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Faculty of Electrical Engineering and Computing

University of Zagreb

Zagreb, Croatia

Josip Pečarić
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Faculty of Teacher Education

University of Zagreb

Zagreb, Croatia

� �
Zagreb, 2012



MONOGRAPHS IN INEQUALITIES 3

Recent Advances in Hilbert-type Inequalities

A unified treatment of Hilbert-type inequalities
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Preface

At the beginning of the 20th century, the following inequalities in discrete and integral
forms have been established:

∞

∑
m=1

∞

∑
n=1

ambn

m+n
<

π
sin π

p

[
∞

∑
m=1

ap
m

] 1
p
[

∞

∑
n=1

bq
n

] 1
q

and ∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy <
π

sin π
p

[∫ ∞

0
f p(x)dx

] 1
p
[∫ ∞

0
gq(y)dy

] 1
q

.

The first inequality refers to non-negative sequences (am)m∈N ∈ l p and (bn)n∈N ∈ lq which
are not zero-sequences, while the second inequality holds for non-negative functions f ∈
Lp(R+) and g ∈ Lq(R+) which are not zero-functions. The common parameters, that is,
the exponents p and q appearing in both inequalities are mutually conjugate, that is, they
fulfill the condition 1

p + 1
q = 1, where p > 1. The above inequalities were first studied by

David Hilbert at the end of the nineteenth century, hence, in his honor, they are referred to
as the discrete and the integral Hilbert inequalities.

The Hilbert inequality is one of the most important inequalities in mathematical anal-
ysis. Applications of this inequality in diverse fields of mathematics have certainly con-
tributed to its importance.

After its discovery, the Hilbert inequality was studied by numerous authors, who ei-
ther reproved it using various techniques, or applied and generalized it in many different
ways. Such generalizations included inequalities with more general kernels, weight func-
tions and integration sets, extension to a multidimensional case, and so forth. The resulting
relations are usually referred to as the Hilbert-type inequalities. On the other hand, Hardy,
Littlewood and Pólya [33], noted that to every Hilbert-type inequality one can assign its
equivalent form, in the sense that one implies another and vice versa. Such forms are usu-
ally called Hardy-Hilbert-type inequalities, since they are closely connected with another
famous classical inequality, that is, the Hardy inequality. For a comprehensive inspection
of the initial development of the Hilbert inequality, the reader is referred to a classical
monograph [33].

Although classical, the Hilbert inequality is still of interest to numerous mathemati-
cians. Nowadays, more than a century after its discovery, this problem area offers diverse
possibilities for generalizations and extensions.
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The present book is a crown of decennial research of several authors in this area. More
precisely, this book is based on some thirty significant papers dealing with Hilbert-type
inequalities, published in the course of the last ten years.

We tried to provide a unified approach to Hilbert-type inequalities. More precisely, the
original Hilbert inequality can be regarded in a more general setting, with integrals taken
over a σ -finite measure space, and with a general kernel and weight functions. In addition,
Hilbert-type inequalities can also be considered with exponents which are not mutually
conjugate. On the other hand, in recent time a special emphasis has been dedicated to
establishing methods for improving original Hilbert-type inequalities. These are the main
topics we deal with in this monograph. The book is divided into ten chapters.

In Chapter 1 a unified treatment of Hilbert-type inequalities with conjugate exponents
is established. The most general form of the Hilbert inequality involves integrals taken over
a σ -finite measure space, a general kernel and the weight functions. A special emphasis
is given to Hilbert-type inequalities with homogeneous kernels. In addition, considerable
attention is dedicated to finding the best possible constant factors appearing in some classes
of inequalities. Observe here that a majority of results in this and other chapters will be
given in two equivalent forms.

In Chapter 2 we extend Hilbert-type inequalities derived in the previous chapter to the
case of non-conjugate exponents. It should be observed here that the problem of finding the
best possible constant factors is not considered in Chapter 2 since it seems to be very hard
and remains still open. Additionally, we study some operators between certain weighted
Lebesgue spaces, arising from the Hardy-Hilbert form of the corresponding Hilbert-type
inequality.

In Chapter 3 we consider Hilbert-type inequalities involving real valued kernel and
weight functions defined on Rn. Such results will be derived by virtue of the so-called
Selberg integral formula.

In Chapter 4 we derive two types of refined discrete Hilbert-type inequalities by means
of the Euler-Maclaurin summation formula, depending on whether the corresponding ker-
nel is of class C2 or C4. In addition, some particular refinements are also established, due
to the above summation formula.

In Chapter 5 a different approach for improving discrete Hilbert-type inequalities is
presented. Such improvements are derived by virtue of the Hermite-Hadamard inequality.

In Chapter 6 we deal with refinements of some particular Hilbert-type inequalities
involving the Laplace transform.

In Chapter 7 a particular class of the so-called Hilbert-Pachpatte-type inequalities is
studied. These inequalities are closely connected with Hilbert-type inequalities.

In Chapter 8 another famous classical inequality, closely connected to the Hilbert
inequality, is studied. That is the Hardy inequality. A unified treatment of Hardy-type
inequalities with non-conjugate exponents is established.

In Chapter 9 Hilbert-type inequalities are considered in a more general function space.
Namely, all results in previous chapters were related to the weighted Lebesgue spaces. In
this chapter Hilbert-type inequalities are established in the weighted Orlicz spaces.

In Chapter 10 we list another set of recent results of numerous authors, interesting on
its own right, which are closely connected with the theory exposed in this book. Namely,
some related inequalities and refinements are given without the proof.
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Throughout the whole book, presented results are compared with previously known
from the literature. Moreover, at the end of a section or a chapter we cite the corresponding
references for the results presented there. In addition, we also quote references which are
closely connected with presented topics.

Since this monograph is based on numerous papers written by different authors, the
terminology in the book is not quite unified. On the other hand, we suppose that the reader
is very familiar with mathematical analysis and we mostly use the standard notation. How-
ever, to avoid misunderstandings, some extra notation and definitions are presented when it
is necessary. Further, in statements of some theorems, conditions concerning convergence
of series and integrals are omitted. If nothing else is explicitly stated, they are assumed to
be convergent.

Authors
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Chapter1
Hilbert-type inequalities with
conjugate exponents

One of the most important inequalities in modern mathematics is the well-known Hilbert
inequality. Applications of this inequality in various branches of mathematics have cer-
tainly contributed to its importance. David Hilbert was the first mathematician who started
to deal with the Hilbert inequality, by considering its discrete form. He did not even think
that he had opened the space for numerous researches whose results will be far-reaching
and fruitful.

Shortly after discovering the discrete form, the integral form of the Hilbert inequality
was also established, as well as the generalization for the case of conjugate exponents.
During subsequent decades, the Hilbert inequality was also generalized in many different
ways by some famous authors. Nowadays, more than a century after Hilbert’s discovery,
this problem area is still of interest and provides some possibilities for further generaliza-
tions.

In this chapter we present some basic generalizations of the Hilbert inequality. After
the short historical overview, we expose a recent important generalization, which provides
a unified treatment to this inequality with conjugate exponents. In particular, in that result
the integrals are taken with σ -finite measures, which includes both integral and discrete
case.

The above mentioned main result is then applied to homogeneous functions, which
yields numerous interesting examples. Also, the consideration of such examples in partic-
ular settings yields numerous results, previously known from the literature. Moreover, all
results presented in two-dimensional case can naturally be extended to a multidimensional
case.

1



2 1 HILBERT-TYPE INEQUALITIES WITH CONJUGATE EXPONENTS

Finally, numerous inequalities in this chapter include the corresponding constant factor
on their right-hand sides. By the classical Hilbert inequality such constant factor was the
best possible in the sense that it cannot be replaced with the smaller constant so that the
resulting inequality still remains valid. We shall also present here some recent results
which include such best possible constant factors.

1.1 Historical overview

We begin this overview with a bilinear form

∞

∑
m=1

∞

∑
n=1

ambn

m+n
,

associated to sequences of real numbers (am)m∈N and (bn)n∈N, which was first studied by
D. Hilbert at the end of the nineteenth century. Hilbert discovered a natural upper bound of
this double series and laid the foundations for the theory that will follow. Thus, we present
here some basic theorems which arose immediately from Hilbert’s considerations.

Theorem 1.1 Let p and q be mutually conjugate exponents, that is, 1
p + 1

q = 1, p > 1,
and let (am)m∈N and (bn)n∈N be any two sequences of non-negative real numbers such
that 0 < ∑∞

m=1 ap
m < ∞ and 0 < ∑∞

n=1 bq
n < ∞. Then

∞

∑
m=1

∞

∑
n=1

ambn

m+n
<

π
sin π

p

[
∞

∑
m=1

ap
m

] 1
p
[

∞

∑
n=1

bq
n

] 1
q

. (1.1)

The integral form of the previous theorem reads as follows:

Theorem 1.2 Let 1
p + 1

q = 1, p > 1, and let f ,g : R+ → R be any two non-negative
Lebesgue measurable functions such that 0 <

∫ ∞
0 f p(x)dx < ∞ and 0 <

∫ ∞
0 gq(y)dy < ∞.

Then ∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy <
π

sin π
p

[∫ ∞

0
f p(x)dx

] 1
p
[∫ ∞

0
gq(y)dy

] 1
q

. (1.2)

Remark 1.1 Suppose that p and q are mutually conjugate parameters, i.e. 1
p + 1

q = 1, and
let p > 1. Then it follows that q > 1. On the other hand, if 0 < p < 1, then q < 0, and
analogously, if 0 < q < 1, then p < 0.

As we see, in the above theorems the same constant factor appears on the right-hand
sides of both inequalities. It was proved by Hardy and Riesz that this constant factor was
the best possible.

Theorem 1.3 The constant π/sin(π/p) appearing in (1.1) and (1.2) is the best possible.



1.1 HISTORICAL OVERVIEW 3

The previous three results are taken from the classical monograph [33], in a slightly
altered form. The case of p = q = 2 in Theorem 1.1 was first proved by Hilbert in his
lectures about integral equations. The lack of that old proof consisted in the fact that Hilbert
didn’t know to determine the optimal constant factor π . That drawback was removed by
Shur in 1911, who also proved the integral version of the inequality. The extensions to
arbitrary pair of positive mutually conjugate exponents are due to G.H. Hardy and M.
Riesz.

Some other proofs, as well as various generalizations are due to the following mathe-
maticians: L. Fejér, E. Francis, G. H. Hardy, J. Littlewood, H. Mulholland, P. Owen, G.
Pólya, F. Riesz, M. Riesz, I. Schur, G. Szegö. Nevertheless, the inequalities (1.1) and (1.2)
remained known as the discrete and the integral Hilbert inequalities. For more details about
the initial development of the Hilbert inequality the reader is referred to [33, Chapter 9]. It
should be noticed here that generalizations of inequalities (1.1) and (1.2) will be referred
to as the Hilbert-type inequalities.

However, we provide two more results from the 1920s, which will also play an im-
portant role in further investigations. Namely, Hardy, Littlewood and Pólya noted that to
every Hilbert-type inequality one can assign its equivalent form, in the sense that one im-
plies another and vice versa. For example, the equivalent form assigned to inequality (1.1)
is contained in the following theorem.

Theorem 1.4 Let p > 1 and let (am)m∈N be the sequence of non-negative real numbers
such that 0 < ∑∞

m=1 ap
m < ∞. Then

∞

∑
n=1

(
∞

∑
m=1

am

m+n

)p

<

(
π

sin π
p

)p ∞

∑
m=1

ap
m. (1.3)

Obviously, the integral analogue of inequality (1.3) is analogous, with the sum re-
placed with the integral, and a sequence with a non-negative real function. Such inequal-
ities, derived from the Hilbert-type inequalities will be referred to as the Hardy-Hilbert-
type inequalities. Moreover, the Hilbert-type and the Hardy-Hilbert-type inequalities will
sometimes simply be referred to as the Hilbert-type inequalities.

Already at that time, the sharper version of inequality (1.1) was also known. That
result is presented in the following theorem.

Theorem 1.5 Under the same assumptions as in Theorem 1.1, we have

∞

∑
m=0

∞

∑
n=0

ambn

m+n+1
<

π
sin π

p

[
∞

∑
m=0

ap
m

] 1
p
[

∞

∑
n=0

bq
n

] 1
q

. (1.4)

Inequalities (1.1) and (1.4) are known in the literature as “the Hilbert double series
theorems”.

These theorems were inspiration to numerous mathematicians. During the 20th century
numerous proofs, generalizations and applications of the Hilbert inequality were discov-
ered and it would be impossible to count them here.



4 1 HILBERT-TYPE INEQUALITIES WITH CONJUGATE EXPONENTS

Nowadays, more than a century after the discovery of the Hilbert inequality, this re-
search area is still interesting to numerous authors. As an illustration, we indicate here
some generalizations obtained in the last ten years. One of the possible extensions arises
from studying various kernels. Namely, in presented results such kernel was the function
K(x,y) = (x+y)−1. In 1998, considering the kernel K(x,y) = (x+y)−s, s > 0, B. Yang was
the first one to have included the well-known Beta function into the study of Hilbert-type
inequalities (see [138]). Recall that the Beta function is an integral function defined by

B(a,b) =
∫ 1

0
ta−1(1− t)b−1dt, a,b > 0. (1.5)

For example, in [152] one can find the following result in the integral form.

Theorem 1.6 Let 1
p + 1

q = 1, p > 1, and let s > 2−min{p,q}. If f ,g : R+ → R are non-

negative measurable functions such that 0 <
∫ ∞
0 x1−s f p(x)dx < ∞ and 0 <

∫ ∞
0 y1−sgq(y)dy

< ∞, then ∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)s dxdy

< B

(
p+ s−2

p
,
q+ s−2

q

)[∫ ∞

0
x1−s f p(x)dx

] 1
p
[∫ ∞

0
y1−sgq(y)dy

] 1
q

(1.6)

and ∫ ∞

0
y(s−1)(p−1)

[∫ ∞

0

f (x)
(x+ y)s dx

]p

dy

< Bp
(

p+ s−2
p

,
q+ s−2

q

)∫ ∞

0
x1−s f p(x)dx. (1.7)

Moreover, these two inequalities are equivalent and include the best possible constant
factors on their right-hand sides.

The multidimensional extension of inequality (1.6), involving the usual Gamma function,
has also been derived in the above mentioned paper [152]. Recall that the Gamma function
is an integral

Γ(a) =
∫ ∞

0
ta−1e−tdt, a > 0. (1.8)

Theorem 1.7 Suppose that pi are mutually conjugate exponents, i.e. ∑n
i=1

1
pi

= 1, pi > 1,
i = 1,2, . . . ,n, and let s> n−min1≤i≤n{pi}. If fi : R+ →R, i = 1,2, . . . ,n, are non-negative
measurable functions satisfying 0 <

∫ ∞
0 xi

n−1−s f pi
i (xi)dxi < ∞, then∫ ∞

0
· · ·

∫ ∞

0

∏n
i=1 fi(xi)

(∑n
i=1 xi)s dx1dx2...dxn

<
1

Γ(s)

n

∏
i=1

Γ
(

pi + s−n
pi

)[∫ ∞

0
xi

n−1−s f pi
i (xi)dxi

] 1
pi

. (1.9)



1.2 A UNIFIED TREATMENT OF HILBERT-TYPE INEQUALITIES... 5

Remark 1.2 The above notation for the Beta and the Gamma function will be used
throughout the book. The basic relationship between the Beta and the Gamma functions is
given by

B(a,b) =
Γ(a)Γ(b)
Γ(a+b)

, a,b > 0, (1.10)

and this formula will often be exploited. For more details about the Beta and the Gama
functions, as well as about their meromorphic extensions to the set of complex numbers,
the reader is referred to [1].

It is interesting that the n-dimensional inequality (1.9) also posses its equivalent form,
which will be discussed in this chapter.

On the other hand, another possible generalization of the presented results is the in-
vestigation of the inequalities of the same type, but where the integrals are taken over a
bounded interval in R+. Guided by that idea, K. Jichang and T. Rassias [42], obtained the
following result.

Theorem 1.8 Let 1
p + 1

q = 1, p > 1, and let K : R+ ×R+ → R be a non-negative ho-

mogeneous symmetric function of degree −s, where max{ 1
p , 1

q} < s. If K(1,y) is strictly
decreasing in y and f ,g : R+ → R are non-negative measurable functions, then∫ b

a

∫ b

a
K(x,y) f (x)g(y)dxdy

≤
⎡⎣∫ b

a

(
I(q)−ϕ(q,x)

)
x1−s f p(x)dx

] 1
p
[∫ b

a

(
I(p)−ϕ(p,y)

)
y1−sgq(y)dy

⎤⎦
1
q

,

(1.11)

where

ϕ(r,x) =
(a

x

)1− 1
r
∫ 1

0
K(1,u)u−

1
r du+

(x
b

)s+ 1
r −1 ∫ 1

0
K(1,u)us+ 1

r −2du,

I(r) =
∫ ∞
0 K(1,u)u−

1
r du, r ∈ {p,q}, and 0 ≤ a < b ≤ ∞.

In the next section, the integrals will be taken over more general sets.

1.2 A unified treatment of Hilbert-type inequalities
with conjugate exponents

In the previous historical overview we have seen the classical Hilbert inequality in both
discrete and integral case. Moreover, throughout years numerous extensions of these in-
equalities were derived. However, all these results were given in either integral form, with
respect to the Lebesgue measure, or in the discrete form.



6 1 HILBERT-TYPE INEQUALITIES WITH CONJUGATE EXPONENTS

The main objective of this section is to present a general result which unifies the inte-
gral and discrete cases. This can be done by observing a more general integral. Namely,
the classical Hilbert inequality is a consequence of the Hölder inequality and the Fubini
theorem. In general, the Fubini theorem holds for the integrals with σ -finite measures,
therefore, such measures will be considered.

The most important examples of σ -finite measures are the Lebesgue measure and the
counting measure. The Lebesgue measure yields the classical integral case, while the
counting measure provides the discrete case.

Further, it is well-known that if one of the mutually conjugate exponents in the Hölder
inequality is negative, then the sign of the inequality is reversed (see [103]). Hence, we
shall also be concerned with the Hilbert-type inequalities with the reversed sign of inequal-
ity. Such inequalities will be referred to as the reverse inequalities.

Now we present the most general form of the Hilbert inequality in the setting described
above. It should be noticed here that we suppose that all integrals converge, and such
types of conditions will often be omitted. Moreover, integrals will be taken over a general
measure space. Results that follow are provided in two equivalent forms: the Hilbert and
the Hardy-Hilbert forms.

Theorem 1.9 Let 1
p + 1

q = 1, p > 1, and let Ω be a measure space with positive σ -finite
measures μ1 and μ2. Let K : Ω×Ω→ R and ϕ ,ψ : Ω → R be non-negative measurable
functions. If the functions F and G are defined by F(x) =

∫
Ω K(x,y)ψ−p(y)dμ2(y) and

G(y) =
∫
Ω K(x,y)ϕ−q(x)dμ1(x), then for all non-negative measurable functions f and g

on Ω the inequalities∫
Ω

∫
Ω

K(x,y) f (x)g(y)dμ1(x)dμ2(y)

≤
[∫

Ω
ϕ p(x)F(x) f p(x)dμ1(x)

] 1
p
[∫

Ω
ψq(y)G(y)gq(y)dμ2(y)

] 1
q

(1.12)

and ∫
Ω

G1−p(y)ψ−p(y)
[∫

Ω
K(x,y) f (x)dμ1(x)

]p

dμ2(y)

≤
∫
Ω
ϕ p(x)F(x) f p(x)dμ1(x) (1.13)

hold and are equivalent.
If 0 < p < 1, then the reverse inequalities in (1.12) and (1.13) are valid, as well as the

inequality ∫
Ω

F1−q(x)ϕ−q(x)
[∫

Ω
K(x,y)g(y)dμ2(y)

]q

dμ1(x)

≤
∫
Ω
ψq(y)G(y)gq(y)dμ2(y). (1.14)

Proof. The left-hand side of inequality (1.12) can be rewritten in the following form:∫
Ω

∫
Ω

K(x,y) f (x)g(y)dμ1(x)dμ2(y) =
∫
Ω

∫
Ω

K(x,y) f (x)
ϕ(x)
ψ(y)

g(y)
ψ(y)
ϕ(x)

dμ1(x)dμ2(y).
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Now, applying the Hölder inequality to the above relation yields∫
Ω

∫
Ω

K(x,y) f (x)g(y)dμ1(x)dμ2(y)

≤
[∫

Ω

∫
Ω

K(x,y) f p(x)
ϕ p(x)
ψ p(y)

dμ1(x)dμ2(y)
] 1

p

×
[∫

Ω

∫
Ω

K(x,y)gq(y)
ψq(y)
ϕq(x)

dμ1(x)dμ2(y)
] 1

q

.

Finally, using the Fubini theorem and definitions of functions F and G we obtain (1.12).
Now, we are going to show the equivalence of inequalities (1.12) and (1.13). For that

sake, suppose that inequality (1.12) holds. Defining the function g by

g(y) = G1−p(y)ψ−p(y)
[∫

Ω
K(x,y) f (x)dμ1(x)

]p−1

,

taking into account that 1
p + 1

q = 1, and using (1.12), we have∫
Ω

G1−p(y)ψ−p(y)
[∫

Ω
K(x,y) f (x)dμ1(x)

]p

dμ2(y)

=
∫
Ω

∫
Ω

K(x,y) f (x)g(y)dμ1(x)dμ2(y)

≤
[∫

Ω
ϕ p(x)F(x) f p(x)dμ1(x)

] 1
p
[∫

Ω
ψq(y)G(y)gq(y)dμ2(y)

] 1
q

=
[∫

Ω
ϕ p(x)F(x) f p(x)dμ1(x)

] 1
p

×
[∫

Ω
G1−p(y)ψ−p(y)

[∫
Ω

K(x,y) f (x)dμ1(x)
]p

dμ2(y)
] 1

q

,

that is, we get (1.13).
On the other hand, suppose that inequality (1.13) holds. In that case, another use of

the Hölder inequality yields∫
Ω

∫
Ω

K(x,y) f (x)g(y)dμ1(x)dμ2(y)

=
∫
Ω

[
ψ−1(y)G− 1

q (y)
∫
Ω

K(x,y) f (x)dμ1(x)
]
ψ(y)G

1
q (y)g(y)dμ2(y)

≤
[∫

Ω
G1−p(y)ψ−p(y)

(∫
Ω

K(x,y) f (x)dμ1(x)
)p

dμ2(y)
] 1

p

×
[∫

Ω
ψq(y)G(y)gq(y)dμ2(y)

] 1
q

≤
[∫

Ω
ϕ p(x)F(x) f p(x)dμ1(x)

] 1
p
[∫

Ω
ψq(y)G(y)gq(y)dμ2(y)

] 1
q

,
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which implies (1.12). Therefore, inequalities (1.12) and (1.13) are equivalent.
The reverse inequalities, as well as their equivalence, are derived in the same way by

virtue of the reverse Hölder inequality. �
Remark 1.3 The equality in the previous theorem is possible if and only if it holds in the
Hölder inequality, that is, if[

f (x)
ϕ(x)
ψ(y)

]p

= C

[
g(y)

ψ(y)
ϕ(x)

]q

, a. e. on Ω,

where C is a positive constant. In that case we have

f (x) = C1ϕ−q(x) and g(y) = C2ψ−p(y) a. e. on Ω, (1.15)

for some constants C1 and C2, which is possible if and only if∫
Ω

F(x)ϕ−q(x)dμ1(x) < ∞ and
∫
Ω

G(y)ψ−p(y)dμ2(y) < ∞. (1.16)

Otherwise, the inequalities in Theorem 1.9 are strict.

In some applications of the previous theorem it will be more convenient to bound the
functions F(x) and G(y). Of course, such result follows immediately from Theorem 1.9.

Theorem 1.10 Suppose that the assumptions as in Theorem 1.9 are fulfilled and let
F1,G1 : Ω→ R be non-negative measurable functions such that F(x) ≤ F1(x) and G(y) ≤
G1(y), a. e. on Ω. Then the inequalities∫

Ω

∫
Ω

K(x,y) f (x)g(y)dμ1(x)dμ2(y)

≤
[∫

Ω
ϕ p(x)F1(x) f p(x)dμ1(x)

] 1
p
[∫

Ω
ψq(y)G1(y)gq(y)dμ2(y)

] 1
q

(1.17)

and ∫
Ω

G1
1−p(y)ψ−p(y)

[∫
Ω

K(x,y) f (x)dμ1(x)
]p

dμ2(y)

≤
∫
Ω
ϕ p(x)F1(x) f p(x)dμ1(x) (1.18)

hold and are equivalent.
If 0 < p < 1, F(x) ≥ F1(x), and G(y) ≤ G1(y), then the reverse inequalities in (1.17)

and (1.18) hold, as well as the inequality∫
Ω

F1
1−q(x)ϕ−q(x)

[∫
Ω

K(x,y)g(y)dμ2(y)
]q

dμ1(x)

≤
∫
Ω
ψq(y)G1(y)gq(y)dμ2(y). (1.19)

The reverse inequalities are also equivalent.

Remark 1.4 The general Hilbert-type inequalities presented in this section have been
obtained by M. Krnić and J. Pečarić in [53].
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1.3 Applications to homogeneous kernels

Theorem 1.9 from the previous section has unified the classical integral and discrete cases
of the Hilbert inequality. In order to approach to some well-known results from the litera-
ture, we study here some particular choices of kernels and weight functions.

In this section we consider homogeneous kernels of negative degree of homogeneity,
equipped with some additional properties. Recall that a function K : Ω×Ω→ R is said to
be homogeneous of degree −s, s > 0, if K(tx,ty) = t−sK(x,y) for every x,y ∈Ω and t ∈ R

such that tx, ty ∈Ω. In addition, for such homogeneous function we define k(α) as

k(α) =
∫ ∞

0
K(1,u)u−αdu, (1.20)

provided that the above integral converges for 1− s < α < 1.
We study here the integral case, that is, the Lebesgue integral. The integrals are taken

over an arbitrary interval of non-negative real numbers, i.e. (a,b) ⊆ R+, 0 ≤ a < b ≤ ∞,
and the weight functions are chosen to be power functions.

Theorem 1.11 Let 1
p + 1

q = 1, p > 1, and let K : (a,b)× (a,b) → R be a non-negative
homogeneous function of degree −s, s > 0, strictly decreasing in both variables. If A1 and
A2 are real parameters such that A1 ∈ ( 1−s

q , 1
q ), A2 ∈ ( 1−s

p , 1
p), then for all non-negative

measurable functions f ,g : (a,b) → R the inequalities∫ b

a

∫ b

a
K(x,y) f (x)g(y)dxdy

≤
[∫ b

a

(
k(pA2)−ϕ1(pA2,x)

)
x1−s+p(A1−A2) f p(x)dx

] 1
p

×
[∫ b

a

(
k(2− s−qA1)−ϕ2(2− s−qA1,y)

)
y1−s+q(A2−A1)gq(y)dy

] 1
q

(1.21)

and ∫ b

a

(
k(2− s−qA1)−ϕ2(2− s−qA1,y)

)1−p
y(p−1)(s−1)+p(A1−A2)

×
[∫ b

a
K(x,y) f (x)dx

]p

dy

≤
∫ b

a

(
k(pA2)−ϕ1(pA2,x)

)
x1−s+p(A1−A2) f p(x)dx (1.22)

hold and are equivalent, where

ϕ1(α,x) =
(

a
x

)1−α ∫ 1

0
K(1,u)u−αdu+

(
x
b

)s+α−1∫ 1

0
K(u,1)us+α−2du,
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ϕ2(α,y) =
(

a
y

)s+α−1 ∫ 1

0
K(u,1)us+α−2du+

(
y
b

)1−α ∫ 1

0
K(1,u)u−αdu.

If 0 < p < 1, b = ∞, and K(x,y) is strictly decreasing in x and strictly increasing in
y, then the reverse inequalities in (1.21) and (1.22) are valid for every A1 ∈ ( 1

q , 1−s
q ) and

A2 ∈ ( 1−s
p , 1

p), as well as the inequality∫ ∞

a

(
k(pA2)−ϕ1(pA2,x)

)1−q
x(q−1)(s−1)+q(A2−A1)

[∫ ∞

a
K(x,y)g(y)dy

]q

dx

≤
∫ ∞

a

(
k(2− s−qA1)−ϕ2(2− s−qA1,y)

)
y1−s+q(A2−A1)g(y)qdy.

Moreover, if 0 < p < 1, a = 0, and K(x,y) is strictly increasing in x and strictly de-
creasing in y, then the reverse inequalities in (1.21) and (1.22) hold for every A1 ∈ ( 1

q , 1−s
q )

and A2 ∈ ( 1−s
p , 1

p), as well as the inequality∫ b

0

(
k(pA2)−ϕ1(pA2,x)

)1−q
x(q−1)(s−1)+q(A2−A1)

[∫ b

0
K(x,y)g(y)dy

]q

dx

≤
∫ b

0

(
k(2− s−qA1)−ϕ2(2− s−qA1,y)

)
y1−s+q(A2−A1)g(y)qdy.

Proof. We only prove inequality (1.21). After substituting the power functions ϕ(x) = xA1

and ψ(y) = yA2 in (1.12), the homogeneity of the kernel K and the substitution u = y
x yield

the following relation:∫ b

a

∫ b

a
K(x,y) f (x)g(y)dxdy

≤
[∫ b

a
x1−s+p(A1−A2)

(∫ b
x

a
x

K(1,u)u−pA2du

)
f p(x)dx

] 1
p

×
[∫ b

a
y1−s+q(A2−A1)

(∫ y
a

y
b

K(1,u)uqA1+s−2du

)
gq(y)dy

] 1
q

.

In addition, considering the function l(y) = yα−1 ∫ y
0 K(1,u)u−αdu, α < 1, the integration

by parts yields equality

l′(y) = yα−2
∫ y

0
u1−α ∂K(1,u)

∂u
du.

Since the kernel K is strictly decreasing in both variables, it follows that l′(y) < 0, y ∈ R+,
that is, l is strictly decreasing on R+.

On the other hand, since∫ b
x

a
x

K(1,u)u−pA2du =
∫ ∞

0
K(1,u)u−pA2du−

∫ a
x

0
K(1,u)u−pA2du

−
∫ x

b

0
K(u,1)upA2+s−2du,
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and due to the fact that l is strictly decreasing on R+, we obtain the estimate

∫ b
x

a
x

K(1,u)u−pA2du ≤ k(pA2)−ϕ1(pA2,x)

and similarly,

∫ y
a

y
b

K(1,u)uqA1+s−2du ≤ k(2− s−qA1)−ϕ2(2− s−qA1,y),

so the result follows from Theorem 1.9. Note also that the intervals defining the parameters
A1 and A2 arise from the assumption on the convergence of integral (1.20). �

Remark 1.5 If the kernel K in the previous theorem is a symmetric function, then k(2−
s−qA1)= k(qA1). Then, setting A1 = A2 = 1

pq in Theorem1.11, provided that max{ 1
p ,

1
q}<

s, we get Theorem 1.8 (see also [42]).

Remark 1.6 In order to justify the convergence interval (1− s,1) for the integral k(α)
defined by (1.20), observe that the homogeneity of the kernel K implies the following
sequence of identities:

k(α) =
∫ ∞

0
K

(
1
u
,1

)
u−s−αdu =

∫ ∞

0
K(u,1)us+α−2du.

On the other hand, assuming that K is strictly decreasing in each argument, K is strictly
positive on R+ ×R+. In particular, for α ≥ 1, monotonicity of K in the second argument
and the fact that K(1,1) > 0 yield

k(α) =
∫ ∞

0
K(1,u)u−αdu ≥

∫ 1

0
K(1,u)u−αdu ≥ K(1,1)

∫ 1

0
u−αdu = ∞.

Analogous result holds also for α ≤ 1− s, since

k(α) =
∫ ∞

0
K(u,1)us+α−2du ≥

∫ 1

0
K(u,1)us+α−2du

≥ K(1,1)
∫ 1

0
us+α−2du = ∞.

Therefore, the interval (1− s,1), considered in definition (1.20), covers all arguments α
for which k(α) may converge. The same conclusion on convergence of k(α) can be drawn
if we consider a function K increasing in each argument and such that K(1,1) > 0.

It is interesting to consider a particular case of the previous theorem, that is, when
the integrals are taken over the whole set R+. Then, a = 0, b = ∞, and we obtain the
corresponding inequalities for an arbitrary non-negative homogeneous function of degree
−s.
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Corollary 1.1 Let 1
p + 1

q = 1, p > 1, and let K : R+ ×R+ → R be a non-negative ho-
mogeneous function of degree −s, s > 0. If A1 and A2 are real parameters such that
A1 ∈ ( 1−s

q , 1
q ), A2 ∈ ( 1−s

p , 1
p), then for all non-negative measurable functions f ,g : R+ →R

the inequalities

∫ ∞

0

∫ ∞

0
K(x,y) f (x)g(y)dxdy

≤ L

[∫ ∞

0
x1−s+p(A1−A2) f p(x)dx

] 1
p
[∫ ∞

0
y1−s+q(A2−A1)gq(y)dy

] 1
q

(1.23)

and

∫ ∞

0
y(p−1)(s−1)+p(A1−A2)

[∫ ∞

0
K(x,y) f (x)dx

]p

dy

≤ Lp
∫ ∞

0
x1−s+p(A1−A2) f p(x)dx (1.24)

hold and are equivalent, where L = k
1
p (pA2)k

1
q (2− s−qA1).

If 0 < p < 1, then the reverse inequalities in (1.23) and (1.24) are valid for every
A1 ∈ ( 1

q , 1−s
q ) and A2 ∈ ( 1−s

p , 1
p ), as well as the inequality

∫ ∞

0
x(q−1)(s−1)+q(A2−A1)

[∫ ∞

0
K(x,y)g(y)dy

]q

dx

≤ Lq
∫ ∞

0
y1−s+q(A2−A1)gq(y)dy. (1.25)

Inequalities (1.23) and (1.24), as well as their reverse inequalities are equivalent. More-
over, equality in the above relations holds if and only if f = 0 or g = 0 a.e. on R+.

Proof. The proof follows immediately from Theorem 1.11 by substituting a = 0 and
b = ∞. Moreover, condition (1.15) gives the nontrivial case of equality in (1.23), while
condition (1.16) leads to the divergent integrals. Hence, the observed inequalities are strict,
unless f = 0 or g = 0 a. e. on R+. �

In the sequel we consider some generalizations of Theorem 1.11. For example, utiliz-
ing the substitution u = x+ μ and v = y+ μ , μ ≥ 0, we have:

Theorem 1.12 Let 1
p + 1

q = 1, p > 1, and let K : (a+ μ ,b + μ)× (a + μ ,b+ μ) → R

be a non-negative homogeneous function of degree −s, s > 0, strictly decreasing in both
variables. If A1 and A2 are real parameters such that A1 ∈ ( 1−s

q , 1
q), A2 ∈ ( 1−s

p , 1
p), then
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for all non-negative measurable functions f ,g : (a,b) → R the inequalities∫ b

a

∫ b

a
K(x+ μ ,y+ μ) f (x)g(y)dxdy

≤
[∫ b

a

(
k(pA2)−ψ1(pA2,x,μ)

)
(x+ μ)1−s+p(A1−A2) f p(x)dx

] 1
p

×
[∫ b

a

(
k(2− s−qA1)−ψ2(2− s−qA1,y,μ)

)
(y+ μ)1−s+q(A2−A1)gq(y)dy

] 1
q

(1.26)

and ∫ b

a
(k(2− s−qA1)−ψ2(2− s−qA1,y,μ))1−p (y+ μ)(p−1)(s−1)+p(A1−A2)

×
[∫ b

a
K(x+ μ ,y+ μ) f (x)dx

]p

dy

≤
∫ b

a

(
k(pA2)−ψ1(pA2,x,μ)

)
(x+ μ)1−s+p(A1−A2) f p(x)dx (1.27)

hold and are equivalent, where

ψ1(α,x,λ ) =
(

a+λ
x+λ

)1−α ∫ 1

0
K(1,u)u−αdu+

(
x+λ
b+λ

)s+α−1∫ 1

0
K(u,1)us+α−2du,

ψ2(α,y,λ ) =
(

a+λ
y+λ

)s+α−1∫ 1

0
K(u,1)us+α−2du+

(
y+λ
b+λ

)1−α ∫ 1

0
K(1,u)u−αdu.

If 0 < p < 1, b = ∞, and K(x,y) is strictly decreasing in x and strictly increasing
in y, then the reverse inequalities in (1.26) and (1.27) hold for all A1 ∈ ( 1

q , 1−s
q ) and

A2 ∈ ( 1−s
p , 1

p), as well as the inequality∫ ∞

a
(k(pA2)−ψ1(pA2,x,μ))1−q (x+ μ)(q−1)(s−1)+q(A2−A1)

×
[∫ ∞

a
K(x+ μ ,y+ μ)g(y)dy

]q

dx

≤
∫ ∞

a
(k(2− s−qA1)−ψ2(2− s−qA1,y,μ)) (y+ μ)1−s+q(A2−A1)gq(y)dy.

(1.28)

Moreover, inequalities (1.26) and (1.27), as well as their reverses, are equivalent.

Remark 1.7 Considering Theorem 1.12 with a symmetric kernel and parameters A1 =
A2 = 2λ

pq , provided that 0 < 1− 2λ
p < s, 0 < 1− 2λ

q < s, we obtain the corresponding result
from [42].
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Remark 1.8 Some other ways of generalizing Theorem 1.11 arise from various substi-
tutions. For example, in [53] the authors also use the substitution u = Axα and v = Byβ ,
where A,B,α,β > 0. Such results are here omitted. It should be noticed here that the
results in this section are taken from the above mentioned paper [53]. In addition, for some
more specific Hilbert-type inequalities with a homogeneous kernel the reader is referred to
[164] and [181].

1.4 Examples. The best possible constants

This section is dedicated to Hilbert-type inequalities with some particular homogeneous
kernels and weight functions. Numerous interesting examples will be given here. More-
over, the best possible constant factors will be derived in some particular settings.

1.4.1 Integral case

We start with the classical integral case. We are concerned here with Corollary 1.1 from
the previous section. It is not hard to see that this corollary covers Theorems 1.2 and 1.6,
presented in the historical overview at the beginning of this chapter.

Namely, if K(x,y) = (x+ y)−s, s > 0, then the integral (1.20) is expressed in terms of
the Beta function, that is, k(α) = B(1−α,s+α− 1). Hence, in this setting the constant
factor L on the right-hand sides of inequalities (1.23) and (1.24) takes the form

L = B
1
p (1− pA2,s+ pA2−1)B

1
q (1−qA1,s+qA1−1).

Moreover, if A1 = A2 = 2−s
pq , then the above constant coincides with the constant factor

on the right-hand side of inequality (1.6). Hence, Corollary 1.1 can be regarded as an
extension of both Theorems 1.2 and 1.6.

Further, if K(x,y) = max{x,y}−s, s > 0, then the above constant L, included in (1.23)
and (1.24), reads

L =
s

(1− pA2)
1
p (1−qA1)

1
q (s+ pA2−1)

1
p (s+qA1−1)

1
q

.

Similarly, for A1 = A2 = 2−s
pq the above constant factor reduces to

L =
pqs

(p+ s−2)(q+ s−2)
,

and the resulting Hilbert-type inequality coincides with the one from [42].
On the other hand, Hilbert-type inequalities in Theorems 1.2 and 1.6, as well as the

above mentioned result from [42], include the best possible constant factor.

Our main task is to determine conditions under which the constant factor L = k
1
p (pA2)k

1
q

(2−s−qA1) is the best possible in inequalities (1.23) and (1.24). Observe that inequalities



1.4 EXAMPLES. THE BEST POSSIBLE CONSTANTS 15

(1.2) and (1.6) include the best possible constant factors without any exponent. Guided by
that fact we are going to simplify the constant factor L from Corollary 1.1. More precisely,
if we set the condition

pA2 +qA1 = 2− s, (1.29)

then the constant factor L in Corollary 1.1 reduces to L = k(pA2).
In the sequel, we are going to show that, under the above condition (1.29) and assuming

some weak conditions on the kernel, inequalities in Corollary 1.1 include the best possible
constant factors. In order to prove that result we need the following lemma.

Lemma 1.1 Let p and q be conjugate parameters with p > 1. If K : R+ ×R+ → R is a
non-negative measurable function such that K(1,t) is bounded on (0,1), then

∫ ∞

1
x−ε−1

(∫ 1/x

0
K(1,t)t−pA2− ε

q dt

)
dx = O(1), ε → 0+, (1.30)

where A2 < 1
p .

Proof. Using the assumptions, we have K(1,t) ≤C for some C > 0 and every t ∈ (0,1).
Let ε > 0 be such that ε < pq

(
1
p −A2

)
. We have

∫ ∞

1
x−1−ε

(∫ 1/x

0
K(1,t)t−pA2− ε

q dt

)
dx ≤C

∫ ∞

1
x−1−ε

(∫ 1/x

0
t−pA2− ε

q dt

)
dx

=
C

1− pA2− ε
q

∫ ∞

1
xpA2+ ε

q−ε−2dx =
C(

1− pA2− ε
q

)(
1− pA2 + ε

p

) ,

wherefrom (1.30) follows. �

Theorem 1.13 Suppose that the assumptions of Corollary 1.1 are fulfilled. Additionally,
if the kernel K : R+×R+ → R is such that K(1,t) is bounded on (0,1), and if the param-
eters A1 and A2 fulfill condition (1.29), then the constants L = k(pA2) and Lp = kp(pA2)
are the best possible in both inequalities (1.23) and (1.24).

Proof. For this purpose, with 0 < ε < pq
(

1
p − A2

)
, set f (x) = x−qA1− ε

p χ[1,∞)(x) and

g(y) = y−pA2− ε
q χ[1,∞)(y), where χA is the characteristic function of a set A.

Now, suppose that there exists a smaller constant 0 < M < L such that inequality (1.23)
holds. Let I denote the right-hand side of (1.23). Then,

I = M

(∫ ∞

1
x−ε−1dx

) 1
p
(∫ ∞

1
y−ε−1dy

) 1
q

=
M
ε

. (1.31)
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Applying respectively the Fubini theorem, substitution t = y
x , and Lemma 1.1, we have∫ ∞

0

∫ ∞

0
K(x,y) f (x)g(y)dxdy

=
∫ ∞

1
x−qA1− ε

p

(∫ ∞

1
K(x,y)y−pA2− ε

q dy

)
dx

=
∫ ∞

1
x−ε−1

(∫ ∞

0
K(1,t)t−pA2− ε

q dt−
∫ x−1

0
K(1,t)t−pA2− ε

q dt

)
dx

=
1
ε

[
k

(
pA2 +

ε
q

)
+o(1)

]
. (1.32)

From (1.23), (1.31), and (1.32) we get

k

(
pA2 +

ε
q

)
+o(1) < M. (1.33)

Now, letting ε → 0+, relation (1.33) yields a contradiction with the assumption M < L =
k(pA2).

Finally, equivalence of inequalities (1.23) and (1.24) means that the constant Lp =
kp(pA2) is also the best possible in (1.24). The proof is now completed. �

As we see, the previous theorem covers the problem of finding the best possible con-
stant factors for a quite weak condition on homogeneous kernel and parameters A1, A2

satisfying (1.29). We have already considered the kernel K(x,y) = (x+ y)−s, s > 0. This
kernel fulfills the above mentioned condition from Theorem 1.13, hence, the best possible
constant in that case takes the form B(1− pA2,1−qA1). Hilbert-type inequalities with this
kernel and parameters A1, A2 were extensively studied in recent papers [10], [11], [52],
[53], and [54].

Some other examples of the best possible constant factors arise from various choices
of kernels. For example, considering the kernel K(x,y) = (x+ y+max{x,y})−s, s > 0, the
best possible constant factor k(pA2) from Theorem 1.13 becomes

2−s

pA2 + s−1
F (s,s+ pA2−1;s+ pA2;−1/2)+

2−s

1− pA2
F (s,1− pA2;2− pA2;−1/2),

where F(α,β ;γ;z) denotes the Gaussian hypergeometric function, that is,

F(α,β ;γ;z) =
Γ(γ)

Γ(β )Γ(γ −β )

∫ 1

0

tβ−1(1− t)γ−β−1

(1− zt)α
dt, γ > β > 0,z < 1. (1.34)

The above kernel with degree of homogeneity equal to −1 was also discussed in [81].
We conclude this subsection with some particular Hilbert-type inequalities equipped

with homogeneous kernels of degree −1, involving the best possible constant factors.
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Remark 1.9 Setting s = 1, A1 = A2 = 1
pq in Corollary 1.1, inequalities (1.23) and (1.24)

become respectively

∫ ∞

0

∫ ∞

0
K(x,y) f (x)g(y)dxdy ≤ k (1/q)

[∫ ∞

0
f p(x)dx

] 1
p
[∫ ∞

0
gq(y)dy

] 1
q

(1.35)

and ∫ ∞

0

[∫ ∞

0
K(x,y) f (x)dx

]p

dy ≤ kp (1/q)
∫ ∞

0
f p(x)dx. (1.36)

The following kernels K are homogenous with bounded K(1,t) on (0,1). For each of these
functions we compute constants L = k (1/q) and L2 = k (1/2), that is, when p = q = 2:

K(x,y) =
1

x+ y+max{x,y} ,

L =
1
2
qF

(
1,

1
q
;1+

1
q
;−1

2

)
+

1
2

pF

(
1,

1
p
;1+

1
p
;−1

2

)
,

L2 =
√

2(π−2arctan
√

2);

K(x,y) =
1

x+ y+min{x,y} ,

L = qF

(
1,

1
q
;1+

1
q
;−2

)
+ pF

(
1,

1
p
;1+

1
p
;−2

)
,L2 = 2

√
2arctan

√
2;

K(x,y) =
1

|x− y|+max{x,y} ,

L =
1
2
qF

(
1,

1
q
;1+

1
q
;
1
2

)
+

1
2

pF

(
1,

1
p
;1+

1
p
;
1
2

)
,L2 = 2 artanh

1√
2
;

K(x,y) =
1

x+ y−min{x,y} =
1

max{x,y} ,L = pq,L2 = 4;

K(x,y) =
1

x+ y+ 2
1
x + 1

y

,L2 =

√
2
3
π ;

K(x,y) =
1

x+ y− 2
1
x + 1

y

,L =
π
2

(
1

cos π
2p

+
1

cos π
2q

)
,L2 = π

√
2;

K(x,y) =
1

x+ y+
√

xy
,L2 =

4π
3
√

3
;

K(x,y) =
1

x+ y−√
xy

,L2 =
8π

3
√

3
;

K(x,y) =
xλ−1 + yλ−1

xλ + yλ
,L =

π
λ

(
1

sin π
λ p

+
1

sin π
λq

)
,λ ≥ 1;

K(x,y) =
xλ−1− yλ−1

xλ − yλ
,L =

π
λ

(
cot

π
λ p

+ cot
π
λq

)
,λ > 1;
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K(x,y) =
logy− logx

y− x
,L =

π2(
sin π

p

)2 ,L2 = π2.

Since parameters s = 1, A1 = A2 = 1
pq fulfill condition pA2 +qA1 = 2−s, all these constant

factors are the best possible in both inequalities (1.35) and (1.36).

1.4.2 Discrete case

Discrete case of the Hilbert inequality is more complicated than the integral one. Namely,
in order to obtain discrete forms of the corresponding integral inequalities, it is necessary
to do some further estimates, which requires some additional conditions.

In Section 1.1 we encountered the Hilbert double series theorems, those were inequal-
ities (1.1) and (1.4). Moreover, the corresponding equivalent form assigned to (1.1) is
inequality (1.3), while the equivalent form assigned to (1.4) was derived in [142].

Recently, M. Krnić and J. Pečarić (see [52]), obtained the following discrete version of
the Hilbert inequality with conjugate parameters p,q > 1 and real parameters A,B,α,β ,s >
0,

∞

∑
m=1

∞

∑
n=1

ambn

(Amα +Bnβ )s
≤ M

[
∞

∑
m=1

mα(1−s)+α p(A1−A2)+(p−1)(1−α)ap
m

] 1
p

×
[

∞

∑
n=1

nβ (1−s)+βq(A2−A1)+(q−1)(1−β )bq
n

] 1
q

, (1.37)

where (am)m∈N, (bn)n∈N are non-negative real sequences, A1 ∈
(
max{ 1−s

q , α−1
αq }, 1

q

)
, A2 ∈(

max{ 1−s
p , β−1

β p }, 1
p

)
and

M = α− 1
q β− 1

p A
2−s
p +A1−A2−1B

2−s
q +A2−A1−1

×B
1
p (1− pA2,s−1+ pA2)B

1
q (1−qA1,s−1+qA1).

The equivalent form that corresponds to (1.37) is also derived in [52].
Similarly, considering parameters φ , ψ , and λ , such that 0 < φ ,ψ ≤ 1 and φ +ψ = λ ,

B. Yang [162], obtained the following pair of equivalent inequalities

∞

∑
n=1

∞

∑
m=1

log
(

m
n

)
ambn

mλ −nλ <

⎡⎣ π

λ sin
(

πφ
λ

)
⎤⎦2[

∞

∑
n=1

np(1−φ)−1ap
n

] 1
p
[

∞

∑
n=1

nq(1−ψ)−1bq
n

] 1
q

(1.38)

and

∞

∑
n=1

npψ−1

[
∞

∑
m=1

log
(

m
n

)
ambn

mλ −nλ

]p

<

⎡⎣ π

λ sin
(

πφ
λ

)
⎤⎦2p

∞

∑
n=1

np(1−φ)−1ap
n , (1.39)
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which hold for all non-negative conjugate exponents and non-negative sequences fulfilling
0 < ∑∞

n=1 np(1−φ)−1ap
n < ∞ and 0 < ∑∞

n=1 nq(1−ψ)−1bq
n < ∞. Moreover, the constant factors

included in the right-hand sides of inequalities are the best possible.

On the other hand, B. Yang and T. M. Rassias [152] (see also [149]), studied the kernel
expressed in terms of the logarithm function. They obtained the following pair of equiva-
lent inequalities,

∞

∑
m=2

∞

∑
n=2

ambn

logmn
<

π
sinπ/p

[
∞

∑
n=2

np−1ap
n

] 1
p
[

∞

∑
n=2

nq−1bq
n

] 1
q

(1.40)

and

∞

∑
n=2

1
n

(
am

logmn

)p

<

[
π

sinπ/p

]p ∞

∑
n=2

np−1ap
n , (1.41)

which hold for non-negative conjugate exponents and non-negative sequences such that
0 <∑∞

n=2 np−1ap
n <∞ and 0 <∑∞

n=2 nq−1bq
n <∞. Moreover, the constant factors π/sin(π/p)

and [π/sin(π/p)]p, on the right-hand sides of inequalities (1.40) and (1.41), are the best
possible. Observe that the above inequality (1.40) for p = q = 2 is also known as the
Mulholland inequality.

Clearly, the kernel involved in the previous two inequalities, as well as in (1.37) is
non-homogeneous, while the kernel in (1.38) and (1.39) is homogeneous.

However, utilizing suitable substitutions, these non-homogeneous kernels can also be
interpreted as the homogeneous ones. Thus, in the sequel we provide discrete forms of
Hilbert-type inequalities with a general homogeneous kernel. The same conditions as in
the integral case are assumed on the convergence of the integral k(α), defined by (1.20).

The following result contains discrete Hilbert-type inequalities for a homogeneous ker-
nel in both equivalent forms. Discrete weight functions involve here differentiable real
functions. In addition, for the reader’s convenience, we introduce here the following nota-
tion: H(r), r > 0, denotes the set of all non-negative differentiable functions u : R+ → R

satisfying the following conditions:

(i) u is strictly increasing on R+ and there exists x0 ∈ R+ such that u(x0) = 1,

(ii) limx→∞ u(x) = ∞, u′(x)
[u(x)]r is decreasing on R+.

Theorem 1.14 Let 1
p + 1

q = 1, p > 1, and let s > 0. Further, suppose that

A1 ∈ (
max{ 1−s

q ,0}, 1
q

)
, A2 ∈ (

max{ 1−s
p ,0}, 1

p

)
, u ∈ H(qA1) and v ∈ H(pA2). If K :

R+ ×R+ → R is a non-negative homogeneous function of degree −s, strictly decreasing
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in each argument, then the inequalities

∞

∑
m=1

∞

∑
n=1

K(u(m),v(n))ambn

≤ L

[
∞

∑
m=1

[u(m)]1−s+p(A1−A2)[u′(m)]1−pap
m

] 1
p

×
[

∞

∑
n=1

[v(n)]1−s+q(A2−A1)[v′(n)]1−qbq
n

] 1
q

(1.42)

and

∞

∑
n=1

[v(n)](s−1)(p−1)+p(A1−A2)v′(n)

[
∞

∑
m=1

K(u(m),v(n))am

]p

≤ Lp
∞

∑
m=1

[u(m)](1−s)+p(A1−A2)[u′(m)]1−pap
m (1.43)

hold for all non-negative sequences (am)m∈N, (bn)n∈N, where

L = k
1
p (pA2)k

1
q (2− s−qA1). (1.44)

Moreover, inequalities (1.42) and (1.43) are equivalent.

Proof. Rewrite inequality (1.12) for the counting measure on N, (ϕ ◦ u)(m) = [u(m)]A1

[u′(m)]−
1
q , (ψ ◦ v)(n) = [v(n)]A2 [v′(n)]−

1
p , and the sequences (am)m∈N and (bn)n∈N.

Clearly, these substitutions are well-defined, since u and v are injective functions. Thus, in
this setting we have

∞

∑
m=1

∞

∑
n=1

K(u(m),v(n))ambn

≤
[

∞

∑
m=1

[u(m)]pA1 [u′(m)]1−p(F ◦ u)(m)ap
m

] 1
p

×
[

∞

∑
n=1

[v(n)]qA2 [v′(n)]1−q(G◦ v)(n)bq
n

] 1
q

, (1.45)

where

(F ◦ u)(m) =
∞

∑
n=1

K(u(m),v(n))v′(n)
[v(n)]pA2

and

(G◦ v)(n) =
∞

∑
m=1

K(u(m),v(n))u′(m)
[u(m)]qA1

.
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Now, since the kernel K is strictly decreasing in each argument and u ∈ H(qA1), v ∈
H(pA2), it follows that F ◦ u and G◦ v are strictly decreasing. Hence, we have

(F ◦ u)(m) <

∫ ∞

0

K(u(m),v(y))
[v(y)]pA2

v′(y)dy, (1.46)

since the left-hand side of this inequality is obviously the lower Darboux sum for the
integral on the right-hand side of inequality. Further, utilizing substitution v(y) = tu(m)
and homogeneity of the kernel K, we have∫ ∞

0

K(u(m),v(y))
[v(y)]pA2

v′(y)dy = [u(m)]1−s−pA2

∫ ∞

0
K(1, t)t−pA2dt,

so by virtue of (1.20) and (1.46) we get

(F ◦ u)(m) < [u(m)]1−s−pA2k(pA2). (1.47)

By the similar arguments as for the function F ◦ u, we obtain

(G◦ v)(m) <

∫ ∞

0

K(u(x),v(n))
[u(x)]qA1

u′(x)dx

= [v(n)]1−s−qA1

∫ ∞

0
K(t,1)t−qA1dt

= [v(n)]1−s−qA1

∫ ∞

0
K(1,t)t−2+s+qA1dt

= [v(n)]1−s−qA1k(2− s−qA1). (1.48)

Finally, relations (1.45), (1.47), and (1.48) imply inequality (1.42).
On the other hand, if we rewrite inequality (1.13) with the counting measure on N and

the same functions as in the proof of inequality (1.42), after using estimates (1.47) and
(1.48), we also obtain (1.43). �

Clearly, Theorem 1.14 covers discrete Hilbert and Hardy-Hilbert-type inequalities with
homogeneous kernels, decreasing in both arguments.

Remark 1.10 Suppose (am)m∈N and (bn)n∈N are non-negative real sequences, not iden-
tically equal to trivial zero sequence. Then, according to estimates (1.47) and (1.48), it
follows that inequalities (1.42) and (1.43) are sharp. In other words, equalities in (1.42)
and (1.43) hold if and only if am ≡ 0 or bn ≡ 0.

Remark 1.11 If the homogeneous kernel K : R+×R+ → R is a symmetric function, that
is, K(x,y) = K(y,x), for all x,y ∈ R+, then the constant L, defined by (1.44), simplifies to

L = k
1
p (pA2)k

1
q (qA1).

As emphasized above, inequalities (1.42) and (1.43) are sharp if the sequences (am)m∈N
and (bn)n∈N are not identically equal to the zero sequence. Therefore, it is interesting to
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consider the problem of finding the best possible constant factors for inequalities (1.42)
and (1.43).

The main idea in obtaining the best possible constant factor is a reduction of constant
defined by (1.44) to the form without exponents, which was already considered in the
integral case. Thus, the parameters A1 and A2 fulfill (1.29), that is, pA2 + qA1 = 2− s,
which implies that k(pA2) = k(2− s− qA1). In such a way, the constant factor L from
Theorem 1.14 becomes

L∗ = k(pA2). (1.49)

Moreover, under assumption (1.29), inequalities (1.42) and (1.43) respectively read

∞

∑
m=1

∞

∑
n=1

K(u(m),v(n))ambn ≤ L∗
[

∞

∑
m=1

[u(m)]−1+pqA1[u′(m)]1−pap
m

] 1
p

×
[

∞

∑
n=1

[v(n)]−1+pqA2[v′(n)]1−qbq
n

] 1
q

(1.50)

and

∞

∑
n=1

[v(n)](p−1)(1−pqA2)v′(n)

[
∞

∑
m=1

K(u(m),v(n))am

]p

≤ (L∗)p
∞

∑
m=1

[u(m)]−1+pqA1[u′(m)]1−pap
m. (1.51)

The following theorem shows that the constants on the right-hand sides of inequalities
(1.50) and (1.51) are the best possible.

Theorem 1.15 Suppose that parameters p, q, s, A1, A2, and the functions u,v : R+ → R,
K : R+ ×R+ → R are defined as in the statement of Theorem 1.14. If parameters A1 and
A2 fulfill condition pA2 +qA1 = 2− s, then the constant factors L∗ and (L∗)p are the best
possible in inequalities (1.50) and (1.51).

Proof. It is enough to show that L∗ is the best possible constant factor in inequality
(1.50), since (1.50) and (1.51) are equivalent. For this purpose, we consider sequences

ãm = [u(m)]−qA1− ε
p u′(m) and b̃n = [v(n)]−pA2− ε

q v′(n), where ε > 0 is sufficiently small
number. Since u ∈ H(qA1) we may assume that u is strictly increasing in R+, and there
exists x0 ∈ R+ such that u(x0) = 1. Therefore, considering integral sums, we have

1
ε

=
∫ ∞

1
[u(x)]−1−εd[u(x)] <

∞

∑
m=1

[u(m)]−1−εu′(m)

=
∞

∑
m=1

[u(m)]−1+pqA1[u′(m)]1−pãp
m

< ζ (1)+
∫ ∞

1
[u(x)]−1−εd[u(x)] = ζ (1)+

1
ε
,
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where the function ζ is defined by ζ (x) = [u(x)]−1−εu′(x). Hence, we have

∞

∑
m=1

[u(m)]−1+pqA1[u′(m)]1−pãp
m =

1
ε

+O(1), (1.52)

and similarly,
∞

∑
n=1

[v(n)]−1+pqA2[v′(n)]1−qb̃q
n =

1
ε

+O(1). (1.53)

Now, suppose that there exists a positive constant M, smaller than L∗, such that (1.50) holds
after replacing L∗ with M. Then, combining relations (1.52) and (1.53) with inequality
(1.50), we get

∞

∑
m=1

∞

∑
n=1

K(u(m),v(n))ãmb̃n <
1
ε
(M +o(1)). (1.54)

On the other hand, we can also estimate the left-hand side of inequality (1.50). Namely,
inserting the above defined sequences (ãm)m∈N and (b̃n)n∈N in the left-hand side of (1.50),
we easily obtain

∞

∑
m=1

∞

∑
n=1

K(u(m),v(n))ãmb̃n

>

∫ ∞

1
[u(x)]−qA1− ε

p

[∫ ∞

1
K(u(x),v(y))[v(y)]−pA2− ε

q d(v(y))
]
d(u(x))

=
∫ ∞

1
[u(x)]−1−ε

[∫ ∞

1
u(x)

K(1,t)t−pA2− ε
q dt

]
d(u(x)). (1.55)

Moreover, since the kernel K is strictly decreasing in both arguments, it follows that
K(1,0) > K(1,t), for t > 0, so we have∫ ∞

1
u(x)

K(1,t)t−pA2− ε
q dt >

∫ ∞

0
K(1, t)t−pA2− ε

q dt−K(1,0)
∫ 1

u(x)

0
t−pA2− ε

q dt

= k

(
pA2 +

ε
q

)
− K(1,0)

1− pA2− ε
q

[u(x)]−1+pA2+ ε
q ,

and consequently∫ ∞

1
[u(x)]−1−ε

[∫ ∞

1
u(x)

K(1,t)t−pA2− ε
q dt

]
d(u(x))

≥ 1
ε
k

(
pA2 +

ε
q

)
− K(1,0)(

1− pA2− ε
q

)(
1− pA2 + ε

p

) . (1.56)

In other words, relations (1.55) and (1.56) yield the lower bound for the left-hand side of
inequality (1.50):

∞

∑
m=1

∞

∑
n=1

K(u(m),v(n))ãmb̃n >
1
ε
(L∗ +o(1)). (1.57)
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Finally, comparing relations (1.54) and (1.57), and letting ε → 0+, it follows that L∗ ≤M,
which contradicts the assumption that the constant M is smaller than L∗. This means that
L∗ is the best possible constant in inequality (1.50). �

We conclude this discussion with a few remarks which connect Theorems 1.14 and
1.15 with particular results presented at the beginning of this subsection.

Remark 1.12 Observe that Theorem 1.14 is a generalization of inequality (1.37) (see
also [52]). Moreover, Theorem 1.15 yields the form of inequality (1.37) with the best
possible constant factor. Namely, putting the kernel K(x,y) = (x+ y)−s, s > 0, and power
functions u(x) = Axα and v(y) = Byβ , A, B, α, β > 0, in (1.50), we obtain the correspond-
ing form of inequality (1.37), with the best possible constant factor

α− 1
q β− 1

p A−1+qA1B−1+pA2B(1− pA2,1−qA1).

Remark 1.13 If s = 1, then parameters A1 = A2 = 1
pq fulfill condition (1.29). Thus,

putting these parameters in (1.50) and (1.51), together with kernel K(x,y) = (x+y)−1 and
differentiable functions u(x) = v(x) = log(x+1), we obtain inequalities (1.40) and (1.41)
with the best possible constants (see also [152]).

Remark 1.14 Since parameters A1 = A2 = 2−s
pq , where 2−min{p,q}< s < 2, fulfill con-

dition (1.29), they can be substituted in inequalities (1.50) and (1.51). In addition, consid-
ering the kernel K(x,y) = (x+y)−s, s > 0, and differentiable functions u(x) = v(x) = x+ν,
0 ≤ ν < 1, inequalities (1.50) and (1.51) reduce to

∞

∑
m=1

∞

∑
n=1

ambn

(m+n+2ν)s ≤ S1

[
∞

∑
m=1

(m+ν)1−sap
m

] 1
p
[

∞

∑
n=1

(n+ν)1−sbq
n

] 1
q

(1.58)

and
∞

∑
n=1

(n+ν)(p−1)(s−1)

[
∞

∑
m=1

am

(m+n+2ν)s

]p

≤ Sp
1

∞

∑
m=1

(m+ν)1−sap
m, (1.59)

where the constant factors S1 = B( 1
p + s−1

q , 1
q + s−1

p ) and Sp
1 are the best possible. If s = 1,

then S1 becomes π/sin(π/p). Thus, setting ν = 1
2 and s = 1 in (1.58) and (1.59), we

obtain the sharper version of the Hilbert double series theorem, as well as its equivalent
form (see also [142]).

Remark 1.15 Some particular discrete Hilbert-type inequalities regarding homogeneous
kernels are also obtained in [54]. They can be derived as the consequences of Theorems
1.14 and 1.15. For example, setting K(x,y) = (x + y)−s, s > 0, u(x) = xax, v(y) = yay,
a > 1, inequalities (1.50) and (1.51) respectively read

∞

∑
m=1

∞

∑
n=1

ambn

(mam +nan)s ≤ L∗
[

∞

∑
m=1

(mam)−1+pqA1 (am +mam loga)1−p ap
m

] 1
p

×
[

∞

∑
n=1

(nan)−1+pqA2 (an +nan loga)1−p bq
n

] 1
q
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and

∞

∑
n=1

(nan)(p−1)(1−pqA2) (an +nan loga)

[
∞

∑
m=1

am

(mam +nan)s

]p

≤ (L∗)p
∞

∑
m=1

(mam)−1+pqA1 (am +mam loga)1−p ap
m,

where L∗ = B(1− pA2,1−qA1).
Similarly, if K(x,y) = (x+y)−s, s > 0, u(x) = xarctanx, v(y) = yarctany, then inequal-

ities (1.50) and (1.51) become

∞

∑
m=1

∞

∑
n=1

ambn

(marctanm+narctann)s ≤ L∗
[

∞

∑
m=1

ωp(m)ap
m

] 1
p
[

∞

∑
n=1

ωq(n)bq
n

] 1
q

and

∞

∑
n=1

(narctann)(p−1)(1−pqA2)
(

arctann+
n

1+n2

)

×
[

∞

∑
m=1

am

(marctanm+narctann)s

]p

≤ (L∗)p
∞

∑
m=1

ωp(m)am
p,

where L∗ = B(1− pA2,1−qA1) and

ωr(x) = (xarctanx)1−s−r(A2−A1)
(

arctanx+
x

1+ x2

)1−r

, r ∈ {p,q}.

Of course, the above inequalities include the best possible constants. For some other ex-
amples arising from various choices of weight functions, the reader is referred to [54].

1.4.3 Some further estimates

In this subsection we study a few particular Hilbert-type inequalities involving the homoge-
neous kernel K(x,y) = (x+ y)−s, s > 0. In addition to the Hilbert inequality, the following
results will be derived with a help of some additional estimates that arise from this par-
ticular setting. More precisely, we shall use Theorems 1.9 and 1.10, as well as various
methods for estimating the integral of type

∫ b
x

a
x

K(1,u)u−αdu.

The first in the series of results is the following pair of inequalities.
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Corollary 1.2 Let 1
p + 1

q = 1, p > 1, and let s > 0. If (a,b) ⊆ R+, then the inequalities

∫ b

a

∫ b

a

f (x)g(y)
(x+ y)s dxdy

≤ B
( s

2
,
s
2

){∫ b

a

[
1− 1

2

(a
x

) s
2 − 1

2

( x
b

) s
2
]
x−

sp
2 +p−1 f p(x)dx

} 1
p

×
{∫ b

a

[
1− 1

2

(a
y

) s
2 − 1

2

( y
b

) s
2

]
y−

sq
2 +q−1gq(y)dy

} 1
q

(1.60)

and

∫ b

a

[
1− 1

2

(
a
y

) s
2

− 1
2

( y
b

) s
2

]1−p

y
sp
2 −1

[∫ b

a

f (x)
(x+ y)s dx

]p

dy

≤ Bp
( s

2
,
s
2

)∫ b

a

[
1− 1

2

(a
x

) s
2 − 1

2

( x
b

) s
2
]
x−

sp
2 +p−1 f p(x)dx (1.61)

hold for all non-negative measurable functions f ,g : (a,b) → R. In addition, inequalities
(1.60) and (1.61) are equivalent.

Proof. Considering Theorem 1.9 with the kernel K(x,y) = (x+ y)−s and weight functions

ϕ(x) = x
2−s
2q , ψ(y) = y

2−s
2p , we have∫ b

a

∫ b

a

f (x)g(y)
(x+ y)s dxdy

≤
[∫ b

a
x−

sp
2 +p−1

(∫ b
x

a
x

u
s
2−1

(1+u)s du

)
f p(x)dx

] 1
p

×
[∫ b

a
y−

sq
2 +q−1

(∫ y
a

y
b

u
s
2−1

(1+u)s du

)
gq(y)dy

] 1
q

.

Now, we are going to estimate integrals in the above inequality, dependent on variables x
and y. Taking into account an obvious relation

B
( s

2
,
s
2

)
= 2

∫ ∞

1

u
s
2−1

(1+u)s du = 2α
s
2

∫ ∞

α

u
s
2−1

(α +u)s du,

and inequality ∫ ∞

α

u
s
2−1

(α +u)s du <

∫ ∞

α

u
s
2−1

(1+u)s du,

where α > 1, we have∫ ∞

α

u
s
2−1

(1+u)s du >
1
2
α− s

2 B
( s

2
,
s
2

)
, α > 1. (1.62)
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Finally, considering the relation∫ b
x

a
x

u
s
2−1

(1+u)s du = B
( s

2
,
s
2

)
−

∫ ∞

b
x

u
s
2−1

(1+u)s du−
∫ ∞

x
a

u
s
2−1

(1+u)s du,

and (1.62), we obtain the estimate∫ b
x

a
x

u
s
2−1

(1+u)s du < B
( s

2
,
s
2

)[
1− 1

2

(a
x

) s
2 − 1

2

( x
b

) s
2
]
,

which yields inequality (1.60). Equivalent form (1.61) follows in a similar way. �

Remark 1.16 Combining the well-known arithmetic-geometric mean inequality

1
2

(a
x

) s
2 +

1
2

( x
b

) s
2 ≥

(a
b

) s
4
,

with inequalities (1.60) and (1.61), we have∫ b

a

∫ b

a

f (x)g(y)
(x+ y)s dxdy

≤ B
( s

2
,
s
2

)[
1−

(a
b

) s
4
][∫ b

a
x−

sp
2 +p−1 f (x)pdx

] 1
p
[∫ b

a
y−

sq
2 +q−1g(y)qdy

] 1
q

and

∫ b

a
y

sp
2 −1

[∫ b

a

f (x)
(x+ y)s dx

]p

dy ≤
[
B
( s

2
,
s
2

)(
1−

(a
b

) s
4
)]p ∫ b

a
x−

sp
2 +p−1 f (x)pdx.

Putting p = q = 2 in these inequalities, we obtain a pair of inequalities derived in [152].
Moreover, if a = 0 and b = ∞, the above inequalities reduce to corresponding relations
obtained in [11].

We finish this section with another specific Hilbert-type inequality referring to kernel
K(x,y) = (x+ y)−s, s > 0.

Corollary 1.3 Let 1
p + 1

q = 1, p > 1, s > 0, and let A1 and A2 be real parameters such

that A1 ∈ ( 1−s
q , 1

q) and A2 ∈ ( 1−s
p , 1

p). If Q = k
1
p
l1
(pA2)k

1
q
l2
(qA1), l1 = 1−pA2

s , l2 = 1−qA1
s , and

kl(α) =
∫ al−bl

a(bl−1−al−1)

al−bl

b(bl−1−al−1)

u−α

(1+u)s du,

then the inequalities∫ b

a

∫ b

a

f (x)g(y)
(x+ y)s dxdy

≤ Q

[∫ b

a
x1−s+p(A1−A2) f p(x)dx

] 1
p
[∫ b

a
y1−s+q(A2−A1)gq(y)dy

] 1
q

(1.63)
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and∫ b

a
y(p−1)(s−1)+p(A1−A2)

[∫ b

a

f (x)
(x+ y)s dx

]p

dy ≤ Qp
∫ b

a
x1−s+p(A1−A2) f p(x)dx (1.64)

hold for all non-negative measurable functions f ,g : (a,b) → R and are equivalent.

Proof. We start as in the proof of Corollary 1.2, but for the estimate of the integral∫ b
x

a
x

u−α

(1+u)s du,

we use the fact that the function f (x) =
∫ b/x
a/x u−α(1+u)−sdu, x∈ R+, attains its maximum

value at x = abl−bal

al−bl , l = 1−α
s . �

Remark 1.17 Setting A1 = A2 = 2−s
pq , provided that s > 2−min{p,q}, inequalities (1.63)

and (1.64) reduce respectively to

∫ b

a

∫ b

a

f (x)g(y)
(x+ y)s dxdy ≤ Q1

[∫ b

a
x1−s f p(x)dx

] 1
p
[∫ b

a
y1−sgq(y)dy

] 1
q

and ∫ b

a
y(s−1)(p−1)

[∫ b

a

f (x)
(x+ y)s dx

]p

dy ≤ Q1
p
∫ b

a
x1−s f p(x)dx,

where

Q1 = k
1
p
q+s−2

qs

(2− s
q

)
k

1
q
p+s−2

ps

(2− s
p

)
.

