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Now when the little Dwarf heard that he was to dance a second time before the Infanta, and by her
own express command, he was so proud that he ran out into the garden, kissing the white rose in an

absurd ecstasy of pleasure, and making the most uncouth and clumsy gestures of delight.
”The Birthday of the Infanta”
by OSCAR WILDE






What inspired us to write this book

In the last five years, following the publishing of the first book about applying the Mond-
Pecari¢ method in operator inequalities, many new results were obtained by using said
method. That has inspired us write a new book. We have chosen important and interesting
chapters, which were (mostly) published in many mathematical journals and presented at
international conferences.
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Preface

In the field of operator theory, an inequality due to L. V. Kantorovich provides an exam-
ple of “sailing upstream”, regarding the usual course of development of converse inequali-
ties. However, we do not understand how L. V. Kantorovich interpreted the meaning of that
inequality. Actually, the inequality only appeared as a Lemma to solve a certain problem.
Those who have immortalized that inequality as “the Kantorovich inequality” are Greub
and Rheinboldt. Based on an inequality due to Kantorovich, they gave a beautiful and
simple formulation in terms of operators as follows: If A is a positive operator on a Hilbert
space H such that ml < A < MI for some scalars 0 < m < M, then

(M +m)?

(Ax, x) (Ailx,x> < Ao

holds for every unit vector x € H.

Afterwards, in the course of a generalization by Ky Fan, and a converse of the arithme-
tic-geometric mean inequality by Specht, Mond and Pecari¢ give a definitive meaning to
“the Kantorovich inequality”. Namely, the Kantorovich inequality is a special case of the
converse of Jensen’s inequality: Under the same conditions as above the inequality

(M +m)?

A~ <
(A" xx) < 4Mm

(Ax,x)!

holds for every unit vector x € H and it estimates the upper bounds of the ratio in Jensen’s
inequality for f(¢) =¢~!. In the 1990’s, Mond and Pe&ari¢ formulate directly the converse
of various Jensen type inequalities. It might be said that, owing to their approach, the po-
sition of the Kantorovich inequality in the operator theory becomes clear for the first time.
Furthermore, in the background of the Kantorovich inequality, they find the viewpoint for
the converse of means, that is to say, the Kantorovich inequality is the converse of the
arithmetic-harmonic means inequality: Under the same conditions as above the inequality

(M +m)?

A <
{Axx) < 4Mm

(A~
holds for every unit vector x € H.

In order to carry out a converse evaluation, a considerable amount of laborious manual
calculation is required, including a complicated calculation depending on each particular



case. In a long research series, Mond and Pecari¢ establish the method which gives the
converse to Jensen’s inequality associated with convex functions. This principle yields a
rich harvest in a field of operator inequalities. We call it the Mond-Pecari¢ method for
convex functions. One of the most important features of the Mond-Pecari¢ method is that
it offers a totally new viewpoint in the field of operator inequalities: Let @ be a normalized
positive linear mapping on B(H) and f an operator convex function on an interval /. Then
Davis-Choi-Jensen’s inequality asserts that

[(®(4)) < D(f(4)) (*)

holds for every self-adjoint operator A on a Hilbert space H whose spectrum is contained
in I. The operator convexity plays an essential role in the result above, that is, (x) would
be false if we replace operator convexity by general convexity. We have no relation what-
soever between f(®(A) and ®(f(A)) under the operator ordering, but even so the Mond-
Pecari¢ method brings us the following estimate:

1

WCDU(A)) < f(D(A)) < K(m,M, f)D(f(A))

where
1

K(m,M,f) :max{m (

This book is devoted to the recent developments of the Mond-Pecari¢ method in the
field of self-adjoint operators on a Hilbert space.

JM) — f(m)
M—m

(=) )} € b |

This book consists of eleven chapters:

In Chapter 1 we give a very brief and quick review of the basic facts about a Hilbert space
and (bounded linear) operators on a Hilbert space, which will recur throughout the
book.

In Chapter 2 we tell the history of the Kantorovich inequality, and describe how the Kan-
torovich inequality develops in the field of operator inequalities. In such context, the
method for convex functions established by Mond and Pecari¢ (commonly known as
“the Mond-Pecari¢ method”) has outlined a more complete picture of that inequality
in the field of operator inequalities. We discuss ratio and difference type converses
of operator versions of Jensen’s inequality. These constants in terms of spectra of
given self-adjoint operators have many interesting properties and are connected with
a closed relation, and play an essential role in the remainder of this book.

In Chapter 3 we explain fundamental operator inequalities related to the Furuta inequal-
ity. The base point is the Lowner-Heinz inequality. It induces weighted geometric
means, which serves as an excellent technical tool. The chaotic order logA > logB
is conceptually important in the late discussion.

In Chapter 4 we study the order preserving operator inequality in another direction which
differs from the Furuta inequality. We investigate the Kantorovich type inequalities
related to the operator ordering and the chaotic one.



In Chapter 5 as applications of the Mond-Pecari¢ method for convex functions, we dis-
cuss inequalities involving the operator norm. Among others, we show a converse of
the Araki-Cordes inequality, the norm inequality of several geometric means and a
complement of the Ando-Hiai inequality. Also, we discuss Holder’s inequality and
its converses in connection with the operator geometric mean.

In Chapter 6 we define the geometric mean of n operators due to Ando-Li-Mathias and
Lowson-Lim. We present an alternative proof of the power convergence of the sym-
metrization procedure on the weighted geometric mean due to Lawson and Lim. We
show a converse of the weighted arithmetic-geometric mean inequality of n opera-
tors.

In Chapter 7 we give some differential-geometrical structure of operators. The space
of positive invertible operators of a unital C*-algebra has the natural structure of a
reductive homogenous manifold with a Finsler metric. Then a pair of points A and B
can be joined by a unique geodesic A #; B fort € [0,1] and we consider estimates of
the upper bounds for the difference between the geodesic and extended interpolation
paths in terms of the spectra of positive operators.

In Chapter 8 we give some properties of Mercer’s type inequalities. A variant of Jensen’s
operator inequality for convex functions, which is a generalization of Mercer’s result,
is proved. We show a monotonicity property for Mercer’s power means for operators,
and a comparison theorem for quasi-arithmetic means for operators.

In Chapter 9 a general formulation of Jensen’s operator inequality for some non-unital
fields of positive linear mappings is given. Next, we consider different types of
converse inequalities. We discuss the ordering among power functions in a general
setting. We get the order among power means and some comparison theorems for
quasi-arithmetic means. We also give a refined calculation of bounds in converses
of Jensen’s operator inequality.

In Chapter 10 we give Jensen’s operator inequality without operator convexity. We ob-
serve this inequality for n—tuples of self-adjoint operators, unital n—tuples of pos-
itive linear mappings and real valued convex functions with conditions on the op-
erators bounds. In the present context, we also give an extension and a refinement
of Jensen’s operator inequality. As an application we get the order among quasi-
arithmetic operator means.

In Chapter 11 we observe some operator versions of Bohr’s inequality. Using a general
result involving matrix ordering, we derive several inequalities of Bohr’s type. Fur-
thermore, we present an approach to Bohr’s inequality based on a generalization
of the parallelogram theorem with absolute values of operators. Finally, applying
Jensen’s operator inequality we get a generalization of Bohr’s inequality.
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Notation

R the set of all real numbers
C the set of all complex numbers
AW, Vv, etc. scalars

H,K,L,etc. Hilbert spaces over C

X,V,Z, etc. vectors in H

(x,y) the inner product of two vectors x and y

[I1x]| the norm of a vector x

B(H) the C*-algebra of all bounded linear operators

on a Hilbert space H

A,B,C,etc. linear operatorsin (H — H)

IA] the operator norm of an operator A
|A] the absolute value of an operator A
Iy the identity operator in B(H )

0 the zero operator

Sp(A) the spectrum of an operator A

ker A the kernel of an operator A

ran A the range of an operator A
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Xiv

Gin,t](A1,...,Ay)

A B

eA [n1](logAy,... logA,)

S(A[B)
A My B
Da(A,B)

d(A,B)

the range projection of an operator A

the spectral radius of an operator A

a positive operator, (Ax,x) > 0 for all x € H

a strictly positive operator, A is positive and invertible
the usual operator ordering among operators A and B
the chaotic ordering among operators A > 0 and B > 0
the weighted arithmetic operator mean

the weighted arithmetic operator mean of n operators
the weighted harmonic operator mean

the weighted harmonic operator mean of n operators
the weighted geometric operator mean

the binary operation of A > 0 and B forz ¢ [0, 1]

the weighted geometric operator mean of n operators
the weighted chaotically geometric operator mean

the weighted chaotically geometric operator mean
of n operators

the relative operator entropy of A and B, A,B >0
the interpolational path from A to B, A,B >0
a-operator divergence, A,B > 0

the Thompson metric on the convex cone
of positive invertible operators A and B



o\ B, etc.

DY, Q, etc.

Pt , B
M,(A,®)
My (A, ®)

M,(A. @)

]17[¢(A7(I))

unital C*-algebras

the identity element in unital C*-algebra
positive linear mappings on C*-algebras
the set of all fields (@, ),er of positive
linear mappings ®; : o7 — 2, such that
J7 ©:(1)du(r) = k1 for some scalar k > 0

the power operator mean of order r € R

the quasi-arithmetic operator mean generated by
a function ¢

Mercer’s power operator mean of order r € R

the quasi-arithmetic operator mean of Mercer’s type
generated by a function ¢
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Chapter

Preliminaries

In this chapter, we review the basic concepts of a Hilbert space and (bounded linear) oper-
ators on a Hilbert space, which will recur throughout the book.

1.1 Hilbert space and operators

Definition 1.1 A complex vector space H is called an inner product space if to each pairs
of vectors x and y in H is associated a complex number (x,y), called the inner product of
x and y, such that the following rules hold:

(i) Forx,y € H, {x,y) = (y,x), where the bar denotes complex conjugation.
(ii) Ifx,yandz € H and o.,3 € C, then (ox+ By,z) = ax,z) + B(,2).
(iii) (x,x) > 0 for all x € H and equal to zero if and only if x is the zero vector.

Theorem 1.1 (SCHWARZ INEQUALITY) Let H be an inner product space. If x and y €
H, then

e )P < (ex) () (1.1)

and the equality holds if and only if x and y are linearly dependent.
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Proof. If y = 0, then the inequality (1.1) holds. Suppose that y # 0 and put

Then we have

0 <(x—(x,e)e,x—(x,e)e)
<x7x> - <x7 e> <x7 e> - <x7e> <e7x> + |<x7 e>|2<e7e>
(x,x) =2|(x,e)]* + |(x, )
= (xx) = |(x,e)|?

and hence |(x,e)|> < (x,x). Therefore it follows that |(x,y)|*> < (x,x)(y,y).

If the equality holds in the inequality above, then we have x — (x,e)e = 0, and so x and
y are linearly dependent. Conversely, if x and y are linearly dependent, that is, there exists
a constant o € C such that x = oty # 0, then it follows that

[P = o )P = [P0 = (o, 09) (33) = (6,0 ().
We can prove it in the case of y = a.x in the same way. O

Let H be an inner product space. Put
[lx]] = 4/ {x,x) forallx e H.
Then it follows that || - || is a norm on H:
(i) Positivity: ||x|| > 0 and x = 0 if and only if ||x|| = 0.
(ii) Homogeneity: ||ox|| = |o|[|x]| for all o € C.
(iii) Triangular inequality: [[x+y|| < ||x| + [[y]|-

In fact, positivity and homogeneity are obvious by Definition 1.1. Triangular inequality
follows from

le+yl% = [lx]® +2Redx,y) + [yl
< Il 2kl =+ 11 = (Ul + D11

by Schwarz’s inequality (Theorem 1.1). Therefore, ||x|| is a norm on H.

Definition 1.2 If an inner product space H is complete with respect to the norm derived
from the inner product, then H is said to be a Hilbert space.

Some examples of Hilbert spaces will now be given.
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Example 1.1 The space C" of all n-tuples of complex numbers with the inner product
between x = (01,00, ,0) andy = (B1, B2, -+, Bu) given by

<X7y> = i OCiE
i=1

is a Hilbert space.

Example 1.2 The space I, of all sequences of complex numbers (01,0, -+ , Oy, ) With
Doyl <o
i=1

and the inner product between x = (041,00, , 0y, ) andy = (B1, B2, , B, -+ ) given

by _
<X7y> = z aiE
i=1

is a Hilbert space.

A linear operator A on a Hilbert space H is said to be bounded if there exists ¢ > 0 such
that ||Ax|| < c||x|| for all x € H. Let us define ||A|| by

|A|| = inf{c > 0:||Ax| <c|x|| forallxe€ H.}
Then ||A]| is said to be the operator norm of A. By definition,
lAx|| < [JA|[]|x|l forallx € H.

In fact, for each x # 0, ||Ax|| < c||x|| implies % < ¢. Taking the inf of ¢, we have

x|
. = 1Al

We begin by adopting the word “operator” to mean a bounded linear operator.

B(H) will now denote the algebra of all bounded linear operators on a Hilbert space
H # {0} and Iy stands for the identity operator.

The following lemma shows some characterizations of the operator norm.

Lemma 1.1 For any operator A € B(H), the following formulae hold:

Al = sup{[|Ax]| : [lx]| =1, x€ H}
A
:sup{M :x;«é07x€H}

[l
=sup{[{Ax,y)| : [xl[ =y =1, x,y e H}

Proof. Put

Ax
v = sup{Ax]: Jx] =1} and 7 =sup{””7” iX#O}-
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For ||x|| = 1, we have ||Ax|| < ||A||||x]| = |A]| and hence y; < ||A||. For x # 0, we have

Jax] _
I

X
A=l <n
[l

and hence p» < y;. For an arbitrary € > 0, there exists a nonzero vector x € H such that
(I|A]| — €)]|x]| < ||Ax|| and hence

Jax] _

Al —e< %-

[l
This fact implies ||A|| < y». Therefore we have |A|| = y1 = 7.
Put
% =sup{[{Ax,y)| : [lx]| =1, [l =1}

Since [(Ax,y)| < [[Ax]|[[y]| = [[Ax]| < n for ||x|| = [[y]| = 1, we have 73 < y1. Conversely,
for Ax # 0, we have

Ax
[[Ax]] = [(Ax, =) [ < 5
[|Ax]|
and hence y; < 73. Therefore the proof is complete. O

Theorem 1.2 The following properties hold for A,B € B(H):
(i) IfA# O, then ||A|| > 0,
(i) ||aAl = |a|||A|| for all o € C,

(iii) [[A+B[ < [|All + (B,
(iv
Proof.
(i) If A+ O, then there exists a nonzero vector x € H such that Ax # 0. Hence 0 < ||Ax|| <
lA|l||x]|, therefore ||A|| > O.
(i) If @ =0, then ||@A| = | O] =0=|a||A]. If & # 0, then

)
)
)
)

|ABI| < [[A[[|B]|

leA]l = sup{[|(cxA)x]| - [lx[| = 1}
= sup{|ee[|Ax]| : [lx[| = 1}
= |afsup{||Ax]| : [[x]| =1} = [e[|A]].
(iii) If ||x|| = 1, then || (A + B)x|| = ||Ax+ Bx|| < ||Ax|| + ||Bx|| < ||A]| + || B||, therefore we

have
A+ B|| = sup{|[(A+B)x| : [lx]| =1} <[|A]| +|B]|.

(iv) If ||x|| = 1, then ||(AB)x| = [ A(Bx)|| < ||Al|||Bx|| < ||A|[||B], therefore we have

|AB|| = sup{[[(AB)x]| : [lx]| = 1} < [|A[[[|B]-



1.1 HILBERT SPACE AND OPERATORS 5

Theorem 1.3 (RIESZ REPRESENTATION THEOREM) For each bounded linear functional
f from H to C, there exists a unique y € H such that

f(x)=(x,y)  forallx€H.

FI= 1yl

Proof. Define .# = {x € H: f(x) =0}. Then ./ is closed. If .# = H, then f = 0 and
we can choose y = 0. If . # H, then .4+ # {0}. For xo € .\ {0}, we have f(xo) # 0.
Since

Moreover,

f(x—]{((;)))xo)zf(x)—]{((;)))f(xo)zo forallx € H,
it follows that x — ff(gj;)) xo € .. Hence we have
f(x) _
(x— f(xo)xo,xo) =0

and (x,x) = ff((x?) ||xo0l|?. If we puty = ﬁgﬁ;xo, then we have f(x) = (x,y) forall x € H.
For the uniqueness, suppose that f(x) = (x,y) = (x,z) for all x € H. In this case,
{(x,y —z) =0 forall x € H implies y — z=0.

Finally,

F) =[xy < Iyl
implies || f]| < ||y||. Conversely,
I = 1] = L)< AT
implies ||y|| < ||f]|- Therefore, we have || f|| = ||y]|- O
For a fixed A € B(H), a functional on H defined by
x— (Ax,y) € C

is bounded linear on H. By the Riesz representation theorem, there exists a unique y* € H
such that
(Ax,y) = (x,y") forallx € H.

We now define
ATy,
the mapping A* being called the adjoint of A. In summary,
(Ax,y) = (x,A"y)  forallx,y € H.

Theorem 1.4 The adjoint operation is closed in B(H) and moreover

(i) fla*]l=la

>

(i) A*Al = [|A]1%
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Proof.
(i): Foryy,y, € Hand o;,00 € C,

(Ax,00y1+ 00yr) =01 (Ax,y1) + 0 (AxX,y2)
=0 (x,A"y1) + 02 (x,A%y2)
= (x,00Ay1 + A" y)) forall x € H.

This implies A* (o y1 + 0ys) = A*y; + 0pA*y; and A* is linear. Next,

[A%y]| = sup{|(x, A"y)| = [lx]] = 1}
= sup{[(Ax,y)[ : [lx][ =1}
< sup{[|Ax([[ly[l + [lx][ = 1} = [lA][]l[l,
hence A* is bounded and ||A*|| < ||A||. Therefore, the adjoint operation is closed in B(H).

Since (A*)* = A, we have
JA[] = [[(A)" [ < [lA™]l
and hence ||A*|| = ||A]].
(ii): Since ||Ax|?> = (Ax,Ax) = (A*Ax,x) < ||A*A||||x||? for every x € H, we have ||A||? <
|A*A][.
On the other hand, (i) gives ||A*A|| < [|A*||||A|| = ||A||*>. Hence the equality
lA*A] = [|A]|?

holds for every A € B(H). O

1.2 Self-adjoint operators

We present relevant classes of operators:
Definition 1.3 An operator A € B(H) is said to be
(i) self-adjoint or Hermitian if A = A*,
(ii) positive if (Ax,x) > 0 for x in H,
(iil) wunitary if A*A = AA* =1y,
(iv) isometry if A*A = I,
(v) projection if A = A* = A2,

The following theorem gives characterizations of self-adjoint operators.
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Theorem 1.5 IfA € B(H), the following three statements are mutually equivalent.
(i) A is self-adjoint.
(ii) (Ax,y) = (x,Ay) forall x,y € H.
(iii) (Ax,x) €R forall x € H.

Proof.
(i) < (ii): If A is self-adjoint, then (Ax,y) = (x,A*y) = (x,Ay). Conversely suppose
that (ii) holds. Since (x,A*y) = (x,Ay) for all x,y € H, we have A*y = Ay, so that A = A™.
(i1) <= (iii): If we put y = x in (ii), then

(Ax,x) = (x,Ax) = (Ax,x),

so (Ax,x) is real. Thus (i) implies (iii). Finally, suppose that (iii) holds. For each x
and y € H, if we put w = x +y, then (Aw,w) is real, or (Aw,w) = (w,Aw). Expanding
(A(x+y),x+y) = (x+y,A(x+y)), we have

<Ax7y> + <Ayvx> = <x7Ay> + <y7Ax>

and Im(Ax,y) = Im(x,Ay). Replacing x by ix, we have Re(Ax,y) = Re(x, Ay). Therefore it
follows that (Ax,y) = (x,Ay). Thus (iii) implies (ii). ad

The spectrum of an operator A is the set
Sp(A) = {A € C: A — Aly is not invertible in B(H ) }.

The spectrum Sp(A) is nonempty and compact. An operator A on a Hilbert space H is
bounded below if there exists € > 0 such that ||Ax|| > €||x|| for every x € H. As a useful
criterion for the invertibility of an operator, it is well known that A is invertible if and only
if both A and A* are bounded below.

The spectral radius r(A) of an operator A is defined by

r(A) =sup{|oa| : o € Sp(A)}.
Then we have the following relation between the operator norm and the spectral radius.

Theorem 1.6 For an operator A, the spectral radius is not greater than the operator
norm:

r(A) < [|A]l.

Proof. If |t| > ||A]|, then Iy — a2 'A is invertible and hence A — aly is so. Therefore
we have a ¢ Sp(A) and this implies r(A) < [|A]|. O

Let A be a self-adjoint operator on a Hilbert space H. We define

my = Hi‘l‘lfl(Ax,x> and My = sup (Ax,x). (1.2)
A= [lxll=1
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Theorem 1.7 For a self-adjoint operator A, Sp(A) is real and Sp(A) C [ma, Ma).

Proof. If L = ou+if with ¢, 3 real and B # 0, then we must show that A — Al is
invertible. Put B = %(A — o). Since B is self-adjoint and B — ily = %(A — M), it
follows that A — Al is invertible if and only if B — il is invertible. For every x € H, we
have

(B ily)x||*> = |Bx|* —i(x,Bx) +i(Bx,x) + ||x||?
= ||Bx||* + [|x]|> > [1x||*,

so B—ily and (B —ily)* are bounded below. Therefore B — ily is invertible, and hence the
spectrum of a self-adjoint operator is real.

Next, to prove Sp(A) C [ma, M,], it is enough to show that A > My implies A & Sp(A).
If A > My and € = A — My > 0, then

(Mg —A)x,x) = A{x,x) — (Ax,x) > A (x,x) — M (x,x)
=¢£(x,x) >0 by the definition of M},.

Hence it follows that || (A — A1y )x|| > €]|x|| for every x € H, so, A — Al is bounded below.
Since A — Aly is self-adjoint, it follows that A — Al is invertible and 4 & Sp(A). O

Definition 1.4 Let A and B be self-adjoint operators on H. We write A> B if A— B is
positive, i.e. (Ax,x) > (Bx,x) for every x € H. In particular, we write A > 0 if A is positive,
A > 0 if A is positive and invertible.

Now, we review the continuous functional calculus. A rudimentary functional calculus
for an operator A can be defined as follows: For a polynomial p(¢) = 2’;20 ot/ , define

P(A) = aply + 04 A+ A? + - + oAk,

The mapping p — p(A) is a homomorphism from the algebra of polynomials to the alge-
bra of operators. The extension of this mapping to larger algebras of functions is really
significant in operator theory.

Let A be a self-adjoint operator on a Hilbert space H. Then the Gelfand mapping es-
tablishes a x-isometrically isomorphism @ between C*-algebra C(Sp(A)) of all continuous
functions on Sp(A) and C*-algebra C*(A) generated by A and the identity operator Iy on
H as follows: For f,g € C(Sp(A)) and o, € C

(i) ®(af +Bg) = a®(f) +BP(g),
(ii) @(fg) =P(f)®(g) and O(f) = @(f)*,

(iii) [N = I/l <:= Sup)lf(t)|>,

reSp(A

(iv) ®(fo) =1y and O(f)) = A, where fo(r) =1 and fi(¢) =1¢.
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With this notation, we define
f(A) =®(f)

for all f € C(Sp(A)) and we call it the continuous functional calculus for a self-adjoint
operator A. It is an extension of p(A) for a polynomial p. The continuous functional
calculus is applicable.

Theorem 1.8 Let A be a self-adjoint operator on H.
(i) f€C(Sp(A)) and f > 0 implies f(A) > 0.
(i) f,8 €C(Sp(A)) and f = g implies f(A) = g(A).
(iii) A >0and f,(t) = /1 implies f2(A) = A'/2.
(iv) fs(1) = [¢] implies fi(A) = |A].

Proof.
(i) Since f > 0, we can choose g = \/f € C(Sp(A)) and f = g?> = gg. Hence we have
F(A) = g(A)"g(4) > 0.
(i) follows from (i).
(iii) Since A > 0, it follows from Theorem 1.7 that f; (1) = v/7 € C(Sp(A)). Also, f =
ff/z implies A = fi(A) = f12(A)%. By (i), we have f; 5(A) > 0 and hence f; »(A) = A/,
(iv) f2 = f? implies f;(A)? = A% = |A|>. Since f;(A) > 0, we have f;(A) = |A|. O
We remark that the absolute value of an operator A is defined by |A| = (A*A)'/2.

Theorem 1.9 An operator A is positive if and only if there is an operator B such that
A =B*B.

Proof. If A is positive, take B = v/A. If A = B*B, then (Ax,x) = (B*Bx,x) = ||Bx|> >0
for every x € H. This yields that A is positive. a

Theorem 1.10 (GENERALIZED SCHWARZ’S INEQUALITY) If A is positive, then
[{Ax,3)[* < (Ax,x) (Ay,y)
foreveryx,y € H.
Proof. 1t follows from Theorem 1.1 that

[(Ax, )P = [(A" 2 A1) P < A2 PIA 2y )P = (Ax,x) (A, ).

Theorem 1.11 Ler A be a self-adjoint operator on H. Then

(1) malg <A < Myly,



10 1 PRELIMINARIES
(i) [|A] = max{|mal,|Ma|} = sup{[(Ax,x)| : [lx]| = 1},
where my and My are defined by (1.2).

Proof. The assertion (i) is clear by definition of m4 and My.
Next, put K = max{|my|,|My|}. It is easily checked that

K = sup{[{Ax,x)| - [lxl| = 1} < [|A]|.

By (i), we have
—K||x]|> < ml|x||* < (Ax,x) < M||x|[* < K||x||*.

For each x,y € H, since
(Al +y)x+ ) < Kla+yl? and [(A(x—y).x =) < K-y,
it follows that
(A ), x+3) — (AL —y),x =) < K(|x+y]P + =)

By the parallelogram identity, we have

4[Re(Ax,y)| < 2K(|lx]1* + Iy[1%)- (1.3)

Put y = il Ax for Ax # 0. Then |[x|| = [[y] and Re(Ax,y) = [x||[|Ax||. Therefore, by (1.3)
we have

[[Ax]| < K[| (1.4)

If Ax = 0, then (1.4) holds automatically. Hence we have ||A|| < K. Therefore we have

IA[l = K. O

Corollary 1.1 IfA is a self-adjoint operator, then r(A) = |A|| and ||A™|| = ||A||" forn € N.

Proof. By Theorem 1.11, it follows that r(A) = ||A||. By the spectral mapping theorem,
we have p(Sp(A)) = Sp(p(A)) for polynomial p. Therefore, we have ||A[|" = r(A)" =
r(A") = [|A"]]. O

1.3 Spectral decomposition theorem

We shall introduce the spectral decomposition theorem for self-adjoint, bounded linear
operators on a Hilbert space H. To show it, we need the following notation and lemma.

Definition 1.5 If A is an operator on a Hilbert space H, then the kernel of A, denoted by
ker A, is the closed subspace {x € H : Ax = 0}, and the range of A, denoted by ran A, is the
subspace {Ax:x € H}.
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Lemma 1.2 If A is an operator on a Hilbert space H, then
ker A= (ran A*)* and ker A* = (ran A)*.

Proof. If x € ker A, then (A*y,x) = (y,Ax) = 0 for all y € H, and hence x is orthogonal
to ran A*. Conversely, if x is orthogonal to ran A*, then (Ax,y) = (x,A*y) =0 forall y € H,
which implies Ax = 0. Therefore, x € ker A and hence ker A = (ran A*)-. We have the
second relation by replacing A by A*. |

Definition 1.6 A family of projections {e(A) : L € R} is said to be a resolution of the
identity if the following properties hold:

(i) A<A = e(d)<e(d),
(ii) e(—e0) =0 and e(eo) =1y,

(iii) e(A+0)=e(A) (—o0 <A < o0),
where e(A +0) =s— lim e(u).
u—A+0

Theorem 1.12 Let A be a self-adjoint operator on a Hilbert space H and m = my,M =
My as defined by (1.2). Then there exists a resolution of the identity {e(A) : A € R} such
that

A:/M Ade(A), e(m—0)=0 and e(M)=Iy.
m—0

In particular,

M
(Ax,x) = / Ad{e(A)x,x)  foreveryx € H. (1.5)

m—0

Proof. We prove only (1.5). Put e(A) = proj(ker((A — Alg)™)) for A € R, where
AT = (|A| +A)/2. Then it follows that {¢(1) : A € R} is a resolution of the identity and
e(m—0)=0,e(M)=1Iy:

(i) LetA <A'. Since A—Aly > A—A'ly, we have (A—Alg)t > (A—AIy)t > 0. If
(A—Alg)Tx =0, then

0={((A—AIy)"x,x) > (A= AIy)"x,x) >0

and hence (A — A'Iy)x = 0. Therefore, we have ker((A — Aly)™) C ker((A — A'Iy)™) and
this implies e(1) < e(1').
(i) If x € ran(e(A)) = ker((A — Aly)"), then (A — Aly)*x = 0 implies (A — Aly)x =
—(A — Aly)~x and hence

((A—Alg)x,x) = —((A— Aly) x,x) <0

Therefore we have (Ax,x) < A||x|>.
(iii) If x € ran(Iy —e(1)) = (ker((A — Aly)™)*, then (A — AIy) x € ker((A — A1y) ™)
because (A — Aly)T(A—Aly)~ = 0. Hence ((A— Alg) x,x) =0 and ((A — Aly)x,x) =
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((A = Aly)Tx,x) > 0. Therefore we have (Ax,x) > A||x||>. If the equality holds, then
((A— AlIy)Tx,x) = 0 and hence (A — Aly)x = 0. Therefore we have x € ker((A — AIy)™)
and hence x = 0. Summing up, x € ran(ly — e(1)), x # 0 implies (Ax,x) > A ||x|.
(iv) If A < mand x € ran(e(1)), then it follows from (ii) that m||x||> < (Ax,x) < A|x|?
and hence x = 0. Therefore we have e(1) = O, so that e(m —0) = O.
(v) If A > M and x € ran(Iy — (1)), then it follows from (iii) that A ||x||* < (Ax,x) <
M ||x||* and hence x = 0. Therefore we have Iy — e(A) = O, so that e(A) = Iy. In particu-
lar, we have e(M) = Iy.
(vi) If A <mor A > M, then it follows from (iv), (v) that ¢(A) = e(A —0). Sup-
pose that m < A <M. Put P =e(A —0) —e(A). For A < A’ < M, we have ran(P) C
ran(e(Al’) —e(1))") —e(A)) = ran(e(A’)) Nran(Iy — e(A)). Hence x € ran(P) and x # 0
implies A |x||> < (Ax,x) < A/||x||? by (ii) and (iii). As A’ — A +0, we get A||x||*> < A|x||%,
which is a contradiction. Therefore we have ran(P) = {0}, so that P =¢(1 +0) —e(1) = O.
For all € > 0, we choose 6 > 0 such that

A:a:}\'ﬂ<xl<"'<;\'n:ﬁ7 éke[}\'k—h}\’k] kzl?"'?”?

and
Al =max{A — A4y :k=1,---,n} < 9.

Since A commutes with e(A4) for each A € R, it follows that
2 e(M) —e(M—1)).

For every x € H, we have

(Ax,x) — 2 (e(M) — e(Ak—1))x,x)

M=

(Ale(Ak) — e(A—1))x,x) i e(A) — e(A—1))x,x)

»
Il

1

[((A = &) (e(Ax) — e(Ax—1))x, (e(Ax) — e(Ax—1))x)]

IA
—
M=

El
MR

< (lk—lk Dl (e(A) = e(Ae—1))x|I?
k=1
< |A[|lx?* < e.
Hence we have the desired result (Ax,x) = f,ﬁ/l_ol d{e(A)x,x). O

Definition 1.7 Let A be a self-adjoint operator on a Hilbert space H and m = ma,M =
My as defined by (1.2). For a real valued continuous function f (1) on [m,M], a self-adjoint
operator f(A) is defined by

)= [ e,

m—0



1.3 SPECTRAL DECOMPOSITION THEOREM 13

In particular,
M

M
Ar:/ A"de(A) forallr> 0 and A? z/ l%de(l).
0

m— m—0

In the last part of this chapter, we present the polar decomposition for an operator.
Every complex number can be written as the product of a nonnegative number and a
number of modulus one:

z=|z]e’® for a complex number z.

We shall attempt a similar argument for operators on an infinite dimensional Hilbert space.
Before considering this result, we need to introduce the notion of a partial isometry.

Definition 1.8 An operatorV on a Hilbert space H is a partial isometry if |Vx|| = | x|
for x € (ker V)X, which is called the initial space of V.

We consider a useful characterization of partial isometries:
Lemma 1.3 Let V be an operator on a Hilbert space H. The following are equivalent:
(i) V is a partial isometry.
(ii) V* is a partial isometry.
(iii) V*V is a projection.
(iv) VV* is a projection.

Moreover, if V is a partial isometry, then VV* is the projection onto the range of V,
while V*V is the projection onto the initial space.

Proof. Suppose that V is a partial isometry. Since
(I =V*V)x,x) = (x,x) — (V*Vx,x) = ||x||> = |Vx|* forx € H,

it follows that I — V*V is a positive operator. Now if x is orthogonal to ker V, then ||Vx|| =
[|x|| which implies that ((I—V*V )x,x) = 0. Since ||(I—V*V)'/2x||2 = (I = V*V)x,x) =0,
we have (I —V*V)x =0 or V*Vx = x. Therefore, V*V is the projection onto the initial
space of V.

Conversely, if V*V is a projection and x is orthogonal to ker V*V, then V*Vx = x.
Therefore,

IVax]|? = (V*Vx,x) = (x,x) = [l

and hence V preserves the norm on (ker V*V)L. Moreover, if V*Vx = 0, then 0 =
(V*Vx,x) = ||Vx|*> and consequently ker V*V = ker V. Therefore, V is a partial isom-
etry, and hence (i) and (iii) are equivalent.

Similarly, we have the equivalence of (ii) and (iv).

Moreover, if V*V is a projection, then (VV*)? = VV*VV* = VV*, since V(V*V) =V.
Therefore, VV* is a projection, which completes the proof. o

We now obtain the polar decomposition for an operator.
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Theorem 1.13 If A is an operator on a Hilbert space H, then there exists a positive
operator P and a partial isometry V such that A = VP. Moreover, V and P are unique if
ker P =ker V.

Proof. If we set P = |A|, then
| Px||> = (Px,Px) = (P*Px,x) = (A*Ax,x) = ||Ax|* forx€ H.

Thus, if we define V on ran P such that VPx = Ax, then V is well defined and is isometric.
Hence, V can be extended uniquely to an isometry from clos(ranP) to H. If we further
extend V to H by defining it to be the zero operator on (ranP)*, then the extended ex-
tended operator V is a partial isometry satisfying A = VP and ker V = (ranP)* = ker P by
Lemma 1.3.

We next consider uniqueness. Suppose A = WQ, where W is a partial isometry, Q is a
positive operator, and ker W = ker Q. Then P?> = A*A = QW*WQ = Q?, since W*W is the
projection onto

(ker W)+ = (ker Q)* = clos(ran Q).

Thus, by the uniqueness of the square root, we have P = Q and hence WP = V P. Therefore,
W =V onran P. But
(ran P)* =ker P =ker W = ker V

and hence W =V on (ran P)~. Therefore, V = W and the proof is complete. O

Corollary 1.2 If A is an operator on a Hilbert space H, then there exists a positive op-
erator Q and a partial isometry W such that A = QW. Moreover, W and Q are unique if
ran Q = (ker Q).

Proof. By Theorem 1.13, we obtain a partial isometry V and a positive operator P
such that A* = VP. Taking adjoints we have A = PV*, which is the form that we desire
with W = V* and Q = P. Moreover, the uniqueness also follows from Theorem 1.13 since
ran W = (ker Q)" if and only if

ker V = ker W* = (ran W)* = (ker Q)** =ker P.

1.4 Notes

For our exposition we have used [276], [45], [143], [18].



Chapter

Kantorovich Inequality and
Mond-Pecari¢ Method

This chapter tells the history of the Kantorovich inequality, and describes how the Kan-
torovich inequality has developed in the field of operator inequalities. In such context, so
called “the Mond-Pecari¢ method” for convex functions established by Mond and Pecari¢
has outlined a more complete picture of that inequality in the field of operator inequalities.

2.1 History

The story of the Kantorovich inequality is a very interesting example how a mathematician
creates mathematics. It provides a deep insight into how a principle raised from the Kan-
torovich inequality has developed in the field of operator inequalities on a Hilbert space,
and perhaps, more importantly, it has initiated a new way of thinking and new methods in
operator theory, noncommutative differential geometry, quantum information theory and
noncommutative probability theory. We call this principle the Mond-Pecari¢ method for
convex functions.

In 1959, Greub and Rheinboldt published the celebrated paper [132]. It is just the
birth of the Kantorovich inequality. They stated that Kantorovich proved the following
inequality.

15
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Theorem K1 [fthe sequence {y.} (k=1,2,---) of real numbers has the property
O<m<y <M

and {&} (k=1,2,---) denotes another sequence with Y5, ékz < oo, then the inequality

2
S &;3] 2.1)

holds.

It seems to be the first paper which introduced (2.1) to the world of mathematics. More-
over, they say that Kantorovich pointed out that (2.1) is a special case of the following
inequality enunciated by G. Pélya and G. Szegdo [253].

Theorem PS If real numbers ay and by (k= 1,--- ,n) fulfill the conditions
O0<m <a, <M and 0<my <b, <M,

respectively, then
| < S G X b < (MM +mymy)*
TS bt T 4mmaMiM,

2.2)

To understand (2.1) in Theorem K1 well, if we put & = 1/+/n for k =1,--- ,n, then
(2.1) implies

et Btetnt o (Mim)?

n - n -~ 4Mm

Summing up, whenever ﬁ{s move in the closed interval [m,M], the left-hand side of (2.3)

2 2
does not absolutely exceed the constant %L";l) . At present, the constant %L";l)

the Kantorovich constant.

2.3)

is called

Greub and Rheinboldt moreover went ahead with the ideas of Kantorovich and proved
the following theorem as a generalization of the Kantorovich inequality.

Theorem K2 Given a self-adjoint operator A on a Hilbert space H. If A fulfills the
condition
mly <A <Mly for some scalars 0 <m < M,

then
(M +m)?

(x,x)? < (Ax,x) (A" e, x) < m

(x,x)? (2.4)

forallx € H.
Though this formulation is very simple, how to generalize (2.1) might be not plain. In
the case that A is matrix, then (2.4) can be expressed as follows: Put

N 0 &1
72 &

A= - and x=| :
Y &
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Then

and we get

(Ax,x) = Zyk’g'k and (A" lxx) Zyklék

We shall agree that (2.4) is called a generalization of the Kantorovich inequality (2.1).

Though Greub and Rheinboldt carefully cite the Kantorovich inequality, they do not
tell anything about his motivation for considering the inequality (2.1). What is his motive
for considering (2.1)? Thus, we shall attempt to investigate Kantorovich’s original paper
in this occasion. It is written in Russian and very old. We read the original paper in an
English translation [156]. It seems that he was interested in the mathematical formulation
of economics, as he provided a detailed commentary on how to carry out mathematical
analysis in economic activities. Now, when we read [156] slowly and carefully, we find
the inequality (2.1) in question, in the middle of the paper [156].

2 2
M m 2
JE @uk) 5)

holds, m and M being the bounds of the numbers v

Lemma K The inequality

1
ZW%ZY{IM% < 7
k k

0<m§yk§M.

The coefficient in the right-hand side of (2.5) seems to be different from the one in
(2.1). However, since

2
L M fm]” L [M4m > (M +m)?
41V m M| 4| VMm] — 4Mm
the constant of (2.5) coincides with one of (2.1). Following Kantorovich’s original paper,

we know that Kantorovich represents an upper bound as (2.5). Therefore the Kantorovich

constant X+ T )’ is deformed by Greub and Rheinboldt. Examining the history of math-

ematics a little more, Henrici [141] pointed out that in the case of equal weights, the in-
equality (2.3) is due to Schweitzer [258] in 1914. How Kantorovich proved the inequality
(2.5) in Lemma K is a very interesting matter:
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Proof of Lemma K. We may prove it in the case of finite sums y; < < --- < 7, and
>#_,u? = 1. We shall seek the maximum of

n n l
G=006= ZJ/ku,% Z—u,%
=1 =1 Yk

under the condition that Y}, u,% = 1. By using the method of Lagrange multipliers, if we
equate to zero the derivatives of the function

FzG—?L(Zu,%—l>7
k=1

then we have

1 0F 1 . . ~
Ea—uszcgus—i—aysus—luszo, ie. uS(G—i—Gyf—?Lys):O.
The second factor in the last expression, being a polynomial of the second degree in 7,
can reduce to zero at not more than two values of s; let these be s = k, /. For the remaining
values of s, uy must be zero. But then

1 1
Gmax = ur+ yu? (—u2+—u2)
(Yk i z) " k y !

2
A [VE ] < [V E]

Why does Kantorovich need the inequality (2.1)? If we only read the paper due to
Greub and Rheinboldt, we probably cannot fully understand those circumstances. How-
ever, having thoroughly read [156], we are able to explain the necessity of the Kantorovich
inequality.

d

Kantorovich says that as is generally known, a significant part of the problems of math-
ematical physics — the majority of the linear problems of analysis — may be reduced to a
problem of the extremum of quadratic functionals. This fact may be utilized, on the one
hand for different theoretical investigations relating to these problems. On the other hand,
it serves as a basis for direct methods of solving the problems named. A certain method
of successive approximations for the solution of problems concerning the minimum of
quadratic functionals, and of the linear problems connected with them, is elaborated — the
method of steepest descent.

Let H be a real Hilbert space and A a self-adjoint (bounded linear) operator on H such
that mly <A < MIy for some scalars 0 <m < M.
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We shall consider the method of steepest descent as it applies to the solution of the
equation

L(x)=Ax—y=0, (2.6)
where x and y are in H. We introduce the quadratic functional
H()C) = <Ax7x> - 2<y7x> 2.7

For a given y € H, a vector xy € H is the solution of L(x) = 0 if and only if xo € H
attains the minimum of H (x).

Indeed, suppose thatx € H satisfies H (x) = minyeg H (1). Then for each nonzero z € H
and a real parameter o € R, it follows that

H(x+oz)—H(x)>0
and this implies
H(x+oaz) —H(x) = (Ax+ aAz,x+ 0z) —2(y,x+ az) — H(x)
= o [(Ax,2) + (Az,x)] + 0¥ (Az,2) — 20(1,2)
=20{Ax —y,2) + 0*(Az,2) > 0.
Since A is positive invertible, we have (Az,z) > 0. Since the inequality above holds for all
o € R, we get (Ax —y,z) = 0 for all nonzero z € H. Therefore we have Ax —y = 0 and

hence x € H is the solution of L(x) = 0.
Conversely, suppose that x € H is the solution of L(x) = Ax —y = 0. Then

H(x+z)—H(x)=(Az,2) + 2(Ax —y,z) = (Az,z) > 0 (2.8)

for all nonzero z € H. Foreachy € H, if we putz =y —xin (2.8), then we have H(y) > H(x)
and this implies H (x) = minyey H (y).

In this way, if the problem of solving an equation (2.6) reduces to the problem of seek-
ing the minimum of the functional (2.7), then this fact is named the variational principle of
the equation.

In seeking the minimum of a functional (2.7) we shall employ the method of steepest
descent. Now, we consider the following three procedures (0), (1) and (2):

(0) For a given initial vector xo € H, we find a sequence {x, } C H such that

H(xo)>H(x1)>--->H(x,,)>---—>1LgigH(u):H(x).

(1) By induction, we construct a sequence {x,} C H such that
Xpt1 = Xn+ OpZp

for o, e Rand z, € H.
(2) Moreover, we choose o, € R such that

H (X + Oyzy) = minH (x,, +12)- (2.9)
eR

The following lemma shows that the condition (0) implies the convergence of {x,}.
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Lemma 2.1 Let x be the solution of L(x) = Ax—y = 0. If a sequence {x,} satisfies

H(xo) >H(x;)>--->H(xp) > - — minH(u) = H(x),

ucH
then x,, — x as n — oo,
Proof.
H(x,)—H(x) = (Axy,xn) —2(y, %) — (Ax,x) + 2(y,x)
=2(Ax — y,xp — x) + (A(xp — X), X — X)
= (A0 = %)% —x) > ml|, — x|,
because m(z,z) < (Az,z) < M(z,z) for every z € H by the assumption. Therefore

lim H(x,) = H(x) implies lim x,, = x. O
n—oo

n—oo
The following lemma determines the form of ¢,.

Lemma 2.2 [f (2.9) holds, then

(2n,2n)
<Azn > Zn>

oy =

where z,, =y — Axy,.
Proof.

H(xn +th) = <AZn7Zn>t2 +2(<Axn7zn> - <y7Zn>)t+H(xﬂ)
= <AZn7Zn>t2 + 2<Zn7zn>t +H(xn)

_ <Zn7zn> : <Zn7Zn>2
= (zn,2n) (t_ <Azn,zn>> (A2, ) +H )

Therefore, t = % attains the minimum of H (x,, +1z,). O

By the proof of Lemma 2.2, we have

(zny2n)?

H(xn-H) = H(x,,) - <AZn Zn>

< H(x,)

and hence we have
H(xo) >H(x;) > >H(xp)>---.

Theorem K4 The successive approximations {x,} C H constructed by the method of
steepest descent converge strongly to the solution of the equation (2.6) with the speed of a
geometrical progression.

Proof. Let x* be the solution of equation (2.6) and A,H = H(x,) — H(x"). It is obtained
that the change A,H of H in passing from x* to x,, is

AnH = H(xp) — H(xX") = (A(X" — x,),x" — xp).
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Also, since
n =y —Ax,
and
Znt1 =Y —AXpt1 = Zn — 0pAZy,
it follows that
AH = (A(x, — x*), %, —x°) = (A2, 2,)
and
AnptH = (A(xpp1 = X°) X1 = X°) = AgH — 200, (2n,20) + Oy (A0, 20).

By the definition of ¢, we have

AyH — Ay H - 200 <vazn> - OC,% <Azn7zn>
A H <A_IZn7Zn>
(Tn,2n)?

= 2.10
<AZn7Zn><A_IZn7Zn> ( )

We notice the form of a generalization of the Kantorovich inequality due to Greub-
Rheinboldt in the last expression of (2.10).

For the estimation of this ratio let us make use of the spectral decomposition of an
operator A:

M M
A:/ Ade; and (Azi,z1) :/ Ad{eyz1,21) :limZMAe;Lzl,zl); (2.11)
m m
analogously
. _ . 1
(z1,21) =1im Y (Aezz1,z1) and  (A7'z1,z) = llmz‘I(Ae;Lzhzl). (2.12)

Replacing in expression (2.10) the inner product by their approximate value as given by
(2.11) and (2.12), we have

AH—App H [ (Aezzi,21))
AH B SA(Aeyz1,21) Y f{Aerzr )
< 4Mm <0
~ (M +m)? '

The Kantorovich inequality is utilized here to estimate a lower bound!
The approximate equality here is correct with as small an error as one pleases, and we
have therefore an exact inequality

AH — Ay H _ 4Mm
AH  — M+m)?

4M. M—m\?>
ApH< (1= 22" VAH= (2" AH.
(M +m)? M+m

whence
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Since 0 < %—;’m" < 1, for a given initial vector x(, we have

limA,H =0

n—o0
so that lim,,_... H (x,) = H(x*). By Lemma 2.1, we have x,, — x* as n — oo and this proves
the assertion. 0

The rapidity of convergence of the process is of the order of a geometric progression
with ratio g = (M —m) /(M +m).

It is surprising that the Kantorovich inequality is utilized in the linear problems of
analysis. We cannot understand this fact by reading [132] only. Also, as mentioned above,
we think that Kantorovich proved the following form: If an operator A on H is positive
such that mly <A < MIy for some scalars 0 < m < M, then

(x,x)?

4
(Ax,x) (A~ 1x,x) = [\/g_’_\/%r

holds for every nonzero vector x in H.

Namely, the Kantorovich inequality is not only the form (2.1) shown in Lemma K, but
also the form (2.13) of the operator version.

Now, the theorem denoted by K2 is a generalization of the Kantorovich inequality in
the operator form, as it was derived by Greub and Rheinboldt. In fact, we easily see that
(2.13) implies Theorem K2. Therefore, one could say that Kantorovich proved Theorem
K2 in a certain sense. At this point, it is suitable to cite a relevant part of [132]:

(2.13)

The subject of this paper is the proof of a generalized form of the inequality for lin-
ear, bounded and self-adjoint operators in Hilbert space. This generalized Kantorovich
inequality proves to be equivalent to a similarly generalized form of the inequality
which we shall call the generalized Pélya-Szeg6 inequality. Our generalized Kantorovich

inequality is already implicitly contained in the paper of L.V.Kantorovich. However, its

proof there involves the use of the theory of spectral decomposition for the operators in
question. The proof we shall present here will proceed in a considerable simpler way.

Hence, from the underlined sentence we learn that the proof of Theorem K2 was es-
sentially contained in [156]. Furthermore, we see that Greub and Rheinboldt prefer to
avoid the spectral decomposition theorem in the proof, as they believe their own proof to
be considerably simpler.

However, it turned out that their method of proof had a deep significance for mathemat-
ics. The impact of Theorem K2 could be compared to spreading of shock waves around
the world of mathematics. Thus we present the proof of which Greub and Rheinboldt say
that is simpler.

Proof of Theorem K2. The left hand side of the inequality follows directly from
Schwarz’s inequality

<X7x>2 — <A1/2X,A_1/2X>2 S <A1/2x7A1/2X><A_1/2X7A_1/2X>
= (Ax,x){A"x,x).
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We shall first prove the right hand side of (2.4) for finite dimensional space H. Then we
will show that the proof for the general case can be reduced to that of the finite dimensional
case.
Suppose that H is a finite dimensional space. Then the unit sphere S C H is compact.
Hence, considered on S, the continuous functional
(Ax,x) (A x,x)
(x,x)?

flx) =
attains its maximum at a certain point, say xo € S, i.e.

flxo) = max f(x) = (Axo,x0) (A~ x0,x0).

With a fixed vector y € H and the real parameter ¢ (|| < 1) we consider the real valued
function

g(t) = f(xo+1y).

This function g(¢) has a relative maximum at # = 0 and therefore we must necessarily have
¢’ (0) = 0. Using the self-adjointness of A and A~! we find

£'(0) = 2(Axo,¥) (A~ "x0,x0) + 2(A ™ "x0,¥) (Ax0,X0) — 4 (x0) {x0,y) =0

and thus
(yAxo+ pA™ %9 — x0,y) =0

holds for all y € H, where
= ! and = !
= A 2 o)
Consequently
Xo = YAxo + MA_le.

Applying A and A~! successively to this equation we find that
Axg = yAxo + [xo and A 'xg = yxo+ A 2x

1 2 1 —4yu o1 2 1 —4yu
(A— Z/IH) X0 = 4)/2 X0 and (A — ﬁIH X0 = 4,112 X0-

Taking into account the assumption 0 < mly <A < MIy, we have

or

—< — < —.
4wM_(1+(1 4yu) )_4wm

It follows

o (22 1) 2] <0 ) < [om (%H)_Zr
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or
TH

M2
and therefore

[y (M -+ m)? = 4mM] <0 < 25 [ay (M -+ m)? — 4]

4yu (M +m)? —4mM = 0.

On the other hand, since

1
4y = 7
= T, 30) (A Tx,30)
we finally have
_ M+m)?
(Ax0,x0) (A "x0,x0) = %, (2.14)

which was to be proved. (2.14) shows furthermore that (at least in the finite dimensional
case) the upper bound in (2.4) can not be improved.

We now remove the restriction of the finite-dimensionality of H. Let xo be a fixed
vector of H and let Hy C H be a finite dimensional subspace of H which contains three
vectors xo, Axp and A~'xy. We denote by P the projection of H onto Hy. For the operator
B = PA, we have B(H)) C Hy and

(Bx,y) = (PAx,y) = (PAPx,y) = (x, PAPy) = (x, By)

for all x,y € Hy. Hence, B is a self-adjoint operator on the space Hy. Furthermore, we find
for x € H
(Bx,x) = (PAx,x) = (Ax,Px) = (Ax,x)

and therefore in Hy
0 <mly, < m’IH0 <B< M’IH0 < Mly, (2.15)

where

B B.
m' = inf (Bx,%) and M = sup < x,x>'
x€Hy <X,X> x€H) <X,X>

Hence, we can apply the first part of the proof to the operator B in the finite dimensional
space Hy. By doing that we obtain for all x € Hy

(Bx,x)(B~'x,x) _(M'+m')?> 1 (/M w 1
< = —+= =. 2.16
(x,x)2 - Am'M’ s\t ) T2 (2.16)
From (2.15) we conclude that
M M M wm M m
1< —<—= d —F+—< —+—. 2.17
—m T m an m’+M’_m+M ( )

This last inequality is a result of the fact that for u > 1 the function f(u) = u+ 1/u is
monotonically increasing. (2.16) and (2.17) together yield

(Bx,x)(B™'x,x) 1 (M m 1 (M4m)?
et < (4 B) -l

(x,x)2 “i\mm 4mM
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for all x € Hy. Since Hy contains xo,Axo and A~ xg, we find
BX() = PAxO = AX() and X0 = P.X() = PAA_le = BA_IXQ.

The last relation implies B~'xy = A~ !xy when one considers that the existence of B~! in
H)j is a direct consequence of (2.15). Substituting we obtain finally

(M +m)?

A AL < XTI
(Ax0,x0) (A~ x0,X0) < oy

(x0,X0)*

Since xo was arbitrary the theorem is hereby completely proved. a

Moreover, they showed the generalized P6lya-Szego inequality, which is equivalent to
the Kantorovich inequality:

Theorem 2.1 Let A and B be commuting self-adjoint operators on a Hilbert space H

such that
0<mly <A< My and 0 <mply <B<MIy.
Then s
MM
(Ax,Ax)(Bx,Bx) < (MM s )7 (Ax,Bx)?
4m1m2M1M2
forallx € H.

Proof. 1t is rather obvious that the Kantorovich inequality is contained in Theorem 2.1.
In fact, let C be any given self-adjoint operator with

0<mlg <C<Mly.
We set A=C!/? and B = (C~!)!/2. Since
0<mly <A<M"Ply  and  0< M Y2y <B<(m )"l
it follows immediately from Theorem 2.1 that

(Cx,x)(C~1x,x) _ (Ax,Ax)(Bx, Bx) < (M +m)?

(x,x)2 (Ax, Bx)? dmm

for all x € H and this is the statement of the Kantorovich inequality.
Next, we show that Theorem 2.1 is a consequence of Theorem K2.
From the commutativity of A and B, for the self-adjoint operator C = AB~! we have

ny M1
0< —Ig<C< —Iy.
M, H="= my 1
Therefore, it follows from Theorem K2 that

(Cx,x)(C~1x,x) - (MM + mymy)?
(x,x)? = dmumaM M,
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forall x € H. Put x = (AB)'/2y, then we obtain (Cx,x) = (Ay,Ay), (C~'x,x) = (By, By) and
(x,x) = (Ay, By). Substituting these relations, we get the statement of Theorem 2.1. O

The proof by Greub and Rheinboldt is very long, spanning over approximately five
pages. We can feel the strictness of their proof, but, in contrast, Kantorovich’s proof is
simple and only half a page long. However, it was the formulation by Greub and Rhein-
boldt that brought the first wave of excitement into the world of mathematics. Owing to
Greub and Rheinboldt, the work of Kantorovich has become an object of research in math-
ematics, in operator theory in particular. In their own words, their proof is simple. But, it
is a proof on a grand scale, unexpected and fascinating. Based on a beautiful relation, this
simple formulation may strike a chord in the heart of a mathematician. Many mathemati-
cians concentrated their energies on the generalization of the Kantorovich inequality and
on searching for an even simpler proof.

2.2 Generalizations and improvements

In 1960, one year after the publication of [132], Strang [272] shows the following general-
ization of the Kantorovich inequality for an arbitrary operator without conditions such as
self-adjoiness and positivity.

Theorem 2.2 [fT is an arbitrary invertible operator on H, and ||T|| = M, || T~ ||~ =m,

then

(M +m)?
4Mm

Furthermore, this bound is the best possible.

[{Tx,y) (x, T~ 1y)| < (ox)(vy)  forallx,y € H.

Proof. We consider the polar decomposition of 7. Let A = (T*T)'/2. Then U = TA™!
is unitary, and

[{T,2) (e, Ty = [(UAY ) (e AU ) [ = [{Ax Uy} AT Uy (218)
< [{arn) (AU Uy A xx) Uy o)

by generalized Schwarz’s inequality (Theorem 1.10). Since ||A|| = ||(T*T)"/?||

=||T||=M and ||[A~"||~! = ||T~"||~" = m, it follows that mIy < A < MIy. Therefore, by

(2.4) in Theorem K2, we have

2 2 1/2
RHS in (2.18) < (%(x,x)z : %(U*yﬂ*y)z)
M +m)?
= %(x,x)()@y),

by using (U*y,U*y) = (y,y).
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If H is finite dimensional, the bound is attained for x = U*y = u+ v, where u and v
are unit eigenvectors of A corresponding to eigenvalues m and M. In a general case, the

bound need not be attained. But a sequence x, = U™y, = u, + v,, where ||u,|| = ||val|,
(e(m+1/n)—e(m—0))uy = uy, (e(M+0)—e(M —1/n))v, = v, shows on calculation
that the bound is best possible. |

Also, Schopf [257] considered a generalization of the power in the Kantorovich in-
equality. Moving to the year 1996, there is the following extension due to Spain [270]
which is totally different from the Kantorovich inequality. But it is surely an extension. It
does not assume positivity, either. It is slightly long, but we will quote it:

The Kantorovich inequality says that if A is a positive operator on a Hilbert space H
such that mly <A < MIy for some scalars 0 < m < M, then

4mM (A x,x) < (m+M)? ———

holds for every vector x in H. If we replace x by A%x, then

) |lAzx|?

4mM (x,x) < (m+ M) A

This inequality may be viewed as a conversion of the special case
(Ax, x) < || Ax]|[|x]|
of the Cauchy-Schwarz inequality, for it is equivalent to the inequality

2v/mM || Ax]|[lx]] < (m + M)(Ax,x).

The methods of operator and spectral theory allow one to generalize the inequality to a
wide class of operators on a Hilbert space.
Let I be any nonzero complex number, let R = |T'|, and let 0 < r <R.

Theorem 2.3 Let A be an operator on H such that |A —T[A] |2 < 12[A], where [A] is the
range projection of A. Let u € B(K,H) be an operator such that u*[Alu is a projection.
Then

(R* — rH)u*A*Au < R*(u*A*u) (u* Au).

Proof. Since u*[A]u is a projection, we have
|(R? = )u* [A]u— T Au®
= (R = )?u*[Alu— (R* = ) {Tu*Au+Tu*A*u} + R*(u*A*u) (u*Au),
while
" <r2 [A] - |4 - T[A] |2) u
= — (R — ) u'[Alu— u*A*Au+Tu* Au+ Tu*A*u,
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and hence
R2u*A*uu*Au— (R* — r?)u*A* Au
= |(R* = P)u*[A]u— 1_"u*Au|2 +u* (r2[A] — |A—TA] |2) u.
By the assumption of |A — T'[A]|?> < r?[A], we have
R*(u*A*u) (u*Au) — (R* — rP)u*A*Au > 0.
|

Corollary 2.1 Let A be a positive operator on H such that A is invertible on its range, let
m=minSp(A)\{0} and M = maxSp(A) = ||A||. Let u € B(K,H) be an operator such that
u*[Alu is a projection. Then

AMmu*A%u < (M +m)? (u* Au)?.
Proof. In the situation of Theorem 2.3, we have

M+m M—m
= — and r=—.

