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Preface

The main motivation for writing this book was to present some general aspects of general-
izations, refinements, and variants of famous Hardy’s inequality (see [48], [49], [50])

∞∫
0

⎛⎝1
x

x∫
0

f (t)dt

⎞⎠p

dx ≤
(

p
p−1

)p ∞∫
0

f p(x)dx, p > 1 (0.1)

where f is a non-negative function, such that f ∈ Lp(R+). Rewriting (0.1) with the func-
tion f replaced with f 1/p and then letting p → ∞ we obtain the limiting case of Hardy’s
inequality:

∞∫
0

exp

⎛⎝1
x

x∫
0

log f (t)dt

⎞⎠ dx < e

∞∫
0

f (x)dx , (0.2)

which holds for all positive functions f ∈ L1(R+). This inequality is referred to as Pólya–
Knopp’s inequality. It was first published by K. Knopp [69] in 1928, but it was certainly
known before since Hardy himself (see [49, p. 156]) claimed that it was G. Pólya who
pointed it out to him earlier. Note that the discrete version of (0.2) is surely due to T. Car-
leman [17].

In this book an integral operator with general non-negative kernel on measure spaces
with positive σ -finite measure is considered and some new weighted Hardy type inequal-
ities for convex functions and refinements of weighted Hardy type inequalities for su-
perquadratic functions are obtained. Moreover, some refinements of weighted Hardy type
inequalities for convex functions and some new refinements of discrete Hardy type in-
equalities are given. Furthermore, improvements and reverses of new weighted Hardy type
inequalities with integral operators are stated and proved. New Cauchy type mean is in-
troduced and monotonicity property of this mean is proved. By using the concept of the
subdifferential of a convex function, we refine the general Boas-type inequality. Further-
more, we get some new inequalities for superquadratic and subquadratic functions as well
as for functions which can be bounded by non-negative convex or superquadratic function.
The Boas functional and related inequality allow us to adjust Lagrange and Cauchy mean
value theorems to the context and in that way define a new class of two-parametric means
of the Cauchy-type. In the context of the maximal operator, we obtain similar results.
We also give some interesting, one-dimensional and multidimensional, examples related
to balls and cones in R

n.

v



Conventions. All measures are assumed to be positive, all functions are assumed to be
measurable, and expressions of the form 0 ·∞, 0

0 , a
∞ (a ∈ R), and ∞

∞ are taken to be equal
to zero. Further, we set Nk = {1, 2, . . . , k} for k ∈ N. For a real parameter 0 �= p �= 1,
we denote by p′ its conjugate exponent p′ = p

p−1 , that is, 1
p + 1

p′ = 1. We denote by |Ω|μ
the measure of a measurable set Ω with respect to the measure μ . In particular, we use
the symbol | |1 as an abbreviation for ‖‖L1(Ω1,μ1). Also, by a weight function (shortly: a
weight) we mean a non-negative measurable function on the actual set. An interval I in R

is any convex subset of R, while by IntI we denote its interior. By R+ we denote the set of
all positive real numbers i.e. R+ = (0,∞). B( · ; · , ·) denotes the incomplete Beta function,
defined by

B(x;a,b) =
x∫

0

ta−1(1− t)b−1dt, x ∈ [0,1], a,b > 0.

As usual, B(a,b) = B(1;a,b) stands for the standard Beta function. For R > 0 we denote
by B(R) a ball in R

n centred at the origin and of radius R, that is, B(R) = {x ∈ R
n : |x| ≤

R}, where |x| denotes the Euclidean norm of x ∈ R
n. By its dual set we mean the set

R
n \ B(R) = {x ∈ R

n : |x| > R}. By Sn−1 we denote the surface of the unit ball B(1),
namely Sn−1 = {x ∈ R

n : |x| = 1}, and by |Sn−1| its area.

We thank our colleagues Marjan Praljak, Ph. D. and Sajid Iqbal for their valuable
comments and suggestions that improved the final version of this book.
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Chapter1
Definitions and basic results

1.1 Convex functions

Convex functions are very important in the theory of inequalities. The third chapter of
the classical book of Hardy, Littlewood and Pólya [51] is devoted to the theory of convex
functions (see also [82]). In this section we give some of the results concerning convex
functions.

Definition 1.1 Let I be an interval in R. A function Φ : I → R is called convex if

Φ(λx+(1−λ )y)≤ λ Φ(x)+ (1−λ )Φ(y) (1.1)

for all points x,y ∈ I and all λ ∈ [0,1]. It is called strictly convex if the inequality (1.1)
holds strictly whenever x and y are distinct points and λ ∈ (0,1).

If −Φ is convex (respectively, strictly convex) then we say that Φ is concave (respec-
tively, strictly concave). If Φ is both convex and concave, Φ is said to be affine.

Remark 1.1 (a) For x,y ∈ I, p,q ≥ 0, p+q > 0, (1.1) is equivalent to

Φ
(

px+qy
p+q

)
≤ p

p+q
Φ(x)+

q
p+q

Φ(y).

(b) The simple geometrical interpretation of (1.1) is that the graph of Φ lies below its
chords.

1



2 1 DEFINITIONS AND BASIC RESULTS

(c) If x1,x2,x3 are three points in I such that x1 < x2 < x3, then (1.1) is equivalent to∣∣∣∣∣∣
x1 Φ(x1) 1
x2 Φ(x2) 1
x3 Φ(x3) 1

∣∣∣∣∣∣= (x3 − x2)Φ(x1)+ (x1− x3)Φ(x2)+ (x2− x1)Φ(x3) ≥ 0

which is equivalent to

Φ(x2) ≤ x2− x3

x1− x3
Φ(x1)+

x1− x2

x1− x3
Φ(x3),

or, more symmetrically and without the condition of monotonicity on x1,x2,x3

Φ(x1)
(x1− x2)(x1 − x3)

+
Φ(x2)

(x2 − x3)(x2− x1)
+

Φ(x3)
(x3− x1)(x3 − x2)

≥ 0

Definition 1.2 Let I be an interval in R. A function Φ : I → R is called convex in the
Jensen sense, or J-convex on I (midconvex, midpoint convex) if for all points x,y ∈ I the
inequality

Φ
(

x+ y
2

)
≤ Φ(x)+ Φ(y)

2
(1.2)

holds. A J-convex function is said to be strictly J-convex if for all pairs of points (x,y),x �=
y, strict inequality holds in (1.2).

In the context of continuity the following criteria of equivalence of (1.1) and (1.2) is
valid.

Theorem 1.1 Let Φ : I → R be a continuous function. Then Φ is a convex function if and
only if Φ is a J-convex function.

Inequality (1.1) can be extended to the convex combinations of finitely many points in
I by mathematical induction. These extensions are known as discrete and integral Jensen’s
inequality.

Theorem 1.2 (THE DISCRETE CASE OF JENSEN’S INEQUALITY) A function Φ : I → R

is convex if and only if for all x1, ...,xn ∈ I and all scalars p1, ...., pn ∈ [0,1] with Pn = ∑n
1 pi

we have

Φ

(
1
Pn

n

∑
i=1

pixi

)
≤ 1

Pn

n

∑
i=1

piΦ(xi). (1.3)

Inequality (1.3) is strict if Φ is a strictly convex function, all points xi, i = 1, ...,n, n ∈ N

are disjoint and all scalars pi are positive.

Now, we introduce some necessary notation and recall some basic facts about convex
functions, log-convex functions (see e.g. [65], [82], [92]) as well as exponentially convex
functions (see e.g [15], [79], [81]).

In 1929, S. N. Bernstein introduced the notion of exponentially convex function in [15].
Later on D.V. Widder in [100] introduced these functions as a sub-class of convex function
in a given interval (a,b) (for details see [100], [101]).



1.1 CONVEX FUNCTIONS 3

Definition 1.3 A positive function Φ is said to be logarithmically convex on an interval
I ⊆ R if logΦ is a convex function on I, or equivalently if for all x,y ∈ I and all α ∈ [0,1]

Φ(αx+(1−α)y)≤ Φα (x)Φ1−α Φ(y).

For such function Φ, we shortly say Φ is log-convex. A positive function Φ is log-convex
in the Jensen sense if for each x,y ∈ I

Φ2
(

x+ y
2

)
≤ Φ(x)Φ(y)

holds, i.e., if logΦ is convex in the Jensen sense.

Remark 1.2 A function Φ is log-convex on an interval I, if and only if for all x1,x2,x3 ∈ I,
x1 < x2 < x3, it holds

[Φ(x2)]x3−x1 ≤ [Φ(x1)]x3−x2 [Φ(x3)]x2−x1 . (1.4)

Furthermore, if x1,x2,y1,y2 ∈ I are such that x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2, then(
Φ(x2)
Φ(x1)

) 1
x2−x1 ≤

(
Φ(y2)
Φ(y1)

) 1
y2−y1

. (1.5)

Inequality (1.5) is known as Galvani’s theorem for log-convex functions Φ : I → R.

We continue with the definition of exponentially convex function as originally given in
[15] by Berstein (see also [9], [79], [81]).

Definition 1.4 A function Φ : (a,b) → R is exponentially convex if it is continuous and

n

∑
i, j=1

tit jΦ(xi + x j) ≥ 0, (1.6)

holds for every n ∈ N and all sequences (tn)n∈N and (xn)n∈N of real numbers, such that
xi + x j ∈ (a,b), 1 ≤ i, j ≤ n.

Moreover, the condition (1.6) can be replaced with a more suitable condition

n

∑
i, j=1

tit jΦ
(

xi + x j

2

)
≥ 0, (1.7)

which has to hold for all n ∈ N, all sequences (tn)n∈N of real numbers, and all sequences
(xn)n∈N in (a,b). More precisely, a function Φ : (a,b) → R is exponentially convex
if and only if it is continuous and fulfils (1.7). Condition (1.7) means that the matrix[
Φ( xi+x j

2 )
]n

i, j=1
is positive semi-definite matrix. Hence, its determinant must be non-

negative. For n = 2 this means that it holds

Φ(x1)Φ(x2)−Φ2
(

x1 + x2

2

)
≥ 0,
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hence, exponentially convex function is log-convex in the Jensen sense, and, being contin-
uous, it is also log-convex function.

We continue with the definition of n-exponentially convex function.

Definition 1.5 A function Φ : I → R is n-exponentially convex in the Jensen sense on I if

n

∑
i, j=1

tit jΦ
(

xi + x j

2

)
≥ 0

holds for all choices of ti ∈ R, xi ∈ I, i = 1, . . . ,n.
A function Φ : I → R is n-exponentially convex on I if it is n-exponentially convex in the
Jensen sense and continuous on I.

Remark 1.3 It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are in fact non-negative functions. Also, n-exponentially convex functions in
the Jensen sense are k-exponentially convex in the Jensen sense for every k ∈ N, k ≤ n.

Proposition 1.1 Let I be an open interval in R. If Φ is n-exponentially convex in the

Jensen sense on J then the matrix
[
Φ
(

xi+x j
2

)]k

i, j=1
is positive semi-definite matrix for all

k ∈ N, k ≤ n. Particularly

det

[
Φ
(

xi + x j

2

)]k

i, j=1
≥ 0, f or all k ∈ N, k ≤ n.

Definition 1.6 Let I be an open interval in R. A function Φ : I → R is exponentially
convex in the Jensen sense on I if it is n-exponentially convex in the Jensen sense on I for
all n ∈ N.

Remark 1.4 It follows that a function is log-convex in the Jensen sense if and only if it is
2-exponentially convex in the Jensen sense.
Also, using basic convexity theory it follows that a function is log-convex if and only if it is
2-exponentially convex.

It is easily seen that a convex function is continuous on the interior of its domain, but
it may not be continuous at the boundary points of the domain.

Theorem 1.3 If Φ : I → R is a convex function, then Φ satisfies the Lipschitz condition
on any closed interval [a,b] contained in the interior of I, that is, there exists a constant K
so that for any two points x,y ∈ [a,b],

|Φ(x)−Φ(y)| ≤ K|x− y|.
Now, we continue with derivative of a convex function. The derivative of a convex

function is best studied in terms of the left and right derivatives defined by

Φ
′
−(x) = lim

y↗x

Φ(y)−Φ(x)
y− x

, Φ
′
+(x) = lim

y↘x

Φ(y)−Φ(x)
y− x

.
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The following result concerning the left and the right derivative of a convex function can
be seen e.g. in [92].

Theorem 1.4 Let I be an interval in R and Φ : I → R be convex. Then

(i) Φ′
− and Φ′

+ exist and are increasing on I, and Φ′
− ≤ Φ′

+ (if Φ is strictly convex, then
these derivatives are strictly increasing);

(ii) Φ′
exists, except possibly on a countable set, and on the complement of which it is

continuous.

Theorem 1.5 (a) Φ : [a,b]→ R is (strictly) convex if there exists an (strictly) increas-
ing function f : [a,b] → R and a real number c (a < c < b) such that for all x and
a < x < b,

Φ(x) = Φ(c)+
∫ x

c
f (t)dt.

(b) If Φ is differentiable, then Φ is (strictly) convex if Φ′
is (strictly) increasing.

(c) If Φ′′
exists on (a,b), then Φ is convex if Φ′′

(x) ≥ 0. If Φ′′
(x) > 0, then Φ is strictly

convex.

Example 1.1 (a) The exponential function Φ : R → R, Φ(x) = ex is a strictly convex
function.

(b) Let Φ : R+ → R be defined by Φ(x) = xp, p ∈ R \ {0}. Obviously, Φ′(x) = pxp−1

and the function Φ is convex for p ∈ R\ [0,1), concave for p ∈ (0,1], and affine for
p = 1.

Remark 1.5 Let I be an open interval and let h ∈C2(I) be such that h′′ is bounded, that
is, m ≤ h′′ ≤ M. Then the functions Φ1,Φ2 defined by

Φ1(t) =
M
2

t2−h(t), Φ2(t) = h(t)− m
2

t2

are convex.

The geometric characterization depends upon the idea of a support line. The following
result can be seen e.g. in [92].

Theorem 1.6 (a) Φ : (a,b) → R is convex if there is at least one line of support for Φ
at each x0 ∈ (a,b), i.e.,

Φ(x) ≥ Φ(x0)+ λ (x− x0),∀x ∈ (a,b),

where λ depends on x0 and is given by λ = Φ′
(x0) when Φ′

exists, and
λ ∈ [Φ′

−(x0),Φ
′
+(x0)] when Φ′

−(x0) �= Φ′
+(x0).

(b) Φ : (a,b) → R is convex if the function Φ(x)−Φ(x0)− λ (x− x0) (the difference
between the function and its support) is decreasing for x < x0 and increasing for
x > x0.
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Definition 1.7 Let Φ : I −→ R be a convex function, then the sub-differential of Φ at x,
denoted by ∂Φ(x), is defined as

∂Φ(x) = {α ∈ R : Φ(y)−Φ(x)−α(y− x)≥ 0, y ∈ I}.

There is a connection between a convex function and its sub-differential. It is well-
known that ∂Φ(x) �= /0 for all x ∈ IntI. More precisely, at each point x ∈ IntI we have
−∞ < Φ′−(x) ≤ Φ′

+(x) < ∞ and

∂Φ(x) = [Φ′
−(x), Φ′

+(x)],

while the set on which Φ is not differentiable is at most countable. Moreover, each function
ϕ : I −→ R such that ϕ(x) ∈ ∂Φ(x), whenever x ∈ IntI, is increasing on Int I. For any such
function ϕ and arbitrary x ∈ Int I, y ∈ I we have

Φ(y)−Φ(x)−ϕ(x)(y− x)≥ 0

and further

Φ(y)−Φ(x)−ϕ(x)(y− x) = |Φ(y)−Φ(x)−ϕ(x)(y− x)|
≥ ||Φ(y)−Φ(x)|− |ϕ(x)| · |y− x|| .

(1.8)

On the other hand, if Φ : I → R is a concave function, that is, −Φ is convex, then
∂Φ(x) = {α ∈ R : Φ(x)−Φ(y)−α(x− y) ≥ 0, y ∈ I} denotes the superdifferential of Φ
at the point x ∈ I. For all x ∈ Int I, in this setting we have −∞ < Φ′

+(x) ≤ Φ′−(x) < ∞ and
∂Φ(x) = [Φ′

+(x), Φ′−(x)] �= /0. Hence, the inequality

Φ(x)−Φ(y)−ϕ(x)(x− y)≥ 0

holds for all x ∈ Int I, y ∈ I, and all real functions ϕ on I, such that ϕ(z) ∈ ∂Φ(z), z ∈ IntI.
Finally, we get

Φ(x)−Φ(y)−ϕ(x)(x− y) = |Φ(x)−Φ(y)−ϕ(x)(x− y)|
≥ | |Φ(y)−Φ(x)|− |ϕ(x)| · |y− x| | .

(1.9)

Note that, although the symbol ∂Φ(x) has two different notions, it will be clear from the
context whether it applies to a convex or to a concave function Φ. Many further information
on convex and concave functions can be found e.g. in the monographs [82] and [92] and
in references cited therein.
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1.2 Superquadratic and subquadratic functions

The concept of superquadratic and subquadratic functions is introduced by Abramovich,
Jameson and Sinnamon in [4] (see also [3]).

Definition 1.8 (See [4, Definition 2.1].) A function ϕ : [0,∞) → R is superquadratic
provided that for all x ≥ 0 there exists a constant Cx ∈ R such that

ϕ(y)−ϕ(x)−ϕ (|y− x|) ≥Cx (y− x) , (1.10)

for all y ≥ 0. We say that ϕ is subquadratic if −ϕ is superquadratic. We say that ϕ is a
strictly superquadratic function if for x �= y,x,y �= 0 there is strict inequality in (1.10). We
say that ϕ is a strictly subquadratic function if −ϕ is a strictly superquadratic function.

Lemma 1.1 (See [4, Theorem 2.3].) Let (Ω,μ) be a probability measure space. The
inequality

ϕ
(∫

Ω
f (s)dμ(s)

)
≤

∫
Ω

ϕ( f (s))dμ(s)−
∫

Ω
ϕ
(∣∣∣∣ f (s)−∫

Ω
f (s)dμ(s)

∣∣∣∣)dμ(s) (1.11)

holds for all probability measures μ and all non-negative μ−integrable functions f if
and only if ϕ is superquadratic. Moreover, (1.11) holds in the reversed direction if and
only if ϕ is subquadratic.

Proof. See [4] and [3] for the details. �

Definition 1.9 A function f : [0,∞)→R is superadditive provided f (x+y)≥ f (x)+ f (y)
for all x, y ≥ 0. If the reverse inequality holds, then f is said to be subadditive.

Lemma 1.2 (See [4, Lemma 3.1].) Suppose ϕ : [0,∞) → R is continuously differentiable

and ϕ(0) ≤ 0. If ϕ ′ is superadditive or ϕ ′(x)
x is nondecreasing, then ϕ is superquadratic.

Proof. See [4] for details. �

Remark 1.6 By Lemma 1.2, the function ϕ(x) = xp is superquadratic for p ≥ 2 and
subquadratic for 1 < p ≤ 2. Therefore, by Lemma 1.1, for p ≥ 2 the inequality(∫

Ω
f (s)dμ(s)

)p

≤
∫

Ω
f p(s)dμ(s)−

∫
Ω

∣∣∣∣ f (s)−∫
Ω

f (s)dμ(s)
∣∣∣∣p dμ(s)

holds and the reversed inequality holds when 1 < p≤ 2 (see also [2, Example 1, p. 1448]).
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1.3 Operator convex functions

We shall first recall the definition of an operator convex function.

Definition 1.10 Let I be a real interval of any type. A continuous function f : I → R is
said to be operator convex if

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y)

holds for each λ ∈ [0,1] and every pair of self-adjoint x and y (acting) on an infinite
dimensional Hilbert space H with spectra in I (the ordering is defined by setting x ≤ y if
y− x is positive semi-definite ).

Let f be an operator convex function defined on an interval I. Ch. Davis [34] proved a
Schwartz type inequality

f (Φ(x)) ≤ Φ( f (x)),

where Φ : A → B(H) is a unital completely positive linear map from a C∗-algebra A to
linear operators on a Hilbert space H and x is a self-adjoint element in A with spectrum in
I.

Let us recall the definition of a unital field. Assume that there is a field (Φt )t∈T of pos-
itive linear mappings Φt : A→ B from A to anotherC∗-algebra B. We say that such a field
is continuous if the function t → Φt (x) is continuous for every x ∈ A. If the C∗-algebras
are unital and the field t → Φt(1) is integrable with integral 1, that is

∫
T Φt(1)dμ(t) = 1,

we say that (Φt)t∈T is unital.

In particular, F. Hansen et al. [46] proved the following result:

Theorem 1.7 Let f : I → R be an operator convex function defined on an interval I, and
let A and B be unital C∗-algebras. If (Φt)t∈T is a unital field of positive linear mappings
Φt : A → B defined on a locally compact space T with a bounded positive Radon measure
μ , then the Jensen type inequality

f

(∫
T

Φt(xt))dμ(t)
)
≤

∫
T

Φt( f (xt ))dμ(t)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in I.
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1.4 Fractional integrals and fractional derivatives

First, let us recall some facts about fractional derivatives needed in the sequel, for more
details see e.g. [9], [43].

Let 0 < a < b ≤ ∞. By Cm([a,b]) we denote the space of all functions on [a,b] which
have continuous derivatives up to order m, and AC([a,b]) is the space of all absolutely
continuous functions on [a,b]. By ACm([a,b]) we denote the space of all functions g ∈
Cm−1([a,b]) with g(m−1) ∈ AC([a,b]). For any α ∈ R we denote by [α] the integral part of
α (the integer k satisfying k ≤ α < k+1) and �α� is the ceiling of α (min{n∈ N,n ≥ α}).
By L1(a,b) we denote the space of all functions integrable on the interval (a,b), and by
L∞(a,b) the set of all functions measurable and essentially bounded on (a,b). Clearly,
L∞(a,b) ⊂ L1(a,b).

Now, we give well known definitions of the Riemann-Liouville fractional integrals,
see [67]. Let [a,b] be a finite interval on real axis R. The Riemann-Liouville fractional
integrals Iα

a+ f and Iα
b− f of order α > 0 are defined by

Iα
a+ f (x) =

1
Γ(α)

x∫
a

f (y)(x− y)α−1dy, (x > a)

and

Iα
b− f (x) =

1
Γ(α)

b∫
x

f (y)(y− x)α−1dy, (x < b)

respectively. Here Γ(α) is the Gamma function. These integrals are called the right-
sided and left-sided fractional integrals. Some recent results involving Riemann-Liouville
fractional integrals can be seen in e.g [10], [11], [61] and [63]. We denote some properties
of the operators Iα

a+ f and Iα
b− f of order α > 0, see also [96]. The first result yields that the

fractional integral operators Iα
a+ f and Iα

b− f are bounded in Lp(a,b), 1 ≤ p ≤ ∞, that is

‖Iα
a+ f‖p ≤ K‖ f‖p, ‖Iα

b− f‖p ≤ K‖ f‖p, (1.12)

where

K =
(b−a)α

αΓ(α)
.

Inequality (1.12), that is the result involving the left-sided fractional integral, was proved
by G. H. Hardy in one of his first papers, see [49]. He did not write down the constant, but
the calculation of the constant was hidden inside his proof. Inequality (1.12) is referred to
as inequality of G. H. Hardy.

Next we give result with respect to the generalizedRiemann-Liouville fractional deriva-
tive. Let us recall the definition.
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Let α > 0 and n = [α] + 1 where [·] is the integral part. We define the generalized
Riemann-Liouville fractional derivative of f of order α by

(Dα
a f )(x) =

1
Γ(n−α)

(
d
dx

)n ∫ x

a
(x− y)n−α−1 f (y)dy .

In addition, we stipulate

D0
a f := f =: I0

a f , I−α
a f := Dα

a f if α > 0.

If α ∈ N then Dα
a f = dα f

dxα , the ordinary α-order derivative.
The space Iα

a (L(a,b)) is defined as the set of all functions f on [a,b] of the form f =
Iα
a ϕ for some ϕ ∈ L(a,b), [96, Chapter 1, Definition 2.3]. According to Theorem 2.3 in
[96, p. 43], the latter characterization is equivalent to the condition

In−α
a f ∈ ACn[a,b] , (1.13)

d j

dx j I
n−α
a f (a) = 0 , j = 0,1, . . . ,n−1 .

A function f ∈ L(a,b) satisfying (1.13) is said to have an integrable fractional derivative
Dα

a f , [96, Chapter1, Definition 2.4].

The following lemma summarizes conditions in identity for generalized Riemann-
Liouville fractional derivative.

Lemma 1.3 Let β > α ≥ 0, n = [β ]+1, m = [α]+1. Identity

Dα
a f (x) =

1
Γ(β −α)

∫ x

a
(x− y)β−α−1Dβ

a f (y)dy , x ∈ [a,b] .

is valid if one of the following conditions holds:

(i) f ∈ Iβ
a (L(a,b)).

(ii) In−β
a f ∈ ACn[a,b] and Dβ−k

a f (a) = 0 for k = 1, . . .n.

(iii) Dβ−k
a f ∈C[a,b] for k = 1, . . . ,n, Dβ−1

a f ∈AC[a,b] and Dβ−k
a f (a) = 0 for k = 1, . . .n.

(iv) f ∈ ACn[a,b], Dβ
a f ∈ L(a,b), Dα

a f ∈ L(a,b), β −α /∈ N, Dβ−k
a f (a) = 0 for k =

1, . . . ,n and Dα−k
a f (a) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[a,b], Dβ
a f ∈ L(a,b), Dα

a f ∈ L(a,b), β − α = l ∈ N, Dβ−k
a f (a) = 0 for

k = 1, . . . , l.

(vi) f ∈ ACn[a,b], Dβ
a f ∈ L(a,b), Dα

a f ∈ L(a,b) and f (a) = f ′(a) = · · ·= f (n−2)(a) = 0.

(vii) f ∈ ACn[a,b], Dβ
a f ∈ L(a,b), Dα

a f ∈ L(a,b), β /∈ N and Dβ−1
a f is bounded in a

neighborhood of t = a.
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The definition of Canavati-type fractional derivative is given in [9] but we will use the
Canavati-type fractional derivative given in [13] with some new conditions. Now we define
Canavati-type fractional derivative (ν−fractional derivative of f ). We consider

Cν ([0,1]) = { f ∈Cn([0,1]) : I1−ν̄ f (n) ∈C1([0,1])},

ν > 0, n = [ν], [.] is the integral part, and ν̄ = ν −n,0 ≤ ν̄ < 1.
For f ∈Cν([0,1]), the Canavati-ν fractional derivative of f is defined by

Dν f = DI1−ν̄ f (n),

where D = d/dx.

Lemma 1.4 Let ν > γ ≥ 0, n = [ν], m = [γ]. Let f ∈ Cν([0,1]), be such that f (i)(0) =
0, i = m,m+1, ...,n−1. Then

(i) f ∈Cγ([0,1])

(ii) (Dγ f )(x) = 1
Γ(ν−γ)

x∫
0
(x− t)ν−γ−1(Dν f )(t)dt,

for every x ∈ [a,b].

Next, we define Caputo fractional derivative, for details see [9, p. 449]. Let ν ≥ 0,
n = �ν�, g ∈ ACn([a,b]). The Caputo fractional derivative is given by

Dν
∗ag(t) =

1
Γ(n−ν)

x∫
a

g(n)(y)
(x− y)ν−n+1 dy,

for all x ∈ [a,b]. The above function exists almost everywhere for x ∈ [a,b].
We continue with the following lemma that is given in [12].

Lemma 1.5 Let ν > γ ≥ 0, n = [ν] + 1, m = [γ] + 1 and f ∈ ACn([a,b]). Suppose that
one of the following conditions hold:

(a) ν,γ �∈ N0 and f (i)(a) = 0 for i = m, ...,n−1

(b) ν ∈ N0,γ �∈ N0 and f (i)(a) = 0 for i = m, ...,n−2

(c) ν �∈ N0,γ ∈ N0 and f (i)(a) = 0 for i = m−1, ...,n−1

(d) ν ∈ N0,γ ∈ N0 and f (i)(a) = 0 for i = m−1, ...,n−2.

Then

Dγ
∗a f (x) =

1
Γ(ν − γ)

x∫
a

(x− y)ν−γ−1Dν
∗a f (y)dy

for all a ≤ x ≤ b.
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Now, we define Hadamard-type fractional integrals. Let (a,b) be finite or infinite inter-
val of R+ and α > 0. The left- and right-sided Hadamard-type fractional integrals of order
α > 0 are given by

(Jα
a+ f )(x) =

1
Γ(α)

x∫
a

(
log

x
y

)α−1 f (y)dy
y

, x > a

and

(Jα
b− f )(x) =

1
Γ(α)

b∫
x

(
log

y
x

)α−1 f (y)dy
y

, x < b

respectively.
We continue with definitions and some properties of the fractional integrals of a func-

tion f with respect to a given function g. For details see e.g. [67, p. 99].

Let (a,b), −∞ ≤ a < b ≤ ∞ be a finitive or infinitive interval of the real line R and
α > 0. Also let g be an increasing function on (a,b] such that g′ is continuous on (a,b).
The left- and right-sided fractional integrals of a function f with respect to another function
g in (a,b) are given by

(Iα
a+;g f )(x) =

1
Γ(α)

∫ x

a

g′(t) f (t)dt
[g(x)−g(t)]1−α , x > a (1.14)

and

(Iα
b−;g f )(x) =

1
Γ(α)

∫ b

x

g′(t) f (t)dt
[g(t)−g(x)]1−α , x < b, (1.15)

respectively.

Remark 1.7 If g(x) = x, then Iα
a+;x f reduces to Iα

a+ f and Iα
b−;x f reduces to Iα

b− f , that is to
Riemann-Liouville fractional integrals. Notice also that Hadamard fractional integrals of
order α are special case of the left- and right-sided fractional integrals of a function f with
respect to another function g(x) = log(x) in [a,b] where 0 ≤ a < b ≤ ∞.

We also recall the definition of the Erdelyi-Kóber type fractional integrals. For details
see [96] (also see [35, p, 154]).

Let (a,b),(0 ≤ a < b ≤ ∞) be finite or infinite interval of R+ Let α > 0,σ > 0, and
η ∈ R. The left- and right-sided Erdelyi-Kóber type fractional integral of order α > 0 are
defined by

(Iα
a+;σ ;η f )(x) =

σx−σ(α+η)

Γ(α)

x∫
a

tση+σ−1 f (t)dt
(xσ − tσ)1−α , (x > a)

and

(Iα
b−;σ ;η f )(x) =

σxση

Γ(α)

∫ b

x

tσ(1−η−α)−1 f (t)dt
(tσ − xσ )1−α , (x < b)

respectively.
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We conclude this section with multidimensional fractional integrals. Such type of frac-
tional integrals are usually generalization of the corresponding one-dimensional fractional
integral and fractional derivative.

For x = (x1, ...,xn) ∈ R
n and α = (α1, ...,αn), we use the following notations:

Γ(α) = (Γ(α1) · · ·Γ(αn)), [a,b] = [a1,b1]×·· ·× [an,bn],

and by x > a we mean x1 > a1, ...,xn > an.
We define the mixed Riemann-Liouville fractional integrals of order α > 0 as

(Iα
a+ f )(x) =

1
Γ(α)

x1∫
a1

· · ·
xn∫

an

f (t)(x− t)α−1dt, (x > a)

and

(Iα
b− f )(x) =

1
Γ(α)

b1∫
x1

· · ·
bn∫

xn

f (t)(t−x)α−1dt, (x < b).





Chapter2
Some new Hardy-type
inequalities with general
kernels

First, we present some previous recent results and some other preliminaries.

2.1 Preliminaries

Hardy’s and Pólya-Knopp’s inequality were already given in Preface, see (0.1) and (0.2)
respectively. We recall other important inequalities: if p > 1 and f is a non-negative
function such that f ∈ Lp(R+), then

∞∫
0

⎛⎝ ∞∫
0

f (x)
x+ y

dx

⎞⎠p

dy ≤
⎛⎝ π

sin
(

π
p

)
⎞⎠p ∞∫

0

f p(y)dy, (2.1)

and if in addition g ∈ Lq(R+) where 1
p + 1

q = 1, then

∞∫
0

∞∫
0

f (x)g(y)
x+ y

dxdy ≤ π
sin π

p

⎛⎝ ∞∫
0

f p(x)dx

⎞⎠ 1
p
⎛⎝ ∞∫

0

gq(y)dy

⎞⎠ 1
q

. (2.2)

15



16 2 SOME NEW HARDY-TYPE INEQUALITIES WITH GENERAL KERNELS

Moreover, (2.2) is sometimes called Hilbert’s or Hardy-Hilbert’s inequality even if
Hilbert himself only considered the case p = 2 (Lp -spaces were defined much later). Note

that the constants

(
π

sin π
p

)p

and π
sin π

p
, respectively appearing on the right-hand sides of

(2.1) - (2.2), are the best possible, that is, neither of them can be replaced with any smaller

constant. Also the constants
(

p
p−1

)p
and e respectively appearing on the right-hand sides

of (0.1) - (0.2), are the best possible, We also note that Hardy’s inequality (0.1) shows that
the Hardy operator H, defined by setting

H f (x) =
1
x

x∫
0

f (t)dt, (2.3)

maps Lp into itself with operator norm p/(p−1). Similarly, (2.1) shows that the operator
A, defined by setting

A f (x) =
∞∫

0

f (t)(t + x)−1 dt,

maps Lp into itself with operator norm π/(sinπ/p).
It is now natural to generalize the operators above to the following ones:

Hk f (x) =
1

K(x)

x∫
0

f (t)k(x, t)dt, (2.4)

where

K(x) =
x∫

0

k(x,t)dt < ∞

and (more generally)

Ak f (x) =
1

K(x)

∞∫
0

f (t)k(x,t)dt, (2.5)

where now

K(x) =
∞∫

0

k(x,t)dt < ∞.

Here k(x,y) is a general measurable and non-negative function, a so called kernel.
Since Hardy, Hilbert and Pólya established inequalities (0.1), (0.2), (2.1) and (2.2),

they have been investigated and generalized in several directions. Further information and
remarks concerning the rich history of the integral inequalities mentioned above can be
found e.g. in the monographs [51, 68, 74, 75, 82, 92], expository papers [26, 64, 73], and
the references cited therein. Besides, here we also emphasize the papers [15, 20, 25, 27,
28, 30, 65, 66, 77, 93, 103, 105], all of which to some extent have guided us in the research
we present here.
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Recently it was pointed out by S. Kaijser et al. [66] that both (0.1) and (0.2) are just
special cases of much more general (Hardy-Knopp’s type) inequality

∞∫
0

Φ

⎛⎝1
x

x∫
0

f (t)dt

⎞⎠ dx
x

≤
∞∫

0

Φ( f (x))
dx
x

, (2.6)

where Φ is a convex function on R+ and f : R+ −→ R a positive function. Inequality (2.6)
follows by using a standard application of Jensen’s inequality and the Fubini theorem. By
taking Φ(x) = xp and Φ(x) = ex they obtained an elegant new proof of inequalities (0.1)
and (0.2) and showed that both Hardy’s and Pólya-Knopp’s inequality can be derived by
using only a convexity argument.

S. Kaijser et al. [65] proved a more general inequality of Hardy-Knopp’s type with a
kernel

∞∫
0

u(x)Φ(Ak f (x))
dx
x

≤
∞∫

0

v(x)Φ( f (x))
dx
x

, (2.7)

where 0 < b ≤ ∞, k : (0,b)× (0,b) → R and u : (0,b) → R are non-negative functions,
such that

K(x) =
x∫

0

k(x,y)dy > 0, x ∈ (0,b), (2.8)

and

v(y) = y
∫ b

y
u(x)

k(x,y)
K(x)

dx
x

< ∞, y ∈ (0,b),

Φ is a convex function on an interval I ⊆ R, f : (0,b) → R is a function with values in I,
and

Ak f (x) =
1

K(x)

x∫
0

k(x,y) f (y)dy, x ∈ (0,b). (2.9)

On the other hand, Godunova [38] (see also [92, Chapter VIII,p. 233], [39], [41])
proved that the inequality∫

R
n
+

Φ
(

1
x1 · · ·xn

∫
R

n
+

l

(
y1

x1
, ...,

yn

xn

)
f (y1, ...,yn)dy

)
dx

x1 · · ·xn

≤
∫
R

n
+

Φ( f (x))
x1 · · ·xn

dx, (2.10)

holds for a non-negative function l : R
n
+ → R+, such that∫
R

n
+

l(x)dx = 1,

a convex function Φ : [0,∞) → [0,∞), and a non-negative function f on R
n
+, such that the

function x �→ Φ( f (x))/(x1 · · ·xn) is integrable on R
n
+.
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Remark 2.1 By using the result given in (2.10) Godunova obtained many general in-
equalities which include, Hardy’s (0.1), Pólya-Knopp’s (0.2) and Hardy-Hilbert’s inequal-
ity (2.2). For more details see [92, Chapter VIII,p. 234]).

The following result was recently proved by Kaijser et al. [65]:

Theorem 2.1 Let u be a weight function on (0,b), 0 < b ≤ ∞, and let k(x,y) ≥ 0 on

(0,b)× (0,b). Assume that k(x,y)u(x)
xK(x) is locally integrable on (0,b) for each fixed y ∈ (0,b)

and define v by

v(y) = y

b∫
y

k(x,y)
K(x)

u(x)
dx
x

< ∞, y ∈ (0,b).

If Φ is a positive and convex function on (a,c), −∞ ≤ a < c ≤ ∞, then

b∫
0

u(x)Φ(Hk f (x))
dx
x

≤
b∫

0

v(x)Φ( f (x))
dx
x

, (2.11)

for all f with a < f (x) < c, 0 ≤ x ≤ b, where Hk is defined by (2.4).

In the same paper the dual operator Hk̄, defined by

Hk̄ f (x) :=
1

K̄(x)

∞∫
x

k(x,y) f (y)dy, (2.12)

where K̄(x) =
∞∫
x

k(x,y)dy < ∞, was studied and the following result was proved:

Theorem 2.2 For 0 ≤ b < ∞, let u be a weight function such that k(x,y)u(x)
xK̄(x) is locally

integrable on (b,∞) for every fixed y ∈ (b,∞). Let the function v be defined by

v(y) = y

y∫
b

k(x,y)
K̄(x)

u(x)
dx
x

< ∞, y ∈ (b,∞).

If Φ is a positive and convex function on (a,c), −∞ ≤ a < c ≤ ∞, then

∞∫
b

u(x)Φ(Hk̄ f (x))
dx
x

≤
∞∫

b

v(x)Φ( f (x))
dx
x

, (2.13)

for all f with a < f (x) < c, 0 ≤ x ≤ b, where Hk̄ is defined by (2.12).

The most general result so far for the operator Hk is the following by Kaijser et. al [65,
Theorem 4.4]:
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Theorem 2.3 Let 1 < p ≤ q < ∞, 0 < b ≤ ∞, s ∈ (1, p), let Φ be a convex and strictly
monotone function on I = (a,c), −∞ ≤ a < c ≤ ∞, let Hk be defined by (2.4) and let u(x)
and v(x) be weight functions on [0,b]. Then the inequality⎛⎝ b∫

0

u(x) [Φ(Hk f (x))]q
dx
x

⎞⎠
1
q

≤C

⎛⎝ b∫
0

v(x)Φp( f (x))
dx
x

⎞⎠
1
p

(2.14)

holds for some finite constant C and all functions f such that Im f ⊆ I if

A(s) := sup
0<t≤b

⎛⎝ b∫
t

u(x)
(

k(x, t)
K(x)

)q

V
q(p−s)

p (x)
dx
x

⎞⎠
1
q

V
s−1
p (t) < ∞

holds, where V (t) :=
∫ t
0 v1−p′(x)xp′−1dx. Moreover, if C is the best constant in (2.14), then

C ≤ inf
1<s<p

(
p−1
p− s

) 1
p′

A(s).

For our further discussions we also mention the following recent result by Oguntuase
et. al [83]:

Theorem 2.4 Let b ∈ (0,∞], −∞ ≤ a < c ≤ ∞ and let Φ be a positive function on [a,c].
Suppose that the weight function u defined on (0,b) is non-negative such that u(x1,...,xn)

x2
1···x2

n
is

locally integrable on (0,b) and the weight function v is defined by

v(t1, ...,tn) = t1 · · ·tn
b1∫

t1

· · ·
bn∫

tn

u(x1, ...,xn)
x2
1 · · ·x2

n
dx1 · · ·dxn, t ∈ (0,b).

(i) If Φ is convex, then

b1∫
0

· · ·
bn∫
0

u(x1, ...,xn)Φ

⎛⎝ 1
x1· · ·xn

x1∫
0

· · ·
xn∫
0

f (t1, ...,tn)dt1 · · ·dtn

⎞⎠dx1 · · ·dxn

x1 · · ·xn

≤
b1∫
0

· · ·
bn∫
0

v(x1, ...,xn)Φ( f (x1, ...,xn))
dx1 · · ·dxn

x1 · · ·xn

holds for every function f on (0,b) such that a < f (x1, ...,xn) < c.

(ii) If Φ is concave, then

b1∫
0

· · ·
bn∫
0

u(x1, ...,xn)Φ

⎛⎝ 1
x1· · ·xn

x1∫
0

· · ·
xn∫

0

f (t1, ...,tn)dt1 · · ·dtn

⎞⎠dx1 · · ·dxn

x1 · · ·xn

≥
b1∫
0

· · ·
bn∫
0

v(x1, ...,xn)Φ( f (x1, ...,xn))
dx1 · · ·dxn

x1 · · ·xn



20 2 SOME NEW HARDY-TYPE INEQUALITIES WITH GENERAL KERNELS

holds for every function f on (0,b) such that a < f (x1, ...,xn) < c.

Remark 2.2 Also the obvious dual result was formulated and proved in [83]. For further
developments in this directions even with a general kernel see [84] and [87].

2.2 The main results

In the sequel let (Ω1,Σ1,μ1), (Ω2,Σ2,μ2) be measure spaces and let Ak from (2.5) be
generalized as follows:

Ak f (x) :=
1

K(x)

∫
Ω2

k(x,y) f (y)dμ2(y), (2.15)

where f : Ω2 → R is a measurable function, k : Ω1 ×Ω2 → R is a measurable and non-
negative kernel and

K(x) :=
∫

Ω2

k(x,y)dμ2(y) < ∞, x ∈ Ω1. (2.16)

Our first result reads (see also [70]):

Theorem 2.5 Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive σ -finite
measures, u be a weight function on Ω1, k a non-negativemeasurable function on Ω1×Ω2,
and K be defined on Ω1 by (2.16).
Suppose that K(x) > 0 for all x ∈ Ω1, that the function x �→ u(x) k(x,y)

K(x) is integrable on Ω1

for each fixed y ∈ Ω2, and that v is defined on Ω2 by

v(y) :=
∫

Ω1

u(x)
k(x,y)
K(x)

dμ1(x) < ∞. (2.17)

If Φ is a convex function on an interval I ⊆ R, then the inequality∫
Ω1

u(x)Φ(Ak f (x))dμ1(x) ≤
∫

Ω2

v(y)Φ( f (y))dμ2(y) (2.18)

holds for all measurable functions f : Ω2 → R, such that Im f ⊆ I, where Ak is defined by
(2.15).

Proof. For an arbitrary x ∈ Ω1 let the function hx : Ω2 → R be defined by hx(y) =
f (y)−Ak f (x). Then we have∫

Ω2

k(x,y)hx(y)dμ2(y) =
∫

Ω2

k(x,y) f (y)dμ2(y)−
∫

Ω2

k(x,y)Ak f (x)dμ2(y)

= K(x)Ak f (x)−Ak f (x)
∫

Ω2

k(x,y)dμ2(y)

= 0, x ∈ Ω1. (2.19)
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First we must prove that Ak f (x) ∈ I, for all x ∈ Ω1. The motivation for this is that Ak f (x)
is simply a generalized mean and since f (y) ∈ I for all y ∈ Ω2 (by assumption) also the
mean Ak f (x) ∈ I. We also include a more formal proof of this fact:
Suppose that there exists x0 ∈ Ω1 such that Ak f (x0) /∈ I. Since I is an interval in R and
f (Ω2) ⊆ I, it follows that either Ak f (x0) > f (y) for all y ∈ Ω2, or Ak f (x0) < f (y) for
all y ∈ Ω2. Hence, the function hx0 is is either strictly positive or strictly negative on
Ω2. Moreover, k(x0,y)hx0(y) ≥ 0 for all y ∈ Ω2 or k(x0,y)hx0(y) ≤ 0 for all y ∈ Ω2. On

the other hand, K(x0) > 0 implies that there is a set Ω̃2 ∈ Σ2 such that μ2(Ω̃2) > 0 and
k(x0,y) > 0, y ∈ Ω̃2. Therefore, the function y �→ k(x0,y)hx0(y) does not change the sign

on Ω2 and is strictly positive or strictly negative on Ω̃2, so
∫

Ω2
k(x0,y)hx0(y)dμ2(y) �= 0,

which contradicts (2.19). Thus Ak f (x) ∈ I, for all x ∈ Ω1. Note that if Ak f (x) is an end-
point of I for some x ∈ Ω1 (in cases when I is not an open interval), then hx (or −hx) will
be a non-negative function whose integral over Ω2, with respect to the measure μ2, is equal
to 0. Therefore, hx ≡ 0, that is, f (y) = Ak f (x) holds for μ2-a.e. y ∈ Ω2.
Now, let us prove the inequality (2.18). By using Jensen’s inequality and the Fubini theo-
rem we find that∫

Ω1

u(x)Φ(Ak f (x))dμ1(x)=
∫

Ω1

u(x)Φ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)

dμ1(x)

≤
∫

Ω1

u(x)
K(x)

(∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
)
dμ1(x)

=
∫

Ω2

Φ( f (y))
(∫

Ω1

u(x)
k(x,y)
K(x)

dμ1(x)
)
dμ2(y)

=
∫

Ω2

v(y)Φ( f (y))dμ2(y)

and the proof is complete. �

Example 2.1 By applying Theorem 2.5 with Ω1 = Ω2 = (0,∞) and k(x,y) = 1, 0 ≤ y ≤
x, k(x,y) = 0, y > x, dμ1(x) = dx, dμ2(y) = dy and u(x) = 1

x (so that v(y) = 1
y ), we obtain

(2.6) which, in its turn, is equivalent to the original Hardy inequality (0.1) when Φ(u) =
up, p > 1. �

Example 2.2 Let Ω1 = Ω2 = (0,∞), replace dμ1(x) and dμ2(y) by the Lebesgue mea-

sures dx and dy, respectively, let k(x,y) = ( y
x )−1/p

x+y , p > 1 and u(x) = 1
x . Then K(x) = K =

π
sin(π/p) and v(y) = 1

y . Let Φ(u) = up then inequality (2.18) reads:

K−p

∞∫
0

⎛⎝ ∞∫
0

(y
x

)−1/p f (y)
x+ y

d y

⎞⎠p

d x
x

= K−p

∞∫
0

⎛⎝ ∞∫
0

f (y)
x+ y

y−1/pd y

⎞⎠p

d x

≤
∞∫

0

f p(y)
d y
y
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Replace f (t)t−1/p with f (t) and we get Hilbert’s inequality (2.1). �

Example 2.3 Let Ω1 = Ω2 = (0,b), 0 < b≤ ∞, replace dμ1(x) and dμ2(y) by the Lebes-
que measures dx and dy, respectively, and let k(x,y) = 0 for x < y ≤ b. Then Ak coincides
with the operator Hk defined by (2.4) and if also u(x) is replaced by u(x)/x and v(x) by
v(x)/x, then (2.18) coincides with (2.11) and we see that Theorem 2.1 is a special case of
Theorem 2.5. �

Example 2.4 By arguing as in Example 2.3 but Ω1 = Ω2 = (b,∞), 0 ≤ b < ∞ and with
kernels such that k(x,y) = 0 for b ≤ y < x we find that now (2.18) coincides with (2.13) so
that also Theorem 2.2 is a special case of Theorem 2.5. �

In the previous examples we derived only inequalities over some subsets of R+. How-
ever, Theorem 2.5 covers much more general situations. We can apply that result to n-
dimensional cells in R

n
+ and thus, in particular, obtain a generalization of the Godunova

inequality (2.10).

Before presenting our results, it is necessary to introduce some further notation. For
u,v ∈ R

n
+, u = (u1,u2, . . . ,un), v = (v1,v2, . . . ,vn), let

u
v

=
(

u1

v1
,
u2

v2
, . . . ,

un

vn

)
and uv = uv1

1 uv2
2 · · ·uvn

n .

In particular, u1 = ∏n
i=1 ui, u2 = (∏n

i=1 ui)2, and u−1 = (∏n
i=1 ui)−1, where n = (n,n, . . . ,n).

We write u < v if componentwise ui < vi, i = 1, . . . ,n. Relations ≤, >, and ≥ are defined
analogously. Finally, we denote (0,b) = {x∈ R

n
+ : 0 < x < b} and (b,∞) = {x∈ R

n
+ : b <

x < ∞}.
Applying Theorem 2.5 with Ω1 = Ω2 = R

n
+, the Lebesgue measure dμ1(x) = dx and

dμ2(y)= dy, and the kernel k : Rn
+×R

n
+ →R of the form k(x,y)= l

( y
x

)
, where l : Rn

+ →R

is a non-negative measurable function, we obtain the following corollary.

Corollary 2.1 Let l and u be non-negative measurable functions on R
n
+, such that 0 <

L(x) = x1 ∫
R

n
+

l(y)dy < ∞ for all x∈ R
n
+, and that the function x �→ u(x)

l( y
x )

L(x) is integrable

on R
n
+ for each fixed y ∈ R

n
+. Let the function v be defined on R

n
+ by

v(y) =
∫
R

n
+

u(x)
l
( y

x

)
L(x)

dx.

If Φ is a convex function on an interval I ⊆ R, then the inequality∫
R

n
+

u(x)Φ
(

1
L(x)

∫
R

n
+

l
(y

x

)
f (y)dy

)
dx ≤

∫
R

n
+

v(y))Φ( f (y))dy

holds for all measurable functions f : R
n
+ → R such that Im f ⊆ I.
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Example 2.5 Especially, for
∫
R

n
+

l(t)dt = 1 and u(x) = x−1, Corollary 2.1 reduces to
Godunova’s inequality (2.10). This shows that Corollary 2.1 is a genuine generalization of
the Godunova inequality (2.10).

We shall continue by stating a somewhat more general theorem, which is of a type
described in Theorem 2.3 but for general measures. More exactly, we state the following
generalization of Theorem 2.5:

Theorem 2.6 Let 0 < p ≤ q < ∞ and let the assumptions in Theorem 2.5 be satisfied but
now with

v(y) :=

(∫
Ω1

u(x)
(

k(x,y)
K(x)

) q
p

dμ1(x)

) p
q

< ∞. (2.20)

If Φ is a positive convex function on the interval I ⊆ R, then the inequality

(∫
Ω1

u(x) [Φ(Ak f (x))]
q
p dμ1(x)

) 1
q

≤
(∫

Ω2

v(y)Φ( f (y))dμ2(y)
) 1

p

(2.21)

holds for all measurable functions f : Ω2 → R, such that Im f ⊆ I.

Proof. As in the proof of Theorem 2.5 we first note that Ak f (x) ∈ I, for all x ∈ Ω1.
Moreover, by using Jensen’s inequality and then Minkowski’s general integral inequality
we find that (∫

Ω1

u(x) [Φ(Ak f (x))]
q
p dμ1(x)

) 1
q

=

(∫
Ω1

u(x)
[

Φ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)] q

p

dμ1(x)

) 1
q

≤
(∫

Ω1

u(x)
[

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
] q

p

dμ1(x)

) 1
q

≤
⎛⎝∫

Ω2

Φ( f (y))

(∫
Ω1

u(x)
(

k(x,y)
K(x)

) q
p

dμ1(x)

) p
q

dμ2(y)

⎞⎠
1
p

=
(∫

Ω2

v(y)Φ( f (y))dμ2(y))
) 1

p

and the proof is complete. �

For the case p = q we obtain Theorem 2.5 and as expected by applying Theorem 2.6
we obtain the following further generalization of the Godunova result:
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Corollary 2.2 Let 0 < p ≤ q < ∞ and let the assumptions in Corollary 2.1 be satisfied
with v defined by

v(y) =

⎛⎝∫
R

n
+

u(x)

(
l
( y

x

)
L(x)

) q
p

dx

⎞⎠
p
q

.

If Φ is a positive convex function on an interval I ⊆ R, then the inequality

(∫
R

n
+

u(x)
[

Φ
(

1
L(x)

∫
R

n
+

l
(y

x

)
f (y)dy

)] q
p

dx

)1
q

≤
(∫

R
n
+

v(y)Φ( f (y))dy
)1

p

holds for all measurable functions f : R
n
+ → R such that Im f ⊆ I.

Proof. The proof only consists of obvious modifications in the proof of Corollary 2.1
so we omit the details. �

Example 2.6 By using Theorem 2.6 with Ω1 = Ω2 = (0,b), 0 < b ≤ ∞, k(x,y) = 0 for
x < y < b, u(x) replaced by u(x)/x and v(y) replaced by v(y)/y we obtain the inequality

⎛⎝ b∫
0

u(x) [Φ(Hk f (x))]
q
p

dμ1(x)
x

⎞⎠
1
q

≤
⎛⎝ b∫

0

v(y)Φ( f (y))
dμ2(y)

y

⎞⎠
1
p

,

where v(y) is defined by (2.20). For Φ replaced by Φp, 1 < p ≤ q < ∞ (Φp is convex
function) this inequality is similar to (2.14). However, these results are not comparable but
we conjecture that Theorem 2.3 can be generalized also to the case with general measures
even to a multidimensional setting. �

We finish this Section by stating the following useful fact:

Remark 2.3 Let the assumptions of Theorem 2.6 be satisfied. By applying Theorem 2.6
with Φ(x) = x we get the following inequality:

(∫
Ω1

u(x) [Ak f (x)]
q
p dμ1(x)

) 1
q

≤
(∫

Ω2

v(y) f (y)dμ2(y)
) 1

p

. (2.22)

Now replace f (x) with Φ( f (x)) and we get that

(∫
Ω1

u(x) [AkΦ( f (x))]
q
p dμ1(x)

) 1
q

≤
(∫

Ω2

v(y)Φ( f (y))dμ2(y)
) 1

p

. (2.23)
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On the other hand, applying Jensen’s inequality to the left side of inequality (2.23) we
obtain that (∫

Ω1

u(x) [AkΦ( f (x))]
q
p dμ1(x)

) 1
q

=

(∫
Ω1

u(x)
[

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
] q

p

dμ1(x)

) 1
q

≥
(∫

Ω1

u(x)
[

Φ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)] q

p

dμ1(x)

) 1
q

=
(∫

Ω1

u(x) [Φ(Ak f (x))]
q
p dμ1(x)

) 1
q

,

i.e., by (2.23) that (2.21) holds. We conclude that if the assumptions of Theorem 2.6 hold,
then each of (2.21), (2.22) and (2.23) holds and are equivalent.

2.3 Remarks and examples

Remark 2.4 By applying Theorem 2.5 for special cases e.g. for kernels with additional
homogeneity properties, Φ(u) = up, p > 1, and making some obvious variable transforma-
tions we obtain what in the literature is usually called Hilbert type or Hardy-Hilbert type
inequalities, see e.g. Example 2.2 for the original case.

However, by keeping our convex functions we obtain further generalizations of Hilbert
type inequalities. Here we only give two simple examples.

Example 2.7 Let Ω1 = Ω2 = (0,∞),dμ1(x) = dx, dμ2(y) = dy. For k(x,y) = (x+ y)−s,

s > 1, we have K(x) = x1−s

s−1 and

v(y) = (s−1)
∞∫

0

(x+ y)−sxs−1u(x)dx.

Let u(x) = x1−t−s, t ∈ (1− s,1).
Then we have

v(y) = (s−1)
∞∫

0

(x+ y)−sxs−1x1−t−sdx = (s−1)y1−t−sB(1− t,s+ t−1),
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where B(., .) is the usual Beta function.
By applying Theorem 2.5 we get the following inequality:

∞∫
0

x1−t−sΦ(Ak f (x))dx ≤ (s−1)B(1− t,s+ t−1)
∞∫

0

y1−t−sΦ( f (y))dy,

where Φ is a convex function and Ak f (x) is defined by (2.15). �

Example 2.8 Let Ω1 = Ω2 = (0,∞),dμ1(x) = dx, dμ2(y) = dy,

u(x) = x−2α and k(x,y) =
logy− logx

y− x

(y
x

)−α
,α ∈ (0,1).

Evidently, it is homogeneous of degree −1, K(x) converges for all α ∈ (0,1), and we have

K(x) =
∞∫

0

logy− logx
y− x

(y
x

)−α
dy =

∞∫
0

logu
u−1

u−αdu

=
∫ ∞

−∞

te(1−α)t

et −1
dt = Ψ

′
(α)+ Ψ

′
(1−α) =

π2

sin2πα
,

where Ψ(x) = Γ
′
(x)

Γ(x) , x > 0, is the Digamma function and we used the identity Ψ(1− x) =
Ψ(x)+ π cotπx, x ∈ (0,1) (for details on Ψ see [1]). Then we have

v(y) =
sin2πα

π2

∞∫
0

logx− logy
x− y

(y
x

)α
y−2αdx

=
sin2πα

π2 y−2α
∞∫

0

logu
u−1

u−αdu = y−2α , (x = yu)

Therefore, by applying (2.18) we get the following inequality:

∞∫
0

Φ

⎛⎝ sin2πα
π2

∞∫
0

logy− logx
y− x

(y
x

)−α
f (y)dy

⎞⎠x−2αdx ≤
∞∫

0

y−2α Φ( f (y))dy,

where Φ is a convex function. �

Moreover, by applying our result with the convex function Φ(x) = ex and making some
suitable variable transformations we obtain what in the literature is called Pólya-Knopp
type inequalities. We give the following example:
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Example 2.9 Let the assumptions in Theorem 2.5 be satisfied. Then, by applying (2.18)
with Φ(x) = ex, and f replaced by log f p, p > 0 we obtain that∫

Ω1

u(x)
[
exp

(
1

K(x)

∫
Ω2

k(x,y) log f (y)dμ2(y)
)]p

dμ1(x)

≤
∫

Ω2

v(y) f p(y)dμ2(y) , (2.24)

where k(x,y), K(x), u(x) and v(y) are defined as in Theorem 2.5 In particular, if p =
1, Ω1 = Ω2 = (0,∞), k(x,y) = 1, 0 < y < x, k(x,y) = 0, y≥ x. (so that K(x) = x), dμ1(x) =
dx, dμ2(y) = dy, u(x) = 1/x (so that v(x) = 1/x) replacing f (x)/x by f (x) and making a
simple calculation we find that (2.24) is equal to

∞∫
0

exp

⎛⎝1
x

x∫
0

log f (y)dy

⎞⎠ dx ≤ e

∞∫
0

f (y)dy ,

which is the classical form of Pólya-Knopp’s inequality. �

We continue with the following special cases of Theorem 2.5 (see [63]).

Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive σ−finite measures,
k : Ω1×Ω2 → R be a non-negative function, and K be defined by (2.16). Let U(k) denote
the class of measurable functions g : Ω1 → R with the representation

g(x) =
∫

Ω2

k(x,y) f (y)dμ2(y), (2.25)

where f : Ω2 → R is a measurable function.

If we substitute k(x,y) by k(x,y) f2(y) and f by f1
f2

, where fi : Ω2 → R,(i = 1,2) are
measurable functions in Theorem 2.5 we obtain the following result.

Theorem 2.7 Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with σ -finite mea-
sures, u be a weight function on Ω1, k be a non-negative measurable function on Ω1×Ω2.

Assume that the function x �→ u(x) k(x,y)
g2(x)

is integrable on Ω1 for each fixed y ∈ Ω2. Define v
on Ω2 by

v(y) := f2(y)
∫

Ω1

u(x)
k(x,y)
g2(x)

dμ1(x) < ∞. (2.26)

If Φ : I → R is a convex function and g1(x)
g2(x)

, f1(y)
f2(y)

∈ I, then the inequality∫
Ω1

u(x)Φ
(

g1(x)
g2(x)

)
dμ1(x) ≤

∫
Ω2

v(y)Φ
(

f1(y)
f2(y)

)
dμ2(y), (2.27)

holds for all gi ∈U(k),(i = 1,2) and for all measurable functions fi : Ω2 → R, (i = 1,2).



28 2 SOME NEW HARDY-TYPE INEQUALITIES WITH GENERAL KERNELS

Remark 2.5 If Φ is strictly convex on I and f1(x)
f2(x)

is non-constant, then the inequality

given in (2.27) is strict.

Remark 2.6 If we take Ω1 = Ω2 = (a,b), dμ1(x) = dx and dμ2(y) = dy in Theorem 2.7,
we obtain the result given in Theorem 2.1 in [63].

Here we give Hardy’s inequality in quotient.

Theorem 2.8 Let u be a weight function defined on (0,∞). Define v on (0,∞) by

v(y) = f2(y)
∞∫

y

⎛⎝ x∫
0

f2(y)dy

⎞⎠−1

u(x)dx < ∞. (2.28)

If Φ is a convex function on the interval I ⊆ R, then the following inequality

∞∫
0

u(x)Φ

⎛⎜⎜⎝
x∫
0

f1(y)dy

x∫
0

f2(y)dy

⎞⎟⎟⎠dx ≤
∞∫

0

v(y)Φ
(

f1(y)
f2(y)

)
dy (2.29)

holds for all measurable functions fi : (0,∞) → R,(i = 1,2), such that f1(y)
f2(y)

∈ I.

Proof. Rewrite the inequality (2.27) with Ω1 = Ω2 = R+, dμ1(x) = dx, dμ2(y) = dy.
Let us define the kernel k : R

2
+ → R by

k(x,y) =
{

1, 0 < y ≤ x;
0, y > x,

(2.30)

then gi defined in (2.25) takes the form

gi(x) =
x∫

0

fi(y)dy. (2.31)

Substitute gi(x), (i = 1,2) in (2.27), so we get (2.29). �

Example 2.10 If we take Φ(x) = xp, p ≥ 1 and particular weight function

u(x) = 1
x2

x∫
0

f2(y)dy, x ∈ (0,∞) in (2.28), we obtain v(y) = f2(y)
y and the inequality (2.29)

becomes

∞∫
0

⎛⎝ x∫
0

f1(y)dy

⎞⎠p⎛⎝ x∫
0

f2(y)dy

⎞⎠1−p

dx
x2 ≤

∞∫
0

f p
1 (y) f 1−p

2 (y)
dy
y

. (2.32)
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If we put f2(y) = 1, in (2.32), we obtain the following inequality (for details see [70] and
[66]):

∞∫
0

⎛⎝1
x

x∫
0

f1(y)dy

⎞⎠p

dx
x

≤
∞∫

0

f p
1 (y)

dy
y

. (2.33)

Remark 2.7 As a special case of Theorem 2.7 the well-known Pólya-Knopp, Hardy-
Hilbert and other inequalities in quotients can be given, but her we omit the details.





Chapter3
On an inequality of G. H.
Hardy

In this chapter we give result involving the inequality of G. H. Hardy (1.12). To start
with let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive σ−finite measures,
k : Ω1×Ω2 → R be a non-negative function, and K be defined by (2.16). Let U(k) denote
the class of functions g : Ω1 → R with the representation

g(x) =
∫

Ω2

k(x,y) f (y)dμ2(y),

where f : Ω2 → R is a measurable function.
Our first result is given in the following theorem (see [61]).

Theorem 3.1 Let u be a weight function on Ω1, k a non-negative measurable function
on Ω1 ×Ω2, and K be defined on Ω1 by (2.16). Assume that the function x �→ u(x) k(x,y)

K(x) is

integrable on Ω1 for each fixed y ∈ Ω2 and v is defined by (2.17). If φ : (0,∞) → R is a
convex and increasing function, then the inequality∫

Ω1

u(x)φ
(∣∣∣∣ g(x)

K(x)

∣∣∣∣)dμ1(x) ≤
∫

Ω2

v(y)φ(| f (y)|)dμ2(y) (3.1)

holds for all g ∈U(k) such that g(x) =
∫

Ω2
k(x,y) f (y)dμ2(y).

Proof. By using Jensen’s inequality and the Fubini theorem, since φ is increasing

31
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function, we find that∫
Ω1

u(x)φ
(∣∣∣∣ g(x)

K(x)

∣∣∣∣)dμ1(x)=
∫

Ω1

u(x)φ
(∣∣∣∣ 1

K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
∣∣∣∣)dμ1(x)

≤
∫

Ω1

u(x)
K(x)

(∫
Ω2

k(x,y)φ(| f (y)|)dμ2(y)
)

dμ1(x)

=
∫

Ω2

φ(| f (y)|)
(∫

Ω1

u(x)
k(x,y)
K(x)

dμ1(x)
)

dμ2(y)

=
∫

Ω2

v(y)φ(| f (y)|)dμ2(y)

and the proof is complete. �

As a special case of Theorem 3.1 we get the following result.

Corollary 3.1 Let u be a weight function on (a,b) and α > 0. Iα
a+ f denotes the Riemann-

Liouville fractional integral of f . Define v on (a,b) by

v(y) := α
∫ b

y
u(x)

(x− y)α−1

(x−a)α dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality∫ b

a
u(x)φ

(
Γ(α +1)
(x−a)α |Iα

a+ f (x)|
)

dx ≤
∫ b

a
v(y)φ(| f (y)|)dy (3.2)

holds.

Proof.
Applying Theorem 3.1 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(y) = dy,

k(x,y) =

{
(x−y)α−1

Γ(α) , a ≤ y ≤ x ;
0, x < y ≤ b

we get that K(x) = (x−a)α

Γ(α+1) and g(x) = Iα
a+ f (x), so (3.2) follows. �

Remark 3.1 In particular for the weight function u(x) = (x−a)α , x ∈ (a,b) in Corollary
3.1 we obtain the inequality∫ b

a
(x−a)αφ

(
Γ(α +1)
(x−a)α |Iα

a+ f (x)|
)

dx ≤
∫ b

a
(b− y)αφ(| f (y)|)dy. (3.3)

Although (3.1) holds for all convex and increasing functions, some choices of φ are of
particular interest. Namely, we shall consider power function. Let q > 1 and the function
φ : R+ → R be defined by φ(x) = xq, then (3.3) reduces to∫ b

a
(x−a)α

(
Γ(α +1)
(x−a)α |Iα

a+ f (x)|
)q

dx ≤
∫ b

a
(b− y)α | f (y)|q dy. (3.4)
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Since x ∈ (a,b) and α(1−q) < 0, then we obtain that the left-hand side of (3.4) satisfies∫ b

a
(x−a)α

(
Γ(α +1)
(x−a)α |Iα

a+ f (x)|
)q

dx

≥ (b−a)α(1−q)(Γ(α +1))q
∫ b

a
|Iα

a+ f (x)|q dx (3.5)

and the right-hand side of (3.4) satisfies∫ b

a
(b− y)α | f (y)|q dy ≤ (b−a)α

∫ b

a
| f (y)|q dy. (3.6)

Combining (3.5) and (3.6) we get∫ b

a
|Iα

a+ f (x)|q dx ≤
(

(b−a)α

Γ(α +1)

)q ∫ b

a
| f (y)|q dy. (3.7)

Taking power 1
q on both sides we obtain (1.12), that is the inequality of G. H. Hardy.

Corollary 3.2 Let u be a weight function on (a,b) and α > 0. Iα
b− f denotes the Riemann-

Liouville fractional integral of f . Define v on (a,b) by

v(y) := α
∫ y

a
u(x)

(y− x)α−1

(b− x)α dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality∫ b

a
u(x)φ

(
Γ(α +1)
(b− x)α |Iα

b− f (x)|
)

dx ≤
∫ b

a
v(y)φ(| f (y)|)dy (3.8)

holds.

Proof.
Applying Theorem 3.1 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(y) = dy,

k(x,y) =

{
(y−x)α−1

Γ(α) , x < y ≤ b ;

0, a ≤ y ≤ x

we get that K(x) = (b−x)α

Γ(α+1) and g(x) = Iα
b− f (x), so (3.8) follows. �

Remark 3.2 In particular for the weight function u(x) = (b− x)α , x ∈ (a,b) in Corollary
3.2 we obtain the inequality∫ b

a
(b− x)αφ

(
Γ(α +1)
(b− x)α |Iα

b− f (x)|
)

dx ≤
∫ b

a
(y−a)αφ(| f (y)|)dy. (3.9)
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Let q > 1 and the function φ : R+ → R be defined by φ(x) = xq. Then (3.9) reduces to∫ b

a
(b− x)α

(
Γ(α +1)
(b− x)α |Iα

b− f (x)|
)q

dx ≤
∫ b

a
(y−a)α | f (y)|q dy. (3.10)

Since x ∈ (a,b) and α(1−q) < 0, then we obtain that the left-hand side of (3.10) satisfies∫ b

a
(b− x)α

(
Γ(α +1)
(b− x)α |Iα

b− f (x)|
)q

dx ≥ (b−a)α(1−q)(Γ(α +1))q
∫ b

a
|Iα

b− f (x)|q dx

(3.11)
and the right-hand side of (3.10) satisfies∫ b

a
(y−a)α | f (y)|q dy ≤ (b−a)α

∫ b

a
| f (y)|q dy. (3.12)

Combining (3.11) and (3.12) we get∫ b

a
|Iα

b− f (x)|q dx ≤
(

(b−a)α

Γ(α +1)

)q ∫ b

a
| f (y)|q dy. (3.13)

Taking power 1
q on both sides we obtain (1.12), that is the inequality of G. H. Hardy.

Theorem 3.2 Let p,q > 1, 1
p + 1

q = 1, α > 1
q , Iα

a+ f and Iα
b− f denote the Riemann-Liouville

fractional integral of f . Then the following inequalities∫ b

a
|Iα

a+ f (x)|q dx ≤C
∫ b

a
| f (y)|q dy (3.14)

and ∫ b

a
|Iα

b− f (x)|q dx ≤C
∫ b

a
| f (y)|q dy (3.15)

hold, where C = (b−a)qα

(Γ(α))qqα(p(α−1)+1)q−1 .

Proof.
We will prove only inequality (3.14), since the proof of (3.15) is analogous. We have

|(Iα
a+ f )(x)| ≤ 1

Γ(α)

x∫
a

| f (t)|(x− t)α−1dt.

Then by the Hölder inequality the right-hand of the above inequality is

≤ 1
Γ(α)

(∫ x

a
(x− t)p(α−1)dt

) 1
p

⎛⎝ x∫
a

| f (t)|qdt

⎞⎠ 1
q

=
1

Γ(α)
(x−a)α−1+ 1

p

(p(α −1)+1)
1
p

⎛⎝ x∫
a

| f (t)|qdt

⎞⎠
1
q

≤ 1
Γ(α)

(x−a)α−1+ 1
p

(p(α −1)+1)
1
p

⎛⎝ b∫
a

| f (t)|qdt

⎞⎠
1
q

.



3 ON AN INEQUALITY OF G. H. HARDY 35

Thus, we have

|(Iα
a+ f )(x)| ≤ 1

Γ(α)
(x−a)α−1+ 1

p

(p(α −1)+1)
1
p

⎛⎝ b∫
a

| f (t)|qdt

⎞⎠
1
q

, for every x ∈ [a,b].

Consequently we find

|(Iα
a+ f )(x)|q ≤ 1

(Γ(α))q

(x−a)q(α−1)+ q
p

(p(α −1)+1)
q
p

⎛⎝ b∫
a

| f (t)|qdt

⎞⎠
and we obtain∫ b

a
|Iα

a+ f (x)|q dx ≤ (b−a)q(α−1)+ q
p +1

(Γ(α))q(q(α −1)+ q
p +1)(p(α −1)+1)

q
p

∫ b

a
| f (t)|q dt.

�

Remark 3.3 For α ≥ 1 inequalities (3.14) and (3.15) are refinements of (1.12) since

qα(p(α −1)+1)q−1 ≥ qαq > αq, so C <

(
(b−a)α

αΓ(α)

)q

.

We proved that Theorem 3.2 is a refinement of (1.12) and Corollary 3.1 and 3.2 are gene-
ralizations of (1.12).

Next we give results with respect to the generalized Riemann-Liouville fractional deri-
vative.

Corollary 3.3 Let u be a weight function on (a,b) and let the assumptions in Lemma 1.3
be satisfied. Define v on (a,b) by

v(y) := (β −α)
∫ b

y
u(x)

(x− y)β−α−1

(x−a)β−α dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality∫ b

a
u(x)φ

(
Γ(β −α +1)
(x−a)β−α |Dα

a f (x)|
)

dx ≤
∫ b

a
v(y)φ(|Dβ

a f (y)|)dy (3.16)

holds.

Proof. Applying Theorem 3.1 with Ω1 = Ω2 = (a,b),

k(x,y) =

{
(x−y)β−α−1

Γ(β−α) , a ≤ y ≤ x ;

0, x < y ≤ b

we get that K(x) = (x−a)β−α

Γ(β−α+1) . Replace f by Dβ
a f . Then, by Lemma 1.3 g(x) = (Dα

a f )(x)
and we get (3.16). �
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Remark 3.4 In particular for the weight function u(x) = (x−a)β−α , x ∈ (a,b) in Corol-
lary 3.3 we obtain the inequality∫ b

a
(x−a)β−αφ

(
Γ(β −α +1)
(x−a)β−α |Dα

a f (x)|
)

dx ≤
∫ b

a
(b− y)β−αφ(|Dβ

a f (y)|)dy.

Let q > 1 and the function φ : R+ → R be defined by φ(x) = xq. Then, after some calcu-
lation, we obtain

∫ b

a
|Dα

a f (x)|q dx ≤
(

(b−a)β−α

Γ(β −α +1)

)q ∫ b

a
|Dβ

a f (y)|q dy.

In the next Corollary results involvingCanavati-type fractional derivative (ν−fractional
derivative of f ) are presented.

Corollary 3.4 Let u be a weight function on (a,b) and let the assumptions in Lemma 1.4
be satisfied. Define v on (a,b) by

v(y) := (ν − γ)
∫ b

y
u(x)

(x− y)ν−γ−1

(x− x0)ν−γ dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality∫ b

a
u(x)φ

(
Γ(ν − γ +1)
(x−a)ν−γ |Dγ

a f (x)|
)

dx ≤
∫ b

a
v(y)φ(|Dν

a f (y)|)dy (3.17)

holds.

