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Preface

The main motivation for writing this book was to present some general aspects of general-
izations, refinements, and variants of famous Hardy’s inequality (see [48], [49], [50])

oo X p oo

1 P
/ ;/f(t)dt dx < (p—‘_’l) /fp(x)dx,p>1 0.1)
0 0 0

where f is a non-negative function, such that f € LP(R; ). Rewriting (0.1) with the func-
tion f replaced with f1/7 and then letting p — oo we obtain the limiting case of Hardy’s
inequality:
= X =

1
/exp —/logf(t)dt dx<e/f(x)dx, 0.2)

X

0 0

0

which holds for all positive functions f € L' (R..). This inequality is referred to as Pélya—
Knopp’s inequality. It was first published by K. Knopp [69] in 1928, but it was certainly
known before since Hardy himself (see [49, p. 156]) claimed that it was G. Pélya who
pointed it out to him earlier. Note that the discrete version of (0.2) is surely due to T. Car-
leman [17].

In this book an integral operator with general non-negative kernel on measure spaces
with positive o-finite measure is considered and some new weighted Hardy type inequal-
ities for convex functions and refinements of weighted Hardy type inequalities for su-
perquadratic functions are obtained. Moreover, some refinements of weighted Hardy type
inequalities for convex functions and some new refinements of discrete Hardy type in-
equalities are given. Furthermore, improvements and reverses of new weighted Hardy type
inequalities with integral operators are stated and proved. New Cauchy type mean is in-
troduced and monotonicity property of this mean is proved. By using the concept of the
subdifferential of a convex function, we refine the general Boas-type inequality. Further-
more, we get some new inequalities for superquadratic and subquadratic functions as well
as for functions which can be bounded by non-negative convex or superquadratic function.
The Boas functional and related inequality allow us to adjust Lagrange and Cauchy mean
value theorems to the context and in that way define a new class of two-parametric means
of the Cauchy-type. In the context of the maximal operator, we obtain similar results.
We also give some interesting, one-dimensional and multidimensional, examples related
to balls and cones in R".



Conventions. All measures are assumed to be positive, all functions are assumed to be
measurable, and expressions of the form 0 - oo, %, 4 (a € R), and = are taken to be equal
to zero. Further, we set Ny = {1,2, ..., k} for k € N. For a real parameter 0 # p # 1,
we denote by p’ its conjugate exponent p’ = p‘T’l, that s, % + 14 = 1. We denote by Q,
the measure of a measurable set €2 with respect to the measure . In particular, we use
the symbol | [, as an abbreviation for || |[.1(q, ,)- Also, by a weight function (shortly: a
weight) we mean a non-negative measurable function on the actual set. An interval / in R
is any convex subset of R, while by Int/ we denote its interior. By R, we denote the set of
all positive real numbers i.e. Ry = (0,00). B(-; -, -) denotes the incomplete Beta function,
defined by

X
B(x;a,b) = /t“*l(l —1)’~tar, xe[0,1], a,b > 0.
0
As usual, B(a,b) = B(1;a,b) stands for the standard Beta function. For R > 0 we denote
by B(R) a ball in R” centred at the origin and of radius R, that is, B(R) = {x € R": |x| <
R}, where |x| denotes the Euclidean norm of x € R". By its dual set we mean the set

R"\ B(R) = {x € R": x| > R}. By S"! we denote the surface of the unit ball B(1),
namely §"~! = {x € R": |x| = 1}, and by |$""!| its area.

We thank our colleagues Marjan Praljak, Ph. D. and Sajid Igbal for their valuable
comments and suggestions that improved the final version of this book.
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Chapter

Definitions and basic results

1.1 Convex functions

Convex functions are very important in the theory of inequalities. The third chapter of
the classical book of Hardy, Littlewood and Pélya [51] is devoted to the theory of convex
functions (see also [82]). In this section we give some of the results concerning convex
functions.

Definition 1.1 Let I be an interval in R. A function ®: I — R is called convex if
O(Ax+(1=2A)y) <AD(x)+ (1 —21)D(y) (1.1)

for all points x,y € I and all A € [0,1]. It is called strictly convex if the inequality (1.1)
holds strictly whenever x and y are distinct points and A € (0,1).

If —® is convex (respectively, strictly convex) then we say that ® is concave (respec-
tively, strictly concave). If @ is both convex and concave, @ is said to be affine.

Remark 1.1 (a) Forx,y€1l,p,q>0,p+¢q >0, (1.1) is equivalent to

X+
cp(p qy) <L o+ —L ).
pta ) pta p+a

(b) The simple geometrical interpretation of (1.1) is that the graph of @ lies below its
chords.
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(c) If x1,x2,x3 are three points in I such that x; < xp < x3, then (1.1) is equivalent to

x; @©(xp) 1
X2 D(x2) 1] = (x3—x2)P(x1) + (x1 —x3)P(x2) + (2 — x1)P(x3) >0
x3 @(x3) 1

which is equivalent to

X2 — X3 X1 —X2

D(xy) < D(x;) +

(I)()Q,),
X1 —X3 X1 —X3

or, more symmetrically and without the condition of monotonicity on xy,x7,x3

D(x) D(x2) D(x3)

Cr—m) =) (o) —x) T o)) =

Definition 1.2 Let I be an interval in R. A function ® : I — R is called convex in the
Jensen sense, or J-convex on / (midconvex, midpoint convex) if for all points x,y € I the

inequality
® SRR D(x) + D(y)
2 - 2
holds. A J-convex function is said to be strictly J-convex if for all pairs of points (x,y),x #
Y, strict inequality holds in (1.2).

(1.2)

In the context of continuity the following criteria of equivalence of (1.1) and (1.2) is
valid.

Theorem 1.1 Let @ : I — R be a continuous function. Then @ is a convex function if and
only if ® is a J-convex function.

Inequality (1.1) can be extended to the convex combinations of finitely many points in
I by mathematical induction. These extensions are known as discrete and integral Jensen’s
inequality.

Theorem 1.2 (THE DISCRETE CASE OF JENSEN’S INEQUALITY) A function® : I — R
is convex if and only if for all x,,...,x, € I and all scalars py,....,p, € [0,1] with P, =Y pi
we have

1 & 1 &

O — pixi | < = pi®@(xi). (1.3)

L L
Inequality (1.3) is strict if @ is a strictly convex function, all points x;,i = 1,....n,n € N
are disjoint and all scalars p; are positive.

Now, we introduce some necessary notation and recall some basic facts about convex
functions, log-convex functions (see e.g. [65], [82], [92]) as well as exponentially convex
functions (see e.g [15], [79], [81]).

In 1929, S. N. Bernstein introduced the notion of exponentially convex function in [15].
Later on D.V. Widder in [100] introduced these functions as a sub-class of convex function
in a given interval (a,b) (for details see [100], [101]).
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Definition 1.3 A positive function @ is said to be logarithmically convex on an interval

I C R iflog® is a convex function on 1, or equivalently if for all x,y € I and all o« € [0,1]
O(ax+ (1 —a)y) <O (x)D!~D(y).

For such function ®, we shortly say @ is log-convex. A positive function @ is log-convex
in the Jensen sense if for each x,y € 1

@ (112) <oren)

holds, i.e., if log® is convex in the Jensen sense.

Remark 1.2 A function @ is log-convex on an interval /, if and only if for all x;,xp,x3 € 1,
x| < xp < x3, it holds

[@(x2) |57 <[] [D(x3 )2 (1.4)

Furthermore, if x1,x2,y1,y2 € I are such that x; < yy, x, <y, x| # X2, Y1 # y2, then

()= (@)

Inequality (1.5) is known as Galvani’s theorem for log-convex functions ®: I — R.

We continue with the definition of exponentially convex function as originally given in
[15] by Berstein (see also [9], [79], [81]).

Definition 1.4 A function ®: (a,b) — R is exponentially convex if it is continuous and
Y, 1t ®(xi +x;) >0, (1.6)
ij=1

holds for every n € N and all sequences (ty), N and (x), . of real numbers, such that
xi+x;€(a,b), 1<i,j<n

Moreover, the condition (1.6) can be replaced with a more suitable condition

n . .
S 4t,® (x’;x’> >0, (1.7)

ij=1

which has to hold for all n € N, all sequences (tn)neN of real numbers, and all sequences
(Xn),eN in (a,b). More precisely, a function ®: (a,b) — R is exponentially convex
if and only if it is continuous and fulfils (1.7). Condition (1.7) means that the matrix

xit+xj\ " . .. . . . . .
{@(%)} is positive semi-definite matrix. Hence, its determinant must be non-
ij=1

negative. For n = 2 this means that it holds

O (x;)D(xp) — D? (’%) >0,
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hence, exponentially convex function is log-convex in the Jensen sense, and, being contin-
uous, it is also log-convex function.

We continue with the definition of n-exponentially convex function.
Definition 1.5 A function ® : I — R is n-exponentially convex in the Jensen sense on I if

n . .
2 liqu) <x142‘x1) >0

i,j=1

holds for all choices of t; € R, x; €1, i=1,...,n.
A function ® : I — R is n-exponentially convex on I if it is n-exponentially convex in the
Jensen sense and continuous on I.

Remark 1.3 It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are in fact non-negative functions. Also, n-exponentially convex functions in
the Jensen sense are k-exponentially convex in the Jensen sense for every k € N, k < n.

Proposition 1.1 Let I be an open interval in R. If ®@ is n-exponentially convex in the

e\ 1k
Jensen sense on J then the matrix [d) (%)} - is positive semi-definite matrix for all
ij=
k € N, k < n. Particularly

det [d) (’%)} >0, forallkeN, k <n.
ij=1

Definition 1.6 Let I be an open interval in R. A function ® : I — R is exponentially

convex in the Jensen sense on I if it is n-exponentially convex in the Jensen sense on I for
alln e N.

Remark 1.4 It follows that a function is log-convex in the Jensen sense if and only if it is
2-exponentially convex in the Jensen sense.

Also, using basic convexity theory it follows that a function is log-convex if and only if it is
2-exponentially convex.

It is easily seen that a convex function is continuous on the interior of its domain, but
it may not be continuous at the boundary points of the domain.

Theorem 1.3 If ® : I — R is a convex function, then ® satisfies the Lipschitz condition
on any closed interval |a,b] contained in the interior of I, that is, there exists a constant K
so that for any two points x,y € [a,b],

|P(x) — ()| < K|x—yl.
Now, we continue with derivative of a convex function. The derivative of a convex
function is best studied in terms of the left and right derivatives defined by
/ . Oy)—D(x) . D(y) —D(x)

CD_(X)=$1;I}C T ,<I>+(X):y{nx -
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The following result concerning the left and the right derivative of a convex function can
be seen e.g. in [92].

Theorem 1.4 Let I be an interval in R and ®: I — R be convex. Then

. / / . . . / / . . .
(i) ®_ and @, exist and are increasing on I, and ®_ < O (if @ is strictly convex, then
these derivatives are strictly increasing);

(i) @ exists, except possibly on a countable set, and on the complement of which it is
continuous.

Theorem 1.5 (a) @: [a,b] — R is (strictly) convex if there exists an (strictly) increas-
ing function f: [a,b] — R and a real number ¢ (a < ¢ < b) such that for all x and
a<x<b,

D(x) = Dc) + / " (o).

(b) If ® is differentiable, then ® is (strictly) convex if @ is (strictly) increasing.

(c) If @ exists on (a,b), then @ is convex if ®" (x) > 0. If D" (x) > 0, then @ is strictly
convex.

Example 1.1  (a) The exponential function @ : R — R, ®(x) = ¢* is a strictly convex
function.

(b) Let ®: R, — R be defined by ®(x) =x”, p € R\ {0}. Obviously, ®'(x) = pxP~!
and the function @ is convex for p € R\ [0, 1), concave for p € (0, 1], and affine for
p=1

Remark 1.5 Let / be an open interval and let 4 € C?(I) be such that 4" is bounded, that
is, m < h” < M. Then the functions @, ®, defined by

O, (1) = %ﬂ Che), @) =h()—

are convex.

The geometric characterization depends upon the idea of a support line. The following
result can be seen e.g. in [92].

Theorem 1.6 (a) ®: (a,b) — R is convex if there is at least one line of support for ®
at each xy € (a,b), i.e.,

D(x) > D(xp) +A(x—x0),Vx € (a,b),
where A depends on xy and is given by A = (D/(xo) when @ exists, and
A€ [D_(x0), D, (x0)] when D_(xq) # D (xp).

(b) @: (a,b) — R is convex if the function ®(x) — ®(xo) — A(x — xq) (the difference
between the function and its support) is decreasing for x < xo and increasing for
X > Xp.
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Definition 1.7 Let ® : I — R be a convex function, then the sub-differential of ® at x,
denoted by 0D(x), is defined as

0P(x)={aeR: ®(y)—P(x)—oa(y—x) >0,y l}.

There is a connection between a convex function and its sub-differential. It is well-
known that d®(x) # 0 for all x € Int/. More precisely, at each point x € Int/ we have
—oo < @' (x) < D' (x) <eoand

I (x) = [@ (x), P, (x)],

while the set on which @ is not differentiable is at most countable. Moreover, each function
¢ : I — R such that @(x) € D (x), whenever x € Int/, is increasing on Int/. For any such
function ¢ and arbitrary x € Int/, y € I we have

D(y) —®(x) — @(x)(y—x) >0

and further

O(y) = @(x) = p(x)(y —x) = |®(y) = P(x) — @(x)(y —x)|
|1D(y) = P(x)| = @ ()] - [y — ]

v

(1.8)

On the other hand, if ® : I — R is a concave function, that is, —® is convex, then
dP(x) ={a cR: Ox)—P(y)—a(x—y) >0,y € I} denotes the superdifferential of ®
at the point x € . For all x € Int/, in this setting we have —eo < @’ (x) < @’ (x) < o0 and
0D(x) = [/, (x), @_(x)] # 0. Hence, the inequality

®(x) = @(y) = p(x)(x—y) = 0

holds for all x € Int/, y € I, and all real functions ¢ on I, such that ¢(z) € d®(z), z € Intl.
Finally, we get

O(x) = D(y) —p(x)(x—y) = [@(x) = D(y) — 9 (x)(x— )|
> [[@(y) = ®x)| = |@(x)| - [y —x]].
(1.9)

Note that, although the symbol d®(x) has two different notions, it will be clear from the
context whether it applies to a convex or to a concave function ®. Many further information
on convex and concave functions can be found e.g. in the monographs [82] and [92] and
in references cited therein.



1.3 SUPERQUADRATIC AND SUBQUADRATIC FUNCTIONS 7

1.2 Superquadratic and subquadratic functions

The concept of superquadratic and subquadratic functions is introduced by Abramovich,
Jameson and Sinnamon in [4] (see also [3]).

Definition 1.8 (See [4, Definition 2.1].) A function ¢ : [0,00) — R is superquadratic
provided that for all x > 0 there exists a constant Cy € R such that

o) — o) —o(ly—x|) > Cc(y—x), (1.10)

forall y > 0. We say that ¢ is subquadratic if —@ is superquadratic. We say that ¢ is a
strictly superquadratic function if for x # y,x,y # 0 there is strict inequality in (1.10). We
say that ¢ is a strictly subquadratic function if — ¢ is a strictly superquadratic function.

Lemma 1.1 (See [4, Theorem 2.3].) Let (Q, ) be a probability measure space. The
inequality

(/f du)/<p (’f ~ | #duts)

holds for all probability measures ( and all non-negative t —integrable functions f if
and only if ¢ is superquadratic. Moreover, (1.11) holds in the reversed direction if and
only if ¢ is subquadratic.

)d/.t(s) (1.11)

Proof. See [4] and [3] for the details. O

Definition 1.9 A function f : [0,) — R is superadditive provided f(x+y) > f(x)+ f(y)
forall x,y > 0. If the reverse inequality holds, then f is said to be subadditive.

Lemma 1.2 (See [4, Lemma 3.1].) Suppose ¢ : [0,00) — R is continuously differentiable
¢'(x)

and @(0) < 0. If ¢’ is superadditive or == is nondecreasing, then ¢ is superquadratic.

Proof. See [4] for details. O

Remark 1.6 By Lemma 1.2, the function ¢(x) = x” is superquadratic for p > 2 and
subquadratic for 1 < p < 2. Therefore, by Lemma 1.1, for p > 2 the inequality

(/f du) < [ s /‘f ~ | s

holds and the reversed inequality holds when 1 < p <2 (see also [2, Example 1, p. 1448]).

du( )
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1.3 Operator convex functions

We shall first recall the definition of an operator convex function.

Definition 1.10 Let I be a real interval of any type. A continuous function f : I — R is
said to be operator convex if

fAx+(1=2)y) SAfx)+(1=2)f(y)

holds for each A € [0,1] and every pair of self-adjoint x and y (acting) on an infinite
dimensional Hilbert space H with spectra in I (the ordering is defined by setting x <y if
Yy — X is positive semi-definite ).

Let f be an operator convex function defined on an interval /. Ch. Davis [34] proved a
Schwartz type inequality

f(@(x) < O(f(x)),

where ® : A — B(H) is a unital completely positive linear map from a C*-algebra A to
linear operators on a Hilbert space H and x is a self-adjoint element in A with spectrum in
1.

Let us recall the definition of a unital field. Assume that there is a field (@, );er of pos-
itive linear mappings ®; : A — B from A to another C*-algebra B. We say that such a field
is continuous if the function t — @, (x) is continuous for every x € A. If the C*-algebras
are unital and the field # — @, (1) is integrable with integral 1, that is [ @,(1)du(r) =1,
we say that (®; ),er is unital.

In particular, F. Hansen et al. [46] proved the following result:
Theorem 1.7 Let f: I — R be an operator convex function defined on an interval I, and
let A and B be unital C*-algebras. If (®;),cr is a unital field of positive linear mappings

®; : A — Bdefined on a locally compact space T with a bounded positive Radon measure
U, then the Jensen type inequality

f( / <1>,<xz>>du<r>) < [ (st)ant)

holds for every bounded continuous field (x, )icr of self-adjoint elements in A with spectra
contained in 1.
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1.4 Fractional integrals and fractional derivatives

First, let us recall some facts about fractional derivatives needed in the sequel, for more
details see e.g. [9], [43].

Let 0 < a < b < e. By C"([a,b]) we denote the space of all functions on [a, b] which
have continuous derivatives up to order m, and AC([a,b]) is the space of all absolutely
continuous functions on [a,b]. By AC™([a,b]) we denote the space of all functions g €
C"([a,b]) with g1 € AC([a,b]). For any & € R we denote by [o] the integral part of
o (the integer k satisfying k < o < k+ 1) and [a] is the ceiling of o (min{n € N,n > a}).
By Li(a,b) we denote the space of all functions integrable on the interval (a,b), and by
Lo.(a,b) the set of all functions measurable and essentially bounded on (a,b). Clearly,
Lo.(a,b) C Li(a,b).

Now, we give well known definitions of the Riemann-Liouville fractional integrals,
see [67]. Let [a,b] be a finite interval on real axis R. The Riemann-Liouville fractional
integrals /% f and I)* f of order o > 0 are defined by

10 = g [ FO)x=3)" dy, (+> 0

and
b
B1W) = g [ F0) =0 ay, (v<)

respectively. Here T'(o) is the Gamma function. These integrals are called the right-
sided and left-sided fractional integrals. Some recent results involving Riemann-Liouville
fractional integrals can be seen in e.g [10], [11], [61] and [63]. We denote some properties
of the operators Iy, f and I} f of order o > 0, see also [96]. The first result yields that the
fractional integral operators 131 fand I f are boundedin L,(a,b), 1 < p < eo, thatis

1 flp < KN llps M fllp < KISl ps (1.12)
where
_(b—a)®
- al(a)

Inequality (1.12), that is the result involving the left-sided fractional integral, was proved
by G. H. Hardy in one of his first papers, see [49]. He did not write down the constant, but
the calculation of the constant was hidden inside his proof. Inequality (1.12) is referred to
as inequality of G. H. Hardy.

Next we give result with respect to the generalized Riemann-Liouville fractional deriva-
tive. Let us recall the definition.
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Let a > 0 and n = [or] + 1 where [] is the integral part. We define the generalized
Riemann-Liouville fractional derivative of f of order o by

0500 = s () [ = s

In addition, we stipulate
DUf:=f=10% I;%f:=D%f if o> 0.

If ¢« € Nthen DS f = %, the ordinary co-order derivative.

The space I¥(L(a,b)) is defined as the set of all functions f on [a,b] of the form f =
I% @ for some ¢ € L(a,b), [96, Chapter 1, Definition 2.3]. According to Theorem 2.3 in
[96, p. 43], the latter characterization is equivalent to the condition

I'%f € AC"[a,b], (1.13)

d . . .
ﬂla fla)=0, j=0,1,....n—1.

A function f € L(a,b) satisfying (1.13) is said to have an integrable fractional derivative
D2 f, [96, Chapter1, Definition 2.4].

The following lemma summarizes conditions in identity for generalized Riemann-
Liouville fractional derivative.

Lemma1.3 Lerf >0 >0,n=[B]|+ 1, m=[o] + 1. Identity

DEF() = gy | 0P DLy, wela.

is valid if one of the following conditions holds:
(i) felf (Lia,b)).
(i) Py € AC"[a,b] andDg_kf(a) =0fork=1,...n
(iif) Dgfkf €Cla,b] fork=1,...,n, Dgilf € ACla,b] andDgfkf(a) =0fork=1,...n

(iv) f € AC"[a,b], DEf € L(a,b), D*f € L(a,b), B—a ¢ N, DE ™ f(a) = 0 for k =
1,...,nand D *f(a) =0fork=1,....m.

(v) f € AC"[a,b], DEf € L(a,b), D¥f € L(a,b), B—a =1€N, DE*f(a) = 0 for
k=1,...,L

(vi) fe€AC"a,b)], Dgf € L(a,b), D% f € L(a,b) and f(a) = f'(a)="--- :f(”’2)(a) =0.

(vii) f € AC"[a,b], DEf € L(a,b), D?f € L(a,b), B ¢ N and DP~"f is bounded in a
neighborhood of t = a.
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The definition of Canavati-type fractional derivative is given in [9] but we will use the
Canavati-type fractional derivative given in [13] with some new conditions. Now we define
Canavati-type fractional derivative (v—fractional derivative of f). We consider

CY([0,1)) = {f € C"([0,1]) : Ly € C'([0,1])},

v > 0,n = [v],[.] is the integral part,and v =v —n,0 < v < 1.
For f € CY([0,1]), the Canavati-v fractional derivative of f is defined by

D'f=Dhzf",
where D = d/dx.

Lemma 1.4 Lerv>y>0, n=[v], m=[y]. Let f € C'([0,1]), be such that f)(0) =
0,i=mm+1,...n—1.Then

(i) feC([0,1])

(x=0)"" 71DV f)(r)dt,

(il) (D)) = iy

S—x

for every x € [a,b)].

Next, we define Caputo fractional derivative, for details see [9, p. 449]. Let v > 0,
n=[v], g € AC"(|a,b]). The Caputo fractional derivative is given by

, 1 T (n)
D*ug(t) = F(n_v) / (xfy)sly)nJrldy’

a

for all x € [a,b]. The above function exists almost everywhere for x € [a,b].
We continue with the following lemma that is given in [12].

Lemmai1.5 Lerv>y>0,n=[v]+1, m=[y]+1and f € AC"([a,b]). Suppose that
one of the following conditions hold:

(a) v,y&Ngand fO(a) =0fori=m,...n—1
(b) veNy,y¢Nyand fO(a)=0fori=m,...n—2
(¢) v¢No,yeNgand fO(a)=0fori=m—1,...n—1
(d) veNy,y€Nyand f(a)=0fori=m—1,...n—2.
Then N
DIuf() = sy [ =) 7 DL )y

a

foralla <x <b.
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Now, we define Hadamard-type fractional integrals. Let (a,b) be finite or infinite inter-
val of R and o > 0. The left- and right-sided Hadamard-type fractional integrals of order
o > 0 are given by

00 = g | (1) O

I(a) y

a

and )
1 e fO)dy
o —_ —
N0 = frgy [ (0e3)" F5F w<

X

respectively.

We continue with definitions and some properties of the fractional integrals of a func-
tion f with respect to a given function g. For details see e.g. [67, p. 99].

Let (a,b), —eo < a < b < o be a finitive or infinitive interval of the real line R and
o > 0. Also let g be an increasing function on (a,b] such that g’ is continuous on (a,b).
The left- and right-sided fractional integrals of a function f with respect to another function
g in (a,b) are given by

1 x g d
a0 = g7 | o e (119
and
b /
0= 7 [gé)(t—)ggﬁlfa b (19
respectively.

Remark 1.7 1f g(x) = x, then Ij' ., f reduces to I, f and I}/ . f reduces to I;* f, thatis to
Riemann-Liouville fractional integrals. Notice also that Hadamard fractlonal integrals of
order o are special case of the left- and right-sided fractional integrals of a function f with

respect to another function g(x) = log(x) in [a,b] where 0 < a < b < o,

We also recall the definition of the Erdelyi-Kdéber type fractional integrals. For details
see [96] (also see [35, p, 154]).

Let (a,b),(0 < a < b < o) be finite or infinite interval of R} Let o > 0,0 > 0, and
n € R. The left- and right-sided Erdelyi-Kdéber type fractional integral of order o > 0 are
defined by

" B ox—ola+n) xtcrnJrcr—lf(t)dt
00 = T oy | Gy (6>
and n b so(l-n—a)1 »
ox® OV )= £(1)dt
U5 a0 =Yg || oy (<)

respectively.



1.4 FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES 13

We conclude this section with multidimensional fractional integrals. Such type of frac-
tional integrals are usually generalization of the corresponding one-dimensional fractional
integral and fractional derivative.

For x = (x1,...,x,) € R" and ot = (g, ..., 0 ), we use the following notations:

[(o) = (T(au)---T(ow)), [a,b] = [a1,b1] -~ X [an, by],

and by x > a we mean x| > ay,...,X; > a.
We define the mixed Riemann-Liouville fractional integrals of order o > 0 as

(12 £) //f (x— )% dt, (x > a)

and

by
(1)) = s [+ [ FOE=2"at (x <b).






Chapter 2

Some new Hardy-type
inequalities with general
kernels

First, we present some previous recent results and some other preliminaries.

2.1 Preliminaries

Hardy’s and Pélya-Knopp’s inequality were already given in Preface, see (0.1) and (0.2)
respectively. We recall other important inequalities: if p > 1 and f is a non-negative
function such that f € L? (R, ), then

oo oo )4
f(x)
d ?(y)dy, 2.1
0/<0 x+y x) (sm )/f y @.1)

and if in addition g € LI(R ;) where 1 + — =1, then

/”/m f dxdy < = (/fp ) (/gq(y)dy)a. 2.2)
00

15
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Moreover, (2.2) is sometimes called Hilbert’s or Hardy-Hilbert’s inequality even if

Hilbert himself only considered the case p = 2 (L? -spaces were defined much later). Note
P

Z_ ) and -Z;, respectively appearing on the right-hand sides of
p p

that the constants | —
sin sin

(2.1) - (2.2), are the best possible, that is, neither of them can be replaced with any smaller
)4
constant. Also the constants (%) and e respectively appearing on the right-hand sides
P

of (0.1) - (0.2), are the best possible, We also note that Hardy’s inequality (0.1) shows that
the Hardy operator H, defined by setting

1 X
- 0/ F()dr, 2.3)

maps L? into itself with operator norm p/(p — 1). Similarly, (2.1) shows that the operator

A, defined by setting
x)= [0 ar
0

maps L? into itself with operator norm 7 /(sinz/p).
It is now natural to generalize the operators above to the following ones:

Hyf(x / F(O)k(x,1) (2.4)

where
X

K(x) = / k(x,1)dr < oo

0

and (more generally)
L0
AF() = g [ F0k 2.5)
0

where now

oo

K(x) = /k(x,t)dt < oo,

0

Here k(x,y) is a general measurable and non-negative function, a so called kernel.

Since Hardy, Hilbert and Pdlya established inequalities (0.1), (0.2), (2.1) and (2.2),
they have been investigated and generalized in several directions. Further information and
remarks concerning the rich history of the integral inequalities mentioned above can be
found e.g. in the monographs [51, 68, 74, 75, 82, 92], expository papers [26, 64, 73], and
the references cited therein. Besides, here we also emphasize the papers [15, 20, 25, 27,
28, 30, 65, 66, 77, 93, 103, 105], all of which to some extent have guided us in the research
we present here.



2.1 PRELIMINARIES 17

Recently it was pointed out by S. Kaijser et al. [66] that both (0.1) and (0.2) are just
special cases of much more general (Hardy-Knopp’s type) inequality

(1 dx _ | d
Jol s [rwa) S < [ow S, 6
0 0 0

where @ is a convex function on R and f : Ry — R a positive function. Inequality (2.6)
follows by using a standard application of Jensen’s inequality and the Fubini theorem. By
taking ®(x) = x? and ®(x) = ¢* they obtained an elegant new proof of inequalities (0.1)
and (0.2) and showed that both Hardy’s and Pélya-Knopp’s inequality can be derived by
using only a convexity argument.

S. Kaijser et al. [65] proved a more general inequality of Hardy-Knopp’s type with a
kernel

0\8
:

D(Arf(x —d g/v dx, (2.7)
X
0

where 0 < b < eo, k: (0,b) x (0,b) — R and u : (0,b) — R are non-negative functions,
such that

X

K(x) = / k(x,y)dy > 0, x € (0,b), 2.8)
0

b x,y) dx
) = [ 1) G L <y 00)

and

® is a convex function on an interval I C R, f: (0,b) — R is a function with values in I,
and

Arf(x /k x,9) f(y)dy, x € (0,D). (2.9)

On the other hand, Godunova [38] (see also [92, Chapter VIILp. 233], [39], [41])
proved that the inequality

1 i yn> ) dx
0] / [ =,....,— seeesVn)d
/Rr_;_ (xl <X JRY (xl Xn f(yl Y ) y X1 Xn

D(f(x))
< /R V™) i 2.10)

’_:_ X1 Xn

holds for a non-negative function / : R’jr — R, such that

./]R” I(x)dx =

a convex function @ : [0,00) — [0,0), and a non-negative function f on R’} , such that the
function x — ®(f(x))/(x1 - --x,) is integrable on R’} .
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Remark 2.1 By using the result given in (2.10) Godunova obtained many general in-
equalities which include, Hardy’s (0.1), P6lya-Knopp’s (0.2) and Hardy-Hilbert’s inequal-
ity (2.2). For more details see [92, Chapter VIILp. 234]).

The following result was recently proved by Kaijser et al. [65]:

Theorem 2.1 Ler u be a weight function on (0,b), 0 < b < oo, and let k(x,y) > 0 on
(0,b) x (0,b). Assume that % is locally integrable on (0,D) for each fixed y € (0,b)
and define v by

b
k
y/ (x’y —<°°,y€(0b)
y

If @ is a positive and convex function on (a,c), —eo < a < ¢ < oo, then

b b
[umor ) < [vweren™, e
0 0

Sorall fwitha < f(x) <c,0<x<b, where Hy, is defined by (2.4).

In the same paper the dual operator Hy, defined by

Hif(x) /k x ) f(y)dy, (2.12)

oo

where K(x) = [k(x,y)dy < oo, was studied and the following result was proved:

X

Theorem 2.2 For 0 < b < oo, let u be a weight function such that koyutx) ¢ locally

xK (x)
integrable on (b,) for every fixedy € (b,0). Let the function v be defined by
y
kx,y)
— < oo,y € (b,o0
=y b/ Ko) 1y € (bye0).

If @ is a positive and convex function on (a,c), —eo < a < ¢ < oo, then
o d o
/u DHf(x)— < /v —, (2.13)
X
b b

Sorall f with a < f(x) <c,0<x <b, where Hy is defined by (2.12).

The most general result so far for the operator Hy, is the following by Kaijser et. al [65,
Theorem 4.4]:
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Theorem 2.3 Let 1 < p< g <o, 0<b<oo,5€(l,p), let ® be a convex and strictly
monotone function on I = (a,c), —eo < a < ¢ < oo, let Hy, be defined by (2.4) and let u(x)
and v(x) be weight functions on [0,b]. Then the inequality
b ., 0 b
X z
Juw@mE s ) <c| [vweri)

0 0

dx
X

(2.14)

holds for some finite constant C and all functions f such that Imf C I if

1

A(s) := sup /hu(x) (k(x’[)>qV(W(x)@ ” V%(t) < oo

0<i<b K(x) X

holds, where V (t) := [; V=P (x)xP'~'dx. Moreover, if C is the best constant in (2.14), then
1\ 7
C< inf (p_ )” As).
I<s<p\ p—S

For our further discussions we also mention the following recent result by Oguntuase
et. al [83]:

Theorem 2.4 Let b € (0,00], —0 < a < ¢ < oo and let @ be a positive function on [a,c].

Suppose that the weight function u defined on (0,b) is non-negative such that M(xéi;") is

17"n

locally integrable on (0,b) and the weight function v is defined by

bl bn
u(xy, ..., X
V(t1,.stn) :t1~~~t,,/---/(217’2")dx1---dxn,t6 (0,b).
xl---xrl
n In
(i) If @ is convex, then
by by 1 X1 X d d
x e x
/---/u(xl,...,xn)d) /---/f(tl,...,tn)dtl~~~dtn .
xloooxn xloooxn
0 0 0 0
by by
dxy---dx,

X1 Xp

§/---/v(xl,...,xn)¢(f(x1,...,xn))
0

0
holds for every function f on (0,b) such that a < f(x1,...,x,) < c.

(ii) If @ is concave, then

by by | X1 X d d
/~~~/u(x1,...,xn)d) /---/f(tl,...,tn)dtl~~~dtn e d
xl...xn- xloooxn
0 0 0 0
by by d d
x e xn
> /~~~/v(xl,...,x,,)d)(f(xl,...,xn))17
xloooxn
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holds for every function f on (0,b) such that a < f(xy,...,xn) < c.

Remark 2.2 Also the obvious dual result was formulated and proved in [83]. For further
developments in this directions even with a general kernel see [84] and [87].