Similarly, if A1 = 2−s
2q and A2 = 2−s

2p , inequalities (1.63) and (1.64) respectively read

∫ b

a

∫ b

a

f (x)g(y)
(x+ y)s dxdy

≤ k 1
2

(
2− s

2

)[∫ b

a
x−

sp
2 +p−1 f (x)pdx

] 1
p
[∫ b

a
y−

sq
2 +q−1g(y)qdy

] 1
q

and ∫ b

a
y

sp
2 −1

[∫ b

a

f (x)
(x+ y)s dx

]p

dy ≤ kp
1
2

(
2− s

2

)∫ b

a
x−

sp
2 +p−1 f (x)pdx.

Remark 1.18 General results from this section, covering the best possible constant fac-
tors for Hilbert-type inequalities with a homogeneous kernel in integral and discrete case
are established in papers [63] and [111]. Particular inequalities in subsection 1.4.3 are
taken from paper [53]. For the similar problem area, the reader is referred to the follow-
ing references: [13], [36], [38], [80], [85], [101], [122], [126], [132], [135], [146], [149],
[155], [162], [164], [176], [181], [182], and [183].
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1.5 Refined Hilbert-type inequalities
via the refined Hölder inequality

In this section we provide an interesting improvement of the general Hilbert-type inequality
based on the improvement of the Hölder inequality, obtained by H. Leping et. al. in [75].

For the reader’s convenience, we first introduce some definitions. Let f and g be el-
ements of the inner product space of measurable functions, where the inner product is
denoted by 〈 f ,g〉. Further, let Sr( f ,u) be defined as

Sr( f ,u) = 〈 f r
2 ,u〉|| f ||r−

r
2 ,

where u is the unit vector and || f ||r = r
√
〈 f r

2 , f
r
2 〉. Clearly, Sr( f ,u) = 0 when the vector u

selected is orthogonal to f
r
2 .

By virtue of the positive definiteness of the Gramm matrix, G. Mingzhe and L. Debnath
[98], derived an important inequality

〈 f ,g〉2 ≤ || f ||2||g||2 − (|| f ||x−||g||y)2 = || f ||2||g||2 [1− r(h)] , (1.65)

where r(h) =
( y
|| f || − x

||g||
)2

, x = 〈g,h〉, y = 〈 f ,h〉, ||h||= 1, and xy≥ 0. Here, || · || denotes

the usual 2-norm in L2 space. In addition, equality in (1.65) holds if and only if vectors
f and g are linearly dependent or vector h is a linear combination of f and g, provided
xy = 0, x �= y. It should be noticed here that inequality (1.65) is a consequence of an earlier
result of Mitrović (see paper [104]).

Now, regarding the previous definitions, the above mentioned refinement of the Hölder
inequality from [75] asserts that

〈 f ,g〉 ≤ || f ||p||g||q[1−R(h)]m, (1.66)

where 1
p + 1

q = 1, p > 1, R(h) = [Sp( f ,h)− Sq(g,h)]2 �= 0, ||h|| = 1, m = min{ 1
p , 1

q},
provided f

p
2 , g

q
2 , h are linearly independent.

In order to explain the idea from paper [75], we derive here improvement of the reverse
Hölder inequality. Moreover, the integrals will be taken with σ−finite measures, as in
Section 1.2, and the corresponding inner product will be defined as
〈 f ,g〉 =

∫
ΩK(x) f (x)g(x)dμ(x).

Lemma 1.2 Let 1
p + 1

q = 1, 0 < p < 1, and let K : Ω → R, f : Ω → R, g : Ω → R,

h : Ω → R be non-negative measurable functions such that f
p
2 , g

q
2 and h are linearly

independent. Then,

〈 f ,g〉 ≥ || f ||p||g||q [1−R(h)]
1
q , (1.67)

where R(h) = [Sp( f ,h)−Sq(g,h)]2 �= 0 and ||h|| = 1.
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Proof. The inner product 〈 f ,g〉 can be rewritten in the following form:

〈 f ,g〉 =
∫
Ω

K(x)
(

f
p
q (x)g(x)

)
f 1− p

q (x)dμ(x).

Now, since parameters A = q
2 and B = q

q−2 are conjugate, that is, 1
A + 1

B = 1, applying the
reverse Hölder inequality to the above expression, we have

〈 f ,g〉 ≥
[∫

Ω
K(x)

(
f

p
q (x)g(x)

)A
dμ(x)

] 1
A
[∫

Ω
K(x)

(
f 1− p

q (x)
)B

dμ(x)
] 1

B

= 〈 f p
2 ,g

q
2 〉|| f ||p p(1− 2

q ). (1.68)

On the other hand, replacing f and g with f
p
2 and g

q
2 in (1.65), we obtain

〈 f p
2 ,g

q
2 〉2 ≤ || f ||p p||g||qq [1−R(h)], (1.69)

that is, (1.67). �

In the sequel we provide an extension of Theorem 1.9 via the above described improve-
ment of the Hölder inequality. In the following two theorems, the exponent m indicates m =
min{ 1

p ,
1
q}, where p and q are conjugate exponents. Moreover, regarding the above def-

initions, we denote R( f ,g,h) = (Sp( f ,h)− Sq(g,h))2, where Sp( f ,h) = 〈 f
p
2 ,h〉|| f ||p

− p
2 .

Obviously, Sp( f ,h) depends on the inner product. In order to obtain improved Hilbert-type
inequalities, the inner product will be defined as

〈 f ,g〉 =
∫
Ω

∫
Ω

K(x,y) f (x,y)g(x,y)dμ1(x)dμ2(y). (1.70)

Theorem 1.16 Let 1
p + 1

q = 1, p > 1, and let Ω be a measure space with positive σ -finite
measures μ1 and μ2. Let K : Ω×Ω→ R and ϕ ,ψ : Ω → R be non-negative measurable
functions. If the functions F and G are defined by F(x) =

∫
Ω K(x,y)ψ−p(y)dμ2(y) and

G(y) =
∫
Ω K(x,y)ϕ−q(x)dμ1(x), then for all non-negative measurable functions f and g

on Ω the inequality ∫
Ω

∫
Ω

K(x,y) f (x)g(y)dμ1(x)dμ2(y)

≤ (1−R( f ,g,h))m
[∫

Ω
ϕ p(x)F(x) f p(x)dμ1(x)

] 1
p

×
[∫

Ω
ψq(y)G(y)gq(y)dμ2(y)

] 1
q

(1.71)

holds, where f (x,y) = f (x) ϕ(x)
ψ(y) , g(x,y) = g(y)ψ(y)

ϕ(x) , and h(x,y) is such that∫
Ω

∫
Ω

K(x,y)h
2
(x,y)dμ1(x)dμ2(y) = 1.

If 0 < p < 1, then the reverse inequality in (1.71) holds.
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Proof. Inequality (1.71) is an immediate consequence of the relation∫
Ω

∫
Ω

K(x,y) f (x)g(y)dμ1(x)dμ2(y) =
∫
Ω

∫
Ω

K(x,y) f (x,y)g(x,y)dμ1(x)dμ2(y)

and inequality (1.66). On the other hand, the reverse inequality is a consequence of Lemma
1.2 and the above relation. �

In addition, replacing g in (1.71) with the function

g̃(y) = G1−p(y)ψ−p(y)
(∫

Ω
K(x,y) f (x)dμ1(x)

)p−1

,

we also obtain an improvement of the Hardy-Hilbert-type inequality (1.13).

Theorem 1.17 Let 1
p + 1

q = 1, p > 1, and let functions K, ϕ , ψ , F, G be defined as in the
statement of Theorem 1.16. Then the inequality∫

Ω
G1−p(y)ψ−p(y)

[∫
Ω

K(x,y) f (x)dμ1(x)
]p

dμ2(y)

≤ (1−R( f , g̃,h))mp
∫
Ω
ϕ p(x)F(x) f p(x)dμ1(x) (1.72)

holds for all non-negative measurable functions f : Ω→ R, provided the functions f , g̃, h
are defined as in Theorem 1.16. If 0 < p < 1, then the reverse inequality in (1.72) is valid.

Proof. Since 1
p + 1

q = 1, utilizing (1.71) we have

∫
Ω

G1−p(y)ψ−p(y)
(∫

Ω
K(x,y) f (x)dμ1(x)

)p

dμ2(y)

=
∫
Ω

∫
Ω

K(x,y) f (x)g̃(y)dμ1(x)dμ2(y)

≤ (1−R( f , g̃,h))m
[∫

Ω
ϕ p(x)F(x) f p(x)dμ1(x)

] 1
p
[∫

Ω
ψq(y)G(y)g̃q(y)dμ2(y)

] 1
q

=
[∫

Ω
ϕ p(x)F(x) f p(x)dμ1(x)

] 1
p

×
[∫

Ω
G1−p(y)ψ−p(y)

(∫
Ω

K(x,y) f (x)dμ1(x)
)p

dμ2(y)
] 1

q

,

that is, we get (1.72). The reverse inequality is derived in the same way, by virtue of
Lemma 1.2. �

Remark 1.19 Note that inequalities (1.71) and (1.72) present refinements of inequalities
(1.12) and (1.13) from Theorem 1.9.
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Remark 1.20 Clearly, the method developed in this section can be applied to results from
Sections 1.3 and 1.4. For more details about this problem area the reader is referred to [58].
Some other methods of improving Hilbert-type inequalities will be studied in Chapters 4,
5, and 6.

1.6 Multidimensional Hilbert-type inequalities

1.6.1 General form

Regarding Theorem 1.9, in this section we derive multidimensional forms of the general
Hilbert-type and Hardy-Hilbert-type inequality. In such setting we deal with conjugate
parameters p1, p2, . . . , pn, n ≥ 2. Recall that these parameters fulfill condition ∑n

i=1
1
pi

= 1.
If all parameters are non-negative, then pi > 1, i = 1,2, . . . ,n.

The following result includes integrals taken over general subsets of R+, with respect
to σ -finite measures.

Theorem 1.18 Let ∑n
i=1

1
pi

= 1, pi > 1, i = 1,2, . . . ,n, and let Ω be measure space with
σ -finite measures μi, i = 1,2, . . . ,n. Further, suppose that K : Ωn → R and φi j : Ω → R,
i, j = 1, . . . ,n, are non-negative measurable functions such that ∏n

i, j=1 φi j(x j) = 1. If 1
q =

∑n−1
i=1

1
pi

and functions Fi, h are defined by

Fi(xi) =
∫
Ωn−1

K(x1, . . . ,xn)
n

∏
j=1, j �=i

φ pi
i j (x j)

×dμ1(x1) . . .dμi−1(xi−1)dμi+1(xi+1) . . .dμn(xn), i = 1,2, . . . ,n,

h = φ−q
nn F1−q

n , then for all non-negative measurable functions fi : Ω → R, i = 1,2, . . . ,n,
the inequalities ∫

Ωn
K(x1, . . . ,xn)

n

∏
i=1

fi(xi)dμ1(x1) · · ·dμn(xn)

≤
n

∏
i=1

[∫
Ω

Fi(xi) f pi
i (xi)φ pi

ii (xi)dμi(xi)
] 1

pi
(1.73)

and ∫
Ω

h(xn)

[∫
Ωn−1

K(x1, . . . ,xn)
n−1

∏
i=1

fi(xi)dμ1(x1) · · ·dμn−1(xn−1)

]q

dμn(xn)

≤
n−1

∏
i=1

[∫
Ω

Fi(xi) f pi
i (xi)φ pi

ii (xi)dμi(xi)
] q

pi
(1.74)

hold and are equivalent.
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If pi > 0, i∈ {1,2, . . . ,n}, and pk < 0, k �= i, then the reverse inequality in (1.73) holds.
Moreover, if pi > 0, i ∈ {1,2, . . . ,n− 1}, and pk < 0, k �= i, then the reverse inequality in
(1.74) holds. In addition, inequality (1.74) holds also when pn > 0 and pk < 0, k �= n.

Proof. We first prove inequality (1.73). Applying the Hölder inequality we have

∫
Ωn

K(x1, ...,xn)
n

∏
i=1

fi(xi)dμ1(x1)...dμn(xn)

=
∫
Ωn

K(x1, ...,xn)
n

∏
i=1

(
fi(xi)

n

∏
j=1

φi j(x j)
)
dμ1(x1)...dμn(xn)

≤
n

∏
i=1

[∫
Ωn

K(x1, ...,xn) f pi
i (xi)

n

∏
j=1

φ pi
i j (x j)dμ1(x1)...dμn(xn)

] 1
pi

,

so the Fubini theorem and definitions of functions Fi, i = 1,2, . . . ,n, yield (1.73).
In order to prove inequality (1.74), we define I(xn) as

I(xn) =
∫
Ωn−1

K(x1, ...,xn)
n−1

∏
i=1

fi(xi)dμ1(x1)...dμn−1(xn−1).

Now, putting function

fn(xn) = h(xn) · (I(xn))q−1

in inequality (1.73), we get

I =
∫
Ω

h(xn)(I(xn))qdμn(xn) ≤
n−1

∏
i=1

[∫
Ω
φ pi

ii (xi)Fi(xi) f pi
i (xi)dμi(xi)

] 1
pi

×
[∫

Ω
hpn(xn)(I(xn))pn(q−1)Fn(xn)φ pn

nn (xn)dμn(xn)
]1− 1

q

.

Since h(xn) = φ−q
nn (xn)F

1−q
n (xn) and 1

q = ∑n−1
i=1

1
pi

, the above inequality can be rewritten in
the form,

I ≤
n−1

∏
i=1

[∫
Ω

Fi(xi) f pi
i (xi)φ pi

ii (xi)dμi(xi)
] 1

pi · I1− 1
q ,

that is, we obtain (1.74).
Reverse inequalities are derived in the same way, by virtue of the reverse Hölder in-

equality.
It remains to prove that inequalities (1.73) and (1.74) are equivalent. It is enough to

check that inequality (1.73) follows from (1.74). For this purpose, suppose that inequality



34 1 HILBERT-TYPE INEQUALITIES WITH CONJUGATE EXPONENTS

(1.74) holds. Then we have

∫
Ωn

K(x1, ...,xn)
n

∏
i=1

fi(xi)dμ1(x1)...dμn(xn)

=
∫
Ω
φnn

−1(xn)Fn
− 1

pn (xn)

[∫
Ωn−1

K(x1, ...,xn)
n−1

∏
i=1

fi(xi)dμ1(x1)...dμn−1(xn−1)

]
×Fn

1
pn (xn) fn(xn)φnn(xn)dμn(xn).

In addition, the Hölder inequality with conjugate exponents q and pn yields

∫
Ωn

K(x1, ...,xn)
n

∏
i=1

fi(xi)dμ1(x1)...dμn(xn)

≤
{∫

Ω
h(xn)

[∫
Ωn−1

K(x1, ...,xn)
n−1

∏
i=1

fi(xi)dμ1(x1)...dμn−1(xn−1)

]q

dμn(xn)

} 1
q

×
[∫

Ω
φ pn

nn (xn)Fn(xn) f pn
n (xn)dμn(xn)

] 1
pn

,

and the result follows from (1.74). �

Remark 1.21 Considering the proof of the previous theorem, it follows that the equality
in (1.73) and (1.74) is possible if and only if it holds in the Hölder inequality. More pre-
cisely, this means that functions f pi

i (xi)∏n
j=1 φ

pi
i j (x j) are effectively proportional. Hence,

equality in (1.73) and (1.74) holds if and only if

fi(xi) = Ciφii(xi)
pi

1−pi , i = 1, . . . ,n, (1.75)

for some constants Ci ≥ 0. That is possible only if the functions

∏n
j=1, j �=iφ j j

p j
1−p j (x j)

∏n
j=1, j �=iφi j

p j(x j)
, i = 1,2, . . . ,n,

are appropriate constants, and

∫
Ω

Fi(xi)φ
pi

1−pi
ii (xi)dμi(xi) < ∞, i = 1,2, . . .n.

Otherwise, the inequalities in Theorem 1.18 are strict.

Remark 1.22 It should be emphasized here that Theorem 1.18 is a multidimensional
extension of Theorem 1.9 from Section 1.2.
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1.6.2 Application to homogeneous kernels

In the sequel we consider multidimensional versions of Hilbert inequality (i. e. Theo-
rem 1.18) equipped with Ω = R+, Lebesgue measures μi, i = 1, . . . ,n, a non-negative

homogeneous kernel K : Rn
+ → R, and the weight functions φi j(x j) = x

Ai j
j , where Ai j ∈ R,

i, j = 1, . . . ,n.
We define multidimensional version of integral k(α) (see definition (1.20)), but in this

section it will be more convenient to slightly change the definition:

k (α1, . . . ,αn−1) =
∫
R

n−1
+

K(1, t1 . . . ,tn−1)t
α1
1 · · · tαn−1

n−1 dt1 · · ·dtn−1, (1.76)

where we assume that k (α1, . . . ,αn−1) < ∞ for α1, . . . ,αn−1 > −1 and α1 + · · ·+αn−1 +
n < s+1.

Theorem 1.19 Let ∑n
i=1

1
pi

= 1, pi > 1, i = 1,2, . . . ,n, and let K : Rn
+ → R be a non-

negative measurable homogeneous function of degree −s, s > 0. Further, let Ai j, i, j =
1, . . . ,n, be real parameters such that ∑n

i=1 Ai j = 0 for j = 1, . . . ,n. If fi : R+ → R, fi �= 0,
i = 1, . . . ,n, are non-negative measurable functions, then the inequalities∫

R
n
+

K(x1, . . . ,xn)
n

∏
i=1

fi(xi)dx1 · · ·dxn < L
n

∏
i=1

[∫ ∞

0
xn−s−1+piαi
i f pi

i (xi)dxi

] 1
pi

(1.77)

and ∫ ∞

0
x(1−q)(n−1−s)−qαn
n

[∫
R

n−1
+

K(x1, . . . ,xn)
n−1

∏
i=1

fi(xi)dx1 · · ·dxn−1

]q

dxn

< Lq
n−1

∏
i=1

[∫ ∞

0
xn−1−s+piαi
i f pi

i (xi)dxi

] q
pi

(1.78)

hold and are equivalent, where

L = k
1
p1 (p1A12, . . . , p1A1n) · k

1
p2 (s−n− p2(α2 −A22), p2A23, . . . , p2A2n)

· · ·k 1
pn (pnAn2, . . . , pnAn,n−1,s−n− pn(αn −Ann)), (1.79)

1
q = ∑n−1

i=1
1
pi

, αi = ∑n
j=1 Ai j, piAi j > −1, i �= j, pi(Aii −αi) > n− s−1.

Proof. Set φi j(x j) = x
Ai j
j in Theorem 1.18, where ∑n

i=1 Ai j = 0 for every j = 1, . . . ,n. It is
enough to calculate the functions Fi(xi), i = 1, . . . ,n. Using homogeneity of the kernel K
and obvious change of variables, we have

F1(x1) =
∫
R

n−1
+

K(x1,x2, . . . ,xn)
n

∏
j=2

x
p1A1 j
j dx2 · · ·dxn

=
∫
R

n−1
+

x−s
1 K(1,x2/x1, . . . ,xn/x1)

n

∏
j=2

x
p1A1 j
j dx2 · · ·dxn

= xn−1−s+p1(α1−A11)
1 k(p1A12, . . . , p1A1n).
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On the other hand, using homogeneity of K and the change of variables

x1 = x2 · 1
t2

, xi = x2 · ti
t2

, i = 3, . . . ,n, so that
∂ (x1,x3, . . . ,xn)
∂ (t2,t3, . . . ,tn)

= xn−1
2 t−n

2 ,

where ∂ (x1,x3,...,xn)
∂ (t2,t3,...,tn)

denotes the Jacobian of the transformation, we have

F2(x2) =
∫
R

n−1
+

K(x1,x2, . . . ,xn)
n

∏
j=1, j �=2

x
p2A2 j
j dx1dx3 · · ·dxn

=
∫
R

n−1
+

x−s
1 K(1,x2/x1, . . . ,xn/x1)

n

∏
j=1, j �=2

x
p2A2 j
j dx1dx3 · · ·dxn

= xn−1−s+p2(α2−A22)
2 k(s−n− p2(α2 −A22), p2A23, . . . , p2A2n).

In a similar manner we obtain

Fi(xi) = xn−s−1+pi(αi−Aii)
i

×k(piAi2, . . . , piAi,i−1,s−n− pi(αi −Aii), piAi,i+1, . . . , piAin),

for i = 3, . . . ,n. This gives inequalities (1.77) and (1.78) with inequality sign ≤.
Finally, condition (1.75) immediately gives that nontrivial case of equality in (1.77)

and (1.78) leads to the divergent integrals. This completes the proof. �

Motivated by the ideas from Section 1.4, we can also establish conditions under which
the constant factors L and Lq are the best possible in inequalities (1.77) and (1.78). In order
to obtain such factors, it is natural to impose the following conditions on the parameters
Ai j:

p jA ji = s−n− pi(αi −Aii), i = 2, . . . ,n, j �= i,

piAik = p jA jk, k �= i, j, k �= 1. (1.80)

The missing cases i = 1 and k = 1 can be deduced from (1.80) as follows:

p1(α1 −A11) = p1A1 j + p1 ∑
i�=1, j

A1i = s−n− p j(α j −Aj j)+ p j ∑
i�= j,1

Aji = s−n− p jA j1,

where j �= 1. Thus, the complete set of conditions is

p jA ji = s−n− pi(αi −Aii), i, j = 1,2, . . . ,n, i �= j,

piAik = p jA jk, k �= i, j. (1.81)

Theorem 1.20 Suppose that real parameters Ai j, i, j = 1, . . . ,n, fulfill conditions from
Theorem 1.19 and conditions given in (1.81). If the kernel K : Rn

+ → R is as in Theorem
1.19 and for every i = 2, . . . ,n

K(1, t2, . . . ,ti, . . . ,tn) ≤CK(1,t2, . . . ,0, . . . ,tn), 0 ≤ ti ≤ 1, t j ≥ 0, j �= i, (1.82)

for some C > 0, then the constants L and Lq are the best possible in inequalities (1.77) and
(1.78). In this case L = k(p1A12, p1A13, . . . , p1A1n).
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Proof. It is easy to see that n− s + piαi = −piÃi, where Ãi = p1A1i for i �= 1, and
Ã1 = pnAn1. Hence, inequality (1.77) can be rewritten as

∫
R

n
+

K(x1, . . . ,xn)
n

∏
i=1

fi(xi)dx1 · · ·dxn < L
n

∏
i=1

[∫ ∞

0
x−1−piÃi
i f pi

i (xi)dxi

] 1
pi

, (1.83)

where L = k(Ã2, . . . , Ãn).
Now, suppose that the above constant factor L is not the best possible. Then, there

exists a positive constant M, smaller than L, such that inequality (1.83) still holds after
replacing L by M. For this purpose, set

f̃i(xi) =

{
0, x ∈ (0,1)

xi
Ãi− ε

pi , x ∈ [1,∞)
, i = 1, . . . ,n,

where 0 < ε < min1≤i≤n{pi + piÃi}. If we substitute these functions in (1.83), then the
right-hand side of the inequality becomes M

ε , since

n

∏
i=1

[∫ ∞

0
xi
−1−piÃi f̃ pi

i (xi)dxi

] 1
pi

=
1
ε
. (1.84)

Further, let J denotes the left-hand side of inequality (1.83), for the above choice of
functions f̃i. Utilizing substitutions ui = xi

x1
, i = 2, . . . ,n, in J, we find that

J =
∫ ∞

1
x1

−1−ε

[∫ ∞

1
x1

· · ·
∫ ∞

1
x1

K(1,u2, . . . ,un)
n

∏
i=2

ui
Ãi− ε

pi du2 . . .dun

]
dx1. (1.85)

Moreover, J can be estimated as

J ≥
∫ ∞

1
x1

−1−ε

[∫
R

n−1
+

K(1,u2, . . . ,un)
n

∏
i=2

ui
Ãi− ε

pi du2 . . .dun

]
dx1

−
∫ ∞

1
x1

−1−ε
n

∑
j=2

I j(x1)dx1

=
1
ε
k

(
Ã2− ε

p2
, . . . , Ãn− ε

pn

)
−

∫ ∞

1
x−1−ε
1

n

∑
j=2

I j(x1)dx1, (1.86)

where for j = 2, . . . ,n, I j(x1) is defined by

I j(x1) =
∫

Dj

K(1,u2, . . . ,un)
n

∏
i=2

ui
Ãi− ε

pi du2 . . .dun,

with Dj = {(u2,u3, . . . ,un);0 < u j ≤ 1
x1

, 0 < uk < ∞,k �= j}.
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Without losing generality, it is enough to estimate the integral I2(x1). The case of n = 2
was proved in Theorem 1.13 (see Section 1.4). For n ≥ 3 we have

I2(x1) ≤C

[∫
R

n−2
+

K(1,0,u3, . . . ,un)
n

∏
i=3

ui
Ãi− ε

pi du3 . . .dun

]

×
∫ 1

x1

0
u2

Ã2− ε
p2 du2

= C

(
1− ε

p2
+ Ã2

)−1

x1
ε
p2

−Ã2−1
k

(
Ã3− ε

p3
, . . . , Ãn− ε

pn

)
,

where k
(
Ã3 − ε

p3
, . . . , Ãn − ε

pn

)
is well-defined since obviously Ã3 + · · ·+ Ãn < s− n+ 2.

Hence, we have I j(x1) = x1
ε/p j−Ã j−1Oj(1) for ε → 0+, j = 2, . . . ,n, and consequently∫ ∞

1
x1

−1−ε
n

∑
j=2

I j(x1)dx1 = O(1). (1.87)

Therefore, taking into account (1.84), (1.86), and (1.87), it follows that L ≤ M when
ε → 0+, which is an obvious contradiction. This means that the constant L is the best
possible in (1.83). Moreover, since the equivalence preserves the best possible constant,
the proof is completed. �

Remark 1.23 If the parameters Ai j are defined by Aii =
(n−s)(pi−1)

pi
2 and Ai j = s−n

pi p j
, i �= j,

i, j = 1, . . . ,n, then we have

n

∑
i=1

Ai j = (s−n)∑
i�= j

1
pip j

+(n− s)
p j−1
p j

2 =
s−n
p j

(
n

∑
i=1

1
pi

−1

)
= 0,

for j = 1,2, . . . ,n. Obviously, due to the symmetry, it follows that αi = ∑n
j=1 Ai j = 0, for

i = 1, . . . ,n. Moreover, parameters Ai j, i, j = 1, . . . ,n, fulfill the set of conditions (1.81),
hence, in this case Theorem 1.20 yields the following inequality

∫
R

n
+

K(x1, . . . ,n)
n

∏
i=1

fi(xi)dx1 · · ·dxn < L
n

∏
i=1

[∫ ∞

0
xn−s−1
i f pi

i (xi)dxi

] 1
pi

,

where L = k
(

s−n
p2

, . . . , s−n
pn

)
is the best possible constant. For s = n−1 we obtain the non-

weighted case with the best possible constant L = k
(− 1

p2
, . . . , − 1

pn

)
(compare with Re-

mark 1.9).

1.6.3 Examples

We proceed with various examples of multidimensional Hilbert-type inequalities. In order
to establish some particular results, we first indicate here a few lemmas. For the proof of
the following lemma the reader is referred to [152].
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Lemma 1.3 If n ∈ N, ri > 0, i = 1, . . . ,n, then∫
R

n−1
+

∏n−1
i=1 uri−1

i(
1+∑n−1

i=1 ui
)∑n

i=1 ri
du1 . . .dun−1 = ∏n

i=1Γ(ri)
Γ(∑n

i=1 ri)
, (1.88)

where Γ is the usual Gama function.

Moreover, the trivial substitution ui = tλi , i = 1, . . . ,n−1, applied to relation (1.88), yields
another integral formula:

Lemma 1.4 If n ∈ N, s,λ > 0, βi > −1, i = 1, . . . ,n−1, and ∑n−1
i=1 βi < λ s−n+1, then

∫
R

n−1
+

∏n−1
i=1 tβi

i(
1+∑n−1

i=1 tλi
)s dt1 . . .dtn−1

=
1

Γ(s)λ n−1

[
n−1

∏
i=1

Γ
(
βi +1
λ

)]
Γ

(
s− 1

λ

n−1

∑
i=1

(βi +1)

)
. (1.89)

The following lemma will be needed when considering a particular 3-dimensional case.

Lemma 1.5 Let s > 0, a ≥ 0, and b > 0. Further, let α1, α2 > −1, α1 +α2 < s−2, and

k(α1,α2) =
∫
R

2
+

tα1
1 tα2

2

(amin{1,t1, t2}+bmax{1, t1,t2})s dt1dt2.

Then

k(α1,α2) =
b−s

(α1 +1)(α2 +1)

2

∑
i=1

F
(
s,αi +1;αi +2;−a

b

)
− b−s

(α1 +1)(α2 +1)
F
(
s,α1 +α2 +2;α1 +α2 +3;−a

b

)
+b−s

2

∑
i=1

∫ 1

0
tαi
i F

(
s,s−αi+1−1;s−αi+1;−a

b
ti
)

dti

+
b−s(α1 +α2 +2)

(α1 +1)(α2 +1)(s−α1−α2−1)

× F
(
s,s−α1 −α2−2;s−α1−α2−1;−a

b

)
−b−s

2

∑
i=1

1
(αi +1)(s−αi+1−1)

F
(
s,s−αi+1−1;s−αi+1;−a

b

)
,

(1.90)

where F denotes hypergeometric function (1.34) and the indices are taken modulo 2.

Proof. By virtue of the Fubini theorem we have k(α1,α2) = I1 + I2, where

I1 =
∫ 1

0
tα1
1

(∫ ∞

0

tα2
2

(amin{t1,t2}+bmax{1,t2})s dt2

)
dt1
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and

I2 =
∫ ∞

1
tα1
1

(∫ ∞

0

tα2
2

(amin{1,t2}+bmax{t1,t2})s dt2

)
dt1.

In what follows, we shall express integral I1 by a hypergeometric function. It is easy to see
that I1 = I11 + I12, where

I11 =
∫ 1

0
tα1
1

(∫ 1

0

tα2
2

(amin{t1,t2}+b)s dt2

)
dt1

and

I12 =
∫ 1

0
tα1
1

(∫ ∞

1

tα2
2

(at1 +bt2)s dt2

)
dt1.

The integral I11 can be transformed in the following way:

I11 =
∫ 1

0
tα1
1

(∫ t1

0

tα2
2

(at2 +b)s dt2

)
dt1 +

∫ 1

0
tα1
1

(∫ 1

t1

tα2
2

(at1 +b)s dt2

)
dt1. (1.91)

Applying the classical calculus, we have∫ 1

0
tα1
1

(∫ t1

0

tα2
2

(at2 +b)s dt2

)
dt1

=
∫ 1

0
tα2
2

(∫ 1

t2

tα1
1

(at2 +b)s dt1

)
dt2 =

∫ 1

0
tα2
2 (at2 +b)−s

(∫ 1

t2
tα1
1 dt1

)
dt2

=
b−s

α1 +1

∫ 1

0
tα2
2 (1− tα1+1

2 )
(
1+

a
b
t2
)−s

dt2

=
b−s

α1 +1

[
1

α2 +1
F
(
s,α2 +1;α2 +2;−a

b

)
− 1

α1 +α2 +2
F
(
s,α1 +α2 +2;α1 +α2 +3;−a

b

)]
, (1.92)

and similarly, ∫ 1

0
tα1
1

(∫ 1

t1

tα2
2

(at1 +b)s dt2

)
dt1

=
b−s

α2 +1

[
1

α1 +1
F
(
s,α1 +1;α1 +2;−a

b

)
− 1

α1 +α2 +2
F
(
s,α1 +α2 +2;α1 +α2 +3;−a

b

)]
. (1.93)

Now, setting (1.92) and (1.93) in (1.91), we obtain

I11 =
b−s

(α1 +1)(α2 +1)

2

∑
i=1

F
(
s,αi +1;αi +2;−a

b

)
− b−s

(α1 +1)(α2 +1)
F
(
s,α1 +α2 +2;α1 +α2 +3;−a

b

)
, (1.94)
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while the substitution u = 1
t2

yields

I12 =
∫ 1

0
tα1
1

(∫ ∞

1

tα2
2

(at1 +bt2)s dt2

)
dt1

= b−s
∫ 1

0
tα1
1

(∫ 1

0
us−α2−2

(
1+

a
b
t1u

)−s
du

)
dt1

= b−s
∫ 1

0
tα1
1 F

(
s,s−α2−1;s−α2;−a

b
t1
)

dt1. (1.95)

Finally, from (1.94) and (1.95) we have

I1 = I11 + I12 =

=
b−s

(α1 +1)(α2 +1)

2

∑
i=1

F
(
s,αi +1;αi +2;−a

b

)
− b−s

(α1 +1)(α2 +1)
F
(
s,α1 +α2 +2;α1 +α2 +3;−a

b

)
+b−s

∫ 1

0
tα1
1 F

(
s,s−α2−1;s−α2;−a

b
t1
)

dt1. (1.96)

Repeating the above procedure for the integrals

I21 =
∫ ∞

1
tα1
1

(∫ 1

0

tα2
2

(at2 +bt1)s dt2

)
dt1

and

I22 =
∫ ∞

1
tα1
1

(∫ ∞

1

tα2
2

(a+bmax{t1,t2})s dt2

)
dt1,

since I21 + I22 = I2, we obtain (1.90), as claimed. �

Multidimensional Hilbert-type inequalities that follow will be based on Theorems 1.19
and 1.20. More precisely, under the assumptions of Theorem 1.20, inequalities (1.77) and
(1.78) can be rewritten as

∫
R

n
+

K(x1, . . . ,xn)
n

∏
i=1

fi(xi)dx1 · · ·dxn < L
n

∏
i=1

[∫ ∞

0
x−1−piÃi
i f pi

i (xi)dxi

] 1
pi

(1.97)

and

∫ ∞

0
x(1−q)(−1−pnÃn)
n

[∫
R

n−1
+

K(x1, . . . ,xn)
n−1

∏
i=1

fi(xi)dx1 · · ·dxn−1

]q

dxn

< Lq
n−1

∏
i=1

[∫ ∞

0
x−1−piÃi
i f pi

i (xi)dxi

] q
pi

, (1.98)
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where Ãi = p1A1i for i �= 1, Ã1 = pnAn1,
1
q = ∑n−1

i=1
1
pi

, p1A1 j > −1, i �= j, and p1(A11 −
α1) > n− s−1. Moreover, constant factors L = k(Ã2, . . . , Ãn) and Lq are the best possible
in inequalities (1.97) and (1.98).

We first consider a particular case of parameters Ai j, i, j = 1, . . . ,n, which fulfill the
set of conditions (1.81), necessary in establishing the inequalities with the best possible
constant factors. These are the parameters

Ai j =
s− p j

pip j
, i �= j, and Aii =

(s− pi)(1− pi)
p2

i

. (1.99)

Hence, considering inequalities (1.97) and (1.98) with parameters Ai j, i, j = 1, . . . ,n, de-
fined by (1.99), we have the following consequence:

Corollary 1.4 Let ∑n
i=1

1
pi

= 1, pi > 1, i = 1,2, . . . ,n, and let 1
q = ∑n−1

i=1
1
pi

. Further, sup-
pose that K : Rn

+ → R is a non-negative measurable homogeneous function of degree −s,
s > 0, fulfilling condition (1.82). If fi : R+ → R, fi �= 0, i = 1, . . . ,n, are non-negative
measurable functions, then inequalities

∫
R

n
+

K(x1, . . . ,xn)
n

∏
i=1

fi(xi)dx1 · · ·dxn < L
n

∏
i=1

[∫ ∞

0
xpi−s−1
i f pi

i (xi)dxi

] 1
pi

(1.100)

and ∫ ∞

0
x

s
pn−1−1
n

[∫
R

n−1
+

K(x1, . . . ,xn)
n−1

∏
i=1

fi(xi)dx1 · · ·dxn−1

]q

dxn

< Lq
n−1

∏
i=1

[∫ ∞

0
xpi−s−1
i f pi

i (xi)dxi

] q
pi

(1.101)

hold and are equivalent, where the constant factors L = k
( s−p2

p2
, . . . , s−pn

pn

)
and Lq are the

best possible in both inequalities.

Remark 1.24 Observe that the kernel K(x1, . . . ,xn) = (x1 + . . . + xn)−s, s > 0, fulfills
condition (1.82) from Theorem 1.20 i.e. Corollary 1.4. In this case, having in mind integral
formula (1.88), the above constant factor L = k

( s−p2
p2

, . . . , s−pn
pn

)
can be expressed in terms

of the Gamma function i.e. L = 1
Γ(s) ∏

n
i=1Γ

(
s
pi

)
. This particular case was studied by B.

Yang in paper [154]. Moreover, some other particular cases regarding this kernel were
extensively studied in [156].

Remark 1.25 Setting n = 2, K(x,y) = (amin{x,y}+bmax{x,y})−1, p = q = 2 in Corol-
lary 1.4, we obtain the result from [82] with the best possible constant factor D(a,b) =
k
(− 1

2

)
= 4

bF
(
1, 1

2 ; 3
2 ;− a

b

)
. For each choice of parameters a, b we compute the best possi-

ble constant D(a,b) :

(i) a = b = 1, D(1,1) = π , as in [82],

(ii) a = 0, b = 1, D(0,1) = 4, as in [82],
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(iii) a = 1, b = 2, D(1,2) = 2
√

2arctan
(

1√
2

)
,

(iv) a = 1, b = 3, D(1,3) = 2π
3
√

3
,

(v) a = 2, b = 1, D(2,1) = 2
√

2arctan
√

2.

In order to exploit Lemma 1.4, in the sequel we consider the homogeneouskernel K(x1,

. . . ,xn) = ∑n
i=1 xs(λ−1)

i

(∑n
i=1 xλi )s

, s,λ > 0. Clearly, this kernel fulfills the assumptions of Corollary

1.4, hence, as a consequence, we have the following pair of inequalities with the constant
factors expressed in terms of the Gamma function:

Corollary 1.5 Let ∑n
i=1

1
pi

= 1, pi > 1, i = 1,2, . . . ,n, and let 1
q = ∑n−1

i=1
1
pi

. If fi : R+ →R,
fi �= 0, i = 1, . . . ,n, are non-negative measurable functions, then inequalities

∫
R

n
+

∑n
i=1 xs(λ−1)

i(
∑n

i=1 xλi
)s

n

∏
i=1

fi(xi)dx1 . . .dxn < L1

n

∏
i=1

[∫ ∞

0
xpi−s−1
i f pi

i (xi)dxi

] 1
pi

(1.102)

and [∫ ∞

0
x

s
pn−1−1
n

(∫
R

n−1
+

∑n
i=1 xs(λ−1)

i(
∑n

i=1 xλi
)s

n−1

∏
i=1

fi(xi)dx1 · · ·dxn−1

)q

dxn

] 1
q

< L1

n−1

∏
i=1

[∫ ∞

0
xpi−s−1
i f pi

i (xi)dxi

] 1
pi

(1.103)

hold and are equivalent, where the constant factor

L1 =
1

Γ(s)λ n−1

n

∑
j=1

[(
n

∏
i=1,i�= j

Γ
(

s
piλ

))
·Γ

(
sp j(λ −1)+ s

p jλ

)]
(1.104)

is the best possible in both inequalities.

Proof. It is enough to calculate the constant L1 = k
( s−p2

p2
, . . . , s−pn

pn

)
. Using definition

(1.76) of the integral k(α1, . . . ,αn−1), L1 can be represented in the form

L1 =
∫
R

n−1
+

1+ ts(λ−1)
1 + . . .+ ts(λ−1)

n−1(
1+∑n

i=1 tλi
)s t

s
p2

−1

1 . . . t
s
pn

−1
n−1 dt1 . . .dtn−1 =

n−1

∑
k=0

Ik,

where

I0 =
∫
R

n−1
+

t
s
p2

−1

1 . . . t
s
pn

−1
n−1(

1+∑n
i=1 tλi

)s dt1 . . .dtn−1

and

Ik =
∫
R

n−1
+

t
s
p2

−1

1 . . .t
s(λ−1)+ s

pk+1
−1

k . . . t
s
pn

−1

n−1(
1+∑n

i=1 tλi
)s dt1 . . .dtn−1, for k = 1, . . . ,n−1.
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Now, taking into account Lemma 1.4, it follows that

I0 =
1

Γ(s)λ n−1

[
n

∏
i=2

Γ
(

s
piλ

)]
·Γ

(
sp1(λ −1)+ s

p1λ

)
and

Ik =
1

Γ(s)λ n−1

[
n

∏
i=1,i�=k+1

Γ
(

s
piλ

)]
·Γ

(
spk+1(λ −1)+ s

pk+1λ

)
, k = 1, . . . ,n−1,

that is, we have (1.104). �

We conclude this subsection with some particular 3-dimensional Hilbert-type inequal-
ities with constant factors expressed in terms of a hypergeometric function. The fol-
lowing result arises from Corollary 1.4 for the case of kernel K(x1,x2,x3) = (amin{x1,
x2,x3}+ bmax{x1,x2,x3})−s, a ≥ 0, b > 0. Clearly, K has degree of homogeneity −s,
s > 0, and fulfills condition (1.82).

Corollary 1.6 Let 1
p1

+ 1
p2

+ 1
p3

= 1, pi > 1, i = 1,2,3, and let 1
q = 1

p1
+ 1

p2
. Then in-

equalities ∫
R

3
+

f1(x1) f2(x2) f3(x3)
(amin{x1,x2,x3}+bmax{x1,x2,x3})s dx1dx2dx3

< L2

3

∏
i=1

[∫ ∞

0
xpi−s−1
i f pi

i (xi)dxi

] 1
pi

(1.105)

and [∫ ∞

0
x

s
p3−1−1

3

(∫
R

2
+

f1(x1) f2(x2)
(amin{x1,x2,x3}+bmax{x1,x2,x3})s dx1dx2

)q

dx3

] 1
q

< L2

2

∏
i=1

[∫ ∞

0
xpi−s−1
i f pi

i (xi)dxi

] 1
pi

(1.106)

hold for all non-negative measurable functions fi : R+ → R, fi �= 0, i = 1,2,3, where

L2 =
p2p3

bss2

3

∑
i=2

F

(
s,

s
pi

;
s
pi

+1;−a
b

)
− p2p3

bss2 F

(
s,

s
p2

+
s
p3

;
s
p2

+
s
p3

+1;−a
b

)
+b−s

3

∑
i=2

∫ 1

0
t

s
pi
−1

F

(
s,

s
p1

+
s
pi

;
s
p1

+
s
pi

+1;−a
b
t

)
dt

+
p1(p2 + p3)
bss(s+ p1)

F

(
s,

s
p1

;
s
p1

+1;−a
b

)
− p2p3

bss2

3

∑
i=2

1
pi−1

F

(
s,s− s

pi
;s− s

pi
+1;−a

b

)
.

Moreover, the constant factor L2 is the best possible in both inequalities.

In particular, for s = 1, p1 = p2 = p3 = 3 and a = b = 1, we have L2 = 55 log2
2 − 3π

√
3

2 .
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Proof. Making use of Corollary 1.4 in the case of homogeneous kernel K(x1,x2, x3) =
(amin{x1, x2,x3} + bmax{x1,x2,x3})−s, it is enough to calculate the constant
L2 = k( s−p2

p2
, s−p3

p3
). Now the result follows from Lemma 1.5. �

Remark 1.26 Setting the kernel K(x1,x2,x3) = (x1 + x2 + x3 −min{x1,x2,x3})−s, s >
0, in Corollary 1.4, we obtain the corresponding Hilbert-type inequalities with the best
possible constant factor

L3 = k

(
s− p2

p2
,
s− p3

p3

)
=

p2 + p3

s
F

(
s,

s
p2

+
s
p3

;
s
p2

+
s
p3

+1;−1

)
+

1
s

3

∑
i=2

piF

(
s,

s
p1

+
s
pi

;
s
p1

+
s
pi

+1;−1

)
+

p1(p2 + p3)
s2 F

(
s,

s
p1

;
s
p1

+1;−1

)
− p2p3

s2

3

∑
i=2

1
pi −1

F

(
s,s− s

pi
;s− s

pi
+1;−1

)
.

In particular, if s = 1, p1 = p2 = p3 = 3, we have L3 = 10π
√

3
3 + log4.

1.6.4 Inequalities with product-type homogeneous kernels
and Schur polynomials

In this subsection we study some particular product-type homogeneous kernels and investi-
gate associated Hilbert-type inequalities. In some cases, the corresponding constant factors
can be expressed in terms of Shur polynomials.

At the beginning, we shall be concerned with the homogeneous function K : Rn
+ → R,

defined by K(x1, . . . ,xn) = ∏n−1
i=1 (x1 + a2

i xi+1), where ai > 0, i = 1, . . . ,n− 1. Clearly,
kernel K has degree of homogeneity equal to −(n− 1), and, in addition, fulfills condi-
tion (1.82) from Theorem 1.20. In such a way, we obtain the corresponding Hilbert-type
inequalities with the best possible constant factors.

Corollary 1.7 Let ∑n
i=1

1
pi

= 1, pi > 1, i = 1,2, . . . ,n, and let 1
q = ∑n−1

i=1
1
pi

. If ai > 0, i =
1, . . . ,n−1, and fi : R+ → R, fi �= 0, i = 1, . . . ,n, are non-negative measurable functions,
then inequalities∫

R
n
+

∏n
i=1 fi(xi)

∏n−1
i=1 (x1 +a2

i xi+1)
dx1 . . .dxn < M1

n

∏
i=1

[∫ ∞

0
f pi
i (xi)dxi

] 1
pi

(1.107)

and ∫ ∞

0

[∫
R

n−1
+

∏n−1
i=1 fi(xi)

∏n−1
i=1 (x1 +a2

i xi+1)
dx1 . . .dxn−1

]q

dxn

< Mq
1

n−1

∏
i=1

[∫ ∞

0
f pi
i (xi)dxi

] q
pi

(1.108)
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hold and are equivalent, where

M1 = πn−1
n

∏
i=2

a2(1−pi)/pi
i−1

sin(π/pi)
. (1.109)

Moreover, constant factors M1 and Mq
1 are the best possible in inequalities (1.107) and

(1.108).

Proof. Considering parameters Aii = pi−1
pi

2 and Ai j = − 1
pi p j

, i �= j, i, j = 1, . . . ,n, we have

n

∑
i=1

Ai j = −∑
i�= j

1
pip j

+
p j −1
p j

2 =
1
p j

(
−

n

∑
i=1

1
pi

+1

)
= 0,

for j = 1,2, . . . ,n, that is, αi = ∑n
j=1 Ai j = 0, i = 1, . . . ,n, due to the symmetry. In addition,

these parameters satisfy the set of conditions (1.81), which is necessary in obtaining the
best possible constant factors.

Further, utilizing inequalities (1.97), (1.98), and the above parameters, we have −1−
piÃi = 0, i = 1, . . . ,n, and (1− q)(−1− pnÃn) = 0. Hence, it is enough to calculate the
constant M1 = k

(− 1
p2

, . . . ,− 1
pn

)
in the case when K(x1, . . . ,xn) = ∏n−1

i=1 (x1 +a2
i xi+1).

Exploiting (1.76), we have

M1 = k

(
− 1

p2
, . . . ,− 1

pn

)
=

∫
R

n−1
+

t
− 1

p2
1 . . . t

− 1
pn

n−1

∏n−1
i=1 (1+a2

i ti)
dt1 . . .dtn−1

=
n−1

∏
i=1

⎛⎝∫ ∞

0

t
− 1

pi+1
i

1+a2
i ti

dti

⎞⎠ = πn−1
n

∏
i=2

a2(1−pi)/pi
i−1

sin(π/pi)
,

and the proof is completed. �

The rest of this subsection is dedicated to the two-dimensional kernel K(x,y) = ∏m
i=1(x

+ a2
i y)

−1, where m is an integer and ai > 0, i = 1, . . . ,m, are real parameters. Observe
that the function K(x,y) fulfills condition (1.82) from Theorem 1.20. In addition, we
shall derive here two-dimensional Hilbert-type inequalities whose constant factors can be
expressed in terms of Shur polynomials.

In order to establish the corresponding inequalities, we need the following auxiliary
result. For the reader’s convenience, let f [x1, . . . ,xn] denote the well-known divided differ-
ence defined by

f [x1, . . . ,xn] =
n

∑
i=1

f (xi)
∏ j �=i(xi − x j)

.

Lemma 1.6 Let m be an integer. If −1 < α < m− 1, α �= 0,1, . . . ,m− 2, and ai > 0,
i = 1, . . . ,m, then∫ ∞

0

xαdx

∏m
i=1(x+a2

i )
= (−1)m π

sin(απ)
f [a2

1, . . . ,a
2
m], f (x) = xα . (1.110)
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For k = 0,1, . . . ,m−2, we have∫ ∞

0

xkdx

∏m
i=1(x+a2

i )
= (−1)m+k fk[a2

1, . . . ,a
2
m], fk(x) = xk logx. (1.111)

Proof. The proof is based on mathematical induction. First, for m = 1, using the substitu-
tion t = x

a2
1
, we obtain ∫ ∞

0

xαdx

x+a2
1

= a2α
1

∫ ∞

0
tα(1+ t)−1dt, (1.112)

where −1 < α < 0. Further, by using the substitution x = 1
1+t , relation (1.112) and the

definition of the usual Beta function, we have∫ ∞

0

xαdx

x+a2
1

= a2α
1

∫ 1

0
(1− x)αx−α−1dx

= a2α
1 B(1+α,−α) = a2α

1
π

sin(−απ)
. (1.113)

Starting from the following induction hypothesis∫ ∞

0

xαdx

∏m−1
i=1 (x+a2

i )
= (−1)m−1 π

sin(απ)
f [a2

1, . . . ,a
2
m−1], f (x) = xα , (1.114)

where −1 < α < m−2, α �= 0,1, . . . ,m−3, we shall calculate the integral

Im =
∫ ∞

0

xαdx

∏m
i=1(x+a2

i )
, −1 < α < m−1, α �= 0,1, . . . ,m−2.

We treat three cases. If −1 < α < 0, we use (1.113) and find that

Im =
m

∑
i=1

1

∏ j �=i(a2
j −a2

i )

∫ ∞

0

xαdx

x+a2
1

=
m

∑
i=1

1

∏ j �=i(a2
j −a2

i )
a2α

i
π

sin(−απ)

= (−1)m π
sin(απ)

f [a2
1, . . . ,a

2
m], f (x) = xα . (1.115)

If m−2 < α < m−1, we use the substitution x = 1
t and (1.115). More precisely, we have

Im =
∫ ∞

0

tm−α−2

∏m
i=1(

1
a2
i
+ t)

dt

=
1

∏m
i=1 a2

i

(−1)m π
sin[(m−α−2)π ]

g[1/a2
1, . . . ,1/a2

m], (1.116)

where g(x) = xm−α−2. It is easy to check that the following relation is valid:

g[1/a2
1, . . . ,1/a2

m] =
m

∑
i=1

(
∏m

j=1 a2
j

)
a2α

i

∏ j �=i(a2
j −a2

i )
. (1.117)
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Now, relations (1.116), (1.117), and the formula sin[(m−α − 2)π ] = (−1)m−1 sin(απ)
imply (1.110).

On the other hand, if 0 < α < m−2, we again use the induction hypothesis and obtain

Im =
1

a2
m−a2

1

[∫ ∞

0

xαdx

∏m−1
i=1 (x+a2

i )
−

∫ ∞

0

xαdx

∏m
i=2(x+a2

i )

]

= (−1)m π
sin(απ)

f [a2
2, . . . ,a

2
m]− f [a2

1, . . . ,a
2
m−1]

a2
m−a2

1

= (−1)m π
sin(απ)

f [a2
1, . . . ,a

2
m], f (x) = xα .

At the end of the proof, it is necessary to consider the critical cases of the integrals∫ ∞

0

xkdx

∏m
i=1(x+a2

i )
, k = 0,1, . . . ,m−2.

Applying the classical calculus, we have∫ ∞

0

xkdx

∏m
i=1(x+a2

i )
= lim

α→k

∫ ∞

0

xαdx

∏m
i=1(x+a2

i )

= (−1)mπ lim
α→k

1
sin(απ)

m

∑
i=1

a2α
i

∏ j �=i(a2
i −a2

j)

=
(−1)m

cos(kπ)

m

∑
i=1

a2k
i loga2

i

∏ j �=i(a2
i −a2

j)
= (−1)m+k fk[a2

1, . . . ,a
2
m],

where fk(x) = xk logx. That completes the proof. �

The previous lemma enables us to derive the following two-dimensional Hilbert-type
inequalities with the kernel K(x,y) = ∏m

i=1(x+a2
i y)

−1, ai > 0, i = 1, . . . ,m.

Corollary 1.8 Let m be an integer, let 1
p + 1

q = 1, p > 1, and let α be real parameter such
that −1 < α < m−1. Further, let

L2 = (−1)m π
sin(απ)

f [a2
1, . . . ,a

2
m], f (x) = xα ,

for α �= 0,1, . . . ,m−2, and

L2 = (−1)m+α fα [a2
1, . . . ,a

2
m], fα (x) = xα logx,

for α = 0,1, . . . ,m− 2. If ai > 0, i = 1, . . . ,m, and f1, f2 : R+ → R, f1, f2 �= 0, are non-
negative measurable functions, then the inequalities∫ ∞

0

∫ ∞

0

f1(x) f2(y)
(x+a2

1y) . . . (x+a2
my)

dxdy

< L2

[∫ ∞

0
x−1−α p f p

1 (x)dx

] 1
p
[∫ ∞

0
y−1−(m−α−2)q f q

2 (y)dy

] 1
q

(1.118)
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and

∫ ∞

0
y(1−p)(−1−(m−α−2)q)

[∫ ∞

0

f1(x)
(x+a2

1y) . . . (x+a2
my)

dx

]p

dy

< Lp
2

∫ ∞

0
x−1−α p f p

1 (x)dx (1.119)

hold and are equivalent. Moreover, the constant factors L2 and Lp
2 are the best possible in

(1.118) and (1.119).

Proof. Exploiting inequalities (1.97) and (1.98), for n = 2, with the kernel K(x,y) =
∏m

i=1(x+a2
i y)

−1 and parameters p1 = p, p2 = q, Ã1 = α, Ã2 = m−α−2, we see that it is
enough to calculate the constant L2 = k(Ã2). Utilizing substitution u = 1

x , we have

L2 = k(m−α−2) =
∫ ∞

0

um−α−2du

∏m
i=1(1+a2

i u)
=

∫ ∞

0

xαdx

∏m
i=1(x+a2

i )
,

and the result follows from Lemma 1.6. �

A class of Hilbert-type inequalities derived in the previous corollary involves the best
possible constant factor

L2 =
∫ ∞

0

xα dx

∏m
i=1

(
x+a2

i

) = (−1)m π
sin(απ)

f
[
a2

1, . . . ,a
2
m

]
, (1.120)

where f (x) = xα , −1 < α < m−1. In the sequel we study some other forms of expression
(1.120), which will bring us to Shur polynomials.

It is well-known that the divided difference can be expressed via determinants:

f
[
a2

1, . . . ,a
2
m

]
=

det

⎡⎢⎢⎢⎢⎢⎣
f
(
a2

1

)
f
(
a2

2

) · · · f
(
a2

m

)
a2(m−2)

1 a2(m−2)
2 · · · a2(m−2)

m
...

...
...

...
a2

1 a2
2 · · · a2

m
1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎦

det

⎡⎢⎢⎢⎢⎢⎢⎣
a2(m−1)

1 a2(m−1)
2 · · · a2(m−1)

m

a2(m−2)
1 a2(m−2)

2 · · · a2(m−2)
m

...
...

...
...

a2
1 a2

2 · · · a2
m

1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦

. (1.121)
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Calculating the Vandermonde determinant, we have

det

⎡⎢⎢⎢⎢⎢⎢⎣
a2(m−1)

1 a2(m−1)
2 · · · a2(m−1)

m

a2(m−2)
1 a2(m−2)

2 · · · a2(m−2)
m

...
...

...
...

a2
1 a2

2 · · · a2
m

1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦ = det

⎡⎢⎢⎢⎢⎢⎣
am−1

1 am−1
2 · · · am−1

m
am−2

1 am−2
2 · · · am−2

m
...

...
...

...
a1 a2 · · · am

1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎦ · ∏
1≤i< j≤m

(ai +a j) .

(1.122)
Setting m = 3 and α = 1

2 , we have (see also [133]):∫ ∞

0

x
1
2 dx(

x+a2
1

)(
x+a2

2

)(
x+a2

3

) =
π

(a1 +a2)(a1 +a3)(a2 +a3)
.

Similarly, for m = 4 and α = 1
2 , by calculating the integral in (1.120) or resolving the

above determinants, we have∫ ∞

0

x
1
2 dx

∏4
i=1

(
x+a2

i

) = ∑4
i=1 ai

∏1≤i< j≤4 (ai +a j)
π .

Suppose that α = 2l−3
2 , l = 2, . . . ,m (for l = 1 see below). The numerator of (1.121) is for

l < m equal to

det

⎡⎢⎢⎢⎢⎢⎣
a2l−3

1 a2l−3
2 · · · a2l−3

m

a2(m−2)
1 a2(m−2)

2 · · · a2(m−2)
m

...
...

...
...

a2
1 a2

2 · · · a2
m

1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎦ = (−1)m−l det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2(m−2)
1 a2(m−2)

2 · · · a2(m−2)
m

...
...

...
...

a2(l−1)
1 a2(l−1)

2 · · · a2(l−1)
m

a2l−3
1 a2l−3

2 · · · a2l−3)
m

a2(l−2)
1 a2(l−2)

2 · · · a2(l−2)
m

...
...

...
...

a2
1 a2

2 · · · a2
m

1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(1.123)
Using sin 2l−3

2 π = (−1)l, we have

L2 =
∫ ∞

0

x
2l−3

2 dx

∏m
i=1

(
x+a2

i

) =

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2(m−2)
1 a2(m−2)

2 · · · a2(m−2)
m

...
...

...
...

a2(l−1)
1 a2(l−1)

2 · · · a2(l−1)
m

a2l−3
1 a2l−3

2 · · · a2l−3)
m

a2(l−2)
1 a2(l−2)

2 · · · a2(l−2)
m

...
...

...
...

a2
1 a2

2 · · · a2
m

1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
V(a1,a2, . . . ,am) ·∏1≤i< j≤m (ai +a j)

π , (1.124)
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where V(a1,a2, . . . ,am) denotes the Vandermonde determinant.
Recall that the Schur polynomial of a given integer partition d = d1 + d2 + · · ·+ dm,

d1 ≥ d2 ≥ ·· · ≥ dm ≥ 0, is defined by

S(d1,d2,...,dm) (x1,x2, . . . ,xm) =

det

⎡⎢⎢⎢⎢⎣
xd1+m−1
1 xd1+m−1

2 · · · xd1+m−1
m

xd2+m−2
1 xd2+m−2

2 · · · xd2+m−2
m

...
...

...
...

xdm
1 xdm

2 · · · xdm
m

⎤⎥⎥⎥⎥⎦

det

⎡⎢⎢⎢⎣
xm−1
1 xm−1

2 · · · xm−1
m

xm−2
1 xm−2

2 · · · xm−2
m

...
...

...
...

1 1 · · · 1

⎤⎥⎥⎥⎦
. (1.125)

The Schur polynomial can be expanded as a sum of monomials

S(d1,d2,...,dm) (x1,x2, . . . ,xm) =∑
T

xt1
1 · · ·xtm

m , (1.126)

where the summation is over all semi-standard Young tableaux T of shape (d1,d2, . . . ,dm).
The exponents t1, . . . ,tm give the weight of T , in which each ti counts the occurrences of
the number i in T (see [3] and [89]).

It is obvious from (1.121) (the case l = 2m−3), (1.124) and (1.125) that∫ ∞

0

x
2m−3

2 dx

∏m
i=1

(
x+a2

i

) =
S(m−2,m−2,m−3,...,1,0) (a1,a2, . . . ,am)

∏i< j (ai +a j)
π ,

∫ ∞

0

x
2l−3

2 dx

∏m
i=1

(
x+a2

i

) =
S(m−3,m−4...,l−2,l−2,l−2,...1,0) (a1,a2, . . . ,am)

∏i< j (ai +a j)
π , l = 3, . . . ,m−1,

∫ ∞

0

x
1
2 dx

∏m
i=1

(
x+a2

i

) =
S(m−3,m−4,...1,0,0,0) (a1,a2, . . . ,am)

∏i< j (ai +a j)
π ,

where d = (m−3)(m−2)
2 +2(l−2), l = 2, . . . ,m, is degree of the obtained Schur polynomials.

To illustrate the above results we provide the following examples:

(i) For m = 2 the only admissible case is α = 1
2 . It follows:∫ ∞

0

x
1
2 dx

∏2
i=1

(
x+a2

i

) =
S(0,0) (a1,a2)

a1 +a2
π =

π
a1 +a2

.

(ii) For m = 3, the admissible cases are α = 1
2 and α = 3

2 , that is, we have∫ ∞

0

x
1
2 dx

∏3
i=1

(
x+a2

i

) =
S(0,0,0) (a1,a2,a3)

∏i< j (ai +a j)
π =

π
∏i< j (ai +a j)

,

∫ ∞

0

x
3
2 dx

∏3
i=1

(
x+a2

i

) =
S(1,1,0) (a1,a2,a3)

∏i< j (ai +a j)
π =

∑i< j aia j

∏i< j (ai +a j)
π .
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(iii) For m = 4, the admissible cases are α = 1
2 , α = 3

2 , and α = 5
2 , that is,

∫ ∞

0

x
1
2 dx

∏4
i=1

(
x+a2

i

) =
S(1,0,0,0) (a1,a2,a3,a4)

∏i< j (ai +a j)
π = ∑4

i=1 ai

∏i< j (ai +a j)
π ,

∫ ∞

0

x
3
2 dx

∏4
i=1

(
x+a2

i

) =
S(1,1,1,0) (a1,a2,a3,a4)

∏i< j (ai +a j)
π =

∑i< j<k aia jak

∏i< j (ai +a j)
π ,

∫ ∞

0

x
5
2 dx

∏4
i=1

(
x+a2

i

) =
S(2,2,1,0) (a1,a2,a3,a4)

∏i< j (ai +a j)
π

=
∑i< j<k a2

i a
2
j ak +a2

i a ja2
k +aia2

ja
2
k +2∑i< j<k<l a

2
i a jakal

∏i< j (ai +a j)
π

+
aia2

j akal +aia ja2
kal +aia jaka2

l

∏i< j (ai +a j)
π .

The above method doesn’t work in the case α = − 1
2 . We proceed as follows. By virtue of

the substitution x = 1
t , using the case l = 2m−3 and the basic properties of determinants,

we have:∫ ∞

0

x−
1
2 dx

∏m
i=1

(
x+a2

i

)
=

1

∏m
i=1 a2

i

∫ ∞

0

t
2m−3

2 dt

∏m
i=1

(
t + 1

a2
i

) =
1

∏m
i=1 a2

i

S(m−2,m−2,m−3,...,1,0)

(
1
a1

, . . . , 1
am

)
∏i< j

(
1
ai

+ 1
a j

) π

=
1

∏m
i=1 a2

i

∏m
i=1

(
1
ai

)2m−3

∏m
i=1

(
1
ai

)m−1

S(m−2,m−3,...,1,0,0) (a1, . . . ,am)
1

∏m
i=1 am−1

i
∏i< j (ai +a j)

π

=
1

∏m
i=1 ai

S(m−2,m−3,...,1,0,0) (a1, . . . ,am)

∏i< j (ai +a j)
π .

Remark 1.27 A general form of multidimensional Hilbert-type inequality (Subsection
1.6.1) is established in [156], while the application to homogeneous kernels and the exis-
tence of the best possible constant factors (Subsection 1.6.2) is derived in [111]. Most of
the examples in Subsection 1.6.3 are taken from [113], while inequalities including Shur
polynomials can be found in [112]. For some related results, the reader can also consult
the following papers: [19], [23], [37], [52] [128], [152], and [156].



Chapter2
Hilbert-type inequalities with
non-conjugate exponents

The previous chapter was dedicated to a unified treatment of Hilbert-type inequalities and
numerous applications of general results. All these results included conjugate exponents.

The question is whether it is possible to establish the corresponding inequalities related
to Hilbert-type inequalities where the exponents are not conjugate. The answer to that
question appeared to be true. This problem was dealt by some famous mathematicians,
such as F. F. Bonsall, G. H. Hardy, V. Levin, J. Littlewood, G. Pólya, in the first half of
the twentieth century, an later, by E. K. Godunova. This bring us to the concept of non-
conjugate parameters.

Suppose that p and q are real parameters, such that

p > 1, q > 1,
1
p

+
1
q
≥ 1, (2.1)

and let p′ = p
p−1 and q′ = q

q−1 respectively be their conjugate exponents, that is, 1
p + 1

p′ = 1

and 1
q + 1

q′ = 1. Further, define

λ =
1
p′

+
1
q′

(2.2)

and observe that 0 < λ ≤ 1 holds for all p and q as in (2.1). In particular, equality λ =
1 holds in (2.2) if and only if q = p′, that is, only if p and q are mutually conjugate.
Otherwise, we have 0 < λ < 1, and such parameters p and q will be referred to as non-
conjugate exponents.

53
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Considering p, q, and λ as in (2.1) and (2.2), Hardy, Littlewood, and Pólya [33],
proved that there exists a constant Cp,q, dependent only on the parameters p and q, such
that the following Hilbert-type inequality holds for all non-negative functions f ∈ Lp(R+)
and g ∈ Lq(R+): ∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)λ

dxdy ≤Cp,q‖ f‖Lp(R+)‖g‖Lq(R+). (2.3)

However, the original proof did not bring any information about the value of the best
possible constant Cp,q. That drawback was improved by Levin [79], who obtained an
explicit upper bound for Cp,q,

Cp,q ≤
(
π cosec

π
λ p′

)λ
. (2.4)

This was an interesting result, since the right-hand side of (2.4) reduces to the previously
known sharp constant π cosec (π/p′) when the exponents p and q are conjugate (see The-
orem 1.2, Chapter 1). A simpler proof of (2.4), based on a single application of the Hölder
inequality, was given later by F. F. Bonsall [9].

In spite of its trivial appearance, Bonsall’s idea was useful for investigating the in-
equalities for multiple integrals involving non-conjugate parameters. So, he obtained the
following inequality for n = 3: Let 1

p1
+ 1

p2
+ 1

p3
≥ 1 with pi > 1, 1

pi
+ 1

p′i
= 1, i = 1,2,3,

and λ = 1
2

(
1
p′1

+ 1
p′2

+ 1
p′3

)
. Then,

∫ ∞

0

∫ ∞

0

∫ ∞

0

f (x)g(y)h(z)
(x+ y+ z)2λ dxdydz ≤ k‖ f‖Lp1 (R+)‖g‖Lp2(R+)‖h‖Lp3(R+), (2.5)

with an explicit upper bound expressed in terms of the usual Gamma function:

k ≤
[
Γ
(

1
λ p′1

)
Γ
(

1
λ p′2

)
Γ
(

1
λ p′3

)]λ
.

Although Bonsall established the concept of n non-conjugate parameters, there were no
results in that direction.

Moreover, in the same paper, with p, q and λ as in (2.1) and (2.2), Bonsall proved
another interesting Hilbert-type inequality,∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)λ

dxdy ≤ Bλ
(

1
p′

,
1
q′

)
‖ f ‖

p
q′
Lp(R+)

‖ g ‖
q
p′
Lq(R+)

×
⎡⎣∫ ∞

0

∫ ∞

0

x
1
p′ y

1
q′

(x+ y)λ
f p(x)gq(y)dxdy

⎤⎦1−λ

, (2.6)

with the best possible constant factor Bλ( 1
p′ ,

1
q′
)
, expressed in terms of the usual Beta

function.
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Remark 2.1 In the above relations, Lp(R+) denotes the Lebesgue space consisting of all

measurable functions f : R+ → R with a finite norm ‖ f‖Lp(R+) = [
∫ ∞
0 | f (x)|pdx]

1
p . More

generally, when considering a measure space Ω with a positive σ -finite measure μ , the
corresponding Lebesgue space will be denoted by Lp(μ), or simply Lp.

Although inequality (2.6) involves the best possible constant factor, there is still no
evidence that the constant factors in inequalities (2.3) and (2.5) are the best possible. This
problem seems to be very hard and remains still open. Hence, the problem of the best
possible constant factors will not be considered in this chapter.

The main objective of this chapter is to extend Hilbert-type inequalities with conjugate
exponents to the setting of non-conjugate exponents. First we derive the general forms of
Hilbert-type inequalities with non-conjugate exponents in two-dimensional, and later on,
in multidimensional case. Accordingly, all results from the previous chapter can be ex-
tended to this non-conjugate setting. In addition, we are going to consider some particular
non-homogeneous kernels, yielding the constant factors expressed in terms of generalized
hypergeometric functions. At the end of this chapter, we study some particular operators
between the weighted Lebesgue spaces, that naturally arise from the established Hardy-
Hilbert-type inequalities.

2.1 General form

To provide a basis for main results, in this section we first discuss general inequalities of
the Hilbert-type and Hardy-Hilbert-type with non-conjugate exponents. These equivalent
relations are stated and proved in the following theorem.

Theorem 2.1 Let p, q, and λ be real parameters as in (2.1) and (2.2), and let Ω1 and
Ω2 be measure spaces with positive σ -finite measures μ1 and μ2 respectively. Let K be a
non-negative measurable function on Ω1 ×Ω2, ϕ a measurable, a.e. positive function on
Ω1, and ψ a measurable, a.e. positive function on Ω2. If the functions F on Ω1 and G on
Ω2 are defined by

F(x) =
[∫

Ω2

K(x,y)ψ−q′(y)dμ2(y)
] 1

q′
, x ∈Ω1, (2.7)

and

G(y) =
[∫

Ω1

K(x,y)ϕ−p′(x)dμ1(x)
] 1

p′
, y ∈Ω2, (2.8)

then for all non-negative measurable functions f on Ω1 and g on Ω2 the inequalities∫
Ω1

∫
Ω2

Kλ (x,y) f (x)g(y)dμ1(x)dμ2(y) ≤ ‖ϕF f‖Lp(μ1)‖ψGg‖Lq(μ2) (2.9)
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and {∫
Ω2

[
(ψG)−1(y)

∫
Ω1

Kλ (x,y) f (x)dμ1(x)
]q′

dμ2(y)

} 1
q′
≤ ‖ϕF f‖Lp(μ1) (2.10)

hold and are equivalent.

