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Preface

The study of convex functions as an original mathematical discipline began around the turn
of the last century with the work of Jensen [47] (the french translation is [48]), Hermite
[28], and Hölder [45], to mention just some of decisive figures. In [48], Jensen obtained his
famous inequality for convex functions. One of his principal motivation was to extend the
arithmetic and geometric mean inequality. Jensen’s inequality is the basic of important in-
equalities in mathematics (for example, Hölder’s and Minkowski’s inequalities), and it has
many applications. Among such disciplines is the theory of means, which uses Jensen’s
inequality as an indispensable tool. A great deal of attention has been devoted to Jensen’s
inequality, its various generalizations, extensions and variants have appeared in the litera-
ture, and the subject is growing rapidly.

Specifically, a number of attempts have been made to refine Jensen’s inequality, namely
to solve the problem of determining expressions between the left hand side and the right
hand side of Jensen’s inequality. Motivated by these investigations, our book aims to col-
lect results about refinements of Jensen’s inequality; to provide methods of constructing
refinements of Jensen’s inequality, with emphasis on the combinatorial improvements; con-
formation of old results from new points of view and insights; to define quasi-arithmetic
and mixed symmetric means corresponding to the introduced refinements; to generate
Cauchy means by using the refinements and the notion of exponential convexity; to study
the monotonicity all of these means. It was not our intention to collect all known results in
the topic, we wanted to give such an overview which would open the way and inspire for
further exploration.

To help the reader, basic facts and conditions are occasionally repeated.
The book consists of nine chapters. In the first four chapters we essentially deal with

the refinements of the discrete Jensen’s inequality. In the fifth chapter refinements for the
integral Jensen’s inequality are given. The sixth chapter contains mean value theorems and
their applications to Cauchy means via nontrivial classes of exponentially convex func-
tions. Refinements of Hölder’s and Minkowski’s inequalities are found in the seventh
chapter. Refinements for operator convex functions are considered in the eighth chapter.
Finally, the ninth chapter is about refinements of determinental inequalities of Jensen’s
type.

While writing this book, L. Horváth was supported by Hungarian National Founda-
tions for Scientific Research Grant No. K101217, K. A. Khan was supported by Higher
Education Commission Pakistan and Abdus Salam School of Mathematical Sciences, GC
University Lahore, Pakistan whereas J. Pečarić was supported by the University of Zagreb,
Croatia under the Research Grant VIF 5.12.2.1.
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Notation

x := y x is defined by this equation

N := {0,1, . . .} set of natural numbers

N+ := {1, . . .} set of positive integers

R set of real numbers

Intervals in R are denoted by [a,b], [a,b), (a,b] and (a,b).

[a] the largest natural number that does not exceed a ∈ R

Rn n-dimensional Euclidean space

⊂, ∪, ∩, \ set theoretic symbols

/0 the empty set

P(X) power set of a set X

|X | number of elements of a set X

Functions from a set X into a set Y are denoted by f : X → Y or by x → f (x) (x ∈ X).

f ◦ g composition of the function g with the function f

id the indentity function of a proper set

C (I) space of continuous functions on an interval I

C2 (I) space of two times continuously differentiable functions on an interval I

A◦ interior of the set A

S(I) class of all self-adjoint bounded operators on a complex Hilbert space

whose spectra are contained in an interval I ⊂ R

Sp(A) spectrum of a bounded operator A on on a complex Hilbert space

Mm set of positive definite matrices of order m

|M| determinant of a square matrix M

M( j) submatrix of a square matrix M obtained by deleting the jth row

and column of M

M[k] principal submatrix of a square matrix M formed by taking

the first k rows and columns of M

BBF class of Bellman-Bergstrom-Fan functionals

vii





Contents

Preface v

Notation vii

1 Introduction 1
1.1 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Interpolations of Jensen’s Inequality . . . . . . . . . . . . . . . . . . . . 4
1.3 Quotients for samples without repetitions . . . . . . . . . . . . . . . . . 8

1.3.1 New Proof of Theorem . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Applications of Quotient inequalities . . . . . . . . . . . . . . . . . . . . 14
1.5 Application to Mixed Symmetric Means . . . . . . . . . . . . . . . . . . 19

2 Refinements of Jensen’s Inequality 25
2.1 A Refinement of the Discrete Jensen’s Inequality . . . . . . . . . . . . . 25

2.1.1 Examples and Mixed Symmetric Means Related to
Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.2 Examples and Mixed Symmetric Means Related to
Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 A New Treatment of Discrete Jensen’s Inequality . . . . . . . . . . . . . 42
2.2.1 Examples and Mixed Symmetric Means Related to

Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3 Parameter Dependent Refinement of Discrete Jensen’s inequality . . . . . 55

2.3.1 Some lemmas and the proofs of Theorem 2.5-2.7 . . . . . . . . . 57
2.3.2 Applications to Mixed Symmetric Means . . . . . . . . . . . . . 64

3 Further Refinements of Jensen’s Inequality 67
3.1 Preliminary results and the proofs . . . . . . . . . . . . . . . . . . . . . 70
3.2 Applications to Mixed means . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Popoviciu Type Inequalities 81
4.1 Generalization of Popoviciu’s Inequality . . . . . . . . . . . . . . . . . . 82
4.2 Popoviciu Inequality for 2D-Convex Functions . . . . . . . . . . . . . . 84

ix



5 Refinements Including Integral Jensen’s Inequality 87
5.0.1 Mixed Symmetric Means Related to Theorems (5.3-5.5) . . . . . 97

5.1 New Refinement of Classical Jensen’s Inequality . . . . . . . . . . . . . 102
5.1.1 Mixed Symmetric Means Related to Theorem 5.7 . . . . . . . . . 104

5.2 Another Refinement of integral form of Jensen’s Inequality . . . . . . . . 105

6 Mean Value Theorems and Exponential Convexity 125
6.1 Mean Value Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Exponential Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Applications to Cauchy Means . . . . . . . . . . . . . . . . . . . . . . . 137
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Chapter1
Introduction

1.1 Convex Functions

Convex functions are very important in the theory of inequalities. The foundations of the
theory of convex functions are due to the Danish mathematician and engineer J. L. W. V.
Jensen (1859 – 1925).

The natural domain of the different type of convex functions is a convex set in a real
vector space V : we say that the subset C ⊂V is convex if the segment

{x1 +(1− )x2 |  ∈ [0,1]}
is a subset of C for every x1,x2 ∈C.

The convex sets in R exactly the intervals.
Investigation of means under the action of functions is an interesting task. The sim-

plest case which deals with the arithmetic mean leads to the mid-convex (or the J-convex)
functions.
J-convex function [69, p.5]: Let V be a real vector space, and C ⊂ V be a convex set. A
function f : C → R is called convex in the or mid-convex if

f

(
x1 + x2

2

)
≤ f (x1)+ f (x2)

2
(1.1)

for all x1,x2 ∈C.
A J-convex function f is called strictly J-convex if for all pairs of points (x1,x2) ∈

C×C, x1 	= x2, strict inequality holds in (1.1).

1



2 1 INTRODUCTION

Convex function [69, p.1]: Let V be a real vector space, and C ⊂ V be a convex set. A
function f : C → R is called convex if

f ( x1 + (1− )x2) ≤  f (x1) + (1− ) f (x2) (1.2)

holds for all x1,x2 ∈C and  ∈ [0,1].
f is called strictly convex if strict inequality holds in (1.2) for x1 	= x2 and  ∈ (0,1). If the
inequality in (1.2) is reversed, then f is called concave function. If it is strict for all x1 	= x2

and  ∈ (0,1), then f is called strictly concave.
Some characterization of convex functions of a real variable can be found in the fol-

lowing three results.

Theorem 1.1 [63]Let I ⊂ R be an interval. Then f : I → R is convex, if and only if

(x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) ≥ 0 (1.3)

holds for every x1,x2,x3 ∈ I such that x1 < x2 < x3. Further, f is strictly convex if and only
if ≥ is replaced by > in (1.3).

A relation between convex and J-convex functions is as follows.

Theorem 1.2 (J. L. W. V. JENSEN [63, P.10]) If f : I →R is continuous on the interval
I ⊂ R, then f is convex if and only if f is convex in the Jensen sense.

Next, we give the second derivative test for convexity of a function.

Theorem 1.3 Let I ⊂ R be an open interval, and f : I → R be a function such that f ′′
exits on I. Then f is convex if and only if f ′′(x) ≥ 0 (x ∈ I). If f ′′(x) > 0 (x ∈ I), then f is
strictly convex on the interval.

J-log-convex function [46]: Let V be a real vector space, and C ⊂ V be a convex set. A
function f : C → (0,) is called log-convex in the Jensen sense if log◦ f is J-convex, that
is

f 2
(

x1 + x2

2

)
≤ f (x1) f (x2)

for all x1,x2 ∈C.
Log-convex function [69, p.7]: Let V be a real vector space, and C ⊂ V be a convex set.
A function f : C → (0,) is called log-convex if log◦ f is convex, that is

f (x1 +(1− )x2) ≤ f  (x1) f 1− (x2),

holds for all x1,x2 ∈C and all  ∈ [0,1].

Lemma 1.1 ([70]) Let V be a real vector space, and C ⊂ V be a convex set. Then a
function f : C → (0,) is log-convex in the Jensen sense if and only if the relation

v2 f (x1)+2vw f

(
x1 + x2

2

)
+w2 f (x2) ≥ 0

holds for each real v,w and x1,x2 ∈C.
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We denote x[1] ≥ . . . ≥ x[n] the components of a vector x = (x1, . . . ,xn) ∈ Rn arranged
in decreasing order. We say that a vector x = (x1, . . . ,xn) ∈ Rn is majorized by a vector
y = (y1, . . . ,yn) ∈ Rn (x ≺ y) if

k


i=1

x[i] ≤
k


i=1

y[i], 1 ≤ k ≤ n

with equality for k = n (see [56]). Then the binary relation ≺ over Rn is reflexive and
transitive, i.e. a preorder.

Schur-convex function [56]: Let D⊂Rn. A function f : D→R is called Schur-convex
if x ≺ y implies f (x) ≤ f (y) for all x,y ∈ D.

The following known result is proved in [56].

Theorem 1.4 Let D ⊂ Rn be a symmetric convex set with nonempty interior D◦, and
f : D → R be a continuous function. If f is differentiable on D◦, then f is Schur convex
(Schur concave) on D if and only if f is symmetric and

(x2 − x1)
(
 f (x)
x1

−  f (x)
x2

)
≥ 0 (≤ 0)

for all x =(x1, . . . ,xn) ∈ D◦.

In view of applications in different parts of mathematics the Jensen’s inequalities are
especially noteworthy, as well as useful.

We begin with the discrete version of the Jensen’s inequality:

Theorem 1.5 Discrete Jensen’s inequality[69, p.43]: (a) Let V be a real vector space,
and C ⊂V be a convex set, and f : C → R be a convex function. Then

f

(
1
Pn

n


i=1

pixi

)
≤ 1

Pn

n


i=1

pi f (xi) (1.4)

holds, where xi ∈C (i = 1, . . . ,n) and pi (i = 1, . . . ,n) are nonnegative real numbers, with
Pn = n

i=1 pi > 0. If f is strictly convex and the pi’s are positive, then inequality (1.4) is
strict unless x1 = x2 = . . . = xn.

(b) If f :C →R is a J-convex function, and the pi’s are rational numbers (i = 1, . . . ,n),
then (1.4) also holds.

The integral version of the Jensen’s inequality is as follows:

Theorem 1.6 Integral Jensen’s inequality[26]: Let (,A ,) be a finite measure space
with  () > 0, and g :  → R is a -integrable function taking values in an interval
I ⊂ R. Then 1

()
∫


gd lies in I, and for every convex function f : I → R the composition

f ◦ g is measurable. Further, if f ◦ g is -integrable, then

f

⎛⎝ 1
 ()

∫


gd

⎞⎠≤ 1
 ()

∫


f ◦ gd . (1.5)

In case when f is strictly convex on I equality is satisfied in (1.5) if and only if g is
constant -almost everywhere on .
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1.2 Interpolations of Jensen’s Inequality

We start with the following interpolation of the discrete Jensen’s inequality based on sam-
ples without repetitions given by Pečarić and Volenec in 1988 (see [73]).

Theorem 1.7 Let C be a convex subset of a real vector space V , and let f : C → R be a
mid-convex function. If x = (x1, ...,xn) ∈Cn, and

fk,n = fk,n (x) :=
1(n
k

) 
1≤i1<...<ik≤n

f

(
xi1 + . . .+ xik

k

)
, 1 ≤ k ≤ n, (1.6)

then

f

(
1
n

n


i=1

xi

)
= fn,n ≤ . . .≤ fk+1,n ≤ fk,n ≤ . . .≤ f1,n =

1
n

n


i=1

f (xi) , 1≤ k≤ n−1. (1.7)

The weighted version of the above theorem is given by Pečarić.

Theorem 1.8 ([66]) Let C be a convex subset of a real vector spaceV , and let f :C →R

be a convex function. Suppose x= (x1, ...,xn)∈Cn, and p = (p1, ..., pn) is a positive n-tuple
such that n

i=1 pi = 1. For k = 1, . . . ,n define

f 1
k,n = f 1

k,n(x,p) :=
1(n−1

k−1

) 
1≤i1<...<ik≤n

(
k


j=1

pi j

)
f

⎛⎜⎜⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

⎞⎟⎟⎟⎠. (1.8)

Then for 1 ≤ k ≤ n−1

f (
n


i=1

pixi) = f 1
n,n ≤ ... ≤ f 1

k+1,n ≤ f 1
k,n ≤ ... ≤ f 1

1,n =
n


i=1

pi f (xi). (1.9)

The following interpolation of the discrete Jensen’s inequality based on samples with
repetitions is given by Pečarić and Svrtan in 1998 (see [71]).

Theorem 1.9 [71] Let C be a convex subset of a real vector space V , and let f : C → R

be a mid-convex function. If x = (x1, ...,xn) ∈Cn, and

f̄k,n = f̄k,n (x) :=
1(n+k−1
k

) 
1≤i1≤...≤ik≤n

f

(
xi1 + . . .+ xik

k

)
, k ≥ 1,

then

f

(
1
n

n


i=1

xi

)
≤ . . . ≤ f̄k+1,n ≤ f̄k,n ≤ . . . ≤ f̄1,n =

1
n

n


i=1

f (xi) . (1.10)
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The weighted version of the above theorem causes motivation for many authors and it
can be found in [60, p.8].

Theorem 1.10 Let C be a convex subset of a real vector space V , and let f : C → R be
a convex function. Suppose x = (x1, ...,xn) ∈Cn, and p = (p1, ..., pn) is a positive n-tuple
such that n

i=1 pi = 1. Then

f (
n


i=1

pixi) ≤ ... ≤ f 2
k+1,n ≤ f 2

k,n ≤ ... ≤ f 2
1,n =

n


i=1

pi f (xi), (1.11)

where

f 2
k,n = f 2

k,n(x,p) =
1(n+k−1

k−1

) 
1≤i1≤...≤ik≤n

(
k


j=1

pi j

)
f

⎛⎜⎜⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

⎞⎟⎟⎟⎠ , k ≥ 1. (1.12)

Remark 1.1 If f is a concave function then the inequalities (1.9) and (1.11) are reversed.
If pi (i = 1, . . . ,n) are rational numbers, then (1.9) and (1.11) are also valid for mid-

convex functions.

An important consequence of the discrete Jensen’s inequality for mid-convex functions
is the following Key Lemma from [71].

Lemma 1.2 Let C be a convex subset of real linear space V , f : C → R be a mid-convex
function, and x = (x1, ...,xn) ∈Cn. Then

f (
1
n

n


j=1

x j) ≤ 1
n

n


j=1

f

(
x1 + . . .+ x̂ j + . . .+ xn

n−1

)
, (1.13)

where x̂ j means that x j is omitted.

Proof. Apply the discrete Jensen’s inequality for mid-convex functions to

x(i) :=
(
1
/
(n−1)

)
(x1 + ...+ x̂i + ...+ xn) ,

and use the identity
n

i=1

xi =
n

i=1

x(i). �

Unified treatment for samples with and without repetitions: Assume f : C → R is a
mid-convex function defined on a convex setC in a real linear spaceV , and x = (x1, ...,xn)∈
Cn. Let M = {1m1 ,2m2 , . . . ,nmn} be a fixed multiset having mj =:  j(M)≥ 1 elements equal
to j, for 1 ≤ j ≤ n. Nk(M) denotes the k-th rank number of M (the number of subsets of M
containing exactly k elements). For every nonempty submultiset I ⊂ M, xI := 

i∈I
xi, and |I|

means the number of elements in I. Now, define the M-dominated k-sample mean of f by

f M
k,n = f M

k,n(x) :=
1

Nk(M) I⊂M
|I|=k

f (
1
k
xI), 1 ≤ k ≤ m1 + . . .+mn.

The following Proposition makes a unified treatment of Theorems 1.7 and 1.9.
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Proposition 1.1 Under the previous assumptions, we have

Nk+1(M) f M
k+1,n = 

J⊂M,|J|=k+1

f

(
1

k+1
xJ

)
≤ 1

k+1 
I⊂M,|I|=k

cI f

(
1
k
xI

)
(1.14)

for every 1 ≤ k < m1 + . . .+mn, where cI : = 
1≤ j≤n
 j(I)<m

j

( j(I)+1).

Proof. By applying Lemma 1.2 to the terms of the middle sum in (1.14), we have


J⊂M,|J|=k+1

f

(
1

k+1
xJ

)
≤ 1

k+1 
J⊂M,|J|=k+1


j∈J

f

(
1
k
xJ\{ j}

)
.

Then, the right hand side can be rewritten as

1
k+1 

I⊂M,|I|=k

cI f

(
1
k
xI

)
,

where cI can be calculated in the following way: let

AI := {J ⊂ M | J = I�{ j} for some 1 ≤ j ≤ n} ,

where � means the multiset sum, and for J ∈ AI let cI (J) be the number of all elements j
of J such that I = J�{ j}; then

cI = 
J∈AI

cI (J) = 
1≤ j≤n
 j (I)<m

j

( j(I)+1).

The proof is complete. �

Now we show that Theorems 1.7 and 1.9 are special cases of Proposition 1.1.

Corollary 1.1 Let C be a convex subset of a real vector space V , and let f : C → R be a
mid-convex function. If x = (x1, ...,xn) ∈Cn, then the following refinements of the Jensen’s
inequality hold:
a)

f

(
1
n

n


i=1

xi

)
= fn,n ≤ . . . ≤ fk+1,n ≤ fk,n ≤ . . . ≤ f1,n =

1
n

n


i=1

f (xi),

b)

f

(
1
n

n


i=1

xi

)
= . . . ≤ f̄k+1,n ≤ f̄k,n ≤ . . . ≤ f̄1,n =

1
n

n


i=1

f (xi).
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Proof. (a) We take M to be the following multiset (actually a set): M := {1, . . . ,n}. In
this case  j(M) = 1 (1 ≤ j ≤ n), and


I⊂M,|I|=k

f

(
1
k
xI

)
=
(

n
k

)
fk,n, k = 1, . . . ,n−1.

By (1.14), this implies that(
n

k+1

)
fk+1,n ≤ 1

k+1 
I⊂M,|I|=k

cI f

(
1
k
xI

)

=
1

k+1
(n− k)

(
n
k

)
fk,n =
(

n
k+1

)
fk,n, k = 1, . . . ,n−1,

finishes the proof of the first claim.
(b) Let the integers k ≥ 1 and l ≥ k + 1 be fixed, and let M be the following multiset:

M := {1l, . . . ,nl} (the multiplicity of j is l for 1 ≤ j ≤ n). Then


I⊂M,|I|=k

f

(
1
k
xI

)
=
(

n+ k−1
k

)
f̄k,n, k = 1, . . . , l.

This yields by (1.14) (
n+ k
k+1

)
f̄k+1,n ≤ 1

k+1 
I⊂M,|I|=k

cI f

(
1
k
xI

)

=
1

k+1
(k+n)

(
n+ k−1

k

)
f̄k,n =
(

n+ k
k+1

)
f̄k,n,

and therefore
f̄k+1,n ≤ f̄k,n, k ≥ 1.

�

The following result is given in [20]:

Theorem 1.11 Let C be a convex subset of a real vector space V , and let f : C → R

be a convex function. Suppose x = (x1, ...,xn) ∈Cn, and p = (p1, ..., pn) is a nonnegative
n-tuple such that n

i=1 pi = 1. If

f 3
k,n = f 3

k,n(x,p) :=
n


i1,...,ik=1

pi1 ...pik f

(
1
k

k


j=1

xi j

)
, k ≥ 1, (1.15)

then

f (
n


i=1

pixi) ≤ ... ≤ f 3
k+1,n ≤ f 3

k,n ≤ ... ≤ f 3
1,n =

n


i=1

pi f (xi), k ≥ 1. (1.16)
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The next result comes from [19] and [74] ( see also Theorem 3.36 in [69, p.97]).

Theorem 1.12 Let I ⊂R be an interval, f : I →R be a convex function,  be an increas-

ing function on [0,1] such that
1∫
0

d(x) = 1, and u : [0,1] → I be  -integrable. If f ◦ u is

also  -integrable, then

f

(
1∫
0

u(x)d(x)
)
≤ ∫

[0,1]k+1
f

(
1

k+1

k+1

i=1

u(xi)
)

k+1

i=1

d(xi)

≤ ∫
[0,1]k

f

(
1
k

k

i=1

u(xi)
)

k

i=1

d(xi) ≤ ...

≤ ∫
[0,1]2

f

(
1
2

2

i=1

u(xi)
)

2

i=1

d(xi)

≤
1∫
0

f (u(x))d(x),

(1.17)

for all positive integers k.

1.3 Quotients for samples without repetitions

Let I ⊂ R be an interval, and f : I → R. Consider the following notations: for xi ∈ I
(1 ≤ i ≤ n)

x := (x1, . . . ,xn); f (x) := ( f (x1), . . . , f (xn));

arithmeticmean: A(x) := 1
n (x1 + · · ·+ xn);

geometric mean: G(x) := n
√

x1 · · ·xn (I ⊂ [0,)) .

Then the discrete Jensen’s inequality for equal weights is

f (A(x)) ≤ A( f (x)), (1.18)

where f : I → R is a convex function, and x ∈ In. The inequality is clearly reversed if
f : I → R is concave function.

In this context, (1.7) can be written as

f (A(x)) = fn,n ≤ . . . ≤ fk+1,n ≤ fk,n . . . ≤ f1,n = A( f (x)), 1 ≤ k ≤ n−1. (1.19)

In 2003, Tang and Wen [76] obtained the following inequalities which contain (1.19):
For all 1 ≤ r ≤ j ≤ s ≤ i ≤ n, the following refinement holds:

fr,s,n ≥ ·· · ≥ fr,s,i ≥ ·· · ≥ fr,s,s ≥ ·· · ≥ fr, j, j ≥ ·· · ≥ fr,r,r = 0, (1.20)
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where

fr,s,n :=
(

n
r

)(
n
s

)
( fr,n− fs,n) .

Equality conditions are also considered.
In 2008, Gao and Wen [22] obtained the following results in this direction:

Theorem 1.13 Let I ⊂R be an interval. If f : I →R, a = (a1, . . . ,an) , b = (b1, . . . ,bn)∈
In (n ≥ 2) and

(i) a1 ≤ ·· · ≤ an ≤ bn ≤ . . . ≤ b1,a1 +b1 ≤ ·· · ≤ an +bn,
(ii) f (t) > 0, f ′(t) > 0, f ′′(t) > 0, f ′′′(t) < 0 for every t ∈ I,
then

f (A(a))
f (A(b))

=
fn,n(a)
fn,n(b)

≤ ·· · ≤ fk+1,n(a)
fk+1,n(b)

≤ fk,n(a)
fk,n(b)

≤ ·· · ≤ f1,n(a)
f1,n(b)

=
A( f (a))
A( f (b))

, 1≤ k≤ n−1.

(1.21)
The inequalities are reversed for f ′′(t) < 0, f ′′′(t) > 0 (t ∈ I). Equality signs hold if and
only if a1 = · · · = an and b1 = · · · = bn.

Moreover, Wen and Wang [82] considered some inequalities for linear combinations
involving fk,n.

Another type of generalization is due to Wen [80]: Let I ⊂ R be an interval, and let
f : I → R be twice continuously differentiable such that f ′′ is convex. Then

f ′′ (D3(x)) ≤ 2J [ f (x)]
J [x2]

≤ 1
3

[
max
1≤i≤n

{
f ′′(xi)
}

+A
(
f ′′(x)
)
+ f ′′ (A(x))

]
, (1.22)

where

D3(x) :=
1
3

A(x3)−A3(x)
A(x2)−A2(x)

,

J [ f (x)] := A( f (x))− f (A(x)) , J
[
x2
]
:= A(x2)−A2(x).