2.2 The main results

In the sequel let (Qq,X;, 1), (Q2,%, 1lp) be measure spaces and let Ay from (2.5) be
generalized as follows:

Af(x / k(. 2)f() dpia (), 2.15)

where f: Q, — R is a measurable function, & : Q1 x £, — R is a measurable and non-
negative kernel and

X):= /Q k(x,y)dun(y) < oo, x € Q. (2.16)
2
Our first result reads (see also [70]):

Theorem 2.5 Let (Q1,X, 1) and (2,3, ) be measure spaces with positive -finite
measures, u be a weight function on Q1, k a non-negative measurable function on 1 x Qy,
and K be defined on by (2.16).

Suppose that K(x) > 0 for all x € Q, that the function x — u(x) k&;v)) is integrable on Q|
for each fixed y € €y, and that v is defined on €, by

v(y) = /Ql u(x)%dul (x) < eo. (2.17)

If @ is a convex function on an interval I C R, then the inequality

[ u0@Af () dpn () < [ V)P0 dpa () 2.18)
Q Q

holds for all measurable functions f : Qy — R, such that Imf C I, where Ay, is defined by
(2.15).

Proof. For an arbitrary x € Q, let the function A, : Q; — R be defined by h,(y) =
f(y) — Acf(x). Then we have

/kxy y)du(y /kxy y)dus(y /kxyAkf( )dia(y)

:K(x)Akf(x) —Akf()C)/Q k(x7y)dﬂz(y)
=0,xeQ. (2.19)
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First we must prove that Ay f(x) € I, for all x € Q. The motivation for this is that A f(x)
is simply a generalized mean and since f(y) € I for all y € Q, (by assumption) also the
mean A f(x) € 1. We also include a more formal proof of this fact:

Suppose that there exists xo € Q; such that Ay f(x) ¢ I. Since I is an interval in R and
f(Q2) C I, it follows that either Agf(xo) > f(y) for all y € Qy, or Axf(x0) < f(y) for
all y € Qy. Hence, the function Ay, is is either strictly positive or strictly negative on
. Moreover, k(xo,y)hy, (y) > 0 for all y € Q5 or k(xg,y)hy,(y) <0 forall y € Q;. On
the other hand, K(xo) > O implies that there is a set !Tg € X, such that /,LQ(STQ) > 0 and
k(xo,y) >0,y € Q,. Therefore, the function y — k(x0,y)hy, (y) does not change the sign
on Q, and is strictly positive or strictly negative on Qj, so Jo, k(x0,¥)hx (v) dpia(y) # 0,
which contradicts (2.19). Thus A f(x) € I, for all x € Q;. Note that if Akf( ) is an end-
point of / for some x € Q (in cases when [ is not an open interval), then &, (or —h,) will
be a non-negative function whose integral over 2, with respect to the measure L, is equal
to 0. Therefore, i, = 0, that is, f(y) = Axf(x) holds for tr-a.e. y € Q.

Now, let us prove the inequality (2.18). By using Jensen’s inequality and the Fubini theo-
rem we find that

/Qlu(x)dD(Akf(x))dul(x) / ( / k(x,y)f(y)dus (y ))d.u1(X)

<J, 5 U )

— )
Q)

K00 U, )
@00 ( [ 100 5 a9 Jawet)

O(F())dia (y))du1 @)
(

= | v (y))duz(y)

Q

and the proof is complete. |

Example 2.1 By applying Theorem 2.5 with Q| = Q; = (0,e0) and k(x,y) = 1,0 <y <
x, k(x,y) =0,y >x, duy (x) = dx, di> (y) = dy and u(x) = 1 (so that v(y) = %), we obtain
(2.6) which, in its turn, is equivalent to the original Hardy inequality (0.1) when ®(u) =
uf p > 1. O

Example 2.2 Let Q) = Q; = (0,00), replace du; (x) and du,(y) by the Lebesgue mea-
H=1/p
sures dx and dy, respectively, let k(x,y) = G X)er ,p>land u(x) = % Then K (x) = K =

and v(y) = % Let ®(u) = u” then inequality (2.18) reads:

sin(n/p)
14 o oo 14

Tyt
,,,/ / IO, % _ K,,,/ FO) gy | ax
0 \0 0 \0

X+y X+y

[ ooy dy
O/f(y)y

IN
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Replace f(¢):~ /7 with f(r) and we get Hilbert’s inequality (2.1). a

Example 2.3 Let Q) = Q) = (0,b), 0 < b < o, replace dui; (x) and d s (y) by the Lebes-
que measures dx and dy, respectively, and let k(x,y) = 0 for x < y < b. Then A coincides
with the operator H; defined by (2.4) and if also u(x) is replaced by u(x)/x and v(x) by
v(x)/x, then (2.18) coincides with (2.11) and we see that Theorem 2.1 is a special case of
Theorem 2.5. a

Example 2.4 By arguing as in Example 2.3 but Q; = Q) = (b,0), 0 < b <  and with
kernels such that k(x,y) = 0 for b < y < x we find that now (2.18) coincides with (2.13) so
that also Theorem 2.2 is a special case of Theorem 2.5. O

In the previous examples we derived only inequalities over some subsets of R ;. How-
ever, Theorem 2.5 covers much more general situations. We can apply that result to n-
dimensional cells in ]R’jr and thus, in particular, obtain a generalization of the Godunova
inequality (2.10).

Before presenting our results, it is necessary to introduce some further notation. For

w,veR u=(ui,up,....un), v=_(vi,v2,...,v), let
u uy up u
—=(—,—,...,— ) and u" =u'u--uy.
v Vi WM Vn

In particular, u! = [T, u;, u? = ([T, ui)z, andu~!= (T~ ui)_l, wheren= (n,n,...,n).
We write u < v if componentwise u; < v;, i = 1,...,n. Relations <, >, and > are defined
analogously. Finally, we denote (0,b) = {x € R’, : 0 <x <b} and (b,) ={xe R :b<
X < oo},

Applying Theorem 2.5 with Q; = Q, = R’ , the Lebesgue measure di; (x) = dx and
di>(y) =dy, and the kernel k : R, x R, — R of the form k(x,y) =1 (), where [ : R}, — R
is a non-negative measurable function, we obtain the following corollary.

Corollary 2.1 Let | and u be non-negative measurable functions on R"., such that 0 <

Yy
L(x) =x! fRi I(y)dy < o for all x € R, and that the function X — u(X) IL(&? is integrable
on R'| for each fixedy € R'|. Let the function v be defined on R’ by

y
vy = /]R , ) IL((Xg dx.

If @ is a convex function on an interval I C R, then the inequality

J w000 (55 o1 (2) sy < [ sonatrivyay

holds for all measurable functions f : R" — R such that Imf C I.
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Example 2.5 Especially, for fRi I(t)dt = 1 and u(x) = x~!, Corollary 2.1 reduces to

Godunova’s inequality (2.10). This shows that Corollary 2.1 is a genuine generalization of
the Godunova inequality (2.10).

We shall continue by stating a somewhat more general theorem, which is of a type
described in Theorem 2.3 but for general measures. More exactly, we state the following

generalization of Theorem 2.5:

Theorem 2.6 Let 0 < p < g < o and let the assumptions in Theorem 2.5 be satisfied but

now with
W(y) = ( /Q ( (%)'i d/,Ll(x)> . (2.20)

If © is a positive convex function on the interval I C R, then the inequality

1
g q P
(f, @t ame)” < ([ voretronanem)” e
1 2
holds for all measurable functions f : Q» — R, such that Imf C I.
Proof. As in the proof of Theorem 2.5 we first note that A f(x) € I, for all x € Q.

Moreover, by using Jensen’s inequality and then Minkowski’s general integral inequality
we find that

1

(/Ql u(x) [@ (A f ()] dpy (x)) g
./gl u(x) [‘D (ﬁ /Qz k(x,y)f(v)di (y)ﬂ ’ s (x)>

R ey e <x>> ‘7

_ =

(
(

==

)” d (x)) dp(y)

IA
~
5
iy
=
=
N
o
=
&
-
Saliey
Sl=

([ rowonano)’

and the proof is complete. a

For the case p = g we obtain Theorem 2.5 and as expected by applying Theorem 2.6
we obtain the following further generalization of the Godunova result:
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Corollary 2.2 Let 0 < p < g < oo and let the assumptions in Corollary 2.1 be satisfied

with v defined by
AN
Wy) = /]R” u(x) (;8) ax | .

If ® is a positive convex function on an interval I C R, then the inequality

</R’i u(x) {cb (ﬁ_&iz(z)ﬂymyﬂzdxyg (_/Mv(y)@(f(y))dy)”

holds for all measurable functions f : R" — R such that Imf C I.

Proof. The proof only consists of obvious modifications in the proof of Corollary 2.1
so we omit the details. |

Example 2.6 By using Theorem 2.6 with Q; = Qs = (0,0),0 < b < o, k(x,y) = 0 for
x <y < b, u(x) replaced by u(x)/x and v(y) replaced by v(y)/y we obtain the inequality

b

q b !
[ utw) s )] d%(x) < | [roeu Wd%(y) ’
0 0

where v(y) is defined by (2.20). For ® replaced by @7, 1 < p < g < oo (®? is convex
function) this inequality is similar to (2.14). However, these results are not comparable but
we conjecture that Theorem 2.3 can be generalized also to the case with general measures
even to a multidimensional setting. a

We finish this Section by stating the following useful fact:

Remark 2.3 Let the assumptions of Theorem 2.6 be satisfied. By applying Theorem 2.6
with ®@(x) = x we get the following inequality:

([, woast o) = ([ osrmame) . am

Q

Now replace f(x) with @(f(x)) and we get that

(f, e merit anw)” < ([ voeronan)’. e
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On the other hand, applying Jensen’s inequality to the left side of inequality (2.23) we
obtain that

1

(/Ql u(x) [AgD(f (x))] 7 dﬂl(x)> ’
(/gl u(x) {ﬁ o, k(x,y)@(f(v))dua (y)} : du (x)>

></Q [ ( = [ kro) duz())]zdul(@y

_ ( /Q o) (A PP dm(X)) "

i.e., by (2.23) that (2.21) holds. We conclude that if the assumptions of Theorem 2.6 hold,
then each of (2.21), (2.22) and (2.23) holds and are equivalent.

R,

2.3 Remarks and examples

Remark 2.4 By applying Theorem 2.5 for special cases e.g. for kernels with additional
homogeneity properties, ®(u) = u”, p > 1, and making some obvious variable transforma-
tions we obtain what in the literature is usually called Hilbert type or Hardy-Hilbert type
inequalities, see e.g. Example 2.2 for the original case.

However, by keeping our convex functions we obtain further generalizations of Hilbert
type inequalities. Here we only give two simple examples.

Example 2.7 Let Q) = Q) = (0,00),d; (x) = dx, dus(y) = dy. For k(x,y) = (x+y) %,
s > 1, we have K (x) = -

=(s—1) /x+y )75 (x)dx
0

Letu(x) =x'"7""5 € (1—s,1).
Then we have

=(s—1) /x—I—y YT T S dy = (s — 1)y T B(1 — 1,541 — 1),
0
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where B(.,.) is the usual Beta function.
By applying Theorem 2.5 we get the following inequality:

= oo

/ X TTD(Af (x)dx < (s = D)B(L —1,5+1—1) / YITTR(f(v))dy,

0 0

where @ is a convex function and A f(x) is defined by (2.15). O

Example 2.8 Let Q) = Q; = (0,0),d; (x) = dx, dunr(y) = dy,
Cou logy —logx /y\—«
u(x) =x"%and k(x,y) = ——=— (—) ;o€ (0,1).

y—x X

Evidently, it is homogeneous of degree —1, K(x) converges for all o« € (0, 1), and we have

= =

1 —1 —o I
K(x) = /70‘%) ogx (X) y:/ Oguu_adu

y—x X

0
el ¥ (1
/—.x, el —1 () +¥( ) sin*mo’

where ¥(x) = l;(—(f)), x > 0, is the Digamma function and we used the identity (1 —x) =

Y(x) + meotmx, x € (0,1) (for details on ¥ see [1]). Then we have

=

)
sin‘ro. [ logx —logy /y\¢® _
W) = o [FEDE () e

SiN“ToL 5, [ logu _

Therefore, by applying (2.18) we get the following inequality:

/”q) sinma ]logy— logx (X)fa Fy)dy | x 2%dx < ] Y AO(f(y))dy,
0

w2 y—x X
0 0

where ® is a convex function. O

Moreover, by applying our result with the convex function @(x) = ¢* and making some
suitable variable transformations we obtain what in the literature is called Pélya-Knopp
type inequalities. We give the following example:



2.3 REMARKS AND EXAMPLES 27

Example 2.9 et the assumptions in Theorem 2.5 be satisfied. Then, by applying (2.18)
with ®@(x) = ¢*, and f replaced by log f7, p > 0 we obtain that

/Ql u(x) {GXP (ﬁ /Q2 k(x,y)log f(y)di (y))] ’ du (x)
s /Q2 v v)dia(y), (2.24)

where k(x,y), K(x), u(x) and v(y) are defined as in Theorem 2.5 In particular, if p =
1,Q; =Qp =(0,00), k(x,y) = 1,0 <y <x, k(x,y) =0,y > x. (so that K (x) =x), d; (x) =
dx, dus(y) = dy, u(x) = 1/x (so that v(x) = 1/x) replacing f(x)/x by f(x) and making a
simple calculation we find that (2.24) is equal to

oo

/eXp %/xlogf(y)dy dxée]f(y)dy,
0 0

0

which is the classical form of P6lya-Knopp’s inequality. a

We continue with the following special cases of Theorem 2.5 (see [63]).

Let (Q1,Z, 1) and (Q,X, lp) be measure spaces with positive ¢ —finite measures,
k: Q) x Q; — R be a non-negative function, and K be defined by (2.16). Let U (k) denote
the class of measurable functions g : | — R with the representation

g = [ KNS Oia(), (2.25)

where f : Q; — R is a measurable function.

If we substitute k(x,y) by k(x,y)f>(v) and f by %, where f; : Q; — R, (i =1,2) are
measurable functions in Theorem 2.5 we obtain the following result.

Theorem 2.7 Let (Q1,%,11) and (2,3, ) be measure spaces with c-finite mea-
sures, u be a weight function on Q1 , k be a non-negative measurable function on 1 x Q.

Assume that the function x — u(x) I;(zx()f)) is integrable on Q for each fixed y € Q. Define v
on Qy by
k(x,
V)= 10) [ 1) B ) < 2.26)
82(x)
Q
If ®: 1 — Ris a convex function and Z; Ei; , 2—8; € I, then the inequality
X
[uxo (g [ )) am) < [vi)e (f—(y)> dpa ), (2.27)
g 82 (x) ) L)

holds for all g; € U (k), (i = 1,2) and for all measurable functions f; : Q; — R, (i=1,2).
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Remark 2.5 If @ is strictly convex on I and 2 Eg is non-constant, then the inequality
given in (2.27) is strict.

Remark 2.6 If we take Q) = Q; = (a,b), du; (x) = dx and du,(y) = dy in Theorem 2.7,
we obtain the result given in Theorem 2.1 in [63].

Here we give Hardy’s inequality in quotient.
Theorem 2.8 Let u be a weight function defined on (0,0). Define v on (0,0) by

=

) =) [ | [ £0)dy ] uldr <o (2.28)
0

y

If @ is a convex function on the interval I C R, then the following inequality

- [ £1)dy -
O/ ff; " dxgo/v(y)d) (2—83) dy (2.29)

holds for all measurable functions fi : (0,00) — R, (i = 1,2), such that % el

Proof. Rewrite the inequality (2.27) with Q; = Q) = R, duy(x) = dx, dux(y) = dy.
Let us define the kernel & : R%r — R by

_JLO0<y<xy
k(xay) - { O, y > x, (230)
then g; defined in (2.25) takes the form
X
sl = [ i)y (2.31)
0
Substitute g;(x), (i =1,2) in (2.27), so we get (2.29). a

Example 2.10 If we take ®(x) = x’, p > 1 and particular weight function
X

u(x) = é J f2(y)dy, x € (0,%0) in (2.28), we obtain v(y) = @ and the inequality (2.29)
0

becomes

X P X I=p

r dx _ | pd
0// Ay O/ pwdy| S< O/ff’(y>; 'wE e

0
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If we put f>(y) = 1, in (2.32), we obtain the following inequality (for details see [70] and
[661):

oo X p oo

1 d o
/ ;/fl(y)dy % S/f{ (y);y. (2.33)
0 0 0

Remark 2.7 As a special case of Theorem 2.7 the well-known P6lya-Knopp, Hardy-
Hilbert and other inequalities in quotients can be given, but her we omit the details.






Chapter

On an inequality of G. H.
Hardy

In this chapter we give result involving the inequality of G. H. Hardy (1.12). To start
with let (Qp,Z;, 1) and (Q7,%,, Ulp) be measure spaces with positive 6 —finite measures,
k:Qq x Q; — R be a non-negative function, and K be defined by (2.16). Let U (k) denote
the class of functions g : Q| — R with the representation

8()= [, Henf O,

where f : Q; — R is a measurable function.
Our first result is given in the following theorem (see [61]).

Theorem 3.1 Let u be a weight function on Qy, k a non-negative measurable function

on Q) X Q, and K be defined on Qy by (2.16). Assume that the function x — u(x) kl(()E;)) is

integrable on Qy for each fixed y € Qy and v is defined by (2.17). If ¢ : (0,00) — R is a
convex and increasing function, then the inequality

[, o (| £5 Y awta) < [ vr0050) s 6.

holds for all g € U (k) such that g(x) = [q, k(x,y)f(y)dia(y).
Proof. By using Jensen’s inequality and the Fubini theorem, since ¢ is increasing

31



32 3 ON AN INEQUALITY OF G. H. HARDY

function, we find that

0 (i

| Jaws = e (| [ K6 701 0] Yo o)

K(x)

)C

([, ko0t ) (o

QlKX

- /Q o)) ( [, w05 ) dust)

_/ )dua(y)

and the proof is complete. a

As a special case of Theorem 3.1 we get the following result.

Corollary 3.1 Let u be a weight function on (a,b) and o0 > 0. I, f denotes the Riemann-
Liowville fractional integral of f. Define v on (a,b) by

PN

viy)i=a | u(x)————

)= o [ a0

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

[ uoe (R Dz sl ax< [Mvoetsoas 62)

a

yo=1
dx < oo,

holds.

Proof.
Applying Theorem 3.1 with Q = Q; = (a,b), du (x) = dx, dus (y) = dy,

(X;)’)[x_l , a S y Sx;
k(x,y) = (o)

0, x<y<b

we get that K (x) = l(jz;i)l“) and g(x) = I%, f(x), so (3.2) follows. 0

Remark 3.1 In particular for the weight function u(x) = (x —a)*, x € (a,b) in Corollary
3.1 we obtain the inequality

[[o-ae (R Dz o) as< [“o-protsonar @)

Although (3.1) holds for all convex and increasing functions, some choices of ¢ are of
particular interest. Namely, we shall consider power function. Let g > 1 and the function
¢ : R — R be defined by ¢ (x) = x4, then (3.3) reduces to

q
[ (T Du ) axs [o-perora. o
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Since x € (a,b) and a(1 — g) < 0, then we obtain that the left-hand side of (3.4) satisfies

q
[o-ae (T Dz sor) as
> (b—a)®-)(M(a+ 1)) /\10‘ x)|4dx (3.5)

and the right-hand side of (3.4) satisfies

b b
| e=yrmray<e-a® ["1rm)ay (36)

Combining (3.5) and (3.6) we get

b
[z soopas< (H2) [rowar 67

Taking power é on both sides we obtain (1.12), that is the inequality of G. H. Hardy.
Corollary 3.2 Let u be a weight function on (a,b) and o. > 0. I} f denotes the Riemann-
Liouville fractional integral of f. Define v on (a,b) by
. y (y _ x)afl
V(y) = OC/(; M(X)de < o0

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

[ o (G ) avs [wetroay o)

holds.

Proof.
Applying Theorem 3.1 with Q; = Q, = (a,b), du (x) = dx, dus(y) = dy,

—x*! .
kxy)=q T Trsh
0, a<y<x

we get that K (x) = #Z 22 +1y and g(x) = I f(x), so (3.8) follows. |

Remark 3.2 In particular for the weight function u(x) = (b —x)%, x € (a,b) in Corollary
3.2 we obtain the inequality

[ o= (G2 sool) as< [“o-arotsomar @9
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Let ¢ > 1 and the function ¢ : R, — R be defined by ¢ (x) = x?. Then (3.9) reduces to
b To+1 4 b
[o-n (G 1) ax< [o-arisora. G0

Since x € (a,b) and (1 — g) < 0, then we obtain that the left-hand side of (3.10) satisfies

q
[ o= (G r001) axz -t vy [ g sopas

(3.11)
and the right-hand side of (3.10) satisfies

b b
[ o=arpay < e-a® [ 17wl ay (312
Combining (3.11) and (3.12) we get

/Ilhf )[9dx < ( )/f )[4 dy. (3.13)

Taking power é on both sides we obtain (1.12), that is the inequality of G. H. Hardy.

Theorem 3.2 Letp,q> 1, j—)—i—é =1Loa>1 1 fand I} f denote the Riemann-Liouville
fractional integral of f. Then the following inequalities

/\1"‘ \qu<c/ ()| dy (3.14)
and
b b
| r@par<c [Cirmay (315)
(b—a)1®

hold, where C =

(T(o))9go(p(a—1)+1)77!
Proof.
We will prove only inequality (3.14), since the proof of (3.15) is analogous. We have

g f) / 70— ar

Then by the Holder inequality the right-hand of the above inequality is
1

<ﬁ</ﬂx(x 1) "‘1dt) /|f )|9dt

1

— )% "
R e

N,

IN

a—1+% b
—aa) [irwpa
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Thus, we have

q

a71+% b
1 (x—a) /‘f(t)|th , for every x € [a,b].

(@) (p(a—1)+1)

(12 ) ()] <

=

Consequently we find

q b

JIGRE

a

~

1% F) ()7 < 1 (X—a)q(a*lﬂ* q
’ (T(@)? (pla—1)+ 1)»

and we obtain
(b _ a)q(a—1)+%+1

b
q
(F(a))q(q(a—1)+%+1)(p(a_1)+1)%/a |f(z)|9dt.

[ rar <

Remark 3.3 For o > 1 inequalities (3.14) and (3.15) are refinements of (1.12) since

(b—a)*\1?
o)

ga(pla— 1)+ 1> g0 > ad, 50 C < (

We proved that Theorem 3.2 is a refinement of (1.12) and Corollary 3.1 and 3.2 are gene-
ralizations of (1.12).

Next we give results with respect to the generalized Riemann-Liouville fractional deri-
vative.

Corollary 3.3 Let u be a weight function on (a,b) and let the assumptions in Lemma 1.3
be satisfied. Define v on (a,b) by

dx < e

X — B—a—1
)= (8- a) [ un GV

If ¢ : (0,00) — R is a convex and increasing function, then the inequality
b r—o+1 b
/u@m({égﬁghmww)dm;/wwww&wnw (3.16)
holds.

Proof. Applying Theorem 3.1 with Q; = Q; = (a,b),

0, x<y<b

(x—y)Pre .
k(x,y):{ Tpay » ASYST

_ af

we get that K(x) = FF-a7T)- Replace f by Dp f. Then, by Lemma 1.3 g(x) = (D% f)(x)
and we get (3.16). O
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Remark 3.4 In particular for the weight function u(x) = (x —a)P~%, x € (a,b) in Corol-
lary 3.3 we obtain the inequality

oty (TB= 0 1) e
[[o-areo (FE=SE 0l ) av< [0y oty

Let g > 1 and the function ¢ : R — R be defined by ¢ (x) = x9. Then, after some calcu-
lation, we obtain

b —
/ sz<x>|‘fdx<<((%7a+l> [ 1Dy

In the next Corollary results involving Canavati-type fractional derivative (v —fractional
derivative of f) are presented.

Corollary 3.4 Let u be a weight function on (a,b) and let the assumptions in Lemma 1.4
be satisfied. Define v on (a,b) by

¥ — v—y—1
V() == (v—7) /yhu(x)%dx < oo,

(x—x0)

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

b _ b
[ uoe (ST ) av< [Mvoetpisonar G

holds.

Proof. Applying Theorem 3.1 with Q| = Q; = (a,b),
()" ! :
k(x,y) :{ vy » ASYSX

we get that K(x) = % Replace f by DY f. Then, by Lemma 1.4 g(x) = (DLf)(x)

and we get (3.17). O

Remark 3.5 In particular for the weight function u(x) = (x —a)"~7, x € (a,b), in Corol-
lary 3.4 we obtain the inequality

[[o=arre (FEE s ) avs (63" roisohas. - Gas)

(x—a)v=r

Let ¢ > 1 and the function ¢ : R} — R be defined by ¢ (x) = x4. Then (3.18) reduces to

(v =y 1) [P0t ax< [ o0 0Ly
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Since x € [a,b] and (v — 7)(1 — g) < 0, we further obtain

(b—a)¥7

b v q q b v ’
[ ot ars (=25 ) [Mptrorar 3.19)

Taking power 5 on both sides of (3.19) we obtain

(b—a)V7

W)y < s

1D2f()lg-

When y =0 we find

b

v+ ) [ 9 gwiars [ o3l ay

a

that is
(b—a)’

1D () lg-

In the next Corollary we give results with respect to the Caputo fractional derivative.

Corollary 3.5 Let u be a weight function on (a,b) and v > 0. D} g denotes the Caputo
fractional derivative of g. Define v on (a,b) by

)n—v—l
dx < oo,

)= ) [ B

(x—a)yrv
If ¢ : (0,00) — R is a convex and increasing function, then the inequality
b I'n—v+1 b "
[ uo (FE=rEintetwn ) ars [“voele wihas G20
holds.

Proof.
Applying Theorem 3.1 with Q; = Q, = (a,b),

(x—y)" V! )
Kxy) =4 Tov o @SVEX
0, x<y<b

(x—a)""

TV Replace f by g("), so g becomes DY, g and (3.20) follows. O

we get that K (x) =

Remark 3.6 In particular for the weight function u(x) = (x —a)"~V, x € (a,b) in Corol-
lary 3.5 we obtain the inequality

[ = arre (T intew) dx< [ o-or oty

(x—a)v
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Let g > 1 and the function ¢ : R; — R be defined by ¢ (x) = x9. Then, after some calcu-

lation, we obtain
b a }'l \%
/ IDY,g(x qué( v+1> / 8" (y)|dy.

Taking power é on both sides we obtain

(b _ a)n—V

v < (n)
5ol < S )l

Theorem 3.3 Let p,g > 1, % + é =lLn—v> é, D}, f(x) denotes the Caputo fractional
derivative of f. Then the following inequality

b b—a q(n—v)
[ D < o / D)y
@ (T —v))a(p(n—v—1)+1)7g(n—v)
holds.
Proof. Similar to the proof of Theorem 3.2. a

Corollary 3.6 Let u be a weight function on (a,b) and v > 0. DY, f denotes the Caputo
fractional derivative of f and the assumptions in Lemma 1.5 are satisfied. Define v on
(a,b) by

v—y—1

)= =) [ a0 B0 <

(x—a)Vr

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

b _ b
[ ue (T sl avs [Motptusoas G2

(x—a)v=r
holds.

Proof.
Applying Theorem 3.1 with Q = Q) = (a,b),

(x—y)v 7! )
k(x,y) = { 0 vy o+ ASYSX

we get that K(x) = %

d

Replace f by DY, f, so g becomes D!, f and (3.21) follows.
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Remark 3.7 In particular for the weight function u(x) = (x —a)"~7, x € (a,b), in Corol-
lary 3.6 we obtain the inequality

[0 (T ptgl) as< [0 9 to(ptustas

Let g > 1 and the function ¢ : R — R be defined by ¢ (x) = x9. Then, after some calcu-

lation we obtain
b (b—a)V™7
sl ars (L0 e
[l as< (=) [ipnsoiea

For y = 0, we obtain
) [ pnoay

/\f )J9dx < (

We continue with results involving fractional integrals of a function f with respect to a
given function g.

Corollary 3.7 Let u be a weight function on (a,b), g be an increasing function on (a,b]
such that g is a continuous function on (a,b) and o > 0. I, .. f denotes the left-sided
fractional integral of a function f with respect to the function g in [a,b]. Define v on (a,b)

by
X)— o
v(y) = ag (v) /ybu(x)%dx -

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

b F((X+ ) b
[0 (s it wr]) ax< [CvoeUsoiay G2

holds.

Proof.
Applying Theorem 3.1 with Q; = Q, = (a,b),

1 g0) '
k(xvy) = T(o+1) (g(x)—g(y)-’ a<y<x;
0 x<y<b

we get that K (x) = m(g(x) —g(a))%, so (3.22) follows. O

Remark 3.8 In particular for the weight function u(x) = g'(x)(g(x) — g(a))%, x € (a,b)
in Corollary 3.7 we obtain the inequality

[ ¢ 0tet) —sta)% (o H Dl o)) o

Sleg%yﬂg(b)—g(ﬂ)“¢(UTyN)dy (3.23)
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Let ¢ > 1 and the function ¢ : R, — R be defined by ¢ (x) = x4. Then (3.23) reduces to
M+ 1)) [ ¢ (5)(600) —sa) - 9IE S0
< " 0)(al) - g0 7.

Since x € (a,b), o(1 —g) < 0 and g is increasing we have (g(x) — g(a))*('~9) > (g(b) —
gw»“*mamﬂgw)—gwﬁa<%g®)—gWD“w“@ommH

(8(b) — /
Idx < | =—2— )9d 3.24
[ e aromas< (ERZEDEY Pepa. 62
Remark 3.9 If g(x) = x, then I .. f(x) reduces to /7, f(x) the Riemann-Liouville frac-
tional integral, and (3.24) becomes (3.7).

Analogous to Corollary 3.7, we obtain the following result.

Corollary 3.8 Let u be a weight function on (a,b), g be an increasing function on (a,b]
such that g’ is a continuous function on (a,b) and o > 0. I " f denotes the right-sided
fractional integral of a function f with respect to the function g in |a,b]. Define v on (a,b)

by
v (8() —g(x)* !
BV SV v < oo
o gl gty T

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

b Cla+1) 4 b

[ e (s sl w0l ) ax< [Tvoeroas

holds.

Remark 3.10 In particular for the weight function u(x) = g'(x)(g(b) — g(x))*, x € (a,b),
and for the function ¢ (x) = x4, ¢ > 1 after some calculation we obtain

/g Do f (I dx%%) /g IOy (325

Remark 3.11 If g(x) = x, then [;” . f(x) reduces to ;" f(x) the Riemann-Liouville frac-
tional integral and (3.25) becomes (3.13).

The refinements of (3.24) and (3.25) for o« > é are given in the following theorem.

Theorem 3.4 Letp,g>1,1 > —|— ~=1, 0> 1, Ig of andlg‘i;gf denotes the left-sided and

right-sided fractional integral of a function f with respect to another function g in [a,b].
Then the following inequalities

e O —g@)
[ s < e g [ VOO
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and

e 7 _/ub f)|9g (v)dy

b
106' X q ,_x d_x<
/a |b_,gf( g (x)dx < og(T(a))?(p(a—1)+1)7

hold.

We continue by giving results for Hadamard type fractional integrals.

The Hadamard fractional integrals of order o are special case of the left- and right-
sided fractional integrals of a function f with respect to the function g(x) = log(x) in (a,b)
where 0 < a < b < o0, 30 (3.24) reduces to

b d d
/ <J§‘+f><x>q§s< a+l> [ o (326

and (3.25) becomes

84 dy
[ug e ( oc+1>./ OIS (327)

Also, from Theorem 3.4 we obtain refinements of (3.26) and (3.27) for o > %

e & tog?)
f g S < — e — +1%/

(log qdy
/“” = qalM@)ipla— D+ 1)} /‘ !

Some results involving Hadamard type fractional integrals are given in [67, p. 110]. Here
we mention the following result that can not be compared with our result.

and

Let @ > 0,1 < p<eand 0 <a<b <. Then the operators J, f and J f are
bounded in L, (a,b) as follows:

e Allp < Killfllp and |T5- flp < K2l £,

where
1 log(b/a) :
Ki=—=— 1“evdr
) /o ¢
© 1 log(b/u o1 __d
= — pdr.
: F(a)/o

Now we give results involving Erdélyi-Kober type fractional integral.
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Corollary 3.9 Ler u be a weight function on (a,b), »Fi(a,b;c;z) denotes the hyper-
geometric function and Ig+;0;n f denotes the Erdélyi-Kober type fractional left-sided in-
tegral. Define v by

—0oN(,+0 _ ,,0o\a—1
il d L NP
$Fi (o, —ma+1;1—(4)%)

X

v(y) _ ao.yo'n+0'*1 ébu(x) (x" — ac)

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

/bu(x)q) N He+1) e AR VACOIN ICES
Ja (1_(%) ) 2Fi (o, -0+ 11— (4)7)

X

b
< [vmedsoay (328)

holds.
Proof. Applying Theorem 3.1 with Q; = Q; = (a,b),
ox—ola+n)

1 o '
k(x,y) = { T(o] o oeraY’1TT a<y<x;
)
0, x<y<b

o
we get that K (x) = m (1 - (%)0) 2F (o, —ms o+ 151 — (f—()g), s0 (3.28) follows. O

Remark 3.12 In particular, for the weight function u(x) = x° ! (x® —a®)%*,F; (x) (2 F; (x)
o
= Fi(a,—n;o+1;1— (9)0) and F(y) =2 Fi(a,m;004 151 — (%) )) in Corollary 3.9

X
we obtain the inequality

TNa+1)
(1-°) " 2A
b
< / YO LB —yO) L ()0 (L ()]) dy.

b
[0 —a) R w9 12 o) | dx

Remark 3.13 Similar results can be given for Erdélyi-Kober type fractional right-sided
integral, for details see [61].

In the previous corollaries we derived only inequalities over some subsets of R. How-
ever, Theorem 3.1 covers much more general situations. We conclude this section with
multidimensional fractional integrals.