Proof. We prove inequality (2.9) first. Let K, ϕ , and ψ be as in the statement of The-
orem 2.1 and let f and g be arbitrary non-negative measurable functions on Ω1 and Ω2

respectively. Since 1
q′ +

1
p′ +1−λ=1, the left-hand side of relation (2.9) can be written as∫

Ω1

∫
Ω2

Kλ (x,y) f (x)g(y)dμ1(x)dμ2(y)

=
∫
Ω1

∫
Ω2

[
K(x,y)ψ−q′(y)(ϕ pF p−q′ f p)(x)

] 1
q′
[
K(x,y)ϕ−p′(x)(ψqGq−p′gq)(y)

] 1
p′

× [(ϕF f )p (x)(ψGg)q (y)]1−λ dμ1(x)dμ2(y). (2.11)

Now, utilizing the Hölder inequality, either with the parameters q′, p′, 1
1−λ > 1 in the case

of non-conjugate exponents p and q, or with the parameters p and p′ when q′ = p (that is,
when λ = 1), and then applying the Fubini theorem, we obtain that the right-hand side of
(2.11) is not greater than{∫

Ω1

[∫
Ω2

K(x,y)ψ−q′(y)dμ2(y)
]
(ϕ pF p−q′ f p)(x)dμ1(x)

} 1
q′

×
{∫

Ω2

[∫
Ω1

K(x,y)ϕ−p′(x)dμ1(x)
]
(ψqGq−p′gq)(y)dμ2(y)

} 1
p′

×
[∫

Ω1

(ϕF f )p (x)dμ1(x)
]1−λ [∫

Ω2

(ψGg)q (y)dμ2(y)
]1−λ

=
[∫

Ω1

(ϕF f )p (x)dμ1(x)
] 1

q′ +1−λ [∫
Ω2

(ψGg)q (y)dμ2(y)
] 1

p′ +1−λ

= ‖ϕF f‖Lp(μ1)‖ψGg‖Lq(μ2),

so (2.9) is proved. The further step is to prove that (2.9) implies (2.10) to hold for all
non-negative measurable functions f on Ω1. In particular, for any such f and the function
g defined by

g(y) = (ψG)−q′(y)
[∫

Ω1

Kλ (x,y) f (x)dμ1(x)
] q′

q

, y ∈Ω2,

applying the Fubini theorem, the left-hand side of (2.9) becomes

L =
∫
Ω1

∫
Ω2

Kλ (x,y) f (x)(ψG)−q′(y)
[∫

Ω1

Kλ (x,y) f (x)dμ1(x)
] q′

q

dμ1(x)dμ2(y)

=
∫
Ω2

[
(ψG)−1(y)

∫
Ω1

Kλ (x,y) f (x)dμ1(x)
]q′

dμ2(y),
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that is, the integral on the left-hand side of (2.10), while on the right-hand side of (2.9) we
have

R = ‖ϕF f‖Lp(μ1)

{∫
Ω2

(ψG)q(1−q′)(y)
[∫

Ω1

Kλ (x,y) f (x)dμ1(x)
]q′

dμ2(y)

} 1
q

= ‖ϕF f‖Lp(μ1)L
1
q .

Hence,

L ≤ ‖ϕF f‖Lp(μ1)L
1
q ,

which directly yields (2.10), so the implication (2.9) ⇒ (2.10) is proved. Conversely, by
using the Hölder inequality for the conjugate exponents q and q′, together with the relation
(2.10), for arbitrary f ,g ≥ 0 we have∫

Ω1

∫
Ω2

Kλ (x,y) f (x)g(y)dμ1(x)dμ2(y)

=
∫
Ω2

(ψGg)(y)
[
(ψG)−1(y)

∫
Ω1

Kλ (x,y) f (x)dμ1(x)
]
dμ2(y)

≤ ‖ψGg‖Lq(μ2)

{∫
Ω2

[
(ψG)−1(y)

∫
Ω1

Kλ (x,y) f (x)dμ1(x)
]q′

dμ2(y)

} 1
q′

≤ ‖ϕF f‖Lp(μ1)‖ψGg‖Lq(μ2).

Thus, (2.10) implies (2.9), so these inequalities are equivalent. The proof is now com-
pleted. �

Remark 2.2 The sign of inequality in (2.9) depends only on the parameters p′, q′, and
λ , since the crucial step in proving this relation was in applying the Hölder inequality.
Therefore, we can consider exponents which provide the reverse inequality in (2.9). In
particular, if the parameters p and q from Theorem 2.1 are such that

p < 0, 0 < q < 1,
1
p

+
1
q
≤ 1, (2.12)

and λ is defined by (2.2), we have 0 < p′ < 1, q′ < 0, and 1− λ ≤ 0, so the inequality
in (2.9) is reversed as a direct consequence of the reversed Hölder inequality. The same
result is achieved also with the parameters p and q satisfying

0 < p < 1, q < 0,
1
p

+
1
q
≤ 1, (2.13)

since from (2.13) we obtain p′ < 0, 0 < q′ < 1, and 1− λ ≤ 0. Moreover, by using the
same arguments, parameters p,q ∈ (0,1) give another sufficient condition for the reverse
inequality in (2.9). In that case we have p′,q′ < 0, and 1−λ > 0.
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Remark 2.3 Equality in (2.9) holds if and only if it holds in the Hölder inequality, that is,
if the functions Kψ−q′ϕ pF p−q′ f p, Kϕ−p′ψqGq−p′gq, and (ϕF f )p(ψGg)q are effectively
proportional on Ω1 ×Ω2. Of course, this trivially happens if at least one of the functions
involved in the left-hand side of (2.9) is the zero-function. To discuss other non-trivial
cases of equality in (2.9), we can without loss of generality assume that the functions K,
f , and g are positive. Under such assumptions, equality in (2.9) occurs if and only if there
exist positive real constants α1, β1, and γ1, such that the relations

α1K(x,y)ψ−q′(y)(ϕ pF p−q′ f p)(x) = β1K(x,y)ϕ−p′(x)(ψqGq−p′gq)(y)
= γ1 (ϕF f )p (x)(ψGg)q (y)

hold for a. e. (x,y) ∈Ω1×Ω2. These equalities can be written in a more suitable form, as

α1(ϕ p+p′F p−q′ f p)(x) = β1(ψq+q′Gq−p′gq)(y), for a.e. (x,y) ∈Ω1×Ω2, (2.14)

and
α1K(x,y) = γ1Fq′(x)(ψq+q′Gqgq)(y), for a.e. (x,y) ∈Ω1×Ω2. (2.15)

Since the left-hand side of (2.14) depends only on x ∈ Ω1, while the right-hand side is a
single-variable function of y ∈Ω2, (2.14) holds only if

ϕ p+p′F p−q′ f p = α p = const. a.e. on Ω1

and
ψq+q′Gq−p′gq = β p = const. a.e. on Ω2,

for some positive real constants α and β . Taking into account 1+ p′
p = p′ and 1+ q′

q = q′,
these identities can be finally transformed to

f = αϕ−p′F
q′
p −1 a.e. on Ω1 and g = βψ−q′G

p′
q −1 a.e. on Ω2. (2.16)

Moreover, combining (2.16) with (2.15), we obtain

K = γFq′Gp′ a.e. on Ω1×Ω2, (2.17)

for some positive constant γ . Therefore, we proved that the conditions (2.16) and (2.17)
are necessary and sufficient for equality in (2.9). Moreover, it is clear that the equality in
(2.10) holds only if it holds in (2.9).

As an example of the function K which fulfills (2.17), here we mention

K(x,y) =
ϕ p′(x)ψq′(y)
μ1(Ω1)μ2(Ω2)

, (x,y) ∈Ω1×Ω2,

where the sets Ω1 and Ω2 are such that μ1(Ω1),μ2(Ω2) < ∞ and the functions ϕ and ψ are
arbitrary, as in Theorem 2.1. In particular, in this setting we have

F = μ1(Ω1)
− 1

q′ ϕ
p′
q′ and G = μ2(Ω2)

− 1
p′ ψ

q′
p′ ,

so K fulfills (2.17) with γ = 1. Equality in (2.9) is attained for f = αϕ−1− p′
q′ and g =

βψ−1− q′
p′ , where α and β are positive constants.
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Remark 2.4 Considering the case of conjugate exponents, that is, when q = p′ and λ = 1,
Theorem 2.1 reduces to Theorem 1.9 from Section 1.2. In other words, Theorem 2.1 is the
non-conjugate extension of Theorem 1.9. This extension was established recently in [16].

2.2 The case of a homogeneous kernel

Similarly as in Section 1.3, we apply here general results from Theorem 2.1 to non-negative
homogeneous functions K : Ω ⊆ R+ ×R+ → R with a negative degree of homogeneity.
Recall that K : Ω ⊆ R+ ×R+ → R is assumed to be homogeneous of degree −s, s > 0,
such that k(α) =

∫ ∞
0 K(1,u)u−αdu < ∞ for 1− s < α < 1 (see (1.20), Section 1.3).

In this way all results from Section 1.3 can be extended to the case of non-conjugate
exponents. For example, non-conjugate version of Theorem 1.11 reads as follows.

Theorem 2.2 Let p, q, and λ be as in (2.1) and (2.2), and let K : (a,b)× (a,b) → R

be a non-negative homogeneous function of degree −s, s > 0, strictly decreasing in both
arguments. Further, suppose that A1 and A2 are real parameters such that A1 ∈

( 1−s
p′ , 1

p′
)
,

A2 ∈
( 1−s

q′ , 1
q′
)
. If the functions ϕ1 and ϕ2 are defined as in the statement of Theorem 1.11,

then for all non-negative measurable functions f and g on (a,b) the inequalities

∫ b

a

∫ b

a
Kλ (x,y) f (x)g(y)dxdy

≤
[∫ b

a

(
k(q′A2)−ϕ1(q′A2,x)

) p
q′ x

p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p

×
[∫ b

a

(
k(2− s− p′A1)−ϕ2(2− s− p′A1,y)

) q
p′ y

q
p′ (1−s)+q(A2−A1)gq(y)dy

] 1
q

(2.18)

and [∫ b

a
y

q′
p′ (s−1)+q′(A1−A2)(k(2− s− p′A1)−ϕ2(2− s− p′A1,y)

)− q′
p′

×
(∫ b

a
Kλ (x,y) f (x)dx

)q′

dy

] 1
q′

≤
[∫ b

a

(
k(q′A2)−ϕ1(q′A2,x)

) p
q′ x

p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p

(2.19)

hold and are equivalent.
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Proof. In order to prove (2.18) set ϕ(x) = xA1 and ψ(y) = yA2 in general inequality (2.9).
Taking into account the substitution u = y

x , we obtain∫ b

a

∫ b

a
Kλ (x,y) f (x)g(y)dxdy

≤
[∫ b

a
x

p
q′ (1−s)+p(A1−A2)

(∫ b
x

a
x

K(1,u)u−q′A2du

) p
q′

f p(x)dx

] 1
p

×
[∫ b

a
y

q
p′ (1−s)+q(A2−A1)

(∫ y
a

y
b

K(1,u)up′A1+s−2du

) q
p′

gq(y)dy

] 1
q

.

Now, the rest of the proof follows the same lines as the proof of Theorem 1.11. �
Remark 2.5 According to Remark 2.2, we discuss here conditions under which the re-
verse inequalities in Theorem 2.2 are fulfilled. Firstly, if 0 < p < 1, 0 < q < 1 and K is
as in the statement of Theorem 2.2, then the reverse inequalities in (2.9) and (2.10) hold.
On the other hand, if the conditions (2.12) are satisfied, then the reverse inequalities in
Theorem 2.2 are valid if a = 0 and K is strictly increasing in first argument and strictly
decreasing in second argument, or if b = ∞ and K is strictly decreasing in first argument
and strictly increasing in second argument. The remaining case (2.13) which also provides
reverse inequalities is analyzed similarly. Observe that in the case of reversed inequalities
we have to adjust the intervals for parameters A1 and A2.

Of course, the most important case of Theorem 2.2 is with integrals over R+, that is,
when a = 0 and b = ∞. The corresponding equivalent Hilbert-type and Hardy-Hilbert-type
inequalities are given in the following corollary.

Corollary 2.1 Assume that p, q, and λ are as in (2.1) and (2.2), and K : R+ ×R+ → R

is a non-negative homogeneous function of degree −s, s > 0. Then the inequalities∫ ∞

0

∫ ∞

0
Kλ (x,y) f (x)g(y)dxdy

≤ L′
[∫ ∞

0
x

p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p
[∫ ∞

0
y

q
p′ (1−s)+q(A2−A1)gq(y)dy

] 1
q

(2.20)

and [∫ ∞

0
y

q′
p′ (s−1)+q′(A1−A2)

(∫ ∞

0
Kλ (x,y) f (x)dx

)q′

dy

] 1
q′

≤ L′
[∫ ∞

0
x

p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p

(2.21)

hold for all parameters A1 ∈
(

1−s
p′ , 1

p′
)
, A2 ∈

(
1−s
q′ , 1

q′
)
, and for all non-negative measur-

able functions f and g on R+, where L′ = k
1
q′ (q′A2)k

1
p′ (2− s− p′A1). Moreover, these

inequalities are equivalent. In addition, reverse inequalities are valid under conditions
appearing in Remark 2.2.
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Remark 2.6 Considering the above Corollary 2.1, equipped with the kernel K(x,y) =
(x+ y)−s, s > 0, the constant on the right-hand sides of (2.20) and (2.21) is expressed in
terms of the Beta function, i.e.

L′ = B
1
q′ (1−q′A2,s+q′A2−1)B

1
p′ (1− p′A1,s+ p′A1−1).

For the kernel K(x,y) = max{x,y}−s, s > 0, this constant reads

L′ =
sλ

(1−q′A2)
1
q′ (1− p′A1)

1
p′ (s+q′A2−1)

1
q′ (s+ p′A1 −1)

1
p′

,

while for the homogeneous kernel of degree −1, given by K(x,y) = logy−logx
y−x , we have

L′ = π2λ sin
− 2

p′ (A1p′)sin
− 2

q′ (A2q
′).

Note that in the conjugate case, these three constants coincide with the constants obtained
in Subsection 1.4.1 (see Chapter 1).

Remark 2.7 As we have already mentioned, all results from Section 1.3 can be extended
to non-conjugate case. Here they are omitted, and for more details the reader is referred
to [16]. Moreover, diverse methods presented in Section 1.4, except the theorems with the
best possible constant factors, can be combined with a general method for non-conjugate
Hilbert-type inequalities. Namely, the problem of determining the best possible constants
in non-conjugate case is not resolved yet and still remains open.

As an illustration, we only provide non-conjugate extension of Corollary 1.2. Namely,
if p, q, and λ are as in (2.1) and (2.2), and s > 0, then the non-conjugate versions of
inequalities (1.60) and (1.61) respectively read as∫ b

a

∫ b

a

f (x)g(y)
(x+ y)sλ dxdy

≤ Bλ
( s

2
,
s
2

){∫ b

a

[
1− 1

2

(a
x

) s
2 − 1

2

( x
b

) s
2
] p

q′
x−

s
2 pλ+p−1 f p(x)dx

} 1
p

×
⎧⎨⎩

∫ b

a

[
1− 1

2

(
a
y

) s
2

− 1
2

( y
b

) s
2

] q
p′

y−
s
2 qλ+q−1gq(y)dy

⎫⎬⎭
1
q

and ⎧⎪⎨⎪⎩
∫ b

a

[
1− 1

2

(
a
y

) s
2

− 1
2

( y
b

) s
2

]− q′
p′

y
s
2 q′λ−1

[∫ b

a

f (x)
(x+ y)sλ dx

]q′

dy

⎫⎪⎬⎪⎭
1
q′

≤ Bλ
( s

2
,
s
2

){∫ b

a

[
1− 1

2

(a
x

) s
2 − 1

2

( x
b

) s
2
] p

q′
x−

s
2 pλ+p−1 f p(x)dx

} 1
p

.



62 2 HILBERT-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS

We conclude this section with some discrete examples. Namely, Theorem 2.1, rewrit-
ten with the counting measure on N, leads to some interesting Hilbert-type inequalities
related to sequences of non-negative real numbers. The following results include homoge-
neous kernel strictly decreasing in each argument.

Theorem 2.3 Let p, q, and λ be as in (2.1) and (2.2), A,B,α,β > 0, and let n,n′ ∈ N,
n < n′. Further, suppose that K : R+×R+ →R is a non-negative homogeneous function of
degree −s, s > 0, strictly decreasing in both arguments. If the functions ζ1, ζ2 are defined
by

ζ1(γ,x) =
(

a
x

)α(1−γ) ∫ B
A aβ−α

0
K(1,u)u−γdu+

(
x
b

)α(s+γ−1)∫ A
B bα−β

0
K(u,1)us+γ−2du,

ζ2(γ,y) =
(

a
y

)β (s+γ−1)∫ A
B aα−β

0
K(u,1)us+γ−2du+

(
y
b

)β (1−γ) ∫ B
A bβ−α

0
K(1,u)u−γdu,

and M′ = α− 1
p′ β− 1

q′ A
1−s
q′ +A1−A2− 1

p′ B
1−s
p′ +A2−A1− 1

q′ , then the inequalities

n′

∑
i=n+1

n′

∑
j=n+1

Kλ (Aiα ,B jβ )aib j

≤ M′
[

n′

∑
i=n+1

(
k(q′A2)− ζ1(q′A2, i)

) p
q′ i

α p
q′ (1−s)+α p(A1−A2)−(p−1)(α−1)

ap
i

] 1
p

×
[

n′

∑
j=n+1

(
k(2− s− p′A1)− ζ2(2− s− p′A1, j)

) q
p′ j

βq
p′ (1−s)+βq(A2−A1)−(q−1)(β−1)

bq
j

] 1
q

(2.22)

and [
n′

∑
j=n+1

j
βq′(A1−A2)+

βq′
p′ (s−1)+β−1(

k(2− s− p′A1)− ζ2(2− s− p′A1, j)
)− q′

p′

×
( n′

∑
i=n+1

Kλ (Aiα ,B jβ )ai

)q′
] 1

q′

≤ M′
[

n′

∑
i=n+1

(
k(q′A2)− ζ1(q′A2, i)

) p
q′ i

α p
q′ (1−s)+α p(A1−A2)−(p−1)(α−1)

ap
i

] 1
p

(2.23)

hold for all real parameters A1, A2 such that A1 ∈
(
max{ 1−s

p′ , α−1
α p′ }, 1

p′
)
, A2 ∈

(
max{ 1−s

q′ ,
β−1
βq′ }, 1

q′
)
, and for all non-negative sequences (an)n∈N and (bn)n∈N. In addition, these

inequalities are equivalent.
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Proof. In order to prove inequality (2.22), rewrite Theorem 2.1 for the counting measure

on N, Ki j = K(Aiα ,B jβ ), ϕi = (Aiα)A1+ 1
p′α − 1

p′ , ψ j = (B jβ )A2+ 1
q′β − 1

q′ , and the sequences
(an)n∈N and (bn)n∈N. In this setting, inequality (2.9) becomes

n′

∑
i=n+1

n′

∑
j=n+1

Kλ (Aiα ,B jβ )aib j

≤
[

n′

∑
i=n+1

(Aiα)pA1+(p−1) 1−α
α Fp

i ap
i

] 1
p
[

n′

∑
j=n+1

(B jβ )qA2+(q−1) 1−β
β Gq

jb
q
j

] 1
q

,

where

Fi =

[
n′

∑
j=n+1

K(Aiα ,B jβ )

(B jβ )q′A2+ 1
β −1

] 1
q′

and Gj =

[
n′

∑
i=n+1

K(Aiα ,B jβ )

(Aiα)p′A1+ 1
α −1

] 1
p′

.

Now, since the kernel K is strictly decreasing in both variables and p′A1 + 1
α − 1 ≥ 0,

q′A2 + 1
β −1 ≥ 0, we have that

Fi ≤
∫ n′

n

K(Aiα ,Byβ )

(Byβ )q′A2+ 1
β −1

dy and Gj ≤
∫ n′

n

K(Axα ,B jβ )

(Axα )p′A1+ 1
α −1

dx,

so the result follows due to the homogeneity of kernel K. �

An important consequence of Theorem 2.3 is the following corollary for infinite series.

Corollary 2.2 Let p, q, and λ be as in (2.1) and (2.2), A,B,α,β > 0, and let K : R+ ×
R+ → R be a non-negative homogeneous function of degree −s, s > 0, strictly decreasing
in both variables. Then the inequalities

∞

∑
i=1

∞

∑
j=1

Kλ (Aiα ,B jβ )aib j

≤ L′M′
[

∞

∑
i=1

i
α p
q′ (1−s)+α p(A1−A2)−(p−1)(α−1)

ap
i

] 1
p

×
[

∞

∑
j=1

j
βq
p′ (1−s)+βq(A2−A1)−(q−1)(β−1)

bq
j

] 1
q

(2.24)

and [
∞

∑
j=1

j
βq′(A1−A2)+

βq′
p′ (s−1)+β−1

( ∞

∑
i=1

Kλ (Aiα ,B jβ )ai

)q′
] 1

q′

≤ L′M′
[

∞

∑
i=1

i
α p
q′ (1−s)+α p(A1−A2)−(p−1)(α−1)

ap
i

] 1
p

(2.25)
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hold for all real parameters A1, A2 such that A1 ∈
(
max{ 1−s

p′ , α−1
α p′ }, 1

p′
)
, A2 ∈

(
max{ 1−s

q′ ,
β−1
βq′ }, 1

q′
)
, and for all non-negative sequences (an)n∈N and (bn)n∈N, where L′ and M′ are

defined respectively in Corollary 2.1 and Theorem 2.3. Moreover, these inequalities are
equivalent.

Remark 2.8 The Hilbert-type inequalities in Corollary 2.2 represent non-conjugate ex-
tensions of the corresponding inequalities from [52] and [53]. The results presented in this
section are a part of the recent paper [16] by Čižmešija et. al.

2.3 Godunova-type inequalities

So far, we have considered integrals taken over certain subsets of R+, that is, one-dimensio-
nal case. Since Theorem 2.1 covers more general settings, we apply that result to n-
dimensional space Rn

+. Before presenting such results, it is necessary to introduce some
notation for this section. For x,y ∈ Rn

+, x = (x1,x2, . . . ,xn), y = (y1,y2, . . . ,yn), we define

y
x

=
(

y1

x1
,
y2

x2
, . . . ,

yn

xn

)
and xy = x1

y1x2
y2 · · ·xn

yn .

Moreover, 1 denotes the n-tuple (1,1, . . . ,1), and the vector is multiplied by a scalar in the
usual way.

Motivated by the one-dimensional case (see relation (1.20), Chapter 1), we also define

k(a) =
∫
R

n
+

K(t)t−adt,

where the function K : Rn
+ → R and the parameter a ∈ Rn

+ are such that the above integral
converges.

Now, considering the weight functions ϕ(x) = xA1 , ψ(y) = yA2 , where
A1 = (A11,A12, . . . ,A1n), A2 = (A21,A22, . . . ,A2n), and replacing K(x,y) with x−sK

( y
x

)
in Theorem 2.1, we get the following result.

Theorem 2.4 Suppose that p, q, and λ are as in (2.1) and (2.2). If s ∈ Rn
+, K : Rn

+ → R

is a non-negative measurable function, and the parameters A1,A2 ∈ Rn are such that L′ =
k

1
q′ (q′A2)k

1
p′ (2 ·1− s− p′A1) < ∞, then the inequalities∫

R
n
+

∫
R

n
+

x−λ sKλ
(y

x

)
f (x)g(y)dxdy

≤ L′
[∫

R
n
+

x
p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p
[∫

R
n
+

y
q
p′ (1−s)+q(A2−A1)gq(y)dy

] 1
q
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and [∫
R

n
+

y
q′
p′ (s−1)+q′(A1−A2)

(∫
R

n
+

x−λ sKλ
(y

x

)
f (x)dx

)q′

dy

] 1
q′

≤ L′
[∫

R
n
+

x
p
q′ (1−s)+p(A1−A2) f p(x)dx

] 1
p

hold for all non-negative measurable functions f ,g : Rn
+ → R and are equivalent.

Remark 2.9 For n = 1 we have that x−sK
( y

x

)
is a homogeneous function of degree −s,

hence Theorem 2.4 may be regarded as an n-dimensional generalization of Corollary 2.1.

We explicitly state two particular cases of Theorem 2.4, obtained for some special
choices of parameters. The first one considers s = s1, A1 = A11, and A2 = A21, where
s,A1,A2 are real numbers.

Corollary 2.3 Suppose that p, q, and λ are as in (2.1) and (2.2). If s ∈ R+, K : Rn
+ → R

is a non-negative measurable function, and the parameters A1,A2 ∈ R are such that L′ =
k

1
q′ (q′A21)k

1
p′ ((2− s− p′A1)1) < ∞, then the inequalities∫

R
n
+

∫
R

n
+

x−λ s1Kλ
(y

x

)
f (x)g(y)dxdy

≤ L′
[∫

R
n
+

x
[

p
q′ (1−s)+p(A1−A2)

]
1
f p(x)dx

] 1
p
[∫

R
n
+

y
[

q
p′ (1−s)+q(A2−A1)

]
1
gq(y)dy

] 1
q

and [∫
R

n
+

y
[

q′
p′ (s−1)+q′(A1−A2)

]
1
(∫

R
n
+

x−λ sKλ
(y

x

)
f (x)dx

)q′

dy

] 1
q′

≤ L′
[∫

R
n
+

x
[

p
q′ (1−s)+p(A1−A2)

]
1
f p(x)dx

] 1
p

hold for all non-negative measurable functions f ,g : Rn
+ → R and are equivalent.

The second special case of Theorem 2.4, and also the concluding result in this section,
presents an inequality of E. K. Godunova from [24]. Namely, if we put A1 = 2−s

p′ , A2 = 0,

K = u
1
λ in Corollary 2.3, and consider the functions f̃ , g̃ : Rn

+ → R, defined by f̃ (x) =

x
[
− 1

p′ +(s−1)λ
]
1
f (x), g̃(y) = y

1
p′ ·1g(y), we get the following result.

Corollary 2.4 Let p, q, and λ be as in (2.1) and (2.2). If s ∈ R+ and u : Rn
+ → R is a

non-negative measurable function, then the inequalities∫
R

n
+

∫
R

n
+

x
−
(

1
p′ +λ

)
1
y

1
p′ 1u

(y
x

)
f (x)g(y)dxdy ≤ ||u||

L
1
λ (R

n
+)
|| f ||Lp′ (Rn

+)||g||Lq′ (Rn
+),
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and [∫
R

n
+

y
q′
p′ 1

(∫
R

n
+

x
−
(

1
p′ +λ

)
1
u
(y

x

)
f (x)dx

)q′

dy

] 1
q′
≤ ||u||

L
1
λ (R

n
+)
|| f ||Lp′ (Rn

+)

hold for all non-negative measurable functions f ,g : Rn
+ → R and are equivalent.

Remark 2.10 Since the first inequality in Corollary 2.4 was proved by E. K. Godunova in
[24], all inequalities presented in this section will be referred to as the Godunova-type in-
equalities. These inequalities are established in [16]. In addition, Hilbert-type inequalities
with vector variables will be extensively studied in Chapter 3.

2.4 Multidimensional case

The main objective of this section is to extend Theorem 2.1 to a multidimensional case.
The three-dimensional version of the Hilbert-type inequality, that is, the relation (2.5), was
given by F.F. Bonsall [9], in 1950s. Although Bonsall also established conditions for the
set of n non-conjugate parameters, there were no results in that direction.

In order to obtain our general results we introduce here n-dimensional extension of non-
conjugate exponents, defined in [9]. Let n ∈ N, n ≥ 2, and let real parameters p1, . . . , pn be
such that

p1, . . . , pn > 1,
n

∑
i=1

1
pi

≥ 1. (2.26)

Define

λ =
1

n−1

n

∑
i=1

1
p′i

and
1
qi

= λ − 1
p′i

, i = 1, . . . ,n, (2.27)

where 1
pi

+ 1
p′i

= 1, i = 1, . . . ,n. On the other hand, for any choice of parameters as in

(2.26), it follows from (2.27) that

1
qi

+(1−λ ) =
1
pi

, i = 1, . . . ,n, (2.28)

and
n

∑
i=1

1
qi

+(1−λ ) = 1. (2.29)

Hence, in order to apply the Hölder inequality with exponents q1, . . . ,qn,
1

1−λ , we need to
require

1
qi

> 0, i = 1, . . . ,n. (2.30)



2.4 MULTIDIMENSIONAL CASE 67

Note that for n ≥ 3 conditions (2.26) and (2.27) do not automatically imply (2.30). More
precisely, since (2.26) and (2.27) give only

1
qi

>
2−n
n−1

1
p′i

, i = 1, . . . ,n,

some of qi may be negative. For example, for p1 = 2 and p2 = p3 = 20
19 we have 1

q1
=

− 1
5 < 0. Therefore, the condition (2.30) is not redundant.

Observe that for λ = 1 the above parameters reduce to the conjugate case, that is,
∑n

i=1
1
pi

= 1 and pi = qi, i = 1,2, . . . ,n.

Now, we are ready to state and prove general forms of multidimensional Hilbert-type
inequalities with non-conjugate exponents. These inequalities will include integrals taken
over general subsets of R+, equipped with σ -finite measures. Of course, the following
extension may also be regarded as a non-conjugate version of Theorem 1.18.

Theorem 2.5 Let λ , pi, p′i,qi, i = 1,2, . . . ,n, n ≥ 2, fulfill relations (2.26), (2.27) and
(2.30), and let Ω be a measure space with σ -finite measures μi, i = 1,2, . . . ,n. Further,
suppose that K : Ωn → R and φi j : Ω → R, i, j = 1, . . . ,n, are non-negative measurable
functions such that ∏n

i, j=1φi j(x j) = 1 a.e. on Ωn. If the functions Fi, i = 1,2, . . . ,n, are
defined by

Fi(xi) =

[∫
Ωn−1

K(x1, ...,xn)
n

∏
j=1, j �=i

φqi
i j (x j)dμ1(x1) . . .dμ j−1(x j−1)

×dμ j+1(x j+1) . . .dμn(xn)

] 1
qi

,

then for all non-negative measurable functions fi : Ω→ R, i = 1,2, . . . ,n, the inequalities

∫
Ωn

Kλ (x1, ...,xn)
n

∏
i=1

fi(xi)dμ1(x1)...dμn(xn) ≤
n

∏
i=1

‖φiiFi fi‖Lpi (μi) (2.31)

and

{∫
Ω

[
1

(φnnFn)(xn)

∫
Ωn−1

Kλ (x1, ...,xn)
n−1

∏
i=1

fi(xi)dμ1(x1)...dμn−1(xn−1)

]p′n
dμn(xn)

} 1
p′n

≤
n−1

∏
i=1

‖φiiFi fi‖Lpi(μi) (2.32)

hold and are equivalent.
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Proof. The left-hand side of inequality (2.31) can be rewritten as∫
Ωn

Kλ (x1, ...,xn)
n

∏
i=1

fi(xi)dμ1(x1)...dμn(xn)

=
∫
Ωn

n

∏
i=1

[
K(x1, ...,xn)φii

pi(xi)
n

∏
j=1, j �=i

φqi
i j (x j)Fi

pi−qi(xi) fi
pi(xi)

] 1
qi

×
[

n

∏
i=1

(φiiFi fi)pi(xi)

]1−λ

dμ1(x1)...dμn(xn).

In addition, since ∑n
i=1

1
qi

+ 1−λ = 1, qi > 1, 0 < λ ≤ 1, applying the Hölder inequality
to the above relation yields∫

Ωn
Kλ (x1, ...,xn)

n

∏
i=1

fi(xi)dμ1(x1)...dμn(xn)

≤
n

∏
i=1

[∫
Ω

(φiiFi fi)
pi (xi)dμi(xi)

] 1
qi

n

∏
i=1

[∫
Ω

(φiiFi fi)
pi (xi)dμi(xi)

]1−λ
.

Finally, since 1
qi

+1−λ = 1
pi

, we obtain inequality (2.31).
Now, we show that inequalities (2.31) and (2.32) are equivalent. Suppose that inequal-

ity (2.31) is valid. Setting the function fn : Ω→ R, defined by

fn(xn) =

[
1

(φnnFn)pn(xn)

∫
Ωn−1

Kλ (x1, ...,xn)
n−1

∏
i=1

fi(xi)dμ1(x1)...dμn−1(xn−1)

] p′n
pn

,

in inequality (2.31), we have

I(xn)
p′n ≤

n−1

∏
i=1

[∫
Ω

(φiiFi fi)
pi (xi)dμi(xi)

] 1
pi

I(xn)
p′n
pn ,

where I(xn) denotes the left-hand side of inequality (2.32). Clearly, this relation represents
inequality (2.32).

It remains to prove that inequality (2.31) is a consequence of (2.32). Assume, there-
fore, that inequality (2.32) holds. The left-hand side of (2.31) can be rewritten as∫

Ωn
Kλ (x1, ...,xn)

n

∏
i=1

fi(xi)dμ1(x1)...dμn(xn)

=
∫
Ω
(φnnFn fn)(xn)

[
1

(φnnFn)(xn)

∫
Ωn−1

Kλ (x1, ...,xn)

×
n−1

∏
i=1

fi(xi)dμ1(x1)...dμn−1(xn−1)
]
dμn(xn),
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hence, applying the Hölder inequality with conjugate exponents pn and p′n, we have∫
Ωn

Kλ (x1, ...,xn)
n

∏
i=1

fi(xi)dμ1(x1)...dμn(xn) ≤ ‖φnnFn fn‖Lpn (μn)I(xn),

and the result follows from (2.32). �

Remark 2.11 Since the crucial step in proving the previous theorem was in applying the
Hölder inequality, equality in (2.31) holds if and only if the functions

K(x1, ...,xn)φii
pi(xi)

n

∏
j=1, j �=i

φqi
i j (x j)Fi

pi−qi(xi) fi
pi(xi), i = 1,2, . . .n,

and ∏n
i=1(φiiFi fi)pi(xi) are effectively proportional. Clearly, this trivially happens if at least

one of the functions fi, i = 1,2, . . . ,n, is a zero-function. Otherwise, these conditions can
be rewritten in a more suitable form, yielding the explicit expressions for the functions

and kernel, that is, fi(xi) =Ciφii(xi)
qi

1−λqi Fi(xi)(1−λ )qi , i = 1,2, . . .n, and K(x1,x2, . . . ,xn) =
C∏n

i=1 Fi
qi(xi), where C and Ci are positive constants. It is possible only if the functions

∏n
j=1, j �=iφ j j

λq j
1−λq j (x j)

∏n
j=1, j �=iφi j

λq j(x j)
, i = 1,2, . . . ,n,

are appropriate constants, and∫
Ω

Fi
qi(xi)φ

qi
1−λqi
ii (xi)dμi(xi) < ∞, i = 1,2, . . .n.

Otherwise, the inequalities in Theorem 2.5 are strict.

Remark 2.12 If the parameters pi, i = 1,2, . . . ,n, are chosen in such a way that

q j > 0, j ∈ {1,2, . . .n}, qi < 0, i �= j, and λ < 1, (2.33)

or
qi < 0, i = 1,2, . . . ,n, (2.34)

then the reverse inequalities in (2.31) and (2.32) hold, due to the reverse Hölder inequality.

As an application of Theorem 2.5, we consider the case of homogeneous kernel K :
Rn

+ →R, defined by K(x1, ...,xn) = (x1 + · · ·+xn)−s, s > 0, and the power weight functions

φi j : Rn
+ →R, φi j(x j) = x

Ai j
j , Ai j ∈R, with respect to Lebesgue measures dxi, i = 1,2, . . . ,n

on R+. The parameters Ai j fulfill relations ∑n
i=1 Ai j = 0, j = 1, . . . ,n, so that the condition

∏n
i, j=1φi j(x j) = 1 is fulfilled. Regarding the form of the kernel, we obtain inequalities with

the constant factor expressed in terms of the Gamma function.
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Theorem 2.6 Let λ , pi, p′i,qi, i = 1,2, . . . ,n, n ≥ 2, be as in (2.26), (2.27), and (2.30),
and let Ai j, i, j = 1, . . . ,n, be real parameters such that ∑n

i=1 Ai j = 0 for j = 1, . . . ,n. If
s > 0, αi = ∑n

j=1 Ai j, Ai j > − 1
qi

, i �= j, Aii−αi >
n−s−1

qi
, and

K =
1

Γλ (s)

n

∏
i=1

Γ
1
qi (s−n+1−qiαi +qiAii)

n

∏
i, j=1,i�= j

Γ
1
qi (qiAi j +1),

then the inequalities

∫
R

n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)λ s

dx1...dxn < K
n

∏
i=1

[∫ ∞

0
xi

pi
qi

(n−1−s)+piαi f pi
i (xi)dxi

] 1
pi

(2.35)

and [∫ ∞

0
x(1−λ p′n)(n−1−s)−p′nαn
n

(∫
R

n−1
+

∏n−1
i=1 fi(xi)

(∑n
j=1 x j)λ s

dx1...dxn−1

)p′n
dxn

] 1
p′n

< K
n−1

∏
i=1

[∫ ∞

0
xi

pi
qi

(n−1−s)+piαi f pi
i (xi)dxi

] 1
pi

(2.36)

hold for all non-negative measurable functions fi : R+ → R, fi �= 0, i = 1, . . . ,n. Moreover,
these inequalities are equivalent.

Another way of extending Hilbert-type inequalities with non-conjugate exponents to
the multidimensional setting arises from inequality (2.6), presented at the beginning of
this chapter.

Theorem 2.7 Let n∈N, n≥ 2, and let parameters λ , pi,qi, i = 1,2, . . . ,n, be as in (2.26),
(2.27), and (2.30). Let μ1, . . . ,μn be positive σ -finite measures on Ω. If K : Ωn → R,
Fi : Ωn → R, φi j : Ω→ R, i, j = 1, . . . ,n, are non-negative measurable functions such that

n

∏
i, j=1

φi j(x j) = 1, a.e. on Ωn, (2.37)

then the inequality∫
Ωn

K(x1, . . . ,xn)
n

∏
i=1

fi(xi)dμ1(x1) . . .dμn(xn)

≤
n

∏
i=1

[∫
Ωn

(
KF pi−qi

i

)
(x1, . . . ,xn)(φii fi)pi(xi)∏

j �=i

φqi
i j (x j)dμ1(x1) . . .dμn(xn)

] 1
qi

×
[∫

Ωn
K(x1, . . . ,xn)

n

∏
i=1

F pi
i (x1, . . . ,xn)(φii fi)pi(xi)dμ1(x1) . . .dμn(xn)

]1−λ

(2.38)

holds for all non-negative measurable functions fi : Ω→ R, i = 1, . . . ,n.
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Proof. Note that from (2.28) we have pi
qi

+ pi(1−λ ) = 1, i = 1, . . . ,n. Using this and
(2.29), the left-hand side of (2.38) can be written as∫

Ωn
K(x1, . . . ,xn)

n

∏
i=1

fi(xi)dμ1(x1) . . .dμn(xn)

=
∫
Ωn

K∑n
i=1

1
qi

+1−λ (x1, . . . ,xn)
n

∏
i=1

f
pi
qi

+pi(1−λ )
i (xi)

×
n

∏
i=1

F
pi
qi
−1+pi(1−λ )

i (x1, . . . ,xn)
n

∏
i=1

φ
pi
qi

+pi(1−λ )
ii (xi)

×∏
j �=i

φi j(x j)dμ1(x1) . . .dμn(xn)

=
∫
Ωn

n

∏
i=1

[(
KFpi−qi

i

)
(x1, . . . ,xn)(φii fi)pi(xi)∏

j �=i

φqi
i j (x j)

] 1
qi

×
[
K(x1, . . . ,xn)

n

∏
i=1

F pi
i (x1, . . . ,xn)(φii fi)pi(xi)

]1−λ

dμ1(x1) . . .dμn(xn).

The inequality (2.38) now follows by using the Hölder inequality with the exponents
q1, . . . ,qn,

1
1−λ . �

Remark 2.13 Observe that without loss of generality the condition (2.37) from the state-
ment of Theorem 2.7 can be replaced by ∏n

i=1 φi j(x j) = 1 a.e. on Ω, for j = 1, . . . ,n, since
(2.37) implies that

n

∏
i=1

φi j(x j) = c j = const, j = 1, . . . ,n, (2.39)

where c1 · · ·cn = 1.

Remark 2.14 Obviously, (2.38) becomes equality if at least one of the functions involved
in its left-hand side is a zero-function. Otherwise, equality holds if and only if it holds in
the Hölder inequality, that is, only if the functions KF pi−qi

i (φii fi)pi ∏ j �=iφ
qi
i j , i = 1, . . . ,n,

and K∏n
i=1(Fiφii fi)pi are effectively proportional. Therefore, equality in (2.38) occurs if

and only if there exist positive constants αi, βi j, i, j = 1, . . . ,n, j �= i, such that

KF pi−qi
i (φii fi)pi∏

l �=i

φqi
il = αiK

n

∏
l=1

(Flφll fl)
pl , i = 1, . . . ,n, (2.40)

and
KF pi−qi

i (φii fi)
pi∏

l �=i

φqi
il = βi jKF

pj−q j
j (φ j j f j)

p j ∏
l �= j

φq j
jl , i �= j. (2.41)

Moreover, the relation (2.40) is equivalent to

F−qi
i = αi∏

l �=i

φ−qi
il (Flφll fl)

pl , i = 1, . . . ,n. (2.42)
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In the special case when Fi ≡ Fi(xi), i = 1, . . . ,n, the functions fi and φi j from (2.41) and
(2.42) can be expressed explicitly in terms of φii. More precisely, from (2.42) we have

Fi ≡ const, i = 1, . . . ,n, (2.43)

directly, since the right-hand side of this relation depends on xl , l �= i, while its left-hand
side in this setting is a function of xi. Considering this, (2.41) becomes

(φii fi)pi φ−q j
ji = γi j (φ j j f j)p j ∏

l �=i, j

φq j
jl ∏

l �=i

φ−qi
il , i �= j, (2.44)

for some positive constants γi j. Thus,

(φii fi)pi φ−q j
ji ≡ const, i = 1, . . . ,n, j �= i, (2.45)

where again we exploited the fact that the left-hand side of (2.44) depends only on xi,
while its right-hand side is a function of xl , l = 1, . . . ,n, l �= i. The relation (2.45) further
implies that φq j

ji φ
−ql
li = const, i = 1, . . . ,n, j, l �= i, which combined with (2.39) gives

φiiφ
q j ∑l �=i

1
ql

ji ≡ const, i = 1, . . . ,n, j �= i. (2.46)

Since by (2.27) and (2.29) we have q j ∑l �=i
1
ql

= q j

p′i
, the relation (2.46) can be transformed

into
φ p′i

ii φ
q j
ji ≡ const, i = 1, . . . ,n, j �= i, (2.47)

while (2.45) becomes

f pi
i ≡Ciφ

−(pi+p′i)
ii , i = 1, . . . ,n, (2.48)

for some positive constants Ci, i = 1, . . . ,n. Hence, if Fi ≡ Fi(xi), the conditions (2.43),
(2.47), and (2.48) are necessary and sufficient for equality in (2.38).

Remark 2.15 If the parameters pi, i = 1,2, . . . ,n, in Theorem 2.7 are such that

0 < pi < 1,
n−1

pi
+1 <

n

∑
j=1

1
p j

, i = 1, . . . ,n, (2.49)

and λ , and qi, i = 1,2, . . . ,n, are defined by (2.27), then the sign of inequality in (2.38) is
reversed. To justify this assertion, observe that the first inequality in (2.49) gives 1

p′i
< 0,

i = 1, . . . ,n, so we have λ < 0. Similarly, from the second relation in (2.49) it follows that

1
qi

= λ − 1
p′i

=
1

n−1

(
n−1

pi
+1−

n

∑
j=1

1
p j

)
< 0, i = 1, . . . ,n.

Therefore, qi < 0, i = 1, . . . ,n, and 0 < 1
1−λ < 1, so (2.38) holds with the reverse inequality

as a direct consequence of the reverse Hölder inequality. The same result is also achieved
with the parameters pi, i = 1,2, . . . ,n, satisfying

n

∑
i=1

1
pi

< 1 and 0 < pl < 1,
n−1

pi
+1 <

n

∑
j=1

1
p j

, i �= l, (2.50)

for some l ∈ {1, . . . ,n}, since from (2.50) we obtain 1
1−λ < 0, ql > 0, and qi < 0, i �= l.
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To conclude this section, we restate Theorem 2.7 in the case of n = 2. This result is
interesting in its own right, since it will be applied in the next chapter, where we shall
consider Hilbert-type inequalities in some particular cases.

Theorem 2.8 Let p, q, and λ be as in (2.1) and (2.2). Let μ1 and μ2 be positive σ -finite
measures on Ω. If K, F, and G are non-negative measurable functions on Ω2 and ϕ and ψ
are non-negative measurable functions on Ω, then the inequality∫

Ω2
K(x,y) f (x)g(y)dμ1(x)dμ2(y)

≤
[∫

Ω2
(KF p−q′)(x,y)ψ−q′(y)(ϕ f )p(x)dμ1(x)dμ2(y)

] 1
q′

×
[∫

Ω2
(KGq−p′)(x,y)ϕ−p′(x)(ψg)q(y)dμ1(x)dμ2(y)

] 1
p′

×
[∫

Ω2
(KF pGq)(x,y)(ϕ f )p(x)(ψg)q(y)dμ1(x)dμ2(y)

]1−λ
(2.51)

holds for all non-negative measurable functions f and g on Ω.

Proof. The proof follows directly from Theorem 2.7 using substitutions p1 = p, p2 = q,
q1 = q′, q2 = p′, φ11 = ϕ , and φ22 = ψ . Observe that from φ11φ21 = 1 and φ12φ22 = 1 we
have φ21 = 1

ϕ and φ12 = 1
ψ . �

Remark 2.16 If we rewrite Theorem 2.8 with Ω = R+, Lebesgue measures, the kernel

K(x,y) = (x+y)−λ , and with functionsF(x,y) =G(x,y)≡ 1, ϕ(x)= x
1

pp′ , andψ(y)= y
1

qq′ ,
we obtain (2.6). Hence, Theorem 2.8 can be viewed as a generalization of the mentioned
Bonsall result (2.6) from [9].

Remark 2.17 Theorem 2.5 and its consequences are taken from [12], while Theorem 2.7
is obtained in [17].

2.5 Examples with hypergeometric functions

We have already discussed that the general method with non-conjugate exponents, devel-
oped in this chapter, can be combined with particular settings and diverse methods pre-
sented in Section 1.4. In addition, we have seen some Hilbert-type inequalities involving
hypergeometric functions.

Therefore, we consider here some particular settings in which hypergeometric func-
tions occur in a more general manner. We start with a classic example.
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2.5.1 Hilbert-type inequalities and Gaussian hypergeometric
function

Gaussian hypergeometric function is the formal power series in z ∈ C with three parame-
ters, defined in terms of rising factorial powers:

F (a,b;c;z) = ∑
k≥0

akbk

ck
· zk

k!
, a,b,c,z ∈ R, |z| < 1. (2.52)

Here, the rising factorial power is ak = a(a+1)(a+2)· · ·(a+ k−1), k ∈ N, and a0 = 1,
a �= 0.

To avoid division by zero, c is neither zero nor negative integer. The series (2.52) is
often called the Gaussian hypergeometric function, because many of its interesting prop-
erties were first proved by Gauss. In fact, it was the only hypergeometric series until the
second half of nineteenth century, when everything was generalized to arbitrary number of
parameters. For more details, the reader is referred to [26].

Relation (1.34) from Chapter 1 represents the integral representation of the above
power series. Moreover, knowing the relation between the Gamma and the Beta function,
(1.34) can also be rewritten as

F (a,b;c;z) =
1

B(b,c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt, (2.53)

where c > b > 0 and |z| < 1.
In order to obtain Hilbert-type inequality with constant factor expressed in terms of

F (a,b;c;z), we are going to rewrite relation (2.53) in a more suitable form.

Lemma 2.1 Suppose a,b,c,α,γ ∈ R are such that a+ c > b > 0 and 0 < α < 2γ. Then,∫ ∞

0

xb−1

(1+αx)a(1+ γx)c dx = γ−bB(b,a+ c−b)F
(
a,b;a+ c;1− α

γ

)
. (2.54)

Proof. Consider the integral I =
∫ 1
0 tb−1(1− t)c−b−1(1− zt)−adt. Using the substitutions

1− t = 1
1+u , u = γx, γ > 0, and the abbreviation α = (1− z)γ , we obtain

I = γb
∫ ∞

0

xb−1

(1+αx)a(1+ γx)c−a dx.

Now, utilizing (2.53) we have∫ ∞

0

xb−1

(1+αx)a(1+ γx)c−a dx = γ−bB(b,c−b)F
(
a,b;c;1− α

γ

)
.

Finally, replacing c−a with c in the previous formula, we get (2.54). �

Now, considering Corollary 2.1 with the homogeneous kernel

K(x,y) = (x+α1y)−s1(x+α2y)−s2 , (2.55)
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where α1,α2 > 0, 1
2 < α1

α2
< 2, and s1 + s2 > 0, it follows that the corresponding constant

factor is a product of two integrals of the form (2.54). Moreover, the degree of homogene-
ity of the above kernel is −(s1 + s2), so Corollary 2.1 yields the following consequence.

Corollary 2.5 Let p, q, and λ be as in (2.1) and (2.2), and let α1,α2 > 0, 1
2 < α1

α2
< 2,

s1 + s2 > 0. If f ,g : R+ → R are non-negative measurable functions, then the inequalities∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+α1y)λ s1(x+α2y)λ s2

dxdy

≤ K′
[∫ ∞

0
x

p
q′ (1−s1−s2)+p(A1−A2) f p(x)dx

] 1
p

×
[∫ ∞

0
y

q
p′ (1−s1−s2)+q(A2−A1)gq(y)dy

] 1
q

(2.56)

and [∫ ∞

0
y

q′
p′ (s1+s2−1)+q′(A1−A2)

(∫ ∞

0

f (x)
(x+α1y)λ s1(x+α2y)λ s2

dx

)q′

dy

] 1
q′

≤ K′
[∫ ∞

0
x

p
q′ (1−s1−s2)+p(A1−A2) f p(x)dx

] 1
p

(2.57)

hold for all A1 ∈ ( 1−s1−s2
p′ , 1

p′ ) and A2 ∈ ( 1−s1−s2
q′ , 1

q′ ), where

K′ = α1

1−s1
p′ −A1α2

A2− 1
q′ −

s2
p′ B

1
q′ (1−q′A2,s1 + s2 +q′A2−1)

×B
1
p′ (1− p′A1,s1 + s2 + p′A1−1)F

1
q′
(
s1,1−q′A2;s1 + s2;1− α1

α2

)
×F

1
p′
(
s2,1− p′A1;s1 + s2;1− α1

α2

)
. (2.58)

Moreover, inequalities (2.56) and (2.57) are equivalent.

Remark 2.18 Every hypergeometric series always has the value 1 when z = 0. Hence,
if α1 = α2, then the hypergeometric part of the above constant (2.58) takes the value of 1
and inequalities (2.56) and (2.57) reduce to already known cases, considered in Section
1.4.

On the other hand, hypergeometric series (2.52) converges also for z = 1 when b is a
non-positive integer or c > a+b. In addition, since

F (a,b;c;1) =
Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b)

, (2.59)

(see [26]), relation (2.54) also holds for α = 0 and reduces to the well-known formula for
the Beta function:∫ ∞

0

xb−1

(1+ γx)c dx = γ−bB(b,c−b), where c > b > 0. (2.60)
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Therefore, if α1 = 0 or α2 = 0, the previous corollary also yields inequalities without
hypergeometric part. Such cases are omitted here.

We conclude the previous discussion with a remark about the best possible constant
factors appearing in inequalities (2.56) and (2.57), which can be achieved in the conjugate
case.

Remark 2.19 If p and q are conjugate exponents, then the kernel (2.55) fulfills con-
ditions as in Theorem 1.13 (Chapter 1). Moreover, since K is homogeneous of degree
−(s1 + s2), the parameters A1 and A2, that provide the best possible constant factor, must
fulfill the relation pA2 + qA1 = 2− s1 − s2. Under the above assumptions and utilizing
the so-called Euler identity F (a,b;c;z) = (1− z)c−a−bF (c−a,c−b;c;z) (see [26]), the
constant factor K′ from Corollary 2.5 reduces to

α2
pA2−1B(1− pA2,1−qA1)F

(
s1,1− pA2;s1 + s2;1− α1

α2

)
and is the best possible.

2.5.2 Hilbert-type inequalities and generalized hypergeometric
functions mFn

Gaussian hypergeometric function is naturally extended to an arbitrary number of param-
eters, which gives generalized hypergeometric function. Such generalized series also have
integral representations. More precisely, we shall use the so-called Poisson-type integral
representations, in order to obtain multidimensional Hilbert-type inequalities in such set-
tings.

Hence, before obtaining such multidimensional inequalities, we introduce the notion
of a generalized hypergeometric function mFn, as well as its integral representations.

By a generalized hypergeometric function mFn we mean the sum of the series

mFn(a1, . . . ,am;b1, . . . ,bn;z) =
∞

∑
k=0

ak
1a

k
2 . . .ak

m

bk
1b

k
2 . . .bk

n

· zk

k!
,

where ak
i , bk

i are the rising factorial powers and z ∈ C, in domain of its convergence: Ω =
{|z| < ∞} for m ≤ n and Ω = {|z| < 1} for m = n + 1, or its analytical continuation in
{|z| > 1, |arg(1− z)| < π}, in the latter case. One may also consider z as a real variable
z ∈ [0,∞).

The paper [50] provides a unified treatment of generalized hypergeometric functions
by means of a generalized fractional calculus. More precisely, hypergeometric functions
mFn are separated into three classes depending on whether m < n, m = n or m = n + 1.
Further, hypergeometric functions of each class are represented as generalized fractional
integrals or derivatives of three basic elementary functions:

cosn−m+1(z) (m < n), zα expz (m = n), zα (1− z)β (m = n+1).
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Here, cost (z) is the so-called generalized cosine function of order t ≥ 2, defined as

cost (z) =
∞

∑
k=0

(−1)k zkt

(kt)!
, t ≥ 2,

where cosz = cos2 (z) . The above mentioned representations lead to several new integral
formulas for mFn functions and allow their study in a unified way. Moreover, the general-
ized fractional calculus is developed in [49].

Now, we introduce the Poisson-type integral representations of the above classes of
hypergeometric functions mFn, established in [50].

1◦ First case: m < n. If the conditions

bk >
k

n−m+1
, k = 1,2, . . . ,n−m, bn−m+k > ak > 0, k = 1,2, . . . ,m, (2.61)

are fulfilled, then the following Poisson-type integral representation is valid:

mFn(a1, . . . ,am;b1, . . . ,bn;−z)

= C
∫ 1

0
. . .

∫ 1

0

n−m

∏
k=1

[
(1− tk)bk−(k/(n−m+1))−1

Γ(bk − (k/(n−m+1)))
tk

(k/(n−m+1))−1

]

×
n

∏
k=n−m+1

[
(1− tk)bk−ak−n+m−1

Γ(bk −ak−n+m)
tk

ak−n+m−1
]

×cosn−m+1

[
(n−m+1)(zt1 . . . tn)1/(n−m+1)

]
dt1 . . .dtn. (2.62)

The constant C is defined by C =
√

n−m+1
(2π)n−m

∏n
j=1 Γ(b j)

∏m
j=1 Γ(a j)

.

2◦ Second case: m = n. Assuming that

bk > ak > 0, k = 1,2, . . . ,n, (2.63)

we have

nFn(a1, . . . ,an;b1, . . . ,bn;z)

= E
∫ 1

0
. . .

∫ 1

0

n

∏
k=1

[
(1− tk)bk−ak−1tkak−1

Γ(bk −ak)

]
exp(zt1 . . . tn)dt1 . . .dtn, (2.64)

where the constant E is defined by E = ∏n
j=1

Γ(b j)
Γ(a j)

.

3◦ Third case: m = n+1. If the conditions

bk > ak+1 > 0, k = 1,2, . . . ,n, (2.65)

are satisfied, then the following Poisson-type integral representation is valid:

n+1Fn(a1, . . . ,an+1;b1, . . . ,bn;±z)

= M
∫ 1

0
. . .

∫ 1

0

n

∏
k=1

(1− tk)bk−ak+1−1tk
ak+1−1(1∓ zt1 . . .tn)−a1dt1 . . .dtn. (2.66)
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The constant M is defined by M = ∏n
j=1

Γ(b j)
Γ(a j+1)Γ(b j−a j+1)

.

Clearly, the above integral representations are valid for complex numbers z in the cor-
responding domains of convergence. These representations will be crucial in obtaining
examples with multidimensional Hilbert-type inequalities. More precisely, our next step is
to find appropriate kernels such that the formulas for the functions Fi, i = 1,2, . . . ,n, from
Theorem 2.5, reduce to the above stated Poisson-type integral representations.

The kernel involving exponential function
We are going to find a more suitable form of integral representation (2.64). Namely,

utilizing substitutions 1−ti = 1
1+xi

, i = 1,2, . . . ,n, and the well-known relationship between

the Beta and the Gamma function, i.e. B(x,y) = Γ(x)Γ(y)
Γ(x+y) , x,y > 0, we have

∫
R

n
+

n

∏
i=1

xi
ai−1

(1+ xi)bi
exp

(
x

n

∏
i=1

xi

1+ xi

)
dx1dx2 . . .dxn

= nFn (a;b;x)
n

∏
i=1

B(ai,bi −ai) , (2.67)

where a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn). However, the coordinates ai and bi

fulfill conditions as in (2.63).
Considering Theorem 2.5 with the kernel K : Rn

+ → R, defined by

K(x1,x2, . . . ,xn) =
exp

(
∏n

i=1
xi

1+xi

)
∏n

i=1(1+ xi)bi
, (2.68)

and the power weight functions ϕi j : R+ → R, i, j = 1,2, . . . ,n, the above integral rep-
resentation appears when calculating the constant factors involved in the corresponding
inequality.

Theorem 2.9 Let λ , pi, p′i,qi, i = 1,2, . . . ,n, n ≥ 2, be real parameters fulfilling (2.26),
(2.27), and (2.30), and let Ai j, i, j = 1, . . . ,n, be real parameters such that ∑n

i=1 Ai j = 0 for

j = 1, . . . ,n. If β ′ = ∏n
i, j=1,i�= j B

1
qi (1+qiAi j,b j −1−qiAi j) and fi : R+ → R, i = 1, . . . ,n,

are non-negative measurable functions, then the inequalities

∫
R

n
+

∏n
i=1 fi(xi)

∏n
i=1(1+ xi)λbi

expλ

(
n

∏
i=1

xi

1+ xi

)
dx1dx2 . . .dxn

≤ β ′
n

∏
i=1

[∫ ∞

0
xi

piAii(1+ xi)(1−λ )pibi−bi

×n−1Fn−1
1−(1−λ )pi

(
1+qiAi;bi;

xi

1+ xi

)
fi

pi(xi)dxi

] 1
pi

(2.69)
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and {∫ ∞

0
xn

−pn
′Ann(1+ xn)bn(λ pn

′−1)
n−1Fn−1

1−λ pn
′
(

1+qnAn;bn;
xn

1+ xn

)

×
[∫

R
n−1
+

∏n−1
i=1 fi(xi)

∏n
i=1(1+ xi)λbi

expλ

(
n

∏
i=1

xi

1+ xi

)
dx1dx2 . . .dxn−1

]p′n
dxn

} 1
p′n

≤ β ′
n−1

∏
i=1

[∫ ∞

0
xi

piAii(1+ xi)(1−λ )pibi−bi

×n−1Fn−1
1−(1−λ )pi

(
1+qiAi;bi;

xi

1+ xi

)
fi

pi(xi)dxi

] 1
pi

(2.70)

hold for all parameters Ai j, i �= j, such that qiAi j ∈ (−1,b j − 1), where
1 + qiAi = (1+qiAi1,1+qiAi2, . . . ,1+qiAi,i−1,1+qiAi,i+1, . . . ,1+qiAin) and
bi = (b1,b2, . . . ,bi−1,bi+1, . . . ,bn). Moreover, these inequalities are equivalent.

Proof. The proof is based on a simple use of Theorem 2.5. Taking into account notation
from Theorem 2.5, as well as considering the kernel defined by (2.68) and the power

weight functions φi j(x j) = x
Ai j
j , i, j = 1,2, . . . ,n, we have

Fi(xi) = (1+ xi)
− bi

qi

[∫
R

n−1
+

n

∏
j=1
j �=i

x j
(1+qiAi j)−1

(1+ x j)b j
exp

⎛⎜⎝ xi

1+ xi

n

∏
j=1
j �=i

x j

1+ x j

⎞⎟⎠
×dx1 . . .dxi−1dxi+1 . . .dxn

] 1
qi

.

Clearly, the above power functions are well-defined, that is, ∏n
i, j=1 φi j(x j) = 1, since

∑n
i=1 Ai j = 0 for j = 1, . . . ,n. Now, exploiting integral representation (2.67), we have

Fi(xi) = (1+ xi)
− bi

qi β n−1Fn−1
1
qi

(
1+qiAi;bi;

xi

1+ xi

)
,

that is, after substituting the expressions for Fi(xi), i = 1,2, . . . ,n, in (2.31) and (2.32) (see
Theorem 2.5), we obtain desired inequalities. It should be noticed here that parameters
Ai j, i �= j, fulfill conditions qiAi j ∈ (−1,b j − 1), i, j = 1,2, . . . ,n, since the arguments of
the Beta function are positive. �

Remark 2.20 Considering some particular values of parameters Ai j, i, j = 1,2, . . . ,n, we
can simplify the constant β ′ from Theorem 2.9. For example, taking the arithmetic mean of

the borders of intervals defining parameters Ai j, i �= j, we have Ai j = b j−2
2qi

, hence the con-

stant factor becomes β ′ =∏n
i=1 B

1
pi
′
(

bi
2 , bi

2

)
. In that case, the parameters Aii, i = 1,2, . . . ,n,

are defined by Aii = − b j−2
2p′i

.
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Since 0 < t
1+t < 1, t ∈ R+, we have that n−1Fn−1

(
1+qiAi;bi;

xi
1+xi

)
< n−1Fn−1

(1+qiAi;bi;1). Applying this estimate to inequalities (2.69) and (2.70), we obtain the
constant factor expressed in terms of the hypergeometric function n−1Fn−1.

Corollary 2.6 Under the assumptions of Theorem 2.9, the inequalities∫
R

n
+

∏n
i=1 fi(xi)

∏n
i=1(1+ xi)λbi

expλ

(
n

∏
i=1

xi

1+ xi

)
dx1dx2 . . .dxn

≤ β ′
H

n

∏
i=1

[∫ ∞

0
xi

piAii(1+ xi)(1−λ )pibi−bi fi
pi(xi)dxi

] 1
pi

(2.71)

and {∫ ∞

0
xn

−pn
′Ann(1+ xn)bn(λ pn

′−1)

×
[∫

R
n−1
+

∏n−1
i=1 fi(xi)

∏n
i=1(1+ xi)λbi

expλ

(
n

∏
i=1

xi

1+ xi

)
dx1dx2 . . .dxn−1

]p′n
dxn

} 1
p′n

≤ β ′
H

n−1

∏
i=1

[∫ ∞

0
xi

piAii(1+ xi)(1−λ )pibi−bi fi
pi(xi)dxi

] 1
pi

(2.72)

hold and are equivalent, where

β ′
H = β ′

n

∏
i=1

n−1Fn−1
1
qi (1+qiAi;bi;1) (2.73)

and β ′ is defined in Theorem 2.9.

It remains to investigate the other two integral representations (2.62) and (2.66). We
use the same procedure as for the kernel involving the exponential function.

The kernel involving cosine function
We consider here integral representation (2.62) for m = n−1. Applying the substitu-

tions 1− ti = 1
1+xi

, i = 1,2, . . . ,n, this representation can be expressed in a more suitable
form

∫
R

n
+

n

∏
i=1

xi
ai−1−1

(1+ xi)bi
cos

⎡⎣2

(
x

n

∏
i=1

xi

1+ xi

) 1
2
⎤⎦dx1dx2 . . .dxn

=
(
π +

1
2

)− 1
2
n−1Fn (a;b;−x)B

(
b1− 1

2
,
1
2

) n

∏
i=2

B(ai−1,bi−ai−1) , (2.74)

where a = (a1,a2, . . . ,an−1), b = (b1,b2, . . . ,bn) and a0 = 1
2 . Of course, the coordinates of

vectors a and b fulfill conditions as in (2.61).
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The previous integral formula will be needed when applying Theorem 2.5 to the kernel
K : Rn

+ → R defined by

K(x1,x2, . . . ,xn) =
cos

(
∏n

i=1
xi

1+xi

) 1
2

∏n
i=1(1+ xi)bi

, (2.75)

and the power weight functions ϕi j : R+ → R, i, j = 1,2, . . . ,n.

Theorem 2.10 Let λ , pi, p′i,qi, i = 1,2, . . . ,n, n ≥ 2, be as in (2.26), (2.27) and (2.30),
and let Ai j, i, j = 1, . . . ,n, be real parameters such that ∑n

i=1 Ai j = 0 for j = 1, . . . ,n. If

γ ′ =
(
π + 1

2

)− λ
2 β ′∏n

i=1 B
1
qi
(
bi+1− 1

2 , 1
2

)
(β ′ is defined in Theorem 2.9), and fi : R+ → R,

i = 1, . . . ,n, are non-negative measurable functions, then the inequalities

∫
R

n
+

∏n
i=1 fi(xi)

∏n
i=1(1+ xi)λbi

cosλ
(

n

∏
i=1

xi

1+ xi

) 1
2

dx1dx2 . . .dxn

≤ γ ′
n

∏
i=1

[∫ ∞

0
xi

piAii(1+ xi)(1−λ )pibi−bi

×n−2Fn−1
1−(1−λ )pi

(
1+qiAi,i+1;bi;

xi

4(1+ xi)

)
fi

pi(xi)dxi

] 1
pi

(2.76)

and {∫ ∞

0
xn

−pn
′Ann(1+ xn)bn(λ pn

′−1)
n−2Fn−1

1−λ pn
′
(

1+qnAn1;bn;
xn

4(1+ xn)

)

×
⎡⎣∫

R
n−1
+

∏n−1
i=1 fi(xi)

∏n
i=1(1+ xi)λbi

cosλ
(

n

∏
i=1

xi

1+ xi

) 1
2

dx1dx2 . . .dxn−1

⎤⎦p′n

dxn

} 1
p′n

≤ γ ′
n−1

∏
i=1

[∫ ∞

0
xi

piAii(1+ xi)(1−λ )pibi−bi

×n−2Fn−1
1−(1−λ )pi

(
1+qiAi,i+1;bi;

xi

4(1+ xi)

)
fi

pi(xi)dxi

] 1
pi

(2.77)

hold for all parameters Ai j, i, j = 1,2, . . . ,n, and bi, i = 1,2, . . . ,n, such that qiAi j ∈
(−1,b j − 1), j − i /∈ {0,1,1 − n}, qiAi,i+1 = − 1

2 , bi > 1
2 , i = 1,2, . . . ,n, and where

1 + qiAi,i+1 = (1+qiAi1, . . . ,1+qiAi,i−1,1+qiAi,i+2, . . . ,1+qiAin),
bi = (b1,b2, . . . ,bi−1,bi+1, . . . ,bn). Moreover, these inequalities are equivalent.

Proof. Considering Theorem 2.5 with the kernel defined by (2.75) and the functions
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φi j(x j) = x
Ai j
j , i, j = 1,2, . . . ,n, we have

Fi(xi) = (1+ xi)
− bi

qi

[∫
R

n−1
+

x
(1+qiAi,i+1)−1
i+1

(1+ xi+1)bi+1

n

∏
j=1

j �=i,i+1

x j
(1+qiAi j)−1

(1+ x j)b j

×cos

⎡⎢⎢⎣2

⎛⎜⎝ xi

4(1+ xi)

n

∏
j=1
j �=i

x j

1+ x j

⎞⎟⎠
1
2
⎤⎥⎥⎦dx1 . . .dxi−1dxi+1 . . .dxn

] 1
qi

.

Hence, the above integral representation (2.74) yields

Fi(xi) = (1+ xi)
− bi

qi β ′
(
π +

1
2

)− 1
2qi B

1
qi

(
bi+1− 1

2
,
1
2

)
×n−2Fn−1

1
qi

(
1+qiAi,i+1;bi;

xi

4(1+ xi)

)
,

where β ′ is defined in Theorem 2.9, and the result follows. Note also that we assume
congruence modulo n for the parameters Ai j, i.e. An,n+1 = An1. �

Remark 2.21 Taking into account the obvious estimate

n−2Fn−1

(
1+qiAi,i+1;bi;

xi

4(1+ xi)

)
< n−2Fn−1

(
1+qiAi,i+1;bi;1

)
,

which holds for all xi ∈ R+, we also obtain the inequalities as those from Corollary 2.6,
with the kernel (2.75) and the corresponding constant factor

γ ′
n

∏
i=1

n−2Fn−1
1
qi
(
1+qiAi,i+1;bi;1

)
,

where γ ′ is defined in Theorem 2.10.

Fractional kernel
It remains to consider the remaining case, that is, the integral representation (2.66). It

can be rewritten in a more convenient form, that is,

∫
R

n
+

n

∏
i=1

xi
ai+1−1

(1+ xi)bi

(
1− x

n

∏
i=1

xi

1+ xi

)−a1

dx1dx2 . . .dxn

= n+1Fn (a;b;x)
n

∏
i=1

B(ai+1,bi−ai+1) , (2.78)

where a = (a1,a2, . . . ,an+1) and b = (b1,b2, . . . ,bn) are such that bi > ai+1 > 0, i =
1,2, . . . ,n.
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The previous integral representation is essential when considering Theorem 2.5 with
the fractional kernel K : Rn

+ → R, defined by

K(x1,x2, . . . ,xn) =

(
1−∏n

i=1
xi

1+xi

)−s

∏n
i=1(1+ xi)bi

, s > 0, (2.79)

and the power weight functions.

Theorem 2.11 Let λ , pi, p′i,qi, i = 1,2, . . . ,n, n ≥ 2, be as in (2.26), (2.27) and (2.30),
and let Ai j, i, j = 1, . . . ,n, be real parameters such that ∑n

i=1 Ai j = 0 for j = 1, . . . ,n. If the
constant β ′ is as in Theorem 2.9 and fi : R+ →R, i = 1, . . . ,n, are non-negativemeasurable
functions, then the inequalities

∫
R

n
+

∏n
i=1 fi(xi)

∏n
i=1(1+ xi)λbi

(
1−

n

∏
i=1

xi

1+ xi

)−λ s

dx1dx2 . . .dxn

≤ β ′
n

∏
i=1

[∫ ∞

0
xi

piAii(1+ xi)(1−λ )pibi−bi

×nFn−1
1−(1−λ )pi

(
s,1+qiAi;bi;

xi

1+ xi

)
dxi

] 1
pi

(2.80)

and {∫ ∞

0
xn

−pn
′Ann(1+ xn)bn(λ pn

′−1)
nFn−1

1−λ pn
′
(

s,1+qnAn;bn;
xn

1+ xn

)

×
⎡⎣∫

R
n−1
+

∏n−1
i=1 fi(xi)

∏n
i=1(1+ xi)λbi

(
1−

n

∏
i=1

xi

1+ xi

)−λ s

dx1dx2 . . .dxn−1

⎤⎦p′n

dxn

} 1
p′n

≤ β ′
n−1

∏
i=1

[∫ ∞

0
xi

piAii(1+ xi)(1−λ )pibi−bi

×nFn−1
1−(1−λ )pi

(
s,1+qiAi;bi;

xi

1+ xi

)
dxi

] 1
pi

(2.81)

hold for all parameters Ai j, i �= j, such that qiAi j ∈ (−1,b j − 1), i, j = 1,2, . . . ,n, where
1+qiAi = (1+qiAi1,1+qiAi2, . . . ,1+qiAi,i−1,1+qiAi,i+1, . . . ,1+qiAin) and
bi = (b1,b2, . . . ,bi−1,bi+1, . . . ,bn). Moreover, these inequalities are equivalent.

Proof. Applying Theorem 2.5 with the fractional kernel (2.79) and the power weight

functions φi j(x j) = x
Ai j
j , i, j = 1,2, . . . ,n, and taking into account the integral representation

(2.78), we have that

Fi(xi) = (1+ xi)
− bi

qi β nFn−1
1
qi

(
s,1+qiAi;bi;

xi

1+ xi

)
,
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so the result follows. �
Remark 2.22 It is obvious that the estimate

nFn−1

(
s,1+qiAi;bi;

xi

1+ xi

)
< nFn−1 (s,1+qiAi;bi;1)

holds for all xi ∈R+. Therefore, we also obtain the inequalities as those from Corollary 2.6,
with the fractional kernel (2.79) and the corresponding constant factor

β ′∏n
i=1 nFn−1

1
qi (s,1+qiAi;bi;1), where β ′ is defined in Theorem 2.9.

Remark 2.23 Regarding Remark 2.11, it follows that the equality in any of inequalities
from this subsection is possible if and only if at least one of the functions fi : R+ → R,
i = 1, . . . ,n, is the zero function. Namely, the equality is possible only for the kernels with
separated variables, which is not the case here.

Remark 2.24 Hilbert-type inequalities from this section related to Gaussian hypergeo-
metric function are derived in [62], while the multidimensional extension via the Poisson-
type integral representations is developed in [60].