In [81] an other kind of interesting inequalities, centering about the topic of refinements
involving quotients of two functions, are given.

Theorem 1.14 Let the functions

f : [a,b]→ (0,),g : [a,b]→ (0,)

satisfying

sup
t∈[a,b]

{∣∣∣∣g′′(t)f ′′(t)

∣∣∣∣}< inf
t∈[a,b]

{
g(t)
f (t)

}
.

If f ′′(t) > 0 for each t ∈ [a,b], then for any x ∈ [a,b]n, we have the following inequali-
ties of Jensen-Pečarić-Svrtan-Fan (Abbreviated as J-P-S-F) type:

f (A(x))
g(A(x))

=
fn,n(A(x))
gn,n(A(x))

≤ ·· · ≤ fk+1,n(A(x))
gk+1,n(A(x))

(1.23)
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≤ fk,n(A(x))
gk,n(A(x))

≤ ·· · ≤ f1,n(A(x))
g1,n(A(x))

=
A( f (x))
A(g(x))

, 1 ≤ k ≤ n−1.

If f ′′(t) < 0 for each t ∈ [a,b], then the above inequalities are reversed. In each case, the
sign of the equality holding throughout if and only if x1 = · · · = xn.

Proof of Theorem 1.14: To prove Theorem 1.14, we set

:= (1, . . . ,n); n := {∈ [0,1]n|1 + · · ·+n = 1} ,

S f (,x) :=
1
n! i1···in

f (1xi1 + · · ·+nxin); F() := log
S f (,x)
Sg(,x)

;

ui(x) := 1xi1 +2xi2 +
n


j=3

 jxi j ; vi(x) := 1xi2 +2xi1 +
n


j=3

 jxi j . (1.24)

Here and in the sequel x ∈ [a,b]n,  ∈ n, i = (i1, . . . , in), and let i1 · · · in and i3 · · · in
denote the possible permutations of Nn = {1, . . . ,n} and the possible permutations of Nn \
{i1, i2}, respectively.

We start with two lemmas.

Lemma 1.3 Under the hypotheses of Theorem 1.14, there exist i and  ∗
i between ui(x)

and vi(x) such that

(1 −2)
(
F()
1

− F()
2

)
= 1

n! 
i3···in


1≤i1<i2≤n

f ′′(i)(ui(x)−vi(x))2

S f ( ,x)

×
(
1− g′′(i

∗)
f ′′(i

∗)
S f ( ,x)
Sg( ,x)

)
.

(1.25)

Proof. Note the following identities:

S f (,x) := 1
n! 

i3···in


1≤i1 	=i2≤n
f (1xi1 + · · ·+nxin)

= 1
n! 

i3···in


1≤i1<i2≤n
[ f (ui(x))− f (vi(x))];

similarly,

Sg(,x) =
1
n! i3···in 

1≤i1<i2≤n

[g(ui(x))−g(vi(x))];


1

[ f (ui(x))+ f (vi(x))]− 
2

[ f (ui(x))+ f (vi(x))]

= [xi1 f ′ (ui(x))+ xi2 f ′ (vi(x))]− [xi2 f ′ (ui(x))+ xi1 f ′ (vi(x))]

= [ f ′ (ui(x))− f ′ (vi(x))](xi1 − xi2);

similarly,


1
[g(ui(x))+ f (vi(x))]− 

2
[g(ui(x))+g(vi(x))]

= [g′ (ui(x))−g′ (vi(x))](xi1 − xi2).



1.3 QUOTIENTS FOR SAMPLES WITHOUT REPETITIONS 11

Thus
(1 −2)

(
S f ( ,x)
1

− S f ( ,x)
2

)
= 1

n! 
i3···in


1≤i1<i2≤n

[ f ′ (ui(x))− f ′ (vi(x))](1 −2)(xi1 − xi2)

= 1
n! 

i3···in


1≤i1<i2≤n
[ f ′ (ui(x))− f ′ (vi(x))](ui(x)− vi(x));

similarly,

(1 −2)
(
Sg( ,x)
1

− Sg( ,x)
2

)
= 1

n! 
i3···in


1≤i1<i2≤n

[g′ (ui(x))−g′ (vi(x))](ui(x)− vi(x)).

Based on the above facts, we have

(1 −2)
(
F()
1

− F()
2

)
= (1 −2)

(
S f (,x)
1

− S f (,x)
2

S f ( ,x) −
Sg(,x)
1

− Sg(,x)
2

Sg( ,x)

)

= 1
n! 

i3···in


1≤i1<i2≤n
{ [ f ′(ui(x))− f ′(vi(x))](ui(x)−vi(x))

S f ( ,x)

− [g′(ui(x))−g′(vi(x))](ui(x)−vi(x))
Sg( ,x) }

= 1
n! 

i3···in


1≤i1<i2≤n

[ f ′(ui(x))− f ′(vi(x))](ui(x)−vi(x))
S f ( ,x)

×
(
1− g′(ui(x))−g′(vi(x))

f ′(ui(x))− f ′(vi(x))
S f ( ,x)
Sg( ,x)

)
.

By Lagrange’s mean-value theorem, there exists i between ui(x) and vi(x) such that

f ′ (ui(x))− f ′ (vi(x)) = f ′′(i)(ui(x)− vi(x)).

By Cauchy’s mean-value theorem, there exists  ∗
i between ui(x) and vi(x) such that

g′ (ui(x))−g′ (vi(x))
f ′ (ui(x))− f ′ (vi(x))

=
g′′(i

∗)
f ′′(i

∗)
.

Finally

(1 −2)
(
F()
1

− F()
2

)
= 1

n! 
i3···in


1≤i1<i2≤n

[ f ′(ui(x))− f ′(vi(x))](ui(x)−vi(x))
S f ( ,x)

×
(
1− g′(ui(x))−g′(vi(x))

f ′(ui(x))− f ′(vi(x))
S f ( ,x)
Sg( ,x)

)
= 1

n! 
i3···in


1≤i1<i2≤n

f ′′(i)(ui(x)−vi(x))2

S f ( ,x) ×
(
1− g′′(i

∗)
f ′′(i

∗)
S f ( ,x)
Sg( ,x)

)
.

The proof of Lemma 1.3 has been finished. �
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Lemma 1.4 Let the conditions of Theorem 1.14 be satisfied.
(I) If f ′′(t) > 0 for each t ∈ [a,b], then F is a Schur-convex function on n.
(II) If f ′′(t) < 0 f or each t ∈ [a,b], then F is a Schur-concave function on n.

Proof. We first affirm that Case (I) is true as follow. One can easily see that n is
a symmetric convex set, and F() is a symmetric function on n and it has continuous
partial derivatives. By Theorem 1.4, we need to prove that F satisfies

(1 −2)
(
F()
1

− F()
2

)
≥ 0,  ∈n. (1.26)

Equality is valid if and only if 1 = 2 or x1 = · · · = xn. In the following, we shall apply
the identity (1.25) in Lemma 1.3. Note that x ∈ [a,b]n,  ∈n, for any i = (i1, . . . , in), we
have

ui(x) = 1xi1 + · · ·+nxin ∈ [a,b];

f (1xi1 + · · ·+nxin)
g(1xi1 + · · ·+nxin)

=
f (ui(x))
g(ui(x))

≤ sup
t∈[a,b]

{
f (t)
g(t)

}
S f (,x) = 1

n! 
i1···in

f (1xi1 + · · ·+nxin)

= 1
n! 

i1···in
f(1xi1

+···+nxin)
g(1xi1+···+nxin)

g(1xi1 + · · ·+nxin)

≤ 1
n! 

i1···in
sup

t∈[a,b]

{
f (t)
g(t)

}
g(1xi1 + · · ·+nxin)

= sup
t∈[a,b]

{
f (t)
g(t)

}
Sg(,x),

or, equivalently,

Sg(,x)
S f (,x)

≥
[

sup
t∈[a,b]

{
f (t)
g(t)

}]−1

= inf
t∈[a,b]

{
g(t)
f (t)

}
. (1.27)

Combining (1.27) with the following inequality

0 ≤
∣∣∣∣gi

′′(i
∗)

fi′′(i
∗)

∣∣∣∣≤ sup
t∈[a,b]

{∣∣∣∣gi
′′(t)

fi′′(t)

∣∣∣∣} (1.28)

and the hypotheses of Theorem 1.14, we obtain that

1− gi
′′(i

∗)
fi ′′(i

∗)
S f ( ,x)
Sg( ,x) ≥ 1−

∣∣∣gi
′′(i

∗)
fi ′′(i

∗)

∣∣∣ S f ( ,x)
Sg( ,x)

≥ 1− sup
t∈[a,b]

{∣∣∣ gi
′′(t)

fi ′′(t)

∣∣∣}/Sg( ,x)
S f ( ,x)

≥ 1− sup
t∈[a,b]

{∣∣∣ gi
′′(t)

fi ′′(t)

∣∣∣}/
inf

t∈[a,b]

{
g(t)
f (t)

}
> 0.
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This implies by the identity (1.25), and by the nonnegativity of f ′′, that (1.26) is satisfied.
So F is a Schur-convex function on n. Let us now turn to the conclusion (II) of our
lemma. From the above argument for (I) we know that the inequalities (1.27-1.28) still
hold. Using (1.25), and f ′′(x) < 0, the converse of (1.26) can be obtained. Thus, F is a
Schur-concave function on n. From the argument, we obtain that equality is valid if and
only if 1 = 2 or x1 = · · · = xn. This completes the proof of Lemma 1.4. �

Proof of Theorem 1.14 We only prove the first assertion, that is, the inequalities (1.23)
hold if f ′′(t) > 0 for each t ∈ [a,b], the second assertion can be proved by an analogous
procedure. Define

[k] :=

⎛⎜⎝k−1, . . . ,k−1︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
n−k

⎞⎟⎠ , k = 1, . . . ,n

Clearly, [k] ∈n,k = 1,2, . . . ,n, and [k+1] ≺ [k], k = 1,2, . . . ,n−1. By Lemma
1.4, for any x ∈ [a,b]n,F is a Schur-convex function on n. Using the definition of Schur-
convex functions, we have

F([k+1]) ≤ F([k]), k = 1,2, . . . ,n−1.

Combining this result with the definition of F(), it follows that the inequalities (1.23)
hold. By the argument of Lemma 1.4 and the fact of which [k] strictly majorizes [k+1],
the sign of equality holding throughout if and only if x1 = · · ·= xn. So the proof of Theorem
1.14 is complete.

1.3.1 New Proof of Theorem 1.13

We can prove Theorem 1.13 in a similar way by introducing for := (1, . . . ,n) ∈ n

and x ∈ In.

S f (,x) := 1
n! 

i1···in
f (1xi1 + · · ·+nxin) = 1

n! 
i3···in


1≤i1 	=i2≤n

f (1xi1 + · · ·+nxin)

= 1
n! 

i3···in


1≤i1<i2≤n
[ f (ui(x))− f (vi(x))]

and

F() := log
S f (,a)
S f (,b)

.

To prove that F() is Schur-convex it is enough to show that (see Theorem 1.4)

(1 −2)
(
F()
1

− F()
2

)
= 1

n! 
i3···in


1≤i1<i2≤n

{
[ f ′(ui(a))− f ′(vi(a))](ui(a)−vi(a))

S f ( ,a) − [ f ′(ui(b))− f ′(vi(b))](ui(b)−vi(b))
S f ( ,b)

}
≥ 0

(1.29)
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for every ∈ n. This proof is different from the original one, we don’t use the mean
value theorem.

Since f (t) > 0 and f ′(t) > 0 for every t ∈ I

1
S f (,a)

≥ 1
S f (,b)

> 0. (1.30)

From (1.24), we have

ui(a)− vi(a) = 1(ai1 −ai2)+2(ai2 −ai1)

and
ui(b)− vi(b) = 1(bi1 −bi2)+2(bi2 −bi1).

Therefore, by (i) in Theorem 1.13

(ui(a)− vi(a))2 ≥ (ui(b)− vi(b))2. (1.31)

It is easy to check by using (i) that for 1 ≤ i1 < i2 ≤ n
(a) ui(a) = vi(a) implies ui(b) = vi(b),
(b) ui(a) < vi(a) implies ui(a) < vi(a) ≤ vi(b) ≤ ui(b),
(c) vi(a) < ui(a) implies vi(a) < ui(a) ≤ ui(b) ≤ vi(b).
If either (b) or (c) holds, and ui(b) 	= vi(b), then

f ′(u1(a))− f ′(v1(a))
u1(a)− v1(a)

≥ f ′(u1(b))− f ′(v1(b))
u1(b)− v1(b)

(1.32)

since f ′ is a concave function. Combining (1.30), (1.31) and (1.32) we get (1.29).
Now, we can continue as in the proof of Theorem 1.14.

1.4 Applications of Quotient inequalities

In this section some applications of Theorem 1.14 are given from [81].
Let x = (x1, . . . ,xn) be a positive n-tuples. The Dresher mean of order k (k = 1,2, . . . ,n)

of x is defined by

[Dp,q(x)]k,n :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k

⎡⎢⎣ 
1≤i1<···<ik≤n

(
n

j=1

xi j

)p


1≤i1<···<ik≤n

(
n

j=1

xi j

)q

⎤⎥⎦
1

p−q

p 	= q

1
k exp

⎡⎢⎣ 
1≤i1<···<ik≤n

(
n

j=1

xi j

)p

log

(
n

j=1

xi j

)


1≤i1<···<ik≤n

(
n

j=1

xi j

)p

⎤⎥⎦ p = q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Especially, Dp,q(x) := [Dp,q(x)]1,n is the Dresher mean of x (see [11]), and

[D0,0(x)]k,n =

(


1≤i1<···<ik≤n

xi1 + · · ·+ xin

k

) 1
(nk)

=: [GA;x]k,n,

[D1,1(x)]k,n =

⎛⎝ 
1≤i1<···<ik≤n

(
xi1 + · · ·+ xin

k

) xi1
+···+xin

k

⎞⎠
1

(nk)A(x)

[D1,1(x)]1,n = (x1
x1 · · ·xn

xn)
1

x1+···+xn

[D0,0(x)]1,n = G(x)

[Dp,q(x)]n,n = A(x)

.

Write

D(p,q) :=

⎧⎨⎩
(

p(1−p)
q(1−q)

) 1
p−q

p 	= q

exp 1−2p
p(1−p) p = q

.

As a corollary of Theorem 1.14, we have

Corollary 1.2 Let x ∈ (0,)n, and max{x}
min{x} < D(p,q).

(I) If p > 0,q > 0, and p+q < 1, then

A(x) = [Dp,q(x)]n,n ≥ ·· · ≥ [Dp,q(x)]k+1,n ≥ [Dp,q(x)]k,n
≥ ·· · ≥ [Dp,q(x)]1,n = [Dp,q(x)] ≥ G(x), 1 ≤ k ≤ n−1.

(1.33)

(II) If p > 1 and q > 1, then

A(x) = [Dp,q(x)]n,n ≤ ·· · ≤ [Dp,q(x)]k+1,n ≤ [Dp,q(x)]k,n
≤ ·· · ≤ [Dp,q(x)]1,n = [Dp,q(x)], 1 ≤ k ≤ n−1.

(1.34)

In each case, the sign of equality holds throughout if and only if x1 = · · · = xn.

Proof. We only prove case (I), that is inequalities (1.33) hold, because case (II) can be
proved with the same method. Since [Dp,q(x)]k,n = [Dq,p(x)]k,n is continuous of (p,q), we
can assume that 0 < q < p < 1. Now we take [a,b] = [min{x},max{x}], f : [a,b]→ (0,) ,
f (t) = t p, and g : [a,b]→ (0,) , g(t) = tq. We verify that the conditions of Theorem 1.14
are satisfied. First, we notice that

sup
t∈[a,b]

{∣∣∣ g′′(t)f ′′(t)

∣∣∣}= sup
t∈[a,b]

{∣∣∣ q(q−1)tq−2

p(p−1)t p−2

∣∣∣}
= sup

t∈[a,b]

{
q(1−q)
p(1−p)t

q−p
}

= q(1−q)
p(1−p)a

q−p
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inf
t∈[a,b]

{
g(t)
f (t)

}
= inf

t∈[a,b]

{
tq−p}= bq−p

By 0 < q < p < 1, p+q < 1, p(1− p)−q(1−q)= (p−q)(1− p−q)> 0, we have

D(p,q) =
[

p(1− p)
q(1−q)

] 1
p−q

> 1,

sup
t∈[a,b]

{∣∣∣∣g′′(t)f ′′(t)

∣∣∣∣}< inf
t∈[a,b]

{
g(t)
f (t)

}
⇔ q(1−q)

p(1− p)
aq−p < bq−p ⇔ max{x}

min{x} < D{p,q},

f ′′(t) = p(p−1)t p−2 < 0, t ∈ [a,b].

Thus, by Theorem 1.14, the reverse (1.23) holds. In other words, we have

A(x) = [Dp,q(x)]n,n ≥ ·· · ≥ [Dp,q(x)]k+1,n ≥ [Dp,q(x)]k,n
≥ ·· · ≥ [Dp,q(x)]1,n = [Dp,q(x)].

Second, by using results of [64]:

Dp,q(x) ≥ Dr,s(x) ⇔ max{p,q} ≥ max{r,s} , and min{p,q} ≥ min{r,s}
and p > 0,q > 0, therefore Dp,q(x) ≥ G(x). This completes the proof of (1.33). �

Remark 1.2 From Corollary 1.2 and

lim
p→0+,q→0+

D(p,q) = lim
p→1+,q→1+

D(p,q) = ,

we can obtain some interesting inequalities (see [71]) : If x ∈ (0,)n, then for 1 ≤ k ≤
n−1

A(x) ≥ ·· · ≥ [GA;x]k+1,n ≥ [GA;x]k,n ≥ ·· · ≥ G(x), (1.35)

A(x) ≤ ·· · ≤ [D1,1(x)]k+1,n ≤ [D1,1(x)]k,n ≤ ·· · ≤ [D1,1(x)]1,n (1.36)

and the sign of equality holds throughout if and only if x1 = · · · = xn.

Remark 1.3 Since (1.33) implies the following inequality

A(x) ≥
[
A(xp)
A(xq)

] 1
p−q

≥ G(x), p,q > 0, p+q < 1,

by Corollary 1.2 and the definition of the Riemann integral, we have: If p > 0,q > 0,
and p+q < 1, the function f : [, ] → (0,) is continuous, and it satisfies the condition

max
t∈[ , ]

{ f (t)}
min

t∈[ , ]
{ f (t)} < D(p,q),
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then
∫


f dt

 −
≥

⎛⎜⎜⎜⎝
∫


f pdt

∫


f qdt

⎞⎟⎟⎟⎠
1

p−q

≥ exp

⎛⎜⎜⎜⎝
∫


ln f dt

 −

⎞⎟⎟⎟⎠ , (1.37)

where we define⎛⎜⎜⎜⎝
∫


f pdt

∫


f qdt

⎞⎟⎟⎟⎠
1

p−q

:= lim
q→p

⎛⎜⎜⎜⎝
∫


f pdt

∫


f qdt

⎞⎟⎟⎟⎠
1

p−q

= exp

⎛⎜⎜⎜⎝
∫


f p ln f dt

∫


f pdt

⎞⎟⎟⎟⎠
when p = q.

One of the integral analogues of (1.23) is the following inequality (1.38).

Corollary 1.3 Under the hypotheses of Theorem 1.14, let E ⊂ Rm be a bounded closed
domain with m-dimensional volume |E|= 1, and let  : E → [a,b] be a Riemann integrable
function. If f ′′(t) > 0 for every t ∈ [a,b], then

f

(∫
E

)

g

(∫
E

) ≤
∫
E

f ◦∫
E

g ◦ . (1.38)

If f ′′(t) < 0 for every t ∈ [a,b], then inequality (1.38) is reversed.

Proof. In fact, the hypotheses of Corollary 1.3 imply that the functions  : E →R, f ◦ :
E →R,g◦ : E →R are integrable, on the other hand, Theorem 1.14 implies the inequality

f (A(x,w))
g(A(x,w))

≤ A( f (x),w)
A(g(x),w)

, ∀x ∈ [a,b]n (1.39)

where

w ∈ (0,1)n,
n


i=1

wi = 1, A(x,w) :=
n


i=1

wixi.

Let T = {E1, ...,En} be a partition of E , and let

‖T‖ = max
1≤i≤n

max
u,v∈Ei

{‖u−v‖}

be the ‘norm’ of the partition T , where ‖u−v‖ is the length of the vector u− v. Pick any
 ∈ E1×·· ·×En, then by (1.39) we get

f (
∫
E
)

g(
∫
E
)

= lim
‖T‖→0

f (A(( ),w))
g(A(( ),w))

≤ lim
‖T‖→0

A( f (( )),w)
A(g(( )),w)

=

∫
E

f ◦∫
E

g ◦ , (1.40)
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where

w = (|E1| , ..., |En|) ∈ (0,1)n,
n


i=1

|Ei| = 1, ( ) ∈ [a,b]n.

Therefore (1.38) holds from (1.40). This ends the proof. �

Corollary 1.4 (see [79]) If x ∈ (0, 1
2 ]n, then

A(x)
A(1−x)

≥ ·· · ≥ [GA;x]k+1,n

[GA;1−x]k+1,n
≥ [GA;x]k,n

[GA;1−x]k,n
≥ ·· · ≥ G(x)

G(1−x)
, 1 ≤ k ≤ n−1,

(1.41)
where 1−x : = (1− x1, . . . ,1− xn), and the sign of equality holds throughout if and only
if x1 = · · · = xn.

Proof. It goes without saying that, for each x ∈ (0,1/2]n, we can always find a ∈
(0,1/2) such that x ∈ [a,1/2]n. In Theorem 1.14, we take f : [a,1/2] → (0,), f (t) =
tr,0 < r < 1;g : [a,1/2]→ (0,),g(t) = (1− t)r,0 < r < 1. We verify that the conditions
of Theorem 1.14 are satisfied as follows:

sup
t∈[a, 1

2 ]

{∣∣∣ g′′(t)f ′′(t)

∣∣∣}= sup
t∈[a, 1

2 ]

{∣∣∣ r(r−1)(1−t)r−2

r(r−1)tr−2

∣∣∣}
= sup

t∈[a, 1
2 ]

{(
1
t −1
)r−2
}

= 1

inf
t∈[a, 1

2 ]

{
g(t)
f (t)

}
= inf

t∈[a, 1
2 ]

{(
1
t
−1

)r}
= 1

From the above we have

sup
t∈[a, 1

2 ]

{∣∣∣∣g′′(t)f ′′(t)

∣∣∣∣} ≤ inf
t∈[a, 1

2 ]

{
g(t)
f (t)

}

It is easy to see that f ′′(t) = r(r−1)tr−2 < 0 for all t ∈ [a, 1
2 ]. By now, our verification

procedure has been finished. Thus the inverse inequalities (1.23) are true, that is, we have

[
fk+1,n(x)

fk+1,n(1−x)

]1/r ≥ [ fk,n(x)
fk,n(1−x)

]1/r
, k = 1, . . . ,n−1. (1.42)

Passing the limit as r → 0 in (1.42), we can obtain (1.41). By the same argument as in
Theorem 1.14, we can derive the sign of equality in (1.41) holding throughout if and only
if x1 = · · · = xn. This ends the proof. �
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1.5 Application to Mixed Symmetric Means

Let I ⊂ R be an interval, and n ∈ N+. The function M : In → R is called a mean if

inf{x1, ...,xn} ≤ M(x1, ...,xn) ≤ sup{x1, ...,xn},

for all n-tuples (x1, ...,xn) ∈ In.
The mean M(x1, ...,xn) is called a strict mean if these inequalities are strict unless

x1 = ... = xn.
The mean M(x1, ...,xn) is called symmetric mean if

M(x1, ...,xn) = M(xi1 , ...,xin)

for any permutation (i1, ..., in) of (1, . . . ,n).
Examples of means and symmetric means for positive real numbers are given in [12]. The
following famous notion is given in the fascinating and ground-breaking book [26, p. 13].

Quasi-arithmeticMeans: Let I ⊂R be an interval, x = (x1, ...,xn)∈ In, p = (p1, ..., pn)
be a positive n-tuples such that P :=n

i=1 pi, and let  : I → R be a continuous and strictly
monotone function. The quasi-arithmetic means associated to  are defined by

M (x,p) = M (x1, ...,xn; p1, ..., pn) := −1

(
1
P

n


i=1

pi (xi)

)
. (1.43)

Particularly, by choosing  (x) = xr if r 	= 0, and  (x) = log(x) if r = 0, we have
Power means: For n ∈ N+, let x = (x1, ...,xn) and p = (p1, ..., pn) be positive n-tuples

such that P := n
i=1 pi. The well known power means of order r ∈ R are defined by

Mr(x,p) = Mr (x1, ...,xn; p1, ..., pn) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
P

n

i=1

pixr
i

) 1
r

, r 	= 0,(
n

i=1

xpi
i

) 1
P

, r = 0.