Corollary 3.10 Let u be a weight function on (a,b) and o > 0. Iy’ f denotes the mixed
Riemann-Liouville fractional integral of f. Define v on (a,b) by

a—1

v(y) == Oc/yjbl ---/yjnu(x)%dx<oo.
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If ¢ : (0,00) — R is a convex and increasing function, then the inequality

/b' /b" ( ))|a+ )dx</ /b" V)dy  (3.29)

holds for all measurable functions f : (a,b) — R.

Proof.
Applying Theorem 3.1 with Q; = Q, = (a,b),

(x—y)*"! .
k(x,y) = { Moy > BSYSX

0, x<y<b

we get that K(x) = 1(-?&1); and g(x) = I f(x), so (3.29) follows. ]

Remark 3.14 Analogous to Remark 3.1 and 3.2 we obtain multidimensional version of
inequality (1.12) for g > 1:

/ / Iy, gdx<( (XH)/bl / y)|?dy
[ [ sorass (B 2) [ [T .

and

3.1 New inequalities involving fractional integrals
and derivatives

If we substitute k(x,y) by k(x,y)f2(y) and f by %, where f; : Qy — R, (i = 1,2) are mea-
surable functions, in Theorem 3.1 we obtain the following result (see [60]).

Theorem 3.5 Let f; : Q) — R be measurable functions, g; € U(f;), (i = 1,2), where
g2(x) > 0 for every x € Q1. Let u be a weight function on Q4, k be a non-negative measur-

able function on Q; X L. Assume that the function x — u(x) LU 2(g2) ()E) Y i integrable on
for each fixed y € . Define v on Qs by
u(x)k(x,
v0) = ) [ gy ) < o 330
g2 (x)

1

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

9/1 u(x)6 ( £1(%) ) d(x) < Q/ V()6 ( fib) ) din(y),

g2(x) )

holds.
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Remark 3.15 If ¢ is strictly convex and % is non-constant, then the inequality in The-

orem 3.5 is strict.

Remark 3.16 As a special case of Theorem 3.5 for Q| = Qy = [a,b] and du,(x) =
dx, duy (y) = dy we obtain the result in [81] (see also [92, p. 236]).

As a special case of Theorem 3.5 we obtain the following results involving Riemann-
Liouville fractional integrals, the Canavati-type fractional derivative, the Caputo fractional
derivative, Hadamard-type fractional integrals, Erdélyi-Kober type fractional integrals (for
details see [60]).

Corollary 3.11 Let u be a weight function on (a,b) and o0 > 0. I} g denotes the right-
sided Riemann-Liouville fractional integral of g. Define v on (a,b) by

y o
oy = ) [

Mo~ pw T

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

oo (| o (|22

L)

IF fi(x)
I¥ fo(x)

holds.

Remark 3.17 The result involving the left-sided Riemann-Liouville fractional integral is
given in Corollary 2.4 in [63].

Next we give results with respect to the generalized Riemann-Liouville fractional deri-
vative.

Corollary 3.12 Let u be a weight function on (a,b) and let the assumptions in Lemma
1.3 be satisfied. Define v on (a,b) by

= Dng(Y) /h M(X)(x_y)ﬁfaq
rp-a)

y

v(y)

If ¢ : (0,00) — R is a convex and increasing function, then the inequality

_/bu<x><z> ( )< _/bv<y>¢> ( )dy

Now we give results involving the Canavati-type fractional derivative.

Dgfl ()

DEfz(Y)

D f1(x)
D f>(x)

holds.
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Corollary 3.13 Let u be a weight function on (a,b) and let the assumptions in Lemma
1.4 be satisfied. Define v(y) on (a,b) by

b
_Dip0) [u—y) !
0 =R/

y

If ¢ : (0,00) — R is convex and increasing, then the inequality

e (8t oe< [ (55t )

Dlf>(x)

holds.
We continue with results involving the Caputo fractional derivative.

Corollary 3.14 Let u be a weight function on (a,b) and v > 0. D}, f denotes the Caputo
fractional derivative of f. Define v(y) on (a,b) by

O
/ DY, f>(x)

dx < oo.
If ¢ : (0,00) — R is convex and increasing, then the inequality

_/bu<x>¢ ( )dxs /bv<y>¢ ( )d

Corollary 3.15 Let u be a weight function on (a,b) and let the assumptions in Lemma
1.5 be satisfied. Define v(y) on (a,b) by

A7)

A7)

DY, f1(x)

DY, f2(x)

holds.

V(y) _ DrafZ(y) /b I/L(x) (x _y)V—y_l

“Tvon ) Dhaw U7

If ¢ : (0,00) — R is convex and increasing, then the inequality

/bu(x><z>< )dx</bv(y>¢>(

DZufl (x)

DZufZ (x)

D¥af2(y)

holds.

Now we continue with results involving the Hadamard-type fractional integrals.
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Corollary 3.16 Let u be a weight function and o > 0. J§ f denotes the left-sided Hada-
mard-type fractional integral. Define

b
~_ Lb) x\* : 1
W”__ﬂYa)!ﬁQo<bgy) UZ )0

dx < oo,

If ¢ : (0,00) — R is convex and increasing, then the inequality

Joon (s From 2

L)

holds.

Similarly we obtain the following Corollary.

Corollary 3.17 Let u be a weight function and o > 0. Ji* f denotes the right-sided
Hadamard-type fractional integral. Define

b
= L0 L (0e) T L e
v(y)—yr(a)_y/ ()(1 gx) (J,‘,x,fz)(x)d < oo,

If ¢ : (0,00) — R is convex and increasing, then the inequality

a/bu(x)(b ( jzz_;;g; D dx < a/bv(y)q) ( fily) Ddy

L)

holds.

Corollary 3.18 Let u be a weight function, If, .., f denotes the left-sided Erdelyi-Kober
type fractional integral of function f of order o > 0. Define v on (a,b) by

dx < oo,

)= F

(y)/b u(x)ox— oot yon+o-l
o) J (=3O (1% g f2) (%)

If ¢ : (0,00) — R is convex and increasing, then the inequality

b b
/u(x)¢ ( )dXS /V(Y)¢ (

a
Similarly we obtain the following Corollary.

Ig—s—;a;nfl (x)
Ig+;0;nf2 (x)

L)

f1()’)’> dy

holds.
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Corollary 3.19 Let u be a weight function, I;fi;cmf denotes the right-sided Erdelyi-
Kober type fractional integral of a function f. Define v on (a,b) by
_ AW / u(x)ox1yo=o -1
- (

d oo,
V=) (E

If ¢ : (0,00) — R is convex and increasing, then the inequality

/bu(xw ( )dxé /bV(y)d) ( fl—(y)')dy

J £ ()

I o f1(%)
1;71 o-nf (X)

holds.

As a special case of Theorem 3.5 we obtain results involving the generalized Riemann-
Liouville fractional derivative.

Corollary 3.20 Let u be a weight function on (a,b) and let the assumptions in Lemma
1.3 be satisfied. Define v on (a,b) by

dx < oo,

v(y) =

B b _y\B—a—1
Dy fo(y) / u(x)(x—y)
r'p—o) ) DY f>(x)

If ¢ : (0,00) — R is convex and increasing function, then the inequality

/b o Jax< /b V()0 ( )dy

We continue this chapter with results involving the mixed Riemann-Liouville fractional
integral of f.

DY f1(x)
DS f>(x)

Dgfl ()
Dgfz()’)

holds.

Corollary 3.21 Let u be a weight function on (a,b) and o > 0. I f denotes the mixed
Riemann-Liouville fractional integral of f. Define v on (a,b) by

= dX < oo,

fzy bt /b” —y)*!
)l

Iyl Ia f2 X)

If ¢ : (0,00) — R is convex and increasing, then the inequality

[ Jooo([Ean [ froo (1] )

X

holds.
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Corollary 3.22 Let u be a weight function on (a,b) and o« > 0. I f denotes the mixed
Riemann-Liouville fractional integral of f. Define v on (a,b) by

f2 / /yn )Ira_fz ) )ldx -

If ¢ : (0,00) — R is convex and increasing, then the inequality
by by by by
[ fotme (|00 < oo ([
. . (¥)
ajy ajy

Note that Theorem 3.5 can be generalized for convex functions of several variables.

I“flx
IanX

holds.

Theorem 3.6 Ler g; € U(f;), (i = 1,2,3), where ga(x) > 0 for every x € Q. Let u be
a weight function on Q1, k be a non-negative measurable function on Q) x Qj. Let v be
defined by (3.30). If ¢ : (0,00) X (0,00) — R is a convex and increasing function, then the

inequality
[ (2] o< [ (283 [25 o o
holds.

Remark 3.18 Apply Theorem 3.6 with Q| = Q, = [a,b] and du; (x) = dx, du,(y) = dy.

Then , '
W) = ) [

g2(x)
and (3.31) reduces to
g1(x) | |g3(x)

./ubu(x)q) ( £2(%) || 82(x) )dx = /abv(y)q) <

This result is given in [81] (see also [92, p. 236]).

1 A0)

fy) '
L)

»K) Dd

3.2 Improvements of an inequality of G. H. Hardy

Using Theorem 2.6, we will give some special cases for different fractional integrals and
fractional derivatives to establish new Hardy-type inequalities (see [56]).

Our first result involving fractional integral of f with respect to another increasing
function g is given in the following theorem and from this we obtain the case of Riemann-
Liouville fractional integrals and Hadamard fractional integrals.
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Theorem 3.7 Let 0 < p < q < oo, ubea weightfunction on (a,b), g be an increasing
function on (a,b] such that g’ is continues on (a,b), I¢ .o denotes the left-sided fractional
integral of f with respect to the increasing function g. Let v be defined on (a,b) by

[T

v(y) = ag (v) V/bu(x) <%> ’ dx | <eo. (3.32)
If ® is a non-negative convex function on an interval I C R, then the inequality
b « \ i b 0
o oot taraw)| e < [rowuona) 63

holds for all measurable functions f : (a,b) — R, such that Imf C I.

Proof. Applying Theorem 2.6 with Q| = Q) = (a,b), du; (x) = dx,dus(y) = dy,

__dv» .
k(x,y) = { o) g s’ ¢ <y<x;

0, x<y<hb,
we get that K (x) = F(a+1) (g(x)—g(a)*, Arf(x) = %Lf‘%gf(x) and the inequality
in (2.21) reduces to (3.33) with v defined by (3.32). O

Corollary 3.23 Let0<p<g<oo,s>l,a>1-— B, g be an increasing function on (a, b)
such that g’ is continues on (a,b), I* " .o denotes the left-sided fractional integral of f with
respect to the increasing function g. Then the inequality

1 glas—1)+p

1 b
/g I f ) F x| <2 B 28] [¢oirmay] 334
(o= 1) 4+ 1)3 (T(ar + 1))

holds.

Proof. For particular convex function @ : R, — Ry, ®(x) = x*,s > 1 and weight

function u(x) = g'(x)(g(x) - gp(a))%,x € (a,b) in (3.33) we get v(y) = (g (v)(g(b) —
g M) /(o — l)f—, +1)4) and (3.33) becomes

1

b q

[¢@e0) - g@) T2 f () F ax

a

IA
R
ST
—
oQ
—~
=
~—
~—
Q
|
g8
5
—~
=
=
<

Q=

(= 1)L+ 1)7(M(a+1))7
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oq

Since (g(x) — g(a)) 7 '™ > ((6) — g(@) * " and (g(b) —g(:))* T4 <
(g(b) —g(a))* "4 dueto > 1 — 5, we obtain (3.34). O

Remark 3.19 Similar result can be obtained for the right-sided fractional integral of f
with respect to another increasing function g, but here we omit the details.

We continue with results involving the Riemman-Liouville and Hadamard-type frac-
tional integrals. If g(x) = x, then I . f(x) reduces to I7, f(x), the left-sided Riemann-
Liouville fractional integral, and if g(x) = log(x) in [a,b] where 0 < a < b < oo, then
17 . f (x) reduces to J¢, f(x), the left-sided Hadamrd-type fractional integral.

Corollary 3.24 Let 0 < p < q < oo, u be a weight function on (a,b), I% f denotes the
left-sided Riemann-Liouville fractional integral of f. Let v be defined on (a,b) by

p

oyima fun (2 ) e
/

(—a)

If ® is a non-negative convex function on an interval I C R, then the inequality

1
q b P

/b o (R 9 )] ") < [voere)ay

a

holds for all measurable functions f : (a,b) — R, such that Imf C I.

Corollary 3.25 LetO<p<g<oo,s>1,a>1— g, 1% f denotes the left-sided Riemann-
Liouville fractional integral of f. Then the inequality

1
b q

Juzsontar| < Gl T — [ ay
a (a=DI+ D (T(a+1))r \g

holds.
Corollary 3.26 Let O <p<g<eo,s>1, a0 >1— 5, J& f denotes the Hadamard-type
fractional integrals of f. Then the following inequality holds

1 1

b q 1 glas=)+p b P

sq d 7 (logh—1 Pa d
Juzranidt) < orlobmloedd T [ @
a (=1 T+ 1)a(T(a+ 1)) Y

Next we give result with respect to the generalized Riemann-Liouville fractional deriva-
tive.
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Theorem 3.8 Let 0 < p < g < oo, u be a weight function on (a,b), B > o« > 0 and let the
assumptions of Lemma 1.3 be satisfied. Let v be defined on (a,b) by

b Y— p—o—1 % g
v(y) == (B — ) /wo(L) dx | <o

(x—a)p-
y

If © is a non-negative convex function on an interval I C R, then the inequality

1
q b P

/hu(x) [@ (%Dgﬂx)) ] ’ i < /v(y)cb (DBrw))av| 339

holds for all measurable functions f : (a,b) — R, such that Imf C I.

Proof. Applying Theorem 2.6 with Q) = Q) = (a,b), du; (x) = dx,dus (y) = dy,

(r—y)Po! :
k(ry) =< T@E-a > ¢SYsx
0, x<y<b,

we get that K(x) = 1%;27)(5:3' Replace f by Dgf. Then Ay f(x) = %Dgf(x) and
the inequality given in (2.21) reduces to (3.35). O

(B=a)

If we take ®(x) =x°,s > L and u(x) = (x—a)” 7 : ,X € (a,b), similarly to the proof
of Corollary 3.23 we obtain the following result.

Corollary 3.27 Let 0 < p< g <o, s> 1, —o > 1 — £ and let the assumption of
Lemma 1.3 be satisfied. Then the following inequality holds

1 1
b q q((B=a)s=D)+p b P

Jwgseytar) < PO T [iphp(y)ay
a (B D&+ DITE—at)r

e

In the following Theorem, we will construct a new inequality for the Canavati-type
fractional derivative.

Theorem 3.9 Let 0 < p < g < oo, v>7v>0,ubeaweight function on (a,b) and the as-
sumptions in Lemma 1.4 be satisfied, D} f denotes the Canavati-type fractional derivative
of f. Let v be defined on (a,b) by

QT

b

() = (v—7) /u(x) (%) ' i <o,



52 3 ON AN INEQUALITY OF G. H. HARDY

If ® is a non-negative convex function on an interval I C R, then the inequality

q

Jueo o (M o)) < [owzona) 630

(x—a)v=r

holds for all measurable functions f : (a,b) — R, such that Imf C I.

Proof. Applying Theorem 2.6 with Q| = Q, = (a,b), du; (x) = dx,dus(y) = dy,

(=) ! :
k(x,y) = v 4SYS%
0, x<y<b

(x—a)V7

we get that K(x) = ) Replace f by D) f. Then the inequality given in (2.21)
reduces to (3.36). O

Example 3.1 If we take ®(x) =x*,s > 1, v—y>1— f]—’ and weight function u(x) =

(=)
(x—a)~ P ! , X € (a,b) in (3.36), after some calculations we obtain

1 1
b q q((v=y)s—1)+p b P

/(le(x))%dx < (V_Y)%(b—cf) 7] |
‘ (v=y=DF+DaT(v—y+ )7 \;

Next, we give the result for the Caputo fractional derivative.

S1E

Theorem 3.10 Let 0 < p < g < oo, u be a weight function on (a,b) and DY, f denotes the
Caputo fractional derivative of f. Let v be defined on (a,b) by

P
q

Vo) = ( V)-y/()< D) ] <

(x—a)yv

If ® is a non-negative convex function on an interval 1 C R, then the inequality

q

b q b P
[t {®<M0:uf(x>)ydx <| [roe(fe)ar] 631

(x—a)"V
holds for all measurable functions f : (a,b) — R, such that Imf C I.
Proof. Applying Theorem 2.6 with Q; = Q, = (a,b), du; (x) = dx,dus (y) = dy,

(rppv! .
k(x’y) = I(n—v) asy=sx;
0, x<y<b

we get that K(x) = F()(C;_az::lv i Replace f by f). Then the inequality given in (2.21) reduces

to (3.37). 0
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Example 3.2 1f we take ®(x) =x*s > 1, n—v > 1 — 5 and weight function u(x) =
(n—v)q

(x—a) 7 ,x€(a,b),in (3.37) we obtain

1
b q q((n=v)s—1)+p

1
5q n—v)r(b—a rq
Jrsentax) < - v)P(b-a) i(/f

J ((n—v—1)%+1)i (T(n—v+1))
Theorem 3.11 Ler 0 < p < g < oo,u be a weight function on (a,b) and the assumptions
in Lemma 1.5 be satisfied. DY, f denotes the Caputo fractional derivative of f. Let v be
defined on (a,b) by

r

q

v(y):=(v—17) /bu(x) (%)gdx < oo,

If © is a non-negative convex function on an interval I C R, then the inequality

1 1
q b P

/b u(x) [Q(w% (x))}gdx <| [roemironay ) 639

(x—a)V=7
holds for all measurable functions f : (a,b) — R, such that Imf C I.
Proof. Applying Theorem 2.6 with Q| = Q, = (a,b), du; (x) = dx,dus(y) = dy,

(r—y) :
k(xy)={ Tom7 2 ASYSX
0, x<y<b

we get that K(x) = % Replace f by DY,f. Then the inequality given in (2.21)

reduces to (3.38). O
Now, we give the following result that involves the Erdélyi-Kober type fractional inte-
grals.

Theorem 3.12 Let 0 < p < g < oo, u be a weight function on (a,b), Iy .., f denotes
the Erdélyi-Kober type fractional mtegrals of f, 2F1(a,b;c;z) denotes the hypergeometric
function. Let v be defined on (a,b) by

P
b q

vy)i=a /u(x) <( o-x—cniydn+6—1 )a) ' dx | <oo.
y

X0 _yO')l ot(xa —a°

If ® is a non-negative convex function on an interval I C R, then the inequality

Juto|o| LD ot || x| < | [rotonay
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holds for all measurable functions f : (a,b) — R, such that Imf C I where F\(x) =
2 F (—n,a;(x—i— 1;1— (f—()c) :

Proof. Applying Theorem 2.6 with Q; = Q, = (a,b), du; (x) = dx,dus (y) = dy,

1 ox %) onto—1
b

kx,y) = { e e =

a<y<ux;

we get that K (x) = m (1 B (f)g)a Rt 11— (g)o).

X

Then the inequality (2.21) becomes (3.39). O

Example 3.3 1f we take ®(x) = x*,s > 1 and weight function u(x)
=x°"1((x° —a®)%,F (x))%, x € (a,b) in (3.39), after some calculations we obtain

1 1
b q b P

(g 59 ;
JORENH (1 s ) 7 x| <[ [GRODS G
a a
where o111
c aﬁa%b%l(b"—a")q ae

po—ptgsoo ’

T (e DL+ )T (N +1))7
a\° b\°
2F1(x) = 2F1<—17,0C;OH—1;1—(;) ) andgFl(y) = 2F1(T],OC;OH-1;1— (;) ) .

Remark 3.20 Similar result can be obtained for the right-sided Erdélyi-Kober type frac-
tional integrals, but we omit the details here.



Chapter

Some new refined Hardy-type
inequalities with kernels

In this chapter we state and prove a new general refined weighted Hardy-type inequality
for convex functions and integral operator and also for monotone convex functions. We
point out that the obtained result generalizes and refines the classical one-dimensional
Hardy, Pélya-Knopp, Hardy-Hilbert inequalities and related dual inequalities. We show
that our results may be seen as generalizations of some recent results related to Riemann-
Liouville and Wey!’s operator, as well as a generalization and a refinement of the so-called
Godunova’s inequality.

4.1 New general refined Hardy-type inequalities with
kernels

Now, we are ready to state and prove the central result of this chapter, that is, a new
refined general weighted Hardy-type inequality with a non-negative kernel and related to
an arbitrary convex function. It is given in the following theorem (see [24]).

Theorem 4.1 Ler (Q1,%1, 1) and (Q,%, L) be measure spaces with positive G-finite
measures, u be a weight function on Q1, k a non-negative measurable function on ) x {y,
and K be defined on Q; by (2.16). Suppose that K(x) > 0 for all x € Q, that the function

55
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X u(x)% is integrable on Q| for each fixed y € ), and that v is defined on €1 by
(2.17). If © is a convex function on an interval I CR and ¢ : I — R is any function, such

that ¢(x) € d®(x) for all x € Intl, then the inequality

[, OIRU O i) — [ a0 () i ()

u(x)
> [ R o K@U 0) ~@(acs ()

—@(Arf ()| 1f(y) = Aef ()| | dia(v) d i (x) 4.1)

holds for all measurable functions f : Qy — R such that f(y) €I for all y € Q,, where Ay f
is defined on Q1 by (2.15).

If ® is a monotone convex function on an interval I C R and ¢ : I — R is any function,
such that ¢(x) € dP(x) for all x € Int I, then the inequality

[0 ) - [a® @) di e

Q) Q

[ 5 [ sen(r0) = ke [0070) - @aus )

Q) Q

QUS|+ (£0) ~ Af ()] dpa(v) dpn (x) (42)

holds for all measurable functions f : Qy — R such that f(y) €I for all y € Q,, where Ay f
is defined by (2.15).

Proof. First, Aif(x) € I, for all x € Q; (see the proof of Theorem 2.5). To prove
inequality (4.1), observe that for all » € Int/ and s € I we have

O(s) = D(r) — @(r)(s—r) = 0,
where ¢ : I — R is any function such that @ (x) € d®(x) for x € Int/, and hence
O(s) = ®(r) = @(r)(s —r) = |®(s) = @(r) — (r)(s —7)|
> [|®(s) = ®(r)[ = |@(r)||s — . 4.3)

Especially, in the case when Ay f(x) € Int/, by substituting » = A f(x) and s = f(y) in (4.3)
we get

O(f(y)) = P(Akf (%) — @(Arf (x)) [f (v) = Acf ()]
> ||@(f(y)) = P(ARS ()] = [@(Acf () 1f () — Arf ()] - 4.4)

Observe that (4.4) holds even if Ay f(x) is an endpoint of , since in that case both sides of

inequality (4.4) are equal to O for uy-a.e. y € Q. Multiplying (4.4) by u(x) klg)(cxy)) >0 fora
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fixed x € Q1, and then integrating it over €2, and € respectively, we obtain

/Ql /Q x) FO))dpia () dp (x)
/Ql /Qz kl((x D(Arf(x))dua () dp (x)

/Q1 /Qz u(x) k,i P(ALS (%)) [ (v) — Acf (x)] da(y) dpy (x)

> [ [uto TW@))MMM
Qp JQ (x
~ 1O(AF) - 11 0) ~ A )| ditay)dp 4). @s)

EREENAY

By using Fubini’s theorem and the definition (2.17) of the weight v, the first integral on the
left-hand side od (4.5) becomes

k(x,y
/Ql /Qz K(x) FO)dua(y)di (x)

=Sb®U@D<A;Mwﬁgghwﬂ@>dmbﬁ

= [ v () dia(y), (4.6)

Q

while for the second integral on the left-hand side of (4.5) we have

// D(ALf(x)) dita (v) dpt (x)
Q) JQy

= [ uiasG (ﬁgéﬁ@ﬁ@ﬂ”dmw

= | u(@)®Af(x))dp (x). “.7)

'Ql

Finally, applying (4.5) and (2.19) and we similarly get
(AL (X)) [f(y) — Arf (x)] dpa(y) dpta (x)

INRCE
u(x) ( / k() () i >) dp (x) =0, 8)

Qle

so0 (4.1) holds by combining (4.5), (4.6), (4.7), and (4.8). Now, we prove inequality (4.2).
Consider the case, when @ is non-decreasing on the interval /. For a fixed x € Q, let
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={yeQ: f(y) > Acf(x)}. Then

[ K@) ~ DA ()i )
Q

= [k @) - PU W) ()

+ [ K@) - O 0)ldia)

\Q,
- /k(w D)= [ Ky 0)dua)
Q) 2\,
DA f(x /kxydu2(>+<b<Akf /kxyduz()
Q, 2\Q)
:/%Mﬂw—Mﬂﬂ%@ﬁ@ﬁ@»—®@mwwm@) 4.9)

Q

Similarly, we can write

/ k)| F () — (Acf () |dua (v)

- / sn(£ () = Akf CRCED) () = A (0)dpa (). (4.10)

From (4.1), (4.9) and (4.10), we get (4.2).
The case, when @ is non-increasing can be discussed in a similar way. a

Remark 4.1 Let ®@ be a concave function (that is, —® is convex). Then for all r € Int/
and s € I we have

O(r) = @(s) — @(r)(r—s) =0,
and (4.3) reads

O(r) = B(s) = @(r)(r—s) = |®(r) = D(s) — (r)(r—s)

©(s) = @(r)| = [@(r)|-|s =],

where @ is an arbitrary real function on 7 such that @(x) € dP(x) = [@/, (x), D (x)], for
all x € Int/. Hence, in this setting, (4.1) holds with its left-hand side replaced with

L, HOPASE) (9~ [ VIR0 ()

>

If @ is monotone concave, then the order of terms on the left-hand side of (4.2) is reversed.
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Remark 4.2 Since the right-hand side of (4.1) is non-negative, we get (2.18) as an im-
mediate consequence of Theorem 4.1 and Remark 4.1 Consequently, our new result can be
regarded as a refinement of the general weighted Hardy-type inequality (2.18). The same
holds also for a concave function ®.

Although (4.1) holds for all convex (or concave) functions, some choices of @ are of
particular interest. Namely, we shall consider power and exponential functions. To start
with, let p € R\ {0} and the function @ : R — R be defined by ®(x) = x”. Obviously, ®
is monotone, ¢ (x) = @' (x) = px”~!, x € R, so @ is convex for p € R\ [0, 1), concave for
p € (0,1], and affine, that is, both convex and concave for p = 1. In this setting, we get the
following consequence of Theorem 4.1.

Corollary 4.1 Let Q,Q), luy, s, u,k, K, and v be as in Theorem 4.1 Let p € R be such
that p # 0, f: Qp — R be a non-negative measurable function (positive for p < 0), Arf be
defined by (2.15),

Rpif () = | |776) = AL£00| = pl- A f )P F0) — Af @)l |, 1)

and
Mpif(,y) = f7(0) = AL (x) = [l - |AF (1P~ (F () = Aef (x)) (4.12)
forxe Q,ye Q. If p>1orp <O, then the inequalities

|0 0)die) - [ A £ @
Q Q

1

= /Ql Z(();)) o k(x,y)Rp i f (x,y) dua (v) duy (x), (4.13)

[rorsro)auas) ~ [ ualfx)am @

Q
u(x)
9/1 K(x)

Q
>

[ s8nF0) = At ()5 0Myf (5,9) i (3) s ()
Q

(4.14)

hold, while for p € (0,1) relations (4.13) and (4.14) hold with
[ uagrdin )~ [ v ) dus)
Jo, Q,

on its left-hand side.

Remark 4.3 Note that relations (4.13) and (4.14) are trivial for p = 1, since both of its
sides are equal to O.
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On the other hand, for the convex function @ : R — R, ®(x) = ¢*, we have ¢@(x) =
@' (x) = ¢* and the following new general refined weighted Pélya-Knopp-type inequality
with a kernel, which is a generalization and refinement of the classical Pélya-Knopp’s
inequality (0.2).

Corollary 4.2 Let Q,Q), Uy, Uy, u,k, K, and v be as in Theorem 4.1 andlet p € R, p £ 0.
Then the inequality

|0 o)) = [ )6l du (o)
Q) Q

= /Ql %/(22 k(an)Sp,kf(xay)d“Z(y)d,lh (x) (4.15)

holds for all positive measurable functions f on Q,, where Gif(x) and Sy f(x,y) are
defined for x € Q| and y € Q; by

Gus ) =exp (i [ K log FO0) i) @16)
and
Spaf () =770 = GLF )| - 7] 67w foe 220 \ @17

In particular, for p = 1 we get

[ 0000~ [ uGerdin )= [ 22 [ k)«

K(x)
()~ Gef ()] — Ge(x) |10g L | dnt)dm).  @18)
Gif(x)
Moreover, relations (4.15) and (4.18) are equivalent.
Let p > 0, Gy, be defined by (4.16),
Ppaf(5) = 17(6) = GLF(x) - pIG{ )] og o2 @.19)

and f : Qy — R be a positive measurable function. Then the following inequality holds

/ YO Oa() — [ u(o(GLF () dp ()

Q

> | / e / sgn(£() = Gef () k(x.3) Py (5,9)da (3) dpts ()]

Proof. Apply (4.1) with @ : R — R, ®(x) = ¢*, and replace the function f with plog f.
Note that Gy f = exp(A(log f)) and Gy f? = G f, so equivalence of (4.15) and (4.18) is
evident. |

Now, we consider the simplest kernels k, that is, those with separate variables. As a
corollary of Theorem 4.1 in this setting, we get a refined general Jensen’s inequality.
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Corollary 4.3 Suppose Q is a measure space with a positive G-finite measure |1, m €
LY(Q, 1) is a non-negative function such that |m|, > 0, a real function ® is convex on an
interval I CR, and ¢ : I — R is any function such that ¢(x) € dP(x) for all x € Intl. Then
the inequality

| eI ) = il D4 f)
/ M) 1O ()) = DA f)| = 9(Anf)| - |F ) = Anf] | dia(y)
(4.20)
holds for all measurable functions f : Q — R with values in I, where
1
Anf = o [ mO)F0)an ) (421)

Ifthe function @ is concave, the order of integrals on the left-hand side of (4.20) is reversed.

Proof. Suppose that in Theorem 4.1 we have Q) = Q, uy = u, u € L' (Qq, 1;) such
that |u|; > 0, and k of the form k(x,y) = [(x)m(y), for some positive measurable function
1:Q; — R. Then K(x) = |m|1l(x) and Agf(x) = A,nf €1, x € Qy, while v(y) = I l' m(y),
y € Q. Thus, (4.1) reduces to (4.20) and it does not depend on €2, [, and u. O

Remark 4.4 Observe that, for 0 < [Q|, < e and m(y) =1 on Q, we have |m|; = |Q|,,
so0 (4.20) becomes the classical refined Jensen’s inequality

ﬁ /QCD(f(y))dﬂ(y) —D(Af)
- QLM/QHq)(f(y))_q)(Afﬂ_‘P(Af)|'|f()’)—Af||du(y),

where |
= /Q FO)du(). (4.22)

In the sequel, the general results are applied to particular measure spaces, convex func-
tions, weights, and kernels. This enables us to refine and even generalize some important
inequalities previously known from the literature.

First, we consider an one-dimensional setting, with intervals in R and the Lebesgue
measure, to get refined Hardy and Pdlya-Knopp-type inequalities, as well as related dual
relations. In the following theorem, we state and prove a refinement of a Hardy-type in-
equality obtained by S. Kaijser et al. in [65].

Theorem 4.2 Let 0 < b < oo and k: (0,b) x (0,b) — R be a non-negative measurable
function, such that

x) = /k(x,y) dy >0, x€(0,D). (4.23)
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Let a weight u : (0,b) — R be such that the function x — ulx) k,((( y)) is integrable on (y,b)

X

Sor each fixed y € (0,b), and let the function w : (0,b) — R be defined by

b k(x,y) dx

L K "

w(y) =y

If @ is a convex function on an interval  CR and @ : I — R is such that ¢(x) € d®(x) for
all x € Intl, then the inequality

/w<y>®<f<y>>‘il—iu<> P(Aif (x d;>/b,”;’; ]k(xyx
0 0 0

X @(f(y)) = B(Af (X)) = [ @(Arf ()] - [ (¥) — Aef (%) Idy%

(4.24)

holds for all measurable functions f : (0,b) — R with values in I and for Ay f defined by
Arf(x) /k x,3)f(y) dy, x € (0,b). (4.25)

If the function ® is concave, the order of integrals on the left-hand side of (4.24) is
reversed. If @ is monotone convex on the interval I C R and ¢ : I — R is such that
©(x) € dO(x) for all x € Intl, then the following inequality

b b
[0 %~ [uto e S
0 0

.X

b
> |22 / sn(£ () = Axf (k(x.9) [@(/ () = @S (1)
0

S — A ()| ay & (4.26)

holds for all measurable functions f : (0,b) — R with values in I.

Proof. Denote Ty = {(x,y) € R? :0 <y <x < b} and set Q| = Qy = (0,b) in Theorem
4.1. Relation (4.24) follows from (4.1) by replacing du;(x), dus(y), u(x), and k(x,y)

respectively with dx, dy, “ ( ), and k(x,y)xr, (x,y). In this case, (2.15) reduces to (4.25),
while (2.16) becomes (4. 23) Moreover, w(y) = yv(y), y € (0,b). Similarly we obtain
(4.26). 0

Remark 4.5 Since the right-hand side of inequality (4.24) is non-negative, Theorem 4.2
can be seen as a refinement of Theorem 1.5 in [65]. In particular, for k(x,y) = 1, x,y €
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(0,b), and the classical Hardy’s operator

X

HIW =+ [10)dy ve 0.5),

0

we get a refinement of Theorem 1 in [30], that is, the refined Hardy-type inequality for
convex functions,

u()(H () 2

o — .
=
=
iy

R
=

=S
|
o ..