R=T
2 2

By the assumption of A, it follows that
m[A] <A < M[A]
and hence |A — T'[A]|* < r?[A]. Therefore Corollary 2.1 follow from Theorem 2.3. O
Theorem 2.4 Let A be an operator on H such that |A —T[A]|> < r?[A]. Then
(R* = )V2||Ax|| || [Alx|| < R|{Ax.x)|,  x€H.
If A is positive with Sp(A)\{0} C [m,M] (0 < m < M), then
2\/JWHAXHH[A]XH < (m+M){Ax,x)  forallxe€H.

Proof. For x € H define u, : C+— H : A — Ax. Then, identifying C and B(C) canoni-
cally,
uiAu, = (Ax,x) for A € B(H).

There is nothing to prove if [A]x = 0, otherwise put u = u, /ll1Alx|- The first assertion follows
from Corollary 2.1. The second assertion is a direct consequence of the the first. O

Remark 2.1 The second assertion in Theorem 2.4 may be proved in one line:
(m+ M) (Ax,x)? — 4Mm| Ax|?||[A]x]®
— {2mM||[AJx||> = (m+M)(Ax,x)}
+4Mm((M — A)(A —m)[Alx, [Alx)]|[Alx]|* > 0
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Generalizations of the Kantorovich inequality have made significant progress. The
Mathematical Society was given a treat in the form of topics for the Kantorovich inequality
for a while.

On the other hand, in pursuit of an even simpler proof, in such a flood of papers, Naka-
mura [237] instantly presents the following result in Proceedings of the Japan Academy. It
was in 1960, just one year after the paper due to Greub and Rheinboldt was published. It
is a simple visual proof by using the concavity of f(¢) =+~

Theorem 2.5 For 0 < m < M, the following inequality holds true:

M M 1 M 2
[ rano- [ Ly < M (2.19)

for any positive Stieltjes measure L on [m,M] with ||u|| = 1.

It is easy to see, by the Gelfand representation of the C*-algebra generated by A and
the identity operator /, that Theorem 2.5 implies the Kantorovich inequality.

If Nakamura had the opportunity to read [156] in an English translation and if he asked
the mathematical community for judgment on the inequality (2.19) and its overwhelmingly
simple proof, then how would that turn out? In one possible outcome, mathematicians
would mostly get the impression that it was very easy to prove that result and therefore the
investigations related to the Kantorovich inequality would be brought to the end. For some
reason, Nakamura’s paper is overlooked in the mathematical world.

To the best of this author’s knowledge, there is no evidence that anyone has ever cited
Nakamura’s paper. Instead, several improvements to proofs of the Kantorovich inequality
have been independently developed in Europe.

The origin of the Kantorovich inequality might be the following case of finite se-
quences.

Theorem 2.6 If the sequence {y;} satisfies the conditions such that m < y; < M for some
scalars 0 <m <M andi=1,2,--- ,n, then

(M +m)?

2.2
4Mm (2:20)

En+ o +&m) &y '+ +ayH <

holds for every & > 0 such that &y + -+ &, = 1.

First of all, we present a direct proof due to Henrici [141]:

Proof of Theorem 2.6. We may assume that m < M. Determine p; and ¢g; from the
equations

1

Y=pM+gm and y '=pM'+gm' for i=1,-,n

An easy computation shows that p;,q; > 0,i=1,2,--- ,n. Furthermore from

(M —m)?*

1= (piM +gim)(piM "+ gm™") = (pi+ 4.)* + pigi —



30 2 KANTOROVICH INEQUALITY AND MOND-PECARIC METHOD

it follows that p; +¢; < 1. Setting p = ¥.&ipi, ¢ = Y. &iqi, we thus have p+q =Y &(pi +
qi) <X & = 1. Hence using the arithmetic-geometric mean inequality,

Ert+amEr o+ ar Y

—m 2

= (pM +qm)(pM ™"+ gm ") = (p+q>2+pq%
—m)? )2 o
Slvar {”%} = 0o S < S

Equality is attained in (2.20) if and only if the following two conditions are simulta-
neously fulfilled (we assume here & > 0,i=1,2,--- ,n without loss of generalization):

(i) p+q=1. Thisimplies that p;+¢g; = 1 or p;q; =0 fori=1,--- ,n. Thus, for equality
every y; must equal either M or m.

(ii) p+q=4pq. This implies that p =qor, Y, ., & =Y, _m &
Thus, the weights attached to m and M must be the same. [

In comparison with Kantorovich’s proof, Henrici’s one relies on an algebraic calcula-
tion. Inspired by Henrici, Rennie [255] gives the following improved proof with functions
in 1963:

Let f be a measurable function on the probability space such that 0 < m < f(x) < M.

Integrating the inequality
(f(x) =m)(f(x) - M)

<0
fx) -
gives
1
X dx+mM/—dXSm+M.
/f() f(x)
Putu=mM [ ﬁdx, then we have
2 ) 5
”/f(x)dx<(m—l—M)u—uz:_(u_M';m) _’_(M'Zm) S(M—Zm) 7

W thh 1S the KantOI‘O \% ICh lnequallty .
D

This is exactly a function version of the Kantorovich inequality due to Nakamura.
Its emphatic brevity is surprising. Moreover, inspired by Rennie, Mond [209] gives the
following improved proof with matrices in 1965:

Let A be a positive definite Hermitian matrix with eigenvalues A > A, > --- > 4, > 0.
Since three factors in the LHS of below inequality commute, we have

(A=A (A= MDA <0,
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Therefore,
(Ax,x) 4+ 2 Ay (A_1x7x> <M+,

for every unit vector x. If we put u = A; A, (A~ Lx,x), then

M+ An)?
M A (A7 X, %) (Ax, x) = u(Ax,x) < (A 4+ A)u —u? < %,
which implies the Kantorovich inequality:

—1 ()Ll +)Ln)2
(A7 x,x) (Ax,x) < Py

The proof of Mond may be considered one of the generalized Kantorovich inequal-
ity. But, we present a somewhere different proof by using the arithmetic-geometric mean
inequality in [164, 144, 158]:

Since A is positive and 0 < mly <A < My, it follows that MIy —A > 0 and A —mily >
0. The commutativity of MIy —A and A — mly implies (MIy —A)(m~'Iy — A=) > 0.
Hence

(M+m)lg >MmA™ +A

and
(M +m)x,x) > Mm{A~'x,x) + (Ax,x)

holds for every unit vector x € H. By using the arithmetic-geometric mean inequality

Mot m= (M4 m)x.x) > Mm(A ™ x,x) + (Ax,x) > 2\/Mm(A~1x,x) (Ax.x).
Squaring both sides, we obtain the desired inequality

(M+m)2.

(Ax,x) (A" x,x) < i

Finally, we present an extremely simple idea due to Diaz and Metcalf [43]:
Lemma 2.3 Let real numbers a # 0 and by (k= 1,2,--- ,n) satisfy
m< — <M. (2.21)

Then

Zb,%—I—mMZa,% < (M+m) Y, agby.

k=1 k=1 k=1
The equality holds if and only if in each of the n inequalities (2.21), at least one of the
equality signs holds, i.e. either by = may, or by = May, (where the equation may vary with

k).
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Proof. 1t follows from the hypothesis (2.21) that

0< (ﬁ—m> (M—@>ai.
ay (477

Thus, summing from k = 1 to k = n,

M=

0< (bk — mak)(Mak — bk)

k

= (M+m) iakbk— i‘b,%—mMitai7
k=1 k=1 k=1

1

(2.22)

which gives the desired result. Clearly, the equality holds in (2.22) if and only if each term

of the summation is zero.

By using Lemma 2.3, we have

and hence

4mM(i b,%) (i a,%) < (M+M)2(kilakbk)2

k=1 k=1

yields immediately the result of Pélya and Szegd (Theorem PS (2.2)).

Similarly, we have an operator version of Lemma 2.3:

O

Theorem 2.7 Let A and B be self-adjoint operators such that AB = BA and A~ exists,

and

mly < BA™! < Mly for some scalars 0 <m < M.

Then
B> +mMA? < (m+ M)AB.

The equality holds in (2.23) if and only if (MIy — BA~")(BA™! —mly) = 0.

By using Theorem 2.7, we have

2
0< {(Bx,Bx>1/2 —mM<Ax,Ax>1/2}

= (Bx, Bx) — 2v/mM (Bx, Bx)"/>(Ax, Ax)'/? + mM (Ax, Ax)

< (m+M)(ABx,x) — 2v/mM (Bx, Bx)'/?(Ax,Ax)'/?

(2.23)
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and hence
4mM (Bx, Bx) (Ax,Ax) < (m+ M)*(ABx, x)*

yields immediately results of Greub and Rheinboldt (Theorem 2.1).

Comparing with the proofs of Kantorovich and Greub and Rheinboldt, only algebraic
calculation seems to belong to a different age. However, when we can prove it plainly and
simply, devising a new proof stops being an object of interest for mathematicians.

2.3 The Mond-Pecari¢ method

In this section, we present the principle of the Mond-Pecari¢ method for convex functions.
Mond and Pecari¢ rephrased the Kantorovich inequality as follows: The Kantorovich
inequality says that if A is a positive operator such that 0 < mly < A < My, then

_ (M +m)?
Ax,x) (A x) < 2.24
for every unit vector x € H. Divideing both sides by (Ax,x), we get
_ M +m)? _
ey < MMy gt .
(A7 x,x) < m (Ax,x) (2.25)

Also, since 1 < (Ax,x)(A~'x,x), we may extend (2.25) into the following inequality:

(M +m)?

(Ax,x) "' < (A7 lxx) < A

(Ax,x)~ L. (2.26)

The first inequality of (2.26) is a special case of Jensen’s inequality. In fact, if we put
f(t) =171, then

<a1+---+an)‘1<a;1+---+a;1

n n

for all positive real numbers ay, - - - ,a,. Moreover, if f(¢) is a convex function on an interval
[m,M], then

! (ih‘%‘) < itif(xi)
i=1 i=1

for every x1,--- ,x, € [m,M] and every positive real number ¢, - -- ,#, with ¥, ; = 1. This
inequality is called the classical Jensen’s inequality. Moreover, an operator version of the
classical Jensen’s inequality holds:
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Theorem 2.8 Let A be a self-adjoint operator on H such that mly < A < Mly for some
scalars m < M and f a real valued continuous convex function on [m,M)|. Then

F({Ax,x)) < (f(A)x,x)

holds for every unit vector x € H.

Proof. Refer to [124, Theorem 1.2] for the proof. O

From this point of view, (Ax,x) ™! < (A~!x,x) is considered as one form of Jensen’s
inequality. Namely, Mond and Pecari¢ noticed that

the Kantorovich inequality is the converse inequality of the so called Jensen’s one for the

Sunction f(t) = 1/1.

Jensen’s inequality is one of the most important inequalities in the functional analysis.
Many generalizations are developed and many significant results are obtained by using
Jensen’s inequalitiy.

Here, let us consider a generalization of the Kantorovich inequality. Jensen’s inequality
for (1) =1 yields

(Ax,x) < (A3x,x) for every unit vector x € H. (2.27)

What is a converse of (2.27)? Unfortunately, it seems to be difficult to apply the same
method as in the proof of the Kantorovich inequality. We need a new way of thinking. We
recall Nakamura’s article [237]. It was published too early, as it was ahead of its time and
later on hardly anyone looked back at that paper. Thirty years later ideas similar to his had
appeared in Eastern Europe. By then Nakamura had forgotten all about his principle, but
it had taken root in Eastern Europe and would grow in time.

Thus, we shall recall the proof due to Nakamura: Let p be a normalized positive
Stieltjes measure on [m,M]. Let y = g(¢) a straight line joining the points (m,1/m) and
(M,1/M). Since 1/t < g(t), we have

S
[ an < [ stan =

m 1 m

Multiply fn]y tdu(t) = A% to both sides,

M M ] M+m M~ '4+m™t  (M+m)?
—_ < . = .
| ran) [ saui <= - -

Applying it to a positive operator A with ||A|| = M and ||A~!|~!

Kantorovich inequality

= m, we have just the

(M +m)?

(Ax,x) (A" x,x) < i
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for every unit vector x € H. We remark that the Kantorovich constant equals the arithmetic
mean of m and M divided by the harmonic one:

(M+m)? M

4Mm (M*Urm*l)_l.
2

Namely, we know that Nakamura’s proof is actually the origin of the so called the
Mond-Pecari¢ method for convex functions by which the converses of Jensen’s inequality
are induced. Moreover, Ky Fan [48] proceeded with a generalization of the Kantorovich
inequality for f(r) = ¢ with p € Z. Here, we shall present the principle of the Mond-
Pecari¢ method for convex functions:

Theorem 2.9 Let A be a self-adjoint operator on a Hilbert space H such that mly < A <
My for some scalars m < M. If f is a convex function on [m,M) such that f > 0 on [m,M),
then

(f(A)x,x) < K(m,M, f)[((Ax,x))

for every unit vector x € H, where

B R 01 (O PR
K(m,M,f) =ma {f(t)( Y (t—m)+ f( )). <t<M}.
Proof. Since f(¢) is convex on [m,M], we have
) < W(r —m)+ f(m)  forallt € [m,M].
Using the operator calculus, it follows that
7y < LT 4y pm
and hence "
ayea < DI gy o

for every unit vector x € H. Divide both sides by f({Ax,x)) (> 0), and we get

(FA)x,x) LT (A ) — m) + f(m)

F(n) = F(ax)
<max{% (W(r—m)—kf(m)) :m<t<M}7
since m < (Ax,x) < M. Therefore, we have the desired inequality. O

Theorem 2.10 Let A be a self-adjoint operator on a Hilbert space H such that mly <
A < Mly for some scalars m < M. If f is a concave function on [m,M] such that f > 0 on
[m,M], then

K(m,M, f)f((Ax,x)) < (f(A)x,x) < f((Ax,x))
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for every unit vector x € H, where

f(M)—f(m)(

K(m,M, f) :min{i( -

f@)

In particular, if we put f(z) =¢? for p € R in Theorem 2.9 and 2.10, then we have the
Holder-McCarthy inequality and its converse:

t—m)+f(m)):m§t§M}.

Theorem 2.11 Let A be a positive operator on a Hilbert space H such that mly < A <
MIy for some scalars 0 < m < M. Then

(Ax,x)? < (APx,x) < K(m,M,p)(Ax,x)? forp & [0,1] (2.28)

and
K(m, M, p) (Ax,x)? < (APx,x) < (Ax,x)? for p € [0,1]

for every unit vector x € H, where

K(m,M,p) =

MP — MmP —1 MP—mP P
m m (p m ) (2.29)

(p—D)(M—m)\ p mMP—MmP

for each p € R. The constant K(m,M, p) is sharp in the sense that there exists a unit vector
z € H such that
(APz,z) = K(m,M,p)(Az,2)".

Proof. We only show the sharpness of K(m,M,p) in (2.28) for p > 1. Let Ax = mx,

Ay = My, and z = ax+ By, where ||x|| = ||| = 1, ][>+ |B|> = 1, and h = % Then we
have

(APz,2) = (amPx+ BMPy, ax + By) = |ot|>mP + |B|*MP
and

(Az,9)" = (|af'm+ B M)".
Therefore we want to obtain the unit vector z satisfying the following equality:
o*m” + |BIPMP = K(m, M, p)(|a|>m + |B’M)?,

that is,
m? + B (MP —mP) = K(m,M,p){m~+|BI*(M—m)}",

or equivalently
L+ B — 1) = K(m,M, p){1+ |B[*(h—1)}7. (2.30)

We can obtain a solution 3 of the above equation (2.30) as

(W —1—ph—1) \?
ﬁ—((p_1>(,,_1)(h,,_1)) =t

For example, we have z = Ml+m (v Mx + /my) for p = 2. O
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If we put p = —1 in (2.28) of Theorem 2.11, then

(M +m)?
KmM,—1)= ————
(m, M, =1) 4Mm
is the Kantorovich constant and hence
B M +m)? _
Al < ( A 1
< % %) < 4Mm A, x)

for every unit vector x € H. Thus, Theorem 2.11 is an extension of Kantorovich inequal-
ity and we call K(m,M, p) the generalized Kantorovich constant. We introduce another
definition of K (m,M, p).

Definition 2.1 The condition number h = h(A) of an invertible operator A is defined by
h(A) = [[All]A™.

If a positive operator A satisfies the condition mly < A < Mly for some scalars 0 <m <M,
then it may be thought as M = ||A|| and m = ||A=Y|| 71, so that

Definition 2.2 Letr h > 0. The generalized Kantorovich constant K (h, p) is defined by

 W—h (p—1h -1\’
K(h”’)‘<p—1><h—1>< P h,,_h) (23D

Sor any real number p € R and K (h, p) is sometimes briefly denoted by K(p) briefly.

We remark that K(m, M, p) just coincides with K(h, p) by putting h = X (> 1). We

mention basic properties of K(h, p):

Theorem 2.12 Let h > 0 be given. Then the generalized Kantorovich constant K (h, p)
has the following properties:

(i) K(h,p)=K(h~',p) forallp e R,
1 1
(ii) K(h7 3 —|—p) = K(h7 3 —p) Sorall p € R, that is, K(h, p) is symmetric with respect
top=1/2,
(iii) K(h,0)=K(h,1)=1andK(l,p)=1forall peR,

(iv) K(h,p) is an increasing function of p for p > 1/2 and a decreasing function of p for
p<1/2,

(v) K(h,p) >0 forall peR and

K(h,p){>l if p#(0,1)

<1 if pel0,1]. (232
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Proof. Refer to [124, Theorem 2.54] for the proof. O

Next, we present the inversion formula of the generalized Kantorovich constant and a
closed relation between the condition number and the generalized Kantorovich constant:

Theorem 2.13 Let h > 0 be given. Then the generalized Kantorovich constant has the
following properties:

1 -1
(i) K(h’7g)') :K(hp,i) " for pr#0,
r p
(ii) K(h,p) <h?~'forallp>1andh> 1.

Proof. Refer to [124, Theorem 2.54] for the proof. O

Now we present an important constant due to Specht. He estimated the upper bound
of the arithmetic mean by the geometric one for positive numbers: For xj,--- ,x, € [m,M]
with M > m > 0,

1

NETEEE 2.33
n — elogh A ( )
where h = 2 (> 1). Tt is well known that
Y < Xt A (2.34)
n
holds for positive numbers xy,x>,---,x,. Therefore, the Specht theorem (2.33) means a

ratio type converse inequality of the arithmetic-geometric mean inequality (2.34).

So we define the following constant.
Definition 2.3 Letr h > 0 be given. The Specht ratio S(h) is defined by

(h— )it

S(h) = ~Tosh (h#£1)  and  S(1)=1. (2.35)

Now let us show an operator version of (2.33).

Theorem 2.14 Let A be a positive operator such that mly < A < Mly for some scalars
0<m<M andputh= % Then

(Ax,x) < S(h)exp(logAx,x) (2.36)
holds for every unit vector x € H.

Proof. Refer to [124, Theorem 2.49] for the proof. O

If we put f(¢) = exp(¢) in Theorem 2.8 and Theorem 2.14, then we have the following
result.
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Theorem 2.15 Let A be a self-adjoint operator such that mly < A < Mly for some
scalars m < M. Then

exp(Ax,x) < (expAx,x) < S(e”~™)exp(Ax,x) (2.37)

holds for every unit vector x € H.

We mention some basic properties of the Specht ratio S(h).
Theorem 2.16 Leth > 0 and p € R.

(i) S(1) = lim S(h) = 1.

(ii) S(h)=S(h™1).
(iii) A function S(h) is strictly decreasing for 0 < h < 1 and strictly increasing for h > 1.

(iv) lim S(h?)? = 1.
p—0

(v) Lim S(h?)? = h for h > 1 and lim S(h?)? = h™ for 0 < h < 1.

p— p—ro°
Proof. Refer to [124, Lemma 2.47] for the proof. O

We show also a closed relation between the generalized Kantorovich constant and the
Specht ratio.

Theorem 2.17 Let h > 0 be given. Then

(nanQﬂé):st

r—0

vy g N EyAYE »
(ii) }%K(h =2 )_S(h ).

Proof. Refer to [124, Theorem 2.56] for the proof. O

Moreover, we have the following most crucial result on the generalized Kantorovich
constant.

Theorem 2.18 Let h > 1. Then
S(h) = e K0 = eK/(1>7

where K(p) = K(h,p) forall p € R.
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Proof. Refer to [124, Theorem 2.57] for the proof. O

We notice that the Kantorovich inequality can be interpreted as a converse of Jensen’s
inequality for f(¢) =¢~!:

(M +m)?

A1 <
< x7x> —  4Mm

(Ax,x)~L.
We consider a difference type converse of the Kantorovich inequality:

Theorem 2.19 Let A be a positive operator such that mly < A < My for some scalars
0<m<M. Then

M — 2
(A*1x7x> _ (Ax7x>’1 < m
Mm
for every unit vector x € H.
Proof. Refer to [124, Theorem 1.31] for the proof. O

In a similar way, we have the following result.

Theorem 2.20 Let A be a self-adjoint operator such that mly < A < Mly for some

scalars m < M. Then
M— 2
(A%x,x) — (Ax,x)* < %
for every unit vector x € H.

Proof. Refer to [124, Theorem 1.30] for the proof. O

It seems that a generalization of Theorem 2.19 and Theorem 2.20 is very difficult.
However, as an application of the Mond-Pecari¢ method, we can show a difference type
converse of Jensen’s inequality for convex functions:

Theorem 2.21 Let A be a self-adjoint operator such that mly < A < Mly for some
scalars m < M and f a real valued continuous convex function on [m,M|. Then

0 S (f(A)x7x> —f((Ax,x)) S ﬁ(m7M7f)
holds for every unit vector x € H, where

fM) — f(m)

BOn.u. ) =max { /0=

(=) ) = £0)50 € .
Theorem 2.22 Let A be a self-adjoint operator such that mly < A < Mly for some
scalars m(M and f a real valued continuous concave function on [m,M|. Then

ﬁ(vavf) < (f(A)x,x> _f(<Ax7x>) <0

holds for every unit vector x € H, where

Bt f) i { L)1)

B(m,M,f) = min T m (t—m)+f(m)—f(t):t€[m,M]}.
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If we put f(r) =1? for p € R in Theorem 2.21 and Theorem 2.22, then we have a
difference type converse of the Holder-McCarthy inequality.

Theorem 2.23 Let A be a self-adjoint operator such that mly < A < Mly for some
scalars m < M. Then

0< <Apx7x> - <Ax7x>p < C(m7M7p) fOV all p € [07 1]

and
C(m,M,p) < (APx,x) — (Ax,x)? <0  forall p €0,1]

for every unit vector x € H, where

P
MP—mP \TT  MmP — mMP
n ) L o (2.38)

C(m,M,p)Z(p—l)(m M —m

for any real number p € R.

We call C(m,M, p) the Kantorovich constant for the difference . Let us collect the basic
properties of C(m,M, p):

Theorem 2.24 [et M >m > 0and p € R.

L
I

(i) Clm, M. p) = "Mg=lmZ {K (m, M, p) 7T — 1},
(ii) 0 < C(m,M,p) <MMP~' —mP~1) forall p > 1,
(iii) C(m,M,1) =0.

Proof. Refer to [124, Lemma 2.59] for the proof. O

If we put f(¢r) = logt, () = —tlogr in Theorem 2.22 and f(¢) = exp(¢) in Theo-
rem 2.21, then we have the following results.

Theorem 2.25 Let A be a positive operator such that 0 < mly < A < Mly for some
scalars 0 < m < M. Then

—logS(h) < (logAx,x) —log{Ax,x) <0

and
—log S(h){Ax.x) < (n(A)x.x) — n((Ax,x)) <0

for every unit vector x € H.

Theorem 2.26 Let A be a self-adjoint operator such that mly < A < Mly for some
scalars m < M. Then

Me™ — meM M _ am M .m
0<<eprx7x>—eXp(Ax,x><< e —me" e"—¢ (e e ))

M—m +M—m © e(M —m)

for every unit vector x € H.
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We shall give an estimate of the difference between the arithmetic mean and the geo-
metric one:

Corollary 2.2 For positive numbers xy,- - ,X, € [m,M] with M >m >0 and h = %,

x x ...x
> 1+x2+ n

Wx1xy Xp +D(m,M) (2.39)
n
where
D(m,M) =60M+(1—60)m—Mm'~® and 6=1o ho1y 1 (2.40)
O -8 logh ) logh’ '

We call D(m,M) the Mond-Shisha difference. Notice that (2.39) represents a differ-
ence type converse inequality of the arithmetic-geometric mean inequality. Recall that the
logarithmic mean L(m, M) is defined for M > m > 0 as

M—m

LmM)=———""
(m, M) logM — logm

(m<M) and L(m,m)=m. (2.41)

Lemma 2.4 The Mond-Shisha difference coincides with the following constant via the
Specht ratio: If M >m >0 and h = % > 1, then

D(m? ,MP) = L(m? ,M")logS(h,p) (2.42)
forall p e R.

Proof. Refer to [124, Lemma 2.51] for the proof. O

The following result is considered as a continuous version of Mond-Shisha result
(2.39).

Theorem 2.27 Let A be a positive operator on H satisfying Mly > A > mly > 0. Put
h =" Then the difference between (Ax,x) and exp(logAx,x) at a unit vector x € H is not
greater than the Mond-Shisha difference:

(Ax,x) —exp(logAx,x) < D(m,M),

where D(m,M) is defined in (2.40) and the equality holds if and only if both m and M are
eigenvalues of A and

—Jiotog(BLy Loy flog (A1)
T & logh ) Togh " g logh ) Togh ™

where ey, and ey are corresponding unit eigenvectors to m and M, respectively.

Proof. Refer to [124, Theorem 2.52] for the proof. O

Finally, in a general situation, we state explicitly the heart of the Mond-Pecari¢ method:
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Theorem 2.28 Let f : [m,M] — R be a convex continuous function, J an interval such
that J C f([m,M]) and A a self-adjoint operator such that mly <A < MIy for some scalars
m < M. If F(u,v) is a real function defined on J x J, non-decreasing in u, then

Pl @), ()] < max F | LI )k g )

= ergfolﬁ]F [0/ (m)+(1—8)f(M), f(6m+(1—6)M)]

for every unit vector x € H.

This book is dedicated to applications of the Mond-Pecari¢ method for convex func-
tions. One of the most important points of the Mond-Pecari¢ method is to offer a totally
new viewpoint in the field of operator theory.

2.4 Notes

The idea of the Mond-Pecari¢ method is firstly proposed by Nakamura [237] for p = —1 in
1960, afterwards by Ky Fan [48] for any integer p # 0,1 in 1966. Finally the principle of
the Mond-Pecari¢ method as Theorem 2.28 is established explicitly by [214] for a vector
version in 1993, and [216] for an operator version, [221] for Hansen-Pedersen version and
[222] for multiple vector version.

Finally, we present the following A.N. Kolmogorov’s word. He said in a lecture that

“Behind every theorem lies an inequality.”

A.W. Marshall, I. Olkin and B.C. Arnold
Inequalities: Theory of Majorization
and Its Applications

Second Edition






Chapter

Order Preserving Operator
Inequality

This chapter is devoted to explain fundamental operator inequalities related to the Furuta
inequality. The base point is the Lowner-Heinz inequality. It induces weighted geometric
means, which serves as an excellent technical tool. The chaotic order logA > logB is
conceptually important in the discussion below.

3.1 From the Lowner-Heinz inequality to the Furuta
inequality

The non-commutativity of operators appears in the fact that the function ¢ — > is not
order-preserving. That is, there is a pair of positive operators A and B such that A > B and
A? # B?. The following is a quite familiar example;

21 10
= (1) #=(on)
This implies that the function ¢ — ¢ is not order-preserving for p > 1 by assuming the
following fact.

45
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Theorem 3.1 (LOWNER-HEINZ INEQUALITY (LH)) The function t — t? is order-pre-
serving for0 < p <1, i.e.
A>B>0 — AP > BP.

The essence of the Lowner-Heinz inequality is the case p = %:

A>B>0 — A2 >B?.
It is rephrased as follows: For A,B > 0,
ABPA <Iy —> ATBA? <Iy.

The assumption AB?A < Iy is equivalent to ||AB|| < 1. Thus, noting the commutativity
of the spectral radius, r(XY) = r(YX), we have

|AZBA?|| = r(A2BA?) = r(AB) < || AB| < 1.

The above discussion goes to Pedersen’s proof of the Lowner-Heinz inequality. As a
matter of fact, the following statement is true:
Let P be the set of all p € |0, %] such that A > B > 0 implies A*P > B?". Then P is convex.
So suppose that APB??AP < Iy and AYB*1A% < Iy, or equivalently ||[A?BP|| < 1 and
||BAY|| < 1. Then

|A"T* BPTaAT! | = (AT BPTIA"TY) = r(APTIBPTI) = F(APBPBIAY)

< [[APBP[[[|BIAY]| < 1.

This implies that if 2p,2g € P, then p 4 g € P, that is, P is convex.
Related to the case p = % in the Lowner-Heinz inequality, Chan-Kwong conjectured
that

A>B>0 = (AB*A)? <A2,

Moreover, if it is true, then the following inequality holds:
A>B>0 = (BA’B)? > B
Here we cite a useful lemma on exponent.
Lemma 3.1 Forp € R, (X*A’X)? = X*A(AXX*A)P~'AX for A > 0 and invertible X.

Proof. Tt is easily checked that Y*(YY*)"Y = Y*Y(Y*Y)" for any n € N. This implies
that Y*f(YY*)Y =Y*Y f(Y*Y) for any polynomials f and so it holds for continuous func-
tions f on a suitable interval. Hence we have the conclusion by applying it to f(x) = x?
and Y = AX. O

Consequently, the Chan-Kwong conjecture is modified in the following sense: If it is
true, then
3
A>B>0 — (AB*A)T < A3,



3.1 FROM THE LOWNER-HEINZ INEQUALITY TO THE FURUTA INEQUALITY

As a matter of fact, we have

)IBA

D=

(AB?A)i = AB(BA’B) % BA = AB((BA’B)~
<ABB 'BA=ABA < A°.

Based on this consideration, the Furuta inequality was established.

Theorem 3.2 (FURUTA INEQUALITY (FI)) IfA > B >0, then for each r > 0,

and

hold for p > 0 and g > 1 with
(L+r)g=p+r.

The domain (x) is drawn as in Figure 3.1.

P (l+r)g=p+r

(0,-r)

Figure 3.1: The domain (x)

47

(ii)

(*)

It is a quite important information on (FI) that the domain defined by (x) is the best

possible in the sense that it cannot extend. It is proved by Tanahashi [277]:

If p,q,r > 0 satisfy either (14 r)g < p+ror g < 1, then there exist A, B > 0 such that

A > B and
ptr

A" # (A5BPAS)T.

Professor Berberian said that Figure 3.1 is “Rosetta Stone” in (FI). Incidentally it is
notable that Figure 3.1 is expressed by gp—axis: Berberian’s interesting comment might

contain it.
Proof of (FI). It suffices to show that if A > B > 0, then

14r

(AZBPAT)er < AN
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It is proved for arbitrary p > 1 by the induction on r. First of all, we take r € [0, 1].

r D - r r r r r
< ASBY(BSB'BY) 7T BE AT = ASBAS <ASAAS = Al
Next we suppose that it is true for some r; > 0, i.e.

r 1+r

B = (A Brat)rim <altn = A,

Then for r € (0,1]
ptry 1+

3T A5\ Pt I+r
(Af By AT <A

where p; = ’fjr"rll Putting s = ry + (1 +r1)r=(1+r1)(14r) — 1, we have

1

(A3BPA3 )P <Al
This means that it is true for s € [ry, 1+ 2r;]. Hence the proof is complete. O

To make clear the structure of (FI), we give a mean theoretic approach to (FI).
The Lowner-Heinz inequality says that the function 1 is operator monotone for o €
[0,1]. It induces the o-geometric operator mean defined for o € [0,1] as

A#ty B=AI(A"1BA 2)%A2
if A > 0, i.e. A is invertible, by the Kubo-Ando theory [165].

For the sake of convenience, we cite a useful lemma which we will use frequently in
the below.

Lemma 3.2 ForX,Y >0anda, b e [0,1],
(i) monotonicity: X <Xy andY <Y, = X#, Y <X #, Y1,
(ii) transformer equality: T*XT #, T*YT = T*(X #, Y)T for invertible T,
(iii) transposition: X #, Y =Y #1_, X,
(iv) multiplicity: X #, Y =X #, X #, Y).
Proof. First of all, (iii) follows from Lemma 3.1, and (iv) does from a direct computa-
tion under the assumption of invertibility of operators.
To prove (i), we may assume that X, Y > 0. If Y <Yj,then X #, Y < X #, 1] is assured

by (LH) (and the formula of #,). Moreover the monotonicity of the other is shown by the
use of (iii).
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Finally (ii) is obtained by Jensen’s inequality (JI) which is discussed in Theorem 3.45.
We putZ =X 3T. Then it follows from (JI) that

T*XT #, T*YT = Z°Z #, T*YT
=|z|(|zI"'T*YT|Z|7")" ]
a
=1z(1z1"'z (xrxh)ziz| ) |z
> 7 (X YX 1)z
=T*X? (X ¥X 2)°X:T
=T (X #, V)T,

because Z|Z|~! =V is the partial inequality in the polar decomposition of Z and so a
contraction. ]

By using the mean theoretic notation, the Furuta inequality has the following expres-
sion:
(FD) IfA> B >0, then

A" #14 BP<A for p>landr>0. 3.1

pFr

Related to this, we have to mention the following more precise expression of it. We
say it a satellite inequality of (FI), simply (SF).

Theorem 3.3 (SATELLITE INEQUALITY (SF)) IfA > B > 0, then

A7 #1.,, BP<B<A for p>landr>0. 3.2)
p+r
Proof. As the first stage, we assume that 0 < r < 1. Then the monotonicity of #, (¢ €
[0,1]) implies that
A" #1, BP<B " #,., B" =B.

p+r p+r

Next we assume that for some r > 0,

A>B>0 — A"#.., BP<B<A
p+r

holds for all p > 1. So we prove that it is true for s = 1 4 2r. Since A > B > 0 is assumed,
we have

A l#, pr

IN

B

2 )
p+1

so that ,

By = (AZBPA?)7T <ATBA? <A =A,.

By the assumption, it follows that for p; > 1

_ 1 1
A7 #.1., B <Bj <A2BAZ.

p1+r



50 3 ORDER PRESERVING OPERATOR INEQUALITY

1
%, we have

Arranging this for p; =

oy 1 1 1 1
A #2(1+r) A2BPA2 <By <A2BA2.

pHI+2r

Furthermore multiplying A~? on both sides, it follows that for s = 2r + 1

A" #.., B" <B,

p+s

as desired. O

3.2 The Ando-Hiai inequality

Ando and Hiai proposed a log-majorization inequality, whose essential part is the following
operator inequality. We say it the Ando-Hiai inequality, simply (AH).

Theorem 3.4 (ANDO-HIAI INEQUALITY (AH)) If A #4 B < Iy for A,B > 0, then
A" #y B" <Iy forr>1.

Proof. 1t suffices to show that A” #, B" < Iy for 1 <r <2. Putp=r—1¢€]0,1] and

C= A_%BA_%. Then, since the assumption A #,, B < I is equivalent to C* < A~ land so
C~% > A, it follows from Lemma 3.1 that

ATIBTATY = A"I(AZCAT)ATI = C3(CIACT)PA™?

— Cl+(l—0€)p.

D=

<CCICTOCTYPC
Hence we have

AT #o B =AY (AP # A" IBTATT)AT < AT(COP #, C1H1-0IP)A2
1
2

—ArcUHPIa—argh — ATCUAT < ASATIAY = 1.
O

Based on an idea of the Furuta inequality, we propose two variables version of the
Ando-Hiai inequality:

Theorem 3.5 (GENERALIZED ANDO-HIAI INEQUALITY (GAH)) ForA,B>0and o €
[0,1], if A #¢ B < Iy, then

AT# o B <Iy for rs>1.

or+(1—-a)s

It is obvious that the case r = s in Theorem 3.5 is just the Ando-Hiai inequality.
Now we consider two one-sided versions of Theorem 3.5:
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Proposition 3.1 ForA,B>0and o € [0, 1], if A #¢ B < Iy, then

A"# o B<Iy for r>1.

artl—o

Proposition 3.2 ForA,B>0and o € [0, 1], if A #¢ B < Iy, then

A# o B <Iy for s>1.

o+(1-a)s

Next we investigate relations among these propositions and Theorem 3.5.
Theorem 3.6 (1) Propositions 3.1 and 3.2 are equivalent.
(2) Theorem 3.5 follows from Propositions 3.1 and 3.2.

Proof.
(1) We first note the transposition formula X # ¥ =Y #g X for 8 = 1 — c. Therefore
Proposition 3.1 (for ) is rephrased as follows:

B#BASIH — B‘Y#LASIH for s> 1.

Bs+o

Using the transposition formula again, it coincides with Proposition 3.2 because

1 Bs o o
Bs+a PBs+o (I-a)s+a

(2) Suppose that A #, B < Iy and r,s > 1 are given. Then it follows from Proposition 3.1

that A" #q, B < Iy for oy = 5 -7—;. We next apply Proposition 3.2 to it, so that we have

In>A"# o B =A"# o B

—_ar___ )
o +(T—oy)s art+(1-a)s

as desired. O

We now point out that Proposition 3.1 is an equivalent expression of the Furuta in-
equality of the Ando-Hiai type:

Theorem 3.7 The inequality in Proposition 3.1 is equivalent to the Furuta inequality.

Proof. For a given p > 1, we put @ = %. Then A > B(> 0) if and only if

A~ #, By <1y, for B, = A"2BPAE. (3.3)

If A > B > 0, then (3.3) holds for A,B > 0, so that Proposition 3.1 implies that for any
r>0

g A% o B =A@ B =AUt 4 ASBPATT

P p+r p+r
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Hence we have (FI);
Air #l+r Bp S A

p+r

Conversely suppose that (FI) is assumed. If A~! #,, By < I, then A > (A%BIA% )* =B,
where p = L. So (FI) implies that for rj = r—1>0

A>A " #y BP=A"0D#_ ATBIAL.

p+ry

Since we have Proposition 3.1. O

r — or
p+r—1 " I+or—a’
As in the discussion as above, Theorem 3.5 can be proved by showing Proposition 3.1.
Finally we cite its proof. Since it is equivalent to the Furuta inequality, we have an alterna-
tive proof of it. It is done by the usual induction, whose technical point is a multiplicative

property of the index % of # as appeared below.

Proof of Proposition 3.1. For convenience, we show that if A~ #, B <y, then

A"# o B<Ily for r>1. (3.4)

(I—o)+or
Now the assumption says that
C% = (AZBA?)* <A.
For any € € (0, 1], we have C*¢ < A? by the Lowner-Heinz inequality and so

A i B=A"(A #au.0 ATBAY)A

(I—a)+oa(l+e) T+oe

CATI(C % H gy AT =AICA T = A #y B<Iy.

T+ae

Hence we proved the conclusion (3.4) for 1 < r <2. So we next assume that (3.4) holds
for 1 < r < 2" Then the discussion of the first half ensures that

(A7) # _an_ B<ly forl<rn <2, where oy = %
Thus the multiplicative property of the index
ory B orry
(I—o)+oyry  (1—a)+orr
shows that (3.4) holds for all r > 1. O

Here we consider an expression of (AH)-type for satellite of (FI): Suppose that A~ ! #,,
1
B < Iy and put o = 11—7 It is equivalent to C = (A%BA%)ﬁ < A. So (SF) says that

A" #., CP<C, or AD#,, B<AICA T =A"'#, B.

1
p+r p+r P

Namely (SF) has an (AH)-type representation as follows:
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Theorem 3.8 Let A and B be positive invertible operators. Then

A#gB<Iy = A #_o B<A#yB(<Iy) for r>1.

ar+I—o

As an application, we have the monotonicity of the operator function induced by
(GAH):

Theorem 3.9 IfA #, B<IforA,B >0, then

flrs)=A"#__ o B’

or+(1-o)s

is decreasing forr, s > 1.

Proof. Tt suffices to show that f is decreasing for 7>1 because fy 4 5(7,8)=fi—a,BA(S,7).
So we fix s > 1.
By (GAH), it follows that for each » > 1

or

s) =A" #4 B<Iy, where o =—— .

firs) o= T arr (1—a)s
For arbitrary r, > r, we put r; = 22 > 1. Then we have

Fra,s) =A# B = (A1 #  an B <A #q,B' = f(rs)

ary+(1-a)s ori+(I1—aq)

by Theorem 3.8. O

3.3 The grand Furuta inequality

To compare (AH) with (FI), (AH) is arranged as a Furuta type operator inequality. As in
the proof of (AH), its assumption is that

Bi=C%=(A"2BA 2)* <Al =4,

Replacing p = ™!, it is reformulated that

=
™

A>B>0 — A" > (A%(A—%BPA—%)"A%) )

forr>1andp>1.

Moreover, to make a simultaneous extension of both (FI) and (AH), Furuta added vari-
ables as in the case of (FI). Actually he paid his attention to A2 in (T), precisely, he
replaced it to A~ 2 (t €10,1]). Consequently he established so-called the grand Furuta
inequality, simply (GFI). It is sometimes said to be a generalized Furuta inequality.
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Theorem 3.10 (GRAND FURUTA INEQUALITY (GFI)) IfA > B> 0andt € [0,1], then
1— H»r
(45 (a7 bprahyas| T < gt
holds for r >t and p,s > 1.

It is easily seen that
(GFD) fort =1, r=s < (AH)
(GFD) fort =0, s =1 < (FI).
Proof of (GFI). We prove it by the induction on s. For this, we first prove it for 1 <s <
2: Since (X*C*X)* = X*C(CXX*C)*~'CX for arbitrary X and C >0, and 0 <s—1 <1,
(LH) implies that

r—t

Ar/Z( t/ZBpA t/Z)SAr/Z —B%(BgA—th)s—lBgA%t
<ATBY(BIB BTy BIAT = AT B stiAT

Furthermore it follows from (LH) and (FI) that

1—t+r

{Ar/Z( A—1/2BPA— t/2) Ar/Z} = o S{ArTB< s+t g 5t }(,; DT o gLt

by noting that (p —#)s+14 (r—t) = (p —t)s+r. Hence (GFI) is proved for 1 <s <2.
Next, under the assumption (GFI) holds for some s > 1, we now prove that (GFI) holds
for s+ 1. Since (GFI) holds for s, we take » = ¢ in it. Thus we have

A 2 {AI/Z (A—l/zBpA—l/z)SAl/z} (P*’I)Ht .

1
Put C = {A"/2(A~1/2BPA~1/2)SA!/2} =157 | that is, A > C. By using that s > 1 if and only
if1 < # < 2 and that (GFI) for 1 <s <2 has been proved, we obtain that

L—t+r

AL > { AT (A2t g1y 55 Ar/2} (05—} (D)7

— {Ar/2(Aft/ZC(pft)s+tAft/2)%Ar/2}(I’*i)i(%)ﬂ

1—t+r

= {Ar/Z(A—I/Z{AI/Z(A—t/ZBpA—t/Z)sAt/z}A_t/z)s+1Ar/2} G
= {Ar/Z( A~2BP A~ t/2)s+1Ar/2}%+l)

This means that (GFI) holds for s+ 1, and so the proof is complete. O

Next we point out that (GFI) for # = 1 includes both: the Ando-Hiai and Furuta in-
equality.

Since the Ando-Hiai inequality is just (GFI; t = 1) for r = s, it suffices to check that
the Furuta inequality is contained in (GFI; r = 1). As a matter of fact, it is just (GFL; t = 1)
fors=1.
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Theorem 3.11 Furuta inequality (FI) is equivalent to (GFI) fort =s = 1.
Proof. We write down (GFI; ¢ = 1) fors =1: If A > B > 0, then

|43 (a7 bBrab)as| " <ar
for p,r > 1, or equivalently,
A Dy, Br<a

P
for p,r > 1. Replacing r — 1 by ry, (GFI; t = 1) for s = 1 is rephrased as follows: If
A > B >0, then
A" #1, BP <A

pFry

for p > 1 and r; > 0, which is nothing but the Furuta inequality. O

Furthermore Theorem 3.5, the generalized Ando-Hiai inequality, is understood as the
case r = 1 in (GFI):

Theorem 3.12 (GFI; t = 1) is equivalent to Theorem 3.5.

Proof. (GFI; t = 1) is written as
A>B>0 — [A% (A"2BPA=2) AR T < A" (p,rs > 1).

Here we put
1 _1 _1
oa=—, Bj=A"2BPAT 2,
p
Then we have

A>B>0 —= A #, AIBPA I <Iy — A '#,B, <Iy
P

and for each p,r,s > 1
[AZ (A—%BPA—%)SA%] e < AT
e ATTH . (ATIBPATIY <Iy
(p—1)s+r

<~ A"#_o B} <Iy.
or+(1—-a)s

This shows the statement of Theorem 3.5 (GAH). O

Next we consider some variants of (GFI), which are useful in the discussion of Kan-
torovich type inequalities.

Theorem 3.13 I[fA > B >0, then

(p+t)s+r
q

(]
Q=

> (A5 (abBrat)’at)
holds forall p, t, s, r >0and g > 1 with (p+t+r)g> (p+1t)s+rand (L +t+r)g >
(p+it)s+r.



56 3 ORDER PRESERVING OPERATOR INEQUALITY
Proof. First of all, we may assume p > 0. Now the Furuta inequality says that

Pt i i L
Aj=AT >B = (AfB”Af) e

p+t

holds for ¢ > 0, where ¢; = max{1, o

}. Applying the Furuta inequality again, we have

r1+n

rl Vl l
F oA \a
Al q Z(A12311A12> ,

that is,
(p+1)(py+ry) p)r| Py

( (p+1)r 1
A qq1 2 (A 2q; (A%BPA%)‘“A pqu 1)‘]7

for all py, r; >0and g > 1 with (1+r)g > p1 +r1. So we take p; = sq; and r| = ~LL

Pt
Since (1+r1)g > p1 + r1 is equivalent to the condition that (p+¢+r)q > (p+1)s+r and
(L+zt+7r)qg> (p+1t)s+r, the statement is proved. O

In the remainder, we reconsider (GFI). For this, we cite it by the use of operator means.
For convenience, we use the notation f; for the binary operation

Aty B=A(A"2BA 2)'AT for s ¢[0,1],
whose formula is the same as #;.

GRAND FURUTA INEQUALITY (GFI)

A>B>0,t€(0,1] = A7# ., (A'4,BP)<A(r>t;p,s>1)

(p—t)s+r
This mean theoretic expression of (GFI) induces the following improvement of it.

SATELLITE OF THE GRAND FURUTA INEQUALITY (SGF)

A>B>0,t€(0,1] = A""# ., (A'4;B?)<B(r>t; p,s>1)

(p—t)s+r

Here we clarify that the case + = 1 is essential in (GFI), in which SGF) is quite mean-
ingful. As a matter of fact, we prove that (SGF; t=1) implies (SGF) for every ¢ € [0, 1].

For the reader’s convenience, we prove (SGF). For this, the following lemma is needed,
which is a variational expression of (LH).

Lemma3.3 [fA>B>0,r€0,1]and 1 <s<2, then
A C<B'§ C
holds for arbitrary C > 0, in particular,
Al by BP < B(p—)s+t

holds for p > 1.
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Proof. Since A~ < B~ by (LH), we have
Al C=C(C ' #, AC<C(C'#,_1B"C=BtC.
Similarly we have
Aty BP =BP(B P #,_ A"")B? < B"(B™P #,_, B~")BP = B(P~")s+1,
O

Here we give a short comment on the first statement in the above lemma: Suppose that
A>B>0andr € [0,1]. Then
A, C<B g C

holds for arbitrary C > 0 and 1 < s < 2. Then taking C = B’ and s = 2, we have
A'pB <B' B =§,
so that BPA™'B' < B!, or A" > B'. That is, it is equivalent to (LH).
More generally, we know the following fact.

Lemma 3.4 IfA>B>0andt € [0,1], then
1
(AthSBp)(pft)H»t <B<A
holds for p,s > 1.
Proof. We fix p > 1 and t € [0,1]. It follows from Lemma 3.3.5 and (LH) that
1
A>B>0 = B = (A'4,BP) 0+ <B<A (%)

for s € [1,2]. So we assume that (xx) holds for some s > 1, and prove that

1

B, = (Aluszp)ﬂ[)ft).H»r <B; <B.
Actually we apply (T) to By < A. Then we have
1
(A" BY")2Pi=0% < By < B, where p; = (p—1)s+t,

and moreover

1

S— T 1
(AtuzBll?l ) 2(p -0+t — {Atuz (Alupr):| (p—1)2s+t — (At quBP) (p—1)2s+1 — B>,

which completes the proof. ]

Under this preparation, we can easily prove (SGF) by virtue of (SF) in Theorem 3.3:
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Proof of (SGF). For given p,t,s, we use the same notation as above; p; = (p —1)s+1

1
and By = (A"j;BP)71. Then Lemma 3.3.6 implies that B; < B < A. Hence it follows from
(SF) for By <A and r; = r—t that

AT ., (A'gBP) = AT 1. B < By <B.

(p—t)s+r p1tr1
O
It is shown that (SGF; t = 1) is essential among (SGF; ¢ € [0, 1]), in which (LH) com-
pletely works. That is,
Theorem 3.14 (SGF; ¢ = 1) implies (SGF; t) fort € [0,1].
Proof. Suppose that forA > B > 0,

AT (A4,BP)<B

(p—1)s+r

holds for r > 1.
We fix arbitrary r € (0,1). As A" > B’ by (LH), we have

(At)—tr-i-l#

P
-

(A"4B") < B'

A
s+ 7

~i~

for r > t. It is arranged as

—r+t - t P\ < B!
A #(p—r).r+;' (A h.YB ) — B i

or equivalently,
(At BP)# (, ny A7 < B.

(p—t)s+r

Therefore it follows from Lemma 3.3 that for s € [1,2]
AT e (AT BP) = (A'BP Y (g AT

(p=t)s+r (p—t)s+r

= (5B 1o { (AEB Y e AT

(p—1)s (p—t)s+r

IN

(A"5sB”)# (p-s—1-) B'

(-0)s

=B'# 1., (A'4,BP)

0)s

S Bt#ﬁ3<p7t)x+l —B.
=i

Namely we have
A>B>0 = A""# 1., (A'hBP)<B (k%)

(p—t)s+r

for1 <s<2,r>tandp>1.
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Next we assume that () holds for some s > 1. Then taking r = ¢, we have
B Z (AIHSBP) (pftl)Sth .
1
Put C = (A"4,BP) 7= that is, (A >)B > C. By (xx) for L € [1,2], we obtain
C>A M L, (A"l CP1)H)

(p—t)s+1—1) (3L )4r $

AT (Atﬂm (AlbsBp))
(p—1)(s+1)+r s
= A7r+l# 1—t+r (At hS"rpr)'
(p—t)(s+1)+r
Hence we have
A% . (A'h1BP)<C<B.

R E
O
Remark 3.1 (GFL; t = 1) implies a variant of (GFI) that
A>B>0,tec[0,1]
= AT (ABBY) SAHILBY (r20ps> 1)
Here we note: (1) The caset =0 and s = 1 is just
AzB>O:>A_r#%Bp§B(le,rEO). (SF)
(2) The case t = 1 and r = s is the Ando-Hiai inequality:
X#oaY <Iy = X'#Y" <Iyg (r>1). (AH)

(Replace X =A"', Y — A" IBPA~ % and ot = 11_7.)
However, it easily follows from (SGF) because

A% 1, (A BP) < B=B'#,

(p—t)s+r

BP < A'#,., B

I
i\

~
]
L

under the same condition as in the above.

3.4 The chaotic ordering

We first remark that logx is operator monotone, i.e. A > B > 0 implies logA > logB by
(LH) and pr’l — logX for X > 0. By this fact, we can introduce the chaotic order as
logA > log B among positive invertible operators, which is weaker than the usual order
A > B. In this section, we consider the Furuta inequality under the chaotic ordering.
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Theorem 3.15 The following assertions are mutually equivalent for A, B > 0:

(i) A> B, i.e. logA > logB,
(i) A7 > (A4BPAR)} forp >0,

() 47> (AEBPAS) o for . 20
Proof.
(i) = (iii): First we note that (I + k’%x)” . X forX > 0. Since

logA logB

Ap=Iy+—2>B,=Ig+ >0
n

n

for sufficiently large n, the Furuta inequality ensures that for given p, r > 0
- nr nr | Atnr
AT > (AT B PA, )

or equivalently

L, r ro—1 _r_
AT > (A" B, T T

Taking n — oo, we have the desired inequality (iii).
(iii)) = (i1) is trivial by setting r = p.
(ii) => (i): Note that X"T*’H — logX for X > 0. The assumption (ii) implies that

AP — Iy _ (AEBPARYY — Iy ASBPAS — Iy AS(BP—1)AS AP Iy

p P p((A%BpAg)%+1H) p((AggpAg)%+1H>
Taking p — +0, we have

> logB +1logA

logA , that is, logA > logB.

So the proof is complete. O

Remark 3.2 The order preserving operator inequality (i) = (iii) in above is called the

chaotic Furuta inequality, simply (CFI). Here we note that (iii) = (i) is directly proved
as follows:
Take the logarithm on both side of (iii), that is,

" JogAtBPA®

rlogA >
g Z orr

for p, r > 0. Therefore we have

1 r r
logA > logA2ZBPAZ.
p

+r

So we put r =0 in above. Namely it implies that

1
logA > —logB? =logB.
p
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As in the chaotic Furuta inequality, Theorem 3.13 has the following chaotic order ver-
sion:

Theorem 3.16 IflogA > logB for A,B > 0, then

S
_—=

(p+t)s+r r
AT > (45 (atpratyat)

holds forall p, t, s, r >0and g > 1 with (t+r)q> (p+1t)s+r.

Proof. As in the proof of the chaotic Furuta inequality (i) = (iii), we have

logA log B
A,1:IH+%ZBH=IH+%>0

for sufficiently large n. Thus Theorem 3.13 implies that

(prtty)s+ry 1 1

A z(An%'(AﬂBnplAmfAn%)

e,

holds for all py, #1, s, r1 > 0and g > 1 with (1; +ry)g > (p1 +11)s+ ry. Putting p; = np,
t; = nt and r; = nr, we have

n((p+t)s+r

ac = (a5 A8 A )

Q=

for all p, ¢, s, r >0 and ¢ > 1 with (t +r)qg > (p+1)s+ r. Finally, since A,” — A and
B," — B, we have the desired inequality by tending n — oo. O

The chaotic Furuta inequality (CFI), Theorem 3.15 (iii), is expressed in terms of the
weighted geometric mean as well as the Furuta inequality (FI) as follows:

A>B>0 = A"#_ B"<Iy (CFI)
prr

holds for p > 0 and r > 0.
For the sake of convenience, we cite (AH): For o € (0,1)

A#g B<Iy = A #,B <Iy (AH)

holds for r > 1.

Theorem 3.17 The operator inequalities (F1), (CFI) and (AH) are mutually equivalent.

Proof.
(CFI) = (FI): Suppose that (CFI) holds. Then we prove (FI), so we assume that A > B >
0. We have

A7 #,, BP=BP #p1 A_rzBp#Ll (Bp #% A_r)
P prr

p+r p+r

=Bl #,_, (Air#f BPY<B’#,_1 Iy =B<A,
p=1 7

p

which means that (FI) is shown.
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(FI) = (AH): Suppose that (FI) holds. Then we prove (AH), so we assume that
A #y B < Iy and r > 0. Then, putting C :A’%BA’% and p = é > 1, we have
1
Bi=(A"2BA )% =Cr <A l=A,.
Applying (FI) to A| > By, it follows that for p > 1,

A7 #1 BY <By <A;.
p+r
Summing up the above discussion, for each p > 1,

A# B<Iy — A" #,., A 2BA"2 <A~ or A" #,., B<Iyforr>0.
P p+r

p+r

Note that
B#, AT =A%, B<Iy

p+r ptr

holds. That is, we can assume this and so apply it for g = % > 1. Hence it implies that

IH 2 Br+1 #m Ar+1'
q+r

. I+r _ 1
Since 1 — —p1+'r =5
Iy >B it AT =Art 4, Bl
- q+r P
Namely we obtain (AH).

(AH) = (CFI): Suppose that (AH) holds. Then we prove (CFI), so we assume that
A > B> 0and p,r > 1 because it holds for 0 < p,r < 1 by (LH). For given p,r > 1, we

—_ _r =r
put o = = and r; = e Then we have

A" # n BS<A'#r A=Iy.

I+r T+ry

Here we apply (AH) to this and so we have

Iy>A""P# np BP=A""#_. BP,

prrip ptr

as desired. O

Here we present an interesting characterization of the chaotic ordering.
Theorem 3.18 The following assertions are mutually equivalent for A,B > 0:
(i) logA >logB,
(ii) For each & > 0 there exists an o = oig > 0 such that (€%A)* > B,
The proof of Theorem 3.18 is not given here, but its essence is shown as follows:

Theorem 3.19 IflogA > logB for A, B> 0, then there exists an o. > 0 such that A% > B*.
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Proof. Since logA —logB > 2s > 0 for some s > 0, there exists an & > 0 such that

=1

h

<s
J

—logx

for 0 < h < a, where J is a bounded interval including the spectra of A and B. Hence we
have

A% —1, B* —1
0< H—logAgs, 0< H—longs7
SO
A% _ B© Aa_IH Ba—IH
= —logA logA —logB — —logB
o ( o og >+ og og ( o og)
B% —1,
ZlogA—logB—( o H—logB)
B* —1
>logA —logB — H il —logB
o J
>2s—s=s,
thatis A%* — B* > ots > 0 is shown. O

Related to this, there raises the problem: Does logA > log B imply that there exists an
o > 0 such that A* > B*?

Example 3.1 Take A and B as follows:

amo (S 0o v (B ()0

[\S) OS]

Then we have

logA = (\\2 f) and logB = (8 _02>,

so that logA > logB is easily checked.
On the other hand, putting x = e% for o0 > 0,

det(A* —B%) = —x(x+1)(x— D*(2* +x+2) <0

forall x > 1. Hence A* > B* does not hold for any o > 0.

Concluding this section, we mention some operator inequalities related to (CFI).

Theorem 3.20 Let A and B be positive invertible operators. Then the following state-
ments are mutually equivalent:

(1) logA <logB.

(2) A~ ## BP > Iy for p, r > 0.
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(3) A" #5., B1’2B5f0r177 r>0and0< 6 <p.

p+r

(4) The operator function f(p) =A~" ## BP is increasing on p.

Proof.
(1) <= (2):
(2)=(3):

()= (2):
(3) = “:

4) = (2):

It follows from (i) <= (iii) in Theorem 3.15.
By using Lemma 3.2, we have

A o B =Bty s AT =B #, s (BT p A7)

p+r pEr P
=BP#, 5 (A" #_ BP)<BP#,; Iy=B°.
P p+r 7

It is trivial by putting 6 = 0.
By using (iv) of Lemma 3.2, we have

flpre)=AT# o BV

pretr

:A_r #'7 (A_r# ptr BP+£)

ptr pretr

>A""#_ B" = f(p).

It is obtained by f(p) > f(0) = 1. O

3.5 The chaotically geometric mean

We consider the monotonicity of the operator function for a fixed pt € [0,1] and A,B > 0

defined by

F(s)=((1 —u)A“'—i—uB“')% for s € R.

