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Preface

The aim of this book is to present a comprehensive overview of results related to the famous
Steffensen’s inequality

[ s [ ogwas [ s

where f and g are integrable functions defined on (a,b), f is nonincreasing, 0 < g < 1 and
A= [Pg(t)dr.

The aforementioned Steffensen’s inequality has a corresponding version for sums in-
stead of integrals, i.e. we have the discrete Steffensen’s inequality

y x+s—1

Y )<Y fmem) < ¥ )
n=y—s+1 n=x n=x
where 0 < ¢ < 1, f is nonincreasing and s = Y_, ¢ (n).

Since its appearance in 1918 Steffensen’s inequality has been a subject of investiga-
tion by many mathematicians. The book is devoted to generalizations and refinements of
Steffensen’s inequality and its connection to other inequalities, such as Gauss’, Jensen-
Steffensen’s, Holder’s and Iyengar’s inequality.

We start with different proofs, simple modifications and variants of Steffensen’s in-
equality from the beginning of its investigation. Furthermore, we give a survey of weaker
conditions on functions f and g and conditions for the inverse Steffensen’s inequality. The
book also contains L? generalizations, generalizations for convex functions, refinements
and sharpened versions, multidimensional generalizations and measure spaces generaliza-
tions of Steffensen’s inequality. Further, an integration over two intervals with overleaping
and with two different weights also give new results of a Steffensen-type.

Estimating the difference between two weighted integral means, obtained by using
weighted Montgomery identity, Taylor’s formula and interpolating polynomials, we give
different generalizations of Steffensen’s inequality. Using fractional integrals, such as
Riemann-Liouville’s, Hadamard’s and Erdély-Kober’s, and fractional derivatives, such as
Riemann-Liouville’s, Caputo’s and Canavati’s, we obtain various Steffensen-type inequali-
ties. We use Lagrange-type and Cauchy-type mean value theorems related to some general-
izations and in this way we define new classes of two-parametric means of a Cauchy-type.

We conclude the book with applications of Steffensen’s inequality related to Holder’s
and Iyengar’s inequality, with a section on a(x)—monotonic functions and a short survey
of other applications in statistics, functional equations, time scales and special functions.
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Chapter

Basic results and definitions

1.1 Convex functions

In this section we give definitions and some properties of convex functions. Convex func-
tions are very important in the theory of inequalities. The third chapter of the classical
book by Hardy, Littlewood and Pélya [60] is devoted to the theory of convex functions
(see also [97]).

Definition 1.1 Let I be an interval in R. A function f: I — R is called convex if
FAx+(1=A)y) <Af(x)+(1=2A)f(y) (L.1)

for all points x,y € I and all A € [0,1]. It is called strictly convex if the inequality in (1.1)
holds strictly whenever x and y are distinct points and A € (0,1).

If the inequality in (1.1) is reversed, then f is said to be concave. It is called strictly
concave if the reversed inequality in (1.1) holds strictly whenever x and y are distinct points
and A € (0,1).

If f is both convex and concave, f is said to be affine.

Remark 1.1 (a) Forx,y€l,p,q>0,p+q >0, (1.1) is equivalent to

f(px+@)f£pﬂﬂ+4ﬂw_
p+q p+q

(b) A simple geometrical interpretation of (1.1) is that the graph of f lies below its
chords.
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(¢) If x1,x2,x3 are three points in / such that x; < x; < x3, then (1.1) is equivalent to

xp flx) 1
x f(x2) 1] = (x5 —x2)f(x1) + (x1 —x3)f(x2) + (x2 —x1) f(x3) > 0
x3 fx3) 1

which is equivalent to

X1 — X2

f(x3),

X1 —x3° X1 —x3°
or, more symmetrically and without the condition of monotonicity on xj,x>,x3, to

fx) f(x2) L f(x3) >o.

(x1 —x2)(x1—x3) (2 —x3)(x2—x1) (03 —x1)(x3 —x2) —

Proposition 1.1 If f is a convex function on I and if x; < y1, X3 < y2, X1 7 X2, Y1 # V2,
then the following inequality is valid
fO2) =)

flx2) = f(x1) < _

X2 — X1 Y2 =1

If the function f is concave, the inequality is reversed.

Definition 1.2 Let I be an interval in R. A function f : I — R is called convex in the
Jensen sense, or J-convex on I (midconvex, midpoint convex) if for all points x,y € I the

inequality
(552 < L2 )

2 - 2
holds. A J-convex function is said to be strictly J-convex if for all pairs of points (x,y),x #
y, strict inequality holds in (1.2).

In the context of continuity the following criterion of equivalence of (1.1) and (1.2) is
valid.

Theorem 1.1 Ler f : I — R be a continuous function. Then f is a convex function if and
only if f is a J-convex function.

Definition 1.3 Let I be an interval in R. A function f : I — R is called Wright convex
function if for each x <y, 7> 0, x,y+ z € I, the inequality

fx+z) = f(x) < fy+2) = f)
holds.

Next, we want to define convex functions of higher order, but first we need to define
divided differences.
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Definition 1.4 Let f be a function defined on [a,b]. The n-th order divided difference of
f at distinct points xo,X1,...,x, in [a,b] is defined recursively by

b fl= 7)), J=0,....n

and

X1y X f]— X0, s Xn—13
[0, X1, X3 f] = b fl=lxo il (1.3)
Xn — X0

Remark 1.2 The value [xq,x1,...,x,; f] is independent of the order of the points xo, ... ,x;,.
The previous definition can be extended to include the case in which some or all of the
points coincide by assuming that xo < --- < xy and letting

()
[x7"'7x;f]:f '(X)7
N—— ]'
Jj+1 times

provided that £(/)(x) exists. Note that (1.3) is equivalent to

n

, where @' (x¢) = [ ] (xx — x;).-

X Xns = S f(Xk)
[0""7 nsf] kZ() xk)

— w/( j=0
J#k
Definition 1.5 Lern € Ny. A function f : [a,b] — R is said to be n-convex on [a,b] if and
only if for every choice of n+ 1 distinct points xo,X1,...,X, in [a,b]
X0 X1 X3 f] = 0. (1.4)

If the inequality in (1.4) is reversed, the function f is said to be n-concave on [a,b]. If the
inequality is strict, f is said to be a strictly n—convex (n—concave) function.

Remark 1.3 Particularly, 0—convex functions are nonnegative functions, 1 —convex func-
tions are nondecreasing functions, 2—convex functions are convex functions.

Theorem 1.2 If ") exists, then f is n—convex if and only if f) > 0.

Definition 1.6 A positive function f is said to be logarithmically convex on an interval
I C R iflog f is a convex function on I, or equivalently if for all x,y € I and all o, € [0, 1]

flox+(1—a)y) < f4 )£ % (y). (1.5)

For such a function f, we shortly say that f is log-convex.
It is said to be log-concave if the inequality in (1.5) is reversed.

Definition 1.7 A positive function f is said to be log-convex in the Jensen sense if for all
x,yel

7 (5) <rtrw)

holds, i.e. iflog f is convex in the Jensen sense.
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As a consequence of results from Remark 1.1 (c) and Proposition 1.1 we get the fol-
lowing inequality for a log-convex function f anda < b < c:

@O < [f@) ™ Lfe) (1.6)

Corollary 1.1 For a log-convex function f on an interval I and p,q,r,s € I such that
p<r,q<s, p#£q,r+s, itholds

Inequality (1.7) is known as Galvani’s theorem for log-convex functions f: I — R.

1.2 Exponentially convex functions

In this section we introduce the definition of exponential convexity as given by Bernstein
in [27] (see also [13], [93], [94]). Throughout this section / is an open interval in R.

Definition 1.8 A function h: 1 — R is said to be exponentially convex on I if it is contin-
uous and

i E&ih(xi+xj)>0

i,j=1

for every n € N and all sequences (&,), . and (x,),.N of real numbers, such that x;+x; €
L1<ij<n.

The following Proposition follows directly from the previous definition.

Proposition 1.2 For a function h : I — R the following statements are equivalent:
(i) his exponentially convex

(ii) h is continuous and

3 £&h (x’;xf ) >0, (1.8)

ij=1

forall n €N, all sequences (&,)
I

2eN of real numbers, and all sequences (x")neN in

Note that for n = 1, it follows from (1.8) that an exponentially convex function is
nonnegative.

Directly from the definition of positive semi-definite matrix and inequality (1.8) we get
the following result.
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Corollary 1.2 If h is exponentially convex on I, then the matrix

).

is a positive semi-definite matrix. In particular,

det [h (%ﬂ >0, (1.9)

ij=1
for every n € N and every choice of x; €1, i=1,...,n.

Remark 1.4 Note that for n = 2 from (1.9) we obtain
hxtYhlxa) — I (%) > 0.

Hence, an exponentially convex function is log-convex in the Jensen sense, and, being
continuous, it is also a log-convex function.

‘We continue with the definition of n-exponentially convex functions.
Definition 1.9 A function h : I — R is n-exponentially convex in the Jensen sense on I if

i &iih (Xi;xj) >0

=1

for all choices of & e Randx; €1,i=1,...,n.

A function & : I — R is n-exponentially convex on I if it is n-exponentially convex in
the Jensen sense and continuous on /.

It is clear from the definition that 1-exponentially convex functions in the Jensen sense
are in fact nonnegative functions. Also, n-exponentially convex functions in the Jensen
sense are k-exponentially convex in the Jensen sense for every k € N, k < n.

A function i : I — R is exponentially convex in the Jensen sense on [ if it is n—exponen-
tially convex in the Jensen sense for all n € N.

Remark 1.5 Itis known that /2 : I — R is log-convex in the Jensen sense if and only if for
every o,f € Rand x,y e[

o?h(x) +2aBh (%) +B%h(y) > 0.
It follows that a positive function is log-convex in the Jensen sense if and only if it is 2-
exponentially convex in the Jensen sense. Similarly, a positive function is log-convex if
and only if it is 2-exponentially convex.
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1.3 The Gamma function and the Gauss
hypergeometric function

In this section we give definitions and basic properties of the Gamma function and the
Gauss hypergeometric function. More details about these functions can be found e.g. in
[73].

The Gamma function T'(z) is a function of complex variable defined by the Euler inte-
gral of the second kind

() = /‘mﬁle*fdt, R(z) > 0.
JO

This integral is convergent for every z € C with R(z) > 0. The Gamma function has a
property
[(z+1)=2(z), FR(z) >0,

and a simple consequence of it is the following identity
I'(n+1)=n!, neN.
Extension of the Gamma function to R(z) < 0 is given by

['(z+n)
@

where (z), is the Pochhammer symbol defined for z € C and n € Ny by

I'(z) =

R(z)>-n; neN; z¢Z; ={0,—-1,-2,...},

(2o=1; (2n=2(z+1)---(z+n—1),neN. (1.10)

The Gauss hypergeometric function 2 F\ (a,b;c;z) is defined as the sum of the hyperge-

ometric series .

SFi(a,biciz) = 2 "Z (1.11)

where |z| < 1;a,b € C,c € C\ Z, . The series in (1.11) is absolutely convergent for |z| < 1
and for |z| = 1, when R(c —a—b) > 0.
The Euler integral representation of the hypergeometric function is given by

c 1
2F1(a,b;c;z):%/0 (1 — ) (1 — )

where 0 < R(b) < R(c); and |arg(1 —z)| < 7.
Basic properties of the Gauss hypergeometric function are:

2F1(b,a;c;z) = 2F1(a,b;c;z),
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2Fi(a,b;c;0) =2F1(0,b;c32) =1,
2Fi(a,b;byz) = (1—2)79,

I(e)l(c—a—>b)

2F1(a,b;C;1)=m»

R(c—a—b)>0.

For the Gauss hypergeometric function, the following Euler transformation formula
holds

2Fi(a,bye;2) = (1 fz)cf‘“szl (c—a,c—b;c;z).

1.4 Fractional integrals and fractional derivatives

In this section we give definitions and properties of fractional integrals and fractional
derivatives. More details can be found in [16], [59], [73] and [139].

First, we recall definitions and properties of integrable, continuous and absolutely con-
tinuous functions.

By C"[a,b], m € Ny, we denote the space of all functions which are m times continu-
ously differentiable on [a, D], i.e.

C"[a,b) = {f :[a,b] = R: f% e Cla,b],k=0,1,...,m}.

By ACla,b] we denote the space of all absolutely continuous functions on the finite
interval [a,b], i.e. —0 < a < b < 0. By AC"[a,b], m € N, we denote the space

AC"[a,b] = {f € C" V[a,b] : "V € ACla,b]}.

Obviously, AC![a,b] = AC[a, b].
Let [a,b] be an interval in R, where —eo < a < b < oo. We denote by LP[a,b], 1 < p < oo,
the space of Lebesgue measurable functions f such that [”|f(z)|Pdt < o with the norm

= ([ vvrear)

and by L”[a, b] the space of all measurable and almost everywhere bounded functions on
[a, D], with the norm

[[fllee = esssup{[f(x)] : x € [a,b]}.

For any a € R we denote by [¢] the integral part of o i.e. [&] is the integer & satisfying
k<oa<k+]1.
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The Riemann-Liouville fractional integral

Let [a,b] be a finite interval in R, i.e. —co < a < b < co. The left-sided Riemann-Liouville
fractional integral IZ, f of order @ > 0 is defined by

AW = g7 | S0y, xe o)

For oo = n € N the definition of the left-sided Riemann-Liouville fractional integral
coincides with the n—th integral of the form

I fx) = / “dv, / "y, - / " )y = ﬁ | / “— ) () dy.

The generalized Riemann-Liouville fractional derivative

The left-sided generalized Riemann-Liouville fractional derivative DY, f of order o0 > 0 is
defined by

d" 1 d"

DI A0 = Gl ) = For g o, () Oy x €

where n = [of] + 1.
Foroc:nerehaveDZ+f(x):f(")( ), while for o = 0weputD+f( ) = f(x).
Also, we use
I.2f =Dy fif o> 0.

Definition 1.10 Ler a2 > 0 and 1 < p <oo. By I{, (L") we denote the following space of
functions

ar (L") =A{f:f =19, ¢ € LP[a,b]}.
A characterization of the space /%, (L!) is given in the following theorem.
Theorem 1.3 Let o > 0 and n =[] + 1. A function f belongs to I, (L") if and only if
I'7%f € AC[a, b)),

dj .
dja+ f() 0, ]:0,1,...,}171,

Composition identity for the left-sided generalized Riemann-Liouville fractional deriva-
tive is given by Handley, Koliha and Pecari¢ in [59]. We use the following lemma which
summarizes conditions in composition identity for the left-sided generalized Riemann-
Liouville fractional derivatives given in [20].

Lemma 1.1 Ler B> a >0, n=[B]+ 1, m=[a]+ 1. Composition identity

Dy, f(x) = 1 )/‘x(x—y)ﬁ’“’lDfJ(y)dy, x € [a,b]

LB —a) Ja

is valid if one of the following conditions holds:



1.4 FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES 9

(i) el (LY.