Proof. Applying Theorem 3.1 with Ω1 = Ω2 = (a,b),

k(x,y) =

{
(x−y)ν−γ−1

Γ(ν−γ) , a ≤ y ≤ x ;
0, x < y ≤ b

we get that K(x) = (x−a)ν−γ

Γ(ν−γ+1) . Replace f by Dν
a f . Then, by Lemma 1.4 g(x) = (Dγ

a f )(x)
and we get (3.17). �

Remark 3.5 In particular for the weight function u(x) = (x−a)ν−γ , x ∈ (a,b), in Corol-
lary 3.4 we obtain the inequality∫ b

a
(x−a)ν−γφ

(
Γ(ν − γ +1)
(x−a)ν−γ |Dγ

a f (x)|
)

dx ≤
∫ b

a
(b− y)ν−γφ(|Dν

a f (y)|)dy. (3.18)

Let q > 1 and the function φ : R+ → R be defined by φ(x) = xq. Then (3.18) reduces to

(Γ(ν − γ +1))q
∫ b

a
(x−a)(ν−γ)(1−q) |Dγ

a f (x)|q dx ≤
∫ b

a
(b− y)ν−γ|Dν

a f (y)|q dy.
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Since x ∈ [a,b] and (ν − γ)(1−q)≤ 0, we further obtain∫ b

a
|Dγ

a f (x)|q dx ≤
(

(b−a)ν−γ

Γ(ν − γ +1)

)q ∫ b

a
|Dν

a f (y)|q dy. (3.19)

Taking power 1
q on both sides of (3.19) we obtain

‖(Dγ
a f (x)‖q ≤ (b−a)ν−γ

Γ(ν − γ +1)
‖Dν

a f (y)‖q.

When γ = 0 we find

(Γ(ν +1))q
∫ b

a
(x−a)ν(1−q)| f (x)|q dx ≤

∫ b

a
(b− y)ν |Dν

a f (y)|q dy,

that is

‖ f‖q ≤ (b−a)ν

Γ(ν +1)
‖Dν

a f (y)‖q.

In the next Corollary we give results with respect to the Caputo fractional derivative.

Corollary 3.5 Let u be a weight function on (a,b) and ν > 0. Dν∗ag denotes the Caputo
fractional derivative of g. Define v on (a,b) by

v(y) := (n−ν)
∫ b

y
u(x)

(x− y)n−ν−1

(x−a)n−ν dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality∫ b

a
u(x)φ

(
Γ(n−ν +1)
(x−a)n−ν |Dν

∗ag(x)|
)

dx ≤
∫ b

a
v(y)φ(|g(n)(y)|)dy (3.20)

holds.

Proof.
Applying Theorem 3.1 with Ω1 = Ω2 = (a,b),

k(x,y) =

{
(x−y)n−ν−1

Γ(n−ν) , a ≤ y ≤ x ;
0, x < y ≤ b

we get that K(x) = (x−a)n−ν

Γ(n−ν+1) . Replace f by g(n), so g becomes Dν∗ag and (3.20) follows. �

Remark 3.6 In particular for the weight function u(x) = (x−a)n−ν , x ∈ (a,b) in Corol-
lary 3.5 we obtain the inequality∫ b

a
(x−a)n−νφ

(
Γ(n−ν +1)
(x−a)n−ν |Dν

∗ag(x)|
)

dx ≤
∫ b

a
(b− y)n−νφ(|g(n)(y)|)dy.
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Let q > 1 and the function φ : R+ → R be defined by φ(x) = xq. Then, after some calcu-
lation, we obtain ∫ b

a
|Dν

∗ag(x)|q dx ≤
(

(b−a)n−ν

Γ(n−ν +1)

)q ∫ b

a
|g(n)(y)|q dy.

Taking power 1
q on both sides we obtain

‖Dν
∗ag(x)‖q ≤ (b−a)n−ν

Γ(n−ν +1)
‖g(n)(y)‖q.

Theorem 3.3 Let p,q > 1, 1
p + 1

q = 1, n−ν > 1
q , Dν∗a f (x) denotes the Caputo fractional

derivative of f . Then the following inequality

∫ b

a
|Dν

∗a f (x)|q dx ≤ (b−a)q(n−ν)

(Γ(n−ν))q(p(n−ν −1)+1)
q
p q(n−ν)

∫ b

a
| f (n)(y)|q dy

holds.

Proof. Similar to the proof of Theorem 3.2. �

Corollary 3.6 Let u be a weight function on (a,b) and ν > 0. Dν∗a f denotes the Caputo
fractional derivative of f and the assumptions in Lemma 1.5 are satisfied. Define v on
(a,b) by

v(y) := (ν − γ)
∫ b

y
u(x)

(x− y)ν−γ−1

(x−a)ν−γ dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality

∫ b

a
u(x)φ

(
Γ(ν − γ +1)
(x−a)ν−γ |Dγ

∗a f (x)|
)

dx ≤
∫ b

a
v(y)φ(|Dν

∗a f (y)|)dy (3.21)

holds.

Proof.
Applying Theorem 3.1 with Ω1 = Ω2 = (a,b),

k(x,y) =

{
(x−y)ν−γ−1

Γ(ν−γ) , a ≤ y ≤ x ;
0, x < y ≤ b

we get that K(x) = (x−a)ν−γ

Γ(ν−γ+1) . Replace f by Dν∗a f , so g becomes Dγ
∗a f and (3.21) follows.

�



3 ON AN INEQUALITY OF G. H. HARDY 39

Remark 3.7 In particular for the weight function u(x) = (x−a)ν−γ , x ∈ (a,b), in Corol-
lary 3.6 we obtain the inequality∫ b

a
(x−a)ν−γφ

(
Γ(ν − γ +1)
(x−a)ν−γ |Dγ

∗a f (x)|
)

dx ≤
∫ b

a
(b− y)ν−γφ(|Dν

∗a f (y)|)dy.

Let q > 1 and the function φ : R+ → R be defined by φ(x) = xq. Then, after some calcu-
lation we obtain ∫ b

a

∣∣Dγ
∗a f (x)

∣∣q dx ≤
(

(b−a)ν−γ

Γ(ν − γ +1)

)q ∫ b

a
|Dν

∗a f (y)|q dy.

For γ = 0, we obtain∫ b

a
| f (x)|q dx ≤

(
(b−a)ν

Γ(ν +1)

)q ∫ b

a
|Dν

∗a f (y)|q dy.

We continue with results involving fractional integrals of a function f with respect to a
given function g.

Corollary 3.7 Let u be a weight function on (a,b), g be an increasing function on (a,b]
such that g′ is a continuous function on (a,b) and α > 0. Iα

a+;g f denotes the left-sided
fractional integral of a function f with respect to the function g in [a,b]. Define v on (a,b)
by

v(y) := αg′(y)
∫ b

y
u(x)

(g(x)−g(y))α−1

(g(x)−g(a))α dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality∫ b

a
u(x)φ

(
Γ(α +1)

(g(x)−g(a))α |Iα
a+;g f (x)|

)
dx ≤

∫ b

a
v(y)φ(| f (y)|)dy (3.22)

holds.

Proof.
Applying Theorem 3.1 with Ω1 = Ω2 = (a,b),

k(x,y) =

{
1

Γ(α+1)
g′(y)

(g(x)−g(y))1−α , a ≤ y ≤ x ;

0, x < y ≤ b

we get that K(x) = 1
Γ(α+1) (g(x)−g(a))α , so (3.22) follows. �

Remark 3.8 In particular for the weight function u(x) = g′(x)(g(x)− g(a))α , x ∈ (a,b)
in Corollary 3.7 we obtain the inequality∫ b

a
g′(x)(g(x)−g(a))α φ

(
Γ(α +1)

(g(x)−g(a))α |Iα
a+;g f (x)|

)
dx

≤
∫ b

a
g′(y)(g(b)−g(y))αφ(| f (y)|)dy. (3.23)
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Let q > 1 and the function φ : R+ → R be defined by φ(x) = xq. Then (3.23) reduces to

(Γ(α +1))q
∫ b

a
g′(x)(g(x)−g(a))α(1−q)|Iα

a+;g f (x)|q dx

≤
∫ b

a
g′(y)(g(b)−g(y))α | f (y)|q dy.

Since x ∈ (a,b), α(1−q) < 0 and g is increasing we have (g(x)−g(a))α(1−q) > (g(b)−
g(a))α(1−q) and (g(b)−g(y))α < (g(b)−g(a))α so we obtain∫ b

a
g′(x)|Iα

a+;g f (x)|q dx ≤
(

(g(b)−g(a))α

Γ(α +1)

)q ∫ b

a
g′(y)| f (y)|q dy. (3.24)

Remark 3.9 If g(x) = x, then Iα
a+;x f (x) reduces to Iα

a+ f (x) the Riemann-Liouville frac-
tional integral, and (3.24) becomes (3.7).

Analogous to Corollary 3.7, we obtain the following result.

Corollary 3.8 Let u be a weight function on (a,b), g be an increasing function on (a,b]
such that g′ is a continuous function on (a,b) and α > 0. Iα

b−;g f denotes the right-sided
fractional integral of a function f with respect to the function g in [a,b]. Define v on (a,b)
by

v(y) := αg′(y)
∫ y

a
u(x)

(g(y)−g(x))α−1

(g(b)−g(x))α dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality∫ b

a
u(x)φ

(
Γ(α +1)

(g(b)−g(x))α |Iα
b−;g f (x)|

)
dx ≤

∫ b

a
v(y)φ(| f (y)|)dy

holds.

Remark 3.10 In particular for the weight function u(x) = g′(x)(g(b)−g(x))α , x ∈ (a,b),
and for the function φ(x) = xq, q > 1 after some calculation we obtain∫ b

a
g′(x)|Iα

b−;g f (x)|q dx ≤
(

(g(b)−g(a))α

Γ(α +1)

)q ∫ b

a
g′(y)| f (y)|q dy. (3.25)

Remark 3.11 If g(x) = x, then Iα
b−;x f (x) reduces to Iα

b− f (x) the Riemann-Liouville frac-
tional integral and (3.25) becomes (3.13).

The refinements of (3.24) and (3.25) for α > 1
q are given in the following theorem.

Theorem 3.4 Let p,q > 1, 1
p + 1

q = 1, α > 1
q , Iα

a+;g f and Iα
b−;g f denotes the left-sided and

right-sided fractional integral of a function f with respect to another function g in [a,b].
Then the following inequalities∫ b

a
|Iα

a+;g f (x)|qg′(x)dx ≤ (g(b)−g(a))αq

αq(Γ(α))q(p(α −1)+1)
q
p

∫ b

a
| f (y)|qg′(y)dy
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and ∫ b

a
|Iα

b−;g f (x)|qg′(x)dx ≤ (g(b)−g(a))αq

αq(Γ(α))q(p(α −1)+1)
q
p

∫ b

a
| f (y)|qg′(y)dy

hold.

We continue by giving results for Hadamard type fractional integrals.
The Hadamard fractional integrals of order α are special case of the left- and right-

sided fractional integrals of a function f with respect to the function g(x) = log(x) in (a,b)
where 0 ≤ a < b ≤ ∞, so (3.24) reduces to

∫ b

a
|(Jα

a+ f )(x)|q dx
x

≤
(

(log b
a )α

Γ(α +1)

)q ∫ b

a
| f (y)|q dy

y
(3.26)

and (3.25) becomes

∫ b

a
|(Jα

b− f )(x)|q dx
x

≤
(

(log b
a )α

Γ(α +1)

)q ∫ b

a
| f (y)|q dy

y
. (3.27)

Also, from Theorem 3.4 we obtain refinements of (3.26) and (3.27) for α > 1
q

∫ b

a
|(Jα

a+ f )(x)|q dx
x

≤ (log b
a )qα

qα(Γ(α))q(p(α −1)+1)
q
p

∫ b

a
| f (y)|q dy

y

and ∫ b

a
|(Jα

b− f )(x)|q dx
x

≤ (log b
a )qα

qα(Γ(α))q(p(α −1)+1)
q
p

∫ b

a
| f (y)|q dy

y
.

Some results involving Hadamard type fractional integrals are given in [67, p. 110]. Here
we mention the following result that can not be compared with our result.

Let α > 0, 1 ≤ p ≤ ∞ and 0 ≤ a < b ≤ ∞. Then the operators Jα
a+ f and Jα

b− f are
bounded in Lp(a,b) as follows:

‖Jα
a+ f‖p ≤ K1‖ f‖p and ‖Jα

b− f‖p ≤ K2‖ f‖p,

where

K1 =
1

Γ(α)

∫ log(b/a)

0
tα−1e

t
p dt

K2 =
1

Γ(α)

∫ log(b/a)

0
tα−1e−

t
p dt.

Now we give results involving Erdélyi-Kober type fractional integral.
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Corollary 3.9 Let u be a weight function on (a,b), 2F1(a,b;c;z) denotes the hyper-
geometric function and Iα

a+;σ ;η f denotes the Erdélyi-Kober type fractional left-sided in-
tegral. Define v by

v(y) = ασyση+σ−1
∫ b

y
u(x)

x−ση(xσ − yσ )α−1

(xσ −aσ)α
2 F1(α,−η ;α +1;1− (

a
x

)σ )
dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality

∫ b

a
u(x)φ

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(α,−η ;α +1;1− (
a
x

)σ )
|Iα

a+;σ ;η f (x)|

⎞⎟⎠ dx

≤
∫ b

a
v(y)φ(| f (y)|)dy (3.28)

holds.

Proof. Applying Theorem 3.1 with Ω1 = Ω2 = (a,b),

k(x,y) =

{
1

Γ(α)
σx−σ(α+η)

(xσ−yσ )1−α yση+σ−1, a ≤ y ≤ x ;

0, x < y ≤ b

we get that K(x) = 1
Γ(α+1)

(
1− (

a
x

)σ
)α

2F1(α,−η ;α +1;1−(
a
x

)σ ), so (3.28) follows. �

Remark 3.12 In particular, for the weight function u(x)= xσ−1(xσ −aσ)α
2F1(x) (2F1(x)

=2 F1(α,−η ;α +1;1−(
a
x

)σ ) and 2F1(y) =2 F1(α,η ;α +1;1−
(

b
y

)σ
)) in Corollary 3.9

we obtain the inequality

∫ b

a
xσ−1(xσ −aσ )α

2F1(x)φ

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
|Iα

a+;σ ;η f (x)|

⎞⎟⎠ dx

≤
∫ b

a
yσ−1(bσ − yσ)α

2F1(y)φ(| f (y)|)dy.

Remark 3.13 Similar results can be given for Erdélyi-Kober type fractional right-sided
integral, for details see [61].

In the previous corollaries we derived only inequalities over some subsets of R. How-
ever, Theorem 3.1 covers much more general situations. We conclude this section with
multidimensional fractional integrals.

Corollary 3.10 Let u be a weight function on (a,b) and α > 0. Iα
a+ f denotes the mixed

Riemann-Liouville fractional integral of f . Define v on (a,b) by

v(y) := α
∫ b1

y1

· · ·
∫ bn

yn

u(x)
(x−y)α−1

(x−a)α dx < ∞.
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If φ : (0,∞) → R is a convex and increasing function, then the inequality∫ b1

a1

· · ·
∫ bn

an

u(x)φ
(

Γ(α +1)
(x−a)α |Iα

a+ f (x)|
)

dx ≤
∫ b1

a1

· · ·
∫ bn

an

v(y)φ(| f (y)|)dy (3.29)

holds for all measurable functions f : (a,b) → R.

Proof.
Applying Theorem 3.1 with Ω1 = Ω2 = (a,b),

k(x,y) =

{
(x−y)α−1

Γ(α) , a ≤ y ≤ x ;
0, x < y ≤ b

we get that K(x) = (x−a)α

Γ(α+1) and g(x) = Iα
a+ f (x), so (3.29) follows. �

Remark 3.14 Analogous to Remark 3.1 and 3.2 we obtain multidimensional version of
inequality (1.12) for q > 1:∫ b1

a1

· · ·
∫ bn

an

|Iα
a+ f (x)|g dx ≤

(
(b−a)α

Γ(α +1)

)q ∫ b1

a1

· · ·
∫ bn

an

| f (y)|q dy

and ∫ b1

a1

· · ·
∫ bn

an

|Iα
b− f (x)|g dx ≤

(
(b−a)α

Γ(α +1)

)q ∫ b1

a1

· · ·
∫ bn

an

| f (y)|q dy.

3.1 New inequalities involving fractional integrals
and derivatives

If we substitute k(x,y) by k(x,y) f2(y) and f by f1
f2

, where fi : Ω2 → R,(i = 1,2) are mea-
surable functions, in Theorem 3.1 we obtain the following result (see [60]).

Theorem 3.5 Let fi : Ω2 → R be measurable functions, gi ∈ U( fi), (i = 1,2), where
g2(x) > 0 for every x ∈ Ω1. Let u be a weight function on Ω1, k be a non-negative measur-

able function on Ω1×Ω2. Assume that the function x �→ u(x) f2(y)k(x,y)
g2(x)

is integrable on Ω1

for each fixed y ∈ Ω2. Define v on Ω2 by

v(y) := f2(y)
∫

Ω1

u(x)k(x,y)
g2(x)

dμ1(x) < ∞. (3.30)

If φ : (0,∞) → R is a convex and increasing function, then the inequality∫
Ω1

u(x)φ
(∣∣∣∣g1(x)

g2(x)

∣∣∣∣)dμ1(x) ≤
∫

Ω2

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣)dμ2(y),

holds.
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Remark 3.15 If φ is strictly convex and f1(x)
f2(x)

is non-constant, then the inequality in The-
orem 3.5 is strict.

Remark 3.16 As a special case of Theorem 3.5 for Ω1 = Ω2 = [a,b] and dμ1(x) =
dx, dμ1(y) = dy we obtain the result in [81] (see also [92, p. 236]).

As a special case of Theorem 3.5 we obtain the following results involving Riemann-
Liouville fractional integrals, the Canavati-type fractional derivative, the Caputo fractional
derivative, Hadamard-type fractional integrals, Erdélyi-Kober type fractional integrals (for
details see [60]).

Corollary 3.11 Let u be a weight function on (a,b) and α > 0. Iα
b−g denotes the right-

sided Riemann-Liouville fractional integral of g. Define v on (a,b) by

v(y) =
f2(y)
Γ(α)

y∫
a

u(x)(y− x)α−1

Iα
b− f2(x)

dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣ I
α
b− f1(x)

Iα
b− f2(x)

∣∣∣∣∣
)

dx ≤
b∫

a

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣)dy.

holds.

Remark 3.17 The result involving the left-sided Riemann-Liouville fractional integral is
given in Corollary 2.4 in [63].

Next we give results with respect to the generalized Riemann-Liouville fractional deri-
vative.

Corollary 3.12 Let u be a weight function on (a,b) and let the assumptions in Lemma
1.3 be satisfied. Define v on (a,b) by

v(y) =
Dβ

a f2(y)
Γ(β −α)

b∫
y

u(x)(x− y)β−α−1

Dα
a f2(x)

dx < ∞.

If φ : (0,∞) → R is a convex and increasing function, then the inequality

b∫
a

u(x)φ
(∣∣∣∣Dα

a f1(x)
Dα

a f2(x)

∣∣∣∣)dx ≤
b∫

a

v(y)φ

(∣∣∣∣∣Dβ
a f1(y)

Dβ
a f2(y)

∣∣∣∣∣
)

dy

holds.

Now we give results involving the Canavati-type fractional derivative.
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Corollary 3.13 Let u be a weight function on (a,b) and let the assumptions in Lemma
1.4 be satisfied. Define v(y) on (a,b) by

v(y) =
Dν

a f2(y)
Γ(ν − γ)

b∫
y

u(x)(x− y)ν−γ−1

Dγ
a f2(x)

dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ
(∣∣∣∣Dγ

a f1(x)
Dγ

a f2(x)

∣∣∣∣)dx ≤
b∫

a

v(y)φ
(∣∣∣∣Dν

a f1(y)
Dν

a f2(y)

∣∣∣∣)dy

holds.

We continue with results involving the Caputo fractional derivative.

Corollary 3.14 Let u be a weight function on (a,b) and ν ≥ 0. Dν∗a f denotes the Caputo
fractional derivative of f . Define v(y) on (a,b) by

v(y) =
f (n)
2 (y)

Γ(n−ν)

b∫
y

u(x)(x− y)n−ν−1

Dν∗a f2(x)
dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ
(∣∣∣∣Dν∗a f1(x)

Dν∗a f2(x)

∣∣∣∣)dx ≤
b∫

a

v(y)φ

(∣∣∣∣∣ f (n)
1 (y)

f (n)
2 (y)

∣∣∣∣∣
)

dy

holds.

Corollary 3.15 Let u be a weight function on (a,b) and let the assumptions in Lemma
1.5 be satisfied. Define v(y) on (a,b) by

v(y) =
Dν∗a f2(y)
Γ(ν − γ)

b∫
y

u(x)(x− y)ν−γ−1

Dγ
∗a f2(x)

dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ
(∣∣∣∣Dγ

∗a f1(x)
Dγ
∗a f2(x)

∣∣∣∣)dx ≤
b∫

a

v(y)φ
(∣∣∣∣Dν∗a f1(y)

Dν∗a f2(y)

∣∣∣∣)dy

holds.

Now we continue with results involving the Hadamard-type fractional integrals.
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Corollary 3.16 Let u be a weight function and α > 0. Jα
a+ f denotes the left-sided Hada-

mard-type fractional integral. Define

v(y) =
f2(y)

yΓ(α)

b∫
y

u(x)
(

log
x
y

)α−1 1
(Jα

a+ f2)(x)
dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣Jα
a+ f1(x)

Jα
a+ f2(x)

∣∣∣∣∣
)

dx ≤
b∫

a

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣)dy

holds.

Similarly we obtain the following Corollary.

Corollary 3.17 Let u be a weight function and α > 0. Jα
b− f denotes the right-sided

Hadamard-type fractional integral. Define

v(y) =
f2(y)

yΓ(α)

b∫
y

u(x)
(
log

y
x

)α−1 1
(Jα

b− f2)(x)
dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣J
α
b− f1(x)

Jα
b− f2(x)

∣∣∣∣∣
)

dx ≤
b∫

a

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣)dy

holds.

Corollary 3.18 Let u be a weight function, Iα
a+;σ ;η f denotes the left-sided Erdelyi-Kóber

type fractional integral of function f of order α > 0. Define v on (a,b) by

v(y) =
f2(y)
Γ(α)

b∫
y

u(x)σx−σ(α+η)yση+σ−1

(xσ − yσ )1−α(Iα
a+;σ ;η f2)(x)

dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣ Iα
a+;σ ;η f1(x)
Iα
a+;σ ;η f2(x)

∣∣∣∣∣
)

dx ≤
b∫

a

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣)dy

holds.

Similarly we obtain the following Corollary.
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Corollary 3.19 Let u be a weight function, Iα
b−;σ ;η f denotes the right-sided Erdelyi-

Kóber type fractional integral of a function f . Define v on (a,b) by

v(y) =
f2(y)
Γ(α)

y∫
a

u(x)σxσηyσ(1−α−η)−1

(yσ − xσ )1−α(Iα
b−;σ ;η f2)(x)

dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣ I
α
b−;σ ;η f1(x)

Iα
b−;σ ;η f2(x)

∣∣∣∣∣
)

dx ≤
b∫

a

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣)dy

holds.

As a special case of Theorem 3.5 we obtain results involving the generalized Riemann-
Liouville fractional derivative.

Corollary 3.20 Let u be a weight function on (a,b) and let the assumptions in Lemma
1.3 be satisfied. Define v on (a,b) by

v(y) =
Dβ

a f2(y)
Γ(β −α)

b∫
y

u(x)(x− y)β−α−1

Dα
a f2(x)

dx < ∞.

If φ : (0,∞) → R is convex and increasing function, then the inequality

b∫
a

u(x)φ
(∣∣∣∣Dα

a f1(x)
Dα

a f2(x)

∣∣∣∣)dx ≤
b∫

a

v(y)φ

(∣∣∣∣∣Dβ
a f1(y)

Dβ
a f2(y)

∣∣∣∣∣
)

dy

holds.

We continue this chapter with results involving the mixed Riemann-Liouville fractional
integral of f .

Corollary 3.21 Let u be a weight function on (a,b) and α > 0. Iα
a+ f denotes the mixed

Riemann-Liouville fractional integral of f . Define v on (a,b) by

v(y) :=
f2(y)
Γ(α)

∫ b1

y1

· · ·
∫ bn

yn

u(x)
(x−y)α−1

(Iα
a+ f2)(x)

dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b1∫
a1

...

b1∫
a1

u(x)φ

(∣∣∣∣∣ Iα
a+ f1(x)
Iα
a+ f2(x)

∣∣∣∣∣
)

dx ≤
b1∫

a1

...

b1∫
a1

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣)dy

holds.
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Corollary 3.22 Let u be a weight function on (a,b) and α > 0. Iα
b− f denotes the mixed

Riemann-Liouville fractional integral of f . Define v on (a,b) by

v(y) :=
f2(y)
Γ(α)

∫ y1

a1

· · ·
∫ yn

an

u(x)
(y−x)α−1

(Iα
b− f2)(x)

dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b1∫
a1

...

b1∫
a1

u(x)φ

(∣∣∣∣∣ I
α
b− f1(x)

Iα
b− f2(x)

∣∣∣∣∣
)

dx ≤
b1∫

a1

...

b1∫
a1

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣)dy

holds.

Note that Theorem 3.5 can be generalized for convex functions of several variables.

Theorem 3.6 Let gi ∈ U( fi), (i = 1,2,3), where g2(x) > 0 for every x ∈ Ω1. Let u be
a weight function on Ω1, k be a non-negative measurable function on Ω1 ×Ω2. Let v be
defined by (3.30). If φ : (0,∞)× (0,∞) → R is a convex and increasing function, then the
inequality∫

Ω1

u(x)φ
(∣∣∣∣g1(x)

g2(x)

∣∣∣∣ , ∣∣∣∣g3(x)
g2(x)

∣∣∣∣)dμ1(x) ≤
∫

Ω2

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣ , ∣∣∣∣ f3(y)
f2(y)

∣∣∣∣)dμ2(y) (3.31)

holds.

Remark 3.18 Apply Theorem 3.6 with Ω1 = Ω2 = [a,b] and dμ1(x) = dx, dμ2(y) = dy.
Then

v(y) = f2(y)
∫ b

a

u(x)k(x,y)
g2(x)

dx

and (3.31) reduces to∫ b

a
u(x)φ

(∣∣∣∣g1(x)
g2(x)

∣∣∣∣ , ∣∣∣∣g3(x)
g2(x)

∣∣∣∣)dx ≤
∫ b

a
v(y)φ

(∣∣∣∣ f1(y)
f2(y)

∣∣∣∣ , ∣∣∣∣ f3(y)
f2(y)

∣∣∣∣)dy

This result is given in [81] (see also [92, p. 236]).

3.2 Improvements of an inequality of G. H. Hardy

Using Theorem 2.6, we will give some special cases for different fractional integrals and
fractional derivatives to establish new Hardy-type inequalities (see [56]).

Our first result involving fractional integral of f with respect to another increasing
function g is given in the following theorem and from this we obtain the case of Riemann-
Liouville fractional integrals and Hadamard fractional integrals.
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Theorem 3.7 Let 0 < p ≤ q < ∞, u be a weight function on (a,b), g be an increasing
function on (a,b] such that g′ is continues on (a,b), Iα

a+;g f denotes the left-sided fractional
integral of f with respect to the increasing function g. Let v be defined on (a,b) by

v(y) := αg′(y)

⎛⎝ b∫
y

u(x)
(

(g(x)−g(y))α−1

(g(x)−g(a))α

) q
p

dx

⎞⎠
p
q

< ∞. (3.32)

If Φ is a non-negative convex function on an interval I ⊆ R, then the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
)] q

p

dx

⎞⎠
1
q

≤
⎛⎝ b∫

a

v(y)Φ( f (y))dy

⎞⎠
1
p

(3.33)

holds for all measurable functions f : (a,b) → R, such that Im f ⊆ I.

Proof. Applying Theorem 2.6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx,dμ2(y) = dy,

k(x,y) =

{
g′(y)

Γ(α)(g(x)−g(y))1−α , a ≤ y ≤ x ;

0, x < y ≤ b,

we get that K(x) = 1
Γ(α+1) (g(x)−g(a))α , Ak f (x) = Γ(α+1)

(g(x)−g(a))α Iα
a+;g f (x) and the inequality

in (2.21) reduces to (3.33) with v defined by (3.32). �

Corollary 3.23 Let 0 < p≤ q < ∞, s≥ 1,α > 1− p
q , g be an increasing function on (a,b]

such that g′ is continues on (a,b), Iα
a+;g f denotes the left-sided fractional integral of f with

respect to the increasing function g. Then the inequality⎛⎝ b∫
a

g′(x)(Iα
a+;g f (x))

sq
p dx

⎞⎠
1
q

≤ α
1
p (g(b)−g(a))

q(αs−1)+p
pq

((α −1) q
p +1)

1
q (Γ(α +1))

s
p

⎛⎝ b∫
a

g′(y) f s(y)dy

⎞⎠
1
p

(3.34)

holds.

Proof. For particular convex function Φ : R+ → R+, Φ(x) = xs,s ≥ 1 and weight

function u(x) = g′(x)(g(x)− g(a))
αq
p , x ∈ (a,b) in (3.33) we get v(y) = (αg′(y)(g(b)−

g(y))α−1+ p
q )/(((α −1) q

p +1)
p
q ) and (3.33) becomes

⎛⎝ b∫
a

g′(x)(g(x)−g(a))
αq
p (1−s)(Iα

a+;g f (x))
sq
p dx

⎞⎠
1
q

≤ α
1
p

((α −1) q
p +1)

1
q (Γ(α +1))

s
p

⎛⎝ b∫
a

g′(y)(g(b)−g(y))α−1+ p
q f s(y)dy

⎞⎠
1
p

.
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Since (g(x)−g(a))
αq
p (1−s) ≥ (g(b)−g(a))

αq
p (1−s) and (g(b)−g(y))α−1+ p

q ≤
(g(b)−g(a))α−1+ p

q due to α > 1− p
q , we obtain (3.34). �

Remark 3.19 Similar result can be obtained for the right-sided fractional integral of f
with respect to another increasing function g, but here we omit the details.

We continue with results involving the Riemman-Liouville and Hadamard-type frac-
tional integrals. If g(x) = x, then Iα

a+;x f (x) reduces to Iα
a+ f (x), the left-sided Riemann-

Liouville fractional integral, and if g(x) = log(x) in [a,b] where 0 ≤ a < b ≤ ∞, then
Iα
a+;x f (x) reduces to Jα

a+ f (x), the left-sided Hadamrd-type fractional integral.

Corollary 3.24 Let 0 < p ≤ q < ∞, u be a weight function on (a,b), Iα
a+ f denotes the

left-sided Riemann-Liouville fractional integral of f . Let v be defined on (a,b) by

v(y) := α

⎛⎝ b∫
y

u(x)
(

(x− y)α−1

(x−a)α

) q
p

dx

⎞⎠
p
q

< ∞.

If Φ is a non-negative convex function on an interval I ⊆ R, then the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(α +1)
(x−a)α Iα

a+ f (x)
)] q

p

dx

⎞⎠
1
q

≤
⎛⎝ b∫

a

v(y)Φ( f (y))dy

⎞⎠
1
p

holds for all measurable functions f : (a,b) → R, such that Im f ⊆ I.

Corollary 3.25 Let 0 < p≤ q < ∞, s≥ 1, α > 1− p
q , Iα

a+ f denotes the left-sided Riemann-
Liouville fractional integral of f . Then the inequality⎛⎝ b∫

a

(Iα
a+ f (x))

sq
p dx

⎞⎠
1
q

≤ α
1
p (b−a)

q(αs−1)+p
pq

((α −1) q
p +1)

1
q (Γ(α +1))

s
p

⎛⎝ b∫
a

f s(y)dy

⎞⎠
1
p

holds.

Corollary 3.26 Let 0 < p ≤ q < ∞, s ≥ 1, α > 1− p
q , Jα

a+ f denotes the Hadamard-type
fractional integrals of f . Then the following inequality holds⎛⎝ b∫

a

(Jα
a+ f (x))

sq
p

dx
x

⎞⎠
1
q

≤ α
1
p (logb− loga)

q(αs−1)+p
pq

((α −1) q
p +1)

1
q (Γ(α +1))

s
p

⎛⎝ b∫
a

f s(y)
dy
y

⎞⎠
1
p

.

Next we give result with respect to the generalizedRiemann-Liouville fractional deriva-
tive.
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Theorem 3.8 Let 0 < p ≤ q < ∞, u be a weight function on (a,b), β > α ≥ 0 and let the
assumptions of Lemma 1.3 be satisfied. Let v be defined on (a,b) by

v(y) := (β −α)

⎛⎝ b∫
y

u(x)

(
(x− y)β−α−1

(x−a)β−α

) q
p

dx

⎞⎠
p
q

< ∞.

If Φ is a non-negative convex function on an interval I ⊆ R, then the inequality

⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(β −α +1)
(x−a)β−α Dα

a f (x)
)]q

p

dx

⎞⎠
1
q

≤
⎛⎝ b∫

a

v(y)Φ
(
Dβ

a f (y)
)

dy

⎞⎠
1
p

(3.35)

holds for all measurable functions f : (a,b) → R, such that Im f ⊆ I.

Proof. Applying Theorem 2.6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx,dμ2(y) = dy,

k(x,y) =

{
(x−y)β−α−1

Γ(β−α) , a ≤ y ≤ x ;
0, x < y ≤ b,

we get that K(x) = (x−a)β−α

Γ(β−α+1) . Replace f by Dβ
a f . Then Ak f (x) = Γ(β−α+1)

(x−a)β−α Dα
a f (x) and

the inequality given in (2.21) reduces to (3.35). �

If we take Φ(x) = xs,s ≥ 1 and u(x) = (x− a)
(β−α)q

p , x ∈ (a,b), similarly to the proof
of Corollary 3.23 we obtain the following result.

Corollary 3.27 Let 0 < p ≤ q < ∞, s > 1, β −α > 1− p
q and let the assumption of

Lemma 1.3 be satisfied. Then the following inequality holds

⎛⎝ b∫
a

(Dα
a f (x))

sq
p dx

⎞⎠
1
q

≤ (β −α)
1
p (b−a)

q((β−α)s−1)+p
pq

((β −α −1) q
p +1)

1
q (Γ(β −α +1))

s
p

⎛⎝ b∫
a

(Dβ
a f (y))sdy

⎞⎠
1
p

.

In the following Theorem, we will construct a new inequality for the Canavati-type
fractional derivative.

Theorem 3.9 Let 0 < p ≤ q < ∞, ν > γ > 0, u be a weight function on (a,b) and the as-
sumptions in Lemma 1.4 be satisfied, Dγ

a f denotes the Canavati-type fractional derivative
of f . Let v be defined on (a,b) by

v(y) := (ν − γ)

⎛⎝ b∫
y

u(x)
(

(x− y)ν−γ−1

(x−a)ν−γ

) q
p

dx

⎞⎠
p
q

< ∞.



52 3 ON AN INEQUALITY OF G. H. HARDY

If Φ is a non-negative convex function on an interval I ⊆ R, then the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
)]q

p

dx

⎞⎠
1
q

≤
⎛⎝ b∫

a

v(y)Φ(Dν
a f (y))dy

⎞⎠
1
p

(3.36)

holds for all measurable functions f : (a,b) → R, such that Im f ⊆ I.

Proof. Applying Theorem 2.6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx,dμ2(y) = dy,

k(x,y) =

{
(x−y)ν−γ−1

Γ(ν−γ) , a ≤ y ≤ x ;
0, x < y ≤ b

we get that K(x) = (x−a)ν−γ

Γ(ν−γ+1) . Replace f by Dν
a f . Then the inequality given in (2.21)

reduces to (3.36). �

Example 3.1 If we take Φ(x) = xs,s ≥ 1, ν − γ > 1− p
q and weight function u(x) =

(x−a)
(ν−γ)q

p , x ∈ (a,b) in (3.36), after some calculations we obtain⎛⎝ b∫
a

(Dγ
a f (x))

sq
p dx

⎞⎠
1
q

≤ (ν − γ)
1
p (b−a)

q((ν−γ)s−1)+p
pq

((ν − γ −1) q
p +1)

1
q (Γ(ν − γ +1))

s
p

⎛⎝ b∫
a

(Dν
a f (y))sdy

⎞⎠
1
p

.

Next, we give the result for the Caputo fractional derivative.

Theorem 3.10 Let 0 < p≤ q < ∞, u be a weight function on (a,b) and Dν∗a f denotes the
Caputo fractional derivative of f . Let v be defined on (a,b) by

v(y) := (n−ν)

⎛⎝ b∫
y

u(x)
(

(x− y)n−ν−1

(x−a)n−ν

) q
p

dx

⎞⎠
p
q

< ∞.

If Φ is a non-negative convex function on an interval I ⊆ R, then the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(n−ν +1)
(x−a)n−ν Dν

∗a f (x)
)] q

p

dx

⎞⎠
1
q

≤
⎛⎝ b∫

a

v(y)Φ
(

f (n)(y)
)

dy

⎞⎠
1
p

(3.37)

holds for all measurable functions f : (a,b) → R, such that Im f ⊆ I.

Proof. Applying Theorem 2.6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx,dμ2(y) = dy,

k(x,y) =

{
(x−y)n−ν−1

Γ(n−ν) , a ≤ y ≤ x ;

0, x < y ≤ b

we get that K(x) = (x−a)n−ν

Γ(n−ν+1) . Replace f by f (n). Then the inequality given in (2.21) reduces
to (3.37). �
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Example 3.2 If we take Φ(x) = xs,s ≥ 1, n− ν > 1− p
q and weight function u(x) =

(x−a)
(n−ν)q

p , x ∈ (a,b), in (3.37) we obtain⎛⎝ b∫
a

(Dν
∗a f (x))

sq
p dx

⎞⎠
1
q

≤ (n−ν)
1
p (b−a)

q((n−ν)s−1)+p
pq

((n−ν −1) q
p +1)

1
q (Γ(n−ν +1))

s
p

⎛⎝ b∫
a

( f (n)(y))sdy

⎞⎠
1
p

.

Theorem 3.11 Let 0 < p ≤ q < ∞,u be a weight function on (a,b) and the assumptions
in Lemma 1.5 be satisfied. Dν∗a f denotes the Caputo fractional derivative of f . Let v be
defined on (a,b) by

v(y) := (ν − γ)

⎛⎝ b∫
y

u(x)
(

(x− y)ν−γ−1

(x−a)ν−γ

) q
p

dx

⎞⎠
p
q

< ∞.

If Φ is a non-negative convex function on an interval I ⊆ R, then the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

∗a f (x)
)] q

p

dx

⎞⎠
1
q

≤
⎛⎝ b∫

a

v(y)Φ(Dν
∗a f (y))dy

⎞⎠
1
p

(3.38)

holds for all measurable functions f : (a,b) → R, such that Im f ⊆ I.

Proof. Applying Theorem 2.6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx,dμ2(y) = dy,

k(x,y) =

{
(x−y)ν−γ−1

Γ(ν−γ) , a ≤ y ≤ x ;
0, x < y ≤ b

we get that K(x) = (x−a)ν−γ

Γ(ν−γ+1) . Replace f by Dν∗a f . Then the inequality given in (2.21)
reduces to (3.38). �

Now, we give the following result that involves the Erdélyi-Kober type fractional inte-
grals.

Theorem 3.12 Let 0 < p ≤ q < ∞, u be a weight function on (a,b), Iα
a+;σ ;η f denotes

the Erdélyi-Kober type fractional integrals of f , 2F1(a,b;c;z) denotes the hypergeometric
function. Let v be defined on (a,b) by

v(y) := α

⎛⎝ b∫
y

u(x)
(

σx−σηyση+σ−1

(xσ − yσ)1−α(xσ −aσ)α

) q
p

dx

⎞⎠
p
q

< ∞.

If Φ is a non-negative convex function on an interval I ⊆ R, then the inequality⎛⎜⎜⎝ b∫
a

u(x)

⎡⎢⎣Φ

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠
⎤⎥⎦

q
p

dx

⎞⎟⎟⎠
1
q

≤
⎛⎝ b∫

a

v(y)Φ( f (y))dy

⎞⎠
1
p

(3.39)
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holds for all measurable functions f : (a,b) → R, such that Im f ⊆ I where 2F1(x) =

2F1

(
−η ,α;α +1;1− (

a
x

)σ
)

.

Proof. Applying Theorem 2.6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx,dμ2(y) = dy,

k(x,y) =

{
1

Γ(α)
σx−σ(α+η)

(xσ−yσ )1−α yση+σ−1, a ≤ y ≤ x ;

0, x < y ≤ b,

we get that K(x) = 1
Γ(α+1)

(
1− (

a
x

)σ
)α

2F1(−η ,α;α +1;1− (
a
x

)σ ).
Then the inequality (2.21) becomes (3.39). �

Example 3.3 If we take Φ(x) = xs,s ≥ 1 and weight function u(x)
= xσ−1 ((xσ −aσ)α

2F1(x))
q
p , x ∈ (a,b) in (3.39), after some calculations we obtain⎛⎝ b∫

a

(2F1(x))
q
p (1−s) (Iα

a+;σ ;η f (x)
) sq

p dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

(2F1(y)) f s(y)dy

⎞⎠
1
p

where

C =
α

1
p σ

q−p
pq b

σ−1
p (bσ −aσ )

q(αs−1)+p
pq

a
pσ−p+qsσα

pq ((α −1) q
p +1)

1
q (Γ(α +1))

s
p

,

2F1(x) = 2F1

(
−η ,α;α+1;1−

(a
x

)σ)
and 2F1(y) = 2F1

(
η ,α;α+1;1−

(
b
y

)σ)
.

Remark 3.20 Similar result can be obtained for the right-sided Erdélyi-Kober type frac-
tional integrals, but we omit the details here.



Chapter4
Some new refined Hardy-type
inequalities with kernels

In this chapter we state and prove a new general refined weighted Hardy-type inequality
for convex functions and integral operator and also for monotone convex functions. We
point out that the obtained result generalizes and refines the classical one-dimensional
Hardy, Pólya-Knopp, Hardy-Hilbert inequalities and related dual inequalities. We show
that our results may be seen as generalizations of some recent results related to Riemann-
Liouville and Weyl’s operator, as well as a generalization and a refinement of the so-called
Godunova’s inequality.

4.1 New general refined Hardy-type inequalities with
kernels

Now, we are ready to state and prove the central result of this chapter, that is, a new
refined general weighted Hardy-type inequality with a non-negative kernel and related to
an arbitrary convex function. It is given in the following theorem (see [24]).

Theorem 4.1 Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive σ -finite
measures, u be a weight function on Ω1, k a non-negative measurable function on Ω1×Ω2,
and K be defined on Ω1 by (2.16). Suppose that K(x) > 0 for all x ∈ Ω1, that the function

55
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x �→ u(x) k(x,y)
K(x) is integrable on Ω1 for each fixed y ∈ Ω2, and that v is defined on Ω1 by

(2.17). If Φ is a convex function on an interval I ⊆ R and ϕ : I → R is any function, such
that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality∫

Ω2

v(y)Φ( f (y))dμ2(y)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x)

≥
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,y) | |Φ( f (y))−Φ(Ak f (x))|

− |ϕ(Ak f (x))| · | f (y)−Ak f (x)| | dμ2(y)dμ1(x) (4.1)

holds for all measurable functions f : Ω2 →R such that f (y) ∈ I for all y ∈ Ω2, where Ak f
is defined on Ω1 by (2.15).
If Φ is a monotone convex function on an interval I ⊆ R and ϕ : I → R is any function,
such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality∫

Ω2

v(y)Φ( f (y))dμ2(y)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x)

≥
∣∣∣∣∣
∫

Ω1

u(x)
K(x)

∫
Ω2

sgn( f (y)−Ak f (x))k(x,y)
[

Φ( f (y))−Φ(Ak f (x))

−|ϕ(Ak f (x))| · ( f (y)−Ak f (x))
]
dμ2(y)dμ1(x)

∣∣∣∣∣ (4.2)

holds for all measurable functions f : Ω2 →R such that f (y) ∈ I for all y ∈ Ω2, where Ak f
is defined by (2.15).

Proof. First, Ak f (x) ∈ I, for all x ∈ Ω1 (see the proof of Theorem 2.5). To prove
inequality (4.1), observe that for all r ∈ IntI and s ∈ I we have

Φ(s)−Φ(r)−ϕ(r)(s− r) ≥ 0,

where ϕ : I −→ R is any function such that ϕ(x) ∈ ∂Φ(x) for x ∈ IntI, and hence

Φ(s)−Φ(r)−ϕ(r)(s− r) = |Φ(s)−Φ(r)−ϕ(r)(s− r)|
≥ ||Φ(s)−Φ(r)|− |ϕ(r)| |s− r|| . (4.3)

Especially, in the case when Ak f (x) ∈ IntI, by substituting r = Ak f (x) and s = f (y) in (4.3)
we get

Φ( f (y))−Φ(Ak f (x))−ϕ(Ak f (x)) [ f (y)−Ak f (x)]
≥ ||Φ( f (y))−Φ(Ak f (x))|− |ϕ(Ak f (x))| | f (y)−Ak f (x)|| . (4.4)

Observe that (4.4) holds even if Ak f (x) is an endpoint of I, since in that case both sides of

inequality (4.4) are equal to 0 for μ2-a.e. y ∈ Ω2. Multiplying (4.4) by u(x) k(x,y)
K(x) ≥ 0 for a
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fixed x ∈ Ω1, and then integrating it over Ω2 and Ω1 respectively, we obtain

∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

Φ( f (y))dμ2(y)dμ1(x)

−
∫

Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

Φ(Ak f (x))dμ2(y)dμ1(x)

−
∫

Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

ϕ(Ak f (x)) [ f (y)−Ak f (x)] dμ2(y)dμ1(x)

≥
∫

Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

||Φ( f (y))−Φ(Ak f (x))|
− |ϕ(Ak f (x))| · | f (y)−Ak f (x)|| dμ2(y)dμ1(x). (4.5)

By using Fubini’s theorem and the definition (2.17) of the weight v, the first integral on the
left-hand side od (4.5) becomes

∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

Φ( f (y))dμ2(y)dμ1(x)

=
∫

Ω2

Φ( f (y))
(∫

Ω1

u(x)
k(x,y)
K(x)

dμ1(x)
)

dμ2(y)

=
∫

Ω2

v(y)Φ( f (y))dμ2(y), (4.6)

while for the second integral on the left-hand side of (4.5) we have

∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

Φ(Ak f (x))dμ2(y)dμ1(x)

=
∫

Ω1

u(x)Φ(Ak f (x))
(

1
K(x)

∫
Ω2

k(x,y)dμ2(y)
)

dμ1(x)

=
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x). (4.7)

Finally, applying (4.5) and (2.19) and we similarly get

∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

ϕ(Ak f (x)) [ f (y)−Ak f (x)] dμ2(y)dμ1(x)

=
∫

Ω1

u(x)
K(x)

ϕ(Ak f (x))
(∫

Ω2

k(x,y)hx(y)dμ2(y)
)

dμ1(x) = 0, (4.8)

so (4.1) holds by combining (4.5), (4.6), (4.7), and (4.8). Now, we prove inequality (4.2).
Consider the case, when Φ is non-decreasing on the interval I. For a fixed x ∈ Ω1, let
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Ω′
2 = {y ∈ Ω2 : f (y) > Ak f (x)}. Then∫

Ω2

k(x,y)|Φ( f (y))−Φ(Ak f (x))|dμ2(y)

=
∫

Ω′
2

k(x,y)[Φ( f (y))−Φ(Ak f (x)))]dμ2(y)

+
∫

Ω2\Ω′
2

k(x,y)[Φ(Ak f (x))−Φ( f (y))]dμ2(y)

=
∫

Ω′
2

k(x,y)Φ( f (y))dμ2(y)−
∫

Ω2\Ω′
2

k(x,y)Φ( f (y))dμ2(y)

−Φ(Ak f (x))
∫

Ω′
2

k(x,y)dμ2(y)+ Φ(Ak f (x))
∫

Ω2\Ω′
2

k(x,y)dμ2(y)

=
∫

Ω2

sgn( f (y)−Ak f (x))k(x,y)[Φ( f (y))−Φ(Ak f (x)]dμ2(y). (4.9)

Similarly, we can write∫
Ω2

k(x,y)| f (y)− (Ak f (x))|dμ2(y)

=
∫

Ω2

sgn( f (y)−Ak f (x))k(x,y)( f (y)−Ak f (x))dμ2(y). (4.10)

From (4.1), (4.9) and (4.10), we get (4.2).

The case, when Φ is non-increasing can be discussed in a similar way. �

Remark 4.1 Let Φ be a concave function (that is, −Φ is convex). Then for all r ∈ Int I
and s ∈ I we have

Φ(r)−Φ(s)−ϕ(r)(r− s) ≥ 0,

and (4.3) reads

Φ(r)−Φ(s)−ϕ(r)(r− s) = |Φ(r)−Φ(s)−ϕ(r)(r− s)|
≥ | |Φ(s)−Φ(r)|− |ϕ(r)| · |s− r| | ,

where ϕ is an arbitrary real function on I such that ϕ(x) ∈ ∂Φ(x) = [Φ′
+(x), Φ′−(x)], for

all x ∈ IntI. Hence, in this setting, (4.1) holds with its left-hand side replaced with∫
Ω1

u(x)Φ(Ak f (x))dμ1(x)−
∫

Ω2

v(y)Φ( f (y))dμ2(y).

If Φ is monotone concave, then the order of terms on the left-hand side of (4.2) is reversed.
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Remark 4.2 Since the right-hand side of (4.1) is non-negative, we get (2.18) as an im-
mediate consequence of Theorem 4.1 and Remark 4.1 Consequently, our new result can be
regarded as a refinement of the general weighted Hardy-type inequality (2.18). The same
holds also for a concave function Φ.

Although (4.1) holds for all convex (or concave) functions, some choices of Φ are of
particular interest. Namely, we shall consider power and exponential functions. To start
with, let p ∈ R\{0} and the function Φ : R+ → R be defined by Φ(x) = xp. Obviously, Φ
is monotone, ϕ(x) = Φ′(x) = pxp−1, x ∈ R+, so Φ is convex for p ∈ R\ [0,1), concave for
p ∈ (0,1], and affine, that is, both convex and concave for p = 1. In this setting, we get the
following consequence of Theorem 4.1.

Corollary 4.1 Let Ω1,Ω2,μ1,μ2,u,k,K, and v be as in Theorem 4.1 Let p ∈ R be such
that p �= 0, f : Ω2 → R be a non-negative measurable function (positive for p < 0), Ak f be
defined by (2.15),

Rp,k f (x,y) =
∣∣∣ ∣∣ f p(y)−Ap

k f (x)
∣∣−|p| · |Ak f (x)|p−1 | f (y)−Ak f (x)|

∣∣∣ , (4.11)

and
Mp,k f (x,y) = f p(y)−Ap

k f (x)−|p| · |Ak f (x)|p−1( f (y)−Ak f (x)) (4.12)

for x ∈ Ω1, y ∈ Ω2. If p ≥ 1 or p < 0, then the inequalities∫
Ω2

v(y) f p(y)dμ2(y)−
∫

Ω1

u(x)Ap
k f (x)dμ1(x)

≥
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,y)Rp,k f (x,y)dμ2(y)dμ1(x), (4.13)

∫
Ω2

v(y) f p(y)dμ2(y)−
∫

Ω1

u(x)Ap
k f (x)dμ1(x)

≥
∣∣∣∣∣
∫

Ω1

u(x)
K(x)

∫
Ω2

sgn( f (y)−Ak f (x))k(x,y)Mp,k f (x,y)dμ2(y)dμ1(x)

∣∣∣∣∣
(4.14)

hold, while for p ∈ (0,1) relations (4.13) and (4.14) hold with∫
Ω1

u(x)Ap
k f (x)dμ1(x)−

∫
Ω2

v(y) f p(y)dμ2(y)

on its left-hand side.

Remark 4.3 Note that relations (4.13) and (4.14) are trivial for p = 1, since both of its
sides are equal to 0.
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On the other hand, for the convex function Φ : R → R, Φ(x) = ex, we have ϕ(x) =
Φ′(x) = ex and the following new general refined weighted Pólya-Knopp-type inequality
with a kernel, which is a generalization and refinement of the classical Pólya-Knopp’s
inequality (0.2).

Corollary 4.2 Let Ω1,Ω2,μ1,μ2,u,k,K, and v be as in Theorem 4.1 and let p∈ R, p �= 0.
Then the inequality ∫

Ω2

v(y) f p(y)dμ2(y)−
∫

Ω1

u(x)Gp
k f (x)dμ1(x)

≥
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,y)Sp,k f (x,y)dμ2(y)dμ1(x) (4.15)

holds for all positive measurable functions f on Ω2, where Gk f (x) and Sp,k f (x,y) are
defined for x ∈ Ω1 and y ∈ Ω2 by

Gk f (x) = exp

(
1

K(x)

∫
Ω2

k(x,y) log f (y)dμ2(y)
)

(4.16)

and

Sp,k f (x,y) =
∣∣∣∣ ∣∣ f p(y)−Gp

k f (x)
∣∣−|p|Gp

k (x)
∣∣∣∣log

f (y)
Gk f (x)

∣∣∣∣ ∣∣∣∣ . (4.17)

In particular, for p = 1 we get∫
Ω2

v(y) f (y)dμ2(y)−
∫

Ω1

u(x)Gk f (x)dμ1(x) ≥
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,y)×

×
∣∣∣∣ | f (y)−Gk f (x)|−Gk(x)

∣∣∣∣ log
f (y)

Gk f (x)

∣∣∣∣ ∣∣∣∣ dμ2(y)dμ1(x). (4.18)

Moreover, relations (4.15) and (4.18) are equivalent.
Let p > 0, Gk be defined by (4.16),

Pp,k f (x,y) = f p(y)−Gp
k f (x)− p |Gp

k (x)| log
f (y)

Gk f (x)
(4.19)

and f : Ω2 → R be a positive measurable function. Then the following inequality holds∫
Ω2

v(y) f p(y)dμ2(y)−
∫

Ω1

u(x)(Gp
k f (x))dμ1(x)

≥
∣∣∣∫
Ω1

u(x)
K(x)

∫
Ω2

sgn( f (y)−Gk f (x))k(x,y)Pp,k f (x,y)dμ2(y)dμ1(x)
∣∣∣.

Proof. Apply (4.1) with Φ : R → R, Φ(x) = ex, and replace the function f with p log f .
Note that Gk f = exp(Ak(log f )) and Gk f p = Gp

k f , so equivalence of (4.15) and (4.18) is
evident. �

Now, we consider the simplest kernels k, that is, those with separate variables. As a
corollary of Theorem 4.1 in this setting, we get a refined general Jensen’s inequality.
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Corollary 4.3 Suppose Ω is a measure space with a positive σ -finite measure μ , m ∈
L1(Ω,μ) is a non-negative function such that |m|1 > 0, a real function Φ is convex on an
interval I ⊆R, and ϕ : I → R is any function such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I. Then
the inequality∫

Ω
m(y)Φ( f (y))dμ(y)−|m|1Φ(Am f )

≥
∫

Ω
m(y) | |Φ( f (y))−Φ(Am f )|− |ϕ(Am f )| · | f (y)−Am f | |dμ(y)

(4.20)

holds for all measurable functions f : Ω → R with values in I, where

Am f =
1

|m|1
∫

Ω
m(y) f (y)dμ(y). (4.21)

If the function Φ is concave, the order of integrals on the left-hand side of (4.20) is reversed.

Proof. Suppose that in Theorem 4.1 we have Ω2 = Ω, μ2 = μ , u ∈ L1(Ω1,μ1) such
that |u|1 > 0, and k of the form k(x,y) = l(x)m(y), for some positive measurable function
l : Ω1 → R. Then K(x) = |m|1l(x) and Ak f (x) = Am f ∈ I, x ∈ Ω1, while v(y) = |u|1

|m|1 m(y),
y ∈ Ω. Thus, (4.1) reduces to (4.20) and it does not depend on Ω1, l, and u. �

Remark 4.4 Observe that, for 0 < |Ω|μ < ∞ and m(y) ≡ 1 on Ω, we have |m|1 = |Ω|μ ,
so (4.20) becomes the classical refined Jensen’s inequality

1
|Ω|μ

∫
Ω

Φ( f (y))dμ(y)−Φ(A f )

≥ 1
|Ω|μ

∫
Ω
| |Φ( f (y))−Φ(A f )|− |ϕ(A f )| · | f (y)−A f | |dμ(y),

where

A f =
1

|Ω|μ
∫

Ω
f (y)dμ(y). (4.22)

In the sequel, the general results are applied to particular measure spaces, convex func-
tions, weights, and kernels. This enables us to refine and even generalize some important
inequalities previously known from the literature.

First, we consider an one-dimensional setting, with intervals in R and the Lebesgue
measure, to get refined Hardy and Pólya-Knopp-type inequalities, as well as related dual
relations. In the following theorem, we state and prove a refinement of a Hardy-type in-
equality obtained by S. Kaijser et al. in [65].

Theorem 4.2 Let 0 < b ≤ ∞ and k : (0,b)× (0,b) → R be a non-negative measurable
function, such that

K(x) =
x∫

0

k(x,y) dy > 0, x ∈ (0,b). (4.23)
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Let a weight u : (0,b) → R be such that the function x �→ u(x)
x · k(x,y)

K(x) is integrable on (y,b)
for each fixed y ∈ (0,b), and let the function w : (0,b) → R be defined by

w(y) = y
∫ b

y

k(x,y)
K(x)

u(x)
dx
x

.

If Φ is a convex function on an interval I ⊆ R and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for
all x ∈ Int I, then the inequality

b∫
0

w(y)Φ( f (y))
dy
y
−

b∫
0

u(x)Φ(Ak f (x))
dx
x

≥
b∫

0

u(x)
K(x)

x∫
0

k(x,y)×

× ||Φ( f (y))−Φ(Ak f (x))|− |ϕ(Ak f (x))| · | f (y)−Ak f (x)| |dy
dx
x

(4.24)

holds for all measurable functions f : (0,b) → R with values in I and for Ak f defined by

Ak f (x) =
1

K(x)

x∫
0

k(x,y) f (y) dy, x ∈ (0,b). (4.25)

If the function Φ is concave, the order of integrals on the left-hand side of (4.24) is
reversed. If Φ is monotone convex on the interval I ⊆ R and ϕ : I → R is such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI, then the following inequality

b∫
0

w(y)Φ( f (y))
dy
y
−

b∫
0

u(x)Φ(Ak f (x))
dx
x

≥
∣∣∣ b∫

0

u(x)
K(x)

x∫
0

sgn( f (y)−Ak f (x))k(x,y)
[
Φ( f (y)−Φ(Ak f (x))

−|ϕ(Ak f (x))|.( f (y)−Ak f (x))
]
dy

dx
x

∣∣∣ (4.26)

holds for all measurable functions f : (0,b) → R with values in I.

Proof. Denote T1 = {(x,y) ∈ R
2
+ : 0 < y≤ x < b} and set Ω1 = Ω2 = (0,b) in Theorem

4.1. Relation (4.24) follows from (4.1) by replacing dμ1(x), dμ2(y), u(x), and k(x,y)
respectively with dx, dy, u(x)

x , and k(x,y)χT1 (x,y). In this case, (2.15) reduces to (4.25),
while (2.16) becomes (4.23). Moreover, w(y) = yv(y), y ∈ (0,b). Similarly we obtain
(4.26). �

Remark 4.5 Since the right-hand side of inequality (4.24) is non-negative, Theorem 4.2
can be seen as a refinement of Theorem 1.5 in [65]. In particular, for k(x,y) ≡ 1, x,y ∈
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(0,b), and the classical Hardy’s operator

H f (x) =
1
x

x∫
0

f (y)dy, x ∈ (0,b),

we get a refinement of Theorem 1 in [30], that is, the refined Hardy-type inequality for
convex functions,

b∫
0

w(y)Φ( f (y))
dy
y
−

b∫
0

u(x)Φ(H f (x))
dx
x

≥
b∫

0

u(x)
x2

x∫
0

| |Φ( f (y))−Φ(H f (x))| − |ϕ(H f (x))| · | f (y)−H f (x)| |dydx,

where

w(y) = y
∫ b

y

u(x)
x2 dx, y ∈ (0,b).

Observing that the right-hand side of the above inequality is greater than∣∣∣∣∣∣
b∫

0

u(x)
x∫

0

|Φ( f (y))−Φ(H f (x))|dy
dx
x2

−
b∫

0

u(x) |ϕ(H f (x))|
x∫

0

| f (y)−H f (x)|dy
dx
x2

∣∣∣∣∣∣ ,
we obtain Theorem 2.2 in [21]. Therefore, Theorem 4.2 generalizes the result mentioned.

Applying Theorem 4.2 to power and exponential functions, we get the following two
corollaries.

Corollary 4.4 Let 0 < b ≤ ∞ and k, K, u, and w be as in Theorem 4.2. Let p ∈ R be
such that p �= 0, f be a non-negative measurable function on (0,b) ( f positive for p < 0),
and let Ak f ,Rp,k f and Mp,k be defined by (4.25), (4.11) and (4.12) respectively. If p > 1 or
p < 0, then

b∫
0

w(y) f p(y)
dy
y
−

b∫
0

u(x)Ap
k f (x)

dx
x

≥
b∫

0

u(x)
K(x)

x∫
0

k(x,y)Rp,k f (x,y)dy
dx
x

, (4.27)

while for p ∈ (0,1) the order of integrals on the left-hand side of (4.27) is reversed. If
p = 1, then both-hand sides of (4.27) are equal to 0.
Let p > 1 and f be a positive measurable function on (0,b). Then the following inequality
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holds

b∫
0

w(y) f p(y)
dy
y
−

b∫
0

u(x)(Ak f (x))p dx
x

≥
∣∣∣ b∫

0

u(x)
K(x)

x∫
0

sgn( f (y)−Ak f )k(x,y)Mp,k f (x,y)dy
dx
x

∣∣∣. (4.28)

If p ∈ (0,1), then the order of terms on the left-hand side of relation (4.28) is reversed.

Corollary 4.5 Let 0 < b ≤ ∞, k, K, u, and w be as in Theorem 4.2, and let p ∈ R be such
that p �= 0. If f is a positive measurable function on (0,b),

Gk f (x) = exp

⎛⎝ 1
K(x)

x∫
0

k(x,y) log f (y)dy

⎞⎠ , x ∈ (0,b),

and Sp,k f is defined by (4.17), then

b∫
0

w(y) f p(y)
dy
y
−

b∫
0

u(x)Gp
k f (x)

dx
x

≥
b∫

0

u(x)
K(x)

x∫
0

k(x,y)Sp,k f (x,y)dy
dx
x

. (4.29)

Moreover, for p = 1 we have

b∫
0

w(y) f (y)
dy
y
−

b∫
0

u(x)Gk f (x)
dx
x

≥
b∫

0

u(x)
K(x)

x∫
0

k(x,y)×

×
∣∣∣∣ | f (y)−Gk f (x)|−Gk(x)

∣∣∣∣ log
f (y)

Gk f (x)

∣∣∣∣ ∣∣∣∣dy
dx
x

(4.30)

and relations (4.29) and (4.30) are equivalent.
Let p > 1 and f be a positive measurable function on (0,b). Then the following inequality
holds

b∫
0

w(y) f p(y)
dy
y
−

b∫
0

u(x)(Gp
k f (x))

dx
x

≥
∣∣∣ b∫

0

u(x)
K(x)

x∫
0

sgn( f (y)−Gk f (x))k(x,y)Pp,k f (x,y)dy
dx
x

∣∣∣,
where Pp,k is given by (4.19).

The above results can be applied to some important particular kernels. Namely, in the
following example we discuss refined Hardy and Pólya-Knopp-type inequalities related to
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the Riemann-Liouville operator

Rγ f (x) =
γ
xγ

x∫
0

(x− y)γ−1 f (y)dy, (4.31)

where γ ∈ R+. Of course, for γ = 1 we have R1 = H, that is, the classical Hardy’s integral
operator.

Example 4.1 Suppose 0 < b ≤ ∞, γ ∈ R+, and T1 is as in the proof of Theorem 4.2. If
u(x) ≡ 1, k(x,y) = γ

xγ (x− y)γ−1χT1(x,y), and Rγ f (x) is as in (4.31), then inequality (4.24)
reads

b∫
0

(
1− y

b

)γ
Φ( f (y))

dy
y
−

b∫
0

Φ(Rγ f (x))
dx
x

≥ γ
b∫

0

x∫
0

(x− y)γ−1×

× ∣∣ ∣∣Φ( f (y))−Φ(Rγ f (x))
∣∣− ∣∣ϕ(Rγ f (x))

∣∣ · ∣∣ f (y)−Rγ f (x)
∣∣ ∣∣dy

dx
xγ+1 ,

(4.32)

so we obtained a refinement of Example 4.2 in [65]. We also obtain the following result,
since (4.26) becomes

b∫
0

(
1− y

b

)γ
Φ( f (y))

dy
y
−

b∫
0

Φ
(
Rγ f (x)

) dx
x

≥
∣∣∣∣∣γ

b∫
0

x∫
0

sgn( f (y)−Ak f )(x− y)γ−1
[
Φ( f (y)−Φ(Rγ f (x))

−|ϕ(Rγ f (x))| · ( f (y)−Rγ f (x))
]
dy

dx
xγ+1

∣∣∣∣∣.
As in Corollaries 4.4 and 4.5, relation (4.32) can be considered with Φ being a power

or exponential function. In particular, let p,k ∈R be such that k−1
p > 0, f be a non-negative

function on (0,b) (positive for p < 0), and

R f (x) =
x∫

0

[
1−

(y
x

) k−1
p
]γ−1

f (y)dy, x ∈ (0,b).

Rewrite (4.32) for Φ(x) = xp and substitute b
k−1

p and f
(
y

p
k−1

)
y

p
k−1−1 instead of b and f (y)
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respectively. After suitable variable changes, for p ≥ 1 and p < 0 we get

(
p

γ(k−1)

)p b∫
0

[
1−

(x
b

) k−1
p
]γ

xp−k f p(x)dx−
b∫

0

x−kRp f (x)dx

≥
∣∣∣∣∣∣
(

p
γ(k−1)

)p−1 b∫
0

x
1−k

p −1
x∫

0

[
1−

(y
x

) k−1
p
]γ−1

y
k−1

p −1×

×
∣∣∣∣yp−k+1 f p(y)−

(
γ(k−1)

p

)p

x1−kRp f (x)
∣∣∣∣dydx

− |p|
b∫

0

x−kRp−1 f (x)
x∫

0

[
1−

(y
x

) k−1
p
]γ−1

×

×
∣∣∣∣ f (y)− k−1

p
· γ
y

(y
x

) k−1
p

R f (x)
∣∣∣∣dydx

∣∣∣∣ ,
(4.33)

while for p ∈ (0,1) the order of integrals on the left-hand side of (4.33) is reversed. Note
that for γ = 1 inequality (4.33) reduces to the refined strengthened Hardy’s inequality from
Corollary 3.1 in [21]. Moreover, for b = ∞ and p = k we obtain a refinement of the classical
Hardy’s inequality (0.1).

On the other hand, for γ = 1, Φ(x) = ex, a positive function f on (0,b), f (y) replaced
with log(y f (y)), and

Gf (x) = exp

(
1
x

∫ x

0
log f (y)dy

)
, x ∈ (0,b), (4.34)

relation (4.32) becomes

e
∫ b

0

(
1− y

b

)
f (y)dy−

b∫
0

Gf (x)dx ≥
∣∣∣∣∣∣

b∫
0

x∫
0

|ey f (y)− xG f (x)|dy
dx
x2

−
b∫

0

Gf (x)
x∫

0

∣∣∣∣log

(
ey f (y)
xG f (x)

)∣∣∣∣dy
dx
x

∣∣∣∣∣∣ ,
so we obtained the refined strengthened Pólya-Knopp’s inequality from Corollary 3.3 in
[21]. In the case when b = ∞, we get a refinement of the classical Pólya-Knopp’s inequality
(0.2). �

We continue by formulating results dual to Theorem 4.2 and its corollaries. They are
derived from Theorem 4.1 by similar arguments. The following theorem is dual to Theorem
4.2.
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Theorem 4.3 For 0 ≤ b < ∞, let k : (b,∞)× (b,∞) → R be a non-negative measurable
function, such that

K̃(x) =
∞∫

x

k(x,y) dy > 0, x ∈ (b,∞), (4.35)

and a weight u : (b,∞) → R be such that the function x �→ u(x)
x · k(x,y)

K̃(x) is integrable on (b,y)
for each fixed y ∈ (b,∞). Let the function w̃ : (b,∞) → R be defined by

w̃(y) = y
∫ y

b

k(x,y)
K̃(x)

u(x)
dx
x

.

If Φ is a convex function on an interval I ⊆ R and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for
all x ∈ IntI, then the inequality

∞∫
b

w̃(y)Φ( f (y))
dy
y
−

∞∫
b

u(x)Φ(Ãk f (x))
dx
x

≥
∞∫

b

u(x)
K̃(x)

∞∫
x

k(x,y)×

× ∣∣ ∣∣Φ( f (y))−Φ(Ãk f (x))
∣∣− ∣∣ϕ(Ãk f (x))

∣∣ · ∣∣ f (y)− Ãk f (x)
∣∣ ∣∣dy

dx
x

(4.36)

holds for all measurable functions f : (b,∞) → R with values in I and for Ãk f defined by

Ãk f (x) =
1

K̃(x)

∞∫
x

k(x,y) f (y) dy, x ∈ (b,∞). (4.37)

If the function Φ is concave, the order of integrals on the left-hand side of (4.37) is re-
versed.
If Φ is a monotone convex on an interval I ⊆R, and ϕ : I → R such that ϕ(x) ∈ ∂Φ(x) for
all x ∈ IntI, the the following inequality

∞∫
b

w̃(y)Φ( f (y))
dy
y
−

∞∫
b

u(x)Φ
(
Ãk f (x)

) dx
x

≥
∣∣∣ ∞∫

b

u(x)
K̃(x)

∞∫
x

sgn( f (y)− Ãk f )k(x,y)
[
Φ( f (y))−Φ(Ãk f (x))

−|ϕ(Ãk f (x))|.( f (y)− Ãk f (x))
]
dy

dx
x

∣∣∣ (4.38)

holds for all measurable functions f : (b,∞) → R with values in I.

Proof. Let T2 = {(x,y) ∈ R
2
+ : b < x ≤ y < ∞}. Inequality (4.36) follows directly from

Theorem 4.1, rewritten with Ω1 = Ω2 = (b,∞), dμ1(x) = dx, dμ2(y) = dy, and with u(x)
x

and k(x,y)χT2(x,y) instead of u(x) and k(x,y). Note that (2.15) and (2.16) respectively
become (4.37) and (4.35), while w̃(y) = yv(y), y ∈ (b,∞). Similarly we obtain (4.38). �
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Remark 4.6 Note that Theorem 4.3 provides a refinement of Theorem 4.3 in [65]. Fur-
thermore, by setting k(x,y) = 1

y2 , x,y ∈ (b,∞), and denoting

H̃ f (x) = x
∫ ∞

x
f (y)

dy
y2 , x ∈ (b,∞),

inequality (4.36) reduces to the following refined dual Hardy-type inequality for convex
functions:∫ ∞

b
w̃(y)Φ( f (y))

dy
y
−
∫ ∞

b
u(x)Φ(H̃ f (x))

dx
x

≥
∫ ∞

b
u(x)

∫ ∞

x

∣∣ ∣∣Φ( f (y))−Φ(H̃ f (x))
∣∣− ∣∣ϕ(H̃ f (x))

∣∣ · ∣∣ f (y)− H̃ f (x)
∣∣ ∣∣ dy

y2 dx,

where

w̃(y) =
1
y

∫ y

b
u(x)dx, y ∈ (b,∞).

Since the right-hand side of this inequality is not less than∣∣∣∣∫ ∞

b
u(x)

∫ ∞

x

∣∣Φ( f (y))−Φ(H̃ f (x))
∣∣ dy
y2 dx

−
∫ ∞

b
u(x)

∣∣ϕ(H̃ f (x))
∣∣∫ ∞

x

∣∣ f (y)− H̃ f (x)
∣∣ dy
y2 dx

∣∣∣∣ ,
as a consequence of our result we get Theorem 2.3 in [21]. Similarly, we obtain as a special
case of (4.38) the following result

∞∫
b

(
1− b

y

)
Φ( f (y))

dy
y
−

∞∫
b

Φ
(
H̃ f (x)

) dx
x

≥
∣∣∣ ∞∫

b

∞∫
x

sgn( f (y)− H̃ f (x))
[
Φ( f (y))−Φ(H̃ f (x))

−|ϕ(H̃ f (x))| · ( f (y)− H̃ f (x))
] dy

y2 dx
∣∣∣.

The next two corollaries are dual to Corollary 4.4 and Corollary 4.5.

Corollary 4.6 Let 0 ≤ b < ∞ and let k, K̃, u, and w̃ be as in Theorem 4.3. For p ∈ R,
p �= 0, and a non-negative measurable function f on (b,∞) ( f positive for p < 0), let Ãk f
be defined by (4.37) and

R̃p,k f (x,y) =
∣∣∣ ∣∣ f p(y)− Ãp

k f (x)
∣∣−|p| · ∣∣Ãk f (x)

∣∣p−1 ∣∣ f (y)− Ãk f (x)
∣∣ ∣∣∣ ,

for x,y ∈ (b,∞). Then the inequality

∞∫
b

w̃(y) f p(y)
dy
y
−

∞∫
b

u(x)Ãp
k f (x)

dx
x

≥
∞∫

b

u(x)
K̃(x)

∞∫
x

k(x,y)R̃p,k f (x,y)dy
dx
x

(4.39)
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holds for p > 1 and p < 0. For p ∈ (0,1) the order of integrals on the left-hand side of
(4.39) is reversed, while for p = 1 its both-hand sides are equal to 0.
Let p > 1, f be a non-negative measurable function on (b,∞). Then the following inequal-
ity holds

∞∫
b

w̃(y) f p(y)
dy
y
−

∞∫
b

u(x)
(
Ãk f (x)

)p dx
x

≥
∣∣∣ ∞∫

b

u(x)
K̃(x)

∞∫
x

sgn( f (y)− Ãk f )k(x,y)
[
f p(y)− (Ãk f (x))p

−p|Ãk f (x)|p−1.( f (y)− Ãk f (x))
]
dy

dx
x

∣∣∣.
Corollary 4.7 Suppose that p ∈ R \ {0}, 0 ≤ b < ∞, and that k, K̃, u, and w̃ are as in
Theorem 4.3. If f is a positive measurable function on (b,∞),

G̃k f (x) = exp

⎛⎝ 1

K̃(x)

∞∫
x

k(x,y) log f (y)dy

⎞⎠ , x ∈ (b,∞),

and

S̃p,k f (x,y) =
∣∣∣∣ ∣∣ f p(y)− G̃p

k f (x)
∣∣−|p|G̃p

k (x)
∣∣∣∣log

f (y)
G̃k f (x)

∣∣∣∣ ∣∣∣∣ , x,y ∈ (b,∞),

then the inequality
∞∫

b

w̃(y) f p(y)
dy
y
−

∞∫
b

u(x)G̃p
k f (x)

dx
x

≥
∞∫

b

u(x)
K̃(x)

∞∫
x

k(x,y)S̃p,k f (x,y)dy
dx
x

(4.40)

holds. In particular, for p = 1 we have

∞∫
b

w̃(y) f (y)
dy
y
−

∞∫
b

u(x)G̃k f (x)
dx
x

≥
∞∫

b

u(x)
K̃(x)

∞∫
x

k(x,y)×

×
∣∣∣∣ ∣∣ f (y)− G̃k f (x)

∣∣− G̃k(x)
∣∣∣∣ log

f (y)
G̃k f (x)

∣∣∣∣ ∣∣∣∣dy
dx
x

(4.41)

and relations (4.40) and (4.41) are equivalent.