Lemma 3.5 Ler F(s) be as in above for a fixed u € [0,1] and A,B > 0. Then

(1) F(s) is monotone increasing on [1,0) and not so on (0, 1] under the usual order.

(2) F(s) is monotone increasing on R under the chaotic order. Consequently there exists
F(0)=s— ]hnéF(h) and
f1—

F(O) _ e(l—u)logA+ulogB'
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We call it the chaotically u-geometric mean for A, B > 0 and denote it by A B, so
AO”B — e(lf/,t)logAer logB.
Proof of Lemma 3.5. We first note that the function x — x" is operator concave for
relo,1].
(1) Ift >s>1,thenr =2 € (0,1] and so
(1= p)A +uB)" > (1— p)A® + pB'.

Hence (LH) for 1 implies that F(t) > F(s).
Next a counterexample to the latter for p = % is given by

3 3
21 21

() =)

1 14 14
Fll)=34+B)= (14 20)

/1413
S \13 14 )
1 01
r-r(D)=(01) 20
(2) We show that log F(s) <log F(r) for s <t with s,z # 0. We first assume that 0 < s <1.

Since x" is operator concave for r € [0,1] and logx is operator monotone on (0,eo), it
follows that

Then we have

and

7 N
[OSHINE
N—
Il
7N
N =
~—
S
[
+
oo}
=
S~—
N—
(9%}
Il
N
— N
o =

so that

s

log((1—p)A"+uB')" >log((1— pu)A"+uB'),

so that
logF(t) > logF(s).

The case s < ¢ < 0 is similar to the above.
‘We now prove the second assertion. It follows from the concavity of logx and the Krein
inequality that

(1—u)logA+ plogB = %((l —u)logA’ + ulogB')

((1—w)A"+uB')

| =

1
< ~log((1— A"+ uB') <

Al —1 B —1
= (1-p) = +pu=——" = (1-p)logA + plogB (t — +0).
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Moreover it follows that forr = —s < 0

—1
_ _ -1 —1 _
FA,B(t) FA*I,B*I( S) 1 e(l 1)logA™ ' +ulogB e(l /,t)logAerlogB.

Therefore there exists the limit s — lirréF (t) and it is F(0) = e(1~#)logA+plogh,
11—

Consequently we obtain that if s < 0 < ¢, then
logF(s) <logF(0) <logF(r),
and that F () is monotone increasing on R under the chaotic order. O

Remark 3.3 (1) On the other hand, we note that X" is operator convex for r € [1,2].
So, if 0 <s<t<2sandt > 1, then F(s) < F(t). For example, we have F(s) < F(1) for
J<s<L

(2) Itis proved that F(s) converges to A ;B unifromly.

We recall that p-arithmetic mean and p-harmonic mean are denoted by
AVyB=(1—p)A+uB and Ay B=((1—p)A~"+uB~1)~!, respectively.
Theorem 3.21 Let A,B > 0 and p € [0,1]. Then both (A" V B’)%
converge to AQ B as t — +-0. Consequently

and (A" 1, B')t

Proof. The first assertion follows from Lemma 3.5 and the second one does from the
well-known fact that
A"l B <A #,B <AV, B.

Remark 3.4 Theorem 3.21 is closely related to the Golden-Thompson inequality
K| < |lefeX||  for self-adjoint H, K
and its complementary inequality
(@ # oPK) || < [Jolt—IA 1|
for self-adjoint H, K, p > 0 and p € [0,1].

As an application of the chaotically geometric mean, we have three operator version of
the Furuta inequality.

Theorem 3.22 Let A,B,C > 0and p € [0, 1]. Then the following statements are mutually
equivalent:

(1) logA <log(B$uC),
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(2) BBV, C §A"'#;i_; (B"V, C") forr>0andt>s>0.
(3) Foreachr,s>0, f(t1)=A"" Hawr (B' Vy C') is an increasing function of t > s.
+r

Proof.
(1) = (2): We note that (1) is equivalent to logA < log(B' V C’)% for ¢ > 0 by the
preceding theorem. Therefore (2) follows from Theorem 3.20.
(2) = (3): Suppose that (2) holds. By Theorem 3.20 again, we have

A7 # e (BTEV, CF8) > (BHEV, C1H8)e,

t+e+r

so that

fl+e)=A""#e (A" # 1 (B2 VvV, C))

t+e+r

_ _t _
> A s (BT VOO 2 A e BV, C) = f(0),

where the second inequality is ensured by Jensen’s inequality for the function x#+z.

(3) = (1): If (3) holds, then f(s) < f(¢) for s <. It implies (1) by Theorem 3.20, too.
O

The following theorem is a complement of the preceding theorem.

Theorem 3.23 Let A,B,C > 0and p € [0, 1]. Then the following statements are mutually
equivalent:

(1) logA > log(B$uC),
(2) BBl C* <A Hsir (B 1y C") forr>0andt>s>0.
(3) Foreachr,s>0,h(t)=A"" #ir (B' !y C") is a decreasing function of t > s.

Proof. We note that (1) is equivalent to logA~! <log(B~'¢{,C~!) and h(r) =
hapc(t) = fy-1 g1 c-1(2)"!. So we have the conclusion by the preceding theorem. O

3.6 Generalized the Bebiano-Lemos-Providéncia
inequalities

It is known that the Lowner-Heinz inequality (LH) is equivalent to the Araki-Cordes in-
equality (AC):

JasBat| < |latBaly| (AC)
for0<r <1,



68 3 ORDER PRESERVING OPERATOR INEQUALITY

As a matter of fact, it is easily proved as follows: Let 7 € (0, 1) be fixed. Suppose that
(AC) holds for #, and that A > B > 0. Since A"2BA~2 < I, we have

[A72B'A2 || <[[A72BA™Z|" <1,

so that A“2BIA~2 < | , or B" < A’. Conversely assume that (LH) holds for 7, and put
||A_%BA_% | =b. Then A > 2 and so A" > (£). Hence it follows that 5 > A"IBA"S
and 1 1 t t
[A72BA™2 | =0 > [AT2B'A2]].
Recently, Bebiano, Lemos and Providéncia showed the following norm inequality, say
the BLP inequality, which is an extension of the Araki-Cordes inequality (AC) in some
sense.

Theorem 3.24 (BLP) IfA,B > 0, then

141 141

IATBAT | < [lAZ(A3BA3)fAT| (BLP)
foralls>1t>0.

The following operator inequality is corresponding to (BLP):
ForA,B>0andt >0,

A#:B* < A" forsomes>t =— B < A" (3.5)

Here replacing B by B , and putting p = 3(> 1) in (3.5), it is rewritten as follows.
Theorem 3.25 ForA,B>0

s

A%, BPTS < A”“'for somep>lands >0 — B p < AD. (3.6)
P

As in (BLP), our base is the Furuta inequality. Nevertheless, (BLP) can be improved
by reviewing as an operator inequality expression in Theorem 3.25:

Theorem 3.26 Let A and B be positive operators and s > 0. Then
AS#1BPYS < A forsomep>1 = BT < AP, (3.7)
p
Proof. We put
s . s 1 . s s
C=(A"2BPPA™2)r, or BPT=A2CPA2.
Then the assumption says that A > C > 0, and so the Furuta inequality ensures that
B = (A3CPAR )P <Al
That is, the desired inequality (3.7) is proved. O

Now we have a norm inequality equivalent to (3.7) in Theorem 3.26.
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Corollary 3.1 Let A and B be positive operators. Then

1+s I+s

pts 1 s s b1
[ B AT T < adaipreal)ial|
forallp>1ands > 0.
In addition, Theorem 3.26 has the following expression by the Lowner-Heinz inequal-

ity.

Corollary 3.2 Let A and B be positive operators. Then

AS#1BPTS < AYS forsome p>1lands>0 = BT < Al
P

fort €10,s), or equivalently

141 pts

AT B AR P < AR (A3BITAR )P A (3.8)

forp>1lands>t>0.

Remark 3.5 Replacing B by Bl%f, (3.8) is expressed as follows: For A,B >0

14t t(p

||ATBIAL2+—'H#++B}> < ||AZ(A%B 1++IS)A%)%A%H

forp>1lands>t>0. Thus if we take p = 7 for s > t > 0, then we have the original BLP

inequality (BLP) because pf::z) =1and ’?L‘Y) =s.

Next, we approach to (BLP) from the reverse direction. That is,

Theorem 3.27 The Furuta inequality is equivalent to the following norm inequality:

+5

t(p+s) 1+

||A%(A%B 77 A%)%A%H > HATBIA%”/’(M)

forp>1lands>t>0.

Proof. First of all, the proposed norm inequality is rephrased by replacing A to A~! as

follows:
p+s

A2 A 3BT A 3)FA Y| > AT BA

for p > 1 and s > ¢t > 0. Moreover, putting

t(p+s) 1 s s L4t

C:(A*%B I+ A’%)p7 or B’:(AZCI’AZ)PH7

it is also represented as

Lt Pt

Ja~3ca™d| > =¥ (a3 crad)iia- 3ol

forp>1lands>t>0.
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Hence it suffices to show that it is equivalent to the Furuta inequality, which follows
from rewriting the Furuta inequality by the help of the Lowner-Heinz inequality:

s s Lt
A>C>0 = A" > (A3CPA3)PS for p>1lands>t>0.

The way from Theorem 3.27 to Theorem 3.24 (the BLP inequality) is as follows:
We take p = ;5 > 1 in Theorem 3.27. Then
1+¢ t
+ _ U and p+s
p+s s p(l+1)

=1.

So we have (BLP)
|A2(ASB A3 )AL > A2 BA'Y | for s>1>0.

O

Now we return to (AC), which is the starting point of (BLP). It is easily seen that the
Araki-Cordes inequality

|AZB'A® || <[|(AZBAZ)|| for 0<t<1
is equivalent to the following reverse inequality:
IASB'AS | > ||(A2BAR Y| for ¢ > 1.

Inspired by this fact, we discuss appropriate conditions for which the reverse order of
the BLP inequality holds.

Theorem 3.28 For A, B >0,

141 141

IAFBAT| > |AT(ATBAT)IAT| (3.9)
holds forallt > s > 1.

More generally, the reverse inequality of the one in Theorem 3.27, the generalized BLP
inequality, is given by the following way.

Theorem 3.29 Let A,B>0and0 < p < 1. Then
1+s I+s

Ja'EBHA A5 > Ak (aiBria)rad

forall s > 0withs>1—-2p.
To prove it, Kamei’s theorem on complement of the Furuta inequality is available:

Theorem K. If A > B > 0, then for 0 < p < 1
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A'ap s BP <A for 0<t<p
p—t

andfor%gpgl
A'fi, BP<A for 0<t<p.

p—t

Proof of Theorem 3.29. 1t suffices to show that

B < A~UH) — Ab(AIBPHAY AL <1y (3.10)
forO<p<lands>0withs>1-—2p. So we put
Al :A7(1+A‘)’ Bl :BlJr.\"

Then (3.10) is rephrased as

+5

S P
Ai>B >0 = AIIH hl BIHS <A
I

for0 < p <1ands>0withs > 1—2p. Moreover, if we replace

s _p+ts

H=——- =
1 l+s7pl 1+S’

then we have ~=L = L and % < pi(<1)ifandonly if 1 —2p <'s, so that (3.10) has the

. p1—t; — p’ i
following equivalent expression:

A >B; >0 = Al h, BY<A; for 0<1 <pi.

P11
Since % < p1 < 1, this is ensured by Theorem K due to Kamei. O
Next we show that Theorem 3.28 is obtained as a corollary of Theorem 3.29.
Proof of Theorem 3.28.  We put p = 7 for t > s > 1. Then we have 1 —2p < s if

and only if H% <'s. Since s > 1 is assumed, 14%2 < s holds for arbitrary ¢ > 0, so that

Theorem 3.29 is applicable.
t

Now we take B = Blm for a given arbitrary B; > 0, i.e. B =B ¥. Then the Araki-
Cordes inequality and Theorem 3.29 imply that

1+t 1+t 1+s 14s 14t I+s

M oo lgs DS
JAFBAT | > 4B A = A A
Lois npts syt L Los o5t 1
> [[AZ(A2BPTAT)PAY|| = [|[AZ(A2B1AZ)5AT||,
which proves (3.9). O

Theorem 3.28 is slightly generalized as follows:
IfA, B>0andr >0, then

r+t r+t

[ATBAT| > AR AIBA%)s AL (3.11)

forallt >s>r.
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It is proved by applying Theorem 3.28 to A| = A", By =B and1; = £, s; = 2.
Finally we consider a converse inequality of the generalized BLP inequality which
corresponds to another Kamei’s complement: If A > B > 0, then for 0 < p < %

Ay BP <A’ for 0<t<p.
p—t

Theorem 3.30 Let A,B>0and0 < p < %. Then

Its Lts  (2pts)(p+s) 2p

JAT BISAE | 05 > (|APT3 (A3 BPTIAT) TR AP | (3.12)

forall0<s<1-2p.
Proof. The proof is quite similar to that of Theorem 3.29. We put

s _p+s

A=A B =B = —— p =,
1 1 1 P1 11s

Then Theorem K gives

A1 > B >0 = Al 1y, BY' <A,
P11

1
for0 <z <p; < 7> SO that

A—(1+s) > B1+s — A thﬂ BPtS <A—2(p+s)
P o

for 0 < s < 1—2p. Obviously, it implies the desired norm inequality (3.12). O

Remark 3.6 In Theorem 3.30, if we take s = 0, then we obtain the Araki-Cordes inequal-
ity
|A2BAZ|P > |APBAY|
for0<p< % Also it appears in (3.11) by taking r = 0. Actually we have
IAZBAZ| > [[(AZB°AD)S || = [|(A2BAT)|¢

fort>s>0.

3.7 Riccati’s equation

The following equation is said to be the algebraic Riccati equation:

X'B'X-T'X-X*T=C (3.13)
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for positive definite matrices B, C and arbitrary 7. The simple case 7 = 0 in (3.13)
X*B'x=cC (3.14)

is called Riccati’s equation by several authors. It is known that the geometric mean B # C
is the unique positive definite solution of (3.14). We recall Ando’s definition of it in terms
of operator matrix: for positive operators B, C on a Hilbert space,

B X
B#C:max{XZO, (X C) 20}. (3.15)

If B is invertible, it is expressed by

D=

B#C=B(B 2CB ?)2B?.

We first discuss a relation between solutions of Riccati’s equations (3.13) and (3.14), by
which solutions of (3.13) can be given. The following lemma says that (3.14) is substantial
in a mathematical sense.

Lemma 3.6 Let B be positive invertible, C positive and T arbitrary operators on a Hilbert
space. Then W is a solution of Riccati’s equation

W*B~'W =C+T"BT
if and only if X = W + BT is a solution of the algebraic Riccati equation
X*B'X-T"X -X'T =C.
Proof. Put X =W + BT. Since
X*B'X-T*X - X*T=W*B~'W —T*BT
we have the conclusion immediately. |

Next we determine solutions of Riccati’s equation (3.7.2):

Lemma 3.7 Let B be positive invertible and A positive. Then W is a solution of Riccati’s
equation
W'B'W =A
if and only if W is in the form of W = B UA? for some partial isometry U whose initial
space contains ranA?.
Proof. If W is a solution, then ||B_%Wx|\ = HA%xH for all vectors x. It ensures the
existence of a partial isometry U such that BIW = UA%W, ie.W=BUAz. a

Consequently, we have solutions of the algebraic Riccati equation (3.13).
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Theorem 3.31 The solutions of the algebraic Riccati equation (3.13)
X*B7'X -T*X-X'T =C.

is given by X = B%U(C—l— T*BT)% + BT for some partial isometry U whose initial space
contains ran(C + T*BT) .

In addition, the following result due to Trapp [283] is obtained by Lemma 3.6.

Corollary 3.3 Under the assumption that BT is self-adjoint, the self-adjoint solution of
the algebraic Riccati equation (3.13) is in the form of

X = (T*BT +C) # B+ BT.

Proof. The uniqueness of solution follows from the fact that A # B is the unique positive
solution of XB~1X = A. |

Next we will generalize Riccati’s equation. Actually it is realized as the positivity of
an operator matrix (‘5* ‘X) > 0 for given positive operators B and A. Roughly speaking,

it is regarded as an operator inequality W*B~!'W < A. As a matter of fact, it is correct if B
is invertible.

Lemma 3.8 Ler A be a positive operator. Then

(Ifi i) >0 ifandonlyif A>X'X.

Iy 0 (I O Iy X\ (Ig —X
0 A—X*X) \-X*Iy)\X*A 0 Iy )’

(IH X) >0 ifandonlyif A>X*X.

Proof. Since

it follows that

X" A
O

The following majorization theorem is quite useful in the below. For convenience, we
cite it.

Theorem 3.32 (DOUGLAS’ MAJORIZATION THEOREM (DM)) The following statements
are mutually equivalent:

(i) ranX Cran'Y.
(ii) There exists a constant k > 0 such that XX* < k*YY*.

(iii) There exists an operator C such that X = YC (and ||C|| < k if (ii) is assumed).



3.7 RICCATI’S EQUATION 75

Incidentally, the unicity of C in (iii) is ensured by the conditions that
(1) ||C|| = inf{k > 0; XX* <K*YY*}, (2) kerX =kerC, (3) ranC C ker Y*.

Proof. We show (i) = (iii) only. Since Y}, y. is a bijection onto ran Y, for each
x € H there exists a vector y € ker Bt with Xx =Y, y. In other words, we can define a
linear operator C on H such that Cx =y, i.e. X = YC and ran C C ker Y. Finally the
boundedness of C is shown by the closed graph theorem; if {(x,,Cx,)} C G(C) satisfies
x, — x and Cx,, — y for some x,y € H, then
Yy=1mYCx, =limXx, = Ax.
Since Cx, € ker B+ and so y € ker B+, we have Cx = y. 0

Lemma 3.9 Ler A and B be positive operators. Then

B W N L
(W* A) >0 implies ranW CranB?2.

and so X =B 2W is well-defined as a mapping.

a b

b* d w* A

R_s— a*>+bb* ab+bd
2 T \b*a+db* b*b+d*)’

Proof. Let S = ( ) be the square root of R = ( B W). Then

that is,
B=d*>+bb* and W = ab + bd.

Since ran B% contains both ran a and ran b by (DM)), it contains ran a+ ran b. Moreover
ran W is contained in ran a+ ran b by W = ab + bd. a

Theorem 3.33 Let A and B be positive operators on K and H respectively, and W be an
operator from K to H. Then (Wl/;* ‘X) > 0ifand only if W = B3X for some operator X
fromK toH and A > X*X.

B W
w* A
that W = B2 X for some operator X. Moreover we restrict X by PgX = X, where P is the

Proof. Suppose that ( ) > 0. Since ranW C ranB? by Lemma 3.9, (DM) says

range projection of B. Noting that y € ranB if and only if y = B2 x for some x € ranB %, the
assumption implies that

(G2 )0 =(-2) ()-(2)) =0

for all y € ranB and z € K. This means that (?Z i) >0, and so

Pp 0 _(Iy O\ (P X\ (Iy —X ~0
0 A—XX) \-X"A A 0 Iy )~ "7

that is, A > X*X, as required. The converse is easily checked. O
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The following factorization theorem due to Ando is led by Theorem 3.33.

Theorem 3.34 Let A and B be positive operators. Then (WI; ‘X) > 0 if and only if

W =B3VA> for some contraction V.

B W
w* A
for some bounded X satisfying A > X*X. Hence we can find a contraction V with X = VA2

by (DM), so that W = B2VA? is shown.
The converse is proved by Lemma 3.7.5 as follows:

Bw\ ([ B BivaA
W A)  \ArviBr A

1
B> 0\ /Iy V\ (B 0
- ! > 0.
<0A5><V IH)<0A5>_

Finally we consider the geometric mean and the harmonic one, as an application of the
preceding paragraph. The former is defined by (3.15).

Proof. Suppose that ( ) > 0. Then it follows from Theorem 3.7.7 that W = BiX

D=

d

If B is invertible, then Theorem 3.33 says that (g g) > 0ifand only if C > X*B~1X.

By the way, we can directly obtain the desired inequality C > X*B~!'X by the following

identity:
In O\(B X\ (Iu -B'X\ (B 0
- x*B ') \x*cJ\0o Iy “\oc-x*B'x)"

Anyway the maximum is given by

D=
D=

B#C=B(B 2CB 1)B?.

Next we review a work of Pedersen and Takesaki [252]. They proved that if B and C are
positive operators and B is nonsingular, then there exists a positive solution X of XBX =C

if and only if (B%CB% )% < kB holds for some k > 0.
From the viewpoint of Riccati’s inequality, we add another equivalent condition to the
Pedersen-Takesaki theorem:

Theorem 3.35 Let B and C be positive operators and B be nonsingular. Then the follow-
ing statements are mutually equivalent:

(1) Riccati’s equation XBX = C has a positive solution.

(2) (B%CB%)% < kB for some k > 0.
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(3) There exists the minimum of {X > 0;C < XBX }.

1
(3°) There exists the minimum of { X > 0; IF{ ¢ >0 .
C2 XBX

Proof. We first note that (3) and (3’) are equivalent by Lemma 3.8.
Now we suppose (1), i.e. XoBXy = C for some Xy > 0. If X > 0 satisfies C < XBX,
then
1

(B2X,B?)* = B:CB

D=

< (B1XB?)?
and so 1 . 1 .
B2X,B2 < B2XB2.

Since B is nonsingular, we have Xy < X, namely (3) is proved.
Next we suppose (3). Since C < XBX for some X, we have

and so

which shows (2).
The implication (2) = (1) has been shown by Pedersen-Takesaki [252] and Nakamoto
[233], but we sketch it for convenience. By Douglas’ majorization theorem [45], we have

(B*CB?)t = 7B?

for some Z, so that
Lo 11 L1 L1 L, . . 1
(B2CB2)2 =B2Z*ZB? and B:CB2? =B2(Z*ZBZ*Z)B:.
Since B is nonsingular, Z*Z is a solution of XBX = C.

1
In addition, we consider an operator matrix Mg c(X) = XIZ \ BéX for B,C,X > 0.
2
We know that Mp ¢(X) > 0 if and only if C > XBX by Lemma 3.8. We remark that there
exists the maximum of {X > 0;Mp (X) > 0} if (1) in Theorem 3.35 holds. As a matter of

fact, if XoBXy = C for some Xy > 0, then it follows from Lemma 3.8 that
XoBXo=C > XBX andso BIX,B? > BXB?

for X > 0 with Mg ¢(X) > 0. Finally the nonsingularity of B implies X, > X, as desired. O

On the other hand, the harmonic mean is defined by

2B 0 XX
| = N
B'!'C max{XZO,(O 2C>Z<XX>}'

To obtain the exact expression of the harmonic mean, we need the following lemma which
is more explicit than Theorem 3.33.
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B W

Lemma 3.10 If (W* A

) >0, then X — B W is bounded and A > X*X.

1 . 1
Proof. For a fixed vector x, we put x; = B~ 2Wx. Since B2x; = Wx, we may assume
1 .
x1 € (ker B2)*. So it follows that

_1
1B~ W] = sup{|(Wx,v)[s V]| = 1}
= sup{| (B~ W, B} u)|: | B3 ul| = 1}
= sup{|(Wx,)|: (Bu,u) = 1},

On the other hand, since

<(le* Z) (;jc) ’ (,L;)> = |t (Ax,x) +2Re t(Wx,u) + (Bu,u) > 0

for all scalars ¢, we have
|(Wx,u)|> < (Ax,x)(Bu,u).

Hence it follows that
||B_%WXH2 = sup{[(Wx,u)|; (Bu,u) = 1} < (Ax,x),
which implies that X = B~2W is bounded and A > X*X. O
Theorem 3.36 Let B, C be positive operators. Then
B1C=2(B—[(B+C) 2B|*|(B+C) 1B]).
In particular, if B+ C is invertible, then

B!C=2(B—B(B+C) 'B)=2B(B+C)"'C.

Proof. First of all, the inequality (20B 20C> > <§ §> is equivalent to

Z(B—I—C) —2B . —Iy Iy 2B—X —X —Iy Iy >0
—2B 2B—-X) \Ig O -X 2C—-X Iy 0) =7

Then it follows from Lemma 3.8 that D = [2(B + C)]_% (—2B) is bounded and D*D <
2B — X. Therefore we have the explicit expression of B ! C even if both B and C are
non-inbertible:

B!C=max{X >0;D*D<2B—X}=2B—D'D.
In particular, if B+ C is invertible, then

B!C=2B-D'D=2(B—B(B+C)"'B)=2B(B+C)"'C.
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Incidentally we consider the set
Fp={X€BH);X'EX<E}
for a projection E, where B(H) is the set of all bounded linear operators on H.

Lemma 3.11 Let E be a projection. Then

X1 0
D — o . <
FE {(le Xzz) on EH@(]H E)H, ||X11|| < 1}

Proof. If X € g, then EX*EXE < E and so EXE is a contraction. On the other hand,
since (Iy — E)X*EX(Iy —E) =0, we have EX(Iy — E) = 0.
Conversely suppose that

-\ X1 X
* (X1 0 Iy 0\
o= (5= (1) 5

Consequently we have the following:

X = (X“ 0 ) on EH® (Iy — E)H and ||Xy1]| < 1.

Then

Theorem 3.37 Let E be a projection. Then

(1) A positive operator X belongs to % if and only if X =X, ®X, on EH® (Iy — E)H
andX1 S IH.

(2) A projection F belongs to Fg if and only if F commutes with E.
(3) A projection F satisfies FEF = E if and only if F <E.

Proof. (1) follows from the preceding lemma, and (2) from (1). For (3), first suppose
that a projection F satisfies FEF = E. Then F commutes with E by (2), so that FE =
FEF = E. The converse is clear. O

3.8 Hua’s inequality

Classical Hua’s inequality says that

6206 n
> —aZa,%
o+n i—l

n 2
'6 — z Ay
k=1
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for every 8,00 > 0 and a; € R. By putting by = nay/d, B = o/n, 1(X) = (Tr X)/n, the

normalized trace, and B = diag(by,--- ,b,), it is expressed as the following brief form:
B 2
t(I-B)]* > —pBt(B
o =B)F > g~ pr(s?)
for B > 0.

On the other hand, Hua gave the determinant inequality as follows:
|det(I — B*A)|> = det|1 — B*A|> > det(I — A*A) det(I — B*B)

for contractive matrices A and B.

In this section, we generalize them in a noncommutative field as a good use of the
operator geometric mean. For this, we explain Schwarz’s inequality for positive mapping
between C*-algebras. A (not necessarily linear) mapping ® between C*-algebras is called

2-positive if
(g g) >0 implies (gg‘ég g%) >0

for all operators A,B,C and D in a C*-algebra. The determinant on matrix algebras is a
(non-linear) 2-positive mapping by Theorem 3.34. For a state ¢, a normalized positive
linear functioanl on a C*-algebra, we have

(Z)(A*A) q)(B*A) _ (Z)(A*A) (Z)(A*B) A*A A*B
(¢<B*A> ¢(B*B>> - (¢(B*A> ¢(B*B>> =0 by (B*A B*B) =0-

Thus the 2-positivity of arbitrary states is supported by Schwarz’s inequality, i.e.
0(B*A)> < $(A*A)p(B*B)

for operators A and B in a C*-algebra.
Now we mention Schwarz’s operator inequality:

Lemma 3.12 Let @ be a 2-positive mapping and ®(B*A) = U|®(B*A)| the polar de-
composition. Then,
|®(B*A)| < ©(A*A) # U*®(B*B)U.

A'A A'B\ _ (A" 0\ (A B\ _
BABB) \B0)loo)="

e N D(A*A) O(A*B)
- > 0.
the 2-positivity of @ implies that (CD(B*A) 0(B'B) ) = 0

Proof. Since

So we show that if (;(* ;) >0and X > 0, then

X#UZU > |v7],
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where Y* = U|Y*| is the polar decomposition of Y*. Now it follows from the assumption
that

1 Y 1o 1 I |
v* 7 >0, whereY, =X 2YX 2 andZ, =X 2ZX 2.
1 1

Therefore Lemma 3.8 ensures that Z; > Y['Y;, or Z > Y*X Y. Since U*Y* = |Y*|, we have
UZU > [y x Y,
so that
X#UZU > X # |Y*|X Ly

1
5 (X—% |Y*|X—1|Y*|X—%) x4

1

=X
1 11
=X2(X 2|V X" 2)X2 =|Y7.

The above lemma leads us to an operator inequality for the modulus of operators:

Corollary 3.4 If ®(X) = U|®(X)| is the polar decomposition of ®(X) for a 2-positive
mapping ®©, then
[O(X)| < ©(|X]) # U O(|X"|)U.

In particular, if ® = ¢ is a state, then |¢(X)| < /O (|X])d(|X*]).
Proof. Let X = V|X| be the polar decomposition of X. Since V|X|V* = |X*|, we have
1 1 * * * *
[O(X)| = [D(VIX|>|X[?)| < ©(|X]) # U (VIX[V*)U = O(|X]|) # U"D(|X"|)U.
O

Theorem 3.38 Let A and B be operators on a Hilbert space and ® a contractive 2-
positive mapping for a C*-algebra including A, B and the identity operator. If ®(B*A) =
U|®(B*A)| is the polar decomposition of a normal operator ®(B*A), then

| - ®(B*A)| > 1 —|D(B*A)| > 1 - D(A™A) # U"D(B*B)U.
In addition, if A and B are contractions and ® is linear, then
I—OA"A) # U D(B*B)U > ®(I —A*A) # U"®(I — B*B)U.

Proof. The first inequality follows from the normality of X = ®(B*A), i.e. [ —X|>
I — |X| and the second from Lemma 3.12. The last inequality does from the subadditivity
and the monotonicity of the geometric mean:
DAA) # U D(B*B)U + D(I—A*A) # U O(I — B*'B)U
<OA'A+I—-A"A)#U'®(B*B+1—B'B)U
=O()#UOU <I#I1=1,

because ®(I) <Iand U*U < 1. a
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Corollary 3.5 IfA and B are contractions and ¢ is a state, then

0 —B'A)P > (1~ 9(BA)) > (1- VoA A(BB))
> 0(1-A"A)9(1~ B'B).

Proof. We have only to check the last inequality, which is shown by

2/9(A*A)9(B*B) < ¢(A"A) + ¢(BB),

that is, the arithmetic-geometric mean inequality for positive numbers. O

In the remainder, we mention relations among them.

(1) We claim that Corollary 3.5 implies Hua’s determinant inequality. To show this, we
may assume that
det|l — B°AP* = [T {1 - B*Alex, ex)
k

for some complete orthonormal base {e; }. Noting that/ —A*A >0 and I — B*B > 0,
it follows from Corollary 3.5 that for each e

|<|I—B*A|ek,ek>|2 > (I —A%A)ey,er){(I — B*B)ey,ey),
so that

det|I—B*AP* =[] |1 — B*Ale. ex)|* = [J((I — A*A)ex, ex) (I — B*B)ey, ex).
k k

Since each (Hey,e) is a diagonal entry of H with respect to the base {e; }, we have

[T —A*A)er, ex) (I — B*B)ex,ex) > det(I — A*A) det(I — B*B)
k

by the Hadamard theorem, which obtains the determinant inequality.

(2) Hua’s inequality follows from Schwarz’s inequality for states. As a matter of fact, it
is proved by the use of a simpler inequality; ¢ (A)> < ¢(A?) for A > 0. We have to
show that

B

|7(1 - )Ifl3 1-B(B%).

Instead of showing it, we easily checked that



3.9 THE HEINZ INEQUALITY 83

3.9 The Heinz inequality

In this section, we investigate several norm inequalities equivalent to the Heinz inequality.

Theorem 3.39 (HEINZ INEQUALITY (HI)) Let A and B be positive operators and t €
[0,1]. Then
|AQ+QB|| > [|A'QB' " + A" OB'||

for arbitrary operators Q.

The case r = % in above is expressed by

|P*PQ+ ORR"|| = 2||POR||
for arbitrary operators P and Q. Furthermore it is reduced to the following:
||Re QP|| > ||PQ|| if PQ is self-adjoint.

Adding to some other inequalities, we have the equivalence among them:

Theorem 3.40 The following inequalities hold and are mutually equivalent:
(1) (HI)

2) ||P*PQ + QRR*|| > 2||POR)|| for arbitrary operators P and Q.
ISTS=1 4+ S~'TS| > 2||T|| for invertible self-adjoint S and arbitrary T.

)

)

3) ||STR™' +S~TR|| > 2||T|| for invertible self-adjoint S, R and arbitrary T.

)

5) |STS~' +S~'TS|| > 2||T|| for invertible self-adjoint S and self-adjoint T.
)

(
(
(4
(
(6) ||SP™ TR+ S™"TR¥" || > 2||S?"T + TR>"|| for invertible self-adjoint S, R, ar-
bitrary T and nonnegative integers m, n.
(7) |[Re A2Q|| > ||AQA|| for A > 0 and self-adjoint Q.
(8) |IRe QP| > ||PQ|| for arbitrary P, Q whose product PQ is self-adjoint.
Proof. We prove it by the following implication:

1H)=06)=5)=4 = 3)=2)=()and (5) = (8) = (7) = (2).

(1) = (6): In (1), we replace A and B by A>"*2" and B*"*+?" respectively, and take
t = (2m+n)(2m+2n)~L. Then we obtain (6).
(6) = (5): Itis trivial by taking m = 0 and n = 1 in (6).
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(5) = (4): Since (Z(”)* g) is self-adjoint, (5) implies that

63065 65 (o6
220 (7. o) I1=2071.

Since the left hand side in above equals to ||STS™! +S~!7S||, (4) is obtained.
(4) = (3): We use Berberian’s magic. That is,

1660 6R GRG0 ER)
>20 (7 o) 1=217

Since the right hand side in above is ||[STR™! +S~!TR||, (3) is obtained.
(3) = (2): We may assume that both P*P and RR* are invertible. Then we have

1P*PQ + ORR"|| = [l|PI(IPIQIR*[)|R*|~" + [P~ (|PIQIR" ) |R"|]
> 2|[|PIQIR™]| = 2/[POR||.

(2) = (1): The proof is an analogy to Pedersen’s one for (LH), stated in Section 3.1.
We define the operator function on [0, 1] by

f(t) =||A"QB" +AT"QB'|| for t€0,1].

Thus we prove that I = {r € [0,1]; f(¢#) < f(1)} =[0,1]. Since 0,1 € I and f(¢) is norm
continuous, it suffices to show that it is a convex function. For given o,y € I with a < 7,
weput B =(a+y)/2,ie. o = —¢eand y= f + ¢ fore = (e — y)/2. Then we have
2f(B) =2(1APQB' P+ A" PoBP||

— 2]|A%(AQB' Y + A1 VOB

< ||A*(A“QB' Y+ A'TQOB”) + (A"QB' "+ A'YQB*)B*|| by (2)

= |ATQB' "7+ A'"*QB* + A*QB'~* + A" TQB|

< fle)+f(v),

as desired.

Next we show the second: (5) —= (8) = (7) = (2).
(5) = (8): Let Q = UH be the polar decomposition. We may assume that U is unitary
(by extending the space) and H is invertible. Then we have

2||Re QP|| = |UHP+ P*HU"| = |HPU +U*P*H| = 2||Re HPU||.
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Here we apply (5) for T = PQ and S=H;
2||\PQ|| < [|[HPQH ' +H™'Q"P*H|| = |HPU + U*P"H||
=[|QP+P*Q"|| = 2|[Re OP||,

so that we have (8).
(8) = (7): Itis trivial by putting Q = A and P = AT.

(7) = (2): We put
_ (PO (0 0
T_<O R*) and S_<Q* 0),

and apply (7) for A = |T| and Q = S. Then we have
IT*TS+ST*T|| = 2| |T|S|T] |-

X

0) Il = ||X||, we have

Moreover, since || (;L

|T*TS+ST*T|| = |P*PQ + QRR"||

and
HTISITV | = ITST*|| = [|PORI,
which imply (2).

Finally we prove (8) on behalf of them.

If PQ is self-adjoint, then the spectrum ¢ (PQ) lies in the real axis and so does ¢ (QP).
Since the closed numerical range W(QP)~ contains o(QP), 6(PQ) is contained in Re
W(QP)~ =W (Re QP)~, so that the spectral radius (QP) is not greater than the numerical
radius w(Re QP). Hence we have

[PQ|| = r(PQ) = r(QP) < w(Re QP) = |[Re QP||.
This completes the proof. ]

Next we mention several inequalities equivalent to (LH). Among them, the Heinz-Kato
inequality is important from the historical view.

Theorem 3.41 (HEINZ-KATO INEQUALITY (HK)) Let A and B positive operators on
H. Then

T*T < A%, TT* < B* = |(Tx,y)| < ||A%||||B' || for s € [0,1], x,y € H.
Afterwards, it was extended by Furuta:

Theorem 3.42 (HEINZ-KATO-FURUTA INEQUALITY (HKF)) Let A and B positive op-
erators on H. Then

T'T <A’ TT* < B> = |(U|T["""x,y)| < |A°[|[|B']

holds for s,t € [0,1], x,y € H, where T = U|T | is the polar decomposition of T.
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Proof. Noting that U|T['U* = |T*|" for t > 0, it follows that
(OIT I 9)] = |[(IT1x T U )| < T[T U
= ITPxINUITI Oyl = IITFXT vl
Since [|[T[x|| < [|A*x|| and [||T['y[| < [|B'y|| by (LH) we have (HKF). O
Theorem 3.43 The following inequalities are mutually equivalent:
1) (LH) or (AC),
2) (HK) or (HKF),

(
(
(3) [ATB*| < [|AT|*|TB||'"* for s € [0,1].
(4) |ABA| < | A*B| for A,B > 0.

(

5) TS| > ||ST|| if ST is self-adjoint.

Proof. First of all, we note that a proof of (LH) is written in the below of Theorem 3.1,
in which the equivalence (1) <= (2) is implicitly explained.
(1) = (2) is done in the proof of (HKF) in above.
(2) = (3): (2) says that

ITAI < 1, |T*BI| < 1 = |(Tx,y)| < [|A7|[|B'y|| forx,y € H.
If we replace x and y by A’x and B! ~*y respectively, then we have
(B TA )| < [lx[l Iy,

that is, we obtain that if || TA|| < 1 and ||T*B|| < 1, then ||B!™TAS|| < 1. By the use of
Berberian’s operator matrix magic, we may assume that 7 is self-adjoint in (3). Hence we
have

1A TB'™|| = [|B'=TA*|| < ||AT|||TB"]].

(3)= (4): PutT =B=Aands=3in(3).
(4) = (5): LetT* = UH be the polar decomposition of 7*. Then
IST||* = [|[UHS*SHU"|| < || HS*SH |
<||H?S*S| by (4)
= ||TT*S*S|| = |T(ST)*S|| = | TSTS| < ||TS|>.

(5) = (1):  We show (5) = (AC). For convenience, (AC; ) holds for ¢ € [0, 1] means
that ||[A’B'|| < ||AB||" holds for all A, B > 0. We first prove that (5) implies (AC; $) holds.

For this, we put S = B% and T = AB%. Then ST > 0, it follows from (5) that

|AB| = | TS| > ||ST|| = | B2AB?|| = || A BZ||*.
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Next we show (AC; 3) by (AC; 3).

1ATBY|2 = |BiA3BY| = |BY (B} A3BY))|
< |BA3B|| < |BiAY|||AB|
< ||ABJ3.

In general, if (AC; s) and (AC; ¢) holds, then so does (AC; %). Assume s < ¢, and put
r=2=tandd = 5*. Then
”ArBr”Z _ ”BrAertBr” _ HBd(BsASthBr)H
S ”BsAertBrer” S HB.\'AA'” ”AIBIH
< ||AB|**" = ||AB||*".
Since {m/2";n =1,2,...,m = 1,2,...,2"} is dense in [0, 1], (AC) is proved under the

assumption (5). O

Remark 3.7 We now mention an interesting relation between (HI) and (LH): We compare
Theorem 3.9.1 (8) and Theorem 3.9.2 (5). We pick out them.

(HI) < |ReTS|| > ||ST|| if ST is self-adjoint.
(LH) < ||TS|| > ||ST||  if ST is self-adjoint.
From this, it is obvious that (HI) is stronger than (LH).

Finally we discuss a norm inequality considered in the Corach-Porta-Recht geometry:

Theorem 3.44 (CORACH-PORTA-RECHT INEQUALITY (CPR)) LetA,B,C,D > 0.
Then 1 1 1 1 1 1 1
[(A# B)2(C# D)2| < ||[A2C2|""||B2D2|]"  fort € [0,1].

Theorem 3.45 The inequalities (CPR), (LH) and Jensen’s inequality (JI);
(X*AX) > X*A'X  for contractions X,A >0, 1t € [0,1]
are mutually equivalent.

Proof.
(LH) = (JI): By virtue of the polar decomposition, it suffices to show that

(CAC)" > CA'C for invertible positive contractions C,

or equivalently
Al <cTlcAc)cT = # A,

Since C~! > Iy and so C~2 > Iy, it is ensured by the monotonicity of #;, namely (LH).
(JI) = (CPR): First of all, (JI) is explicitly expressed as

(X*AX) < ||X|*"¥X*A’X for arbitrary X,A >0, t € [0,1].
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Thus it follows that for C > 0

1

= ||C%A% ||2*2fc*%(c73c%)’c*%
= |AzcE|P2c B,
and that for B > 0
C#,D=D#_,C<|B2D|*20-0(B~ #,_,C) = ||B:D||*(C# B).

Therefore we have

1 1

I(A# B)2(C# D)?|> = ||(C # D)2 (A# B)(C# D)?|
<[JAZC3 > ¥|(C# D)} (C' # B)||(C# D)?|
= AzC2|P¥||(c # B)2 (C# D)(C ' # B)? |
<[IAZCH |2 BEDR|¥|(Ct # B)R(C# BT)(C 4 B)Y|
= |lAzC2|>¥||B2 D3 |¥,

because C# B~! = (C~! # B)~!. So we obtain (CPR).

(CPR) = (LH): PutA =C =1y in (CPR) and X = B Y = D?. Then we have (AC),
which is equivalent to (LH). O

3.10 Notes

(LH) was considered in general setting by Lowner [171] and explicitly proved by Heinz
[140]. Another proof is given by Kato [157], and interesting proof is presented by Peder-
sen [251]. A step of the way from (LH) to (FI) was set up by Chan-Kwong [31]. (FI) was
established by Furuta [106] in 1987. A simple proof was given by himself [107], and mean
theoretic approach was done by [151] and [79]. Among others, Tanahashi [277] considered
the best possibility of the exponent in (FI).

(AH) is an essential part of the proof of a majorization inequality in [12]. Its 2 variable
version (GAH) was given by [90], and (GAH) is equivalent to (GFI; # = 1) by [91].

(GFI) was established in order to discuss (AH) in the flame of (FI). As similar to (FI),
the best possibility of (GFI) is obtained in [278] cf. [289, 95], see also [124, Chapter 7].
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The chaotic order was introduced in [89]. The Furuta inequality for the chaotic order
was essentially initiated by Ando [8]: For self-adjoint operators A and B,

A>B < el > (e%e”Be%)% for p >0,
which appears in (i) and (ii) of Theorem 3.4.1, and (iii) is posed in [80], see also [108].

The Furuta inequality induces another geometric mean, so called the chaotically geo-
metric mean A <y, B = el "H)logd+plogB (98] [t is closely related to the Golden-Thompson
inequality:

e TK|| < |lef’eX|| for self-adjoint H, K.

Theorem 3.5.3 was obtained by Hiai-Petz [142].

BLP inequality [19] is a generalization of the Araki-Cordes inequality in some sense.
It is discussed from the viewpoint of the difference from (FI). Consequently (BLP) is ge-
neralized in [100, 180].

Section 3.7 is written by depending on [59] mainly. The study of Riccati’s equation
was initiated by Pedersen-Takesaki [252]. In particular, the geometric mean A # B is the
unique self-adjoint solution of XA~'X = B for given A, B > 0. The definition of the geo-
metric mean by using operator matrix was introduced by Ando [6]. The algebraic Riccati
equation is solved by Trapp [283] under some additional assumption.






Chapter

Kantorovich-Furuta Type
Inequalities

In this chapter, we study order preserving operator inequalities in another direction which
differs from the Furuta inequality. We investigate the Kantorovich-Furuta type inequalities
related to the operator ordering and the chaotic one.

4.1 Introduction

Let A and B be positive operators on a Hilbert space H. The Lowner-Heinz theorem asserts
that A > B > 0 ensures A? > B? for all p € [0, 1]. However A > B does not always ensure
AP > BP for each p > 1 in general. In order to study operator inequality, the Lowner-
Heinz theorem is very useful, but the fact above is inconvenient, because the condition
“p €[0,1]” is too restrictive. Thus, excluding the limit of p, it is the Furuta inequality that
devises methods to preserve the order for p > 1. Namely, by considering the magic box

1

f(0) = (BE 085",

then the Furuta inequality asserts that A > B > 0 ensures
f(AP) = f(B)

holds for all p > 1 and additional conditions of ¢ and r.

91
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We study order preserving operator inequalities in another direction which differ from
the Furuta inequality. First of all, to explain it, we present the following simple example.
By virtue of the Kantorovich inequality, a function f(¢) = > is order preserving in the
following sense.

Theorem 4.1 Let A and B be positive operators. Then

M 2
ASB>0 and Miy>B>mly>0 imply 425 g2

Proof. Refer to [124, Theorem 8.1] for the proof. O

Theorem 4.1 is a new view of operator inequality which differ from the Furuta in-
equality. Namely, f(r) = t? preserves the order in terms of the spectrum of given positive
operators by virtue of the Kantorovich inequality. Thus, we call it the Kantorovich-Furuta
type operator inequality.

By using a generalization of the Kantorovich inequality, we get the following Kantoro-
vich-Furuta type operator inequality.

Theorem 4.2 Let A and B be positive operators such that Mly > B > mly for some
scalars M > m > 0. If A > B, then

M\
(—) AP > K(m,M,p)A? > B forallp>1,
m

where the generalized Kantorovich constant K(m,M, p) is defined by (2.29).
Proof. Refer to [124, Theorem 8.3] for the proof. O

Theorem 4.3 Let A and B be positive operators such that MiI > A > myI and MIy >
B> myly for some scalars Mj >m; >0 (j = 1,2). IfA > B, then the following inequalities
hold:

(i) K(mj,M;,p)A? > BP  forallp>1andj=1,2,
(ii) K(mj,M;j,p)B? > AP  forallp < —1and j=1,2.
Proof. Refer to [124, p.220,232,250] for the proof. O

For positive invertible operators A and B, the order A > B defined by logA > logB is
called the chaotic order. Since log? is an operator monotone function, the chaotic order is
weaker than the operator order A > B.

The following theorem is a Kantorovich-Furuta type operator inequality related to the
chaotic order which is parallel to Theorem 4.2.

Theorem 4.4 Let A and B be positive invertible operators such that MIy > B > mly for
some scalars M > m > 0. IflogA > logB, then

M 14
(—) AP > K(m,M,p+ 1)A? > B forall p> 0.

m
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Proof. Refer to [124, Theorem 8.4] for the proof. O

Remark 4.1 In fact, the chaotic order 1ogA > log B does not always ensure the operator
order A > B in general. However, by Theorem 4.4, it follows that

(M+m

2
logA >logB and MI>B>ml>0 imply o, )AEB
m

In terms of the Kantorovich constant, we show Kantorovich type operator inequalities
related to the operator ordering and the chaotic one:

Theorem 4.5 Let A and B be positive operators such that MIy > B > mly for some
scalars 0 <m < M. IfA > B, then

Mp—l p—1\2
(4Ml+—lmll)Ap > BP forall p > 2.
—1,p—

_ _ pt
Proof. Foreachp22,putr—p—2andq_%

the Furuta inequality ensures

in the Furuta inequality (FI). Then

1
(B%APB”%Z)2 >pr. 4.1)
Square both sides of (4.1), it follows from MP~'I;; > B > mP~'I; and Theorem 4.1 that
-1 ~1y2
MP_ 4" )7 o gt - o)
4MP—1imp—1 - ’

and hence
(M”‘1 —|—m1’_1)2

AT AP > BP forall p > 2.

0O

Theorem 4.6 Let A and B be positive invertible operators such that Mly > B > mly for
some scalars M > m > 0. Then the following assertions are mutually equivalent:

(i) logA > logB.

(ii) M AP > BP forall p >0,
Proof. Refer to [124, Theorem 8.5] for the proof. O

The exponential function ¢ — exp(¢) is not operator monotone. By virtue of the Mond-
Pecari¢ method, the exponential function preserves the operator order in the following
sense.

Theorem 4.7 Let A and B be self-adjoint operators such that Mly > B > mly for some
scalars m < M. If A > B, then

S(eM™)expA > expB,

where the Specht ratio S(h) is defined by (2.35).
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Proof. By Theorem 2.15, we have (expBx,x) < S(eM~")exp(Bx,x) for every unit
vector x € H. Hence it follows that
(expBx,x) < S(eM~™)exp(Bx, x)
S(eM™)exp(Ax,x) by the assumption A > B
S(eM

(

IN A

™) (expA x,x) by Jensen’s inequality

for every unit vector x € H, so that we have S(e¥~")expA > expB. O

Furthermore, by the property of the Specht ratio, we have the following characteriza-
tion of the operator ordering.

Theorem 4.8 Let A and B be positive operators such that Mly > B > mly for some
scalars 0 < m < M. Then the following assertions are mutually equivalent:

(i) A>B.

(ii) S(e?™~™)exp(pA) >exp(pB)  forall p >0,
where the Specht ratio S(h) is defined by (2.35).

Proof.
Suppose (i): Since pA > pB and pMIy > pB > pmly for all p > 0, we have (i) = (ii) by
Theorem 4.7.
Conversely, suppose (ii): Taking the logarithm of both sides of (ii), we have

logS(e”(M—m)% +A>B.

Since S(eﬂM*m))% — 1 as p — 0 by (iv) of Theorem 2.16, we have A > B. O

The following theorem is a more precise characterization of the chaotic ordering.

Theorem 4.9 Let A and B be positive invertible operators such that MIy > B > mly for
some scalars M > m > 0. Put h = %( > 1). Then the following assertions are mutually
equivalent:

(i) logA >logB.
(ii) S(hP)AP > BP  forall p > 0.

Proof. Refer to [124, Theorem 8.7] for the proof. O
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4.2 Difference version

In this section, we show new order preserving operator inequality on the operator order
and the chaotic order by estimating the upper bound of the difference.

First of all, we present that the function 7 — > preserves the operator order in the
following sense associated with the difference.

Theorem 4.10 If A and B are positive operators such that Mly > B > mly for some
scalars 0 < m < M, then

A>B  implies A+ MIH > B2 4.2)
Proof. By a difference type of the Kantorovich inequality (Theorem 2.20), we have
(B*x,x) < (Bx,x)>+ M by Ml > B > mly
< (Ax,x>2—|-(M;7m)2 byA>B
< (A%x,x) + (M;im)z by the Holder-McCarthy inequality
for every unit vector x € H. Hence we have (4.2). O

Moreover, we have the following order preserving operator inequality associated with
the difference, which is a parallel result to the Kantorovich type inequality in Theorem 4.1.

Theorem 4.11 If A and B are positive operators such that Mly > B > mly for some
scalars 0,m < M, then

AP £ M(MP™ —mP Yy > AP + C(m,M, p)ly > BP  forall p> 1,
where the Kantorovich constant for the difference C(m,M, p) is defined by (2.38).

Proof. The former inequality follows from (ii) of Theorem 2.24. The latter follows
from

< (Bx,x)? +C(m,M, p) by Theorem 2.23
< (A x)P+CmM,p)  byA>B
< (APx,x) +C(m,M,p) by the Holder-McCarthy inequality

for every unit vector x € H. O

Theorem 4.12 Let A and B be positive invertible operators such that Mly > B > mly
for some scalars 0 <m < M. Put h = % > 1. Then the following assertions are mutually
equivalent:
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(i) logA >logB.

(ii) AP+ L(mP,MP)logS(hP)Iy > BP forall p > 0,

where the Specht ratio S(h) is defined by (2.35) and the logarithmic mean L(m,M)
is defined by (2.41).

Proof.
(i) =(i1): By using Theorem 2.27 and MPIy > BP > mPIy, it follows that

(BPx,x) < exp(logB? x,x) + D(m" ,M?)
< exp(logA” x,x) + D(m” ,M") by log B < logA
< (APx,x) +D(mP,MP) by convexity of the exp function

holds for every unit vector x € H. Hence it follows from Lemma 2.4 that
AP + L(mP ,MP)logS(h*)I > BP forall p > 0.

(i1) =-(@{): We have

1 1
lim —D(m”,MP) = lim —L(m”,M”)logS(h”) = 0
p—0p p—0p

by (iv) of Theorem 2.16. Therefore, we have

AP —T 1 ) BP —1
+ —D(m” ,MP)I >
p p p
and hence logA > logB as p — 0. O

As an application of the Furuta inequality, we shall show order preserving operator
inequality associated with the difference which is parametrized the operator order and the
chaotic order.

Let A and B be positive invertible operators on a Hilbert space H. We consider an
order A® > Bl foré € [0, 1] which interpolates usual order A > B and chaotic order A > B
A1

continuously. We consider that the case 6 = 0 means the chaotic order since limg_g 5= =
logA for a positive invertible operator A.
The following lemma shows that the Furuta inequality interpolates the usual order and

the chaotic one.

Lemma 4.1 Let A and B be positive invertible operators. The following statements are
mutually equivalent for each 6 € [0,1]:

(i) A® > B9, where the case 6 = 0 means A > B.

p+98

(ii) (BgAP+5B%) WS B forall p> 0.

r+6

(iii) (BfA”J“SBf) PSS gred forall p>0andr>0.
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Proof. The case of 0 < § < 1 is ensured by the Furuta inequality and the case of =0
by the chaotic Furuta inequality (CFI). ]

By virtue of Lemma 4.1, we shall obtain the following order preserving operator in-

equality associated with the difference.

Theorem 4.13 Let A and B be positive operators on H satisfying Ml > B > mlg > 0.
Then the following implication (i) <= (ii) <= (iv) = (iii) holds for some & € [0, 1]:

(i) A® > B9, where the case & =0 means A > B.
(ii) AP*0 4+ —5C(m,M,p+1)Iy > B**®  forall p>0.

(M)

2
(iii) APFO 4 gy > BPYY forall p > 6.

(iv) APFe 4+ Lm0 Mr+9, ”Z%‘S)IH > BP0 forallp>0andr >0,
where C(m,M, p) is defined by (2.38).

Proof.
(i)==(iv): It follows from Lemma 4.1 that A% > B9 is equivalent to the following in-
equality:
r r i
(BzAP+5Bz) PR S BrtS forall p>Oand r > 0.

r+6

Put A, = (B%AP+SB%) PP and By = B9, then A, and By satisfy A; > B; > 0 and
M1y > By > m' %1y > 0. Applying Theorem 4.11 to A; and B}, we have

ptr+dé ptr+é
A1 r+6 +C<mr+57Mr+57 M)IH > B1 r+6 .
r+é8
Therefore we have
+r+6

B5APTO RS +C(mr+57Mr+57 p )IH > pPHr+d

r+o
so that it follows that

+r+06

Ap+5+c(mr+57Mr+67 p — )B—r > prtd,
r

(iv)==(ii): Putr=1—38>0in (iv).
(iv)=(iii): Putr = p— & > 0in (iv). Then we have

(M —mP)?
4mp—9

i.c(mr+57Mr+57p+r+6) _ 1 C(mP,MP,2) =
m’ r+é8 mp—9

and p > 0.
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(il)==-(i): It follows from (ii) of Theorem 2.13 that

M P
(—) >K(mM,p+1)>1 forall p >0

m

and hence

MP — MmP (M MP — MmP 1
u( 1)zu<K<m,M,p+1>p—1>zo.

M—m m M—m

Therefore we have lim,_oC(m,M,p+1) =0.

Hence the proof of Theorem 4.13 is complete. O

Theorem 4.13 interpolates the following two theorems. As a matter of fact, if we
put 6 = 0 in Theorem 4.13, then we have Theorem 4.14 which make a paraphrase of
Theorem 4.12. Also, if we put 6 = 1 in Theorem 4.13, then we obtain order preserving
operator inequality under the operator order associated with the difference.

Theorem 4.14 Let A and B be positive invertible operators such that MI > B > ml for
some scalars 0 < m < M. Then the following implication (i) <= (iii) <= (iv) = (ii)
holds:

(i) logA > logB.

(ii) AP+ L1C(m,M,p+1)Iy >B"  forall p>0.

(i) AP+ M2 1 S BP forall p > 0.

(iv) AP+ LC(m" M, BV Iy > BP forallp>0andr>0,
where C(m,M, p) is defined by (2.38).

Proof. If we put § = 0 in Theorem 4.13, then we have the implication (i) = (iv) =
(iii) and (iv) = (ii). For (iii) = (i), since

AP — ] MP —mP)? B —1,
o LM —mh), Z

1
p p Amp p

we have (i) as p — 0. O

Theorem 4.15 Let A and B be positive operators such that MI > B > ml for some scalars
0 < m < M. Then the following implication (i) <= (ii) <= (iv) = (iii) holds:

(i) A>B.
(ii) AP +C(m,M,p)lg >BP  forallp>1.

p\2
(iii) AP Y gy > P forall p > 1.
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(iv) AP+ l,lC(m",MC@)IH > BP forallp>1andr>1,

m"

where C(m,M, p) is defined by (2.38).

Remark 4.2 Theorem 4.13 interpolates Theorem 4.11 and Theorem 4.12. Let A and B
be positive invertible operators such that My > B > mly. Then the following assertions
hold:

(i) A>B implies AP +C(m,M,p)ly > BP forall p>1.
(ii) A% >B% implies AP+C(m® ,M® &)y >BP forall p>8.

(iii) logA >logB implies AP+ L(mP,MP)logS(h”)Iy > BP forall p >0,
where the Specht ratio S(h) is defined by (2.35) and the logarithmic mean L(m,M)
is defined by (2.41).

It follows that the constant of (ii) interpolates the constant of (i) and (iii) continuously.
In fact, if we put 8§ = 1 in (ii), then we have (1), also if we put § — 0 in (ii), then we have

Saqp _ Af0,,P 5
C(m 7M 75)_ M5_m5 {K(m 7M 75)1) o _1}
5 K(m®,M° g)—,,i; —1
= mP (h? — h®) S
W —1 o

==

(M~ ) logMy(p)? (a5 & —0)

N
log
= L(m”,M")logS(h?),

where h = % > 1.

4.3 Version with the Specht ratio

In this section, we see that the Specht ratio plays an important rule as characterizations of
the chaotic order: Let A and B be positive invertible operators such that MIy > B > mly
for some scalars 0 < m < M and h = % Then

logA >logB <= S,(p)A? > BP for all p > 0,
where the symbol Sj, is defined by
Su(p) = S(hP) (4.3)
and the Specht ratio S(h) is defined by (2.35).
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It is natural to ask what is characterizations of the operator order in terms of the Specht
ratio. Thus, we compare Theorem 4.5 with Theorem 4.6: For A, B > 0 with MIy > B > mly

(MP~! P12
AMP—mp—1
(MP +mP)?
AMPmr

A>B — AP > BP forall p >2

logA >logB — AP > BP for all p > 0.

Therefore, we observe the difference between p and p — 1 in the power of the constant.
Hence one might expect that the following result holds under the operator order as a parallel
result to Theorem 4.9: Let A and B be positive invertible operators such that M1 > B > ml.
Then

A>B implies Sy(p—1)A? > BP forall p > 2, where h =

3R

> 1.