(ii) I'Pf € AC"a,b] and DP ¥ f(a) =0 fork=1,...n.

iii) D, f€ACla,b|, D,." f € Cla,bland D}, " f(a) =0 fork=1,...n.
i bl, D f € Cla,b] and D f(a) = 0 for k

(iv) fE€AC"[a,b), DY, £.D% feLllab, B—a¢ N D fa)=0fork=1,....nand
DY *f(a)=0fork=1,...,m.

(v) fEAC"a,b], DP, f,.D% fe L' a,b], B—a=1€N, D *fla)=0fork=1,....1.
(vi) f € AC"[a,b], DP, £.D% f € L'[a,b] and f®) (a) = 0 fork=0,....n—2.
(vii) f € AC"[a,b), Dng ,D% f € L'[a,b], B ¢ N and Dg;lf is bounded in a neighbor-
hood of t = a.
The Caputo fractional derivative

The following type of fractional derivative which we use is the Caputo fractional derivative.
We give the definition from [16].

Definition 1.11 Ler o > 0, n = [o] + 1, f € AC"[a,b]. The Caputo fractional derivative

D¢ f is defined by
I r ()
D (1) = /
af @) C(n—a) Ja (t—s)2nt] ds,

foreveryt € [a,b].
For o = n € N we have D, f(x) = f")(x), while for a = 0 we put D%, f(x) = f(x).

The Canavati fractional derivative

The definition of the Canavati fractional derivative is given in [16], but we use it with some
new conditions given in [19].
Let o« > 0 and n = [ + 1. By CY, [a,b] we denote a space defined by

C% [a,b] = {f € C" Ya,b] : "7 "=V € C[a,b]}.

Definition 1.12 Ler a > 0, n = [of] + 1. The left-sided Canavati fractional derivative of
f € C% [a,b], denoted by ©\ D%, f, is defined by

1 d

d oo
DS = i =

dx a+

/‘x(x A (Y3

For oo = n € N we have 1D f(x) = f(x), while for a = 0 we put ©' D% f(x) =
f).

A theorem on composition identity for the left-sided Canavati fractional derivative is
proved by Anastassiou in [16]. We use an improvement of that theorem with weaker
conditions given in [19].
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Lemma1.2 Letf>a>0,n=[B]+1,m= [O!]Jrl.LethCEJr[a,b] such that {9 (a) =
0,i=m—1,...,n—2.Then f € C%, [a,b] and

D fW) = gy [ =0 DL s, xe b

F(Bfa a

The fractional integral of a function f with respect to a given function g

Let (a,b) (—e < a < b < o) be a finite or infinite interval in R and let & > 0. Let g be an
increasing function on (a,b) such that g’ is continuous on (a,b). The left-sided fractional
integral of a function f with respect to a given function g on [a,b] is defined by

p L ) f(y)dy
Bl )= 17 |, T — g

Remark 1.6 If g(x) = x, then I" ., f coincides with the left-sided Riemann-Liouville frac-
tional integral I, f.

xX>a.

The Hadamard fractional integral

Let (a,b) (0 < a < b < o) be a finite or infinite interval in R* and let o > 0. The left-sided
Hadamard fractional integral of order o¢ > 0 is defined by

1 X o—1 d
Jif(x):m/a (log;—c) f(yy) Y a<x<b.

Note that the left-sided Hadamard fractional integral of order « is a special case of the
left-sided fractional integral of a function f with respect to the given function g, where
g(x) =logx on [a,b] where 0 < a < b < oo,

The Erdélyi-Kober fractional integral

Let (a,b) (0 < a < b < ) be a finite or infinite interval in R™. Let o« > 0,0 >0and n € R.
The left-sided Erdélyi-Kober fractional integral of order o > 0 is defined by

o(o+n) / ycn+c lf

I, o f(x) = a<x<b.

1oc’

The mixed Riemann-Liouville fractional integral

Multidimensional fractional integrals are natural generalizations of corresponding one-
dimensional fractional integrals.
For x = (xy,...,x;) € R" and a = (ay, ..., ot;) € R", we use the following notation:

d d d
= . . N OC: ol On « _— = — _
Ila)=T(o)-...-T(ty); x*=x{"... x5 ox oo

[a,b] = [a1,b1] X -+ X [an,byl;a = (ai,...,ay) € R" b= (by,...,by) €R"
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and by x > a we mean x| > ay,...,X; > a.
The left-sided mixed Riemann-Liouville fractional integral of order o > 0 is defined by

Ig f(x) = ﬁ/ll ---/a:"f(t)(x—t)“*‘dt, (x> a).






Chapter

Steffensen’s inequality

2.1 Introduction

There are many results related to Steffensen’s inequality and it is still the subject of investi-
gation by many mathematicians. This inequality was firstly given and proved by J. F. Stef-
fensen in 1918 in paper [142]. However, Steffensen’s inequality did not appear in the work
Inequalities by Hardy, Littlewood and P6lya from 1934 (see [60]), which assembled al-
most all known inequalities of that time. Also, Steffensen’s paper [142] was not reviewed
in Jahrbuch iiber die Fortschritte der Mathematik.

The original version has the following form.

Theorem 2.1 Suppose that f and g are integrable functions defined on (a,b), f is non-
increasing and for eacht € (a,b) 0 < g(t) < 1. Then

./::/1 fo)der < /abf(t)g(t)dt < /aaﬂf(t)dt., (2.1

where

A= /abg(t)dt.

13
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Proof. The proof of the second inequality in (2.1) goes as follows:

[ rwa- [ rosoa= [ - gorwa- [ osoa

Ja+A

a+A b
> flatd) [0 =gldi— [ f0)s)a

a+A
— fla+) [x - g(t)dr] [ swswa
= fat i) [ sar— [ g

= [ s+ a) - @ o
a+A

The first inequality in (2.1) is proved in a similar way, but it also follows from the second
one. One merely sets G(1) = 1 —g(t) and A = [’ G(r)dr. Since 0 < g(r) < 1 on (a,b) it
implies 0 < G(r) < 1 on (a,b) and b —a = A + A. Using the second inequality in (2.1) we

obtain
b a+A
| rocwar< [ rwar

b b—A
| ron-swia< [ rwar

a a

[ i [ o< [ g

b b
-/bf)L fle)dr < /a ft)g(t)dr,

which is the first inequality in (2.1). O

Hence,

A simple modification of the original Steffensen’s inequality was given by Hayashi in
[61]. In fact, using the substitution g(z)/A for g(¢) in (2.1) we get the following statement
which is the starting point for investigation of Iyengar inequalities which will be described
in Chapter 9.

Theorem 2.2 Let f and g be integrable functions defined on |a,b] such that f is nonin-
creasing and for each t € [a,b] 0 < g(t) < A (A is a constant > 0). Then

A/ dt</ t<A/ 2.2)
:%/abg(t)dt

The following variant of Steffensen’s inequality was proved by Apéry in the paper [21].
In the proof Apéry used an identity which gave a new approach to the proof and a further
generalization of the original inequality.

where
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Theorem 2.3 Let f be nonincreasing on (0,o0) and let g be a measurable function on
[0,00) such that 0 < g <A, (A is a constant # 0). Then

oo A
| roswar<a [ e
0 0
A= % /0 " o(t)dt

In the proof Apéry used the following identity

where

oo

[ o =a [ s~ [ sl - sl [ ewira) - e

JA
from which the statement of the theorem holds immediately.
Using the idea of Apéry’s proof, Mitrinovi¢ stated in [91] that inequalities in (2.1)
follow from the identities

[ - / gty

2.3)
—/ Fla+ ]l dt+/ Fla+2) — f(0)]e()dr,

and
./bf()()dt /b:f(t)dt
A
= [ 1w - s wgwas [ 1162 @) -

b—A

In the same paper [91] Mitrinovié gave Davies’ proof of the second inequality in (2.1)
which is based on the consideration of the function H defined by

H(x)z/:M £)di — /f
()= [ gloyar

H'(x) = f(a+2(x))g(x) — f(x)g(x)

and it is nonnegative because from 0 < g < 1 we obtain that a + A (x) < x and under the
assumption that f is nonincreasing we have that f(a+ A (x)) > f(x). Since function H has
a zero for x = a and its derivative is nonnegative we have that H(x) > 0 for all x € [a, D]
and especially, H(b) > 0 which is the right-hand side of Steffensen’s inequality.
This proof is valid for smooth functions, but it can be extended to other functions by an
appropriate approximation.

By applying Steffensen’s inequality to appropriate functions, in [85] Masjed-Jamei, Qi
and Srivastava obtained the following Steffensen’s type inequalities:

where

The derivative of H is
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Theorem 2.4 [f f and g are integrable functions such that f is nonincreasing and

_b"a(1—é) Sg(X)Sl_bia (l_é)

on (a,b), where q # 0 and

b
o=gq [ gx)dx,

< /:Jrcf(x)dx— bfa (1 - é) /abf(x)dx.

Proof. Let p,q € R and let us consider the functions

q—1 / b
dx.
b—al. g(x)dx
Since the function F is nonincreasing and G(x) € [0, 1], Steffensen’s inequalities for the
functions F' and G have the form (2.4). O

b
F(x) = f(x)+p / f¥)dx  and  G(x) = g(x) +

In this place we give another proof of inequality (2.1) requiring f to be nonnegative.
This proof was given by Bellman in [25].
Suppose there exists no interval on which f vanishes and define a function u by

u(s) s
| rwar= [ s 2.5)

Then for s,s+ h € [a,b],h >0

u(s+h) u(s+h) u(s)
/M(S) f(t)dt:/ f(t)dt—./ f()dt

.as+h ‘ " sih
:./a f(t)g(t)dt—./a f(t)g(t)dt:.[ f(0)g(e)dr =0,

which means that u(s+ k) > u(s), i.e. function u is a nondecreasing function. Since
0<g()<landf(t) >0,¢ € [a,b] we have

OS/Sf(t)g(t)dtg /Sf(t)dt, a<s<b.

So,
/aumf(t)dt < /asf(t)dt
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which means that u(s) <s. Now

u(s+h) u(s)
s+ m—u)lv=| [ s [ o

u(s+h)
[, fea

where inf f () <v <sup f(¢) on [s,s+h] if h > 0 or [s+ h,s] if h < 0. So, the function u is
continuous. Differentiating equality (2.5) we obtain

s+h
| foswar

< |hlf(s),

du
F) % = F(5)gls) (e,
s
Using the assumption that f is nonincreasing and u(s) < s we have that % = % g(s) <

g(s). Therefore
S S S
/ du < / et ie. u(s)<a+ / g()dr.
a a a
From this and from equality (2.5) there follows the second inequality in (2.1).

Marjanovié¢ gave a short proof of Steffensen’s inequality using the following theorem
given by Steffensen in his paper [144] from 1925.

Theorem 2.5 Let g; and g5 be functions defined on [a,b] such that

./axgl(t)dt > /axgz(t)dt

/abgl(t)dt _ /abgz(t)dt.

If f is a nondecreasing function on [a,b), then

forall x € [a,b] and

b

[ s [ e o)
If f is a nonincreasing function, the inequality in (2.6) is reversed.
Proof. Put g(x) = g1(x) — g2(x) and G(x) = [; g(¢)dt. Then, under the above hypothesis,
G(x)>0 (a<x<b) and G(a)=G(b)=0.

Applying integration by parts, we get
[ s = [ rwace = socals - [ aware =- [ warw.

If f is nondecreasing, then [Cf G(t)df(t) >0, so f:f(t)g(t)dt < 0 which has to be proved.
O



18 2 STEFFENSEN’S INEQUALITY

Marjanovi¢ considered inequality (2.6) to give the following short proof of Steffensen’s
inequality (see [84]).
Let us define the functions g; and g» as

(x) = 1, forxé€a,a+A)
§1 = 0, forxela+A,b]

and g»(x) = g(x), where A = [” g(x)dx. Using Theorem 2.5 for a nonincreasing function
f we have

./:H f(x)dx = /f f(x)g1(x)dx > /f f(x)g(x)dx,

which proves the second inequality in (2.1). The first inequality in (2.1) is derived in a
similar way.

For the sake of completeness, let us mention that Rakié¢ in [137] proved Steffensen’s
inequality using a proof which is directly connected to the definition of the integral.

2.2 Weaker conditions

As we already mentioned, identity (2.3) is a starting point for studying the conditions of
Steffensen’s inequality and eventually changing them. Namely, Milovanovi¢ and Pecari¢
in their paper [90], using integration by parts in identity (2.3), obtained weaker conditions
on the function g. Vasi¢ and Pecari¢ in paper [149] showed that these weaker conditions
are necessary and sufficient. Hence, we have the following theorem.

Theorem 2.6 Let f and g be integrable functions on [a,b] and let A = ffg(t)dt.

a) The second inequality in (2.1) holds for every nonincreasing function f if and only
if
X b
/ g()dt <x—a and / g(t)dt >0 forevery x € [a,b]. 2.7
a JX

b) The first inequality in (2.1) holds for every nonincreasing function f if and only if
b X
/ g(t)dt <b—x and / g(t)dt >0 foreveryx € [a,b].
X a

Proof.
a) Applying integration by parts, identity (2.3) becomes

[ s [ o= [ ([0 -wpar) arn

([ star) s,

2.8)
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from where we conclude that the condition 0 < g(#) < 1 can be replaced by the
weaker conditions

X
/ g(t)dt <x—a foreveryx € [a,a+ A] and
Ja

b
/ g(t)dt >0 foreveryx € [a+A,b]. (2.9)

The previous conditions are also necessary. In fact, if x is any element of [, b], then
let us define the function f as

1, r<x

fi = {07 t>x.

Using the second inequality in (2.1) we obtain

X P atd _Jx—a, forxea,a+A]
[[stwar= [ rosa< [ f(t)dt—{/l, AT ICAT)

It is obvious that for x € (a+ A, b] the inequality x —a > A holds. So, we conclude
that

X
/ g(t)dt <x—a forevery x € [a,b].
Ja

From the same result (2.10) we have that if x € (a+ A,b], then [, g(r)dr <A. On
the other hand A = |, f g(t)dt, so we conclude that

b
/ g()dt >0 forxe (a+A,b].

If x € [a,a+ A], then we have

./xbg(t)dt = /abg(t)dt—./:g(t)dt =A —/axg(t)d[ >A—(x—a)>0.

So, _[ng(t)dt > 0 for every x € [a,b]. We get that if the second inequality in (2.1)
holds for every nonincreasing function, then conditions in (2.7) hold.

b) This is proved similarly as in a). O
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Remark 2.1 In his paper [31] Cao repeated these weaker conditions for Steffensen’s in-
equality.

Previous results involve weakening of assumptions on function g, while the next results
will point out that the assumption on the function f to be nonincreasing is a very strong
condition. Pecari¢ and VarosSanec in paper [129] proved the following result.