We conclude this section by giving results dual to those from Example 4.1, that is, by
explicating refined Hardy and Pólya-Knopp-type inequalities related to Weyl’s fractional
integral operator

Wγ f (x) = γx

∞∫
x

(y− x)γ−1 f (y)
dy

yγ+1 , (4.42)

where γ ∈ R+. Note that W1 = H̃, that is, for γ = 1 we get the classical dual Hardy’s
integral operator and related inequalities.
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Example 4.2 Let 0 ≤ b < ∞, γ ∈ R+, and T2 be as in the proof of Theorem 4.3. For
u(x) ≡ 1, k(x,y) = γ x

yγ+1 (y− x)γ−1χT2(x,y), and Wγ f (x) as in (4.42), inequality (4.36)
becomes

∞∫
b

(
1− b

y

)γ
Φ( f (y))

dy
y
−

∞∫
b

Φ(Wγ f (x))
dx
x

≥ γ
∞∫

b

∞∫
x

(y− x)γ−1×

× ∣∣ ∣∣Φ( f (y))−Φ(Wγ f (x))
∣∣−∣∣ϕ(Wγ f (x))

∣∣ · ∣∣ f (y)−Wγ f (x)
∣∣ ∣∣ dy

yγ+1 dx. (4.43)

Similarly, as s special case of (4.38) we obtain the following result

∞∫
b

(
1− b

y

)γ
Φ( f (y))

dy
y
−

∞∫
b

Φ
(
Wγ f (x)

) dx
x

≥
∣∣∣γ ∞∫

b

∞∫
x

sgn( f (y)−Wγ f )(y− x)γ−1 (Φ( f (y)−Φ(Wγ f (x))

−|ϕ(Wγ f )| · ( f (y)−Wγ f (x))
dy

yγ+1 dx)
∣∣∣.

Now, we apply (4.43) to power and exponential functions. Namely, let p,k ∈ R be such
that p

1−k > 0, f be a non-negative measurable function on (b,∞) ( f positive for p < 0),

W f (x) =
∞∫

x

[
1−

(
x
y

) 1−k
p
]γ−1

f (y)dy, x ∈ (b,∞),

and Φ(x) = xp. Rewrite (4.43) with b
1−k
p and f

(
y

p
1−k

)
y

p
1−k +1 instead of b and f (y) re-

spectively. After some variable substitutions, for p ≥ 1 and p < 0 we obtain the inequality(
p

γ(1− k)

)p ∞∫
b

[
1−

(
b
x

) 1−k
p
]γ

xp−k f p(x)dx−
∞∫

b

x−kW p f (x)dx

≥
∣∣∣∣∣∣
(

p
γ(1− k)

)p−1 ∞∫
b

x
1−k

p −1
∞∫

x

[
1−

(
x
y

) 1−k
p
]γ−1

y
k−1
p −1×

×
∣∣∣∣yp−k+1 f p(y)−

(
γ(1− k)

p

)p

x1−kW p f (x)
∣∣∣∣ dydx

− |p|
∞∫

b

x−kW p−1 f (x)
∞∫

x

[
1−

(
x
y

) 1−k
p
]γ−1

×

×
∣∣∣∣∣ f (y)− (1− k)

p
· γ
y

(
x
y

) 1−k
p

W f (x)

∣∣∣∣∣ dydx

∣∣∣∣∣ . (4.44)
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For p∈ (0,1), relation (4.44) holds with integrals on its left-hand side written in the re-
verse order. Moreover, if γ = 1, then (4.44) becomes the refined strengthened dual Hardy’s
inequality from Corollary 3.2 in [21].

In the case when γ = 1, Φ(x) = ex, f is a positive function on (b,∞), and

G̃ f (x) = exp

⎛⎝x

∞∫
x

log f (y)
dy
y2

⎞⎠ , x ∈ (b,∞),

after substituting log(y f (y)) instead of f (y), relation (4.43) reads

1
e

∞∫
b

(
1− b

x

)
f (x)dx−

∞∫
b

G̃ f (x)dx ≥
∣∣∣∣∣∣

∞∫
b

∞∫
x

∣∣∣∣1e y f (y)− xG̃ f (x)
∣∣∣∣ dy

y2 dx

−
∞∫

b

xG̃ f (x)
∞∫

x

∣∣∣∣log

(
y f (y)

exG̃ f (x)

)∣∣∣∣ dy
y2 dx

∣∣∣∣∣∣ ,
that is, it is reduced to the refined strengthened dual Pólya-Knopp’s inequality given in
Corollary 3.4 in [21]. �

4.2 One-dimensional refined Hardy-Hilbert-type
inequalities

We continue the above analysis by considering some important kernels related to Ω1 =
Ω2 = R+ and by assuming that dμ1(x) = dx, dμ2(y) = dy, and that Φ : R+ → R is given
by Φ(x) = xp, where p ∈ R, p �= 0. In this setting, Corollary 4.1 provides new refinements
of some well-known one-dimensional Hardy-Hilbert-type inequalities.

First, we obtain a generalization and a refinement of the classical Hardy-Hilbert’s in-
equality (2.2). It is given in the following example.

Example 4.3 For p ∈ R \ {0}, let s ∈ R be such that s−2
p , s−2

p′ > −1 and the kernel

k : R
2
+ → R be defined by k(x,y) =

( y
x

) s−2
p (x + y)−s. Let α ∈

(
− s−2

p′ −1, s−2
p +1

)
be

arbitrary and the weight u : R+ → R be given by u(x) = xα−1. Set

C1 = B

(
s−2

p
−α +1,

s−2
p′

+ α +1

)
and C2 = B

(
s−2

p
+1,

s−2
p′

+1

)
,

where B(·, ·) denotes the usual Beta function. Let f be a non-negative function on R+
(positive, if p < 0) and S f its generalized Stieltjes transform,

S f (x) =
∞∫

0

f (y)
(x+ y)s dy, x ∈ R+
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(see [8] and [97] for further information). Corollary 4.1, rewritten with f (y)y
2−s
p instead

of f (y), implies that the inequality

C1C
p−1
2

∞∫
0

yα−s+1 f p(y)dy−
∞∫

0

xα+(s−1)(p−1)Sp f (x)dx

≥
∣∣∣∣∣∣Cp−1

2

∞∫
0

x
α+ s−2

p′
∞∫

0

y
s−2
p

(x+ y)s

∣∣∣∣∣ f p(y)y2−s− x(s−1)(p−1)+1

Cp
2

Sp f (x)

∣∣∣∣∣ dydx

− |p|
∞∫

0

xα+(s−1)(p−1)
∞∫

0

Sp−1 f (x)
(x+ y)s

∣∣∣∣ f (y)− 1
C2

x
s−2
p′ +1

y
s−2
p S f (x)

∣∣∣∣ dydx

∣∣∣∣∣∣
(4.45)

holds for p ≥ 1 and p < 0, while for p ∈ (0,1) it holds with the reverse order of the
integrals on its left-hand side. In particular, for α = 0 we get a refinement of the gen-
eral Hardy-Hilbert-type inequality from [104], with the best possible constant C = Cp

2 =

Bp
(

s−2
p +1, s−2

p′ +1
)
. Moreover, for p > 1, α = 0, and s = 1, we have C1 = C2 =

B
(

1
p , 1

p′
)

= π
sin π

p
, so relation (4.45) provides a new refinement of the classical Hardy-

Hilbert’s inequality (2.2). Analogously, from (4.14) we can also obtain refinement of the
classical Hardy-Hilbert’s inequality (2.2), but we omit the details here. �

Similarly, in the next example we generalize and refine the classical Hardy-Littlewood-
Pólya’s inequality

∞∫
0

⎛⎝ ∞∫
0

f (y)
max{x,y}

⎞⎠p

dy ≤ (
pp′

)p
∞∫

0

f p(y)dy, (4.46)

which holds for 1 < p < ∞ and non-negative functions f ∈ Lp(R+).

Example 4.4 Let the real parameters p, s, α , and the weight function u be as in Example

4.3. Define the kernel k : R
2
+ → R by k(x,y) =

( y
x

) s−2
p max{x,y}−s and for a non-negative

function f on R+ (positive for p < 0) set

L f (x) =
∞∫

0

f (y)
max{x,y}s dy, x ∈ R+.

Finally, denote

D1 =
pp′s

(p− pα + s−2)(α p′+ p′+ s−2)
and D2 =

pp′s
(p+ s−2)(p′+ s−2)

.
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Applying the same procedure as in Example 4.3, we obtain that the inequality

D1D
p−1
2

∞∫
0

yα−s+1 f p(y)dy−
∞∫

0

xα+(s−1)(p−1)Lp f (x)dx

≥
∣∣∣∣∣∣Dp−1

2

∞∫
0

x
α+ s−2

p′
∞∫

0

y
s−2
p

max{x,y}s

∣∣∣∣∣ f p(y)y2−s− x(s−1)(p−1)+1

Dp
2

Lp f (x)

∣∣∣∣∣ dydx

− |p|
∞∫

0

xα+(s−1)(p−1)
∞∫

0

Lp−1 f (x)
max{x,y}s

∣∣∣∣ f (y)− 1
D2

x
s−2
p′ +1

y
s−2
p L f (x)

∣∣∣∣ dydx

∣∣∣∣∣∣
(4.47)

holds for p ≥ 1 and p < 0, while for p ∈ (0,1) it holds with the integrals on its left-hand

side given in the reverse order. Note that the constant C = Dp
2 =

[
pp′s

(p+s−2)(p′+s−2)

]p
is the

best possible for the Hardy-Littlewood-Pólya-type inequalities with α = 0. As a special
case, for p > 1, α = 0, and s = 1, we get D1 = D2 = pp′, that is, relation (4.47) is a
new refinement of the classical Hardy-Littlewood-Pólya’s inequality (see [51] for further
details). Analogously, from (4.14) we can also obtain a refinement of the classical Hardy-
Littlewood-Pólya’s inequality, but we omit the details here. �

To calculate the integrals in our last example of the refined Hardy-Hilbert-type inequal-
ities, we used the well-known reflection formula for the Digamma function ψ ,

∞∫
0

logx
x−1

x−αdx = ψ ′(1−α)+ ψ ′(α) =
π2

sin2 πα
,

where α ∈ (0,1) (for details on ψ see [1]).

Example 4.5 As in the previous examples, let p∈ R, p �= 0. For α ∈ (0,1), let the kernel

k be defined on R
2
+ by k(x,y) = logy−logx

y−x

(
x
y

)α
and the weight u : R+ → R by u(x) = xβ ,

where β ∈ (−α −1,−1). For a non-negative function f on R+ (positive for p < 0), let

M f (x) =
∞∫

0

logy− logx
y− x

f (y)dy, x ∈ R+.

Corollary 4.1, applied with the function y �→ f (y)yα instead of f , then implies the inequal-
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ity

π2p

sin2(p−1) πα · sin2 π(α + β )

∞∫
0

ypα+β f p(y)dy−
∞∫

0

xpα+βMp f (x)dx

≥
∣∣∣∣∣∣
( π

sinπα

)2(p−1)
∞∫

0

xα+β
∞∫

0

logy− logx
y− x

y−α ×

×
∣∣∣∣∣ f p(y)ypα −

(
sinπα

π

)2p

xpαMp f (x)

∣∣∣∣∣ dydx

− |p|
∞∫

0

xpα+β Mp−1 f (x)
∞∫

0

logy− logx
y− x

×

×
∣∣∣∣ f (y)− sin2 πα

π2

(
x
y

)α
M f (x)

∣∣∣∣ dydx

∣∣∣∣ (4.48)

for p ≥ 1 and p < 0, while for p ∈ (0,1) the order of the integrals on the left-hand side of
(4.48) is reversed. Especially, for p > 1, α = 1

p , and β = −1, the left-hand side of (4.48)
becomes (

π
sin π

p

)2p ∞∫
0

f p(y)dy−
∞∫

0

Mp f (x)dx.

Since the above expression is positive (unless f ≡ 0) and bounded from below by a positive
constant, relation (4.48) provides a generalization and a refinement of another classical
Hardy-Hilbert-type inequality. Analogously, from (4.14) we can also obtain a refinement
of the Hardy-Hilbert-type inequality, but we omit the details here. �

4.3 Refined Godunova-type inequalities

We can apply Theorem 4.1 to n-dimensional cells in R
n
+. As a consequence, a generaliza-

tion and a refinement of Godunova’s inequality (2.10) is derived. Applying Theorem 4.1
with Ω1 = Ω2 = R

n
+, the Lebesgue measure dμ1(x) = dx and dμ2(y) = dy, and the kernel

k : R
n
+×R

n
+ → R of the form k(x,y) = l

( y
x

)
, where l : R

n
+ → R is a non-negative measur-

able function, we obtain the following theorem. We omit the results involving monotone
convex function since they are obtained analogously.

Theorem 4.4 Let l and u be non-negative measurable functions on R
n
+, such that 0 <

L(x) = x1 ∫
R

n
+

l(y)dy < ∞ for all x∈ R
n
+, and that the function x �→ u(x)

l( y
x )

L(x) is integrable



4.3 REFINED GODUNOVA-TYPE INEQUALITIES 75

on R
n
+ for each fixed y ∈ R

n
+. Let the function v be defined on R

n
+ by

v(y) =
∫
R

n
+

u(x)
l
( y

x

)
L(x)

dx.

If Φ is a convex function on an interval I ⊆ R and ϕ : I → R is any function such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality∫

R
n
+

v(y)Φ( f (y))dy−
∫
R

n
+

u(x)Φ(Al f (x))dx

≥
∫
R

n
+

u(x)
L(x)

∫
R

n
+

l
(y

x

)
RΦ,l f (x,y)dydx (4.49)

holds for all measurable functions f :Rn
+→R with values in I, where Al f (x) and RΦ,l f (x,y)

are defined for x,y ∈ R
n
+ by

Al f (x) =
1

L(x)

∫
R

n
+

l
(y

x

)
f (y)dy

and

RΦ,l f (x,y) = | |Φ( f (y))−Φ(Al f (x))|− |ϕ(Al f (x))| · | f (y)−Al f (x)| | . (4.50)

If the function Φ is concave, the order of integrals on the left-hand side of (4.49) is reversed.

Especially, for
∫
R

n
+

l(t)dt = 1 and u(x) = x−1, Theorem 4.4 becomes the following

refinement of Godunova’s inequality (2.10).

Corollary 4.8 Let l : R
n
+ →R be a non-negativemeasurable function and

∫
R

n
+

l(t)dt = 1.

If Φ is a convex function on an interval I ⊆ R and ϕ : I → R is any function such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality∫

R
n
+

Φ( f (y))
dy
y

−
∫
R

n
+

Φ(Al f (x))
dx
x

≥
∫
R

n
+

x−2
∫
R

n
+

l
(y

x

)
RΦ,l f (x,y)dydx (4.51)

holds for all measurable functions f : R
n
+ → R with values in I, where

Al f (x) = x−1
∫
R

n
+

l
(y

x

)
f (y)dy, x ∈ R

n
+,

and RΦ,l f is defined by (4.50). If Φ is concave, the integrals on the left-hand side of (4.51)
are given in the reverse order.

To conclude this section, we give n-dimensional analogues of some previous results,
that is, some new multidimensional refined general Hardy-type inequalities. These results
can be regarded as refinements of those obtained in [86]. Namely, the following theorem
is a refinement of Lemma 2.1 in [86].
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Theorem 4.5 Suppose that 0 < b ≤ ∞, that u is a weight on (0,b) such that the function

x �→ u(x)
x2 is locally integrable in (0,b), and that the weight w is defined by

w(y) = y1
∫

(y,b)
u(x)

dx
x2 , y ∈ (0,b).

Let Φ : I → R be a convex function and ϕ : I → R be any function such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ IntI. If f : (0,b) → R is a measurable function such that f (y) ∈ I for all
y ∈ (0,b), and H f (x) and RΦ f (x,y) are defined for x,y ∈ (0,b) by

H f (x) = x−1
∫

(0,x)
f (y)dy

and
RΦ f (x,y) = | |Φ( f (y))−Φ(H f (x))|− |ϕ(H f (x))| · | f (y)−H f (x)| | ,

then ∫
(0,b)

w(y)Φ( f (y))
dy
y1 −

∫
(0,b)

u(x)Φ(H f (x))
dx
x1

≥
∫

(0,b)
u(x)

∫
(0,b)

RΦ f (x,y)dy
dx
x2 . (4.52)

If Φ is concave, the order of integrals on the left-hand side of (4.52) is reversed.

Proof. Let S1 = {(x,y) ∈ R
n
+ ×R

n
+ : 0 < y ≤ x < b} and Ω1 = Ω2 = (0,b). The proof

follows directly from Theorem 4.1, applied with dμ1(x) = dx, dμ2(y) = dy, k(x,y) = χS1 ,

and with u(x) replaced with u(x)
x1 . Note that w(y) = y1v(y). �

Remark 4.7 Observe that for u(x) ≡ 1 we have w(y) =
(
1− y

b

)1
.

Our last result is dual to Theorem 4.5 and provides a refinement of Lemma 2.3 in [86].

Theorem 4.6 For 0 ≤ b < ∞, let u : (b,∞) → R be a locally integrable weight in (b,∞),
and the weight w be given by

w(y) = y−1
∫

(b,y)
u(x)dx, y ∈ (b,∞).

Suppose Φ : I → R is a convex function and ϕ : I → R is any function such that ϕ(x) ∈
∂Φ(x) for all x ∈ IntI. If f : (b,∞) → R is a measurable function such that f (y) ∈ I for all
y ∈ (b,∞), and H̃ f (x) and R̃Φ f (x,y) are defined for x,y ∈ (b,∞) by

H̃ f (x) = x1
∫

(x,∞)
f (y)

dy
y2

and
R̃Φ f (x,y) =

∣∣ ∣∣Φ( f (y))−Φ(H̃ f (x))
∣∣− ∣∣ϕ(H̃ f (x))

∣∣ · ∣∣ f (y)− H̃ f (x)
∣∣ ∣∣ ,
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then the inequality ∫
(b,∞)

w(y)Φ( f (y))
dy
y1 −

∫
(b,∞)

u(x)Φ(H̃ f (x))
dx
x1

≥
∫

(b,∞)
u(x)

∫
(x,∞)

R̃Φ f (x,y)
dy
y2 dx (4.53)

holds. If the function Φ is concave, the order of integrals on the left-hand side of (4.53) is
reversed.

Proof. Let S2 = {(x,y)∈ R
n
+×R

n
+ : b < x≤ y < ∞} and Ω1 = Ω2 = (b,∞). The proof

follows directly from Theorem 4.1, rewritten with the Lebesgue measures dμ1(x) = dx,

dμ2(y) = dy, the kernel k(x,y) = y−2χS2(x,y), and with the weight u(x)
x1 instead of u(x).

Note that w(y) = y1v(y). �

Remark 4.8 Observe that for u(x) ≡ 1 we get w(y) =
(
1− b

y

)1
.

4.4 Refinements of an inequality of G. H. Hardy

Let us continue by taking a non-negative difference between the right-hand side and the
left-hand side of the refined Hardy-type inequality given in (4.1) (see [59]).

ψ(Φ) =
∫

Ω2

v(y)Φ( f (y))dμ2(y)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x)

−
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,y) | |Φ( f (y))−Φ(Ak f (x))|

−|ϕ(Ak f (x))| · | f (y)−Ak f (x)| |dμ2(y)dμ1(x). (4.54)

We can also take the non-negative difference of the left-hand side and the right-hand
side of the inequality given in (4.2) by taking Φ : R+ →R+, Φ(x) = xs,s≥ 1 as (see [59]):

ϒ(s) =
∫

Ω2

v(y) f s(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))sdμ1(x)

−
∣∣∣∣∣
∫

Ω1

u(x)
K(x)

∫
Ω2

sgn( f (y)−Ak f )k(x,y)

[
f s(y)− (Ak f (x))s

−|ϕ(Ak f (x))| · ( f (y)−Ak f (x))

]
dμ2(y)dμ1(x)

∣∣∣∣∣. (4.55)
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We will give some special cases for different fractional integrals and fractional deriva-
tives to establish new inequalities for non-negative differences given in (4.54) and (4.55).

Our first result involving fractional integral of f with respect to another increasing
function g is given in the following Theorem.

Theorem 4.7 Let s ≥ 1, α > 0, f ≥ 0, g be increasing function on (a,b) such that g′ is
continuous on (a,b), Iα

a+;g f denotes the left-sided fractional integral of f with respect to
another increasing function g and ψ1 : R → [0,∞). Then the following inequalities hold:

0 ≤ ψ1(s) ≤ H1(s)−U1(s) ≤ H1(s) (4.56)

and

0 ≤ ϒ1(s) ≤ H1(s)−F1(s) ≤ H1(s), (4.57)

where

ψ1(s) =

⎡⎣ b∫
a

g′(y)(g(b)−g(y))α f s(y)dy

−
b∫

a

g′(x)(g(x)−g(a))α
(

Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
)s

dx

⎤⎦−U1(s)

(4.58)

with

U1(s) = α
b∫

a

x∫
a

g′(x)g′(y)(g(x)−g(y))α−1

∣∣∣∣∣∣∣∣ f s(y)−
(

Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
)s∣∣∣∣

−s

∣∣∣∣ Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
∣∣∣∣s−1

·
∣∣∣∣ f (y)− Γ(α +1)

(g(x)−g(a))α Iα
a+;g f (x)

∣∣∣∣
∣∣∣∣∣dydx,

ϒ1(s) =
b∫

a

g′(y)(g(b)−g(y))α f s(y)dy

−(Γ(α +1))s

b∫
a

g′(x)(g(x)−g(a))α(1−s)(Iα
a+;g f (x)

)s
dx−F1(s)
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with

F1(s) = α

∣∣∣∣∣∣
b∫

a

x∫
a

sgn

(
f (y)− Γ(α +1)

(g(x)−g(a))α Iα
a+;g f (x)

)
g′(x)

×g′(y)(g(x)−g(y))α−1
[

f s(y)−
(

Γ(α+1)
(g(x)−g(a))α Iα

a+;g f (x)
)s

−s

∣∣∣∣ Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
∣∣∣∣s−1

·
(

f (y)− Γ(α+1)
(g(x)−g(a))α Iα

a+;g f (x)
)]

dydx

∣∣∣∣∣
and

H1(s) = (g(b)−g(a))α(1−s)

⎡⎣(g(b)−g(a))αs

b∫
a

f s(y)g′(y)dy

− (Γ(α +1))s

b∫
a

(Iα
a+;g f (x))sg′(x)dx

⎤⎦ .

Proof. We will prove only (4.56), since the proof of (4.57) is analogous. Rewriting
equation (4.54) with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(y) = dying

k(x,y) =

{
g′(y)

Γ(α)(g(x)−g(y))1−α , a ≤ y ≤ x ;

0, x < y ≤ b,

we get that K(x) = 1
Γ(α+1) (g(x)−g(a))α and Ak f (x) = Γ(α+1)

(g(x)−g(a))α Iα
a+;g f (x). For particular

weight function u(x) = g′(x)(g(x)− g(a))α , we obtain v(y) = g′(y)(g(b)− g(y))α . If we
take Φ(x) = xs,s ≥ 1, x ∈ R+, then we obtain (4.58). Since

U1(s) = α
b∫

a

x∫
a

g′(x)g′(y)(g(x)−g(y))α−1

∣∣∣∣ ∣∣∣∣ f s(y)−
(

Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
)s∣∣∣∣

−s

∣∣∣∣ Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
∣∣∣∣s−1

.

∣∣∣∣ f (y)− Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
∣∣∣∣
∣∣∣∣∣dydx ≥ 0.
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Then

ψ1(s) ≤
b∫

a

g′(y)(g(b)−g(y))α f s(y)dy

−
b∫

a

g′(x)(g(x)−g(a))α
(

Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
)s

dx

≤ (g(b)−g(a))α(1−s)

⎡⎣(g(b)−g(a))αs

b∫
a

f s(y)g′(y)dy

− (Γ(α +1))s

b∫
a

(Iα
a+;g f (x))sg′(x)dx

⎤⎦
= H1(s)

�

Here, we give a first special case for the Riemman-Liouville fractional integral. If
g(x) = x, then Iα

a+;x f (x) reduces to the Iα
a+ f (x) left-sided Riemann-Liouville fractional

integral, and the following result follows.

Corollary 4.9 Let s ≥ 1, α > 0, f ≥ 0, Iα
a+ f denotes the left-sided Riemann-Liouville

fractional integral of f and ψ2 : R → [0,∞). Then the following inequalities hold:

0 ≤ ψ2(s) ≤ H2(s)−U2(s) ≤ H2(s)

and
0 ≤ ϒ2(s) ≤ H2(s)−F2(s) ≤ H2(s),

where

ψ2(s) =

⎡⎣ b∫
a

(b− y)α f s(y)dy−
b∫

a

(x−a)α
(

Γ(α +1)
(x−a)α Iα

a+ f (x)
)s

dx

⎤⎦−U2(s)

with

U2(s) = α
b∫

a

x∫
a

(x− y)α−1

∣∣∣∣∣∣∣∣ f s(y)−
(

Γ(α +1)
(x−a)α Iα

a+ f (x)
)s∣∣∣∣

−s

∣∣∣∣Γ(α +1)
(x−a)α Iα

a+ f (x)
∣∣∣∣s−1

·
∣∣∣∣ f (y)−Γ(α +1)

(x−a)α Iα
a+ f (x)

∣∣∣∣
∣∣∣∣∣dydx,

ϒ2(s) =
b∫

a

(b− y)α f s(y)dy− (Γ(α +1))s

b∫
a

(x−a)α(1−s)(Iα
a+ f (x)

)s
dx−F2(s),
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with

F2(s)=α

∣∣∣∣∣∣
b∫

a

x∫
a

sgn

(
f (y)−Γ(α+1)

(x−a)α Iα
a+ f (x)

)
(x− y)α−1

[
f s(y)−

(
Γ(α+1)
(x−a)α Iα

a+ f (x)
)s

−s

∣∣∣∣Γ(α +1)
(x−a)α Iα

a+ f (x)
∣∣∣∣s−1

·
(

f (y)− Γ(α +1)
(x−a)α Iα

a+ f (x)
)]

dydx

∣∣∣∣∣
and

H2(s) = (b−a)α(1−s)

⎡⎣(b−a)αs

b∫
a

f s(y)dy− (Γ(α +1))s

b∫
a

(Iα
a+ f (x))sdx

⎤⎦ .

We continue with the result for the Hadamard-type fractional integral. If we take g(x)=
logx in (4.56) the following result is obtained.

Corollary 4.10 Let s ≥ 1, α > 0, f ≥ 0, Jα
a+ f denotes the Hadamard-type fractional

integrals of f and ψ3 : R → [0,∞). Then the following inequality holds

0 ≤ ψ3(s) ≤ H3(s)−U3(s) ≤ H3(s)

and
0 ≤ ϒ3(s) ≤ H3(s)−F3(s) ≤ H3(s),

where

ψ3(s) =
b∫

a

(logb− logy)α

y
f s(y)dy

−
b∫

a

(logx− loga)α

x

(
Γ(α +1)

(logx− loga)α Jα
a+ f (x)

)s

dx−U3(s)

with

U3(s) = α
b∫

a

x∫
a

(logx− logy)α−1

xy

∣∣∣∣ ∣∣∣∣ f s(y)−
(

Γ(α +1)
(logx− loga)α Jα

a+ f (x)
)s∣∣∣∣

−s

∣∣∣∣ Γ(α +1)
(logx− loga)α Jα

a+ f (x)
∣∣∣∣s−1

·
∣∣∣∣ f (y)− Γ(α +1)

(logx− loga)α Jα
a+ f (x)

∣∣∣∣
∣∣∣∣∣dydx,

ϒ3(s)=
b∫

a

(logb− logy)α f s(y)
dy
y

−(Γ(α +1))s

b∫
a

(logx− loga)α(1−s) (Jα
a+ f (x)

)s dx
x
−F3(s)
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with

F3(s)=α

∣∣∣∣∣∣
b∫

a

x∫
a

sgn

(
f (y)− Γ(α +1)

(logx− loga)α Jα
a+ f (x)

)
(logx− logy)α−1

×
[

f s(y)−
(

Γ(α +1)
(logx− loga)α Jα

a+ f (x)
)s

−s

∣∣∣∣ Γ(α +1)
(logx− loga)α Jα

a+ f (x)
∣∣∣∣s−1

×
(

f (y)− Γ(α +1)
(logx− loga)α Jα

a+ f (x)
)]

dy
y

dx
x

∣∣∣∣
and

H3(s) = (logb− loga)α(1−s)

⎡⎣(logb− loga)αs

b∫
a

f s(y)
dy
y

−(Γ(α +1))s

b∫
a

(Jα
a+ f (x))s dx

x

⎤⎦ .

Next we give results with respect to the generalized Riemann-Liouville fractional deri-
vative.

Theorem 4.8 Let s≥ 1, and let the assumptions in Lemma 1.3 be satisfied. Let ψ4 : R →
[0,∞). Then for non-negative functions f , Dβ

a f and Dα
a f the following inequalities hold:

0 ≤ ψ4(s) ≤ H4(s)−U4(s) ≤ H4(s)

0 ≤ ϒ4(s) ≤ H4(s)−F4(s) ≤ H4(s),

where

ψ4(s) =

⎡⎣ b∫
a

(b− y)β−α(Dβ
a f (y))sdy

−
b∫

a

(x−a)β−α
(

Γ(β −α +1)
(x−a)β−α Dα

a f (x)
)s

dx

⎤⎦−U4(s)

with

U4(s) =(β −α)
b∫

a

x∫
a

(x− y)β−α−1

∣∣∣∣ ∣∣∣∣(Dβ
a f (y))s −

(
Γ(β −α +1)
(x−a)β−α Dα

a f (x)
)s∣∣∣∣

−s

∣∣∣∣Γ(β −α +1)
(x−a)β−α Dα

a f (x)
∣∣∣∣s−1

·
∣∣∣∣Dβ

a f (y)− Γ(β −α +1)
(x−a)β−α Dα

a f (x)
∣∣∣∣
∣∣∣∣∣dydx,
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ϒ4(s) =
b∫

a

(b− y)β−α(Dβ
a f (y))sdy

−(Γ(β −α +1))s

b∫
a

(x−a)(β−α)(1−s) (Dα
a f (x))s dx−F4(s),

with

F4(s) = (β −α)

∣∣∣∣∣∣
b∫

a

x∫
a

sgn

(
Dβ

a f (y)− Γ(β −α +1)
(x−a)β−α Dα

a f (x)
)

(x− y)β−α−1

×
[
(Dβ

a f (y))s −
(

Γ(β−α+1)
(x−a)β−α Dα

a f (x)
)s

− s

∣∣∣∣Γ(β−α+1)
(x−a)β−α Dα

a f (x)
∣∣∣∣s−1

×
(
Dβ

a f (y)− Γ(β −α +1)
(x−a)β−α Dα

a f (x)
)]

dydx

∣∣∣∣
and

H4(s) = (b−a)(β−α)(1−s)

⎡⎣(b−a)(β−α)s
b∫

a

(Dβ
a f (y))sdy

− (Γ(β −α +1))s

b∫
a

(Dα
a f (x))sdx

⎤⎦ .

Proof. Similar to the proof of Theorems 3.8 and 4.7. �

In the following Theorem, we will construct new inequality for the Canavati-type frac-
tional derivative.

Theorem 4.9 Let s ≥ 1 and let the assumptions in Lemma 1.4 be satisfied. Let Dγ
a f

denotes the Canavati-type fractional derivative of f and ψ5 : R → [0,∞). Then for non-
negative functions f , Dν

a f and Dγ
a f the following inequalities hold:

0 ≤ ψ5(s) ≤ H5(s)−U5(s) ≤ H5(s),

0 ≤ ϒ5(s) ≤ H5(s)−F5(s) ≤ H5(s),

where

ψ5(s) =

⎡⎣ b∫
a

(b− y)ν−γ(Dν
a f (y))sdy

−
b∫

a

(x−a)ν−γ
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
)s

dx

⎤⎦−U5(s),
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with

U5(s) =(ν − γ)
b∫

a

x∫
a

(x− y)ν−γ−1

∣∣∣∣ ∣∣∣∣(Dν
a f (y))s −

(
Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
)s∣∣∣∣

−s

∣∣∣∣Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
∣∣∣∣s−1

·
∣∣∣∣Dν

a f (y)− Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
∣∣∣∣
∣∣∣∣∣dydx,

ϒ5(s) =
b∫

a

(b− y)ν−γ(Dν
a f (y))sdy

−(Γ(ν − γ +1))s

b∫
a

(x−a)(ν−γ)(1−s) (Dγ
a f (x))s dx−F5(s)

with

F5(s) = (ν − γ)

∣∣∣∣∣∣
b∫

a

x∫
a

sgn

(
Dν

a f (y)− Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
)

(x− y)ν−γ−1

×
[
(Dν

a f (y))s−
(

Γ(ν−γ+1)
(x−a)ν−γ Dγ

a f (x)
)s

−s

∣∣∣∣Γ(ν−γ+1)
(x−a)ν−γ Dγ

a f (x)
∣∣∣∣s−1

×
(

Dν
a f (y)− Γ(ν − γ +1)

(x−a)ν−γ Dγ
a f (x)

)]
dydx

∣∣∣∣
and

H5(s) = (b−a)(ν−γ)(1−s)

⎡⎣(b−a)(ν−γ)s
b∫

a

(Dν
a f (y))sdy

− (Γ(ν − γ +1))s

b∫
a

(Dγ
a f (x))sdx

⎤⎦ .

Proof. Similar to the proof of Theorems 3.9 and 4.7. �

Next we give following results that involve a new inequality for the Caputo fractional
derivative.

Theorem 4.10 Let s ≥ 1 and let the assumptions in Lemma 1.5 be satisfied. Let Dγ
∗a f

denotes the Caputo fractional derivative of f and ψ6 : R → [0,∞). Then for non-negative
functions f , Dν∗a f and Dγ

∗a f the following inequalities hold:

0 ≤ ψ6(s) ≤ H6(s)−U6(s) ≤ H6(s),
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0 ≤ ϒ6(s) ≤ H6(s)−F6(s) ≤ H6(s),

where

ψ6(s) =

⎡⎣ b∫
a

(b− y)ν−γ(Dν
∗a f (y))sdy

−
b∫

a

(x−a)ν−γ
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

∗a f (x)
)s

dx

⎤⎦−U6(s)

with

U6(s) =(ν − γ)
b∫

a

x∫
a

(x− y)ν−γ−1

∣∣∣∣ ∣∣∣∣(Dν
∗a f (y))s −

(
Γ(ν − γ +1)
(x−a)ν−γ Dγ

∗a f (x)
)s∣∣∣∣

−s

∣∣∣∣Γ(ν − γ +1)
(x−a)ν−γ Dγ

∗a f (x)
∣∣∣∣s−1

.

∣∣∣∣Dν
∗a f (y)− Γ(ν − γ +1)

(x−a)ν−γ Dγ
∗a f (x)

∣∣∣∣
∣∣∣∣∣dydx,

ϒ6(s) =
b∫

a

(b− y)ν−γ(Dν
∗a f (y))sdy

−(Γ(ν − γ +1))s

b∫
a

(x−a)(ν−γ)(1−s)(Dγ
∗a f (x)

)s
dx−F6(s)

with

F6(s) = (ν − γ)

∣∣∣∣∣∣
b∫

a

x∫
a

sgn

(
Dν
∗a f (y)− Γ(ν − γ +1)

(x−a)ν−γ Dγ
∗a f (x)

)
(x− y)ν−γ−1

×
[
(Dν

∗a f (y))s −
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

∗a f (x)
)s

−s

∣∣∣∣Γ(ν − γ +1)
(x−a)ν−γ Dγ

∗a f (x)
∣∣∣∣s−1

·
(
Dν
∗a f (y)−Γ(ν−γ+1)

(x−a)ν−γ Dγ
∗a f (x)

)]
dydx

∣∣∣∣∣
and

H6(s) = (b−a)(ν−γ)(1−s)

⎡⎣(b−a)(ν−γ)s
b∫

a

(Dν
∗a f (y))sdy

− (Γ(ν − γ +1))s

b∫
a

(Dγ
∗a f (x))sdx

⎤⎦ .
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Proof. Similar to the proof of Theorems 3.11 and 4.7. �

Theorem 4.11 Let s ≥ 1, α > 0, f ≥ 0, Iα
a+;σ ;η f denotes the Erdélyi-Kober type frac-

tional integrals of f , 2F1(a,b;c;z) denotes the hypergeometric function and ψ7 : R →
[0,∞). Then the following inequalities hold

0 ≤ ψ7(s) ≤ H7(s)−U7(s) ≤ H7(s),

0 ≤ ϒ7(s) ≤ H7(s)−F7(s) ≤ H7(s),

where

ψ7(s) =

⎡⎣ b∫
a

yσ−1(bσ − yσ )α
2F1(y) f s(y)dy

−
b∫

a

xσ−1(xσ −aσ)α
2F1(x)

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠
s

dx

⎤⎥⎦−U7(s)

with

U7(s) =ασ
b∫

a

x∫
a

(y
x

)ση (xy)σ−1

(xσ − yσ)1−α

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ f s(y)−

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠
s∣∣∣∣∣∣∣

−s

∣∣∣∣∣∣∣
Γ(α +1)(

1− (
a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

∣∣∣∣∣∣∣
s−1

·

∣∣∣∣∣∣∣ f (y)−
Γ(α +1)(

1− (
a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣dydx,

ϒ7(s)=
b∫

a

yσ−1(bσ − yσ )α
2F1(y) f s(y)dy

−
b∫

a

xασs+σ−1((xσ −aσ)α
2F1(x))1−s (Iα

a+;σ ;η f (x)
)s

dx−F7(s)
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with

F7(s)=ασ

∣∣∣∣∣∣∣
b∫

a

x∫
a

sgn

⎛⎜⎝ f (y)− Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠ xσ−ση−1yση+σ−1

(xσ − yσ )1−α

×

⎡⎢⎣
⎛⎜⎝ f s(y)−

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠
s

−s

∣∣∣∣∣∣∣
Γ(α +1)(

1− (
a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

∣∣∣∣∣∣∣
s−1

×

⎛⎜⎝f (y)− Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠
⎤⎥⎦dydx

∣∣∣∣∣∣∣
and

H7(s) = (bσ −aσ)α(1−s)

⎡⎣(bσ −aσ )αsbσ−1

b∫
a

2F1(y) f s(y)dy

− aσ−1+ασs(Γ(α +1))s

b∫
a

((2F1(x))1−sIα
a+;σ ;η f (x))sdx

⎤⎦ ,

2F1(x) = 2F1

(
−η ,α;α+1;1−

(a
x

)σ)
and 2F1(y) = 2F1

(
η ,α;α+1;1−

(
b
y

)σ)
.

Proof. Similar to the proof of Theorems 3.12 and 4.7. �

Remark 4.9 Similar result can be obtained for the right-sided fractional integral of f
with respect to another increasing function g, the right-sided Riemann-Liouville fractional
integral, the right-sided Hadamard-type fractional integrals and for the right-sided Erdélyi-
Kober type fractional integrals but we omit the details here.





Chapter5
Refinements of Hardy-type
inequalities for the case
0 < p ≤ q < ∞

We state and prove a new class of refined general Hardy-type inequalities related to the
weighted Lebesgue spaces Lp and Lq, where 0 < p ≤ q < ∞, convex functions and the
integral operators Ak.

5.1 A new class of general Hardy-type inequalities
with kernels

To begin with, in this section we provide a new class of sufficient conditions on weight
functions u and w, and on a kernel k, for a modular inequality involving the Hardy-type
operator Ak, defined by (2.15), to hold. The first result in that direction is given in the
following theorem (see [22]).

Theorem 5.1 Let 0 < p ≤ q < ∞. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces
with positive σ -finite measures, u be a weight function on Ω1, w be a μ2-a.e. positive
function on Ω2, k be a non-negative measurable function on Ω1×Ω2, and K be defined on

89
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Ω1 by (2.16). Suppose that K(x) > 0 for all x∈Ω1 and that the function x �→ u(x)
(

k(x,y)
K(x)

) q
p

is integrable on Ω1 for each fixed y ∈ Ω2. Let Φ be a non-negative convex function on an
interval I ⊆ R. If

A = sup
y∈Ω2

w− 1
p (y)

(∫
Ω1

u(x)
(

k(x,y)
K(x)

) q
p

dμ1(x)

) 1
q

< ∞,

then there exists a positive real constant C, such that the inequality

(∫
Ω1

u(x)Φ
q
p (Ak f (x))dμ1(x)

) 1
q

≤C

(∫
Ω2

w(y)Φ( f (y))dμ2(y)
) 1

p

(5.1)

holds for all measurable functions f : Ω2 → R with values in I and Ak f defined on Ω1 by
(2.15). Moreover, if C is the smallest constant for (5.1) to hold, then C ≤ A.

Proof. By using Jensen’s inequality, monotonicity of the power functions α �→ αt for a
positive exponent t, and then Minkowski’s inequality, we find that

(∫
Ω1

u(x)Φ
q
p (Ak f (x)) dμ1(x)

) 1
q

=

(∫
Ω1

u(x)
[

Φ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)] q

p

dμ1(x)

) 1
q

≤
(∫

Ω1

u(x)
[

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
] q

p

dμ1(x)

) 1
q

≤
⎛⎝∫

Ω2

(
w− q

p (y)
∫

Ω1

u(x)
(

k(x,y)
K(x)

) q
p

dμ1(x)

) p
q

w(y)Φ( f (y))dμ2(y)

⎞⎠
1
p

≤ A

(∫
Ω2

w(y)Φ( f (y))dμ2(y)
) 1

p

.

Hence, (5.1) holds with C = A, so the proof is complete. �

Following the same lines as in the proof of Theorem 5.1, we get the next corollary.

Corollary 5.1 Let −∞ < q ≤ p < 0 and let the assumptions of Theorem 5.1 be satisfied
with a positive convex function Φ. If

B = inf
y∈Ω2

w− 1
p (y)

(∫
Ω1

u(x)
(

k(x,y)
K(x)

) q
p

dμ1(x)

) 1
q

< ∞,
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then there exists a positive real constant C, such that the inequality(∫
Ω1

u(x)Φ
q
p (Ak f (x))dμ1(x)

) 1
q

≥C

(∫
Ω2

w(y)Φ( f (y))dμ2(y)
) 1

p

(5.2)

holds for all measurable functions f : Ω2 → R with values in Ω2. Moreover, if C is the
largest constant for (5.2) to hold, then C ≥ B.

Now, we apply Theorem 5.1 to n-dimensional cells in R
n
+ and in this setting, Theorem

5.1 reads as follows.

Corollary 5.2 Let 0 < p ≤ q < ∞ and 0 < b ≤ ∞. Let u be a non-negative and v be
a positive function on (0,b) and let Φ be a non-negative convex function on an interval
I ⊆ R. If

A = sup
y∈(0,b)

(
y

v(y)

) 1
p
(∫

(y,b)
u(x)x−

q
p−1dx

) 1
q

< ∞,

then there exists a positive real constant C, such that the inequality(∫
(0,b)

u(x)Φ
q
p (H f (x))

dx
x1

) 1
q

≤C

(∫
(0,b)

v(y)Φ( f (y))
dy
y1

) 1
p

(5.3)

holds for all measurable functions f : (0,b) → R with values in I and

H f (x) = x−1
∫

(0,x)
f (y)dy, x ∈ (0,b).

Moreover, if A is the smallest constant for (5.3) to hold, then C ≤ A.

Proof. Let Sn = {(x,y) ∈ R
n ×R

n : 0 < y ≤ x < b} and Ω1 = Ω2 = (0,b). The proof
follows directly from Theorem 5.1, applied with dμ1(x) = dx, dμ2(y) = dy, k = χSn , and

with u(x)
x1 instead of u(x), x ∈ (0,b). Observe that w(y) = y−1v(y), y ∈ (0,b). �

Remark 5.1 The result given in Corollary 5.2 was published in [65, Theorem 3.1], so we
see that Theorem 3.1 from [65] is just a special case of our Theorem 5.1. �

5.1.1 Further results involving fractional integrals and
derivatives

Our first result deals with the fractional integral of f with respect to an increasing function
g (see [55]).

Theorem 5.2 Let 0 < p ≤ q < ∞, α > 0, u be a weight function on (a,b), ω be an a.e.
positive function on (a,b), g be an increasing function on (a,b) such that g′ is continu-
ous on (a,b), Iα

a+;g f denotes the left-sided fractional integral of f with respect to another
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increasing function g and let Φ be a non-negative convex function on an interval I ⊆ R. If

A = sup
y∈(a,b)

ω
−1
p (y)

⎛⎝ b∫
y

u(x)
(

α g′(y)(g(x)−g(y))α−1

(g(x)−g(a))α

) q
p

dx

⎞⎠
1
q

< ∞,

then there exists a positive constant C such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
)]q

p

dx

⎞⎠1
q

≤C

⎛⎝ b∫
a

ω(y)Φ( f (y))dy

⎞⎠1
p

(5.4)

holds. Moreover, if C is the smallest constant for (5.4) to hold, then C ≤ A.

Proof. Similar to the proof of Theorems 3.7 and 5.1. �

Here, we give a first special case for the Riemman-Liouville fractional integral.
If g(x) = x, then Iα

a+;x f (x) reduces to the Iα
a+ f (x) left-sided Riemann-Liouville fractional

integral, so the following result follows.

Corollary 5.3 Let 0 < p ≤ q < ∞, α > 0, u be a weight function on (a,b), ω be an
a.e. positive function on (a,b), Iα

a+ f denotes the left-sided Riemann-Liouville fractional
integral of f and let Φ be a non-negative convex function on an interval I ⊆ R. If

A = sup
y∈(a,b)

ω
−1
p (y)

⎛⎝ b∫
y

u(x)
(

α (x− y)α−1

(x−a)α

) q
p

dx

⎞⎠
1
q

< ∞,

then there exists a positive constant C such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(α +1)
(x−a)α Iα

a+ f (x)
)] q

p

dx

⎞⎠ 1
q

≤C

⎛⎝ b∫
a

ω(y)Φ( f (y))dy

⎞⎠ 1
p

(5.5)

holds. Moreover, if C is the smallest constant for (5.5) to hold, then C ≤ A.

Since the Hadamard fractional integrals of order α are special cases of the left- and
right-sided fractional integrals of a function f with respect to the function g(x) = log(x)
on (a,b), where 0 ≤ a < b ≤ ∞, the following result follows.

Corollary 5.4 Let 0 < p ≤ q < ∞,α > 0, u be a weight function on (a,b), ω be an a.e.
positive function on (a,b), Jα

a+ f denotes the Hadamard-type fractional integrals of f and
let Φ be a non-negative convex function on an interval I ⊆ R. If

A = sup
y∈(a,b)

ω
−1
p (y)

⎛⎝ b∫
y

u(x)
(

α (logx− logy)α−1

y(logx− loga)α

) q
p

dx

⎞⎠
1
q

< ∞,
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then there exists a positive constant C such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(α +1)
(logx− loga)α Jα

a+ f (x)
)] q

p

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

ω(y)Φ( f (y))dy

⎞⎠
1
p

(5.6)

holds. Moreover, if C is the smallest constant for (5.6) to hold, then C ≤ A.

Next we give the result with respect to the generalized Riemann-Liouville fractional
derivative.

Corollary 5.5 Let 0 < p ≤ q < ∞, β > α ≥ 0, u be a weight function on (a,b), ω be an
a.e. positive function on (a,b), Dα

a f denotes the generalized Riemann-Liouville fractional
derivative of f and let the assumption of Lemma 1.3 be satisfied and let Φ be a non-negative
convex function on an interval I ⊆ R. If

A = sup
y∈(a,b)

ω
−1
p (y)

⎛⎝ b∫
y

u(x)

(
(β −α)(x− y)β−α−1

(x−a)β−α

) q
p

dx

⎞⎠
1
q

< ∞,

then there exists a positive constant C such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(β −α +1)
(x−a)β−α Dα

a f (x)
)] q

p

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

ω(y)Φ(Dβ
a ( f (y))dy

⎞⎠
1
p

(5.7)

holds. Moreover, if C is the smallest constant for (5.7) to hold, then C ≤ A.

Proof. Similar to the proof of Theorems 3.8 and 5.1. �

In the following Corollary, we construct a new inequality for the Canavati-type frac-
tional derivative.

Corollary 5.6 Let 0 < p ≤ q < ∞, u be a weight function on (a,b), ω be an a.e. positive
function on (a,b), and let the assumptions in Lemma 1.4 be satisfied. Dγ

a f denotes the
Canavati-type fractional derivative of f and let Φ be a non-negative convex function on an
interval I ⊆ R. If

A = sup
y∈(a,b)

ω
−1
p (y)

⎛⎝ b∫
y

u(x)
(

(ν − γ)(x− y)ν−γ−1

(x−a)ν−γ

) q
p

dx

⎞⎠
1
q

< ∞,

then there exists a positive constant C such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
)] q

p

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

ω(y)Φ(Dν
a ( f (y))dy

⎞⎠
1
p

(5.8)

holds. Moreover, if C is the smallest constant for (5.8) to hold, then C ≤ A.
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Proof. Similar to the proof of Theorems 3.9 and 5.1. �

We prove the following result as a special case of Theorem 5.1 to construct a new
inequality for the Caputo fractional derivative.

Corollary 5.7 Let 0 < p ≤ q < ∞, u be a weight function, ω be an a.e. positive function
on (a,b), and Dα∗a f denotes the Caputo fractional derivative of f , f ∈ ACn([a,b]) and let
Φ be a non-negative convex function on an interval I ⊆ R. If

A = sup
y∈(a,b)

ω
−1
p (y)

⎛⎝ b∫
y

u(x)
(

(n−α)(x− y)n−α−1

(x−a)n−α

) q
p

dx

⎞⎠
1
q

< ∞,

then there exists a positive constant C such that the inequality

⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(n−α +1)
(x−a)n−α Dα

∗a f (x)
)] q

p

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

ω(y)Φ( f (n)(y))dy

⎞⎠
1
p

(5.9)

holds. Moreover, if C is the smallest constant for (5.9) to hold, then C ≤ A.

Proof. Similar to the proof of Theorems 3.10 and 5.1. �

Corollary 5.8 Let 0 < p ≤ q < ∞, u be a weight function, ω be an a.e. positive function
on (a,b), and let the assumptions in Lemma 1.5 be satisfied. Dγ

∗a f denotes the Caputo
fractional derivative of f , f ∈ ACn([a,b]) and let Φ be a non-negative convex function on
an interval I ⊆ R. If

A = sup
y∈(a,b)

ω
−1
p (y)

⎛⎝ b∫
y

u(x)
(

(ν − γ)(x− y)ν−γ−1

(x−a)ν−γ

) q
p

dx

⎞⎠
1
q

< ∞,

then there exists a positive constant C such that the inequality

⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(n−α +1)
(x−a)ν−γ Dγ

∗a f (x)
)] q

p

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

ω(y)Φ(Dν
∗a( f (y))dy

⎞⎠
1
p

(5.10)

holds. Moreover, if C is the smallest constant for (5.10) to hold, then C ≤ A.

Proof. Similar to the proof of Theorems 3.11 and 5.1. �

Now, we give the following result.
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Corollary 5.9 Let 0< p≤ q< ∞, u be a weight function, ω be an a.e. positive function on
(a,b), Iα

a+;σ ;η f denotes the Erdélyi-Kober type fractional integrals of f , and 2F1(a,b;c;z)
denotes the hypergeometric function and let Φ be a non-negative convex function on an
interval I ⊆ R. If

A = sup
y∈(a,b)

ω
−1
p (y)

⎛⎝ b∫
y

u(x)
(

α σ x−σηyση+σ−1(xσ − yσ )α−1

(xσ −aσ)α
2F1(x)

) q
p

dx

⎞⎠
1
q

< ∞,

2F1(x) =2 F1

(
−η ,α;α +1;1−

(a
x

)σ)
,

then there exists a positive constant C such that the inequality⎛⎜⎜⎝ b∫
a

u(x)

⎡⎢⎢⎣Φ

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠
q
p

dx

⎞⎟⎟⎠
⎤⎥⎥⎦

1
q

≤C

⎛⎝ b∫
a

ω(y)Φ( f (y))dy

⎞⎠
1
p

(5.11)
holds. Moreover, if C is the smallest constant for (5.11) to hold, then C ≤ A.

Proof. Similar to the proof of Theorems 3.12 and 5.1. �

Remark 5.2 Similar result can be obtained for the right-sided Erdélyi-Kober type frac-
tional integrals, but we omit the details here.

Our analysis continues by providing a new two-parametric class of sufficient condi-
tions for a weighted modular inequality involving the operator Ak to hold. The conditions
obtained depend on a real parameter s and a positive functionV on Ω2. That result is given
in the following theorem.

Theorem 5.3 Let 1 < p ≤ q < ∞. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces
with positive σ -finite measures, u be a weight function on Ω1, v be a measurable μ2-a.e.
positive function on Ω2, k be a non-negative measurable function on Ω1 ×Ω2, and K be

defined on Ω1 by (2.16). Let K(x) > 0 for all x∈ Ω1 and let the function x �→ u(x)
(

k(x,y)
K(x)

)q

be integrable on Ω1 for each fixed y∈ Ω2. Suppose that Φ : I → [0,∞) is a bijective convex
function on an interval I ⊆ R. If there exist a real parameter s ∈ (1, p) and a positive
measurable function V : Ω2 → R such that

A(s,V ) = F(V,v) sup
y∈Ω2

V
s−1
p (y)

[∫
Ω1

u(x)
(

k(x,y)
K(x)

)q

dμ1(x)
] 1

q

< ∞,

where

F(V,v) =
(∫

Ω2

V
−p′(s−1)

p (y)v1−p′(y)dμ2(y)
) 1

p′
,
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then there is a positive real constant C such that the inequality

(∫
Ω1

u(x)Φq(Ak f (x))dμ1(x)
) 1

q

≤C

(∫
Ω2

v(y)Φp( f (y))dμ2(y)
) 1

p

(5.12)

holds for all measurable functions f : Ω2 → R with values in I and Ak f defined on Ω1 by
(2.15). Moreover, if C is the best possible constant in (5.12), then

C ≤ inf
1<s<p

V>0

A(s,V ). (5.13)

Proof. Let f : Ω2 → R be an arbitrary measurable function with values in I. Applying
Jensen’s inequality to the left-hand side of (5.12) we get

(∫
Ω1

u(x)Φq(Ak f (x))dμ1(x)
) 1

q

≤
[∫

Ω1

u(x)
(

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
)q

dμ1(x)
] 1

q

.

Hence, to prove inequality (5.12) it suffices to prove that there is a real constant C > 0,
independent on f , such that

[∫
Ω1

u(x)
(

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
)q

dμ1(x)
] 1

q

≤C

(∫
Ω2

v(y)Φp( f (y))dμ2(y)
) 1

p

. (5.14)

Taking into account properties of the function Φ, let g : Ω2 → R be defined by Φ(g(y)) =
v(y)Φp( f (y)). Then g(Ω2) ⊆ I holds and (5.14) is equivalent to

[∫
Ω1

u(x)
(

1
K(x)

∫
Ω2

k(x,y)Φ
1
p (g(y))v−

1
p (y)dμ2(y)

)q

dμ1(x)
] 1

q

≤C

(∫
Ω2

Φ(g(y))dμ2(y)
) 1

p

. (5.15)

Therefore, instead of proving (5.14), we prove that (5.15) holds for all measurable func-
tions g : Ω2 →R with values in I. Applying Hölder’s inequality, monotonicity of the power
functions α �→ αt for positive exponents t, Minkowski’s inequality, and the definitions of
F(V,v) and A(s,V ), we get the following sequence of inequalities involving an arbitrary
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positive measurable function V : Ω2 → R:{∫
Ω1

u(x)
[

1
K(x)

∫
Ω2

k(x,y)Φ
1
p (g(y))v−

1
p (y)dμ2(y)

]q

dμ1(x)
} 1

q

=
{∫

Ω1

u(x)
Kq(x)

[∫
Ω2

(
k(x,y)Φ

1
p(g(y))V

s−1
p (y)

)(
V

1−s
p (y)v−

1
p(y)

)
dμ2(y)

]q

dμ1(x)
}1

q

≤
{∫

Ω1

u(x)
Kq(x)

(∫
Ω2

kp(x,y)Φ(g(y))V s−1(y)dμ2(y)
) q

p

×

×
(∫

Ω2

V− p′(s−1)
p (y)v1−p′(y)dμ2(y)

) q
p′

dμ1(x)

} 1
q

= F(V,v)

{∫
Ω1

u(x)
Kq(x)

(∫
Ω2

kp(x,y)Φ(g(y))V s−1(y)dμ2(y)
) q

p

dμ1(x)

} 1
q

≤ F(V,v)

{∫
Ω2

Φ(g(y))V s−1(y)
[∫

Ω1

u(x)
(

k(x,y)
K(x)

)q

dμ1(x)
] p

q

dμ2(y)

} 1
p

≤ A(s,V )
(∫

Ω2

Φ(g(y))dμ2(y)
) 1

p

. (5.16)

Thus, inequalities (5.15) and (5.14) hold. Relation (5.12) follows by considering (5.13), so
the proof is complete. �

By modifying Theorem 5.3 for the setting from relations (2.8) and (2.9), we obtain the
following result.

Theorem 5.4 Let 1 < p ≤ q < ∞, 1 < s < p, and 0 < b ≤ ∞. Let u be a weight function
on (0,b), w be an a.e. positive measurable function on (0,b), and k be a non-negative
measurable function on (0,b)× (0,b) satisfying (2.8). Let I be an interval in R and Φ :
I → [0,∞) be a bijective convex function. If

V (y) =
∫ y

0
w1−p′(x)xp′−1 dx < ∞ (5.17)

holds almost everywhere in (0,b) and

A(s) = sup
0<y<b

(∫ b

y
u(x)

(
k(x,y)
K(x)

)q

V
q(p−s)

p (x)
dx
x

) 1
q

V
s−1
p (y) < ∞, (5.18)

then there exists a positive real constant C such that⎛⎝ b∫
0

u(x)Φq(Ak f (x))
dx
x

⎞⎠
1
q

≤C

⎛⎝ b∫
0

w(x)Φp( f (x))
dx
x

⎞⎠
1
p

(5.19)
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holds for all measurable functions f : (0,b) → R with values in I and the Hardy-type
operator Ak defined by (2.15). Moreover, if C is the best possible constant in (5.19), then

C ≤ inf
1<s<p

(
p−1
p− s

) 1
p′

A(s).

Proof. Denote S1 = {(x,y) ∈ R
2 : 0 < y ≤ x < b} and set Ω1 = Ω2 = (0,b). In Theorem

5.3, replace dμ1(x), dμ2(y), u(x), v(y), and k respectively with dx, dy, u(x)
x , w(y)

y , and kχS1 .
In this setting, inequality (5.12) reduces to (5.19). Moreover, following the lines of the
proof of Theorem 5.3, the first inequality in (5.16) becomes⎧⎨⎩

b∫
0

u(x)

⎡⎣ 1
K(x)

x∫
0

k(x,y)Φ
1
p (g(y))

(
y

w(y)

) 1
p

(y)dy

⎤⎦q

dx
x

⎫⎬⎭
1
q

≤

⎧⎪⎨⎪⎩
b∫

0

u(x)
Kq(x)

⎛⎝ x∫
0

kp(x,y)Φ(g(y))V s−1(y)dy

⎞⎠
q
p

×

×
⎛⎝ x∫

0

V− p′(s−1)
p (y)w1−p′(y)yp′−1 dy

⎞⎠
q
p′

dx
x

⎫⎪⎬⎪⎭
1
q

. (5.20)

Since definition (5.17) yields

x∫
0

V− p′(s−1)
p (y)w1−p′(y)yp′−1 dy =

p−1
p− s

V
p−s
p−1 (x), x ∈ (0,b),

the right-hand side of (5.20) is further equal to

(
p−1
p− s

) 1
p′

⎧⎪⎨⎪⎩
b∫

0

u(x)
Kq(x)

V
q(p−s)

p (x)

⎛⎝ x∫
0

kp(x,y)Φ(g(y))V s−1(y)dy

⎞⎠
q
p

dx
x

⎫⎪⎬⎪⎭
1
q

.

As in (5.16), the rest of the proof follows by applying Minkowski’s inequality and defini-
tion (5.18) of A(s). �

Remark 5.3 The result of Theorem 5.4 is given in [65, Theorem 4.4]. Hence, Theorem
4.4 in [65] can be seen as a special case of Theorem 5.3. �

We also give results involving fractional integrals and fractional derivatives.
Our first result deals with the fractional integral of f with respect to an increasing

function g.
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Theorem 5.5 Let 1 < p ≤ q < ∞, α > 0, u be a weight function on (a,b), v be an a.e.
positive function on (a,b), g be an increasing function on (a,b) such that g′ is continu-
ous on (a,b), Iα

a+;g f denotes the left-sided fractional integral of f with respect to another
increasing function g. Let I be an interval in R and Φ : I → [0,∞) be a bijective con-
vex function. If there exist a real parameter s ∈ (1, p) and a positive measurable function
V : (a,b) → R such that

A(s,V ) =

⎛⎝ b∫
a

V
−p′(s−1)

p (y)v1−p′(y)dy

⎞⎠
1
p′

× sup
y∈(a,b)

V
s−1
p (y)

⎛⎝ b∫
y

u(x)
(

α g′(y)(g(x)−g(y))α−1

(g(x)−g(a))α

)q

dx

⎞⎠
1
q

<∞,

then there exists a positive constant C such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
)]q

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

v(y)Φp( f (y))dy

⎞⎠
1
p

(5.21)

holds. Moreover, if C is the smallest constant for (5.21) to hold, then

C ≤ inf
1<s<p

V>0

A(s,V ).

Proof. Similar to the proof of Theorems 3.7 and 5.3. �

As in previous examples we can give special cases of Theorem 5.5 for the Riemman-
Liouville fractional integrals and the Hadamard-type fractional integral, but we omit the
details here.

Next we give the result with respect to the generalized Riemann-Liouville fractional
derivative.

Corollary 5.10 Let 1 < p ≤ q < ∞, β > α ≥ 0, u be a weight function on (a,b), v be an
a.e. positive function on (a,b), Dα

a f denotes the generalized Riemann-Liouville fractional
derivative of f , let the assumptions of Lemma 1.3 be satisfied. Let I be an interval in R

and Φ : I → [0,∞) be a bijective convex function. If there exist a real parameter s ∈ (1, p)
and a positive measurable function V : (a,b) → R such that

A(s,V ) =

⎛⎝ b∫
a

V
−p′(s−1)

p (y)v1−p′(y)dy

⎞⎠
1
p′

× sup
y∈(a,b)

V
s−1
p (y)

⎛⎝ b∫
y

u(x)

(
(β −α)(x− y)β−α−1

(x−a)β−α

)q

dx

⎞⎠
1
q

< ∞,
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then there exists a positive constant C such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(β −α +1)
(x−a)β−α Dα

a f (x)
)]q

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

v(y)Φp
(
Dβ

a f (y)
)

dy

⎞⎠
1
p

(5.22)
holds. Moreover, if C is the smallest constant for (5.22) to hold, then

C ≤ inf
1<s<p

V>0

A(s,V ).

Proof. Similar to the proof of Theorems 3.8 and 5.3. �

In the following Corollary we obtain a new inequality for the Canavati-type fractional
derivative.

Corollary 5.11 Let 1 < p ≤ q < ∞, u be a weight function on (a,b), v be an a.e. positive
function on (a,b), and let the assumptions in Lemma 1.4 be satisfied. Let I be an interval
in R and Φ : I → [0,∞) be a bijective convex function. If there exist a real parameter
s ∈ (1, p) and a positive measurable V : (a,b) → R function such that

A(s,V ) =

⎛⎝ b∫
a

V
−p′(s−1)

p (y)v1−p′(y)dy

⎞⎠
1
p′

× sup
y∈(a,b)

V
s−1
p (y)

⎛⎝ b∫
y

u(x)
(

(ν − γ)(x− y)ν−γ−1

(x−a)ν−γ

)q

dx

⎞⎠
1
q

< ∞,

then there exists a positive constant C, such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
)]q

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

v(y)Φp (Dν
a f (y))dy

⎞⎠
1
p

(5.23)

holds. Moreover, if C is the smallest constant for (5.23) to hold, then

C ≤ inf
1<s<p

V>0

A(s,V ).

Proof. Similar to the proof of Theorems 3.9 and 5.3. �

Next, we give the result for the Caputo fractional derivative.

Corollary 5.12 Let 1 < p ≤ q < ∞, u be a weight function on (a,b), v be an a.e. positive
function on (a,b), and Dν∗a f denotes the Caputo fractional derivative of f , f ∈ ACn([a,b]).
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Let I be an interval in R and Φ : I → [0,∞) be a bijective convex function. If there exist a
real parameter s ∈ (1, p) and a positive measurable function V : (a,b) → R such that

A(s,V ) =

⎛⎝ b∫
a

V
−p′(s−1)

p (y)v1−p′(y)dy

⎞⎠
1
p′

× sup
y∈(a,b)

V
s−1
p (y)

⎛⎝ b∫
y

u(x)
(

(n−ν)(x− y)n−ν−1

(x−a)n−ν

)q

dx

⎞⎠
1
q

< ∞,

then there exists a positive constant C such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(n−ν +1)
(x−a)n−ν Dν

∗a f (x)
)]q

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

v(y)Φp
(

f (n)(y)
)

dy

⎞⎠
1
p

(5.24)

holds. Moreover, if C is the smallest constant for (5.24) to hold, then

C ≤ inf
1<s<p

V>0

A(s,V ).

Proof. Similar to the proof of Theorems 3.10 and 5.3. �

Corollary 5.13 Let 1 < p ≤ q < ∞, u be a weight function on (a,b), v be an a.e. positive
function on (a,b), and let the assumptions in Lemma 1.5 be satisfied. Let Dγ

∗a f denotes
the Caputo fractional derivative of f , f ∈ ACn([a,b]). Let I be an interval in R and Φ :
I → [0,∞) be a bijective convex function. If there exist a real parameter s ∈ (1, p) and a
positive measurable function V : (a,b) → R such that

A(s,V ) =

⎛⎝ b∫
a

V
−p′(s−1)

p (y)v1−p′(y)dy

⎞⎠
1
p′

× sup
y∈(a,b)

V
s−1
p (y)

⎛⎝ b∫
y

u(x)
(

(ν − γ)(x− y)ν−γ−1

(x−a)ν−γ

)q

dx

⎞⎠
1
q

< ∞,

then there exists a positive constant C such that the inequality⎛⎝ b∫
a

u(x)
[

Φ
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

∗a f (x)
)]q

dx

⎞⎠
1
q

≤C

⎛⎝ b∫
a

v(y)Φp (Dν
∗a f (y))dy

⎞⎠
1
p

(5.25)

holds. Moreover, if C is the smallest constant for (5.25) to hold, then

C ≤ inf
1<s<p

V>0

A(s,V ).
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Proof. Similar to the proof of Theorems 3.11 and 5.3. �

Now, we give the following result for the Erdélyi-Kober type fractional integrals.

Corollary 5.14 Let 1 < p ≤ q < ∞,α > 0, u be a weight function on (a,b), v be an a.e.
positive function on (a,b), Iα

a+;σ ;η f denotes the Erdélyi-Kober type fractional integrals of
f , and 2F1(a,b;c;z) denotes the hypergeometric function. Let I be an interval in R and
Φ : I → [0,∞) be a bijective convex function. If there exist a real parameter s ∈ (1, p) and
a positive measurable function V : (a,b) → R such that

A(s,V ) =

⎛⎝ b∫
a

V
−p′(s−1)

p (y)v1−p′(y)dy

⎞⎠
1
p′

× sup
y∈(a,b)

V
s−1
p (y)

⎛⎝ b∫
y

u(x)
(

ασx−σηyση+σ−1(xσ−yσ )α−1

(xσ−aσ )α 2F1(x)

)q

dx

⎞⎠
1
q

< ∞,

where 2F1(x) = 2F1

(
−η ,α;α+1;1−( a

x

)σ
)
, then there exists a positive constant C such

that the inequality⎛⎜⎝ b∫
a

u(x)

⎡⎢⎣Φ

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠
⎤⎥⎦

q

dx

⎞⎟⎠
1
q

≤C

⎛⎝ b∫
a

v(y)Φp ( f (y))dy

⎞⎠
1
p

(5.26)

holds. Moreover, if C is the smallest constant for (5.26) to hold, then

C ≤ inf
1<s<p

V>0

A(s,V ).

Proof. Similar to the proof of Theorem 3.12 and 5.3. �

Remark 5.4 Similar result can be obtained for the right-sided fractional integral of f
with respect to an increasing function g, the right-sided Riemann-Liouville fractional inte-
gral, the right-sided Hadamard-type fractional integrals, the right-sided Erdélyi-Kober type
fractional integrals, but we omit the details here.
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5.2 Refined Hardy-type inequalities with kernels

The rest of this chapter is dedicated to new refined inequalities related to the general Hardy-
type operator Ak with a non-negative kernel, defined by (2.15). We state and prove the
central result of this section, that is, a new general refined weighted Hardy-type inequality
with a non-negative kernel, related to an arbitrary non-negative convex function. It is given
in the following theorem.

Theorem 5.6 Let t ∈ R+, (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive
σ -finite measures, u be a weight function on Ω1, k a non-negative measurable function on
Ω1×Ω2, and K be defined on Ω1 by (2.16). Suppose that K(x) > 0 for all x ∈ Ω1, that the

function x �→ u(x)
(

k(x,y)
K(x)

)t
is integrable on Ω1 for each fixed y ∈ Ω2, and that v is defined

on Ω2 by

v(y) =
(∫

Ω1

u(x)
(

k(x,y)
K(x)

)t

dμ1(x)
) 1

t

.

If Φ is a non-negative convex function on an interval I ⊆ R and ϕ : I → R is any function,
such that ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI, then the inequality(∫

Ω2

v(y)Φ( f (y))dμ2(y)
)t

−
∫

Ω1

u(x)Φt(Ak f (x))dμ1(x)

≥ t
∫

Ω1

u(x)
K(x)

Φt−1(Ak f (x))
∫

Ω2

k(x,y)r(x,y)dμ2(y)dμ1(x) (5.27)

holds for all t ≥ 1 and all measurable functions f : Ω2 → R with values in I, where Ak f is
defined on Ω1 by (2.15) and the function r : Ω1×Ω2 → R is defined by

r(x,y) = ||Φ( f (y))−Φ(Ak f (x))|− |ϕ(Ak f (x))| · | f (y)−Ak f (x)|| . (5.28)

If t ∈ (0,1] and the function Φ : I → R is positive and concave, then the order of the terms
on the left-hand side of (5.27) is reversed, that is, the inequality

∫
Ω1

u(x)Φt (Ak f (x))dμ1(x)−
(∫

Ω2

v(y)Φ( f (y))dμ2(y)
)t

≥ t
∫

Ω1

u(x)
K(x)

Φt−1(Ak f (x))
∫

Ω2

k(x,y)r(x,y)dμ2(y)dμ1(x) (5.29)

holds.
Let the function r1 : Ω1×Ω2 → R be defined by

r1(x,y) =
[
Φ( f (y))−Φ(Ak f (x))−|ϕ(Ak f (x))| · ( f (y)−Ak f (x))

]
. (5.30)
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If Φ is non-negative monotone convex on the interval I ⊆ R and ϕ : I → R is any function,
such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality(∫

Ω2

v(y)Φ( f (y))dμ2(y)
)t

−
∫

Ω1

u(x)Φt (Ak f (x))dμ1(x)

≥ t

∣∣∣∣∣
∫

Ω1

u(x)
K(x)

Φt−1(Ak f (x))
∫

Ω2

sgn( f (y)−Ak f (x))k(x,y)r1(x,y)dμ2(y)dμ1(x)

∣∣∣∣∣
(5.31)

holds for all measurable functions f : Ω2 → R such that f (y) ∈ I, for all y∈ Ω2 where Ak f
is defined by (2.15).
If Φ is non-negative monotone concave, then the order of the terms on the left-hand side of
(5.31) is reversed.

Proof. First, fix an arbitrary x ∈ Ω1. It is not hard to see that Ak f (x) ∈ I. Moreover, for
the function hx : Ω2 → R defined by hx(y) = f (y)−Ak f (x) we have∫

Ω2

k(x,y)hx(y)dμ2(y) = 0, x ∈ Ω1. (5.32)

Now, suppose that Φ is a convex function. If Ak f (x) ∈ Int I, then for all y ∈ Ω2 by substi-

tuting r = Ak f (x), s = f (y) in (1.8) and multiplying the inequality obtained by k(x,y)
K(x) ≥ 0,

we get

k(x,y)
K(x)

[Φ( f (y))−Φ(Ak f (x))−ϕ(Ak f (x))hx(y)] ≥ k(x,y)
K(x)

r(x,y). (5.33)

Relation (5.33) holds even if Ak f (x) is an endpoint of I. In that case, the function hx is
either non-negative or non-positive on Ω2, so (5.32) and non-negativity of the kernel k
imply that k(x,y)hx(y) = 0 for μ2-a.e. y ∈ Ω2. Therefore, the identity hx(y) = 0, that is,
f (y) = Ak f (x) holds whenever k(x,y) > 0 and we conclude that the both sides of inequality
(5.33) are equal to 0 for μ2-a.e. y ∈ Ω2. Since K(x) > 0, notice that the set of all y ∈ Ω2

such that k(x,y) > 0 is of a positive μ2 measure.

Integrating (5.33) over Ω2 we obtain

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)− 1
K(x)

∫
Ω2

k(x,y)Φ(Ak f (x))dμ2(y)

− 1
K(x)

∫
Ω2

k(x,y)ϕ(Ak f (x))hx(y)dμ2(y)

≥ 1
K(x)

∫
Ω2

k(x,y)r(x,y)dμ2(y). (5.34)

Observe that the second integral on the left-hand side of (5.34) is equal to

1
K(x)

∫
Ω2

k(x,y)Φ(Ak f (x))dμ2(y) = Φ(Ak f (x)),
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while applying (5.32) we get

1
K(x)

∫
Ω2

k(x,y)ϕ(Ak f (x))hx(y)dμ2(y) = 0.