2.6 Hilbert-type inequalities and related operators

So far, we have considered Hilbert-type inequalities with homogeneous kernels of negative
degree of homogeneity. The reason for this was in the fact that we required the kernel to be
decreasing in both arguments (see Remark 1.6, Chapter 1). Such requirement was essential
in order to obtain some estimates when considering inequalities with integrals taken over
bounded intervals in R+. However, when considering the integrals taken over R+, such
requirement was redundant.

On the other hand, assuming the convergence, Hilbert-type inequalities with integrals
taken over the set R+ can also be considered for homogeneous kernels of zero-degree.

In this section we shall be more concerned with an equivalent form of the Hilbert-type
inequality, that is, with the Hardy-Hilbert-type inequality. Namely, the Hardy-Hilbert form
of inequality provides the possibility of defining certain integral operators between the
weighted Lebesgue spaces and determining their norms in some particular cases.

The previous program will be carried out for the Hardy-Hilbert-type inequalities in-
cluding a homogeneous kernel with zero-degree of homogeneity. First, we are going to
derive appropriate inequalities, and then, to consider the related operators between the
weighted Lebesgue spaces, which naturally arise from these inequalities.

2.6.1 Hilbert-type inequalities involving a homogeneous
function of zero-degree

In this subsection we give a unified treatment of Hilbert-type inequalities with homoge-
neous kernels of zero-degree.



2.6 HILBERT-TYPE INEQUALITIES AND RELATED OPERATORS 85

The results that follow are considered in the setting with non-conjugate exponents, in a
slightly generalized form. More precisely, the kernel includes two differentiable functions
with some additional properties. We start with some definitions and notation that will be
valid throughout this section.

Let (a,b) be an interval on the real line and let u,v : (a,b) → R be non-negative mea-
surable functions satisfying the following conditions:

(i) u and v are differentiable on (a,b);

(ii) u and v are strictly increasing on (a,b);

(iii) lim
x→a+

u(t) = v(t) = 0 and lim
x→b−

u(t) = v(t) = ∞.

In this section, by k0 : R+ ×R+ → R we denote a non-negative measurable homoge-
neous function of zero-degree. Also, we deal with the integral

c0(α) =
∫ ∞

0
k0(1,t)t−αdt. (2.82)

We consider only the parameters α such that (2.82) converges.
The above functions u, v and k0 will be essential in defining the corresponding kernel.

More precisely, K0 : (a,b)×(a,b)→R denotes a non-negativemeasurable function defined
by

K0(x,y) = k0 (u(x),v(y)) , (2.83)

where u and v are assumed to fulfill conditions (i)-(iii).
First we provide Hilbert-type and Hardy-Hilbert-type inequalities involving the above

kernel K0.

Theorem 2.12 Let p, q, and λ be as in (2.1) and (2.2), and let u,v : (a,b) → R be non-
negative measurable functions fulfilling conditions (i)-(iii). If K0 : (a,b)× (a,b) → R is a
non-negative measurable function defined by (2.83), and A1, A2 are real parameters such
that c0(2− p′A1) < ∞, c0(q′A2) < ∞, then the inequalities∫ b

a

∫ b

a
Kλ

0 (x,y) f (x)g(y)dxdy ≤ c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)

×
[∫ b

a

u
(A1−A2)p+ p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

v
(A2−A1)q+ q

p′ (y)
(v′)q−1(y)

gq(y)dy

] 1
q

(2.84)

and ⎧⎨⎩
∫ b

a

v′(y)

v
(A2−A1)q′+ q′

p′ (y)

[∫ b

a
Kλ

0 (x,y) f (x)dx

]q′

dy

⎫⎬⎭
1
q′

≤ c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)

[∫ b

a

u
(A1−A2)p+ p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p

(2.85)
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hold for all non-negative measurable functions f ,g : (a,b)→R and are equivalent. Equal-
ities in (2.84) and (2.85) hold if and only if f = 0 or g = 0 a.e. on (a,b).

Proof. Similarly as for homogeneous kernels of negative degree, this theorem is also a
consequence of Theorem 2.1. Namely, using notation from Theorem 2.1, we put the kernel
K0, defined by (2.83), and the weight functions

ϕ(x) =
uA1(x)

(u′)
1
p′ (x)

, ψ(y) =
vA2(y)

(v′)
1
q′ (y)

, x ∈ (a,b),

in inequalities (2.9) and (2.10). Then, defining v(y) = tu(x) and using the change of
variable, we get

F(x) =
[∫ b

a
k0(u(x),v(y))v−q′A2(y)v′(y)dy

] 1
q′

= u
1
q′ −A2(x)

[∫ ∞

0
k0(1,t)t−q′A2dt

] 1
q′

= c
1
q′
0 (q′A2)u

1
q′ −A2(x), x ∈ (a,b).

Using the same argument, we also have

G(y) = c
1
p′
0 (2− p′A1)v

1
p′ −A1(x), y ∈ (a,b),

which proves relations (2.84) and (2.85).
The case of equality follows immediately from Remark 2.3. �

We continue with some basic examples of functions u and v, fulfilling conditions (i)-
(iii). For example, functions u,v : R+ → R, defined by u(x) = Axμ , v(y) = Byν , where
A,B,μ ,ν > 0, fulfill the above mentioned conditions, hence the following result is a direct
consequence of Theorem 2.12.

Corollary 2.7 Suppose p, q, and λ are as in (2.1) and (2.2), and k0 : R+ ×R+ → R

is a non-negative measurable homogeneous function of zero-degree. Let A1, A2 be real
parameters such that c0(2− p′A1) < ∞ and c0(q′A2) < ∞, and let A,B,μ ,ν > 0. Then the
inequalities∫ ∞

0

∫ ∞

0
kλ0 (Axμ ,Byν) f (x)g(y)dxdy

≤ c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)C0

[∫ ∞

0
x

(
A1−A2+ 1

q′
)

pμ+(p−1)(1−μ)
f p(x)dx

] 1
p

×
[∫ ∞

0
y

(
A2−A1+ 1

p′
)
qν+(q−1)(1−ν)

gq(y)dy

] 1
q

(2.86)
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and {∫ ∞

0
y

(
A1−A2− 1

p′
)
q′ν+ν−1

[∫ ∞

0
kλ0 (Axμ ,Byν) f (x)dx

]q′

dy

} 1
q′

≤ c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)C0

[∫ ∞

0
x

(
A1−A2+ 1

q′
)

pμ+(p−1)(1−μ)
f p(x)dx

] 1
p

(2.87)

hold for all non-negative measurable functions f ,g : R+ → R, where

C0 = μ− 1
p′ ν− 1

q′ A
A1−A2+ 1

q′ −
1
p′ B

A2−A1+ 1
p′ −

1
q′ .

Moreover, these inequalities are equivalent. In addition, equalities in (2.86) and (2.87)
hold if and only if f = 0 or g = 0 a.e. on R+.

In the sequel we consider another interesting kernel dependent on homogeneous func-
tion k0 : R+ ×R+ → R of zero-degree. Namely, let K̃0 : (a,b)× (a,b) → R be a non-
negative measurable function defined by

K̃0(x,y) = k0 (1,u(x)v(y)) , (2.88)

where the functions u and v fulfill conditions (i)-(iii). The following result is an analogue
of Theorem 2.12.

Theorem 2.13 Let p, q, and λ be as in (2.1) and (2.2), and let u,v : (a,b) → R be non-
negative measurable functions fulfilling conditions (i)-(iii). Further, suppose K̃0 : (a,b)×
(a,b) → R is a non-negative measurable function defined by (2.88), and A1, A2 are real
parameters such that c0(p′A1) < ∞, c0(q′A2) < ∞. Then the inequalities∫ b

a

∫ b

a
K̃λ

0 (x,y) f (x)g(y)dxdy ≤ c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)

×
[∫ b

a

u
(A1+A2)p− p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

v
(A1+A2)q− q

p′ (y)
(v′)q−1(y)

gq(y)dy

] 1
q

(2.89)

and ⎧⎨⎩
∫ b

a

v′(y)

v
(A1+A2)q′− q′

p′ (y)

[∫ b

a
K̃λ

0 (x,y) f (x)dx

]q′

dy

⎫⎬⎭
1
q′

≤ c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)

[∫ b

a

u
(A1+A2)p− p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p

(2.90)

hold for all non-negative measurable functions f ,g : (a,b)→R and are equivalent. Equal-
ities in (2.89) and (2.90) hold if and only if f = 0 or g = 0 a.e. on (a,b).
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Proof. It follows directly from Theorem 2.1. �

As an application of Theorem 2.13, we consider exponential functions u,v : R → R,
that is, u(x) = expx and v(y) = expy.

Corollary 2.8 Suppose p, q, and λ are as in (2.1) and (2.2), and k0 : R+ ×R+ → R is
a non-negative measurable homogeneous function of zero-degree. If A1 and A2 are real
parameters such that c0(p′A1) < ∞ and c0(q′A2) < ∞, then the inequalities∫ ∞

−∞

∫ ∞

−∞
kλ0 (1,exp(x+ y)) f (x)g(y)dxdy≤ c

1
p′
0 (p′A1)c

1
q′
0 (q′A2)

×
[∫ ∞

−∞
exp

[(
(A1 +A2)p+1−2p+

p
q

)
x

]
f p(x)dx

] 1
p

×
[∫ ∞

−∞
exp

[(
(A1 +A2)q+1−2q+

q
p

)
y

]
gq(y)dy

] 1
q

(2.91)

and {∫ ∞

−∞
exp

[(
1− (A1 +A2)q′ +

q′

p′

)
y

][∫ ∞

−∞
kλ0 (1,exp(x+ y)) f (x)dx

]q′

dy

} 1
q′

≤ c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)

×
[∫ ∞

−∞
exp

[(
(A1 +A2)p+1−2p+

p
q

)
x

]
f p(x)dx

] 1
p

(2.92)

hold for all non-negative measurable functions f ,g : R →R and are equivalent. Equalities
in (2.91) and (2.92) hold if and only if f = 0 or g = 0 a.e on R.

2.6.2 On some related Hilbert-type operators

The Hardy-Hilbert-type inequalities (2.85) and (2.90) allow us precise definition of Hilbert-
type operators and some conclusions about their norms as well. We consider here the
weighted Lebesgue space Lr

w(a,b) consisting of all measurable functions f : (a,b) → R

with a finite norm ‖ f‖Lr
w(a,b) =

[∫ b
a w(x)| f r(x)| dx

] 1
r . Here, r > 1 and w : (a,b) → R is a

non-negative measurable weight function.
Hence, in the setting with p, q and λ as in (2.1) and (2.2), the kernel K0 defined by

(2.83), and the weight functions

Φ(x) =
u

(A1−A2)p+ p
q′ (x)

(u′)p−1(x)
and Ψ(y) =

v
(A2−A1)q+ q

p′ (y)
(v′)q−1(y)

, x,y ∈ (a,b),

we can define the operator T0 : Lp
Φ(a,b) → Lq′

Ψ1−q′ (a,b) as

(T0 f ) (y) =
∫ b

a
Kλ

0 (x,y) f (x)dx, y ∈ (a,b). (2.93)
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Clearly, the operator T0 is well-defined since inequality (2.85) implies that T0 f ∈ Lq′
Ψ1−q′

(a,b). Moreover, considering the norm of operator T0, that is,

‖T0‖ = sup
f∈Lp

Φ(a,b), f �=0

‖T0 f‖
Lq′
Ψ1−q′ (a,b)

‖ f‖Lp
Φ(a,b)

, (2.94)

it follows that the operator T0 is bounded. In other words, inequality (2.85) yields the
upper bound for the norm of this operator, i.e.

‖T0‖ ≤ c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2).

The same type of discussion can also be applied when considering the Hilbert-type
operator related to kernel K̃0, defined by (2.88). More precisely, if we denote

Φ̃(x) =
u

(A1+A2)p− p
q′ (x)

(u′)p−1(x)
and Ψ̃(y) =

v
(A1+A2)q− q

p′ (y)
(v′)q−1(y)

, x,y ∈ (a,b),

we can define the operator T̃0 : Lp

Φ̃
(a,b) → Lq′

Ψ̃1−q′ (a,b) as

(
T̃0 f

)
(y) =

∫ b

a
K̃λ

0 (x,y) f (x)dx, y ∈ (a,b). (2.95)

The operator T̃0 is well-defined since inequality (2.90) implies T̃0 f ∈ Lq′

Ψ̃1−q′ (a,b). In

addition, since the norm of operator T̃0 is defined by

‖T̃0‖ = sup
f∈Lp

Φ̃
(a,b), f �=0

‖T̃0 f‖
Lq′
Ψ̃1−q′ (a,b)

‖ f‖Lp
Φ̃

(a,b)
, (2.96)

inequality (2.90) yields the upper bound for the norm, that is,

‖T̃0‖ ≤ c
1
p′
0 (p′A1)c

1
q′
0 (q′A2).

We consider now some particular cases in which we are able to find the norm of op-
erators T̃ and T̃0. Obviously, this problem is equivalent to the problem of finding the best
possible constants in inequalities (2.85) and (2.90).

The problem of finding the best possible constants in Hilbert-type inequalities with
non-conjugate exponents is still open. We solved the mentioned problem in the case of
conjugate exponents, as in Section 1.4 (Chapter 1).

Hence, in order to obtain the best possible constants in Theorems 2.12 and 2.13, in the
case of conjugate exponents, we exploit Theorem 1.13. The parameters A1 and A2 should
fulfill condition (1.29) for s = 0, that is, pA2 + qA1 = 2, and the homogeneous kernel of
zero-degree should be such that k0(1,t) is bounded on (0,1). Under these assumptions, the
constant factor on the right-hand sides of inequalities (2.84) and (2.85) reduces to c0(pA2).
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Theorem 2.14 Let 1
p + 1

q = 1, p > 1, let A1 and A2 be real parameters such that qA1 +
pA2 = 2, and let c0(pA2)<∞. If the function k0(1,t) is bounded on (0,1), then the constant
c0(pA2) is the best possible in both inequalities (2.84) and (2.85).

According to the above discussion, the previous result also provides the norm of the
operator T0, defined by (2.93), in the case of conjugate exponents.

Corollary 2.9 Suppose that the assumptions of Theorem 2.14 are fulfilled. Then the norm
of operatorT0:L

p
Φ(a,b)→Lp

Ψ1−p(a,b), defined by the formula (T0 f ) (y)=
∫ b
a K0(x,y) f (x)dx,

y ∈ (a,b), is ‖T0‖ = c0(pA2).

Utilizing a suitable change of variables, Theorem 1.13 can also be adjusted in estab-
lishing the best possible constant in Theorem 2.13. It turns out that the parameters A1 and
A2 satisfy pA2 = qA1, providing the same constant factor c0(pA2) as in the previous case.

Theorem 2.15 Let 1
p + 1

q = 1, p > 1, let A1 and A2 be real parameters such that qA1 =
pA2, and let c0(pA2) < ∞. If the function k0(1,t) is bounded on (0,1), then the constant
factor c0(pA2) is the best possible in both inequalities (2.89) and (2.90).

We conclude this subsection with the operator analogue of Theorem 2.15.

Corollary 2.10 Suppose that the assumptions as in Theorem 2.15 are fulfilled. Then, the
norm of the operator T̃0 : Lp

Φ̃
(a,b)→ Lp

Ψ̃1−p(a,b), defined by
(
T̃0 f

)
(y)=

∫ b
a K̃0(x,y) f (x)dx,

y ∈ (a,b), is ‖T̃0‖ = c0(pA2).

2.6.3 On some related Hardy-type operators

In the previous subsection we have considered two examples of Hilbert-type operators.
We can also generate some other operators related to inequalities (2.85) and (2.90). More
precisely, if k0 : R+×R+ →R is a homogeneous function of zero-degree, then the function
k0 : R+×R+ → R, defined by

k0(x,y) = k0(x,y)χx≥y(x,y) =
{

0, x < y,
k0(x,y), x ≥ y,

(2.97)

is also homogeneous of zero-degree. Now, we use the same procedure as in the previous
subsection, but with this function k0. The kernel k0 looks like the classical Hardy ker-
nel (see Chapter 8), so the corresponding operators will be referred to as the Hardy-type
operators. Moreover, since

c0(α) =
∫ ∞

0
k0(1,t)t−αdt =

∫ 1

0
k0(1,t)t−αdt,

we define

c0(α) =
∫ 1

0
k0(1,t)t−αdt. (2.98)
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Bearing in mind the notation from the previous subsection, we define the operator

T 0 : Lp
Φ(a,b) → Lq′

Ψ1−q′ (a,b) by

(
T 0 f

)
(y) =

∫ b

u(−1)(v(y))
Kλ

0 (x,y) f (x)dx, y ∈ (a,b), (2.99)

and T̃ 0 : Lp

Φ̃
(a,b) → Lq′

Ψ̃1−q′ (a,b) by

(
T̃ 0 f

)
(y) =

∫ u
(−1)

(
1

v(y)

)

a
K̃λ

0 (x,y) f (x)dx, y ∈ (a,b), (2.100)

where u(−1) denotes the inverse of the function u.
The following two corollaries show that these definitions are meaningful. In other

words, we provide the corresponding analogues of Theorems 2.12 and 2.13 for the above
Hardy-type kernel of zero-degree.

Corollary 2.11 Let p, q, and λ be as in (2.1) and (2.2), and let u,v : (a,b) → R be non-
negative measurable functions fulfilling conditions (i)-(iii). Further, suppose K0 : (a,b)×
(a,b) → R is a non-negative measurable function defined by (2.83). If A1 and A2 are real
parameters such that c0(2− p′A1) < ∞ and c0(q′A2) < ∞, then the inequalities

∫ b

a

∫ b

u(−1)(v(y))
Kλ

0 (x,y) f (x)g(y)dxdy ≤ c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)

×
[∫ b

a

u
(A1−A2)p+ p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

v
(A2−A1)q+ q

p′ (y)
(v′)q−1(y)

gq(y)dy

] 1
q

(2.101)

and ⎧⎨⎩
∫ b

a

v′(y)

v
(A2−A1)q′+ q′

p′ (y)

[∫ b

u(−1)(v(y))
Kλ

0 (x,y) f (x)dx

]q′

dy

⎫⎬⎭
1
q′

≤ c
1
p′
0 (2− p′A1)c

1
q′
0 (q′A2)

[∫ b

a

u
(A1−A2)p+ p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p

(2.102)

hold for all non-negative measurable functions f ,g : (a,b)→R and are equivalent. Equal-
ities in (2.101) and (2.102) hold if and only if f = 0 or g = 0 a.e. on (a,b).

Corollary 2.12 Let p, q, and λ be as in (2.1) and (2.2), and let u,v : (a,b) → R be non-
negative measurable functions fulfilling conditions (i)-(iii). Further, suppose K̃0 : (a,b)×
(a,b) → R is a non-negative measurable function defined by (2.88) and A1, A2 are real
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parameters such that c0(p′A1) < ∞ and c0(q′A2) < ∞. Then the inequalities

∫ b

a

∫ u(−1)
(

1
v(y)

)
a

K̃λ
0 (x,y) f (x)g(y)dxdy ≤ c

1
p′
0 (p′A1)c

1
q′
0 (q′A2)

×
[∫ b

a

u
(A1+A2)p− p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p
[∫ b

a

v
(A1+A2)q− q

p′ (y)
(v′)q−1(y)

gq(y)dy

] 1
q

(2.103)

and ⎧⎨⎩
∫ b

a

v′(y)

v
(A1+A2)q′− q′

p′ (y)

[∫ u(−1)
(

1
v(y)

)
a

K̃λ
0 (x,y) f (x)dx

]q′

dy

⎫⎬⎭
1
q′

≤ c
1
p′
0 (p′A1)c

1
q′
0 (q′A2)

[∫ b

a

u
(A1+A2)p− p

q′ (x)
(u′)p−1(x)

f p(x)dx

] 1
p

(2.104)

hold for all non-negative measurable functions f ,g : (a,b)→R and are equivalent. Equal-
ities in (2.103) and (2.104) hold if and only if f = 0 or g = 0 a.e. on (a,b).

Remark 2.25 Regarding Corollaries 2.11 and 2.12, one can easily obtain analogues of
Corollaries 2.7 and 2.8. It suffices to replace the constant factor c0(α) with c0(α) and
change the integration intervals according to definitions (2.99) and (2.100). For example,
if u(x) = expx and v(y) = expy, then u(−1)(v(y)) = y and u(−1)( 1

v(y)

)
= −y.

Remark 2.26 The discussion about the best constants, carried out in the previous sub-
section, holds for the Hardy-type operators (2.99) and (2.100), as well. More precisely, if
p,q > 1 are conjugate exponents and A1,A2 are such that pA2 +qA1 = 2, then c0(pA2) is
the best possible constant in inequalities (2.101) and (2.102). Moreover, the same constant
is also the best possible in (2.103) and (2.104), provided that qA1 = pA2 in the conjugate

setting. Of course, under the above assumptions, the norms of operators T 0 and T̃ 0 are
both equal to c0(pA2).

2.6.4 Applications

We conclude this section with some consequences of Theorem 2.12, Theorem 2.13, Corol-
lary 2.11 and Corollary 2.12, obtained by a suitable choice of parameters A1 and A2.
Namely, if A1 = 1

p′ and A2 = 1
q′ , then the inequalities (2.84) and (2.85) respectively read

as ∫ b

a

∫ b

a
kλ0 (u(x),v(y)) f (x)g(y)dxdy

≤ cλ0 (1)
[∫ b

a

( u
u′

)p−1
(x) f p(x)dx

] 1
p
[∫ b

a

( v
v′
)p−1

(y)gq(y)dy

] 1
q

(2.105)
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and {∫ b

a

(
v′

v

)
(y)

[∫ b

a
kλ0 (u(x),v(y)) f (x)dx

]q′

dy

} 1
q′

≤ cλ0 (1)
[∫ b

a

( u
u′

)p−1
(x) f p(x)dx

] 1
p

. (2.106)

Remark 2.27 For the same choice of parameters A1 and A2, i.e. A1 = 1
p′ and A2 =

1
q′ , Theorem 2.13 yields the same inequalities as (2.105) and (2.106), with the kernel
k0(1,u(x)v(y)) instead of k0(u(x),v(y)). In other words, inequalities (2.105) and (2.106)
also hold after replacing the kernel k0(u(x),v(y)) with k0(1,u(x)v(y)).

The same setting also yields the corresponding result for the Hardy-type kernel (2.97).
Namely, for A1 = 1

p′ and A2 = 1
q′ , Corollary 2.11 yields inequalities

∫ b

a

∫ b

u(−1)(v(y))
kλ0 (u(x),v(y)) f (x)g(y)dxdy

≤ cλ0 (1)
[∫ b

a

( u
u′

)p−1
(x) f p(x)dx

] 1
p
[∫ b

a

( v
v′
)p−1

(y)gq(y)dy

] 1
q

(2.107)

and {∫ b

a

(
v′

v

)
(y)

[∫ b

u(−1)(v(y))
kλ0 (u(x),v(y)) f (x)dx

]q′

dy

} 1
q′

≤ cλ0 (1)
[∫ b

a

( u
u′

)p−1
(x) f p(x)dx

] 1
p

. (2.108)

Remark 2.28 According to Corollary 2.12, inequalities (2.107) and (2.108) also hold
after replacing the kernel k0(u(x),v(y)) with k0(1,u(x)v(y)) and replacing integration in-
terval (u(−1)(v(y)),b) with

(
a,u(−1)

(
1

v(y)

))
.

Remark 2.29 Considering the conjugate case, parameters that generate inequalities
(2.105), (2.106), (2.107), and (2.108) become A1 = 1

q and A2 = 1
p . These parameters

fulfill condition qA1 + pA2 = 2, providing the best possible constant factors c0(1) and
c0(1).

In order to complete the previous discussion, we provide some examples of homoge-
neous kernels with zero-degree of homogeneity, which generate the corresponding constant
factors expressed in terms of the Beta and the Gamma function.

Example 2.1 Let α > 0, β > −1 and

k0(x,y) =
(

min{x,y}
max{x,y}

)α ∣∣∣log
(y

x

)∣∣∣β .
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Then,∫ ∞

0

(
min{1,t}
max{1,t}

)α
|logt|β t−1dt =

∫ 1

0
tα−1(− log t)βdt +

∫ ∞

1
t−α−1(log t)βdt.

Since, ∫ 1

0
tα−1(− logt)βdt =

∫ ∞

1
t−α−1(log t)βdt =

∫ ∞

0
e−αννβdν =

Γ(β +1)
αβ+1

,

the above constant factors become

c0(1) =
2Γ(β +1)

αβ+1
and c0(1) =

Γ(β +1)
αβ+1

.

Example 2.2 For the homogeneous function defined by

k0(x,y) =
min{x,y}
max{x,y} arctan

(y
x

)
,

we have ∫ ∞

0

min{1,t}
max{1,t}t−1 arctantdt =

∫ 1

0
arctantdt +

∫ ∞

1
t−2 arctantdt.

Clearly, the above two integrals can be resolved by using integration by parts, yielding the
constant factors

c0(1) =
π
2

and c0(1) =
π
4
− log2

2
.

Example 2.3 Let 0 < α < 1 and

k0(x,y) =
(

min{x,y}
|x− y|

)α
.

Then, ∫ ∞

0

(
min{1,t}
|1− t|

)α
t−1dt =

∫ 1

0
tα−1(1− t)−αdt +

∫ ∞

1
t−1(t−1)−αdt.

Since ∫ 1

0
tα−1(1− t)−αdt =

∫ ∞

1
t−1(t−1)−αdt = B(1−α,α),

we obtain the constant factors expressed in terms of the Beta function:

c0(1) = 2B(1−α,α) and c0(1) = B(1−α,α).

Remark 2.30 Results in this section are taken from [166]. However, similar Hilbert-type
and Hardy-type operators can also be derived for homogeneous kernels of arbitrary degree
of homogeneity. For more details about similar results, the reader is referred to [37], [158],
[160], [163], [165], [167].



Chapter3
Hilbert-type inequalities with
vector variables

This chapter deals with Hilbert-type inequalities involving real valued functions with vec-
tor arguments. We start this overviewwith the so-called doubly weighted Hardy-Littlewood-
Sobolev inequality of Stein and Weiss, [118],∫

R
n

∫
R

n

f (x)g(y)
|x|α |x− y|s|y|β dxdy ≤Cα ,β ,p,q,n ‖ f ‖Lp(R

n
)‖ g ‖Lq(R

n
), (3.1)

which holds for n ∈ N, p,q > 1 such that 1
p + 1

q > 1, λ as in (2.2), 0 ≤ α < n
p′ , 0≤ β < n

q′ ,
s = nλ −α −β , and all non-negative functions f ∈ Lp(Rn) and g ∈ Lq(Rn). Here, and
throughout this chapter, |x| denotes the Euclidean norm of the vector x ∈ Rn.

In [83], Lieb proved the existence of optimizers for (3.1), that is, functions f and g
which, when inserted into (3.1), yield equality with the smallest possible constantCα ,β ,p,q,n.
Moreover, for p = q and α = β = 0, the constant and maximizing functions were explicitly
computed in [83]. In particular, Lieb proved that

C0,0,p,p,n = π
n
p′
Γ
(

n
2 − n

p′
)

Γ
(

n
p

) [
Γ
(

n
2

)
Γ(n)

] 2
p′ −1

,

where Γ is the Gamma function. Unfortunately, neither Cα ,β ,p,q,n nor the optimizers are
known for any other choice of the parameters appearing in (3.1). It was only shown (see e.
g. [84]) that for the classical Hardy-Littlewood-Sobolev inequality, that is, for (3.1) with

95
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α = β = 0 and s = nλ , the estimate

C0,0,p,q,n ≤ (p′)λ +(q′)λ

(1−λ )pq

(
λ
n
|Sn−1|

)λ
(3.2)

holds, where

|Sn−1| = 2π
n
2

Γ
(

n
2

) (3.3)

is the area of the unit sphere Sn−1 in Rn. For more details about the Hardy-Littlewood-
Sobolev inequality, the reader is referred to [83] and [84].

One of the most important tasks in this chapter is to derive the explicit upper bounds for
the general case of the doubly weighted Hardy-Littlewood-Sobolev inequality (3.1). This
can be done by virtue of Theorem 2.8 from the previous chapter and the Selberg integral
formula (see e. g. [119]). Moreover, the Selberg integral formula and the appropriate results
from the previous chapter will also be utilized in deriving numerous particular Hilbert-type
inequalities with vector variables.

On the other hand, some vector extensions of the usual Beta function will also be
utilized in obtaining some particular Hilbert-type inequalities. Finally, at the end of this
chapter we shall present some multidimensional Hilbert-type inequalities including a gen-
eral homogeneous kernel and power weight functions whose arguments are norms of the
corresponding vectors.

3.1 Explicit upper bounds for the doubly weighted
Hardy-Littlewood-Sobolev inequality

The main goal of this section is to derive a form of the doubly weighted Hardy-Littlewood-
Sobolev inequality (3.1) with an explicit constant factor on its right-hand side. In fact, we
derive explicit upper bounds for the sharp constant Cα ,β ,p,q,n in (3.1).

Main results in this section will be based on Theorem 2.8 (see Section 2.4), and the
well-known Selberg integral formula

∫
R

kn |xk|αk−n

(
k−1

∏
i=1

|xi+1− xi|αi−n

)
|x1 − y|α0−n dx1 . . .dxk

=
Γn(α0) · · ·Γn(αk)
Γn(α0 + . . .+αk)

|y|α0+...+αk−n, (3.4)

for arbitrary k,n ∈ N, y ∈ Rn, and 0 < α0, . . . ,αk < n such that 0 < ∑k
i=0αi < n, where

Γn(α) =
π

n
2 2αΓ( α

2 )
Γ( n

2− α
2 ) is the n-dimensionalGamma function. For k = 1, the product appearing

in (3.4) is defined to be equal to 1. In [119], Stein derived the above Selberg integral
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formula with two parameters using the Riesz potential (see also [25]). It should be noticed
here that

Γn(n−α) =
(2π)n

Γn(α)
, 0 < α < n. (3.5)

The Selberg integral formula is very useful in numerous parts of mathematics, especially
in representation theory and in mathematical physics.

In order to establish our main results, we first reformulate (3.4) in a form which will
be more suitable for our computations.

Lemma 3.1 Suppose k,n ∈ N, 0 < β1, . . . ,βk,s < n are such that ∑k
i=1βi + s > kn, and

y ∈ Rn. Then∫
R

kn

|x1|−β1 · · · |xk|−βk

|x1 + . . .+ xk + y|s dx1 . . .dxk

=
Γn(n−β1) · · ·Γn(n−βk)Γn(n− s)
Γn((k+1)n−β1− . . .−βk − s)

|y|kn−β1−...−βk−s. (3.6)

Proof. Set αi = n−βi+1, i = 0, . . . ,k−1, and αk = n− s. Substituting first t1 = x1 + y and
then t2 = t1 + x2, the left-hand side of (3.6) becomes∫

R
kn

|x1|−β1 · · · |xk|−βk

|x1 + . . .+ xk + y|s dx1 . . .dxk

=
∫
R

kn

|t1− y|α0−n|x2|α1−n · · · |xk|αk−1−n

|t1 + x2 + . . .+ xk|n−αk
dt1dx2 . . .dxk

=
∫
R

kn

|t1− y|α0−n|t2− t1|α1−n|x3|α2−n · · · |xk|αk−1−n

|t2 + x3 + . . .+ xk|n−αk
dt1dt2dx3 . . .dxk. (3.7)

After the sequence of similar substitutions ti = ti−1 + xi, i = 2, . . . ,k, the last line of (3.7)
is finally equal to ∫

R
kn
|tk|αk−n

(
k−1

∏
i=1

|ti+1− ti|αi−n

)
|t1 − y|α0−n dt1 . . .dtk

=
Γn(α0) · · ·Γn(αk)
Γn(α0 + . . .+αk)

|y|α0+...+αk−n

=
Γn(n−β1) · · ·Γn(n−βk)Γn(n− s)
Γn((k+1)n−β1− . . .−βk − s)

|y|kn−β1−...−βk−s,

where the last two equalities are obtained by the Selberg integral formula (3.4) and by
replacing αi by the corresponding expressions including βi. �

Since the case k = 1 of Lemma 3.1 will be of our special interest, we state it as a separate
result.

Lemma 3.2 Let n ∈ N and y ∈ Rn. If 0 < β ,s < n are such that β + s > n, then∫
R

n

|x|−β

|x+ y|s dx =
Γn(n−β )Γn(n− s)

Γn(2n−β − s)
|y|n−β−s.
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We can now obtain the doubly weighted Hardy-Littlewood-Sobolev inequality (3.1)
mentioned above. More precisely, we utilize Theorem 2.8, that is, inequality (2.51) with
Ω = Rn and the kernel K(x,y) = |x|−α |x− y|−s|y|−β .

The first step is to consider the case when the function g ∈ Lq(Rn) on the left-hand
side of (2.51) is symmetric-decreasing, that is, g(x) ≥ g(y) whenever |x| ≤ |y|. For such
function and y ∈ Rn, y �= 0, we have

gq(y) ≤ 1
|B(|y|)|

∫
B(|y|)

gq(x)dx

≤ 1
|B(|y|)|

∫
R

n
gq(x)dx =

n

|Sn−1| |y|
−n ‖ g ‖q

Lq(R
n
)
, (3.8)

where B(|y|) denotes the ball of radius |y| in Rn, centered at the origin, and |B(|y|)| =

|y|n |Sn−1|
n is its volume.

Theorem 3.1 Let n∈ N, p > 1 and q > 1 be such that 1
p + 1

q > 1, and let λ be defined by
(2.2). Let 0 ≤ α < n

p′ , 0 ≤ β < n
q′ , and s = nλ −α−β . Then the inequality

∫
R

n

∫
R

n

f (x)g(y)
|x|α |x− y|s|y|β dxdy

≤
(2π)2n

(
|Sn−1|

n

)λ−1

Γn

(
n
p +α

)
Γn

(
n
q +β

)
Γn(s)

‖ f ‖Lp(R
n
)‖ g ‖Lq(R

n
) (3.9)

holds for all non-negative functions f ∈ Lp(Rn) and symmetric-decreasing functions g ∈
Lq(Rn).

Proof. Suppose that in Theorem 2.8 (see Section 2.4) we haveΩ= Rn, K(x,y) = |x|−α |x−
y|−s|y|−β , F(x,y) = G(x,y) ≡ 1, ϕ(x) = |x|

n
pp′ , ψ(y) = |y|

n
qq′ , and the Lebesgue measure

dx. In this case, the left-hand side of inequality (2.51) reads

L =
∫
R

n

∫
R

n

f (x)g(y)
|x|α |x− y|s|y|β dxdy, (3.10)

while its right-hand side is a product I
1
q′
1 I

1
p′
2 I1−λ

3 , where

I1 =
∫
R

2n

|x|
n
p′ |y|− n

q

|x|α |x− y|s|y|β f p(x)dxdy, I2 =
∫
R

2n

|x|− n
p |y|

n
q′

|x|α |x− y|s|y|β gq(y)dxdy,

I3 =
∫
R

2n

|x|
n
p′ |y|

n
q′

|x|α |x− y|s|y|β f p(x)gq(y)dxdy.
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Therefore, applying the Fubini theorem, Lemma 3.2, identity (3.5), and the fact that α +
β + s = nλ , we have

I1 =
∫
R

n |x|
n
p′ −α

f p(x)
∫
R

n

|y|−
(

n
q +β

)
|x− y|s dydx

=
∫
R

n |x|
n
p′ −α

f p(x)
∫
R

n

|z|−
(

n
q +β

)
|z+ x|s dzdx

=
Γn

(
n− n

q −β
)
Γn(n− s)

Γn

(
2n− n

q −β − s
) ∫

R
n |x|

n
p′ −α+n− n

q−β−s
f p(x)dx

=
(2π)2n

Γn

(
n
p +α

)
Γn

(
n
q +β

)
Γn(s)

‖ f ‖p

Lp(R
n
)
.

Analogously,

I2 =
(2π)2n

Γn

(
n
p +α

)
Γn

(
n
q +β

)
Γn(s)

‖ g ‖q

Lq(R
n
)
,

and, by (3.8),

I3 ≤ n

|Sn−1| ‖ g ‖q

Lq(R
n
)

∫
R

n |x|
n
p′ −α

f p(x)
∫
R

n

|y|−
(

n
q +β

)
|x− y|s dydx

=
n

|Sn−1|
(2π)2n

Γn

(
n
p +α

)
Γn

(
n
q +β

)
Γn(s)

‖ f ‖p

Lp(R
n
)
‖ g ‖q

Lq(R
n
)
.

Finally, (3.9) follows by combining (3.10) and the expressions we have obtained for the
integrals I1, I2, and I3. �

To obtain an analogous result for arbitrary non-negative functions f ∈ Lp(Rn) and
g ∈ Lq(Rn), we utilize the general rearrangement inequality. Recall that for a Borel set
A ⊂ Rn of finite Lebesgue measure, we define A∗, the symmetric rearrangement of A, to
be the open ball centered at origin whose volume is that of A. The symmetric-decreasing
rearrangement of a characteristic function of a set A is χ∗

A = χA∗ , so if f : Rn → C is a
Borel measurable function vanishing at infinity, the symmetric-decreasing rearrangement
f ∗ of a function f is defined by

f ∗(x) =
∫ ∞

0
χ∗
{| f |>t}(x)dt.

Now, the general rearrangement inequality asserts that

I( f1, f2, . . . , fm) ≤ I( f ∗1 , f ∗2 , . . . , f ∗m), (3.11)
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where f1, f2, . . . , fm are non-negative functions on Rn, vanishing at infinity, and

I( f1, f2, . . . , fm) =
∫
R

n
· · ·

∫
R

n

m

∏
j=1

f j

(
k

∑
i=1

bi jxi

)
dx1dx2 . . .dxk,

k ≤ m, bi j ∈ R, 1 ≤ i ≤ k, 1 ≤ j ≤ m. In the following result we also use the fact that
for parameter γ > 0 the function h : Rn → R, h(x) = |x|−γ , is symmetric-decreasing and
vanishes at infinity, which implies that h∗ = h. For more details about rearrangements of
sets and functions, the reader is referred to [84].

Theorem 3.2 Let n ∈ N, p > 1 and q > 1 be such that 1
p + 1

q > 1, and set λ as in (2.2).
Suppose 0 ≤ α < n

p′ , 0 ≤ β < n
q′ , and s = nλ −α−β . Then the inequality (3.9) holds for

all non-negative functions f ∈ Lp(Rn) and g ∈ Lq(Rn).

Proof. Since x → |x|−α , x → |x|−s, and x → |x|−β are symmetric-decreasing functions
vanishing at infinity, the general rearrangement inequality (3.11) implies that∫

R
n

∫
R

n

f (x)g(y)
|x|α |x− y|s|y|β dxdy ≤

∫
R

n

∫
R

n

f ∗(x)g∗(y)
|x|α |x− y|s|y|β dxdy. (3.12)

Clearly, by Theorem 3.1, the right-hand side of (3.12) is not greater than

Kα ,β ,p,q,n ‖ f ∗ ‖Lp(R
n
)‖ g∗ ‖Lq(R

n
)= Kα ,β ,p,q,n ‖ f ‖Lp(R

n
)‖ g ‖Lq(R

n
), (3.13)

where Kα ,β ,p,q,n is the constant from the right-hand side of (3.9). To obtain equality in
(3.13), we have used the fact that the symmetric-decreasing rearrangement is norm pre-
serving (see e.g. [84]). �

Remark 3.1 Note that Cα ,β ,p,q,n ≤ Kα ,β ,p,q,n, where Cα ,β ,p,q,n is the sharp constant for
(3.1) and Kα ,β ,p,q,n is the constant factor involved in the right-hand side of (3.9). Hence,
Theorem 3.2 provides new explicit upper bounds for the doublyweighted Hardy-Littlewood-
Sobolev inequality. In particular, for α = β = 0 we have

K0,0,p,q,n =
(2π)2n

(
|Sn−1|

n

)λ−1

Γn

(
n
p

)
Γn

(
n
q

)
Γn(nλ )

, (3.14)

while for p = q the above constant reduces to

K0,0,p,p,n =
(2π)2n

(
|Sn−1|

n

) 2
p′ −1

Γ2
n

(
n
p

)
Γn

(
2n
p′
) = π

n
p′
Γ
(

n
2 − n

p′
)

Γ
(

n
p′
)

⎡⎣Γ
(

n
2p′

)
Γ
(

n
2p

)
⎤⎦2 [

Γ
(n

2
+1

)]1− 2
p′

.

Although (3.2) provides a better estimate for C0,0,p,q,n than (3.14), it is important to note
that Theorem 3.2 covers all admissible choices of the parameters p, q, α , and β in (3.1), so
the main contribution of this section is in extending the mentioned Lieb result, presented
at the beginning of this chapter.
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3.2 Trilinear version of standard Beta integral

Considering Lemma 3.2, we may regard the Selberg integral formula as the k−fold gener-
alization of the standard Beta integral on Rn. On the other hand, by virtue of the Fourier
transform (see [25]), the so-called trilinear version of the standard Beta integral is obtained,
that is, ∫

R
n

|t|α+β−2n

|x− t|α |y− t|β dt = B(α,β ,n)
|x− y|n−α−β

|x|n−β |y|n−α , (3.15)

where x,y ∈ Rn, x �= y �= 0, 0 < α,β < n, α +β > n, and

B(α,β ,n) = π
n
2

Γ
(

n−α
2

)
Γ
(

n−β
2

)
Γ
(

α+β−n
2

)
Γ
(α

2

)
Γ
(

β
2

)
Γ
(
n− α+β

2

) .

Taking into account definition (3.5) of n-dimensional Gamma function, the previous for-
mula can be rewritten as

B(α,β ,n) =
Γn(n−α)Γn(n−β )

Γn(2n−α−β )
. (3.16)

It is still unclear whether or not there is a corresponding k−fold analogue of (3.15). In
spite of that, we shall use the trilinear formula (3.15) to obtain a 2−fold inequality of the
Hilbert-type for the kernel K(x,y) = |x− y|α−n|x+ y|β−n, where 0 < α,β < n, α +β < n.
Of course, we shall rewrite formula (3.15) in a more suitable form. Namely, replacing y
with −x in (3.15), we obtain

∫
R

n

|t|−α−β

|x− t|n−α |x+ t|n−β dt = 2α+β−nB∗(α,β ,n)|x|−n, (3.17)

where

B∗(α,β ,n) =
Γn(α)Γn(β )
Γn(α +β )

. (3.18)

Now, the corresponding Hilbert-type inequality and its equivalent form are the imme-
diate consequences of Theorem 2.1 and the above relation (3.17).

Theorem 3.3 Let p, q, and λ be as in (2.1) and (2.2), and let α and β be real parameters
satisfying 0 < α,β < n and α +β < n. Then, the inequalities∫

R
2n

f (x)g(y)
|x− y|λ (n−α)|x+ y|λ (n−β )dxdy (3.19)

≤ N

[∫
R

n
|x|(p−1)(α+β+n)−pnλ f p(x)dx

] 1
p
[∫

R
n
|y|(q−1)(α+β+n)−qnλgq(y)dy

] 1
q
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and {∫
R

n
|y|n(λq′−1)−α−β

[∫
R

n

f (x)dx

|x− y|λ (n−α)|x+ y|λ (n−β )

]q′

dy

} 1
q′

(3.20)

≤ N

[∫
R

n
|x|(p−1)(α+β+n)−pnλ f p(x)dx

] 1
p

hold and are equivalent, where N = 2λ (α+β−n)B∗(α,β ,n)λ .

Proof. Putting K(x,y) = |x− y|α−n|x+ y|β−n, ϕ(x) = |x|
α+β

p′ , ψ(y) = |y|
α+β
q′ in (2.9) and

(2.10) (see Theorem 2.1), and utilizing the formula (3.17), we obtain (3.19) and (3.20)
respectively, as claimed. �

Real parameters α and β from the previous theorem fulfill the condition α +β < n. In
what follows we shall obtain similar inequalities which are, in some way, complementary
to inequalities (3.19) and (3.20). Such inequalities will be derived by virtue of Theorem
2.8 (see Section 2.4).

Theorem 3.4 Let p, q, and λ be as in (2.1) and (2.2), and let α and β be real parameters

satisfying 0 < α < n, 0 < β < n, α + β = n
(

1
p + 1

q

)
> n. If f and g are non-negative

functions such that f ∈ Lp(Rn), g ∈ Lq(Rn), then the following inequalities hold and are
equivalent:

∫
R

2n

f (x)g(y)
|x− y|n−α |x+ y|n−β dxdy ≤

(
n

|Sn−1|

)1−λ
C(p,q;α,β ;n)‖ f‖Lp(R

n
)‖g‖Lq(R

n
),

(3.21){∫
R

n

[∫
R

n

f (x)dx

|x− y|n−α |x+ y|n−β

]q′

dy

} 1
q′
≤

(
n

|Sn−1|

)1−λ
C(p,q;α,β ;n)‖ f‖Lp(R

n
).

(3.22)
Here,

C(p,q;α,β ;n) =
∫
R

n

|x|− n
q dx

|e1 − x|n−α |e1 + x|n−β , (3.23)

where e1 = (1,0, . . . ,0) ∈ Rn and |Sn−1| is the Lebesgue measure of the unit sphere in Rn.

Proof. Since we shall use the general rearrangement inequality (3.11), it is enough to
prove the inequalities for symmetric-decreasing functions f and g. First, applying Theorem
2.8, we have ∫

R
2n

f (x)g(y)
|x− y|n−α |x+ y|n−β dxdy ≤ I

1
q′
1 I

1
p′
2 I1−λ

3 , (3.24)
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where

I1 =
∫
R

2n

|x|
n
p′ |y|− n

q

|x− y|n−α |x+ y|n−β f p(x)dxdy,

I2 =
∫
R

2n

|x|− n
p |y|

n
q′

|x− y|n−α |x+ y|n−β gq(y)dxdy,

I3 =
∫
R

2n

|x|
n
p′ |y|

n
q′

|x− y|n−α |x+ y|n−β f p(x)gq(y)dxdy.

Further, using the change of variables y = |x|u (so dy = |x|ndu) and rotational invariance
of the Lebesgue integral in Rn, we easily get:

I1 =
∫
R

n |x|
n
p′ f p(x)

∫
R

n

|y|− n
q

|x− y|n−α |x+ y|n−β dydx

=
∫
R

n |x|
n
p′ −

n
q +α+β−n

f p(x)
∫
R

n

|u|− n
q∣∣∣ x

|x| −u
∣∣∣n−α ∣∣∣ x

|x| +u
∣∣∣n−β dudx

=
∫
R

n

|u|− n
q du

|e1−u|n−α |e1 +u|n−β ‖ f‖p

Lp(R
n
)
.

Analogously,

I2 =
∫
R

n

|u|− n
p du

|e1−u|n−α |e1 +u|n−β ‖g‖q

Lq(R
n
)
,

and by (3.8),

I3 ≤ n

|Sn−1|
∫
R

n

|u|− n
q du

|e1−u|n−α |e1 +u|n−β ‖ f‖p

Lp(R
n
)
‖g‖q

Lq(R
n
)
.

It remains to prove that∫
R

n

|x|− n
p dx

|e1− x|n−α |e1 + x|n−β =
∫
R

n

|x|− n
q dx

|e1− x|n−α |e1 + x|n−β .

We transform the left integral in polar coordinates using x = tθ , t ≥ 0, θ ∈ |Sn−1|, and
t = 1

u to obtain:∫
R

n

|x|− n
p dx

|e1− x|n−α |e1 + x|n−β =
∫
S

n−1 dθ
∫ ∞

0

t−
n
p tn−1dt

|e1− tθ |n−α |e1 + tθ |n−β

=
∫
S

n−1
dθ

∫ ∞

0

t−
n
p tn−1dt

(1+ t2−2t(e1,θ ))
n−α

2 (1+ t2 +2t(e1,θ ))
n−β

2

=
∫
S

n−1 dθ
∫ ∞

0

u
n
p−α−βun−1du

(1+u2−2u(e1,θ ))
n−α

2 (1+u2 +2u(e1,θ ))
n−β

2

=
∫
R

n

|x|− n
q dx

|e1 − x|n−α |e1 + x|n−β .



104 3 HILBERT-TYPE INEQUALITIES WITH VECTOR VARIABLES

To complete the proof, we need to consider the general case, that is, arbitrary non-
negative functions f and g. Since x → |x|n−α , x → |x|n−β are symmetric-decreasing func-
tions vanishing at infinity, the general rearrangement inequality implies that∫

R
2n

f (x)g(y)
|x− y|n−α |x+ y|n−β dxdy ≤

∫
R

2n

f ∗(x)g∗(y)
|x− y|n−α |x+ y|n−β dxdy. (3.25)

Clearly, by (3.24), the right-hand side of (3.25) is not greater than(
n

|Sn−1|

)1−λ
C(p,q;α,β ;n)‖ f ∗‖Lp(R

n
)‖g∗‖Lq(R

n
)

=
(

n

|Sn−1|

)1−λ
C(p,q;α,β ;n)‖ f‖Lp(R

n
)‖g‖Lq(R

n
), (3.26)

where C(p,q;α,β ;n) is the constant from the right-hand side of (3.21). To get equality in
(3.26), we used the fact that the symmetric-decreasing rearrangement is norm preserving.

On the other hand, substituting the function

g(y) =
[∫

R
n

f (x)
|x− y|n−α |x+ y|n−β dx

] q′
q

in (3.21), we obtain inequality (3.22). To show that inequality (3.22) implies (3.21), we
proceed in the same way as in the proof of Theorem 2.1. �

It is very interesting to consider the case n = 1 in the previous theorem. Namely, in that
case the constant C(p,q;α,β ;n) can be expressed in terms of the usual Beta function and
the Gaussian hypergeometric function (see formulas (1.5) and (1.34), Chapter 1). More
precisely, utilizing the above mentioned definitions, it follows easily that the following
identity holds for 0 < d1,d2,d3 < 1 and d1 +d2 +d3 > 1:∫

R
|t|−d2 |1− t|−d3|1+ t|−d1dt =

B(1−d2,1−d3)F(d1,1−d2;2−d2−d3;−1)
+B(1−d2,1−d1)F(d3,1−d2;2−d2−d1;−1)
+B(d1 +d2 +d3−1,1−d3)F(d1,d1 +d2 +d3−1;d1 +d2;−1)
+B(d1 +d2 +d3−1,1−d1)F(d3,d1 +d2 +d3−1;d3 +d2;−1).

Hence, for n = 1 we have:

Corollary 3.1 Let p, q, and λ be as in (2.1) and (2.2), and let α and β be real parameters
satisfying 0 < α < 1, 0 < β < 1, and α +β = 1

p + 1
q > 1. If f ∈ Lp(R) and g ∈ Lq(R) are

non-negative functions, then the inequalities∫
R

2

f (x)g(y)
|x− y|1−α |x+ y|1−β dxdy ≤ 2λ−1C(p,q;α,β )‖ f‖Lp(R)‖g‖Lq(R) (3.27)
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and {∫
R

[∫
R

f (x)dx

|x− y|1−α |x+ y|1−β

]q′

dy

} 1
q′
≤ 2λ−1C(p,q;α,β )‖ f‖Lp(R) (3.28)

hold and are equivalent, where

C(p,q;α,β ) = B
( 1
q′

,α
)
F
(
1−β ,

1
q′

;
1
q′

+α;−1
)

+B
( 1
q′

,β
)
F
(
1−α,

1
q′

;
1
q′

+β ;−1
)
+B

( 1
p′

,α
)
F
(
1−β ,

1
p′

;
1
p′

+α;−1
)

+B
( 1
p′

,β
)
F
(
1−α,

1
p′

;
1
p′

+β ;−1
)
. (3.29)

The following corollary should be compared with Theorem 3.3.

Corollary 3.2 If p, q, and λ are as in (2.1) and (2.2), and f ∈ Lp(R), g ∈ Lq(R) are
non-negative functions, then the following inequalities hold and are equivalent:∫

R
2

f (x)g(y)dxdy

|x2 − y2| λ2
≤ 2λ−1

(
B
(
1− λ

2
,

1
2p′

)
+B

(
1− λ

2
,

1
2q′

))‖ f‖Lp(R)‖g‖Lq(R),

(3.30)⎡⎣∫
R

(∫
R

f (x)dx

|x2 − y2| λ2

)q′

dy

⎤⎦ 1
q′

≤ 2λ−1
(

B
(
1− λ

2
,

1
2p′

)
+B

(
1− λ

2
,

1
2q′

))‖ f‖Lp(R).

(3.31)

Proof. Set α = β = 1− λ
2 in the previous corollary. �

It should be noticed here that inequalities (3.30) and (3.31) could not be obtained from
Theorem 3.3. In other words, there are no α and β for which the kernel appearing in

inequalities (3.19) and (3.20) would reduce to |x2− y2|− λ
2 .

3.3 Multiple Hilbert-type inequalities via the Selberg
integral formula

In this section we derive some multidimensional versions of Hilbert-type inequalities with
the help of the Selberg integral formula. The following result can be regarded as the corre-
sponding analogue of Theorem 2.6.
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Theorem 3.5 Let λ , pi, p′i,qi, i = 1,2, . . . ,k, k ≥ 2, be real numbers satisfying (2.26),
(2.27), and (2.30), and let Ai j, i, j = 1, . . . ,k, be real parameters such that ∑k

i=1 Ai j = 0 for

j = 1, . . . ,k. If n ∈ N, 0 < s < n, Ai j ∈ (− n
qi

,0), αi −Aii <
s−(k−1)n

qi
, and

K =
1

Γλ
n (s)

k

∏
i, j=1,i�= j

Γ
1
qi
n (n+qiAi j)

k

∏
i=1

Γ
1
qi
n (s− (k−1)n−qiαi +qiAii),

then the inequalities∫
R

kn

∏k
i=1 fi(xi)

|∑k
i=1 xi|λ s

dx1dx2 · · ·dxk ≤ K
k

∏
i=1

[∫
R

n |xi|
pi(k−1)n−pis

qi
+piαi f pi

i (xi)dxi

] 1
pi

(3.32)

and {∫
R

n |xk|−
pk

′
qk

[(k−1)n−s]−pk
′αk

[∫
R

(k−1)n

∏k−1
i=1 fi(xi)

|∑k
i=1 xi|λ s

dx1dx2 · · ·dxk−1

]pk
′

dxk

} 1
pk

′

≤ K
k−1

∏
i=1

[∫
R

n |xi|
pi(k−1)n−pis

qi
+piαi f pi

i (xi)dxi

] 1
pi

(3.33)

hold for all non-negative measurable functions fi : Rn → R, i = 1, . . . ,k. Here αi =
∑k

j=1 Ai j, i = 1,2, . . . ,k. Moreover, these inequalities are equivalent.

Proof. We use the general result in the non-conjugate multidimensional setting, that is,
Theorem 2.5. Namely, we consider inequalities (2.31) and (2.32) with Ω = Rn, φi j(x j) =
|x j|Ai j , i, j = 1, . . . ,k, K(x1, . . . ,xk) = |x1 + · · ·+ xk|−s, and the Lebesgue measure.

Now, using the notation from Theorem 2.5, the Selberg integral formula (3.6) yields

Fi(xi) =

[
∏k

j=1, j �=iΓn(n+qiAi j)Γn(n− s)
Γn(kn+qiαi −qiAii− s)

] 1
qi

|xi|
(k−1)n−s

qi
+αi−Aii ,

so inequalities (2.31) and (2.32) reduce to (3.32) and (3.33) respectively. �

Remark 3.2 Observe that, according to Remark 2.11, equalities in (3.32) and (3.33)
hold if and only if at least one of the functions fi is equal to zero a.e. on Rn. Otherwise,
inequalities (3.32) and (3.33) are strict.

As an application of Theorem 3.5, we consider some particular choices of parameters
Ai j, i, j = 1,2, . . . ,k. For example, if Aii = (nk− s)λqi−1

q2
i

and Ai j = (s− nk) 1
qiq j

, i �= j,

i, j = 1,2, . . . ,k, then

k

∑
i=1

Ai j = ∑
i�= j

s−nk
qiq j

+(nk− s)
(
λq j −1

q j
2

)
=

s−nk
q j

(
k

∑
i=1

1
qi

−λ

)
= 0,

for j = 1,2, . . . ,k, that is, these parameters fulfill conditions of Theorem 3.5. Moreover,
due to the symmetry, we also have αi = ∑k

j=1 Ai j = 0 for i = 1,2, . . . ,k, and hence, as a
consequence we obtain the following result.
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Corollary 3.3 Let λ , pi, p′i,qi, i = 1,2, . . . ,k, k ≥ 2, be real numbers satisfying (2.26),
(2.27), and (2.30). If n ∈ N, 0 < nk− s < nmin{pi,q j, i, j = 1,2, . . .k}, and

L =
1

Γλ
n (s)

k

∏
i=1

Γ
1
p′i
n

(
n− nk− s

qi

) k

∏
i=1

Γ
1
qi
n

(
n− nk− s

pi

)
,

then the inequalities

∫
R

kn

∏k
i=1 fi(xi)

|∑k
i=1 xi|λ s

dx1dx2 · · ·dxk ≤ L
k

∏
i=1

[∫
R

n |xi|
pi(k−1)n−pis

qi f pi
i (xi)dxi

] 1
pi

(3.34)

and {∫
R

n
|xk|−

pk
′

qk
[(k−1)n−s]

[∫
R

(k−1)n

∏k−1
i=1 fi(xi)

|∑k
i=1 xi|λ s

dx1dx2 · · ·dxk−1

]pk
′

dxk

} 1
pk

′

≤ L
k−1

∏
i=1

[∫
R

n
|xi|

pi(k−1)n−pis
qi f pi

i (xi)dxi

] 1
pi

(3.35)

hold for all non-negative measurable functions fi : Rn → R, i = 1, . . . ,k. Moreover, these
inequalities are equivalent. The equality in both inequalities holds if and only if at least
one of the functions fi, i = 1,2, . . . ,k, is equal to zero a.e. on Rn.

Remark 3.3 Similarly as in the previous corollary, defining Aii = n(λqi−1)
λq2

i
and Ai j =

− n
λqiq j

, i �= j, i, j = 1,2, . . .k, we have

k

∑
i=1

Ai j =
k

∑
j=1

Ai j = ∑
i�= j

− n
λqiq j

+
n(λq j −1)

λq j
2 = − n

λq j

(
k

∑
i=1

1
qi

−λ

)
= 0,

for j = 1,2, . . . ,k. Hence, substituting these parameters in Theorem 3.5, assuming that
(k−1)n− s < n

λ p′i
< n, i = 1,2, . . . ,k, we obtain the same inequalities as in Corollary 3.3,

with the constant

L′ =
1

Γλ
n (s)

k

∏
i=1

Γ
λ− 1

qi
n

(
n

λ p′i

) k

∏
i=1

Γ
1
qi
n

(
s+

n
λ p′i

− (k−1)n
)

,

instead of L.

Inequalities in Corollary 3.3 and Remark 3.3 are interesting since they provide the best
possible constant factors in the conjugate case. This will be explained in the next section. It
should also be noticed here that these inequalities can be regarded as the n-fold extensions
of the corresponding results from [12] and [156].

We proceed with multidimensional Hilbert-type inequalities related to those in Sec-
tion 3.1. Namely, in Section 3.1, by virtue of Theorem 2.8 and Lemma 3.2, we have
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obtained Hardy-Littlewood-Sobolev inequality which includes a pair of non-conjugate pa-
rameters. However, the method used in deriving Hardy-Littlewood-Sobolev inequality can
also be extended to a multidimensional non-conjugate setting. More precisely, we shall uti-
lize Theorem 2.7 applied to the kernel K(x1, . . . ,xk) = |x1 + . . .+ xk|−(k−1)nλ on Rkn, and
Lemma 3.1. The corresponding Hilbert-type inequality is given in the following theorem.

Theorem 3.6 Let n ∈ N, k ∈ N, k ≥ 2, and assume that λ , pi,qi, i = 1,2, . . . ,k, are as in
(2.26), (2.27), and (2.30). If 0 < λ < 1

k−1 , then the inequality

∫
R

kn

f1(x1) · · · fk(xk)
|x1 + . . .+ xk|(k−1)nλ dx1 . . .dxk

≤
(2π)kn

(
|Sn−1|

n

)(k−1)(λ−1)

Γn((k−1)nλ )∏k
i=1Γn

(
n
pi

) ‖ f1 ‖Lp1(R
n
) · · · ‖ fk ‖Lpk (R

n
) (3.36)

holds for all non-negative functions fi ∈ Lpi(Rn), i = 1, . . . ,k.

Proof. First, we consider a simpler special case of the functions appearing in (3.36).
Namely, suppose that f2, . . . , fk are symmetric-decreasing functions. To prove the above
assertion, we rewrite Theorem 2.7 with Ω = Rn, K(x1, . . . ,xk) = |x1 + . . . + xk|−(k−1)nλ ,
Fi(x1, . . . ,xk) ≡ 1, φi j(x j) = |x j|Ai j , where

Ai j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

pip′i
, i = j

− n
qip j

, i �= j,

(3.37)

and with Lebesgue measures dxi, for i, j = 1, . . . ,k. Then the left-hand side of (2.38) in
Theorem 2.7 becomes

L =
∫
R

kn

f1(x1) · · · fk(xk)
|x1 + . . .+ xk|(k−1)nλ dx1 . . .dxk, (3.38)

while the right-hand side of this inequality is the product of k+1 factors,

R = I
1
q1
1 · · · I

1
qk
k I1−λ

k+1 , (3.39)

where

Ii =
∫
R

kn

|xi|
n
p′i ∏ j �=i |x j|−

n
p j

|x1 + . . .+ xk|(k−1)nλ f pi
i (xi)dx1 . . .dxk, i = 1, . . . ,k,

and

Ik+1 =
∫
R

kn

∏k
i=1 |xi|

n
p′i

|x1 + . . .+ xk|(k−1)nλ

k

∏
i=1

f pi
i (xi)dx1 . . .dxk.
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Before calculating these integrals, observe that from (2.26), (2.27), and (2.30) (see Section
2.4), we obtain that 0 < n

pi
< n and

∑
j �=i

n
p j

+(k−1)nλ = n∑
j �=i

(
1
p j

+λ
)

= n∑
j �=i

(
1
q j

+1

)
= (k−1)n+n∑

j �=i

1
q j

> (k−1)n,

for all i ∈ {1, . . . ,k}. Moreover, the conditions of Theorem 3.6 imply also that 0 < (k−
1)nλ < n. Therefore, applying the Fubini theorem, Lemma 3.1, and (3.5), for i = 1, . . . ,k,
we get

Ii =
∫
R

n |xi|
n
p′i f pi

i (xi)
∫
R

(k−1)n

∏ j �=i |x j|−
n
p j

|x1 + . . .+ xk|(k−1)nλ dx1 . . .dxi−1dxi+1 . . .dxkdxi

=
Γn(n− (k−1)nλ )∏ j �=iΓn

(
n− n

p j

)
Γn

(
kn−∑ j �=i

n
p j
− (k−1)nλ

) ∫
R

n |xi|
n
p′i

+(k−1)n−∑ j �=i
n
p j

−(k−1)nλ
f pi
i (xi)dxi

=
(2π)kn

Γn((k−1)nλ )∏k
j=1Γn

(
n
p j

) ‖ fi ‖pi

Lpi (R
n
)
. (3.40)

To estimate the last integral Ik+1 in (3.39), we use the assumption that the functions
f2, . . . , fk are symmetric-decreasing. Hence, we can use relation (3.8) to obtain that

f pi
i (xi) ≤ n

|Sn−1| |xi|−n ‖ fi ‖pi

Lpi (R
n
)

holds for all xi ∈ Rn, xi �= 0. Again, according to the Fubini theorem, Lemma 3.1, and
identity (3.5), similarly to the procedure used in (3.40), we obtain

Ik+1 ≤
(

n

|Sn−1|

)k−1 k

∏
i=2

‖ fi ‖pi

Lpi(R
n
)

×
∫
R

kn

|x1|
n
p′1 ∏k

i=2 |xi|
n
p′i
−n

|x1 + . . .+ xk|(k−1)nλ f p1
1 (x1)dx1 . . .dxk

=
(

n

|Sn−1|

)k−1 k

∏
i=2

‖ fi ‖pi

Lpi (R
n
)

×
∫
R

n |x1|
n
p′1 f p1

1 (x1)
∫
R

(k−1)n

∏k
i=2 |xi|−

n
pi

|x1 + . . .+ xk|(k−1)nλ dx2 . . .dxk dx1

=
(

n

|Sn−1|

)k−1 Γn(n− (k−1)nλ )∏k
i=2Γn

(
n− n

pi

)
Γn

(
kn−∑k

i=2
n
pi
− (k−1)nλ

) k

∏
i=1

‖ fi ‖pi

Lpi(R
n
)

=
(

n

|Sn−1|

)k−1 (2π)kn

Γn((k−1)nλ )∏k
i=1Γn

(
n
pi

) k

∏
i=1

‖ fi ‖pi

Lpi (R
n
)
. (3.41)
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Now, we arrive at inequality (3.36) for this case by combining (3.38), (3.39), (3.40), and
(3.41). To complete the proof, we need to consider the general case, that is, arbitrary non-
negative functions f2, . . . , fk . Since the function x → |x|−(k−1)nλ is symmetric-decreasing
and vanishes at infinity, by the general rearrangement inequality we have∫

R
kn

f1(x1) · · · fk(xk)
|x1 + . . .+ xk|(k−1)nλ dx1 . . .dxk ≤

∫
R

kn

f ∗1 (x1) · · · f ∗k (xk)
|x1 + . . .+ xk|(k−1)nλ dx1 . . .dxk

≤
(2π)kn

(
|Sn−1|

n

)(k−1)(λ−1)

Γn((k−1)nλ )∏k
i=1Γn

(
n
pi

) ‖ f ∗1 ‖Lp1 (R
n
) · · · ‖ f ∗k ‖Lpk (R

n
)

=
(2π)kn

(
|Sn−1|

n

)(k−1)(λ−1)

Γn((k−1)nλ )∏k
i=1Γn

(
n
pi

) ‖ f1 ‖Lp1 (R
n
) · · · ‖ fk ‖Lpk (R

n
) .

As in the proof of Theorem 3.2, here we used the fact that f ∗2 , . . . , f ∗k are symmetric-
decreasing functions and that the mapping f → f ∗ is norm preserving. �

Remark 3.4 Note that the proof of Theorem 3.6 is, in fact, based on the Selberg integral
formula (3.4). Some further applications of this formula can be found in [25].

Setting k = 2 and k = 3 in Theorem 3.6, we get the following consequences.

Corollary 3.4 Let n ∈ N, p > 1 and q > 1 be such that 1
p + 1

q > 1, and let λ be defined
by (2.2). Then

∫
R

n

∫
R

n

f (x)g(y)
|x+ y|nλ dx dy≤

(2π)2n

(
|Sn−1|

n

)λ−1

Γn(nλ )Γn

(
n
p

)
Γn

(
n
q

) ‖ f ‖Lp(R
n
)‖ g ‖Lq(R

n
) (3.42)

holds for all non-negative functions f ∈ Lp(Rn) and g ∈ Lq(Rn). In particular, if n = 1,
then (3.42) becomes

∫ ∞

−∞

∫ ∞

−∞

f (x)g(y)
|x+ y|λ dx dy≤ 2λ−1√π

B
(

1
2p′ ,

1
2q′

)
B
(

1
2p , 1

2q

) Γ
(

1
2 − λ

2

)
Γ
(
1− λ

2

) ‖ f ‖Lp(R)‖ g ‖Lq(R) .

Corollary 3.5 Let n∈N and assume that parameters p1, p2, p3,λ ,q1,q2,q3 satisfy (2.26),
(2.27), and (2.30). If 0 < λ < 1

2 , then∫
R

3n

f (x)g(y)h(z)
|x+ y+ z|2nλ dx dy dz

≤
(2π)3n

(
|Sn−1|

n

)2(λ−1)

Γn(2nλ )Γn

(
n
p1

)
Γn

(
n
p2

)
Γn

(
n
p3

) ‖ f ‖Lp1 (R
n
)‖ g ‖Lp2(R

n
)‖ h ‖Lp3 (R

n
) (3.43)
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holds for all non-negative functions f ∈ Lp1(Rn), g ∈ Lp2(Rn), and h ∈ Lp3(Rn). In par-
ticular, if n = 1, then (3.43) reads∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f (x)g(y)h(z)
|x+ y+ z|2λ dx dy dz

≤ 22(λ−1)π
Γ
(

1
2 −λ

)
Γ(λ )

3

∏
i=1

Γ
(

1
2p′i

)
Γ
(

1
2pi

) ‖ f ‖Lp1 (R)‖ g ‖Lp2 (R)‖ h ‖Lp3 (R) .

Remark 3.5 Note that in all presented applications of Theorem 2.7 we considered Fi ≡ 1,
i = 1, . . . ,k, while Theorem 2.8 was applied with F = G ≡ 1 (see Section 3.1). Obviously,
according to the conditions from the statements of these theorems, we can use any other
non-negative functions Fi and, consequently, take the infimum of the right-hand sides of
the obtained inequalities over all such functions. Therefore, to conclude this section, we
mention the following open problem: Can this approach give sharp Hilbert-type inequali-
ties, that is, do there exist such functions Fi that the related inequalities are obtained with
the best possible constants on their right-hand sides?

3.4 The best constants

In this section we are focused on Theorem 3.5 in the conjugate setting, that is, when
∑k

i=1
1
pi

= 1 and λ = 1. The main task is to determine the conditions on parameters
Ai j, i, j = 1, . . . ,k, under which the constant factor on the right-hand sides of inequali-
ties (3.32) and (3.33) is the best possible. In the conjugate case, the constant K, involved
in the above mentioned inequalities, reduces to

K =
1

Γn(s)

k

∏
i, j=1,i�= j

Γ
1
pi
n (n+ piAi j)

k

∏
i=1

Γ
1
pi
n (s− (k−1)n− piαi + piAii).

Taking into account the method as in Section 1.6 (Chapter 1), we are going to simplify
the above constant K, to obtain the expression without exponents. Hence, we impose the
following conditions on the parameters Ai j:

s− (k−1)n+ piAii− piαi = n+ p jA ji, j �= i, i, j = 1,2, . . . ,k. (3.44)

In this case the above constant K reads

K∗ =
1

Γn(s)

k

∏
i=1

Γn(n+ Ãi), (3.45)

where
Ãi = p jA ji, j �= i, and −n < Ãi < 0. (3.46)
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It follows easily that then
k

∑
i=1

Ãi = s− kn, (3.47)

so that inequalities (3.32) and (3.33) with the parameters Ai j fulfilling (3.44), reduce to

∫
R

kn

∏k
i=1 fi(xi)

|∑k
i=1 xi|s

dx1dx2 · · ·dxk ≤ K∗
k

∏
i=1

[∫
R

n
|xi|−n−piÃi f pi

i (xi)dxi

] 1
pi

(3.48)

and {∫
R

n |xk|(1−p′k)(−n−pkÃk)

[∫
R

(k−1)n

∏k−1
i=1 fi(xi)
|∑k

i=1 xi|s
dx1dx2 · · ·dxk−1

]pk
′

dxk

} 1
pk

′

≤ K∗
k−1

∏
i=1

[∫
R

n |xi|−n−piÃi f pi
i (xi)dxi

] 1
pi

. (3.49)

Inequalities (3.48) and (3.49) involve the best possible constant factor K∗ on their
right-hand sides. To show our assertion, we first need to establish some auxiliary results.

Lemma 3.3 Let k ≥ 2 be an integer, xk ∈ Rn, and xk �= 0. We define

Iε1 (xk) =
∫

Kn(ε)
|x1|Ã1

[∫
R

(k−2)n

∏k−1
i=2 |xi|Ãi

|∑k
i=1 xi|s

dx2 . . .dxk−1

]
dx1,

where ε > 0, Kn(ε) is the closed n-dimensional ball of radius ε , and parameters Ãi, i =
1,2, . . . ,k, are defined by (3.46). Then there exists a positive constant Ck such that

Iε1 (xk) ≤Ckεn+Ã1 |xk|−2n−Ã1−Ãk , when ε → 0. (3.50)

Proof. We distinguish two cases. If k = 2 we have

Iε1 (x2) =
∫

Kn(ε)

|x1|Ã1

|x1 + x2|s dx1.

