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Preface

The aim of this book is to present a comprehensive overviewof results related to the famous
Steffensen’s inequality∫ b

b−
f (t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt,

where f and g are integrable functions defined on (a,b), f is nonincreasing, 0 ≤ g ≤ 1 and
 =

∫ b
a g(t)dt.

The aforementioned Steffensen’s inequality has a corresponding version for sums in-
stead of integrals, i.e. we have the discrete Steffensen’s inequality

y


n=y−s+1

f (n) ≤
y


n=x

f (n)(n) ≤
x+s−1


n=x

f (n)

where 0 ≤  ≤ 1, f is nonincreasing and s = y
n=x(n).

Since its appearance in 1918 Steffensen’s inequality has been a subject of investiga-
tion by many mathematicians. The book is devoted to generalizations and refinements of
Steffensen’s inequality and its connection to other inequalities, such as Gauss’, Jensen-
Steffensen’s, Hölder’s and Iyengar’s inequality.

We start with different proofs, simple modifications and variants of Steffensen’s in-
equality from the beginning of its investigation. Furthermore, we give a survey of weaker
conditions on functions f and g and conditions for the inverse Steffensen’s inequality. The
book also contains Lp generalizations, generalizations for convex functions, refinements
and sharpened versions, multidimensional generalizations and measure spaces generaliza-
tions of Steffensen’s inequality. Further, an integration over two intervals with overleaping
and with two different weights also give new results of a Steffensen-type.

Estimating the difference between two weighted integral means, obtained by using
weighted Montgomery identity, Taylor’s formula and interpolating polynomials, we give
different generalizations of Steffensen’s inequality. Using fractional integrals, such as
Riemann-Liouville’s, Hadamard’s and Erdély-Kober’s, and fractional derivatives, such as
Riemann-Liouville’s, Caputo’s and Canavati’s, we obtain various Steffensen-type inequali-
ties. We use Lagrange-type and Cauchy-type mean value theorems related to some general-
izations and in this way we define new classes of two-parametric means of a Cauchy-type.

We conclude the book with applications of Steffensen’s inequality related to Hölder’s
and Iyengar’s inequality, with a section on a(x)−monotonic functions and a short survey
of other applications in statistics, functional equations, time scales and special functions.
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Chapter1
Basic results and definitions

1.1 Convex functions

In this section we give definitions and some properties of convex functions. Convex func-
tions are very important in the theory of inequalities. The third chapter of the classical
book by Hardy, Littlewood and Pólya [60] is devoted to the theory of convex functions
(see also [97]).

Definition 1.1 Let I be an interval in R. A function f : I → R is called convex if

f (x+(1− )y)≤  f (x)+ (1− ) f (y) (1.1)

for all points x,y ∈ I and all  ∈ [0,1]. It is called strictly convex if the inequality in (1.1)
holds strictly whenever x and y are distinct points and  ∈ (0,1).

If the inequality in (1.1) is reversed, then f is said to be concave. It is called strictly
concave if the reversed inequality in (1.1) holds strictly whenever x and y are distinct points
and  ∈ (0,1).

If f is both convex and concave, f is said to be affine.

Remark 1.1 (a) For x,y ∈ I, p,q ≥ 0, p+q > 0, (1.1) is equivalent to

f

(
px+qy
p+q

)
≤ p f (x)+q f (y)

p+q
.

(b) A simple geometrical interpretation of (1.1) is that the graph of f lies below its
chords.

1



2 1 BASIC RESULTS AND DEFINITIONS

(c) If x1,x2,x3 are three points in I such that x1 < x2 < x3, then (1.1) is equivalent to∣∣∣∣∣∣
x1 f (x1) 1
x2 f (x2) 1
x3 f (x3) 1

∣∣∣∣∣∣= (x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) ≥ 0

which is equivalent to

f (x2) ≤ x2− x3

x1− x3
f (x1)+

x1− x2

x1− x3
f (x3),

or, more symmetrically and without the condition of monotonicity on x1,x2,x3, to

f (x1)
(x1 − x2)(x1− x3)

+
f (x2)

(x2− x3)(x2 − x1)
+

f (x3)
(x3 − x1)(x3 − x2)

≥ 0.

Proposition 1.1 If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2,
then the following inequality is valid

f (x2)− f (x1)
x2− x1

≤ f (y2)− f (y1)
y2− y1

.

If the function f is concave, the inequality is reversed.

Definition 1.2 Let I be an interval in R. A function f : I → R is called convex in the
Jensen sense, or J-convex on I (midconvex, midpoint convex) if for all points x,y ∈ I the
inequality

f

(
x+ y

2

)
≤ f (x)+ f (y)

2
(1.2)

holds. A J-convex function is said to be strictly J-convex if for all pairs of points (x,y),x �=
y, strict inequality holds in (1.2).

In the context of continuity the following criterion of equivalence of (1.1) and (1.2) is
valid.

Theorem 1.1 Let f : I → R be a continuous function. Then f is a convex function if and
only if f is a J-convex function.

Definition 1.3 Let I be an interval in R. A function f : I → R is called Wright convex
function if for each x ≤ y, z ≥ 0, x,y+ z ∈ I, the inequality

f (x+ z)− f (x) ≤ f (y+ z)− f (y)

holds.

Next, we want to define convex functions of higher order, but first we need to define
divided differences.
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Definition 1.4 Let f be a function defined on [a,b]. The n-th order divided difference of
f at distinct points x0,x1, . . . ,xn in [a,b] is defined recursively by

[x j; f ] = f (x j), j = 0, . . . ,n

and

[x0,x1, . . . ,xn; f ] =
[x1, . . . ,xn; f ]− [x0, . . . ,xn−1; f ]

xn− x0
. (1.3)

Remark 1.2 The value [x0,x1, . . . ,xn; f ] is independent of the order of the points x0, . . . ,xn.
The previous definition can be extended to include the case in which some or all of the
points coincide by assuming that x0 ≤ ·· · ≤ xk and letting

[x, . . . ,x︸ ︷︷ ︸
j+1 times

; f ] =
f ( j)(x)

j!
,

provided that f ( j)(x) exists. Note that (1.3) is equivalent to

[x0, . . . ,xn; f ] =
n


k=0

f (xk)
 ′(xk)

, where  ′(xk) =
n


j=0
j �=k

(xk − x j).

Definition 1.5 Let n∈ N0. A function f : [a,b]→ R is said to be n-convex on [a,b] if and
only if for every choice of n+1 distinct points x0,x1, . . . ,xn in [a,b]

[x0,x1, . . . ,xn; f ] ≥ 0. (1.4)

If the inequality in (1.4) is reversed, the function f is said to be n-concave on [a,b] . If the
inequality is strict, f is said to be a strictly n−convex (n−concave) function.

Remark 1.3 Particularly, 0−convex functions are nonnegative functions, 1−convex func-
tions are nondecreasing functions, 2−convex functions are convex functions.

Theorem 1.2 If f (n) exists, then f is n−convex if and only if f (n) ≥ 0.

Definition 1.6 A positive function f is said to be logarithmically convex on an interval
I ⊆ R if log f is a convex function on I, or equivalently if for all x,y ∈ I and all  ∈ [0,1]

f (x+(1−)y)≤ f  (x) f 1−(y). (1.5)

For such a function f , we shortly say that f is log-convex.
It is said to be log-concave if the inequality in (1.5) is reversed.

Definition 1.7 A positive function f is said to be log-convex in the Jensen sense if for all
x,y ∈ I

f 2
(

x+ y
2

)
≤ f (x) f (y)

holds, i.e. if log f is convex in the Jensen sense.
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As a consequence of results from Remark 1.1 (c) and Proposition 1.1 we get the fol-
lowing inequality for a log-convex function f and a < b < c:

[ f (b)]c−a ≤ [ f (a)]c−b [ f (c)]b−a. (1.6)

Corollary 1.1 For a log-convex function f on an interval I and p,q,r,s ∈ I such that
p ≤ r, q ≤ s, p �= q, r �= s, it holds(

f (p)
f (q)

) 1
p−q

≤
(

f (r)
f (s)

) 1
r−s

. (1.7)

Inequality (1.7) is known as Galvani’s theorem for log-convex functions f : I → R.

1.2 Exponentially convex functions

In this section we introduce the definition of exponential convexity as given by Bernstein
in [27] (see also [13], [93], [94]). Throughout this section I is an open interval in R.

Definition 1.8 A function h : I → R is said to be exponentially convex on I if it is contin-
uous and

n


i, j=1

i jh(xi + x j) ≥ 0

for every n∈N and all sequences (n)n∈N and (xn)n∈N of real numbers, such that xi +x j ∈
I, 1 ≤ i, j ≤ n.

The following Proposition follows directly from the previous definition.

Proposition 1.2 For a function h : I → R the following statements are equivalent:

(i) h is exponentially convex

(ii) h is continuous and
n


i, j=1

i jh

(
xi + x j

2

)
≥ 0, (1.8)

for all n ∈ N, all sequences (n)n∈N of real numbers, and all sequences (xn)n∈N in
I.

Note that for n = 1, it follows from (1.8) that an exponentially convex function is
nonnegative.

Directly from the definition of positive semi-definite matrix and inequality (1.8) we get
the following result.
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Corollary 1.2 If h is exponentially convex on I, then the matrix[
h

(
xi + x j

2

)]n

i, j=1

is a positive semi-definite matrix. In particular,

det

[
h

(
xi + x j

2

)]n

i, j=1
≥ 0, (1.9)

for every n ∈ N and every choice of xi ∈ I, i = 1, . . . ,n.

Remark 1.4 Note that for n = 2 from (1.9) we obtain

h(x1)h(x2)−h2
(

x1 + x2

2

)
≥ 0.

Hence, an exponentially convex function is log-convex in the Jensen sense, and, being
continuous, it is also a log-convex function.

We continue with the definition of n-exponentially convex functions.

Definition 1.9 A function h : I → R is n-exponentially convex in the Jensen sense on I if

n


i, j=1

i jh

(
xi + x j

2

)
≥ 0

for all choices of i ∈ R and xi ∈ I, i = 1, . . . ,n.

A function h : I → R is n-exponentially convex on I if it is n-exponentially convex in
the Jensen sense and continuous on I.

It is clear from the definition that 1-exponentially convex functions in the Jensen sense
are in fact nonnegative functions. Also, n-exponentially convex functions in the Jensen
sense are k-exponentially convex in the Jensen sense for every k ∈ N, k ≤ n.

A function h : I →R is exponentially convex in the Jensen sense on I if it is n−exponen-
tially convex in the Jensen sense for all n ∈ N.

Remark 1.5 It is known that h : I → R is log-convex in the Jensen sense if and only if for
every , ∈ R and x,y ∈ I

2h(x)+2h

(
x+ y

2

)
+ 2h(y) ≥ 0.

It follows that a positive function is log-convex in the Jensen sense if and only if it is 2-
exponentially convex in the Jensen sense. Similarly, a positive function is log-convex if
and only if it is 2-exponentially convex.
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1.3 The Gamma function and the Gauss
hypergeometric function

In this section we give definitions and basic properties of the Gamma function and the
Gauss hypergeometric function. More details about these functions can be found e.g. in
[73].

The Gamma function (z) is a function of complex variable defined by the Euler inte-
gral of the second kind

(z) =
∫ 

0
tz−1e−tdt, (z) > 0.

This integral is convergent for every z ∈ C with (z) > 0. The Gamma function has a
property

(z+1) = z(z), (z) > 0,

and a simple consequence of it is the following identity

(n+1) = n!, n ∈ N0.

Extension of the Gamma function to (z) ≤ 0 is given by

(z) =
(z+n)

(z)n
, (z) > −n; n ∈ N; z /∈ Z

−
0 = {0,−1,−2, . . .},

where (z)n is the Pochhammer symbol defined for z ∈ C and n ∈ N0 by

(z)0 = 1; (z)n = z(z+1) · · ·(z+n−1),n∈ N. (1.10)

The Gauss hypergeometric function 2F1(a,b;c;z) is defined as the sum of the hyperge-
ometric series

2F1(a,b;c;z) =



k=0

(a)k(b)k

(c)k

zk

k!
, (1.11)

where |z|< 1; a,b∈ C, c ∈ C\Z
−
0 . The series in (1.11) is absolutely convergent for |z|< 1

and for |z| = 1, when (c−a−b) > 0.
The Euler integral representation of the hypergeometric function is given by

2F1(a,b;c;z) =
(c)

(b)(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt

where 0 < (b) < (c); and |arg(1− z)|<  .
Basic properties of the Gauss hypergeometric function are:

2F1(b,a;c;z) = 2F1(a,b;c;z),



1.4 FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES 7

2F1(a,b;c;0) = 2F1(0,b;c;z) = 1,

2F1(a,b;b;z) = (1− z)−a,

2F1(a,b;c;1) =
(c)(c−a−b)
(c−a)(c−b)

, (c−a−b)> 0.

For the Gauss hypergeometric function, the following Euler transformation formula
holds

2F1(a,b;c;z) = (1− z)c−a−b
2F1(c−a,c−b;c;z).

1.4 Fractional integrals and fractional derivatives

In this section we give definitions and properties of fractional integrals and fractional
derivatives. More details can be found in [16], [59], [73] and [139].

First, we recall definitions and properties of integrable, continuous and absolutely con-
tinuous functions.

By Cm[a,b], m ∈ N0, we denote the space of all functions which are m times continu-
ously differentiable on [a,b], i.e.

Cm[a,b] = { f : [a,b] → R : f (k) ∈C[a,b], k = 0,1, . . . ,m}.

By AC[a,b] we denote the space of all absolutely continuous functions on the finite
interval [a,b], i.e. −< a < b < . By ACm[a,b], m ∈ N, we denote the space

ACm[a,b] = { f ∈Cm−1[a,b] : f (m−1) ∈ AC[a,b]}.

Obviously, AC1[a,b] = AC[a,b].
Let [a,b] be an interval in R, where−≤ a < b≤. We denote by Lp[a,b], 1≤ p <,

the space of Lebesgue measurable functions f such that
∫ b
a | f (t)|pdt <  with the norm

‖ f‖p =
(∫ b

a
| f (t)|pdt

) 1
p

,

and by L[a,b] the space of all measurable and almost everywhere bounded functions on
[a,b], with the norm

‖ f‖ = esssup{| f (x)| : x ∈ [a,b]}.
For any  ∈ R we denote by [] the integral part of  i.e. [] is the integer k satisfying

k ≤  < k+1.
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The Riemann-Liouville fractional integral

Let [a,b] be a finite interval in R, i.e. − < a < b < . The left-sided Riemann-Liouville
fractional integral Ia+ f of order  > 0 is defined by

Ia+ f (x) =
1

()

∫ x

a
f (y)(x− y)−1dy, x ∈ [a,b].

For  = n ∈ N the definition of the left-sided Riemann-Liouville fractional integral
coincides with the n−th integral of the form

In
a+ f (x) =

∫ x

a
dy1

∫ y1

a
dy2 · · ·

∫ yn−1

a
f (yn)dyn =

1
(n−1)!

∫ x

a
(x− y)n−1 f (y)dy.

The generalized Riemann-Liouville fractional derivative

The left-sided generalized Riemann-Liouville fractional derivative D
a+ f of order  > 0 is

defined by

D
a+ f (x) :=

dn

dxn In−
a+ f (x) =

1
(n−)

dn

dxn

∫ x

a
(x− y)n−−1 f (y)dy, x ∈ [a,b],

where n = []+1.
For  = n ∈ N we have Dn

a+ f (x) = f (n)(x), while for  = 0 we put D0
a+ f (x) = f (x).

Also, we use
I−a+ f := D

a+ f if  > 0.

Definition 1.10 Let  > 0 and 1 ≤ p ≤ . By Ia+(Lp) we denote the following space of
functions

Ia+(Lp) = { f : f = Ia+ ,  ∈ Lp[a,b]}.
A characterization of the space Ia+(L1) is given in the following theorem.

Theorem 1.3 Let  > 0 and n = []+1. A function f belongs to Ia+(L1) if and only if

In−
a+ f ∈ ACn[a,b] ,

d j

dx j I
n−
a+ f (a) = 0 , j = 0,1, . . . ,n−1 .

Composition identity for the left-sided generalized Riemann-Liouville fractional deriva-
tive is given by Handley, Koliha and Pečarić in [59]. We use the following lemma which
summarizes conditions in composition identity for the left-sided generalized Riemann-
Liouville fractional derivatives given in [20].

Lemma 1.1 Let  >  ≥ 0, n = [ ]+1, m = []+1. Composition identity

D
a+ f (x) =

1
( −)

∫ x

a
(x− y)−−1D

a+ f (y)dy , x ∈ [a,b]

is valid if one of the following conditions holds:
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(i) f ∈ Ia+
(
L1
)
.

(ii) In−
a+ f ∈ ACn[a,b] and D−k

a+ f (a) = 0 for k = 1, . . .n.

(iii) D−1
a+ f ∈ AC[a,b], D−k

a+ f ∈C[a,b] and D−k
a+ f (a) = 0 for k = 1, . . .n.

(iv) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b],  − /∈ N, D−k
a+ f (a) = 0 for k = 1, . . . ,n and

D−k
a+ f (a) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b],  − = l ∈ N, D−k
a+ f (a) = 0 for k = 1, . . . , l.

(vi) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b] and f (k)(a) = 0 for k = 0, . . . ,n−2.

(vii) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b],  /∈ N and D−1
a+ f is bounded in a neighbor-

hood of t = a.

The Caputo fractional derivative

The following type of fractional derivative which we use is the Caputo fractional derivative.
We give the definition from [16].

Definition 1.11 Let  > 0, n = []+1, f ∈ ACn[a,b]. The Caputo fractional derivative
D∗a f is defined by

D
∗a f (t) =

1
(n−)

∫ t

a

f (n)(s)
(t − s)−n+1 ds,

for every t ∈ [a,b].

For  = n ∈ N we have Dn∗a f (x) = f (n)(x), while for  = 0 we put D0∗a f (x) = f (x).

The Canavati fractional derivative

The definition of the Canavati fractional derivative is given in [16], but we use it with some
new conditions given in [19].

Let  > 0 and n = []+1. By C
a+[a,b] we denote a space defined by

C
a+[a,b] = { f ∈Cn−1[a,b] : In−

a+ f (n−1) ∈C1[a,b]}.
Definition 1.12 Let  > 0, n = []+ 1. The left-sided Canavati fractional derivative of
f ∈C

a+[a,b], denoted by C1D
a+ f , is defined by

C1D
a+ f (x) =

d
dx

In−
a+ f (n−1)(x) =

1
(n−)

d
dx

∫ x

a
(x− t)n−−1 f (n−1)(t)dt.

For  = n ∈ N we have C1Dn
a+ f (x) = f (n)(x), while for  = 0 we put C1D0

a+ f (x) =
f (x).

A theorem on composition identity for the left-sided Canavati fractional derivative is
proved by Anastassiou in [16]. We use an improvement of that theorem with weaker
conditions given in [19].
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Lemma 1.2 Let  > ≥ 0, n = [ ]+1, m = []+1. Let f ∈C
a+[a,b] such that f (i)(a) =

0, i = m−1, . . . ,n−2. Then f ∈C
a+[a,b] and

C1D
a+ f (x) =

1
( −)

∫ x

a
(x− t)−−1 C1D

a+ f (t)dt, x ∈ [a,b].

The fractional integral of a function f with respect to a given function g

Let (a,b)(−≤ a < b ≤ ) be a finite or infinite interval in R and let  > 0. Let g be an
increasing function on (a,b) such that g′ is continuous on (a,b). The left-sided fractional
integral of a function f with respect to a given function g on [a,b] is defined by

Ia+;g f (x) =
1

()

∫ x

a

g′(y) f (y)dy
[g(x)−g(y)]1−

, x > a.

Remark 1.6 If g(x)= x, then Ia+;x f coincides with the left-sided Riemann-Liouville frac-
tional integral Ia+ f .

The Hadamard fractional integral

Let (a,b) (0≤ a < b≤) be a finite or infinite interval in R
+ and let  > 0. The left-sided

Hadamard fractional integral of order  > 0 is defined by

Ja+ f (x) =
1

()

∫ x

a

(
log

x
y

)−1 f (y)dy
y

, a < x < b.

Note that the left-sided Hadamard fractional integral of order  is a special case of the
left-sided fractional integral of a function f with respect to the given function g, where
g(x) = logx on [a,b] where 0 < a < b ≤ .

The Erdélyi-Kober fractional integral

Let (a,b)(0≤ a < b≤) be a finite or infinite interval in R
+. Let  > 0, > 0 and  ∈R.

The left-sided Erdélyi-Kober fractional integral of order  > 0 is defined by

Ia+; ; f (x) =
x−(+)

()

∫ x

a

y+−1 f (y)dy
(x − y )1− , a < x < b.

The mixed Riemann-Liouville fractional integral

Multidimensional fractional integrals are natural generalizations of corresponding one-
dimensional fractional integrals.
For x = (x1, ...,xn) ∈ R

n and  = (1, ...,n) ∈ R
n, we use the following notation:

() = (1) · . . . ·(n); x = x1
1 . . .xn

n ;

x

=

x1

. . .

xn

;

[a,b] = [a1,b1]×·· ·× [an,bn];a = (a1, . . . ,an) ∈ R
n,b = (b1, . . . ,bn) ∈ R

n
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and by x > a we mean x1 > a1, ...,xn > an.
The left-sided mixed Riemann-Liouville fractional integral of order  > 0 is defined by

Ia+ f (x) =
1

()

∫ x1

a1

· · ·
∫ xn

an

f (t)(x− t)−1dt, (x > a).





Chapter2

Steffensen’s inequality

2.1 Introduction

There are many results related to Steffensen’s inequality and it is still the subject of investi-
gation by many mathematicians. This inequality was firstly given and proved by J. F. Stef-
fensen in 1918 in paper [142]. However, Steffensen’s inequality did not appear in the work
Inequalities by Hardy, Littlewood and Pólya from 1934 (see [60]), which assembled al-
most all known inequalities of that time. Also, Steffensen’s paper [142] was not reviewed
in Jahrbuch über die Fortschritte der Mathematik.

The original version has the following form.

Theorem 2.1 Suppose that f and g are integrable functions defined on (a,b), f is non-
increasing and for each t ∈ (a,b) 0 ≤ g(t) ≤ 1. Then

∫ b

b−
f (t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt, (2.1)

where

 =
∫ b

a
g(t)dt.

13
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Proof. The proof of the second inequality in (2.1) goes as follows:∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt =

∫ a+

a
[1−g(t)] f (t)dt−

∫ b

a+
f (t)g(t)dt

≥ f (a+ )
∫ a+

a
[1−g(t)]dt−

∫ b

a+
f (t)g(t)dt

= f (a+ )
[
 −

∫ a+

a
g(t)dt

]
−
∫ b

a+
f (t)g(t)dt

= f (a+ )
∫ b

a+
g(t)dt−

∫ b

a+
f (t)g(t)dt

=
∫ b

a+
g(t)[ f (a+ )− f (t)]dt ≥ 0.

The first inequality in (2.1) is proved in a similar way, but it also follows from the second
one. One merely sets G(t) = 1− g(t) and  =

∫ b
a G(t)dt. Since 0 ≤ g(t) ≤ 1 on (a,b) it

implies 0 ≤ G(t) ≤ 1 on (a,b) and b−a =  +. Using the second inequality in (2.1) we
obtain ∫ b

a
f (t)G(t)dt ≤

∫ a+

a
f (t)dt,∫ b

a
f (t)[1−g(t)]dt ≤

∫ b−

a
f (t)dt,∫ b

a
f (t)dt−

∫ b−

a
f (t)dt ≤

∫ b

a
f (t)g(t)dt.

Hence, ∫ b

b−
f (t)dt ≤

∫ b

a
f (t)g(t)dt,

which is the first inequality in (2.1). �

A simple modification of the original Steffensen’s inequality was given by Hayashi in
[61]. In fact, using the substitution g(t)/A for g(t) in (2.1) we get the following statement
which is the starting point for investigation of Iyengar inequalities which will be described
in Chapter 9.

Theorem 2.2 Let f and g be integrable functions defined on [a,b] such that f is nonin-
creasing and for each t ∈ [a,b] 0 ≤ g(t) ≤ A (A is a constant > 0). Then

A
∫ b

b−
f (t)dt ≤

∫ b

a
f (t)g(t)dt ≤ A

∫ a+

a
f (t)dt, (2.2)

where

 =
1
A

∫ b

a
g(t)dt.

The following variant of Steffensen’s inequality was proved by Apéry in the paper [21].
In the proof Apéry used an identity which gave a new approach to the proof and a further
generalization of the original inequality.
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Theorem 2.3 Let f be nonincreasing on (0,) and let g be a measurable function on
[0,) such that 0 ≤ g ≤ A, (A is a constant �= 0). Then∫ 

0
f (t)g(t)dt ≤ A

∫ 

0
f (t)dt,

where

 =
1
A

∫ 

0
g(t)dt.

In the proof Apéry used the following identity∫ 

0
f (t)g(t)dt = A

∫ 

0
f (t)dt −

∫ 

0
[A−g(t)][ f (t)− f ( )]dt−

∫ 


g(t)[ f ( )− f (t)]dt,

from which the statement of the theorem holds immediately.
Using the idea of Apéry’s proof, Mitrinović stated in [91] that inequalities in (2.1)

follow from the identities∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt

=
∫ a+

a
[ f (t)− f (a+ )][1−g(t)]dt+

∫ b

a+
[ f (a+ )− f (t)]g(t)dt,

(2.3)

and ∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt

=
∫ b−

a
[ f (t)− f (b− )]g(t)dt +

∫ b

b−
[ f (b− )− f (t)][1−g(t)]dt.

In the same paper [91] Mitrinović gave Davies’ proof of the second inequality in (2.1)
which is based on the consideration of the function H defined by

H(x) =
∫ a+ (x)

a
f (t)dt −

∫ x

a
f (t)g(t)dt,

where

 (x) =
∫ x

a
g(t)dt.

The derivative of H is

H ′(x) = f (a+ (x))g(x)− f (x)g(x)

and it is nonnegative because from 0 ≤ g ≤ 1 we obtain that a+ (x) ≤ x and under the
assumption that f is nonincreasing we have that f (a+ (x)) ≥ f (x). Since function H has
a zero for x = a and its derivative is nonnegative we have that H(x) ≥ 0 for all x ∈ [a,b]
and especially, H(b) ≥ 0 which is the right-hand side of Steffensen’s inequality.
This proof is valid for smooth functions, but it can be extended to other functions by an
appropriate approximation.

By applying Steffensen’s inequality to appropriate functions, in [85] Masjed-Jamei, Qi
and Srivastava obtained the following Steffensen’s type inequalities:



16 2 STEFFENSEN’S INEQUALITY

Theorem 2.4 If f and g are integrable functions such that f is nonincreasing and

− 
b−a

(
1− 1

q

)
≤ g(x) ≤ 1− 

b−a

(
1− 1

q

)
on (a,b), where q �= 0 and

 = q
∫ b

a
g(x)dx,

then∫ b

b−
f (x)dx− 

b−a

(
1− 1

q

)∫ b

a
f (x)dx ≤

∫ b

a
f (x)g(x)dx

≤
∫ a+

a
f (x)dx− 

b−a

(
1− 1

q

)∫ b

a
f (x)dx.

(2.4)

Proof. Let p,q ∈ R and let us consider the functions

F(x) = f (x)+ p
∫ b

a
f (x)dx and G(x) = g(x)+

q−1
b−a

∫ b

a
g(x)dx.

Since the function F is nonincreasing and G(x) ∈ [0,1], Steffensen’s inequalities for the
functions F and G have the form (2.4). �

In this place we give another proof of inequality (2.1) requiring f to be nonnegative.
This proof was given by Bellman in [25].

Suppose there exists no interval on which f vanishes and define a function u by

∫ u(s)

a
f (t)dt =

∫ s

a
f (t)g(t)dt. (2.5)

Then for s,s+h ∈ [a,b],h > 0

∫ u(s+h)

u(s)
f (t)dt =

∫ u(s+h)

a
f (t)dt −

∫ u(s)

a
f (t)dt

=
∫ s+h

a
f (t)g(t)dt−

∫ s

a
f (t)g(t)dt =

∫ s+h

s
f (t)g(t)dt ≥ 0,

which means that u(s + h) ≥ u(s), i.e. function u is a nondecreasing function. Since
0 ≤ g(t) ≤ 1 and f (t) ≥ 0 , t ∈ [a,b] we have

0 ≤
∫ s

a
f (t)g(t)dt ≤

∫ s

a
f (t)dt, a < s < b.

So, ∫ u(s)

a
f (t)dt ≤

∫ s

a
f (t)dt
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which means that u(s) ≤ s. Now

|u(s+h)−u(s)| · v =
∣∣∣∣∫ u(s+h)

a
f (t)dt −

∫ u(s)

a
f (t)dt

∣∣∣∣
=
∣∣∣∣∫ u(s+h)

u(s)
f (t)dt

∣∣∣∣= ∣∣∣∣∫ s+h

s
f (t)g(t)dt

∣∣∣∣≤ |h| f (s),

where inf f (t) ≤ v ≤ sup f (t) on [s,s+h] if h > 0 or [s+h,s] if h < 0. So, the function u is
continuous. Differentiating equality (2.5) we obtain

f (u)
du
ds

= f (s)g(s) (a.e.).

Using the assumption that f is nonincreasing and u(s) ≤ s we have that du
ds = f (s)

f (u)g(s) ≤
g(s). Therefore ∫ s

a
du ≤

∫ s

a
g(t)dt i.e. u(s) ≤ a+

∫ s

a
g(t)dt.

From this and from equality (2.5) there follows the second inequality in (2.1).

Marjanović gave a short proof of Steffensen’s inequality using the following theorem
given by Steffensen in his paper [144] from 1925.

Theorem 2.5 Let g1 and g2 be functions defined on [a,b] such that∫ x

a
g1(t)dt ≥

∫ x

a
g2(t)dt

for all x ∈ [a,b] and ∫ b

a
g1(t)dt =

∫ b

a
g2(t)dt.

If f is a nondecreasing function on [a,b], then∫ b

a
f (x)g1(x)dx ≤

∫ b

a
f (x)g2(x)dx. (2.6)

If f is a nonincreasing function, the inequality in (2.6) is reversed.

Proof. Put g(x) = g1(x)−g2(x) and G(x) =
∫ x
a g(t)dt. Then, under the above hypothesis,

G(x) ≥ 0 (a ≤ x ≤ b) and G(a) = G(b) = 0.

Applying integration by parts, we get∫ b

a
f (t)g(t)dt =

∫ b

a
f (t)dG(t) = f (t)G(t)|ba −

∫ b

a
G(t)d f (t) = −

∫ b

a
G(t)d f (t).

If f is nondecreasing, then
∫ b
a G(t)d f (t) ≥ 0, so

∫ b
a f (t)g(t)dt ≤ 0 which has to be proved.

�
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Marjanović considered inequality (2.6) to give the following short proof of Steffensen’s
inequality (see [84]).

Let us define the functions g1 and g2 as

g1(x) =

{
1, for x ∈ [a,a+ )
0, for x ∈ [a+ ,b]

and g2(x) = g(x), where  =
∫ b
a g(x)dx. Using Theorem 2.5 for a nonincreasing function

f we have ∫ a+

a
f (x)dx =

∫ b

a
f (x)g1(x)dx ≥

∫ b

a
f (x)g(x)dx,

which proves the second inequality in (2.1). The first inequality in (2.1) is derived in a
similar way.

For the sake of completeness, let us mention that Rakić in [137] proved Steffensen’s
inequality using a proof which is directly connected to the definition of the integral.

2.2 Weaker conditions

As we already mentioned, identity (2.3) is a starting point for studying the conditions of
Steffensen’s inequality and eventually changing them. Namely, Milovanović and Pečarić
in their paper [90], using integration by parts in identity (2.3), obtained weaker conditions
on the function g. Vasić and Pečarić in paper [149] showed that these weaker conditions
are necessary and sufficient. Hence, we have the following theorem.

Theorem 2.6 Let f and g be integrable functions on [a,b] and let  =
∫ b
a g(t)dt.

a) The second inequality in (2.1) holds for every nonincreasing function f if and only
if ∫ x

a
g(t)dt ≤ x−a and

∫ b

x
g(t)dt ≥ 0 for every x ∈ [a,b]. (2.7)

b) The first inequality in (2.1) holds for every nonincreasing function f if and only if∫ b

x
g(t)dt ≤ b− x and

∫ x

a
g(t)dt ≥ 0 for every x ∈ [a,b].

Proof.

a) Applying integration by parts, identity (2.3) becomes∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt =−

∫ a+

a

(∫ x

a
(1−g(t))dt

)
d f (x)

−
∫ b

a+

(∫ b

x
g(t)dt

)
d f (x),

(2.8)
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from where we conclude that the condition 0 ≤ g(t) ≤ 1 can be replaced by the
weaker conditions∫ x

a
g(t)dt ≤ x−a for every x ∈ [a,a+ ] and∫ b

x
g(t)dt ≥ 0 for every x ∈ [a+ ,b]. (2.9)

The previous conditions are also necessary. In fact, if x is any element of [a,b], then
let us define the function f as

f (t) =

{
1, t ≤ x

0, t > x.

Using the second inequality in (2.1) we obtain

∫ x

a
g(t)dt =

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt =

{
x−a, for x ∈ [a,a+ ]
 , for x ∈ (a+ ,b].

(2.10)

It is obvious that for x ∈ (a+ ,b] the inequality x−a >  holds. So, we conclude
that ∫ x

a
g(t)dt ≤ x−a for every x ∈ [a,b].

From the same result (2.10) we have that if x ∈ (a+ ,b], then
∫ x
a g(t)dt ≤  . On

the other hand  =
∫ b
a g(t)dt, so we conclude that

∫ b

x
g(t)dt ≥ 0 for x ∈ (a+ ,b].

If x ∈ [a,a+ ], then we have

∫ b

x
g(t)dt =

∫ b

a
g(t)dt−

∫ x

a
g(t)dt =  −

∫ x

a
g(t)dt ≥  − (x−a)≥ 0.

So,
∫ b
x g(t)dt ≥ 0 for every x ∈ [a,b]. We get that if the second inequality in (2.1)

holds for every nonincreasing function, then conditions in (2.7) hold.

b) This is proved similarly as in a). �



20 2 STEFFENSEN’S INEQUALITY

Remark 2.1 In his paper [31] Cao repeated these weaker conditions for Steffensen’s in-
equality.

Previous results involve weakening of assumptions on function g, while the next results
will point out that the assumption on the function f to be nonincreasing is a very strong
condition. Pečarić and Varošanec in paper [129] proved the following result.

Theorem 2.7 Let f ,g : [a,b]→R be integrable functions and  =
∫ b
a g(t)dt. If f satisfies

(QD)

⎧⎨⎩
f (t) ≥ f (c) for t ∈ [a,c]

f (d) ≤ f (t) ≤ f (c) for t ∈ [c,d]
f (t) ≤ f (d) for t ∈ [d,b],

where c = min{a+ ,b−}, d = max{a+ ,b−}, c,d ∈ [a,b], and if g satisfies

(QB)

⎧⎨⎩
0 ≤ g(t) ≤ 1 for t ∈ [a,c]∪ [d,b]

g(t) ≥ 0 for t ∈ [c,d] when c = a+
g(t) ≤ 1 for t ∈ [c,d] when c = b− ,

then (2.1) is true.

It is obvious that if f is a nonincreasing function, then f satisfies condition (QD) and
if g(t) ∈ [0,1] for t ∈ [a,b], then g has property (QB). Hence, the classical Steffensen
inequality becomes a special case of Theorem 2.7. The proof of that theorem is also based
on the Apéry identity.

In [90] Milovanović and Pečarić generalized Theorem 2.6 in the case when function f
is convex of order n. They used the following result from [89]:

Theorem 2.8 Let x �→ f (x) be a convex function of order n (n ≥ 1) on [a,b]. Then, for

every c ∈ [a,b], the function x �→ G(x)
(x−c)n is nondecreasing on [a,b], where

G(x) = f (x)−
n−1


k=0

f (k)(c)
k!

(x− c)k,

with f (k)(c) being the right derivative for c = a and the left derivative for c = b.

Generalizations for a convex function of order n are given in the following theorems.

Theorem 2.9 Let functions f and g satisfy conditions:

(1) f is convex of order n (n ∈ N);

(2) f (k)(a) = 0, k = 0,1, . . . ,n−1;

(3) for all x ∈ [a,b]∫ x

a
(x−a)ng(x)dx ≤ (x−a)n+1

n+1
and

∫ b

x
(x−a)ng(x)dx ≥ 0.
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Then ∫ a+1

a
f (x)dx ≤

∫ b

a
f (x)g(x)dx,

where

1 =
[
(n+1)

∫ b

a
(x−a)ng(x)dx

] 1
n+1

. (2.11)

Proof. Using Theorem 2.8 for c = a and the assumption for a function f , we get that the
function x �→ f (x)

(x−a)n is nondecreasing. Let us define the functions g1 and g2 as

g1(x) =

{
1, x ∈ [a,a+1]
0, x ∈ (a+1,b]

and g2(x) = g(x), where 1 is given by (2.11). Then we get∫ x

a
(t −a)ng1(t)dt ≥

∫ x

a
(t−a)ng2(t)dt (∀x ∈ [a,b])

and ∫ b

a
(t−a)ng1(t)dt =

∫ b

a
(t−a)ng2(t)dt.

Setting in Theorem 2.5:

g1(x) → (x−a)ng1(x), g2(x) → (x−a)ng2(x), f (x) → f (x)
(x−a)n

we obtain ∫ b

a
f (x)g1(x)dx ≤

∫ b

a
f (x)g2(x)dx

and then, using the definition of function g1, we get∫ a+1

a
f (x)dx =

∫ b

a
f (x)g1(x)dx ≤

∫ b

a
f (x)g(x)dx,

which proves the theorem. �

Theorem 2.10 Let functions f and g satisfy conditions:

(1) f is convex of order n (n ∈ N);

(2) f (k)(b) = 0, k = 0,1, . . . ,n−1;

(3) for all x ∈ [a,b]∫ b

x
(b− x)ng(x)dx ≤ (b− x)n+1

n+1
and

∫ x

a
(b− x)ng(x)dx ≥ 0.
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If n is an even number, the inequality∫ b

a
f (x)g(x)dx ≤

∫ b

b−2

f (x)dx

holds, where

2 =
[
(n+1)

∫ b

a
(b− x)ng(x)dx

] 1
n+1

.

If n is an odd number, the reverse inequality holds.

Proof. Similar to the proof of Theorem 2.9. �

Remark 2.2 If 0 ≤ g ≤ 1, the condition (3) in Theorem 2.9 (and Theorem 2.10) is ful-
filled.

2.3 Gauss inequality

In [55] Gauss mentioned the following inequality:
If f is a nonnegative nonincreasing function and a > 0, then provided the integrals

involved exist, ∫ 

a
f (x)dx ≤ 4

9a2

∫ 

0
x2 f (x)dx. (2.12)

That result was generalized by Volkov (see [150], [151]).

Theorem 2.11 Let f be a nonincreasing nonnegative function and g be a differentiable
increasing function such that g(x) ≥ x, x ∈ (0,). If the integral on the right-hand side of
inequality (2.13) exists, then the integral on the left-hand side of inequality (2.13) exists,
too, and the following inequality is valid:∫ 

g(0)
f (x)dx ≤

∫ 

0
f (x)g′(x)dx. (2.13)

Putting g(x) = 4x3

27a2 +a, a > 0, inequality (2.13) is reduced to Gauss’ inequality (2.12).

Volkov also gave a multidimensional version in [151].

Theorem 2.12 Let D be a starlike region and (r,1,2, . . . ,n−1) a point from D. If

(a) f (r,1,2, . . . ,n−1) ≤ 0, (r,grad f ) ≥ 0,

(b) g(r,1,2, . . . ,n−1) ≥ r, (r,gradg) ≥ 0
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then ∫ g



∫ h

g(0)
f (r,e)drd ≥

∫


∫ h

0
f (r,e)g′r(r,e)drd ,

where  is an (n − 1)-dimensional sphere in R
n, e = (1,2, . . . ,n−1) ∈  and

r = h(1,2, . . . ,n−1) is the equation of the border of region D.

In [130] Petschke proved the following result which includes a finite segment of inte-
gration.

Theorem 2.13 Let f : [0,1]→R
+ be a nonincreasing function and  ∈ (0,1), and, ∈

[0,),  �=  .

1) If  >  and t0 =
(
+1
−

) 1
+1  < 1, then

−
∫ 1


f (x)xdx ≤

(
 −
 +1

) −
+1

∫ 1

0
f (x)x dx. (2.14)

2) If  ≤  and t0 ≥ 1, then

1
1− +1

∫ 1


f (x)xdx ≤  +1

 +1

∫ 1

0
f (x)xdx.

As a consequence of inequality (2.14) Petschke obtained the following theorem in
[130].

Theorem 2.14 Let f : [0,) → R
+ be a nonincreasing function. Then for  > 0 and

 >  ≥ 0 we have

−
∫ 


f (x)xdx ≤

(
 −
 +1

) −
+1

∫ 

0
f (x)x dx.

In fact, this inequality is a special case of Volkov’s result (2.13) when

g(x) =
1

−( −+1)

(
 −
 +1

) −
+1

x−+1 + .

In [113] Pečarić proved the following result.

Theorem 2.15 Let G : [a,b] → R be an increasing function and let f : I → R be a non-
increasing function (I is an interval from R such that a,b,G(a),G(b) ∈ I). If G(x) ≥ x
then ∫ G(b)

G(a)
f (x)dx ≤

∫ b

a
f (x)G′(x)dx. (2.15)

If G(x) ≤ x, the reverse inequality in (2.15) is valid.
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Proof. Using the substitution G(x) = z we get∫ b

a
f (x)G′(x)dx =

∫ b

a
f (x)dG(x) =

∫ G(b)

G(a)
f (G−1(z))dz.

If G(z) ≥ z, then G−1(z) ≤ z and f (G−1(z)) ≥ f (z). So we have∫ G(b)

G(a)
f (G−1(z))dz ≥

∫ G(b)

G(a)
f (z)dz,

and (2.15) is valid. Of course, if G(z) ≤ z, we get the reverse inequality. �

It is interesting that this inequality includes as special cases three famous inequali-
ties which were obtained in independent ways: Volkov’s, Steffensen’s and Ostrowski’s
inequality. Volkov’s inequality (2.13) was already mentioned as a generalization of Gauss’
inequality (2.12).

Ostrowski’s result has the following form (see [99]).
Let f be a nonincreasing function on [0,a] and g be a nondecreasing continuous func-

tion with continuous derivative and g(t) ≤ t for 0 ≤ t ≤ a with g(0) = 0. Then∫ a

0
f (t)g′(t)dt ≤

∫ g(a)

0
f (t)dt. (2.16)

It is obvious that (2.15) is a generalization of (2.13) and (2.16).
Now, we show that Steffensen’s inequality follows from (2.15).

If we let G(x) = a+
∫ x
a g(t)dt in Theorem 2.15, where g is a nonnegative function, then in

the case G(x) ≤ x, i.e., ∫ x

a
g(t)dt ≤ x−a,

we get the second inequality in (2.1). For the first inequality we let G(x) = b− ∫ b
x g(t)dt

in Theorem 2.15, for G(x) ≥ x, i.e.,∫ b

x
g(t)dt ≤ b− x.

Hence, we get the first inequality in (2.1).
Note that here we used the weaker conditions for Steffensen’s inequality given in The-

orem 2.6.

In [15] Alzer gave a lower bound for Gauss’ inequality (2.12). In fact, he proved the
following theorem.

Theorem 2.16 Let g : [a,b]→ R be increasing, convex and differentiable, and let f : I →
R be a onincreasing function. Then∫ b

a
f (s(x))g′(x)dx ≤

∫ g(b)

g(a)
f (x)dx ≤

∫ b

a
f (t(x))g′(x)dx, (2.17)
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where

s(x) =
g(b)−g(a)

b−a
(x−a)+g(a) (2.18)

and
t(x) = g′(x0)(x− x0)+g(x0), x0 ∈ [a,b]. (2.19)

(I is an interval containing a,b,g(a),g(b),t(a) and t(b).)
If either g is concave or f is nondecreasing, then the reversed inequalities hold.

Proof. Let g be convex and f be nonincreasing. Denote h(x) = f (g(x)). Then h is also
nonincreasing. Since g is convex for all x ∈ [a,b] we have

t(x) ≤ g(x) ≤ s(x).

This implies

g−1(t(x)) ≤ x ≤ g−1(s(x)) and h(g−1(t(x))) ≥ h(x) ≥ h(g−1(s(x))).

Since g is increasing we have

h(g−1(t(x))) ·g′(x) ≥ h(x) ·g′(x) ≥ h(g−1(s(x))) ·g′(x).

Hence,∫ b

a
h(g−1(t(x))) ·g′(x)dx ≥

∫ b

a
h(x) ·g′(x)dx ≥

∫ b

a
h(g−1(s(x))) ·g′(x)dx. (2.20)

Now, from (2.20) and∫ b

a
h(x)g′(x)dx =

∫ g(b)

g(a)
h(g−1(y))dy (with substitution y = g(x))

we get (2.17). �

Setting in (2.17) a = 0, b ≥ x0 = k
3√2

and g(x) = 1
k2 x3 + k, and then letting b tend to ,

we get Gauss’ inequality for a nonincreasing f .
Under the additional assumption that f is nonnegative and b = k, Alzer obtained

3
∫ k

0
x2 f (x+ k)dx ≤ k2

∫ 

k
f (x)dx,

where the constant 3 cannot be replaced by a larger number.
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2.4 Inverse Steffensen’s inequality

In this section we give conditions for inverse inequalities in (2.1). Results given in this
section were given by Pečarić in [109].

Theorem 2.17 Let f : I → R, g : [a,b]→ R ([a,b]⊂ I, I is an interval in R) be integrable
functions, a+ ∈ I where  =

∫ b
a g(t)dt. Then∫ a+

a
f (t)dt ≤

∫ b

a
f (t)g(t)dt (2.21)

holds for every nonincreasing function f if and only if∫ x

a
g(t)dt ≥ x−a for x ∈ [a,a+ ] and

∫ b

x
g(t)dt ≤ 0 for x ∈ (a+ ,b] (2.22)

and 0 ≤  ≤ b−a; or ∫ x

a
g(t)dt ≥ x−a for x ∈ [a,b]; (2.23)

or ∫ b

x
g(t)dt ≤ 0 for x ∈ [a,b]. (2.24)

Proof. For

f (t) =

{
1, t ≤ x

0, t > x

for all x ∈ I, we get from (2.21) that (2.22) or (2.23) or (2.24) must be satisfied.
Now, we show the other direction.
Let 0 ≤  ≤ b−a. Then∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt =

∫ a+

a
( f (t)− f (a+ ))(1−g(t))dt

+
∫ b

a+
( f (a+ )− f (t))g(t)dt = −

∫ a+

a

(∫ x

a
(1−g(t))dt

)
d f (x)

−
∫ b

a+

(∫ b

x
g(t)dt

)
d f (x) ≤ 0.

If  > b−a, then∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt =

∫ b

a
f (t)(1−g(t))dt +

∫ a+

b
f (t)dt

=
∫ b

a
( f (t)− f (b))(1−g(t))dt +

∫ a+

b
(a+ − x)d f (x)

= −
∫ b

a

(∫ x

a
(1−g(t))dt

)
d f (x)+

∫ a+

b
(a+ − x)d f (x) ≤ 0.
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Now, let  < 0. Then∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt = −

∫ a

a+
f (t)dt −

∫ b

a
f (t)g(t)dt

=
∫ b

a
g(t)( f (a)− f (t))dt +

∫ b

a+
(x−a− )d f (x)

= −
∫ b

a

(∫ b

x
g(t)dt

)
d f (x)+

∫ a

a+
(x−a− )d f (x)≤ 0.

�

Analoguously, in the same paper, the following theorem is given.

Theorem 2.18 Let f : I → R, g : [a,b]→ R ([a,b]⊂ I) be integrable functions, b− ∈ I
where  =

∫ b
a g(t)dt. Then ∫ b

a
f (t)g(t)dt ≤

∫ b

b−
f (t)dt (2.25)

holds for every nonincreasing function f if and only if∫ x

a
g(t)dt ≤ 0 for x ∈ [a,b− ] and

∫ b

x
g(t)dt ≥ b− x for x ∈ (b− ,b]

and 0 ≤  ≤ b−a; or ∫ b

x
g(t)dt ≥ b− x for x ∈ [a,b];

or ∫ x

a
g(t)dt ≤ 0 for x ∈ [a,b].

The following theorems are also proved in [109].

Theorem 2.19 Let g : [a,b]→R be an integrable function for which there exists c∈ [a,b]
such that g(x) ≥ 1 for x ∈ [a,c] and g(x) ≤ 0 for x ∈ (c,b]. Then (2.21) holds for every
nonincreasing function f : I → R provided that [a,b] ⊂ I and a+ ∈ I.

Proof. Let 0 ≤  ≤ b−a. Suppose that c ≤ a+ . Then it is obvious∫ x

a
g(t)dt ≥ x−a for x ∈ [a,c] and

∫ b

x
g(t)dt ≤ 0 for x ∈ [a+ ,b].

Suppose that for some x1 ∈ (c,a+ ) we have
∫ x1
a g(t)dt < x1−a. Since

∫ b
x1

g(t)dt ≤ 0, we

have
∫ b
a g(t)dt < x1−a, i.e. a+ < x1, what is, evidentily, a contradiction. Analoguously,

in the case c > a+ we can prove that (2.22) also holds.
Now let  > b−a. Then

∫ x
a g(t)dt ≥ x−a for x ∈ [a,c] is obvious. For some x ∈ (c,b] we

have ∫ x

a
g(t)dt =

∫ b

a
g(t)dt−

∫ b

x
g(t)dt ≥

∫ b

a
g(t)dt ≥ b−a≥ x−a,

i.e., the condition (2.23) holds. Similarly, in the case  < 0, we can prove that (2.24) holds.
So, from Theorem 2.17 we obtain Theorem 2.19. �
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Theorem 2.20 Let g : [a,b]→R be an integrable function for which there exists c∈ [a,b]
such that g(x) ≤ 0 for x ∈ [a,c] and g(x) ≥ 1 for x ∈ (c,b]. Then (2.25) holds for every
nonincreasing function f : I → R provided that [a,b] ⊂ I and b− ∈ I.

Theorem 2.21 Let g : [a,b]→ R be an integrable function such that g(x) ≥ 1 (or g(x) ≤
0) for every x ∈ [a,b]. Then the reverse inequalities in (2.1) hold for every nonincreasing
function f : I → R provided that a+ ,b− ∈ I.

Proof. This is a consequence of Theorems 2.19 and 2.20. �

2.5 Jensen-Steffensen’s inequality

Jensen’s inequality for convex functions is one of the most important inequalities in math-
ematics and statistics. Some well known inequalities can be obtained from it. For more
details see e.g. [94] and [122].

Theorem 2.22 (JENSEN’S INEQUALITY) If I is an interval in R and f : I →R is convex,
x = (x1, . . . ,xn) ∈ In (n ≥ 2), p = (p1, . . . , pn) is a positive n−tuple (i.e. pi > 0) and
Pn = n

i=1 pi, then

f

(
1
Pn

n


i=1

pixi

)
≤ 1

Pn

n


i=1

pi f (xi). (2.26)

If f is strictly convex, then (2.26) is strict unless x1 = · · · = xn.

The integral version of Jensen’s inequality is



(∫ b
a f (x)d(x)∫ b

a d(x)

)
≤
∫ b
a ( f (x))d(x)∫ b

a d(x)

which holds for all convex  and f ∈ L1(a,b) and a nonnegative measure  .

Reasonable question is whether positivity of numbers pi in Jensen’s inequality can be
relaxed at the expense of restricting x = (x1, . . . ,xn). In 1919 Steffensen answered on this
question with the following theorem (see [143]).

Theorem 2.23 (JENSEN-STEFFENSEN’S INEQUALITY) If f : I → R is a convex func-
tion, x is a real monotone n−tuple from In and p is a real n−tuple such that

0 ≤ Pk =
k


i=1

pi ≤ Pn, (1 ≤ k ≤ n−1), Pn > 0, (2.27)

then (2.26) holds. If f is a strictly convex function, then inequality (2.26) is strict except
when x1 = · · · = xn.
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This inequality is evidently more general than Jensen’s inequality since numbers pi

need not necessarily be positive.
An integral analogue of Jensen-Steffensen’s inequality is given in the following theo-

rem.

Theorem 2.24 If f is a convex function, g is a monotone function and p satisfies

0 ≤
∫ x

a
p(x)dx ≤

∫ b

a
p(x)dx (∀x ∈ [a,b]),

∫ b

a
p(x)dx > 0,

then

f

(∫ b
a p(x)g(x)dx∫ b

a p(x)dx

)
≤
∫ b
a p(x) f (g(x))dx∫ b

a p(x)dx
. (2.28)

In 1919 Steffensen derived Jensen-Steffensen’s inequality using the second inequal-
ity in (2.1) (see [104] and [143]). In 1970 Bullen derived Steffensen’s inequality using
Jensen-Steffensen’s inequality (see [30]). Therefore, Steffensen’s and Jensen-Steffensen’s
inequality are equivalent.

In [104] Pečarić derived Jensen-Steffensen’s inequality from Steffensen’s inequality
using the idea of the proof of Olkin’s inequality (given in [95, p. 113] and [98]). Olkin’s
inequality is given in the following theorem.

Theorem 2.25 Let 1 ≥ h1 ≥ ·· · ≥ hn ≥ 0 and a1 ≥ ·· · ≥ an ≥ 0. Let f be a convex
function on [0,a1]. Then(

1−
n


i=1

(−1)i−1hi

)
f (0)+

n


i=1

(−1)i−1hi f (ai) ≥ f

(
n


i=1

(−1)i−1hiai

)
.

The proof of Jensen-Steffensen’s inequality using Steffensen’s inequality given in [104]
is the following.

Let a1 ≥ ·· · ≥ an and let f be a continuous convex function on [an,a1]. Let

g(t) = gk for ak+1 < t ≤ ak (k = 1, . . . ,n−1)

where

gk =
k

i=1 pi

n
i=1 pi

(k = 1, . . . ,n−1),
n


i=1

pi > 0.

Then

 =
∫ a1

an

g(t)dt = (a1−a2)g1 + · · ·+(an−1−an)gn−1 = n
i=1 piai

n
i=1 pi

−an.

From the convexity of f it follows that x �→ − f ′(x) is nonincreasing function. Applying
the right-hand side of Steffensen’s inequality to the function − f ′(x) we obtain∫ a1

an

f ′(t)g(t)dt ≥
∫ an+

an

f ′(t)dt
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thus we get
n−1


k=1

( f (ak)− f (ak+1))gk ≥ f (an + )− f (an)

from which we obtain (2.26). From the condition 0 ≤ g ≤ 1 we get (2.27) directly. Thus
we proved that in this case (2.26) holds for a nonincreasing sequence. Having in mind that

0 ≤
n


i=k

pi ≤
n


i=1

pi (k = 1, . . . ,n) ⇔ 0 ≤
k


i=1

pi ≤
n


i=1

pi (k = 1, . . . ,n)

it can easily be shown that (2.26) also holds for a nondecreasing sequence.
Hence, Theorem 2.23 is proved for every continuous function convex on [an,a1]. However,
if a function is convex on [an,a1] it is continuous on (an,a1) (see [95, p. 17]). Therefore,
this proof is valid for the function

F(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim

x→a+
n

f (x), for x = an

f (x), for x ∈ (an,a1)
lim

x→a−1
f (x), for x = a1

if the function f is convex. Then, it is obvious that

f (an) ≥ F(an) and f (a1) ≥ F(a1). (2.29)

In [104] Pečarić also discussed the effect of the end-points on inequality (2.26). Discussion
is made for the following cases

1)0 <  < a1−an, 2) = 0 or  = a1−an.

Let us observe the first case, i.e. 0 <  < a1−an. Summing for the same points, without
loss of generality, we can suppose a1 > a2 > · · · > an. From (2.29) and conditions p1 ≥ 0,
pn ≥ 0 we have

f

⎛⎜⎜⎝
n

i=1

piai

n

i=1

pi

⎞⎟⎟⎠= F

⎛⎜⎜⎝
n

i=1

piai

n

i=1

pi

⎞⎟⎟⎠≤

n

i=1

piF(ai)

n

i=1

pi

≤

n

i=1

pi f (ai)

n

i=1

pi

.

Now, let us observe the second case. Firstly, let  = a1 −an. From the proof it is obvious
that it is valid when

k

i=1

pi

n

i=1

pi

= 1 (k = 1, . . . ,n−1)⇒
n


i=k

pi = 0 (k = 2, . . . ,n),

i.e. p1 �= 0, p2 = · · ·= pn = 0. Analogously, when  = 0 we get pn �= 0, p1 = · · ·= pn−1 =
0. It can easily be shown that in this case the equality in (2.26) holds. Hence, the proof of
Theorem 2.23 is complete.
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Weaker conditions for Steffensen’s inequality given by (2.7) can be used to extend the
conditions for validing inequality (2.26). Hence, similar to the previous proof the following
theorem can be proved (see [104]).

Theorem 2.26 Let pi (i = 1, . . . ,n) and a1 ≥ ·· · ≥ an be real numbers which satisfy

k


i=1

pi(x−ai) ≥ 0,
n


i=k+1

pi(x−ai) ≤ 0, for all x ∈ (ak+1,ak] (2.30)

for k = 1, . . . ,n−1 and n
i=1 pi > 0. Then (2.26) holds for every convex function f .

Remark 2.3 It is easy to prove that (2.26) is valid if a1 ≤ ·· · ≤ an and the reverse in-
equalities in (2.30) hold.

The corresponding integral analogue is given in the following theorem (see [104]).

Theorem 2.27 If the function p and monotone function g satisfy conditions

0 ≤
∫ x

a
p(t)|g(x)−g(t)|dt ≤

∫ b

a
p(t)|g(x)−g(t)|dt, ∀x ∈ [a,b],∫ b

a
p(t)dt > 0,

then for every convex function f inequality (2.28) holds.

Now we consider Bullen’s proof of Steffensen’s inequality using Jensen-Steffensen’s
inequality (see [30]). First we recall that if f is nonincreasing function and F(x)=

∫ x
a f (t)dt,

then F is concave. The following theorem needed in Bullen’s proof is proved in [30].

Theorem 2.28 If F is a continuous concave function and x1 ≤ ·· · ≤ xn and if p1, . . . , pn

are real numbers satisfying (2.27), then the reverse inequality in (2.26) holds.

The idea of Bullen’s proof is to obtain Steffensen’s inequality (2.1) for a function g in
a certain class of step functions. Then it is done for a Riemann integrable function g and at
the end for integrable function g.

Let f be nonincreasing and let a = a0 < a1 < · · · < an = b be a partition of [a,b].
Suppose that g is the step function

g(x) = ck, ak ≤ x < ak+1, k = 0,1, . . . ,n−1

such that 0 ≤ g ≤ 1. This implies that 0 ≤ ck ≤ 1, k = 0,1, . . . ,n−1. Now the right-hand
side inequality in (2.1) reduces to

F(a0)+
n−1


k=0

ck(F(ak+1)−F(ak)) ≤ F

(
a0 +

n−1


k=0

ck(ak+1−ak)

)
, (2.31)

where F(x) =
∫ x
a f (t)dt. Since f is nonincreasing and F(x) =

∫ x
a f (t)dt, F is concave.

Hence, (2.31) follows from Theorem 2.28. Similar arguments can be used for the left-hand
side Steffensen’s inequality.
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To complete the proof Bullen considered a class of Riemann integrable functions. He
supposed that g = limgk, where gk,(k = 1,2, . . .), are step functions. Furthermore, Bullen
extended this result to all integrable functions g to complete the proof.

In [30] Bullen noted that this procedure can be used to extend other results from sums
to integrals. He mentioned that integral Rado and Popoviciu inequalities can be obtained
in this manner.

In [29] Boas considered integral Jensen-Steffensen inequality. Boas gave proof of
Jensen-Steffensen’s inequality which begins with reproducingZygmund’s proof of Jensen’s
inequality and uses the second mean value theorem for Stieltjes integral (for details see
[29]).

The following generalization of Jensen- Steffensen’s inequality is given in [110]. It
is a consequence of generalization of Steffensen’s inequality which will be described in
Section 3.2.

Theorem 2.29 Let f : [a,b] → R and H : [0,b−a]→ R be differentiable functions such
that x �→ f ′(x)/H ′(x− a) is a nondecreasing function, H is an increasing function and
H(0) = 0. If a is a monotonous n−tuple and p is a real n−tuple such that

0 ≤ Pk ≤ Pn, Pn > 0

(
Pk =

k


i=1

pi, k = 1, . . . ,n

)
,

then

f

(
a+H−1

(
1
Pn

n


i=1

piH(ai−a)

))
≤ 1

Pn

n


i=1

pi f (ai). (2.32)

If x �→ f ′(x)/H ′(x− a) is a nonincreasing function, then the reverse inequality in (2.32)
holds.

Proof. Let a be a nondecreasing n−tuple. By substitutions f (t) → f ′(t), h(t) → H ′(t −
a) and g(t) = gi (gi = Pi/Pn) for ai−1 < t ≤ ai (a0 = a), from Theorem 3.15 we obtain
Theorem 2.29. �

The following remarks are given in [110].

Remark 2.4 If f and H are twice differentiable functions, then the condition that x �→
f ′(x)/H ′(x−a) is a nondecreasing function can be replaced by the condition

f ′′(x)H ′(x−a)− f ′(x)H ′′(x−a)≥ 0.

This result for a = 0 is given in [72].

Remark 2.5 Let f be a (k+1)−convex function such that f (m)(a) = 0 (m = 1, . . . ,k−1).
Then x �→ f ′(x)/(x−a)k−1 is a nondecreasing function and (2.32) becomes

f

⎛⎝a+

(
1
Pn

n


i=1

pi(ai−a)k

) 1
k
⎞⎠≤ 1

Pn

n


i=1

pi f (ai).
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If f is a (k+1)−concave function, then the reverse inequality holds. This is also given in
[106] and [148]. Proof given in [106] based on the generalization of Steffensen’s inequality
for convex functions given in Section 3.2 (Theorem 3.17).

Remark 2.6 The condition for f in Theorem 2.29 can be weakened i.e. we can only
suppose that the function x �→ f (a + H−1(t)) is convex (concave) on [0,H(b− a)]. This
result, for a = 0 and H(x) = xk, is given in [72]. (See also [106]).

In [108] Pečarić gave necessary and sufficient conditions for inverse of Jensen-Steffen-
sen’s inequality (see also [109]).

Theorem 2.30 Let x and p be two n−tuples of real numbers such that xi ∈ I (1 ≤ i ≤ n)
and Pn > 0. The reverse inequality in (2.26) holds for every convex function f : I → R and
for every monotonic n−tuple x if and only if there exists m ∈ {1, . . . ,n} such that

Pk ≤ 0(k < m), Pk ≤ 0(k > m),

where Pk = Pn−Pk−1.

Proof. We recall the proof from [109] which shows that this theorem can be obtained from
Theorem 2.19. Let x1 ≥ ·· · ≥ xn and

g(t) = gk, xk+1 < t ≤ xk (1 ≤ k ≤ n−1), gk = Pk/Pn.

Then

 =
∫ x1

xn

g(t)dt =
1
Pn

n


i=1

pixi − xn.

Since f can be approximated uniformly in [a,b] by polynomials with a nonnegative second
derivative there is no loss of generality in assuming that f ′(x) exists and it is nondecreasing,
i.e. we have that x �→ − f ′(x) is a nonincreasing function, and then, from (2.21), we obtain
(2.26) with the reverse inequality. �

2.6 Discrete Steffensen’s inequality

In his paper [142] Steffensen gave a corresponding theorem for sums instead of integrals.
The discrete Steffensen’s inequality was also mentioned in Hayashi’s paper [62].

Theorem 2.31 Let 0 ≤  ≤ 1 and let f be a nonincreasing function. Then

y


n=y−s+1

f (n) ≤
y


n=x

f (n)(n) ≤
x+s−1


n=x

f (n)

where s = y
n=x (n).
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We have the following convention about sum when limits of summation are not in-
tegers. If x =  − 1, y =  + 2, where  and  are integers, 0 ≤ i < 1, i = 1,2 and
y ≥ x−1, we use the convenient notation

y


n=x

u(n) = 1u(−1)+



n=

u(n)+2u( +1), (2.33)

with the understanding that
−1


n=

u(n) = 0.

Since the sum depends only on the integer values of the argument n, we may put

u(n+ ) = u(n), 0 ≤  < 1.

With this convention, (2.33) can be written as

y


n=x

u(n) =
∫ y+1

x
u(t)dt, y ≥ x−1.

The following is a discrete analogue of Steffensen’s inequality given by Evard and
Gauchman in [41]. Evard and Gauchman obtained the following discrete case applying
Corollary 3.4, which is a consequence of generalized Steffensen’s inequality over a general
measure space given in Theorem 3.65.

Theorem 2.32 Let c be a positive real number. Let (xi)n
i=1 be a nonincreasing finite

sequence of nonnegative real numbers, and let (yi)n
i=1 be a finite sequence of real numbers

in [0,c]. Let k1,k2 ∈ {1, . . . ,n} be such that

k2 ≤ n
i=1 yi

c
≤ k1.

Then
n


i=n−k2+1

xi ≤ 1
c

n


i=1

xiyi ≤
k1


i=1

xi.

For c = 1 we obtain the following corollary and give a simple proof which was obtained
by Liu in [81].

Corollary 2.1 Let (xi)n
i=1 be a nonincreasing finite sequence of nonnegative real num-

bers, and let (yi)n
i=1 be a finite sequence of real numbers such that 0 ≤ yi ≤ 1 for every i.

Let k1,k2 ∈ {1, . . . ,n} be such that

k2 ≤
n


i=1

yi ≤ k1.

Then
n


i=n−k2+1

xi ≤
n


i=1

xiyi ≤
k1


i=1

xi. (2.34)
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Proof. Let us consider the difference k1
i=1 xi −n

i=1 xiyi. By elementary transformations
we have

k1


i=1

xi−
n


i=1

xiyi =
k1


i=1

(1− yi)xi −
n


i=k1+1

xiyi

≥ xk1

k1


i=1

(1− yi)−
n


i=k1+1

xiyi = xk1

(
k1−

k1


i=1

yi

)
−

n


i=k1+1

xiyi

≥ xk1

(
n


i=1

yi−
k1


i=1

yi

)
−

n


i=k1+1

xiyi = xk1

n


i=k1+1

yi −
n


i=k1+1

xiyi

=
n


i=k1+1

(xk1 − xi)yi ≥ 0

where the first inequality holds because (xi)n
i=1 is nonincreasing, while the second inequal-

ity holds since n
i=1 yi ≤ k1 by assumption of Corollary. So the second inequality in (2.34)

is proved.
The first inequality in (2.34) is proved similarly. �

Inequality (2.34) is called the discrete Steffensen’s inequality.

The following corollary was obtained by Evard and Gauchman in [41]. They applied
integral inequalities on the composition of functions to the function f = n

i=1 xi(i−1,i].

Corollary 2.2 Let , , ∈ R. Let x1, . . . ,xn be nonnegative real numbers. Let A and B
be positive real numbers such that

max{x1 , . . . ,xn } ≤ B ,
n


i=1

xi = A ,
n


i=1

xi = B .

Let k1,k2 ∈ {1, . . . ,n} be such that k1 ≤
(

A
B

) ≤ k2. Then:

(i) If −−
 ≤ 0 and  �= 0, then there are k1 numbers among the numbers x1, . . . ,x


n

whose sum is at most B .

(ii) If −−
 ≥ 0 and  �= 0, then there are k2 numbers among the numbers x1, . . . ,x


n

whose sum is at least B .

Applying Corollary 2.2 with  = 1,  = 2 and  = 1 Evard and Gauchman obtained
the following corollary.

