will
also be established by virtue of the Euler-Maclaurin summation formula.

4.1 Inequalities for kernels of class C>

4.1.1 Auxiliary results

In order to obtain refinements of discrete Hilbert-type inequalities with a homogeneous
kernel of class C2, we first provide some auxiliary results, derived by virtue of the Euler-
Maclaurin summation formula.

Lemmad4.1 Ler f: [M,N] — R, M,N € N, be a continuously differentiable function.
Then the following equality holds

S N 1 N k /
310 = [ s 00 [ @r @ @

where ¥; (x) =x— |x| — 1.

Proof.  Making use of the Euler-Maclaurin summation formula (4.1) with ¢ = K and
b=K+1,wherek=M,M~+1,...,N— 1, we obtain

[ rwa= TEOEIEED 1 wga,
K K

so the result follows by summing the above equalities. ]

Remark 4.1 In particular, if the function f from the previous lemma is defined on [0, o),
and f(x) — 0" when x — oo, then relation (4.4) yields (see also [100]):

S - 1 ST
3 W= [t 370+ [0

Utilizing the fact that ;] (x) =x — |x] — % is a periodic function with the period equal to 1,
we also obtain the following estimate:
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Lemma 4.2 Ler ¢ : [M,N] — R, M,N €N, be strictly decreasing function. Then,

- [ R Wo0x < g lon) — o), @3

where ¥ (x) =x— [x] — 1.

Proof. SmcejK+l 7 (x)dx =0, K € N, we have

- [eewar =3 [ x (o0 - ok )

=M’k

Ni /kk+£ -1 ) (q)(k> —o(k+ %)) dx

k=M

N-1 rk+1 1 N-1
£ 3 [ 7 (ot - orn)art 3 o
k=M K+ Pt

1 N—1
= (M)~ o) + 3 o,
where
y o k1
o = /k @) (p(x) - <p(k)>alx+/k+1 7i(6) (@(k+1) — @(x))dx.
2
Finally, since ¢ is strictly decreasing, it follows that o < 0 and (4.5) is proved. O

Remark 4.2 Assuming that ¢ is defined on [0,) and @(x) — 0" when x — oo, inequality
(4.5) reads:

- [T Wewax < 5o(0).

Now, by virtue of the above lemmas, we derive the following estimate referring to a
homogeneous kernel of class C.

Lemma 4.3 Ler K : R xRy — R be a non-negative homogeneous function of degree
—s, s >0, and of class C?, such that

oK I’k oK
a—y()@y) ' 3y = (xy) >0 llmK(xy)—}l_Illoa (x,y) =0, x e R,. (4.6)
Further, let f and Fy be defined by
_ (m+ p)7™s
f(y)—K(m+ﬂ7y+ﬂ)W 4.7)
and .
Fy(m,s, 1) = (m 4 p)'HAi4) / " K(1Ly)y 2y, (4.8)
0
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where Ay, Ay, U, and g’ are real parameters such that 0 < Ay < i and L > % Then,

(m-+ )7 W A
pd'A Kim+pm+p) 1—¢gAy  8u 2
2
9k H 2
: (m—l—u,m—i—u)(z 8)17 (4.9)

where ¥ (y) =y — |y] — 1.

Proof. Utilizing the integration by parts, we obtain the following identity:

u

/om K(1,y)y 7%2dy

lfq’Az K

u u 1 m+ BK o

= K(l, ) — ~{=a / g S (L' Ty,
m—+w/ (m+pu) (1—4g'Az) —qA2J0 y

In addition, since ‘?9[2( (x,y) > 0 for all x € R, it follows that the function %—I;(L y) is

strictly increasing, so that

u

/ow K(1,y)y *2dy

1-q'A L
>K(1, u ) M/q2 / HidArgy
mtp/ () (1 Ay o L)
u 'ulfq,AZ 10K 2 q'As
> K(1 ; - .
- ( m+l~‘)(m+u)l‘1A2(l—q’A2) 2 8y( m—f—y) (m+pu) 2 q'Az

Now, taking into account the homogeneity of K, the above estimate yields:

(m+ )7
uq,A2—l

1 u oK
Fq'(m7s7”)> |:1_q/AzK(m+”7”)_Ea_y(m+u7”):| (410)

On the other hand, it is obvious that the function —f’ fulfills conditions of Lemma 4.2.
Moreover, since —f’(x) — 07, when x — oo, relation (4.5) provides the estimate

RIS (m+ )71 [q/'As _LoK
/Oyl(y)f(y)dy< T [8” Kim+p,p) =g 55 )| @10
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Clearly, the above estimates (4. 10) and (4.11) imply the inequality

Fy(m,s,) = 560 = [ %)
M K(m+u,p) B dA ]
s MTAT A, " 8u 2

w51

Finally, since aK( y) <0 and (x y) >0, we have K(m+pu, 1) > K(m+u,m+ )

and %—f(m+u7u)<a—y(m+u7m+u),so (4.9) holds. O
Remark 4.3 It should be noticed here that the right-hand side of inequality (4.9) is non-
negative since ﬁ — % —1>0andu > 3.

Since we deal with homogeneous kernels which are in general not symmetric, we shall
also use the following estimate complementary to (4.9).

Lemma4.4 Let K : R xRy — R be a non-negative homogeneous function of degree
—s, s >0, and of class C?, such that

oK J’K oK

g()gy) 3y == (x,y) >0, th(x y)—hm—(x y)=0,yeR,. (4.12)

X—00

Further, let f and F,y be defined by

(n+ )P
f(x):K(x‘f'ﬁhn‘f'H)W (4.13)
and N
Fy(n,s, 1) = (n+ ) =+ Aa=a0 ["8 g (o 1) r4gy, (4.14)
0

where Ay, Ay, U, and p" are real parameters such that 0 < A| < 1% and L > % Then,

Fy(.0) = 300) — [0 e

(nt )P pooopA ]

A K(m+pom+p) { A su 2

oK u> 1
—a("’l*'%m*'ﬂ)(?—g)], (4.15)

where ¥} (x) = x— |x] — .
Remark 4.4 Similarly to (4. 9) the right-hand side of inequality (4.15) is also non-
negative since 1#'/4 —2h 1 >0andp > 1.
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4.1.2 Refined discrete Hilbert-type inequalities

Estimates from the previous subsection enable us to derive refinements of discrete Hilbert-
type inequalities with homogeneous kernels. Our aim here is to extend Theorem 4.1 to
include homogeneous kernels of class C2. Similarly to Section 1.3 (Chapter 1) we use
the notation k(cot) = f;° K(1,u)u™*du, where K : R, x R, — R is a non-negative homo-
geneous function of degree —s, s > 0, provided that k(o) < oo for min{1 — 5,0} < a <
max{1,2 — s}. The main result is presented in the setting of non-conjugate exponents.

Theorem 4.3 Let p, g, and A be as in (2.1) and (2.2), and let K : Ry x R, — R be a non-
negative homogeneous function of degree —s, s > 0, and of class C?, fulfilling conditions

(4.6) and (4.12). If A, € (07 1%)’ Ay € (O7 %), and u > %, then the inequalities

o oo

2 Kl(m‘f'.uﬂ'l‘f',u)ambn

m=0n=0
1 1
z e s
<Y Qf (mdq)al,| > QF (n,p’)bZ] (4.16)
m=0 n=0

and
/ L 1

oo P P
7
D Qf (m,q’)aﬁ,]

m=0

/

0o q |4
> Q7 (n,p) (ZK’L(eru,nJru)am) <
m=0

n=0 =i

4.17)

hold for all non-negative sequences (am)mENO and (b”)nENO # 0, where Q;(h,r) = (h+
) = A—A ) k(o) — Ti(h,r), i= 1,2, 0 = g'As, 0p =2 —s5— p'Ay, and

' B (h_|_'u)"Ai u VAi+1 1
rl(h’r) - 'urAiJrl K(h+[l7h+[l) 1-— VA,‘+1 8,u 2
oK u> 1
_ h h £ _Z = =
axiJrl( +u, +.u)(2 8>:|7 X1 X, X2 y

Moreover, these inequalities are equivalent.

Proof. 1Tt is enough to show inequality (4.16) since the equivalent form (4.17) follows
from Theorem 2.1 (see also Theorem 1.10, Chapter 1). If we rewrite (2.9) (Theorem 2.1)
with the weight functions @ (x) = (x+ )1, w(y) = (y+ 1)*2, and the counting measure,
we obtain the inequality

1 1
oo = oo P P oo q q
> ZK)L(m+ﬂ7”+”)ambn < | 2 @7 (d)d] > o7 (phvl|
m=0n=0 m=0 n=0
where the weight functions are defined by ®(¢') = Y7 (K(m+ u,n+ “)% and

(n+p)"2

() = T Klm-+ ) 2
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On the other hand, the function f defined by (4.7) is continuously differentiable on
[0,00) and f(y) — 0T, when y — . Hence, in view of Lemma 4.1 we have

00 1 00
o) = [ 10y + 30+ [ H O D).
Moreover, the homogeneity of the kernel K implies that
/ FO)dy = (m+p)' A2k (g Ag) — Fy (s, 1),
0
where F (m, s, i) is defined by (4.8). Clearly, the above two relations yield
—§ / - 1 - X
D(q) = (m+p)' N A2)k(g'Ar) — (Fq’ (m,s, 1) = 5.£(0) = /O " (y)f’(y)dy) ,

that is, @(¢') < Q1 (m,q’), by virtue of inequality (4.9). Analogously, by virtue of (4.15)
we obtain ®(p') < Qa(n,p’), so (4.16) is proved. O

The kernel K(x,y) = (x+y)~* s > 0, fulfills conditions of Theorem 4.3. Now, con-
sidering the above theorem with this kernel and the parameters A| = A = 127,;[1‘}', u= %, we
obtain an extension of Theorem 4.1 to non-conjugate case.

Corollary 4.1 Let p, q, and A satisfy (2.1) and (2.2), and let
1 1
max{l —min{]m7 ﬁ} 72—min{p/7q/}} <s<2.

Then the inequalities

C amby = B Ple 4 q
Q) (m)a, Q7 ()bl 4.18
,Z‘O,Zb(ernH)M mgo p (m)am] Zb ¢ () n] (4.18)

and

w »
Y Qf (m)af,;] (4.19)
hold for all non-negative sequences (am),,cN,» (bn),cN, # 0. where

)1—SB<r+s—2 rs—r—s—|—2)_ (2—s)(r+2-y)
7 Ar(r+s—2)2h+1)~5

Q,(h) = <h+%

r r

Moreover, these inequalities are equivalent.

In the sequel we derive a version of Theorem 4.3 dealing with finite sums. The corre-
sponding results will include the weight functions

—s+r(Aj—A; h+u i
Oi(h,r) = (h+p)' 7 A’mk(ai)—wl\i(h,r)
FA,'
_ BT ), =12, (4.20)

(N + p)rhist
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where
AL = A T A, 8+ p) 2] dwir 2 8
e N s+ A —1 0 8(N4u) 2 s(s+1)  ox
1 JK;
_gaxi+l(h7N)7

o1 =q Ay, 00=2—s5s—p'A,x1=x,x0=y,K{(h,H) =K(h+u,H+u),and Kr(h,H) =
K(H+u,h+ ).

Theorem 4.4 Let p, g, and A satisfy (2.1) and (2.2), and let K : R, x Ry — R be a non-
negative homogeneous function of degree —s, s > 0, and of class C?, fulfilling conditions

oK 0°K oK 0°K
a()@y) <0, W(x,y) >0, a—y()@y) <0, 8—})2(x,y) > 0.

IfM,N €N, and A, € (max{%ﬁ}, 1%)’ Ay € (max{%,O}7 %), W >0, then the inequal-
ities

N 4 q
> @ (n,p')bd 4.21)

and

/

/ N q q
@, " (n,p') ( > K‘(m+u,n+u)am> <

m=M

e

M=

N L P
Y, @ (m,q)a,

m=M

i
<

(4.22)

hold for all non-negative sequences (am),,.N» (bn),cN 7 0, where the weight functions are
defined by (4.20). Moreover, these inequalities are equivalent.

Proof.  The proof follows the same lines as the proof of Theorem 4.3, except that we
consider the bounded interval [M, N] instead of [0,0). Applying Theorem 2.1 (Chapter 2),
we obtain inequality

N N N » % N N %
2 2 Kl(m—F,U,n—Fu)ambn < 2 (oYd (q/)a% 2 o4 (p/)bz ’
m=M n=M =M !

with the weight functions ®(q') = Y_,, K (m+u,n+ ) % and ®(p') =3N_,, K(m

(n+p)"%2
(mp)r" 41"

+u,n+u)
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On the other hand, applying Lemma 4.1 to the function f defined by (4.7), we have

N 1 N
o) = [ SOy 5 (0NN + [ A0SOy @23)

while the homogeneity of the kernel K implies

N , ,
/ FO)dy = (m+p) =TT A=Ak (g Ay) — (4 )17 AA2)
M

M+u m+p ‘|

/m“l K(Lt)t—q’AzdtJr/mK(t71)t5+q’Az—1dt
0 0

Finally, using (4.23), Lemma 4.2 and the same estimates as in Lemma 4.3 we have ®(¢') <
@ (m,q'), and similarly, ®(p’) < @, (n, p’), which completes the proof. O

Remark 4.5 It should be noticed here that Theorem 4.4 also covers Theorem 4.3. Namely,

let M = 0 and N — oo. Then, taking into account the conditions

IK K
limK (x,y) = im K (x,y) = lim = (x,y) = lim =~ (x,y) =
lim K(x,y) = lim K (x,y) = lim == (x, ) = lim == (x,y) =0

and u > %, Theorem 4.4 reduces to Theorem 4.3.
We conclude this section with the finite sum version of Corollary 4.1.

Corollary 4.2 Let p, q, and A satisfy (2.1) and (2.2), and let

1 1
max{l —min{ﬁ,ﬁ},Z—min{pl7q/}} <s<2.

Then,
1 1
N N ab N 2 r{ N 4 q
men @7 (m)ab, @7 (n)bl 4.24
mg‘Mn:zl\/[(rn_|_n_|—1))Ls mZM p( ) n:zjw 1 ( ) ( )
and
oL
N _d N “ q|d N »
D, (n — < o7 (m)ab | 4.25
20O\ 2 e PIN 42

where the weight functions are defined by

1—s
@, (1) — (h+%> B(r+s—27rs—r—s+2>

r r

2—s 2—s
2h+1\ 7 2h+1Y\ 7
= A(h)— [ =——— (h o



4.2 INEQUALITIES FOR KERNELS OF CLASS C* 135

- 1 r(2M+1) 25 sMM+1) 1
our) = By Iy {2(r+s—2)_4r(2M+1) 20+h+1) 2]
o) = 1 { r(2N+1) 2—s

N, (N+h+1)5|2(rs—r—s+2) 4r(2N+1)

22N+ 1)(2h+1)+s(s+1) 1

8(s+1)(N+h+1) 2|

Moreover, these inequalities are equivalent.

4.2 Inequalities for kernels of class C*

4.2.1 Auxiliary results

Motivated by Theorem 4.2, in this section we deal with Hilbert-type inequalities with a
homogeneous kernel of class C*. Similarly to the previous section, we first prove a few
auxiliary results, derived by means of the Euler-Maclaurin summation formula.

Lemma 4.5 Suppose f: [M,N] — R, M,N € N, is of class C* and let f*)(x) >0, x €
[M,N]. Then the following inequality holds:

N

S 10 < [ S S0 + 7N+ 5 [P0 -S00]. @26)

k=M

Proof. Applying the Euler-Maclaurin summation formula to the function f: [M,N] — R,
we have

N

N
S 5®) = [ fwdt 3 [0+ N) + 35 [ N) - 7 )]

k=M
b [ 790 BBt~ L),

where B4 and By(t) respectively denote the corresponding Bernoulli number and the Ber-
noulli polynomial. Since By = — % and the sign of By — B4(t — [#]) is the same as the sign
of B4, we obtain (4.26). O

Remark 4.6 In particular, if the function f from the previous lemma is defined on [0, o),
and f(x), f'(x) — 0 when x — o, then relation (4.26) yields (see also [41]):

=

S )< [ 1w+ 250) - 1510)

k=0
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The following two estimates refer to a homogeneous kernel K : Ry x Ry — R of
degree —s, s > 0, and of class C*. Like in the previous section, the integral k(o) =
Jo K(1,u)u"%du is assumed to converge for min{1 —s,0} < a@ < max{1,2 —s}.

Lemma 4.6 Let K: Ry xR, — R be a non-negative homogeneous function of degree
—s, s >0, and of class C*, fulfilling

a" dK
(=" (x,y) >0, n=1,2,3,4, and lim K(x,y) = lim —(x,y) =0, (4.27)
9y y—eo y=eo dy
forall x,y € R. Further, let ©y be defined by
Oy (mys, 1) = (m+ )74 Y K(m+ pt,n+u) (n+ )=, (4.28)
n=0

where Ay, As, I, and q' are real parameters such that 0 < Ay < % and L > % Then,

Oy (m,s, 1) < (m+ ) A=A [k(g Ay) — 0, (m, s, 1)] (4.29)

where

1-¢'Ay ’
I I 1 1 q'Az
0, = [ —— K1 —— 1
i (m.5,44) <m+u> { ( ’m+u) L—CI’Az 2u< " on )]

___ 1 X (1 L) }
24u(m+p) dy \ 'm+pu)

Proof. Setting £(y) = K(m+ 1,y -+ 1) (m+ )74 (y+ 1) =72, we have O (m,s, ) =
Yoo f(n), so Lemma 4.5 yields the inequality

@q/(m7s7y) < (m"—”)l s+ (41-42) [k( /A2) (m7s7”)] ’

where
_u 1—¢'Ay
/ _ m+i gy g, 1 q A u u
0y (5 11) /0 K(1,0)1 924y <2u+—12u e k(1A

Ll (w NTROK
12u2 \m+u dy \ 'm+u/)’

Moreover, applying the integration by parts twice, we have

0 1-¢'A
m /! 1 q 2
/ R,y = (L) K<17L)
0 1—q'Ay \m+u m+

e o) (k)
(1—-q'A2)(2—q'Ar) \m+pu dy \ 'm+pu

1 m+,u 8 K 2—d'A
+ / 1,0)r=~9%2dx.
I—da)2—qa) b ap b
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Finally, since the last term in the above relation is non-negative and since the inequality

1 1 1

(I—qA)2—qAy) 1212~ 24u

holds for 0 < ¢’A> < 1 and p > 3, it follows that @ (m,s, ) > 6, (m,s, it), which com-
pletes the proof. ]

Since we are concerned with homogeneous kernels which are in general not symmetric,
we shall also utilize the result which is, in some way, complementary to Lemma 4.6.

Lemma 4.7 Let K : Ry x Ry — R be a non-negative homogeneous function of degree
—s, 8 > 0, and of class C*, fulfilling

n

J"K oK
(—1)”—n(x,y) >0, n=1,2,3,4, and lim K(x,y) = lim — (x,y) =0, (4.30)
8x X—>00 X—>00 ax

forall x,y € R. Further, let © , be defined by

O (n,s,1t) = (n+ )" Y K(m+ pon+ p) (m+ )P4, 4.31)

m=0

where A, Aa, U, and p' are real parameters such that 0 < A; < ﬁ and L > % Then,

O (n,5,1) < (n+ ) =P A=A [k(2 5 — p'A)) — 0, (n,s5,11)] (4.32)

where

1-p'4, /
_ M u 1 PAl
o = (357) () =m0
B )
24u(n+u) ox \n+pu’ ’

Remark 4.7 It should be noticed here that the terms 6, (m, s, ) and 6,y (n,s, i) in (4.29)
and (4.32) are non-negative.

4.2.2 Refined discrete Hilbert-type inequalities

In the sequel we extend Theorem 4.2 to hold for a homogeneous kernel of class C*, in the
non-conjugate case. Such extension is a simple consequence of the general Hilbert-type
inequality in non-conjugate setting (Theorem 2.1, Chapter 2) and Lemmas 4.6 and 4.7.

Theorem 4.5 Let p, g, and A satisfy (2.1) and (2.2), and let K : R, x Ry — R be a non-
negative homogeneous function of degree —s, s > 0, and of class C*, fulfilling conditions
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4.27) and (4.30). If Ay € (0, Ly, Ar € (0, LY, and u > L, then the inequalities
P q H=3

oo oo

z ZK}L(m'FI-hn"‘IJ)ambn

m=0n=0

i p p r

< { 2 (m_'_.u)j(l—s)-i'P(Al—Az) [k(q/Az) o Gq/(m,s,u)] ja%}
m=0

1

e

% {2 (n+u)§(l—s)+11(Az—A1) [k(Z —S—p/Al) _ Qp,(n,shu)] I bz} (4.33)
n=0

and

{ 2(n+u)q’(A1—A2)+%(S—l) [k(z_s_p/Al) o Op/(n7s7u)]_%
n=0

!

q
K‘(m+u7n+u)am] }

L
q

=

X

m=0
1

- ) »
< { 3 ()7 AT 4y — 0 (s 1)) aiz} (4.34)
m=0

hold for all non-negative sequences (am), N, (bn),cN, 7 0. where the functions

0, (m,s, 1) and 6,y (n,s, ) are defined in Lemmas 4.6 and 4.7. Moreover, these inequali-
ties are equivalent.

Proof. Applying Theorem 2.1 (Chapter 2) to discrete setting with a suitable power weight
functions, we have

o oo

z ZK}“(m—i—[.L?n—l—u)ambn <

m=0n=0

x4 q
265' (’h&l-l)bz 9

where O (m,s, 1) and ©,(n,s, i) are defined by (4.28) and (4.31) respectively. Now,
inequality (4.33) follows from estimates (4.29) and (4.32). O

The previous theorem with the parameters A} = Ay = %, implies the following:

Corollary 4.3 Let p, g, and A satisfy (2.1) and (2.2), and let K : R, x R, — R be a non-
negative homogeneous function of degree —s, s > 0, and of class C*, fulfilling conditions
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(4.27) and (4.30). If § < u < 1 min{p’,q'}, then the inequalities

S K*(m+ w,n+ )amby,
m=0n=0

< {miww)ﬂ" (%) - stm) _}

0

4q
/

St (o) ]

{goe
{

b‘f} (4.35)

and

- q (5 2 -
Z(n—i—u)Z’(' b [k (2—s—q—‘f> —¢q/(n7s,[.1)] !
n=0

- N7
ZKk(eru?nJru)am] }

m=0

(g7 ()

m=0

L »
_ 91,/(m7s7u)} ! aﬁ} (4.36)

hold for all non-negative sequences (am), N, (bn),cN, 7 0. where the functions

0y (m,s, 1) and 6,/ (n,s, ) are defined in Lemmas 4.6 and 4.7. Moreover, these inequali-
ties are equivalent.

Remark 4.8 Assuming that the kernel K : Ry x Ry — R from Corollary 4.3 is symmet-
ric, we have that k(2 —s — &) = k(). Then, in the conjugate case, that is, when A = 1,
inequality (4.35) reduces to (4.3) from Theorem 4.2.