However, we have a counterexample to this conjecture. Put

41 20
Az(l 1) and Bz(o %)7

thenA > B> 0. Andm =} and M =2, so thath = & = 4. Then we have S(h) = 1.26374
and S(h?) = 2.39434. On the other hand, ¢A? > 32 holds if and only if o > 1.27389, and
BA® > B3 holds if and only if B > 2.396585. Therefore S(h)A? # B? and S(h?)A® # B>.

Here, we present other characterizations of the chaotic ordering and the operator one
associated with Kantorovich type inequalities via the Specht ratio:

Theorem 4.16 Let A and B be positive invertible operators such that kI > A > %IH for
some k > 1. Then the following assertions are mutually equivalent:

(i) logA >logB.

(i) Sk((p+1)s+r)9APH)S > (ATBPAL)S
holds forp>0,t>0,5>0,r>0,qg> 1with (t+r)qg> (p+t)s+r.

(iii) Si(2(p+1)s —20)2APH)s > (ATBPAT)S
holds forp>0,t >0, s >0 with (p+1)s > 2t.

(iv) Sk(ZpS)%AI’ > B? holds for p > 0 and s > 1,
where Si(r) is defined by (4.3).

Theorem 4.17 Let A and B be positive invertible operators such that kI > A > %IH for
some k > 1. Then the

(i) A>B.
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(ii) Sk((p—1)s+r)7AP—0 > (A~2BPA=S)S
holds forp > 1,1 €[0,1], s > 1, ¢ > 1 such that (1 —t+r)q> (p—t)s+randr>t.

(iii) Sp(2(p—1)s —2(1 —1))2AP~15 > (A"2BPA™ )
holds for p > 1,t € [0,1], s > 1 such that (p —t)s > 2 —1.

(iv) Sk(2(p— l)s)%Al’ > B? holds for p > 1, s > 1 such that p > % + 1
(v) KHp=1Ar > gp holds for p > 1,
where Sy (r) is defined by (4.3).
The following corollary is easily obtained by Theorem 4.17.

Corollary 4.1 Let A and B be positive invertible operators on a Hilbert space H such
that kly > A > Ly for some k > 1. IfA% > B® for § € (0,1], then

Sk(2(p— 8)s)AP > BP
holds for p > 6, s > 1 such that p > (% + 1)0, where S(r) is defined by (4.3).

Remark 4.3 Corollary 4.1 interpolates (iv) of Theorem 4.16 and (iv) of Theorem 4.17
by means of the Specht ratio. Let A and B be positive invertible operators such that kly >
A> %IH for some k > 1. Then the following assertions holds:

(i) A > Bimplies S;(2(p — l)s)%Ap >BP forallp>1+1ands>1,
(ii) A® > BY implies Sy(2(p — 5)5)%A1’ > BP forall p > 8, s > 1 such that p > (1 +1)8,

(iii) logA > logB implies Sk(2ps)%A” >BP forall p>0ands> 1.

It follows that the Specht ratio of (ii) interpolates the scalar of (i) and (iii) continuously.
In fact, if we put 6 = 1 in (ii), then we have (i). Also, if we put § — 0 in (ii), then we have

(lll)Moreover, Corollary 4.1 interpolates the following result by means of the Specht ratio:
(i) A > Bimplies kK*P=VAP > B forall p > 1,
(ii) A% > B% implies S;(2(p — 5)s)%Ap > BP forall p > 8, s > 1 such that p > (1 +1)8,
(iii) logA > logB implies k*?AP > BP for all p > 0.

The Specht ratio of (ii) interpolates the scalar of (i) and (iii). In fact, if we put § =1
and s — o in (ii), then we have (i). Also, if we put 6 — 0 and s — oo in (ii), then we have

(iii).
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To prove them, we need some preliminaries.
In the following lemma a complementary inequality to the Holder-McCarthy inequality
via the Specht ratio is given.

Lemma 4.2 Let A be a positive operator such that kly > A > %IH for some k > 1. Then
the following inequalities hold for every unit vector x € H :

(i) Sk(1)(APx,x) > (Ax,x)P (> (APx,x)) forall0<p <1,
(i) Sk(p)P{Ax,x)P > (APx,x) (> (Ax,x)P) forall p > 1.

Proof.
(i): The following converse of Young’s inequality is shown in [280]: For a given a > 0,

Sa(1)a” > pa+(1—p)

holdsforall 1 > p>0.Ifk>a> % > (0, then it follows from (ii) and (iii) of Theorem 2.16
that S;(1) = S,-1(1) > S,(1). Therefore we have

Sk(1)A? > pA+ (1 —p)Iy forall 1> p>0. (4.4
By (4.4) and Young’s inequality, it follows that
Sk(1)(APx,x) > p(Ax,x) + (1 — p) > (Ax,x)?

holds for every unit vector x € H.
(ii):  Next, suppose the case of p > 1. Replacing p by 1/p and A by A” in (i), then
kPIy > AP > k™ PIy and we have

St (1)((AP)/Px,x) > (APx,x)'/7
Taking the p-th power on both sides, we have
Si(p)? (Ax,x)? > (APx,x).
O

The following lemma is a Kantorovich-Furuta type operator inequality via the Specht
ratio.

Lemma 4.3 Let A and B be positive operators such that
. 1 . 1
(i) kg >A> §IH or (ii) kg >B> §IH
for some k > 1. Then
A>B implies Si(p)’A? > BP forallp > 1,

where Si(p) is defined by (4.3).
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Proof.
Suppose (ii). Then we have

Sk(p)P (APx,x) > Si(p)P (Ax,x)P by Holder-McCarthy inequality and p > 1
> Si(p)?(Bx,x)P  byA>B
> (BPx,x) by Lemma 4.2 and kI > B > (1/k)Iy.

Next, suppose (i). Since B~! > A~! and kIy > A~! > 11y, then it follows from above

discussion that Sy (p)?B~7 > A~P. Hence we have S (p)PAP > BP. a
Proof of Theorem 4.16.
(i) = (ii): By Theorem 3.16, (i) ensures
(p+t)s+r r t t ry1
¢ >{AT(ATBPATY A2} (4.5)

holds for p,t,s,r > 0 and g > 1 with

(t+r)g>(p+it)s+r (4.6)

(p+t)s+r r ry L
PutA; =A ¢ and By = {A}(A}BPA5)'A3}7, then A > B, by (4.5) and klyy > A >
(p+1)s+r (p+t)s+r

%IH >0assuresk ¢ Iy>A; >k ¢ Iy.Byapplying Lemma4.3toA; and By, we
have

S (s (@)A1 = Sul(p+0)5 +1) 47 > B,
q

Multiplying A2 on both sides, we have (ii).

(ii) = (iii)): Putr=(p+1t)s—2t>0and g =2 in (ii). Then the condition (4.6) is
satisfied and (p +1)s > 2¢, so we have (iii).

(iii)) = (iv): If we put s = 0 in (iii), then we have (iv) by the Lowner-Heinz theorem.
(iv) = (i): If we put s = 1 and take logarithm of both sides of (iv), we have

log(S,2(p)A?) > log B” forall p >0
and hence
log Sz (p)'/? +1ogA > logB forall p > 0.
Then letting p — +0, we have logA > log B by (iv) of Theorem 2.16. O

Proof of Theorem 4.17.
(i) = (ii): By the grand Furuta inequality, (i) ensures

(p—t)s+r

AT > (AT SBrA by Y @.7)

holds for p > 1,1 €[0,1],s > 1,¢ > 1 and

r>t, (4.8)
(I—t+r)g>(p—1t)s+r (4.9)
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(p=t)s+tr r t t ryl
PutA; = —Ad andB1 {A2(A ’7BPA’7)SA7}; then A; > By by (4.7) and kly > A >
p t 7t

1IH >0 assuresk ¢ IH >A >k IH By applying Lemma 4.3 to A| and By, we
have

S (p tH»r( )qu Sk(( _t)S"_V)qA?ZBLl]
ka

Multiplying A~Z on both sides, we have (ii).

(i) = (iii)): Putr=(p—1)s—2(1 —1) and ¢ =2 in (ii), then the condition (4.9) is
satisfied and the condition (4.8) is equivalent to (p —#)s > 2 — ¢, so that we have (iii).

(iii) = (iv): Puts = 1 in (iii), then by taking the Al,-power of both sides, we have (iv).
(iv) = (v): It follows from (v) of Theorem 2.16 that

2
Sk 2(p = 1))F = (Sap-n(5)7) =KD ass oo,

so that we have (v).
(v) = (i): We have only to put p =1 in (v). O

Proof of Corollary 4.1. Put A; =A% and B; = B®, then A} > B; > 0 and kK°Iy > A >
k%IH. By applying (iv) of Theorem 4.16 to A and By, it follows that
Sis(2(p1—1)s)7AT" > B!

holds for p; > 1, s > 1 such that p; > %—l— 1. Put p; = % —|—1 then we have

Si(2(p— 8)s)5 AP > BP
holds for p > &, s > 1 such that p > (1 +1)8. O

Remark 4.4 Let A and B be positive invertible operators such that klg > A > %IH for
some k > 1. By using Uchiyama’s method, (iv) of Theorem 4.16 can be derived from (iv)
of Theorem 4.17 directly. In fact, the hypothesis logA > log B ensures A, = Iy + % logA >

I+ YogB =B, > 0 and Myly = (1+ Llogh) Iy > I+ LlogA > (1+ Llog 1)y = mulu
for sufficiently large natural number n. By Theorem 4.17, we have

max{Sy, (2(p — 1)s)7.5, 1(2(p—1)s)* }AL > BY
forp,s > 1withp > 1+ % By substituting np to p, we have
max{Sy, (2(np —1)5)%.S,, 1 (2(np — 1)) }A > B
fornp,s > 1 withnp > 1+ % Since

1
lim (I + - logX) =X foranyX >0,
we obtain
2
Sk(2ps)s AP > BP  fors>1,p > 0.

Therefore, we have (iv) of Theorem 4.16.
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We place an emphasis on the coherence of characterizations of the chaotic order and
the operator one via the Specht ratio, though our estimates via the Specht ratio are not
better than the ones in Theorem 4.2 and Theorem 4.9. We observe a connection between
their constants just to make sure. First of all, we start with the following lemma.

N
[ (P =1)hFT "
N eslogh

is an increasing function for s > 1 and a decreasing function for 0 < s < 1.

Lemma 4.4 Leth > 1. Then

@l=

F(s) =Sp(s):

Proof. Since

F'(s) 1 s

/ N
(logF)'(s) = s) = s—z(—log(h —-1)— 1 logh+logs+log(logh)
h* (h*—1) —sh*logh
logh’ logh’
t ol Ty ogh’),
if we putx = h* (> 1), then we have
(logF)'(s)

1 logx xlogx  (x—1)—xlogx

=3 (—log(x— 1)— o1 +log(logx) + 1 + 1) logx

1 o logx n logx logx 2
= — X — X .
52 =1 x—1 x—1

Klein’s inequality 1 — 1/x <logx <x— 1 and x = i* > 1 imply

| > logx
> =2

==

Then, since L(1) = 11%’ is negative and increasing for z > 0, we have

s?(log F)'(s) = log (logx) +xlogx (1 - Ing)

x—1 x—1 x—1

_ 1_logx L logx +xlogx
x—1 x—1 x—1

> 1_logx L l +xlogx
x—1 X x—1

_ 1_logx _xlogx+xlogx _o.
x—1 x—1 x—1

Thus we have (logF)'(s) > 0. By F(s) > 0, F itself is increasing for s > 1. O

Let A and B be positive invertible operators such that kI > A > %IH for some k > 1.
We have the following two characterizations of the chaotic order via the Specht ratio:
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(i) logA >logB <= S;2(p)AP > BP forall p > 0.

(ii) logA >logB <= Sp2 (ps)%Ap > B? forall p>0ands > 1.
We have the following relation between the constants (i) and (ii):

Lemma 4.5 For a given p > 0, the constant S;2(ps)>/* is not smaller than the constant
S2(p) forall s > 1:
Si2 (175)2/'Y > S2(p) foralls> 1.

Proof. By definition, we have S;2(p) = Sy, (1) and Sj2 (ps)?/* = S;2, (s)%/°. If we put
s = 1, then it obviously follows that S;2, (1)> > S;2,(1). Therefore by Lemma 4.4 we have

SkZ (ps)z/‘v = SkZp (S)z/'Y Z SkZp(l)z Z SkZp(l) = Sk2 (p)
O

Next, let A and B be positive operators such that kI > A > %IH for some k > 1. We
have the following two characterizations of the operator order via the Specht ratio and the
Kantorovich constant:

(ili) A>B<+=K(},k,p)A? >B"  forallp > I.

(iv) A>B <= So((p—1)s)TAP > BP  forall p,s > 1 withp > 1+ 1.

Here, we investigate a relation between the constants (iii) and (iv) in the case of p = 2.
If we put s = 1, then it follows that

1
—,k,2).
2 k2)

In fact, since an inequality x > elogx for x > 0 implies

Sk(2)* > K(

h+1 h+1
h20-1 > elogh =D

where h = k2, it follows that 1
(h—1)h=T J Bl

elogh  — 2vh
or equivalently
2
(h— 1A _ (1)
elogh = 4h

Therefore, it follows from Lemma 4.4 that the constant S;(2)? is not smaller than the
constant K(%,k,Z) forall s > 1:

1
Sp(s)f > Sp(1)? > K(%,k,Z) for all s > 1.



4.4 THE FURUTA INEQUALITY VERSION 107

4.4 The Furuta inequality version

In this section, we shall present Kantorovich type operator inequalities for the Furuta in-
equality related to the usual ordering and the chaotic one in terms of the generalized Kan-
torovich constant, a generalized condition number and the Specht ratio, in which we use
variants of the grand Furuta inequality (Theorem 3.13).

Theorem 4.18 Let A and B be positive operators such that Mly > A > mly for some
scalars M > m > 0. If A > B, then for each r > 0 and o« > 1

K(mﬁ“%'*(”’)),Mﬁ“T”*“*"”7a) A" > (ASBPAS)d (4.10)
holds for all p > 1, g > 0 such that p > o/(1 4+ r)q — r, and
ptr ptr ptr r r 1
K(m o M ,a)A ¢ > (ASBPA%)a @.11)
holds forall p > 1, g > 0 such that (1 +r)qg—r > p > (14 r)g—r, where K(m,M, p) is
defined by (2.29).

In particular,
EE—(1+4r) EEL—(147r)\2
m 4 +M q ptr r ro 1
(4 wumeum) AT > (ATBPAR)a (4.12)
m 49 q

holds forall p > 1, ¢ > 0 such that p > 2(14+r)g —r.

Proof. For each r > 0 and o > 1, it follows from Theorem 3.13 that

(p+r)s+t

T > {AT(ASBPATY AT @ (4.13)

holds for all p > 1 and ¢, s > 0 with

(1+t+r)oe> (p+r)s+t. (4.14)
(p+r)s+t t r oot~ L
PutAj =A@ andB; = {Az(A2BPA2)*Az}@, thenA| > B by (4.13) and MIy > A >
(p+r)s+t (p+r)s+t

mly assures M~ @« Iy > A >m o Iy. By applying Theorem 4.2 to A; and B, we
have

(p+r)s+t (ptr)s+t
K(m—a M ,a)A‘f‘ZB‘f‘.

Multiplying A~ on both sides, we have

(p+r)s+t (ptr)s+t

K(mT7MT7a)A(p+r>S > (ASBPA%Y'.
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Putr = w and s = Ll]. Since p > (14 r)g —rand g > 0, then it follows that

t >0, s > 0 and the condition (4.14) is satisfied. Therefore, we have
K (ma T ) @), ) A > (a5 prat)d

for all p > 1, g > 0 such that p > a1 + r)qg — r, so that we have the desired inequality
(4.10).

Also, putting =0 and s = Ll] in (4.13) and (4.14), we have (4.11) by the same discus-
sion above.

For (4.12), we have only to put o =2 in (4.10).

Hence the proof of Theorem 4.18 is complete. O

By Theorem 4.2 and Theorem 4.18, we have the following corollary.

Corollary 4.2 Let A and B be positive operators satisfying A > B and MIg > A > mly
for some scalars M > m > 0. Then for each r > 0

P (147) .
(A_/I> ! Al > (AZBPA?)

m

Q[

(4.15)
holds forall p > 1, ¢ > 0 such that p > (14 r)g —r.

Proof. By using Theorem 4.2 and Theorem 4.18, foreach » > 0 and o > 1

Q=

7 == AT > (AZBPAY)

(M)pTH—(lw)A”—“ (M)(ﬁU’T“‘““)))(“‘” pir

m m

holds for all p > 1, ¢ > 0 such that p > o(1+r)q—r. If we put o = 1, then we have
Corollary 4.2. O

Remark 4.5 Puttingr=0,g=1andp=0a >1in(4.10) of Theorem4.18 andr =0, g =
1in (4.15) of Corollary 4.2, we have Theorem 4.2. Hence Theorem 4.18 and Corollary 4.2
is an extension of Theorem 4.2.

Next, we present Kantorovich type operator inequalities for the Furuta inequality re-
lated to the operator ordering in terms of the Specht ratio.
Theorem 4.19 Let A and B be positive operators such that kI > A > %IH for some
scalar k > 1. If A > B, then for eachr > 0 and o« > 1
+r % +r r ro 1
s ((k"T*“*’))Z“) Y AT > (ATBPAT) (4.16)
holds forallp > 1,¢>0,s > L suchthat p > o(1+r)g—rand o — 1 > % and

a—1 ptr

2 e,
s ) A" > (AEBPAS)E 4.17)

holds forallp>1,q>0, s > 1 such that o« — 1 > % andoa(l+r)g—r>p>(14+r)g—r,
where the Specht ratio S(h) is defined by (2.35).
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Proof. For each r > 0 and o > 1, it follows from Theorem 3.13 that

(p+r)u+t

> {A2(A2BPA2)“A2}a (4.18)
holds for all p > 1 and #,u > 0 with

(I+t+ro>(p+ru+tt (4.19)

(p+r)u+i

PutA; =A@ ’andBl {A%(A%BPAz) A%}@, thenA; > By > 0 by (4.18) and kly >

A>IIH>Oassuresk IH>A1>k’p =
to A; and B, we have

Iy > 0. By applying (iv) of Theorem 4.17

2
(p+r)s 5
S ((k p+a) + )z(a—l)s) Atlx > B(IX'

Multiplying A~ on both sides, we have
2
g ((k (p+;)u+f )2(oc 1)s ) A(p+r)u > (AEBPAE )u

holds forall p > 1, u,t > 0and s > 1 such that o« — 1 > % and the condition (4.19).

Putt = W‘# and u = é Since p > o(1 +r)g —r and g > 0, then it follows
that r > 0, u > 0 and the condition (4.19) is satisfied. Therefore, we have

2
5 (e 4% > (asprat)s

forallp >1,g>0ands > 1suchthatp > a(l+r)g—randa—1> %, so that we have
the desired inequality (4.16).

Also, puttingt =0 and u = %1 in (4.18) and (4.19), we have (4.17) by the same discus-
sion above.

Hence the proof of Theorem 4.19 is complete. O

Remark 4.6 Puttingr=0,g=1and p= o > 1 in (4.16) of Theorem 4.19, we have (iv)
of Theorem 4.17. Hence Theorem 4.19 is an extension of (iv) in Theorem 4.17.

Corollary 4.3 Let A and B be positive operators such that kI > A > %IHfor some scalar
k> 1. If A > B, then for each r > 0

(k)T ) A5 > (A5 BPAS)
holds for all p > 1, g > 0 such that p > (1 +r)q —

Proof. Since it follows from (v) of Theorem 2.16 that

lim S(k*) s

§—00

:k7

we have this corollary by using Theorem 4.19. o

Next, we present Kantorovich type operator inequalities for the chaotic Furuta inequal-
ity related to the chaotic ordering in terms of the generalized Kantorovich constant, a gene-
ralized condition number and the Specht ratio.
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Theorem 4.20 Let A and B be positive invertible operators such that Ml > A > mly
for some scalars M > m > 0. IflogA > logB, then for each r > 0 and o« > 1

Lty Lt

D1 r r.l
K(ma,l M ,a) AT > (ATBPAR)q (4.20)
holds for all p > 0, g > 0 such that p > orq — r, and
pHr ptr ptr r r ol
K(m' M ) AT = (a2BPAT)

holds for all p > 0, g > 0 such that arq—r > p > rq —r, where K(m,M, p) is defined by
(2.29).

In particular,
ptr phr_
(ma "M ) pr

AT > (ATBPAT)

pEr_, pir_
dm ¢ M 4

holds for all p > 0, g > 0 such that p > 2rq—r.

r

Proof. We can prove this theorem by a similar method as Theorem 4.18 by using
Theorem 3.16 instead of Theorem 3.13. O

By Theorem 4.20 and Theorem 4.4, we have the following corollary.

Corollary 4.4 Let A and B be positive invertible operators satisfying 1ogA > logB and
My > A > mly for some scalars M > m > 0. Then for each r > 0

ptr
M " ptr r rol
(—) T AT > (A%BPASY 4.21)
m
holds for all p > 0, g > 0 such that p > rq —r.

Remark 4.7 Putting r =0, g =1 and p= o —1 > 0 in (4.20) of Theorem 4.20 and
r=0,g=11in (4.21) of Corollary 4.4, we have Theorem 4.4. Hence Theorem 4.20 and
Corollary 4.4 can be considered as an extension of Theorem 4.4.

Similarly, we have the following result which is considered as an extension of (ii) of
Theorem 4.16.

Theorem 4.21 Let A and B be positive invertible operators such that kI > A > %IH for
some scalar k > 1. IflogA > logB, then for each r > 0 and o0 > 1

Z r r r
S(@T) A% 2 @ity
holds forallp >0, g >0, s > 1 suchthat p > aorg—rand o« — 1 > % and

ptr

a—1 p+r 2 % ptr r r 1
(05 a2 st

holds for all p >0, g >0, s > 1 such that « — 1 > L and oarg—r>p >rq—r,
where the Specht ratio S(h) is defined by (2.35).
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Proof. We can prove this theorem by a similar method as Theorem 4.21 by using (ii)
of Theorem 4.16 and Theorem 3.13 instead of Theorem 3.16. o

Corollary 4.5 Let A and B be positive invertible operators such that kly > A > %IH for
some scalar k > 1. If logA > log B, then for each r > 0

()T A% > (ABBPAR)e
holds for all p > 0 and g > 0 such that p > rq—r.

The following corollaries are easily obtained by Theorem 4.18 and Theorem 4.19, re-
spectively.

Corollary 4.6 Let A and B be positive invertible operators such that MIy > A > mly for
some scalars M > m > 0. If A% > B% for § € (0,1, then for each r >0 and o0 > 1

K(mﬁ“%’—(f”’)) maT (G —(04) ) A" > (ATBPA%) (4.22)

holds for all p > 8, q > 0 such that p > o(0 +r)q — r, where K(m,M,p) is defined by
(2.29).

Corollary 4.7 Let A and B be positive invertible operators such that klg > A > %IH for
some scalar k > 1. IfA5 > B’ for 6 € (0,1], then for eachr >0 and o, > 1

2
((kT—<5+f>)25)° A% > (A5BPAS)

holds for all p > 6, q > 0 such that p > o6 + r)q — r, where the Specht ratio S(h) is
defined by (2.35).

Remark 4.8 (4.22) in Corollary 4.6 interpolates (4.10) in Theorem 4.18 and (4.20) in
Theorem 4.20 by means of the generalized Kantorovich constant. Let A and B be positive
invertible operators such that MIy > A > mly for some scalars M > m > 0. Then the
following assertions hold:

ptr

(i) A>B implies K(mﬁ“%”(”’)) pa (1) a) AT > (ASBPAS) T for

) )

allp>1,q>0suchthat p > o(l+r)g—

(ii) A% > B% implies K(m r(7g"=(8+0)) Mot (T*(5+"))7a> A
forallp> 68, q> 0 suchthat p > o(6+r)g—

1 +r
(i) logA > logB implies K(me1!"a " Mat('s0 o) A" > (A3BrAL)7 for
allp>0,g>0withp > arg—r.
It follows that the generalized Kantorovich constant of (ii) interpolates the scalar of

(i) and (iii) continuously. In fact, if we put 8 = 1 in (ii), then we have (i). Also, if we put
6 — 01in (ii), then we have (iii).
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4.5 Notes

Theorem 4.1 is due to M. Fujii, [zumino, Nakamoto and Seo [85]. Theorem 4.2 is due
to Furuta [113]. Theorem 4.4, Theorem 4.6 and Theorem 4.9 are due to Yamzaki and
Yanagida [293]. Theorem 4.5 is due to Seo [260].

The results in Section 4.3 are due to [104] and in Section 4.4 due to [262].



Chapter

Operator Norm

As applications of the Mond-Pecari¢ method for convex functions, we shall discuss in-
equalities involving the operator norm. Among others, we show a converse of the Araki-
Cordes inequality, the norm inequality of several geometric means and a complement of the
Ando-Hiai inequality. Also, we discuss Holder’s inequality and its converses in connection
with the operator geometric mean.

5.1 Operator norm and spectral radius

Let A be a (bounded linear) operator on a Hilbert space H. By Theorem 1.6, we have the
following relation between the operator norm || - || and the spectral radius r(-):

r(A) < ||A]]. (CRY

In this section, we shall discuss a converse of (5.1). To consider it, we use another
interpretation of the Kantorovich inequality. By Schwarz’s inequality (Theorem 1.1), it
follows that

(Zh,h) < || Zh|[|n]| (5.2)

for a positive operator Z and a vector h € H. We first show a converse of Schwarz’s
inequality (5.2):

113
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Theorem 5.1 Let Z be a positive operator such that mly < Z < Mly for some scalars
0<m<M. Then
M—+m

2vVMm

1 Zh][[|A]l < (Zh,h) (5.3)

for every vector h € H.
Proof. Let & be any subspace of H and there exist M" and m’ such that 0 < /Iy <

Ze <M'ly. Thenm <m' <M’ < M and setting t = /M /m and t' = /M’ /m’, we have
t>1">1.Sincer — 1+ 1/t increases on [1,e0) and

M+m 1<t+1) d M +m l(t/—i—l)
== - an —_— = -,
2VMm 2 t 2vVM'm! 2 t

we infer
M+m M +w

> .
2vVMm — 2/ M'm’
Therefore, for a unit vector & € H, it suffices to prove the theorem for Zs with & =

span{h,Zh}. Hence we may assume dimH = 2,Z = Me| ® e + mey ® ep and h = xeq +
V1 —x2e;. Setting x> = y we have

IZhl| _ /My +m2(1—y)

(Zh,h) My+m(1—y)

The right-hand side attains its maximum on [0, 1] at y = m/(M + m), and then

IZh|  M+m
(Zh,h) — 23/Mm’
Therefore, the proof is complete. g

Remark 5.1 (5.2) in Theorem 5.1 is equivalent to the Kantorovich inequality (2.24):
(Zx,x)(Z" " x,x) < (M +m)?/4Mm for every unit vector x € H. If we put x=Z"/?h /|| Z"/?h)|
for every vector h € H, then

(M +m)?

1/2; 51/2 ~151/27 51/2 12514 <
(2202 (27 2 2 [ Z7h < =

2
and hence || Zh|?||h|*> < %(Zhhﬂ Taking square roots oflthe inequality, we have
Theorem 5.1. Conversely, suppose (5.3). If we replace h by Z~ 2x for every unit vector
x € H in (5.3), then we have

M
|2z 4z b < S 2z bz )
m

1 _1 M+m . .

2 2 -
and hence ||Z2x||||Z” 2x|| < T Rasing it to the second powers, we have the Kan
torovich inequality.
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By virtue of Theorem 5.1, we show the following converse inequality of (5.1).

Theorem 5.2 Let A and Z be positive operators such that mly < Z < Mly for some
scalars 0 <m < M. Then

M+m
AZ| < ——r(AZ 5.4
I42) < 57 ra2). 54
Proof. We may assume that there exists a unit vector f such that ||ZA|| = ||ZAf||. Then

IZAf]| is expressed as follows:

IZAf|| = ||ZA (A2 Pl I = [|ZAY (A2 ) @ f|
= (A2 @ A Z| = AP0 zA 2 £ | = |AV2 1| | ZA 2 1))

Hence we have

+

IAZ|| = |ZA| < A 2 fIIAY2 1| < \/M—< ZA'2 AV )

M—|—m

2\/Mm
_ M+m

- 2vMm
by Theorem 5.1. O

<A1/2ZA1/2f7 f> < émer(Al/2ZAl/2)

r(AZ)

Remark 5.2 Theorem 5.2 extends Theorem 5.1. Indeed, if we put A = h® h in Theo-
rem 5.2, then we have Theorem 5.1.

Let Z be a positive operator and A a contraction. Then
AZA<Z

does not always hold in general. As a matter of fact, if we put

20 1/11
Z—<01> and A—§<1 1>7
then we have Z > 0 and 0 < A < Iy, but
53
Z_AZA: ( 43 14> Z‘O
T4 7
By using Theorem 5.2, we have the following operator inequality.

Theorem 5.3 Let A be a contraction and Z a positive operator such that mly < Z < Mly
for some scalars 0 < m < M. Then

(M +m)?

Z.
4Mm

AZA <
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Proof. Tt follows from Theorem 5.2 that

M+m

Z7 1247V = |27 V2Az 7 27| < ==z Pz 27
| = | < Wi ( )
M+m M+m
= r(A) < .
2V Mm (4) = 2V Mm
Hence we have
M 2
Z712A7A7-1 < |72V Pazaz— 11y <
AMm

d

An important source of interesting inequalities in operator theory is the study of rear-
rangements in a product. The following rearrangement inequality is well known:

[AB|| < [|BA| (5.5)

whenever AB is normal. In fact, since the spectral radii of AB and BA are equal and nor-
mality of AB implies ||AB|| = r(AB), we have

|AB|| = r(AB) = r(BA) < || BA||.
Thus, when AB > 0 the following theorem is a generalization of (5.5).

Theorem 5.4 Let A, B be operators such that AB > 0 and let Z be a positive operator
such that mly < Z < Mly for some scalars 0 < m < M. Then

M—+m
|ZAB|| < [ BZA]|.
2vVMm
Proof. By Theorem 5.2, we have
M M M
|1zaB| < 2 1zaB) = 2 L Bza) < ZLEM paa.
2vVMm 2vVMm 2vVMm

O

We shall extend Theorem 5.2 by applying the Mond-Pecari¢ method for convex func-
tions. For that purpose, we need some preliminaries.

Let A be a positive operator on a Hilbert space H and x a unit vector in H. By the
Holder-McCarthy inequality (Theorem 2.11), we have the relation between the continuous
power mean and the continuous arithmetic one:

(Ax,x) < (Apx,xﬁ forall p > 1. (5.6)

By using the Mond-Pecari¢ method, we have the following converse inequality of (5.6).
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Lemma 5.1 If A is a positive operator on H such that mly < A < Mly for some scalars
0 <m < M, then for each o« >0

<Apx,x>% < o{Ax,x)+B(m,M,p,a)  forallp>1

holds for every unit vector x € H, where

1

p—1(a, \rT . a a
—< I’) —I—Otbp Uc 14 <a§ p717

p \ap pmpr=t — pmP
ﬁ(m7M7p7a): (l—a)M U" 0<a< 9p (57)
pMpfl
. ap
(1—o)m if a> i1

MP —mP MmP — mMP
and ap:= ——, pi=——

M—m M—m

Proof. For the sake of reader’s convenience, we give a proof. Put f(¢) = (a,t + bp)% —
ot and f = B(m,M,p, o) = max{f(¢) : m <t < M}. Then it follows that

)= a;p(apt"‘bp)%il —a

and the equation f’(z) = 0 has exactly one solution

1 (Ocp)'pl’ b,
th=—|— -2
ap \ dp dp

If m <ty < M, then we have B = max,,<,<pm f () = f (1) since

a;(1—
f(e) = %(apt—l—b,,);z <0

and the condition m < #y < M is equivalent to the condition

4p 4p
pMp—l S o S pmp—l :

If M < 1, then f(¢) is increasing on [m,M] and hence we have 8 = f(to) = (1 — )M
for to = M. Similarly, we have B = f(t9) = (1 — a)m for 1o = m if 1) < m. Hence it follows
that |

(apt +by)r —ot < B forall r € [m,M].
Since 7 is convex for p > 1, it follows that 17 < a,t + b, for t € [m,M]. By the spectral
theorem, we have A” < a,A + bply and hence (APx,x) < a,(Ax,x)+ b, for every unit
vector x € H. Therefore we have

(ap(Ax,x) + bp)% — o{Ax,x)

<
< =
< mfggwf(t) B(m,M,p,a)

(Apx7x>% — 0o {Ax, x)

as desired. O

As a complementary result, we state the following lemma.
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Lemma 5.2 If A is a positive operator on H such that mly < A < Mly for some scalars
0 <m < M, then for each o« >0

(Apx7x>% > o{Ax,x) + B(m,M,p,0)  forall0<p<1

holds for every unit vector x € H, where

1

— p—1
p_l(a_p)P _|_abp lf ap <a<a—p

_ p \ap N
B0 = 3 (1 e vz
p
. ap
(I—a)m if 0<Oc§pmp_l,

MP —mP b MmP — mMP

d =— :
an ap M—m’ P M—m

By Lemma 5.1 and 5.2, we have the following estimates of both the difference and the
ratio in the inequality (5.6).

Lemma 5.3 If A is a positive operator on H such that mly < A < Mly for some scalars
0<m<M, then

(APx,x)7 < K(m,M,p)r(Ax,x)  forallp>1 (5.8)

and
K(m,M,p)7{Ax,x) < (APx,x)P  forall0<p<1 (5.9)

hold for every unit vector x € H, where the generalized Kantorovich constant K(m,M, p)
is defined by (2.29).

Proof. For p > 1, if we put B(m,M, p, ) =0 in Lemma 5.1, then it follows that

p—1 (Mﬂ—mﬂ)ﬁJraL(Mmﬂ—me’)

p— 7 —
p \p(M—m) MP —mP

and hence 1

P p—1(MP—mP \rT MP—mP
arl=— .
p \p(M—m) MmP — mMP

Therefore, we have

o — MP—mP (p—1 MP—mP \P!
p(M—m)\ p mMP—MmP
= K(m,M, p)

and we obtain the desired inequality (5.8). For 0 < p < 1, we similarly have the inequality
(5.9) by Lemma 5.2. O
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Lemma 5.4 If A is a positive operator on H such that mly < A < Mly for some scalars
0 <m< M, then

L 1
(APx,x) P — (Ax,x) < —c(mP,MP, 1—7) forall p>1 (5.10)

and
1 '
—c(ml',MI', —) < (APx )7 — (Ax,x)  forall0<p<1 (5.11)
p

hold for every unit vector x € H, where the constant C(m,M, p) is defined by (2.38).

Proof. For p > 1, if we put o = 1 in Lemma 5.1, then it follows that

T
—c(mmr by =04 (M P MPm—mrm
)

P P %( MP —mp M—m
=B (m,M,p,1)
and we obtain the desired inequality (5.10). For 0 < p < 1, we similarly have the inequality
(5.11) by Lemma 5.2. O

The following theorem is a generalization of Theorem 5.2.

Theorem 5.5 [fA and Z are positive operators on H such that mly < Z < Mly for some
scalars 0 < m < M, then for each o. > 0

I(AZPA)7|| < & r(ZAT) +B(m,M.p,0)||AI7  forall p> 1,
where 3(m,M,p, ) is defined by (5.7).

Proof. For every unit vector x € H, it follows from 0 < % < 1 that

((AZPA)P rx ,x) < (AZPAx x)é by the Holder-McCarthy inequality

1

A A » 2

— () 12
x

T
Ax 2
< +B(m,M,p,o )) ||Ax]|| by Lemma 5.1
( < Tax] A |>

2
0 (ZAx, Ax) |Ax]| P72 + B(m, M, p, o0) [ Ax] 7

1 1

o1 Al AlTp 2_ _1 2

= a({ArzAr =" =V lAx] P2 1A r |2 4 B(m, M, p, o) [ Ax]
IA7al| A ]

and
—1,,2-2
(A" rx,x)
1
T T =1 byo<1-L<l

2 1
lAx]| 72|47 7x]? = (A%x,x)

< (A%x,x)

S e
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By combining two inequalities above, we have

IN

11 2

o ||APZA? ||+ B(m,M,p,a)||Ax||»

o H(ATZAT )+ B(m, M, p, o)||Ax|| 7
2 2

o r(ZA?) + B(m,M,p,a)| A7

(AZPA)7x, %)

IN

for every unit vector x € H and hence we have the desired inequality. O
Remark 5.3 If A and Z are positive operators, then it follows that
2
H(ZAD) < ||(AZPAY? || forall p> 1. (5.12)
As a matter of fact, by the Araki-Cordes inequality (Theorem 5.9), we have
2 1 1 1 1 1
HZAT) = r(ATZAY) = |ATZAT | < [|(AZPA)7 |

for all p > 1. Therefore, the inequality in Theorem 5.5 can be considered as a converse
inequality of (5.12).

The following theorem is a variant of Theorem 5.5 with 2-variables.

Theorem 5.6 If A and Z are positive operators on H such that mly < Z < Mly for some
scalars 0 < m < M, then for each o« > 0

1 2 2
I(AZPA)1|| < & r(Z5AT) + B(m¥,M%,q,0)|All7  forallp>1andq>1,
where B(m,M,p, ) is defined by (5.7).

Proof. For every unit vector x € H, we have

QI

1
(AZPAYixx) < (AZPAxx)t  byO<l<l
Ax  Ax i 2
[[Ax]|4

- <(Z S TAxl T

p Ax  Ax > ) 2
S o Zq—, +[3(m",M‘17q7O‘)) HAJCH‘I
( < [[Ax]| " [|Ax]|

The rest of the proof is proved in a similar way as the proof of Theorem 5.5. O

Theorem 5.7 Let A and Z be positive operators on H such that mly < Z < MIy for some
scalars 0 < m < M. Then for each p > 1

I(AZPA)? || < K(m,M,p)7 r(ZAT). (5.13)

In addition, (5.13) is equivalent to (5.8) in Lemma 5.3.
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Proof. By using (5.8) of Lemma 5.3 instead of Lemma 5.1 in the proof of Theorem 5.5,
we obtain (5.13). Conversely, for every unit vector x € H, if we put A = x®x in (5.13),
then

l(x@x)2” (x@x)[| VP = [|(x, 2 x) (2, 2) |7 = (2P x,x)' /P

and
r(ZAYP) = r(AZA) < ||[AZA|| = ||(Zx,x) (x,x)|| = (Zx,x).

Hence we have (5.8) of Lemma 5.3. O

Remark 5.4 We have Theorem 5.2 as a special case of Theorem 5.7. As a matter of fact,
if we put p =2 in Theorem 5.7, then we have

[(AZ2A)2 || < K(m,M,2)? r(ZA).

1
Since || (AZ2A)}|| = || (ZA) (ZA)||} = |ZA]| = |AZ| and K(m,M,2)} = (L522)" =

4Mm
M-+m . . . .
i e have the desired inequality (5.4) in Theorem 5.2.

Theorem 5.8 Let A and Z be positive operators on H such that mly < Z < Mly for some
scalars 0 < m < M. Then for each p > 1

1
[(az" A7 | < rzar) = (w7, ) A1 (5.14)

In addition, (5.14) is equivalent to (5.10) in Lemma 5.4.

Proof. By using (5.10) of Lemma 5.4 instead of Lemma 5.1 in the proof of Theo-
rem 5.5, we obtain (5.14). Conversely, for every unit vector x € H, if we put A = x®x in
(5.14), then we have (5.10) of Lemma 5.4. O

We have the following corollary as a special case of (5.14) in Theorem 5.8, which is a
difference type converse inequality of (5.1).

Corollary 5.1 If A and Z are positive operators on H such that 0 < mly < Z < MIy for
some scalars 0 < m < M, then

M — 2
Izl - r(za) < Y= all 615

Proof. If we put p =2 in Theorem 5.8, then we have (5.15) since

): (M —m)?

1
C(m27M27— mom
4(M+m)

2
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5.2 The Araki-Cordes inequality

First of all, we recall the Araki-Cordes inequality (AC) for the operator norm in §3.6:
Theorem 5.9 Let A and B be positive operators. Then
|IBPAPBP|| < ||(BAB)”|| forall0 < p <1 (5.16)

or equivalently
|[(BAB)?|| < ||BPAPB? || Sforall p > 1.

The Cordes inequality for the operator norm is as follows:
Theorem 5.10 Ler A and B be positive operators. Then
[|APBP|| < [|AB||P forall0<p<1

or equivalently
|AB||? < ||APB?|] forall p > 1.

Proof. By using the Araki-Cordes inequality, we have
|APB?||> = ||BA*'B”|| < ||(BAB)”| = ||BA®B||” = || AB|*"
forall0 < p < 1. o

In this section, we show converse inequalities to these inequalities and investigate the
equivalence among converse inequalities of Araki, Cordes and Lowner-Heinz inequalities.

First of all, we show the following ratio type converse inequality of the Araki-Cordes
inequality.

Theorem 5.11 [fA and B are positive operators on H such that mly < A < My for some
scalars 0 < m < M, then

K(m,M,p)||BAB||? < ||B’A’B?|| forall0< p<1 (5.17)
or equivalently
|BPAPBP|| < K(m,M,p) |BAB||’  forallp > 1, (5.18)
where K(m,M, p) is defined by (2.29).
In particular,
M 2
a2 < HE e
m
and
2v/Mm

1 1 1 1
—————||BAB||2 < ||B2A2B2||.
Ny L B
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Proof. Suppose that 0 < p < 1. For every unit vector x € H, it follows that

(BAB)?x.)
< (BABx, x)p by the Holder-McCarthy inequality and 0 < p < 1
= (oot )
"B 1B
Bx  Bx
= K( ) <Ap , _> || Bx||* by Lemma 5.3 and + > 1
[[Bx]| " [|Bx]| P

K(m” mP —) (APBx, Bx)||Bx||P 2

B'=rx  Bl'"rx _ _
K(m ) < BPAPBF HBl_pr’ ||Bl—px|>||Bx||2p 2||B1 pr2

and

|[Bx[|*P~*|B'Px[|* = (B*x,x)"~" (B> ~*Px,x)
< (B, x)P Y Bx,x)' P =1 byO<l—p<l.

By combining two inequalities above, we have
[BAB||” = || (BAB)"||
1\?
< K (m?,M?, )| BPATBY|| = K(m, M. p) | BPAP Y|
p
because K(m,M,p)'/? = K(m?,MP,1/p)~" by the inversion formula in Theorem 2.13.
Hence we have the desired inequality (5.17).

Next, we show (5.17) = (5.18). For p > 1, since 0 < l < 1, it follows from (5.17)
that

K (m.M, ) |BAB||7 < |BTATB7 ||
By replacing A and B by A” and BP respectively, in the inequality above we have
1 1
K (m?.M7, ) |BA7BY |2 < [|BAB].
p

and so
K(m,M,p)""|BPA?BP| < ||BAB||?
by the inversion formula in Theorem 2.13. Similarly we can show (5.18) = (5.17). O

Remark 5.5 Theorem 5.11 implies Theorem 5.7. In fact, for each p > 1,
1 IN-D o1 1
|(azvaye || < K (m?,m?,— ) [lArzar |
p
1 1 1
=K(m,M,p)rr(ArZAPr)
1 2
— K(m,M, p)Fr(ZA%).
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Next, we show a difference type converse inequality of the Araki-Cordes one.

Theorem 5.12 [fA and B are positive operators on H such that mly < A < Mly for some
scalars 0 <m < M, then

IBAB||P < ||BPAPB?|| — C(m,M,p)|[B|*’  forall0<p<1,
or equivalently
|IBAB||? > |[BPAPBP|| — C(m,M,p)||B|**  forall p>1,

where C(m,M, p) is defined by (2.38).
In particular,

_ 2
IBAB||} < ||B*A3BY| +MHBH.
4(v'M + \/m)
and
M — 2
82228 < ag + M e
Proof. For0 < p <1,
((BAB)?x,x BABx, x)P
(
< By > B2
) BT T
x
< (< T T > —c<m,M,p>) x|
Bl=rx Bl-ry B B
= (BB e e Y BP 2B — Conp)B”

< ||BPAPB?| — C(m. M. p)|B||*".
The last inequality holds since

1Bx|[?P~2(|B'Px|? = (B2x,x)P ! (B> *x,x)

< (B2, x)P" U B x,x)' P =1  byO<l-—p<l.

Hence we have
IBAB||” < || BPAPB?|| — C(m,M, p)||B||*".

Next, suppose that p > 1. For every unit vector x € H we have

1Bx|[?P~2(|B'Px|? = (B2x,x)P ! (B> *x,x)

> (B2, x)P U Bx,x)!' P =1 byl—p<0
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and

((BAB)Px,x) > (BABx,x)?

1 Bx Bx \?

= (A”)F—,—> |1Bx|*”

< (| Bx||" || Bx]|

> (APBx, Bx)|[Bx|[** > — C(m, M, p) | Bx|[**
Bl-rx  Bl-ry
[B!=Px| " ||B'Px]|
B'=Px  Bl7rx
[B! x| " || B! Px]|

> <B”A”B” > Bx|*72|B'7x]]2 — C(m, M. p)|| B>

> <BPAPBP > —C(m,M,p)|Bx||*.

By a suitable unit vector x € H, it follows that
((BAB)Px,xa) > ||BPAPB?|| — C(m,M, p)||Bx||*".
Since ||Bx|*” < ||B||*?, we have —C(m,M, p)||Bx||*” > —C(m,M, p)||B||*” and hence
|BAB|[” > || B”A”BP || — C(m,M, p) || B||*".
O

Moreover, we obtain the following converse inequality of the Cordes inequality by
Theorem 5.11.

Theorem 5.13 IfA and B are positive operators on H such that mly < A < Mly for some
scalars 0 <m < M, then

|APBP|| < K(m*, M2, p)2 |AB||P  forallp> 1
or equivalently

K(m?,M*,p)? |AB||? < |APBP||  forall0<p<1.

In particular,
MZ 2
1428 < ©E a2
2Mm
and
2vVMm

IAB||* < ||A2B2 ).
M—+m

Proof. For a given p > 1, it follows from Theorem 5.11 that
|BPAPBY|| < K (m, M, p) | BAB||”

and hence , .
|AZBP||> < K(m.M, p)||AZB||*".
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If we replace A by A, then we have
IAPB?||> < K (m*,M?, p)||AB||*"

as desired. O

The equivalence among the converse inequalities of Araki, Cordes and Lowner-Heinz
inequalities is now given as follows.

Theorem 5.14 Let A, B be positive operators such that mly < A < MIy for some scalars
0 <m < M. Then for a given p > 1, the following are mutually equivalent:

(a) A>B>0 implies K(m,M,p)AP > BP.
(b) ||APBP|| < K(m*,M?,p)'/|AB| .
() [[BPAPBP|| < K(m, M, p) | BAB|".
(b) K(m?,M,1/p) 2 |AB| < ||APBP ||
(') K(m,M,1/p)|BAB|P < || BAPB?||.
Proof. The proof is divided into three parts, namely the equivalence (a) = (b) =
(¢) = (a), (b) <= (b") and (¢) <= (C").
(a) = (b): It follows that
(a) <= (JA~2B| < Limplies A~ 5B¥ > < K(m,M. p) )
= (HA%B% | < 1implies [AZBE |2 < KM, m!,p) = K(m,M,p))
< (||AB| < 1 implies [|A?B|| < K(m*,M*,p).)
If we put B; = B/||AB||, then it follows from ||[AB;|| = 1 that
|4 B]I| < K(m? 0%, p)? <= |A”B?|| < K(m? M, p)? | AB"
(b) = (c): If we replace A by AZ in (B), then it follows that
|A%B7I| < K(m.M,p)? A% B] .
Squaring both sides, we have
|BPAPB|| < K(m,M, p)||BAB||”.
(¢) = (a): If we replace B by B and A by A=l in (C), then it follows that

IBEAPBE | < KM, m™",p)|B*A~'BZ||P.
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By rearranging it, we have
|a~4BPA" || < K(m.Mp)A~2BA" 2"
Since A > B > 0, it follows from A_%BA_% < Iy that
A~ BPA72|| < K(m,M,p)

and hence
BP < K(m,M,p)A?.

(b) <= (b’): If wereplace A and B by ATI’ and B% respectively in (B), then it follows that
22 Ngoo1ol
(B) = |IAB|| <K (m?,M7,p) " |A7B7||"

1 22 \NB L1
= |ABIP <K(m?.M7,p) 7 |A7BT |

—  K(m:M2,p)}||AB||» <||A?B?|| by Theorem 2.13
<~ (B
Similarly we have (c) <= (c’) and so the proof is complete. O

5.3 Norm inequality for the geometric mean

Let A and B be two positive operators on a Hilbert space. The arithmetic-geometric mean
inequality says that

(l1—a)A+oB>A#, B foral0 <o <1, (5.19)

where the o-geometric mean A #, B is defined by
L 1 IN® 1
A#aBzAZ(A } BA z) AY forall0< o < 1.

In fact, put C —A"3BA"7. Since o(t—1)+1>t%fort > 0, we have (1 — o)y + aC >
C%. Therefore, we have (5.19).

On the other hand, it is known the following matrix Young inequality: For positive
semi-definite matrices A, B and p,gq > 1 such that 11—7 + é =1

1 1
—AP + —B1 > U*|AB|U (5.20)
p q
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for some unitary matrix U. By (5.20), for positive semi-definite matrices A, B
[(1—0)A+aB||>||[A"™*B*||  forall0<a <1 (5.21)
and by (5.19) we have
[[(1—o)A+ oB|| > ||A #4 B| forO<a<landA,B>0.
Here we remark that McIntosh [182] proved that (5.21) holds for o = 1/2 and positive

operators.

In this section, we show a norm inequality and its converse on the geometric mean. In
other words, we estimate ||A #, B|| by |[A!~*B%||. Moreover we discuss it for the case
o > 1. Our main tools are the Araki-Cordes inequality (Theorem 5.9) and its converse one
(Theorem 5.11).

We show the following norm inequality for the geometric mean, in which we use the
Araki-Cordes inequality twice.

Theorem 5.15 Let A and B be positive operators. Then for each 0 < o < 1
|A # B|| < |A'~*B|. (5.22)
Proof. Tt follows from (5.16) in Theorem 5.9 that
L/ 1 I\¢ 1 o111 La 1o,
HAz (A 2BA 2) AzH < ||A2aA 2BA 2A2a|| = ||A 70 BA 2o H

forO<a <1.
Furtheremore, if o¢ > 1/2, then by (5.16) in Theorem 5.9 again

A5 BA S | < [|AT-@B2eAl-e| 3 = [|Al-ap|
Hence, if 1/2 < a < 1, then we have the desired inequality (5.22).

If o0 < 1/2, then by using A #,, B = B #;_4 A, it reduces the proof to the case o > 1/2
and so the proof is complete. O

As in Chapter 3, we use the notation f to distinguish from the operator mean #:
L1 NG L
Atg B=A? (A 2 BA z) AT forall oo ¢ [0,1].

Theorem 5.16 Let A and B be positive operators. If 3/2 < o0 < 2, then

A b B|| < ||A'*B*|. (5.23)
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Proof. Put o = 1+ f3 and 1/2 < 3 < 1. Then we have
Lo INTB o
A b Bl = B4 g Al =||B> (B~34B71) " BY|
1/ 1. 1\B 1
— |IB? <B2A BZ) BI|
Lo N R
<|[B¥B2A~'BZB|P by Theorem5.9and 1/2<f <1
LB 1
— B A~ 1B |
< ||B"PA"2PB"B|2 by Theorem 5.9 and 0 < ﬁ <1
= [APBP| = At eB.
i

Remark 5.6 In Theorem 5.16, the inequality ||A s B|| < ||A'=%B%|| does not always
hold for 1 < o0 < 3/2. In fact, let A = (? } and B = ? ; . Then we have ||A b% B|| =
3.38526 > [|A~3 B3 || = 3.3759. Also, ||A 27 Bl =3.49615 < |A-3B%| = 3.50464.

We show the following converse inequality of (5.22) in Theorem 5.15.

Theorem 5.17 If A and B are positive operators such that mly < A,B < Mly for some
scalars 0 <m <M and h = %, then for each 0 < o < 1

K(12, 00)[|A'=“B% < ||A #q B,
where the generalized Kantorovich constant K(h, o) is defined by (2.31).
Proof. Suppose that 0 < o < % Since %IH < A*%BA*% < %IH, it follows that a

. oL 1 1.
generalized condition number of AT2BA™ 2 is % /5= h? and we have

o
A #a B = ||(a%)* (4=5Ba1) " (a7)%

> K(i?,)||A%A"2BA"2A%a|| by Theorem 5.11and 0 < or < 1
= K(h?,0)||A " BA % ||

> K(hz,oc)||A1’°‘Bzo‘Al’°‘||% by Theorem 5.9 and 5 > 1
=K(h*, o)A *BY|.

Suppose that % <a<l1l.Since0<1l—a< %, we have

|A#o B|| = [|B#_q Al
> K(h?,1—a)|[B' (=@l
= K(h?,a)||A'"*B*|| by (ii) of Theorem 2.12

and so the proof is complete.
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We show the following converse inequality of (5.23) in Theorem 5.16.

Theorem 5.18 If A and B are positive operators such that mly < A,B < Mly for some
scalars 0 <m <M and h = % then for each % <a<?2

K(i?, 00— 1)K (h,2(cc— 1)) 73| A=B%| < |[A g B,
where K(h, ) is defined by (2.31).
Proof. Putoe =1+ f and 1/2 < 3 < 1. Then we have
A e Bl =B &_p Al
Ll 1p\B ot
:||Bz (BzA Bz) BzH
1 1
> K(h2,B)||B¥ B2A~'B2B |P by Theorem 5.11and 1/2< B < 1
) Lp 2B 1B
=K(n*,B)|[B A B ||P
1 1\P
> K(h,B) (K(h—zﬁ, ﬁ>|Bl+ﬁA_2ﬁBl+B|2ﬁ> by Theorem 5.11 and 0 < 5y < 1
1\8
=K, B)K (P, ) A PBP
2B
= K(h?,B)K(h,2B) 3| A-“BY|.

The last equality follows from

K(n?.55)" = k(. 55) = K028 = K012

by (i) of Theorem 2.12 and (i) of Theorem 2.13. O

As mentioned in Remark 5.6, we have no relation between ||A fio B and ||A!~*BY||
forl<o< % We have the following result.

Theorem 5.19 If A and B are positive operators such that mly < A,B < Mly for some
scalars 0 <m <M and h = % then for each 1 < o0 < %

K( 00— 1)||AB%|| < ||A iy B]| < K(h,2(cc— 1)) 2|A1 =B
where K(h, ) is defined by (2.31).

Proof. Putoc =1+ Band0 < < % Since a generalized condition number of A~28 is



5.3 NORM INEQUALITY FOR THE GEOMETRIC MEAN 131

h2B it follows that
1 _1 _1 -B 1
At Bl = |Ba_p Al =||B* (B~24B7%) " BY|
1 L o \B 1
— 5% (B2A~'BY )" B |
1 1
< HBﬁB%A_IB%BﬁIIB by Theorem 5.9 and 0 < 8 < 1

1B 1B
— B A B |

1 1\A
< (K(h—m, ﬁ) |B+BA—2BI+B| w) by Theorem 5.11 and 1 < 5
= K(h,2(c—1))"2|A""B%| by Theorem 2.12 and 2.13.
Also, we have
1/ 1 NP 1
A ta Bl = B4 g Al =182 (B~24B73) " BY|
L/ 1. y.1 1
— ||B? (BzA Bz) BY||
1 1
> K(h*,B)|B¥BIA-'B2B% ||’ by Theorem5.11and 0 < f < 1
1+B
= KU, B)|BS A8 P
> K(?,B)|[B"PAPBIP||3 by Theorem 5.9 and 5 > 1
=K(*,a—1)|A"“B%|
and so the proof is complete. |

Finally, we consider the case o¢ > 2:

Theorem 5.20 If A and B are positive operators such that mly < A,B < My for some
scalars 0 <m <M and h = % then for each o0 > 2

K(h,2(00 = 1))72[|AT“B%|| < ||A 1o B| < K(h?, 00— 1)]]A!=*B%,
where K(h, ) is defined by (2.31).
Proof. Put o« = 1+ 3 and B > 1. Then we have
1/ 1 NP 1
At Bl = |1B3p Al =||B* (B~34B73) "B
= ||B% (B%A—lB%)BB%H
< K(#,B)|BPBA'B3BH|P by Theorem 5.11 and B > 1
—K(,B)[B a'B |
<K(?,o—=1)[|A'"“B%| by Theorem 5.9 and 0 < 55 < 1.
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Also, it follows that
Lt o INTB
At Bl = 1B 5 g Al =||B* (B~34B71) " BY|
Lol g \B ot
—||B? (BzA Bz) BY||
> ||[B2PB2A™"B2B% || by Theorem 5.9 and 8 > 1
B LB
=BT AP
1\8
> K(h‘zﬁ,ﬁ) |BPA-2BIP |2 by Theorem 5.11and 0 <, <1
=K(h,2(0— 1))*% AT *BY| by Theorem 2.12 and Theorem 2.13.

5.4 Norm inequality for the chaotically
geometric mean

Let A and B be two positive invertible operators on a Hilbert space H. We recall that the
chaotically geometric mean A {>,, B for all o € R is defined by

A Qg B=¢exp((1—o)logA+ alogB).

If A and B commute, then A o B=A"%B% forall o € R.
First of all, we recall the following Ando-Hiai inequality (Theorem 3.4).
Theorem AH If A and B are positive operators, then for each o, € [0, 1]
|A" #4 B"|| < ||A #q B||”  forallr>1 (5.24)

or equivalently

A#y B<Ily =— A" #yB <lIy forallr > 1.

The following result is a geometric mean version of the Lie-Trotter formula

exp(A+B) = lim (exp(%) exp(§)>n (5.25)

for self-adjoint operators A and B.
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Lemma 5.5 If A and B are self-adjoint operators, then

exp((1— a)A+aB) = lim (exp(rA) 1y exp(rB))7

lim
r—+0
in the operator norm topology for all & € R

Proof. For 0 <r < 1and o € R, let X(r) = exp(rA) to exp(rB), Y (r) = exp(r[(1 —
o)A+ aB)), and ! = m+s, where m € N and s € [0,1). It is enough to prove that
[|X(r)™ —Y(r)™|| — 0. Since, with the convention o(r)/r — 0 as r — 0,

x(r) = exp(2)) (;g)kl!(_%)kg(r/i)k - %(_%y) exp ()
= exp(%) (Iy +r(B—A)+o(r)” exp(%)
)

= (IH+ % +0(r)) (Iy +ra(B—A) +o(r) (IH+ % +0(V))

= Iy +r[(1 — o)A+ aB] + o(r),

we get X (r) — Y (r) = o(r). Since
m—1
X(r)" =Y(n)"= be(r)’"_j_l (X(r) =Y ()Y (r),

it follows that
IX (r)™ =Y (r)™ || < ml[X (r) = ¥ (r) || max{ | X (r) [, [V ()|}

< =X (r) =Y (r)llexp((1 — )| Al + ][ B]]) —0  asr—0.

~

O

By Lemma 5.5, we have the following formula for the chaotically geometric mean,
which is an extension of Theorem 3.21.

Theorem 5.21 Let A and B be positive invertible operators. Then for each o € [0, 1]
AGaB= lim (A" # B)" (5.26)
r——
in the operator norm topology. Moreover, for each a. & [0,1]

A B= lim (A" by B)'.

r—+0

We show the following norm inequality for the geometric mean, in which we use the
Ando-Hiai inequality.
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Theorem 5.22 Let A and B be positive invertible operators. Then for each o € [0,1]
1A #o Bl < [|A o Bl < [|AT*B|.
Proof. 1t follows from (5.24) in Theorem AH that
|A#q B|| < ||A" #4 B'|7  forall0<r<l.