Corollary 2.3 Let (xi)n
i=1 be a finite sequence of nonnegative real numbers. Let A, B be

positive real numbers such that

n


i=1

xi ≤ A,
n


i=1

x2
i ≥ B2.

Let k ∈ {1, . . . ,n} be such that k ≥ A
B . Then there are k numbers among the numbers

x1, . . . ,xn whose sum is at least B.



36 2 STEFFENSEN’S INEQUALITY

To give an application of Corollary 2.3 Evard and Gauchman showed that this corol-
lary gives an immediate solution to the problem proposed in the Moscow Mathematical
Olympiad in 1954. Problem was the following:
A hundered positive numbers x1, . . . ,x100 satisfy conditions

x1 + · · ·+ x100 < 300, x2
1 + · · ·+ x2

100 > 10000.

Show that among them, there are three numbers whose sum is greater than 100.
Solution of that problem given in [41] is to apply Corollary 2.3 with n = 100, A = 300,
B = 100 and k = 3.

The following result was proved by Gauchman in [51].

Theorem 2.33 Let l ≥ 0 be a real number, (xi)n
i=1 be a nonincreasing finite sequence of

real numbers in [l,) and (yi)n
i=1 be a finite sequence of nonnegative real numbers. Let

 : [l,)→ [0,) be increasing, convex and such that(xy)≥(x)(y) for all x,y,xy≥ l.
Let k ∈ {1, . . . ,n} be such that k ≥ l and (k) ≥ n

i=1 yi. Then either

n


i=1

(xi)yi ≤

(
k


i=1

xi

)
or

k


i=1

yi ≥ 1.

Proof. Since (xi)n
i=1 is nonincreasing and  is increasing we have



(
k


i=1

xi

)
≥(kxk) and 

(
k


i=1

xi

)
≥(xi +(k−1)xk) . (2.35)

If xi > xk for some i = 1,2, . . . ,k− 1, then by Proposition 1.1 for convex function  we
have

(xi)−(xk)
xi − xk

≤ (xi +(k−1)xk)−(xk +(k−1)xk)
xi− xk

i.e.

(xi)−(xk) ≤(xi +(k−1)xk)−(kxk).

If xi = xk for some i = 1,2, . . . ,k−1, then the above inequality also holds. Using (2.35)
we get

(xi)−(xk) ≤

(
k


i=1

xi

)
−(kxk). (2.36)



2.6 DISCRETE STEFFENSEN’S INEQUALITY 37

for i = 1,2, . . . ,k. Now simple transformations on sums give us

n


i=1

(xi)yi =
k


i=1

(xi)yi +
n


i=k+1

(xi)yi ≤
k


i=1

(xi)yi +(xk)
n


i=k+1

yi

=
k


i=1

(xi)yi +(xk)

(
n


i=1

yi −
k


i=1

yi

)
=

k


i=1

((xi)−(xk))yi +(xk)
n


i=1

yi

≤
k


i=1

[


(
k


i=1

xi

)
−(kxk)

]
yi +(xk)

n


i=1

yi

≤
[


(
k


i=1

xi

)
−(kxk)

]
k


i=1

yi +(xk)(k) ≤
[


(
k


i=1

xi

)
−(kxk)

]
k


i=1

yi +(kxk).

Then [


(
k


i=1

xi

)
−(kxk)]

(
k


i=1

yi−1

)

=

[


(
k


i=1

xi

)
−(kxk)

]
k


i=1

yi−

(
k


i=1

xi

)
+(kxk) ≥

n


i=1

(xi)yi −

(
k


i=1

xi

)
.

If k
i=1 yi −1 ≥ 0, then the statement of theorem is valid. If k

i=1 yi−1 ≤ 0, then using
(2.35) we get

n


i=1

(xi)yi−

(
k


i=1

xi

)
≤ 0

and the proof has been established. �

As mentioned by Gauchman, Theorem 2.33 has simple form if (x)=x , where ≥1.

Theorem 2.34 Let (xi)n
i=1 be a nonincreasing finite sequence of nonnegative real num-

bers and let (yi)n
i=1 be a finite sequence of nonnegative real numbers. Assume that  ≥ 1.

Let k ∈ {1, . . . ,n} be such that

k ≥
(

n


i=1

yi

) 1


.

Then either
n


i=1

xi yi ≤
(

k


i=1

xi

)

or
k


i=1

yi ≥ 1.

As an application of Theorem 2.34 Gauchman obtained the following theorem in [51].
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Theorem 2.35 Let  and  be real numbers such that  ≥ 1+ , 0 ≤  ≤ 1. Let (xi)n
i=1

be a nonincreasing sequence of nonnegative real numbers. Assume that

n


i=1

xi ≤ A,
n


i=1

xi ≥ B ,

where A and B are positive real numbers. Let k ∈ {1,2, . . . ,n} be such that k ≥
(

A
B

) 
−1

.

Then
k


i=1

xi ≥ B . (2.37)

Proof. Let us define the sequence (yi)n
i=1 as following: yi =

xi

B
, i = 1,2, . . . ,n. Then we

have
n


i=1

yi =
1
B

n


i=1

xi ≤ A
B

,

and since k is a number such that k ≥
(

A
B

) 
−1

we get that k ≥
(

n


i=1

yi

) 
−1

. Sequences

(xi )n
i=1 (instead of (xi)n

i=1), (yi)n
i=1 and number −1

 > 1 satisfy the assumptions of Theo-
rem 2.34. Then either

n


i=1

(xi )
−1
 yi ≤

(
k


i=1

xi

) −1


or
k


i=1

yi ≥ 1,

i.e.
n


i=1

xi
B

≤
(

k


i=1

xi

)−1


or
k


i=1

xi ≥ B. (2.38)

If the first inequality holds, then we have

k


i=1

xi ≥
(

1
B

n


i=1

xi

) 
−1

≥
(

1
B

B
) 

−1

= B .

If the second inequality holds, then by the well-known inequality for sums of order p,
([122, p.165]), we have (

k


i=1

xi

)1/

≥
k


i=1

xi for 0 ≤  ≤ 1,

i.e. together with (2.38) we obtain k
i=1 xi ≥ B . Therefore, in both cases we have

(2.37). �
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Remark 2.7 For  = 1, Theorem 2.35 was given in [41] by Evard and Gauchman.

In [53] Gauchman obtained the following theorem using the generalization of Stef-
fensen’s inequality given in Theorem 3.67.

Theorem 2.36 Let  and  be real numbers such that  > 1,  − + 1 ≥ 0 and let
(xi)n

i=1 be a nonincreasing sequence of nonnegative real numbers such that n
i=1 xi ≤ A,

n
i=1 xi ≥ B , where A and B are positive real numbers. Let k ∈ {1, . . . ,n} be such that

k ≥
(

A
B

) 
(−1)(+1)

.

Then
k


i=1

xi ≥
(

B

A−+1

) 
(−1)(+1)

.

Taking  = 2,  = 1 in Theorem 2.36 we obtain Corollary 2.3. Taking  = 1 in
Theorem 2.36 Gauchman obtained the following.

Corollary 2.4 Let  be real number such that 1 <  ≤ 2 and let (xi)n
i=1 be a nonincreas-

ing sequence of nonnegative real numbers such that n
i=1 xi ≤ A, n

i=1 xi ≥ B , where A
and B are positive real numbers. Let k ∈ {1, . . . ,n} be such that

k ≥
(

A
B

) 
2(−1)

.

Then
k


i=1

xi ≥
(

B

A2−

) 1
2(−1)

.

Remark 2.8 Corollary 2.4 complements the result given in Theorem 2.35 for  = 1.

In [101] Pachpatte proved the following two theorems.

Theorem 2.37 Let (un)n∈N be a nonincreasing sequence of nonnegative real numbers.
If (cn)n∈N is a sequence of real numbers such that 0 ≤ cn ≤ A (A is a constant different
from zero), then




n=1

cnun ≤ A



n=1

un,

where

 =
1
A




n=1

cn. (2.39)

Remark 2.9 As noted in [129], Pachpatte omitted that  must be an integer.
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Theorem 2.38 Let (un)n∈N be a nondecreasing sequence of nonnegative real numbers.
Let (cn)n∈N be a sequence as in Theorem 2.37. Then

A



n=1

un ≤



n=1

cnun,

where  is defined by (2.39).

Considering one dimensional case with discrete measure  in Theorem 3.55, Pečarić
and Varošanec obtained the following theorem (see [129]).

Theorem 2.39 Let ( fn)n and (gn)n be real N−tuples, A a real number and L an integer
such that AL =N

n=1 gn and one of the following cases is satisfied:

(1) gn ≤ A and fn ≥ fL for n = 1, . . . ,L;
gn ≥ 0 and fn ≤ fL for n = L+1, . . . ,N;

(2) gn ≥ A and fn ≤ fL for n = 1, . . . ,L;
gn ≤ 0 and fn ≥ fL for n = L+1, . . . ,N.

Then
N


n=1

fngn ≤ A
L


n=1

fn.

Remark 2.10 The case where f is nonincreasing and 0≤ g(xn)≤A is discussed by Pach-
patte in Theorem 2.37.

The discrete version of weaker conditions in the right-hand Steffensen’s inequality is
based on the following identity (see [129]):

N


n=1

fngn−A
L


n=1

fn − fL+1

(
N


n=1

gn−AL

)
=

L


n=1

( fL+1 − fn)(A−gn)−
N


n=L+1

( fL+1 − fn)gn

=
L


n=1

 fn+1

(
nA−

n


k=1

gk

)
+

N−1


n=L+1

 fn+1

N


k=n+1

gk,

where  fn+1 = fn+1 − fn.

Using the above-mentioned identity we have the following discrete version of the right-
hand Steffensen’s inequality.

Theorem 2.40 If ( fn)n is nonincreasing sequence, A ∈ R, L ∈ N and (gn)n is such that

n


k=1

gk ≤ An and
N


k=n+1

gk ≥ 0 for all n = 1,2, . . . ,N−1

and

fL+1

(
N


n=1

gn−AL

)
≤ 0,
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then we have
N


n=1

fngn ≤ A
L


n=1

fn.

Remark 2.11 The discrete version of weaker conditions in the left-hand Steffensen’s in-
equality can be obtained similarly.

In [141] Shi and Wu proved the following theorem using the theory of majorization.

Theorem 2.41 Let (xi)n
i=1 be a nonincreasing finite sequence of real numbers, and let

(yi)n
i=1 be a finite sequence of real numbers such that for every i, 0 ≤ yi ≤ 1. Let k1,k2 ∈

{1, . . . ,n} be such that k2 ≤ n
i=1 yi ≤ k1. Then

n


i=n−k2+1

xi +

(
n


i=1

yi − k2

)
xn ≤

n


i=1

xiyi ≤
k1


i=1

xi−
(

k1−
n


i=1

yi

)
xn.

As a consequence of Theorem 2.41 Shi and Wu obtained the following refinement of
Steffensen’s inequality.

Corollary 2.5 Let (xi)n
i=1 be a nonincreasing finite sequence of nonnegative real numbers

and let (yi)n
i=1 be a finite sequence of real numbers such that for every i, 0 ≤ yi ≤ 1. Let

k1,k2 ∈ {1, . . . ,n} be such that k2 ≤ n
i=1 yi ≤ k1. Then

n


i=n−k2+1

xi ≤
n


i=n−k2+1

xi +

(
n


i=1

yi − k2

)
xn ≤

n


i=1

xiyi

≤
k1


i=1

xi −
(

k1−
n


i=1

yi

)
xn ≤

k1


i=1

xi.
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2.7 Steffensen pairs

Using Corollary 2.3 Gauchman introduced Steffensen pairs in [52].

Definition 2.1 Let  : [c,) → [0,), c ≥ 0 and  : (0,) → (0,) be two increasing
functions. We say that ( ,) is a Steffensen pair on [c,) if the following is satisfied:
If x1, . . . ,xn are real numbers such that xi ≥ c for all i, A and B are positive real numbers,
and

n


i=1

xi ≤ A,
n


i=1

(xi) ≥ (B),

then for any k∈ {1, . . . ,n} such that k≥ 
(

A
B

)
, there are k numbers among x1, . . . ,xn whose

sum is larger than or equal to B.

As noted in [52] some results given in Section 2.6 can be reformulated using the defi-
nition of Steffensen pairs. Firstly, Corollary 2.3 can be reformulated as follows.

Proposition 2.1 (x2,x) is a Steffensen pair on [0,).

Next, for  = 1, Theorem 2.35 can be reformulated in the following way.

Proposition 2.2 If  ≥ 2, then (x ,x
1

−1 ) is a Steffensen pair on [0,).

Now we give some Gauchman’s examples of Steffensen pairs (see [52]).

Theorem 2.42 Let  : [c,) → [0,) where c ≥ 0 be nonndecreasing and convex. As-
sume that  satisfies the following condition:

(xy) ≥ (x)g(y) for all x ≥ c,y ≥ 1,

where g : [1,) → [0,) is increasing. Set (x) = x(x), (x) = g−1(x), where g−1 is the
inverse function of g. Then ( ,) is a Steffensen pair on [c,).

Proof. Let x1, . . . ,xn be real numbers such that x1 ≥ x2 ≥ . . . ≥ xn ≥ c and let A and B be
positive real numbers such that

n


i=1

xi ≤ A and
n


i=1

(xi) ≥ (B).

Let us suppose that k ∈ {1,2, . . . ,n} is a number such that k ≥ g−1(A
B ), i.e. A ≤ Bg(k).

Then
A(xk) ≤ B(xk)g(k) ≤ B(kxk).

By Proposition 1.1 for convex function  and i ≤ k−1 we have the following

(xi)−(xk) ≤ (xi +(k−1)xk)−(xk +(k−1)xk).
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Multiplying by xi and adding all inequalities for 1,2, . . . ,k we obtain

k


i=1

(xi)−(xk)
k


i=1

xi ≤
k


i=1

xi(xi +(k−1)xk)−(kxk)
k


i=1

xi

≤ (
k


i=1

xi)
k


i=1

xi −(kxk)
k


i=1

xi = (
k


i=1

xi)−(kxk)
k


i=1

xi

since  is nondecreasing and k
i=1 xi ≥ xi + (k− 1)xk for any i ∈ {1,2, . . . ,k}. Let us

consider the difference B−k
i=1 xi and multiply it by a positive number (kxk). Using the

inequality just proved and assumptions of Theorem we get

(kxk)(B−
k


i=1

xi) = B(kxk)−(kxk)
k


i=1

xi

≥ A(xk)−(xk)
k


i=1

xi +(B)−(
k


i=1

xi)

= (xk)(A−
k


i=1

xi)+ ((B)−(
k


i=1

xi)) ≥ (B)−(
k


i=1

xi).

Let us assume that the conclusion is wrong, i.e. B−k
i=1 xi > 0. Then from (k

i=1 xi) ≥
(kxk) we have

(B−
k


i=1

xi)(
k


i=1

xi) ≥ (B−
k


i=1

xi)(kxk) ≥ (B)−(
k


i=1

xi)

i.e. B(B) = (B) ≤ B(k
i=1 xi). Since  is nondecreasing, it follows that B ≤ k

i=1 xi

which is a contradiction with the above assumption. �

In the following remark we pointed out some examples of Steffensen pairs.

Remark 2.12 (i) Let  ≥ 2, (x) = x−1. Then(xy)=(x)g(y). Hence (x) = x ,

(x) = x
1

−1 , and we obtain Proposition 2.2.

(ii) Let f : [0,) → R be a twice differentiable function on [0,) such that f ′(x) ≥ 1
and f ′′(x) ≥ 0 for all x≥ 0. Assume that f (0) = 0. Then the functions and g from
[1,) into [0,) given by

 = g = exp◦ f ◦ log

satisfy the conditions of Theorem 2.42.

In [52] an example of the function f is given: f (x) = 
i=1 aixi is a sum of series

converging on [0,) with a1 ≥ 1, ai ≥ 0 for i = 2,3, . . . .

(iii) If  ≥ 1, then
(
xexp(x −1),(1+ logx)

1


)
is a Steffensen pair on [1,).
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(iv) Let a and b be real numbers satisfying conditions b > a > 1 and
√

ab ≥ e. Set

(x) =

{
x1+logb−x1+loga

logx , if x > 1,

logb− loga, if x = 1.

(x) = x1/ log
√

ab.

Then ( ,) is a Steffensen pair on [1,).

In [133] Qi and Cheng established some new Steffensen pairs.

Theorem 2.43 If a and b are real numbers satisfying b > a > 1 or b > a−1 > 1, and√
ab ≥ e, then (

x
∫ b

a
t logx−1dt,x

1
log

√
ab

)
is a Steffensen pair on [1,).
If a and b are real numbers satisfying b > a > 1 and

√
ab ≥ e, then(

x
∫ b

a
(logt)nt logx−1dt,x

n+2
n+1

(logb)n+1−(loga)n+1

(logb)n+2−(loga)n+2

)
are Steffensen pairs on [1,) for any positive integer n.

Proof is similar to the following theorem, so here we omit details. (See [133]).

Remark 2.13 As noted in [133], Theorem 2.43 generalizes Remark 2.12 (iv).

In [134] more Steffensen pairs are established by Qi and Guo. They also proved the
following generalization of Theorem 2.43.

Theorem 2.44 Let a,b ∈ R, let p �= 0 be a nonnegative and integrable function and f a
positive and integrable function on the interval [a,b].

(i) If the inequality ∫ b

a
p(u)du ≤

∫ b

a
p(u) log f (u)du (2.40)

holds, then (
x
∫ b

a
p(u)[ f (u)]logxdu,x

∫ b
a p(u)du∫ b

a p(u) log f (u)du

)
is a Steffensen pair on [1,).

(ii) If f (u) ≥ 1 and inequality (2.40) holds, then(
x
∫ b

a
p(u)[ f (u)]logx[log f (u)]ndu,x

∫ b
a p(u)[log f (u)]ndu∫ b

a p(u)[log f (u)]n+1du

)
are Steffensen pairs on [1,) for any positive integer n.
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Proof. We define

h(t) =
∫ b

a
p(u) f t(u)du, t ∈ R.

Since f (u) ≥ 1 on [a,b], it is clear that

h(n)(t) =
∫ b

a
p(u) f t(u)[log f (u)]ndu ≥ 0.

Furthermore, for n ≥ 0 and x ≥ 0, if (2.40) holds, then h(n+1)(x) ≥ h(n)(x). Let us define
functions  and g as following: (x) = h(n)(logx) for x ≥ 1, n ≥ 0 and

g(x) = x

∫ b
a p(u)[log f (u)]n+1du∫ b
a p(u)[log f (u)]ndu for x ≥ 1.

It is easy to see that  is increasing and convex. Since f (u) ≥ 1, for n ≥ 1, we have

h(n)(x+ y)
h(n)(x)

=
∫ b
a p(u)[ f (u)]x+y[log f (u)]ndu∫ b
a p(u)[ f (u)]x[log f (u)]ndu

≥ exp

(
y ·
∫ b
a p(u)[log f (u)]n+1du∫ b
a p(u)[log f (u)]ndu

)
,

where we use the monotonicity property M(x+y,x)≥M(0,0) for the generalized weighted
mean M defined by

M(r,s) =

⎧⎪⎨⎪⎩
(∫

p(u)[log f (u)]n f s(u)du∫
p(u)[log f (u)]n f r(u)du

) 1
s−r

, r �= s

exp
(∫

p(u)[log f (u)]n+1 f s(u)du∫
p(u)[log f (u)]n f s(u)du

)
, r = s.

Therefore, for x,y ≥ 1,

(xy)
(x)

=
h(n)(log(xy))
h(n)(logx)

=
h(n)(logx+ logy)

h(n)(logx)
≥ y

∫ b
a p(u)[log f (u)]n+1du∫ b
a p(u)[log f (u)]ndu = g(y).

So, all assumptions of Theorem 2.42 are satisfied and by that theorem ( ,), where (x) =
x(x), (x) = g−1(x) for x ≥ 1 and n ≥ 1 are Steffensen pairs on [1,). �





Chapter3
Generalizations of
Steffensen’s inequality

3.1 Lp generalizations

In 1959 Bellman gave the following generalization of Steffensen’s inequality (see [25]).

Theorem 3.1 Let f be a nonnegative and nonincreasing function on [a,b] and f ∈Lp[a,b],
p > 1. Let g(t) ≥ 0 on [a,b] and

∫ b
a gq(t)dt ≤ 1, where 1

p + 1
q = 1. Then(∫ b

a
f (t)g(t)dt

)p

≤
∫ a+

a
f p(t)dt

(
 =

(∫ b

a
g(t)dt

)p)
. (3.1)

As noted by Godunova, Levin and Čebaevskaja in [57] Bellman’s result is incorrect as
stated. This was also noted by Godunova and Levin in [56], where they gave generalization
for 0 < p ≤ 1. Their generalization is a consequence of a more general result given in [56]
and will be described in Section 3.4.

Another corrected version of Bellman’s inequality, for p≥ 1, is given by Bergh in [26].

Theorem 3.2 Let f and g be positive functions on (0,), f nonincreasing and g mea-
surable. Assume that, for some p ≥ 1, f ∈ Lp +L and g ∈ Lq ∩L1, with

‖ f‖Lq = 1, ‖g‖L1 = t

(
1
p

+
1
q

= 1

)
.

47
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Then ∫ 

0
f (x)g(x)dx ≤ 2

1
q

(∫ t p

0
f p(x)dx

) 1
p

holds, where 21/q cannot be replaced by a smaller constant.

Proof of this theorem is based on an estimation of the K−functional in the theory of
interpolation spaces. For more details see [26].

In [111] Pečarić showed that the Bellman generalization of Steffensen’s inequality,
with very simple modifications of conditions, is true.

Theorem 3.3 Let f : [0,1] → R be a nonnegative and nonincreasing function and let
g : [0,1] → R be an integrable function such that 0 ≤ g ≤ 1. If p ≥ 1, then(∫ 1

0
g(t) f (t)dt

)p

≤
∫ 

0
f p(t)dt (3.2)

where

 =
(∫ 1

0
g(t)dt

)p

. (3.3)

Proof. Using the Jensen inequality for the convex function(x) = xp (p ≥ 1), we have(∫ 1

0
g(t) f (t)dt

)p

≤
(∫ 1

0
g(t)dt

)p−1∫ 1

0
g(t) f p(t)dt.

To complete the proof we must prove(∫ 1

0
g(t)dt

)p−1∫ 1

0
g(t) f p(t)dt ≤

∫ 

0
f p(t)dt.

Since f is nonincreasing we have

∫ 

0
f p(t)(1−g(t)

(∫ 1

0
g(s)ds

)p−1
)

dt ≥ f p( )
∫ 

0

(
1−g(t)

(∫ 1

0
g(s)ds

)p−1
)

dt

= f p( )

(
 −

(∫ 1

0
g(s)ds

)p−1∫ 

0
g(t)dt

)

= f p( )

((∫ 1

0
g(s)ds

)p

−
(∫ 1

0
g(s)ds

)p−1∫ 

0
g(t)dt

)

= f p( )
(∫ 1

0
g(s)ds

)p−1∫ 1


g(t)dt.
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It follows∫ 

0
f p(t)dt−

(∫ 1

0
g(t)dt

)p−1∫ 1

0
g(t) f p(t)dt

=
∫ 

0
f p(t)

(
1−g(t)

(∫ 1

0
g(s)ds

)p−1
)

dt−
(∫ 1

0
g(s)ds

)p−1∫ 1


f p(t)g(t)dt

≥
(∫ 1

0
g(s)ds

)p−1(
f p( )

∫ 1


g(t)dt−

∫ 1


g(t) f p(t)dt

)
=
(∫ 1

0
g(s)ds

)p−1∫ 1


g(t)( f p( )− f p(t))dt ≥ 0.

�

Remark 3.1 If the functions f and g are defined on [a,b], using the substitution x =
(b−a)t +a, the corresponding result for Bellman’s generalization can be obtained.

Cao gave another correction of Bellman’s result in [32].

Theorem 3.4 Let f be a nonnegative and nonincreasing function on [a,b] and f ∈Lp[a,b],
p > 1. Let function g satisfy relations g ≥ 0 on [a,b] and

∫ b
a gq(t)dt ≤ 1, where 1

p + 1
q = 1.

Then (∫ b

a
f (t)g(t)dt

)p

≤
∫ a+

a
f p(t)dt

where

 =

⎧⎨⎩
(

f (a+0)
f (b−0)

)p−1(∫ b
a g(t)dt

)p
, f (b−0) > 0

b−a, f (b−0) = 0.

In [111] Pečarić gave the following result.

Theorem 3.5 Let f : [0,1] → R be a nonincreasing function and let g : [0,1] → R be an
integrable function such that 0 ≤ g ≤ 1. If p ≥ 1, then∫ 1

0 g(t) f (t)dt∫ 1
0 g(t)dt

≤ 1


∫ 

0
f (t)dt, (3.4)

where  is given by (3.3).

Remark 3.2 For p = 1 we have Steffensen’s inequality.

Using substitution

g(t) =
G(t)∫ b
a G(t)dt

,

where  > 0 and
∫ b
a G(t)dt > 0, Pečarić obtained the following modification of Steffensen’s

inequality (see [112]). This result is an extension of Theorem 3.5.
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Theorem 3.6 Assume that two integrable functions f and G are defined on the interval
[a,b], f is nonincreasing, and

0 ≤ G(t) ≤
∫ b

a
G(t)dt (∀t ∈ [a,b]), (3.5)

where  is a positive number. Then

1


∫ b

b−
f (t)dt ≤

∫ b
a f (t)G(t)dt∫ b

a G(t)dt
≤ 1



∫ a+

a
f (t)dt. (3.6)

In [92] Mitrinović and Pečarić gave necessary and sufficient conditions for inequality
(3.6). Inequality (3.6) is true for each nonincreasing function f if and only if for every
x ∈ [a,b]

0 ≤ 
∫ b

x
G(t)dt ≤ (b− x)

∫ b

a
G(t)dt

and

0 ≤ 
∫ x

a
G(t)dt ≤ (x−a)

∫ b

a
G(t)dt.

The second inequality in (3.6) is valid if and only if for every x ∈ [a,b]


∫ x

a
G(t)dt ≤ (x−a)

∫ b

a
G(t)dt and

∫ b

x
G(t)dt ≥ 0. (3.7)

In [112] Pečarić gave the following generalization of Theorem 3.3.

Theorem 3.7 Let f : [a,b] → R be a nonnegative nonincreasing function and let G :
[a,b] → R be an integrable function such that 0 ≤ G ≤ 1. If p ≥ 1, then

1
(b−a)p−1

(∫ b

a
G(x) f (x)dx

)p

≤
∫ a+

a
f p(x)dx (3.8)

holds, where

 =
1

(b−a)p−1

(∫ b

a
G(x)dx

)p

.

Proof. Under the assumptions of this theorem (3.5) is valid. So, from the second inequality
in (3.6), for the nonincreasing function x �→ f p(x), we have(∫ b

a
G(t)dt

)p−1∫ b

a
f p(t)G(t)dt ≤ (b−a)p−1

∫ a+

a
f p(x)dx.

On the other hand, using Jensen’s inequality for convex function u(x) = xp (p ≥ 1), we
have (∫ b

a
G(t) f (t)dt

)p

≤
(∫ b

a
G(t)dt

)p−1∫ b

a
G(t) f p(t)dt.

So we obtain (3.8). �

Analogously, Pečarić obtained the following theorem in [112].
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Theorem 3.8 Let f : [a,b] → R be a nonnegative nonincreasing function and let G :
[a,b] → R be an integrable function such that

0 ≤ G(x)
(∫ b

a
G(t)dt

)p−1

≤ 1 (∀x ∈ [a,b]).

If p ≥ 1, then (∫ b

a
G(x) f (x)dx

)p

≤
∫ a+

a
f p(t)dt,

where

 =
(∫ b

a
G(t)dt

)p

.

Remark 3.3 For a = 0, b = 1, from Theorem 3.8, we obtain Theorem 3.3. For p ∈ N we
have Corollary 9 from [105].

In [71] Jiang obtained the following result.

Theorem 3.9 Let f : [a,b] → R be a nonnegative nonincreasing function, g : [a,b] → R

be an integrable function, 0 ≤ g(x)
(
∫ b
a g(t)dt)p−1

≤ M, x ∈ [a,b] and M be a positive constant.

Then (∫ b

a
f (t)g(t)dt

)p

≤ M
∫ a+

a
f p(t)dt if p ≥ 1,

and

M
∫ b

b−
f p(t)dt ≤

(∫ b

a
f (t)g(t)dt

)p

if p ≤ 1,

where  = 1
M

(∫ b
a g(t)dx

)p
.

In [57] Godunova, Levin and Čebaevskaja gave the following two results. In [92]
Mitrinović and Pečarić showed that these results are consequences of their necessary and
sufficient conditions for inequality (3.6). We recall the proof from [92].

Theorem 3.10 Let f be a nonnegative nonincreasing function on [a,b], and let  be an
increasing convex function on [0,〉 with (0) = 0. If g is a nonnegative nondecreasing
function on [a,b] such that there exists nonnegative function g1, defined by the equation

g1(x)
(

g(x)
g1(x)

)
= 1 (3.9)

and that
∫ b
a g1(t)dt ≤ 1, then the following inequality is valid



(∫ b
a f (t)g(t)dt∫ b

a g(t)dt

)
≤ 1



∫ a+

a
( f (t))dt,

where

 = 
(∫ b

a
g(t)dt

)
.
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Proof. Applying the second inequality in (3.6) and Jensen’s inequality for convex func-
tions, we have that



(∫ b
a f (t)g(t)dt∫ b

a g(t)dt

)
≤
∫ b
a g(t)( f (t))dt∫ b

a g(t)dt
≤ 1



∫ a+

a
( f (t))dt. (3.10)

Now, from the necessary and sufficient conditions for inequality (3.6) given by (3.7), we
obtain that inequality (3.10) is valid if and only if


(∫ b

a
g(t)dt

)∫ x

a
g(t)dt ≤ (x−a)

∫ b

a
g(t)dt and

∫ b

x
g(t)dt ≥ 0 (3.11)

holds for every x∈ [a,b]. Since g is nonnegative, the second condition in (3.11) is obviously
satisfied. On the other hand, the increasing convex function  with (0) = 0 is starshaped,
that is (cx) ≤ c(x), (0 < c ≤ 1). Therefore, by (3.9), (3.10) and Jensen’s inequality, we
have


(∫ b

a
g(t)dt

)
= 

(∫ b

a
g1(t)dt

∫ b
a g(t)dt∫ b
a g1(t)dt

)
≤
(∫ b

a
g1(t)dt

)


⎛⎝∫ b
a g1(t)

g(t)
g1(t)

dt∫ b
a g1(t)dt

⎞⎠
≤
∫ b

a
g1(t) 

(
g(t)
g1(t)

)
dt =

∫ b

a
dt = (b−a).

Since g is a nondecreasing function, we have

1
b−a

∫ b

a
g(t)dt ≥ 1

x−a

∫ x

a
g(t)dt,

i.e.

(b−a)
∫ x

a
g(t)dt ≤ (x−a)

∫ b

a
g(t)dt.

Hence, the first condition in (3.11) is also satisfied. �

In [82] Liu gave a generalization of the previous theorem for Stieltjes integral. We omit
the proof because it is very similar to the previous one.

Theorem 3.11 Let f and h be nonnegative decreasing functions defined on [a,b], and
let  be an increasing convex function on [0,) with (0) = 0. If g is a nonnegative in-
creasing function defined on [a,b] such that there exists the nonnegative function g1 which
satisfies ∫ b

a
g1(t)

(
g(t)
g1(t)

)
d(t) ≤

∫ b

a
h(t)d(t)

and
∫ b
a g1(t)d(t) ≤ 1, then



(∫ b
a f (t)g(t)d(t)∫ b

a g(t)d(t)

)
≤
∫ −1((a)+ )
a h(t)( f (t))d(t)∫ −1((a)+ )

a h(t)d(t)
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holds, where  is given by

∫ −1((a)+ )

a
h(t)d(t) = 

(∫ b

a
g(t)d(t)

)
.

For (u) = up (p > 1), Theorem 3.10 becomes the following:

Theorem 3.12 Let f be a nonnegative nonincreasing function on [a,b], f ∈ Lp(a,b), and
let g be nonnegative and nondecreasing on [a,b] such that

∫ b
a gq(t)dt ≤ 1, where p > 1 and

q = p
p−1 . Then (3.1) holds.

Remark 3.4 From the above proof it follows that condition (3.9) can be replaced by

g1(x) 
(

g(x)
g1(x)

)
≤ 1

or, more generally, by ∫ b

a
g1(x) 

(
g(x)
g1(x)

)
dx ≤ b−a.

In 1998 Pachpatte established further generalizations of inequality given in Theo-
rem 3.3 (see [102]).

Theorem 3.13 Let f ,g,h be real-valued integrable functions defined on [0,1] such that
f (t) ≥ 0, h(t) ≥ 0, t ∈ [0,1], f/h is nonincreasing on [0,1] and 0 ≤ g(t) ≤ A, t ∈ [0,1],
where A is a real positive constant. If p ≥ 1, then(∫ 1

0
g(t) f (t)dt

)p

≤ Ap
∫ 

0
f p(t)dt, (3.12)

where  is the solution of the equation

∫ 

0
hp(t)dt =

1
Ap

(∫ 1

0
hp(t)g(t)dt

)(∫ 1

0
g(t)dt

)p−1

.

Proof. Applying Hölder’s inequality on the left-hand side of inequality (3.12) we have(∫ 1

0
g(t) f (t)dt

)p

=
(∫ 1

0
g

p−1
p (t)g

1
p (t) f (t)dt

)p

≤
(∫ 1

0
g(t)dt

)p−1(∫ 1

0
g(t) f p(t)dt

)
.

(3.13)

In order to prove inequality (3.12) we must prove that(∫ 1

0
g(t)dt

)p−1(∫ 1

0
g(t) f p(t)dt

)
≤ Ap

∫ 

0
f p(t)dt. (3.14)
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First, we have that

Ap
∫ 

0
f p(t)dt−

(∫ 1

0
g(s)ds

)p−1 ∫ 

0
g(t) f p(t)dt

=
∫ 

0
f p(t)

(
Ap−g(t)

(∫ 1

0
g(s)ds

)p−1
)

dt

=
∫ 

0

(
f (t)
h(t)

)p

hp(t)

(
Ap−g(t)

(∫ 1

0
g(s)ds

)p−1
)

dt

≥
(

f ( )
h( )

)p
(

Ap
∫ 

0
hp(t)dt−

(∫ 1

0
g(s)ds

)p−1∫ 

0
hp(t)g(t)dt

)

=
(

f ( )
h( )

)p(∫ 1

0
g(s)ds

)p−1(∫ 1

0
hp(t)g(t)dt−

∫ 

0
hp(t)g(t)dt

)
=
(

f ( )
h( )

)p(∫ 1

0
g(s)ds

)p−1∫ 1


hp(t)g(t)dt.

Now, inequality (3.14) can be proved as follows

Ap
∫ 

0
f p(t)dt−

(∫ 1

0
g(t)dt

)p−1(∫ 1

0
g(t) f p(t)dt

)
= Ap

∫ 

0
f p(t)dt−

(∫ 1

0
g(s)ds

)p−1∫ 

0
g(t) f p(t)dt

+
(∫ 1

0
g(s)ds

)p−1∫ 

0
g(t) f p(t)dt−

(∫ 1

0
g(s)ds

)p−1∫ 1

0
g(t) f p(t)dt

≥
(

f ( )
h( )

)p(∫ 1

0
g(s)ds

)p−1∫ 1


hp(t)g(t)dt−

(∫ 1

0
g(s)ds

)p−1 ∫ 1


g(t) f p(t)dt

=
(∫ 1

0
g(s)ds

)p−1∫ 1


hp(t)g(t)

((
f ( )
h( )

)p

−
(

f (t)
h(t)

)p)
dt ≥ 0.

Inequality (3.12) now follows from (3.13) and (3.14). �

Theorem 3.14 Let f ,g,h, p be as in Theorem 3.13. Then(∫ 1

0
g(t)dt

)p−1 ∫ 1

0
g(t) f (t)dt ≤ Ap

∫ 

0
f (t)dt, (3.15)

where  is the solution of the equation

∫ 

0
h(t)dt =

1
Ap

(∫ 1

0
h(t)g(t)dt

)(∫ 1

0
g(t)dt

)p−1

.
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Inequality (3.15) is a variant of the inequality given in Theorem 3.3 and when A = 1,
p = 1, h(t) = 1, it reduces to the right-hand side of Steffensen’s inequality with a = 0 and
b = 1. Similar result with p = 1 and A = 1 is given by Pečarić in Theorem 3.15.

Remark 3.5 Some Lp generalizations can also be found in [145], [146] and [147]. Fur-
thermore, some results similar to Steffensen’s inequality via Hölder’s, Minkowski’s and
Hardy-Hilbert’s inequalities are given in [147].

3.2 Pečarić, Mercer and Wu-Srivastava
generalizations

In 1982 Pečarić proved the following generalization of Steffensen’s inequality (see [110]).

Theorem 3.15 Let h be a positive integrable function on [a,b] and f be an integrable
function such that x �→ f (x)/h(x) is nondecreasing on [a,b]. If g is a real-valued integrable
function such that 0 ≤ g(x) ≤ 1 for every x ∈ [a,b], then∫ b

a
f (t)g(t)dt ≥

∫ a+

a
f (t)dt (3.16)

holds, where  is the solution of the equation∫ a+

a
h(t)dt =

∫ b

a
h(t)g(t)dt.

If x �→ f (x)/h(x) is a nonincreasing function, then the reverse inequality in (3.16) holds.

Proof. Transformation of the difference between the right-hand side and the left-hand side
of inequality (3.16) gives∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt =

∫ a+

a
(1−g(t)) f (t)dt−

∫ b

a+
f (t)g(t)dt

≤ f (a+ )
h(a+ )

∫ a+

a
h(t)(1−g(t))dt−

∫ b

a+
f (t)g(t)dt

=
f (a+ )
h(a+ )

(∫ b

a
h(t)g(t)dt−

∫ a+

a
h(t)g(t)dt

)
−
∫ b

a+
f (t)g(t)dt

=
∫ b

a+
g(t)h(t)

(
f (a+ )
h(a+ )

− f (t)
h(t)

)
dt ≤ 0.

�

By substitutions g(x) → 1−g(x) and  → b−a− , Theorem 3.15 becomes:
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Theorem 3.16 Let the conditions of Theorem 3.15 be fulfilled. Then∫ b

a
f (t)g(t)dt ≤

∫ b

b−
f (t)dt

where  is the solution of the equation∫ b

b−
h(t)dt =

∫ b

a
h(t)g(t)dt. (3.17)

For h(x) = 1 we have Steffensen’s inequality.
The following generalization of Steffensen’s inequality for a convex function of order

n is a version of Theorem 2.9 with a stronger condition on the function g (see [122, p.
193]).

Theorem 3.17 Let g be an integrable function such that 0 ≤ g(x)≤ 1 for every x∈ [a,b].

(a) If the function f : [a,b] → R is convex of order n with f (k)(a) = 0, k = 0, . . . ,n−2,
then (3.16) holds with

 =
(

n
∫ b

a
(t−a)n−1g(t)dt

) 1
n

. (3.18)

(b) If f is a nonnegative and concave function of order n with f (k)(a) = 0, k = 0, . . . ,n−
2, then the reverse of the inequality in (3.16) holds.

Proof. Let f be an n−convex function such that f (k)(a) = 0, (k = 0,1, . . . ,n− 2). Then

x �→ f (x)
(x−a)n−1 is a nondecreasing function. Applying Theorem 3.15 on function f (x)

(x−a)n−1 we

have that (3.16) is valid where  is defined by (3.18). �

In [87] Mercer proved following generalization of Steffensen’s inequality.

Theorem 3.18 Let f ,g and h be integrable functions on (a,b) with f nonincreasing and
0 ≤ g ≤ h. Then ∫ b

b−
f (t)h(t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt, (3.19)

where  is given by ∫ a+

a
h(t)dt =

∫ b

a
g(t)dt. (3.20)

As noted by Wu and Srivastava in [155] and by Liu in [83] the generalization due to
Mercer is incorrect as stated. They have proved that it is true if we add the condition:∫ b

b−
h(t)dt =

∫ b

a
g(t)dt. (3.21)

As proved by Pečarić, Perušić and Smoljak in [117], the corrected version of Mercer’s
results follows from Theorems 3.15 and 3.16, and it is stated as following.
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Theorem 3.19 Let h be a positive integrable function on [a,b] and f ,g be integrable
functions on [a,b] such that f is nonincreasing on [a,b] and 0 ≤ g ≤ h for every x ∈ [a,b].

a) Then ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt,

where  is given by (3.20).

b) Then ∫ b

b−
f (t)h(t)dt ≤

∫ b

a
f (t)g(t)dt,

where  is given by (3.21).

Proof. Putting substitutions g(t) �→ g(t)/h(t) and f (t) �→ f (t)h(t) in Theorems 3.15 and
3.16 we obtain the statements of this theorem. �

Mercer also gave the following theorem in [87].

Theorem 3.20 Let f ,g,h and k be integrable functions on (a,b) with k > 0, f/k nonin-
creasing and 0 ≤ g ≤ h. Then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt, (3.22)

where  is the solution of the equation∫ a+

a
h(t)k(t)dt =

∫ b

a
g(t)k(t)dt. (3.23)

If f/k is a nondecreasing function, then the reverse of the inequality in (3.22) holds.

Let us show that it is equivalent to Theorem 3.15. Let us suppose that the assumptions
of Theorem 3.20 hold. Then for h ≡ 1 we obtain Theorem 3.15.
Oppositely, taking h(t) �→ k(t)h(t), g(t) �→ g(t)/h(t) and f (t) �→ f (t)h(t) in Theorem 3.15
we obtain Theorem 3.20. Hence, Theorems 3.15 and 3.20 are equivalent.

Motivated by Theorem 3.20 the following theorem, which is equivalent to Theorem3.16,
was obtained in [117].

Theorem 3.21 Let f ,g,h and k be integrable functions on (a,b) with k > 0, f/k nonin-
creasing and 0 ≤ g ≤ h. Then∫ b

a
f (t)g(t)dt ≥

∫ b

b−
f (t)h(t)dt, (3.24)

where  satisfies ∫ b

b−
h(t)k(t)dt =

∫ b

a
g(t)k(t)dt. (3.25)

If f/k is a nondecreasing function, then the reverse of the inequality in (3.24) holds.
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Proof. Take h(t) �→ k(t)h(t), g(t) �→ g(t)/h(t) and f (t) �→ f (t)h(t) in Theorem 3.16. �

Remark 3.6 From Theorems 3.20 and 3.21 taking k ≡ 1 we can obtain the corrected
Mercer’s results given in Theorem 3.19.

Next, we give the corrected version of Mercer’s results given by Wu and Srivastava in
[155]. Note that this is not only corrected but also a refined version of Mercer’s result.

Theorem 3.22 Let f ,g and h be integrable functions on [a,b] with f nonincreasing and
let 0 ≤ g ≤ h. Then the following integral inequalities hold true

∫ b

b−
f (t)h(t)dt ≤

∫ b

b−
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])dt

≤
∫ b

a
f (t)g(t)dt

≤
∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt

≤
∫ a+

a
f (t)h(t)dt,

(3.26)

where  satisfies ∫ a+

a
h(t)dt =

∫ b

a
g(t)dt =

∫ b

b−
h(t)dt.

Proof. The proof is based on the following identities:

∫ b

a
f (t)g(t)dt =

∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt

+
∫ b

a+
[ f (t)− f (a+ )]g(t)dt,

(3.27)

and

∫ b

a
f (t)g(t)dt =

∫ b

b−
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])dt

+
∫ b−

a
[ f (t)− f (b− )]g(t)dt.

(3.28)
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Let us prove the first one. Transformation of the right-hand side of the identity gives the
following∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt +

∫ b

a+
[ f (t)− f (a+ )]g(t)dt

=
∫ a+

a
[ f (t)g(t)+ f (a+ )(h(t)−g(t))]dt +

∫ b

a+
f (t)g(t)dt − f (a+ )

∫ b

a+
g(t)dt

=
∫ b

a
f (t)g(t)dt + f (a+ )

[∫ a+

a
(h(t)−g(t))dt−

∫ b

a+
g(t)dt

]
=
∫ b

a
f (t)g(t)dt + f (a+ )

[∫ a+

a
h(t)dt−

∫ b

a
g(t)dt

]
=
∫ b

a
f (t)g(t)dt

where in the last equality we use the property of  , i.e.
∫ a+
a h(t)dt =

∫ b
a g(t)dt.

The second identity can be proved in a similar manner.
Since f is nonincreasing on [a,b] we get f (t) ≥ f (b−  ) for all t ∈ [a,b−  ] and

f (t) ≤ f (b− ) for all t ∈ [b− ,b]. Then∫ b−

a
[ f (t)− f (b− )]g(t)dt ≥ 0

and ∫ b

b−
[ f (t)− f (b− )][h(t)−g(t)]dt ≤ 0.

Using (3.27) and the above inequalities we obtain∫ b

a
f (t)g(t)dt ≥

∫ b

b−
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])dt ≥

∫ b

b−
f (t)h(t)dt.

Similarly, we obtain∫ b

a
f (t)g(t)dt ≤

∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt ≤

∫ a+

a
f (t)h(t)dt.

�

As noted by Wu and Srivastava in [155], for h(t)≡ 1, Theorem 3.22 gives a refinement
of Steffensen’s inequality. Separating inequalities given in (3.26) into two parts we can
obtain weaker conditions on  . Those results are given in the following theorems (see
[117]).

Theorem 3.23 Let f ,g and h be integrable functions on [a,b] with f nonincreasing and
let 0 ≤ g ≤ h. Then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt

≤
∫ a+

a
f (t)h(t)dt,

(3.29)
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where  is given by (3.20).
If f is a nondecreasing function, then the reverse inequalities in (3.29) hold.

Proof. Similar to the proof of the right-hand side inequalities in Theorem 3.22. �

Theorem 3.24 Let f ,g and h be integrable functions on [a,b] with f nonincreasing and
let 0 ≤ g ≤ h. Then∫ b

b−
f (t)h(t)dt ≤

∫ b

b−
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])dt

≤
∫ b

a
f (t)g(t)dt

(3.30)

where  is given by (3.21).
If f is a nondecreasing function, then the reverse inequalities in (3.30) hold.

Proof. Similar to the proof of the left-hand side inequalities in Theorem 3.22. �

In the following theorems Pečarić, Perušić and Smoljak obtained a refined version of
the results given in Theorems 3.20 and 3.21 (see [117]).

Theorem 3.25 Let k be a positive integrable function on [a,b] and f ,g,h be integrable
functions on [a,b] such that f/k is nonincreasing and 0 ≤ g ≤ h. Then∫ b

a
f (t)g(t)dt ≤

∫ a+

a

(
f (t)h(t)−

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]

)
dt

≤
∫ a+

a
f (t)h(t)dt,

(3.31)

where  is given by (3.23).
If f/k is a nondecreasing function, then the reverse inequalities in (3.31) hold.

Proof. Take g(t) �→ k(t)g(t), f (t) �→ f (t)/k(t) and h(t) �→ k(t)h(t) in Theorem 3.23. �

Theorem 3.26 Let k be a positive integrable function on [a,b] and f ,g,h be integrable
functions on [a,b] such that f/k is nonincreasing and 0 ≤ g ≤ h. Then∫ b

b−
f (t)h(t)dt ≤

∫ b

b−

(
f (t)h(t)−

[
f (t)
k(t)

− f (b− )
k(b− )

]
k(t)[h(t)−g(t)]

)
dt

≤
∫ b

a
f (t)g(t)dt

(3.32)

where  is given by (3.25).
If f/k is a nondecreasing function, then the reverse inequalities in (3.32) hold.

Proof. Take g(t) �→ k(t)g(t), f (t) �→ f (t)/k(t) and h(t) �→ k(t)h(t) in Theorem 3.24. �
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Remark 3.7 From Theorems 3.25 and 3.26 taking k ≡ 1 we obtain a refinement of the
corrected Mercer’s results given in Theorem 3.19. Putting h ≡ 1 in Theorems 3.25 and
3.26 we get a refinement of Pečarić’s results given in Theorems 3.15 and 3.16.

Furthermore, Wu and Srivastava proved a new sharpened and generalized version of
inequality (3.19). We separate this result into two theorems to obtain weaker conditions on
 . The original result can be found in [155].

Theorem 3.27 Let f ,g,h and  be integrable functions on [a,b] with f nonincreasing
and let 0 ≤  ≤ g ≤ h− . Then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt−

∫ b

a
| f (t)− f (a+ )|(t)dt

where  is given by (3.20).

Proof. Using identity (3.27) we get∫ a+

a
f (t)h(t)dt−

∫ b

a
f (t)(t)dt

=
∫ a+

a
[ f (t)− f (a+ )][h(t)−g(t)]dt−

∫ b

a+
[ f (t)− f (a+ )]g(t)dt

≥
∫ a+

a
| f (t)− f (a+ )|(t)dt +

∫ b

a+
| f (a+ )− f (t)|(t)dt

=
∫ b

a
| f (t)− f (a+ )|(t)dt

and the proof is established. �

Similarly, the following theorem holds.

Theorem 3.28 Let f ,g,h and  be integrable functions on [a,b] with f nonincreasing
and let 0 ≤  ≤ g ≤ h− . Then∫ b

b−
f (t)h(t)dt +

∫ b

a
| f (t)− f (b− )|(t)dt ≤

∫ b

a
f (t)g(t)dt

where  is given by (3.21).

In [117] the following sharpenings of Theorems 3.20 and 3.21 are given based on
results from Theorems 3.27 and 3.28.

Theorem 3.29 Let k be a positive integrable function on [a,b] and f ,g,h, be integrable
functions on [a,b] with f/k nonincreasing and 0 ≤  ≤ g ≤ h− .

a) Then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt −

∫ b

a

∣∣∣∣( f (t)
k(t)

− f (a+ )
k(a+ )

)∣∣∣∣k(t)(t)dt

where  is given by (3.23).
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b) Then ∫ b

b−
f (t)h(t)dt +

∫ b

a

∣∣∣∣( f (t)
k(t)

− f (b− )
k(b− )

)
k(t)(t)

∣∣∣∣dt ≤
∫ b

a
f (t)g(t)dt

where  is given by (3.25).

Proof. Putting substitutions g(t) �→ k(t)g(t), f (t) �→ f (t)/k(t), h(t) �→ k(t)h(t) and(t) �→
k(t)(t) in Theorems 3.27 and 3.28 we obtain statements of this theorem. �

Remark 3.8 Taking k ≡ 1 in Theorem 3.29 we obtain a sharpened and generalized ver-
sions of Theorem 3.19.

If h ≡ 1, then inequalities from Theorem 3.29 become sharpenings of Steffensen’s
inequalities.

Motivated by the weaker conditions for the function g in Steffensen’s inequality given
by Milovanović and Pečarić in [90], weaker conditions for Theorems 3.20 and 3.21 are
obtained in [117].

Theorem 3.30 Let k be a positive integrable function on [a,b], let f ,g,h be integrable
functions on [a,b] such that h is nonnegative and let f/k be a nonincreasing integrable
function on [a,b]. Then∫ x

a
k(t)g(t)dt ≤

∫ x

a
k(t)h(t)dt and

∫ b

x
k(t)g(t)dt ≥ 0, ∀x ∈ [a,b] (3.33)

if and only if ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt (3.34)

where  is defined by (3.23).
If f/k is a nondecreasing function, then (3.33) holds if and only if the reverse of the in-
equality in (3.34) holds.

Proof. Using the identity∫ a+

a
f (t)h(t)dt−

∫ b

a
f (t)g(t)dt

=
∫ a+

a

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]dt +

∫ b

a+

[
f (a+ )
k(a+ )

− f (t)
k(t)

]
k(t)g(t)dt

(3.35)

and applying integration by parts we obtain∫ a+

a
f (t)h(t)dt −

∫ b

a
f (t)g(t)dt =−

∫ a+

a

(∫ x

a
k(t)[h(t)−g(t)]dt

)
d

(
f (x)
k(x)

)
−
∫ b

a+

(∫ b

x
k(t)g(t)dt

)
d

(
f (x)
k(x)

)
.
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From here we conclude that, for nonincreasing function f/k, (3.34) holds when∫ x

a
k(t)h(t)dt ≥

∫ x

a
k(t)g(t)dt, for a ≤ x ≤ a+ (3.36)

and ∫ b

x
k(t)g(t)dt ≥ 0, for a+ ≤ x ≤ b. (3.37)

For a+ ≤ x ≤ b, since h is nonnegative, k is positive and (3.37) holds, we have∫ x

a
k(t)g(t)dt =

∫ b

a
k(t)g(t)dt−

∫ b

x
k(t)g(t)dt

=
∫ a+

a
k(t)h(t)dt−

∫ b

x
k(t)g(t)dt ≤

∫ a+

a
k(t)h(t)dt ≤

∫ x

a
k(t)h(t)dt.

On the other hand, for a ≤ x ≤ a+ , since h is nonnegative, k is positive and (3.36) holds,
we have∫ b

x
k(t)g(t)dt =

∫ b

a
k(t)g(t)−

∫ x

a
k(t)g(t)dt

=
∫ a+

a
k(t)h(t)dt−

∫ x

a
k(t)g(t)dt

≥
∫ a+

a
k(t)h(t)dt−

∫ x

a
k(t)h(t)dt =

∫ a+

x
k(t)h(t)dt ≥ 0.

Hence, (3.36) and (3.37) are equivalent to (3.33).
Now, we prove that conditions (3.33) are also necessary. In fact, for f defined by

f (t) =

{
k(t), t ≤ x

0, t > x,
∀x ∈ [a,b]

we have that f/k is a nonincreasing function. Now, from (3.34) we can obtain∫ x

a
k(t)g(t)dt ≤

∫ x

a
k(t)h(t)dt and

∫ b

x
k(t)g(t)dt ≥ 0, ∀x ∈ [a,b].

In a similar way we can obtain the reverse inequality in (3.34) for f/k nondecreasing. Thus
the proof is completed. �

Theorem 3.31 Let k be a positive integrable function on [a,b], let f ,g,h be integrable
functions on [a,b] such that h is nonnegative and let f/k be a nonincreasing integrable
function on [a,b]. Then∫ b

x
k(t)g(t)dt ≤

∫ b

x
k(t)h(t)dt and

∫ x

a
k(t)g(t)dt ≥ 0, ∀x ∈ [a,b] (3.38)

if and only if ∫ b

a
f (t)g(t)dt ≥

∫ b

b−
f (t)h(t)dt (3.39)
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where  is defined by (3.25).
If f/k is a nondecreasing function, then (3.38) holds if and only if the reverse of the in-
equality in (3.39) holds.

Proof. Using the identity∫ b

b−
f (t)h(t)dt−

∫ b

a
f (t)g(t)dt

=
∫ b

b−

[
f (t)
k(t)

− f (b− )
k(b− )

]
k(t)[h(t)−g(t)]dt +

∫ b−

a

[
f (b− )
k(b− )

− f (t)
k(t)

]
k(t)g(t)dt

(3.40)

and applying integration by parts we obtain∫ b

b−
f (t)h(t)dt −

∫ b

a
f (t)g(t)dt

=
∫ b

b−

(∫ b

x
k(t)[h(t)−g(t)]dt

)
d

(
f (x)
k(x)

)
+
∫ b−

a

(∫ x

a
k(t)g(t)dt

)
d

(
f (x)
k(x)

)
.

Now, similar conclusions as in the proof of Theorem 3.30 completes the proof. �

Remark 3.9 For k ≡ 1, from Theorems 3.30 and 3.31, we obtain results similar to the
results with weaker conditions given by Liu in [83] and Mercer in [87].

In the following theorems we give weaker conditions for refinements given in Theo-
rems 3.25 and 3.26.

Theorem 3.32 Let k be a positive integrable function on [a,b], let f ,g,h be integrable
functions on [a,b] such that h is nonnegative and let f/k be a nonincreasing integrable
function on [a,b]. Let  be defined by (3.23). If (3.33) holds, then (3.31) is valid.
If f/k is a nondecreasing function, the reverse inequalities in (3.31) hold.

Proof. Using identity (3.35) and applying integration by parts we obtain∫ a+

a
f (t)h(t)dt−

∫ b

a
f (t)g(t)dt−

∫ a+

a

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]dt

=
∫ b

a+

[
f (a+ )
k(a+ )

− f (t)
k(t)

]
k(t)g(t)dt = −

∫ b

a+

(∫ b

x
k(t)g(t)dt

)
d

(
f (x)
k(x)

)
.

From here we conclude that the left-hand side inequality in (3.31) holds when (3.37) holds.
Furthermore, we have∫ a+

a

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]dt

= −
∫ a+

a

(∫ x

a
k(t)[h(t)−g(t)]dt

)
d

(
f (x)
k(x)

)
.
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So, if (3.36) holds, then∫ a+

a

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]dt ≥ 0.

Hence, the right-hand side inequality in (3.31) holds.
As showed in the proof of Theorem 3.30, (3.36) and (3.37) are equivalent to (3.33). So the
proof is completed. �

Theorem 3.33 Let k be a positive integrable function on [a,b], let f ,g,h be integrable
functions on [a,b] and let f/k be a nonincreasing integrable function on [a,b]. Let  be
defined by (3.23). If ∫ b

x
k(t)g(t)dt ≥ 0, for a+ ≤ x ≤ b,

then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt −

∫ a+

a

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]dt. (3.41)

If we additionally have∫ x

a
k(t)h(t)dt ≥

∫ x

a
k(t)g(t)dt, for a ≤ x ≤ a+

then (3.31) holds.
If f/k is a nondecreasing function, the reverse inequalities in (3.41) and (3.31) hold.

Proof. Similar to the proof of Theorem 3.32. �

Theorem 3.34 Let k be a positive integrable function on [a,b], let f ,g,h be integrable
functions on [a,b] such that h is nonnegative and let f/k be a nonincreasing integrable
function on [a,b]. Let  be defined by (3.25). If (3.38) holds, then (3.32) is valid.
If f/k is a nondecreasing function, the reverse inequalities in (3.32) hold.

Proof. Similar to the proof of Theorem 3.32 using identity (3.40). �

Theorem 3.35 Let k be a positive integrable function on [a,b], let f ,g,h be integrable
functions on [a,b] and let f/k be a nonincreasing integrable function on [a,b]. Let  be
defined by (3.25). If ∫ x

a
k(t)g(t)dt ≥ 0, for a ≤ x ≤ b− ,

then∫ b

b−
f (t)h(t)dt−

∫ b

b−

[
f (t)
k(t)

− f (b− )
k(b− )

]
k(t)[h(t)−g(t)]dt ≤

∫ b

a
f (t)g(t)dt. (3.42)
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If we additionally have∫ b

x
k(t)h(t)dt ≥

∫ b

x
k(t)g(t)dt, for b− ≤ x ≤ b

then (3.32) holds.
If f/k is a nondecreasing function, the reverse inequalities in (3.42) and (3.32) hold.

Proof. Similar to the proof of Theorem 3.34. �

Wu and Srivastava also gave a general result on an improved version of Steffensen’s
inequality by introducing additional parameters 1 and 2. This result is given in the
following theorem.

Theorem 3.36 Let f and g be integrable functions defined on [a,b] with f nonincreasing.
Also let

0 ≤ 1 ≤
∫ b

a
g(t)dt ≤ 2 ≤ b−a

and 0 ≤ M ≤ g ≤ 1−M. Then∫ b

b−1

f (t)dt + f (b)
(∫ b

a
g(t)dt−1

)
+M

∫ b

a

∣∣∣∣ f (t)− f

(
b−

∫ b

a
g(t)dt

)∣∣∣∣dt

≤
∫ b

a
f (t)g(t)dt

≤
∫ a+2

a
f (t)dt − f (b)

(
2−

∫ b

a
g(t)dt

)
−M

∫ b

a

∣∣∣∣ f (t)− f

(
a+

∫ b

a
g(t)dt

)∣∣∣∣dt.

(3.43)

Proof. Let  be a constant function, i.e. (t) = M, t ∈ [a,b]. Then f and g satisfy the
assumptions of Theorem 3.27 with h ≡ 1 and (t) = M. So, we get∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt−M

∫ b

a
| f (t)− f (a+ )|dt

where  =
∫ b
a g(t)dt.

Let us prove the second inequality in (3.43). Using notation  =
∫ b
a g(t)dt, the fact that

2− =
∫ a+2
a+ dt and the above inequality we get∫ a+2

a
f (t)dt − f (b)

(
2−

∫ b

a
g(t)dt

)
−M

∫ b

a

∣∣∣∣ f (t)− f

(
a+

∫ b

a
g(t)dt

)∣∣∣∣dt

=
∫ a+2

a
f (t)dt− f (b)(2− )−M

∫ b

a
| f (t)− f (a+ )|dt

≥
∫ a+2

a
f (t)dt− f (b)

∫ a+2

a+
dt−

∫ a+

a
f (t)dt +

∫ b

a
f (t)g(t)dt

=
∫ a+2

a+
f (t)dt−

∫ a+2

a+
f (b)dt +

∫ b

a
f (t)g(t)dt

=
∫ a+2

a+
( f (t)− f (b))dt +

∫ b

a
f (t)g(t)dt ≥

∫ b

a
f (t)g(t)dt
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where in the last inequality we use f (t) ≥ f (b) for any t ∈ [a,b].
In the same way we prove the first inequality in (3.43). �

It is clear that Steffensen’s inequality follows as a special case of inequality (3.43)
when M = 0 and 1 = 2.

And finally, let us mention here one generalization involving Stieltjes integral due to
Liu. In [82] he proved

Theorem 3.37 Let f , g and h be −integrable functions defined on [a,b] with f nonin-
creasing and 0 ≤ g ≤ h. Then

∫ b

a
f (t)g(t)d(t) ≤

∫ −1((a)+ )

a
f (t)h(t)d(t),

where  satisfies ∫ −1((a)+ )

a
h(t)d(t) =

∫ b

a
g(t)d(t). (3.44)

Proof. After direct computation we get

∫ −1((a)+ )

a
f (t)h(t)d(t)−

∫ b

a
f (t)g(t)d(t)

=
∫ −1((a)+ )

a
[h(t)−g(t)] f (t)d(t)−

∫ b

−1((a)+ )
f (t)g(t)d(t)

≥ f (−1((a)+ ))
∫ −1((a)+ )

a
[h(t)−g(t)]d(t)−

∫ b

−1((a)+ )
f (t)g(t)d(t)

= f (−1((a)+ ))

[∫ b

a
g(t)d(t)−

∫ −1((a)+ )

a
g(t)d(t)

]

−
∫ b

−1((a)+ )
f (t)g(t)d(t)

=
∫ b

−1((a)+ )
[ f (−1((a)+ ))− f (t)]g(t)d(t)≥ 0.

�
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Of course, in the same paper, Liu gave a generalization of the second Steffensen in-
equality.

Theorem 3.38 Let f , g and h be −integrable functions defined on [a,b] with f nonin-
creasing and 0 ≤ g ≤ h. Then∫ b

−1((b)− )
f (t)h(t)d(t) ≤

∫ b

a
f (t)g(t)d(t),

where  satisfies ∫ b

−1((b)− )
h(t)d(t) =

∫ b

a
g(t)d(t). (3.45)

He also obtained results which are consequences of substitution f �→ f/k, g �→ gk, and
results with weaker conditions.

Theorem 3.39 Let g and h be nonnegative−integrable functions defined on [a,b]. Then∫ x

a
g(t)d(t) ≤

∫ x

a
h(t)d(t) and

∫ b

x
g(t)d(t) ≥ 0, ∀x ∈ [a,b]

is a necessary and sufficient condition for∫ b

a
f (t)g(t)d(t) ≤

∫ −1((a)+ )

a
f (t)h(t)d(t)

to hold for all nonincreasing functions f defined on [a,b], where  is given by (3.44).

Theorem 3.40 Let g and h be nonnegative−integrable functions defined on [a,b]. Then∫ x

a
g(t)d(t) ≥ 0 and

∫ b

x
g(t)d(t) ≤

∫ b

x
h(t)d(t), ∀x ∈ [a,b]

is a necessary and sufficient condition for∫ b

−1((b)− )
f (t)h(t)d(t) ≤

∫ b

a
f (t)g(t)d(t)

to hold for all nonincreasing functions f defined on [a,b], where  is given by (3.45).

3.3 Cerone’s generalizations

We begin this section with generalizations of Steffensen’s inequality given by Cerone in
[33]. As we see Cerone’s generalization of Steffensen’s inequality allows bounds involving
any two subintervals instead of restricting them to include the end points.
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Theorem 3.41 Let f ,g : [a,b] → R be integrable functions on [a,b] and let f be nonin-
creasing. Further, let 0 ≤ g ≤ 1 and

 =
∫ b

a
g(t)dt = di− ci, (3.46)

where [ci,di] ⊆ [a,b] for i = 1,2 and d1 ≤ d2. Then∫ d2

c2

f (t)dt − r(c2,d2) ≤
∫ b

a
f (t)g(t)dt ≤

∫ d1

c1

f (t)dt +R(c1,d1) (3.47)

holds, where

r(c2,d2) =
∫ b

d2

( f (c2)− f (t))g(t)dt ≥ 0

and

R(c1,d1) =
∫ c1

a
( f (t)− f (d1))g(t)dt ≥ 0.

Proof. Let us prove the second inequality. Let us consider the corresponding difference:∫ d1

c1

f (t)dt +R(c1,d1)−
∫ b

a
f (t)g(t)dt

=
∫ d1

c1

f (t)dt +
∫ c1

a
( f (t)− f (d1))g(t)dt−

∫ b

a
f (t)g(t)dt

=
∫ d1

c1

( f (t)− f (d1))(1−g(t))dt +
∫ b

d1

( f (d1)− f (t))g(t)dt

where we use
∫ d1
c1

dt =
∫ b
a g(t)dt.

Since 0 ≤ g ≤ 1 and f is nonincreasing, the terms under the integral sign are nonnega-
tive, hence the first sum in this chain is nonnegative, i.e.∫ d1

c1

f (t)dt +R(c1,d1) ≥
∫ b

a
f (t)g(t)dt.

The first inequality in (3.47) follows from the identity∫ b

a
f (t)g(t)dt −

∫ d2

c2

f (t)dt + r(c2,d2)

=
∫ d2

c2

( f (c2)− f (t))(1−g(t))dt +
∫ c2

a
( f (t)− f (c2))g(t)dt.

�

If in Theorem 3.41 we take c1 = a and d1 = a+ , then R(a,a+ )= 0. Further, taking
d2 = b and c2 = b− , then r(b− ,b) = 0. Thus we obtain Steffensen’s inequality.
Since  =

∫ b
a g(t)dt and 0≤ g≤ 1, then c2 = b− ≥ a and d1 = a+ ≤ b giving [ci,di]⊆

[a,b]. Hence, Theorem 3.41 can be viewed as a generalization of Steffensen’s inequality
for two subintervals which have equal lengths and which boundaries are not necessarily at
the bounds of [a,b].
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Remark 3.10 In [10] Aglić Aljinović, Pečarić and Perušić showed that identity (3.47)
can also be proved differently than in [33] using Steffensen’s inequality. Indeed, in order
to prove the right-hand side inequality in (3.47) we observe

∫ b

a
f (t)g(t)dt−

∫ d1

c1

f (t)dt

=
∫ b

a
( f (t)− f (d1))g(t)dt + f (d1)

∫ b

a
g(t)dt−

∫ d1

c1

f (t)dt

=
∫ b

a
( f (t)− f (d1))g(t)dt + f (d1) −

∫ c1+

c1

f (t)dt

=
∫ b

a
( f (t)− f (d1))g(t)dt−

∫ c1+

c1

( f (t)− f (d1))dt

and apply the right-hand Steffensen’s inequality for nonincreasing function f (t)− f (d1)
on the interval [c1,b]∫ b

c1

( f (t)− f (d1))g(t)dt ≤
∫ c1+1

c1

( f (t)− f (d1))dt.

Here we have 1 =
∫ b
c1

g(t)dt and thus obviously 1 ≤  which leads us to

∫ c1+1

c1

( f (t)− f (d1))dt ≤
∫ c1+

c1

( f (t)− f (d1))dt.