Hence, (5.34) reduces to

Φ(Ak f (x))+
1

K(x)

∫
Ω2

k(x,y)r(x,y)dμ2(y) ≤ 1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y).

Let t ≥ 1. Since the functions Φ, k, and r are non-negative and the power functions with
positive exponents are strictly increasing on [0,∞), we further have

Φt(Ak f (x))+ t
Φt−1(Ak f (x))

K(x)

∫
Ω2

k(x,y)r(x,y)dμ2(y)

≤
(

Φ(Ak f (x))+
1

K(x)

∫
Ω2

k(x,y)r(x,y)dμ2(y)
)t

≤
(

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
)t

, (5.35)

where the first inequality in (5.35) is a consequence of Bernoulli’s inequality. Multi-
plying (5.35) by u(x), integrating the inequalities obtained over Ω1 and then applying
Minkowski’s inequality to the right-hand side of the second inequality, we get the fol-
lowing sequence of inequalities:∫

Ω1

u(x)Φt(Ak f (x))dμ1(x)

+t
∫

Ω1

u(x)
K(x)

Φt−1(Ak f (x))
∫

Ω2

k(x,y)r(x,y)dμ2(y)dμ1(x)

≤
∫

Ω1

u(x)
(

Φ(Ak f (x))+
1

K(x)

∫
Ω2

k(x,y)r(x,y)dμ2(y)
)t

dμ1(x)

≤
∫

Ω1

u(x)
(

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
)t

dμ1(x)

=

⎧⎨⎩
[∫

Ω1

u(x)
(

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
)t

dμ1(x)
] 1

t

⎫⎬⎭
t

≤
⎧⎨⎩
∫

Ω2

Φ( f (y))
[∫

Ω1

u(x)
(

k(x,y)
K(x)

)t

dμ1(x)
] 1

t

dμ2(y)

⎫⎬⎭
t

=
(∫

Ω2

Φ( f (y))v(y)dμ2(y)
)t

,

so (5.27) holds. The proof for a concave function Φ and t ∈ (0,1] is similar. Namely, by
the same arguments as for convex functions, from (1.9) we first obtain

k(x,y)
K(x)

[Φ(Ak f (x))−Φ( f (y))+ ϕ(Ak f (x))hx(y)] ≥ k(x,y)
K(x)

r(x,y),



106 5 REFINEMENTS OF HARDY-TYPE INEQUALITIES FOR THE CASE 0 < p ≤ q < ∞

x ∈ Ω1,y ∈ Ω2, then

Φt(Ak f (x))− t
Φt−1(Ak f (x))

K(x)

∫
Ω2

k(x,y)r(x,y)dμ2(y)

≥
(

Φ(Ak f (x))− 1
K(x)

∫
Ω2

k(x,y)r(x,y)dμ2(y)
)t

≥
(

1
K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
)t

,

and finally∫
Ω1

u(x)Φt(Ak f (x))dμ1(x)

−t
∫

Ω1

u(x)
K(x)

Φt−1(Ak f (x))
∫

Ω2

k(x,y)r(x,y)dμ2(y)dμ1(x)

≥
∫

Ω1

u(x)
(

Φ(Ak f (x))− 1
K(x)

∫
Ω2

k(x,y)r(x,y)dμ2(y)
)t

dμ1(x)

≥
(∫

Ω2

Φ( f (y))v(y)dμ2(y)
)t

that is, we get (5.29). The proof of (5.31) is analogous to the proof of (4.2). �

Remark 5.5 In particular, for t = 1 inequality (5.27) reduces to∫
Ω2

v(y)Φ( f (y))dμ2(y)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x)

≥
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,y)r(x,y)dμ2(y)dμ1(x) (5.36)

where in this setting v is defined as in (2.17). Moreover, by analyzing the proof of Theorem
5.6, we see that (5.36) holds for all convex functions Φ : I → R, that is, Φ does not need to
be non-negative. Similarly, if Φ is any real concave function on I (not necessarily positive),
then (5.36) holds with the reversed order of the terms on its left-hand side. This result was
already proved in Theorem 4.1. �

Remark 5.6 Rewriting (5.27) with t = q
p ≥ 1, that is, with 0 < p ≤ q < ∞ or −∞ < q ≤

p < 0, and with an arbitrary non-negative convex function Φ, we obtain(∫
Ω2

v(y)Φ( f (y))dμ2(y)
) q

p

−
∫

Ω1

u(x)Φ
q
p (Ak f (x))dμ1(x)

≥ q
p

∫
Ω1

u(x)
K(x)

Φ
q
p−1(Ak f (x))

∫
Ω2

k(x,y)r(x,y)dμ2(y)dμ1(x) ≥ 0,

(5.37)
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where v is defined by (2.20). Also (5.31) becomes(∫
Ω2

v(y)Φ( f (y))dμ2(y)
) q

p

−
∫

Ω1

u(x)Φ
q
p (Ak f (x))dμ1(x)

≥ q
p

∣∣∣∣∣
∫

Ω1

u(x)
K(x)

Φ
q
p−1(Ak f (x))

∫
Ω2

sgn( f (y)−Ak f (x))k(x,y)r1(x,y)dμ2(y)dμ1(x)

∣∣∣∣∣
(5.38)

Therefore, we get (2.21) as an immediate consequence of Theorem 5.6 and our inequality
(5.27) is a refinement of (2.21). Especially, if p ≥ 1 or p < 0 (in that case, Φ should be
positive), then the function Φp is convex as well, so by replacing Φ with Φp relation (5.37)
becomes

‖Φ f‖q
Lp

v (Ω2,μ2)
−‖Φ(Ak f )‖q

Lq
u(Ω1,μ1)

≥ q
p

∫
Ω1

u(x)
K(x)

Φq−p(Ak f (x))
∫

Ω2

k(x,y)rp(x,y)dμ2(y)dμ1(x),

(5.39)

where for x ∈ Ω1, y ∈ Ω2 we set

rp(x,y) = | |Φp( f (y))−Φp(Ak f (x))|
−|p|Φp−1(Ak f (x)) |ϕ(Ak f (x))| · | f (y)−Ak f (x)| ∣∣ .

On the other hand, if Φ is a positive concave function and t = q
p ∈ (0,1], that is, 0 < q ≤

p < ∞ or −∞ < p ≤ q < 0, then (5.37) holds with the reversed order of the terms on its
left-hand side. Moreover, if p ∈ (0,1], then the function Φp is concave, so the order of the
terms on the left-hand side of (5.39) is reversed. �

Now, we consider some particularly interesting convex (or concave) functions in (5.27),
namely, power and exponential functions. We start with the function Φ : R+ → R, Φ(x) =
xp, where p ∈ R, p �= 0. For p ≥ 1 and p < 0, this function is convex, while it is concave
for p ∈ (0,1]. In both cases we have ϕ(x) = pxp−1, x ∈ R+. In this setting, we obtain the
following direct consequence of Theorem 5.6 and Remark 5.6.

Corollary 5.15 Suppose that p,q ∈ R, q
p > 0, that Ω1, Ω2, μ1, μ2, u, k, and K are as in

Theorem 5.6, that the function x �→ u(x)
(

k(x,y)
K(x)

) q
p

is integrable on Ω1 for each fixed y∈Ω2,

and that the function v is defined on Ω2 by (2.20). Further, suppose that f : Ω2 → R is
a non-negative measurable function (positive in the case when p < 0), that Ak f is defined
on Ω1 by (2.15), Rp,k f (x,y) is defined by (4.11) and Mp,k f (x,y) is defined by (4.12). If
1 ≤ p ≤ q < ∞ or −∞ < q ≤ p < 0, then the inequalities

‖ f‖q
Lp

v (Ω2,μ2)
−‖Ak f‖q

Lq
u(Ω1,μ1)

≥ q
p

∫
Ω1

u(x)
K(x)

(Ak f (x))q−p
∫

Ω2

k(x,y)Rp,k f (x,y)dμ2(y)dμ1(x) (5.40)
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and

‖ f‖q
Lp

v (Ω2,μ2)
−‖Ak f‖q

Lq
u(Ω1,μ1)

≥
q
p

∣∣∣∣∣
∫

Ω1

u(x)
K(x)

(Ak f (x))q−p
∫

Ω2

sgn( f (y)−Ak f (x))k(x,y)Mp,k f (x,y)dμ2(y)dμ1(x)

∣∣∣∣∣
(5.41)

hold, while for 0 < q ≤ p < 1 relations (5.40) and (5.41) hold with the reversed order of
terms on its left-hand side.

Remark 5.7 For p = q in Corollary 5.15, we obtain Corollary 4.1. Moreover, for p =
q = 1, relations (5.40) and (5.41) are trivial since its both sides are equal to 0. �

Our analysis continues by considering the convex function Φ : R→R, Φ(x) = ex. Then
ϕ = Φ′ = Φ and we obtain the following new general refined weighted Pólya-Knopp-type
inequality with a kernel, which is a generalization of a result from Corollary 4.2.

Corollary 5.16 Let p,q ∈ R be such that 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0. Let Ω1,

Ω2, μ1, μ2, u, k, and K be as in Theorem 5.6, the function x �→ u(x)
(

k(x,y)
K(x)

) q
p

be integrable

on Ω1 for each fixed y ∈ Ω2, and the function v be defined on Ω1 by (2.20). Then the
inequalities

‖ f‖q
Lp

v (Ω2,μ2)
−‖Gk f‖q

Lq
u(Ω1,μ1)

≥ q
p

∫
Ω1

u(x)
K(x)

(Gk f (x))q−p
∫

Ω2

k(x,y)Sp,k f (x,y)dμ2(y)dμ1(x)

and

‖ f‖q
Lp

v (Ω2,μ2)
−‖Gk f‖q

Lq
u(Ω1,μ1)

≥ q
p

∣∣∣∣∣
∫

Ω1

u(x)
K(x)

Gq−p
k f (x)

∫
Ω2

sgn( f (y)−Gk f (x))k(x,y)Pp,k f (x,y)dμ2(y)dμ1(x)

∣∣∣∣∣.
hold for all positive measurable functions f on Ω2, where Gk f (x), Sp,k f (x,y) and Pp,k f (x,y)
for x ∈ Ω1 and y ∈ Ω2 are defined by (4.16), (4.17) and (4.19).

Proof. See the proof of Corollary 4.2. �

We conclude this section by considering the simplest kernels k, that is, those with
separate variables.

Corollary 5.17 Let p,q ∈ R, q
p > 0. Let (Ω,Σ,μ) be a measure space with a positive

σ -finite measure μ , let m ∈ L1(Ω,μ) be a non-negative function such that |m|1 > 0, Φ be
a non-negative convex function on an interval I ⊆ R, and ϕ : I → R be any function such
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that ϕ(x) ∈ ∂Φ(x) for all x∈ Int I. Let f : Ω→R be a measurable function with values in I
and let Am f be defined by (4.21). If 0 < p≤ q < ∞ or −∞ < q≤ p < 0, then the inequality

[Am(Φ◦ f )]
q
p −Φ

q
p (Am f ) ≥ q

p
Φ

q
p−1(Am f ) ·Amr (5.42)

holds, where r(y) = | |Φ( f (y))−Φ(Am f )|− |ϕ(Am f )| · | f (y)−Am f | |, y ∈ Ω. If Φ is a
positive concave function and 0 < q ≤ p < ∞ or −∞ < p ≤ q < 0, then (5.42) holds with
the reversed order of the terms on its left-hand side.

Proof. Suppose that in Theorem 5.6 and in relation (5.37) we have Ω2 = Ω, μ2 = μ ,
u ∈ L1(Ω1,μ1) such that |u|1 > 0, and k of the form k(x,y) = l(x)m(y), for some positive
measurable function l : Ω1 → R. Then K(x) = |m|1l(x) and Ak f (x) = Am f ∈ I, x ∈ Ω1,

while v(y) = |u|
p
q
1

|m|1 m(y), y ∈ Ω. Thus, (5.37) reduces to (5.42) and it does not depend on
Ω1, l, and u. �

Remark 5.8 Observe that for 0 < |Ω|μ < ∞ and m(y) ≡ 1 on Ω we have |m|1 = |Ω|μ , so
(5.42) becomes the generalized refined Jensen’s inequality

[A(Φ◦ f )]
q
p −Φ

q
p (A f ) ≥ q

p
Φ

q
p−1(A f ) ·Ar

where A f is defined by (4.22) and

r(y) = ||Φ( f (y))−Φ(A f )|− |ϕ(A f )| · | f (y)−A f || ,y ∈ Ω.

Notice that, for p = q we obtain the classical refined Jensen’s inequality that was obtained
in Corollary 4.3. �

5.3 Generalized one-dimensional Hardy’s and
Pólya-Knopp’s inequality

In the following three sections, general results from Section 5.2 are applied to some usual
measure spaces, convex functions, weights and kernels and new refinements and general-
izations of the inequalities mentioned in the Introduction are derived. We start with the
standard one-dimensional setting, that is, by considering intervals in R and the Lebesgue
measure, and obtain generalized refined Hardy and Pólya-Knopp-type inequalities, as well
as related dual inequalities. In the following theorem we generalize and refine inequality
(2.7).



110 5 REFINEMENTS OF HARDY-TYPE INEQUALITIES FOR THE CASE 0 < p ≤ q < ∞

Theorem 5.7 Let 0 < b ≤ ∞ and k : (0,b)× (0,b) → R, u : (0,b) → R be non-negative
measurable functions satisfying (2.8) and

w(y) = y

(∫ b

y
u(x)

(
k(x,y)
K(x)

) q
p dx

x

) p
q

< ∞, y ∈ (0,b).

If 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0, Φ is a non-negative convex function on an interval
I ⊆ R, and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI, then the inequality⎛⎝ b∫

0

w(y)Φ( f (y))
dy
y

⎞⎠
q
p

−
b∫

0

u(x)Φ
q
p (Ak f (x))

dx
x

≥ q
p

b∫
0

u(x)
K(x)

Φ
q
p−1(Ak f (x))

x∫
0

k(x,y)r(x,y)dy
dx
x

(5.43)

holds for all measurable functions f : (0,b) → R with values in I, where Ak f and r are
respectively defined by (4.25) and (5.28). If Φ is non-negative monotone convex on the
interval I ⊆ R and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI, then the following
inequality⎛⎝ b∫

0

w(y)Φ( f (y))
dy
y

⎞⎠
q
p

−
b∫

0

u(x)Φ
q
p (Ak f (x))

dx
x

≥ q
p

∣∣∣∣∣
b∫

0

u(x)
K(x)

Φ
q
p−1 (Ak f (x))

x∫
0

sgn( f (y)−Ak f (x))k(x,y)r1(x,y)dy
dx
x

∣∣∣∣∣
(5.44)

holds for all measurable functions f : (0,b)→R such that f (y) ∈ I, for all y∈ (0,b) where
Ak f and r1 are respectively defined by (4.25) and (5.30).
If 0 < q≤ p < ∞ or−∞ < p≤ q < 0, and Φ is a non-negative (monotone) concave function,
then (5.43) and (5.44) hold with the reversed order of the integrals on its left-hand side.

Proof. Let S1, Ω1, and Ω2 be as in the proof of Theorem 5.4. Relations (5.43) and
(5.44) follow from (5.37) by replacing dμ1(x), dμ2(y), u(x), v(y), and k respectively with

dx, dy, u(x)
x , w(y)

y , and kχS1 . �

In the following theorem we formulate a result dual to Theorem 5.7.

Theorem 5.8 For 0 ≤ b < ∞, let k : (b,∞)× (b,∞) → R and u : (b,∞) → R be non-
negative measurable functions satisfying (4.35) and

w̃(y) = y

(∫ y

b
u(x)

(
k(x,y)
K̃(x)

) q
p dx

x

) p
q

< ∞, y ∈ (b,∞).
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If 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0, Φ is a non-negative convex function on an interval
I ⊆ R and ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI, then the inequality⎛⎝ ∞∫

b

w̃(y)Φ( f (y))
dy
y

⎞⎠
q
p

−
∞∫

b

u(x)Φ
q
p (Ãk f (x))

dx
x

≥ q
p

∞∫
b

u(x)
K̃(x)

Φ
q
p−1(Ãk f (x))

∞∫
x

k(x,y)r̃(x,y)dy
dx
x

(5.45)

holds for all measurable functions f : (b,∞) → R with values in I and for Ãk f (x) defined
by (4.37) and r̃(x,y) defined by

r̃(x,y) =
∣∣|Φ( f (y))−Φ(Ãk f (x))|− |ϕ(Ãk f (x))| · | f (y)− Ãk f (x)|∣∣ ,

where x,y ∈ (b,∞). If Φ is non-negative monotone convex on the interval I ⊆ R, and
ϕ : I → R is such that ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI, then the following inequality

⎛⎝ ∞∫
b

w̃(y)Φ( f (y))
dy
y

⎞⎠
q
p

−
∞∫

b

u(x)Φ
q
p

(
Ãk f (x)

) dx
x

≥ q
p

∣∣∣∣∣
∞∫

b

u(x)
K̃(x)

Φ
q
p−1

(
Ãk f (x)

) ∞∫
x

sgn( f (y)− Ãk f )k(x,y)r̃1(x,y)dy
dx
x

∣∣∣∣∣ (5.46)

holds for all measurable functions f : (b,∞) → R such that f (y) ∈ I, for all y ∈ (b,∞),
where Ãk f is defined by (4.37) and r̃1(x,y) is defined by

r̃1(x,y) =
[
Φ( f (y))−Φ(Ãk f (x))−|ϕ(Ãk f (x))| · ( f (y)− Ãk f (x))

]
.

If 0 < q≤ p < ∞ or−∞ < p≤ q < 0, and Φ is a non-negative (monotone) concave function,
the order of the integrals on the left-hand side of (5.45) and (5.46) is reversed.

Proof. Let S2 = {(x,y) ∈ R
2 : b < x ≤ y < ∞}. Inequality (5.45) follows directly from

(5.37), rewritten with Ω1 = Ω2 = (b,∞), dμ1(x) = dx, dμ2(y) = dy, and with u(x)
x , w(y)

y ,
and kχS2 instead of u(x), v(y), and k. �

Remark 5.9 For p = q Theorem 5.7 and Theorem 5.8 respectively reduce to [65, Theo-
rem 3.1] and [65, Theorem 4.3]. In particular, (5.43) refines (2.7). Of course, in that case,
the function Φ does not need to be non-negative. �

The rest of this section is dedicated to generalizations and refinements of the well-
known Hardy’s and Pólya-Knopp’s inequality (0.1) and (0.2) and of their dual inequalities.
Since they direct consequences of the above results, we state them as examples. We don’t
emphasise results with non-negative monotone and convex functions since they can be
obtained in a similar way.
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Example 5.1 Let 0 < b ≤ ∞, γ ∈ R+, p,q ∈ R be such that q
p > 0, and let S1 be as in the

proofs of Theorem 5.4 and Theorem 5.7. Let the kernel k : (0,b)× (0,b) → R be defined
by k(x,y) = γ

xγ (x−y)γ−1χS1 and u(x)≡ 1. If q
p ≥ 1, γ > 1− p

q , Φ is a non-negative convex
function on an interval I ⊆ R and f : (0,b) → R is a function with values in I, then (5.43)
reads

⎛⎝ b∫
0

wγ (y)Φ( f (y))
dy
y

⎞⎠
q
p

−
b∫

0

Φ
q
p (Rγ f (x))

dx
x

≥ γ
q
p

b∫
0

Φ
q
p−1(Rγ f (x))

x∫
0

(x− y)γ−1rγ (x,y)dy
dx

xγ+1 , (5.47)

where Rγ is the Riemann-Liouville operator given by (4.31), while for x,y ∈ (0,b) we set

wγ(y) = γ
(∫ 1− y

b

0
t(γ−1) q

p (1− t)
q
p−1dt

) p
q

= γB
p
q

(
1− y

b
;(γ −1)

q
p

+1,
q
p

)

and

rγ (x,y) =
∣∣∣∣Φ( f (y))−Φ(Rγ f (x))

∣∣− ∣∣ϕ(Rγ f (x))
∣∣ · ∣∣ f (y)−Rγ f (x)

∣∣∣∣ .
Observe that B( · ; · , ·) denotes the incomplete Beta function defined in Introduction. In
the case when q

p ∈ (0,1] and Φ is non-negative and concave, the order of the terms on the
left-hand side of (5.47) is reversed and the inequality obtained holds for any γ > 0.

Rewriting (5.47) with some suitable parameters and with Φ being a power function, we
get a new refined Hardy’s inequality. Namely, let Φ(x) = xp, k ∈ R be such that k−1

p > 0,

wγ,k(y) = B
p
q

(
1−

(y
b

) k−1
p

;(γ −1)
q
p

+1,
q
p

)
yp−k, y ∈ (0,b),

f be a non-negative function on (0,b) (positive, if p < 0) and

R f (x) =
x∫

0

[
1−

(y
x

) k−1
p
]γ−1

f (y)dy, x ∈ (0,b).

For 1 ≤ p ≤ q < ∞ or −∞ < q ≤ p < 0, replace b and f (y) in (5.47) respectively with b
k−1

p
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and f
(
y

p
k−1

)
y

p
k−1−1. After a sequence of suitable variable changes, we get the inequality

γ
(

p
γ(k−1)

)q+1− q
p

⎛⎝ b∫
0

wγ,k(y) f p(y)dy

⎞⎠
q
p

−
b∫

0

x
q
p (1−k)−1 (R f (x))q dx

≥ q
p

∣∣∣∣∣∣
(

p
γ(k−1)

)p−1 b∫
0

x
k−1

p (p−q−1)−1(R f (x))q−p

x∫
0

[
1−

(y
x

) k−1
p
]γ−1

×

× y
k−1

p −1
∣∣∣∣yp−k+1 f p(y)−

(
γ(k−1)

p

)p

x1−k(R f (x))p

∣∣∣∣dydx

−|p|
b∫

0

x
1−k

p q−1(R f (x))q−1

x∫
0

[
1−

(y
x

) k−1
p
]γ−1

×

×
∣∣∣∣ f (y)− γ(k−1)

py

(y
x

) k−1
p

R f (x)
∣∣∣∣dydx

∣∣∣∣ . (5.48)

For 0 < q≤ p < 1, the order of the terms on the left-hand side of relation (5.48) is reversed.
Notice that for b = ∞, p = q = k > 1 and γ = 1 inequality (5.48) reduces to a refinement
of the classical Hardy’s inequality (0.1). It can be seen that our result generalizes refined
and strengthened Hardy-type inequalities from [21].

On the other hand, rewriting (5.47) with Φ(x) = ex and γ = 1, as well as with the func-
tion y �→ log(y f (y)) instead of a positive function f : (0,b) → R, we derive the following
new refined strengthened Pólya-Knopp-type inequality:

p
q

e
q
p

⎛⎝ b∫
0

[
1−

(y
b

) q
p
] p

q

f (y)dy

⎞⎠
q
p

−
b∫

0

x
q
p−1(Gf (x))

q
p dx

≥ q
p

∣∣∣∣∣∣
b∫

0

x
q
p−3(Gf (x))

q
p−1

x∫
0

|ey f (y)− xG f (x)| dydx

−
b∫

0

x
q
p−2(Gf (x))

q
p

x∫
0

∣∣∣∣log

(
ey f (y)
xG f (x)

)∣∣∣∣ dydx

∣∣∣∣∣∣ , (5.49)

where q
p ≥ 1 and Gf is defined by (4.34). For p = q relation (5.49) reduces to a refined

strengthened Pólya-Knopp’s inequality from [21]. Moreover, for b = ∞ we obtain a refine-
ment of the classical Pólya-Knopp’s inequality (0.2). �

The following example provides results dual to those from Example 5.1.

Example 5.2 Suppose 0 ≤ b < ∞, γ ∈ R+, p,q ∈ R are such that q
p > 0, and S2 is as in

the proof of Theorem 5.8. Define the kernel k : (b,∞)×(b,∞)→R and the weight function
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u : (b,∞) → R as k(x,y) = γ x
yγ+1 (y− x)γ−1χS2(x,y) and u(x) ≡ 1. For q

p ≥ 1, γ > 1− p
q ,

a non-negative convex function Φ on an interval I ⊆ R and a function f : (b,∞) → R with
values in I, inequality (5.45) becomes⎛⎝ ∞∫

b

w̃γ (y)Φ( f (y))
dy
y

⎞⎠
q
p

−
∞∫

b

Φ
q
p (Wγ f (x))

dx
x

≥ γ
q
p

∞∫
b

Φ
q
p−1(Wγ f (x))

∞∫
x

(y− x)γ−1r̃γ (x,y)
dy

yγ+1 dx, (5.50)

whereWγ denotes Weyl’s operator defined by (4.42), and for x,y∈ (b,∞) we define w̃γ(y)=

γB
p
q

(
1− b

y ;(γ −1) q
p +1, q

p

)
and r̃γ (x,y) =

∣∣∣∣Φ( f (y))−Φ(Wγ f (x))
∣∣− ∣∣ϕ(Wγ f (x))

∣∣ ·∣∣ f (y)−Wγ f (x)
∣∣∣∣. If q

p ∈ (0,1] and Φ is non-negative and concave, (5.50) holds for all
γ > 0 with the reversed order of the terms on its left-hand side.

As in Example 5.1, to get a new refined dual Hardy’s inequality, we rewrite (5.50) with
Φ(x) = xp. More precisely, let k ∈ R be such that p

1−k > 0,

w̃γ,k(y) = B
p
q

(
1−

(
b
y

) 1−k
p

;(γ −1)
q
p

+1,
q
p

)
yp−k, y ∈ (b,∞),

f be a non-negative function on (b,∞) (positive, if p < 0) and

W f (x) =
∞∫

x

[
1−

(
x
y

) 1−k
p
]γ−1

f (y)dy, x ∈ (b,∞).

For 1 ≤ p ≤ q < ∞ or −∞ < q ≤ p < 0, substitute b
1−k
p and f

(
y

p
1−k

)
y

p
1−k +1 in (5.50)

respectively for b and f (y). After some computations, we obtain the inequality

γ
(

p
γ(1− k)

)q+1− q
p

⎛⎝ ∞∫
b

w̃γ,k(y) f p(y)dy

⎞⎠
q
p

−
∞∫

b

x
q
p (1−k)−1 (W f (x))q dx

≥ q
p

∣∣∣∣∣∣
(

p
γ(1− k)

)p−1 ∞∫
b

x
1−k

p (q−p+1)−1(W f (x))q−p

∞∫
x

[
1−

(
x
y

) 1−k
p
]γ−1

×

× y
k−1

p −1
∣∣∣∣yp−k+1 f p(y)−

(
γ(1− k)

p

)p

x1−k(W f (x))p

∣∣∣∣dydx

−|p|
∞∫

b

x
1−k

p q−1(W f (x))q−1

∞∫
x

[
1−

(
x
y

) 1−k
p
]γ−1

×

×
∣∣∣∣∣ f (y)− γ(1− k)

py

(
x
y

) 1−k
p

W f (x)

∣∣∣∣∣dydx

∣∣∣∣∣ . (5.51)
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For 0 < q≤ p < 1, relation (5.51) holds with the reversed order of the terms on its left-hand
side. When p = q (5.51) becomes a refined and strengthened dual Hardy’s inequality from
Example 4.2.

Finally, for q
p ≥ 1, γ = 1, Φ(x) = ex and y �→ log(y f (y)) instead of a positive function

f : (b,∞) → R, inequality (5.50) becomes

p
q

e−
q
p

⎛⎝ ∞∫
b

[
1−

(
b
y

) q
p
] p

q

f (y)dy

⎞⎠
q
p

−
∞∫

b

x
q
p−1(G̃ f (x))

q
p dx

≥ q
p

∣∣∣∣∣∣
∞∫

b

x
q
p−1(G̃ f (x))

q
p−1

∞∫
x

∣∣e−1y f (y)− xG̃ f (x)
∣∣ dy

y2 dx

−
∞∫

b

x
q
p (G̃ f (x))

q
p

∞∫
x

∣∣∣∣log
y f (y)

exG̃ f (x)

∣∣∣∣ dy
y2 dx

∣∣∣∣∣∣ ,
where

G̃ f (x) = exp

⎛⎝x

∞∫
x

log f (y)
dy
y2

⎞⎠ , y ∈ (b,∞).

Thus, we proved a new refined strengthened dual Pólya-Knopp’s inequality. Its special
case p = q was already considered in [21] and in Example 4.2. �

5.4 Generalized one-dimensional Hardy-Hilbert’s
inequality

In this section, we consider Theorem 5.6, that is, inequalities (5.37) and (5.38) , with some
important kernels related to Ω1 = Ω2 = R+ and Φ : R+ → R, Φ(x) = xp, where p ∈ R,
p �= 0. We also assume that dμ1(x) = dx and dμ2(y) = dy.

In the first example, we generalize and refine the classical Hardy-Hilbert’s inequality
(2.2).

Example 5.3 Let p,q,s ∈ R be such that q
p > 0 and s−2

p , s−2
p′ > −1, and let

α ∈
(
− q

p

(
s−2
p′ +1

)
, q

p

(
s−2
p +1

))
. Denote

C1 = B

(
q
p

(
s−2

p
+1

)
−α,

q
p

(
s−2
p′

+1

)
+ α

)
and

C2 = B

(
s−2

p
+1,

s−2
p′

+1

)
,
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where B( · , ·) is the usual Beta function, and define k : R
2
+ → R and u : R+ → R respec-

tively by k(x,y) =
( y

x

) s−2
p (x + y)−s and u(x) = xα−1. Finally, let f be a non-negative

function on R+ (positive, if p < 0) and S f its generalized Stieltjes transform,

S f (x) =
∞∫

0

f (y)
(x+ y)s dy, x ∈ R+

(see [8] and [97] for further information). Rewriting (5.37) and (5.38) with the above

parameters and with f (y)y
2−s
p instead of f (y), for 1 ≤ p ≤ q < ∞ or −∞ < q ≤ p < 0 we

obtain the inequalities

C1C
q
p′
2

⎛⎝ ∞∫
0

yα p
q −s+1 f p(y)dy

⎞⎠
q
p

−
∞∫

0

x
α−1+ q

p′ (s−1)+ q
p (S f (x))q dx

≥ q
p

∣∣∣∣∣∣Cp−1
2

∞∫
0

x
α+q−p+ s−2

p′ (q−p+1)(S f (x))q−p×

×
∞∫

0

y
s−2
p

(x+ y)s

∣∣∣ f p(y)y2−s−C−p
2 x(p−1)(s−1)+1(S f (x))p

∣∣∣ dydx

−|p|
∞∫

0

x
α+q+ s−2

p′ q−1(S f (x))q−1×

×
∞∫

0

(x+ y)−s

∣∣∣∣ f (y)−C−1
2 x

s−2
p′ +1

y
s−2
p S f (x)

∣∣∣∣ dydx

∣∣∣∣∣∣ (5.52)

and

C1C
q
p′
2

⎛⎝ ∞∫
0

yα p
q−s+1 f p(y)dy

⎞⎠
q
p

−
∞∫

0

x
α−1+ q

p′ (s−1)+ q
p (S f (x))q dx

≥ q
p

∣∣∣∣∣Cp−1
2

∞∫
0

x
α+q−p+

(
s−2
p′

)
(q−p+1) (S f (x))q−p

×
∞∫

0

sgn

(
y

s−2
p f (y)− x

s−2
p′ +1

B−1
2 S f (x)

)

× y
s−2
p

(x+ y)s

[
y2−s f p(y)−

(
x

s−2
p′ +1

C−1
2 S f (x)

)p

−p

∣∣∣∣x s−2
p′ +1

C−1
2 S f (x)

∣∣∣∣p−1

×
(

y
2−s
p f (y)− x

s−2
p′ +1

C−1
2 S f (x)

)]
dydx

∣∣∣∣∣, (5.53)
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while for 0 < q ≤ p < 1 the order of the terms on the left-hand side of (5.52) and (5.53)
is reversed. The case p = q was already studied in Example 4.3. In particular, for p =
q > 1, α = 0 and s = 1 we have C1 = C2 = B

(
1
p , 1

p′
)

= π
sin π

p
, so (5.52) provides a new

generalization and refinement of the classical Hardy-Hilbert’s inequality (2.2). �

Similarly, in the next example we generalize and refine the classical Hardy-Littlewood-
Pólya’s inequality (4.46).

Example 5.4 Let the parameters p, q, s, α and the functions u and f be as in Example

5.3. Define k : R
2
+ → R by k(x,y) =

( y
x

) s−2
p max{x,y}−s and the transform L f as

L f (x) =
∞∫

0

f (y)
max{x,y}s dy, x ∈ R+.

Finally, set

D1 =
p2p′qs

(α pp′ + p′q+qs−2q)(pq+qs−α p2−2q)

and

D2 =
pp′s

(p+ s−2)(p′+ s−2)
.

Considering 1 ≤ p ≤ q < ∞, or −∞ < q ≤ p < 0, and f (y)y
2−s
p instead of f (y), relation

(5.37) and (5.38) become

D1D
q
p′
2

⎛⎝ ∞∫
0

yα p
q−s+1 f p(y)dy

⎞⎠
q
p

−
∞∫

0

x
α−1+ q

p′ (s−1)+ q
p (L f (x))q dx

≥ q
p

∣∣∣∣∣∣Dp−1
2

∞∫
0

x
α+q−p+ s−2

p′ (q−p+1)(L f (x))q−p×

×
∞∫

0

y
s−2
p

max{x,y}s

∣∣∣ f p(y)y2−s−D−p
2 x(p−1)(s−1)+1(L f (x))p

∣∣∣ dydx

−|p|
∞∫

0

x
α+q+ s−2

p′ q−1(L f (x))q−1×

×
∞∫

0

max{x,y}−s

∣∣∣∣ f (y)−D−1
2 x

s−2
p′ +1

y
s−2
p L f (x)

∣∣∣∣ dydx

∣∣∣∣∣∣ (5.54)



118 5 REFINEMENTS OF HARDY-TYPE INEQUALITIES FOR THE CASE 0 < p ≤ q < ∞

and

D1D
q
p′
2

⎛⎝ ∞∫
0

yα p
q−s+1 f p(y)dy

⎞⎠
q
p

−
∞∫

0

x
α−1+ q

p′ (s−1)+ q
p (L f (x))q dx

≥ q
p

∣∣∣∣∣Dp−1
2

∞∫
0

x
α+q−p+

(
s−2
p′

)
(q−p+1) (L f (x))q−p

×
∞∫

0

sgn

(
y

2−s
p f (y)− x

s−2
p′ +1

D−1
2 L f (x)

)

× y
s−2
p

max{x,y}s

[
y2−s f p(y)−

(
x

s−2
p′ +1

D−1
2 L f (x)

)p

− p

∣∣∣∣x s−2
p′ +1

D−1
2 L f (x)

∣∣∣∣p−1

×
(

y
2−s
p f (y)− x

s−2
p′ +1

D−1
2 L f (x)

)]
dydx

∣∣∣∣∣. (5.55)

If 0 < q ≤ p < 1, the order of the terms on the left-hand side of (5.54) and (5.55) is
reversed. For p = q, (5.54) reduces to Example 4.4. Moreover, since for p = q > 1, α = 0
and s = 1 we have D1 = D2 = pp′, our result generalizes and refines (4.46). �

We complete this section with another refined Hardy-Hilbert-type inequality, making
use of the well-known reflection formula for the Digamma function ψ and of the fact that

Z(a,b) =
∞∫

0

tbe−at (1− e−t)b
dt < ∞, a ∈ R+, b ≥ 1.

More precisely, Z(a,b) = Γ(b+ 1)φ∗
b (1,b+ 1,a), where φ∗

μ is the so-called unified Rie-
mann-Zeta function,

φ∗
μ(z,s,a) =

1
Γ(s)

∞∫
0

ts−1e−at (1− ze−t)−μ
dt,

where μ ≥ 1, Rea > 0 and either |z| ≤ 1, z �= 1 and Res > 0, or z = 1 and Re s > μ (for
more information regarding the unified Riemann-Zeta function, see e.g. [42]).

Example 5.5 Suppose that α ∈ (0,1) and p,q,β ∈ R are such that q
p ≥ 1 and α q

p + β ∈(
−1, q

p −1
)
. Define the kernel k : R

2
+ → R by k(x,y) = logy−logx

y−x

(
x
y

)α
and the weight

function u : R+ → R by u(x) = xβ . Finally, denote

M f (x) =
∞∫

0

logy− logx
y− x

f (y)dy, x ∈ R+,
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where f is a non-negative function on R+ (positive, if p < 0),

E1 =
∞∫

0

(
logt
t−1

) q
p

tα q
p +β dt = Z

(
α

q
p

+ β +1,
q
p

)
+Z

(
q
p
−α

q
p
−β −1,

q
p

)
and

E2 =
∞∫

0

logt
t−1

t−α dt =
π2

sin2 πα
.

Applying (5.37) and (5.38) to the above parameters and to f (y) replaced with f (y)yα , we
get the inequalities

E1E
q
p′
2

⎛⎝ ∞∫
0

yα p+(β+1) p
q−1 f p(y)dy

⎞⎠
q
p

−
∞∫

0

xαq+β (M f (x))q dx

≥ q
p

∣∣∣∣∣∣Ep−1
2

∞∫
0

xα(q−p+1)+β(M f (x))q−p×

×
∞∫

0

y−α logy− logx
y− x

∣∣∣ f p(y)yα p−E−p
2 xα p(M f (x))p

∣∣∣ dydx

−|p|
∞∫

0

xαq+β (M f (x))q−1×

×
∞∫

0

logy− logx
y− x

∣∣∣∣ f (y)−E−1
2

(
x
y

)α
M f (x)

∣∣∣∣ dydx

∣∣∣∣∣∣ (5.56)

and

E1E
q
p′
2

⎛⎝ ∞∫
0

yα p+(β+1) p
q −1 f p(y)dy

⎞⎠
q
p

−
∞∫

0

xαq+β (M f (x))q dx

≥ q
p

∣∣∣∣∣Ep−1
2

∞∫
0

xα(q−p+1)+β (M f (x))q−p
∞∫

0

sgn
(
yα f (y)− xαE−1

2 M f (x)
)

×y−α lny− lnx
y− x

[
yα p f p(y)− (

xαE−1
2 M f (x)

)p− p
∣∣xαE−1

2 M f (x)
∣∣p−1

×(
yα f (y)− xαE−1

2 M f (x)
)]

dydx

∣∣∣∣∣.
Notice that for p = q we have

E1 =
∞∫

0

log t
t−1

tα+β dt =
π2

sin2 π(α + β )
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and (5.56) reduces to the Hardy-Hilbert-type inequality obtained in Example 4.5. There-
fore our result can be seen as its generalization. �

5.5 General Godunova-type inequalities

We conclude the chapter with a multidimensional result related to Godunova’s inequality
(2.10). Namely, let Ω1 = Ω2 = R

n
+, dμ1(x) = dx, dμ2(y) = dy, let y

x and xy be as in
Section 5.1, and let the kernel k : R

n
+ ×R

n
+ → R be of the form k(x,y) = l

( y
x

)
, where

l : R
n
+ → R is a non-negative measurable function.

Applying Theorem 5.6 to this setting, we get the following generalization and refine-
ment of Godunova’s inequality (2.10).

Theorem 5.9 Let 0 < p ≤ q < ∞ or −∞ < q ≤ p < 0. Let l and u be non-negative
measurable functions on R

n
+, such that 0 < L(x) = x1 ∫

R
n
+

l(y)dy < ∞ for all x ∈ R
n
+, and

that the function x �→ u(x)
(

l( y
x )

L(x)

) q
p

is integrable on R
n
+ for each fixed y ∈ R

n
+. Let the

function v be defined on R
n
+ by

v(y) =

⎛⎝∫
R

n
+

u(x)

(
l
( y

x

)
L(x)

) q
p

dx

⎞⎠
p
q

.

If Φ is a non-negative convex function on an interval I ⊆ R and ϕ : I → R is any function,
such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality(∫

R
n
+

v(y)Φ( f (y))dy
) q

p

−
∫
R

n
+

u(x)Φ
q
p (Al f (x))dx

≥ q
p

∫
R

n
+

u(x)
L(x)

Φ
q
p−1(Al f (x))

∫
R

n
+

l
(y

x

)
r(x,y)dydx (5.57)

holds for all measurable functions f : R
n
+ → R with values in I, where Al f (x) and r(x,y),

for x,y ∈ R
n
+ are defined by

Al f (x) =
1

L(x)

∫
R

n
+

l
(y

x

)
f (y)dy (5.58)

and
r(x,y) = | |Φ( f (y))−Φ(Al f (x))|− |ϕ(Al f (x))| · | f (y)−Al f (x)| | .

If Φ is a positive concave function and 0 < q ≤ p < ∞ or −∞ < p ≤ q < 0, then (5.57)
holds with the reversed order of the terms on its left-hand side.
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If Φ is non-negative monotone convex on the interval I ⊆ R and ϕ : I → R is any function
such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality

(∫
R

n
+

v(y)Φ( f (y))dy
) q

p

−
∫
R

n
+

u(x)Φ
q
p (Al f (x))dx

≥ q
p

∣∣∣∣∣
∫

R
n
+

u(x)
L(x)

Φ
q
p−1 (Al f (x))

∫
Ω2

sgn( f (y)−Al f (x))l
(y

x

)
×

[
Φ( f (y))−Φ(Al f (x))−|ϕ(Al f (x))|·( f (y)−Al f (x))

]
dydx

∣∣∣∣∣ (5.59)

holds for all measurable functions f : R
n
+ → R such that f (y) ∈ I for all y∈ R

n
+ where Al f

is defined by (5.58).
If Φ is a positive monotone concave function, then the order of the terms on the left-

hand side of (5.59) is reversed.

Remark 5.10 Observe that for p = q inequality (5.57) reduces to Theorem 4.4. If, addi-
tionally,

∫
R

n
+

l(y)dy = 1 and u(x) = x−1, we get a refinement of (2.10). �

The above results can be rewritten with particular convex (or concave) functions, for
example, with power and exponential functions. This leads to multidimensional analogues
of corollaries and examples from Sections 5.3 and 5.4. Due to the lack of space, we omit
them here.

5.6 Generalized G. H. Hardy-type inequality

Let us continue by taking the non-negative difference of the left-hand side and the right-
hand side of the inequality given in Theorem 5.6 with Φ : R+ → R+, Φ(x) = xs,s ≥ 1
as:

ρ(s) =

⎛⎝ ∫
Ω2

v(y) f s(y)dμ2(y)

⎞⎠
q
p

−
∫

Ω1

u(x)(Ak f (x))
sq
p dμ1(x)

− q
p

∫
Ω1

u(x)
K(x)

(Ak f (x))s( q
p−1)

∫
Ω2

k(x,y)r(x,y)dμ2(y)dμ1(x),

(5.60)
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where r(x,y) is defined by (5.28).

We can also take the non-negative difference of the left-hand side and the right-hand
side of the inequality given in (5.31) with Φ : R+ → R+, Φ(x) = xs,s ≥ 1 as:

π(s) =

⎛⎝∫
Ω2

v(y) f s(y)dμ2(y)

⎞⎠
q
p

−
∫

Ω1

u(x)(Ak f (x))
sq
p dμ1(x)

− q
p

∣∣∣∣∣
∫

Ω1

u(x)
K(x)

Φ
q
p−1 (Ak f (x))

∫
Ω2

sgn( f (y)−Ak f (x))k(x,y)

×
[
f s(y)− (Ak f (x))s−s|Ak f (x)|s−1·( f (y)−Ak f (x))

]
dμ2(y)dμ1(x)

∣∣∣∣∣.
(5.61)

In the following sections we will give results related to ρ(s) defined by (5.60). Results
involving π(s) defined by (5.61) can be obtained in a similar way. For more details see
[62].

5.6.1 G. H. Hardy-type inequalities for fractional integrals

In the following theorem, our first result involving the fractional integral of f with respect
to an increasing function g is given. We give results for the Riemann-Liouville fractional
integrals and Hadamard-type fractional integrals as an applications of this theorem.

Theorem 5.10 Let 0 < p ≤ q < ∞, s ≥ 1, α > 1− p
q , f ≥ 0, g be increasing function on

(a,b) such that g′ be continuous on (a,b). Then the following inequality holds:

0 ≤ ρ1(s) ≤ H1(s)−M1(s) ≤ H1(s),

where

ρ1(s) =
α

q
p

(α −1) q
p +1

⎛⎝ b∫
a

g′(y)(g(b)−g(y))α−1+ p
q f s(y)dy

⎞⎠
q
p

−(Γ(α +1))
sq
p

b∫
a

g′(x)(g(x)−g(a))
αq
p (1−s) (Iα

a+;g f (x)
) sq

p dx−M1(s),

M1(s)=
αq(Γ(α +1))s( q

p−1)

p

b∫
a

g′(x)(g(x)−g(a))
α(q−p)(1−s)

p
(
Iα
a+;g f (x)

)s( q
p−1)

×
x∫

a

g′(y)r1(x,y)
(g(x)−g(y))1−α dydx,
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r1(x,y)=
∣∣∣∣ ∣∣∣∣ f s(y)−

(
Γ(α +1)

(g(x)−g(a))α Iα
a+;g f (x)

)s∣∣∣∣
−s

∣∣∣∣ Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
∣∣∣∣s−1

·
∣∣∣∣ f (y)− Γ(α +1)

(g(x)−g(a))α Iα
a+;g f (x)

∣∣∣∣
∣∣∣∣∣ ,

and

H1(s)=(g(b)−g(a))
αq
p (1−s)

⎡⎢⎣α
q
p (g(b)−g(a))

q(αs−1)+p
p

(α −1) q
p +1

⎛⎝ b∫
a

g′(y) f s(y)dy

⎞⎠
q
p

− (Γ(α +1))
sq
p

b∫
a

g′(x)(Iα
a+;g f (x))

sq
p dx

⎤⎦ .

Proof. Applying Theorem 5.6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx,dμ2(y) = dy,

k(x,y) =

{
g′(y)

Γ(α)(g(x)−g(y))1−α , a < y ≤ x ;

0, x < y ≤ b,

we get that K(x) = 1
Γ(α+1) (g(x)−g(a))α and Ak f (x) = Γ(α+1)

(g(x)−g(a))α Iα
a+;g f (x). For particu-

lar weight function u(x) = g′(x)(g(x)−g(a))
αq
p , x ∈ (a,b), we get v(y) = (αg′(y)(g(b)−

g(y))α−1+ p
q )/(((α −1) q

p +1)
p
q ), so (5.60) takes the form

ρ1(s)=
α

q
p

(α −1) q
p +1

⎛⎝ b∫
a

g′(y)(g(b)−g(y))α−1+ p
q f s(y)dy

⎞⎠
q
p

−(Γ(α +1))
sq
p

b∫
a

g′(x)(g(x)−g(a))
αq(1−s)

p
(
Iα
a+;g f (x)

) sq
p dx−M1(s).

Since αq
p (1− s)≤ 0, g is increasing and M1(s) ≥ 0, we obtain that

0 ≤ ρ1(s) ≤ α
q
p (g(b)−g(a))(α−1) q

p +1

(α −1) q
p +1

⎛⎝ b∫
a

g′(y) f s(y)dy

⎞⎠
q
p

−(g(b)−g(a))
αq
p (1−s)(Γ(α+1))

sq
p

b∫
a

g′(x)(Iα
a+;g f (x))

sq
p dx−M1(s)

= H1(s)−M1(s)
≤ H1(s).

This completes the proof.
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Remark 5.11 Similar result can be obtained for the right-sided fractional integral of f
with respect to an increasing function g, but we omit the details here.

Here, we give a first special case for the Riemman-Liouville fractional integral. If
g(x) = x, then Iα

a+;x f (x) reduces to Iα
a+ f (x), the left-sided Riemann-Liouville fractional

integra,l and the following result follows.

Corollary 5.18 Let 0 < p≤ q < ∞, α > 1− p
q , s≥ 1 , f ≥ 0. Then the following inequal-

ity holds
0 ≤ ρ2(s) ≤ H2(s)−M2(s) ≤ H2(s),

where

ρ2(s) =
α

q
p

(α −1) q
p +1

⎛⎝ b∫
a

(b− y)α−1+ p
q f s(y)dy

⎞⎠
q
p

−(Γ(α +1))
sq
p

b∫
a

(x−a)
αq
p (1−s) (Iα

a+ f (x)
) sq

p dx−M2(s),

M2(s) =
αq(Γ(α +1))s( q

p−1)

p

b∫
a

(x−a)
α(q−p)(1−s)

p
(
Iα
a+ f (x)

)s( q
p−1)

×
x∫

a

r2(x,y)
(x− y)1−α dydx,

r2(x,y) =
∣∣∣∣ ∣∣∣∣ f s(y)−

(
Γ(α +1)
(x−a)α Iα

a+ f (x)
)s∣∣∣∣

−s

∣∣∣∣Γ(α +1)
(x−a)α Iα

a+ f (x)
∣∣∣∣s−1

·
∣∣∣∣ f (y)− Γ(α +1)

(x−a)α Iα
a+ f (x)

∣∣∣∣
∣∣∣∣∣ ,

and

H2(s) = (b−a)
αq
p (1−s)

⎡⎢⎣α
q
p (b−a)

q(αs−1)+p
p

(α −1) q
p +1

⎛⎝ b∫
a

f s(y)dy

⎞⎠
q
p

−(Γ(α +1))
sq
p

b∫
a

(Iα
a+ f (x))

sq
p dx

⎤⎦ .

Now we continue with a result involving the Hadamard-type fractional integrals.
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Corollary 5.19 Let 0 < p≤ q < ∞, s≥ 1, α > 1− p
q , f ≥ 0. Then the following inequal-

ity holds

0 ≤ ρ3(s) ≤ H3(s)−M3(s) ≤ H3(s),

where

ρ3(s) =
α

q
p

(α −1) q
p +1

⎛⎝ b∫
a

(logb− logy)α−1+ p
q f s(y)

dy
y

⎞⎠
q
p

−(Γ(α +1))
sq
p

b∫
a

(logx− loga)
αq
p (1−s) (Jα

a+ f (x)
) sq

p
dx
x
−M3(s),

M3(s) =
αq(Γ(α +1))s( q

p−1)

p

b∫
a

(logx− loga)
α(q−p)(1−s)

p
(
Jα
a+ f (x)

)s( q
p−1)

×
x∫

a

r3(x,y)
(logx− logy)1−α

dy
y

dx
x

,

r3(x,y) =
∣∣∣∣ ∣∣∣∣ f s(y)−

(
Γ(α +1)

(logx− loga)α Jα
a+ f (x)

)s∣∣∣∣
−s

∣∣∣∣ Γ(α +1)
(logx− loga)α Jα

a+ f (x)
∣∣∣∣s−1

·
∣∣∣∣ f (y)− Γ(α +1)

(logx− loga)α Jα
a+ f (x)

∣∣∣∣
∣∣∣∣∣ ,

and

H3(s) = (logb− loga)
αq
p (1−s)

⎡⎢⎣α
q
p (logb− loga)

q(αs−1)+p
p

(α −1) q
p +1

⎛⎝ b∫
a

f s(y)
dy
y

⎞⎠
q
p

− (Γ(α +1))
sq
p

b∫
a

(Jα
a+ f (x))

sq
p

dx
x

⎤⎦ .

Now, we give the following result involving the Erdélyi-Kober type fractional integrals.

Theorem 5.11 Let 0 < p ≤ q < ∞, s ≥ 1, α > 1− p
q , f ≥ 0 and 2F1(a,b;c;z) denotes

the hypergeometric function. Then the following inequality holds

0 ≤ ρ4(s) ≤ H4(s)−M4(s) ≤ H4(s),
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where

ρ4(s) =
α

q
p σ

q
p−1

(α −1) q
p +1

⎛⎝ b∫
a

yσ−1
2F1(y)(bσ − yσ )α−1+ p

q f s(y)dy

⎞⎠
q
p

−(Γ(α +1))
sq
p

b∫
a

x
σαsq

p +σ−1 ((xσ −aσ )α
2F1(x))

q(1−s)
p

(
Iα
a+;σ ;η f (x)

) sq
p dx

−M4(s)

M4(s) =
αqσ(Γ(α +1))

sq
p

p

b∫
a

xσαs( q
p−1)+σ−ση−1 ((xσ −aσ)α

2F1(x))
(q−p)(1−s)

p

×(
Iα
a+;σ ;η f (x)

)s( q
p−1)

x∫
a

r4(x,y)yση+σ−1

(xσ − yσ )1−α dydx,

r4(x,y) =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ f s(y)−

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠
s∣∣∣∣∣∣∣

−s

∣∣∣∣∣∣∣
Γ(α +1)(

1− (
a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

∣∣∣∣∣∣∣
s−1

·

∣∣∣∣∣∣∣ f (y)−
Γ(α +1)(

1− (
a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ,

H4(s)=(bσ −aσ)α q
p (1−s)

⎡⎢⎣α
q
p σ

q
p−1b(σ−1) q

p (bσ −aσ)
q(αs−1)+p

p

(α −1) q
p +1

⎛⎝ b∫
a

2F1(y) f s(y)dy

⎞⎠
q
p

−aσαs q
p +σ−1(Γ(α +1))

sq
p

b∫
a

(2F1(x))
q
p (1−s) (Iα

a+;σ ;η f (x)
) sq

p dx

⎤⎦ ,

2F1(x) = 2F1

(
−η ,α;α+1;1−

(a
x

)σ)
and 2F1(y) = 2F1

(
η ,α;α+1;1−

(
b
y

)σ)
.

Proof. Similar to the proof of Theorems 3.12 and 5.10. �

Remark 5.12 Similar result can be obtained for the right sided Erdélyi-Kober type frac-
tional integrals, but we omit the details here.
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5.6.2 G. H. Hardy-type inequalities for fractional derivatives

In the following Theorem, we will construct a new inequality for the Canavati-type frac-
tional derivative.

Theorem 5.12 Let 0 < p ≤ q < ∞, s ≥ 1, ν − γ > 1− p
q and the assumptions in Lemma

1.4 be satisfied. Then for non-negative functions Dν
a f and Dγ

a f , the following inequality
holds

0 ≤ ρ5(s) ≤ H5(s)−M5(s) ≤ H5(s),

where

ρ5(s) =
(ν − γ)

q
p

(ν − γ −1) q
p +1

⎛⎝ b∫
a

(b− y)ν−γ−1+ p
q (Dν

a f (y))sdy

⎞⎠
q
p

−(Γ(ν − γ +1))
sq
p

b∫
a

(x−a)
(ν−γ)q(1−s)

p (Dγ
a f (x))

sq
p dx−M5(s),

M5(s) =
q(ν − γ)(Γ(ν − γ +1))s( q

p−1)

p

b∫
a

(x−a)
(ν−γ)(q−p)(1−s)

p (Dγ
a f (x))s( q

p−1)

×
x∫

a

r5(x,y)(x− y)ν−γ−1dydx,

r5(x,y) =
∣∣∣∣ ∣∣∣∣(Dν

a f (y))s −
(

Γ(ν − γ +1)
(x−a)γ Dγ

a f (x)
)s∣∣∣∣

−s

∣∣∣∣Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
∣∣∣∣s−1 ∣∣∣∣Dν

a f (y)− Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
∣∣∣∣
∣∣∣∣∣ ,

and

H5(s) = (b−a)(ν−γ) q
p (1−s)

⎡⎢⎣(ν − γ)
q
p (b−a)

q((ν−γ)s−1)+p
p

(ν − γ −1) q
p +1

⎛⎝ b∫
a

(Dν
a f (y))sdy

⎞⎠
q
p

− (Γ(ν − γ +1))
sq
p

b∫
a

(Dγ
a f (x))

sq
p dx

⎤⎦ .

Proof. Similar to the proof of Theorems 3.9 and 5.10. �

Next, we give the result for the Caputo fractional derivative.
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Theorem 5.13 Let 0 < p ≤ q < ∞, s ≥ 1, ν − γ > 1− p
q and the assumptions in Lemma

1.5 be satisfied. Then for non-negative functions Dν∗a f and Dγ
∗a f , the following inequality

holds
0 ≤ ρ6(s) ≤ H6(s)−M6(s) ≤ H6(s),

where

ρ6(s) =
(ν − γ)

q
p

(ν − γ −1) q
p +1

⎛⎝ b∫
a

(b− y)ν−γ−1+ p
q (Dν

∗a f (y))sdy

⎞⎠
q
p

−(Γ(ν − γ +1))
sq
p

b∫
a

(x−a)
(ν−γ)q(1−s)

p
(
Dγ
∗a f (x)

) sq
p dx,

M6(s) =
q(ν − γ)(Γ(ν − γ +1))s( q

p−1)

p

b∫
a

(x−a)
(ν−γ)(q−p)(1−s)

p
(
Dγ
∗a f (x)

)s( q
p−1)

×
x∫

a

r6(x,y)(x− y)ν−γ−1dydx,

r6(x,y) =
∣∣∣∣ ∣∣∣∣(Dν

∗a f (y))s −
(

Γ(ν − γ +1)
(x−a)γ Dγ

∗a f (x)
)s∣∣∣∣

−s

∣∣∣∣Γ(ν − γ +1)
(x−a)ν−γ Dγ

∗a f (x)
∣∣∣∣s−1

·
∣∣∣∣Dν

∗a f (y)− Γ(ν − γ +1)
(x−a)ν−γ Dγ

∗a f (x)
∣∣∣∣
∣∣∣∣∣ ,

and

H6(s) = (b−a)(ν−γ) q
p (1−s)

⎡⎢⎣(ν − γ)
q
p (b−a)

q((ν−γ)s−1)+p
p

(ν − γ −1) q
p +1

⎛⎝ b∫
a

(Dν
∗a f (y))sdy

⎞⎠
q
p

− (Γ(ν − γ +1))
sq
p

b∫
a

(Dγ
∗a f (x))

sq
p dx

⎤⎦ .

Proof. Similar to the proof of Theorem 3.11 and 5.10. �



Chapter6
Bounds for Hardy-type
differences

In this chapter we prove and discuss improvements and reverses of new weighted Hardy
type inequalities with integral operators. We introduce a new Cauchy type mean and prove
a monotonicity property of this mean.

6.1 The main results with applications

Lemma 6.1 For s ∈ R, let function the ϕs : (0,∞) → R be defined by

ϕs(x) =

⎧⎪⎪⎨⎪⎪⎩
xs

s(s−1) , s �= 0,1

− logx, s = 0

x logx, s = 1

. (6.1)

Then ϕ ′′
s (x) = xs−2, that is, ϕs is a convex function.

Lemma 6.2 For s ∈ R, let the function ψs : R → [0,∞) be defined by

ψs(x) =

{ 1
s2

esx, s �= 0

1
2x2, s = 0

. (6.2)

129
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Then ψ ′′
s (x) = esx, that is, ψs is a convex function.

Our first result reads (see [36]):

Theorem 6.1 Let (Ω1,Σ1,μ1), (Ω2,Σ2,μ2) be measure spaces with σ -finite measures
and u : Ω1 → R be a weight function. Let I be a compact interval of R, h ∈ C2(I), and
f : Ω2 → R a measurable function such that Im f ⊆ I. Then there exists η ∈ I such that∫

Ω2

v(y)h( f (y))dμ2(y)−
∫

Ω1

u(x)h(Ak f (x))dμ1(x)

=
h′′(η)

2

[∫
Ω2

v(y) f 2(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))2 dμ1(x)
]
, (6.3)

where Ak f and v are defined by (2.15) and (2.17).

Proof. Since h′′ is continuous on the segment I ⊆ R, there exist m = minx∈I h′′(x) and
M = maxx∈I h′′(x). Then by applying Theorem 2.5 on functions Φ1, Φ2 from Remark 1.5,
the following two inequalities hold:∫

Ω2

v(y)Φ1( f (y))dμ2(y) ≥
∫

Ω1

u(x)Φ1(Ak f (x))dμ1(x),

∫
Ω2

v(y)Φ2( f (y))dμ2(y) ≥
∫

Ω1

u(x)Φ2(Ak f (x))dμ1(x).

It follows,

m
2

{∫
Ω2

v(y) f 2(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))2 dμ1(x)
}

≤
∫

Ω2

v(y)h( f (y))dμ2(y)−
∫

Ω1

u(x)h(Ak f (x))dμ1(x)

≤ M
2

{∫
Ω2

v(y) f 2(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))2 dμ1(x)
}

.

The function h′′ is continuous, so Imh′′ = [m,M]. Therefore, there exists η ∈ I such that
(6.3) holds. �

Theorem 6.2 Let the conditions of Theorem 2.5 be satisfied and ϕs be defined by (6.1).
Let f be a positive function. Then the function ξ : R → [0,∞) defined by

ξ (s) =
∫

Ω2

v(y)ϕs( f (y))dμ2(y)−
∫

Ω1

u(x)ϕs(Ak f (x))dμ1(x), (6.4)

is exponentially convex.
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Proof. Let us prove first that ξ is continuous on R. Obviously, it is continuous on R\
{0,1}, which easily follows from the Lebesgue monotone convergence theorem. Suppose
s → 0:

lim
s→0

ξ (s) = lim
s→0

∫
Ω2

v(y)
f s(y)

s(s−1)
dμ2(y)−

∫
Ω1

u(x)
(Ak f (x))s

s(s−1)
dμ1(x)

= lim
s→0

∫
Ω2

v(y) f s(y)dμ2(y)−
∫

Ω1
u(x)(Ak f (x))s dμ1(x)

s(s−1)
(6.5)

Since
lim
s→0

∫
Ω2

v(y) f s(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))s dμ1(x) = 0,

by L’Hospital’s rule, the limit in (6.5) is equal to

lim
s→0

ξ (s)=lim
s→0

∫
Ω2

v(y) f s(y) log f (y)dμ2(y)−
∫

Ω1
u(x)(Ak f (x))s log(Ak f (x))dμ1(x)

2s−1

=−
∫

Ω2

v(y) log f (y)dμ2(y)+
∫

Ω1

u(x) log(Ak f (x))dμ1(x)

=
∫

Ω2

v(y)ϕ0( f (y))dμ2(y)−
∫

Ω1

u(x)ϕ0(Ak f (x))dμ1(x) = ξ (0)

In the same way, for s = 1 we get

lim
s→1

ξ (s) =
∫

Ω2

v(y) f (y) log f (y)dμ2(y)−
∫

Ω1

u(x)Ak f (x) log(Ak f (x))dμ1(x) = ξ (1)

Hence, ξ is continuous on R. Let n ∈ N, ti ∈ R, and pi ∈ R, i = 1,2, . . . ,n be arbitrary.
Denote

pi j =
pi + p j

2
,

and define the function Φ : R+ → R by

Φ(x) =
n

∑
i, j

tit jϕpi j(x)

Then

Φ′′(x) =
n

∑
i, j

tit jx
pi j−2 =

(
n

∑
i

tix
pi
2 −1

)2

≥ 0,

so Φ is a convex function on R+.

Now, we can apply the result from Theorem 2.5 to the function Φ defined above, and
obtain

n

∑
i, j

tit jξ (pi j) ≥ 0

concluding positive semi-definiteness. Since ξ is continuous, it is exponentially convex
function. �
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Remark 6.1 The function ξ being exponentially convex is also a log-convex function.
Then, by Remark 1.2, the following inequality holds

[ξ (r)]q−p ≤ [ξ (p)]q−r [ξ (q)]r−p (6.6)

for every choice of p,q,r ∈ R such that p < r < q.

As a consequence of Theorem 6.2, we prove an improvement and reverse of strength-
ened Hardy’s inequality and its dual.

Theorem 6.3 Let k,b,γ ∈ R be such that k �= 1, b > 0 and γ > 0, let f be a non-negative
function, and let p ∈ R\{0,1}.

(i) If p
k−1 > 0 and r < p < t, then

1
p(p−1)

{(
p

k−1

)p b∫
0

[
1−

(x
b

) k−1
p
]γ

xp−k f p(x)dx

−γ p

b∫
0

x−k

⎛⎝ x∫
0

[
1−

(y
x

) k−1
p
]γ−1

f (y)dy

⎞⎠p

dx

}

≤
(

p
k−1

)p

[R(r)]
t−p
t−r [R(t)]

p−r
t−r . (6.7)

If p < t < r or t < r < p, then (6.7) holds with reversed sign of inequality, where

R(r) =
b∫

0

[
1−

(x
b

) k−1
p
]γ

ϕr

(
x

p−k+1
p f (x)

)
dx
x

−
b∫

0

ϕr

⎛⎝γ(k−1)
p

x
1−k

p

x∫
0

[
1−

(y
x

) k−1
p
]γ−1

f (y)dy

⎞⎠ dx
x

.

(ii) If p
1−k > 0 and r < p < t, then

1
p(p−1)

{(
p

1− k

)p ∞∫
b

[
1−

(
b
x

) 1−k
p
]γ

xp−k f p(x)dx

−γ p

∞∫
b

x−k

⎛⎝ ∞∫
x

[
1−

(
x
y

) k−1
p
]γ−1

f (y)dy

⎞⎠p

dx

}

≤
(

p
1− k

)p

[W (t)]
p−r
t−r [W (r)]

t−p
t−r . (6.8)



6.1 THE MAIN RESULTS WITH APPLICATIONS 133

If p < t < r or t < r < p, then (6.8) holds with reversed sign of inequality, where

W (r) =
∞∫

b

[
1−

(
b
x

) 1−k
p
]γ

ϕr

(
x

p−k+1
p f (x)

)
dx
x

−
∞∫

b

ϕr

⎛⎝ γ(1− k)
p

x
1−k

p

∞∫
x

[
1−

(
x
y

) 1−k
p
]γ−1

f (y)dy

⎞⎠ dx
x

.

Proof. The proof follows from Theorem 6.2 and Remark 6.1 by choosing Ω1 = Ω2 =
(0,b) and replacing μ1 and μ2 by the Lebesgue measure. Choosing

k(x,y) =

{ γ
xγ (x− y)γ−1, 0 < y ≤ x < b, γ > 0,

0, x < y

and u(x) = 1
x , we obtain K(x) = 1, v(y) = 1

y

(
1− y

b

)γ
and Riemann-Liouville operator

Rγ f (x) = Ak f (x) =
γ
xγ

x∫
0

(x− y)γ−1 f (y)dy.

Then (6.4) becomes

F(p) =
b∫

0

(
1− x

b

)γ
ϕp( f (x))

dx
x
−

b∫
0

ϕp(Rγ f (x))
dx
x

(6.9)

and (6.6) becomes

[F(p)]t−r ≤ [F(r)]t−p [F(t)]p−r (6.10)

for every choice r, p,t ∈R, such that r < p < t. We know that F(p) is a log-convex function.
To obtain (6.7) replace the parameter b in (6.9) by b(k−1)/p and choose for f the function
x �→ f (xp/(k−1))xp/(k−1)−1.

Then, after suitable variable changes it follows

F(p) =
k−1

p

{ b∫
0

[
1−

(x
b

) k−1
p
]γ

ϕp

(
x

p−k+1
p f (x)

)
dx
x

−
b∫

0

ϕp

⎛⎝ γ(k−1)
p

x
1−k

p

x∫
0

[
1−

(y
x

) k−1
p
]γ−1

f (y)dy

⎞⎠ dx
x

}
.
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Now (6.10) reduces to

b∫
0

[
1−

(x
b

) k−1
p
]γ

ϕp

(
x

p−k+1
p f (x)

)
dx
x

−
b∫

0

ϕp

⎛⎝ γ(k−1)
p

x
1−k

p

x∫
0

[
1−

(y
x

) k−1
p
]γ−1

f (y)dy

⎞⎠ dx
x

≤ [R(r)]
t−p
t−r [R(t)]

p−r
t−r .

For p ∈ R\{0,1} we get (6.7).
By taking substitutions r → t, p → r, t → p or r → p, p → t, t → r in (6.10), we get

reversed sign of inequality in (6.7).
To prove (6.8), let us take Ω1 = Ω2 = (b,∞) and let μ1, μ2 be the Lebesgue measure.

Choosing

k(x,y) =

⎧⎨⎩
γ(y−x)γ−1x

yγ+1 , b < x ≤ y < ∞, γ > 0,

0, y < x

and u(x) = 1
x we obtain K(x) = 1, v(y) = 1

y

(
1− b

y

)γ
and Weyl’s operator

Wγ f (x) = Ak f (x) = γx

∞∫
x

(y− x)γ−1 f (y)
dy

yγ+1 .

Then (6.4) becomes

F̃(p) =
∞∫

b

(
1− b

x

)γ
ϕp( f (x))

dx
x
−

∞∫
b

ϕp(Wγ f (x))
dx
x

(6.11)

and (6.6) becomes

[F̃(p)]t−r ≤ [
F̃(r)

]t−p [
F̃(t)

]p−r
(6.12)

for every choice r, p,t ∈ R, such that r < p < t. We know that F̃(p) is log-convex. To
obtain (6.8) it is sufficient to replace the parameter b in (6.11) by b(1−k)/p and replace
function f by x �→ f (xp/(1−k))xp/(1−k)+1. Then it follows

F̃(p) =
1− k

p

{ ∞∫
b

[
1−

(
b
x

) 1−k
p
]γ

ϕp

(
x

p−k+1
p f (x)

)
dx
x

−
∞∫

b

ϕp

⎛⎝ γ(1− k)
p

x
1−k

p

∞∫
x

[
1−

(
x
y

) 1−k
p
]γ−1

f (y)dy

⎞⎠ dx
x

}
.
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From here (6.12) reduces to

∞∫
b

[
1−

(
b
x

) 1−k
p
]γ

ϕp

(
x

p−k+1
p f (x)

)
dx
x

−
∞∫

b

ϕp

⎛⎝ γ(1− k)
p

x
1−k

p

∞∫
x

[
1−

(
x
y

) 1−k
p
]γ−1

f (y)dy

⎞⎠ dx
x

≤ [W (r)]
t−p
t−r [W (t)]

p−r
t−r .

For p ∈ R\{0,1} we get (6.8).
By taking substitutions r → t, p → r, t → p and r → p, p → t, t → r in (6.12), we get

reversed sign of inequality in (6.8). �

Remark 6.2 For γ = 1 in (6.7) and (6.8), we obtain the result from Theorem 4.1 in [53].

Let us discuss an improvement and reverse of the classical Hardy-Hilbert’s inequality
(2.1).

Theorem 6.4 Let the assumptions of Theorem 6.2 be satisfied and H : R → [0,∞) be a
function defined by

H(s) =
1

s(s−1)

⎡⎣ ∞∫
0

f s(y)dy−
(

sin π
s

π

)s ∞∫
0

⎛⎝ ∞∫
0

f (y)
x+ y

dy

⎞⎠s

dx

⎤⎦ . (6.13)

Then

H(s) ≤
⎧⎨⎩ 1

r(r−1)

⎡⎣ ∞∫
0

f r(y)dy−
(

sin π
s

π

)r ∞∫
0

⎛⎝ ∞∫
0

f (y)
x+ y

dy

⎞⎠r

x
r
s−1dx

⎤⎦⎫⎬⎭
t−s
t−r

×

×
⎧⎨⎩ 1

t(t−1)

⎡⎣ ∞∫
0

f t(y)dy−
(

sin π
s

π

)t ∞∫
0

⎛⎝ ∞∫
0

f (y)
x+ y

dy

⎞⎠t

x
t
s−1dx

⎤⎦⎫⎬⎭
s−r
t−r

(6.14)

for 1 < r < s < t, and

H(s) ≥
⎧⎨⎩ 1

r(r−1)

⎡⎣ ∞∫
0

f r(y)dy−
(

sin π
s

π

)r ∞∫
0

⎛⎝ ∞∫
0

f (y)
x+ y

dy

⎞⎠r

x
r
s−1dx

⎤⎦⎫⎬⎭
t−s
t−r

×

×
⎧⎨⎩ 1

t(t−1)

⎡⎣ ∞∫
0

f t(y)dy−
(

sin π
s

π

)t ∞∫
0

⎛⎝ ∞∫
0

f (y)
x+ y

dy

⎞⎠t

x
t
s−1dx

⎤⎦⎫⎬⎭
s−r
t−r

(6.15)

for 1 < s < t < r or 1 < t < r < s.
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Proof. Let us take Ω1 = Ω2 = (0,∞) and the Lebesgue measure for μ1 and μ2 in

Theorem 6.2 and Remark 6.1. Choosing k(x,y) = ( y
x )−1/s

x+y , s > 1 and u(x) = 1
x , we obtain

K(x) = K = π
sin(π/s) , v(y) = 1

y . Replace f (t)t−1/s with f (t), then we get (6.13). By Theo-
rem 6.2 (6.13) is a log-convex function. Now, for 1 < r < s < t apply Remark 1.2 on (6.13)
and we obtain (6.14).

If in (6.14) we take substitions r → t, s→ r, t → s or r → s, s→ t, t → r, (6.15) follows.
�

Using the function ψs instead of ϕs, the following result follows.

Theorem 6.5 Let the conditions of Theorem 2.5 be satisfied, ψs be defined by (6.2) and
let f be a positive function. Then the function ζ : R → [0,∞) defined by

ζ (s) =
∫

Ω2

v(y)ψs( f (y))dμ2(y)−
∫

Ω1

u(x)ψs(Ak f (x))dμ1(x), (6.16)

is exponentially convex.

Proof. The proof is analogous to the proof of Theorem 6.2. We just have to show that ζ
is a continuous function on R. Obviously, it is continuous on R\{0}, which easily follows
from the Lebesgue monotone convergence theorem. Suppose s → 0:

lim
s→0

ζ (s) = lim
s→0

∫
Ω2

v(y)
1
s2 es f (y) dμ2(y)−

∫
Ω1

u(x)
1
s2 esAk f (x) dμ1(x)

= lim
s→0

∫
Ω2

v(y)es f (y) dμ2(y)−
∫

Ω1
u(x)esAk f (x) dμ1(x)

s2 . (6.17)

Since
lim
s→0

∫
Ω2

v(y)es f (y) dμ2(y)−
∫

Ω1

u(x)esAk f (x) dμ1(x) = 0,

we can use L’Hospital rule and obtain that (6.17) is equal to

lim
s→0

ζ (s) = lims→0

∫
Ω2

v(y)es f (y) f (y)dμ2(y)−
∫

Ω1
u(x)esAk f (x)Ak f (x)dμ1(x)

2s .

We know that

lim
s→0

∫
Ω2

v(y)es f (y) f (y)dμ2(y)−
∫

Ω1

u(x)esAk f (x)Ak f (x)dμ1(x) = 0,

so we use L’Hospital rule once again and obtain the following

lim
s→0

ζ (s) = lim
s→0

∫
Ω2

v(y)es f (y) f 2(y)dμ2(y)−
∫

Ω1
u(x)esAk f (x)(Ak f (x))2 dμ1(x)

2

=
1
2

∫
Ω2

v(y) f 2(y)dμ2(y)+
1
2

∫
Ω1

u(x)(Ak f (x))2 dμ1(x)

=
∫

Ω2

v(y)ψ0( f (y))dμ2(y)−
∫

Ω1

u(x)ψ0(Ak f (x))dμ1(x) = ζ (0).