(1.44)

If p =
( 1

n , ..., 1
n

)
, M (x,p) and Mr(x,p) will be written as M (x) and Mr(x), respec-

tively.

Now we give some means defined by integrals.
Integral means: Let (X ,A ,) be a measure space with 0 <  (X) < , I ⊂ R be

an interval,  : I → R be a continuous and strictly monotone function, and u : X →I be a
measurable function such that  ◦ u is -integrable. The integral -means are defined by

M̃ (u,) := −1

⎛⎝ 1
 (X)

∫
X

(u(x))d (x)

⎞⎠ .
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Integral power means: Let (X ,A ,) be a measure space with 0 <  (X) < , r ∈ R,
and u : X →R be a positive measurable function such that ur is -integrable, if r 	= 0, and
log◦u is -integrable, if r = 0. Then the integral power means of order r are defined by
(see [5]):

M̃r (u,) :=

⎧⎪⎪⎨⎪⎪⎩
(

1
(X)
∫
X

(u(x))rd (x)
) 1

r

, r 	= 0,

exp

(
1

(X)
∫
X

log(u(x))d (x)
)

, r = 0.

(1.45)

The power means are monotone in nature: if s,r ∈ R and s < r, then

Ms(x,p) ≤ Mr(x,p).

The same property holds for integral power means.
In cases s = −1, s = 0 and s = 1 the power means are well-known as weighted har-

monic, geometric and arithmetic means H(x,p), G(x,p) and A(x,p) respectively, satisfy-
ing the order as follows

H(x,p) ≤ G(x,p) ≤ A(x,p).

About means see [13].
The history of mixed means is as old as the great C. F. Gauss (1777 - 1855) who rep-

resented the limit in the algorithm of the arithmetic-geometric mean by an elliptic integral
[14]. The Jensen’s inequality is much fertile to study about mixed means thats why our
aim in this work is to emphasis on the refinements of Jensen’s inequality.

Now, leaning on Theorems 1.8, 1.10, and 1.11, we introduce some new quasi-arithmetic
and mixed symmetric means, and study their monotonicity.

First, we define quasi-arithmetic means with respect to (1.8) as follows: Let I ⊂ R be
an interval, x = (x1, ...,xn)∈ In, p = (p1, ..., pn) be a positive n-tuples such thatn

i=1 pi = 1,
and let h,g : I → R be continuous and strictly monotone functions. For 1 ≤ k ≤ n, let

M1
h,g(x,p;k) := h−1

⎛⎜⎜⎜⎝ 1(n−1
k−1

) 
1≤i1<...<ik≤n

(
k


j=1

pi j

)
h ◦ g−1

⎛⎜⎜⎜⎝
k

j=1

pi j g(xi j)

k

j=1

pi j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (1.46)

From Theorem 1.8 we get the following result.

Corollary 1.5 ([52]) Monotonicity properties of means (1.46):

Mh(x,p) = M1
h,g(x,p,1) ≥ ... ≥ M1

h,g(x,p,k) ≥ M1
h,g(x,p,k+1) (1.47)

≥ ... ≥ M1
h,g(x,p,n) = Mg(x,p),

if either f = h ◦ g−1 is convex and h is increasing, or f = h ◦ g−1 is concave and h is
decreasing;

Mg(x,p) = M1
g,h(x,p,1) ≤ ... ≤ M1

g,h(x,p,k) ≤ M1
g,h(x,p,k+1)
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≤ ... ≤ M1
g,h(x,p,n) = Mh(x,p)

if either f = g ◦ h−1 is convex and g is decreasing, or f = g ◦ h−1 is concave and g is
increasing.

Proof. First, we can apply Theorem 1.8 to the function h ◦ g−1 and the n-tuples
(g(x1) , ...,g (xn)) , then we can apply h−1 to the inequality coming from (1.9). This gives
(1.47). A similar argument can be apply to prove the second inequality. �

We introduce the following mixed symmetric means: Let x = (x1, ...,xn) and p =
(p1, ..., pn) be a positive n-tuples such that n

i=1 pi = 1. Define for 1 ≤ k ≤ n

M1
s,t(x,p,k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

pi j

)
Ms

t (xi1 , ...xik ; pi1 , ...pik)

) 1
s

, s 	= 0,⎛⎜⎝ 
1≤i1<...<ik≤n

(
Mt(xi1 , ...xik ; pi1 , ...pik)

)( k

j=1

pi j

)⎞⎟⎠
1

(n−1
k−1)

, s = 0.

(1.48)

The monotonicity of these means is also a consequence of Theorem 1.8.

Corollary 1.6 ([52]) Let s,t ∈R such that s≤ t, and let x and p be positive n-tuples such
that n

i=1 pi = 1. Then we have

Mt(x,p) = M1
t,s(x,p,1) ≥ ... ≥ M1

t,s(x,p,k) ≥ M1
t,s(x,p,k+1) (1.49)

≥ ... ≥ M1
t,s(x,p,n) = Ms(x,p),

and
Ms(x,p) = M1

s,t(x,p,1) ≤ ... ≤ M1
s,t(x,p,k) ≤ M1

s,t(x,p,k+1) (1.50)

≤ ... ≤ M1
s,t(x,p,n) = Mt(x,p).

Proof. Let s,t ∈ R such that s ≤ t, if s,t 	= 0, then we set f (x) = x
t
s , xi j = xs

i j
in (1.9)

and raising the power 1
t , we get (1.49). Similarly we set f (x) = x

s
t , xi j = xt

i j
in (1.9) and

raising the power 1
s , we get (1.50).

When s = 0 or t = 0, we get the required results by taking limit. �

Next, we define the quasi-arithmetic means with respect to (1.12) as follows: Let I ⊂
R be an interval, x = (x1, ...,xn) ∈ In, p = (p1, ..., pn) be a positive n-tuples such that
n

i=1 pi = 1, and let h,g : I → R be continuous and strictly monotone functions. For k ≥ 1,
let

M2
h,g(x,p,k)

:= h−1

⎛⎜⎝ 1
(n+k−1

k−1 ) 
1≤i1≤...≤ik≤n

(
k

j=1

pi j

)
h ◦ g−1

⎛⎜⎝
k

j=1

pi j g(xi j )

k

j=1

pi j

⎞⎟⎠
⎞⎟⎠ .

(1.51)

By applying Theorem 1.10, we have the following corollary.
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Corollary 1.7 ([52]) Monotonicity properties of means (1.51):

Mh(x,p) = M2
h,g(x,p,1) ≥ ... ≥ M2

h,g(x,p,k) ≥ M2
h,g(x,p,k+1)≥ ... ≥ Mg(x,p)

if either f = h ◦ g−1 is convex and h is increasing, or f = h ◦ g−1 is concave and h is
decreasing;

Mg(x,p) = M2
g,h(x,p,1) ≤ ... ≤ M2

g,h(x,p,k) ≤ M2
h,g(x,p,k+1) ≤ ... ≤ Mh(x,p)

if either f = g ◦ h−1 is convex and g is decreasing, or f = g ◦ h−1 is concave and g is
increasing.

We introduce the mixed symmetric means related to (1.12) as follows: For k ≥ 1,define

M2
s,t (x,p,k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
1

(n+k−1
k−1 ) 

1≤i1≤...≤ik≤n

(
k

j=1

pi j

)
Ms

t (xi1 , ...xik ; pi1 , ...pik)

) 1
s

, s 	= 0,⎛⎜⎝ 
1≤i1≤...≤ik≤n

(
Mt(xi1 , ...xik ; pi1 , ...pik)

)( k

j=1

pi j

)⎞⎟⎠
1

(n+k−1
k−1 )

, s = 0.

(1.52)

Corollary 1.8 ([52]) Let s,t ∈R such that s≤ t, and let x and p be positive n-tuples such
that n

i=1 pi = 1. Then we have

Mt(x,p) = M2
t,s(x,p,1) ≥ ... ≥ M2

t,s(x,p,k) ≥ M2
t,s(x,p,k+1)≥ ... ≥ Ms(x,p),

Ms(x,p) = M2
s,t(x,p,1) ≤ ... ≤ M2

s,t(x,p,k) ≤ M2
s,t(x,p,k+1)≤ ... ≤ Mt(x,p).

Further quasi-arithmetic means are coming from (1.15): Let I ⊂ R be an interval, x =
(x1, ...,xn) ∈ In, p = (p1, ..., pn) be a positive n-tuples such that n

i=1 pi = 1, and let h,g :
I → R be continuous and strictly monotone functions. For k ≥ 1, define

M3
h,g(x,p,k) := h−1

(
n


i1,...,ik=1

pi1 ...pikh ◦ g−1

(
1
k

k


j=1

g(xi j )

))
. (1.53)

Theorem 1.11 implies the following result.

Corollary 1.9 ([52]) Monotonicity properties of means (1.53):

Mh(x,p) ≥ M3
h,g(x,p,1) ≥ ... ≥ M3

h,g(x,p,k) ≥ M3
h,g(x,p,k+1)≥ ... ≥ Mg(x,p)

if either f = h ◦ g−1 is convex and h is increasing, or f = h ◦ g−1 is concave and h is
decreasing;

Mg(x,p) ≤ M3
g,h(x,p,1) ≤ ... ≤ M3

g,h(x,p,k) ≤ M3
g,h(x,p,k+1)≤ ... ≤ Mh(x,p)

if either f = g ◦ h−1 is convex and g is decreasing, or f = g ◦ h−1 is concave and g is
increasing.
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The mixed symmetric means with positive weights related to (1.15) are

M3
s,t(x,p,k) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
n


i1,...,ik=1

(
k

j=1

pi j

)
Ms

t

(
xi1 , ...,xik

)) 1
s

, s 	= 0,

n


i1,...,ik=1

(
Mt
(
xi1 , ...,xik

))( k

j=1

pi j

)
, s = 0,

, k ≥ 1.

Corollary 1.10 ([52]) Let s,t ∈ R such that s ≤ t, and let x and p be positive n-tuples
such that n

i=1 pi = 1. Then we have

Mt(x,p) ≥ M3
t,s(x,p,1) ≥ ... ≥ M3

t,s(x,p,k) ≥ M3
t,s(x,p,k+1) ≥ ... ≥ Ms(x,p),

Ms(x,p) ≤ M3
s,t(x,p,1) ≤ ... ≤ M3

s,t(x,p,k) ≤ M3
s,t(x,p,k+1) ≤ ... ≤ Mt(x,p).

Finally, we define some integral means with respect to (1.17) as follows: Let I ⊂ R be
an interval, h,g : I → R be continuous and strictly monotone functions, and  be an in-

creasing function on [0,1] such that
1∫
0

d(x) = 1. Further, let u : [0,1]→ I be a measurable

function such that h ◦ u and g ◦ u are  -integrable. For k ≥ 1, introduce

M4
h,g(u, ,k) := h−1

⎛⎝ 1∫
0

....

1∫
0

h ◦ g−1

(
1
k

k


i=1

g(u(xi))

)
k


i=1

d(xi)

⎞⎠ . (1.54)

Theorem 1.12 implies the following result.

Corollary 1.11 ([52]) Monotonicity properties of means (1.54):

M̃h (u,) = M4
h,g(u, ,1) ≥ ... ≥ M4

h,g(u, ,k) ≥ M4
h,g(u, ,k+1)≥ ... ≥ M̃g (u,)

where f = h ◦ g−1 is convex and h is increasing, or f = h ◦ g−1 is concave and h is de-
creasing;

M̃g (u,) = M4
g,h(u, ,1) ≤ ... ≤ M4

g,h(u, ,k) ≤ M4
g,h(u, ,k+1)≤ ... ≤ M̃h (u,)

where f = g ◦ h−1 is convex and g is decreasing, or f = g ◦ h−1 is concave and g is in-
creasing.

The mixed symmetric means with positive weights related to

1∫
0

...

1∫
0

f

(
1
k

k


i=1

u(xi)

)
k


i=1

d(xi), k ≥ 1 (1.55)

are defined as:

M4
s,t(u, ,k) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1∫
0

....
1∫
0

Ms
t (u(x1), ...,u(xk))

k

i=1

d(xi)
) 1

s

, s 	= 0,

exp

((
1∫
0

....
1∫
0

logMt (u(x1), ...,u(xk))
k

i=1

d(xi)
))

, s = 0.
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Corollary 1.12 ([52]) Let s,t ∈ R such that s ≤ t. Then we have

M̃t (u,) = M4
t,s(u, ,1) ≥ ... ≥ M4

t,s(u, ,k) ≥ M4
t,s(u, ,k+1) ≥ ... ≥ M̃s (u,) , (1.56)

M̃s (u,) = M4
s,t(u, ,1) ≤ ... ≤ M4

s,t(u, ,k) ≤ M4
s,t(u, ,k+1) ≤ ... ≤ M̃t (u,) . (1.57)

Remark 1.4 In fact unweighted version of these results were proved in [6], but it has
been mentioned in Remark 2.14 of [6] that the same is valid for the weighted case. In
[52], not only results for weighted mixed symmetric means are given, but the exponential
convexity of some expressions coming from (1.8), (1.12), (1.15) and (1.17) is also proved
by using the convex functions s : (0,) → R and s : R → [0,), defined by

s(x) :=

⎧⎪⎨⎪⎩
xs

s(s−1) , s 	= 0,1;

− log(x) , s = 0;

x log(x) , s = 1,

s(x) : =

{
1
s2

esx, s 	= 0;
1
2x2, s = 0.

Mean value theorems are also given together with the corresponding monotone means of
Cauchy type. In [6] these classes are used to prove the log-convexity (not the exponential
convexity) of positive linear functionals.

Remark 1.5 In 1998, T. Hara et al. introduced some unweighted mixed means and
proved their monotonicity property (see [25]). The Hamy’s symmetric function (see [25,
54]) has interesting properties and it has been studied by many authors (see [9, 15, 16, 23,
49, 54]). It generates some mixed symmetric means without weights, named as Hamy’s
means. For a positive integer r, the r-th order Hamy’s Mean is a special case of the mixed
symmetric (arithmetic-geometric or geometric-arithmetic) mean given by Mitrinović and
Pečarić in 1988 [58].



Chapter2
Refinements of Jensen’s
Inequality

A method to refine the well known discrete Jensen’s inequality is developed in [32], and a
parameter dependent refinement of the discrete Jensen’s inequality is proved in [33]. Mixed
symmetric means are constructed with respect to these refinements and the monotonicity
of them is studied. We also apply the new exponential convexity method as illustrated in
[68], to the functionals obtained from the refinement results of [32] and [33]. In this way
we are able to generalize the results given in [37] as well as given in [6]. The results of this
chapter are given in [40], [51] and [53].

Throughout the text P(X) denotes the power set of a set X , |X | means the number of
elements in X , and for any nonnegative integer d let

Pd(X) := {Y ⊂ X | |Y | = d}.

2.1 A Refinement of the Discrete Jensen’s
Inequality

A refinement of the discrete Jensen’s inequality is given in [44]. The following notations
are also introduced in [44]:

25
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(N1): Let u ≥ 1 and v ≥ 2 be fixed integers. Define the functions

Sv,w : {1, ...,u}v →{1, ...,u}v−1, 1 ≤ w ≤ v,

Sv : {1, ...,u}v → P
(
{1, ...,u}v−1

)
,

and
Tv : P({1, ...,u}v) → P

(
{1, ...,u}v−1

)
by

Sv,w(i1, ..., iv) := (i1, ..., iw−1, iw+1, ..., iv), 1 ≤ w ≤ v,

Sv(i1, ..., iv) :=
v⋃

w=1

{Sv,w(i1, ..., iv)},

and

Tv(I) :=

⎧⎨⎩
⋃

(i1,...,iv)∈I
Sv(i1, ..., iv), I 	= /0,

 , , I = /0,

where /0 means the empty set.
Further, introduce the functions

v,i : {1, ...,u}v → N, 1 ≤ i ≤ u,

defined by

v,i(i1, ..., iv) := Number of occurrencesof i in the sequence(i1, ..., iv).

For each I ∈ P({1, ...,u}v), let

I,i := 
(i1,...,iv)∈I

v,i(i1, ..., iv), 1 ≤ i ≤u.

It is easy to observe from the construction of the functions Sv,w, Sv, Tv and v,i that they do
not depend essentially on u, so u is not marked in the notations.

(H0) The following considerations concern a subset Ik of {1, ...,n}k satisfying

Ik ,i ≥ 1, 1 ≤ i ≤ n, (2.1)

where n ≥ 1 and k ≥ 2 are fixed integers.
Next, we proceed inductively to define the sets Il ⊂ {1, ...,n}l (k−1 ≥ l ≥ 1) by

Il−1 := Tl(Il), k ≥ l ≥ 2.

By (2.1), I1 = {1, ...,n} and this implies that I1 ,i = 1 for 1 ≤ i ≤ n. From (2.1) again, we
have Il ,i ≥ 1 (k−1 ≥ l ≥ 1,1 ≤ i ≤ n). It is evident that

1,i( j) =

{
1, if j = i

0, if j 	= i
, 1 ≤ i ≤ n. (2.2)
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For every k ≥ l ≥ 2 and for any ( j1, ..., jl−1) ∈ Il−1 let

HIl ( j1, ..., jl−1)

:= {((i1, ..., il),m) ∈ Il ×{1, ..., l} | Sl,m(i1, ..., il) = ( j1, ..., jl−1)}.
Using these sets we define the functions tIk ,l : Il → N (k ≥ l ≥ 1) inductively by

tIk ,k(i1, ..., ik) := 1, (i1, ..., ik) ∈ Ik ; (2.3)

tIk ,l−1( j1, ..., jl−1) := 
((i1,...,il),m)∈HIl

( j1,..., jl−1)
tIk ,l (i1, ..., il). (2.4)

In the sequel we need the following hypotheses:
(H1) Let V be a real vector space, C ⊂V be a convex set, x := (x1, ...,xn) ∈Cn, and let

p := (p1, ..., pn) be a positive n-tuples such that
n

i=1

pi = 1.

(H2) Let f : C → R be a convex function.
(H̃2) Let f : C → R be a mid-convex function, and p1, . . . , pn be rational numbers.
We introduce some special expressions, which will be important in our results.
For any k ≥ l ≥ 1 set

Al,l = Al,l(Ik,x,p) := 
(i1,...,il)∈Il

(
l


s=1

pis
Il ,is

)
f

⎛⎝ l


s=1

pis
Il ,is

xis

l


s=1

pis
Il ,is

⎞⎠ , (2.5)

and associate to each k−1 ≥ l ≥ 1 the number

Ak,l = Ak,l(Ik,x,p)

:= 1
(k−1)...l 

(i1,...,il)∈Il

tIk ,l(i1, ..., il)
(

l


s=1

pis
Ik,is

)
f

⎛⎝ l


s=1

pis
Ik ,is

xis

l


s=1

pis
Ik ,is

⎞⎠ . (2.6)

Now we are in a position to formulate the following interpolatory result by Horváth
and Pečarić:

Theorem 2.1 ([44]) Assume that (H0), (H1) and either (H2) or (H̃2) are satisfied.
Then

f

(
n


i=1

pixi

)
≤ Ak,k ≤ Ak,k−1 ≤ ... ≤ Ak,2 ≤ Ak,1 =

n


i=1

pi f (xi). (2.7)

If f is a concave function then the inequalities in (2.7) are reversed.

Under the conditions of Theorem 2.1, we have

1 ( f ) = 1 ( f ,m, l, Ik,x,p) := Ak,m −Ak,l ≥ 0, k−1≥ l > m ≥ 1,

2 ( f ) = 2 ( f , l, Ik,x,p) := Ak,l − f

(
n

i=1

pixi

)
≥ 0, k−1 ≥ l ≥ 1.

The following result is also given in [44].
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Theorem 2.2 ([44]) Assume that (H0), (H1) and either (H2) or (H̃2) are satisfied. Also
suppose |HII ( j1, ..., jl−1)| = l−1 for any ( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). Then

Ak,l = Al,l =
n

l |Il| 
(i1,...,il)∈Il

(
l


s=1

pis

)
f

⎛⎜⎜⎝
l


s=1
pisxis

l


s=1
pis

⎞⎟⎟⎠ , k ≥ l ≥ 1, (2.8)

and thus

f

(
n


r=1

prxr

)
≤ Ak,k ≤ Ak−1,k−1 ≤ ... ≤ A2,2 ≤ A1,1 =

n


r=1

pr f (xr). (2.9)

If f is a concave function then the inequalities in (2.9) are reversed.

Under the conditions of the previous theorem, we have from (2.9) that

3 ( f ) = 3 ( f , Ik,x,p) := Am,m −Al,l ≥ 0, k ≥ l > m ≥ 1,

4 ( f ) = 4 ( f , Ik,x,p) := Al,l − f

(
n


r=1
prxr

)
≥ 0, k ≥ l ≥ 1.

To prove the previous results we begin with a deeper property of the function tIk ,1.

Lemma 2.1 If (H0) is satisfied, then

tIk ,1(i) = Ik ,i (k−1)!, 1 ≤ i ≤ n. (2.10)

Proof. For a fixed 1 ≤ i ≤ n we first prove by induction on l that


(i1,...,il)∈Il

l,i(i1, . . . , il)tIk ,l(i1, . . . , il) (2.11)

=

{
Ik ,i, if l = k

Ik ,i(k−1)(k−2) . . .l, if k−1 ≥ l ≥ 1
.

If l = k, then (2.1) and (2.3) give (2.11). Suppose then that l (k ≥ l ≥ 2) is an integer for
which (2.11) holds. By (2.4)


( j1,..., jl−1)∈Il−1

l−1,i( j1, . . . , jl−1)tIk ,l−1( j1, . . . , jl−1)

= 
( j1,..., jl−1)∈Il−1

l−1,i( j1, . . . , jl−1)

·
⎛⎝ 

((i1,...,il),m)∈HIl
( j1,..., jl−1)

tIk ,l(i1, . . . , il)

⎞⎠ .
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From this and the definition of Sl,m (1 ≤ m ≤ l) it follows


( j1,..., jl−1)∈Il−1

l−1,i( j1, . . . , jl−1)tIk ,l−1( j1, . . . , jl−1) = 
( j1,..., jl−1)∈Il−1⎛⎝ 

{((i1,...,il),m)∈HIl
( j1,..., jl−1)|im 	=i}

l,i(i1, . . . , il)tIk ,l(i1, . . . , il)

+ 
{((i1,...,il),m)∈HIl

( j1,..., jl−1)|im=i}
(
l,i(i1, . . . , il)−1

)
tIk ,l(i1, . . . , il)

⎞⎠
= 

(i1,...,il)∈Il

((
l−l,i(i1, . . . , il)

)
l,i(i1, . . . , il)tIk ,l(i1, . . . , il)

+l,i(i1, . . . , il)
(
l,i(i1, . . . , il)−1

)
tIk ,l(i1, . . . , il)

)
= (l−1) 

(i1,...,il)∈Il

l,i(i1, . . . , il)tIk ,l(i1, . . . , il),

and therefore the induction hypothesis shows that


( j1,..., jl−1)∈Il−1

l−1,i( j1, . . . , jl−1)tIk ,l−1( j1, . . . , jl−1)

= Ik ,i(k−1) . . . l(l−1).

(2.11) for l = 1, taking into consideration (2.2), implies (2.10). The proof is complete.
�

In Theorem 2.2 our arguments depend on the following lemma.

Lemma 2.2 Assume (H0). If∣∣HIl ( j1, . . . , jl−1)
∣∣= l−1, for all ( j1, . . . , jl−1) ∈ Il−1, k ≥ l ≥ 2, (2.12)

then
(a) l−1 = l |Il |

|Il−1| (k ≥ l ≥ 2).

(b) tIk ,l( j1, . . . , jl) = k−1 . . .l = k . . . (l +1) |Ik ||Il | (( j1, . . . , jl) ∈ Il, k−1 ≥ l ≥ 1).
(c) l := Il ,n = . . . = Il ,1 (k ≥ l ≥ 1).
(d) l = l|Il |

n (k ≥ l ≥ 1).
(e)

Ak.l = Al,l =
n

l |Il| 
(i1,...,il)∈Il

(
l


s=1

pis

)
f

⎛⎜⎜⎝
l


s=1
pisxs

l


s=1
pis

⎞⎟⎟⎠ , k ≥ l ≥ 1.

(f) If p1 = . . . = pn = 1
n , then

Ak.l = Al,l =
1
|Il| 

(i1,...,il)∈Il

f

(
xi1 + . . .+ xil

l

)
, k ≥ l ≥ 1.
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Proof. (a) By the definition of HIl ( j1, . . . , jl−1)


( j1,..., jl−1)∈Il−1

∣∣HIl ( j1, . . . , jl−1)
∣∣= l |Il| , k ≥ l ≥ 2.

Consequently, (2.12) yields (a).
(b) We prove this by induction on l, the case l = k being

tIk ,k−1( j1, . . . , jk−1) := 
((i1,...,ik),m)∈HIk

( j1,..., jk−1)
tIk ,k(i1, . . . , ik)

= k−1, ( j1, . . . , jk−1) ∈ Ik−1.