Theorem 2.7 Let f, g : [a,b] — R be integrable functions and A = f:g(t)dt. If f satisfies

f@&) > f(o) for t € la,c]
(OD) { f(d) < f(t) < f(c) for t€]c,d]
f(t) < f(d) for t€ld,b],

where c = min{a+A,b—A}, d =max{a+A,b—A}, c,d € |a,b], and if g satisfies

0<g(t)<1 for t€la,clUld,b]
(OB) g(t)>0  for t€c,dlwhenc=a+A
g(t)<1  for t€c,dlwhenc=b—A,

then (2.1) is true.

It is obvious that if f is a nonincreasing function, then f satisfies condition (QD) and
if g(z) € [0,1] for ¢ € [a,b], then g has property (OB). Hence, the classical Steffensen
inequality becomes a special case of Theorem 2.7. The proof of that theorem is also based
on the Apéry identity.

In [90] Milovanovi¢ and Pecari¢ generalized Theorem 2.6 in the case when function f
is convex of order n. They used the following result from [89]:

Theorem 2.8 Ler x — f(x) be a convex function of order n (n > 1) on |a,b]. Then, for
every ¢ € [a,b), the function x — (G( ;,l is nondecreasing on |a,b], where

n—1 (k) c
6= £~ 3 Loyt
k=0 :

with f(k) (¢) being the right derivative for ¢ = a and the left derivative for ¢ = b.
Generalizations for a convex function of order n are given in the following theorems.
Theorem 2.9 Let functions f and g satisfy conditions:
(1) fis convex of order n (n € N);
2) f®(a)=0, k=0,1,...,n—1;
(3) forall x € |a,b)

X ( n+l
/[l(xfa)"g(x)dxg n—l—l and/ x—a)"g(x)dx > 0.
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/a”L1 dx</ flx

A= {(n—i— l)l/ab(x—a)"g(x)dx] " . (2.11)

Then

where

Proof. Using Theorem 2.8 for ¢ = a and the assumption for a function f, we get that the

function x — 0 xff);)),, is nondecreasing. Let us define the functions g; and g» as

(x) = X € la,a+ A
Y700, xe(at bl

and g»(x) = g(x), where A4; is given by (2.11). Then we get

/ax(tfa)ngl(t)dtzfax(tfa)"gz(t)dt (Vx € [a,b])
and . b
/a (t—a)'gi(e )dt_/a (t—a)"g(t)dt.

Setting in Theorem 2.5:

f)

(x—a)"

81(x) = (x—a)"g1(x), g2(x) = (x—a)"g2(x), f(x) —

we obtain
b b
| s s < [ o)gaas

and then, using the definition of function g, we get
a+A b b
[ rwar= [ fwaax< [ fogwx,
a Ja Ja
which proves the theorem. O
Theorem 2.10 Ler functions f and g satisfy conditions:
(1) fis convex of order n (n € N);

2) fO@p)=0, k=0,1,...,n—1;
(3) forall x € [a,b]

b (b—x)""" Yt
/ (b—x)"g(x)dx < 1 and / (b—x)"g(x)dx > 0.
X n
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If n is an even number; the inequality

[ roswaxs [ pwas

holds, where
1

n+1

b
Ay = [(n +1) / (b x)"g(x)dx}
a
If n is an odd number, the reverse inequality holds.

Proof. Similar to the proof of Theorem 2.9. O

Remark 2.2 If 0 < g < I, the condition (3) in Theorem 2.9 (and Theorem 2.10) is ful-
filled.

2.3 Gauss inequality

In [55] Gauss mentioned the following inequality:
If f is a nonnegative nonincreasing function and a > 0, then provided the integrals
involved exist,

oo 4 00
/a f(x)dxgg /O X2 f (x)dx. (2.12)

That result was generalized by Volkov (see [150], [151]).

Theorem 2.11 Ler f be a nonincreasing nonnegative function and g be a differentiable
increasing function such that g(x) > x, x € (0,00). If the integral on the right-hand side of
inequality (2.13) exists, then the integral on the left-hand side of inequality (2.13) exists,
too, and the following inequality is valid:

[ f@dx< [ fg xax. (2.13)
£(0) 0
Putting g(x) = % +a, a > 0, inequality (2.13) is reduced to Gauss’ inequality (2.12).

Volkov also gave a multidimensional version in [151].
Theorem 2.12 Let D be a starlike region and (r, @1, @2, ..., Q,—1) @ point from D. If
(a) f(rv(plv(pZV"v(pnf]) < 07 (r,gradf) > 07

(b) g(ra(plv(pZV"v(pnf]) > T (V;gradg) 20
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/wg /glzo)f(r’e)drdw = A)/()h-f(r’e)glr(ﬂ@)drdw,

where @ is an (n — 1)-dimensional sphere in R", e = (¢1,¢2,...,0,—1) € ® and
r=nh(Q1,Q2,...,0,—1) is the equation of the border of region D.

then

In [130] Petschke proved the following result which includes a finite segment of inte-
gration.

Theorem 2.13 Let f:[0,1] — R be a nonincreasing function and u € (0,1), and o, B €

[0,00), & 7# B.

_1
DB >aandiy = (F4)™ w< 1, then

B-a
1 T
p—o o B o *r B
u /M fx)x%dx < <ﬁ+1) /0 F(x)xPdx. (2.14)

2) If B < oandty > 1, then

1 1 B+1 1
m/ﬂ f)x%dx < o1l f(x)xP dx.

As a consequence of inequality (2.14) Petschke obtained the following theorem in
[130].

Theorem 2.14 Let f: [0,00) — R be a nonincreasing function. Then for A > 0 and
B > o >0 we have

/lﬂ*“/:f(x)xadxg <ﬁ+1) / F(x)xPx.

In fact, this inequality is a special case of Volkov’s result (2.13) when

o 1 B a B a+1
= e —a) <ﬁ+1> S

In [113] Pecari¢ proved the following result.

Theorem 2.15 Let G : [a,b] — R be an increasing function and let f : I — R be a non-
increasing function (I is an interval from R such that a,b,G(a),G(b) € I). If G(x) > x
then

G(b) b
/ Fx)dx < / F(0)G (x)dx. 2.15)
JG(a) Ja

If G(x) < x, the reverse inequality in (2.15) is valid.
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Proof. Using the substitution G(x) = z we get

G(b)

/b F)G (W)dx = /bf(x)dG(x): / A6 (2))de.

a a JG(a)

If G(z) >z, then G~!(z) < zand f(G~'(z)) > f(z). So we have

[ f6 @z [ po,

JG(a) G(a)
and (2.15) is valid. Of course, if G(z) < z, we get the reverse inequality. O

It is interesting that this inequality includes as special cases three famous inequali-
ties which were obtained in independent ways: Volkov’s, Steffensen’s and Ostrowski’s
inequality. Volkov’s inequality (2.13) was already mentioned as a generalization of Gauss’
inequality (2.12).

Ostrowski’s result has the following form (see [99]).

Let f be a nonincreasing function on [0,a] and g be a nondecreasing continuous func-
tion with continuous derivative and g(t) <t for 0 <t < a with g(0) = 0. Then

a g(a)
/ f()g (t)dr < / f(t)ar. (2.16)
JO 0

It is obvious that (2.15) is a generalization of (2.13) and (2.16).

Now, we show that Steffensen’s inequality follows from (2.15).
If we let G(x) = a+ [ g(t)dt in Theorem 2.15, where g is a nonnegative function, then in
the case G(x) < x, i.e.,

X
/ g(t)dt <x—a,
a

we get the second inequality in (2.1). For the first inequality we let G(x) = b — fxbg(t)dt
in Theorem 2.15, for G(x) > x, i.e.,

b
/ g(t)dt <b—x.

Hence, we get the first inequality in (2.1).
Note that here we used the weaker conditions for Steffensen’s inequality given in The-
orem 2.6.

In [15] Alzer gave a lower bound for Gauss’ inequality (2.12). In fact, he proved the
following theorem.

Theorem 2.16 Let g: [a,b] — R be increasing, convex and differentiable, and let f : [ —
R be a onincreasing function. Then

[ st e < [ pee < [ et s Q1)
Ja  Jgla) " Ja ’
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where
s(x) = w@_‘” +g(a) (2.18)
and
1(x) = g'(x0)(x —x0) + g(x0), xo € [a,b]. (2.19)

(I is an interval containing a,b,g(a),g(b),t(a) and t(b).)
If either g is concave or f is nondecreasing, then the reversed inequalities hold.

Proof. Let g be convex and f be nonincreasing. Denote h(x) = f(g(x)). Then A is also
nonincreasing. Since g is convex for all x € [a, b] we have

1(x) < g(x) < s(x).
This implies
g (1)) <x<g '(s(x) and  h(g™'(t(x))) = h(x) = h(g™ (s(x))).
Since g is increasing we have
h(g™ ' (t(x))) &' (x) = h(x) - &' (x) = h(g~ " (s(x))) -’ (x).

Hence,

b b b
[ e @) - dx = [ )¢ ez [hls (s (0dx. (220

Now, from (2.20) and

b 8(b)

/ h(x)g' (x)dx = / h(g~'(y))dy (with substitution y = g(x))
a g(a)

we get (2.17). O

Setting in (2.17)a =0, b > xo = 3% and g(x) = x° +k, and then letting b tend to =,

we get Gauss’ inequality for a nonincreasing f.
Under the additional assumption that f is nonnegative and b = k, Alzer obtained

k oo
2 2
3/0 xf(erk)dxgk/k f(x)dx,

where the constant 3 cannot be replaced by a larger number.
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2.4 Inverse Steffensen’s inequality

In this section we give conditions for inverse inequalities in (2.1). Results given in this

section were given by Pecari¢ in [109].

Theorem 2.17 Let f: 1 — R, g: [a,b] — R([a,b] C I, I is an interval in R) be integrable

Sfunctions, a+ A € I where A = ffg(t)dt. Then

a+A b
[ rwar< [ rostoar

holds for every nonincreasing function f if and only if

/x (1)dt > x—aforx€ la,a+ A] and/ t)dt <0 forx e (a+A,b]

and0< A <b—a;or
"X
/g(t)dth—a forx € |a,b];
a

or
b
/ g(t)dt <0 forxé€ [a,b].
X
Proof. For
1, t<x
1) =
U {Q t>x

for all x € I, we get from (2.21) that (2.22) or (2.23) or (2.24) must be satisfied.
Now, we show the other direction.
Let0 <A <b—a. Then

ra+A b ra+A

| swa= [ swsar= [0 - fla+ ) -se)ar
a+A X

[ Gtar = soena=— [ [0 gar) as

a+A

- / ; ( / ’ g(t)dt) df(x) <0

If A > b —a,then

/m ft)dr— /a‘b f(t)g(r)dr = /ab O el /bm

—/ 2t azr+/aH (a+ A —x)df(x)

:*/a (./;(lg ) +/ (a4 2 —x)df(x) <

2.21)

(2.22)

(2.23)

(2.24)
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Now, let A < 0. Then
a+A b a b
[ s / Fwsdr == [ fwa= [ s
_/ dt+/ (r—a—A)df(x)

_ 7/: (/xbg(;)dt> df(x)Jr./aH(xfafl)df(x) <0

Analoguously, in the same paper, the following theorem is given.

Theorem 2.18 Let f: I — R, g: [a,b] — R ([a,b] C 1) be integrable functions, b— A € 1

where A = f:g(t)dt. Then
/ ? eVt < / " (2.25)
’ J(2)g(r)dr < o f :

holds for every nonincreasing function f if and only if

/x (t)dt <0 forx € [a,b— )Land/ t)dt > b—xforx € (b—A,Db)

and 0 < A <b—a;or
b
/ g(t)dt >b—x forxé€la,bl;
X
or .
/ g()dt <0 forx¢€ la,b].
a
The following theorems are also proved in [109].

Theorem 2.19 Let g : [a,b] — R be an integrable function for which there exists ¢ € |a, D]
such that g(x) > 1 for x € [a,c] and g(x) < 0 for x € (¢,b]. Then (2.21) holds for every
nonincreasing function f : I — R provided that [a,b] C I and a+ A € I.

Proof. Let 0 < A < b —a. Suppose that ¢ < a+ A. Then it is obvious
X b
/ g(t)dt > x—a forx € [a,c] and / g(t)dt <0 forx € [a+A,b].
a X

Suppose that for some x| € (c,a+A) we have [ g(¢)dt < x; — a. Since fxbl g(t)dt <0, we

have fabg(t)dt <x1—a,ie. a+A <xp, what s, evidentily, a contradiction. Analoguously,
in the case ¢ > a + A we can prove that (2.22) also holds.
Now let A > b —a. Then [ g(t)dt > x — a for x € [a,c] is obvious. For some x € (c,b] we

have , , .
/g(t)dt:/ g(t)dt—/ g(t)dtZ/ gt)dt>b—a>x—a,

i.e., the condition (2.23) holds. Similarly, in the case A < 0, we can prove that (2.24) holds.
So, from Theorem 2.17 we obtain Theorem 2.19. O
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Theorem 2.20 Let g : [a,b] — R be an integrable function for which there exists ¢ € |a, D]
such that g(x) <0 for x € [a,c] and g(x) > 1 for x € (¢,b]. Then (2.25) holds for every
nonincreasing function f : I — R provided that [a,b] C I andb— A € I.

Theorem 2.21 Let g : [a,b] — R be an integrable function such that g(x) > 1 (or g(x) <
0) for every x € [a,b]. Then the reverse inequalities in (2.1) hold for every nonincreasing
function f : I — R provided that a+A,b— A € I.

Proof. This is a consequence of Theorems 2.19 and 2.20. O

2.5 Jensen-Steffensen’s inequality

Jensen’s inequality for convex functions is one of the most important inequalities in math-
ematics and statistics. Some well known inequalities can be obtained from it. For more
details see e.g. [94] and [122].

Theorem 2.22 (JENSEN’S INEQUALITY) Iflis aninterval in R and f : I — R is convex,
X = (X1,...,%) €EI" (n>2), p=(p1,---,pu) is a positive n—tuple (i.e. p; > 0) and
P, =Y" | pi then

1 n 1 n
S (Fnlzlpixi> < FZpif(xi). (2.26)

ni=1

If f is strictly convex, then (2.26) is strict unless x; = -+ = Xy,.

The integral version of Jensen’s inequality is

o Jf@do@) | _ [ e(f(x)do(x)
J7do(x) )= [Jdo(x)

which holds for all convex ¢ and f € L!(a,b) and a nonnegative measure o.

Reasonable question is whether positivity of numbers p; in Jensen’s inequality can be
relaxed at the expense of restricting x = (xj,...,x,). In 1919 Steffensen answered on this
question with the following theorem (see [143]).

