
Chapter1
Basic results and definitions

1.1 Convex functions

In this section we give definitions and some properties of convex functions. Convex func-
tions are very important in the theory of inequalities. The third chapter of the classical
book by Hardy, Littlewood and Pólya [60] is devoted to the theory of convex functions
(see also [97]).

Definition 1.1 Let I be an interval in R. A function f : I → R is called convex if

f (x+(1− )y)≤  f (x)+ (1− ) f (y) (1.1)

for all points x,y ∈ I and all  ∈ [0,1]. It is called strictly convex if the inequality in (1.1)
holds strictly whenever x and y are distinct points and  ∈ (0,1).

If the inequality in (1.1) is reversed, then f is said to be concave. It is called strictly
concave if the reversed inequality in (1.1) holds strictly whenever x and y are distinct points
and  ∈ (0,1).

If f is both convex and concave, f is said to be affine.

Remark 1.1 (a) For x,y ∈ I, p,q ≥ 0, p+q > 0, (1.1) is equivalent to

f

(
px+qy
p+q

)
≤ p f (x)+q f (y)

p+q
.

(b) A simple geometrical interpretation of (1.1) is that the graph of f lies below its
chords.

1



2 1 BASIC RESULTS AND DEFINITIONS

(c) If x1,x2,x3 are three points in I such that x1 < x2 < x3, then (1.1) is equivalent to∣∣∣∣∣∣
x1 f (x1) 1
x2 f (x2) 1
x3 f (x3) 1

∣∣∣∣∣∣= (x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) ≥ 0

which is equivalent to

f (x2) ≤ x2− x3

x1− x3
f (x1)+

x1− x2

x1− x3
f (x3),

or, more symmetrically and without the condition of monotonicity on x1,x2,x3, to

f (x1)
(x1 − x2)(x1− x3)

+
f (x2)

(x2− x3)(x2 − x1)
+

f (x3)
(x3 − x1)(x3 − x2)

≥ 0.

Proposition 1.1 If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2,
then the following inequality is valid

f (x2)− f (x1)
x2− x1

≤ f (y2)− f (y1)
y2− y1

.

If the function f is concave, the inequality is reversed.

Definition 1.2 Let I be an interval in R. A function f : I → R is called convex in the
Jensen sense, or J-convex on I (midconvex, midpoint convex) if for all points x,y ∈ I the
inequality

f

(
x+ y

2

)
≤ f (x)+ f (y)

2
(1.2)

holds. A J-convex function is said to be strictly J-convex if for all pairs of points (x,y),x �=
y, strict inequality holds in (1.2).

In the context of continuity the following criterion of equivalence of (1.1) and (1.2) is
valid.

Theorem 1.1 Let f : I → R be a continuous function. Then f is a convex function if and
only if f is a J-convex function.

Definition 1.3 Let I be an interval in R. A function f : I → R is called Wright convex
function if for each x ≤ y, z ≥ 0, x,y+ z ∈ I, the inequality

f (x+ z)− f (x) ≤ f (y+ z)− f (y)

holds.

Next, we want to define convex functions of higher order, but first we need to define
divided differences.
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Definition 1.4 Let f be a function defined on [a,b]. The n-th order divided difference of
f at distinct points x0,x1, . . . ,xn in [a,b] is defined recursively by

[x j; f ] = f (x j), j = 0, . . . ,n

and

[x0,x1, . . . ,xn; f ] =
[x1, . . . ,xn; f ]− [x0, . . . ,xn−1; f ]

xn− x0
. (1.3)

Remark 1.2 The value [x0,x1, . . . ,xn; f ] is independent of the order of the points x0, . . . ,xn.
The previous definition can be extended to include the case in which some or all of the
points coincide by assuming that x0 ≤ ·· · ≤ xk and letting

[x, . . . ,x︸ ︷︷ ︸
j+1 times

; f ] =
f ( j)(x)

j!
,

provided that f ( j)(x) exists. Note that (1.3) is equivalent to

[x0, . . . ,xn; f ] =
n


k=0

f (xk)
̃(xk)

, where ̃(xk) =
n


j=0
j �=k

(xk − x j).