The proof is completed. �
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Remark 6.3 It is proved that the function ζ is exponentially convex, hence it is also a
log-convex function. Then, by Remark 1.2 the following inequality holds

[ζ (r)]q−p ≤ [ζ (p)]q−r [ζ (q)]r−p (6.18)

for every choice of p,q,r ∈ R, such that p < r < q.

Now we discuss an improvement and reverse of Polya-Knopp’s inequality (0.2) and of
its dual.

Theorem 6.6 Let f be a positive function, and ψs be defined by (6.2).
(i) If r < 1 < t, then

e

b∫
0

(
1− x

b

)
f (x)dx −

b∫
0

exp

⎛⎝1
x

x∫
0

log f (y)dy

⎞⎠dx ≤ e [P(r)]
t−1
t−r [P(t)]

1−r
t−r . (6.19)

If 1 < t < r or t < r < 1, then (6.19) holds with reversed sign of inequality, where

P(s) =
b∫

0

(
1− x

b

)
ψs(log(x f (x)))

dx
x

−
b∫

0

ψs

⎛⎝1
x

x∫
0

log(y f (y))dy

⎞⎠ dx
x

.

(ii) If r < 1 < t, then

∞∫
b

(
1− b

x

)
f (x)dx − e

∞∫
b

exp

⎛⎝x

∞∫
x

log f (y)
dy
y2

⎞⎠dx ≤ [P̃(r)]
t−1
t−r [P̃(t)]

1−r
t−r . (6.20)

If 1 < t < r or t < r < 1, then (6.20) holds with reversed sign of inequality, where

P̃(s) =
∞∫

b

(
1− b

x

)
ψs(log(x f (x)))

dx
x

−
∞∫

b

ψs

⎛⎝ ∞∫
x

x log(y f (y))
dy
y2

⎞⎠ dx
x

.

Proof. The proof follows from Theorem 6.5 and Remark 6.3 by choosing Ω1 = Ω2 =
(0,b) and replacing μ1, μ2 by the Lebesgue measure. Let

k(x,y) =

{ 1
x , 0 < y ≤ x < b,

0, x < y

and u(x) = 1
x , then we obtain K(x) = 1, v(y) = 1

y

(
1− y

b

)
and Hardy’s operator (the Rie-

mann-Liouville operator for γ = 1)

R1 f (x) = Ak f (x) =
1
x

x∫
0

f (y)dy.
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Then (6.16) becomes

P(s) =
b∫

0

(
1− x

b

)
ψs( f (x))

dx
x
−

b∫
0

ψs(R1 f (x))
dx
x

and (6.18) becomes
[P(s)]t−r ≤ [P(r)]t−s [P(t)]s−r (6.21)

for every choice r,s,t ∈ R, such that r < s < t. We know that P(s) is a log-convex function.
To obtain (6.19) choose for f the function x �→ log(x f (x)). Then we obtain

P(s) =
b∫

0

(
1− x

b

)
ψs(log(x f (x))

dx
x
−

b∫
0

ψs

⎛⎝1
x

x∫
0

log(y f (y))dy

⎞⎠ dx
x

.

From here for s = 1 (6.21) reduces to (6.19).
By substitution r → t, 1 → r, t → 1 or r → 1, 1 → t, t → r in (6.21), we get reversed

sign of inequality in (6.19).
To prove (6.20), choose Ω1 = Ω2 = (b,∞) and replace μ1, μ2 by the Lebesgue measure.

Let

k(x,y) =

{ x
y2 , b < x ≤ y < ∞,

0, y < x

and u(x) = 1
x , then we obtain K(x) = 1, v(y) = 1

y

(
1− b

y

)
and dual Hardy’s operator

(Weyl’s operator for γ = 1)

W1 f (x) = Ak f (x) = x

∞∫
x

f (y)
dy
y2 .

Then (6.16) becomes

P̃(s) =
∞∫

b

(
1− b

x

)
ψs( f (x))

dx
x
−

∞∫
b

ψs(W1 f (x))
dx
x

and (6.18) becomes
[P̃(s)]t−r ≤ [

P̃(r)
]t−s [

P̃(t)
]s−r (6.22)

for every choice r,s,t ∈ R, such that r < s < t. We know that P̃(s) is a log-convex function.
To obtain (6.20) choose for f the function x �→ log(x f (x)). Then we obtain

P̃(s) =
∞∫

b

(
1− x

b

)
ψs(log(x f (x))

dx
x
−

∞∫
b

ψs

⎛⎝x

∞∫
x

log(y f (y))
dy
y2

⎞⎠ dx
x

.

From here, for s = 1 (6.22) reduces to (6.20).
By substitution r → t, s → r, t → s or r → s, s→ t, t → r in (6.22) we get reversed sign

of inequality in (6.20), so the proof is completed. �
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Corollary 6.1 Let ϕs be defined by (6.1) and l and u be non-negative measurable func-
tions on R

n
+ such that 0 < L(x) = x1 ∫

R
n
+

l(y)dy < ∞ for all x ∈ R
n
+, and that the function

x �→ u(x)
l( y

x )
L(x) is integrable on R

n
+ for each fixed y ∈ R

n
+. Let the function v be defined on

R
n
+ by

v(y) =
∫
R

n
+

u(x)
l
(y

x

)
L(x)

dx

and

Al f (x) =
1

L(x)

∫
R

n
+

l
(y

x

)
f (y)dy.

Then
G(s) =

∫
R

n
+

v(y)ϕs( f (y))dy−
∫
R

n
+

u(x)ϕs(Al f (x))dx

is a log-convex function, that is

G(s) ≤ [G(r)]
t−s
t−r [G(t)]

s−r
t−r

for r < s < t, and

G(s) ≥ [G(r)]
t−s
t−r [G(t)]

s−r
t−r

for s < t < r or t < r < s.

Corollary 6.2 Let ψs be defined by (6.2), and the other assumptions of Corollary 6.1 be
satisfied. Then the following inequality holds:

G̃(s) ≤ [
G̃(r)

] t−s
t−r

[
G̃(t)

] s−r
t−r

for r < s < t, and

G̃(s) ≥ [
G̃(r)

] t−s
t−r

[
G̃(t)

] s−r
t−r

for s < t < r or t < r < s, where

G̃(s) =
∫
R

n
+

v(y)ψs( f (y))dy−
∫
R

n
+

u(x)ψs(Al f (x))dx.

6.2 Cauchy means

Theorem 6.7 Assume that all conditions of Theorem 6.2 are satisfied. Let I be a compact
interval in R and g,h ∈ C2(I) such that h′′(x) �= 0 for every x ∈ I. Let f : Ω2 → R be a
measurable function such that Im f ⊆ I and∫

Ω2

v(y)h( f (y))dμ2(y)−
∫

Ω1

u(x)h(Ak f (x))dμ1(x) �= 0. (6.23)
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Then there exists η ∈ I such that

g′′(η)
h′′(η)

=

∫
Ω2

v(y)g( f (y))dμ2(y)−
∫

Ω1
u(x)g(Ak f (x))dμ1(x)∫

Ω2
v(y)h( f (y))dμ2(y)−

∫
Ω1

u(x)h(Ak f (x))dμ1(x)
.

Proof. Let us denote

c1 =
∫

Ω2

v(y)h( f (y))dμ2(y)−
∫

Ω1

u(x)h(Ak f (x))dμ1(x),

c2 =
∫

Ω2

v(y)g( f (y))dμ2(y)−
∫

Ω1

u(x)g(Ak f (x))dμ1(x).

Now, apply (6.3) to the function c1g− c2h. The following equality follows:

c1

[∫
Ω2

v(y)g( f (y))dμ2(y)−
∫

Ω1

u(x)g(Ak f (x))dμ1(x)
]

−c2

[∫
Ω2

v(y)h( f (y))dμ2(y)−
∫

Ω1

u(x)h(Ak f (x))dμ1(x)
]

=
c1g′′(ξ )− c2h′′(ξ )

2

[∫
Ω2

v(y) f 2(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))2 dμ1(x)
]
(6.24)

After a short calculation, it is easy to see that the left-hand side of (6.24) is equal to 0 and,
thus, the right-hand side as well.
If we apply Theorem 6.1 to the function h we get the following∫

Ω2

v(y)h( f (y))dμ2(y)−
∫

Ω1

u(x)h(Ak f (x))dμ1(x)

=
h′′(η)

2

[∫
Ω2

v(y) f 2(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))2 dμ1(x)
]
.

From (6.23) we conclude that the term in the square brackets on the right-hand side of
(6.24) is not equal to 0. It follows that c1g′′(ξ )− c2h′′(ξ ) = 0, so the proof is completed.
�

Corollary 6.3 Assume that all conditions of Theorem 6.7 are satisfied. If f : Ω2 → I is a
measurable function, then for p �= s, p,s �= 0,1 there exists η ∈ I such that

η p−s =
s(s−1)[

∫
Ω2

v(y) f p(y)dμ2(y)−
∫

Ω1
u(x)(Ak f (x))p dμ1(x)]

p(p−1)[
∫

Ω2
v(y) f s(y)dμ2(y)−

∫
Ω1

u(x)(Ak f (x))s dμ1(x)]
. (6.25)

Proof. Apply Theorem 6.7 to g(x) = xp

p(p−1) , h(x) = xs

s(s−1) , p �= s, p,s �= 0,1 and (6.25)
follows.
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Remark 6.4 Notice that g′′(x) = xp−2 and h′′(x) = xs−2, so g′′
h′′ is invertible. Then from

(6.25) we obtain

inf
t∈Ω2

f (t) ≤

⎛⎜⎝ s(s−1)[
∫

Ω2

v(y) f p(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))p dμ1(x)]

p(p−1)[
∫

Ω2

v(y) f s(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))s dμ1(x)]

⎞⎟⎠
1

p−s

≤ sup
t∈Ω2

f (t).

So,

Mp,s( f ;u) =

⎛⎜⎝ s(s−1)[
∫

Ω2

v(y) f p(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))p dμ1(x)]

p(p−1)[
∫

Ω2

v(y) f s(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))s dμ1(x)]

⎞⎟⎠
1

p−s

for p �= s, p,s �= 0,1 are means. Moreover, we can extend these means to excluded cases.
Taking a limit we can define

Ms,s( f ;u) =

exp

⎛⎜⎝ 1−2s
s(s−1)

+

∫
Ω2

v(y) f s(y) log f (y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))s logAk f (x)dμ1(x)∫
Ω2

v(y) f s(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))sdμ1(x)

⎞⎟⎠,

M0,0( f ;u) =

exp

⎛⎜⎝
∫

Ω1

u(x) logAk f (x)[2+ log(Ak f (x))]dμ1(x)−
∫

Ω2

v(y) log f (y)[2+log f (y)]dμ2(y)

2
∫

Ω2

v(y)[1−log f (y)]dμ2(y)−2
∫

Ω1

u(x)[1−log(Ak f (x)]dμ1(x)

⎞⎟⎠,

M1,1( f ;u) =

exp

⎛⎜⎝
∫

Ω2

v(y) f (y) log f (y)[log f (y)−2]dμ2(y)

2
∫

Ω2

v(y) f (y)[1+ log f (y)]dμ2(y)−2
∫

Ω1

u(x)Ak f (x)[1+ log(Ak f (x)]dμ1(x)

⎞⎟⎠×

×exp

⎛⎜⎝ − ∫
Ω1

u(x)Ak f (x) logAk f (x)[log(Ak f (x))−2]dμ1(x)

2
∫

Ω2

v(y) f (y)[1+ log f (y)]dμ2(y)−2
∫

Ω1

u(x)Ak f (x)[1+ log(Ak f (x)]dμ1(x)

⎞⎟⎠ .

To define the remaining cases we applied Theorem 6.7 with function ϕs and obtained
the following

M0,1( f ;u) =

∫
Ω2

v(y) f (y) log f (y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x)) log(Ak f (x))dμ1(x)∫
Ω1

u(x) log(Ak f (x))dμ1(x)−
∫

Ω2

v(y) log f (y)dμ2(y)

= M1,0( f ;u).
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For s �= 1 we get

Ms,1( f ;u) = M1,s( f ;u) =⎛⎜⎝
∫

Ω2

v(y) f s(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))sdμ1(x)

s(s−1)[
∫

Ω2

v(y) f (y) log f (y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x)) log(Ak f (x))dμ1(x)]

⎞⎟⎠
1

s−1

and for s �= 0

Ms,0( f ;u) = M0,s( f ;u) =⎛⎜⎝
∫

Ω2

v(y) f s(y)dμ2(y)−
∫

Ω1

u(x)(Ak f (x))s dμ1(x)

s(s−1)[
∫

Ω1

u(x) log(Ak f (x))dμ1(x)−
∫

Ω2

v(y) log f (y)dμ2(y)]

⎞⎟⎠
1
s

.

We shall prove that this new mean is monotonic. Note that Mp,s is continuous, hence,
it is enough to prove monotonicity of mean in case where r,s, l, p �= 0,1 and r �= l, s �= p.

Theorem 6.8 Let r ≤ s, l ≤ p, then the following inequality is valid,

Ml,r( f ;u) ≤ Mp,s( f ;u) (6.26)

that is, the mean Mp,s( f ;u) is monotonic.

Proof. Since ξ defined in (6.4) is a log-convex function, we can apply Remark 1.2 and
get (6.26), so the proof is completed. �

6.3 Further improvements of an inequality of G. H.
Hardy

In this section, we obtain some special cases of Theorem 6.2 for different fractional inte-
grals and fractional derivatives to establish new inequalities (see [57]).

Our first result involving the fractional integral of f with respect to an increasing func-
tion g is given in the following Theorem.

Theorem 6.9 Let s > 1, α > 0, g be an increasing function on (a,b] such that g′ is
continues on (a,b), Iα

a+;g f denotes the left sided fractional integral of f with respect to
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another increasing function g. Then the function ξ1 : R → [0,∞) defined by

ξ1(s) =
1

s(s−1)

⎡⎣ b∫
a

g′(y)(g(b)−g(y))α( f (y))sdy

−
b∫

a

g′(x)(g(x)−g(a))α
(

Γ(α +1)
(g(x)−g(a))α Iα

a+;g f (x)
)s

dx

⎤⎦ (6.27)

is exponentially convex and the following inequality holds

ξ1(s) ≤ H1(s) (6.28)

where

H1(s) =
(g(b)−g(a))α(1−s)

s(s−1)

⎡⎣(g(b)−g(a))αs

b∫
a

f s(y)dy− (Γ(α +1))s

b∫
a

(Iα
a+ f (x))sdx

⎤⎦ .

Proof. Applying Theorem 6.2 with Ω1 = Ω2 = (a,b), dμ1(x) = dx,dμ2(y) = dy,

k(x,y) =

{
g′(y)

Γ(α)(g(x)−g(y))1−α , a ≤ y ≤ x ;

0, x < y ≤ b,

we get that K(x) = 1
Γ(α+1) (g(x)−g(a))α . Then the equation (6.4) becomes

ξ1(s) =
b∫

a

v(y)ϕs( f (y))dy−
b∫

a

u(x)ϕs

(
Γ(α +1)

(g(x)−g(a))α Iα
a+;g f (x)

)
dx, (6.29)

where ϕs is defined by (6.1). Function ξ1 is exponentially convex. For particular weight
function u(x) = g′(x)(g(x)− g(a))α , we obtain v(y) = g′(y)(g(b)− g(y))α and (6.29) re-
duces to (6.27). �

We continue with results involving the Riemann-Liouville fractional integrals and the
Hadamard-type fractional integrals.

Corollary 6.4 Let s > 1, α > 0, Iα
a+ f denotes the left-sided Riemann-Liouville fractional

integral of f . Then the function ξ2 : R → [0,∞) defined by

ξ2(s) =
1

s(s−1)

⎡⎣ b∫
a

(b− y)α f s(y)dy−
b∫

a

(x−a)α
(

Γ(α +1)
(x−a)α Iα

a+ f (x)
)s

dx

⎤⎦
is an exponentially convex function and the following inequality holds

ξ2(s) ≤ H2(s),
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where

H2(s) =
(b−a)α(1−s)

s(s−1)

⎡⎣(b−a)αs

b∫
a

f s(y)dy− (Γ(α +1))s

b∫
a

(Iα
a+ f (x))sdx

⎤⎦ .

Corollary 6.5 Let s > 1, α > 0, Iα
b− f denotes the right-sided Riemann-Liouville frac-

tional integral of f . Then the function ξ3 : R → [0,∞) defined by

ξ3(s) =
1

s(s−1)

⎡⎣ b∫
a

(y−a)α f s(y)dy−
b∫

a

(b− x)α
(

Γ(α +1)
(b− x)α Iα

b− f (x)
)s

dx

⎤⎦
is exponentially convex and the following inequality holds

ξ3(s) ≤ H3(s),

where

H3(s) =
(b−a)α(1−s)

s(s−1)

⎡⎣(b−a)αs

b∫
a

f s(y)dy− (Γ(α +1))s

b∫
a

(Iα
b− f (x))sdx

⎤⎦ .

The following result is about the Hadamard-type fractional integrals.

Corollary 6.6 Let s > 1, α > 0, Jα
a+ f denotes the Hadamard-type fractional integrals of

f . Then the function ξ4 : R → [0,∞) defined by

ξ4(s) =
1

s(s−1)

⎡⎣ b∫
a

(logb− logy)α

y
f s(y)dy

−
b∫

a

(logx− loga)α

x

(
Γ(α +1)

(logx− loga)α (Jα
a+ f (x))

)s

dx

⎤⎦
is exponentially convex and the following inequality holds

ξ4(s) ≤ H4(s)

where

H4(s) =
1

s(s−1)
(logb− loga)α(1−s)

ab

⎡⎣b(logb− loga)αs

b∫
a

f s(y)dy

− a(Γ(α +1))s

b∫
a

(Jα
a+ f (x))sdx

⎤⎦ .
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In the following Theorem, we will construct new inequality for the Canavati-type frac-
tional derivative.

Theorem 6.10 Let s > 1 and the assumptions in Lemma 1.4 be satisfied, Dγ
a f denotes

the Canavati-type fractional derivative of f . Then the function ξ5 : R → [0,∞) defined by

ξ5(s) =
1

s(s−1)

⎡⎣ b∫
a

(b− y)ν−γ(Dν
a f (y))sdy

−
b∫

a

(x−a)ν−γ
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
)s

dx

⎤⎦
is exponentially convex and the following inequality holds

ξ5(s) ≤ H5(s),

where

H5(s) =
(b−a)(ν−γ)(1−s)

s(s−1)

⎡⎣(b−a)(ν−γ)s
b∫

a

(Dν
a f (y))sdy

−(Γ(ν − γ +1))s

b∫
a

(Dγ
a f (x))sdx

⎤⎦ .

Proof. Similar to the proof of Theorems 3.9 and 6.9. �

Now, we obtain new inequalities for the Caputo fractional derivative.

Theorem 6.11 Let s > 1 and Dγ
∗a f denotes the Caputo fractional derivative of f . Then

the function ξ6 : R → [0,∞) defined by

ξ6(s) =
1

s(s−1)

⎡⎣ b∫
a

(b− y)n−α( f (n)(y))sdy

−
b∫

a

(x−a)n−α
(

Γ(n−α +1)
(x−a)n−α Dα

∗a f (x)
)s

dx

⎤⎦
is exponentially convex and the following inequality holds

ξ6(s) ≤ H6(s),

where

H6(s) =
(b−a)(n−α)(1−s)

s(s−1)

⎡⎣(b−a)(n−α)s
b∫

a

( f (n)(y))sdy

− (Γ(n−α +1))s

b∫
a

(Dα
∗a f (x))sdx

⎤⎦ .
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Proof. Similar to the proof of Theorems 3.10 and 6.9. �

Theorem 6.12 Let s > 1 and the assumptions in Lemma 1.5 be satisfied. Dα∗a f denotes
the Caputo fractional derivative of f . Then the function ξ7 : R → [0,∞) defined by

ξ7(s) =
1

s(s−1)

⎡⎣ b∫
a

(b− y)α−γ(Dα
∗a f (y))sdy

−
b∫

a

(x−a)α−γ
(

Γ(α − γ +1)
(x−a)α−γ Dγ

∗a f (x)
)s

dx

⎤⎦
is exponentially convex and the following inequality holds

ξ7(s) ≤ H7(s),

where

H7(s) =
(b−a)(α−γ)(1−s)

s(s−1)

⎡⎣(b−a)(α−γ)s
b∫

a

(Dα
∗a f (y))sdy

− (Γ(α − γ +1))s

b∫
a

(Dγ
∗a f (x))sdx

⎤⎦ .

Proof. Similar to the proof of Theorems 3.11 and 6.9. �

Now, we give the following result with the Erdélyi-Kober type fractional integrals.

Theorem 6.13 Let s > 1, Iα
a+;σ ;η f denotes the Erdélyi-Kober type fractional integrals of

f , 2F1(a,b;c;z) denotes the hypergeometric function. Then the function ξ8 : R → [0,∞)
defined by

ξ8(s) =
1

s(s−1)

⎡⎣ b∫
a

yσ−1(bσ − yσ )α
2F1(y) f s(y)dy

−
b∫

a

xσ−1(xσ −aσ )α
2F1(x)

⎛⎜⎝ Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

⎞⎟⎠
s

dx

⎤⎥⎦
is exponentially convex and the following inequality holds

ξ8(s) ≤ H8(s),
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where

H8(s) =
(bσ −aσ)α(1−s)

s(s−1)

⎡⎣(bσ −aσ)αsbσ−1

b∫
a

2F1(y) f s(y)dy

− aσ−1+ασs(Γ(α +1))s

b∫
a

((2F1(x))1−sIα
a+;σ ;η f (x))sdx

⎤⎦ ,

2F1(x) = 2F1(−η ,α;α +1;1−
(a

x

)σ
) and 2F1(y) = 2F1(η ,α;α +1;1−

(
b
y

)σ
).

Proof. Similar to the proof of Theorems 3.12 and 6.9. �

In the following theorem we prove some inequalities that follow rom the results above.

Theorem 6.14 For i = 1, ...,8 the following inequalities hold

(i). [ξi(p)]
q−r
q−p [ξi(q)]

r−p
q−p ≤ Hi(r) (6.30)

(ii). [ξi(r)]
p−q
p−r [ξi(p)]

q−r
p−r ≤ Hi(q) (6.31)

(iii). ξi(p) ≤ [Hi(r)]
q−p
q−r [Hi(q)]

p−r
q−r (6.32)

for every choice of p,q,r ∈ R such that 1 < r < p < q.

Proof. We will prove this Theorem just in case i = 2, since all other cases are proved
analogously.
(i). Since the function ξ2 is exponentially convex, it is also log-convex. Then for 1 < r <
p < q, r, p,q ∈ R, (1.4) can be written as

[ξ2(p)]q−r[ξ2(q)]r−p ≤ [ξ2(r)]q−p.

This implies that

[ξ2(p)]
q−r
q−p [ξ2(q)]

r−p
q−p

≤ (b−a)α(1−r)

r(r−1)

⎡⎣(b−a)αr

b∫
a

f r(y)dy− (Γ(α +1))r

b∫
a

(Iα
a+ f (x))rdx

⎤⎦
= H2(r)

so (6.30) follows.

(ii). Now (1.4) can be written as

[ξ2(r)]p−q[ξ2(p)]q−r ≤ [ξ2(q)]p−r.
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This implies that

[ξ2(r)]
p−q
p−r [ξ2(p)]

q−r
p−r

≤ (b−a)α(1−q)

q(q−1)

⎡⎣(b−a)αq

b∫
a

f q(y)dy− (Γ(α +1))q

b∫
a

(Iα
a+ f (x))qdx

⎤⎦
= H2(q),

so (6.31) follows.

(iii). The (1.4) can be written as,

[ξ2(p)]
q−r
p−r ≤ [ξ2(r)]

q−p
p−r [ξ2(q)],

[ξ2(p)]
q−r
p−r ≤ [ξ2(r)]

q−p
p−r H2(q).

This implies that

ξ2(p) ≤ [H2(r)]
q−p
q−r [H2(q)]

p−r
q−r ,

so (6.32) follows.

6.3.1 Mean value theorems and Cauchy means

Now we will give mean value theorems and means of Cauchy type for different fractional
integrals and fractional derivatives. For this purpose we introduce the notation

ξi(s) := ξi(v,φs( f (y)); u,φs(Ak f (x)), f or (i = 1, ...,8)

where Ak f and v are defined by (2.15) and (2.17) respectively.

We will give some special cases of Theorems 6.1 and 6.7 for different fractional inte-
grals and fractional derivatives.

Theorem 6.15 Let u be a weight function on (a,b), Ak f (x) be defined in (2.15) and v be
defined in (2.17). Let I be a compact interval of R, h ∈ C2(I) and ξi : R → [0,∞). Then
there exists ηi ∈ I such that

ξi(v,h( f (y)); u,h(Ak f (x)))

=
h
′′
(ηi)
2

ξi(v,( f (y))2; u,(Ak f (x))2), f or (i = 1, ...,8).

Theorem 6.16 Let u be a weight function on (a,b), Ak f (x) be defined in (2.15) and v be
defined in (2.17). Let I be a compact interval of R, g,h ∈ C2(I) such that h

′′
(x) �= 0 for

every x ∈ I, ξi : R → [0,∞) and

ξi(v,h( f (y)); u,h(Ak f (x))) �= 0.
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Then there exists ηi ∈ I such that

g
′′
(ηi)

h′′(ηi)
=

ξi(v,g( f (y)); u,g(Ak f (x)))
ξi(v,h( f (y)); u,h(Ak f (x)))

, f or (i = 1, ...,8).

If we apply Theorem 6.16 with g(x) = xp

p(p−1) , h(x) = xs

s(s−1) , p �= s, p,s �= 0,1, we get
the following result.

Corollary 6.7 Let u be a weight function on (a,b), Ak f (x) be defined in (2.15) and v be
defined in (2.17). Let I be a compact interval of R+, ξi : R → [0,∞), (i = 1, ...,8), then for
p �= s, p,s �= 1, there exist ηi ∈ I such that

η p−s
i =

ξi(p)
ξi(s)

=
s(s−1)
p(p−1)

ξi(v, f p(y); u,(Ak f (x))p)
ξi(v, f s(y); u,(Ak f (x))s)

. (6.33)

Remark 6.5 Since g
′′
(x) = xp−2 and h

′′
(x) = xs−2, g

′′

h′′
are invertible. Then from (6.33),

we obtain

inf
t∈[a,b]

f (t) ≤
(

ξi(p)
ξi(s)

) 1
p−s

≤ sup
t∈[a,b]

f (t).

So,

Mp,s
i (v,ϕs( f (y)); u,ϕs(Ak f (x))) =

(
ξi(p)
ξi(s)

) 1
p−s

and
Mp,s

i := Mp,s
i (v,ϕs( f (y)); u,ϕs(Ak f (x))

p �= s, p,s �= 0,1 are means. Moreover, we can extend these means to the excluded cases.
Taking a limit we can define

Mp,s
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ξi(v,ϕp( f (y));u,ϕp(Ak f (x)))
ξi(v,ϕs( f (y));u,ϕs(Ak f (x)))

) 1
p−s

, p �= s,

exp
(

1−2s
s(s−1) − ξi(v,ϕs( f (y))ϕ0( f (y));u,ϕs(Ak f (x))ϕ0(Ak f (x)))

ξi(v,ϕs( f (y));u,ϕs(Ak f (x)))

)
, p = s �= 0,1,

exp
(−ξi(v,ϕ1( f (y))(ϕ0( f (y)+2)));u,ϕ1(Ak f (x))(ϕ0(Ak f (x)+2))

2ξi(v, f (y)+ϕ1( f (y));u,Ak f (x)+ϕ1(Ak f (x)))

)
, p = s = 1

exp
(

ξi(v,(2ϕ0( f (y))−ϕ2
0 ( f (y)));u,(2ϕ0(Ak f (x))−ϕ2

0 (Ak f (x))))
2ξi(v,1+ϕ0 f (y);u,1+ϕ0(Ak f (x)))

)
, p = s = 0

In the following theorem, we prove monotonicity of the means.

Theorem 6.17 Let r ≤ s, l ≤ p, then the following inequality is valid,

Ml,r
i ≤ Mp,s

i f or i = 1, ...,8. (6.34)

that is ,the means Mp,s
i are monotonic.

Proof. Since ξi are exponentially convex, we can apply (1.4) and get (6.34). For r =
s, l = p we get the result by taking limit in (6.34). �
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6.4 n-exponential convexity of Hardy-type
functionals

In this chapter, we discuss and prove n-exponential convexity of the linear functionals
obtained by taking the positive difference of Hardy-type inequalities. Also, we give some
examples related to our main results.

Under the assumptions of Theorem 2.5, we define a linear functional by taking the
positive difference of the inequality stated in (2.18) as:

Δ1(Φ) =
∫

Ω2

v(y)Φ( f (y))dμ2(y)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x). (6.35)

We also define a linear functional by taking the positive difference of the left-hand side
and the right-hand side of the inequality given in Theorem 2.7 as:

Δ2(Φ) =
∫

Ω2

v(y)Φ
(

f1(y)
f2(y)

)
dμ2(y)−

∫
Ω1

u(x)Φ
(

g1(x)
g2(x)

)
dμ1(x) (6.36)

6.4.1 The main results

First we give some necessary details about the divided differences. It is important to see
that for different degrees of smoothness of a function divided differences are very interest-
ing.
Let I ⊆ R be an interval and f : I → R be a function. Then for distinct points zi ∈ I,
i = 0,1,2, the divided differences of first and second order are defined by:

[zi,zi+1; f ] =
f (zi+1)− f (zi)

zi+1− zi
(i = 0,1) ,

[z0,z1,z2; f ] =
[z1,z2; f ]− [z0,z1; f ]

z2− z0
. (6.37)

The values of the divided differences are independent of the order of the points z0,z1,z2

and may be extended to include the cases when some or all of the points are equal, that is

[z0,z0; f ] = lim
z1→z0

[z0,z1; f ] = f ′(z0), (6.38)

provided that f ′ exists.

Now passing through the limit z1 → z0 and replacing z2 by z in (6.37), we have (see
[92, p.16])

[z0,z0,z; f ] = lim
z1→z0

[z0,z1,z; f ] =
f (z)− f (z0)− (z− z0) f ′(z0)

(z− z0)
2 ,z �= z0, (6.39)
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provided that f ′ exists. Also passing to the limit zi → z (i = 0,1,2) in (6.37), we have

[z,z,z; f ] = lim
zi→z

[z0,z1,z2; f ] =
f ′′(z)

2
, (6.40)

provided that f ′′ exists .
One can observe that if for all z0,z1 ∈ I, [z0,z1, f ] ≥ 0, then f is increasing on I and if for
all z0,z1,z2 ∈ I, [z0,z1,z2; f ] ≥ 0, then f is convex on I.

Now we will produce n-exponentially convex and exponentially convex functions by
applying functionals Δi, i = 1,2 on a given family with the same property. In the sequel J
and I will be intervals in R.

Theorem 6.18 Let Γ = {Φp : p ∈ J} be a family of functions defined on I, such that the
function p �→ [z0,z1,z2;Φp] is n-exponentially convex in the Jensen sense on J for every
three distinct points z0, z1, z2 ∈ I. Let Δi (i = 1,2) be linear functionals defined by (6.35),
(6.36). Then the function p �→ Δi(Φp) (i = 1,2) is n-exponentially convex in the Jensen
sense on J. If the function p �→ Δi(Φp) is continuous on J, then it is n-exponentially convex
on J.

Proof. For ai ∈ R, i = 1, ...,n and pi ∈ J, i = 1, ...,n, we define the function

ϒ(z) =
n

∑
i, j=1

aia jΦ pi+p j
2

(z).

Using the assumption that the function p �→ [z0,z1,z2;Φp] is n-exponentially convex in the
Jensen sense, we have

[z0,z1,z2;ϒ] =
n

∑
i, j=1

aia j[z0,z1,z2;Φ pi+p j
2

] ≥ 0,

which shows that ϒ is convex on I and therefore we have Δi(ϒ) ≥ 0 for (i = 1,2). Hence

n

∑
i, j=1

aia jΔi(Φ pi+p j
2

) ≥ 0.

We conclude that the function p �→Δi(Φp) for (i = 1,2) is n-exponentially convex in Jensen
sense on J.
If the function p �→ Δi(Φp) for (i = 1,2) is also continuous on J, then p �→ Δi(Φp) is
n-exponentially convex by definition. �

As a direct consequence of the above theorem, we can write the following corollary.

Corollary 6.8 Let Γ = {Φp : I → R, p ∈ J ⊆ R} be a family of functions, such that the
function p �→ [z0,z1,z2;Φp] is exponentially convex in the Jensen sense on J for every three
distinct points z0, z1, z2 ∈ I. Let Δi (i = 1,2) be linear functionals defined by (6.35), (6.36)
respectively. Then p �→ Δi(Φp) is exponentially convex in the Jensen sense on J. If the
function p �→ Δi(Φp) is continuous on J, then it is exponentially convex on J.
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Corollary 6.9 Let Γ = {Φp : I → R, p ∈ J ⊆ R} be a family, such that the function p →
[z0,z1,z2;Φp] is 2-exponentially convex in the Jensen sense on J for every three distinct
points z0, z1, z2 ∈ I. Let Δi (i = 1,2) be linear functionals defined in (6.35), (6.36). Then
the following statements hold:

(i) If the function p �→ Δi(Φp) is continuous on J, then it is 2-exponentially convex
function on J, thus log-convex on J and for p,q,r ∈ I such that p < q < r, we have

Δi(Φq)r−p ≤ Δi(Φp)r−qΔi(Φr)q−p, i = 1,2.

(ii) If the function p �→ Δi(Φp) is strictly positive and differentiable on J, then for every
p,q,m,n ∈ J such that p ≤ m, q ≤ n, we have

Bp,q( f ,Δi;Γ) ≤ Bm,n( f ,Δi;Γ), i = 1,2 (6.41)

where

Bp,q( f ,Δi;Γ) =

⎧⎪⎨⎪⎩
(

Δi(Φp)
Δi(Φq)

) 1
p−q

, p �= q,

exp

(
d
dp(Δi(Φp))

Δi(Φp)

)
, p = q,

(6.42)

for Φp,Φq ∈ Γ.

Proof. (i) This can be obtained as a direct consequence of Theorem 6.18 and Remark
1.4.
(ii) Since by (i) the function p �→ Δi(Φp) for (i = 1,2) is log-convex on J, that is the
function p �→ logΔi(Φp) for (i = 1,2) is convex on J. Applying Remark 1.2 we obtain

logΔi(Φp)− logΔi(Φq)
p−q

≤ logΔi(Φm)− logΔi(Φn)
m−n

(6.43)

for p ≤ m, q ≤ n, p �= q, m �= n, and we conclude that

Bp,q( f ,Δi;Γ) ≤ Bm,n( f ,Δi;Γ) for (i = 1,2).

The cases for p = q, m = n follow from (6.43) bytaking limit. �

Remark 6.6 Note that the results of Theorem 6.18, Corollary 6.8 and Corollary 6.9 still
hold when two of the points z0, z1, z2 ∈ I coincide for a family of differentiable functions
Φp such that p �→ [z0,z1,z2;Φp] is n-exponentially convex in the Jensen sense (exponen-
tially convex in the Jensen sense), further, they still hold when all three point coincide for
a family of twice differentiable functions with the same property. The proofs are obtained
using (6.38), (6.39) and (6.40) respectively and some facts about the exponential convexity.
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6.4.2 Examples

We conclude this chapter with the following examples.

Example 6.1 Consider a family of functions

Γ1 = {gp : (0,∞) → (0,∞) : p ∈ (0,∞)},

defined by

gp(t) =
e−t

√
p

p
.

Since p �→ d2gp(t)
dt2

= e−t
√

p, is the Laplace transform of a non-negative function, it is ex-
ponentially convex (see [100]). Clearly, gp is a convex function for each p > 0. It is
obvious that Δi(gp) for (i = 1,2) is continuous. It is easy to prove that the function
p �→ [z0,z1,z2;gp] is also exponentially convex for arbitrary points z0,z1,z2 ∈ I. For this
family of functions, Bp,q( f ,Δi;Γ1) becomes

Bp,q( f ,Δi(gp);Γ1) =

⎧⎪⎨⎪⎩
(

Δi(gp)
Δi(gq)

) 1
p−q

, p �= q;

exp
(
− Δi(id·gp)

2
√

pΔi(gp)
− 1

p

)
, p = q,

and from (6.41) it follows that the function Bp,q( f ,Δi;Γ1) is monotone in the parameters
p and q.

Example 6.2 Let
Γ2 = {hp : (0,∞) → (0,∞) : p ∈ (0,∞)},

be a family of functions defined by

hp(t) =

{
p−t

(ln p)2 , p ∈ R+ \ {1},
t2
2 , p = 1.

Since p �→ d2

dt2
hp(t) = p−t is the Laplace transform of a non-negative function (see [100]),

it is exponentially convex. Obviously, hp is a convex function for every p > 0. It is easy to
prove that the function p �→ [z0,z1,z2;hp] is also exponentially convex for arbitrary points
z0,z1,z2 ∈ I. Using Corollary 6.8, it follows that p �→ Δi(hp) for (i = 1,2) is exponentially
convex (it is easy to verify that it is continuous) and thus log-convex. From (6.42), we can
write

Bp,q( f ,Δi(hp);Γ2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Δi(hp)
Δi(hq)

) 1
p−q

, p �= q,

exp
(
−Δi(id·hp)

pΔi(hp)
− 2

p ln p

)
, p = q �= 1,

exp
(
−Δi(id·h1)

3Δi(h1)

)
, p = q = 1,

and from (6.41) we deduce monotonicity of the function Bp,q( f ,Δi(hp);Γ2) in the param-
eters p and q for hp,hq ∈ Γ2.
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Example 6.3 Consider a family of functions

Γ3 = {ψp : R → [0,∞) : p ∈ (0,∞)},
defined with

ψp(t) =

{
1
p2 et p, p ∈ R\ {0},
1
2 t2, p = 0.

The mapping p �→ d2

dt2
(ψp(t)) = et p is a well known exponentially convex function on R

for every p ∈ R. Using the analogous arguments as in Theorem 6.18, we also have that
p �→ [z0,z1,z2;ψp] is exponentially convex (also exponentially convex in J-sense). For this
family of functions, Bp,q( f ,Δi;Γ3) for (i = 1,2), from (6.42) becomes

Bp,q( f ,Δi(ψp);Γ3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Δi(ψp)
Δi(ψq)

) 1
p−q

, p �= q,

exp
(

Δi(id·ψp)
Δi(ψp)

− 2
p

)
, p = q �= 0,

exp
(

Δi(id·ψ0)
3Δi(ψ0)

)
, p = q = 0,

and using (6.41) we can see that it is a monotone function in the parameter p and q for
ψp,ψq ∈ Γ3.

Example 6.4 Consider a family of functions

Γ4 = {φp : (0,∞) → R : p ∈ R},
defined by

φp(t) =

⎧⎨⎩
t p

p(p−1) p �= 1,0,

− ln t p = 0,
t ln t p = 1.

Since p �→ d2

dt2
(φp(t)) = t p−2 = e(p−2) lnt > 0, is the Laplace transform of a non-negative

function (see [100]), it is exponentially convex. Obviously φp is a convex function for
every t > 0. It is easy to prove that the function p �→ [z0,z1,z2;φp] is also exponentially
convex for arbitrary points z0,z1,z2 ∈ I. Using Corollary 6.8 it follows that p �→ Δi(φp)
for (i = 1,2) is exponentially convex (it is easy to verify that it is continuous), and thus
log-convex. From (6.42), we see that

Bp,q( f ,Δi(φp);Γ4) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
Δi(φp)
Δi(φq)

) 1
p−q

, p �= q,

exp
(

1−2p
p(p−1) −

Δi(φpφ0)
Δi(φp)

)
, p = q �= 0,1,

exp
(
1− Δi(φ2

0 )
2Δi(φ0)

)
, p = q = 0,

exp
(
−1− Δi(φ0φ1)

2Δi(φ1)

)
, p = q = 1,

(6.44)

for φp,φq ∈ Γ4.

Remark 6.7 For the case i = 1, the means given in (6.44) were already presented in
Remark 6.4 in explicit form.



Chapter7

Hardy-type inequalities with
general kernels and measures
via superquadratic functions

7.1 Preliminaries

The following results was recently proved by Oguntuase et al. [89]:

Proposition 7.1 Let b ∈ (0,∞), u : (0,b) → R be a weight function which is locally
integrable in (0,b) and v be defined by

v(t) = t1 · · · tn
b1∫

t1

· · ·
bn∫

tn

u(x)
x2
1 · · ·x2

n
dx, t ∈ (0,b) . (7.1)

Suppose I = (a,c), 0 ≤ a < c≤ ∞, ϕ : I → R, and f : (0,b) → R is an integrable function,
such that f (x) ∈ I, for all x ∈ (0,b).

155
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(i) If ϕ is superquadratic, then the following inequality holds:

b1∫
0

· · ·
bn∫
0

u(x)ϕ

⎛⎝ 1
x1 · · ·xn

x1∫
0

· · ·
xn∫
0

f (t)dt

⎞⎠ dx
x1 · · ·xn

+
b1∫
0

· · ·
bn∫
0

b1∫
t1

· · ·
bn∫

tn

ϕ

⎛⎝∣∣∣∣∣∣ f (t)− 1
x1 · · ·xn

x1∫
0

· · ·
xn∫
0

f (u)du

∣∣∣∣∣∣
⎞⎠ u(x)

x2
1 · · ·x2

n
dxdt

≤
b1∫
0

· · ·
bn∫
0

v(x)ϕ( f (x))
dx

x1 · · ·xn
. (7.2)

(ii) If ϕ is subquadratic, then (7.2) holds in the reversed direction.

Proposition 7.2 Let b ∈ (0,∞), u : (b,∞) → R is a weight function which is locally
integrable in (0,b) and define v by

v(t) =
1

t1 · · · tn

t1∫
b1

. . .

tn∫
bn

u(x)dx < ∞, t ∈ (b,∞). (7.3)

Suppose I = (a,c), 0 ≤ a < c≤ ∞, ϕ : I → R, and f : (b,∞) →R is an integrable function,
such that f (x) ∈ I, for all x ∈ (b,∞).

(i) If ϕ is superquadratic, then the following inequality holds:

∞∫
b1

. . .

∞∫
bn

u(x)ϕ

⎛⎝x1 · · ·xn

∞∫
x1

· · ·
∞∫

xn

f (t)
dt

t21 · · · t2n

⎞⎠ dx
x1 · · ·xn

+
∞∫

b1

· · ·
∞∫

bn

t1∫
b1

· · ·
tn∫

bn

ϕ

⎛⎝∣∣∣∣∣∣ f (t)− x1 · · ·xn

∞∫
x1

· · ·
∞∫

xn

f (t)
dt

t21 · · ·t2n

∣∣∣∣∣∣
⎞⎠

×u(x)dx
dt

t21 · · · t2n

≤
∞∫

b1

...

∞∫
bn

v(x)ϕ( f (vx))
dx

x1...xn
. (7.4)

(ii) If ϕ is subquadratic, then the inequality sign in (7.4) is reversed.
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7.2 The main results with applications

Probably the first refinement of Hardy’s inequality (0.1) is due to D. T. Shum [97] and
further developed by C. O. Imoru [54]. These Shum-Imoru results were recently com-
plemented and generalized by L.E. Persson and J.A. Oguntuase in the following way (see
[93], Theorem 2.1):

Theorem 7.1 Let p, k, b ∈ R be such that 0 < b < ∞ and one of the following holds:
(i) p ≥ 1 and k > 1,
(ii) p < 0 and k < 1.
If f (x) is a non-negative integrable function on (0,b) such that

0 <

b∫
0

xp−k f p(x)dx < ∞,

then the following inequality

b∫
0

x−k

⎛⎝ x∫
0

f (t)dt

⎞⎠p

dx+
p

k−1
b1−k

⎛⎝ b∫
0

f (t)dt

⎞⎠p

≤
(

p
k−1

)p b∫
0

xp−k f p(x)dx (7.5)

holds.
(iii) If 0 < p ≤ 1 and k > 1, then inequality (7.5) holds in the reversed direction.
The constant

( p
k−1

)p
on the right hand side of (7.5) is the best possible in all the cases.

Remark 7.1 Note that the statement in Theorem 7.1 in particular means if p = 1, k >
1, then we have equality in (7.5) which can also be seen by performing a simple direct
calculation.

Remark 7.2 Also a dual version of Theorem 7.1 ( where the integrals
b∫
0

are replaced by

∞∫
b
) was stated and proved in the same paper, see [93], Theorem 2.2.

The above shows, in particular, that p = 1 is a natural ”breaking point” for Hardy’s
inequality and also that with the extra term inserted on the left-hand side in (7.5) we even
have equality for p = 1. Another remarkable fact is that by inserting another additional
term in (7.5) the natural breaking point in this refined Hardy’s inequality is in fact for
p = 2 and equality appears also at p = 2, see J.A. Oguntuase and al. [88]. In fact, the same
authors later on proved these results even in the following multidimensional settings:
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Theorem 7.2 Let 1 < p < ∞, k = (k1,...,kn) ∈ R
n be such that ki > 1 (i = 1, ...,n), 0 <

b ≤ ∞, and let the function f be locally integrable on (0,b) such that

0 <

∫ b1

0
...

∫ bn

0

n

∏
i=1

xp−ki
i f p(x)dx < ∞.

(i) If p ≥ 2, then∫ b1

0
...

∫ bn

0

n

∏
i=1

x−ki
i

(∫ x1

0
...

∫ xn

0
f (t)dt

)p

dx

+

(
n

∏
i=1

ki −1
p

)∫ b1

0
...

∫ bn

0

∫ b1

t1
...

∫ bn

tn

∣∣∣∣∣∣
n

∏
i=1

p
ki−1

(
ti
xi

)1− ki−1
p

f (t)

− 1
x1...xn

∫ x1

0
...

∫ xn

0
f (t)dt

∣∣∣∣p n

∏
i=1

x
p−ki− ki−1

p
i dx

n

∏
i=1

t
ki−1

p −1
i dt

≤
(

n

∏
i=1

p
ki −1

)p ∫ b1

0
...
∫ bn

0

n

∏
i=1

⎛⎝1−
[
xi

bi

] ki−1
p

⎞⎠xp−ki
i f p(x)dx. (7.6)

(ii) If 1 < p ≤ 2, then inequality (7.6) holds in the reversed direction.

Theorem 7.3 Let 1 < p < ∞, k = (k1,...,kn) ∈ R
n be such that ki < 1, i = 1,2, ...,n,

0 ≤ b < ∞, and let the function f be locally integrable on (b,∞) and such that

0 <

∫ ∞

b1

...

∫ ∞

bn

n

∏
i=1

xp−ki
i f p(x)dx < ∞.

(iii) If p ≥ 2, then

∫ ∞

b1

...

∫ ∞

bn

n

∏
i=1

x−ki
i

(∫ ∞

x1

...

∫ ∞

xn

f (t)dt
)p

dx

+

(
n

∏
i=1

1− ki

p

)∫ ∞

b1

...
∫ ∞

bn

∫ t1

b1

...
∫ tn

bn

∣∣∣∣∣∣
n

∏
i=1

p
1− ki

(
ti
xi

) 1−ki
p +1

f (t)

− 1
x1...xn

∫ ∞

x1

...
∫ ∞

xn

f (t)dt

∣∣∣∣p n

∏
i=1

x
1−ki

p +p−ki

i dx
n

∏
i=1

t
ki−1

p −1
i dt

≤
(

n

∏
i=1

p
1− ki

)p ∫ ∞

b1

...

∫ ∞

bn

n

∏
i=1

⎛⎝1−
[
bi

xi

] 1−ki
p

⎞⎠xp−ki
i f p(x)dx. (7.7)

(iv) If 1 < p ≤ 2, then inequality (7.7) holds in the reversed direction.

Remark 7.3 Note that for the case p = 2 both inequalities (7.6) and (7.7) will be equali-
ties so we obtain something like new Parseval type identities with the Hardy and the dual
Hardy operators involved.
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Remark 7.4 We remark that Propositions 7.1 and 7.2 are crucial for the proofs of Theo-
rems 7.2 and 7.3, respectively. In fact, these proofs are carried out by just applying these
Propositions for ϕ(u) = up and performing a series of suitable variable transformations
(for details, see [89]).

We give generalizations of the above results. Our first result reads (see [5]):

Theorem 7.4 Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive σ -finite
measures, u be a weight function on Ω1, k a non-negative measurable function on Ω1×Ω2,
and K be defined on Ω1 by (2.16).
Suppose that K(x) > 0 for all x ∈ Ω1, that the function x �→ u(x) k(x,y)

K(x) is integrable on Ω1

for each fixed y ∈ Ω2, and that v is defined on Ω2 by (2.17). Suppose I = [0,c), c ≤ ∞,
ϕ : I → R. If ϕ is a superquadratic function, then the inequality∫

Ω1

u(x)ϕ(Ak f (x))dμ1(x)+
∫

Ω2

∫
Ω1

ϕ (| f (y)−Ak f (x)|) u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)

≤
∫

Ω2

v(y)ϕ( f (y))dμ2(y) (7.8)

holds for all measurable functions f : Ω2 → R, such that Im f ⊆ I, where Ak is defined by
(2.15).
If ϕ is subquadratic, then the inequality sign in (7.8) is reversed.

Proof. We must first prove that Ak f (x) ∈ I, for all x ∈ Ω1 (see the proof of Theorem
2.5).
Now, let us prove inequality (7.8). By applying the refined Jensen’s inequality (1.11) to
the first term on the left hand side of (7.8) and then Fubini theorem, we have that∫

Ω1

u(x)ϕ(Ak f (x))dμ1(x)

=
∫

Ω1

u(x)ϕ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)

dμ1(x)

≤
∫

Ω1

u(x)
K(x)

(∫
Ω2

k(x,y)ϕ( f (y))dμ2(y)
)

dμ1(x)

−
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,y)ϕ (| f (y)−Ak f (x)|) dμ2(y)dμ1(x)

=
∫

Ω2

ϕ( f (y))
(∫

Ω1

k(x,y)
K(x)

u(x)dμ1(x)
)

dμ2(y)

−
∫

Ω2

∫
Ω1

ϕ (| f (y)−Ak f (x)|) u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)

=
∫

Ω2

v(y)ϕ( f (y))dμ2(y)

−
∫

Ω2

∫
Ω1

ϕ (| f (y)−Ak f (x)|) u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
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from which (7.8) follows.
By making the same calculations with a subquadratic ϕ we see that only the inequality
sign in (7.8) will be reversed. The proof is complete. �

Example 7.1 Let Ω1 = Ω2 = (0,b), 0 < b≤∞, replace dμ1(x) and dμ2(y) by the Lebes-
que measures dx and dy, respectively, and k(x,y) = 1, 0 ≤ y ≤ x, k(x,y) = 0, y > x. Then
K(x) = x1 · · ·xn and

Ak f (x) =
1

x1 · · ·xn

∫ x1

0
· · ·

∫ xn

0
f (y)dy.

Moreover, replace u(x) by u(x)/x1 · · ·xn and v(y) by v(y)/y1 · · ·yn, then, in particular (7.1)
coincides with (2.17) and (7.8) coincides with (7.2) and we see that Proposition 7.1 is a
special case of Theorem 7.4. �

Remark 7.5 As mentioned before, (see Remark 7.4) Theorem 7.2 follows by using Propo-
sition 7.1 with ϕ(u) = up (which is superquadratic for p ≥ 2 and subquadratic for 1 ≤ p ≤
2) and making some suitable variable transformations (for details see [89]). Hence, Theo-
rem 7.4 implies Theorem 7.2.

Remark 7.6 Note that in the one-dimensional case (n = 1), Example 7.1 reduces to the
corresponding Proposition 2.1 in [88]. Moreover, if u(x) = 1

x1···xn
, then we have

v(y) =
∫ b1

y1

...

∫ bn

yn

dx
x2
1 · · ·x2

n
=

n

∏
i=1

1
y1 · · ·yn

(
1− yi

bi

)
, y ∈ (0,b)

and we get the inequality given in Remark 2 in [89]. In the one-dimensional case (n = 1),
this reduces to Example 4.1 in [88].

Example 7.2 Let Ω1 = Ω2 = (b,∞), 0≤ b < ∞, replace dμ1(x) and dμ2(y) by the Lebes-
que measures dx and dy, respectively and k(x,y) = 1

y2
1···y2

n
, y ≥ x, k(x,y) = 0, b ≤ y < x.

Then K(x) = 1
x1···xn

and

Ak f (x) = x1 · · ·xn

∫ ∞

x1

· · ·
∫ ∞

xn

f (y)
y2
1 · · ·y2

n
dy.

Now, by replacing u(x) by u(x)/x1 · · ·xn and v(y) by v(y)/y1 · · ·yn, we see that (7.3) co-
incides with (2.17) so we conclude that also Proposition 7.2 is a special case of Theorem
7.4. �

Remark 7.7 Analogously as in the discussion in Remark 7.5, we find, according to Ex-
ample 7.2, that Theorem 7.4 also implies Theorem 7.3.

Remark 7.8 Note that in the one-dimensional case (n = 1), Example 7.2 reduces to the
corresponding Propositions 2.2 in [88]. Further, if u(x) = 1

x1···xn
, then we have

v(y) =
1

y2
1 · · ·y2

n

∫ y1

b1

...

∫ yn

bn

dx =
n

∏
i=1

1
y1 · · ·yn

(
1− bi

yi

)
, y ∈ (b,∞).
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and we get the inequality given in Remark 3 in [89]. In the one-dimensional case (n = 1),
this reduces to Example 4.2 in [88].

As we have seen by applying Theorem 7.4 with ϕ(u) = up and special kernels we
fairly easily obtain the proofs of Theorems 7.2 and 7.3. More generally we can state the
following result:

Corollary 7.1 Let the assumptions in Theorem 7.4 be satisfied.
(i) If p ≥ 2, then∫

Ω1

u(x)Ap
k f (x)dμ1(x)+

∫
Ω2

∫
Ω1

| f (y)−Ak f (x)|p u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)

≤
∫

Ω2

v(y) f p(y)dμ2(y) (7.9)

(ii) If 1 < p ≤ 2 , then (7.9) holds in the reversed direction.

Proof. Apply Theorem 7.4 with the function ϕ(x) = xp, which is superquadratic for
p ≥ 2 and subquadratic for 1 ≤ p ≤ 2. �

Remark 7.9 In particular, by applying Corollary 7.1 with p = 2 we obtain the following
very general identity (of Parseval type for the generalized Hardy operators involved):∫

Ω1

u(x)A2
k f (x)dμ1(x)+

∫
Ω2

∫
Ω1

| f (y)−Ak f (x)|2 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)

=
∫

Ω2

v(y) f 2(y)dμ2(y).

By using Corollary 7.1 (and Remark 7.3) with concrete kernels we can obtain refine-
ments of some classical inequalities. Here we give only the following complement and
refinement of the Hardy-Hilbert inequality (2.1).

Corollary 7.2 Let p > 1 and f ∈ Lp(R+).
If p ≥ 2, then

∞∫
0

⎛⎝ ∞∫
0

f (x)
x+ y

dx

⎞⎠p

dy

+

⎛⎝ π

sin
(

π
p

)
⎞⎠p−1 ∞∫

0

y−
1
p

∞∫
0

∣∣∣∣∣∣ f (y)y 1
p −

sin
(

π
p

)
π

x
1
p

∞∫
0

f (y)
x+ y

dy

∣∣∣∣∣∣
p

x
1
p−1

x+ y
dxdy

≤
⎛⎝ π

sin
(

π
p

)
⎞⎠p ∞∫

0

f p(y)dy. (7.10)

If 1 < p ≤ 2, then (7.10) holds in the reversed direction.
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Proof. Apply Corollary 7.1 with Ω1 = Ω2 = (0,∞) and dμ1(x) and dμ2(y) replaced

by the Lebesgue measures dx and dy, respectively, and let k(x,y) = ( y
x )−1/p

x+y , p > 1, and

u(x) = 1
x . Then we find that K(x) = π

sin(π/p) ,

Ap
k ( f (x)) =

(
sin(π/p)

π

)p

x

⎛⎝ ∞∫
0

f (y)
x+ y

y−1/pdy

⎞⎠p

and

v(y) =
sin(π/p)

π

∞∫
0

(y
x

)−1/p 1
x(x+ y)

dx

=
sin(π/p)

π
1
y

∞∫
0

(y
x

)−1/p′ 1
x+ y

dx =
1
y

sin(π/p)
π

π
sin(π/p′)

=
1
y

(Here, as usual, 1
p′ +

1
p = 1).

By replacing, now, f (x) with f (x)x1/p in (7.9) we obtain (7.10).
The proof of the case 1 < p ≤ 2 is the same because then only the inequality sign coming
from case (ii) in Corollary 7.2 reverses. The proof is complete. �

Remark 7.10 We note that for p = 2 we get equality in (7.10) and this equality is a
special case of the general one stated in Remark 7.9.

We finish this section by stating another useful applications of Theorem 7.4.

Corollary 7.3 Let the assumptions in Theorem 7.4 be satisfied and let |Ω1|μ1
, |Ω2|μ2

< ∞. Then the inequality

∫
Ω1

ϕ

(
1

|Ω2|μ2

∫
Ω2

f (y)dμ2(y)

)
dμ1(x)

+
1

|Ω2|μ2

∫
Ω2

∫
Ω1

ϕ

(∣∣∣∣∣ f (y)− 1
|Ω2|μ2

∫
Ω2

f (y)dμ2(y)

∣∣∣∣∣
)

dμ1(x)dμ2(y)

≤ |Ω1|μ1

|Ω2|μ2

∫
Ω2

ϕ( f (y))dμ2(y) (7.11)

holds for all superquadratic functions ϕ . If the function ϕ is subquadratic, then (7.11)
holds with reverse inequality sign.

Proof. Apply Theorem 7.4 with k(x,y) ≡ 1 and u(x) = 1. Then

K(x) =
∫

Ω2

dμ2(y) = |Ω2|μ2
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and

v(y) =
∫

Ω1

1
|Ω2|μ2

dμ1(x) =
|Ω1|μ1

|Ω2|μ2

and the proof is complete. �

7.3 Remarks

Example 7.3 The inequalities (7.5) and (7.6) for n = 1, i.e

b∫
0

x−k

⎛⎝ x∫
0

f (t)dt

⎞⎠p

dx

+
k−1

p

b∫
0

b∫
t

∣∣∣∣∣∣ p
k−1

( t
x

)1− k−1
p

f (t)− 1
x

x∫
0

f (u)du

∣∣∣∣∣∣
p

xp−k− k−1
p dxt

k−1
p −1dt

≤
(

p
k−1

)p b∫
0

(
1−

(x
b

) k−1
p
)

xp−k f p(x)dx (7.12)

hold both for p ≥ 2 and k > 1. They can not be easily compared in general. However,
(7.12) is better for p = 2 because it then reduces to equality. It is also better for the case
b = ∞ because then the additional term on the left-hand side of (7.5) is equal to zero while
the one in (7.12) is not, and still the right-hand side is strictly smaller than the right hand
side in (7.12). However, it remains an open question if (7.12) is always better in this case
(both inequalities are sharp).
Also for the case 1 ≤ p ≤ 2 and k > 1 we can not compare these inequalities because then
(7.12) holds in the reversed direction. At the endpoint p = 1 (7.5) holds with equality,
while at the endpoint p = 2 (7.12) holds with equality. In particular for 1 < p ≤ 2, k > 1
and b = ∞ we have that

0 ≤−
∞∫

0

x−k

⎛⎝ x∫
0

f (t)dt

⎞⎠p

dx+
(

p
k−1

)p ∞∫
0

xp−k f p(x)dx ≤ Iq

where

Iq =
k−1

p

∞∫
0

∫ ∞

t

∣∣∣∣∣∣ p
k−1

( t
x

)1− k−1
p

f (t)− 1
x

x∫
0

f (u)du

∣∣∣∣∣∣
p

xp−k− k−1
p dxt

k−1
p −1dt.

Two-sides estimate like this can never be obtained by using only Theorem 7.1.
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Remark 7.11 A completely analogous dual example can be obtained by using and com-
paring Theorem 7.3 with n = 1 and the dual version of Theorem 7.1 (see [93], Theorem
2.2).

The function Φ(x) = ex is not superquadratic but by working, instead, with the su-
perquadratic function Φ(x) = ex−x−1 (see Lemma 1.2) we obtain the following result of
Pólya-Knopp type by using Theorem 7.4:

Example 7.4 Assume that the assumptions in Theorem 7.4 are satisfied. Then, by ap-
plying Theorem 7.4 with Φ(x) = ex − x− 1 and f (x) replaced by log f (x) we obtain the
following inequality of (refined) Pólya-Knopp type:∫

Ω1

expAk f (x)dμ1(x)+ I ≤
∫

Ω2

f (y)v(y)dμ2(y),

where

Ak f (x) =
1

K(x)

∫
Ω2

k(x,y) log f (y)dμ2(y)

and

I =
∫

Ω2

∫
Ω1

exp |log f (y)−Ak f (x)|− |log f (y)−Ak f (x)| u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)

+
∫

Ω2

log f (y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x)+1)dμ1(x).

�

7.4 Mean value theorems

Let us continue by defining a linear functional as a difference between the right-hand side
and the left-hand side of the refined Hardy type inequality (7.8):

A(ϕ) =
∫

Ω2

ϕ( f (y))v(y)dμ2(y)−
∫

Ω1

ϕ(Ak f (x))u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

ϕ (| f (y)−Ak f (x)|) u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)

(7.13)

It is clear that if ϕ is a superquadratic function, then A(ϕ) ≥ 0.

Now, we give mean value theorem. First, we state and prove the Lagrange-type mean
value theorem (see [37]).
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Lemma 7.1 Suppose that ϕ ∈C2([0,∞)), −∞ < m ≤ M < ∞ be such that

m ≤
(

ϕ ′(x)
x

)′
=

xϕ ′′(x)−ϕ ′(x)
x2 ≤ M, for all x > 0.

Consider the functions ϕ1,ϕ2 : [0,∞) → R defined as

ϕ1(x) =
Mx3

3
−ϕ(x) , ϕ2(x) = ϕ(x)− mx3

3
.

Then the functions x→ ϕ ′
1(x)
x and x→ ϕ ′

2(x)
x are increasing. If ϕi(0) = 0, i = 1,2, then they

are superquadratic functions.

Theorem 7.5 Let ϕ : [0,∞) → R, ϕ(0) = 0 and the assumptions of Theorem 7.4 be sat-

isfied. Assume that A is a strictly positive functional. If ϕ ′(x)
x ∈C1(0,∞), then there exists

ξ ∈ (0,∞) such that following equality holds

A(ϕ) =
1
3

ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ 2

(∫
Ω2

f 3(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))3u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|3 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
)

, (7.14)

where Ak f , K are defined by (2.15)− (2.16), respectively.

Proof. 1. Case: Suppose that min
x∈(0,∞)

(ϕ ′
x ) = m and max

x∈(0,∞)
(ϕ ′

x ) = M exist. Then by ap-

plying Theorem 7.4 on the functions ϕ1,ϕ2 from Lemma 7.1 the following two inequalities
hold:

A(ϕ) ≤ M
3

(∫
Ω2

f 3(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))3u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|3 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
)

and

A(ϕ) ≥ m
3

(∫
Ω2

f 3(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))3u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|3 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
)

.

Since ϕ = x3 is strictly superquadratic and A is strictly positive∫
Ω2

f 3(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))3u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|3 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y) > 0.



166 7 HARDY-TYPE INEQUALITIES WITH GENERAL KERNELS AND MEASURES...

By combining the above two inequalities and using the fact

m ≤ xϕ ′′(x)−ϕ ′(x)
x2 ≤ M

we conclude the existance of ξ ∈ (0,∞) such that (7.14) holds.

2. Case: Suppose that min
x∈(0,∞)

(ϕ ′
x ) = m and sup

x∈(0,∞)
(ϕ ′

x ) = M, and assume that M is not a

maximum. In this case ϕ1 is strictly superquadratic. Then, by applying Theorem 7.4 on
the functions ϕ1,ϕ2 from Lemma 7.1, the following two inequalities hold:

A(ϕ) <
M
3

(∫
Ω2

f 3(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))3u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|3 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
)

and

A(ϕ) ≥ m
3

(∫
Ω2

f 3(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))3u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|3 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
)

.

By combining the above two inequalities and using the fact

m ≤ xϕ ′′(x)−ϕ ′(x)
x2 < M

we conclude the existance of ξ ∈ (0,∞) such that (7.14) holds.

3. Case: Suppose that inf
x∈(0,∞)

(ϕ ′
x ) = m and max

x∈(0,∞)
(ϕ ′

x ) = M, and assume that m is not a

minimum. The proof is analogous to the proof in Case 2.
4. Case: Suppose that inf

x∈(0,∞)
(ϕ ′

x ) = m and sup
x∈(0,∞)

(ϕ ′
x ) = M, and assume that m is not a

minimum and M is not a maximum. The proof is analogous to the proof in Case 2.
In the case where M = ∞ and m exists, using just ϕ2 we obtain

m ≤ xϕ ′′(x)−ϕ ′(x)
x2

when m is the minimum, and strong inequality when m is the infimum. The rest of the
proof is as above. �

Theorem 7.6 Let ϕ ,ψ : [0,∞) → R, ϕ(0) = ψ(0) = 0, the assumptions of Theorem 7.4

be satisfied. Assume that A is a strictly positive functional. If ϕ ′
x , ψ ′

x ∈C1(0,∞), then there
exists ξ ∈ (0,∞) such that

A(ϕ)
A(ψ)

=
ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ ψ ′′(ξ )−ψ ′(ξ )

,

provided the denominators are not equal to zero.
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Proof. We consider a function h defined as h = c1ϕ − c2ψ , where c1,c2 are defined by

c1 = A(ψ), c2 = A(ϕ).

Then

h′

x
= c1

ϕ ′

x
− c2

ψ ′

x
∈C1(0,∞),

after a short calculation we obtain that A(k) = 0. By Theorem 7.5 there exists ξ such that

(c1(ξ ϕ ′′(ξ )−ϕ ′(ξ ))− c2(ξ ψ ′′(ξ )−ψ ′(ξ )))
(∫

Ω2

f 3(y)v(y)dμ2(y) (7.15)

−
∫

Ω1

(Ak f (x))3u(x)dμ1(x)−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|3 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
)

= 0.

Since ϕ = x3 is strictly superquadratic and A is strictly positive

∫
Ω2

f 3(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))3u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|3 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y) > 0.

We conclude that

c2

c1
=

ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ ψ ′′(ξ )−ψ ′(ξ )

=
A(ϕ)
A(ψ)

,

provided that the denominator is not zero. This completes the proof. �

As a special case of Theorems 7.5 and 7.6 we obtain the following results:

Example 7.5 Let Ω1 = Ω2 = (0,b), 0 < b≤∞, replace dμ1(x) and dμ2(y) by the Lebes-
gue measures dx and dy, respectively, and k(x,y) = 1, 0 ≤ y ≤ x, k(x,y) = 0, y > x. Then
K(x) = x1 · · ·xn and

Ak f (x) =
1

x1 · · ·xn

x1∫
0

· · ·
xn∫

0

f (y)dy.

Moreover, replace u(x) by u(x)/x1 · · ·xn and v(y) by v(y)/y1 · · ·yn, then v coincides with

v(t) = t1...tn

∫ b1

t1
...

∫ bn

tn

u(x)
x2
1...x

2
n
dx, t ∈ (0,b)
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and A, which we now denote by Ã, becomes

Ã(ϕ) =
∫ b1

0
· · ·

∫ bn

0
v(x)ϕ( f (x))

dx
x1 · · ·xn

−
∫ b1

0
· · ·

∫ bn

0
u(x)ϕ

(
1

x1 · · ·xn

∫ x1

0
· · ·

∫ xn

0
f (t)dt

)
dx

x1 · · ·xn

−
∫ b1

0
· · ·

∫ bn

0

∫ b1

t1
· · ·

∫ bn

tn
ϕ
(∣∣∣∣ f (t)− 1

x1 · · ·xn

∫ x1

0
· · ·

∫ xn

0
f (t)dt

∣∣∣∣)
× u(x)

x2
1 · · ·x2

n
dxdt

and (7.14) takes form

Ã(ϕ) =
1
3

ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ 2

(∫ b1

0
· · ·

∫ bn

0
v(x) f 3(x)

dx
x1 · · · xn

−
∫ b1

0
· · ·

∫ bn

0
u(x)

(
1

x1 · · · xn

∫ x1

0
· · ·

∫ xn

0
f (t)dt

)3 dx
x1 · · · xn

−
∫ b1

0
· · ·

∫ bn

0

∫ b1

t1
· · ·

∫ bn

tn

∣∣∣∣ f (t)− 1
x1 · · · xn

∫ x1

0
· · ·

∫ xn

0
f (t)dt

∣∣∣∣3
× u(x)

x2
1 · · · x2

n
dxdt

)
.

Example 7.6 Let Ω1 = Ω2 = (b,∞), 0≤ b < ∞, replace dμ1(x) and dμ2(y) by the Lebes-
gue measures dx and dy, respectively and k(x,y) = 1

y2
1···y2

n
, y ≥ x, k(x,y) = 0, b ≤ y < x.

Then K(x) = 1
x1···xn

and

Ak f (x) = x1 · · · xn

∫ ∞

x1

· · ·
∫ ∞

xn

f (y)
y2
1 · · · y2

n
dy.

Replacing u(x) by u(x)/x1...xn and v(y) by v(y)/y1...yn, we obtain

v(t) =
1

t1 · · · tn
∫ t1

b1

· · ·
∫ tn

bn

u(x)dx < ∞, t ∈ (b,∞)

and A, which we now denote by Â, becomes

Â(ϕ) =
∫ ∞

b1

· · ·
∫ ∞

bn

v(x)ϕ( f (x))
dx

x1 · · ·xn

−
∫ ∞

b1

· · ·
∫ ∞

bn

u(x)ϕ
(

x1 · · ·xn

∫ ∞

x1

· · ·
∫ ∞

xn

f (t)
dt

t21 · · · t2n

)
dx

x1 · · ·xn

−
∫ ∞

b1

· · ·
∫ ∞

bn

∫ t1

b1

· · ·
∫ tn

bn

ϕ
(∣∣∣∣ f (t)− x1 · · ·xn

∫ ∞

x1

· · ·
∫ ∞

xn

f (t)
dt

t21 · · · t2n

∣∣∣∣)
×u(x)dx

dt
t21 · · · t2n
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and (7.14) takes form

Â(ϕ) =
1
3

ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ 2

(∫ ∞

b1

· · ·
∫ ∞

bn

v(x) f 3(x)
dx

x1 · · ·xn

−
∫ ∞

b1

· · ·
∫ ∞

bn

u(x)
(

x1 · · ·xn

∫ ∞

x1

· · ·
∫ ∞

xn

f (t)
dt

t21 · · · t2n

)3 dx
x1 · · ·xn

−
∫ ∞

b1

· · ·
∫ ∞

bn

∫ t1

b1

· · ·
∫ tn

bn

∣∣∣∣ f (t)− x1 · · ·xn

∫ x1

0
· · ·

∫ xn

0
f (t)

dt
t21 · · · t2n

∣∣∣∣3
×u(x)dx

dt
t21 · · ·t2n

)
.

We state the following result concerning inequality (2.1) by applying Theorem 7.5 with
ϕ(u) = up, p ≥ 2.

Example 7.7 Let Ω1 = Ω2 = (0,∞), ϕ(u) = up, p ≥ 2 and replace dμ1(x) and dμ2(y)

by the Lebesgue measures dx and dy, respectively, let k(x,y) = ( y
x )−1/p

x+y and u(x) = 1
x . Then

we find that K(x) = π
sin(π/p) and v(y) = 1

y . Replace f (x) by f (x)x1/p, so A, which is now
denoted by Hf , becomes

Hf =
∞∫

0

f p(y)dy−
⎛⎝sin

(
π
p

)
π

⎞⎠p ∞∫
0

⎛⎝ ∞∫
0

f (x)
x+ y

dx

⎞⎠p

dy

−
sin

(
π
p

)
π

∞∫
0

∞∫
0

∣∣∣∣∣∣ f (y)−
sin

(
π
p

)
π

(
x
y

) 1
p

∞∫
0

f (y)
x+ y

dy

∣∣∣∣∣∣
p

x
1
p−1

x+ y
dxdy

and (7.14) takes form

Hf =
p(p−2)ξ p−3

3

⎛⎜⎝∫ ∞

0
f 3(y)y

3
p−1dy−

⎛⎝sin
(

π
p

)
π

⎞⎠3 ∞∫
0

⎛⎝ ∞∫
0

f (y)
x+ y

dy

⎞⎠3

x
3
p−1dx

−
sin

(
π
p

)
π

∞∫
0

∞∫
0

∣∣∣∣∣∣ f (y)−
sin

(
π
p

)
π

(
x
y

) 1
p

∞∫
0

f (y)
x+ y

dy

∣∣∣∣∣∣
3

x
1
p−1

x+ y
dxdy

⎞⎟⎠ .
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7.5 Exponential convexity

Lemma 7.2 Consider the function ϕp for p > 0 defined by

ϕp(x) =

{ xp

p(p−2) , p �= 2

x2

2 logx, p = 2
. (7.16)

Then, with the convention 0 log0 = 0, ϕp is superquadratic.

For linear functional A defined by (7.13) we have A(ϕp) ≥ 0 for all p > 0.

Lemma 7.3 Let us define the function

φp(x) =

{
pxepx−epx+1

p3 , p �= 0
x3

3 , p = 0.
(7.17)

Then
(

φ ′
p(x)
x

)′
= epx > 0 and φp(0) = 0. Therefore φp is superquadratic.

Properties of the mapping p �→ A(ϕp) are given in the following theorem:

Theorem 7.7 For A as in (7.13) and ϕp as in (7.16) we have the following:

(i) the mapping p �→ A(ϕp) is continuous for p > 0,

(ii) for every n ∈ N and pi ∈ R+, pi j = pi+p j
2 , i, j = 1,2, ...,n, the matrix [A(ϕpi j)]

n
i, j=1 is

positive semi-definite, that is

det[A(ϕpi j)]
n
i, j=1 ≥ 0,

(iii) the mapping p �→ A(ϕp) is exponentially convex,

(iv) the mapping p �→ A(ϕp) is log-convex,

(v) for pi ∈ R+, i = 1,2,3, p1 < p2 < p3,

[A(ϕp2)]
p3−p1 ≤ [A(ϕp1)]

p3−p2 [A(ϕp3)]
p2−p1 .