Finally ∫ b

a
( f (t)− f (d1))g(t)dt−

∫ c1+

c1

( f (t)− f (d1))dt

≤
∫ b

a
( f (t)− f (d1))g(t)dt−

∫ b

c1

( f (t)− f (d1))g(t)dt = R(c1,d1)

and the proof is complete. In a similar manner, the left-hand side inequality in (3.47) can
be proved.

The following corollary from [33] gives bounds that can be more easily evaluated.

Corollary 3.1 Let the conditions of Theorem 3.41 hold. Then∫ b

c2

f (t)dt − (b−d2) f (c2) ≤
∫ b

a
f (t)g(t)dt ≤

∫ d1

a
f (t)dt − (c1−a) f (d1). (3.48)

Proof. From Theorem 3.41, using that 0 ≤ g ≤ 1, we have

0≤ r(c2,d2) =
∫ b

d2

( f (c2)− f (t))g(t)dt ≤
∫ b

d2

( f (c2)− f (t))dt = (b−d2) f (c2)−
∫ b

d2

f (t)dt
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and so ∫ d2

c2

f (t)dt − r(c2,d2) ≥
∫ d2

c2

f (t)dt − (b−d2)+
∫ b

d2

f (t)dt.

So we obtain the left-hand side inequality in (3.48). Similarly we obtain the right-hand
side inequality in (3.48). �

Theorem 3.42 Let f ,g : [a,b] → R be integrable functions on [a,b] and let f be nonin-
creasing. Further, let g ≥ 0 and G(x) =

∫ x
a g(t)dt with  = G(b) = di − ci where [ci,di] ⊂

[a,b] for i = 1,2 and d1 < d2. Then

∫ d2

c2

f (y)dy− [M ( f ;c2,d2)− f (b)] ≤
∫ b

a
f (x)g(x)dx

≤
∫ d1

c1

f (y)dy+ [ f (a)−M ( f ;c1,d1)]
(3.49)

where

M ( f ;a,b) =
1

b−a

∫ b

a
f (x)dx. (3.50)

Proof. Let us transform the difference
∫ b
a f (x)g(x)dx− ∫ d2

c2
f (y)dy using the identity 1 =∫ b

a g(x)dx
d2−c2

and integration by parts:

∫ b

a
f (x)g(x)dx−

∫ d2

c2

f (y)dy =
∫ b

a
f (x)g(x)dx− 1

d2− c2

∫ d2

c2

f (y)dy
∫ b

a
g(x)dx

=
∫ b

a
f (x)g(x)dx−M ( f ;c2,d2)

∫ b

a
g(x)dx =

∫ b

a
g(x)[ f (x)−M ( f ;c2,d2)]dx

= G(x)[ f (x)−M ( f ;c2,d2)]|ba −
∫ b

a
G(x)d f (x) =  [ f (b)−M ( f ;c2,d2)]−

∫ b

a
G(x)d f (x)

since G(b) =  and G(a) = 0. Now we have

∫ b

a
f (x)g(x)dx−

∫ d2

c2

f (y)dy+ [M ( f ;c2,d2)− f (b)] = −
∫ b

a
G(x)d f (x) ≥ 0

since f is nonincreasing and g ≥ 0. So, the first inequality is proved.
The second inequality follows from the identity

∫ b

a
f (x)g(x)dx−

∫ d1

c1

f (y)dy =  [ f (a)−M ( f ;c1,d1)]+
∫ b

a
[ −G(x)]d f (x).

�
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As noted by Cerone, the left-hand and right-hand inequalities in (3.49) can be simpli-
fied to  f (b) and  f (a) respectively since∫ d

c
f (y)dy = M ( f ;c,d).

Hence, (3.49) becomes

 f (b) ≤
∫ b

a
f (x)g(x)dx ≤  f (a).

This result can also be obtained directly since

inf
x∈[a,b]

f (x)
∫ b

a
g(x)dx ≤

∫ b

a
f (x)g(x)dx ≤ sup

x∈[a,b]
f (x)

∫ b

a
g(x)dx.

Cerone’s result for function f/k is generalized by Pečarić, Perušić and Smoljak in
[118]. First we give the following lemma in which some useful identities are given.

Lemma 3.1 Let k be a positive integrable function on [a,b] and f ,g,h : [a,b] → R be
integrable functions on [a,b]. Further, let [c,d] ⊆ [a,b] with

∫ d
c h(t)k(t)dt =

∫ b
a g(t)k(t)dt.

Then the following identities hold:∫ d

c
f (t)h(t)dt−

∫ b

a
f (t)g(t)dt =

∫ c

a

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)dt

+
∫ d

c

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]dt +

∫ b

d

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)dt

(3.51)

and∫ b

a
f (t)g(t)dt−

∫ d

c
f (t)h(t)dt =

∫ c

a

(
f (t)
k(t)

− f (c)
k(c)

)
g(t)k(t)dt

+
∫ d

c

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]dt +

∫ b

d

(
f (t)
k(t)

− f (c)
k(c)

)
g(t)k(t)dt.

(3.52)

Proof. We have∫ d

c
f (t)h(t)dt−

∫ b

a
f (t)g(t)dt =

∫ d

c
k(t)[h(t)−g(t)]

f (t)
k(t)

dt

−
[∫ c

a

f (t)
k(t)

g(t)k(t)dt +
∫ b

d

f (t)
k(t)

g(t)k(t)dt

]
=
∫ c

a

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)dt

+
∫ d

c

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]dt +

∫ b

d

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)dt

+
f (d)
k(d)

[∫ d

c
k(t)h(t)dt−

∫ c

a
g(t)k(t)dt−

∫ d

c
k(t)g(t)dt−

∫ b

d
g(t)k(t)dt

]
.

(3.53)
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Since ∫ d

c
k(t)h(t)dt =

∫ b

a
k(t)g(t)dt,

we have

f (d)
k(d)

[∫ d

c
k(t)h(t)dt−

∫ c

a
g(t)k(t)dt−

∫ d

c
k(t)g(t)dt−

∫ b

d
g(t)k(t)dt

]
= 0.

Hence, (3.51) follows from (3.53).
Furthermore, (3.52) can be obtained in a similar way so the proof is completed. �

Now we proceed to the generalization of Cerone’s result, [118].

Theorem 3.43 Let k be a positive integrable function on [a,b] and f ,g,h : [a,b] → R be
integrable functions on [a,b] such that f/k is nonincreasing. Further, let 0 ≤ g ≤ h and∫ d
c h(t)k(t)dt =

∫ b
a g(t)k(t)dt, where [c,d] ⊆ [a,b]. Then

∫ b

a
f (t)g(t)dt ≤

∫ d

c
f (t)h(t)dt +Rg(c,d) (3.54)

holds, where

Rg(c,d) =
∫ c

a

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)dt ≥ 0. (3.55)

If f/k is a nondecreasing function, then the inequalities in (3.54) and (3.55) are reversed.

Proof. Since f/k is nonincreasing, k is positive and 0 ≤ g ≤ h we have

∫ d

c

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]dt ≥ 0, (3.56)

∫ b

d

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)dt ≥ 0 (3.57)

and Rg(c,d) ≥ 0. Now, from (3.51), (3.56) and (3.57) we have

∫ d

c
f (t)h(t)dt −

∫ b

a
f (t)g(t)dt +

∫ c

a

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)dt

=
∫ d

c

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]dt +

∫ b

d

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)dt

≥ 0.

(3.58)

Hence, inequality (3.54) holds. �

In a similar way we obtain a lower bound for
∫ b
a f (t)g(t)dt.
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Theorem 3.44 Let k be a positive integrable function on [a,b] and f ,g,h : [a,b] → R be
integrable functions on [a,b] such that f/k is nonincreasing. Further, let 0 ≤ g ≤ h and∫ d
c h(t)k(t)dt =

∫ b
a g(t)k(t)dt, where [c,d] ⊆ [a,b]. Then∫ d

c
f (t)h(t)dt− rg(c,d) ≤

∫ b

a
f (t)g(t)dt (3.59)

holds, where

rg(c,d) =
∫ b

d

(
f (c)
k(c)

− f (t)
k(t)

)
g(t)k(t)dt ≥ 0. (3.60)

If f/k is a nondecreasing function, then the inequalities in (3.59) and (3.60) are reversed.

Proof. Since f/k is nonincreasing, k is positive and 0 ≤ g ≤ h we have∫ c

a

(
f (t)
k(t)

− f (c)
k(c)

)
k(t)g(t)dt ≥ 0, (3.61)

∫ d

c

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]dt ≥ 0 (3.62)

and rg(c,d) ≥ 0. Now, from (3.52), (3.61) and (3.62) we have∫ b

a
f (t)g(t)dt−

∫ d

c
f (t)h(t)dt +

∫ b

d

(
f (c)
k(c)

− f (t)
k(t)

)
g(t)k(t)dt

=
∫ c

a

(
f (t)
k(t)

− f (c)
k(c)

)
g(t)k(t)dt +

∫ d

c

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]dt ≥ 0.

(3.63)

Hence, inequality (3.59) holds. �

Remark 3.11 If we take c = a and d = a+ in Theorem 3.43 we obtain Mercer’s gener-
alization of the right-hand side Steffensen’s inequality given in Theorem 3.20. If we take
c = b− and d = b in Theorem 3.44, then we obtain a generalization of the left-hand side
Steffensen’s inequality which is given in Theorem 3.21.

In the previous section we proved generalization of the Wu and Srivastava refinement
of Steffensen’s inequality for nonincreasing function f/k. In the following theorems we
generalize these results to obtain bounds which involve any two subintervals (see [118]).

Theorem 3.45 Let k be a positive integrable function on [a,b] and f ,g,h : [a,b] → R be
integrable functions on [a,b] such that f/k is nonincreasing. Further, let 0 ≤ g ≤ h and∫ d
c h(t)k(t)dt =

∫ b
a g(t)k(t)dt, where [c,d] ⊆ [a,b].

a) Then∫ b

a
f (t)g(t)dt ≤

∫ d

c
f (t)h(t)dt−

∫ d

c

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]dt

+Rg(c,d) ≤
∫ d

c
f (t)h(t)dt +Rg(c,d)

(3.64)

holds, where Rg(c,d) is defined by (3.55).
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b) Then∫ d

c
f (t)h(t)dt − rg(c,d) ≤

∫ d

c
f (t)h(t)dt

+
∫ d

c

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]dt− rg(c,d) ≤

∫ b

a
f (t)g(t)dt

(3.65)

holds, where rg(c,d) is defined by (3.60).

If f/k is a nondecreasing function, then the inequalities in (3.64) and (3.65) are reversed.

Proof. Similar to the proof of Theorem 3.43 and Theorem 3.44. �

Remark 3.12 If we take c = a and d = a+ in Theorem 3.45 a), or c = b− and d = b
in Theorem 3.45 b), we obtain refinements given in Theorem 3.25 and Theorem 3.26.

Let us see what we can say about weaker conditions on the function g.
Using identity (3.58) and applying integration by parts in it we obtain that under as-

sumptions of Theorem 3.43 and with assumptions∫ x

c
k(t)g(t)dt ≤

∫ x

c
k(t)h(t)dt, c ≤ x ≤ d and

∫ b

x
k(t)g(t)dt ≥ 0, d ≤ x ≤ b, (3.66)

inequality (3.54) is valid, [118].
Putting c = a and d = a+ in (3.66) we obtain the following conditions∫ x

a
k(t)g(t)dt ≤

∫ x

a
k(t)h(t)dt, a ≤ x ≤ a+

and
∫ b

x
k(t)g(t)dt ≥ 0, a+ ≤ x ≤ b.

(3.67)

In Theorem 3.30 it is proved that for nonnegative function h, conditions (3.67) are
equivalent to∫ x

a
k(t)g(t)dt ≤

∫ x

a
k(t)h(t)dt and

∫ b

x
k(t)g(t)dt ≥ 0, ∀x ∈ [a,b].

Hence, we again obtain the sufficient conditions given in Theorem 3.30.
In a similar manner, we conclude that the condition 0 ≤ g ≤ h in Theorem 3.44 can be

substituted by the assumptions∫ d

x
k(t)g(t)dt ≤

∫ d

x
k(t)h(t)dt,c ≤ x ≤ d

and
∫ x

a
k(t)g(t)dt ≥ 0,a ≤ x ≤ c.

(3.68)

Putting c = b− and d = b in (3.68) we obtain the conditions∫ b

x
k(t)g(t)dt ≤

∫ b

x
k(t)h(t)dt, b− ≤ x ≤ b

and
∫ x

a
k(t)g(t)dt ≥ 0, a ≤ x ≤ b− .

(3.69)
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In Theorem 3.31 it is proved that for a nonnegative function h, conditions (3.69) are
equivalent to∫ b

x
k(t)g(t)dt ≤

∫ b

x
k(t)h(t)dt and

∫ x

a
k(t)g(t)dt ≥ 0, ∀x ∈ [a,b].

Hence, we again obtain the sufficient conditions given in Theorem 3.31.
Taking k ≡ 1 and h ≡ 1 in (3.66) and (3.68) we obtain weaker conditions for the func-

tion g in Cerone’s generalization of Steffensen’s inequality.

Theorem 3.46 Let f ,g : [a,b]→ R be integrable functions on [a,b] such that f is nonin-
creasing. Let  = d− c =

∫ b
a g(t)dt, where [c,d] ⊆ [a,b].

a) If ∫ x

c
g(t)dt ≤ x− c, c ≤ x ≤ d and

∫ b

x
g(t)dt ≥ 0, d ≤ x ≤ b,

then ∫ b

a
f (t)g(t)dt ≤

∫ d

c
f (t)dt +

∫ c

a
( f (t)− f (d))g(t)dt.

b) If ∫ d

x
g(t)dt ≤ d− x, c ≤ x ≤ d and

∫ x

a
g(t)dt ≥ 0, a ≤ x ≤ c,

then ∫ d

c
f (t)dt −

∫ b

d
( f (c)− f (t))g(t)dt ≤

∫ b

a
f (t)g(t)dt.

From the above discussion, it is obvious that if the condition 0≤ g≤ h in Theorem 3.45
is substituted with (3.66), then (3.64) holds, while if that condition is substituted with
(3.68), then (3.65) is valid. Namely, Theorem 3.45 has the following form.

Theorem 3.47 Let k be a positive integrable function on [a,b] and f ,g,h : [a,b] → R be
integrable functions on [a,b] such that f/k is nonincreasing. Let

∫ d
c h(t)k(t)dt=

∫ b
a g(t)k(t)dt,

where [c,d] ⊆ [a,b]. If∫ x

c
k(t)g(t)dt ≤

∫ x

c
k(t)h(t)dt, c ≤ x ≤ d and

∫ b

x
k(t)g(t)dt ≥ 0, d ≤ x ≤ b,

holds, then∫ b

a
f (t)g(t)dt ≤

∫ d

c
f (t)h(t)dt +Rg(c,d)−

∫ d

c

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]dt

≤
∫ d

c
f (t)h(t)dt +Rg(c,d),

(3.70)

where Rg(c,d) =
∫ c
a

(
f (t)
k(t) − f (d)

k(d)

)
g(t)k(t)dt.
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Proof. Using identity (3.51) and applying integration by parts we obtain∫ d

c
f (t)h(t)dt −

∫ b

a
f (t)g(t)dt +

∫ c

a

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)dt

−
∫ d

c

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]dt =

∫ b

d

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)dt

= −
∫ b

d

(∫ b

x
g(t)k(t)dt

)
d

(
f (x)
k(x)

)
≥ 0

when ∫ b

x
k(t)g(t)dt ≥ 0, d ≤ x ≤ b.

Furthermore,∫ d

c

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]dt = −

∫ d

c

(∫ x

c
k(t)[h(t)−g(t)]dt

)
d

(
f (x)
k(x)

)
≥ 0

when ∫ x

c
k(t)g(t)dt ≤

∫ x

c
k(t)h(t)dt, c ≤ x ≤ d.

Hence (3.70) holds. �

The following theorem states what happens if only the second condition in (3.66) is
valid.

Theorem 3.48 Let k be a positive integrable function on [a,b] and f ,g,h : [a,b] → R be
integrable functions on [a,b] such that f/k is nonincreasing. Let

∫ d
c h(t)k(t)dt=

∫ b
a g(t)k(t)dt,

where [c,d] ⊆ [a,b]. If ∫ b

x
k(t)g(t)dt ≥ 0 for d ≤ x ≤ b,

then ∫ b

a
f (t)g(t)dt ≤

∫ d

c
f (t)h(t)dt +

∫ c

a

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)dt

−
∫ d

c

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]dt.

If we additionally have∫ x

c
k(t)g(t)dt ≤

∫ x

c
k(t)h(t)dt for c ≤ x ≤ d,

then (3.70) holds.

Proof. Similar to the proof of Theorem 3.47. �

Of course, as with Theorem 3.47, we state a weaker version of Theorem 3.45 b) and an
analogue of Theorem 3.48 as following:
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Theorem 3.49 Let k be a positive integrable function on [a,b] and f ,g,h : [a,b] → R be
integrable functions on [a,b] such that f/k is nonincreasing. Let

∫ d
c h(t)k(t)dt=

∫ b
a g(t)k(t)dt,

where [c,d] ⊆ [a,b]. If ∫ x

a
k(t)g(t)dt ≥ 0 for a ≤ x ≤ c,

then ∫ d

c
f (t)h(t)dt−

∫ b

d

(
f (c)
k(c)

− f (t)
k(t)

)
g(t)k(t)dt

+
∫ d

c

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]dt ≤

∫ b

a
f (t)g(t)dt.

If we additionally have∫ d

x
k(t)g(t)dt ≤

∫ d

x
k(t)h(t)dt for c ≤ x ≤ d,

then∫ d

c
f (t)h(t)dt− rg(c,d) ≤

∫ d

c
f (t)h(t)dt− rg(c,d)

+
∫ d

c

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]dt ≤

∫ b

a
f (t)g(t)dt,

(3.71)

where rg(c,d) =
∫ b
d

(
f (c)
k(c) − f (t)

k(t)

)
g(t)k(t)dt.

Proof. Similar to the proof of Theorem 3.47 using identity (3.52). �

3.4 Multidimensional and measure spaces
generalizations

In [105] Pečarić gave the multidimensional Steffensen’s inequality. First, we give the
following theorem which is used in the proof of the multidimensional version.

Theorem 3.50 Let p : [a,b]m → R and r : [a,b] → R be integrable functions. For all
nonnegative nonincreasing functions f j : [a,b] → R (1 ≤ j ≤ m)

∫ b

a
. . .
∫ b

a
p(x1, . . . ,xm) f1(x1) · · · fm(xm)dx1 · · ·dxm ≤

∫ b

a
r(x) f1(x) · · · fm(x)dx (3.72)
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if and only if

P(y1, . . . ,ym) ≤ R(min{y1, . . . ,ym}) (∀y1, . . . ,ym ∈ [a,b]) (3.73)

where

P(y1 . . . ,ym) =
∫ y1

a
. . .

∫ ym

a
p(x1, . . . ,xm)dx1 · · ·dxm

and R(y) =
∫ y
a r(y)dy.

If in (3.73) the reverse inequality holds, then the reverse inequality in (3.72) holds.

The multidimensional Steffensen’s inequality is given in the following theorem.

Theorem 3.51 Let f j : [a,b] → R (1 ≤ j ≤ m) and p : [a,b]m → R be nonnegative inte-
grable functions such that f j (1 ≤ j ≤ m) are nonincreasing functions and

0 ≤ p(x1, . . . ,xm) ≤ 1 (∀x j ∈ [a,b], 1 ≤ j ≤ m).

Then

1
(b−a)m−1

∫ b

a
. . .

∫ b

a
p(x1, . . . ,xm) f1(x1) · · · fm(xm)dx1 · · ·dxm

≤
∫ a+

a
f1(x) · · · fm(x)dx

(3.74)

where

 =
1

(b−a)m−1

∫ b

a
. . .

∫ b

a
p(x1, . . . ,xm)dx1 · · ·dxm.

Proof. Let r(x) = (b−a)m−1 for x ∈ [a,a+ ] and r(x) = 0 for x ∈ (a+ ,b]. Then, (3.74)
could be written in the form (3.72). Now, we show that condition (3.73) is satisfied.
If min{y1, . . . ,ym} ≤ a+ , then we have

P(y1, . . . ,ym) ≤
∫ y1

a
. . .

∫ ym

a
dx1 · · ·dxm = (y1−a)(y2−a) . . .(ym −a)

≤ (b−a)m−1(min{y1, . . . ,ym}−a) = R(min{y1, . . .ym}).

If min{y1, . . . ,ym} ≥ a+ , then

P(y1, . . . ,ym) ≤ P(b, . . . ,b) = (b−a)m−1 = R(min{y1, . . . ,ym}).

�

Pečarić and Varošanec in [129] proved Steffensen’s inequality for functions in several
variables given in the following theorem. Let  = (1, . . . ,n), t = (t1, . . . ,tn) and let
I = [a,b] = {t : ai ≤ ti ≤ bi,1 ≤ i ≤ n} = n

i=1[ai,bi].
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Theorem 3.52 Let f : I = [a,b] → R be an integrable function such that each function
fk : t �→ f (x1,x2, . . . ,xk−1,t,xk+1, . . . ,xn), k = 1, . . . ,n, has property (QD) described in The-
orem 2.7. If g(x) = g1(x1)g2(x2) · · ·gn(xn) where each gi is a nonnegative integrable func-
tion satisfying condition (QB), then∫

[b−,b]
f (x)dx ≤

∫
[a,b]

f (x)g(x)dx ≤
∫

[a,a+]
f (x)dx (3.75)

holds, where dx = dx1dx2 · · ·dxn and i =
∫ bi
ai

gi(t)dt.

Proof. If the function f satisfies the assumptions, then the functions

Fk+1 : t �→
∫ ak+k

ak

. . .

∫ a1+1

a1

f (x1, . . . ,xk, t,xk+2, . . . ,xn)dx1 · · ·dxk,

and F1 : t �→ f (t,x2, . . . ,xn) also satisfy property (QD) for all k = 1, . . . ,n− 1. So using
Steffensen’s inequality for the functions Fk and gk for k = 1, . . . ,n we have∫

I
f (x)g1(x1) · · ·gn(xn)dx

=
∫ bn

an

· · ·
∫ b2

a2

(∫ b1

a1

f (x)g1(x1)dx1

)
g2(x2) · · ·gn(xn)dx2 · · ·dxn

≤
∫ bn

an

· · ·
∫ b2

a2

(∫ a1+1

a1

f (x)dx1

)
g2(x2) · · ·gn(xn)dx2 · · ·dxn

=
∫ bn

an

· · ·
∫ b3

a3

(∫ b2

a2

(∫ a1+1

a1

f (x)dx1

)
g2(x2)dx2

)
g3(x3) · · ·gn(xn)dx3 · · ·dxn

=
∫ bn

an

· · ·
∫ b3

a3

(∫ b2

a2

F2(x2)g2(x2)dx2

)
g3(x3) · · ·gn(xn)dx3 · · ·dxn

≤ ·· · ≤
∫

[a,a+]
f (x)dx.

Similarly, we can prove the second inequality. �

Using the same idea, Pečarić and Varošanec obtained the multidimensional generaliza-
tion given in the following theorem (see [129]).

Theorem 3.53 Let f be a nondecreasing function in each variable and gi, i = 1, . . . ,n
nonnegative integrable functions such that

0 ≤
∫ bi

xi

gi(t)dt ≤ bi− xi and 0 ≤
∫ xi

ai

gi(t)dt ≤ xi −ai

for all xi ∈ [ai,bi], i = 1, . . . ,n. Then (3.75) holds.

Another Steffensen-type inequality for functions of several variables is given in the
following theorem (see [129]).
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Theorem 3.54 Let i (i = 1, . . . ,n) be nonnegative real numbers less than or equal to
bi−ai.

(a) Let f : I = [a,b]→ R be an integrable function with property (QD) in each variable.
If gi : [ai,bi] → R are integrable functions such that

0 ≤ igi(x) ≤
∫ bi

ai

gi(t)dt for all x ∈ [ai,bi], i = 1, . . . ,n,

then ∫
[b−,b] f (x)dx

1 · · ·n
≤
∫
[a,b] f (x)g1(x1) · · ·gn(xn)dx∫

[a,b] g1(x1) · · ·gn(xn)dx
≤
∫
[a,a+] f (x)dx

1 · · ·n
. (3.76)

(b) Let f be a nondecreasing function in each variable and gi positive integrable func-
tions such that

0 ≤ i

∫ bi

xi

gi(t)dt ≤ (bi − xi)
∫ bi

ai

gi(t)dt

and

0 ≤ i

∫ xi

ai

gi(t)dt ≤ (xi −ai)
∫ bi

ai

gi(t)dt

for all xi ∈ [ai,bi], i = 1, . . . ,n. Then (3.76) holds.

Proof. The functions

Gi(t) =
igi(t)∫ bi

ai
gi(x)dx

satisfy the assumptions of Theorem 3.52 and, under these substitutions, inequality (3.75)
becomes inequality (3.76). �

We use the following notation:

t = (t1, . . . ,tn), I = [a,b] = {t : ai ≤ ti ≤ bi,1 ≤ i ≤ n} =
n


i=1

[ai,bi].

If t and x are two n−tuples, then by t+x we mean an n−tuple (t1 + x1, . . . ,tn + xn).
The multidimensional generalization of the right-hand side of the Steffensen inequality

is given in the following theorem (see [129]).

Theorem 3.55 Let  be a measure such that I is a finite −measurable set, and f ,
g and f g be −integrable functions on I. Let  = (1, . . . ,n) be a positive n−tuple,
I1 := [a,a+]⊂ I and let A be a real number such that

A(I1) =
∫

I
gd ,

and let one of the following cases holds −almost everywhere:
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(1) g(t) ≤ A and f (t) ≥ f (a+) for t ∈ I1;
g(t) ≥ 0 and f (t) ≤ f (a+) for t ∈ I \ I1;

(2) g(t) ≥ A and f (t) ≤ f (a+) for t ∈ I1;
g(t) ≤ 0 and f (t) ≥ f (a+) for t ∈ I \ I1.

Then we have
A
∫

I1
f d ≥

∫
I
f gd . (3.77)

Proof. It is easy to verify that the following identity holds:

A
∫

I1
f (t)d−

∫
I
f (t)g(t)d =

∫
I1
( f (t)− f (a+))(A−g(t))d

+
∫

I\I1
( f (a+)− f (t))g(t)d+ f (a+)

(
A(I1)−

∫
I
g(t)d

)
.

The last term is equal to zero, and f and g satisfy either case (1) or (2), so inequality (3.77)
is valid. �

A generalization of the left-hand side of Steffensen’s inequality is given in the follow-
ing theorem (see [129]).

Theorem 3.56 Let  be a measure such that I := [a,b] is a finite −measurable set, and
f , g and f g be −integrable functions on I. Let  = (1, . . . ,n) be a positive n−tuple,
I2 := [b−,b] ⊂ I and let A be a real number such that

A(I2) =
∫

I
gd ,

and let one of the following cases holds −almost everywhere:

(1) g(t) ≤ A and f (t) ≤ f (b−) for t ∈ I2;
g(t) ≥ 0 and f (t) ≥ f (b−) for t ∈ I \ I2;

(2) g(t) ≥ A and f (t) ≥ f (b−) for t ∈ I2;
g(t) ≤ 0 and f (t) ≤ f (b−) for t ∈ I \ I2.

Then
A
∫

I2
f d ≤

∫
I
f gd .

Proof. The proof is similar to the proof of Theorem 3.55 based on the following identity:∫
I
f gd−A

∫
I2

f d =
∫

I\I2
( f (t)− f (b−))g(t)d

+
∫

I2
( f (b−)− f (t))(A−g(t))d+ f (b−)

(∫
I
gd−A(I2)

)
.

�
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Remark 3.13 For n = 1, A = 1 and  = F , where F is the Stieltjes measure with
F(x) = x, from Theorems 3.55 and 3.56 we obtain the generalized one-dimensional Stef-
fensen’s inequality given in Theorem 2.7.

Let f ∈ M0 where M0 is the class of nonnegative nondecreasing functions defined on
interval [a,b]. Then f (x) =

∫ x
a d(t) for some nonnegative Borel measure  . We introduce

the notation x+ = max(x,0). Also xn
+ denotes (x+)n except that 00 is interpreted as 0. Thus

the characteristic function of [t,) is (x− t)0
+. Now the above formula for f ∈ M0 may be

written as

f (x) =
∫ b

a
(x− t)0

+d(t).

The class of functions which we consider generalizes this formula. Let Mk denote the class
of functions f defined on the interval [a,b] with the representation

f (x) =
∫ b

a
(x− t)k

+d(t), x ∈ [a,b], (3.78)

for some nonnegative regular Borel measure  . Note that k need not be an integer, although
the case of great interest is when it is an integer. In particular, M1 is the class of increasing
convex functions with a value zero at a. More generally, if f ∈C(n+1)[a,b] with f (i)(a) = 0,
i = 0, . . . ,n−1, and f (n) ≥ 0, f (n+1) ≥ 0 on [a,b], then f ∈ Mn.

In [42] Fink proved the following theorem.

Theorem 3.57 Let  be a (signed) regular Borel measure such that
∫ b
a |d | < . Then∫ b

a
f (x)d(x) ≥ 0 for all f ∈ Mk (3.79)

if and only if ∫ b

a
(x− t)k

+d(x) ≥ 0 for t ∈ [a,b]. (3.80)

Proof. Using representation (3.78) in (3.79) and Fubini’s theorem, (3.79) is equivalent to∫ b

a
d(t)

∫ b

a
(x− t)k

+d(x) ≥ 0

for all nonnegative Borel measures  . This holds if and only if (3.80) is valid. �

In [42] Fink proved generalizations of Steffensen’s inequality for the class Mk. We give
Fink’s results on the interval [a,b] ⊂ R

+
0 .

Theorem 3.58 Let  be a (signed) regular Borel measure such that
∫ b
a |d | < . Then

∫ b

a
f (x)d(x) ≥

∫ a+

a
f (x)dx (3.81)
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for all f ∈ Mk if and only if ∫ b

a
(x− t)k

+d(x) ≥ 0, t ∈ [a,b] (3.82)

and

 ≤ min
a≤t≤b

{
(t −a)+

(
(k+1)

∫ b

a
(x− t)k

+d(x)
) 1

k+1
}

. (3.83)

Therefore the best possible choice is for equality in (3.83).

Proof. We apply Theorem 3.57 to the measure d = d − (a+ − x)0
+dx. Then (3.81) is

equivalent to (3.79). Thus condition (3.80) is equivalent to∫ b

a
(x− t)k

+d(x) ≥
∫ b

a
(x− t)k

+(a+ − x)0
+dx. (3.84)

Since the right-hand side in (3.84) is nonnegative, (3.82) is necessary. Now taking a ≤ t ≤
b, (3.84) becomes ∫ b

a
(x− t)k

+d(x) ≥ (a+ − t)k+1

k+1
and in turn

 ≤ (t−a)+
(

(k+1)
∫ b

a
(x− t)k

+d(x)
) 1

k+1

, for t ∈ [a,a+ ]. (3.85)

But since (3.82) holds, inequality (3.85) is true if t ≥ a+ . Thus (3.83) is necessary and
sufficient since we may reverse all of the above steps. �

Remark 3.14 Let f ∈Cn[a,b] be an n−convex function with f (k)(a) = 0, k = 0, . . . ,n−2
and f (n−1) ≥ 0. Then f ∈Mn−1. Hence, we can apply Theorem 3.17 on function f ∈Mn−1.
Furthermore, by replacing gdx by d we obtain (3.81) with

 =
(

n
∫ b

a
(x−a)n−1d(x)

)1/n

.

Theorem 3.59 If
∫ b
a |d | < , then the inequality∫ b

a
f (x)d(x) ≤

∫ b

b−
f (x)dx (3.86)

holds for all f ∈ Mk if and only if∫ b

a
(x− t)k

+d(x) ≤ (b− t)k+1

k+1
, t ∈ [a,b] (3.87)

and

b− ≤ min
a≤t≤b

{
t +
[
(b− t)k+1− (k+1)

∫ b

a
(x− t)k

+d(x)
] 1

k+1
}

. (3.88)

In particular, the best choice for b− is equality in (3.88).
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Proof. Similarly as in the proof of Theorem 3.58, we apply Theorem 3.57 to the measure
d = (x− (b− ))0

+dx−d . �

If M∗
k is the class of functions f ∈C(k+1)(a,b) with f (k+1)(x) ≥ 0 on [a,b], then f (x)−

k
j=0 f ( j)(a) x j

j! ∈ Mk. Hence, a particular case of Theorem 3.58 is given in the following
corollary (see [42]).

Corollary 3.2 If ∫ x

a
tkd(t) ≤ xk+1

k+1
,

∫ b

x
tkd(t) ≥ 0, a ≤ x ≤ b

and

 =
(

(k+1)
∫ b

a
skd(s)

) 1
k+1

,

then (3.81) holds for all f ∈ Mk.

In several important instances, as in Corollary 3.2, the formula for  is given for a
specific choice of t, in that case the minimum is attained at t = a. Fink and Jodeit showed
in [44] that if f ∈ Mk, then f (x)x−k ∈ M0. In general, the converse is not true. Version of
Steffensen’s inequality for f (x)x−k is given in the following theorem (see [42]).

Theorem 3.60 If f (x)/xk ∈ M0, then

(i) ∫ a+

a
f (x)dx ≤

∫ b

a
f (x)d(x)

holds when ∫ b

t
xkd(x) ≥ 0, t ∈ [a,b] (3.89)

and

a+ = min
a≤t≤b

{
tk+1 +(k+1)

∫ b

t
xkd(x)

} 1
k+1

;

(ii) ∫ b

a
f (x)d(x) ≤

∫ b

b−
f (x)dx

holds when ∫ b

t
xkd(x) ≤ bk+1− tk+1

k+1
, t ∈ [a,b] (3.90)

and

b− = min
a≤t≤b

{
bk+1− (k+1)

∫ b

t
xkd(x)

} 1
k+1

.
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In particular, if ∫ t

a
xkd(x) ≤ tk+1

k+1
,

then

a+ =
[
(k+1)

∫ b

a
xkd(x)

] 1
k+1

.

If (3.89) holds as well as (3.90), then

b− =
[
b− (k+1)

∫ b

a
xkd(x)

] 1
k+1

.

Proof. We apply Theorem 3.57 with k = 0 and f replaced by f (x)/xk. To prove (i) we take
d = xkd−xk(a+ −x)0

+dx and to prove (ii) we take d = xk(x−b+ )0
+dx−xkd . �

Also, in Fink’s paper [42] the multidimensional version of Steffensen’s inequality is
given. If x ∈ R

n with nonnegative components, then
∫ x
0 d(t) means the multiple integral∫ ∫

0≤ti≤xi

. . .

∫
d(t1, . . . ,tn).

Let M0 be the class of functions with representation

f (x) =
∫ x

0
d(t)

for some nonnegative regular Borel measure  .

Theorem 3.61 Let f ∈ M0 and  be a regular Borel measure such that
∫ 1
0 |d | <  and

for every union of cubes E,
∫
E d ≤ volume(E). If

∫ 1
t d ≥ 0 for all t ∈ [0,1]n, then

∫ 

0
f dx ≤

∫ 1

0
f d

where  is the vector (c,c, . . . ,c) with c = 1− (1− ∫ 1
0 d)1/n.

Theorem 3.62 Assume
∫ 1
t d ≤n

i=1(1− ti) and f ∈ M0. If

sup
0≤ti≤1

n


i=1

(1− ti)−1
∫ 1

t
d ≤ (1− c)n,  = (c, . . . ,c),

then ∫ 1

0
f d ≤

∫ 1


f dx.
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In [56] Godunova and Levin gave a generalization of Steffensen’s inequality using
nonnegative kernel. Let FK be the class of functions f : [0,a]→ R with the representation

f (t) =
∫

X
K(x,t)d(x), (3.91)

where K(x, t) ≥ 0 when x ∈ X , t ∈ [0,a] and
∫
X d(x) = 1 where  is nondecreasing.

Theorem 3.63 Let  be a positive, increasing and concave function such that  ′
 ′′ is a

convex function and let

h(x) =
∫ x

0
dh(t), g(x) =

∫ x

0
dg(t), h(0) = g(0) = 0, h(a) = 1,

where g and h are nondecreasing on [0,a]. The inequality∫ a

0
f (t)dg(t) ≤ −1

(∫ a

0
( f (t))dh(t)

)
,

holds for each f ∈ FK if and only if for x ∈ X∫ a

0
K(x,t)dg(t) ≤ −1

(∫ a

0
(K(x,t))dh(t)

)
.

Corollary 3.3 If a function f is decreasing on [0,a], h, g and  satisfy the conditions of
Theorem 3.63 and the function h has an inverse h−1, then

g(x) ≤ −1(( f (0)− f (a))h(x))
f (0)− f (a)

= r(x), (3.92)

holds for all x ∈ [0,a] if and only if∫ a

0
f (t)dg(t) ≤ −1

(∫ c

0
( f (t))dh(t)

)
, (3.93)

where

c = h−1
(
(g(a)[ f (0)− f (a)])

( f (0)− f (a))

)
≤ a.

If in (3.92) and (3.93) we put (u) = u, g(t) =
∫ t
0 G()d and h(t) = t, we obtain

Steffensen’s inequality. The corrected version of Bellman’s generalization follows from
(3.93). For (u) = up, 0 < p ≤ 1, g(t) =

∫ t
0 G()d , h(t) = t we obtain

∫ a

0
f (t)G(t)dt ≤

(∫ (
∫ a
0 G()d)p

0
f p(t)dt

) 1
p

. (3.94)

It is also proved that inequality (3.94) holds for any decreasing function f and 0 < p≤ 1
if and only if ∫ x

0
G()d ≤ x

1
p , x ∈ [0,a].

In [138] Sadikova proved some further results for function f ∈ FK which covered the
results of Godunova and Levin. First, she gave the following lemma.
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Lemma 3.2 Let K(a,b) be integrable on A×B,
∫
A d(a) = 1,

∫
B d(b) = 1, and let 

and  be continuous monotone real functions on (0,) such that

1) 1/ ′ is nondecreasing for increasing  or 1/ ′ is nonincreasing for decreasing 

and

2)  ′ is nondecreasing for increasing  or  ′ is nonincreasing for decreasing  .

Then∫
B
−1

(∫
A
(K(a,b))d(a)

)
d(b)≤ −1

(∫
A

(∫

B
K(a,b)d(b)

)
d(a)

)
(3.95)

and∫
B
−1

(∫
A
(K(a,b))d(a)

)
d(b) ≥ −1

(∫
A

(∫

B
K(a,b)d(b)

)
d(a)

)
. (3.96)

Proof. The proof is based on the relationship between quasiarithmetic means Mid and M
where M is defined by

M = −1
(∫

X
p(x)( f (x))dx

)
,
∫

X
p(x)dx = 1.

Namely, the inequality
M ≤ M (3.97)

holds if the quotient  ′
 ′ is:

(a) nondecreasing if continuous functions  and  have the same monotonicity;

or

(b) nonincreasing if functions  and  have the opposite monotonicity.

If  satisfies the assumptions of Lemma, applying (3.97) on  and id, we get

−1
(∫

A
(K(a,b))d(a)

)
≤
∫

A
K(a,b)d(a).

Integrating over B we have∫
B
−1

(∫
A
(K(a,b))d(a)

)
d(b) ≤

∫
B

∫
A
K(a,b)d(a)d(b)

=
∫

A

∫
B
K(a,b)d(b)d(a)

(3.98)

where we use Fubini’s theorem. If we apply (3.97) on the functions id and  we get∫
B
K(a,b)d(b)≤ −1

(∫
B
(K(a,b))d(b)

)
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and after integrating over A we get∫
A

∫
B
K(a,b)d(b)d(a)≤

∫
A
−1

(∫
B
(K(a,b))d(b)

)
d(a). (3.99)

Form (3.98) and (3.99) we obtain inequality (3.95).
The similar proof holds for inequality (3.96). �

Theorem 3.64 Let f ∈ FK. Let the functions  ,  satisfy the conditions of Lemma 3.2,
h(x) =

∫ x
0 dh(t), g(x) =

∫ x
0 dg(t), x ∈ X, h(0) = g(0) = 0, h(a) = 1 where g, h are nonde-

creasing functions. If

−1
(∫ a

0
(K(x,t))dh(t)

)
≤
∫ a

0
K(x,t)dg(t) ≤ −1

(∫ a

0
(K(x,t))dh(t)

)
, (3.100)

then

−1
(∫ a

0
( f (t))dh(t)

)
≤
∫ a

0
f (t)dg(t) ≤ −1

(∫ a

0
( f (t))dh(t)

)
.

Proof. Integrating all terms in (3.100) over X we get (T = [0,a])

∫
X
−1

(∫
T
(K(x,t))dh(t)

)
d(x) ≤

∫
X

∫
T

K(x,t)dg(t)d(x)

≤
∫

X
−1

(∫
T
(K(x, t))dh(t)

)
d(x).

(3.101)

Using inequality (3.96) with A = T , B = X , d(a) = dh(t), d(b) = d(x) we get

−1
(∫

T

(∫

X
K(x,t)d(x)

)
dh(t)

)
≤
∫

X
−1

(∫
T
(K(x, t))dh(t)

)
d(x). (3.102)

Using inequality (3.95) with the same substitutions we get∫
X
−1

(∫
T
(K(x,t))dh(t)

)
d(x) ≤ −1

(∫
T

(∫

X
K(x, t)d(x)

)
dh(t)

)
. (3.103)

The middle term in (3.101) is equal to
∫
T f (t)dg(t) by Fubini’s theorem and by representa-

tion of f ∈FK . Combining (3.101), (3.102) and (3.103)we get the statement of Theorem. �

Gauchman and Evard extended Steffensen’s inequality to integrals over general mea-
sure space (see [41], [51], [53]).

Before we give Evard and Gauchman’s generalized Steffensen’s inequality over general
measure spaces which are not necessairly of finite measure, given in paper [41], we define
upper-separating and lower-separating subsets for some function. Let (X ,A ,) denote a
measure space such that 0 < (X) ≤ .
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Definition 3.1 Let f ∈ L0(X). Let (U,c) ∈ A ×R. We say that the pair (U,c) is upper-
separating for f if and only if

esssup
x∈X\U

f (x) ≤ c ≤ ess inf
x∈U

f (x).

In this case, we also say that the subset U of X is upper-separating for f . We say that the
pair (U,c) is lower-separating for f if and only if the pair (X \U,c) is upper-separating
for f . In this case, we also say that the subset U of X is lower-separating for f .

Theorem 3.65 Let f ,g ∈ L1(X) be such that g ≥ 0 almost everywhere. Let U,V ∈ A be
respectively upper-, lower-separating subsets for f . Let h ∈ L1(U ∪V ) be such that g ≤ h
almost everywhere on U ∪V and∫

U
hd =

∫
V

hd =
∫

X
gd . (3.104)

Then ∫
V

f hd ≤
∫

X
f gd ≤

∫
U

f hd . (3.105)

Proof. The set U is an upper-separating, so there exists c∈ R such that esssupx∈X\U f (x)≤
c ≤ ess infx∈U f (x). Using hypothesis (3.104), we get∫

X
f gd =

∫
X\U

f gd +
∫
U

f gd ≤ c

(∫
X

gd−
∫
U

gd
)

+
∫
U

f gd

= c
∫
U
(h−g)d+

∫
U

f gd ≤
∫
U

f (h−g)d+
∫
U

f gd =
∫
U

f hd .

So the second inequality in (3.105) is proved. We obtain the first inequality of (3.105)
by applying the second inequality to f̃ = (− f ) and Ũ = V , and using the fact that a pair
(U,c) ∈ A ×R is lower-separating for f if and only if the pair (U,−c) is upper-separating
for (− f ). �

Remark 3.15 In Theorem 3.65, the introduction of function h is equivalent to the change
of measure d = hd . So it allowed Gauchman and Evard to include the case where
(U) = (V ) = .

In the following corollary Gauchman and Evard proved the case where g is bounded
and the separating subsets have finite measure.

Corollary 3.4 Let f ,g ∈ L1(X) be such that g ≥ 0 almost everywhere and ‖g‖ <. Let
c be a positive real number such that c ≥ ‖g‖. Let U,V ∈ A be respectively upper-,
lower-, separating for f and have the same measure

(U) = (V ) =
1
c
‖g‖1. (3.106)

Then ∫
V

f d ≤ 1
c

∫
X

f gd ≤
∫
U

f d .
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Proof. Let h(x) = c for all x ∈ U ∪V . Since (U ∪V ) ≤ (U)+ (V ) < , we have
h ∈ L1(U ∪V ). Moreover, (3.106) implies that g and h satisfy condition (3.104). Besides,
the hypothesis c ≥ ‖g‖ implies that h ≥ g almost everywhere on U ∪V . Therefore, the
conclusion follows by Theorem 3.65. �

Remark 3.16 For c = 1 and X an interval in R, Corollary 3.4 gives the original Stef-
fensen’s inequality.

Evard and Gauchman applied their generalization of Steffensen’s inequality given in
Theorem 3.65 to obtain integral inequalities on composed functions. For more details see
[41].

In[51] Gauchman proved the following theorem.

Theorem 3.66 Let l ≥ 0 be a real number. Let  : [l,) → R be convex increasing and
such that (xy) ≥ (x)(y) for all x,y,xy ≥ l. Let f ,g ∈ L1(X) be such that f ≥ l and
g ≥ 0 almost everywhere. Let  be a real number such that ( ) =

∫
X gd . Assume

that 0 ≤  ≤ (X) and let (U,c) be an upper-separating pair for f such that (U) =  .
Assume that

f − c≤
∫
U
( f − c)d (3.107)

almost everywhere on U. Then either∫
X
(◦ f )gd ≤

(∫
U

f d
)

or
∫
U

gd ≥ 1. (3.108)

Proof. Without loss of generality let us suppose that ({x∈ X : f (x) > c}) > 0. Then from
(3.107) we get

∫
U( f − c)d > 0. By integrating assumption (3.107) we get∫

U
( f − c)d ≤

∫
U
( f − c)d ·(U)

which together with
∫
U( f − c)d > 0 gives (U) ≥ 1.

The assumption of convexity of  implies that  is a Wright-convex function, i.e., for
any x < y, z > 0

(x)−(y) ≤(x+ z)−(y+ z).

Putting in the above-mentioned inequality x → f , y → c, z → c((U)−1) we obtain

◦ f −(c) ≤( f − c+ c(U))−(c(U)) a.e.

≤
(∫

U
( f − c)d+

∫
U

cd
)
−(c(U))

= 
(∫

U
f d

)
−(c )

(3.109)

where in the last inequality we use that  is increasing. Multiplying by g and integrating
over U we get∫

U
(◦ f )gd−

∫
U

g(c)d ≤
∫
U

(∫

U
f d

)
gd−

∫
U
(c )gd . (3.110)
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On the other hand, on X \U we get f ≤ c, i.e.  ◦ f ≤ (c) since  is increasing, and
finally ∫

X\U
(◦ f )gd ≤(c)

∫
X\U

gd

from which the following inequality follows:∫
X

((◦ f )g−(c)g)d ≤
∫
U

((◦ f )g−(c)g)d . (3.111)

Using (3.110) and (3.111) we obtain∫
X
(◦ f )gd ≤

∫
U
(◦ f )gd−(c)

∫
U

gd+(c)( ).

Subtracting (
∫
U f d) from the both sides of the above inequality and using submulti-

plicativity of  we get∫
X
(◦ f )gd−

(∫
U

f d
)
≤
[

(∫

U
f d

)
−(c )

](∫
U

gd−1

)
. (3.112)

Since (U,c) is upper-separating for f , f ≥ c on U . Hence,∫
U

f d ≥ c and therefore 
(∫

U
f d

)
−(c ) ≥ 0

because  is increasing.
Assume first that


(∫

U
f d

)
−(c ) = 0.

In that case


(∫

U
f d

)
= 

(∫
U

cd
)

and, since  is increasing,∫
U

f d =
∫
U

cd , i.e.
∫
U
( f − c)d = 0.

Since f ≥ c on U , we obtain that f = c almost everywhere on U . Then


(∫

U
f d

)
= 

(∫
U

cd
)

= (c ) ≥(c)( ).

Since (U,c) is upper-separating for f , we obtain that f = c almost everywhere on U and
f ≤ c almost everywhere on X \U . Hence f ≤ c almost everywhere on X . It follows that


(∫

U
f d

)
−
∫

X
(◦ f )gd ≥(c)( )−

∫
X
(◦ f )gd

≥(c)( )−
∫

X
(c)gd

= (c)
[
( )−

∫
X

gd
]

= 0.
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Hence, in the first case the theorem is proved. If we assume that (
∫
U f d)−(c ) > 0,

then (3.112) implies (3.108). �

Remark 3.17 If we take the measure space to be a closed interval of R, we obtain a
more simplier case of Theorem 3.66. That result and a similar result for discrete case with
appropriate consequences are given in [51].

In [53] Gauchman extended Pečarić’s results given in Theorems 3.7 and 3.8 to the case
of integrals over a general measure spaces. Those extensions are given in the following
theorems. First we define continuous measure space.

Definition 3.2 We say that a measure space (X ,A ,) is continuous if and only if for
all A,B ∈ A such that A ⊆ B and (A) < (B), there exists an increasing mapping  :
[(A),(B)] → A such that ((A)) = A, ((B)) = B and ((u)) = u for all u ∈
[(A),(B)].

Theorem 3.67 Let (X ,A ,) be a continuous measure space with (X) < . Let  ≥ 1
be a real number and let f and g be functions on X such that f , f ·g∈ L1(X) and f ,g ≥ 0
almost everywhere on X. Set  = (

∫
X gd) . Let U be an upper-separating subset for f

such that (U) =  . Assume that g · (∫X gd)−1 ≤ 1 almost everywhere on U. Then(∫
X

g f d
)

≤
∫
U

f d .

Proof. Let us denote G =
∫
X gd . By Jensen’s inequality for the convex function x ,  ≥ 1,(∫

X
f ·gd

)
≤ G−1

∫
X

f  ·gd .

Hence, it is enough to prove that

G−1
∫

X
f  ·gd ≤

∫
U

f d .

We proceed as follows:

∫
U

f d−G−1
∫

X
f  ·gd =

∫
U

f d−G−1
(∫

U
f  ·gd+

∫
X\U

f  ·gd
)

=
∫
U

f 
(
1−g ·G−1)d−G−1

∫
X\U

f  ·gd .

By assumption, U is an upper-separating subset for f , so, there exists a real number c
such that f ≥ c almost everywhere on U and f ≤ c almost everywhere on X \U . Since
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1−g ·G−1 ≥ 0 almost everywhere on U , we obtain∫
U

f d−G−1
∫

X
f  ·gd ≥ c

∫
U

(
1−g ·G−1)d−G−1

∫
X\U

f  ·gd

= c
(
(U)−G−1

∫
U

gd
)
−G−1

∫
X\U

f  ·gd

= c
(

G −G−1
∫
U

gd
)
−G−1

∫
X\U

f gd

= G−1
∫

X\U
g · (c − f )d ≥ 0,

where the last inequality holds since f ≤ c almost everywhere on X \U . �

In the similar way we can prove the following theorem.

Theorem 3.68 Let (X ,A ,) be a continuous measure space with (X) < . Let  ≥ 1
be a real number and let f ,g ∈ L1(X) be such that f ≥ 0 and 0 ≤ g≤ 1 almost everywhere
on X. Set  = 1

((X))−1 (
∫
X gd) . Let U be an upper-separating subset for f such that

(U) =  . Then
1

((X))−1

(∫
X

g · f d
)

≤
∫
U

f d .

To obtain Theorems 3.7 and 3.8 we must take X = [a,b] and assume that f is nonin-
creasing in Theorems 3.67 and 3.68.

In [63] Imoru extended Theorem 3.5. We assume that  is a nonnegative function on
[a,b], − < a < b <  and that f and g are nonnegative real-valued functions on [a,b]
which are Lebesgue-Stieltjes integrable with respect to  on [a,b] with

∫ b
a d(x) = 1, i.e.∫

[a,b] d = 1.

Theorem 3.69 Let f : R
+ → R

+ be a nonnegative and nonincreasing function which is
Lebesgue-Stieltjes integrable with respect to  . Let

∫
[a,b] gd > 0 and


(∫

[a,b]
gd

)
= K

∫
[a,b]

gd ,

where K is some positive constant and  : R
+ → R

+ is a nonnegative continuous function
which satisfies


(∫

[a,b]
gd

)
= (b−a)

∫
[a, ]

d = (b−a)
∫
[ ,b]

d .

If 0 ≤ g(x) ≤ K−1(b−a), a ≤  ≤ x ≤ b, a ≤ x ≤  ≤ b, then

(b−a)
∫
[ ,b]

f d ≤ K
∫

[a,b]
f gd ≤(b−a)

∫
[a, ]

f d . (3.113)
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Proof. We have

(b−a)
∫
[a, ]

f d−K
∫

[a,b]
f gd

=
∫

[a, ]
f · ((b−a)−Kg)d−K

∫
[ ,b]

f gd

≥ f ( )
∫

[a, ]
((b−a)−Kg)d−K

∫
[ ,b]

f gd

= f ( )
(
(b−a)

∫
[a, ]

d−K
∫

[a, ]
gd

)
−K

∫
[ ,b]

f gd

= f ( )
(

(∫

[a,b]
gd

)
−K

∫
[a, ]

gd
)
−K

∫
[ ,b]

f gd

= f ( )
(

K
∫

[a,b]
gd−K

∫
[a, ]

gd
)
−K

∫
[ ,b]

f gd

= K f ( )
∫

[ ,b]
gd−K

∫
[ ,b]

f gd

= K
∫

[ ,b]
( f ( )− f )gd ≥ 0.

Hence we obtain the right-hand side inequality in (3.113). The left-hand side inequality
can be obtained in a similar way. �

Remark 3.18 If (u) = up, p ≥ 1 and f is nonincreasing on (a,b), inequality (3.113)
reduces to ∫

[ ,b] f d(∫
[a,b] gd

)p ≤ (b−a)−p

∫
[a,b] f gd∫
[a,b] gd

≤
∫
[a, ] f d(∫
[a,b] gd

)p ,

where

(b−a)p
∫

[a, ]
d =

(∫
[a,b]

gd
)p

= (b−a)p
∫

[ ,b]
d .

When a = 0, b = 1 and d = dx we obtain (3.4) from Theorem 3.5.

Remark 3.19 If (u) = exp(u) inequality (3.113) gives∫
[ ,b] f d

exp
(∫

[a,b] gd
) ≤ ea−b

∫
[a,b] f gd∫
[a,b] gd

≤
∫
[a, ] f d

exp
(∫

[a,b] gd
) ,

where

eb−a
∫

[a, ]
d = exp

(∫
[a,b]

gd
)

= eb−a
∫

[ ,b]
d ,

with a ≤  ,  ≤ b.

Imoru also proved extensions of Steffensen’s inequality for P−admissible functions
(see [63]).
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Definition 3.3 Let P and Q be the classes of all nonnegative continuous convex and con-
cave functions on R

+ respectively and let  be a nonnegative continuous function on R
+.

We say that  is P−admissible if for every u,v ∈ R
+, v �= 0, there exists  ∈ P such that

(u) ≤
(u

v

)
(v). (3.114)

The function  is said to be Q−admissible if for every u,v ∈ R
+, v �= 0, there exists  ∈ Q

such that
(u) ≥

(u
v

)
(v).

Remark 3.20 The power function(u) = up is P−admissible or Q− admissible accord-
ing as p ≥ 1 or 0 < p ≤ 1. The function (u) = exp(u), u ∈ R

+ is P−admissible.

Theorem 3.70 Let the real-valued function  be P−admissible and let  and g satisfy
the hypothesis of Theorem 3.69. If f is a nonnegative function on (a,b), which is Lebesgue-
Stieltjes integrable with respect to  and ◦ f is nonincreasing on (a,b),  ∈ P, then


(∫

[a,b]
f gd

)
≤(b−a)

∫
[a, ]

(◦ f )d . (3.115)

Proof. Since  is P−admissible,  satisfies inequality (3.114). Consequently, using
Jensen’s inequality


(∫

[a,b]
f gd

)
≤

(∫
[a,b] f gd∫
[a,b] gd

)

(∫

[a,b]
gd

)

≤
∫
[a,b](◦ f )gd∫

[a,b] gd

(∫

[a,b]
gd

)
= K

∫
[a,b]

(◦ f )gd ≤(b−a)
∫
[a,b]

(◦ f )d ,

where the last inequality follows from an application of Theorem 3.69. �

Remark 3.21 If(u) =(u) = up, p≥ 1 and f is nonincreasing, then inequality (3.115)
yields (∫

[a,b]
f gd

)p

≤ (b−a)p
∫

[a, ]
f pd ,

where

(b−a)p
∫

[a, ]
d =

(∫
[a,b]

gd
)p

.

When a = 0, b = 1 and d = dx, we obtain (3.2).

Remark 3.22 If (u) = (u) = exp(u), then inequality (3.115) becomes

exp

(∫
[a,b]

f gd
)
≤ eb−a

∫
[a, ]

exp( f )d ,
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where

eb−a
∫

[a, ]
d = exp

(∫
[a,b]

gd
)

.

An analoguous result holds for Q−admissible functions.

Theorem 3.71 Let the function  be Q−admissible and let  and g satisfy the hypoth-
esis of Theorem 3.69. If f is a nonnegative function on (a,b), which is Lebesgue-Stieltjes
integrable with respect to  and ◦ f is nonincreasing on (a,b),  ∈ Q, then

(b−a)
∫
[ ,b]

(◦ f )d ≤
(∫

[a,b]
f gd

)
.

3.5 Steffensen inequality and L1 − L estimates of
weighted integrals

First, we recall some properties which will be used in this section.
If  : [0,) → R is convex and continuous, then ′ (defined at all but countably many

points of (0,)) is in L1(0,a) for every a > 0 and
∫ a
0 ′(r)dr = (a)−(0). Also, the

right derivative ′
+ is defined and finite at every point of (0,) and nondecreasing. Since

it coincides with ′ whenever ′ is defined, it follows that ′
+ ∈ L1(0,a).

In [135] Rabier gave the following modern formulation of Steffensen’s inequality.

Lemma 3.3 Let  : [0,) → R be convex and continuous with (0) = 0. If  > 0 and
f ∈ L(0,), f ≥ 0 and ‖ f‖ ≤ 1, then f′ ∈ L1(0,) and


(∫ 

0
f (r)dr

)
≤
∫ 

0
f (r)′(r)dr. (3.116)

Proof. f′ ∈ L1(0,) follows from f ∈ L(0,) and ′ ∈ L1(0,).
Let us assume that f > 0 almost everywhere, so that F(r) :=

∫ r
0 f (t)dt is well defined and

increasing. Next,


(∫ 

0
f (r)dr

)
= (F()) =

∫ F()

0
′(s)ds =

∫ F()

0
′

+(s)ds.

The change of variable s := F(r) yields
(∫ 

0 f (r)dr
)
=
∫ 
0 ′

+(F(r)) f (r)dr. Now, F(r)≤
r from the assumption ‖ f‖ ≤ 1, so that′

+(F(r))≤′
+(r) if r > 0 by the monotonicity of

′
+. Thus, 

(∫ 
0 f (r)dr

)≤ ∫ 0 ′(r) f (r)dr since f > 0 and ′
+ =′ almost everywhere.

If f ≥ 0, let  > 0 be given and set f (r) := f (r)+
1+ , so that 0 < f ≤ 1 almost every-

where on (0,). From the previous part of the proof


(∫ 

0
f (r)dr

)
= 

((∫ 
0 f (r)dr

)
+ 2

1+ 

)
≤ 1

1+ 

(∫ 

0
′(r) f (r)dr+ ()

)
.
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When  → 0, the left-hand side tends to 
(∫ 

0 f (r)dr
)

by continuity of  and the right-
hand side tends to

∫ 
0 f (r)′(r)dr. This completes the proof. �

As showed in [135] (3.116) is equivalent to the right-hand side of Steffensen’s inequal-
ity (2.1). Choosing a = 0, b =  and g = −′ in the right-hand side of (2.1) we obtain
(3.116). Conversely, choosing  = b−a,(r) = −∫ a+r

a g(s)ds (so that ′(r) =−g(a+ r)
and extending g by g(s) := g(b) for s > b) and f (r) changed into f (a+ r) in (3.116) we
obtain the right-hand side of (2.1).

In Theorem 2.3 we gave the variant of Steffensen’s inequality for b =  obtained by
Apéry. In the following theorem we give natural extension of (3.116) to the infinite interval
(0,) obtained by Rabier in [135]. We recall Rabier’s theorem withouth the proof.

Theorem 3.72 Let  : [0,) → R be convex and continuous with (0) = 0. If f ∈
L(0,), f ≥ 0 and ‖ f‖ ≤ 1, then

∫ 
0 f (r)′(r)dr is well defined in R∪{±} and


(∫ 

0
f (r)dr

)
≤
∫ 

0
f (r)′(r)dr.

Changing f into ‖ f‖−1
 f in Theorem 3.72, Rabier obtained the following corollary.

Corollary 3.5 Let  : [0,) → R be convex and continuous with (0) = 0. If f ∈
L(0,), f ≥ 0 and f �= 0, then

∫ 
0 f (r)′(r)dr is well defined in R∪{±} and

‖ f‖
(

1
‖ f‖

∫ 

0
f (r)dr

)
≤
∫ 

0
f (r)′(r)dr.

In the following theorem we recall the extension of Corollary 3.5 to functions f on R
N

obtained by Rabier in [135]. First, let us denote by N the volume of the unit ball in R
N .

Theorem 3.73 Let  : [0,) → R be convex with (0) = 0. If f ∈ L1(RN)∩L(RN),
f �= 0, then

∫
R

N | f (x)|′(|x|N)dx is well defined in R∪{} and

N‖ f‖
( ‖ f‖1

N‖ f‖

)
≤
∫
R

N | f (x)|′(|x|N)dx. (3.117)

The proof of the previous theorem involves changing variables through diffeomor-
phisms of R

N \ {0} in integrals that may be ±. For details see [135].
As noted by Rabier a variety of other inequalities can be derived from (3.117) changing

the function or variable.
In [136] Rabier proved the following.

Theorem 3.74 If : [0,)→R is convex and continuous with(0)= 0 and if q∈ (1,),
q′ := q

q−1 , then


(∫ 

0
f (r)dr

)
≤C

∫ 

0
f (r)′(r1/q′)dr

holds for every f ∈ Lq(0,), f ≥ 0 with || f ||q ≤ 1 when C = 1.

In general, both sides may be ±. Rabier also derived related inequalities for f ∈
L1(RN)∩Lq(RN), f �= 0.

Furthermore, in [136] Rabier identified the range of the admissible constants C and, in
particular, characterized the optimal constant when ≥ 0 or ≤ 0.
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3.6 Steffensen-type inequalities involving convex
functions

Let us begin with the definition of a new class of functions introduced by Pečarić and
Smoljak in [127] that extends the class of convex functions.

Definition 3.4 Let f : [a,b] → R be a function and c ∈ (a,b). We say that f belongs
to class M c

1[a,b] ( f belongs to class M c
2[a,b]) if there exists a constant A such that the

function F(x) = f (x)−Ax is nonincreasing (nondecreasing) on [a,c] and nondecreasing
(nonincreasing) on [c,b].

Let us show that, if f ∈ M c
1[a,b] or f ∈ M c

2[a,b] and f ′(c) exists, then f ′(c) = A.
We show this for f ∈ M c

1[a,b]. Since F is nonincreasing on [a,c] and nondecreasing on
[c,b] for every distinct points x1,x2 ∈ [a,c] and y1,y2 ∈ [c,b] we have

[x1,x2;F ] = [x1,x2; f ]−A ≤ 0 ≤ [y1,y2; f ]−A = [y1,y2;F ].

Therefore, if f ′−(c) and f ′+(c) exist, letting xi ↗ c and yi ↘ c, i = 1,2 we get

f ′−(c) ≤ A ≤ f ′+(c). (3.118)

In the following lemma and theorem we give connection between the class of functions
M c

1[a,b] and the class of convex functions which was obtained in [127].

Lemma 3.4 If f : [a,b] → R is convex (concave), then f ∈ M c
1[a,b] ( f ∈ M c

2[a,b]) for
every c ∈ (a,b).

Proof. If f is convex, then f ′− and f ′+ exist (see [122]). Hence, for every x1,x2 ∈ [a,c] and
y1,y2 ∈ [c,b] it holds

f (x2)− f (x1)
x2− x1

≤ f ′−(c) ≤ f ′+(c) ≤ f (y2)− f (y1)
y2− y1

.

Therefore, for every A ∈ [ f ′−(c), f ′+(c)] the function F(x) = f (x)−Ax satisfies

F(x2)−F(x1)
x2 − x1

≤ 0 ≤ F(y2)−F(y1)
y2− y1

,

so F is nonincreasing on [a,c] and nondecreasing on [c,b]. �

Theorem 3.75 If f ∈M c
1[a,b] ( f ∈M c

2[a,b]) for every c∈ (a,b), then f is convex (con-
cave).
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Proof. We give the proof for f ∈ M c
1[a,b]. First, let us recall the characterization of

convexity given in [122]: the function g is convex if and only if the function

(x,y) �→ [x,y;g] =
g(x)−g(y)

x− y

is nondecreasing in both variables.
For every c ∈ (a,b) there exists constant Ac such that the function Fc(x) = f (x)−Acx

is nonincreasing on [a,c] and nondecreasing on [c,b]. So for every x1 �= x2 ≤ c ≤ y1 �= y2

we have

Fc(x2)−Fc(x1)
x2 − x1

=
f (x2)− f (x1)

x2− x1
−Ac ≤ 0 ≤ f (y2)− f (y1)

y2− y1
−Ac =

Fc(y2)−Fc(y1)
y2− y1

.

Particularly, for u < v < w we have

f (v)− f (u)
v−u

≤ Av ≤ f (w)− f (v)
w− v

. (3.119)

Now, let x1,x2,y ∈ [a,b] be arbitrary. If y < x1 < x2, applying (3.119) we get

f (x1)− f (y)
x1− y

≤ Ax1 ≤
f (x2)− f (x1)

x2− x1
=

f (x2)− f (y)
x2− x1

− f (x1)− f (y)
x2− x1

.

By multiplying the above inequality with x2−x1
x2−y > 0 and simplifying we get

f (x1)− f (y)
x1− y

≤ f (x2)− f (y)
x2− y

.

Similarly for the cases x1 < y < x2 and x1 < x2 < y. So we can conclude that the function
(x,y) �→ [x,y; f ] is nondecreasing in variable x. By symmetry, the same thing holds for
variable y, so the proof is completed. �

Taking into account Lemma 3.4 and Theorem 3.75, we can describe the property from
Definition 3.4 as “convexity at point c”. Therefore, function f is convex on [a,b] if and
only if it is convex at every c ∈ (a,b).

In the following theorems we give Steffensen-type inequalities for the class of functions
that are convex at point c obtained in [127].

Theorem 3.76 Let g : [a,b] → R be an integrable function such that 0 ≤ g ≤ 1. Let
c ∈ (a,b), 1 =

∫ c
a g(t)dt and 2 =

∫ b
c g(t)dt. If f ∈ M c

1[a,b] and∫ b

a
tg(t)dt = a1 +b2 +

 2
1 − 2

2

2
, (3.120)

then ∫ b

a
f (t)g(t)dt ≤

∫ a+1

a
f (t)dt +

∫ b

b−2

f (t)dt (3.121)

holds.
If f ∈ M c

2[a,b] and (3.120) holds, the inequality in (3.121) is reversed.
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Proof. We give the proof for f ∈ M c
1[a,b]. Let F(x) = f (x)−Ax, where A is the constant

from Definition 3.4. Since F : [a,c]→ R is nonincreasing we can apply the right-hand side
of Steffensen’s inequality on function F , so∫ c

a
F(t)g(t)dt ≤

∫ a+1

a
F(t)dt.