Theorem 2.23 (JENSEN-STEFFENSEN’S INEQUALITY) If f : I — R is a convex func-
tion, X is a real monotone n—tuple from I" and p is a real n—tuple such that

0<P=pi<P, (1<k<n-—1), P,>0, (2.27)

then (2.26) holds. If f is a strictly convex function, then inequality (2.26) is strict except
when x; = -+ = x,.
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This inequality is evidently more general than Jensen’s inequality since numbers p;
need not necessarily be positive.

An integral analogue of Jensen-Steffensen’s inequality is given in the following theo-
rem.

Theorem 2.24 [f f is a convex function, g is a monotone function and p satisfies

0< ./a‘xp(x)dx < /abp(x)dx (Vx € [a,b]), /abp(x)dx >0,

then

(f P(g(x)d ) - LI P f(s()dx (2.28)
f p(x)dx f p(x)dx

In 1919 Steffensen derived Jensen-Steffensen’s inequality using the second inequal-
ity in (2.1) (see [104] and [143]). In 1970 Bullen derived Steffensen’s inequality using
Jensen-Steffensen’s inequality (see [30]). Therefore, Steffensen’s and Jensen-Steffensen’s
inequality are equivalent.

In [104] Pecari¢ derived Jensen-Steffensen’s inequality from Steffensen’s inequality
using the idea of the proof of Olkin’s inequality (given in [95, p. 113] and [98]). Olkin’s
inequality is given in the following theorem.

Theorem 2.25 Let 1 > hy > - > h, >0and a; > -+ > a, > 0. Let f be a convex
function on [0,a,]. Then

(15)(1)"%) +2 D hif (a; f(Z( 1)~ 1ha,>.
i=1 i=1

The proof of Jensen-Steffensen’s inequality using Steffensen’s inequality given in [104]
is the following.
Leta; > --- > a, and let f be a continuous convex function on [a,,a;]. Let

git)=gr for a1 <t<ar (k=1,...,n—1)

where .
Yic1Pi 4
g=="—— (k=1,....n—1), pi > 0.
i1 Di 1:21 l
Then
S pia
A= / g a] *aZ)gl +- (anfl *an)gnfl = %pll —dp.
Y pi

From the convexity of f it follows that x — — f’(x) is nonincreasing function. Applying
the right-hand side of Steffensen’s inequality to the function — f’(x) we obtain

/ 7 d;>/j””f’(r)dt
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thus we get
n—1

Y (fax) = flagsr))gk = flan+A) — f(an)

k=1
from which we obtain (2.26). From the condition 0 < g < 1 we get (2.27) directly. Thus
we proved that in this case (2.26) holds for a nonincreasing sequence. Having in mind that

=

n n k
0<Ypi<dpi (k=1,...0)=0<Ypi<Yp (k=1,..n)
i=k i=1 i=1 1

i

it can easily be shown that (2.26) also holds for a nondecreasing sequence.

Hence, Theorem 2.23 is proved for every continuous function convex on [a,,a;]|. However,
if a function is convex on [a,,a;] it is continuous on (a,,a;) (see [95, p. 17]). Therefore,
this proof is valid for the function

lim flx), forx=a,

X—dp

F(x) =1 f(x), forx € (ap,a;)
lim f(x), forx=a
xaalf

if the function f is convex. Then, it is obvious that
flay) > F(ay) and  f(ay) > F(ay). (2.29)

In [104] Pecari€ also discussed the effect of the end-points on inequality (2.26). Discussion
is made for the following cases

HN0<A<a—ay,, 2)A=0o0rA=a;—ay.

Let us observe the first case, i.e. 0 < A < a; —a,. Summing for the same points, without
loss of generality, we can suppose a; > a, > -+ > a,. From (2.29) and conditions p; > 0,
pn > 0 we have

n n n n
2 piai 2 piai X piF(ai) X pif(a)
f z:’11 _F z:’11 S i=1 . S i=1 .
2 pi 2 pi Y pi Y pi

i=1 i=1 i=1

Now, let us observe the second case. Firstly, let A = a; — a,,. From the proof it is obvious
that it is valid when

k
.Z‘]pi n
-1 (k=1,....on—1)= ¥ p;=0 (k=2,...,n),
Y pi i=k
i=1
ie. p1 #0, pp =--- = p, =0. Analogously, when A =0we get p, A0, p1 = =p,_1 =

0. It can easily be shown that in this case the equality in (2.26) holds. Hence, the proof of
Theorem 2.23 is complete.
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Weaker conditions for Steffensen’s inequality given by (2.7) can be used to extend the
conditions for validing inequality (2.26). Hence, similar to the previous proof the following
theorem can be proved (see [104]).

Theorem 2.26 Let p;(i=1,...,n)and ay > --- > a, be real numbers which satisfy
n
Y pilx—a) >0, Y pi(x—a) <0, foral xé& (a1 a (2.30)
i=1 i=k+1
fork=1,...,n—1and ¥} | p; > 0. Then (2.26) holds for every convex function f.

Remark 2.3 It is easy to prove that (2.26) is valid if a; < --- < a, and the reverse in-
equalities in (2.30) hold.

The corresponding integral analogue is given in the following theorem (see [104]).

Theorem 2.27 [f the function p and monotone function g satisfy conditions
X b
0= [ ple)le) ~g0ldr < [ pOlg() ~ gle)lar, V€ [a.p],
a a
b

/a p(r)dt > 0,

then for every convex function f inequality (2.28) holds.

Now we consider Bullen’s proof of Steffensen’s inequality using Jensen-Steffensen’s
inequality (see [30]). First we recall that if f is nonincreasing functionand F (x) = [ f(¢)dt,
then F is concave. The following theorem needed in Bullen’s proof is proved in [30].

Theorem 2.28 If F is a continuous concave function and x; < --- < x, and if p1,...,pn
are real numbers satisfying (2.27), then the reverse inequality in (2.26) holds.

The idea of Bullen’s proof is to obtain Steffensen’s inequality (2.1) for a function g in
a certain class of step functions. Then it is done for a Riemann integrable function g and at
the end for integrable function g.

Let f be nonincreasing and let ¢ = ap < a; < --- < a, = b be a partition of [a,b].
Suppose that g is the step function

g)=c, @ <x<ary;, k=0,1,....n—1

such that 0 < g < 1. This implies that 0 < ¢; <1, k=0,1,...,n— 1. Now the right-hand
side inequality in (2.1) reduces to

n—1 n—1
F(ag) + Y, ck(F(ags1) = F(ax)) < F (ao+ Y cxlar ak)) ; (2.31)
k=0

k=0

where F(x) = [ f(r)dt. Since f is nonincreasing and F(x) = [ f(t)dt, F is concave.
Hence, (2.31) follows from Theorem 2.28. Similar arguments can be used for the left-hand
side Steffensen’s inequality.
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To complete the proof Bullen considered a class of Riemann integrable functions. He
supposed that g = lim gz, where g, (k = 1,2,...), are step functions. Furthermore, Bullen
extended this result to all integrable functions g to complete the proof.

In [30] Bullen noted that this procedure can be used to extend other results from sums
to integrals. He mentioned that integral Rado and Popoviciu inequalities can be obtained
in this manner.

In [29] Boas considered integral Jensen-Steffensen inequality. Boas gave proof of
Jensen-Steffensen’s inequality which begins with reproducing Zygmund’s proof of Jensen’s
inequality and uses the second mean value theorem for Stieltjes integral (for details see
[29D).

The following generalization of Jensen- Steffensen’s inequality is given in [110]. It
is a consequence of generalization of Steffensen’s inequality which will be described in
Section 3.2.

Theorem 2.29 Let f : [a,b] — R and H : [0,b — a] — R be differentiable functions such
that x — f'(x)/H'(x — a) is a nondecreasing function, H is an increasing function and
H(0) = 0. If a is a monotonous n—tuple and p is a real n—tuple such that

k
0<P <P, P,>0 (PkZZpi,kzl,...,n>,
i=1
then

f<a+H1 (%ZpiH(aia)>> < PlZp,-f(a,-). (2.32)
nj=1 ni=1

If x — f'(x)/H'(x — a) is a nonincreasing function, then the reverse inequality in (2.32)
holds.

Proof. Let a be a nondecreasing n—tuple. By substitutions f(¢) — f'(¢), h(t) — H'(t —
a) and g(t) = g; (gi = P;/P,) for a;—; <t < a; (ap = a), from Theorem 3.15 we obtain
Theorem 2.29. O

The following remarks are given in [110].

Remark 2.4 If f and H are twice differentiable functions, then the condition that x —
f(x)/H'(x — a) is a nondecreasing function can be replaced by the condition

f"H (x—a) — f'(x)H" (x —a) > 0.
This result for @ = 0 is given in [72].

Remark 2.5 Let f be a (k+ 1)—convex function such that f") (a) =0 (m=1,...,k—1).
Then x +— f’(x)/(x —a)*~! is a nondecreasing function and (2.32) becomes

12 AN
fla+ |5 D rilai—a) <
1

P, & P, :

M=

pif(a).

1
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If f is a (k+ 1)—concave function, then the reverse inequality holds. This is also given in
[106] and [148]. Proof given in [106] based on the generalization of Steffensen’s inequality
for convex functions given in Section 3.2 (Theorem 3.17).

Remark 2.6 The condition for f in Theorem 2.29 can be weakened i.e. we can only
suppose that the function x +— f(a+ H~'(t)) is convex (concave) on [0,H (b — a)]. This
result, for @ = 0 and H (x) = x*, is given in [72]. (See also [106]).

In [108] Pecari¢ gave necessary and sufficient conditions for inverse of Jensen-Steffen-
sen’s inequality (see also [109]).

Theorem 2.30 Let x and p be two n—tuples of real numbers such that x; € I (1 <i<n)
and P, > 0. The reverse inequality in (2.26) holds for every convex function f : I — R and
for every monotonic n—tuple x if and only if there exists m € {1,...,n} such that

B<0(k<m), P <0(k>m),
where P, = P, — Py_.

Proof. We recall the proof from [109] which shows that this theorem can be obtained from
Theorem 2.19. Let x; > --- > x,, and

gt) =gt X1 <t <xp(1<k<n—1),g=P/P.

Then

n

X1 1
A= / g(t)dt = 7 Zpixi — Xp.
Xn

7 ni=1

Since f can be approximated uniformly in [a,b] by polynomials with a nonnegative second
derivative there is no loss of generality in assuming that f/(x) exists and it is nondecreasing,
i.e. we have that x — — f (x) is a nonincreasing function, and then, from (2.21), we obtain
(2.26) with the reverse inequality. O

2.6 Discrete Steffensen’s inequality

In his paper [142] Steffensen gave a corresponding theorem for sums instead of integrals.
The discrete Steffensen’s inequality was also mentioned in Hayashi’s paper [62].

Theorem 2.31 Let 0 < ¢ <1 and let f be a nonincreasing function. Then

y y xts—1
2 RIOE 2 fmem) < ¥ fn)
n:yfs+ n=x n=x

where s =Y, _ . ¢(n).
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We have the following convention about sum when limits of summation are not in-
tegers. If x= o — 6y, y = + 6,, where o and f are integers, 0 < 6; < 1, i = 1,2 and
y > x — 1, we use the convenient notation

B
iu(n)z@lu(afl)Jr Y u(n)+6u(f+1), (2.33)

n=x n=a

with the understanding that
o—1
Y u(n)=0.
n=o
Since the sum depends only on the integer values of the argument n, we may put
u(n+0)=u(n), 0<60<I1.

With this convention, (2.33) can be written as

y

y+1
Zu(n):/ u(t)ydt, y>x—1.
n=x X

The following is a discrete analogue of Steffensen’s inequality given by Evard and
Gauchman in [41]. Evard and Gauchman obtained the following discrete case applying
Corollary 3.4, which is a consequence of generalized Steffensen’s inequality over a general
measure space given in Theorem 3.65.

Theorem 2.32 Let ¢ be a positive real number. Let (x;)!_| be a nonincreasing finite
sequence of nonnegative real numbers, and let (y;)?_, be a finite sequence of real numbers
in [0,c]. Let ky,ky € {1,...,n} be such that

n .
ky < i1 <.
C

Then

n

1 k1
Y x<=Yxyi< Y x
i=n—ky+1 ¢ici i=1

For ¢ = 1 we obtain the following corollary and give a simple proof which was obtained
by Liu in [81].

Corollary 2.1 Let (x;)!_, be a nonincreasing finite sequence of nonnegative real num-
bers, and let (y;)?_, be a finite sequence of real numbers such that 0 < y; < 1 for every i.
Let ky,ky € {1,...,n} be such that

Then

Yo o< Yy < Y X (2.34)
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Proof. Let us consider the difference 2;1 | Xi — 21 x;yi. By elementary transformations
we have

kl n kl n
Yxi— Y xyi= Y (l—y)xi— Y, xyi
=1 = i=1 i=ky +1
kl n kl n
>xi 2 (L=y)— Y, xyi=xg [ ki=Dyi|— Y xyi
i=1 i=ky+1 i=1 i=ky+1
n ky n n n
x| vi— i | = Y, X=X Y, Yi— Y, Xiyi
i=1 i=1 i=ky+1 i=ky+1 i=ki+1
n
= Y (o —x)yi=>0
i=k;+1

where the first inequality holds because (x;)!_, is nonincreasing, while the second inequal-
ity holds since Y1, y; < k; by assumption of Corollary. So the second inequality in (2.34)
is proved.

The first inequality in (2.34) is proved similarly. O

Inequality (2.34) is called the discrete Steffensen’s inequality.

The following corollary was obtained by Evard and Gauchman in [41]. They applied
integral inequalities on the composition of functions to the function f = ¥ | x; X(i—1,]-

Corollary 2.2 Let a,,y € R. Let xy,...,x, be nonnegative real numbers. Let A and B
be positive real numbers such that

n n
max{x{,...,x¢} <B%, le‘?‘:Ao" fozBﬁ.
i=1 i—1

Let ky,ky € {1,...,n} be such that k; < (%)a < ky. Then:

(i) If ﬁi%’ <0 and o # 0, then there are k| numbers among the numbers qu/7 o Xh
whose sum is at most B.

(ii) If ﬁi%’ >0 and o # 0, then there are ky numbers among the numbers qu/7 o Xh

whose sum is at least B.

Applying Corollary 2.2 with o = 1, f =2 and ¥ = | Evard and Gauchman obtained
the following corollary.

Corollary 2.3 Ler (x;)!_, be a finite sequence of nonnegative real numbers. Let A, B be
positive real numbers such that

n n

Yxi<a, Yaf>B

i=1 i=1

Let k € {1,...,n} be such that k > %. Then there are k numbers among the numbers
X1,...,Xn whose sum is at least B.
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To give an application of Corollary 2.3 Evard and Gauchman showed that this corol-
lary gives an immediate solution to the problem proposed in the Moscow Mathematical
Olympiad in 1954. Problem was the following:

A hundered positive numbers x1,. .., x99 satisfy conditions

X1 x100 <300, xF -+ xjgo > 10000.