Proof.

(i) Notice that for p �= 2

A(ϕp)=
1

p(p−2)

[∫
Ω2

f p(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))pu(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|p u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
]
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and for p = 2

A(ϕp) =
1
2

[∫
Ω2

f 2(y) log( f (y))v(y)dμ2(y)−
∫

Ω1

(Ak f (x))2 log(Ak f (x))u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|2 log | f (y)−Ak f (x)|u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
]

It is, obviously, continuous for p > 0, p �= 2. Suppose p → 2 :

lim
p→2

A(ϕp)=lim
p→2

1
p(p−2)

[∫
Ω2

f p(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))pu(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|p u(x)k(x,y)
K(x)

dμ1(x)dμ2(y)
]
.

Since ∫
Ω2

f 2(y)v(y)dμ2(y)−
∫

Ω1

(Ak f (x))2u(x)dμ1(x)

−
∫

Ω2

∫
Ω1

| f (y)−Ak f (x)|2 u(x)k(x,y)
K(x)

dμ1(x)dμ2(y) = 0,

by applying L’Hospital rule, after a simple calculation, we obtain that

lim
p→2

A(ϕp) = A(ϕ2).

Hence, the mapping p �→ A(ϕp) is continuous for p > 0.

(ii) Define the function F(x) = ∑n
i, j=1 uiu jϕpi j(x), where pi j = pi+p j

2 . Then

(
F ′(x)

x

)′
=

n

∑
i, j=1

uiu j

(
ϕ ′

pi j
(x)

x

)′
=

(
n

∑
i=1

uix
pi−3

2

)2

≥ 0

and F(0) = 0 implies F is superquadratic, so using this F in place of ϕ in (7.8) we
have

A(F) =
n

∑
i, j=1

uiu jA(ϕpi j) ≥ 0

from this we have that the matrix B = [A(ϕ pi+p j
2

)]ni, j=1, is positive-semidefinite i.e.

detB ≥ 0.

(iii), (iv) and (v) are trivial consequence of (i), (ii) and definition of exponentially convex
and log-convex functions. �

Using the function φp instead of ϕp, the following result follows.

Theorem 7.8 For A as in (7.13) and φp as in (7.17) we have the following:
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(i) the mapping p �→ A(φp) is continuous on R,

(ii) for every n ∈ N and pi ∈ R, pi j = pi+p j
2 , i, j = 1,2, ...,n, the matrix [A(φpi j)]

n
i, j=1 is

positive semi-definite, that is

det[A(φpi j)]
n
i, j=1 ≥ 0,

(iii) the mapping p �→ A(φp) is exponentially convex,

(iv) the mapping p �→ A(φp) is log-convex,

(v) for pi ∈ R, i = 1,2,3, p1 < p2 < p3,

[A(φp2)]
p3−p1 ≤ [A(φp1)]

p3−p2 [A(φp3)]
p2−p1 .

7.6 Cauchy means

Theorem 7.6 enables us to define new means, because when the right-hand side, interpreted
as a function of ξ and denoted by K(ξ ) is invertible, then

ξ = K−1
(

A(ϕ)
A(ψ)

)
,

presents a new Cauchy mean.
Specially, if we choose ϕ = ϕs,ψ = ϕr, where r,s ∈ R+, r �= s, r,s �= 2, we obtain

ξ s−r =
r(r−2)
s(s−2)

×∫
Ω2

f s(y)v(y)dμ2(y)−
∫

Ω1
(Ak f (x))su(x)dμ1(x)−

∫
Ω2

∫
Ω1

Cs(x,y)g(x,y)dμ1(x)dμ2(y)∫
Ω2

f r(y)v(y)dμ2(y)−
∫

Ω1
(Ak f (x))ru(x)dμ1(x)−

∫
Ω2

∫
Ω1

Cr(x,y)g(x,y)dμ1(x)dμ2(y)
,

where C(x,y) = | f (y)−Ak f (x)| and g(x,y) = u(x)k(x,y)
K(x) .

Now we can define a new family of means.

Definition 7.1 For r,s ∈ R+,r,s �= 2,r �= s we define means Mr,s as follows

Ms,r =(
r(r−2)
s(s−2)

∫
Ω2

As,0(y)dμ2(y)−
∫

Ω1
Bs,0(x)dμ1(x)−

∫
Ω2

∫
Ω1

Cs,0(x,y)dμ1(x)dμ2(y)∫
Ω2

Ar,0(y)dμ2(y)−
∫

Ω1
Br,0(x)dμ1(x)−

∫
Ω2

∫
Ω1

Cr,0(x,y)dμ1(x)dμ2(y)

) 1
s−r

,
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Taking a limit we can define the excluded cases. For r �= 2 we have

Mr,2 = M2,r =(
r(r−2)

2

∫
Ω2

A2,1(y)dμ2(y)−
∫

Ω1
B2,1(x)dμ1(x)−

∫
Ω2

∫
Ω1

C2,1(x,y)dμ1(x)dμ2(y)∫
Ω2

Ar,0(y)dμ2(y)−
∫

Ω1
Br,0(x)dμ1(x)−

∫
Ω2

∫
Ω1

Cr,0(x,y)dμ1(x)dμ2(y)

) 1
2−r

Mr,r =

exp

(∫
Ω2

Ar,1(y)dμ2(y)−
∫

Ω1
Br,1(x)dμ1(x)−

∫
Ω2

∫
Ω1

Cr,1(x,y)dμ1(x)dμ2(y)∫
Ω2

Ar,0(y)dμ2(y)−
∫

Ω1
Br,0(x)dμ1(x)−

∫
Ω2

∫
Ω1

Cr,0(x,y)dμ1(x)dμ2(y)
− 2r−2

r(r−2)

)
,

and for r = 2

M2,2 =

exp

(∫
Ω2

A2,2(y)dμ2(y)−
∫

Ω1
B2,2(x)dμ1(x)−

∫
Ω2

∫
Ω1

C2,2(x,y)dμ1(x)dμ2(y)∫
Ω2

A2,1(y)dμ2(y)−
∫

Ω1
B2,1(x)dμ1(x)−

∫
Ω2

∫
Ω1

C2,1(x,y)dμ1(x)dμ2(y)
−1

2

)
,

where

Ap,n(y) = f p(y)(log( f (y))nv(y),

Bp,n(x) = (Ak f (x))p(log(Ak f (x))nu(x),

Cp,n(x,y) = | f (y)−Ak f (x)|p logn | f (y)−Ak f (x)|g(x,y), n = 0,1,2, p > 0.

Note that these means are symmetric and we can easily check that the special cases in
the above definition are limits of the general case. That is,

Mr,r = lim
s→r

Ms,r

M2,r = Mr,2 = lim
s→2

Ms,r,

M2,2 = lim
r→2

Mr,r.

Monotonicity of the means defined above is given in the following theorem.

Theorem 7.9 Let s,t,u,v ∈ R+ be such that s ≤ u, t ≤ v, s �= t, u �= v. Then

Mt,s ≤ Mv,u. (7.18)

Proof. Since the function s �→ A(ϕs) is log-convex, then by Remark 1.2 for any
s, t,u,v ∈+, such that s ≤ u, t ≤ v, s �= t, u �= v, we have(

A(ϕt)
A(ϕs)

) 1
t−s

≤
(

A(ϕv)
A(ϕu)

) 1
v−u

which is equivalent to (7.18).
When s = t or u = v the inequality follows by taking limits. �
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7.7 Inequality of G. H. Hardy and superquadratic
functions

We will give some special cases of Theorem 7.7 for different fractional integrals and frac-
tional derivatives to establish new inequalities.

Our first result is for the Riemann-Liouville fractional integral (see [58]).

Theorem 7.10 Let s > 2, α > 0, Iα
a+ f denotes the left-sided Riemann-Liouville frac-

tional integral of f . Then the function A1 : R → [0,∞) defined by

A1(s) =
1

s(s−2)

⎡⎣ b∫
a

f s(y)(b− y)αdy−
b∫

a

(
Γ(α +1)
(x−a)α Iα

a+ f (x)
)s

(x−a)αdx

−α
b∫

a

b∫
y

(∣∣∣∣ f (y)− Γ(α +1)
(x−a)α Iα

a+ f (x)
∣∣∣∣)s

(x− y)α−1dxdy

⎤⎦
(7.19)

is exponentially convex and

A1(s) ≤ H1(s) (7.20)

holds, where

H1(s) =
(b−a)α(1−s)

s(s−2)

⎡⎣(b−a)αs

b∫
a

f s(y)dy− (Γ(α +1))s

b∫
a

(Iα
a+ f (x))sdx

⎤⎦ .

Proof. Applying Theorem 7.7 with Ω1 = Ω2 = (a,b), dμ1(x) = dx,dμ2(y) = dy,

k(x,y) =

{
(x−y)α−1

Γ(α) , a ≤ y ≤ x ;

0, x < y ≤ b

we get that K(x) = (x−a)α

Γ(α+1) . Then equation (7.13) reduces to

A1(s) =
b∫

a

ϕs( f (y))v(y)dy−
b∫

a

ϕs

(
Γ(α +1)
(x−a)α Iα

a+ f (x)
)

u(x)dx

−α
b∫

a

b∫
y

ϕs

(∣∣∣∣ f (y)− Γ(α +1)
(x−a)α Iα

a+ f (x)
∣∣∣∣) u(x)(x− y)α−1

(x−a)α dxdy, (7.21)
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where ϕs is defined by (7.16). Function A1 is exponentially convex. Applying (7.21) with
particular weight function u(x) = (x−a)α , x ∈ (a,b), we get (7.19). Notice that

A1(s)=
1

s(s−2)

⎡⎣ b∫
a

f s(y)(b− y)αdy−
b∫

a

(
Γ(α +1)
(x−a)α Iα

a+ f (x)
)s

(x−a)αdx

−α
b∫

a

b∫
y

(∣∣∣∣ f (y)− Γ(α +1)
(x−a)α Iα

a+ f (x)
∣∣∣∣)s

(x− y)α−1dxdy

⎤⎦
≤ 1

s(s−2)

⎡⎣(b−a)α
b∫

a

f s(y)dy−(b−a)α(1−s)(Γ(α +1))s

b∫
a

(
Iα
a+ f (x)

)s
dx

⎤⎦
=

(b−a)α(1−s)

s(s−2)

⎡⎣(b−a)αs

b∫
a

f s(y)dy− (Γ(α +1))s

b∫
a

(
Iα
a+ f (x)

)s
dx

⎤⎦
so the inequality (7.20) holds. �

Theorem 7.11 Let s > 2, α > 0, Iα
b− f denotes the right-sided Riemann-Liouville frac-

tional integral of f . Then the function A2 : R → [0,∞) defined by

A2(s)=
1

s(s−2)

⎡⎣ b∫
a

f s(y)(y−a)α dy−
b∫

a

(
Γ(α +1)
(b− x)α Iα

b− f (x)
)s

(b− x)αdx

−α
b∫

a

b∫
y

(∣∣∣∣ f (y)− Γ(α +1)
(b− x)α Iα

b− f (x)
∣∣∣∣)s

(y− x)α−1dxdy

⎤⎦
is exponentially convex and the following inequality holds

A2(s) ≤ H2(s), (7.22)

where

H2(s) =
(b−a)α(1−s)

s(s−2)

⎡⎣(b−a)αs

b∫
a

f s(y)dy− (Γ(α +1))s

b∫
a

(Iα
b− f (x))sdx

⎤⎦ .

Proof. Similar to the proof of Theorem 7.10. �

Next we give results with respect to the generalized Riemann-Liouville fractional deri-
vative.
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Theorem 7.12 Let s > 2, and let the assumptions in Lemma 1.3 be satisfied. Let Dα
a f

denote the generalized Riemann-Liouville fractional derivative of f of order α ≥ 0. Then
the function A3 : R → [0,∞) defined by

A3(s) =
1

s(s−2)

⎡⎣ b∫
a

(b− y)β−α(Dβ
a f (y))sdy

−
b∫

a

(x−a)β−α
(

Γ(β −α +1)
(x−a)β−α (Dα

a f (x))
)s

dx − (β −α)×

×
b∫

a

b∫
y

(∣∣∣∣Dα f (y)− Γ(β −α +1)
(x−a)β−α Dα

a f (x)
∣∣∣∣)s

(x− y)β−α−1dxdy

⎤⎦
is exponentially convex and the following inequality holds

A3(s) ≤ H3(s),

where

H3(s) =
(b−a)(β−α)(1−s)

s(s−2)

⎡⎣(b−a)(β−α)s
b∫

a

(Dβ
a f (y))sdy

− (Γ(β −α +1))s

b∫
a

(Dα
a f (x))sdx

⎤⎦ .

Proof. Similar to the proof of Theorems 3.8 and 7.10. �

In the following Theorem, we will construct a new inequality for the Canavati-type
fractional derivative.

Theorem 7.13 Let s > 2 and let the assumptions in Lemma 1.4 be satisfied. Let Dγ
a f

denote the Canavati-type fractional derivative of f . Then the function A4 : R → [0,∞)
defined by

A4(s) =
1

s(s−2)

⎡⎣ b∫
a

(b− y)ν−γ(Dν
a f (y))sdy

−
b∫

a

(x−a)ν−γ
(

Γ(ν − γ +1)
(x−a)ν−γ Dγ

a f (x)
)s

dx − (ν − γ)×

×
b∫

a

b∫
y

(∣∣∣∣Dν
a f (y)− Γ(ν − γ +1)

(x−a)ν−γ Dγ
a f (x)

∣∣∣∣)s

(x− y)ν−γ−1dxdy

⎤⎦
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is exponentially convex and the following inequality holds

A4(s) ≤ H4(s), (7.23)

where

H4(s) =
(b−a)(ν−γ)(1−s)

s(s−2)

⎡⎣(b−a)(ν−γ)s
b∫

a

(Dν
a f (y))sdy

−(Γ(ν − γ +1))s

b∫
a

(Dγ
a f (x))sdx

⎤⎦ .

Proof. Similar to the proof of Theorems 3.9 and 7.10. �

Next, new inequalities for the Caputo fractional derivative are given.

Theorem 7.14 Let s > 2 ν ≥ 0 and Dν∗a f denote the Caputo fractional derivative of f .
Then the function A5 : R → [0,∞) defined by

A5(s)=
1

s(s−2)

[ b∫
a

(b− y)n−ν( f (n)(y))sdy−
b∫

a

(x−a)n−ν
(

Γ(n−ν +1)
(x−a)n−ν Dν

∗a f (x)
)s

dx

−(n−ν)
b∫

a

b∫
y

(∣∣∣∣ f (n)(y)−Γ(n−ν+1)
(x−a)n−ν Dν

∗a f (x)
∣∣∣∣)s

(x− y)n−ν−1dxdy

]

is exponentially convex and the following inequality holds:

A5(s) ≤ H5(s), (7.24)

where

H5(s) =
(b−a)(n−ν)(1−s)

s(s−2)

⎡⎣(b−a)(n−ν)s
b∫

a

( f (n)(y))sdy

− (Γ(n−ν +1))s

b∫
a

(Dν
∗a f (x))sdx

⎤⎦ .

Proof. Similar to the proof of Theorems 3.10 and 7.10. �

Theorem 7.15 Let s > 2 and let the assumptions in Lemma 1.5 be satisfied. Let Dγ
∗a f

denote the Caputo fractional derivative of f . Then the function A6 : R → [0,∞) defined by

A6(s)=
1

s(s−2)

[ b∫
a

(b− y)ν−γ(Dν
∗a f (y))sdy−

b∫
a

(x−a)ν−γ
(

Γ(ν−γ+1)
(x−a)ν−γ Dγ

∗a f (x)
)s

dx

−(ν−γ)
b∫

a

b∫
y

(∣∣∣∣Dν
∗a f (y)−Γ(ν−γ+1)

(x−a)ν−γ Dγ
∗a f (x)

∣∣∣∣)s

(x− y)ν−γ−1dxdy

]
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is exponentially convex and the following inequality holds

A6(s) ≤ H6(s), (7.25)

where

H6(s) =
(b−a)(ν−γ)(1−s)

s(s−2)

⎡⎣(b−a)(ν−γ)s
b∫

a

(Dν
∗a f (y))sdy

− (Γ(ν − γ +1))s

b∫
a

(Dγ
∗a f (x))sdx

⎤⎦ .

Proof. Similar to the proof of Theorems 3.11 and 7.10. �

Now, we give the following result.

Theorem 7.16 Let s > 2, Iα
a+;σ ;η f denotethe Erdélyi-Kober type fractional integrals of

f , 2F1(a,b;c;z) denotes the hypergeometric function. Then the function A7 : R → [0,∞)
defined by

A7(s)=
1

s(s−2)

[ b∫
a

yσ−1(bσ − yσ)α
2F1(y) f s(y)dy

− (Γ(α +1))s

b∫
a

xσ+σαs−1(xσ −aσ )α(s−1) (2F1(x))1−s (Iα
a+;σ ;η f (x))sdx

−α σ
b∫

a

b∫
y

⎛⎜⎝
∣∣∣∣∣∣∣ f (y)−

Γ(α +1)(
1− (

a
x

)σ
)α

2F1(x)
Iα
a+;σ ;η f (x)

∣∣∣∣∣∣∣
⎞⎟⎠

s

×x−ση+σ−1yση+σ−1(xσ − yσ )α−1dxdy

]
is exponentially convex and the following inequality holds

A7(s) ≤ H7(s), (7.26)

where

H7(s) =
(bσ −aσ )α(1−s)

s(s−2)

⎡⎣(bσ −aσ )αsbσ−1

b∫
a

2F1(y) f s(y)dy

− aσ−1+ασs(Γ(α +1))s

b∫
a

(2F1(x))1−s(Iα
a+;σ ;η f (x))sdx

⎤⎦ ,

2F1(x) =2 F1

(
−η ,α;α+1;1−

(a
x

)σ)
and 2F1(y) =2 F1

(
η ,α;α+1;1−

(
b
y

)σ)
.
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Proof. Similar to the proof of Theorems 3.12 and 7.10. �

In the following theorem we will give inequalities that follow from the results given in
Theorems 7.10-7.16.

Theorem 7.17 For i = 1, ...,7 the following inequalities hold

(i). [Ai(p)]
q−r
q−p [Ai(q)]

r−p
q−p ≤ Hi(r)

(ii). [Ai(r)]
p−q
p−r [Ai(p)]

q−r
p−r ≤ Hi(q)

(iii). Ai(p) ≤ [Hi(r)]
q−p
q−r [Hi(q)]

p−r
q−r

for every choice of r, p,q ∈ R+, such that 2 < r < p < q.

Proof. Similar to the proof of Theorem 6.14. �





Chapter8
On a new class of refined
discrete Hardy-type
inequalities

Generalizing certain results of Godunova, [40] (see also [80, Chapter IV, p. 152]), Vasić
and Pečarić in [99] proved that the Hardy-type inequality

∞

∑
m=1

umΦ

(
m

∑
n=1

kmnan

)
≤

∞

∑
n=1

vnΦ(an) (8.1)

holds for all non-negative convex functions Φ on an interval I ⊆ R, sequences (an)n∈N
in I, sequences (un)n∈N of positive real numbers, and positive real numbers kmn, m ∈ N,
n = 1, . . . ,m, such that

m

∑
n=1

kmn = 1, m ∈ N, and
∞

∑
m=n

umkmn ≤ vn, n ∈ N. (8.2)

Moreover, if the function Φ is concave and the sign of inequality in (8.2) is reversed, then
(8.1) holds with the reversed sign of inequality.

As special cases of (8.1) for sequences of positive real numbers (an)n∈N, we get the
so-called Godunova’s inequality

∞

∑
n=1

1
n+1

(
1
n

n

∑
m=1

am

)p

<
∞

∑
n=1

ap
n

n
, (8.3)

181
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where p ∈ R, p > 1, and Akerberg’s inequality

∞

∑
n=1

1
n+1

(
n!

n

∏
m=1

am

) 1
n

<
∞

∑
n=1

an, (8.4)

obtained by Akerberg in [7]. It can be shown that inequality (8.4) implies the well-known
Carleman inequality

∞

∑
n=1

(
n

∏
m=1

am

) 1
n

< e
∞

∑
n=1

an, (8.5)

with the best possible constant e, proved by Carleman in [17].
Motivated by these results, in this chapter we obtain a generalization and a refinement

of (8.1) by proving a new refined general weighted discrete Hardy-type inequality with
a positive real parameter. As its consequences, obtained by rewriting it for various pa-
rameters, kernels, weights, and convex (or concave) functions, we derive new weighted
and unweighted generalizations and refinements of inequalities (8.3)-(8.5). Moreover, we
show that our result improves and generalizes Carleman’s inequality (8.5), that is, we get
a new refined weighted strengthened Carleman’s inequality. By employing the concepts of
exponential and logarithmic convexity, we obtain upper and lower bounds for the left-hand
sides of some refined Hardy-type inequalities from the previous section. In particular, we
derive upper and lower bounds for the left-hand side of the weighted Godunova’s inequal-
ity, as well as of the strengthened weighted Carleman’s inequality.

8.1 New refined discrete Hardy-type inequalities

Now, we are ready to state and prove a new general refined discrete Hardy-type inequality
with a kernel, related to arbitrary non-negative convex functions on real intervals (see [23]).

Theorem 8.1 Let t ∈R+, M,N ∈N, and let non-negative real numbers um, vn, kmn, where
m ∈ NM, n ∈ NN, be such that

Km =
N

∑
n=1

kmn > 0, m ∈ NM, (8.6)

and

vn =

[
M

∑
m=1

um

(
kmn

Km

)t
] 1

t

, n ∈ NN . (8.7)

Let Φ be a non-negative convex function on an interval I ⊆R and ϕ : I →R be any function
such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I. Then the inequality(

N

∑
n=1

vnΦ(an)

)t

−
M

∑
m=1

umΦt(Am) ≥ t
M

∑
m=1

um
Φt−1(Am)

Km

N

∑
n=1

kmnrmn (8.8)
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holds for all t ≥ 1 and real numbers an ∈ I, n ∈ NN, where

Am =
1

Km

N

∑
n=1

kmnan (8.9)

and
rmn = | |Φ(an)−Φ(Am)|− |ϕ(Am)| · |an−Am| | . (8.10)

If t ∈ (0,1] and the function Φ : I → R is positive and concave, then the order of the terms
on the left-hand side of (8.9) is reversed, that is, the inequality

M

∑
m=1

umΦt (Am)−
(

N

∑
n=1

vnΦ(an)

)t

≥ t
M

∑
m=1

um
Φt−1(Am)

Km

N

∑
n=1

kmnrmn (8.11)

holds for all t ∈ (0,1].

Proof. First, note that

N

∑
n=1

kmn(an−Am) =
N

∑
n=1

kmnan−Am

N

∑
n=1

kmn = KmAm −AmKm = 0 (8.12)

holds for all m ∈ NM . Further, since min
n∈NN

an ∈ I, max
n∈NN

an ∈ I, and

min
n∈NN

an ≤ an ≤ max
n∈NN

an, n ∈ NN ,

we easily get

min
n∈NN

an ≤ 1
Km

N

∑
n=1

kmnan ≤ max
n∈NN

an.

Therefore, Am ∈ I for all m ∈ NM . Moreover, if an ∈ IntI, for all n ∈ NN , then Am ∈ IntI
for all m ∈ NM, as well.

Now, we are ready to prove (8.8), so suppose that the function Φ is convex and t ≥ 1.
Fix m ∈ NM and n ∈ NN . If Am ∈ Int I, then substituting x = Am and y = an in (1.8) yields

Φ(an)−Φ(Am)−ϕ(Am)(an−Am) ≥ ||Φ(an)−Φ(Am)|− |ϕ(Am)| · |an−Am| |
and, therefore,

kmn

Km
[Φ(an)−Φ(Am)−ϕ(Am)(an −Am)] ≥ kmn

Km
rmn. (8.13)

Observe that (8.13) holds trivially also if kmn = 0 and Am is an endpoint of I (if I is not an
open interval). Hence, it is only left to analyze the case when Am is an endpoint of I and
kmn > 0 (from condition (8.6) we see that such n exists for every m ∈ NM). Without loss of
generality, assume that Am is the left endpoint of I, that is, Am = min I. Then al −Am ≥ 0
for all l ∈ NN , so (8.12) implies that kml(al −Am) = 0 for all l ∈ NN . In particular, from
kmn > 0 we get an = Am, so both sides of (8.13) are equal to 0. The case when Am = max I
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is analogous. Thus, (8.13) holds for all m ∈ NM and n ∈ NN . Summing it up over n ∈ NN

gives

1
Km

N

∑
n=1

kmnΦ(an)− 1
Km

N

∑
n=1

kmnΦ(Am)− ϕ(Am)
Km

N

∑
n=1

kmn(an−Am)

≥ 1
Km

N

∑
n=1

kmnrmn

and, by using (8.12), further

Φ(Am)+
1

Km

N

∑
n=1

kmnrmn ≤ 1
Km

N

∑
n=1

kmnΦ(an). (8.14)

Since the left-hand side of (8.14) is non-negative and the function α �→ αt is strictly in-
creasing on [0,∞) for t ≥ 1, by applying Bernoulli’s inequality we obtain

Φt(Am)+ t
Φt−1(Am)

Km

N

∑
n=1

kmnrmn ≤
(

Φ(Am)+
1

Km

N

∑
n=1

kmnrmn

)t

≤
(

1
Km

N

∑
n=1

kmnΦ(an)

)t

. (8.15)

Multiplying (8.15) by um, then summing up over m ∈ NM , and applying Minkowski’s
inequality to the right-hand side, we get

M

∑
m=1

umΦt(Am)+ t
M

∑
m=1

um
Φt−1(Am)

Km

N

∑
n=1

kmnrmn

≤
M

∑
m=1

um

(
Φ(Am)+

1
Km

N

∑
n=1

kmnrmn

)t

≤
M

∑
m=1

um

(
1

Km

N

∑
n=1

kmnΦ(an)

)t

=

⎧⎪⎨⎪⎩
[

M

∑
m=1

um

(
1

Km

N

∑
n=1

kmnΦ(an)

)t] 1
t

⎫⎪⎬⎪⎭
t

≤
⎧⎨⎩ N

∑
n=1

Φ(an)

[
M

∑
m=1

um

(
kmn

Km

)t
] 1

t

⎫⎬⎭
t

=

(
N

∑
n=1

vnΦ(an)

)t

,

so (8.8) holds. The proof for a concave function Φ and t ∈ (0,1] is similar. Namely, by the
same arguments as for convex functions, from (1.9) we first obtain

kmn

Km
[Φ(Am)−Φ(an)−ϕ(Am)(Am −an)] ≥ kmn

Km
rmn, m ∈ NM, n ∈ NN ,
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then

Φt(Am)− t
Φt−1(Am)

Km

N

∑
n=1

kmnrmn ≥
(

Φ(Am)− 1
Km

N

∑
n=1

kmnrmn

)t

≥
(

1
Km

N

∑
n=1

kmnΦ(an)

)t

, m ∈ NM,

and finally

M

∑
m=1

umΦt(Am)− t
M

∑
m=1

um
Φt−1(Am)

Km

N

∑
n=1

kmnrmn

≥
M

∑
m=1

um

(
Φ(Am)− 1

Km

N

∑
n=1

kmnrmn

)t

≥
(

N

∑
n=1

vnΦ(an)

)t

,

that is, we get (8.11). �

Remark 8.1 In particular, for t = 1 inequality (8.8) reduces to

N

∑
n=1

vnΦ(an)−
M

∑
m=1

umΦ(Am) ≥
M

∑
m=1

um

Km

N

∑
n=1

kmnrmn, (8.16)

where in this setting we have

vn =
M

∑
m=1

um
kmn

Km
, m ∈ NM. (8.17)

Moreover, by analyzing the proof of Theorem 8.1, we see that (8.16) holds for all convex
functions Φ : I → R, that is, Φ does not need to be non-negative. Similarly, if Φ is any real
concave function on I (not necessarily positive), then (8.16) holds with the reversed order
of the terms on its left-hand side. �

Remark 8.2 Rewriting (8.8) with t = q
p ≥ 1, that is, for 0 < p≤ q < ∞ or−∞ < q≤ p < 0,

and with an arbitrary non-negative convex function Φ, we obtain(
N

∑
n=1

vnΦ(an)

) q
p

−
M

∑
m=1

umΦ
q
p (Am) ≥ q

p

M

∑
m=1

um
Φ

q
p−1(Am)
Km

N

∑
n=1

kmnrmn, (8.18)

where

vn =

[
M

∑
m=1

um

(
kmn

Km

) q
p
] p

q

, n ∈ NN .

Especially, if p ≥ 1 or p < 0 (in that case Φ should be positive), then the function Φp is
convex as well, so by replacing Φ with Φp relation (8.18) becomes(

N

∑
n=1

vnΦp(an)

) q
p

−
M

∑
m=1

umΦq(Am) ≥ q
p

M

∑
m=1

um
Φq−p(Am)

Km

N

∑
n=1

kmnrmn. (8.19)
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On the other hand, if Φ is a positive concave function and t = q
p ∈ (0,1], that is, 0 < q ≤

p < ∞ or −∞ < p ≤ q < 0, then (8.18) holds with the reversed order of the terms on its
left-hand side. Moreover, if p ∈ (0,1], then the function Φp is concave, so the order of the
terms on the left-hand side of (8.19) is reversed. �

Theorem 8.1 holds even if M = N = ∞. More precisely, following a similar procedure
as in the proof of Theorem 8.1, we get the following corollary.

Corollary 8.1 Suppose t ∈ R+ and non-negative numbers um, vn, kmn, for m,n ∈ N, are
such that

Km =
∞

∑
n=1

kmn ∈ R+, m ∈ N, and vn =

[
∞

∑
m=1

um

(
kmn

Km

)t
] 1

t

< ∞, n ∈ N.

If Φ is a non-negative convex function on an interval I ⊆ R and ϕ : I → R is any function
such that ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I, then the inequality(

∞

∑
n=1

vnΦ(an)

)t

−
∞

∑
m=1

umΦt(Am) ≥ t
∞

∑
m=1

um
Φt−1(Am)

Km

∞

∑
n=1

kmnrmn (8.20)

holds for all t ≥ 1 and all real numbers an ∈ I, n ∈ N, such that

Am =
1

Km

∞

∑
n=1

kmnan ∈ I, m ∈ N, (8.21)

where rmn is defined by (8.10). If t ∈ (0,1] and Φ : I → R is a positive concave function,
then the order of the terms on the left-hand side of (8.20) is reversed.

Remark 8.3 If I is a segment, that is, a closed subset of R, condition (8.21) is fulfilled
automatically since the series defining Km converge for all m ∈ N. Note that this condition
can not be omitted in any other general case. Further, according to Remark 8.1, in the case
when t = 1 the function Φ from Corollary 8.1 needs not to be non-negative (or positive
if it is concave). Finally, under conditions of Corollary 8.1, Remark 8.2 holds also with
M = N = ∞. �

Since the right-hand sides of relations (8.8) and (8.11) are non-negative, the next gen-
eral discrete Hardy-type inequality follows as a direct consequence of Theorem 8.1

Corollary 8.2 Let t ∈ R+, M,N ∈ N, and let non-negative real numbers um, vn, kmn, for
m ∈ NM, n ∈ NN, fulfill (8.6) and (8.7). If Φ is a non-negative convex function on an
interval I ⊆ R, then

M

∑
m=1

umΦt(Am) ≤
(

N

∑
n=1

vnΦ(an)

)t

(8.22)

holds for all t ≥ 1, real numbers an ∈ I, n ∈ NN, and Am defined by (8.9). If t ∈ (0,1]
and the function Φ : I → R is positive and concave, then the sign of inequality in (8.22) is
reversed.
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Remark 8.4 Observing that the right-hand side of (8.19) is non-negative, for p ≥ 1 and a
non-negative convex function Φ we get(

M

∑
m=1

umΦq(Am)

) 1
q

≤
(

N

∑
n=1

vnΦp(an)

) 1
p

. (8.23)

Obviously, similar arguments can also be applied to other cases analyzed in Remark 8.2
However, we omit their further analysis since here it reflects only to the sign of inequality
in (8.23). On the other hand, if non-negative real numbers um, vn, kmn, where m,n ∈ N,
fulfill the conditions of Corollary 8.1, then Corollary 8.2 holds also with M = N = ∞. �

8.2 Applications. A new refined Carleman’s
inequality

In this section we continue earlier analysis by considering some interesting particular cases
of Theorem 8.1 and its consequences. Especially, we obtain a refined discrete Jensen’s
inequality and a refinement and a generalization of the Hardy-type inequality (8.1). As a
special case of the Hardy-type inequality obtained, we get a new refined weighted version
of Godunova’s inequality (8.3). Finally, as our most important result in this section, we
state and prove a new refined weighted strengthenedCarleman’s inequality and show how it
refines and generalizes inequality (8.3). More about history, proofs and new developments
regarding Carleman’s inequality can be found in [31], [64], [94], and in in the references
cited in those papers.

First, as a consequence of Theorem 8.1 we obtain a general refined discrete Jensen’s
inequality.

Theorem 8.2 Let Φ : I → R be a non-negative convex function on an interval I ⊆ R and
ϕ : I → R be such that ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI. Let t ≥ 1 and N ∈ N. Then the
inequality (

1
WN

N

∑
n=1

wnΦ(an)

)t

−Φt(AN) ≥ t
Φt−1(AN)

WN

N

∑
n=1

wnrn (8.24)

holds for all real numbers an ∈ I and wn ≥ 0, n ∈ NN, where

WN =
N

∑
n=1

wn > 0, AN =
1

WN

N

∑
n=1

wnan,

and
rn = | |Φ(an)−Φ(AN)|− |ϕ(AN)| · |an−AN| | , n ∈ NN .

If Φ is a positive concave function and t ∈ (0,1], then the order of the terms on the left-hand
side of (8.24) is reversed.
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Proof. Follows directly from Theorem 8.1, by taking arbitrary M ∈ N and positive
real numbers um and αm for m ∈ NM . Substituting kmn = αmwn, for all m ∈ NM we get

Km = αmWN , Am = AN , and rmn = rn, while vn =
wn

WN
U

1
t

M holds for all n ∈ NN , where

UM =
M

∑
m=1

um. Thus, (8.9) reduces to (8.24) and does not depend on M, um, and αm. �

Remark 8.5 For t = 1 inequality (8.24) becomes the classical refined discrete Jensen’s
inequality

1
WN

N

∑
n=1

wnΦ(an)−Φ(AN) ≥ 1
WN

N

∑
n=1

wnrn (8.25)

and the function Φ is not necessarily non-negative. Of course, if the function Φ is concave,
relation (8.25) holds with the reversed order of the terms on its left-hand side. �

Observe that Theorem 8.1 and Corollary 8.1 can be easily rewritten with arbitrary
M,N ∈ N and Km = 1 for all m ∈ NM . Here, we emphasize only the case when M = N = ∞
since it provides a generalization and a refinement of the Hardy-type inequality (8.1).

Theorem 8.3 Let I be an interval in R, Φ : I →R be a non-negative convex function, and
ϕ : I →R be such that ϕ(x) ∈ ∂Φ(x), x ∈ IntI. Let t ∈ R+. If real numbers um,vn,kmn ≥ 0,
m,n ∈ N, are such that

∞

∑
n=1

kmn = 1, m ∈ N, and vn =

(
∞

∑
m=1

umkt
mn

) 1
t

< ∞, n ∈ N,

if real numbers an ∈ I, n ∈ N, fulfill Am =
∞

∑
n=1

kmnan ∈ I, m ∈ N, and if rmn is defined by

(8.10), then the inequality(
∞

∑
n=1

vnΦ(an)

)t

−
∞

∑
m=1

umΦt(Am) ≥ t
∞

∑
m=1

umΦt−1(Am)
∞

∑
n=1

kmnrmn (8.26)

holds for all t ≥ 1. If t ∈ (0,1] and the function Φ is positive and concave, the order of the
terms on the left-hand side of (8.26) is reversed.

Remark 8.6 Set kmn = 0 for m < n in Theorem 8.3. Then

m

∑
n=1

kmn = 1, Am =
m

∑
n=1

kmnan, m ∈ N, and vn =
( ∞

∑
m=n

umkt
mn

) 1
t

, n ∈ N.

Therefore, in this setting (8.26) becomes(
∞

∑
n=1

vnΦ(an)

)t

−
∞

∑
m=1

umΦt

(
m

∑
n=1

kmnan

)

≥ t
∞

∑
m=1

umΦt−1

(
m

∑
n=1

kmnan

)
m

∑
n=1

kmnrmn. (8.27)
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In particular, for t = 1 we get vn =
∞

∑
m=n

umkmn and

∞

∑
n=1

vnΦ(an)−
∞

∑
m=1

umΦ

(
m

∑
n=1

kmnan

)
≥

∞

∑
m=1

um

m

∑
n=1

kmnrmn, (8.28)

so (8.26), (8.27), and (8.28) can be, respectively, regarded as two generalizations and a
refinement of the Vasić-Pečarić relation (8.1). As in Theorem 8.3, for t ∈ (0,1] and a
positive concave function Φ, inequality (8.27) holds with the reversed order of the terms
on its left-hand side. The same goes for (8.28) also, although in this case Φ does not have
to be non-negative (or positive, if it is concave). �

Now, we consider some particular functions Φ and non-negative real numbers um and
kmn. The following result provides a new weighted refinement of Godunova’s inequality
(8.3). Here we make use of the function Φ : R+ → R, Φ(x) = xp, where p ∈ R, p �= 0. For
p ≥ 1 and p < 0 this function is convex, while it is concave for p ∈ (0,1]. In both cases we
have ϕ(x) = pxp−1, x ∈ R+.

Theorem 8.4 Let N ∈ N, t ∈ R+, and p ∈ R, p �= 0. Let (wn)n∈N be a sequence of
non-negative real numbers, such that w1 > 0, and let

Wm =
n

∑
m=1

wn, n ∈ N. (8.29)

If t ≥ 1 and p ∈ R\ [0,1), then the inequality⎡⎣ N

∑
n=1

wn

(
N

∑
m=n

wm+1

Wt
mWm+1

) 1
t

ap
n

⎤⎦t

−
N

∑
m=1

wm+1

Wm+1
Apt

m

≥ t
N

∑
m=1

wm+1

WmWm+1
Ap(t−1)

m

m

∑
n=1

rmnwn (8.30)

holds for all sequences (an)n∈N of positive real numbers, where

Am =
1

Wm

m

∑
n=1

wnan and rmn =
∣∣∣ |ap

n −Ap
m|− |p| · |Am|p−1 · |an−Am|

∣∣∣ , (8.31)

for m,n ∈ N. If t, p ∈ (0,1], then the order of terms on the left-hand side of (8.30) is
reversed.

Proof. Note that w1 > 0 implies Wn > 0 for all n∈ N. In Theorem 8.1, set Φ : R+ → R,

Φ(x) = xp, M = N, um =
wm+1

Wm+1
, and

kmn =

⎧⎪⎨⎪⎩
wn

Wm
, m ≥ n,

0, otherwise,



190 8 ON A NEW CLASS OF REFINED DISCRETE HARDY-TYPE INEQUALITIES

for m,n ∈ NN . Then we have Km =
m

∑
n=1

wn

Wm
= 1, m ∈ NN , and

vn = wn

(
N

∑
m=n

wm+1

Wt
mWm+1

) 1
t

, n ∈ NN ,

so (8.30) holds. �

According to Theorem 8.3 and Remark 8.6, Theorem 8.4 can be easily extended to
N = ∞.

Corollary 8.3 Let t ∈ R+ and p ∈ R, p �= 0. Let (wn)n∈N be a sequence of non-negative

real numbers and the sequence (Wn)n∈N be defined by (8.29). Let w1 > 0 and
∞

∑
m=1

wm+1

Wt
mWm+1

< ∞. If t ≥ 1 and p ∈ R\ [0,1), then the inequality[
∞

∑
n=1

wn

( ∞

∑
m=n

wm+1

Wt
mWm+1

) 1
t

ap
n

]t

−
∞

∑
m=1

wm+1

Wm+1
Apt

m

≥ t
∞

∑
m=1

wm+1

WmWm+1
Ap(t−1)

m

m

∑
n=1

rmnwn (8.32)

holds for all sequences (an)n∈N of positive real numbers and Am, rmn defined by (8.31)
for m,n ∈ N. If t, p ∈ (0,1], then (8.32) holds with the reversed order of the terms on its
left-hand side.

Remark 8.7 Rewrite Theorem 8.4 with t = 1. Then we have

vn = wn

N

∑
m=n

wm+1

WmWm+1
=

wn

Wn

(
1− Wn

WN+1

)
, (8.33)

so for p ∈ R\ [0,1] we get the inequality

N

∑
n=1

(
1− Wn

WN+1

)
wn

Wn
ap

n −
N

∑
m=1

wm+1

Wm+1

(
1

Wm

m

∑
n=1

wnan

)p

≥
N

∑
m=1

wm+1

WmWm+1

m

∑
n=1

rmnwn, (8.34)

while for p ∈ (0,1) the terms on the left-hand side of (8.34) swap their positions. If p = 1,
(8.34) holds trivially with both sides equal to 0. On the other hand, denote

W∞ =
∞

∑
n=1

wn (8.35)
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and set t = 1 in Corollary 8.3. By using (8.33) and the fact that 0 < Wn ≤Wn+1 ≤W∞, that

is, 0 ≤ 1− Wn

W∞
≤ 1 for all n ∈ N, relation (8.34) becomes

∞

∑
n=1

wn

Wn
ap

n −
∞

∑
m=1

wm+1

Wm+1

(
1

Wm

m

∑
n=1

wnan

)p

≥
∞

∑
n=1

(
1− Wn

W∞

)
wn

Wn
ap

n −
∞

∑
m=1

wm+1

Wm+1

(
1

Wm

m

∑
n=1

wnan

)p

≥
∞

∑
m=1

wm+1

WmWm+1

m

∑
n=1

rmnwn ≥ 0.

Here we also covered the case when W∞ = ∞. �

Remark 8.8 Theorem 8.4 can be considered in the unweighted case, that is, for wn = 1,

n ∈ N. Then Am =
1
m

m

∑
n=1

an, m ∈ N, so relation (8.30) reduces to

⎡⎣ N

∑
n=1

(
N

∑
m=n

m−t

m+1

) 1
t

ap
n

⎤⎦t

−
N

∑
m=1

1
m+1

Apt
m ≥ t

N

∑
m=1

1
m(m+1)

Ap(t−1)
m

m

∑
n=1

rmn.

Moreover, for t = 1 and p ∈ R\ [0,1) we have

N

∑
n=1

ap
n

n
−

N

∑
m=1

1
m+1

(
1
m

m

∑
n=1

an

)p

≥
N

∑
n=1

(
1− n

N +1

)
ap

n

n
−

N

∑
m=1

1
m+1

(
1
m

m

∑
n=1

an

)p

≥
N

∑
m=1

1
m(m+1)

m

∑
n=1

rmn ≥ 0. (8.36)

Finally, for N = ∞ inequality (8.30) becomes

∞

∑
n=1

ap
n

n
−

∞

∑
m=1

1
m+1

(
1
m

m

∑
n=1

an

)p

≥
∞

∑
m=1

1
m(m+1)

m

∑
n=1

rmn ≥ 0, (8.37)

so (8.36) and (8.37) respectively provide a finite section and a refinement of Godunova’s
inequality (8.3). Therefore, Theorem 8.4 can be regarded as a weighted finite section of
(8.3), while Corollary 8.3 gives a weighted generalization of Godunova’s inequality. �

As the last result in this section, applying Theorem 8.1 to the convex function Φ : R →
R+, Φ(x) = ex, we obtain a new strengthened weighted Carleman’s inequality. Here we
have ϕ = Φ. The following theorem provides our first result in that direction.
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Theorem 8.5 Let N ∈ N and t ∈ [1,∞). If (wn)n∈N is a sequence of non-negative real
numbers such that w1 > 0 and the sequence (Wn)n∈N is defined as in (8.29), then the
inequality ⎡⎣ N

∑
n=1

wnWn

(
N

∑
m=n

wm+1

Wt
mWm+1

) 1
t

an

⎤⎦t

−
N

∑
m=1

wm+1

Wm+1
Gt

m

≥ t
N

∑
m=1

wm+1

WmWm+1
Gt−1

m

m

∑
n=1

rmnwn (8.38)

holds for all sequences (an)n∈N of positive real numbers, where

Gm =

[
m

∏
n=1

(Wnan)wn

] 1
Wm

, m ∈ N, (8.39)

and

rmn =
∣∣∣∣ |Wnan−Gm|−Gm

∣∣∣∣log
Wnan

Gm

∣∣∣∣ ∣∣∣∣ , m,n ∈ N. (8.40)

In particular, for t = 1 relation (8.38) reduces to

N

∑
n=1

(
1− Wn

WN+1

)
wnan−

N

∑
m=1

wm+1

Wm+1

(
m

∏
n=1

Wwn
n

) 1
Wm

(
m

∏
n=1

awn
n

) 1
Wm

≥
N

∑
m=1

wm+1

WmWm+1

m

∑
n=1

rmnwn. (8.41)

Proof. Follows immediately by rewriting Theorem 8.1 with M = N, Φ : R → R+,
Φ(x) = ex, parameters um and kmn as in the proof of Theorem 8.4, and with the sequence
(log(Wnan))n∈N instead of (an)n∈N. Then we have Am = logGm, m ∈ N, so (8.38) and
(8.41) hold. �

Reformulating Theorem 8.5 for N = ∞ as in Theorem 8.3 and Remark 8.6 we get the
following corollary.

Corollary 8.4 Suppose t ∈ [1,∞), (wn)n∈N is a sequence of non-negative real numbers,

and the sequence (Wn)n∈N is defined by (8.29). If w1 > 0 and
∞

∑
m=1

wm+1

Wt
mWm+1

< ∞, then

[
∞

∑
n=1

wnWn

( ∞

∑
m=n

wm+1

Wt
mWm+1

) 1
t

an

]t

−
∞

∑
m=1

wm+1

Wm+1
Gt

m

≥ t
∞

∑
m=1

wm+1

WmWm+1
Gt−1

m

m

∑
n=1

rmnwn
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holds for all sequences (an)n∈N of positive real numbers and Gm, rmn respectively defined
by (8.39) and (8.40). In particular, for t = 1 and W∞ defined by (8.35), we get

∞

∑
n=1

(
1− Wn

W∞

)
wnan−

∞

∑
m=1

wm+1

Wm+1

(
m

∏
n=1

Wwn
n

) 1
Wm

(
m

∏
n=1

awn
n

) 1
Wm

≥
∞

∑
m=1

wm+1

WmWm+1

m

∑
n=1

rmnwn.

Under some additional conditions on weights wn, the inequalities obtained in Theo-
rem 8.5 and Corollary 8.4 can be seen as finite sections and refinements of the classical
weighted Carleman inequality. One such set of conditions is given in the next lemma,
interesting in its own right.

Lemma 8.1 Suppose (wn)n∈N is a sequence of non-negative real numbers, such that
w1 > 0 and w1 ≥ wn, for n = 2, 3, . . .. If the sequence (Wn)n∈N is defined by (8.29), then

1
Wm+1

(
m

∏
n=1

Wwn
n

) 1
Wm

>
1
e
, m ∈ N. (8.42)

Proof. Since the mapping x �→ logx is strictly increasing on R+, for arbitrary 0 < a ≤
b < ∞ we have

(b−a) logb ≥
∫ b

a
logxdx,

with the strict inequality if a < b. In particular, by substituting a = Wn−1 and b = Wn, we
get b−a = wn and

wn logWn ≥
∫ Wn

Wn−1

logxdx, n = 2, 3, . . . . (8.43)

Hence
m+1

∑
n=2

wn logWn ≥
∫ Wm+1

W1

logxdx

= Wm+1 logWm+1−Wm+1−w1 logW1 +w1

holds for an arbitrary m ∈ N. Therefore,
m

∑
n=1

wn logWn ≥Wm logWm+1 −Wm+1 +w1 ≥Wm logWm+1−Wm, (8.44)

where we used the condition w1 ≥ wm+1. Observe that at least one of the inequalities in
(8.44) is strict. Namely, if there exists n∈ {2, 3, . . . , m+1} such that wn > 0, then the sign
of inequality in (8.43) is strict and so is the first inequality in (8.44). Otherwise, we have
w1 > 0 = wm+1 and the second inequality in (8.44) is strict. Finally,

log

(
m

∏
n=1

Wwn
n

)
> Wm log

Wm+1

e
,

so we get (8.42). �
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Remark 8.9 If wn = 1, n ∈ N, then (8.42) becomes

1
m+1

m
√

m! >
1
e
, m ∈ N,

that is,
m+1

m
√

m!
< e, m ∈ N.

Thus, Lemma 8.1 provides a class of lower bounds for the constant e. �

Using Lemma 8.1 in Theorem 8.5 and Corollary 8.4 we obtain a new strengthened
weighted Carleman’s inequality and its finite sections. Here we emphasize only the most
important case, that is, the case with t = 1. Since the general case can be derived analo-
gously, it is omitted.

Corollary 8.5 Under the conditions of Theorem 8.5 and Lemma 8.1, the left-hand side of
(8.41) is strictly less than

N

∑
n=1

(
1− Wn

WN+1

)
wnan− 1

e

N

∑
m=1

wm+1

(
m

∏
n=1

awn
n

) 1
Wm

.

Especially, if N = ∞, then the inequalities

∞

∑
n=1

wnan− 1
e

∞

∑
m=1

wm+1

(
m

∏
n=1

awn
n

) 1
Wm

≥
∞

∑
n=1

(
1− Wn

W∞

)
wnan− 1

e

∞

∑
m=1

wm+1

(
m

∏
n=1

awn
n

) 1
Wm

>
∞

∑
n=1

(
1− Wn

W∞

)
wnan−

∞

∑
m=1

wm+1

Wm+1

(
m

∏
n=1

Wwn
n

) 1
Wm

(
m

∏
n=1

awn
n

) 1
Wm

≥
∞

∑
m=1

wm+1

WmWm+1

m

∑
n=1

rmnwn ≥ 0

hold, where the case when W∞ = ∞ is included as well.

Remark 8.10 For wn = 1, n ∈ N, relation (8.38) reduces to⎡⎣ N

∑
n=1

n

(
N

∑
m=n

m−t

m+1

) 1
t

an

⎤⎦t

−
N

∑
m=1

Ht
m

m+1
≥ t

N

∑
m=1

Ht−1
m

m(m+1)

m

∑
n=1

rmn, (8.45)

where

Hm =

(
m!

m

∏
n=1

an

) 1
m

and rmn =
∣∣∣∣ |nan−Hm|−Hm

∣∣∣∣log
nan

Hm

∣∣∣∣ ∣∣∣∣ , m,n ∈ N.
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Since
∞

∑
m=1

m−t

m+1
< ∞ for all t ∈ [1,∞), note that inequality (8.45) covers also the case when

N = ∞. On the other hand, Corollary 8.5 and Remark 8.9 imply that

N

∑
n=1

(
1− n

N +1

)
an− 1

e

N
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m=1

(
m

∏
n=1
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) 1
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>
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(
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)
an−

N

∑
m=1

1
m+1

Hm ≥
N

∑
m=1

1
m(m+1)

m

∑
n=1

rmn ≥ 0

holds for all N ∈ N, while for N = ∞ we have

∞

∑
n=1

an− 1
e

∞

∑
m=1

(
m

∏
n=1

an

) 1
m

>
∞

∑
n=1

an−
∞

∑
m=1

1
m+1

Hm

≥
∞

∑
m=1

1
m(m+1)

m

∑
n=1

rmn ≥ 0.

Therefore, our results refine and generalize relation (8.4) and Carleman’s inequality (8.5).
We take an opportunity to mention that another strengthened weighted Carleman’s inequal-
ity was obtained by Čižmešija et al. in [31], but that result can be hardly comparable with
the inequalities derived in this section. �

8.3 Exponential convexity and Hardy-type
inequalities

By employing the concept of logarithmic and exponential convexity, we obtain here upper
bounds and some further lower bounds for the left-hand sides of the Hardy-type inequal-
ities from previous two sections, in settings with suitably chosen convex functions Φ and
t = 1.

According to Lemma 6.1 and Lemma 6.2, all the results can be rewritten with convex
functions Φs and Ψs, s ∈ R. In particular, observing that the right-hand side of (8.16) is
non-negative, from Remark 8.1 we get

N

∑
n=1

vnΦs(an)−
M

∑
m=1

umΦs(Am) ≥ 0

and
N

∑
n=1

vnΨs(an)−
M

∑
m=1

umΨs(Am) ≥ 0,
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where M,N ∈ N, and um, kmn, Km, an, and Am are as in Theorem 8.1 (an ∈ R+ and an ∈ R

in the cases with Φs and Ψs respectively), while vn is defined by (8.17). Therefore, under
assumptions of Theorem 8.1, the functions F, G : R → R,

F(s) =
N

∑
n=1

vnΦs(an)−
M

∑
m=1

umΦs(Am) (8.46)

and

G(s) =
N

∑
n=1

vnΨs(an)−
M

∑
m=1

umΨs(Am), (8.47)

are well-defined and non-negative. By proving that they are log-convex, we provide upper
bounds and some new lower bounds for the left-hand side of (8.16), in the setting with
convex functions Φs and Ψs. In fact, in the sequel we prove a stronger result, that is, that
F and G are exponentially convex functions.

Theorem 8.6 Let M,N ∈ N. For m ∈ NM and n ∈ NN, let an ∈ R+, um, kmn, Km, and Am

be as in Theorem 8.1, and let vn be as in (8.17). Then the function F : R → R, defined by
(8.46), is exponentially convex and the inequality

F(s2)s3−s1 ≤ F(s1)s3−s2F(s3)s2−s1 (8.48)

holds for all s1, s2, s3 ∈ R, such that s1 < s2 < s3.

Proof. The first step is to prove that F is continuous on R. Since the mapping s �→ as

s(s−1)
is continuous on R \ {0, 1} for all a ∈ R+, we only need to prove the continuity of F in
s = 0 and s = 1. Note that

N

∑
n=1

vn−
M

∑
m=1

um =
N

∑
n=1

M

∑
m=1

um
kmn

Km
−

M

∑
m=1
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=
M

∑
m=1

um

(
1

Km

N

∑
n=1

kmn

)
−

M

∑
m=1

um = 0 (8.49)

and
N

∑
n=1

vnan−
M

∑
m=1

umAm =
N

∑
n=1

an

M

∑
m=1

um
kmn

Km
−

M

∑
m=1

um

Km

N

∑
n=1

kmnan = 0. (8.50)

Applying the classical L’Hospital’s rule, identity (8.49), and the definitions of the functions
Φs and F , we have

lim
s→0

F(s) = lim
s→0

N

∑
n=1

vna
s
n−

M

∑
m=1

umAs
m

s(s−1)

= lim
s→0

N

∑
n=1

vna
s
n logan−

M

∑
m=1

umAs
m logAm

2s−1

=
M

∑
m=1

um logAm −
N

∑
n=1

vn logan = F(0)
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and similarly, by using (8.50),

lim
s→1

F(s) =
N

∑
n=1

vnan logan−
M

∑
m=1

umAm logAm = F(1).

Hence, F is continuous on R. To prove that it is exponentially convex, it suffices to check

condition (1.7). Fix k ∈ N and αi ∈ R, si ∈ R+, for i ∈ Nk. Denote Φ =
k

∑
i=1

k

∑
j=1

αiα jΦ si+s j
2

.

Lemma 6.1 implies

Φ
′′
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k
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αiα jΦ
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2

(x) =
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k
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αiα jx
si+s j

2 −2

=

(
k

∑
i=1

αix
si
2 −1

)2

≥ 0, x ∈ R+, (8.51)

so Φ is a convex function on R+. Thus, applying Corollary 8.2 to Φ and t = 1, we get

N
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M
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umΦ(Am) ≥ 0

and finally
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2
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M
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umΦ si+s j
2

(Am)

)

=
N
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n=1

vn

k

∑
i=1

k
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αiα jΦ si+s j
2

(an)−
M

∑
m=1

um

k

∑
i=1

k

∑
j=1

αiα jΦ si+s j
2

(Am)

=
N

∑
n=1

vnΦ(an)−
M

∑
m=1

umΦ(Am) ≥ 0.

Therefore, (1.7) holds and F is exponentially convex. Since every exponentially convex
function is log-convex, (8.48) follows directly from Remark 1.2. �

By using similar arguments, we prove exponential convexity of the function G.

Theorem 8.7 Suppose M,N ∈ N. For m∈ NM and n∈ NN, suppose that an ∈ R, um, kmn,
Km, and Am are as in Theorem 8.1, and that vn is as in (8.17). Then the function G : R→R,
given by (8.47), is exponentially convex and

G(s2)s3−s1 ≤ G(s1)s3−s2G(s3)s2−s1 (8.52)

holds for all s1, s2, s3 ∈ R, such that s1 < s2 < s3.
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Proof. Combining (8.49), (8.50), L’Hospital’s rule, and the definition of the function
G, we obtain

lim
s→0

G(s) = lim
s→0

1
s2

(
N
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Since the mapping s �→ eas

s2
is continuous on R\ {0}, we conclude that G is continuous on

R. To prove that G is an exponentially convex function, fix k ∈ N and αi,si ∈ R, for i∈ Nk.

Applying Lemma 6.1 to the function Ψ =
k

∑
i=1

k

∑
j=1

αiα jΨ si+s j
2

, for all x ∈ R we get

Ψ
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so Ψ is convex on R and
k

∑
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k

∑
j=1

αiα jG

(
si + s j

2

)
≥ 0

holds as in the proof of Theorem 8.6. Thus, G is exponentially convex and then also log-
convex. Relation (8.52) follows directly from Remark 1.2. �

Remark 8.11 Observe that each of inequalities (8.48) and (8.52) implies three further
relations suitable for establishing lower and upper bounds for values of F and G. Namely,
from (8.48) we obtain that inequalities

F(s2) ≤ F(s1)
s3−s2
s3−s1 F(s3)

s2−s1
s3−s1 , (8.53)

F(s1) ≥ F(s2)
s3−s1
s3−s2 F(s3)

s1−s2
s3−s2 and F(s3) ≥ F(s1)

s2−s3
s2−s1 F(s2)

s3−s1
s2−s1 (8.54)

hold for all s1, s2, s3 ∈ R, such that s1 < s2 < s3, while the same inequalities for G follow
from (8.52). �

Remark 8.12 In (8.46) and (8.47), the functions F and G were defined as finite sums of
functions, so there were no further conditions on the sequences (un)n∈N, (vn)n∈N, (an)n∈N,
and (An)n∈N needed to apply methods used in the proofs of Theorem 8.6 and Theorem
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8.7. Of course, we can also consider the case when M = N = ∞, that is, to define F and G
respectively by

F(s) =
∞

∑
n=1

vnΦs(an)−
∞

∑
m=1

umΦs(Am)

and

G(s) =
∞

∑
n=1

vnΨs(an)−
∞

∑
m=1

umΨs(Am).

Obviously, then we have to deal with function series and, in order to apply L’Hospital’s
rule, be able to take limits and differentiate them term by term. Therefore, the sequences

of real numbers mentioned above should be such that the function series
∞

∑
n=1

vna
s
n and

∞

∑
m=1

umAs
m are uniformly convergent in neighbourhoods of s = 0 and s = 1, and that the

function series
∞

∑
n=1

vne
ans and

∞

∑
m=1

umeAms are uniformly convergent in some neighbourhood

of s = 0. Some such sufficient conditions follow, for example, from the usual Weierstrass’s
test for uniform convergence. �

Theorem 8.6 and Theorem 8.7, along with Remark 8.11 and Remark 8.12, can be
applied to all particular cases of Theorem 8.1 and Corollary 8.1. However, owing to the
lack of space, here we mention just the cases related to our improvements of Godunova’s
and Carleman’s inequality.

The following result provides a new lower and upper bound for the left-hand side of
the refined weighted Godunova’s inequality (8.34).

Corollary 8.6 Let N ∈ N and p ∈ R \ {0, 1}. If (wn)n∈N is a sequence of non-negative
real numbers, such that w1 > 0, and the sequence (Wn)n∈N is defined by (8.29), then the
inequalities

p(p−1) inf
(s,t)∈Sp

F(s)
t−p
t−s F(t)

p−s
t−s

≥
N

∑
n=1

(
1− Wn

WN+1

)
wn

Wn
ap

n −
N

∑
m=1

wm+1

Wm+1

(
1

Wm

m

∑
n=1

wnan

)p

≥ p(p−1) sup
(s,t)∈Tp

F(s)
t−p
t−s F(t)

p−s
t−s (8.55)

hold for all sequences (an)n∈N of positive real numbers and F : R → R given by

F(s) =
N

∑
n=1

(
1− Wn

WN+1

)
wn

Wn
Φs(an)−

N

∑
m=1

wm+1

Wm+1
Φs

(
1

Wm

m

∑
n=1

wnan

)
,

where Φs is defined by (6.1) and

Sp = {(s,t) ∈ R
2 : s < p < t}, Tp = {(s,t) ∈ R

2 : p < s < t or s < t < p}.
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Proof. Follows directly from Theorem 8.6, applied with M = N, um and kmn as in the proof
of Theorem 8.4, and with vn defined by (8.33). The first inequality in (8.55) is obtained
from (8.53), rewritten with s1 = s, s2 = p, and s3 = t, where s < p < t. On the other hand,
the second inequality in (8.55) is a consequence of both relations in (8.54). The first of
them is rewritten with s1 = p, s2 = s, and s3 = t, where p < s < t, and the second with
s1 = s, s2 = t, and s3 = p, where s < t < p. �

Remark 8.13 In particular, for wn = 1, n ∈ N, we have

F(s) =
N

∑
n=1

(
1− n

N +1

)
1
n

Φs(an)−
N

∑
m=1

1
m+1

Φs

(
1
m

m

∑
n=1

an

)
,

so (8.55) becomes

p(p−1) inf
(s,t)∈Sp

F(s)
t−p
t−s F(t)

p−s
t−s

≥
N

∑
n=1

(
1− n

N +1

)
ap

n

n
−

N

∑
m=1

1
m+1

(
1
m

m

∑
n=1

an

)p

≥ p(p−1) sup
(s,t)∈Tp

F(s)
t−p
t−s F(t)

p−s
t−s .

Under the conditions of Remark 8.12, Corollary 8.6 holds also for N = ∞. In that case,
WN+1 is replaced with W∞ defined by (8.35), and covers also the case when W∞ = ∞. �

Our final result in this chapter is the following refinement of the weighted Carleman’s
inequality.

Corollary 8.7 Suppose N ∈N, (wn)n∈N is a sequence of non-negative real numbers, such
that w1 > 0, and the sequence (Wn)n∈N is defined by (8.29). Then the inequalities

inf
(s,t)∈S1

G(s)
t−1
t−s G(t)

1−s
t−s ≥

N

∑
n=1

(
1− Wn

WN+1

)
wnan−

N

∑
m=1

wm+1

Wm+1
Gm

≥ sup
(s,t)∈T1

G(s)
t−1
t−s G(t)

1−s
t−s (8.56)

hold for all sequences (an)n∈N of positive real numbers, (Gn)n∈N defined by (8.39), and
G : R → R given by

G(s) =
N

∑
n=1

(
1− Wn

WN+1

)
wn

Wn
Ψs (log(Wnan))−

N

∑
m=1

wm+1

Wm+1
Ψs (logGm) ,

where Ψs is defined by (6.2) and

S1 = {(s,t) ∈ R
2 : s < 1 < t}, T1 = {(s,t) ∈ R

2 : 1 < s < t or s < t < 1}.
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Proof. A direct consequence of Theorem 8.7, rewritten with M = N, um and kmn as
in the proof of Theorem 8.4, vn defined by (8.33), and with the sequence (log(Wnan))n∈N
instead of (an)n∈N. The first inequality in (8.56) follows from (8.53), rewritten with G,
s1 = s, s2 = 1, and s3 = t, for (s,t) ∈ S1. The second inequality in (8.56) is obtained by
combining both relations in (8.54), rewritten with G. In the first of them we set s1 = 1,
s2 = s, and s3 = t, where 1 < s < t, while in the second relation we substitute s1 = s, s2 = t,
and s3 = 1, where s < t < 1. �

Remark 8.14 Note that for wn = 1, n ∈ N, we have

G(s) =
N

∑
n=1

1
n

(
1− n

N +1

)
Ψs (log(nan))−

N

∑
m=1

1
m+1

Ψs (logHm) ,

where Hm =

(
m!

m

∏
n=1

an

) 1
m

. Hence, in this setting (8.56) becomes

inf
(s,t)∈S1

G(s)
t−1
t−s G(t)

1−s
t−s ≥

N

∑
n=1

(
1− n

N +1

)
an−

N

∑
m=1

1
m+1

(
m!

m

∏
n=1

an

) 1
m

≥ sup
(s,t)∈T1

G(s)
t−1
t−s G(t)

1−s
t−s .

If the sequence (an)n∈N fulfills the conditions of Remark 8.12, Corollary 8.7 holds also for
N = ∞ and WN+1 replaced with W∞ defined by (8.35). The case with W∞ = ∞ is included
as well. �

Remark 8.15 We can also define a linear functional by taking the positive difference of
the inequality stated in (8.22) for t = 1 as:

Δ3(Φ) =
N

∑
n=1

vnΦ(an)−
M

∑
m=1

umΦ(Am) (8.57)

All the result in section 6.4 are also valid for (8.57).

Remark 8.16 The well-known Hardy inequality presented in [51] (both in the continuous
and discrete settings) has been extensively studied and used as a model for investigation of
more general integral inequalities [40, 79, 66, 70, 65]. Recently, several papers have treated
the unification and extension of Hardy’s continuous and discrete integral inequalities by
means of the theory of time scales [95, 90, 91].





Chapter9
Generalized non-commutative
Hardy and Hardy-Hilbert type
inequalities

The methods applied in this chapter are based on convexity inequalities, and this is different
from the approach taken in the classical literature. It allows us, for 1 < p ≤ 2, to extend
Hardy’s inequality (0.1) and Hardy-Hilbert’s inequality (2.2) from functions whose values
are non-negative numbers to functions whose values are positive semi-definite operators.

9.1 The main results

In the sequel let Ω1 and Ω2 be locally compact Hausdorff spaces, and let μ1 and μ2 de-
note Radon measures on Ω1 and Ω2, respectively. Moreover, let k : Ω1 ×Ω2 → R be a
measurable and non-negative kernel and K(x) be defined as in (2.16).

We note that an operator valued function f : (0,∞) −→ B(H) is said to be weakly
measurable if the real functions x → ( f (x)ξ | η) are measurable for all vectors ξ ,η ∈ H.

First we present the following generalization of Theorem 2.5, which is crucial for our
further investigations but also of independent interest (see [45]):

203
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Theorem 9.1 Let u be a weight function on Ω1 and let k(x,y) be a non-negative kernel
on Ω1 ×Ω2. Define v as in Theorem 2.5 and assume v(y) < ∞ for every y ∈ Ω2. Let ϕ be
an operator convex function defined on the positive half-axis and let f : Ω2 −→ B(H)+ be
a weakly measurable map such that the integral∫

Ω2

v(y)ϕ( f (y))dμ2(y)

defines a bounded linear operator on a Hilbert space H. Then the operator inequality∫
Ω1

u(x)ϕ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)

dμ1(x) ≤
∫

Ω2

v(y)ϕ( f (y))dμ2(y) (9.1)

is valid.

Proof. Since the function ϕ is operator convex we can use Theorem 1.7 and obtain that

ϕ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)
≤ 1

K(x)

∫
Ω2

k(x,y)ϕ( f (y))dμ2(y).

Consequently, by also using the Fubini theorem, we find that∫
Ω1

u(x)ϕ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)

dμ1(x)

≤
∫

Ω1

u(x)
K(x)

(∫
Ω2

k(x,y)ϕ( f (y))dμ2(y)
)

dμ1(x)

=
∫

Ω2

ϕ( f (y))
(∫

Ω1

u(x)
k(x,y)
K(x)

dμ1(x)
)

dμ2(y)

=
∫

Ω2

v(y)ϕ( f (y))dμ2(y)

and the proof is complete. �

In this chapter, for 1 < p ≤ 2, we extend Hardy’s inequality (0.1) and Hardy-Hilbert’s
inequality of the form (2.2) from functions whose values are non-negative numbers to
functions whose values are positive semi-definite operators as follows:

Theorem 9.2 Let 1 < p≤ 2 be a real number and let f : (0,∞)−→B(H)+ be any weakly
measurable map such that the integral

∞∫
0

f p(y)dy

defines a bounded linear operator on a Hilbert space H. Then we obtain the following
inequalities

∞∫
0

⎛⎝1
x

x∫
0

f (y)dy

⎞⎠p

dx ≤
(

p
p−1

)p ∞∫
0

f p(x)dx, (9.2)
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and
∞∫

0

⎛⎝ ∞∫
0

f (x)
x+ y

dx

⎞⎠p

dy ≤
⎛⎝ π

sin
(

π
p

)
⎞⎠p ∞∫

0

f p(y)dy, (9.3)

where the constant (p/(p−1))p in (9.2) and (π/sin(π/p))p in (9.3) are the best possible.
For p > 2 neither Hardy’s inequality (9.2) nor Hardy-Hilbert’s inequality of the form (9.3)
hold in general.

Remark 9.1 Inequality (9.2) was already proved in [44], but we give a new proof in
a more general setting and we also prove that it can not be extended to the case p > 2
in this general form. We also mention that inequality (2.2) can not be extended from
functions whose values are non-negative numbers to functions whose values are positive
semi-definite operators. By symmetry and the fact that sinπ/p = sinπ/q, ( 1

p + 1
q = 1), it

is sufficient to formulate (2.2) for 1 < p ≤ 2.

Proof of (9.3) in Theorem 9.2 We apply the result of Theorem 9.1 with Ω1 = Ω2 =
(0,∞). Replace dμ1(x) and dμ2(y) by dx and dy, respectively, and let

u(x) =
1
x

and k(x,y) =
( y

x )
−1/p

x+ y
, p > 1.

Then, by making a straightforward calculation with the formula∫ ∞

0

t−1/p

1+ t
dt =

π
sin π

p

,

we find that

K(x) =
π

sin π
p

= K and v(y) =
1
y
.

We choose for 1 < p ≤ 2 the operator convex function ϕ(u) = up and obtain from (9.1) the
inequality

K−p

∞∫
0

⎛⎝ ∞∫
0

(y
x

)−1/p f (y)
x+ y

d y

⎞⎠p

d x
x

= K−p

∞∫
0

⎛⎝ ∞∫
0

f (y)
x+ y

y−1/pd y

⎞⎠p

d x

≤
∞∫

0

f p(y)
d y
y

.

Replace f (t)t−1/p with f (t) and we obtain (9.3). The constant (π/sin(π/p))p is of course
sharp since it is sharp already in the classical case.
Now, we have to prove that the operator version of Hardy-Hilbert’s inequality can not be
extended to p > 2. The function t �→ t p is not convex on (positive semi-definite) two by
two matrices [47, Proposition 3.1]. We may, therefore, for a given p > 2 choose positive
semi-definite two by two matrices A and B such that(

A+B
2

)p

�≤ Ap +Bp

2
, p > 2. (9.4)
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There is, consequently, a unit vector ξ such that the expectation values((
A+B

2

)p

ξ | ξ
)

>

(
Ap +Bp

2
ξ | ξ

)
(9.5)

and, therefore, the constant

cp :=
(

Ap +Bp

2
ξ | ξ

)((
A+B

2

)p

ξ | ξ
)−1

< 1. (9.6)

Let f be an arbitrary non-negative Lp-function in [0,∞) and set

Fn(x) = f (x)
{

A if the integer part of nx is odd

B if the integer part of nx is even.
(9.7)

By Lebesgue’s theorem of dominated convergence we obtain that

lim
n→∞

∫ ∞

0

(∫ ∞

0

Fn(x)
x+ y

dx

)p

dy =
(

A+B
2

)p∫ ∞

0

(∫ ∞

0

f (x)
x+ y

dx

)p

dy

and

lim
n→∞

∫ ∞

0
Fp

n (x)dx =
Ap +Bp

2

∫ ∞

0
f p(x)dx.

If Hardy-Hilbert’s operator inequality were valid for p > 2 we would obtain, by taking
expectation values in the vector ξ ,

∫ ∞

0

(∫ ∞

0

f (x)
x+ y

dx

)p

dy ≤ cp

⎛⎝ π

sin
(

π
p

)
⎞⎠p ∫ ∞

0
f p(x)dx

contradicting that the constant (π/sin(π/p))p is the best possible in Hardy-Hilbert’s clas-
sical inequality of the form (2.1). �

We now apply the operator convex function ϕ(x) = xp, 1 ≤ p ≤ 2 in Theorem 9.1 and
obtain the following result.

Corollary 9.1 Let u be a weight function on Ω1 and let k(x,y) be a non-negative kernel
on Ω1 ×Ω2. We define v as in Theorem 2.5 and assume v(y) < ∞ for each y ∈ Ω2. Take
1 < p ≤ 2 and let f : Ω2 −→ B(H)+ be a weakly measurable map such that the integral∫

Ω2

v(y) f p(y)dμ2(y)

defines a bounded linear operator on a Hilbert space H. Then the operator inequality∫
Ω1

u(x)
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)p

dμ1(x) ≤
∫

Ω2

v(y) f p(y)dμ2(y)

is valid.
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9.2 Remarks end examples

Now we consider some special cases of Corollary 9.1 and obtain the following results:

Example 9.1 Let 1 ≤ p ≤ 2 and set Ω1 = Ω2 = (0,∞). We replace dμ1(x) and dμ2(y)
by dx and dy, respectively and set

k(x,y) =
{

1 0 ≤ y < x

0 y > x

and u(x) = x−1. Then v(y) = y−1 and we obtain that

∞∫
0

⎛⎝1
x

x∫
0

f (y)dy

⎞⎠p

dx
x

≤
∞∫

0

f p(x)
dx
x

, (9.8)

which is the result of Lemma 2.1 in [44]. �

Remark 9.2 By arguing as in Example 9.1 but with 1 < p ≤ 2 and the function f (y) =
g(yp/(p−1))t1/(p−1) we obtain the following inequality:

∞∫
0

⎛⎝1
x

x∫
0

g(y)dy

⎞⎠p

dx ≤
(

p
p−1

)p ∞∫
0

gp(x)dx, (9.9)

which is just (9.2) in Theorem 7.1. This was proved in [44], but we gave a new proof in a
more general situation. �

Example 9.2 Let 1≤ p≤ 2, Ω1 = Ω2 = (0,b), 0 < b≤ ∞, replace dμ1(x) and dμ2(y) by
the Lebesgue measures dx and dy, respectively, u(x) by u(x)/x and v(x) by v(x)/x, and let
k(x,y) = 0 for x < y ≤ b. Then we obtain that

b∫
0

u(x)

⎛⎝ 1
K(x)

x∫
0

f (y)k(x,y)dy

⎞⎠p

dx
x

≤
b∫

0

v(y) f p(y)
dy
y

,

where

v(y) =
∫ b

y
u(x)

k(x,y)
K(x)

dx
x

< ∞, y ∈ (0,b),

and

K(x) :=
x∫

0

k(x,y)dy < ∞.