Letting ε → 0, it follows that there exist a positive constant c2 such that Iε1 (x2) ≤ c2|x2|−s∫
Kn(ε) |x1|Ã1dx1. The previous integral can be calculated by using n-dimensional spherical

coordinates. More precisely, we have∫
Kn(ε)

|x1|Ã1dx1

=
∫ π

0
· · ·

∫ π

0

∫ 2π

0

∫ ε

0
rn+Ã1−1sinn−2θn−1sin

n−3θn−2 · · · sinθ2drdθ1 . . .dθn−1

=
∫ ε

0
rn+Ã1−1dr

∫
|Sn−1|

dS =
|Sn−1|εn+Ã1

n+ Ã1
. (3.51)
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Consequently,

Iε1 (x2) ≤ c2|Sn−1|εn+Ã1

n+ Ã1
|x2|−s,

so the inequality holds when ε → 0, since −2n− Ã1− Ã2 = −s holds for k = 2. Further, if
k > 2, then by letting ε → 0, since |x1| → 0, we easily conclude that there exists a positive
constant ck such that

Iε1 (xk) ≤ ck

[∫
Kn(ε)

|x1|Ã1dx1

][∫
R

(k−2)n

∏k−1
i=2 |xi|Ãi

|∑k
i=2 xi|s

dx2 . . .dxk−1

]
. (3.52)

We have already calculated the first integral in inequality (3.52), and the second one is the
Selberg integral. Namely, utilizing formulas (3.5), (3.6) (see Section 3.1), and (3.47) we
have ∫

R
(k−2)n

∏k−1
i=2 |xi|Ãi

|∑k
i=2 xi|s

dx2 . . .dxk−1

=
Γn(2n+ Ã1 + Ãk)∏k−1

i=2 Γn(n+ Ãi)
Γn(s)

|xk|−2n−Ã1−Ãk . (3.53)

Finally, combining (3.51), (3.52), and (3.53) we obtain inequality (3.50) and the proof is
completed. �

Lemma 3.4 Let k ≥ 2 be an integer and xk ∈ Rn. We define

Iε
−1

1 (xk) =
∫
R

n\Kn(ε−1)
|x1|Ã1

[∫
R

(k−2)n

∏k−1
i=2 |xi|Ãi

|∑k
i=1 xi|s

dx2 . . .dxk−1

]
dx1,

where ε > 0, Kn(ε−1) is the closed n-dimensional ball of radius ε−1, and parameters Ãi,
i = 1,2, . . . ,k, are defined by (3.46). Then there exists a positive constant Dk such that

Iε
−1

1 (xk) ≤ Dkεn+Ãk , when ε → 0. (3.54)

Proof. We again consider two cases. If k = 2 we have

Iε
−1

1 (x2) =
∫
R

n\Kn(ε−1)

|x1|Ã1

|x1 + x2|s dx1.

If ε → 0, then |x1| → ∞, hence there exist a positive constant d2 such that

Iε
−1

1 (x2) ≤ d2

∫
R

n\Kn(ε−1)
|x1|Ã1−sdx1.

Now, utilizing spherical coordinates for calculating the integral on the right-hand side of
the above inequality, we obtain

Iε
−1

1 (x2) ≤ d2|Sn−1|
n+ Ã2

εn+Ã2 .
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Moreover, for k > 2, using (3.5), (3.6), and (3.47) we have

∫
R

(k−2)n

∏k−1
i=2 |xi|Ãi

|∑k
i=1 xi|s

dx2 . . .dxk−1

=
Γn(2n+ Ã1 + Ãk)∏k−1

i=2 Γn(n+ Ãi)
Γn(s)

|x1 + xk|−2n−Ã1−Ãk . (3.55)

Therefore, we obtain

Iε
−1

1 (xk) =
Γn(2n+ Ã1 + Ãk)∏k−1

i=2 Γn(n+ Ãi)
Γn(s)

×
∫
R

n\Kn(ε−1)
|x1|Ã1 |x1 + xk|−2n−Ã1−Ãkdx1. (3.56)

Letting ε → 0, it follows that |x1| → ∞, so there exist a positive constant dk such that

Iε
−1

1 (xk) ≤ dk

∫
R

n\Kn(ε−1)
|x1|−2n−Ãkdx1.

Finally, since ∫
R

n\Kn(ε−1)
|x1|−2n−Ãkdx1 =

|Sn−1|εn+Ãk

n+ Ãk

,

inequality (3.54) holds. �

Now, we are able to obtain the best possible constant factors in (3.48) and (3.49).
Clearly, inequalities (3.48) and (3.49) do not contain parameters Ai j, i, j = 1,2, . . . ,k, so
we can regard these inequalities with Ãi, i = 1,2, . . . ,k, as primitive parameters.

Theorem 3.7 The constant K∗ is the best possible in both inequalities (3.48) and (3.49).

Proof. Let Kn(ε) be the closed n-dimensional ball of radius ε , centered at the origin, and
let 0 < ε < 1. We define the functions f̃i : Rn → R, i = 1,2, . . . ,k, in the following way:

f̃i(xi) =
{
|xi|Ãi , xi ∈ Kn(ε−1)\Kn(ε)
0, otherwise.

Inserting the above functions in (3.48), the right-hand side of (3.48) becomes

K∗
k

∏
i=1

(∫
Kn(ε−1)\Kn(ε)

|xi|−ndxi

) 1
pi

= K∗
∫

Kn(ε−1)\Kn(ε)
|xi|−ndxi.

In addition, utilizing n-dimensional spherical coordinates we have

∫
Kn(ε−1)\Kn(ε)

|xi|−ndxi =
∫ ε−1

ε
r−1dr

∫
|Sn−1|

dS = |Sn−1| log
1
ε2 ,
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so that the right-hand side of inequality (3.48) reads

K∗|Sn−1| log
1
ε2 . (3.57)

Now, let J denotes the left-hand side of inequality (3.48). Using the Fubini theorem, for
the above choice of functions f̃i, we have

J =
∫
(Kn(ε−1)\Kn(ε))k

∏k
i=1 |xi|Ãi

|∑k
i=1 xi|s

dx1dx2 . . .dxk

=
∫

Kn(ε−1)\Kn(ε)
|xk|Ãk

[∫
(Kn(ε−1)\Kn(ε))k−1

∏k−1
i=1 |xi|Ãi

|∑k
i=1 xi|s

dx1dx2 . . .dxk−1

]
dxk.

Note that the integral J can be transformed in the following way: J = J1− J2− J3, where

J1 =
∫

Kn(ε−1)\Kn(ε)
|xk|Ãk

[∫
R

(k−1)n

∏k−1
i=1 |xi|Ãi

|∑k
i=1 xi|s

dx1dx2 . . .dxk−1

]
dxk,

J2 =
∫

Kn(ε−1)\Kn(ε)
|xk|Ãk

k−1

∑
j=1

Iεj (xk)dxk,

J3 =
∫

Kn(ε−1)\Kn(ε)
|xk|Ãk

k−1

∑
j=1

Iε
−1

j (xk)dxk.

Here, for j = 1,2, . . . ,k−1, the integrals Iεj (xk) and Iε
−1

j (xk) are defined by

Iεj (xk) =
∫
P j

∏k−1
i=1 |xi|Ãi

|∑k
i=1 xi|s

dx1dx2 . . .dxk−1,

where P j = {(U1,U2, . . . ,Uk−1) ;Uj = Kn(ε),Ul = Rn, l �= j}, and

Iε
−1

j (xk) =
∫
Q j

∏k−1
i=1 |xi|Ãi

|∑k
i=1 xi|s

dx1dx2 . . .dxk−1,

where Q j = {(U1,U2, . . . ,Uk−1) ;Uj = Rn \Kn(ε−1),Ul = Rn, l �= j}.
Now, our aim is to find the lower bound for J. The first integral J1 can easily be

computed by virtue of the Selberg integral formula (3.6). More precisely, since parameters
Ãi fulfill relation (3.47), it follows that

∫
R

(k−1)n

∏k−1
i=1 |xi|Ãi

|∑k
i=1 xi|s

dx1dx2 . . .dxk−1 = K∗|xk|−Ãk−n,

and consequently,

J1 = K∗|Sn−1| log
1
ε2 . (3.58)
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In the sequel, we show that the parts J2 and J3 converge when ε → 0. For that sake,
without loss of generality, it is enough to estimate the integrals∫

Kn(ε−1)\Kn(ε)
|xk|Ãk Iε1 (xk)dxk and

∫
Kn(ε−1)\Kn(ε)

|xk|Ãk Iε
−1

1 (xk)dxk.

Utilizing Lemma 3.4 and n-dimensional spherical coordinates we have∫
Kn(ε−1)\Kn(ε)

|xk|Ãk Iε1 (xk)dxk ≤ Ckεn+Ã1

∫
Kn(ε−1)\Kn(ε)

|xk|−2n−Ã1dxk

= Ck|Sn−1|εn+Ã1

∫ ε−1

ε
r−n−Ã1−1dr

=
Ck|Sn−1|
n+ Ã1

(
1− ε2(n+Ã1)

)
.

Similarly, we also have∫
Kn(ε−1)\Kn(ε)

|xk|Ãk Iε
−1

1 (xk)dxk ≤ Dkεn+Ãk

∫
Kn(ε−1)\Kn(ε)

|xk|Ãkdxk

=
Dk|Sn−1|
n+ Ãk

(
1− ε2(n+Ãk)

)
.

Clearly, since n+ Ãi > 0, i = 1,2, . . . ,k, the above computation shows that J2 + J3 ≤ O(1),
when ε → 0. Hence, taking into account relation (3.58), it follows that J is bounded from
below by

K∗|Sn−1| log
1
ε2 −O(1), when ε → 0. (3.59)

Now, suppose that there exists a positive constant L∗, 0 < L∗ < K∗, such that inequal-
ity (3.48) holds with the constant L∗ instead of K∗. In that case, for the above choice
of functions f̃i, the right-hand side of inequality (3.48) becomes L∗|Sn−1| log 1

ε2 . Since

L∗|Sn−1| log 1
ε2 ≥ J, relation (3.59) implies that

(K∗ −L∗) |Sn−1| log
1
ε2 ≤ O(1), when ε → 0. (3.60)

Finally, letting ε → 0, we obtain a contradiction, since the left-hand side of inequality
(3.60) goes to infinity. This shows that the constant K∗ is the best possible in (3.48). Due
to the equivalence, K∗ is also the best possible in inequality (3.49). �
Remark 3.6 A straightforward computation shows that the parameters Ai j, providing the
inequalities from Corollary 3.3, fulfill the set of conditions (3.44) in the conjugate case.
Then, the constant L from Corollary 3.3 becomes

L =
1

Γn(s)

k

∏
i=1

Γn

(
n− nk− s

pi

)
,

and that is the best possible constant in the corresponding inequalities.

Remark 3.7 Hilbert-type inequalities from this chapter, obtained by virtue of the Selberg
integral formula, are taken from [17] and [61].
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3.5 Some related inequalities with norms

So far, in this chapter we have studied Hilbert-type inequalities established by virtue of
the Selberg integral formula. As distinguished from the previous sections, we consider
here multidimensional Hilbert-type inequalities with a homogeneous kernel and the power
weight functions whose arguments are α-norms of the corresponding vectors. Recall, if

t = (t1, t2, . . . ,tn) ∈ Rn, then α-norm (α ≥ 1) of vector t is |t|α = (t1α + t2α + · · ·+ tnα)
1
α .

We shall be concerned here with a general homogeneous kernel Kα : Rk
+ →R of degree

−s, s > 0. Hence, the constant factors in the corresponding inequalities will include the
integral

kα (β1, . . . ,βk−1) =
∫
R

k−1
+

Kα(1,t1 . . . ,tk−1)t
β1
1 · · · tβk−1

k−1 dt1 · · ·dtk−1.

The above integral is assumed to converge for β1, . . . ,βk−1 >−1 and β1 + · · ·+βk−1 +k <
s+1 (see relation (1.76), Section 1.6, Chapter 1).

On the other hand, since the arguments of the kernel and the weight functions will be
expressed by means of α-norm, constant factors in the corresponding Hilbert-type inequal-
ities will also include the area of the unit sphere in Rn. The area of the unit sphere in view
of the α-norm, denoted here by |Sn−1|α , is

|Sn−1|α =
2nΓn( 1

α )
αn−1Γ( n

α )
. (3.61)

It should be noticed here that the above formula (3.61) coincides with (3.3) when α = 2.
The following Theorem can be regarded as a vector extension of Theorem 1.19 (see

Section 1.6, Chapter 1), in view of α-norm.

Theorem 3.8 Let λ , pi, p′i,qi, i = 1,2, . . . ,k, k ≥ 2, be parameters satisfying conditions
(2.26), (2.27), and (2.30), and let Ai j, i, j = 1, . . . ,k, be such that ∑k

i=1 Ai j = 0 for j =
1, . . . ,k, qiAi j > −n, i �= j, and qi(Aii − αi) > (k − 1)n− s, where n ∈ N, s > 0, and
αi = ∑k

j=1 Ai j, i = 1,2, . . . ,k. If Kα : Rk
+ → R is a non-negative measurable homogeneous

function of degree −s and

L =
|Sn−1|(k−1)λ

α
2(k−1)nλ k

1
q1
α (n−1+q1A12, . . . ,n−1+q1A1k)

×k
1
q2
α (s− (k−1)n−1−q2(α2 −A22),n−1+q2A23, . . . ,n−1+q2A2k)

· · ·k
1
qk
α (n−1+qkAk2, . . . ,n−1+qkAk,k−1,s− (k−1)n−1−qk(αk −Akk)),

(3.62)
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then the inequalities

∫
R

nk
+

Kλ
α (|x1|α , . . . , |xk|α)

k

∏
i=1

fi(xi)dx1 . . .dxk

< L
k

∏
i=1

[∫
R

n
+

|xi|
pi
qi

[(k−1)n−s]+piαi

α f pi
i (xi)dxi

] 1
pi

(3.63)

and [∫
R

n
+

|xk|
− p′k

qk
[(k−1)n−s]−p′kαk

α

(∫
R

n(k−1)
+

Kλ
α (|x1|α , . . . , |xk|α)

×
k−1

∏
i=1

fi(xi)dx1 . . .dxk−1

)p′k
dxk

] 1
p′k

< L
k−1

∏
i=1

[∫
R

n
+

|xi|
pi
qi

[(k−1)n−s]+piαi

α f pi
i (xi)dxi

] 1
pi

(3.64)

hold for all non-negative measurable functions fi : Rn
+ → R, fi �= 0, i = 1, . . . ,k. Moreover,

these inequalities are equivalent.

Proof. We utilize Theorem 1.18 (see Section 1.6) with the homogeneous kernel
Kα (|x1|α , . . . , |xk|α), the weight functions φi j(x j) = |x j|Ai j , and Lebesgue measures on
Rn

+. Using notation from Theorem 1.18, it is enough to calculate the functions Fi(xi),
i = 1, . . . ,k. Utilizing n-dimensional spherical coordinates we find that

Fq1
1 (x1) =

∫
R

n(k−1)
+

Kα(|x1|α , . . . , |xk|α)
k

∏
j=2

|x j|q1A1 j dx2 · · ·dxk

=
|Sn−1|k−1

α
2(k−1)n

∫
R

k−1
+

Kα(|x1|α ,t2, . . . ,tk)
k

∏
j=2

t
n−1+q1A1 j
j dt2 · · ·dtk.

Moreover, due to homogeneity of the kernel Kα and using the change of variables ui =
ti

|x1|α , i = 2, . . . ,k, we obtain

Fq1
1 (x1) =

|Sn−1|k−1
α

2(k−1)n

∫
R

k−1
+

|x1|−s
α Kα (1,u2, . . . ,uk)

×
k

∏
j=2

(|x1|αu j)n−1+q1A1 j |x1|k−1
α du2 . . .duk

=
|Sn−1|k−1

α
2(k−1)n |x1|(k−1)n−s+q1(α1−A11)

α kα(n−1+q1A12, . . . ,n−1+q1A1k).
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Similarly,

Fq2
2 (x2) =

∫
R

n(k−1)
+

Kα(|x1|α , . . . , |xk|α)
k

∏
j=1, j �=2

|x j|q2A2 j dx1dx3 . . .dxk

=
|Sn−1|k−1

α
2(k−1)n

∫
R

k−1
+

t−s
1 Kα (1, |x2|α/t1,t3/t1, . . . ,tk/t1)

×
k

∏
j=1, j �=2

t
n−1+q2A2 j
j dt1dt3 . . .dtk.

Hence, the change of variables t1 = |x2|αu−1
2 , ti = |x2|αu−1

2 ui, i = 3, . . . ,k, with the Jacobian

∂ (t1,t3, . . . ,tk)
∂ (u2,u3, . . . ,uk)

= |x2|k−1
α u−k

2 ,

yields

Fq2
2 (x2) =

|Sn−1|k−1
α

2(k−1)n |x2|(k−1)n−s+q2(α2−A22)
α

×
∫
R

k−1
+

Kα (1,u2, . . . ,uk)u
s−(k−1)n−q2(α2−A22)
2

k

∏
j=3

u
n−1+q2A2 j
j du2 . . .duk

=
|Sn−1|k−1

α
2(k−1)n |x2|(k−1)n−s−q2(α2−A22)

α

×kα(s− (k−1)n−1−q2(α2 −A22),n−1+q2A23, . . . ,n−1+q2A2k).

In a similar manner we obtain

Fqi
i (xi) =

|Sn−1|k−1
α

2(k−1)n |xi|(k−1)n−s+qi(αi−Aii)
α

×kα(n−1+qiAi2, . . . ,n−1+qiAi,i−1,s− (k−1)n−1−qi(αi −Aii),
n−1+qiAi,i+1, . . . ,n−1+qiAik), i = 3, . . . ,k,

which yields inequalities (3.63) and (3.64) with the sign ≤. Finally, Remark 1.21 (see
Section 1.6) provides the sharpness of the obtained inequalities. �

In order to obtain the best constants in (3.63) and (3.64), we consider now these in-
equalities in the conjugate setting. Similarly to the previous section, we impose certain
conditions on parameters Ai j, i, j = 1,2, . . . ,k, to obtain a simpler form of the constant L
defined by (3.62). More precisely, if the parameters Ai j fulfill conditions

n+ p jA ji = s− (k−1)n− pi(αi −Aii), j �= i, i, j = 1,2, . . . ,k, (3.65)

then, in the conjugate case, constant L reduces to

L∗ =
|Sn−1|(k−1)

α
2(k−1)n kα(n−1+ Ã2, . . . ,n−1+ Ãk), (3.66)
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where Ãi = p1A1i, i �= 1, and Ã1 = pkAk1. Moreover, inequalities (3.63) and (3.64) reduce
to

∫
R

nk
+

Kα(|x1|α , . . . , |xk|α)
k

∏
i=1

fi(xi)dx1 . . .dxk

< L∗
k

∏
i=1

[∫
R

n
+

|xi|−n−piÃi
α f pi

i (xi)dxi

] 1
pi

(3.67)

and [∫
R

n
+

|xk|(1−p′k)(−n−pkÃk)
α

(∫
R

n(k−1)
+

Kα(|x1|α , . . . , |xk|α)

×
k−1

∏
i=1

fi(xi)dx1 . . .dxk−1

)p′k
dxk

] 1
p′k

< L∗
k−1

∏
i=1

[∫
R

n
+

|xi|−n−piÃi
α f pi

i (xi)dxi

] 1
pi

. (3.68)

The following result asserts that L∗ is the best possible constant in inequalities (3.67)
and (3.68), under some weak conditions on the kernel Kα .

Theorem 3.9 Suppose that real parameters Ai j, i, j = 1, . . . ,k, fulfill conditions of The-
orem 3.8 (conjugate case) and conditions given in (3.65). If the kernel Kα : Rk

+ → R

satisfies conditions of Theorem 3.8 and for every i = 2, . . . ,k,

Kα(1, t2, . . . ,ti, . . . ,tk) ≤CKα(1,t2, . . . ,0, . . . ,tk), 0 ≤ ti ≤ 1, t j ≥ 0, j �= i,

for some C > 0, then L∗ is the best possible constant in inequalities (3.67) and (3.68).

Proof. Suppose that inequality (3.67) holds for all non-negative measurable functions
fi, i = 1,2, . . . ,k, when L∗ is replaced with a smaller positive constant L1. To prove our
assertion, we consider inequality (3.67) with the constant L1 and the functions f̃i,ε : Rn

+ →
R, defined by

f̃i,ε (xi) =

{
0, |xi|α < 1

|xi|α Ãi− ε
pi , |xi|α ≥ 1

, i = 1, . . . ,k,

where 0 < ε < min1≤i≤k{pi + piÃi}. Utilizing n-dimensional spherical coordinates, the
right-hand side of (3.67) becomes

L1

k

∏
i=1

[ ∫
|xi|α≥1

|xi|−n−ε
α dxi

] 1
pi

=
L1|Sn−1|α

2n

∫ ∞

1
t−1−εdt =

L1|Sn−1|α
2nε

. (3.69)
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Further, let J denote the left-hand side of inequality (3.67), for the above choice of
functions f̃i,ε . Using the change of variables ui = ti

t1
, i �= 2, we have

J =
∫
|x1|α≥1

· · ·
∫
|xk|α≥1

Kα(|x1|α , . . . , |xk|α)
k

∏
i=1

|xi|
Ãi− ε

pi
α dx1 . . .dxk

=
|Sn−1|kα

2kn

∫ ∞

1
· · ·

∫ ∞

1
Kα(t1, . . . ,tk)

k

∏
i=1

t
n−1+Ãi− ε

pi
i dt1 . . .dtk

=
|Sn−1|kα

2kn

∫ ∞

1
t
−1− ε

β
1

(∫ ∞

1
t1

· · ·
∫ ∞

1
t1

Kα(1,u2, . . . ,uk)
k

∏
i=2

u
n−1+Ãi− ε

pi
i du2 . . .duk

)
dt1,

so, J can be estimated from below as follows:

J ≥ |Sn−1|kα
2kn

∫ ∞

1
t−1−ε
1

(∫ ∞

0
· · ·

∫ ∞

0
Kα (1,u2, . . . ,uk)

k

∏
i=2

u
n−1+Ãi− ε

pi
i du2 . . .duk

)
dt1

−|Sn−1|kα
2kn

∫ ∞

1
t−1−ε
1

k

∑
j=2

I j(t1)dt1, (3.70)

where

I j(t1) =
∫
D j

Kα(1,u2, . . . ,uk)
k

∏
i=2

u
n−1+Ãi− ε

pi
i du2 . . .duk, j = 2, . . . ,k,

and D j = {(u2, . . . ,uk);0 < u j < 1
t1

,0 < ul < ∞, l �= j}.
Now, the rest of the proof follows the same lines as the proof of Theorem 1.20 (see

Section 1.6, Chapter 1). Namely, utilizing the estimate
∫ ∞
1 t−1−ε

1 ∑k
j=2 I j(t1)dt1 ≤ O(1),

(3.69), and (3.70), it follows that L∗ ≤ L1, which contradicts assumption that L1 is smaller
than L∗. �

Observe that Theorem 3.9 may be regarded as an extension of Theorem 1.20 from
Section 1.6.

Remark 3.8 Let ks : R2
+ → R be a non-negative homogeneous kernel of degree −s,

s > 0, and let parameters A1 and A2 fulfill relation qA1 + pA2 = m + n − s, where p
and q are conjugate parameters, and m,n ∈ N. Assuming that there exists δ > 0 such
that cs(η) =

∫ ∞
0 ks(1,t)t−ηdt < ∞ for η ∈ [pA2 +1−n− δ , pA2+1−n], Yang and Krnić

[167], obtained a pair of equivalent inequalities∫
R

m
+

∫
R

n
+

ks
(|x|α , |y|β

)
f (x)g(y)dxdy

≤Cs

[∫
R

m
+

|x|pqA1−m
α f p(x)dx

] 1
p
[∫

R
n
+

|y|pqA2−n
β gq(y)dy

] 1
q
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and {∫
R

n
+

|y|β pqA1+p(s−m)−n
[∫

R
m
+

ks
(|x|α , |y|β

)
f (x)dx

]p

dy

} 1
p

≤Cs

[∫
R

m
+

|x|pqA1−m
α f p(x)dx

] 1
p

,

with the best possible constant expressed in terms of the usual Gamma function:

Cs =

[
Γm

(
1
α
)

αm−1Γ
(

m
α
)] 1

q
⎡⎣ Γn

(
1
β

)
β n−1Γ

(
n
β

)
⎤⎦

1
p

cs(pA2 +1−n).

It should be noticed here that these inequalities include two different norms | · |α and | · |β .
Obviously, the above inequalities may also be extended to a multidimensional setting, as
in Theorem 3.8.

To conclude this section we consider Theorem 3.8 for some particular choices of the
kernel Kα and parameters Ai j, i, j = 1,2, . . .k. More precisely, we are concerned here with

the homogeneous kernel Kα(t1,t2, . . . ,tk) =
(
∑k

i=1 tβi
)−s

of degree −β s. In this case we
have

kα(β1, . . . ,βk−1) =
1

β k−1Γ(s)
Γ

(
s−

k−1

∑
i=1

βi +1
β

)
k−1

∏
i=1

Γ
(
βi +1
β

)
(see Lemma 1.4, Section 1.6, Chapter 1), so Theorem 3.8 yields the following result:

Corollary 3.6 Let λ , pi, p′i,qi, i = 1,2, . . . ,k, k≥ 2, be parameters satisfying (2.26), (2.27),
and (2.30), and let Ai j, i, j = 1, . . . ,k, be real parameters such that ∑k

i=1 Ai j = 0 for j =
1, . . . ,k, qiAi j > −n, i �= j, and qi(Aii −αi) > (k− 1)n− β s, where αi = ∑k

j=1 Ai j, i =
1,2, . . . ,k, n ∈ N, and s > 0. If

K =
Γλ (k−1)n ( 1

α
)

βλ (k−1)αλ (n−1)(k−1)Γλ (k−1)
(

n
α
)
Γλ (s)

×
k

∏
i=1

Γ
1
qi

(
s− (k−1)n+qiαi −qiAii

β

) k

∏
i, j=1,i�= j

Γ
1
qi

(
n+qiAi j

β

)
,

then the inequalities

∫
R

nk
+

∏k
i=1 fi(xi)(

∑k
i=1 |xi|αβ

)λ s
dx1dx2 · · ·dxk

≤ K
k

∏
i=1

[∫
R

n
+

|xi|α
pi(k−1)n−piβs

qi
+piαi f pi

i (xi)dxi

] 1
pi

(3.71)
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and {∫
R

n
+

|xk|α− pk
′

qk
[(k−1)n−β s]−pk

′αk

×

⎡⎢⎣∫
R

n(k−1)
+

∏k−1
i=1 fi(xi)(

∑k
i=1 |xi|αβ

)λ s
dx1dx2 · · ·dxk−1

⎤⎥⎦
pk

′

dxk

} 1
pk

′

≤ K
k−1

∏
i=1

[∫
R

n
+

|xi|α
pi(k−1)n−piβs

qi
+piαi f pi

i (xi)dxi

] 1
pi

(3.72)

hold for all non-negative measurable functions fi : Rn
+ → R, i = 1, . . . ,k, and are equiva-

lent.

Remark 3.9 Introducing the parameters Aii = (nk− s)λqi−1
q2
i

and Ai j = (s−nk) 1
qiq j

, i �= j,

it follows that ∑k
i=1 Ai j = ∑k

j=1 Ai j = 0 for i, j = 1,2, . . . ,k. Hence, in this setting inequali-
ties (3.71) and (3.72) become

∫
R

nk
+

∏k
i=1 fi(xi)(

∑k
i=1 |xi|αβ

)λ s
dx1dx2 · · ·dxk ≤ L

k

∏
i=1

[∫
R

n
+

|xi|α
pi(k−1)n−piβs

qi f pi
i (xi)dxi

] 1
pi

and⎧⎪⎨⎪⎩
∫
R

n
+

|xk|α− pk
′

qk
[(k−1)n−β s]

[∫
(R

n
+)k−1

∏k−1
i=1 fi(xi)(

∑k
i=1 |xi|αβ

)λ s
dx1dx2 · · ·dxk−1

]pk
′

dxk

⎫⎪⎬⎪⎭
1

pk
′

≤ L
k−1

∏
i=1

[∫
R

n
+

|xi|α
pi(k−1)n−piβs

qi f pi
i (xi)dxi

] 1
pi

,

with the constant factor

L =
Γλ (k−1)n

(
1
α
)

βλ (k−1)αλ (n−1)(k−1)Γλ (k−1)
(

n
α
)
Γλ (s)

k

∏
i=1

Γ
1
qi

(
β s+n(pi− k)

β pi

)
×

k

∏
i=1

Γλ− 1
qi

(
β s+n(qi− k)

βqi

)
,

where we assume that nk−β s < nmin{pi,q j, i, j = 1,2, . . .k}.
Observe that the above parameters Ai j fulfill the set of conditions (3.65) in the conju-

gate case, that is, when λ = 1 and pi = qi, i = 1,2, . . . ,n. Therefore, in the conjugate case,
the above constant L is the best possible in the corresponding inequalities.
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Remark 3.10 Let Ai ∈R, i = 1,2, . . . ,k. Defining the parameters Aii = Ai, Aii+1 =−Ai+1,
Ai j = 0 for |i− j|> 1, i, j = 1,2, . . .k, where indices are taken modulo k, we have∑n

i=1 Ai j =
Aj−1 j +Aj j = −Aj +Aj = 0. Hence, Corollary 3.6 yields

∫
R

nk
+

∏k
i=1 fi(xi)(

∑k
i=1 |xi|αβ

)λ s
dx1dx2 · · ·dxk

≤ M
k

∏
i=1

[∫
R

n
+

|xi|α
pi(k−1)n−piβs

qi
+pi(Ai−Ai+1) f pi

i (xi)dxi

] 1
pi

(3.73)

and {∫
R

n
+

|xk|α− pk
′

qk
[(k−1)n−β s]−pk

′(Ak−A1)

×

⎡⎢⎣∫
R

n(k−1)
+

∏k−1
i=1 fi(xi)(

∑k
i=1 |xi|αβ

)λ s
dx1dx2 · · ·dxk−1

⎤⎥⎦
pk

′

dxk

} 1
pk

′

≤ M
k−1

∏
i=1

[∫
R

n
+

|xi|α
pi(k−1)n−piβs

qi
+pi(Ai−Ai+1) f pi

i (xi)dxi

] 1
pi

, (3.74)

with the constant factor

M =
Γλ (k−1)n ( 1

α
)
Γλ (k−2)

(
n
β

)
βλ (k−1)αλ (n−1)(k−1)Γλ (k−1)

(
n
α
)
Γλ (s)

k

∏
i=1

Γ
1
qi

(
β s+qiAi+1− (k−1)n

β

)
×

k

∏
i=1

Γ
1
qi

(
n−qiAi+1

β

)
,

provided that Ai ∈
( (k−1)n−β s

qi−1
, n

qi−1

)
, i = 1,2, . . . ,k.

Remark 3.11 Hilbert-type inequalities in this section are established in [59] and [127].
For some related particular results, the reader is referred to [125] and [174]. In addition,
results from this section for n = 1 and β = 1 were also studied in [12], [111], and [156].



Chapter4
Applying the Euler-Maclaurin
summation formula

The starting point in this chapter is the well-known Euler-Maclaurin summation formula
which asserts that∫ b

a
f (x)dx =

(b−a)
2

[ f (a)+ f (b)]

−
n−1

∑
k=1

(b−a)2k

(2k)!
B2k

[
f (2k−1)(b)− f (2k−1)(a)

]
+ρ2n( f ), (4.1)

where Bk is the corresponding Bernoulli number and the remainder ρ2n( f ) is

ρ2n( f ) =
(b−a)2n−1

(2n−1)!

∫ b

a
f (2n−1)(t)γ∗2n−1

(
b− t
b−a

)
dt

or

ρ2n( f ) =
(b−a)2n

(2n)!

∫ b

a
f (2n)(t)γ∗2n

(
b− t
b−a

)
dt,

depending on whether the function f : (a,b) → R has a continuous derivative of order
2n− 1 or 2n, that is, f is of class C2n−1 or C2n. Here, γ∗n denotes the periodic function
γ∗n (x) = B∗

n(x)−Bn, where B∗
n(x) and Bn are the corresponding Bernoulli polynomial and

the Bernoulli number. For a comprehensive inspection on Bernoulli polynomials and num-
bers, as well as on the above summation formula, the reader is referred to [1] and [67].

125
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The Euler-Maclaurin summation formula is a very useful tool in obtaining refinements
of discrete Hilbert-type inequalities. Recently, Mingzhe and Xuemei [100], obtained the
following refinement of the Hilbert-type inequality by means of the above summation for-
mula.

Theorem 4.1 Suppose p ≥ q > 1 are conjugate exponents. If 1− q
p < s ≤ 2, then the

inequality

∞

∑
m=0

∞

∑
n=0

ambn

(m+n+1)s <

[
∞

∑
m=0

ωq(s,m)ap
m

] 1
p
[

∞

∑
n=0

ωp(s,n)bq
n

] 1
q

(4.2)

holds for all non-negative sequences (am)m∈N0
, (bn)n∈N0

�= 0, where

ωr(s,n) =
(
n+

1
2

)1−s
B

(
p−2+ s

p
,
q−2+ s

q

)
− (2− s)(r+2− s)

4r(r+ s−2)(2n+1)s− 2−s
r

.

Since B
( p−2+s

p , q−2+s
q

)
= π/sin(π/p) for s = 1, the above inequality (4.2) yields a refine-

ment of the Hilbert double series theorem (1.4) (see Chapter 1).
On the other hand, Jichang and Debnath obtained in [41] the following refinement

dealing with a symmetric homogeneous kernel of class C4.

Theorem 4.2 Suppose 1
p + 1

q = 1, p > 1, and 1
2 ≤ μ < 1

2 min{p,q}. Further, let K :
R+ ×R+ → R be a non-negative homogeneous symmetric function of degree −s, s > 0,

and of class C4. If (−1)n ∂ nK
∂yn (1,y) ≥ 0, n = 0,1,2,3,4, and ∂mK

∂ym (1,y)y−
2μ
r → 0 when

y → ∞, m = 0,1, then the inequality

∞

∑
m=0

∞

∑
n=0

K(m+ μ ,n+ μ)ambn

<

{
∞

∑
m=0

[
I(q,μ)−φq(m,s,μ)

]
(m+ μ)1−sap

m

} 1
p

×
{

∞

∑
n=0

[
I(p,μ)−φp(n,s,μ)

]
(n+ μ)1−sbq

n

} 1
q

(4.3)

holds for all non-negative sequences (am)m∈N0
, (bn)n∈N0

�= 0, where

φr(m,s,μ) =
(

μ
m+ μ

)1− 2μ
r
{

K

(
1,

μ
m+ μ

)[
1

1− 2μ
r

− 1
2μ

(
1+

1
3r

)]

− 1
24μ(m+ μ)

∂K
∂y

(
1,

μ
m+ μ

)}
> 0

and I(r,μ) =
∫ ∞
0 K(1,u)u−

2μ
r du < ∞.
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Motivated by Theorems 4.1 and 4.2, in this chapter we develop some general meth-
ods for improving discrete Hilbert-type inequalities via the Euler-Maclaurin summation
formula. More precisely, the method used in the proof of Theorem 4.1 can be utilized
in obtaining refinements of Hilbert-type inequalities with a general homogeneous kernel
of class C2, fulfilling some additional properties. Similarly, Theorem 4.2 can also be ex-
tended to include homogeneous kernels of class C4 which are generally not symmetric.
Such extensions will be given in both equivalent forms, as in the previous chapters, and in
the setting of non-conjugate parameters.

Finally, the last section of this chapter is dedicated to some particular refinements of
Hilbert-type inequalities with the kernel K(x,y) = (x+ y)−s, s > 0. Such extensions will
also be established by virtue of the Euler-Maclaurin summation formula.

4.1 Inequalities for kernels of class C2

4.1.1 Auxiliary results

In order to obtain refinements of discrete Hilbert-type inequalities with a homogeneous
kernel of class C2, we first provide some auxiliary results, derived by virtue of the Euler-
Maclaurin summation formula.

Lemma 4.1 Let f : [M,N] → R, M,N ∈ N, be a continuously differentiable function.
Then the following equality holds

N

∑
k=M

f (k) =
∫ N

M
f (x)dx+

1
2

[ f (M)+ f (N)]+
∫ N

M
γ∗1 (x) f ′(x)dx, (4.4)

where γ∗1 (x) = x−�x�− 1
2 .

Proof. Making use of the Euler-Maclaurin summation formula (4.1) with a = K and
b = K +1, where k = M,M +1, . . . ,N−1, we obtain∫ K+1

K
f (x)dx =

f (K)+ f (K +1)
2

+
∫ K+1

K
γ∗1 (x) f ′(x)dx,

so the result follows by summing the above equalities. �

Remark 4.1 In particular, if the function f from the previous lemma is defined on [0,∞),
and f (x) → 0+ when x → ∞, then relation (4.4) yields (see also [100]):

∞

∑
k=0

f (k) =
∫ ∞

0
f (x)dx+

1
2

f (0)+
∫ ∞

0
γ∗1 (x) f ′(x)dx.

Utilizing the fact that γ∗1 (x) = x−�x�− 1
2 is a periodic function with the period equal to 1,

we also obtain the following estimate:
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Lemma 4.2 Let ϕ : [M,N] → R, M,N ∈ N, be strictly decreasing function. Then,

−
∫ N

M
γ∗1 (x)ϕ(x)dx <

1
8

[ϕ(M)−ϕ(N)] , (4.5)

where γ∗1 (x) = x−�x�− 1
2 .

Proof. Since
∫ K+1
K γ∗1 (x)dx = 0, K ∈ N, we have

−
∫ N

M
γ∗1 (x)ϕ(x)dx =

N−1

∑
k=M

∫ k+1

k
−γ∗1 (x)

(
ϕ(x)−ϕ(k+

1
2
)
)

dx

=
N−1

∑
k=M

∫ k+ 1
2

k
−γ∗1 (x)

(
ϕ(k)−ϕ(k+

1
2
)
)

dx

+
N−1

∑
k=M

∫ k+1

k+ 1
2

γ∗1 (x)
(
ϕ(k+

1
2
)−ϕ(k+1)

)
dx+

N−1

∑
k=M

αk

=
1
8

(ϕ(M)−ϕ(N))+
N−1

∑
k=M

αk,

where

αk =
∫ k+ 1

2

k
−γ∗1 (x)(ϕ(x)−ϕ(k))dx+

∫ k+1

k+ 1
2

γ∗1 (x)(ϕ(k+1)−ϕ(x))dx.

Finally, since ϕ is strictly decreasing, it follows that αk < 0 and (4.5) is proved. �

Remark 4.2 Assuming that ϕ is defined on [0,∞) and ϕ(x)→ 0+ when x→∞, inequality
(4.5) reads:

−
∫ ∞

0
γ∗1 (x)ϕ(x)dx <

1
8
ϕ(0).

Now, by virtue of the above lemmas, we derive the following estimate referring to a
homogeneous kernel of class C2.

Lemma 4.3 Let K : R+ ×R+ → R be a non-negative homogeneous function of degree
−s, s > 0, and of class C2, such that

∂K
∂y

(x,y) < 0,
∂ 2K
∂y2 (x,y) > 0 lim

y→∞
K(x,y) = lim

y→∞

∂K
∂y

(x,y) = 0, x ∈ R+. (4.6)

Further, let f and Fq′ be defined by

f (y) = K(m+ μ ,y+ μ)
(m+ μ)q′A1

(y+ μ)q′A2
(4.7)

and

Fq′(m,s,μ) = (m+ μ)1−s+q′(A1−A2)
∫ μ

m+μ

0
K(1,y)y−q′A2dy, (4.8)
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where A1, A2, μ , and q′ are real parameters such that 0 ≤ A2 < 1
q′ and μ ≥ 1

2 . Then,

Fq′(m,s,μ)− 1
2

f (0)−
∫ ∞

0
γ∗1 (y) f ′(y)dy

>
(m+ μ)q′A1

μq′A2

[
K(m+ μ ,m+ μ)

(
μ

1−q′A2
− q′A2

8μ
− 1

2

)

−∂K
∂y

(m+ μ ,m+ μ)
(
μ2

2
− 1

8

)]
, (4.9)

where γ∗1 (y) = y−�y�− 1
2 .

Proof. Utilizing the integration by parts, we obtain the following identity:

∫ μ
m+μ

0
K(1,y)y−q′A2dy

= K
(
1,

μ
m+ μ

) μ1−q′A2

(m+ μ)1−q′A2(1−q′A2)
− 1

1−q′A2

∫ μ
m+μ

0

∂K
∂y

(1,y)y1−q′A2dy.

In addition, since ∂ 2K
∂y2 (x,y) > 0 for all x ∈ R+, it follows that the function ∂K

∂y (1,y) is
strictly increasing, so that

∫ μ
m+μ

0
K(1,y)y−q′A2dy

> K
(
1,

μ
m+ μ

) μ1−q′A2

(m+ μ)1−q′A2(1−q′A2)
− ∂K

∂y

(
1,

μ
m+ μ

)∫ μ
m+μ

0
y1−q′A2dy

≥ K
(
1,

μ
m+ μ

) μ1−q′A2

(m+ μ)1−q′A2(1−q′A2)
− 1

2
∂K
∂y

(
1,

μ
m+ μ

) μ2−q′A2

(m+ μ)2−q′A2
.

Now, taking into account the homogeneity of K, the above estimate yields:

Fq′(m,s,μ) >
(m+ μ)q′A1

μq′A2−1

[
1

1−q′A2
K(m+ μ ,μ)− μ

2
∂K
∂y

(m+ μ ,μ)
]
. (4.10)

On the other hand, it is obvious that the function − f ′ fulfills conditions of Lemma 4.2.
Moreover, since − f ′(x) → 0+, when x → ∞, relation (4.5) provides the estimate

∫ ∞

0
γ∗1 (y) f ′(y)dy <

(m+ μ)q′A1

μq′A2

[
q′A2

8μ
K(m+ μ ,μ)− 1

8
∂K
∂y

(m+ μ ,μ)
]
. (4.11)
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Clearly, the above estimates (4.10) and (4.11) imply the inequality

Fq′(m,s,μ)− 1
2

f (0)−
∫ ∞

0
γ∗1 (y) f ′(y)dy

>
(m+ μ)q′A1

μq′A2

[
K(m+ μ ,μ)

(
μ

1−q′A2
− q′A2

8μ
− 1

2

)

−∂K
∂y

(m+ μ ,μ)
(
μ2

2
− 1

8

)]
.

Finally, since ∂K
∂y (x,y) < 0 and ∂ 2K

∂y2 (x,y) > 0, we have K(m + μ ,μ) > K(m + μ ,m + μ)

and ∂K
∂y (m+ μ ,μ) < ∂K

∂y (m+ μ ,m+ μ), so (4.9) holds. �

Remark 4.3 It should be noticed here that the right-hand side of inequality (4.9) is non-

negative since μ
1−q′A2

− q′A2
8μ − 1

2 ≥ 0 and μ ≥ 1
2 .

Since we deal with homogeneous kernels which are in general not symmetric, we shall
also use the following estimate complementary to (4.9).

Lemma 4.4 Let K : R+ ×R+ → R be a non-negative homogeneous function of degree
−s, s > 0, and of class C2, such that

∂K
∂x

(x,y) < 0,
∂ 2K
∂x2 (x,y) > 0, lim

x→∞
K(x,y) = lim

x→∞

∂K
∂x

(x,y) = 0, y ∈ R+. (4.12)

Further, let f and Fp′ be defined by

f (x) = K(x+ μ ,n+ μ)
(n+ μ)p′A2

(x+ μ)p′A1
(4.13)

and

Fp′(n,s,μ) = (n+ μ)1−s+p′(A2−A1)
∫ μ

n+μ

0
K(x,1)x−p′A1dx, (4.14)

where A1, A2, μ , and p′ are real parameters such that 0 ≤ A1 < 1
p′ and μ ≥ 1

2 . Then,

Fp′(n,s,μ)− 1
2

f (0)−
∫ ∞

0
γ∗1 (x) f ′(x)dx

>
(n+ μ)p′A2

μ p′A1

[
K(m+ μ ,m+ μ)

(
μ

1− p′A1
− p′A1

8μ
− 1

2

)

−∂K
∂x

(m+ μ ,m+ μ)
(
μ2

2
− 1

8

)]
, (4.15)

where γ∗1 (x) = x−�x�− 1
2 .

Remark 4.4 Similarly to (4.9), the right-hand side of inequality (4.15) is also non-

negative since μ
1−p′A1

− p′A1
8μ − 1

2 ≥ 0 and μ ≥ 1
2 .
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4.1.2 Refined discrete Hilbert-type inequalities

Estimates from the previous subsection enable us to derive refinements of discrete Hilbert-
type inequalities with homogeneous kernels. Our aim here is to extend Theorem 4.1 to
include homogeneous kernels of class C2. Similarly to Section 1.3 (Chapter 1) we use
the notation k(α) =

∫ ∞
0 K(1,u)u−αdu, where K : R+ ×R+ → R is a non-negative homo-

geneous function of degree −s, s > 0, provided that k(α) < ∞ for min{1− s,0} < α <
max{1,2− s}. The main result is presented in the setting of non-conjugate exponents.

Theorem 4.3 Let p, q, and λ be as in (2.1) and (2.2), and let K : R+×R+ →R be a non-
negative homogeneous function of degree −s, s > 0, and of class C2, fulfilling conditions
(4.6) and (4.12). If A1 ∈

(
0, 1

p′
)
, A2 ∈

(
0, 1

q′
)
, and μ ≥ 1

2 , then the inequalities

∞

∑
m=0

∞

∑
n=0

Kλ (m+ μ ,n+ μ)ambn

<

[
∞

∑
m=0

Ω
p
q′
1 (m,q′)ap

m

] 1
p
[

∞

∑
n=0

Ω
q
p′
2 (n, p′)bq

n

] 1
q

(4.16)

and ⎡⎣ ∞

∑
n=0

Ω
− q′

p′
2 (n, p′)

(
∞

∑
m=0

Kλ (m+ μ ,n+ μ)am

)q′
⎤⎦ 1

q′

<

[
∞

∑
m=0

Ω
p
q′
1 (m,q′)ap

m

] 1
p

(4.17)

hold for all non-negative sequences (am)m∈N0
and (bn)n∈N0

�= 0, where Ωi(h,r) = (h +
μ)1−s+r(Ai−Ai+1)k(αi)−Γi(h,r), i = 1,2, α1 = q′A2, α2 = 2− s− p′A1, and

Γi(h,r) =
(h+ μ)rAi

μ rAi+1
·
[
K(h+ μ ,h+ μ)

(
μ

1− rAi+1
− rAi+1

8μ
− 1

2

)
− ∂K

∂xi+1
(h+ μ ,h+ μ)

(
μ2

2
− 1

8

)]
, x1 = x,x2 = y.

Moreover, these inequalities are equivalent.

Proof. It is enough to show inequality (4.16) since the equivalent form (4.17) follows
from Theorem 2.1 (see also Theorem 1.10, Chapter 1). If we rewrite (2.9) (Theorem 2.1)
with the weight functions ϕ(x) = (x+ μ)A1 , ψ(y) = (y+ μ)A2 , and the counting measure,
we obtain the inequality

∞

∑
m=0

∞

∑
n=0

Kλ (m+ μ ,n+ μ)ambn ≤
[

∞

∑
m=0

Φ
p
q′ (q′)ap

m

] 1
p
[

∞

∑
n=0

Φ
q
p′ (p′)bq

n

] 1
q

,

where the weight functions are defined by Φ(q′) = ∑∞
n=0 K(m + μ ,n + μ) (m+μ)q

′A1

(n+μ)q′A2
and

Φ(p′) = ∑∞
m=0 K(m+ μ ,n+ μ) (n+μ)p′A2

(m+μ)p′A1
.
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On the other hand, the function f defined by (4.7) is continuously differentiable on
[0,∞) and f (y) → 0+, when y → ∞. Hence, in view of Lemma 4.1 we have

Φ(q′) =
∫ ∞

0
f (y)dy+

1
2

f (0)+
∫ ∞

0
γ∗1 (y) f ′(y)dy.

Moreover, the homogeneity of the kernel K implies that∫ ∞

0
f (y)dy = (m+ μ)1−s+q′(A1−A2)k(q′A2)−Fq′(m,s,μ),

where Fq′(m,s,μ) is defined by (4.8). Clearly, the above two relations yield

Φ(q′) = (m+ μ)1−s+q′(A1−A2)k(q′A2)−
(

Fq′(m,s,μ)− 1
2

f (0)−
∫ ∞

0
γ∗1 (y) f ′(y)dy

)
,

that is, Φ(q′) < Ω1(m,q′), by virtue of inequality (4.9). Analogously, by virtue of (4.15)
we obtain Φ(p′) < Ω2(n, p′), so (4.16) is proved. �

The kernel K(x,y) = (x+ y)−s, s > 0, fulfills conditions of Theorem 4.3. Now, con-
sidering the above theorem with this kernel and the parameters A1 = A2 = 2−s

p′q′ , μ = 1
2 , we

obtain an extension of Theorem 4.1 to non-conjugate case.

Corollary 4.1 Let p, q, and λ satisfy (2.1) and (2.2), and let

max

{
1−min

{
1

p′ −1
,

1
q′ −1

}
,2−min{p′,q′}

}
< s ≤ 2.

Then the inequalities

∞

∑
m=0

∞

∑
n=0

ambn

(m+n+1)λ s
<

[
∞

∑
m=0

Ω
p
q′
p′ (m)ap

m

] 1
p
[

∞

∑
n=0

Ω
q
p′
q′ (n)bq

n

] 1
q

(4.18)

and ⎡⎣ ∞

∑
n=0

Ω
− q′

p′
q′ (n)

(
∞

∑
m=0

am

(m+n+1)λ s

)q′
⎤⎦ 1

q′

<

[
∞

∑
m=0

Ω
p
q′
p′ (m)ap

m

] 1
p

(4.19)

hold for all non-negative sequences (am)m∈N0
, (bn)n∈N0

�= 0, where

Ωr(h) =
(
h+

1
2

)1−s
B

(
r+ s−2

r
,
rs− r− s+2

r

)
− (2− s)(r+2− s)

4r(r+ s−2)(2h+1)s− 2−s
r

.

Moreover, these inequalities are equivalent.

In the sequel we derive a version of Theorem 4.3 dealing with finite sums. The corre-
sponding results will include the weight functions

Φi(h,r) = (h+ μ)1−s+r(Ai−Ai+1)k(αi)− (h+ μ)rAi

(M + μ)rAi+1
Λi(h,r)

− (h+ μ)rAi

(N + μ)rAi+1
Δi(h,r), i = 1,2, (4.20)
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where

Λi(h,r) = Ki(h,M)
[

M + μ
1− rAi+1

− rAi+1

8(M + μ)
− 1

2

]
− ∂Ki

∂xi+1
(h,M)

[
(M + μ)2

2
− 1

8

]
Δi(h,r) = Ki(h,N)

[
N + μ

s+ rAi+1−1
+

rAi+1

8(N + μ)
− 1

2

]
− (h+ μ)(N + μ)

s(s+1)
∂Ki

∂xi
(h,N)

−1
8

∂Ki

∂xi+1
(h,N),

α1 = q′A2, α2 = 2− s− p′A1, x1 = x, x2 = y, K1(h,H) = K(h+μ ,H +μ), and K2(h,H) =
K(H + μ ,h+ μ).

Theorem 4.4 Let p, q, and λ satisfy (2.1) and (2.2), and let K : R+×R+ → R be a non-
negative homogeneous function of degree −s, s > 0, and of class C2, fulfilling conditions

∂K
∂x

(x,y) < 0,
∂ 2K
∂x2 (x,y) > 0,

∂K
∂y

(x,y) < 0,
∂ 2K
∂y2 (x,y) > 0.

If M,N ∈N, and A1 ∈
(
max{ 1−s

p′ ,0}, 1
p′
)
, A2 ∈

(
max{ 1−s

q′ ,0}, 1
q′
)
, μ ≥ 0, then the inequal-

ities

N

∑
m=M

N

∑
n=M

Kλ (m+ μ ,n+ μ)ambn

<

[
N

∑
m=M

Φ
p
q′
1 (m,q′)ap

m

] 1
p
[

N

∑
n=M

Φ
q
p′
2 (n, p′)bq

n

] 1
q

(4.21)

and ⎡⎣ N

∑
n=M

Φ
− q′

p′
2 (n, p′)

(
N

∑
m=M

Kλ (m+ μ ,n+ μ)am

)q′
⎤⎦

1
q′

<

[
N

∑
m=M

Φ
p
q′
1 (m,q′)ap

m

] 1
p

(4.22)

hold for all non-negative sequences (am)m∈N, (bn)n∈N �= 0, where the weight functions are
defined by (4.20). Moreover, these inequalities are equivalent.

Proof. The proof follows the same lines as the proof of Theorem 4.3, except that we
consider the bounded interval [M,N] instead of [0,∞). Applying Theorem 2.1 (Chapter 2),
we obtain inequality

N

∑
m=M

N

∑
n=M

Kλ (m+ μ ,n+ μ)ambn ≤
(

N

∑
m=M

Φ
p
q′ (q′)ap

m

) 1
p
(

N

∑
n=M

Φ
q
p′ (p′)bq

n

) 1
q

,

with the weight functionsΦ(q′) =∑N
n=M K(m+μ ,n+μ) (m+μ)q

′A1

(n+μ)q′A2
andΦ(p′)=∑N

m=M K(m

+ μ ,n+ μ) (n+μ)p′A2

(m+μ)p′A1
.
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On the other hand, applying Lemma 4.1 to the function f defined by (4.7), we have

Φ(q′) =
∫ N

M
f (y)dy+

1
2

( f (M)+ f (N))+
∫ N

M
γ∗1 (y) f ′(y)dy, (4.23)

while the homogeneity of the kernel K implies∫ N

M
f (y)dy = (m+ μ)1−s+q′(A1−A2)k(q′A2)− (m+ μ)1−s+q′(A1−A2)

×
[∫ M+μ

m+μ

0
K(1,t)t−q′A2dt +

∫ m+μ
N+μ

0
K(t,1)ts+q′A2−1dt

]
.

Finally, using (4.23), Lemma 4.2 and the same estimates as in Lemma 4.3 we haveΦ(q′) <
Φ1(m,q′), and similarly, Φ(p′) < Φ2(n, p′), which completes the proof. �

Remark 4.5 It should be noticed here that Theorem4.4 also covers Theorem4.3. Namely,
let M = 0 and N → ∞. Then, taking into account the conditions

lim
x→0

K(x,y) = lim
y→0

K(x,y) = lim
x→0

∂K
∂x

(x,y) = lim
y→0

∂K
∂y

(x,y) = 0

and μ ≥ 1
2 , Theorem 4.4 reduces to Theorem 4.3.

We conclude this section with the finite sum version of Corollary 4.1.

Corollary 4.2 Let p, q, and λ satisfy (2.1) and (2.2), and let

max

{
1−min

{
1

p′ −1
,

1
q′ −1

}
,2−min{p′,q′}

}
< s ≤ 2.

Then,
N

∑
m=M

N

∑
n=M

ambn

(m+n+1)λ s
<

[
N

∑
m=M

Φ
p
q′
p′ (m)ap

m

] 1
p
[

N

∑
n=M

Φ
q
p′
q′ (n)bq

n

] 1
q

(4.24)

and ⎡⎣ N

∑
n=M

Φ
− q′

p′
q′ (n)

(
N

∑
m=M

am

(m+n+1)λ s

)q′
⎤⎦ 1

q′

<

[
N

∑
m=M

Φ
p
q′
p′ (m)ap

m

] 1
p

, (4.25)

where the weight functions are defined by

Φr(h) =
(

h+
1
2

)1−s

B

(
r+ s−2

r
,
rs− r− s+2

r

)
−

(
2h+1
2M +1

) 2−s
r

φM,r(h)−
(

2h+1
2N +1

) 2−s
r

φN,r(h), r = p′,q′,
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φM,r(h) =
1

(M +h+1)s

[
r(2M +1)
2(r+ s−2)

− 2− s
4r(2M +1)

+
sM(M +1)

2(M +h+1)
− 1

2

]
,

φN,r(h) =
1

(N +h+1)s

[
r(2N +1)

2(rs− r− s+2)
+

2− s
4r(2N +1)

+
2(2N +1)(2h+1)+ s(s+1)

8(s+1)(N +h+1)
− 1

2

]
.

Moreover, these inequalities are equivalent.

4.2 Inequalities for kernels of class C4

4.2.1 Auxiliary results

Motivated by Theorem 4.2, in this section we deal with Hilbert-type inequalities with a
homogeneous kernel of class C4. Similarly to the previous section, we first prove a few
auxiliary results, derived by means of the Euler-Maclaurin summation formula.

Lemma 4.5 Suppose f : [M,N] → R, M,N ∈ N, is of class C4 and let f (4)(x) ≥ 0, x ∈
[M,N]. Then the following inequality holds:

N

∑
k=M

f (k) <
∫ N

M
f (x)dx+

1
2

[ f (M)+ f (N)]+
1
12

[
f ′(N)− f ′(M)

]
. (4.26)

Proof. Applying the Euler-Maclaurin summation formula to the function f : [M,N] → R,
we have

N

∑
k=M

f (k) =
∫ N

M
f (x)dx+

1
2

[ f (M)+ f (N)]+
1
12

[
f ′(N)− f ′(M)

]
+

1
24

∫ N

M
f (4)(t)(B4−B4(t−�t�))dt,

where B4 and B4(t) respectively denote the corresponding Bernoulli number and the Ber-
noulli polynomial. Since B4 = − 1

30 and the sign of B4−B4(t−�t�) is the same as the sign
of B4, we obtain (4.26). �

Remark 4.6 In particular, if the function f from the previous lemma is defined on [0,∞),
and f (x), f ′(x) → 0 when x → ∞, then relation (4.26) yields (see also [41]):

∞

∑
k=0

f (k) <

∫ ∞

0
f (t)dt +

1
2

f (0)− 1
12

f ′(0).
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The following two estimates refer to a homogeneous kernel K : R+ ×R+ → R of
degree −s, s > 0, and of class C4. Like in the previous section, the integral k(α) =∫ ∞
0 K(1,u)u−αdu is assumed to converge for min{1− s,0}< α < max{1,2− s}.

Lemma 4.6 Let K : R+ ×R+ → R be a non-negative homogeneous function of degree
−s, s > 0, and of class C4, fulfilling

(−1)n ∂ nK
∂yn (x,y) > 0, n = 1,2,3,4, and lim

y→∞
K(x,y) = lim

y→∞

∂K
∂y

(x,y) = 0, (4.27)

for all x,y ∈ R+. Further, let Θq′ be defined by

Θq′(m,s,μ) = (m+ μ)q′A1
∞

∑
n=0

K(m+ μ ,n+ μ)(n+ μ)−q′A2 , (4.28)

where A1, A2, μ , and q′ are real parameters such that 0 ≤ A2 < 1
q′ and μ ≥ 1

2 . Then,

Θq′(m,s,μ) < (m+ μ)1−s+q′(A1−A2)
[
k(q′A2)−θq′(m,s,μ)

]
, (4.29)

where

θq′(m,s,μ) =
(

μ
m+ μ

)1−q′A2
{

K

(
1,

μ
m+ μ

)[
1

1−q′A2
− 1

2μ

(
1+

q′A2

6μ

)]
− 1

24μ(m+ μ)
∂K
∂y

(
1,

μ
m+ μ

)}
.

Proof. Setting f (y) = K(m + μ ,y + μ)(m+ μ)q′A1(y+ μ)−q′A2 , we have Θq′(m,s,μ) =
∑∞

n=0 f (n), so Lemma 4.5 yields the inequality

Θq′(m,s,μ) < (m+ μ)1−s+q′(A1−A2)
[
k(q′A2)−ωq′(m,s,μ)

]
,

where

ωq′(m,s,μ) =
∫ μ

m+μ

0
K(1,t)t−q′A2dt−

(
1

2μ
+

q′A2

12μ2

)(
μ

m+ μ

)1−q′A2

K

(
1,

μ
m+ μ

)
+

1
12μ2

(
μ

m+ μ

)2−q′A2 ∂K
∂y

(
1,

μ
m+ μ

)
.

Moreover, applying the integration by parts twice, we have

∫ μ
m+μ

0
K(1, t)t−q′A2dt =

1
1−q′A2

(
μ

m+ μ

)1−q′A2

K

(
1,

μ
m+ μ

)
− 1

(1−q′A2)(2−q′A2)

(
μ

m+ μ

)2−q′A2 ∂K
∂y

(
1,

μ
m+ μ

)
+

1
(1−q′A2)(2−q′A2)

∫ μ
m+μ

0

∂ 2K
∂y2 (1, t)t2−q′A2dt.
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Finally, since the last term in the above relation is non-negative and since the inequality

1
(1−q′A2)(2−q′A2)

− 1
12μ2 >

1
24μ2

holds for 0 < q′A2 < 1 and μ ≥ 1
2 , it follows that ωq′(m,s,μ) > θq′(m,s,μ), which com-

pletes the proof. �

Since we are concerned with homogeneous kernels which are in general not symmetric,
we shall also utilize the result which is, in some way, complementary to Lemma 4.6.

Lemma 4.7 Let K : R+ ×R+ → R be a non-negative homogeneous function of degree
−s, s > 0, and of class C4, fulfilling

(−1)n ∂ nK
∂xn (x,y) > 0, n = 1,2,3,4, and lim

x→∞
K(x,y) = lim

x→∞

∂K
∂x

(x,y) = 0, (4.30)

for all x,y ∈ R+. Further, let Θp′ be defined by

Θp′(n,s,μ) = (n+ μ)p′A2
∞

∑
m=0

K(m+ μ ,n+ μ)(m+ μ)−p′A1 , (4.31)

where A1, A2, μ , and p′ are real parameters such that 0 ≤ A1 < 1
p′ and μ ≥ 1

2 . Then,

Θp′(n,s,μ) < (n+ μ)1−s+p′(A2−A1)
[
k(2− s− p′A1)−θp′(n,s,μ)

]
, (4.32)

where

θp′(n,s,μ) =
(

μ
n+ μ

)1−p′A1
{

K

(
μ

n+ μ
,1

)[
1

1− p′A1
− 1

2μ

(
1+

p′A1

6μ

)]
− 1

24μ(n+ μ)
∂K
∂x

(
μ

n+ μ
,1

)}
.

Remark 4.7 It should be noticed here that the terms θq′(m,s,μ) and θp′(n,s,μ) in (4.29)
and (4.32) are non-negative.

4.2.2 Refined discrete Hilbert-type inequalities

In the sequel we extend Theorem 4.2 to hold for a homogeneous kernel of class C4, in the
non-conjugate case. Such extension is a simple consequence of the general Hilbert-type
inequality in non-conjugate setting (Theorem 2.1, Chapter 2) and Lemmas 4.6 and 4.7.

Theorem 4.5 Let p, q, and λ satisfy (2.1) and (2.2), and let K : R+×R+ → R be a non-
negative homogeneous function of degree −s, s > 0, and of class C4, fulfilling conditions
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(4.27) and (4.30). If A1 ∈
(
0, 1

p′
)
, A2 ∈

(
0, 1

q′
)
, and μ ≥ 1

2 , then the inequalities

∞

∑
m=0

∞

∑
n=0

Kλ (m+ μ ,n+ μ)ambn

<

{
∞

∑
m=0

(m+ μ)
p
q′ (1−s)+p(A1−A2)[k(q′A2)−θq′(m,s,μ)

] p
q′ ap

m

} 1
p

×
{

∞

∑
n=0

(n+ μ)
q
p′ (1−s)+q(A2−A1)[k(2− s− p′A1)−θp′(n,s,μ)

] q
p′ bq

n

} 1
q

(4.33)

and {
∞

∑
n=0

(n+ μ)q′(A1−A2)+
q′
p′ (s−1) [

k(2− s− p′A1)−θp′(n,s,μ)
]− q′

p′

×
[

∞

∑
m=0

Kλ (m+ μ ,n+ μ)am

]q′ } 1
q′

<

{
∞

∑
m=0

(m+ μ)
p
q′ (1−s)+p(A1−A2) [k(q′A2)−θq′(m,s,μ)

] p
q′ ap

m

} 1
p

(4.34)

hold for all non-negative sequences (am)m∈N0
, (bn)n∈N0

�= 0, where the functions
θq′(m,s,μ) and θp′(n,s,μ) are defined in Lemmas 4.6 and 4.7. Moreover, these inequali-
ties are equivalent.

Proof. Applying Theorem 2.1 (Chapter 2) to discrete setting with a suitable power weight
functions, we have

∞

∑
m=0

∞

∑
n=0

Kλ (m+ μ ,n+ μ)ambn <

[
∞

∑
m=0

Θ
p
q′
q′ (m,s,μ)ap

m

] 1
p
[

∞

∑
n=0

Θ
q
p′
p′ (n,s,μ)bq

n

] 1
q

,

where Θq′(m,s,μ) and Θp′(n,s,μ) are defined by (4.28) and (4.31) respectively. Now,
inequality (4.33) follows from estimates (4.29) and (4.32). �

The previous theorem with the parameters A1 = A2 = 2μ
p′q′ , implies the following:

Corollary 4.3 Let p, q, and λ satisfy (2.1) and (2.2), and let K : R+×R+ → R be a non-
negative homogeneous function of degree −s, s > 0, and of class C4, fulfilling conditions
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(4.27) and (4.30). If 1
2 ≤ μ < 1

2 min{p′,q′}, then the inequalities

∞

∑
m=0

∞

∑
n=0

Kλ (m+ μ ,n+ μ)ambn

<

{
∞

∑
m=0

(m+ μ)
p
q′ (1−s)

[
k

(
2μ
p′

)
−φp′(m,s,μ)

] p
q′

ap
m

} 1
p

×
{

∞

∑
n=0

(n+ μ)
q
p′ (1−s)

[
k

(
2− s− 2μ

q′

)
−φq′(m,s,μ)

] q
p′

bq
n

} 1
q

(4.35)

and {
∞

∑
n=0

(n+ μ)
q′
p′ (s−1)

[
k

(
2− s− 2μ

q′

)
−φq′(n,s,μ)

]− q′
p′

×
[

∞

∑
m=0

Kλ (m+ μ ,n+ μ)am

]q′ } 1
q′

<

{
∞

∑
m=0

(m+ μ)
p
q′ (1−s)

[
k

(
2μ
p′

)
−θp′(m,s,μ)

] p
q′

ap
m

} 1
p

(4.36)

hold for all non-negative sequences (am)m∈N0
, (bn)n∈N0

�= 0, where the functions
θq′(m,s,μ) and θp′(n,s,μ) are defined in Lemmas 4.6 and 4.7. Moreover, these inequali-
ties are equivalent.

Remark 4.8 Assuming that the kernel K : R+ ×R+ → R from Corollary 4.3 is symmet-
ric, we have that k(2− s−α) = k(α). Then, in the conjugate case, that is, when λ = 1,
inequality (4.35) reduces to (4.3) from Theorem 4.2.

The rest of this section is dedicated to some particular homogeneous kernels fulfilling
conditions (4.27) and (4.30). We start with the well-known example K(x,y) = (x+ y)−s,
s > 0. In this case, the corresponding Hilbert-type inequalities involve the constant factors
expressed in terms of the Beta function. Hence, denoting b(α) = B(1−α,s+α−1), we
have the following result:

Corollary 4.4 Suppose p, q, and λ satisfy conditions (2.1) and (2.2), and let
A1 ∈

(
max{ 1−s

p′ ,0}, 1
p′
)
, A2 ∈

(
max{ 1−s

q′ ,0}, 1
q′
)
, and μ ≥ 1

2 . Then the inequalities

∞

∑
m=0

∞

∑
n=0

ambn

(m+n+2μ)λ s

<

{
∞

∑
m=0

(m+ μ)
p
q′ (1−s)+p(A1−A2)[b(q′A2)−ψq′(m,s,μ)

] p
q′ ap

m

} 1
p

×
{

∞

∑
n=0

(n+ μ)
q
p′ (1−s)+q(A2−A1)[b(p′A1)−ψp′(n,s,μ)

] q
p′ bq

n

} 1
q

(4.37)
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and {
∞

∑
n=0

(n+ μ)q′(A1−A2)+
q′
p′ (s−1)[

b(p′A1)−ψp′(n,s,μ)
]− q′

p′

×
[

∞

∑
m=0

am

(m+n+2μ)λ s

]q′ } 1
q′

<

{
∞

∑
m=0

(m+ μ)
p
q′ (1−s)+p(A1−A2)[b(q′A2)−ψq′(m,s,μ)

] p
q′ ap

m

} 1
p

(4.38)

hold for all non-negative sequences (am)m∈N0
, (bn)n∈N0

�= 0, where

ψq′(m,s,μ) =
(

μ
m+ μ

)1−q′A2 1
2s

[
1

1−q′A2
− 1

2μ

(
1+

q′A2

6μ

)]
and

ψp′(n,s,μ) =
(

μ
n+ μ

)1−p′A1 1
2s

[
1

1− p′A1
− 1

2μ

(
1+

p′A1

6μ

)]
.

In addition, these inequalities are equivalent.

Proof. It follows from Theorem 4.5, setting K(x,y) = (x+ y)−s and observing that
ψq′(m,s,μ) < θq′(m,s,μ) and ψp′(n,s,μ) < θp′(n,s,μ). �

Remark 4.9 It should be noticed here that Corollary 4.4 provides refinements of inequal-
ities (1.58) and (1.59) (see Remark 1.14, Chapter 1). This can be seen by consider-
ing inequalities (4.37) and (4.38) in the conjugate case, with the parameters μ = 1

2 and
A1 = A2 = 2−s

pq , provided that max
{
1−min

{ 1
p−1 , 1

q−1

}
,2−min{p,q}} < s≤ 2. In such a

way we also obtain refinement of the Hilbert double series theorem (1.4) (see Chapter 1).

Our next application of Theorem 4.5 refers to the homogeneous kernel K(x,y) = (xs +
ys)−1, s > 0. Namely, this kernel fulfills conditions (4.27) and (4.30), hence, denoting
bs(α) = 1

s B( 1−α
s , s+α−1

s ), we obtain the following consequence:

Corollary 4.5 Let p, q, and λ satisfy (2.1) and (2.2), and let A1 ∈ (
max{ 1−s

p′ ,0}, 1
p′
)
,

A2 ∈
(
max{ 1−s

q′ ,0}, 1
q′
)
, and μ ≥ 1

2 . Then the inequalities

∞

∑
m=0

∞

∑
n=0

ambn

[(m+ μ)s +(n+ μ)s]λ

<

{
∞

∑
m=0

(m+ μ)
p
q′ (1−s)+p(A1−A2) [bs(q′A2)−2s−1ψq′(m,s,μ)

] p
q′ ap

m

} 1
p

×
{

∞

∑
n=0

(n+ μ)
q
p′ (1−s)+q(A2−A1) [bs(p′A1)−2s−1ψp′(n,s,μ)

] q
p′ bq

n

} 1
q

(4.39)
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and {
∞

∑
n=0

(n+ μ)q′(A1−A2)+
q′
p′ (s−1) [

bs(p′A1)−2s−1ψp′(n,s,μ)
]− q′

p′

×
[

∞

∑
m=0

am

[(m+ μ)s +(n+ μ)s]λ

]q′ } 1
q′

<

{
∞

∑
m=0

(m+ μ)
p
q′ (1−s)+p(A1−A2) [bs(q′A2)−2s−1ψq′(m,s,μ)

] p
q′ ap

m

} 1
p

(4.40)

hold for all non-negative sequences (am)m∈N0
, (bn)n∈N0

�= 0, where the functions
ψq′(m,s,μ) and ψp′(n,s,μ) are defined in the previous corollary. In addition, these in-
equalities are equivalent.

Remark 4.10 Observe that special cases of Corollaries 4.4 and 4.5, involving the conju-
gate setting and the parameters A1 = A2 = 2μ

pq , were studied in [41].

To conclude this section, we consider Corollary 4.5 with A1 = 1
p′
(
1− s

r

)
and A2 =

1
q′
(
1− s

t

)
, where 1

r + 1
t = 1, r > 1, and 0 < s≤ 1. A weaker version of the following result

(without weight functions ψq′ and ψp′) was obtained in [156].