As r — 0, we have ||A #, B|| < ||A {¢ B|| by Theorem 5.21.
By Lie-Trotter formula (5.25) and the Cordes inequality (Theorem 5.10), we have

. H KN,
lexp(t +K)| = lim |exp( =) exp( =) | < [|expH expK|
for self-adjoint operators H and K. Hence it follows that
[A o Bl = [[exp((1—o)logA + alogB) |
< |lexplogA'~*explog B |
= [lA"=*B|.

Remark 5.7 By the proof above, we have
|A &g Bl < |AY*BY|| forall a €R.
We show the following converse inequality for Theorem 5.22.

Theorem 5.23 If A and B are positive operators such that mly < A,B < Mly for some
scalars 0 <m <M and h = % then for each 0 < o < 1

K(h*, 0)||[A'"%BY| < ||A #4 B|, (5.27)
where K (h, o) is defined by (2.31).

Proof. Suppose that 0 < o < % Since %IH < A_%BA_% < %IH, it follows that a

generalized condition number of A"2BA"? is % /%= h? and by Theorem 5.9 we have
|IBPAPBP|| < ||[(BAB)P|| for all p € [0, 1] and the opposite inequality holds for all p > 1.
Hence it follows that

o
A #a B =|(a%)” (4584 3) " (a20)7

> K(h,a)|A%0 A ZBA 3A% | byO<o <1
= (2, a0)||A 5 BA S |

> K(W, a)||AOB2A 2 by L > 1

— K(W, o) A"~ “B“|.
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Suppose that % <o<l1.Since0<l—a< % and K(h,1 — o) = K(h, ) by (i) of Theo-
rem 2.13, we have

|4 #o Bl| = ||B#1-a Al
> K(K,1 - a)||B' (=@t
=K(i*, o)A “BY|
and so the proof is complete. |

We show the following complement of the Ando-Hiai inequality.

Theorem 5.24 Let A and B be positive operators on H such that mly < A,B < My for
some scalars 0 <m <M, h=" and 0 < a < 1. Then

A" #4 B"|| < K(R*,0)"||A#4 B|”  forall0<r<1 (5.28)
or equivalently
A#ogB<Iy = A"#, B"<K(h* o)™  forall0<r<l1, (5.29)
where K(h, ) is defined by (2.31).

Proof. We firstly show (5.28). Since a generalized condition number of A“IBA"7 is
n? = ( %)2, it follows from Theorem 5.9 that for each 0 < ¢ < 1

r r r a r
|A” #4 B'| = ||A? (A‘fBrA_f) AR
<|[A%AT2BTATIAN||*  byO0<a <l

r—ro r—ro

= A7 B'A e ||®

<A BAT ™ byO<r<1
= |A%A"IBA IA% ||
2 Akl AN LN
g(K(h ) HAZ(A 3 BA z) AzH) byO0<a<l
=K(h* o) ||A#q B
for all 0 < r < 1 and hence we have the desired inequality (5.28).
(5.28) = (5.29): is obvious.

(5.29) = (5.28): Since A #4 B < ||A #4 B, it follows from the homogeneity of the

geometric mean that
A

# <
1A #a B "% ||A#o B]| ~

Iy.

By (5.29), we have
A" B

# <KMW o)
[A# B " Tadg B = X
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because generalized condition numbers of both A/||A #, B|| and B/||A #, B|| coincides

. M . . . . . .
with o 7 / m = M /m = h. Hence we have the desired inequality:

A #a B'| < K(1*,00) " |A #q B
for all 0 < r < 1. Therefore the proof is complete. O

By Theorem 5.24, we have the following converse inequality of the Ando-Hiai one for
the case r > 1.

Corollary 5.2 Let A and B be positive operators such that mly < A,B < My for some
scalars 0 <m <M, h = % and 0 < o < 1. Then

K(h,0)||A#o B < |A" #o B'| (< [|A#o B")  forallr>1. (5.30)
Proof. For r > 1, we have 0 < % < 1 and by (5.28) in Theorem 5.24
AT #q B7|| < K(h*,0) " 7||A # B]|7.

Replacing A and B by A" and B" respectively, and a generalized condition number of A"
and B" is i", it follows that

A #0 Bl < K(#",0)||A” # B'|*
and by taking r-th power on both sides we have the desired inequality (5.30). O

In the remainder of the section, we investigate the Ando-Hiai inequality without the
framework of operator mean. The following theorem corresponds to (5.28) in Theo-
rem 5.24 in the case o > 1.

Theorem 5.25 Let A and B be positive operators such that 0 < mly < A,B < Mly for
some scalars 0 <m < M, h = and o > 1. Then

Kl )UK 0,00 A 50 BI < A 50 B <KOP)lA ke B (53D
Jorall 0 < r <1, where K(h, o) is defined by (2.31).

Proof. Since |BPAPB?|| < ||(BAB)P?|| for all p € [0, 1] and the opposite inequality holds
for all p > 1 by Theorem 5.9, for each o > 1, we have

r r - r o r

147 b Bl = A% (A™2B7A75) A5
KW, a)|ATTATIBATIAT | bya>1
R, o)A

2 BTA T ||*

K( )

K( )

<KW, a)|ASBAS | byO<r<l1

= K(h¥,a)|[AT A2 BA 2 ATa ||

<K, a)|A? (A—%BA—%)QA%W by o0 > 1
=K(h”',0)|A o B|"

and hence we have the right-hand side of (5.31).
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Conversely, we have
r r . r o r
147 10 B[l = A% (A™2B7A75) " A%
> |[ATEA"IB'AT A | by o> 1

r—ro r;(x

—[|A B'A™

o ||
> (K(h,r)||Az’—aBAz;a“|\f)“ byO<r<1
— K(h, P A BA S |
— K(h,r) A% A3 BA F A% |7
> K(hr)® (KO, ) 'a} (A—zBA—%)“A%H)r by a>1
= K(h,r)*K(l?,00)"||A o B||”

and hence we have the left-hand side of (5.31). O

By Theorem 5.25, we have the following complement of the Ando-Hiai inequality in
the case o > 1.

Theorem 5.26 Letr A and B be positive operators such that 0 < mly < A,B < Mly for
some scalars 0 <m < M, h= % and o > 1. Then

|A" e B"|| < K(R*,0)||A b B||”  forall0<r<1 (5.32)
or equivalently
Allg B<Iy = A"y B"<K(h*",0)  forall0<r<1, (5.33)
where K(h, ) is defined by (2.31).

The following corollary is a complementary result for Theorem 5.25.

Corollary 5.3 Let A and B be positive operators such that 0 < mlg < A,B < MIy for

some scalars 0 <m <M, h= and o > 1. Then
K(1?,00) " ||A e B||" < [|A” b B'[| < K(h,r)*K(h*", 0t)||A e B]" (5.34)
forallr > 1.

Next, we show converse norm inequalities for the o-geometric mean and the chaoti-
cally geometric one.

Theorem 5.27 [f A and B are positive operators such that 0 < mly < A,B < Mly for
some scalars 0 <m <M and h = %, then

K(h*,0)||A o B| < ||A#4 B||  forall0<a <. (5.35)

S(h)"*K(h*,00) " |A e B|| < |A O B| < h*“V|Atg B foralla>1, (5.36)
where the Specht ratio S(h) is defined by (2.35).
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Proof. By (5.28) in Theorem 5.24, it follows that for each 0 < o < 1
A" #q B"|| < K(R*,0)"||A#4 B||”  forall0<r< 1.
By taking %-th power on both sides, we have
(47 #o B') 7| < K (%, ) A o B
and hence we have the desired inequality (5.35)
1A Qo Bl < K(h*,00)"'[|A #4 B

by the formula (5.26) in Theorem 5.21.
Next, since K(h*", o) < (h*")*~! by Theorem 2.13, it follows from (5.31) in Theo-
rem 5.25 that for each o > 1

a
7

— r r 1 r 1
K(h*,0)""[|A e BI| < [|A” b B'|| " < K(K",00)7||A i, B]|
<K@ VA, B|  forall0<r<1.

K(h,r)

On the other hand, since K (h", 1) = K (h, r)_% in the case of p = 1 by (i) of Theorem 2.13
and K(h", ) — S(h) as r — 0 by (i) of Theorem 2.17, we have

o 1\ “
limK(h,r)7 = limK (h —> =S(h)®.
r—0 r—0 r

By Theorem 5.21 we have (A" iy B’)% — A {¢ Basr— 0andhence
S(h)" K (h*,0)""||A b B| < A O B < VA Lo B.

O

Finally, we show a slight improvement of Theorem 5.23 for the chaotically geometric
mean and its converse. The following lemma shows the Golden-Thompson type inequality
for the operator norm and its converse.

Lemma 5.6 Ler A and B be self-adjoint operators such that mly < B < Mly for some

scalars m < M. Then
A A
2 2

SEM ™ Yo ePe? || < [l HE|| < [le? et

B

where S(e¥=™) is the Specht ratio defined by (2.35).

Proof. Since 0 < ¢ < ef < eM and a generalized condition number of e? is e, it
follows from Theorem 5.9 and Theorem 5.11 that

4
2

pA A
K( " p)lle?eled | < [leF eS| < [letePed |7 forall p [0,1].
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Taking %-th power of both sides, we have

A
7le?

A4
2

A A 1
K™ p)7lete’et | < fleTee |7 < fle2e%e?]. (5.37)

It follows from (i) of Theorem 2.13 and (i) of Theorem 2.17 that

1\-1
—) — §(eM—m)~t asp — 0.

1
K(GM_m7p) P Kv(epM—pm7
p

pA L
By the Lie-Trotter formula, we have [[eZ e?Pes |7 — [|eA*B|| as p — 0 and hence by

(5.37) it follows that
S(EM ™Y eeBe || < [l HE|| < [leTeed |,

as desired. O

By Lemma 5.6, we have the following theorem which is a slight improvement of Theo-
rem 5.23.

Theorem 5.28 Let A and B be strictly positive operators such that 0 < mly < B < Mly
for some scalars 0 < m <M, hg = % Then for each real number o, € R

S(hg) 1A BUA Y| < ||A G Bl < [lA 27 BYA,
where S(h) is the Specht ratio defined by (2.35).

Proof. For each o > 0, replacing A and B by (1 — o¢)logA and alogB respectively
in Lemma 5.6, we have the desired inequality since alogm < ologB < alogM and
e@logM—alogm — & Tn the case of o < 0, we have alogM < alogB < alogm and
elogm-alogM — jp @ By the property of the Specht ratio in Theorem 2.16, it follows
that S(hz*) = S(h%) and hence we have this theorem. |

The following corollary is a complementary result for Theorem 5.23.

Corollary 5.4 Let A and B be positive operators such that mly < A < Mly for some

scalars 0 <m < M, hy = % Then for each real number o« € R
Sy~ A B*A " < A O B < [|472°B%A %),

Proof. If we apply B {)1_q A to Theorem 5.23, then it follows that
S(hy~ ) IBEABE|| < ||B O1-o A

and hence we have this corollary. ]
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Remark 5.8 Let A and B be positive operators such that mly < A,B < Mly for some
scalars 0 <m <M, h= % Since HAFTGB"‘AFTO‘ | < ||At-2B“
rem 5.22 implies

, the expression in Theo-

K, )|A"T*BA || < |A Oo B|  forall o €0, 1). (5.38)
By combing Theorem 5.28 and Corollary 5.4, we have
max{S(h*) "\ S(h'~*) 1} |ATT*B*AT*| < |A Oa Bl foralla €R.  (5.39)
Then (5.39) is an improvement of (5.38). As a matter of fact, we have
KR o) <S(h*) ™' forall 0< a < (i)

1
E.
KR, o) <S(h'=*"'  forall <o <1. (ii)

To prove (i), it is sufficient to show K(h,a)"' > S(h%) for all 0 < o < 5. By (i) of
Theorem 2.12, (i) of Theorem 2.13 and (ii) of Theorem 2.17, we have

1 11—
K(h,o) ' =K(h,1—a) ' =K (hl"‘, W)

1-o
G B

Since S(hs)% is decreasing for 0 < s < 1 by Lemma 4.4, it follows that S(h®) > S(h%)? and

hence we have
S(ha)l—a > S(h%)Z(l—a) > S(h%)

since 0 < o < % Therefore, it follows that K(h?, o) < S(h*)~! forall 0 < o < % Similarly,
we have (ii). Therefore we have

K2, 0) < max{S(hO‘)’l,S(hl’“)’l} forall o€ 0,1].

5.5 Complement of the Ando-Hiai inequality

The following theorem is an operator norm version of a generalized Ando-Hiai inequality
(GAH) in Theorem 3.5.

Theorem 5.29 Let A and B be positive operators, and let o € [0,1]. Then

A" #_ar _ BY|| < ||A#o B|T@ @ forall rs>1, (5.40)

(I—o)s+ar
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or equivalently

|A#q B|To7@ < |[A"# o BY|  forall 0<rs<l. (5.41)

(I—o)s+ar

For each o € [0, 1], we have no relation between ||A#4B]| (=¥ and HA’#(l ar_ B
—o)s+or

for r,s > 0 without constraint (r — 1)(s — 1) > 0. In this section, we show a complement
of the generalized Ando-Hiai inequality. We attempt to find upper and lower bounds for

A" # e B*|| by means of scalar multiples of ||A # BHW that is, for each

0 <r<1ands > 1 there exist constants 3 and y such that

B llA tto BT < A" _ae__ Bl| <y||A o B| T

(I—o)s+ar

for two positive operators A and B.
First of all, in the case of > 1 and s > 1, we estimate a lower bound of the generalized
Ando-Hiai inequality (5.40):

Theorem 5.30 Let A and B be positive operators on a Hilbert space H such that mly <
A <M1y and myly < B < Myl for some scalars 0 <m; < M; (i=1,2), and let o € [0, 1].
Put h; = Ami;fori: 1,2. Then for eachr > 1 and s > 1

(hrhz,(l (XHM)HA #a BH (T—a)star ou+otr

< AT# o B (< ||A# BT ),

(I—o)s+ar

or equivalently for each0 <r <1and0<s <1

(14 #o BITH <) e B

__ar

(I—a)s+o
< K(hyhy, o) =05 ||A #, B|| T=e)sver |

Proof. 1t follows that the generalized condition number of A"IBSATT is R k5, since

my/Mjly < ATIBA~ < M3/m|Iy. By Theorem 5.11, we have

A" # o B-“||:||A5 (A*ﬁBSA*%)mA%H

o)s+ar

W1 S piat || (ehie by e c0,1]and (5.17)

> 17%2) T=a)s+ar aﬁ»ar
> K (1h3, |ASE BASE | T@7 @ bys>1and (5.18)

(1- (x r+(xr

=
ll )14
K( )
K(h 1y = aw,) |ATeA~ —%A%”%
i )
i )

Y

o

Ja3 (473BA73) A3 T by 0 < a < 1and (5.16)

Wik,

(1- (x r+(xr

I"

>
= 27 T—a)stor aﬁ»ar

||A #OC B” (1— a)v+m
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If we put r = s in Theorem 5.30, then we have the following converse of the Ando-Hiai
inequality (5.28) in Theorem 5.24.

Corollary 5.5 Suppose that the same conditions of Theorem 5.30 hold. Then for each
r>1
K(hihy, o) [A#e B|" < [[A"#o B[] (< [|A#a B|"),

or equivalently for each 0 <r <1
(1A #a BI" <) A7 B'l| < K(huho,0)™" A #a BII"

We remark that in Corollary 5.5 the constant K (k' 1}, o) = 1 in the case of ¢ =0, 1 and
K(hihs, o) # linthe case of r=1and 0 < o < 1.

Remark 5.9 For a € [0,1], the generalized Ando-Hiai inequality

|A™# o B|| < ||A#oB| Forsar

(I—a)s+or

45
Then for o = % we have ||A% #% B?|| =4.798011 > ||A #% BH% =4.795148 in the case of

r=1ands=2. Also, ||A% #é BY| =5.514677 < ||A #% BHg =5.707511 in the case of

r:%ands:4.

does not always hold for 0 < r <1 and s > 1. In fact, put A = (g ;) and B = (5 4).

At the end of this section, we present a complementary inequality to the generalized
Ando-Hiai inequality for the case 0 < r < 1 and s > 1. The following theorem gives esti-

mates of both upper and lower bounds of ||A” #(17 ar B*|| by means of scalars multiples

of ||A #, B||wswar

Theorem 5.31 Let A and B be positive operators on a Hilbert space H such that myly <
A <M1y and myly < B < Myl for some scalars 0 <m; < M; (i=1,2), and let a € [0, 1].
Put h; = %fori: 1,2. Then foreachO <r<lands>1

(1—o)s (I—0)s(r—s)

K( s r) (l—at)s+a¢rI((h.iochiat7 (lia,)-ﬁm)hz(l—a)war ||A #a BH T—o)star

155

<[A"# _« Bl

(I—o)s+ar
(1—o)s(s—r) s
S hz(l—a)s+ar HA #a BHm.

In order to prove this theorem, we need the following lemma.

Lemma 5.7 Let A and B be positive operators on a Hilbert space H such that mily <
A <M1y and myly < B < Myl for some scalars 0 <m; < M; (i=1,2), and let o € [0, 1].
Put hj = %‘fori: 1,2. Then for each 0 < s < 1

K(hy,s)||A72| "1 (ABA) < AB*A < ||A%||'~S(ABA)*. (5.42)
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Proof. Since f(t) =t* for 0 < s < 1 is operator concave, it follows that

A A A A * ) A
ABA = 102) o < 12 (B ) = Wby
AT TAT AT T

and we have the right-hand side of (5.42). Next, we show the left-hand side of (5.42). By
(2.11) in Theorem 2.11, we have

(ASB*Ax,x) > K(hy,s)((ABA)*AS~Lx, A" 1x) || ASx 25| A5~ L] | 22
Since (A%x,x) > ||A=2%|| 7!, it follows that

AR 2 A5 22 = (A%, x) 1 (A2 2 )1
< a2t a2 = Aty
and hence
K(hy,s)AS L (ABAY A1 < ||A72|| ' SASB*AY,
as desired. |
Proof of Theorem 5.31. Replacing A by A~? in Lemma 5.7, we have

1

AifB-\'Afé S ||A*1H17.\' (Ai%BAié)‘

forall0 <s<1.By € [0,1] and the Léwner-Heinz inequality, we have

(1— )s+a

o ¢
(Apea=s) TR < (At T (A3 pa ) T
Therefore, it follows that

old=s) e
14 # B < ”AilH(l*o‘)Ho‘ |‘A%(A7%BA7%)(17(Z)S+&A%||.

o
(I—o)s+a

Next we estimate the norm of the right-hand side in the expression above. Since 0 <

m < 1, it follows from (5.17) in Theorem 5.11 that

HA%(A_%BA‘%)i(lfg;vWA%H
(I-a)sta a)v o (1— a)v

< HA - (A"BA—%)“A =

= |

s a(l—s)
HA #OC B” (I—a)s+o ||AH (I—a)s+o

| Tanra

Fa~tpa-t)eat A% |iare
( ) I

IN

Ml =h; by m; <A < Mj, we have

\ /\

and since ||A[|[[A~"|

o(l—s) R
lA# _a B < A" |4t B| T (5.43)
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forall 0 < s < 1. Since

A#qB = Bi# oA and A'# o B =B# 1. A

—o+or - a+ar
replacing A, B, o and s by B, A, 1 — o and r in (5.43), it follows that foreach 0 < r <'1

(I—o)(1=r)

|A"#_ar_ B|| < hy "7 ||A#, B| o (5.44)

T—o+ar

Foreach 0 < r <1 and s > 1, replacing A, B and r by A*, B® and f respectively in (5.44),
we have

A#_a B = |A)i# o B
g D= 1005 % g B
gUzo)(- r) 5
< h ST o)tk HAs #o BSH T-a)tal byO < % <1 and (5.44)
(1—a)s(s—r)

_ h (T—a)s+or HAs #o BSH (I*(X'W

=so—r)
h(l a)star [|A #q, BH(I @)rar by s > 1 and (AH),

IN

and hence we have the right-hand side in Theorem 5.31.
Next, we show the left-hand side in Theorem 5.31. By using the left-hand side of (5.42)
in Lemma 5.7 and (5.17) in Theorem 5.11 it similarly follows that

a(s—1)

(h27 )(1 as+aK(hOCh27<l awa)h(l (“HXHA#OC BH I—a)sta awa < HA#

B

5

(I—o)s+a
holds for each 0 < s < 1 and this implies that

(1—a)(r—1)

|4 # e Bl > K(hy,r) @t e K (HERS, oty )y ™% Aty Bl (5.45)

holds for each 0 < » < 1. Therefore for s > 1 we have

A4 e Bl = () # B
’ I—a+ak
(e (etrs)
K0T K (WD e Y At B T
(17 ) (I—a)s(r— r)
KO8, 5T K (WO, i Jha 7 Aty BT
as desired. Hence the proof is completed. O

We remark that in the case of r = s = 1, both bounds of the inequalities in Theorem 5.31
are equal to 1.
Finally, we show a complementary result of Theorem 5.31:
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Corollary 5.6 Suppose that the conditions of Theorem 5.31 hold. Then for each r > 1
and ) <s <1

(1— ot) (s—r)
h (1—a)s+ar ||A # B” —a)stor a Hm < ||A; o B\”
(I—a)s+or

—(1=a)rs (- 05) s(r—s)

S K(l’ll;’%) (1—a)s+ar K((hfhz)a,m) h(l o)s+or HA# BH (= a)v+m

5.6 Converses of Holder’s inequality

Let a; and b; be positive real numbers fori = 1,--- ,n. Holder’s inequality says that

i (8e) (8)

for p,q > 1 such that 11—7 + é = 1. When p = g =2 in (5.46), we have the Cauchy-Schwarz

inequality
z Vaib; < z a; z b;. (5.47)
i=1 Vi V=

These inequalities can be extended to operators by means of the subadditivity of the op-
erator geometric mean [124, Theorem 5.7]: Let {A;}}_; and {B;}!_, be positive invertible
operators on a Hilbert space. The following inequality is regarded as Holder’s inequality
for operators

M:
'ul'—
m—

$ Aol < (z) o (z) 5.49)
i=1 i=1 i=1

for all o € [0, 1]. In particular, in the case of o = % we have the Cauchy-Schwarz operator
inequality:

$ At < (z) " (z) 5.49)
i=1 =1 i=1

By using the Mond-Pecari¢ method for concave functions, we shall show converses of
operator Holder’s inequality (5.48).

Theorem 5.32 Let A; and B; be positive invertible operators such that mA; < B; < MA;
for some scalars 0 <m <M and i =1,2,--- ,n. Then for each o € [0,1]

(ngl) (ZB) < K(m,M, o) 12A #o B (5.50)

i=1



146 5 OPERATOR NORM

and

n n n n
(ZAi> #o (ZBl) — Y Ai#o Bi < —C(m,M,0) Y A, (5.51)
i=1 i=1 i=1

i=1

where the generalized Kantorovich constant K(m,M, &) is defined by (2.29) and the Kan-
torovich constant for the difference C(m,M, ) is defined by (2.38).

If we put o = % in Theorem 5.32, then we have the following converses of the Cauchy-
Schwarz operator inequalities.

Corollary 5.7 Let A; and B; be positive invertible operators such that mA; < B; < MA;
for some scalars 0 <m <M andi=1,2,--- n. Then

n ‘ n ' \/M_’_\/ﬁ n ' ‘
(Z{A,) # (Z{B,) < Y ;A,#Bl

and
n ' n AN n ' ‘ (m_\/ﬁ)Z n '
(Zf”) ! (le> ZAH B S v &

To prove our results, we need the following Lemmas, also see [124, Corollary 5.33].

Lemma 5.8 Ler A and B be positive operators such that mA < B < MA for some scalars
0<m<M andlet®:B(H)— B(K) be a positive linear mapping. Then for each o. € [0,1]

®(A) #o4 (B) < K(m,M,0) ' ®(A #4 B), (5.52)
where the generalized Kantorovich constant K(m,M, &) is optimal.
Proof. Put C = A~1/2BA=1/2_If we put

o M'"%—ml-¢ o(M —m)

R e Ty VT and - Ho = G e

then
Octlia—F (1 _ OC)/'Lotia < Uo forallt € [m,M]

Since ml < C < MI, we get
aC+ (1 —Ap)l < ppC*

and hence
0B+ (1 — o)A < LA #¢ B.

This implies
(I —a)A®@(A) + 0 ®(B) < ug®P(A #¢ B).

By the weighted arithmetic-geometric mean inequality, it follows that

(1 —a)A®@(A) + oD(B) > Ay~ * D(A) #q D(B).
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Ilio
Ay ¢

On the other hand, since =K(m,M, oc)’1 by an easy calculation, we have the desired

inequality (5.52).

Moreover, the generalized Kantorovich constant K (m,Mo.) is optimal in the sense that
for each o € [0, 1] there exist two positive operators A, B such that mA < B < MA for some
scalars 0 < m < M and a positive linear mapping ® such that

®(A) #o4 (B) = K(m,M,0) "' ®(A #4 B).

As a matter of fact, let @ : M, (C) — C be a positive linear mapping defined by

X11 X12 .
OX)=rx;1+(1—r)x for X = with0 <r <1
(X) = e+ (1 =)z (le m)

and A and B positive definite matrices such as

10 M 0
A_<O 1) and B_<O m)

Then it is clear that the sandwich condition mA < B < MA holds. If we put

om*(M —m) — m(M* —m®*)
(1—o)(M—m)(M*—m®*) "’

r =

then we have 0 < r < 1. Therefore it follows that
DOA) #, ®(B) (m+r(M—m))*
D(A#y B)  mo+r(M*—m®)
a(Mm® —mM*) \* (1 —a)(M—m)
B ((1 — o) (M@ —ma)) moM — mM®
=K(mM,a)"".

0O

Lemma 5.9 Ler A and B be positive operators such that mA < B < MA for some scalars
0 <m<M andlet ®:B(H)— B(K) be a positive linear mapping. Then for each o € [0, 1]

D(A) #o ®(B) — O(A #y B) < —C(m,M,0)D(A), (5.53)
where the Kantorovich constant for the difference C(m,M, &) is optimal.

Proof. Put C = A~'/2BA~1/2 and for each o € [0, 1]

jo (Mo omey e
o(M —m)
Since ml < C < M1, it follows that

(1— A%+ ar® 'c<C* —C(m,M, )l
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and hence
(1—a)A%A+ar® 'B<A#,B—C(m,M,0)A.
This implies
(1 —a)A*®D(A) + aA* ' ®(B) < ®(A #4 B) — C(m,M,0))D(A).
On the other hand, by the weighted arithmetic-geometric mean inequality
(1— )AYD(A) + aA* ' D(B) > D(A) #, D(B)

and hence we have the desired inequality (5.53).

Moreover, the Kantorovich constant for the difference C(m,M, o) is optimal in the
sense that for each o € [0, 1] there exist two positive operators A, B such that mA < B < MA
for some scalars 0 < m < M and a positive linear mapping ® such that

D(A) #o D(B) — O(A #o, B) = —C(m, M, 0)D(A).

As a matter of fact, put A, B and ® be as in Lemma 5.8. If we put

1 M — @ \ @ m
r= -
M—m \ (M —m) M—m’

then we have 0 < r < 1 and

D(A) # ®(B) — O(A #¢ B) = (m+r(M —m))* —m* — r(M* —m%)
=—C(m,M,a)
=—C(m,M,0)®(A)

as desired. O

Proof of Theorem 5.32. If we put o = diag(Ay,---,A,), % = diag(By, -+ ,B,) and
D(o) =Z"o/Z where Z* = (I,--- ,I) in Lemma 5.8 and Lemma 5.9 respectively, then a
sandwich condition me? < # < Mg is satisfied and we have Theorem 5.32. O

5.7 Notes

Kantorovich type converse inequalities for operator norm and spectral radius are firstly
discussed by Bourin [26] and afterward generalized by J.I. Fujii, Seo and Tominaga [76].
The results in Section 5.2 are due to [102], in Section 5.3 [235], in Section 5.4 [236,
263], in Section 5.5 [268] and in Section 5.6 [167, 28, 93, 266].
Matrix Young inequality is due to Ando [10].



Chapter

Geometric Mean

This chapter is devoted to the geometric mean of n operators due to Ando-Li-Mathias
and Lowson-Lim. We present an alternative proof of the power convergence of the sym-
metrization procedure on the weighted geometric mean due to Lawson and Lim. We show
a converse of the weighted arithmetic-geometric mean inequality of n operators.

6.1 Introduction

First of all, we present a definition for the geometric mean of three or more positive invert-
ible operators on a Hilbert space. For positive invertible operators A and B on a Hilbert
space H, the geometric mean A # B of A and B is defined by

1
A#B=A} (A*%BA*%)zA%.

As an extension of A# B, for any positive integer n>2, the geometric mean G(A, Az, --,A,)
of any n-tuple of positive invertible operators A1, A, - -- ,A, on a Hilbert space H is defined
by induction as follows:

(i) G(A1,Ay) =A#B.
(ii) Assume that the geometric mean of any (n — 1)-tuple of operators is defined. Let

G((AI)H&I) = G(A17 7Ai—1;Ai+17"' 7An)

149
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and let sequences {Al(r) = | be AE1> = A; and AU = G((A<'r))j7g,'). Then there exists

i J
limeAEr) uniformly and it does not depend on i. Hence the geometric mean of n opera-

tors is defined by

limAEr>:G(Al7A27"'7An) for l=l77n

r—o0

For positive invertible operators A and B, let
R(A,B) = max {r(A"'B),r(B'A)},

where r(T) means the spectral radius of 7. Then

R(G(A17A27“' 7An)7G(B17B27“' 7Bn)) S {ﬁR(AhBl)} . (61)
i=1

In particular,

R4 AP)) < R(AA)) 7. (6.2)

We have the following converse of the arithmetic-geometric mean inequality.

Lemma 6.1 Let Ay and A; be positive operators such that mly < Ay,Ay < Mly for some
scalars M > m > 0. Then

Al+Ay M M
1A MM G a) = L2 4 w4,
2 2vMm 2vVMm

_1 _1
Proof. 1f we put C = A, 2A2A, 2, then we have /2Ty < C2 < /M ;. Since

(c%+c—%) <%<\/g+\/%>

IH+C< M+m
2 T2

it follows that

N —

and hence we have

D=

Cz.

3

1
Multiplying both sides by A?, we have
Al +A; - M+m

2 T 2v/Mm

Al #A.

d

For any positive integer n > 2, we show a converse of the arithmetic-geometric mean
inequality of n operators, which is an extension of Lemma 6.1:
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Theorem 6.1 For any positive integer n > 2, let Ay, -+ , A, be positive invertible opera-
tors such that mly < A; < Mly fori=1,2,--- n for some scalars 0 < m < M. Then

dMm

A1+"'+An<((M—|-m)2
- <

n—1
v
) G(Al7"' 7An)'

Proof. We will prove it by induction on n. In the case of n = 2, it holds by Lemma 6.1.
Assume that Theorem 6.1 holds for n — 1. For positive integer r, we define Agr) ,h, and K,

as follows:
AV =4, and AV =¢ ((AET‘”) '7&') :
: JF

ho=h and h,=maxR (AEF),A('r)) ’

ij 7

1+h,
2vh,
Then by the induction hypothesis on n, we have

PRELY L pn—2,01)
w13 (i zA) LSk

/7&1 i=1
=Ky~ 2n2A < (Koky)" ZA
i=1

K, =

1
n:

I M:

IN

18
< (KOKI o 'Kr)niz_ ZAE +1).
i=1
Since
hmA( r) =G(A1, Az, ,A,) fori=1,2,--- n,

we have
L (r+1)
lim — ZA G(A1, Az, ,Ay).

}*}oon

So we have only to prove the following inequality:
limsup KoK --- K, < KOm .

F—oo

By (6.2), we have

Since
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holds for 1 < x <y and « € (0, 1], we have

(R« L )

Therefore we obtain

5

KoKy K. <K, "7

Hence we have

Al+Ar+--+A, (1—|—h
<
2vh

By putting 2 = 4 we obtain this Theorem 6.1. m)

me

n—1
. ) G(A1 Ay, A).

The following result is a noncommutative variant of the Greub-Rheinboldt inequality,
which is equivalent to the Kantorovich inequality.

Lemma 6.2 Ler A and B be positive operators such that mly < A,B < Mly for some
scalars 0 <m < M. Then

M+m

(Ax,x)(Bx,x) < (A # Bx,x)

3

for every unit vector x € H.

Proof. By the Kantorovich inequality, if C is a positive operator such that aly < C <
bly for some scalars 0 < a < b, then

S (Cxx? 63)

for every unit vector x € H. Replacing C by (A’%BA’% )% and x by 42— in (6.3), we have
A

and hence

O

For any positive integer n > 2, we show a noncommutative variant of the Greub-
Rheinboldt inequality of n operators, which is an extension of Lemma 6.2:
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Theorem 6.2 For any positive integer n > 2, let Ay, -+ , A, be positive invertible opera-
tors on a Hilbert space H such that 0 <mly < A; <Mly ,i=1,2,--- ,n, for some scalars
0<m<M. Then

n—1

m 2 2
YT < (Y ) © (G A
forallx € H.

Proof. By using Theorem 6.1 and arithmetic-geometric mean inequality, we have
1

(ﬁ(A,-x,x}) ” <

(Aix,x)

-

1

(3ges)
< (e

i=1

:l*—‘

/\ S| =

n—1
T
A ) (G(A1,Az,- -+ ,Ay)x,X).
This completes the proof. ]
We recall the Specht theorem: For xy,- -+ ,x, € [m,M] with M >m > 0,
XAt < S(h) Y/x1- %, (6.4)

n

where h =2 (> 1) and the Specht ratio S(h
We recall the z-geometric mean for 7 € |

) is defined by (2.35).
0,1]:
A# B= Az( ’7BA“) }

for positive invertible operators A and B. The following theorem is a noncommutative
version of the Specht theorem (6.4) in the case of n = 2.

Theorem 6.3 Let A| and A, be positive invertible operators such that mly < Aj,A; <
Mly for some scalars 0 < m < M and put h = % Then

(1—-1)A1+1tA, <S(h) Ay #, Ay forallt €1]0,1].

To prove Theorem 6.3, we need the following converse ratio type inequality of Young’s
inequality.

Lemma 6.3 Let a be a positive number. Then the inequality
S(a)a'™ > (1—t)a+1t (6.5)
holds for all t € [0, 1]. Consequently, for a,b > 0, the inequality
S(%)al_’b’ > (1—t)a+1tb (6.6)

holds for all t € [0,1].
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Proof. Leta # 1. We put

Fult) = (I1—t)a+t _ <l—at+1>a,.

al~t a

Then we obtain the constant S(a) = % as the maximum of f,(7) for t € [0,1]. In-

deed, we have by the elementary differential calculus

11t) = { ! ;“ + (?H 1) 1oga}af,

and so the equation f/(¢) = 0 has the following unique solution ¢ = fy:

a 1

€10,1].

o= -
0T a1 loga

In fact, the Klein inequality ensures #y € [0, 1]. Furthermore it is easily seen that
fat)>0 fort<ty and fi(t)<0 for t>1t.

Therefore, the maximum of f,(7) takes at 1 = #p and we have

max f,(1) = fu(to) = S(a).

0<t<1

In the case of a = I, the inequality (6.5) is clear since S(1) = 1. Finally, the inequality
(6.6) is obtained replacing a by 7 in (6.5). O

Proof of Theorem 6.3. Let C be a positive operator such that mly < C < M1y for some
scalars 0 < m < M. Then we have

max S(a)C'™" > (1 —1)C+1ly

m<a<M

for all 7 € [0, 1]. Moreover, since S(a) is decreasing for 0 < a < 1 and increasing for a > 1,
the maximum of S(a) in a € [m,M] is given by max{S(m),S(M)} and hence

max{S(m),S(M)}C' ™" > (1 —1)C+1tly.
Here we replace C by A’%BA’%. Then we have %IH < A’%BA’% < %IH, i.e. ,%IH <

A~2BA~2b < hly. Hence it follows that for any ¢ € [0,1]

1

S(h)(A™3BA~3)1" > (1 —1)A~2BA™ % 411y
by S(h) = S(L). Multiplying both sides by A2, we have

S(h)A2(A"2BA™2)! A2 > (1—1)B+1A.
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6.2 Weighted geometric mean

In this section, we present the construction of the weighted geometric mean of n operators,
which extend to the geometric mean G(Ay,--- ,A,) of n operators due to Ando-Li-Mathias.
For two positive invertible operators A and B, the weighted (power) arithmetic, geometric
and harmonic means for 7 € [0, 1] are defined by

the weighted arithmetic mean AV,B:=(1—-1)A+1B,

t
the weighted geometric mean A# B:= A2 (A‘ YBA~ %) Az ,
the weighted harmonic mean AYB:=((1-1)A"! +tB’1)_1.

We need some preparations to define weighted means of n operators. We use a limiting
process to define a weighted means of n operators. In proving convergence we use the
following Thompson metric on the convex cone €2 of positive invertible operators:

d(A,B) = max{logM(A/B),logM(B/A)}

where M(A/B) =inf{A > 0:A < AB}. We remark that Q is a complete metric space with
respect to this metric and the corresponding metric topology on € agrees with the relative
norm topology.

Lemma 6.4 Ler A and B be positive invertible operators. Then the following estimates
coincide with the Thompson metric:

d(A,B) = max{log | B~ 2AB~2||,log A" 2BA~?||}
= log(max{r(B~'A),r(A"'B)})
= ||logB 2AB" 2| = || logA~2BA" 2|
The Thompson metric has many nice properties, cf. [13]:
Lemma 6.5 Let A, B and C be positive invertible operators. Then
(i) d(A,C) < d(A,B)+d(B,C).
(ii) d(A,B) >0and d(A,B)=0 < A=B.

(iii) exp(—d(A,B))A < B <exp(d(A,B))A.

(v

(vi

)
)
)
(iv) d(T*AT,T*BT)=d(A,B)  for every invertible operator T.
) d(A",B") <td(A,B)  forallt€]0,1].

)

|4 = B| < (expd(A,B) — 1) [|A]|
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Next, we estimate the distance among weighted geometric means.
Lemma6.6 d(A# C,B# D)< (1—1t)d(A,B)+td(C,D) forallte][0,1].
Proof. Note that
T, T *

" T
T(X)'T = |T"T|| | 77X < T TN (g X ) = T T (T X T
I 7| [ i

by Jensen’s operator inequality. So we have
log r ((A#:C) ™' (B#D)) =logr ((A~'#,C~")(B#D))
_ logr(A*1/2(A1/2C*1A1/2)’A*1/2Bl/2(3*1/2DB*1/2)’Bl/z>
= log||(AY/2C™1AV/2)1/2A=1/2B1/2(g=1/2pg=1/2) gl/2A=1/2(A1/2C~141/2)1/2|
< logHAfl/ZBAfl/ZHlftH(A1/2C71A1/2)t/2(A71/2DA71/2)1(A1/2C71A1/2)1/2||
< log |AY/2BA /2|1 || (AV2C 1 AV2) 2 (A= 2DA= 12y (A 2C L AV/2) 12|
- logr(A’lB)l”r((A1/2C’1A1/2)(A’l/zDA’l/z)y
=logr(A~'B)!"'r(C7'D)" = (1 —1)logr(A~'B) + tlogr (C™'D)
=(1—-1)d(A,B)+1td(C,D).
O

We present the definition of the weighted geometric mean G[n,t] with # € [0, 1] for an
n-tuple of positive invertible operators A1, A,,--- ,A,. Let
G[2.1](A1,A2) = A, # Ay. Forn >3, G[n,t] is defined inductively as follows: Put A" = A;
foralli=1,---,nand

r r—1 r—1 r—1 r—1 r—1
AP =Gln—1,1)((AV V) 2) = Gln— LAy, A Al Y Ay

inductively for r. If sequences {A!"”} have the same limit lim, ... A!")

the Thompson metric, then we define

foralli=1,---,nin

Gln,1](Ay,-- ,Ay) = lim AV
F—c0
To show that sequences {Al@} converge, we investigate the construction of the weighted
arithmetic mean due to Lawson and Lim: Let A[2,7](A},A2) = (1 —1)A| +tA;. Forn > 3,

Aln,t] is defined inductively as follows: Put Agl) =A;foralli=1,--- ,nand

— —~— —_~

—~—

A = Aln— 1A )20 = Aln— 1A, A A Al

inductively for r. Then we see that sequences {Al(r)} have the same limit lim,.HmAEr) for
alli=1,--- ,n because it is just the problems on weights. If we put

Al t)(Ay,--- Ay) = lim A

r—o0
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then it is expressed by

Aln,t](Ay, -+ ,Ap) =t[nJ1A1 + -+ t[n]pA, (6.7)
where t[n]; > 0 fori=1,--- ,n and 3", 7[n]; = 1. Similarly, we can define the weighted
harmonic mean H [n,|(A}, -+ ,A,) as

Hn,t)(Ay,-+ ,An) = (tnh1 A} +"'+t[n],1A;1)_1,

We remark that the coefficient {¢[n];} depends on n only. For example, in the case of
n = 2,3, it follows that

A[Z,Z‘](Al,Az) = (1 —I)Al +IA2,
t2]j=1—¢ and t[2]r=t¢,

1—1¢ 1 —1+412 ¢
A|3,t|(A1,Ar,A3) = A A
[7]( 1,412, 3) ¢ 1+2—|—l—t2 2+1+t 3
1—1¢ 1—1+412 ¢
t13j=—, t3h=——"7-—" d 3]z =——.
31 Oy [3]2 PEDED) an 3]s 111

For the sake of convenience, we show the general term of the coefficient {¢[n];}:

Lemma 6.7 For any positive integer n > 2

~m(mA41)+2m(n—2m—2)t + (n® — (4m+ 1)n+4m(m+ 1))

- = (- 1)(m+ (n—2m)t)(m+ 1+ (n—2(m+ 1)) ©8)
form=0,1,--- . n—1.
Proof. We prove this lemma by induction on both n and m. First of all, we show
iy = — 6.9)
1+ (n—2)t

for any integer n > 2. Suppose that the expression (6.9) holds for n and put @ = #[n], €
(0,1). Noticing thatt[n+ 1],4+1 =A[n+1,£](0, -+ ,0,1y), we consider the case A} = - - - =

A,=0and A,+| = Iy. In this case, fori=1,--- ,n, all Am are equal and hence we can

i
Er), and also put b, Iy = Aflrll. Then simple observation shows

write a, Iy = A
ar=0,b1=1,a,+1 = (1 — w)a,.+ wb, and b,y =ay,
and hence we have
a;=0,a,11—a,=—w(a,—ar_1).

It follows that

. - (—o)" t[n] t
= — — k: —_— n = oo
drir=a@ gl( oF =05 Tty I+(p—1p 777
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It follows from ¢[n + 1], 1 = lim, .. a, that (6.9) holds for any integer n > 2 by induction.
Replacing # by 1 — in (6.9), we have

11—t

th)) = ————+. 6.10
L P s iy 3 (6.10)
By a similar consideration, we have the following recurrence formula:
Zkt[n]j , % lt[n]/
th+1=1- - e 6.11)

1+l‘[n]k71 1+t[l’l]k

fork=2,---,n.

Now, we show (6.8) by induction. Since #[2], = t, it follows that (6.8) holds for n = 2.
Inductively, let n > 2 be an integer such that (6.8) holds. Then it follows from (6.9) and
induction that

 (mE ) (ot (n—2m— 1))
2 t[”]/_(n_l)(m+1+(n—2m—2)f)

j>n—m—1
for all m such that m < n. If m = n, then it follows from (6.10) that 7[n+ 1], = ﬁ If
m < n, then it follows from (6.9) and (6.11) that

1 ~m(m41)+2m(n—2m— D)t + (n® — (4m — 1)n+4m?)1*
ot U = = T —2m) ) 15 (n—2m— 1)1)

In the case of n+ 1, it follows that (6.8) holds for all m < n+ 1. Therefore, (6.8) holds for
all n > 2 by induction. O

To confirm that the above weighted geometric mean can be always defined, we observe
properties of the weighted geometric mean.

Lemma 6.8 For any positive integer n > 2, let Ay,--- ,A, and By,--- , B, be positive in-
vertible operators. Assume that Gn,t] is defined for n < ng for some ng. Then

(Gl t](Ar,+ A), Gl t](Br, -+ Ba)) < Aln,t](d(A1,Br), - d(AnBy))  (6.12)
holds for n < ny.
Proof. 1t follows from Lemma 6.6 that the inequality (6.12) holds for n = 2:
d(A # Ay,B #; By) < (1 —1)d(A1,B))+td(A2,By) forallr € 0,1].

Assume (6.12) holds forn = N < ng. For (N+ 1)-tuples (Ay,--- ,Ay+1) and (By, -+ ,By+1),
it follows by induction that

A BIY) = d (GIN,1)((AV)10), GIN. (B 7))

J

< AN (@AY, BY) 1))
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Note that this process is parallel to that of the definition for the weighted arithmetic mean:

For a fixed J, put weights WY) inductively with
N4l

A7) = AN 20) = 3, wiA))
j=1

N+1 —— N+1

2 r—1 r
AL T W)y
j=1 j=1
Then we have
N+1
(r+1)V r+1
[ W i w:
(s (% ’)
N+1
= 2 W (r) A V[

The left hand in the above equation converges to
N+1
N N+ 1AV By as r— oo,

AN+ 1,t](A1V,By, - , AN 1ViBy11) =
=1

which implies
T — |
Al BYH)) as that for

)

Then the same weights appear in the successive relations for d(A;

Aerl)V,Berl):
(A By <AV ((d A B Z wid(a)) By
N+1 ) ! N+1
<y W;(C )d(Al(cr >7Bk < 2 Wk d(Ax, Br),
k=1

so that, taking limit as r — e, we have
d(G[N+1,t](Ay, -+ ,An+1),GIN + Lt](By,- - ,Byt1))

N+1
< Y t[N+1]id(Ag, Bt) = AIN + 1,1)(d(A1,By), -+ ,d(An11,Bn1))-
k=1

Thus (6.12) holds for all n < n.

0O

Remark 6.1 Ift = 5, then we have t[n]; = %fori: 1, ,n and hence Lemma 6.8 is a

generalization of (6. 1) In fact,

R(G(Ay, - ,An),G(B1,- -+ ,By)) < {ﬁR(Ai,Bi)}n .

i=1
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Taking the logarithm of both sides of this inequality, we have

1
logR(G(Ay,---,An),G(B1,--,Bn)) < —(logR(A1,B1) + - +10gR(An,By)),

:

that is,

d(G(A17 7An)7G(Bl7"' 7Bn)) S d(Al,Bl)

S|
.M:

i=1

Now we confirm that G[n,#](Ay,- - ,A,) is defined for all n:

Theorem 6.4 For any positive integern > 2 and 0 <t < 1, the weighted geometric mean
G|n,t] can be defined for all n-tuples of positive invertible operators and

d (G[n,t](Ay, -+ ,Ay),Gln,t)(By,- - ,By) ) < Aln,t](d(A1,B1),-+ ,d(Ay,By))
holds.

Proof. For n =2, G[2,t](A1,A2) = A1#,A;, is defined. Assume that G[n,z] is defined
for n < N. Take (N + 1)-tuples (Ay,---,Ay+1) and (By,---,Byy1) of positive invertible
operators. By Lemma 6.8, we have

d (G[n7t](Ai(l)7"' 7Ai(n))7G[n7t](B( 1)° -, B; n)) )
< Aln,t](d(Ai1),Bi(1)) - »d(Ai(n), Bin)))

for all n < N. Take the sequence {Al@} for (Ay,-+,Ayn+1) to define G[N + 1,#]. To show

the existence of the weighted geometric mean, we have only to show that {Ap = fora
fixed J is a Cauchy sequence in the Thompson metric. Then the above inequality shows

AT AV = d (GIN,1((AD) 120, GIN.1)(AY)) )
< AIN.A)((@(AY,AY));
= AN, 7 ((d(GIN, 1) (AT )i), GIN, 1) (A ™))
= AN 1) ((d(GIN, 1) (4, ), GV, ] (Al )
. !

Since d is a metric, then d(A <2 )1> ,AE( ) >) = 0 when j(i) = J(i). Moreover a direct compu-

tation shows the above last form can be expressed by only the terms d(A, AV 1) ,(c +1 )) (k=

1,---,N). There exist positive numbers v; which do not depend on r With

)

d(A Hrl i (r l))
= k+1 :
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Since Lemma 6.8 implies

r r r—1 r—1 r—1 r—1 r—1
A0 AL = a(GINAT ™, AT AL AT AT,

G Ay A AT AL AT
< t[Nd(AY VAV Y) < o <IN d (A A,
we have
r+1 N ( 1) N
d(A Z AL < S vt N d(Ar, A
k=1 k=1

Putting p = max{1 —7,7} and M = max;d(As,Ax+1), we have ¢[N]; < p and
| N
dayVar < (T w)mpr,

Therefore, for s > r,

. N s ,
AJ 7AJ 2 s j+1 1)) < (2‘%) szSfjfl

j=1 =1 7 j=1

(i ) Llfs_r)< (ivk)Mf__p_’O as 1 — oo,

which means the sequence {A } forJ=1,---,N+ 1 is Cauchy. Finally, we show {Ay)}
for J=1,---,N+1 have the same limit. It is enough to show that limerAgr):limerAg').
Let B and B, such that limr_,ooAY) = B and limrﬁwAér) = B>. Then

d(B1,B;) < d(BhAY)) +d(AY>7A£r)) +d(A§r>7Bz)

and
0<d(A" AY) <t[N);ld(A,Ay) — 0 as r— oo,

We conclude that B; = B,. Hence {Ay)} forJ =1,--- ,N+ 1 have the same limit by the

same way. Thus G|n,?] is defined and the required inequality holds by Lemma 6.8.
O

Remark 6.2 The %-weighted geometric mean Gln, %](Al7 -+ ,Ap) coincides with the ge-
ometric one G(Ay,--- ,Ap) due to Ando-Li-Mathias.

We sum up some properties of the weighted geometric mean:

Theorem 6.5 Ler 0 <t < 1 and any positive integer n > 2.
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P1) Consistency with scalars. If Ay, --- , A, mutually commute fori=1,--- ,n, then
( Yy y
Gln,t)(Ay,--+,A,) = HAi'[n]i7
=1

where {t[n);} is defined by (6.7) and (6.8).
(P2) Joint homogeneity. For o; > 0
G[n7t](alAl7 Tty anAn) = G[n7t](al7 Tty aﬂ)G[n7t] (A17 e 7An)

_ Haf["]iG[n,t](Al, LA,
i=1

where {t[n|;} is defined by (6.7) and (6.8).

(P3) Monotonicity. The mapping (Ay,---,A,) — G[n,t](Ay,--- ,A,) is monotone, i.e. if
A;j > Bjfori=1,--- n, then

Gln,t)(A1, - ,An) > Gln,t](By,- - ,By).

(P4) Congruence invariance. For every invertible operator T

Gln,|(T*A\T, -\ T*A,T) = T*Gn,1)(Ar,- -+, An)T.
(P5) Joint concavity. The mapping (Ay,--- ,An) — G[n,t](Ay,- -+ ,Ay) is jointly concave:

G[n7t](2 A‘iAliy' o 7zliAni) 2 ZliG[nvt](Aliv'“ 7Ani)7
i=1 i=1

i= = i=1

where A; > 0 with 3| A; = 1.

(P6) Self-duality.
Gln,t](Ay,--+ ,Ap) = Gn,t] (AT, -, A, )7

(P7) The arithmetic-geometric-harmonic mean inequality holds:

H[}’lJ](Al,' o 7An) S G[n7t](Al7"' 7An) SA[nJ](Alf o 7An)' (AGH)

Proof. The properties (P1)-(P7) can be easily proved by induction and the fact that they
are known to be true for n = 2. To illustrate that we prove (P7). We know that the result is
true for n = 2. Now let us assume it is true for n and prove it for n + 1.

r+1 r r
ATV = Gln((4))20) < Al (AT 1)

1

< Aln,1](AV) ) =AY

1

for i =1,---,n+ 1. Therefore, as r — oo, we have G[n+ 1,t](Ay, - ,Apt1) < Aln+
1,t](Ay,--- ,Apy1). By (P6), we have the left-hand side of (P7). O
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6.3 The Kantorovich type inequality

First of all, we show a converse of the weighted arithmetic-geometric mean inequality of n
operators, which is an improvement of Theorem 6.1 for n > 3:

Theorem 6.6 For any positive integer n > 2, let A1,As,- -+ ,A, be positive invertible op-
erators on a Hilbert space H such that 0 < mly < A; < Mly fori=1,2,--- ,n and some
scalars 0 < m < M. Then

(M +m)?

A[}’l,l‘](Ah"' 7An) S aMm

Gln,t)(Ay, -+ ,A,)

for0 <t <1

Remark 6.3 In the case of t = %, we have

At +An _ (M +m)?

Aq,- L Ay). 1
< S GlA LA (6.13)

Forn =3, the constant in (6.13) coincides with one in Theorem 6.1. For n > 4, the constant

in (6.13) is less than one in Theorem 6.1.

To prove Theorem 6.6, we need the following lemma.

Lemma 6.9 Let @ be a positive linear mapping on the algebra B(H) of all bounded
linear operators on a Hilbert space H such that ®(Iy) = Iy. Then

(M +m)? _

o(a) < S pa!) !

for all positive operators A such that mly <A < My for some scalars M > m > 0.
Proof. Since t~! < M _ _L forall t € [m, M], we have

D(A) < (M +m)l — MmD(A)

- 7(]‘”'”)2c1>(A—1)—1 - <M+m DA M@(A)%)z

AMm 2vVMm
(M +m)2 —1\—1
< —P(A .
- 4Mm ( )

O

Proof of Theorem 6.6. Let a mapping¥ : B(H)®---®&B(H)— B(H)®---®B(H) be
defined by

Al 0 l[l’l]]Al-l-"-—f—l[n]nAn 0

0 A, 0 l[l’l]]Al =+ ---—l—t[n]nAn
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where {#[n];} is defined by (6.7). Then ¥ is a positive linear mapping such that ¥ (1) = 1.
Since
IH 0 A1 0 IH 0

0 IH 0 An 0 IH

it follows from Lemma 6.9 that

A0 2 Al 0
Y (MAm)”,
4Mm
0 A, 0 Al
and hence
(M +m)?

Aln,t](Ar,- ,Ap) < Hin,t|(A1,- - ,Ap).

4Mm
By (P7) in Theorem 6.5 we have the desired inequality

(M +m)?

<
Aln,t](Ay, -, A,) < M

Gn,t)(Ay, - ,Ay).

O
By using Theorem 6.6 and the weighted arithmetic-geometric mean inequality, we ob-
tain a weighted version of Greub-Rheinboldt inequality of n operators:

Theorem 6.7 For any positive integer n > 2, let A1,As,- -+ ,A, be positive invertible op-
erators on a Hilbert space H such that mly <A; < Mly fori=1,2,--- ,nand some scalars
0<m<M. Thenfor0<t<1

(M +m)?

1)y ., i <
<A1xvx> <A2x,x> <Anx7x> — 4Mm

(Gn,t)(A1,Az, -+ ,Ap)x,X)
holds for all x € H, where {t[n];} is defined by (6.7) and (6.8).
Proof. For 0 <t < 1, we have
(A, ) (Ao, x) 2 (A x ) < f[n] (A, x) + -+ £[n] (A, x)
= (A[n,t](Ay,- - ,An)x,x)

(M +m)?

<
— 4Mm

(G[n,1)(A1,Az, -+ ,Ap)x,X)
forallx € H. o

Remark 6.4 Ifwe putt = % in Theorem 6.7, then t[n); = %for alli=1,--- ,n. Therefore,
we have an improvement of Theorem 6.2 for n > 4.
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6.4 The Specht type inequality

We recall a 2-operators version of the Specht theorem (Theorem 6.3): If A; and A, are
positive invertible operators such that mly < Aj,A> < My for some scalars 0 < m < M,
then

(1—1)A1+1A; <S(h)A; #, Ay forallr € [0,1],

where h = % Actually, the Specht ratio is the upper bound of the arithmetic mean by the
geometric one for positive numbers. We show a noncommutative version of the Specht
theorem of n operators. For this, we state the following lemma.

Lemma 6.10 Let A, Ay, - ,A, be positive invertible operators such that mly < A; <
Ml for some scalars 0 <m <M andi=1,2,--- ,nand o1, 00, - , 0y positive numbers
with ¥ 0; = 1. Puth =2 Then

QA+ A+ -+ oA, < S(h) exp(OQ logA; + oplogAy+---+ o IOgA,,) ,
where S(h) is the Specht ratio defined by (2.35).

Proof. Put A = diag(Ay,---,A,) and y = (,/0oqx, - ,\/Ox)T for every unit vector x.
By Theorem 2.14, we have

(Ay,y) < S(h) exp(logA y,y)
since mlg < A < MIy. Therefore, it follows from Jensen’s inequality that

(A + -+ -+ 0 Ap)x,x) = (Ay,y) < S(h) exp(logA y,y)

<z o;logA;x, x>

xp(oq logAy + -+ o log A, )x, x)
for every unit vector x € H and hence we have

A+ 4 0,A, < S(h) exp(0q10gA| 4 + o, logA,) .

By virtue of Lemma 6.10, we have the following theorem.

Theorem 6.8 For any positive integer n > 3, let Ay,--- , A, be positive invertible opera-
tors such that mly < A; < Mly fori=1,2,--- ,nand some scalars 0 <m < M. Put h = %
Then for 0 <t < 1

Aln,t](Ay, -+ ,An) < S(h)? G[n,t](Ay, -+ ,Ay).
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Proof. By Lemma 6.10, it follows that
Aln,t)(AY, -+ A1) < S(h) exp (A[n,1](logAT !, logA, ).
Taking inverse, we have
Hn,t](Ay,-++,Ay) > S(h) " exp(A[n,f](logA;,--- ,logA,))
and this implies
Aln,t](Ar,--- ,An) < S(h) exp(A[n,t](logAy,--- ,logAy))
< S(h)* Hln.1](Ar, - ,An).
Therefore, we have

Aln,t](Ar,---,A,) <

and we have this theorem. O

By using Theorem 6.8 and the weighted arithmetic-geometric mean inequality, we ob-
tain another n operators version of Grueb-Rheinboldt inequality:

Theorem 6.9 For any positive integer n > 3, let Ay, -+ ,A, be positive invertible opera-
tors on a Hilbert space H such that 0 < mly <A; < Mly fori=1,--- ,n and some scalars
0<m<M. Puth="22 Then

(A1x7x)t[nh (A2x7x)t[n]2 T (Anxvx)l[n]n < S(h)z(G[nvt] (Alv T 7An)x7x)

for all x € H, where {t[n];} is defined by (6.7) and (6.8).

6.5 The Golden-Thompson-Segal inequality

For the construction of nonlinear relativistic quantum fields, Segal proved that
H+K H_K
™2 < fle™e™ .

Also, motivated by quantum statistical mechanics, Golden, Symanzik and Thompson in-
dependently proved that
Tr e K < Ty el K

holds for Hermitian matrices H and K. This inequality is called Golden-Thompson trace
inequality.
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In the final section, we discuss the Golden-Thompson-Segal type inequalities for the
operator norm. Ando and Hiai gave a lower bound on |[e "X in terms of the geometric
mean: For two self-adjoint operators H and K and o € [0, 1],

1
[ (7" #o ePX) 7 || < [l ek (6.14)

holds for all p > 0 and the left-hand side of (6.14) converges to the right-hand side as p | 0.