Show that among them, there are three numbers whose sum is greater than 100.
Solution of that problem given in [41] is to apply Corollary 2.3 with n = 100, A = 300,
B =100 and k = 3.

The following result was proved by Gauchman in [51].
Theorem 2.33 Ler [ > 0 be a real number, (x;)}_, be a nonincreasing finite sequence of
real numbers in [l,%0) and (y;)"_, be a finite sequence of nonnegative real numbers. Let

@ : [I,00) — [0,00) be increasing, convex and such that ®(xy) > ®(x)®(y) for all x,y,xy > I.
Letk € {1,...,n} be such that k > 1 and ®(k) > X!, y;. Then either

n k k
Zq)(xi))’i§¢<2xi> or gyizl-

i=1 i=1

Proof. Since (x;)!_, is nonincreasing and @ is increasing we have

k k
) (2)(,-) > @ (kx;) and @ (2;@) > @ (x;+ (k—1)xt). (2.35)

i=1 i=1
If x; > x; for some i = 1,2,...,k— 1, then by Proposition 1.1 for convex function ® we
have

Dxi) = Plw) _ P+ (k— Do) — Plog + (k— Do)

Xi — Xi - Xi — X

ie.

D(x;) — D(x) < D(x; + (k— 1)) — D(koxy).

If x; =x; forsomei=1,2,...,k— 1, then the above inequality also holds. Using (2.35)
we get

k

D(x;) — P(xp) < P (2;@) — @ (kxy.). (2.36)

i=1
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fori=1,2,... k. Now simple transformations on sums give us
n k k
Zq)(xi)yi = ZCD xi)yi + 2 Zd)(x,)y, + D (xg) 2 Vi

i=1 i=1 i=k+1 i=1 i=k+1

k k
:Z(I)(x, vi + P (xz <2yl Zyl) :Z D(xy))yi + P(xx Zyl

o} (ix,) — (I>(kxk)
k
o} (Zx,) D (kxy)

i=1
k
x,-) 7@(kxk)] (2)),' — 1)
1 i=1

xi> D(kxy)
i=1
k k n k
Vi —d (2)(,) q)(kxk) 2 Zq)(x,-)yi —d (2)(,‘) .
—1 ; ;

n

yi+ ®(x) Y vi
i1

Zy, + D (xp)P(k) <
i=1

zyl+q> kxk)'
i=1

]
/
DM~

@ (
i=1

¢<2M>

If 2;‘:1 yi — 1 > 0, then the statement of theorem is valid. If Zf‘:] yi — 1 <0, then using
(2.35) we get

1

n k
2 (I)(xi)yi —d (2)61') <0

and the proof has been established. g
As mentioned by Gauchman, Theorem 2.33 has simple form if ®(x)=x%, where o> 1.
Theorem 2.34 Let (x;)?_, be a nonincreasing finite sequence of nonnegative real num-

bers and let (y;)?_, be a finite sequence of nonnegative real numbers. Assume that o > 1.
Letk € {1,...,n} be such that

1

kz(iﬁ)f

ZXyl_<i l>a or iinL

Then either

i=1

As an application of Theorem 2.34 Gauchman obtained the following theorem in [51].
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Theorem 2.35 Let o and B be real numbers such that oo > 1+, 0 < B < 1. Let (x;)!_,
be a nonincreasing sequence of nonnegative real numbers. Assume that

B
A\ a1
where A and B are positive real numbers. Let k € {1,2,... ,n} be such that k > (§>
Then

k
3 > P, (2.37)

i=1

Proof. Let us define the sequence (y;)"_, as following: y; = %, i=1,2,...,n. Then we
have ; ;
1 A
;)’i =3z ;xi < B
i= i=
B

n oa—1
we get that k > (2 yi> . Sequences
i=1

B
a1

and since £ is a number such that £ > (%)

(xf3 )i, (instead of (x;)7_,), (vi){_, and number < 5 L > 1 satisfy the assumptions of Theo-
rem 2.34. Then either

i=1

o—1
n o B k
RS D) S !
ie.

a—1
n B k
2 Fﬁ < <2x > or ¥ x; > B. (2.38)

i=1

B 8
1 & ol 1 aT
Zx? > (E 2)6?) > <§Ba) =B,

If the second inequality holds, then by the well-known inequality for sums of order p,
([122, p.165]), we have

k 1/B k
<2x?> >Y xifor0<p <1,
i=1 i=1

i.e. together with (2.38) we obtain Zlexiﬁ > BP. Therefore, in both cases we have
(2.37). O



2.6 DISCRETE STEFFENSEN’S INEQUALITY 39

Remark 2.7 For f = 1, Theorem 2.35 was given in [41] by Evard and Gauchman.

In [53] Gauchman obtained the following theorem using the generalization of Stef-
fensen’s inequality given in Theorem 3.67.

Theorem 2.36 Let o and B be real numbers such that o« > 1, B — o+ 1 > 0 and let
(x;)_, be a nonincreasing sequence of nonnegative real numbers such that ¥ x; < A,
1 x¥ > B% where A and B are positive real numbers. Let k € {1,...,n} be such that

o

B
Y]
k><é)a +.
—\B

B
i 5 BoB (a=1)(B+1)
xi > | —/—— .
= 1 AB—a+1

Taking o = 2, = 1 in Theorem 2.36 we obtain Corollary 2.3. Taking § = 1 in
Theorem 2.36 Gauchman obtained the following.

Then

Corollary 2.4 Let o be real number such that 1 < o <2 and let (x;)!_| be a nonincreas-
ing sequence of nonnegative real numbers such that ¥} x; < A, Y7 x¥ > B% where A
and B are positive real numbers. Let k € {1,...,n} be such that

Sy
= ()
~— \B

1
k B% 2(0—1)
> ()"
i=1

Remark 2.8 Corollary 2.4 complements the result given in Theorem 2.35 for f = 1.

Then

In [101] Pachpatte proved the following two theorems.

Theorem 2.37 Let (u,), Ny be a nonincreasing sequence of nonnegative real numbers.
If (cn), cN I8 a sequence of real numbers such that 0 < ¢, <A (A is a constant different
from zero), then

oo A
2 Catty <A 2 Un,
n=1 n=1

where
=
A= . 2.
An;cn (2.39)

Remark 2.9 As noted in [129], Pachpatte omitted that A must be an integer.
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Theorem 2.38 Let (uy), N be a nondecreasing sequence of nonnegative real numbers.
Let (¢n), N be a sequence as in Theorem 2.37. Then

A oo
A 2 Uy < 2 Cnlp,
n=1 n=1

where A is defined by (2.39).

Considering one dimensional case with discrete measure p in Theorem 3.55, Pecarié¢
and Varo$anec obtained the following theorem (see [129]).

Theorem 2.39 Let (f,), and (gn)n be real N—tuples, A a real number and L an integer
such that AL = 25:1 gn and one of the following cases is satisfied:

(1) gn<Aand f, > frforn=1,...,L;
gn>0and f, < frforn=L+1,...,N;

(2) gn>Aand f, < frforn=1,...,L;
en<0andf, > frforn=L+1,....N.

Then
N L
2 fngn <A 2 fn-
n=1 n=1

Remark 2.10 The case where f is nonincreasing and 0 < g(x,) <A is discussed by Pach-
patte in Theorem 2.37.

The discrete version of weaker conditions in the right-hand Steffensen’s inequality is
based on the following identity (see [129]):

n=1 n=1 n=1 n=L+1

N L N L N
angn —A an = fLa (2 gn_AL> = 2(fL+1 _fn)(A —8n) — 2 (fL+1 — fn)&n
n=1

n=1 n=L+1 k=n+1

L n N—1 N
=Y A [ nA=D g |+ Y, Aur1 D, 8k
k=1
where Af,+1 = fur1 — fa-

Using the above-mentioned identity we have the following discrete version of the right-
hand Steffensen’s inequality.

Theorem 2.40 If(f,), is nonincreasing sequence, A € R, L € N and (gp), is such that

n N
ngSAnand 2 gr>0foralln=1,2,....N—1
k=1 k=n+1

and

N
Jr+1 (2 8n AL) <0,

n=1
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then we have

N L
2 fngn <A 2 fn-
n=1 n=1

Remark 2.11 The discrete version of weaker conditions in the left-hand Steffensen’s in-
equality can be obtained similarly.

In [141] Shi and Wu proved the following theorem using the theory of majorization.

Theorem 2.41 Let (x;)!_, be a nonincreasing finite sequence of real numbers, and let
(vi)i_, be a finite sequence of real numbers such that for every i, 0 < y; < 1. Let ki,k; €
{1,...,n} be such that ky <Y, y; <kj. Then

n

n n ki n
> xi+ (2)’ik2> X < Y Xy < Y xi— (kl - 2)’1‘) Xn.
i=1 i=1 i=1 i=1

i=n—ky+1

As a consequence of Theorem 2.41 Shi and Wu obtained the following refinement of
Steffensen’s inequality.

Corollary 2.5 Let (x;)"_, be a nonincreasing finite sequence of nonnegative real numbers
and let (y;)?_, be a finite sequence of real numbers such that for every i, 0 < y; < 1. Let
ki,ka € {1,...,n} be such that ky <Y} | yi < ki. Then

n n n n
Y oxn< Y x| Dvi—k | x <Y Xy
i=n—ky+1 i=n—ky+1 i=1 i=1

ky
< Yxi— <k1 -
i=1

H'Mx

ky
yt) Xn <Y X
i=1

i=1
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2.7 Steffensen pairs

Using Corollary 2.3 Gauchman introduced Steffensen pairs in [52].

Definition 2.1 Let ¢ : [c,o0) — [0,%0), ¢ > 0 and T : (0,00) — (0,0) be two increasing
functions. We say that (¢, 7) is a Steffensen pair on [c,0) if the following is satisfied:

If x1,...,x, are real numbers such that x; > c for all i, A and B are positive real numbers,
and

D<A, Y o) >o(B),
i=1 i=1

then foranyk € {1,...,n} suchthatk >t (%), there are k numbers among x1, . . . , X, whose
sum is larger than or equal to B.

As noted in [52] some results given in Section 2.6 can be reformulated using the defi-
nition of Steffensen pairs. Firstly, Corollary 2.3 can be reformulated as follows.

Proposition 2.1 (x?,x) is a Steffensen pair on [0,).
Next, for B = 1, Theorem 2.35 can be reformulated in the following way.
Proposition 2.2 If o > 2, then (x“,xﬁ) is a Steffensen pair on [0,0).
Now we give some Gauchman’s examples of Steffensen pairs (see [52]).

Theorem 2.42 Let y : [c,o0) — [0,0) where ¢ > 0 be nonndecreasing and convex. As-
sume that \ satisfies the following condition:

v(xy) > w(x)g(y) forallx>c,y>1,

where g : [1,00) — [0,0) is increasing. Set ¢(x) = xy/(x), (x) = g~ (x), where g~ is the
inverse function of g. Then (@, T) is a Steffensen pair on [c, ).
Proof. Let xy,...,x, be real numbers such that x; > x, > ... > x, > c and let A and B be

positive real numbers such that
n n
Y xi<Aand Y ¢o(x;) > ¢(B).
i=1 i=1

Let us suppose that k € {1,2,...,n} is a number such that k > g~'(4), i.e. A < Bg(k).
Then

Ay (xr) < By (xi)g (k) < By (k).

By Proposition 1.1 for convex function y and i < k— 1 we have the following

w(xi) = w(x) <y + (k= Dx) — w(x+ (k—1)xg).
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Multiplying by x; and adding all inequalities for 1,2,. ..,k we obtain

k k k
Z @ (xi) — v (o) sz' < sz'llf(xi+ (k= D)xi) — w(kxy) Z]xi

k

k
Sl[/(le)z v (kxy) le— Zx, v (kxy) 2

i=1 i=1 i=1

since y is nondecreasing and Y¥_,x; > x; + (k — 1)x; for any i € {1,2,...,k}. Let us
consider the difference B — 21:1 x; and multiply it by a positive number y (kx;). Using the
inequality just proved and assumptions of Theorem we get

k
v (kxi) (B le = By (kxy) — w(kx) Y x;
i=1

k k
> Ay (x) — w(x) D xi+ @(B) — (P(in)

i=1

k
~Yx)+ (o sz > (B le
i=1

Let us assume that the conclusion is wrong, i.e. B—YX_, x; > 0. Then from y(3*_, x;) >
v (kx;) we have

k
(Bfo, Zx, > (B— Zx, (kxy) > (B Zx,
i=1

i.e. By(B) = ¢(B) < By(XX_,x;). Since y is nondecreasing, it follows that B < ¥X_, x;
which is a contradiction with the above assumption. O

In the following remark we pointed out some examples of Steffensen pairs.

Remark 2.12 (i) Leta >2, y(x) =x*'. Then y(xy) = w(x)g(v). Hence @(x) = x%,
T(x) = xa , and we obtain Proposition 2.2.

(ii) Let f : [0,0) — R be a twice differentiable function on [0,c0) such that f'(x) > 1
and f”(x) > 0 for all x > 0. Assume that f(0) = 0. Then the functions y and g from
[1,e0) into [0,e°) given by

Y =g =-expofolog
satisfy the conditions of Theorem 2.42.

In [52] an example of the function f is given: f(x) = ¥, a;x' is a sum of series
converging on [0,00) with a; > 1,a; > 0fori=2,3,....

(iii) If o > 1, then (xexp(x"‘ —1),(1 +logx)$> is a Steffensen pair on [1,e0).
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(iv) Leta and b be real numbers satisfying conditions » > a > 1 and vab > e. Set

1+logb _ 1+loga .
{)¥ if x > 1,

) = logx ’
o) logb —loga, ifx=1.

T(x) = x!/logab_
Then (@, ) is a Steffensen pair on [1,e0).
In [133] Qi and Cheng established some new Steffensen pairs.

Theorem 2.43 If a and b are real numbers satisfying b >a > 1 or b >a' > 1, and

vab > e, then
b 1
(x/ tlogxldt’xlog\/@)
Ja
is a Steffensen pair on [1,0).
If a and b are real numbers satisfying b > a > 1 and /ab > e, then

b w2 (logh)" 1 —(loga)* 1
x/ (log?)"118* 1 gg, x "1 (logh)" 72 ~(l0ga) 2
a

are Steffensen pairs on [1,0) for any positive integer n.
Proof is similar to the following theorem, so here we omit details. (See [133]).
Remark 2.13 As noted in [133], Theorem 2.43 generalizes Remark 2.12 (iv).

In [134] more Steffensen pairs are established by Qi and Guo. They also proved the
following generalization of Theorem 2.43.

Theorem 2.44 Let a,b € R, let p # 0 be a nonnegative and integrable function and f a
positive and integrable function on the interval [a,b).