Definition 1.5 Let n∈ N0. A function f : [a,b]→ R is said to be n-convex on [a,b] if and
only if for every choice of n+1 distinct points x0,x1, . . . ,xn in [a,b]

[x0,x1, . . . ,xn; f ] ≥ 0. (1.4)

If the inequality in (1.4) is reversed, the function f is said to be n-concave on [a,b] . If the
inequality is strict, f is said to be a strictly n−convex (n−concave) function.

Remark 1.3 Particularly, 0−convex functions are nonnegative functions, 1−convex func-
tions are nondecreasing functions, 2−convex functions are convex functions.

Theorem 1.2 If f (n) exists, then f is n−convex if and only if f (n) ≥ 0.

Definition 1.6 A positive function f is said to be logarithmically convex on an interval
I ⊆ R if log f is a convex function on I, or equivalently if for all x,y ∈ I and all  ∈ [0,1]

f (x+(1−)y)≤ f  (x) f 1−(y). (1.5)

For such a function f , we shortly say that f is log-convex.
It is said to be log-concave if the inequality in (1.5) is reversed.

Definition 1.7 A positive function f is said to be log-convex in the Jensen sense if for all
x,y ∈ I

f 2
(

x+ y
2

)
≤ f (x) f (y)

holds, i.e. if log f is convex in the Jensen sense.



4 1 BASIC RESULTS AND DEFINITIONS

As a consequence of results from Remark 1.1 (c) and Proposition 1.1 we get the fol-
lowing inequality for a log-convex function f and a < b < c:

[ f (b)]c−a ≤ [ f (a)]c−b [ f (c)]b−a. (1.6)

Corollary 1.1 For a log-convex function f on an interval I and p,q,r,s ∈ I such that
p ≤ r, q ≤ s, p �= q, r �= s, it holds(

f (p)
f (q)

) 1
p−q

≤
(

f (r)
f (s)

) 1
r−s

. (1.7)

Inequality (1.7) is known as Galvani’s theorem for log-convex functions f : I → R.

1.2 Exponentially convex functions

In this section we introduce the definition of exponential convexity as given by Bernstein
in [27] (see also [13], [93], [94]). Throughout this section I is an open interval in R.

Definition 1.8 A function h : I → R is said to be exponentially convex on I if it is contin-
uous and

n


i, j=1

i jh(xi + x j) ≥ 0

for every n∈N and all sequences (n)n∈N and (xn)n∈N of real numbers, such that xi +x j ∈
I, 1 ≤ i, j ≤ n.

The following Proposition follows directly from the previous definition.

Proposition 1.2 For a function h : I → R the following statements are equivalent:

(i) h is exponentially convex

(ii) h is continuous and
n


i, j=1

i jh

(
xi + x j

2

)
≥ 0, (1.8)

for all n ∈ N, all sequences (n)n∈N of real numbers, and all sequences (xn)n∈N in
I.

Note that for n = 1, it follows from (1.8) that an exponentially convex function is
nonnegative.

Directly from the definition of positive semi-definite matrix and inequality (1.8) we get
the following result.
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Corollary 1.2 If h is exponentially convex on I, then the matrix[
h

(
xi + x j

2

)]n

i, j=1

is a positive semi-definite matrix. In particular,

det

[
h

(
xi + x j

2

)]n

i, j=1
≥ 0, (1.9)

for every n ∈ N and every choice of xi ∈ I, i = 1, . . . ,n.

Remark 1.4 Note that for n = 2 from (1.9) we obtain

h(x1)h(x2)−h2
(

x1 + x2

2

)
≥ 0.

Hence, an exponentially convex function is log-convex in the Jensen sense, and, being
continuous, it is also a log-convex function.

We continue with the definition of a n-exponentially convex function.