>

o.\w

%C)_/I [@(f(v)) = PHS(X))| = |@(Hf (X)) - |f(y) — H (x)] | dydx,
0

where
bu(x
v =y [ "av, ye 0.0)
y X
Observing that the right-hand side of the above inequality is greater than

X

b
[ut) [1000) - @) v S
0 0

X

b
- [utlos) [176) - Hi@lay G|,
0

0

we obtain Theorem 2.2 in [21]. Therefore, Theorem 4.2 generalizes the result mentioned.

Applying Theorem 4.2 to power and exponential functions, we get the following two
corollaries.

Corollary 4.4 Let O < b < oo and k, K, u, and w be as in Theorem 4.2. Let p € R be
such that p # 0, f be a non-negative measurable function on (0,b) (f positive for p < 0),
and let Ay f,R, x f and M, ;. be defined by (4.25), (4.11) and (4.12) respectively. If p > 1 or
p <0, then

b

b b
d dx dx
[0 % = [utagrn = = [ 15 [renRousenayS.  @an
0 0 0

)C
0

X

x|

while for p € (0,1) the order of integrals on the left-hand side of (4.27) is reversed. If
p = 1, then both-hand sides of (4.27) are equal to 0.
Let p > 1 and f be a positive measurable function on (0,b). Then the following inequality
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holds
b d b d
/ WO ) ) ()

0
b

f d
> | [55 / s (/) = AL k(e Mp i () dy | (428)
0

If p € (0,1), then the order of terms on the left-hand side of relation (4.28) is reversed.

Corollary 4.5 Let 0 < b <o, k, K, u, and w be as in Theorem 4.2, and let p € R be such
that p # 0. If f is a positive measurable function on (0,b),

Guf(s) = exp | i [ Kx)log )y | . e (0.),
0

and S, 1 f is defined by (4.17), then

b

O/b w070 = [u)GL )

0

b

dx
/ux /kxy I,kf(xy)dy—. (4.29)
0 0

Moreover, for p =1 we have

O/b w002 - O/b u(x)Gef () 2 > O/b 2 [

x (x)
0) = Guf (9]~ G o 2y & 430)

and relations (4.29) and (4.30) are equivalent.
Let p > 1 and f be a positive measurable function on (0,b). Then the following inequality
holds

b

b
/w< 70)% [l 0)
b X ' d
> (33 / sgn(£() = G () k(x.3) Py (v )y |
0

where P, is given by (4.19).

The above results can be applied to some important particular kernels. Namely, in the
following example we discuss refined Hardy and Pélya-Knopp-type inequalities related to
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the Riemann-Liouville operator
Ryf(x) = v (x—y)" ' f(»)d 431
y —x y) Vs (4.31)
0

where y € R;.. Of course, for y =1 we have R| = H, that is, the classical Hardy’s integral
operator.

Example 4.1 Suppose 0<b< oo, ye Ry, and Ty is as in the proof of Theorem 4.2. If
u(x) =1, k(x,y) = L (x— )" ' xr, (x,y), and Ry f(x) is as in (4.31), then inequality (4.24)
reads
X

b b b
dy dx 1
1—— (fO) == [ ®Rf (X)) =27 [ [(x=0)" x
0/ Y 0/ B 'o/'o

d
<[ [0/ () = DRy ()] = @Ry ()] - |£(3) = Ryf ()] | dy .
(4.32)

so we obtained a refinement of Example 4.2 in [65]. We also obtain the following result,
since (4.26) becomes

b b
J(1=3) oo - / @ (Ryf () &
0

v / / sen(£0) = Auf) =) [D(F() — (R, ()

IR () - () — Ry ()] v 5 |

As in Corollaries 4.4 and 4.5, relation (4.32) can be considered with @ being a power
or exponential function. In particular, let p, k € R be such that ]%1 > 0, f be anon-negative
function on (0,b) (positive for p < 0), and

X k=1

Rf(x) = / [1 -() T] yjlf(y)dy, xe(0,b).

. X
0

Rewrite (4.32) for ®(x) = x” and substitute b'7 and f ( kL) y&1~instead of b and f(y)
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respectively. After suitable variable changes, for p > 1 and p < 0 we get

b i1 b

(y(kli1>>p0/[l‘(§)_]yxp o) 0/ AR F()
(7

(4.33)

while for p € (0, 1) the order of integrals on the left-hand side of (4.33) is reversed. Note
that for y = 1 inequality (4.33) reduces to the refined strengthened Hardy’s inequality from
Corollary 3.1 in [21]. Moreover, for b = = and p = k we obtain a refinement of the classical
Hardy’s inequality (0.1).

On the other hand, for y = 1, ®(x) = ¢*, a positive function f on (0,b), f(v) replaced
with log(yf(y)), and

619 =exp (1 [ loes0)ay ) x€ (0.), (434

relation (4.32) becomes

e/ob<1—%)f(y)dy—/ O/b/xleyf —xGf( )\dy%
ot o l (o)l

so we obtained the refined strengthened Pdlya-Knopp’s inequality from Corollary 3.3 in
[21]. In the case when b = o, we get a refinement of the classical P6lya-Knopp’s inequality
0.2). |

We continue by formulating results dual to Theorem 4.2 and its corollaries. They are
derived from Theorem 4.1 by similar arguments. The following theorem is dual to Theorem
4.2.
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Theorem 4.3 For 0 < b < oo, let k : (b,o0) X (b,>0) — R be a non-negative measurable
function, such that

= /k(W> dy >0, x € (b,e), (4.35)
and a weight u : (b,oo) MECX) ) klg()zxv)) .. (b,y)

for each fixed y € (b,oo). Let the function w : (b,0) — R be defined by

ykxy
=) R

If ® is a convex function on an interval I C R and ¢ : I — R is such that ¢(x) € d®(x) for
all x € Intl, then the inequality

[509006) 2~ [uo0(is) ™ = [ 40 [igsy)
b b b X

< [ [@(F() = P(ALf ()| = [@(Aef ()| - [ F ) = Aef ()| | dy —

(4.36)
holds for all measurable functions f : (b,o0) — R with values in I and for A, f defined by

Af x:k /kxy ) dy, x € (b, o). 4.37)

If the function @ is concave, the order of integrals on the left-hand side of (4.37) is re-
versed.

If ® is a monotone convex on an interval I CR, and ¢ : I — R such that ¢(x) € d®(x) for
all x € Intl, the the following inequality

)2 - b/ u)@ (Af () &

> | [ 25 [son(r() = A k(e.y) [0(£(3) ~ @A ()

S—
=
=
S

~ ~ d
QAW 0) = Anf ()] dy | (438)
holds for all measurable functions f : (b,e) — R with values in I.

Proof. Let T = {(x,y) € R% : b < x <y < o} Inequality (4.36) follows directly from
Theorem 4.1, rewritten with Q) = Qp = (b,0), du; (x) = dx, dus(y) = dy, and with ”(Tx)
and k(x,y)xr, (x,y) instead of u(x) and k(x,y). Note that (2.15) and (2.16) respectively
become (4.37) and (4.35), while w(y) = yv(y), y € (b,0). Similarly we obtain (4.38). O
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Remark 4.6 Note that Theorem 4.3 provides a refinement of Theorem 4.3 in [65]. Fur-
thermore, by setting k(x,y) = Lz, X,y € (b,e), and denoting

/f —xe( ),

inequality (4.36) reduces to the following refined dual Hardy-type inequality for convex
functions:

[ roeeron < - /b CuW )
> [[ute) [ 11@r0)) ~ D7) = [ B )| £0) — iy )] |

where
1

w(y) = ;/byu(x)dx,y € (b,o).

Since the right-hand side of this inequality is not less than

o - i d
|, ) [ (o) - @)
- [ uw pteare] [ 1700 - Ar)] S ax

as a consequence of our result we get Theorem 2.3 in [21]. Similarly, we obtain as a special
case of (4.38) the following result

b

2’//%Mﬂw—ﬁﬂwﬂ¢qon—@ﬁﬂ@)
b x
7 ~ d
QI (1)~ HF)] T3]
The next two corollaries are dual to Corollary 4.4 and Corollary 4.5.

Corollary 4.6 Let 0 < b < o and let k, K, u, and W be as in Theorem 4.3. For p € R,
p # 0, and a non-negative measurable function f on (b,e) (f positive for p < 0), let Acf
be defined by (4.37) and

Roif (59) = | |£70) = ALF ) = ol - [ @] | £0) — Aer 0]

for x,y € (b,e0). Then the inequality

=

[y - fuotren = |
b b

b

:

7 dx
’;/ KR f () dy S (4.39)

P:z
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holds for p > 1 and p < 0. For p € (0,1) the order of integrals on the left-hand side of
(4.39) is reversed, while for p = 1 its both-hand sides are equal to 0.
Let p > 1, f be a non-negative measurable function on (b,e). Then the following inequal-

ity holds
T _ p dx
/ w(y)f? / Akf ;
b b

=

] = [aenr) - A [170) - sy
b

x
X

PR () - A )] v 2|

Corollary 4.7 Suppose that p € R\ {0}, 0 < b < oo, and that k, K, u, and W are as in
Theorem 4.3. If f is a positive measurable function on (b, o),

K(x)
and
Syaf9) = | |£70) = GL19)] - 1916200 foe 2| e (b,
P ’ k k ka(x) 9 Ny ) )
then the inequality
r r dx _ | r dx
50760 %~ [ugr S > [0 [renSustya s @ao)
b b b X
holds. In particular, for p =1 we have
m~ dy 7 d Tulx) T
[#000) S = [uwGesa 7z/m K(x.y) x
b b b
f(y) H dx
-G _ dy — 4.41
|f(v) = Girf(x)| Gt (4.41)

and relations (4.40) and (4.41) are equivalent.

We conclude this section by giving results dual to those from Example 4.1, that is, by
explicating refined Hardy and Pdlya-Knopp-type inequalities related to Weyl’s fractional
integral operator

T d
Wof () = [ (v=0)"- 0 S (4.42)

X
where y € R;. Note that W; = H, that is, for y = 1 we get the classical dual Hardy’s
integral operator and related inequalities.
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Example 4.2 1et 0 < b < o, y€ Ry, and T5 be as in the proof of Theorem 4.3. For
ulx) =1, k(x,y) = yﬂ% (v —x)" 'xz(x,y), and Wyf(x) as in (4.42), inequality (4.36)
becomes

/w<1 _ ;)yqp(f(y)) ? —Z®(Wyf(x)) % > yjj(y_x)y_l y

b

d
x| |@(f () =Wy £(x)) |~ | @(Wyf )] - | £ (3) = Wy f ()] yy%dx. (4.43)

Similarly, as s special case of (4.38) we obtain the following result

Z (1-2) @) % - b/ @ (W) 2

v / / sn(£ () =W )r=)"~" (D) — Wy ()

OO (/3) ~ Wi () 23 )|

N ow we apply (4.43) to power and exponential functions. Namely, let p,k € R be such
that ;= k > 0, f be a non-negative measurable function on (b, ) (f positive for p < 0),

oo

Wf(x) = / l1 - (’y—‘) ] YIf(y)dy, x € (b,),

1—k
and ®(x) = x”. Rewrite (4.43) with b7 and f (yﬁ) yT+ ! instead of b and f(y) re-
spectively. After some variable substitutions, for p > 1 and p < 0 we obtain the inequality

(Y(lp—k)>pb/m [1 _ (§)¥1 yxpkfp(x)dx_/kaWI’f(x)dx

-y 7 1k 71
(%) lb/ A7) s
- p

(4.44)
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For p € (0, 1), relation (4.44) holds with integrals on its left-hand side written in the re-
verse order. Moreover, if Yy = 1, then (4.44) becomes the refined strengthened dual Hardy’s
inequality from Corollary 3.2 in [21].

In the case when Y= 1, ®(x) = €*, f is a positive function on (b, ), and

; d
Gf(x) =exp x./logf(y)y—;} , x € (b,e0),

after substituting log(yf(y)) instead of f(y), relation (4.43) reads

oo

(1) s Joroes| e
b b
XGf / ‘ (efo )dy

74X
that is, it is reduced to the refined strengthened dual Pélya-Knopp’s inequality given in
Corollary 3.4 in [21]. O

dy .
2

4.2 One-dimensional refined Hardy-Hilbert-type
inequalities

We continue the above analysis by considering some important kernels related to Q; =
Q, =R, and by assuming that du; (x) = dx, du(y) = dy, and that @ : R, — R is given
by ®(x) = x”, where p € R, p # 0. In this setting, Corollary 4.1 provides new refinements
of some well-known one-dimensional Hardy-Hilbert-type inequalities.

First, we obtain a generalization and a refinement of the classical Hardy-Hilbert’s in-
equality (2.2). It is given in the following example.
Example 4.3 For p € R\ {0}, let s € ]R be such that == 2 “72 —1 and the kernel
k:R% — R be defined by k(x,y) = (X) a (x+y)™°. Let a € (—— - 1,7—1-1) be

arbitrary and the weight u : R, — R be given by u(x) = x*~!. Set
-2 -2 -2 -2
c1:B<S—— I +a+1) and ngB(S +1,S—,+1>,
p 4 p p

where B(-,-) denotes the usual Beta function. Let f be a non-negative function on R
(positive, if p < 0) and Sf its generalized Stieltjes transform,

SO
_O/(x+y)sdy,x€R+
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2—s
(see [8] and [97] for further information). Corollary 4.1, rewritten with f(y)y 7 instead
of f(y), implies that the inequality

Clcg—l/‘yaferlfp(y)dy_/‘anr(.\'fl)(pfl)Spf(x)dx
0

K +5=2 I p s
S B e e L
0 0 2
r TSP f(x) | 24 s
\ 1 17 1 o 7 P S d d
p|0/ o/”y 10) = x 7 YT s ) dyd

(4.45)

holds for p > 1 and p < 0, while for p € (0,1) it holds with the reverse order of the
integrals on its left-hand side. In particular, for oo = 0 we get a refinement of the gen-
eral Hardy-Hilbert-type inequality from [104], with the best possible constant C = C§ =

BP (—+1, P —|—1> Moreover, for p > 1, ¢ =0, and s = 1, we have C; = C; =

B (%, 1%) = g"’f,r , so relation (4.45) provides a new refinement of the classical Hardy-

P
Hilbert’s inequality (2.2). Analogously, from (4.14) we can also obtain refinement of the
classical Hardy-Hilbert’s inequality (2.2), but we omit the details here. O

Similarly, in the next example we generalize and refine the classical Hardy-Littlewood-
Pdlya’s inequality

o [ oo p oo
fy )
S22 ) wvs o) [ e (4.46)
max{x,y} .
0 \0 0
which holds for 1 < p < oo and non-negative functions f € LP(R.).

Example 4.4 1 et the real parameters p, s, o, and the weight function u be as in Example

=2
4.3. Define the kernel k : RZ — R by k(x,y) = (¥) 7 max{x,y}* and for a non-negative
function f on R4 (positive for p < 0) set

dy, x e R,.

0= [ty

Finally, denote

/ /
prs and D, = Prs

D = .
' (p—pats—2)(ap/ +p +5-2) (p+s=2)(p'+5-2)
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Applying the same procedure as in Example 4.3, we obtain that the inequality

oo

DlDlz,_l /yaf.\drlfp(y) dy— /xOHr(Sfl)(P*l)Ll’f(x) dx
0 0

> Dp_1/xa+¥/7y7
=2 J / max{x,y}*

_ |P‘ /xoch(sfl)(pfl) Lpilf(x)

J max{x,y}*
0

As=D(p-1)+1

Py - oL/ f(x)] dvdx
2

FO) = —x7 YT Lf(x)| dydx

(4.47)

holds for p > 1 and p < 0, while for p € (0, 1) it holds with the integrals on its left-hand
side given in the reverse order. Note that the constant C = D} = [%} P is the
best possible for the Hardy-Littlewood-Pélya-type inequalities with & = 0. As a special
case, for p > 1, a =0, and s = 1, we get D; = D, = pp/, that is, relation (4.47) is a
new refinement of the classical Hardy-Littlewood-Pélya’s inequality (see [51] for further
details). Analogously, from (4.14) we can also obtain a refinement of the classical Hardy-

Littlewood-Pdlya’s inequality, but we omit the details here. a

To calculate the integrals in our last example of the refined Hardy-Hilbert-type inequal-
ities, we used the well-known reflection formula for the Digamma function v,

71
/ng”dhw’(l—a)w’(a): .
, x—1 sin

2

2ra’

where o € (0, 1) (for details on y see [1]).

Example 4.5 As in the previous examples, let p € R, p £ 0. For a € (0, 1), let the kernel
o

k be defined on R% by k(x,y) = logi% (’—5) and the weight u : R, — R by u(x) = xP,

where 8 € (—o— 1,—1). For a non-negative function f on R (positive for p < 0), let

=

logy —logx
Mp) = [ B2 fy)ay xR
0

Corollary 4.1, applied with the function y — f(y)y* instead of f, then implies the inequal-
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ity

/ yPerBr(y)dy — / PP MP f(x) dx

77:217

sin?P~ Vo -sin® (o + B)

( b4 ) (p— l/wrﬁ/logy—logx o
Sinwo

sinmor\ 27
o= (L) e

r [ logy—1
_ |p‘/xpa+ﬁMp—1f(x)/wx
0 0

dydx

y—x

fiy) - S o (f)aMf(ﬂ

2 y

dydx (4.48)

for p > 1 and p < 0, while for p € (0,1) the order of the integrals on the left-hand side of
(4.48) is reversed. Especially, for p > 1, o0 = 11_7’ and 3 = —1, the left-hand side of (4.48)

becomes
2p oo
( ) / FP(y)dy — / MPf
sinZ

Since the above expression is positive (unless f = 0) and bounded from below by a positive
constant, relation (4.48) provides a generalization and a refinement of another classical
Hardy-Hilbert-type inequality. Analogously, from (4.14) we can also obtain a refinement
of the Hardy-Hilbert-type inequality, but we omit the details here. o

4.3 Refined Godunova-type inequalities

We can apply Theorem 4.1 to n-dimensional cells in R”,. As a consequence, a generaliza-
tion and a refinement of Godunova’s inequality (2.10) is derived. Applying Theorem 4.1
with Q) =, = R’ , the Lebesgue measure d i1 (x) = dx and d i, (y) = dy, and the kernel
k:R" xR — R of the form k(x,y) = (), where [ : R’, — R is a non-negative measur-
able function, we obtain the following theorem. We omit the results involving monotone
convex function since they are obtained analogously.

Theorem 4.4 Let | and u be non-negative measurable functions on R',, such that 0 <

y
L(x) =x! fRi I(y)dy < oo for all x € R",, and that the function X — u(X) IL((’;g is integrable
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on RY, for each fixedy € R'. Let the function v be defined on R} by

6
= u(x d
y) /R: ™ &)
If @ is a convex function on an interval I C R and ¢ : I — R is any function such that
©(x) € dD(x) for all x € Intl, then the inequality

Jpr YOIy /R,, D1/ (x) d

X
R dyd 4.49
/Rn I(x) Rn X @, f(X,y)dydx (4.49)

holds for all measurable functions f:R", —R with values in I, where A; f(X) and Re 1 f (X,y)

are defined for x,y € R', by
1 y
_ (L
% /R’i (X) f(y)dy

and

Ro1f(x,y) = [|®(f(y)) — P(Af (%) = [@(Af (X)) - [f (y) = Af (%)]]- (4.50)
Ifthe function @ is concave, the order of integrals on the left-hand side of (4.49) is reversed.

Especially, for fR’i I(t)dt = 1 and u(x) = x~!, Theorem 4.4 becomes the following
refinement of Godunova’s inequality (2.10).

Corollary 4.8 Letl: R’} — R be a non-negative measurable function and fRi I(t)dt=1.

If @ is a convex function on an interval I C R and ¢ : I — R is any function such that
©(x) € dO(x) for all x € Intl, then the inequality

dy _ <2
Jre @0 [ @) T = [ [ 1(3) Reuttxy) dvas s

holds for all measurable functions f : R'. — R with values in I, where
<!
Arf(x /]R” x y)dy, xe R,

and R f is defined by (4.50). If @ is concave, the integrals on the left-hand side of (4.51)
are given in the reverse order.

To conclude this section, we give n-dimensional analogues of some previous results,
that is, some new multidimensional refined general Hardy-type inequalities. These results
can be regarded as refinements of those obtained in [86]. Namely, the following theorem
is a refinement of Lemma 2.1 in [86].
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Theorem 4.5 Suppose that 0 < b < oo, that u is a weight on (0,b) such that the function
u(x)
2

X —

is locally integrable in (0,b), and that the weight w is defined by

dx

1

w(y) = u(x) =, y € (0,b).

W=yt [ w0 G ve o)

Let @ : I — R be a convex function and ¢ : I — R be any function such that ¢(x) € dD(x)
SJor all x € Intl. If f:(0,b) — R is a measurable function such that f(y) € I for all
y € (0,b), and Hf(x) and Re f (X,y) are defined for x,y € (0,b) by

Hf(x)=x"" )f(y)dy

(0x
and
Rof(x,y) = [[®(f(y)) — PHS(x))| —[@HS(x))|- |f(y) —Hf(X)]],

then

dy dx

fo PO ST [ w0t 0) 7

d
- /(o,b) u(x) /(o,b) Rof(x,y)dy X_f (4.52)

If © is concave, the order of integrals on the left-hand side of (4.52) is reversed.

Proof. Let §; = {(x,y) e R xR : 0 <y <x < b} and Q; = Q) = (0,b). The proof
follows directly from Theorem 4.1, applied with du; (x) = dx, d>(y) = dy, k(X,y) = Xs,,
u(x)

and with u(x) replaced with “X!. Note that w(y) = y'v(y). a

x1 -

Remark 4.7 Observe that for u(x) = 1 we have w(y) = (1— %)1.
Our last result is dual to Theorem 4.5 and provides a refinement of Lemma 2.3 in [86].

Theorem 4.6 For 0 <b < oo, let u: (b,0) — R be a locally integrable weight in (b, o),
and the weight w be given by

w(y)=y ! u(x)dx, y € (b,0).
(b.y)

Suppose @ : I — R is a convex function and ¢ : I — R is any function such that ¢(x) €
dD(x) forall x € Intl. If f : (b,e0) — R is a measurable function such that f(y) € I for all
y € (b,), and H f(x) and Reof(x,y) are defined for x,y € (b,) by

o dy
Hf(x) =x )f(Y) 32

(xe0

and

Rof(x,y) = |®(f(y)) — ®HSf(x))| — |[@(Hf(x)| | f(y) — Hf (x)

b
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then the inequality

dy - dx
[ B@RUEN T [ a0
- dy
> /(b.m) u(x) ) Rof(x,y) v dx (4.53)

holds. If the function ® is concave, the order of integrals on the left-hand side of (4.53) is
reversed.

Proof. Let S, = {(x,y) € R} xR} :b<x <y <o} and Q; =Q; = (b, ). The proof
follows directly from Theorem 4.1, rewritten with the Lebesgue measures d; (x) = dx,
dus(y) = dy, the kernel k(x,y) =y 2xs,(x,y), and with the weight @ instead of u(x).

Note that w(y) = ylv(y). a

1
Remark 4.8 Observe that for u(x) = 1 we get w(y) = (1 - l;’) .

4.4 Refinements of an inequality of G. H. Hardy

Let us continue by taking a non-negative difference between the right-hand side and the
left-hand side of the refined Hardy-type inequality given in (4.1) (see [59]).

V(@) = [vOR0)dusl) ~ [uw® A @) dun )

Q, a,
u(x)
- Q/ o Q/ k) | O/ (3)) — B(Af ()

—|@(Arf ()| - [f(3) = Aef () | dia () d s (x). (4.54)

We can also take the non-negative difference of the left-hand side and the right-hand
side of the inequality given in (4.2) by taking @ : R, — Ry, ®(x) = x*,5 > 1 as (see [59]):

Y(s) = [vO)P 0)dpa(3) ~ [ ) (Auf )y ()

Q Q

u(x) . ;
J o Q/ sn(£() ~ A k(x.y) [f ()~ (Acf )

—lo(Arf())]- (f() —Akf(x))] dua(y) dp (x))- (4.55)
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We will give some special cases for different fractional integrals and fractional deriva-
tives to establish new inequalities for non-negative differences given in (4.54) and (4.55).

Our first result involving fractional integral of f with respect to another increasing
function g is given in the following Theorem.

Theorem 4.7 Letrs > 1, a >0, f > 0, g be increasing function on (a,b) such that g’ is
continuous on (a,b), Ig‘+;g f denotes the left-sided fractional integral of f with respect to
another increasing function g and Y : R — [0,00). Then the following inequalities hold.:

0< l[/](S)SHl(S)—Ul(S)SHl(S) (456)
and
0<Y, (S) < H,; (S) —Fl(s) < H; (S), 4.57)
where
b
W) = | [€0e®) -~ 20 W)y
b
— [ & x)(g(x)—g(a)® Mo+l o xbx— s
[ etets et (ot ot as) ax| i
(4.58)
with
b x K
0i6) =af [ ¢ 01000 | #0) - (i Dttt )|
] Tlet+l) o, !  T(a+1) 4 . N
* et —gtana s ]P0 G —ggapya e ] B
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with
a+1)
ls—a/ﬁm( ) ¢ )
</ )5 g@D“I[f%w—<Q£$?;gyﬂigﬂﬂ)
| Tern T Tt l) g N
o eaeta @] (70 unﬂ@w%”(ﬂwd
and

Proof. We will prove only (4.56), since the proof of (4.57) is analogous. Rewriting
equation (4.54) with Q; = Q) = (a,b), duy (x) = dx, dus(y) = dying

N 4 ¢) N ,
k(x,y) = { T@x-so)=a ¢ <y<x;
Oa x < y S b’

we get that K (x) = m(g(x) —gla))*and Ay f(x) = (g(l;)(fﬁl w1y, .o f (x). For particular

weight function u(x) = g'(x)(g(x) — g(a))*, we obtain v(y) = ¢’ (y)(g(b) — g(y))?*. If we
take @(x) =x*,s > 1, x € R, then we obtain (4.58). Since

b x \
v =a | [¢ 0060 -0 | |00~ (o L)
G DRV L PR A G ) N
(g(x)_g(a))ala+;gf( ) o) &0 —2(@) oS ()] |dydx >0
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Then

O

Here, we give a first special case for the Riemman-Liouville fractional integral. If

g(x) = x, then I7 . f(x) reduces to the I f(x) left-sided Riemann-Liouville fractional
integral, and the following result follows.

Corollary 4.9 Let s > 1, o0 > 0, f >0, I% f denotes the left-sided Riemann-Liouville
fractional integral of f and W, : R — [0,00). Then the following inequalities hold.:

0 < yu(s) < Ha(s) — Us(s) < Ha(s)

and
0 <Ya(s) < Hy(s) — Fa(s) < Ha(s),
where
Foo g foa(TatD) o )
) = | [y oo (LD ) ax| - vato)
with
b x K
i) =af [t o)~ (e )
[P | - i v,
b b
:/@— T(o+1)) / @(1-9) (1% £(x))" dx — F(s),
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with
b x

Rl / e (f(y)_?ia;r)lo‘) le )>( »e! {f S@)‘(?X:)la) I (x))"'

s—1
ENIACED PP ~(f<y> % ‘ fx ))]dydx

(x—a)® @

and

b b
Ha(s) = (b—a)”1~ [(b—aw [rway- @y [ (Iiif(x))*‘dx] .

a

We continue with the result for the Hadamard-type fractional integral. If we take g(x) =
logx in (4.56) the following result is obtained.

Corollary 410 Let s > 1, a >0, f >0, JZ f denotes the Hadamard-type fractional
integrals of f and W5 : R — [0,00). Then the following inequality holds

0 < yi(s) < Hz(s) — Us(s) < Hs(s)

and
0 150) £ 6) - (0 <)
where
bl -
ogb—Ilo
/ (ogb 108" 1)y
(logx—loga)® [ T(a+1) S
_/ X <(logx_10ga)afa+f(x)) dx—Us(s)
with

b x (1 ] )otfl
_ a// ogx —logy

. Xy

a a

N
(logx —loga)® ™+

s Tla+1) 4 ’
fv)- <Wfa+f(x)>

s T(o+1)

() (logx —loga)® s

Af)—

(x)||dydx,

b
T3(s)= / (logh — 1ogy>“f-"(y>%

b
I'o+1)) /logx—loga )(JO‘ f(x)’ Y—Fg(s)
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with
b x
F(s)=a u/a/sgn (f(y)—%]ﬂ+ (x)) (logx —logy)*~!
sy (Tt N\ Tt 7
. [f 0) ((logx—loga)aj‘”f( )> (logx—loga)aj‘”f( )
Ia+1) o dy dx
(0~ T4 00)) § 5
and

b
Hs(s) = (logh—loga)*!~) [(logb—loga)‘“ / fs(y)dyy

X

b
~(Ma~+1) | (Jggﬂx))@] .

a

Next we give results with respect to the generalized Riemann-Liouville fractional deri-
vative.

Theorem 4.8 Let s > 1, and let the assumptions in Lemma 1.3 be satisfied. Let yy : R —
[0,0). Then for non-negative functions f, Dg f and D? f the following inequalities hold:

0 < yu(s) < Ha(s) — Us(s) < Ha(s)

0 < Y4(s) < Ha(s) — Fa(s) < Ha(s),

where
b
yals) = [ =@ )y ay
b
—[(x—a)P~@ FB=atl) X S x| — Us(s
fu-a (=5 sr) d] 0o
with
b x s
0st) 48— [ [l—npe| |t rony - (TP o)
rB—o+1) ,. ' rB-a+1)
- WDaf(x) : DEf(Y)—mDaf(x) dydx,
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b
Yy(s) = [(b—)P (DL () dy
a

b
(0B = ) fe=a) N D0 = Rl

with

=pB—-0a)

J (ot -T= Do)

(DB 7)) - (%o%)} —s‘w&?f(x)

I'—a+1)
(x—a)B-

X

x (DSf(y) - DZ‘f(X))] dydx

and

b
Hy(s) = (b—a) P07 [(b—a><”-“>s J@Eryay

b
—(rB-o+D) [ (DZ‘f(x))“'dx] .

a

Proof. Similar to the proof of Theorems 3.8 and 4.7. a

In the following Theorem, we will construct new inequality for the Canavati-type frac-
tional derivative.

Theorem 4.9 Let s > 1 and let the assumptions in Lemma 1 4 be satisfied. Let D}f
denotes the Canavati-type fractional derivative of f and ys : R — [0,00). Then for non-
negative functions f, D) f and DX f the following inequalities hold:

0 < ys(s) < Hs(s) — Us(s) < Hs(s),
0 < Ys(s) < Hs(s) — Fs(s) < Hs(s),

where
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with
7 T(v—y+1) s
6 v=n [ [ oroy - (RS b))
s—1
[ by i) - S ot avan
b
Ys(s) = [(b=3)" DY) dy
’ b
rv-7+1) / — )0 (D] ()’ dx — Fi(s)
with
- Tv—y+l)
Fs(s) = (v—7) !!sgn(DZf(y)—W o f(x ))( )
v (Tv= 7+1) B LU SR Do
10~ (T o1rt)) 5[ oy
\4 F(V_Y"_l)
X <Duf(y) - WDZf(X))] dydx
and
b
Hs(s) = (b—a) 007 [(b—a)“”s J@ireyay
, a
- (rv-y+ny [ <DZf<x>>-"dx]
Proof. Similar to the proof of Theorems 3.9 and 4.7. a

Next we give following results that involve a new inequality for the Caputo fractional
derivative.

Theorem 4.10 Let s > 1 and let the assumptions in Lemma 1.5 be satisfied. Let DZa
denotes the Caputo fractional derivative of f and s : R — [0,0). Then for non-negative
Sfunctions f, DY, f and DY, f the following inequalities hold:

0 < we(s) < He(s) — Us(s) < He(s),
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0 < Ys(s) < He(s) — Fs(s) < Hg(s),

where

with

Us(s) =(V—}’)/b/x(x—y)v_y_1

(D)) — (L”_”Dza <x>)

(x—a)V=r
L(v—y+1) S T(v—y+1)
B WDIu (x) ~D*uf(y)—WDZu (x)||dydx,

b
Yo(s) = [(b=2)" 1D ()" dy

b
(v =7+ 1)) [ (=)0 (DL () dr— Fils)

with
5(s) = (v—7y) //sgn(Draf fv - §+1)Dlaf( )) (x=y)" !
<0ty - (((V_iwm )
R S_l-(Draﬂy) o, ())]dydx
and

b
Ho(s) = (b=a)" 707 [(b—aw-”s [®rmyas

b
(v —y+1)) / (DY, (x))de] .
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Proof. Similar to the proof of Theorems 3.11 and 4.7. o
Theorem 4.11 Let s > 1, o0 > 0, f > 0, I .., f denotes the Erdélyi-Kober type frac-

tional integrals of f, »F) (a,b,c,z) denotes the hypergeometric function and y; : R —
[0,00). Then the following inequalities hold

0 < y(s) < Hy(s) = Us(s) < Hp(s),

0 <Y7(s) < Hy(s) — Fr(s) < Hy(s),

I o f(x) | dx| =Us(s)

with

Fronen )t |l Cla+l) S
Un(s) :ocaa/u/(;> oy |0 (1_(%)0)a21x1a+cnf<x>

s—1
_S INa+1) o el
(@) e
f(y)_(l Za(;;—;o}) oS (X)||dydx
—\x 201X
b

=/y"l —yO) 2 F ()£ (y)dy

_/xacs+c 1(()6 —a%)%,F(x ))1 5(10‘ an( ))de—F7(S)

a
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with
F(s)=a0 /b/ sen| 1) - —OED e g | 2T
R N T R B
x| £y - M +oc1) 1g+;0;nf(x)
(1-(9)7) 2R
s—1
Ia+1) o
) o a4;0; f(x)
(1-®)7) 2R "
< | o) ( (r(;‘;o}) 1% on )| |y
1-— ?—( e 201(X
and

Hy(s) = (67 —a®)™1=) | (6% —a?) b7 [ LR ()7 ()

a

b
— a7 OO0+ 1) [ (GF0) I i (0 x|

a

a\o b\°
2Fi(x) = 2F1(—n,a;a+l;l—<)—c) ) and Fi(y) = 2F1<n,a;oc+l;l— (;) ) .