Hence, we obtain

0 ≤
∫ a+1

a
F(t)dt−

∫ c

a
F(t)g(t)dt

=
∫ a+1

a
f (t)dt −

∫ c

a
f (t)g(t)dt−A

(
a1 +

 2
1

2
−
∫ c

a
tg(t)dt

)
.

(3.122)

Further, since F : [c,b] → R is nondecreasing we can apply the left-hand side of Stef-
fensen’s inequality on function F , so∫ b

c
F(t)g(t)dt ≤

∫ b

b−2

F(t)dt.

Hence, we obtain

0 ≥
∫ b

c
F(t)g(t)dt−

∫ b

b−2

F(t)dt

=
∫ b

c
f (t)g(t)dt−

∫ b

b−2

f (t)dt −A

(∫ b

c
tg(t)dt−b2 +

 2
2

2

)
.

(3.123)

Now from (3.122) and (3.123) we obtain∫ a+1

a
f (t)dt +

∫ b

b−2

f (t)dt−
∫ b

a
f (t)g(t)dt ≥ A

(
a1 +b2 +

 2
1 − 2

2

2
−
∫ b

a
tg(t)dt

)
.

Hence, if
∫ b
a tg(t)dt = a1 +b2 +  2

1− 2
2

2 , then (3.121) holds.
Proof for f ∈ M c

2[a,b] is similar so we omit the details. �

Remark 3.23 It is obvious from the proof that condition (3.120) can be weakened. That
is, for f ∈ M c

1[a,b] inequality (3.121) still holds if (3.120) is replaced by the weaker
condition

A

(
a1 +b2 +

 2
1 − 2

2

2
−
∫ b

a
tg(t)dt

)
≥ 0, (3.124)

where A is a constant from Definition 3.4. Also, for f ∈ M c
2[a,b] the reverse inequality in

(3.121) holds if (3.120) is replaced by (3.124) with the reverse inequality.
Additionaly, condition (3.120) can be further weakened if the function f is monotonic.

Since (3.118) holds, for nondecreasing function f ∈M c
1[a,b] or for nonincreasing function

f ∈ M c
2[a,b], from (3.124) we obtain that (3.120) can be weakened to∫ b

a
tg(t)dt ≤ a1 +b2 +

 2
1 − 2

2

2
. (3.125)
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Further, if f ∈ M c
1[a,b] is nonincreasing or f ∈ M c

2[a,b] is nondecreasing, (3.120) can be
weakened to (3.125) with the reverse inequality.

Theorem 3.77 Let g : [a,b] → R be an integrable function such that 0 ≤ g ≤ 1. Let
c ∈ (a,b), 1 =

∫ c
a g(t)dt and 2 =

∫ b
c g(t)dt. If f ∈ M c

1[a,b] and∫ b

a
tg(t)dt = c(1 +2)+

 2
2 − 2

1

2
, (3.126)

then ∫ b

a
f (t)g(t)dt ≥

∫ c+2

c−1

f (t)dt (3.127)

holds.
If f ∈ M c

2[a,b] and (3.126) holds, the inequality in (3.127) is reversed.

Proof. We give the proof for f ∈ M c
1[a,b]. Let F(x) = f (x)−Ax. Since F : [a,c] → R

is nonincreasing applying the left-hand side of Steffensen’s inequality on function F we
obtain

0 ≤
∫ c

a
f (t)g(t)dt−

∫ c

c−1

f (t)dt −A

(∫ c

a
tg(t)dt− c1 +

 2
1

2

)
. (3.128)

Further, since F : [c,b] → R is nondecreasing applying the right-hand side of Steffensen’s
inequality on function F we obtain

0 ≥
∫ c+2

c
f (t)dt −

∫ b

c
f (t)g(t)dt−A

(
c2 +

 2
2

2
−
∫ b

c
tg(t)dt

)
. (3.129)

Now from (3.128) and (3.129) we obtain∫ b

a
f (t)g(t)dt−

∫ c+2

c−1

f (t)dt ≥ A

(∫ b

a
tg(t)dt− c(1 +2)+

 2
1 − 2

2

2

)
.

Hence, if
∫ b
a tg(t)dt = c(1 +2)+  2

2 − 2
1

2 , then (3.127) holds.
Proof for f ∈ M c

2[a,b] is similar so we omit the details. �

Remark 3.24 For f ∈ M c
1[a,b] inequality (3.127) still holds if condition (3.126) is re-

placed by the weaker condition

A

(∫ b

a
tg(t)dt− c(1 +2)+

 2
1 − 2

2

2

)
≥ 0, (3.130)

where A is a constant from Definition 3.4. Also, for f ∈ M c
2[a,b] the reverse inequality in

(3.127) holds if (3.126) is replaced by (3.130) with the reverse inequality.
Additionaly, condition (3.126) can be further weakened if the function f is monotonic.

Since (3.118) holds, for nondecreasing function f ∈M c
1[a,b] or for nonincreasing function

f ∈ M c
2[a,b], from (3.130) we obtain that (3.126) can be weakened to∫ b

a
tg(t)dt ≥ c(1 +2)+

 2
2 − 2

1

2
. (3.131)



3.7 STEFFENSEN TYPE INEQUALITIES INVOLVING CONVEX FUNCTIONS 103

Further, if f ∈ M c
1[a,b] is nonincreasing or f ∈ M c

2[a,b] is nondecreasing, (3.126) can be
weakened to (3.131) with the reverse inequality.

As a consequence of Theorems 3.76 and 3.77 we obtain Steffensen type inequalities
that involve convex functions.

Corollary 3.6 Let g : [a,b]→R be integrable function such that 0≤ g≤ 1. Let c∈ (a,b),
1 =

∫ c
a g(t)dt and 2 =

∫ b
c g(t)dt. If f : [a,b]→ R is a convex function and (3.120) holds,

then (3.121) holds.
If f : [a,b] → R is a concave function and (3.120) holds, the inequality in (3.121) is re-
versed.

Proof. Since f is convex, from Lemma 3.4 we have that f ∈ M c
1[a,b] for every c ∈ (a,b).

So we can apply Theorem 3.76. �

Corollary 3.7 Let g : [a,b] → R be an integrable function such that 0 ≤ g ≤ 1. Let
c ∈ (a,b), 1 =

∫ c
a g(t)dt and 2 =

∫ b
c g(t)dt. If f : [a,b] → R is a convex function and

(3.126) holds, then (3.127) holds.
If f : [a,b] → R is a concave function and (3.126) holds, the inequality in (3.127) is re-
versed.

Proof. Similarly as in the proof of Corollary 3.6 we have that f ∈ M c
1[a,b] for every

c ∈ (a,b). So we can apply Theorem 3.77. �

As noted in [127], the condition 0 ≤ g ≤ 1 in Theorem 3.76 and Corollary 3.6 can be
replaced by the weaker conditions∫ x

a
g(t)dt ≤ x−a and

∫ c

x
g(t)dt ≥ 0 for every x ∈ [a,c] (3.132)

and ∫ b

x
g(t)dt ≤ b− x and

∫ x

c
g(t)dt ≥ 0 for every x ∈ [c,b]. (3.133)

Further, the condition 0 ≤ g ≤ 1 in Theorem 3.77 and Corollary 3.7 can be replaced by
weaker conditions∫ c

x
g(t)dt ≤ c− x and

∫ x

a
g(t)dt ≥ 0 for every x ∈ [a,c] (3.134)

and ∫ x

c
g(t)dt ≤ x− c and

∫ b

x
g(t)dt ≥ 0 for every x ∈ [c,b]. (3.135)

The mentioned weaker conditions follow from Theorem 2.6.
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3.7 Steffensen-type inequalities for s−convex
functions

First, let us define s−convex functions in the second sense.

Definition 3.5 A function f : R
+ → R is said to be s−convex in the second sense if

f (x+y) ≤ s f (x)+ s f (y)

for all x,y ∈ [0,), , ≥ 0 with  + = 1 and for some fixed s ∈ (0,1].

For s = 1, s−convexity reduces to the ordinary convexity of functions defined on [0,).
In [14] Alomari proved the following inequalities involving s−convexity.

Theorem 3.78 Let f ,g : [a,b] ⊂ R
+ → R be integrable and 0 ≤ g ≤ 1 such that∫ b

a g(t) f ′(t)dt exists. If f is absolutely continuous on [a,b] such that | f ′| is s−convex
in the second sense on [a,b], then∣∣∣∣∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt

∣∣∣∣≤ 1
(s+1)(s+2)

[
 2| f ′(a)|+(b−a− )2| f ′(b)|]

+
1

s+2

[
 2 +(b−a− )2] | f ′(a+ )|

(3.136)

and ∣∣∣∣∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt

∣∣∣∣≤ 1
(s+1)(s+2)

[
 2| f ′(b)|+(b−a− )2| f ′(a)|]

+
1

s+2

[
 2 +(b−a− )2] | f ′(b− )|

(3.137)

where  =
∫ b
a g(t)dt.

Proof. Utilizing the triangle inequality on identity (2.8) and using s−convexity of | f ′| we
obtain (3.136). For details see [14]. �

As noted by Alomari, for s = 1 inequality (3.136) becomes∣∣∣∣∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt

∣∣∣∣≤ 1
6
 2| f ′(a)|+ 1

3
[ 2 +(b−a− )2]| f ′(a+ )|

+
1
6
(b−a− )2| f ′(b)|
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and inequality (3.137) becomes∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

∣∣∣∣≤ 1
6
 2| f ′(b)|+ 1

3
[ 2 +(b−a− )2]| f ′(b− )|

+
1
6
(b−a− )2| f ′(a)|.

Using identity (2.8) Alomari obtained the following.

Theorem 3.79 Let f ,g : [a,b] ⊂ R
+ → R be integrable and 0 ≤ g ≤ 1 such that∫ b

a g(t) f ′(t)dt exists. If f is absolutely continuous on [a,b] with | f ′| s−convex in the second
sense on [a,b] for some fixed s ∈ (0,1], then we have∣∣∣∣∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt

∣∣∣∣
≤ 1

(s+1)

[∫ b

a+
g(t)dt

][
 | f ′(a)|+(b−a)| f ′(a+ )|+(b−a−)| f ′(b)|]

≤ b−a−
s+1

[
 | f ′(a)|+(b−a)| f ′(a+ )|+(b−a− )| f ′(b)|]

and ∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

∣∣∣∣
≤ 1

(s+1)

[∫ b

b−
g(t)dt

][
(b−a− )| f ′(a)|+(b−a)| f ′(b− )|+ | f ′(b)|]

≤ 
s+1

[
(b−a− )| f ′(a)|+(b−a)| f ′(b− )|+ | f ′(b)|]

where  =
∫ b
a g(t)dt.

Furthermore,Alomari also obtained Steffensen-type inequalities involving s−concavity.

Theorem 3.80 Let f ,g : [a,b] ⊂ R
+ → R be integrable and 0 ≤ g ≤ 1 such that∫ b

a g(t) f ′(t)dt exists. If f is absolutely continuous on [a,b] with | f ′| s−concave in the
second sense on [a,b] for some fixed s ∈ (0,1], then we have∣∣∣∣∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt

∣∣∣∣
≤ 2s−1

[∫ b

a+
g(t)dt

][

∣∣∣∣ f ′(a+


2

)∣∣∣∣+(b−a− )
∣∣∣∣ f ′(a+b+

2

)∣∣∣∣]
≤ 2s−1(b−a− )

[

∣∣∣∣ f ′(a+


2

)∣∣∣∣+(b−a− )
∣∣∣∣ f ′(a+b+

2

)∣∣∣∣]
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and ∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

∣∣∣∣
≤ 2s−1

[∫ b

b−
g(t)dt

][
(b−a− )

∣∣∣∣ f ′(a+b−
2

)∣∣∣∣+
∣∣∣∣ f ′(b− 

2

)∣∣∣∣]
≤ 2s−1

[
(b−a− )

∣∣∣∣ f ′(a+b−
2

)∣∣∣∣+
∣∣∣∣ f ′(b− 

2

)∣∣∣∣]
where  =

∫ b
a g(t)dt.

Proof. Utilizing the triangle inequality on identity (2.8) and using s−concavity of | f ′| we
obtain (3.136). For details see [14]. �



Chapter4
Generalizations of
Steffensen’s inequality via
weighted Montgomery identity

4.1 Generalizations via weighted Montgomery
identity

Let w : [a,b]→ R be a weight function, i.e. an integrable function such that
∫ b
a w(t)dt �= 0

and W (x) =
∫ x
a w(t)dt, x ∈ [a,b]. Let also f : [a,b] → R be a continuous function of

bounded variation. Then the weighted Montgomery identity given by Pečarić in [107],
states

f (x)− 1∫ b
a w(t)dt

∫ b

a
f (t)w(t)dt =

∫ b

a
Pw (x, t)d f (t) (4.1)

where Pw (x,t) is the weighted Peano kernel, defined by

Pw (x,t) =

⎧⎪⎨⎪⎩
W(t)
W (b) , a ≤ t ≤ x

W (t)
W(b) −1, x < t ≤ b.

Assumptions W (t) = 0 for t ≤ a and W (t) =
∫ b
a w(t)dt for t ≥ b allow us to subtract

107
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two weighted Montgomery identities, one for the interval [a,b] and the other for [c,d]. In
such a way the next result is obtained in [5].

Theorem 4.1 Let f : [a,b]∪ [c,d] → R be a continuous function of bounded variation on
[a,b]∪ [c,d], w : [a,b]→ R and u : [c,d]→ R some weight functions such that

∫ b
a w(t)dt �=

0,
∫ d
c u(t)dt �= 0 and

W (x) =

⎧⎨⎩
0, x < a∫ x

a w(t)dt, a ≤ x ≤ b∫ b
a w(t)dt, x > b,

U (x) =

⎧⎨⎩
0, x < c∫ x

c u(t)dt c ≤ x ≤ d∫ d
c u(t)dt, x > d,

and [a,b]∩ [c,d] �= /0. Then, for both cases [c,d] ⊆ [a,b] and [a,b]∩ [c,d] = [c,b] (and also
for [a,b] ⊆ [c,d] and [a,b]∩ [c,d] = [a,d]) the next formula is valid

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ d

c u(t)dt

∫ d

c
u(t) f (t)dt =

∫ max{b,d}

min{a,c}
K (t)d f (t)

where
K (t) = Pu (x,t)−Pw (x,t) , t ∈ [min{a,c} ,max{b,d}]

and Pu (x, t), Pw (x, t) are given by

Pw (x,t) =

⎧⎪⎨⎪⎩
W (t)
W (b) , a ≤ t ≤ x

W (t)
W (b) −1, x < t ≤ b,

Pu (x,t) =

⎧⎪⎨⎪⎩
U(t)
U(d) , c ≤ t ≤ x

U(t)
U(d) −1, x < t ≤ d,

and thus

K (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−W (t)
W(b) , t ∈ [a,c)

−W (t)
W(b) + U(t)

U(d) , t ∈ [c,d]

1− W (t)
W(b) , t ∈ (d,b]

if [c,d] ⊆ [a,b] , (4.2)

K (t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−W (t)
W(b) , t ∈ [a,c)

−W (t)
W(b) + U(t)

U(d) , t ∈ [c,b)

U(t)
U(d) −1, t ∈ [b,d]

if [a,b]∩ [c,d] = [c,b] . (4.3)
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This identity enables us to estimate the difference between two weighted integral means,
each having its own weight, on two different intersecting intervals [a,b] and [c,d] for four
possible cases when [a,b]∩ [c,d] �= /0. First two cases are when one interval is a subset of
the other [c,d] ⊆ [a,b] and overlapping intervals [a,b]∩ [c,d] = [c,b]. The other two cases
are obtained by replacement a ↔ c, b ↔ d.

The special case of this identity for normalized weight function was obtained in [9].
Now we give a generalization of Steffensen’s inequality via estimate of the difference

of two weighted integral means obtained by Aglić Aljinović, Pečarić and Perušić in [10].

Theorem 4.2 Let f : [a,b]∪ [c,d]→ R be a continuous function of bounded variation on
[a,b]∪ [c,d], w : [a,b]→R and u : [c,d]→R some weight functions, such that

∫ b
a w(t)dt �=

0,
∫ d
c u(t)dt �= 0 and [a,b]∩ [c,d] �= /0. Then

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt ≤ 1∫ d

c u(t)dt

∫ d

c
u(t) f (t)dt (4.4)

holds for every nonincreasing function f if and only if [c,d] ⊆ [a,b] and

W (x)
W (b)

≤ 0 for x ∈ [a,c) ,
W (x)
W (b)

≤ U (x)
U (d)

for x ∈ [c,d] ,
W (x)
W (b)

≤ 1 for x ∈ (d,b] , (4.5)

or [a,b]∩ [c,d] = [c,b] and

W (x)
W (b)

≤ 0 for x ∈ [a,c) ,
W (x)
W (b)

≤ U (x)
U (d)

for x ∈ [c,b) , 1 ≤ U (x)
U (d)

for x ∈ [b,d] . (4.6)

Proof. If [c,d] ⊆ [a,b], we apply (4.4) for

f (t) =
{

1, t ≤ x
0, t > x,

(4.7)

with x ∈ [a,c), x ∈ [c,d], x ∈ (d,b], respectively, and inequalities in (4.5) follow. Similarly,
if [a,b]∩ [c,d] = [c,b], we apply (4.4) for f with x∈ [a,c), x∈ [c,b), x∈ [b,d], respectively,
and inequalities in (4.6) follow.

Conversely, utilizing (4.1) for every nonincreasing function f , in both cases [c,d] ⊆
[a,b] and [a,b]∩ [c,d] = [c,b] we have K (t) ≥ 0, t ∈ [min{a,c} ,max{b,d}] and thus∫ max{b,d}
min{a,c} K (t)d f (t) ≤ 0. �

Remark 4.1 If f is a nondecreasing function, inequality (4.4) is reversed.

Theorem 4.3 Let f : [a,b]∪ [a,a+ ]→R be a continuous function of bounded variation
on [a,b]∪ [a,a+ ] and let w : [a,b] → R and u : [a,a+ ]→ R be some weight functions
such that

∫ b
a w(t)dt =

∫ a+
a u(t)dt. Then

∫ a+

a
u(t) f (t)dt ≤

∫ b

a
w(t) f (t)dt (4.8)
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holds for every nonincreasing function f if and only if 0 <  ≤ b−a and∫ x

a
u(t)dt ≤

∫ x

a
w(t)dt for x ∈ [a,a+ ]

and
∫ b

x
w(t)dt ≤ 0 for x ∈ (a+ ,b];

(4.9)

or  > b−a and ∫ x

a
u(t)dt ≤

∫ x

a
w(t)dt for x ∈ [a,b]

and
∫ a+

x
u(t)dt ≥ 0 for x ∈ (b,a+ ] .

(4.10)

Proof. If 0 <  ≤ b− a and if inequality (4.8) holds we apply it for f defined by (4.7)
with x ∈ [a,a+ ], x ∈ (a+ ,b], respectively, and inequalities in (4.9) follow. Similarly,
if  > b−a, we apply (4.8) for f with x ∈ [a,b], x ∈ (b,a+ ], and inequalities in (4.10)
follow.

Conversely, from Theorem 4.1 applied with [c,d] = [a,a+ ] we have∫ b

a
w(t) f (t)dt−

∫ a+

a
u(t) f (t)dt = 

∫ max{b,a+}

a
K (t)d f (t)

where  =
∫ b
a w(t)dt =

∫ a+
a u(t)dt, that is,  = W (b) = U (a+ ). First, we consider

the case 0 <  ≤ b−a. We have max{b,a+}= b. By utilizing (4.2) we obtain

K (t) =

⎧⎨⎩
U (t)−W (t) , t ∈ [a,a+ ]

−W (t) , t ∈ (a+ ,b].

Since f is nonincreasing, if
∫ x
a u(t)dt ≤ ∫ x

a w(t)dt for x ∈ [a,a+ ] and  − ∫ x
a w(t)dt =∫ b

x w(t)dt ≤ 0 for x ∈ (a+ ,b], we have K (t) ≤ 0 and therefore
∫ b
a K (t)d f (t) ≥ 0.

In case  > b−a, we have max{b,a+}= a+ , and by utilizing (4.3)

K (t) =

⎧⎨⎩
U (t)−W (t) , t ∈ [a,b]

U (t)−, t ∈ (b,a+ ].

Again, since f is nonincreasing, if
∫ x
a u(t)dt ≤ ∫ x

a w(t)dt for x∈ [a,b] and
∫ x
a u(t)dt− =

−∫ a+
x u(t)dt ≤ 0 for x ∈ (b,a+ ], we have K (t) ≤ 0 and therefore

∫ b
a K (t)d f (t) ≥

0. �

Corollary 4.1 Let f : [a,b]∪ [a,a+ ] → R and g : [a,b] → R be integrable functions,
where  =

∫ b
a g(t)dt. Then ∫ a+

a
f (t)dt ≤

∫ b

a
f (t)g(t)dt (4.11)
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holds for every nonincreasing function f if and only if 0 <  ≤ b−a and

x−a ≤
∫ x

a
g(t)dt for x ∈ [a,a+ ] and

∫ b

x
g(t)dt ≤ 0 for x ∈ (a+ ,b];

or  > b−a and

x−a ≤
∫ x

a
g(t)dt for x ∈ [a,b] .

Proof. Apply Theorem 4.3 with weight functions w(t) = g(t) for t ∈ [a,b] and u(t) = 1
for t ∈ [a,a+ ]. �

Theorem 4.4 Let f : [a,b]∪ [b− ,b]→R be a continuous function of bounded variation
on [a,b]∪ [b− ,b] and let w : [a,b] → R and u : [b− ,b]→ R be some weight functions
such that

∫ b
a w(t)dt =

∫ b
b− u(t)dt. Then

∫ b

a
w(t) f (t)dt ≤

∫ b

b−
u(t) f (t)dt (4.12)

holds for every nonincreasing function f if and only if 0 <  ≤ b−a and∫ x

a
w(t)dt ≤ 0 for x ∈ [a,b− ]

and
∫ x

b−
u(t)dt ≥

∫ x

a
w(t)dt for x ∈ (b− ,b] ;

(4.13)

or  > b−a and ∫ x

b−
u(t)dt ≥ 0 for x ∈ [b− ,a]

and
∫ x

b−
u(t)dt ≥

∫ x

a
w(t)dt for x ∈ (a,b] .

(4.14)

Proof. If 0 <  ≤ b− a we apply (4.12) for f defined by (4.7) with x ∈ [a,b− ], x ∈
(b− ,b], and inequalities in (4.13) follow. Similarly, if  > b−a, we apply (4.12) for f
with x ∈ [b− ,a], x ∈ (a,b] and (4.14) follows.

Conversely from Theorem 4.1 applied with [c,d] = [b− ,b] we have

∫ b

a
w(t) f (t)dt−

∫ b

b−
u(t) f (t)dt = 

∫ b

min{a,b−}
K (t)d f (t)

where  =
∫ b
a w(t)dt =

∫ b
b− u(t)dt and in case 0 <  ≤ b−a

K (t) =

⎧⎨⎩
−W (t) , t ∈ [a,b− ]

U (t)−W (t) , t ∈ (b− ,b] ,
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while in case  > b−a

K (t) =

⎧⎨⎩
U (t) , t ∈ [b− ,a]

U (t)−W (t) , t ∈ (a,b] .

The rest of the proof can be obtained by proceeding in a similar way as in the proof of
Theorem 4.3. �

Corollary 4.2 Let f : [a,b]∪ [b− ,b] → R and g : [a,b] → R be integrable functions,
where  =

∫ b
a g(t)dt. Then ∫ b

a
f (t)g(t)dt ≤

∫ b

b−
f (t)dt (4.15)

holds for every nonincreasing function f if and only if 0 <  ≤ b−a and∫ x

a
g(t)dt ≤ 0 for x ∈ [a,b− ] and b− x≤

∫ b

x
g(t)dt for x ∈ (b− ,b];

or  > b−a and

b− x≤
∫ b

x
g(t)dt for x ∈ [a,b] .

Proof. Apply Theorem 4.4 with weight functions w(t) = g(t) for t ∈ [a,b] and u(t) = 1
for t ∈ [b− ,b]. �

Corollaries 4.1 and 4.2 were obtained by Pečarić in [109] (see also Theorem 2.6). Here
we showed that they can also be obtained from the generalization of Steffensen’s inequality
given here which was obtained by Aglić Aljinović, Pečarić and Perušić in [10].

Remark 4.2 If f is a nondecreasing function, inequalities (4.8), (4.11), (4.12) and (4.15)
are reversed.

Finally, we give a generalization of Cerone’s result given in Theorem 3.41.

Theorem 4.5 Let f : [a,b] → R be nonincreasing. Also, let w : [a,b] → [0,) and ui :
[ci,di] → [0,), i = 1,2, be some weight functions, such that

∫ b
a w(t)dt =

∫ di
ci

ui (t)dt �= 0
and 0 ≤ w(t) ≤ ui (t), t ∈ [ci,di], where [ci,di] ⊂ [a,b] for i = 1,2 and c1 ≤ c2. Then∫ d2

c2

u2 (t) f (t)dt− r (c2,d2) ≤
∫ b

a
w(t) f (t)dt ≤

∫ d1

c1

u1 (t) f (t)dt +R(c1,d1) (4.16)

holds, where

r (c2,d2) =
∫ b

d2

( f (c2)− f (t))w(t)dt ≥ 0

and

R(c1,d1) =
∫ c1

a
( f (t)− f (d1))w(t)dt ≥ 0.
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Proof. First we prove the right-hand side of inequality (4.16). We denote  =
∫ b
a w(t)dt =∫ di

ci
ui (t)dt �= 0, i = 1,2. Multiplying (4.1) with  and utilizing (4.2) we have

∫ b

a
w(t) f (t)dt−

∫ d1

c1

u1 (t) f (t)dt

= −
∫ c1

a
W (t)d f (t)+

∫ d1

c1

(−W (t)+U1 (t))d f (t)+
∫ b

d1

( −W (t))d f (t) .

Since  −W (t) =
∫ b
t w(t)≥ 0 and f is nonincreasing, we have

∫ b
d1

( −W (t))d f (t)≤
0. Thus, changing the order of integration leads us to

∫ b

a
w(t) f (t)dt−

∫ d1

c1

u1 (t) f (t)dt

≤−
∫ c1

a
W (t)d f (t)+

∫ d1

c1

(−W (t)+U1 (t))d f (t)

= −
∫ d1

a
W (t)d f (t)+

∫ d1

c1

U1 (t)d f (t)

= −
∫ d1

a

(∫ t

a
w(s)ds

)
d f (t)+

∫ d1

c1

(∫ t

c1

u1 (s)ds

)
d f (t)

= −
∫ d1

a

(∫ d1

s
d f (t)

)
w(s)ds+

∫ d1

c1

(∫ d1

s
d f (t)

)
u(s)ds

= −
∫ d1

a
( f (d1)− f (s))w(s)ds+

∫ d1

c1

( f (d1)− f (s))u(s)ds

=
∫ c1

a
( f (s)− f (d1))w(s)ds+

∫ d1

c1

( f (d1)− f (s))(u(s)−w(s))ds

≤
∫ c1

a
( f (s)− f (d1))w(s)ds = R(c1,d1) .

The last inequality holds since f (d1) ≤ f (s) and u(s) ≥ w(s) for s ∈ [c1,d1]. The
left-hand side inequality in (4.16) can be proved in a similar manner. �

Remark 4.3 If we take ui (x) = 1, x ∈ [ci,di], for i = 1,2 the previous theorem reduces to
Cerone’s Theorem 3.41.

Now we give estimates of the left-hand and the right-hand side of generalizations of
Steffensen’s inequality given in this section. Those estimates were also obtained in [10].

Theorem 4.6 Let f : [a,b]∪ [a,a+ ]→R be a continuous function of bounded variation
on [a,b]∪ [a,a+ ] and let w : [a,b]→ R and u : [a,a+ ]→ R be some weight functions,
such that

∫ b
a w(t)dt �= 0,

∫ a+
a u(t)dt �= 0. Let also W (x) =

∫ x
a w(t)dt, x ∈ [a,b] and
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U (x) =
∫ x
a u(t)dt, x ∈ [a,a+ ]. Then, if a+ ≤ b, it holds that∣∣∣∣∣ 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ a+

a u(t)dt

∫ a+

a
u(t) f (t)dt

∣∣∣∣∣ (4.17)

≤
b∨
a

( f ) ·max

{
max

t∈[a,a+ ]

∣∣∣∣ U (t)
U (a+ )

− W (t)
W (b)

∣∣∣∣ , max
t∈[a+ ,b]

∣∣∣∣1− W (t)
W (b)

∣∣∣∣}
and if  ≥ b−a∣∣∣∣∣ 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ a+

a u(t)dt

∫ a+

a
u(t) f (t)dt

∣∣∣∣∣
≤

a+∨
a

( f ) ·max

{
max
t∈[a,b]

∣∣∣∣ U (t)
U (a+ )

− W (t)
W (b)

∣∣∣∣ , max
t∈[b,a+ ]

∣∣∣∣ U (t)
U (a+ )

−1

∣∣∣∣} ,

(4.18)

where
b∨
a
( f ) is the total variation of function f . Both inequalities are sharp.

Proof. Applying Theorem 4.1 with [c,d] = [a,a+ ] we obtain

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ a+

a u(t)dt

∫ a+

a
u(t) f (t)dt =

∫ max{b,a+}

a
K (t)d f (t) .

Since K (t) is continuous on [a,b] and f is a function of bounded variation on [a,b]∪
[a,a+ ], in the case a+ ≤ b we have∣∣∣∣∣ 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ a+

a u(t)dt

∫ a+

a
u(t) f (t)dt

∣∣∣∣∣
=
∣∣∣∣∫ b

a
K (t)d f (t)

∣∣∣∣≤ b∨
a

( f ) · sup
t∈[a,b]

|K (t)|

where K (t) is given by

K (t) =

⎧⎪⎨⎪⎩
U(t)

U(a+ ) − W (t)
W(b) , t ∈ [a,a+ ]

1− W(t)
W (b) , t ∈ (a+ ,b] .

Thus (4.17) follows. In order to prove the sharpness of (4.17) consider the nonincreasing
function f defined by

f (t) =
{

1, t ∈ [a,a+ ]
0, t ∈ (a+ ,b] ,

and weight functions w(t) = 1, t ∈ [a,b], u(t) = 1, t ∈ [a,a+ ]. It is easy to check that
then equality in (4.17) holds. In case a+ ≥ b we have

K (t) =

⎧⎪⎨⎪⎩
U(t)

U(a+ ) − W (t)
W(b) , t ∈ [a,b]

U(t)
U(a+ ) −1, t ∈ (b,a+ ] ,
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and the proof of (4.18) can be obtained in the similar manner. In this case, to prove the
sharpness of (4.18), we consider

f (t) =
{

1, t ∈ [a,b]
0, t ∈ (b,a+ ] ,

and weight functions w(t) = 1, t ∈ [a,b], u(t) = 1, t ∈ [a,a+ ]. This completes the
proof. �

Corollary 4.3 Suppose that all the assumptions of the previous theorem hold. Addition-
ally, assume that g : [a,b] → R is an integrable function. Let G(x) =

∫ x
a g(t)dt, x ∈ [a,b]

and  = G(b). Then, if a+ ≤ b, it holds that∣∣∣∣∫ b

a
g(t) f (t)dt−

∫ a+

a
f (t)dt

∣∣∣∣≤ b∨
a

( f ) ·max

{
max

t∈[a,a+ ]
|t−a−G(t)| , max

t∈[a+ ,b]
| −G(t)|

}
and if  ≥ b−a∣∣∣∣∫ b

a
g(t) f (t)dt−

∫ a+

a
f (t)dt

∣∣∣∣≤ a+∨
a

( f ) ·max

{
max
t∈[a,b]

|t−a−G(t)| , max
t∈[b,a+ ]

|t−a− |
}

.

Both inequalities are sharp.

Proof. Apply Theorem 4.6 with weight functions w(t) = g(t) for t ∈ [a,b] and u(t) = 1
for t ∈ [a,a+ ]. �

Theorem 4.7 Let f : [a,b]∪ [b− ,b] → R be a continuous function of bounded vari-
ation on [a,b]∪ [b− ,b] and let w : [a,b] → R and u : [b− ,b] → R be some weight
functions, such that

∫ b
a w(t)dt �= 0,

∫ b
b− u(t)dt �= 0. Let also W (x) =

∫ x
a w(t)dt, x ∈ [a,b]

and U (x) =
∫ x
b− u(t)dt, x ∈ [b− ,b]. Then, if a+ ≤ b, it holds that∣∣∣∣∣ 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ b

b− u(t)dt

∫ b

b−
u(t) f (t)dt

∣∣∣∣∣ (4.19)

≤
b∨
a

( f ) ·max

{
max

t∈[a,b− ]

∣∣∣∣W (t)
W (b)

∣∣∣∣ , max
t∈[b− ,b]

∣∣∣∣U (t)
U (b)

− W (t)
W (b)

∣∣∣∣}
and if  ≥ b−a∣∣∣∣∣ 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ b

b− u(t)dt

∫ b

b−
u(t) f (t)dt

∣∣∣∣∣ (4.20)

≤
b∨

b−
( f ) ·max

{
max

t∈[b− ,a]

∣∣∣∣U (t)
U (b)

∣∣∣∣ , max
t∈[a,b]

∣∣∣∣U (t)
U (b)

− W (t)
W (b)

∣∣∣∣} .

Both inequalities are sharp.
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Proof. Applying Theorem 4.1 with [c,d] = [b− ,b] we obtain

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ b

b− u(t)dt

∫ b

b−
u(t) f (t)dt =

∫ b

min{a,b−}
K (t)d f (t)

where if a+ ≤ b

K (t) =

⎧⎪⎨⎪⎩
−W (t)

W(b) , t ∈ [a,b− ]

U(t)
U(b) − W(t)

W (b) , t ∈ (b− ,b] ,

and if a+ ≥ b

K (t) =

⎧⎪⎨⎪⎩
U(t)
U(b) , t ∈ [b− ,a]

U(t)
U(b) − W (t)

W(b) , t ∈ (a,b] .

The rest of the proof of (4.19) and (4.20) is similar to the proof of Theorem 4.6. In order
to prove the sharpness of (4.19) consider the nonincreasing function f defined by

f (t) =
{

1, t ∈ [a,b− ]
0, t ∈ (b− ,b] ,

weight functions w(t) = 1, t ∈ [a,b], u(t) = 1, t ∈ [b− ,b], and to prove the sharpness of
(4.20) consider

f (t) =
{

1, t ∈ [b− ,a]
0, t ∈ (a,b] ,

weight functions w(t) = 1, t ∈ [a,b], u(t) = 1, t ∈ [b− ,b]. This completes the proof. �

Corollary 4.4 Suppose that all the assumptions of the previous theorem hold. Addition-
ally, assume that g : [a,b] → R is an integrable function. Let G(x) =

∫ x
a g(t)dt, x ∈ [a,b]

and  = G(b). Then, if a+ ≤ b, it holds that∣∣∣∣∫ b

a
g(t) f (t)dt−

∫ b

b−
f (t)dt

∣∣∣∣≤ b∨
a

( f ) ·max

{
max

t∈[a,b− ]
|−G(t)| , max

t∈[b− ,b]
|t−b+−G(t)|

}
and if  ≥ b−a∣∣∣∣∫ b

a
g(t) f (t)dt−

∫ b

b−
f (t)dt

∣∣∣∣≤ b∨
b−

( f ) ·max

{
max

t∈[b− ,a]
|t−b+ |, max

t∈[a,b]
|t−b+−G(t)|

}
.

Both inequalities are sharp.

Proof. Apply Theorem 4.7 with weight functions w(t) = g(t) for t ∈ [a,b] and u(t) = 1
for t ∈ [b− ,b]. �

Applying Theorem 4.1 for [c,d] = [a,a+ ] and for [c,d] = [b− ,b], with an addi-
tional assumption that f is differentiable and that | f ′|p is an integrable function, analogous
inequalities for Lp spaces as in [5] could be obtained.
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4.2 Generalizations via n weight functions

We begin this section with the following weighted Euler identity given in [8].

Theorem 4.8 Let f : [a,b] → R be n-times differentiable on [a,b] ,n ∈ N with f (n) :
[a,b] → R integrable on [a,b]. Let wi : [a,b] → [0,), i = 1, ..,n be a sequence of n inte-
grable functions satisfying

∫ b
a wi (t)dt = 1 and Wi (t) =

∫ t
a wi (x)dx for t ∈ [a,b], Wi (t) = 0

for t < a andWi (t) = 1 for t > b, for all i = 1, ..,n. For any x∈ [a,b] define weighted Peano
kernel:

Pwi (x,t) =

⎧⎨⎩
Wi (t) , a ≤ t ≤ x

Wi (t)−1, x < t ≤ b.

Then

f (x)−
∫ b

a
w1 (t) f (t)dt−

n−2


k=0

(∫ b

a
wk+2 (t) f (k+1) (t)dt

)
×

×
(∫ b

a
· · ·
∫ b

a
Pw1 (x,t1)

k


i=1

Pwi+1 (ti,ti+1)dt1 · · ·dtk+1

)

=
∫ b

a
· · ·
∫ b

a
Pw1 (x,t1)

n−1


i=1

Pwi+1 (ti,ti+1) f (n) (tn)dt1 · · ·dtn. (4.21)

For n = 1, identity (4.21) reduces to the weighted Montgomery identity given by (4.1),
for
∫ b
a w(t)dt = 1, i.e. it reduces to

f (x)−
∫ b

a
w1 (t) f (t)dt =

∫ b

a
Pw1 (x,t1) f

′
(t1)dt1.

Next, we subtract two generalized weighted Montgomery identities (4.21) to obtain
identity for the difference between two weighted integral means, each having its own
weight, on two different intersecting intervals [a,b] and [c,d]. As mentioned in the pre-
vious section we have four possible cases when [a,b]∩ [c,d] �= /0.

For that purpose we denote

T [a,b]
w1,..,wn (x) =

n−2


k=0

(
1∫ b

a wk+2 (t)dt

∫ b

a
wk+2 (t) f (k+1) (t)dt

)
×

×
(∫ b

a
· · ·
∫ b

a
Pw1 (x,t1)

k


i=1

Pwi+1 (ti,ti+1)dt1 · · ·dtk+1

)
.

The following results were obtained by Aglić Aljinović, Pečarić and Perušić in [11].
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Theorem 4.9 Let f : [a,b]∪ [c,d] → R be n-times differentiable on [a,b]∪ [c,d] ,n ∈ N

with f (n) : [a,b] → R integrable on [a,b]∪ [c,d]. Let wi : [a,b] → [0,), i = 1, ..,n be a
sequence of n integrable functions, Wi (t) =

∫ t
a wi (x)dx for t ∈ [a,b], Wi (t) = 0 for t < a

and Wi (t) =
∫ b
a wi (x)dx for t > b, for all i = 1, ..,n. Also, let ui : [c,d] → [0,), i = 1, ..,n

be a sequence of n integrable functions, Ui (t) =
∫ t
c ui (x)dx for t ∈ [c,d], Ui (t) = 0 for

t < c and Ui (t) =
∫ d
c ui (x)dx for t > d, for all i = 1, ..,n. For any x ∈ [a,b]∪ [c,d] define

weighted Peano kernels:

Pwi (x,t) =

⎧⎪⎨⎪⎩
1

Wi(b)Wi (t) , a ≤ t ≤ x
1

Wi(b)Wi (t)−1, x < t ≤ b

0, t /∈ [a,b] ,

Pui (x,t) =

⎧⎪⎨⎪⎩
1

Ui(d)Ui (t) , c ≤ t ≤ x
1

Ui(d)Ui (t)−1, x < t ≤ d

0, t /∈ [c,d] .

If Wi (b) �= 0 and Ui (d) �= 0, i = 1, ..,n, then for any x ∈ [a,b]∩ [c,d] it holds

1∫ d
c u1 (t)dt

∫ d

c
u1 (t) f (t)dt− 1∫ b

a w1 (t)dt

∫ b

a
w1 (t) f (t)dt−T [a,b]

w1,..,wn (x)

+T [c,d]
u1,..,un (x) =

∫ max{b,d}

min{a,c}
K (x,t1, . . . ,tn) f (n) (tn)dtn (4.22)

where

K (x, t1, . . . ,tn) =
∫ max{b,d}

min{a,c}
· · ·
∫ max{b,d}

min{a,c}

[
Pw1 (x,t1)

n−1


i=1

Pwi+1 (ti, ti+1) (4.23)

−Pu1 (x,t1)
n−1


i=1

Pui+1 (ti,ti+1)

]
dt1 · · ·dtn−1.

Proof. We apply (4.21) with n normalized weight functions Wi (b)/wi (t), t ∈ [a,b], i =
1, ..,n, and then once again with n normalized weight functions Ui (d)/ui (t), t ∈ [c,d],
i = 1, ..,n. Subtracting these two identities we obtain∫ d

c u1 (t) f (t)dt∫ d
c u1 (t)dt

−
∫ b
a w1 (t) f (t)dt∫ b

a w1 (t)dt
−T [a,b]

w1,..,wn (x)+T [c,d]
u1,..,un (x)

=
∫ b

a
· · ·
∫ b

a
Pw1 (x,t1)

n−1


i=1

Pwi+1 (ti,ti+1) f (n) (tn)dt1 · · ·dtn

−
∫ d

c
· · ·
∫ d

c
Pu1 (x,t1)

n−1


i=1

Pui+1 (ti,ti+1) f (n) (tn)dt1 · · ·dtn

=
∫ max{b,d}

min{a,c}
K (x,t1, . . . ,tn) f (n) (tn)dtn



4.2 GENERALIZATIONS VIA n WEIGHT FUNCTIONS 119

and (4.22) is proved. �

Consider the sequence (Bk (t) ,k ≥ 0) of Bernoulli polynomials which is uniquely de-
termined by the following identities:

B′
k (t) = kBk−1 (t) , k ≥ 1, B0 (t) = 1

and
Bk (t +1)−Bk (t) = ktk−1, k ≥ 0.

The values Bk = Bk (0), k ≥ 0 are known as the Bernoulli numbers. For our purposes, the
first five Bernoulli polynomials are

B0 (t) = 1, B1 (t) = t− 1
2
, B2 (t) = t2− t +

1
6
,

B3 (t) = t3− 3
2
t2 +

1
2
t, B4 (t) = t4−2t3 + t2− 1

30
. (4.24)

Let
(
B∗

k (t) ,k ≥ 0
)

be the sequence of periodic functions with period 1, related to
Bernoulli polynomials as

B∗
k (t) = Bk (t) , 0 ≤ t < 1, B∗

k (t +1) = B∗
k (t) , t ∈ R.

From the properties of Bernoulli polynomials it easily follows that B∗
0 (t) = 1,B∗

1 is dis-
continuous function with a jump of −1 at each integer, while B∗

k , k ≥ 2, are continuous
functions.

Corollary 4.5 Let f : [a,b]∪ [c,d] → R be n-times differentiable on [a,b]∪ [c,d] ,n ∈ N

with f (n) : [a,b] → R integrable on [a,b]∪ [c,d]. Let w : [a,b] → [0,) and u : [c,d] →
[0,) be integrable weight functions, W (t) =

∫ t
a w(x)dx for t ∈ [a,b], W (t) = 0 for t < a

and W (t) =
∫ b
a w(x)dx for t > b, U (t) =

∫ t
c u(x)dx for t ∈ [c,d], U (t) = 0 for t < c and

U (t) =
∫ d
c u(x)dx for t > d. If W (b) �= 0 and U (d) �= 0, then for any x ∈ [a,b]∩ [c,d] it

holds

1∫ d
c u(t)dt

∫ d

c
u(t) f (t)dt− 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt−T [a,b]

w (x)+T [c,d]
u (x)

=
(b−a)n−2

(n−1)!

∫ b

a

(∫ b

a
Pw (x,s)

[
Bn−1

(
s−a
b−a

)
−B∗

n−1

(
s− t
b−a

)]
ds

)
f (n) (t)dt

− (d− c)n−2

(n−1)!

∫ d

c

(∫ d

c
Pu (x,s)

[
Bn−1

(
s− c
d− c

)
−B∗

n−1

(
s− t
d− c

)]
ds

)
f (n) (t)dt (4.25)

where

T [a,b]
w (x) =

n−2


k=0

(b−a)k−1

k!

(∫ b

a
Pw (x,t)Bk

(
t−a
b−a

)
dt

)(
f (k) (b)− f (k) (a)

)
.
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Proof. We apply identity (4.22) with w1 ≡ w, wi ≡ 1
b−a , i = 2, ..,n and u1 ≡ u, ui ≡ 1

d−c ,
i = 2, ..,n. Then Pwi (x,t) and Pui (x,t) for i = 2, ..,n reduce to

Pa,b (x, t) =

⎧⎨⎩
t−a
b−a , a ≤ t ≤ x
t−b
b−a , x < t ≤ b
0, t /∈ [a,b]

and Pc,d (x,t) =

⎧⎨⎩
t−c
d−c , c ≤ t ≤ x
t−d
d−c , x < t ≤ d
0, t /∈ [c,d] .

Since the the following two identities hold (see [4])

∫ b

a
· · ·
∫ b

a
Pa,b(x,s1)

(
k−1


i=1

Pa,b(si,si+1)

)
ds1 · · ·dsk =

(b−a)k

k!
Bk

(
x−a
b−a

)

and

∫ b

a
· · ·
∫ b

a
Pa,b (x,s1)

(
n−2


i=1

Pa,b (si,si+1)

)
ds1 · · ·dsn−2 =

(b−a)n−2

(n−1)!

[
Bn−1

(
x−a
b−a

)
−B∗

n−1

(
x− sn

b−a

)]

it follows that

1
b−a

∫ b

a
· · ·
∫ b

a
Pw (x,t1)

k


i=1

Pa,b (ti,ti+1)dt1 · · ·dtk+1 =
(b−a)k−1

k!

(∫ b

a
Pw (x,t)Bk

(
t−a
b−a

)
dt

)

and

∫ b

a
· · ·
∫ b

a
Pw (x,t1)

n−1


i=1

Pa,b (ti,ti+1) f (n) (tn)dt1 · · ·dtn

=
(b−a)n−2

(n−1)!

∫ b

a

(∫ b

a
Pw (x,s)

[
Bn−1

(
s−a
b−a

)
−B∗

n−1

(
s− t
b−a

)]
ds

)
f (n) (t)dt.

Consequently T [a,b]
w1,..,wn (x) reduces to

T [a,b]
w (x) =

1
b−a

n−2


k=0

(∫ b

a
· · ·
∫ b

a
Pw (x,t1)

k


i=1

Pa,b (ti,ti+1)dt1 · · ·dtk+1

)
×

×
(

f (k) (b)− f (k) (a)
)

=
n−2


k=0

(b−a)k−1

k!
×

×
(∫ b

a
Pw (x,t)Bk

(
t−a
b−a

)
dt

)(
f (k) (b)− f (k) (a)

)
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and similarly T [c,d]
u1,..,un (x) to T [c,d]

u (x). Finally

∫ max{b,d}

min{a,c}
K (x,t1, . . . ,tn) f (n) (tn)dtn

=
(b−a)n−2

(n−1)!

∫ b

a

(∫ b

a
Pw (x,s)

[
Bn−1

(
s−a
b−a

)
−B∗

n−1

(
s− t
b−a

)]
ds

)
×

× f (n) (t)dt− (d− c)n−2

(n−1)!

∫ d

c

(∫ d

c
Pu (x,s)

[
Bn−1

(
s− c
d− c

)
−B∗

n−1

(
s− t
d− c

)]
ds

)
f (n) (t)dt

and identity (4.22) reduces to identity (4.25). �

Corollary 4.6 Let f : [a,b]∪ [c,d] → R be n-times differentiable on [a,b]∪ [c,d] ,n ∈ N

with f (n) : [a,b] → R integrable on [a,b]∪ [c,d]. Let w : [a,b] → [0,) and u : [c,d] →
[0,) be integrable weight functions, W (t) =

∫ t
a w(x)dx for t ∈ [a,b], W (t) = 0 for t < a

and W (t) =
∫ b
a w(x)dx for t > b, U (t) =

∫ t
c u(x)dx for t ∈ [c,d], U (t) = 0 for t < c and

U (t) =
∫ d
c u(x)dx for t > d. If W (b) �= 0 and U (d) �= 0, then for any x ∈ [a,b]∩ [c,d] it

holds

1∫ d
c u(t)dt

∫ d

c
u(t) f (t)dt− 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt−T [a,b]

w,n (x)+T [c,d]
u,n (x)

=
∫ max{b,d}

min{a,c}
K̂ (x,t1, . . . ,tn) f (n) (tn)dtn (4.26)

where

T [a,b]
w,n (x) =

n−2


k=0

(
1∫ b

a w(t)dt

∫ b

a
w(t) f (k+1) (t)dt

)

×
(∫ b

a
· · ·
∫ b

a
Pw (x,t1)

k


i=1

Pw (ti,ti+1)dt1 · · ·dtk+1

)

and

K̂ (x,t1, . . . ,tn) =
∫ max{b,d}

min{a,c}
· · ·
∫ max{b,d}

min{a,c}

[
Pw (x, t1)

n−1


i=1

Pw (ti,ti+1)

−Pu (x,t1)
n−1


i=1

Pu (ti,ti+1)

]
dt1 · · ·dtn−1.

Proof. We apply identity (4.22) with wi ≡ w, i = 1, ..,n. Then T [a,b]
w1,..,wn (x), T [c,d]

u1,..,un (x) and

K (x, t1, . . . ,tn) reduce to T [a,b]
w,n (x), T [c,d]

u,n (x) and K̂ (x,t1, . . . ,tn) respectively. �
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Identity (4.25) was obtained in [7]. Special case for uniform normalized weight func-
tion w for the case [c,d]⊆ [a,b] was obtained in [115] and for the case [a,b]∩ [c,d] = [c,b]
in [9].

Identity (4.26) for uniform normalized weight function w for c = d as a limit case and
n = 2 was obtained in [17] and for n = 3 in [4].

Theorem 4.10 Let f : [a,b]∪ [c,d]→ R be n-convex function on [a,b]∪ [c,d] ,n ∈ N. Let
wi : [a,b] → [0,), i = 1, ..,n be a sequence of n integrable functions, Wi (t) =

∫ t
a wi (x)dx

for t ∈ [a,b], Wi (t) = 0 for t < a and Wi (t) =
∫ b
a wi (x)dx for t > b, for all i = 1, ..,n. Also,

let ui : [c,d]→ [0,), i = 1, ..,n be a sequence of n integrable functions, Ui (t) =
∫ t
c ui (x)dx

for t ∈ [c,d], Ui (t) = 0 for t < c and Ui (t) =
∫ d
c ui (x)dx for t > d, for all i = 1, ..,n. If

K(x, t1, . . . ,tn) ≥ 0, where K(x,t1, . . . ,tn) is the function defined by (4.23), then for any
x ∈ [a,b]∩ [a,a+ ] it holds

1∫ b
a w1 (t)dt

∫ b

a
w1 (t) f (t)dt +T [a,b]

w1,..,wn (x) ≤ 1∫ d
c u1 (t)dt

∫ d

c
u1 (t) f (t)dt +T [c,d]

u1,..,un (x) .

(4.27)

Proof. Since f is an n-convex function, without loss of generality we can assume (see [122,
p. 293]) that f (n) exists and is continuous. Using (4.22), inequality (4.27) follows. �

Inequality (4.27) also holds if f is n-concave and K(x,t1, . . . ,tn) ≤ 0. If f is n-concave
and K(x, t1, . . . ,tn) ≥ 0 or f is n-convex and K(x,t1, . . . ,tn) ≤ 0, inequality (4.27) is re-
versed.

In the following corollaries we give generalizations of Steffensen’s inequality using
previous general results. These results were obtained in [11].

Corollary 4.7 Let f : [a,b]∪[a,a+ ]→R be an n-convex function on [a,b]∪[a,a+ ] ,n∈
N. Let wi : [a,b] → [0,), i = 1, ..,n and ui : [a,a+ ]→ [0,), i = 1, ..,n be a sequence
of weight functions as in Theorem 4.9. If K(x,t1, . . . ,tn) ≥ 0 where K(x,t1, . . . ,tn) is the
function defined by (4.23), then for any x ∈ [a,b]∩ [a,a+ ] it holds:

1∫ b
a w1 (t)dt

∫ b

a
w1 (t) f (t)dt +T [a,b]

w1,..,wn (x) ≤ 1∫ a+
a u1 (t)dt

∫ a+

a
u1 (t) f (t)dt

+T [a,a+ ]
u1,..,un (x) .

(4.28)

If f is an n-concave function and K(x,t1, . . . ,tn) ≤ 0, inequality (4.28) holds.

Proof. Apply Theorem 4.10 with [c,d] = [a,a+ ]. �

For every differentiable, nonincreasing function f : [a,b]∪ [a,a+ ] → R and some
weight functions w : [a,b] → [0,) and u : [a,a+ ] → [0,) such that

∫ b
a w(t)dt =∫ a+

a u(t)dt inequality (4.28) for n = 1 reduces to

∫ b

a
w(t) f (t)dt ≤

∫ a+

a
u(t) f (t)dt
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while condition K(x,t1, . . . ,tn) ≤ 0 reduces to∫ x

a
u(t)dt ≥

∫ x

a
w(t)dt for x ∈ [a,a+ ]

and
∫ b

x
w(t)dt ≥ 0 for x ∈ (a+ ,b]

(4.29)

in case 0 <  ≤ b−a and to∫ x

a
u(t)dt ≥

∫ x

a
w(t)dtfor x ∈ [a,b]

and
∫ a+

x
u(t)dt ≤ 0 for x ∈ (b,a+ ]

in case  > b−a.
Further for u ≡ 1 we have

∫ b
a w(t)dt =

∫ a+
a u(t)dt =  . Thus if 0 ≤ w(t) ≤ 1 for

t ∈ [a,b], then  ≤ b− a and it’s easy to see that (4.29) is fulfilled. In such a way the
right-hand side of Steffensen’s inequality (2.1) is recaptured.

Corollary 4.8 Let f : [a,b]∪[b− ,b]→R be an n-convex function on [a,b]∪[b− ,b] ,n∈
N. Let wi : [a,b] → [0,), i = 1, ..,n and ui : [b− ,b]→ [0,), i = 1, ..,n be a sequence
of weight functions as in Theorem 4.9. If K(x,t1, . . . ,tn) ≤ 0 where K(x,t1, . . . ,tn) is the
function defined by (4.23), then for any x ∈ [a,b]∩ [b− ,b] it holds:

1∫ b
a w1 (t)dt

∫ b

a
w1 (t) f (t)dt +T [a,b]

w1,..,wn (x) ≥ 1∫ b
b− u1 (t)dt

∫ b

b−
u1 (t) f (t)dt

+T [b− ,b]
u1,..,un (x) .

(4.30)

If f is an n-concave function and K(x,t1, . . . ,tn) ≥ 0, inequality (4.30) holds.

Proof. Apply Theorem 4.10 with [c,d] = [b− ,b]. �

For every differentiable, nonincreasing function f : [a,b]∪ [b− ,b] → R and some
weight functions w : [a,b] → [0,) and u : [b− ,b] → [0,) such that

∫ b
a w(t)dt =∫ b

b− u(t)dt inequality (4.28) for n = 1 reduces to

∫ b

a
w(t) f (t)dt ≥

∫ b

b−
u(t) f (t)dt

while condition K(x,t1, . . . ,tn) ≥ 0 reduces to∫ x

a
w(t)dt ≥ 0 for x ∈ [a,b− ]

and
∫ x

b−
u(t)dt ≤

∫ x

a
w(t)dt for x ∈ (b− ,b]

(4.31)



124 4 GENERALIZATIONS OF STEFFENSEN’S INEQUALITY VIA WEIGHTED...

in case 0 <  ≤ b−a and to ∫ x

b−
u(t)dt ≤ 0 for x ∈ [b− ,a]

and
∫ x

b−
u(t)dt ≤

∫ x

a
w(t)dt for x ∈ (a,b]

in case  > b−a.
Further, for u ≡ 1 we have

∫ b
a w(t)dt =

∫ b
b− u(t)dt =  . Thus if 0 ≤ w(t) ≤ 1 for

t ∈ [a,b], then  ≤ b−a and it’s easy to see that (4.31) is fulfilled since

x−b+ =
∫ x

b−
u(t)dt ≤

∫ x

a
w(t)dt =  −

∫ b

x
w(t)dt.

In such a way the left-hand side of Steffensen’s inequality (2.1) is recaptured.
Now we give Lp inequalities obtained by Aglić Aljinović, Pečarić and Perušić in [11].

Theorem 4.11 Suppose that all the assumptions of Theorem 4.9 hold. Additionally as-
sume (p,q) is a pair of conjugate exponents, and f (n) ∈ Lp

[a,b]∪[c,d]. Then the following
inequality holds∣∣∣∣∣ 1∫ d

c u1 (t)dt

∫ d

c
u1 (t) f (t)dt−T [a,b]

w1,..,wn (x) − 1∫ b
a w1 (t)dt

∫ b

a
w1 (t) f (t)dt +T [c,d]

u1,..,un (x)

∣∣∣∣∣
≤ ‖K (x, t1, . . . ,tn−1, ·)‖q,[min{a,c},max{b,d}]

∥∥∥ f (n)
∥∥∥

p,[min{a,c},max{b,d}]
(4.32)

Inequality (4.32) is sharp for 1 < p ≤  and for p = 1 the constant
‖K (x, t1, . . . ,tn−1, ·)‖q,[min{a,c},max{b,d}] is the best possible.

Proof. By taking the modulus on (4.22) and applying the Hölder inequality we obtain∣∣∣∣∣ 1∫ d
c u1 (t)dt

∫ d

c
u1 (t) f (t)dt−T [a,b]

w1,..,wn (x) − 1∫ b
a w1 (t)dt

∫ b

a
w1 (t) f (t)dt +T [c,d]

u1,..,un (x)

∣∣∣∣∣
=
∣∣∣∣∫ max{b,d}

min{a,c}
K (x,t1, . . . ,tn) f (n) (tn)dtn

∣∣∣∣≤ ‖K (x,t1, . . . ,tn−1, ·)‖q,[min{a,c},max{b,d}]
∥∥∥ f (n)

∥∥∥
p,[min{a,c},max{b,d}]

Let us denote C (t) = K (x,t1, . . . ,tn−1,t). For the proof of the sharpness we find a function
f for which the equality in (4.32) is obtained.

For 1 < p <  take f to be such that

f (n) (t) = sgn C (t) · |C (t)| 1
p−1 .

For p =  take
f (n) (t) = sgn C (t) .

For p = 1 we shall prove that∣∣∣∣∫ max{b,d}

min{a,c}
C (t) f (n) (t)dt

∣∣∣∣≤ max
t∈[min{a,c},max{b,d}]

|C (t)|
(∫ max{b,d}

min{a,c}

∣∣∣ f (n) (t)
∣∣∣dt

)
(4.33)
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is the best possible inequality.
If n ≥ 2 the function C (t) is continuous except in points max{a,c} and min{b,d}

where it has a finite jump. If n = 1 it is continuous. Thus we have four possibilities:
1. |C(t)| attains its maximum at t0 ∈ [min{a,c} ,max{b,d}] and C (t0) > 0. Then for

 > 0 small enough define f (t) by

f (t) =

⎧⎪⎨⎪⎩
0, min{a,c} ≤ t ≤ t0 − 
1
n! (t− t0 + )n , t0−  ≤ t ≤ t0
1
n! (t− t0 + )n−1 , t0 ≤ t ≤ max{b,d} .

Thus ∣∣∣∣∫ max{b,d}

min{a,c}
C(t) f (n)

 (t)dt

∣∣∣∣= ∣∣∣∣∫ t0

t0−
C(t)

1

dt

∣∣∣∣= 1


∫ t0

t0−
C(t)dt.

Now, from inequality (4.33) we have

1


∫ t0

t0−
C(t)dt ≤ 1


C(t0)

∫ t0

t0−
dt = C(t0).

Since

lim
→0
>0

1


∫ t0

t0−
C(t)dt = C(t0)

the statement follows.
2. |C(t)| attains its maximum at t0 ∈ [min{a,c} ,max{b,d}] and C (t0) < 0. Then for

 > 0 small enough define f (t) by

f (t) =

⎧⎪⎨⎪⎩
1
n! (t0 − t)n−1 , min{a,c} ≤ t ≤ t0− 
− 1

n! (t0− t)n , t0 −  ≤ t ≤ t0
0, t0 ≤ t ≤ max{b,d} ,

and the rest of the proof is similar as above.
3. |C(t)| does not attain a maximum on [min{a,c} ,max{b,d}] and let

t0 ∈ [min{a,c} ,max{b,d}] be such that

sup
t∈[min{a,c},max{b,d}]

|C(t)| = lim
→0
>0

| f (t0 + )|

If lim→0
>0

f (t0 + ) > 0, we take

f (t) =

⎧⎪⎨⎪⎩
0, min{a,c} ≤ t ≤ t0
1
n! (t− t0)

n , t0 ≤ t ≤ t0 + 
1
n! (t− t0)

n−1 , t0 +  ≤ t ≤ max{b,d} ,
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and, similarly as before, we have∣∣∣∣∫ max{b,d}

min{a,c}
C(t) f (n)

 (t)dt

∣∣∣∣= ∣∣∣∣∫ t0+

t0
C(t)

1

dt

∣∣∣∣= 1


∫ t0+

t0
C(t)dt,

1


∫ t0+

t0
C(t)dt ≤ 1


C(t0)

∫ t0+

t0
dt = C(t0),

lim
→0
>0

1


∫ t0+

t0
C(t)dt =C(t0)

and the statement follows.
4. |C(t)| does not attain a maximum on [min{a,c} ,max{b,d}] and let

t0 ∈ [min{a,c} ,max{b,d}] be such that

sup
t∈[min{a,c},max{b,d}]

|C(t)| = lim
→0
>0

| f (t0 + )| .

If lim→0
>0

f (t0 + ) < 0, we take

f (t) =

⎧⎪⎨⎪⎩
1
n! (t− t0− )n−1 , min{a,c} ≤ t ≤ t0
− 1

n! (t − t0− )n , t0 ≤ t ≤ t0 + 
0, t0 +  ≤ t ≤ max{b,d} ,

and the rest of the proof is similar as above. �

Corollary 4.9 Let f : [a,b]∪ [a,a+ ]→R be such that f ′ ∈ Lp
[a,b]∪[a,a+ ] and g : [a,b]→

R be an integrable function such that  =
∫ b
a g(t)dt. Let also G(x) =

∫ x
a g(t)dt, x ∈ [a,b].

Then the following two sharp inequalities hold for 1 < p ≤  and for 0 ≤  ≤ b−a∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

∣∣∣∣
≤
(∫ a+

a
|t−a−G(t)|q dt +

∫ b

a+
| −G(t)|q dt

) 1
q ∥∥∥ f

′∥∥∥
p,[a,max{b,a+}]

while for  > b−a∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

∣∣∣∣
≤
(∫ b

a
|t −a−G(t)|q dt +

∫ a+

b
|t−a− |q dt

) 1
q ∥∥∥ f

′∥∥∥
p,[a,max{b,a+}]

.

In case p = 1 and 0 ≤  ≤ b−a we have two following two best possible inequalities∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

∣∣∣∣
≤ max

{
max

t∈[a,a+ ]
|t−a−G(t)| , max

t∈[a+ ,b]
| −G(t)|

}∥∥∥ f
′∥∥∥

1,[a,max{b,a+}]
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while for  > b−a∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

∣∣∣∣
≤ max

{
max
t∈[a,b]

|t−a−G(t)| , max
t∈[b,a+ ]

|t−a− |
}∥∥∥ f

′∥∥∥
1,[a,max{b,a+}]

.

Proof. Apply Theorem 4.11 with n = 1 and weight functions w1 (t) = g(t) for t ∈ [a,b] and
u1 (t) = 1 for t ∈ [a,a+ ]. We have

∫ b
a g(t)dt =

∫ a+
a dt =  and, consequently,∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

∣∣∣∣= ∣∣∣∣ ∫ max{b,a+}

a
K (t) f ′ (t)dt

∣∣∣∣
where

K (t) =

⎧⎨⎩
t −a− ∫ t

a g(s)ds, t ∈ [a,a+ ]

∫ b
t g(s)ds, t ∈ (a+ ,b]

if a+ ≤ b,

K (t) =

⎧⎨⎩
t −a− ∫ t

a g(s)ds, t ∈ [a,b]

t−a− , t ∈ (b,a+ ]
if a+ ≥ b,

and the proof follows. �

Corollary 4.10 Let f : [a,b]∪[b− ,b]→R be such that f ′ ∈Lp
[a,b]∪[b− ,b] and g : [a,b]→

R integrable function such that  =
∫ b
a g(t)dt. Let also G(x) =

∫ x
a g(t)dt, x ∈ [a,b]. Then

the following two sharp inequalities hold for 1 < p ≤  and for 0 ≤  ≤ b−a∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

∣∣∣∣
≤
(∫ b−

a
|−G(t)|q dt +

∫ b

b−
|t−b+ −G(t)|q dt

) 1
q ∥∥∥ f

′∥∥∥
p,[a,max{b,a+}]

while for  > b−a∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

∣∣∣∣
≤
(∫ a

b−
|t−b+ |q dt +

∫ b

a
|t−b+−G(t)|q dt

) 1
q ∥∥∥ f

′∥∥∥
p,[a,max{b,a+}]

.

In case p = 1 and 0 ≤  ≤ b−a we have two following two best possible inequalities∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

∣∣∣∣
≤ max

{
max

t∈[a,b− ]
|−G(t)| , max

t∈[b− ,b]
|t−b+ −G(t)|

}∥∥∥ f
′∥∥∥

1,[a,max{b,a+}]
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while for  > b−a∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

∣∣∣∣
≤ max

{
max

t∈[b− ,a]
|t−b+ |, max

t∈[a,b]
|t−b+ −G(t)|

}∥∥∥ f
′∥∥∥

1,[a,max{b,a+}]
.

Proof. Apply Theorem 4.11 with n = 1 and weight functions w1 (t) = g(t) for t ∈ [a,b] and
u1 (t) = 1 for t ∈ [b− ,b]. We have

∫ b
a g(t)dt =

∫ b
b− dt =  and consequently∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

∣∣∣∣= ∣∣∣∣ ∫ b

min{a,b−}
K (t) f ′ (t)dt

∣∣∣∣
where

K (t) =

⎧⎨⎩
−G(t) , t ∈ [a,b− ]

t−b+ −G(t) , t ∈ (b− ,b]
if a+ ≤ b,

K (t) =

⎧⎨⎩
t −b+ , t ∈ [b− ,a]

t−b+ −G(t) , t ∈ (a,b]
if a+ ≥ b,

and the proof follows. �
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4.3 Generalizations via Fink identity and related
results

In [43] Fink obtained the following identity:

1
n

(
f (x)+

n−1


k=1

Fk(x)

)
− 1

b−a

∫ b

a
f (t)dt (4.34)

=
1

n!(b−a)

∫ b

a
(x− t)n−1k(t,x) f (n)(t)dt,

where

Fk(x) =
n− k
k!

· f (k−1)(a)(x−a)k − f (k−1)(b)(x−b)k

b−a
,

k(t,x) =
{

t−a, a ≤ t ≤ x ≤ b
t−b, a ≤ x < t ≤ b.

In [12] Aglić Aljinović, Pečarić and Vukelić gave the extension of weighted Mont-
gomery identity (4.1) using identity (4.34). Further they obtained some new generaliza-
tions of the estimations of the difference of two weighted integral means. First is when
[c,d] ⊆ [a,b] and the second when [a,b]∩ [c,d] = [c,b]. Other two possible cases, when
[a,b]∩ [c,d] �= /0 we simply get by substitutions a ↔ c, b ↔ d.