The rest of this section is dedicated to some particular homogeneous kernels fulfilling
conditions (4.27) and (4.30). We start with the well-known example K (x,y) = (x+y) ",
s > 0. In this case, the corresponding Hilbert-type inequalities involve the constant factors
expressed in terms of the Beta function. Hence, denoting b(ot) = B(1 — ot,s+ 0ot — 1), we
have the following result:

Corollary44 Suppose p, q, and A satisfy conditions (2.1) and (2.2), and let
Al € (max{1 ,0}, L i 7). Ag € (max{1 0}7%), and |1 > . Then the inequalities

oo oo

amb,
55 et

= (m—+n+2u)

1
P

m=0
o N B » 7
<{z<m+u>q'“ A (g 4g) — g (m,s.)] 7 }

m=0
X
n

1

Mg

0
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/
g
7

hnd / q,‘ _
{Z(n+”)‘1(A1 —Ar)+ /( 1) [b(P/Al)—Wp’(n7S7ﬂ)] »

n=0
qdy%
- a ;
XLZ'O(ernjLzu)Ml }
1
oo P
<{Z(m+u>5’““””‘Al/‘”[b(q’Az) vy (m,s,1)] 7a } (438)
m=0

hold for all non-negative sequences (am),,.cN, (bn),cN, 7 0. where

1—q'A, /
N L P
ll/q/(mmll) - <m+'u> 28 |:1—q/A2 2'u <1+ 6,[1 ):|

1-p'A /
u 1 1 1 P'Ay
/ = Ao - 1 :
Vir 5.4 (Hu) 2 [l—p’Al 2#( " ou )]

In addition, these inequalities are equivalent.

and

Proof. Tt follows from Theorem 4.5, setting K(x,y) = (x+y)™* and observing that
Wq’(mvsv.u) < 9(1’(’”757“) and l//p'(an)“) < Gp/(n,s,u). U

Remark 4.9 It should be noticed here that Corollary 4.4 provides refinements of inequal-
ities (1.58) and (1.59) (see Remark 1.14, Chapter 1). This can be seen by consider—
ing 1nequal1t1es (4.37) and (4.38) in the conjugate case, with the parameters [t = J and

A=Ay = pq £, provided that max {1 —mm{p I'7 L1 2—min{p,q}} <s<2.In such a
way we also obtain refinement of the Hilbert double series theorem (1.4) (see Chapter 1).

Our next application of Theorem 4.5 refers to the homogeneous kernel K (x,y) = (x* +
¥*)~!, s > 0. Namely, this kernel fulfills conditions (4.27) and (4.30), hence, denoting
bs(0r) = 1B(1=%, $¢=1) 'we obtain the following consequence:

Ky )

Corollary 4.5 Ler p, q, and A sansfy (2.1) and (2.2), and let A; € (max{1 0}, i )
A, € (max{ lq ,0}, 4 7 ), and 1 > . Then the inequalities

) b

=0,20 [(m+ )+ (n 4 p)**

8

1

\\"d

m=0
{ m—|—'LL § (1—s)+p(A1—Ap) [b\(q/AZ) ll/q (m s .u):l }

m=0

X
n

1

9 (1—s _ q
(n—F/,L)q/(l $)+q(Ar—Ay) [bs(plAl) l//p (l’l s u):l ! Z} (4.39)

Ms

0
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and

{Z(n+”)4( 1—A2)+ q*/(& 1) [bs(plAl)_2s—lwpl(n7s7u)]77

n=0
- 7\
X
L;O (O v (n+u)“‘]‘1 }
oo P
< { z (m_'_“)ﬁ(lfs)er(ArAz) [bs(q/Az) ‘I/q /(m, s ”)] 7 ap} (4.40)
m=0

hold for all non-negative sequences (am), N, (bn),cN, # 0. where the functions

Wy (m,s, 1) and Wy (n,s, ) are defined in the previous corollary. In addition, these in-
equalities are equivalent.

Remark 4.10 Observe that special cases of Corollaries 4.4 and 4.5, involving the conju-
gate setting and the parameters A} = A, = ==, were studied in [41].

To conclude this section, we consider Corollary 4.5 with A| = %( — %) and A; =

%(1 — f), where % + ,l =1,r>1,and 0 < s < 1. A weaker version of the following result
(without weight functions y,, and y,,) was obtained in [156].

Corollary 4.6 Suppose p, q, and A are as in (2.1) and (2.2). If % + % =1,r>1, and
0 < s < 1, then the inequalities

oo

i z amby

S0 [(m+ 1) + (n+ )

Lo
< Py =) n s—1 !
< R L) ((m, s, »
2 0(m—|—u) Lsin(%) vy (m,s ,u)] a
4 Y
S (=) T s—1 !
R L) , bl 4.41
X ,ZE)(HN) Lsin(%) v, (n,s,u)l a (4.41)

and

q
Pl

> ﬂ_l T s—1
7 _2 )
{’Z,O(n—i—u) Lsin(%) Yp (”7571-1)]

- N7
g L,g'o [(m+u)“'+(n+u)"']’1] }

1 sA
L)

==

P

‘],

- ) =2y (m,s #)1 ap (4.42)

< io(m—i—u) P

SSll’l(
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hold for all non-negative sequences (am),cN,» (bn),eN, # 0. where Wy (m,s,it) and
Y, (n,s, ) are defined in Corollary 4.4. In addition, these inequalities are equivalent.

4.3 Some particular refinements

Discrete Hilbert-type inequalities are more complicated than the corresponding integral
inequalities, since we use some additional estimates in order to obtain a suitable form of
inequality. Of course, this causes some extra conditions on functions and parameters in-
volved in the corresponding discrete inequality. For example, the general Theorem 1.14
(Chapter 1) dealing with homogeneous kernels, includes kernels which are strictly decreas-
ing in both arguments, while the corresponding integral result, that is, Corollary 1.1, holds
for an arbitrary non-negative homogeneous kernel.

The starting point in this section is the following consequence of the above mentioned
Theorem 1.14, that is, a pair of equivalent inequalities

m=1n=1

1 1

= 4 oo q
S L [2 ml.Y+[7(A1A2)a£;l‘| [2 nlS+q(A2Al>bZ‘| (443)

m=1 n=1
and
0o oo a p oo
(s—=D)(p—1)+p(A1-A2) _m | o<qp l=s+p(A1—42) ,p 4.44
n m ab, .

ng‘l mgl (m+n)"| = mgl o G4

where %+$ =1, p>1,5>0 A€ (max{O,%},%}), A € (maxl{O,%,},%), and
the constant L is expressed in terms of the Beta function, i.e. L= B?(l —Ayp,s — 1+

AzP)Bé (1-Aig,s—1+Aq).

Note that parameters A; and A, in (4.43) and (4.44) are non-negative, while the corre-
sponding result in the integral case (Corollary 1.1, Chapter 1) refers to parameters which
can be negative, that is, A] € (%, i), Ay € (1;"7%). In other words, the intervals for
parameters A; and A, in the discrete case are smaller than the corresponding intervals in
the integral case.

On the other hand, the above intervals (max {0, %}, 5) and (max {0, %7 }, 1) for
parameters A| and A, can also be extended so that inequalities (4.43) and (4.44) stillphold.
This can be done by virtue of the Euler-Maclaurin summation formula, utilizing similar
methods as in the previous two sections. Hence, in order to establish extensions of in-
equalities (4.43) and (4.44), we first mention some preliminary estimates.
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Let f : [I,00) — R be a non-negative continuously differentiable function such that
i1 fk) <eoand [i” f(¢)dt < eo. It follows from Lemma 4.1 that

< “ 1 “ * /
S W= [ s 350+ [Cor W, (@45)

where y; (1) =t — [t] — 1.
Moreover, if f : [l,00) — R is of class C* such that f0)(e0) =0, r =0,1,2,3,4,
F@)(x) >0, and f@~D(x) <0, r = 1,2, then the following sequence of inequalities hold:

1

1 o r
~f 0 < [ RO <~ 0+ 25 (<0 @6

The above sequence of inequalities was established in [147], by virtue of the Euler-Maclau-
rin summation formula. Relations (4.45) and (4.46) will be utilized in extending inequal-
ities (4.43) and (4.44).

First, we define the functions f ¢, (1) =1 %(t+n)"*, where -1 < ot < 1,0 <5 < 14,
n €N, and

1 1 oo
Oualn) = [ frant)dt =3 fran() = [ flantVri (0,
where ¥{ (1) =1— 1] — % The following lemma asserts that under the above assumptions
Os.0.(n) is a non-negative function.
Lemma4.8 If—1 <o <1and0 <s <14, then Qy o(n) > 0.

Proof. Utilizing the integration by parts three times, we have

1 1 s 1 Z‘1—05
/O foon(t)dt = (1—a)(n+l)5+ 1—a/() (t+n)s+1dz

1 s
TS0t  -—a-anrip

s(s+1) 1 2«
(I—OC)(Z—OC)/O (t_|_n).v+2dt
1 N
-ty  I—a)C-—a)ntr T
s(s+1)

(1-a)2—a)3—a)(n+1)s+2
s(s+1)(s+2) 1 pa
(I—OC)(Z—a)(3_a)/O (t_|_n)s+3dt'

Further, since the function f; ¢, : R — R is non-negative, we obtain the inequality

+

1 s
i) 2@ iy

s(s+1)
" 2—a)3—a)(n+ 1)S+2] : (4.47)

! 1
/Ofsw,(t)dt > =)




144 4 APPLYING THE EULER-MACLAURIN SUMMATION FORMULA

In addition,
1

m. (4.48)

2 Franl) = -

It remains to estimate the last term in the expression for O, o(n). The first derivative of
1 5,001 is

nst=% 1 (st o) !

fs/,mn(f) = (t +n) 1 - (t+ny
that is,
[ Laarid= [ i@ [ ewroar
where
(s+ o)1 nst~ %1
gl(t):w and gz(’)Zm-

Now, using (4.46), we obtain

- * 1 - s+ o
| @@ 0> —ga) =

and
- [ w0
> %gz(l) - %82”(1)
B ns _E[(s—kl)(s—i—Q) 2(s+1)(a+1) (oc+l)(oc+2)]
T 12+ 1)t 720 | (n+ 1) (n41)s+2 (n+1)s+
(n+1)s—s s [s+D(s+2) 2(s+D(a+1) (ax+1)(a+2)
>12(n+1)s+1_ﬁ[ (nt 1p+2 (nt 1 1y ]
which implies
~ [ a0 @)
o s

- 12(n+1)* B 12(n+ 1)s+1
_L{(Hl)(sﬂ) 2s+1)(a+1)  (o+1)(a+2)
720 | (n+1)+2 (n+ 1)1 (n+ 1)

(4.49)
Finally, taking into account (4.47), (4.48), and (4.49), we obtain

Oy.a(n) > #Qo(s,a) + ;Ql(&a) +

(n+1)s (n+1)st! 7202 (5,0),

(n+1)
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where
1 I o s(a+1)(a+2)
Q8 =15 "3 2 70
s s s(s+1)(o+1)
Qo) = A-png 12 360
B s(s+1) s(s+1)(s+2)
%% = TG -a 720

It is enough to show that the expressions Qy(s, &), Q1 (s, @), and Q; (s, o) are non-negative.
Obviously, we have Q> (s, &) > s(s+1) (33 — 75) >0and Q1(s, @) > s (£t — & — 15) =0.
In addition, if s < 14 then % < ﬁ, so that

1 1 o (a+D)(a+2) o +40%+90+10

> __Z_ =
Qols:0) 2770 =571 2% 24(1—a)

Itis easy to check that the function f (o) = &® +4a> + 90+ 10 is strictly increasing. Since
f(—=1) =4, it follows that Qy(s, &) > 0. The proof is now completed. O

In order to extend inequalities (4.43) and (4.44), it is necessary to establish a suitable
upper bound on the weight function

& 1 n%

2 Tty

m=1

a).Y.Otl,OQ (l’l) = (450)

where 0 < s < 14, and either o € (1 —s,1) fors <2,0r 0p € [—1,1) for s > 2. Of course,

due to the form of the weight function, such a bound will involve the Beta function.

Lemma 4.9 [f0 < s < 14, and either 0 € (1 —s,1) for s <2, or ap € [—1,1) for s > 2,
then
sy cp (1) <0 TUTRB(1 — 0,5+ 0 — 1). 4.51)

Proof.  Since fy o, n(t) =1~ %(t +n)"*, we have 0y ¢, o, (1) =10 Y5 fs.00,n(m). Fur-
ther, by virtue of Lemma 4.8, it follows that

Oray.05 (1) = 1 [ R (n)} < [ frasalt.

Finally, utilizing the change of variables x = nt, we have

o o —0h
3 Wt dt = 17.\'70(2/ xid ,
/0 f,(lz. ( ) n 0 (l +X)S X

so that (4.51) holds due to the well-known formula

"Xy 1 1
———dx=B(l—op,s+0p—1).
/o<1+x>s (1= 0,5+ 05— 1)
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O

The following result extends inequalities (4.43) and (4.44) in the sense that the param-
eters A; and A, can be chosen from a larger interval.

Theorem 4.6 Let 11—7+$ =1,p>1,and0<s<14. Ifeither A, € (%7 i) Ay € (%7 1—1,)
fors <2 orA; € [— %17 é), Ay € [— %7 %) Jor s > 2, then inequalities (4.43) and (4.44)
hold for all non-negative sequences (am),,.N> (bn),cN 7 0. In addition, these inequalities
are equivalent.

Proof. Making use of Theorem 1.9 (Chapter 1), it is enough to show that (4.43) holds
under conditions of this theorem.

Clearly, considering the discrete form of inequality (1.12) (Theorem 1.9) with the ker-
nel K(m,n) = (m+n)~*, and the weight functions @(m) = m!, @(n) = n2, it follows
that

1
q

a).\'.qu.qu (I’l)bz‘| )

=

M

)y
m=1n n=1

amby i g
< O} 4
‘ (m+n)’ ~ L;ﬁ "‘I)AI‘I)AZ(m)am] [

where @y ¢, o, is defined by (4.50). Now, the result follows from Lemma 4.9. O

Remark 4.11 Obviously, Theorem 4.6 can also be extended to the case of non-conjugate
exponents. For more details, the reader is referred to [55].

We know from Section 1.4 (Chapter 1) that the constant L appearing in (4.43) and (4.44)

is the best possible if the parameters A; € (max{O,%},é) and

Az € (max {0, %7 }, I%) fulfill condition pA; +gA| =2 —s. The following theorem asserts
that L is also the best constant in the context of Theorem 4.6.

Theorem 4.7 Let L+ 1 =1, p > 1, and let A\, Ay, s be real parameters fulfilling con-
ditions of Theorem 4.6. If pA; +qA| = 2 — s, then L is the best constant in inequalities
(4.43) and (4.44).

Proof. Due to the equivalence, it is enough to show that L is the best constant in (4.43),
under conditions of the theorem. Clearly, if pA; +gA; = 2 — s, this constant reduces to
L=B(1—pAy,pArs+s—1).

Applying (4.43) to the sequences a,;, = m ™7 and by = n P70, £ > 0, its right-
hand side becomes LY;>_; n~!7¢.

On the other hand, for the above choice of sequences (an),, .y and (bn), .y We have

8

S YL SIS (A 4.52
pIPIRCLEE (zu) @5

m=1n=1 n=1
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—gA;— &
where h(t) = I(Z% Further, it follows that
- _l-s—qA|—-% € €
h(t)dt =n iB(1—qgA —Eqa,+E 451 (4.53)
0 P p
and
1 S
/ h(t)dt ‘*‘*‘1“17/ T T
0 0o (1+x)s
1
< nlﬂ'*qAﬁ%/nquAlfﬁdx:n”. (4.54)
0

Moreover, taking into account that

H(t) = - ol
B AR AL U R DRSS
we have .
ns N
W)y (H)dt > — > — , 4.55
/1 Oy @) 12(n+ 1)1 7 12n° (4.55)

by virtue of (4.46). Now, utilizing the summation formula
oo oo 1 1 oo
S hm) = / h(t)dr — / h(r)d -+ Sh(1) + / 1 ()7t (1)t
il 0 0 1

and relations (4.53)—(4.55), we obtain

- : e 1
> h(m) > B(e)n' MMy — — u

= T (4.56)

m=1

where B(g) =B(1—qA; — TiqAL+ L s 1). Moreover, relations (4.52) and (4.56) yield
the estimate

amby - 1 S\ — 1
B —_— (1 —) _ 4.57
(m+n) > B(e) Z nlte + 12 ng‘l S PAYHG ( )

n=1

Now, assuming that there exists a constant C, 0 < C < L, such that (4.43) holds after
replacing L by C, the above discussion implies that

- 1 5\ — 1
L-C < (1 —) S —
( ) z nlte + 12 ’Ztl n.\'erAer;

n=1

Finally, letting € — O, it follows that L < C, which contradicts the assumption 0 < C < L. J

Our first application of Theorem 4.6 refers to parameters A| = Ay = %. These pa-
rameters satisfy pA, 4 qA| = 2 — s, and hence, yield the inequalities involving the best
constants.
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Corollary 4.7 Ler % + é =1, p>1, and let 2 — min{p,q} < s <2+ max{p,q}. If

L= B(%ﬁz, %_2), then the inequalities

1

o oo had » > !
Ipt o P ] -
m=1 Y

n=1

and
p

<Ly'y m'ab, (4.59)

m=1

S D=1 [ 3 __dm
Z" [Z(m+n)s

m=1

hold for all non-negative sequences (am),,.» (bn),eN 7 0- In addition, these inequalities
are equivalent and Ly is the best constant in both of them.

Remark 4.12 It should be noticed here that inequalities (4.58) and (4.59) were also ob-
tained by Yang (see [148], [152], and [153]), but only for 2 — min{p,q} < s <2. On the
other hand, considering the special case when p = ¢ = 2 and utilizing (4.46), Yang (see
[147] and [152]) showed that inequalities (4.58) and (4.59) hold for 0 < s < 4, which
obviously coincides with the above result.

Another application of Theorems 4.6 and 4.7 refers to parameters A = ?, Ay = 22;11“',
and is closely connected with the above mentioned papers [147] and [152].

Corollary 4.8 Let 11—7—1— é =Lp>landlet0<s<4. IfL, = B(%7 %), then the inequal-
ities

=3

1
Z Gl <L, i m- TP lgp ! i noEralpa ' (4.60)
] (m—|—n)5 " n=1 !

ﬁMx

m=1

and
p

<IEY mmTrla 4.61)
m=1

T

PS_q - Aam
n?2 -
LZ‘I (m+n)
hold for all non-negative sequences (am),, N> (bn),cN 7 0- In addition, these inequalities
are equivalent and L, is the best constant in both of them.

Remark 4.13 The main results presented in this section are derived in [55] by Krnié
and Pecari¢. In addition, general refinements of Hilbert-type inequalities dealing with
homogeneous kernels of class C? and C* (Sections 4.1 and 4.2) are established in [56] and
[57] by the same authors.



Chapter

Applying the
Hermite-Hadamard inequality

This chapter provides a different approach for improving discrete Hilbert-type inequali-
ties. The method we develop here, is based on the famous Hermite-Hadamard inequality
regarding convex functions.

Recall that f: [a,b] — R is a convex function if

flx+ (1 —0)y) <1f(x)+ (1 =1)f ), (5.1)
for all x,y € [a,b] and 7 € [0, 1]. The Hermite-Hadamard inequality asserts that
atb Lo fla) +£(b)
f( 7 ><b—a./a J@)dr < ===, (5.2)

where f : [a,b] — R is a convex function.

The main objective of this chapter is to establish a general method for refining discrete
Hilbert-type inequalities via the above inequality (5.2).

By virtue of the Hermite-Hadamard inequality, in Section 5.1 we establish the basic
theorem regarding discrete Hilbert-type inequalities with a general kernel and weight func-
tions. Further, in Section 5.2 the general result is then applied to discrete inequalities with
homogeneous kernels. Moreover, in Section 5.3 some particular homogeneous kernels are
considered and compared with actual results, known from the literature. Finally, in Section
5.4 some cases of non-homogeneous kernels are also considered.

Observe that refined Hilbert-type inequalities that we derive in this chapter, are consid-
ered in the case of non-conjugate parameters.

149



150 5 APPLYING THE HERMITE-HADAMARD INEQUALITY

5.1 Basic theorem and some remarks

When dealing with discrete Hilbert-type inequalities, some integral bounds are used for
certain sums. In Sections 1.4 and 2.2 such sums were recognized as the lower Darboux
sums for the corresponding integrals. As we have already seen, this fact required mono-
tonic decrease of the function that defines the integral sum. For example, in the statement
of Theorem 1.14 (Chapter 1) the kernel was strictly decreasing in each argument.

As distinguished from the above discussion, in this section we are going to adjust the
Hermite-Hadamard inequality, in order to bound the integral sum with the integral. Of
course, this requires some extra assumptions concerning convexity, but as a consequence,
we shall obtain better results than in the previously discussed case.

Now, we state and prove the main result that will be the basis for the results in this
chapter.

Theorem 5.1 Ler p, q, and A satisfy (2.1) and (2.2), and let m,M,n,N € N be such
that m < M and n < N. Suppose thatK : m— 3 M+ 3] x[n—3 N+ —R ¢:[m—
%,M—i— %] —R y:[n— %7N + %] — R are non-negative measurable functions fulfilling the
following conditions:

(i) the functions K (i,t)y~? (t) are convex on interval [n — LN+3] foreveryi=m,m+

1,...,M;
(ii) the functions K(t,j)@ 7 (t) are convex on interval [m — 3.M + 1] for every j =
n,n+1,....N.

Then the inequality

M N A
> XK (i jaib;
i=m j=n
p L 1
$ oo [ [ K00, 17 o] [y [ 50,1 )
< i / dt a,‘) J - t i
A wy o)

(5.3)

holds for all sequences (a;),.ny and (bj) ..\ of non-negative real numbers.

je
Proof. We utilize the fundamental Hilbert-type inequality in the non-conjugate case, that
is, Theorem 2.1. More precisely, using inequality (2.9) in a suitable discrete setting, it
follows that

M N M % N é
Y Y KMijab; < | Y 9P (OF | | X wI()GIb]| (5.4)
i=m j=n i=m J=n
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where 1
N v
K q
E: Z (f’]) , i:m7m+l7 7M7
j=an(])
and 1
M .o v
K P
Gi=|2 G s N,
i=m (pp(l)

The further step is to estimate the terms of the sequences F;, i =m,m+1,...,M, and
Gj, j=n,n+1,...,N, via the Hermite-Hadamard inequality.

Since the functions K(i,r)y ¥ (1) are convex on interval [n — 1N+ 1] for every i =
m,m+1,...,M, applying the Hermite-Hadamard inequality to intervals [j — %, Jj+ %] yields
the following inequalities:

.. j+1 .
K(f’]) S\/ : K(f7t)dt7 j:n7n+]‘7"'7N'
v ()~ -y we()

Now, summing these inequalities we have

N P N+l .