Let l (k−1 ≥ l ≥ 2) be an integer such that the result holds. Then

tIk ,l−1( j1, . . . , jl−1) := 
((i1,...,il),m)∈HIl

( j1,..., jl−1)
tIk ,l(i1, . . . , il)

= 
((i1,...,il),m)∈HIl

( j1,..., jl−1)
k−1 . . .l =

∣∣HIl ( j1, . . . , jl−1)
∣∣k−1 . . .l

= k−1 . . .ll−1.

The second equality in (b) comes from (a).
(c) Part (b) and (2.10) show that

tIk ,1(i) = k−1 . . .1 = Ik ,i (k−1)!, 1 ≤ i ≤ n,

and thus Ik ,n = . . . = Ik ,1. It follows from (b) and (2.11) that


(i1,...,il)∈Il

l,i(i1, . . . , il)tIk ,l(i1, . . . , il) = k−1 . . .l 
(i1,...,il)∈Il

l,i(i1, . . . , il)

= k−1 . . .lIl ,i = Ik ,i(k−1)(k−2) . . . l, k−1 ≥ l ≥ 1, 1 ≤ i ≤ n,

giving

Il ,i =
k(k−1)(k−2) . . .l

k−1 . . .l
, k−1 ≥ l ≥ 1, 1 ≤ i ≤ n,

and this implies the result for k−1 ≥ l ≥ 1.
(d) It is an easy consequence of (c).
(e) Using the definition of Ak,l (k−1 ≥ l ≥ 1), then (b), (c) and (d), we get

Ak,l :=
1

(k−1) . . . l 
(i1,...,il)∈Il

tIk ,l(i1, . . . , il)

(
l


s=1

pis

Ik ,is

)
f

⎛⎜⎜⎝
l


s=1

pis
Ik,is

xs

l


s=1

pis
Ik ,is

⎞⎟⎟⎠

=
1

k (k−1). . . l
k . . . (l +1)

|Ik|
|Il| 

(i1,...,il)∈Il

(
l


s=1

pis

)
f

⎛⎜⎜⎝
l


s=1
pisxs

l


s=1
pis

⎞⎟⎟⎠
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=
k

lk

|Ik|
|Il| 

(i1,...,il)∈Il

(
l


s=1

pis

)
f

⎛⎜⎜⎝
l


s=1
pisxs

l


s=1
pis

⎞⎟⎟⎠

=
n

l |Il| 
(i1,...,il)∈Il

(
l


s=1

pis

)
f

⎛⎜⎜⎝
l


s=1
pisxs

l


s=1
pis

⎞⎟⎟⎠ , (k−1 ≥ l ≥ 1).

Similarly, the definition of Al,l (k ≥ l ≥ 1), (c) and (d) insures that

Al,l := 
(i1,...,il)∈Il

(
l


s=1

pis

Il ,is

)
f

⎛⎜⎜⎝
l


s=1

pis
Il ,is

xs

k


s=1

pis
Il ,is

⎞⎟⎟⎠

=
1
l


(i1,...,il)∈Il

(
l


s=1

pis

)
f

⎛⎜⎜⎝
l


s=1
pisxs

l


s=1
pis

⎞⎟⎟⎠

=
n

l |Il| 
(i1,...,il)∈Il

(
l


s=1

pis

)
f

⎛⎜⎜⎝
l


s=1
pisxs

l


s=1
pis

⎞⎟⎟⎠ , (k ≥ l ≥ 1).

(f) This is a special case of (e).

The proof is now complete. �

Remark 2.1 Assume (H0). Lemma 2.2 shows that (2.12) implies l :=Il ,n = . . . =Il ,1

(k ≥ l ≥ 1). The converse of this is not true in general, as it is seen by easy examples.

The following lemma will be fundamental.

Lemma 2.3 Assume that (H0), (H1) and either (H2) or (H̃2) are satisfied. Then

Ak,l ≤ Ak,l−1, k ≥ l ≥ 2.
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Proof. Assume (H0), (H1) and (H2). We prove first that Ak,k ≤ Ak,k−1. Since

Ak,k = 
(i1,...,ik)∈Ik

(
k


s=1

pis

Ik ,is

)
f

⎛⎜⎜⎝
k


s=1

pis
Ik ,is

xis

k


s=1

pis
Ik,is

⎞⎟⎟⎠
= 

(i1,...,ik)∈Ik

(
k


s=1

pis

Ik ,is

)

· f

⎛⎜⎜⎝ k


m=1

⎛⎜⎜⎝
k


s=1

pis
Ik,is

− pim
Ik,im

(k−1)
k

s=1

pis
Ik,is

·

k


s=1

pis
Ik,is

xis − pim
Ik,im

xim

k


s=1

pis
Ik,is

− pim
Ik,im

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

and
k


s=1

pis
Ik,is

− pim
Ik,im

(k−1)
k


s=1

pis
Ik,is

≥ 0, 1 ≤ m ≤ k,

and

k


m=1

⎛⎜⎜⎝
k


s=1

pis
Ik ,is

− pim
Ik ,im

(k−1)
k

s=1

pis
Ik,is

⎞⎟⎟⎠= 1, (i1, . . . , ik) ∈ Ik,

the discrete Jensen’s inequality for convex functions (see Theorem 1.5) implies

Ak,k ≤ 
(i1,...,ik)∈Ik

(
k


s=1

pis

Ik ,is

)
k


m=1

⎛⎜⎜⎝
k


s=1

pis
Ik,i j

− pim
Ik ,im

(k−1)
k


s=1

pis
Ik,is

(2.13)

· f

⎛⎜⎜⎝
k


s=1

pis
Ik ,is

xis − pim
Ik,im

xim

k


s=1

pis
Ik,is

− pim
Ik ,im

⎞⎟⎟⎠
⎞⎟⎟⎠=

1
k−1 

(i1,...,ik)∈Ik

⎛⎜⎜⎝ k


m=1

(
k


s=1

pis

Ik ,is
− pim

Ik ,im

)
f

⎛⎜⎜⎝
k


s=1

pis
Ik ,is

xis − pim
Ik,im

xim

k


s=1

pis
Ik,is

− pim
Ik ,im

⎞⎟⎟⎠
⎞⎟⎟⎠ .
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In light of the meaning of tIk ,k−1, this yields

Ak,k ≤ 1
k−1 

( j1,..., jk−1)∈Ik−1

tIk ,k−1( j1, . . . , jk−1)

·
(

k−1


s=1

p js

Ik , js

)
f

⎛⎜⎜⎝
k−1


s=1

p js
Ik , js

x js

k−1


s=1

p js
Ik, js

⎞⎟⎟⎠= Ak,k−1.

Suppose now that k− 1 ≥ l ≥ 2. By an argument analogous to that employed in the
first part we have that

Ak,l ≤ 1
(k−1). . . l (l−1) 

(i1,...,il)∈Il

(
tIk ,l(i1, . . . il)

·
l


m=1

(
l


s=1

pis

Ik ,is
− pim

Ik ,im

)
f

⎛⎜⎜⎝
l


s=1

pis
Ik,is

xis − pim
Ik ,im

xim

l


s=1

pis
Ik,is

− pim
Ik,im

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

and therefore the definitions of the set HIl ( j1, . . . , jl−1) and the function tIk ,l−1 give

Ak,l ≤ 1
(k−1) . . . l (l−1)

· 
( j1,..., jl−1)∈Il−1

⎛⎝⎛⎝ 
((i1,...,il),m)∈HIl

( j1,..., jl−1)
tIk ,l(i1, . . . , il)

⎞⎠
(

l−1


s=1

p js

Ik , js

)
f

⎛⎜⎜⎝
l−1


s=1

p js
Ik, js

x js

l−1


s=1

p js
Ik, js

⎞⎟⎟⎠
⎞⎟⎟⎠= Ak,l−1,

and this completes the proof in the considered case.
We turn now to the other case: assume (H0), (H1) and (H̃2). Since the numbers

Ik ,i (1 ≤ i ≤ n) are integers the proof is entirely similar as above (the discrete Jensen’s
inequality for mid-convex functions can be applied in (2.13)).

The proof is now complete. �

After these preliminaries we arrive to the proof of Theorem 2.1.
Proof. Assume (H0), (H1) and (H2).
Since

n


r=1

prxr = 
(i1,...,ik)∈Ik

⎛⎜⎜⎝ k


s=1

pis

Ik ,is

k


s=1

pis
Ik,is

xis

k


s=1

pis
Ik,is

⎞⎟⎟⎠ ,
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and


(i1,...,ik)∈Ik

(
k


s=1

pis

Ik ,is

)
= 1,

it follows from the discrete Jensen’s inequality for convex functions that

f

(
n


r=1

prxr

)
≤ 

(i1,...,ik)∈Ik

(
k


s=1

pis

Ik ,is

)
f

⎛⎜⎜⎝
k


s=1

pis
Ik ,i j

xis

k


s=1

pis
Ik,is

⎞⎟⎟⎠= Ak,k, (2.14)

which proves the first inequality in (2.7).
The inequalities

Ak,k ≤ Ak,k−1 ≤ . . . ≤ Ak,2 ≤ Ak,1

can be obtained from Lemma 2.3.
It remains only to show that

Ak,1 =
n


r=1

pr f (xr) (2.15)

By the definition of Ak,1

Ak,1 =
1

(k−1)!

n


s=1

tIk ,1(s)
ps

Ik ,s
f (xs) ,

and therefore Lemma 2.1 insures (2.15).
If (H0), (H1) and (H̃2) are satisfied, then we can prove as before, since the numbers

Ik ,i (1 ≤ i ≤ n) are integers, and since the discrete Jensen’s inequality for mid-convex
functions can be used in (2.14).

The proof of the theorem is complete. �

Proof of Theorem 2.2: It follows from Theorem 2.1 by applying Lemma 2.2 (e).

2.1.1 Examples and Mixed Symmetric Means Related to
Theorem 2.1

In the following two examples (H1) and either (H2) or (H̃2) will be assumed. They
originated from [44].

Example 2.1 Let

I2 :=
{
(i1, i2) ∈ {1, . . . ,n}2 | i1|i2

}
. (2.16)

The notation i1|i2 means that i1 divides i2. Since i|i (i = 1, . . . ,n), (H0) holds. In this case

I2,i =
[n

i

]
+d(i), i = 1, . . . ,n,
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where
[

n
i

]
is the largest natural number that does not exceed n

i , and d(i) denotes the number
of positive divisors of i. By Theorem 2.1 , we have

f

(
n


r=1

prxr

)
≤ 

(i1,i2)∈I2

⎛⎝ pi1[
n
i1

]
+d(i1)

+
pi2[

n
i2

]
+d(i2)

⎞⎠

· f

⎛⎜⎝
pi1[

n
i1

]
+d(i1)

xi1 +
pi2[

n
i2

]
+d(i2)

xi2

pi1[
n
i1

]
+d(i1)

+
pi2[

n
i2

]
+d(i2)

⎞⎟⎠≤
n


r=1

pr f (xr).

Example 2.2 Let ci ≥ 1 be an integer (i = 1, . . . ,n), let k :=
n

i=1

ci, and let Ik = Pc1,...,cn

consist of all sequences (i1, . . . , ik) in which the number of occurrences of i ∈ {1, . . . ,n} is
ci (i = 1, . . . ,n). Evidently, (H0) is satisfied. A simple calculation shows that

Ik−1 =
n⋃

i=1

Pc1,...,ci−1,ci−1,ci+1,...,cn , Ik ,i =
k!

c1! . . .cn!
ci, i = 1, . . . ,n,

and

tIk ,k−1 (i1, . . . , ik−1) = k,

if (i1, . . . , ik−1) ∈ Pc1,...,ci−1,ci−1,ci+1,...,cn , i = 1, . . . ,n,

and

f

(
n


r=1

prxr

)
= Ak,k

=
c1! . . .cn!

k! 
(i1,...,ik)∈Ik

(
k


s=1

pis

cis

)
f

⎛⎜⎜⎝
k


s=1

pis
cis

xis

k


s=1

pis
cis

⎞⎟⎟⎠ .

According to Theorem 2.1

f

(
n


r=1

prxr

)
≤ Ak,k−1 ≤

n


r=1

pr f (xr),

where

Ak,k−1 =
1

k−1

n


i=1

(ci − pi) f

⎛⎜⎜⎝
n


r=1
prxr − pi

ci
xi

1− pi
ci

⎞⎟⎟⎠ .

To introduce some new means corresponding to the expressions (2.5) and (2.6), we
need the following two additional hypotheses:
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(H3) Let x := (x1, ...,xn) and p := (p1, ..., pn) be positive n-tuples such that
n

i=1

pi = 1.

(H̃3) Let J ⊂ R be an interval, x := (x1, ...,xn) ∈ Jn, let p := (p1, ..., pn) be a positive

n-tuples such that
n

i=1

pi = 1, and let h, g : J → R be continuous and strictly monotone

functions.
Assume (H0) and (H3). The power means of order r ∈ R corresponding to il :=

(i1, . . . , il) ∈ Il (l = 1, . . . ,k) are given as:

Mr(Ik, il) = Mr(Ik, il ,x,p) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ l


s=1

pis
Ik ,is

xr
is

l


s=1

pis
Ik ,is

⎞⎠
1
r

, r 	= 0,

(
l

s=1

xis

pis
Ik ,is

) 1
l


s=1

pis
Ik ,is

, r = 0.

For  , ∈R we introduce the mixed symmetric means with positive weights as follows:

M1
, (Ik,k,x,p) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[


ik=(i1,...,ik)∈Ik

(
k


s=1

pis
Ik,is

)(
M(Ik, i

k)
)] 1



,  	= 0,


ik=(i1,...,ik)∈Ik

(
M (Ik, ik)

)( k


s=1

pis
Ik ,is

)
,  = 0,

(2.17)

and for k−1≥ l ≥ 1

M1
, (Ik, l,x,p)

:=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
1

(k−1)...l 
il=(i1,...,il)∈Il

tIk ,l(i
l)
(

l


s=1

pis
Ik,is

)(
M(Ik, i

l ,p)
)] 1



,  	= 0,⎡⎣ 
il=(i1,...,il)∈Il

(
M(Ik, il,p)

)tIk ,l(il)
(

l


s=1

pis
Ik ,is

)⎤⎦
1

(k−1)...l

,  = 0.

(2.18)

We deduce the monotonicity of these means from Theorem 2.1 as follows.

Corollary 2.1 ([37]) Assume (H0) and (H3). Let  ,  ∈ R such that  ≤  . Then

M (x,p) = M1
, (Ik,1,x,p) ≥ . . . ≥ M1

, (Ik,k,x,p) ≥ M (x,p) , (2.19)

and
M (x,p) = M1

, (Ik,1,x,p) ≤ .... ≤ M1
, (Ik,k,x,p) ≤ M (x,p) , (2.20)

where Mr (x,p) is the power mean of order r ∈ R (see 1.44).
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Proof. Assume  ,  	= 0. To obtain (2.19), we can apply Theorem 2.1 to the function

f (x) = x

 (x > 0) and the n-tuples (x1 , . . . ,xn ) to get the analogue of (2.7) and raising

the power 1
 . (2.20) can be proved in a similar way by using f (x) = x


 (x > 0) and

(x1, . . . ,x

n) and raising the power 1

 .
When  = 0 or  = 0, we get the required results by taking limit. �

Assume (H0) and (H̃3). Then we define the quasi-arithmetic means with respect to
(2.5) and (2.6) as follows:

M1
h,g(Ik,k,x,p) := h−1

⎛⎜⎜⎝ 
(i1,...,ik)∈Ik

(
k


s=1

pis

Ik ,is

)
h ◦ g−1

⎛⎜⎜⎝
k


s=1

pis
Ik,is

g(xis)

k


s=1

pis
Ik,is

⎞⎟⎟⎠
⎞⎟⎟⎠ , (2.21)

and for k−1 ≥ l ≥ 1

M1
h,g(Ik,k,x,p)

:= h−1

⎛⎝ 1
(k−1)...l 

il=(i1,...,il)∈Il

tIk ,l(i
l)
(

l


s=1

pis
Ik,is

)
h ◦ g−1

⎛⎝ l


s=1

pis
Ik ,is

g(xis )

l


s=1

pis
Ik ,is

⎞⎠⎞⎠ .
(2.22)

The monotonicity of these generalized means is obtained in the next corollary.

Corollary 2.2 ([37]) Assume (H0) and (H̃3). Then

Mh (x,p) = M1
h,g(Ik,1,x,p) ≥ ... ≥ M1

h,g(Ik,k,x,p) ≥ Mg (x,p) , (2.23)

if either h◦ g−1 is convex and h is increasing or h◦ g−1 is concave and h is decreasing;

Mg (x,p) = M1
g,h(Ik,1,x,p) ≤ ... ≤ M1

g,h(Ik,k,x,p) ≤ Mh (x,p) , (2.24)

if either g◦ h−1 is convex and g is decreasing or g ◦ h−1 is concave and g is increasing.
Mh (x,p) and Mg (x,p) are the quasi-arithmetic means associated to h and g, respectively
(see (1.43).

Proof. First, we can apply Theorem 2.1 to the function h ◦ g−1 and the n-tuples
(g(x1), . . . ,g(xn)), then we can apply h−1 to the inequality coming from (2.7). This gives
(2.23). A similar argument gives (2.24): g ◦ h−1, (h(x1), . . . ,h(xn)) and g−1can be used. �

Based on Examples 2.1 and 2.2, we can generate concrete means (see [37]). We just
consider Example 2.1.

Example 2.3 ([37]) Let I2 be the set defined in (2.16).
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If (H3) holds, then (2.17) gives for  ,  ∈ R

M1
, (I2,2,x,p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(


i2=(i1,i2)∈I2

(
2


s=1

pis

[ n
is ]+d(is)

)(
M(I2, i

2)
)) 1



,  	= 0


i2=(i1,i2)∈I2

(
M (I2, i

2)
)( 2


s=1

pis

[ n
is ]+d(is)

)
,  = 0

,

while if (H̃3) is satisfied, then (2.21) gives

M1
h,g(I2,2,x,p)

= h−1

⎛⎜⎜⎝ 
(i1,i2)∈I2

⎛⎝ 2


s=1

pis[
n
is

]
+d(is)

⎞⎠h ◦ g−1

⎛⎜⎜⎝
2


s=1

pis

[ n
is ]+d(is)

g(xis)

2


s=1

pis

[ n
is ]+d(is)

⎞⎟⎟⎠
⎞⎟⎟⎠ .

2.1.2 Examples and Mixed Symmetric Means Related to
Theorem 2.2

Throughout the following four examples (H1) and either (H2) or (H̃2) will be assumed.
They come from [44].

The first example shows that Theorem 2.2 contains Theorem 1.8.

Example 2.4 Let

Ik :=
{

(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 < .. . < ik
}

, 1 ≤ k ≤ n.

Then In ,i = 1 (i = 1, . . . ,n) ensuring (H0) with k = n. It is easy to check that Tk(Ik) = Ik−1

(k = 2, . . . ,n), |Ik| =
(n
k

)
(k = 1, . . . ,n), and for every k = 2, . . . ,n∣∣HIk ( j1, . . . , jk−1)

∣∣= n− (k−1), ( j1, . . . , jk−1) ∈ Ik−1,

and therefore, thanks to Theorem 2.2,

Ak,k =
1(n−1

k−1

) 
1≤i1<...<ik≤n

(
k


s=1

pis

)
f

⎛⎜⎜⎝
k


s=1
pisxis

k


s=1
pis

⎞⎟⎟⎠ , k = 1, . . . ,n.

and

f

(
n


r=1

prxr

)
≤ Ak,k ≤ Ak−1,k−1 ≤ . . . ≤ A2,2 ≤ A1,1 =

n


r=1

pr f (xr).

The next example illustrates that Theorem 1.10 is a special case of Theorem 2.2.
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Example 2.5 Let

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 ≤ . . . ≤ ik

}
, k ≥ 1.

Obviously, Ik ,i ≥ 1 (i = 1, . . . ,n), and therefore (H0) is satisfied. It is not hard to see that
Tk(Ik) = Ik−1 (k = 2, . . .), |Ik| =

(n+k−1
k

)
(k = 1, . . .), and for each l = 2, . . . ,k∣∣HIl ( j1, . . . , jl−1)
∣∣= n, ( j1, . . . , jl−1) ∈ Il−1.

Consequently, by applying Theorem 2.2, we deduce that

Ak,k =
1(n+k−1

k−1

) 
1≤i1≤...≤ik≤n

(
k


s=1

pis

)
f

⎛⎜⎜⎝
k


s=1
pisxis

k


s=1
pis

⎞⎟⎟⎠ , k ≥ 1,

and

f

(
n


r=1

prxr

)
≤ . . . ≤ Ak,k ≤ . . . ≤ Ak,1 =

n


r=1

pr f (xr).

For p1 = . . . = pn = 1
n Theorem 1.11 is contained in the next example.

Example 2.6 Let
Ik := {1, . . . ,n}k , k ≥ 1.

Trivially, Ik ,i ≥ 1 (i = 1, . . . ,n), hence (H0) holds. It is evident that Tk(Ik) = Ik−1 (k =
2, . . .), |Ik| = nk (k = 1, . . .), and for every l = 2, . . . ,k∣∣HIl ( j1, . . . , jl−1)

∣∣= nl, ( j1, . . . , jl−1) ∈ Il−1,

and so Theorem 2.2 leads to

Ak,k =
1

knk−1 
(i1,...,ik)∈Ik

(
k


s=1

pis

)
f

⎛⎜⎜⎝
k


s=1
pisxis

k


s=1
pis

⎞⎟⎟⎠ , k ≥ 1,

and

f

(
n


r=1

prxr

)
≤ . . . ≤ Ak,k ≤ . . . ≤ A1,1 =

n


r=1

pr f (xr), k ≥ 1.

Especially, for p1 = . . . = pn = 1
n we find from Lemma 2.2 (f) that

Ak,k =
1
nk 

(i1,...,ik)∈Ik

f

(
xi1 + . . .xik

k

)
, k = 1, . . . ,n.

The final example is the next:
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Example 2.7 For 1≤ k≤ n let Ik consist of all sequences (i1, . . . , ik) of k distinct numbers
from {1, . . . ,n}. Then In ,i ≥ 1 (i = 1, . . . ,n), hence (H0) is valid. It is immediate that
Tk(Ik) = Ik−1 (k = 2, . . . ,n), |Ik| = n(n−1) . . .(n− k +1) (k = 1, . . . ,n), and for each k =
2, . . . ,n ∣∣HIk ( j1, . . . , jk−1)

∣∣= (n− (k−1))k, ( j1, . . . , jk−1) ∈ Ik−1.

and from them, on account of Theorem 2.2, follows

Ak,k =
n

kn(n−1) . . .(n− k+1)

· 
(i1,...,ik)∈Ik

(
k


s=1

pis

)
f

⎛⎜⎜⎝
k


s=1
pisxis

k


s=1
pis

⎞⎟⎟⎠ , k = 1, . . . ,n

and

f

(
n


r=1

prxr

)
≤ An,n ≤ . . . ≤ Ak,k ≤ . . . ≤ A1,1 =

n


r=1

pr f (xr).

If we set p1 = . . . = pn = 1
n , then

Ak,k =
1

n(n−1) . . .(n− k+1) 
(i1,...,ik)∈Ik

f

(
xi1 + . . .xik

k

)
, k = 1, . . . ,n.

Now we introduce some means corresponding to (2.8).
Assume (H0), (H3), and suppose also that |HII ( j1, ..., jl−1)|= l−1 for any ( j1, ..., jl−1)∈

Il−1 (k ≥ l ≥ 2).
The power means of order r ∈ R corresponding to il := (i1, . . . , il) ∈ Il (l = 1, . . . ,k)

has the form

Mr(Il, il) = Mr(Ik, il) = Mr(Il, il ,x,p) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ l


s=1
pis x

r
is

l


s=1
pis

⎞⎠
1
r

, r 	= 0,

(
l

s=1

xis
pis

) 1
l


s=1
pis

, r = 0.

Now, for  , ∈ R and k ≥ l ≥ 1 we introduce the mixed symmetric means with positive
weights related to (2.8) as follows:

M2
, (Il,x,p) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
n

l|Il | 
il=(i1,...,il)∈Il

(
l


s=1
pis

)(
M
(
Il, il
))] 1



,  	= 0,⎡⎣ 
il=(i1,...,il)∈Il

(
M
(
Il, il
))( l


s=1

pis

)⎤⎦
n

l|Il |
,  = 0.

(2.25)
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Corollary 2.3 ([37]) Assume (H0) and (H3). Suppose further that |HII ( j1, ..., jl−1)| =
l−1 for any ( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). Let  ,  ∈ R such that  ≤  . Then

M (x,p) = M2
, (I1,x,p) ≥ . . . ≥ M2

, (Ik,x,p) ≥ M (x,p) ,

and
M (x,p) = M2

, (I1,x,p) ≤ . . . ≤ M2
, (Ik,x,p) ≤ M (x,p) ,

where Mr (x,p) is the power mean of order r ∈ R (see 1.44).