Theorem 4.12 Let f : [a,b]∪ [c,d]→ R be such that f (n−1) is an absolutely continuous
function on [a,b] for some n > 1, and let w : [a,b] → [0,) and u : [c,d] → [0,). Then if
[a,b]∩ [c,d] �= /0 and x ∈ [a,b]∩ [c,d], we have

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ d

c u(t)dt

∫ d

c
u(t) f (t)dt−T [a,b]

w,n (x)

+T [c,d]
u,n (x) =

∫ max{b,d}

min{a,c}
Kn (x,y) f (n) (y)dy,

where

T [a,b]
w,n (x) =

n−1


k=1

F [a,b]
k (x)− 1∫ b

a w(t)dt

n−1


k=1

∫ b

a
w(t)F [a,b]

k (t)dt,

and, in case [c,d] ⊆ [a,b] ,

Kn (x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
(n−2)!(b−a)

[∫ b
a Pw (x,t) (t− y)n−2k[a,b](y,t)dt

]
, y ∈ [a,c]

−1
(n−2)!(b−a)

[∫ b
a Pw (x,t) (t− y)n−2k[a,b](y, t)dt

]
+ 1

(n−2)!(d−c)

[∫ d
c Pu (x,t)(t − y)n−2k[c,d](y,t)dt

]
, y ∈ (c,d]

−1
(n−2)!(b−a)

[∫ b
a Pw (x,t) (t− y)n−2k[a,b](y,t)dt

]
, y ∈ (d,b] ,
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and in case [a,b]∩ [c,d] = [c,b] ,

Kn (x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
(n−2)!(b−a)

[∫ b
a Pw (x,t)(t− y)n−2k[a,b](y,t)dt

]
, y ∈ [a,c]

−1
(n−2)!(b−a)

[∫ b
a Pw (x,t)(t − y)n−2k[a,b](y,t)dt

]
+ 1

(n−2)!(d−c)

[∫ d
c Pu (x,t) (t− y)n−2k[c,d](y,t)dt

]
, y ∈ (c,b]

1
(n−2)!(d−c)

[∫ d
c Pu (x,t) (t− y)n−2k[c,d](y,t)dt

]
, y ∈ (b,d] .

The following Ostrowski type inequality was obtained in [12].

Theorem 4.13 Assume (p,q) is a pair of conjugate exponents. Let
∣∣∣ f (n)

∣∣∣p : [a,b] → R

be an integrable function for some n > 1. Then for x ∈ [a,b]∩ [c,d] we have∣∣∣∣∣ 1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt− 1∫ d

c u(t)dt

∫ d

c
u(t) f (t)dt−T [a,b]

w,n (x)

+T [c,d]
u,n (x)

∣∣∣≤ (∫ max{b,d}

min{a,c}
|Kn (x,y)|q dy

) 1
q ∥∥∥ f (n)

∥∥∥
p
.

(4.35)

The constant
(∫ max{b,d}

min{a,c} |Kn (x,y)|q dy
)1/q

in inequality (4.35) is sharp for 1 < p ≤  and

the best possible for p = 1.

In [121] Pečarić, Perušić and Vukelić obtained the following results. Directly from
Theorem 4.12 we get the following:

Theorem 4.14 Let [a,b]∩ [c,d] �= /0. Let f : [a,b]∪ [c,d] → R be n-covex on [a,b] for
some n > 1 and let w : [a,b]→ [0,) and u : [c,d] → [0,). Then for x ∈ [a,b]∩ [c,d] and

Kn(x,y) ≥ 0, (4.36)

we have

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt−T [a,b]

w,n (x) ≥ 1∫ d
c u(t)dt

∫ d

c
u(t) f (t)dt−T [c,d]

u,n (x) . (4.37)

If the reversed inequality in (4.36) is valid, then the reversed inequality in (4.37) is also
valid.

For u(t) = 1 and  =
∫ b
a w(t)dt = d−c in inequality (4.37) we get an inequality related

to the left-hand side of inequality (3.47).
For a ↔ c, b ↔ d,w ↔ u, u(t) = 1 and  =

∫ b
a w(t)dt = d− c in inequality (4.37) we

get an inequality related to the right-hand side of inequality (3.47).
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Corollary 4.11 Let  > 0 and let f : [a,b]∪ [a,a+ ]→R be n-covex on [a,b]∪ [a,a+ ]
for some n > 1 and w : [a,b] → [0,). Then for x ∈ [a,b]∩ [a,a+ ] and

Kn(x,y) ≥ 0, (4.38)

we have

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt−T [a,b]

w,n (x) ≥ 1


∫ a+

a
f (t)dt−T [a,a+ ]

1,n (x) , (4.39)

where, in case a+ ≤ b,

Kn (x,y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1
(n−2)!(b−a)

[∫ b
a Pw (x,t)(t− y)n−2k[a,b](y,t)dt

]
+ 1

 (n−2)!

[∫ a+
a P1 (x,t) (t− y)n−2k[a,a+ ](y,t)dt

]
, y ∈ [a,a+ ]

−1
(n−2)!(b−a)

[∫ b
a Pw (x,t)(t− y)n−2k[a,b](y,t)dt

]
, y ∈ (a+ ,b] ,

and in case a+ ≥ b,

Kn (x,y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1
(n−2)!(b−a)

[∫ b
a Pw (x,t)(t− y)n−2k[a,b](y,t)dt

]
+ 1

 (n−2)!

[∫ a+
a P1 (x,t) (t− y)n−2k[a,a+ ](y,t)dt

]
, y ∈ [a,b]

1
 (n−2)!

[∫ a+
a P1 (x,t)(t − y)n−2k[a,a+ ](y,t)dt

]
, y ∈ (b,a+ ] .

If the reversed inequality in (4.38) is valid, then the reversed inequality in (4.39) is also
valid.

Proof. We put c = a, d = a+ and u(t) = 1 in inequality (4.37) to get inequality (4.39). �

Corollary 4.12 Assume (p,q) is a pair of conjugate exponents. Let
∣∣∣ f (n)

∣∣∣p : [a,b] → R

be an R-integrable function for some n > 1. Then for any x ∈ [a,b]∩ [a,a+ ] we have∣∣∣∣∣ 1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt− 1



∫ a+

a
f (t)dt−T [a,b]

w,n (x)+T [a,a+ ]
1,n (x)

∣∣∣∣∣
≤
(∫ max{b,a+}

a
|Kn (x,y)|q dy

) 1
q ∥∥∥ f (n)

∥∥∥
p
.

(4.40)

The constant
(∫max{b,a+}

a |Kn (x,y)|q dy
)1/q

in inequality (4.40) is sharp for 1 < p ≤ 
and the best possible for p = 1.

Proof. We put c = a, d = a+ and u(t) = 1 in inequality (4.35) to get inequality (4.40). �
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Remark 4.4 For n = 1 and  ≤ b−a, K1(x,y) becomes:

K1 (x,y) =

⎧⎨⎩
y−a
 − 1∫ b

a w(t)dt

∫ y
a w(t)dt, y ∈ [a,a+ ]

1∫ b
a w(t)dt

∫ b
y w(t)dt, y ∈ (a+ ,b] .

So, if 
∫ y
a w(t)dt ≤ (y−a)

∫ b
a w(t)dt and f ′(x) ≥ 0, inequality (4.39) becomes

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt ≥ 1



∫ a+

a
f (t)dt,

which is the right-hand side of the reversed generalized Steffensen’s inequality given by
(3.6).

Remark 4.5 For n = 1 and
∫ b
a w(t)dt =  , K1(x,y) becomes:

K1 (x,y) =

{
1

∫ y
a (1−w(t))dt, y ∈ [a,a+ ]
1

∫ b
y w(t)dt, y ∈ (a+ ,b] .

So, if w(t) ≤ 1 and f ′(x) ≥ 0, inequality (4.39) becomes∫ b

a
w(t) f (t)dt ≥

∫ a+

a
f (t)dt,

which is the right-hand side of the reversed Steffensen’s inequality.

Corollary 4.13 Let f : [a,b]∪ [b− ,b] → R be n-convex on [a,b] for some n > 1 and
w : [a,b]→ [0,). Then if  > 0, x ∈ [a,b]∩ [b− ,b] and

Kn(x,y) ≥ 0, (4.41)

we have

1


∫ b

b−
f (t)dt−T [b− ,b]

1,n (x) ≥ 1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt−T [a,b]

w,n (x) , (4.42)

where, in case b− ≤ a,

Kn (x,y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

 (n−2)!

[∫ b
b− P1 (x,t) (t− y)n−2k[b− ,b](y,t)dt

]
, y ∈ [b− ,a]

−1
 (n−2)!

[∫ b
b− P1 (x,t) (t− y)n−2k[b− ,b](y,t)dt

]
+ 1

(n−2)!(b−a)

[∫ b
a Pw (x,t) (t− y)n−2k[a,b](y,t)dt

]
, y ∈ (a,b] ,

and in case a ≤ b− ,

Kn (x,y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

(n−2)!(b−a)

[∫ b
a Pw (x,t) (t− y)n−2k[a,b](y,t)dt

]
y ∈ [a,b− ]

−1
 (n−2)!

[∫ b
b− P1 (x,t) (t− y)n−2k[b− ,b](y,t)dt

]
+ 1

(n−2)!(b−a)

[∫ b
a Pw (x,t) (t− y)n−2k[a,b](y,t)dt

]
, y ∈ (b− ,b] .

If the reversed inequality in (4.41) is valid, then the reversed inequality in (4.42) is also
valid.



4.3 GENERALIZATIONS VIA FINK IDENTITY AND RELATED RESULTS 133

Proof. We substitute a↔ c, b↔ d,w↔ u, and put c = b− , d = b, u(t) = 1 in inequality
(4.37) to get inequality (4.42). �

Corollary 4.14 Assume (p,q) is a pair of conjugate exponents. Let
∣∣∣ f (n)

∣∣∣p : [a,b] → R

be an R-integrable function for some n > 1. Then we have∣∣∣∣∣ 1
∫ b

b−
f (t)dt− 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt−T [b− ,b]

1,n (x)+T [a,b]
w,n (x)

∣∣∣∣∣
≤
(∫ b

min{a,b−}
|Kn (x,y)|q dy

) 1
q ∥∥∥ f (n)

∥∥∥
p

(4.43)

for every x ∈ [a,b]∩ [b− ,b]. The constant
(∫ b

min{a,b−} |Kn (x,y)|q dy
)1/q

in inequality

(4.43) is sharp for 1 < p ≤  and the best possible for p = 1.

Proof. We substitute a↔ c, b↔ d,w↔ u, and put c = b− , d = b, u(t) = 1 in inequality
(4.35) to get inequality (4.43). �

Remark 4.6 For n = 1 and  ≤ b−a, K1(x,y) becomes:

K1 (x,y) =

⎧⎨⎩
1∫ b

a w(t)dt

∫ y
a w(t)dt, y ∈ [a,b− ]

b−y
 − 1∫ b

a w(t)dt

∫ b
y w(t)dt, y ∈ (b− ,b] .

So, if 
∫ b
y w(t)dt ≤ (b− y)

∫ b
a w(t)dt and f ′(x) ≥ 0, inequality (4.42) becomes

1


∫ b

b−
f (t)dt ≥ 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt,

which is the left-hand side of the reversed generalized Steffensen’s inequality given by
(3.6).

Remark 4.7 For n = 1 and
∫ b
a w(t)dt =  , K1(x,y) becomes:

K1 (x,y) =

{
1

∫ y
a w(t)dt, y ∈ [a,b− ]

1

∫ b
y (1−w(t))dt, y ∈ (b− ,b] .

So, if w(t) ≤ 1 and f ′(x) ≥ 0, inequality (4.42) becomes∫ b

b−
f (t)dt ≥

∫ b

a
w(t) f (t)dt,

which is the left-hand side of the reversed Steffensen’s inequality.





Chapter5
Generalizations of
Steffensen’s inequality via
Taylor’s formula

5.1 Generalizations via Taylor’s formula

Results given in this section were obtained by Jakšetić, Pečarić and Perušić in [69]. The
following simple lemma will be useful for results that follow.

Lemma 5.1 Let f : [a,b]∪ [c,d] → R, where c ∈ [a,b], be a n−times differentiable func-
tion and let u : [a,b]→ R and w : [c,d] → R be integrable functions. Then∫ b

a
u(x) f (x)dx−

∫ d

c
w(x) f (x)dx−T f ,u

a +T f ,w
a =

1
(n−1)!

∫ max{b,d}

a
f (n)(t)g(t)dt (5.1)

where

T f ,u
a =

n−1


i=0

f (i)(a)
i!

∫ b

a
u(x)(x−a)idx

and in case a ≤ c < b < d,

135
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g(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ c
t u(x)(x− t)n−1dx+

∫ b
c (u(x)−w(x))(x− t)n−1dx

−∫ d
b w(x)(x− t)n−1dx, t ∈ [a,c]∫ b

t (u(x)−w(x))(x− t)n−1dx− ∫ d
b w(x)(x− t)n−1dx, t ∈ [c,b]

−∫ d
t w(x)(x− t)n−1dx, t ∈ [b,d]

(5.2)

and in case a ≤ c < d ≤ b,

g(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ c
t u(x)(x− t)n−1dx+

∫ d
c (u(x)−w(x))(x− t)n−1dx

+
∫ b
d u(x)(x− t)n−1dx, t ∈ [a,c]∫ d

t (u(x)−w(x))(x− t)n−1dx+
∫ b
d u(x)(x− t)n−1dx, t ∈ [c,d]∫ b

t u(x)(x− t)n−1dx, t ∈ [d,b].

(5.3)

Proof. This follows from Taylor’s formula

f (x)−
n−1


i=0

f (i)(a)
i!

(x−a)i =
∫ x

a
f (n)(t)

(x− t)n−1

(n−1)!
dt

and Fubini’s theorem. �

Theorem 5.1 Let f : [a,b]∪ [c,d] → R, where c ∈ [a,b] be a n−convex function and let
u : [a,b]→R and w : [c,d]→R be integrable functions. If the function g : [a,b]∪[c,d]→R,
defined with (5.2) and (5.3), is nonnegative on [a,b]∪ [c,d]. Then∫ b

a
u(x) f (x)dx−

∫ d

c
w(x) f (x)dx ≥ T f ,u

a −T f ,w
a . (5.4)

If g is nonpositive on [a,b]∪ [c,d], then inequality (5.4) is reversed.

Proof. Without loss of generality we can assume that f is n−times differentiable and
f (n) ≥ 0. The result now follows from Lemma 5.1. �

Using previous results for some special weight functions and integral limits we obtain
generalization of Steffensen’s inequality.

Theorem 5.2 Suppose that f : [a,b]→ R is n−convex function and u : [a,b]→ R is inte-
grable on [a,b] such that 0 ≤ u ≤ 1, on [a,b].

(i) If

1 =
(

n
∫ b

a
u(x)(x−a)n−1dx

)1/n

, (5.5)

then we have∫ b

a
f (x)u(x)dx−

∫ a+1

a
f (x)dx ≥

n−2


i=0

f (i)(a)
i!

(∫ b

a
u(x)(x−a)idx−  i+1

1
i+1

)
. (5.6)
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(ii) If

2 = b−a−
(

(b−a)n−n
∫ b

a
u(x)(x−a)n−1dx

)1/n

, (5.7)

then we have∫ b

a
f (x)u(x)dx−

∫ b

b−2

f (x)dx ≤
n−2


i=0

f (i)(a)
i!

×

×
(∫ b

a
u(x)(x−a)idx− (b−a)i+1−(b−a−2)i+1

i+1

)
.

(5.8)

Proof.

(i) We apply Theorem 5.1 for c = a, d = a+1, and functions u and w such that 0 ≤
u ≤ 1, w ≡ 1. Let us show that g(t) ≥ 0 on [a,b]. From (5.3) we have:

g(t) =

{∫ b
t u(x)(x− t)n−1dx− (a+1−t)n

n , t ∈ [a,a+1]∫ b
t u(x)(x− t)n−1dx, t ∈ [a+1,b].

(5.9)

Since g(t) ≥ 0 for t ∈ [a+1,b], we only have to prove∫ b

t
u(x)(x− t)n−1dx ≥ (a+1− t)n

n
, t ∈ [a,a+1].

For that purpose we modify Fink’s proof of Theorem 3.58 as follows:∫ b

t
u(x)(x− t)n−1dx =

∫ b

t
(x−a)n−1

(
x− t
x−a

)n−1

u(x)dx

= (n−1)(t−a)
∫ b

t

(x− t)n−2

(x−a)n

(∫ b

x
(s−a)n−1u(s)ds

)
dx

≥ (n−1)(t−a)
∫ a+1

t

(x− t)n−2

(x−a)n

(∫ b

x
(s−a)n−1u(s)ds

)
dx

= (n−1)(t−a)
∫ a+1

t

(x− t)n−2

(x−a)n

(
 n

1

n
−
∫ x

a
(s−a)n−1u(s)ds

)
dx

≥ (n−1)(t−a)
∫ a+1

t

(x− t)n−2

(x−a)n

(
 n

1

n
−
∫ x

a
(s−a)n−1ds

)
dx

=
(a+1− t)

n

n

.

(5.10)

According to Theorem 5.1∫ b

a
f (x)u(x)dx−

∫ a+1

a
f (x)dx ≥ T f ,u

a −T f ,w
a

and since

T f ,u
a −T f ,w

a =
n−1


i=0

f (i)(a)
i!

(∫ b

a
u(x)(x−a)idx−  i+1

1

i+1

)
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we have to show that the last summand
∫ b
a u(x)(x− a)n−1dx−  n

1
n is equal to zero.

But this follows from the definition of the number 1.

(ii) Again, we apply Theorem 5.1 for c = b−2, d = b, and functions u and v such that
0 ≤ u ≤ 1, w ≡ 1. We have to show that g(t) ≤ 0 on [a,b]. From (5.3) we have:

g(t) =

{∫ b
t (u(x)−1)(x− t)n−1dx+ (b−2−t)n

n , t ∈ [a,b−2]∫ b
t (u(x)−1)(x− t)n−1dx, t ∈ [b−2,b]

(5.11)

Since g(t) ≤ 0 for t ∈ [b−2,b], we only have to prove∫ b

t
(u(x)−1)(x− t)n−1dx+

(b−2− t)n

n
≤ 0, t ∈ [a,b−2].

But here we again use Fink’s argument from (i)-part (with u(x) ↔ 1− u(x) and
a+1 ↔ b−2). Now (5.8) follows from Theorem 5.1. �

As a special case, from Theorem 5.2 (i) we get Milovanović-Pečarić result given in
Theorem 3.17. As a special case of (ii)-part we obtain the following:

Corollary 5.1 Suppose that f : [a,b]→R is n-convex function, f (i)(a)= 0, i = 0,1, . . . ,n−
2, and u : [a,b] → R is integrable on [a,b] such that 0 ≤ u ≤ 1, on [a,b]. Let

2 = b−a−
(

(b−a)n−n
∫ b

a
u(x)(x−a)n−1dx

)1/n

.

Then ∫ b

b−2

f (x)dx ≥
∫ b

a
f (x)u(x)dx.

We now give necessary and sufficient conditions for inequalities (5.6) and (5.8).

Theorem 5.3 Assume that f is n−convex, 0≤ u ≤ 1 is integrable on [a,b] and 1 and 2

are defined by (5.5) and (5.7) respectively.

(i) Inequality (5.6) holds if and only if the function g defined by (5.9) is nonnegative on
[a,b].

(ii) Inequality (5.8) holds if and only if the function g defined by (5.11) is negative on
[a,b].

Proof.

(i) Sufficiency is obvious. For necessity we consider functions ft (x) = (x−t)n−1
+ , where

t ∈ [a,b]. Since ft is n−convex function, for any t ∈ [a,b], the conclusion follows
after we apply inequality (5.6) on family of functions { ft : t ∈ [a,b]}.

(ii) The proof is similar to the proof of the (i)-part. �

Using previous results we can generalize Cerone’s result from Theorem 3.41.
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Theorem 5.4 Let f : [a,b] → R be a nondecreasing function. Let u : [a,b] → R be non-
negative and wi : [ci,di] → R, i = 1,2 integrable functions such that∫ b

a
u(x)dx =

∫ di

ci

wi(x)dx, (5.12)

where [ci,di] ⊆ [a,b] for i = 1,2.

(i) If u(t) ≤ w1(t), for t ∈ [c1,d1], then∫ b

a
f (t)u(t)dt−

∫ d1

c1

f (t)w1(t)dt ≥
∫ c1

a
( f (t)− f (d1))u(t)dt.

(ii) If u(t) ≤ w2(t), for t ∈ [c2,d2], then∫ b

a
f (t)u(t)dt−

∫ d2

c2

f (t)w2(t)dt ≤
∫ b

d2

( f (t)− f (c2))u(t)dt.

Proof. We apply Lemma 5.1 for n = 1 with c = ci, d = di, w = wi, i = 1,2. Then we note

T f ,u
a −T f ,wi

a = f (a)
[∫ b

a
u(x)dx−

∫ di

ci

wi(x)dx

]
= 0, i = 1,2.

The rest follows directly from integration by parts of the right-hand side of (5.1) in case
n = 1, i.e. integration by parts of

∫ b
a f ′(t)g(t)dt. �

If we put w1 = w2 = 1 in Theorem 5.4 we get Cerone’s result from Theorem 3.41.
We observe that condition (5.12) is more general than Cerone’s condition (3.46). This

is the stepping stone for n−convex case, n ≥ 2.

Theorem 5.5 Let f : [a,b] → R be n−convex function. Let u : [a,b] → R be nonnegative
and wi : [ci,di] → R, i = 1,2, integrable functions such that∫ b

a
u(x)(x−a)n−1dx =

∫ di

ci

wi(x)(x−a)n−1dx, (5.13)

where [ci,di] ⊆ [a,b] for i = 1,2.

(i) If u(t) ≤ w1(t), for t ∈ [c1,d1], then∫ b

a
f (t)u(t)dt −

∫ d1

c1

f (t)w1(t)dt−T f ,u
a +T f ,w1

a

≥ 1
(n−2)!

∫ d1

a
( f (n−1)(t)− f (n−1)(d1))(t)dt

(5.14)

where

(t) =

{∫ c1
t u(x)(x− t)n−2dx+

∫ b
d1

u(x)(x− t)n−2dx, t ∈ [a,c1]∫ b
d1

u(x)(x− t)n−2dx, t ∈ [c1,d1].



140 5 GENERALIZATIONS OF STEFFENSEN’S INEQUALITY VIA TAYLOR’S...

(ii) If u(t) ≤ w2(t), for t ∈ [c2,d2], then∫ b

a
f (t)u(t)dt−

∫ d2

c2

f (t)w2(t)dt−T f ,u
a +T f ,w2

a

≤ 1
(n−2)!

∫ b

a
( f (n−1)(t)− f (n−1)(c2))(t)dt

(5.15)

where

(t) =

⎧⎪⎨⎪⎩
∫ d2
c2

(u(x)−w2(x))(x− t)n−2dx, t ∈ [a,c2]∫ b
d2

u(x)(x− t)n−2dx, t ∈ [c2,d2]∫ b
t u(x)(x− t)n−2dx, t ∈ [d2,b].

Proof. Since f is n−convex function it follows that f (n−1) is a nondecreasing function. In
order to prove (5.14) we use Lemma 5.1 where the function g is defined by (5.3) (c = c1,
d = d1). Condition (5.13) ensures us that g(a) = g(b) = 0. Integration by parts gives us∫ b

a
f (n)(t)g(t)dt = −

(∫ c1

a
+
∫ d1

c1

+
∫ b

d1

)(
f (n−1)(t)− f (n−1)(d1)

)
g′(t)dt

= (n−1)
∫ c1

a

(
f (n−1)(t)− f (n−1)(d1)

)
×

×
(∫ b

t
u(t)(x− t)n−2dx−

∫ d1

c1

w1(t)(x− t)n−2dx

)
dt

+(n−1)
∫ d1

c1

(
f (n−1)(t)− f (n−1)(d1)

)
×

×
(∫ b

t
u(x)(x− t)n−2dx−

∫ d1

t
w1(t)(x− t)n−2dx

)
dt

+(n−1)
∫ b

d1

(
f (n−1)(t)− f (n−1)(d1)

)(∫ b

t
u(x)(x− t)n−2dx

)
dt

≥ (n−1)
∫ c1

a

(
f (n−1)(t)− f (n−1)(d1)

)
×

×
(∫ c1

t
u(x)(x− t)n−2dx+

∫ b

d1

u(x)(x− t)n−2dx

)
dt

+(n−1)
∫ d1

c1

(
f (n−1)(t)− f (n−1)(d1)

)(∫ b

d1

u(x)(x− t)n−2dx

)
dt.

(5.16)

Inequality (5.15) can be deduced in a similar way. �

For w1 = 1, c1 = a, d1 = a + 1 from (5.13) we get condition (5.5), and for w2 =
1, c2 = b−2, d2 = b from (5.13) we get condition (5.7).

Now, we give the following estimation.

Theorem 5.6 Assume (p,q) is a pair of conjugate exponents. Let f : [a,b]∪ [c,d] → R,
where c ∈ [a,b], be a function such that | f (n)|p is integrable for some n ≥ 2. Then∣∣∣∣∫ b

a
u(x) f (x)dx−

∫ d

c
w(x) f (x)dx−T f ,u

a +T f ,w
a

∣∣∣∣≤ 1
(n−1)!

‖g‖q‖ f (n)‖p.
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Proof. This follows after we apply Hölder’s inequality on (5.1). �

Now we estimate generalization of Steffensen’s inequality.

Corollary 5.2 Assume (p,q) is a pair of conjugate exponents. Let f : [a,b] → R be a
function such that | f (n)|p is integrable for some n ≥ 2 and let 1 and 2 be defined by (5.5)
and (5.7) respectively.

(i) If the function g is defined by (5.9), then∣∣∣∣∣
∫ b

a
f (x)u(x)dx−

∫ a+1

a
f (x)dx−

n−2


i=0

f (i)(a)
i!

×

×
(∫ b

a
u(x)(x−a)idx−  i+1

1

i+1

)∣∣∣∣∣≤ 1
(n−1)!

‖g‖q‖ f (n)‖p.

(ii) If the function g is defined by (5.11), then∣∣∣∣∣
∫ b

a
f (x)u(x)dx−

∫ b

b−2

f (x)dx−
n−2


i=0

f (i)(a)
i! ×

×
(∫ b

a
u(x)(x−a)idx− (b−a)i+1−(b−a−2)i+1

i+1

)∣∣∣∣≤ 1
(n−1)!

‖g‖q‖ f (n)‖p.

5.2 Generalizations by the one-point integral formula

In [74] and [86] the following one-point integral formula is introduced from the general
m−point integral identity:∫ b

a
w(t) f (t)dt =

n


j=1

Aw, j(x) f ( j−1)(x)+ (−1)n
∫ b

a
Wn,w(t,x) f (n)(t)dt, (5.17)

where f : [a,b] → R is such that f (n−1) is an absolutely continuous function, w : [a,b] →
[0,) is a weight function and for x ∈ [a,b]

Aw, j(x) =
(−1) j−1

( j−1)!

∫ b

a
(x− s) j−1w(s)ds, for j = 1, . . . ,n

and

Wn,w(t,x) =

{
w1n(t) = 1

(n−1)!
∫ t
a(t− s)n−1w(s)ds for t ∈ [a,x]

w2n(t) = 1
(n−1)!

∫ t
b(t− s)n−1w(s)ds for t ∈ (x,b].
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Let us define function Wn,w(t,x) outside of the interval [a,b] by:

Wn,w(t,x) = 0,x /∈ [a,b].

Let us define:

T [a,b]
w,n (x) :=

1∫ b
a w(t)dt

n


k=2

Aw,k(x) f (k−1)(x) for n ≥ 2

and T [a,b]
w,1 (x) = 0.

In [6] identity (5.17) is obtained as the extension of the weighted Montgomery identity
via Taylor’s formula. Also, the difference between two integral means, each having its own
weight, w and u defined on two different intervals [a,b] and [c,d] such that [a,b]∩ [c,d] �= /0
is obtained:

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt − 1∫ d

c u(t)dt

∫ d

c
u(t) f (t)dt−T [a,b]

n (x)+T [c,d]
n (x)

=
∫ max{b,d}

min{a,c}
Kn(t,x) f (n)(t)dt,

where

Kn(t,x) = (−1)n

(
Wn,w(t,x)∫ b
a w(t)dt

− Wn,u(t,x)∫ d
c u(t)dt

)
. (5.18)

Assume that (p,q) is a pair of conjugate exponents, 1 ≤ p,q ≤ . The following in-
equality is also obtained in [6]: If f (n) ∈ Lp[a,d], then we have∣∣∣∣∣ 1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt − 1∫ d

c u(t)dt

∫ d

c
u(t) f (t)dt−T [a,b]

w,n (x)+T [c,d]
u,n (x)

∣∣∣∣∣
≤ ||Kn(·,x)||q · || f (n)||p.

(5.19)

The inequality (5.19) is sharp for 1 < p ≤  and the best possible for p = 1.
The following results were obtained by Kovač, Pečarić and Perušić in [75].

Theorem 5.7 Let f : [a,b]∪ [c,d]→ R be an n−convex function, x ∈ [a,b]∩ [c,d] and let
w : [a,b]→ [0,〉 and u : [c,d]→ [0,〉 be an integrable functions (weights). If Kn(t,x)≥ 0
for every t ∈ [a,b]∪ [c,d], then

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt − 1∫ d

c u(t)dt

∫ d

c
u(t) f (t)dt ≥ T [a,b]

w,n (x)−T [c,d]
u,n (x). (5.20)

If Kn(t,x) ≤ 0, for every t ∈ [a,b]∪ [c,d], then inequality (5.20) is reversed.

Proof. Without loss of generality we can assume that f is n−times differentiable and
f (n) ≥ 0. The result now follows from the identity (5.18). �
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Theorem 5.8 Let  > 0 and let f : [a,max{b,a + }] → R be n−convex function for
n≥ 1. Let w : [a,b]→ [0,〉 be integrable on [a,b]. If x ∈ [a,b]∩ [a,a+ ] and Kn(t,x)≥ 0
for every t ∈ [a,max{b,a+}], then we have

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt −T [a,b]

w,n (x) ≥ 1


∫ a+

a
f (t)dt−T [a,a+ ]

1,n (x).

Proof. We apply Theorem 5.7 with c = a, d = a+ and u ≡ 1 on [a,a+ ]. We have two
possibilities: [a,a+ ]⊆ [a,b] and [a,b] ⊆ [a,a+ ].

In the case [a,a+ ]⊆ [a,b] we have

Kn(t,x) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)n

[
1

(n−1)!
∫ b
a w(t)dt

∫ t
a(t − s)n−1w(s)ds− (t−a)n

n!

]
, a ≤ t ≤ x

(−1)n

[
1

(n−1)!
∫ b
a w(t)dt

∫ t
b(t − s)n−1w(s)ds− (t−a− )n

n!

]
, x < t ≤ a+

(−1)n 1
(n−1)!

∫ b
a w(t)dt

∫ t
b(t − s)n−1w(s)ds, a+ < t ≤ b.

In the case [a,b] ⊆ [a,a+ ] we have

Kn(t,x) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)n

[
1

(n−1)!
∫ b
a w(t)dt

∫ t
a(t − s)n−1w(s)ds− (t−a)n

n!

]
, a ≤ t ≤ x

(−1)n

[
1

(n−1)!
∫ b
a w(t)dt

∫ t
b(t − s)n−1w(s)ds− (t−a− )n

n!

]
, x < t ≤ b

− (a+−t)n
n! , b < t ≤ a+ .

�

For n > 1 we introduce the following classes of functions:

Mn[a,b] :=
{

w : [a,b] → [0,1] :

(∫ b

a
w(t)dt

)n

≤ n
∫ b

a
(t−a)n−1w(t)dt

}
and

M′
n[a,b] :=

{
w : [a,b] → [0,1] :

(∫ b

a
w(t)dt

)n

≥ n
∫ b

a
(t−a)n−1w(t)dt

}
.

Let us denote W :=
∫ b
a w(t)dt.

Corollary 5.3 Let w : [a,b] → [0,1] be an integrable function on [a,b] and n > 1.

a) If  =
∫ b
a w(t)dt and f : [a,b]→ R is a nondecreasing function, then we have∫ b

a
w(t) f (t)dt ≥

∫ a+

a
f (t)dt.
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b) If w ∈ Mn[a,b],

 =
[
n ·
∫ b

a
(t−a)n−1w(t)dt

] 1
n

and if f : [a,max{b,a+}]→ R is n−convex function, then we have

1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt −T [a,b]

w,n (a) ≥ 1


∫ a+

a
f (t)dt −T [a,a+ ]

1,n (a). (5.21)

c) If w ∈ M′
n[a,b],

 :=

[
n∫ b

a w(t)dt
·
∫ b

a
(t−a)n−1w(t)dt

] 1
n−1

and if f : [a,max{b,a+}]→ R is n−convex function, then (5.21) holds.

Proof.

a) Since  =
∫ b
a w(t)dt ≤ b−a, for x = a and n = 1 we have

K1(t,a) =

{
1

∫ b
t w(s)ds− a+−t

 , a ≤ t ≤ a+
1

∫ b
t w(s)ds, a+ < t ≤ b.

Since K1(t,a) ≥ 0 for t ∈ [a+ ,b], we only have to prove∫ b

t
w(s)ds ≥ a+ − t, t ∈ [a,a+ ].

We have∫ b

t
w(s)ds =

∫ b

a
w(s)ds−

∫ t

a
w(s)ds =  −

∫ t

a
w(s)ds ≥  − t +a.

Hence, −K1(t,a) ≥ 0, so the assertion follows from Theorem 5.8.

b) In this case we have

 =
[
n ·
∫ b

a
(t−a)n−1w(t)dt

] 1
n

≤
[
n
∫ b

a
(t−a)n−1dt

] 1
n

=
[
n
(b−a)n

n

] 1
n

= b−a,

so for x = a we have

Kn(t,a) =

⎧⎪⎪⎨⎪⎪⎩
0, t = a

1
(n−1)!

∫ b
a w(t)dt

∫ b
t (s− t)n−1w(s)ds− (a+−t)n

n! , a < t ≤ a+
1

(n−1)!
∫ b
a w(t)dt

∫ b
t (s− t)n−1w(s)ds, a+ < t ≤ b.

(5.22)
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Obviously, Kn(t,a) ≥ 0, for t ∈ 〈a+ ,b].

In order to prove that Kn(t,a) ≥ 0, for t ∈ [a,a+ ], we have to prove that

1

(n−1)!
∫ b
a w(t)dt

∫ b

t
(s− t)n−1w(s)ds ≥ (a+ − t)n

n!
. (5.23)

From (5.10) we have ∫ b

t
w(s)(s− t)n−1ds ≥ (a+ − t)n

n
.

From the definition of the class Mn we have that  ≥ ∫ b
a w(t)dt. Hence,

1

(n−1)!
∫ b
a w(t)dt

∫ b

t
w(s)(s− t)n−1ds ≥ (a+ − t)n

n!
∫ b
a w(t)dt

≥ (a+ − t)n

n!
.

So we proved (5.23). Now, the assertion follows from Theorem 5.8.

c) For w ∈ M′
n[a,b] we have

 n−1
∫ b

a
w(t)dt = n

∫ b

a
(t −a)n−1w(t)dt ≤

(∫ b

a
w(t)dt

)n

so  ≤W ≤ b−a. We have that Kn(t,a) is defined by (5.22). As in (b)-case we get
that Kn(t,a) ≥ 0, t ∈ [a,b], so the assertion follows from Theorem 5.8. �

Theorem 5.9 Let  > 0, let f : [min{a,b−},b]→R be an n−convex function for n≥ 1,
and let w : [a,b] → [0,〉 be integrable on [a,b]. If x ∈ [a,b]∩ [b− ,b] and Kn(t,x) ≤ 0
for every t ∈ [min{a,b−},b], then we have

1


∫ b

b−
f (t)dt −T [b− ,b]

1,n (x) ≥ 1∫ b
a w(t)dt

∫ b

a
w(t) f (t)dt −T [a,b]

w,n (x).

Proof. We apply Theorem 5.7 with c = b− , d = b and u ≡ 1 on [b− ,b]. We have two
possibilities: [b− ,b]⊆ [a,b] and [a,b] ⊆ [b− ,b].

In the case [b− ,b]⊆ [a,b] we have

Kn(t,x)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−1)n

(n−1)!
∫ b
a w(t)dt

∫ t
a(t− s)n−1w(s)ds, a ≤ t ≤ b−

(−1)n

[
1

(n−1)!
∫ b
a w(t)dt

∫ t
b(t − s)n−1w(s)ds− (t−b+ )n

n!

]
, b− < t ≤ x

(−1)n

[
1

(n−1)!
∫ b
a w(t)dt

∫ t
b(t − s)n−1w(s)ds− (t−b)n

n!

]
, x < t ≤ b.
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In the case [a,b]⊆ [b− ,b] we have

Kn(t,x)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− (b−−t)n

n! , b− ≤ t ≤ a

(−1)n

[
1

(n−1)!
∫ b
a w(t)dt

∫ t
a(t− s)n−1w(s)ds− (t−b+ )n

n!

]
, a < t ≤ x

(−1)n

[
1

(n−1)!
∫ b
a w(t)dt

∫ t
a(t− s)n−1w(s)ds− (t−b)n

n!

]
, x < t ≤ b.

�

If n = 1, then a simple consequence of Theorem 5.9 is the right-hand side of the Stef-
fensen inequality.



Chapter6
Generalizations of
Steffensen’s inequality by
interpolating polynomials

6.1 Generalizations by Lidstone’s polynomial

In 1929 G. J. Lidstone [80] introduced a generalization of Taylor’s series, today known
as a Lidstone series. It approximates a given function in the neighborhood of two points
instead of one. Such series have been studied by H. Poritsky (1932), J. M. Wittaker (1934),
I. J. Schoenberg (1936), R. P. Boas (1943) and others (see [28], [131], [140], [152]).

Definition 6.1 Let f ∈C([0,1]), then Lidstone series has the form




k=0

(
f (2k)(0)k(1− x)+ f (2k)(1)k(x)

)
,

where n is the Lidstone polynomial of degree 2n+1 defined by the relations

0(t) = t,

′′
n(t) = n−1(t),

n(0) = n(1) = 0, n ≥ 1.

147
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Explicit representations of Lidstone polynomial are given in [3] and [152]. Some of
those representations are given by:

n(t) = (−1)n 2
2n+1




k=1

(−1)k+1

k2n+1 sinkt, n ≥ 1

n(t) =
1
6

[
6t2n+1

(2n+1)!
− t2n−1

(2n−1)!

]
−

n−2


k=0

2(22k+3−1)
(2k+4)!

B2k+4
t2n−2k−3

(2n−2k−3)!
, n = 1,2, . . . ,

n(t) =
22n+1

(2n+1)!
B2n+1

(
1+ t

2

)
, n = 1,2 . . . ,

where B2k+4 is the (2k+4)-th Bernoulli number and B2n+1
( 1+t

2

)
is a Bernoulli polynomial.

More details about Bernoulli number and Bernoulli polynomial are given in Section 4.2.
In [154] Widder proved the following fundamental lemma:

Lemma 6.1 If f ∈C2n([0,1]), then

f (t) =
n−1


k=0

[
f (2k)(0)k(1− t)+ f (2k)(1)k(t)

]
+
∫ 1

0
Gn(t,s) f (2n)(s)ds,

where

G1(t,s) = G(t,s) =

{
(t −1)s, if s < t

(s−1)t, if t ≤ s

is the homogeneous Green’s function of the differential operator d2

ds2
on [0,1], and with the

successive iterates of G(t,s)

Gn(t,s) =
∫ 1

0
G1(t, p)Gn−1(p,s)dp, n ≥ 2.

If [a,b]∩ [c,d] �= /0 we have four possible cases for two intervals [a,b] and [c,d]. The
first case is [c,d] ⊂ [a,b], the second case is [a,b]∩ [c,d] = [c,b] and other two cases are
obtained by changing a ↔ c, b↔ d. Hence, in the following theorem we only observe first
two cases.

In this section by T [a,b]
w,n we denote

T [a,b]
w,n =

n−1


k=0

(b−a)2k
∫ b

a
w(x)

[
f (2k)(a)k

(
b− x
b−a

)
+ f (2k)(b)k

(
x−a
b−a

)]
dx.

Results which follow in this section were obtained by Pečarić, Perušić and Smoljak
in [119]. First we give general results which are used for obtaining generalizations of
Steffensen’s inequality.
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Theorem 6.1 Let [a,b]∩ [c,d] �= /0 and let f : [a,b]∪ [c,d]→ R be of class C2n on [a,b]∪
[c,d] for some n ≥ 1. Let w : [a,b]→ [0,〉 and u : [c,d] → [0,〉. Then we have∫ b

a
w(t) f (t)dt−

∫ d

c
u(t) f (t)dt−T [a,b]

w,n +T [c,d]
u,n

=
∫ max{b,d}

a
Kn (s) f (2n) (s)ds,

(6.1)

where in case [c,d] ⊆ [a,b] ,

Kn (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(b−a)2n−1∫ b
a w(x)Gn

(
x−a
b−a , s−a

b−a

)
dx, s ∈ [a,c]

(b−a)2n−1∫ b
a w(x)Gn

(
x−a
b−a , s−a

b−a

)
dx

−(d− c)2n−1 ∫ d
c u(x)Gn

(
x−c
d−c ,

s−c
d−c

)
dx, s ∈ 〈c,d]

(b−a)2n−1∫ b
a w(x)Gn

(
x−a
b−a , s−a

b−a

)
dx, s ∈ 〈d,b] ,

(6.2)

and in case [a,b]∩ [c,d] = [c,b] ,

Kn (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(b−a)2n−1∫ b
a w(x)Gn

(
x−a
b−a , s−a

b−a

)
dx, s ∈ [a,c]

(b−a)2n−1∫ b
a w(x)Gn

(
x−a
b−a , s−a

b−a

)
dx

−(d− c)2n−1 ∫ d
c u(x)Gn

(
x−c
d−c ,

s−c
d−c

)
dx, s ∈ 〈c,b]

−(d− c)2n−1 ∫ d
c u(x)Gn

(
x−c
d−c ,

s−c
d−c

)
dx, s ∈ 〈b,d] .

(6.3)

Proof. From Lemma 6.1 for f ∈C2n([a,b]) we have the following identity

f (x) =
n−1


k=0

(b−a)2k
[

f (2k)(a)k

(
b− x
b−a

)
+ f (2k)(b)k

(
x−a
b−a

)]
+(b−a)2n−1

∫ b

a
Gn

(
x−a
b−a

,
s−a
b−a

)
f (2n)(s)ds.

(6.4)

Multiplying identity (6.4) by w(x), integrating from a to b and using Fubini’s theorem we
obtain ∫ b

a
w(x) f (x)dx =

n−1


k=0

(b−a)2k
∫ b

a
w(x)

[
f (2k)(a)k

(
b− x
b−a

)
+ f (2k)(b)k

(
x−a
b−a

)]
dx+(b−a)2n−1

∫ b

a
f (2n)(s)×

×
(∫ b

a
w(x)Gn

(
x−a
b−a

,
s−a
b−a

)
dx

)
ds.

(6.5)

A similar identity holds for the weight function u on interval [c,d]. Now subtracting those
identities for integrals

∫ b
a w(x) f (x)dx and

∫ d
c u(x) f (x)dx we obtain (6.1). �
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Theorem 6.2 Let [a,b]∩[c,d] �= /0 and let f : [a,b]∪[c,d]→R be (2n)−convex on [a,b]∪
[c,d] and let w : [a,b] → [0,〉 and u : [c,d] → [0,〉. If

Kn(s) ≥ 0, (6.6)

then ∫ b

a
w(t) f (t)dt−T [a,b]

w,n ≥
∫ d

c
u(t) f (t)dt−T [c,d]

u,n (6.7)

where in case [c,d] ⊆ [a,b] , Kn(s) is defined by (6.2) and in case [a,b]∩ [c,d] = [c,b] ,
Kn(s) is defined by (6.3).

Proof. Since f is (2n)-convex, withouth loss of generality we can assume that f is (2n)−ti-
mes differentiable and f (2n) ≥ 0. Now we can apply Theorem 6.1 to obtain (6.7). �

For a special choice of weights and intervals in previous results we obtain generaliza-
tion of Steffensen’s inequality.

Theorem 6.3 Let f : [a,b]∪ [a,a+ ]→ R be (2n)−convex on [a,b]∪ [a,a+ ] and let
w : [a,b]→ [0,〉. Then if

Kn(s) ≥ 0, (6.8)

we have ∫ b

a
w(t) f (t)dt−T [a,b]

w,n ≥
∫ a+

a
f (t)dt−T [a,a+ ]

1,n (6.9)

where in case a ≤ a+ ≤ b,

Kn (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(b−a)2n−1 ∫ b

a w(x)Gn
(

x−a
b−a , s−a

b−a

)
dx

− 2n−1 ∫ a+
a Gn

(
x−a
 , s−a


)
dx, s ∈ [a,a+ ]

(b−a)2n−1∫ b
a w(x)Gn

(
x−a
b−a , s−a

b−a

)
dx, s ∈ 〈a+ ,b] ,

(6.10)

and in case a ≤ b ≤ a+ ,

Kn (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(b−a)2n−1 ∫ b

a w(x)Gn
(

x−a
b−a , s−a

b−a

)
dx

− 2n−1 ∫ a+
a Gn

(
x−a
 , s−a


)
dx, s ∈ [a,b]

− 2n−1 ∫ a+
a Gn

(
x−a
 , s−a


)
dx, s ∈ 〈b,a+ ] .

(6.11)

Proof. We take c = a, d = a+ and u(t) = 1 in Theorem 6.2. �

Theorem 6.4 Let f : [a,b]∪ [b− ,b]→ R be (2n)−convex on [a,b]∪ [b− ,b] and let
w : [a,b]→ [0,〉. Then if

Kn(s) ≥ 0, (6.12)

we have ∫ b

b−
f (t)dt−T [b− ,b]

1,n (x) ≥
∫ b

a
w(t) f (t)dt−T [a,b]

w,n (x) (6.13)
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where in case a ≤ b− ≤ b,

Kn (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(b−a)2n−1∫ b

a w(x)Gn
(

x−a
b−a , s−a

b−a

)
dx, s ∈ [a,b− ]

 2n−1 ∫ b
b− Gn

(
x−b+

 , s−b+


)
dx

−(b−a)2n−1∫ b
a w(x)Gn

(
x−a
b−a , s−a

b−a

)
dx, s ∈ 〈b− ,b] ,

(6.14)

and in case b− ≤ a ≤ b,

Kn (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
 2n−1 ∫ b

b− Gn

(
x−b+

 , s−b+


)
dx, s ∈ [b− ,a]

 2n−1 ∫ b
b− Gn

(
x−b+

 , s−b+


)
dx

−(b−a)2n−1∫ b
a w(x)Gn

(
x−a
b−a , s−a

b−a

)
dx, s ∈ 〈a,b] .

(6.15)

Proof. First we change a↔ c, b↔ d and w↔ u in Theorem 6.2 and then we take c = b− ,
d = b and u(t) = 1. �

Now we will give Ostrowski type inequalities for the previous results.

Theorem 6.5 Suppose that all assumptions of Theorem 6.1 hold. Assume (p,q) is a pair

of conjugate exponents. Let
∣∣∣ f (2n)

∣∣∣p : [a,b]∪ [c,d] → R be an integrable function for some

n ≥ 1. Then we have∣∣∣∣∫ b

a
w(t) f (t)dt−

∫ d

c
u(t) f (t)dt−T [a,b]

w,n +T [c,d]
u,n

∣∣∣∣
≤
∥∥∥ f (2n)

∥∥∥
p

(∫ max{b,d}

a
|Kn (s)|q ds

) 1
q

.

(6.16)

The constant
(∫max{b,d}

a |Kn (s)|q ds
)1/q

in the inequality (6.16) is sharp for 1 < p≤ and

the best possible for p = 1.

Proof. Using identity (6.1) and applying Hölder’s inequality we obtain∣∣∣∣∫ b

a
w(t) f (t)dt−

∫ d

c
u(t) f (t)dt−T [a,b]

w,n +T [c,d]
u,n

∣∣∣∣
=
∣∣∣∣∫ max{b,d}

a
Kn(s) f (2n)(s)ds

∣∣∣∣≤ ∥∥∥ f (2n)
∥∥∥

p

(∫ max{b,d}

a
|Kn (s)|q ds

) 1
q

.

For the proof of the sharpness of the constant
(∫ max{b,d}

a |Kn (s)|q ds
) 1

q
we will find a func-

tion f for which the equality in (6.16) is obtained.
For 1 < p <  take f to be such that

f (2n)(s) = sgnKn(s) |Kn(s)|
1

p−1 .
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For p =  take f (2n)(s) = sgnKn(s).
For p = 1 we prove that∣∣∣∣∫ max{b,d}

a
Kn (s) f (2n)(s)ds

∣∣∣∣≤ max
s∈[a,max{b,d}]

|Kn(s)|
(∫ max{b,d}

a

∣∣∣ f (2n)(s)
∣∣∣ds

)
(6.17)

is the best possible inequality. Suppose that |Kn(s)| attains its maximumat s0∈[a,max{b,d}].
First we assume that Kn(s0) > 0. For  small enough we define f (s) by

f (s) =

⎧⎪⎨⎪⎩
0, a ≤ s ≤ s0

1
 (2n)!(s− s0)2n, s0 ≤ s ≤ s0 + 

1
(2n)!(s− s0)2n−1, s0 +  ≤ s ≤ max{b,d}.

Then for  small enough∣∣∣∣∫ max{b,d}

a
Kn(s) f (2n)(s)ds

∣∣∣∣= ∣∣∣∣∫ s0+

s0
Kn(s)

1

ds

∣∣∣∣= 1


∫ s0+

s0
Kn(s)ds.

Now from inequality (6.17) we have

1


∫ s0+

s0
Kn(s)ds ≤ Kn(s0)

∫ s0+

s0

1

ds = Kn(s0).

Since,

lim
→0

1


∫ s0+

s0
Kn(s)ds = Kn(s0)

the statement follows. In the case Kn(s0) < 0 we define

f (s) =

⎧⎪⎨⎪⎩
1

(2n)!(s− s0− )2n−1, , a ≤ s ≤ s0

− 1
 (2n)!(s− s0− )2n, s0 ≤ s ≤ s0 + 

0, s0 +  ≤ s ≤ max{b,d},
and the rest of the proof is the same as above. �

Theorem 6.6 Suppose that all assumptions of Theorem 6.3 hold. Assume (p,q) is a pair

of conjugate exponents. Let
∣∣∣ f (2n)

∣∣∣p : [a,b]∪ [a,a+ ] → R be an integrable function for

some n ≥ 1. Let Kn(s) be defined by (6.10) in case a ≤ a+ ≤ b and by (6.11) in case
a ≤ b ≤ a+ . Then we have∣∣∣∣∫ b

a
w(t) f (t)dt−

∫ a+

a
f (t)dt−T [a,b]

w,n +T [a,a+ ]
1,n

∣∣∣∣
≤
∥∥∥ f (2n)

∥∥∥
p

(∫ max{b,a+}

a
|Kn (s)|q ds

) 1
q

.

(6.18)

The constant
(∫ max{b,a+}

a |Kn (s)|q ds
)1/q

in the inequality (6.18) is sharp for 1 < p ≤ 
and the best possible for p = 1.
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Proof. We take c = a, d = a+ and u(t) = 1 in Theorem 6.5. �

Theorem 6.7 Suppose that all assumptions of Theorem 6.4 hold. Assume (p,q) is a pair

of conjugate exponents. Let
∣∣∣ f (2n)

∣∣∣p : [a,b]∪ [b− ,b] → R be an integrable function for

some n ≥ 1. Let Kn(s) be defined by (6.14) in case a ≤ b− ≤ b and by (6.15) in case
b− ≤ a ≤ b. Then we have∣∣∣∣∫ b

b−
f (t)dt−

∫ b

a
w(t) f (t)dt−T [b− ,b]

1,n +T [a,b]
w,n

∣∣∣∣
≤
∥∥∥ f (2n)

∥∥∥
p

(∫ b

min{a,b−}
|Kn (s)|q ds

) 1
q

.

(6.19)

The constant
(∫ b

min{a,b−} |Kn (s)|q ds
)1/q

in the inequality (6.19) is sharp for 1 < p ≤ 
and the best possible for p = 1.

Proof. First we change a↔ c, b↔ d and w↔ u in Theorem 6.1 and then we take c = b− ,
d = b and u(t) = 1. The rest of the proof is similar to the proof of Theorem 6.5. �

6.2 Generalizations by Hermite’s polynomial

Let − < a < b < , and let a ≤ a1 < a2 < ... < ar ≤ b, (r ≥ 2) be given numbers.
For f ∈ Cn[a,b] a unique polynomial PH(t) of degree (n− 1) exists fulfilling one of the
following conditions:

Hermite conditions

P(i)
H (a j) = f (i)(a j); 0 ≤ i ≤ k j, 1 ≤ j ≤ r,

r


j=1

k j + r = n,

in particular:

Simple Hermite or Osculatory conditions (n = 2m, r = m, k j = 1 for all j)

PO(a j) = f (a j), P′
O(a j) = f ′(a j), 1 ≤ j ≤ m,

Lagrange conditions (r = n, k j = 0 for all j)

PL(a j) = f (a j), 1 ≤ j ≤ n,
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Type (m,n−m) conditions (r = 2, 1 ≤ m ≤ n−1, k1 = m−1, k2 = n−m−1)

P(i)
mn(a) = f (i)(a), 0 ≤ i ≤ m−1,

P(i)
mn(b) = f (i)(b), 0 ≤ i ≤ n−m−1,

One-point Taylor conditions (r = 1,k1 = n−1)

P(i)
T (a) = f (i)(a), 0 ≤ i ≤ n−1.

Two-point Taylor conditions (n = 2m, r = 2, k1 = k2 = m−1)

P(i)
2T (a) = f (i)(a), P(i)

2T (b) = f (i)(b), 0 ≤ i ≤ m−1.

The associated error |eH(t)| can be represented in terms of the Green’s functionGH(t,s)
for the multipoint boundary value problem

z(n)(t) = 0, z(i)(a j) = 0, 0 ≤ i ≤ k j, 1 ≤ j ≤ r,

i.e., the following result holds (see [3]):

Theorem 6.8 Let F ∈Cn[a,b] and let PH be its Hermite interpolating polynomial. Then

F(t) = PH(t)+ eH(t)

=
r


j=1

k j


i=0

Hi j(t)F (i)(a j)+
∫ b

a
GH(t,s)F (n)(s)ds,

where Hi j are fundamental polynomials of the Hermite basis defined by

Hi j(t) =
1
i!

(t)
(t−a j)k j+1−i

k j−i


k=0

1
k!

dk

dtk

(
(t −a j)
(t)

k j+1
)∣∣∣

t=a j
(t −a j)k,

where

(t) =
r


j=1

(t−a j)k j+1,

and GH is the Green function defined by

GH(t,s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�


j=1

k j


i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t), s ≤ t

−
r


j=�+1

k j


i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t), s ≥ t.

(6.20)

for all a� ≤ s ≤ a�+1, � = 0,1, . . . ,r (a0 = a, ar+1 = b).
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In particular case, for one-point Taylor conditions

Hi1(t) =
(t −a)i

i!
, i = 0,1, . . . ,n−1,

and Green’s function GT is

GT (t,s) =

{
(t−s)n−1

(n−1)! , s ≤ t

0, s > t,

so Theorem 6.8 gives us the classical Taylor theorem with integral reminder:

F(t) =
n−1


i=0

(t−a)i F
(i)(a)
i!

+
∫ t

a
(t− s)n−1 F(n)(s)

n!
ds.

For two-point Taylor conditions, i = 0,1, . . . ,m−1

Hi1(t) =
m−1−i


k=0

(
m+ k−1

k

)
(t−a)i

i!

(
t−b
a−b

)m( t−a
b−a

)k

Hi2(t) =
m−1−i


k=0

(
m+ k−1

k

)
(t−b)i

i!

(
t−a
b−a

)m( x−b
a−b

)k

and Green’s function G2T is

G2T (t,s) =

{ (−1)m

(2m−1)! p
m(t,s)m−1

j=0

(m−1+ j
j

)
(t − s)m−1− jq j(t,s), s ≤ t

(−1)m

(2m−1)!q
m(t,s)m−1

j=0

(m−1+ j
j

)
(s− t)m−1− j p j(t,s), s ≥ t

and

p(t,s) =
(s−a)(b− t)

b−a
, q(t,s) = p(s,t), ∀t,s ∈ [a,b].

The following lemma describes properties of the Green function (6.20) (see [24] and
[79]).

Lemma 6.2 The Green function GH(t,s) has the following properties:

(i)
GH(t,s)
(t)

> 0, a1 ≤ t ≤ ar, a1 < s < ar;

(ii) GH(t,s) ≤ 1
(n−1)!(b−a)

|(t)|;

(iii)
∫ b

a
|GH(t,s)|ds =

|(t)|
n!

.
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In this section by T [a,b],H1

w,n and T [c,d],H2

u,n we denote

T [a,b],H1

w,n =
r


j=1

k j


i=0

f (i)(a j)
∫ b

a
w(t)H1

i j(t)dt

T [c,d],H2

u,n =
s


j=1

k j


i=0

f (i)(c j)
∫ d

c
u(t)H2

i j(t)dt

where H1 and H2 concern Hermite basis for knots −< a ≤ a1 < a2 < ... < ar1 ≤ b <
and −< c ≤ c1 < c2 < ... < cr2 ≤ d <  respectively.

Results which follow in this section were obtained by Jakšetić, Pečarić and Perušić in
[70].

Theorem 6.9 Let [a,b]∩ [c,d] �= /0 and let f : [a,b]∪ [c,d] → R be of class Cn on [a,b]∪
[c,d] for some n ≥ 1. Let w : [a,b] → [0,〉 and u : [c,d] → [0,〉. Then we have∫ b

a
w(t) f (t)dt−

∫ d

c
u(t) f (t)dt−T [a,b],H1

w,n +T [c,d],H2

u,n

=
∫ max{b,d}

a
Kn (s) f (n) (s)ds,

(6.21)

where in case [c,d] ⊆ [a,b] ,

Kn (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ b
a w(t)GH1 (t,s)dt, s ∈ [a,c]

∫ b
a w(t)GH1 (t,s)dt− ∫ d

c u(t)GH2 (t,s)dt, s ∈ 〈c,d]

∫ b
a w(t)GH1 (t,s)dt, s ∈ 〈d,b] ,

(6.22)

and in case [a,b]∩ [c,d] = [c,b] ,

Kn (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ b
a w(t)GH1 (t,s)dt s ∈ [a,c]

∫ b
a w(t)GH1 (t,s)dt− ∫ d

c u(t)GH2 (t,s)dt, s ∈ 〈c,b]

−∫ d
c u(t)GH2 (t,s)dt, s ∈ 〈b,d] .

(6.23)

Proof. We use Theorem 6.8 to express the function f firstly on knots −< a ≤ a1 < a2 <
... < ar1 ≤ b <  and then on − < c ≤ c1 < c2 < ... < cr2 ≤ d < . We multiply both
sides with functions w and u respectively, and then integrate both sides. Subtracting this
two expressions and using Fubini’s theorem we get desired result. �

Using Theorem 6.9 we can get Steffensen’s inequality.
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Theorem 6.10 Suppose that f is nondecreasing and w is integrable on [a,b] with
0 ≤ w ≤ 1 and

 =
∫ b

a
w(t)dt.

Then we have ∫ b

b−
f (t)dt ≥

∫ b

a
w(t) f (t)dt ≥

∫ a+

a
f (t)dt.

Proof. First we prove
∫ b
a f (t)w(t)dt ≥ ∫ a+

a f (t)dt. For Hermite polynomials H1 and H2

we consider one-point Taylor conditions on [a,b] and [a,a+ ] respectively. Then from

K1 (s) =

{ ∫ b
s w(t)dt− (a+ )+ s, s ∈ [a,a+ ]∫ b

s w(t)dt, s ∈ 〈d,a+ ]

it follows K1(s) ≥ 0. Now (6.21) gives us∫ b

a
w(t) f (t)dt −

∫ a+

a
f (t)dt − f (a) + f (a) =

∫ b

a
K1(s) f ′(s)ds ≥ 0,

concluding
∫ b
a w(t) f (t)dt − ∫ a+

a f (t)dt ≥ 0.

Now we prove
∫ b
b− f (t)dt ≥ ∫ b

a w(t) f (t)dt. For Hermite polynomials H1 and H2 here we
consider one-point Taylor conditions on [a,b] and [b− ,b] respectively. Then

K1 (s) =

{ ∫ b
s w(t)dt, s ∈ [a,b− ]∫ b

s (w(t)−1)dt, s ∈ 〈b− ,b] .

Now (6.21) gives us∫ b

a
w(t) f (t)dt −

∫ b

b−
f (t)dt − f (a) + f (b− ) =

∫ b

a
K1(s) f ′(s)ds

≤ 
∫ b−

a
f ′(s)ds,

concluding
∫ b
a w(t) f (t)dt − ∫ b

b− f (t)dt ≤ 0. �

Theorem 6.11 Let [a,b]∩ [c,d] �= /0 and let f : [a,b]∪ [c,d]→ R be n−convex on [a,b]∪
[c,d] and let w : [a,b] → [0,〉 and u : [c,d] → [0,〉. If

Kn(s) ≥ 0, (6.24)

then we have ∫ b

a
w(t) f (t)dt−T [a,b],H1

w,n ≥
∫ d

c
u(t) f (t)dt−T [c,d],H2

u,n (6.25)

where in case [c,d] ⊆ [a,b] , Kn(s) is defined by (6.22) and in case [a,b]∩ [c,d] = [c,b] ,
Kn(s) is defined by (6.23).
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Proof. Since f is n-convex, without loss of generality we can assume that f is n−times
differentiable and f (n) ≥ 0. Now we can apply Theorem 6.9 to obtain (6.25). �

It is easy to find kernels Kn such that (6.24) is fulfilled. For example, if we take a≤ a1 <
a2 < ... < ar1 ≤ b and all k1, . . . ,kr1 are odd and r1

j=1 k j + r1 = n, then 1(t) = r1
j=1(t −

a j)k j+1 ≥ 0 and according to Lemma 6.2 (i) GH1 (t,s) ≥ 0. Similarly, if we take c ≤ c1 <
c2 < ... < cr2 = d < , all m1, . . . ,mr2−1 are odd and mr2 is even (r2

j=1 mj + r2 = n), then

2(t) = r2
j=1(t −a j)mj+1 ≤ 0 and again, according to Lemma 6.2 (i), GH2 (t,s) ≤ 0.

Particularly, in one-point Taylor case this is valid for any n ∈ N and in two-point Taylor
case this is valid for any even m ∈ N.

Now we will use Hermite expansion in order to generalize Steffensen’s inequality.
For special choice of weights and intervals in previous results we obtain generalization of
Steffensen’s inequality.

Theorem 6.12 Let f : [a,b]∪ [a,a+ ] → R be n−convex on [a,b]∪ [a,a+  ] and let
w : [a,b]→ [0,〉. Then if

Kn(s) ≥ 0,

we have ∫ b

a
w(t) f (t)dt−T [a,b],H1

w,n ≥
∫ a+

a
f (t)dt−T [a,a+ ],H2

1,n

where in case a ≤ a+ ≤ b,

Kn (s) =

⎧⎨⎩
∫ b
a w(t)GH1 (t,s)dt− ∫ a+

a GH2 (t,s)dt, s ∈ [a,a+ ]

∫ b
a w(t)GH1 (t,s)dt, s ∈ 〈a+ ,b] ,

and in case a ≤ b ≤ a+ ,

Kn (s) =

⎧⎨⎩
∫ b
a w(t)GH1 (t,s)dt− ∫ a+

a GH2 (t,s)dt, s ∈ [a,b]

−∫ a+
a GH2 (t,s)dt, s ∈ 〈b,a+ ] .

Proof. We take c = a, d = a+ and u(t) = 1 in Theorem 6.11. �

Theorem 6.13 Let f : [a,b]∪ [b− ,b] → R be n−convex on [a,b]∪ [b− ,b] and let
w : [a,b]→ [0,〉. Then if

Kn(s) ≤ 0,

we have ∫ b

b−
f (t)dt−T [b− ,b],H2

1,n (x) ≥
∫ b

a
w(t) f (t)dt−T [a,b],H1

w,n (x)

where in case a ≤ b− ≤ b,

Kn (s) =

⎧⎨⎩
∫ b
a w(t)GH1 (t,s)dt, s ∈ [a,b− ]

∫ b
a w(t)GH1 (t,s)dt− ∫ b

b− GH2 (t,s)dt, s ∈ 〈b− ,b] ,
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and in case b− ≤ a ≤ b,

Kn (s) =

⎧⎨⎩
−∫ b

b− GH2 (t,s)dt, s ∈ [b− ,a]

∫ b
a w(t)GH1 (t,s)dt− ∫ b

b− GH2 (t,s)dt, s ∈ 〈a,b] .

Similar to the proof of Theorem 6.5 we can prove Ostrowski type inequalities for the
previous results given in the following theorems.

Theorem 6.14 Suppose that all assumptions of Theorem 6.11 hold. Additionally assume

(p,q) is a pair of conjugate exponents. Let
∣∣∣ f (n)

∣∣∣p : [a,b]∪ [c,d] → R be an integrable

function for some n ≥ 1. Then we have∣∣∣∣∫ b

a
w(t) f (t)dt−

∫ d

c
u(t) f (t)dt−T [a,b],H1

w,n +T [c,d],H2

u,n

∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

(∫ max{b,d}

a
|Kn (s)|q ds

) 1
q

.

(6.26)

The constant
(∫max{b,d}

a |Kn (s)|q ds
)1/q

in the inequality (6.26) is sharp for 1 < p≤ and

the best possible for p = 1.

Theorem 6.15 Suppose that all assumptions of Theorem 6.12 hold. Additionally assume

(p,q) is a pair of conjugate exponents. Let
∣∣∣ f (n)

∣∣∣p : [a,b]∪ [a,a+ ]→ R be an integrable

function for some n≥ 1. Let Kn(s) be defined by (6.10) in case a≤ a+ ≤ b and by (6.11)
in case a < b ≤ a+ . Then we have∣∣∣∣∫ b

a
w(t) f (t)dt−

∫ a+

a
f (t)dt−T [a,b],H1

w,n +T [a,a+ ],H2

1,n

∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

(∫ max{b,a+}

a
|Kn (s)|q ds

) 1
q

.

(6.27)

The constant
(∫max{b,a+}

a |Kn (s)|q ds
)1/q

in the inequality (6.27) is sharp for 1 < p ≤ 
and the best possible for p = 1.

Theorem 6.16 Suppose that all assumptions of Theorem 6.13 hold. Additionally assume

(p,q) is a pair of conjugate exponents. Let
∣∣∣ f (n)

∣∣∣p : [a,b]∪ [b− ,b]→ R be an integrable

function for some n≥ 1. Let Kn(s) be defined by (6.14) in case a≤ b− ≤ b and by (6.15)
in case b− ≤ a ≤ b. Then we have∣∣∣∣∫ b

a
w(t) f (t)dt−

∫ b

b−
f (t)+T [b− ,b],H2

1,n −T [a,b],H1

w,n

∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

(∫ b

min{a,b−}
|Kn (s)|q ds

) 1
q

.

(6.28)
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The constant
(∫ b

min{a,b−} |Kn (s)|q ds
)1/q

in the inequality (6.28) is sharp for 1 < p ≤ 
and the best possible for p = 1.

6.3 Generalizations by an Abel-Gontscharoff
polynomial

Let −< a < b <, and a ≤ a1 < a2 < ... < an ≤ b be the given points. For f ∈Cn[a,b]
the Abel-Gontscharoff interpolating polynomial PAG(t) of degree (n− 1) satisfying the
Abel-Gontscharoff conditions

P(i)
AG(ai+1) = f (i)(ai+1), 0 ≤ i ≤ n−1

exists uniquely (see [39], [58]).
This conditions in particular include two-point right focal conditions

P(i)
AG2(a1) = f (i)(a1), 0 ≤ i ≤ ,

P(i)
AG2(a2) = f (i)(a2),  +1 ≤ i ≤ n−1, a ≤ a1 < a2 ≤ b.

First, we give representations of Abel-Gontscharoff interpolating polynomial. For de-
tails and proofs see [3].