�



208 9 GENERALIZED NON-COMMUTATIVE HARDY AND HARDY-HILBERT TYPE...

Remark 9.3 By arguing as in Example 9.2 but with kernels such that

k(x,y) =
{

1 0 ≤ y ≤ x,

0 x < y ≤ b

we find that
b∫

0

u(x)

⎛⎝1
x

x∫
0

f (y)dy

⎞⎠p

dx
x

≤
b∫

0

v(y) f p(y)
dy
y

. (9.10)

Especially, if the weight function u is chosen to be u(x) ≡ 1, then we have that

v(y) =

{
1− y

b , b < ∞

1, b = ∞,

so in the case when b < ∞ inequality (9.10) reads

b∫
0

⎛⎝1
x

x∫
0

f (y)dy

⎞⎠p

dx
x

≤
b∫

0

(
1− x

b

)
f p(x)

dx
x

, (9.11)

while for b = ∞ it becomes (9.8). �

Example 9.3 By arguing as in Example 9.2 but with Ω1 = Ω2 = (b,∞), 0 ≤ b < ∞, and
with kernels such that k(x,y) = 0 for b ≤ y < x, we find that now the inequality

∞∫
b

u(x)

⎛⎝ 1
K(x)

∞∫
x

f (y)k(x,y)dy

⎞⎠p

dx
x

≤
∞∫

b

v(y) f p(y)
dy
y

is valid, where

v(y) =
∫ y

b
u(x)

k(x,y)
K(x)

dx
x

< ∞, y ∈ (b,∞),

and

K(x) =
∞∫

x

k(x,y)dy < ∞.

�

Remark 9.4 By arguing as in Example 9.3 but choosing the kernel k such that

k(x,y) =

{
0 b ≤ y < x,
1
y2 x ≤ y,

we obtain the inequality

∞∫
b

u(x)

⎛⎝x

∞∫
x

f (y)
y2 dy

⎞⎠p

dx
x

≤
∞∫

b

v(y) f p(y)
dy
y

. (9.12)
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Especially, if the weight function u is chosen to be u(x) ≡ 1, then we find that

v(y) = 1− b
y
,

therefore the relation (9.12) in this setting can be written on the form

∞∫
b

⎛⎝x

∞∫
x

f (y)
y2 dy

⎞⎠p

dx
x

≤
∞∫

b

(
1− b

y

)
f p(y)

dy
y

. (9.13)

�

Inspired by these examples we now state the following more general weighted operator
inequality:

Theorem 9.3 Let k, b, p ∈ R be such that k �= 1, b > 0 and 1 < p ≤ 2 and let f :
(0, ∞) −→ B(H)+ be any weakly measurable map.

(i) If k > 1 and
b∫
0

xp−k f p(x)dx defines a bounded linear operator on H, then

b∫
0

x−k

⎛⎝ x∫
0

f (t)dt

⎞⎠p

dx ≤
(

p
k−1

)p b∫
0

[
1−

(x
b

) k−1
p
]
xp−k f p(x)dx. (9.14)

(ii) If k < 1 and
∞∫
b

xp−k f p(x)dx defines a bounded linear operator on H, then

∞∫
b

x−k

⎛⎝ ∞∫
x

f (t)dt

⎞⎠p

dx ≤
(

p
1− k

)p ∞∫
b

[
1−

(
b
x

) 1−k
p
]

xp−k f p(x)dx. (9.15)

The inequalities (9.14) and (9.15) are sharp in the sense that they can not be improved by
inserting a constant less than the one appearing in front of the integrals on the right hand
sides.
For p > 2 neither (9.14) nor (9.15) hold in general.

Proof. Consider first the case when k > 1 and replace the parameter b in (9.11) by
a = b(k−1)/p and choose for f the function x �→ f (xp/(k−1))xp/(k−1)−1, c.f. [30, Corollary
2]. Then, with the substitutions s = yp/(k−1) and t = xp/(k−1) respectively, the left hand side
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of (9.11) becomes

∫ a

0

⎛⎝1
x

x∫
0

f (yp/(k−1))yp/(k−1)−1dy

⎞⎠p

dx
x

=
(

k−1
p

)p ∫ a

0

(
1
x

∫ xp/(k−1)

0
f (s)ds

)p
dx
x

=
(

k−1
p

)p+1 b∫
0

t−k (f (s)ds)p dt.

Analogously, by substituting t = xp/(k−1) on the right hand side of (9.11) we obtain

∫ a

0

(
1− x

a

)
f p(xp/(k−1))xp(p/(k−1)−1)dx

x

=
k−1

p

b∫
0

[
1−

( t
b

) k−1
p

]
t p−k f p(t)dt,

so relation (9.14) is proved. The sharpness of the constant is obvious since this holds
already in the classical situations (see e.g [73] and the references given there). Now, we
have to prove that (9.14) can not be extended to the case p > 2. Choose positive semi-
definite two by two matrices A and B as in (9.4), unit vector ξ as in (9.5) and constant cp

defined by (9.6). Let Fn be defined by (9.7), we then obtain that

lim
n→∞

∫ b

0
x−k

(∫ x

0
Fn(t)dt

)p

dx =
(

A+B
2

)p ∫ b

0
x−k

(∫ x

0
f (t)dt

)p

dx

and

lim
n→∞

∫ b

0

[
1−

(x
b

) k−1
p
]
xp−kF p

n (x)dx =
Ap +Bp

2

∫ b

0

[
1−

(x
b

) k−1
p
]
xp−k f p(x)dx.

If (9.14) were valid for p > 2 we would obtain, by taking expectation values in the vector
ξ ,

b∫
0

x−k

⎛⎝ x∫
0

f (t)dt

⎞⎠p

dx ≤ cp

(
p

k−1

)p b∫
0

[
1−

(x
b

) k−1
p
]
xp−k f p(x)dx

contradicting that the constant
( p

k−1

)p
is the best possible in the classical case.

Now, suppose that k < 1.
Replacing the function f in (9.13) by x �→ f (xp/(1−k))xp/(1−k)+1, the parameter b by a =
b(1−k)/p, and making a similar sequence of substitutions as in the previous case on the left
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hand side of (9.13) we obtain

∞∫
a

⎛⎝x

∞∫
x

f (yp/(1−k))yp/(1−k)+1 dy
y2

⎞⎠p

dx
x

=
(

1− k
p

)p ∞∫
a

(
x
∫ ∞

xp/(1−k)
f (s)ds

)p dx
x

=
(

1− k
p

)p+1 ∞∫
b

t−k
(∫ ∞

t
f (s)ds

)p

dt,

while the right hand side of (9.13) becomes
∞∫

a

(
1− a

x

)
f p(xp/(1−k))xp(p/(1−k)+1) dx

x
=

1− k
p

∞∫
b

[
1−

(
b
t

) 1−k
p
]

t p−k f p(t)dt,

so relation (9.15) is proved. The sharpness of the constant here is also obvious since it is
already so in the classical situation (see e.g. [73] and the references given there). Now, we
have to prove that (9.15) can not be extended to the case p > 2. We introduce, in analogy
with the proof of (9.14), the functions Fn and obtain

lim
n→∞

∞∫
b

x−k

⎛⎝ ∞∫
x

Fn(t)dt

⎞⎠p

dx =
(

A+B
2

)p ∞∫
b

x−k

⎛⎝ ∞∫
x

f (t)dt

⎞⎠p

dx

and

lim
n→∞

∞∫
b

[
1−

(
b
x

) 1−k
p
]

xp−kF p
n (x)dx =

Ap +Bp

2

∞∫
b

[
1−

(
b
x

) 1−k
p
]

xp−k f p(x)dx.

If (9.15) were valid for p > 2 we would obtain, by taking expectation values in the vector
ξ , that

∞∫
b

x−k

⎛⎝ ∞∫
x

f (t)dt

⎞⎠p

dx ≤ cp

(
p

1− k

)p ∞∫
b

[
1−

(
b
x

) 1−k
p
]

xp−k f p(x)dx

contradicting that the constant
( p

1−k

)p
is the best possible in the classical situation so the

proof is complete. �

Remark 9.5 Note that by rewriting (9.14) with b = ∞ and k = p we obtain (9.10) and,
hence, we have also proved the first part of Theorem 9.2.

We conclude this chapter, by applying the last result to n-dimensional cells in R
n
+ and,

thus, obtaining a generalization of the Godunova inequality (2.10). Now, we consider the
case Ω1,Ω2 = R

n
+, dμ1(x) = dx, dμ2(y) = dy and the kernel k : R

n
+×R

n
+ → R of the form

k(x,y) = l
( y

x

)
, where l : R

n
+ → R is a non-negative measurable function and we obtain the

following corollary.
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Corollary 9.2 Let l and u be non-negative measurable functions on R
n
+, such that 0 <

L(x) = x1 ∫
R

n
+

l(y)dy < ∞ for all x∈ R
n
+, and that the function x �→ u(x)

l( y
x )

L(x) is integrable

on R
n
+ for each fixed y ∈ R

n
+. Let the function v be defined on R

n
+ by

v(y) =
∫
R

n
+

u(x)
l
( y

x

)
L(x)

dx.

If ϕ is a operator convex function on an interval I ⊆ R, then the inequality∫
R

n
+

u(x)ϕ
(

1
L(x)

∫
R

n
+

l
(y

x

)
f (y)dy

)
dx ≤

∫
R

n
+

v(y)ϕ( f (y))dy (9.16)

holds for all weekly measurable maps f : R
n
+ → B(H)+ such that

∫
R

n
+

v(y)ϕ( f (y))dy de-

fines a bounded linear operator on H.

Example 9.4 Now we consider a special case of Corollary 9.2, that is

1 =
∫
R

n
+

l(t)dt, u(x) =
1

x1 · · ·xn
= x-1.

In this case

v(y) =
∫
R

n
+

l
( y

x

)
x2
1 · · ·x2

n
dx =

∫
R

n
+

1
y1 · · ·yn

l(t)dt =
1

y1 · · ·yn
= y-1,

and we get the Godunova inequality (2.10), which shows that Corollary 9.2 is a genuine
generalization of this inequality. �



Chapter10
Boas-type inequalities

In the previous chapters many results concerning Hardy-type and Pólya-Knopp-type in-
equalities were given. R. P. Boas gave another direction of generalization of these famous
inequalities. In [14], he proved that the inequality∫ ∞

0
Φ
(

1
M

∫ ∞

0
f (tx)dm(t)

)
dx
x

≤
∫ ∞

0
Φ( f (x))

dx
x

(10.1)

holds for all continuous convex functions Φ : [0,∞) → R, measurable non-negative func-
tions f : R+ → R, and non-decreasing bounded functions m : [0,∞) → R, where M =
m(∞)−m(0) > 0 and the inner integral on the left-hand side of (10.1) is the Lebesgue-
Stieltjes integral with respect to m. After its author, the relation (10.1) was named the Boas
inequality. In the case of a concave function Φ, (10.1) holds with the sign of inequality
reversed.

Independently, S. Kaijser et al. [65] (see also the paper [76] of N. Levinson) established
the so-called general Hardy-Knopp-type inequality (2.6) for positive measurable functions
f : R+ → R, and a real convex function Φ on R+. Later on, A. Čižmešija et al. [30]
generalized relation (2.6) to the so-called strengthened Hardy-Knopp-type inequality by
inserting a weight function and integrating over intervals of non-negative real numbers.
Further, in [21] A. Čižmešija et al. considered a general Borel measure λ on R+, such that

L = λ (R+) =
∫ ∞

0
dλ (t) < ∞, and proved that for a convex function Φ on an interval I ⊆R

and a weight function u on R+ the inequality∫ ∞

0
u(x)Φ(A f (x))

dx
x

≤ 1
L

∫ ∞

0
w(x)Φ( f (x))

dx
x

(10.2)

holds for all measurable functions f : R+ → R such that f (x) ∈ I for all x ∈ R+, where

213
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A f (x) =
1
L

∫ ∞

0
f (tx)dλ (t) and w(x) =

∫ ∞

0
u
(x

t

)
dλ (t) < ∞, x ∈ R+. They also gave the

following refinement of (10.2):

1
L

∫ ∞

0
w(x)Φ( f (x))

dx
x
−
∫ ∞

0
u(x)Φ(A f (x))

dx
x

≥ 1
L

∣∣∣∣∫ ∞

0

∫ ∞

0
u(x)|Φ( f (tx))−Φ(A f (x))|dλ (t)

dx
x

−
∫ ∞

0

∫ ∞

0
u(x)|ϕ(A f (x))|| f (tx)−A f (x)|dλ (t)

dx
x

∣∣∣∣ ,
where ϕ denotes any function with values in the subdifferential of Φ.

Observe that a non-decreasing and bounded function m : [0,∞) → R such that M =
m(∞)−m(0) > 0 induces a finite Borel measure λ on R+ and vice versa. For such a
function and measure, related Lebesgue and Lebesgue-Stieltjes integrals are equivalent.
Thus, all the above results can be stated for A f (x) defined by

A f (x) =
1
M

∫ ∞

0
f (tx)dm(t), x ∈ R+,

so they refine and generalize inequality (10.1).

The Boas inequality (10.1) has been generalized in other ways as well. One of them is
by using the weighted Hardy-Littlewood average Uψ f defined by

Uψ f (x) =
∫ 1

0
f (tx)ψ(t)dt,

where ψ is a non-negative function on [0,1]. J. Xiao [102] characterized functions ψ for
which Uψ is bounded on either Lp(Rn), p ∈ [1,∞], or BMO(Rn). Recall that the space
BMO(Rn) consists of all measurables functions f ∈ L1

loc(R
n) with bounded mean oscilla-

tion

‖ f‖BMO(R
n
) = sup

Q⊂R
n

1
|Q|

∫
Q
| f (x)− fQ|dx < ∞,

where the supremum is taken over all cubes Q ⊆ R
n of sides parallel to the axes, fQ =

|Q|−1
∫

Q
f (x)dx stands for the average of f over Q, and |Q| denotes the measure of Q.

For a function ψ : [0,1] → [0,∞) and p ∈ [1,∞), J. Xiao proved that an operator

Uψ : Lp(Rn) → Lp(Rn) exists as a bounded operator if and only if
∫ 1

0
t−

n
p ψ(t)dt < ∞,

while an operator Uψ : BMO(Rn) → BMO(Rn) exists as a bounded operator if and only

if
∫ 1

0
ψ(t)dt < ∞. That heorem sharpens and extends the main result from [18] which

asserts that if t1−nψ(t) is bounded on [0,1] then Uψ is bounded on BMO(Rn). Although
some time has passed by since then, the result still seems to be of interest as it is related
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closely to the Hardy-Littlewood maximal operators in harmonic analysis. For example,
if ψ ≡ 1 and n = 1, then Uψ is just reduced to the classical Hardy-Littlewood average

(U f )(x) =
1
x

∫ x

0
f (x)dy,x �= 0, which we recognize in classical Hardy inequality (0.1).

Another generalization of (10.1) was given by D. Luor [78] in a setting with σ -finite
Borel measures μ and ν on a topological space X and a Borel probability measure λ on
R+. For a λ -balanced Borel set E in X and the measure μt defined for all Borel sets D⊆ X
and t ∈ R+ by μt(D) = μ(t−1D), he proved the inequality∫

E
φ(H f (x))dμ(x) ≤

∫
E

φ( f (x))
(∫ ∞

0

dμt

dν
(x)dλ (t)

)
dν(x), (10.3)

where φ is a non-negative convex function, μt � ν , t ∈ suppλ , and H f is the Hardy-
Littlewood average of a non-negative Borel function f on X , defined by

H f (x) =
∫ ∞

0
f (tx) dλ (t), x ∈ X .

Our first goal in this chapter is to obtain the weighted version of the mentioned Luor’s
result.

10.1 A new weighted Boas-type inequality

After introducing some necessary notation, in this section we state and prove a new weigh-
ted general Boas-type inequality in a setting with a topological space and σ -finite Borel
measures.

Let λ be a finite Borel measure on R+. By supp λ we denote its support, that is, the
set of all t ∈ R+ such that λ (Nt ) > 0 holds for all open neighbourhoods Nt of t. Hence,

L =
∫

supp λ
dλ (t) =

∫ ∞

0
dλ (t) = λ (R+) < ∞. (10.4)

On the other hand, let X be a topological space equipped with a continuous scalar multi-
plication (a,x) �→ ax ∈ X , for a ∈ R+, x ∈ X , such that

1x = x, a(bx) = (ab)x, x ∈ X , a,b ∈ R+.

Further, let the Borel set Ω ⊆ X be λ -balanced, that is, tΩ = {tx : x ∈ Ω} ⊆ Ω, for all
t ∈ supp λ . For a Borel measurable function f : Ω → R, we define its Hardy-Littlewood
average A f as

A f (x) =
1
L

∫ ∞

0
f (tx)dλ (t), x ∈ Ω. (10.5)

We recall some facts from the measure theory. If μ is a measure on a ring R, a set E in
R is said to have finite measure if μ(E) < ∞. The measure of E is σ -finite if there exists a



216 10 BOAS-TYPE INEQUALITIES

sequence {En} of sets in R such that

E ⊂
∞⋃

n=1

En and μ(En) < ∞,n = 1,2, . . .

If the measure of every set E in R is finite (or σ -finite), the measure μ is called finite (or
σ -finite) on R. If R is an algebra and μ(E) is finite or σ -finite, then μ is called totally finite
or totally σ -finite, respectively. An algebra is usually denoted by Σ.

Let (X ,Σ) be a measurable space and μ and ν measures on Σ. We say that ν is abso-
lutely continuous with respect to μ , in symbols ν � μ , if ν(E) = 0 for every measurable
set E for which μ(E) = 0. In a suggestively imprecise phrase, ν � μ means that ν is
small whenever μ is small. A fundamental result, known as Radon-Nikodym theorem,
concerning absolute continuity, is the following:

Theorem 10.1 (RADON-NIKODYM) Suppose (X ,Σ,ν) is a totally σ -finite measure spa-
ce. If a σ -finite measure μ on Σ is absolutely continuous with respect to ν , then there exists
a finite valued measurable function f on X such that

μ(E) =
∫

E
f (x)dν (x), (10.6)

for every measurable set E.

The function f from (10.6) is unique up to a ν-null set. That is, if μ(E) =
∫
E g(x)dν(x),

E ∈ Σ also holds, then f = g ν-almost everywhere. The function F is commonly written as
dμ
dν and is called the Radon-Nikodym derivative. The choice of the notation and the name
of f reflects the fact that the function is analogous to a derivative in calculus in the sense
that it describes the rate of change of density of one measure with respect to another.

Theorem 10.1 tells if and how it is possible to change from one measure to another.
From all properties of the Radon-Nikodym derivative we emphasize just the following
one.

Proposition 10.1 Suppose that measures μ and ν are totally σ -finite such that μ � ν .
If f is a μ-integrable function on X, then∫

X
f (x)dμ(x) =

∫
X

f (x)
dμ
dν

(x)dν(x).

Finally, suppose that μ and ν are σ -finite Borel measures on X . For t > 0 and a Borel set
S ⊆ X we define

μt(S) = μ
(

1
t
S

)
. (10.7)

Obviously, μt is a σ -finite Borel measure on X for each t ∈ R+. Throughout this paper, we
suppose that the measures μt are absolutely continuous with respect to the measure ν , that

is, μt � ν for each t ∈ supp λ . As usual, by
dμt

dν
we denote the related Radon-Nikodym

derivative.

We start with a generalization of the main theorem in [78], that is, we state and prove
a new weighted general Boas-type inequality.
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Theorem 10.2 Let λ be a finite Borel measure on R+ and L be defined by (10.4). Let μ
and ν be σ -finite Borel measures on a topological space X, μt be defined by (10.7) and
such that μt � ν for all t ∈ supp λ . Further, let Ω ⊆ X be a λ -balanced set and u be a
non-negative function on X, such that

v(x) =
∫ ∞

0
u

(
1
t
x
)

dμt

dν
(x)dλ (t) < ∞, x ∈ Ω. (10.8)

Suppose Φ : I → R is a non-negative convex function on an interval I ⊆ R. If f : Ω → R is
a Borel measurable function, such that f (x) ∈ I for all x ∈ Ω, and A f is defined by (10.5),
then A f (x) ∈ I for all x ∈ Ω and the inequality∫

Ω
u(x)Φ(A f (x))dμ(x) ≤ 1

L

∫
Ω

v(x)Φ( f (x))dν(x) (10.9)

holds. For a non-positive concave function Φ, the sign of inequality in (10.9) is reversed.

Proof. For a fixed x∈ Ω, we define the function hx : R+ →R as hx(t) = f (tx)−A f (x).
Then (10.4) and (10.5) imply∫ ∞

0
hx(t)dλ (t) =

∫ ∞

0
f (tx)dλ (t)−A f (x)

∫ ∞

0
dλ (t) = 0. (10.10)

Since the set Ω is λ -balanced and f (Ω) ⊆ I, it follows that f (tx) ∈ I for all t ∈ supp λ and
each x ∈ Ω. Suppose that there exists x0 ∈ Ω such that A f (x0) /∈ I. Then we have either
A f (x0) < f (tx0) for all t ∈ supp λ , or A f (x0) > f (tx0) for all t ∈ supp λ , so the function
hx0 is either strictly positive or strictly negative on R+. This contradicts (10.10), so we
proved that A f (x) ∈ I for all x ∈ Ω.

Finally, we prove (10.9). By using Jensen’s inequality, Fubini’s theorem, the substitu-
tion y = tx, the fact that Ω is λ -balanced and Φ is non-negative, and the Radon-Nikodym
theorem, we obtain∫

Ω
u(x)Φ(A f (x))dμ(x) ≤ 1

L

∫
Ω

u(x)
∫ ∞

0
Φ( f (tx))dλ (t)dμ(x)

=
1
L

∫ ∞

0

∫
Ω

u(x)Φ( f (tx))dμ(x)dλ (t)

=
1
L

∫ ∞

0

∫
tΩ

u

(
1
t
y
)

Φ( f (y))dμt (y)dλ (t)

≤ 1
L

∫ ∞

0

∫
Ω

u

(
1
t
y
)

Φ( f (y))dμt(y)dλ (t)

=
1
L

∫ ∞

0

∫
Ω

u

(
1
t
y
)

Φ( f (y))
dμt

dν
(y)dν(y)dλ (t)

=
1
L

∫
Ω

(∫ ∞

0
u

(
1
t
y
)

dμt

dν
(y)dλ (t)

)
Φ( f (y))dν(y)

=
1
L

∫
Ω

v(y)Φ( f (y))dν(y),
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so the proof is completed. �

Notice that the condition on non-negativity of the convex function Φ in Theorem 10.2
can be omitted only in a particular setting with cones in X . More precisely, the following
corollary holds.

Corollary 10.1 If in Theorem 10.2 we have tΩ = Ω for λ -a.e. t ∈ supp λ , then (10.9)
holds for all convex functions Φ on an interval I ⊆R. In that case, for all concave functions
Φ relation (10.9) holds with the sign of inequality reversed.

In Theorem 10.2 we considered general measures μ ,ν , and λ , a set Ω, and a function
Φ. Now, we give an overview of results obtained by specializing inequality (10.9) to some
interesting particular settings. First, we consider the classical one-dimensional cases.

Corollary 10.2 Let λ be a finite Borel measure on R+ and L be defined by (10.4). Sup-
pose that Ω ⊆ R+ is a λ -balanced set and that u is a non-negative function on R+, such
that

w(x) =
∫ ∞

0
u
(x

t

)
dλ (t) < ∞, x ∈ Ω. (10.11)

Let Φ : I → R be a non-negative convex function on an interval I ⊆ R. If f : Ω → R is a
Borel measurable function, such that f (x) ∈ I for all x ∈ Ω, and A f is defined by (10.5),
then the inequality ∫

Ω
u(x)Φ(A f (x))

dx
x

≤ 1
L

∫
Ω

w(x)Φ( f (x))
dx
x

(10.12)

holds. If the function Φ is non-positive and concave, the sign of inequality in (10.12) is
reversed.

Proof. It follows directly from Theorem 10.2 if we set X = R+, the measures μ and ν

to be the Lebesgue measures and replace the weight function u with x �→ u(x)
x

. For such

measures we get
dμt

dν
(x) =

1
t
, t ∈ R+. In this setting, we have

v(x) =
∫ ∞

0
u
(x

t

)
· t
x
· 1
t

dλ (t) =
1
x

∫ ∞

0
u
(x

t

)
dλ (t) =

w(x)
x

, x ∈ Ω,

where the function v is defined by (10.8). �

Notice that inequality (10.12) obviously generalizes (10.2).

Corollary 10.3 Let 0 < b ≤ ∞, u be a non-negative function on (0,b) such that the func-

tion t �→ u(t)
t2

is locally integrable in (0,b), and let

w(x) = x
∫ b

x
u(t)

dt
t2

, x ∈ (0,b).
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If Φ is a convex function on an interval I ⊆ R, then the inequality∫ b

0
u(x)Φ(H f (x))

dx
x

≤
∫ b

0
w(x)Φ( f (x))

dx
x

(10.13)

holds for all functions f on (0,b) with values in I and for H f defined on (0,b) by (2.3).

Proof. Rewrite Theorem 10.2 with dλ (t) = χ(0,1)(t)dt, X = Ω = R+,

dμ(x) = χ(0,b)(x)dx, and ν(x) = dx, as well as with the function x �→ u(x)
x

χ(0,b)(x) instead

of the weight u. Then supp λ = (0,1], L = 1,
dμt

dν
(x) =

1
t

χ(0,tb)(x),

A f (x) =
∫ 1

0
f (tx)dt = H f (x),

and

v(x) =
∫ 1

0

u
(

1
t x
)

1
t x

· 1
t

χ(0,tb)(x)dt =
1
x

∫ 1

x
b

u
(x

t

)
dt =

∫ b

x
u(y)

dy
y2 =

w(x)
x

,

for x ∈ (0,b), so (10.13) holds. Since the conditions of Corollary 10.1 are fulfilled, the
function Φ does not have to be non-negative. �

The result of Corollary 10.3 can be found in [21], [30], and [65], so Theorem 10.2 can

be regarded as its generalization. On the other hand, considering dλ (t) = χ[1,∞)(t)
dt
t2

, and

dμ(x) = χ(b,+∞)(x)dx, as in the proof of Corollary 10.3 we get a dual result to (10.13) (see
also [21, 30, 65]).

Corollary 10.4 For 0≤ b < ∞, suppose u : (b,∞)→R is a non-negative function, locally
integrable in (b,∞), and w is defined on (b,∞) by

w(x) =
1
x

∫ x

b
u(t)dt. (10.14)

If Φ is a convex function on an interval I ⊆ R, then the inequality∫ ∞

0
u(x)Φ(H̃ f (x))

dx
x

≤
∫ ∞

0
w(x)Φ( f (x))

dx
x

holds for all functions f on (b,∞) with values in I and for H̃ f defined by

H̃ f (x) = x
∫ ∞

x
f (t)

dt
t2

, x ∈ (b,∞). (10.15)

Further corollaries are related to a multidimensional setting with balls in R
n centred at

the origin.
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Corollary 10.5 Suppose that 0 < b ≤ ∞ and that a positive function ψ on [0,1] and a
non-negative function u on R

n are such that

v(x) =
∫ 1

|x|
b

u

(
1
t
x
)

t−nψ(t)dt < ∞, x ∈ B(b) (10.16)

and

P1 =
∫ 1

0
ψ(t) dt < ∞. (10.17)

Suppose that Φ is a non-negative convex function on an interval I ⊆ R. If f : B(b) → R is
a Borel-measurable function such that f (x) ∈ I for all x ∈ B(b), then the inequality∫

B(b)
u(x)Φ

(
1
P1

∫ 1

0
ψ(t) f (tx)dt

)
dx ≤ 1

P1

∫
B(b)

v(x)Φ( f (x))dx (10.18)

holds.

Proof. Follows from Theorem 10.2 and Corollary 10.1 rewritten with X = R
n, Ω =

B(b), dλ (t) = ψ(t)χ(0,1)(t)dt, dμ(x) = χB(b)(x)dx, and dν(x) = dx. Here we have

supp λ = (0,1],
dμt

dν
(x) = t−nχB(tb)(x), and A f (x) =

1
P1

∫ 1

0
ψ(t) f (tx)dt. It is easy to

see that in this setting (10.16) reduces to (10.8), and (10.9) becomes (10.18). �

A similar unweighted n-dimensional result can be found in [78]. Applying Corollary
10.5 to some particular u and Φ we get the following result.

Corollary 10.6 Let 0 < b ≤ ∞, let the positive function ψ on [0,1] be such that

v(x) =
∫ 1

|x|
b

t−nψ(t)dt < ∞, x ∈ B(b),

and let P1 be defined by (10.17). If f : B(b) → R is a non-negative Borel-measurable
function, then the inequality∫

B(b)

(∫ 1

0
ψ(t) f (tx)dt

)p

dx ≤ Pp−1
1

∫
B(b)

v(x) f p(x)dx

≤ Pp−1
1

(∫ 1

0
t−nψ(t)dt

)∫
B(b)

f p(x)dx

(10.19)

holds for all p ∈ R\ [0,1). If p ∈ (0,1), then the first inequality in (10.19) holds with the
reversed sign of inequality.

Proof. The first inequality in (10.19) is equivalent with inequality (10.18), rewritten with
u(x) ≡ 1 and with the convex function Φ : R+ → R, Φ(x) = xp, p ∈ R \ [0,1). For p ∈
(0,1), the function Φ is concave. �

Analogously, we get the following result.
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Corollary 10.7 Suppose that 0 ≤ b < ∞, that the positive function ψ on [1,∞) and the
non-negative function u on R

n are such that

v(x) =
∫ |x|

b

1
u

(
1
t
x
)

t−nψ(t)dt < ∞, x ∈ R
n \B(b). (10.20)

and
P∞ =

∫ ∞

1
ψ(t) dt < ∞. (10.21)

Suppose that Φ is a non-negative convex function on an interval I ⊆R. If f : R
n\B(b)→R

is a Borel-measurable function, such that f (x) ∈ I for all x∈ R
n \B(b), then the inequality∫

R
n\B(b)

u(x)Φ
(

1
P∞

∫ ∞

1
ψ(t) f (tx)dt

)
dx ≤ 1

P∞

∫
R

n\B(b)
v(x)Φ( f (x))dx (10.22)

holds.

Proof. The proof follows from Theorem 10.2 if we set dλ (t) = ψ(t)χ(1,∞)(t)dt, X =
R

n, Ω = R
n\B(b), dμ(x) = χ

R
n\B(b)(x)dx, and dν(x) = dx. Then we get supp λ = [1,∞),

dμt

dν
(x) = t−nχ

R
n\B(tb)(x), and A f (x) =

1
P∞

∫ ∞

1
ψ(t) f (tx)dt, so (10.8) and (10.9) become

(10.20) and (10.22), respectively. �

An unweighted form of this result can be found in [78].

Corollary 10.8 Let 0 ≤ b < ∞ and let the function ψ : [1,∞) → [0,∞) be such that

v(x) =
∫ |x|

b

1
t−nψ(t)dt < ∞, x ∈ R

n \B(b).

If f : R
n \B(b) → R is a Borel-measurable function and P∞ is defined by (10.21), then the

inequality∫
R

n\B(b)

(∫ ∞

1
ψ(t) f (tx)dt

)p

dx ≤ Pp−1
∞

∫
R

n\B(b)
v(x) f p(x)dx (10.23)

holds for all p ∈ R\ [0,1). For p ∈ (0,1), the sign of inequality in (10.23) is reversed.

Proof. Again, like in Corollary 10.6, we take u(x) ≡ 1 and the convex function
Φ : R+ → R, Φ(x) = xp, p ∈ R\ [0,1). Notice that Φ is concave for p ∈ (0,1). �
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10.2 A new refined weighted Boas-type inequality

We continue our analisys in the same setting as before. Results from this section can be
found in [33]. Now we can state and prove a new refined weighted Boas-type inequality.

Theorem 10.3 Let the measures λ , μ , ν and μt , the number L, the set Ω, and functions
u and v be as in Theorem 10.2. Suppose Φ : I → R is a non-negative convex function on
an interval I ⊆ R and ϕ : I → R is any function fulfilling ϕ(x) ∈ ∂Φ(x), for all x ∈ Int I.
If f : Ω → R is a Borel measurable function with values in I and A f is defined by (10.5),
then A f (x) ∈ I for all x ∈ Ω and the inequality

1
L

∫
Ω

v(x)Φ( f (x)) dν(x)−
∫

Ω
u(x)Φ(A f (x)) dμ(x)

≥ 1
L

∣∣∣∣∫Ω
u(x)

∫ ∞

0
|Φ( f (tx))−Φ(A f (x))| dλ (t) dμ(x)

−
∫

Ω
u(x)

∫ ∞

0
|ϕ(A f (x))| · | f (tx)−A f (x)| dλ (t) dμ(x)

∣∣∣∣ (10.24)

holds. For a non-positive concave function Φ, relation (10.24) holds with∫
Ω

u(x)Φ(A f (x)) dμ(x)− 1
L

∫
Ω

v(x)Φ( f (x)) dν(x)

on its left-hand side.

Proof. Since f (x)∈ I for all x∈ Ω, it is not hard to see that A f (x)∈ I, for all x∈ Ω (see
the proof of Theorem 10.2 for details). Suppose the function Φ is convex and non-negative.
To prove inequality (10.24), observe that for arbitrary r ∈ IntI and s ∈ I, by (1.8), we have

Φ(s)−Φ(r)−ϕ(r)(s− r) = |Φ(s)−Φ(r)−ϕ(r)(s− r)|
≥ ||Φ(s)−Φ(r)|− |ϕ(r)| · |s− r|| .

(10.25)

In particular, for x ∈ Ω, such that A f (x) ∈ IntI, and for t ∈ supp Ω, from (10.25) we get

Φ( f (tx))−Φ(A f (x))−ϕ(A f (x)) · ( f (tx)−A f (x))
≥ ||Φ( f (tx))−Φ(A f (x))|− |ϕ(A f (x))| · | f (tx)−A f (x)|| .

(10.26)

On the other hand, if I is not an open interval and A f (x) is an endpoint of I for some x∈ Ω,
then either f (tx)−A f (x) ≥ 0 for all t ∈ suppλ , or f (tx)−A f (x) ≤ 0 for all t ∈ suppλ .
Since ∫ ∞

0
( f (tx)−A f (x))dλ (t) = 0, (10.27)
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we conclude that f (tx)−A f (x) = 0 for λ -a.e. t ∈ suppλ , so in that case both sides of
(10.26) are equal to 0. Hence, (10.26) holds for all x ∈ Ω and λ -a.e. t ∈ suppλ . Multi-
plying it by u(x) and then integrating over R+ and Ω, we obtain the following sequence of
inequalities: ∫

Ω

∫ ∞

0
u(x)Φ( f (tx))dλ (t)dμ(x)−

∫
Ω

∫ ∞

0
u(x)Φ(A f (x))dλ (t)dμ(x)

−
∫

Ω

∫ ∞

0
u(x)ϕ(A f (x))( f (tx)−A f (x))dλ (t)dμ(x)

≥
∫

Ω

∫ ∞

0
u(x) ||Φ( f (tx))−Φ(A f (x))|− |ϕ(A f (x))|

·| f (tx)−A f (x)|| dλ (t)dμ(x)

≥
∫

Ω
u(x)

∣∣∣∣∫ ∞

0
|Φ( f (tx))−Φ(A f (x))|dλ (t)

−|ϕ(A f (x))|
∫ ∞

0
| f (tx)−A f (x)|dλ (t)

∣∣∣∣ dμ(x)

≥
∣∣∣∣∫Ω

u(x)
∫ ∞

0
|Φ( f (tx))−Φ(A f (x))|dλ (t)dμ(x)

−
∫

Ω
u(x)|ϕ(A f (x))|

∫ ∞

0
| f (tx)−A f (x)|dλ (t)dμ(x)

∣∣∣∣ . (10.28)

By using Fubini’s and the Radon-Nikodym theorem, the substitution y = tx, and the fact
that the set Ω is λ -balanced and the function Φ is non-negative, the first integral on the
left-hand side of (10.28) becomes∫

Ω

∫ ∞

0
u(x)Φ( f (tx)) dλ (t) dμ(x)

=
∫ ∞

0

∫
Ω

u(x)Φ( f (tx)) dμ(x) dλ (t)

=
∫ ∞

0

∫
tΩ

u

(
1
t
y
)

Φ( f (y)) dμt(y) dλ (t)

≤
∫ ∞

0

∫
Ω

u

(
1
t
y
)

Φ( f (y))dμt(y) dλ (t)

=
∫ ∞

0

∫
Ω

u

(
1
t
y
)

Φ( f (y))
dμt

dν
(y) dν(y) dλ (t)

=
∫

Ω

(∫ ∞

0
u

(
1
t
y
)

dμt

dν
(y) dλ (t)

)
Φ( f (y)) dν(y)

=
∫

Ω
v(y)Φ( f (y)) dν(y). (10.29)

Further, the second integral on the left-hand side in (10.28) reduces to∫
Ω

∫ ∞

0
u(x)Φ(A f (x))dλ (t)dμ(x) = L

∫
Ω

u(x)Φ(A f (x))dμ(x), (10.30)
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while the corresponding third integral is equal to 0 since by (10.27) we have∫
Ω

∫ ∞

0
u(x)ϕ(A f (x))( f (tx)−A f (x)) dλ (t)dμ(x)

=
∫

Ω
u(x)ϕ(A f (x))

(∫ ∞

0
( f (tx)−A f (x)) dλ (t)

)
dμ(x) = 0.

(10.31)

Finally, (10.24) holds by combining (10.28), (10.29), (10.30) and (10.31).

It remains to prove the last part of the statement of Theorem 10.3. If Φ is a non-positive
concave function, then −Φ is a non-negative convex function so by using (1.9), relation
(10.25) becomes

Φ(r)−Φ(s)−ϕ(r)(r− s) = |Φ(r)−Φ(s)−ϕ(r)(r− s)|
≥ ||Φ(s)−Φ(r)|− |ϕ(r)| |s− r|| ,

where ϕ : I →R is any function such that ϕ(x) ∈ ∂Φ(x) = [Φ′
+(x), Φ′

−(x)] for all x ∈ Int I.
Following the same lines as in the proof for a convex function, we get (10.24) with swapped
order of two integrals on its left-hand side. �

Remark 10.1 Observe that a pair of inequalities interpolated between the left-hand side
and the right-hand side of (10.28) provides other new refinements of (10.24).

Remark 10.2 We can get analogue result to (10.24), if we consider Φ to be convex and
monotone function. That assumption can also be applied to results from the following
pages.

It is important to notice that the condition on non-negativity of the convex function Φ in
Theorem 10.3 can be omitted only in a particular setting with cones in X . More precisely,
the following corollary holds.

Corollary 10.9 If in Theorem 10.3 we have tΩ = Ω for λ -a.e. t ∈ supp λ , then (10.24)
holds for all convex functions Φ on an interval I ⊆R. In this setting, relation (10.24) holds
also for all concave functions Φ on I ⊆ R, but with swapped order of the integrals on its
left-hand side.

Remark 10.3 Observe that Theorem 10.3 generalizes and refines the Boas-type inequal-
ity (10.3) obtained by D. Luor [78].
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10.3 A general Boas-type inequality with kernels

Now, we analyse Boas-type inequalities with kernels from [33]. Let the setting be as in
Section 10.1, except that λ is a σ -finite Borel measure on R+. By a kernel we mean a
non-negative measurable function k : X ×X → R, such that

K(x) =
∫ ∞

0
k(x, tx)dλ (t) < ∞ (10.32)

for μ-a.e. x ∈ X . For a λ -balanced set Ω ⊆ X and a Borel measurable function f : Ω → R,
we define its Hardy-Littlewood average with the kernel k, denoted by Ak f , as

Ak f (x) =
1

K(x)

∫ ∞

0
k(x, tx) f (tx)dλ (t), x ∈ Ω. (10.33)

A related Boas-type inequality is given as follows.

Theorem 10.4 Let λ be a σ -finite Borel measure on R+, let μ and ν be σ -finite Borel
measures on a topological space X, and let μt , defined by (10.7), be absolutely continuous
with respect to the measure ν for all t ∈ suppλ . Let Ω ⊆ X be a λ -balanced set and u be
a non-negative function on X such that

v(x) =
∫ ∞

0
u(x)

k
(

1
t x,x

)
K
(

1
t x
) · dμt

dν
(x)dλ (t) < ∞, x ∈ Ω, (10.34)

where k : X ×X → R is a non-negative measurable function satisfying (10.32). Further, let
Φ be a non-negative convex function on an interval I ⊆ R. If f : Ω → R is a measurable
function such that f (x) ∈ I for all x ∈ Ω, and Ak f is defined by (10.33), then Ak f (x) ∈ I,
for all x ∈ Ω, and the inequality∫

Ω
u(x)Φ(Ak f (x))dμ(x) ≤

∫
Ω

v(x)Φ( f (x))dν(x) (10.35)

holds. For a non-positive concave function Φ, relation (10.35) holds with the sign of
inequality reversed.

Proof. First, we need to prove that Ak f (x) ∈ I for all x ∈ Ω. Otherwise, there exists
x0 ∈ Ω such that Ak f (x0) /∈ I. In that case, we have either f (tx0)−Ak f (x0) < 0 for all
t ∈ suppλ , or f (tx0)−Ak f (x0) > 0 for all t ∈ suppλ . On the other hand, the identity

1
K(x0)

∫ ∞

0
k(x0,tx0)( f (tx0)−Ak f (x0)) dλ (t) = 0

and non-negativity of k(x0,tx0) for all t ∈ suppλ yield that

k(x0,tx0)( f (tx0)−Ak f (x0)) = 0, t ∈ suppλ .
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Since K(x0) > 0, there exists a set J ⊆ suppλ such that λ (J) > 0 and k(x0,tx0) > 0 for
all t ∈ J. Hence, f (tx0)−Ak f (x0) = 0, t ∈ J, so we came to a contradiction. Therefore,
Ak f (x) ∈ I for all x ∈ Ω.

By using Jensen’s inequality, Fubini’s theorem, the Radon-Nikodym theorem, the sub-
stitution y = tx, and the properties of the set Ω and the function Φ, we now obtain∫

Ω
u(x)Φ(Ak f (x))dμ(x)

≤
∫

Ω

u(x)
K(x)

∫ ∞

0
k(x,tx)Φ( f (tx))dλ (t)dμ(x)

=
∫ ∞

0

∫
Ω

u(x)
k(x,tx)
K(x)

Φ( f (tx))dμ(x)dλ (t)

=
∫ ∞

0

∫
tΩ

u

(
1
t
y
)

k
(

1
t y,y

)
K
( 1

t y
) Φ( f (y))dμt(y)dλ (t)

≤
∫ ∞

0

∫
Ω

u

(
1
t
y
)

k
( 1

t y,y
)

K
(

1
t y
) Φ( f (y))dμt(y)dλ (t)

=
∫ ∞

0

∫
Ω

u

(
1
t
y
)

k
( 1

t y,y
)

K
(

1
t y
) Φ( f (y))

dμt

dν
(y)dν(y)dλ (t)

=
∫

Ω

(∫ ∞

0
u

(
1
t
y
)

k
(

1
t y,y

)
K
(

1
t y
) · dμt

dν
(y)dλ (t)

)
Φ( f (y))dν(y)

=
∫

Ω
v(y)Φ( f (y))dν(y),

so the proof is completed. �

Moreover, applying similar reasoning as in Section 10.2, we get a refinement of the
Boas-type inequality (10.35).

Theorem 10.5 Suppose λ is a σ -finite Borel measure on R+, μ and ν are σ -finite Borel
measures on a topological space X, and the measures μt , defined by (10.7), are absolutely
continuous with respect to the measure ν for all t ∈ suppλ . Further, suppose Ω ⊆ X is
a λ -balanced set, u is a non negative function on X and v is defined on Ω by (10.34),
where k : X ×X → R is a non-negative measurable function satisfying (10.32). If Φ is a
non-negative convex function on an interval I ⊆ R and ϕ : I → R is any function such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI, then the inequality∫

Ω
v(x)Φ( f (x))dν(x)−

∫
Ω

u(x)Φ(Ak f (x))dμ(x)

≥
∣∣∣∣∫Ω

u(x)
K(x)

∫ ∞

0
k(x,tx) |Φ( f (tx))−Φ(Ak f (x))| dλ (t)dμ(x)

−
∫

Ω

u(x)
K(x)

∫ ∞

0
k(x,tx) |ϕ(Ak f (x))| · | f (tx)−Ak f (x)| dλ (t)dμ(x)

∣∣∣∣
(10.36)
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holds for all measurable functions f : Ω → R, such that f (x) ∈ I for all x ∈ Ω, and Ak f
defined by (10.33). For a non-positive concave function Φ, relation (10.36) holds with∫

Ω
u(x)Φ(Ak f (x))dμ(x)−

∫
Ω

v(x)Φ( f (x))dν(x)

on its left-hand-side.

Proof. The proof follows the same lines as the proof of Theorem 10.4 so we omit
details. �

Remark 10.4 Obviously, tx and x have ”the same direction” in X . However, this draw-
back can be avoided if, instead of over R+ and with respect to λ , the integrals in (10.33),
(10.34), (10.35), and (10.36) are taken over some suitable group and the related Haar mea-
sure.

10.4 Boas-type inequality for superquadratic
functions

Here we prove the Boas-type inequality in a setting with general weighted topological
spaces and σ -finite measures using the concept of superquadratic and subquadratic func-
tions. The following results can be found in [71].

Theorem 10.6 Let λ , μ , ν , μt , L, Ω, u and v be as in Theorem 10.2. Suppose that
I = (0,c),c ≤ ∞ and let f : Ω → R be a Borel measurable function such that f (x) ∈ I for
all x ∈ Ω. If ϕ : I → R is a non-negative superquadratic function and A f is defined by
(10.5), then the inequality∫

Ω
u(x)ϕ(A f (x))dμ(x)+

1
L

∫
Ω

∫ ∞

0
u(x)ϕ(| f (tx)−A f (x)|)dλ (t)dμ(x)

≤ 1
L

∫
Ω

v(x)ϕ( f (x))dν(x) (10.37)

holds.

Proof. We have already proved that A f (x) ∈ I for x∈ I. So, we only prove the inequal-
ity (10.37). By applying the refined Jensen inequality, that is Lemma 1.1, to the first term
on the left hand side of inequality (10.37) we obtain∫

Ω
u(x)ϕ(A f (x))dμ(x) =

∫
Ω

u(x)ϕ
(

1
L

∫ ∞

0
f (tx)dλ (t)

)
dμ(x)

≤ 1
L

∫
Ω

u(x)
∫ ∞

0
ϕ( f (tx))dλ (t)dμ(x) (10.38)

−1
L

∫
Ω

u(x)
∫ ∞

0
ϕ(| f (tx)−A f (x)|)dλ (t)dμ(x)
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The inequality (10.38) can be written as∫
Ω

u(x)ϕ
(

1
L

∫ ∞

0
f (tx)dλ (t)

)
dμ(x)

+
1
L

∫
Ω

u(x)
∫ ∞

0
ϕ(| f (tx)−A f (x)|)dλ (t)dμ(x)

≤ 1
L

∫
Ω

u(x)
∫ ∞

0
ϕ( f (tx))dλ (t)dμ(x). (10.39)

By applying the Fubini theorem to the right hand side of inequality (10.39), than the sub-
stitution y = tx, the fact that Ω is λ -balanced set, ϕ is a non-negative function and the
Radon-Nikodym theorem, we obtain

1
L

∫ ∞

0

∫
Ω

u(x)ϕ( f (tx))dμ(x)dλ (t)

=
1
L

∫ ∞

0

∫
tΩ

u

(
1
t
y
)

ϕ( f (y))dμt(y)dλ (t)

≤ 1
L

∫ ∞

0

∫
Ω

u

(
1
t
y
)

ϕ( f (y))dμt (y)dλ (t) (10.40)

=
1
L

∫ ∞

0

∫
Ω

u

(
1
t
y
)

ϕ( f (y))
dμt

dν
(y)dν(y)dλ (t)

=
1
L

∫
Ω

(∫ ∞

0
u

(
1
t
y
)

dμt

dν
(y)dλ (t)

)
ϕ( f (y))dν(y)

=
1
L

∫
Ω

v(y)ϕ( f (y))dν(y).

This completes the proof. �

Theorem 10.7 Let λ , L, μ , ν , u and v be defined as in Theorem 10.6 Further, let Ω ⊆ X
be such that tΩ = Ω, for all t ∈ supp λ . Suppose that I = (0,c),c ≤ ∞, ϕ : I → R. If ϕ is
a superquadratic function on an interval I, then the inequality (10.37) holds for all Borel
measurable functions f : Ω → R, such that f (x) ∈ I for all x ∈ Ω, where A f is defined by
(10.5).
If ϕ is a subquadratic function, then the inequality sign in (10.37) is reversed, that is∫

Ω
u(x)ϕ(A f (x))dμ(x)+

1
L

∫
Ω

∫ ∞

0
u(x)ϕ(| f (tx)−A f (x)|)dλ (t)dμ(x)

≥ 1
L

∫
Ω

v(x)ϕ( f (x))dν(x) (10.41)

holds.

Proof. By analyzing (10.40), we see that if tΩ = Ω, for all t ∈ supp λ , then

1
L

∫ ∞

0

∫
tΩ

u

(
1
t
y
)

ϕ( f (y))dμt (y)dλ (t)

=
1
L

∫ ∞

0

∫
Ω

u

(
1
t
y
)

ϕ( f (y))dμt(y)dλ (t)
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and (10.37) holds for all superquadratic functions ϕ : I → R, that is, ϕ does not need to be
non-negative.
By making the same calculations with ϕ subquadratic function, we see that the inequality
sign in (10.37) is reversed, that is (10.41) holds. �

Remark 10.5 Notice, that in case Ω = R+ (10.37) and (10.41) hold for all superquadratic
and all subquadratic functions, respectively.

Now we consider a particular superquadratic function in (10.37), namely ϕ(x) = xp

which is superquadratic for p≥ 2 and subquadratic for 1≤ p≤ 2. We obtain the following
result.

Corollary 10.10 Let the assumptions in Theorem 10.6 be satisfied and let ϕ(x) = xp.

(i) If p ≥ 2, then∫
Ω

u(x)(A f (x))p dμ(x)+
1
L

∫
Ω

∫ ∞

0
u(x)| f (tx)−A f (x)|pdλ (t)dμ(x)

≤ 1
L

∫
Ω

v(x) f p(x)dν(x). (10.42)

(ii) If tΩ = Ω, for all t ∈ supp λ and 1 < p ≤ 2 , then (10.42) holds in the reversed
direction and for p = 2 we obtain the following very general identity∫

Ω
u(x)(A f (x))2 dμ(x)+

1
L

∫
Ω

∫ ∞

0
u(x)| f (tx)−A f (x)|2dλ (t)dμ(x)

=
1
L

∫
Ω

v(x) f 2(x)dν(x).

Corollary 10.11 Let λ be a finite Borel measure on R+ and L be defined by (10.4).
Let X = R+ and let μt be defined by (10.7). Suppose Ω ⊆ R+ is a λ -balanced set and

the function x �→ u(x)
x

is non-negative on R+, and the function w : Ω → R is defined by

(10.11). Suppose that I = (0,c),c ≤ ∞, ϕ : I → R. If ϕ is a non-negative superquadratic
function on an interval I, then the inequality∫

Ω
u(x)ϕ(A f (x))

dx
x

+
1
L

∫
Ω

∫ ∞

0
u(x)ϕ(| f (tx)−A f (x)|)dλ (t)

dx
x

≤ 1
L

∫
Ω

w(x)ϕ( f (x))
dx
x

(10.43)

holds for Borel measurable functions f : Ω → R such that f (x) ∈ I for all x ∈ Ω, where A f
is defined by (10.5).
If tΩ = Ω, for all t ∈ supp λ , then (10.43) holds for all superquadratic functions ϕ and the
inequality sign in (10.43) is reversed if ϕ is a subquadratic function.
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Proof. It follows directly from Theorem 10.2 if we set measures μ and ν to be Lebesgue

measures since X = R+. For such measures
dμt

dν
(x) =

1
t
, t ∈ R+. For function w we take

w(x) = xv(x) = x
∫ ∞

0
u
(x

t

)
· t
x
· 1
t

dλ (t) =
∫ ∞

0
u
(x

t

)
dλ (t) , x ∈ Ω,

where function v is defined by (10.8) with the weight function x �→ u(x)
x

instead of u. �

Remark 10.6 If we apply Corollary 10.11 with Ω = R+ and u(x) = 1, then w(x)≡ L and
the following inequality holds:

∞∫
0

ϕ

⎛⎝1
L

∞∫
0

f (tx)dλ (t)

⎞⎠ dx
x

+
1
L

∞∫
0

∞∫
0

ϕ(| f (tx)−A f (x)|)dλ (t)
dx
x

≤
∞∫

0

ϕ( f (x))
dx
x

. (10.44)

In particular, for ϕ(x) = xp, we obtain the following (in)equalities.
(i) If p ≥ 2, then

∞∫
0

⎛⎝1
L

∞∫
0

f (tx)dλ (t)

⎞⎠p

dx
x

+
1
L

∞∫
0

∞∫
0

| f (tx)−A f (x)|pdλ (t)
dx
x

≤
∞∫

0

f p(x)
dx
x

. (10.45)

(ii) If 1 < p ≤ 2 , then (10.45) holds in the reversed direction.
(iii) If p = 2, then the following identity holds

∞∫
0

⎛⎝1
L

∞∫
0

f (tx)dλ (t)

⎞⎠2

dx
x

+
1
L

∞∫
0

∞∫
0

| f (tx)−A f (x)|2dλ (t)
dx
x

=
∞∫

0

f 2(x)
dx
x

.

Remark 10.7 As a special case of inequality (10.45) we obtain the refined Hardy and
dual Hardy inequality. Let α > 0 and

dλ (t) =
{

tα−1, 0 < t ≤ 1;
0, t ≥ 1.
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Then L = α−1 and (10.45) becomes

α p

∞∫
0

x−1−α p

⎛⎝ x∫
0

f (t)tα−1 dt

⎞⎠p

dx+ α
∞∫

0

x∫
0

| f (t)−A f (x)|ptα−1x−α−1dtdx

≤
∞∫

0

f p(x)
dx
x

, (10.46)

where

A f (x) = αx−α
x∫

0

tα−1 f (t)dt.

If we let f (t) = g(t)t1−α and α = k−1
p (p ≥ 2, k > 1) in (10.46) we have

∞∫
0

x−k

⎛⎝ x∫
0

g(t)dt

⎞⎠p

dx

k−1
p

∞∫
0

∫ ∞

t

∣∣∣∣∣∣ p
k−1

( t
x

)1− k−1
p

g(t)− 1
x

x∫
0

g(s)ds

∣∣∣∣∣∣
p

xp−k− k−1
p dxt

k−1
p −1dt

≤
(

p
k−1

)p ∞∫
0

xp−kgp(x)dx. (10.47)

If 1 < p ≤ 2, then (10.47) holds in the reversed direction.
Now, let β > 0 and

dλ (t) =
{

t−β−1, t ≥ 1;
0, 0 < t ≤ 1.

Then L = β−1 and (10.45) becomes

β p

∞∫
0

xβ p−1

⎛⎝ ∞∫
x

f (t)t−β−1 dt

⎞⎠p

dx+ β
∞∫

0

∞∫
x

| f (t)−A f (x)|pt−β−1xβ−1dtdx

≤
∞∫

0

f p(x)
dx
x

, (10.48)

where

A f (x) = βxβ
∞∫

x

t−β−1 f (t)dt.
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If we let f (t) = g(t)t1+β and β = 1−k
p (p ≥ 2, k < 1) in (10.48) we have

∞∫
0

x−k

⎛⎝ ∞∫
x

g(t)dt

⎞⎠p

dx

+
1− k

p

∞∫
0

∫ t

0

∣∣∣∣∣∣ p
1− k

( t
x

)1+ 1−k
p

g(t)− 1
x

∞∫
x

g(s)ds

∣∣∣∣∣∣
p

xp−k+ 1−k
p dxt

k−1
p −1dt

≤
(

p
1− k

)p ∞∫
0

xp−kgp(x)dx. (10.49)

If 1 < p ≤ 2, then (10.49) holds in the reversed direction.
Note that for the case p= 2 inequalities (10.47) and (10.49)will both be equalities, Parseval
type identities with the Hardy and, respectively, the dual Hardy operators.

Remark 10.8 These results can be found in [88] (see Theorem 3.1 and 3.2). Also, some
new results involving Hardy type inequalities using the concept of superquadratic and sub-
quadratic function can be found in [5] and [89]. In [89] J. A. Oguntuase et al. proved these
results in multidimensional settings. Theorem 10.6 can be applied in multidimensional
settings to obtain these results, but here we omit the details.

We continue with two consequences of Theorem 10.6.

Corollary 10.12 Let b ∈ R+ and let x �→ u(x)
x

be a non-negative function on (0,b), such

that the function t �→ u(t)
t2

is locally integrable in (0,b), and let w be defined as in Corol-

lary 10.3. If ϕ is non-negative superquadratic on an interval I = (0,c), c ≤ ∞, then the
inequality

b∫
0

u(x)ϕ(H f (x))
dx
x

+
b∫

0

x∫
0

u(x)ϕ(| f (t)−H f (x)|)dt
dx
x2 ≤

b∫
0

w(x)ϕ( f (x))
dx
x

(10.50)

holds for all functions f on (0,b) with values in I and for H f (x) defined on (0,b) by (2.3).

Proof. Rewrite Theorem 10.6 with the measures dλ (t)=χ(0,1)(t)dt, μ(x)=χ(0,b)(x)dx,

dν(x) = dx and x �→ u(x)
x

instead of the weight function u. Then we get L = 1,
dμt

dν
(x) =

1
t

χ(0,tb)(x),

A f (x) =
∫ 1

0
f (tx)dt = H f (x)

and

v(x) =
∫ 1

0

u
(

1
t x
)

1
t x

· 1
t

χ(0,tb)(x)dt =
1
x

∫ 1

x
b

u
(x

t

)
dt =

∫ b

x
u(y)

dy
y2 =

w(x)
x

,
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for x ∈ (0,b), so (10.50) holds. �

We give also a dual result to the previous corollary considering dλ (t) = χ[1,∞)(t)
dt
t2

.

Corollary 10.13 For b ≥ 0, suppose u and w are defined on (b,∞) as in Corollary 10.4.
If ϕ is non-negative superquadratic on an interval I = (0,c), c ≤ ∞, then the inequality∫ ∞

b
u(x)ϕ(H̃ f (x))

dx
x

+
∫ ∞

b

∫ ∞

x
u(x)ϕ(| f (t)− H̃ f (x)|)dt

t2
dx

≤
∫ ∞

b
w(x)ϕ( f (x))

dx
x

(10.51)

holds for all functions f on (b,∞) with values in I and for H̃ f (x) defined by (10.15).

Let us continue by some results from [72]. We define a linear functional as a difference be-
tween the right-hand side and the left-hand side of the refined Boas type inequality (10.37):

G(ϕ) =
1
L

∫
Ω

v(x)ϕ( f (x))dν(x)−
∫

Ω
u(x)ϕ(A f (x))dμ(x)

−1
L

∫
Ω

∫ ∞

0
u(x)ϕ(| f (tx)−A f (x)|)dλ (t)dμ(x). (10.52)

It is clear, from (10.37), that if ϕ is a superquadratic function, then G(ϕ) ≥ 0. If we
consider G(ϕp) for ϕp as in Lemma 7.2 with G as in (10.52) we have that G(ϕp) ≥ 0 for
all p > 0.

Properties of the mapping p �→ G(ϕp) are given in the following theorem:

Theorem 10.8 For G as in (10.52), ϕp as in (7.16) and f a positive function, we have
the following:

(i) the mapping p �→ G(ϕp) is continuous for p > 0,

(ii) for every n ∈ N and pi ∈ R+, pi j = pi+p j
2 , i, j = 1,2, ...,n, the matrix [G(ϕpi j )]

n
i, j=1

is positive semi-definite, that is,

det[G(ϕpi j )]
n
i, j=1 ≥ 0,

(iii) the mapping p �→ G(ϕp) is exponentially convex,

(iv) the mapping p �→ G(ϕp) is log-convex, and for r < s < t where r,s,t ∈ R+ we have

[G(ϕs)]t−r ≤ [G(ϕr)]t−s[G(ϕt)]s−r. (10.53)
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Proof.

(i) Notice that

G(ϕp)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
p(p−2)

[
1
L

∫
Ω v(x) f p(x)dν(x)− ∫

Ω u(x)(A f (x))p dμ(x)

− 1
L

∫
Ω
∫ ∞
0 u(x)| f (tx)−A f (x)|pdλ (t)dμ(x)

]
, p �= 2;

1
2

[
1
L

∫
Ω v(x) f 2(x) log( f (x))dν(x)− ∫

Ω u(x)(A f (x))2 log(A f (x))dμ(x)

− 1
L

∫
Ω
∫ ∞
0 u(x)( f (tx)−A f (x))2 log | f (tx)−A f (x)|dλ (t)dμ(x)

]
, p=2

It is obviously continuous for p > 0, p �= 2. Suppose p → 2 :

lim
p→2

G(ϕp) = lim
p→2

1
p(p−2)

[
1
L

∫
Ω

v(x) f p(x)dν(x)−
∫

Ω
u(x)(A f (x))p dμ(x)

−1
L

∫
Ω

∫ ∞

0
u(x)| f (tx)−A f (x)|pdλ (t)dμ(x)

]
Since

1
L

∫
Ω

v(x) f 2(x)dν(x)−
∫

Ω
u(x)(A f (x))2 dμ(x)

−1
L

∫
Ω

∫ ∞

0
u(x)| f (tx)−A f (x)|2dλ (t)dμ(x) = 0

applying L’Hospital rule we obtain, after a simple calculation, that

lim
p→2

G(ϕp) = G(ϕ2).

Hence, the mapping p �→ G(ϕp) is continuous for p > 0.

(ii) Let n ∈ N and ui ∈ R, i = 1,2, . . . ,n, be arbitrary. Define the function F(x) =
n
∑

i, j=1
uiu jϕpi j(x), where pi j = pi+p j

2 . Then

(
F ′(x)

x

)′
=

n

∑
i, j=1

uiu j

(
ϕ ′

pi j
(x)

x

)′
=

(
n

∑
i=1

uix
pi−3

2

)2

≥ 0

and F(0) = 0. Hence F is superquadratic. Using this F in the place of ϕ in (10.52)
we have

G(F) =
n

∑
i, j=1

uiu jG(ϕpi j) ≥ 0. (10.54)

So, the matrix [G(ϕpi j)]
n
i, j=1 is positive semi-definite.
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Properties (iii) and (iv) are trivial consequence of (i), (ii) and definition of exponentially
convex and log-convex functions. �

From the inequality (10.43) we have

B(ϕ) =
1
L

∫
Ω

w(x)ϕ( f (x))
dx
x
−
∫

Ω
u(x)ϕ(A f (x))

dx
x

−1
L

∫
Ω

∫ ∞

0
u(x)ϕ(| f (tx)−A f (x)|)dλ (t)

dx
x

. (10.55)

Then the following consequence of Theorem 10.8 is proved:

Corollary 10.14 For B as in (10.55), ϕp as in (7.16) and f a positive function, the
mapping p �→ B(ϕp) is exponentially convex, and for r < p < t where r, p,t ∈ R+, we have

B(ϕp) ≤ [B(ϕr)]
t−p
t−r [B(ϕt)]

p−r
t−r . (10.56)

As a special case of Corollary 10.14, an improvement and reverse of the strengthened
Hardy’s inequality and its duals are proved.

Theorem 10.9 Let k ∈ R be such that k �= 1, let f be a positive function, and let p ∈
R+\{2}.
(i) If k > 1 and r < p < t, where r, p,t ∈ R+, then

1
p(p−2)

{( p
k−1

)p ∞∫
0

xp−k f p(x)dx−
∞∫
0

x−k

(
x∫
0

f (y)dy

)p

dx

− k−1
p

∞∫
0

∫ ∞
t

∣∣∣∣ p
k−1

(
t
x

)1− k−1
p f (t)− 1

x

x∫
0

f (s)ds

∣∣∣∣p xp−k− k−1
p dxt

k−1
p −1dt

}
≤ ( p

k−1

)p [F(ϕr)]
t−p
t−r [F(ϕt)]

p−r
t−r . (10.57)

If p < t < r or t < r < p, then (10.57) holds with reversed sign of inequality, where

F(ϕr) =
∞∫

0

ϕr

(
f (x)x1− k−1

p

) dx
x
−

∞∫
0

ϕr

⎛⎝k−1
p

x−
k−1

p

x∫
0

f (s)ds

⎞⎠ dx
x

−k−1
p

∞∫
0

x∫
0

ϕr

⎛⎝∣∣∣∣∣∣ f (t)t1− k−1
p − k−1

p
x1− k−1

p

x∫
0

f (s)ds

∣∣∣∣∣∣
⎞⎠×

×x−
k−1

p −1 t
k−1

p −1dt dx (10.58)
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(ii) If k < 1 and r < p < t, where r, p,t ∈ R+, then

1
p(p−2)

{( p
1−k

)p ∞∫
0

xp−k f p(x)dx−
∞∫
0

x−k

(∞∫
x

f (y)dy

)p

dx

− 1−k
p

∞∫
0

∫ t
0

∣∣∣∣ p
1−k

(
t
x

)1+ 1−k
p f (t)− 1

x

∞∫
x

f (s)ds

∣∣∣∣p xp−k− k−1
p t

k−1
p −1dxdt

}
≤ ( p

k−1

)p [W (ϕr)]
t−p
t−r [W (ϕt )]

p−r
t−r . (10.59)

If p < t < r or t < r < p, then (10.59) holds with reversed sign of inequality, where

W (ϕr) =
∞∫

0

ϕr

(
x

p−k+1
p f (x)

)
dx
x
−

∞∫
0

ϕr

⎛⎝1− k
p

x
1−k

p

∞∫
x

f (t)dt

⎞⎠ dx
x

−1− k
p

∞∫
0

∞∫
x

ϕr

⎛⎝∣∣∣∣∣∣ f (t)t1− k−1
p − 1− k

p
x

1−k
p

∞∫
x

f (t)dt

∣∣∣∣∣∣
⎞⎠×

×t
k−1

p −1x
1−k

p −1dt dx. (10.60)

Proof. The proof follows from Corollary 10.14 by choosing Ω = R+ and for a weight
function u(x) = 1. We obtain w(x) = L and

A f (x) =
1
L

∞∫
0

f (tx)dλ (t).

Then (10.55) becomes

B(ϕ) =
∞∫

0

ϕ( f (x))
dx
x
−

∞∫
0

ϕ(A f (x))
dx
x
− 1

L

∞∫
0

∫ ∞

0
ϕ(| f (tx)−A f (x)|)dλ (t)

dx
x

. (10.61)

and (10.56) becomes
[B(ϕp)]t−r ≤ [B(ϕr)]

t−p [B(ϕt)]
p−r (10.62)

for every choice r, p,t ∈ R+, such that r < p < t. We know that B(ϕp) is log-convex.
Let α > 0 and

dλ (t) =
{

tα−1, 0 < t ≤ 1;
0, t ≥ 1.

Then L = α−1 and

B(ϕp) =
∞∫

0

ϕp( f (x))
dx
x
−

∞∫
0

ϕp(A f (x))
dx
x

−α
∞∫

0

x∫
0

ϕp(| f (t)−A f (x)|)tα−1x−α−1dtdx (10.63)



10.4 BOAS-TYPE INEQUALITY FOR SUPERQUADRATIC FUNCTIONS 237

where

A f (x) = αx−α
x∫

0

tα−1 f (t)dt.

To obtain (10.57) choose for f the function x �→ f (x)x1−α , where α = k−1
p , p > 0, k > 1.

Then, after some calculation (10.63) reduces to (10.58) and (10.62) reduces to (10.57).
By taking substitutions r → t, p → r, t → p or r → p, p → t, t → r in (10.62), we get

reversed sign of inequality in (10.57).

To prove (10.59), let us take β > 0 and

dλ (t) =
{

t−β−1, t ≥ 1;
0, 0 < t ≤ 1.

Then L = β−1 and

B(ϕp) =
∞∫

0

ϕp( f (x))
dx
x
−

∞∫
0

ϕp(A f (x))
dx
x

−β
∞∫

0

∞∫
x

ϕp(| f (t)−A f (x)|)t−β−1xβ−1dtdx (10.64)

where

A f (x) = βxβ
∞∫

x

t−β−1 f (t)dt.

To obtain (10.59) choose for f the function x �→ f (t)x1+β , where β = 1−k
p , p > 0, k < 1.

Then, after some calculation (10.64) reduces to (10.60) and (10.62) reduces to (10.59).
By taking substitutions r → t, p → r, t → p and r → p, p → t, t → r in (10.62), we get

reversed sign of inequality in (10.59). �

10.4.1 Mean Value Theorems

Now, we give mean value theorem. First, we state and prove the Lagrange-type mean value
theorem.

Theorem 10.10 Let J be a compact interval and J ⊆ I. If ϕ ′
x ∈C1(J) and ϕ(0) = 0 then

there exists ξ ∈ J such that the following equality holds

G(ϕ) =
1
3

ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ 2

(
1
L

∫
Ω

v(x) f 3(x)dν(x)−
∫

Ω
u(x)(A f (x))3 dμ(x)

−1
L

∫
Ω

∫ ∞

0
u(x)| f (t(x))−A f ((x))|3dλ (t)dμ((x))

)
, (10.65)

where L, A f are defined by (10.4) and (10.5), respectively.
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Proof. Since
(

ϕ ′
x

)′
is continuous on the compact set J, there exist min

((
ϕ ′
x

)′)
= m

and max

((
ϕ ′
x

)′)
= M. Then by applying Theorem 10.6 on functions ϕ1,ϕ2 from Lemma

7.1 the following two inequalities hold:

G(ϕ) ≤ M
3

(
1
L

∫
Ω

v(x) f 3(x)dν(x)−
∫

Ω
u(x)(A f (x))3 dμ(x)

−1
L

∫
Ω

∫ ∞

0
u(x)| f (tx)−A f (x)|3dλ (t)dμ(x)

)
(10.66)

and

G(ϕ) ≥ m
3

(
1
L

∫
Ω

v(x) f 3(x)dν(x)−
∫

Ω
u(x)(A f (x))3 dμ(x)

−1
L

∫
Ω

∫ ∞

0
u(x)| f (tx)−A f (x)|3dλ (t)dμ(x)

)
.

By combining above two inequalities we have that there exist ξ ∈ J such that we get
(10.65). �

Theorem 10.11 Let J be a compact interval and J ⊆ I. If ϕ ′
x , ψ ′

x ∈ C1(J) and ϕ(0) =
0,ψ(0) = 0, then there exists ξ ∈ J such that

G(ϕ)
G(ψ)

=
ξ ϕ ′′(ξ )−ϕ ′(ξ )
ξ ψ ′′(ξ )−ψ ′(ξ )

,

provided that denominators are not equal to zero.

Proof. We denote c1 = G(ψ), c2 = G(ϕ). Now, apply (10.65) to the function h =
c1ϕ − c2ψ . Notice that

h′

x
= c1

ϕ ′

x
− c2

ψ ′

x
∈C1(J), h(0) = 0.

The following equality follows

G(h) =
1
3

ξh′′(ξ )−h′(ξ )
ξ 2

(
1
L

∫
Ω

v(x) f 3(x)dν(x)−
∫

Ω
u(x)(A f (x))3 dμ(x)

−1
L

∫
Ω

∫ ∞

0
u(x)| f (tx)−A f (x)|3dλ (t)dμ(x)

)
. (10.67)

After a short calculation, it is easy to see that the left-hand side of (10.67) is equal to 0, so
should be the right-hand side. Since G(ψ) �= 0 we conclude that(

1
L

∫
Ω

v(x) f 3(x)dν(x)−
∫

Ω
u(x)(A f (x))3 dμ(x)

−1
L

∫
Ω

∫ ∞

0
u(x)| f (tx)−A f (x)|3dλ (t)dμ(x)

)
�= 0.
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It follows that
c1(ξ ϕ ′′(ξ )−ϕ ′(ξ ))− c2(ξ ψ ′′(ξ )−ψ ′(ξ )) = 0,

so the proof is completed. �

10.4.2 Cauchy Means

Theorem 10.11 enables us to define new means when the right-hand side of the equality,
function of ξ and denoted by K(ξ ), is invertible. Then, by Theorem 10.11 we have

ξ = K−1
(

G(ϕ)
G(ψ)

)
,

what presents a new Cauchy mean.
Specially, if we choose ϕ = ϕs,ψ = ϕr, where r,s ∈ R+, r �= s, r,s �= 2, we obtain

ξ s−r =
r(r−2)
s(s−2)

1
L

∫
Ω v(x) f s(x)dν(x)− ∫

Ω u(x)(A f (x))s dμ(x)− 1
L

∫
Ω
∫ ∞
0 u(x)Cs(x)dλ (t)dμ(x)

1
L

∫
Ω v(x) f r(x)dν(x)− ∫

Ω u(x)(A f (x))r dμ(x)− 1
L

∫
Ω
∫ ∞
0 u(x)Cr(x)dλ (t)dμ(x)

,

where C(x) = | f (tx)−A f (x)|. We define new means

Ms,r =
(

r(r−2)
s(s−2)

1
L

∫
Ω As,0(x)dν(x)− ∫

Ω Bs,0(x)dμ(x)− 1
L

∫
Ω
∫ ∞
0 Cs,0(x)dλ (t)dμ(x)

1
L

∫
Ω Ar,0(x)dν(x)− ∫

Ω Br,0(x)dμ(x)− 1
L

∫
Ω
∫ ∞
0 Cr,0(x)dλ (t)dμ(x)

) 1
s−r

,

for r,s ∈ R+, r �= s, r,s �= 2. We can extend these means to excluded cases. Taking a limit
we define for r �= 2

Mr,r =

exp

(
1
L

∫
Ω Ar,1(x)dν(x)− ∫

Ω Br,1(x)dμ(x)− 1
L

∫
Ω
∫ ∞
0 Cr,1(x)dλ (t)dμ(x)

1
L

∫
Ω Ar,0(x)dν(x)− ∫

Ω Br,0(x)dμ(x)− 1
L

∫
Ω
∫ ∞
0 Cr,0(x)dλ (t)dμ(x)

− 2r−2
r(r−2)

)
,

Mr,2 = M2,r =(
r(r−2)

2

1
L

∫
Ω A2,1(x)dν(x)− ∫

Ω B2,1(x)dμ(x)− 1
L

∫
Ω
∫ ∞
0 C2,1(x)dλ (t)dμ(x)

1
L

∫
Ω Ar,0(x)dν(x)− ∫

Ω Br,0(x)dμ(x)− 1
L

∫
Ω
∫ ∞
0 Cr,0(x)dλ (t)dμ(x)

) 1
2−r

and for r = 2

M2,2 =

exp

(
1
L

∫
Ω A2,2(x)dν(x)− ∫

Ω B2,2(x)dμ(x)− 1
L

∫
Ω
∫ ∞
0 C2,2(x)dλ (t)dμ(x)

1
L

∫
Ω A2,1(x)dν(x)− ∫

Ω B2,1(x)dμ(x)− 1
L

∫
Ω
∫ ∞
0 C2,1(x)dλ (t)dμ(x)

− 1
2

)
,

where
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Ap,n(x) = f p(x)(log( f (x)))nv(x),

Bp,n(x) = (A f (x))p(log(A f (x)))nu(x),

Cp,n(x) = | f (tx)−A f (x)|p(log | f (tx)−A f (x)|)n, n = 0,1,2, p > 0.