Proof. Similar to the proof of Theorems 3.12 and 4.7. o

Remark 4.9 Similar result can be obtained for the right-sided fractional integral of f
with respect to another increasing function g, the right-sided Riemann-Liouville fractional
integral, the right-sided Hadamard-type fractional integrals and for the right-sided Erdélyi-
Kober type fractional integrals but we omit the details here.






Chapter

Refinements of Hardy-type
inequalities for the case
O<p<g<o

We state and prove a new class of refined general Hardy-type inequalities related to the
weighted Lebesgue spaces L? and L7, where 0 < p < g < oo, convex functions and the
integral operators Ag.

5.1 A new class of general Hardy-type inequalities
with kernels

To begin with, in this section we provide a new class of sufficient conditions on weight
functions u# and w, and on a kernel &, for a modular inequality involving the Hardy-type
operator Ay, defined by (2.15), to hold. The first result in that direction is given in the
following theorem (see [22]).

Theorem 5.1 Let 0 < p < g < oo. Let (Q1,%1,1) and (Qy,%s, lp) be measure spaces
with positive G-finite measures, u be a weight function on Qi, w be a lUp-a.e. positive

function on L, k be a non-negative measurable function on Q1 x Q,, and K be defined on

89
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q
Q) by (2.16). Suppose that K (x) > 0 for all x € Q and that the function x — u(x) (kl((’@)) ) !

is integrable on Q for each fixed y € Q,. Let ® be a non-negative convex function on an
interval I C R. If

A= s wh () ( IRE (k,ﬂ’;jf)z dw)),, <o,

then there exists a positive real constant C, such that the inequality

(f, oot asonam ) <c( [ vevoann)” e

holds for all measurable functions f : Qy — R with values in I and Ay f defined on 1 by
(2.15). Moreover, if C is the smallest constant for (5.1) to hold, then C < A.

Proof. By using Jensen’s inequality, monotonicity of the power functions o — o' for a
positive exponent 7, and then Minkowski’s inequality, we find that

(w0 (aaso) duno)'

( [0 [o (ks [, k0] a (x)) %

q

)| i [ K@) dus)] <x>> q

Qs
==

IA

/Ql
L (w Fo) [, v ("(’"”)g du <x>> W) ) dba )

(
( K(x)

Hence, (5.1) holds with C = A, so the proof is complete. O

(f soreuonaen)’

IA

Following the same lines as in the proof of Theorem 5.1, we get the next corollary.

Corollary 5.1 Let —oo < g < p < 0 and let the assumptions of Theorem 5.1 be satisfied
with a positive convex function ®. If

B= inf w () ( o (k,(((?) ' dul(X)> .
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then there exists a positive real constant C, such that the inequality

(w2 ustoam ) e ([ roeuonann) 62

holds for all measurable functions f : Qy — R with values in Q,. Moreover, if C is the
largest constant for (5.2) to hold, then C > B.

Now, we apply Theorem 5.1 to n-dimensional cells in R’ and in this setting, Theorem
5.1 reads as follows.

Corollary 5.2 Let 0 < p < g < oo and 0 < b < oo. Let u be a non-negative and v be
a positive function on (0,b) and let ® be a non-negative convex function on an interval

ICR. If
1 1
y \* —4-1 a
A= sup (—) (/ u(x)x » dx) < oo,
ve.p) \V(Y) (v.b)

then there exists a positive real constant C, such that the inequality

</(0,b) WP (Hf () %) % =C ( /(O.b) v(y)O(£(y)) %) : (5.3)

holds for all measurable functions f : (0,b) — R with values in I and

Hf(x)=x"" o) f(y)dy, x€ (0,b).

Moreover, if A is the smallest constant for (5.3) to hold, then C < A.

Proof. Let S, = {(x,y) e R" xR":0 <y <x < b} and Q; = Q, = (0,b). The proof
follows directly from Theorem 5.1, applied with du; (x) = dx, dus(y) =dy, k = xs,, and
with ”i—’l‘) instead of u(x), x € (0,b). Observe that w(y) =y !v(y), y € (0,b). a

Remark 5.1 The result given in Corollary 5.2 was published in [65, Theorem 3.1], so we
see that Theorem 3.1 from [65] is just a special case of our Theorem 5.1. O

5.1.1 Further results involving fractional integrals and
derivatives

Our first result deals with the fractional integral of f with respect to an increasing function
g (see [55]).

Theorem 5.2 Let 0 < p < g < oo, ot > 0, u be a weight function on (a,b), ® be an a.e.
positive function on (a,b), g be an increasing function on (a,b) such that g’ is continu-
ous on (a,b), Ig‘+;g f denotes the left-sided fractional integral of f with respect to another
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increasing function g and let ® be a non-negative convex function on an interval I C R. If

q

b q
C o o Lo (28 0@ =g N Y
A= sup @7 0) / “( () —8()° ) def <o

y

then there exists a positive constant C such that the inequality

1 1
b q r

Juofo( Mt D )] ) <c Jowoons] s

holds. Moreover, if C is the smallest constant for (5.4) to hold, then C < A.

Proof. Similar to the proof of Theorems 3.7 and 5.1. a

Here, we give a first special case for the Riemman-Liouville fractional integral.
If g(x) = x, then I .,f(x) reduces to the I3, f(x) left-sided Riemann-Liouville fractional
integral, so the following result follows.

Corollary 5.3 Ler 0 < p < g < oo, o0 > 0, u be a weight function on (a,b), ® be an
a.e. positive function on (a,b), Ic‘j‘+ f denotes the left-sided Riemann-Liouville fractional
integral of f and let ® be a non-negative convex function on an interval I C R. If

1
b q q

A= sup a)_Tl(y) /u(x) (M);dx < oo,

ye(a,b) (x - a)a

then there exists a positive constant C such that the inequality

1

p

b q q b
[uto [@(%Wm)]”m <c| [omeioa 55)

holds. Moreover, if C is the smallest constant for (5.5) to hold, then C < A.

Since the Hadamard fractional integrals of order o are special cases of the left- and
right-sided fractional integrals of a function f with respect to the function g(x) = log(x)
on (a,b), where 0 < a < b < oo, the following result follows.

Corollary 5.4 Let 0 < p < g < oo, > 0, u be a weight function on (a,b), ® be an a.e.
positive function on (a,b), Jg‘+ f denotes the Hadamard-type fractional integrals of f and
let @ be a non-negative convex function on an interval I C R. If

q

b q
_ — a1\ »
A= sup a)Tl(y) /u(x) (a(logx logy) ) dx | <o,
y

ve(a.b) y(logx —loga)®



5.1 A NEW CLASS OF GENERAL HARDY-TYPE INEQUALITIES WITH KERNELS 93

then there exists a positive constant C such that the inequality

b RN b 5
/u(x) {cp ((F(Ll)m f(x)ﬂ "ax| <c /a)(y)<1>(f(y))dy (5.6)

logx —loga)® ™+

holds. Moreover, if C is the smallest constant for (5.6) to hold, then C < A.

Next we give the result with respect to the generalized Riemann-Liouville fractional
derivative.

Corollary 5.5 Ler 0 < p < g < oo, B> 0 > 0, u be a weight function on (a,b), ® be an
a.e. positive function on (a,b), D% f denotes the generalized Riemann-Liouville fractional
derivative of f and let the assumption of Lemma 1.3 be satisfied and let ® be a non-negative
convex function on an interval [ C R. If

N N A AL
A= sup o7 (y) /u(x)( > dx | <o,

ye(a,b) 3 (x_ a)ﬁia

then there exists a positive constant C such that the inequality

/hu(x) [@ (%D?ﬂx))] " s

q

=

b
<c| [om)owitiay| 6

holds. Moreover, if C is the smallest constant for (5.7) to hold, then C < A.

Proof. Similar to the proof of Theorems 3.8 and 5.1. o

In the following Corollary, we construct a new inequality for the Canavati-type frac-
tional derivative.

Corollary 5.6 Ler 0 < p < g < oo, u be a weight function on (a,b), ® be an a.e. positive
function on (a,b), and let the assumptions in Lemma 1.4 be satisfied. DLf denotes the
Canavati-type fractional derivative of f and let ® be a non-negative convex function on an
interval I C R. If

1
q

A= sup 07 () /bu(x)<(v—7)(X—y)v—y—1)%dx e

(x—a)Vr

then there exists a positive constant C such that the inequality

==

1
b q

/ u(x) [d) (MDgf(x))] ' s

b
v <c| [omewionay| 68

holds. Moreover, if C is the smallest constant for (5.8) to hold, then C < A.
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Proof. Similar to the proof of Theorems 3.9 and 5.1. o

We prove the following result as a special case of Theorem 5.1 to construct a new
inequality for the Caputo fractional derivative.

Corollary 5.7 Let 0 < p < g < o, u be a weight function, @ be an a.e. positive function
on (a,b), and D2, f denotes the Caputo fractional derivative of f, f € AC"([a,b]) and let
® be a non-negative convex function on an interval [ C R. If

1
q

A= sup 07 () /bu(x)<(n—oc)(x—y)"a1>i’adx e
J

y€(a,b) (x_ a)n—a

then there exists a positive constant C such that the inequality

==

fuco o (M=t D ) “ce( fomotrm) 6

(x—a)yr—©

holds. Moreover, if C is the smallest constant for (5.9) to hold, then C < A.

Proof. Similar to the proof of Theorems 3.10 and 5.1. a

Corollary 5.8 Let 0 < p < g < o, u be a weight function, @ be an a.e. positive function
on (a,b), and let the assumptions in Lemma 1.5 be satisfied. D, f denotes the Caputo
fractional derivative of f, f € AC"([a,b]) and let ® be a non-negative convex function on
an interval I C R. If

1

A sup 07 0) /bu(x)((V—Y)(X—y)v—y—1>%dx .
y

ye(ab) (x—a)V7

then there exists a positive constant C such that the inequality

(x—a)v¥

b q %1 b
Jut o (Rt Do) |"ax ) <c{ [omewtiona | s10

holds. Moreover, if C is the smallest constant for (5.10) to hold, then C < A.
Proof. Similar to the proof of Theorems 3.11 and 5.1. a

Now, we give the following result.
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Corollary 5.9 Let0< p < g < oo, ube aweight function, ® be an a.e. positive function on
(a,b), I .5.n [ denotes the Erdélyi-Kober type fractional integrals of f, and 2Fi(a,b;c;z)
denotes the hypergeometric function and let ® be a non-negative convex function on an

interval I C R. If

q

_ —on,on+o—-1¢.0 _ ,oNa—1\ p

A= sup 07 (y) /Mﬂ(acx cy O'a(x ) ) dx | <eo,
ve(ab) (x7 —a®)® 1 Fi (x)

2Fi(x) =2 Fy (—77,06;06-1-1;1— (;)0))

then there exists a positive constant C such that the inequality

q

4 q
b p b »
INa+1
Juto 0| Dz s | ax| | < [omatma
a (1_(%) ) 2F1(x) a
(5.11)

holds. Moreover, if C is the smallest constant for (5.11) to hold, then C < A.

Proof. Similar to the proof of Theorems 3.12 and 5.1. o

Remark 5.2 Similar result can be obtained for the right-sided Erdélyi-Kober type frac-
tional integrals, but we omit the details here.

Our analysis continues by providing a new two-parametric class of sufficient condi-
tions for a weighted modular inequality involving the operator A to hold. The conditions
obtained depend on a real parameter s and a positive function V on €2;. That result is given
in the following theorem.

Theorem 5.3 Let | < p < g < oo Let (Q1,%,11) and (Qy,%s, lUp) be measure spaces
with positive G-finite measures, u be a weight function on €1, v be a measurable [-a.e.
positive function on L, k be a non-negative measurable function on Q x Qj, and K be

defined on Qq by (2.16). Let K(x) > 0 for all x € Q| and let the function x — u(x) (kl(()E;EV)) )q

be integrable on Q, for each fixed y € Q. Suppose that @ : I — [0,0) is a bijective convex
function on an interval I C R. If there exist a real parameter s € (1,p) and a positive
measurable function'V : Qy — R such that

A(s,V)=F(V,v) sup V%(y) [/Ql u(x) (k(X,)’)

YEQ,

where
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then there is a positive real constant C such that the inequality

(e hsonam ) "oc ([ rwevonae)” s

holds for all measurable functions f : Qy — R with values in I and Ay f defined on Q1 by
(2.15). Moreover, if C is the best possible constant in (5.12), then

C< inf A(s,V). (5.13)
I<s<p
V>0

Proof. Let f:Q; — R be an arbitrary measurable function with values in /. Applying
Jensen’s inequality to the left-hand side of (5.12) we get

( [, st ansnain ()

_—

<[ [ w0 (et KereUoname)) )]

(x) Joy,

Hence, to prove inequality (5.12) it suffices to prove that there is a real constant C > 0,
independent on f, such that

100 (s [ @) ) dan o) ‘l’

K(x) Ja,

e ( /Q 2 V(y)‘b”(f(y))duz(y)) " (5.14)

Taking into account properties of the function @, let g : Q, — R be defined by ®(g(y)) =
v(y)®P(f(y)). Then g(€Q;) C I holds and (5.14) is equivalent to

q

[ /Q 1 u(x) (ﬁ o, k(x,y)cbi(g(y))v‘f'a(y)dyz(y))qdu1 (x)]

<c ( A 2®(g(y))du2(y>) " (5.15)

Therefore, instead of proving (5.14), we prove that (5.15) holds for all measurable func-
tions g : Q> — R with values in /. Applying Holder’s inequality, monotonicity of the power
functions o — o for positive exponents ¢, Minkowski’s inequality, and the definitions of
F(V,v) and A(s,V), we get the following sequence of inequalities involving an arbitrary



5.1 A NEW CLASS OF GENERAL HARDY-TYPE INEQUALITIES WITH KERNELS 97

positive measurable function V : Q; — R:

_—

[ ) | [ K51 (00 0)diay)] a9

L ][ (ktrn@btey 7 0)(v 700 #0))asto] duao}

o, Ki(x)

S{ ([ ety )

o, K9(x)

1
q

=F<v,v>{ u(x) (szf’(x,y)dxg(y))v-*'1<y>du2<y>)pdu1<x>}

Q, Ki(x)
)\ ’
sm,v){ [ @m0 [, uto) () am o duz(y)}
<) ( [ @) 516

Thus, inequalities (5.15) and (5.14) hold. Relation (5.12) follows by considering (5.13), so
the proof is complete. O

By modifying Theorem 5.3 for the setting from relations (2.8) and (2.9), we obtain the
following result.

Theorem 5.4 [et 1 <p<g<oo, 1 <s<p,and O < b < oo Letube aweight function
on (0,b), w be an a.e. positive measurable function on (0,b), and k be a non-negative
measurable function on (0,b) x (0,b) satisfying (2.8). Let I be an interval in R and @ :
I — [0,0) be a bijective convex function. If

V(y) = /wal“"(x)xp’—l dx < oo (5.17)

holds almost everywhere in (0,b) and

4= sup ( /bu<x>(k,§’“(;cy)))qvq(”p“V) (x)ﬁ)’l’v%@)oo, (5.18)

0<y<b X

then there exists a positive real constant C such that

b
c| [wier )~
0

q
dx
— <

b
[ uto@taes ) (5.19)
0
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holds for all measurable functions f : (0,b) — R with values in I and the Hardy-type
operator Ay defined by (2.15). Moreover, if C is the best possible constant in (5.19), then

1
C< inf (p_1>p Als).

I<s<p\ p—¢§

Proof. Denote S; = {(x,y) € R?: 0 <y <x < b} and set Q; = Q, = (0, ) n Theorem

5.3, replace d; (x), duz (v), u(x), v(y), and k respectively with dx, dy, ”x), 22 and ks, -
In this setting, inequality (5.12) reduces to (5.19). Moreover, following th hnes of the

proof of Theorem 5.3, the first inequality in (5.16) becomes

=

CD\<

1
q q

O/bu(x) ﬁoka(x,y)tb}v(g(y)) <$);’(y)dy %

< /b”(x) /kpxy OOV () dy | x
0

<

~ s
N,

7 /(s—1)
P s— / /
x / Voo P dy | =5 (5.20)
0

Since definition (5.17) yields

X

/(x—l) / / —
Jv T o ey =B v @), xe 0,
0

1 b P
p—1\7 u(x) / 1 dx
V kP ( NV (y)d —
(2=0)74 [ @)V o)y | &
0
As in (5.16), the rest of the proof follows by applying Minkowski’s inequality and defini-
tion (5.18) of A(s). a

Remark 5.3 The result of Theorem 5.4 is given in [65, Theorem 4.4]. Hence, Theorem
4.4 in [65] can be seen as a special case of Theorem 5.3. O

We also give results involving fractional integrals and fractional derivatives.
Our first result deals with the fractional integral of f with respect to an increasing
function g.



5.1 A NEW CLASS OF GENERAL HARDY-TYPE INEQUALITIES WITH KERNELS 99

Theorem 5.5 Let | < p < g <o, a0 >0, u be a weight function on (a,b), v be an a.e.
positive function on (a,b), g be an increasing function on (a,b) such that g’ is continu-
ous on (a,b), Ig‘+;g f denotes the left-sided fractional integral of f with respect to another
increasing function g. Let I be an interval in R and ® : I — [0,0) be a bijective con-
vex function. If there exist a real parameter s € (1,p) and a positive measurable function
V :(a,b) — R such that

—I’/( /

b
A(s,V) = /V ;_l)(Y)Vl”’ (y)dy

1
b q

1 oo (28 W)~ N Y
xsup V7 0) / “( (5(0) — ()" )d =

y
then there exists a positive constant C such that the inequality

1

L
q b P

/b u(x) {®<%1&;gﬂﬂ>rd’f <cC / v (f()dy | (5.21)

holds. Moreover, if C is the smallest constant for (5.21) to hold, then
C< inf A(s,V).

I<s<p
V>0

Proof. Similar to the proof of Theorems 3.7 and 5.3. a

As in previous examples we can give special cases of Theorem 5.5 for the Riemman-
Liouville fractional integrals and the Hadamard-type fractional integral, but we omit the
details here.

Next we give the result with respect to the generalized Riemann-Liouville fractional
derivative.

Corollary 5.10 Let 1 < p < g <o, B > o > 0, u be a weight function on (a,b), v be an
a.e. positive function on (a,b), D% f denotes the generalized Riemann-Liouville fractional
derivative of f, let the assumptions of Lemma 1.3 be satisfied. Let I be an interval in R
and @ : I — [0,e0) be a bijective convex function. If there exist a real parameter s € (1,p)
and a positive measurable function'V : (a,b) — R such that

—//=1) :

b
Ay = | v ot vy

1

e (B —pfe NN
x sup V7 (y) /u(x) G a)p—e dx | <o,
y
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then there exists a positive constant C such that the inequality

b F(B—o41) o \ 7 b ’
Juto|o(=P=2 T ngs )| ax | <c| [veior (Dhre))ay
(x—a)B—o .
(5.22)
holds. Moreover, if C is the smallest constant for (5.22) to hold, then

C< inf A(s,V).
1<s<p
V>0

Proof. Similar to the proof of Theorems 3.8 and 5.3. a

In the following Corollary we obtain a new inequality for the Canavati-type fractional
derivative.

Corollary 5.11 Let 1 < p < g < oo, u be a weight function on (a,b), v be an a.e. positive
Sfunction on (a,b), and let the assumptions in Lemma 1.4 be satisfied. Let I be an interval
in R and ® : I — [0,) be a bijective convex function. If there exist a real parameter
s € (1,p) and a positive measurable V : (a,b) — R function such that

4

*P,( /

b
A(s,V) = /V - (' P (y)dy

N,

X sup V%(y) /bu(x) ((V—Y)(x—y)\’—y—l)qu .

y€(a,b) (x_a)V—Y

then there exists a positive constant C, such that the inequality
1 1
/ T(v—y+1) ¢ \° /
Juoo (FE=oprw)| s | < [rmerwzronas | 52
a a

(x—a)"¥

holds. Moreover, if C is the smallest constant for (5.23) to hold, then
C< inf A(s,V).
1<s<p

V>0

Proof. Similar to the proof of Theorems 3.9 and 5.3. o

Next, we give the result for the Caputo fractional derivative.

Corollary 5.12 Let 1 < p < g < oo, u be a weight function on (a,b), v be an a.e. positive
function on (a,b), and DY, f denotes the Caputo fractional derivative of f, f € AC"([a,b)).



5.1 A NEW CLASS OF GENERAL HARDY-TYPE INEQUALITIES WITH KERNELS 101

Let I be an interval in R and @ : I — [0,0) be a bijective convex function. If there exist a
real parameter s € (1, p) and a positive measurable functionV : (a,b) — R such that

b v
—p/(5-1) !

AGY) = | [V o 0y

a

1
q

. o _\n—v—1\ 4
< sup Vo) | fu (PP ) ) <
ye(a,b) ) (x - a)
then there exists a positive constant C such that the inequality
, I JNE /o !

n—
/u(X) [q’ (WDLJ‘(X)H dx | <C /V(y)d>” (f(")(y)) dy | (524
a a

holds. Moreover, if C is the smallest constant for (5.24) to hold, then

C< inf A(s,V).
1<s<p
V>0

Proof. Similar to the proof of Theorems 3.10 and 5.3. a

Corollary 5.13 Let 1 < p < g < oo, u be a weight function on (a,b), v be an a.e. positive
function on (a,b), and let the assumptions in Lemma 1.5 be satisfied. Let D.f denotes
the Caputo fractional derivative of f, f € AC"([a,b]). Let I be an interval in R and @ :
I — [0,00) be a bijective convex function. If there exist a real parameter s € (1,p) and a
positive measurable function'V : (a,b) — R such that

1

o
Iz
—p'(s=1)

b
AGY) = | [y ot oay

1
q

% sup V%(y) /bu(x)((V—Y)(x—y)v—y—1)qu .

y€(a,b) (x_ a)v_y

then there exists a positive constant C such that the inequality

STE

/b u(x) {cp(w% (x))rdx agc /b v(y)®? (DY, f(y)dy | (5.25)

(x—a)Vr

holds. Moreover, if C is the smallest constant for (5.25) to hold, then

C< inf A(s,V).
I<s<p
V>0
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Proof. Similar to the proof of Theorems 3.11 and 5.3. o

Now, we give the following result for the Erdélyi-Kober type fractional integrals.

Corollary 5.14 Let 1 < p < g < oo, a > 0, u be a weight function on (a,b), v be an a.e.
positive function on (a,b), I% o) denotes the Erdélyi-Kober type fractional integrals of

» tay,
f, and 2F\(a,b;c;z) denotes the hypergeometric function. Let I be an interval in R and

@ : [ — [0,0) be a bijective convex function. If there exist a real parameter s € (1,p) and
a positive measurable function'V : (a,b) — R such that

1

J
P
=p'(

b
A(s,V) = /V ;_I)U)VI_”,(y)dy

b q

s—1 an*GnyGHJrGfl (xcr_yc)a—l q

x sup V7 (y) /u(x)( dx | <o,
ve(a,b) (x9—a%)* 2Fy (x)

y

where ,F(x) = 2F} (—n,(x; o+1;1— (%)G) then there exists a positive constant C such
that the inequality

1
q 1

b q
[u) || e | | ax
g (1-(9)°) 2R
, :
<c| [vmer (o) ay (5.26)

a

holds. Moreover, if C is the smallest constant for (5.26) to hold, then

C< inf A(s,V).
1<s<p
V>0

Proof. Similar to the proof of Theorem 3.12 and 5.3. a

Remark 5.4 Similar result can be obtained for the right-sided fractional integral of f
with respect to an increasing function g, the right-sided Riemann-Liouville fractional inte-
gral, the right-sided Hadamard-type fractional integrals, the right-sided Erdélyi-Kober type
fractional integrals, but we omit the details here.
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5.2 Refined Hardy-type inequalities with kernels

The rest of this chapter is dedicated to new refined inequalities related to the general Hardy-
type operator A; with a non-negative kernel, defined by (2.15). We state and prove the
central result of this section, that is, a new general refined weighted Hardy-type inequality
with a non-negative kernel, related to an arbitrary non-negative convex function. It is given
in the following theorem.

Theorem 5.6 Lerr € Ry, (1,21, 1) and (Q7,%, ly) be measure spaces with positive
O -finite measures, u be a weight function on 1, k a non-negative measurable function on
Q1 X Qy, and K be defined on Qq by (2.16). Suppose that K(x) > 0 for all x € Q4, that the

t
Sunction x — u(x) (klng))> is integrable on €| for each fixed y € L), and that v is defined

on Q by 1
o) = (o (k,(((y)’) () "

If @ is a non-negative convex function on an interval I C R and ¢ : I — R is any function,
such that @(x) € d®(x) for all x € Intl, then the inequality

(/Qz\/(y)‘b(f(y))duz(y))t—/Qlu(x)<1>’(Akf(x))du1(X)

>t o, %q)ll(Akf(X))/QZ k(e y)r(x,y)dun (v) dug (x) (5.27)

holds for all t > 1 and all measurable functions f : Qo — R with values in I, where A f is
defined on Q) by (2.15) and the function r : Q) x Q, — R is defined by

r(x,y) = |@(f(y)) = P(AcS ()] = [@(Acf (X)] - [f (y) = Acf ()] (5.28)

Ift € (0,1] and the function @ : I — R is positive and concave, then the order of the terms
on the left-hand side of (5.27) is reversed, that is, the inequality

/Q u(@)@ (A f (x)) dpn (x) - ( A 2 V(y)<D(f(y))duz(y)>
>t o, %qy—l(Akf(x))/Qzk(x,y)r(x,y)duz(y)dul(x) (5.29)

holds.
Let the function ri : Q1 x Qy — R be defined by

ri(x,y) = [Q(f(Y)) —O(Arf (x)) = [@(Arf ()] - (f(¥) —Arf(x)) ] (5.30)
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If @ is non-negative monotone convex on the interval I C R and ¢ : I — R is any function,
such that ¢(x) € d®(x) for all x € Int I, then the inequality

</QZ v(y)cD(f(y))duz(y))[ - /Q1 u(x)®@" (Arf(x))du (x)

U0 g 0)) [ sn(F05) ~ AR () () )

>t
Q, K(x)

(5.31)

holds for all measurable functions f : Qy — R such that f(y) € I, for all y € Q, where Ay f
is defined by (2.15).

If @ is non-negative monotone concave, then the order of the terms on the left-hand side of
(5.31) is reversed.

Proof. First, fix an arbitrary x € Q. It is not hard to see that A f(x) € I. Moreover, for
the function A, : Q; — R defined by &, (y) = f(y) — Arf(x) we have

/Q k(x,y)he(y)duz(y) =0, x € Qy. (5.32)
2

Now, suppose that @ is a convex function. If Ay f(x) € Intl, then for all y € Q, by substi-

tuting r = A;f(x), s = f(y) in (1.8) and multiplying the inequality obtained by kl((’@)) >0,
we get

k(x,y) k(x,y)
) [D(f() — P(Af(x)) — @(Arf (x)) ()] > K0o)

r(x,y). (5.33)

Relation (5.33) holds even if A;f(x) is an endpoint of /. In that case, the function &, is
either non-negative or non-positive on €, so (5.32) and non-negativity of the kernel
imply that k(x,y)h(y) = 0 for uy-a.e. y € &,. Therefore, the identity h,(y) = 0, that is,
f(y) = Ay f(x) holds whenever k(x,y) > 0 and we conclude that the both sides of inequality
(5.33) are equal to O for yp-a.e. y € ;. Since K(x) > 0, notice that the set of all y € Q,
such that k(x,y) > 0 is of a positive 1y measure.

Integrating (5.33) over {2, we obtain
KO0 dia ) = 5 [, KAL) a0
2 KOS ()hly) dia )

> ﬁ [y du). (5.34)

@92

Observe that the second integral on the left-hand side of (5.34) is equal to

T o K9P (3)) o 3) = DALS ),
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while applying (5.32) we get
1
Ko /Q2 k(x, )@ (A f (X)) e (v) dptz (y) = 0.

Hence, (5.34) reduces to

D(ALf(x)) + ﬁ | /Q KEy)rx.y)duz () < ﬁ o

Let ¢t > 1. Since the functions @, &, and r are non-negative and the power functions with
positive exponents are strictly increasing on [0, ), we further have

o! (Akf
K

k(x, )@ (f(y))dua(y)-

(e () + D[ it din)

< <<D(Ak TN+ 25 / k(x,y)r(x,y)duz(y))[

( / k(x,)®(F(v)) diia (v ))t, (5.35)

where the first inequality in (5.35) is a consequence of Bernoulli’s inequality. Multi-
plying (5.35) by u(x), integrating the inequalities obtained over Q and then applying
Minkowski’s inequality to the right-hand side of the second inequality, we get the fol-
lowing sequence of inequalities:

L, I (A ) s (09

“ [ G

/ < (Arf( ))+—/ k(x,y)r(x,y) dua (y ))tdﬂl(x)

(A (x /kxy F(x,y) dpta (v) iy (x)

< [ v (i [, ke (f(y))duz(y)) din ()

{ 0 (g o K@U 0) ar0)) i) }

{ { Q u(x) (kl((x(;cy))ydul (x)] %duz(y)}t

- FOWO)daly >) ,

Qz

$0 (5.27) holds. The proof for a concave function ® and ¢ € (0, 1] is similar. Namely, by
the same arguments as for convex functions, from (1.9) we first obtain

2 [0as ()~ D) + e O] = o ),
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x € Qp,y €Qy, then
Y (Af (%)) /
k(x,y)r(x,y)d
K0 0, (x,y)r(x,y)dpz(y)

> (@) - 7 L, Kool i)

> (ﬁ A k(x,y)d>(f(y))duz(y))t,

Y (Acf(x)) —t

and finally

[, 19 (4t ) dan (o)

_t/Ql %QZI(AIJ(X))/QZ k(x,y)r(x,y) dus (v) duy (x)

> [ ) (@A) — o [ ke i) [dﬂl(x)
Q K(x) JQ
> ([ evommane)

that is, we get (5.29). The proof of (5.31) is analogous to the proof of (4.2). O

Remark 5.5 In particular, for t = 1 inequality (5.27) reduces to

L, OIRGON dia ) [ @At () d ()

1

> [ ] k) dit ) g () (5:36)
o K(x) Ja,

where in this setting v is defined as in (2.17). Moreover, by analyzing the proof of Theorem

5.6, we see that (5.36) holds for all convex functions @ : I — R, that is, ® does not need to

be non-negative. Similarly, if @ is any real concave function on / (not necessarily positive),

then (5.36) holds with the reversed order of the terms on its left-hand side. This result was

already proved in Theorem 4.1. a

Remark 5.6 Rewriting (5.27) with r = % > 1, thatis, with0 < p < g < ooor —o < g <
p < 0, and with an arbitrary non-negative convex function ®, we obtain

</g YOI () drz <y>) " L, 0@ (4 @) s o)

> 1%/91 %@%_I(Akf(X))/Q2 k(x,y)r(x,y)dus(y)dui(x) >0,

(5.37)
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where v is defined by (2.20). Also (5.31) becomes

q

([ roouoan) - [ wef @)
u(x)

o, K(x)

4q
> q -1

p

DOr

(AR (5) 8 (F0) = Ak (Dk(x, ) (5, )t () ()
(5.38)

Therefore, we get (2.21) as an immediate consequence of Theorem 5.6 and our inequality
(5.27) is a refinement of (2.21). Especially, if p > 1 or p < 0 (in that case, ® should be
positive), then the function ®” is convex as well, so by replacing ® with @7 relation (5.37)
becomes

H fHL/’ Q1) ||q)(Akf)||Lq (Qq,uy)

= Z Q Ib;(())cc)) TP (Arf(v) / k(x,y)rp(x,y)dua(y) dui (x),

(5.39)

where for x € 1, y € Q) we set

rp(x%,y) =[PP (f()) — PP (Acf (x))]
—[p|®"H (ALf () [@(Acf ()] - [£ () = A f ()] ] -

On the other hand, if @ is a positive concave function and r = £ € (0, 1], thatis, 0 < ¢ <
p < oo or —eo < p < g<0, then (5.37) holds with the reversed order of the terms on its
left-hand side. Moreover, if p € (0, 1], then the function ®7 is concave, so the order of the
terms on the left-hand side of (5.39) is reversed. O

Now, we consider some particularly interesting convex (or concave) functions in (5.27),
namely, power and exponential functions. We start with the function ® : R, — R, ®(x) =
xP, where p € R, p#£ 0. For p > 1 and p < 0, this function is convex, while it is concave
for p € (0,1]. In both cases we have @(x) = px’~!, x € R.. In this setting, we obtain the
following direct consequence of Theorem 5.6 and Remark 5.6.

Corollary 5.15 Suppose that p,q € R, % > 0, that Q, Qo, Wy, U, u, k, and K are as in
k(x,y)
K(x)
and that the function v is defined on Qp by (2.20). Further, suppose that f : Q; — R is
a non-negative measurable function (positive in the case when p < 0), that Ay f is defined
on Qi by (2.15), R, 1 f(x,y) is defined by (4.11) and M, f(x,y) is defined by (4.12). If
1 <p<g<ooor—oo < q<p<O, then the inequalities

11y~ 146 W

>4 [ A ) [ RS G O) ) (6.40)

g
" is integrable on Q for each fixed y € Qo,

Theorem 5.6, that the function x — u(x) (
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and

— 1A /1l

110,

[0 Qa7 [ sentr(5) = Auf8)k(x )My 5 ) )
(5.41)

Q1)

q

p

hold, while for 0 < g < p < 1 relations (5.40) and (5.41) hold with the reversed order of
terms on its left-hand side.

Remark 5.7 For p = g in Corollary 5.15, we obtain Corollary 4.1. Moreover, for p =
q = 1, relations (5.40) and (5.41) are trivial since its both sides are equal to 0. O

Our analysis continues by considering the convex function @ : R — R, ®(x) = ¢*. Then
@ = @ = ® and we obtain the following new general refined weighted Pélya-Knopp-type
inequality with a kernel, which is a generalization of a result from Corollary 4.2.