Theorem 6.17 The Abel-Gontscharoff interpolating polynomial PAG(t) of the function f
can be expressed as

PAG(t) =
n−1


i=0

Ti(t) f (i)(ai+1),

where T0(t) = 1 and Ti(t), 1 ≤ i ≤ n−1 is the unique polynomial of degree i satisfying

T (k)
i (ak+1) = 0, 0 ≤ k ≤ i−1

T (i)
i (ai+1) = 1

and it can be written as

Ti(t) =
1

1!2! · · · i!

∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2
1 . . . ai−1

1 ai
1

0 1 2a2 . . . (i−1)ai−2
2 iai−1

2
...

...
... . . .

...
...

0 0 0 . . . (i−1)! i!ai

1 t t2 . . . ti−1 ti

∣∣∣∣∣∣∣∣∣∣∣
=
∫ t

a1

∫ t1

a2

· · ·
∫ ti−1

ai

dtidti−1 · · ·dt1, (t0 = t). (6.29)
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In particular, we have

T0(t) = 1

T1(t) = t−a1

T2(t) =
1
2

[
t2−2a2t +a1(2a2−a1)

]
.

Corollary 6.1 The two-point right focal interpolating polynomial PAG2(t) of the function
f can be written as

PAG2(t) =



i=0

(t−a1)i

i!
f (i)(a1)

+
n−−2


j=0

[
j


i=0

(t−a1)+1+i(a1−a2) j−i

( +1+ i)!( j− i)!

]
f (+1+ j)(a2).

The associated error eAG(t) = f (t)−PAG(t) can be represented in terms of the Green
function gAG(t,s) of the boundary value problem

z(n) = 0, z(i)(ai+1) = 0, 0 ≤ i ≤ n−1

and appears as (see [3]):

gAG(t,s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k−1

i=0

Ti(t)
(n−i−1)!(ai+1− s)n−i−1, ak ≤ s ≤ t

−
n−1

i=k

Ti(t)
(n−i−1)!(ai+1− s)n−i−1, t ≤ s ≤ ak+1

k = 0,1, . . . ,n (a0 = a,an+1 = b)

(6.30)

Corresponding to the two-point right focal conditions Green’s function gAG2(t,s) of the
boundary value problem

z(n) = 0, z(i)(a1) = 0, 0 ≤ i ≤ , z(i)(a2) = 0,+1 ≤ i ≤ n−1

is given by (see [3]):

gAG2(t,s) =
1

(n−1)!

⎧⎪⎪⎨⎪⎪⎩


i=0

(n−1
i

)
(t −a1)i(a1− s)n−i−1, a ≤ s ≤ t

−
n−1


i=+1

(n−1
i

)
(t−a1)i(a1− s)n−i−1, t ≤ s ≤ b.

(6.31)

Further, for a1 ≤ s, t ≤ a2 the following inequalities hold

(−1)n−−1 igAG2(t,s)
 ti

≥ 0, 0 ≤ i ≤ 

(−1)n−i  igAG2(t,s)
 ti

≥ 0,  +1 ≤ i ≤ n−1.
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Theorem 6.18 Let f ∈Cn[a,b], and let PAG be its Abel-Gontscharoff interpolating poly-
nomial. Then

f (t) = PAG(t)+ eAG(t)

=
n−1


i=0

Ti(t) f (i)(ai+1)+
∫ b

a
gAG(t,s) f (n)(s)ds (6.32)

where Ti is defined by (6.29) and gAG(t,s) is defined by (6.30).

Theorem 6.19 Let f ∈Cn[a,b], and let PAG2 be its two-point right focal Abel-Gontscharoff
interpolating polynomial. Then

f (t) = PAG2(t)+ eAG2(t)

=



i=0

(t −a1)i

i!
f (i)(a1)+

n−−2


j=0

[
j


i=0

(t−a1)+1+i(a1−a2) j−i

( +1+ i)!( j− i)!

]
×

× f (+1+ j)(a2)+
∫ b

a
gAG2(t,s) f (n)(s)ds

(6.33)

where gAG2(t,s) is defined by (6.31).

In this section by T [a,b]
w,n we will denote

T [a,b]
w,n =

n−1


i=0

f (i)(ai+1)
∫ b

a
w(t)Ti(t)dt

where Ti(t) is defined by (6.29).
Results given in this section were obtained by Pečarić, Perušić and Smoljak in [120].

Theorem 6.20 Let f : [a,b]∪ [c,d] → R be of class Cn on [a,b]∪ [c,d] for some n ≥ 1.
Let w : [a,b]→ R and u : [c,d] → R. Then if [a,b]∩ [c,d] �= /0 we have

∫ b

a
w(t) f (t)dt−

∫ d

c
u(t) f (t)dt−T [a,b]

w,n +T [c,d]
u,n

=
∫ max{b,d}

a
Kn (s) f (n) (s)ds,

(6.34)

where in case [c,d] ⊆ [a,b] ,

Kn (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ b
a w(t)gAG (t,s)dt, s ∈ [a,c]

∫ b
a w(t)gAG (t,s)dt− ∫ d

c u(t)gAG (t,s)dt, s ∈ 〈c,d]

∫ b
a w(t)gAG (t,s)dt, s ∈ 〈d,b] ,

(6.35)
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and in case [a,b]∩ [c,d] = [c,b] ,

Kn (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ b
a w(t)gAG (t,s)dt s ∈ [a,c]

∫ b
a w(t)gAG (t,s)dt− ∫ d

c u(t)gAG (t,s)dt, s ∈ 〈c,b]

−∫ d
c u(t)gAG (t,s)dt, s ∈ 〈b,d] .

(6.36)

Proof. Multiplying identity (6.32) by w(t), then integrating from a to b and using Fubini’s
theorem we obtain∫ b

a
w(t) f (t)dt =

n−1


i=0

f (i)(ai+1)
∫ b

a
w(t)Ti(t)dt

+
∫ b

a
f (n)(s)

(∫ b

a
w(t)gAG(t,s)dt

)
ds.

(6.37)

Furthermore, multiplying identity (6.32) by u(t), then integrating from c to d and using
Fubini’s theorem we obtain similar identity to identity (6.37). Now subtracting this two
identities we obtain (6.34). �

Remark 6.1 Using the two-point right focal Abel-Gontscharoff polynomial, i.e. using
(6.33), inequality (6.34) becomes∫ b

a
w(t) f (t)dt−

∫ d

c
u(t) f (t)dt−Q[a,b]

w,n +Q[c,d]
u,n

=
∫ max{b,d}

a
Kn (s) f (n) (s)ds,

where gAG(t,s) is replaced by gAG2(t,s) in definition of Kn(s) and by Q[a,b]
w,n we denote

Q[a,b]
w,n =




i=0

f (i)(a1)
i!

∫ b

a
w(t)(t −a1)idt

+
n−−2


j=0

f (+1+ j)(a2)

[
j


i=0

(a1−a2) j−i

( +1+ j)!( j− i)!

∫ b

a
w(t)(t −a1)+1+idt

]
.

Theorem 6.21 Let f : [a,b]∪ [c,d]→ R be n−convex on [a,b]∪ [c,d] and let w : [a,b]→
R and u : [c,d] → R. Then if [a,b]∩ [c,d] �= /0 and

Kn(s) ≥ 0,

we have ∫ b

a
w(t) f (t)dt−T [a,b]

w,n ≥
∫ d

c
u(t) f (t)dt−T [c,d]

u,n (6.38)

where in case [c,d] ⊆ [a,b] , Kn(s) is defined by (6.35) and in case [a,b]∩ [c,d] = [c,b] ,
Kn(s) is defined by (6.36).
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Proof. Since f is n-convex, without loss of generality we can assume that f is n−times
differentiable and f (n) ≥ 0. Now we can apply Theorem 6.20 to obtain (6.38). �

As in Remark 6.1, using the two-point right focal Abel-Gontscharoff polynomial, in-
equality (6.38) becomes∫ b

a
w(t) f (t)dt−Q[a,b]

w,n ≥
∫ d

c
u(t) f (t)dt−Q[c,d]

u,n .

For a special choice of weights and intervals in the previous results we obtain general-
izations of Steffensen’s inequality.

Theorem 6.22 Let f : [a,b]∪ [a,a+ ] → R be n−convex on [a,b]∪ [a,a+  ] and let
w : [a,b]→ R. Then if

Kn(s) ≥ 0,

we have ∫ b

a
w(t) f (t)dt−T [a,b]

w,n ≥
∫ a+

a
f (t)dt−T [a,a+ ]

1,n

where in case a ≤ a+ ≤ b,

Kn (s) =

⎧⎨⎩
∫ b
a w(t)gAG (t,s)dt− ∫ a+

a gAG (t,s)dt, s ∈ [a,a+ ]

∫ b
a w(t)gAG (t,s)dt, s ∈ 〈a+ ,b] ,

(6.39)

and in case a ≤ b ≤ a+ ,

Kn (s) =

⎧⎨⎩
∫ b
a w(t)gAG (t,s)dt− ∫ a+

a gAG (t,s)dt, s ∈ [a,b]

−∫ a+
a gAG (t,s)dt, s ∈ 〈b,a+ ] .

(6.40)

Proof. We take c = a, d = a+ and u(t) = 1 in Theorem 6.21. �

For n = 1 and  ≤ b−a, K1(s) becomes

K1 (s) =

⎧⎨⎩
−∫ s

a w(t)dt + s−a, s ∈ [a,a+ ]

∫ b
s w(t)dt, s ∈ 〈a+ ,b] .

So, if
∫ s
a w(t)dt ≤ s− a for a ≤ s ≤ a +  and

∫ b
s w(t)dt ≥ 0 for a +  < s ≤ b and f

nondecreasing from Theorem 6.22 we have∫ b

a
w(t) f (t)dt − f (a+ )

∫ b

a
w(t)dt ≥

∫ a+

a
f (t)dt− f (a+ ).

Hence, for  =
∫ b
a w(t)dt we obtain the right-hand side of Steffensen’s inequality for non-

decreasing function f .
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Theorem 6.23 Let f : [a,b]∪ [b− ,b] → R be n−convex on [a,b]∪ [b−  ,b] and let
w : [a,b] → R. Then if

Kn(s) ≥ 0,

we have ∫ b

b−
f (t)dt−T [b− ,b]

1,n ≥
∫ b

a
w(t) f (t)dt−T [a,b]

w,n

where in case a ≤ b− ≤ b,

Kn (s) =

⎧⎨⎩
−∫ b

a w(t)gAG (t,s)dt, s ∈ [a,b− ]

∫ b
b− gAG (t,s)dt− ∫ b

a w(t)gAG (t,s)dt, s ∈ 〈b− ,b],
(6.41)

and in case b− ≤ a ≤ b,

Kn (s) =

{∫ b
b− gAG (t,s)dt, s ∈ [b− ,a]∫ b
b− gAG (t,s)dt− ∫ b

a w(t)gAG (t,s)dt, s ∈ 〈a,b] .
(6.42)

Proof. First we change a ↔ c, b↔ d and w↔ u in Theorem 6.21. Then we take c = b− ,
d = b and u(t) = 1. �

For n = 1 and  ≤ b−a, K1(s) becomes

K1 (s) =

⎧⎨⎩
∫ s
a w(t)dt, s ∈ [a,b− ]

b− s− ∫ b
s w(t)dt, s ∈ 〈b− ,b] .

So, if
∫ s
a w(t)dt ≥ 0 for a ≤ s ≤ b−  and

∫ b
s w(t)dt ≤ b− s for b−  < s ≤ b and f

nondecreasing from Theorem 6.23 we have∫ b

b−
f (t)dt− f (b− )≥

∫ b

a
w(t) f (t)dt − f (b− )

∫ b

a
w(t)dt.

Hence, for  =
∫ b
a w(t)dt we obtain the left-hand side of Steffensen’s inequality for non-

decreasing function f .
Now we will give Ostrowski type inequalities for previous results.

Theorem 6.24 Suppose that all assumptions of Theorem 6.20 hold. Assume (p,q) is a

pair of conjugate exponents. Let
∣∣∣ f (n)

∣∣∣p : [a,b]∪ [c,d] → R be an integrable function for

some n ≥ 1. Then we have∣∣∣∣∫ b

a
w(t) f (t)dt−

∫ d

c
u(t) f (t)dt−T [a,b]

w,n +T [c,d]
u,n

∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

(∫ max{b,d}

a
|Kn (s)|q ds

) 1
q

.

(6.43)

The constant
(∫max{b,d}

a |Kn (s)|q ds
)1/q

in the inequality (6.43) is sharp for 1 < p≤ and

the best possible for p = 1.
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Proof. Similar to the proof of Theorem 6.5. �

Theorem 6.25 Suppose that all assumptions of Theorem 6.20 for c = a and d = a+
hold. Assume (p,q) is a pair of conjugate exponents. Let

∣∣∣ f (n)
∣∣∣p : [a,b]∪ [a,a+ ]→R be

an integrable function for some n≥ 1. Let Kn(s) be defined by (6.39) in case a≤ a+ ≤ b
and by (6.40) in case a ≤ b ≤ a+ . Then we have∣∣∣∣∫ b

a
w(t) f (t)dt−

∫ a+

a
f (t)dt−T [a,b]

w,n +T [a,a+ ]
1,n

∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

(∫ max{b,a+}

a
|Kn (s)|q ds

) 1
q

.

(6.44)

The constant
(∫ max{b,a+}

a |Kn (s)|q ds
)1/q

in the inequality (6.44) is sharp for 1 < p ≤ 
and the best possible for p = 1.

Proof. We take c = a, d = a+ and u(t) = 1 in Theorem 6.24. �

Theorem 6.26 Suppose that all assumptions of Theorem 6.20 for c = b− and d = b

hold. Assume (p,q) is a pair of conjugate exponents. Let
∣∣∣ f (n)

∣∣∣p : [a,b]∪ [b− ,b]→R be

an integrable function for some n≥ 1. Let Kn(s) be defined by (6.41) in case a≤ b− ≤ b
and by (6.42) in case b− ≤ a ≤ b. Then we have∣∣∣∣∫ b

b−
f (t)dt−

∫ b

a
w(t) f (t)dt−T [b− ,b]

1,n +T [a,b]
w,n

∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

(∫ b

min{a,b−}
|Kn (s)|q ds

) 1
q

.

(6.45)

The constant
(∫ b

min{a,b−} |Kn (s)|q ds
)1/q

in the inequality (6.45) is sharp for 1 < p ≤ 
and the best possible for p = 1.

Proof. First we change a ↔ c, b ↔ d and w ↔ u in Theorem 6.20 and then we take c =
b− , d = b and u(t) = 1. The rest of the proof is similar to the proof of Theorem 6.24. �



Chapter7
Steffensen type inequalities
for fractional integrals and
derivatives

7.1 Fractional Steffensen type inequalities

Let us recall that Mk denotes the class of functions f defined on interval [a,b] with the
representation

f (x) =
∫ b

a
(x− t)k

+d(t), x ∈ [a,b],

for some nonnegative regular Borel measure  . Results given in this Section are obtained
by Krulić, Pečarić and Smoljak in [78].

Remark 7.1 Let f ∈Cn[a,b] be n−convex function with f (k)(a) = 0, k = 0, . . . ,n−2 and
f (n−1) ≥ 0. Then f ∈ Mn−1. Hence, we can apply Theorem 3.17 on function f ∈ Mn−1.
Furthermore, by replacing gdx by d we obtain (3.81) where

 =
(

n
∫ b

a
(x−a)n−1d(x)

) 1
n

.

Following theorems give the Steffensen type inequality for the Riemann-Liouville frac-
tional integral.

167
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Theorem 7.1 Let  be a (signed) regular Borel measure such that
∫ b
a |d | < . Then∫ b

a
Ia+ f (x)d(x) ≥ I+1

a+ f (a+ ) (7.1)

for all nonnegative functions f if and only if∫ b

t
(x− t)−1d(x) ≥ 0, t ∈ [a,b] (7.2)

and

 ≤ min
a≤t≤b

{
t−a+

(

∫ b

t
(x− t)−1d(x)

) 1

}

. (7.3)

Proof. By the definition of class Mk, a function g ∈ Mk has representation

g(x) =
∫ b

a
(x− t)k

+d(t) =
∫ x

a
(x− t)kd(t). (7.4)

Putting k = −1 and d(t) = f (t)dt
() , (7.4) becomes

g(x) =
∫ x

a
(x− t)−1 f (t)dt

()
= Ia+ f (x).

Hence, if g ∈ Mk, then g can be written as the Riemann-Liouville fractional integral of the
nonnegative function f . Now we can apply Theorem 3.58 and get∫ b

a
Ia+ f (x)d(x) ≥

∫ a+

a
Ia+ f (x)dx (7.5)

for all nonnegative functions f if and only if (7.2) and (7.3) hold. Changing the order of
integration by Fubini’s Theorem, the right-hand side in (7.5) can be written as∫ a+

a

(
1

()

∫ x

a
f (t)(x− t)−1dt

)
dx =

1
()

∫ a+

a

(
f (t)

∫ a+

t
(x− t)−1dx

)
dt

=
1

( +1)

∫ a+

a
(a+ − t) f (t)dt

= I+1
a+ f (a+ ).

�

Theorem 7.2 If
∫ b
a |d | < , then the inequality∫ b

a
Ia+ f (x)d(x) ≤ I+1

a+ f (b)− I+1
a+ f (b− ) (7.6)

holds for all nonnegative functions f if and only if∫ b

t
(x− t)−1d(x) ≤ (b− t)


, t ∈ [a,b] (7.7)
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and

b− ≤ min
a≤t≤b

{
t +
[
(b− t) −

∫ b

t
(x− t)−1d(x)

] 1

}

. (7.8)

Proof. Similar to the proof of Theorem 7.1, applying Theorem 3.59 for k =  − 1 and
d(t) = f (t)dt

() . �

Following theorems give the Steffensen type inequality for the Riemann-Liouville frac-
tional derivative.

Theorem 7.3 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and let

assumptions in Lemma 1.1 be satisfied. Then∫ b

a
D

a+ f (x)d(x) ≥ 1
( −+1)

∫ a+

a
(a+ − y)−D

a+ f (y)dy (7.9)

for f ∈ L1(a,b) such that D
a+ f ≥ 0 if and only if∫ b

t
(x− t)−−1d(x) ≥ 0,t ∈ [a,b] (7.10)

and

 ≤ min
a≤t≤b

{
t−a+

(
( −)

∫ b

t
(x− t)−−1d(x)

) 1
−
}

. (7.11)

Proof. Similar to the proof of Theorem 7.1, applying Theorem 3.58 for k =  −−1 and

d(t) = D
a+ f (t)dt
(−) . �

Theorem 7.4 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and let

assumptions in Lemma 1.1 be satisfied. Then∫ b

a
D

a+ f (x)d(x) ≤ 1
( −+1)

[∫ b

a
D

a+ f (y)(b− y)−dy

−
∫ b−

a
D

a+ f (y)(b− − y)−dy

] (7.12)

holds for f ∈ L1(a,b) such that D
a+ f ≥ 0 if and only if∫ b

t
(x− t)−−1d(x) ≤ (b− t)−

 −
,t ∈ [a,b] (7.13)

and

b− ≤ min
a≤t≤b

{
t +
[
(b− t)−− ( −)

∫ b

t
(x− t)−−1d(x)

] 1
−
}

. (7.14)
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Proof. Similar to the proof of Theorem 7.1, applying Theorem 3.59 for k =  −−1 and

d(t) = D
a+ f (t)dt
(−) . �

Next we give Steffensen type inequalities for the Caputo fractional derivative.

Theorem 7.5 Let  be a (signed) regular Borel measure such that
∫ b
a |d | < . Then

∫ b

a
D
∗a f (x)d(x) ≥ D+1

∗a f (a+ ) (7.15)

for g ∈ ACn[a,b] such that g(n) ≥ 0 and n = []+1 if and only if

∫ b

t
(x− t)n−−1d(x) ≥ 0,t ∈ [a,b] (7.16)

and

 ≤ min
a≤t≤b

{
t−a+

(
(n−)

∫ b

t
(x− t)n−−1d(x)

) 1
n−
}

. (7.17)

Proof. Similar to the proof of Theorem 7.1, applying Theorem 3.58 for k = n−−1 and

d(t) = f (n)(t)dt
(n−) . �

Theorem 7.6 If
∫ b
a |d | < , then the inequality

∫ b

a
D
∗a f (x)d(x) ≤ D+1

∗a f (b)−D+1
∗a f (b− ) (7.18)

holds for f ∈ ACn[a,b] such that f (n) ≥ 0 and n = []+1 if and only if

∫ b

t
(x− t)n−−1d(x) ≤ (b− t)n−

n−
,t ∈ [a,b] (7.19)

and

b− ≤ min
a≤t≤b

{
t +
[
(b− t)n−− (n−)

∫ b

t
(x− t)n−−1d(x)

] 1
n−
}

. (7.20)

Proof. Similar to the proof of Theorem 7.1, applying Theorem 3.59 for k = n−−1 and

d(t) = f (n)(t)dt
(n−) . �

Following theorems give the Steffensen type inequality for the Canavati fractional
derivative.
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Theorem 7.7 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and let

assumptions in Lemma 1.2 be satisfied. Then∫ b

a

C1D
a+ f (x)d(x) ≥ 1

( −+1)

∫ a+

a
(a+ − y)− C1D

a+ f (y)dy (7.21)

holds for f ∈C
a+[a,b] such that C1D

a+ f ≥ 0 if and only if (7.10) and (7.11) hold.

Theorem 7.8 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and let

assumptions in Lemma 1.2 be satisfied. Then∫ b

a

C1D
a+ f (x)d(x) ≤ 1

( −+1)

[∫ b

a

C1D
a+ f (y)(b− y)−dy

−
∫ b−

a

C1D
a+ f (y)(b− − y)−dy

] (7.22)

holds for f ∈C
a+[a,b] such that C1D

a+ f ≥ 0 if and only if (7.13) and (7.14) hold.

The proofs are similar to the proofs of Theorems 7.3 and 7.4.

Now we will define linear functionals, which will be used in the rest of this section,
as the difference between the left-hand and the right-hand side of inequalities (7.1), (7.6),
(7.9), (7.12), (7.15), (7.18) (7.21) and (7.22).

A1( f ) =
∫ b

a
Ia+ f (x)d(x)− I+1

a+ f (a+ ), (7.23)

A2( f ) = I+1
a+ f (b)− I+1

a+ f (b− )−
∫ b

a
Ia+ f (x)d(x), (7.24)

A3( f ) =
∫ b

a
D

a+ f (x)d(x)− 1
( −+1)

∫ a+

a
(a+ − y)−D

a+ f (y)dy, (7.25)

A4( f ) =
1

( −+1)

[∫ b

a
D

a+ f (y)(b− y)−dy

−
∫ b−

a
D

a+ f (y)(b− − y)−dy

]
−
∫ b

a
D

a+ f (x)d(x),
(7.26)

A5( f ) =
∫ b

a
D
∗a f (x)d(x)−D+1

∗a f (a+ ), (7.27)

A6( f ) = D+1
∗a f (b)−D+1

∗a f (b− )−
∫ b

a
D
∗a f (x)d(x). (7.28)
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A7( f ) =
∫ b

a

C1D
a+ f (x)d(x)− 1

( −+1)

∫ a+

a
(a+−y)− C1D

a+ f (y)dy (7.29)

A8( f ) =
1

( −+1)

[∫ b

a

C1D
a+ f (y)(b− y)−dy

−
∫ b−

a

C1D
a+ f (y)(b− − y)−dy

]
−
∫ b

a

C1D
a+ f (x)d(x)

(7.30)

Theorem 7.9 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and f ∈

C[a,b]. Let (7.2) hold and  be defined as in (7.3). Then there exists  ∈ [a,b] such that

A1( f ) =
f ( )

( +1)

(∫ b

a
(x−a)d(x)− +1

+1

)
, (7.31)

where A1 is defined by (7.23).

Proof. Notice that from Theorem 7.1 we have that if f ≥ 0, then A1( f ) ≥ 0, so A1 is a
positive linear functional.

Set m = min
x∈[a,b]

f (x), M = max
x∈[a,b]

f (x). Then A1(M− f ) ≥ 0 and A1( f −m) ≥ 0. Using

the definition of Riemann-Liouville fractional integral, linear functional A1 can be written
as

A1( f ) =
1

()

∫ b

a

∫ x

a
f (t)(x− t)−1dtd(x)− 1

( +1)

∫ a+

a
f (t)(a+ − t)dt.

Therefore

m

[
1

( +1)

(∫ b

a
(x−a)d(x)− +1

 +1

)]
≤
∫ b

a
Ia+ f (x)d(x)− 1

( +1)

∫ a+

a
(a+ − t) f (t)dt

≤ M

[
1

( +1)

(∫ b

a
(x−a)d(x)− +1

 +1

)]
,

that is,
mA1(1) ≤ A1( f ) ≤ MA1(1).

If the function A1(1) = 0, then A1( f ) = 0, so (7.31) holds for all  ∈ [a,b]. Otherwise,

min
x∈[a,b]

f (x) = m ≤ A1( f )
A1(1)

≤ M = max
x∈[a,b]

f (x), so
A1( f )
A1(1)

∈ f ([a,b]).

Since f is continuous, by the classical Bolzano-Weierstrass theorem we have that A1( f )
A1(1) =

f ( ) for some  ∈ [a,b]. �
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Theorem 7.10 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and

f ∈ C[a,b]. Let (7.7) hold and  be defined as in (7.8). Then there exists  ∈ [a,b] such
that

A2( f ) =
f ( )

( +1)

(
(b−a)+1− (b−−a)+1

 +1
−
∫ b

a
(x−a)d(x)

)
,

where A2 is defined by (7.24).

Proof. Similar to the proof of Theorem 7.9. �

Theorem 7.11 Let  be a (signed) regular Borel measure such that
∫ b
a |d | < , let

assumptions in Lemma 1.1 be satisfied, and D
a+ f ∈ C[a,b]. Let (7.10) hold and  be

defined as in (7.11). Then there exists  ∈ [a,b] such that

A3( f ) =
D

a+ f ( )
( −+1)

(∫ b

a
(x−a)−d(x)− −+1

 −+1

)
,

where A3 is defined by (7.25).

Proof. Put m = min
x∈[a,b]

D
a+ f (x), M = max

x∈[a,b]
D

a+ f (x). We define functions F1 and F2 by

F1(t) = M
(t−a)

( +1)
− f (t), F2(t) = f (t)−m

(t −a)

( +1)
.

Then D
a+F1(x) = M−D

a+ f (x) ≥ 0, D
a+F2(x) = D

a+ f (x)−m ≥ 0, so from Theorem 7.3
we have A3(F1) ≥ 0 and A3(F2) ≥ 0. Hence

m
( −+1)

(∫ b

a
(x−a)−d(x)− −+1

 −+1

)

≤
∫ b

a
D

a+ f (x)d(x)− 1
( −+1)

∫ a+

a
(a+ − y)−D

a+ f (y)dy

≤ M
( −+1)

(∫ b

a
(x−a)−d(x)− −+1

 −+1

)
,

that is,
mA3(1) ≤ A3(g) ≤ MA3(1).

Similar reasoning as in proof of Theorem 7.9 completes the proof. �

Theorem 7.12 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and

let assumptions in Lemma 1.1 be satisfied and D
a+ f ∈ C[a,b]. Let (7.13) hold and  be
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defined as in (7.14). Then there exists  ∈ [a,b] such that

A4( f ) =
D

a+ f ( )
( −+1)

(
(b−a)−+1− (b−−a)−+1

 −+1

−
∫ b

a
(x−a)−d(x)

)
,

where A4 is defined by (7.26).

Proof. Similar to the proof of Theorem 7.11. �

Theorem 7.13 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and

f ∈ ACn[a,b]. Let (7.16) hold and  be defined as in (7.17). Then there exists  ∈ [a,b]
such that

A5( f ) =
f (n)( )

(n−+1)

(∫ b

a
(x−a)n−d(x)−  n−+1

n−+1

)
,

where A5 is defined by (7.27).

Proof. Set m = min
x∈[a,b]

f (n)(x), M = max
x∈[a,b]

f (n)(x). We define functions F1 and F2 by

F1(x) = M
xn

n!
− f (x), F2(x) = f (x)−m

xn

n!
.

Then F(n)
1 (x) = M− f (n)(x) ≥ 0, F2(x) = f (n)(x)−m ≥ 0, so from Theorem 7.5 we have

that A5(F1) ≥ 0 and A5(F2) ≥ 0. Using definition of Caputo fractional derivative, linear
functional A5 can be written as

A5( f ) =
1

(n−)

∫ b

a

∫ x

a
f (n)(t)(x− t)n−−1dt d(x)

− 1
(n−+1)

∫ a+

a
f (n)(t)(a+ − t)n−dt.

Therefore

m

[
1

(n−+1)

(∫ b

a
(x−a)n−d(x)−  n−+1

n−+1

)]
≤
∫ b

a
D
∗a f (x)d(x)−D+1

∗a f (a+ )

≤ M

[
1

(n−+1)

(∫ b

a
(x−a)n−d(x)−  n−+1

n−+1

)]
,

that is,
mA5(1) ≤ A5( f ) ≤ MA5(1).

Similar reasoning as in proof of Theorem 7.9 completes the proof. �
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Theorem 7.14 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and

f ∈ ACn[a,b]. Let (7.19) hold and  be defined as in (7.20). Then there exists  ∈ [a,b]
such that

A6( f ) =
f (n)( )

(n−+1)

(
(b−a)n−+1− (b− −a)n−+1

n−+1
−
∫ b

a
(x−a)n−d(x)

)
,

where A6 is defined by (7.28).

Proof. Similar to the proof of Theorem 7.13. �

Theorem 7.15 Let  be a (signed) regular Borel measure such that
∫ b
a |d | < , let

assumptions in Lemma 1.2 be satisfied, and C1D
a+ f ∈ C[a,b]. Let (7.10) hold and  be

defined as in (7.11). Then there exists  ∈ [a,b] such that

A7( f ) =
C1D

a+ f ( )
( −+1)

(∫ b

a
(x−a)−d(x)− −+1

 −+1

)
,

where A7 is defined by (7.29).

Proof. Similar to the proof of Theorem 7.11. �

Theorem 7.16 Let  be a (signed) regular Borel measure such that
∫ b
a |d | < , let

assumptions in Lemma 1.2 be satisfied, and C1D
a+ f ∈ C[a,b]. Let (7.13) hold and  be

defined as in (7.14). Then there exists  ∈ [a,b] such that

A8( f ) =
C1D

a+ f ( )
( −+1)

(
(b−a)−+1− (b− −a)−+1

 −+1

−
∫ b

a
(x−a)−d(x)

)
,

where A8 is defined by (7.30).

Proof. Similar to the proof of Theorem 7.11. �

Theorem 7.17 Let  be a (signed) regular Borel measure such that
∫ b
a |d | < . Let A1

be positive linear functional defined by (7.23), let (7.2) hold and  be defined as in (7.3)
or let A2 be positive linear functional defined by (7.24), let (7.7) hold and  be defined as
in (7.8). Let f1, f2 ∈ C[a,b] be such that f2(x) �= 0 for every x ∈ [a,b]. Then there exists
i ∈ [a,b] such that

f1(i)
f2(i)

=
Ai( f1)
Ai( f2)

, i = 1,2. (7.32)
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Proof. Set (t) = f1(t)Ai( f2)− f2(t)Ai( f1), i = 1,2. Obviously, Ai() = 0. On the other
hand, Theorems 7.31 and 7.32 yield that there exist i ∈ [a,b] such that

Ai() = (i) ·Ai(1), i = 1,2.

Since Ai(1) �= 0, we have that

(i) = f1(i)Ai( f2)− f2(i)Ai( f1) = 0, i = 1,2.

By assumption f2(i) �= 0, Theorems 7.31 and 7.32 assure that Ai( f2) �= 0, i = 1,2. Thus,
(7.32) follows. �

Remark 7.2 Theorem 7.17 enables us to define new types of means, because if f1/ f2 has
an inverse, from (7.32) we conclude

i =
(

f1
f2

)−1(Ai( f1)
Ai( f2)

)
, i = 1,2.

The following three theorems have the proofs which are similar to the proof of Theo-
rem 7.17 and, here, we only write its statements.

Theorem 7.18 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and let

assumptions in Lemma 1.1 be satisfied. Let A3 be positive linear functional defined by
(7.25), let (7.10) hold and  be defined as in (7.11) or let A4 be positive linear functional
defined by (7.26), let (7.13) hold and  be defined as in (7.14). Let D

a+ f1,D

a+ f2 ∈C[a,b]

be such that (D
a f2)(x) �= 0 for every x ∈ [a,b]. Then there exists i ∈ [a,b] such that

D
a+ f1(i)

D
a+ f2(i)

=
Ai( f1)
Ai( f2)

, i = 3,4. (7.33)

Remark 7.3 Theorem 7.18 enables us to define new types of means, because if
D

a+ f1/D
a+ f2 has an inverse, from (7.33) we conclude

i =

(
D

a+ f1

D
a+ f2

)−1(
Ai( f1)
Ai( f2)

)
, i = 3,4.

Theorem 7.19 Let  be a (signed) regular Borel measure such that
∫ b
a |d | < . Let A5

be positive linear functional defined by (7.27), let (7.16) hold and  be defined as in (7.17)
or let A6 be positive linear functional defined by (7.28), let (7.19) hold and  be defined

as in (7.20). Let f1, f2 ∈ ACn[a,b] be such that f (n)
2 (x) �= 0 for every x ∈ [a,b]. Then there

exists i ∈ [a,b] such that

f (n)
1 (i)

f (n)
2 (i)

=
Ai( f1)
Ai( f2)

, i = 5,6. (7.34)
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Remark 7.4 Theorem 7.19 enables us to define new types of means, because if f (n)
1 / f (n)

2
has an inverse, from (7.34) we conclude

i =

(
f (n)
1

f (n)
2

)−1(
Ai( f1)
Ai( f2)

)
, i = 5,6.

Theorem 7.20 Let  be a (signed) regular Borel measure such that
∫ b
a |d | <  and let

assumptions in Lemma 1.2 be satisfied. Let A7 be positive linear functional defined by
(7.29), let (7.10) hold and  be defined as in (7.11) or let A8 be positive linear functional
defined by (7.30), let (7.13) hold and  be defined as in (7.14). Let C1D

a+ f1,C1D
a+ f2 ∈

C[a,b] be such that C1D
a+ f2(x) �= 0 for every x ∈ [a,b]. Then there exists i ∈ [a,b] such

that
C1D

a+ f1(i)
C1D

a+ f2(i)
=

Ai( f1)
Ai( f2)

, i = 7,8. (7.35)

Remark 7.5 Theorem 7.20 enables us to define new types of means, because if
C1D

a+ f1/C1D
a+ f2 has an inverse, from (7.35) we conclude

i =

(
C1D

a+ f1
C1D

a+ f2

)−1(
Ai( f1)
Ai( f2)

)
, i = 7,8.

Theorems 7.9 and 7.10 enable us to define various types of means, because if f has
inverse we have

 = f−1
(

Ai( f )
Ai(1)

)
∈ [a,b], i = 1,2 (7.36)

for Ai defined by (7.23) and (7.24). Specially, let g : [a,b] → R
+ be continuous function

and let Bi : C[a,b] → R, i = 1,2 be normalized positive functionals defined by

Bi((g)) =
Ai((g))

Ai(1)
, i = 1,2. (7.37)

After that we apply (7.36) on function f (x) = xr, r �= 0, we get a functional power mean:

M[r](g,Bi) =

{
(Bi(gr))1/r , r �= 0

exp(Bi(logg)) , r = 0,
i = 1,2.

Theorem 7.21 Let (7.2) hold and  be defined as in (7.3) (or let (7.7) hold and  be de-
fined as in (7.8)). Let g : [a,b]→ R

+ be continuous function and let Ai be linear functional
on a vector space of all real, nonnegative and continuous functions on g([a,b]) defined by
(7.23) (or (7.24)).

(i) The mapping t �→ Ai(gt) is exponentially convex.
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(ii) Let n ∈ N and let t1, . . . ,tn ∈ R be arbitrary.

Then the matrix

[
Ai

(
g

t j+tk
2

)]n

j,k=1
is a positive semi-definite matrix. Particularly

det

[
Ai

(
g

t j+tk
2

)]n

j,k=1
≥ 0.

Proof. For fixed n ∈ N,u1, . . . ,un ∈ R let us consider the function

(x) =
n


j,k=1

u jukx
t j+tk

2 .

Since (x) =

(
n

j=1

u jx
t j
2

)2

≥ 0, from Theorem 7.1 we have Ai((g)) ≥ 0, that is

n


j,k=1

u jukAi

(
g

t j+tk
2

)
≥ 0.

It is obvious that t �→ Ai(gt) is continuous, so (i) and (ii) follow from Proposition 1.2 and
Corollary 1.2. �

Corollary 7.1 Let g : [a,b]→ R
+ be a continuous function and let Ai be linear functional

on a vector space of all real, nonnegative and continuous functions on g([a,b]) defined by
(7.23) or (7.24). Then

Ai(gs)t−r ≤ Ai(gr)t−sAi(gt)s−r, i = 1,2 za r < s < t. (7.38)

Proof. From Theorem 7.21 it follows that t �→ A1(gt) and t �→ A2(gt) are exponentially
convex functions and hence they are log-convex functions. If Ai(gs) and Ai(gr) are greater
than zero, then from Corollary 1.1 we have(

Ai(gs)
Ai(gr)

) 1
s−r

≤
(

Ai(gt)
Ai(gs)

) 1
t−s

, i = 1,2

which validates (7.38). If Ai(gs) = 0, then (7.38) obviously holds. If Ai(gr) = 0, then using
log-convexity of t �→ Ai(gt) we have

(Ai(gs))2 ≤ Ai(g2s−r)Ai(gr) = 0, i = 1,2

concluding Ai(gs) = 0 and again (7.38) is valid. �

Corollary 7.2 Let g be a positive continuous function on [a,b] and Bi, i = 1,2 be positive
normalized linear functionals on a vector space of all real, nonnegative and continuous
functions on [a,b] defined by (7.37). Then for all p,q ∈ R, p < q

M[p](g,Bi) ≤ M[q](g,Bi), i = 1,2. (7.39)
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Proof. The proof is deduced observing three different cases for p and q in (7.39).
(Case I.) 0 < p < q. If we put r = 0, s = p, t = q in (7.38) we get

Bi(gp)q ≤ Bi(gq)p

and after we raise both sides of this inequality to the power 1/pq we get (7.39).
(Case II.) p < 0 < q. In this case we put r = p, s = 0, t = q in (7.38) and we get

Bi(gq)p ≤ Bi(gp)q.

Raising both sides of this inequality to the power 1/pq we get (7.39).
(Case III.) p < q < 0. In this case we put r = p, s = q, t = 0 in (7.38) and we get

Bi(gq)−p ≤ Bi(gp)−q.

Raising both sides of this inequality to the power −1/pq we get (7.39).
Mapping p �→M[p](g,Bi) is continuous in zero, so (7.39) is valid for all p,q ∈ R, p < q. �

7.2 Generalized fractional Steffensen type
inequalities

Results given in this Section are obtained by Pečarić, Perić and Smoljak in [114]. Let
(1,1,1) be a measure space with −finite (signed) regular Borel measure and 2 be
a set. Let K : 1 ×2 → R be a nonnegative function and let U denote the class of all
functions f : 1 → R such that there exists a measure space (2,2,2) such that 2 is
nonnegative −finite regular Borel measure and

f (x) =
∫
2

K(x,y)d2(y), x ∈1. (7.40)

Theorem 7.22 Let (1,1,1) be a measure space with −finite (signed) regular Borel
measure. Then for every f ∈U ∫

1

f (x)d1(x) ≥ 0 (7.41)

if and only if ∫
1

K(x,y)d1(x) ≥ 0 for y ∈2. (7.42)

Proof. Using the representation (7.40) in (7.41), and then using Fubini’s theorem, (7.41) is
equivalent to ∫

2

∫
1

K(x,y)d1(x)d2(y) ≥ 0. (7.43)

Since 2 is arbitrary nonnegative regular Borel measure, (7.43) holds if and only if (7.42)
holds. �
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Theorem 7.23 Let (1,1,1) and (1,3,3) be measure spaces with −finite (signed)
regular Borel measures. Then for every f ∈U∫

1

f (x)d1(x) ≥
∫
1

f (x)d3(x) (7.44)

if and only if ∫
1

K(x,y)d1(x) ≥
∫
1

K(x,y)d3(x) for y ∈2. (7.45)

Proof. Apply Theorem 7.22 on measure 1 replaced by 1− 3. �

Remark 7.6 Let 1 = 2 = [a,b], K(x,t) = (x− t)k
+, d3(x) = [a,a+ ]dx for nonneg-

ative  such that a +  ≤ b and d1(x) = d(x) for some finite (signed) regular Borel
measure  . Then the class U reduces to Mk and (7.44) reduces to (3.81). Furthermore, the
condition (7.45) reduces to∫ b

a
(x− t)k

+d(x) ≥
∫ a+

a
(x− t)k

+dx. (7.46)

Since the right hand side in (7.46) is nonnegative, (3.82) is necessary. Moreover, from
(7.46) we have (3.83) for a≤ t ≤ a+ . Since (3.82) holds, (3.83) is also true for t ≥ a+ .
Hence, considering the class of functions f ∈Mk and finite (signed) regular Borel measure
 , Theorem 7.23 reduces to the Steffensen type inequality given in Theorem 3.58.

Remark 7.7 Let 1 = 2 = [a,b], K(x,t) = (x− t)k
+, d1(x) = [b− ,b]dx for  non-

negative such that a ≤ b−  and d3(x) = d(x) for some finite (signed) regular Borel
measure  . Then the class U reduces to Mk and (7.44) reduces to (3.86). Furthermore, the
condition (7.45) reduces to∫ b

a
(x− t)k

+d(x) ≤
∫ b

b−
(x− t)k

+dx. (7.47)

For t > b− , from (7.47) we have∫ b

a
(x− t)k

+d(x) ≤ (b− t)k+1

k+1
. (7.48)

Obviously, (7.48) also holds for t ≤ b− , so (3.87) is necessary. Moreover, from (7.47)
we have (3.88) for a ≤ t ≤ b− . But since (3.87) holds, (3.88) is also true for t ≥ b− .
Hence, considering the class of functions f ∈Mk and finite (signed) regular Borel measure
 , Theorem 7.23 reduces to the Steffensen type inequality given in Theorem 3.59.

Remark 7.8 Applying Theorem 7.23 with 1 =2 = [a,b], d2(y) = f (y)dy, d3(x) =
[a,a+ ]dx (or d1(x) = [b− ,b]dx) for  nonnegative such that a+ ≤ b (or a ≤ b− ),
and

K(x,y) =

{
(x−y)−1

() , a ≤ y ≤ x

0, x < y ≤ b,

we obtain Steffensen type inequalities for the left-sided fractional integral Ia+ f given in
Theorems 7.1 and 7.2.
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Remark 7.9 Let assumptions in Lemma 1.1 be satisfied. Then, applying Theorem 7.23
with 1 =2 = [a,b], d2(y) = D

a+ f (y)dy, d3(x) = [a,a+ ]dx (or d1(x) = [b− ,b]dx)
for  nonnegative such that a+ ≤ b (or a ≤ b− ) and

K(x,y) =

{
(x−y)−−1

(−) , a ≤ y ≤ x

0, x < y ≤ b,
(7.49)

we obtain Steffensen type inequalities for the generalized Riemann-Liouville fractional
derivative D

a+ f given in Theorems 7.3 and 7.4.

Remark 7.10 Applying Theorem 7.23 with1 =2 = [a,b], d2(y)= f (n)(y)dy, d3(x)
= [a,a+ ]dx (or d1(x) = [b− ,b]dx) for  nonnegative such that a+ ≤ b (or a≤ b− )
and

K(x,y) =

{
(x−y)n−−1

(n−) , a ≤ y ≤ x

0, x < y ≤ b,

we obtain Steffensen type inequalities for the Caputo fractional derivative D∗ag given in
Theorems 7.5 and 7.6.

Remark 7.11 Let assumptions in Lemma 1.2 be satisfied. Then, applying Theorem 7.23
with1 =2 = [a,b], d2(y)=C1D

a+ f (y)dy, d3(x)= [a,a+ ]dx (or d1(x)= [b− ,b]dx)
for  nonnegative such that a+ ≤ b (or a ≤ b− ) and K defined by (7.49) we obtain
Steffensen type inequalities for generalized Canavati fractional derivative C1D

a+ f given in
Theorems 7.7 and 7.8.

Following theorems give the Steffensen type inequality for the fractional integral of a
function f with respect to another function g.

Theorem 7.24 Let g be an increasing function on (a,b) such that g′ is continuous on
(a,b), let  be −finite (signed) regular Borel measure on [a,b]. Then for every nonnega-
tive Borel measurable function f1∫ b

a
Ia+;g f1(x)d(x) ≥ 1

()

∫ a+

a
g′(y) f1(y)

∫ a+

y
(g(x)−g(y))−1dxdy (7.50)

if and only if ∫ b

y
(g(x)−g(y))−1d(x) ≥ 0, y ∈ [a,b] (7.51)

and ∫ a+

y
(g(x)−g(y))−1dx ≤

∫ b

y
(g(x)−g(y))−1d(x). (7.52)

Proof. Let (7.50) holds. Let 1 = 2 = [a,b],  be nonnegative real number such that
a+ ≤ b,

K(x,y) =

{
1

()
g′(y)

(g(x)−g(y))1− , a ≤ y ≤ x

0, x < y ≤ b,
(7.53)
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d1(x) = d(x), d2(y) = f1(y)dy and d3(x) = [a,a+ ]dx. Notice that class U now
reduces to class of functions Ia+;g f1 and that (7.44) reduces to (7.50). Now, from Theo-
rem 7.23 it follows that (7.45) holds. Furthermore, (7.45) reduces to∫ b

a
K(x,y)d(x) ≥

∫ a+

a
K(x,y)dx. (7.54)

Since the right-hand side in (7.54) is nonnegative, (7.51) is necessary. Now taking a ≤ y≤
b, (7.54) is∫ b

y
(g(x)−g(y))−1d(x) ≥

∫ a+

y
(g(x)−g(y))−1dx, a ≤ y ≤ a+ . (7.55)

But since (7.51) holds, the inequality (7.55) is true for y > a+ . Hence, (7.52) follows.
Conversely, let (7.51) hold and  be such that (7.52) holds. As above, we see that

(7.51) and (7.52) are obtained from (7.45). Now applying Theorem 7.23 it follows that
(7.44) holds. Furthermore, from (7.44) we have∫ b

a

1
()

∫ x

a

g′(y) f1(y)
(g(x)−g(y))1− dyd(x) ≥

∫ a+

a

1
()

∫ x

a

g′(y) f1(y)
(g(x)−g(y))1− dydx.

(7.56)
Using Fubini’s theorem, the right-hand side in (7.56) can be written as

1
()

∫ a+

a
g′(y) f1(y)

∫ a+

y
(g(x)−g(y))−1dxdy.

So we obtain (7.50). Hence, the proof is completed. �

Theorem 7.25 Let g be an increasing function on (a,b) such that g′ is continuous on
(a,b), let  be −finite (signed) regular Borel measure on [a,b]. Then for every nonnega-
tive Borel measurable function f1∫ b

a
Ia+;g f1(x)d(x) ≤ 1

()

[∫ b−

a
g′(y) f1(y)

∫ b

b−
(g(x)−g(y))−1dxdy

+
∫ b

b−
g′(y) f1(y)

∫ b

y
(g(x)−g(y))−1dxdy

]
if and only if∫ b

y
(g(x)−g(y))−1d(x) ≤

∫ b

b−
[y,b](g(x)−g(y))−1dx, y ∈ [a,b]. (7.57)

Proof. Similar to the proof of Theorem 7.24, applying Theorem 7.23 for 1 =2 = [a,b],
d1(x) = [b− ,b]dx, d2(y) = f1(y)dy, d3(x) = d(x) and K defined by (7.53). �

Following theorems give the Steffensen type inequality for the Hadamard fractional
integral.
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Corollary 7.3 Let  be −finite (signed) regular Borel measure on [a,b]. Then for every
nonnegative Borel measurable function f1∫ b

a
Ja+ f1(x)d(x) ≥ 1

()

∫ a+

a
f1(y)

∫ log a+
y

0
x−1exdxdy

if and only if ∫ b

y

(
log

x
y

)−1

d(x) ≥ 0, y ∈ [a,b] (7.58)

and ∫ b

y

(
log

x
y

)−1

d(x) ≥ y
∫ log a+

y

0
x−1exdx. (7.59)

Proof. Apply Theorem 7.24 for g(x) = logx. �

Corollary 7.4 Let  be −finite (signed) regular Borel measure on [a,b]. Then for every
nonnegative Borel measurable function f1∫ b

a
Ja+ f1(x)d(x) ≤ 1

()

[∫ b−

a
f1(y)

∫ log b
y

log b−
y

x−1exdxdy

+
∫ b

b−
f1(y)

∫ log b
y

0
x−1exdxdy

]
if and only if∫ b

y

(
log

x
y

)−1

d(x) ≤ y
∫ log b

y

log b−
y

[0,log b
y ]x

−1exdx, y ∈ [a,b]. (7.60)

Proof. Apply Theorem 7.25 for g(x) = logx. �

Following theorems give the Steffensen type inequality for the Erdély-Kober fractional
integral.

Theorem 7.26 Let  be −finite (signed) regular Borel measure on [a,b]. Then for
every nonnegative Borel measurable function f1∫ b

a
Ia+; ; f1(x)d(x) ≥ 1

()

∫ a+

a
y+−1 f1(y)

∫ (a+ )

y

x−−−1+ 1


(x− y )1− dxdy (7.61)

if and only if ∫ b

y

x−(+)

(x − y )1− d(x) ≥ 0, y ∈ [a,b] (7.62)

and ∫ b

y

x−(+)

(x − y)1− d(x) ≥ 1


∫ (a+ )

y

x−−−1+ 1


(x− y)1− dx. (7.63)
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Proof. Let (7.61) hold. Let 1 = 2 = [a,b],  be nonnegative real number such that
a+ ≤ b,

K(x,y) =

{
1

()
x−(+)y+−1

(x−y )1− , a ≤ y ≤ x

0, x < y ≤ b,
(7.64)

d1(x) = d(x), d2(y) = f1(y)dy and d3(x) = [a,a+ ]dx. Notice that class U now
reduces to class of functions Ia+; ; f1 and that (7.44) reduces to (7.61). Now, from Theo-
rem 7.23 it follows that (7.45) holds. Furthermore, (7.45) reduces to∫ b

a
K(x,y)d(x) ≥

∫ a+

a
K(x,y)dx. (7.65)

Since the right-hand side in (7.65) is nonnegative, (7.62) is necessary. Now taking a ≤ y≤
b, (7.65) is

∫ b

y

x−(+)

(x − y )1− d(x) ≥
∫ a+

y

x−(+)

(x − y )1− dx, a ≤ y ≤ a+ . (7.66)

But since (7.62) holds, the inequality (7.66) is true for y > a+ . Calculating integral on
the right-hand side in (7.66), we obtain (7.63).

Conversely, let (7.62) hold and  be such that (7.63) holds. As above, we see that
(7.62) and (7.63) are obtained from (7.45). Now applying Theorem 7.23 it follows that
(7.44) holds. Furthermore, from (7.44) we have

∫ b

a

1
()

∫ x

a

x−(+)y+−1

(x − y )1− f1(y)dyd(x) ≥
∫ a+

a

1
()

∫ x

a

x−(+)y+−1

(x − y )1− f1(y)dydx.

(7.67)

Using Fubini’s theorem, the right-hand side in (7.67) can be written as

1
()

∫ a+

a
y+−1 f1(y)

∫ a+

y

x−(+)

(x − y )1− dxdy. (7.68)

Now using the definition of Erdelyi-Köber fractional integral and calculating the inner
integral in (7.68) we obtain (7.61). �

Theorem 7.27 Let  be −finite (signed) regular Borel measure on [a,b]. Then for
every nonnegative Borel measurable function f1

∫ b

a
Ia+; ; f1(x)d(x) ≤ 1

()

[∫ b−

a
y+−1 f1(y)

∫ b

(b− )

x−−−1+ 1


(x− y )1− dxdy

+
∫ b

b−
y+−1 f1(y)

∫ b

y

x−−−1+ 1


(x− y )1− dxdy

]
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if and only if

∫ b

y

x−(+)

(x − y )1− d(x) ≤
∫ b

(b− )
[y ,b ]

x−−−1+ 1


(x− y )1− dx, y ∈ [a,b]. (7.69)

Proof. Similar to the proof of Theorem 7.26, applying Theorem 7.23 for 1 =2 = [a,b],
d1(x) = [b− ,b]dx, d2(y) = f1(y)dy, d3(x) = d(x) and K defined by (7.64). �

In the previous theorems we derived only the Steffensen type inequalities over some
subsets of R. Motivated by [42] we will show that Theorem 7.23 covers much more general
situations.

Let a = (a1, . . . ,an), b = (b1, . . . ,bn), x = (x1, . . . ,xn), t = (t1, . . . ,tn) and let  =
(1, . . . ,n) be nonnegative such that  ≤ b− a. Now we give the Steffensen type in-
equalities for the mixed Riemann-Liouville fractional integrals.

Theorem 7.28 Let  be −finite (signed) regular Borel measure on [a,b]. Then for
every nonnegative Borel measurable function f1∫ b1

a1

. . .

∫ bn

an

Ia+ f1(x)d(x) ≥ I+1
a+ f1(a+) (7.70)

if and only if ∫ b1

y1

. . .

∫ bn

yn

(x−y)−1d(x) ≥ 0, t ∈ [a,b] (7.71)

and
n


i=1

(ai +i− yi)
i
+

i
≤
∫ b1

y1

. . .
∫ bn

yn

(x−y)−1d(x). (7.72)

Proof. Let 1 = 2 = [a,b],

K(x,y) =

{
(x−y)−1

() , a ≤ y ≤ x

0, otherwise ,
(7.73)

d1(x) = d(x), d2(y) = f (y)dy and d3(x) = [a,a+ ]dx. Notice that class U now
reduces to class of functions Ia+ f1. Applying Theorem 7.23, from (7.44) we obtain∫ b

a

1
()

∫ x1

a1

. . .

∫ xn

an

f (y)
(x−y)1− dyd(x)

≥
∫ a+

a

1
()

∫ x

a
(x−y)−1 f (y)dydx.

(7.74)

Using Fubini’s theorem and then calculating the inner integral, the right-hand side in (7.74)
can be written as

1
( +1)

∫ a1+1

a1

. . .

∫ an+n

an

f (y)(a+ −y)dy.
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So we obtain (7.70). From (7.45) we obtain∫ b

a
K(x,y)d(x)≥

∫ a+

a
K(x,y)dx. (7.75)

Since the right-hand side in (7.75) is nonnegative, (7.71) is necessary. Now taking a ≤ y ≤
b, (7.75) is∫ b1

y1

. . .

∫ bn

yn

(x−y)−1d(x) ≥
∫ a1+1

y1

. . .

∫ an+n

yn

(x−y)−1dx, a ≤ y ≤ a+ . (7.76)

Calculating integral on the right-hand side in (7.76), we obtain∫ b1

y1

. . .

∫ bn

yn

(x−y)−1d(x) ≥
n


i=1

(ai +i− yi)i

i
, ai ≤ yi ≤ ai +i.

Hence, (7.72) follows. �

Theorem 7.29 Let  be −finite (signed) regular Borel measure on [a,b]. Then for
every nonnegative Borel measurable function f1∫ b1

a1

. . .

∫ bn

an

Ia+ f1(x)d(x) ≤ I+1
a+ f1(b)− I+1

a+ f1(b−) (7.77)

if and only if∫ b1

y1

. . .

∫ bn

yn

(x−y)−1d(x) ≤
∫ b1

b1−1

. . .

∫ bn

bn−n

[y,b](x−y)−1dx. (7.78)

Proof. Let 1 = 2 = [a,b], K defined by (7.73), d1(x) = [b− ,b]dx, d2(y) = f1(y)dy
and d3(x) = d(x) Notice that class U now reduces to class of functions Ia+ f1. Applying
Theorem 7.23, from (7.44) we obtain∫ b

a

1
()

∫ x1

a1

. . .
∫ xn

an

f1(y)
(x−y)1−

dyd(x)

≤
∫ b

b−
1

()

∫ x

a
(x−y)−1 f1(y)dydx.

(7.79)

Using Fubini’s theorem and then calculating the inner integral, the right-hand side in (7.79)
can be written as

1
( +1)

∫ b1

a1

. . .

∫ bn

an

f1(y)(b−y)dy

− 1
( +1)

∫ b1−1

a1

. . .
∫ bn−n

an

f1(y)(b− −y)dy.

So we obtain (7.77). From (7.45) we obtain∫ b

a
K(x,y)d(x)≤

∫ b

b−
K(x,y)dx.
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that is ∫ b

y
(x−y)−1d(x) ≤

∫ b

b−
[y,b](x−y)−1dx.

Hence, (7.78) follows. �

Now, we give linear functionals which are used in the following theorems. This results
are obtained by Pečarić, Perić and Smoljak in [114].

For f ∈U let

A( f ) =
∫
1

f (x)d1(x)−
∫
1

f (x)d3(x). (7.80)

We define linear functionals involving fractional integrals of function f related to given
function g.
Let

L1( f1) =
∫ b

a
Ia+;g f1(x)d(x)

− 1
()

∫ a+

a
g′(y) f1(y)

∫ a+

y
(g(x)−g(y))−1dxdy,

(7.81)

and let

L2( f1) =
1

()

[∫ b−

a
g′(y) f1(y)

∫ b

b−
(g(x)−g(y))−1dxdy

+
∫ b

b−
g′(y) f1(y)

∫ b

y
(g(x)−g(y))−1dxdy

]
−
∫ b

a
Ia+;g f1(x)d(x),

(7.82)

where f1 is nonnegative Borel measurable function. Next, we define linear functionals
related to Hadamard fractional integral. Let

L3( f1) =
∫ b

a
Ja+ f1(x)d(x)− 1

()

∫ a+

a
f1(y)

∫ log a+
y

0
x−1exdxdy, (7.83)

and let

L4( f1) =
1

()

[∫ b−

a
f1(y)

∫ log b
y

log b−
y

x−1exdxdy

+
∫ b

b−
f1(y)

∫ log b
y

0
x−1exdxdy

]
−
∫ b

a
Ja+ f1(x)d(x),

(7.84)

where f1 is nonnegative Borel measurable function.
At the end we define linear functionals related to Erdélyi-Kober fractional integral. Let

L5( f1) =
∫ b

a
Ia+; ; f1(x)d(x)

− 1
()

∫ a+

a
y+−1 f1(y)

∫ (a+ )

y

x−−−1+ 1


(x− y )1− dxdy,

(7.85)



188 7 STEFFENSEN TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS AND...

and let

L6( f1) =
1

()

[∫ b−

a
y+−1 f1(y)

∫ b

(b− )

x−−−1+ 1


(x− y )1− dxdy

+
∫ b

b−
y+−1 f1(y)

∫ b

y

x−−−1+ 1


(x− y )1− dxdy

]
−
∫ b

a
Ia+; ; f (x)d(x),

(7.86)

where f1 is nonnegative Borel measurable function.

Theorem 7.30 Let 1 be a compact set. Let (1,1,1) and (1,3,3) be measure
spaces with −finite regular Borel measures, let (7.45) hold and let f ∈C(1). Then there
exists  ∈1 such that

A( f ) = f ( )
(∫

1

d1(x)−
∫
1

d3(x)
)

, (7.87)

where A is defined by (7.80).

Proof. Notice that from Theorem 7.23 we have that if f ≥ 0, then A( f )≥ 0, so A is positive
linear functional.
Since f is continuous on 1, there exists m = min

x∈1
f (x) and M = max

x∈1
f (x). Then A(M−

f ) ≥ 0 and A( f −m)≥ 0. Therefore

m

(∫
1

d1(x)−
∫
1

d3(x)
)
≤
∫
1

f (x)d1(x)−
∫
1

f (x)d3(x)

≤ M

(∫
1

d1(x)−
∫
1

d3(x)
)

that is,
mA(1) ≤ A( f ) ≤ MA(1).

If the function A(1) = 0, then A( f ) = 0, so (7.87) holds for all  ∈1. Otherwise,

min
x∈1

f (x) = m ≤ A( f )
A(1)

≤ M = max
x∈1

f (x), so
A( f )
A(1)

∈ f (1).

Since f is continuous, we have that A( f )
A(1) = f ( ) for some  ∈1. �

Theorem 7.31 Let g be an increasing function on (a,b) such that g′ is continuous on
(a,b) and let f1 be nonnegative Borel measurable function such that f1 ∈ C[a,b]. Let 
be −finite (signed) regular Borel measure, let (7.51) and (7.52) hold. Then there exists
 ∈ [a,b] such that

L1( f1) =
f1( )
()

(∫ b

a

(g(x)−g(a))


d(x)−

∫ a+

a
g′(y)

∫ a+

y
(g(x)−g(y))−1dxdy

)
,

where L1 is defined by (7.81).
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Proof. Notice that from Theorem 7.24 we have that if f1 ≥ 0, then L1( f1) ≥ 0, so L1 is a
positive linear functional.
Set m = min

x∈[a,b]
f1(x), M = max

x∈[a,b]
f1(x). Then L1(M− f1) ≥ 0 and L1( f1 −m) ≥ 0. Using

definition of the left-sided fractional integral of the function f1 with respect to another
function g, the linear functional L1 can be written as

L1( f1) =
1

()

∫ b

a

∫ x

a

g′(y) f1(y)
(g(x)−g(y))1− dyd(x)

− 1
()

∫ a+

a
g′(y) f1(y)

∫ a+

y
(g(x)−g(y))−1dxdy.

Hence

m
()

(∫ b

a

(g(x)−g(a))


d(x)−

∫ a+

a
g′(y)

∫ a+

y
(g(x)−g(y))−1dxdy

)
≤
∫ b

a
Ia+;g f1(x)d(x)− 1

()

∫ a+

a
g′(y) f1(y)

∫ a+

y
(g(x)−g(y))−1dxdy

≤ M
()

(∫ b

a

(g(x)−g(a))


d(x)−

∫ a+

a
g′(y)

∫ a+

y
(g(x)−g(y))−1dxdy

)
,

that is,
mL1(1) ≤ L1( f1) ≤ ML1(1).

Similar reasoning as in proof of Theorem 7.30 completes the proof. �

The following theorems are very similar to the previous one and its proofs are analogu-
ous.

Theorem 7.32 Let g be an increasing function on (a,b) such that g′ is continuous on
(a,b) and let f1 be nonnegative Borel measurable function such that f1 ∈C[a,b]. Let  be
−finite (signed) regular Borel measure and let (7.57) hold. Then there exists  ∈ [a,b]
such that

L2( f1) =
f1( )
()

(∫ b−

a
g′(y)

∫ b

b−
(g(x)−g(y))−1dxdy

+
∫ b

b−
g′(y)

∫ b

y
(g(x)−g(y))−1dxdy −

∫ b

a

(g(x)−g(a))


d(x)

)
,

where L2 is defined by (7.82).

Denote
HG(x) = 2F1(1−,+1;+2;x ).

Theorem 7.33 Let  be −finite (signed) regular Borel measure and let f1 be nonnega-
tive Borel measurable function such that f1 ∈C[a,b].
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(i) If (7.58) and (7.59) hold and a > 0, then there exists  ∈ [a,b] such that

L3( f1) = f1( )
(

1
( +1)

∫ b

a

(
log

x
a

)
d(x)

− 1
()

∫ a+

a

∫ log a+
y

0
x−1exdxdy

)
,

where L3 is defined by (7.83).

(ii) If (7.60) holds and a > 0, then there exists  ∈ [a,b] such that

L4( f1) = f1( )

(
1

()

∫ b−

a

∫ log b
y

log b−
y

x−1exdxdy

+
1

()

∫ b

b−

∫ log a+
y

0
x−1exdxdy− 1

( +1)

∫ b

a

(
log

x
a

)
d(x)

)
,

where L4 is defined by (7.84).

(iii) If (7.62) and (7.63) hold, then there exists  ∈ [a,b] such that

L5( f1) = f1( )
(

( +1)
( ++1)

∫ b

a
d(x)− 1

( +1)()
×

×
∫ b

a

(a
x

)+
HG

(a
x

)
d(x)

− 1
()

∫ a+

a
y+−1

∫ (a+ )

y

x−−−1+ 1


(x− y )1− dxdy

)
,

where L5 is defined by (7.85).

(iv) If (7.69) holds, then there exists  ∈ [a,b] such that

L6( f1) = f1( )

(
1

()

∫ b

a
y+−1 f1(y)

∫ b

(b− )

x−−−1+ 1


(x− y )1− dxdy

+
1

()

∫ b

b−
y+−1 f1(y)

∫ b

y

x−−−1+ 1


(x− y)1− dxdy

− ( +1)
( ++1)

∫ b

a
d(x)

+
1

( +1)()

∫ b

a

(a
x

)+
HG

(a
x

)
d(x)

)
,

where L6 is defined by (7.86).
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Theorem 7.34 Let conditions of Theorem 7.30 be satisfied and let f1, f2 ∈C(1) be such
that f2(x) �= 0 for every x ∈1. Then there exists  ∈1 such that

f1( )
f2( )

=
A( f1)
A( f2)

.

Proof. Similar to the proof of Theorem 7.17. �

Theorem 7.35 Let conditions of Theorem 7.31 be satisfied and let f1, f2 ∈C[a,b] be such
that f2(x) �= 0 for every x ∈ [a,b]. Then there exists i ∈ [a,b] such that

f1(i)
f2(i)

=
Li( f1)
Li( f2)

, i = 1, . . . ,6, (7.88)

where Li, i = 1, . . . ,6 are linear functionals defined by (7.81)-(7.86).

Proof. Similar to the proof of Theorem 7.17. �

Remark 7.12 Theorem 7.35 enables us to define new types of means, because if f1/ f2
has an inverse, from (7.88) we conclude

i =
(

f1
f2

)−1(Li( f1)
Li( f2)

)
, i = 1, . . . ,6.

Remark 7.13 Class of general inequalities for positive measures related to Steffensen
inequality given in papers [56] and [138] can also be used for obtaining new Steffensen
type inequalities for fractional integrals and derivatives. See also Section 3.4.





Chapter8
Means related to Steffensen’s
inequality

8.1 Error terms for Steffensen’s inequality

In 2008. Mercer proved an error term for the right-hand Steffensen’s inequality as follows
(see [88]).

Theorem 8.1 Let f ′ be continuous and let g be integrable on [a,b], with 0 ≤ g ≤ 1 and
 =

∫ b
a g(t)dt. Then there exists  ∈ (a,b) such that∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt = f ′( )

[∫ b

a
t ·g(t)dt−

(
a+


2

)]
.

Proof. We have∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

=
∫ a+

a
[ f (a+ )− f (t)][1−g(t)]dt+

∫ b

a+
[ f (t)− f (a+ )]g(t)dt.

By the Mean Value Theorem there exist p ∈ (a,a +  ) and q ∈ (a +  ,b) such that the
right-hand side is equal to∫ a+

a
f ′(p)[a+ − t][1−g(t)]dt+

∫ b

a+
f ′(q)[t− (a+ )]g(t)dt. (8.1)

193
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Expressions [a+−t] on [a,a+ ], [t−(a+ )] on [a+ ,b] and 1−g(t) are nonnegative,
so by Mean Value Theorem for integrals there exist r,s ∈ (a,b) such that (8.1) is equal to

f ′(r)
∫ a+

a
[a+ − t][1−g(t)]dt + f ′(s)

∫ b

a+
[t− (a+ )]g(t)dt. (8.2)

Each integral is nonnegative so by the Intermediate Value Theorem there exists  ∈ (a,b)
such that (8.2) is equal to

f ′( )
[∫ a+

a
[a+ − t][1−g(t)]dt+

∫ b

a+
[t − (a+ )]g(t)dt

]
= f ′( )

[∫ b

a
t ·g(t)dt−

(
a+


2

)]
.