Corollary 4.6 Suppose p, q, and λ are as in (2.1) and (2.2). If 1
r + 1

t = 1, r > 1, and
0 < s ≤ 1, then the inequalities

∞

∑
m=0

∞

∑
n=0

ambn

[(m+ μ)s +(n+ μ)s]λ

<

⎧⎨⎩ ∞

∑
m=0

(m+ μ)p( 1
p′ −

sλ
r )

[
π

ssin
(π

r

) −2s−1ψq′(m,s,μ)

] p
q′

ap
m

⎫⎬⎭
1
p

×
⎧⎨⎩ ∞

∑
n=0

(n+ μ)q( 1
q′ −

sλ
t )

[
π

ssin
(π

t

) −2s−1ψp′(n,s,μ)

] q
p′

bq
n

⎫⎬⎭
1
q

(4.41)

and {
∞

∑
n=0

(n+ μ)
sq′λ

t −1

[
π

ssin
(π

t

) −2s−1ψp′(n,s,μ)

]− q′
p′

×
[

∞

∑
m=0

am

[(m+ μ)s +(n+ μ)s]λ

]q′ } 1
q′

<

⎧⎨⎩ ∞

∑
m=0

(m+ μ)p( 1
p′ −

sλ
r )

[
π

ssin
(π

r

) −2s−1ψq′(m,s,μ)

] p
q′

ap
m

⎫⎬⎭
1
p

(4.42)
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hold for all non-negative sequences (am)m∈N0
, (bn)n∈N0

�= 0, where ψq′(m,s,μ) and
ψp′(n,s,μ) are defined in Corollary 4.4. In addition, these inequalities are equivalent.

4.3 Some particular refinements

Discrete Hilbert-type inequalities are more complicated than the corresponding integral
inequalities, since we use some additional estimates in order to obtain a suitable form of
inequality. Of course, this causes some extra conditions on functions and parameters in-
volved in the corresponding discrete inequality. For example, the general Theorem 1.14
(Chapter 1) dealing with homogeneous kernels, includes kernels which are strictly decreas-
ing in both arguments, while the corresponding integral result, that is, Corollary 1.1, holds
for an arbitrary non-negative homogeneous kernel.

The starting point in this section is the following consequence of the above mentioned
Theorem 1.14, that is, a pair of equivalent inequalities

∞

∑
m=1

∞

∑
n=1

ambn

(m+n)s

≤ L

[
∞

∑
m=1

m1−s+p(A1−A2)ap
m

] 1
p
[

∞

∑
n=1

n1−s+q(A2−A1)bq
n

] 1
q

(4.43)

and

∞

∑
n=1

n(s−1)(p−1)+p(A1−A2)

[
∞

∑
m=1

am

(m+n)s

]p

≤ Lp
∞

∑
m=1

m1−s+p(A1−A2)ap
m, (4.44)

where 1
p + 1

q = 1, p > 1, s > 0, A1 ∈ (max
{
0, 1−s

q

}
, 1

q ), A2 ∈ (max
{
0, 1−s

p ,
}
, 1

p), and

the constant L is expressed in terms of the Beta function, i.e. L = B
1
p (1− A2p,s− 1 +

A2p)B
1
q (1−A1q,s−1+A1q).

Note that parameters A1 and A2 in (4.43) and (4.44) are non-negative, while the corre-
sponding result in the integral case (Corollary 1.1, Chapter 1) refers to parameters which
can be negative, that is, A1 ∈ ( 1−s

q , 1
q ), A2 ∈ ( 1−s

p , 1
p). In other words, the intervals for

parameters A1 and A2 in the discrete case are smaller than the corresponding intervals in
the integral case.

On the other hand, the above intervals (max
{
0, 1−s

q

}
, 1

q ) and (max
{
0, 1−s

p ,
}
, 1

p) for
parameters A1 and A2 can also be extended so that inequalities (4.43) and (4.44) still hold.
This can be done by virtue of the Euler-Maclaurin summation formula, utilizing similar
methods as in the previous two sections. Hence, in order to establish extensions of in-
equalities (4.43) and (4.44), we first mention some preliminary estimates.
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Let f : [1,∞) → R be a non-negative continuously differentiable function such that
∑∞

k=1 f (k) < ∞ and
∫ ∞
1 f (t)dt < ∞. It follows from Lemma 4.1 that
∞

∑
k=1

f (k) =
∫ ∞

1
f (t)dt +

1
2

f (1)+
∫ ∞

1
γ∗1 (t) f ′(t)dt, (4.45)

where γ∗1 (t) = t−�t�− 1
2 .

Moreover, if f : [1,∞) → R is of class C4 such that f (r)(∞) = 0, r = 0,1,2,3,4,
f (2r)(x) > 0, and f (2r−1)(x) < 0, r = 1,2, then the following sequence of inequalities hold:

− 1
12

f (1) <

∫ ∞

1
γ∗1 (t) f (t)dt < − 1

12
f (1)+

1
720

f ′′(1) < 0. (4.46)

The above sequence of inequalities was established in [147], by virtue of the Euler-Maclau-
rin summation formula. Relations (4.45) and (4.46) will be utilized in extending inequal-
ities (4.43) and (4.44).

First, we define the functions fs,α ,n(t) = t−α(t +n)−s, where −1 ≤ α < 1, 0 < s ≤ 14,
n ∈ N, and

Qs,α(n) =
∫ 1

0
fs,α ,n(t)dt− 1

2
fs,α ,n(1)−

∫ ∞

1
f ′s,α ,n(t)γ

∗
1 (t)dt,

where γ∗1 (t) = t−�t�− 1
2 . The following lemma asserts that under the above assumptions

Qs,α(n) is a non-negative function.

Lemma 4.8 If −1 ≤ α < 1 and 0 < s ≤ 14, then Qs,α(n) > 0.

Proof. Utilizing the integration by parts three times, we have∫ 1

0
fs,α ,n(t)dt =

1
(1−α)(n+1)s +

s
1−α

∫ 1

0

t1−α

(t +n)s+1 dt

=
1

(1−α)(n+1)s +
s

(1−α)(2−α)(n+1)s+1

+
s(s+1)

(1−α)(2−α)

∫ 1

0

t2−α

(t +n)s+2 dt

=
1

(1−α)(n+1)s +
s

(1−α)(2−α)(n+1)s+1

+
s(s+1)

(1−α)(2−α)(3−α)(n+1)s+2

+
s(s+1)(s+2)

(1−α)(2−α)(3−α)

∫ 1

0

t3−α

(t +n)s+3 dt.

Further, since the function fs,α ,n : R+ → R is non-negative, we obtain the inequality∫ 1

0
fs,α ,n(t)dt >

1
(1−α)

[
1

(n+1)s +
s

(2−α)(n+1)s+1

+
s(s+1)

(2−α)(3−α)(n+1)s+2

]
. (4.47)
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In addition,

−1
2

fs,α ,n(1) = − 1
2(n+1)s . (4.48)

It remains to estimate the last term in the expression for Qs,α(n). The first derivative of
fs,α ,n is

f ′s,α ,n(t) =
nst−α−1

(t +n)s+1 −
(s+α)t−α−1

(t +n)s ,

that is,

−
∫ ∞

1
f ′s,α ,n(t)γ

∗
1 (t)dt =

∫ ∞

1
g1(t)γ∗1 (t)dt−

∫ ∞

1
g2(t)γ∗1 (t)dt,

where

g1(t) =
(s+α)t−α−1

(t +n)s and g2(t) =
nst−α−1

(t +n)s+1 .

Now, using (4.46), we obtain∫ ∞

1
g1(t)γ∗1 (t)dt > − 1

12
g1(1) = − s+α

12(n+1)s

and

−
∫ ∞

1
g2(t)γ∗1 (t)dt

>
1
12

g2(1)− 1
720

g2
′′(1)

=
ns

12(n+1)s+1 −
ns
720

[
(s+1)(s+2)
(n+1)s+3 +

2(s+1)(α +1)
(n+1)s+2 +

(α +1)(α +2)
(n+1)s+1

]
>

(n+1)s− s
12(n+1)s+1 −

s
720

[
(s+1)(s+2)
(n+1)s+2 +

2(s+1)(α +1)
(n+1)s+1 +

(α +1)(α +2)
(n+1)s

]
,

which implies

−
∫ ∞

1
f ′s,α ,n(t)γ

∗
1 (t)dt

> − α
12(n+1)s −

s
12(n+1)s+1

− s
720

[
(s+1)(s+2)
(n+1)s+2 +

2(s+1)(α +1)
(n+1)s+1 +

(α +1)(α +2)
(n+1)s

]
. (4.49)

Finally, taking into account (4.47), (4.48), and (4.49), we obtain

Qs,α(n) >
1

(n+1)s Q0(s,α)+
1

(n+1)s+1Q1(s,α)+
1

(n+1)s+2Q2(s,α),
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where

Q0(s,α) =
1

1−α
− 1

2
− α

12
− s(α +1)(α +2)

720
,

Q1(s,α) =
s

(1−α)(2−α)
− s

12
− s(s+1)(α +1)

360
,

Q2(s,α) =
s(s+1)

(1−α)(2−α)(3−α)
− s(s+1)(s+2)

720
.

It is enough to show that the expressions Q0(s,α), Q1(s,α), and Q2(s,α) are non-negative.
Obviously, we have Q2(s,α) > s(s+1)

(
1
24 − 1

45

)
> 0 and Q1(s,α) > s

(
1
6 − 1

12 − 1
12

)
= 0.

In addition, if s ≤ 14 then s
720 ≤ 1

24 , so that

Q0(s,α) ≥ 1
1−α

− 1
2
− α

12
− (α +1)(α +2)

24
=

α3 +4α2 +9α +10
24(1−α)

.

It is easy to check that the function f (α) =α3 +4α2 +9α+10 is strictly increasing. Since
f (−1) = 4, it follows that Q0(s,α) > 0. The proof is now completed. �

In order to extend inequalities (4.43) and (4.44), it is necessary to establish a suitable
upper bound on the weight function

ωs,α1,α2(n) =
∞

∑
m=1

1
(m+n)s

nα1

mα2
, (4.50)

where 0 < s≤ 14, and either α2 ∈ (1− s,1) for s≤ 2, or α2 ∈ [−1,1) for s > 2 . Of course,
due to the form of the weight function, such a bound will involve the Beta function.

Lemma 4.9 If 0 < s ≤ 14, and either α2 ∈ (1− s,1) for s ≤ 2, or α2 ∈ [−1,1) for s > 2,
then

ωs,α1,α2(n) < n1−s+α1−α2B(1−α2,s+α2−1). (4.51)

Proof. Since fs,α2,n(t) = t−α2(t +n)−s, we have ωs,α1,α2(n) = nα1 ∑∞
m=1 fs,α2,n(m). Fur-

ther, by virtue of Lemma 4.8, it follows that

ωs,α1,α2(n) = nα1

[∫ ∞

0
fs,α2,n(t)dt−Qs,α2(n)

]
< nα1

∫ ∞

0
fs,α2,n(t)dt.

Finally, utilizing the change of variables x = nt, we have∫ ∞

0
fs,α2,n(t)dt = n1−s−α2

∫ ∞

0

x−α2

(1+ x)s dx,

so that (4.51) holds due to the well-known formula∫ ∞

0

x−α2

(1+ x)s dx = B(1−α2,s+α2−1).
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�

The following result extends inequalities (4.43) and (4.44) in the sense that the param-
eters A1 and A2 can be chosen from a larger interval.

Theorem 4.6 Let 1
p + 1

q = 1, p > 1, and 0 < s≤ 14. If either A1 ∈
( 1−s

q , 1
q

)
, A2 ∈

( 1−s
p , 1

p

)
for s ≤ 2, or A1 ∈

[− 1
q , 1

q

)
, A2 ∈

[− 1
p , 1

p

)
for s > 2, then inequalities (4.43) and (4.44)

hold for all non-negative sequences (am)m∈N, (bn)n∈N �= 0. In addition, these inequalities
are equivalent.

Proof. Making use of Theorem 1.9 (Chapter 1), it is enough to show that (4.43) holds
under conditions of this theorem.

Clearly, considering the discrete form of inequality (1.12) (Theorem 1.9) with the ker-
nel K(m,n) = (m + n)−s, and the weight functions ϕ(m) = mA1 , ϕ(n) = nA2 , it follows
that

∞

∑
m=1

∞

∑
n=1

ambn

(m+n)s
≤

[
∞

∑
m=1

ωs,pA1,pA2(m)ap
m

] 1
p
[

∞

∑
n=1

ωs,qA2,qA1(n)bq
n

] 1
q

,

where ωs,α1,α2 is defined by (4.50). Now, the result follows from Lemma 4.9. �

Remark 4.11 Obviously, Theorem 4.6 can also be extended to the case of non-conjugate
exponents. For more details, the reader is referred to [55].

We know from Section 1.4 (Chapter 1) that the constant L appearing in (4.43) and (4.44)
is the best possible if the parameters A1 ∈ (

max
{
0, 1−s

q

}
, 1

q

)
and

A2 ∈
(
max

{
0, 1−s

p ,
}
, 1

p

)
fulfill condition pA2+qA1 = 2−s. The following theorem asserts

that L is also the best constant in the context of Theorem 4.6.

Theorem 4.7 Let 1
p + 1

q = 1, p > 1, and let A1, A2, s be real parameters fulfilling con-
ditions of Theorem 4.6. If pA2 + qA1 = 2− s, then L is the best constant in inequalities
(4.43) and (4.44).

Proof. Due to the equivalence, it is enough to show that L is the best constant in (4.43),
under conditions of the theorem. Clearly, if pA2 + qA1 = 2− s, this constant reduces to
L = B(1− pA2, pA2 + s−1).

Applying (4.43) to the sequences am = m−qA1− ε
p and bn = n−pA2− ε

q , ε > 0, its right-
hand side becomes L∑∞

n=1 n−1−ε .
On the other hand, for the above choice of sequences (am)m∈N and (bn)n∈N we have

∞

∑
m=1

∞

∑
n=1

ambn

(m+n)s =
∞

∑
n=1

n−pA2− ε
q

(
∞

∑
m=1

h(m)

)
, (4.52)
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where h(t) = t
−qA1− ε

p

(n+t)s . Further, it follows that

∫ ∞

0
h(t)dt = n1−s−qA1− ε

p B

(
1−qA1− ε

p
,qA1 +

ε
p

+ s−1

)
(4.53)

and ∫ 1

0
h(t)dt = n1−s−qA1− ε

p

∫ 1
n

0

x−qA1− ε
p

(1+ x)s dx

< n1−s−qA1− ε
p

∫ 1
n

0
x−qA1− ε

p dx = n−s. (4.54)

Moreover, taking into account that

h′(t) =
ns

(n+ t)s+1tqA1+ ε
p+1

−
s+qA1 + ε

p

(n+ t)stqA1+ ε
p +1

,

we have ∫ ∞

1
h′(t)γ∗1 (t)dt > − ns

12(n+1)s+1 > − s
12ns , (4.55)

by virtue of (4.46). Now, utilizing the summation formula

∞

∑
m=1

h(m) =
∫ ∞

0
h(t)dt−

∫ 1

0
h(t)dt +

1
2
h(1)+

∫ ∞

1
h′(t)γ∗1 (t)dt

and relations (4.53)–(4.55), we obtain

∞

∑
m=1

h(m) > B(ε)n1−s−qA1− ε
p − 1

ns −
s

12ns , (4.56)

where B(ε) = B
(
1−qA1− ε

p ,qA1 + ε
p +s−1

)
. Moreover, relations (4.52) and (4.56) yield

the estimate

∞

∑
m=1

∞

∑
n=1

ambn

(m+n)s > B(ε)
∞

∑
n=1

1
n1+ε −

(
1+

s
12

) ∞

∑
n=1

1

ns+pA2+ ε
q
. (4.57)

Now, assuming that there exists a constant C, 0 < C < L, such that (4.43) holds after
replacing L by C, the above discussion implies that

(L−C)
∞

∑
n=1

1
n1+ε <

(
1+

s
12

) ∞

∑
n=1

1

ns+pA2+ ε
q
.

Finally, letting ε → 0, it follows that L≤C, which contradicts the assumption 0 <C < L. �

Our first application of Theorem 4.6 refers to parameters A1 = A2 = 2−s
pq . These pa-

rameters satisfy pA2 + qA1 = 2− s, and hence, yield the inequalities involving the best
constants.
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Corollary 4.7 Let 1
p + 1

q = 1, p > 1, and let 2−min{p,q} < s ≤ 2 + max{p,q}. If

L1 = B
( p+s−2

p , q+s−2
q

)
, then the inequalities

∞

∑
m=1

∞

∑
n=1

ambn

(m+n)s < L1

[
∞

∑
m=1

m1−sap
m

] 1
p
[

∞

∑
n=1

n1−sbq
n

] 1
q

(4.58)

and
∞

∑
n=1

n(s−1)(p−1)

[
∞

∑
m=1

am

(m+n)s

]p

< Lp
1

∞

∑
m=1

m1−sap
m (4.59)

hold for all non-negative sequences (am)m∈N, (bn)n∈N �= 0. In addition, these inequalities
are equivalent and L1 is the best constant in both of them.

Remark 4.12 It should be noticed here that inequalities (4.58) and (4.59) were also ob-
tained by Yang (see [148], [152], and [153]), but only for 2−min{p,q} < s ≤ 2. On the
other hand, considering the special case when p = q = 2 and utilizing (4.46), Yang (see
[147] and [152]) showed that inequalities (4.58) and (4.59) hold for 0 < s ≤ 4, which
obviously coincides with the above result.

Another application of Theorems 4.6 and 4.7 refers to parameters A1 = 2−s
2q , A2 = 2−s

2p ,
and is closely connected with the above mentioned papers [147] and [152].

Corollary 4.8 Let 1
p + 1

q = 1, p > 1, and let 0 < s ≤ 4. If L2 = B
(

s
2 , s

2

)
, then the inequal-

ities
∞

∑
m=1

∞

∑
n=1

ambn

(m+n)s < L2

[
∞

∑
m=1

m− ps
2 +p−1ap

m

] 1
p
[

∞

∑
n=1

n−
qs
2 +q−1bq

n

] 1
q

(4.60)

and
∞

∑
n=1

n
ps
2 −1

[
∞

∑
m=1

am

(m+n)s

]p

< Lp
2

∞

∑
m=1

m− ps
2 +p−1ap

m (4.61)

hold for all non-negative sequences (am)m∈N, (bn)n∈N �= 0. In addition, these inequalities
are equivalent and L2 is the best constant in both of them.

Remark 4.13 The main results presented in this section are derived in [55] by Krnić
and Pečarić. In addition, general refinements of Hilbert-type inequalities dealing with
homogeneous kernels of class C2 and C4 (Sections 4.1 and 4.2) are established in [56] and
[57] by the same authors.



Chapter5
Applying the
Hermite-Hadamard inequality

This chapter provides a different approach for improving discrete Hilbert-type inequali-
ties. The method we develop here, is based on the famous Hermite-Hadamard inequality
regarding convex functions.

Recall that f : [a,b] → R is a convex function if

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y), (5.1)

for all x,y ∈ [a,b] and t ∈ [0,1]. The Hermite-Hadamard inequality asserts that

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
, (5.2)

where f : [a,b] → R is a convex function.
The main objective of this chapter is to establish a general method for refining discrete

Hilbert-type inequalities via the above inequality (5.2).
By virtue of the Hermite-Hadamard inequality, in Section 5.1 we establish the basic

theorem regarding discrete Hilbert-type inequalities with a general kernel and weight func-
tions. Further, in Section 5.2 the general result is then applied to discrete inequalities with
homogeneous kernels. Moreover, in Section 5.3 some particular homogeneous kernels are
considered and compared with actual results, known from the literature. Finally, in Section
5.4 some cases of non-homogeneous kernels are also considered.

Observe that refined Hilbert-type inequalities that we derive in this chapter, are consid-
ered in the case of non-conjugate parameters.

149
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5.1 Basic theorem and some remarks

When dealing with discrete Hilbert-type inequalities, some integral bounds are used for
certain sums. In Sections 1.4 and 2.2 such sums were recognized as the lower Darboux
sums for the corresponding integrals. As we have already seen, this fact required mono-
tonic decrease of the function that defines the integral sum. For example, in the statement
of Theorem 1.14 (Chapter 1) the kernel was strictly decreasing in each argument.

As distinguished from the above discussion, in this section we are going to adjust the
Hermite-Hadamard inequality, in order to bound the integral sum with the integral. Of
course, this requires some extra assumptions concerning convexity, but as a consequence,
we shall obtain better results than in the previously discussed case.

Now, we state and prove the main result that will be the basis for the results in this
chapter.

Theorem 5.1 Let p, q, and λ satisfy (2.1) and (2.2), and let m,M,n,N ∈ N be such
that m < M and n < N. Suppose that K : [m− 1

2 ,M + 1
2 ]× [n− 1

2 ,N + 1
2 ] → R, ϕ : [m−

1
2 ,M+ 1

2 ]→R, ψ : [n− 1
2 ,N + 1

2 ]→R are non-negative measurable functions fulfilling the
following conditions:

(i) the functions K(i,t)ψ−q′(t) are convex on interval [n− 1
2 ,N+ 1

2 ] for every i = m,m+
1, . . . ,M;

(ii) the functions K(t, j)ϕ−p′(t) are convex on interval [m− 1
2 ,M + 1

2 ] for every j =
n,n+1, . . . ,N.

Then the inequality

M

∑
i=m

N

∑
j=n

Kλ (i, j)aib j

≤
⎡⎣ M

∑
i=m

ϕ p(i)

[∫ N+ 1
2

n− 1
2

K(i,t)
ψq′(t)

dt

] p
q′

ap
i

⎤⎦
1
p
⎡⎣ N

∑
j=n

ψq( j)

[∫ M+ 1
2

m− 1
2

K(t, j)
ϕ p′(t)

dt

] q
p′

bq
j

⎤⎦
1
q

(5.3)

holds for all sequences (ai)i∈N and (b j) j∈N of non-negative real numbers.

Proof. We utilize the fundamental Hilbert-type inequality in the non-conjugate case, that
is, Theorem 2.1. More precisely, using inequality (2.9) in a suitable discrete setting, it
follows that

M

∑
i=m

N

∑
j=n

Kλ (i, j)aib j ≤
[

M

∑
i=m

ϕ p(i)F p
i ap

i

] 1
p
[

N

∑
j=n

ψq( j)Gq
jb

q
j

] 1
q

, (5.4)
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where

Fi =

[
N

∑
j=n

K(i, j)
ψq′( j)

] 1
q′

, i = m,m+1, . . . ,M,

and

Gj =

[
M

∑
i=m

K(i, j)
ϕ p′(i)

] 1
p′

, j = n,n+1, . . . ,N.

The further step is to estimate the terms of the sequences Fi, i = m,m+ 1, . . . ,M, and
Gj, j = n,n+1, . . . ,N, via the Hermite-Hadamard inequality.

Since the functions K(i,t)ψ−q′(t) are convex on interval [n− 1
2 ,N + 1

2 ] for every i =
m,m+1, . . . ,M, applying the Hermite-Hadamard inequality to intervals [ j− 1

2 , j+ 1
2 ] yields

the following inequalities:

K(i, j)
ψq′( j)

≤
∫ j+ 1

2

j− 1
2

K(i,t)
ψq′(t)

dt, j = n,n+1, . . . ,N.

Now, summing these inequalities we have

N

∑
j=n

K(i, j)
ψq′( j)

≤
∫ N+ 1

2

n− 1
2

K(i,t)
ψq′(t)

dt, i = m,m+1, . . . ,M,

that is,

Fi ≤
[∫ N+ 1

2

n− 1
2

K(i,t)
ψq′(t)

dt

] 1
q′

, i = m,m+1, . . . ,M. (5.5)

Finally, the same conclusion can be drawn by exploiting the convexity of functions K(t, j)
ϕ−p′(t), j = n,n+1, . . . ,N, on interval [m− 1

2 ,M + 1
2 ]. In that case we have the estimates

Gj ≤
[∫ M+ 1

2

m− 1
2

K(t, j)
ϕ p′(t)

dt

] 1
p′

, j = n,n+1, . . . ,N, (5.6)

and the proof is now completed. �

Remark 5.1 Assuming the convergence of the series and integrals, the proof of Theorem
5.1 covers inequality (5.3) also for M = N = ∞. In that case, inequality (5.3) reads

∞

∑
i=m

∞

∑
j=n

Kλ (i, j)aib j

≤
[

∞

∑
i=m

ϕ p(i)
[∫ ∞

n− 1
2

K(i,t)
ψq′(t)

dt

] p
q′

ap
i

] 1
p
[

∞

∑
j=n

ψq( j)
[∫ ∞

m− 1
2

K(t, j)
ϕ p′(t)

dt

] q
p′

bq
j

] 1
q

.

(5.7)
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Remark 5.2 Let us explain here why the method presented in Theorem 5.1 yields a better
result than the method used in Sections 1.4 and 2.2, regarding discrete case. Namely, using
the notation of Theorem 5.1, the method exploited in the above mentioned sections is based
on the assumption that the functions K(i,t)ψ−q′(t) and K(t, j)ϕ−p′(t), i = m,m+1, . . . ,M,
j = n,n+1, . . . ,N, are strictly decreasing on their domains. Hence, ∑M

i=m K(i,t)ψ−q′(t) and
∑N

j=n K(t, j)ϕ−p′(t) are the lower Darboux sums for the corresponding integrals, that is,

N

∑
j=n

K(i, j)
ψq′( j)

≤
∫ N

n−1

K(i,t)
ψq′(t)

dt,
M

∑
i=m

K(i, j)
ϕ p′(i)

≤
∫ M

m−1

K(t, j)
ϕ p′(t)

dt,

i = m,m+1, . . . ,M, j = n,n+1, . . . ,N, provided that all functions are defined on the cor-
responding intervals. Clearly, due to the described monotonicity, these estimates are less
precise than estimates (5.5) and (5.6).

Remark 5.3 The inequality sign in (5.4) depends only on the parameters p′, q′, and λ ,
since the crucial step in proving this relation was in applying the Hölder inequality (see
Theorem 2.1). Therefore, the reverse inequality in (5.4) holds under conditions of Remark
2.2. On the other hand, in order to obtain the reverse inequality of (5.3), the assumptions
of Remark 2.2 should be consistent with the estimates for Fi, i = m,m+1, . . . ,M, and Gj,
j = n,n+1, . . . ,N (see the proof of Theorem 5.1). In other words, estimates (5.5) and (5.6)
should also hold with the reverse inequality, and that is possible only if p′,q′ < 0, which
implies that 0 < p,q < 1. Comparing this with Remark 2.2, it follows that the reverse
inequality in (5.3) holds if and only if 0 < p,q < 1.

Remark 5.4 The equivalent form assigned to (5.3), that is, the Hardy-Hilbert-type in-
equality, reads ⎧⎪⎨⎪⎩

N

∑
j=n

ψ−q′( j)

[∫ M+ 1
2

m− 1
2

K(t, j)
ϕ p′(t)

dt

]− q′
p′
[

M

∑
i=m

Kλ (i, j)ai

]q′
⎫⎪⎬⎪⎭

1
q′

≤
⎡⎣ M

∑
i=m

ϕ p(i)

[∫ N+ 1
2

n− 1
2

K(i,t)
ψq′(t)

dt

] p
q′

ap
i

⎤⎦
1
p

, (5.8)

and is established by substituting the sequence

b j = ψ−q′( j)

[∫ M+ 1
2

m− 1
2

K(t, j)
ϕ p′(t)

dt

]− q′
p′
[

M

∑
i=m

Kλ (i, j)ai

] q′
q

, j = n,n+1, . . . ,N,

in (5.3). Such inequalities will not be considered in this chapter.
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5.2 A unified approach to inequalities
with a homogeneous kernel

In this section we are concerned with Hilbert-type inequalities involving homogeneous
kernels with negative degree of homogeneity, which are defined for all positive arguments.
Moreover, the weight functions will be chosen to be the power functions.

Remark 5.5 When dealing with a homogeneous kernel and the power weight functions,
conditions (i) and (ii) from Theorem 5.1, referring to convexity, can be rewritten in a more
suitable form. Namely, suppose that the function f (t) = K(1,t)t−a is convex on interval
[ 2n−1

2M , 2N+1
2m ], where K is homogeneous function of degree−s, s > 0 and n < N, m < M are

positive integers. Then, introducing the functions fi(t) = K(i,t)t−a, i = m,m+ 1, . . . ,M,
we have

fi(λ t1 +(1−λ )t2) = i−a−s f
(
λ

t1
i

+(1−λ )
t2
i

)
≤ i−a−sλ f

( t1
i

)
+ i−a−s(1−λ ) f

( t2
i

)
= λ fi(t1)+ (1−λ ) fi(t2),

for t1, t2 ∈ [n− 1
2 ,N + 1

2 ] and 0 ≤ λ ≤ 1. This means that the functions fi, i = m,m +
1, . . . ,M, are also convex on interval [n− 1

2 ,N + 1
2 ]. By the same arguments, convexity

of the function g(t) = K(t,1)t−a on the interval [ 2m−1
2N , 2M+1

2n ] implies convexity of the
functions g j(t) = K(t, j)t−a, j = n,n+1, . . . ,N, on interval [m− 1

2 ,M + 1
2 ].

Therefore, if ϕ(t) = tA1 and ψ(t) = tA2 , then, using the notation of Theorem 5.1, the
conditions

(i’) function K(1,t)ψ−q′(t) is convex on interval [ 2n−1
2M , 2N+1

2m ];

(i”) function K(t,1)ϕ−p′(t) is convex on interval [ 2m−1
2N , 2M+1

2n ];

imply conditions (i) and (ii) from Theorem 5.1. In particular, if m = n = 1 and M = N =∞,
then convexity of the functions K(1,t)t−A2q

′
and K(t,1)t−A1p′ on R+ implies convexity of

functions K(i,t)t−A2q
′
and K(t, j)t−A1 p′ on R+ for all i, j ∈ N. This fact will frequently be

used in order to make checking of the convexity conditions easier.

Now, in order to present the main result concerning homogeneous kernels, we define
the integral

k(α;r1,r2) =
∫ r2

r1
K(1,t)t−αdt, 0 ≤ r1 < r2 ≤ ∞, (5.9)

where the arguments α , r1 and r2 are such that (5.9) converges. In addition, if r1 = 0 and
r2 = ∞, then the integral k(α;0,∞) will be denoted by k(α), for short, as in the previous
chapters.
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Theorem 5.2 Let p, q, and λ satisfy (2.1) and (2.2), let m,M,n,N ∈ N be such that
m < M, n < N and let K : R+ ×R+ → R be a non-negative homogeneous function of
degree −s, s > 0. If A1 and A2 are real parameters such that the functions K(1,t)t−A2q

′

and K(t,1)t−A1p′ are convex on intervals [ 2n−1
2M , 2N+1

2m ] and [ 2m−1
2N , 2M+1

2n ] respectively, then
the inequality

M

∑
i=m

N

∑
j=n

Kλ (i, j)aib j

≤
[

M

∑
i=m

i
p
q′ (1−s)+p(A1−A2)k

p
q′
(
A2q′; 2n−1

2i , 2N+1
2i

)
ap

i

] 1
p

×
[

N

∑
j=n

j
q
p′ (1−s)+q(A2−A1)k

q
p′
(

2−A1 p′−s; 2 j
2M+1 , 2 j

2m−1

)
bq

j

] 1
q

(5.10)

holds for all sequences (ai)i∈N and (b j) j∈N of non-negative real numbers.

Proof. Exploiting Theorem 5.1 with the power weight functions ϕ(i) = iA1 and ψ( j) =
jA2 , and taking into account the homogeneity of kernel K : R+×R+ → R, we have∫ N+ 1

2

n− 1
2

K(i,t)t−A2q
′
dt = i1−s−A2q

′
∫ 2N+1

2i

2n−1
2i

K(1,t)t−A2q
′
dt

= i1−s−A2q
′
k
(
A2q′; 2n−1

2i , 2N+1
2i

)
and ∫ M+ 1

2

m− 1
2

K(t, j)t−A1p′dt = j1−s−A1p′
∫ 2 j

2m−1

2 j
2M+1

K(1,t)ts+A1p′−2dt

= j1−s−A1p′k
(

2−A1p′−s; 2 j
2M+1 , 2 j

2m−1

)
.

Hence, the result follows from (5.3). �

An important consequence of Theorem 5.2 is the corresponding result for infinite se-
ries, that is, when m = n = 1 and M = N = ∞.

Corollary 5.1 Let p, q, and λ satisfy (2.1) and (2.2), and let K : R+×R+ → R be a non-
negative homogeneous function of degree −s, s > 0. If A1 and A2 are real parameters such
that the functions K(1,t)t−A2q

′
and K(t,1)t−A1p′ are convex on R+, then the inequality

∞

∑
i=1

∞

∑
j=1

Kλ (i, j)aib j

≤
[

∞

∑
i=1

i
p
q′ (1−s)+p(A1−A2)k

p
q′
(
A2q′; 1

2i ,∞
)
ap

i

] 1
p

×
[

∞

∑
j=1

j
q
p′ (1−s)+q(A2−A1)k

q
p′ (2−A1p′−s;0,2 j)bq

j

] 1
q

(5.11)
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holds for all sequences (ai)i∈N and (b j) j∈N of non-negative real numbers.

Remark 5.6 According to the obvious estimates

k
(
A2q′; 1

2i ,∞
)≤ k

(
A2q

′) and k(2−A1p′ − s;0,2 j) ≤ k
(
2−A1p

′ − s
)
,

which are valid for all i, j ∈ N, it follows that the right-hand side of inequality (5.11) is not
greater than the right-hand side of inequality (2.24) for A = B = α = β = 1 (see Section
2.2). In such a way we get the interpolating sequence of inequalities, that is, inequality
(5.11) refines inequality (2.24). As we have already discussed, the convexity assumptions
in Corollary 5.1 yield a better result than the monotonicity assumptions of the kernel in
each of its arguments.

5.3 Examples with homogeneous kernels

In the sequel we consider Corollary 5.1 in some particular cases of homogeneous kernels.
Our first example refers to the well-known homogeneous kernel K : R+×R+ →R, defined
by K(x,y) = (x+y)−s, s > 0. In such a way we shall obtain the weight functions expressed
in terms of the incomplete Beta function. Recall that the incomplete Beta function is
defined by

Br (a,b) =
∫ r

0
ta−1 (1− t)b−1 dt, a,b > 0. (5.12)

Clearly, if r = 1 the incomplete Beta function reduces to the usual Beta function (1.5) and
obviously, Br (a,b) ≤ B(a,b), a,b > 0, 0 ≤ r ≤ 1. Hence, in the above setting, Corollary
5.1 reduces to the following form:

Corollary 5.2 Let p, q, and λ satisfy (2.1) and (2.2), and let s > 0. If A1 and A2 are
real parameters such that A1 ∈

(
max{ 1−s

p′ ,0}, 1
p′
)

and A2 ∈
(
max{ 1−s

q′ ,0}, 1
q′
)
, then the

inequality

∞

∑
i=1

∞

∑
j=1

aib j

(i+ j)λ s

≤
[

∞

∑
i=1

i
p
q′ (1−s)+p(A1−A2)B

p
q′
2i

2i+1
(s+A2q′ −1,1−A2q′)a

p
i

] 1
p

×
[

∞

∑
j=1

j
q
p′ (1−s)+q(A2−A1)B

q
p′
2 j

2 j+1

(s+A1p′ −1,1−A1p′)b
q
j

] 1
q

(5.13)

holds for all sequences (ai)i∈N and (b j) j∈N of non-negative real numbers.
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Proof. In order to apply Corollary 5.1, we have to check that the functions K(1, t)t−A2q
′

and K(t,1)t−A1p′ are convex on R+, where K(x,y) = (x + y)−s. Due to the symmetry of
K, it suffices to show that the function f (t) = (1+ t)−st−a is convex on R+ for a > 0. Its
second derivative is equal to

f ′′(t) =
(s+a)(s+a+1)t2+2a(s+a+1)t+a(a+1)

ta+2(1+ t)s+2 , (5.14)

that is, f ′′(t) > 0 for t ∈ R+, since a > 0 and s > 0.
Since the assumptions of Corollary 5.1 are fulfilled, we are ready to apply inequality

(5.11) in the case of homogeneous kernel K(x,y) = (x+ y)−s.
From the definition of the incomplete Beta function and passing to the new variable

t = 1
u −1, we have

k
(
A2q′; 1

2i ,∞
)

=
∫ ∞

1
2i

t−A2q
′

(1+ t)s dt =
∫ 2i

2i+1

0
us+A2q

′−2(1−u)−A2q
′
du

= B 2i
2i+1

(s+A2q′ −1,1−A2q′).

Similarly, the change of variable t = u
1−u yields

k(2−A1p′ − s;0,2 j) =
∫ 2 j

0

ts+A1p′−2

(1+ t)s dt =
∫ 2 j

2 j+1

0
us+A1p′−2(1−u)−A1p′du

= B 2 j
2 j+1

(s+A1p′ −1,1−A1p′),

that is, the result follows from inequality (5.11).
Note also that the intervals defining the parameters A1 and A2 are established due to the

domain of the incomplete Beta function and the convexity of the functions (1+ t)st−A1p′

and (1+ t)st−A2q
′
. �

Remark 5.7 Since the incomplete Beta function is bounded from above by the usual Beta
function with the same arguments, the estimates

B 2i
2i+1

(s+A2q′ −1,1−A2q′) ≤ B(s+A2q′ −1,1−A2q′)

and
B 2 j

2 j+1
(s+A1p′ −1,1−A1p′) ≤ B(s+A1p′ −1,1−A1p′),

hold for all i, j ∈ N. Moreover, since the right-hand sides of the above estimates do not
depend on i and j, it follows that the right-hand side of (5.13) does not exceed

L

[
∞

∑
i=1

i
p
q′ (1−s)+p(A1−A2)ap

i

] 1
p
[

∞

∑
j=1

j
q
p′ (1−s)+q(A2−A1)bq

j

] 1
q

,

where L = B
1
q′ (s+A2q′ −1,1−A2q′)B

1
p′ (s+A1p′ −1,1−A1p′). Of course, we again ob-

tain the interpolating sequence of inequalities and inequality (5.13) refines some known
results related to the Beta function (see e.g. paper [16]).
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Remark 5.8 According to the previous remark, when taking the values of A1 = A2 =
2−s
λ p′q′ , where 2−s

λ p′ ,
2−s
λq′ ∈ (max{1− s,0},1), Corollary 5.2, together with Remark 5.7, pro-

vides the following inequalities

∞

∑
i=1

∞

∑
j=1

aib j

(i+ j)λ s
≤

[
∞

∑
i=1

i
(1−s)p

q′ B
p
q′
2i

2i+1

(
s+λq′−2

λq′ , s+λ p′−2
λ p′

)
ap

i

] 1
p

×
[

∞

∑
j=1

j
(1−s)q

p′ B
q
p′
2 j

2 j+1

(
s+λ p′−2

λ p′ , s+λq′−2
λq′

)
bq

j

] 1
q

≤ Bλ
(

s+λ p′−2
λ p′ , s+λq′−2

λq′
)[

∞

∑
i=1

i
(1−s)p

q′ ap
i

] 1
p
[

∞

∑
j=1

j
(1−s)q

p′ bq
j

] 1
q

,

where we used the fact that the usual Beta function is symmetric in its arguments.

Moreover, considering the kernel of degree −1 in the conjugate case, that is, when
s = 1, λ = 1, p = q′, and q = p′, the above inequalities reduce to

∞

∑
i=1

∞

∑
j=1

aib j

i+ j
≤

[
∞

∑
i=1

B 2i
2i+1

(
1
q , 1

p

)
ap

i

] 1
p
[

∞

∑
j=1

B 2 j
2 j+1

(
1
p , 1

q

)
bq

j

] 1
q

≤ π
sin π

p

[
∞

∑
i=1

ap
i

] 1
p
[

∞

∑
j=1

bq
j

] 1
q

,

since B
( 1

p , 1
q

)
= π/sin(π/p). Note that this relation interpolates Hilbert double series

theorem (1.1) (see Chapter 1). In addition, if p = q = 2, then B 2i
2i+1

(
1
2 , 1

2

)
= arctan

√
2i,

since Br
( 1

2 , 1
2

)
= 2arctan

√
r

1−r ,0 ≤ r ≤ 1.

To end the previous discussion of some particular choices of parameters A1 and A2,
we give yet another example in which we are able to find the explicit formulas for the
incomplete Beta functions. It is a content of the following remark.

Remark 5.9 If 1 < s < 2 then the parameters A1 = 2−s
p′ and A2 = 2−s

q′ are well-defined
in the sense of Corollary 5.2. Considering inequality (5.13) in this particular case, we see
that all terms with the incomplete Beta function have the form Br(1,s−1). Now, since

Br(1,s−1) =
1

s−1

[
1− (1− r)s−1] , 0 ≤ r ≤ 1,
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inequality (5.13), together with Remark 5.7, implies the following inequalities:

∞

∑
i=1

∞

∑
j=1

aib j

(i+ j)λ s
≤ (s−1)−λ

[
∞

∑
i=1

i(3−s)(p−1)−λ p[1− (2i+1)1−s] p
q′ ap

i

] 1
p

×
[

∞

∑
j=1

i(3−s)(q−1)−λq[1− (2 j +1)1−s] q
p′ bq

j

] 1
q

≤ (s−1)−λ

[
∞

∑
i=1

i(3−s)(p−1)−λ pap
i

] 1
p
[

∞

∑
j=1

i(3−s)(q−1)−λqbq
j

] 1
q

.

We continue with some other examples of homogeneous kernels. The next result refers
to the homogeneous kernel K:R+×R+→R, defined by K(x,y)=min−r{x,y}maxr−s{x,y},
s > 0, r ∈ ( s

2 , s
2 +1), to which Corollary 5.1 also applies.

Corollary 5.3 Suppose that p, q, and λ satisfy (2.1) and (2.2), and let s,r > 0 be real
parameters such that r ∈ (

s
2 , s

2 + 1
)
. If A1 and A2 are real parameters such that A1 ∈(

r−s+1
p′ , 1−r

p′
)

and A2 ∈
(

r−s+1
q′ , 1−r

q′
)
, then the inequality

∞

∑
i=1

∞

∑
j=1

aib j

minλ r{i, j}maxλ (s−r){i, j}

≤
⎡⎣ ∞

∑
i=1

i
p
q′ (1−s)+p(A1−A2)

[
k(A2q

′)− (2i)A2q
′+r−1

1−A2q′ − r

] p
q′

ap
i

⎤⎦
1
p

×
⎡⎣ ∞

∑
j=1

j
q
p′ (1−s)+q(A2−A1)

[
k(A1p′)− (2 j)A1 p′+r−1

1−A1p′ − r

] q
p′

bq
j

⎤⎦
1
q

(5.15)

holds for all sequences (ai)i∈N and (b j) j∈N of non-negative real numbers, where

k(a) =
s−2r

(1−a− r)(a+ s− r−1)
.

Proof. We have to check that the kernel K(x,y) = min−r{x,y}maxr−s{x,y} fulfills
conditions of Corollary 5.1. Due to the symmetry, it suffices to show that the function
f (t) = K(1, t)t−a is convex on R+ for a ∈ (r− s+1,1− r). Clearly, f is defined by

f (t) =
{

t−a−r, 0 < t ≤ 1
tr−a−s, t > 1.

Obviously, f is convex on intervals (0,1] and (1,∞). Moreover, we have f ′−(1) =−a−r <
r−a− s = f ′+(1), which means that f is convex on R+.
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Now, exploiting Corollary 5.1 we have

k
(
A2q′; 1

2i ,∞
)

=
∫ 1

1
2i

t−A2q
′−rdt +

∫ ∞

1
tr−A2q

′−sdt = k(A2q
′)− (2i)A2q

′+r−1

1−A2q′ − r

and

k(2−A1p′ − s;0,2 j) =
∫ 1

0
tA1p′+s−r−2dt +

∫ 2 j

1
tA1 p′+r−2dt

= k(A1p′)− (2 j)A1 p′+r−1

1−A1p′ − r
,

that is, we get inequality (5.15) from (5.11). �

So far, we have considered homogeneous kernels with the negative degree of homo-
geneity. This restriction was adjusted to particular settings including the Beta and the
incomplete Beta function. However, assuming the convergence, Theorem 5.2 and Corol-
lary 5.1 are also meaningful for homogeneous kernels with the non-negative degree of
homogeneity.

Our next example deals with a particular homogeneous kernel of zero-degree, that is,
K : R+ ×R+ → R, defined by K(x,y) = x

y . Let us emphasize some significant charac-

teristics of this kernel. In contrast to K(x,y) = (x + y)−s, the kernel K(x,y) = x
y is not

symmetric, and is not strictly decreasing in both of its arguments. On the other hand, it
fulfills convexity conditions of Corollary 5.1, hence we have the following result:

Corollary 5.4 Suppose that p, q, and λ satisfy conditions (2.1) and (2.2). If A1 and A2

are real parameters such that A1 > 2
p′ and A2 > 0, then the inequality

∞

∑
i=1

∞

∑
j=1

(
i
j

)λ
aib j

≤ 2
A1+A2− 2

p′

(A1p′ −2)
1
p′ (A2q′)

1
q′

[
∞

∑
i=1

i
p
q′ +pA1ap

i

] 1
p
[

∞

∑
j=1

j
− q

p′ +qA2bq
j

] 1
q

(5.16)

holds for all sequences (ai)i∈N and (b j) j∈N of non-negative real numbers.

Proof. In order to exploit Corollary 5.1 for the homogeneous kernel K(x,y) = x
y , we easily

check that the functions K(1,t)t−A2q
′
= t−1−A2q

′
and K(t,1)t−A1p′ = t1−A1p′ are convex on

R+ for the parameters A1 and A2 as in the statement of this corollary. Therefore we have

k
(
A2q′; 1

2i ,∞
)

=
∫ ∞

1
2i

t−1−A2q
′
dt =

(2i)A2q
′

A2q′

and similarly,

k(2−A1p′;0,2 j) =
∫ 2 j

0
tA1p′−3dt =

(2 j)A1 p′−2

A1p′ −2
,

so the result follows from (5.11). �



160 5 APPLYING THE HERMITE-HADAMARD INEQUALITY

5.4 A non-conjugate example

The method developed in this chapter is often useful when dealing with some non-homo-
geneous kernels. Here we are going to consider the kernel K : R+ ×R+ → R, defined
by K(x,y) = (1 + xy)−s, s > 0. Clearly, we start here with a general result, that is, with
Theorem 5.1, since the kernel is non-homogeneous. As a consequence, we obtain the
following:

Corollary 5.5 Let p, q, and λ satisfy conditions (2.1) and (2.2), and let s > 0. If A1 and
A2 are real parameters such that A1 ∈

(
max{ 1−s

p′ ,0}, 1
p′
)

and A2 ∈
(
max{ 1−s

q′ ,0}, 1
q′
)
, then

the inequality
∞

∑
i=1

∞

∑
j=1

aib j

(1+ i j)λ s

≤
[

∞

∑
i=1

i
− p

q′ +p(A1+A2)B
p
q′
2

i+2
(s+A2q′ −1,1−A2q′)a

p
i

] 1
p

×
[

∞

∑
j=1

j
− q

p′ +q(A1+A2)B
q
p′
2

j+2
(s+A1p′ −1,1−A1p′)b

q
j

] 1
q

(5.17)

holds for all sequences (ai)i∈N and (b j) j∈N of non-negative real numbers.

Proof. In order to be able to apply (5.7), we have to check convexity conditions (i) and (ii)
from Theorem 5.1, for the kernel K(x,y) = (1+xy)−s and the weight functions ϕ(x) = xA1

and ψ(y) = yA2 .
Due to the symmetry, it suffices to show that the functions gi(t) = (1+ it)−st−a, i ∈ N,

are convex on R+ for a > 0. These functions can be rewritten as gi(t) = ia f (it), where
f (t) = (1 + t)−st−a. The second derivative is g′′i (t) = ia+2 f ′′(it), i ∈ N. In addition, the
second derivative of f is given by (5.14), which proves the convexity of functions gi, i∈N,
on R+.

Therefore, the assumptions of Theorem 5.1 are fulfilled, so we use (5.7) with m = n =
1. Using the change of variable u = 1

it+1 , i ∈ N, we conclude that∫ ∞

1
2

K(i, t)
ψq′(t)

dt =
∫ ∞

1
2

(1+ it)−st−A2q
′
dt = iq

′A2−1
∫ 2

i+2

0
us+A2q

′−2(1−u)−A2q
′
du

= iq
′A2−1B 2

i+2
(s+A2q′ −1,1−A2q′).

Due to the symmetry, we also have∫ ∞

1
2

K(t, j)
ϕ p′(t)

dt =
∫ ∞

1
2

(1+ jt)−st−A1p′dt = jp
′A1−1B 2

j+2
(s+A1p′ −1,1−A1p′),

where j ∈ N, so the result follows. �
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Remark 5.10 Since the incomplete Beta function is bounded from above by the usual
Beta function with the same parameters, the right-hand side of inequality (5.17) does not
exceed

L

[
∞

∑
i=1

i
− p

q′ +p(A1+A2)ap
i

] 1
p
[

∞

∑
j=1

j
− q

p′ +q(A1+A2)bq
j

] 1
q

, (5.18)

where L = B
1
q′ (s+A2q′ −1,1−A2q′)B

1
p′ (s+A1p′ −1,1−A1p′). This also yields inter-

polating sequence of inequalities that we have already discussed in the previous section.
As an illustration, we consider a particular choice of parameters A1 and A2 as in Remark
5.8, that is, A1 = A2 = 2−s

λ p′q′ , where 2−s
λ p′ ,

2−s
λq′ ∈ (max{1− s,0},1). In this case, the above

expression (5.18) reads

Bλ
(

s+λ p′−2
λ p′ , s+λq′−2

λq′
)[

∞

∑
i=1

i
p
q′

[
2(2−s)
λ p′ −1

]
ap

i

] 1
p
[

∞

∑
j=1

j
q
p′

[
2(2−s)
λq′ −1

]
bq

j

] 1
q

. (5.19)

In the conjugate case, expression (5.19) represents the right-hand side of the appropriate
inequality from [159]. Hence, relation (5.17) may be regarded as both a refinement and a
generalization of the above mentioned result from [159].

Remark 5.11 The method of improving Hilbert-type inequalities via the Hermite-Hada-
mard inequality, presented in this chapter, has been recently developed in [66].





Chapter6
Hilbert-type inequalities and
the Laplace transform

In this short chapter we study refinements of some particular Hilbert-type inequalities in-
volving the Laplace transform. Let us recall that if f : R+ → R is a Lebesgue measurable
function, then the Laplace transformL f of f is defined by (L f ) (x)=

∫ ∞
0 exp(−xt) f (t)dt,

for each x such that the above integral converges.
Considering the Hilbert-type inequality with the kernel (x+y)−s, s > 0, Peachey [108],

obtained the following interpolating sequence of inequalities in the case of conjugate pa-
rameters.

Theorem 6.1 Let 1
p + 1

q = 1, p > 1, and let b > − 1
p , c > − 1

q . If f ,g : R+ → R, f ,g �= 0,
are non-negative measurable functions with the respective Laplace transforms L f and
L g, then∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)b+c+1 dxdy ≤ 1

Γ(b+ c+1)
‖tb (L f ) (t)‖Lp(R+) ‖tc (L g)(t)‖Lq(R+)

< B

(
b+

1
p
,c+

1
q

)
‖x1−b− 2

p f (x)‖Lp(R+) ‖y1−c− 2
q g(y)‖Lq(R+). (6.1)

Note that the middle term in (6.1) that includes norms with the Laplace transforms
of functions f and g, interpolates between the left-hand side and the right-hand side of
the corresponding Hilbert-type inequality. Moreover, taking into account the form of the
kernel, the above inequalities include the constant factors expressed in terms of the Beta
and Gamma functions.

163
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In the same paper Peachey also derived an analogue of the above interpolating sequence
of inequalities, in the setting with non-conjugate parameters.

Theorem 6.2 Suppose that p > 1, q > 1, 1
p + 1

q ≥ 1, q ≤ r ≤ p′, b+ 1
r′ > 0, and c+ 1

r >
0. If f ,g : R+ → R, f ,g �= 0, are non-negative measurable functions with the respective
Laplace transforms L f and L g, then∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)b+c+1 dxdy ≤ 1

Γ(b+ c+1)
‖tb (L f ) (t)‖Lr′ (R+) ‖tc (L g)(t)‖Lr(R+)

< C‖x
1
p′ −

1
r′ −b

f (x)‖Lp(R+) ‖y
1
q′ −

1
r −c

g(y)‖Lq(R+), (6.2)

where β = 1
p′ +

1
r′ , γ = 1

q′ +
1
r , and

C = β b+ 1
r′ γc+ 1

r Γβ
(

b
β

+
1

r′β

)
Γγ

(
c
γ

+
1
rγ

)
Γ−1(b+ c+1).

Our aim in this chapter is to derive multidimensional versions of Theorems 6.1 and
6.2 with a more general parameters. In other words, we shall extend inequalities (6.1) and
(6.2) regarding multidimensional conjugate and non-conjugate parameters. In such a way
we shall obtain refinements of some particular Hilbert-type inequalities from Chapters 1
and 2.

Basic results will be established by virtue of the general Hardy-Hilbert-type inequality
in both conjugate and non-conjugate setting.

6.1 The case of conjugate parameters

To prove the main result we first establish the following two lemmas.

Lemma 6.1 Let a > −1. If fi : R+ → R, i = 1, . . . ,n, are non-negative measurable func-
tions with the respective Laplace transforms L fi, i = 1, . . . ,n, then∫

R
n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)a+1 dx1 . . .dxn =

1
Γ(a+1)

∫ ∞

0
ta

n

∏
i=1

(L fi) (t)dt. (6.3)

Proof. The proof is obtained using a simple application of the Fubini theorem:∫ ∞

0
ta

n

∏
i=1

(L fi)(t)dt =
∫ ∞

0
ta

(
n

∏
i=1

∫ ∞

0
exp(−txi) fi(xi)dxi

)
dt

=
∫
R

n
+

n

∏
i=1

fi(xi)
(∫ ∞

0
exp(−t(x1 + . . .+ xn))tadt

)
dx1 . . .dxn

=
∫
R

n
+

Γ(a+1)∏n
i=1 fi(xi)

(∑n
j=1 x j)a+1 dx1 . . .dxn.

�
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The following lemma is a consequence of the general Hardy-Hilbert-type inequality
(1.13) (see Chapter 1), observed in a suitable setting.

Lemma 6.2 Suppose 1
p + 1

q = 1, p > 1. If f : R+ → R, f �= 0, is a non-negative measur-
able function with the Laplace transform L f , then∫ ∞

0
yp−1−p(B+C) (L f )p (y)dy

< Γ(1− pC)Γp−1(1−qB)
∫ ∞

0
xp(B+C)−1 f p(x)dx, (6.4)

where B < 1
q and C < 1

p .

Proof. Inequality (6.4) is an immediate consequence of (1.13) (see Theorem 1.9, Chap-
ter 1). Namely, using the notation from the mentioned theorem and setting K(x,y) =
exp(−yx), ϕ(x) = xB, and ψ(y) = yC, we have

F(x) =
∫ ∞

0
ψ−p(y)K(x,y)dy =

∫ ∞

0
y−pC exp(−xy)dy = xpC−1Γ(1− pC)

and similarly, G(y) =
∫ ∞
0 ϕ−q(x)K(x,y)dx = yqB−1Γ(1− qB), so that inequality (1.13)

yields

Γ1−p(1−qB)
∫ ∞

0
y(qB−1)(1−p)−pC

(∫ ∞

0
exp(−xy) f (x)dx

)p

dy

≤ Γ(1− pC)
∫ ∞

0
xp(B+C)−1 f p(x)dx. (6.5)

Observe that equality in (6.5) holds if and only if f (x) = K1x−qB for arbitrary non-negative
constant K1 (see Remark 1.3, Chapter 1). Clearly, this condition immediately gives that
nontrivial case of equality in (6.5) leads to a divergent integral.

Finally, since (qB−1)(1− p)− pC= p−1− p(B+C), the above relation (6.5) yields
(6.4). �

Now, we are ready to state and prove the basic result of this section.

Theorem 6.3 Let s > 0, ∑n
i=1

1
pi

= 1, pi > 1, 1
pi

+ 1
qi

= 1, i = 1, . . . ,n, and ∑n
i=1αi = 0. If

fi : R+ →R, fi �= 0, i = 1, . . . ,n, are non-negative measurable functions with the respective
Laplace transforms L fi, then∫

R
n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)s dx1 . . .dxn ≤ 1

Γ(s)

n

∏
i=1

‖t 1
qi

+ s−n
pi

−αi (L fi)(t)‖Lpi (R+)

<
1

Γ(s)

n

∏
i=1

[
Γ

1
qi (1−qiBi)Γ

1
pi (1− piCi)

]
×

n

∏
i=1

[∫ ∞

0
xn−1−s+piαi
i f pi

i (xi)dxi

] 1
pi

, (6.6)

where Bi +Ci = n−s
pi

+αi, Bi < 1
qi

, and Ci < 1
pi

, i = 1, . . . ,n.
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Proof. Utilizing Lemma 6.1 and setting exponents βi, i = 1, . . . ,n, such that ∑n
i=1βi =

s−1, we have ∫
R

n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)s dx1 . . .dxn =

1
Γ(s)

∫ ∞

0
ts−1

n

∏
i=1

(L fi)(t)dt

=
1

Γ(s)

∫ ∞

0

n

∏
i=1

tβi (L fi)(t)dt.

Moreover, applying the Hölder inequality, we have that

∫
R

n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)s dx1 . . .dxn ≤ 1

Γ(s)

n

∏
i=1

[∫ ∞

0
t piβi (L fi)

pi (t)dt

] 1
pi

. (6.7)

On the other hand, setting

βi =
1
qi

− (Bi +Ci), i = 1, . . . ,n, (6.8)

where Bi <
1
qi

and Ci < 1
pi

, and taking into account Lemma 6.2, we have

[∫ ∞

0
t piβi (L fi)

pi (t)dt

] 1
pi

=
[∫ ∞

0
t pi−1−pi(Bi+Ci) (L fi)

pi (t)dt

] 1
pi

< Γ
1
qi (1−qiBi)Γ

1
pi (1− piCi)

[∫ ∞

0
xpi(Bi+Ci)−1
i f pi

i (xi)dxi

] 1
pi

. (6.9)

Now, putting Bi +Ci = n−s
pi

+αi in (6.8), it follows that ∑n
i=1βi = s−1, that is, inequality

(6.9) reads [∫ ∞

0
t piβi (L fi)pi (t)dt

] 1
pi

=
[∫ ∞

0
t

pi
qi
−n+s−piαi (L fi)pi (t)dt

] 1
pi

< Γ
1
qi (1−qiBi)Γ

1
pi (1− piCi)

[∫ ∞

0
xn−1−s+piαi
i f pi

i (xi)dxi

] 1
pi

. (6.10)

Finally, utilizing (6.7) and (6.10), we obtain (6.6). �

Remark 6.1 Applying Lemma 6.2 to parameters B = 1
q

(
1
q −β

)
andC = 1

p

(
1
q −β

)
, where

1
p +β > 0, we have Γ(1− pC)Γp−1(1−qB) = Γp( 1

p +β ), that is,

‖tβ (L f ) (t)‖Lp(R+) < Γ
(
β +

1
p

)
‖x1−β− 2

p f (x)‖Lp(R+). (6.11)

The above inequality was also established in [108]. Moreover, utilizing (6.11) in the proof

of Theorem 6.3, the constant 1
Γ(s) ∏

n
i=1[Γ

1
qi (1−qiBi)Γ

1
pi (1 −piCi)] becomes 1

Γ(s) ∏
n
i=1Γ(1

− n−s
pi

−αi).
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We restate Theorem 6.3 in the case of n = 2. This result is interesting in its own right,
since it may be regarded as a generalization of the mentioned result from [108], as well
as a refinement of inequality (1.23) with the kernel K(x,y) = (x+ y)−s (see Corollary 1.1,
Chapter 1).

Theorem 6.4 Let 1
p + 1

q = 1, p > 1, and s > 0. If f ,g : R+ →R, f ,g �= 0, are non-negative
measurable functions with the respective Laplace transforms L f and L g, then∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)s dxdy

≤ 1
Γ(s)

‖t 1
q + s−2

p +A2−A1 (L f ) (t)‖Lp(R+) ‖t
1
p+ s−2

q +A1−A2 (L g)(t)‖Lq(R+)

< L

[∫ ∞

0
x1−s+p(A1−A2) f p(x)dx

] 1
p
[∫ ∞

0
x1−s+q(A2−A1)gq(x)dx

] 1
q

, (6.12)

where L = B
1
p (1− pA2,s− 1 + pA2)B

1
q (1− qA1,s− 1 + qA1), and A1 ∈ ( 1−s

q , 1
q ), A2 ∈

( 1−s
p , 1

p).

Proof. The proof follows directly from Theorem 6.3 defining p1 = q2 = p, p2 = q1 = q,
Bi = Ai, Ci = 2−s

qi
−Ai+1, αi = Ai−Ai+1 for i = 1,2 (the indices are taken modulo 2). �

In order to obtain inequality (6.1), we consider (6.12) with the parameters A1 = 1−b
q −

1
pq and A2 = 1−c

p − 1
pq . Obviously, since A1 ∈

(
1−s
q , 1

q

)
and A2 ∈

(
1−s
p , 1

p

)
, it follows that

0 < b+ 1
p < s and 0 < c+ 1

q < s.

Corollary 6.1 Let 1
p + 1

q = 1, p > 1, and s > 0. If f ,g : R+ → R, f ,g �= 0, are non-
negative measurable functions with the respective Laplace transforms L f and L g, then∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)s dxdy

≤ 1
Γ(s)

‖t 1
p (s−c−1)+ b

q (L f ) (t)‖Lp(R+) ‖t
1
q (s−b−1)+ c

p (L g)(t)‖Lq(R+)

< C1

[∫ ∞

0
x(p−1)(1−b)+c−s f p(x)dx

] 1
p
[∫ ∞

0
x(q−1)(1−c)+b−sgq(x)dx

] 1
q

, (6.13)

where C1 = B
1
p
(
c+ 1

q ,s− c− 1
q

)
B

1
q
(
b+ 1

p ,s−b− 1
p

)
.

Remark 6.2 If s = b+c+1, the above inequality (6.13) reduces to (6.1), that is, Theorem
6.3 can be seen as a generalization of the Peachey result from [108].
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6.2 The case of non-conjugate parameters

The following result is an extension of Lemma 6.2 to the setting of non-conjugate expo-
nents.

Lemma 6.3 Let p, p′, q, q′, and λ satisfy (2.1) and (2.2). If f : R+ → R, f �= 0, is a
non-negative measurable function with the Laplace transform L f , then

[∫ ∞

0
y

q′
p′ −q′(B+C) (L f )q′ (y)dy

] 1
q′

< λλ−(B+C)Γ
1
p′ (1− p′B)Γ

1
q′ (1−q′C)

[∫ ∞

0
x

p(B+C)− p
q′ f p(x)dx

] 1
p

, (6.14)

where B < 1
p′ and C < 1

q′ .

Proof. We utilize general Hardy-Hilbert-type inequality (2.10) with non-conjugate expo-
nents (Theorem 2.1, Chapter 2). Similarly to the procedure used in the proof of Lemma
6.2, setting K(x,y) = exp(− xy

λ ), ϕ(x) = xB, and ψ(y) = yC in (2.10), we obtain inequality
(6.14). It follows also that the equality in (6.14) is possible only in the trivial case (see
Remark 2.3, Chapter 2). �

In order to obtain a non-conjugate version of Theorem 6.3, we introduce real pa-
rameters r′i such that pi ≤ r′i, i = 1, . . . ,n, and ∑n

i=1
1
r′i

= 1. For example, we can define
1
r′i

= 1
qi

+ 1−λ
n or r′i = (n−nλ +λ )pi, i = 1, . . . ,n. Now, utilizing Lemma 6.3 we obtain the

following general result:

Theorem 6.5 Let s > 0 and p1, . . . , pn,λ be as in (2.26) and (2.27). Let r′1, . . . ,r
′
n and

α1, . . . ,αn be such that pi ≤ r′i, i = 1, . . . ,n, ∑n
i=1

1
r′i

= 1, and ∑n
i=1αi = 0. If fi : R+ → R,

fi �= 0, i = 1, . . . ,n, are non-negative measurable functions with the respective Laplace
transforms L fi, then∫

R
n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)s dx1 . . .dxn ≤ 1

Γ(s)

n

∏
i=1

‖t
1
p′i
−(Bi+Ci)

(L fi) (t)‖
Lr′i (R+)

<
1

Γ(s)

n

∏
i=1

[
γγi−(Bi+Ci)
i Γ

1
p′i (1− p′iBi)Γ

1
r′i (1− r′iCi)

]

×
n

∏
i=1

[∫ ∞

0
x

pi(Bi+Ci)− pi
r′i

i f pi
i (xi)dxi

] 1
pi

, (6.15)

where γi = 1
p′i

+ 1
r′i
, Bi < 1

p′i
, and Ci < 1

r′i
, i = 1, . . . ,n.
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Proof. Let βi, i = 1, . . . ,n, be parameters such that ∑n
i=1βi = s−1. Similarly to the proof

of Theorem 6.3, applying Lemma 6.1 and the Hölder inequality, we have∫
R

n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)s dx1 . . .dxn ≤ 1

Γ(s)

n

∏
i=1

[∫ ∞

0
tr

′
iβi (L fi)

r′i (t)dt

] 1
r′i , (6.16)

where ∑n
i=1

1
r′i

= 1 and pi ≤ r′i, i = 1, . . . ,n.

On the other hand, setting

βi =
1
p′i

− (Bi +Ci), i = 1, . . . ,n, (6.17)

where Bi <
1
p′i

and Ci < 1
r′i
, and taking into account Lemma 6.3, we obtain

[∫ ∞

0
tr

′
iβi (L fi)

r′i (t)dt

] 1
r′i =

[∫ ∞

0
t

r′i
p′i
−r′i(Bi+Ci)

(L fi)
r′i (t)dt

] 1
r′i

< γγi−(Bi+Ci)
i Γ

1
p′i (1− p′iBi)Γ

1
r′i (1− r′iCi)

[∫ ∞

0
x

pi(Bi+Ci)− pi
r′i

i f pi
i (xi)dxi

] 1
pi

, (6.18)

where γi = 1
p′i

+ 1
r′i
. Finally, relations (6.16) and (6.18) yield (6.15). �

Setting Bi +Ci = n−s+1
r′i

− 1
pi

+αi in (6.17), we have ∑n
i=1βi = s−1, that is, inequality

(6.18) reduces to

‖t
s−n−1

r′i
+1−αi

(L fi)(t)‖
Lr′i (R+)

< γ
s−n
r′i

+1−αi

i Γ
1
p′i (1− p′iBi)Γ

1
r′i (1− r′iCi)

×
[∫ ∞

0
x

pi
r′i

(n−s)−1+piαi

i f pi
i (xi)dxi

] 1
pi

. (6.19)

Now, exploiting (6.19) we obtain the following result:

Corollary 6.2 Let s > 0 and p1, . . . , pn,λ be as in (2.26) and (2.27). Let r′1, . . . ,r
′
n,

α1, . . . ,αn satisfy conditions of Theorem 6.5. If fi : R+ → R, fi �= 0, i = 1, . . . ,n, are
non-negative measurable functions with the respective Laplace transforms L fi, then∫

R
n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)s dx1 . . .dxn ≤ 1

Γ(s)

n

∏
i=1

‖t
s−n−1

r′i
+1−αi

(L fi)(t)‖
Lr′i (R+)

<
1

Γ(s)

n

∏
i=1

[
γ

s−n
r′i

+1−αi

i Γ
1
p′i (1− p′iBi)Γ

1
r′i (1− r′iCi)

]

×
n

∏
i=1

[∫ ∞

0
x

pi
r′i

(n−s)−1+piαi

i f pi
i (xi)dxi

] 1
pi

, (6.20)

where γi = 1
p′i

+ 1
r′i
, Bi +Ci = n−s+1

r′i
− 1

pi
+αi, Bi <

1
p′i

, and Ci < 1
r′i
, i = 1, . . . ,n.
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Remark 6.3 Setting 1
r′i

= 1
qi

+ 1−λ
n , αi = 1

pi
− 1

r′i
(n− s), Bi = 1

r′i+p′i
, and Ci = p′i

r′i(r′i+p′i)
in

(6.20), we get the following inequalities:

∫
R

n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)(n−1)λ dx1 . . .dxn

≤ 1
Γ((n−1)λ )

n

∏
i=1

‖t
2
p′i
− (n−1)λ+1

n (L fi)(t)‖
L

nqi
n+qi(1−λ) (R+)

<
1

Γ((n−1)λ )

[
λ +

1−λ
n

](n−1)λ
[

n

∏
i=1

Γ
(

n
(n−1)λ +1

· 1
p′i

)]λ+ 1−λ
n n

∏
i=1

‖ fi‖Lpi (R+).

Obviously, according to the conditions from the statement of Corollary 6.2, we can use
other choices of parameters r′i, and consequently, take the infimum of the right-hand sides
of the obtained inequalities over all such parameters r′i.

We restate Corollary 6.2 for the case n = 2. This result is interesting in its own right,
and it will be applied to obtain Theorem 6.2.

Corollary 6.3 Suppose p, p′, q, q′, and λ satisfy (2.1) and (2.2), and let s > 0. Further,
let p ≤ r′ ≤ q′, 1

r′ + 1
r = 1, and α1 +α2 = 0. If f ,g : R+ → R, f ,g �= 0, are non-negative

measurable functions with the respective Laplace transforms L f and L g, then

∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)s dxdy

≤ 1
Γ(s)

‖t s−3
r′ +1−α1 (L f ) (t)‖Lr′ (R+)‖t

s−3
r +1−α2 (L g)(t)‖Lr(R+)

<
M

Γ(s)
‖x 2−s

r′ − 1
p +α1 f (x)‖Lp(R+)‖y

2−s
r − 1

q +α2g(y)‖Lq(R+), (6.21)

where

M = γ
s−2
r′ +1−α1

1 γ
s−2
r +1−α2

2 Γ
1
p′ (1− p′B1)Γ

1
r′ (1− r′C1)Γ

1
q′ (1−q′B2)Γ

1
r (1− rC2),

γ1 = 1
p′ +

1
r′ , γ2 = 1

q′ +
1
r , B1+C1 = 3−s

r′ − 1
p +α1, B2+C2 = 3−s

r − 1
q +α2, B1 < 1

p′ ,C1 < 1
r′ ,

B2 < 1
q′ , and C2 < 1

r .

Proof. The proof follows directly from Corollary 6.2 using substitutions p1 = p, p2 = q,
p′1 = q2 = p′, p′2 = q1 = q′, r′1 = r′, and r′2 = r. �

Remark 6.4 Setting s = b+ c+1, α1 = c−2
r′ +1− b

r , α2 = −α1, B1 = 1
p′ − 1

p′γ1 (b+ 1
r′ ),

C1 = 1
r′ − 1

r′γ1 (b+ 1
r′ ), B2 = 1

q′ − 1
q′γ2 (c+ 1

r ), and C2 = 1
r − 1

rγ2
(c+ 1

r ) in Corollary 6.3, we
obtain Theorem 6.2.
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Remark 6.5 Set s = λ , α1 = λ−2
r′ + 1

p , α2 = −α1, B1 = 1
r′ p′ , C1 = 1

r′ p , B2 = 1
rq′ , and

C2 = 1
rq , p ≤ r′ ≤ q′, in Corollary 6.3. Then inequality (6.21) becomes

∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)λ

dxdy ≤ 1
Γ(λ )

‖t
1
p′ −

1
r′ (L f ) (t)‖Lr′ (R+)‖t

1
q′ −

1
r (L g)(t)‖Lr(R+)

<
M

Γ(λ )
‖ f‖Lp(R+)‖g‖Lq(R+), (6.22)

where γ1 = 1
p′ +

1
r′ , γ2 = 1

q′ +
1
r , and M = γ

1
p′

1 γ
1
q′
2 Γ

1
p′
( 1

r

)
Γ

1
r′
( 1

p′
)
Γ

1
q′
( 1

r′
)
Γ 1

r
( 1

q′
)
. It should

be noticed here that in conjugate case, the constant M
Γ(λ ) reduces to the best constant

π/sin(π/p).