Hiai and Petz showed the following geometric mean version of the Lie-Trotter formula:
If A and B are positive invertible and 7 € [0, 1], then

lim (Ap #, Bp)% _ e(l—t)logA+tlogB.
p—0
We firstly show an n-variable version of the Lie-Trotter formula for the weighted geo-
metric mean:

Lemma 6.11 Ler A|,A,,--- A, be positive invertible operators such that mly < A; <
Mly fori=1,--- ,n and some scalars 0 < m < M, and let Ay,--- , A, € [0,1] such that

1
" 1 Ai = 1. Then Gln,t](A],--- ,AD)? uniformly converges to the chaotically geometric
mean eA[n.l](logAl."-,logA,,) aspo.

Proof. It follows that for each A; > 0 such that Y | A; = 1,
0<log Y AA; — Y AilogA; <logS(h).
i=1 i=1
In particular, we have
0 <logA[n,t](A1, - ,Ay) — Aln,t](logAy,--- ,logA,) <logS(h).
Replacing A; by A for p > 0,
0 <logAln,t|(AY,--- ,AP) — A[n,t](logAf,-- - ,logA?) < logS(h")

and hence

0 <logAln,1](AY,--- Aﬁ)i —Aln,t](logAy,--- ,logA,) < logS(h”)%.

1 1
Since S(h?)? — 1 as p | 0, it follows that A[n,t](Af,--- ,A})? uniformly converges to the
chaotically geometric mean eA[l(logdr+logdn) 55 1 | 0.
On the other hand, since

0 <logA[n,t)(A;",- A, ") —Aln,t](logA[ -+ logA, ) <logS(h™'),
it follows from S(h~!) = S(h) that

0> logH|[n,t|(A1, -+ ,Ay) —Aln,t](logAy,- - ,logA,) > —logS(h)
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and this implies
0 > logH|n,t](A7,- 7Aﬁ,’)% —Aln,t](logAy,--- ,logA,) > —logS(hp)%

1
forall p > 0. Hence H|n,t](A7, - ,A})? uniformly converges to the chaotically geometric
mean eA["J](lOgAlv"' JlogAn) as p l 0.
By arithmetic-geometric-harmonic mean inequality, we have

==

1
10gH[”7t] (A[177 T 7Af;)% < 10gG["7t] (A11)7 e 7A{;); < logA[n7t] (A11)7 e 7A{;)
for all p > 0 and hence we have this lemma. O

1
For the case of n = 2, Ando and Hiai are showed that the norm |[(A} # AD)7|| is
monotone increasing for p > 0. For n > 3, we have the following result.

Lemma 6.12 Let A; be positive invertible operators such that mly < A; < Mly for i =
1,---,n and some scalars 0 <m < M. Put h = % Then for each0 < g < p

S G4 AL
< Gl (A, AD T < ST (|Gln.t] (AT, AL
where S(h) is defined by (2.35).
Proof. By the arithmetic-geometric mean inequality, it follows that for each 0 < g < p

q g q g
G[n7t](A1p7 7Alf) SA[nJ](Alp? 7Alf
< Aln,t](Ay,---,An)? by concavity of 17 and 0 < % <1
2
<S(h) 7 Gln.)(Ar, - An) b

The last inequality follows from Theorem 6.8 and the Lowner-Heinz theorem. Replacing
A; by A?, we have

<k

2
G[n7t](A(117"' 7AZ) < S(hp)’_?G[nJ](AIff'- 7Aﬁ) .
Also,

<k

2
Gl (A7, AT < S(P)T Gt (A", A;7)

n

and hence
_ 2

G[nvt](A{IIf" 7Af§) 2 S(hp) P G[nvt](Azljv'“ 7A£z))%'
Therefore we have for all g > 0
2 1
S(h?)"7 ||Gn,2] (AT, -+, AD)7 |
1 o 2 ) 1
<|IGln,1J(AT, -, AD) e[| < S(h") 7 ||Gn,1](AT, - ,AR) 7 ||
O

By Lemma 6.12, we show n-variable versions of a complement of the Golden-Thom-
pson-Segal type inequality due to Ando and Hiai:
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Theorem 6.10 Let Hy,H,,-- ,H, be self-adjoint operators such that mly < H; < Mly
fori=1,--- nand some scalars m < M. Then

_2
S(er0m) Gl t) (P P )7
2

< eI ) < 5 (V)T Gl )P (6.15)

for all p > 0 and the both-hand sides of (6.15) converge to the middle-hand side as p | 0,
where the Specht ratio S(h) is defined by (2.35).

Proof. If we replace A; by e in Lemma 6.12, then it follows that
_2 .
S(er0m) Gl r)(erh e )|
2

1 5 1
< HG[HJ](G']le“ 7ean)a|| < S(ep(M—m))' HG[nJ](ePHh--- 7ePHn)p [

for all 0 < g < p. Hence we have (6.15) as g | 0 by Lemma 6.11.

The latter part of this theorem follows from S (e”(M _’")) " —lasp|o. o

6.6 Notes

For our exposition we have used Ando-Li-Mathias [13], Yamazaki [292], J.I. Fujii-M.
Fujii-Nakamura-Pecari¢-Seo [60] and J.1. Fujii-M. Fujii-Seo [63].






Chapter

Differential Geometry of
Operators

In this chapter, we study some differential-geometrical structure of operators. The space of
positive invertible operators of a unital C*-algebra has the natural structure of a reductive
homogenous manifold with a Finsler metric. Then a pair of points A and B can be joined
by a unique geodesic A # B for ¢ € [0,1] and we consider estimates of the upper bounds
for the difference between the geodesic and extended interpolational paths by terms of the
spectra of positive operators.

7.1 Introduction

We recall the Kubo-Ando theory of operator means [165]: A mapping (A,B) — A ¢ B
in the cone of positive invertible operators is called an operator mean if the following
conditions are satisfied:

Monotonicity A<CandB<DimplyAocB<CoD.
Upper continuity A, Aand B, | Bimply A, 6B, | Ao B.

Transformer inequality T*(AoB)T < (T*AT)o(T*BT) for all operator 7.

171
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Normalized condition AocA=A.

In [124, Chapter 5], several inequalities associated with operator means are discussed.
For example, the bound f in the inequality

®(A 01 B) > 0®(A) 0, D(B) + fD(A)

is determined, where A and B are positive invertible operators on a Hilbert space H, 01,0,
are two operator means with not affine representing functions, @ is a unital positive linear
mapping and o > 0 is a given real constant.

We observe the weighted arithmetic mean V,, and the weighted geometric mean #,,
for a € [0, 1], defined by

1

AVyB:i=(1—0)A+aB and A#y B:=A2(A 2BA"2)%AZ,
respectively. Like the numerical case, the arithmetic-geometric mean inequality holds:
A#,B<AVyB forall o € [0,1]. (7.1)

In [124, Corollary 5.36] it is obtained the following converse inequality of the arithme-
tic-geometric mean inequality (7.1): Let A and B be positive invertible operators satisfying
0<mily <A< Mlygand 0 < myly <B < M,Iy. Then

AVy B—A#y B<max{l —o+am—m*1—a+aM—M*}A,

where m = 72 and M = %—f
Tominaga [280] showed the another converse of (7.1) for the arithmetic mean and
the geometric one: Let A and B be positive operators on a Hilbert space H satisfying

mly < A,B < Iy for some scalars 0 < m < M. Then (like the numerical case)
AVy B—A#y B<hL(m,M)logS(h) forall a € [0,1],

where h = 2 the logarithmic mean L(m, M) is defined by (2.41) and the Specht ratio S(/)
is defined by (2.35).

7.2 Interpolational paths

Let o7 be a unital C*-algebra, .7 (resp. /") be the set of all positive invertible (resp. self-
adjoint) operators of .. Following an excellent work due to Corach, Porta and Recht [37,
38], @77 is a real analytic open submanifold of .7 and its tangent space (727 "), at any

A € /7 is naturally identified to .7”. For each A € &7, the norm || X||4 = HA_%XA_% Il
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X € (T /™), defined a Finslar structure on the tangent bundle 7«7 . Forevery A,B € &/,
there is a unique geodesic joining A and B:

Yap(t) =A# B forz € [0,1].

As usual, the length of a smooth curve yin &/ is defined by

1
1) = [ 150
and the geodesic distance between A and B in &/ is
d(A,B) =inf{l(y) : yjoins A and B}.

Then it follows that . .
d(A,B) = |[log(A"2BA™ 2 )],

also see [14]. It is a general fact that (&7, d) is a complete metric space.

J.1.Fujii [55] showed that if the manifold .7 has a metric L,(X) = || X|| (resp. L, (X) =
|[A='XA~1|)) on the tangent space T.o7*, the geodecis and the distance from A to B for
A,B € &/ are given by

AV, B=(1—-1t)A+tB and di(A,B)=|B—A|
(resp. AL B=((1-1A"' +B ) and  dj(AB)=|lA" —B|.)
The paths of means m; = #,,V,; and !, satisfy the following interpolationality [89]:

(Amy B) my (Amg B)=Amg_ B

ptiq

for0 < p,q,t <1.

We next recall an interpolational path for symmetric operator means. Following after
[89, 96], for a symmetric mean &, a parametrized operator mean oy is called an interpola-
tional path for o if it satisfies

(1) AcyB=A, A0y, B=Ac BandA 0| B=B,
(2) Ao,B)o (Ao, B)=A Orig B,
(3) the mapping ¢t — A o; B is norm continuous for each A and B.

Typical examples of symmetric means are so-called power means:
1
1 1 H
1+ (A 2BA 2)"
Am, B=A? (%) AT forre(—1,1]

and their interpolational paths from A to B via A m, B are given as follows: For each
re[—1,1]

A=

AmmBzA%(1—t+r(A—%BA—%)r) AT forre0,1].
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In particular, Am; B=AV, B,Amy, B=A# BandAm_;;, B=A; B.
Here we consider them in a general setting: For positive invertible operators A and B,
an extended path A m,; B is defined as

1
Amy, B=A? (1 —t+t(A’%BA’%)’> "A?  forallreRands € [0,1].
The representing function f;, for m,; is given by

fm(é)z1m,-.z€=(1—t+t§")% for & > 0.

Notice that A m,; B for r ¢ [—1,1] is no longer an operator mean, but we list some proper-
ties of interpolational paths m,, and the representing function f,;, also see [62].

Since every function f,,(&) is strictly increasing and strictly convex (resp. strictly
concave) for r > 1 (resp. r < 1), it follows that an extended path A m,,, B foreach € (0,1)
is nondecreasing and norm continuous for r € R: For r <

Amy; B<Amg,; B.

Moreover, it is also interpolational for all » € R. In particular, the transposition formula
holds:
Bmy A=Am. _; B. (7.2)

For the sake of convenience, we prepare the following notation: For ky > k; >0, re R
andt € [0,1]

_ frilka) = fra(k)
T hkhk

and b(r,t) _ szr.t (kllc) — ilfr.t (kz) ) (7.3)
2 — K1

a(rt)

We investigate estimates of the upper bounds for the difference between extended in-
terpolational paths:

Lemma 7.1 Let A and B be positive invertible operators such that kiA < B < kA for
some scalars 0 < k; < ky. Then forr <sandt € (0,1)

0<Amg;B—Am,;; B<SBA if r<l1 (7.4)
and
0<Amy; B—Am,;B<fBA if r>1 (7.5)
hold for
B=PB(rst.kikr) = max {f,(§)—a(rt)§—b(nt)}
ki <E<ky
and

B =B (st kike) = max {a(s,)E+b(s,1) = ful)),

where a,b are defined by (7.3).
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Proof. Suppose that r < 1. If we put C :A_%BA‘%, then we have ky Iy > C > kily > 0.
Since f; (&) is concave for r < 1, it follows from the definition of 3 that

B = f(8) —a(rt)s —=b(rt) = foi(S) — frs(§)  forall & € [k, ko],

and hence

ﬁIH > fs,t (C) - frJ (C)
This fact implies
BA > AZf, (C)A? — A f,,(C)A% = A my, B—Amy, B,

which gives the desired result (7.4). Conversely, if r > 1, then f;, (&) is convex for 1 <r <s
and (7.5) follows from the same way. O

Remark 7.1 The constant B = B(s,rt,k,k;) and ﬁ, = ﬁ,(smt?kl ,k2) in Lemma 7.1 can
be written explicitly as

) (1) (ratr= 1) T <o) m<tsi
h= Ssa(ky) = fre(ky) if &<k
fou(ka) — fri(k2) if k<&

et () (et 1) T b km<Ei<h

fs,t (kl) _fr,t(kl) lf él S kl
fou(k2) — fri(k2) if k<§&

By Lemma 7.1, we obtain estimates of the upper bounds for the difference between the
geodesic A #, B and extended interpolational paths:

Theorem 7.1 Let A and B be positive invertible operators such that kiA < B < kA for
some scalars 0 < k; < k. Then for eacht € (0,1)

0<Amy; B—A# B<B(0,s,1,ki,k2)A for s>0 (7.6)

and
0<A# B—Amy B<B(r,0,t,k k)A for r <0, (7.7)

where B is defined by Remark 7.1.
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As special cases of Theorem 7.1, we obtain an estimate of the upper bound for the
difference between the geodesic A #; B and the arithmetic interpolational paths A V; B, the
harmonic one A !; B:

Theorem 7.2 Let A and B be positive invertible operators such that k\A < B < kA for
some scalars 0 < k; < k. Then for eacht € (0,1)

0<AV,B—A# B<max{l —t+tkj —K,1—t+thky—K5}A

and
0 SA#[ B—A ![ B S B(_I,O,t,kl,kz)A,
where
B(_1707t7k17k2) =
1—1¢
(1 =0)ky+1) (1 —t)ka +1)

(((1 —t)ki+1)((1 —t)k2+t)ﬁ —k1k2>
if K< ((A=ki+t)(1-ka+1) <k

= k . —t
@—T;kﬂ_t if k< ((1-0ki+1)((1-nk+1)
t 1

if kK> ((1=0ki+1)((1-1)ka+1).

A
U (U =0)ky +1

Proof. If we put r =0 and s = 1 in (7.6) of Theorem 7.1 , then f;,(§) =1 —¢+¢& and
r_
Jor (&) =E&". Since a(0,t) = 2_12 , the condition f], (k2) < a(0,1) < f1, (k1) is equivalent

to a(0,7) = t. Therefore we have

K-k
l—t+thky— K, if 2—L<i
ko — ki
- 1 —t+thy =K if ktz_kt1>t
— — i .
1 1 kz — kl i
Similarly, we have the latter part of this theorem by using (7.7) in Theorem 7.1. O

Next, we show estimates of the lower bounds of the ratio for extended interpolational
paths:

Lemma 7.2 Let A and B be positive invertible operators such that kiA < B < kA for
some scalars 0 < k; < ky. Then forr <sandt € (0,1)

Amy B> oA mg; B if r<l1
and )

Amy; B> o Amg; B if r>1
hold for

o = ofrs,t,ki,ky) = min
k1 <&<ky

a(r,t)E +b(rt) }
f5.(8)
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and

o L R©
o =o (r,s,t,kl,kz)—klgggkz{m}’

where a,b are defined by (7.3).
Proof. Suppose that r < 1. Since f;,(&) is concave for r < 1, it follows that

Ful&) _ a(n0)E +b(r)
@) @ 2

and hence f,(&) > afs; (&) on [ky,kz]. Therefore we have

>

Amyy B=A%f,,(A"2BA"2)A? > aA? f;,(A"2BA"2)A? = oA my, B.

Similarly, since f;,(&) is convex for 1 < r < s, the latter part follows from the same way.
O

Remark 7.2 The constant o = o(r,s,t,ky,ky) and o = Oc,(r,s,t,kl,kz) in Lemma 7.2
can be written explicitly as follows: In the case of s > 1,

fr,t(kl) frJ(kZ)}
fsalk) foa(ka) )

/ .
o=uo Zmll’l{

In the case of s < 1,

%‘Lb(ﬁ’) ki <& <k
(1—1+1E)s
NFw s
o R
st = (1)
ngslt_)é%igbl(it) if k<& <k
‘NEw o kss
oy sonze
ey = (L)
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By Lemma 7.2, we have the following theorem.

Theorem 7.3 Let A and B be positive invertible operators such that k\A < B < kA for
some scalars 0 < ky < k. Then for eacht € (0,1)

K i
A#, B> min L 2 AV,B
1—t+thy" 1 —t+th
and
A!IBZOC(—I,O,I,kl,kz)A#[B
holds for
1—t
(kako) if ki <1<k
(1 =t)ky+12) (1 —t)kp +1)
kl—l
o(—1,0,t,k k) =< —2 if 1<k
( 1k2) (1=1)ky+1 yolsh
ki~
_— if  ky <1.
(L—=1)ky+1 ks

7.3 Velocity vector of extended paths

Kamei and Fujii [67, 68] defined the relative operator entropy S(A|B), for positive invert-
ible operators A and B, by

S(A|B) = A? (logA_%BA_%)A%,

which is a relative version of the operator entropy —AlogA considered by Nakamura-
Umegaki [238]. The relative operator entropy S(A|B) is exactly the velocity vector J4 5(0)
of the geodesic A #; Batt =0:

. A# B—A#yB .
S(A|B):tlg%lfo = 7a,8(0).

In [153], Kamei analogously generalizes the relative operator entropy: For each r € R

Anpy B—Amyg B
S,(A|B) = lim 21 0
t—0 1 ’

which is considered as the right differential coefficient at # = 0 of the extended path A m,; B.
By the fact that

Hm(l—rﬂa)%—l e

t—0 t r
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it follows that

S-(A|B) = forreR
r
and the representing function is
fr(&)=(E" =1)/r
In particular,
AV,B—-A
&Mwﬁd%——L——zB—A
1—
So(A[B) = S(A|B)
Al B—A
54mwyﬂ%—l———=A—mr%.
11—

Since f,(&) is monotone increasing on r € R, the velocity vectors S.(A|B) is monotone
increasing on r € R:

r<s implies Sr(A|B) < Ss(A|B).

The left differentiable coefficient of A m,; B atr=11is —S.(B|A):

. Amy;B—Am, B
lim i =

—S,(B|A).
1—1 t—1 (Bl4)
If B > A, then the velocity vectors of extended paths at# = 0, 1 are positive:

S:(A|B) >0 and —Sr(B|A) > 0.

For the sake of convenience, we prepare the following notation:

frlka) = fr(k1) _kafi(k) = kifr(k2)
ky —ky N ky — Ky

a(r) = and b(r) (7.8)
forO < ky <kpand r € R.
We investigate estimates of the upper bounds for the difference between velocity vec-

tors of extended interpolational paths.

Lemma 7.3 Let A and B be positive invertible operators such that kiA < B < kA for
some scalars 0 < ky < kp. Then forr <s

S(AIB)—S,(AIB)<YA  ifr<s<l, (7.9)

-1 K-1k-1 k-1
&wm—&wm<mm{l - -2 -2
N

r N r

}A ifr<1<s (7.10)

and )
S(AIB)—S/(AIB)<yA  if1<r<s
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hold for
Y= Y(r7s7k17k2) = max {fs(é) _a(r)é _b(r)}

ki <E<ky

and
Y =7 (rskik) = Jmax {a(©)8 +6() - £},
where a,b are defined by (7.8).

Proof. Suppose that r < 1. If we putC :A‘%BA‘%, then we have 0 < k1Iy < C < kyly.
Since f,(&) is concave for r < 1, it follows that

[(8) = £ (&) < fs(§) —a(r)g —b(r) <y

and hence we have the desired result (7.9) and (7.10). The remainder parts follow from the
same way. O

Remark 7.3 The constant y = y(r,s,ki,k2) and y, = }/'(r7s7k1,k2) in Lemma 7.3 can be
written explicitly as

a(r)s1 —b(r)—; if ki <a(r)v <k
K—1 k-1
y=4 =2 : if ka<a(r)e
ki—1 F—1
1A k2 ()
s r
and
r—l r l . 1
a(s)~1+b(s)+— if ki <a(s)™1 <k
r r
/ K—1 k-1
Y = —2s -2 if kzéa(s)%
k-1 k-1
it S if qua(s)ﬁ
s r

By Lemma 7.3, we obtain estimates of the upper bound for the difference between the
velocity vectors S(A|B) and S,(A|B) of the extended interpolational paths A m,, B ats = 0:

Theorem 7.4 Let A and B be positive invertible operators such that k\A < B < kA for
some scalars O < k; < kp. Then

Ss(AIB)—S(A|B)<yA  for 0<s5<1

and

\ N

k-1 k-1
SS(A|B)—S(A|B)§max{ 1" logky, -2 —long}A for 1<s
N S
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where
1 —s (logky —logk; \ ™1 klogks —kilogky 1
N kz—kl kz—kl N
1
logks — logky \ =1
7ok (RERE) T,
Y= =
k-1 logks — loghk; \ =T
1
K1 logks — logky \ +1
E v o= (PRE)

7.4 o-operator divergence

The concept of o-divergence plays an important role in the information geometry.

Let (X,<7, 1) be a measure space, where U is a finite or a o-finite measure on (X, /)
and let assume that P and Q are two (probability) measures on (X, .<7) such that P < 1,
Q < u are absolutely continuous with respect to a measure U, e.g. i =P+ Q and that
p= g—P and g = % the (densities) Radon-Nikodym derivative of P and Q with respect to
. Following [5], the basic asymmetric o-divergence is defined as follows: For positive
valued measurable functions p and ¢, and & € R

Dapla) = 1 [{15200)+ 5 %40~ p(a) a0 F* Jaule) (@),
(7.11)

D-1(plla) = Drlallp)i= [ {atw) - )+ ployiog 2 Yoo

If we put# = 4% in (7.11), then

Dupllg) = s [{0 =000 +190~p0)' g Jaule) (1 £0.1)

From the viewpoint of this, Fujii [53] defined the following operator version of ¢-diver-
gence in the differential geometry: For positive invertible operators A and B,

1

Da(A,B) = m

(AVy B—A#y B) O<a<l).
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In particular,

D (A,B):= li%rllDa(A7B) =lim (
o

oll

A—B B#_,A—B
o o(l—a)
—=A—B—S(B|A)

B—A A#,B—A
Do(A,B) :=1imDy(A,B) = lim( - )
ol0 ol0

l-a ol-o)
=B—A—S(A|B).

By definition, ¢-operator divergence is considered as the difference between the arith-
metic and the geometric interpolational paths. In particular, for the case o = 1/2, it follows
that o-operator divergence coincides with by four times the difference of the geometric
mean and the arithmetic mean. For the case of density operators, it coincides with a rela-
tive entropy introduced by Beravkin and Staszewski [20] in C*-algebra setting.

Also we have the following different interpretation of ¢-operator divergence.

Theorem 7.5 The o-operator divergence is the difference between two velocity vectors
S1(A|B) and S¢(A|B): Foreach oo € (0,1)

1
Dy (A,B) = 1

T (Si1a18) = Sa(alB))

_ é (51(B|A) —~ Sl—oc(B|A)> :

We investigate estimates of the upper bounds for a-operator divergence:

Theorem 7.6 Let A and B be positive invertible operators such that kiA < B < kyA for
some scalars 0 < ky < kp. Then a-operator divergence is positive and for every operator
mean p and o € (0,1) _

(BA) p (BB) > Do (A,B) >0

holds for
B~ ma l—o+oki—kf 1—o+ak,—kS
= max
a(l-a) 7 a(l—a)
5 — max o+ (1—a)k' =k o+ (1—a)k ' —k¥! .
ol — o) ’ ol —o)

Proof. Since A Vg B> A #, B (0 < a < 1), it follows that a-operator divergence
is positive, that is, Dy (A,B) > 0. On the other hand, it follows from Theorem 7.2 that
BA>Dy(A,B) >0.Since AVy B—A#4 B=BV,_o A—B#,_q Aby (7.2), we applied
B,A and 1 — ot in Theorem 7.2 to obtain the constant § = (0,1,1 — o, ky k) such that
BB > Dy(A,B) > 0 because ky Ip <AL kl_lB. Therefore we have for every operator mean

p
(BA) p (BB) > Du(4.B) p Da(A,B) = Du(A,B) > 0.

If we put @ — 0, 1 in Theorem 7.6, then we have the following corollary.
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Corollary 7.1 Let A and B be positive invertible operators such that ky\A < B < kA for
some scalars 0 < k; < ky. Then for every operator mean p

(BA) p (BB) = Do(A,B) = S1(A[B) — So(A|B)

holds for B = max{k; — 1 —logky,k» — 1 —logk, } and B =max{1—k;' —k, 'loghks,1—
k' =k 'ogk } and

(BA) p (BB) > D1(A,B) = S1(B|A) — So(BIA)

holds for B = max{1l —k,' —k, 'logks,1 —k; ' +k; 'logki} and B = max{k; — 1 +
logky,ky — 1 —logk, }.

7.5 Notes

For our exposition we have used J.I. Fujii-Micié-Pecari¢-Seo [71], Kamei-J.I. Fujii [67, 68]
and J.I. Fujii [53]. Further study may be seen in [55, 56].






Chapter

Mercer’s Type Inequality

This chapter devotes some properties of Mercer’s type inequalities. A variant of Jensen’s
operator inequality for convex functions, which is a generalization of Mercer’s result, is
proved. We show a monotonicity property for Mercer’s power means for operators and a
comparison theorem for quasi-arithmetic means for operators.

8.1 Classical version

Leta <x; <xp <--- <x, <b and let w;,1 <i < n, be nonnegative weights such that
>, w; = 1. Then Jensen’s inequality asserts:

Theorem 8.1 If f is convex on [a,b], then

f(Z Wixi> < Y wif (xi). (8.1)
i=1 i=1

Proof. Refer to [124, Theorem 1.1] for the proof. O

The following theorem is a variant of Jensen’s inequality (8.1).

185
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Theorem 8.2 [f f is convex on [a,b], then

i=1

f(a-i-b—iwz'xz') < fla)+ f(b) - iwif(xi)'
i=1

Proof. 1f we put y; = a+ b — x;, then a+ b = x; +y;, so that the pairs a,b and x;,y;
possess the same mid-point. Since there exists A € [0, 1] that

xi=Aa+(l—=A)b, yi=(l—A)a+Ab forl <i<n,

it follows from (8.1) twice that

and hence we have
fla+b—xi) < fla)+ f(b)— f(xi) forl<i<n. (8.2)
Therefore it follows that
n n
f a—l—b—Zw,x,- =f Zwi(a+b—xi)
i=1 i=1

< iwif(a—i—b—xi) by (8.1)
i=1

< S W@+ £ () —F(x)] by B2)
=1

ﬂ®+ﬂm—imﬂm-

d

Let A,G and H be the arithmetic, geometric and harmonic means of the positive num-
bers 0 < x; <x <--- <x, formed with the positive weights w; whose sum is unity. Since
(b—1)(t — a) is non-negative for 0 < a <r < b, division by 7 gives

b
at+b—t> aT (with equality if and only if r = a or t = b).

Putt = x; fori = 1,2,...,n. Forming the arithmetic mean on the left and geometric mean
on the right derives the following inequality:

ab
b—A> —. 8.3
a+ z2 5 (8.3)
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Making the substitutions @ — a~!, b — b~!, x; — x; ! in it and taking inverses extends

(8.3) to
ab —1 —1 7!
—A> — > —
at+b—A> 7(51 +b H )

With r > 0, we substitute a — a”, b — b", x; — x! in this and then raise all three members
1
to the power .. We get
1

(ar+br_iwix;'> >%><a"—|—b’_iwml> .

i=1 i=1

Now introducing the notation
1

0O,(a,b,x) = (ar +b =Y w,-xf) for all real r #£ 0,
i=1

these last inequalities read
0,(a,b,x) > Qo(a,b,x) > Q_,(a,b,x) for r > 0, (8.4)

where b
. a
Qo(a7b7x) = llil(l)Qr(%bﬁC) = E

This consideration leads us to formulate the following theorem.
Theorem 8.3 Let +o0o > 1> 5> —oo. Then
b> 0:(a,b,x) > Qs(a,b,x) > a. (8.5)

Proof. There are three cases which remain to be considered:

@ r>s>0, (b) 0>r>s, and (c) r>0>s.

Once these are proved it is a simple matter to verify that

.liril O,(a,b,x)=b and lim 0O,(a,b,x) =a,

giving the upper and lower bounds in the theorem.

The cases (b) and (c) follow easily from (a) and (8.4) above. So let us suppose the truth
of case (a) for the moment and dispose of these other cases first.

(a) reads

1 1

n r n s

(ar+br—2wixf> > <a5+bs—2wixf> for r>s>0.
i=1 i=1

If we make the substitutionsa —a !, b — b1, x; — xi’1 in this and then invert both sides

it reads

n N
(a_r +b7"— z wixi_’>
i=1

_1
s

n
< (a_s +b 7 — ZWixl._S) for —r<—-s5<0.
i=1

1
-
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Writing r = —p and s = —q this reads
Qq(a,b,x) > Qp(a,b,x) for 0>¢g>p

which is case (b).

The case (c) where r > 0 > s has two subcases namely |r| > |s| and |s| > |r|.

The former follows by noting that Q,(a,b,x) > Q_(a,b,x) > Q(a,b,x) by virtue of
(a) and (8.4). The latter follows since Q,(a,b,x) > O_,(a,b,x) > Q_s(a,b,x) by virtue of
(8.4) and (b). So the cases (b) and (c) have been dealt with.

It now remains to give the proof of case (a). If we put f(r) =¢* for @ > 1 in Theo-
rem 8.2, then we have

1
n o n
aa+ba—2wix?‘ > a—|—b—2w,~xi for o >1.
i=1 i=1

Putting o = ¢, making the substitutions a — a*,b — b*,x; — x; and then raising each side

1
to the power , we get (a). O

8.2 Operator version

In this section, we show an extension of Theorem 8.2 to self-adjoint operators on a Hilbert
space. We use this result to prove a monotonicity property of power means of Mercer’s
type. Moreover, we consider quasi-arithmetic means in the same way.

First of all, we recall that an operator version of Theorem 8.1 (Jensen’s inequality) is
true [124, Theorem 1.3]:

Theorem 8.4 Let Ay,...,A, € B(H) be self-adjoint operators with mly < A; < Mly for
some scalars m < M and let xy,...x, € H satisfy ¥, |xi||> = 1. If f € C([m,M)) is
convex, then
f(Z <Aixi7xi>> < Y f(A)xi,xi).
i=1 i=1
The following theorem stands for a geometrical property of convexity and is frequently
useful.

Theorem 8.5 Let Ay, ..., A, € B(H) be self-adjoint operators with mly < A; < MIy for
some scalars m < M and let xy,...x, € H satisfy ¥, |xi||> = 1. If f € C([m,M)) is
convex, then

n M — 2}(”;1 <Al~xl~7xl~>f(m) n S (Aixi, xi) —m

—m M—m

> (f (Ai)xi,xi) <

i=1

f(M).
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Proof. Since f is convex on [m,M], we have

M —1 t—m
f(m)—l—M_mf(M) forallz € [m,M].

f <

Since mly <A; <Mly fori=1,...,nand Y| (x;,x;) = 1, it follows that m < Y7 | (Aix;,x;)
< M. Using the functional calculus, we have this theorem. O

The following theorem is an operator vertion of Mercer’s inequality.

Theorem 8.6 Let Ay, ..., A, € B(H) be self-adjoint operators with mly < A; < Mly for
some scalars m < M and let xy, . ..x, € H satisfy ¥"_, |xi||> = L. If f € C([m,M)) is convex,
then we have the following variant of Jensen’s inequality

f <m M 21 <A,»x,-,x,»>> < F(m)+f(M)— 21 (F (A ). (8.6)
In fact, to be more specific, we have the following series of inequalities
f (m +M— i <Aixi,xi>>
i=1
< i(f(mIH + Mly — A;) xi,Xi) (8.7)

M =37 (Aixi,xi)
M—m

Y1 (Aixi,xi) —m
M—m

IN

f(M)+ f(m)

n

< f(m)+ (M) =Y (f (Ai)xi,x:).

i=1
If a function f is concave, then the inequalities (8.6) and (8.7) are reversed.
Proof. From the conditions m (x;,x;) < (Aix;,x;) < M (x;,x;) for all i =1,...,n and
> {xi,x;) = 1, by summing it follows that m < ¥ | (A;x;,x;) <M and hence, m < m +
M — Z?:l (A,-x,-,xi> S M.

Since f is continuous and convex, the same is also true for the function g : [m,M] — R
defined by g(r) = f(m+M —1t), t € [m,M]. By Theorem 8.4,

d

i.e. f<m+M— i (Aixhxi)) < i<f (mly + Mly —Ai)xi7xl~>.
i=1

i=1

n

<Aixi,xi>> <> (g(Ai)xi,xi),

M=

1 i=1
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Applying Theorem 8.5 to g and then to f, we have

<f (mIH +Mly —Ai)xi,xi>

e

Il
—_

M- ¥, (Awi.xi) S (A xi) —m

< M g(m)+ U —m g (M)
M =Y (A, xi) Y (Aixi, xi) —m
- M f(M)+ - f(m)
— X (A, x; o (Aix,xg) —
= fmyt oy - | MR AR ) BB

<f(m 2< ) XiyXi ).

The last statement follows immediately from the fact that if f is concave then — f is convex.
O

Next, we consider an operator version of power means of Mercer’s type.

LetA = (Aj,...,A,), where A; € B(H) are self-adjoint operators with mly < A; < My
for some scalars 0 < m < M, and X = (x1,...,x,), where x; € H satisfy Y7 | (x;,x;) = 1.
We define, for any r € R

n 1

[m’+Mr—z<A{x,»,x,»>] o, r#0,
M, (A,x) := =l

n
exp(]ogm+]0gM— 2<(logAi)xi,xi>) , r=0.
i=1

Observe that, since 0 < m (x;,x;) < (Aix;,x;) <M {(x;,x;) and Y7 (x;,x;) = 1, then

0<m <Y (Ajxi,x;) <M" forallr>0,
z=1

0<M < zAx“xlim" forall r <0,

logm 2 (logA;)xi,x;) <logM.

Hence, M, (A, X) is well defined.
Furthermore, we define, for any r,s € R

1
s

[i<(mr1H+Mr1H—A )thxlﬂ 7 F£0,5 40,

=

—

1
r

R(r5,A,x) == exp(z<1ogm1H+Mf1H AD)

;

1

xz7xz>) ) r#0,5=0

(exp(s(logm) Iy + (logM) Iy — logAi)xhxiﬂ ', r=0,s#0,

-

I
MR
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M =S, . S.—m S}—
. . 0 0
[Mr—m’ mr—m "] r#0.s£0,

M-S, Sy—m"
S(r,s,A,x) 1= exp(Mr_mr -logM+Mr_mr ~10gm) , r#0,5s=0,

logM) — , —(1 14
|:(0g ) So M So (Ogm) 'm.\:| 7 },_:()’5,7é()7
logM —logm logM —logm

where S, = X7 | (Alx;,x;) and So = Y7, ((logA;) xi,x;). It is easy to see that R(r,s,A,X)
and S(r,s,A,x) are also well defined.

Theorem 8.7 Ifr,s € R, r <, then
M, (A,x) < My(A,x).

Furthermore,

M, (A,x) < R(r,5,A,x) < S(r,5,A,x) < My(A,X). (8.8)

Proof. STEP 1: Assume 0 < r <.
In this case we have 0 < m"Iy <A} <M"Iy (i=1,...,n). Applying Theorem 8.6 to the
continuous convex function f(r) = ¢ (note that + > 1 here) and replacing A;, m and M
with A7, m" and M", respectively, we have

s

n r
m +M — z (Athxi)}
i=1

n )
< 2 <(mrIH +M'Iy —A;')7 x,-,x,->
i=1

M — lr'lzl <Az'rxi7xi>Ms_|_ :1:1 <Airxi7xi> -m"
- M"—m" M —m"
n
<m'+M° = (Ajxi,xi),
i=1

S

or

N

[Mr(A,x)r < [R(nsA,x)T < [stsax] < {MS(AJ)]S.

Since s > 0, this gives (8.8).

STEP 2: Assume r < s < 0.

In this case we have 0 < M"Iy < Al <m'Iy (i=1,...,n). Applying Theorem 8.6 to the
continuous concave function (1) = 17 (note that 0 < % < 1 here) and replacing A;, m and
M with A}, M" and m", respectively, we have
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M +m"— z (Athxi)}
i=1

>

-

Il
~ -

<(M"IH Iy — ALY xl-,xi>

3

MS

-2 <A{xi,xi>ms+ i1 (Afxi xi) —M”
mr _Mr mr _Mr
n
>M +m’— 2 (Afxi,x;)
pay}
or
S

[Mr(A,x)r > [R(ns,A,x)r > [s(rs.Ax)] 2 {MS(AJ)]S.
Since s < 0, this gives (8.8).
STEP 3: Assume r < 0 <s.

In this case we have 0 < M"Iy <Al <m'Iy (i=1,...,n). Applying Theorem 8.6 to
the continuous convex function f() =¥ (note that 2 < 0 here) and proceeding in the same
way as in STEP 1, we obtain (8.8).

STEP 4: Assume r < 0,5 =0.

In this case we have 0 < M"Iy <A} <m'Iy (i=1,...,n). Applying Theorem 8.6 to
the continuous convex function f(¢) = %logt (note that % < 0 here) and replacing A;, m
and M with A7, M" and m’, respectively, we have

=

1 .
< 2 <;10g (M'Iy+m'ly —Af)x,-,x,->

~ =

m"— ¥ (Afxi,xi) logm + i1 (Afxi xi) —M”
m'— M’ m"— M’

-logM

<logM +logm— Y ((logA;) x;,x;)
i=1

or

logﬂ,(Ax) <logR(r,0,A,x) <logS(r,0,A,x) < log[%(Ax).

This gives (8.8) for s = 0.
STEP 5: Assume r =0,s > 0.

We have (logm) Iy <logA; < (logM)Iy (i=1,...,n). Applying Theorem 8.6 to the
continuous convex function f(¢) = exp (st) and replacing A;, m and M with logA;, logm
and logM, respectively, we have
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exp (s (logm+ logM — i ((logAi)xhxi)))
i=1

n

z exp (s ((logm) Iy + (logM) Iy —logA;)) x;,x;)

S

- 10gM—Zi:1 ((logAi)xi,xi>MS+ i—1 {(logA;) x;, x;) — logm
logM —logm logM —logm
n
<m'+M° = (Ajxi,x;)
i=1
or ~ S S S ~ S
[MO(A,X)} < [R(o,s,A,x)} < [S(o,s,A,x)} < [MS(A,X)] .

Since s > 0, this gives (8.8) for » = 0. O

Next, we consider quasi-arithmetic means of Mercer’s type.

Let A = (Ay,...,A,), where A; € B(H) are self-adjoint operators with mly <A; < My
for some scalars m < M, and X = (x1,...,x,), where x; € H satisfy " | (x;,x;) = 1. Let
¢,y € C([m,M)]) be strictly monotonic functions on an interval [m,M]. We define

g (%)= 0™ (p om)+ 0 00) - S (45,

Observe that, smce mly <A; <My and Y| (x;,x;) = 1, then

)< 2 )X, xi) < @(M) if ¢ is increasing,

z D) xi,xi) < @(m) if @ is decreasing.
Hence, M(p (A, x) is well defined.

Theorem 8.8 Under the above hypotheses,

-1

(i) if either wo @~ is convex and v is strictly increasing, or yo @~ is concave and y

is strictly decreasing, then

My (A,x) < My (A,X). (8.9)
In fact, to be more specific, we have the following series of inequalities
M(P (A7X)
<y <2<(w<p1) (o (m)ln+o (M)l —¢ (Al-)>xi,xi>> (8.10)
i=1
1 (oM) -3 (o (A)xixi) o Ei (@ (A xi) — @ (m) )
<vt (B e von+ By

S Ml[/ (A7X)7
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(i) if either wo @~ is concave and s is strictly increasing, or yo @~ is convex and y

is strictly decreasing, then the reverse inequalities of (8.9) and (8.10) hold.

Proof. Suppose that yo @~! is convex. If in Theorem 8.6 we let f = yo @~ ! and
replace A;, m and M with ¢ (A;), ¢ (m) and ¢ (M), respectively, then we obtain

(yoo™) (fp (m)+ @ (M) — Z (@ (Ai)xux»)

i=1

< i ((woo ™) (@(m)In+ ¢ (M) Iy — ¢ (Ai)xi,xi) 8.11)

i=1

@ (M) -3, (@ (Ai)xi,x;)
¢ (M) — ¢ (m)

n

<y (m)+ (M) = Y (w(A)x.x).

i=1

1 (@ (Ai) xi,xi) — @ (m)
@ (M) — o (m)

v (M) +

v (m)

Ifyo qf1 is concave then we obtain the reverse of inequalities (8.11).

If v is strictly increasing, then the inverse function y~! is also strictly increasing, so
that (8.11) implies (8.10). If  is strictly decreasing, then the inverse function y~! is also
strictly decreasing, so that in this case the reverse of (8.11) implies (8.10). Analogously, we
get the reverse of (8.10) in the cases when yo ¢! is convex and v is strictly decreasing,
or yo @~ !is concave and  is strictly increasing. O

8.3 Operator version with mappings

Assume that (®y,...,D,) is an n—tuple of positive linear mappings ®@; : B(H) — B(K),
i=1,....n. YL ®;i(Iy) = Ix, we say that (Dy,...,D,) is unital.

We have the following generalization of discrete Jensen’s operator inequality.

Theorem 8.9 Let (Ay,...,A,) be an n—tuple of self-adjoint operators in B (H) with spec-
tra in [m,M] for some scalars m < M, and let (®1,...,®,) be a unital n—tuple positive
linear mappings ®; : B(H) — B(K), i = 1,...,n. If f is an operator convex function on
[m,M], then

! (2 dm-(Al-)) <3 O (F(A)). (8.12)
i=1 i=1

Proof. Using continuity of f, ®; and uniform approximation of self-adjoint operators
by simple operators using decomposition of unit we can assume thatA; =3 ;¢ #; je; j where
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I; are finite sets and {e; ;} jej, are decompositions of unit, i = 1,...,n. We have

(o) oSz ) (£ zm)
- (22\/¢ (61,11 Dl e,,>

i=1jel;

\ A

Z @;(ei ;) f(ti,j)\/ Pilei)

)
_iz ) Bler) = 3OS

€l;

The second proof: We use the idea from [81] (also compare to [221]). If f is operator
convex in I = [0, 1] and f(0) <0, we can suppose, with no loss of generality, that it is non-
positive. Then there is a connection ¢ such that —f(r) =¢ 6 (1 —t). We use the following
properties of a connection o

(i) ®(AoB) < ®(A) o D(B) for a positive linear mapping @ and positive operators A

and B ([15]).
(ii) (subadd1t1v1ty)2 1AioBi< (X A;) o (X1, Bi) for positive n—tuples (Ay,...,A,)
and (By,...,Bxs) ([81]).
We obtain

< iq)i(Al')O'(Di(lH—Ai) < (iq)i(Ai)> o (iq)i(IH_Ai)>
i i=1

Consider now an arbitrary operator convex function f defined on [0,1]. The function
f(x) = f(x) — f(0) satisfies the previous conditions, so (8.12) becomes

f (id),-(A,»)) < iq%(f(Ai))Jrf(O) (IK_iq)i(]H)>~ (8.13)
i=1 i=1

i=1

By setting g(x) = f((B — a)x+ a) one may reduce the statement for operator convex
functions defined on an arbitrary interval [a, ] to operator convex functions defined on
the interval [0, 1]. O

We show a variant of Jensen’s operator inequality which is an extension of Theorem 8.2
and Theorem 8.6 to self-adjoint operators and positive linear mappings.
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Theorem 8.10 Ler (Ay,...,A,) be n—tuple of self-adjoint operators in B(H) with spec-
tra in [m,M] for some scalars m < M, and let (®y,...,®,) be a unital n—tuple positive
linear mappings ®; : B(H) — B(K), i = 1,...,n. If f € C([m,M]) is convex on [m,M],
then

n

fQ@+Mk—z®mm)<fWﬂywmak—i¢mﬂm» (8.14)
=1 i=1

=

In fact, to be more specific, the following series of inequalities holds

i=1
- MlIx — Y D (A)
- M—m

f (mIK + Mg — iq)i (A,))

lr-':l q)i (A,) — mIK
M—m

< Fm)Ig+ (M) I — S @i (f (A7)
=1

f(M)+

f(m) (8.15)

If a function f is concave, then inequalities (8.14) and (8.15) are reversed.

Proof. Since f is continuous and convex, the same is also true for the function g :
[m,M] — R defined by g(z) = f(m+ M —1t), t € [m,M]. Hence, the following inequalities

(M) ) and g(0) < (M)

1) <
DR
hold for every z € [m,M] (see e.g. [249, p. 2]).

Since mly < A; < Mly fori=1,...,n and Y} ®; (Iy) = I, it follows that mlg <
>t Di(A;) < MIg. Now, using the functional calculus we have

g(i@WM>Szgﬂ“&*””gwn+M*‘zg¢””gw>
=1

M—m M—m

or

f (mIK + Mg — iq)i (Ai)>
=1

- Y i (A) —mig Mg — Y7 @; (A;)

< SR f () + 1 () (8.16)
Mg — " ®; (A; LD (A;) —ml
— )+ 0 e | ML) ) L AD )
On the other hand, we also have
Ai—mIH MIH—Ai
fAi) < ﬂf(M) M —m f(m)
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Applying positive linear mappings ®@; and summing, it follows that

- S Di(A) —mIg
- M—m

MlIg -3 ®;(Ai)
M—m

n

Y @i (f(Ai) f(M)+ f(m). (8.17)
i=1

Using inequalities (8.16) and (8.17), we obtain desired inequalities (8.14) and (8.15).
The last statement follows immediately from the fact that if ¢ is concave then —¢ is

convex. O

We consider Mercer’s power means for positive linear mappings.

Let A = (Ay,...,A,) be an n—tuple of positive invertible operators in B(H) with
Sp (A;) C [m,M] for some scalars 0 < m < M, and let ® = (®y,...,D,) be a unital n—tuple
positive linear mappings @; : B(H) — B(K), i =1,...,n. We define, for any r € R

m'Ix+M'Ix — Y, @; (A])
i=1

exp((1ogm) Iy + (log M) I — . @ l0g (47) ), =0
i=1

; r#0,

M, (A, ®) := (8.18)

Observe that, since 0 < mly <A; < Mly and ¥ | ®; (In) = Ik, then
0<m'Ix <Y ®;(A]) < MIx forall r >0,
i=1
n
0<M'Ix <Y ®i(A]) < m'Ix forall r <0,
i=1
(logm)Ix < Y ®@;(log(A;)) < (logM) Ix.
i=1
Hence, M, (A, ®) is well defined.
Furthermore, we define a constant A (m, M, p) for 0 < m < M and p € R as follows:

(o ap L) _ P ("M —MPm) ((1—p)(M—m) : O
( | 7p> ( ( ) , P#0,

MM, = =) (47— )\ bt
T S M\  M-m ox m(1+logM) —M(1+logm) _0
m)  logM —logm M—m P

We remark that A(m,M,0) = lim,_oA(m,M, p) by using Theorem 2.17.
We show a monotonicity property of Mercer’s power means for positive linear map-
pings and investigate a complementary domain to Mercer’s power means.

Theorem 8.11 Letr,s € R, r <s.
(i) If either r < —1 or s > 1, then

M,(A, @) < My(A,®). (8.19)
(ii) If =1 <rand s < 1, then

M (A, ®) < A(m,M,s) - Ms(A,®). (8.20)
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Proof. (i) STEP 1: Suppose that 0 < r < sand s > 1. ,
Applying the inequality (8.14) to the convex function f (1) = 17 (note that 2 > 1 here)
and replacing A;, m and M with A}, m" and M", respectively, we have

s

n n
m'Ix+MIg—Y @ (A])| <m'Ix+M'Ix— Y @;(A]). (8.21)
i=1 i=1

Raising both sides to the power % (O < % < l), it follows from the Lowner-Heinz theorem
(Theorem 3.1) that (8.19) holds.
STEP 2: Suppose that r < 0 and s > 1.

Applying the inequality (8.14) to the convex function f(r) = ¢+ (note that 2 <0 here)
and proceeding in the same way as in STEP 1, we have that (8.19) holds.
STEP 3: Suppose that r =0 and s > 1.

Applying the inequality (8.14) to the convex function f(z) = exp(s-¢) and replacing
A;, m and M with log (A;), logm and log M, respectively, we have

exp (s((logm)bH— (logM) Ix — iq)i (log (A,))))
i=1

n
< exp(slogm)Ix +exp(slogM) Ix — > ®; (exp(slog (A,)))
i=1
n
=m'lx+MIx — Y, @; (A) (8.22)

i=1
or s s
{MO(A@)} < [MS(A@)} .

Raising both sides to the power % (O < % < l), it follows from the Lowner-Heinz theorem

that (8.19) holds for r = 0.
STEP 4: Suppose that ¥ < —1 and s > 7.

The inequality (8.19) follows from the above cases replacing A;, r and s by Al._l, —s
and —r, respectively, and using the equality M_ (A’l,tl)) = My(A,®)"!, where A~! =
(A7l oA,

(i) STEP 1: Suppose that 0 < r < s < 1.

In the same way as in (i) STEP 1 we obtain inequality (8.21). Observe that, since
m'lx <Y, @; (AY) < MPI, it follows that m*Ix < m'Ix + M°Ix — 37 @; (AY) < M°Ix.
Raising both sides of (8.21) to the power % (% > l), it follows from Theorem 4.3 (i) that

- 1\ ~
M,(A,®) <K (mS,MS, —) M (A, ®@).
N

STEP 2: Suppose that 0 =r < s < 1.
In the same way as in (i) STEP 3 we obtain inequality (8.22). With the same observa-
tion as in (i) STEP 1 and raising both sides of (8.22) to the power 1 (1 > 1), it follows
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from Theorem 4.3 (i) that

Mo(A,®) <K (mM 1) M(A,®).
S

STEP 3: Suppose that —1 < r < s < 0.

The proof follows from (ii) STEP 1 replacing A;, r and s by Afl, —s and —r, respec-
tively, and using the equality K (M,m, p) = K (m,M, p) (see [96, p. 77]).
STEP 4: Suppose that —1 < r <s=0.

Applying the inequality (8.14) to the convex function f(r) = %logt and replacing A;,
m and M with A7, M" and m", respectively, we obtain

i=1

=

1 n n
—log (m’IK +M'Ig =Y Di(A] )) < (logm)Ix + (logM)Ix — Y ®;(log(A;).
i=1

Observing that both sides have spectra in [logm,logM], it follows from Theorem 4.7 that
(8.20) holds for s = 0.
STEP 5: Suppose that —1 <r <0 <s< 1.

In the same way as in (i) STEP 2 we obtain inequality (8.21). With the same observa-
tion as in (if) STEP 1 it follows from Theorem 4.3 (i) that

M, (A, ®) <K <mM l) M(A,®).
S

Furthermore, we define S(r,s,A,®) for A, ® as in (8.18) and r,s € R as follows:

- 1
M"]K—Sr s S,—mrIK 5 B
Mr—mrM_'—Mr—mrm} , r#0,s £0,
L i MrIK—Sr Sr—mrIK -
S(r,s,A, @) := exp( s logM + Y logm) , r#0,s=0, (823)
- 1
logM) Ix — ! — (1 Ix (|*
(ogM) Ik = So, s, So—(logm) I ) F=0.5£0,
| logM —logm logM —logm

where S, =YL | @; (A7) and Sp = X1 ®; (log (A;)). It is easy to see that S(r,s,A,®) is
well defined.

If we use inequalities (8.15) instead of the inequality (8.14), then we have the following
results.

Theorem 8.12 Letr,s € R, r <s.
(i) If s > 1, then

M,(A,®) < S(r,5,A,®) < M,(A, D). (8.24)
If r < —1, then _ _
M,(A,®) < S(s,1,A, @) < My(A,®). (8.25)
(i) If =1 <rands <1, then
1 _ _
‘M, (A, @) < S(r,5,A,®) < A(m,M,s) - M;(A,®). (8.26)

A(m,M,s)
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Proof. (i) STEP 1: Suppose that 0 < r < sand s > 1.

Applying inequalities (8.15) to the convex function f (1) = ¢+ (note that 2 > 1 here) and
replacing A;, m and M with A}, m" and M", respectively, we have

r r - r ' M'Ix — S, s Sp—m'lg s
mIK+MIK—;d)i(Ai)) S Mt
<m'lg +MIxk =y i (A]). (8.27)

i=1

Raising these inequalities to the power % (O < % < l), it follows from the Lowner-Heinz
theorem that the desired inequality (8.24) holds.

STEP 2: Suppose that r < 0 and s > 1.

Applying inequalities (8.15) to the convex function f(z) =+ (note that 2 < Ohere) and
proceeding in the same way as in STEP 1, we obtain the desired inequality (8.24).
STEP 3: Suppose that r =0 and s > 1.

Applying inequalities (8.15) to the convex function f(r) = exp(s-¢) and replacing A;,
m and M with logA;, logm and log M, respectively, we have

exp (s((logm)bH— (logM) Iy — iq)i (log (A,))))
i=1

logM)Ix — S So— (1 I
<7(0g I 0. exp(slogM) + 2 ——= K logm)Ix

. 1
~ logM —logm logM —logm exp (slogm)

< exp(slogm) Ik +exp(slogM) Ix — Y @; (exp(slog (Al)))
i=1

=m'lx+M°'Ix — Y ; (A}) (8.28)
i=1

or

[MO(A,Q)T < 5(0,5,A,®@)]° < [ﬂY(A,CI))T.

Raising these inequalities to the power % (0 < % < 1), it follows from the Lowner-Heinz
theorem that (8.24) holds for r = 0.

STEP 4: Suppose that ¥ < —1 and s > 7.
The proof of (8.25) follows using the same way as in the above cases.

(ii) STEP 1: Suppose that 0 < r < s < 1.

In the same way as in (i) STEP 1 we obtain inequalities (8.27). Observe that, since
mIx <Y @ (A) < M'Ix and m’Ix < Y7 ®;(A}) < M'Ix, it follows that m*Ix <
Mgk +MIg -3 ®; (A;')]% < MPIx and m*lx < m*lx + M°Ix — Y @; (A}) < M¥Ik.
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Raising inequalities (8.27) to the power % (% > 1), it follows from Theorem 4.3 (i) that

!
K(m“}M“',—)
s

. . 1
< |:M'IK—S;« 'M.\'_'_S”_m'IK -":l s

m'Ix+M'Ix =Y, @; (A]))
i=1

Mr_mr Mr_mrm

<K<mS7MS,1)
s

which gives the desired inequality (8.26).
STEP 2: Suppose that 0 =r < s < 1.

In the same way as in (i) STEP 3 we obtain inequalities (8.28). Observe that, since
(logm) Ix< (logm) Ix + (logM) Ix — ¥}, @; (log (A;)) < (logM) Ix and m*Ix <Y} | D; (AS)
< MPlIg, it follows that

m'lx + M*Ix — ) @i (A)

i=1

)

m'Ix < exp (s ((logm)IK + (logM) Ix — Y, @; (log (AJ))) < Ml
i=1
and m*lx < m’Ix + M°*Ix — ¥, @; (A}) < M°Ik. Raising inequalities (8.28) to the power
1(1 > 1), it follows from Theorem 4.3 (i) that (8.26) holds for r = 0.
STEP 3: Suppose that —1 <r < s <0.

Applying reversed inequalities (8.15) to the concave function f(r) =1+ (note that 0 <
§ < 1 here) and replacing A;, m and M with A7, m" and M", respectively, we obtain reversed
(8.27). With the same observation as in STEP 1 it follows that (8.26) holds.

STEP 4: Suppose that —1 < r <s=0.

Applying inequalities (8.15) to the convex function f() = L log# (note that 1 < 0 here)

and replacing A;, m and M with A}, m" and M", respectively, we obtain

1 n
- log (mrIK + Mg — z D, (Af))
i=1
M'Ix — S, Sy—m"

< ———" logM

- Mr — mr Og + Mr — mr
n

< (logm)Ix + (logM) Ix — Y, @; (log (A;)) .
i=1

-logm

Now, it follows from Theorem 4.7 that
logM—1 e logM—1 v;
S(e"g —Ogm) M,(A,®) < S(,0,A, ®) gs(e‘)g —Ogm) Mo(A, ®),

which gives (8.26) holds for s = 0.
STEP 5: Suppose that —1 <r <0 <s < 1.

Applying inequalities (8.15) to the convex function f(¢) = ¢+ (note that + < 0 here)
and replacing A;, m and M with A7, m" and M", respectively, we obtain inequalities (8.27).
Proceeding in the same way as in STEP 1, we obtain (8.26). O
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Remark 8.1 Since obviously S(r,r,A,®) = M,(A,®), inequalities in Theorem 8.12 (i)
give us

S(r,rn A, @) < S(r,s,A, @) < S(s,5,A, D), r<s,s>1

and

S(r,r, A, ®) < S(s,n,A,®) < S(s,5,A,®), r<s, r<—1.

An open problem is to give list of inequalities comparing “mixed means” S(r,s, A, ®) in
remaining cases.

Finally, we consider quasi-arithmetic means of Mercer’s type for positive linear map-
pings.

Let A and @ be as in the previous context and m < M. Let @, y € C([m,M]) be strictly
monotonic functions on an interval [m,M]. We define

My (A, ®) =o' (90 (m)Ix + @ (M) Ix — Z @; (¢ (Ai))> : (8.29)
i=1

It is easy to see that M(p (A, ®) is well defined.

Theorem 8.13 Under the above hypotheses,

(i) if either wo @~ is convex and wy~" is operator monotone, or yo ¢~ is concave
and —y~ is operator monotone, then

My (A, @) <My (A,®). (8.30)
In fact, to be more specific, we have the following series of inequalities

My (A, ®)

(M) Ik — 3L, Pi(@(A)
=V ( o0t —om) Y™

Di (¢ (Ai)) — ¢ (m) Ik ll/(m)) 831)

i=1
T e —em)

< My (A,®).

(i) if either wo @~ is concave and w=" is operator monotone, or yo @~ is convex
and —y~ is operator monotone, then inequalities (8.30) and (8.31) are reversed.

1 1

Proof. Suppose that yo ¢~ is convex. If in Theorem 8.10 we let f = yo ¢~ and
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replace A;, m and M with ¢ (4;), ¢ (m) and ¢ (M), respectively, then we obtain

(woo™) (fp(m)lw @ (M)Ix - i‘Di(‘P(AO))
i=1

o M)Ix — 3L, Pi(p(A))
- o (M) —¢@(m

)
1 Pi(@A)) —em)lx (oo
+ o (V) — ¢ () (woo™') (¢ (m))

(yoo") (o (M)

< (yoo ") (em)Ik+ (yoo ") (¢(M))Ik— iq)i (woo™) (0(4)))

or

v (qfl ((p(m)lK +o(M)Ix — Z D; (¢ (fh-))))
i=1

o (M) I — S0 ®i(9(A) Lo —omie
ST e YT T ey Y™
<wy(m)Ix+y(M)Ix — ;q)i(W(Ai))~ (8.32)

Ifyo qf1 is concave then we obtain the reverse of inequalities (8.32).