K K(it
3 (i, ) </ L Ty 72
= n

v () T Inmh w0
that is,
1
N+3 K(it) |7
Eg/ e S Y 2 (5.5)
=y wi(r)

Finally, the same conclusion can be drawn by exploiting the convexity of functions K (¢, ;)
(p‘p/ (1), j=n,n+1,...,N, oninterval [m — %,M—F %] In that case we have the estimates

GIS / 2 (’7])dt ’ j:n7n+17"'7N7 (56)
m—j V(1)
and the proof is now completed. ]

Remark 5.1 Assuming the convergence of the series and integrals, the proof of Theorem
5.1 covers inequality (5.3) also for M = N = oo. In that case, inequality (5.3) reads

,-i‘n iK’L (i, j)aib;
[Sool[ L) ] [S v [, K] ]

(5.7)
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Remark 5.2 Let us explain here why the method presented in Theorem 5.1 yields a better
result than the method used in Sections 1.4 and 2.2, regarding discrete case. Namely, using
the notation of Theorem 5.1, the method exploited in the above mentioned sections is based
on the assumption that the functions K (i,7)y~4 (t) and K(, /)@ 7' (¢t), i=m,m+1,..., M,
j=n.n+1,...,N, arestrictly decreasing on their domains. Hence, Y K(i,)y % (r) and
SN K(t,j)@ ¥ (1) are the lower Darboux sums for the corresponding integrals, that is,

j=n
NKGG) N KGr), MK M OK())
2000 < L 20 = Lo

)

i=mm—+1,....M, j=n,n+1,... N, provided that all functions are defined on the cor-
responding intervals. Clearly, due to the described monotonicity, these estimates are less
precise than estimates (5.5) and (5.6).

Remark 5.3 The inequality sign in (5.4) depends only on the parameters p’, ¢, and A,
since the crucial step in proving this relation was in applying the Holder inequality (see
Theorem 2.1). Therefore, the reverse inequality in (5.4) holds under conditions of Remark
2.2. On the other hand, in order to obtain the reverse inequality of (5.3), the assumptions
of Remark 2.2 should be consistent with the estimates for F;, i = m,m+1,...,M, and G,
j=n,n+1,...,N (see the proof of Theorem 5.1). In other words, estimates (5.5) and (5.6)
should also hold with the reverse inequality, and that is possible only if p’,q" < 0, which
implies that 0 < p,q < 1. Comparing this with Remark 2.2, it follows that the reverse
inequality in (5.3) holds if and only if 0 < p,q < L.

Remark 5.4 The equivalent form assigned to (5.3), that is, the Hardy-Hilbert-type in-
equality, reads

!
_a 1) d
J

N +1 . 7 M a |
v ) [ I K“’(j))dt] ZKl(i,j)ai]

1 /
j=n m-y ¢F

1
M FR— 7 z
< z oP (i) l/nNJrz %’(t)dt] al (5.8)

i=m

and is established by substituting the sequence
q q
)/

M+ K@t j) | 7 X @
22 gt K*G, j)ai| , j=nn+1,...,N,
I B RS

!

bj=vw"1(j) l

in (5.3). Such inequalities will not be considered in this chapter.
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5.2 A unified approach to inequalities
with a homogeneous kernel

In this section we are concerned with Hilbert-type inequalities involving homogeneous
kernels with negative degree of homogeneity, which are defined for all positive arguments.
Moreover, the weight functions will be chosen to be the power functions.

Remark 5.5 When dealing with a homogeneous kernel and the power weight functions,
conditions (i) and (ii) from Theorem 5.1, referring to convexity, can be rewritten in a more
suitable form. Namely, suppose that the function f(r) = K(1,7)r~ is convex on interval
[23;,11 , 21;—;1], where K is homogeneous function of degree —s, s > 0and n < N, m < M are
positive integers. Then, introducing the functions fi(z) = K(i,t)t %, i =m,m+1,...,M,
we have

Rl

- l._a_%f(%l) +imas() _Mf(%z) =Afi(n)+ (1= 1) filn2),

for t1,t0 € [n— %,N—F %] and 0 < A < 1. This means that the functions f;, i = m,m +
1,...,M, are also convex on interval [n — J,N + 3]. By the same arguments, convexity
of the function g(r) = K(t,1)r ¢ on the interval [22-1 22:1] implies convexity of the
functions g;(t) = K(t, j)t ¢, j =n,n+1,...,N, on interval [m — 1 M+ 1].

Therefore, if @(t) = 41 and y(t) = 12, then, using the notation of Theorem 5.1, the
conditions

(i") function K(1,£)y 7 (¢) is convex on interval [t 2L

(i) function K(r,1)@ 7 (¢) is convex on interval [2’;—1;1, 21‘;1:{1 I;

imply conditions (i) and (ii) from Theorem 5.1. In particular,if m=n=1and M =N = oo,
then convexity of the functions K (1,)r~42¢" and K(r,1)t 417 on R, implies convexity of
functions K (i,1)t 424 and K (z, j)t 17" on R, for all i, j € N. This fact will frequently be
used in order to make checking of the convexity conditions easier.

Now, in order to present the main result concerning homogeneous kernels, we define
the integral

rn
k(a;rhrz):/ K(1,0)t%dt, 0<r; <ry<oo, (5.9
rl

where the arguments o, r; and r, are such that (5.9) converges. In addition, if r; = 0 and
rp = oo, then the integral k(c:;0,0) will be denoted by k(c:), for short, as in the previous
chapters.
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Theorem 5.2 Ler p, q, and A satisfy (2.1) and (2.2), let m,M,n,N € N be such that
m< M, n<N and let K : Ry xRy — R be a non-negative homogeneous function of
degree —s, s > 0. If Ay and A, are real parameters such that the functions K(1,t)t=424

and K (1,1)t~417" are convex on intervals (2t 2] and 222t 225D respectively, then
the inequality

M N
.2 2 K)L (i7j)alb/
i=m j=n

1

” 1
< lz iﬁ(lﬂ')ﬂ'(fh Az)kﬂ/ (Azq/; 2n—1 ZN'f'l)alP] !

2i 0 20
i=m

1

N 4 q ) q
% [ J /(1 s)+q(Aa Al)kp/ (27‘4117 ‘72A3+172m 1)b‘1] (510)
j=n
holds for all sequences (a;), N and (bj) ;. of non-negative real numbers.

Proof. Exploiting Theorem 5.1 with the power weight functions ¢(i) = i1 and y(j) =
742, and taking into account the homogeneity of kernel K : R, x R, — IR, we have

N+ a1
! ! 1 !
/ K(i, )24 ap = =542 / R
n—3 27

_ il—S—Aquk(Azq/. 2n—1 2N+1)

2721 0 20
and
M+% / . / 2n§£l . /
/ 1 K(t,j)l‘iAlp dt = J'I*A*AII’ /2j K(l’t)t.\JrAlp 72dl‘
m—3 W
. -lfszlp’ 2j 2j
=] k(zfA”’ S ST T
Hence, the result follows from (5.3). O

An important consequence of Theorem 5.2 is the corresponding result for infinite se-
ries, thatis, whenm =n=1and M = N = o.

Corollary 5.1 Let p, g, and A satisfy (2.1) and (2.2), and let K : R, x R, — R be a non-
negative homogeneous function of degree —s, s > 0. If A| and A, are real parameters such
that the functions K(1,1)t=429 and K (¢,1)t=*17" are convex on R, then the inequality

ZZK)LZJ

i=1j=

[2 L (1=s)+p(Ay AZ)kﬁ(qu/;%AO)af}

1
P

Q=

[2 i,l $)+q(Ay Al)ki'(z A 502])b‘| (5.11)
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holds for all sequences (a;); N and (b;) ;. of non-negative real numbers.

Remark 5.6 According to the obvious estimates
k(Arq' %,) <k(Arg') and k(2—A1p'—5;0,2j) <k(2—A1p'—5),

which are valid for all i, j € N, it follows that the right-hand side of inequality (5.11) is not
greater than the right-hand side of inequality (2.24) for A =B = o = 3 = 1 (see Section
2.2). In such a way we get the interpolating sequence of inequalities, that is, inequality
(5.11) refines inequality (2.24). As we have already discussed, the convexity assumptions
in Corollary 5.1 yield a better result than the monotonicity assumptions of the kernel in
each of its arguments.

5.3 Examples with homogeneous kernels

In the sequel we consider Corollary 5.1 in some particular cases of homogeneous kernels.
Our first example refers to the well-known homogeneous kernel K : Ry x Ry — R, defined
by K(x,y) = (x+y)~*, s > 0. In such a way we shall obtain the weight functions expressed
in terms of the incomplete Beta function. Recall that the incomplete Beta function is
defined by

B,.(a,b):/ N1 =) tde, a,b>0. (5.12)

0

Clearly, if r = 1 the incomplete Beta function reduces to the usual Beta function (1.5) and
obviously, B, (a,b) < B(a,b), a,b >0, 0 < r < 1. Hence, in the above setting, Corollary
5.1 reduces to the following form:

Corollary 5.2 Let p, q, and A satisfy (2.1) and (2.2), and let s > 0. If A| and A, are
real parameters such that A| € (max{%,O}, #) and A, € (max{%,O}, %) then the
inequality

1
P

S

o .5 (1—s)+p(A;—
< [ iq/(l s)+p(A; A2>Bq . (S+A2q/— 171—A2q/)a?‘|
i=1

i+1

IS

)

1

© g B 4 9
% lsz/(l 5)+q(As Al)B"Z_j(S—i—Alpl—171_A1p/)b4 (5.13)
=1

2+

holds for all sequences (a;); Ny and (b;) ;. of non-negative real numbers.
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Proof. In order to apply Corollary 5.1, we have to check that the functions K (l,t)t’AZ‘/
and K(r,1)r~417" are convex on R, , where K(x,y) = (x+y)~*. Due to the symmetry of
K, it suffices to show that the function f(r) = (1 +17)~*t~“ is convex on R, for a > 0. Its
second derivative is equal to

(s+a)(s+a+ D> +2a(s+a+1)t+ala+1)
19T 2(1 1)512 ’

that is, f”'(¢) > 0 forr € R, since @ > 0 and 5 > 0.

Since the assumptions of Corollary 5.1 are fulfilled, we are ready to apply inequality
(5.11) in the case of homogeneous kernel K(x,y) = (x+y) .

From the definition of the incomplete Beta function and passing to the new variable
t:%—l,wehave

f'(0) = (5.14)

* liAzq, Zi%il ) / /
/.1 o) — — s+Arq -2 o —Asq
k(A2q'; 5:,00) A T —I—t)"'dt /0 u (1—u) du

2i

= BL(S-’—AQq/— 171—A2q’).
2itT

Similarly, the change of variable # = *- yields

2j ps+ALP' =2 2

k(2—A1p'— 50,2/ :/ 7dt=/mu”f‘ll’"2 1—u)~" qy
( P ]) 0 (1—|—t>‘ 0 ( )

= BL(S—FAlp/— 1,1 —Alp/),
271

that is, the result follows from inequality (5.11).

Note also that the intervals defining the parameters A and A, are established due to the
domain of the incomplete Beta function and the convexity of the functions (14 #)%t —Ai/
and (141)% 424, 0

Remark 5.7 Since the incomplete Beta function is bounded from above by the usual Beta
function with the same arguments, the estimates

B i (s+Axg —1,1—Ayg) <B(s+Axg — 1,1 —Asxg)

2i
2i+1
and

B (s+Ap'—1,1-A1p') <B(s+Ap' —1,1-Ap'),

2T
hold for all i, j € N. Moreover, since the right-hand sides of the above estimates do not
depend on i and j, it follows that the right-hand side of (5.13) does not exceed

1

1 1
ii§(1—5)+P(A1—A2)ap‘| ! [i st |

L ; HE
i=1

j=1

1 1
where L =B (s +Axq' — 1,1 —Axg")BY (s+A1p’ — 1,1 —Ayp’). Of course, we again ob-
tain the interpolating sequence of inequalities and inequality (5.13) refines some known
results related to the Beta function (see e.g. paper [16]).
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Remark 5.8 According to the previous remark, when taking the values of A| = Ay =
— 25 ¢ (max {1 —s,0},1), Corollary 5.2, together with Remark 5.7, pro-

/lp’q” where 2 VAN
vides the followmg inequalities

o oo o —s L
aib/ -Uq/)qu’ s+Aq' =2 s+Ap'—2\ p
22 . As Zl 2\ A T Ap a;
S+ i=1 2T
1
> (=g 4 / ' a
- P sHAP'=2 s+Aq' =2\ 149
|\ Xi 7B, (R )
j=1 2j+1
> O-gp Pl (g |9
A \+lp -2 S+7Lq -2 P P - q
<B( 7 Ad )[21 q ai] lZJ [ bl‘| ,
-1 i=1

where we used the fact that the usual Beta function is symmetric in its arguments
Moreover, considering the kernel of degree —1 in the conjugate case, that is, when
s=1,A=1,p=¢, and g = p/, the above inequalities reduce to

) = m/sin(7/p). Note that this relation interpolates Hilbert double series
11 :
5) = 21,

since B( é = 7 /si .
.1) (see Chapter 1). In addition, if p = g = 2, then B% (2, 2) = arctan/2i
i+

theorem (1
since B, (%, 1) =2arctan, /{=,0 < r < 1.

To end the previous discussion of some particular choices of parameters A; and A,,
we give yet another example in which we are able to find the explicit formulas for the

incomplete Beta functions. It is a content of the following remark

= are well-defined

Remark 5.9 If 1 < s < 2 then the parameters A| =
in the sense of Corollary 5.2. Considering inequality (5 13) in this partlcular case, we see

that all terms with the incomplete Beta function have the form B,(1,s — 1). Now, since

1
Br(ls—1)=—[1-(1-n"1], 0<r<1,
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inequality (5.13), together with Remark 5.7, implies the following inequalities:

1

i=1j=1 i=1

1

q

» [ii@s)(q1)/1q[1_(2j+1)1s],,"/b;1]
i=1

< (S—l lzl% s)(p—1)— )Lpap

i=1

[i (3—s)(g—1) lqbl{‘|
J

We continue with some other examples of homogeneous kernels. The next result refers
to the homogeneous kernel K:R; xR —R, defined by K (x,y)=min""{x,y} max"*{x,y},
s>0,r€ (5,5 +1),towhich Corollary 5.1 also applies.

Corollary 5.3 Suppose that p, q, and A satisfy (2.1) and (2.2), and let s,r > 0 be real
parameters such that r € (;, 5+ 1). If Ay and A are real parameters such that Ay €

(’_;,H7 lp_,r) and A, € (r st _,r), then the inequality

aibj
in*"{i, j} max*G=n{i j}

P

Iy 5 P
i L (1—s)+p(A—As) K(Aag) — (2i)A2d +7 1‘| q W

14
i=1 l_Aqu_r
( )A +r—1 l’ %
S (-8 +g(Ar-A1) N (2P q
A At / 1
g, KA = | (5.15)

holds for all sequences (a;); N and (b;) ;. of non-negative real numbers, where

s—2r

kla) = (1—a—r)(a+s—r—1)

Proof.  We have to check that the kernel K(x,y) = min~"{x,y} max"*{x,y} fulfills
conditions of Corollary 5.1. Due to the symmetry, it suffices to show that the function
f(t)=K(1,r)t7%is convex on R, fora € (r—s+ 1,1 —r). Clearly, f is defined by

747 0<t <1
f(t) - {tra.\" > 1.

Obviously, f is convex on intervals (0, 1] and (1,0). Moreover, we have f' (1) = —a—r <
r—a—s= f (1), which means that f is convex on R.
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Now, exploiting Corollary 5.1 we have

1 , oo , 2i)A2d +r=1
k(Axg's 5;,00) = /1 0 dr / 170 dr = k(Axg') — i
1

2i 1 —Azq/ —r

and

1 I 2j S

k(2—A1p’ —S,O72]) = [Alp +“7'72d[+/ tAlP +’*2dt
0 1
@t
=k(Ap) - 2L —

(A1p") A

that is, we get inequality (5.15) from (5.11). 0

So far, we have considered homogeneous kernels with the negative degree of homo-
geneity. This restriction was adjusted to particular settings including the Beta and the
incomplete Beta function. However, assuming the convergence, Theorem 5.2 and Corol-
lary 5.1 are also meaningful for homogeneous kernels with the non-negative degree of
homogeneity.

Our next example deals with a particular homogeneous kernel of zero-degree, that is,

K:Ry xRy — R, defined by K(x,y) = fv—‘ Let us emphasize some significant charac-
X

teristics of this kernel. In contrast to K(x,y) = (x+y)~*, the kernel K(x,y) = 3 is not
symmetric, and is not strictly decreasing in both of its arguments. On the other hand, it
fulfills convexity conditions of Corollary 5.1, hence we have the following result:

Corollary 5.4 Suppose that p, q, and A satisfy conditions (2.1) and (2.2). If A and A,
are real parameters such that A| > % and Ay > 0, then the inequality

= i}
(G
1j=1 \J

Ap+Ar— 2 o % o q

2 P A _4a

< L[Sl S s
(A1p' =2)7 (A2q) 7 Li=1 =1

holds for all sequences (a;); .y and (b./')jeN of non-negative real numbers.

=

1

A

Proof. In order to exploit Corollary 5.1 for the homogeneous kernel K (x,y) = §» we easily

check that the functions K (1,¢)r 424 = ¢~ 1424 and K (r,1)r 417" ='~417' are convex on
R for the parameters A; and A; as in the statement of this corollary. Therefore we have

- / 2i)A2d
k(Ayg'; L oo :/ t*I*Azth:(—
( 29 207 ) % Aqu
and similarly,
2j , (zj)Alp’—Z
k(2—Ap’;0,2j :/ tA”’_3dt=77
( p J) 0 Ap 2

so the result follows from (5.11). O
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5.4 A non-conjugate example

The method developed in this chapter is often useful when dealing with some non-homo-
geneous kernels. Here we are going to consider the kernel K : R x Ry — R, defined
by K(x,y) = (1 +xy)~*, s > 0. Clearly, we start here with a general result, that is, with
Theorem 5.1, since the kernel is non-homogeneous. As a consequence, we obtain the
following:

Corollary 5.5 Let p, g, and A satisfy conditions (2. 1) and (2.2), and let s > 0. IfA1 and
Ay are real parameters such that A| € (max{1 } 1) and A, € (max{1 2.0}, ) then
the inequality

1
P

< [Zi PO BT (g 11— Ang)a ]

i=1 i+2

1

q

< g i,
X [Zj p'+q<A1+A2>B%(s+Alp —1,1-Ap )b] (5.17)
Jj=1

holds for all sequences (a;); .y and (bj)jeN of non-negative real numbers.

Proof. In order to be able to apply (5.7), we have to check convexity conditions (i) and (ii)
from Theorem 5.1, for the kernel K(x,y) = (1 +xy)~* and the weight functions ¢(x) = x1
and y(y) = y*2.

Due to the symmetry, it suffices to show that the functions g;(¢) = (1+it) t~, i € N,
are convex on R, for a > 0. These functions can be rewritten as g;(r) = i f(it), where
f(t) = (1+1)~5t~“ The second derivative is g/ (t) = i*"2f"(it), i € N. In addition, the
second derivative of f is given by (5.14), which proves the convexity of functions g;, i € N,
onR,.

Therefore, the assumptions of Theorem 5.1 are fulfilled, so we use (5.7) withm =n =

1. Using the change of variable u = ~ + =1, i € N, we conclude that

00 : el 2
/ K1) gy - / (1 ir) e 420 gy = @42t |17 ydad =21 ) ~4ad gy
Loyi() 5 0

= {442 1B 2 (s+4xq = 1,1-Ax).

Due to the symmetry, we also have

ooK(t]) hed N5 —Arp DA —1
dt= | (14 jt) St NP dr = Pl A —1,1—Ap
/% o7 (1) /%( +t) J 2 (s+Ap' = L1=Ap),

where j € N, so the result follows. U
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Remark 5.10 Since the incomplete Beta function is bounded from above by the usual
Beta function with the same parameters, the right-hand side of inequality (5.17) does not
exceed

1
oo q
Zj_§+q(Al+A2)b?‘| , (5.18)

j=1

1
oo » P
— L4 p(A+A
L[El 7 TP 2)‘14

i=1

1 L
where L = B9 (s+Ayq' — 1,1 —Ayq')BY (s+A;p' —1,1—Ap’). This also yields inter-
polating sequence of inequalities that we have already discussed in the previous section.
As an illustration, we consider a particular choice of parameters A and A, as in Remark

5.8, thatis, A; = Ay = ,q,, where )Lp‘,", Z‘," € (max{1—1s,0},1). In this case, the above

expression (5.18) reads

B?L(s-&-ﬁp -2 s+)Lq 2) [zlq [ /lp 71] I"| [Z][q [2(2 . 1] j‘|q. (5.19)

In the conjugate case, expression (5.19) represents the right-hand side of the appropriate
inequality from [159]. Hence, relation (5.17) may be regarded as both a refinement and a
generalization of the above mentioned result from [159].

Remark 5.11 The method of improving Hilbert-type inequalities via the Hermite-Hada-
mard inequality, presented in this chapter, has been recently developed in [66].






Chapter

Hilbert-type inequalities and
the Laplace transform

In this short chapter we study refinements of some particular Hilbert-type inequalities in-
volving the Laplace transform. Let us recall that if f: R, — R is a Lebesgue measurable
function, then the Laplace transform .Z f of f is defined by (.Zf) (x) = [ exp(—xt) f(¢)dt,
for each x such that the above integral converges.

Considering the Hilbert-type inequality with the kernel (x+y)~*, s > 0, Peachey [108],
obtained the following interpolating sequence of inequalities in the case of conjugate pa-
rameters.

Theorem 6.1 Letl—11+ 5 =1,p>1,andleth > —11—77 c> —é.lff,,g:IRJr —R, f,g #0,
are non-negative measurable functions with the respective Laplace transforms £ f and
ZLg, then

== f(x)gly) 1 b c
L L Gy < morern I N Olow,) 128 Ol
1 1 1-b-2 l—c-2
<8 (b4 et D W) D0, 6.1

Note that the middle term in (6.1) that includes norms with the Laplace transforms
of functions f and g, interpolates between the left-hand side and the right-hand side of
the corresponding Hilbert-type inequality. Moreover, taking into account the form of the
kernel, the above inequalities include the constant factors expressed in terms of the Beta
and Gamma functions.

163



164 6 HILBERT-TYPE INEQUALITIES AND THE LAPLACE TRANSFORM

In the same paper Peachey also derived an analogue of the above interpolating sequence
of inequalities, in the setting with non-conjugate parameters.

Theorem 6.2 Suppose that p > 1, g > 1, —|— >1,g<r<p, b+ >0, andc—|— >
0.If f,g : Ry — R, f,g #0, are non- negatlve measumble functions wzth the respecnve
Laplace transforms £ f and £g, then

[ sy < D Ol I (20 Ol

1_1_
’ r

11y
<Cl? 7 F ) ey 97780 o, - 6.2)

whereﬁzﬁ—k,%,)/:?—l—;,and

Ll (ST AT
C=p""Vy T <ﬁ+ B r +r)/ I (b+c+1).

Our aim in this chapter is to derive multidimensional versions of Theorems 6.1 and
6.2 with a more general parameters. In other words, we shall extend inequalities (6.1) and
(6.2) regarding multidimensional conjugate and non-conjugate parameters. In such a way
we shall obtain refinements of some particular Hilbert-type inequalities from Chapters 1
and 2.

Basic results will be established by virtue of the general Hardy-Hilbert-type inequality
in both conjugate and non-conjugate setting.

6.1 The case of conjugate parameters

To prove the main result we first establish the following two lemmas.

Lemma 6.1 Leta > —1.If f;: Ry — R, i=1,...,n, are non-negative measurable func-

tions with the respective Laplace transforms £ f;, i = 1,...,n, then
/ T lf’ ML fild) g = #/Nt“ﬁ(zﬁ)(t)dr. 6.3)
Rn a+l l"(a_|_1) 0 P

Proof. The proof is obtamed using a simple application of the Fubini theorem:

/0 wtailj(jfi)(t)dt - /O " (11 /O " exp(—ix) fi(xi)dxi> dr
_ /Rill_{f,x, (/ exp(—t(x1+...+x,,))t“dt)a’xl...dxn

(a+DITL, fi(x:)
= I dxi...dx,.
Aé” Z 1 n

hoyxp)ett
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The following lemma is a consequence of the general Hardy-Hilbert-type inequality
(1.13) (see Chapter 1), observed in a suitable setting.