Remark 6.6 Similarly to Corollary 6.2, if we put Bi +Ci = 1
r′i

+ 1
qi

(n− 1− s
λ )+αi, i =

1, . . . ,n, in (6.17), then ∑n
i=1βi = s−1. Thus, inequality (6.15) from Theorem 6.5 becomes∫

R
n
+

∏n
i=1 fi(xi)

(∑n
j=1 x j)s dx1 . . .dxn ≤ 1

Γ(s)

n

∏
i=1

‖tλ−
1
r′i
− 1

qi
(n− s

λ )−αi
(L fi) (t)‖Lr′ (R+)

<
1

Γ(s)

n

∏
i=1

[
γ
λ− 1

qi
(n− s

λ )−αi

i Γ
1
p′i (1− p′iBi)Γ

1
r′i (1− r′iCi)

]

×
n

∏
i=1

[∫ ∞

0
x

pi
qi

(n−1− s
λ )+piαi

i f pi
i (xi)dxi

] 1
pi

, (6.23)

where γi, r′i, αi are as in Corollary 6.2. Observe that the integrals on the right-hand side of
the second inequality in (6.23) coincide with integrals on the right-hand side of inequality
(2.35) (see Chapter 2), when s is replaced by s

λ .

Remark 6.7 Multidimensional refinements of Hilbert-type inequalities via the Laplace
transform, presented in this chapter, are derived in [110] by Pečarić et.al.





Chapter7
A class of
Hilbert-Pachpatte-type
inequalities

In this chapter we investigate a particular class of the so-called Hilbert-Pachpatte-type
inequalities which are closely connected to Hilbert-type inequalities. An interesting feature
of this class is that it controls the size (in the sense of Lp or l p spaces) of the modified
Hilbert transform of a function or of a series with the size of its derivative or its backward
differences, respectively.

We start this overview with the results of Lü [86], in a slightly altered form, in both
continuous and discrete case. For a sequence (an)n∈N0

, the sequence (∇an)n∈N is defined
by ∇an = an−an−1, while for a function u : R+ → R, u′ denotes its usual derivative.

Theorem 7.1 Let 1
p + 1

q = 1, p > 1, and let s > 2−min{p,q}. If f ,g : R+ → R are
absolutely continuous functions such that f (0) = g(0) = 0, then

∫ ∞

0

∫ ∞

0

| f (x)||g(y)|
(qxp−1 + pyq−1)(x+ y)s dxdy

≤
B
(

q+s−2
q , p+s−2

p

)
pq

[∫ ∞

0

∫ x

0
x1−s| f ′(τ)|pdτdx

] 1
p
[∫ ∞

0

∫ y

0
y1−s|g′(δ )|qdδdy

] 1
q

.

(7.1)
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Theorem 7.2 Let 1
p + 1

q = 1, p > 1, and let 2−min{p,q}< s≤ 2. If (am)m∈N0
, (bn)n∈N0

are sequences of real numbers such that a0 = b0 = 0, then the following inequality hold:

∞

∑
m=1

∞

∑
n=1

|am||bn|
(qmp−1 + pnq−1)(m+n)s

≤
B
(

q+s−2
q , p+s−2

p

)
pq

[
∞

∑
m=1

m

∑
τ=1

m1−s|∇aτ |p
] 1

p
[

∞

∑
n=1

n

∑
δ=1

n1−s|∇bδ |q
] 1

q

. (7.2)

Due to the form of the kernel, the above Hilbert-Pachpatte-type inequalities include
the constant factors expressed in terms of the usual Beta function. Our main task here is to
obtain generalizations of the above inequalities which include arbitrary kernels and weight
functions, with a special emphasis on homogeneous kernels. This can be done in a simpler
way than in [86], by virtue of the general Hilbert-type and Hardy-Hilbert-type inequalities
from Chapters 1 and 2. Hence, generalizations that follow will be given in both Hilbert
and Hardy-Hilbert form. Moreover, the established results will also be considered in the
setting of non-conjugate exponents.

7.1 Integral case

We start with the following general result.

Theorem 7.3 Let 1
p + 1

q = 1, p > 1, and let K : R+ ×R+ → R, ϕ ,ψ : R+ → R be non-
negative functions. If f ,g : R+ → R are absolutely continuous functions such that f (0) =
g(0) = 0, and F(x) =

∫ ∞
0 K(x,y)ψ−p(y)dy, G(y) =

∫ ∞
0 K(x,y)ϕ−q(x)dx, then the following

inequalities hold:∫ ∞

0

∫ ∞

0

K(x,y)| f (x)||g(y)|
qxp−1 + pyq−1 dxdy

≤
∫ ∞

0

∫ ∞

0
K(x,y)| f (x)||g(y)|d(x

1
p )d(y

1
q )

≤ 1
pq

[∫ ∞

0

∫ x

0
ϕ p(x)F(x)| f ′(τ)|pdτdx

] 1
p
[∫ ∞

0

∫ y

0
ψq(y)G(y)|g′(δ )|qdδdy

] 1
q

(7.3)

and ∫ ∞

0
G1−p(y)ψ−p(y)

[∫ ∞

0
K(x,y)| f (x)|d(x

1
p )

]p

dy

≤ 1
pp

∫ ∞

0

∫ x

0
ϕ p(x)F(x)| f ′(τ)|pdτdx. (7.4)
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Proof. Utilizing the Hölder inequality (see also [86]), we have

| f (x)||g(y)| ≤ x
1
q y

1
p

[∫ x

0
| f ′(τ)|pdτ

] 1
p
[∫ y

0
|g′(δ )|qdδ

] 1
q

. (7.5)

Taking into account (7.5) and the well-known Young inequality

xy ≤ xp

p
+

yq

q
, x ≥ 0, y ≥ 0,

1
p

+
1
q

= 1, p > 1,

we observe that

pq| f (x)||g(y)|
qxp−1 + pyq−1 ≤ | f (x)||g(y)|

x
1
q y

1
p

≤
[∫ x

0
| f ′(τ)|pdτ

] 1
p
[∫ y

0
|g′(δ )|qdδ

] 1
q

and therefore,

pq
∫ ∞

0

∫ ∞

0

K(x,y)| f (x)||g(y)|
qxp−1 + pyq−1 dxdy

≤
∫ ∞

0

∫ ∞

0

K(x,y)

x
1
q y

1
p

| f (x)||g(y)|dxdy

≤
∫ ∞

0

∫ ∞

0
K(x,y)

[∫ x

0
| f ′(τ)|pdτ

] 1
p
[∫ y

0
|g′(δ )|qdδ

] 1
q

dxdy. (7.6)

Now, putting

f1(x) =
[∫ x

0
| f ′(τ)|pdτ

] 1
p

, g1(y) =
[∫ y

0
|g′(δ )|qdδ

] 1
q

in the general Hilbert-type inequality (1.12) in the conjugate case (Theorem 1.9, Chapter
1), we obtain∫ ∞

0

∫ ∞

0
K(x,y) f1(x)g1(y)dxdy

≤
[∫ ∞

0
ϕ p(x)F(x) f p

1 (x)dx

] 1
p
[∫ ∞

0
ψq(y)G(y)gq

1(y)dy

] 1
q

=
[∫ ∞

0

∫ x

0
ϕ p(x)F(x)| f ′(τ)|pdτdx

] 1
p
[∫ ∞

0

∫ y

0
ψq(y)G(y)|g′(δ )|qdδdy

] 1
q

. (7.7)

Finally, using (7.6) and (7.7) we obtain (7.3).
The second inequality (7.4) follows from the general Hardy-Hilbert-type inequality

(1.13) in the conjugate case (Theorem 1.9, Chapter 1), and the inequality

| f (x)| ≤ x
1
q (

∫ x
0 | f ′(t)|pdt)

1
p . �

In the sequel we apply the above Theorem 7.3 to a homogeneous kernel. Similarly to
the previous chapters we use the notation k(α) =

∫ ∞
0 K(1,u)u−αdu, where K : R+×R+ →

R is a non-negative homogeneous function of degree −s, s > 0, provided k(α) < ∞ for
1− s < α < 1.
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Corollary 7.1 Let 1
p + 1

q = 1, p > 1, and let K : R+×R+ →R be a non-negative symmet-
ric homogeneous function of degree −s, s > 0. If f ,g : R+ → R are absolutely continuous
functions such that f (0) = g(0) = 0, then

∫ ∞

0

∫ ∞

0

K(x,y)| f (x)||g(y)|
qxp−1 + pyq−1 dxdy ≤

∫ ∞

0

∫ ∞

0
K(x,y)| f (x)||g(y)|d(x

1
p )d(y

1
q )

≤ L
pq

[∫ ∞

0

∫ x

0
x1−s+p(A1−A2)| f ′(τ)|pdτdx

] 1
p

×
[∫ ∞

0

∫ y

0
y1−s+q(A2−A1)|g′(δ )|qdδdy

] 1
q

(7.8)

and

∫ ∞

0
y(p−1)(s−1)+p(A1−A2)

[∫ ∞

0
K(x,y)| f (x)|d(x

1
p )

]p

dy (7.9)

≤
(

L
p

)p ∫ ∞

0

∫ x

0
x1−s+p(A1−A2)| f ′(τ)|pdτdx,

where A1 ∈ ( 1−s
q , 1

q ), A2 ∈ ( 1−s
p , 1

p), and L = k
1
p (pA2)k

1
q (qA1).

Proof. We prove (7.8) only. Let F(x) and G(y) be as in the statement of Theorem 7.3.
Setting ϕ(x) = xA1 and ψ(y) = yA2 , we obtain

∫ ∞

0

∫ x

0
ϕ p(x)F(x)| f ′(τ)|pdτdx

=
∫ ∞

0

∫ x

0
| f ′(τ)|p

[∫ ∞

0
K(x,y)

(
x
y

)pA2

dy

]
xp(A1−A2)dτdx

= k(pA2)
∫ ∞

0

∫ x

0
x1−s+p(A1−A2)| f ′(τ)|pdτdx, (7.10)

and similarly,

∫ ∞

0

∫ y

0
ψq(y)G(y)|g′(δ )|qdδdy = k(qA1)

∫ ∞

0

∫ y

0
y1−s+q(A2−A1)|g′(δ )|qdδdy. (7.11)

Now, relations (7.3), (7.10), and (7.11) yield (7.8). �

Our first application of Corollary 7.1 refers to the homogeneous kernel K(x,y) = (x+
y)−s, s > 0.

Corollary 7.2 Let 1
p + 1

q = 1, p > 1, and let s > 0. If f ,g : R+ → R are absolutely
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continuous functions such that f (0) = g(0) = 0, then∫ ∞

0

∫ ∞

0

| f (x)||g(y)|
(qxp−1 + pyq−1)(x+ y)s dxdy ≤

∫ ∞

0

∫ ∞

0

| f (x)||g(y)|
(x+ y)s d(x

1
p )d(y

1
q )

≤ L1

pq

[∫ ∞

0

∫ x

0
x1−s+p(A1−A2)| f ′(τ)|pdτdx

] 1
p

×
[∫ ∞

0

∫ y

0
y1−s+q(A2−A1)|g′(δ )|qdδdy

] 1
q

and ∫ ∞

0
y(p−1)(s−1)+p(A1−A2)

[∫ ∞

0

| f (x)|
(x+ y)s d(x

1
p )

]p

dy

≤
(

L1

p

)p ∫ ∞

0

∫ x

0
x1−s+p(A1−A2)| f ′(τ)|pdτdx,

where A1 ∈ ( 1−s
q , 1

q), A2 ∈ ( 1−s
p , 1

p ), and L1 = B
1
p (1− pA2,s−1+ pA2)B

1
q (1−qA1,s−1+

qA1).

Remark 7.1 Setting A1 = A2 = 2−s
pq in Corollary 7.2, provided s > 2−min{p,q}, we

obtain Theorem 7.1.

Considering the homogeneous kernel K(x,y) = log y
x

y−x of degree−1, we obtain the following
consequence of Corollary 7.1:

Corollary 7.3 Let 1
p + 1

q = 1 and p > 1. If f ,g : R+ → R are absolutely continuous
functions such that f (0) = g(0) = 0, then∫ ∞

0

∫ ∞

0

log y
x | f (x)||g(y)|

(qxp−1 + pyq−1)(y− x)
dxdy ≤

∫ ∞

0

∫ ∞

0

log y
x | f (x)||g(y)|

y− x
d(x

1
p )d(y

1
q )

≤ L2

pq

[∫ ∞

0

∫ x

0
xp(A1−A2)| f ′(τ)|pdτdx

] 1
p
[∫ ∞

0

∫ y

0
yq(A2−A1)|g′(δ )|qdδdy

] 1
q

and ∫ ∞

0
yp(A1−A2)

[∫ ∞

0

| f (x)| log y
x

y− x
d(x

1
p )

]p

dy

≤
(

L2

p

)p ∫ ∞

0

∫ x

0
xp(A1−A2)| f ′(τ)|pdτdx,

where A1 ∈ (0, 1
q ), A2 ∈ (0, 1

p), and L2 = π2(sin pA2π)−
2
p (sinqA1π)−

2
q .

We conclude the above discussion regarding symmetric homogeneous kernels with the
function K(x,y) = max{x,y}−s, s > 0.
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Corollary 7.4 Let 1
p + 1

q = 1, p > 1, and let s > 0. If f ,g : R+ → R are absolutely
continuous functions such that f (0) = g(0) = 0, then∫ ∞

0

∫ ∞

0

| f (x)||g(y)|
(qxp−1 + pyq−1)max{x,y}s dxdy ≤

∫ ∞

0

∫ ∞

0

| f (x)||g(y)|
max{x,y}s d(x

1
p )d(y

1
q )

≤ L3

pq

[∫ ∞

0

∫ x

0
x1−s+p(A1−A2)| f ′(τ)|pdτdx

] 1
p

×
[∫ ∞

0

∫ y

0
y1−s+q(A2−A1)|g′(δ )|qdδdy

] 1
q

and ∫ ∞

0
y(p−1)(s−1)+p(A1−A2)

[∫ ∞

0

| f (x)|
max{x,y}s d(x

1
p )

]p

dy

≤
(

L3

p

)p∫ ∞

0

∫ x

0
x1−s+p(A1−A2)| f ′(τ)|pdτdx,

where A1 ∈ ( 1−s
q , 1

q ), A2 ∈ ( 1−s
p , 1

p), and

L3 =
s

(1− pA2)
1
p (1−qA1)

1
q (s+ pA2−1)

1
p (s+qA1−1)

1
q

.

By virtue of general multidimensional Hilbert-type inequalities in conjugate setting (The-
orem 1.18, Chapter 1), Theorem 7.3 can also be extended to the case of n conjugate expo-
nents. We provide here the multidimensional version of inequality (7.3).

Theorem 7.4 Let ∑n
i=1

1
pi

= 1, pi > 1, and let αi = ∏n
j=1, j �=i p j, i = 1,2, . . . ,n. If K :

Rn
+ →R, φi j : R+ →R, i, j = 1, . . . ,n, are non-negative functions such that∏n

i, j=1 φi j(x j)=
1, and fi : R+ → R, i = 1, . . . ,n, are absolutely continuous functions such that fi(0) = 0,
i = 1, . . . ,n, then ∫

R
n
+

K(x1, . . . ,xn)∏n
i=1 | fi(xi)|

∑n
i=1αix

pi−1
i

dx1 . . .dxn

≤
∫
R

n
+

K(x1, . . . ,xn)
n

∏
i=1

| fi(xi)|d(x
1
p1
1 ) . . .d(x

1
pn
n )

≤ 1
p1 . . . pn

n

∏
i=1

[∫ ∞

0

∫ xi

0
φ pi

ii (xi)Fi(xi)| f ′i (τi)|pidτidxi

] 1
pi

,

where Fi(xi)=
∫
R

n−1
+

K(x1, . . . ,xn)∏n
j=1, j �=iφ

pi
i j (x j)dx1 . . .dxi−1dxi+1 . . .dxn for i = 1, . . . ,n.
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7.2 Discrete case

As we have already seen, Hilbert-Pachpatte-type inequalities can also be considered in
the discrete setting. We first obtain a general result covering homogeneous kernels. It is
established by virtue of discrete Hilbert-type inequalities for homogeneous kernels, that is,
Theorem 1.14 (Chapter 1).

Theorem 7.5 Let 1
p + 1

q = 1, p > 1, and let A, B, α, β > 0. If K : R+×R+ → R is a non-
negative homogeneous function of degree −s, s > 0, strictly decreasing in both arguments
and (am)m∈N0

, (bn)n∈N0
are sequences of real numbers such that a0 = b0 = 0, then

∞

∑
m=1

∞

∑
n=1

K(Amα ,Bnβ )|am||bn|
qmp−1 + pnq−1 ≤ 1

pq

∞

∑
m=1

∞

∑
n=1

K(Amα ,Bnβ )|am||bn|
m

1
q n

1
p

≤ N
pq

[
∞

∑
m=1

m

∑
τ=1

mα(1−s)+α p(A1−A2)+(p−1)(1−α)|∇aτ |p
] 1

p

×
[

∞

∑
n=1

n

∑
δ=1

nβ (1−s)+βq(A2−A1)+(q−1)(1−β )|∇bδ |q
] 1

q

(7.12)

and

∞

∑
n=1

nβ (s−1)(p−1)+pβ (A1−A2)+β−1

[
∞

∑
m=1

K(Amα ,Bnβ )
|am|
m

1
q

]p

≤ Np
∞

∑
m=1

m

∑
τ=1

mα(1−s)+α p(A1−A2)+(p−1)(1−α)|∇aτ |p, (7.13)

where A1 ∈ (max{ 1−s
q , α−1

αq }, 1
q), A2 ∈ (max{ 1−s

p , β−1
β p }, 1

p), and

N = α− 1
q β− 1

p A
2−s
p +A1−A2−1B

2−s
q +A2−A1−1k

1
p (pA2)k

1
q (2− s−qA1).

Proof. Similarly to the proof of Theorem 7.3, utilizing the Hölder and the Young inequal-
ities, we have

pq|am||bn|
qmp−1 + pnq−1 ≤ |am||bn|

m
1
q n

1
p

≤
[

m

∑
τ=1

|∇aτ |p
] 1

p
[

n

∑
δ=1

|∇bδ |q
] 1

q

,

and therefore,

pq
∞

∑
m=1

∞

∑
n=1

K(Amα ,Bnβ )|am||bn|
qmp−1 + pnq−1 ≤

∞

∑
m=1

∞

∑
n=1

K(Amα ,Bnβ )|am||bn|
m

1
q n

1
p

≤
∞

∑
m=1

∞

∑
n=1

K(Amα ,Bnβ )

[
m

∑
τ=1

|∇aτ |p
] 1

p
[

n

∑
δ=1

|∇bδ |q
] 1

q

. (7.14)
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Now, setting ãm = (∑m
τ=1 |∇aτ |p)

1
p , b̃n =

(
∑n

δ=1 |∇bδ |q
) 1

q , u(m) = Amα , and v(n) = Bnβ

in (1.42) (Theorem 1.14, Chapter 1), we have

∞

∑
m=1

∞

∑
n=1

K(Amα ,Bnβ )ãmb̃n

≤ N

[
∞

∑
m=1

mα(1−s)+α p(A1−A2)+(p−1)(1−α)ãp
m

] 1
p
[

∞

∑
n=1

nβ (1−s)+βq(A2−A1)+(q−1)(1−β )b̃q
n

] 1
q

= N

[
∞

∑
m=1

m

∑
τ=1

mα(1−s)+α p(A1−A2)+(p−1)(1−α)|∇a(τ)|p
] 1

p

×
[

∞

∑
n=1

n

∑
δ=1

nβ (1−s)+βq(A2−A1)+(q−1)(1−β )|∇b(δ )|q
] 1

q

. (7.15)

Finally, using (7.14) and (7.15), we obtain (7.12).
The second inequality (7.13) follows from (1.43) (Theorem 1.14, Chapter 1) and using

|am| ≤ m
1
q (∑m

τ=1 |∇aτ |p)
1
p . �

Remark 7.2 The above Theorem 7.5 can be regarded as a generalization of Theorem 7.2.
Namely, applying Theorem 7.5 to K(x,y) = (x + y)−s, s > 0, A = B = α = β = 1, and
A1 = A2 = 2−s

pq , assuming 2−min{p,q} < s ≤ 2, we obtain Theorem 7.2.

We conclude this section with an interesting extension of Theorem 7.2. Namely, by
virtue of Corollary 4.7 (Chapter 4), we can obtain a larger interval of admissible values of
the parameter s. Recall that this corollary was established by means of the Euler-Maclaurin
summation formula.

Now, following the same lines as in the proof of Theorem 7.5 and utilizing the above
mentioned Corollary 4.7 instead of Theorem 1.14, we obtain the following extension of
Theorem 7.2.

Corollary 7.5 Let 1
p + 1

q = 1, p > 1, and let 2 −min{p,q} < s ≤ 2 + min{p,q}. If
(am)m∈N0

, (bn)n∈N0
are sequences of real numbers such that a0 = b0 = 0, then

∞

∑
m=1

∞

∑
n=1

|am||bn|
(qmp−1 + pnq−1)(m+n)s ≤

1
pq

∞

∑
m=1

∞

∑
n=1

|am||bn|
m

1
q n

1
p (m+n)s

≤ N1

pq

[
∞

∑
m=1

m

∑
τ=1

m1−s|∇aτ |p
] 1

p
[

∞

∑
n=1

n

∑
δ=1

n1−s|∇bδ |q
] 1

q

(7.16)

and
∞

∑
n=1

n(s−1)(p−1)

[
∞

∑
m=1

|am|
m

1
q (m+n)s

]p

≤ Np
1

∞

∑
m=1

m

∑
τ=1

m1−s|∇aτ |p, (7.17)

where N1 = B( s+q−2
q , s+p−2

p ).
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7.3 Non-conjugate exponents

Having in mind Theorem 2.1 (Chapter 2), Hilbert-Pachpatte-type inequalities considered in
this chapter can also be extended to the case of non-conjugate exponents. Let p, p′, q, q′,
and λ be as in (2.1) and (2.2). To obtain analogous results in the case of non-conjugate
exponents, we introduce real parameters r′, r such that p ≤ r′ ≤ q′ and 1

r′ + 1
r = 1. For

example, we can define 1
r′ = 1

q′ +
1−λ

2 or r′ = (2−λ )p.
It is easy to see that inequalities

x
1
p′ y

1
q′ ≤ 1

rr′
(
rx

r′
p′ + r′y

r
q′
)
, x ≥ 0, y ≥ 0 (7.18)

and

| f (x)||g(y)| ≤ x
1
p′ y

1
q′
[∫ x

0
| f ′(τ)|pdτ

] 1
p
[∫ y

0
|g′(δ )|qdδ

] 1
q

(7.19)

hold, provided f ,g : R+ → R are absolutely continuous functions.
Now, utilizing Theorem 2.1 and inequalities (7.18) and (7.19), we obtain the following

general result for non-conjugate exponents, in the same way as in the proof of Theorem
7.3.

Theorem 7.6 Let p, p′, q, q′, and λ satisfy (2.1) and (2.2), and let r′, r be real pa-
rameters such that p ≤ r′ ≤ q′ and 1

r′ + 1
r = 1. If K : R+ ×R+ → R, ϕ ,ψ : R+ → R are

non-negative functions and f ,g : R+ → R are absolutely continuous functions such that
f (0) = g(0) = 0, then

∫ ∞

0

∫ ∞

0

Kλ (x,y)| f (x)||g(y)|
rx

r′
p′ + r′y

r
q′

dxdy

≤ pq
rr′

∫ ∞

0

∫ ∞

0
Kλ (x,y)| f (x)||g(y)|d(x

1
p )d(y

1
q )

≤ 1
rr′

[∫ ∞

0

∫ x

0
(ϕF)p(x)| f ′(τ)|pdτdx

] 1
p
[∫ ∞

0

∫ y

0
(ψG)q(y)|g′(δ )|qdδdy

] 1
q

(7.20)

and [∫ ∞

0

[
1

ψG(y)

∫ ∞

0
Kλ (x,y)| f (x)|d(x

1
p )

]q′

dy

] 1
q′

≤ 1
p

[∫ ∞

0

∫ x

0
(ϕF)p(x)| f ′(τ)|pdτdx

] 1
p

, (7.21)

where F(x) =
(∫ ∞

0 K(x,y)ψ−q′(y)dy
) 1

q′ and G(y) =
(∫ ∞

0 K(x,y)ϕ−p′(x)dx
) 1

p′ .
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Obviously, Theorem 7.6 is a generalization of Theorem 7.3. Namely, setting λ = 1,
r′ = p, and r = q in Theorem 7.6, inequalities (7.20) and (7.21) reduce to (7.3) and (7.4)
respectively.

The following consequence of Theorem 7.6 may be regarded as a non-conjugate exten-
sion of Corollary 7.1.

Corollary 7.6 Let p, p′, q, q′, and λ satisfy (2.1) and (2.2), and let K : R+ ×R+ → R

be a non-negative symmetric homogeneous function of degree −s, s > 0. If f ,g : R+ → R

are absolutely continuous functions such that f (0) = g(0) = 0, then

∫ ∞

0

∫ ∞

0

Kλ (x,y)| f (x)||g(y)|
qx(p−1)(2−λ ) + py(q−1)(2−λ )dxdy

≤ 1
2−λ

∫ ∞

0

∫ ∞

0
Kλ (x,y)| f (x)||g(y)|d(x

1
p )d(y

1
q )

≤ M
pq(2−λ )

[∫ ∞

0

∫ x

0
x

p
q′ (1−s)+p(A1−A2)| f ′(τ)|pdτdx

] 1
p

×
[∫ ∞

0

∫ y

0
y

q
p′ (1−s)+q(A2−A1)|g′(δ )|qdδdy

] 1
q

(7.22)

and [∫ ∞

0
y

q′
p′ (s−1)+q′(A1−A2)

[∫ ∞

0
Kλ (x,y)| f (x)|d(x

1
p )

]q′

dy

] 1
q′

≤ M
p

[∫ ∞

0

∫ x

0
x

p
q′ (1−s)+p(A1−A2)| f ′(τ)|pdτdx

] 1
p

, (7.23)

where A1 ∈ ( 1−s
p′ , 1

p′ ), A2 ∈ ( 1−s
q′ , 1

q′ ), and M = k
1
p′ (p′A1)k

1
q′ (q′A2).

Proof. The proof follows directly from Theorem 7.6, setting r′ = (2−λ )p, r = (2−λ )q,
ϕ(x) = xA1 , and ψ(y) = yA2 in inequalities (7.20) and (7.21). Namely, if F(x) and G(y) are
defined as in the statement of Theorem 7.6, it follows that

(ϕF)p(x) = xpA1

(∫ ∞

0
K(x,y)y−q′A2dy

) p
q′

= xpA1−pA2

(∫ ∞

0
K(x,y)

(
x
y

)q′A2

dy

) p
q′

= x
p
q′ (1−s)+p(A1−A2)k

p
q′ (q′A2), (7.24)

and similarly,

(ψG)q(y) = y
q
p′ (1−s)+q(A2−A1)k

q
p′ (p′A1). (7.25)
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Now, utilizing (7.20), (7.21), (7.24), and (7.25) we obtain (7.22) and (7.23). �

Of course, remaining results from previous two sections can also be extended to include
non-conjugate parameters. Here, they are omitted.

Remark 7.3 The general Hilbert-Pachpatte-type inequalities in this chapter, as well as
their consequences, are taken from [109]. For related results and some other forms of
Hilbert-Pachpatte-type inequalities, the reader is referred to [28], [29], [35], [47], [105],
[106], [107], and [171].





Chapter8
General Hardy-type
inequalities with
non-conjugate exponents

In 1925, G. H. Hardy stated and proved in [33] the following integral inequality:

∫ ∞

0

(
1
x

∫ x

0
f (y)dy

)p

dx ≤
(

p
p−1

)p

‖ f‖Lp(R+), (8.1)

where p > 1, and f ∈ Lp(R+) is a non-negative function. This is the original form of the
Hardy integral inequality, which later on has been extensively studied and used as a model
example for investigations of more general integral inequalities.

During subsequent decades, the Hardy inequality was generalized in many different
ways. Roughly speaking, the Hardy inequality was extended to what we call nowadays the
general Hardy inequality, or the Hardy-type inequality,

[∫ b

a

(∫ x

a
f (y)dy

)q′

u(x)dx

] 1
q′
≤Cp,q′

(∫ b

a
f p(x)v(x)dx

) 1
p

, f ≥ 0, (8.2)

with parameters a,b, p,q′, such that −∞≤ a < b≤∞, 0 < q′ ≤∞, 1≤ p≤∞, and with u,v
given weight functions. The main problem in connection with the Hardy inequality is to
determine conditions on the parameters p,q′ and on the weight functions u,v under which
the inequality holds for some classes of functions.

185



186 8 A CLASS OF HILBERT-PACHPATTE-TYPE INEQUALITIES

The Hardy inequality plays important role in various parts of mathematics, especially in
functional and spectral analysis, where one investigates properties of the Hardy operator,
like continuity and compactness, and also its behavior in more general function spaces.
For a more details about the Hardy inequality, its history and related results, the reader is
referred to [33], [69], [71], and [103].

Although classical, the Hardy inequality is still a field of interest to numerous authors.
In [14] and [15], A. Čizmešija and J. Pečarić investigated finite sections of the Hardy
inequality, i.e. inequalities of the same type, where the integrals are taken over certain
subsets of R+. In such a way they obtained some generalizations and refinements of (8.1).
For example, in [15], they proved that

∫ b

0
x−k

(∫ x

0
f (y)dy

)p

dx ≤
(

p
k−1

)p∫ b

0

[
1−

(x
b

) k−1
p
]
xp−k f p(x)dx, (8.3)

where 0 < b < ∞, 1 < p,k < ∞, f ≥ 0, and x1− k
p f ∈ Lp(0,b).

It is well known that the Hardy inequality is closely connected to the Hilbert inequality.
That connection may be explained in a more general setting. Namely, Theorem 1.9 (Chap-
ter 1) provides a unified treatment of Hilbert-type inequalities with conjugate exponents.
In addition, as a consequence of the above mentioned theorem, M. Krnić and J. Pečarić
[53], extended the Hardy integral inequality to cover the case when p and p′ are conjugate
exponents. More precisely, they obtained the following pair of equivalent inequalities:∫ b

a

∫ y

a
(hg)(y) f (x)dμ1(x)dμ2(y)

≤
[∫ b

a
ϕ p(x)

(∫ b

x
H(y)dμ2(y)

)
f p(x)dμ1(x)

] 1
p

×
[∫ b

a
(ψ p′h)(y)

(∫ y

a
ϕ−p′(x)dμ1(x)

)
gp′(y)dμ2(y)

] 1
p′

(8.4)

and ∫ b

a
H(y)

(∫ y

a
ϕ−p′(x)dμ1(x)

)1−p(∫ y

a
f (x)dμ1(x)

)p

dμ2(y)

≤
∫ b

a
(ψ p′h)(y)

(∫ y

a
ϕ−p′(x)dμ1(x)

)
gp′(y)dμ2(y), (8.5)

where p > 1, μ1,μ2 are positive σ -finite measures, h, f ,g,ϕ ,ψ are measurable, positive
functions a.e. on (a,b), and H = hψ−p. Inequality (8.5) extends (8.1) and (8.3), as well
as numerous results known from the literature. Therefore, the inequalities deduced from
(8.5) will be referred to as the Hardy-type inequalities.

On the other hand, Theorem 2.1 (Chapter 2) covers the Hilbert-type inequalities with
non-conjugate exponents. The main objective of this chapter is to extend the general
Hardy-type inequality to the case of non-conjugate exponents. This will be done with
the help of the above mentioned result regarding non-conjugate exponents.
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This chapter is organized in the following way: In Section 8.1 we state and prove a
pair of equivalent Hilbert and Hardy-type inequalities with non-conjugate exponents p and
q, in the context of general measure spaces with positive σ -finite measures, and to the
Hardy-type kernels. In Section 8.2 we discuss duality in Hardy-type inequalities, that is,
we obtain dual analogues of the results in Section 8.1. Further, in Section 8.3 general
results are applied to special Hardy-type kernels and power weight functions with integrals
taken over intervals in R+. In such a way, a numerous new inequalities with explicit
constant factors on their right-hand sides are obtained. In Section 8.4 we estimate some
factors included in the inequalities from the previous section, depending on non-conjugate
parameters and the exponents of power weight functions. Section 8.5 is dedicated to some
uniform bounds for constant factors in Hardy-type inequalities. We perform a detailed
analysis of optimal constants, depending on non-conjugate parameters p and q. Finally, in
the last section, we synthesize the methods developed in Sections 8.3, 8.4, and 8.5.

8.1 General inequalities of the Hardy-type

In this section we prove the main result that extends relations (8.4) and (8.5) to the case of
non-conjugate exponents.

Let (a,b) be an interval in R, T = {(x,y) ∈ R2 : a < x ≤ y < b}, and let μ1 and μ2 be
positive σ−finite measures on (a,b). We define the Hardy-type kernel K : (a,b)×(a,b)→
R by

K(x,y) = h(y)χT (x,y) =
{

h(y) , x ≤ y,
0 , x > y,

(8.6)

where h is a measurable, a.e. positive function on (a,b). Further, we define the functions
F : (a,b) → R and G : (a,b) → R by

F(x) =
[∫ b

x
h(y)ψ−q′(y)dμ2(y)

] 1
q′

, x ∈ (a,b),

G(y) =
[
h(y)

∫ y

a
ϕ−p′(x)dμ1(x)

] 1
p′

, y ∈ (a,b), (8.7)

where ψ and ϕ are measurable, a.e. positive functions on (a,b).
We also introduce the related Hardy-type operator by the formula

(H f )(y) =
∫ y

a
f (x)dμ1(x), y ∈ (a,b). (8.8)

Now, we are ready to state and prove the main result.

Theorem 8.1 Let p, q, and λ be real parameters satisfying (2.1) and (2.2), and let μ1

and μ2 be σ -finite measures on (a,b), −∞ ≤ a < b ≤ ∞. Let h, ϕ , ψ be measurable,
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a.e. positive functions on (a,b), and let H be the operator defined by (8.8). If the functions
F and G are defined by (8.7), then the inequalities∫ b

a
(hλg)(y)(H f ) (y)dμ2(y) ≤ ‖ϕF f‖Lp(μ1)‖ψGg‖Lq(μ2) (8.9)

and {∫ b

a
(hψ−q′)(y)

[∫ y

a
ϕ−p′(x)dμ1(x)

]− q′
p′

(H f )q′ (y)dμ2(y)

} 1
q′
≤ ‖ϕF f‖Lp(μ1)

(8.10)

hold for all non-negative functions f and g on (a,b), such that ϕF f ∈ Lp(μ1) and ψGg ∈
Lq(μ2), and they are equivalent.

Proof. We follow the same lines as in the proof of Theorem 2.1 (see Chapter 2). Namely,
the left-hand side of (8.9) can be rewritten as

L =
∫ b

a

∫ y

a
(hλg)(y) f (x)dμ1(x)dμ2(y)

=
∫ b

a

∫ y

a

[
(hψ−q′)(y)(ϕ pF p−q′ f p)(x)

] 1
q′ ×

[
ϕ−p′(x)(hψqGq−p′gq)(y)

] 1
p′

× [(ϕF f )p (x)(ψGg)q (y)]1−λ dμ1(x)dμ2(y), (8.11)

since 1
q′ +

1
p′ +(1−λ ) = 1. Further, utilizing the Hölder inequality, either with the param-

eters q′, p′, 1
1−λ > 1 in the case of non-conjugate exponents p and q, or with the parameters

p and p′ when q′ = p, and then applying the Fubini theorem, we obtain that L does not
exceed

R =
{∫ b

a

[∫ b

x
(hψ−q′)(y)dμ2(y)

]
(ϕ pF p−q′ f p)(x)dμ1(x)

} 1
q′

×
{∫ b

a

[
h(y)

∫ y

a
ϕ−p′(x)dμ1(x)

]
(ψqGq−p′gq)(y)dμ2(y)

} 1
p′

×
{∫ b

a
(ψGg)q (y)

∫ y

a
(ϕF f )p (x)dμ1(x)dμ2(y)

}1−λ
.

Now, exploiting definitions (8.7), the above expression can be rewritten as

R = ‖ϕF f‖
p
q′
Lp(μ1)

‖ψGg‖
q
p′
Lq(μ2)

×
{
‖ϕF f‖p

Lp(μ1)
‖ψGg‖q

Lq(μ2)
−

∫ b

a

∫ b

y
(ϕF f )p (x)(ψGg)q (y)dμ1(x)dμ2(y)

}1−λ

.

(8.12)
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Of course, relations (8.11) and (8.12) yield

L ≤ R. (8.13)

Moreover, using (8.12), we easily obtain

R ≤ ‖ϕF f‖
p
q′ +p(1−λ )

Lp(μ1)
‖ψGg‖

q
p′ +q(1−λ )

Lq(μ2)
= ‖ϕF f‖Lp(μ1)‖ψGg‖Lq(μ2),

so that (8.9) is proved.
The further step is to prove that (8.9) implies that (8.10) holds for all non-negative

measurable functions f on (a,b). In particular, for any such f and the function

g(y) = (ψ−q′h1−λ )(y)
[∫ y

a
ϕ−p′(x)dμ1(x)

]− q′
p′
(H f )q′−1(y), y ∈ (a,b), (8.14)

applying the Fubini theorem, the left-hand side of (8.9) becomes

Lf =
∫ b

a
(hψ−q′)(y)

[∫ y

a
ϕ−p′(x)dμ1(x)

]− q′
p′

(H f )q′ (y)dμ2(y),

that is, we get the integral on the left-hand side of (8.10), while on the right-hand side of
(8.9) we have

Rf = ‖ϕF f‖Lp(μ1)

{∫ b

a
(hψ−q′)(y)

[∫ y

a
ϕ−p′(x)dμ1(x)

]− q′
p′

×(H f )q′ (y)dμ2(y)

} 1
q

= ‖ϕF f‖Lp(μ1)Lf
1
q .

Hence, Lf ≤ ‖ϕF f‖Lp(μ1)Lf
1
q , which directly yields (8.10). Conversely, utilizing the

Hölder inequality for conjugate exponents q and q′, together with relation (8.10) and defi-
nitions (8.7), we have∫ b

a
(hλg)(y)(H f )(y)dμ2(y)

=
∫ b

a
(ψGg)(y)

[
(ψG)−1(y)hλ (y)(H f )(y)

]
dμ2(y)

≤ ‖ψGg‖Lq(μ2)

{∫ b

a
(hψ−q′)(y)

[∫ y

a
ϕ−p′(x)dμ1(x)

]− q′
p′

(H f )q′ (y)dμ2(y)

} 1
q′

≤ ‖ϕF f‖Lp(μ1)‖ψGg‖Lq(μ2).

Thus, (8.10) implies (8.9), so these inequalities are equivalent. �



190 8 GENERAL HARDY-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS

Remark 8.1 At the first sight, the proof of Theorem 8.1 is redundant since inequali-
ties (8.9) and (8.10) follow from inequalities (2.9) and (2.10) (Theorem 2.1, Chapter 2)
equipped with the Hardy-type kernel. On the other hand, in the proof of Theorem 8.1, we
have obtained inequality (8.13) which is a refinement of inequality (8.9). Let us write that
inequality once again, i.e.∫ b

a
(hλg)(y)(H f ) (y)dμ2(y) ≤ ‖ϕF f‖

p
q′
Lp(μ1)

‖ψGg‖
q
p′
Lq(μ2)

×
{∫ b

a

∫ y

a
(ϕF f )p (x)(ψGg)q (y)dμ1(x)dμ2(y)

}1−λ
. (8.15)

Clearly, substituting the function g, defined by (8.14), in the above inequality, we obtain
its equivalent Hardy-type form{∫ b

a
(hψ−q′)(y)

[∫ y

a
ϕ−p′(x)dμ1(x)

]− q′
p′

(H f )q′ (y)dμ2(y)

} 1
p

≤ ‖ϕF f‖
p
q′
Lp(μ1)

·
{∫ b

a
(hψ−q′)(y)

[∫ y

a
ϕ−p′(x)dμ1(x)

]− q′
p′

×(H f )q′ (y)
∫ y

a
(ϕF f )p dμ1(x)dμ2(y)

}1−λ

. (8.16)

Inequality (8.16) is also a slight refinement of (8.10). It should be noticed here that these
refinements hold only in non-conjugate case.

Remark 8.2 Taking into account the form of Hardy-type kernel, it follows from Remark
2.3 (Chapter 2) that the equality in (8.9) and (8.10) holds only in the trivial case, that is,
when f = 0 or g = 0 a.e. on (a,b). In addition, the reverse inequalities in (8.9) and (8.10)
hold if the conditions (2.12) or (2.13) are fulfilled (see Remark 2.2, Chapter 2).

Remark 8.3 In the case of conjugate exponents, that is, when q = p′ and λ = 1, inequali-
ties (8.9) and (8.10) reduce to relations (8.4) and (8.5). Thus, Theorem 8.1 may be regarded
as an extension of the corresponding results from [53] to the case of non-conjugate expo-
nents. Clearly, reverse inequalities in (8.4) and (8.5) hold if 0 �= p < 1.
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8.2 General inequalities with dual Hardy-type kernel

One of important properties of the Hardy inequality is duality. Here we obtain dual ana-
logues of the relations from the previous section.

Let (a,b) ⊆ R, let T̃ = {(x,y) ∈ R2 : a < y ≤ x < b}, and let μ1 and μ2 be positive
σ−finite measures on (a,b). We define the dual Hardy-type kernel K̃ : (a,b)× (a,b)→ R

by

K̃(x,y) = h(y)χT̃ (x,y) =
{

h(y) , x ≥ y,
0 , x < y,

(8.17)

where h is a measurable function which is a.e. positive on (a,b). Moreover, we define the
functions F̃ : (a,b) → R and G̃ : (a,b) → R by

F̃(x) =
[∫ x

a
(hψ−q′)(y)dμ2(y)

] 1
q′

, x ∈ (a,b),

G̃(y) =
[
h(y)

∫ b

y
ϕ−p′(x)dμ1(x)

] 1
p′

, y ∈ (a,b), (8.18)

where ψ and ϕ are measurable functions that are a. e. positive on (a,b) with respect to the
corresponding σ -finite measures.

Further, the dual Hardy-type operator with respect to the operator H in (8.8) is defined
in the following way:

(H̃ f )(y) =
∫ b

y
f (x)dμ1(x), y ∈ (a,b). (8.19)

In this setting, we obtain a dual analogue of Theorem 8.1.

Theorem 8.2 Let p, q, and λ be real parameters satisfying (2.1) and (2.2), and let μ1 and
μ2 be σ -finite measures on (a,b), −∞≤ a < b≤∞. Let h, ϕ , ψ be measurable, a.e. positive
functions on (a,b), and let H̃ be the operator defined by (8.19). If the functions F̃ and G̃
are defined by (8.18), then the inequalities∫ b

a
(hλg)(y)(H̃ f )(y)dμ2(y) ≤ ‖ϕF̃ f‖Lp(μ1)‖ψG̃g‖Lq(μ2) (8.20)

and {∫ b

a
(hψ−q′)(y)

[∫ b

y
ϕ−p′(x)dμ1(x)

]− q′
p′

(H̃ f )q′(y)dμ2(y)

} 1
q′
≤ ‖ϕF̃ f‖Lp(μ1)

(8.21)

hold for all non-negative functions f and g on (a,b), such that ϕF̃ f ∈ Lp(μ1) and ψG̃g ∈
Lq(μ2), and are equivalent.
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Proof. It follows the same lines as the proof of Theorem 8.1. �

Remark 8.4 The equality in dual inequalities (8.20) and (8.21) holds only in the trivial
case, that is, when f = 0 or g = 0 a.e. on (a,b). Moreover, the discussion about the reverse
inequalities in (8.20) and (8.21) is the same as in Remark 8.2.

Remark 8.5 Similarly to Remark 8.1, one easily obtains a refinement of (8.20) in the
non-conjugate case, that is,∫ b

a
(hλg)(y)(H̃ f )(y)dμ2(y) ≤ ‖ϕF̃ f‖

p
q′
Lp(μ1)

‖ψG̃g‖
q
p′
Lq(μ2)

×
{∫ b

a

∫ b

y
(ϕF̃ f )p(x)(ψG̃g)q(y)dμ1(x)dμ2(y)

}1−λ
, (8.22)

with sharp inequality for f ,g �= 0 a.e. on (a,b). Furthermore, inserting the function g
defined by

g(y) = (ψ−q′h1−λ )(y)
[∫ b

y
ϕ−p′(x)dμ1(x)

]− q′
p′
(H̃ f )q′−1(y), y ∈ (a,b),

in (8.22), we obtain the inequality{∫ b

a
(hψ−q′)(y)

[∫ b

y
ϕ−p′(x)dμ1(x)

]− q′
p′

(H̃ f )q′(y)dμ2(y)

} 1
p

≤ ‖ϕF̃ f‖
p
q′
Lp(μ1)

{∫ b

a
(hψ−q′)(y)

[∫ b

y
ϕ−p′(x)dμ1(x)

]− q′
p′

×(H̃ f )q′(y)
∫ b

y
(ϕF̃ f )p dμ1(x)dμ2(y)

}1−λ

, (8.23)

which can be regarded as a refinement of (8.21).

The most interesting case in connection with dual inequalities appears when (a,b) ⊆
R+. Namely, we show that Theorems 8.1 and 8.2 are equivalent in the case of Lebesgue
measures.

Theorem 8.3 Let 0 ≤ a < b ≤ ∞ and let dμ1(x) = dx, dμ2(y) = dy. Then inequalities
(8.9) and (8.20) are equivalent. Moreover, inequalities (8.10) and (8.21) are equivalent as
well.

Proof. Suppose that inequality (8.9) holds for an arbitrary interval (a,b) ⊆ R+ and ar-
bitrary non-negative measurable functions ϕ ,ψ ,h, f ,g on (a,b). We define ã = 1

b and

b̃ = 1
a , with conventions ã = 0 for b = ∞ and b̃ = ∞ for a = 0. We also define the

functions h̃, ϕ̃ , ψ̃ , f̃ , and g̃ on (ã, b̃) by h̃(t) = h
( 1

t

)
, ϕ̃(t) = t

2
p′ ϕ

( 1
t

)
, ψ̃(t) = t

2
q′ ψ

( 1
t

)
,

f̃ (t) = t−2 f
(

1
t

)
, and g̃(t) = t−2g

(
1
t

)
.
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Rewrite (8.9) with these new parameters. More precisely, using the change of variables
x = 1

u and y = 1
v , the left-hand side of (8.9) becomes

∫ b̃

ã
(h̃λ g̃)(y)t(H f̃ )(y)dy =

∫ b

a
(hλg)(v)

∫ b

v
f (u)du dv,

that is, the left-hand side of inequality (8.20). Analogously, for the first factor on the right-
hand side of (8.9) we have

‖ϕ̃F f̃ ‖p

Lp(ã,b̃)
=

∫ b

a
(ϕ f )p(u)

[∫ u

a
(hψ−q′)(v)dv

] p
q′

du,

which obviously represents the first factor on the right-hand side of inequality (8.20). The
same argument holds for the second factor on the right-hand side of (8.9). Thus, inequality
(8.9) implies (8.20). In the same manner, one obtains the reverse implication, so inequali-
ties (8.9) and (8.20) are equivalent.

Finally, pairs of inequalities (8.9) and (8.10) as well as (8.20) and (8.21) are equivalent
(see Theorems 8.1 and 8.2), which implies the equivalence of (8.10) and (8.21). �

8.3 Some special Hardy-type kernels
and weight functions

In this section, we consider the case of Lebesgue measure for some particular Hardy-type
kernels and weight functions. Namely, let 0 ≤ a < b ≤ ∞ and let h,ϕ ,ψ : (a,b) → R be
defined by h(y) = 1

y , ϕ(x) = xA1 , ψ(y) = yA2 , A1,A2 ∈ R, respectively. As it was shown in
the previous section, it is sufficient to consider only the Hardy-type inequalities in Theorem
8.1, since their dual inequalities are equivalent with them.

In particular, we have to distinguish the following cases:

0 < a < b < ∞, (8.24)

0 = a < b < ∞, (8.25)

0 < a < b = ∞, (8.26)

0 = a < b = ∞, (8.27)

since one obtains different integration formulas for the functions F and G, defined by (8.7).
In particular, if 0 < a < b < ∞, then

F(x) =

⎧⎨⎩ |q′A2|−
1
q′ x−A2

∣∣∣1− (
x
b

)q′A2
∣∣∣ 1

q′
, A2 �= 0,(

log b
x

) 1
q′ , A2 = 0,

(8.28)
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and

G(y) =

⎧⎪⎨⎪⎩ |1− p′A1|−
1
p′ y−A1

∣∣∣∣1−(
a
y

)1−p′A1
∣∣∣∣ 1

p′
, A1 �= 1

p′ ,

y
− 1

p′
(
log y

a

) 1
p′ , A1 = 1

p′ .

(8.29)

It should be noticed here that we have included the cases A1 > 1
p′ and A2 < 0, by means of

the modulus function. In this setting, we obtain four corollaries arising from Theorem 8.1.
If A1 �= 1

p′ and A2 �= 0, then we have the following result:

Corollary 8.1 Let −∞ < a < b < ∞, assume that real parameters p, q, and λ satisfy
(2.1) and (2.2), let A1, A2 be real parameters such that A1 �= 1

p′ , A2 �= 0, and let H be the
operator defined by (8.8). Then the inequalities∫ b

a
y−λg(y)(H f )(y)dy

≤ |1− p′A1|−
1
p′

|q′A2|
1
q′

[∫ b

a
x(A1−A2)p

∣∣∣∣1−(x
b

)q′A2
∣∣∣∣

p
q′

f p(x)dx

] 1
p

×
⎡⎣∫ b

a
y(A2−A1)q

∣∣∣∣∣1−
(

a
y

)1−p′A1
∣∣∣∣∣

q
p′

gq(y)dy

⎤⎦
1
q

(8.30)

and ⎡⎢⎣∫ b

a
y(A1−A2−λ )q′

∣∣∣∣∣1−
(

a
y

)1−p′A1
∣∣∣∣∣
− q′

p′
(H f )q′(y)dy

⎤⎥⎦
1
q′

≤ |1− p′A1|−
1
p′

|q′A2|
1
q′

[∫ b

a
x(A1−A2)p

∣∣∣∣1−(x
b

)q′A2
∣∣∣∣

p
q′

f p(x)dx

] 1
p

(8.31)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

The case of A1 �= 1
p′ , A2 = 0 is described in the following result.

Corollary 8.2 Let −∞ < a < b < ∞, let p, q, and λ be as in (2.1) and (2.2), assume that
A1 is a real parameter such that A1 �= 1

p′ , and let H be the operator defined by (8.8). Then
the inequalities

∫ b

a
y−λg(y)(H f )(y)dy ≤ |1− p′A1|−

1
p′

[∫ b

a
xA1p

(
log

b
x

) p
q′

f p(x)dx

] 1
p

×
⎡⎣∫ b

a
y−A1q

∣∣∣∣∣1−
(

a
y

)1−p′A1
∣∣∣∣∣

q
p′

gq(y)dy

⎤⎦
1
q

(8.32)
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and ⎡⎢⎣∫ b

a
y(A1−λ )q′

∣∣∣∣∣1−
(

a
y

)1−p′A1
∣∣∣∣∣
− q′

p′
(H f )q′(y)dy

⎤⎥⎦
1
q′

≤ |1− p′A1|−
1
p′

[∫ b

a
xA1 p

(
log

b
x

) p
q′

f p(x)dx

] 1
p

(8.33)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

If A1 = 1
p′ and A2 �= 0, we obtain the following corollary.

Corollary 8.3 Let −∞ < a < b < ∞, let p, q, and λ be as in (2.1) and (2.2), assume that
A2 is a real parameter such that A2 �= 0, and let H be the operator defined by (8.8). Then
the inequalities∫ b

a
y−λg(y)(H f )(y)dy

≤ |q′A2|−
1
q′
[∫ b

a
x(1−A2)p−1

∣∣∣∣1−(x
b

)q′A2
∣∣∣∣

p
q′

f p(x)dx

] 1
p

×
[∫ b

a
y
(A2− 1

p′ )q
(
log

y
a

) q
p′ gq(y)dy

] 1
q

(8.34)

and [∫ b

a
y−q′A2−1

(
log

y
a

)− q′
p′ (H f )q′(y)dy

] 1
q′

≤ |q′A2|−
1
q′

[∫ b

a
x(1−A2)p−1

∣∣∣∣1−(x
b

)q′A2
∣∣∣∣

p
q′

f p(x)dx

] 1
p

(8.35)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Finally, if A1 = 1
p′ and A2 = 0 we have:

Corollary 8.4 Let −∞ < a < b < ∞, let p, q, and λ be as in (2.1) and (2.2), and let H be
the operator defined by (8.8). Then the inequalities

∫ b

a
y−λg(y)(H f )(y)dy ≤

[∫ b

a
xp−1

(
log

b
x

) p
q′

f p(x)dx

] 1
p

×
[∫ b

a
y
− q

p′
(
log

y
a

) q
p′ gq(y)dy

] 1
q

(8.36)
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and [∫ b

a
y−1

(
log

y
a

)− q′
p′ (H f )q′(y)dy

] 1
q′
≤

[∫ b

a
xp−1

(
log

b
x

) p
q′

f p(x)dx

] 1
p

(8.37)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Now, we consider the second case, that is, (8.25), where a = 0. Then F is defined by
(8.28), and

G(y) = (1− p′A1)
− 1

p′ y−A1 , y ∈ (0,b), (8.38)

where 1− p′A1 > 0. In this case, we obtain the following two results, dependent on the
value of the parameter A2 (A2 �= 0 or A2 = 0).

Corollary 8.5 Let p, q, and λ be as in (2.1) and (2.2), let 0 < b < ∞, assume that A1, A2

are real parameters such that p′A1 < 1, A2 �= 0, and let H be the operator defined by (8.8).
Then the inequalities∫ b

0
y−λg(y)(H f )(y)dy

≤ (1− p′A1)
− 1

p′

|q′A2|
1
q′

[∫ b

0
x(A1−A2)p

∣∣∣∣1−(x
b

)q′A2
∣∣∣∣

p
q′

f p(x)dx

] 1
p

×
[∫ b

0
y(A2−A1)qgq(y)dy

] 1
q

(8.39)

and [∫ b

0
y(A1−A2−λ )q′(H f )q′(y)dy

] 1
q′

≤ (1− p′A1)
− 1

p′

|q′A2|
1
q′

[∫ b

0
x(A1−A2)p

∣∣∣∣1−(x
b

)q′A2
∣∣∣∣

p
q′

f p(x)dx

] 1
p

(8.40)

hold for all non-negative measurable functions f and g on (0,b), and are equivalent.

Corollary 8.6 Let p, q, and λ be as in (2.1) and (2.2), let 0 < b < ∞, assume that A1 is
a real parameter such that p′A1 < 1, and let H be the operator defined by (8.8). Then the
inequalities

∫ b

0
y−λg(y)(H f )(y)dy ≤ (1− p′A1)

− 1
p′

[∫ b

0
xA1 p

(
log

b
x

) p
q′

f p(x)dx

] 1
p

×
[∫ b

0
y−A1qgq(y)dy

] 1
q

(8.41)
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and [∫ b

0
y(A1−λ )q′(H f )q′(y)dy

] 1
q′

≤ (1− p′A1)
− 1

p′

[∫ b

0
xA1 p

(
log

b
x

) p
q′

f p(x)dx

] 1
p

(8.42)

hold for all non-negative measurable functions f and g on (0,b), and are equivalent.

The next case (8.26) includes b = ∞. Then G is defined by (8.29) and

F(x) = (q′A2)
− 1

q′ x−A2 , x ∈ (a,∞), (8.43)

where q′A2 > 0. In this setting, we obtain the following two results, depending on value of
the parameter A1 (A1 �= 1

p′ or A1 = 1
p′ ).

Corollary 8.7 Let 0 < a < ∞, let p, q, and λ be as in (2.1) and (2.2), assume that A1, A2

are two real parameters such that A1 �= 1
p′ , q′A2 > 0, and let H be the operator defined by

(8.8). Then the inequalities∫ ∞

a
y−λg(y)(H f )(y)dy

≤ |1− p′A1|−
1
p′

(q′A2)
1
q′

[∫ ∞

a
x(A1−A2)p f p(x)dx

] 1
p

×
⎡⎣∫ ∞

a
y(A2−A1)q

∣∣∣∣∣1−
(

a
y

)1−p′A1
∣∣∣∣∣

q
p′

gq(y)dy

⎤⎦
1
q

(8.44)

and ⎡⎢⎣∫ ∞

a
y(A1−A2−λ )q′

∣∣∣∣∣1−
(

a
y

)1−p′A1
∣∣∣∣∣
− q′

p′
(H f )q′(y)dy

⎤⎥⎦
1
q′

≤ |1− p′A1|−
1
p′

(q′A2)
1
q′

[∫ ∞

a
x(A1−A2)p f p(x)dx

] 1
p

(8.45)

hold for all non-negative measurable functions f and g on (a,∞), and are equivalent.

Corollary 8.8 Let p, q, and λ be as in (2.1) and (2.2), let 0 < a < ∞, assume that A2 is
a real parameter such that q′A2 > 0, and let H be the operator defined by (8.8). Then the
inequalities∫ ∞

a
y−λg(y)(H f )(y)dy ≤ (q′A2)

− 1
q′
[∫ ∞

a
x(1−A2)p−1 f p(x)dx

] 1
p

×
[∫ ∞

a
y
q(A2− 1

p′ )
(
log

y
a

) q
p′ gq(y)dy

] 1
q

(8.46)
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and [∫ ∞

a
y−q′A2−1

(
log

y
a

)− q′
p′ (H f )q′(y)dy

] 1
q′

≤ (q′A2)
− 1

q′
[∫ ∞

a
x(1−A2)p−1 f p(x)dx

] 1
p

(8.47)

hold for all non-negative measurable functions f and g on (a,∞), and are equivalent.

Finally, we consider the case of (8.27), that is, a = 0 and b = ∞. In that case, the
functions F and G are defined by (8.43) and (8.38) respectively, where 1− p′A1 > 0 and
q′A2 > 0. Hence, we have only one possibility described by the following corollary.

Corollary 8.9 Suppose p, q, and λ are as in (2.1) and (2.2), A1 and A2 are real pa-
rameters such that p′A1 < 1, q′A2 > 0, and H is the operator defined by (8.8). Then the
inequalities

∫ ∞

0
y−λg(y)(H f )(y)dy ≤ (1− p′A1)

− 1
p′

(q′A2)
1
q′

[∫ ∞

0
x(A1−A2)p f p(x)dx

] 1
p

×
[∫ ∞

0
y(A2−A1)qgq(y)dy

] 1
q

(8.48)

and [∫ ∞

0
y(A1−A2−λ )q′(H f )q′(y)dy

] 1
q′

≤ (1− p′A1)
− 1

p′

(q′A2)
1
q′

[∫ ∞

0
x(A1−A2)p f p(x)dx

] 1
p

(8.49)

hold for all non-negative measurable functions f and g on R+, and are equivalent.

Remark 8.6 Some results from this section, considered in conjugate setting, can be found
in [53]. Hence, the above relations may be regarded as an extension to non-conjugate
setting.
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8.4 Further analysis of parameters

We proceed with estimates for some constant factors included in Hardy-type inequalities
from the previous section, depending on non-conjugate exponents and on the real param-
eters A1 and A2. Applying these estimates, we shall get closer to the classical Hardy
inequality. More precisely, retaining the notation from the previous section, the estimates∣∣∣∣∣1−

(
a
y

)1−p′A1
∣∣∣∣∣≤

∣∣∣∣1−(a
b

)1−p′A1
∣∣∣∣ , y ∈ (a,b), A1 �= 1

p′
, (8.50)

and ∣∣∣∣1−(x
b

)q′A2
∣∣∣∣≤ ∣∣∣∣1−(a

b

)q′A2
∣∣∣∣ , x ∈ (a,b), A2 �= 0, (8.51)

where 0 < a < b < ∞, hold. In addition, assuming that 0 < a < b < ∞, the estimates

log
b
x
≤ log

b
a
, x ∈ (a,b), (8.52)

and

log
y
a
≤ log

b
a
, y ∈ (a,b), (8.53)

are obviously valid for the logarithm function.
Our aim here is to apply the above estimates to the results obtained in Section 8.3. In

such a way, we shall simplify these inequalities by obtaining the corresponding constant
factors included in the right-hand sides of inequalities. These constant factors will be
expressed in terms of the function l : R → R, defined by

l(α) =

{
1−( a

b )
α

α , α �= 0,

log b
a , α = 0,

(8.54)

where 0 < a < b < ∞. Obviously, l is a continuous function since limα→0 l(α) = l(0).
Combining Corollary 8.1 and estimates (8.50), (8.51), we obtain the following pair of

inequalities.

Corollary 8.10 Suppose p, q, and λ are as in (2.1) and (2.2), −∞ < a < b < ∞, A1 and
A2 are real parameters such that A1 �= 1

p′ , A2 �= 0, and H is the operator defined by (8.8).
Then the inequalities∫ b

a
y−λg(y)(H f )(y)dy ≤ l

1
p′ (1− p′A1)l

1
q′ (q′A2)

×
[∫ b

a
x(A1−A2)p f p(x)dx

] 1
p
[∫ b

a
y(A2−A1)qgq(y)dy

] 1
q

(8.55)
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and [∫ b

a
y(A1−A2−λ )q′(H f )q′(y)dy

] 1
q′

≤ l
1
p′ (1− p′A1)l

1
q′ (q′A2)

[∫ b

a
x(A1−A2)p f p(x)dx

] 1
p

(8.56)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Note that inequality (8.56) has a form of the classical Hardy inequality (8.1). Now, let
us compare inequalities (8.31) and (8.56). The left-hand side of inequality (8.31) is not
less than the corresponding side of (8.56), while the right-hand side of (8.31) is not greater
than the corresponding side of (8.56). Thus, we can regard (8.31) as both generalization
and refinement of the classical Hardy inequality. The same reasoning will be valid for the
remaining results of the Hardy-type in Section 8.3.

Of course, in a similar way, we obtain the results that correspond to Corollaries 8.2, 8.3
and 8.4.

Corollary 8.11 Let −∞< a < b < ∞, let p, q, and λ be as in (2.1) and (2.2), assume that
A1 is a real parameter such that A1 �= 1

p′ , and let H be the operator defined by (8.8). Then
the inequalities

∫ b

a
y−λg(y)(H f )(y)dy ≤ l

1
p′ (1− p′A1)l

1
q′ (0)

[∫ b

a
xA1 p f p(x)dx

] 1
p

×
[∫ b

a
y−A1qgq(y)dy

] 1
q

(8.57)

and [∫ b

a
y(A1−λ )q′(H f )q′(y)dy

] 1
q′

≤ l
1
p′ (1− p′A1)l

1
q′ (0)

[∫ b

a
xA1 p f p(x)dx

] 1
p

(8.58)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Corollary 8.12 Suppose p, q, and λ are as in (2.1) and (2.2), 0 < a < b < ∞, A2 is a real
parameter such that A2 �= 0, and H is the operator defined by (8.8). Then the inequalities

∫ b

a
y−λg(y)(H f )(y)dy ≤ l

1
p′ (0)l

1
q′ (q′A2)

[∫ b

a
x(1−A2)p−1 f p(x)dx

] 1
p

×
[∫ b

a
y
(A2− 1

p′ )qgq(y)dy

] 1
q

(8.59)
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and [∫ b

a
y−q′A2−1(H f )q′(y)dy

] 1
q′

≤ l
1
p′ (0)l

1
q′ (q′A2)

[∫ b

a
x(1−A2)p−1 f p(x)dx

] 1
p

(8.60)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Corollary 8.13 Let 0 < a < b < ∞. Suppose p, q, and λ are as in (2.1) and (2.2) and H
is the operator defined by (8.8). Then the inequalities∫ b

a
y−λg(y)(H f )(y)dy

≤ lλ (0)
[∫ b

a
xp−1 f p(x)dx

] 1
p
[∫ b

a
y
− q

p′ gq(y)dy

] 1
q

(8.61)

and [∫ b

a
y−1(H f )q′(y)dy

] 1
q′ ≤ lλ (0)

[∫ b

a
xp−1 f p(x)dx

] 1
p

(8.62)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Remark 8.7 It is easy to see that reverse inequalities are not valid in Corollaries 8.10–
8.13.

Finally, utilizing the established estimates, we can also obtain results that correspond
to Corollaries 8.5 and 8.7. Since a = 0 or b = ∞, we do not need to express the constant
factors in terms of the function l.

Corollary 8.14 Let 0 < b < ∞, let p, q, and λ be as in (2.1) and (2.2), assume that A1,
A2 are two real parameters such that p′A1 < 1, q′A2 > 0, and let H be the operator defined
by (8.8). Then the inequalities

∫ b

0
y−λg(y)(H f )(y)dy ≤ (1− p′A1)

− 1
p′

(q′A2)
1
q′

[∫ b

0
x(A1−A2)p f p(x)dx

] 1
p

×
[∫ b

0
y(A2−A1)qgq(y)dy

] 1
q

(8.63)

and [∫ b

0
y(A1−A2−λ )q′(H f )q′(y)dy

] 1
q′

≤ (1− p′A1)
− 1

p′

(q′A2)
1
q′

[∫ b

0
x(A1−A2)p f p(x)dx

] 1
p

(8.64)

hold for all non-negative measurable functions f and g on (0,b), and are equivalent.



202 8 GENERAL HARDY-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS

Remark 8.8 If the parameters p and q satisfy conditions (2.12) (see Remark 2.2, Chapter
2), then the inequalities (8.63) and (8.64) are reversed.

Corollary 8.15 Suppose p, q, and λ are as in (2.1) and (2.2), 0 < a < ∞, A1 and A2 are
real parameters such that p′A1 < 1, q′A2 > 0, and H is the operator defined by (8.8). Then
the inequalities

∫ ∞

a
y−λg(y)(H f )(y)dy ≤ (1− p′A1)

− 1
p′

(q′A2)
1
q′

[∫ ∞

a
x(A1−A2)p f p(x)dx

] 1
p

×
[∫ ∞

a
y(A2−A1)qgq(y)dy

] 1
q

(8.65)

and [∫ ∞

a
y(A1−A2−λ )q′(H f )q′(y)dy

] 1
q′

≤ (1− p′A1)
− 1

p′

(q′A2)
1
q′

[∫ ∞

a
x(A1−A2)p f p(x)dx

] 1
p

(8.66)

hold for all non-negative measurable functions f and g on (a,∞), and are equivalent.

Remark 8.9 If p and q are non-conjugate exponents which fulfill conditions (2.13) (see
Remark 2.2, Chapter 2), then the inequalities (8.65) and (8.66) are reversed.

8.5 Uniform bounds of constant factors

We investigate here some further estimates for Hardy-type inequalities. First, recall that
Corollary 8.10 was obtained from Corollary 8.1 by means of estimates (8.50) and (8.51).
On the other hand, we may apply uniform upper bound 1− tx ≤ 1, t ∈ (0,1), x ≥ 0, to
Corollary 8.1. The corresponding result, under some stronger conditions, is contained in
the following corollary.

Corollary 8.16 Let 0 < a < b < ∞, let p, q, and λ be as in (2.1) and (2.2), assume that
A1, A2 are two real parameters such that p′A1 < 1, q′A2 > 0, and let H be the operator
defined by (8.8). Then the inequalities

∫ b

a
y−λg(y)(H f )(y)dy ≤ (1− p′A1)

− 1
p′

(q′A2)
1
q′

[∫ b

a
x(A1−A2)p f p(x)dx

] 1
p

×
[∫ b

a
y(A2−A1)qgq(y)dy

] 1
q

(8.67)
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and [∫ b

a
y(A1−A2−λ )q′(H f )q′(y)dy

] 1
q′

≤ (1− p′A1)
− 1

p′

(q′A2)
1
q′

[∫ b

a
x(A1−A2)p f p(x)dx

] 1
p

(8.68)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Remark 8.10 Comparing Corollaries 8.9, 8.14, and 8.15 with Corollary 8.16, we easily
conclude that Corollary 8.16 holds also if a = 0 or b = ∞.

The constant factor on the right-hand sides of inequalities (8.67) and (8.68) depends
on the parameters A1 and A2, while the corresponding integrals are dependent only on the
parameter A = A1−A2. Hence, it is interesting to consider such constant factor for a fixed
value of A. Then A2 = A1−A and the constant factor can be regarded as a function

C(A1) = (1− p′A1)
− 1

p′ (q′A1−q′A)−
1
q′ . (8.69)

It is interesting to find the optimal value for the constant factor (8.69). More precisely, de-
pending on the inequality sign, we find maximal or minimal values for this factor. Having
in mind Remark 8.2, we have to consider three cases:

1. p,q > 1, λ ≥ 1
In this case we have A < 1

p′ and A1 ∈
(
A, 1

p′
)
, so, we have to find

inf
A<x< 1

p′
C(x) = inf

A<x< 1
p′
(1− p′x)−

1
p′ (q′x−q′A)−

1
q′ .

One easily obtains that C′(x) = 0 if and only if

x0 =
1+q′A
p′ +q′

. (8.70)

Further, since x0 ∈
(
A, 1

p′
)

and C′′(x0) > 0, it follows that C(x) attains its minimum

value on the interval
(
A, 1

p′
)

at the point x0. Hence, a straightforward computation
gives the following value of the minimal constant factor:

inf
A<x< 1

p′
C(x) = C(x0) =

(
p′λ

1− p′A

)λ
.

2. p < 0, q ∈ (0,1), λ ≥ 1
It is easy to see that A1 ∈

(−∞,min
{

1
p′ ,A

})
, so we distinguish two cases, depending

on the relationship between the parameters A and 1
p′ .
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If A < 1
p′ , we conclude, by a similar reasoning as in the previous case, that the

functionC(x) attains its maximal value on the interval (−∞,A) at the point x0 defined
by (8.70). Finally, since C(A) = 0, we have

sup
x≤A

C(x) = C(x0) =
(

p′λ
1− p′A

)λ
.

If A ≥ 1
p′ , then the stationary point (8.70) does not belong to the interval

(−∞, 1
p′
)

and C(x) is strictly increasing on that interval. Further, since limx→ 1
p′ −

C(x) = ∞,

there is no upper bound for the constant factor C(x) in this case.

3. p ∈ (0,1), q < 0, λ ≥ 1
Here, we have to find the optimal value of C(x) on the interval

(
max

{
1
p′ ,A

}
,∞

)
.

Similarly as above, we have to consider two cases. For A < 1
p′ , it follows that the

function C(x) attains its maximal value on the interval
( 1

p′ ,∞
)

at the point defined

by (8.70). Moreover, since C
( 1

p′
)

= 0, we have

sup
x≥ 1

p′
C(x) = C(x0) =

(
p′λ

1− p′A

)λ
.

If A ≥ 1
p′ , then the stationary point (8.70) is not contained in the interval (A,∞) and

C(x) is strictly decreasing on that interval. Since limx→A+C(x) = ∞, there is no
upper bound for the constant factor C(x) in this case.

According to the previous analysis, we have just proved the following result.

Theorem 8.4 Let 0 < a < b < ∞, let p, q, and λ be as in (2.1) and (2.2), assume that A
is a real parameter such that A < 1

p′ , and let H be the operator defined by (8.8). Then the
inequalities

∫ b

a
y−λg(y)(H f )(y)dy ≤

(
p′λ

1− p′A

)λ [∫ b

a
xpA f p(x)dx

] 1
p

×
[∫ b

a
y−qAgq(y)dy

] 1
q

(8.71)

and [∫ b

a
y(A−λ )q′(H f )q′(y)dy

] 1
q′ ≤

(
p′λ

1− p′A

)λ [∫ b

a
xpA f p(x)dx

] 1
p

(8.72)

hold for all non-negative measurable functions f and g on (a,b), and are equivalent.