(i) If the inequality
b b
[ pwau< [ ptotog fluydu (2.40)
holds, then

b IL pluwdu
x [ p) ()] Ertatas o
a

is a Steffensen pair on [1,0).
(ii) If f(u) > 1 and inequality (2.40) holds, then
b J2 pw)log f ()] du
! / p(u) [f (u)]'°% log f ()] du, x i reles sl
Ja

are Steffensen pairs on [1,0) for any positive integer n.
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h(r) = ./abp(u)ft(u)du, {ER.

Since f(u) > 1 on [a,b], it is clear that

Proof. We define

16 = [ pta) s wllog £ 0.

Furthermore, for n > 0 and x > 0, if (2.40) holds, then A"+ (x) > h(")(x). Let us define
functions y and g as following: /(x) = 1" (logx) for x > 1, n > 0 and

J& pu)llog £ ()" du
g(x)=x JZ pwllogfw)"du for x > 1.

It is easy to see that v is increasing and convex. Since f(«) > 1, for n > 1, we have

Gty J7 Pl ) llog fao)du (y, ffp(u)[logf(u)]"“du> |

h (x) I p)[f ()} log f (w)]"du I p(w)log f ()] du

where we use the monotonicity property M(x-+y,x) > M(0,0) for the generalized weighted
mean M defined by

1
S p(u)[log £ (u)]" f* (u )du s—r
M(}",S): (f (j)[logf( ]”f’( ) s r#s

plu)llog f()" 1 f( u)du —
oxp (L) 7=

Therefore, for x,y > 1,

fb (u)|lo; f(u)]’H'ldu
v(w) _ h"(log(xy)) _ h"(logx+logy) y T owliesras — g(y)-

w(x)  hW(logx) hW(logx)  ~

So, all assumptions of Theorem 2.42 are satisfied and by that theorem (¢, 7), where ¢ (x) =
xy(x), 7(x) = g~ (x) forx > 1 and n > 1 are Steffensen pairs on [1,0). O






Chapter

Generalizations of
Steffensen’s inequality

3.1 L? generalizations

In 1959 Bellman gave the following generalization of Steffensen’s inequality (see [25]).

Theorem 3.1 Let f be a nonnegative and nonincreasing function on [a,b] and f € L |a, D),
p> 1. Let g(t) > 0 on [a,b] and fabgq(t)dt < 1, where %—i—é = 1. Then

([ rwswa) < [T o (n=([awa)). e

As noted by Godunova, Levin and éebaevskaja in [57] Bellman’s result is incorrect as
stated. This was also noted by Godunova and Levin in [56], where they gave generalization
for 0 < p < 1. Their generalization is a consequence of a more general result given in [56]
and will be described in Section 3.4.

Another corrected version of Bellman’s inequality, for p > 1, is given by Bergh in [26].

Theorem 3.2 Ler f and g be positive functions on (0,), f nonincreasing and g mea-
surable. Assume that, for some p > 1, f € LP +L” and g € LN L', with

1 1
Iflle =1, gl =1 <_+_ )
L P q

47
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Then
bl 1 P %
[ reeas <2t ([ reoas)
0 0
holds, where 219 cannot be replaced by a smaller constant.

Proof of this theorem is based on an estimation of the K—functional in the theory of
interpolation spaces. For more details see [26].

In [111] Pecari¢ showed that the Bellman generalization of Steffensen’s inequality,
with very simple modifications of conditions, is true.

Theorem 3.3 Let f: [0,1] — R be a nonnegative and nonincreasing function and let
g:10,1] — R be an integrable function such that 0 < g < 1. If p > 1, then

< / 1g(t)f(t)dr>p </ " ey (32)

A= </01g(t)dt)p. (3.3)

Proof. Using the Jensen inequality for the convex function ®(x) = x? (p > 1), we have

(/Olg(l)f(t)dt)p < (/()lg<t)dt)pI/OIg(t)fp(f)dl-

To complete the proof we must prove

(/Olg(t)dt>p1/018(1‘),)”1’(:)511‘ < /0/1 FPt)dt.

Since f is nonincreasing we have

where
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It follows

[ i ([ ewa) [ s

“Jpro (1 -], g(s’dsyl) = ([ sw) " [ o
z< )’”(}w /gdti/gfp dt)

- (/ ),, ]/;g — f7(1))dt > 0.

O

Remark 3.1 If the functions f and g are defined on [a,b], using the substitution x =
(b — a)t + a, the corresponding result for Bellman’s generalization can be obtained.

Cao gave another correction of Bellman’s result in [32].

Theorem 3.4 Let f be a nonnegative and nonincreasing function on [a,b) and f € LP|a, D),
p > 1. Let function g satisfy relations g > 0 on |a,b] and ffg"(t)dt <1, where % + % =1

Then . » id
( a f(t)g(t)dt) < [ i

where

In [111] Pecari¢ gave the following result.

Theorem 3.5 Ler f: [0,1] — R be a nonincreasing function and let g : [0,1] — R be an
integrable function such that 0 < g < 1. If p > 1, then

fog t)dt
B <3 o 64

where A is given by (3.3).
Remark 3.2 For p =1 we have Steffensen’s inequality.

Using substitution
A6
1P G(e)dr
where A >0and || f G(t)dt > 0, Pecari¢ obtained the following modification of Steffensen’s
inequality (see [112]). This result is an extension of Theorem 3.5.

g(t)
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Theorem 3.6 Assume that two integrable functions f and G are defined on the interval
[a, D], f is nonincreasing, and

0<AG( /G di (Vi€ [a,b]), (3.5)

where A is a positive number. Then

1 b ff t)dt
T ;fo(t)dt_ f G dt )./ (3.6)

In [92] Mitrinovi¢ and Pecari¢ gave necessary and sufficient conditions for inequality
(3.6). Inequality (3.6) is true for each nonincreasing function f if and only if for every
X € [a,b]

b b
0<A / G(1)dt < (b—x) / G(1)di
X a
and Y
0<A/ 1t < (x— a)/ G(r)dr.
a
The second inequality in (3.6) is valid if and only if for every x € [a, b]
b b
A / 1)di < (x—a) / G()dr and / G(t)dr > 0. 3.7)
a X
In [112] Pecari¢ gave the following generalization of Theorem 3.3.

Theorem 3.7 Let f : [a,b] — R be a nonnegative nonincreasing function and let G :
[@,b] — R be an integrable function such that 0 < G < 1. If p > 1, then

m ( / bG(x)f(x)dx)p </ " s (3.8)

A= m </abG(x)dx>p.

Proof. Under the assumptions of this theorem (3.5) is valid. So, from the second inequality
in (3.6), for the nonincreasing function x — f7(x), we have

</G dt>pl/fl’ dt<ban1/ e

On the other hand, using Jensen’s inequality for convex function u(x) =x” (p > 1), we

have (l/abG(t)f(t)dt)p S ( /abG(l)dt) pll /abG(,)fP(t)dr

So we obtain (3.8). O

holds, where

Analogously, Pecari¢ obtained the following theorem in [112].
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Theorem 3.8 Ler f : [a,b] — R be a nonnegative nonincreasing function and let G :
[a,b] — R be an integrable function such that

0<G(x) <./abG(z‘)aft>P1 <1 (Vxé€la,b)).

If p > 1, then

( / "6 f(x)dx)p < / “ o,

A= (./ab G(t)dt)p.

Remark 3.3 Fora =0, b = 1, from Theorem 3.8, we obtain Theorem 3.3. For p € N we
have Corollary 9 from [105].

where

In [71] Jiang obtained the following result.
Theorem 3.9 Ler f: [a,b] — R be a nonnegative nonincreasing function, g : [a,b] — R

g(x)
(J2 g(t)dr)r=1 =

(/abf(t)g(t)dr)p gM/aapr(,)dt it p>1,

be an integrable function, 0 < M, x € [a,b] and M be a positive constant.

Then

and

M ’ fP)dr < </abf(t)g(t)dt)p it p<1,

b—A
where A = - (f:g(t)dx>p.

In [57] Godunova, Levin and Cebaevskaja gave the following two results. In [92]
Mitrinovi¢ and Pecari¢ showed that these results are consequences of their necessary and
sufficient conditions for inequality (3.6). We recall the proof from [92].

Theorem 3.10 Let f be a nonnegative nonincreasing function on |a,b), and let ¢ be an
increasing convex function on [0,) with ¢(0) = 0. If g is a nonnegative nondecreasing
function on |a,b] such that there exists nonnegative function gy, defined by the equation

g1(x) ¢ (;%3)) =1 (3.9)

and that fabgl (¢t)dt < 1, then the following inequality is valid

b i
’ (%) = % / otrar.

A=¢ (./abg@dt) .

where



52 3 GENERALIZATIONS OF STEFFENSEN’S INEQUALITY

Proof. Applying the second inequality in (3.6) and Jensen’s inequality for convex func-
tions, we have that

(L) e e o

Now, from the necessary and sufficient conditions for inequality (3.6) given by (3.7), we
obtain that inequality (3.10) is valid if and only if

¢</abg(t)dt> /axg(t)dtg(xfa)/abg(t)dt and /xbg(t)dtzo 3.11)

holds for every x € [a, b]. Since g is nonnegative, the second condition in (3.11) is obviously
satisfied. On the other hand, the increasing convex function ¢ with ¢(0) = 0 is starshaped,
that is ¢ (cx) < cd(x), (0 < ¢ < 1). Therefore, by (3.9), (3.10) and Jensen’s inequality, we
have

d)('/“bg(t)dt):d)(/ e f[;y) ) ([awa) o %
S./abg1(t) ¢(%) df:/abdtz(b—a),

Since g is a nondecreasing function, we have

’ (t)dt > é/xg(t)dt

(b—a) /axg(t)dt < (x—a) /abg(t)dt.

Hence, the first condition in (3.11) is also satisfied. O

i.e.

In [82] Liu gave a generalization of the previous theorem for Stieltjes integral. We omit
the proof because it is very similar to the previous one.

Theorem 3.11 Let f and h be nonnegative decreasing functions defined on |a,b], and
let @ be an increasing convex function on [0,0) with ®(0) = 0. If g is a nonnegative in-
creasing function defined on [a,b] such that there exists the nonnegative function g, which

satisfies
[ et o (£ ) aut < [ moau

andf g1(t)du(r) <1, then

(f F()g(t)du <>> i @) h(t)d>(f(t))du(t)
[Peydu() )~ WO yyaur)
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holds, where A is given by

/au‘(u(@”)h(t)d“(,) —® (/abg(t)dﬂ(’)> :

For ¢ (u) = u? (p > 1), Theorem 3.10 becomes the following:

Theorem 3.12 Let f be a nonnegative nonincreasing function on |a,b], f € LP(a,b), and

let g be nonnegative and nondecreasing on |a,b] such that [° g%(t)dt < 1, where p > 1 and
q= %. Then (3.1) holds.

Remark 3.4 From the above proof it follows that condition (3.9) can be replaced by
8(x) >
gi1(x) ¢ < <1
® g1(x)

/abgl(x)q) (;(;;)))dxgba.

In 1998 Pachpatte established further generalizations of inequality given in Theo-
rem 3.3 (see [102]).

or, more generally, by

Theorem 3.13 Let f,g,h be real-valued integrable functions defined on [0,1] such that
f(t) >0, h(t) >0, ¢t €[0,1], f/h is nonincreasing on [0,1] and 0 < g(¢) <A, t € [0,1],
where A is a real positive constant. If p > 1, then

< JA 1 g(r)f(r)dt)p <ar | " o, (3.12)

where A is the solution of the equation

/Ox hP (t)dt = % </0] hl’(t)g(t)dt> (/01 g(t)dl‘> p-1 |

Proof. Applying Holder’s inequality on the left-hand side of inequality (3.12) we have

(/Olg(t)f(t)dt)p = (/Olgppl(t)gpl(t)f(t)dt)p
< </01g(,)dt)”‘ (/Olg(t)f”(t)dt>.

In order to prove inequality (3.12) we must prove that

< /0 1 g(t)dt)pl ( /0 L) f”(t)dt) <ar /0 " royar, (3.14)

(3.13)
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First, we have that

AP /(f fP(t)dr — (/Olg(s)ds) o /(f g(0)fP(r)dr
:/Af”t (A”_gt (/]g(s)ds>p]>dt
<[ (hg) e (s ( s)p )
ai)p(m’/jh” . 1/O/lh’”(t) (t)dt)
= (#63) (f e )'”(/h” = [
~(£2) ([ «as)” [ et
Now, inequality (3.14) can be proved as follows
A”/Afp dt — (/01 (1) dt)p1</1g 0 fP (1) dt>
[ prian— ([t ds>’” O
+(/0 g(s)ds)p | /A (1) 7(1)dt (/0 g(s)ds)p | / )7 (@)
> (%)p( / ]g(s>ds)p 1 [ gt ( / 1g(s>ds)p1 [ srar
([aom)" oo (58 (32 Y=

Inequality (3.12) now follows from (3.13) and (3.14). O

‘\sb

>
~

Theorem 3.14 Let f,g,h, p be as in Theorem 3.13. Then

(/ dt)p 1/ gt dt<A”/ £0) (3.15)

where A is the solution of the equation

-1

/OA h(t)dt = ﬁ (/01 h(t)g(t)dt) (/01 g(,)dt)p _
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Inequality (3.15) is a variant of the inequality given in Theorem 3.3 and when A =1,
p =1, h(t) = 1, it reduces to the right-hand side of Steffensen’s inequality with ¢ = 0 and
b = 1. Similar result with p = 1 and A = 1 is given by Pecari¢ in Theorem 3.15.

Remark 3.5 Some L? generalizations can also be found in [145], [146] and [147]. Fur-
thermore, some results similar to Steffensen’s inequality via Holder’s, Minkowski’s and
Hardy-Hilbert’s inequalities are given in [147].

3.2 Pecari¢, Mercer and Wu-Srivastava
generalizations

In 1982 Pecarié proved the following generalization of Steffensen’s inequality (see [110]).

Theorem 3.15 Let h be a positive integrable function on |a,b] and f be an integrable
Sunction such that x — f(x)/h(x) is nondecreasing on |a,b). If g is a real-valued integrable
Sunction such that 0 < g(x) < 1 for every x € [a,b], then

/ F(O)g(t)dt > / o (3.16)

holds, where A is the solution of the equation

/ i = / h)g(o)de

If x — f(x)/h(x) is a nonincreasing function, then the reverse inequality in (3.16) holds.

Proof. Transformation of the difference between the right-hand side and the left-hand side
of inequality (3.16) gives

[ o / () / P —gonroa [ posoa
S%/ﬂ O sy [ 10
0 P [ )

— " enr) (% _ %) <0

By substitutions g(x) — 1 —g(x) and A — b —a — A, Theorem 3.15 becomes:
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Theorem 3.16 Let the conditions of Theorem 3.15 be fulfilled. Then

b b
| rwswar< [ sy

where A is the solution of the equation

/ " ey = / ’ h(o)g(e)dr (3.17)
b—A a § ' '

For h(x) = 1 we have Steffensen’s inequality.