Definition 1.9 A function h : I → R is n-exponentially convex in the Jensen sense on I if

n


i, j=1

i jh

(
xi + x j

2

)
≥ 0

for all choices of i ∈ R and xi ∈ I, i = 1, . . . ,n.

A function h : I → R is n-exponentially convex on I if it is n-exponentially convex in
the Jensen sense and continuous on I.

It is clear from the definition that 1-exponentially convex functions in the Jensen sense
are in fact nonnegative functions. Also, n-exponentially convex functions in the Jensen
sense are k-exponentially convex in the Jensen sense for every k ∈ N, k ≤ n.

A function h : I →R is exponentially convex in the Jensen sense on I if it is n−exponen-
tially convex in the Jensen sense for all n ∈ N.

Remark 1.5 It is known that h : I → R is log-convex in the Jensen sense if and only if for
every , ∈ R and x,y ∈ I

2h(x)+2h

(
x+ y

2

)
+ 2h(y) ≥ 0.

It follows that a positive function is log-convex in the Jensen sense if and only if it is 2-
exponentially convex in the Jensen sense. Similarly, a positive function is log-convex if
and only if it is 2-exponentially convex.
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1.3 The Gamma function and the Gauss
hypergeometric function

In this section we give definitions and basic properties of the Gamma function and the
Gauss hypergeometric function. More details about these functions can be found e.g. in
[73].

The Gamma function (z) is a function of complex variable defined by the Euler inte-
gral of the second kind

(z) =
∫ 

0
tz−1e−tdt, (z) > 0.

This integral is convergent for every z ∈ C with (z) > 0. The Gamma function has a
property

(z+1) = z(z), (z) > 0,

and a simple consequence of it is the following identity

(n+1) = n!, n ∈ N0.

Extension of the Gamma function to (z) ≤ 0 is given by

(z) =
(z+n)

(z)n
, (z) > −n; n ∈ N; z /∈ Z

−
0 = {0,−1,−2, . . .},

where (z)n is the Pochhammer symbol defined for z ∈ C and n ∈ N0 by

(z)0 = 1; (z)n = z(z+1) · · ·(z+n−1),n∈ N.

The Gauss hypergeometric function 2F1(a,b;c;z) is defined as the sum of the hyperge-
ometric series

2F1(a,b;c;z) =



k=0

(a)k(b)k

(c)k

zk

k!
, (1.10)

where |z|< 1; a,b∈ C, c ∈ C\Z
−
0 . The series in (1.10) is absolutely convergent for |z|< 1

and for |z| = 1, when (c−a−b) > 0.
The Euler integral representation of the hypergeometric function is given by

2F1(a,b;c;z) =
(c)

(b)(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt,

where 0 < (b) < (c); and |arg(1− z)|<  .
Basic properties of the Gauss hypergeometric function are:

2F1(b,a;c;z) = 2F1(a,b;c;z),
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2F1(a,b;c;0) = 2F1(0,b;c;z) = 1,

2F1(a,b;b;z) = (1− z)−a,

2F1(a,b;c;1) =
(c)(c−a−b)
(c−a)(c−b)

, (c−a−b)> 0.

For the Gauss hypergeometric function, the following Euler transformation formula
holds

2F1(a,b;c;z) = (1− z)c−a−b
2F1(c−a,c−b;c;z).

1.4 Fractional integrals and fractional derivatives

In this section we give definitions and properties of fractional integrals and fractional
derivatives. More details can be found in [16], [59], [73] and [139].

First, we recall definitions and properties of integrable, continuous and absolutely con-
tinuous functions.

By Cm[a,b], m ∈ N0, we denote the space of all functions which are m times continu-
ously differentiable on [a,b], i.e.

Cm[a,b] = { f : [a,b] → R : f (k) ∈C[a,b], k = 0,1, . . . ,m}.

By AC[a,b] we denote the space of all absolutely continuous functions on the finite
interval [a,b], i.e. −< a < b < . By ACm[a,b], m ∈ N, we denote the space

ACm[a,b] = { f ∈Cm−1[a,b] : f (m−1) ∈ AC[a,b]}.