Proof. Similar to the proof of Corollary 2.1. �

Assume (H0) and (H̃3). Suppose further that |HII ( j1, ..., jl−1)| = l−1 for any
( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). We define for k ≥ l ≥ 1 the quasi-arithmetic means with
respect to (2.8) as follows:

M2
h,g(Il ,x,p) := h−1

⎛⎜⎜⎝ n
l |Il| 

(i1,...,il)∈Il

(
l


s=1

pis

)
h ◦ g−1

⎛⎜⎜⎝
l


s=1
pisg(xis)

l


s=1
pis

⎞⎟⎟⎠
⎞⎟⎟⎠ . (2.26)

Corollary 2.4 ([37]) Assume (H0) and (H̃3). Suppose further that |HII ( j1, ..., jl−1)| =
l−1 for any ( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). Then

Mh (x,p) = M2
h,g(I1,x,p) ≥ . . . ≥ M2

h,g(Ik,x,p) ≥ Mg (x,p) ,

where either h◦ g−1 is convex and h is increasing or h◦ g−1 is concave and h is decreasing;

Mg (x,p) = M2
g,h(I1,x,p) ≤ . . . ≤ M2

g,h(Ik,x,p) ≤ Mh (x,p) ,

where either g◦ h−1 is convex and g is decreasing or g ◦ h−1 is concave and g is increasing.
Mh (x,p) and Mg (x,p) are the quasi-arithmetic means associated to h and g, respectively
(see (1.43).

Proof. Similar to the proof of Corollary 2.2. �

We illustrate these means with an example coming from Example 2.6.

Example 2.8 ([37]) Consider the set Ik defined in Example 2.6.
If (H3) holds, then (2.25) leads to

M2
, (Ik,x,p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
1

knk−1 
ik=(i1,...,ik)∈Ik

(
k


s=1
pis

)(
M (Ik,i

k)
)] 1



,  	= 0,⎡⎣ 
ik=(i1,...,ik)∈Ik

(
M(Ik,i

k)
)( k


s=1

pis

)⎤⎦
1

knk−1

,  = 0,

and if (H̃3) is satisfied, then (2.26) gives

M2
h,g(Ik,x,p) = h−1

⎛⎜⎜⎝ 1
knk−1 

ik=(i1,...,ik)∈Ik

(
k


s=1

pis

)
h ◦ g−1

⎛⎜⎜⎝
k


s=1
pisg(xis)

k


s=1
pis

⎞⎟⎟⎠
⎞⎟⎟⎠ .
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2.2 A New Treatment of Discrete Jensen’s Inequality

The aim of this chapter is to give such a generalization of Theorem 2.1 and Theorem 2.2
which shows the essence the methods employed in a lot of known results and unifies them.

In this chapter we also use the conditions (H1), (H2) and (H̃2):
(H1) Let V be a real vector space, C ⊂V be a convex set, x := (x1, ...,xn) ∈Cn, and let

p := (p1, ..., pn) be a positive n-tuples such that
n

i=1

pi = 1.

(H2) Let f : C → R be a convex function.
(H̃2) Let f : C → R be a mid-convex function, and p1, . . . , pn be rational numbers.
We need the following two additional hypotheses:
(H4) Let S1, . . . ,Sn be finite, pairwise disjoint and nonempty sets, let

S :=
n⋃

j=1

S j,

and let c be a function from S into R such that

c(s) > 0, s ∈ S, and 
s∈S j

c(s) = 1, j = 1, . . . ,n. (2.27)

Let the function  : S → {1, . . . ,n} be defined by

(s) := j, if s ∈ S j.

(H5) Suppose A ⊂ P(S) is a partition of S into pairwise disjoint and nonempty sets.
Let

k := max{|A| | A ∈ A } ,

and let
Al := {A ∈ A | |A| = l} , l = 1, . . . ,k.

Then Al (l = 1, . . . ,k−1) may be the empty set, and |S| =
k

l=1

l |Al|.
Hereinafter, the empty sum is taken to be zero.

Theorem 2.3 ([32]) (a) Assume (H1), (H2), (H4) and (H5). Then

f

(
n


j=1

p jx j

)
≤ Nk ≤ Nk−1 ≤ . . . ≤ N2 ≤ N1 =

n


j=1

p j f (x j), (2.28)

where
Nk = Nk (S,c,A ,x,p)

:=
k


l=1

⎛⎝ 
A∈Al

⎛⎝(
s∈A

c(s)p(s)

)
f

⎛⎝ 
s∈A

c(s)p(s)x(s)


s∈A

c(s)p(s)

⎞⎠⎞⎠⎞⎠ , (2.29)
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and for every 1 ≤ m ≤ k−1 the number Nk−m is given by

Nk−m = Nk−m (S,c,A ,x,p)

:=
m


l=1

(


A∈Al

(

s∈A

c(s)p(s) f (x(s))

))
+

k


l=m+1

(
m!

(l−1) . . . (l−m)

· 
A∈Al

⎛⎝ 
B∈Pl−m(A)

⎛⎝(
s∈B

c(s)p(s)

)
f

⎛⎝ 
s∈B

c(s)p(s)x(s)


s∈B

c(s)p(s)

⎞⎠⎞⎠⎞⎠⎞⎠ . (2.30)

(b) Suppose (H1), (H̃2), (H4) and (H5). If the numbers c(s) (s ∈ S) are rational, then the
inequality (2.28) remains true.

Under the conditions of Theorem 2.3

5 ( f ) = 5( f ,m, l,x,p) := Nm −Nl ≥ 0, 1 ≤ m < l ≤ k,

6 ( f ) = 6( f , l,x,p) := Nl − f

(
n

j=1

p jx j

)
≥ 0, 1 ≤ l ≤ k.

The following application of Theorem 2.3 leads to a generalization of Theorem 2.1.

Theorem 2.4 Let n ≥ 1 and k ≥ 1 be fixed integers, and let Ik ⊂ {1, . . . ,n}k such that

Ik ,i ≥ 1, 1 ≤ i ≤ n,

where Ik ,i means the number of occurrences of i in the sequences (i1, . . . , ik) ∈ Ik. For
j = 1, . . . ,n we introduce the sets

S j := {((i1, . . . , ik) , l) | (i1, . . . , ik) ∈ Ik, 1 ≤ l ≤ k, il = j} . (2.31)

Let c be a positive function on S :=
n⋃

j=1
S j such that


((i1,...,ik),l)∈S j

c((i1, . . . , ik) , l) = 1, j = 1, . . . ,n. (2.32)

(a) Assume that (H1) and (H2) are satisfied. Then

f

(
n


j=1

p jx j

)
≤ Nk ≤ Nk−1 ≤ . . . ≤ N2 ≤ N1 =

n


j=1

p j f (x j), (2.33)

where the numbers Nk−m (0 ≤ m ≤ k−1) can be written in the following forms:

Nk := 
(i1,...,ik)∈Ik

⎛⎜⎜⎝
(

k


l=1

c((i1, . . . , ik) , l) pil

)
f

⎛⎜⎜⎝
k

l=1

c((i1, . . . , ik) , l) pil xil

k

l=1

c((i1, . . . , ik) , l) pil

⎞⎟⎟⎠
⎞⎟⎟⎠ , (2.34)
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and for every 1 ≤ m ≤ k−1

Nk−m :=
m!

(k−1). . . (k−m) 
(i1,...,ik)∈Ik

⎛⎜⎜⎜⎝ 
1≤l1<...<lk−m≤k

⎛⎜⎜⎜⎝
(

k−m


j=1

c((i1, . . . , ik) , l j) pil j

)
f

⎛⎜⎜⎜⎝
k−m

j=1

c((i1, . . . , ik) , l j) pil j
xil j

k−m

j=1

c((i1, . . . , ik) , l j) pil j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (2.35)

(b) If (H1) and (H̃2) are satisfied and the numbers c((i1, . . . , ik) , l) (((i1, . . . , ik) , l) ∈ S)
are rational, then the inequality (2.33) remains true.

An immediate consequence of the previous result is Theorem 2.1: choosing

c((i1, . . . , ik) , l) =
1∣∣S j
∣∣ = 1

Ik , j
if ((i1, . . . , ik) , l) ∈ S j,

we can check easily that the inequalities (2.33) corresponds to the inequalities (2.7).
By using Theorem 2.2, some extensions of Theorem 1.8 and Theorem 1.10 have been

obtained in Example 2.4 and in Example 2.5. Theorem 2.4 generalizes all these results:
apply it to either

Ik :=
{

(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 < .. . < ik
}

, 1 ≤ k ≤ n,

or
Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 ≤ . . . ≤ ik

}
, 1 ≤ k.

We confine here our attention to the proof of Theorem 2.3 (a), so we shall suppose the
conditions (H1), (H2) and (H4), (H5). It is easy to verify that the following results and
their proofs remain valid under the hypotheses of Theorem 2.3 (b) (Theorem 1.5 (b) can
be applied in place of Theorem 1.5 (a)).

Lemma 2.4 If (H1), (H2), (H4) and (H5) are satisfied, then

f

(
n


j=1

p jx j

)
≤ Nk.

Proof. Since {S1, . . . ,Sn} and A are partitions of S into pairwise disjoint and nonempty
sets, it comes from the definition of the function  that

n


j=1

p jx j =
n


j=1

(

s∈S j

c(s)

)
p jx j = 

A∈A

(

s∈A

c(s)p(s)x(s)

)



2.2 A NEW TREATMENT OF DISCRETE JENSEN’S INEQUALITY 45

=
k


l=1

(


A∈Al

(

s∈A

c(s)p(s)x(s)

))
. (2.36)

Therefore, recalling that the numbers p j ( j = 1, . . . ,n) and c(s) (s ∈ S) are positive, we
have

n


j=1

p jx j =
k


l=1

⎛⎝ 
A∈Al

⎛⎝(
s∈A

c(s)p(s)

) 
s∈A

c(s)p(s)x(s)


s∈A

c(s)p(s)

⎞⎠⎞⎠ . (2.37)

Similar reasoning as above leads to

k


l=1

(


A∈Al

(

s∈A

c(s)p(s)

))
= 

A∈A

(

s∈A

c(s)p(s)

)
=

n


j=1

(

s∈S j

c(s)

)
p j.

Then, using
n

j=1

p j = 1 and (2.27) we get

k


l=1

(


A∈Al

(

s∈A

c(s)p(s)

))
= 1. (2.38)

It now follows from (2.37), (2.38) and Theorem 1.5 (a) that

f

(
n


j=1

p jx j

)
≤

k


l=1

⎛⎝ 
A∈Al

⎛⎝(
s∈A

c(s)p(s)

)
f

⎛⎝ 
s∈A

c(s)p(s)x(s)


s∈A

c(s)p(s)

⎞⎠⎞⎠⎞⎠ ,

as was being claimed. �

Lemma 2.5 If (H1), (H2), (H4) and (H5) are satisfied, and A ∈ Al , where 2 ≤ l ≤ k,
then

f

⎛⎝ 
s∈A

c(s)p(s)x(s)


s∈A

c(s)p(s)

⎞⎠≤ 1
(l−1) 

s∈A
c(s)p(s)

· 
B∈Pl−1(A)

⎛⎝(
s∈B

c(s)p(s)

)
f

⎛⎝ 
s∈B

c(s)p(s)x(s)


s∈B

c(s)p(s)

⎞⎠⎞⎠ .

Proof. A simple calculation confirms that


s∈A

c(s)p(s)x(s)


s∈A

c(s)p(s)
= 

B∈Pl−1(A)

⎛⎝ 
s∈B

c(s)p(s)x(s)

(l−1) 
s∈A

c(s)p(s)

⎞⎠

= 
B∈Pl−1(A)

⎛⎝ 
s∈B

c(s)p(s)

(l−1) 
s∈A

c(s)p(s)
·


s∈B
c(s)p(s)x(s)


s∈B

c(s)p(s)

⎞⎠ . (2.39)
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Since


B∈Pl−1(A)

⎛⎝ 
s∈B

c(s)p(s)

(l−1) 
s∈A

c(s)p(s)

⎞⎠= 1,

the result follows from (2.39) and Theorem 1.5 (a).
The proof is complete. �

Proof of Theorem 2.3 (a).
Proof. The definition of the number N1 shows that

N1 =
k−1


l=1

(


A∈Al

(

s∈A

c(s)p(s) f (x(s))

))
+

(k−1)!
(k−1) . . .1

· 
A∈Ak

⎛⎝ 
B∈P1(A)

⎛⎝(
s∈B

c(s)p(s)

)
f

⎛⎝ 
s∈B

c(s)p(s)x(s)


s∈B

c(s)p(s)

⎞⎠⎞⎠⎞⎠
=

k−1


l=1

(


A∈Al

(

s∈A

c(s)p(s) f (x(s))

))
+ 

A∈Ak

(

s∈A

c(s)p(s) f (x(s))

)

=
k


l=1

(


A∈Al

(

s∈A

c(s)p(s) f (x(s))

))
.

Therefore

N1 =
n


j=1

p j f (x j)

follows by an argument entirely similar to that for (2.36).
So according to Lemma 2.4 only the task of confirming the inequalities

Nk ≤ Nk−1 ≤ . . . ≤ Nk−m ≤ . . . ≤ N2 ≤ N1 (2.40)

remains.
To this end, we suppose first that Ak = A and thus A1 = . . . = Ak−1 = /0. By Lemma

2.5

Nk = 
A∈Ak

⎛⎝(
s∈A

c(s)p(s)

)
f

⎛⎝ 
s∈A

c(s)p(s)x(s)


s∈A

c(s)p(s)

⎞⎠⎞⎠ (2.41)

≤ 
A∈Ak

⎛⎝(
s∈A

c(s)p(s)

)
1

(k−1) 
s∈A

c(s)p(s)

· 
B∈Pk−1(A)

⎛⎝(
s∈B

c(s)p(s)

)
f

⎛⎝ 
s∈B

c(s)p(s)x(s)


s∈B

c(s)p(s)

⎞⎠⎞⎠⎞⎠
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=
1

k−1 
A∈Ak

⎛⎝ 
B∈Pk−1(A)

⎛⎝(
s∈B

c(s)p(s)

)
f

⎛⎝ 
s∈B

c(s)p(s)x(s)


s∈B

c(s)p(s)

⎞⎠⎞⎠⎞⎠ .

= Nk−1,

Suppose then that 1 ≤ m ≤ k−2. By applying Lemma 2.5 again, we have

Nk−m =
m!

(k−1) . . .(k−m)
(2.42)

· 
A∈Ak

⎛⎝ 
B∈Pk−m(A)

⎛⎝(
s∈B

c(s)p(s)

)
f

⎛⎝ 
s∈B

c(s)p(s)x(s)


s∈B

c(s)p(s)

⎞⎠⎞⎠⎞⎠
≤ m!

(k−1) . . .(k−m)

· 
A∈Ak

⎛⎝ 
B∈Pk−m(A)

⎛⎝(
s∈B

c(s)p(s)

)
1

(k−m−1) 
s∈B

c(s)p(s)

· 
C∈Pk−m−1(B)

⎛⎝(
s∈C

c(s)p(s)

)
f

⎛⎝ 
s∈C

c(s)p(s)x(s)


s∈C

c(s)p(s)

⎞⎠⎞⎠⎞⎠⎞⎠
=

m!
(k−1) . . . (k−m)(k−m−1) A∈Ak

(


B∈Pk−m(A)⎛⎝ 
C∈Pk−m−1(B)

⎛⎝(
s∈C

c(s)p(s)

)
f

⎛⎝ 
s∈C

c(s)p(s)x(s)


s∈C

c(s)p(s)

⎞⎠⎞⎠⎞⎠⎞⎠
=

(m+1)!
(k−1). . . (k−m)(k−m−1)

· 
A∈Ak

⎛⎝ 
C∈Pk−m−1(A)

⎛⎝(
s∈C

c(s)p(s)

)
f

⎛⎝ 
s∈C

c(s)p(s)x(s)


s∈C

c(s)p(s)

⎞⎠⎞⎠⎞⎠
= Nk−m−1.

Together with (2.41) this gives (2.40) in the considered special case.
In the general case we can majorize the members


A∈Al

⎛⎝(
s∈A

c(s)p(s)

)
f

⎛⎝ 
s∈A

c(s)p(s)x(s)


s∈A

c(s)p(s)

⎞⎠⎞⎠ , 2 ≤ l ≤ k
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in (2.29) exactly as Nk in (2.41). Similarly, the argument employed in the proof of the
inequality Nk−m ≤ Nk−m−1 in (2.42) can be extended to estimate the members

m!
(l−1). . . (l−m)


A∈Al

⎛⎝ 
B∈Pl−m(A)

⎛⎝(
s∈B

c(s)p(s)

)
f

⎛⎝ 
s∈B

c(s)p(s)x(s)


s∈B

c(s)p(s)

⎞⎠⎞⎠⎞⎠ ,

3 ≤ l ≤ k, 1 ≤ m ≤ l−2

in (2.30). Now (2.40) follow from these facts.
The proof is complete. �

Proof of Theorem 2.4.
Proof. It is obvious that the sets S1, . . . ,Sn and the function c defined in the theorem

satisfy the condition (H4). In this case

 ((i1, . . . , ik) , l) = il , ((i1, . . . , ik) , l) ∈ S.

The condition (H5) is also fulfilled if

A := {{((i1, . . . , ik) , l) | l = 1, . . . ,k} | (i1, . . . , ik) ∈ Ik} .

Then Ak = A and Al = /0 (l = 1, . . . ,k−1).
The result can be obtained by an application of Theorem 2.3 in this environment. �

2.2.1 Examples and Mixed Symmetric Means Related to
Theorem 2.3

Now we apply Theorem 2.3 to some special situations which correspond to some recent
results.

Example 2.9 Let n, r be fixed integers, where n ≥ 3, and 1 ≤ r ≤ n−2. In this example,
for every i = 1,2, . . . ,n and for every l = 0,1, . . . ,r the integer i+ l will be identified with
the uniquely determined integer j from {1, . . . ,n} for which

l + i ≡ j (mod n). (2.43)

Introducing the notation

D := {1, . . . ,n}×{0, . . . ,r} ,

let for every j ∈ {1, . . . ,n}

S j := {(i, l) ∈ D | i+ l ≡ j (mod n)}
⋃

{ j} ,
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and let A ⊂ P(S) (S :=
n⋃

j=1
S j) contain the following sets:

Ai := {(i, l) ∈ D | l = 0, . . . ,r} , i = 1, . . . ,n

and
A := {1, . . . ,n} .

Let c be a positive function on S such that


(i,l)∈S j

c(i, l)+ c( j) = 1, j = 1, . . . ,n.

A patient verification shows that the sets S1, . . . ,Sn, the partition A and the function c
defined above satisfy the conditions (H4) and (H5),

 (i, l) = i+ l, (i, l) ∈ D,

(by the agreement (see (2.43)), i+ l is identified with j)

 ( j) = j, j = 1, . . . ,n,∣∣S j
∣∣= r+2, j = 1, . . . ,n,

and
|Ai| = r+1, i = 1, . . . ,n, |A| = n.

Now we suppose that (H1) and either (H2) or (H̃2) are satisfied and in the latter case
the numbers c(i, l) ((i, l) ∈ D) and c( j) ( j = 1, . . . ,n) are rational. Then by Theorem 2.3

f

(
n


j=1

p jx j

)
≤ Nn =

n


i=1

⎛⎜⎜⎝
(

r


l=0

c(i, l) pi+l

)
f

⎛⎜⎜⎝
r

l=0

c(i, l) pi+lxi+l

r

l=0

c(i, l) pi+l

⎞⎟⎟⎠
⎞⎟⎟⎠

+

(
n


j=1

c( j)p j

)
f

⎛⎜⎜⎝
n

j=1

c( j)p jx j

n

j=1

c( j)p j

⎞⎟⎟⎠≤
n


j=1

p j f (x j). (2.44)

Let m ≥ 2 be an integer. In case

p j :=
1
n
, j = 1, . . . ,n,

c(i, l) :=
1

m(r+1)
, (i, l) ∈ D, c( j) :=

m−1
m

j = 1, . . . ,n,

it follows from (2.44) that

f

(
1
n

n


j=1

x j

)
≤ 1

mn

n


i=1

f

(
xi + xi+1 + . . .+ xi+r

r+1

)



50 2 REFINEMENTS OF JENSEN’S INEQUALITY

+
m−1

m
f

(
1
n

n


j=1

x j

)
≤ 1

n

n


j=1

f (x j), (2.45)

which is an essential part of Theorem 2.1 in [85]. Really, in that theorem a sequence of
inequalities (similar to (1.10)) has been proved. On the one hand (2.44) generalizes (2.45),
on the other hand the sequence of inequalities in (2.28) is different from that in (2.45).

Example 2.10 Let n and k be fixed positive integers. Let

D := {(i1, . . . , in) ∈ {1, . . . ,k}n | i1 + . . .+ in = n+ k−1},

and for each j = 1, . . . ,n, denote S j the set

S j := D×{ j} .

For every (i1, . . . , in) ∈ D designate by A(i1,...,in) the set

A(i1,...,in) := {((i1, . . . , in) , l) | l = 1, . . . ,n} .

It is obvious that S j ( j = 1, . . . ,n) and A(i1,...,in) ((i1, . . . , in) ∈ D) are decompositions of

S :=
n⋃

j=1
S j into pairwise disjoint and nonempty sets, respectively. Let c be a function on S

such that
c((i1, . . . , in) , j) > 0, ((i1, . . . , in) , j) ∈ S

and


(i1,...,in)∈D

c((i1, . . . , in) , j) = 1, j = 1, . . . ,n. (2.46)

In summary we have that the conditions (H4) and (H5) are valid, and

 ((i1, . . . , in) , j) = j, ((i1, . . . , in) , j) ∈ S.

Now we suppose that (H1) and either (H2) or (H̃2) are satisfied and in the latter case the
numbers c((i1, . . . , in) , j) (((i1, . . . , in) , j) ∈ S) are rational. Then by Theorem 2.3

f

(
n


j=1

p jx j

)
≤ Nn = 

(i1,...,in)∈D

((
n


l=1

c((i1, . . . , in) , l) pl

)

f

⎛⎜⎜⎝
n

l=1

c((i1, . . . , in) , l) plxl

n

l=1

c((i1, . . . , in) , l) pl

⎞⎟⎟⎠
⎞⎟⎟⎠≤

n


j=1

p j f (x j). (2.47)

If we set

p j :=
1
n
, j = 1, . . . ,n,

and

c((i1, . . . , in) , j) :=
i j(n+k−1

k−1

) ,
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then (2.46) holds, since by some combinatorial considerations

|D| =
(

n+ k−2
n−1

)
,

and


(i1,...,in)∈D

i j =
n+ k−1

n

(
n+ k−2

n−1

)
=
(

n+ k−1
k−1

)
, j = 1, . . . ,n.

In this situation (2.47) can therefore be expressed thus

f

(
1
n

n


j=1

x j

)
≤ 1(n+k−2

k−1

) 
(i1,...,in)∈D

f

(
1

n+ k−1

n


l=1

ilxl

)
≤ 1

n

n


j=1

f (x j), (2.48)

which inequality is contained in Theorem 1 of [86]. The inequality (2.48) is placed in a
more general framework in [86], but the treatment of (2.48) is different from our approach.
Theorem 2.3 generalizes (2.48) and (2.28) gives a new sequence of inequalities even in the
considered special case.

We remind the conditions (H3) and (H̃3).

(H3) Let x := (x1, ...,xn) and p := (p1, ..., pn) be positive n-tuples such that
n

i=1

pi = 1.

(H̃3) Let J ⊂ R be an interval, x := (x1, ...,xn) ∈ Jn, let p := (p1, ..., pn) be a positive

n-tuples such that
n

i=1

pi = 1, and let h, g : J → R be continuous and strictly monotone

functions.
Assume (H3), (H4) and (H5).
First, we define the power means of order r ∈ R corresponding to A ∈ Al (l = 1, . . . ,k)

as follows:

Mr(A) = Mr(A,S,c,A ,x,p) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(


s∈A
c(s)p(s)x

r
(s)


s∈A

c(s)p(s)

) 1
r

, r 	= 0,(

s∈A

x
c(s)p(s)
(s)

) 1


s∈A
c(s)p(s)

, r = 0.

(2.49)

Let  , ∈ R. Now, we define the mixed symmetric means corresponding to (2.29) and
(2.30) as follows:

M1
, (S,c,A ,k,x,p)

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
k

l=1

(


A∈Al

((


s∈A
c(s)p(s)

)
M
 (A)
))) 1



,  	= 0,

k

l=1

(


A∈Al

((
M(A)

) 
s∈A

c(s)p(s)
))

,  = 0,
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and for 1 ≤ m ≤ k−1

M1
, (S,c,A ,k−m,x,p)

:=

⎛⎜⎜⎜⎜⎝
m

l=1

(


A∈Al

(


s∈A
c(s)p(s)x


(s)

))
+

k


l=m+1

(
m!