If l//’l is operator monotone, then (8.32) implies (8.31). If — l//’l is operator monotone,
then the reverse of (8.32) implies (8.31). Analogously, we get the reverse of (8.31) in the
cases when o ¢~ ! is convex and —y~! is operator monotone, or y o ¢! is concave and
v~ is operator monotone. |

8.4 Chaotic order version

LetA = (Ay,...,A,) be an n—tuple of positive invertible operators in B (H) with Sp (A;) C
[m, M] for some scalars 0 < m < M, and let ® = (®y,...,®D,) be a unital n—tuple positive
linear mappings ®; : B(H) — B(K), i = 1,...,n. We recall that we define the r-th power
operator mean for r € R as

1
-

(iq <A5>> , r#0,
M,(A,®):={ \i=l (8.33)

'n q),' (log (Al))> s r= 0

exp
i=1
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The ordering among these means is given in Chapter 9. Here we discuss the chaotic
ordering among them: the chaotic order A > B for A, B > 0 means logA > logB, also see
3.4.

The following theorems are generalizations of the theorems in [124, p.135, 136].

Theorem 8.14 [fr,s € R, r <s, then
M (A, D) < My(A, D).

Proof. STEP 1: Assume 0 < r < s. Applying Theorem 8.9 to the operator concave
function f(r) =5 (note that 0 < ¢ <1 here) and replacing A; with A} we have

(i@ (Ai-'))S >3 @ (7).
=1 E

i=1

=

Since the function f(¢) = logt is operator monotone and r > 0, it follows that

1 L 1 L
—log (Z D; (A§)> > —log (Z @; (Af)> ;
$ i=1 r i=1

ie. logM, (A, ®) < logM(A,®).

STEP 2: Assume r < s < 0. Applying Theorem 8.9 to the operator concave function
f(t) =17 (note that 0 < 2 < 1 here) and replacing A; with A} we have

Since s < 0, it follows that

Liog (z @, (Af)> < Liog (z @, (Af>> 7
r i=1 § i=1

ie. logM, (A, ®) <logM,(A, D).

STEP 3: Assume r < 0 = 5. Applying Theorem 8.9 to the operator convex function f(¢) =
% logt? (note that % < 0 here) and replacing A; with A7 we have

1 n n
~log (2 ; (Af)> < Y Dilog(A)),
i=1 i=1
ie. logM,(A,®) <logMy(A,®D).

STEP 4: Assume r = 0 < s. Applying Theorem 8.9 to the operator concave function
f(t) = Llogt and replacing A; with A we have

s

élog (iq)i (Af)> > iq)i (log (A7),
i=1 i=1
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ie. logMp(A,®@) < logM,(A, D).
STEP 5: Assume r < 0 < s. From STEP 3 and STEP 4 it follows that
logM, (A, ®) <logMy(A,®) < logM(A,D). |
To prove the following theorem, we need the following lemma.

Lemma 8.1 Let (Ay,...,A,) be an n—tuple of self-adjoint operators in B (H ) with spectra
in [m,M| for some scalars 0 <m <M, and (®@y,...,D,) be a unital n—tuple positive linear
mappings ®;: B(H) — B(K), i=1,...,n. Denote h = % Then

n 4 n 4
(05) (Z q)i(Ai)> <Y d(AN) <oy (Z q)i(Ai)>
-1

i=1

o

i=1

for
K(h,p) if p<Oorl<p,
o =
! 1 if 0<p<l,
K(h,p)™' if p<—lor2<p,
o = 1 if —1>p<0or1<p<2,

K(h,p) if 0<p<l,
where the generalized Kantorovich constant K(m,M, p) is defined by (2.29).

Proof. This lemma is proved in a similar way as [124, Lemma 4.13] using converses
of Jensen’s inequality. ]

Theorem 8.15 [fr,s € R, r <, then
A(h,r,s) " M(A, ®) < M,(A, ®), (8.34)
where the generalized Specht ratio A (h,r,s) cf. [124, eq. (2.97)] for h > 0 is defined as

1

K(h'}%)’ if r<s, rs#0,
sgn(p)
A(h,rs) = eloghﬁ » (8.35)
—_— if r=0<s=p,orr=p<s=0.
WP

Proof. STEP 1: Assume 0 < r <s. Then 0 < m’Ix < Y | ®@; (A}) < M*Ix. Applying
Lemma 8.1 with p = £ (0 < p < 1) and replacing A; with A we obtain

K(hsg) (écbi (Af))

Since the function f(¢) = logt is operator monotone and r > 0, we have

r
s

<Y @i (A)).
=1

i=1

log K(h-‘gf)%(icbi(A‘;'))F <log<i<bi(A?)>F7
§ i=1
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i.e.
log (A (h,r,s)*lM‘.(A,@)) < logM, (A, ®). (8.36)

Since A (h,s,r) = A(h, r,s)_1 (see [124, p. 87]), (8.34) follows from (8.36).
STEP 2: Assume r < s < 0. Then, 0 < M"Ix <37 | ®; (A]) <m'Ix. Applying Lemma 8.1
with p = % (0 < p < 1) and replacing A; with A} we obtain

K(h",f> id),»(Af) ;Siq)i(A}?)~
"7 \i=1 i=1

Since s < 0, we have

1

=

tog | K (.2)" (iﬂbi (A{)> > log (i @ (Af)> :
r i=1 i=1
ie.
log (A(h,r,s) M- (A, ®@)) > logM(A,®). (8.37)

Now, (8.34) follows from (8.37).
STEP 3: Assume r <0 <s. If0<-—r<sorO0<s<-—r,weletp=7:orp=7in
Lemma 8.1 (—1 < p < 0), respectively. Then we obtain

s

Yoy <k () (gcpi (Af))

or
n ] s n ) r
Yo <k (i) (Z @ (A;>>
i=1 i=1
So we have
logM, (A, ®) > log (A (h,r,s)”! MY(A,<I>))
or

logM;(A,®) <log(A(h,r,s) M. (A, ®)).
STEP 4: Assume r =0 < s. If r — 0 in (8.36), then
log (A (h707s)_1MS(A7<I))) < logMo(A, ®).
STEP 5: Assume » < s =0. If s — 0 in (8.37), then
logMy(A, @) <log(A(h,r,0) M, (A, ®)).
|

Next, we consider the chaotic ordering among Mercer’s power operator means defined
by (8.18).
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Theorem 8.16 [fr,s € R, r <s, then
M,(A,®) < M(A, D).
Proof. Analogously to the proof of Theorem 8.14, but using Theorem 8.10 instead of
Theorem 8.9. O

Now, we define, for any r,s € R

s

iqa,-([(mer)zH_A;'ﬁ) : r#0,5 40,

n

R(r,s,A,®) := < exp (Z D; <log[(mf+Mr)1H —Aj]

i=1

)) L r£05=0, (838)

n

2 (exps[(logmM) Iz —logA;])

’ VZO,S#O,

and S(r,5,A, @) by (8.23). It is easy to see that R(r,s, A, @) is well defined and also notice
that R(r,r, A, ®) = S(r,r,A,®) = M, (A, ®) (including r = 0).

Theorem 8.17 Letr,s € R, r <s.
(i) If r > O, then

M.(A,®) < S(s,r,A,®) < R(s,,A,®) < M;(A, D). (8.39)
(i) If s <0, then

M, (A, ®) < R(r,5,A,®) < S(r,5,A,®) < M;(A,®). (8.40)
(iii) If r <0 < s, then

M. (A,®) < R(r,0,A,®) < S(r,0,A,®) < My(A, D)
< 8(s,0,A,®) < R(5,0,A,®) < M(A,®). (8.41)

Proof. (i) STEP 1: Assume 0 < r < s. Applying Theorem 8.10 to the operator concave
function f () = t5 (note that 0 < £ < 1 here) and replacing A;, m and M with A, m* and
M?® we have

((m“'—l—M“')IK—ZCDi(Af)) > Yo, (((m-"+MS)1H—A~;)§)
i=1 i=1
M*Ix — S Sy —m’Ix
> M > M1 D; (
- M —-m +M-"—m 2 (' o 1_21

Since the function f(¢) = logr is operator monotone and r > 0, it follows that (8.39) holds.
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STEP 2: Assume r =0 < s. Applying Theorem 8.10 to the operator concave function
f(t) = %logt and replacing A;, m and M with Af, m* and M* we have

%10g<(m“'+M“')IK—i(D,~( ) ZCD( log ((m" +M*) Iy — A))

i=1
Ss

MoIx— S —ml L
> ﬁ logM + rm{( logm > (logmM) Ix — ZI(D[ (log (A))),

which gives (8.39) for r = 0.
(ii) STEP 1: Assume r < s < 0. Applying Theorem 8.10 to the operator concave

function f () = t7 (note that 0 < > < 1 here) and replacing A;, m and M with A7, m" and
M" we have

((wmﬂm—iqx (Alf))r > iqx(((mwa)zH—A;ﬁ)

MIx—S, o S—mlg |
> M > M) D (
- M —-m" +Mr—m m 2 (m+ K lzi

Since s < 0, it follows that (8.40) holds.
STEP 2: Assume r < 0 =s. Applying Theorem 8.10 to the operator convex function
f()= % logt (note that % < 0 here) and replacing A;, m and M with A}, m" and M" we have

%log<(m"—|—M")IK—id),-( ) Zd)( log ((m —|—Mr)IH—Af))

i=1
M'Ix — S, Sy —
< mlogM—f— rlogm < (logmM) Ix — ,ziq) (log(A))),
which gives (8.40) for s = 0.
(iii) Assume r < 0 < s. The desired inequality (8.41) follows set s = 0 in (ii) and r =0
in (i). O

Remark 8.2 If we define by M,(B) = (m"1 +M'"1 — B’) (Mercer’s mean for positive
invertible operator B with Sp(B)C[m, M), 0<m<M) and by M,(A)=(M,(A}),...,M.(A,))
(for n—tuple A of positive invertible operators), we can write:

M,(A, @) = M,(M:(A, ®))

R(r,5,A,®) = My(M.(A),®),

so we can describe inequalities in Theorem 8.17 as mixed mean inequalities. One can also
ask the question: What is the complete set of inequalities among mixed means M, (M (A), @),

M; (M (A, ®)), M,(M;(A,®)) and Ms;(M,(A), ®) under the chaotic order? One part of the
answer is in Theorem 8.16 and Theorem 8.17.
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8.5 Refinements

In this section, we give a refinement of Mercer’s inequality for operator convex functions.
We use that result to refine monotonicity properties of power means of Mercer’s type for
operators. Finally, we consider related quasi-arithmetic means for operators.

Theorem 8.18 Ler (Ay,...,A,) be an n—tuple of self-adjoint operators in B(H) with
spectra in [m, M| for some scalars 0 < m <M, and (®@1,...,D,) be a unital n—tuple posi-
tive linear mappings ®; : B(H) — B(K), i=1,...,n. If f € C([m,M)]) is operator convex,
then we have the following series of inequalities

f (mIK—I—MIK— iq)i (A,)) < iq)i (f(mIH—I—MIH —A,’))
i=1 i=1

o MIg =S & (4)

= M—

< Fm)Ig+ (M) I — S @i (F (A7)
i=1

4 2= ® (Ai) —mlg
M—m

f(M) f(m) (8.42)

If a function f is operator concave, then the inequalities (8.42) are reversed.

Proof. The proof of this theorem is quite similar to the proof of Theorem 8.6. We omit
the details. ]

We give applications to the ordering among Mercer’s power operator means defined by
(8.18).

Let R(r,s,A,®) and S(r,s,A,®) are defined by (8.38) and (8.23), respectively. To
simplify notations, in what follows we will write M,, R(r,s), S(r,s) instead of M,(A,®),
R(r,s,A,®@), S(r,s,A,®), respectively.

Figure 8.1 illustrates regions (i) — (vii) which determine the seven cases occurring in
Theorem 8.19.

Theorem 8.19 Lerr,s € R, r <s.
(i) If 1 <'r, then

M (A, ®) < S(s,r,A,®) <R(s,r,A,®) < M(A,®). (8.43)
(ii) If s < —1, then
M, (A, ®) <R(r,s,A,®) < S(r,5,A,®) < M(A, ). (8.44)

(iii) If r < —1,s > 1, then
Mr(Avq)) SR(}’,—],A,@) SS(}’,—],A,(I))
<

< M_ (A, ®) < S(1,—1,A,®) <R(1,—1,A,®)
< My(A,®) < S(s,1,A,®) <R(s,1,A,®) (8.45)
< Mi(A,®).
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(iif) (vi) iv)|(iv)| (@)
1
(vii) (vi)i(vi)
(vii)

(vii) - (vif) 1z 1 r

-1/2 =
(v)

44
(i7)

Figure 8.1: Regions (i) — (vii)

(iv) If § <r<1<s, then

M. (A, ®) <R(r,1,A,®) < S(r,1,A,®)
< Mi(A, @) < S5(s,1,A,®@) < R(s,1,A, @) (8.46)
< Mi(A,®).

(V) Ifr<—1<s<—1 then

Mo(A,®) < R(r,—1,A,®) < S(r,—1,A,®)
< M_i(A,®) < S(s,—1,A,®) <R(s,—1,A,®) (8.47)
< My(A,®).

(Vi) If—1<r<is>1;0r—s<r<s<l1, then

< C(m,M,r)S(s,r,A, @) < C(m,M,r)zR(SJ,A,(I))
< C(m,M,r)’ My(A, ®). (8.48)

(vii) If r< —1,-1 <s<1l;or—1<r<s<-—r then

M.(A,®) (m,M,s)R(r,s,A,®) < C(m,M,s)*S(r,s,A,®)

<cC
< C(mM,s)* My(A, ®). (8.49)
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__ Proof. To simplify notations, in this proof we will write M., R(r,s), S(r,s) instead of
M. (A, @), R(r,s,A, @), S(r,s,A, D), respectively.

(i) Supposethat 1 <r<s.
Applying inequalities (8.42) to the operator concave function f(¢) = 15 (note that 0 <
? < 1 here) and replacing A;, m and M with Aj, m* and M?, respectively, we have

[Aﬂ "> R(s, 1)) > [S(s,0)] > [Aﬂ (8.50)

Raising these inequalities to the power %, by the Lowner-Heinz theorem it follows that
(8.43) holds.

(ii) Suppose that r <s < —1. _
Applying inequalities (8.43)to A~! = (Afl, ...,A;!) and observing that M_,.(A~!, @)
. -1 - ~ -1
- {M,.(A,tb)}  M_y(A!, @) = {MY(AJI))} L S(—r—5,A"L @) = [S(r,s5,A,®)] ",
R(—r,—s,A” @) = R(r,s,A,®)]"", we have

(2, <Is0rn0) ! < RGw) < [12]

Hence, (8.44) holds.

(iii) Suppose that r < —1 and s > 1.
Applying inequalities (8.42) to the operator convex function f(z) =¢~! we have

[Ml]il <R, -D] ' <[S(1,-1)]7' < [M_l}—l

Hence, N B
M_; <S(1,-1) <R(l,—1) < M.

Ifweletr=1in(8.43)and s = —1in (8.43) then it follows that[ql <S(s,1)<R(s,1) < 1\71_Y
and M, <R(r,—1)<S(r,—1) <M_, holds. Hence, (8.45) holds.
(iv) Suppose that § <r<1<s.

Applying inequalities (8.42) to the operator convex function (1) = t7 and replacing
A;, mand M with A7, m" and M", respectively, we have

Mr SR(I’,I) SS(}’,I) SMI

If we let r = 1 in (8.43) then it follows that (8.46) holds.

(v) Supposethatr < —1<s< —3.

Applying inequalities (8.46) to A1 = (A;!,...,A, 1) and following analogous arguing
as in (ii), we obtain (8.47).
(vi)

STEP 1: Suppose that 0 < r < %,1 <s.

In the same way as in (i) we obtain that (8.50) holds in this case. Raising (8.50) to the
power L, by Theorem 4.3 (i) it follows that (8.48) holds.
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STEP 2: Suppose that —1 <r < 0,1 <s.
Applying inequalities (8.42) to the operator convex function f(¢) = t5 and replacing
A;, m and M with A}, m* and M?, respectively, we have

{MS} ' < [R(s,r)]" <[S(s,r)]" < []Vlr} r.

Raising these inequalities to the power %, by Theorem 4.3 (ii) it follows that (8.48) holds
(since K (M,m,p) = K (m,M, p) by [124, p. 77]).

STEP 3: Suppose that 0 <r<s<land -1 < —s<r<0.

In the same way as in STEP 1 and STEP 2, we have (8.48).

STEP 4: Suppose that 0 =r <s.

Applying inequalities (8.42) to the operator concave function (1) = % logt and replac-
ing A;, m and M with A, m* and M°, respectively, we obtain

logM; > logR (s,0) > logS (s,0) > log M.

By using Theorem 4.7, it follows that (8.48) holds for r = 0.

(vii) Suppose that r < —17—% <s<lior—1<r<s<-r.
Applying inequalities (8.48) to A™! = (A, !,...,A;’!) and following analogous arguing
as in (ii), we obtain (8.49). O

Remark 8.3 Besides these results in Theorem 8.19, one can prove in the same way that
forr<s<2rs>1

M, (A,®) < R(r,s,A,®) < S(r,5,A,®) < M;(A, D),
and forr <s < %r,r< —1
M, (A, ®) < S(s,r,A,®) < R(s,1,A,®) < M;(A, D)

also hold, but to include these cases in the figure we should compare sequences of inequal-
ities in common regions (see Remark 8.4).

Remark 8.4 If we define by M,(A,®) = (X1, (I)i(Af))% (the weighted power mean),
by M,(B) = (m"1 +M"1 — Br)% (Mercer’s mean for positive invertible operator B with
Sp(B) C [m,M], 0 <m < M) and by Mr(A) = (M;(A1),...,M:(Ay)) (for an n—tuple A of
positive invertible operators), we can write:
Mr(A7(I>) = Mr(Mr'(A7(I>))a
R(r.s,A,®) = My(M,(A),®),
so one can describe inequalities in Theorem 8.19 as mixed mean inequalities. We can also
state the following open problem: What is the complete set of inequalities among mixed

means M,(Ms(A),®), My(M.(A,®)), M,(M(A,®)) and My(M,(A),®)? Some special
cases are given in Theorem 8.19 and Remark 8.3. Also, it is easy to see that

M, (M,(A,®)) < My(M,(A, ®))
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reduces to monotonicity property of Mercer’s means, and that in some cases,
M,(M,(A, ®@)) < My(M, (A, ®))

reduces to inequalities between (Y1 ®;(A7))*/" and Y| D(A?).

Finally, we consider quasi-arithmetic means of Mercer’s type defined by (8.29).

Theorem 8.20 Ler A and ® be as in the previous context and m < M. Let @,y €
C ([m,M)) be strictly monotonic functions on an interval [m,M].

(i) If either wo @~ is operator convex and w=' is operator monotone, or yo ¢~ is
operator concave and —y~ is operator monotone, then

M(p(A7<I))
<y! (icbi((wow‘l)(w( M+ (M)l — (A ) (8.51)
i=1
(M) IS @ilp(A) S (0 (A) —omlk
sV ( o) —om YT T Y ))
< My (A, ®)

(ii) If either wo @~ is operator concave and y~' is operator monotone, or yo ¢!
is operator convex and —y ™' is operator monotone, then the reverse inequalities
(8.51) hold.

Proof. The proof is quite similar to the proof of Theorem 8.8 and we omit the details.
O

Theorem 8.21 Under the hypotheses of Theorem 8.20, we have

(i) if either @ is operator concave and ¢~ is operator monotone or ¢ is operator

convex and — @~ is operator monotone, and either y is operator convex and y~"
is operator monotone or ¥ is operator concave and —y~! is operator monotone,
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then

M(P (A7(I>)
<o (MIK_Z:‘IIG)I' (A;)

(M) +

M—m

D (A;) —ml
M—m LBl mK"P(m)>

M=

i=1

< M (A, ®) (8.52)
<y ! (i@i(l[/(mIH +MIH—A,-))>
=1
MIg — 3, ®@; (A " ®;(A;) —ml
sw‘l( K ZEL DAy ) 4 Za DA (m))
< My (A, ®).

(ii) if either @ is operator convex and ¢~ is operator monotone or ¢ is operator con-

cave and — @~ is operator monotone, and either y is operator concave and y~" is
operator monotone or \ is operator convex and —y ' is operator monotone, then
the reverse inequalities (8.52) hold.

Proof. Suppose that ¢ is operator concave and ¢! is operator monotone, and  is
operator convex and y~! is operator monotone. By Theorem 8.18, we have

0} (mIK + Mg — iq)i (Ai)>

i=1

=

> q)i((p(mIH+MIH—Ai))
i=1

S MIg -7 | D; (A)) )

= M —

> (m) Ik + o (M) Ig— S @ (0 (A).
=1

L 2 ® (Ai) —mlg
M—m

(M) p(m)

Since ¢! is operator monotone, it follows that

My (A, ®)

1 (MIg =3, D (A;
ot (M Bamia)

(M) +

<¢! (iq)i((/’ (mly +Mly —Ai))>
i=1

SMI (Avq))
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Also, by Theorem 8.18, we have
% <le +MIg — Y (Ai)>
i=1
n
<Y @i (y (mly + My — A)))
i=1

- MlIx — Y D (A)
< o

<y(m)Ig+wy(M)Ix— iq)i (v (A)).
=1

;»1:1 q),' (A,) —mIK )
M—m

y(M)+ y(m)

Since y~! is operator monotone, it follows that

M, (A, ®)

<y! (i D; (v (mly + My —Ai))>
=1

1 (MIg =1 ®;(A)) "D (A) —mlg
< 1 i=1 1 v, M i=1 *1i i .
<yt (MR DA )
< My (A,®).
Hence, we have inequalities (8.52). In remaining cases the proof is analogous. o

Remark 8.5 Results given in this chapter we can generalize for continuous fields of op-
erators, similarly to how it was done for Jensen’s inequality in Chapter 9.

8.6 Notes

For our exposition we have used Mercer [183, 184, 185], Matkovié-Pecari¢ [176, 177] and
Matkovié-Pecarié-I. Peri¢ [178, 179].






Chapter

Jensen’s Operator Inequality

In this chapter, we give a general formulation of Jensen’s operator inequality for some
non-unital fields of positive linear mappings, and we consider different types of converse
inequalities. We discuss the ordering among power functions in a general setting. As an
application we get the order among power means and some comparison theorems for quasi-
arithmetic means. We also give a refined calculation of bounds in converses of Jensen’s
operator inequality.

9.1 Continuous fields of operators

Let T be a locally compact Hausdorff space, and let .« be a C*-algebra of operators on a
Hilbert space H. We say that a field (x; );cr of operators in <7 is continuous if the function
t — x; is norm continuous on 7. If in addition u is a bounded Radon measure on 7" and the
function # — ||x;|| is integrable, then we can form the Bochner integral [ x; dpi(t), which
is the unique element in .« such that

0 ( / deu(t)> = [ o) du)

for every linear functional ¢ in the norm dual v, cf. [137, Section 4.1].
Assume furthermore that there is a field (®, ), of positive linear mappings @, : &/ —
A from o to another C*-algebra % of operators on a Hilbert space K. We say that such

217
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a field is continuous if the function ¢ — @, (x) is continuous for every x € «7. If the C*-
algebras are unital and the field 1 — @, (1) is integrable with integral equals 1, we say that
(D,),er is unital.

Theorem 9.1 Let f:J — R be an operator convex function defined on an interval J,
and let o/ and P be unital C*-algebras. If (®;);er is a unital field of positive linear
mappings O, : of — B defined on a locally compact Hausdorff space T with a bounded
Radon measure L, then the inequality

f(A@@mmm)sA@qm»wm ©.1

holds for every bounded continuous field (x;);cr of self-adjoint elements in < with spectra
contained in J.

Proof. We first note that the function 7 +— @, (x;) € & is continuous and bounded,
hence integrable with respect to the bounded Radon measure (. We may organize the set
CB(T, <) of bounded continuous functions on 7' with values in .27 as a normed involutive
algebra by applying the point-wise operations and setting

| )eer || = su;) [yl (V1 )ier € CB(T, ),
te

and it is not difficult to verify that the norm is already complete and satisfy the C*-identity.
In fact, this is a standard construction in C*-algebra theory. It follows that f((x;)er) =
(f(x:))rer. We then consider the mapping

n: CB(T, /) — M(B) C B(K)

defined by setting
7 ((aer) = [ @) du(),

and note that it is a unital positive linear mapping. Setting x = (x;);er € CB(T, <), we use
the Davis-Choi-Jensen inequality to obtain

f(m(()er)) = f(r(x) < 7(f(x) =7 (f((0)er)) = 7 ((F())er)

but this is just the statement of the theorem. o

In the following theorem we give a converse of Jensen’s inequality (9.1). For a function

f: [m,M] — R we use the standard notation:

M) — M — M
oy~ LD ) MEn) —mf(), 02
' M—m ‘ M—m

Theorem 9.2 Let (x;);er be a bounded continuous field of self-adjoint elements in a uni-
tal C*-algebra <f with spectra in [m,M) defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure |1, and let (®,),cr be a unital field of positive lin-
ear mappings @, : o/ — B from o to another unital C*—algebra B. Let f,g: m,M] — R
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and F : U XV — R be functions such that f ([m,M]) C U, g ([m,M]) CV and F is bounded.
If F is operator monotone in the first variable and f is convex in the interval [m,M), then

an, (x;))du () (/ob, x,)d (¢ )}g quMF[afz+Bf,g(z)} 1. (93

In the dual case (when f is concave) the opposite inequality holds in (9.3) with inf instead
of sup.

Proof. For convex f the inequality f(z) < oz + By holds for every z € [m,M]. Thus,
by using functional calculus, f(x;) < ayx; 4+ Byl for every r € T. Applying the positive
linear mappings @, and integrating, we obtain

[ @ () dute) < oy [ @)au( + B

Now, using operator monotonicity of F(+,v), we obtain

[/@, F0a)) du (1) (/d),x, dut )]
<F |:O£f/TCD,(x,)du(l‘)+ﬁf17g (/T@(Xz)du(t))]

< sup F[chz—l—ﬁf?g(z)] 1.
m<z<M

0O

Numerous applications of the previous theorem can be given. For example, we give
generalizations of some results from [281].

Theorem 9.3 Let (A;)icr be a continuous field of positive operators on a Hilbert space H
defined on a locally compact Hausdorff space T equipped with a bounded Radon measure
. We assume the spectra are in [m,M] for some 0 < m < M. Let furthermore (x;)icT be
a continuous field of vectors in H such that [y ||x.||>dp(¢) = 1. Then for any 2 >0, p > 1
and g > 1 we have

1/q
(frmwon®) " 2 [ jau) < crmdp). ©8

where the constant

s

<

*I—A), 0<A< % e (5-1)

(M

L
Chm,M,p,q) ={ =1 (m) By @p(i) g < % (5
q op op q q
m (m571 —l) , %mpG_I) <A
q

and oy, and B, are the constants oy and By associated with the function f(z) = z.
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Proof. Applying Theorem 9.2 for the functions
f2) =27, Fu,v) = u'/9— A,

and unital fields of positive linear mappings @, : B(H) — C defined by setting @, (A;) =
(Aix;,x;) for t € T, the problem is reduced to determine sup,,,y, H(z) where H(z) =

(0pz+Bp) /1 — 2z O

Applying Theorem 9.3 we obtain the following result with the r—geometric mean
A#,B.

Corollary 9.1 Ler (A;)er and (B;);er be continuous fields of positive invertible opera-
tors on a Hilbert space H defined on a locally compact Hausdorff space T equipped with
a bounded Radon measure |l such that

milg <A, <Mly and moly < B, < MIy

forallt € T for some 0 <my < My and 0 < my < My. Then forany A >0,s>1, p>1
and any continuous field (x;);cr of vectors in H such that [ ||x,||*dp(¢) = 1 we have

/p 1/q
(farssion) " ( [ietnman)) 4 | @47 v)aut)
o s 03
<C )H;/S?#?&p Mg7
My my”

where the constant C is defined in Theorem 9.3 and 1/p+1/q=1.

Proof. By using Theorem 9.3 we obtain for any A > 0, for any continuous field (C; ),er
of positive operators with mIy < C; < MIy and a square integrable continuous field (y; );er
of vectors in H the inequality

( / <c;y,,y,>du<z>) v ( / <y,,yt>du<r>)l/q—a [ (o aute

< C(/%7m7M7s7p)/T<yz7yz>du(f)'

(9.6)

_ _ 1/s
Set now C; = (B, i2ppg-a/ 2) and y, = BY?x, fort € T in (9.6) and observe that

p/s 1/s MP/S
et < (B A R) T < i
mi” m3’

By using the definition of the 1/s—geometric mean and rearranging (9.6) we obtain

(/ <Af’x,,xt>du<r>)l/p (/ <B?xz,xt>du<r>)l/q—x JREE

ols bl p/s Mp/.\'
meoM q moMy q
S C (lng/w mg/S 75717) fT<letvxl>d:u(t) S C <A7Mg/s7 mg/s 8, P M27

which gives (9.5). O
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In the present context we may obtain results of the Li-Mathias type by using Theo-
rem 9.2 and the following result which is a simple consequence of Theorem 9.1.

Theorem 9.4 Let (x;);cr be a bounded continuous field of self-adjoint elements in a
unital C*—algebra <7 defined on a locally compact Hausdorff space T equipped with a
bounded Radon measure |1. We assume the spectra are in [m,M). Let furthermore (®;);cr
be a unital field of positive linear mappings O, : o/ — B from &/ to another unital
C*—algebra B. Let f,g: [m,M] —Rand F : U x V — R be functions such that f ([m,M]) C
U, g([m,M]) CV and F is bounded. If F is operator monotone in the first variable and f
is operator convex in the interval [m,M], then

Ucp, Fu)) du(r) (/cp, () dpe (1) )]>m££MF[f() gL (9.7

In the dual case (when f is operator concave) the opposite inequality holds in (9.7) with
sup instead of inf.

We also give generalizations of some results from [46].

Theorem 9.5 Ler f be a convex function on [0,) and let || - || be a normalized unitarily
invariant norm on B(H) for some finite dimensional Hilbert space H. Let (®;);cr be a
unital field of positive linear mappings ®, : B(H) — B(K), where K is a Hilbert space,
defined on a locally compact Hausdorff space T equipped with a bounded Radon measure
W. Then for every continuous field of positive operators (A;);eT we have

[@dranaua < s +/f'A’”At| SUAA) =7 O) gy, (4, a1,

Especially, for f(0) <0, the inequality
f 14:11)

/ @, (f(Ar))dur) An)du(r). 9.8)
1Al
is valid.

Proof. Since f is a convex function, f(x) < =X f(m) + £ f(M) for every x €
[m,M], m <M. Since || - || is normalized and unitarily invariant, we have 0 < A; < ||A;||Iy
and thus 1A — A A

H — ¢ 1
flA) < == FO) + == /(A
t A Al

for every t € T. Applying positive linear mappings and integrating we obtain

/T(Dt(f(At))dﬂ(t)Sf(O) {IK /q]fA/t*ﬁ } FUIAD

(Dz (A)du(z) (9.9

1Al
" £(lAND - £(0)
/(Dz (A;))du(r) < (0 +/ I‘A T @; (Ar)dp(r).
t
Note that since [} (IT\rfoﬁ)d“( )< Jr %du (1) = Ix, we obtain, for f(0) <0, inequal-

ity (9.8) from (9.9). O
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Remark 9.1 Setting T = {1} the inequality (9.8) gives

AL o
Al

(f(A)) < (A).
Furthermore, setting that @ is the identical mapping, we get the inequality f(||Al]) >
lf(A)|| obtained in [46] under the assumption that f is a non-negative convex function

with £(0) =0

Related inequalities may be obtained by using subdifferentials. If f : R — R is a convex
function and [m, M] is a closed bounded real interval, then a subdifferential function of f
on [m,M] is any function [ : [m,M] — R such that

1(x) € [/L(x), fr )], x€(mM),

where f’ and f) are the one-sides derivatives of f and I(m) = f_(m) and [(M) = f’ (M).
Since this functions are Borel measurable, we may use the Borel functional calculus. Sub-
differential function for concave functions is defined in analogous way.

Theorem 9.6 Let (x;);cr be a bounded continuous field of self-adjoint elements in a uni-
tal C*-algebra <f with spectra in [m,M) defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure |1, and let (®,);er be a unital field of positive
linear mappings ®, : of — B from <f to another unital C*-algebra B. If f : [m,M] — R
is a convex function then

W+ 1(y (/cp, (v)du (1) ) /cp, () due (1) o
< 1= [ @) du(0)+ [ @i(1(u)n)du(r)

for every x,y € [m,M], where [ is the subdifferential of f on [m,M]. In the dual case (f is
concave) the opposite inequality holds in (9.10).

Proof. Since f is convex we have f(x) > f(y) +1(y)(x —y) for every x,y € [m,M]. By
using the functional calculus it then follows that f(x;) > f(y)1+1(y)(x; —y1) fort € T.
Applying the positive linear mappings @, and integrating, LHS of (9.10) follows. The RHS
of (9.10) follows similarly by using the functional calculus in the variable y. O

Numerous inequalities can be obtained from (9.10). For example, LHS of (9.10) may
be used to obtain an estimation from below in the sense of Theorem 9.2. Namely, the
following theorem holds.

Theorem 9.7 Let (x;);er be a bounded continuous field of self-adjoint elements in a uni-
tal C*-algebra <f with spectra in [m,M) defined on a locally compact Hausdorff space T
equipped with a bounded Radon measure |1, and let (®;);cr be a unital field of positive li-
near mappings @, : &/ — P from of to another unital C*-algebra A. Let f,g : [m,M] — R
and F : U xV — R be functions such that f ([m,M]) C U, g([m,M]) C V, F is bounded, f



9.2 CONTINUOUS FIELDS OF OPERATORS 223

is convex and f(y) +1(y)(t —y) € U for every y,t € [m,M| where [ is the subdifferential of
f on [m,M]. If F is operator monotone in the first variable, then

Pl Lot auo.e ([ @iaun)] > inr, Firo)+i0)c- ).
T T m<z<M
(9.11)
for everyy € [m,M|. In the dual case (when f is concave) the opposite inequality holds in
(9.11) with sup instead of inf.

Using LHS of (9.10) we can give generalizations of some dual results from [46].

Theorem 9.8 Let (x;),cr be a bounded continuous field of positive elements in a unital
C*-algebra <7 defined on a locally compact Hausdor{f space T equipped with a bounded
Radon measure |, and let (®,);cr be a unital field of positive linear mappings ®,: o — %
from <f to another unital C*-algebra 2 acting on a finite dimensional Hilbert space K. Let
I - || be unitarily invariant norm on B(K) and let f: [0,00) — R be an increasing function.

(1) If|[1|| = 1 and f is convex with f(0) < O then

£ (1 f @ a1 ) <1 [ @tstauo. ©.12)
() 1 Jy () dua(r) < | @, () ()| and £ is concave then

ot <7 (1 [ @l ©.13)

Proof. Since f(0) <0 and f is increasing we have [(y)y — f(v) > 0 and I(y) > 0. From
(9.10) and the triangle inequality we have

)] ] @) au@ < | [ () + 0y —r0).

Now (9.12) follows by setting y = || /7 D;(x;)du(z)||. Inequality (9.13) follows imme-
diately from the assumptions and from the dual case of LHS in (9.10) by setting y =

| S @ (xe) dpe (1) - O
Finally, to illustrate how RHS of (9.10) works, we set

oo Lz @ (l0a)x ) dp (o) |
[ Jr @ (10x)) du ()|

and obtain a Slater type inequality

[ (st auto) S.f(

Il Jr ﬂI>z(l(36z)xt)du(t)ll> 1
Il Jr @i (1 (xe)) d(2)

under the condition
Jr @ (1 (x)xe) dp () < Jr @ (10xr)) du(t)
| J7 @ (L (x ) ) dpe (o) || = (] S @e(10xe)) A (1)
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9.2 Non-unital fields of positive linear mappings

In this section we observe one type of non-unital fields of positive linear mappings, which
is a generalization of the results obtained in previous section.

Let T be a locally compact Hausdorff space with a bounded Radon measure . For
convenience, we use the abbreviation Fy[.<7, %] for the set of all fields (®;);er of positive
linear mappings @, : &/ — Z from a unital C*—algebra < to another unital C*—algebra
2, such that the field r — @, (1) is integrable with [, ®;(1)du(r) = k1 for some positive
scalar k.

Let @ be a normalized positive linear mapping on B(H ) and f an operator convex func-
tion on an interval J. We recall that Jensen’s inequality asserts that f(®(A)) < ®(f(A))
holds for every self-adjoint operator A on a Hilbert space H whose the spectrum is con-
tained in J. But if ®(1) = k1, for some positive scalar k, then f(®(A)) £ P(f(A)). Really,
let @ : M, (M,(C)) — M; (M3(C)) be a positive linear mapping defined by

o(AO0Y_(A+B 0O
0B) =\ 0 A+B

for A, B € My(C). Then ®(I) = 2I. Let f(t) =>. Then f is the operator convex function.

Put
11 20
A—<11> and B_<01)'
We have
A0 A0
(o(5)) -2 (53))
105 00 6200 4300
_ 5500 ~[2300] _[3200 %0
o 00105 0062 | 10043 ’
0055 0023 0032

But, the following theorem is equivalent to Theorem 9.1.

Theorem 9.9 Let f:J — R be an operator convex function defined on an interval J, and
let o/ and % be unital C*-algebras. Let T be a locally compact Hausdorff space with a
bounded Radon measure | If a field (®; )ier € Pi[of , B, then the inequality

fG/Tcp,(x,)du(t)) < %/chz(f(x:))du(r) (©.14)

holds for every bounded continuous field (x;);er of self-adjoint elements in </ with spectra
contained in J. In the dual case (when f is operator concave) the opposite inequality holds
in (9.14).
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In the present context we may obtain results of the Li-Mathias type, which is a genera-
lization of Theorem 9.2.

Theorem 9.10 Let &7 and P be unital C*-algebras. Let (x;),cr be a bounded continuous
field of self-adjoint elements in o/ with spectra in [m,M] defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure (L. Furthermore, let (®;);cr €
Pt , B and f : [m,M] — R, g: [km,kM] — R and F : U x V — R be functions such
that (kf) ([m,M]) C U, g([km,kM]) C V and F is bounded. Let {conx.} (resp. {conc.})
denotes the set of operator convex (resp. operator concave) functions defined on [m,M]. If
F is operator monotone in the first variable, then

inf F [k-hl (%Z) ,g(z)] 1< Ffp® (F(n))du(t).g (fy @ (x)dpe (1))

km<z<kM
1
sup F [k-hz (—z) ,g(z)} 1
km<z<kM k

holds for every hy € {conx.}, hy < f and hy € {conc.}, hy > f.

(9.15)

IN

Proof. We prove only RHS of (9.15). Let iy be operator concave function on [m, M|
such that f(z) < hy(z) for every z € [m,M]. Thus, by using the functional calculus, f(x;) <
hy(x;) forevery r € T. Applying the positive linear mappings @, and integrating, we obtain

@ reau < [ @ ha()an).

Furthermore, by using Theorem 9.9, we have

[t au) <o (1 [ 00t auo))

and it follows that /T &, (f(x,))du(r) <k-hs (% /T CD,(x,)d/.t(t)) . Since m®; (1) < P, (x;)

<M (1), it follows that km1 < [ @, (x;)du(r) < kM 1. Using operator monotonicity of
F(-,v), we obtain

F[/T(Dz (f(x))du(z),g (/Tq)t(xt)d”(’)ﬂ
<F {k-hQ (%/TCID,(x,)du(t)) 7g</Tth(Xz)dﬂ(’)>]

1
< sup F {k-hz (—z) ,g(z)} 1.
km<z<kM k
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Remark 9.2 Purting F(u,v) = u—v and F(u,v) = u~"?vu="/? in Theorem 9.10, we ob-
tain that

. 1
it {m (2) ~s@} 1= @G0 s [ otmo)
1
< sup {k~h2(—z)—g(2)}1
km<z<kM k

holds and if in addition g(t) > 0 for all t € [m,M| then

inf khl @, (x,)d @, (f(x))d
T ) /rw < oty auts

k-h z
 an 0 (o)
km<z<kM

holds for every hy € {conx.}, hy < f and hy € {conc.}, h, > f.

Applying RHS of (9.15) for a convex function f (or LHS of (9.15) for a concave func-
tion f) we obtain the following theorem (compare with Theorem 9.2).

Theorem 9.11 Let (x;)ier and (®;)ier be as in Theorem 9.10. Let f : m,M] — R, g:
[km,kM] — R and F : U xV — R be functions such that (kf) ([m,M]) C U, g ([km,kM]) C
V and F is bounded. If F' is operator monotone in the first variable and f is convex in the
interval [m,M], then

{/ D, (f(x;))du(r) (/ D, (x; )dp(t )} < sup F[chz+ﬁfk,g(z)] 1. (9.16)
km<z<kM

In the dual case (when f is concave) the opposite inequality holds in (9.16) with inf instead

of sup.

Proof. We prove only the convex case. For convex f the inequality f(z) < opz+ By
holds for every z € [m,M]. Thus, by putting &(z) = gz + By in RHS of (9.15) we obtain
(9.16). O

Numerous applications of the previous theorem can be given. Namely, applying Theo-
rem 9.11 for the function F (u,v) = u — Av, we obtain the following result.

Corollary 9.2 Let (x;)ier and (D;)ier be as in Theorem 9.10. If f : [m,M] — R is convex
in the interval [m,M] and g : [km,kM| — R, then for any A € R

[ (e aui <ig ( / q)t(xt)dﬂ(f)> e ©.17)

where
C= sup {Otfz—kﬁfk—lg(z)}.

km<z<kM
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If furthermore Ag is strictly convex differentiable, then the constant C = C(m,M, f,g,k, 1)
can be written more precisely as

C = ayzo+ Brk — Ag(0),

where
g op/2) if Ag'(km) <oy < Ag'(kM),
20 =1 km if Ag'(km)> oy,
kM if Ag'(kM) < o.

In the dual case (when f is concave and Ag is strictly concave differentiable) the oppo-
site inequality holds in (9.17) with min instead of max with the opposite condition while
determining 7.

Remark 9.3 We assume that (x; )t and (®;);er are as in Theorem 9.10. If f : [m,M] —
R is convex and Ag : [km,kM] — R is strictly concave differentiable, then the constant
C=C(m,M,f,g,k,A) in (9.17) can be written more precisely as

oo | orkM+ Brk—Ag(kM) if o —Aag, >0,
| apkm Bk —Aglkm) if o — Aoy <0,

where
(kM) — g(km)

kM — km

Setting @, (A;) = (Asx;,x;) forx, € H and ¢ € T in Corollary 9.2 and Remark 9.3 give a
generalization of all results from [96, Section 2.4]. For example, we obtain the following
two corollaries.

Ok =

Corollary 9.3 Ler (A;)icr be a continuous field of positive operators on a Hilbert space
H defined on a locally compact Hausdorff space T equipped with a bounded Radon mea-
sure lL. We assume the spectra are in [m,M] for some 0 < m < M. Let furthermore (X;);er
be a continuous field of vectors in H such that [y ||x;||?du(t) = k for some scalar k > 0.
Then for any real A,q,p

/T (APxy ) dp (1) — A ( /T (Atxt,x,>du(t))q <c, 9.18)

where the constant C = C(A,m,M,p,q,k) is

(& B koif agmit< 22 < agma!
(g—1) /'L_q + By if Agm S-S q )

C=19 kMP — A (kM) if k‘;‘_fl > AgMé, (9.19)
km? — A (km)4 if k(;cfl < Agmi!,

in the case Ag(q—1) > 0and p € R\ (0,1)
or

kMP —A(kM)?  if o, — Ak9 o, >0,

kmP — A(km)? if o, — AkT oy, <0,
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inthe case Aq(q—1) <0and p € R\ (0,1). In the dual case: Lq(q—1) <0and p € (0,1)
the opposite inequality holds in (9.18) with the opposite condition while determining the
constant C in (9.19). But in the dual case: Aq(q—1) >0 and p € (0,1) the opposite
inequality holds in (9.18) with the opposite condition while determining the constant C in
(9.20).

Constants oy, and B, in the terms above are the constants oy and By associated with
the function f(z) = z%.

Corollary 9.4 Ler (A;)icr and (x;)er be as in Corollary 9.3. Then for any real number
r # 0 we have

/T (exp (A 1, )L (1) — exp (r /T (A,x,,x,)d/,t(t)) <c, 9.21)

/T (exp (rAd) x,3)dp (1) < Cy exp (r /T (A,x,,x,}du(t)) , 9.22)

where constants C; = Cy(r,m,M k) and C; = Cy(r,m,M k) are

= log< ) + kB if re™ <o <reM,
Ci = (kMa+kf—e™  if re'™ < g

kmot + kf — ™™ if re’m > o

%ek’ﬂ /o if kre™ < a <kre™,
Cy = | kell—H)m if kre' > a,

kell=0rM i peM < @,

Constants o and [ in the terms above are the constants of and By associated with the
Junction f(z) = e'*.

By using subdifferentials we can give an estimation from below in the sense of The-
orem 9.11 (compare with Theorem 9.6). It follows from Theorem 9.10 applying LHS of
(9.15) for a convex function f (or RHS of (9.15) for a concave function f).

Theorem 9.12 Let (x;);er be a bounded continuous field of self-adjoint elements in a
unital C*-algebra </ with spectra in [m,M] defined on a locally compact Hausdorff space
T equipped with a bounded Radon measure [. Let (®;)ier € P/, HB). Furthermore, let
fimM]—=R g:kmkM] —Rand F :U xV — R be functions such that (kf) ([m,M]) C
U, g([km,kM]) C V, F is bounded and f(y)+1(y)(t —y) € U for every y,t € [m,M] where
1 is the subdifferential of f. If F is operator monotone in the first variable and f is convex

on [m,M|, then
[/@, Fx)) du() (/d)w du(r )} 023)
> inf  F[f()k+1()(z—yk),g(2)]1

km<z<kM



9.2 NON-UNITAL FIELDS OF POSITIVE LINEAR MAPPINGS 229

holds for every y € [m,M]. In the dual case (when f is concave) the opposite inequality
holds in (9.23) with sup instead of inf.

Proof. We prove only the convex case. Since f is convex we have f(z) > f(y) +
1(y)(z—y) for every z,y € [m,M]. Thus, by putting h;(z) = f(y) +1(y)(z—y) in LHS of
(9.15) we obtain (9.23). O

Though f(z) = logz is operator concave, Jensen’s inequality @ (f(x)) < f(®(x)) does
not hold in the case of non-unital ®. However, as applications of Corollary 9.2 and Theo-
rem 9.12, we obtain the following corollary.

Corollary 9.5 Ler (x;)cr and (®;)ier be as in Theorem 9.12 for 0 < m < M. Then

< /T @, (log(x,)) du (1) — log ( /T (D,(x,)du(t)) <ol (9.24)

where constants C; = Cy(m,M k) and C; = Cy(m,M k) are

KB +log(e/Lim M) if Jm < L(m,M) < kM,
¢ = {log (M"—1 /k) if kM < L(m,M),

log (mk—1 /k) if km > L(m,M),

log L(m’i‘gkkl) + L(IZ’M) if m<kL(m,M) <M
G = {log (M"—1 /k) if kL(m,M) > M,

log (mk—1 /k) if kL(m,M) <m,

and the logarithmic mean L(m,M), B is the constant B associated with the function f(z) =
logz.

Proof. We set f(z) = g(z) = logz in Corollary 9.2. Then we obtain the lower bound
C| when we determine . r<ni£1kM (az+kPB —logz).
M=z

Next, we shall obtain the upper bound C>. We set F(u,v) = u—vand f(z) = g(z) = logz
in Theorem 9.12. We obtain

@ toetu)) o)~ e [ 1))
< max{log (%) + %Jog (ek)lfM) + k7M} 1

for every y € [m,M], since h(z) = klogy + /%(z — ky) —logz is a convex function and it
implies that

max  h(z) = max {h(km),h(kM)}.

km<z<kM
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Now, if m < kL(m,M) < M, then we choose y = kL(m,M). In this case we have
h(km) = h(kM). But, if m > kL(m,M), then it follows 0 < k < 1, which implies that
max {h(km),h(kM)} = h(km) for every y € [m,M]. In this case we choose y = m, since
yk k

h(y) =log < o ) + s an increasing function in [m,M]. If M < kL(m,M), then the
y

proof is similar to above. O

By using subdifferentials, we also give generalizations of Theorem 9.6.

Theorem 9.13 Let (x;),er be a bounded continuous field of self-adjoint elements in a
unital C*-algebra </ with spectra in [m,M] defined on a locally compact Hausdorff space
T equipped with a bounded Radon measure (L, and let (®; )ier € P [/, B). If the fieldt —
@, (1) is integrable with [ ®,(1)du(t) = k1 for some positive scalar k and f : [m,M] — R
is a convex function then

WKL+ 1(y (/d),x, du(r) yk1> /d), () du (1) 025
< FkL=x [ @,(160)du(0)+ [ @1 du (o) ’

for every x,y € [m,M|, where [ is the subdifferential of f. In the dual case (f is concave)
the reverse inequality is valid in (9.25).

Remark 9.4 In the case (®;);cr € Pi[</ , B) we may obtain analogues results as in The-
orems 9.5 and 9.8. The interested reader may be read the details in [202].

9.3 Ratio type inequalities with power functions

In this section we consider the ratio type ordering among the following power functions of
operators:

Fy(x,®) (/ @, (x) du(r ))l/r, rc R\{0} (9.26)

under these conditions: (x;),cr is a bounded continuous field of positive operators in a
unital C*-algebra <7 with spectra in [m, M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure y, and (®;),cr €
Py [% ’ B ]

As an application, we consider a generalization of the weighted power means of ope-
rators:

M,(x,®) = (/kqn, () d (¢ ))l/r, reR\{0} 9.27)

under the same conditions as above.
We need some previous results given in the following three lemmas.
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Lemma 9.1 Let (x;);er be a bounded continuous field of positive operators in a unital
C*-algebra </ with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure (L, and let (®;);er €
Pt B).

If 0<p<l1, then

p
/ @, (xf) dp(r) <k'7 ( / P, (xt)dw)) : (9.28)
T T
If —1<p<0 or 1<p<2, thenthereverse inequalityis valid in (9.28).

Proof. We obtain this lemma by applying Theorem 9.9 for the function f(z) =z and
using the proposition that it is an operator concave function for 0 < p < 1 and an operator
convex one for -1 < p <Oand 1 < p <2. ]

Lemma 9.2 Assume that the conditions of Lemma 9.1 hold.
If 0<p<l1, then

kK'"PK(m,M,p) (/T d),(x,)du(t))p < /Tth () du(r) <&'P (/T q),(x,)du(t)y,

(9.29)
if —1<p<0 or 1<p<2, then

K- I’(/@,x,du ) /ob, ) d(r) < K'PK (m,M, p) (/GI),xzdu())p,

(9.30)
if p<—1 or p>2 then

KPR (mM, p)~ (/@,xtdu ) /ob, ) du(r)

< k'"PK(m,M, p) (/Tcp,(x[)du(t)>p7 o

where K(m,M, p) is the generalized Kantorovich constant by (2.29).

Proof. We obtain this lemma by applying Corollary 9.2 for the function f(z) = g(z) =
zP and choosing A such that C = 0. a

We shall need some properties of the generalized Specht ratio A(h, r,s) (see (8.35) and
Figure 9.1).

Lemma 9.3 Let M >m >0, r € R and

__r(h=h") W —h o =
A(l’lﬂ’,l)_ (l_r)(hr_l) ((r—l)(h—l)) ' "=

B

(i) A function A(r) = A(h,r,1) is strictly decreasing for all r € R,
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A&

i

1/h

Figure 9.1: Function A(r) = A(h,r, 1)

(ii) lin}A(hm7 1)=1 and l.in(l)A(hJ’, 1) =S(h),
where the Specht ratio S(h) is defined by (2.35).

(iii) limA(h,r,1)=1/h and  lim A(h,r,1)=h.
F—o0 J——oo
Proof.

(i) We write A(r) = A (r) - A2 (r), where

= V(hr—h) N hr_h —1/;-
Ay(r) = oD -1 Mo (r) = (7@—1)(}1—1)) . (9.32)

By using differential calculus we shall prove that a function A is strictly decreasing
for all » # 0, 1. We have

LA (r) = m (W = 1) (W —h) — (r—1)rk’(h — 1)logh)

— (h (h lhrloglhz f( ) (933)

where f(r) = % (r— 1)r. Stationary points of the function f are 0, 0.5,
1 and it is a strictly decreasing function on (—e=,0) U (0.5, 1) and strictly increasing

n (0,0.5)U (1,e0). Also, f(0) = f(1) =0. So, f(r) >0 for all » #0,1. (More
exactly, f"(r) = log 2 (W —h'=") imply that the function f” is strictly increasing

n (0.5,e0) and strlctly decreasing on (—e,0.5). It follows that f'(r) < 0 for r €
(—vo, 0) (0.5,1) and f’(r) > 0 for r € (0,0.5) U (1,°)) Now, using (9.33) we have
that Al( ) < 0 forall r # 0, 1 and it follows that A; is strictly decreasing function.

Further, in the case of a function A; in (9.32), we obtain

—1/r
d o -1 W' —h
arha(r) = (r— 1)/ 2(h"—h) ((r—l)(h—l))
x [r(r—1)h"logh—r(h" —h)+ (r—1)(h" h)log(#)]
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By using differential calculus we can prove that a function
. —1)(h—1
r— r(r— )i logh— r(h" —h)+ (r— 1)(h" — h) log (7“ ) >>

is positive for all r # 0,1. So %Az(r) < 0 for all » # 0,1 and it follows that A; is

strictly decreasing function.

(ii) Using the definition of the generalized Specht ratio (8.35), we have A(h,r1) =
K(h",1/r) if r # 0. Now, we have K(h,1) = 1 by using Theorem 2.12 and
lin(l)K(hr7 1/r) = S(h) by using Theorem 2.17.

(iii) We have by L'Hospital’s theorem

. log((r—=1)(h—1)/(K —h)) . 1 h'logh
lim = lim (r—l_ hr_h>——logh.

F—s00 r r—so0

So

. o W=k ((r=Dh=D\Y
Nim A1 1) = lim =+ 27— ( W —h =e =1/

Similarly, we obtain lim A(h,r,1) = h.
y— —o0

Now, we give the ratio type ordering among power functions.

Theorem 9.14 Let (x;),cr be a bounded continuous field of positive operators in a unital
C*-algebra of with spectra in [m,M| for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure (L, and let (®;);er €
P[<f , B). Let regions (i) — (V) be as in Figure 9.2.

If (r,s) in (i), then

ki Alh,r,s) "' Fy(x,®) < Fo(x,®) <k'n Fy(x,®),

if (r,s) in (ii) or (iii), then
k5 Alh,r,s)”! Fy(x,®) < Fo(x,®) <k’ A(h,r,s) Fy(x,®),

if (r,s) in (iv), then

kw Alhys, 1) A(h,rs) ! Fy(x,®) < F(x, ®)

<k'm min{A(h,r,1),A(h,s,1)A(h,r,5)} Fs(x,®),
if (r,s) in (V) or (iv); or (V)1, then
k7 A(h,s, 1) Ak, r,s) "' Fy(x,®) < F(x,®) <k A(h,s,1) Fy(x,®),

where A(h,r,s), rs # 0 is defined by (8.35).
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s
A
(N (ii) | (i/
1
r<s,sé&(-1,1), r& (-1,1)
> D (i) | or 1/2€rs1s's
(iv) NS or r<-1< s<-1/2,
(iif) ) (i) | s=1,-1<r<1/2,r#0,
: ----; ------ »r (iii)| r<-1,-1/2<s<1,s8#0,
-1 = 1/2
(iv)| -s<r<s/2,r#0,0<s £ 1,
8} +-1/2
S (iv),] r€s<2r0<s <1,
(i) e (V) | H2<s €-r,s#0, -1€r<0,
(V),| 2s€£r<s, -1<r<0.

Figure 9.2: Regions in the (r,s)-plain

Proof. This theorem follows from Lemma 9.2 by putting p = s/r or p = r/s and then
using the Lowner-Heinz theorem, Theorem 4.3 and Lemma 9.3. We give the proof for the
sake of completeness.

We put p = s/r in Lemma 9.2 and replace x; by x;. Applying the Lowner-Heinz
inequality if s > 1 or s < —1 and using that K(m’,M",s/r)l/‘Y = K(M’,m’,s/r)l/‘Y =
A(h,r,s), we obtain:

(@)If r<s<-—1 or 1<s<-—r or 0<r<s<2r,s>1, then

k5 Fr(x,®) < Fy(x,®) < k' A(h,r,s) Fr(x, ®). (9.34)
b)If 0<—r<s,s>1 or 0<2r<s,s>1, then
k5 A(h,r,s) "' Fi(x,®) < Fy(x,®) < k7 A(h,r,5) Fp(x,®). (9.35)
Applying Theorem 4.3 if —1 < s < 1 and using that K (km*,kM*,1/s) = K (m*,M*,1/s)
= A(h,s, 1), we obtain:
(O)If r<s,—1<s<0 or s<—-r,0<s<1 or 0<r<s<2rs<1, then
k5 Ah,s,1) 7! Fo(x,®) < Fy(x,®) < k7 Ah,s5,1) A(h, 1, 5) Fo(x, ®). (9.36)
(d)If 0<—r<s<1 or 0<2r<s<1I, then
k5 A(h,s, 1) A(h,r,5) ! Fo(x,®) < Fy(x,®
( 7) (h,1,5)7" Fr(x, @) < Fi(x, @) ©.37)
<k A(h,s,1)A(h,r,s) F.(x, D).
Similarly, putting p = r/s in Lemma 9.2 and replace x; by x{, we obtain:

(a)If 1<r<s or —s<r<-—1 or 2s<r<s<0,r<-—1, then

K5 A(h,1,5) " Fy(x,®) < Fo(x,®) < k' Fy(x,®). (9.38)
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b)) If r<—s<0,r<—1 or r<2s<0,r<-—1, then
k5 A(h,r,s) "' Fy(x,®@) < F(x,®) <k v A(h,r,5) Fy(x, ®). (9.39)
(e)If r<s,0<r<1 or —s<r,—1<r<0 or 2s<r<s<0,r>—1, then
k5 A(h,r, 1) Ak, rs) ™! Fy(x, @) < Fo(x,®) < k7 A(h,r,1) Fy(x, ®). (9.40)
(d)If —1<r<—-s<0 or —1<r<2s<0, then
k5 Ah,r,1) 7' A(h,r,5) 7! Fy(x, @) < Fr(x,®)

R (9.41)
<k A(h,r,D)A(h,r,5s) Fy(x, ®).

Now, we have that in cases (a) and (a;) the inequality (9.34) holds and in cases (b)
and (b)) the inequality (9.35) holds. If we put r = 1 in RHS of (9.38) for 1 < r < s then

we obtain s
/kcl), ) du () (/kcl), x,)du()) . ifs> 1L

Next, applying LHS of (9.34) for s =1 and 0 < r < s < 2r, we have

1/r
(/ kq)t Xt dIJ, ) / q)[ x, d[l

The assumption s > 1 implies

1/r 1/s
(/ kq)l xt)d[l( ) / CD[ X[ dIJ, (/ CD[ XI dIJ, ) (942)

for 1/2 <r <1 <s. Similarly, putting s = —1 in LHS of (9.34) forr <s < —land r = —1
in RHS of (9.38) for 2s < r < s < 0, we can obtain that (9.42) holds for r < —1 <s < —1/2.
Consequently, we obtain that (9.34) holds in the region (i) and (9.35) holds in the regions
(ii) and (iii).
In remainder cases we can choose better bounds. In the region (iv) inequalities (9.37)
and (9.40) hold. Now, by Lemma 9.3 we have
A(h,r, 1) > A(h,s, 1) if r <s, (9.43)

and we get
A(h,s, 1)_1A(h7r7s)_1 > A(hml)_lA(hms)_1

It follows that k5 A(h,s,1) ' A(h,r,s)~" is a better lower bound. The upper bound is equal
k5 -min{A(h,r,1),A(h,s,1)A(h,r,s)}.