Remark 8.11 If a = 0 and p, q, λ are as in (2.12) (see Remark 2.2, Chapter 2), then the
inequality signs in (8.71) and (8.72) are reversed. On the other hand, if b = ∞ and p, q, λ
are as in (2.13) (see Remark 2.2, Chapter 2), the inequality signs in (8.71) and (8.72) are
reversed as well.
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8.6 Applications

Finally, in the last section, we consider some interesting special cases involving the optimal
constant factor in the Hardy-type inequality established in the previous section. Namely,
we shall synthesize the methods developed in Sections 8.3, 8.4 and 8.5 for such cases. By
virtue of established estimates, we obtain the numerous interpolating inequalities which
provide both generalizations and refinements of some recent results, known from the liter-
ature.

We can gather the previous discussion in the following two sets of inequalities:∫ b

a
y−λg(y)(H f )(y)dy

≤
(

p′λ
1− p′A

)λ
⎧⎨⎩

∫ b

a
xpA

[
1−

(x
b

) 1−p′A
λ p′

] p
q′

f p(x)dx

⎫⎬⎭
1
p

×

⎧⎪⎨⎪⎩
∫ b

a
y−qA

⎡⎣1−
(

a
y

) 1−p′A
λ p′

⎤⎦
q
p′

gq(y)dy

⎫⎪⎬⎪⎭
1
q

≤
(

p′λ
1− p′A

)λ
[
1−

(a
b

) 1−p′A
λ p′

]λ

×
[∫ b

a
xpA f p(x)dx

] 1
p
[∫ b

a
y−qAgq(y)dy

] 1
q

≤
(

p′λ
1− p′A

)λ [∫ b

a
xpA f p(x)dx

] 1
p
[∫ b

a
y−qAgq(y)dy

] 1
q

(8.73)

and [∫ b

a
y(A−λ )q′(H f )q′(y)dy

] 1
q′

≤
(

p′λ
1− p′A

)λ
[
1−

(a
b

) 1−p′A
λ p′

] 1
p′

×
⎧⎨⎩

∫ b

a
xpA

[
1−

(x
b

) 1−p′A
λ p′

] p
q′

f p(x)dx

⎫⎬⎭
1
p

≤
(

p′λ
1− p′A

)λ
[
1−

(a
b

) 1−p′A
λ p′

]λ [∫ b

a
xpA f p(x)dx

] 1
p
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≤
(

p′λ
1− p′A

)λ [∫ b

a
xpA f p(x)dx

] 1
p

, (8.74)

which hold under assumptions of Theorem 8.4. Of course, these sets of inequalities are
equivalent and reverse sets of inequalities hold as described in Theorem 8.4. For A = 0,
the above sets of inequalities (8.73) and (8.74) reduce respectively to

∫ b

a
y−λg(y)(H f )(y)dy

≤ (
p′λ

)λ {∫ b

a

[
1−

(x
b

) 1
λ p′

] p
q′

f p(x)dx

} 1
p

×
⎧⎨⎩

∫ b

a

[
1−

(
a
y

) 1
λ p′

] q
p′

gq(y)dy

⎫⎬⎭
1
q

≤ (
p′λ

)λ [
1−

(a
b

) 1
λ p′

]λ

‖ f‖Lp‖g‖Lq ≤ (
p′λ

)λ ‖ f‖Lp‖g‖Lq (8.75)

and [∫ b

a
y−λq′(H f )q′(y)dy

] 1
q′

≤ (
p′λ

)λ [
1−

(a
b

) 1
λ p′

] 1
p′
{∫ b

a

[
1−

(x
b

) 1
λ p′

] p
q′

f p(x)dx

} 1
p

≤ (
p′λ

)λ [
1−

(a
b

) 1
λ p′

]λ

‖ f‖Lp ≤ (
p′λ

)λ ‖ f‖Lp . (8.76)

Remark 8.12 It follows easily that inequalities (8.75) and (8.76), with A = 0, are equiv-
alent to inequalities (8.73) and (8.74), with condition A < 1

p′ . Namely, setting

a1−p′A, b1−p′A, x
1

1−p′A−1
f
(
x

1
1−p′A

)
, y

(1−λ ) p′A
1−p′A g

(
y

1
1−p′A

)
in (8.75), respectively instead of a,b, f (x),g(y), and then, applying the variable substitution
theorem, the set of inequalities (8.75) become (8.73). So, the case of A < 1

p′ is equivalent
to the case of A = 0. Thus, it is enough to observe the cases with A = 0, since all others
follow by suitable substitutions.

Finally, to conclude the chapter, we compare the results obtained in this chapter with
some previously known from the literature.
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Remark 8.13 Setting a = 0 and b = ∞ in (8.76), and isolating the outer expressions, we
obtain the inequality [∫ ∞

0
y−λq′(H f )q′(y)dy

] 1
q′ ≤ (

p′λ
)λ ‖ f‖Lp ,

which coincides with Opic’s estimate (see [69]). Clearly, for λ = 1, we obtain the Hardy
inequality (8.1) in its original form. Moreover, the above inequality in conjugate form
can also be found in Kufner’s paper [68]. So, the interpolating sets of inequalities estab-
lished in this section may be regarded as both generalizations and refinements of the above
mentioned results.

Remark 8.14 Considering the parameter A = λ − k
q′ , k > 1, we have A < λ − 1

q′ = 1
p′ .

Hence, setting A = λ − k
q′ in inequalities (8.73) and (8.74), the optimal constant factor

established in Theorem 8.4 takes the following value:

C =
(

λq′

k−1

)λ
. (8.77)

In this setting, inequalities (8.73) and (8.74) provide an extension to non-conjugate case
of the corresponding results from already mentioned paper [53]. Moreover, relation (8.74)
can be seen as both a refinement and an extension of the corresponding results from [14]
and [15]. Namely, in the conjugate case (p = q′, λ = 1) with C defined by (8.77), relation
(8.74) provides related results from mentioned papers (for example, see [14], Theorem 2,
[15], relation (13), and also relation (8.3) at the beginning of this chapter).

Remark 8.15 A unified approach to Hardy-type inequalities with non-conjugate expo-
nents, presented in this chapter, is developed recently in [18].





Chapter9
Hilbert-type inequalities in the
weighted Orlicz spaces

In the previous chapter we studied general Hardy-type inequalities with non-conjugate
exponents. However, all derived results were related with the Lebesgue spaces. Nowadays,
the Hardy inequality is investigated in more general spaces, for example in Orlicz spaces,
Lorenz spaces, rearrangement invariant spaces and their weighted versions, as well as in
general Banach ideal spaces. For a comprehensive survey of recent results about the Hardy
inequality in Banach function spaces, the reader is referred to [71].

On the other hand, much less attention has been given to Hilbert-type inequalities in
such function spaces. Recently, K. Jichang and L. Debnath [43], obtained two-dimensional
Hilbert-type inequality in a weighted Orlicz spaces, including a homogeneous kernel. That
result will be cited in the next section, after we present basic definitions and properties of
weighted Orlicz spaces.

Our main task in this chapter is to establish a multidimensional Hilbert-type inequality
in a weighted Orlicz space. In other words, we shall derive the multidimensional inequality
in a weighted Orlicz space that corresponds to the classical inequality (1.73) (Theorem
1.18, Chapter 1).

In the next section we present some basic properties of Orlicz spaces, as well as the
above mentioned two-dimensional Hilbert-type inequality, obtained by Jichang and Deb-
nath [43]. Further, in Section 9.2 we state and prove the general multidimensional Hilbert-
type inequality in weighted Orlicz spaces. A special emphasis is placed on inequalities
including a homogeneous kernel with the negative degree of homogeneity. As an applica-
tion, in Section 9.3 we derive the Hardy-Hilbert-type inequality related to (1.74) (Theorem
1.18, Chapter 1) in some particular cases. Finally, in the last section the general method
regarding Orlicz spaces is applied to the case of the weighted Lebesgue spaces.

209
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9.1 Weighted Orlicz spaces and a two-dimensional
Hilbert-type inequality

An Orlicz function Φ : [0,∞〉 → [0,∞〉 is a continuous increasing unbounded function with
Φ(0) = 0. Convex Orlicz functions are called Young functions. A Young function Φ is
called N−function if moreover

lim
x→0+

Φ(x)
x

= 0, lim
x→∞

Φ(x)
x

= ∞.

For an Orlicz function Φ, a σ -finite measure space (Ω,Σ,μ), and a weight w on Ω, the
weighted Orlicz space LΦ

w (μ) is defined as the space of all classes of μ−measurable func-
tions f : Ω→ R such that the modular

ρΦ,w

(
f
λ

)
=

∫
Ω
Φ

( | f (x)|
λ

)
w(x)dμ(x)

is finite for some λ > 0. Moreover, if Φ is a Young function, then the weighted Orlicz
space LΦ

w (μ) becomes Banach function space with the Luxemburg-Nakano norm

‖ f‖Φ,w = inf

{
λ > 0 : ρΦ,w

(
f
λ

)
≤ 1

}
. (9.1)

Recall that if Φ(x) = xp, p > 1, the weighted Orlicz space LΦ
w (μ) becomes the weighted

Lebesgue space, denoted by Lp
w(μ), with the norm

‖ f‖Lp
w(μ) =

[∫
Ω

w(x) f p(x)dμ(x)
] 1

p

.

In addition, if Φ(x) = xp [log(e+ x)]α , p ≥ 1, α > 0, then, in non-weighted case we obtain
the classical Zygmund space.

On the other hand, to Young functionΦ one can associate its convex conjugate function
Φ∗ defined by

Φ∗(y) = sup
x≥0

{xy−Φ(x)} . (9.2)

It is easy to see that the convex conjugate function Φ∗ is also a Young function, as well
as (Φ∗)∗ = Φ. Moreover, definition of convex conjugate function provides the so called
Young inequality

xy ≤Φ(x)+Φ∗(y), x,y ≥ 0. (9.3)

Besides, inverse functions Φ−1 and Φ∗−1 fulfill the following inequalities:

x ≤Φ−1(x)Φ∗−1(x) ≤ 2x, x ≥ 0. (9.4)

The right inequality in (9.4) follows immediately from (9.3), and for the other inequality
the reader is referred to [8] or [91].
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Further, throughout this chapter the Young function Φ is assumed to be submultiplica-
tive (see [90]), that is,

Φ(xy) ≤Φ(x)Φ(y), x,y ≥ 0. (9.5)

Condition (9.5) can be regarded as an extension of Orlicz Δ2 condition for Young function
Φ, that is, there exists a positive constant C such that Φ(2x) ≤ CΦ(x), x ≥ 0. For more
details about standard theory of Orlicz spaces the reader is referred to [114] and [184],
while the weighted theory is developed in the monograph [51].

Now, we are ready to state the two-dimensional Hilbert-type inequality in the weighted
Orlicz spaces, obtained by Jichang and Debnath [43].

Theorem 9.1 Suppose Φ,Φ∗ : R+ → R+ are submultiplicative conjugate Young func-
tions and K : R2

+ → R is a non-negative homogeneous function of degree −s, s > 0. Fur-
ther, let f ,g : R+ → R be non-negative functions such that ‖ f‖Φ,w > 0 and ‖g‖Φ∗,w > 0,
where w(x) = x1−s. Then,∫

R
2
+

K(x,y) f (x)g(y)dxdy ≤ (c1 + c2)‖ f‖Φ,w‖g‖Φ∗,w, (9.6)

where

c1 =
∫
R+

K(1,u)Φ∗−1
(

1
u

)
du < ∞,

c2 =
∫
R+

K(u,1)Φ∗
(

1
Φ−1 (Φ∗−1(u))

)
du < ∞.

9.2 Multidimensional Hilbert-type inequality

Concerning the statement of Theorem 9.1, we see that the authors deal with a pair of
submultiplicative conjugate functions. Moreover, in the proof of Theorem 9.1 (see [43]),
they used properties (9.3) and (9.4), which hold for a pair of conjugate Young functions.

Guided by that idea, we establish here a class of Young functions fulfilling the above
mentioned conditions. In such a way we shall naturally extend Hilbert-type inequality
(9.6) to a multidimensional case, and even more, formulate the corresponding result for an
arbitrary measurable kernel.

More precisely, we assume that Φi : [0,∞〉→ [0,∞〉, i = 1,2, . . . ,n, are Young functions
satisfying the following inequality:

α
n

∏
i=1

xi ≤
n

∑
i=1

Φi(xi), xi ≥ 0, i = 1,2, . . . ,n, (9.7)

where α ≥ 1. In addition, the following inequality will be assumed to hold for inverses of
the above Young functions:

x ≤
n

∏
i=1

Φ−1
i (x), x ≥ 0. (9.8)
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Now we are ready to state and prove the general result, that is, the multidimensional
Hilbert-type inequality for an arbitrary measurable kernel.

Theorem 9.2 Suppose Φi : R+ → R+, i = 1,2, . . . ,n, are submultiplicative Young func-
tions satisfying conditions (9.7) and (9.8). Let (Ωi,Σi,μi), i = 1,2, . . . ,n, be σ -finite
measure spaces, let K : ∏n

i=1Ωi → R be a non-negative measurable function, and let
ϕi j : Ωi×Ω j → R, i �= j, be non-negative measurable functions satisfying the condition

n

∏
i, j=1
i �= j

ϕi j (xi,x j) = 1. (9.9)

Further, suppose Fi : Ωi → R are defined by

Fi(xi) =
∫
∏n

j=1
j �=i

Ω j

K(x1,x2, . . . ,xn)
n

∏
j=1
j �=i

[Φi (ϕi j(xi,x j))dμ j(x j)] . (9.10)

If fi : Ωi → R are non-negative functions such that fi ∈ LΦi
Fi

(μi) and ‖ fi‖Φi,Fi > 0, then the
following inequality holds:

∫
∏n

i=1Ωi

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)dμi(xi)

]
≤ n

α

n

∏
i=1

‖ fi‖Φi,Fi . (9.11)

Proof. Applying property (9.8) to the kernel K : ∏n
i=1Ωi → R, we obtain that

K(x1,x2, . . . ,xn) ≤
n

∏
i=1

Φ−1
i [K(x1,x2, . . . ,xn)] .

Consequently, considering functions ϕi j : Ωi ×Ω j → R fulfilling relation (9.9), we obtain
the following inequalities

∫
∏n

i=1Ωi

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)dμi(xi)

]

≤
∫
∏n

i=1Ωi

n

∏
i=1

⎡⎢⎣Φ−1
i [K(x1,x2, . . . ,xn)] fi(xi)

n

∏
j=1
j �=i

ϕi j(xi,x j)

⎤⎥⎦ n

∏
j=1

dμ j(x j)

≤ 1
α

n

∑
i=1

∫
∏n

i=1Ωi

Φi

⎡⎢⎣Φ−1
i [K(x1,x2, . . . ,xn)] fi(xi)

n

∏
j=1
j �=i

ϕi j(xi,x j)

⎤⎥⎦ n

∏
j=1

dμ j(x j),

where the second inequality sign holds due to relation (9.7). Note that in the previous
relation we write ∏n

j=1 dμ j(x j) = dμ1(x1)dμ2(x2) . . .dμn(xn).
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Further, since the Young functionsΦi : R+ →R+, i = 1,2, . . . ,n, are submultiplicative,
the Fubini theorem and definition (9.10) of functions Fi : Ωi → R yield another inequality:

1
α

n

∑
i=1

∫
∏n

i=1Ωi

Φi

⎡⎢⎣Φ−1
i [K(x1,x2, . . . ,xn)] fi(xi)

n

∏
j=1
j �=i

ϕi j(xi,x j)

⎤⎥⎦ n

∏
j=1

dμ j(x j)

≤ 1
α

n

∑
i=1

∫
∏n

i=1Ωi

K(x1,x2, . . . ,xn)Φi ( fi(xi))

⎡⎢⎣ n

∏
j=1
j �=i

Φi (ϕi j(xi,x j))dμ j(x j)

⎤⎥⎦dμi(xi)

=
1
α

n

∑
i=1

∫
Ωi

Φi ( fi(xi))

×

⎡⎢⎣∫
∏n

j=1
j �=i

Ω j

K(x1,x2, . . . ,xn)
n

∏
j=1
j �=i

[Φi (ϕi j(xi,x j))dμ j(x j)]

⎤⎥⎦dμi(xi)

=
1
α

n

∑
i=1

∫
Ωi

Φi ( fi(xi))Fi(xi)dμi(xi).

Hence, we obtain

∫
∏n

i=1Ωi

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)dμi(xi)

]

≤ 1
α

n

∑
i=1

∫
Ωi

Φi ( fi(xi))Fi(xi)dμi(xi). (9.12)

Now, replacing functions fi in (9.12) respectively with fi/‖ fi‖Φi,Fi , we have

∫
∏n

i=1Ωi

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)
‖ fi‖Φi,Fi

dμi(xi)

]

≤ 1
α

n

∑
i=1

∫
Ωi

Φi

(
fi(xi)

‖ fi‖Φi,Fi

)
Fi(xi)dμi(xi).

On the other hand, utilizing the definition of the Luxemburg-Nakano norm, it follows that∫
Ωi

Φi

(
fi(xi)

‖ fi‖Φi,Fi

)
Fi(xi)dμi(xi) ≤ 1, i = 1,2, . . . ,n,

which yields ∫
∏n

i=1 Ωi

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)
‖ fi‖Φi,Fi

dμi(xi)

]
≤ n

α
,

that is, (9.11), as required. �
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Our first application of Theorem 9.2 refers to a homogeneous kernel of the negative
degree, together with the Lebesgue measures dμi(xi) = dxi, i = 1,2, . . . ,n, on R+. In that
case the weighted Orlicz space LΦ

w (μ) will simply be denoted by LΦ
w . Moreover, we shall

deal with a more suitable form of the non-negative functions ϕi j : Ωi ×Ω j → R, i �= j,
defined in the previous theorem. In described setting, we have the following result.

Corollary 9.1 Suppose Φi : R+ → R+, i = 1,2, . . . ,n, are submultiplicative Young func-
tions fulfilling conditions (9.7) and (9.8). Let K : Rn

+ → R be a non-negative homogeneous
function of degree −s, s > 0, and let hi j : R+ → R, i �= j, be non-negative measurable
functions satisfying condition

n

∏
i, j=1
i �= j

hi j

(
x j

xi

)
= 1. (9.13)

Further, assume that Ci, i = 1,2, . . . ,n, are real constants defined by

Ci =
∫
R

n−1
+

K(u1, . . .ui−1,1,ui+1, . . . ,un)
n

∏
j=1
j �=i

[Φi(hi j(u j))du j] , (9.14)

and w : R+ → R is the weight function, defined by w(x) = xn−s−1.
If fi : R+ → R are non-negative functions such that fi ∈ LΦi

Ciw
and ‖ fi‖Φi,Ciw > 0, i =

1,2, . . . ,n, then the following inequality holds:∫
R

n
+

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)dμi(xi)

]
≤ n

α

n

∏
i=1

‖ fi‖Φi,Ciw. (9.15)

Proof. We utilize Theorem 9.2 with the functions ϕi j : R+×R+ → R defined by

ϕi j(xi,x j) = hi j

(
x j

xi

)
, i �= j.

In this setting, the functions Fi : R+ → R can be rewritten in the following form:

Fi(xi) =
∫
R

n−1
+

K(x1, . . . ,xn)
n

∏
j=1
j �=i

[
Φi

(
hi j

(
x j

xi

))
dx j

]
.

Now, taking into account substitutions x j = xiu j, j = 1, . . . , i− 1, i+ 1, . . . ,n, and making
use of the homogeneity of the kernel K : Rn

+ → R, we have

Fi(xi) =
∫
R

n−1
+

K(xiu1, . . .xiui−1,xi,xiui+1, . . . ,xiun)
n

∏
j=1
j �=i

[
Φi (hi j(u j))xn−1

i du j
]

=
∫
R

n−1
+

x−s
i K(u1, . . .ui−1,1,ui+1, . . . ,un)

n

∏
j=1
j �=i

[
Φi (hi j(u j))xn−1

i du j
]

= xn−s−1
i

∫
R

n−1
+

K(u1, . . .ui−1,1,ui+1, . . . ,un)
n

∏
j=1
j �=i

[Φi (hi j(u j))du j]

= Ciw(xi),
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which completes the proof. �

Remark 9.1 It is not hard to find non-negative functions hi j : R+ → R, i �= j, i, j ∈
{1,2, . . . ,n}, fulfilling relation (9.13). Namely, if βi j, i �= j, i, j ∈ {1,2, . . . ,n}, are pos-
itive real numbers satisfying

n

∑
i=1
i �=k

βik =
n

∑
j=1
j �=k

βk j, k = 1,2, . . . ,n, (9.16)

then the functions hi j(t) = tβi j , i �= j, obviously fulfill (9.13), since

n

∏
i, j=1
i �= j

(
x j

xi

)βi j

= 1.

In the previous corollary referring to a homogeneous kernel of degree −s, s > 0, we
obtained the Hilbert-type inequality for weighted Orlicz spaces where the weight func-
tions were multiples of the particular weight w(x) = xn−s−1. On the other hand, utilizing
the same method as in the proof of Theorem 9.2, one can obtain the inequality which in-
cludes the weighted Orlicz spaces with the same weight function. This is the content of
the following theorem.

Theorem 9.3 Under the assumptions of Corollary 9.1, inequality

∫
R

n
+

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)dμi(xi)

]
≤ ∑n

i=1Ci

α

n

∏
i=1

‖ fi‖Φi,w (9.17)

holds for all non-negative functions fi : R+ → R such that fi ∈ LΦi
w and ‖ fi‖Φi,w > 0,

i = 1,2, . . . ,n.

Proof. We follow the same procedure as in the proof of Theorem 9.2 and take into
account the specific form of functionsFi : R+ →R deduced in Corollary 9.1, that is Fi(xi)=
Ciw(xi), i = 1,2, . . . ,n. In this setting, inequality (9.12) can be rewritten as

∫
R

n
+

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)dμi(xi)

]
≤ 1

α

n

∑
i=1

Ci

∫
R+

Φi ( fi(xi))w(xi)dxi.

Now, replacing functions fi in the above inequality respectively with fi/‖ fi‖Φi,w, i =
1,2, . . . ,n, we have

∫
R

n
+

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)
‖ fi‖Φi,w

dxi

]
≤ 1

α

n

∑
i=1

Ci

∫
R+

Φi

(
fi(xi)

‖ fi‖Φi,w

)
w(xi)dxi.

Finally, since ∫
R+

Φi

(
fi(xi)

‖ fi‖Φi,w

)
w(xi)dxi ≤ 1,
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definition of the Luxemburg-Nakano norm provides the inequality

∫
R

n
+

K(x1,x2, . . . ,xn)

[
n

∏
i=1

fi(xi)
‖ fi‖Φi,w

dxi

]
≤ ∑n

i=1Ci

α
,

and the proof is completed. �

Remark 9.2 If n = 2, then the constants C1 and C2 included in the inequality (9.17) re-
duce to

C1 =
∫
R+

K(1,u2)Φ1(h12(u2))du2 and C2 =
∫
R+

K(u1,1)Φ2(h21(u1))du1.

Now, considering a pair of conjugate functions, that is, Φ1 = Φ and Φ2 = Φ∗, and defining
h12(u2) = Φ−1

(
Φ∗−1

(
1
u2

))
, condition (9.13) can be rewritten in the form

Φ−1 (Φ∗−1 (u1)
)
h21 (u1) = 1, u1 =

x1

x2
> 0,

yielding an explicit formula for the function h21:

h21 (u1) =
1

Φ−1 (Φ∗−1 (u1))
.

Thus, if n = 2, α = 1 and h12(u2) = Φ−1
(
Φ∗−1

( 1
u2

))
, inequality (9.17) coincides with

inequality (9.6). Therefore, inequality (9.17) may be regarded as a multidimensional ex-
tension of (9.6).

9.3 A version of Hardy-Hilbert-type inequality

In this section we derive Hardy-Hilbert-type inequalities associated to Hilbert-type in-
equalities from the previous section, in a particular case. Namely, in the sequel we ob-
tain Hardy-Hilbert versions of inequalities (9.11), (9.15), and (9.17) assuming that one of
Young functions provides the weighted Lebesgue space.

A Hardy-Hilbert-type inequality that corresponds to (9.11) in the above described set-
ting is a content of the following result.

Corollary 9.2 Let 1
r + 1

r′ = 1, r > 1, and let Φi : R+ → R+, i = 1,2, . . . ,n, be submulti-

plicative Young functions satisfying conditions (9.7) and (9.8), where Φn(x) = xr′ . Further,
suppose (Ωi,Σi,μi), i = 1,2, . . . ,n, are σ -finite measure spaces, K : ∏n

i=1Ωi → R is a non-
negative measurable function, and Fi : Ωi → R, i = 1,2, . . . ,n, are defined by (9.10).
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If fi : Ωi → R, i = 1,2, . . . ,n−1, are non-negative functions such that fi ∈ LΦi
Fi

(μi) and
‖ fi‖Φi,Fi > 0, then

[∫
Ωn

F1−r
n (xn)

[∫
∏n−1

i=1 Ωi

K(x1,x2, . . . ,xn)
n−1

∏
i=1

fi(xi)dμi(xi)

]r

dμn(xn)

] 1
r

≤ n
α

n−1

∏
i=1

‖ fi‖Φi,Fi , (9.18)

provided the integrals on the left-hand side of the inequality converge.

Proof. Let I denote the left-hand side of (9.18). If we define the function fn : Ωn → R by

fn(xn) = F1−r
n (xn)

[∫
∏n−1

i=1 Ωi

K(x1,x2, . . . ,xn)
n−1

∏
i=1

fi(xi)dμi(xi)

]r−1

, (9.19)

then, utilizing the Fubini theorem, the r-th power of I can be rewritten as

Ir =
∫
∏n

i=1 Ωi

K(x1,x2, . . . ,xn)
n

∏
i=1

fi(xi)dμi(xi).

Now, the Hilbert-type inequality (9.11) yields

Ir ≤ n
α

n

∏
i=1

‖ fi‖Φi,Fi . (9.20)

On the other hand, the Young function Φn(x) = xr′ provides the corresponding weighted
Lebesgue space Lr′

Fn
(μn). Moreover, taking into account (9.19), we obtain

‖ fn‖Φn,Fn =
[∫

Ωn

f r′
n (xn)Fn(xn)dμn(xn)

] 1
r′

= I
r
r′ . (9.21)

Finally, relations (9.20) and (9.21) yield inequality

Ir− r
r′ ≤ n

α

n−1

∏
i=1

‖ fi‖Φi,Fi ,

that is, (9.18), since r− r
r′ = 1. �

The following two corollaries refer to homogeneous kernels. Namely, as a special
case, we obtain Hardy-Hilbert-type inequalities that correspond to Hilbert-type inequalities
(9.15) and (9.17).

Corollary 9.3 Let 1
r + 1

r′ = 1, r > 1, and let Φi : R+ → R+, i = 1,2, . . . ,n, be submul-

tiplicative Young functions fulfilling conditions (9.7) and (9.8), where Φn(x) = xr′ . Let
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K : Rn
+ → R be a non-negative homogeneous function of degree −s, s > 0, and let Ci,

i = 1,2, . . . ,n, be real constants defined by (9.14).
If fi : R+ → R, i = 1,2, . . . ,n− 1, are non-negative functions such that fi ∈ LΦi

Ciw
and

‖ fi‖Φi,Ciw > 0, where w(x) = xn−s−1, then

[∫
R+

xn
(n−1−s)(1−r)

[∫
R

n−1
+

K(x1,x2, . . . ,xn)
n−1

∏
i=1

fi(xi)dxi

]r

dxn

] 1
r

≤ nC1/r′
n

α

n−1

∏
i=1

‖ fi‖Φi,Ciw, (9.22)

provided the integrals on the left-hand side of the inequality converge.

Corollary 9.4 Under the assumptions of Corollary 9.3, the inequality

[∫
R+

xn
(n−1−s)(1−r)

[∫
R

n−1
+

K(x1,x2, . . . ,xn)
n−1

∏
i=1

fi(xi)dxi

]r

dxn

] 1
r

≤ ∑n
i=1Ci

α

n−1

∏
i=1

‖ fi‖Φi,w (9.23)

holds for all non-negative functions fi : R+ → R such that fi ∈ LΦi
w and ‖ fi‖Φi,w > 0,

i = 1,2, . . . ,n−1.

9.4 Some examples in the weighted
Lebesgue spaces

In order to conclude this chapter, we provide here some remarks about reduction to the
case of the weighted Lebesgue spaces. More precisely, we consider the method developed
in Section 9.2 in the case of the weighted Lebesgue spaces.

For that sake, we assume that Φi are Young functions defined by Φi(xi) = xpi
i , i =

1,2, . . . ,n, where pi > 1, i = 1,2, . . . ,n, are conjugate exponents, that is, ∑n
i=1

1
pi

= 1.
The above power functions define the appropriate weighted Lebesgue spaces. More-

over, since pi > 1, i = 1,2, . . . ,n, are conjugate exponents, the classical Young inequality
implies

n

∑
i=1

xpi
i ≥

n

∏
i=1

p
1
pi
i

n

∏
i=1

xi,

and hence, according to condition (9.7), we can take α = ∏n
i=1 p

1
pi
i . In addition, since the
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inverses of Young functions Φi(xi) = xpi
i are respectively Φ−1

i (xi) = x
1
pi
i , we have

n

∏
i=1

Φ−1
i (x) =

n

∏
i=1

x
1
pi = x∑

n
i=1

1
pi = x,

which means that condition (9.8) is fulfilled as well. Finally, the above power functions
are multiplicative, so the assumptions as in Section 9.2 are also fulfilled.

Remark 9.3 Regarding the above setting, inequality (9.15) can be reduced to a form
which includes Lebesgue spaces with the same weight function, as inequality (9.17). Na-
mely, using the notation from Corollary 9.1 and taking into account the above power Young
functions, we have

‖ fi‖Φi,Ciw = ‖ fi‖L
pi
Ciw

=
[∫

R+
f pi
i (xi)Ciw(xi)dxi

] 1
pi

= C
1
pi
i ‖ fi‖L

pi
w
,

for i = 1,2, . . . ,n. In such a way we obtain an inequality related to (9.17), but with a
different constant factor. Moreover, in described setting, inequalities (9.15) and (9.17)
yield the inequality ∫

R
n
+

K(x1,x2, . . . ,xn)
n

∏
i=1

fi(xi)dxi

≤ min

⎧⎨⎩n∏n
i=1C

1
pi
i

∏n
i=1 p

1
pi
i

,
∑n

i=1Ci

∏n
i=1 p

1
pi
i

⎫⎬⎭ n

∏
i=1

‖ fi‖L
pi
w
. (9.24)

Note that we cannot decide which constant factor is smaller.

Remark 9.4 We know from previous sections that the constant factors Ci involved in
inequality (9.24) can be explicitly computed for some particular choices of the kernel K
and the functions hi j : R+ → R, i �= j, i, j ∈ {1,2, . . . ,n}, fulfilling relation (9.13).

For example, considering inequality (9.24)with the kernel K(x1,x2, . . .,xn)=(∑n
i=1 xi)

−s,
s > 0, and the power functions hi j(t) = tβi j , i �= j, where the parameters βi j fulfill relations
(9.16), the above constant factors can be rewritten as

Ci =
∫
R

n−1
+

∏n
j=1
j �=i

u
piβi j
j du j(

1+∑n
j=1
j �=i

u j

)s .

Now, taking into account Lemma 1.3 (Section 1.6, Chapter 1), the above integral can be
expressed in terms of the usual Gamma function, that is,

Ci =
Γ
(

s−n+1− pi∑n
j=1
j �=i

βi j

)
∏n

j=1
j �=i

Γ(piβi j +1)

Γ(s)
,

provided that s−n+1− pi∑n
j=1
j �=i

βi j > 0 and piβi j +1 > 0, j �= i.
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Remark 9.5 Multidimensional Hilbert-type inequalities in weighted Orlicz spaces, intro-
duced in this chapter, are derived recently in [64].



Chapter10
Some particular inequalities

In this book we have established a unified treatment of Hilbert-type inequalities in both
conjugate and non-conjugate case. We have derived numerous inequalities involving di-
verse choices of function spaces, sets of integration, kernels and weight functions. We have
also presented several methods for refinements of Hilbert-type inequalities.

Finally, in this last section we review some particular results, interesting on its own
right, which are closely connected with the theory exposed in this book. More precisely,
we give here some related Hilbert-type inequalities as well as some other refinements of
Hilbert-type inequalities known from the literature. The following recent results are cited
without proofs and are listed in the chronological order. For more details, the reader should
consult the corresponding literature.

10.1. G. Mingzhe [95], 1997.

If (an)n∈N0
and (bn)n∈N0

are non-negative sequences such that ∑∞
n=0 a2

n < ∞ and

∑∞
n=0 b2

n < ∞, then

∞

∑
m=0

∞

∑
n=0

ambn

m+n+1
≤

[
∞

∑
n=0

ω(n)a2
n

] 1
2
[

∞

∑
n=0

ω(n)b2
n

] 1
2

, (10.1)

where the weight coefficient ω is defined by ω(n) = π− θ(n)√
2n+1

and

θ (n) = 2
√

2n+1arctan

(
1√

2n+1

)
− 2n+1

n+1
> 0

221



222 10 HILBERT-TYPE INEQUALITIES IN THE WEIGHTED ORLICZ SPACES

for n ≥ 0. The equality sign in (10.1) holds if and only if (an)n∈N or (bn)n∈N is a zero-
sequence.

10.2. G. Mingzhe, B. Yang [97], 1998.

Let q ≥ p > 1 be conjugate exponents. If 0 < ∑∞
n=1 ap

n < ∞ and 0 < ∑∞
n=1 bq

n < ∞, then

∞

∑
m=1

∞

∑
n=1

ambn

m+n
<

[
∞

∑
n=1

(
π

sin π
p

− λ

n
1
p

)
ap

n

] 1
p
[

∞

∑
n=1

(
π

sin π
p

− λ

n
1
q

)
bq

n

] 1
q

, (10.2)

where λ = 1− γ and γ = 0.57721566 . . . is the Euler constant. In addition, λ is the largest
constant that keeps (10.2) valid and is independent of p and q.

10.3. B. Yang [145], 2000.

Let 1
p + 1

q = 1, p > 1, and let (an)n∈N0
and (bn)n∈N0

be non-negative sequences such that

0 < ∑∞
n=0 ap

n < ∞ and 0 < ∑∞
n=0 bq

n < ∞. Then the following two inequalities hold and are
equivalent:

∞

∑
m=0

∞

∑
n=0

ambn

m+n+1
<

[
∞

∑
n=0

(
π

sin π
p

− 1

13(n+1)(2n+1)
1
p

)
ap

n

] 1
p

×
[

∞

∑
n=0

(
π

sin π
p

− 1

13(n+1)(2n+1)
1
q

)
bq

n

] 1
q

(10.3)

and

∞

∑
m=0

(
∞

∑
n=0

ambn

m+n+1

)p

<

(
π

sin π
p

)p−1 ∞

∑
n=0

[
π

sin π
p

− 1

13(n+1)(2n+1)
1
p

]
ap

n . (10.4)

10.4. M. Bencze, C. J. Zhao [6], 2002.

Let p ≥ 1, q ≥ 1 be real parameters and let k, r, e be positive integers. If (an)n∈N, (bn)n∈N
are non-negative sequences and Am = ∑m

s=1 as, Bn = ∑n
t=1 bt , then

k

∑
m=1

r

∑
n=1

Ap
mBq

n(mn)
2
e

(m ·n 1
e )2 +(n ·m 1

e )2

≤ 1
2

pq(kr)
e−1
e

[
k

∑
m=1

(k−m+1)(amAp−1
m )e

] 1
e
[

r

∑
n=1

(r−n+1)(bnB
q−1
n )e

] 1
e

. (10.5)
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10.5. B. He, Y. Li [35], 2006.

Let m ≥ 1, n ≥ 1, pi > 1, 1
pi

+ 1
qi

= 1 for i = 0, 1, 2, 3, 4, p0 = p, p3 = k, p4 = r q0 = q,
q3 = l, q4 = ω . Further, suppose f ,g : R+ →R are non-negative measurable functions and
let F(s) =

∫ s
0 f (σ)dσ and G(t) =

∫ t
0 g(τ)dτ . If

0 <

∫ ∞

0
sp(1− λ

r )−1F p
f (s)ds < ∞, 0 <

∫ ∞

0
tq(1− λ

ω )−1Gq
g(t)dt < ∞,

then ∫ ∞

0

∫ ∞

0

Fm(s)Gn(t)

(ls
k
p1 + kt

l
p2 )(sλ + tλ )

dsdt

≤ E1(m,n,k,r,λ )
[∫ ∞

0
sp(1− λ

r )−1F p
f (s)ds

] 1
p
[∫ ∞

0
tq(1− λ

ω )−1Gq
g(t)dt

] 1
q

, (10.6)

where E1(m,n,k,r,λ ) = πmn
λ kl sin(π/r) ,

Ff (s) =
[∫ s

0
(Fm−1(σ) f (σ))q1dσ

] 1
q1

, and Gg(t) =
[∫ t

0
(Gm−1(τ)g(τ))q2dτ

] 1
q2

.

10.6. B. He, Y. Li [34], 2006.

Let 1
p + 1

q = 1, p > 1, and let f ,g : R+ → R be non-negative measurable functions such
that

0 <

∫ ∞

0
(x+1)p−1 f p(x)dx < ∞ and 0 <

∫ ∞

0
(x+1)q−1gq(x)dx < ∞.

Then the inequalities∫ ∞

0

∫ ∞

0

f (x)g(y)
log(x+1)+ log(y+1)+1

dxdy

<
π

sin π
p

[∫ ∞

0
ω(x, p) f p(x)dx

] 1
p
[∫ ∞

0
ω(x,q)gq(x)dx

] 1
q

(10.7)

and ∫ ∞

0
(ω(y,q))1−p

[∫ ∞

0

f (x)
log(x+1)+ log(y+1)+1

dx

]p

dy

<

[
π

sin π
p

]p ∫ ∞

0
ω(x, p) f p(x)dx (10.8)

hold and are equivalent, where ω(x,r) = [1− 1− ssin(π/r)
π

(log(x+1)+1)1/r ](x+1)r−1, r = p,q, s = r
r−1 .

In addition, the constant factors included on the right-hand sides of inequalities (10.7) and
(10.8) are the best possible.



224 10 HILBERT-TYPE INEQUALITIES IN THE WEIGHTED ORLICZ SPACES

10.7. J. Weijian, G. Mingzhe [130], 2006.

Let

ω(r,x) = x(1+x)(1−r)
(

1
2
−ϕ(x)

)r−1

,

where r > 1 and ϕ(x) = 1−x+x logx
2(1+x+x logx) , x ∈ R+. If p ≥ q > 1 are conjugate parameters and

f ,g : R+ → R are non-negative measurable functions such that

0 <

∫ ∞

0
ω(p,x) f p(x)dx < +∞, 0 <

∫ ∞

0
ω(q,x)gq(x)dx < +∞,

then ∫ ∞

0

∫ ∞

0

f (x)g(y)
ax1+x +by1+y dxdy

≤ μπ
sin π

p

[∫ ∞

0
ω(p,x) f p(x)dx

] 1
p
[∫ ∞

0
ω(q,x)gq(x)dx

] 1
q

, (10.9)

where μ = ( 1
a )

1
q ( 1

b )
1
p . Moreover, the constant factor μπ

sin π
p

is the best possible.

10.8. W. T. Sulaiman [122], 2006.

Let 1
p + 1

q = 1, p > 1, and let λ > max{p,q}. Further, suppose f ,g : R+ → R are non-
negative functions such that f (0) = g(0) = 0, f (∞) = g(∞) = ∞, f ′(s) ≥ 0, g′(s) ≥ 0,
s ∈ {xp,yq}, and let log f , logg be convex functions. If

0 <

∫ ∞

0

t
− p2

q2 [ f (t p)]2−λ+ p
q

[ f ′(t)]
p
q

dt < ∞, 0 <

∫ ∞

0

t
− q2

p2 [g(tq)]2−λ+ q
p

[g′(t)]
q
p

dt < ∞,

then ∫ ∞

0

∫ ∞

0

f (xy)g(xy)
( f (xp)+g(yq))λ

dxdy

≤ 1
p
√

p q
√

q
B

1
p (p,λ − p)B

1
q (q,λ −q)

×

⎡⎢⎣∫ ∞

0

t
− p2

q2 [ f (t p)]2−λ+ p
q

[ f ′(t)]
p
q

dt

⎤⎥⎦
1
p
⎡⎢⎣∫ ∞

0

t
− q2

p2 [g(tq)]2−λ+ q
p

[g′(t)]
q
p

dt

⎤⎥⎦
1
q

, (10.10)

where B is the usual Beta function.
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10.9. W. Wang, D. Xin [129], 2006.

Let p > 1, 1
p + 1

q = 1, α ≥ e
7
6 , and s, t ∈ R. If (an)n∈N and (bn)n∈N are non-negative real

sequences such that 0 < ∑∞
n=1(n

1
q−san)p < ∞ and 0 < ∑∞

n=1(n
1
p−t bn)q < ∞, then

∞

∑
n=1

∞

∑
m=1

ambn

msnt logαmn
<

[
∞

∑
n=1

(
π

sin π
p

− 3(p−1)

8(2logn+1)
1
p

)
(n

1
q−san)p

] 1
p

×
[

∞

∑
n=1

(
π

sin π
p

− 3(q−1)

8(2logn+1)
1
q

)
(n

1
p−sbn)q

] 1
q

. (10.11)

10.10. Z. Lü, H. Xie [88], 2007.

Let −c ≤ a < b < ∞ and let f ,g : [a,b] → R be non-negative measurable functions such
that

∫ b
a (x+c) f 2(x)dx < ∞ and

∫ b
a (y+c)g2(y)dy <∞. Then the following inequalities hold

and are equivalent:

∫ b

a

∫ b

a

f (x)g(y)
log(x+ c)(y+ c)

dxdy

≤
(
π−4arctan 4

√
log(a+ c)
log(b+ c)

)[∫ b

a
(x+ c) f 2(x)dx

∫ b

a
(y+ c)g2(y)dy

] 1
2

(10.12)

and

∫ b

a

[∫ b

a

f (x)
log(x+ c)(y+ c)

dx

]2

dy

≤
(
π−4arctan 4

√
log(a+ c)
log(b+ c)

)2 ∫ b

a
(x+ c) f 2(x)dx. (10.13)

10.11. Z. Lü, G. Mingzhe, L. Debnath [87], 2007.

Suppose F is defined as

F(s,t) = ‖α‖2s2 −2〈α,β 〉st +‖β‖2t2, (10.14)

where α, β , and γ belong to inner product space E, 〈α,β 〉 indicates the inner product of
vectors α and β , γ is the unit-vector, α and β are not simultaneously orthogonal to γ, and
s = 〈β ,γ〉 and t = 〈α,γ〉.

Further, suppose f , g ∈ L2(R+), φ(x), ψ(x) are differentiable functions in R+, and
φ(0) = ψ(0) ≥ 0, φ(∞) = ψ(∞) = ∞, φ ′(x), ψ ′(x) > 0. If the functions φ ′(x) and ψ ′(x)
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have positive infimums, then[∫ ∞

0

∫ ∞

0

f (x)g(y)
φ(x)+ψ(y)

dxdy

]2

≤ 1
inf{φ ′(x)} inf{ψ ′(y)}

∫ ∞

0

[
π− arctan

√
ψ(0)
φ(x)

]
f 2(x)dx

×
∫ ∞

0

[
π− arctan

√
φ(0)
ψ(y)

]
g2(y)dy−F(s,t), (10.15)

where F(s, t) is defined by (10.14) and F(s,t) > 0.

10.12. H. Leping, G. Xuemei, G. Mingzhe [78], 2008.

If (an)n∈N and (bn)n∈N are non-negative sequences such that ∑∞
n=1 a2

n < +∞ and

∑∞
n=1 b2

n < +∞, then[
∞

∑
m=1

∞

∑
n=1

ambn

m+n

]4

≤ π4

⎡⎣(
∞

∑
n=1

a2
n

)2

−
(

∞

∑
n=1

ω(n)a2
n

)2
⎤⎦

×
⎡⎣(

∞

∑
n=1

b2
n

)2

−
(

∞

∑
n=1

ω(n)b2
n

)2
⎤⎦ , (10.16)

where the weight function ω(n) is defined by

ω(n) =
√

n
n+1

(√
n−1√
n+1

− logn
π

)
.

10.13. H. Leping, G. Mingzhe, Z. Yu [77], 2008.

Suppose f and g are non-negative real functions such that 0 <
∫ ∞
α (x−α)1−λ f 2(x)dx < ∞

and 0 <
∫ ∞
α (x−α)1−λg2(x)dx < ∞ for λ > 1

2 . Then,[∫ ∞

α

∫ ∞

α

f (x)g(y)
(x−α)λ +(y−α)λ

dxdy

]4

≤
(

π
λ sin π

2λ

)4
[(∫ ∞

α
(x−α)1−λ f 2(x)dx

)2

−
(∫ ∞

α
ωλ (x) f 2(x)dx

)2
]

×
[(∫ ∞

α
(x−α)1−λg2(x)dx

)2

−
(∫ ∞

α
ωλ (x)g2(x)dx

)2
]

, (10.17)

where the weight function ωλ (x) is defined by

ωλ (x) =

{
(x−α)1−λ

[
(x−α)λ−1/2−1

(x−α)λ−1
− 1

1+(x−α)λ

]
, x−α �= 1,

1
2 − 1

2λ , x−α = 1.
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10.14. W. T. Sulaiman [124], 2008.

Suppose p,q > 1 are conjugate parameters. A non-negative mapping f : R+ → R is called

(p,q)-Hölder type on R+ if the inequality f (xy) ≤ f
1
p (xp) f

1
q (yq) holds for all x,y ∈ R+.

Let f and F be non-negative functions of (p,q)-Hölder type on R+ such that f (0) = 0
and f (∞) =∞. Further, suppose that f ′ exist and is strictly positive on R+. If λ > 0, μ > 1,
max{ p−1

q , q−1
p } < μ−1

λ < min{ p
q , q

p}, and

K = B
1
p (λ p− μq+q,λ−λ p+ μq−q)B

1
q (λq− μ p+ p,λ−λq+ μ p− p),

where B is the Beta function, then

∫ ∞

0

∫ ∞

0
F(xy)

(
f (xy)

1+ f (xy)

)λ
dxdy

≤ K

⎡⎣∫ ∞

0

( f (xp))(pq−2)μ−λ− p
q F(xp)

x
p(p−1)

q ( f ′(xp))
p
q

dx

⎤⎦ 1
p
⎡⎣∫ ∞

0

( f (yq))(pq−2)μ−λ− q
p F(yq)

y
q(q−1)

p ( f ′(yq))
q
p

dy

⎤⎦ 1
q

,

(10.18)

provided that integrals on the right-hand side of the inequality converge.

10.15. Z. Yu, G. Xuemei, G. Mingzhe [175], 2009.

Let λ > 0 and let f , g be non-negative functions such that 0 <
∫ ∞
0 x1−λ f 2(x)dx < ∞ and

0 <
∫ ∞
0 x1−λg2(x)dx < ∞. If m is a positive integer, then

∫ ∞

0

∫ ∞

0

(logx− logy)2m−1 f (x)g(y)
xλ − yλ

dxdy

< CB

[∫ ∞

0
x1−λ f 2(x)dx

] 1
2
[∫ ∞

0
x1−λg2(x)dx

] 1
2

, (10.19)

where the constant factor CB is defined by

CB =
22m−1(22m −1)

m

(π
λ

)2m
Bm.

Here, Bm are the Bernoulli numbers, namely B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 = 1

30 , B5 = 5
66 ,

and so forth. Moreover, the constant factor CB on the right-hand side of (10.19) is the best
possible.
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10.16. W. Yang [169], 2009.

Let p ≥ 1, q ≥ 1, α > 1, γ > 1 be real parameters and let k, r be positive integers. If
(an)n∈N, (bn)n∈N are non-negative sequences and Am = ∑m

s=1 as, Bn = ∑n
t=1 bt , then

k

∑
m=1

r

∑
n=1

Ap
mBq

n

γm
(α−1)(α+γ)

αγ +αn
(γ−1)(α+γ)

αγ
≤C(p,q,k,r;α,γ)

×
[

k

∑
m=1

(k−m+1)(Ap−1
m am)α

] 1
α
[

r

∑
n=1

(r−n+1)(Bq−1
n bn)γ

] 1
γ

, (10.20)

where C(p,q,k,r;α,γ) = pq
α+γ k

α−1
α r

γ−1
γ .

10.17. W. Yang [170], 2009.

Let qi ≥ 1, pi > 1, p = ∑n
i=1

1
pi

, and αi = ∏n
j=1, j �=i p j, i = 1,2, . . . ,n. Further, suppose ai,mi ,

i = 1,2, . . . ,n, are non-negative sequences defined for mi = 1,2, . . . ,ki, where ki are positive
integers and let Ai,mi = ∑mi

si=1 ai,si , i = 1,2, . . . ,n. Then,

k1

∑
m1=1

· · ·
kn

∑
mn=1

∏n
i=1 Aqi

i,mi

∑n
i=1αim

(pi−1)p
i

≤C(k1, . . . ,kn)
n

∏
i=1

[
ki

∑
mi=1

(ki −mi +1)(Aqi−1
i,mi

ai,mi)
pi

] 1
pi

, (10.21)

where C(k1, . . . ,kn) = ∏n
i=1 qi

∑n
i=1 αi

∏n
i=1 k

pi−1
pi

i .

10.18. W. Yang [171], 2009.

Let us define the operator ∇ by ∇u(t) = u(t)−u(t−1) for a function u : N0 → R. Further,
define the operators ∇1v(s,t) = v(s,t)− v(s− 1,t), ∇2v(s,t) = v(s, t)− v(s,t − 1), and
∇2∇1v(s, t) = ∇2(∇1v(s,t)) = ∇1(∇2v(s,t)) for a function v : N0×N0 → R.

Suppose p > 1, 1
p + 1

q = 1, and a,b : N0 ×N0 → R are such that a(0, t) = b(0,t) =
a(s,0) = b(s,0) = 0. If 0 < ∑∞

m=1∑
∞
n=1∑

m
τ=1∑

n
δ=1 |∇2∇1a(τ,δ )|p < ∞ and

0 < ∑∞
s=1∑∞

t=1 ∑s
k=1∑

t
r=1 |∇2∇1b(k,r)|q < ∞, then

∞

∑
m=1

∞

∑
n=1

∞

∑
s=1

∞

∑
t=1

|a(m,n)||b(s,t)|
(q(mn)p−1 + p(st)q−1)(m+ s)(n+ t)

<
π2

pqsin2 π
p

[
∞

∑
m=1

∞

∑
n=1

m

∑
τ=1

n

∑
δ=1

|∇2∇1a(τ,δ )|p
] 1

p

×
[

∞

∑
s=1

∞

∑
t=1

s

∑
k=1

t

∑
r=1

|∇2∇1b(k,r)|q
] 1

q

. (10.22)
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10.19. C. J. Zhao, W. S. Cheung [179], 2009.

Let p ≥ 1, q ≥ 1, t > 0, and 1
α + 1

β = 1, α > 1. Further, suppose am1,...,mn and bn1,...,nn

are non-negative sequences defined for mi = 1,2, . . . ,ki, and ni = 1,2, . . . ,ri, where ki and
ri, i = 1, . . . ,n, are positive integers. If Am1,...,mn = ∑m1

s1=1 · · ·∑mn
sn=1 as1,...,sn and Bn1,...,nn =

∑n1
t1=1 · · ·∑nn

tn=1 bt1,...,tn , then

k1

∑
m1=1

· · ·
kn

∑
mn=1

r1

∑
n1=1

· · ·
rn

∑
nn=1

αβ t
1
β Ap

m1,...,mnB
q
n1,...,nn

m1 · · ·mnβ +n1 · · ·nnαt

≤ L(k1, . . . ,kn,r1, . . . ,rn, p,q,α,β )

×
[

k1

∑
m1=1

· · ·
kn

∑
mn=1

n

∏
j=1

(k j −mj +1)
(
am1,...,mnA

p−1
m1,...,mn

)β] 1
β

×
[

r1

∑
n1=1

· · ·
rn

∑
nn=1

n

∏
j=1

(r j −n j +1)
(
bn1,...,nnB

q−1
n1,...,nn

)α] 1
α

, (10.23)

where
L(k1, . . . ,kn,r1, . . . ,rn, p,q,α,β ) = pq(k1 · · ·kn)

1
α (r1 · · · rn)

1
β .

10.20. Q. Huang [38], 2010.

Suppose pi,ri > 1, i = 1, . . . ,n, are real parameters such that ∑n
i=1

1
pi

= ∑n
i=1

1
ri

= 1 and
1
qn

= 1− 1
pn

. Further, let α , β , and λ be real parameters such that λ > 0, 0 < α < 2, β ≥
− 1

2 , and λαmax{ 1
2−α ,1} ≤ min1≤i≤n{ri}. Then the following two equivalent inequalities

∞

∑
mn=1

· · ·
∞

∑
m1=1

1

[∑n
i=1(mi +β )α ]λ

n

∏
i=1

a(i)
mi

<
α1−n

Γ(λ )

n

∏
i=1

Γ
(
λ
ri

)[
∞

∑
mi=1

(mi +β )pi(1− λα
ri

)−1
(
a(i)

mi

)pi

] 1
pi

, (10.24)

[
∞

∑
mn=1

(mn +β )
λαqn

rn
−1

(
∞

∑
mn−1=1

· · ·
∞

∑
m1=1

∏n−1
i=1 a(i)

mi

[∑n
i=1(mi +β )α ]λ

)qn] 1
qn

<
Γ
(

λ
rn

)
αn−1Γ(λ )

n−1

∏
i=1

Γ
(
λ
ri

)[
∞

∑
mi=1

(mi +β )pi(1− λα
ri

)−1
(
a(i)

mi

)pi

] 1
pi

(10.25)

hold for all non-negative sequences (a(i)
mi )mi∈N, provided that

0 <
∞

∑
mi=1

(mi +β )pi(1− λα
ri

)−1
(
a(i)

mi

)pi
< ∞ i = 1, . . . ,n.

Here, Γ is the Gamma function.
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10.21. N. Das, S. Sahoo [20], 2010.

Suppose 1
p + 1

q = 1, p > 1, and let λ ,r,s be real parameters such that 0 < λ ≤ 4, 0 < r,s <

min{2,λ}, and r + s = λ . If An = ∑n
k=1 ak and Bn = ∑n

k=1 bk, where (an)n∈N,(bn)n∈N are
non-negative sequences fulfilling 0 < ∑∞

n=1 ap
n < ∞ and 0 < ∑∞

n=1 bq
n < ∞, then

∞

∑
m=1

∞

∑
n=1

mr− 1
q−1ns− 1

p−1

(m+n)λ
AmBn < pqB(r,s)

[
∞

∑
n=1

ap
n

] 1
p
[

∞

∑
n=1

bq
n

] 1
q

, (10.26)

∞

∑
n=1

(
∞

∑
m=1

mr− 1
q−1ns− 1

p

(m+n)λ
Am

)p

< (qB(r,s))p
∞

∑
n=1

ap
n , (10.27)

where B is the Beta function. In addition, the constant factors pqB(r,s) and (qB(r,s))p are
the best possible in the above equivalent inequalities.

10.22. X. Liu, B. Yang [85], 2010.

Let 1
p + 1

q = 1, p > 1, and let λ ,λ1,λ2 be real parameters such that λ1+λ2 = λ < 2. Further,
suppose kλ : R+×R+ → R is a non-negative homogeneous function of degree −λ so that
0 < k(λ1) =

∫ ∞
0 k(u,1)uλ1−1du < ∞ holds for all λ1 ∈ (λ − 1,1). If f ,g : R+ → R are

non-negative functions and ϕ̃(x) = xp(2−λ−λ1)−1, ψ(y) = yq(1−λ2)−1,

F̃λ (x) =
∫ ∞

x

1

tλ
f (t)dt, G̃λ (y) =

∫ ∞

y

1

tλ
g(t)dt,

so that 0 < ‖ f‖Lp
ϕ̃

= [
∫ ∞
0 ϕ̃(x)| f (x)|pdx]

1
p < ∞ and 0 < ‖G̃λ‖Lq

ψ
< ∞, then the inequalities

∫ ∞

0

∫ ∞

0
kλ (x,y)F̃λ (x)G̃λ (y)dxdy <

k(λ1)
1−λ1

‖ f‖Lp
ϕ̃
‖G̃λ‖Lq

ψ
(10.28)

and {∫ ∞

0
ψ1−p(y)

[∫ ∞

0
kλ (x,y)F̃λ (x)dx

]p

dy

} 1
p

<
k(λ1)
1−λ1

‖ f‖Lp
ϕ̃

(10.29)

hold and are equivalent.

10.23. S. K. Sunanda, C. Nahak, S. Nanda [126], 2010.

Let (pk)k∈N and (qk)k∈N be non-negative bounded sequences such that 1
pk

+ 1
qk

= 1, where
pk > 1 for all k ∈ N. Then the inequality

∞

∑
n=2

∞

∑
m=2

ambn

log(mn)
< α sup

k≥1

⎡⎣ π
sin π

pk

(
∞

∑
n=2

npk−1apk
n

) 1
pk

(
∞

∑
n=2

nqk−1bqk
n

) 1
qk

⎤⎦
(10.30)
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holds for all non-negative sequences (an)n∈N,(bn)n∈N, such that 0 < ∑∞
n=2 npk−1apk

n < ∞,
0 < ∑∞

n=2 nqk−1bqk
n < ∞. Here,

α = sup
k≥1

1
pk

+ sup
k≥1

1
qk

.

10.24. Z. Zeng, Z. Xie [176], 2010.

Let 1
p + 1

q = 1, p > 1, and let

k =
4π sin r(β−α)

2 cos r(π−α−β )
2

rcos rπ
2

,

where −1 < r < 0 and 0 < α < β < π . Then the inequalities

∫ ∞

−∞

∫ ∞

−∞
f (x)g(y)

∣∣∣∣∣ log
x2 +2xycosα + y2

x2 +2xycosβ + y2

∣∣∣∣∣dxdy

< k

[∫ ∞

−∞
|x|p(1+r)−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|x|q(1−r)−1gq(x)dx

] 1
q

(10.31)

and ∫ ∞

−∞
|y|pr−1

[∫ ∞

−∞
f (x)

∣∣∣∣ log
x2 +2xycosα + y2

x2 +2xycosβ + y2

∣∣∣∣dx

]p

dy

< kp
∫ ∞

−∞
|x|p(1+r)−1 f p(x)dx (10.32)

hold for all non-negative measurable functions f ,g : R → R, provided that
0 <

∫ ∞
−∞ |x|p(1+r)−1 f p(x)dx < ∞ and 0 <

∫ ∞
−∞ |x|q(1−r)−1gq(x)dx < ∞. Moreover, the above

inequalities are equivalent and include the best possible constant factors on their right-hand
sides.

10.25. J. Jin, L. Debnath [45], 2010.

For p > 0, n0 ∈ Z, w(n) ≥ 0, n ≥ n0, n ∈ Z, we define the set of sequences l p
w,n0 by

l p
w,n0

=
{

(an)n≥n0 ;‖a‖p,w =
( ∞

∑
n=n0

w(n)|an|p
) 1

p < ∞
}

.

For conjugate parameters r,s > 1 denote by H(r,s) the set of all non-negative functions
K : R+×R+ → R fulfilling the following conditions:
(i) K : R+ ×R+ → R is continuous and decreasing in each variable,
(ii) K is homogeneous of degree −1,
(iii) there exist a constant M > 0 such that limt→0+ K(1,t) = M. For sufficiently small

ε ≥ 0 the integral Kl(ε) =
∫ ∞
0 K(1,t)t−

1+ε
l dt, l = r,s, exists, where Kl(0) =Cr is a positive

constant and Kl(ε) = Cr +o(1) as ε → 0+.



232 10 HILBERT-TYPE INEQUALITIES IN THE WEIGHTED ORLICZ SPACES

Further, let Fn0(r), r > 1, n0 ∈ Z, denote the set of all real-valued functions φ(x) such
that:
(i) φ(x) is continuously differentiable and strictly increasing on (n0−1,∞),

(ii) φ((n0 −1)+) = 0, φ(∞) = ∞, φ ′(x)[φ(x)]−
1
p is decreasing on (n0−1,∞).

Let p > 1, 1
p + 1

q = 1, r > 1, 1
r + 1

s = 1, m0,n0 ∈ Z, K ∈ H(r,s), φ ∈ Fm0(r), ψ ∈
Fn0(s). Setting w1(m) = [φ(m)]

p
r −1[φ ′(m)]1−p, w2(n) = [ψ(n)]

q
s −1[ψ ′(n)]1−q, w̃1(n) =

ψ ′(n)[ψ(n)]
p
r −1, w̃2(m) = φ ′(m)[φ(m)]

q
s −1, we define the sequence operator T as follows:

for a ∈ l p
w1,m0 ,

(Ta)(n) =
∞

∑
m=m0

K(φ(m),ψ(n))am, n ≥ n0,n ∈ Z,

or, for b ∈ lqw2,n0 ,

(Tb)(m) =
∞

∑
n=n0

K(φ(m),ψ(n))bn, m ≥ m0,m ∈ Z.

Then we have
‖Ta‖p,w̃1

≤Cr‖a‖p,w1 and ‖Tb‖q,w̃2
≤Cr‖b‖q,w2 . (10.33)

Moreover,

‖T‖p = ‖T‖q = Cr =
∫ ∞

0
K(1,t)t−

1
r dt, (10.34)

where

‖T‖p = sup
a∈l pw1,m0

‖Ta‖p,w̃1

‖a‖p,w1

and ‖T‖q = sup
b∈lqw2,n0

‖Tb‖q,w̃2

‖b‖q,w2

.

10.26. L. E. Azar [5], 2011.

Let 1
p + 1

q = 1, p > 1, and let a,b,c,s, A1, A2 be real parameters such that a,c > 0, b2 < ac,

s > 0, A1 ∈ ( 1−2s
q , 1

q ), A2 ∈ ( 1−2s
p , 1

p), and let

L1 = a
1−pA2

2 −sc
pA2−1

2 B(1− pA2,2s+ pA2−1)F
(1− pA2

2
,s− 1− pA2

2
,s+

1
2
;1− b2

ac

)
,

L2 = a
qA1−1

2 c
1−qA1

2 −sB(1−qA1,2s+qA1−1)F
(1−qA1

2
,s− 1−qA1

2
,s+

1
2
;1− b2

ac

)
,

where B and F respectively denote the usual Beta and the hypergeometric function (see
relation (2.53), Chapter 2).

Further, suppose u,v : (a,b) → R, −∞ ≤ a < b ≤ ∞, are non-negative differentiable
strictly increasing functions fulfilling conditions limt→a+ u(t) = limt→a+ v(t) = 0 and
limt→b− u(t) = limt→b− v(t) = ∞. Then the inequalities∫ b

a

∫ b

a

f (x)g(y)
(au2(x)+2bu(x)v(y)+ cv2(y))s dxdy

< L
1
p
1 L

1
q
2

[∫ b

a

u(x)1−2s+p(A1−A2)

u′(x)p−1 f p(x)dx

] 1
p
[∫ b

a

v(y)1−2s+q(A2−A1)

v′(y)q−1 gq(y)dy

] 1
q

(10.35)
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and ∫ b

a
v(y)(2s−1)(p−1)+p(A1−A2)v′(y)

[∫ b

a

f (x)
(au2(x)+2bu(x)v(y)+ cv2(y))s dx

]p

dy

< L1L
p
q
2

∫ b

a

u(x)1−2s+p(A1−A2)

u′(x)p−1 f p(x)dx (10.36)

hold for all non-negative measurable functions f ,g : (a,b) → R, provided that

0 <
∫ b
a

u(x)1−2s+p(A1−A2)

u′(x)p−1 f p(x)dx < ∞ and 0 <
∫ b
a

v(y)1−2s+q(A2−A1)

v′(y)q−1 gq(y)dy < ∞. Moreover,

inequalities (10.35) and (10.36) are equivalent.

10.27. C. T. Chang, J. W. Lan, K. Z. Wang [13], 2011.

For p > 1, denote by Hp the set of all non-negative functions K : R+ ×R+ → R having
the following properties:
(i) K is homogeneous of degree −1,

(ii) K(x,1)x−
1
p is strictly decreasing function of x and K(1,y)y−

1
q is strictly decreasing

function of y, where 1
p + 1

q = 1,

(iii) kp(K) =
∫ ∞
0 K(1,y)y−

1
q dy < ∞.

Let lp be the Banach space of all complex sequences x = (xn)n∈N with the norm ‖x‖p =

(∑∞
n=1 |xn|p)

1
p < ∞ and let F (α) be a class of all non-negative differentiable functions

f : R+ → R such that infx>0 f ′(x) ≥ α > 0.
If φi ∈ F (αi), i = 1,2, and K(x,y) f1(x) f2(y) ∈ Hp, then

∑
n,m≥1

K(φ1(n),φ2(m))|an||bm| < α
− 1

q
1 α

− 1
p

2 kp
∥∥ a

f1(φ1)

∥∥
p

∥∥ b
f2(φ2)

∥∥
q, (10.37)

[
∞

∑
m=1

(
∞

∑
n=1

K(φ1(n),φ2(m)) f2(φ2(m))|an|
)p] 1

p

< α
− 1

q
1 α

− 1
p

2 kp
∥∥ a

f1(φ1)

∥∥
p, (10.38)

[
∞

∑
n=1

(
∞

∑
m=1

K(φ1(n),φ2(m)) f1(φ1(n))|bm|
)q] 1

q

< α
− 1

q
1 α

− 1
p

2 kp
∥∥ b

f2(φ2)

∥∥
q, (10.39)

where kp = kp(K(x,y) f1(x) f2(y)) and a
f1(φ1)

= ( a
f1(φ1(n)) )n∈N, b

f2(φ2)
= ( b

f2(φ2(m)) )m∈N are

complex sequences such that 0 < ‖ a
f1(φ1)

‖p,‖ b
f2(φ2)

‖q < ∞.

In addition, if limx→∞ φ ′
i (x) = αi, i = 1,2, then the constant α

− 1
q

1 α
− 1

p
2 kp is the best

possible in the above inequalities.

10.28. D. Xin, B. Yang [135], 2011.

Suppose 1
p + 1

q = 1, p > 1, and let

k(λ ) =
π

sinλπ

[
sinλα1

sinα1
+

sinλ (π−α2)
sinα2

]
,
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where 0 < |λ | < 1 and 0 < α1 < α2 < π . Then the inequalities

∫ ∞

−∞

∫ ∞

−∞
min

i∈{1,2}

{
1

x2 +2xycosαi + y2

}
f (x)g(y)dxdy

< k(λ )
[∫ ∞

−∞
|x|−pλ−1 f p(x)dx

] 1
p
[∫ ∞

−∞
|y|qλ−1gq(y)dy

] 1
q

(10.40)

and

∫ ∞

−∞
|y|p(1−λ )−1

[∫ ∞

−∞
min

i∈{1,2}

{
1

x2 +2xycosαi + y2

}
f (x)dx

]p

dy

< kp(λ )
∫ ∞

−∞
|x|−pλ−1 f p(x)dx (10.41)

hold for all non-negative functions f ,g : R → R such that 0 <
∫ ∞
−∞ |x|−pλ−1 f p(x)dx < ∞

and 0 <
∫ ∞
−∞ |y|qλ−1gq(y)dy <∞. Moreover, inequalities (10.40) and (10.41) are equivalent

and include the best possible constant factors on their right-hand sides.

10.29. B. Yang, M. Krnić [168], 2012.

Suppose 1
p + 1

q = 1, p > 1, and let α ∈ R. Further, let h : R+ → R be a non-negative

function such that 0 < k(α) =
∫ ∞
0 h(t)tα−1dt <∞ and x−α ∑∞

n=1 h
(

n
x

)
nα−1 < k(α), x∈R+.

Then the inequality

∫ ∞

0
f (x)

∞

∑
n=1

h
(n

x

)
andx

< k(α)
[∫ ∞

0
xp(1+α)−1 f p(x)dx

] 1
p
[

∞

∑
n=1

nq(1−α)−1aq
n

] 1
q

(10.42)

holds for any non-negative function f : R+ → R and any sequence (an)n∈N, provided that
0 <

∫ ∞
0 xp(1+α)−1 f p(x)dx < ∞ and 0 < ∑∞

n=1 nq(1−α)−1aq
n < ∞. In addition, the constant

factor k(α) is the best possible in (10.42).

10.30. M. Krnić [65], 2012.

Suppose pi, p′i,qi, i = 1,2, . . . ,n, and λ are real parameters fulfilling conditions (2.26),
(2.27) and (2.30) (see Section 2.4, Chapter 2). Further, let (Ωi,Σi,μi) be σ -finite measure
spaces, and let K :∏n

i=1Ωi →R, φi j :Ω j →R, fi :Ωi →R, i, j = 1,2, . . . ,n, be non-negative
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measurable functions. If ∏n
i, j=1 φi j(x j) = 1, then{∫

ΩΩ

[
Kn(x)∏n

i=1 (φiiωi fi)
2pi (xi)ω−qi

i (xi)∏n
i, j=1, j �=iφ

qi
i j (x j)

]1/(n+1)
dμ(x)

}(n+1)M

∏n
i=1 ‖φiiωi fi‖2Mpi

Lpi (μi)

≤
∫
ΩΩKλ (x)∏n

i=1 fi(xi)dμ(x)
∏n

i=1 ‖φiiωi fi‖Lpi (μi)

≤

{∫
ΩΩ

[
Kn(x)∏n

i=1 (φiiωi fi)2pi (xi)ω−qi
i (xi)∏n

i, j=1, j �=iφ
qi
i j (x j)

]1/(n+1)
dμ(x)

}(n+1)m

∏n
i=1 ‖φiiωi fi‖2mpi

Lpi (μi)

,

(10.43)

and

(n+1)m
n

∏
i=1

‖φiiωi fi‖Lpi (μi)

×

⎡⎢⎣1−
∫
ΩΩ

[
Kn(x)∏n

i=1 (φiiωi fi)2pi (xi)ω−qi
i (xi)∏n

i, j=1, j �=iφ
qi
i j (x j)

]1/(n+1)
dμ(x)

∏n
i=1 ‖φiiωi fi‖2pi/(n+1)

Lpi (μi)

⎤⎥⎦
≤

n

∏
i=1

‖φiiωi fi‖Lpi (μi)−
∫
ΩΩ

Kλ (x)
n

∏
i=1

fi(xi)dμ(x)

≤ (n+1)M
n

∏
i=1

‖φiiωi fi‖Lpi (μi)

×

⎡⎢⎣1−
∫
ΩΩ

[
Kn(x)∏n

i=1 (φiiωi fi)2pi (xi)ω−qi
i (xi)∏n

i, j=1, j �=iφ
qi
i j (x j)

]1/(n+1)
dμ(x)

∏n
i=1 ‖φiiωi fi‖2pi/(n+1)

Lpi (μi)

⎤⎥⎦ ,

(10.44)

where ΩΩ = ∏n
i=1Ωi, x = (x1,x2, . . . ,xn), dμ(x) = ∏n

i=1 dμi(xi),

m = min

{
1
q1

,
1
q2

, . . . ,
1
qn

,1−λ
}

,M = max

{
1
q1

,
1
q2

, . . . ,
1
qn

,1−λ
}

,

and ωi : Ωi → R is defined by

ωi(xi) =

[∫
Ω̂Ωi

K(x)
n

∏
j=1, j �=i

φqi
i j (x j)dμ̂ i(x)

] 1
qi

,

where Ω̂Ωi
= ∏n

j=1, j �=iΩ j and dμ̂ i(x) = ∏n
j=1, j �=i dμ j(x j).
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[12] I. Brnetić, M. Krnić, J. Pečarić, Multiple Hilbert and Hardy-Hilbert inequalities
with non-conjugate parameters, Bull. Austral. Math. Soc. 71 (2005), 447–457.

[13] C. T. Chang, J. W. Lan, K. Z. Wang, A new generalization of Hardy-Hilbert’s in-
equality with non-homogeneous kernel, Math. Inequal. Appl. 14 (2011), 1–11.
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