(l−1)...(l−m) 
A∈Al

(


B∈Pl−m(A)

((


s∈B
c(s)p(s)

)
M
 (B)
)))

⎞⎟⎟⎟⎟⎠
1


,

if  	= 0 and for  = 0, we have

M1
, (S,c,A ,k−m,x,p) :=

m

l=1

(


A∈Al

(

s∈A

x
c(s)p(s)
(s)

))
×

k


l=m+1

⎛⎜⎝
⎛⎝ 

A∈Al

⎛⎝ 
B∈Pl−m(A)

(
M (B)

)( 
s∈B

c(s)p(s)

)⎞⎠⎞⎠
m!

(l−1)...(l−m)
⎞⎟⎠ .

The monotonicity of these mixed symmetric means is a consequence of Theorem 2.3.

Corollary 2.5 Assume (H3), (H4) and (H5). Let  ,  ∈ R such that  ≤  . Then

M (x,p) ≤ M1
, (S,c,A ,k,x,p) ≤ ... ≤ M1

, (S,c,A ,1,x,p) = M(x,p),

and

M(x,p) = M1
, (S,c,A ,1,x,p) ≤ .... ≤ M1

, (S,c,A ,k,x,p) ≤ M (x,p).

Proof. The proof is similar to the proof of Corollary 2.1. We can apply Theorem 2.3
instead of Theorem 2.1. �

Assume (H̃3), (H4) and (H5). Then we define the generalized means with respect to
(2.29) and (2.30) as follows:

M1
h,g(S,c,A ,k,x,p) := h−1

(
k

l=1

(


A∈Al

((


s∈A
c(s)p(s)

)
h ◦ g−1

(


s∈A
c(s)p(s)g(x(s))


s∈A

c(s)p(s)

))))
,

and for 1 ≤ m ≤ k−1

M1
h,g(S,c,A ,k−m,x,p) :=

h−1

⎛⎜⎜⎜⎜⎝
m

l=1

(


A∈Al

(


s∈A
c(s)p(s)h(x(s))

))
+

k


l=m+1

(
m!

(l−1)...(l−m)

× 
A∈Al

(


B∈Pl−m(A)

((


s∈B
c(s)p(s)

)
h ◦ g−1

(


s∈B
c(s)p(s)g(x(s))


s∈B

c(s)p(s)

))))
⎞⎟⎟⎟⎟⎠ .

The monotonicity of the generalized means is given in the next corollary.
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Corollary 2.6 Assume (H̃3) and (H4)-(H5). Then

Mg(x,p) ≤ M1
h,g(S,c,A ,k,x,p) ≤ ... ≤ M1

h,g(S,c,A ,1,x,p) = Mh(x,p),

if either h◦ g−1 is convex and h is strictly increasing or h◦ g−1 is concave and h is strictly
decreasing;

Mg(x,p) = M1
h,g(S,c,A ,1,x,p) ≤ ... ≤ M1

h,g(S,c,A ,k,x,p) ≤ Mh(x,p),

if either g◦ h−1 is convex and g is strictly decreasing or g◦ h−1 is concave and g is strictly
increasing.

Proof. The proof is similar to the proof of Corollary 2.2. We can apply Theorem 2.3
instead of Theorem 2.1. �

We illustrate the means defined above by a concrete example based on Theorem 2.4.
Further interesting means can be derived from Example 2.9 and Example 2.10.

Example 2.11 As in Theorem 2.4 let n ≥ 1 and k ≥ 1 be fixed integers, and let Ik ⊂
{1, . . . ,n}k such that

Ik ,i ≥ 1, 1 ≤ i ≤ n,

where Ik ,i means the number of occurrences of i in all the sequences ik := (i1, . . . , ik) from
Ik. For j = 1, . . . ,n we introduce the sets

S j := {((i1, . . . , ik) , l) | (i1, . . . , ik) ∈ Ik, 1 ≤ l ≤ k, il = j} .

Let c be a positive function on S :=
n⋃

j=1
S j such that


((i1,...,ik),l)∈S j

c((i1, . . . , ik) , l) = 1, j = 1, . . . ,n.

In the proof of the theorem we have seen that the condition (H5) is fulfilled if

A :={{((i1, . . . , ik) , l) | l = 1, . . . ,k} | (i1, . . . , ik) ∈ Ik} .

In this case Ak = A and Al = /0 (l = 1, . . . ,k−1).
(a) Assume (H3). For 1 ≤ m ≤ k−1 let

Jk−m :=
{
(l1, . . . , lk−m) ∈ {1, . . . ,k}k−m | 1 ≤ l1 < .. . < lk−m ≤ k

}
.

We give the analogue of the power means defined in (2.49). For r ∈ R and ik ∈ Ik

Mr(Ik,c, ik) = Mr(Ik,c, ik,x,p)

:=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝ k


l=1
c((i1,...,ik),l)pil

xr
il

k


l=1
c((i1,...,ik),l)pil

⎞⎠
1
r

, r 	= 0,

(
k

l=1

x
c((i1,...,ik),l)pil
il

) 1
k−m


l=1
c((i1,...,ik),l)pil , r = 0,
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and for r ∈ R, ik ∈ Ik and lk−m ∈ Jk−m

Mr(Ik,c, ik, lk−m) = Mr(Ik,c, ik, lk−m,x,p)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝
k−m

j=1

c((i1,...,ik),l j)pil j
xr
il j

k−m

j=1

c((i1,...,ik),l j)pil j

⎞⎟⎠
1
r

, r 	= 0,

(
k−m

j=1

x
c((i1,...,ik),l j)pil j
il j

) 1
k−m


j=1
c((i1,...,ik),l)pil

, r = 0,

Now let  , ∈ R. The mixed symmetric means corresponding to (2.34) and (2.35) can
be written as

M1
,(Ik,c,k,x,p)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(


(i1,...,ik)∈Ik

(
k

l=1

c((i1, . . . , ik) , l) pil

)
M
 (Ik,c, ik)

) 1


,  	= 0,


(i1,...,ik)∈Ik

⎛⎝(M(Ik,c, ik)
) k


l=1
c((i1,...,ik),l)pil

⎞⎠,  = 0,

and for 1 ≤ m ≤ k−1

M1
, (Ik,c,k−m,x,p)

=

⎛⎜⎜⎝
m!

(k−1)...(k−m) 
(i1,...,ik)∈Ik(


1≤l1<...<lk−m≤k

((
k−m

j=1

c((i1, . . . , ik) , l j) pil j

)
M
 (Ik,c, ik, lk−m)

)))
⎞⎟⎟⎠

1


,

if  	= 0, and for  = 0, we have

M1
, (Ik,c,k−m,x,p) :=⎛⎜⎝ 
(i1,...,ik)∈Ik

⎛⎜⎝ 
1≤l1<...<lk−m≤k

(
M(Ik,c, ik, lk−m)

)(k−m

j=1

c((i1,...,ik),l j)pil j

)⎞⎟⎠
⎞⎟⎠

m!
(k−1)...(k−m)

.

(b) Assume (H̃3). The generalized means with respect to (2.34) and (2.35) can be
written as

M1
h,g(Ik,c,k) = M1

h,g(Ik,c,k,x,p) :=

h−1

⎛⎝ 
(i1,...,ik)∈Ik

⎛⎝( k

l=1

c((i1, . . . , ik) , l) pil

)
h ◦ g−1

⎛⎝ k


l=1
c((i1,...,ik),l)pil

g(xil
)

k


l=1
c((i1,...,ik),l)pil

⎞⎠⎞⎠⎞⎠ ,
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and for 1 ≤ m ≤ k−1
M1

h,g(Ik,c,k−m,x,p) :=

h−1

⎛⎜⎜⎜⎜⎝
m!

(l−1)...(l−m) 
(i1,...,ik)∈Ik⎛⎜⎝ 

1≤l1<...<lk−m≤k

⎛⎜⎝(k−m

j=1

c((i1, . . . , ik) , l j) pil j

)
h ◦ g−1

⎛⎜⎝
k−m

j=1

c((i1,...,ik),l j)pil j
g(xil j

)

k−m

j=1

c((i1,...,ik),l j)pil j

⎞⎟⎠
⎞⎟⎠
⎞⎟⎠
⎞⎟⎠
⎞⎟⎟⎟⎟⎠ .

Remark 2.2 By choosing

c((i1, . . . , ik) , l) =
1∣∣S j
∣∣ = 1

Ik , j
if ((i1, . . . , ik) , l) ∈ S j

in the previous example, we have the means defined in (2.17), (2.18), (2.21) and (2.22) as
special cases. Thus we have some extensions of these means.

Remark 2.3 Results about mixed symmetric means and generalized means similar to
Corollary 2.5 and Corollary 2.6 can be given for Example 2.11 as a special case.

2.3 Parameter Dependent Refinement of Discrete
Jensen’s inequality

Now we consider parameter dependent refinement of discrete Jensen’s inequality given by
L. Horváth recently [33]. Generalizations of these results can be found in [35].

We need the following hypotheses ((H2) and (H̃2) have already been introduced ear-
lier):

(H̃1) Let V be a real vector space, C ⊂V be a convex set, x := (x1, ...,xn) ∈Cn, and let

p := (p1, ..., pn) be a nonnegative n-tuples such that
n

i=1

pi = 1.

(H2) Let f : C → R be a convex function.
(H̃2) Let f : C → R be a mid-convex function, and p1, . . . , pn be rational numbers.

Theorem 2.5 Assume either (H̃1-H2), and in this case let  ≥ 1, or (H̃1-H̃2), and in
this case let  ≥ 1 be a rational number. We introduce the sets

Sk :=

{
(i1, . . . , in) ∈ Nn |

n


j=1

i j = k

}
, k ∈ N,

and for k ∈ N define the numbers
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Ck( ) = Ck( ,x,p)

:= 1
(n+−1)k


(i1,...,in)∈Sk

k!
i1!...in!

(
n

j=1

 i j p j

)
f

⎛⎝ n

j=1

 i j p jx j

n

j=1

 i j p j

⎞⎠ .
(2.50)

Then

f

(
n


j=1

p jx j

)
= C0( ) ≤C1( ) ≤ . . . ≤Ck( ) ≤ . . . ≤

n


j=1

p j f (x j).

Remark 2.4 (a) It follows from the definition of Sk that Sk ⊂ {0, . . . ,k}n (k ∈ N).
(b) It is easy to see that

Ck(1) = f

(
n


j=1

p jx j

)
, k ∈ N. (2.51)

We establish two convergence theorems.

Theorem 2.6 Suppose (H̃1-H2), and let  ≥ 1. If X is a normed space and f is contin-
uous, then

(a) For every fixed  > 1

lim
k→

Ck( ) =
n


j=1

p j f (x j).

(b) The function  →Ck( ) ( ≥ 1) is continuous for every k ∈ N.

The proof of Theorem 2.6 (a) requires a lemma (see Lemma 2.7) which is interesting
in its own right. Probability theoretical technique will be used to handle this problem.

Remark 2.5 In the previous theorem it suffices to consider the case when (H̃1-H2) and
 ≥ 1 are satisfied. Really, if f is mid-convex and continuous, then convex.

By (2.51)

lim
k→

Ck(1) = f

(
n


j=1

p jx j

)
.

We come now to the second convergence theorem.

Theorem 2.7 Suppose (H̃1-H2) and  ≥ 1. For each fixed k ∈ N+

lim
→

Ck( ) =
n


j=1

p j f (x j).

Suppose (H̃1-H2) and  ≥ 1. Theorem 2.5 implies

7 ( f ) = 7( f ,m, l, ,x,p) := Cm( )−Cl( ) ≥ 0, 0 ≤ l < m,

8 ( f ) = 8( f ,k, ,x,p) :=
n

j=1

p j f (x j)−Ck( ) ≥ 0, 0 ≤ k.
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2.3.1 Some lemmas and the proofs of Theorem 2.5-2.7

Lemma 2.6 Let k ∈ N and (i1, . . . , in) ∈ Sk+1 be fixed. If we set

z(i1, . . . , in) :=
{

j ∈ {1, . . . ,n} | i j 	= 0
}

,

then


j∈z(i1,...,in)

k!
i1! . . . i j−1!(i j −1)!i j+1! . . . in!

=
(k+1)!
i1! . . . in!

.

Proof. The lowest common denominator is i1! . . . in!. Combined with
n

j=1

i j = k+1 the

result follows. �

The proof of Theorem 2.5.
Proof. (a) We separate the proof of this part of the theorem into three steps. Let  ≥ 1

be fixed.
I. Since S0 = {(0, . . . ,0)}

C0( ) =

(
n


j=1

 0p j

)
f

⎛⎜⎜⎝
n

j=1

 0p jx j

n

j=1

 0p j

⎞⎟⎟⎠= f

(
n


j=1

p jx j

)
.

II. Next, we prove that Ck( ) ≤Ck+1( ) (k ∈ N).
It is easy to check that for every (i1, . . . , in) ∈ Sk

n

j=1

 i j p jx j

n

j=1

 i j p j

=
1

n+ −1

·
n


l=1

⎛⎜⎜⎝
n

j=1

 i j p jx j +( −1) il plxl

n

j=1

 i j p j +( −1) il pl

·

n

j=1

 i j p j +( −1) il pl

n

j=1

 i j p j

⎞⎟⎟⎠ .

With the help of discrete Jensen’s inquality this yields that

f

⎛⎜⎜⎝
n

j=1

 i j p jx j

n

j=1

 i j p j

⎞⎟⎟⎠≤ 1
n+ −1

n


l=1

⎛⎜⎜⎝
n

j=1

 i j p j +( −1) il pl

n

j=1

 i j p j

· f

⎛⎜⎜⎝
n

j=1

 i j p jx j +( −1) il plxl

n

j=1

 i j p j +( −1) il pl

⎞⎟⎟⎠
⎞⎟⎟⎠ .
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Consequently,

Ck( ) ≤ 1

(n+ −1)k+1 
(i1,...,in)∈Sk

k!
i1! . . . in!

·
n


l=1

⎛⎜⎜⎝
(

n


j=1

 i j p j +( −1) il pl

)
f

⎛⎜⎜⎝
n

j=1

 i j p jx j +( −1) il plxl

n

j=1

 i j p j +( −1) il pl

⎞⎟⎟⎠
⎞⎟⎟⎠ . (2.52)

By Lemma 2.6, it is easy to see that the right hand side of (2.52) can be written in the form

1

(n+ −1)k+1 
(i1,...,in)∈Sk+1

(k+1)!
i1! . . . in!

(
n


j=1

 i j p j

)
f

⎛⎜⎜⎝
n

j=1

 i j p jx j

n

j=1

 i j p j

⎞⎟⎟⎠
which is just Ck+1( ).

III. Finally, we prove that

Ck( ) ≤
n


j=1

p j f (x j), k ∈ N+. (2.53)

It follows from the discrete Jensen’s inequality that

Ck( ) ≤ 1

(n+ −1)k


(i1,...,in)∈Sk

(
k!

i1! . . . in!

n


j=1

 i j p j f (x j)

)

=
1

(n+ −1)k
n


j=1

(


(i1,...,in)∈Sk

k!
i1! . . . in!

 i j

)
p j f (x j) , k ∈ N+. (2.54)

The multinomial theorem shows that


(i1,...,in)∈Sk

k!
i1! . . . in!

 i j = (n+ −1)k , 1 ≤ j ≤ n,

hence (2.54) implies (2.53). �

The proof of Theorem 2.6 (a) is based on the following interesting result. The  -
algebra of Borel subsets of Rn is denoted by Bn.

Lemma 2.7 Let p1, . . . , pn be a discrete distribution with n ≥ 2, and let  > 1. Let l ∈
{1, . . . ,n} be fixed. el denotes the vector in Rn that has 0s in all coordinate positions
except the lth, where it has a 1. Let q1, . . . ,qn be also a discrete distribution such that
q j > 0 (1 ≤ j ≤ n) and

ql > max(q1, . . .ql−1,ql+1, . . . ,qn) . (2.55)
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If

g :

{
(t1, . . . ,tn) ∈ Rn | t j > 0 (1 ≤ j ≤ n),

n


j=1

t j = 1

}
→ R

is a bounded function for which
l := lim

el
g

exists in R, and pl > 0, then

lim
k→ 

(i1,...,in)∈Sk

k!
i1! . . . in!

qi1
1 . . .qin

n g

⎛⎜⎜⎝  i1 p1
n

j=1

 i j p j

, . . . ,
 in pn
n

j=1

 i j p j

⎞⎟⎟⎠= l . (2.56)

Proof. To prove the result we can obviously suppose that l = 1.
For the sake of clarity we shall denote the element (i1, . . . , in) of Sk by (i1k, . . . , ink)

(k ∈ N+).
Let k := (1k, . . . ,nk) (k ∈ N+) be a (Rn,Bn)-random variable on a probability space

(,A ,P) such that k has multinomial distribution of order k and with parameters q1, . . . ,qn.
A fundamental theorem of the statistics (see [18] Theorem 5.4.13), which is based on the
multidimensional Central Limit Theorem and the Cochran-Fisher theorem, implies that

lim
k→

P

(
n


j=1

(
 jk − kq j

)2
kq j

< t

)
= Fn−1(t), t ∈ R, (2.57)

where Fn−1 means the distribution function of the Chi-squared distribution (2-distribution)
with n−1 degrees of freedom.

Choose 0 <  < 1. Since Fn−1 is continuous, and strictly increasing on (0,), there
exists a unique t > 0 such that

Fn−1(t) = 1− .

Define

S1
k :=

⎧⎪⎨⎪⎩(i1k, . . . , ink) ∈ Sk |
n


j=1

k

(
i jk
k −q j

)2
q j

< t

⎫⎪⎬⎪⎭ .

The definition of the set S1
k shows that


(i1k,...,ink)∈S1

k

k!
i1k! . . . ink!

qi1k
1 . . .qink

n = P
(
(1k, . . . ,nk) ∈ S1

k

)
(2.58)

= P

⎛⎜⎝ n


j=1

k

(
 jk
k −q j

)2
q j

< t

⎞⎟⎠= P

(
n


j=1

(
 jk − kq j

)2
kq j

< t

)
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= Fn−1(t)+

(
P

(
n


j=1

(
 jk − kq j

)2
kq j

< t

)
−Fn−1(t)

)
= 1− + (k), k ∈ N+, (2.59)

where, by (2.57)
lim
k→

(k) = 0. (2.60)

For j = 1, . . . ,n construct the sequences (I j
k )k≥1 by

I j
k := i∗jk, if

∣∣∣∣ i∗jkk −q j

∣∣∣∣= max

{∣∣∣∣ i jk

k
−q j

∣∣∣∣ | (i1k, . . . , ink) ∈ S1
k

}
, k ∈ N+. (2.61)

We claim that

lim
k→

I j
k

k
= q j, 1 ≤ j ≤ n. (2.62)

Fix 1 ≤ j ≤ n. If (2.62) is false, then (2.61) yields that we can find a positive number  , a
strictly increasing sequence (ku)u≥1, and points

(i1ku , . . . , inku) ∈ S1
ku

, u ∈ N+ (2.63)

such that ∣∣∣∣ i jku

ku
−q j

∣∣∣∣≥  , u ∈ N+,

and therefore

ku

(
i jku
ku

−q j

)2
q j

≥ ku
2

q j
→  as u → ,

contrary to (2.63).
Let

q := max(q2, . . . ,qn) .

It follows from (2.55) that

 :=
1
3

(q1−q) > 0. (2.64)

By (2.61) and (2.62), we can find an integer k such that for each k > k∣∣∣∣ i jk

k
−q j

∣∣∣∣≤
∣∣∣∣∣ I

j
k

k
−q j

∣∣∣∣∣< , (i1k, . . . , ink) ∈ S1
k , 1 ≤ j ≤ n.

Thus for every k > k

i1k

k
> q1−  and

i jk

k
< q j + , 2 ≤ j ≤ n, (i1k, . . . , ink) ∈ S1

k ,

and hence we get from (2.64) that

i1k − i jk > k 2 ≤ j ≤ n, (i1k, . . . , ink) ∈ S1
k , k > k . (2.65)



2.3 PARAMETER DEPENDENT REFINEMENT OF DISCRETE JENSEN’S... 61

We can see that

i1k − i jk →  as k → , 2 ≤ j ≤ n, (i1k, . . . , ink) ∈ S1
k . (2.66)

Now, set S2
k := Sk \ S1

k (k ∈ N+), and consider the sequences

a1
k := 

(i1k,...,ink)∈S1
k

k!
i1k! . . . ink!

qi1k
1 . . .qink

n g

⎛⎜⎜⎝  i1k p1
n

j=1

 i jk p j

, . . . ,
 ink pn
n

j=1

 i jk p j

⎞⎟⎟⎠ ,

and

a2
k := 

(i1k,...,ink)∈S2
k

k!
i1k! . . . ink!

qi1k
1 . . .qink

n g

⎛⎜⎜⎝  i1k p1
n

j=1

 i jk p j

, . . . ,
 ink pn
n

j=1

 i jk p j

⎞⎟⎟⎠ ,

where k ∈ N+. The sum of these sequences is just the studied sequence in (2.56). Since
p1 > 0, we obtain from (2.66) that

lim
k→

 i1k p1
n

j=1

 i jk p j

= 1, (i1k, . . . , ink) ∈ S1
k , (2.67)

and

lim
k→

 ilk p1
n

j=1

 i jk p j

= 0, 2 ≤ l ≤ n, (i1k, . . . , ink) ∈ S1
k . (2.68)

According to (2.65), the convergence is uniform for all the possible sequences in (2.67)
and (2.68), hence for every 1 > 0 we can find an integer k1 > k such that for all k > k1

1 − 1 < g

⎛⎜⎜⎝  i1k p1
n

j=1

 i jk p j

, . . . ,
 ink pn
n

j=1

 i jk p j

⎞⎟⎟⎠< 1 + 1, (i1k, . . . , ink) ∈ S1
k . (2.69)

Bringing in (2.58-2.59), we find that

P
(
(1k, . . . ,nk) ∈ S2

k

)
= − (k), k ∈ N+

and therefore, thanks to (2.58-2.59), (2.69) and the boundedness of g (|g| ≤ m)

(1− +  (k)) (1 − 1)− (−  (k))m ≤ a1
k +a2

k

≤ (1− +  (k)) (1 + 1)+ (−  (k))m, k > k1 .

Consequently, by (2.60)

(1− )(1 − 1)− m ≤ liminf
k→

(
a1

k +a2
k

)≤ limsup
k→

(
a1

k +a2
k

)
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≤ (1− )(1 + 1)+ m,

and this proves the convergence claim (2.56).
The proof is now complete. �

The proof of Theorem 2.6.
Proof. (a) We have only to observe that for every fixed 1 ≤ l ≤ n

lim
k→

1

(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

 il pl f

⎛⎜⎜⎝
n

j=1

 i j p jx j

n

j=1

 i j p j

⎞⎟⎟⎠= pl f (xl). (2.70)

The case pl = 0 is trivial.
To prove the case pl > 0, define the function

g :

{
(t1, . . . ,tn) ∈ Rn | t j > 0 (1 ≤ j ≤ n),

n


j=1

t j = 1

}
→ R

by

g(t1, . . . ,tn) := f

(
n


j=1

t jx j

)
.

Consequently, the limit in (2.70) can be written in the form

lim
k→

pl 
(i1,...,in)∈Sk

k!
i1! . . . in!

(
1

n+ −1

)i1
. . .

(
1

n+ −1

)il−1
(


n+ −1

)il

·
(

1
n+ −1

)il+1

. . .

(
1

n+ −1

)in

g

⎛⎜⎜⎝  i1 p1
n

j=1

 i j p j

, . . . ,
 in pn
n

j=1

 i j p j

⎞⎟⎟⎠ .

Now we can apply Lemma 2.7 with

q j =
1

n+ −1
, 1 ≤ j ≤ n, j 	= l, and ql =


n+ −1

and
lim
el

g = f (xl), 1 ≤ l ≤ n.

(b) Elementary considerations show this part of the theorem.
The proof is complete. �

The proof of Theorem 2.7.
Proof. The discrete Jensen’s inequality confirms that f is bounded on the set

G :=

{
n


j=1

t jx j ∈C | t j ≥ 0 (1 ≤ j ≤ n),
n


j=1

t j = 1

}
.
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It is elementary that for every (i1, . . . , in) ∈ Sk

lim
→

 il

(n+ −1)k
=

{
1, if il = k

0, if il < k
, 1 ≤ l ≤ n.