Lemma 6.2 Suppose 1%+$ =Lp>LIff:Ry =R f#0, is a non-negative measur-
able function with the Laplace transform £ f, then

|y 2y ay
D= pO)T (1= gB) [ 24O 7 (x)d 64)

whereB<$andC< %.

Proof. Inequality (6.4) is an immediate consequence of (1.13) (see Theorem 1.9, Chap-
ter 1). Namely, using the notation from the mentioned theorem and setting K(x,y) =
exp(—yx), @(x) = x5, and y(y) = y*, we have

/ v P (K (x,y)dy = / y PCexp(—xy)dy = x"“"'T'(1 - pC)

and similarly, G(y) = [;" @ 9(x)K(x,y)dx = y?*~IT(1 — ¢B), so that inequality (1.13)
yields

00 {=c} p
rr(1 - gn) [y e ( / exp(-) (1) )
0 0
I'(1-pC) /O T p(B+C)- VP (x)dx (6.5)

Observe that equality in (6.5) holds if and only if f(x) = K;x 98 for arbitrary non-negative
constant K; (see Remark 1.3, Chapter 1). Clearly, this condition immediately gives that
nontrivial case of equality in (6.5) leads to a divergent integral.

Finally, since (4B —1)(1 —p) — pC= p—1— p(B+C), the above relation (6.5) yields
(6.4). O

Now, we are ready to state and prove the basic result of this section.

Theorem 6.3 Lers> 0,57 L =1,pi>1, o+ 1 =1i=1,....nand ¥ 0;=0.1If
fi:Ry =R, fi#0,i=1,...,n, are non-negative measurable functions with the respective
Laplace transforms L f;, then

fl xl 1 n L+
/]R i v dn < s THR7ZR Ol

le

1

n o0 i
% H |:/ n— 1—s+p;o; fpz (Xl)dxl:| ! , (6.6)
i=1 L/0

where B;+C; = = S—I—Oc,,B < -, and C; < =1,...,n.
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Proof.  Utilizing Lemma 6.1 and setting exponents f3;, i = 1,...,n, such that 3" | i =
s— 1, we have

H:l lfl 1 = s—1 . )
/R” dx .dx, _@/ot [T @

j 1 /
1 co N
el | GIEZAIOL
i=1

(5)

Moreover, applying the Holder inequality, we have that

L

/ iz JilXi) lfl xz dx <Lﬁ|:/mtpiﬁi($f')pi(t)dt ] ©6.7)
R’ (X1 x))* ") i Lo l
On the other hand, setting
1
ﬁi:q__(Bi+Ci)’ i=1,...,n, (6.8)
i

where B; < and Ci < , and taking into account Lemma 6.2, we have

|:/wtpiﬂi (L f)P (t)dt} g — |:/oot17i117i<3i+ci) (Zf)P (t)dt] g
0 0

1
1 1 (Bt C—1 s i
< T (1 — CIiBi)rl’i (l _ Pici) |;/0 Xf)l(BH_Cl) lf'ilh (xi)dx,} b . (69)
Now, putting B; 4+ C; = == 4 ¢; in (6.8), it follows that 3} 1[3, = s — 1, that is, inequality
(6.9) reads
1 1
i Pi ° Pi_ ) Pi
[ /O 2B (L fyP (t)dt] - [ /O (TR (g (t)dt]
1
= > © n—l—stpio; op; Pi
<T4 (l — qui)l“Pz (1 —piCl') o X; fl (xi)dxi . (6.10)
Finally, utilizing (6.7) and (6.10), we obtain (6.6). O

Remark 6.1 Applying Lemma 6.2 to parameters B = © (;1 —B)andC =
> L+ B >0, we have I'(1 — pC)TP~1(1 —¢B) = Fl’(p —l—ﬁ), that is,

(é—ﬁ%where

LD Ol <T(B+ 3 ) I8 70, 6.11)

The above inequality was also established in [108]. Moreover, utilizing (6.11) in the proof

1 L
of Theorem 6.3, the constant ﬁ [T (1 —giBi)T? (1 —piC;)] becomes ﬁ T, ra
)
pi v
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We restate Theorem 6.3 in the case of n = 2. This result is interesting in its own right,
since it may be regarded as a generalization of the mentioned result from [108], as well
as a refinement of inequality (1.23) with the kernel K (x,y) = (x+y)~* (see Corollary 1.1,
Chapter 1).

Theorem 6.4 Let L + Ll] =Lp>lLands>0.1Iff,g: R, — R, f,g#0, are non-negative
measurable functions with the respective Laplace transforms £ f and £g, then

//fx+y dxdy

1 1,52 2 1,52 _
<IN Ol 15T (0 Ol
1 1
<L [/wxl“'ﬂ’mlh)ﬂ’ (x)dx} ! [/ xlsTaAa=AY) gd () dx ’ , (6.12)
0 0

1
where L = B7 (1 —pAz,s—1+pA2)B$(1 —qA1,s —1+gA1), and Ay € (1%, 7), Az €
1-s5 1
( P 75)

Proof. The proof follows directly from Theorem 6.3 defining p; = g>» = p, p» =q1 =q,
Bi=A;, Ci = % —Ajy1, 0 =A;— A+ fori = 1,2 (the indices are taken modulo 2). [J

In order to obtaln inequality (6.1), we consider (6.12) with the parameters A; = Tb —

1
ﬁ and A, = ¢ — . Obviously, since A € (52, 1) and A, € (L2 > ), it follows that

0<b+1—7<sand0<c+q<s.

q ’q

Corollary 6.1 Ler I%—F é =L p>Lands>0.If f,g: R —- R, f,g #0, are non-
negative measurable functions with the respective Laplace transforms £ f and £g, then

/ / fx—i— ddy
1

m””s e+ (ff)()”u, ]R+ ths L) " (gg)(t)HLq(RJr)

1 1
<C wa(p1><1b>+6“'f1’(x)dx] ” [/ A= sga el (6.13)
0 0
1 L
where Cl — Br (C—|—%I7S—C—$)B‘I (b"’%as—b_%)

Remark 6.2 If s = b+ c+ 1, the above inequality (6.13) reduces to (6.1), that is, Theorem
6.3 can be seen as a generalization of the Peachey result from [108].
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6.2 The case of non-conjugate parameters

The following result is an extension of Lemma 6.2 to the setting of non-conjugate expo-
nents.

Lemma 6.3 Let p, p', q, ¢, and A satisfy (2.1) and (2.2). If f Ry — R, f#0, isa
non-negative measurable function with the Laplace transform £ f, then

[ [yr e gy (y)dy] !

1
7

~

==

< AFBHOTY (1 BT (1 4C) V T e, 614
0

where B < , and C <

Proof. We utilize general Hardy-Hilbert-type inequality (2.10) with non-conjugate expo-
nents (Theorem 2.1, Chapter 2). Similarly to the procedure used in the proof of Lemma
6.2, setting K (x,y) = exp(—%), @(x) =x*, and y(y) = in (2.10), we obtain inequality
(6.14). It follows also that the equality in (6.14) is possible only in the trivial case (see

Remark 2.3, Chapter 2). |
In order to obtain a non-conjugate version of Theorem 6.3, we introduce real pa-
rameters r’» such that p; <7/, i=1,...,n, and 3!, % = 1. For example, we can define
= 1 -+ 1 !=(n—nA+A)pi,i=1,...,n. Now, utilizing Lemma 6.3 we obtain the

r_:
ollowmg general result:

Theorem 6.5 Lets>0andp1,...,pn,/'L be as in (2.26) and (2.27). Let ry,...,r, and
al,...,anbesuchthatp,gr i=1,....n, X" 1’1_1 and ¥ 0; =0.1If f; : R+—>R

fi #0, i = 1,...,n, are non-negative measurable functions with the respective Laplace
transforms £ f,, then

H;’ | ﬁ 1 M (Bi+G)
codxy < —— Pi i /
/Rn avr-dn < s T (ZH) Ol g

<
I(s)
n oo pi(B,'JrC,')*% ) %
XH /0 X; TP (g)dxg | (6.15)

1,1 1 1
where}/izﬁ+77Bi< Pt and C; < -, i=1,...,n
1 1 1 1
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Proof. Let B;,i=1,...,n, be parameters such that 3 | f; = s — 1. Similarly to the proof
of Theorem 6.3, applying Lemma 6.1 and the Holder inequality, we have

=1 Jiti) lfl l J Q. « rBi Ny Ti
/R” dxnr()H[/O LR ar|t, (6.16)

/1/

Wherezl'-'zl%: land p; <r.,i=1,....n
On the other hand, setting

1
ﬁl:]?_(Bl+Cl)7 i:l7...,n7 (6'17)

i

where B; < # and C; < '—ﬂ, and taking into account Lemma 6.3, we obtain

[rmznrioa] - V S gy (r>‘”]
0 0

o (BaC) 1 o pi(BiHC)={} 7
<y BT (1 - pBAT (1 £C) V x; , !’l(xi)dxil . (6.18)
0

where 7; = —, + 'i, Finally, relations (6.16) and (6.18) yield (6.15). O

Setting B; + C; = n7p+1
(6.18) reduces to

— pil_ -+ 0;1in (6.17), we have Y., Bi = s — 1, that is, inequality

L
v
i

F(1—piB)T

oo %(nfs')fler,‘Oti Pi
X /xl.i fPix)dxi| . (6.19)
0

Now, exploiting (6.19) we obtain the following result:

(1-7C)

<
=
S
=
N
==
;1
=

Corollary 6.2 Let s > 0 and py,...,ps,A be as in (2.26) and (2.27). Let r{,...,r},
ay,...,0p satisfy conditions of Theorem 6.5. If fi 1Ry — R, fi #0, i=1,...,n, are
non-negative measurable functions with the respective Laplace transforms £ f;, then

Hl 1f1xl anll+1 o .
[ e U T § (I ECOICP

—I(s
1 o[ Sre-a 1 ) 1 )
< mlil Y; l r[)l(l_ptBi)r'l(l_rzCl)
n 0o %(nf.v)fleriai . PLi
X / x;! f(x)dxi| (6.20)
i=1 |70

1 1 —s+1 1 1 1 -
whereyi:7+7,Bi+C,~:%—E+ai,Bi<17, andC; < %, i=1,....n
1 1 1 1 1
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/

; — 1 1 D U 1 - D ;
Remark 6.3 Settmg =+ o = ; (n—s), Bi = T and C; = 'Ji<r§jrp;> in

(6.20), we get the followmg 1nequahtles

/ #l)dxl ...dx,
R" ( A

j= 1x1
_ (-DAtl

H||m EEFHI0]

ngj
(n—1)A L7 (R )

1 1 A10=DA T . N
AR [M n ] HF((n—l)ul'E) [T,

i=1 i

Obviously, according to the conditions from the statement of Corollary 6.2, we can use
other choices of parameters 7, and consequently, take the infimum of the right-hand sides
of the obtained inequalities over all such parameters /.

We restate Corollary 6.2 for the case n = 2. This result is interesting in its own right,
and it will be applied to obtain Theorem 6.2.

Corollary 6.3 Suppose p, p', q, ¢, and A satisfy (2.1) and (2.2), and let s > 0. Further,
let p<v <{q, %—l—% =l,andoy+0=0.1If f,g: Ry — R, f,g #0, are non-negative
measurable functions with the respective Laplace transforms £ f and £ g, then

[[ e

<TI T EZN Oy, I (LD Ol
< %n F T @) YT T8 0) g, ), (621)
where
M= 71 it "‘17,2—“ "‘zrl’(1_p/31)r%(1—r’q) l’(l— dBy)T7 (1—rCy),

1,1 1,1 —s
n=y+tw= )/2:?+;,B1+C1:3r,‘
By < %, and C; < %

351 1 1
By+Cr=3— 4w, B <5, G <y,

Proof. The proof follows directly from Corollary 6.2 using substitutions p; = p, p» = ¢,

Pi=@=r.rh=q=4q,r =r adr,=r .

Remark 6.4 Settings=b+c+1,04 =% b 0622—051731:1,/ p%(b—i— 7)s
1 RN Sl a1y

Cr= ryl(b+) 7~ 7pct ) and G = 7 — - (c+ ) in Corollary 6.3, we

obtain Theorem 6.2.
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Remark 6.5 Set s = A, oy = 172 + %, o =—0p, B = %, C = L, B, = L,, and

7 r’p p

C, =L, p<¥ <¢,inCorollary 6.3. Then inequality (6.21) becomes

rq

| —

~l—=

= = flx Lo
[ ety < sl LD Ol 7 (L0 Ol

I(4)
M
< m||f|\Lp<R+)H8HLq(R+)7 (6.22)
11 11 ¥ Y (I e 1y
wherey = 5+ 5. p=g+.and M=y TV (Hrv ([7)1"4’ (&)r7 (?). It should
be noticed here that in conjugate case, the constant % reduces to the best constant
r/sin(m/p).

Remark 6.6 Similarly to Corollary 6.2, if we put B; + C; = % + %(n —-1- %) + o4, i =
1,...,n,in (6.17),then ¥ | B; = s — 1. Thus, inequality (6.15) from Theorem 6.5 becomes

i1 Ji(xi) Uy at i)
Ly dxy < [l 7 (Zf) Oll
/}R+ ( j=1xj)s I'(s) U VR

1 A-t(n—5)-oi L L
<r I r )
i=1
1
n o Dip—1-$)+pioy Pi
X H [/0 xiq,( ) pafih(xi)dxi] P , 6.23)
i=1

where ¥;, 7/, 0; are as in Corollary 6.2. Observe that the integrals on the right-hand side of
the second inequality in (6.23) coincide with integrals on the right-hand side of inequality
(2.35) (see Chapter 2), when s is replaced by 7.

Remark 6.7 Multidimensional refinements of Hilbert-type inequalities via the Laplace
transform, presented in this chapter, are derived in [110] by Pecari¢ et.al.






Chapter

A class of
Hilbert-Pachpatte-type
inequalities

In this chapter we investigate a particular class of the so-called Hilbert-Pachpatte-type
inequalities which are closely connected to Hilbert-type inequalities. An interesting feature
of this class is that it controls the size (in the sense of L” or [” spaces) of the modified
Hilbert transform of a function or of a series with the size of its derivative or its backward
differences, respectively.

We start this overview with the results of Lii [86], in a slightly altered form, in both
continuous and discrete case. For a sequence (an), N, » the sequence (Van), |y is defined

by Va, = a, — a,_1, while for a function u : R, — R, 1’ denotes its usual derivative.

Theorem 7.1 Let %—i— Ll] =1, p>1,andlet s >2—min{p,q}. If f,g: Ry — R are
absolutely continuous functions such that f(0) = g(0) = 0, then

x)|lg)]
/ / (gxP~ 1+pyq Dx+y)s oy

B(qu\ 2 p+\ 2 ooy %
1—s P 1-s,/ q
[// ropaad] [ [ lgymasn

(7.1)

<

173
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Theorem 7.2 Ler % + é =1,p>1, andlet2—min{p,q} <s <2.If (am),,cN, (On),eN,
are sequences of real numbers such that ag = by = 0, then the following inequality hold:

i i |@m]n]

m=1ln qu 1+pnq 1)(m—|—n)

( +5—2 p+s 2) 1 - n é
< -2 lz zml *|Vaz|? [Z S ' \Vbslt| . (1.2)

rq m=11= n=15=1

Due to the form of the kernel, the above Hilbert-Pachpatte-type inequalities include
the constant factors expressed in terms of the usual Beta function. Our main task here is to
obtain generalizations of the above inequalities which include arbitrary kernels and weight
functions, with a special emphasis on homogeneous kernels. This can be done in a simpler
way than in [86], by virtue of the general Hilbert-type and Hardy-Hilbert-type inequalities
from Chapters 1 and 2. Hence, generalizations that follow will be given in both Hilbert
and Hardy-Hilbert form. Moreover, the established results will also be considered in the
setting of non-conjugate exponents.

7.1 Integral case

We start with the following general result.

Theorem 7.3 Let S +1=1,p> 1, andlet K : Ry xR — R, 9,y : R — R be non-

negative functions. If f,g : R+ — R are absolutely continuous functions such that f(0) =

8(0)=0,and F(x) = [y K(x,y)y P (y)dy, G(y) = [y K(x,y)@ ?(x)dx, then the following
inequalities hold.:

K(x,9)[f(x)]lgO)]
/ / qgxP—1 4 pya—1 dxdy

| /'K@»MfQMMONﬂxhd@h
0 Jo

o U /(pp x)|f(t |”d1:dx} [/ /vﬂ (5)|qd5dyr o)

IN

IN

and

/’Glp 20 [ [kl

' /0 /O @ (X)F (x)|f'(7)|Pddx. (7.4)
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Proof. Utilizing the Holder inequality (see also [86]) we have

o <sbst [ [ o] [ [ eoas)” 05

Taking into account (7.5) and the well-known Young inequality

P q 1 1
W< x>0, y>0, —+-=1, p>1,
p q P g
we observe that
PCI!{EX)||8():)1§| ||g [/ |f |pd‘5] [/ |g |qd6}
gxP—"+ py? xiyp

and therefore,

x VI )gO)l
ba / / qxP—1 + pyd—1 dxdy

< [7 [T g0y

qup

- /Om /OmK(x’y) [/ox |f/(7)|pd7} : [/O} Ig’(6)|‘1d6] édxdy. 76
- U()X|f’(r)lpdf}’l’7 gi1(y) = on|g'(3)lqd3r’

in the general Hilbert-type inequality (1.12) in the conjugate case (Theorem 1.9, Chapter
1), we obtain

/ow /0"" K(x,y)fi(x)g1(y)dxdy
U @ (x)F (x) /7 (x dx} { / VI)G)EI) dy]q
U / QP (x)F(x)|f'(t |Pdrdx} { / / w0) )qude]l, .

Finally, using (7.6) and (7.7) we obtain (7.3).
The second inequality (7.4) follows from the general Hardy-Hilbert-type inequality
(1.13) in the conjugate case (Theorem 1.9, Chapter 1), and the inequality

F()] < x3 (5 |f()|Pai) 7 . 0

Now, putting

IN

In the sequel we apply the above Theorem 7.3 to a homogeneous kernel. Similarly to
the previous chapters we use the notation k(o) = [;° K(1,u)u™%du, where K : Ry xR, —
R is a non-negative homogeneous function of degree —s, s > 0, provided k(a) < e for
l-s<a<l.
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Corollary 7.1 Let ;74— é =1,p>1,andlet K :R; x Ry — R be a non-negative symmet-
ric homogeneous function of degree —s, s > 0. If f,g : Ry — R are absolutely continuous
Sfunctions such that f(0) = g(0) = 0, then

7[RRI gy < [ [ ksl )

gxP~! + pya~!
L {/w/)‘xl—erp(Al—Az)|f/(f)|pd1dx}p
q 0o JO
1
<[ [y aig @nasay) "
0o JO
and
oo oo P
/0 y(pfl)(sfl)JrP(Al*Az) Uo K(x,y)|f(x)|d(xfl’)] dy (7.9)

P poeo px
<(5) [ [ pasas,
p) Jo Jo

1 1
where A € (%,éLAg € (%7 %), and L =k? (pA2)kd (gAy).

Proof.  We prove (7.8) only Let F(x) and G(y) be as in the statement of Theorem 7.3.
Setting @(x) = x"1 and y(y) = y*2, we obtain

/ / o (x (7)dtdx
- / / 17 (D) / K(x,y) (f)pAzdy] X142 g

pAQ/ / I=stp(Ai=42)| ¢ (7)|Pd tdx, (7.10)

and similarly,

| [ w60 @) rasay—kaan) [~ [y 0-aig (s)pasay. .11
Now, relations (7.3), (7.10), and (7.11) yield (7.8). O

Our first application of Corollary 7.1 refers to the homogeneous kernel K (x,y) = (x+
y)~%,s>0.

Corollary 7.2 Ler I%—F é =1, p>1 andlet s >0. If f,g : Ry — R are absolutely
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continuous functions such that f(0) = g(0) =0, then

X)|lg()] S V)1 T{C) | PP

/ / (qx?~ 1+1qu 1)(Xer)SdXdyS/o /0 Ty 0700
% |:/0°°/0Xxl—s+p(A1—A2)|fl(1.)|pdrdx:| z
<[ [ g @asa)

and
o o p
(1) (5= 1)+p(A1-A2) / IRy %} d
/0 Y {0 (x+y)s ()| dy
P oo
: (ﬁ) | [atserasp@vasar,
P 0o Jo

whereAle(lT é),Azé(lT %) andL; = B%(l—pAz,s—1—|—pA2)B$(1—qA1,s—1+
qA1).

Remark 7.1 Setting A} = A, = —S in Corollary 7.2, provided s > 2 —min{p,q}, we
obtain Theorem 7.1.

Considering the homogeneous kernel K (x,y) = lff f of degree — 1, we obtain the following

consequence of Corollary 7.1:

Corollary 7.3 Let % + (17 =1land p>1. 1If f,g: Ry — R are absolutely continuous
Sfunctions such that f(0) = g(0) = 0, then

// log 2| £ (x)[lg(v)] dd </ /mlog I (x IIg ”d(ﬁ)d(ﬁ)

(gxP=1+pyt=1)(y—

1

00 X P 0 y q

2{/ /xP(Al—A2)|f’(T)|Pdex:|[ {/ /yq<A2_A1)|gl(5)|qd5dy !
q Jo Jo 0o Jo

/Omyp(AlfAz) {/0 \f (y)llzg‘d( )]pdy

Ly Pope (A1 —A2)| ¢t
<(=2 / /xp 14| £ (7)|Pd e,
P 0 0

2 2
where A; € (0, Ll]),Az € (0, p) and Ly = w*(sin pA,m) 7 (singA ) 4.

and

We conclude the above discussion regarding symmetric homogeneous kernels with the
function K (x,y) = max{x,y} % s > 0.
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Corollary 7.4 Let %—1— (1} =1, p>1 andlet s >0. If f,g: Ry — R are absolutely
continuous functions such that f(0) = g(0) =0, then

@ls0) e [ [0
/ / (gxr— 1+qu ) max{x, Y}‘ ‘max{x,y}* y}‘ (xr Jdy)
1
E l:‘/o0 /xxls+p(A1A2)|f/(T)|pdex:| P
prq [Jo Jo
1
% [/0 /O“ y1s+q(A2Al)|g/(6)|qd6dy] q

/ooy(P—l)(S—1>+P(A1—A2)|: de(x%)rdy
0 o max{x,y}*

V4 oo X
- <L_3> / / xlf.H*p(Al*AZ)|f/(1')|pd7.'dx7
p o Jo

where A| € (%75)7142 € (2,1, and

and

N

Ly = T T T T
(1=pA2)7P (1 —qAy)a(s+pAs—1)7 (s+gA; —1)4

By virtue of general multidimensional Hilbert-type inequalities in conjugate setting (The-
orem 1.18, Chapter 1), Theorem 7.3 can also be extended to the case of n conjugate expo-
nents. We provide here the multidimensional version of inequality (7.3).