Corollary 5.16 Let p,qg € R be such that 0 < p < g < oo or —eo < q<p <0. Let Qy,

q
Q), Wi, U, u, k, and K be as in Theorem 5.6, the function x — u(x) (%) " be integrable

on Q for each fixed y € Qo, and the function v be defined on Q; by (2.20). Then the
inequalities

11 0y )~ 1§ W )
2 %/91 K();)( (x))*7 /92 k(x,9)Sp i f (x,y) da (y) d s (x)

and

q
I HLp @) NG g, )

GLPf() [ sen(F(3) = Grf k(e Py (e 3) b2 () ()]

Q

hold for all positive measurable functions f on €, where Gy f (x), Sy f(x,y) and P, 1 f (x,y)
Jorx € Qi and y € Q, are defined by (4.16), (4.17) and (4.19).

Proof. See the proof of Corollary 4.2. O

We conclude this section by considering the simplest kernels ., that is, those with
separate variables.

Corollary 5.17 Let p,q € R, > 0. Let (Q,X,1) be a measure space with a positive

o-finite measure |1, let m € L! (Q W) be a non-negative function such that |m|, > 0, ® be
a non-negative convex function on an interval [ C R, and ¢ : I — R be any function such
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that @(x) € 0®(x) for all x € Intl. Let f : Q — R be a measurable function with values in I
and let Ay, f be defined by (4.21). If 0 < p < g < o0 or —oo < q < p <0, then the inequality

q
P

An(®o f)]7 — P (Af) > %cD%*l(Amf) Agr (5.42)

holds, where r(y) = ||®(f(y)) = ®(Anf)| — 0(Anf)|- f0) —Anfl] yEQ If D is a
positive concave function and 0 < g < p < oo or —oo < p < g < 0, then (5.42) holds with
the reversed order of the terms on its left-hand side.

Proof. Suppose that in Theorem 5.6 and in relation (5.37) we have Q) = Q, 1y = U,
u € L' (Qq,uy) such that |u|; > 0, and k of the form k(x,y) = I(x)m(y), for some positive
measurable function [ : Q; — R. Then K(x) = |m|l(x) and Arf(x) = Anf €1, x € Q,

y
u q .
while v(y) = % m(y), y € Q. Thus, (5.37) reduces to (5.42) and it does not depend on

[m

Qq, 1, and u. O

Remark 5.8 Observe that for 0 < [Q[, < e and m(y) = 1 on Q we have |m|; = |Q|y, so
(5.42) becomes the generalized refined Jensen’s inequality

[A(Do f)]F — D7 (Af) > %@%*I(Af).m

where Af is defined by (4.22) and

r(y) = [[@(f(v)) = @Af) = @(AN)]-1f () —Afl] .y € Q.

Notice that, for p = g we obtain the classical refined Jensen’s inequality that was obtained
in Corollary 4.3. a

5.3 Generalized one-dimensional Hardy’s and
Pdlya-Knopp’s inequality

In the following three sections, general results from Section 5.2 are applied to some usual
measure spaces, convex functions, weights and kernels and new refinements and general-
izations of the inequalities mentioned in the Introduction are derived. We start with the
standard one-dimensional setting, that is, by considering intervals in R and the Lebesgue
measure, and obtain generalized refined Hardy and P6lya-Knopp-type inequalities, as well
as related dual inequalities. In the following theorem we generalize and refine inequality
(2.7).
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Theorem 5.7 Let 0 <b < ooandk: (0,b) x (0,b) — R, u: (0,b) — R be non-negative
measurable functions satisfying (2.8) and

wh) = (/ybum (%) d—) " ey 0)

If0<p<g<ooor—oo<qg<p<0, D isanon-negative convex function on an interval
I CR, and ¢ : I — R is such that ¢(x) € dP(x) for all x € Intl, then the inequality

b b
[woGon ) - [uwoh o) T
0 0
b X
q [ ux) a1 dx
>4 O/ L) O/ Ken)rx)dy S (5.43)

holds for all measurable functions f : (0,b) — R with values in I, where Arf and r are
respectively defined by (4.25) and (5.28). If ® is non-negative monotone convex on the
interval  C R and @ : I — R is such that ¢(x) € 0@ (x) for all x € Int1, then the following
inequality

T

: d ; d
[rweuen =) - [umef arw) S
0

X
0
X

b
[ @h s [ sn(r0) ~ Ans kG ()
0

)C
0

>4
T

(5.44)

holds for all measurable functions f: (0,b) — R such that f(y) €I, for all y € (0,b) where
Arf and ry are respectively defined by (4.25) and (5.30).

If0<g< p<ooor—oo < p<q<0, and ® is a non-negative (monotone) concave function,
then (5.43) and (5.44) hold with the reversed order of the integrals on its left-hand side.

Proof. Let S1, Q1, and Q; be as in the proof of Theorem 5.4. Relations (5.43) and
(5.44) follow from (5.37) by replacing d; (x), dus(y), u(x), v(y), and k respectively with
dx, dy, ”EC—X), @, and kys, . O

In the following theorem we formulate a result dual to Theorem 5.7.

Theorem 5.8 For 0 < b < oo, let k : (b,o0) X (b,e0) — R and u : (b,>0) — R be non-
negative measurable functions satisfying (4.35) and

w<y>:y<Ayu<x>(k,§(x)>)Zd;> <oy (boe)
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If0<p<g<oeoor —oo<q<p<0, Disanon-negative convex function on an interval
I CRand ¢ : I — Ris such that ¢(x) € dD(x) for all x € Intl, then the inequality

7 d Tg . d
[rmeron ) - [uwel @) S
b b
7 dx
%/ ’; VA f(x /kxy xy)dy— (5.45)
b

holds for all measurable functions f : (b,) — R with values in I and for Ay f (x) defined
by (4.37) and F(x,y) defined by

Fx,y) = [|[@(f() = @Akf ()] = [@(Arf ()] [ () = Aef ()]

where x,y € (b,o0). If ® is non-negative monotone convex on the interval 1 C R, and
¢ : I — Ris such that ¢(x) € dP(x) for all x € Intl, then the following inequality

q

/mw dy p _/‘x’u( 0 (Akf( )) cz’cx
b b
% h/;i Akf(X)>x/sgn(f()’) — Arf)k(x,y)F (x,y)dy%‘ (5.46)

holds for all measurable functions f : (b,eo) — R such that f(y) € I, for all y € (b,),
where Ay f is defined by (4.37) and 7\ (x,y) is defined by

i(.y) = [@(/(3) = DA () = oA ()] (F(3) —~Af ()]

If0<g< p<ooor—eo < p<q<0, and D is anon-negative (monotone) concave function,
the order of the integrals on the left-hand side of (5.45) and (5.46) is reversed.

Proof. Let Sy = {(x,y) € R? : b < x <y < o}. Inequality (5.45) follows directly from

(5.37), rewritten with Q = Q, = (b,), du;(x) = dx, duy(y) = dy, and with * ulx )7 %7

and ks, instead of u(x), v(y), and k. a

Remark 5.9 For p = g Theorem 5.7 and Theorem 5.8 respectively reduce to [65, Theo-
rem 3.1] and [65, Theorem 4.3]. In particular, (5.43) refines (2.7). Of course, in that case,
the function @ does not need to be non-negative. a

The rest of this section is dedicated to generalizations and refinements of the well-
known Hardy’s and Pélya-Knopp’s inequality (0.1) and (0.2) and of their dual inequalities.
Since they direct consequences of the above results, we state them as examples. We don’t
emphasise results with non-negative monotone and convex functions since they can be
obtained in a similar way.
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Example 5.1 Let 0 <b < e, y€ Ry, p,q € R be such that % > 0, and let S| be as in the
proofs of Theorem 5.4 and Theorem 5.7. Let the kernel & : (0 b) x (0,b) — R be defined
by k(x,y) = H(x—y)" x5, and u(x) = 1. If 2 1>1,7y> 1— L & is a non-negative convex

function on an interval / C R and f : (0,b) — ]R isa functlon with values in I, then (5.43)
reads

b » b
[0 2 |~ [0k 2
0 0
b X
> }’%/d)%*l(Ryf(x))/(x—y)Yflry(x,y)dy)%, (5.47)
0 0

where Ry is the Riemann-Liouville operator given by (4.31), while forx,y € (0,b) we set

P

1-3 g q
) =7 ([T Vba—0f ) = pmf (1- i 024 2)

and
ry(x,y) = [|@(f(y)) — PRy f(x))] = |@(Ryf ()] - | £ () — Ryf(x)]] -

Observe that B(-; -, -) denotes the incomplete Beta function defined in Introduction. In
the case when 4 € (0,1] and @ is non-negative and concave, the order of the terms on the
left-hand side of (5.47) is reversed and the inequality obtained holds for any y > 0.

Rewriting (5.47) with some suitable parameters and with @ being a power function, we
get a new refined Hardy’s inequality. Namely, let ®(x) = x?, k € R be such that ]%1 >0,

-1

k
B (YT D 9 ek
Wy.,k(y)—B"<1 (b) (Y 1)p+17p)y , y€(0,b),

f be a non-negative function on (0, ) (positive, if p < 0) and

X

Rf(x) :/ [1 — (X)k;l}YIf(y)dy, x € (0,b).

X
0

k—1
For 1 <p<g<eor—e <g<p<0,replace band f(y) in (5.47) respectively with b »
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and f (y%) yﬁfl. After a sequence of suitable variable changes, we get the inequality

q

e | CoT N R
0 0
H )O/ R0 _O/X[l—(ﬁ)ﬂ“x

k=1

Xy P dydx

—k+1 pp }/(k_l) b 1—k 2
W +f1<y>—(T) AR (0)

X

b 171
ol [x P wret [ - () 7]
0 0

) - % (2)7 &et

X

dydx|.

(5.48)

For 0 < g < p < 1, the order of the terms on the left-hand side of relation (5.48) is reversed.
Notice that for b =, p =q =k > 1 and y = 1 inequality (5.48) reduces to a refinement
of the classical Hardy’s inequality (0.1). It can be seen that our result generalizes refined
and strengthened Hardy-type inequalities from [21].

On the other hand, rewriting (5.47) with ®(x) = ¢* and y = 1, as well as with the func-

tion y — log(yf(y)) instead of a positive function f : (0,b) — R, we derive the following
new refined strengthened Pdlya-Knopp-type inequality:

O\w
[ —
—

>4 [x 61 / leyf(y) —xGf(x)] dydx

/x”z Gf(x ‘é/’ (eyf(gc )‘dydx, (5.49)

where 4 » > 1 and Gf is defined by (4.34). For p = g relation (5.49) reduces to a refined
strengthened Polya-Knopp’s inequality from [21]. Moreover, for b = e we obtain a refine-
ment of the classical Pélya-Knopp’s inequality (0.2). O

The following example provides results dual to those from Example 5.1.

Example 5.2 Suppose 0 < b < oo, y€ Ry, p,q € R are such that > >0, and S is as in
the proof of Theorem 5.8. Define the kernel & : (b, c0) X (b,o0) — R and the weight function



114 5 REFINEMENTS OF HARDY-TYPE INEQUALITIES FOR THE CASEOQ < p < g < oo

u:(b,0) — Ras k(x,y) = }/yy%(y—x)y_lmz(x,y) andu(x) =1. For 2 > 1, y>1-1£,
a non-negative convex function @ on an interval / C R and a function f : (b,e0) — R with
values in 7, inequality (5.45) becomes

q

oo

/ w)cb(f(y))? - / @ (W) 2

b
v [oF W) [ ) S (5.50)
p ¥ y—x y(x,y S X, .
b X
Where Wy denotes Weyl’s operator defined by (4.42), and for x,y € (b,o0) we define wy(y) =
yBY (1 ~ (=18 1L) and 7y(xy) = [[@(F() — OWF ()] — [@(Wf ()] -
| ) —Wyf(x H If q € (0,1] and ® is non-negative and concave, (5.50) holds for all

Y > 0 with the reversed order of the terms on its left-hand side.

As in Example 5.1, to get a new refined dual Hardy s inequality, we rewrite (5.50) with
®(x) = xP. More precisely, let k € R be such that % > 0,

1—k
b\ 7 q q —k
1—( - (y—1)=+1,= |y ye (b,e),
( (y) (v )p p)y y € (b,)

f be a non-negative function on (b, ) (positive, if p < 0) and

QI

wy,k()’) =B

o0 —1

Wit = | [1— (y)]y F)dy. x € (b,o0).

1—k
For 1 < p<g<eor—co<q<p<D0, substitute » 7 and f(yﬁ)yﬁ“ in (5.50)

respectively for b and f(y). After some computations, we obtain the inequality

y(r(l )‘f“ 7
2|

) ]xpkqpﬂ . ]"[l_cyﬁ)l,—,klwx
b X

1| p—k+1 _ y(1—k) pxr—k X
Yk o y) (—p ) W f(2)?

r—1

\p|/xv‘f Wi ‘“/ml <)] 9
) v

f) - ( Tk

k—1

Xy P dydx

> x)|dydx|. (5.51)
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For 0 < g < p < 1, relation (5.51) holds with the reversed order of the terms on its left-hand
side. When p = g (5.51) becomes a refined and strengthened dual Hardy’s inequality from
Example 4.2.

Finally, for % >1,y=1,®(x) =¢" and y — log(yf(y)) instead of a positive function
f 1 (b,°) — R, inequality (5.50) becomes

7w

Lot Z [l— (S)Zrﬂy)dy ~ [ Gretax

q 7 4_1, ~ 1_1 - ¢ dy
>4 b/xp G [ le7!yr )~ 26 ()] S d

r g = ¢ r yf(y) | dy
- b/ (GF) / g 20434
where
Gf(x) =exp x/logf(y);i—;} , ¥ E (b,e0).

Thus, we proved a new refined strengthened dual Pélya-Knopp’s inequality. Its special
case p = g was already considered in [21] and in Example 4.2. O

5.4 Generalized one-dimensional Hardy-Hilbert’s
inequality

In this section, we consider Theorem 5.6, that is, inequalities (5.37) and (5.38) , with some
important kernels related to Q) = Q, =R} and @ : Ry — R, ®(x) = xP, where p € R,
p # 0. We also assume that d i (x) = dx and d; (y) = dy.

In the first example, we generalize and refine the classical Hardy-Hilbert’s inequality
(2.2).

Example 5.3 Let p,q,s € R be such that 1% > 0 and %,S;,z > —1, and let

_ 4 (s=2 q (s=2
ae( p<p, —|—1>,p( > —|—1>>.Den0te

-2 -2
C1:B<z<s +1)—a,g(s ; +1>+a)
p\ p p\ P

and
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where B(-, -) is the usual Beta function, and define & : Ri — Rand u: Ry — R respec-
=2

tively by k(x,y) = (%) 7 (x+y)~* and u(x) = x*"'. Finally, let f be a non-negative

X
function on R (positive, if p < 0) and Sf its generalized Stieltjes transform,

_ [ fW)
Sf(x)_o/(x+y)sdy’xeR+

(see [8] and [97] for further information). Rewriting (5.37) and (5.38) with the above

2—s
parameters and with f(y)y » instead of f(y), for | <p < g<eoor —o < g<p<0we
obtain the inequalities

q
P oo

-
ac | [y pear) - [T s r)ar
0 0

52
xa+q_P+7(‘I‘P""l)(sf(x))qu %

v
S s
3
|

s=2
P

Y

(x+y)s fp(y)y27s _ Cz_px(p’l)(“'*l)*l(Sf(x))l’ dydx

X
o\g

0
n s=2

X/(Hy) F0) = YT SF(x)| dydx (5.52)
0

and
a
AN P
act | [y tray |~ [55 E s ) ax
0 0

(5.53)
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while for 0 < g < p < 1 the order of the terms on the left-hand side of (5.52) and (5.53)
is reversed. The case p = g was already studied in Example 4.3. In particular, for p =

g>1l,a=0ands=1wehave C; =C, =B (%, I%) = gil’fg, o (5.52) provides a new
h P

generalization and refinement of the classical Hardy-Hilbert’s inequality (2.2). O

Similarly, in the next example we generalize and refine the classical Hardy-Littlewood-
Pdlya’s inequality (4.46).

Example 5.4 Let the parameters p, ¢, s, & and the functions u and f be as in Example
=2
5.3. Define k: RZ — R by k(x,y) = () 7 max{x,y}* and the transform Lf as

X) :/7y)dy, xeR,.
max{x, y}*
0
Finally, set
p’r'es
(app'+p'q+qs —2q)(pq +gqs — ap* —2q)

D) =

and
pp's
(p+s=2)(p'+s-2)

D, =

Considering 1 < p < g < o, or —o0 < ¢ < p <0, and f(y)y% instead of f(y), relation
(5.37) and (5.38) become

DID” /y q ‘H / o H %(Lf(x))qu
0 0

>

“UIQ

Dyt [ g
0

SRy = Dy PPV (L £ ()P dydx

/ max{x v}
o [P
0

FO) =Dy 7 YT LA dydx (5.54)

X /max{x,y}_s
0
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and

p

X# [yz‘sf”(y)— (x 7Dy Lf(x )) —p

2 p-1
x 7 +1D2_1Lf(x)

x (ﬁf(y) —xXP_/ZHDz_ILf(X))] dyds. 459

If 0 < g < p < 1, the order of the terms on the left-hand side of (5.54) and (5.55) is
reversed. For p = ¢, (5.54) reduces to Example 4.4. Moreover, since forp=¢g > 1, a =0
and s = 1 we have D| = D, = pp/, our result generalizes and refines (4.46). O

We complete this section with another refined Hardy-Hilbert-type inequality, making
use of the well-known reflection formula for the Digamma function y and of the fact that

ab:/"*“’ e dt <wo a€Ry, b>1.
0

More precisely, Z(a,b) = T'(b+ 1)¢;(1,b+ 1,a), where ¢ is the so-called unified Rie-
mann-Zeta function,

* 1 [ s—1 — —1\—H
(P,J(Z,s,a):m/t e (1—ze") " dr,
0

where i > 1, Rea > 0 and either |z| < 1,z%# 1 and Res > 0, or z=1 and Res > u (for
more information regarding the unified Riemann-Zeta function, see e.g. [42]).

Example 5.5 Suppose that o € (0,1) and p,q, B € R are such that 1 > 1 and a% +Be

o
(—1, % — 1) Define the kernel & : ]R2 — R by k(x,y) = logi# (i) and the weight

function u : R, — R by u(x) = xP. Finally, denote

mlogy—logx
Mf(x) Z/ny(Y)dy’ xreRy,
0
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where f is a non-negative function on R (positive, if p < 0),

oo q
| g
El:/(Ogl)ptaZJrﬁdtzz(ag_i_ﬁ_i_l’g)_i_Z(z_ag_ﬁ_l’z)

, t—1 P P p P P

and
logt T
/Og 7 dt = —5—.
sin“ wo

Applying (5.37) and (5.38) to the above parameters and to f(y) replaced with f(y)y%, we
get the inequalities

q

4 ? ! 7
BEL | [yt O ryay |~ [ame o) rax
0

0

"BIQ

]xaq PEOFB (A1 £ (x))1P x
0

/ logy 10%" FP()y*? — Ey Px*P (M f(x))?| dydx
0

—|p\_/ X B M ()1
0

Tlogy—1
x/w dydx (5.56)

y—x

F0)— B3 (;)aMfw

0

and
q
P

=

e
BE] [y BV prgyay |~ [P s
0

0

=

gil/xaq PEOFB (A1 £ (x))1™ p/sgn ) —x%E; 'Mf(x))
0

0
1

Iny—1
e ) oot g

X (yo‘f(y) —xO‘Elef(x))l dydx|.
Notice that for p = g we have

k= / log? LY P A
t—1 sin (o + B)

2
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and (5.56) reduces to the Hardy-Hilbert-type inequality obtained in Example 4.5. There-
fore our result can be seen as its generalization. a

5.5 General Godunova-type inequalities

We conclude the chapter with a multidimensional result related to Godunova’s inequality
(2.10). Namely, let Q) = Qy = R, du(x) = dx, dus(y) = dy, let ¥ and x¥ be as in
Section 5.1, and let the kernel k : R”. x R’} — R be of the form k(x,y) =1 (%), where
[ : Rl — R s a non-negative measurable function.

Applying Theorem 5.6 to this setting, we get the following generalization and refine-
ment of Godunova’s inequality (2.10).

Theorem 5.9 Let 0 < p < g < oo or —o < q<p<0. Letl and u be non-negative
measurable functions on R, such that 0 < L(x) = x fRi I(y)dy < e forallx € R",, and
(%)
L(x)
function v be defined on R'|_ by

q
P
that the function X — u(x) ) is integrable on R'_ for each fixed'y € R',. Let the

OV )
/ ( X ) dx .
Rn LX

If @ is a non-negative convex function on an interval I C R and ¢ : I — R is any function,
such that ¢(x) € d®(x) for all x € Intl, then the inequality

(e vr2(rwna ) - e w00 (470

q u(x a_ /
> = A r(x,y)dydx 5.57
> p_/R,,+ L(X (Arf(x R X ,y)dy (5.57)

holds for all measurable functions f : R’ — R with values in I, where A, f(x) and r(X,y),
forx,y € R are defined by

Af(x /R” x (5.58)

and
r(x,y) = [[@(f(y)) — D(ALf(x))] — [@(ALf(x))] - |f(y) —Af(x)|].

If @ is a positive concave function and 0 < g < p < 0 or —oo < p < q < 0, then (5.57)
holds with the reversed order of the terms on its left-hand side.
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If @ is non-negative monotone convex on the interval I C R and ¢ : I — R is any function
such that ¢(x) € d®(x) for all x € Int I, then the inequality

(e o0 i)~ [, oo

23 / %‘D%‘I(Azf(X))_/ s (5) = Af )1 ()

Q

(5.59)

[O(()) ~ DA (%))~ |@(ALf () H((¥) — Af (x)|dydx

holds for all measurable functions f : R", — R such that f(y) € I for ally € R, where A;f
is defined by (5.38).

If @ is a positive monotone concave function, then the order of the terms on the left-
hand side of (5.39) is reversed.

Remark 5.10 Observe that for p = g inequality (5.57) reduces to Theorem 4.4. If, addi-
tionally, fR’i I(y)dy =1 and u(x) = x !, we get a refinement of (2.10). a

The above results can be rewritten with particular convex (or concave) functions, for
example, with power and exponential functions. This leads to multidimensional analogues
of corollaries and examples from Sections 5.3 and 5.4. Due to the lack of space, we omit
them here.

5.6 Generalized G. H. Hardy-type inequality

Let us continue by taking the non-negative difference of the left-hand side and the right-
hand side of the inequality given in Theorem 5.6 with @ : R, — R, ®(x) = x*,s > 1
as:

pe)= | [v0)r Ot |~ [t acs(o) ¥ dun
Q) Q
ul

q X) S(4-1)
_EQZ (o) A ) 1 Q{ k(x,y)r(x,y)dpz (v)du (x),
(5.60)



122 5 REFINEMENTS OF HARDY-TYPE INEQUALITIES FOR THE CASEOQ < p < g < oo

where r(x,y) is defined by (5.28).

We can also take the non-negative difference of the left-hand side and the right-hand
side of the inequality given in (5.31) with @ : R, — R4, ®(x) =x°,s > 1 as:

/ M) |~ [uto) (Aef () F dun

Q

(A ) [ sen(F) = Arf k()

Q)

X [f ") = (Arf () =slAf ) (F () —Aef (X))]duz (y)dp (x)]-

x

(5.61)

In the following sections we will give results related to p(s) defined by (5.60). Results
involving 7(s) defined by (5.61) can be obtained in a similar way. For more details see
[62].

5.6.1 G. H. Hardy-type inequalities for fractional integrals

In the following theorem, our first result involving the fractional integral of f with respect
to an increasing function g is given. We give results for the Riemann-Liouville fractional
integrals and Hadamard-type fractional integrals as an applications of this theorem.

Theorem 5.10 Ler 0 < p<g<oo,s>1,00>1— 5’ f >0, g be increasing function on
(a,b) such that g’ be continuous on (a,b). Then the following inequality holds:

0 < pi(s) <Hi(s) = Mi(s) < Hi(s),

where
a% b %
PO = G / §0)(gb)— ()" ¥ P ()ay
b
~(Tla+1)7 [ ¢@(el) —g(@) 7O (12 /() ¥ dr—Mi(s),
aq(T(a+ D)y FD ¢ algps) , (1)
Mi(s)= [8 @0 - gl@) ™ (1 f )
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N | PR AR AT RN
(x,y) ‘ o) <(g(x)_g(a))ala+;gf( ))
I ERACES RN CE) )
(g(x) _g(a))ala+,gf( ) f(y) (g(x) _g( )) +§gf( )

and

INa+1)) /g +gf de].

Proof. Applying Theorem 5.6 with Q| = Qy = (a,b), du; (x) = dx,du, (y) = dy,
S 4 ¢) N .
k(x,y) = { T@Gwsore ¢ <x;
Oa x < y S b’

we get that K(x) = Ma + )(g(x) g(a))* and A f(x) = %1& of (). For particu-

lar weight function u(x) g’()i))(g(x) —g(a))% x € (a,b), we get v(y) = (ag'(y)(g(b) —
()"0 /(((— 1) %+ 1)7), 50 (5.60) takes the form

49
P

Pl(”zﬁ (/g’(y)(g(b) —g(y))“*gfs(y)dy)

aq(l—s)

(1% o f(x)) 7 dx—M((s).

Since %(1 —5) <0, g is increasing and M, (s) > 0, we obtain that

This completes the proof.
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Remark 5.11 Similar result can be obtained for the right-sided fractional integral of f
with respect to an increasing function g, but we omit the details here.

Here, we give a first special case for the Riemman-Liouville fractional integral. If
g(x) = x, then If . f(x) reduces to I f(x), the left-sided Riemann-Liouville fractional
integra,l and the following result follows.

Corollary 5.18 LetO0<p<g<oo, 0 >1—L s> 1,f > 0. Then the following inequal-

ity holds
0 < pa(s) < Ha(s) — Ma(s) < Ha(s),
where
ag b %
P o—1+ s
P0) = G TTT a/(b_y) )y
b
(Mt )F =T (12£(0) ¥ dx— (o)
s(2-1) b o
Mo(s) = SATEEID T [ a5 (1 )
lx.y)
/(x—y)l—o‘d dx,
o) = |00 - (T o)
RGN De+1)
sl e sw| oo - HEE e >||
and
o )q(m;l)ﬂa b 5
mols) = (b-a) 70\ e | [ 00y
p p
b

Now we continue with a result involving the Hadamard-type fractional integrals.
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Corollary 5.19 LetO<p<g<oo,s>1,00>1— 5, f > 0. Then the following inequal-
ity holds

0 < p3(s) < Hs(s) — Ms(s) < Hs(s),

where
a% b d %
_ _ a—1+2 5 _y
P) = Gz | [ (ob—loen™ i)
/ d
S o 5q
~(Me+ )7 | (logr—loga) ¥ (42 ) <~ bz (o)
aq(T(a+ D) F | alg-pis) S(2-1)
Mi(s) = ; [(togx—10ga) " (s £))*
/" rs(ry)  dydx
X [ —
J (logx—logy)l=* y x
My (Tet1) 4 '
) = ||F0)~ (Gog ot 29
Clo+1) o ! Cla+1l)
| o]~ o g 9|
and
q
aq %(logb loga)q(m_ﬂl)ﬁ ; dy '
Hi(s) = (logh—loga) 7 ™) | £ - /s_
3(s) = (logb —loga) ™ (- 1)T+1 f(y)y
/ d
— e+ ¥ [z s

a

Now, we give the following result involving the Erdélyi-Kober type fractional integrals.

Theorem 5.11 Let 0 < p<g<oo,s>1,a>1—L, f >0 and ,F\(a,b;c;z) denotes
the hypergeometric function. Then the following inequality holds
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where
e (0 4
pa(s) = (CEEES / L) (6%~ ) P () dy
<r<a+1>>“’_/ (00 =) R W) T (18 f () P ax
—M,(s)
o (y Y b (g=p)(1-s)
Myfs) = = / OO (67 —a®) R ()
ra(x, on+o—1
x(a+;c;nf(x)) l)a/wwdydx,
o) = || F0) = | — ) e )
(1-()7) 2A6
s—1
I'a+1) o
S 7] a0 f(x)
(1- (&) orw
f(y)_ F(Of).—’_al) O'Tlf() )
(1-(9)°) Fil
qa q q glas—1)+p b %
- 0 o a%( —s) | aror 1b(0’71)§(b0’_a0’) s
Hy(s)=(b° —a®)*»! GRS _a/2F1()’)f( )

b

_aGaS%Jrcil(F(a +1)) Yq/(2Fl( ))%(lﬂ) (Ig+;c;nf(x)) » dx|,

a

a\° b\°
2F1(x) =F (—T],OC;OC—I—];]—(;) )anszl(y) =F (T],OC;OH—I;I—(;) )

Proof. Similar to the proof of Theorems 3.12 and 5.10. a

Remark 5.12 Similar result can be obtained for the right sided Erdélyi-Kober type frac-
tional integrals, but we omit the details here.
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5.6.2 G. H. Hardy-type inequalities for fractional derivatives

In the following Theorem, we will construct a new inequality for the Canavati-type frac-
tional derivative.

Theorem 5.12 Ler 0 < p<g<oo,s>1,Vv—y>1— 2—’ and the assumptions in Lemma

1.4 be satisfied. Then for non-negative functions D} f and D f, the following inequality
holds - -
0 < ps(s) < Hs(s) —Ms(s) < Hs(s),

where

<

. . s(q=1) 7 (v-pg-p)(1-s)
Ms(s) = v NI —y+ D)7 /(x—a) S D7) Y

(x—a)Y
T(v—y+1) - T(v—y+1)
- DY DY - DY
‘ (x—a)"*)’ uf(x) uf(y) ( —a)V*Y uf(x) R
and
q
q g((v=y)s—D+p b 7
77 —9)L(1- —yrb—a) 7
Tals) = (b—a)v-1i0-9 [ (V=17 ( /DV 5d
s(8) = (=)™ V= DI (DLf () dy
~ =y + )7 [OLfe)Fax| .
Proof. Similar to the proof of Theorems 3.9 and 5.10. O

Next, we give the result for the Caputo fractional derivative.
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Theorem 5.13 Ler 0 < p<g<oo, s>1, v—y>1— 5 and the assumptions in Lemma

1.5 be satisfied. Then for non-negative functions D), f and DY, f, the following inequality
holds

0 < po(s) < He(s) — Mo (s) < He(s),

where
v-nt (7 %
Po(s) = (v—y— 1/)1+1 (/(b » (DY f(y))‘dy)
P a
b
—(T(v—y+1)7 / (e—a) T (DL f () 7 d,
g -y === s(4-1)
M(s) = : / (x—a (DLf(x))

X

< [ roen) =) 7 v,

a

o) = || 020 - (L bt )

(x—a)Y
B L P o A P Y e ik ) P
‘ (e Diaf(x) DI f() oy DY, f(x)|],
and
, (v— )ﬁ(b— )q((v—vlv—l)w b B
H6(S) = (b—a)(vfy);(lfs) z/v_’y_ti)i—’_l (/(D:u (y))sdy)
P a

b
- (Mv=y+ )7 [, <x>>%dx] .

a

Proof. Similar to the proof of Theorem 3.11 and 5.10. o



Chapter

Bounds for Hardy-type
differences

In this chapter we prove and discuss improvements and reverses of new weighted Hardy
type inequalities with integral operators. We introduce a new Cauchy type mean and prove
a monotonicity property of this mean.

6.1 The main results with applications

Lemma 6.1 Fors € R, let function the @s: (0,00) — R be defined by
x5
s(s—1)? s 70,1
os(x) =< —logx, s=0 . (6.1)
xlogx, s=1
Then @!"(x) = x*2, that is, @y is a convex function.
Lemma 6.2 Fors € R, let the function ys: R — [0,00) be defined by
Yize‘“, s#0
Ys(x) =4 . (6.2)

1.2 _
3%, =0

129
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Then y!(x) = €%, that is, W is a convex function.
Our first result reads (see [36]):

Theorem 6.1 Let (Q1,X1, 1), (Q2,%0,Un) be measure spaces with G-finite measures
and u : Qi — R be a weight function. Let I be a compact interval of R, h € C*(I), and
f: Qo — R a measurable function such that Imf C I. Then there exists N € I such that

YOO dia) — [ uCpanr () ap ()

1

= hﬁ;n) [ /QQV(y)fz(y)duz(y)— /Q lu(x)(Ak Fx)du(x) |, 6.3)

where A f and v are defined by (2.15) and (2.17).

Proof. Since h” is continuous on the segment I C R, there exist m = minye; h” (x) and
M = max,ec; h”(x). Then by applying Theorem 2.5 on functions ®;, ®, from Remark 1.5,
the following two inequalities hold:

| 000 daly) = | )01 (A () dpr (),
Q Q

1

S, OO0 da0) > [ a0 (A () (3).

1

It follows,

Mdpa() = || w4 () o ()

%{/ y)din(y) — /Qlu(x)(Akf(x))zdpl(x)}
<[
M

7{/ OO~ [ A )}

The function & is continuous, so Imh” = [m,M]. Therefore, there exists 1 € I such that
(6.3) holds. O

Theorem 6.2 Let the conditions of Theorem 2.5 be satisfied and @y be defined by (6.1).
Let f be a positive function. Then the function & : R — [0, o) defined by

80 = [ V0RO~ [ ue A @dme), 64

1

is exponentially convex.
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Proof. Let us prove first that £ is continuous on R. Obviously, it is continuous on R \
{0,1}, which easily follows from the Lebesgue monotone convergence theorem. Suppose
s — 0:

L (Af ()
lim&(s) = tim | () s o) - A () R dun ()

— lim Jo, VO () dua(y) — Jo, u(x)(Acf(x))° dpta (x)

s—0 S(S — 1) (65)

Since

tim [ v 0)dia() ~ [ ) Anf(0) din ) =,

s—=0JQ, JQ
by L’Hospital’s rule, the limit in (6.5) is equal to

i Jo, V). () log f () dpia (v) — Jo, u(x) (Acf (x))* log(Arf (x)) d i (x)
s—0 2s—1

— [ vO)oe () dua(y) + | ulx)logAes () dpn (2
Q, Q

lim & (s)

= V(y)%(f(Y))duz(y)—/ u(x)Po(Axf (x)) dii (x) = £(0)

Q Q
In the same way, for s = 1 we get

lim () = | v09) () log /) diay) — [ (o)A (0 lom(Ax () dpa () = E(1)

s—1 1

Hence, & is continuous on R. Letn € N, ; € R, and p; € R, i = 1,2,...,n be arbitrary.