Obviously, AC1[a,b] = AC[a,b].
Let [a,b] be an interval in R, where−≤ a < b≤. We denote by Lp[a,b], 1≤ p <,

the space of Lebesgue measurable functions f such that
∫ b
a | f (t)|pdt <  with the norm

‖ f‖p =
(∫ b

a
| f (t)|pdt

) 1
p

,

and by L[a,b] the space of all measurable and almost everywhere bounded functions on
[a,b], with the norm

‖ f‖ = esssup{| f (x)| : x ∈ [a,b]}.
For any  ∈ R we denote by [] the integral part of  i.e. [] is the integer k satisfying

k ≤  < k+1.
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The Riemann-Liouville fractional integral

Let [a,b] be a finite interval in R, i.e. − < a < b < . The left-sided Riemann-Liouville
fractional integral Ia+ f of order  > 0 is defined by

Ia+ f (x) =
1

()

∫ x

a
f (y)(x− y)−1dy, x ∈ [a,b].

For  = n ∈ N the definition of the left-sided Riemann-Liouville fractional integral
coincides with the n−th integral of the form

In
a+ f (x) =

∫ x

a
dy1

∫ y1

a
dy2 · · ·

∫ yn−1

a
f (yn)dyn =

1
(n−1)!

∫ x

a
(x− y)n−1 f (y)dy.

The generalized Riemann-Liouville fractional derivative

The left-sided generalized Riemann-Liouville fractional derivative D
a+ f of order  > 0 is

defined by

D
a+ f (x) :=

dn

dxn In−
a+ f (x) =

1
(n−)

dn

dxn

∫ x

a
(x− y)n−−1 f (y)dy, x ∈ [a,b],

where n = []+1.
For  = n ∈ N we have Dn

a+ f (x) = f (n)(x), while for  = 0 we put D0
a+ f (x) = f (x).

Also, we use
I−a+ f := D

a+ f if  > 0.

Definition 1.10 Let  > 0 and 1 ≤ p ≤ . By Ia+(Lp) we denote the following space of
functions

Ia+(Lp) = { f : f = Ia+ ,  ∈ Lp[a,b]}.
A characterization of the space Ia+(L1) is given in the following theorem.

Theorem 1.3 Let  > 0 and n = []+1. A function f belongs to Ia+(L1) if and only if

In−
a+ f ∈ ACn[a,b] ,

d j

dx j I
n−
a+ f (a) = 0 , j = 0,1, . . . ,n−1 .

Composition identity for the left-sided generalized Riemann-Liouville fractional deriva-
tive is given by Handley, Koliha and Pečarić in [59]. We use the following lemma which
summarizes conditions in composition identity for the left-sided generalized Riemann-
Liouville fractional derivatives given in [20].

Lemma 1.1 Let  >  ≥ 0, n = [ ]+1, m = []+1. Composition identity

D
a+ f (x) =

1
( −)

∫ x

a
(x− y)−−1D

a+ f (y)dy , x ∈ [a,b]

is valid if one of the following conditions holds:
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(i) f ∈ Ia+
(
L1
)
.

(ii) In−
a+ f ∈ ACn[a,b] and D−k

a+ f (a) = 0 for k = 1, . . .n.

(iii) D−1
a+ f ∈ AC[a,b], D−k

a+ f ∈C[a,b] and D−k
a+ f (a) = 0 for k = 1, . . .n.

(iv) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b],  − /∈ N, D−k
a+ f (a) = 0 for k = 1, . . . ,n and

D−k
a+ f (a) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b],  − = l ∈ N, D−k
a+ f (a) = 0 for k = 1, . . . , l.

(vi) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b] and f (k)(a) = 0 for k = 0, . . . ,n−2.

(vii) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b],  /∈ N and D−1
a+ f is bounded in a neighbor-

hood of t = a.

The Caputo fractional derivative

The following type of fractional derivative which we use is the Caputo fractional derivative.
We give the definition from [16].