Theorem 7.4 Ler Y =1, pi>1, and let oy = Hf;zlh#ipj, i=12,....n. IfK:
RY =R, ¢ij: Ry =R, i,j=1,...,n, are non-negative functions such that [T} ;_; ¢;(x;) =
l,and fi : Ry — R, i=1,...,n, are absolutely continuous functions such that f;(0) =0,
i=1,...,n, then

ll[

[, Ko W g
R )y

nlal

S/RZK(xlan ) H|fz Xi |d . (x")

pq[// i () F ()| £, (%) [Pid dx; "

where F;(x;) = fRan(Xh ) T2 Lﬁéld)l( Xj)dxy...dxi_ydxiyy...dx, fori=1,...,n.
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7.2 Discrete case

As we have already seen, Hilbert-Pachpatte-type inequalities can also be considered in
the discrete setting. We first obtain a general result covering homogeneous kernels. It is
established by virtue of discrete Hilbert-type inequalities for homogeneous kernels, that is,
Theorem 1.14 (Chapter 1).

Theorem 7.5 Let ,_l; + i =1L p>1l,andletA,B, o, >0.IfK:R. xRy — Risanon-
negative homogeneous function of degree —s, s > 0, strictly decreasing in both arguments
and (am)meNO, (b”)nENO are sequences of real numbers such that ay = by = 0, then

K(Am* BnB)|am||b| K(Am* Bn )| am||bn]
L L3 3 st

m=1n=1 qmP~ 1+pnq ! pqm 1n= mqn
N | S & %
<N 2 2ma(lf.v)Jrap(Al7A2)+(17*1>(1*Of)|Var|l’
pa m=11=1
1
oo n q
« [2 2 B(1—s5)+Bq(Ar—A1)+ (trl)(lfﬂ>|Vb5|q (7.12)
and
[e:) > I)
S b D+pBAi-A2)+B-1 | § K(Ama,Bnﬂ)@
n=1 m=1 mi
< NP 2 z me(1=s)Fap(Ai—A)+(p-1)(1-0)|yq P, (7.13)
m=11=1
where A| € (max{ 7 S (;q , ) Ay € (max{lp ; ﬁ_pl}7 1) and

—s 1
N=o qB pAi*‘rAl AZ*lBT+A2*Al*1kE(pA2)kE(Z_S_qu)'

Proof. Similarly to the proof of Theorem 7.3, utilizing the Holder and the Young inequal-
ities, we have
1

=2

b by
p)‘{'?m” n|71 < |aml|| | z \Va|? 7
gmP—" + pni manv

> [Vbs|
5=1

and therefore,

& & K(Am®,BnP Nanllos] _ < K(Am®,BnP)|a,,||by|
rq E: p—1 q—1 E: 2: 11

qm +pn m=1n= manr

1 R 1

P
Y [Vbs|

o=1

m=1n=1

(7.14)

< i i K(Am®™ ,BnP) li |Va|?

m=1n=1 =1
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1~ 1
Now, setting @ = (X7 [Vac|P)7, by = (X4_, [Vbs|9) 9, u(m) = Am®, and v(n) = BnP
in (1.42) (Theorem 1.14, Chapter 1), w have

m=1n=1
<N[Y ma(1_s>+ap<A1_A2>+<p_1>(1_a>54 ’ [inﬁ(l—s>+Bq(Az—A1>+(q—1><1—13)’;;Z
m=1 n=1
-N| T ima(1—s>+ap<A1—Az>+<p—1><1—a>|Va(f)|p1
m=11=1
1
oo n q
x [z z B(1=s)+Bq(A2—=A1)+(q— 1)(1—B)|Vb(5)|q1 ) (7.15)

Finally, using (7.14) and (7.15), we obtain (7.12).
The second inequality (7.13) follows from (1.43) (Theorem 1.14, Chapter 1) and using

1 1
|am| <ma (X7, [Vae|?)r . 0

Remark 7.2 The above Theorem 7.5 can be regarded as a generalization of Theorem 7.2.
Namely, applying Theorem 7.5 to K(x,y) = (x+y) %, s >0, A=B=a = =1, and
A=A, = %7 assuming 2 —min{p,q} < s < 2, we obtain Theorem 7.2.

We conclude this section with an interesting extension of Theorem 7.2. Namely, by
virtue of Corollary 4.7 (Chapter 4), we can obtain a larger interval of admissible values of
the parameter s. Recall that this corollary was established by means of the Euler-Maclaurin
summation formula.

Now, following the same lines as in the proof of Theorem 7.5 and utilizing the above
mentioned Corollary 4.7 instead of Theorem 1.14, we obtain the following extension of
Theorem 7.2.

Corollary 7.5 Ler %—Fé =1 p>1 and let 2 —min{p,q} < s < 2+ min{p,q}. If
(am)meNO, (bn), cN, are sequences of real numbers such that ag = by = 0, then
SIS |am||bn] SIS |am||b |
< — P R e
D LR D)

I
ﬁnl’(m—kn)
1

1 1
N oo m ] P oo n ] q
<Y St var| | Y | Vbsl (7.16)
Pq | n=11=1 n=1§=1
and
2 =Dy <N Y Y | Va?, (7.17)
n=1 m=1 mﬁ(m—i—n)s m=11=1
where N| = B(‘—‘*’F2 ‘—"+p72).

qa > P
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7.3 Non-conjugate exponents

Having in mind Theorem 2.1 (Chapter 2), Hilbert-Pachpatte-type inequalities considered in
this chapter can also be extended to the case of non-conjugate exponents. Let p, p', g, ¢,
and A be as in (2.1) and (2.2). To obtain analogous results in the case of non-conjugate
exponents, we introduce real parameters #/, r such that p < < ¢4’ and '% + % = 1. For
example, we can define & = % + % orr/=(2-A)p.

It is easy to see that inequalities

XV yi <

11 1
"

7 I
(rx?" +ry7),x>0,y>0 (7.18)

and
11 X % y %
s <xty? | [rras]” | [¢@)eas o
0 0

hold, provided f, g : Ry — R are absolutely continuous functions.

Now, utilizing Theorem 2.1 and inequalities (7.18) and (7.19), we obtain the following
general result for non-conjugate exponents, in the same way as in the proof of Theorem
7.3.

Theorem 7.6 Let p, p', q, ¢/, and A satisfy (2.1) and (2.2), and let ¥, r be real pa-
rameters such that p <+ < q and > +1 = 1. IfK: Ry xRy =R, ¢,y : Ry — R are
non-negative functions and f,g : R. — R are absolutely continuous functions such that
f(0) =¢g(0) =0, then

/ / K0 .,

rxl’ —I—ryq

< B[ K w0l ldeer ()
< U / (0F)P ()| (¢ |”d1'dx] [ / / (WG)? )|qd5dy}l (7.20)

and

1
7

/ le(x7y)|f(x)|d(x%)} / dy]

Vow[wGl(y)
<_[/ [ (ory )|Pdmxr, (7.21)

where F(x) = (waK(Ly)l!/_q, (y)dy) !

=

~—

and G(y) = ( [57 K (x.y) @7 (v)d)
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Obviously, Theorem 7.6 is a generalization of Theorem 7.3. Namely, setting A = 1,
¥ = p, and r = g in Theorem 7.6, inequalities (7.20) and (7.21) reduce to (7.3) and (7.4)
respectively.

The following consequence of Theorem 7.6 may be regarded as a non-conjugate exten-
sion of Corollary 7.1.

Corollary 7.6 Let p, p', q, ¢, and A satisfy (2.1) and (2.2), and let K : R, x R, — R
be a non-negative symmetric homogeneous function of degree —s, s > 0. If f, g : Ry — R
are absolutely continuous functions such that f(0) = g(0) = 0, then

//0 Ky ll0)

qxp 1)(2-2) _|-py(q H(2-21)

< 5o /O | K el @ lemlati)an)

1
X ﬁ (1—s)+p(A1—Ap) ’
M [ I [ f(x >|Pdrdx]
1
|:/ / i, 1—5)+q(Ay—A1) g ( )|qd5dy:| ! (7.22)

and

[/ TP i) dy] '

1

% Y L(1-s)+p(A1-Ay) p ]p
<= [/O | ' ()Pddx| (7.23)

0

]

1
P

1
where A} € (11;“'7171,)7A2 € (%,%), and M = kv (p'A)k7 (¢'Az).

Proof. The proof follows directly from Theorem 7.6, setting ¥’ = (2—A)p, r=(2—1)q,
@(x) =x, and y(y) = y*? in inequalities (7.20) and (7.21). Namely, if F(x) and G(y) are
defined as in the statement of Theorem 7.6, it follows that

L
b

(pF)?(x) = xP ( [ Kty Wdy)

P
0o 'A q
— PA1—DPA2 X e !
=x K(x,y) dy
0 y

_ x’—,(l s)+p(A1—A2)kﬁ/( /Az) (7.24)

and similarly,
g i/(1 —5)+q(Aa—Ay), L

(WG)I(y) =yr k7 (p'Ay). (7.25)
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Now, utilizing (7.20), (7.21), (7.24), and (7.25) we obtain (7.22) and (7.23). O

Of course, remaining results from previous two sections can also be extended to include
non-conjugate parameters. Here, they are omitted.

Remark 7.3 The general Hilbert-Pachpatte-type inequalities in this chapter, as well as
their consequences, are taken from [109]. For related results and some other forms of
Hilbert-Pachpatte-type inequalities, the reader is referred to [28], [29], [35], [47], [105],
[106], [107], and [171].






Chapter

General Hardy-type
inequalities with
non-conjugate exponents

In 1925, G. H. Hardy stated and proved in [33] the following integral inequality:

b ( ISC dY) dx<(,,” ) 1A, ) (8.1)

where p > 1, and f € LP(R.) is a non-negative function. This is the original form of the
Hardy integral inequality, which later on has been extensively studied and used as a model
example for investigations of more general integral inequalities.

During subsequent decades, the Hardy inequality was generalized in many different
ways. Roughly speaking, the Hardy inequality was extended to what we call nowadays the
general Hardy inequality, or the Hardy-type inequality,

l/ab (/jf(y) dy) qlu(x) dx} (/ 1P (x dx) F>0, 8.2)

with parameters a, b, p,q’, such that —o < a < b < o0, 0 < g’ < oo, 1 < p < oo, and with u, v
given weight functions. The main problem in connection with the Hardy inequality is to
determine conditions on the parameters p,q’ and on the weight functions u, v under which
the inequality holds for some classes of functions.

185
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The Hardy inequality plays important role in various parts of mathematics, especially in
functional and spectral analysis, where one investigates properties of the Hardy operator,
like continuity and compactness, and also its behavior in more general function spaces.
For a more details about the Hardy inequality, its history and related results, the reader is
referred to [33], [69], [71], and [103].

Although classical, the Hardy inequality is still a field of interest to numerous authors.
In [14] and [15], A. Cizme§ija and J. Pecari¢ investigated finite sections of the Hardy
inequality, i.e. inequalities of the same type, where the integrals are taken over certain
subsets of R. In such a way they obtained some generalizations and refinements of (8.1).
For example, in [15], they proved that

k=1

/ _k</f dy) dx<(kfl>p/()b[l—(%)T]x”"‘fpwm (8.3)

where 0 < b < oo, 1 < p,k < oo, f >0, and x'"# f € LP(0,b).

It is well known that the Hardy inequality is closely connected to the Hilbert inequality.
That connection may be explained in a more general setting. Namely, Theorem 1.9 (Chap-
ter 1) provides a unified treatment of Hilbert-type inequalities with conjugate exponents.
In addition, as a consequence of the above mentioned theorem, M. Krni¢ and J. Pecarié¢
[53], extended the Hardy integral inequality to cover the case when p and p’ are conjugate
exponents. More precisely, they obtained the following pair of equivalent inequalities:

// (hg) () f(x) d (x)duz(y)
< [ oo ([ 0 duz(y)) )’
[/ (v h)(y (/ o7 (x) dpu ))g”’(y)duz(y)] (8:4)

and

/abH(}’) (/yq)"/(x) duy (x)> - (/yf(x) dul(x))pduz(y)
/ (v'n) (/9"" ) )) "y duw(y), (8.5

where p > 1, Uy, Uy are positive o-finite measures, 4, f, g, ¢,y are measurable, positive
functions a.e. on (a,b), and H = hy~P. Inequality (8.5) extends (8.1) and (8.3), as well
as numerous results known from the literature. Therefore, the inequalities deduced from
(8.5) will be referred to as the Hardy-type inequalities.

On the other hand, Theorem 2.1 (Chapter 2) covers the Hilbert-type inequalities with
non-conjugate exponents. The main objective of this chapter is to extend the general
Hardy-type inequality to the case of non-conjugate exponents. This will be done with
the help of the above mentioned result regarding non-conjugate exponents.
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This chapter is organized in the following way: In Section 8.1 we state and prove a
pair of equivalent Hilbert and Hardy-type inequalities with non-conjugate exponents p and
g, in the context of general measure spaces with positive o-finite measures, and to the
Hardy-type kernels. In Section 8.2 we discuss duality in Hardy-type inequalities, that is,
we obtain dual analogues of the results in Section 8.1. Further, in Section 8.3 general
results are applied to special Hardy-type kernels and power weight functions with integrals
taken over intervals in R;. In such a way, a numerous new inequalities with explicit
constant factors on their right-hand sides are obtained. In Section 8.4 we estimate some
factors included in the inequalities from the previous section, depending on non-conjugate
parameters and the exponents of power weight functions. Section 8.5 is dedicated to some
uniform bounds for constant factors in Hardy-type inequalities. We perform a detailed
analysis of optimal constants, depending on non-conjugate parameters p and g. Finally, in
the last section, we synthesize the methods developed in Sections 8.3, 8.4, and 8.5.

8.1 General inequalities of the Hardy-type

In this section we prove the main result that extends relations (8.4) and (8.5) to the case of
non-conjugate exponents.

Let (a,b) be an interval in R, T = {(x,y) € R :a < x <y < b}, and let y; and u, be
positive ¢ —finite measures on (a,b). We define the Hardy-type kernel K : (a,b) x (a,b) —
R by

K(x,y) = h(y)xr(x,y) = { hg) iii (8.6)

where % is a measurable, a.e. positive function on (a,b). Further, we define the functions
F:(a,b) —»RandG: (a,b) — R by

| —

P = | [T 0 s xe @)

3 |~

P

Gy) = [my) [o7w dul<x>] . ve(ab), 87

where y and ¢ are measurable, a.e. positive functions on (a,b).
We also introduce the related Hardy-type operator by the formula

y
HNO) = [ fWdm@, v (ab). 58)
a
Now, we are ready to state and prove the main result.

Theorem 8.1 Let p, g, and A be real parameters satisfying (2.1) and (2.2), and let 1,
and U be o-finite measures on (a,b), —o < a < b <. Let h, ¢, ¥ be measurable,
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a.e. positive functions on (a,b), and let H be the operator defined by (8.8). If the functions
F and G are defined by (8.7), then the inequalities

b
/a (&) () (Hf) () dpia(v) < [ 9F Fllzo () WGl (1) (8.9)

and

1

!
q
L 7

b / y / P / 9
{ [ v o [ o wanw] @ (Y)duz(Y)} <107 ruy
(8.10)

hold for all non-negative functions f and g on (a,b), such that F f € LP (1) and yGg €
L1(uy), and they are equivalent.

Proof. We follow the same lines as in the proof of Theorem 2.1 (see Chapter 2). Namely,
the left-hand side of (8.9) can be rewritten as

L= /ab/ay(hlg)()’)f(X) dpty (x)d s ()

L1
P

= /ab/ay [(hw—q’)(y)((pPFP—q’fp)(x)] q % [(P_pl(x)(hll/qu_plgq)(y)]
< [(@FF)” (x) (wGe)! ()" dpur (x)dpa (), (8.11)

since % + # + (1 —A) = 1. Further, utilizing the Holder inequality, either with the param-

eters ¢', p/, ﬁ > 1 in the case of non-conjugate exponents p and g, or with the parameters
p and p’ when ¢’ = p, and then applying the Fubini theorem, we obtain that L does not
exceed

7

R={ | [ w0000 t0rF7 7)) )

~ |-

y { A [h(y) [ o7 am <x>] (WIGT 7 g7)() duz<y>}
1-4

x { [ w61 ) [ (0?5 dans (s <y>}

Now, exploiting definitions (8.7), the above expression can be rewritten as
5 =
R = [ 9F 17y WGl Ly

b b 1=
x{|<pr|£p<M>||ng||zq(m>— / / (wFf)”(x)(ng)q(y)dul(x)duz(y)} :

(8.12)
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Of course, relations (8.11) and (8.12) yield
L<R. (8.13)

Moreover, using (8.12), we easily obtain

§+p(1—x) §+q(1—x)
R<NQFflfyy WGy = 9F Flluouy) WG o),

so that (8.9) is proved.
The further step is to prove that (8.9) implies that (8.10) holds for all non-negative
measurable functions f on (a,b). In particular, for any such f and the function

ﬂi_
4

)= i) | [0 W] TENTI0). ye @), s

applying the Fubini theorem, the left-hand side of (8.9) becomes

ﬂi_
4

b= [0 [ [ o a7 e )as

that is, we get the integral on the left-hand side of (8.10), while on the right-hand side of

(8.9) we have
b / Yo
- ||<pr|Lp<M>{ [ w10 [To0am)]

1
4 1

< (HP) () duz<y>} — [ QF £y L -

q

]

Hence, Ly < [[@F fl|1p(u qu which directly ylelds (8.10). Conversely, utilizing the
Holder inequality for con]ugate exponents g and ¢, together with relation (8.10) and defi-
nitions (8.7), we have

[ #9000 s
= [ G [ o)) 0] da

< |ng|“<#2>{ [ [[orwamem] "o )duz(y)}q

S H(pr”L[)([.ll)||WGg||Lq([.12)

Thus, (8.10) implies (8.9), so these inequalities are equivalent. U
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Remark 8.1 At the first sight, the proof of Theorem 8.1 is redundant since inequali-
ties (8.9) and (8.10) follow from inequalities (2.9) and (2.10) (Theorem 2.1, Chapter 2)
equipped with the Hardy-type kernel. On the other hand, in the proof of Theorem 8.1, we
have obtained inequality (8.13) which is a refinement of inequality (8.9). Let us write that
inequality once again, i.e.

= e

b /
[ 06)0) (1) 0) i) < 10F 1 w68 b

{ [ [ 0 ) (G o) am )ty } (8.15)

Clearly, substituting the function g, defined by (8.14), in the above inequality, we obtain
its equivalent Hardy-type form

q

{/ 10| [ o wam]| " @y ()duz(y)}E

q

<|¢Ff||zp;<ul>-{/ [/ o7 (¥)dpu( >] '

1-A
< ) [ (@Fn” du (X)duz(Y)} . (5.16)

Inequality (8.16) is also a slight refinement of (8.10). It should be noticed here that these
refinements hold only in non-conjugate case.

Remark 8.2 Taking into account the form of Hardy-type kernel, it follows from Remark
2.3 (Chapter 2) that the equality in (8.9) and (8.10) holds only in the trivial case, that is,
when f =0 or g=0a.e. on (a,b). In addition, the reverse inequalities in (8.9) and (8.10)
hold if the conditions (2.12) or (2.13) are fulfilled (see Remark 2.2, Chapter 2).

Remark 8.3 In the case of conjugate exponents, that is, when g = p’ and A = 1, inequali-
ties (8.9) and (8.10) reduce to relations (8.4) and (8.5). Thus, Theorem 8.1 may be regarded
as an extension of the corresponding results from [53] to the case of non-conjugate expo-
nents. Clearly, reverse inequalities in (8.4) and (8.5) hold if 0 £ p < 1.
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8.2 General inequalities with dual Hardy-type kernel

One of important properties of the Hardy inequality is duality. Here we obtain dual ana-
logues of the relations from the previous section.
Let (a,b) CR, let T = {(x,y) € R? :a <y < x < b}, and let g1 and pp be positive

o —finite measures on (a,b). We define the dual Hardy-type kernel K : (a,b) X (a,b) — R
by

R(x.y) = IR LC) I

Rla) =0y = { "9 12 17
where £ is a measurable function which is a.e. positive on (a,b). Moreover, we define the
functions F : (a,b) — R and G : (a,b) — R by

_ =

Flx) = [ / x(hw“l")(y)duz(y)} , x€ (b,

1
7

Gly) = [h(y) / "o () dm(xﬂ 7 yelab), (8.18)

where y and ¢ are measurable functions that are a. e. positive on (a,b) with respect to the
corresponding o-finite measures.

Further, the dual Hardy-type operator with respect to the operator H in (8.8) is defined
in the following way:

. b
(HP)) = / S dw (), ye (ab). (8.19)

In this setting, we obtain a dual analogue of Theorem 8.1.

Theorem 8.2 Let p, g, and A be real parameters satisfying (2.1) and (2.2), and let [y and
W be o-finite measures on (a,b), —eo < a < b <o, Leth, @, W be measurable, a.e. positive
functions on (a,b), and let H be the operator defined by (8.19). If the functions Fand G
are defined by (8.18), then the inequalities

b . ~ ~
/a (&) ) (H ) () dp2(v) < | QF | o () | WGl a(us) (8.20)

and

! 1
q L
-4 7

b / b / 14 ~ / gl ~
{ [ v o) [0 wawe| "y (y)duz(y)} < 9F
(8.21)

hold for all non-negative functions f and g on (a,b), such that (pff € LP(w) and l//ég S
L1(up), and are equivalent.
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Proof. Tt follows the same lines as the proof of Theorem 8.1. ]

Remark 8.4 The equality in dual inequalities (8.20) and (8.21) holds only in the trivial
case, that is, when f =0 or g =0 a.e. on (a,b). Moreover, the discussion about the reverse
inequalities in (8.20) and (8.21) is the same as in Remark 8.2.

Remark 8.5 Similarly to Remark 8.1, one easily obtains a refinement of (8.20) in the

non-conjugate case, that is,

b - 1] 1,
| W 0)EN) da() < 10F Sy, | WGy

{ / / (QFf)P (x)(wGg)"(y )dul(x)duz(y)}”7 (8.22)

with sharp inequality for f,g # 0 a.e. on (a,b). Furthermore, inserting the function g
defined by

‘L
/

)= 0| [ wam]| o) ve @)

in (8.22), we obtain the inequality

1-A
x(H )T () /yb(fpﬁf)” du (x)d iy (Y)} ; (8.23)

which can be regarded as a refinement of (8.21).

The most interesting case in connection with dual inequalities appears when (a,b) C
R;. Namely, we show that Theorems 8.1 and 8.2 are equivalent in the case of Lebesgue
measures.

Theorem 8.3 Ler 0 < a < b < oo and let diy(x) = dx, dux(y) = dy. Then inequalities
(8.9) and (8.20) are equivalent. Moreover; inequalities (8.10) and (8.21) are equivalent as
well.

Proof.  Suppose that inequality (8.9) holds for an arbitrary interval (a,b) C Ry and ar-
bltrary non-negative measurable functions @, w7h f,g on (a,b). We define a = % and

b= 5, with conventions @ = 0 for b = oo and b = o for @ = 0. We also define the

~ ~ ~ ~ 2 - 2
functions , @, , f, and g on (@,b) by h(t) = h (L), () =17 @ (1), () =17y (L),
) =172 (1), and g(r) =1 %¢ (7).
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Rewrite (8.9) with these new parameters. More precisely, using the change of variables
X = i‘ andy = %, the left-hand side of (8.9) becomes

U

[ @ammunma= [ waw [ rwaa,

that is, the left-hand side of inequality (8.20). Analogously, for the first factor on the right-
hand side of (8.9) we have
P
~_p b » u - q
1P 1L, 5 = | (0077 @) | [y )| "

which obviously represents the first factor on the right-hand side of inequality (8.20). The
same argument holds for the second factor on the right-hand side of (8.9). Thus, inequality
(8.9) implies (8.20). In the same manner, one obtains the reverse implication, so inequali-
ties (8.9) and (8.20) are equivalent.