Denote
pit+pj
2 )

Dij =
and define the function ®: R, — R by
(D(x) = ztit/(ppi_/ (x)
i.j
Then
2
n n i
q)”(x) = zlitjxpi-f_z = (Zlix7_1> >0,
ij i
so @ is a convex function on R .

Now, we can apply the result from Theorem 2.5 to the function @ defined above, and
obtain

n
i€ (pij) = 0
l7J

concluding positive semi-definiteness. Since £ is continuous, it is exponentially convex
function. a
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Remark 6.1 The function £ being exponentially convex is also a log-convex function.
Then, by Remark 1.2, the following inequality holds

ST <SP 6@ (6.6)

for every choice of p,q,r € Rsuch that p <r <gq.

As a consequence of Theorem 6.2, we prove an improvement and reverse of strength-
ened Hardy’s inequality and its dual.

Theorem 6.3 Let k,b,y € R be such that k # 1, b > 0 and y > 0, let f be a non-negative
function, and let p € R\{0,1}.
(i) If £ > 0andr < p <t, then

b / X k=171 P
Ly /x*k (/ [1— (ﬁ)T} F(y)dy dx}
0 0
< () ro) R 67

If p<t<rort<r<p,then (6.7) holds with reversed sign of inequality, where

1

w0 = 1) o (5 )
_/b"’r Mx%j[“@)ﬂy_lf(y)dy &
0 p 0 X X

(ii) If 12 >0 and r < p <t, then

< (12) wrs won. (©38)
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If p<t<rort<r<p,then (6.8) holds with reversed sign of inequality, where

oo 1-k

W(r) = /[1_ G)TT% (x”‘f'f(x))%
b
o

Proof. The proof follows from Theorem 6.2 and Remark 6.1 by choosing Q; = Q, =
(0,b) and replacing p; and U, by the Lebesgue measure. Choosing

x—};()c—y)y_l7 O0<y<x<b,y>0,
k(x,y) =

0, x<y

and u(x) = %, we obtain K(x) =1, v(y) = % (1-3%) " and Riemann-Liouville operator

X

Rif () = Anf () = L (=) )y

0
Then (6.4) becomes
’ Y d ’ d
X X X
Fip) = [ (1-3) o lr DS = [ o Ref ) ©9)
0 0
and (6.6) becomes
[F(p)) " <[F(n)] PF0)"" (6.10)

for every choice r, p,t € R, such that r < p < t. We know that F (p) is a log-convex function.
To obtain (6.7) replace the parameter b in (6.9) by p*=1/P and choose for f the function
XHf(xp/(k—l))xp/(k—l)—l_

Then, after suitable variable changes it follows
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Now (6.10) reduces to

b x k=177~
—O/fpp Y(kp_l)x%o/[p ()XC)”Y 1f(y)a’y %
< [R(N]F [R()) 7

For p € R\{0, 1} we get (6.7).

By taking substitutions r — ¢, p —r,t = porr— p, p—t,t — rin (6.10), we get
reversed sign of inequality in (6.7).

To prove (6.8), let us take Q) = Q) = (b,o0) and let u;, U, be the Lebesgue measure.
Choosing

f —1
K(ry) = %, b<x<y<oo,y>0,
0, y<x

Y
and u(x) = )l_c we obtain K(x) =1, v(y) = (1 - i—’) and Weyl’s operator

1
y

Wi () = Acf(3) = 1 [ (=27 1) S5

Then (6.4) becomes
N 7 N\ dx [ d
P = [ (1-2) 0= = [ o005 % 6.1
b b
and (6.6) becomes
[F(p) < [F(n)]" " [Fn)]"" (6.12)

for every choice r,p,t € R, such that r < p <t. We know that F(p) is log-convex. To
obtain (6.8) it is sufficient to replace the parameter b in (6.11) by bR/ and replace
function f by x — f(x?/(1=8))xP/(1=K)+1 Then it follows

1—k
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From here (6.12) reduces to

-6
b

For p € R\{0, 1} we get (6.8).
By taking substitutions r — ¢, p —r,t - pandr — p, p —t,t — rin (6.12), we get
reversed sign of inequality in (6.8). a

Remark 6.2 For y=11in (6.7) and (6.8), we obtain the result from Theorem 4.1 in [53].

Let us discuss an improvement and reverse of the classical Hardy-Hilbert’s inequality
(2.1).

Theorem 6.4 Let the assumptions of Theorem 6.2 be satisfied and H : R — [0,00) be a
function defined by

S

H(s)= ﬁ O/f“'(y)dy— (%)SO/M O]}%dy dx| . (6.13)

Then

H <4 Zf"@)w—(“f)ro/w O/wf(—y;dy x| | x

(6.14)

(6.15)

forl<s<t<rorl<t<r<s.
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Proof. Let us take Q) = Q) = (0,) and the Lebesgue measure for (; and L in

¥y=1/s
Theorem 6.2 and Remark 6.1. Choosing k(x,y) = G x)ﬂ ,s>1and u(x) = %, we obtain

K(x)=K= WZ/S)’ v(y) = % Replace f(¢)t~!/* with f(), then we get (6.13). By Theo-
rem 6.2 (6.13) is a log-convex function. Now, for 1 < r < s <t apply Remark 1.2 on (6.13)
and we obtain (6.14).

If in (6.14) we take substitions r — ¢, s —r,t —sorr—s,s —t,t —r, (6.15) follows.

O
Using the function y; instead of ¢, the following result follows.

Theorem 6.5 Let the conditions of Theorem 2.5 be satisfied, W be defined by (6.2) and
let f be a positive function. Then the function § : R — [0,0) defined by

C) = [, vOUONd0) ~ [ awAs @), 616

1

is exponentially convex.

Proof. The proof is analogous to the proof of Theorem 6.2. We just have to show that {
is a continuous function on R. Obviously, it is continuous on R\ {0}, which easily follows
from the Lebesgue monotone convergence theorem. Suppose s — 0:

1 1
: 1 — sf) _ 2 sARf(x)
}H%C(s) = 1111(1) 2v(y)sze duy(y) /1u(x) sze duy (x)

i Jo2V0)e )e !0 dpa (y) = Jo, ulx)e )dul(X). 617

s—0 52

Since

tim [ v)el O i) [ u)e W ds(x) =0,
5=0JQ, Q)

we can use L’Hospital rule and obtain that (6.17) is equal to

o, v(y)es ) o, u(x)eAS x
III%C(S) ~ lim, g Jo, v0)e Y f(y) dua(y) 12%1 ()W A (x) dpay ( ).

‘We know that

tim [ v()eO ) dpaly) — [ ul)e DA f(x) dias (x) =0,

s—0JQ, Q

so we use L’Hospital rule once again and obtain the following

Jo, V) O 2 (v) dpa (y )—fgl w(x)e™ e O (AL f(x)) dps (x)

im0 = iy
1
=2 ) ()f Jdus(y)+ = / X)(Arf (x))* dpa (x)

A ZV(y)Wo(f(y))duz 0) = [ ule)yo(Aef () dya () = € 0)

1

The proof is completed. a
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Remark 6.3 It is proved that the function { is exponentially convex, hence it is also a
log-convex function. Then, by Remark 1.2 the following inequality holds

[E@NP < [EPNT"[E@] " (6.18)
for every choice of p,q,r € R, such that p <r < gq.

Now we discuss an improvement and reverse of Polya-Knopp’s inequality (0.2) and of
its dual.

Theorem 6.6 Let f be a positive function, and W be defined by (6.2).
(i) Ifr <1 <t, then

b b X
¢ / (1) fexgax - / exp % / log F(v)dy | dx < e[P(]+ [P()] 5. (6.19)
0 0 0
Ifl<t<rort<r<1,then (6.19) holds with reversed sign of inequality, where
/ by dx / 17 dx
- 0/ (1-3) wltoglxr () < 0/ v~ 0/ tog(yf(r))dy | -

(i) If r < 1 <t, then

oo

7 <1 — —) X)dx —e/exp x/logf —;} dx < [15(,)]’; [B(1)]7
b

b

—
—

—r

T (6.20)

Ifl<t<rort<r<1,then (6.20) holds with reversed sign of inequality, where

B(s) = /m (1——)%(10ng o /ws /xlogyf( EES

X
b

Proof. The proof follows from Theorem 6.5 and Remark 6.3 by choosing Q; = Q, =
(0,b) and replacing U, U» by the Lebesgue measure. Let

1
-, 0<y<x<b,
k(x,y)={x
0, x<y

and u(x) = %, then we obtain K(x) = 1, v(y) = )l (1— %) and Hardy’s operator (the Rie-
mann-Liouville operator for y = 1)

X

Rif () =Auf() =+ [ .

0
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138
Then (6.16) becomes
’ d ; d
P = [ (1-3)wlren S = [wiRis@)S
0 0
and (6.18) becomes
[P(s)) " < [P(r)]) " [P(0)]" (6.21)

for every choice r,s,7 € R, such that r < s < . We know that P(s) is a log-convex function

To obtain (6.19) choose for f the function x — log(xf(x)). Then we obtain

/ ax [ (17 d
: OF Oy | =

Ps)= [ (1= ) wttogter ()5 = [we | [1oelrr )y
0 0

0

From here for s = 1 (6.21) reduces to (6.19).
By substitution r — ¢, 1 —r,t — lorr— 1,1 —t,t — rin (6.21), we get reversed

sign of inequality in (6.19).
To prove (6.20), choose Q = Q, = (b,0) and replace U, L by the Lebesgue measure.
Let
L b<x<y<oo,
Kxy) =4 "
0, y<x
= % (1 — %) and dual Hardy’s operator

and u(x) = 1, then we obtain K(x) = 1, v(y)

(Weyl’s operator for y = 1)
W = A =
1f(x) = A f(x) xx/f(y)y

Then (6.16) becomes

(6.22)

and (6.18) becomes

[Pl < (PO [PO)
for every choice 7,5, € R, such that r < s < t. We know that P(s) is a log-convex function
To obtain (6.20) choose for f the function x — log(xf(x)). Then we obtain
T dx [ r dy \ dx
9= [ (1-5) wltoear@) S [ws | x [0206 005 |
b b X

From here, for s = 1 (6.22) reduces to (6.20).
By substitution r — ¢, s —r,t —sorr—s,s —1t,t — rin (6.22) we get reversed sign
O

of inequality in (6.20), so the proof is completed.
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Corollary 6.1 Ler @, be defined by (6.1) and | and u be non-negative measurable func-
tions on R such that 0 < L(x) = x! fRi I(y)dy < oo for all x € R, and that the function

Y
X — u(X) IL((’;; is integrable on R} for each fixed y € R!,.. Let the function v be defined on

R’ by
X
/R" Lx
and
y
Af(x /R,, () rwa
Then
G(S)=/,, v(y)es(f(y))dy — /R,, X)0s(Arf(x))dx
+

is a log-convex function, that is

forr<s<t,and

fors<t<rort<r<s.

Corollary 6.2 Ler y; be defined by (6.2), and the other assumptions of Corollary 6.1 be
satisfied. Then the following inequality holds:

t—s s—=r
forr<s<t,and

fors <t <rort<r<s, where

/Rn y))dy — / X) W5 (A1 f (x))dx

6.2 Cauchy means

Theorem 6.7 Assume that all conditions of Theorem 6.2 are satisfied. Let I be a compact
interval in R and g,h € C*(I) such that h"(x) # 0 for every x € I. Let f : Q; — R be a
measurable function such that Imf C I and

YOO diaty) — [ axhiAcf ) dpa(x) 0. (623)

1
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Then there exists N € I such that

Proof. Let us denote
e = [ VORI dual) ~ [ a0 du (),
Q) Q

2 = [ vl ()~ [ u(g(Aef () dpn ().

(973 Q

Now, apply (6.3) to the function c¢1g — cxh. The following equality follows:

o [ [ N am) - [, u(x)g(Akﬂx))dm(x)]

1

e [ [ OO dis )~ [ atntans )y (x>]

1

_ag’(§) g c2h"(8) Unz ()2 (v) dpa(y) - /Ql ) (Aef ()" di (x)}
(6.24)

After a short calculation, it is easy to see that the left-hand side of (6.24) is equal to 0 and,
thus, the right-hand side as well.
If we apply Theorem 6.1 to the function & we get the following

L, OGN am ()~ [ a0 dp ()
Y|

22| [ OO di0) — [ )@ )P din )|

Q Q

From (6.23) we conclude that the term in the square brackets on the right-hand side of
(6.24) is not equal to 0. It follows that ¢1g" (&) — c,h" (€) = 0, so the proof is completed.
O

Corollary 6.3 Assume that all conditions of Theorem 6.7 are satisfied. If f : Qp — 1 is a
measurable function, then for p # s, p,s # 0,1 there exists N € I such that

_ St = Dla, V)P 0) dia(y) — Jo, ux)(Arf (x))? dp ()]
PP =DlJa, vO)f* (V) dpa(y) = Jo, u(x)(Acf (x))* dp (x)]

np-s . (6.25)

Proof. Apply Theorem 6.7 to g(x) = 1,(;'1 s h(x) = ﬁ p+#s, p,s#0,1and (6.25)

follows.
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Remark 6.4 Notice that g”(x) = x”~2 and h"(x) = x*2, so fl—:: is invertible. Then from
(6.25) we obtain

1

(S(S - 1)[Qf v () dia(y) = [ u(x)(Aef ()7 dpa (x)] ) s

=\ D V0T 0I a0 ~ W) e )k )
< sup (1)
1eQ)

So,

Q Q

plp =D/ v)ff () dua(y) — [ ulx)(Arf(x))* dp (x)]

Q Q

s(s— D[ v0) PO dia(y) — [ ul)(Arf ()P dp ()] \ 75
Mps(f;u)

for p #s, p,s # 0,1 are means. Moreover, we can extend these means to excluded cases.
Taking a limit we can define

Ms,s(f;u) =
e YOI 0 () (0)~ [ () (A (5)* Tog A (x) s (1
-1 TN )R 0)— ] () (Axf () it () ’

Q Q

Moo(fsu) =
(f u(x)logAr f(x)[2 +log(Ar f(x))]dp (x)— [ v(y) logf(y)[2+10gf(y)}duz(y))
exp )

Q Q)

25{ V(y)[l—logf(y)}duz(y)—zg u(x)[1—log(Arf (x)]d i (x)

My (fsu) =
( Jv(y)f(y)log f(y)[log f(v) — 2]dua(y) )
exp

Q

2 Qf v SO +log f(y)]dua(y) —2 ({ u(x)Arf (x)[1 + log(Arf (x)]dp (x)

( - Qf u(x)Arf (x) log A f(x)[log(Axf (x)) — 2] d i (x) )
X exp ! .

2 Qf v SO +log f(y)]dua(y) —2 ({ u(x)Arf (x)[1 +log(Arf (x)]dpw (x)

To define the remaining cases we applied Theorem 6.7 with function @, and obtained
the following
sz v(y)f(y)log f(y)dua(y) — S{ u(x) (Arf (x)) log(Acf (x)) dpi (x)
QJ; u(x)log(Arf(x)) dp (x) — Qf2 v(y)log f(y)dpa(y)
= Myo(f;u).

Mo, (fiu) =
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For s # 1 we get

My (fru) = M s(fru) =
Sy v)dua(y) - Qf u(x)(Arf (x)) diu (x) -

Q

s(s—1)[ [ v(y)f(y)log f(y)dua(y) — Qf u(x)(Arf (x))log(Arf(x)) d (x)]

Q)

-

and for s # 0

Mio(fsu) = Mos(fru) =
J v )dpa(y) = [ ux)(Aef (x))* dn (x)

ol

foN Q
s(s—1)] Qf u(x)log(Arf(x))dp (x) — Qf v(y)log f(y)dua(y)]

We shall prove that this new mean is monotonic. Note that M), s is continuous, hence,
it is enough to prove monotonicity of mean in case where r,s,l,p # 0,1 and r # [, s # p.

Theorem 6.8 Let r <s, [ < p, then the following inequality is valid,

Ml.r(f;u) < Mp,s(f;u) (6.26)

that is, the mean M, s(f;u) is monotonic.

Proof. Since & defined in (6.4) is a log-convex function, we can apply Remark 1.2 and
get (6.26), so the proof is completed. O

6.3 Further improvements of an inequality of G. H.
Hardy

In this section, we obtain some special cases of Theorem 6.2 for different fractional inte-
grals and fractional derivatives to establish new inequalities (see [57]).

Our first result involving the fractional integral of f with respect to an increasing func-

tion g is given in the following Theorem.

Theorem 6.9 Ler s > 1, o > 0, g be an increasing function on (a,b] such that g’ is
continues on (a,b), Ig‘+;g f denotes the left sided fractional integral of f with respect to
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another increasing function g. Then the function &1 : R — [0,0) defined by

b
&) = =5 / £ 0)(s(b) ~ g(3))“ () dy

b s
[t - s@r (R D W) o 62

is exponentially convex and the following inequality holds

Ei(s) < Hi(s) (6.28)
where
(8(b) —g(@))* / /
Hi(s) = o) (g(D) —g(a))‘“a/fs(y)dy —(T(a+ 1))Sa/(15‘+f(X))sdx

Proof. Applying Theorem 6.2 with Q; = Q; = (a,b), du; (x) = dx,du,(y) = dy,

N 4 ¢) N .
k(x,y) = { T@x-so)=a ¢ <y<x;
Oa x < y S b’

we get that K (x) = y (g(x) — g(a))?. Then the equation (6.4) becomes

o+l

E1(s) = / ()05 (F())dy — / ( O_‘Z(la))) 2, (x)) dx, (6.29)

a

where @y is defined by (6.1). Function &; is exponentially convex. For particular weight
function u(x) = g'(x)(g(x) — g(a))%*, we obtain v(y) = g'(y)(g(b) — g(y))* and (6.29) re-
duces to (6.27). O

We continue with results involving the Riemann-Liouville fractional integrals and the
Hadamard-type fractional integrals.

Corollary 6.4 Lets > 1, a >0, I? f denotes the left-sided Riemann-Liouville fractional
integral of f. Then the function 52 R — [0,0) defined by

b

éz(ﬂ=ﬁ /(b »)4f (v)dy — / ( “Z)ngf(x))sdx

is an exponentially convex function and the following inequality holds

&a(s) < Ha(s),
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where

(b_a)a(l—s) b

b
Hs) = = | () / £ 0)dy= T+ 1) [ r00)d| .

a

Corollary 6.5 Let s > 1, a > 0, I} f denotes the right-sided Riemann-Liouville frac-
tional integral of f. Then the function & : R — [0,0) defined by

b b
_ 1 o ps a(Tla+1) , ’
&i(s) = oD u/(y—a) S ()’)dy—a/(b—x) (Wlbf(x)) dx

is exponentially convex and the following inequality holds

&x(s) < Hs(s),
where

b

b
(b-a)® [ £ ()dy= (Tl 1)) [ fe)dx]|

a

(b _ a)oc(lfs)

H(s) = s(s—1)

The following result is about the Hadamard-type fractional integrals.

Corollary 6.6 Lets> 1, oo > 0, J:jif denotes the Hadamard-type fractional integrals of
f- Then the function &4 : R — [0, ) defined by

b

B 1 (logb —logy)*
a0 = oy |y 0y

a

b
[ (logx —loga)* TNa+1) o« gy 4 .
/ X ((logx—loga)“(J“+f( ))> d

a

is exponentially convex and the following inequality holds

Ea(s) < Ha(s)

where

1 (logh—loga)*!~s)
s(s—1) ab

b
b(logh —loga)** / f(y)dy

a

Hy(s) =

b
—a(T(o+ 1)) / (% f(x))dx]
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In the following Theorem, we will construct new inequality for the Canavati-type frac-
tional derivative.

Theorem 6.10 Let s > 1 and the assumptions in Lemma 1.4 be satisfied, DLf denotes
the Canavati-type fractional derivative of f. Then the function & : R — [0,0) defined by

b
&) = g | [0 T @i)yas
b N
—/(x—a)VY<WDZf(x)> dx

is exponentially convex and the following inequality holds

&s(s) < Hs(s),

where
b
_ (b_a)(V7Y)(17S) (vfy).v/ \% s
HS(S) - S(S—l) (b a) (Daf(y)) dy
b
~rv-y+1) [ (le()€))st] .
Proof. Similar to the proof of Theorems 3.9 and 6.9. o

Now, we obtain new inequalities for the Caputo fractional derivative.

Theorem 6.11 Let s > 1 and DY, f denotes the Caputo fractional derivative of f. Then
the function &g : R — [0, 00) defined by

b

1 n—o n N
& = 5oy u/(b_y) (7))
b ;
I P rn—a+1) . * .
I (st ot a

is exponentially convex and the following inequality holds

&o(s) < He(s),

where
b

(b=a)" [ )y dy

a

(b _ a)(n—oc)(l—s)

Hs(s) = s(s—1)

b
~ (- a+ 1)) [ (D% () dx| .
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Proof. Similar to the proof of Theorems 3.10 and 6.9. o

Theorem 6.12 Let s > 1 and the assumptions in Lemma 1.5 be satisfied. D%, f denotes
the Caputo fractional derivative of f. Then the function & : R — [0, o) defined by

b
G0) = s | /-3 DAy
b s
oo (g

is exponentially convex and the following inequality holds

&1(s) < Hq(s),

where
H (b — a)(aiw(lis) b (a—7y)s 7 DY S
7(S)—W (b—a) /( waf (v))'dy
a
b
~ (M(a—y+ 1) [ (Dlaf@)dx|
a
Proof. Similar to the proof of Theorems 3.11 and 6.9. a

Now, we give the following result with the Erdélyi-Kober type fractional integrals.

Theorem 6.13 Let s > 1, I .., f denotes the Erdélyi-Kober type fractional integrals of

> fags

1> 2F1(a,b;c;z) denotes the hypergeometric function. Then the function &g : R — [0,0)
defined by

b
&) = g / VB0 3R ) )y

—/bxcl(xc—ac)agFl(x) F(OC—I—I)

! (1-©°) 2R

is exponentially convex and the following inequality holds

Igir;c;n f(x) | dx

Es(s) < Hg(s),
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where

b
(6% —a?)b™" [ SRO)F )y

a

(bcr _ aa)a(l—s)

Hy(s) = s(s—1)

b
_ aO‘flJrOCO'.\‘(l—\(a + 1))\ /( (2F1 (x))lfslg:—;g;nf(x))xdx ,

a

a\o b\°
2F1()C)=2F1(—1‘],OC;OC+1;1—(;) )anszl(y):2F1(T],OC;OC+1;1—(;) )

Proof. Similar to the proof of Theorems 3.12 and 6.9. o

In the following theorem we prove some inequalities that follow rom the results above.

Theorem 6.14 Fori=1,...,8 the following inequalities hold

<
S

q—r

i) (&) [E(q)] 7 < Hir) (6.30)
(). (&)™ &P < Hiq) (6.31)
(). &(p) < [Hi(r)] " [Hy(q)) (6.32)

for every choice of p,q,r € Rsuchthat 1 <r <p <gq.

Proof. We will prove this Theorem just in case i = 2, since all other cases are proved
analogously.
(i). Since the function &, is exponentially convex, it is also log-convex. Then for 1 < r <
p<gq, r,p,q€ R, (1.4)can be written as

[E(P)]T[&()) P < (G (r)]T7.

This implies that

[E2(p)) 7 [E2(q)] 77
(b_a)a(l_r) or / r r / o r
= =1 (b—a) /f ()dy— (T(e+1)) a/(1u+f(x)) dx

a

= Hz(r)

so (6.30) follows.

(i1). Now (1.4) can be written as

()P [&a(p)) " < [&a(q))""
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This implies that
()] 7 [Ealp)] 7
(b—a)®(1-4) 3 b b )
= qlg-1) (b—a) q/f()dy I'(o+1)) q/1u+f ))4dx
= H(q),

so (6.31) follows.

(iii). The (1.4) can be written as,

(Ea(p)]rr < [&(n)] 7 [&2(q)];

This implies that

so (6.32) follows.

6.3.1 Mean value theorems and Cauchy means

Now we will give mean value theorems and means of Cauchy type for different fractional
integrals and fractional derivatives. For this purpose we introduce the notation

Gi(s) = &i(n ¢s(f()); u, &s(Aef (x)), for (i=1,....8)
where Ay f and v are defined by (2.15) and (2.17) respectively.

We will give some special cases of Theorems 6.1 and 6.7 for different fractional inte-
grals and fractional derivatives.

Theorem 6.15 Let u be a weight function on (a,b), Ay f(x) be defined in (2.15) and v be
defined in (2.17). Let I be a compact interval of R, h € C*(I) and & : R — [0,0). Then
there exists M; € I such that

Gi(vh(F(y)); u,h(Arf (x)))

= éi(va (f(y))z; u’(Akf(x))2)’ for (i: 17""8)'

Theorem 6.16 Let u be a weight function on (a,b), Ay f(x) be defined in (2.15) and v be
defined in (2.17). Let I be a compact interval of R, g,h € C*(I) such that h' (x) # 0 for
everyxel, &R — [0,0) and

(v, h(f()): u,h(Axf(x))) #0.
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Then there exists M; € I such that

g () _ &(ne(f); u,g(Acf(x)))

W) &nh(f(y): u,h(Af(x)))

If we apply Theorem 6.16 with g(x) = p(;”_l), h(x) = S(Sx—il),p #£5, p,s #0,1, we get
the following result.

, for (i=1,..,8).

Corollary 6.7 Let u be a weight function on (a,b), Ay f(x) be defined in (2.15) and v be
defined in (2.17). Let I be a compact interval of Ry, & : R — [0,00), (i = 1,...,8), then for
p#s, p,s# 1, there exist n); € I such that

s &) s(s—1) BP0 (Af()P)
WEES T o) B0 S0 A )) (039

Remark 6.5 Since g (x) =x” 2and h' (x) = x*2, iT are invertible. Then from (6.33),

we obtain .
inf f(r) < (ii‘;’;)ﬁ_ < sup f(1).

L t€(a,b]

So, |
ME (4, 95(£(): 4, pr(Arf () = (ff((f))) :

and

M} =M (v, 05 (f (1)) 1, @5 (Arf (%))
p #s, p,s # 0,1 are means. Moreover, we can extend these means to the excluded cases.
Taking a limit we can define

1
& o (Af () \ 75
(é, uqaf(Akf(x)))) ) P#s,
1225 &0 oD FO): oA ) @) - _
exp (x(x—l) AT ACIE) ) , P=5#0,1,

MP* =

~&(noi(f ))((Po(f() 2))): 10,01 (ALf () (90(Af (x) +2) o
eXp( 25, D)+ 01 (T0)): uAL () T 01 (A f(3)) ) p=s=1

&i(0.200(f(0)— 5 (F))): 1, 20 (Arf (1)) — 95 (Arf () o
xp ( 26( V1+(pof(v) T (AL (D)) ) ;, p=5=0

In the following theorem, we prove monotonicity of the means.
Theorem 6.17 Let r < s, | < p, then the following inequality is valid,
MT<MPS for i=1,...,8. (6.34)
that is ,the means MP"* are monotonic.

Proof. Since &; are exponentially convex, we can apply (1.4) and get (6.34). For r =
s, | = p we get the result by taking limit in (6.34). a



150 6 BOUNDS FOR HARDY-TYPE DIFFERENCES

6.4 n-exponential convexity of Hardy-type
functionals

In this chapter, we discuss and prove n-exponential convexity of the linear functionals
obtained by taking the positive difference of Hardy-type inequalities. Also, we give some
examples related to our main results.

Under the assumptions of Theorem 2.5, we define a linear functional by taking the
positive difference of the inequality stated in (2.18) as:

(@)= [ U0 d0) ~ [ dWeASE)dms).  (635)

We also define a linear functional by taking the positive difference of the left-hand side
and the right-hand side of the inequality given in Theorem 2.7 as:

[, f1() = utx g1(x) . _
M(®) Q/ <y>c1>( ) due) Q/ <>c1>( w630

L) g2(x)

6.4.1 The main results

First we give some necessary details about the divided differences. It is important to see
that for different degrees of smoothness of a function divided differences are very interest-
ing.

Let I C R be an interval and f : I — R be a function. Then for distinct points z; € 1,
i=0,1,2, the divided differences of first and second order are defined by:

f(zi+1)_f(zi) (120 1)

i+l —<i

21,225 f] — [20, 215 f]
22—20 '
The values of the divided differences are independent of the order of the points zg,z1, 22
and may be extended to include the cases when some or all of the points are equal, that is

[20,20: f] = leiggo[zom;f} = f'(z0), (6.38)

[zi,ziv1s f] =

[20,21,225f] = 6.37)

provided that f” exists.
Now passing through the limit z; — z¢ and replacing z, by z in (6.37), we have (see

[92, p.16])

f(z) = f(z0) — (z—20)f(20)

(z—20)*

[20,20,2 f] = lim [z0,21,2f] = .27 20, (6.39)
1720
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provided that f” exists. Also passing to the limitz; — z (i = 0,1,2) in (6.37), we have

A
. Z
2,2,z 0] = Zl_lntlz[zo,zl,zz;f] = fz( ), (6.40)
provided that f” exists .
One can observe that if for all z9,z; €1, [20,21,f] > 0, then f is increasing on I and if for
all z0,21,22 €1, [z0,21,22; f] > 0, then £ is convex on 1.

Now we will produce n-exponentially convex and exponentially convex functions by
applying functionals A;, i = 1,2 on a given family with the same property. In the sequel J
and 7 will be intervals in R.

Theorem 6.18 Let T' = {®, : p € J} be a family of functions defined on I, such that the
function p — [z0,21,22: @] is n-exponentially convex in the Jensen sense on J for every
three distinct points 2o, 21, 20 € I. Let A; (i = 1,2) be linear functionals defined by (6.35),
(6.36). Then the function p — Ai(®,) (i = 1,2) is n-exponentially convex in the Jensen
sense on J. If the function p — A;(®,) is continuous on J, then it is n-exponentially convex
onlJ.

Proof. Fora; e R, i=1,...,nand p; € J, i = 1,...,n, we define the function

2 a; a,d)p,+p/ (2).

i,j=1

Using the assumption that the function p — [z9,21,22;®)] is n-exponentially convex in the
Jensen sense, we have

[20,21,22: Y] = Y aiaj[z0,21,22: P pyip;] > 0,
i,j=1 2

which shows that Y is convex on I and therefore we have A;(Y) > 0 for (i = 1,2). Hence

z aiajA; q)p,+[)])20.
i,j=1

We conclude that the function p — A;(®,) for (i = 1,2) is n-exponentially convex in Jensen
sense on J.

If the function p — A;(®,) for (i = 1,2) is also continuous on J, then p — A;j(®,) is
n-exponentially convex by definition. a

As a direct consequence of the above theorem, we can write the following corollary.

Corollary 6.8 Let ' = {®, : I — R,p € J C R} be a family of functions, such that the
function p — [20,21,22; @) is exponentially convex in the Jensen sense on J for every three
distinct points zg, z1, 22 € I. Let A; (i = 1,2) be linear functionals defined by (6.35), (6.36)
respectively. Then p — Ai(®@,) is exponentially convex in the Jensen sense on J. If the
function p — Ai(®,) is continuous on J, then it is exponentially convex on J.



152 6 BOUNDS FOR HARDY-TYPE DIFFERENCES

Corollary 6.9 LetT'={®, : 1 — R, p € J C R} be a family, such that the function p —
[20,21,20:®@)p)| is 2-exponentially convex in the Jensen sense on J for every three distinct
points zo, z1, 22 € I. Let A; (i = 1,2) be linear functionals defined in (6.35), (6.36). Then
the following statements hold:

(i) If the function p — Aj(®p) is continuous on J, then it is 2-exponentially convex
Sfunction on J, thus log-convex on J and for p,q,r € I such that p < g < r, we have

Ai(q)q)r7p < Ai(q)p)riin(q)r)qipa i= 172-

(ii) If the function p — A;(®),) is strictly positive and differentiable on J, then for every
p,q,m,n € J such that p < m, g < n, we have

Bp g ([, 05T) < B (f, A7), 0= 1,2 (6.41)
where
1
Ai(Pp)\ Pa
A, ; P#4,
Bpq(f,0i:T) = ( ( ’32( A(®,)) (6.42)
exp <PA,.(TP)> ;. P=4;
Jor ®, ®, cT.

Proof. (i) This can be obtained as a direct consequence of Theorem 6.18 and Remark
1.4.
(if) Since by (i) the function p — A;(®,) for (i =1,2) is log-convex on J, that is the
function p — logA;(®),) for (i = 1,2) is convex on J. Applying Remark 1.2 we obtain

logAi(®),) —logAi(®y) - logA;(®,,) — logA;(®,)

(6.43)
P—q m—n
for p <m, g <n, p#q, m#n, and we conclude that
By q(f:AisT) < Bu(f,AiT) for (i =1,2).
The cases for p = g, m = n follow from (6.43) bytaking limit. O

Remark 6.6 Note that the results of Theorem 6.18, Corollary 6.8 and Corollary 6.9 still
hold when two of the points zg, 21, z2 € I coincide for a family of differentiable functions
@, such that p — [z9,21,22;D,] is n-exponentially convex in the Jensen sense (exponen-
tially convex in the Jensen sense), further, they still hold when all three point coincide for
a family of twice differentiable functions with the same property. The proofs are obtained
using (6.38), (6.39) and (6.40) respectively and some facts about the exponential convexity.
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6.4.2 Examples

We conclude this chapter with the following examples.