The following generalization of Steffensen’s inequality for a convex function of order
n is a version of Theorem 2.9 with a stronger condition on the function g (see [122, p.
193)).

Theorem 3.17 Let g be an integrable function such that 0 < g(x) < 1 for every x € [a, D).

(a) If the function f : [a,b] — R is convex of order n with f¥)(a) =0,k=0,...,n—2,
then (3.16) holds with

A= <n./ab(t a)"lg(t)dt) " (3.18)

(b) If f is a nonnegative and concave function of order n with f(k> (a)=0,k=0,...,n—
2, then the reverse of the inequality in (3.16) holds.

Proof. Let f be an n—convex function such that f*)(a) =0, (k=0,1,...,n —2). Then

o f S,),,] is a nondecreasing function. Applying Theorem 3.15 on function o f S,),,] we

have that (3.16) is valid where A is defined by (3.18). O

X

In [87] Mercer proved following generalization of Steffensen’s inequality.

Theorem 3.18 Let f, g and h be integrable functions on (a,b) with f nonincreasing and
0<g<h. Then

b b a+A
[ ronar< [ rwsoa < [ ronoa, (3.19)
where A is given by

a+A b
/ h(r)dr = / g(r)dr. (3.20)

As noted by Wu and Srivastava in [155] and by Liu in [83] the generalization due to
Mercer is incorrect as stated. They have proved that it is true if we add the condition:

bhd*b d 3.21
| noar = [ st (3.21)

As proved by Pecarié, Perusi¢ and Smoljak in [117], the corrected version of Mercer’s
results follows from Theorems 3.15 and 3.16, and it is stated as following.
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Theorem 3.19 Let h be a positive integrable function on |a,b] and f,g be integrable
functions on |a,b] such that f is nonincreasing on [a,b] and 0 < g < h for every x € [a, D).

a) Then
b a+A
| rwgwar < [ pemiorar,
where A is given by (3.20).
b) Then
[ remar< [ rwgar
b—A ~Ja & '
where A is given by (3.21).

Proof. Putting substitutions g(¢) — g(¢)/h(¢) and f(¢) — f(¢)h(z) in Theorems 3.15 and
3.16 we obtain the statements of this theorem. O

Mercer also gave the following theorem in [87].
Theorem 3.20 Let f,g,h and k be integrable functions on (a,b) with k > 0, f/k nonin-
creasing and 0 < g < h. Then

b a+A
| roear< [ ronwar, (622

where A is the solution of the equation

a+A b
/ h(e)k(r)di = / g(1)k(r)dt. (3.23)
a a
If f/k is a nondecreasing function, then the reverse of the inequality in (3.22) holds.

Let us show that it is equivalent to Theorem 3.15. Let us suppose that the assumptions
of Theorem 3.20 hold. Then for 7 = 1 we obtain Theorem 3.15.
Oppositely, taking h(t) — k(t)h(t), g(t) — g(t) /h(¢) and f(¢) — f(z)h(¢) in Theorem 3.15
we obtain Theorem 3.20. Hence, Theorems 3.15 and 3.20 are equivalent.

Motivated by Theorem 3.20 the following theorem, which is equivalent to Theorem 3.16,
was obtained in [117].

Theorem 3.21 Let f,g,h and k be integrable functions on (a,b) with k > 0, f/k nonin-
creasing and 0 < g < h. Then

b b
[ rwgwar= [ pwnoar, (324

where A satisfies

b b
/ h(t)k(t)dr = / g(t)k(t)ds. (3.25)
b a

—A
If f/k is a nondecreasing function, then the reverse of the inequality in (3.24) holds.
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Proof. Take h(t) — k(t)h(t), g(t) — g(¢)/h(¢) and f(¢) — f(¢)h(z) in Theorem 3.16. O

Remark 3.6 From Theorems 3.20 and 3.21 taking k = 1 we can obtain the corrected
Mercer’s results given in Theorem 3.19.

Next, we give the corrected version of Mercer’s results given by Wu and Srivastava in
[155]. Note that this is not only corrected but also a refined version of Mercer’s result.

Theorem 3.22 Let f,g and h be integrable functions on |a,b] with f nonincreasing and
let 0 < g < h. Then the following integral inequalities hold true

b

f@)h(r)dr < ./bb (f(O)h(e) = [f (1) = f(b=A)][h(e) — g(0)])dr

Jb—A

)
< [ rostoar
. a+A

(3.26)
< [ Unn) — 150 = flat+- 20 — g(0)ds
a+A
< [ somoar,
where A satisfies
a+A b b
| / eyt = / g(t)dr = /b | h(oyr
Proof. The proof is based on the following identities:
b a+A
| s0sar = [ (7m0 - 116) - fla+ A)][be) - g0
a a ) (3.27)
+ [ 10— flas sy,
and
b b
| rwstar= [ (rone) =156 = £o =20 - s(e))s
a (3.28)

- b—A
+ [ = o= 2lsan.
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Let us prove the first one. Transformation of the right-hand side of the identity gives the
following

[ 0o 170 stat M0 ~goar+ [ 150~ slat 2lg(ar

a+A b
= [T s+ fla+2)n0) —g(f))]dtf/a s —fla+2) [ g
b

= [ f()g()dr + fla+2) [ / “ he) — g(e))di — / ;ga)dr]
]

b

- [ o+ star [ [ woa- [ o

- / £0)
where in the last equality we use the property of A, i.e. faH’l h(t)dt = f:g(t)dt
The second identity can be proved in a similar manner.

Since f is nonincreasing on [a,b] we get f(¢) > f(b—A) for all ¢ € [a,b— A] and
f(@&) <f(b—A)forallz € [b—A,b]. Then

[ 150 10~ 1)l 0
and .
[ 170 76 2)nte) - go)ar <o
Using (3.27) and the above inequalities we obtain
[ swganz [ om0~ 170 - 6= 210 - sOhar = [ o
Similarly, we obtain

b a+A a2
[ s < [T (oo - 170 = sa+ 200 —g)har < [ rwn@r
O

As noted by Wu and Srivastava in [155], for i(z) = 1, Theorem 3.22 gives a refinement
of Steffensen’s inequality. Separating inequalities given in (3.26) into two parts we can

obtain weaker conditions on A. Those results are given in the following theorems (see
[117]).

Theorem 3.23 Let f,g and h be integrable functions on |a,b] with f nonincreasing and
let 0 < g < h. Then

ath
[ g < [ (0m@) - 10~ a2 o)
. (3.29)
< [ fmteyar
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where A is given by (3.20).
If f is a nondecreasing function, then the reverse inequalities in (3.29) hold.

Proof. Similar to the proof of the right-hand side inequalities in Theorem 3.22. O

Theorem 3.24 Let f,g and h be integrable functions on |a,b] with f nonincreasing and
let 0 < g < h. Then

L amans [1 GOm0~ 170 - 16— R0~ g0

b—A

b (3.30)
< [ rwswar
a
where A is given by (3.21).
If f is a nondecreasing function, then the reverse inequalities in (3.30) hold.
Proof. Similar to the proof of the left-hand side inequalities in Theorem 3.22. O

In the following theorems Pecari¢, Perusi¢ and Smoljak obtained a refined version of
the results given in Theorems 3.20 and 3.21 (see [117]).

Theorem 3.25 Let k be a positive integrable function on |a,b] and f,g,h be integrable
functions on |a,b] such that f /k is nonincreasing and 0 < g < h. Then

[ st < [ (rom— |28 - L2 ko) - g0 )
< [ romrar

where A is given by (3.23).
If f/k is a nondecreasing function, then the reverse inequalities in (3.31) hold.

(3.31)

Proof. Take g(r) — k(t)g(z), f(¢) — f(¢)/k(r) and h(t) — k(¢)h(¢) in Theorem 3.23. O

Theorem 3.26 Let k be a positive integrable function on |a,b] and f,g,h be integrable
functions on |a,b] such that f /k is nonincreasing and 0 < g < h. Then

[ romars [ (some - |58 - L2 ko - g0 ) a

0
< [ st

where A is given by (3.25).
If f/k is a nondecreasing function, then the reverse inequalities in (3.32) hold.

(3.32)

Proof. Take g(r) — k(t)g(z), f(¢) — f(¢)/k(r) and h(t) — k(¢)h(¢) in Theorem 3.24. O
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Remark 3.7 From Theorems 3.25 and 3.26 taking k = 1 we obtain a refinement of the
corrected Mercer’s results given in Theorem 3.19. Putting 2 = 1 in Theorems 3.25 and
3.26 we get a refinement of Pecari¢’s results given in Theorems 3.15 and 3.16.

Furthermore, Wu and Srivastava proved a new sharpened and generalized version of
inequality (3.19). We separate this result into two theorems to obtain weaker conditions on
A. The original result can be found in [155].

Theorem 3.27 Let f,g,h and v be integrable functions on |a,b] with f nonincreasing
andletO <y < g<h—vy. Then

[ o< [ somwa- [ 170~ sat plvira

Ja

where A is given by (3.20).

Proof. Using identity (3.27) we get

a+A b
| ronwdi= [ g er

a+A b

= [0~ fat Ay~ glde— [ 170) = fla+2)s(e)as
a+A
> [ 150 - ftar alars [ 1fas ) - sl
= [[176)~ s+ My
and the proof is established. O

Similarly, the following theorem holds.

Theorem 3.28 Let f,g,h and v be integrable functions on [a,b] with f nonincreasing
andlet O <y < g <h—vy. Then

[ sonas [0 - so-niwwa < [ oo
b—A ~Ja
where A is given by (3.21).

In [117] the following sharpenings of Theorems 3.20 and 3.21 are given based on
results from Theorems 3.27 and 3.28.

Theorem 3.29 Let k be a positive integrable function on [a,b] and f,g,h,  be integrable
functions on |a,b] with f/k nonincreasing and 0 < y < g <h—y.

a) Then

/abf(t) dt</ F(O)h(t)dr —

where A is given by (3.23).
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b) Then
b PLOf@)  f(b —/1))
[ romwars [ (55 - 10— owo)

where A is given by (3.25).

Proof. Putting substitutions g(¢) — k(t)g(t), f(¢) — f(t)/k(t), h(t) — k(t)h(t) and y (1) —
k(t)y(z) in Theorems 3.27 and 3.28 we obtain statements of this theorem. a

Remark 3.8 Taking k = 1 in Theorem 3.29 we obtain a sharpened and generalized ver-
sions of Theorem 3.19.

If h = 1, then inequalities from Theorem 3.29 become sharpenings of Steffensen’s
inequalities.

Motivated by the weaker conditions for the function g in Steffensen’s inequality given
by Milovanovi¢ and Pecari¢ in [90], weaker conditions for Theorems 3.20 and 3.21 are
obtained in [117].

Theorem 3.30 Let k be a positive integrable function on [a,b], let f,g,h be integrable
functions on [a,b] such that h is nonnegative and let f/k be a nonincreasing integrable
function on |a,b). Then

/xk(t)g(t)dtg /xk(t)ht dt and / t)dt >0, Vxé€[a,b] (3.33)
if and only if
b a+A
[ g < [*7 ramiar (3.34)

where A is defined by (3.23).
If f/k is a nondecreasing function, then (3.33) holds if and only if the reverse of the in-
equality in (3.34) holds.

Proof. Using the identity

[ soma— [ srgora

7/ [f(; fZii))]k(t)[h(t)g(t)]dtJr ’ [M&ﬂk@g(;)dt

and applying integration by parts we obtain

[ s [ st = / “ ( / ko)) g(r)]dr> a(£)
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From here we conclude that, for nonincreasing function f/k, (3.34) holds when
X X
/ k(0)h(r)dt > / K()g(t)dr, fora<x<a+h (3.36)
a a

and .
/ k(1)g(t)dr >0, fora+A<x<b. (3.37)
X

For a+ A < x < b, since h is nonnegative, k is positive and (3.37) holds, we have

/axk(t)g(t)dt: /bk(t) )i — / K(t
_ / / k(1) ()d;g./a 7 k() < /axk(t)h(t)dt.

On the other hand, for a < x < a+ A, since k is nonnegative, k is positive and (3.36) holds,
we have

[ kst = | bk<r>g<t>— / "Ko)g(0)ds

7/ t)dt — /k
> / K()h(t)di — / k(z)h(;)d;:/j”k(;)h(z)d;zo.

a Ja

Hence, (3.36) and (3.37) are equivalent to (3.33).
Now, we prove that conditions (3.33) are also necessary. In fact, for f defined by

f@)= {k(t)’ =X Vx € [a,b)]

0, t>x,

we have that f/k is a nonincreasing function. Now, from (3.34) we can obtain

X X b
/ k()g(r)dr < / k(t)h(r)dr  and / k(t)g(r)dr >0, Vx € [a,b].

In a similar way we can obtain the reverse inequality in (3.34) for f/k nondecreasing. Thus
the proof is completed. O

Theorem 3.31 Let k be a positive integrable function on [a,b], let f,g,h be integrable
functions on [a,b] such that h is nonnegative and let f/k be a nonincreasing integrable
function on [a,b]. Then

b b
/k(t)g(t)dtg/k(t)ht dt  and / t)dt >0, Vx¢€la,b] (3.38)

if and only if
b b
[ roswar= [ rwma (3.39)
a b—A
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where A is defined by (3.25).
If f/k is a nondecreasing function, then (3.38) holds if and only if the reverse of the in-
equality in (3.39) holds.

Proof. Using the identity

/b:Lf(thtdt /f gt

b M; -5 mk(” ‘”*/H[ —@}Mr)g(r)dr

b—A

and applying integration by parts we obtain
b b
| o= [ gl
b—A a

= somo—sora)a (G )« [ ([ xewom)a (55)

Now, similar conclusions as in the proof of Theorem 3.30 completes the proof. O

Remark 3.9 For k = 1, from Theorems 3.30 and 3.31, we obtain results similar to the
results with weaker conditions given by Liu in [83] and Mercer in [87].

In the following theorems we give weaker conditions for refinements given in Theo-
rems 3.25 and 3.26.

Theorem 3.32 Let k be a positive integrable function on [a,b], let f,g,h be integrable

functions on [a,b] such that h is nonnegative and let f/k be a nonincreasing integrable
function on |a,b]. Let A be defined by (3.23). If (3.33) holds, then (3.31) is valid.
If f/k is a nondecreasing function, the reverse inequalities in (3.31) hold.

Proof. Using identity (3.35) and applying integration by parts we obtain

a+2 a+A a
[ smar [ rostoa [ |28 - L ko) - et

- L e ) oo == [, ([osoa) 4 (55)

From here we conclude that the left-hand side inequality in (3.31) holds when (3.37) holds.
Furthermore, we have

a+A a
[l s i)] O 10)— 5k

= [ ([ woer-sonr)a (555).
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So, if (3.36) holds, then

a+A a
/a [% - %} k(t)[n(t) — g(¢)]dt > 0.