Finally, pairs of inequalities (8.9) and (8.10) as well as (8.20) and (8.21) are equivalent
(see Theorems 8.1 and 8.2), which implies the equivalence of (8.10) and (8.21). O

8.3 Some special Hardy-type kernels
and weight functions

In this section, we consider the case of Lebesgue measure for some particular Hardy-type
kernels and weight functions. Namely, let 0 < a < b < o and let h, ¢,y : (a,b) — R be
defined by h(y) = %, o(x) =x", w(y) =2, A, As € R, respectively. As it was shown in
the previous section, it is sufficient to consider only the Hardy-type inequalities in Theorem
8.1, since their dual inequalities are equivalent with them.

In particular, we have to distinguish the following cases:

0<a<b<eo, (8.24)
0=a<b < oo, (8.25)
0<a<b=oo, (8.26)
0=a<b=oo, (8.27)

since one obtains different integration formulas for the functions F' and G, defined by (8.7).
In particular, if 0 < a < b < oo, then

1
7

Ay | (x\9A2]q

(log2) <, Ay =0,
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and .
1 1=p'Ay |
1= plA |7 —A11—<£) AL AL
G(y) = L=pif y 17y (8.29)
_ 1 oL
y 7 (log%)p’7 Al = I%

It should be noticed here that we have included the cases A| > ﬁ and A» < 0, by means of
the modulus function. In this setting, we obtain four corollaries arising from Theorem 8.1.
IfA, # 1% and A, # 0, then we have the following result:

Corollary 8.1 Let —o0 < a < b < oo, assume that real parameters p, q, and A satisfy
(2.1) and (2.2), let Ay, Ay be real parameters such that A # 1%’ Ay #0, and let H be the
operator defined by (8.8). Then the inequalities

/a by‘lg(y) (Hf)(y)dy

L Y
- |1—1D’A1|1 r [/bx(Al—Az)p 1_(%)“2 a p(x)dxl
lq'Az| 7 “
1
b a 1-p'Ay % I
y / S 1_<;> 1(y) dy (8.30)
a
and
) &
b (A1-Ay—2)qd a =4 _% / ’
/y 1=42=A)q 1—(;) (Hf)T (y)dy
a
_ 1 P
|1—I7/A1| v b (A1—A2)p X qlAZf J
e L L /x 1=Aa); 1—(5) £P(x) dx (8.31)
|q'Aa| ¥ “

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.
The case of A| # #, A =0 1is described in the following result.

Corollary 8.2 Let —oo < a < b <o, let p, q, and A be as in (2.1) and (2.2), assume that
A\ is a real parameter such that A, # #, and let H be the operator defined by (8.8). Then
the inequalities

1
L Z

[y a0y < 1 a7 l [ (10e2) 7o dx]

b 1=p'A;
% / y*Alq 1— (E)
a y

Q=

9.
I

gl(y)dy| (8.32)
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and

!

8

-7
P !

(Hf)T (v)dy

b 1-p'A
/ y(Al_)L)ql 1— (C_l) 1
a y

1
1 b § P
<|1—pAl 7 [/ i <log§> fp(x)dx] (8.33)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

IfA; = # and A, # 0, we obtain the following corollary.

Corollary 8.3 Let —oo < a <b < o, let p, q, and A be as in (2.1) and (2.2), assume that
Ay is a real parameter such that Ay # 0, and let H be the operator defined by (8.8). Then
the inequalities

[ soEnmay

b A, | T
<Iqasl ¥ [ [ =) f”(X)dX]
p b
b _ 1 i, =
x [ / YAl (1ogX)P gq(y)dy] (8.34)
a a
and
, 1
b ’ *q*/ ’ a
[/ y"’Az’l(logg) " (Hf)T (y)dy]
S R x\d2 |7 ’
< |q'As| 7 / (1=A2)p=1 1—(5) £7(x) dx (8.35)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.
Finally, if A| = 1% and A, = 0 we have:

Corollary 8.4 Let —co < a < b < oo, let p, g, and A be as in (2.1) and (2.2), and let H be
the operator defined by (8.8). Then the inequalities

/aby‘lg(y)(Hf)(y) dy < Vabxp—l (10g§) ﬁf”(x) dx} Z

x { / "y (10g2)" g7(v) dy] (8.36)
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and

L
7

s

!
P

< [/abxpl (logg) yf”(x) dx] !

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

[ o)

HS) () dy]

(8.37)

Now, we consider the second case, that is, (8.25), where a = 0. Then F is defined by
(8.28), and

L
G(y)=(1-p'A) 7y ™,  ye(0,b), (8.38)
where 1 — p’A; > 0. In this case, we obtain the following two results, dependent on the

value of the parameter A; (A; # 0 or A, = 0).

Corollary 8.5 Let p, g, and A be as in (2.1) and (2.2), let 0 < b < o, assume that Ay, A,
are real parameters such that p'A| < 1, Ay # 0, and let H be the operator defined by (8.8).
Then the inequalities

/0 by”lg(y)(Hf)(y) dy

,L, ’ £ %
< (1 —P'Al? r [/bx(Al—AZ)p 1— (%)qu ! fp(x)dx]
|q'As| 7 ’
b g
x { /O y(AZ‘A‘”gq(y)dy] (8.39)

and

r

SP(x) dx} (8.40)

L
7

NOs

hold for all non-negative measurable functions f and g on (0,D), and are equivalent.

Corollary 8.6 Let p, g, and A be as in (2.1) and (2.2), let 0 < b < oo, assume that A is
a real parameter such that p'A| < 1, and let H be the operator defined by (8.8). Then the
inequalities

VRN dy < (1 pA) 7 [ IR T dx] p
0 0 X

b q
X { | y“g‘f(y)dy] (8.41)
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and
1
7

b / / q
[ g o) as|
1

B b\ 7 v

< (1—plA) 7 / A <log —) F2(x) dx (8.42)
0 X
hold for all non-negative measurable functions f and g on (0,b), and are equivalent.
The next case (8.26) includes b = oo. Then G is defined by (8.29) and
_ L

F(x)=(dA) 7x ™,  x€(a,), (8.43)

where ¢’A; > 0. In this setting, we obtain the following two results, depending on value of
the parameter A} (A] # 1% orA; = #).

Corollary 8.7 Let 0 < a < s, let p, g, and A be as in (2.1) and (2.2), assume that Ay, A,
are two real parameters such that A} # ﬁ, q'Ay > 0, and let H be the operator defined by
(8.8). Then the inequalities

|yt smne) ay

L 1
. 1

/ - o
< w {/ X A1=A2)p £p () dx} !
(q'Ap)7  He
1
o0 a 1-p'Ay % !
| Do () g1(v) dy (8.44)
a y
and
, 1
—4, q

4

(HF) (y)dy

- 1-p/A
/ J=aad | (i’) '
a y

L 1
1— /A 7 oo >
< % [/ xA1=A2P pp () dx} ! (8.45)
(q'A2) 7 “

hold for all non-negative measurable functions f and g on (a,), and are equivalent.
Corollary 8.8 Let p, g, and A be as in (2.1) and (2.2), let 0 < a < oo, assume that A is
a real parameter such that q¢'/A; > 0, and let H be the operator defined by (8.8). Then the
inequalities

i _ 1 et P
[y RN Gy < (a7 | [T ad
a a

1

oo 1 % q
x [ / yi2=yr) (log£>p g7(y) dy} (8.46)
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and

1

(H) (v)d ]

‘L
/

[remim)
< (qA) 7 { JRE e dX} ; (8.47)

hold for all non-negative measurable functions f and g on (a,*), and are equivalent.

Finally, we consider the case of (8.27), that is, a = 0 and b = . In that case, the
functions F and G are defined by (8.43) and (8.38) respectively, where 1 — p’A; > 0 and
q'A; > 0. Hence, we have only one possibility described by the following corollary.

Corollary 8.9 Suppose p, q, and A are as in (2.1) and (2.2), A; and Ay are real pa-

rameters such that p'Ay < 1, ¢Ay > 0, and H is the operator defined by (8.8). Then the
inequalities

[y smmnea < % e ad

U yiha=ana >dy} (8.48)

and

Y.

[y g o) o
S%[/O (A A“’f”()dxr (8.49)

hold for all non-negative measurable functions f and g on R, and are equivalent.

Remark 8.6 Some results from this section, considered in conjugate setting, can be found
in [53]. Hence, the above relations may be regarded as an extension to non-conjugate
setting.
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8.4 Further analysis of parameters

We proceed with estimates for some constant factors included in Hardy-type inequalities
from the previous section, depending on non-conjugate exponents and on the real param-
eters A} and A;. Applying these estimates, we shall get closer to the classical Hardy
inequality. More precisely, retaining the notation from the previous section, the estimates

. (E)l—p’fh . ‘1— (g)lfp’Al
y b

-G <)

where 0 < a < b < oo, hold. In addition, assuming that 0 < a < b < o, the estimates

1
y Y€ (aab)a Ay 7£ 177 (850)

and
, X€E (a,b), Ay #0, (8.51)

b b
log— <log—, x€ (a,b), (8.52)
X a

and
y b
IOg— < 10g_7 VAS (aab)v (853)
a a

are obviously valid for the logarithm function.

Our aim here is to apply the above estimates to the results obtained in Section 8.3. In
such a way, we shall simplify these inequalities by obtaining the corresponding constant
factors included in the right-hand sides of inequalities. These constant factors will be
expressed in terms of the function/ : R — R, defined by

Sals)

L aro, (8.54)

1—
o { i

) aZO?

NJISES]

where 0 < a < b < eo. Obviously, [ is a continuous function since limy_.o (o) =1(0).
Combining Corollary 8.1 and estimates (8.50), (8.51), we obtain the following pair of
inequalities.

Corollary 8.10 Suppose p, q, and A are as in (2.1) and (2.2), —e0 < a < b < e, A| and
Ay are real parameters such that A # #, Ay # 0, and H is the operator defined by (8.8).
Then the inequalities

L 1
7

/aby‘lg(y)(Hf)(y) dy <1V (1—p'Ay)ld (q'Az)

b ST b
~ [/ x(AﬁAz)PfP(x) dx] ! [/ y(AzfAl)ng(y) dy ! (8.55)
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and

Y.

[ g )

L 1
7 7

b »
<17 (1—p'A)IY (¢'Ar) [ / xA1=A2)P g7 () dx (8.56)

a

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Note that inequality (8.56) has a form of the classical Hardy inequality (8.1). Now, let
us compare inequalities (8.31) and (8.56). The left-hand side of inequality (8.31) is not
less than the corresponding side of (8.56), while the right-hand side of (8.31) is not greater
than the corresponding side of (8.56). Thus, we can regard (8.31) as both generalization
and refinement of the classical Hardy inequality. The same reasoning will be valid for the
remaining results of the Hardy-type in Section 8.3.

Of course, in a similar way, we obtain the results that correspond to Corollaries 8.2, 8.3
and 8.4.

Corollary 8.11 Let — < a<b <o, let p, g, and A be as in (2.1) and (2.2), assume that
Ay is a real parameter such that A # # and let H be the operator defined by (8.8). Then
the inequalities

1
7

/ "\ e (HS) ) dy < 17 (1= p'A)I7 (0) [ / o dx} ’

x [ / ? yAaga(y) dy] (8.57)

and

1 1 b v
<17 (1—p'A})l7(0) {/ AP P (x) dx] (8.58)
a
hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Corollary 8.12 Suppose p, g, and A are as in (2.1) and (2.2), 0 < a < b < o, A, is a real
parameter such that Ay # 0, and H is the operator defined by (8.8). Then the inequalities

L1 L
7 7

[y reomnoas < 17 onf () | [ 10|

a
1

b _ 1 q
x [ / YA Mgy dy] (8.59)
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and

Y-

[ [yt o) dy}

1
i i b b
< 17(0)17(q A2) |:/ x(l—Az)P—lfp(x) dx (8.60)

a

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Corollary 8.13 Let 0 < a < b < . Suppose p, q, and A are as in (2.1) and (2.2) and H
is the operator defined by (8.8). Then the inequalities

b
|y )y

A b e -4 i
<) | [ trear) | [y g ay 8.61)
and 1
b »
U v IHT }" <10 )[/ xp_lfp(x)dx}[ (8.62)
hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Remark 8.7 It is easy to see that reverse inequalities are not valid in Corollaries 8.10—
8.13.

Finally, utilizing the established estimates, we can also obtain results that correspond
to Corollaries 8.5 and 8.7. Since a = 0 or b = o, we do not need to express the constant
factors in terms of the function /.

Corollary 8.14 Let 0 < b < o, let p, g, and A be as in (2.1) and (2.2), assume that Ay,
Ay are two real parameters such that p'A| < 1, ¢'Ay > 0, and let H be the operator defined
by (8.8). Then the inequalities

[y A stEnmas < # [ pra|

U yA2=A1)g dy] (8.63)

[ o]

and

1
b Z
[ / xAi=A2)p gp () dx} (8.64)
0

hold for all non-negative measurable functions f and g on (0,b), and are equivalent.
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Remark 8.8 If the parameters p and ¢ satisfy conditions (2.12) (see Remark 2.2, Chapter
2), then the inequalities (8.63) and (8.64) are reversed.

Corollary 8.15 Suppose p, g, and A are as in (2.1) and (2.2), 0 < a < o, A| and A; are
real parameters such that p’A; < 1, ¢’Ay >0, and H is the operator defined by (8.8). Then
the inequalities

:

[ | ytamne >dy} (8.65)

and

=

[/yfwz (1Y 0)a }

hold for all non-negative measurable functions f and g on (a,~°), and are equivalent.

Remark 8.9 If p and ¢ are non-conjugate exponents which fulfill conditions (2.13) (see
Remark 2.2, Chapter 2), then the inequalities (8.65) and (8.66) are reversed.

8.5 Uniform bounds of constant factors

We investigate here some further estimates for Hardy-type inequalities. First, recall that
Corollary 8.10 was obtained from Corollary 8.1 by means of estimates (8.50) and (8.51).
On the other hand, we may apply uniform upper bound 1 —#* < 1,7 € (0,1), x > 0, to
Corollary 8.1. The corresponding result, under some stronger conditions, is contained in
the following corollary.

Corollary 8.16 Let 0 <a < b <<, let p, q, and A be as in (2.1) and (2.2), assume that
Ay, Ay are two real parameters such that p'A; < 1, ¢'Ay > 0, and let H be the operator
defined by (8.8). Then the inequalities

[y oy < % [ pa)”
2

[ / YAa—A1)g dy] (8.67)
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and

&\‘ —

[ gy ) as]

a

1

AN b Iz

< % [/ x(A1=A2)p g2 () dx} (8.68)
(q'A2)7 ¢

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Remark 8.10 Comparing Corollaries 8.9, 8.14, and 8.15 with Corollary 8.16, we easily
conclude that Corollary 8.16 holds also if a = 0 or b = oo,

The constant factor on the right-hand sides of inequalities (8.67) and (8.68) depends
on the parameters A; and A,, while the corresponding integrals are dependent only on the
parameter A = A} — A,. Hence, it is interesting to consider such constant factor for a fixed
value of A. Then A, = A| — A and the constant factor can be regarded as a function

L
7

CA))=(1-p'Ay) 7 (dA1—q'A)

Y.

(8.69)

It is interesting to find the optimal value for the constant factor (8.69). More precisely, de-
pending on the inequality sign, we find maximal or minimal values for this factor. Having
in mind Remark 8.2, we have to consider three cases:

. pg>1,A>1

In this case we have A < 1% and A € (A, 171,), so, we have to find

&\‘ —

inf C(x)= inf (1—p'x) 7 (¢dx—qA)"

A<x<d A<x<d
P P
One easily obtains that C'(x) = 0 if and only if

_14+4A
AT

X0 (8.70)
Further, since xo € (A, ﬁ) and C”(xg) > 0, it follows that C(x) attains its minimum

value on the interval (A, ﬁ) at the point xo. Hence, a straightforward computation
gives the following value of the minimal constant factor:

o, o =ct= (1222

A<x<—
P

2. p<0,qe(0,1),A>1
Itiseasy toseethatA| € (— co, min { ;,A}), so we distinguish two cases, depending

on the relationship between the parameters A and #
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If A< 171,, we conclude, by a similar reasoning as in the previous case, that the

function C(x) attains its maximal value on the interval (—eo,A) at the point x( defined
by (8.70). Finally, since C(A) = 0, we have

A\
C =C = — .
supCls) = Clo) (l_p,A)

IfA > #, then the stationary point (8.70) does not belong to the interval ( — oo

)
and C(x) is strictly increasing on that interval. Further, since lim__ 1 C(x) =
4

1
P

there is no upper bound for the constant factor C(x) in this case.
3. p€(0,1),g<0,A>1

Here, we have to find the optimal value of C(x) on the interval (max { %,A},oo).
P

Similarly as above, we have to consider two cases. For A < ﬁ, it follows that the

function C(x) attains its maximal value on the interval (%,oo) at the point defined
by (8.70). Moreover, since C(%) =0, we have

2 A
sup C(x) = C(xo) = (”—) .

x>L, l_p/A
P

IfA > %, then the stationary point (8.70) is not contained in the interval (A, ) and
C(x) is strictly decreasing on that interval. Since lim,_ 4 C(x) = o, there is no
upper bound for the constant factor C(x) in this case.

According to the previous analysis, we have just proved the following result.

Theorem 8.4 Ler 0 < a < b < oo, let p, g, and A be as in (2.1) and (2.2), assume that A
is a real parameter such that A < ﬁ, and let H be the operator defined by (8.8). Then the
inequalities

/aby—lg(y)(Hf)(y) dy < (1 f’l);/A)l [/abprfp(x) dx];’

x [ / " yargay) dy} ' 8.71)

and 1

b S 7 AN gt ’
{ / YA (E f)T (y)dy} < (lf o A) [ /a x”Af”(x)dx] (8.72)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Remark 8.11 If a =0 and p, g, A are as in (2.12) (see Remark 2.2, Chapter 2), then the
inequality signs in (8.71) and (8.72) are reversed. On the other hand, if b = e and p, ¢, 4
are as in (2.13) (see Remark 2.2, Chapter 2), the inequality signs in (8.71) and (8.72) are
reversed as well.
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8.6 Applications

Finally, in the last section, we consider some interesting special cases involving the optimal
constant factor in the Hardy-type inequality established in the previous section. Namely,
we shall synthesize the methods developed in Sections 8.3, 8.4 and 8.5 for such cases. By
virtue of established estimates, we obtain the numerous interpolating inequalities which
provide both generalizations and refinements of some recent results, known from the liter-
ature.

We can gather the previous discussion in the following two sets of inequalities:

/a by”lg(y)(Hf)(y) dy

1
p'A g b oo X % ’ '
< PA]_ (Z) % P
< (l—p’A> /ax 1 (b) fP(x)dx

1
- q

and
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/ A b »
s(lfj}A) U x’”‘f”(x)dx] , (8.74)

which hold under assumptions of Theorem 8.4. Of course, these sets of inequalities are
equivalent and reverse sets of inequalities hold as described in Theorem 8.4. For A =0,
the above sets of inequalities (8.73) and (8.74) reduce respectively to

b
|y )y

o[-0
X /ab [1 = (S) ﬁ] ' gl(y)dy
|

L

A
< (p2)* 1—(%)“’] 1A lerlglles < (P'2)* £l llglle (875

and

<(n)’ {1 -(5) A} : {/b [l -(3) A} if"(x)dx}%

194
<G 1= (5)7 | 1l < ) 111 (5.76)

Remark 8.12 It follows easily that inequalities (8.75) and (8.76), with A = 0, are equiv-
alent to inequalities (8.73) and (8.74), with condition A < 1% Namely, setting

1 1 p'A 1
1-p'A 1-p'A il — (1-2) 157 —
al=PA plmPA L XA f(xl pA)7 y I pAg(yl pA)

in (8.75), respectively instead of a, b, f(x),g(y), and then, applying the variable substitution
theorem, the set of inequalities (8.75) become (8.73). So, the case of A < L is equivalent
to the case of A = 0. Thus, it is enough to observe the cases with A = 0, since all others
follow by suitable substitutions.

Finally, to conclude the chapter, we compare the results obtained in this chapter with
some previously known from the literature.
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Remark 8.13 Setting @ = 0 and b = = in (8.76), and isolating the outer expressions, we
obtain the inequality

_Q =

[ [yt mas]” < 2 il

which coincides with Opic’s estimate (see [69]). Clearly, for A = 1, we obtain the Hardy
inequality (8.1) in its original form. Moreover, the above inequality in conjugate form
can also be found in Kufner’s paper [68]. So, the interpolating sets of inequalities estab-
lished in this section may be regarded as both generalizations and refinements of the above
mentioned results.

Remark 8.14 Considering the parameter A = A — %, k>1, wehave A < A — % =1,

P
Hence, setting A = A — K in inequalities (8.73) and (8.74), the optimal constant factor
established in Theorem 8.4 takes the following value:
Aq' r
C= . 8.77
( 1 ) (8.77)

In this setting, inequalities (8.73) and (8.74) provide an extension to non-conjugate case
of the corresponding results from already mentioned paper [53]. Moreover, relation (8.74)
can be seen as both a refinement and an extension of the corresponding results from [14]
and [15]. Namely, in the conjugate case (p = ¢, A = 1) with C defined by (8.77), relation
(8.74) provides related results from mentioned papers (for example, see [14], Theorem 2,
[15], relation (13), and also relation (8.3) at the beginning of this chapter).

Remark 8.15 A unified approach to Hardy-type inequalities with non-conjugate expo-
nents, presented in this chapter, is developed recently in [18].






Chapter

Hilbert-type inequalities in the
weighted Orlicz spaces

In the previous chapter we studied general Hardy-type inequalities with non-conjugate
exponents. However, all derived results were related with the Lebesgue spaces. Nowadays,
the Hardy inequality is investigated in more general spaces, for example in Orlicz spaces,
Lorenz spaces, rearrangement invariant spaces and their weighted versions, as well as in
general Banach ideal spaces. For a comprehensive survey of recent results about the Hardy
inequality in Banach function spaces, the reader is referred to [71].

On the other hand, much less attention has been given to Hilbert-type inequalities in
such function spaces. Recently, K. Jichang and L. Debnath [43], obtained two-dimensional
Hilbert-type inequality in a weighted Orlicz spaces, including a homogeneous kernel. That
result will be cited in the next section, after we present basic definitions and properties of
weighted Orlicz spaces.

Our main task in this chapter is to establish a multidimensional Hilbert-type inequality
in a weighted Orlicz space. In other words, we shall derive the multidimensional inequality
in a weighted Orlicz space that corresponds to the classical inequality (1.73) (Theorem
1.18, Chapter 1).