By the definition of the set Sk, (0, . . . ,0,k,0, . . . ,0) (the vector has 0s in all coordinate
positions except the lth) is the only element of Sk for which il = k (1 ≤ l ≤ n). By using
the boundedness of f on G, the previous assumptions imply the result, bringing the proof
to an end. �

Suppose either (H̃1-H2), and in this case let  ≥ 1, or (H̃1-H̃2) and in this case let
 ≥ 1 be a rational number. First, we give three special cases of (2.50).

(a) k = 1, n ∈ N+ :

C1( ) =
1

n+ −1

n


i=1

(1+( −1) pi) f

⎛⎜⎜⎝
n

j=1

p jx j +( −1) pixi

1+( −1) pi

⎞⎟⎟⎠ .

(b) k ∈ N, n = 2 :

Ck( ) =
1

( +1)k
k


i=0

(
k
i

)(
 i p1 + k−i p2

)
f

(
 i p1x1 + k−i p2x2

 i p1 + k−i p2

)
.

(c) p1 = . . . = pn := 1
n :

Ck( ) =
1

n(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

(
n


j=1

 i j

)
f

⎛⎜⎜⎝
n

j=1

 i j x j

n

j=1

 i j

⎞⎟⎟⎠ .

Assume further that f is strictly convex (strictly mid-convex). Then it comes from the
third part of the proof of Theorem 2.5 that

Ck( ) <
n


j=1

p j f (x j), k ∈ N, (2.71)

if not all xi are equal.
If p1 = . . . = pn := 1

n and f is strictly convex (strictly mid-convex), then the analysis
of the proof of Theorem 2.5 shows that

f

(
1
n

n


j=1

x j

)
= C0( ) < C1( ) < .. . < Ck( ) < .. . <

1
n

n


j=1

f (x j), k ∈ N,

whenever not all xi are equal.
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If the inequality (2.71) holds, X is a normed space and f is continuous (see Remark
2.5), then Theorem 2.6 (b) and Theorem 2.7 insure that the range of the function  →Ck( )
(k ∈ N+) is the interval [

f

(
n


j=1

p jx j

)
,

n


j=1

p j f (x j)

[
.

Conjecture 2.1 Suppose either (H̃1-H2), and in this case let  ≥ 1, or (H̃1-H̃2) and in
this case let  ≥ 1 be a rational number. The function  →Ck( ) ( ≥ 1) is increasing
for every k ∈ N.

2.3.2 Applications to Mixed Symmetric Means

We define some new quasi-arithmetic means and study their monotonicity and conver-
gence.

(H 3) Let J ⊂R be an interval, x := (x1, ...,xn)∈ Jn, let p :=(p1, ..., pn) be a nonegative

n-tuples such that
n

i=1

pi = 1, and let h, g : J → R be continuous and strictly monotone

functions. Assume  ≥ 1.
We define the quasi-arithmetic means with respect to (2.50) by

Mh,g(k, ,x,p) := h−1

(
1

(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

(
n


j=1

 i j p j

)
(2.72)

·(h ◦ g−1)

⎛⎜⎜⎝
n

j=1

 i j p jg(x j)

n

j=1

 i j p j

⎞⎟⎟⎠
⎞⎟⎟⎠ , k ∈ N.

We now prove the monotonicity of these means and give limit formulas.

Proposition 2.1 Assume (H 3). Then
(a)

Mg(x,p) = Mh,g(0, ,x,p) ≤ . . . ≤ Mh,g(k, ,x,p) ≤ . . . ≤ Mh(x,p), k ∈ N,

if either h◦ g−1 is convex and h is increasing or h◦ g−1 is concave and h is decreasing.
(b)

Mg(x,p) = Mh,g(0, ,x,p) ≥ . . . ≥ Mh,g(k, ,x,p) ≥ . . . ≥ Mh(x,p), k ∈ N,

if either h◦ g−1 is convex and h is decreasing or h◦ g−1 is concave and h is increasing.
(c) Moreover, in both cases

lim
k→

Mh,g(k, ,x,p) = Mh(x,p)

for each fixed  > 1, and

lim
→

Mh,g(k, ,x,p) = Mh(x,p)

for each fixed k ∈ N+.
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Proof. Theorem 2.5 can be applied to the function h ◦ g−1, if it is convex (−h ◦ g−1, if
it is concave) and the n-tuples (g(x1), . . . ,g(xn)), then upon taking h−1, we get (a) and (b).
(c) comes from Theorem 2.6 (a) and Theorem 2.7. �

As a special case we consider the following example.

Example 2.12 If J := (0,), h := ln and g(x) := x (x ∈ (0,)), then by Proposition 2.1
(b), we have the following inequality: for every x j > 0 (1 ≤ j ≤ n),  ≥ 1, and k ∈ N+

n


j=1

p jx j ≥ 
(i1,...,in)∈Sk

⎛⎜⎜⎝
n

j=1

 i j p jx j

n

j=1

 i j p j

⎞⎟⎟⎠
1

(n+−1)k
k!

i1!...in!

n

j=1

 i j p j

≥
n


j=1

x
p j
j ,

which gives a sharpened version of the arithmetic mean - geometric mean inequality

1
n

n


j=1

x j ≥ 
(i1,...,in)∈Sk

⎛⎜⎜⎝
n

j=1

 i j x j

n

j=1

 i j

⎞⎟⎟⎠
1

n(n+−1)k
k!

i1!...in!

n

j=1

 i j

≥
n


j=1

x
1
n
j .

Supported by the power means we can introduce mixed symmetric means correspond
to (2.50) under the condition

(H3) Let x := (x1, ...,xn) and p := (p1, ..., pn) be positive n-tuples such that
n

i=1

pi = 1.

Assume (H3), and let  ≥ 1, and k ∈ N. We define the mixed symmetric means with
respect to (2.50) by

Ms,t(k, ,x,p)

:=

(
1

(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

(
n


j=1

 i j p j

)

·Ms
t

⎛⎜⎜⎝x1, . . . ,xn;
 i1 p1
n

j=1

 i j p j

, . . . ,
 in pn
n

j=1

 i j p j

⎞⎟⎟⎠
⎞⎟⎟⎠

1
s

,

if s, t ∈ R and s 	= 0, and
M0,t(k, ,x,p) := 

(i1,...,in)∈Sk

⎛⎜⎜⎝Mt

⎛⎜⎜⎝x1, . . . ,xn;
 i1 p1
n

j=1

 i j p j

, . . . ,
 in pn
n

j=1

 i j p j

⎞⎟⎟⎠
⎞⎟⎟⎠

1
(n+−1)k

k!
i1!...in!

(
n

j=1

 i j p j

)

,
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where t ∈ R.
The monotonicity and the convergence of the previous means are studied in the next

result.

Proposition 2.2 Assume (H3), let  ≥ 1, and k ∈ N. Suppose s, t ∈ R such that s ≤ t.
Then

(a)

Mt(x,p) = Ms,t(0, ) ≥ . . . ≥ Ms,t(k, ) ≥ . . . ≥ Ms(x,p), k ∈ N.

(b) In case of s, t 	= 0

lim
k→

Ms,t(k, ,x,p) = Ms(x,p)

for each fixed  > 1, and

lim
→

Ms,t(k, ,x,p) = Ms(x,p)

for each fixed k ∈ N+.

Proof. Assume s, t 	= 0. Then Proposition 2.1 (b) can be applied with g, h : (0,)→ R,
g(x) := xt and h(x) := xs. If s = 0 or t = 0, the result follows by taking limit. �



Chapter3
Further Refinements of
Jensen’s Inequality

The expression f̄k,n given in Theorem 1.9 can be written as follows

f̄k,n =
1(n+k−1
k

) 
i1+...+in=k

i j∈N; 1≤ j≤n

f

(
1
k

k


j=1

i jx j

)
.

Inspired by this interpretation of f̄k,n (x), Xiao, Srivastava and Zhang have obtained the
following result:

Theorem 3.1 (see [86]) LetC be a convex subset of a real vector space X, and {x1, . . . ,xn}
be a finite subset of C, where n ≥ 1 is fixed. If f : C → R is a mid-convex function, and

Fk,n :=
1(n+k−2

k−1

) 
i1+...+in=n+k−1
i j∈N+ ; 1≤ j≤n

f

(
1

n+ k−1

n


j=1

i jx j

)
, k ∈ N+, (3.1)

then
(a)

f

(
1
n

n


j=1

x j

)
= F1,n ≤ . . . ≤ Fk,n ≤ Fk+1,n ≤ . . . ≤ 1

n

n


j=1

f (x j) .

(b)
Fk,n ≤ f̄k,n, k ∈ N+.

67
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The limit of the constructed increasing sequence is also determined. We recall this
result too:

Theorem 3.2 (see [86]) LetC be a convex subset of a real vector space X, and {x1, . . . ,xn}
be a finite subset of C, where n ≥ 1 is fixed. Suppose f : C → R is a mid-convex function.
Define the function g on the set

En :=

{
(t1, . . . ,tn−1) ∈ Rn−1 |

n−1


j=1

t j ≤ 1, t j ≥ 0, j = 1, . . . ,n−1

}
(3.2)

by

g(t1, . . . ,tn−1) := f

(
n−1


j=1

t jx j +

(
1−

n−1


j=1

t j

)
xn

)
.

If g is integrable over En, then

lim
k→

Fk,n = lim
k→

f̄k,n = (n−1)!
∫
En

g(t1, . . . ,tn−1)dt1 . . .dtn−1.

In Theorem 3.1 and 3.2 the discrete uniform distribution is used. Recently, Horváth
has discussed in [34] some new weighted versions of Theorem 3.1 and 3.2 for convex and
mid-convex functions.

A method has been developed to refine the discrete Jensen’s inequality by Horváth
given in Section 2.2. The results given in Section 2.2 include those considered in Section
2.1, but the method can not be applied to solve the present problem (details are given in
[33]). In Section 2.3, a different approach led to a parameter dependent refinement, whose
construction is similar to (3.1) in Theorem 3.1. However, the treatment of the problem in
Section 2.3 is totally different from that in [86].

First, we give the generalization of Theorem 3.1. Moreover, we compare the expres-
sions Fk,n, f 2

k,n and Gk,n (see 3.3).
The following conditions will be used:
(H1) Let V be a real vector space, C ⊂V be a convex set, x := (x1, ...,xn) ∈Cn, and let

p := (p1, ..., pn) be a positive n-tuples such that
n

i=1

pi = 1.

(H̃1) Let V be a real vector space, C ⊂V be a convex set, x := (x1, ...,xn) ∈Cn, and let

p := (p1, ..., pn) be a nonnegative n-tuples such that
n

i=1

pi = 1.

(H2) Let f : C → R be a convex function.
(H̃2) Let f : C → R be a mid-convex function, and p1, . . . , pn be rational numbers.

Theorem 3.3 Assume (H̃1) and either (H2) or (H̃2). Define

Gk,n = Gk,n (x,p)

:=
1(n+k−1

k−1

) 
i1+...+in=n+k−1
i j∈N+ ; 1≤ j≤n

(
n


j=1

i j p j

)
f

⎛⎜⎜⎝ 1
n

j=1

i j p j

n


j=1

i j p jx j

⎞⎟⎟⎠ , k ∈ N+. (3.3)
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Then
(a)

f

(
n


j=1

p jx j

)
= G1,n ≤ . . . ≤ Gk,n ≤ Gk+1,n ≤ . . . ≤

n


j=1

p j f (x j) .

(b)
Fk,n ≤ Gk,n, k ∈ N+.

(c) If the numbers p1, . . . , pn are positive, then

Gk,n ≤ f 2
k,n, k ∈ N+.

Remark 3.1 It is easy to see that in case p j = 1
n (1 ≤ j ≤ n)

Gk,n = Fk,n, k ∈ N+,

so Gk,n is the weighted form of Fk,n.

Next, we extend Theorem 3.2.

Theorem 3.4 Assume (H1) and (H2), where n ≥ 2. Define the function h on the set En

(see 3.2) by

h(t1, . . . ,tn−1) :=

(
n−1


j=1

t j p j +

(
1−

n−1


j=1

t j

)
pn

)
(3.4)

· f

⎛⎜⎜⎜⎜⎝ 1

n−1

j=1

t j p j +

(
1−

n−1

j=1

t j

)
pn

(
n−1


j=1

t j p jx j +

(
1−

n−1


j=1

t j

)
pnxn

)⎞⎟⎟⎟⎟⎠ .

(a) The function h is convex on En, and it is Riemann integrable over En.
(b)

lim
k→

Gk,n = lim
k→

f 2
k,n = n!

∫
En

h(t1, . . . ,tn−1)dt1 . . .dtn−1.

Xiao, Srivastava and Zhang seems to have regarded it as evident that the proof of The-
orem 3.2 is valid for every integral concept. What does integrable mean in Theorem 3.2?
The proof of Theorem 3.4 actually uses the Riemann integrability of h over En, but then f
is essentially convex as the following result shows.

For a fixed subset {x1, . . . ,xn} of C, only the restriction of f to the set

H :=

{
n


j=1

 jx j ∈C |
n


j=1

 j = 1,  j ≥ 0, j = 1, . . . ,n

}

is important in Theorem 3.3 and 3.4.
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Lemma 3.1 Assume (H1) and (H̃2), where n ≥ 2. If the function h in (3.4) is Riemann
integrable over En, then f is convex on the set

Ĥ :=

{
n


j=1

 jx j ∈C |
n


j=1

 j = 1,  j > 0, j = 1, . . . ,n

}
.

3.1 Preliminary results and the proofs

Lemma 3.2 Let p1, . . . , pn be a discrete distribution with positive p j’s (1 ≤ j ≤ n), and
let q1, . . . ,qn be another discrete distribution. Then there is a discrete distribution t1, . . . ,tn
such that

ti pi
n

j=1

t j p j

= qi, i = 1, . . . ,n. (3.5)

Proof. At this proof the Perron-Frobenius theory comes into play (see [57]).
Suppose q j > 0 (1 ≤ j ≤ n). Consider the n×n matrix

A :=

⎛⎜⎜⎜⎜⎜⎝
q1 q1 . . . q1

q2 q2 . . . q2
...

...
...

...

qn qn . . . qn

⎞⎟⎟⎟⎟⎟⎠ .

Since A is positive and
n

j=1

q j = 1, the Perron-Frobenius eigenvalue of A is 1. Then there

exists an eigenvector (v1, . . . ,vn) of A corresponding to the eigenvalue 1 such that v j > 0
(1 ≤ j ≤ n). It follows that (v1, . . . ,vn) is a positive solution of the system of equations

xi
n

j=1

x j

= qi, i = 1, . . . ,n. (3.6)

It is easy to see that we can abandon the supplementary hypothesis on q j (1 ≤ j ≤ n):
if q j ≥ 0 (1 ≤ j ≤ n), then (3.6) has a nonnegative solution (v1, . . . ,vn) different from
(0, . . . ,0). In this case (

v1

p1
, . . . ,

vn

pn

)
is a solution of (3.5). We have from this that

ti =
1

n

j=1

v j
p j

vi

pi
, i = 1, . . . ,n
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is appropriate.
The proof is complete. �

Proof of Theorem 3.3 We introduce the following set:

Sk,n :=

{
(i1, . . . , in) ∈ Nn

+ |
n


j=1

i j = n+ k−1

}
, k ∈ N+.

(a) Since S1,n = {(1, . . . ,1)}

f

(
n


v=1

pvxv

)
= G1,n.

Next, we prove that
Gk,n ≤ Gk+1,n, k ∈ N+.

Let k ∈ N+ be fixed. First we note that(
n+ k−1

k−1

)
=
(

n+ k
k

)
k

n+ k
,

and therefore

k =
n


u=1

(iu−1) , (i1, . . . , in) ∈ Sk+1,n

implies

Gk+1,n =
1(n+k−1

k−1

) 1
n+ k 

(i1,...,in)∈Sk+1,n

⎛⎜⎜⎝ n


u=1

(iu −1)

·
(

n


v=1

iv pv

)
f

⎛⎜⎜⎝ 1
n


v=1
iv pv

n


v=1

iv pvxv

⎞⎟⎟⎠
⎞⎟⎟⎠ .

By introducing

ju := iu−1, u = 1, . . . ,n, (i1, . . . , in) ∈ Sk+1,n,

we have that

Gk+1,n =
1(n+k−1

k−1

) 1
n+ k 

( j1,..., jn)∈Sk,n

⎛⎜⎜⎝ n


u=1

ju

(
n


v=1

jv pv + pu

)

f

⎛⎜⎜⎝ 1(
n


v=1
jvpv + pu

)( n


v=1

jv pvxv + puxu

)⎞⎟⎟⎠
⎞⎟⎟⎠ . (3.7)
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It is easy to observe that

n


u=1

ju

(
n


v=1

jv pv + pu

)
= (n+ k)

n


v=1

jv pv, ( j1, . . . , jn) ∈ Sk,n, (3.8)

and
n


u=1

ju

(
n


v=1

jv pvxv + puxu

)
= (n+ k)

n


v=1

jv pvxv, ( j1, . . . , jn) ∈ Sk,n. (3.9)

With the help of the discrete Jensen’s inequality (either for convex or mid convex func-
tion) (3.7), (3.8) and (3.9) yield

Gk+1,n ≥ 1(n+k−1
k−1

) 1
n+ k 

( j1,..., jn)∈Sk,n

⎛⎜⎜⎝(n+ k)
n


v=1

jv pv

f

⎛⎜⎜⎝ 1

(n+ k)
n


v=1
jvpv

n


u=1

ju

(
n


v=1

jv pvxv + puxu

)⎞⎟⎟⎠
⎞⎟⎟⎠

=
1(n+k−1

k−1

) 
( j1,..., jn)∈Sk,n

(
n


v=1

jv pv

)
f

⎛⎜⎜⎝ 1
n


v=1
jv pv

n


v=1

jv pvxv

⎞⎟⎟⎠= Gk,n.

It remained to prove that

Gk,n ≤
n


v=1

pv f (xv) , k ∈ N+.

We can apply the discrete Jensen’s inequality (either for convex or mid convex func-
tion) again, which insures

Gk,n =
1(n+k−1

k−1

) 
(i1,...,in)∈Sk,n

(
n


v=1

ivpv

)
f

⎛⎜⎜⎝ 1
n


v=1
ivpv

n


v=1

ivpvxv

⎞⎟⎟⎠
≤ 1(n+k−1

k−1

) 
(i1,...,in)∈Sk,n

n


v=1

ivpv f (xv)

=
1(n+k−1

k−1

) n


v=1


(i1,...,in)∈Sk,n

ivpv f (xv) , k ∈ N+.
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Since the set Sk,n has
(n+k−2

k−1

)
elements

1(n+k−1
k−1

) n


v=1


(i1,...,in)∈Sk,n

ivpv f (xv) =
1(n+k−1

k−1

) n


v=1

(
n+ k−1

k−1

)
pv f (xv)

=
n


v=1

pv f (xv) , k ∈ N+.

(b) Let i( j) be the unique integer from {1, . . . ,n} for which

i( j) ≡ i+ j−1 (mod n), i, j = 1, . . . ,n.

Then the functions i (i = 1, . . . ,n) are permutations of the numbers 1, . . . ,n. Clearly,
n

j=1

pi( j) = 1 (i = 1, . . . ,n), and i( j) =  j(i) (i, j = 1, . . . ,n).

Fix k ∈ N+. The previous establishments imply

Fk,n =
1(n+k−2

k−1

) 
(i1,...,in)∈Sk,n

f

(
1

n+ k−1

n


v=1

(
n


u=1

pv(u)ivxv

))

=
1(n+k−2

k−1

) 
(i1,...,in)∈Sk,n

f

(
1

n+ k−1

n


u=1

(
n


v=1

pu(v)ivxv

))
=

1(n+k−2
k−1

)


(i1,...,in)∈Sk,n

f

⎛⎜⎜⎝ 1
n+ k−1

n


u=1

⎛⎜⎜⎝ n


w=1

pu(w)iw
n


v=1

pu(v)iv
n


w=1
pu(w)iw

xv

⎞⎟⎟⎠
⎞⎟⎟⎠ . (3.10)

Noting that
n


u=1

(
n


w=1

pu(w)iw

)
=

n


w=1

iw = n+ k−1,

the discrete Jensen’s inequality (either for convex or mid convex function) can be applied
in (3.10), and we get

Fk,n ≤ 1(n+k−2
k−1

)
(n+ k−1)

· 
(i1,...,in)∈Sk,n

n


u=1

⎛⎜⎜⎝ n


w=1

pu(w)iw f

⎛⎜⎜⎝ n


v=1

pu(v)iv
n


w=1
pu(w)iw

xv

⎞⎟⎟⎠
⎞⎟⎟⎠

=
1(n+k−1
k

) 1
n

n


u=1

⎛⎜⎜⎝ 
(i1,...,in)∈Sk,n

n


w=1

pu(w)iw f

⎛⎜⎜⎝ n


v=1

pu(v)iv
n


w=1
pu(w)iw

xv

⎞⎟⎟⎠
⎞⎟⎟⎠ .
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Since u (u = 1, . . . ,n) is a permutation of the numbers 1, . . . ,n, and u(Sk,n) = Sk,n (u =
1, . . . ,n) we can see that for every fixed u ∈ {1, . . . ,n}


(i1,...,in)∈Sk,n

n


w=1

pu(w)iw f

⎛⎜⎜⎝ n


v=1

pu(v)iv
n


w=1
pu(w)iw

xv

⎞⎟⎟⎠

= 
(i1,...,in)∈Sk,n

(
n


v=1

iv pv

)
f

⎛⎜⎜⎝ 1
n


v=1
iv pv

n


v=1

iv pvxv

⎞⎟⎟⎠ .

(c) Fix k ∈ N+. By the definition of Gk+1,n

Gk+1,n =
1(n+k
k

) 
(i1,...,in)∈Sk+1,n

(
n


v=1

ivpv

)
f

⎛⎜⎜⎝ 1
n


v=1
ivpv

n


v=1

iv pvxv

⎞⎟⎟⎠

=
1(n+k
k

) 
(i1,...,in)∈Sk+1,n

(
n


v=1

(iv −1) pv +
n


v=1

pv

)

· f

⎛⎜⎜⎝ 1
n


v=1
(iv −1) pv +

n


v=1
pv

(
n


v=1

(iv −1) pvxv +
n


v=1

pvxv

)⎞⎟⎟⎠
=

1(n+k
k

) 
j1+...+ jn=k

jl∈N; 1≤l≤n

(
n


v=1

jv pv +1

)

· f

⎛⎜⎜⎝ 1
n


v=1
jv pv +1

⎛⎜⎜⎝ n


v=1

jv pv

n


v=1
jv pvxv

n


v=1
jv pv

+
n


v=1

pvxv

⎞⎟⎟⎠
⎞⎟⎟⎠ .

In this situation the discrete Jensen’s inequality (either for convex or mid convex func-
tion) implies that

Gk+1,n ≤ 1(n+k
k

)

· 
j1+...+ jn=k

jl∈N; 1≤l≤n

⎛⎜⎜⎝
(

n


v=1

jv pv

)
f

⎛⎜⎜⎝ 1
n


v=1
jv pv

n


v=1

jv pvxv

⎞⎟⎟⎠+ f

(
n


v=1

pvxv

)⎞⎟⎟⎠
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=
1(n+k
k

) 
j1+...+ jn=k

jl∈N; 1≤l≤n

(
n


v=1

jv pv

)
f

⎛⎜⎜⎝ 1
n


v=1
jv pv

n


v=1

jv pvxv

⎞⎟⎟⎠
+

(n+k−1
k

)(n+k
k

) f

(
n


v=1

pvxv

)
.

From this, by means of Theorem 3.1, we get

Gk+1,n ≤
(

1(n+k
k

) (1+

(n+k−1
k

)(n+k−1
k−1

)))

· 
j1+...+ jn=k

jl∈N; 1≤l≤n

(
n


v=1

jv pv

)
f

⎛⎜⎜⎝ 1
n


v=1
jv pv

n


v=1

jv pvxv

⎞⎟⎟⎠= Bk,n.

Combining this and (a) yields finally

Gk,n ≤ Gk+1,n ≤ Bk,n, k ∈ N+.

The proof is complete. �

Proof of Theorem 3.4 (a) En is obviously a convex set, and by using the convexity of
f , some elementary computation shows that h is convex. Since f is bounded on the convex
set {

n


j=1

 jx j ∈ X |
n


j=1

 j = 1,  j ≥ 0, j = 1, . . . ,n

}
,

h is bounded too. The convexity of h implies that it is continuous on the interior of En. The
previous two establishments, together with the fact that the measure of the boundary of En

is 0, yield that h is Riemann integrable over En.
(b) Fix k ∈ N+.
By the definition of Gk,n, elementary considerations show that

Gk,n =
1(n+k−1

k−1

) 
i1+...+in=n+k−1
i j∈N+ ; 1≤ j≤n

(
n


j=1

i j p j

)
f

⎛⎜⎜⎝ 1
n

j=1

i j p j

n


j=1

i j p jx j

⎞⎟⎟⎠

= n!
(n+ k−2)n−2

k (k+1) . . .(n+ k−3)

· 1

(n+ k−2)n−1

k


i1=1

k+1−i1


i2=1

k+2−(i1+i2)


i3=1

. . .
n+k−2−(i1+...+in−2)


in−1=1
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(
n−1


j=1

i j

n+ k−1
p j +

(
1−

n−1


j=1

i j

n+ k−1

)
pn

)

· f

⎛⎜⎜⎜⎜⎝
n−1

j=1

i j
n+k−1 p jx j +

(
1−

n−1

j=1

i j
n+k−1

)
pnxn

n−1

j=1

i j
n+k−1 p j +

(
1−

n−1

j=1

i j
n+k−1

)
pn

⎞⎟⎟⎟⎟⎠ .