Hence, the right-hand side inequality in (3.31) holds.
As showed in the proof of Theorem 3.30, (3.36) and (3.37) are equivalent to (3.33). So the
proof is completed. O

Theorem 3.33 Let k be a positive integrable function on [a,b], let f,g,h be integrable

functions on [a,b] and let f/k be a nonincreasing integrable function on [a,b]. Let A be
defined by (3.23). If

b
/ k(t)g(t)dt >0, fora+A <x<b,

then
a+A a+A a
[ rwswar< [ o [ [@fki(a”)}ko)[h(t)g(t)]dr. (3.41)
If we additionally have

/x k(t)h(t)dt > /xk(t)g(t)dt, fora<x<a+a

then (3.31) holds.
If f/k is a nondecreasing function, the reverse inequalities in (3.41) and (3.31) hold.

Proof. Similar to the proof of Theorem 3.32. O

Theorem 3.34 Let k be a positive integrable function on [a,b), let f,g,h be integrable
functions on [a,b] such that h is nonnegative and let f/k be a nonincreasing integrable
function on |a,b]. Let A be defined by (3.25). If (3.38) holds, then (3.32) is valid.

If f/k is a nondecreasing function, the reverse inequalities in (3.32) hold.

Proof. Similar to the proof of Theorem 3.32 using identity (3.40). O

Theorem 3.35 Let k be a positive integrable function on [a,b), let f,g,h be integrable
functions on |a,b] and let f/k be a nonincreasing integrable function on [a,b]. Let A be

defined by (3.25). If
/ k(t)g(t)dt >0, fora<x<b—A,

then

b

ororsy|

Jb—A b—A

L koo - i< [ rwgar. G4
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If we additionally have

b b
/ k(t)h(t)dt > / k(t)g(t)dt, forb—A<x<b
X X
then (3.32) holds.
If f/k is a nondecreasing function, the reverse inequalities in (3.42) and (3.32) hold.
Proof. Similar to the proof of Theorem 3.34. O

Wu and Srivastava also gave a general result on an improved version of Steffensen’s
inequality by introducing additional parameters A; and A,. This result is given in the
following theorem.

Theorem 3.36 Let f and g be integrable functions defined on [a,b] with f nonincreasing.
Also let

b
0< g/ g(1)di <o <b—a

and 0 <M < g<1—M. Then
b
01 (o= [ etar)
a

/be (t)dt+ f(b (/g dtll)
—f(a—l—/abg(t)dt) dt

< [ rostoar
(3.43)

dt

< [ s (xz -/ bg(t)dr) -

Proof. Let y be a constant function, i.e. y(¢t) =M, t € [a,b]. Then f and g satisfy the
assumptions of Theorem 3.27 with 2 = 1 and y/(r) = M. So, we get

/f a!t</aa+ dth/ |f(t)— fla+A)|dt

where A = fabg(t)dt
Let us prove the second inequality in (3.43). Using notation A = fabg (¢)dt, the fact that
M—A=[" “+%2 4t and the above inequality we get
b
—f (a + / g(t)dt> dt
a

[ s s (7= [ stwr) -
=/:sz(t)dt—( (22— 2 M/ (1)~ flat2)lde
= [ a0 | ; a— [ poar+ / " Fo)g(e)d

a
a+2p a+)l,2
/ t)dt — / b)dt + / f@)

_/QMZ dt+/ t)dr >/abf(t)g(t)dt




3.2 PECARIC, MERCER AND WU-SRIVASTAVA GENERALIZATIONS 67

where in the last inequality we use f(z) > f(b) for any 7 € [a,b].
In the same way we prove the first inequality in (3.43). O

It is clear that Steffensen’s inequality follows as a special case of inequality (3.43)
when M =0 and 4| = A,.

And finally, let us mention here one generalization involving Stieltjes integral due to
Liu. In [82] he proved

Theorem 3.37 Let f, g and h be u—integrable functions defined on [a,b] with f nonin-
creasing and 0 < g < h. Then

b w (@) +2)
| rsane < [ SO o)
where A satisfies

1t (u(a)+2) b
/ WOt = [ g)duo) (3.44)
a a
Proof. After direct computation we get

1 (w(a)+2) b
/ Fnodu() = [ g0t

1 (u(a)+2)

b
-/ o)~ = [1 - f)s0)aut)
> g @) [ o - slan - [ sosodn)
o a N u(a)+2)”

|

~
=
)
<
N—

QU
=
<
N—
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Of course, in the same paper, Liu gave a generalization of the second Steffensen in-
equality.

Theorem 3.38 Let f, g and h be u—integrable functions defined on |a,b] with f nonin-
creasing and 0 < g < h. Then

b b
/ Fnant) < [ rag0dn),

u=t(u(b)-2) a
where A satisfies

[ = [ saut) (3.45)
H(u(b)-2) a

-
He also obtained results which are consequences of substitution f +— f/k, g — gk, and
results with weaker conditions.

Theorem 3.39 Let g and h be nonnegative u—integrable functions defined on [a,b). Then

[“sau < [noau@) ana [ gan) =0, vrefap)
is a necessary and sufficient condition for
b 1t (u(a)+2)
| rosano < [ SO ()

to hold for all nonincreasing functions f defined on [a,b], where A is given by (3.44).

Theorem 3.40 Let g and h be nonnegative i —integrable functions defined on [a,b]. Then

X b b
[swan@y =0 ana [ “gau@) < [ nean), vrelas)

is a necessary and sufficient condition for

b b
/ FnOdu() < [ g0t

u=t(u(b)=2)

to hold for all nonincreasing functions f defined on [a,b], where A is given by (3.45).

3.3 Cerone’s generalizations

We begin this section with generalizations of Steffensen’s inequality given by Cerone in
[33]. As we see Cerone’s generalization of Steffensen’s inequality allows bounds involving
any two subintervals instead of restricting them to include the end points.
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Theorem 3.41 Let f,g : [a,b] — R be integrable functions on [a,b] and let f be nonin-
creasing. Further, let 0 < g <1 and

b
A= / g(t)di = di — i, (3.46)

where [c;,d;] C [a,b] fori=1,2 and d\ < dy. Then
& b d
/ F)dt = r(ea,do) < / F)g(t)di < / FO)di+R(en,d)  (34T)
JC a JCy
holds, where

b
r(ca,dy) = -/dz (f(c2)—f(2))g(t)dt >0

and

Rev.dy) = [ (70) - f(a)g(de > 0.

Proof. Let us prove the second inequality. Let us consider the corresponding difference:

d, b
[ e Reer ) - / F(0)g(0)ds

- [M e o+ / d))g(t)di / " Hog(r

- [~ sta i+ [ lar) ~ £etoy

where we use fcdll dt = fabg(t)dt
Since 0 < g < 1 and f is nonincreasing, the terms under the integral sign are nonnega-
tive, hence the first sum in this chain is nonnegative, i.e.

b

d)
/ f(f)df+R(Cl7d1)2/f(t)g(t)dt.

JCy a

The first inequality in (3.47) follows from the identity

b d
/ F()g(t)di / F(t)dt +r(ca,d)

/:Z(f(cz)f(t))(lg(t))dt+/acz(f(t)f(cz))g(,)dt_

If in Theorem 3.41 we take ¢; =a and d; = a+ A, then R(a,a+ A) = 0. Further, taking
dy=band ¢y =b— A, then r(b— A,b) = 0. Thus we obtain Steffensen’s inequality.
Since A = fabg(t)dt and0<g<l,thency=b—A >aandd; =a+A <bgiving [¢;,d;] C
[a,b]. Hence, Theorem 3.41 can be viewed as a generalization of Steffensen’s inequality
for two subintervals which have equal lengths and which boundaries are not necessarily at
the bounds of [a, b].

O
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Remark 3.10 In [10] Agli¢ Aljinovi¢, Pecari¢ and Perusi¢ showed that identity (3.47)
can also be proved differently than in [33] using Steffensen’s inequality. Indeed, in order
to prove the right-hand side inequality in (3.47) we observe
b d,
| rgwa=["rwar
a (&}

b b dy
= [[ro-ra@nsar+ @) [ swa- [ roa

C

b c1+A
= [ o-s@pe@arsrar- [ rwar

b c1+A
= [[O=-r@)e0d— [ (7@~ (@)

1

and apply the right-hand Steffensen’s inequality for nonincreasing function f (¢) — f (d})
on the interval [cy, D]

c1+A

[ vo-ra@nsoas [ G0 @

€1 €1

Here we have A = ffl g (¢)dt and thus obviously A; < A which leads us to

c1+A; c1+A
[ ww-r@a< [T (0 ).

Ccl /1

Finally

b c1+A
| ww=ra@nsoa— [ e -rar

C1

b b
< [[GO-r@nena— [ (70 f@)gd=Rierd)
a €1

and the proof is complete. In a similar manner, the left-hand side inequality in (3.47) can
be proved.

The following corollary from [33] gives bounds that can be more easily evaluated.

Corollary 3.1 Ler the conditions of Theorem 3.41 hold. Then

b

b d)
/ FO)dt — (b—do)f(c2) < / F(O)a(t)di < / FO)di = (c1—a)f(dy).  (3.48)

JCy a
Proof. From Theorem 3.41, using that 0 < g < 1, we have

b

0<r(erd) = [ (f(ex) -~ rga < |

2

(flex) 1) = (b—df(es)— [ rtyar
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and so
dy

/ © 0Vt = r(eards) > /

2 2

b
Flt)dt — (b—do) + /d £y,

So we obtain the left-hand side inequality in (3.48). Similarly we obtain the right-hand
side inequality in (3.48). O

Theorem 3.42 Let f,g : [a,b] — R be integrable functions on |a,b] and let f be nonin-
creasing. Further, let g > 0 and G(x) = [} g(t)dt with A = G(b) = d; — ¢; where [c;,d;] C
[a,b] fori= 1,2 and d| < dy. Then

[ 10y atasicaay - g0 < [ reax
< [ 50+l @) - frcr.ar) -
where
M (fra,b) = bla / ? fyd. (3.50)

Proof. Let us transform the difference [ f(x)g(x)dx — [2 f(y)dy using the identity 1 =

2

f‘i}f(%gzdx and integration by parts:

b d> b 1 dy b
| rseax= [ gy = [ rwewar— —— [ sy ["gtoas
a 2 a ) a

b b b
= [ 1Wsdx = (Frier,) [ gl = [ g1~ (ficad)ldx

b b
= GWI (W)~ (ficad)s= | GAF(W) = A (b) = A (Frea,da)] = | GWf ()

a

since G(b) = A and G(a) = 0. Now we have

b ds b
| wstods— [ fody+ AL (Frerde) = £8) = = [ G0df () 2 0

%]

since f is nonincreasing and g > 0. So, the first inequality is proved.
The second inequality follows from the identity

b 4, b
|| @ [ iy = Alfa) - (frer.d)] + [ P~ Gl (o).
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As noted by Cerone, the left-hand and right-hand inequalities in (3.49) can be simpli-

fied to A f(b) and A f(a) respectively since

d
| 101y =2t (Fic.d).
Hence, (3.49) becomes
b
1)< [ F@s(dx < Af(a).

This result can also be obtained directly since

inf f(x /g dx</f x)dx < sup f(x) g
x€la,b]

x€la,b]

Cerone’s result for function f/k is generalized by Pecarié, Perusi¢ and Smoljak in

[118]. First we give the following lemma in which some useful identities are given.

Lemma 3.1 Let k be a positive integrable function on |a,b] and f,g,h : [a,b] — R be
integrable functions on |a,b|. Further, let [c,d] C [a,b] with fcdh(t)k(t)dt = f:g(t)k(t)dt.

Then the following identities hold:

/Cdf( df*/ f(t) /(%%) g(0)k(t)dt
o[ 19 k(t)[n(r) —g(t)]dt + (D S0 g(t)k(r)dt
c \k(t) k(d) ¢ \k(d) k()
and
/a bf(t)g(t)dt - / df (t)h(t)dr = / ’ (% — %) g(1)k(r)dt

d @ B m - b & ) @
j ( Ko k(t)>k(t)[h(t) g(1)]dt + /d < 0 k(c))g(t)k(t)dt.
Proof. We have
[ s [ st dt/k -t
c (t f t C . (d (t)
| ok +/ o ] / - W) g(1)k(1)ds
)
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[ (

(3.51)
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Since

we have

% { / k(e h(e)dr — [ s~ [ “ko)g () - / bg(t)k(t)dt} =0,

Hence, (3.51) follows from (3.53).
Furthermore, (3.52) can be obtained in a similar way so the proof is completed. O

Now we proceed to the generalization of Cerone’s result, [118].
Theorem 3.43 Let k be a positive integrable function on [a,b] and f,g,h : [a,b] — R be

integrable functions on [a,b] such that f/k is nonincreasing. Further, let 0 < g < h and
J9n()k(t)dt = [? g(t)k(t)dt, where [c,d) C [a,b]. Then

b d
/a F()g(t)dt < / F(Oh()dt +Ry(e,d) (3.54)
holds, where
Reled) = / ‘ (% _ %) (0)k(t)dr > 0. (3.55)

If f/k is a nondecreasing function, then the inequalities in (3.54) and (3.55) are reversed.

Proof. Since f/k is nonincreasing, k is positive and 0 < g < h we have

[ (55 - £ ) kolnto) - swgar = (3.56)
bOfa) f)
/ (@ - W) o (1)k(1)dr > 0 (3.57)

and Ry (c,d) > 0. Now, from (3.51), (3.56) and (3.57) we have

[ ronar— [ sogwars [[(40 - 1D stoncra

- ./cd (% B %) k() [() — g(1))dr + ./db (% - %) AR
> 0.
Hence, inequality (3.54) holds. .

In a similar way we obtain a lower bound for [ : f(t)g(t)de.
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Theorem 3.44 Let k be a positive integrable function on [a,b] and f,g,h : [a,b] — R be
integrable functions on [a,b] such that f/k is nonincreasing. Further, let 0 < g < h and
19 h()k(t)dr = [P g(t)k(t)dt, where [c,d) C [a,b]. Then

d b
/C FOR()dt — ry(e,d) < / F(0)g()dr (3.59)
holds, where i
ro(c,d) = /d <% - %) g(k(1)dr > 0. (3.60)

If f/k is a nondecreasing function, then the inequalities in (3.59) and (3.60) are reversed.

Proof. Since f/k is nonincreasing, k is positive and 0 < g < / we have

“(fl) _ flo)
Cfle) f@)

and rg(c,d) > 0. Now, from (3.52), (3.61) and (3.62) we have

[ 10w [*romars [ (4G - 1) como

e &,JE d &7& B
= [ (i~ ) smoan [ (55~ ) oo —stnarzo

Hence, inequality (3.59) holds. O

Remark 3.11 If we take ¢ = a and d = a+ A in Theorem 3.43 we obtain Mercer’s gener-
alization of the right-hand side Steffensen’s inequality gi