In the region (v) inequalities (9.36) and (9.41) hold. We have that k5 A(h,s, 1) 'A(h,r,s) 7!
is a better lower bound, since (9.43) holds. The upper bound is equal

k5 -min{A(h,s,1),A(h,r, DA(h,r,8)} = k' - A(h,s,1),
since (9.43) holds and A(h,r,s) > 1 by (2.32).
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In the regions (iv); and (v); inequalities (9.36) and (9.40) hold. Analogously to the
case above we obtain that the bounds in the inequality (9.36) are better. O

Finally, we give the ratio type ordering among means (9.27).

Corollary 9.6 Let (x;),cr be a bounded continuous field of positive operators in a unital
C*-algebra &/ with spectra in [m,M] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure [, and let (®;);er €
P[<f , B). Let regions (i) — (V) be as in Figure 9.2.

If (r,s) in (i), then

A(h,r,5) ™" M(x, @) < M, (x,®) < M,(x,®),
if (r,s) in (ii) or (iii), then
A(h,r,5) "t M(x,®) < M, (x,®) < A(h,r,s) My(x, D),
if (r,s) in (iv), then

A(h,s,1) 7 A(h,1r,5) 71 My(x, @) < M, (x, D)
S min{A(h,r, l)aA(hvsv I)A(harvs)} MY(X7(I>)5

if (r,s) in (v) or (iv)| or (V)1, then
A(h,s, 1) AR, 1, s) ™1 My(x, @) < M, (x,®) < A(h,s,1) My(x,®),
where A(h,r,s), rs # 0, is defined by (8.35).

Proof. 1t is sufficient to multiply each inequality in Theorem 9.14 by k~1/". O

9.4 Difference type inequalities with power functions

In this section we consider the difference type ordering among the power functions (9.26).
As an application, we consider the weighted power means (9.27).
We need some previous results given in the following two lemmas.

Lemma 9.4 Let (x;),er be a bounded continuous field of positive operators in a unital
C*-algebra o/ with spectra in [m,M|] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure (L, and let (®;);er €
Pt | B).

If 0<p<l1, then

o, [ @)+ 45,1 < [ @i <k ([omaun) . o
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if —1<p<0 or 1<p<2, then

1 p
K'-p ( /T @z(xz)dﬂ(t)) < /T @, (x)du(r) < a /T D, (x)du(r) +kBpl,  (9.45)
if p<—1 or p>2, then

p ! [ () k(- 1< [ @P)auin) < @ [ @)+t
(9.46)
foreveryy € [m,M|. Constants o, and B, are the constants o, and By associated with the
function f(z) = zP.

Proof. RHS of (9.44) and LHS of (9.45) are proven in Lemma 9.1. LHS of (9.44) and
RHS of (9.45) and (9.46) follow from Corollary 9.2 for f(z) = z', g(z) =z and A = 0.
LHS of (9.46) follows from LHS of (9.25) in Theorem 9.13 putting f(y) = y” and I(y) =

pyP~ L ]
Remark 9.5 Setting y = (Ocp/p)l/(p_l) € [m,M)] the inequality (9.46) gives
op Jr @ ()d(t) + k(1= p) (0 /p)" "1 < Jy. @y (o )dpa (1)
< op Jp Pi(x)dp(r) +kBy1

forp<—lorp>2.
Furthermore, setting y =m ory = M gives

pm? ! fr @ () (1) + k(1 — p)mP1 < [ @y (x]')dp(r)
<ot [7Pr(x)dp(t) +kBpl (9.47)

or

pMP [ @ (x)dp () + k(1 — p)MPL < [ @ (x7')du(r)
<oy [ (x)du(r) + kBy1. (9.48)

We remark that the operator in LHS of (9.47) is positive for p > 2, since

0 < kmP1 < pmP~1 [ ®,(x,)du(t) + k(1 — p)mP1
< k(pm?~'M + (1 —p)mP)1 < kMP1 (9.49)

and the operator in LHS of (9.48) is positive for p < —1, since

0 < kMP1 < pMP~! [ ®,(x,)du(t) + k(1 — p)MP1
<k(pMP~'m+ (1 — p)MP)1 < kmP1. (9.50)

(We have the inequality pm?~'M 4 (1 — p)mP < MP in RHS of (9.49) and pMP~'m +
(1 — p)MP < mP in RHS of (9.50) by using Bernoulli’s inequality.)
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L(m,M) InS(M/m)

-V

m-M

Figure 9.3: Function C(r) = C(m",M",1/r)

We shall need some properties of the Kantorovich constant for the difference C(m, M, p)
(see (2.38) and Figure 9.3).

Lemma 9.5 Let M >m >0, reRand

1— M — 1/(1=r) Mm—mM
Cm" M",1/r):= “(r m. _’_m.im.
r M —m’ M" —m"

(i) A function C(r) =C(m",M",1/r) is strictly decreasing for all r € R,
(ii) liiI}C(m’7Mr, 1/r)=0 and ;iir(l)C(m’,M’, 1/r)=L(m,M)logS(M/m),
where L(m,M) is the logarithmic mean and the Specht ratio S(h) is defined by (2.35).
(iii) }LI?OC(m",Mr, 1/r)=m—M and rEIPmC(mr,Mr, 1/r)=M—m.

Proof.

(i) We have by a differential calculation

d
—C
dr ()
M—m \"Y) i logm — M logM 1 r(M —m)
= rﬁ r r + IOg r r
M —m r(Mr—m") r(l—r) Mr—m

M"'m" (M —m)log(m/M)
(Mr _ mr)2

Both of functions

m'"logm — M"logM 1 M —m"

r(M"—m") + r(r—1) log r(M —m)

V=

and
M'm" (M —m)log(m/M)
(Mr _ mr)Z

r—

are negative for all r # 0, 1. So %C(r) < 0 and the function C is strictly decreasing.
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(ii) We have by L’Hospital’s theorem

MlogM — mlogm

log (r(M —m)/(M" —m")) _

ELH} 1—r - M—m ’
S0
lim l—r (r M—m )Ml_r} — (.o 1+(MlogM—mlogm)/(M=m) _
r—1 r M" —m"
Abo M M W —h M
. "m—m' . r—
iy e

Then, lin} C(m",M",1/r) = 0. Using Theorem 2.24, we have
lir%C(m",M",p/r) = L(m” ,MP)logS(h?) forallpeRandh=M/m,
r—!

so we obtain lin(l)C(mﬂM'} 1/r)=L(m,M)logS(M/m).

(iii) We have by L’Hospital’s theorem

I M — M"—m" Mm—m"M
lim UM =m) /(M =m') o Mimem My
F—o0 1—7r r—o  M" —m"
" 1/(1=r)
1- M— I
lim — (r—" — ].eloeM — .
r—eo M"—m"
Also,
. Mm—m'M . h"—h M
lim ———— = limm =m, h=—>1.
r—oo  M" —m’" F—>oc0 hr—l m

Then, lim C(m",M",1/r) =m—M.
F—00

Similarly, we obtain lim C(m",M",1/r) =M —m.

Also, we need the following function order of positive operators.

Theorem 9.15 Ler A, B be positive operators in Z(H).
IfA > B > 0 and the spectrum Sp(B) C [m,M] for some scalars 0 < m < M, then

AP+ C(m,M,p)1 > B forall p>1.
But, if A > B > 0 and the spectrum Sp(A) C [m,M], 0 < m < M, then
BP +C(m,M,p)1 > A?  forall p<-—I,

where the Kantorovich constant for the difference C(m,M, p) is defined by (2.38).
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Proof. Refer to [191, Corollary 1] for the proof. O

Now, we give the the difference type ordering among power functions.

Theorem 9.16 Let (x;),cr be a bounded continuous field of positive operators in a unital
C*-algebra o/ with spectra in [m,M|] for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure (L, and let (®;);er €
P[<f , B). Let regions (1)1 — (V)1 be as in Figure 9.2.

Then
01 < Fy(x,®) — F(x,®) < (11, (9.51)
where constants C; = Cy(m,M,s,r,k) and C; = Cy(m,M,s,r,k) are
Cr — Kk if (rs)in @)y or (il); or (iii);;
b Ay + min {C(s5),Cr(r)} if (r,s)in @iv) or (v) or (iv); or (V)1;

(ks —kM"ym if (rs)in (),
Dy, if (rs)in (i),
Dy, if (rs)in (i)

G = ~ . o
max {Dk—Ck(s)7 (kl/s kl/r m Cr(r } if (rs)in (iv);
max {Dy — Ce(r), (kS = kY m—Ci(s)},  if (ns) in (v);
(kl/s _kl/r)m - mln{ck( )7 (S)}v lf (r,s) in (iV)l or (V)l-

A constant Zk = Zk(m7M7 r,s) is

Z _ 1/s M 1— s1l/s g 1/r M’ 1— rl/r
. 912[%ﬁ]{k [OM° + (1— 0)m’]/* — K\/"[oM" + (1 — 0)m] }

a constant Dy = lNDk(m,M7 r,s) is

- 1
5kzmin{(ks—k )mksm(sM —m —I—l) —k:M},
rm”

Dy = Dy(m,M,r,s) = —5k(M,m,s,r) and the Kantorovich constant for the difference
Ci(p) = Ci(m,M, p) is defined by (2.38).

Proof. This theorem follows from Lemma 9.4 by putting p = s/r or p = r/s and then
using the Lowner-Heinz theorem, Theorem 9.15 and Lemma 9.5. We give the proof for
the sake of completeness.

By Lemma 9.4 by putting p = s/r or p = r/s and then using the Léwner-Heinz in-
equality and Theorem 9.15 we have the following inequalities.

(@)If r<s<-—1 or 1<s<-r or 0<r<s<2r,s>1, then

(kl/‘ kl/')ml < (k = —1) (X, ®) < F(x,®) — F(x, ®)

1/s B (9.52)
( /@, ) du (e )+kB1> CF(x,®) < Al
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b)If 0<—r<s,s>1 or 0<2r<s,s>1, then

_ /s
m(ém / (I),(x;')d/.t(t)—i—k:l) ~F(x,®) < Fy(x,®) — Fy(x,®)
1/s ~
( /q>, X d,u()+k[31) _F(x,®) < Al
()ffr<s,—1<s<0 or s<—-r,0<s<1 or 0<r<s<2rs<1,then

(K5 =K7Y m—Culs) ) 1< (K7 = 1) Fu(x,®) — Cels)1
< Fy(x,®@) — F(x, D)

l/s -
( /cp, &)du i )+kB1> — F(x,®) + Ci(s)1 < (Ae+Culs)) 1.
(d)If 0<—r<s<l1 or 0<2r<s<1I, then
s r—s \*
m(;mr/TCD,(x;' d,u(t)—i—k—l) — F(x,®) — Ci(s)1
< Fy(x,®) — F(x,®)
l/s -
( /cp, &)du i )+kB1> — F(x,®) + Ci(s)1 < (Aet+Culs)) 1.

Moreover, we can obtain the following inequalities:
(a)If 1<r<s or —s<r<-1 or 2s<r<s<0,r<-—1, then

_ N\
Ak1za(x,<1>)—(& /T ®,(c)du(r) +kBl) > Fy(x,®) — Fo(x,®)

> (1 —k%) Fi(x,®) > (k”“'—k”’) ml.
b)) If r<—s<0,r<—1 or r<2s<0,r<-—1, then
1/r
Al > Fy(x, @) — (/q +kB1> > Fy(x,®) — F,(x,®)

o 1/r
> r@) - (S [ oot 1)
T

(c)Ifr<s,0<r<1 or—s<r,—1<r<0 or 2s<r<s<0,r>—1,then

~ 1/r
(Ae+Ci(r)1 > Fy(x,®) — ( /op, )i )+k[31> 4G
> Fy(x,®) — F(x, ®)

z(l—k%) L(x, @) — ()1>((kl/s_kl/f)m—ck(r))L

241

(9.53)

(9.54)

(9.55)

(9.56)

(9.57)

(9.58)
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(d)If —1<r<—-s<0 or —1<r<2s<0, then

~ 1/r
(Ar+Cu())1 > Fy(x,®) — ( /cpt V(i )+kB1) G
> F(x,®) — F,(x,®)

. 1/r
ZFY(X,cp)_M(fM—S/ d),(xt‘)du(t)+kul) — G(r)1,
N T N

where we denote

~ M“ ms -~ MM — M —m" __ MSm" —M"m*
o = mr7 B - M —m’" ) o= ms I B - MS—m® )

C (km* ,kM®,1/s) = k'S C(m® 7Ms7l/s):Ck(s)7

zeTy €T

Ay = max{kl/‘ (&14—[3)1/‘ kl/rzl/r} — ma—x{kl/.\'zl/.\'_kl/r (&Z_'_E)l/r}’

and i and 7:2 denote the closed intervals joining m" to M" and m® to M?, respectively.
We will determine lower bounds in LHS of () and (d), in RHS of (b;) and (d;).
For LHS of (9.53) we can obtain

s r—s \*
m (;mr/d),(x,r)du(t)+k—1> — F(x, D)
T

(9.59)
> minc7, {kom (sm~rz 41— 2)V kit b = DA,

Really, using substitution z = rm" (x — %), finding the minimum of the function i(z) =
kYsm (Em~rz+ = ‘)1/S k'/rz1/7 on Ty is equivalent to ﬁnding the minimum of 4 (x) =
K 5m (s(x — 7))1/‘ — kY (r(x— %))l/r onT = (L4114 1M The domain of 7 is
S=[1,c0) forr>00rS=[L,1)forr<0. Wehave h{(x) =k'/m(1—s) (s(x— %))1/5_2—
Krm(1-r) (r(x—1)) V72 Ifr<lands>1 then K} (x)<0, since k'/*m(1—s) (s(x—1)) 1/s=2

<0<kYrm(1—r) (r(x— %))1/%2. It follows that h; is concave on S for < 1 and s > 1.
In this case we obtain

1 1 1 1M ~

mink(z) = minh; (x) = min{h1 ( ) hy ( + ——) } = Dy. (9.60)
€Ty xeT r rm"

If 1 <r <s, then we have lim_,; A (x) = —kl/"m(¥)% < 0, limy_e iy (x) = —oo. If

Xo > % is the stationary point of the function &j, then h;(xo) is the maximum value,

since 1 (x) = k¥ m (s(xo— 1)) 7 (rxo — 1)) T (r = s)(xo + 1 — ) < 0. Tt follows
that (9.60) is also true in this case.
So in the case (b) we obtain:

Dl < Fy(x,®@) — Fr(x,®) < Al (9.61)
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and in the case (d) we obtain:
([)k . Ck(s)) 1< Fy(x,®) — F(x,®) < (Zk n Ck(s)) 1. (9.62)

Similarly, for the RHS of (9.57) we obtain

r S—r 1/)'
A - (S [ @ aun +1 1)
N T s

1/
> min {kl/le/s —KVm (fM—ShL 1— ’) } 1
S

N

zeTh
1/r
= min {kl/sm —KYm (fﬂ +1- f) 7 (kl/s _ kl/r) M} 1
SM.\ s
=Dy1.

So in the case (b1) we obtain:
Dyl < Fy(x,®) — F(x,®) < Al (9.63)
and in the case (d;) we obtain:
(D — Cu(r) 1 < Fy(x, @) — Fo(x, @) < (Zk + Ck(r)) 1. 9.64)

Finally, we can obtain desired bounds C; and C, in (9.51), taking into account that
(9.52) holds in the region (i)1, (9.61) holds in (ii){, (9.63) holds in (iii);, (9.62) and (9.58)
hold in (iv), (9.54) and (9.64) hold in (v), (9.54) and (9.58) hold in (iv); and (v);. O

Finally, we give the difference type ordering among means (9.27).

Corollary 9.7 Let (x;),cr be a bounded continuous field of positive operators in a unital
C*-algebra of with spectra in [m,M| for some scalars 0 < m < M, defined on a locally
compact Hausdorff space T equipped with a bounded Radon measure (L, and let (®;);er €
P[<f , B). Let regions (i) — (V) be as in Figure 9.2.
If (r,s) in (i), then

0 S M\'(qu)) —M,.(X,(b) S AI,

if (r,s) in (ii), then

M l/s ~
(m (5—+1—5> —M>1<Ms(x,<p)—Mr(x,q>)<A1,
r
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if (r,s) in (iv), then

max{m (fﬁmi,r + r;rs) W —M— C(m*,M*,1/s),—C (m",M", l/r)} 1
< M(x, @) — M,(x,®@) < (A+C(m*,M*,1/5))1,
if (r,;s) in (v) or (iv) or (V)1, then
—C(m*,M*,1/5)1 < M(x,®) — M,(x,®@) < (A+C(m*,M°,1/5))1,
where a constant A = A(m,M, r,s) is

A — s _ s1l/s r o rl/r
A erél[%ﬁ]{[OM (1= 0)m Y — oM + (1 — 0)m'] }

and the Kantorovich constant for the difference C(n,N, p) is defined by (2.38).

Proof. This corollary follows from Theorem 9.16 putting k = 1, and then replac-
ing @, by %d),, t € T. Finally we choose a better bounds using that C(m",M",1/r) >

1
C(m*,M?,1/s) holds for r < s by (9.43) and Dy = D, = m (sMr””r + 1) * — M, since

rm”

1
[ (ffmi,’+(1—§))“ holds by (9.49) and (9.50). .

9.5 AQuasi-arithmetic means

In this section we give the order among the following generalized quasi-arithmetic operator
means

Molx®) =97 ( [ L0 (0t au). 965

under these conditions (x;);cr is a bounded continuous field of positive operators in a uni-
tal C*-algebra &7 with spectra in [m, M| for some scalars m < M, (®,),er € P[P
and @ € €'[m,M] is a strictly monotone function.

We denote M, (x, @) shortly with My,. It is easy to see that the mean M,, is well defined.

As a special case of (9.65), we may consider the power operator mean (9.27), which is
studied in Sections 9.3 and 9.4.

First, we study the monotonicity of quasi-arithmetic means.

Theorem 9.17 Let (x;)ier, (®;)ier be as in the definition of the quasi-arithmetic mean
(9.65). Let yr, ¢ € €[m,M)] be strictly monotone functions.
If one of the following conditions
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(i) wo @ lisoperator convex and w=! is operator monotone,

(i’) wo @ !is operator concave and —y~" is operator monotone

is satisfied, then
My < M,y,. (9.66)

If one of the following conditions
(ii) wo @~ is operator concave and w=' is operator monotone,
(i) wo @~ is operator convex and —y~' is operator monotone

is satisfied, then the reverse inequality is valid in (9.66).

Proof. We prove only the case (i). If we put f = yo ¢! in Theorem 9.9 and replace
x; with @(x;), then we obtain

yoo (/kd» (p(x))du(r) ) / ®, (y(x))du (o). 9.67)

Since y~! is operator monotone, it follows that

o ([ p e otnan) < vt ([ o).

which is the desired inequality (9.66). |

We can give the following generalization of the previous theorem.

Corollary 9.8 Ler (x;)ier, (Dr)ier be as in the definition of the quasi-arithmetic mean
(9.65). Let y, ¢ € €m,M] be strictly monotone functions and F : [m,M] x [m,M] — R be
a bounded and operator monotone function in its first variable, such that F(z,z) = C for
all z € [m,M].

If one of the following conditions

(i) wo @ lisoperator convex and w=! is operator monotone,

(") wo @~ lis operator concave and —y~" is operator monotone

is satisfied, then
F [My,M,] > C1. (9.68)

If one of the following conditions
(ii) wo @~ !is operator concave and w~! is operator monotone,

(i) wo @~ !is operator convex and —y~! is operator monotone,

is satisfied, then the reverse inequality is valid in (9.68).
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Proof. Suppose (i) or (i’). Then by Theorem 9.17 we have M, < My,. Using assump-
tions about function F, it follows

F [My,My| > F [My,My] > inf, Flz2l=CL.

In the remaining cases the proof is essentially the same as in previous cases. O

Theorem 9.18 Let (x/)ier, (®;)ier be as in the definition of the quasi-arithmetic mean
(9.65) and v, ¢ € €[m, M| be strictly monotone functions.

(i) If o~ is operator convex and w=' is operator concave, then

(ii) If ' is operator concave and w=' is operator convex then the reverse inequality
is valid in (9.69).

Proof. We prove only the case (i): Using Theorem 9.9 for a operator convex function
U on [@m, ou], we have

M(p— _1< /q)[ x, dIJ, ) /q)l Xt d[l M17

which gives LHS of (9.69). Similarly, since y~! is operator concave on J = [y, W], we
have

o

1 1
M= foaun < v (¢ [ @tvau ) =y,
T k Jr
which gives RHS of (9.69). O

Theorem 9.19 Let (x;)ier, (®;)ier be as in the definition of the quasi-arithmetic mean
(9.65) and y, ¢ € €[m, M| be strictly monotone functions. Then

My =My for all (x;)ier, (®r)rer

if and only if
¢o=Ay+B for some real numbers A # 0 and B.

Proof. The case ¢ =Ay+B = My =M, is obvious.
My=My = ¢=Ay+B: Let

—1< /d), (o)) dpe )) _1( /q), () due )>

for all (x; );er and (@ )ser. Setting y, = @(x;) € B(H), ¢l <y, < @y1, we obtain

Yo~ (/kd), ye)du(t ):/% (woo ™' (n))du()
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for all (y;)er and (®;),er. M. D. Choi showed in [35, Theorem 2.5] that if ® : &7/ — A
is a positive linear mapping, f is a non-affine operator convex function on (—a,a), and
S(D(x)) = D(f(x)) for all Hermitian x in C*-algebra .7 with spectra in (—a,a), then @ is
a C*-homomorphism. Similarly as above, in our case we can obtain that yo ¢! is affine,
ie. wo@ !(u) =Au+ B for some real numbers A # 0 and B, which gives the desired
connection: y(v) =A@(v)+ B. O

Using properties of operator monotone or operator convex functions we can obtain
some corollaries of Theorems 9.17 and 9.18. E.g. we have the following corollary.

Corollary 9.9 Ler (x;)ier, (Dr)ier be as in the definition of the quasi-arithmetic mean
(9.65) and 0 <m < M. Let ¢ and y be continuous strictly monotone functions from [0, o)
into itself.

If one of the following conditions

(i) wo o' and w=! are operator monotone,
(ii) @ oyl is operator convex, oo y=1(0) =0 and y~" is operator monotone

is satisfied, then
My <M <M,.

Specially, if one of the following conditions
(ii) w~!is operator monotone,
(i) w~!is operator convex and ¢(0) =0,

is satisfied, then
Ml S MW'

Proof. This theorem follows directly from Theorem 9.17.
We prove only the case (i). We use the statement: a bounded below function f €
C([a,°)) is operator monotone iff f is operator concave and we apply Theorem 9.17-(ii).
O

Example 9.1 If we put ¢(t) =1t", w(t) =1t or ¢(t) =1*, w(t) =1" in Theorem 9.17 and
Theorem 9.18, then we obtain (cf. Corollary 9.6)

M, (x,®) < M;(x, D)
foreitherr <s,r& (—1,1),s¢ (—1,1)or1/2<r<1<sorr<-1<s<-1/2.

Next, we study the difference and ratio type inequalities among quasi-arithmetic means.
With that in mind, we shall prove the following general result.

Theorem 9.20 Let (x;)ier, (@ )ier be as in the definition of the quasi-arithmetic mean
(9.65). Let y, ¢ € €[m,M] be strictly monotone functions and let F : [m,M] x [m,M] — R
be a bounded and operator monotone function in its first variable.

If one of the following conditions
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Ujs convex and 14/*l is operator monotone,

(i) yoo
(i) wo o !isconcave and —y~" is operator monotone

is satisfied, then

F[My,My| < sup F [y~ (Oy(m)+(1—60)y(M),¢~" (6p(m)+ (1—6)p(M)))] 1.

0<6<1
(9.70)
If one of the following conditions

Vis concave and y=' is operator monotone,

(ii) yoo~

Vis convex and —y~" is operator monotone

(i) yoo-
is satisfied, then the opposite inequality is valid in (9.70) with inf instead of sup.

Proof. We prove only the case (i). Since f € €’[m,M] is convex then

M—z z—m
<
f@) < = f(m

holds for any z € [m,M]. Replacing f by wo ¢!, and z by ¢(z) and introducing the
notation @, = min{@(m), p(M)}, @y = max{@(m), (M)}, we have
(Z) < Pm — (P(Z)

— Z)— m
y(z) < —Zyog 1(<pm)+u

op! , forany z € [m,M].
Prt — O o —ogn VOO (o) Y2 € M

Thus, replacing z by x; for ¢ € T, applying the positive linear mappings %@, and inte-
grating, we obtain that

1 1- [ 1@ d
[ evisnau) < PEAESORDED, g,
r Ovt = Pm 9.71)
ld), t d - m1 .
n Jrz ((P(X)_) u(t)—o wo(p_l((pM)
(PM (Pm
holds, since [; 1 ®; (1)du(r) = 1. We denote briefly
o 001 J; 1 (p(x)) du(r) 072)

¢(M) —(m)

Since 0 < @(M)1— [ 1 D, (@(x))du(t) < (@(M) — @(m))1 holds for a increasing func-
tion ¢ or (¢(M) — @(m))1 < @(M)1 — [ 1 D, (¢(x;))du(¢) < 0 holds for a decreasing
function ¢, then 0 < B < 1 holds for any monotone function ¢. It is easy to check that the
inequality (9.71) becomes

/ L0, (y(x)du(1) < By(m) + (1 BYy(M).
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Next, applying an operator monotone function y~! to the above inequality, we obtain

My =y ( 1o <w<xz>>du<z>) <y (By(m) + (1- B)y(M)).

Also, using (9.72), we can write

M=o ([ @ lpt)au()) = ot (Bp(m) + (1~ B)o(h0).

Finally using operator monotonicity of F(-,v), we have
F [My,M,]
<F[y ' By(m)+(1-B)y(M)), ¢~ (Bo(m)+(1-B)p(M))]

< sup F v (0y(m)+(1-0)y(M), 9" (6¢(m) +(1-6)p(M)))] 1,

which is the desired inequality (9.70). O

Remark 9.6 We can obtain similar inequalities as in Theorem 9.20 when F : [m,M] X
[m,M] — R is a bounded and operator monotone function in its second variable.

If the function F in Theorem 9.20 has the form F (u,v) = u—vand F (u,v) = v~/ 2uy=1/2
(v > 0), we obtain the difference and ratio type inequalities.

Corollary 9.10 Let (x;)ier, (®;)ier be as in the definition of the quasi-arithmetic mean
(9.65) and let y, @ € € [m,M] be strictly monotone functions.
If one of the following conditions

(i) wo @ lis convex and y~" is operator monotone,

(ii) wo @ !is concave and —y~" is operator monotone

is satisfied, then
My < Mg+ max {y~" (Bw(M)+ (1 - 0)y(m)) — ¢~ (09(M) + (1 - 6)p(m)}

If in addition @ > 0 on [m,M), then

If one of the following conditions

Vis concave and y=' is operator monotone,

(i) yoo~

Vis convex and —y~" is operator monotone

(i) yoo-

is satisfied, then the opposite inequalities are valid with min instead of max.
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We will give a complementary result to (i) or (i’) of Theorem 9.17 under the assump-
tion that yo ¢! is operator convex and y~! is not operator monotone. In the following
theorem we give a general result.

Theorem 9.21 Let (x;)ier, (®;)ier be as in the definition of the quasi-arithmetic mean
(9.65). Let y, ¢ € €[m,M] be strictly monotone functions and F : [m,M] x [m,M] — R be
a bounded and operator monotone function in its first variable.

If one of the following conditions

Uis operator convex and w~" is increasing convex,

(i) yoo~

(i’) wo o~ !is operator concave and w~" is decreasing convex,

is satisfied, then

F [My,My] < OiléglF [OM+(1—0)m,y ' (Oy(M)+ (1-0)y(m))]1.  (9.73)

If one of the following conditions

Vis operator convex and w~" is decreasing concave,

(i) oo~
(ii*) wo @~ is operator concave and w~" is increasing concave,
is satisfied, then the opposite inequality is valid in (9.73) with inf instead of sup.

Proof. We prove only the case (i): If we put f = yo ¢@~! in Theorem 9.9 and replace
x; with @(x;), then we obtain (see (9.67))

v(My) < y(My) (9.74)

Since y~! is increasing, then y(m)1 < y(M,) < y(M)1, and also since y~! is convex
we have

My = v~ (y(My))

M—m
< —————  (y(My) — w(m)1) +ml by convexity of y !
W(M) _ W(m) (W( <P) W( ) ) y y 'Y
M—m
< My)—w(m)l)+ml by increase of ¥ and (9.74).

Now, operator monotonicity of F(-,v) give

F[Mg,My] < F LV( M=m

—_— —y(m m -1
s (W) = yn)t) £y (w(0ty)|

_Mom ) emy!
: ‘I/(m)ilzlgw(M)F{W(M)—l[/(m) (2= w(m))+m,y (Z)] 1

= sup F[0M+(1—0)m,y™ (0w (M) + (1~ 0)y(m)] 1.

which is the desired inequality (9.73). o
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Remark 9.7 Similar to Corollary 9.10, by using Theorem 9.21 we have the following
results.
Let one of the following conditions

Uis operator convex and w~" is increasing convex,

(i) yoo~

Vis operator concave and w~" is decreasing convex

(") yoo
be satisfied. Then

My < Ml,,+or£g;<1 {oM+(1—0)m—y ' (Oy(M)+(1—60)y(m))} 1,

and if, additionally, v > 0 on [m,M|, then

oM+ (1—0)m
M < ‘2‘5‘2‘1{w—l(ew<M>+<1—e>w<m>>} My

Let one of the following conditions

Vis operator convex and w=! is decreasing concave,

(i) yoo~

Vis operator concave and y=' is increasing concave

(i) yoo-

be satisfied. Then the opposite inequalities are valid with min instead of max.

In the following theorem we give the complementary result to the one given in the
above remark.

Theorem 9.22 Let (x;)ier, (@, )ier be as in the definition of the quasi-arithmetic mean
(9.65) and y, @ € €m, M) be strictly monotone functions.

(i) wo @~ lisoperator convex and w~" is decreasing convex,

(i’) wo @ !is operator concave and w~" is increasing convex

be satisfied. Then

M¢SA%+&%%{MW+U—GwhwfwmﬂM%MI—mWMM}L (9.75)

and if, additionally, v > 0 on [m,M), then

OM+ (1 —60)m
My = 3%?{w1<9wm0+41—9m4m»}ﬂ%- (9.76)

Let one of the following conditions

Uis operator convex and w~! is increasing concave,

(i) yoo~

Vis operator concave and w~" is decreasing concave

(i) yoo-



252 9 JENSEN’S OPERATOR INEQUALITY

be satisfied. Then the opposite inequality is valid in (9.75) with min instead of max.
If, additionally, w > 0 on [m,M], then the opposite inequality is valid in (9.76) with
min instead of max.

Proof. We prove only the case (i): Since yo ¢! is operator convex, then y(My) <
y(My) holds. Next, for every unit vector x € H we have

<M(Px7x>

— (v oy (Mp)x,x)

>y (y(My)x, x) by convexity of y !

>yl (y(My)x,x) by decrease of y~! and operator convexity yo ¢!

m—M

> (Myx,x) — max z—m —|—w‘1m —w‘lz}

My w<M><z<w<m>{w1(m)—w1(M>( ) " “
by convexity of y~! and using the Mond-Pe¢ari¢ method
= (Myx,3) — max {OM+(1—0)m—y~ Oy (M) + (1 - 0)w(m))

and hence we have the desired inequality (9.75).
Similarly, we can check that (9.76) holds. O

We will give a complementary result to Theorem 9.18. In the following theorem we
give a general result.

Theorem 9.23 Let (x;)ier, (®@;)ier be as in the definition of the quasi-arithmetic mean
(9.65) and y, ¢ € €[m,M] be strictly monotone functions and F : [m,M] x [m,M] — R be
a bounded and operator monotone function in its first variable.

(i) If 9! is operator convex and w~" is concave, then

F[Mgy,My) < OS;EIF [OM+ (1 —0)m,y ' (Oy(M)+ (1—0)y(m))] 1. (9.77)

(ii) If o' is convex and y~' is operator concave, then

F[My,My) > OgigfglF [OM+(1—0)m, @ ' (0p(M)+ (1—0)p(m))] 1. (9.78)

Proof. We prove only the case (i): Using LHS of (9.69) for an operator convex function
¢! and then operator monotonicity of F(-,v) we have

FMg, My] < F[My,My].
If we put v =1 the identity function and replace ¢ by v in (9.70), we obtain

F [My,My] < Oil(-l)glF [OM + (1 —0)m,y~ ' (Oy(M)+(1—6)y(m))] 1.

Combining two above inequalities we have the desired inequality. O
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Corollary 9.11 Let (x;)ier, (®;)icr be as in the definition of the quasi-arithmetic mean
(9.65) and v, ¢ € €m, M) be strictly monotone functions.
If 9! is convex and ™! is concave, then
My < My (9.79)
+ Jmax {oM+(1—6)m— v (Oy(M)+ (1 - 6)y(m))}1

+ max {@~' (0@(M)+(1-0)p(m) — M —(1-0)m} 1,

and if, additionally, @ > and y > 0 on [m,M], then
OM+(1—60)m
M, <
0= ‘<“5‘i‘1{w—1<ew(M>+<1—e>w<m>>}

¢ ' (09(M)+(1-6)p(m))
{ OM +(1—0)m } My.

(9.80)

X max
0<6<1

Proof. If we put F(u,v) = u—v and ¢ = t in (9.77), then for any concave function y !
we have

My =My < max {6M+(1—0)m—y ' (Oy(M)+(1-0)y(m)} 1.

Similarly, if we put y = 1 in (9.78), then for any convex function ¢! we have

My —My > 021321 {oM+(1—-0)m—@ ' (6p(M)+(1—0)¢p(m))} 1.

Combining two above inequalities we have the inequality (9.79).
We have (9.80) by a similar method. O

If we use conversions of Jensen’s inequality (9.1), we obtain the following two corol-
laries.

Corollary 9.12 Let (x,)ier, (®;)ier be as in the definition of the quasi-arithmetic mean
(9.65) and y, @ € €[m,M) be strictly monotone functions. Let y o ¢~ be convex (resp.
concave).

(i) If w=! is operator monotone and operator subadditive (resp. operator superaddi-
tive) on R, then

My <My+y'(B)1 (resp. My > My +y '(B)1), (9.81)

(i) if =y~ is operator monotone and operator subadditive (resp. operator superaddi-
tive) on R, then the reverse inequality is valid in (9.73),

(ii) if y~! is operator monotone and operator superadditive (resp. operator subaddi-
tive) on R, then

My <Mp—@ '(=B)1  (resp. My >My—o¢ ' (—B)1), (9.82)
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(ii’) if —w ! is operator monotone and operator superadditive (resp. operator subaddi-
tive) on R, then the reverse inequality is valid in (9.81),

where

B= Jnax, {6y (M)+(1—60)y(m)—yop ' (Bp(M)+(1-0)p(m))}  (9.83)

(resp. B= min {6y(M)+(1—8)y(m)—woo~ (0p(M)+(1-6)p(m))}.)

0<6<1

Proof. We prove the case (i) only and when y o ¢! is convex: Putting F(u,v) = u —v
and f = g = wo¢@ ! in Theorem 9.11, we have:

wi,) = [ 20 (woo (o)) () S wou (p(Mg) +B1. O34
where

(w0
ﬁ B (Pmlglaﬁ@M{ (P(M) - (P(m)

which gives (9.83). Since y~! is operator monotone and subadditive on R, then by using
(9.84) we obtain

(2= On)+Wop (gn) — o 90_1(2)}

My <y~ (y(My) +B1) < My + v (B)L.
O

Corollary 9.13 Let (x,)ier, (®;)ier be as in the definition of the quasi-arithmetic mean
(9.65) and y, ¢ € €|m,M] be strictly monotone functions. Let yo ¢! be convex and
vy >0 (resp. y <0)on [m,M].

(i) If y~! is operator monotone and operator submultiplicative on R, then

My <y~ (o) My, (9.85)

(i) if —y~lis operator monotone and operator submultiplicative on R, then the reverse
inequality is valid in (9.85),

(ii) if w~! is operator monotone and operator supermultiplicative on R, then

My [Wﬁl(afl)]_lev (9.86)

IN

(ii*) if —w~ ! is operator monotone and operator supermultiplicative on R, then the re-
verse inequality is valid in (9.86),

where

o — max { Oy M)+ (1-6)y(m) } 9.87)

o<6<1 (Yoo ! (0p(M)+(1—6)p(m))

o Oy(M)+ (1 — 0)y(m)
(’“”' “—o%ﬂl{ww1<e<p<M>+<1—9><p<m>>}' )
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Proof. The proof is essentially the same as that of Corollary 9.12 and we omit details.
O

Remark 9.8 We note that if wo ¢! is a concave function, we can obtain similar inequa-
lities as in Corollary 9.13. We use the same way as we did in Corollary 9.12.

E.g. if w > 0 (resp. w < 0) on [m,M] is operator monotone and operator supermultiplica-
tive on R, then

~1
My >y~ (o) My,
with min instead of max in (9.87).
Example 9.2 If we put ¢(t) =t* and y(t) =1t in inequalities involving the complemen-
tary order among quasi-arithmetic means, we can obtain the complementary order among

power means.
E.g. using Corollary 9.10, we obtain that (compare with Theorem 9.14)

V/(OM"+ (1 —6)m")
/(OMS + (1 —0)m?)

M(x,®) < k7 max
0<6<1

}M,(x,d))
holds forr <s,s > 1 orr <s < —1, where

o { /(OM+ (1 — 0)m’") } _ Alhrs)

V(OMS + (1—0)m?)

is the generalized Specht ratio defined by (9.3), i.e.

s~ (Y () e

=

9.6 Some better bounds

In this section we study converses of a generalized Jensen’s inequality for a continuous
field of self-adjoint operators, a unital field of positive linear mappings and real values
continuous convex functions. We obtain some better bounds than the ones calculated in
Section 9.1 and a series of papers in which these inequalities are studied. As an application,
we provide a refined calculation of bounds in the case of power functions.

In the following theorem we give a general form of converses of Jensen’s inequality
which give a better bound than the one in Theorem 9.2.
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Theorem 9.24 Let (x;);er be a bounded continuous field of self-adjoint elements in a
unital C*-algebra <7 with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure L, and let (®;);er be a unital
field of positive linear mappings ®, : o/ — 9B from < to another unital C*—algebra 4.
Let my and My, m, < My, be the bounds of the self-adjoint element x = [ ®;(x;)du(t) and
fila,b] =R, g:[m,My] =R, F:U xV — R, where f([a,b]) CU, g([my,M,]) CV and
F be bounded.
If f is convex and F is operator monotone in the first variable, then

[/cbt £q))due) (/cbtxt )du(r) )}<c111<<c11<7 (9.88)

where constants Cy, = C\(F, f,g,m,M,my,M,) and C = C(F, f,g,m,M) are

N = = Y]
= sup  {F[pf(m)+(1—p)f(M),g(pm+(1—p)M)]},

M—Mx M—myx
Wm <SPS

C:= sup {F[M__;f(M)-i-AZ/I__m f(M)7g(Z)]}

m<z<M M m
= Oil;gl{F[pf(m) +(1=p)f(M), g(pm+(1—p)M)]}.

If f is concave, then the opposite inequality holds in (9.88) with inf instead of sup in
bounds C; and C.

Proof. We prove only the convex case. Since m®;(1y) < @;(x,) < M®;(1y) and
J7 @ (1g)du () = 1x, then mlg < [ ®;(x;)du(r) < M1g. Next, since m, and My, are the
bounds of the operator [, @, (x;)du(r) it follows that [m,,M,] C [m,M].

By using convexity of f and functional calculus, we obtain

M1y —x; x; —m],
Jrotrtnaut) < [ o (M o+ 2 an) ) e
_ M= [0 ) du() —mik
_ Ml S @) ) S0

Using operator monotonicity of u — F (u,v) and boundedness of F, it follows

[/@t F0))du (1) (/d),x, du(r )}

MIK—qu)t(xl)d.u( )f(m)—|— qu)l(xt)d'u(t) _lef(M)7g(/Tq)t(Xt)d,u(t))]

M—m M—m
M—z z—m
= mxil;EMx{F [M—mf(m)+ M_mf(M),g(z)] }IK

< sup {F |32 pn) = ron).660)|

m<z<M M—m

<r|
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Remark 9.9 We can obtain an inequality similar to the one in Theorem 9.24 in the case
when (D; )it is a non-unit field of positive linear mappings, i.e. when [; @,(1)du(r) =k1
for some positive scalar k. Then,

F[/Tcpt(f(xt))dy(t)7g</Tth(xz)dﬂ(l))]
<o (e[ S ron )] 1

kmy <z<kMy M—m M

< s {F|SEE )+ S 00 60| f

km<z<kM M—m M—

This means that we obtain a better upper bound than the one given in Theorem 9.11.

We recall that the following generalization of Jensen’s inequality (9.1) holds. If f is
an operator convex function on [m,M] and Ag < f on [m,M] for some function g and real
number A, then

0< [ @ () aute) g ( / CDz(Xz)du(t)>-

In the following we consider the difference type converses of the above inequality.

We introduce some abbreviations. Let f : [m,M] — R, m < M, be a convex or a concave
function. We denote a linear function through (m, f(m)) and (M, f(M)) by f[‘rﬁ‘_‘;‘,”, ie.

M-z
T M-—m

z—m
M_mf(M)7 ze€R

£ (2) flm) +

and the slope and the intercept by ¢ty and Sy as in (9.2).

The following Theorem 9.25 and Corollary 9.14 are refinements of [124, Theorem 2.4].

Theorem 9.25 Let (x;),er be a bounded continuous field of self-adjoint elements in a
unital C*-algebra </ with the spectra in [m,M|, m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure L, and let (®;);er be a unital
field of positive linear mappings ®, : &/ — 9B from < to another unital C*—algebra A.
Let my and My, my < My, be the bounds of x = [; @,(x,)du(t) and f : m,M] - R, g:
[my, My] — R be continuous functions.

If f is convex, then

/Tqa,(f(xt))du(t)—Ag(/Tdn,(xt)du(t)) SmEIZaSXMX{OCfZ—FBf—/'Lg(Z)}lK (9.89)

holds and the bound in RHS of (9.89) exists for any m,M,m, and M.
If f is concave, then the reverse inequality with min instead of max is valid in (9.89).
The bound in RHS of this inequality exists for any m,M,m, and M.
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Proof. We put F(u,v) =u—Av, A € R in Theorem 9.24. A function z — oz + fBf —
Ag(z) is continuous on [my, My], so the global extremes exist. O

In the following corollary we give a way of determining the bounds placed in Theo-
rem 9.25.

Corollary 9.14 Let (x;)ier, (D))er, A, f and g be as in Theorem 9.25.

(i) Let A <0.
If f is convex and g is convex, then
fowtnan-te( [omawn) a0
holds with
Cr = max {f (ms) = Ag(m), fiky (M) = Ag(Mo)}. (99D)

But, if f is convex and g is concave, then the inequality (9.90) holds with
flo g (m)—Ag(my) if Ag'(2) > ay for every z€ (my,M,),
Co = il (@) —Ag(z) i Agl(z0) < ap < Agl(z0) for some 20 € (my, My),
S0 (M) ~Ag(My)  if Agh(2) < oy for every 2€ (me,M,).
(9.92)

If f is concave and g is convex, then

it < [ @(/()) ) —Ag( / ¢z(xz)du(t>> 9.93)

holds with c, which equals the right side in (9.92) with reverse inequality signs.

But, if f is concave and g is concave, then the inequality (9.93) holds with c) which
equals the right side in (9.91) with min instead of max.

(ii) Let A > 0.
If f is convex and g is convex, then the inequality (9.90) holds with C,, defined by

(9.92). But if f is convex and g is concave, then (9.90) holds with C,, defined by
(9.91).

If f is concave and g is convex, then the inequality (9.93) holds with c; which equals
the right side in (9.91) with min instead of max. But, if f is concave and g is concave,
then (9.93) holds with c) which equals the right side in (9.92) with reverse inequality
signs.

Proof. (i): We prove only the cases when f is convex. If g is convex (resp. concave)
we apply Proposition 9.2 (resp. Proposition 9.1) on the convex (resp. concave) function
hy = f[ﬁnhf;m (z) — Ag(z), and get (9.91) (resp. (9.92)).

In the remaining cases the proof is essentially the same as in the above cases. O

Corollary 9.14 applied on the functions f(z) = z” and g(z) = z4 gives the following
corollary, which is a refinement of [124, Corollary 2.6].
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Corollary 9.15 Let (x;)ier, (D;)ier and x be as in Theorem 9.25, and additionally let
operators x; be strictly positive with the spectra in [m,M), where 0 < m < M.

(i) Let 2 <0,
pr7q € (_0070] U [1700)’ then
/ @, (") du (1) ( / @, () du (1 ) <CI (9.94)
holds with
q = max{ot,pmx + ﬁ;p — lmz, oyp M, + ﬁtp - )LM)[C]} . (9.95)

If p € (—=,0) and q € (0,1), then the inequality (9.94) holds with

Oyp My + Brp — Amd if(lq/oc,p)l/(l_q) < my,
q = pr +A‘(q_1) (A, q/atp)q/(liq) ifmx < (l q/(x,p)l/ﬂfq) < an (996)
atpr+ﬁzl’ _}LM;C] lf (}Lq/aﬂ,)l/(l_‘” > M,.

Ifp€(0,1) and g € (—o0,0), then

clIK</CD, ydp (1) (/ @, (x)du () ) (9.97)

holds with ¢, which equals the right side in (9.96).

If p,q € [0, 1], then the inequality (9.97) holds with ¢ which equals the right side in
(9.95) with min instead of max.

(ii) Let A > 0.

If p,q € (—=0,0) U (1,00), then (9.94) holds with C; defined by (9.96). But, if p €
(—o0,0]U[1,+o0) and q € [0, 1], then (9.94) holds with C; defined by (9.95).

Ifpe0,1] and g € (—o0,0]U[1,20), then (9.97) holds with ¢ which equals the right
side in (9.95) with min instead of max. But, if p € (0,1) and g € (0,1), then (9.97)
holds with ¢, which equals the right side in (9.96).

Using Theorem 9.25 and Corollary 9.14 with g = f and A = 1 we have the following
theorem.

Theorem 9.26 Let (x;),er be a bounded continuous field of self-adjoint elements in a
unital C*-algebra </ with the spectra in [m,M|, m < M, defined on a locally compact
Hausdorf{f space T equipped with a bounded Radon measure L, and let (®;);er be a unital
field of positive linear mappings ®; : o/ — A from < to another unital C*—algebra A.
Let my and My, my < My, be the bounds of x = [ ®;(x;)dp(t) and f : [m,M] — R be a
continuous function.
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If f is convex, then

0</d), FOe))du(r) (/ D, (x, ) du(r >§ max {f[‘,'fl’f&](z)—f(z)}llg (9.98)

my <z<My

holds and the bound in RHS of (9.98) exists for any m,M,m, and M.
The value of the constant

C=C(f,m,M,m;,M,) = max {fﬁ,’,’% (2) —f(Z)}

my <z<My
can be determined as follows
Sl (m) = f(ms) i £(2) > o for every z€ (my,My),
C =2 firsn(@0)—f(z0) if & (z0) < 0 < gy (20) for some z0€ (me,My),  (9.99)
S5 (M)~ FM) if 8.(2) < 0y for every 2€ (my,My).

If f is concave, then the reverse inequality with min instead of max is valid in (9.98).
The bound in this inequality exists for any m,M,m, and M. The value of the constant

c=alfmMomo by = min {0 ()~ £(2)}

my <z<My
can be determined as in the right side in (9.99) with reverse inequality signs.

If f is a strictly convex differentiable function on [m,, M,], then we obtain the following
corollary of Theorem 9.26. This is a refinement of [124, Corollary 2.16].

Corollary 9.16 Ler (x;)ier, (®;)ier and x be as in Theorem 9.26. Let f : [m,M] — R be
a continuous function. If f is strictly convex differentiable on [my,My|, then

o</d>, Fx))due) (/@ %) du (e )s(asz+ﬁf—f(zo>)1K, (9.100)

where
my if f(mx) o7
=3 f""(ay) if fm)<oy Sf(Mx% (9.101)
M, if f'(My) <oy

The global upper bound is C(m,M, f) = o 20+ Br — f(20), where zo = (') "1(0) €
(m,M). The upper bound in RHS of (9.100) is better than the global upper bound provided
that either f'(my) > o or f'(My) < ay.

In the dual case, when f is strictly concave differentiable on [my, M), then the reverse
inequality is valid in (9.100), with zo which equals the right side in (9.101) with reverse
inequality signs. The global lower bound is defined as the global upper bound in the convex
case. The lower bound in the reverse inequality in (9.100) is better than the global lower
bound provided that either f'(my) < oy or f'(My) > ay.
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Proof. We prove only the cases when f is strictly convex differentiable on [m,, M,].
The inequality (9.100) follows from Theorem 9.26 by using the differential calculus. Since
h(z) = orz+ By — f(z) is a continuous strictly concave function on [m, M], then there is
exactly one point zg € [m,M] which achieves the global maximum. If neither of these
points is in the interval [my,M,], then the global maximum in [my,M,] is less than the
global maximum in [m, M]. O

Using Corollary 9.15 with ¢ = p, A = 1 or applying Corollary 9.16 we have the fol-
lowing corollary, which is a refinement of [124, Corollary 2.18].

Corollary 9.17 Let (x;)ier, (D;)er and x be as in Theorem 9.26, and additionally let
operators x; be strictly positive with the spectra in [m,M|], where 0 < m < M. Then

P _
O</CD, ) du(t) (/ D, (x;)du(r )) < C(my,My,m,M,p)lx < C(m,M,p)lx
Jor p & (0,1), and
0>/q)t x)du(r) (/ D, (x,)du(r ) > c(my, My,m,M,p)lg > C(m,M,p)1g

for p € (0,1), where

o g+ B —mP if pmPTt > oy,
Cme,Me,m, M, p) =< C(m,M, p) if pmt™' <o <pMPTY, (9.102)
Oy My + B —MPif pMP™! < ayp,

and c(my,My,m, M, p) equals the right side in (9.102) with reverse inequality signs. The
constant C(m,M, p) is defined by (2.38).

In the same way in the following we consider the ratio type converses of Jensen’s
inequality. The following Theorem 9.27 and Corollary 9.18 are refinements of [124, The-
orem 2.9].

Theorem 9.27 Let (x;);er be a bounded continuous field of self-adjoint elements in a
unital C*-algebra </ with the spectra in [m,M|, m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure L, and let (®;);er be a unital
field of positive linear mappings @, : o7 — A from < to another unital C*—algebra 4.
Let my and My, my < My, be the bounds of x = [ ®;(x;)dp(t) and f : [m,M] — R be a
continuous function and g : [my,My] — R be a strictly positive continuous function.

If f is convex, then

/ d):(f(xz))du(t)smxrgggMX{af”Bf } ( [ @tau ) (9.103)

holds and the bound in RHS of (9.103) exists for any m,M,m, and M.
If f is concave, then the reverse inequality with min instead of max is valid in (9.103).
The bound in RHS of this inequality exists for any m,M,m, and M.
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Proof. We put F(u,v) = y"2uv=? in Theorem 9.24.

A function z — af;g )ﬂf is continuous on [my, M,], so the global extremes exist. O

Remark 9.10 If f is convex and g is strictly negative on [my, M), then the inequality with
min instead of max is valid in (9.103). If f is concave and g is strictly negative on [my, M,],
then the reverse inequality is valid in (9.103).

In the following corollary, we give a way of determining the bounds placed in Theo-
rem 9.27.

Corollary 9.18 Let (x;)ier, (®r)ier, A, f and g be as in Theorem 9.27. Additionally, let
f[%’OM] and g be strictly positive on [my, My].
If f is convex and g is convex, then

/q)’(f(x’))d”(’><cé’</ ‘Dz(Xz)du(t)> (9.104)
T T
holds with
‘f[i"h%] (mx) . / O(fg(z)
W if &~ (z) > m for every z€ (my, M),
C= W lf /(Z ) < M < /(Z )forsomez e(m M) (9105)
) S G S 8) orsome oS )
T M) oyg(z)
M if g.(z) < m for every z€ (my, My).

If f is convex and g is concave, then the inequality (9.104) holds with

C= : )= : 9.106
max{ 2 m) (V) ( )
If f is concave and g is convex, then
/CDz(f(Xz))du(t) > cg(/ d):(x,)dy(t)) (9.107)
T T

holds with ¢ which equals the right side in (9.106) with min instead of max.
If f is concave and g is concave, then the inequality (9.107) holds with ¢ which equals
the right side in (9.105) with reverse inequality signs.

Proof. We prove only the cases when f is convex. If g is convex (resp. concave) we
cho

apply Proposition 9.3 (resp. Proposition 9.5) on the ratio function A(z) = f[,,;,(wz])(z) with the

convex (resp. concave) denominator g, and so we get (9.105) (resp. (9.106)). O

Corollary 9.18 applied on the functions f(z) = z” and g(z) = z4 gives the following
corollary, which is a refinement of [124, Corollary 2.11].
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Corollary 9.19 Let (x;)ier, (P;)ier and x be as in Theorem 9.27, and additionally let
operators x; be strictly positive with the spectra in [m,M), where 0 < m < M.

prvq € (_°°70)U(15°°)’ then

q
[o)aui <c ( / q>t<x,>du<r>) 9.108)
holds with
Oyp qu—i— ﬁ[l’ lf q & S »
my 1—qow
D - D q D
o= P (ﬂ G ) if my < _a Pr < M,, (9.109)
l—gq\ q PBr 1—q o
O4p Mx:— ﬁ;ﬂ lf q ﬁ[l’ > Mx.
M l—q O4p

If p € (—o0,0]U[1,0) and g € [0,1], then the inequality (9.108) holds with

Oypmiy + Pyr Oy My + Brp
C* = max , .
{ mi M

(9.110)

Ifp€0,1] and g € (—o=,0]U[1,00), then

/@t xP)du(r) (/ @, (x;)du(t ) (9.111)

holds with c;, which equals the right side in (9.110) with min instead of max.
If p,q € (0,1), then the inequality (9.111) holds with ¢* which equals the right side in
(9.109).

Using Theorem 9.27, Proposition 9.4 and 9.6 with g = f we have the following theo-
rem.

Theorem 9.28 Let (x;);er be a bounded continuous field of self-adjoint elements in a
unital C*-algebra </ with the spectra in [m,M|, m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure L, and let (®;);er be a unital
field of positive linear mappings @, : o/ — B from < to another unital C*—algebra A.
Let my and My, my < M, be the bounds of x = [ ®;(x,)du(z). let f: [m,M] — R be a
continuous function and strictly positive on [my, My|.

If f is convex, then

ch()
/d), (%)) du(r) < myrgza%{ i } (/@, x)du(t ) 9.112)

holds and the bound in RHS of (9.112) exists for any m,M,m, and M.
The value of the constant

cho
= Clrmmmotn) = s, {557 )
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can be determined as follows:

fi,}lm (my)
% 1)z % Jorevery 2 m M)
G ) S @) orf(z0) _ . (9.113)
Y TGy S g, S Sk Jorsome o€ (me M), C
Tinon (M)
[;24] ) if fi(2) < 703?—1@[; Jor every z€ (my, My).

If f is concave, then the reverse inequality with min instead of max is valid in (9.112).
The bound in this inequality exists for any m,M,m, and M. The value of the constant

cho z
c=c(f,m,M,m,,M,) :== min {f[m‘M]()}

f2)
can be determined as in the right side in (9.112) with reverse inequality signs.

Remark 9.11 If f is convex and strictly negative on [my,My|, then the inequality with
min instead of max is valid in (9.112). If f is concave and strictly negative on [my,My],
then the reverse inequality is valid in (9.112).

If f is a strictly convex differentiable function on [m,, M,], then we obtain the following
corollary of Theorem 9.28. This is a refinement of [124, Corollary 2.10].

Corollary 9.20 Ler (x;)ier, (Dr)ier and x be as in Theorem 9.28. Let f : [m,M] — R
be a continuous function and f(m), f(M) > 0. If f is strictly positive and strictly convex
twice differentiable on [my, M), then

[ otrtant < (%) f( / (Dt(xt)dﬂ(f)> NCRIES

where zo € (my, My) is defined as the unique solution of oy f(z) = (ctyz+ By) f'(z) provided
(agmo+ By) f/(ma) Flme) < i < (0 My -+ By)f (M) (M), otherwise so is defined as
my or My provided oy < (otpmy+ By) f'(my) / f(my) or oy = (M + By) f' (M) / f (M),
respectively.

The global upper bound is C(m,M, f) = (ayz0 + Br)/f(z0), where zo € (m,M) is
defined as the unique solution of o f(z) = (orz+ Br)f'(z). The upper bound in RHS
of (9.114) is better than the global upper bound provided that either o < (0fmy +

Br) S (me) [ f(my) or oy = (M +Br) f' (My) /.f (M)

In the dual case, when f is positive and strictly concave differentiable on [my, M,],
then the reverse inequality is valid in (9.114), with zo is defined as in (9.114) with re-
verse inequality signs. The global lower bound is defined as the global upper bound
in the convex case. The lower bound in the reverse inequality in (9.114) is better than
the global lower bound provided that either oy > (oymy + ) f'(my)/ f(my) or o <

(oM + By) f' (M) [ f (M)



9.7 SOME BETTER BOUNDS 265

Proof. We prove only the cases when f is strictly convex differentiable on [m,, M,].
The inequality (9.114) follows from Theorem 9.28 by using the differential calculus.

Next, we puth(z) = (0trz+ Br)/f(z). Then k' (z) = H(z)/f(z)*, where H(z) = 0y f(z) —
(orz+ Br)f'(z). Due to the strict convexity of f on [my, M| and since f(m), f(M) > 0,
it follows that H'(z) = — (o z+ Br)f” (z) < 0. Hence H(z) is decreasing on [m,M,]. If
H(my)H(M,) < 0, then the minimum value of the function 4 on [m,, M,] is attained in zo
which is the unique solution of the equation H(z) = 0. Otherwise, if H (m,)H (M) > 0,
then this minimum value is attained in m, or M, according to H(m,) < 0 or H(M,) > 0.

Since h(z) = (arz+ Br)/f(z) is a continuous function on [m, M], then the global max-
imum in [my, M,] is less than the global maximum in [m, M]. ad

Using Corollary 9.19 with ¢ = p or applying Corollary 9.20 we have the following
corollary, which is a refinement of [124, Corollary 2.12].

Corollary 9.21 Let (x;)ier, (P;)ier and x be as in Theorem 9.28, and additionally let
operators x; be strictly positive with the spectra in [m,M|], where 0 < m < M. Then

[ @6 dte) < Romem. b, p) ( / d»(x,)du(r))p
P
< K(m.M.p) ( / ¢z(xz)du(t>>

Jor p & (0,1), and

p

/T @, (<) dpa () > k(my, My,m, M, p) ( / q>t<xt>du<r>)
p
> K(m,M.p) ( [ (x:)du(t))

for p € (0,1), where

Oyp my + .
tl’mxipﬁt” if pBw/my > (1—p)aow,

X

K(my,My,m,M,p) =< K(m,M,p) if pBw/my<(1—p)ow <pPir/Mc, (9.115)

o4p M + .
WTpﬁW if pBir /My < (1—p)oyr,

and I;(mx,Mx,m,M,p) equals the right side in (9.115) with reverse inequality signs.
K(m,M,p) is the Kantorovich constant defined by (2.29).

Remark 9.12 We can obtain similar inequalities to above in the cas