Definition 1.11 Let  > 0, n = []+1, f ∈ ACn[a,b]. The Caputo fractional derivative
D∗a f is defined by

D
∗a f (t) =

1
(n−)

∫ t

a

f (n)(s)
(t − s)−n+1 ds,

for every t ∈ [a,b].

For  = n ∈ N we have Dn∗a f (x) = f (n)(x), while for  = 0 we put D0∗a f (x) = f (x).

The Canavati fractional derivative

A definition of the Canavati fractional derivative is given in [16], but we use it with some
new conditions given in [19].

Let  > 0 and n = []+1. By C
a+[a,b] we denote the space defined by

C
a+[a,b] = { f ∈Cn−1[a,b] : In−

a+ f (n−1) ∈C1[a,b]}.
Definition 1.12 Let  > 0, n = []+ 1. The left-sided Canavati fractional derivative of
f ∈C

a+[a,b], denoted by C1D
a+ f , is defined by

C1D
a+ f (x) =

d
dx

In−
a+ f (n−1)(x) =

1
(n−)

d
dx

∫ x

a
(x− t)n−−1 f (n−1)(t)dt.

For  = n ∈ N we have C1Dn
a+ f (x) = f (n)(x), while for  = 0 we put C1D0

a+ f (x) =
f (x).

A theorem on composition identity for the left-sided Canavati fractional derivative is
proved by Anastassiou in [16]. We use an improvement of that theorem with weaker
conditions given in [19].
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Lemma 1.2 Let  > ≥ 0, n = [ ]+1, m = []+1. Let f ∈C
a+[a,b] such that f (i)(a) =

0, i = m−1, . . . ,n−2. Then f ∈C
a+[a,b] and

C1D
a+ f (x) =

1
( −)

∫ x

a
(x− t)−−1 C1D

a+ f (t)dt, x ∈ [a,b].

The fractional integral of a function f with respect to a given function g

Let (a,b)(−≤ a < b ≤ ) be a finite or infinite interval in R and let  > 0. Let g be an
increasing function on (a,b) such that g′ is continuous on (a,b). The left-sided fractional
integral of a function f with respect to a given function g on [a,b] is defined by

Ia+;g f (x) =
1

()

∫ x

a

g′(y) f (y)dy
[g(x)−g(y)]1−

, x > a.

Remark 1.6 If g(x)= x, then Ia+;x f coincides with the left-sided Riemann-Liouville frac-
tional integral Ia+ f .

The Hadamard fractional integral

Let (a,b) (0≤ a < b≤) be a finite or infinite interval in R
+ and let  > 0. The left-sided

Hadamard fractional integral of order  > 0 is defined by

Ja+ f (x) =
1

()

∫ x

a

(
log

x
y

)−1 f (y)dy
y

, a < x < b.

Note that the left-sided Hadamard fractional integral of order  is a special case of the
left-sided fractional integral of a function f with respect to the given function g, where
g(x) = logx on [a,b] where 0 < a < b ≤ .

The Erdélyi-Kober fractional integral

Let (a,b)(0≤ a < b≤) be a finite or infinite interval in R
+. Let  > 0, > 0 and  ∈R.

The left-sided Erdélyi-Kober fractional integral of order  > 0 is defined by

Ia+; ; f (x) =
x−(+)

()

∫ x

a

y+−1 f (y)dy
(x − y )1− , a < x < b.

The mixed Riemann-Liouville fractional integral

Multidimensional fractional integrals are natural generalizations of corresponding one-
dimensional fractional integrals.
For x = (x1, ...,xn) ∈ R

n and  = (1, ...,n) ∈ R
n, we use the following notation:

() = (1) · . . . ·(n); x = x1
1 . . .xn

n ;

x

=

x1

. . .

xn

;

[a,b] = [a1,b1]×·· ·× [an,bn];a = (a1, . . . ,an) ∈ R
n,b = (b1, . . . ,bn) ∈ R

n