�

Remark 8.1 Similarly, Mercer obtained an error term for the left-hand Steffensen’s in-
equality: ∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt = f ′( )

[∫ b

a
t ·g(t)dt−

(
b− 

2

)]
.

Corollary 8.1 For f ′, h′ continuous and g integrable on [a,b], with 0 ≤ g ≤ 1 and  =∫ b
a g(t)dt, there exist  , ∈ (a,b) such that∫ b

a f (t)g(t)dt− ∫ a+
a f (t)dt∫ b

a h(t)g(t)dt− ∫ a+
a h(t)dt

=
f ′( )
h′( )

(8.3)

and ∫ b
a f (t)g(t)dt− ∫ b

b− f (t)dt∫ b
a h(t)g(t)dt− ∫ b

b− h(t)dt
=

f ′()
h′()

. (8.4)

Proof. For fixed g we define linear functional L by

L( f ) =
∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

and we set (t) = f (t)L(h)−h(t)L( f ). By Theorem 8.1 we have

L() =  ′( )
[∫ b

a
t ·g(t)dt−

(
a+


2

)]
.

But L() = 0 and so f ′( )L(h)− h′( )L( f ) = 0, thus the first statement is proved. The
proof of second statement is similar. �

Mercer applied Theorem 8.1 to f ′ and various functions g in order to recast inequalities
as equalities involving an error term:

Error( f ) =
f ′′( )

2
Error(t2).



8.1 ERROR TERMS FOR STEFFENSEN’S INEQUALITY 195

Let us recall Hermite-Hadamard inequalities. Suppose that f is convex on [a,b]. Then

f

(
a+b

2

)
(b−a)≤

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
(b−a).

Suppose that f ′′ is continuous on [a,b] and let c = a+b
2 . Applying Theorem 8.1 to f ′

and

g(t) =

⎧⎨⎩
t−a+ b−a

2
b−a , t ∈ [a,c]

t−b+ b−a
2

b−a , t ∈ (c,b],

(
here  =

∫ b

a
g(t)dt =

b−a
2

)

we obtain the trapezoid rule:

∫ b

a
f (t)dt − f (a)+ f (b)

2
(b−a) = − f ′′(1)

2
(b−a)3

6
.

Applying Remark 8.1 to f ′ and g(t) = t−a
b−a , (again  =

∫ b
a g(t)dt = b−a

2 ) we obtain the
midpoint rule: ∫ b

a
f (t)dt − f

(
a+b

2

)
(b−a) =

f ′′(2)
2

(b−a)3

12
.

Hence, Mercer noted that Hermite-Hadamard inequalities follow from Steffensen’s
which has been overlooked in the literature.

In the same paper Mercer gave error terms for Jensen-Steffensen’s, Jensen’s and in-
tegral Jensen-Steffensen’s inequality. Furthermore, Mercer noted that many other error
terms for inequalities can be similarly obtained.

In [66] Jakšetić and Pečarić generalized Mercer’s results. Their generalization of The-
orem 8.1 with weaker conditions on function g is given in the following theorem.

Theorem 8.2 Assume that f ′ is continuous and g is integrable function on [a,b] such that

0 ≤
∫ b

x
g(t)dt ≤ b− x and 0 ≤

∫ x

a
g(t)dt ≤ x−a for every x ∈ [a,b]. (8.5)

Then there exist  , ∈ (a,b) such that

∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt = f ′( )

[∫ b

a
t ·g(t)dt−

(
a+


2

)]
and ∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt = f ′()

[∫ b

a
t ·g(t)dt−

(
b− 

2

)]
.
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Proof. Jakšetić and Pečarić gave two proofs of this theorem. We recall one of them.∫ b

a
f (t)g(t)dt −

∫ a+

a
f (t)dt

=
∫ a+

a

(∫ a+

t
f ′(x)dx

)
[1−g(t)]dt +

∫ b

a+

(∫ t

a+
f ′(x)dx

)
g(t)dt

=
∫ a+

a
f ′(x)

(∫ x

a
[1−g(t)]dt

)
dx+

∫ b

a+
f ′(x)

(∫ b

x
g(t)dt

)
dx

=
∫ b

a
G(x) f ′(x)dx,

(8.6)

where

G(x) =

{∫ x
a (1−g(t))dt, a ≤ x ≤ a+ ,∫ b
x g(t)dt, a+ ≤ x ≤ b.

(8.7)

Since G(x) ≥ 0, x ∈ [a,b] we conclude that there exists  ∈ (a,b) such that∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt = f ′( )

∫ b

a
G(x)dx

= f ′( )
[∫ b

a
t ·g(t)dt−

(
a+


2

)]
.

Similarly, Jakšetić and Pečarić proved:∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt = −

∫ b

a
F(x) f ′(x)dx, (8.8)

where

F(x) =

{∫ x
a g(t)dt, a ≤ x ≤ b− ,∫ b
x (1−g(t))dt, b− ≤ x ≤ b.

(8.9)

Since F(x) ≥ 0, x ∈ [a,b] we conclude that there exists  ∈ (a,b) such that∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt = f ′()

∫ b

a
(−F(x))dx

= f ′()
[∫ b

a
t ·g(t)dt−

(
b− 

2

)]
.

�

In the same paper Jakšetić and Pečarić made an estimation of Steffensen’s inequality
using Hölder’s inequality and integral representations (8.6) and (8.8). This estimation is
given in the following corollary.

Corollary 8.2 Assume that f ′ is continuous and g is integrable function on [a,b] such
that (8.5) holds. Then ∣∣∣∣∫ b

a
f (t)g(t)dt −

∫ a+

a
f (t)dt

∣∣∣∣≤ ‖ f ′‖p‖G‖q
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and ∣∣∣∣∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt

∣∣∣∣≤ ‖ f ′‖p‖F‖q,

where G and F are given by (8.7) and (8.9) and 1 < p,q < , 1
p + 1

q = 1.

In [66] Corollary 8.1 was restated with more general conditions.

Corollary 8.3 For f ′, h′ continuous and g integrable on [a,b], with  =
∫ b
a g(t)dt and

(8.5) there exist  , ∈ (a,b) such that (8.3) and (8.4) hold.

Proof. Similar to the proof of Corollary 8.1. �

Using Corollary 8.3 Jakšetić and Pečarić consider the following means

M1(g;x,y; p,q) =

⎧⎨⎩ q−1
p−1

∫ y
x t p−1g(t)dt− (x+ )p−xp

p∫ y
x tq−1g(t)dt− (x+ )q−xq

q

⎫⎬⎭
1

p−q

, (8.10)

and

M2(g;x,y; p,q) =

⎧⎨⎩q−1
p−1

∫ y
x t p−1g(t)dt− yp−(y− )p

p∫ y
x tq−1g(t)dt− yq−(y− )q

q

⎫⎬⎭
1

p−q

, (8.11)

where p �= q, y > x > 0.

Continuous extensions of means (8.10) and (8.11) can be found in [66]. Monotonicity
of this means is also proved in [66].

Theorem 8.3 Let p ≤ u, q ≤ v. Then

M1(g;x,y; p,q) ≤ M1(g;x,y;u,v)

and
M2(g;x,y; p,q) ≤ M2(g;x,y;u,v).

In [67] Jakšetić and Pečarić generalized mean value Theorem 8.2 and obtain the fol-
lowing.

Theorem 8.4 Let f ∈C1[a,b] be nondecreasing and let g be integrable function on [a,b]
such that (8.5) is valid and  =

∫ b
a g(t)dt. If h ∈ C1[ f (a), f (b)] then there exist  , ∈

[ f (a), f (b)] such that∫ b

a
h( f (t))g(t)dt−

∫ a+

a
h( f (t))dt = h′( )

[∫ b

a
f (t)g(t)dt −

∫ a+

a
f (t)dt

]
and ∫ b

a
h( f (t))g(t)dt−

∫ b

b−
h( f (t))dt = h′()

[∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

]
.
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Also, the following generalization of Corollary 8.3 is given.

Corollary 8.4 Let f ∈C1[a,b] be strictly monotone function and h1,h2 ∈C1[ f (a), f (b)],
g integrable on [a,b], with  =

∫ b
a g(t)dt and (8.5) holds. Then there exist  , ∈ [ f (a), f (b)]

such that ∫ b
a h1( f (t))g(t)dt − ∫ a+

a h1( f (t))dt∫ b
a h2( f (t))g(t)dt − ∫ a+

a h2( f (t))dt
=

h′1( )
h′2( )

,

and ∫ b
a h1( f (t))g(t)dt − ∫ b

b− h1( f (t))dt∫ b
a h2( f (t))g(t)dt − ∫ b

b− h2( f (t))dt
=

h′1()
h′2()

.

In [67] the following Steffensen means are obtained.

S1( f ,g;x,y;r,s) =

{
s
r

∫ y
x f r(t)g(t)dt− ∫ x+

x f r(t)dt∫ y
x f s(t)g(t)dt− ∫ x+

x f s(t)dt

} 1
r−s

, (8.12)

and

S2( f ,g;x,y;r,s) =

{
s
r

∫ y
x f r(t)g(t)dt− ∫ y

y− f r(t)dt∫ y
x f s(t)g(t)dt− ∫ y

y− f s(t)dt

} 1
r−s

, (8.13)

where (r− s) · r · s �= 0.
Continuous extensions of Steffensen means are also given in [67]. Furthermore, mono-
tonicity property of this means is also proved.

8.2 New generalized Steffensen means

Results given in this Section are obtained by Krulić, Pečarić and Smoljak in [77]. Using
generalization of Steffensen’s inequality given in Theorem 3.15 we obtain the following
Lagrange type mean value theorem.

Theorem 8.5 Let h(x)> 0 for all x∈ (a,b], h(x)∈C1[a,b] and let f be such that f (x)/h(x)
∈ C1[a,b] . If g is a real-valued integrable function such that 0 ≤ g(x) ≤ 1 for every
x ∈ [a,b], then there exists  ∈ (a,b) such that∫ b

a
f (t)g(t)dt −

∫ a+

a
f (t)dt =

f ′( )h( )− f ( )h′( )
h2( )

×
[∫ b

a
th(t)g(t)dt−

∫ a+

a
th(t)dt

]
,

(8.14)

where  satisfies
∫ a+
a h(t)dt =

∫ b
a h(t)g(t)dt, i.e.  satisfies (??).
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Proof. Since
(

f
h

)′
is continuous on [a,b], there exist

m = min
x∈[a,b]

f ′(x)h(x)− f (x)h′(x)
h2(x)

and

M = max
x∈[a,b]

f ′(x)h(x)− f (x)h′(x)
h2(x)

.

Let us consider functions F1,F2 : [a,b]→ R defined by

F1(x) = Mxh(x)− f (x) and F2(x) = f (x)−mxh(x).

Then F1/h and F2/h are nondecreasing functions. From Theorem 3.15, for nondecreasing
function F1/h, we obtain

0 ≤
∫ b

a
F1(t)g(t)dt−

∫ a+

a
F1(t)dt = M

∫ b

a
tg(t)h(t)dt−

∫ b

a
f (t)g(t)dt

−M
∫ a+

a
th(t)dt +

∫ a+

a
f (t)dt

that is, ∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt ≤ M

[∫ b

a
tg(t)h(t)dt−

∫ a+

a
th(t)dt

]
.

Similarly, for nondecreasing function F2/h, from Theorem 3.15 we obtain∫ b

a
f (t)g(t)dt −

∫ a+

a
f (t)dt ≥ m

[∫ b

a
tg(t)h(t)dt−

∫ a+

a
th(t)dt

]
.

Hence,

m

[∫ b

a
tg(t)h(t)dt−

∫ a+

a
th(t)dt

]
≤
∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

≤ M

[∫ b

a
tg(t)h(t)dt−

∫ a+

a
th(t)dt

]
.

If
∫ b
a tg(t)h(t)dt− ∫ a+

a th(t)dt = 0, then
∫ b
a f (t)g(t)dt =

∫ a+
a f (t)dt and (8.14) holds for

all  ∈ (a,b). Otherwise,

m ≤
∫ b
a f (t)g(t)dt− ∫ a+

a f (t)dt∫ b
a tg(t)h(t)dt− ∫ a+

a th(t)dt
≤ M.

Since ( f/h)′ is continuous there exists  ∈ (a,b) such that (8.14) holds and the proof is
complete. �

As a special case of Theorem 8.5 for h ≡ 1 we obtain Theorem 8.1.
Applying Theorem 3.17 and Theorem 8.5 we obtain the following result:
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Corollary 8.5 Let g be an integrable function such that 0 ≤ g(x) ≤ 1 for every x ∈ [a,b].
Assume that f (x)

(x−a)n−1 ∈C1[a,b], f convex function of order n, n ≥ 2 with f (k)(a) = 0, k =
0, . . . ,n−2, then there exists  ∈ (a,b) such that∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt =

f ′( )( −a)− f ( )(n−1)
( −a)n ×

×
[∫ b

a
t(t−a)n−1g(t)dt−  n(n(a+ )+a)

n(n+1)

]
,

where  =
(
n
∫ b
a (t−a)n−1g(t)dt

) 1
n
, i.e.  satisfies (3.18).

Furthermore, we obtain the following Cauchy type mean value theorem.

Theorem 8.6 Let g be a real-valued integrable function such that 0 ≤ g(x)≤ 1 for every
x ∈ [a,b]. Let h be a positive function on (a,b] and derivable on (a,b), f ,k be derivable on
(a,b) such that f (x)/h(x),k(x)/h(x) ∈C1[a,b] and such that k′(x)h(x)− k(x)h′(x) �= 0 for
every x ∈ [a,b]. Then there exists  ∈ (a,b) such that∫ b

a f (t)g(t)dt− ∫ a+
a f (t)dt∫ b

a k(t)g(t)dt− ∫ a+
a k(t)dt

=
f ′( )h( )− f ( )h′( )
k′( )h( )− k( )h′( )

, (8.15)

where  satisfies (??).

Proof. Let us define linear functional

L( f ) =
∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt. (8.16)

Next, we define (t) = f (t)L(k)− k(t)L( f ). Note that

(t)
h(t)

=
f (t)
h(t)

L(k)− k(t)
h(t)

L( f ) ∈C1[a,b].

By Theorem 8.5, there exists  ∈ (a,b) such that

L() =
′( )h( )−( )h′( )

h2( )

[∫ b

a
th(t)g(t)dt−

∫ a+

a
th(t)dt

]
.

From L() = 0 it follows that ′( )h( )−( )h′( ) = 0
i.e.

[ f ′( )h( )− f ( )h′( )]L(k)− [k′( )h( )− k( )h′( )]L( f ) = 0.

So (8.15) follows. �

As a special case of Theorem 8.6 for h ≡ 1 we obtain Corollary 8.1.
From Corollary 8.5 we obtain the following result.
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Theorem 8.7 Let g be a real-valued integrable function such that 0 ≤ g(x) ≤ 1 for every

x ∈ [a,b]. Assume that fi(x)
(x−a)n−1 ∈ C1[a,b], i = 1,2, f1, f2 are convex functions of order n,

n ≥ 2 with f (k)
1 (a), f (k)

2 (a) = 0, k = 0, . . . ,n− 2 and f ′2(x)(x− a)− f2(x)(n− 1) �= 0 for
every x ∈ (a,b). Then there exists  ∈ (a,b) such that∫ b

a f1(t)g(t)dt− ∫ a+
a f1(t)dt∫ b

a f2(t)g(t)dt− ∫ a+
a f2(t)dt

=
f ′1( )( −a)− f1( )(n−1)
f ′2( )( −a)− f2( )(n−1)

, (8.17)

where  satisfies (3.18).

In the sequel we consider family of nondecreasing functions {p/h : p ∈ R}, where h
is positive function and

p(x) =

{
xp−1

p−1 h(x), p �= 1

h(x) logx, p = 1.
(8.18)

Observe that the function p/h satisfies conditions of Theorem 3.15, so

∫ b

a
p(t)g(t)dt−

∫ a+

a
p(t)dt ≥ 0

for a,b > 0. Hence, for linear functional L defined by (8.16) we have L(p) ≥ 0 for all
p ∈ R.

Theorem 8.8 For L as in (8.16) and p as in (8.18) we have the following:

(i) the mapping p �→ L(p) is continuous on R,

(ii) for every n ∈ N and pi ∈ R, pi j = pi+p j
2 , i, j = 1,2, ...,n, the matrix [L(pi j )]

n
i, j=1 is

a positive semi-definite, that is

det[L(pi j )]
n
i, j=1 ≥ 0,

(iii) the mapping p �→ L(p) is exponentially convex,

(iv) the mapping p �→ L(p) is log-convex,

(v) for pi ∈ R, i = 1,2,3, p1 < p2 < p3,

[L(p2)]
p3−p1 ≤ [L(p1)]

p3−p2 [L(p3)]
p2−p1 .

Proof.

(i) Notice that

L(p) =

{
1

p−1

[∫ b
a t p−1h(t)g(t)dt− ∫ a+

a t p−1h(t)dt
]
, p �= 1∫ b

a h(t)g(t) logt dt− ∫ a+
a h(t) logt dt, p = 1.
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It is obviously continuous on R\ {1}. Now suppose that p → 1, then

lim
p→1

L(p) = lim
p→1

1
p−1

[∫ b

a
t p−1h(t)g(t)dt−

∫ a+

a
t p−1h(t)dt

]
,

and applying L’Hospital rule we obtain

lim
p→1

L(p) = lim
p→1

(∫ b

a
t p−1 logt h(t)g(t)dt−

∫ a+

a
t p−1 logt h(t)dt

)
=
∫ b

a
log t h(t)g(t)dt−

∫ a+

a
log t h(t)dt = L(1).

Hence, the mapping p �→ L(p) is continuous on R.

(ii) Let n ∈ N, ti ∈ R, i = 1,2, . . . ,n be arbitrary. Define the function f : R
+ → R by

f (x) =
n


i, j=1

tit jpi j(x).

Then
f (x)
h(x)

=
n


i, j=1

tit j
pi j(x)
h(x)

,

so (
f (x)
h(x)

)′
=

n


i, j=1

tit jx
pi j−2 =

(
n


i=1

tix
pi−2

2

)2

≥ 0,

hence f/h is a nondecreasing function on R
+. We can apply (3.16) on function f

and obtain ∫ b

a
f (x)g(x)dx ≥

∫ a+

a
f (x)dx,

that is,
n


i, j=1

tit jL(pi j ) ≥ 0.

So the matrix [L(pi j )]
n
i, j=1 is positive semi-definite.

(iii), (iv) and (v) are trivial consequences of (i), (ii) and definition of exponentially
convex and log-convex functions. �

Theorem 8.6 enables us to define various types of means, because if
f ′h− f h′

k′h− kh′
has an

inverse, from (8.15) we have

 =
(

f ′h− f h′

k′h− kh′

)−1
(∫ y

x f (t)g(t)dt− ∫ x+
x f (t)dt∫ y

x k(t)g(t)dt− ∫ x+
x k(t)dt

)
.
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Especially, if we use family of nondecreasing functions {p/h : p∈R} and take f (t) =
p(t), k(t) = q(t) in (8.15) we obtain the following mean:

S(g,h;x,y; p,q) =

{
q−1
p−1

·
∫ y
x t p−1h(t)g(t)dt− ∫ x+

x t p−1h(t)dt∫ y
x tq−1h(t)g(t)dt− ∫ x+

x tq−1h(t)dt

} 1
p−q

, (8.19)

where p �= q, p,q �= 1, y > x > 0.
Notice that, (8.19) can be written as

S(g,h;x,y; p,q) =
(

L(p)
L(q)

) 1
p−q

.

Moreover, we can extend these means to excluded cases. Taking a limit we can define

S(g,h;x,y; p,1) =

⎧⎨⎩
∫ y
x t p−1h(t)g(t)dt− ∫ x+

x t p−1h(t)dt

(p−1)
[∫ y

x h(t)g(t) logtdt− ∫ x+
x h(t) logtdt

]
⎫⎬⎭

1
p−1

= S(g,h;x,y;1, p),

S(g,h;x,y; p, p) = exp

{∫ y
x t p−1 log t h(t)g(t)dt− ∫ x+

x t p−1 logt h(t)dt∫ y
x t p−1h(t)g(t)dt− ∫ x+

x t p−1h(t)dt
− 1

p−1

}
,

S(g,h;x,y;1,1) = exp

⎧⎨⎩
1
2

[∫ y
x h(t)g(t) log2 t dt− ∫ x+

x h(t) log2 t dt
]

∫ y
x h(t)g(t) logt dt− ∫ x+

x h(t) logt dt

⎫⎬⎭ .

Theorem 8.9 Let r ≤ p, s ≤ q, then the following inequality is valid

S(g,h;x,y;r,s) ≤ S(g,h;x,y; p,q) (8.20)

for every x,y ∈ R, x < y, that is, the mean S(g,h;x,y; p,q) is monotonic.

Proof. Since the linear operator L defined by (8.16) is log-convex, we can apply Corol-
lary 1.1 to L(p) and get (8.20). �

Remark 8.2 For h ≡ 1, where g satisfies conditions of Theorem 8.5, we obtain the Stef-
fensen mean S1(g;x,y; p−1,q−1) given by (8.12).

Furthermore, Theorem 8.7 enables us to define new types of means, because if
f ′1(t)(t−a)− f1(t)(n−1)
f ′2(t)(t−a)− f2(t)(n−1) has an inverse, from (8.17) we have

 =
(

f ′1( )( −a)− f1( )(n−1)
f ′2( )( −a)− f2( )(n−1)

)−1
(∫ b

a f1(t)g(t)dt− ∫ a+
a f1(t)dt∫ b

a f2(t)g(t)dt− ∫ a+
a f2(t)dt

)
,
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where f1, f2 : [a,b] → R are convex functions of order n, n ≥ 2 with f (k)
1 (a), f (k)

2 (a) =
0, k = 0, . . . ,n− 2 and f ′2(x)(x− a)− f2(x)(n− 1) �= 0 for every x ∈ (a,b). Specially, if

we take substitutions fp(t) = (t−a)p−1

p−1 , fq(t) = (t−a)q−1

q−1 in (8.17) for p,q ≥ n+1 and using
continuous extension we consider the following mean

Sn(g;a,b; p,q) =

{
q−n
p−n

·
∫ b
a (t−a)p−1g(t)dt−  p

p∫ b
a (t−a)q−1g(t)dt−  q

q

} 1
p−q

+a, (8.21)

where p �= q, p,q ≥ n+1, b > a > 0.
Moreover, we can extend these means to excluded cases. Taking a limit we can define

Sn(g;a,b;q,q) = exp

⎧⎨⎩
∫ b
a (t−a)q−1 log(t−a)g(t)dt−  q(q log−1)

q2∫ b
a (t−a)q−1g(t)dt−  q

q

⎫⎬⎭×

× exp

( −1
q−n

)
+a

Notice that, (8.21) can be written as

Sn(g;a,b; p,q) =
(

(q−n)(p−1)
(q−1)(p−n)

L( fp)
L( fq)

) 1
p−q

+a,

where L is defined by (8.16).

Theorem 8.10 Let n ≥ 2, r ≤ p, s ≤ q, s, p,q,r ≥ n+1. If(
(s−n)(r−1)
(r−n)(s−1)

) 1
r−s

≤
(

(q−n)(p−1)
(p−n)(q−1)

) 1
p−q

,

then the following inequality is valid

Sn(g;a,b;r,s) ≤ Sn(g;a,b; p,q),

that is, the mean Sn(g;a,b; p,q) is monotonic.

Proof. The linear operator L defined by (8.16) is log-convex, so we can apply Corollary 1.1
and obtain the following: (

L( fr)
L( fs)

) 1
r−s

≤
(

L( fp)
L( fq)

) 1
p−q

,

that is (
(s−n)(r−1)L( fr)
(r−n)(s−1)L( fs)

) 1
r−s

+a ≤
(

(q−n)(p−1)L( fp)
(p−n)(q−1)L( fq)

) 1
p−q

+a.

�

More general results were obtained by Pečarić and Smoljak in [126]. This results are
given in the following theorem and its corollaries. In the sequel J and K will be intervals
in R.
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Theorem 8.11 Let h be a positive function and  = { fp/h : p ∈ K} be a family of func-
tions defined on J such that the function p �→ [x0,x1; fp/h] is n−exponentially convex in
the Jensen sense on K for mutually different points x0,x1 ∈ J. Let L be linear functional
defined by (8.16). Then p �→ L( fp) is n−exponentially convex function in the Jensen sense
on K.
If the function p �→ L( fp) is continuous on K, then it is n−exponentially convex on K.

Proof. For  j ∈ R, p j ∈ K, j = 1, . . . ,n and p jk = p j+pk
2 we define the function

g(x) =
n


j,k=1

 jk fp jk (x). (8.22)

Since p �→ [x0,x1; fp/h] is n−exponentially convex in the Jensen sense, we have[
x0,x1;

g
h

]
=

n


j,k=1

 jk

[
x0,x1;

fp jk

h

]
≥ 0,

which implies that g/h is a nondecreasing function on J. Therefore, from Theorem 3.15,
we have L(g) ≥ 0. Hence,

n


j,k=1

 jkL( fp jk ) ≥ 0.

We conclude that the function p �→ L( fp) is n−exponentially convex on K in the Jensen
sense.
If the function p �→ L( fp) is also continuous on K, then p �→ L( fp) is n−exponentially
convex by definition. �

The following corollary is a consequence of Theorem 8.11.

Corollary 8.6 Let h be a positive function and= { fp/h : p∈K} be a family of functions
defined on J such that the function p �→ [x0,x1; fp/h] is exponentially convex in the Jensen
sense on K for mutually different points x0,x1 ∈ J. Let L be linear functional defined by
(8.16). Then p �→ L( fp) is exponentially convex function in the Jensen sense on K.
If the function p �→ L( fp) is continuous on K, then it is exponentially convex on K.

Corollary 8.7 Let h be a positive function and  = { fp/h : p ∈ K} be a family of func-
tions defined on J such that the function p �→ [x0,x1; fp/h] is 2−exponentially convex in
the Jensen sense on K for mutually different points x0,x1 ∈ J. Let L be linear functional
defined by (8.16). Then the following statements hols:

(i) If the function p �→ L( fp) is continuous on K, then it is 2−exponentially convex on
K. If p �→ L( fp) is additionally strictly positive it is also log-convex.

(ii) If the function p �→ L( fp) is strictly positive, continuous and differentiable on K,
then for every p,q,u,v ∈ K such that p ≤ u and q ≤ v, we have

Mp,q(L,) ≤ Mu,v(L,), (8.23)



206 8 MEANS RELATED TO STEFFENSEN’S INEQUALITY

where

Mp,q(L,) =

⎧⎪⎨⎪⎩
(

L( fp)
L( fq)

) 1
p−q

, p �= q

exp

(
d
dp L( fp)
L( fp)

)
, p = q

(8.24)

for fp/h, fq/h ∈.

Proof.

(i) This statement is a consequence of Theorem 8.11 and Remark 1.5.

(ii) Since p �→ L( fp) is continuous and strictly positive, by (i) we have that p �→ L( fp)
is log-convex on K, that is, p �→ logL( fp) is convex on K. Applying Proposition 1.1
we get

logL( fp)− logL( fq)
p−q

≤ logL( fu)− logL( fv)
u− v

(8.25)

for p ≤ u, q ≤ v, p �= q, u �= v. Hence, we conclude that

Mp,q(L,) ≤ Mu,v(L,), i = 2,3,4.

Cases p = q and u = v follow from (8.25) as limit cases. �

Remark 8.3 Results from Theorem 8.11 and Corollaries 8.6 and 8.7 still hold when x0 =
x1 ∈ J for a family of differentiable functions with the same property. This follows from
Remark 1.2.

Now we will give some examples of families which satisfy previous general results.

Example 8.1 Let h be a positive function and let

1 = { fp/h : (0,) → R : p ∈ R}
be a family of functions where fp is defined by

fp(x) =

{
xp

p h(x), p �= 0

logxh(x), p = 0.

Since d
dx

fp(x)
h(x) = xp−1 > 0 for x > 0, fp/h is a nondecreasing function for x > 0 and p �→

d
dx

fp(x)
h(x) is exponentially convex by definition. Similar as in proof of Theorem 8.11 we have

that p �→ [x0,x1; fp/h] is exponentially convex (and so exponentially convex in the Jensen
sense). Using Corollary 8.6 we conclude that p �→ L( fp) is exponentially convex in the
Jensen sense. It is easy to verify that this mapping is continuous, so it is exponentially
convex. For this family of functions, from (8.24) we have

Mp,q(L,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

L( fp)
L( fq)

) 1
p−q

, p �= q

exp
(

L( fp f0)
L( fp)

− 1
p

)
, p = q �= 0

exp
(

L( f 2
0 )

2L( f0)

)
, p = q = 0.

From (8.23) it follows that the function Mp,q(L,1) is monotonic in parameters p and q.
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Theorem 8.17 applied on functions fp/h, fq/h∈1 and functional L implies that there
exists  ∈ (a,b) such that

 p−q =
L( fp)
L( fq)

.

Since the function  �→  p−q is invertible for p �= q we have

a ≤
(

L( fp)
L( fq)

) 1
p−q

≤ b

which together with the fact that Mp,q(L,1) is continuous, symetric and monotonic shows
that Mp,q(L,1) is a mean. This means are given in explicit form by (8.19) (for function
fp replaced by p defined by (8.18)).

Example 8.2 Let h be a positive function and let

2 = {gp/h : R → (0,) : p ∈ R}

be a family of functions where gp is defined by

gp(x) =

{
epx

p h(x), p �= 0

xh(x), p = 0.

Since d
dx

gp(x)
h(x) = epx > 0, gp/h is a nondecreasing function on R for every p ∈ R and

p �→ d
dx

gp(x)
h(x) is exponentially convex by definition. As in Example 8.1 we conclude that

p �→ L(gp) is exponentially convex. For this family of functions, from (8.24) we have

Mp,q(L1,2) =

(
q
p

∫ b
a epth(t)g(t)dt− ∫ a+

a epth(t)dt∫ b
a eqth(t)g(t)dt− ∫ a+

a eqth(t)dt

) 1
p−q

, for p �= q;

Mp,p(L1,2) = exp

(∫ b
a eptth(t)g(t)dt− ∫ a+

a eptth(t)dt∫ b
a epth(t)g(t)dt− ∫ a+

a epth(t)dt
− 1

p

)
, for p �= 0;

M0,0(L1,2) = exp

(
1
2

∫ b
a t2h(t)g(t)dt− ∫ a+

a t2h(t)dt∫ b
a th(t)g(t)dt− ∫ a+

a th(t)dt

)
.

From Theorem 8.17, applied on functions gp/h,gq/h ∈2 and functional L, it follows
that

Sp,q(L,2) = logMp,q(L,2)

satisfies a ≤ Sp,q(L,2) ≤ b. So Sp,q(L,2) is monotonic mean by (8.23).

Example 8.3 Let h be a positive function and let

3 = {p/h : (0,) → (0,) : p ∈ (0,)}
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be a family of functions where p is defined by

p(x) =

{−p−x

log p h(x), p �= 1

xh(x), p = 1.

Since d
dx

p(x)
h(x) = p−x > 0 for p,x ∈ (0,), p/h is a nondecreasing function for x > 0.

d
dx

p(x)
h(x) = p−x is Laplace transform of nonnegative function, so p �→ d

dx
p(x)
h(x) is exponen-

tially convex. As in Example 8.1 we conclude that p �→ L( fp) is exponentially convex. For
this family of functions, from (8.24) we have

Mp,q(L1,3) =

(
logq
log p

∫ b
a p−th(t)g(t)dt− ∫ a+

a p−t h(t)dt∫ b
a q−th(t)g(t)dt− ∫ a+

a q−th(t)dt

) 1
p−q

, for p �= q,

Mp,p(L1,3) = exp

(
−1
p

∫ b
a t p−th(t)g(t)dt− ∫ a+

a t p−th(t)dt∫ b
a p−th(t)g(t)dt− ∫ a+

a p−th(t)dt
− 1

p log p

)
,

for p �= 1 and

M1,1(L1,3) = exp

(
−1
2

∫ b
a t2h(t)g(t)dt− ∫ a+

a t2h(t)dt∫ b
a th(t)g(t)dt− ∫ a+

a th(t)dt

)
.

From Theorem 8.17, applied on functions p/h,q/h ∈3 and functional L, it follows
that

Sp,q(L,3) = −L(p,q) logMp,q(L,3)

satisfies a ≤ Sp,q(L,3) ≤ b . L(p,q) is logarithmic mean defined by L(p,q) = p−q
log p−logq .

So Sp,q(L,3) is mean and by (8.23) it is monotonic.

Example 8.4 Let h be a positive function and let

4 = {p/h : (0,) → (0,) : p ∈ (0,)}
be a family of functions where p is defined by

p(x) =
−e−x

√
p

√
p

h(x).

Since d
dx

p(x)
h(x) = e−x

√
p > 0, p/h is a nondecreasing function for x > 0. d

dx
p(x)
h(x) = e−x

√
p

is the Laplace transform of nonnegative function, so p �→ d
dx

p(x)
h(x) is exponentially convex.

As in Example 8.1 we conclude that p �→ L( fp) is exponentially convex. For this family of
functions, from (8.24) we have

Mp,q(Li,4) =

(√
q√
p

∫ b
a e−t

√
ph(t)g(t)dt− ∫ a+

a e−t
√

ph(t)dt∫ b
a e−t

√
qh(t)g(t)dt− ∫ a+

a e−t
√

qh(t)dt

) 1
p−q

, for p �= q
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and

Mp,p(Li,4) = exp

(
−1
2
√

p

∫ b
a te−t

√
ph(t)g(t)dt− ∫ a+

a te−t
√

ph(t)dt∫ b
a e−t

√
ph(t)g(t)dt− ∫ a+

a e−t
√

ph(t)dt
− 1

2p

)
.

From Theorem 8.17, applied on functionsp/h,q/h∈4 and functional L, it follows
that

Sp,q(L,4) = −(
√

p+
√

q) logMp,q(L,4)

satisfies a ≤ Sp,q(L,4) ≤ b. So Sp,q(L,4) is mean and by (8.23) it is monotonic.

8.3 Gauss–Steffensen means

Results given in this Section are obtained by Krulić, Pečarić and Smoljak in [76]. Moti-
vated by Theorem 2.15, we define linear functional L : C1(I) → R by

L( f ) =

{∫ G(b)
G(a) f (t)dt − ∫ b

a f (t)G
′
(t)dt, G(x) ≥ x∫ b

a f (t)G
′
(t)dt− ∫G(b)

G(a) f (t)dt, G(x) ≤ x
(8.26)

where G : [a,b] → R is an increasing and differentiable function such that a,b,G(a),
G(b) ∈ I. L( f ) is the difference between the left-hand and the right-hand side of the in-
equality (2.15). Moreover, L( f ) ≥ 0 for all nondecreasing functions f and L( f ) ≤ 0 for all
nonincreasing functions f .

Note that L(id) ≥ 0, that is

L(id) =

{
G2(b)−G2(a)

2 − ∫ b
a tG

′
(t)dt ≥ 0, G(x) ≥ x∫ b

a tG
′
(t)dt− G2(b)−G2(a)

2 ≥ 0, G(x) ≤ x.

Lagrange type mean value theorem related to functional L is given in the following
theorem.

Theorem 8.12 Let G : [a,b]→ R be an increasing and differentiable function, f ∈C1(I)
such that f ′ is bounded (a,b,G(a), G(b)∈ I). Then there exists  ∈ I such that the equality

∫ G(b)

G(a)
f (t)dt −

∫ b

a
f (t)G

′
(t)dt = f ′( )

[
G2(b)−G2(a)

2
−
∫ b

a
tG

′
(t)dt

]
, (8.27)

holds, that is,
L( f ) = f ′( )L(id),

where L is defined by (8.26).
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Proof. Since f ′ is continuous and bounded on I there exists m = min
x∈I

f ′(x) and M =

max
x∈I

f ′(x) both real numbers. Now we consider functions 1,2 : I → R defined by

1(x) = f (x)−Mx and 2(x) = mx− f (x).

Since 1,2 ∈ C1(I) and ′
1(x) = f ′(x)−M ≤ 0 and ′

2(x) = m− f ′(x) ≤ 0, functions
1 and 2 are nonincreasing. From Theorem 2.15 we have for G(x) ≥ x∫ G(b)

G(a)
f (t)dt −

∫ b

a
f (t)G

′
(t)dt ≤ M

[
G2(b)−G2(a)

2
−
∫ b

a
tG

′
(t)dt

]
,

that is, L( f ) ≤ ML(id). Similarly, if we consider a nonincreasing function 2 we obtain
L( f ) ≥ mL(id). Combining these two results we obtain

mL(id) ≤ L( f ) ≤ ML(id).

If L(id) = 0, then L( f ) = 0, so (8.27) holds for all  ∈ I. Otherwise,

min
x∈I

f ′(x) = m ≤ L( f )
L(id)

≤ M = max
x∈I

f ′(x), so
L( f )
L(id)

∈ f
′
(I).

Since f
′
is continuous there exists  ∈ I such that L( f )

L(id) = f
′
( ).

To complete the proof we have to consider the case G(x)≤ x, but it is analogous to the case
G(x) ≥ x. �

As a special case of Theorem 8.12 we obtain the following corollary, which is in fact
Theorem 8.1 and Remark 8.1.

Corollary 8.8 Assume that f ′ is continuous and g is integrable function on [a,b] such
that 0 ≤ g ≤ 1 and  =

∫ b
a g(t)dt. Then there exist  ,  ∈ (a,b) such that∫ b

a
f (t)g(t)dt −

∫ a+

a
f (t)dt = f ′( )

[∫ b

a
tg(t)dt−

(
a+


2

)]
(8.28)

and ∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt = f ′()

[∫ b

a
tg(t)dt−

(
b− 

2

)]
. (8.29)

Proof. To prove (8.28) apply Theorem 8.12 with G(x) = a+
∫ x
a g(t)dt. To obtain (8.29) we

take G(x) = b− ∫ b
x g(t)dt. �

Theorem 8.13 For f ,h∈C1(I), h
′
(x) �= 0 for every x∈ I and G : [a,b]→R an increasing

and differentiable function there exists  ∈ I such that∫ G(b)
G(a) f (t)dt − ∫ b

a f (t)G
′
(t)dt∫ G(b)

G(a) h(t)dt− ∫ b
a h(t)G′(t)dt

=
f ′( )
h′( )

,
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that is,
L( f )
L(h)

=
f ′( )
h′( )

where L is defined by (8.26).

Proof. Similar to the proof of Theorem 8.6. �

As a special case of Theorem 8.13 we obtain Corollary 8.1.

Corollary 8.9 For  > 0, f , h∈C1(R+), h′(x) �= 0 for every x ∈R
+, there exists  ∈R

+

such that
4
9

∫ 
0 t2 f (t)dt − 2 ∫ 

 f (t)dt
4
9

∫ 
0 t2h(t)dt− 2

∫ 
 h(t)dt

=
f ′( )
h′( )

. (8.30)

Proof. To prove (8.30) we apply Theorem 8.13 for G(x) = 4x3

27 2 + ,  > 0, a = 0, b → ,
G(b) → . �

We continue with results given by Pečarić and Smoljak in [126].

Theorem 8.14 Let  = { fp : p ∈ K} be a family of functions defined on J such that the
function p �→ [x0,x1; fp] is n−exponentially convex in the Jensen sense on K for mutually
different points x0,x1 ∈ J. Let L be linear functional defined by (8.26). Then p �→ L( fp) is
n−exponentially convex function in the Jensen sense on K.
If the function p �→ L( fp) is continuous on K, then it is n−exponentially convex on K.

Proof. As in proof of Theorem 8.11 we define the function g by (8.22). Since p �→
[x0,x1; fp] is n−exponentially convex in the Jensen sense, we have

[x0,x1;g] =
n


j,k=1

 jk

[
x0,x1; fp jk

]
≥ 0,

which implies that g is a nondecreasing function on J. Therefore, from Theorem 2.15, we
have L(g) ≥ 0. Hence,

n


j,k=1

 jkL( fp jk ) ≥ 0.

Similar reasoning as in the proof of Theorem 8.11 completes the proof. �

The following corollaries are consequences of Theorem 8.14.

Corollary 8.10 Let  = { fp : p ∈ K} be a family of functions defined on J such that
the function p �→ [x0,x1; fp] is exponentially convex in the Jensen sense on K for mutually
different points x0,x1 ∈ J. Let L be linear functional defined by (8.26). Then p �→ L( fp) is
exponentially convex function in the Jensen sense on K.
If the function p �→ L( fp) is continuous on K, then it is exponentially convex on K.
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Corollary 8.11 Let  = { fp : p ∈ K} be a family of functions defined on J such that the
function p �→ [x0,x1; fp] is 2−exponentially convex in the Jensen sense on K for mutually
different points x0,x1 ∈ J. Let L be linear functional defined by (8.26). Then the following
statements hols:

(i) If the function p �→ L( fp) is continuous on K, then it is 2−exponentially convex on
K. If p �→ L( fp) is additionally strictly positive, it is also log-convex.

(ii) If the function p �→ L( fp) is strictly positive, continuous and differentiable on K, then
for every p,q,u,v ∈ K such that p ≤ u and q ≤ v, we have (8.23) where Mp,q(L,)
is defined by (8.24) for fp, fq ∈.

Proof. Similar to the proof of Corollary 8.7. �

Results from Theorem 8.14 and Corollaries 8.10 and 8.11 still hold when x0 = x1 ∈ J for
a family of differentiable functions with the same property. This follows from Remark 1.2.

As in previous section we give some families of functions which satisfy this general
results.

Example 8.5 Let
1 = { fp : (0,) → R : p ∈ R}

be a family of functions where fp is defined by

fp(x) =

{
xp

p , p �= 0

logx, p = 0.

Similar as in Example 8.1 we obtain Mp,q(L,1) defined by

Mp,q(L,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

L( fp)
L( fq)

) 1
p−q

, p �= q

exp
(

L( fp f0)
L( fp)

− 1
p

)
, p = q �= 0

exp
(

L( f 2
0 )

2L( f0)

)
, p = q = 0.

Theorem 8.13 applied on functions fp, fq ∈1 and functional L implies that there exists
 ∈ I such that

 p−q =
L( fp)
L( fq)

.

Since the function  �→  p−q is invertible for p �= q we have

min I ≤
(

L( fp)
L( fq)

) 1
p−q

≤ max I

which together with the fact that Mp,q(L,1) is continuous, symetric and monotonic shows
that Mp,q(L,1) is a mean. This means are given in explicit form in [77] (for p �→ p−1)
by

M(G;x,y; p,q) =

⎛⎝q−1
p−1

∫ y
x t p−1G′(t)dt− Gp(y)−Gp(x)

p∫ y
x tq−1G′(t)dt− Gq(y)−Gq(x)

q

⎞⎠
1

p−q

, (8.31)
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where p �= q, p,q �= 1, p,q �= 0, y > x > 0. Continuous extensions of (8.31) can be found
in [77].

Remark 8.4 For G(x) = a+
∫ x
a g(t)dt, where g satisfies conditions of Theorem 8.12, we

obtain Steffensen mean

S1(g;x,y; p,q) =

⎧⎨⎩ q−1
p−1

∫ y
x t p−1g(t)dt− (x+ )p−xp

p∫ y
x tq−1g(t)dt− (x+ )q−xq

q

⎫⎬⎭
1

p−q

, (8.32)

which is in fact S1( f ,g;x,y; p− 1,q− 1) defined by (8.12) for f (t) = t. For G(x) = b−∫ b
x g(t)dt we obtain Steffensen mean

S2(g;x,y; p,q) =

⎧⎨⎩ q−1
p−1

∫ y
x t p−1g(t)dt− yp−(y− )p

p∫ y
x tq−1g(t)dt− yq−(y− )q

q

⎫⎬⎭
1

p−q

, (8.33)

which is in fact S2( f ,g;x,y; p−1,q−1) defined by (8.13) for f (t) = t. In (8.32) and (8.33),
we assume p �= q, p,q �= 1, p,q �= 0, y > x > 0.

Corollary 8.9 enables us to define new means, because if f ′/h′ has inverse, from (8.30)
we have

 =
(

f ′

h′

)−1
(

4
9

∫ 
0 t2 f (t)dt− 2 ∫ 

 f (t)dt
4
9

∫ 
0 t2h(t)dt− 2

∫ 
 h(t)dt

)
.

Example 8.6 Let
2 = {gp : R → (0,) : p ∈ R}

be a family of functions where gp is defined by

gp(x) =

{
epx

p , p �= 0

x, p = 0.

Similar as in Example 8.2 we obtain Mp,q(L,2) defined by

Mp,q(L,2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

L(gp)
L(gq)

) 1
p−q

, p �= q

exp
(

L(gp·g0)
L(gp)

− 1
p

)
, p = q �= 0

exp
(

L(g2
0)

2L(g0)

)
, p = q = 0.

From Theorem 8.13, applied on functions gp,gq ∈2 and functional L, it follows that

Sp,q(L,2) = logMp,q(L,2)

satisfies min I ≤ Sp,q(L,2) ≤ max I. So Sp,q(L,2) is monotonic mean by (8.23).
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Example 8.7 Let
3 = {p : (0,) → (0,) : p ∈ (0,)}

be a family of functions where p is defined by

p(x) =

{−p−x

log p , p �= 1

x, p = 1.

Similar as in Example 8.3 we obtain Mp,q(L,3) defined by

Mp,q(Li,3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

L(p)
L(q)

) 1
p−q

, p �= q

exp
(−L(1·p)

pL(p)
− 1

p log p

)
, p = q �= 1

exp
(−L(2

1 )
2L(1)

)
, p = q = 1.

From Theorem 8.13, applied on functions p,q ∈3 and functional L, it follows that

Sp,q(L,3) = −L(p,q) logMp,q(L,3)

satisfies min I ≤ Sp,q(L,3) ≤ max I . L(p,q) is logarithmic mean defined by L(p,q) =
p−q

log p−logq . So Sp,q(L,3) is mean and by (8.23) it is monotonic.

Example 8.8 Let

4 = {p/h : (0,) → (0,) : p ∈ (0,)}

be a family of functions where p is defined by

p(x) =
−e−x

√
p

√
p

Similar as in Example 8.4 we obtain Mp,q(L,4) defined by

Mp,q(L,4) =

⎧⎪⎨⎪⎩
(

L(p)
L(q)

) 1
p−q

, p �= q

exp
(−L(id·p)

2
√

pL(p)
− 1

2p

)
, p = q.

From Theorem 8.13, applied on functionsp,q ∈4 and functional L, it follows that

Sp,q(L,4) = −(
√

p+
√

q) logMp,q(L,4)

satisfies min I ≤ Sp,q(L,4)≤max I. So Sp,q(L,4) is mean and by (8.23) it is monotonic.
Now we will give further generalizations of Gauss-Steffensen’s means obtained by

Krulić, Pečarić and Smoljak in [76].
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Theorem 8.15 Let G : [a,b]→ R be an increasing and differentiable function, f ∈C1(I)
nondecreasing and f ′ bounded (a,b,G(a), G(b) ∈ I). If h ∈ C1( f (I)), then there exists
 ∈ f (I) such that∫ G(b)

G(a)
h( f (t))dt −

∫ b

a
h( f (t))G

′
(t)dt = h′( )

[∫ G(b)

G(a)
f (t)dt −

∫ b

a
f (t)G

′
(t)dt

]
.

Proof. Similar to the proof of Theorem 8.12 (applying Theorem 2.15 to nondecreasing
functions 1 ◦ f and 2 ◦ f , where 1(x) = Mx− f (x), 2(x) = f (x)−mx). �

Corollary 8.12 Let f ∈C1(I) be a nondecreasing function, h1,h2 ∈C1( f (I)), h
′
2(x) �= 0

for every x ∈ f (I) and G : [a,b] → R an increasing and differentiable function. Then there
exists  ∈ f (I) such that∫ G(b)

G(a) h1( f (t))dt − ∫ b
a h1( f (t))G

′
(t)dt∫ G(b)

G(a) h2( f (t))dt − ∫ b
a h2( f (t))G′(t)dt

=
h′1( )
h′2( )

.

Proof. Similar to the proof of Theorem 8.6. �

Similar as in Example 8.5, Corollary 8.12 applied on functions fp, fq ∈ 1 enables us
to define new means. We obtain

M1(G, f ;x,y; p,q) =

⎛⎝q−1
p−1

∫ y
x f p−1(t)G′(t)dt− ∫ G(y)

G(y) f p−1(t)dt∫ y
x f q−1(t)G′(t)dt− ∫ G(y)

G(y) f q−1(t)dt

⎞⎠
1

p−q

,

where p �= q, p,q �= 1 y > x > 0.
This means are considered in [76].

8.4 Note on the inequality of Gauss

Results given in this Section are obtained by Pečarić and Smoljak in [123]. Motivated by
Theorem 2.16, in the sequel we will use linear functionals L1,L2 : C1(I) → R defined by

L1( f ) =
∫ b

a
f (s(x))g′(x)dx−

∫ g(b)

g(a)
f (x)dx, (8.34)

L2( f ) =
∫ g(b)

g(a)
f (x)dx−

∫ b

a
f (t(x))g′(x)dx, (8.35)

where g : [a,b] → R is increasing, convex and differentiable function, function s is defined
by (2.18), function t is defined by (2.19) and a,b,g(a),g(b),t(a),t(b)∈ I.

Moreover, L1( f ) ≥ 0, L2( f ) ≥ 0 for all nondecreasing functions f and L1( f ) ≤ 0,
L2( f ) ≤ 0 for all nonincreasing functions f .



216 8 MEANS RELATED TO STEFFENSEN’S INEQUALITY

Theorem 8.16 Let g : [a,b] → R be increasing, convex and differentiable. Let I be a
compact interval such that a,b,g(a), g(b)∈ I, h2 : I →R be nondecreasing and continuous,
J = h2(I), and h1 ∈C1(J).

a) Let s be defined by (2.18). Then there exists  ∈ J such that

L1(h1 ◦ h2) = h′1( )L1(h2),

i.e.∫ b

a
h1(h2(s(x)))g′(x)dx−

∫ g(b)

g(a)
h1(h2(x))dx =

h′1( )
[∫ b

a
h2(s(x))g′(x)dx−

∫ g(b)

g(a)
h2(x)dx

]
,

where L1 is defined by (8.34).

b) Let t be defined by (2.19), t(a),t(b) ∈ I. Then there exists  ∈ J such that

L2(h1 ◦ h2) = h′1()L2(h2),

where L2 is defined by (8.35).

Proof.

a) Applying Theorem 2.16 to nondecreasing functions 1 ◦ h2 and 2 ◦ h2, where
1(x) = Mx−h1(x) and 2(x) = h1(x)−mx and proceeding as in the proof of The-
orem 8.12 we prove this theorem.

b) This part can be proved in a similar way. �

Putting h2(x) = x in the previous theorem we get the following result.

Corollary 8.13 Let I, J, g, h1 satisfy assumptions of Theorem 8.16.

a) If s is defined by (2.18), then there exists  ∈ I such that∫ b

a
h1(s(x))g′(x)dx−

∫ g(b)

g(a)
h1(x)dx = h′1( )

[∫ b

a
s(x)g′(x)dx− g2(b)−g2(a)

2

]
.

b) If t is defined by (2.19), t(a),t(b) ∈ I, then there exists  ∈ I such that∫
g(a)g(b)h1(x)dx−

∫ b

a
h1(t(x))g′(x)dx = h′1()

[
g2(b)−g2(a)

2
−
∫ b

a
t(x)g′(x)dx

]
.

Theorem 8.17 Let g : [a,b] → R be increasing, convex and differentiable function. Let
I be a compact interval such that a,b,g(a), g(b) ∈ I, h2 : I → R be nondecreasing and
continuous, and J = h2(I). Let F,H ∈C1(J), H ′(x) �= 0 for every x ∈ J.
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a) Let s be defined by (2.18). Then there exists  ∈ J such that

L1(F ◦ h2)
L1(H ◦ h2)

=
F ′( )
H ′( )

,

where L1 is defined by (8.34).

b) Let t be defined by (2.19), t(a),t(b) ∈ I. Then there exists  ∈ J such that

L2(F ◦ h2)
L2(H ◦ h2)

=
F ′()
H ′()

,

where L2 is defined by (8.35)

Proof. Similar to the proof of Theorem 8.6. �

Corollary 8.14 Let g : [a,b] → R be increasing, convex and differentiable function. Let
I be compact interval such that a,b,g(a), g(b) ∈ I. Let F,H ∈C1(I), H ′(x) �= 0 for every
x ∈ I.

a) If s is defined by (2.18), then there exists  ∈ I such that∫ b
a F(s(x))g′(x)dx− ∫ g(b)

g(a) F(x)dx∫ b
a H(s(x))g′(x)dx− ∫ g(b)

g(a) H(x)dx
=

F ′( )
H ′( )

.

b) If t is defined by (2.19), t(a),t(b) ∈ I, then there exists  ∈ I such that∫ g(b)
g(a) F(x)dx− ∫ b

a F(t(x))g′(x)dx∫ g(b)
g(a) H(x)dx− ∫ b

a H(t(x))g′(x)dx
=

F ′()
H ′()

.

Proof. Apply Theorem 8.17 for h2(x) = x. �

Corollary 8.15 Let k > 0, F,H ∈C1(R+), H ′(x) �= 0 for every x ∈ R
+. Then there exists

 ∈ R
+ such that

3
∫ k
0 x2F(x+ k)dx− k2 ∫ 2k

k F(x)dx

3
∫ k
0 x2H(x+ k)dx− k2

∫ 2k
k H(x)dx

=
F ′( )
H ′( )

. (8.36)

Proof. To prove (8.36) apply Theorem 8.17 for a = 0, b = k, g(x) = 1
k2 x3 + k. �

Corollary 8.9 can also be obtained applying Theorem 8.17 b) for a = 0, x0 = k
3√2

,

g(x) = 1
k2 x3 + k, b →  and g(b) → .

Theorem 8.14 and Corollaries 8.10 and 8.11 hold for functionals L1 and L2 defined by
(8.34) and (8.35). As in previous section, using Example 8.5 and Theorem 8.17 a), we
obtain new means

M(h2,g,s;a,b; p,q) =

⎛⎝ q−1
p−1

·
∫ b
a hp−1

2 (s(x))g′(x)dx− ∫ g(b)
g(a) hp−1

2 (x)dx∫ b
a hq−1

2 (s(x))g′(x)dx− ∫ g(b)
g(a) hq−1

2 (x)dx

⎞⎠
1

p−q

,
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where (p−q)(p−1)(q−1) �= 0. Continuous extensions of these means are given in [123].
Furthermore, using Corollary 8.14 a) we can define new means

M(g,s;a,b; p,q) =

⎛⎝ q−1
p−1

·
∫ b
a sp−1(x)g′(x)dx− gp(b)−gp(a)

p∫ b
a sq−1(x)g′(x)dx− gq(b)−gq(a)

q

⎞⎠
1

p−q

,

where (p−q)(p−1)(q−1)pq �= 0. Continuous extensions of these means are also given
in [123].

Theorem 8.17 b) and Corollary 8.14 b) also enable us to define new means, but here
we omit the details.

8.5 n−exponential convexity of generalizations of
Steffensen’s inequality

8.5.1 n−convex functions

In this subsection we will generate n−exponentially and exponentially convex functions
from functionals associated with generalizations of Steffensen’s inequality for n−convex
functions. This generalizations are given in Section 4.3, Chapter 5 and Sections 6.2 and
6.3.

Now we will show how to generate means from the differences of two weighted inte-
grals in Section 5.1, and in particular, from generalized Steffensen inequality. This means
were obtained by Jakšetić, Pečarić and Perušić in [69]. Similar results related to Section 5.2
were obtained in [75].

First, we define linear functional A : Cn[a,max{b,d}]→ R, under assumptions of The-
orem 5.1 with

A( f ) =
∫ b

a
u(x) f (x)dx−

∫ d

c
w(x) f (x)dx−T f ,u

a +T f ,w
a .

Theorem 8.18 Assume that u : [a,b]→R and w : [c,d]→R are weight functions and g is
defined by (5.2) and (5.3) such that g≥0 on [a,max{b,d}]. Then for any f∈Cn[a,max{b,d}]
there exists  ∈ [a,max{b,d}] such that

A( f ) = f (n)( )A(en) (8.37)

where

en(x) =
(x−a)

n!

n

. (8.38)

Proof. According to Theorem5.1, A(h)≥ 0 for any n−convex function h : [a,max{b,d}]→
R.
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Let m = min f (n) and M = max f (n). For a given function f ∈ Cn[a,max{b,d}] we
define functions  ,  : [a,max{b,d}]→ R with

(x) = Men(x)− f (x)

and
(x) = f (x)−men(x).

Now (n)(x) = M− f (n)(x) ≥ 0, for any x, and we conclude A() ≥ 0 and then A( f ) ≤
M ·A(en). Similarly, from (n)(x) = f (n)(x)−m ≥ 0 we conclude m ·A(en) ≤ A( f ). From
m ·A(en) ≤ A( f ) ≤ M · A(en) and continuity of f (n) we conclude that there exists  ∈
[a,max{b,d}] such that (8.37) holds. �

Corollary 8.16 Assume that u : [a,b] → R and w : [c,d] → R are weight functions and g
is defined by (5.2) and (5.3) such that g ≥ 0 on [a,max{b,d}] and A(en) �= 0, where en is
defined by (8.38). Then for any f ,h ∈Cn[a,max{b,d}] there exists  ∈ [a,max{b,d}] such
that

A( f )
A(h)

=
f (n)( )
h(n)( )

(8.39)

assuming neither of the denominators is equal to zero.

Proof. Define the function (x) = f (x)A(h)−h(x)A( f ). According to Theorem 8.18 there
exists  ∈ [a,max{b,d}] such that A() =  (n)( )A(en). Since A() = 0 it follows that
f (n)( )A(h)−h(n)( )A( f ) = 0. �

Corollary 8.16 enables us to define various types of means, because if f (n)/h(n) has an
inverse, from (8.39) we have

 =

(
f (n)

h(n)

)−1(
A( f )
A(h)

)
which means that  is mean of numbers a, b, c ,d and functions u and v for given functions
f and h.

Using results from Section 5.1, we can now make a list of linear functionals which will
give us particular examples of Cauchy means.

Using Theorem 5.2: if 1 is defined by (5.5) and 2 is defined by (5.7) we define

A1( f ) =
∫ b

a
f (x)u(x)dx−

∫ a+1

a
f (x)dx

−
n−2


i=0

f (i)(a)
i!

(∫ b

a
u(x)(x−a)idx−  i+1

1

i+1

)
;

(8.40)

A2( f ) =
n−2


i=0

f (i)(a)
i!

(∫ b

a
u(x)(x−a)idx (8.41)

− (b−a)i+1−(b−a−2)i+1

i+1

)
−
∫ b

a
f (x)u(x)dx+

∫ b

b−2

f (x)dx.
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A3( f ) =
∫ b

b−2

f (x)dx−
∫ a+1

a
f (x)dx

−
n−2


i=0

f (i)(a)
i!

(
(b−a)i+1−(b−a−2)i+1

i+1 −  i+1
1

i+1

)
.

(8.42)

In a special case, using Corollary 5.1, we define linear functionals

A4( f ) =
∫ b

a
f (x)u(x)dx−

∫ a+1

a
f (x)dx (8.43)

A5( f ) =
∫ b

b−2

f (x)dx−
∫ b

a
f (x)u(x)dx (8.44)

A6( f ) =
∫ b

b−2

f (x)dx−
∫ a+1

a
f (x)dx (8.45)

Now, we use an idea from [68] and [116] to generate n-exponentially and exponentially
convex functions applying defined functionals.

Theorem 8.19 Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R such that the function s �→ [x0, . . . ,xm; fs] is n−exponentially
convex in the Jensen sense on J for every m + 1 mutually different points x0, . . . ,xm ∈ I.
Let Ak, k = 1, . . . ,6 be linear functionals defined by (8.40)-(8.45). Then s �→ Ak( fs) is
n−exponentially convex function in the Jensen sense on J.
If the function s �→ Ak( fs) is continuous on J, then it is n−exponentially convex on J.

Proof. For i ∈ R, i = 1, . . . ,n and si ∈ J, i = 1, . . . ,n, we define the function

g(x) =
n


i, j=1

i j f si+s j
2

(x).

Using the assumption that the function s �→ fs[x0, . . . ,xm] is n-exponentially convex in the
Jensen sense, we have

g[x0, . . . ,xm] =
n


i, j=1

i j f si+s j
2

[x0, . . . ,xm] ≥ 0,

which in turn implies that g is a m-convex function on J, so it is Ak(g) ≥ 0, k = 1, . . . ,6,
hence

n


i, j=1

i jAk

(
f si+s j

2

)
≥ 0.

We conclude that the function s �→ Ak( fs) is n-exponentially convex on J in the Jensen
sense.

If the function s �→ Ak( fs) is also continuous on J, then s �→ Ak( fs) is n-exponentially
convex by definition. �

The following corollaries are immediate consequences of the above theorem.
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Corollary 8.17 Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function s �→ fs[x0, . . . ,xm] is exponentially
convex in the Jensen sense on J for every m + 1 mutually different points x0, . . . ,xm ∈ I.
Let Ak( f ), k = 1, . . . ,6, be linear functionals defined as in (8.40)-(8.45). Then s �→ Ak( fs)
is an exponentially convex function in the Jensen sense on J, k = 1, . . . ,6. If the function
s �→ Ak( fs) is continuous on J, then it is exponentially convex on J.

Corollary 8.18 Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function s �→ fs[x0, . . . ,xm] is 2-exponentially
convex in the Jensen sense on J for every m+1 mutually different points x0, . . . ,xm ∈ I. Let
Ak( f ), k = 1, . . . ,6, be linear functional defined as in (8.40)-(8.45). Then the following
statements hold:

(i) If the function s �→ Ak( fs) is continuous on J, then it is 2-exponentially convex func-
tion on J. If s �→ Ak( fs) is additionally strictly positive, then it is also log-convex on
J. Furthermore, the following inequality holds true:

[Ak( fs)]t−r ≤ [Ak( fr)]t−s [Ak( ft )]s−r

for every choice r,s,t ∈ J, such that r < s < t.

(ii) If the function s �→ Ak( fs) is strictly positive and differentiable on J, then for every
s,q,u,v ∈ J, such that s ≤ u and q ≤ v, we have

s,q(Ak,) ≤ u,v(Ak,), (8.46)

where

s,q(Ak,) =

⎧⎪⎨⎪⎩
(

Ak( fs)
Ak( fq)

) 1
s−q

, s �= q

exp

(
d
ds Ak( fs)
Ak( fq)

)
, s = q,

(8.47)

for fs, fq ∈ .

Proof. Similar to the proof of Corollary 8.7. �

Note that the results from above theorem and corollaries still hold when two of the
points x0, . . . ,xm ∈ I coincide, say x1 = x0, for a family of differentiable functions fs such
that the function s �→ fs[x0, . . . ,xm] is n-exponentially convex in the Jensen sense (exponen-
tially convex in the Jensen sense, log-convex in the Jensen sense), and furthermore, they
still hold when all m+1 points coincide for a family of m differentiable functions with the
same property. The proofs use Remark 1.2 and suitable characterization of convexity.

Now we will present several families of functions which fulfil the conditions of The-
orem 8.19, Corollary 8.17 and Corollary 8.18. This enables us to construct examples of
exponentially convex functions. Explicit form of this functions is obtained after we calcu-
late explicit action of functionals on a given family.

Example 8.9 Consider a family of functions

1 = { fs : R → R : s ∈ R}
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defined by

fs(x) =
{

esx

sn , s �= 0
xn

n! , s = 0.

Here, dn fs
dxn (x) = esx > 0 which shows that fs is n-convex on R for every s ∈ R and s �→

dn fs
dxn (x) is exponentially convex by definition. Using analogous arguing as in the proof of
Theorem 8.11 we also have that s �→ fs[x0, . . . ,xm] is exponentially convex (and so exponen-
tially convex in the Jensen sense). Using Corollary 8.17 we conclude that s �→ Ak( fs), i =
1, . . . ,6, are exponentially convex in the Jensen sense. It is easy to verify that this mapping
is continuous (although mapping s �→ fs is not continuous for s = 0), so it is exponentially
convex. For this family of functions, s,q(Ak,1), k = 1, . . . ,6, from (8.47), becomes

s,q(Ak,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Ak( fs)
Ak( fq)

) 1
s−q

, s �= q

exp
(

Ak(id· fs)
Ak( fs)

− n
s

)
, s = q �= 0

exp
(

1
n+1

Ak(id· f0)
Ak( f0)

)
, s = q = 0,

where id is the identity function. Also, by Corollary 8.18 it is monotonic function in
parameters s and q.

We observe here that

(
dn fs
dxn
dn fq
dxn

) 1
s−q

(logx) = x so using Corollary 8.15 it follows that:

Ms,q(Ak,1) = logs,q(Ak,1), k = 1, . . . ,6

satisfies

a ≤ Ms,q(Ak,1) ≤ b, k = 1, . . . ,6.

So, Ms,q(Ak,1) is monotonic mean.

Example 8.10 Consider a family of functions

2 = { fs : (0,) → R : s ∈ R}

defined by

gs(x) =

{ xs

s(s−1)···(s−n+1) , s /∈ {0,1, . . . ,n−1}
x j logx

(−1)n−1− j j!(n−1− j)! , s = j ∈ {0,1, . . . ,n−1}.

Here, dngs
dxn (x) = xs−n > 0 which shows that gs is n-convex for x > 0 and s �→ dngs

dxn (x) is
exponentially convex by definition. Arguing as in Example 8.9 we get that the map-
pings s �→ Ak(gs),k = 1, . . . ,6 are exponentially convex. For this family of functions
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s,q(Ak,2), k = 1, . . . ,6, from (8.47), is now equal to

s,q(Ak,2) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ak(gs)
Ak(gq)

) 1
s−q

, s �= q

exp

(
(−1)n−1(n−1)!Ak(g0gs)

Ak(gs)
+

n−1

i=0

1
i−s

)
, s = q /∈ {0,1, . . . ,n−1}

exp

⎛⎝(−1)n−1(n−1)!Ak(g0gs)
2Ak(gs)

+
n−1

i=0
i�=s

1
i−s

⎞⎠ , s = q ∈ {0,1, . . . ,n−1}.

(8.48)

Again, using Corollary 8.15 we conclude that

a ≤
(

Ak(gs)
Ak(gq)

) 1
s−q

≤ b, k = 1, . . . ,6.

So, s,q(Ak,2), i = 1, . . . ,6 is a monotonic mean.

Example 8.11 Consider a family of functions

3 = {s : (0,) → R : s ∈ (0,)}
defined by

s(x) =

{
s−x

(− logs)n , s �= 1
xn

n! , s = 1.

Since dns
dxn (x) = s−x is the Laplace transform of a nonnegative function (see [153]) it is

exponentially convex. Obviously s are n-convex functions for every s > 0. For this family
of functions, s,q(Ak,3),k = 1, . . . ,6 from (8.47) is equal to

s,q(Ak,3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Ak(s)
Ak(q)

) 1
s−q

, s �= q

exp
(
−Ak(id·s)

s Ak(s)
− n

s logs

)
, s = q �= 1

exp
(
− 1

n+1
Ak(id·1)
Ak(1)

)
, s = q = 1,

where id is the identity function. This is a monotone function in parameters s and q by
(8.46). Using Corollary 8.15 it follows that

Ms,q(Ak,3) = −L(s,q) logs,q(Ak,3), k = 1, . . . ,6

satisfies
a ≤ Ms,q(Ak,3) ≤ b.

So Ms,q(Ak,3) is a monotonic mean. L(s,q) is a logarithmic mean defined by

L(s,q) =

{
s−q

logs−logq , s �= q

s, s = q.
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Example 8.12 Consider a family of functions

4 = {s : (0,) → R : s ∈ (0,)}

defined by

s(x) =
e−x

√
s

(−√
s)n .