Example 6.1 Consider a family of functions

I = {gp : (0700) - (0700) ‘pE (Ovoo)}v

defined by
=22
g,(t) = .
. p
. d%g,(t) —t . . . ..
Since p — 32 — ¢~'VP s the Laplace transform of a non-negative function, it is ex-

ponentially convex (see [100]). Clearly, g, is a convex function for each p > 0. It is
obvious that A;(g,) for (i = 1,2) is continuous. It is easy to prove that the function
p — [20,21,22:8p] is also exponentially convex for arbitrary points zo,z1,2> € I. For this
family of functions, %, 4(f,Ai;T'1) becomes

1
Ai(gp) \ P4 .
(Ai(g:)> ’ p 75 f17
Ai(id-gp) 1

'%Pﬂ(f?Ai(gp);rl) =
Z\/_Tgp - 17> y P—=4q,

exp(—
and from (6.41) it follows that the function %), 4(f,A;;T'1) is monotone in the parameters
p and q.
Example 6.2 Let

= {hp :(0,00) = (0,00) : p € (0,0) },
be a family of functions defined by

p R, \ {1
hp(l):{ Elnp)z, JAS +\{ }7
5 p=1.

Since p — d7h (r) = p~' is the Laplace transform of a non-negative function (see [100]),
it is exponentially convex. Obviously, &, is a convex function for every p > 0. It is easy to
prove that the function p +— [z0,21,22; /)] is also exponentially convex for arbitrary points
20,21,22 € I. Using Corollary 6.8, it follows that p — A;(h,,) for (i = 1,2) is exponentially
convex (it is easy to verify that it is continuous) and thus log-convex. From (6.42), we can

write 1
Ai(hp) \ P=a
(A,-(hZ))p ’ P#4q;
%I’7q(f7Ai(hp);r2) - exp | — péfé hp)) p1i17> , pP=q 7& 17
Ai(id-hy)
CXP\ ~ 3ai(my)

p=q=1,

and from (6.41) we deduce monotonicity of the function 4, ,(f,A;(hp);T2) in the param-
eters p and g for hp,hy € 1.
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Example 6.3 Consider a family of functions
D3 ={yp: R = [0,0): p € (0,)},
defined with
vo1) = —e?, p e R\ {0},
b %tz, p=0.
The mapping p — 5722 (wp(t)) = €'? is a well known exponentially convex function on R
for every p € R. Using the analogous arguments as in Theorem 6.18, we also have that

P — [20,21,22; W) is exponentially convex (also exponentially convex in J-sense). For this
family of functions, %, 4(f,A;;T3) for (i = 1,2), from (6.42) becomes

1

Ai(wp) \ P=a
(MJJ ’ P#4,
Ppa(F8i(¥p)iT3) = Q- exp Ai(,-lflu)?)]) . %) , P=4q#0,
oo (%) p=a=o

and using (6.41) we can see that it is a monotone function in the parameter p and ¢ for
Yp, Yq €T3,
Example 6.4 Consider a family of functions

Ly ={¢p:(0,0) = R:peR},

defined by
1P
17(17,1) p ;é 1707
¢p(t) = —In¢ p=0,
tint p=1.

Since p — 5722(¢1,(t)) = P72 = ¢(P=2)In7 - (s the Laplace transform of a non-negative
function (see [100]), it is exponentially convex. Obviously ¢, is a convex function for
every r > 0. It is easy to prove that the function p — [z9,21,22; 9] is also exponentially
convex for arbitrary points zg,z1,z2 € I. Using Corollary 6.8 it follows that p — A;(¢,)
for (i = 1,2) is exponentially convex (it is easy to verify that it is continuous), and thus
log-convex. From (6.42), we see that

Ai(9p) \ P=a
B
1-2p i(Pp o
eXp (p—1) - ) =4 7é Oa la
By o(f,0i(9p);T4) = (1 (1 i?((pg) Ai(9p) ) (6.44)
°xP 1_2Ai(¢0)>’ p=q=0,
Ai
exp|—1— 2&?&?11))), =qg=1,

for ¢, ¢, € T4.

Remark 6.7 For the case i = 1, the means given in (6.44) were already presented in
Remark 6.4 in explicit form.



Chapter 7

Hardy-type inequalities with
general kernels and measures
via superquadratic functions

7.1 Preliminaries
The following results was recently proved by Oguntuase et al. [89]:

Proposition 7.1 Let b € (0,0), u: (0,b) — R be a weight function which is locally
integrable in (0,b) and v be defined by

by by

v(t):h...,n/.../ 2”(X>2dx,te(0,b). (7.1)
t t xl...xn
1 n

Suppose I = (a,c),0<a<c<oo, ¢:1— R, and f:(0,b) — R is an integrable function,
such that f(x) € I, for all x € (0,b).

155



156 7 HARDY-TYPE INEQUALITIES WITH GENERAL KERNELS AND MEASURES...

(i) If @ is superquadratic, then the following inequality holds:

by by 1 X1 Xn d
X
//M(X)(p xl"'xn/“./f(t)dt X1 Xn
0 0 0 0
by bn by by 1 X1 Xn ( )
u(x
+/ //q, - /---/f(u)du x%---xngdt
0 0 tl Iy 0 0
by by d
X
g!m!wwwﬂwgrw{ (7.2)

(ii) If @ is subquadratic, then (7.2) holds in the reversed direction.

Proposition 7.2 Let b € (0,00), u: (b,0) — R is a weight function which is locally
integrable in (0,b) and define v by

1 In
1
v(t) = /.../u(x)dx < oo, t € (b,e). (7.3)
t ety
by by
Suppose I = (a,¢),0<a<c<o, ¢:1—R, and f: (b,o) — R is an integrable function,

such that f(x) € I, for all x € (b, o).
(i) If @ is superquadratic, then the following inequality holds:

< [ [vp(r)

by by

(7.4)

X1 Xp

(ii) If @ is subquadratic, then the inequality sign in (7.4) is reversed.
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7.2 The main results with applications

Probably the first refinement of Hardy’s inequality (0.1) is due to D. T. Shum [97] and
further developed by C. O. Imoru [54]. These Shum-Imoru results were recently com-

plemented and generalized by L.E. Persson and J.A. Oguntuase in the following way (see
[93], Theorem 2.1):

Theorem 7.1 Let p, k, b € R be such that 0 < b < o and one of the following holds:
(i) p>landk>1,

(ii) p<0andk < 1.

If f(x) is a non-negative integrable function on (0,b) such that

b
0< /xl’fkfp(x)dx < oo,
0

then the following inequality

» b
< (—) /xl’fkfp(x)dx (7.5)

holds.
(iii) If 0 < p < 1 and k > 1, then inequality (7.5) holds in the reversed direction.
The constant (%)p on the right hand side of (7.5) is the best possible in all the cases.

Remark 7.1 Note that the statement in Theorem 7.1 in particular means if p = 1,k >
1, then we have equality in (7.5) which can also be seen by performing a simple direct
calculation.

b
Remark 7.2 Also a dual version of Theorem 7.1 ( where the integrals [ are replaced by
0

/) was stated and proved in the same paper, see [93], Theorem 2.2.
b

The above shows, in particular, that p = 1 is a natural “breaking point” for Hardy’s
inequality and also that with the extra term inserted on the left-hand side in (7.5) we even
have equality for p = 1. Another remarkable fact is that by inserting another additional
term in (7.5) the natural breaking point in this refined Hardy’s inequality is in fact for
p =2 and equality appears also at p = 2, see J.A. Oguntuase and al. [88]. In fact, the same
authors later on proved these results even in the following multidimensional settings:
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Theorem 7.2 Let | < p < oo, k= (ky....k,) € R" be such thatk; > 1 (i=1,....,n),0 <
b < oo, and let the function f be locally integrable on (0,b) such that

by b, 1 ki
O</ / [T 5 P (x)dx < oo.
0 0 =1

(i) If p = 2, then

by by, 1 b x| Xn P
/ / s (/ / f(t)dt) dx
0 0 0 0
ﬁkl_l by by by by ﬁ P ti 1_% (t)
) L [ ()
-1 P 0 0o Jy | ki— 1 \x f
1 X1 Xn P n P—ki—kiT_l 'i;l 1
- t)dt X; ax| | dt
x1...xn/o /0 f® H ! g’
P b -
n p / 1 / n N |:xi:| P p—ki 7p
< 1—|— Xt X)dX. 7.6
—<Eki—1> =y 1:[1 i ;) (7.6)

i=1
(ii) If 1 < p <2, then inequality (7.6) holds in the reversed direction.

Theorem 7.3 Let 1 < p < oo, k = (ki ....,k,) € R" be such that k; < 1, i=1,2,...,n,
0 <b < e, and let the function f be locally integrable on (b,e) and such that

O</ /be” ki P (X)dx < oo

n =

(iii) If p > 2, then

/bl /b ll—[x_k (/ ...[f(t)dt)pdx
- 2 n N\ S
( 5 )fbl //hl /,, Hlp (fy) +f(t)
- m... mf(t)dtp - x%+p—k;dx n tiki’;lth
X1otn / / IT .H
<< ) f /: - H L. (1)

i=1
(iv) If 1 < p <2, then inequality (7.7) holds in the reversed direction.

Remark 7.3 Note that for the case p = 2 both inequalities (7.6) and (7.7) will be equali-
ties so we obtain something like new Parseval type identities with the Hardy and the dual
Hardy operators involved.
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Remark 7.4 We remark that Propositions 7.1 and 7.2 are crucial for the proofs of Theo-
rems 7.2 and 7.3, respectively. In fact, these proofs are carried out by just applying these

Propositions for ¢(u) = u” and performing a series of suitable variable transformations
(for details, see [89]).

We give generalizations of the above results. Our first result reads (see [5]):

Theorem 7.4 Let (Q1,%1, 1) and (Q,%, L) be measure spaces with positive G-finite
measures, u be a weight function on Q1, k a non-negative measurable function on 21 x 2,
and K be defined on Q1 by (2.16).

Suppose that K(x) > 0 for all x € Q, that the function x — u(x) kl(gz y)) is integrable on £
for each fixed y € Qj, and that v is defined on Q; by (2.17). Suppose I = [0,c), ¢ < oo,

¢ : 1 — R.If ¢ is a superquadratic function, then the inequality

u(xk(x.y)
LoD )+ [ o170~ Ar ) 5

< [, 00U dus) )

dp (x)dpa(y)

holds for all measurable functions f : Qp — R, such that Imf C I, where Ay, is defined by
(2.15).
If @ is subquadratic, then the inequality sign in (7.8) is reversed.

Proof. We must first prove that Agf(x) € I, for all x € Q; (see the proof of Theorem
2.5).
Now, let us prove inequality (7.8). By applying the refined Jensen’s inequality (1.11) to
the first term on the left hand side of (7.8) and then Fubini theorem, we have that

[ uo(anse)du ()

Q
— [, 1090 (7 [, Kx£0) e ) ) a0
< Ql,’;’j)(gzkxy D) am0)) din ()
[ R [ k)0 (1700 = A 0D a3 o)
= [ oo ([, Euoam ) ) amoy

-1, / 0110~ s ) (xl)(lzx);’y)dul()duz(y)

= [ ")) dma)
/Q/ 0 (170) = s o)) " 52 a9 s )
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from which (7.8) follows.
By making the same calculations with a subquadratic ¢ we see that only the inequality
sign in (7.8) will be reversed. The proof is complete. a

Example 7.1 Let Q) =Q; = (0,b), 0 <b < oo, replace d; (x) and d;(y) by the Lebes-
que measures dx and dy, respectively, and k(x,y) = 1,0 <y <x, k(x,y) =0,y > x. Then

K(x)=x;---x, and
w0 = [

Moreover, replace u(x) by u(x)/x1 -+ xp and v(y) by v(y)/y1 - ya, then, in particular (7.1)
coincides with (2.17) and (7.8) coincides with (7.2) and we see that Proposition 7.1 is a
special case of Theorem 7.4. O

Remark 7.5 As mentioned before, (see Remark 7.4) Theorem 7.2 follows by using Propo-
sition 7.1 with @ (u) = u” (which is superquadratic for p > 2 and subquadratic for 1 < p <
2) and making some suitable variable transformations (for details see [89]). Hence, Theo-
rem 7.4 implies Theorem 7.2.

Remark 7.6 Note that in the one-dimensional case (n = 1), Example 7.1 reduces to the
corresponding Proposition 2.1 in [88]. Moreover, if u(x) = ;-Xn’ then we have

x|
Vv y :/ .../ = - 7 ) ye )
yi yn x1 x2 iy b;

and we get the inequality given in Remark 2 in [89]. In the one-dimensional case (n = 1),
this reduces to Example 4.1 in [88].

Example 7.2 Let Q) =Q) = (b,),0<b <o replace du (x) and d, (y) by the Lebes-
que measures dx and dy, respectively and k(x,y) = y2 7, Y 2 >x,k(x,y)=0,b<y<x

Then K(x) = xr{xn and

Arf(x / dy
Xn yl yn

Now, by replacing u(x) by u(x)/x;---x, and v(y) by v(y)/y1---yn, we see that (7.3) co-
incides with (2.17) so we conclude that also Proposition 7.2 is a special case of Theorem
7.4. O

Remark 7.7 Analogously as in the discussion in Remark 7.5, we find, according to Ex-
ample 7.2, that Theorem 7.4 also implies Theorem 7.3.

Remark 7.8 Note that in the one-dimensional case (n = 1) Example 7.2 reduces to the

corresponding Propositions 2.2 in [88]. Further, if u(x) = g then we have

1 V1 Vn n 1 b;
= [ [Case (1-2). yemo
v y%"'Y% by n iI:[lyl"'yn Vi (b,)
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and we get the inequality given in Remark 3 in [89]. In the one-dimensional case (n = 1),
this reduces to Example 4.2 in [88].

As we have seen by applying Theorem 7.4 with @(u) = u” and special kernels we
fairly easily obtain the proofs of Theorems 7.2 and 7.3. More generally we can state the
following result:

Corollary 7.1 Let the assumptions in Theorem 7.4 be satisfied.
(i) If p > 2, then

/ u(X)AL f(x)dp (x +// — A f( )p%dul(ﬂduz@)
< / V07 () () (1.9)
Q

(ii) If 1 < p <2, then (7.9) holds in the reversed direction.

Proof. Apply Theorem 7.4 with the function @(x) = x”, which is superquadratic for
p > 2 and subquadratic for 1 < p <2. O

Remark 7.9 In particular, by applying Corollary 7.1 with p = 2 we obtain the following
very general identity (of Parseval type for the generalized Hardy operators involved):

[, weomiram )+ [ [ 170) A %dm (s

/ y)dua(y).

By using Corollary 7.1 (and Remark 7.3) with concrete kernels we can obtain refine-
ments of some classical inequalities. Here we give only the following complement and
refinement of the Hardy-Hilbert inequality (2.1).

Corollary 7.2 Letp >l and f € LP(Ry).
If p > 2, then

p—1 oo oo Sin(”) o () P l—l
T _1 1 ) 1 [ fly xr
+ | —— / p/ P — X7 d dxd
: ) Oy Of(y)y p- Ox+yyx+y y

T 2
< m /fl(y)dy. (7.10)

If 1 < p <2, then (7.10) holds in the reversed direction.
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Proof. Apply Corollary 7.1 with Q; = Q; = (0,0) and du; (x) and d/,Lg( ) replaced
)Y

by the Lebesgue measures dx and dy, respectively, and let k(x,y) = - P> 1, and
u(x) = 1. Then we find that K (x) = Sin(’fr/p),
> sin(m/p)\* f B
Ag(r) = (SE Y [ 10y
T y
0
and
sin(z/p 7 -l o1
v(y) = / /( ) dx
x +)
0
_ sin(x/p) li(y -1/p" 1 1o 1sin(/p) T 1
oo v x x+y y m sin(m/p)

1,1 _
(Here, as usual, 7ty = 1).

By replacing, now, f(x) with £(x)x'/? in (7.9) we obtain (7.10).
The proof of the case 1 < p <2 is the same because then only the inequality sign coming
from case (ii) in Corollary 7.2 reverses. The proof is complete. O

Remark 7.10 We note that for p = 2 we get equality in (7.10) and this equality is a
special case of the general one stated in Remark 7.9.

We finish this section by stating another useful applications of Theorem 7.4.

Corollary 7.3 Let the assumptions in Theorem 7.4 be satisfied and let |€, [,
< oo, Then the inequality

1
/Ql (0 (m /sz(y)duz(y)> dp (x)

! 1
+%/92/91"’<‘f( Gl Jo, 7))

|Ql|yl
<, PV O s () .1

) dp (x)dpa(y)

holds for all superquadratic functions ¢ . If the function ¢ is subquadratic, then (7.11)
holds with reverse inequality sign.

Proof. Apply Theorem 7.4 with k(x,y) = 1 and u(x) = 1. Then

x) = /Qz dpz(y) = [Qa]y,
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and

V)= [ d) = o

Q |QZ|I~12 B |92‘,U2

and the proof is complete. a

7.3 Remarks

Example 7.3 The inequalities (7.5) and (7.6) forn =1, i.e

b X p
/x_k f)de | dx
0 0

x p

b b 1

k—1 p t 17T 1 pikiu o

- p 0// k—l(;) f(t)_;()/f(“)du X P dxt P dt
1

k=1

(e (-

hold both for p > 2 and k > 1. They can not be easily compared in general. However,
(7.12) is better for p = 2 because it then reduces to equality. It is also better for the case
b = o because then the additional term on the left-hand side of (7.5) is equal to zero while
the one in (7.12) is not, and still the right-hand side is strictly smaller than the right hand
side in (7.12). However, it remains an open question if (7.12) is always better in this case
(both inequalities are sharp).

Also for the case 1 < p <2 and k > 1 we can not compare these inequalities because then
(7.12) holds in the reversed direction. At the endpoint p = 1 (7.5) holds with equality,
while at the endpoint p = 2 (7.12) holds with equality. In particular for 1 < p <2 k> 1
and b = oo we have that

oo X P oo
0< - / ak / Fydr | dx+ (k%)p / PR (x)dx < 1,
0 0

0

where

k—1 n ! k-1 1 X p

— T2 o p—k—K1 k=1

1, = L 1 .
q p O//t k—1 <x> f(t) X O/f(u)du X P dxt P dt

Two-sides estimate like this can never be obtained by using only Theorem 7.1.
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Remark 7.11 A completely analogous dual example can be obtained by using and com-
paring Theorem 7.3 with n = 1 and the dual version of Theorem 7.1 (see [93], Theorem
2.2).

The function ®(x) = ¢* is not superquadratic but by working, instead, with the su-
perquadratic function ®(x) = ¢* —x — 1 (see Lemma 1.2) we obtain the following result of
Pélya-Knopp type by using Theorem 7.4:

Example 7.4 Assume that the assumptions in Theorem 7.4 are satisfied. Then, by ap-
plying Theorem 7.4 with ®(x) = ¢* —x — 1 and f(x) replaced by log f(x) we obtain the
following inequality of (refined) Pélya-Knopp type:

| ewa@am)+1< [ f000)duww)
Q Q

where

M) = 5 [ k) log )iy

and

u(x)k(x,y)

K0 duy (x)dua(y)

1:/92/91 exp|log f(y) — Axf(x)| — [log f(y) — Arf (x)|

+ [ tog I - [ (Af(0)+ Ddp (3.
Q) Q

7.4 Mean value theorems

Let us continue by defining a linear functional as a difference between the right-hand side
and the left-hand side of the refined Hardy type inequality (7.8):

Alo) = [ U OIOIA0) ~ [ o(hef (W)u(x)dpn (v

u(x)k(x,y)

K0 dpy (x)dpa(y)

= oy 0070) ~ A @)
(7.13)

It is clear that if ¢ is a superquadratic function, then A(¢) > 0.

Now, we give mean value theorem. First, we state and prove the Lagrange-type mean
value theorem (see [37]).
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Lemma 7.1 Suppose that ¢ € C*([0,0)), —o0 < m < M < o be such that

m< (90/()6)) — x9"(x) — ¢'(x) <M, forall x > 0.

X X2

Consider the functions @1, @, : [0,00) — R defined as

w()

/
Then the functions x — (p—() and x — == are increasing. If ©;(0) =0, i= 1,2, then they

are superquadratic functlons

Theorem 7.5 Ler ¢ : [0,00) — R, @(0) = 0 and the assumptions of Theorem 7.4 be sat-

isfied. Assume that A is a strictly positive functional. If @ € C'(0,0), then there exists
& € (0,0) such that following equality holds

Ap) = 159(8) —9'(S) (/ FOwh)dus(y) — /(Akf(x))su(x)dul(x)

3
//v —mﬁ”%ﬂwmwm) an

where Af, K are defined by (2.15) — (2.16), respectively.

Proof. 1. Case: Suppose that n(lin )(%/) = m and H(l(Z)IX)(%/) = M exist. Then by ap-
x€(0,00 x€(0,00

plying Theorem 7.4 on the functions ¢, ¢, from Lemma 7.1 the following two inequalities
hold:

o) < 5 ([ Por0aeo - [ trePuan

= 10 =P O ) )

and

a(0) = 2 ([ POROIAL0) - [ (o)t

3 u(0k(x,y)
K(x)

Since ¢ = xXis strictly superquadratic and A is strictly positive
[ POMO)m0) - /Q (A () u(x)dpn (x)
2 1

= [ 1o AR Y ) > 0

[ 10— () g )
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By combining the above two inequalities and using the fact

< x@"(x) — @' (x)

<M
X2 -

we conclude the existance of & € (0,0) such that (7.14) holds.

2. Case: Suppose that min (£) =mand sup (£) =M, and assume that M is not a
x€(0,00) x€(0,%0)

maximum. In this case ¢, is strictly superquadratic. Then, by applying Theorem 7.4 on

the functions ¢y, ¢, from Lemma 7.1, the following two inequalities hold:
< H ([ £Or0am0 - [ tereFutan

/Qz / —Af () Wdul (x) d,uz(y))
and

a(o) = 5 ([, FOROII) - [ (s utodun 0

1

= o) g ) )

By combining the above two inequalities and using the fact

SR ACRLE

<M

we conclude the existance of & € (0,e0) such that (7.14) holds.

3. Case: Suppose that inf (‘L/) =m and max ((L,) = M, and assume that m is not a
xe(0,00) * xe(0,00) " *

minimum. The proof is analogous to the proof in Case 2.

4. Case: Suppose that i(réf )(%/) =m and sup (%/) = M, and assume that m is not a
x€(0,00

XE(O,OO)
minimum and M is not a maximum. The proof is analogous to the proof in Case 2.
In the case where M = o and m exists, using just ¢, we obtain

0" ) ')
when m is the minimum, and strong inequality when m is the infimum. The rest of the
proof is as above. o

Theorem 7.6 Ler ¢,y : [0,0) — R, ¢(0) = w(0) =0, the assumptions of Theorem 7.4
be satisfied. Assume that A is a strictly positive functional. If = o l‘/ € C'(0,0), then there

exists & € (0,00) such that
Alp) _ 89"(8)—9'(5)
Aly)  Sv"(6)—v'(§)

provided the denominators are not equal to zero.
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Proof. We consider a function % defined as 1 = ¢; @ — coy, where ¢y, c; are defined by

Then

h
— :cl2 — 3= €CY(0,%),
X X

after a short calculation we obtain that A(k) = 0. By Theorem 7.5 there exists & such that

(c1(E9"(6) = 9'(§)) — c2(EW" (&) —W(£))) ( Lope)du®y) (7.15)

- [ uaun - [ [ 1500 - auro0r D )
=0.

Since ¢ = x? is strictly superquadratic and A is strictly positive

[ FOR0Im0) ~ [ (A @) udpn
= [ 1700 AR e e ai ) > 0

We conclude that

a £9"(8)-9'(5) Alp)

a Ey(E)-v(E)  Aly)

provided that the denominator is not zero. This completes the proof. ]

As a special case of Theorems 7.5 and 7.6 we obtain the following results:

Example 7.5 Let Q) =Q; = (0,b), 0 < b < e, replace di; (x) and di»(y) by the Lebes-
gue measures dx and dy, respectively, and k(x,y) = 1,0 <y <x, k(x,y) =0,y > x. Then
K(x)=x;---x, and

Arf(x

Moreover, replace u(x) by u(x)/x; - --x, and v(y) by v(y)/y1 - - - yn, then v coincides with

hl by u
/ / d e (0,b)
1
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and A, which we now denote by A, becomes

0= [ ) et
_/Ob‘.../ob"u(x)(p<x1 xn/ /f dt) dxn
_/Obl_,./obn/tlbl._./;"(p<‘f(t)_x1mxn/o /O f(t)dt’)

1) at
xl .. -xn

and (7.14) takes form

Aig) = 1O 2010) (/“ [ ve0r o
by b . 3
- / e A A f<t>dt) S
X1 Xn 3
_./Ohl__../hn./llbl_,../lnh" £t — 1.1.xn/0 /0 f(t)at

”( ) Sdx dt)

xl x

Example 7.6 Let Q) =Q) = (b,),0<b <o replace du (x) and du, (y) by the Lebes-
gue measures dx and dy, respectively and k(x,y) = y2 Y2 >x,k(x,y) =0,b<y<x.

Then K(x) = ~-1~x,1 and

X1

Akf / 2dy.
Xn yl

Replacing u(x) by u(x)/x;...x, and v(y) by v(y)/y1...yu, we obtain

1 11 In
_ / / U(X)dx < oo, t € (byeo)
1 In by n

and A, which we now denote by fT, becomes

/ / dx
by n

oo

X)Q

( //ft1t>dx
:K@(Vm—MmMLJHAfmg—E)

2 2
1t

T
Lk

X u(x)dx
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and (7.14) takes form

) - 50O (g

by b X1 Xp

3
—/:“'/j“(’“ (//f(t)%)d_
_/h//b/ 10— [ [ e
dt
,12...,3)'

We state the following result concerning inequality (2.1) by applying Theorem 7.5 with
¢(u)=u’, p=>2.
Example 7.7 Let Q) = Q) = (0,00), @(u) = uP, p > 2 and replace dy, (x) and du,(y)
¥y-1/p
by the Lebesgue measures dx and dy, respectively, let k(x,y) = G nd u(x) = % Then

x+y
we find that K(x) = W and v(y) = % Replace f(x) by f(x)x!/?, so A, which is now
denoted by Hy, becomes ’

X u(x)dx

H _/°° v Sm(ﬁ) N [ /() P
= [ fP(y)dy p / )Tydx @
0 0 0
() e e in(Z 7 !
_smi;) // f(y)_SIIl’.(Cp) (;) » )%y;d :_ldxdy
00 0

and (7.14) takes form

. n 300 3
_9)Ep3 o 5 sin (X 3
Hy = plp—2)&""> /O Plo)yrtdy— <p> / FO) | w1

3

sin T sin 5 7 L1
// o (3) ({)”/f(y)dy 7 redy

o v, X+y X4y
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7.5 Exponential convexity

Lemma 7.2 Consider the function @, for p > 0 defined by
P
0 P #2
0p(x) = { e
5 logx, p= 2

Then, with the convention 0log0 = 0, @, is superquadratic.

For linear functional A defined by (7.13) we have A(¢,) > 0 for all p > 0.

Lemma 7.3 Let us define the function

pxeP*—eP*+1 0
(pp(x) — { ; 173 i p;ﬁ

X

3 p:O

Then (¢p( )) = eP* > 0 and ¢,(0) = 0. Therefore ¢,, is superquadratic.

Properties of the mapping p — A(¢,) are given in the following theorem:

Theorem 7.7 For A as in (7.13) and @, as in (7.16) we have the following:

(i) the mapping p — A(@,) is continuous for p >0,

(it) foreveryn € Nand p; € Ry, pij = p’;pj, i,j=1,2,...;n, the matrix [A(@p,;)|} i, is

positive semi-definite, that is
det{A(@p,;)]7 j=1 >0,

(iit) the mapping p — A(@p) is exponentially convex,
(iv) the mapping p — A(¢p) is log-convex,

(v) for pi € Ry, i=1,2,3,p1 <p> <p3,

[A(@p)]7 P < [A(@p )] P2 [A@p3)]7>
Proof.
(i) Notice that for p = 2

1

~ [ 10 = acsor “E N )

K(x)

[ OO0~ | (aes )P utiasa o)

(7.16)

(7.17)
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and for p =2

) = 1{ / S0 og(f(3))v(y)dua(y) — /Q I(Akf(x))zlog(Ak FO))u(x)du (x)

u(x)k(x,y)
K(x)

It is, obviously, continuous for p > 0, p # 2. Suppose p — 2:

[ V0) = A0 Pog )~ ur o) i (s) )|

limA(g, i — [ PPOPOMI0)~ [ (4 () e (9
(k)
oo )= At S a9 s ).
Since

o, P OO~ [ (ks () a2

- / 170) ~ A WP O 4 0 s 3) =0,
Q, JQ (x)

by applying L’Hospital rule, after a simple calculation, we obtain that

lim A(¢p) = A(g2).
p—

Hence, the mapping p — A(¢,) is continuous for p > 0.

(i) Define the function F(x) = ¥ ;_; uiutj@p, j(x), where p;j = Wr% Then

(Ffix))':éluiuj<qop,,( ) (zm 2;>2

and F(0) = 0 implies F is superquadratic, so using this F in place of ¢ in (7.8) we
have

F)= 2 uiujA((ppij) >0

i,j=1
from this we have that the matrix B = [A(@p+p; )]” j—1» 1s positive-semidefinite i.e.
ritei i,
detB > 0.

(iif), (iv) and (v) are trivial consequence of (i), (ii) and definition of exponentially convex
and log-convex functions. O

Using the function ¢, instead of ¢, the following result follows.

Theorem 7.8 For A asin (7.13) and ¢, as in (7.17) we have the following:
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(i) the mapping p — A(,) is continuous on R,

(it) for everyn € N and p; € R, p;j = pi;p-f, i,j = 1,2,...,n, the matrix [A(¢p,)]}' i, is

positive semi-definite, that is

det[A((Z)Pi_/)};‘l,j:l > Ov

(iii) the mapping p — A(®p) is exponentially convex,
(iv) the mapping p — A(¢p) is log-convex,
(v) for pi € R,i=1,2,3, p1 < p2 < p3,

[A(@p )] P < [A(@p, )] P2 [A(9p3)]7> 771

7.6 Cauchy means

Theorem 7.6 enables us to define new means, because when the right-hand side, interpreted
as a function of £ and denoted by K (&) is invertible, then

~1(Ale)
E=k" (—) :
Ay)
presents a new Cauchy mean.

Specially, if we choose ¢ = @5, W = ¢, where r,s € R, r # s, 1,5 # 2, we obtain

r(r—2)

X

sg'.s'fr _ S(S —

)
Jo, OOz (v) = o, (Arf (X)) ulx)dp (x) = [q, Jo,C°(x,y)8(x,y)d 1 (x)d 2 (y)
Jo, £ O3z (v) = Jo, (Arf (x) u(x)dp (x) =g, Jo,C7 (x,y)g (x, y)dpi (x)dpa ()

[\

where C(x,y) = |f(y) — Axf(x)| and g(x,y) = u()zig)(j)co’).

Now we can define a new family of means.

Definition 7.1 Forr,s € Ry, r,s #2,r # s we define means M,.; as follows

M\'r:

)

r(r—2) Jo,As0(0)dt2(y) = Jo, Bs,o(x)d i (x)— Jq, Jo, Csolx,y)d (x)dpa(y
s(s=2) Jo, Aro)dua(y)— Jq, Bro(x)di (x)— [q, Jo, Cro(x,y)d i (x)dpa(y)

~
“
|
~
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Taking a limit we can define the excluded cases. For r # 2 we have

Mr,2 = M2,r =

r(r—2) Jo,A2,1(0)dia(y)— Jo, B2, (X)di (x) = [q, Jo,Ca.1 (x,y)d i (x)d () i
2 Jo,An()duz(y)— fo,Bro(x)du (x)— [q, Jo,Cro(x,y)d (x)dus(y)

Mr,r -

o JaAr1 W) dpa(y) = Jo,Bri()di (%) = Jo, Jo,Cr1 (% y)din (x)dpa (y) — 2r—2
P JoAroW)dia(y) = Jo,Bro(x)dui (x) = fq, Jo,Cro(x,y)dui (x)dpa(y) - r(r—2) )’

and forr =72

M, =
exp (fQZAZ,Z(y)dIJ'Z )= Jo, B22(0)dp (%) = Jq, Jo,Cr2 (6 y)dpn (x)dpa(y) l)

Jo,A2,1 (V) dp2(y) = o, B2, (¥)d i (x) = g, Jo,Co1(x,y)du (x)dpa(y) 2
where
Apa(y) = £ (y)(log(f(y))"v(y),
Bpu(x) = (Af (x))P (log(Axf (x))"u(x),
Cpn(x,y) = [f(y) = Acf (¥)[Plog" [ f(y) — Acf (%) |g(x,), n=0,1,2, p > 0.

Note that these means are symmetric and we can easily check that the special cases in
the above definition are limits of the general case. That is,

Mr.r = llmM.Sl
’ s—r ’
MZ,r = Myp = lim M,
s—2

M, = }LH%M,’,.
Monotonicity of the means defined above is given in the following theorem.
Theorem 7.9 Let s,t,u,v € Ry be suchthats <u,t <v,s#t,u#v. Then
M s < My (7.18)

Proof. Since the function s — A(qs) is log-convex, then by Remark 1.2 for any
s,t,u,v €4, such thats <u, t <v, s#t, u#v, we have

(A(«p»)* § (A«pv))ﬁ
Alps) )~ \A(o)
which is equivalent to (7.18).

When s =t or u = v the inequality follows by taking limits. a
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7.7 Inequality of G. H. Hardy and superquadratic
functions

We will give some special cases of Theorem 7.7 for different fractional integrals and frac-
tional derivatives to establish new inequalities.

Our first result is for the Riemann-Liouville fractional integral (s