We shall prove that this new mean is monotonic. Note that Ms,r is continuous, hence,
it is enough to prove monotonicity of mean in case where s,r, l, p ∈ R+ s,r, l, p �= 2 and
s �= r, l �= p.

Theorem 10.12 Let l ≤ s, p ≤ r, then the following inequality is valid,

Ml,p ≤ Ms,r (10.68)

that is, the mean Ms,r is monotonic.

Proof. Since the function s �→G(ϕs) is log-convex, we can apply (1.5) and get (10.68),
so the proof is completed. �

10.5 Boas-type inequality with constants

In the proof of Theorem 10.2 we have used Jensen’s inequality, where convex function is
crucial. Now, we generalize the Boas-type inequality to the class of arbitrary non-negative
functions Φ bounded from below and above with a convex function multiplied with positive
real constants a1 and a2.

Theorem 10.13 Let X, λ ,μ ,ν , μt , L, Ω, u, v and f be as in Theorem 10.2. If Φ : I →R is
a non-negative function, integrable on an interval I ⊆ R, such that exist a convex function
Ψ : I → R and real numbers a1 and a2, 0 < a1 ≤ a2 < ∞ such that

a1Ψ(y) ≤ Φ(y) ≤ a2Ψ(y), y ∈ I, (10.69)

then ∫
Ω

u(x)Φ(A f (x))dμ(x) ≤ a2

a1

1
L

∫
Ω

v(x)Φ( f (x))dν(x) (10.70)

holds.

Proof. By using the condition (10.69) and Theorem 10.2, we immediately get∫
Ω

u(x)Φ(A f (x))dμ(x) =
∫

Ω
u(x)Φ

(
1
L

∫ ∞

0
f (tx)dλ (t)

)
dμ(x)

≤ a2

∫
Ω

u(x)Ψ
(

1
L

∫ ∞

0
f (tx)dλ (t)

)
dμ(x)

≤ a2

L

∫
Ω

v(y)Ψ( f (y))dν(y) ≤ a2

a1

1
L

∫
Ω

v(x)Φ( f (x))dν(x).
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�

Following the same idea here we generalize Theorem 10.6. We consider a function Φ
bounded from below and above by a superquadratic function multiplied with positive real
constants a1 and a2.

Theorem 10.14 Suppose X, λ , μ , ν , μt , L, Ω, u, v and f are as in Theorem 10.6. If
Φ : I → R is non-negative function, integrable on an interval I ⊆ R, such that exist su-
perquadratic function ϕ : I → R and real numbers a1 and a2, 0 < a1 ≤ a2 < ∞ such that

a1ϕ(y) ≤ Φ(y) ≤ a2ϕ(y), y ∈ I, (10.71)

then ∫
Ω

u(x)Φ(A f (x))dμ(x)+
1
L

∫
Ω

∫ ∞

0
u(x)Φ(| f (tx)−A f (x))|)dλ (t)dμ(x)

≤ a2

a1
· 1
L

∫
Ω

v(x)Φ( f (x))dν(x) holds.

Proof. Combining the condition (10.71) and inequality (10.37) we obtain∫
Ω

u(x)Φ(A f (x))dμ(x)+
1
L

∫
Ω

u(x)
∫ ∞

0
Φ(| f (tx)−A f (x)|)dλ (t)dμ(x)

≤ a2

(∫
Ω

u(x)ϕ(A f (x))dμ(x)+
1
L

∫
Ω

u(x)
∫ ∞

0
ϕ(| f (tx)−A f (x)|)dλ (t)dμ(x)

)
≤ a2

L

∫
Ω

v(x)ϕ( f (x))dν(x) ≤ a2

a1L

∫
Ω

v(x)Φ( f (x))dν(x).

�

Remark 10.9 Theorem 10.13 and Theorem 10.14 improve results from [85].





Chapter11

Multidimensional Hardy and
Pólya-Knopp-type inequalities

Notice that the Boas inequality (10.1) unifies some well-known classical inequalities, such
as Hardy’s and Pólya-Knopp’s inequality. In the sequel, we state their strengthened ver-
sions, obtained independently by B. Yang et al. [103, 105] and A. Čižmešija et al. [27, 30].

11.1 Overview of the Hardy and Pólya-Knopp-type
inequalities

Let 0 < b ≤ ∞ and p,k ∈ R be such that
p

k−1
> 0. If p ∈ R \ [0,1], f is a non-negative

function, x1− k
p f ∈ Lp(0,b), and

F(x) =
∫ x

0
f (t)dt, x ∈ (0,b), (11.1)

then ∫ b

0
x−kF p(x) dx ≤

(
p

k−1

)p ∫ b

0

[
1−

(x
b

) k−1
p
]
xp−k f p(x) dx (11.2)

243
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holds, while for p ∈ (0,1) the sign of inequality in (11.2) is reversed. Moreover, if 0≤ b <

∞ and parameters p ∈ R\ [0,1] and k ∈ R are such that
p

k−1
< 0, then the inequality

∫ ∞

b
x−kF̃ p(x) dx ≤

(
p

1− k

)p ∫ ∞

b

[
1−

(
b
x

) 1−k
p
]

xp−k f p(x) dx (11.3)

holds for all non-negative functions f such that x1− k
p f ∈ Lp(b,∞), where

F̃(x) =
∫ ∞

x
f (t)dt, x ∈ (b,∞). (11.4)

For p ∈ (0,1) inequality (11.3) holds with the sign of inequality reversed. The constant∣∣∣∣ p
k−1

∣∣∣∣p is the best possible for both inequalities, that is, it cannot be replaced with any

smaller constant. The classical Hardy’s inequality follows by taking b = ∞ in (11.2), while
for b = 0 in (11.3) we get its dual inequality.

Corollary 11.1 Let 0 < b ≤ ∞, f be a non-negative function on (0,b), and p,k ∈ R be

such that 0 �= p �= 1, k �= 1, and
p

k−1
> 0. If p ∈ R\ [0,1], then the inequality

(
p

k−1

)p ∫ b

0

[
1−

(x
b

) k−1
p
]
xp−k f p(x)dx−

∫ ∞

0
x−kF p(x)dx

≥
∣∣∣∣∣
(

p
k−1

)p−1∫ b

0
x

1−k
p −1

∫ x

0
t

k−1
p −1

·
∣∣∣∣t p−k+1 f p(t)−

(
k−1

p

)p

x1−kF p(x)
∣∣∣∣dt dx

−|p|
∫ b

0
x−kF p−1(x)

∫ x

0

∣∣∣∣∣ f (t)− k−1
p

· 1
t

( t
x

) k−1
p

F(x)

∣∣∣∣∣dt dx

∣∣∣∣∣
(11.5)

holds, where F is defined by (11.1). In the case when p ∈ (0,1), the order of integrals on
the left-hand side in (11.5) is reversed.

On the other hand, suppose 0 ≤ b < ∞, f is a non-negative function on (b,∞) and

p,k ∈ R are such that 0 �= p �= 1, k �= 1, and
p

k−1
< 0. If p ∈ (−∞,0)∪ (1,∞), then the
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inequality (
p

1− k

)p∫ ∞

b

[
1−

(
b
x

) 1−k
p
]

xp−k f p(x) dx−
∫ ∞

b
x−kF̃ p(x) dx

≥
∣∣∣∣∣
(

p
1− k

)p−1∫ ∞

b
x

1−k
p −1

∫ ∞

x
t

k−1
p −1

×
∣∣∣∣t p−k+1 f p(t)−

(
1− k

p

)p

x1−kF̃ p(x)
∣∣∣∣dtdx

−|p|
∫ ∞

b
x−kF̃ p−1(x)

∫ ∞

x

∣∣∣∣ f (t)− 1− k
p

· 1
t

(x
t

) 1−k
p

F̃(x)
∣∣∣∣dtdx

∣∣∣∣
(11.6)

holds, where F̃ is defined by (11.4). In the case when p ∈ (0,1), the order of integrals on
the left-hand side in (11.6) is reversed.
Notice that for b = ∞ (11.5) becomes refinement of the classical Hardy’s inequality, while
its dual inequality for b = 0 becomes refinement of its dual inequality.

On the other hand, if 0 < b ≤ ∞, f ∈ L1(0,b) is a positive function, and

G(x) = exp

(
1
x

∫ x

0
log f (t)dt

)
, x ∈ (0,b), (11.7)

then ∫ b

0
G(x) dx ≤ e

∫ b

0

(
1− x

b

)
f (x) dx (11.8)

holds, while the inequality∫ ∞

b
G̃(x) dx ≤ 1

e

∫ ∞

b

(
1− b

x

)
f (x) dx (11.9)

holds for 0 ≤ b < ∞, 0 < f ∈ L1(b,∞), and

G̃(x) = exp

(
x
∫ ∞

x
log f (t)

dt
t2

)
, x ∈ (b,∞). (11.10)

For b = ∞ in (11.8) and for b = 0 in (11.9) we respectively get the classical Pólya-Knopp’s

inequality and its dual inequality. Notice that the constant factors e and
1
e
, respectively

involved in the right-hand sides of (11.8) and (11.9), are the best possible.

Corollary 11.2 Let 0 < b ≤ ∞, f be a positive function on (0,b), and G(x) be defined by
(11.7). Then

e
∫ b

0

(
1− x

b

)
f (x) dx−

∫ b

0
G(x) dx

≥
∣∣∣∣∫ b

0

∫ x

0
|et f (t)− xG(x)|dt

dx
x2 −

∫ b

0
G(x)

∫ x

0

∣∣∣∣log
et f (t)
xG(x)

∣∣∣∣dt
dx
x

∣∣∣∣
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holds. On the other hand, if 0 ≤ b < ∞, f is a positive function on (b,∞), and G̃(x) is
defined by (11.10), then

1
e

∫ ∞

b

(
1− b

x

)
f (x) dx−

∫ ∞

b
G̃(x) dx

≥
∣∣∣∣∫ ∞

b

∫ ∞

x

∣∣∣∣1e t f (t)− xG̃(x)
∣∣∣∣ dt
t2

dx−
∫ ∞

b
xG̃(x)

∫ b

x

∣∣∣∣log
t f (t)

e xG̃(x)

∣∣∣∣ dt
t2

dx

∣∣∣∣ .
holds.

In this chapter, we also make use of the following n-dimensional strengthened Hardy’s
inequality related to the setting with balls in R

n centered at the origin (see [29] for details).
Let p,k,R ∈ R be such that p > 1, k �= 1, and R > 0. Suppose that f is a non-negative
measurable function and the function F is defined on R

n by

F(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

B(|x|)
f (y)dy, k > 1,

∫
R

n\B(|x|)
f (y)dy, k < 1,

where B(|x|) is a ball in R
n centered at the origin and of radius |x|, while |x| denotes the

Euclidean norm of x ∈ R
n. If

p
k−1

> 0, then the inequality

∫
B(R)

|B(|x|)|−kF p(x)dx

≤
(

p
k−1

)p∫
B(R)

[
1−

( |B(|x|)|
|B(R)|

) k−1
p
]
|B(|x|)|p−k f p(x)dx

(11.11)

holds, while for
p

k−1
< 0 we have

∫
R

n\B(R)
|B(|x|)|−kF p(x)dx

≤
(

p
1− k

)p ∫
R

n\B(R)

[
1−

( |B(R)|
|B(|x|)|

) 1−k
p
]
|B(|x|)|p−k f p(x)dx.

(11.12)

Terms |B(|x|)| and |B(R)| respectively denote the volumes of B(|x|) and B(R). The con-

stant

(
p

|k−1|
)p

is the best possible for both inequalities. Observe that the first natural

generalization of the classical Hardy’s inequality to balls in R
n was given by M. Christ and

L. Grafakos in [19].
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Finally, here we state an n-dimensional Pólya-Knopp’s inequality, related to (11.11)
and (11.12), ∫

B(R)
G(x) dx < e

∫
B(R)

(
1− |B(|x|)|

|B(R)|
)

f (x)dx (11.13)

for a positive function f on B(R) and

G(x) = exp

(
1

|B(|x|)|
∫

B(|x|)
log f (y)dy

)
, x ∈ B(R),

as well as its dual inequality∫
R

n\B(R)
G̃(x) dx <

1
e

∫
R

n\B(R)

(
1− |B(R)|

|B(|x|)|
)

f (x) dx (11.14)

for a positive function f on R
n \B(R) and

G̃(x) = exp

(
|B(|x|)|

∫
R

n\B(|x|)
log f (y)

dy
|B(|x|)|2

)
, x ∈ R

n \B(R).

Moreover, as a consequence of our new refined Boas-type inequality, we derive a new
class of Hardy and Pólya-Knopp-type inequalities related to balls in R

n, along with their
respective dual inequalities, and prove that constant factors involved in their right-hand
sides are the best possible. Finally, we show that our Hardy’s and Pólya-Knopp’s inequality
differ from (11.11), (11.12), (11.13) and (11.14), although for n = 1 both classes coincide.

11.2 Refined Boas inequality with balls in R
n

In this section, we apply Theorem 10.3 to a particular multidimensional setting, namely,
to balls in R

n centered at the origin and to their dual sets. The results obtained represent
a new class of n-dimensional Hardy and Pólya-Knopp-type inequalities, different from the
existing inequalities (11.11), (11.12), (11.13) and (11.14). Moreover, the constant factors
appearing on the right-hand sides of our relations are the best possible.

Using polar coordinates in R
n we can define the ball B(R) by

B(R) = {rS : 0 ≤ r ≤ R,S ∈ Sn−1}.

and the volume of the ball B(R) is then

|B(R)| =
∫

B(R)
dx =

∫
|x|≤R

dx =
∫ R

0
rn−1

(∫
Sn−1

dS

)
dr

=
∫

Sn−1

(∫ R

0
rn−1dr

)
dS =

Rn|Sn−1|
n

,
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where |Sn−1| is an area of Sn−1.
Our first result in this direction is a refinement of an inequality by D. Luor [78, relation

(1.14)], related to cones in R
n.

Theorem 11.1 Let λ be a finite Borel measure on R+, L be defined by (10.4), Ω be
a λ -balanced Borel set in R

n, and C be a Borel subset of the unit sphere Sn−1. Let u
be a non-negative function on R

n, Φ be a non-negative convex function on an interval
I ⊆ R, and ϕ : I → R be any function fulfilling ϕ(x) ∈ ∂Φ(x), for all x ∈ Int I. Finally, let
f : Ω → R be a measurable function with values in I.

(i) If supp λ ⊆ (0,1], 0 < R ≤ ∞, and Ω = Ω1 = {x = rS : S ∈C,0 ≤ r < R}, then

1
L

∫
Ω1

Φ( f (x))
(∫ 1

|x|
R

u

(
1
t
x
)

t1−ndλ (t)
)

dx
|x| −

∫
Ω1

u(x)Φ(A1 f (x))
dx
|x|

≥ 1
L

∣∣∣∣∫Ω1

u(x)
∫ 1

0
|Φ( f (tx))−Φ(A1 f (x))|dλ (t)

dx
|x|

−
∫

Ω1

u(x)
∫ 1

0
|ϕ(A1 f (x))| · | f (tx)−A1 f (x)|dλ (t)

dx
|x|

∣∣∣∣ , (11.15)

where A1 f (x) =
∫ 1

0
f (tx)dλ (t), x ∈ Ω1.

(ii) If supp λ ⊆ [1,∞), 0 ≤ R < ∞, and Ω = Ω2 = {x = rS : S ∈C,R ≤ r < ∞}, then

1
L

∫
Ω2

Φ( f (x))

(∫ |x|
R

1
u

(
1
t
x
)

t1−n dλ (t)

)
dx
|x| −

∫
Ω2

u(x)Φ(A2 f (x))
dx
|x|

≥ 1
L

∣∣∣∣ ∫Ω2

u(x)
∫ ∞

1
|Φ( f (tx))−Φ(A2 f (x))|dλ (t)

dx
|x|

−
∫

Ω2

u(x)
∫ ∞

1
|ϕ(A2 f (x))| · | f (tx)−A2 f (x)|dλ (t)

dx
|x|

∣∣∣∣ , (11.16)

where A2 f (x) =
∫ ∞

1
f (tx)dλ (t), x ∈ Ω2.

Proof. Relation (11.15) is a direct consequence of Theorem 10.3, rewritten with X =
R

n,Ω = Ω1,dμ(x) = χΩ1(x)dx and dν(x) = dx, as well as with the function u replaced

with x �→ |x|−1u(x). Then we have
dμt

dν
(x) = t−nχtΩ1(x), t ∈ (0,1],

v(x) =
∫ 1

|x|
R

u

(
1
t
x
)

t1−n dλ (t), x ∈ Ω1,

and A f (x) = A1 f (x), x ∈ Ω1, so relation (11.11) reduces to (11.15). The proof of (11.16)
follows the same lines, by considering Ω = Ω2. In such setting we get

v(x) =
∫ |x|

R

1
u

(
1
t
x
)

t1−n dλ (t), x ∈ Ω2,

and A f = A2 f . �
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11.3 Hardy-type inequalities with balls in R
n

By taking C = Sn−1, that is, by setting a λ -balanced set Ω to be a ball in R
n centered at the

origin or its corresponding dual set, and by choosing a suitable measure λ and a weight
function u, we obtain the following sequence of new refined strengthened inequalities of
the Hardy type.

Theorem 11.2 Let n ∈ N, p ∈ R\ [0,1) and k ∈ R, k �= n.

(i) If 0 < R ≤ ∞,
p

k−n
> 0, and f is a non-negative measurable function on B(R), then

the inequality(
p

k−n

)p∫
B(R)

|x|p−k

(
1−

( |x|
R

) k−n
p
)

f p(x)dx

−
∫

B(R)
|x|−k (H f (x))p dx

≥
∣∣∣∣∣
(

p
k−n

)p−1∫
B(R)

|x|−k
∫ 1

0
t

k−n
p −1

∣∣∣|x|ptn−k+p f p(tx)

−
(

k−n
p

)p

(H f (x))p

∣∣∣∣ dt dx−|p|
∫
B(R)

|x|−k(H f (x))p−1

·
∫ 1

0

∣∣∣∣|x| f (tx)− k−n
p

t
k−n

p −1H f (x)
∣∣∣∣dt dx

∣∣∣∣ , (11.17)

holds, where

H f (x) = |x|
∫ 1

0
f (tx) dt, x ∈ B(R). (11.18)

(ii) If 0 ≤ R < ∞,
p

k−n
< 0, and f is a non-negative measurable function on R

n \B(R),

then (
p

n− k

)p∫
R

n\B(R)
|x|p−k

(
1−

(
R
|x|

) n−k
p
)

f p(x)dx

−
∫
R

n\B(R)
|x|−k (H̃ f (x)

)p
dx

≥
∣∣∣∣∣
(

p
n− k

)p−1∫
R

n\B(R)
|x|−k

∫ ∞

1
t

k−n
p −1

∣∣∣|x|ptn−k+p f p(tx)

−
(

n− k
p

)p

(H̃ f (x))p

∣∣∣∣ dt dx−|p|
∫
R

n\B(R)
|x|−k(H̃ f (x))p−1

·
∫ ∞

1

∣∣∣∣|x| f (tx)− n− k
p

t
k−n

p −1H̃ f (x)
∣∣∣∣dt dx

∣∣∣∣ , (11.19)
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where
H̃ f (x) = |x|

∫ ∞

1
f (tx) dt, x ∈ R

n \B(R). (11.20)

For p ∈ (0,1] relations (11.17) and (11.19) hold with swapped order of the inegrals on
their respective left-hand sides.

Proof. Follows from Theorem 10.3 and Theorem 11.1 by rewritting (10.24), that is,
(11.15) and (11.16), with some particular parameters. Namely, let X = R

n, I = [0,∞),
u(x) = |x|−n, dν(x) = dx, and Φ(x) = xp, p �= 0, that is, ϕ(x) = pxp−1. In the case (i),

let also Ω = B
(
R

k−n
p

)
, dλ (t) = χ(0,1)(t)dt and dμ(x) = χ

B

(
R

k−n
p

)(x)dx. Then we have

L = 1,
dμt

dν
(x) = t−nχ

B

(
tR

k−n
p

)(x) and

v(x) =
∫ 1

0

∣∣∣∣1t x

∣∣∣∣−n

t−nχ
B

(
tR

k−n
p

)(x)dt = |x|−n
∫ 1

0
χ

B

(
tR

k−n
p

)(x)dt

= |x|−n
∫ 1

|x|
R

k−n
p

dt = |x|−n
(

1− |x|
R

k−n
p

)
, x ∈ B

(
R

k−n
p

)
,

where we used 0 ≤ |x| ≤ tR
k−n

p < R
k−n

p , i.e. 0 ≤ |x|
R

k−n
p

≤ t < 1. Replace the function f in

(10.24) with the function g : B
(
R

k−n
p

)
→ R, g(x) = |x| p

k−n−1 f
(
|x| p

k−n−1x
)
. Then

Ag(x) = |x| p
k−n−1

∫ 1

0
t

p
k−n−1 f

(
t

p
k−n |x| p

k−n
x
|x|

)
dt

=
k−n

p
1
|x|

∫ |x|
p

k−n

0
f

(
r
|x|x

)
dr,

where we applied the substitution r = (t|x|) p
k−n . In this setting, by using polar coordinates,

the first integral on the left-hand side of inequality (10.24) becomes∫
B

(
R

k−n
p

) |x|p( p
k−n−1)−n

(
1− |x|

R
k−n

p

)
f p
(
|x| p

k−n−1x
)

dx

=
∫

Sn−1
dS

∫ R
k−n

p

0
rp( p

k−n−1)−1
(

1− r

R
k−n
p

)
f p(r

p
k−n S)dr

=
k−n

p

∫
Sn−1

dS
∫ R

0
tn−1+p−k

(
1−

( t
R

) k−n
p

)
f p(tS) dt

=
k−n

p

∫
B(R)

|x|p−k

(
1−

( |x|
R

) k−n
p
)

f p(x) dx, (11.21)
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while the second integral on the left-hand side of (10.24) reduces to

(
k−n

p

)p ∫
B

(
R

k−n
p

) |x|−n−p

⎛⎝∫ |x|
p

k−n

0
f

(
r
|x|x

)
dr

⎞⎠p

dx

=
(

k−n
p

)p ∫
Sn−1

dS
∫ R

k−n
p

0
t−p−1

⎛⎝∫ t
p

k−n

0
f (rS)dr

⎞⎠p

dt

=
(

k−n
p

)p+1∫
Sn−1

dS
∫ R

0
sn−k−1

(∫ s

0
f (rS)dr

)p

ds

=
(

k−n
p

)p+1∫
B(R)

|x|−k(H f (x))p dx. (11.22)

Analogously, on the right-hand side of (10.24) we get∣∣∣∣∣∣
∫

B

(
R

k−n
p

) |x|−n−p
∫ 1

0

∣∣∣∣t p( p
k−n−1)|x|p p

k−n f p
(

t
p

k−n |x| p
k−n

x
|x|

)

−
(

k−n
p

)p
⎛⎝∫ |x|

p
k−n

0
f

(
r
|x|x

)
dr

⎞⎠p∣∣∣∣∣∣dt dx

−
(

k−n
p

)p−1

|p|
∫

B

(
R

k−n
p

) |x|−n−p

⎛⎝∫ |x|
p

k−n

0
f

(
r
|x|x

)
dr

⎞⎠p−1

·
∫ 1

0

∣∣∣∣∣∣t p
k−n−1|x| p

k−n f

(
t

p
k−n |x| p

k−n
x
|x|

)
− k−n

p

∫ |x|
p

k−n

0
f

(
r
|x|x

)
dr

∣∣∣∣∣∣dt dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Sn−1
dS

∫ R
k−n
p

0
s−p−1

∫ 1

0

∣∣∣t p( p
k−n−1)sp p

k−n f p
(
t

p
k−n s

p
k−n S

)

−
(

k−n
p

)p
⎛⎝∫ s

p
k−n

0
f (rS)dr

⎞⎠p∣∣∣∣∣∣dt ds

−
(

k−n
p

)p−1

|p|
∫

Sn−1
dS

∫ R
k−n
p

0
s−p−1

⎛⎝∫ s
p

k−n

0
f (rS)dr

⎞⎠p−1

·
∫ 1

0

∣∣∣∣∣∣t p
k−n−1s

p
k−n f

(
t

p
k−n s

p
k−n S

)
− k−n

p

∫ s
p

k−n

0
f (rS)dr

∣∣∣∣∣∣dt ds

∣∣∣∣∣∣
=

∣∣∣∣k−n
p

∫
Sn−1

dS
∫ R

0
zn−k−1

∫ 1

0

∣∣∣zpt p( p
k−n−1) f p

(
t

p
k−n zS

)
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−
(

k−n
p

)p(∫ z

0
f (rS)dr

)p∣∣∣∣ dt dz

−
(

k−n
p

)p

|p|
∫

Sn−1
dS

∫ R

0
zn−k−1

(∫ z

0
f (rS)dr

)p−1

·
∫ 1

0

∣∣∣∣t p
k−n−1z f

(
t

p
k−n zS

)
− k−n

p

∫ z

0
f (rS)dr

∣∣∣∣dt dz

∣∣∣∣
=

∣∣∣∣∣
(

k−n
p

)2 ∫
Sn−1

dS
∫ R

0
zn−k−1

∫ 1

0
w

k−n
p −1

∣∣∣zpwn−k+p f p(wzS)

−
(

k−n
p

)p(∫ z

0
f (rS)dr

)p∣∣∣∣dw dz

−
(

k−n
p

)p+1

|p|
∫

Sn−1
dS

∫ R

0
zn−k−1

(∫ z

0
f (rS)dr

)p−1

·
∫ 1

0
w

k−n
p −1

∣∣∣∣w1− k−n
p z f (wzS)− k−n

p

∫ z

0
f (rS)dr

∣∣∣∣dw dz

∣∣∣∣
=

∣∣∣∣∣
(

k−n
p

)2 ∫
B(R)

|x|−k
∫ 1

0
t

k−n
p −1

∣∣∣|x|ptn−k+p f p(tx)

−
(

k−n
p

)p

(H f (x))p

∣∣∣∣dt dx−
(

k−n
p

)p+1

|p|
∫

B(R)
|x|−k(H f (x))p−1

·
∫ 1

0

∣∣∣∣|x| f (tx)− k−n
p

t
k−n

p −1H f (x)
∣∣∣∣dt dx

∣∣∣∣ . (11.23)

Finally, (11.17) holds by combining (11.21), (11.22) and (11.23).

To obtain relation (11.19), that is, the case (ii), we consider Ω = R
n\B

(
R

n−k
p

)
, dλ (t)=

χ(1,∞)(t) dt
t2

, and dμ(x) = χ
R

n\B
(

R
n−k

p

)(x)dx. As in the case (i), here we have L = 1,

dμt

dν
(x) = t−nχ

R
n\B

(
tR

n−k
p

)(x) and

v(x) =
∫ ∞

1

∣∣∣∣1t x

∣∣∣∣−n

t−nχ
R

n\B(tR
n−k

p )
(x)

dt
t2

= |x|−n
∫ ∞

1
χ
R

n\B(tR
n−k
p )

(x)
dt
t2

= |x|−n
∫ |x|

R
n−k

p

1

dt
t2

= |x|−n

(
1− R

n−k
p

|x|

)
,

where for x ∈ R
n \B

(
tR

n−k
p

)
we know |x| > tR

n−k
p ≥ R

n−k
p , i.e.

|x|
R

n−k
p

> t ≥ 1. Similary

as in the proof of (i), in inequality (10.24) we substitute the function f with the function

g : R
n \B

(
R

n−k
p

)
→ R, g(x) = |x| p

n−k +1 f
(
|x| p

n−k−1x
)
. In that case we have

Ag(x) = |x| p
n−k +1

∫ ∞

1
t

p
n−k−1 f

(
t

p
n−k |x| p

n−k
x
|x|

)
dt
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=
n− k

p
|x|

∫ ∞

|x|
p

n−k
f

(
r
|x|x

)
dr

with applied substitution r = (t|x|) p
n−k . In this case, by using polar coordinates, the first

integral on the left-hand side in (10.24) becomes

∫
R

n\B
(

R
n−k

p

) |x|−n+p( p
n−k +1)

(
1− R

n−k
p

|x|

)
f p
(
|x| p

n−k−1x
)

dx

=
∫

Sn−1
dS

∫ ∞

R
n−k

p
r−1+p( p

n−k +1)
(

1− R
n−k

p

r

)
f p(r

p
n−k S)dr

=
n− k

p

∫
Sn−1

dS
∫ ∞

R
tn−1+p−k

(
1−

(
R
t

) n−k
p
)

f p(tS) dt

=
n− k

p

∫
R

n\B(R)
|x|p−k

(
1−

(
R
|x|

) n−k
p
)

f p(x) dx, (11.24)

while the second integral on the left-hand side in (10.24) reduces to(
n− k

p

)p ∫
R

n\B
(

R
n−k
p

) |x|p−n
(∫ ∞

|x|
p

n−k
f

(
r
|x|x

)
dr

)p

dx

=
(

n− k
p

)p∫
Sn−1

dS
∫ ∞

R
n−k
p

t p−1
(∫ ∞

t
p

n−k
f (rS)dr

)p

dt

=
(

n− k
p

)p+1∫
Sn−1

dS
∫ ∞

R
sn−k−1

(∫ ∞

s
f (rS)dr

)p

ds

=
(

n− k
p

)p+1∫
R

n\B(R)
|x|−k(H̃ f (x))p dx. (11.25)

Also, by using analogous techniques as in the proof of (10.24), on the right-hand side we
have∣∣∣∣∣∣
∫
R

n\B
(

R
n−k
p

) |x|−n+p
∫ ∞

1

∣∣∣∣t p( p
n−k +1)|x|p p

n−k f p
(

t
p

n−k |x| p
n−k

x
|x|

)

−
(

n− k
p

)p( ∫ ∞

|x|
p

n−k
f

(
r
|x|x

)
dr

)p∣∣∣∣ dt
t2

dx

−
(

n− k
p

)p−1

|p|
∫
R

n\B
(

R
n−k
p

) |x|−n+p
(∫ ∞

|x|
p

n−k
f

(
r
|x|x

)
dr

)p−1

·
∫ ∞

1

∣∣∣∣t p
n−k +1|x| p

n−k f

(
t

p
n−k |x| p

n−k
x
|x|

)
− n− k

p

∫ ∞

|x|
p

n−k
f

(
r
|x|x

)
dr

∣∣∣∣ dt
t2

dx

∣∣∣∣
=

∣∣∣∣ ∫
Sn−1

dS
∫ ∞

R
n−k

p
sp−1

∫ ∞

1

∣∣∣t p( p
n−k +1)sp p

n−k f p
(
t

p
n−k s

p
n−k S

)
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−
(

n− k
p

)p( ∫ ∞

s
p

n−k
f (rS)dr

)p∣∣∣∣ dt
t2

ds

−
(

n− k
p

)p−1

|p|
∫

Sn−1
dS

∫ ∞

R
n−k
p

sp−1
( ∫ ∞

s
p

n−k
f (rS)dr

)p−1

∫ ∞

1

∣∣∣∣t p
n−k +1s

p
n−k f

(
t

p
n−k s

p
n−k S

)
− n− k

p

∫ ∞

s
p

n−k
f (rS)dr

∣∣∣∣ dt
t2

ds

∣∣∣∣
=

∣∣∣∣n− k
p

∫
Sn−1

dS
∫ ∞

R
zn−k−1

∫ ∞

1

∣∣∣zpt p( p
n−k +1) f p

(
t

p
n−k zS

)
−

(
n− k

p

)p(∫ ∞

z
f (rS)dr

)p∣∣∣∣ dt
t2

dz

−
(

n− k
p

)p

|p|
∫

Sn−1
dS

∫ ∞

R
zn−k−1

(∫ ∞

z
f (rS)dr

)p−1

·
∫ ∞

1

∣∣∣∣t p
n−k +1z f

(
t

p
n−k zS

)
− n− k

p

∫ ∞

z
f (rS)dr

∣∣∣∣ dt
t2

dz

∣∣∣∣
=

∣∣∣∣∣
(

n− k
p

)2 ∫
Sn−1

dS
∫ ∞

R
zn−k−1

∫ ∞

1

∣∣∣∣wn−k+pzp f p(wzS)−
(

n− k
p

)p(∫ ∞

z
f (rS)dr

)p∣∣∣∣
·wk−n

p −1dw dz−
(

n− k
p

)p+1

|p|
∫

Sn−1
dS

∫ ∞

R
zn−k−1

(∫ ∞

z
f (rS)dr

)p−1

·
∫ ∞

1

∣∣∣∣wn−k
p +1z f (wzS)− n− k

p

∫ ∞

z
f (rS)dr

∣∣∣∣wk−n
p −1dw dz

∣∣∣∣
=

∣∣∣∣∣
(

n− k
p

)2 ∫
R

n\B(R)
|x|−k

∫ ∞

1
t

k−n
p −1

∣∣∣|x|ptn−k+p f p(tx)

−
(

n− k
p

)p

(H̃ f (x))p

∣∣∣∣dt dx−
(

n− k
p

)p+1

|p|
∫
R

n\B(R)
|x|−k(H̃ f (x))p−1

·
∫ ∞

1

∣∣∣∣|x| f (tx)− n− k
p

t
k−n

p −1H̃ f (x)
∣∣∣∣dt dx

∣∣∣∣ . (11.26)

Inequality (11.19) follows by combining (11.24), (11.25) and (11.26), and by multiplying

with

(
p

n− k

)p+1

. �

For n = 1, inequalities (11.17) and (11.19) respectively reduce to inequalities (11.5)
and (11.6), obtained in [21] and [28].
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11.4 The best constant for Hardy-type inequality

Observe that the right-hand sides of inequalities (11.17) and (11.19) are non-negative.
Moreover, the constants involved in their left-hand sides are shown to be the best possible.
That result is given in the following theorem.

Theorem 11.3 Let n ∈ N, p ∈ R\ [0,1), and k ∈ R, k �= n.

(i) If 0 < R ≤ ∞,
p

k−n
> 0, f is a non-negative function on B(R), and H f is defined

by (11.18), then∫
B(R)

|x|−k (H f (x))p dx

≤
(

p
k−n

)p ∫
B(R)

|x|p−k

[
1−

( |x|
R

) k−n
p
]

f p(x) dx.

(11.27)

(ii) If 0 ≤ R < ∞,
p

k−n
< 0, f is a non-negative function on R

n \B(R), and H̃ f is

given by (11.20), then∫
R

n\B(R)
|x|−k (H̃ f (x)

)p
dx

≤
(

p
n− k

)p ∫
R

n\B(R)
|x|p−k

[
1−

(
R
|x|

) n−k
p
]

f p(x) dx.

(11.28)

The constant

∣∣∣∣ p
k−n

∣∣∣∣p is the best possible for both inequalities. For p ∈ (0,1], the signs of

inequality in (11.27) and (11.28) are reversed.

Proof. We only need to prove that

∣∣∣∣ p
k−n

∣∣∣∣p is the best possible constant for inequalities

(11.27) and (11.28). Consider the case (i) first. For a sufficiently small ε > 0, and the

function fε : B(R) → R defined by fε (x) = |x| k−n+ε
p −1, the left-hand side of (11.27) is

equal to

Lε =
∫

B(R)
|x|−k

(
|x|

∫ 1

0
t

k−n+ε
p −1|x| k−n+ε

p −1dt

)p

dx

=
∫

B(R)
|x|−n+ε

(∫ 1

0
t

k−n+ε
p −1dt

)p

dx =
(

p
k−n+ ε

)p∫
B(R)

|x|−n+ε dx
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=
(

p
k−n+ ε

)p ∫
Sn−1

dS
∫ R

0
rε−1 dr =

(
p

k−n+ ε

)p

|Sn−1| · R
ε

ε
,

while on the right-hand side of (11.27) we get

Rε =
(

p
k−n

)p∫
B(R)

|x|−n+ε

(
1−

( |x|
R

) k−n
p
)

dx

≤
(

p
k−n

)p∫
B(R)

|x|−n+ε dx =
(

p
k−n

)p∫
Sn−1

dS
∫ R

0
rε−1 dr

=
(

p
k−n

)p

|Sn−1| · R
ε

ε
.

Therefore, 1 ≤ Rε
Lε

≤
(

k−n+ ε
k−n

)p

. Since

(
k−n+ ε

k−n

)p

↘ 1, as ε ↘ 0, the constant( p
k−n

)p
is the best possible for (11.27). The proof that the constant

(
p

n− k

)p

is the best

possible for (11.28) follows the same lines, considering the function fε : R
n \B(R) → R,

fε (x) = |x| k−n−ε
p −1. For this function, on the left-hand side in (11.28) we obtain

Lε =
∫
R

n\B(R)
|x|−k

(
|x|

∫ ∞

1
t

k−n−ε
p −1|x| k−n−ε

p −1dt

)p

dx

=
∫
R

n\B(R)
|x|−n−ε

( ∫ ∞

1
t

k−n−ε
p −1dt

)p

dx =
(

p
n− k+ ε

)p ∫
R

n\B(R)
|x|−n−ε dx

=
(

p
n− k+ ε

)p ∫
Sn−1

dS
∫ ∞

R
r−ε−1 dr =

(
p

n− k+ ε

)p

|Sn−1| · 1
εRε ,

while on the right-hand side in (11.28) we have

Rε =
(

p
n− k

)p∫
R

n\B(R)
|x|−n−ε

(
1−

(
R
|x|

) n−k
p
)

dx

≤
(

p
n− k

)p∫
R

n\B(R)
|x|−n−ε dx =

(
p

n− k

)p∫
Sn−1

dS
∫ ∞

R
r−ε−1 dr

=
(

p
n− k

)p

|Sn−1| · 1
εRε ,

and therefrom we easily get 1 ≤ Rε
Lε

≤
(

n− k+ ε
n− k

)p

. Since

(
n− k+ ε

n− k

)p

↘ 1 as ε ↘ 0,

the constant
( p

n−k

)p
is the best possible for (11.28). �

If R = ∞ in (11.27) and R = 0 in (11.28), we immediately get the following new mul-
tidimensional Hardy-type inequality.
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Corollary 11.3 Let n ∈ N, p ∈ R \ [0,1), and k ∈ R, k �= n. Let f : R
n → R be a non-

negative measurable function and H f and H̃ f be defined by (11.18) and (11.20) respec-

tively. If
p

k−n
> 0, then the inequality

∫
R

n |x|−k(H f (x))p dx ≤
(

p
k−n

)p∫
R

n |x|p−k f p(x)dx (11.29)

holds, while for
p

k−n
< 0 we have

∫
R

n
|x|−k(H̃ f (x))p dx ≤

(
p

n− k

)p ∫
R

n
|x|p−k f p(x)dx. (11.30)

The constant

∣∣∣∣ p
k−n

∣∣∣∣p is the best possible for both inequalities. Moreover, for p ∈ (0,1]

the signs of inequality in (11.29) and (11.30) are reversed.

11.5 Pólya-Knopp-type inequalities with balls in R
n

We continue our analysis by obtaining the refined Pólya-Knopp-type inequality. The fol-
lowing theorem generalises and refines inequalities (11.8) and (11.9).

Theorem 11.4 Let n ∈ N.

(i) If 0 < R ≤ ∞, f is a positive measurable function on B(R), and

G f (x) = exp

(∫ 1

0
log f (tx) dt

)
, x ∈ B(R), (11.31)

then the inequality

en
∫

B(R)

(
1− |x|

R

)
f (x) dx−

∫
B(R)

Gf (x) dx

≥
∣∣∣∣ ∫

B(R)

∫ 1

0
|(et)n f (tx)−Gf (x)| dt dx

−
∫

B(R)
Gf (x)

∫ 1

0

∣∣∣∣log
(et)n f (tx)

Gf (x)

∣∣∣∣dt dx

∣∣∣∣ (11.32)

holds.

(ii) If 0 ≤ R < ∞, f is a positive measurable function on R
n \B(R), and

G̃ f (x) = exp

(∫ ∞

1
log f (tx)

dt
t2

)
, x ∈ R

n \B(R), (11.33)
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then

e−n
∫
R

n\B(R)

(
1− R

|x|
)

f (x) dx−
∫
R

n\B(R)
G̃ f (x) dx

≥
∣∣∣∣ ∫

R
n\B(R)

∫ ∞

1

∣∣∣∣( t
e

)n
f (tx)− G̃ f (x)

∣∣∣∣ dt
t2

dx

−
∫
R

n\B(R)
G̃ f (x)

∫ ∞

1

∣∣∣∣log
(et)n f (tx)

G̃ f (x)

∣∣∣∣ dt
t2

dx

∣∣∣∣ . (11.34)

Proof. Follows from Theorem 10.3 and Theorem 11.1 by considering X = R
n, I =

R, u(x) = |B(|x|)|−1, dν(x) = dx, and Φ(x) = ϕ(x) = ex. To get (11.32), we also set
Ω = B(R), dλ (t) = χ(0,1)(t) dt and dμ(x) = χB(R)(x) dx. In that case, we have L = 1,
dμt

dν
(x) = t−nχB(tR)(x) and

v(x) =
∫ 1

0

1

|B(| 1t x|)|
t−nχB(tR)(x) dt =

1
|B(|x|)|

∫ 1

0
χB(tR)(x) dt

=
1

|B(|x|)|
∫ 1

|x|
R

dt =
1

|B(|x|)|
(

1− |x|
R

)
, x ∈ B(R),

where we know that for x ∈ B(tR), 0 ≤ |x| ≤ tR ≤ R holds, i.e. 0 ≤ |x|
R ≤ t ≤ 1. Further,

replace the function f in (10.24) with the function g : B(R)→R, g(x) = log(|B(|x|)| f (x)).
Then we have

Ag(x) =
∫ 1

0
g(tx)dt =

∫ 1

0
log(tn|B(|x|)| f (tx))dt

= n
∫ 1

0
log t dt + log |B(|x|)|+

∫ 1

0
log f (tx)dt

= −n+ log|B(|x|)|+
∫ 1

0
log f (tx)dt.

The first intergal on the left-hand side of (10.24) becomes∫
B(R)

1
|B(|x|)|

(
1− |x|

R

)
|B(|x|)| f (x)dx =

∫
B(R)

(
1− |x|

R

)
f (x) dx, (11.35)

and the corresponding second integral reduces to∫
B(R)

1
|B(|x|)| exp

(
−n+ log|B(|x|)|+ log

∫ 1

0
log f (tx) dt

)
dx

= e−n
∫

B(R)
exp

(∫ 1

0
log f (tx) dt

)
dx = e−n

∫
B(R)

Gf (x) dx.

(11.36)

Since Φ(g(x)) = exp(log(|B(|x|)| f (x)) = |B(|x|)| f (x) and

Φ(Ag(x)) = exp

(
−n+ log|B(|x|)|+

∫ 1

0
log f (tx)dt

)
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= e−n|B(|x|)|Gf (x),

on the right-hand side of (10.24) we obtain∣∣∣∣ ∫
B(R)

1
|B(|x|)|

∫ 1

0

∣∣tn|B(|x|)| f (tx)− e−n|B(|x|)|Gf (x)
∣∣dt dx

−
∫

B(R)

1
|B(|x|)|

∫ 1

0
e−n|B(|x|)|Gf (x)

·
∣∣∣∣log(tn|B(|x|)| f (tx))+n− log|B(|x|)|−

∫ 1

0
log f (tx)dt

∣∣∣∣ dt dx

∣∣∣∣
=

∣∣∣∣ ∫
B(R)

∫ 1

0
|tn f (tx)− e−nG f (x)|dt dx− e−n

∫
B(R)

Gf (x)
∫ 1

0
|n log t

+ log |B(|x|)|+ log f (tx)+n− log|B(|x|)|− logGf (x)| dt dx|
=

∣∣∣∣ ∫
B(R)

∫ 1

0

∣∣tn f (tx)− e−nG f (x)
∣∣ dt dx

−e−n
∫

B(R)
Gf (x)

∫ 1

0

∣∣∣∣log
(et)n f (tx)

Gf (x)

∣∣∣∣ dt dx

∣∣∣∣ . (11.37)

Finally, (11.32) holds by combining (11.35), (11.36) and (11.37), and then multiplying the
whole inequality with en.

Inequality (11.34) can be derived by a similar technique, by taking Ω = R
n \ B(R),

dλ (t) = χ[1,∞)(t) dt
t2

, and dμ(x) = χ
R

n\B(R)(x) dx. Then L = 1,
dμt

dν
(x) = t−nχ

R
n\B(tR)(x)

and

v(x) =
∫ ∞

1

∣∣∣∣B(1
t
|x|
)∣∣∣∣−1

t−nχ
R

n\B(tR)(x)
dt
t2

=
1

|B(|x|)|
∫ ∞

1
χ
R

n\B(tR)(x)
dt
t2

=
1

|B(|x|)|
∫ |x|

R

1

dt
t2

=
1

|B(|x|)|
(

1− R
|x|

)
, x ∈ R

n \B(R),

because we know that for x ∈ R
n \B(tR) is |x| > tR ≥ R, i.e. |x|

R > t ≥ 1. If we replace the
function f from (10.24) with g : R

n \B(R) → R, g(x) = log (|B(|x|)| f (x)), we get

Ag(x) =
∫ ∞

1
g(tx)

dt
t2

=
∫ ∞

1
log(tn|B(|x|)| f (tx))

dt
t2

= n
∫ ∞

1
log t

dt
t2

+ log |B(|x|)|+
∫ ∞

1
log f (tx)

dt
t2

= n+ log|B(|x|)|+
∫ ∞

1
log f (tx)

dt
t2

and

Φ(Ag(x)) = exp

(
n+ log|B(|x|)|+

∫ ∞

1
log f (tx)

dt
t2

)
= en|B(|x|)|G̃ f (x),
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while Φ(g(x)) = |B(|x|)| f (x) remains as in (i). The first integral on the left-hand side in
the inequality (10.24) becomes∫

R
n\B(R)

1
|B(|x|)|

(
1− R

|x|
)
|B(|x|)| f (x)dx =

∫
R

n\B(R)

(
1− R

|x|
)

f (x) dx, (11.38)

for the second integral on the left-hand side in (10.24) we get∫
R

n\B(R)

1
|B(|x|)|e

n |B(|x|)|G̃ f (x)dx = en
∫
R

n\B(R)
G̃ f (x)dx, (11.39)

and on the right-hand side of the inequality (10.24) we obtain∣∣∣∣ ∫
R

n\B(R)

1
|B(|x|)|

∫ ∞

1

∣∣tn|B(|x|)| f (tx)− en|B(|x|)|G̃ f (x)
∣∣ dt
t2

dx

−
∫
R

n\B(R)

1
|B(|x|)|

∫ ∞

1
en|B(|x|)|G̃ f (x)

·
∣∣∣∣log(tn|B(|x|)| f (tx))−n− log|B(|x|)|−

∫ ∞

1
log f (tx)

dt
t2

∣∣∣∣ dt
t2

dx

∣∣∣∣
=

∣∣∣∣ ∫
R

n\B(R)

∫ ∞

1
|tn f (tx)− enG̃ f (x)| dt

t2
dx− en

∫
R

n\B(R)
G̃ f (x)

∫ ∞

1
|n logt

+ log |B(|x|)|+ log f (tx)−n− log|B(|x|)|−
∫ ∞

1
log f (tx)

dt
t2

∣∣∣∣ dt
t2

dx

∣∣∣∣
=

∣∣∣∣ ∫
R

n\B(R)

∫ ∞

1

∣∣tn f (tx)− enG̃ f (x)
∣∣ dt

t2
dx

−en
∫
R

n\B(R)
G̃ f (x)

∫ ∞

1

∣∣∣∣log
(et)n f (tx)

G̃ f (x)

∣∣∣∣ dt
t2

dx

∣∣∣∣ . (11.40)

Finally, by combining (11.38), (11.39) and (11.40) and by multiplying with e−n we get
(11.34). �
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11.6 The best constant for the Pólya-Knopp-type
inequality

As we have already discused the best constant for the Hardy-type inequality, here we anal-
yse the best constant for the following strenghthened Pólya-Knopp-type inequality.

Theorem 11.5 Let n ∈ N.

(i) If 0 < R ≤ ∞, f is a positive measurable function on B(R), and G f is defined by
(11.31), then the inequality∫

B(R)
Gf (x) dx ≤ en

∫
B(R)

(
1− |x|

R

)
f (x) dx (11.41)

holds and the constant en is the best possible.

(ii) If 0≤ R < ∞, f is a positive measurable function on R
n \B(R), and G̃ f is defined by

(11.33), then the inequality∫
R

n\B(R)
G̃ f (x) dx ≤ e−n

∫
R

n\B(R)

(
1− R

|x|
)

f (x) dx (11.42)

holds and the constant e−n is the best possible.

Proof. Since the right-hand sides of (11.32) and (11.34) are non-negative, inequalities
(11.41) and (11.42) are their respective direct consequences. Now, we discuss the best
possible constant for (11.41). For arbitrary ε > 0, let the function fε : B(R)→R be defined
by fε (x) = e−n|B(|x|)|ε−1. Calculating the left-hand side of (11.41) for fε , we obtain

Lε =
∫

B(R)
exp

(∫ 1

0
log

(
e−n|B(|tx|)|ε−1) dt

)
dx

=
∫

B(R)
exp

(
−n+

∫ 1

0
(ε −1)(n logt + log |B(|x|)|) dt

)
dx

= e−n
∫

B(R)
exp

(
n(ε −1)

∫ 1

0
log t dt +(ε −1) log |B(|x|)|

)
dx

= e−nε
∫

B(R)
|B(|x|)|ε−1 dx = e−nε

∫
B(R)

(
|Sn−1| |x|

n

n

)ε−1

dx

= e−nε 1
nε−1 |Sn−1|ε−1

∫
Sn−1

dS
∫ R

0
rn−1+n(ε−1) dr

= e−nε |Sn−1|ε−1

nε−1 |Sn−1|R
nε

nε
= e−nε |Sn−1|εRnε

nε ε
= e−nε |B(R)|ε

ε
.
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On the other hand, the right-hand side of (11.41), rewritten for fε , can be estimated as

Rε = en · e−n
∫

B(R)

(
1− |x|

R

)
|B(|x|)|ε−1 dx

≤
∫

B(R)
|B(|x|)|ε−1 dx =

|B(R)|ε
ε

.

Since 1 ≤ Rε
Lε

≤ enε ↘ 1, as ε ↘ 0, the constant en is the best possible for the inequality

(11.41). The proof that e−n is the best possible constant for (11.42) is similar, if the function
fε : R

n \B(R) → R, fε = en|B(|x|)|−ε−1 is considered. In that case, on the left-hand side
we have

Lε =
∫
R

n\B(R)
exp

(∫ ∞

1
log

(
en|B(|tx|)|−ε−1) dt

t2

)
dx

=
∫
R

n\B(R)
exp

(
n+

∫ ∞

1
(−ε −1) log |tnB(|x|)| dt

t2

)
dx

= en
∫
R

n\B(R)
exp

(
n(−ε −1)

∫ ∞

1
log t

dt
t2

+(−ε −1) log |B(|x|)|
)

dx

= e−nε
∫
R

n\B(R)
|B(|x|)|−ε−1 dx = e−nε

∫
R

n\B(R)

(
|Sn−1| |x|

n

n

)−ε−1

= e−nε 1
n−ε−1 |Sn−1|−ε−1

∫
Sn−1

dS
∫ ∞

R
rn−1+n(−ε−1) dr

= e−nε 1
n−ε−1 |Sn−1|−ε R−nε

nε
= e−nε |B(R)|−ε

ε
,

while the right-hand side can be estimated with

Rε = e−n · en
∫
R

n\B(R)

(
1− R

|x|
)
|B(|x|)|−ε−1 dx

≤
∫
R

n\B(R)
|B(|x|)|−ε−1 =

|B(R)|−ε

ε
.

Since 1 ≤ Rε
Lε

≤ enε ↘ 1, as ε ↘ 0, the constant e−n is the best possible for (11.42). �

For R = ∞ in (11.41) and R = 0 in (11.42), we get a new multidimensional Pólya-
Knopp-type inequality.

Corollary 11.4 If f is a positive measurable function on R
n, and G f , G̃ f are respectively

defined by (11.31) and (11.33), then the inequalities∫
R

n G f (x)dx ≤ en
∫
R

n f (x)dx

and ∫
R

n G̃ f (x)dx ≤ e−n
∫
R

n f (x)dx

hold. The constants en and e−n are the best possible.
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Remark 11.1 Notice that (11.41) and (11.42) respectively follow from (11.27) and

(11.28) by rewriting those inequalities for k = p > n, and f replaced with f
1
p , and by

letting p → ∞. In particular, observe that lim
p→∞

(
p

p−n

)p

= en.

Although being related to the setting with balls in R
n centered at the origin, inequalities

(11.27), (11.28) and (11.41), (11.42) are not equivalent with the previously obtained Hardy
and Pólya-Knopp-type inequalities (11.11), (11.12), (11.13), and (11.14). Therefore, our
inequalities can be considered as a new class of generalizations of the classical Hardy’s and
Pólya-Knopp’s inequality in a multidimensional setting. However, for n = 1 inequalities
of both type coincide.





Chapter12
The Boas functional and its
properties

In this chapter we study various Boas-type inequalities. By exploring non-negativity of
the difference between the right-hand side and the left-hand side in inequality (10.9), we
introduce an isotonic linear functional, the so-called Boas functional, i.e.

ξ ( f ) =
1
L

∫
Ω

v(x)Φ( f (x))dν(x)−
∫

Ω
u(x)Φ(A f (x))dμ(x). (12.1)

In a sequel we examine this functional of the Boas type. We present results from [32]. The
aim is to explore its properties and a suitable choice of a convex function allow us to state
and prove new mean value theorems of the Lagrange and Cauchy-type as well as define
a new class of two-parameter Cauchy-type means. One of its properties is monotonicity,
which can be raised on some higher level by using some specific class of convex functions,
such as logarithmically and exponentially convex functions.

12.1 The Boas functional and exponential convexity

In the previous chapter we gave the examples based on applications of Theorem 10.2 to
specific measures and sets. Here, we continue in that direction. With (6.1) we introduced
functions ϕs, s ∈ R. Since ϕs is a convex function for each s ∈ R, we can apply Corollary
10.1 on each of them.

265
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Corollary 12.1 Let the conditions of Corollary 10.1 be fulfilled with a positive function
f and let ϕs be defined by (6.1). Then∫

Ω
u(x)ϕs(A f (x))dμ(x) ≤ 1

L

∫
Ω

v(x)ϕs( f (x))dν(x) (12.2)

holds for all s ∈ R.

Remark 12.1 Observe that not the all functions ϕs are non-negative. Therefore, Corol-
lary 10.1 does not assure inequality (12.2) to hold if there exists a set S⊆ supp λ , λ (S)> 0,
such that tΩ ⊂ Ω,t ∈ S.

Corollary 12.1 enables us to define the Boas difference, that is, the non-negative func-
tion ξ : R → [0,∞),

ξ (s) =
1
L

∫
Ω

v(x)ϕs( f (x))dν(x)−
∫

Ω
u(x)ϕs(A f (x))dμ(x). (12.3)

In particular, under the conditions of Corollary 10.2, Corollary 10.3 and Corollary 10.4,
we respectively define the following Boas differences:

ξ1(s) =
1
L

∫
Ω

w(x)ϕs( f (x))
dx
x
−
∫

Ω
u(x)ϕs(A f (x))

dx
x

, (12.4)

ξ2(s) =
∫ b

0
w(x)ϕs( f (x))

dx
x
−
∫ b

0
u(x)ϕs(H f (x))

dx
x

, (12.5)

ξ3(s) =
∫ ∞

b
w(x)ϕs( f (x))

dx
x
−
∫ ∞

b
u(x)ϕs(H̃ f (x))

dx
x

. (12.6)

The same can be done also with Corollary 10.5 and Corollary 10.7, so we shall omit it.

Remark 12.2 For u(x)≡ 1, in Corollary 10.3 we have w(x) = x
∫ b

x

dt
t2

= 1− x
b
, so (12.5)

becomes

ξ2(s) =
∫ b

0

(
1− x

b

)
ϕs( f (x))

dx
x
−
∫ b

0
ϕs(H f (x))

dx
x

.

Inequality ξ2(s) ≥ 0 was obtained in [53].

Remark 12.3 For u(x)≡ 1, in Corollary 10.4 we have w(x) =
1
x

∫ x

b
dt = 1− b

x
, so (12.6)

reduces to

ξ3(s) =
∫ ∞

b

(
1− b

x

)
ϕs( f (x))

dx
x
−
∫ ∞

b
ϕs(H̃ f (x))

dx
x

.

In that case, inequality ξ3(s) ≥ 0 was obtained in [53].

By using the definition and properties of an exponential convex function introduced in the
first chapter, we obtain the following result. It is Lyapunov-type inequality related to the
Boas differences (12.3).
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Theorem 12.1 Let the conditions of Corollary 10.1 be fulfilled with a positive function
f and let ϕs be defined by (6.1). Then the function ξ : R → [0,∞) defined by (12.3) is
continuous, exponentially convex and the inequality

[ξ (r)]q−p ≤ [ξ (p)]q−r · [ξ (q)]r−p (12.7)

holds for all p,q,r ∈ R, such that p < r < q.

Proof. First, we prove that ξ is continuous on R. Since the mapping s �→ xs

s(s−1)
is

continuous on R\{0,1} for all x ∈ R+, we only need to prove the continuity of ξ in s = 0
and s = 1. Since under the assumptions of Corollary 10.1 we have

1
L

∫
Ω

v(x) dν(x)−
∫

Ω
u(x) dμ(x) = 0, (12.8)

the L’Hospital rule [98] implies

lim
s→0

ξ (s) = lim
s→0

[
1
L

∫
Ω

v(x)
f s(x)

s(s−1)
dν(x)−

∫
Ω

u(x)
(A f (x))s

s(s−1)
dμ(x)

]
= lim

s→0

1
s(s−1)

[
1
L

∫
Ω

v(x) f s(x) dν(x)−
∫

Ω
u(x)(A f (x))s dμ(x)

]
= lim

s→0

1
2s−1

[
1
L

∫
Ω

v(x) f s(x) log f (x)dν(x)

−
∫

Ω
u(x)(A f (x))s log A f (x)dμ(x)

]
= −1

L

∫
Ω

v(x) log f (x)dν(x)+
∫

Ω
u(x) logA f (x)dμ(x)

=
1
L

∫
Ω

v(x)ϕ0( f (x))dν(x)−
∫

Ω
u(x)ϕ0(A f (x))dμ(x) = ξ (0).

Similary, for s = 1, the identity

1
L

∫
Ω

v(x) f (x) dν(x)−
∫

Ω
u(x)A f (x) dμ(x) = 0 (12.9)

yields

lim
s→1

ξ (s) =
1
L

∫
Ω

v(x) f (x) log f (x)dν(x)−
∫

Ω
u(x)A f (x) logA f (x)dμ(x)

= ξ (1),

so ξ is continuous on the entire real line. To prove that it is exponentially convex, it
suffices to check condition (1.7). Fix k ∈ N, αi ∈ R, and si ∈ R, for i ∈ {1, . . . ,k}. Denote

si j =
si + s j

2
and define the function Φ : R+ → R by Φ(x) =

k

∑
i=1

k

∑
j=1

αiα jϕsi j(x). By using
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Lemma 7.1, we easily get

Φ′′(x) =
k

∑
i=1

k

∑
j=1

αiα jx
si j−2 =

(
k

∑
i=1

αix
si
2 −1

)2

≥ 0, x ∈ R+,

so the function Φ is convex. Thus, applying Corollary 10.1 to this function Φ, we finally
get

k

∑
i=1

k

∑
j=1

αiα jξ (si j)

=
k

∑
i=1

k

∑
j=1

αiα j

[
1
L

∫
Ω

v(x)ϕsi j( f (x)) dν(x)−
∫

Ω
u(x)ϕsi j (A f (x)) dμ(x)

]

=
1
L

∫
Ω

v(x)
k

∑
i=1

k

∑
j=1

αiα jϕsi j ( f (x)) dν(x)

−
∫

Ω
u(x)

k

∑
i=1

k

∑
j=1

αiα jϕsi j(A f (x)) dμ(x)

=
1
L

∫
Ω

v(x)Φ( f (x)) dν(x)−
∫

Ω
u(x)Φ(A f (x)) dμ(x) ≥ 0.

Therefore, (1.7) holds and ξ is exponentially convex. Since every exponentially convex
function is log-convex, (12.7) follows directly from (1.4). �

Remark 12.4 Theorem 12.1 does not hold without assuming that tΩ = Ω for λ -a.e. t ∈
supp λ . This condition was crucial in proving identities (12.8) and (12.9).

As a direct consequence of Theorem 12.1 we get an upper bound for the Boas differ-
ence ξ .

Corollary 12.2 Let the conditions of Theorem 12.1 be fulfilled. Then

ξ (r) ≤ [ξ (p)]
q−r
q−p · [ξ (q)]

r−p
q−p (12.10)

holds for all p,q,r ∈ R, such that p < r < q.

Remark 12.5 Relation (12.10) can be written as

ξ (r) ≤ inf
p,q∈R
p<r<q

[ξ (p)]
q−r
q−p · [ξ (q)]

r−p
q−p , r ∈ R.

As a consequence of Theorem 12.1, we get the following modified Galvani’s theorem
generated by the Boas difference ξ .
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Corollary 12.3 Under the conditions of Theorem 12.1, the inequality(
ξ (p)
ξ (r)

) 1
p−r

≤
(

ξ (t)
ξ (s)

) 1
t−s

. (12.11)

holds for all p,r,s,t ∈ R, such that r ≤ s, p ≤ t, r �= p, and s �= t.

Proof. Since the function ξ is exponentially convex, thus log-convex, inequality (12.11)
follows from (1.5). �

Remark 12.6 The results obtained in Theorem 12.1, Corollary 12.2 and Corollary 12.3
can be rewritten with ξi, i = 1,2,3, defined by (12.4), (12.5) and (12.6), respectively.

12.2 Mean value theorems related to the Boas
functional

Notice that each side of relation (12.11) has a form of a mean, while (12.11) as a whole
looks like an inequality between two means of the same type. Here, we justify this conjec-
ture by proving that the expressions mentioned above are means of the Cauchy type. For
more information about means and their inequalities see e.g. [16].

Let the measures λ ,μ ,ν , the number L, the λ -balanced set Ω, the interval I, and the
functions u,v, f , and A f be as in Theorem 10.2 and Corollary 10.1. First, we define the
linear functional F : C2(I) → R by

F(h) =
1
L

∫
Ω

v(x)h( f (x))dν(x)−
∫

Ω
u(x)h(A f (x))dμ(x). (12.12)

Its properties will enable us to introduce a new class of the Cauchy-type means related to
the Boas difference (12.3).

Observe that F(ϕp) = ξ (p), p ∈ R, where the functions ϕp are defined by (6.1) and
ξ denotes the Boas difference introduced by (12.3). Hence, F can be considered as a
generalized Boas difference. Moreover, according to Theorem 12.1, the mapping p �→
F(ϕp) is continuous on R.

Next, we have to adjust some known mean value theorems to our context. The first
result in this direction is the following Lagrange-type mean value theorem.

Theorem 12.2 Under the conditions of Corollary 10.1, suppose that I is a compact in-
terval in R. If h ∈C2(I), then there exists c ∈ I such that the identity

F(h) = h
′′
(c) ·F(ϕ2) (12.13)

holds, where F is defined by (12.12) and ϕ2 : I → R, ϕ2(x) =
x2

2
.
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Proof. Since h
′′

is continuous on the compact set I, there exist m = min
x∈I

h
′′
(x) and

M = max
x∈I

h
′′
(x). Define hm,hM : I → R by

hm(x) = h(x)− m
2

x2 = h(x)−mϕ2(x),

hM(x) =
M
2

x2−h(x) = Mϕ2(x)−h(x).

Since hm,hM ∈ C2(I) and h
′′
m(x) = h

′′
(x)−m ≥ 0, h

′′
M(x) = M− h

′′
(x) ≥ 0, for all x ∈ I,

we conclude that hm and hM are convex functions on I. Therefore, applying Corollary
10.1 to these functions as Φ, we get F(hm) ≥ 0 and F(hM) ≥ 0. Obviously, F(hm) =
F(h)−mF(ϕ2) and F(hM) = MF(ϕ2)−F(h), so therefrom we obtain

mF(ϕ2) ≤ F(h) ≤ MF(ϕ2). (12.14)

Notice that function ϕ2 is convex, so F(ϕ2) ≥ 0 holds by Corollary 10.1. In particular, if
F(ϕ2) = 0, then from (12.14) we get F(h) = 0, so (12.13) holds for all c ∈ I. On the other

hand, if F(ϕ2) > 0, then (12.14) yields m ≤ F(h)
F(ϕ2)

≤ M. Since h
′′

takes all values from

[m,M], there exists c ∈ I such that

h
′′
(c) =

F(h)
F(ϕ2)

,

so the proof is completed. �

Now, we state and prove a new Cauchy-type mean value theorem.

Theorem 12.3 Let I be a compact interval in R and ϕ2 : I →R be defined by ϕ2(x) =
x2

2
.

Under the conditions of Corollary 10.1, let F be defined by (12.12) and let F(ϕ2) > 0. If
the functions h1,h2 ∈ C2(I) are such that F(h1),F(h2) �= 0, and h

′′
2(x) �= 0, for all x ∈ I,

then there exists c ∈ I such that
h
′′
1(c)

h
′′
2(c)

=
F(h1)
F(h2)

. (12.15)

Proof. Define the function h0 = F(h2)h1 −F(h1)h2. Then h0 ∈ C2(I) and we have
F(h0) = F(h2)F(h1)−F(h1)F(h2) = 0. On the other hand, from Theorem 12.2 we know
that there exists c ∈ I such that F(h0) = h

′′
0(c)F(ϕ2). Since F(ϕ2) �= 0, we get h

′′
0(c) = 0,

that is, F(h2)h
′′
1(c) = F(h1)h

′′
2(c), which is equivalent to (12.15). �

A special case of Theorem 12.3 related to power functions defined on a compact in-
terval I ⊆ R+ will be of our special interest. Namely, let h1,h2 : I → R be defined by
h1(x) = xp and h2(x) = xr, where p,r ∈ R \ {0,1}, p �= r. Then h1(x) = p(p− 1)ϕp(x),
h2(x) = r(r− 1)ϕr(x), h

′′
1(x) = p(p− 1)xp−2 and h

′′
2(x) = r(r− 1)xr−2, where ϕp and ϕr

are given by (6.1). Hence, we obtain the following result.
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Corollary 12.4 Let the conditions of Corollary 10.1 be fulfilled with a positive function
f with values in a compact interval I ⊆R+ and let F(ϕs) > 0, s ∈ R\{0,1}, where ϕs and
F are defined by (6.1) and (12.12), respectively. Then(

F(ϕp)
F(ϕr)

) 1
p−r

∈ I, (12.16)

for all p,r ∈ R, (p− r)p(p−1)r(r−1) �= 0.

Proof. Fix p,r ∈ R, such that (p− r)p(p− 1)r(r− 1) �= 0. Observe that the power
functions h1 and h2 defined before the statement of Corollary 12.4 fulfill the conditions of
Theorem 12.3. Hence, there exists c ∈ I such that

p(p−1)cp−2

r(r−1)cr−2 =
F(h1)
F(h2)

. (12.17)

According to the definition (6.1) of the functions ϕs, s ∈ R, identity (12.17) reads

cp−r =
F(ϕp)
F(ϕr)

,

so we get (12.16). �

12.3 Cauchy-type means generated by the Boas
functional

Notice that expression (12.16) can be written in the form(
F(ϕp)
F(ϕr)

) 1
p−r

=
(

ξ (p)
ξ (r)

) 1
p−r

according to the definition (12.3) of the Boas difference ξ . As announced, under the con-
ditions of Corollary 12.4, we introduce a new two-variable function M with values in I,
defined by

M(p,r) =
(

ξ (p)
ξ (r)

) 1
p−r

, p,r ∈ R\ {0,1}, p �= r. (12.18)

Evidently, M is symmetric, that is, M(p,r) = M(r, p) holds for all p,r ∈ R\ {0,1}, p �= r.
Moreover, by Theorem 12.1, M is also continuous in both arguments.

Now, we would like to extend this function to R
2. Fix r ∈ R\ {0,1}. Applying conti-

nuity of the mapping ξ on R, we obtain

lim
p→0

M(r, p) = lim
p→0

M(p,r) = lim
p→0

exp

(
(logξ (p)− logξ (r))

p− r

)
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= exp

(
lim
p→0

logξ (p)− logξ (r)
p− r

)
= exp

(
logξ (r)− logξ (0)

r

)
=

(
ξ (r)
ξ (0)

) 1
r

and, analogously,

lim
p→1

M(r, p) = lim
p→1

M(p,r) = exp

(
lim
p→1

logξ (p)− logξ (r)
p− r

)
= exp

(
logξ (1)− logξ (r)

1− r

)
=
(

ξ (1)
ξ (r)

) 1
1−r

.

Thus, in order to keep continuity of M, we define

M(0,r) = M(r,0) =
(

ξ (r)
ξ (0)

) 1
r

and M(1,r) = M(r,1) =
(

ξ (r)
ξ (1)

) 1
r−1

, (12.19)

r ∈ R\ {0,1}, as in formula (12.18).
Observe that ξ is derivable for r ∈ R\ {0,1} and

ξ
′
(r) =

1
r(r−1)

[
(1−2r)ξ (r)+

1
L

∫
Ω

v(x) f r(x) log f (x)dν(x)

−
∫

Ω
u(x)(A f (x))r logA f (x) dμ(x)

]
.

Therefore, applying L’Hospital rule [98], for r ∈ R\ {0,1} we have

lim
p→r

M(p,r) = lim
p→r

M(r, p) = exp

(
lim
p→r

logξ (p)− logξ (r)
p− r

)
= exp

{
1

r(r−1)

[
1−2r+

1
ξ (r)

(
1
L

∫
Ω

v(x) f r(x) log f (x)dν(x)

−
∫

Ω
u(x)(A f (x))r logA f (x) dμ(x)

)]}
, (12.20)

which enables us to set M(r,r) = lim
p→r

M(p,r), r ∈R\{0,1}. Finally, to define M(0,0) and

M(1,1), notice that for p ∈ {0,1} we get

lim
r→p

ξ
′
(r) = lim

r→p

1
2r−1

[
−2ξ (r)+ (1−2r)ξ

′
(r)

+
1
L

∫
Ω

v(x) f r(x) log2 f (x) dν(x)

−
∫

Ω
u(x)(A f (x))r log2 A f (x) dμ(x)

]
= 2(−1)pξ (p)− lim

r→p
ξ

′
(r)+ (−1)p

[∫
Ω

u(x)(A f (x))p log2 A f (x) dμ(x)
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−1
L

∫
Ω

v(x) f p(x) log2 f (x) dν(x)
]
,

so

ξ
′
(p) = lim

r→p
ξ

′
(r)

= (−1)pξ (p)+
(−1)p

2

[∫
Ω

u(x)(A f (x))p log2 A f (x) dμ(x)

−1
L

∫
Ω

v(x) f p(x) log2 f (x) dν(x)
]
, p ∈ {0,1}.

Hence, we set

M(0,0) = lim
r→0

M(r,r) = lim
r→0

M(r,0) = exp

(
lim
r→0

logξ (r)− logξ (0)
r

)
= exp

ξ ′
(0)

ξ (0)
= exp

{
1+

1
2ξ (0)

[∫
Ω

u(x) log2 A f (x) dμ(x)

−1
L

∫
Ω

v(x) log2 f (x) dν(x)
]}

(12.21)

and

M(1,1) = lim
r→1

M(r,r) = lim
r→1

M(r,1) = exp

(
lim
r→1

logξ (r)− logξ (1)
r−1

)
= exp

ξ ′
(1)

ξ (1)
= exp

{
−1+

1
2ξ (1)

[
1
L

∫
Ω

v(x) f (x) log2 f (x) dν(x)

−
∫

Ω
u(x)A f (x) log2 A f (x) dμ(x)

]}
. (12.22)

By the above construction, we have obviously defined a continuous function M : R
2 → R,

with values in the compact interval I. Considering its other properties, in fact, we obtained
a new class of two-parametic means of the Cauchy-type. Namely, the following theorem
holds.

Theorem 12.4 Under the conditions of Corollary 12.4, let the function M : R
2 → R be

defined by relations (12.18) - (12.22). Then M is a continuous and symmetric function with
values in the compact interval I, such that the inequality

M(p,r) ≤ M(q,s) (12.23)

holds for all p,q,r,s ∈ R, p ≤ q,r ≤ s.

Proof. Taking into account the previous construction and analysis, it is only left to
prove the monotonicity property (12.23) of M. However, it follows immediately from
Corollary 12.3 and from continuity of M. �
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Remark 12.7 Further analysis could go in direction for n-exponentially convex ξ . Since
the results and technique are analogues, here we shall omit it.

We could further generalize a Hardy-type inequality to the class of arbitrary non-
negative functions bounded from below and above with a convex function multiplied with
positive real constants. This would enable us to obtain new generalizations of the classi-
cal integral Hardy, Hardy-Hilbert, Hardy- Littlewood-Polya, and Polya-Knopp inequalities
as well as of Godunovas and of some recently obtained inequalities in multidimensional
settings. Also, we could apply a similar idea to functions bounded from below and above
with a superquadratic function. This can be found in [6].
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[25] A. Čižmešija and J. Pečarić, Mixed means and Hardy’s inequality, Math. In-
equal. Appl. 1(4) (1998), 491–506.
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