Since dns
dxn (x) = e−x

√
s is the Laplace transform of a nonnegative function (see [153]) it

is exponentially convex. Obviously s are n-convex functions for every s > 0. For this
family of functions, s,q(Ak,4),k = 1, . . . ,6 from (8.47) is equal to

s,q(Ak,4) =

⎧⎪⎨⎪⎩
(

Ak(s)
Ak(q)

) 1
s−q

, s �= q

exp
(
− Ak(id·s)

2
√

sAk(s)
− n

2s

)
, s = q,

where id is the identity function. This is monotone function in parameters s and q by
(8.46). Using Corollary 8.15 it follows that

Ms,q(Ak,4) = −(
√

s+
√

q) logs,q(Ak,4), k = 1, . . . ,6

satisfies a ≤ Ms,q(Ak,4) ≤ b, so Ms,q(Ak,4) is a monotonic mean.

Similarly, we can generate n−exponentially and exponentially convex functions from
functionals associated with generalizations of Steffensen’s inequality given in Section 4.3.
Motivated by inequalities (4.37), (4.39) and (4.42) we can define functionals1( f ), 2( f )
and 3( f ) by

1( f ) =
1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt−T [a,b]

w,n (x)− 1∫ d
c u(t)dt

∫ d

c
u(t) f (t)dt

+T [c,d]
u,n (x) ,

2( f ) =
1∫ b

a w(t)dt

∫ b

a
w(t) f (t)dt−T [a,b]

w,n (x)− 1


∫ a+

a
f (t)dt +T [a,a+ ]

1,n (x)

and

3( f ) =
1


∫ b

b−
f (t)dt−T [a,b]

1,n (x)− 1∫ b
a w(t)dt

∫ b

a
w(t)dt f (t)dt +T [a,b]

w,n (x) .

Furthermore, we can generate means from 1,2,3. For details see [121].
In a similar way in [70] and [120] means from the differences of two weighted integrals,

related to results given in Sections 6.2 and 6.3, were generated.
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8.5.2 (2n)−convex functions

Similar as in previous subsection we will generate n−exponentially and exponentially con-
vex functions from functionals associated with generalizations of Steffensen’s inequality
given in Section 6.1.

Motivated by inequalities (6.7), (6.9) and (6.13) under assumptions of Theorems 6.2,
6.3 and 6.4, respectively, we define following linear functionals:

L1( f ) =
∫ b

a
w(t) f (t)dt−

∫ d

c
u(t) f (t)dt

−
n−1


k=0

(b−a)2k
∫ b

a
w(x)

[
f (2k)(a)k

(
b− x
b−a

)
+ f (2k)(b)k

(
x−a
b−a

)]
dx

+
n−1


k=0

(d− c)2k
∫ d

c
u(x)

[
f (2k)(c)k

(
d− x
d− c

)
+ f (2k)(d)k

(
x− c
d− c

)]
dx,

(8.49)

L2( f ) =
∫ b

a
w(t) f (t)dt−

∫ a+

a
f (t)dt

−
n−1


k=0

(b−a)2k
∫ b

a
w(x)

[
f (2k)(a)k

(
b− x
b−a

)
+ f (2k)(b)k

(
x−a
b−a

)]
dx

+
n−1


k=0

 2k
∫ a+

a

[
f (2k)(a)k

(
a+ − x



)
+ f (2k)(a+ )k

(
x−a


)]
dx,

(8.50)

L3( f ) =
∫ b

b−
f (t)dt−

∫ b

a
w(t) f (t)dt

−
n−1


k=0

 2k
∫ b

b−

[
f (2k)(b− )k

(
b− x


)
+ f (2k)(b)k

(
x−b+



)]
dx

+
n−1


k=0

(b−a)2k
∫ b

a
w(x)

[
f (2k)(a)k

(
b− x
b−a

)
+ f (2k)(b)k

(
x−a
b−a

)]
dx.

(8.51)

Also, we define I1 = [a,b]∪ [c,d], I2 = [a,b]∪ [a,a+ ] and I3 = [a,b]∪ [b− ,b].
Under assumptions of Theorems 6.2, 6.3 and 6.4 respectively, it holds Li( f ) ≥ 0, i =

1,2,3 for all (2n)-convex functions f .
First we will state and prove mean value theorems for defined functionals.

Theorem 8.20 Let f : Ii →R (i = 1,2,3) be such that f ∈C2n(Ii). If inequalities in (6.6)
(i = 1), (6.8) (i = 2) and (6.12) (i = 3) hold, then there exist i ∈ Ii such that

Li( f ) = f (2n)(i)Li( ), i = 1,2,3

where  (x) = x2n

(2n)! .
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Proof. Defining functions (x) = Mx2n

(2n)! − f (x) and (x) = f (x)− mx2n

(2n)! and proceeding as
in the proof of Theorem 8.18 we prove this theorem. �

Corollary 8.19 Let f ,g : Ii → R (i = 1,2,3) be such that f ,g ∈C2n(Ii) and g(2n)(x) �= 0
for every x ∈ Ii. If inequalities in (6.6) (i = 1), (6.8) (i = 2) and (6.12) (i = 3) hold, then
there exist i ∈ Ii such that

Li( f )
Li(g)

=
f (2n)(i)
g(2n)(i)

, i = 1,2,3.

Proof. Similar to the proof of Corollary 8.16. �

Theorem 8.21 Let = { fp : p ∈ J}, where J is an interval in R, be a family of functions
defined on an interval Ii, i = 1,2,3 in R such that the function p �→ fp[x0, . . . ,x2m] is
n−exponentially convex in the Jensen sense on J for every (2m + 1) mutually different
points x0, . . . ,x2m ∈ Ii, i = 1,2,3. Let Li, i = 1,2,3 be linear functionals defined by (8.49)-
(8.51). Then p �→ Li( fp) is n−exponentially convex function in the Jensen sense on J.
If the function p �→ Li( fp) is continuous on J, then it is n−exponentially convex on J.

Proof. Similar to the proof of Theorem 8.19. �

Corollary 8.20 Let = { fp : p∈ J}, where J is an interval in R, be a family of functions
defined on an interval Ii, i = 1,2,3 in R, such that the function p �→ fp[x0, . . . ,x2m] is 2-
exponentially convex in the Jensen sense on J for every (2m+1) mutually different points
x0, . . . ,x2m ∈ Ii, i = 1,2,3. Let Li, i = 1,2,3 be linear functionals defined by (8.49)-(8.51).
Then the following statements hold:

(i) If the function p �→ Li( fp) is continuous on J, then it is 2-exponentially convex func-
tion on J. If p �→ Li( fp) is additionally strictly positive, then it is also log-convex on
J. Furthermore, the following inequality holds true:

[Li( fs)]t−r ≤ [Li( fr)]t−s [Li( ft )]s−r

for every choice r,s,t ∈ J, such that r < s < t.

(ii) If the function p �→ Li( fp) is strictly positive and differentiable on J, then for every
p,q,u,v ∈ J, such that p ≤ u and q ≤ v, we have

p,q(Li,) ≤ u,v(Li,),

where

p,q(Li,) =

⎧⎪⎨⎪⎩
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q

exp

(
d
dp Li( fp)
Li( fp)

)
, p = q,

(8.52)

for fp, fq ∈.
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Proof. Similar to the proof of Corollary 8.18. �

Example 8.13 Consider a family of functions

1 = { fp : R → [0,) : p ∈ R}

defined by

fp(x) =

{
epx

p2n , p �= 0
x2n

(2n)! , p = 0.

As in Example 8.9 we conclude that p �→ Li( fp), i = 1,2,3, are exponentially convex in the
Jensen sense. It is easy to verify that this mapping is continuous (although mapping p �→ fp
is not continuous for p = 0), so it is exponentially convex. For this family of functions,
p,q(Li,1), i = 1,2,3, from (8.52), becomes

p,q(Li,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q

exp
(

Li(id· fp)
Li( fp)

− 2n
p

)
, p = q �= 0

exp
(

1
2n+1

Li(id· f0)
Li( f0)

)
, p = q = 0,

where id is the identity function. Also, by Corollary 8.20 it is monotonic function in
parameters p and q.
Corollary 8.19 applied on functions fp, fq ∈1 and functionals Li, i = 1,2,3 implies that
there exist i ∈ Ii such that

e(p−q)i =
Li( fp)
Li( fq)

so it follows that:
Mp,q(Li,1) = logp,q(Li,1), i = 1,2,3

satisfies

min{a,b− ,c}≤ Mp,q(Li,1) ≤ max{a+ ,b,d}, i = 1,2,3.

So, Mp,q(Li,1) is a monotonic mean.

Example 8.14 Consider a family of functions

2 = {gp : (0,) → R : p ∈ R}

defined by

gp(x) =

{ xp

p(p−1)···(p−2n+1) , p /∈ {0,1, . . . ,2n−1}
x j logx

(−1)2n−1− j j!(2n−1− j)! , p = j ∈ {0,1, . . . ,2n−1}.
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As in Example 8.10 for this family of functions p, j(Li,2), i = 1,2,3, from (8.52), is
now equal to

p,q(Li,2) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Li(gp)
Li(gq)

) 1
p−q

, p �= q

exp

(
(−1)2n−1(2n−1)! Li(g0gp)

Li(gp)
+

2n−1

i=0

1
i−p

)
, p = q /∈ {0,1, . . . ,2n−1}

exp

⎛⎝(−1)2n−1(2n−1)! Li(g0gp)
2Li(gp)

+
2n−1

i=0
i�=p

1
i−p

⎞⎠ , p = q ∈ {0,1, . . . ,2n−1}.

Again, using Corollary 8.19 we conclude that

min{a,b− ,c}≤
(

Li(gp)
Li(gq)

) 1
p−q

≤ max{a+ ,b,d}, i = 1,2,3.

So, p,q(Li,2), i = 1,2,3 is a mean.

Example 8.15 Consider a family of functions

3 = {p : (0,) → (0,) : p ∈ (0,)}

defined by

p(x) =

{
p−x

(log p)2n , p �= 1
x2n

(2n)! , p = 1.

As in Example 8.11 for this family of functions, p,q(Li,3), i = 1,2,3 from (8.52) is equal
to

p,q(Li,3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li(p)
Li(q)

) 1
p−q

, p �= q

exp
(
− Li(id·p)

p Li(p)
− 2n

p log p

)
, p = q �= 1

exp
(
− 1

2n+1
Li(id·1)
Li(1)

)
, p = q = 1,

where id is the identity function. Using Corollary 8.19 it follows that

Mp,q(Li,3) = −L(p,q) logp,q(Li,3), i = 1,2,3

satisfies
min{a,b− ,c}≤ Mp,q(Li,3) ≤ max{a+ ,b,d}.

So Mp,q(Li,3) is a monotonic mean. L(p,q) is a logarithmic mean defined by

L(p,q) =

{
p−q

log p−logq , p �= q

p, p = q.
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Example 8.16 Consider a family of functions

4 = {p : (0,) → (0,) : p ∈ (0,)}

defined by

p(x) =
e−x

√
p

pn .

As in Example 8.12 for this family of functions, p,q(Li,4), i = 1,2,3 from (8.52) is equal
to

p,q(Li,4) =

⎧⎪⎨⎪⎩
(

Li(p)
Li(q)

) 1
p−q

, p �= q

exp
(
− Li(id·p)

2
√

pLi(p)
− n

p

)
, p = q,

where id is the identity function. Using Corollary 8.19 it follows that

Mp,q(Li,4) = −(
√

p+
√

q) logp,q(Li,4), i = 1,2,3

satisfies min{a,b−  ,c} ≤ Mp,q(Li,4) ≤ max{a +  ,b,d}, so Mp,q(Li,4) is a mono-
tonic mean.





Chapter9
Applications of Steffensen’s
inequality

9.1 Extension of Hölder’s inequality

Integral version of Hölder’s inequality is given in the following theorem (see [94, p.106]).

Theorem 9.1 Let p > 1 and 1
p + 1

q = 1. If f and g are real functions defined on [a,b] and
if | f |p and |g|q are integrable functions on [a,b] then∫ b

a
| f (x)g(x)|dx ≤

(∫ b

a
| f (x)|pdx

) 1
p
(∫ b

a
|g(x)|qdx

) 1
q

,

with equality holding if and only if A| f (x)|p = B|g(x)|q almost everywhere, where A and B
are constants.

Mudholkar, Freimer and Subbaiah gave in 1984 (see [96]) an extension of Hölder’s
inequality for monotonic n−tuples. In 1987 Iwamoto, Tomkins and Wang presented this
result for infinite sequences and gave a corresponding integral analogue (see [64]).

First, we recall a key notion from Freimer and Mudholkar (see [47, p. 64]).

Lemma 9.1 Let b be a continuous, positive, nonincreasing and integrable function on
[0,) and M a positive, real number. Then there exists a number K, 0 ≤ K < M, such that

b(K) ≤ 1
M−K

∫ 

K
b(t)dt. (9.1)

231
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Integral result of Iwamoto, Tomkins and Wang is given in the following theorem.

Theorem 9.2 Let b, M, K be as in Lemma 9.1. Then

∫ 

0
a(t)b(t)dt ≤

(∫ M

0
ap(t)dt

) 1
p
(∫ M

0
b̂q(t)dt

) 1
q

(9.2)

for every nonincreasing, differentiable function a on [0,) and p > 1, where 1
p + 1

q = 1
and

b̂(t) =

{
b(t), 0 ≤ t < K

1
M−K

∫ 
K b(t)dt, K ≤ t ≤ M.

The inequality in (9.2) is reversed if p < 1 and a is a nondecreasing, differentiable function.
In both cases, equality holds if ap(t) = cb̂q(t), 0 ≤ t ≤ M (where c is a constant) and
a(t) = a(K), t ≥ K.

First, we prove Theorem 9.2 directly, but in the further text we prove that Theorem 9.2 is a
consequence of the Steffensen inequality.

Proof. Since a and b are nonincreasing functions on [0,), we have∫ 

0
a(t)b(t)dt ≤

∫ K

0
a(t)b(t)dt +

∫ M

K
a(t)b(t)dt +a(M)

∫ 

M
b(t)dt. (9.3)

The function b is nonincreasing, i.e. b(s) ≤ b(K) for any s ∈ [K,M], and K satisfies (9.1),
i.e. b(K) ≤ 1

M−K

∫ 
K b(t)dt. Hence∫ t

K
b(s)ds ≤ (t−K)b(K) ≤ t −K

M−K

∫ 

K
b(t)dt. (9.4)

Integrating by parts and since a′ ≤ 0 we obtain∫ M

K
a(t)b(t)dt =

(
a(t)

∫ t

K
b(s)ds

)
|MK −

∫ M

K
a′(t)

(∫ t

K
b(s)ds

)
dt

≤ a(M)
∫ M

K
b(s)ds−

∫ M

K
a′(t)(t −K)

∫
K b(t)dt
M−K

dt

= a(M)
∫ M

K
b(s)ds−

∫ 
K b(t)dt
M−K

[
a(t)(t−K)|MK −

∫ M

K
a(t)dt

]
= a(M)

∫ M

K
b(s)ds−

∫ 
K b(t)dt
M−K

[
a(M)(M−K)−

∫ M

K
a(t)dt

]
= a(M)

∫ M

K
b(s)ds−a(M)

∫ 

K
b(t)dt +

∫ 
K b(t)dt
M−K

∫ M

K
a(t)dt

=
1

M−K

∫ M

K
a(t)dt

∫ 

K
b(t)dt−a(M)

∫ 

M
b(t)dt

(9.5)

i.e. ∫ M

K
a(t)b(t)dt +a(M)

∫ 

M
b(t)dt ≤ 1

M−K

∫ M

K
a(t)dt

∫ 

K
b(t)dt.
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Hence, using (9.3) we get∫ 

0
a(t)b(t)dt ≤

∫ K

0
a(t)b(t)dt +

1
M−K

∫ 

K
b(t)dt

∫ M

K
a(t)dt

=
∫ K

0
a(t)b̂(t)dt +

∫ M

K
a(t)b̂(t)dt =

∫ M

0
a(t)b̂(t)dt.

(9.6)

Finally, application of Hölder’s inequality on the right-hand side of (9.6) yields (9.2) for
p > 1. �

Theorem 9.2 appears to exhibit some connections with Steffensen’s inequality for
monotonic function. Pearce and Pečarić proved that connection using the following gener-
alization of Steffensen’s inequality, which is in fact Theorem 3.6 with conditions according
to [92].

Theorem 9.3 (i) Suppose that f and g are integrable functions on [a,b], f is nonin-
creasing and  > 0. If a positive function g satisfies the condition


∫ x

a
g(t)dt ≤ (x−a)

∫ b

a
g(t)dt (9.7)

for every x ∈ [a,b], then

∫ b
a f (t)g(t)dt∫ b

a g(t)dt
≤ −1

∫ a+

a
f (t)dt, (9.8)

while if a positive function g satisfies


∫ b

x
g(t)dt ≤ (b− x)

∫ b

a
g(t)dt (9.9)

for every x ∈ [a,b], then

−1
∫ b

b−
f (t)dt ≤

∫ b
a f (t)g(t)dt∫ b

a g(t)dt
. (9.10)

In either case equality holds if f is constant.

(ii) If f is nondecreasing, the reverse inequalities hold in (9.8) and (9.10).

The following extension of Hölder’s inequality using the above generalization of Stef-
fensen’s inequality is given in [103].

Theorem 9.4 Let f and g be two integrable and positive functions defined on [a,b] and
let M, K be real numbers satisfying a ≤ K < M ≤ b.
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(i) Suppose that for every x ∈ [K,b] we have

1
x−K

∫ x

K
g(t)dt ≤ 1

M−K

∫ b

K
g(t)dt, (9.11)

that p > 1, p−1 +q−1 = 1 and that f is nonincreasing. Then

∫ b

a
f (t)g(t)dt ≤

(∫ M

a
f p(t)dt

)1/p(∫ M

a
ĝq(t)dt

)1/q

, (9.12)

where

ĝ(t) =

{
g(t), a ≤ t < K

1
M−K

∫ b
K g(t)dt, K ≤ t ≤ M.

(9.13)

The inequality in (9.12) is reversed if p < 1 and f is a nondecreasing function. In
both cases, equality holds in (9.12) if

f p(t) = cĝq(t), a ≤ t ≤ M

(where c is constant) and

f (t) = f (K), t ∈ [K,b].

(ii) Suppose that for every x ∈ [a,M] we have

1
M− x

∫ M

x
g(t)dt ≤ 1

M−K

∫ M

a
g(t)dt, (9.14)

that p > 1, p−1 +q−1 = 1 and that f is nondecreasing. Then

∫ b

a
f (t)g(t)dt ≤

(∫ b

K
f p(t)dt

)1/p(∫ b

K
ĝq(t)dt

)1/q

, (9.15)

where

ĝ(t) =

{
1

M−K

∫M
a g(t)dt, K ≤ t ≤ M

g(t), M < t ≤ b.
(9.16)

The inequality in (9.15) is reversed if p < 1 and f is a nonincreasing function. In
both cases, equality holds in (9.15) if

f p(t) = cĝq(t), K ≤ t ≤ b

(where c is constant) and

f (t) = f (M), t ∈ [a,M].
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Proof.

(i) By (9.11), condition (9.7) is satisfied with  = M−K and a replaced by K. Hence,
by Theorem 9.3 (i) (9.8) holds, that is∫ b

K
f (t)g(t)dt ≤ (M−K)−1

∫ b

K
g(t)dt

∫ M

K
f (t)dt

=
∫ M

K
f (t)ĝ(t)dt.

Hence, ∫ b

a
f (t)g(t)dt =

∫ K

a
f (t)g(t)dt +

∫ b

K
f (t)g(t)dt

≤
∫ K

a
f (t)ĝ(t)dt +

∫ M

K
f (t)ĝ(t)dt =

∫ M

a
f (t)ĝ(t)dt.

Relation (9.12) now follows from Hölder’s inequality.

(ii) By (9.14), condition (9.9) is satisfied with  = M−K and b replaced by M. As f is
nondecreasing by Theorem 9.3 (ii) reversed inequality in (9.10) holds, that is∫ M

a
f (t)g(t)dt ≤ (M−K)−1

∫ M

a
g(t)dt

∫ M

K
f (t)dt

=
∫ M

K
f (t)ĝ(t)dt,

and we derive ∫ b

a
f (t)g(t)dt ≤

∫ b

K
f (t)ĝ(t)dt.

Relation (9.15) now follows from Hölder’s inequality.

The other cases follow similarly, while the statement of equality follows from the condition
for equality in Steffensen’s and Hölder’s inequalities. �

Theorem 9.2 is a simple consequence of the following corollary for b → .

Corollary 9.1 (i) Suppose the assumptions of Theorem 9.4(i) are satisfied and further
g is nonincreasing. Then Theorem 9.4(i) is also valid if condition (9.11) is replaced
by

g(K) ≤ (M−K)−1
∫ b

K
g(t)dt.

(ii) Suppose the assumptions of Theorem 9.4(ii) are satisfied and further g is nonde-
creasing. Then Theorem 9.4(ii) is also valid if condition (9.14) is replaced by

g(M) ≤ (M−K)−1
∫ M

a
g(t)dt.
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Proof. If g is nonincreasing, then

1
x−K

∫ x

K
g(t)dt ≤ g(K) ≤ 1

M−K

∫ b

K
g(t)dt,

that is, (9.11) holds. Similarly, if g is nondecreasing, then

1
M− x

∫ M

x
g(t)dt ≤ g(M) ≤ 1

M−K

∫ M

a
g(t)dt,

that is, (9.14) holds. �

Corollary 9.2 Let f , g be positive, integrable functions on [a,b] and M, K real numbers
satisfying a ≤ K < M ≤ b.

(i) Suppose f is nonincreasing and g nondecreasing. If p > 1, p−1 + q−1 = 1, then
(9.12) holds. The inequality in (9.12) is reversed if p < 1 and f is nondecreasing.
The equality case is as in Theorem 9.4(i).

(ii) Suppose f is nondecreasing and g nonincreasing. If p > 1, p−1 + q−1 = 1, then
(9.15) holds. The inequality in (9.15) is reversed if p < 1 and f is nonincreasing.
The equality case is as in Theorem 9.4(ii).

Proof. For (i) we have,

(x−K)−1
∫ x

K
g(t)dt ≤ (b−K)−1

∫ b

K
g(t)dt ≤ (M−K)−1

∫ b

K
g(t)dt,

for all x ∈ [K,b].
For (ii), we have

(M− x)−1
∫ M

x
g(t)dt ≤ (M−a)−1

∫ M

a
g(t)dt ≤ (M−K)−1

∫ M

a
g(t)dt,

for all x ∈ [a,M]. �

9.2 Improvement of an extension of Hölder-type
inequality

Motivated by Theorem 9.4 Pečarić and Smoljak gave the following results in [125].
We use the family of functions u defined by

u(x) =

{
xu

u , u �= 0

logx, u = 0.
(9.17)
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Theorem 9.5 Let the conditions of Theorem 9.4(i) be satisfied, f be a nondecreasing
function and u be defined by (9.17). Then the function  : R → [0,) defined by

 (u) =
∫ b

a
u( f (t))g(t)dt −

∫ M

a
u( f (t))ĝ(t)dt (9.18)

is exponentially convex.

Proof. First, let us prove that  is continuous on R. It is obviously continuous on R\ {0}.
Using L’Hospital rule limit it is easy to verify that lims→0  (s) =  (0), so  is continuous
on R. Let n ∈ N, ti ∈ R and ui ∈ R, i = 1,2, . . . ,n, be arbitrary. Denote

ui j =
ui +u j

2
,

and define the function  : R
+ → R by

(x) =
n


i, j=1

tit jui j(x).

Using similar reasoning as in proof of Theorem 8.8, we obtain that  is a nondecreasing
function on R

+. By (9.11), condition (9.7) is satisfied with  = M −K and a replaced
by K. Hence, by Theorem 9.3, the reverse inequality in (9.8) holds, so for nondecreasing
function ◦ f we obtain∫ b

K
( f (t))g(t)dt ≥

∫ M

K
( f (t))ĝ(t)dt.

By definition ∫ K

a
( f (t))g(t)dt =

∫ K

a
( f (t))ĝ(t)dt,

so we obtain ∫ b

a
( f (t))g(t)dt ≥

∫ M

a
( f (t))ĝ(t)dt,

that is,
n


i, j=1

tit j (ui j) ≥ 0

concluding positive semi-definitness. Since  is continuous, it is exponentially convex
function. �

Remark 9.1 Notice that  (u) ≥ 0 for all nondecreasing functions f and  (u) ≤ 0 for all
nonincreasing functions f .
For nonincreasing function f , similar as in Theorem 9.5, we obtain that − (u) is exponen-
tially convex.
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Remark 9.2 The function  , for f nondecreasing and − , for f nonincreasing, being
exponentially convex is also log-convex function. Then, by (1.6), the following inequality
holds true:

[| (s)|]t−r ≤ [| (r)|]t−s [| (t)|]s−r (9.19)

for every choice r,s,t ∈ R, such that r < s < t.

Theorem 9.6 Let the conditions of Theorem 9.4(ii) be satisfied, f be a nondecreasing
function and u be defined by (9.17). Then the function  : R → [0,) defined by

 (u) =
∫ b

K
u( f (t))ĝ(t)dt−

∫ b

a
u( f (t))g(t)dt (9.20)

is exponentially convex.

Proof. Similar to the proof of Theorem 9.5. �

Remark 9.3 Notice that  (u) ≥ 0 for all nondecreasing functions f and  (u) ≤ 0 for all
nonincreasing functions f .
For nonincreasing function f , similar as in Theorem 9.6, we obtain that − (u) is exponen-
tially convex.

Remark 9.4 Similar as in Remark 9.2, the following inequality holds true:

[| (s)|]t−r ≤ [| (r)|]t−s [| (t)|]s−r

for every choice r,s,t ∈ R, such that r < s < t.

As a consequence of Theorems 9.5 and 9.6 an improvement of an extension of Hölder-
type inequality can be proved.

Theorem 9.7 Let f and g be two integrable and positive functions defined on [a,b], let ĝ
be defined by (9.13) and let M, K be real numbers satisfying a≤ K < M ≤ b. Suppose that
for every x ∈ [K,b] we have (9.11).

(i) Suppose that p > 1, p−1 +q−1 = 1, 1 < s < t and that f is nonincreasing. Then(∫ M

a
f p(t)dt

)1/p(∫ M

a
ĝq(t)dt

)1/q

−
∫ b

a
f (t)g(t)dt ≥ [− (s)]

t−1
t−s [− (t)]

1−s
t−s .

(9.21)
If p < 1 and f is a nondecreasing function, then

∫ b

a
f (t)g(t)dt−

(∫ M

a
f p(t)dt

)1/p (∫ M

a
ĝq(t)dt

)1/q

≥ [ (s)]
t−1
t−s [ (t)]

1−s
t−s .

(9.22)
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(ii) Suppose that p > 1, p−1 +q−1 = 1, r < s < 1 and that f is nonincreasing. Then(∫ M

a
f p(t)dt

)1/p(∫ M

a
ĝq(t)dt

)1/q

−
∫ b

a
f (t)g(t)dt ≥ [− (s)]

1−r
s−r [− (r)]

s−1
s−r .

If p < 1 and f is a nondecreasing function, then

∫ b

a
f (t)g(t)dt−

(∫ M

a
f p(t)dt

)1/p(∫ M

a
ĝq(t)dt

)1/q

≥ [ (s)]
1−r
s−r [ (r)]

s−1
s−r .

Proof.

(i) Taking substitution r → 1 in (9.19) and then raising both sides of inequality (9.19)
to the power 1

t−s we obtain

| (1)| ≥ [| (s)|] t−1
t−s [| (t)|] 1−s

t−s .

For nonincreasing function f , we have

| (1)| = − (1) =
∫ M

a
f (t)ĝ(t)dt−

∫ b

a
f (t)g(t)dt ≥ 0.

Now by Hölder’s inequality we have(∫ M

a
f p(t)dt

)1/p(∫ M

a
ĝq(t)dt

)1/q

−
∫ b

a
f (t)g(t)dt

≥
∫ M

a
f (t)ĝ(t)dt −

∫ b

a
f (t)g(t)dt

= − (1)≥ [− (s)]
t−1
t−s [− (t)]

1−s
t−s .

Hence, we obtain (9.21).

For nondecreasing function f , we have

| (1)| =  (1) =
∫ b

a
f (t)g(t)dt−

∫ M

a
f (t)ĝ(t)dt ≥ 0.

Now by Hölder’s inequality for p < 1 we have

∫ b

a
f (t)g(t)dt−

(∫ M

a
f p(t)dt

)1/p(∫ M

a
ĝq(t)dt

)1/q

≥
∫ b

a
f (t)g(t)dt−

∫ M

a
f (t)ĝ(t)dt =  (1) ≥ [ (s)]

t−1
t−s [ (t)]

1−s
t−s .

Hence, we obtain (9.22).
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(ii) Similar to the proof of (i). �

Theorem 9.8 Let f and g be two integrable and positive functions defined on [a,b], let ĝ
be defined by (9.16) and let M, K be real numbers satisfying a≤ K < M ≤ b. Suppose that
for every x ∈ [a,M] we have (9.14).

(i) Suppose that p > 1, p−1 +q−1 = 1, 1 < s < t and that f is nondecreasing. Then(∫ b

K
f p(t)dt

)1/p(∫ b

K
ĝq(t)dt

)1/q

−
∫ b

a
f (t)g(t)dt ≥ [− (s)]

t−1
t−s [− (t)]

1−s
t−s .

If p < 1 and f is a nonincreasing function, then∫ b

a
f (t)g(t)dt −

(∫ b

K
f p(t)dt

)1/p(∫ b

K
ĝq(t)dt

)1/q

≥ [ (s)]
t−1
t−s [ (t)]

1−s
t−s .

(ii) Suppose that p > 1, p−1 +q−1 = 1, r < s < 1 and that f is nondecreasing. Then(∫ b

K
f p(t)dt

)1/p(∫ b

K
ĝq(t)dt

)1/q

−
∫ b

a
f (t)g(t)dt ≥ [− (s)]

1−r
s−r [− (r)]

s−1
s−r .

If p < 1 and f is a nonincreasing function, then∫ b

a
f (t)g(t)dt−

(∫ b

K
f p(t)dt

)1/p(∫ b

K
ĝq(t)dt

)1/q

≥ [ (s)]
1−r
s−r [ (t)]

s−1
s−r .

Proof. Similar to the proof of Theorem 9.7. �

Using the same method as in the proof of Theorem 8.12 we get the following result.

Theorem 9.9 Let f be a nondecreasing function on [a,b] and h ∈C1[a,b].

(i) If the conditions of Theorem 9.4(i) are satisfied, then there exists  ∈ [a,b] such that∫ b

a
h( f (t))g(t)dt−

∫ M

a
h( f (t))ĝ(t)dt = h′( )

[∫ b

a
f (t)g(t)dt −

∫ M

a
f (t)ĝ(t)dt

]
.

(ii) If the conditions of Theorem 9.4(ii) are satisfied, then there exists  ∈ [a,b] such that∫ b

K
h( f (t))ĝ(t)dt−

∫ b

a
h( f (t))g(t)dt = h′()

[∫ b

K
f (t)ĝ(t)dt−

∫ b

a
f (t)g(t)dt

]
.

Theorem 9.10 Let h,H ∈C1[a,b], H ′(x) �= 0 for every x ∈ [a,b].

(i) If the conditions of Theorem 9.9 (i) are satisfied, then there exists  ∈ [a,b] such that

h′( )
H ′( )

=
∫ b
a h( f (t))g(t)dt− ∫M

a h( f (t))ĝ(t)dt∫ b
a H( f (t))g(t)dt− ∫M

a H( f (t))ĝ(t)dt
. (9.23)
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(ii) If the conditions of Theorem 9.9 (ii) are satisfied, then there exists  ∈ [a,b] such
that

h′()
H ′()

=
∫ b
K h( f (t))ĝ(t)dt− ∫ b

a h( f (t))g(t)dt∫ b
K H( f (t))ĝ(t)dt− ∫ b

a H( f (t))g(t)dt
. (9.24)

Proof. Similar to the proof of Theorem 8.6. �

Theorem 9.10 enables us to define new means, because if h′/H ′ has an inverse, from
(9.23) and (9.24) we have

 =
(

h′

H ′

)−1
( ∫ b

a h( f (t))g(t)dt− ∫M
a h( f (t))ĝ(t)dt∫ b

a H( f (t))g(t)dt− ∫M
a H( f (t))ĝ(t)dt

)
and

 =
(

h′

H ′

)−1
( ∫ b

K h( f (t))ĝ(t)dt− ∫ b
a h( f (t))g(t)dt∫ b

K H( f (t))ĝ(t)dt− ∫ b
a H( f (t))g(t)dt

)
.

Specially, if we take substitutions h(t) = tr, H(t) = ts in (9.23) and (9.24) we consider
the following expressions

M1(a,b;r,s) =

(
s
r
·
∫ b
a f r(t)g(t)dt− ∫M

a f r(t)ĝ(t)dt∫ b
a f s(t)g(t)dt− ∫M

a f s(t)ĝ(t)dt

) 1
r−s

and

M2(a,b;r,s) =

(
s
r
·
∫ b
K f r(t)ĝ(t)dt− ∫ b

a f r(t)g(t)dt∫ b
K f s(t)ĝ(t)dt− ∫ b

a f s(t)g(t)dt

) 1
r−s

,

where rs(r− s) �= 0.
Notice that

M1(a,b;r,s) =
(
 (r)
 (s)

) 1
r−s

, M2(a,b;r,s) =
(
 (r)
 (s)

) 1
r−s

,

where  is defined by (9.18) and  defined by (9.20).
Moreover, we can extend these means to excluded cases. Taking a limit we can define

M1(a,b;r,0) =

(
1
r
·

∫ b
a f r(t)g(t)dt− ∫M

a f r(t)ĝ(t)dt∫ b
a log f (t)g(t)dt− ∫M

a log f (t)ĝ(t)dt

) 1
r

= M1(a,b;0,r),

M1(a,b;r,r) = exp

(∫ b
a f r(t)g(t) log f (t)dt− ∫M

a f r(t)ĝ(t) log f (t)dt∫ b
a f r(t)g(t)dt− ∫M

a f r(t)ĝ(t)dt
− 1

r

)
,

M1(a,b;0,0) = exp

⎛⎝ ∫ b
a log2 f (t)g(t)dt − ∫M

a log2 f (t)ĝ(t)dt

2
(∫ b

a log f (t)g(t)dt− ∫M
a log f (t)ĝ(t)dt

)
⎞⎠ ,
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M2(a,b;r,0) =

(
1
r
·

∫ b
K f r(t)ĝ(t)dt− ∫ b

a f r(t)g(t)dt∫ b
K log f (t)ĝ(t)dt− ∫ b

a log f (t)g(t)dt

) 1
r

= M2(a,b;0,r),

M2(a,b;r,r) = exp

(∫ b
K f r(t)ĝ(t) log f (t)dt − ∫ b

a f r(t)g(t) log f (t)dt∫ b
K f r(t)ĝ(t)dt− ∫ b

a f r(t)g(t)dt
− 1

r

)
,

M2(a,b;0,0) = exp

⎛⎝ ∫ b
K log2 f (t)ĝ(t)dt− ∫ b

a log2 f (t)g(t)dt

2
(∫ b

K log f (t)ĝ(t)dt− ∫ b
a log f (t)g(t)dt

)
⎞⎠ .

Theorem 9.11 Let p ≤ r, q ≤ t. Then

M1(a,b; p,q) ≤ M1(a,b;r,t) and M2(a,b; p,q) ≤ M2(a,b;r,t) (9.25)

for every x,y ∈ R, x < y.

Proof. Similar to the proof of Theorem 8.9. �

Theorem 9.11 can be used for further generalizations of results given in this section.

9.3 Generalizations of Iyengar’s inequality

In 1938. Iyengar proved the following inequality (see [65]):

Theorem 9.12 Let f be a differentiable function on [a,b] and | f ′(x)| ≤ M. Then∣∣∣∣ 1
b−a

∫ b

a
f (x)dx− f (a)+ f (b)

2

∣∣∣∣≤ M(b−a)
4

− ( f (b)− f (a))2

4M(b−a)
. (9.26)

Although, Iyengar’s inequality has been generalized in various ways we give attention
to generalizations obtained using Hayashi’s modification of Steffensen’s inequality (see
Theorem 2.2).

In [2] Agarwal and Dragomir proved the following theorem.

Theorem 9.13 Let function F be differentiable on [a,b] and m ≤ F ′(x) ≤ M. Then∣∣∣∣ 1
b−a

∫ b

a
F(x)dx− F(a)+F(b)

2

∣∣∣∣
≤ [F(b)−F(a)−m(b−a)][M(b−a)−F(b)+F(a)]

2(M−m)(b−a)
.

(9.27)
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Proof. Let f (x) = a− x, g(x) = F ′(x)−m. Applying inequality (2.2) we obtain

(M−m)
∫ b

b−
(a− x)dx≤ Q ≤ (M−m)

∫ a+

a
(a− x)dx, (9.28)

where

Q =
∫ b

a
(a− x)(F ′(x)−m)dx

and

 =
1

M−m

∫ b

a
(F ′(x)−m)dx =

F(b)−F(a)−m(b−a)
M−m

.

Since ∫ b

b−
(a− x)dx =

1
2
((b−a− )2− (b−a)2)

and ∫ a+

a
(a− x)dx =

− 2

2
,

inequality (9.28) becomes

1 = (M−m)
(

(b−a− )2− (b−a)2

2

)
≤ Q ≤ (M−m)

(− 2

2

)
= 2. (9.29)

Since,
1 +2

2
=

m(b−a)2

2
− (b−a)(F(b)−F(a))

2
and

Q =
∫ b

a
F(x)dx− (b−a)F(b)+

m(b−a)2

2
,

it follows that ∣∣∣∣Q− 1 +2

2

∣∣∣∣= ∣∣∣∣∫ b

a
F(x)dx− (b−a)

F(a)+F(b)
2

∣∣∣∣ . (9.30)

Inequality (9.29) implies∣∣∣∣Q− 1 +2

2

∣∣∣∣≤ 2 −1

2
=

M−m
2

(− 2 +(b−a)
)

=
(F(b)−F(a)−m(b−a))(M(b−a)−F(b)+F(a))

2(M−m)
.

(9.31)

Now combining (9.30) and (9.31) we obtain (9.27). �

Inequality (9.27) reduces to (9.26) if we take M = −m = supa≤x≤b| f ′(x)|.
In Section 2.2 we gave weaker conditions for Steffensen’s inequality. Here we observe

generalizations of Iyengar’s inequality using Hayashi’s form of Steffensen’s inequality. So
first we give weaker conditions for Hayashi’s form.
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Inequality (2.2) holds for every nonincreasing function f if and only if

0 ≤
∫ b

x
g(t)dt ≤ A(b− x) and 0 ≤

∫ x

a
g(t)dt ≤ A(x−a) (9.32)

for all x ∈ [a,b].
Conditions (9.32) can be written in the following form:

0 ≤ 
∫ b

x
g(t)dt ≤ (b− x)

∫ b

a
g(t)dt (9.33)

and

0 ≤ 
∫ x

a
g(t)dt ≤ (x−a)

∫ b

a
g(t)dt. (9.34)

Using this form Elezović and Pečarić obtained inequality (9.27) under a weaker condi-
tion on function f (see [40]).

Theorem 9.14 Let F : I ⊆ R → R be a differentiable mapping on I◦ and [a,b] ⊂ I◦ (I◦
being the interior of I). Let real numbers m and M satisfy

m ≤ F(x)−F(a)
x−a

≤ M, (9.35)

and

m ≤ F(b)−F(x)
b− x

≤ M, (9.36)

for all x ∈ [a,b]. If F ′ is integrable on [a,b], then (9.27) holds.

Proof. Let us take f (x) = a− x, g(x) = F ′(x)−m and

 =
1
A

∫ b

a
g(t)dt =

F(b)−F(a)−m(b−a)
M−m

.

From (9.35) it holds  ≥ 0. We claim that for such a choice, conditions (9.33) and (9.34)
are satisfied. Namely, it holds∫ b

x
(F ′(x)−m)dx = F(b)−F(x)−m(b− x)≥ 0

and the right side of (9.33) is equivalent to

F(b)−F(a)−m(b−a)
M−m

· [F(b)−F(x)−m(b− x)]

≤ (b− x)[F(b)−F(a)−m(b−a)]

which is true since (9.36) holds. Therefore (9.33) is satisfied. In the same way, we con-
clude that (9.34) holds. Hence, we can apply (2.2), and in the same way as in proof of
Theorem 9.13 we obtain (9.27). �

Elezović and Pečarić in [40] also noted that for m = −M Theorem 9.14 gives:
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Corollary 9.3 Let F : I ⊆ R → R be a differentiable mapping on I◦ and [a,b] ⊂ I◦ such
that it holds

|F(x)−F(a)| ≤ M(x−a), |F(b)−F(x)| ≤ M(b− x)

for all x ∈ [a,b]. If F ′ is integrable on [a,b] then∣∣∣∣ 1
b−a

∫ b

a
F(x)dx− F(a)+F(b)

2

∣∣∣∣≤ M(b−a)
4

− (F(b)−F(a))2

4M(b−a)
. (9.37)

As noted in [40] Theorem 9.14 and Corollary 9.3 are equivalent. Let (9.35) and (9.36)
be valid. It is clear that this conditions can be given in the following form

|F̃(x)− F̃(a)| ≤ M1(x−a), |F̃(b)− F̃(x)| ≤ M1(b− x)

where F̃(x) = F(x)− M+m
2 x and M1 = M−m

2 . So if we apply Corollary 9.3 on F̃ , i.e. using
(9.37) for F̃ , we obtain (9.27).

Similar statements under weaker conditions on function F are also obtained in [40].

9.3.1 Weighted generalizations of Iyengar’s inequality

In 2002 Cerone proved the following result for the trapezoidal rule (see [34]):

Theorem 9.15 Let F : I ⊆ R → R be such that F (n−1) is absolutely continuous on I◦
(I◦ being the interior of I) and [a,b] ⊂ I◦. Assume m = infx∈[a,b] F

(n)(x) > − and M =
supx∈[a,b] F

(n)(x) < . Then∣∣∣∣∣
∫ b

a
F(x)dx−

n


k=1

Ek(x;a,b)+R− M−m
2(n+1)!

(U +L)

∣∣∣∣∣≤ M−m
2(n+1)!

(U −L) (9.38)

where

Ek(x;a,b) =
1
k!

[(x−a)kF(k−1)(a)− (x−b)kF (k−1)(b)]

R =
m

(n+1)!
[
(x−b)n+1− (x−a)n+1]

L =
{

( a
n )n+1 +( b

n )n+1, n even
(x−b+ 0

n )n+1− (x−b)n+1, n odd

U =

⎧⎨⎩
(x−b+ b

n )n+1− (x−a− a
n )n+1 +(x−a)n+1

−(x−b)n+1, n even
(x−a)n+1− (x−a− 0

n)n+1, n odd

 0
n =

1
M−m

[
F (n−1)(b)−F(n−1)(a)−m(b−a)

]
, (9.39)

 a
n =

1
M−m

[
F (n−1)(x)−F(n−1)(a)−m(x−a)

]
, (9.40)

 b
n =

1
M−m

[
F (n−1)(b)−F(n−1)(x)−m(b− x)

]
. (9.41)
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Proof. Let f (t) = (x−t)n
n! , x ∈ [a,b] and g(t) = F (n)(t)−m. First we assume that n is odd.

Then f (t) is nonincreasing function so from Hayashi’s inequality (2.2) it follows that

Lo ≤ In ≤Uo

where

In =
∫ b

a
f (t)g(t)dt =

∫ b

a

(x− t)n

n!

(
F (n)(t)−m

)
dt

=
∫ b

a

(x− t)n

n!
F (n)(t)dt +

m
(n+1)!

(
(x−b)n+1− (x−a)n+1) .

Integration by parts gives us:

∫ b

a

(x− t)n

n!
F(n)(t)dt =

∫ b

a
F(t)dt−

n


k=1

Ek(x;a,b)

Hence,

In =
∫ b

a
F(t)dt−

n


k=1

Ek(x;a,b)+
m

(n+1)!
(
(x−b)n+1− (x−a)n+1)

The left side is

Lo =
M−m

n!

∫ b

b− 0
n

(x− t)ndt =
M−m
(n+1)!

[
(x− (b− 0

n ))n+1− (x−b)n+1]

and the right side

Uo =
M−m

n!

∫ a+ 0
n

a
(x− t)ndt =

M−m
(n+1)!

[
(x−a)n+1− (x− (a+ 0

n ))n+1]

where  0
n is as in (9.39).

Now using

m ≤ x ≤ M ⇔
∣∣∣∣x− M +m

2

∣∣∣∣≤ M−m
2

(9.42)

we obtain theorem statement in the case when n is odd.
Now we assume that n is even. In this case function f (t) = (x−t)n

n! is nonincreasing
for t ∈ [a,x] and nondecreasing for t ∈ [x,b]. Note that for a nondecreasing function f (t)
inequalities in (2.2) are reversed.

On an interval [a,x] we have:

La ≤ Ia
n ≤Ua (9.43)
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where

Ia
n =

∫ x

a

(x− t)n

n!

(
F (n)(t)−m

)
dt,

La =
M−m

n!

∫ x

x− a
n

(x− t)ndt =
M−m
(n+1)!

( a
n )n+1,

Ua =
M−m

n!

∫ a+ a
n

a
(x− t)ndt =

M−m
(n+1)!

[
(x−a)n+1− (x− (a+ a

n ))n+1]
where  a

n is as in (9.40).
Similar, on an interval [x,b] we have:

Lb ≤ Ib
n ≤Ub (9.44)

where

Ib
n =

∫ b

x

(x− t)n

n!

(
F (n)(t)−m

)
dt,

Lb =
M−m

n!

∫ x+ b
n

x
(x− t)ndt =

M−m
(n+1)!

( b
n )n+1,

Ub =
M−m

n!

∫ b

b− b
n

(x− t)ndt =
M−m
(n+1)!

[
(x− (b− b

n ))n+1− (x−b)n+1
]

where  b
n is as in (9.41).

Now, combining (9.43) and (9.44), we obtain

Le ≤ In ≤Ue (9.45)

where

In = Ia
n + Ib

n =
∫ b

a

(x− t)n

n!

(
F(n)(t)−m

)
dt

=
∫ b

a
F(t)dt −

n


k=1

Ek(x;a,b)+
m

(n+1)!
(
(x−b)n+1− (x−a)n+1) ,

Le = La +Lb =
M−m
(n+1)!

[
( a

n )n+1 +( b
n )n+1

]
,

Ue = Ua +Ub =
M−m
(n+1)!

[
(x−a)n+1− (x−a− a

n)n+1

+ (x−b+ b
n )n+1 − (x−b)n+1

]
.

Again, from (9.42) statement follows in the case when n is even. �

Taking n = 1 and x = (a + b)/2 in (9.38), produces (9.27) under Agarwal-Dragomir
conditions.
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Using the same technique similar inequalities were proved in a number of papers. In [1]
Agarwal, Čuljak and Pečarić derived inequality (9.38) for an odd n. For an even n, using
a somewhat different technique, they obtained a result which involves only the midpoint.
In [40], only the case n = 2 was considered. In [38] more special cases were considered.
The results obtained there follow from (9.38) by taking x = (a+ b)/2 and assuming that
function F satisfies F (k)(a) = (−1)k+1F (k)(b), for 1 < k < n.

In [54], Gauchman proved two inequalities involving Taylor’s remainder. Let Rn, f (c,x)
denote the nth Taylor’s remainder of function f (x) with center c:

Rn, f (c,x) = f (x)−
n


k=0

f (k)(c)
k!

(x− c)k.

Theorem 9.16 Let f : I → R and w : I → R be two functions, a,b ∈ I◦, a < b and let
f ∈Cn+1([a,b]) and w ∈C([a,b]). Assume that m≤ f (n+1)(x) ≤ M, m �= M and w(x) ≥ 0
for each x ∈ [a,b]. Then

(i)
1

(n+1)!

∫ b

b− 0
n

(x−b+ 0
n )n+1w(x)dx (9.46)

≤ 1
M−m

∫ b

a

[
Rn, f (a,x)−m

(x−a)n+1

(n+1)!

]
w(x)dx

≤ 1
(n+1)!

∫ b

a
[(x−a)n+1− (x−a− 0

n )n+1]w(x)dx

+
(−1)n+1

(n+1)!

∫ a+ 0
n

a
(a+ 0

n − x)n+1w(x)dx;

(ii)
1

(n+1)!

∫ a+ 0
n

a
(a+ 0

n − x)n+1w(x)dx (9.47)

≤ (−1)n+1

M−m

∫ b

a

[
Rn, f (b,x)−m

(x−b)n+1

(n+1)!

]
w(x)dx

≤ 1
(n+1)!

∫ b

a
[(b− x)n+1− (b− 0

n − x)n+1]w(x)dx

+
(−1)n+1

(n+1)!

∫ b

b− 0
n

(x−b+ 0
n )n+1w(x)dx;

where  0
n is defined by (9.39).

Taking n = 0 in Theorem 9.16 we obtain results given by Cerone and Dragomir in [36]
as special cases.

Addition of (9.46) and (9.47) upon taking n = 0 and w(x) = 1 followed by division by
2, produces (9.27) again.

In [45] Franjić, Pečarić and Perić gave a generalization of both Theorem 9.15 and The-
orem 9.16 in a sense that an inequality involving both the weight w(x) and the parameter x
is given.
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We introduce:

hk(s,t) =
1
k!

∫ t

s
(x− s)kw(x)dx

for s, t ∈ [a,b] and k ∈ N.

Theorem 9.17 Let F : [a,b] → R be such that F (n−1) is absolutely continuous on [a,b].
Assume that m≤ F(n)(x)≤M for each x ∈ [a,b]. Let w : I → R be integrable and such that
w(x) ≥ 0 for each x ∈ [a,b]. Let  ∈ [a,b]. Then, when n is odd we have

(M−m)hn(b− 0
n ,)−Mhn(b,)+mhn(a,)

≤
∫ b

a
F(x)w(x)dx+

n−1


k=0

[
F (k)(b)hk(b,)−F(k)(a)hk(a,)

]
(9.48)

≤ Mhn(a,)−mhn(b,)− (M−m)hn(a+ 0
n ,)

and when n is even we have

(M−m)[hn(− a
n ,)−hn(+ b

n ,)]+m[hn(a,)−hn(b,)]

≤
∫ b

a
F(x)w(x)dx+

n−1


k=0

[
F (k)(b)hk(b,)−F(k)(a)hk(a,)

]
(9.49)

≤ M[hn(a,)−hn(b,)]+ (M−m)[hn(b− b
n ,)−hn(a+ a

n ,)],

where  0
n ,  a

n and  b
n are defined by (9.39), (9.40) and (9.41), respectively.

Proof. For  ∈ [a,b], set

gk(x) = F (k)(x)−m, k = 0,1, . . .n

fk(x) =
1
k!

∫ 

x
(t− x)kw(t)dt k = 0,1, . . .n−1

for each x∈ [a,b]. Now we have: 0≤ gn(x)≤M−m, for each x∈ [a,b] , so gn(x) satisfies
the conditions of Theorem 2.2. It is easy to prove that

f ′k(x) = − fk−1(x)

and from there we conclude that for x ≤ , function fn−1(x) is nonincreasing. For x ≥ 
and odd n, fn−1(x) is again nonincreasing. However, for x ≥  and even n, fn−1(x) is
nondecreasing. Therefore, inequality (2.2) is in that case reversed.

Let us assume first that n is odd. From (2.2) we get

(M−m)
∫ b

b− 0
n

fn−1(x)dx ≤
∫ b

a
fn−1(x)gn(x)dx ≤ (M−m)

∫ a+ 0
n

a
fn−1(x)dx.

where

 0
n =

1
M−m

∫ b

a
(F (n)(x)−m)dx
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as defined in (9.39). Using integration by parts and the fact that f ′n−1(x) = − fn−2(x), we
easily obtain

In =
∫ b

a
fn−1(x)gn(x)dx (9.50)

=
∫ b

a
F(x)w(x)dx+

n−1


k=0

[F (k)(b)hk(b,)−F(k)(a)hk(a,)]

−mhn(a,)+mhn(b,).

The upper bound is

Uo =
M−m
(n−1)!

∫ a+ 0
n

a

[∫ 

x
(t − x)n−1w(t)dt

]
dx.

Assume first that ≤ a+ 0
n . Changing the order of integration, we obtain

Uo = (M−m)[hn(a,)−hn(a+ 0
n ,)]. (9.51)

Assuming ≥ a+ 0
n , we get the same expression for the upper bound again.

Analogously, after changing the order of integration in the case when  ≥ b− 0
n , the

lower bound equals

Lo =
M−m
(n−1)!

∫ b

b− 0
n

[∫ 

x
(t − x)n−1w(t)dt

]
dx

= (M−m)[hn(b− 0
n ,)−hn(b,)]. (9.52)

For ≤ b− 0
n , we get the same expression and thus, once again, obtain the same expres-

sion in both cases. Inequality (9.48) is produced by combining (9.50), (9.51) and (9.52),
so the statement is proved for the case when n is odd.

Assume now that n is even. fn−1(x) is nonincreasing on [a,] so inequality (2.2) gives
us:

La
e ≤

∫ 

a
fn−1(x)gn(x)dx ≤Ua

e . (9.53)

It is easy to check that a+ a
n ≤. We calculate both lower and upper bound by changing

the order of integration:

Ua
e = (M−m)

∫ a+ a
n

a
fn−1(x)dx = (M−m)[hn(a,)−hn(a+ a

n ,)],

La
e = (M−m)

∫ 

− a
n

fn−1(x)dx = (M−m)hn(− a
n ,),

where

 a
n =

1
M−m

∫ 

a
(F (n)(x)−m)dx

as defined in (9.40).
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On [,b], fn−1(x) is nondecreasing so inequality (2.2) is reversed. We have:

Lb
e ≤

∫ b


fn−1(x)gn(x)dx ≤Ub

e . (9.54)

This time b− b
n ≥, so it follows

Ub
e = (M−m)

∫ b

b− b
n

fn−1(x)dx = (M−m)[hn(b− b
n ,)−hn(b,)],

Lb
e = (M−m)

∫ + b
n


fn−1(x)dx = −(M−m)hn(+ b

n ,),

where

 b
n =

1
M−m

∫ b


(F (n)(x)−m)dx

as defined in (9.41).
Addition of (9.53) and (9.54) gives:

Le ≤ In ≤Ue

where

Ue = Ua
e +Ub

e and Le = La
e +Lb

e,

and thus inequality (9.49) is produced. The proof of this theorem is now complete. �

Taking w(x) = 1 in Theorem 9.17 recaptures Theorem 9.15. Taking  = b produces
inequality (9.46) and = a produces inequality (9.47). Of course, for w(x) = 1, n = 1 and
 = (a+b)/2, we get inequality (9.27) again.

Next, we give an alternative inequality for an even n which generalizes results from
[1]. Taking  = (a+b)/2 and w(x) = 1 will produce results from there.

Theorem 9.18 Assume assumptions of Theorem 9.17 are valid. Then, for  ∈ [a,b] and
even n, we have

m(hn(a,)−hn(b,))+ (M−m)|hn(b−n,)|

≤
∫ b

a
F(x)w(x)dx+

n−1


k=0

[
F(k)(b)hk(b,)−F(k)(a)hk(a,)

]
≤ M(hn(a,)−hn(b,))− (M−m)|hn(a+n,)|

where n =  a
n − b

n +b−, 0 ≤ n ≤ b−a.

Proof. We use Hayashi’s modification of Steffensen’s inequality. Set

fn−1(x) =

{
1

(n−1)!
∫ 
x (t − x)n−1w(t)dt, a ≤ x ≤

1
(n−1)!

∫ x
(t− x)n−1w(t)dt, ≤ x ≤ b.
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From the proof of Theorem 9.17 it is clear that fn−1 is nonincreasing on [a,b]. Taking

gn(x) =
{

F (n)(x)−m, a ≤ x ≤
M−F(n)(x), ≤ x ≤ b.

produces our statement. �

Results concerning Iyengar’s inequality given in this section can also be found in [46].
Furthermore, comparison between generalizations of Iyengar’s inequality obtained through
different methods, for a function f such that f ∈C2[a,b] and | f ′′(x)| ≤M can also be found
in [46].

In [132] Qi gave a survey of Iyengar’s inequality and its generalization given in Theo-
rem 9.13.

9.4 a(x)−monotonic functions

The following well known result can be found in [23, p. 133–134]:
If the linear differential equation

u′(t) = a(t)u(t), u(0) = c, (9.55)

and the linear differential inequality

v′(t) ≥ a(t)v(t), v(0) = c, (9.56)

are both valid for 0 ≤ t ≤ T , then

v(t) ≥ u(t), 0 ≤ t ≤ T. (9.57)

Differential inequality y′(x)−a(x)y(x) ≥ 0 is sometimes used as a definition of gener-
alized increasing functions. In this section we will observe an analoguous generalization,
given by Pečarić and Smoljak in [124], which we will call a(x)−monotonic functions.

Definition 9.1 Let f , a be real functions defined on interval I ⊆ R such that a f is inte-
grable. Function f is called a(x)−increasing on interval I if for every x,y ∈ I

(y− x)( f (y)− f (x)) ≥ (y− x)
∫ y

x
a(t) f (t)dt (9.58)

holds.
Function f is called a(x)−decreasing if the inequality in (9.58) is reversed.
Function f is called a(x)−monotonic if it satisfies (9.58) or the reversed inequality.
If two functions are both a(x)−increasing, or both a(x)−decreasing, we say that they are
a(x)−monotonic in the same sense.
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Notice that for a(x) = 0, f is monotonic.
If x �= y, (9.58) is equivallent to

f (y)− f (x)
y− x

≥ 1
y− x

∫ y

x
a(t) f (t)dt.

If f is a(x)−increasing, − f is a(x)−decreasing. So we will only give properties of
a(x)−increasing functions, because they are the same for a(x)−decreasing functions.

Properties of a(x)−increasing functions:

1) Let f and g be a(x)−increasing functions. Then f +g is a(x)−increasing.
If f and g are a(x)−monotonic functions (withouth further specifications), we can’t
conclude that f +g is a(x)−monotonic.

2) If f is a(x)−increasing function and  is nonnegative real number, then  f is
a(x)−increasing function.

In applications we often use a(x)−monotonicity criteria given in the following theo-
rem.

Theorem 9.19 If f ′ is a continuous function and a f an integrable function on interval I,
f is a(x)−monotonic on interval I if and only if the function f ′(x)−a(x) f (x) is nonnegative
or non-positive on I. More precisely, f is a(x)−increasing function if and only if f ′(x)−
a(x) f (x) ≥ 0; f is a(x)−decreasing function if and only if f ′(x)−a(x) f (x) ≤ 0.

Proof. Let f be a(x)−increasing function, then for x,y ∈ I such that x �= y we have

f (y)− f (x)
y− x

≥ 1
y− x

∫ y

x
a(t) f (t)dt.

Taking a limit when y → x we get f ′(x) ≥ a(x) f (x).
Conversely, let f ′(x) ≥ a(x) f (x). For x,y ∈ I such that x < y we have that∫ y

x
f ′(t)dt ≥

∫ y

x
a(t) f (t)dt. (9.59)

Since f ′ is continuous, we have that for every [x,y] ⊂ I,
∫ y
x f ′(t)dt = f (y)− f (x). Further-

more, since x < y we can multiply inequality (9.59) by y− x and get

(y− x)( f (y)− f (x)) ≥ (y− x)
∫ y

x
a(t) f (t)dt.

Hence, f is a(x)−increasing function.
Using the same reasoning we get criteria for a(x)−decreasing functions. So the proof is
completed. �

Note that for f differentiable and a(x)−monotonic we have:

(i) for a(x) = 1
x ,

f (x)
x is monotonic (this case is studied in [128]);
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(ii) for a(x) = a
x , where a is some constant, f (x)

xa is monotonic;

(iii) for a(x) = h′(x)
h(x) , f

h is monotonic (this case is studied in [77]).

Proof of this remarks follows from a(x)−monotonicity criteria given in Theorem 9.19.

For example, for a(x) = 1
x and a(x)−increasing function f , we have f ′(x) ≥ f (x)

x , so for

x > 0 we have
(

f (x)
x

)′
= x f ′(x)− f (x)

x2 ≥ f (x)− f (x)
x2 = 0, hence f (x)

x is increasing function for

x > 0.

Theorem 9.20 A function f is a(x)−increasing if and only if the function F defined by

F(x) = f (x)−
∫ x

x0

a(t) f (t)dt (9.60)

is increasing.

Proof. Suppose that y > x. Then (9.58) is equivalent to

f (y)− f (x) ≥
∫ y

x
a(t) f (t)dt

i.e.

f (y)− f (x) ≥
∫ y

x0

a(t) f (t)dt −
∫ x

x0

a(t) f (t)dt

i.e.

f (y)−
∫ y

x0

a(t) f (t)dt ≥ f (x)−
∫ x

x0

a(t) f (t)dt

i.e.
F(y) ≥ F(x).

Since we have equivalence in each step, the proof is completed. �

We can apply the function F defined by (9.60) to inequalities for monotonic functions
and get inequalities for a(x)−monotonic functions. Here we give Steffensen’s inequality
for a(x)−monotonic functions.

Corollary 9.4 Suppose that f is a(x)−increasing and g is integrable on [b,c] with 0 ≤
g ≤ 1 and  =

∫ c
b g(x)dx. Then we have

∫ b+

b
f (x)dx−

∫ b+

b

∫ x

x0

a(t) f (t)dt dx ≤
∫ c

b
f (x)g(x)dx−

∫ c

b

(
g(x)

∫ x

x0

a(t) f (t)dt

)
dx

≤
∫ c

c−
f (x)dx−

∫ c

c−

∫ x

x0

a(t) f (t)dt dx.

(9.61)

The inequalities are reversed for f a(x)−decreasing.
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Proof. Let the function F be defined by (9.60). Since, F is increasing we can apply
Steffensen’s inequality, hence∫ b+

b
F(x)dx ≤

∫ c

b
F(x)g(x)dx ≤

∫ c

c−
F(x)dx.

By elementary calculation we get (9.61). �

Theorem 9.21 Let u(t) = ce
∫ t
0 a(t)dt for 0 ≤ t ≤ T . Let v satisfy (9.56) with a(x) ≥ 0 for

0 ≤ x ≤ T and let v(0) = c. Then v(x)−u(x) is an increasing function for 0 ≤ x ≤ T .

Proof. Notice that u is the solution of the differential equation u′(t)− a(t)u(t) = 0 with
u(0) = c, so u satisfies (9.55). Hence (9.57) is valid. Since v satisfies (9.56), from Theo-
rem 9.19 we have that v is a(x)−monotonic function. So

(y− x)(v(y)− v(x))≥ (y− x)
∫ y

x
a(t)v(t)dt. (9.62)

For x,y ∈ [0,T ] such that x < y we can divide (9.62) by y−x and then apply (9.57). We get

v(y)− v(x)≥
∫ y

x
a(t)v(t)dt ≥

∫ y

x
a(t)u(t)dt =

∫ y

x
u′(t)dt = u(y)−u(x).

Hence,
v(y)−u(y)≥ v(x)−u(x).

So the proof is completed. �

Now we give Steffensen’s inequality for function v(x)−u(x).

Corollary 9.5 Let functions u and v be such that conditions of Theorem 9.21 are satisfied.
Let g be an integrable function on [0,T ] with 0 ≤ g ≤ 1 and  =

∫ T
0 g(t)dt. Then we have∫ 

0
(v(t)−u(t))dt ≤

∫ T

0
(v(t)−u(t))g(t)dt ≤

∫ T

T−
(v(t)−u(t))dt. (9.63)

Proof. From Theorem 9.21 we have that v(x)− u(x) is an increasing function, so we can
apply Steffensen’s inequality and get (9.63). �
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9.5 Other applications

In this section we will give a short survey of other applications of Steffensen’s inequality
in statistics, functional equations, time scales and special functions.

Statistics

In [48] Gajek and Okolewski proved some bounds for order and record statistics using
Steffensen’s inequality. In [49] the same authors proved Steffensen type bounds for ex-
pectations of the record statistics via Moriguti’s inequality combined with Steffensen’s
inequality. Furthermore, in [50] Gajek and Okolewski improved some lower and upper
Steffensen type bounds for expectations of the record statistics using relationship between
distributions of the kth record statistics for different values of k.

Combining Moriguti and Steffensen inequalities, Balakrishnan and Rychlik obtained
sharp upper bounds for the expectations of arbitrary linear combinations of order statistics
from independent identically distributed samples. They expressed bounds in terms of ex-
pectations of the left truncated parent distribution and constants that depend only on the
coefficients of the linear combinations. For details see [22].

Functional equations

At the 9th International Conference on Functional Equations and Inequalities held in Złockie
in 2003, Corovei proposed to look for f and g such that the middle term in Steffensen’s
inequality is the arithmetic mean of the other two. Let x and y vary in [a,b] and let us write
the relevant functional equation with the unknown functions f and g:∫ x+(x,y)

x
f (t)dt +

∫ y

y−(x,y)
f (t)dt = 2

∫ y

x
f (t)g(t)dt, (9.64)

where (x,y) :=
∫ y
x g(t)dt and (x,y) ∈ [a,b]2.

In [37] Choczewski, Corovei and Matkowska dealed with equation (9.64) for a differ-
entiable f and a continuous g.

Theorem 9.22 Assume that g : [a,b] → [0,1] is a continuous function and either:

(i) g(x) = K, x ∈ (a,b) and K �= {0,1, 1
2}

or

(ii) 0 < g(x) < 1, x ∈ (a,b) and either g(a) = 0, g(b) = 1 or g(a) = 1, g(b) = 0.

Then the function f : [a,b]→ R, differentiable in [a,b], satisfies equation (9.64) if and only
if it is of the form:
in case (i) f (x) = x+ , x ∈ [a,b],
in case (ii) f (x) = A, x ∈ [a,b],
where , ,A are arbitrary real numbers.
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They also considered a functional equation related to (9.64), with three, sufficiently
regular, unknown functions: f , g and h, the latter replacing limits of integration in (9.64)
which contain (x,y).

Special functions

In [35] Cerone utilised Steffensen’s inequality and bounds for the Chebyshev functional to
obtain bounds for some classical special functions. The author demonstrated methodolo-
gies through obtaining novel and useful bounds for the Bessel function of the first kind, the
Beta function and the Zeta function.

Time scales

In [18] Anderson gave a time scale version of Steffensen’s inequality using nabla integral
as follows:
Let a,b ∈ T


 and let f ,g : [a,b]T → R be nabla integrable functions, with f of one sign

and decreasing and 0 ≤ g ≤ 1 on [a,b]T. Assume l, ∈ [a,b]T are such that

b− l ≤
∫ b

a
g(t)t ≤ y−a if f ≥ 0,t ∈ [a,b]T,

−a ≤
∫ b

a
g(t)t ≤ b− l if f ≤ 0,t ∈ [a,b]T.

Then ∫ b

l
f (t)t ≤

∫ b

a
f (t)g(t)t ≤

∫ 

a
f (t)t.

As noted by Ozkan and Yildirim in [100], in Anderson’s result we could replace the
nabla integrals with delta integrals under the same hypothesis and get an analogous result.

In [100] Ozkan and Yildirim also extended some generalizations of Steffensen’s in-
equality to an arbitrary time scale. They obtained Steffensen’s inequality on time scales
via the diamond- dynamic integral, which is defined as a linear combination of the delta
and nabla integrals.
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[66] J. Jakšetić, J. Pečarić, Steffensen’s means, J. Math. Inequal. 2(4) (2008), 487–498.
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[74] S. Kovač, J. Pečarić, Weighted version of general integral formula of Euler type,
Math. Inequal. Appl. 13(3) (2010), 579–599.
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Verlag, Berlin-Heidelberg-New York, 1970.

[96] G. S. Mudholkar, M. Freimer, P. Subbaiah, An extension of Hölder’s inequality, J.
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[118] J. Pečarić, A. Perušić, K. Smoljak, Cerone’s generalizations of Steffensen’s inequal-
ity, Tatra Mt. Math. Publ. to appear.
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