In the next section we present some basic properties of Orlicz spaces, as well as the
above mentioned two-dimensional Hilbert-type inequality, obtained by Jichang and Deb-
nath [43]. Further, in Section 9.2 we state and prove the general multidimensional Hilbert-
type inequality in weighted Orlicz spaces. A special emphasis is placed on inequalities
including a homogeneous kernel with the negative degree of homogeneity. As an applica-
tion, in Section 9.3 we derive the Hardy-Hilbert-type inequality related to (1.74) (Theorem
1.18, Chapter 1) in some particular cases. Finally, in the last section the general method
regarding Orlicz spaces is applied to the case of the weighted Lebesgue spaces.

209
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9.1 Weighted Orlicz spaces and a two-dimensional
Hilbert-type inequality

An Orlicz function @ : [0,e0) — [0,e0) is a continuous increasing unbounded function with
®(0) = 0. Convex Orlicz functions are called Young functions. A Young function @ is
called N—function if moreover
O] o

lim ﬁ:o, limﬁ:oo

x—0t X X—eo X
For an Orlicz function @, a o-finite measure space (Q,%, ), and a weight w on Q, the
weighted Orlicz space L2 (1) is defined as the space of all classes of y—measurable func-
tions f : Q — R such that the modular

pou () = [0 (52) wauco

is finite for some A > 0. Moreover, if ® is a Young function, then the weighted Orlicz
space L2 (1) becomes Banach function space with the Luxemburg-Nakano norm

Il £l @0 =inf{l >0 Pow (%) < 1}. 9.1)

Recall that if ®(x) = x”, p > 1, the weighted Orlicz space LY (1) becomes the weighted
Lebesgue space, denoted by L} (1), with the norm

1
P

g = | 0 )]

In addition, if @(x) = x” [log(e +x)]%, p > 1, & > 0, then, in non-weighted case we obtain
the classical Zygmund space.

On the other hand, to Young function @ one can associate its convex conjugate function
@* defined by

" (y) = sup{xy — @(x)}. 9.2)

x>0

It is easy to see that the convex conjugate function ®* is also a Young function, as well
as (®*)* = ®. Moreover, definition of convex conjugate function provides the so called
Young inequality

xy < Bx) +P*(y), x,y = 0. (9.3)

Besides, inverse functions ®~! and ®*~! fulfill the following inequalities:
x < ® ! (x)@* (x) <2x, x>0. (9.4)

The right inequality in (9.4) follows immediately from (9.3), and for the other inequality
the reader is referred to [8] or [91].
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Further, throughout this chapter the Young function @ is assumed to be submultiplica-
tive (see [90]), that is,
D(xy) < D(x)@(y), x,y = 0. 9.5)

Condition (9.5) can be regarded as an extension of Orlicz A; condition for Young function
®d, that is, there exists a positive constant C such that ®(2x) < C®(x), x > 0. For more
details about standard theory of Orlicz spaces the reader is referred to [114] and [184],
while the weighted theory is developed in the monograph [51].

Now, we are ready to state the two-dimensional Hilbert-type inequality in the weighted
Orlicz spaces, obtained by Jichang and Debnath [43].

Theorem 9.1 Suppose ©,®* : R, — R are submultiplicative conjugate Young func-
tions and K : Ri — R is a non-negative homogeneous function of degree —s, s > 0. Fur-
ther, let f,g : Ry — R be non-negative functions such that || f||e. > 0 and ||g||ow > 0,
where w(x) = x'~5. Then,

Jos KWy < 1+l owligor ©.6

where

1
c] = / K(LM)CI)**1 (—) du < oo,
R, u

= /R+K(u,l)cb* (m>du<w.

9.2 Multidimensional Hilbert-type inequality

Concerning the statement of Theorem 9.1, we see that the authors deal with a pair of
submultiplicative conjugate functions. Moreover, in the proof of Theorem 9.1 (see [43]),
they used properties (9.3) and (9.4), which hold for a pair of conjugate Young functions.

Guided by that idea, we establish here a class of Young functions fulfilling the above
mentioned conditions. In such a way we shall naturally extend Hilbert-type inequality
(9.6) to a multidimensional case, and even more, formulate the corresponding result for an
arbitrary measurable kernel.

More precisely, we assume that @; : [0,e0) — [0,00),i=1,2,...,n, are Young functions
satisfying the following inequality:

n n
o [xi <Y ®i(xi), x>0,i=1.2,...,n, 9.7
i=1 i=1

where o0 > 1. In addition, the following inequality will be assumed to hold for inverses of
the above Young functions:

n
x<[]®'(x), x=>o0. (9.8)
i=1
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Now we are ready to state and prove the general result, that is, the multidimensional
Hilbert-type inequality for an arbitrary measurable kernel.

Theorem 9.2 Suppose ®;: R, — R, i =1,2,...,n, are submultiplicative Young func-
tions satisfying conditions (9.7) and (9.8). Let (Q;,Z;, 1), i = 1,2,...,n, be o-finite
measure spaces, let K : [T}_,€; — R be a non-negative measurable function, and let
©ij Qi x Q; — R, i # j, be non-negative measurable functions satisfying the condition

n
H @ij (xi,x;) = 1. (9.9)
l.i‘]#:jl

Further, suppose F; : Q; — R are defined by

)= [ Koo [T@0(@stex) dayx)). .10
I, Q; 1
J#L J7

If f; - Qi — R are non-negative functions such that f; € Lg" (ui) and || fillo, 5, > O, then the
following inequality holds:

n n n
/n Kl x) lHﬁ(xi)dui(xi) < 211 Ifllo,r ©.11)
=125 i=1 i=1

Proof. Applying property (9.8) to the kernel K : [T ; Q; — R, we obtain that
n
K(x1,x2,...,%,) < l_[(I)l._1 [K(x1,x2,...,xn)] -
i=1

Consequently, considering functions ¢;; : €; x Q; — R fulfilling relation (9.9), we obtain
the following inequalities

/n 5 K(x1,x2,...,%) [ﬁfi(xi)dﬂi(xi)}
i i =1

n n n
S/n ®; K (xvi,x2, ey x0)] filo) [T iein) | [T dm(x)
T2 Qi =1 j=1 j=1
J#
l n n n
< az/n 0 [0 Koo ) i) [ ) | T,
e i
where the second inequality sign holds due to relation (9.7). Note that in the previous
relation we write [1}_; dp;(x;) = d (x1)d o (x2) . . dn ().



9.2 MULTIDIMENSIONAL HILBERT-TYPE INEQUALITY 213

Further, since the Young functions ®; : Ry — R, i=1,2,...,n, are submultiplicative,

the Fubini theorem and definition (9.10) of functions F; : Q; — R yield another inequality:

2~/H” o @; q);l [K(xlax27~~~7xn)]fi(xi)H(pl/ xlvxl Hd.u/ x/
124 J=1
J#

RIm

IN

1
- / -xl X250y X fl xl H (pl/ Xiy X, dtu/( ) dui(xi)

o

#

L8 o

X / Q_K X1,X2, ..., Xp H i (@i (xi,xj)) duj(x;)] | dui(xi)

n
j=1 2%
J#i #

l ﬂ
/q) fi(xi)) Fi(xi)d i (x;:).

Hence, we obtain

/1'[;’ IQ-K(xl’xz"“’x”) Llf[lﬁ(xi)dﬂi(xi)]

2/ D; (fi(x;)) F () d i (x;). (9.12)

Now, replacing functions f; in (9.12) respectively with fi/|| fi|l®, r,» we have

K(xi,x2,...,x i
i K130 l o >]

l n fi(xi . N
/ (|ft|<1) F)Fl(x’)d.ul(xl).

On the other hand, utilizing the definition of the Luxemburg-Nakano norm, it follows that

/Q_<Dl~< filxi) )Fi(xi)du,-(xi)<l7 i=1.2.....n

fille,.F;

which yields

n
K . [T G| <2,
/n o (xX1,x2,...,X, l ”leq) Fle )] <5

=1 =%

that is, (9.11), as required.
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Our first application of Theorem 9.2 refers to a homogeneous kernel of the negative
degree, together with the Lebesgue measures dy;(x;) = dx;, i = 1,2,...,n, on R. In that
case the weighted Orlicz space LY (1) will simply be denoted by L?. Moreover, we shall
deal with a more suitable form of the non-negative functions @;; : £; x Q; — R, i # j,
defined in the previous theorem. In described setting, we have the following result.

Corollary 9.1 Suppose ®;: R, — R, i=1,2,...,n, are submultiplicative Young func-
tions fulfilling conditions (9.7) and (9.8). Let K : R", — R be a non-negative homogeneous
Sfunction of degree —s, s >0, and let h;jj : R — R, i # j, be non-negative measurable

functions satisfying condition

n X

I i (-’) =1. (9.13)
ij=1  \Xi
i#]

Further, assume that C;, i = 1,2,...,n, are real constants defined by

n

ci:/RHK(uh...u,»,1717u,-+17...,un)]'[[cbi(hij(uj))duj]7 (9.14)
: =
and w : Ry — R is the weight function, defined by w(x) = x"~571,
If fi : Ry — R are non-negative functions such that f; € Lg"w and || fillo;cow >0, i =
1,2,...,n, then the following inequality holds:

n n n
/ L Kexa,x) (T dui(xi) | < =TT fillo,.con- (9.15)
R% i=1 il
Proof. We utilize Theorem 9.2 with the functions ¢;; : Ry x Ry — R defined by

Xj . .
©;j(xi,x;) = hjj (x_]) , i ]

1

In this setting, the functions F; : R — R can be rewritten in the following form:

E(x,'):/RilK(xl,...,xn)ﬁ {op,» (h,;,- (i—f))d}g,}.

j=1
i
Now, taking into account substitutions x; = x;u;, j =1,...,i—1,i+1,...,n, and making
use of the homogeneity of the kernel K : R, — R, we have

n

F,-(x,) = /R"fl K(xiul, e XU X XUy e ,x,-un) H [q),‘ (h,'j(uj))xl'-'_lduj]
+

J=1

= /nfle“'K(uh...u,-,l,l7u,'+17...,u,1)H[(I)i(hij(uj))xf’flduj]
RY =1
J#i

n
- )a;—s—l/RHK(ul,...ui_l,1,ui+1,...,un)]‘[[@,»(h,-,»(u,,-))du,,-]
+

j=1
J#

= C,'W(X,‘),
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which completes the proof. ]

Remark 9.1 It is not hard to find non-negative functions h;; : Ry — R, i # j, i,j €
{1,2,...,n}, fulfilling relation (9.13). Namely, if B;;, i # j, i,j € {1,2,...,n}, are pos-
itive real numbers satisfying

Zﬁlk—ZﬁkP k=12,...n, 9.16)

t#k j#k

then the functions h;;(r) = i i = j, obviously fulfill (9.13), since

n A Bij
I1 (ﬁ) —1.
ij=1 \Xi

i#J

In the previous corollary referring to a homogeneous kernel of degree —s, s > 0, we
obtained the Hilbert-type inequality for weighted Orlicz spaces where the weight func-
tions were multiples of the particular weight w(x) = x*~*~!. On the other hand, utilizing
the same method as in the proof of Theorem 9.2, one can obtain the inequality which in-
cludes the weighted Orlicz spaces with the same weight function. This is the content of
the following theorem.

Theorem 9.3 Under the assumptions of Corollary 9.1, inequality

/n K(xl,xz,.. , X [Hfl Xi d,LL, Xi ] <
R

C
216 HHﬁH@,,W 9.17)

holds for all non-negative functions f; : R, — R such that f; € LY and I fillo,w >0,
i=1,2,....n

Proof.  We follow the same procedure as in the proof of Theorem 9.2 and take into
account the specific form of functions F; : R+ — R deduced in Corollary 9.1, thatis F;(x;) =
Ciw(x;), i=1,2,...,n. In this setting, inequality (9.12) can be rewritten as

n 1 n
/1K(x17x27~~~,xn) Ll_[lfi(xi)dﬂi(xi)} < EZ;C"/H& D; (fi(xi)) w(oxi)dx;.

Now, replacing functions f; in the above inequality respectively with f;/|| fillo;w, i =
1,2,...,n, we have

ln
o K523 lHnﬁm ] S fy (s ) s

Finally, since
/ o ( filxi) ) w(x;)dx; <1,
R, Hle‘:Dzw
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definition of the Luxemburg-Nakano norm provides the inequality

7 _Jilxi e
/ n K(xlvx27~~~7-xn) H fl(XL) d_xi < 2171 l7
R L1l o
and the proof is completed. .

Remark 9.2 If n = 2, then the constants C| and C, included in the inequality (9.17) re-
duce to

C1=/R K(1,u2)®; (h12(u2))duy  and (722/R K (ur, 1)@ (hy1 (u1))duy .

Now, considering a pair of conjugate functions, that is, ®; = ® and ®, = ®*, and defining
hio(up) = @1 (@*! (%)), condition (9.13) can be rewritten in the form

X1

o! (q)*_l (ul))h21(ul)=1, Uy = >0,

X2

yielding an explicit formula for the function Ay :

1
hat (uy) = ST (@ ()

1
inequality (9.6). Therefore, inequality (9.17) may lL;e regarded as a multidimensional ex-
tension of (9.6).

Thus, if n =2, o = 1 and hio(uy) = ®~! ((I)*‘l(—z)), inequality (9.17) coincides with

9.3 A version of Hardy-Hilbert-type inequality

In this section we derive Hardy-Hilbert-type inequalities associated to Hilbert-type in-
equalities from the previous section, in a particular case. Namely, in the sequel we ob-
tain Hardy-Hilbert versions of inequalities (9.11), (9.15), and (9.17) assuming that one of
Young functions provides the weighted Lebesgue space.

A Hardy-Hilbert-type inequality that corresponds to (9.11) in the above described set-
ting is a content of the following result.

Corollary 9.2 Let %—i— % =1L r>1,andlet ®;: Ry — Ry, i=1,2,...,n, be submulti-
plicative Young functions satisfying conditions (9.7) and (9.8), where @, (x) = x". Further,
suppose (4, Z;, i), i =1,2,...,n, are o-finite measure spaces, K : [I_, Q; — R is a non-
negative measurable function, and F; : Q; — R, i =1,2,... n, are defined by (9.10).
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Iffi: Qi — R, i=1,2,...,n— 1, are non-negative functions such that f; € Lgi (w;) and
||fl||(1>,,F, > 0, then

1

7

n—1 r
/Qn F 7 (x) VHHQi K(th,,.7xn)ll_[1ﬁ(xi)dui(xi)] dun(xn)]

n n—1
< o I lfillo £ (9.18)
i=1

provided the integrals on the left-hand side of the inequality converge.

Proof. Let I denote the left-hand side of (9.18). If we define the function f, : Q, — R by

n—1 r—1
Fulen) = F, 7" () [/ K(x1,x2,...,Xn) Hfi(xi)dﬂi(xi)] ; 9.19)
i=1

1—[;1:—11 Qi
then, utilizing the Fubini theorem, the r-th power of I can be rewritten as
n
= / o K o) [T i) duo)
i=1>% i=1
Now, the Hilbert-type inequality (9.11) yields

r n -
"< = ITlfile.s (9.20)
=1

On the other hand, the Young function ®@,(x) = X’ provides the corresponding weighted
Lebesgue space pr/n (ty). Moreover, taking into account (9.19), we obtain

1

s, = | [ 7 ) Ftonlantn)|” =15 o2
Finally, relations (9.20) and (9.21) yield inequality
L n n—1
17 < — [Tlfille.r
o
that is, (9.18), since r — ﬁ =1. O

The following two corollaries refer to homogeneous kernels. Namely, as a special
case, we obtain Hardy-Hilbert-type inequalities that correspond to Hilbert-type inequalities
(9.15) and (9.17).

Corollary 9.3 Let %—i— L=1,r>1, andler ®; : Ry — Ry, i=1,2,...,n, be submul-

T

tiplicative Young functions fulfilling conditions (9.7) and (9.8), where ®,(x) = X’ Let
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K : R} — R be a non-negative homogeneous function of degree —s, s > 0, and let C;,
i=1,2,....n, be real constants defined by (9.14).

If fi Ry =R i=1,2,...,n—1, are non-negative functions such that f; € Lgiw and
| fill@,.cow > O, where w(x) = x"5"1, then

1
n—1 " v
(n—1=s5)(1-r) / K (x:)dxi| d
Xn X15X25 -5 Xn i\Xi)dXxj Xn
/K 1 KGevz2,ox) L)

1/ p—1
n
< —— 1Al 9.22)
i=1

provided the integrals on the left-hand side of the inequality converge.

Corollary 9.4 Under the assumptions of Corollary 9.3, the inequality

/ xn(n—l—s)(l—r)
R,

<

1

n—1 " r

/nlK(xl,x27...,xn)Hfi(xi)dxi] dx,,}
RY i=1

n n—1
i:lc

STl (9.23)
i=1

o

holds for all non-negative functions f; : R, — R such that f; € LY and [l fillo,w >0,
i=1.2,...n—1.

9.4 Some examples in the weighted
Lebesgue spaces

In order to conclude this chapter, we provide here some remarks about reduction to the
case of the weighted Lebesgue spaces. More precisely, we consider the method developed
in Section 9.2 in the case of the weighted Lebesgue spaces.

For that sake, we assume that ®@; are Young functions defined by ®;(x;) = xlf'i, i=
1,2,...,n, where p; > 1,i=1,2,...,n, are conjugate exponents, that is, Y ; 1%

The above power functions define the appropriate weighted Lebesgue spaces. More-
over, since p; > 1,i=1,2,...,n, are conjugate exponents, the classical Young inequality
implies

n ) n 1l n
> =Tp! T
i=1 i i=1

i=1

1
and hence, according to condition (9.7), we can take oo = [T/, p;” . In addition, since the
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1
inverses of Young functions ®@;(x;) = x!" are respectively ®; ! (x;) = x/*, we have

1

n noog P
H(Dl._l(x) = Hx"i =x==r =y,
i=1 i=1

which means that condition (9.8) is fulfilled as well. Finally, the above power functions
are multiplicative, so the assumptions as in Section 9.2 are also fulfilled.

Remark 9.3 Regarding the above setting, inequality (9.15) can be reduced to a form
which includes Lebesgue spaces with the same weight function, as inequality (9.17). Na-
mely, using the notation from Corollary 9.1 and taking into account the above power Young
functions, we have

. pi L
Hﬁ”q)i.ciw = ||‘fl||Lg'iw = {/ﬂ&r fipl (xi)ciw(xi)dxi = Cipl HftHLaza

for i =1,2,...,n. In such a way we obtain an inequality related to (9.17), but with a
different constant factor. Moreover, in described setting, inequalities (9.15) and (9.17)
yield the inequality

/ n K(x17x27 s ,Xn) H.ﬁ(xi)dxi
R+ i=1

n CE l'}i Ci n
S == Tl 9.24)
Pi

D, pi i=1
Hzr'lzlpi Hzr'lzlpil '

Note that we cannot decide which constant factor is smaller.

< min

Remark 9.4 We know from previous sections that the constant factors C; involved in
inequality (9.24) can be explicitly computed for some particular choices of the kernel K
and the functions #;; : Ry — R, i# j,i,j € {1,2,...,n}, fulfilling relation (9.13).

For example, considering inequality (9.24) with the kernel K (x1,x2, ..., x,)= (X xi) ",
s > 0, and the power functions /;;(¢) = tPi, i # j, where the parameters f;; fulfill relations
(9.16), the above constant factors can be rewritten as

piBij
ey duj
) (1 + erl.:l ul)
J#i
Now, taking into account Lemma 1.3 (Section 1.6, Chapter 1), the above integral can be
expressed in terms of the usual Gamma function, that is,

r (S —n+1-p¥i, ﬁij) H'};n I'(piBij+1)
it i#i

€= o) :

provided that s —n+1— p; 3/, Bij > 0 and p;B;;+1>0, j #1i.

i#i
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Remark 9.5 Multidimensional Hilbert-type inequalities in weighted Orlicz spaces, intro-
duced in this chapter, are derived recently in [64].



Chapter 10

Some particular inequalities

In this book we have established a unified treatment of Hilbert-type inequalities in both
conjugate and non-conjugate case. We have derived numerous inequalities involving di-
verse choices of function spaces, sets of integration, kernels and weight functions. We have
also presented several methods for refinements of Hilbert-type inequalities.

Finally, in this last section we review some particular results, interesting on its own
right, which are closely connected with the theory exposed in this book. More precisely,
we give here some related Hilbert-type inequalities as well as some other refinements of
Hilbert-type inequalities known from the literature. The following recent results are cited
without proofs and are listed in the chronological order. For more details, the reader should
consult the corresponding literature.

10.1. G. Mingzhe [95], 1997.

If (an),cN, and (bn),cN, are non-negative sequences such that S pa: < oo and
Y0 b,% < oo, then

Y N
1PN

m=0n=0

i w(n)a,%] 7 [i w(n)bﬁ} 7 , (10.1)

n=>0

where the weight coefficient o is defined by w(n) = & — \/925:% and

1 ) 2n—|—1>
V2n+1 n+1

0(n) =2+/2n+ larctan (

221
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for n > 0. The equality sign in (10.1) holds if and only if (a,), . or (bn),cN is a zero-
sequence.

10.2. G. Mingzhe, B. Yang [97], 1998.

Let g > p > 1 be conjugate exponents. If 0 < ¥ | ah < oand 0 < ¥, bil < o, then

1 1
d T A L e T A K
=L\ S, 10.2

where L = 1—yand y=0.57721566... is the Euler constant. In addition, A is the largest
constant that keeps (10.2) valid and is independent of p and g.

o ~ UAmby
mglngl"H'”

10.3. B. Yang [145], 2000.

Let I%—k é =1,p> 1, andlet (a), ., and (bn), ], be non-negative sequences such that
0< 3w gah <eoand 0 < Y7 bl < . Then the following two inequalities hold and are
equivalent:

1
n
m:On:0m+n+1 3+ 1)2n+ 1)

1 i
_ | b2 (10.3)
lZ( e

and

n—1
> = amby P T ! & T 1
Z 2 1 < T 2 P 1
m=0 n=0m+n+ Sln; n=0 Sln; 13(1’14—1)(2}14—1);

10.4. M. Bencze, C. J. Zhao [6], 2002.

al.  (10.4)

n

Let p > 1, g > 1 be real parameters and let k, r, e be positive integers. If (a,,)nEN, (bn), eN
are non-negative sequences and A,, = X" | a5, B, = X", by, then

¢ lz (r—n+1)(b,BI | . (10.5)

n=1
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10.5. B. He, Y. Li [35], 2006.

Letm>1,n>1,p;i>1, —l———lforz-O 1,2,3,4, po=p,p3=%k, pa=rqo=q,
qg3=1,qs = 0. Further suppose f ,g : Ry — R are non-negative measurable functions and
let F(s) = [; f(0)do and G(t) = [ g(t)dt. If

0</ sp<1_%>_1F;7(s)ds<°o, 0</ 11= “Gq( 1)dt < oo,
0 : 0

then
n
// G() dsdt
ls"l +ktf’2 ) (s +11)
P12y 1 pp e (1-A)-1 7
< Ey(mnk,r ) / =21 (5)ds /ﬂ B1GY(dr |, (10.6)
0 : 0
where E| (m,n,k,r,A) = Md:ﬁ%

Fr(s) = [ / (" (o) f(o))qldo] " . and Gy(r) = [ / Z(Gm_l(r)g(r))‘”dr} "

0

10.6. B. He, Y. Li [34], 2006.

Let % + é =1,p>1,and let f,g: R, — R be non-negative measurable functions such
that

0</ (x+1)P7'fP(x)dx < oo and 0</ (x4 1) g (x)dx < oo.
0 0

Then the inequalities
/ / f(x)e(y) dxdy
o Jo log(x+1)+log(y+1)+1

< [ ot % [ oo (10.7)

and

- . f(x) !
/0 (a)(y7q))1 p{/o 10g(x+1)+10g(y+1)+1dx} dy

< lsm ] / o(x,p)f?(x)dx (10.8)

- SSin;-”/r) 1
ooy U r=pags =
In addition, the constant factors included on the right-hand sides of inequalities (10.7) and
(10.8) are the best possible.

hold and are equivalent, where @(x,r) = [1 —
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10.7. J. Weijian, G. Mingzhe [130], 2006.

Let

L 1 r—1
0(r) =x100 (S p))

where r > 1 and ¢(x) = %, x € Ry If p > g > 1 are conjugate parameters and

f,g : Ry — R are non-negative measurable functions such that
0< / o(p,x)fP(x)dx < +oo, 0< / ©(q,x)g?(x)dx < oo,
0 0
then
= f)g)
—————%—dxd
/0 /0 ax!tx + pylty @y

[/Ow o(p,x)f" (x)dx] : [/Ow a)(q,x)gq(x)dx} é 7 (10.9)

<

un
A T
sin F

ur
sin

101 . .
where yt = (1)4(})7. Moreover, the constant factor is the best possible.

T
P

10.8. W. T. Sulaiman [122], 2006.

Let Il—7+$ =1, p>1,and let A > max{p,q}. Further, suppose f,g : Ry — R are non-
negative functions such that £(0) = g(0) =0, f(e0) = g(e0) = oo, f'(s) >0, g'(s) >0,
s € {xP,y7}, and let log f, log g be convex functions. If

i P —A+4 ot p? Ay
0</t [f(tp)]i ' dt < oo, 0</t [g(tq)]zl . dt < oo,
0o [f) o [
then
< = flxy)g(xy) 5
b o sy
< Wl WBﬂp,x—p)B%(q,x—q)
. /mt?[ﬂwnzﬁ—“%dt ’ /mfZZ[gm)]zq—“%dt "7 oo
o [P o g

where B is the usual Beta function.
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10.9. W. Wang, D. Xin [129], 2006.

Letp>1, % + é —1,>eb,ands, 1 €R.If (an),cpy and (by), [y are non-negative real

1_ 1_
sequences such that 0 < ¥° | (n4 *@,)? < eoand 0 < 37| (n? 'b,)? < oo, then

i i ambn < li (Si:” _ 3([7_ 1) ) (n%—san)P‘| '

n=1m=1 msntlogamn n=1 P 8(210gl’l+ 1);}

X [i ( 'nn' B 3(q_l) 1>(n%_sbil)q‘| . (10.11)
n=1 \51%  8(2logn+ 1)«

10.10. Z. L, H. Xie [88], 2007.

_—=

Let —¢c <a < b <ooandlet f,g: [a,b] — R be non-negative measurable functions such
that [”(x+¢) f2(x)dx < o and [”(y+c)g?(y)dy < o. Then the following inequalities hold
and are equivalent:

bt flx)g(y)
[ ] waer e gt

1

< (n—4arctan ¢ %) {/ab(JH—C)fz(x)dx/ab(Y+C)82()’)dy] (10.12)

and
2
[ e o] @

2
< (n—4arctan{‘/ %) /ab(x+c)f2(x)dx. (10.13)

10.11. Z. Li, G. Mingzhe, L. Debnath [87], 2007.

Suppose F' is defined as
F(s,0) = ||a|>s* = 2(et, B)st + || BI|**, (10.14)

where o, 3, and ¥ belong to inner product space E, (a,3) indicates the inner product of
vectors o and 3, ¥ is the unit-vector, o and 3 are not simultaneously orthogonal to ¥, and
s=(B.y)andt = (e, 7).

Further, suppose f, g € L>(R,), ¢(x), w(x) are differentiable functions in R, and
0(0) = w(0) > 0, ¢(c0) = Y(oo) = oo, ¢'(x), Y/ (x) > 0. If the functions ¢’(x) and y'(x)
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have positive infimums, then

oo oo X 2
[/o J ¢£c(>)+gl(;()y>d"dy]

! - — arctan W(O) 2 X)dax
< TR l” et ¢<x>]f e
x/ow [n—arctan %1 & (y)dy—F(s,1), (10.15)

where F'(s,) is defined by (10.14) and F'(s,7) > 0.

10.12. H. Leping, G. Xuemei, G. Mingzhe [78], 2008.

If (an),.n and (bn), [ are non-negative sequences such that ¥;” a2 < +eo and
S b2 < oo, then

b

m=1ln

m+n

- 2 - 2
x [(2 bﬁ) — (2 w@)bﬁ) ] , (10.16)
n=1 n=1

where the weight function w(n) is defined by

n\fl (%11 _loin)'

10.13. H. Leping, G. Mingzhe, Z. Yu [77], 2008.

o(n) =

Suppose f and g are non-negative real functions such that 0 < [ (x — o) 4 f2(x)dx < o
and 0 < [ (x — &) ~*g?(x)dx < oo for A > 1. Then,

[// s >dXdyT 2
) (Lo trom) - (/m e |
x[(/a (x— o) *g?(x ) (/ wy (x )1 (10.17)

where the weight function @, (x) is defined by

1A [ 121 _
(U/l(x)—{(l %) 2 ) r oA L
370 x—o=1.
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10.14. W. T. Sulaiman [124], 2008.

Suppose p,q > 1 are conjugate parameters. A non-negative mapping f : R, — R is called
1 1
(p,q)-Holder type on Ry if the inequality f(xy) < f7 (x?)f4(y?) holds for all x,y € R;.

Let f and F be non-negative functions of (p,q)-Holder type on R such that £(0) =0
and f(eo ) = oo. Further, suppose that f” exist and is strictly positiveon Ry. If A >0, u > 1,

max{pq 5 ey < il l<mm{ 1}, and

1 1
K=Br(Ap—uq+q,A—Ap+uq—q)Bi(Aq—up+p,A—Aq+up—p),

where B is the Beta function, then

e (5 >)Ad"dy

< x| [TUl >3fq o A"F(xp) al [ <f<y4>>‘”)‘2>“‘l‘ﬁf<yq> &
’ (f/ () S O

Q=

(10.18)

provided that integrals on the right-hand side of the inequality converge.

10.15. Z. Yu, G. Xuemei, G. Mingzhe [175], 2009.

Let A > 0 and let f, g be non-negative functions such that 0 < [;*x!~* f2(x)dx < o and
0 < J57x'"*g?(x)dx < co. If m is a positive integer, then

/ / (logx —logy)?™ ! f(x)g(v) dxdy

X}L—y

<Cp [/wal_lfz(x)dxr Uo 122 )dx] l, (10.19)

where the constant factor Cp is defined by

Here, B, are the Bernoulli numbers, namely B; = %, B, = 30, B3 = 42, By = 30, Bs = 66,
and so forth. Moreover, the constant factor Cp on the right-hand side of (10.19) is the best
possible.
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10.16. W. Yang [169], 2009.

Let p>1,g>1, a>1,y>1 be real parameters and let k, r be positive integers. If
(an), N> (bn), I are non-negative sequences and A,, = Y| a5, By = Y| by, then

k r P nd
AmBn .
2 2 e ey < Cp.akriasy)
m=1n=1 ym oy +on oy
k o r 71’
2 (k—m+1)(AP"1a,)* N (r—n+1)(Bi'b,)7| . (10.20)
m=1 n=1
o—1 y=1
where C(p,q,k,r;0,y) = a”—fykTr i

10.17. W. Yang [170], 2009.

Letg;>1,p;>1,p=3%1", %, and o = Hf}zhﬁéip.,-, i=1,2,...,n. Further, suppose a; ,,
i=1,2,...,n, are non-negative sequences defined for m; = 1,2, ..., k;, where k; are positive
integers and let A; ,,, = 2;’;":1 ais,i=1,2,...,n. Then,

ky kn n qi

z z i=1Aim,
-1
e (pz )p

n k; pi

< Clky,....ka) [T Z(k,-—m,-+1)(A7’m aim)’| (10.21)

i=1 | mi=1

pi—1

whereC(k17...7k)—g;l llgt k o .

10.18. W. Yang [171], 2009.

Let us define the operator V by Vu(r) = u(t) —u(t — 1) for a function u : Ny — R. Further,
define the operators Vv(s,t) = v(s,t) — v(s — L,1), Vov(s,t) = v(s,t) — v(s,t — 1), and
VoViv(s,t) = Va(Viv(s,t)) = Vi(Vav(s,t)) for a function v : Ny x Ny — R.

Suppose p > 1, %—i— é =1, and a,b : Ny x Ny — R are such that a(0,7) = b(0,7) =
a(s,0) = b(s,0) = 0. If 0 <X, (3 20 Y5, |VaVia(t,8)P < e and
0< 32 552 Shey Sy [VaVib(k, )7 < oo, then

S ja(m,n)[[b(s,1)]
(q(mn)P=t 4 p(st)=1)(m+s)(n+1)

iiiiwmmmﬂp

x [i i 2 i VaVib(k, r)|‘1] : (10.22)
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10.19. C. J. Zhao, W. S. Cheung [179], 2009.

Letp>1,g>1,1>0,and L+ 3 5 =1, o > 1. Further, suppose a, ..
are non-negative sequences defined for m; = 1,2,... k;, and n; = 1,2,. r,, where k; and
ri, i=1,...,n, are positive integers. If Ay, ., = > "'ZT"_1a517 sp and By o=

Sl=l
ni n
zll:l e ztnnzl bthmJn’ then

1
h ka0 oo oBtP AL BE

o my - mnﬁ +ny - nyou

mp=1 my=1n;=1
SL(k17"'7kn7r17"'7rn7p7q7a7ﬁ)

1

B

1
'l 'n n o
X l 2 (ri—nj+1) (bn“_ﬂnnBZl‘_lﬂnn)a] , (10.23)

where 1
1 i
L(klv"'7kn7r17"'7rn7p7q7a7ﬁ) :pq(kl'“k”)a(rl'“r”)ﬁ'

10.20. Q. Huang [38], 2010.

n

Suppose pi,ri >1,i=1,...,n, are real parameters such that ¥ , 1 =25 =1 and

q—n = 1— —. Further, let o, [3 and A be real parameters such that A > 0,0<a<2, B>

5, and /'L(x max{ 51,1} < minj<;<,{ri}. Then the following two equivalent inequalities

oo oo

S S o [l

mp=1 my= l
1
1 —n n ) o i i Pi
HF( )[2 (i BP0 5! (aﬁ,iﬁ)p] . (10.24)

mj=1

- kaqn o o - 4n7 an
anl(mn—kﬁ ( 214:1 mzz mt+ﬁ) J* ) 1
<& <1r) 1 ( ) i(mﬁﬁ)”"“lffx“(a%?)mr (1025)

m,’=1

hold for all non-negative sequences (as,il). )mi N> provided that

0< Y (mit )" (aﬁ,i?)pi <o i=1,...,n.

mj=1

Here, I' is the Gamma function.
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10.21. N. Das, S. Sahoo [20], 2010.

Suppose [lj + %1 =1,p>1,andlet A,r,s be real parameters such that 0 < A < 4,0 < r,s <
min{2,4},and r+s=A. If A, = ¥]_, a; and B, = ¥}_| by, where (ay),, .1, (bn),, oy are
non-negative sequences fulfilling 0 < ¥~ al < eoand 0 < Y7, bl < o, then

1 1
oo oo m 7 n.' » oo 14 oo q
AnB, < pqB(r,s) ar bl (10.26)
o I P O P o
m e nr
— A < (¢gB(r,s))? » a’, 10.27
E(Emte) cwrga oo

where B is the Beta function. In addition, the constant factors pgB(r,s) and (¢B(r,s))? are
the best possible in the above equivalent inequalities.

10.22. X. Liu, B. Yang [85], 2010.

Let % + é =1, p>l,andlet A, A, A; be real parameters such that A; + A, = A < 2. Further,

suppose k), : Ry x R. — R is a non-negative homogeneous function of degree —A so that
0 < k(A1) = Jo k(u, 1)’ ~'du < oo holds for all A; € (A —1,1). If f,g: Ry — R are
non-negative functions and @ (x) = x?(2=A=4)=1 "y (y) = ya(1-A)-1

. - 1 - = 1
B = [ 2fwd G0 = [ e,
X y
sothat 0 < || fl» = [y 6(x)|f(x)|pdx]% <eoand 0 < ||(~;7LHL?,, < oo, then the inequalities
G

k()

| o e B )Ga )dxay < T2 Gl (10.28)

{ | v [ | ke <x)dx]” dy}% ) 1/«(_&;31

hold and are equivalent.

and

(10.29)

10.23. S. K. Sunanda, C. Nahak, S. Nanda [126], 2010.

Let (pr)eN and (gx ),y be non-negative bounded sequences such that ﬁ + i =1, where
pr > 1 for all k € N. Then the inequality

L L

8

< osup

oo Pk oo Els
z 1 z nPe—1 al z ndk—1 bk
n=2m=2 Og k>1 Sln D = n=2

(10.30)
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holds for all non-negative sequences (an),,. N (bn),,cN» such that 0 < ¥, nP~af* < oo,
0< Y ,n?% 1plk < o Here,

1 1
O =sup — +sup —.
k>1 Pk k>19k

10.24. Z. Zeng, Z. Xie [176], 2010.

Let%+%1=1,p>1,andlet

~ 4msin r(ﬁ;a) cos ,(,,,g,m

m
rcos 7

)

where —1 < r < 0and 0 < oo < 8 < . Then the inequalities

|| s

<k [/w |x|P<1+f>—1fP(x)dx] ! [/w |x|q(1_’)_1gq(x)dx] ! (1031)

x> +2xycos o + y?

1
By 2xycos 3 + y2

dxdy

and

- oo 2 20 1P
pr—1 X+ 2xycoso+y dxl 4
/_oo b {/_oof(x) x2+2xycos B +y? o

<k”/ x|PUF0=1 P (x)dx (10.32)

log

hold for all non-negative measurable functions f,g : R — R, provided that
0 < [, |x[PUH)=1#P(x)dx < coand 0 < [ |x]9(1=")=1g4(x)dx < eo. Moreover, the above
inequalities are equivalent and include the best possible constant factors on their right-hand
sides.

10.25. J. Jin, L. Debnath [45], 2010.

For p > 0, ng € Z, w(n) > 0, n > no, n € Z, we define the set of sequences %, ,, by

pw=<iwwm%mi<w}

n=ny

lﬁno = {(an)n>no; [l

For conjugate parameters r,s > 1 denote by H (r,s) the set of all non-negative functions
K Ry xR, — R fulfilling the following conditions:
(1) K : Ry x Ry — R is continuous and decreasing in each variable,
(i1) K is homogeneous of degree —1,
(iii) there exist a constant M > 0 such that lim,_,q+ K(1,) = M. For sufficiently small
€ >0 the integral K; (&) = [ K(l,t)t’#dt, [ =r,s, exists, where K;(0) = C, is a positive
constant and K;(¢) =C,+o0(1) as € — 0.
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Further, let Fy,, (), r > 1, ng € Z, denote the set of all real-valued functions ¢ (x) such
that:
(i) ¢(x) is continuously differentiable and strictly increasing on (ng — 1,0),

() 0((n0 — 1)) = 0. 9() === ¢< )[0(x)] 7 is decreasing on (g — 1,2).
Letp>1, s +o=1r>1, L=1, mo,ng € Z, K € H(r,5), ¢ € Fp,(r), ¥ €

N

Fy(s). Setting Wl(m) = [p(m)] 7~ W m)|' =P, wa(n) = [w(n)] ! [/ ()], 1 (n) =
v () [w(n)] 71, Wa(m) = ¢/ (m)[¢(m)]* !, we define the sequence operator T as follows:

fora € I, my»
= z K(¢(m),w(n))am, n > no,n € Z,
m=my
or, for b € I, n,,

oo

(TB)(m) = 3 K(o(m), y(n))bs, m > mo,m € Z.

n=no
Then we have
1Ta] s, < and [IT5]lg5, < Collblguns- (10.33)
Moreover, _
17l =17l =G = [ Koy ar (1034)
where
IT||,= sup I7allp and [|T]|;= sup 17bllq.3,
a€lfy mg | ||P7W1 bELhy ng 6] q.w2

10.26. L. E. Azar [5], 2011.

Let %+$ =1,p>1,andleta,b,c,s, A1, Ay be real parameters such that a,c > 0, b? < ac,
s>0,A41 € (=2 1) Ay e (22 1) and let

q ’q p ’p
1-py  pAy-l 1 —pA, 1—pA2 1 b?
Li=a 2 ¢ 2 B(l—pA>. 25+ pA>—1)F - - —
1 a c ( pA2, S+P 2 ) ( ) ;8 2 +2 LlC)
A—1 1—gA 1—gA 1—qgA 1 b?
Ly=a" "+ c 7 B(1—gA;,25+gA, — 1)F( 2" L s— 2" 1,s+§,1——),
ac

where B and F respectively denote the usual Beta and the hypergeometric function (see
relation (2.53), Chapter 2).

Further, suppose u,v : (a,b) — R, —eo < a < b < oo, are non-negative differentiable
strictly increasing functions fulfilling conditions lim,_,,+ u(#) = lim,_,+ v(f) = 0 and
lim, ;- u(¢) =1lim,_,;- v(¢) = co. Then the inequalities

f(x)g(y)
/ / (@200 + 2bu(x)v(y) - o2 () P

L1 b 1=25+p(A1—A2) P b 1-25+q(Ar—Ay) q
<LJLj [/ u(x)—fp(x)dx] [/ v(y)—gq(y)dy (10.35)

W O



10 HILBERT-TYPE INEQUALITIES IN THE WEIGHTED ORLICZ SPACES 233

and
b b p
(25— 1)(p—1)+p(A1—Ag) ./ ()
[ 0| [ T T @
) 1-2s+p(A1—Ay)
< LiL3 / “(X)M,Tfp(x)dx (10.36)

hold for all non-negative measurable functions f,g : (a,b) — R, provided that

b u(x)=2s+tp(A1—47) b y(y) —25ta(Ay—Ay)
0 < [y o= fP(x)dx < oo and 0 < [ oy

inequalities (10.35) and (10.36) are equivalent.

g(y)dy < e. Moreover,

10.27. C. T. Chang, J. W. Lan, K. Z. Wang [13], 2011.

For p > 1, denote by .77, the set of all non-negative functions K : Ry x Ry — R having
the following properties:
(i) K is homogeneous of degree —1,

1 1
(if) K(x,1)x 7 is strictly decreasing function of x and K(1,y)y @ is strictly decreasing
function of y, where % + é =1,

oo 1
(i) k, (K) = [y K(1,y)y 9dy < eo.
Let [, be the Banach space of all complex sequences x = (x, ),y With the norm ||x||, =

1
(3o |%n|P)P < oo and let .7 () be a class of all non-negative differentiable functions
f: Ry — Rsuch that infy~o f7(x) > o > 0.
If ¢ € (), i= 1,2, and K(x,y) f1(x) f2(y) € 54,, then

(10.37)

11 b
3 Ko eamlanlonl < 01 "o "ol s s

1

o [ e . B )
LZ&(Z&K(W")’ m)) f2(¢a(m Ian|>] <oc1 kame, (10.38)

[i (i K(¢1(n), 92(m)) f1(¢1(n ) ] <oc1 ”k H )|q7 (10.39)
n=1 =
where ky = ky(K(x,)/1(x)/2(v)) and 765 ( >neN’ 767 = (Ftm Imel are

complex sequences such that 0 < || —%~ 7 ¢1 H pll =5 fz Hq
N
In addition, if limy_. ¢/(x) = o, i = 1,2, then the constant o, ‘o, "kp is the best
possible in the above inequalities.

10.28. D. Xin, B. Yang [135], 2011.
Suppose I%+$ =1,p>1,and let

T sindlog  sinA(m— 0p)
sinA7m | sinoy sin 0

k(1) =
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where 0 < [A] < 1and 0 < o4 < 0 < 7. Then the inequalities

oo 0o . 1
/_w /—oo ie(12} { x2 +2xycos a; +y? } S(x)g(v)dxdy
<) | [Cwr e | [T een]T aod

and

oo oo 1 p
p(1=24)-1 i dx| d
/_oo i U_wiél{lfg} {x2+2xyc0s o +y? }f(x) x] Y

<K\ / XA P () d (10.41)

hold for all non-negative functions f,g : R — R such that 0 < [<_|x| P2~ fP(x)dx < oo
and 0 < [~ |y|?*~1g%(y)dy < . Moreover, inequalities (10.40) and (10.41) are equivalent
and include the best possible constant factors on their right-hand sides.

10.29. B. Yang, M. Krni¢ [168], 2012.

Suppose 11—7 + é =1, p>1, and let o € R. Further, let & : Ry — R be a non-negative
function such that 0 < k(o) = [ h(1)r* 'dt <eoandx* ¥ h(%)n® ! <k(a), x € R,
Then the inequality

/Omf(x)r;h (;) andx

1
q

L.
< k(o) [/0 xp(Ha)_lfp(x)dx} ’ [Z nq(l_a)_laZ] (10.42)
n=1

holds for any non-negative function f : R, — R and any sequence (a,), .y, provided that
0 < J57aPU+@)=1 P (x)dx < 0o and 0 < ¥ n91=%~14] < oo, In addition, the constant

factor k() is the best possible in (10.42).
10.30. M. Krni¢ [65], 2012.
Suppose pj,pt,qi, i = 1,2,...,n, and A are real parameters fulfilling conditions (2.26),

(2.27) and (2.30) (see Section 2.4, Chapter 2). Further, let (Q;,%;, ;) be o-finite measure
spaces, andlet K : [T, Q; — R, ¢;;: Q; — R, fi : Q; — R, i,j=1,2,...,n, be non-negative
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measurable functions. If [T} ;_; ¢;;(x;) = 1, then

n+1)M
{fn {K"(X) 1 (Gaoifi) (xi) @ (x;) ;?izl-f#i(blgfi(xj)} 1/(n+l)du(x)}( B
Iy o fil

_ JoK*OTTL, filxi)du(x)

- 1 19 i fill i )
» » . 1/(n+1) (n+1)
{fg_ {K”(X) (o) () o % (x;) T 0 (xj)] du(x)}

Iy lganfill 7, 7
(10.43)

<

and

(n+ l)mH ||¢ii0)iﬁ||L"i(u,-)
i=1

i 0 a 1/(n+1)
1 Ja [K"OOTIL, (@u@ifi (), “ )Ty a0 )| i)
J1o
T w5 )
<TTleuwifillri () —/ K)L(X)Hfi(xi)d”(x)
=1 Q i=1
< (n+ )M 19iifill 1ri (g
i=1
. o 91/
o [KUOOTI (r0 o )T 0 )] )
X _ 9
T w5 )
(10.44)

where Q =TT Qi x = (X1, X2, ..., Xn), Al (x) =TT di(xi),
1 1 1 1 1 1
m:min{—,—,...,—,l—l},M:max{—,—,... — l—l}
q1 q2 qn q1 492 qn
and @; : Q; — R is defined by
1

/ﬁz‘K(X) ﬁ i (x A/)dﬂi(x)] i7
J=1j#

(x),'(x,') =

where Q' = | o) ;and di'(x) = o i dr(x)).
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