Since h is Riemann integrable, the result for the sequence
(
Gk,n
)

follows from this and
from

i−1
n+ k−2

<
i

n+ k−1
<

i
n+ k−2

, i = 1, . . . ,k.

Similarly, according to the definition of Bk,n, we have

Bk,n =
1(n+k−1

k−1

) 
i1+...+in=k

i j∈N; 1≤ j≤n

(
n


j=1

i j p j

)⎛⎜⎜⎝ 1
n

j=1

i j p j

n


j=1

i j p jx j

⎞⎟⎟⎠

= n!
(k+1)n−1

(k+1). . . (n+ k−1)
1

(k+1)n−1

k


i1=0

k−i1


i2=0

k−(i1+i2)


i3=0

. . .
k−(i1+...+in−2)


in−1=0

(
n−1


j=1

i j

k
p j +

(
1−

n−1


j=1

i j

k

)
pn

)
f

⎛⎜⎜⎜⎜⎝
n−1

j=1

i j
k p jx j +

(
1−

n−1

j=1

i j
k

)
pnxn

n−1

j=1

i j
k p j +

(
1−

n−1

j=1

i j
k

)
pn

⎞⎟⎟⎟⎟⎠ .

By taking into account the Riemann integrability of h and

i
k+1

<
i
k

<
i+1
k+1

, i = 0, . . . ,k,

we have the result for the sequence
(
Bk,n
)
. �

Proof of Lemma 3.1 Let

p := min{p1, . . . , pn} .

Then p > 0 and

n−1


j=1

t j p j +

(
1−

n−1


j=1

t j

)
pn ≥ p, (t1, . . . ,tn−1) ∈ En.
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Therefore, recalling the definition of h

f

⎛⎜⎜⎜⎜⎝ 1

n−1

j=1

t j p j +

(
1−

n−1

j=1

t j

)
pn

(
n−1


j=1

t j p jx j +

(
1−

n−1


j=1

t j

)
pnxn

)⎞⎟⎟⎟⎟⎠
≤ 1

p
h(t1, . . . ,tn−1) , (t1, . . . ,tn−1) ∈ En. (3.11)

By Lemma 3.2, the function

(t1, . . . ,tn−1) →

⎛⎜⎜⎜⎜⎝ t1p1

n−1

j=1

t j p j +

(
1−

n−1

j=1

t j

)
pn

,

. . . ,
tn−1pn−1

n−1

j=1

t j p j +

(
1−

n−1

j=1

t j

)
pn

,

(
1−

n−1

j=1

t j

)
pn

n−1

j=1

t j p j +

(
1−

n−1

j=1

t j

)
pn

⎞⎟⎟⎟⎟⎠
maps En onto the set{

(1, . . . ,n) ∈ Rn |
n


j=1

 j = 1,  j ≥ 0, j = 1, . . . ,n

}
,

and hence (3.11) and the Riemann integrability of h over En (h is bounded on En) show
that f is bounded above on H.

Since f is mid-convex, the function h̄ defined on En by

h̄(t1, . . . ,tn−1) := f

(
n−1


j=1

t jx j +

(
1−

n−1


j=1

t j

)
xn

)

is also mid-convex on En. Because f is bounded above on H, h̄ is bounded above on En.
These two properties of h̄, together with the Bernstein-Doetsch theorem (see [55]) give that
h̄ is convex on the interior of En, and therefore f is convex on Ĥ.

The proof is complete. �
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3.2 Applications to Mixed means

As an application we introduce some new quasi-arithmetic means and study their mono-
tonicity and convergence.

(H̃3) Let J ⊂ R be an interval, x := (x1, ...,xn) ∈ Jn, let p := (p1, ..., pn) be a nonnega-

tive n-tuples such that
n

i=1

pi = 1, and let h, g : J → R be continuous and strictly monotone

functions.

Definition 3.1 Assume (H̃3). We define the quasi-arithmetic means with respect to (3.3)
by

Mh,g(k,x,p) := h−1

⎛⎜⎜⎜⎝ 1(n+k−1
k−1

) 
i1+...+in=n+k−1
i j∈N+ ; 1≤ j≤n

(
n


j=1

i j p j

)
(3.12)

·(h ◦ g−1)

⎛⎜⎜⎝ 1
n

j=1

i j p j

n


j=1

i j p jg(x j)

⎞⎟⎟⎠
⎞⎟⎟⎠ , k ∈ N+.

We now prove the monotonicity of the means (3.12) and give limit formulas.

Proposition 3.1 Assume (H̃3). Then
(a)

Mg(x,p) = Mh,g(1,x,p) ≤ . . . ≤ Mh,g(k,x,p) ≤ . . . ≤ Mh(x,p), k ∈ N+,

if either h◦ g−1 is convex and h is increasing or h◦ g−1 is concave and h is decreasing.
(b)

Mg(x,p) = Mh,g(1,x,p) ≥ . . . ≥ Mh,g(k,x,p) ≥ . . . ≥ Mh(x,p), k ∈ N+,

if either h◦ g−1 is convex and h is decreasing or h◦ g−1 is concave and h is increasing.
(c) Moreover, in both cases

lim
k→

Mh,g(k,x,p) = −1

⎛⎝n!
∫
En

h(t1, . . . ,tn−1)dt1 . . .dtn−1

⎞⎠ ,

where the function h is defined on the set En (see 3.2) by

h(t1, . . . ,tn−1) :=

(
n−1


j=1

t j p j +

(
1−

n−1


j=1

t j

)
pn

)(
h ◦ g−1)
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⎛⎜⎜⎜⎜⎝ 1

n−1

j=1

t j p j +

(
1− n−1


j=1

t j

)
pn

(
n−1


j=1

t j p jg(x j)+

(
1−

n−1


j=1

t j

)
png(xn)

)⎞⎟⎟⎟⎟⎠ .

Proof. Theorem 3.3 (a) can be applied to the function h◦g−1, if it is convex (−h◦g−1,
if it is concave) and the n-tuples (g(x1), . . . ,g(xn)), then upon taking h−1, we get (a) and
(b). (c) comes from Theorem 3.4 (b). �

As a special case we consider the following example.

Example 3.1 If I := (0,), h := ln and g(x) := x (x ∈ (0,)), then by Proposition 3.1
(b), we have the following sharpened version of the weighted arithmetic mean - geometric
mean inequality: for every x j > 0 (1 ≤ j ≤ n) and k ∈ N+

n


j=1

p jx j ≥ 
i1+...+in=n+k−1
i j∈N+ ; 1≤ j≤n

⎛⎜⎜⎝
n

j=1

i j p jx j

n

j=1

i j p j

⎞⎟⎟⎠
1

(n+k−1
k−1 )

n

j=1

i j p j

≥
n


j=1

x
p j
j .

Moreover, by Proposition 3.1 (c)

lim
k→ 

i1+...+in=n+k−1
i j∈N+ ; 1≤ j≤n

⎛⎜⎜⎝
n

j=1

i j p jx j

n

j=1

i j p j

⎞⎟⎟⎠
1

(n+k−1
k−1 )

n

j=1

i j p j

= exp

⎛⎝n!
∫
En

h(t1, . . . ,tn−1)dt1 . . .dtn−1

⎞⎠ ,

where the function h is defined on the set En (see 3.2) by

h(t1, . . . ,tn−1) :=

(
n−1


j=1

t j p j +

(
1−

n−1


j=1

t j

)
pn

)

· ln

⎛⎜⎜⎜⎜⎝ 1

n−1

j=1

t j p j +

(
1−

n−1

j=1

t j

)
pn

(
n−1


j=1

t j p jx j +

(
1−

n−1


j=1

t j

)
pnxn

)⎞⎟⎟⎟⎟⎠ .





Chapter4
Popoviciu Type Inequalities

In 1965 T. Popoviciu [67] has introduced a characterization of the convex functions of one
real variable, relating the arithmetic mean of its values and the values taken at the barycen-
ters of certain subfamilies of the given family of points. The inequality of Popoviciu as
given by Vasić and Stanković in [77] (see also [69, p.173]) can be written in the following
form:

Theorem 4.1 Suppose that the conditions of Theorem 1.8 are satisfied. Then for n ≥ 3
and 2 ≤ k ≤ n−1

f 1
k,n(x,p) ≤ n− k

n−1
f 1
1,n(x,p)+

k−1
n−1

f 1
n,n(x,p), (4.1)

where f 1
k,n(x,p) is given by (1.8).

Corollary 4.1 ([52]) Let I ⊂ R be an interval, x ∈ In, p be a positive n-tuples such that
n

i=1 pi = 1, and let h, g : I → R be continuous and strictly monotone functions such that
h ◦ g−1 is convex. We set xi j = g(xi j ) and f = h ◦ g−1 in (4.1) to get

h
(
M1

h,g(x,p;k)
)≤ n− k

n−1
h(Mh(x,p))+

k−1
n−1

h(Mg(x,p)) .

Corollary 4.2 ([52]) Let s,t ∈R such that s≤ t, and let x and p be positive n-tuples such
that n

i=1 pi = 1. Then we have

Mt
t,s(x,p;k) ≤ n− k

n−1
Mt

t (x,p)+
k−1
n−1

Mt
s(x,p), (4.2)

81
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Ms
s,t(x,p;k) ≥ n− k

n−1
Ms

s (x,p)+
k−1
n−1

Ms
t (x,p), (4.3)

where Ms,t(x,p;k) means M1
s,t(x,p;k) in (1.48).

Proof. Let s, t ∈ R such that s ≤ t, if s,t 	= 0, then we set f (x) = x
t
s , xi j = xs

i j
in (4.1) to

obtain (4.2) and we set f (x) = x
s
t , xi j = xt

i j
in (4.1) to obtain (4.3).

When s = 0 or t = 0, we get the required results by taking limit. �

Remark 4.1 The unweighted versions of (1.48) and (1.46) were introduced in [58] with
their monotone property. Hence Corollary 1.6, Corollary 1.5, Corollary 4.2 and Corollary
4.1 are weighted versions of corresponding results given in [58].

4.1 Generalization of Popoviciu’s Inequality

Consider the Green function G : [, ]× [, ] → R defined as

G(t,s) =

⎧⎪⎪⎨⎪⎪⎩
(t− )(s−)

− ,  ≤ s ≤ t,
(s− )(t−)

− , t ≤ s ≤  . (4.4)

The function G is convex and continuous w.r.t s and due to symmetry also w.r.t t.
For any function h ∈C2([, ]), we have

h(x) =
 − x
 −

h()+
x−
 −

h( )+
∫ 


G(x,s)h′′(s)ds, (4.5)

where the function G is defined in (4.4) (see [84]).
It is assumed in Theorem 4.1 that pi (i = 1, ...,n) are positive real numbers. Now we

give the generalization of that result for real values of pi (i = 1, ...,n) with n
i=1 pi = 1

using the Green function defined in (4.4).

Theorem 4.2 ([53]) Let n,k ∈ N, n ≥ 3, 2 ≤ k ≤ n− 1, [, ] ⊂ R, x = (x1, ...,xn) ∈
[, ]n, p = (p1, ..., pn) be a real n-tuple such thatk

j=1 pi j 	= 0 for any 1 ≤ i1 < ... < ik ≤ n

and n
i=1 pi = 1. Also let

k

j=1

pi j xi j

k

j=1

pi j

∈ [, ] for any 1 ≤ i1 < ... < ik ≤ n. Then the following

statements are equivalent:
(i) For every continuous convex function f : [, ] → R

fk,n(x,p) ≤ n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p), (4.6)
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where

fk,n(x,p) :=
1(n−1

k−1

) 
1≤i1<...<ik≤n

(
k


j=1

pi j

)
f

⎛⎜⎜⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

⎞⎟⎟⎟⎠.

(ii) For all s ∈ [, ]

Gk,n(x,s,p) ≤ n− k
n−1

G1,n(x,s,p)+
k−1
n−1

Gn,n(x,s,p), (4.7)

where

Gk,n(x,s,p)

:= 1
(n−1

k−1)


1≤i1<...<ik≤n

(
k

j=1

pi j

)
G

⎛⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

,s

⎞⎟⎠, 1 ≤ k ≤ n,

for the function G : [, ]× [, ] → R defined in (4.4).
Moreover, the statements (i) and (ii) are also equivalent if we change the sign of inequality
in both (4.6) and (4.7).

Proof. (i)⇒(ii): Let (i) be valid. Since the function G(·,s) (s ∈ [, ]) is also continu-
ous and convex, (4.7) is a special case of (4.6).

(ii)⇒(i): Let f : [, ]→R be a convex function such that f ∈C2([, ]) and (ii) holds.
Then, we can represent f in the form (4.5). Now by means of some simple calculations we
can write

n−k
n−1 f1,n(x,p)+ k−1

n−1 fn,n(x,p)− fk,n(x,p)

=
∫


(
n−k
n−1 G1,n(x,s,p)+ k−1

n−1Gn,n(x,s,p)−Gk,n(x,s,p)
)
f ′′(s)ds.

(4.8)

By the convexity of f , we have f
′′
(s) ≥ 0 for all s ∈ [, ]. Hence, if for every s ∈ [, ],

(4.7) is valid, then it follows that for every convex function f : [, ] → R, with f ∈
C2([, ]), (4.6) is valid.

Here we can eliminate the differentiability condition due to the fact that it is possible to
approximate uniformly a continuous convex function by convex polynomials [69, p.172].

Analogous to the above proof we can give the proof of the last part of our theorem. �

Remark 4.2 Note that in the case when p is a positive n-tuple, the inequality (4.6) gives
(4.1).

Remark 4.3 Consider n,k∈N, n≥ 3, 2≤ k≤ n−1, [, ]⊂R, x = (x1, ...,xn)∈ [, ]n,
p = (p1, ..., pn) be a real n-tuple such that k

j=1 pi j 	= 0 for any 1 ≤ i1 < ... < ik ≤ n and

n
i=1 pi = 1. Also assume that

k

j=1

pi j xi j

k

j=1

pi j

∈ [, ] for any 1 ≤ i1 < ... < ik ≤ n.
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If for all s ∈ [, ] the inequality (4.7) holds then from the above theorem we have

9( f ) = 9( f ,x,p) :=
n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p)− fk,n(x,p) ≥ 0.

Further, we give an extension of the inequality (6.4) in [69, p.174] by Popoviciu.

Theorem 4.3 ([53]) Let n,k ∈ N, n ≥ 3, 2 ≤ k ≤ n− 1, a > 0, x = (x1, ...,xn) ∈ (0,a]n

such that n
i=1 xi ≤ a. If f : (0,a]→ R is a function such that x → f (x)

x , x ∈ (0,a] is convex,
then

fk,n(x) ≤ n− k
n−1

f1,n(x)+
k−1
n−1

fn,n(x), (4.9)

where

fk,n(x) :=
1(n−1

k−1

) 
1≤i1<...<ik≤n

f

(
k


j=1

xi j

)
.

Proof. For k = 2 and n = 3 the result follows from inequality (6.4) in [69, p.174]. For
(n,k) 	= (3,2) the result comes from the case (n,k) = (3,2) and from Theorem 6.9 in [69,
p.176]. �

By analyzing the proofs of Theorem 6.5 and Theorem 6.9 in [69, p.174], we can give
another version of the previous result.

Theorem 4.4 Let n,k ∈ N, n ≥ 3, 2 ≤ k ≤ n− 1, a > 0, x = (x1, ...,xn) ∈ (0,a]n such

that n
i=1 xi ≤ a. Let 0 <  ≤ min

1≤i≤n
xi. If f : (0,a] → R is a function such that x → f (x)

x ,

x ∈ [,a] is convex, then (4.9) also holds.

Remark 4.4 Under the conditions of either Theorem 4.3 or Theorem 4.4

( f ) = (k,x, f ) :=
n− k
n−1

f1,n(x)+
k−1
n−1

fn,n(x)− fk,n(x) ≥ 0. (4.10)

4.2 Popoviciu Inequality for 2D-Convex Functions

The refinement of (4.1) is given in [63], while in [62] the integral form has been estab-
lished. In [53] the generalization of Theorem 4.1 is given for real values of weights pi’s by
using the Green function associated to second order differential operator with homogenous
boundary conditions. Motivated by Hlawka’s inequality (see [30]), in 2010, Bencze et al.
extented the Popoviciu’s inequality for functions of several variables [8]. For this purpose
they introduced a new concept of convex function, namely 2D-convex function. Every
2D-convex function is convex in the usual sense, but there are convex functions which are
not 2D-convex.
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Definition 4.1 Let U be a convex subset of a real linear space V . A function f : U → R

is called 2D-convex if it verifies the inequality

(C2,3) : 
1≤i1<i2≤3

(
2

j=1

pi j

)
f

⎛⎜⎝
2

j=1

pi j xi j

2

j=1

pi j

⎞⎟⎠≤ 3

i=1

pi f (xi)

+
(

3

i=1

pi

)
f

⎛⎝ 3


i=1
pixi

3

i=1

pi

⎞⎠ ,

for all x1,x2,x3 ∈U and p1, p2, p3 ≥ 0, with p1 + p2 + p3 > 0.

For more than three points the 2D analogue of Jensen’s inequality is given in [8] as
follows.

Theorem 4.5 If f : U → R is a 2D-convex function then(
Ck,n
)

: fk,n(x,p) ≤ n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p),

where

fk,n(x,p) :=
1(n−1

k−1

) 
1≤i1<...<ik≤n

(
k


j=1

pi j

)
f

⎛⎜⎜⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

⎞⎟⎟⎟⎠,

and x = (x1, ...,xn) ∈Un, n ≥ 3, k ∈ {2, ...,n}, and p = (p1, ..., pn) is a positive tuple.

In [8] the proof is given by mathematical induction. But here we prove Theorem 4.5
as a consequence of a more general result given by Vasić and Adamović [1]. After some
modification the result of Vasić and Adamović [67] (see also [69, p.176]) is given as fol-
lows:

Consider D as a commutative additive semigroup and let E ⊂ D be a non-empty set
satisfy the condition:

ai ∈ E for i = 1, ...,n and
n

i=1

ai ∈ E ⇒ k

j=1

ai j ∈ E for 1 ≤ i1 < ... < ik ≤ n.

Further, suppose that G be a commutative additive group with total order (≤ is a total
order, satisfies a < b ⇒ a+ c < b+ c; a,b,c ∈ G).

Theorem 4.6 For any given g : E → G and 2 ≤ k ≤ n, let

(
Pk,n
)

: gk,n(a) ≤ n− k
n−1

g1,n(a)+
k−1
n−1

gn,n(a),

where

gk,n(a) = gk,n(a1, ...,an) :=
1(n−1

k−1

) 
1≤i1<...<ik≤n

g

(
k


j=1

ai j

)
,
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and a ∈ En,
n

i=1

ai ∈ E. Then

a) (P2,3) implies
(
Pk,n
)
,

b) For (k,n) 	= (2,3)
(
Pk,n
)

implies (P2,3) if D contains additive identity ‘0’, 0 ∈ E and
f (0) = 0.

To apply Theorem 4.6, we make use of scheme introduced by Popoviciu in [67] (see
also [69, p.179]).

Let L be a real linear space and U be a convex set in L. Define a semi-group structure
on L× (0,) (= D). The operation ”+” is defined by

X +Y = (x, p)+ (y, p) =
(

px+qy
p+q

, p+q

)
; X ,Y ∈ D.

Obviously this operation is commutative and associative, also

X1, ...,Xn ∈ E ⇒
n


i=1

Xi ∈ E,

where E = U × (0,).
If f : U → R is a 2D-convex and g : E → R is defined by

g(X) = p f (x); X = (x, p) ∈ E,

then
(
Pk,n
)

becomes
(
Ck,n
)
.

Hence by applying Theorem 4.6 (a), we get Theorem 4.5.

Remark 4.5 As 0 ∈ L, so if 0 ∈U and f (0) = 0, then from Theorem 4.6 (b) we have the
converse of Theorem 4.5.



Chapter5
Refinements Including
Integral Jensen’s Inequality

The following refinement of the discrete Jensen’s inequality is proved in [20].

Theorem 5.1 Let C be a convex subset of a real vector space V , and let f : C → R

be a convex function. If r1, . . . ,rk are nonnegative numbers with r1 + . . . + rk = 1, and
v1, . . . ,vk ∈V, then

f

(
k


i=1

rivi

)
≤

k


i1,...,in+1=1

ri1 . . . rin+1 f

(
vi1 + . . .+ vin+1

n+1

)
(5.1)

≤
k


i1,...,in=1

ri1 . . . rin f

(
vi1 + . . .+ vin

n

)
≤

k


i=1

ri f (vi), n ≥ 1.

Next result is taken from [17].

Theorem 5.2 Let C be a convex subset of a real vector space V , and let f : C → R be
a convex function. Let r1, . . . ,rk be nonnegative numbers with r1 + . . . + rk = 1, and let
v1, . . . ,vk ∈V. If p1, . . . , pn are nonnegative numbers with p1 + . . .+ pn = 1, then

f

(
k


i=1

rivi

)
≤

k


i1,...,in=1

ri1 . . . rin f

(
vi1 + . . .+ vin

n

)
(5.2)

≤
k


i1,...,in=1

ri1 . . .rin f (p1vi1 + . . . pnvin) ≤
k


i=1

ri f (vi), 1 ≤ n ≤ k.

87
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Inspired by (5.1) and (5.2), Horváth [31] established some new inequalities in a mea-
sure theoretical setting. We have some refinements of the classical Jensen’s inequality from
the results.

We need some facts from measure and integration theory from [31] (see also [29]).
Let the index set T be either {1, ...,n} with n ∈ N+ or N+.
Suppose we are given a family {Ai | i ∈ T} of non-empty sets. If S is a non-empty

subset of T , then the projection mapping prT
S : ×

i∈T
Ai → ×

i∈S
Ai is defined by associating with

every point of ×
i∈T

Ai its restriction to S. We write for short prn
i for prT

{i} (i ∈ T = {1, . . . ,n})
and pri for prT

{i} (i∈ T = N+). Similarly, if T = N+, then pr1...k means prT
{1,...,k} (k∈N+).

Consider the probability spaces (Yi,Bi,i), i ∈ T . The product of these spaces is de-
noted by (YT ,BT ,T ), i.e YT := ×

i∈T
Yi and BT is the smallest  -algebra in Y such that

each prT
{i} is BT −Bi measurable (i ∈ T ). If T = {1, ...,n}, then T is the only measure

on BT which satisfies

T (B1 × ...×Bn) = 1(B1)...n(Bn)

for every Bi ∈ Bi. If T = N+, then vT is the unique measure on BT such that the im-
age measure of T under the projection mapping pr1...k is the product of the measures
1, ...,k (k ∈ N+). We observe that

(
YT ,BT ,T

)
is also a probability space. The n-fold

(n ≥ 1 or n = ) product of the probability spaces (X ,A ,) is denoted by (Xn,A n,n).
We suppose that the -integrability of a function g : X → R over X implies the measura-
bility of g.

Theorem 5.3 ([31]) Let I ⊂ R be an interval, and let f : I → R be a convex function.
Let (Yi,Bi, i), i ∈ T := {1, ...,n} be probability spaces, and ui : Yi → I be a i-integrable
function over Yi (i ∈ T ). Assume p1, ..., pn are nonnegative numbers such that n

i=1 pi = 1.
If f ◦ ui is i-integrable over Yi (i ∈ T ), then

f

⎛⎝ n


i=1

pi

∫
Yi

uid i

⎞⎠≤
∫
YT

f

(
n


i=1

piui(yi)

)
dT (y1, ...,yn) ≤

n


i=1

pi

∫
Yi

f◦uid i. (5.3)

The next theorem corresponds to the asymptotic behavior of the sequence∫
Y {1,...,n}

f

(
1
n

n


i=1

ui(yi)

)
d{1,...,n}(y1, . . . ,yn), n ∈ N+, (5.4)

in some cases. (5.4) corresponds to the middle member of (5.3).

Theorem 5.4 ([31]) Let I ⊂R be an interval, and let f : I →R be a convex and bounded
function. Let (Yi,Bi, i), i ∈ N+ be probability spaces and ui: Yi → I be a square i-
integrable function over Yi(i ∈ N+) such that∫

Yi

uid i =
∫
Y1

u1d1, i ∈ N+, (5.5)
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and



i=1

1
i2

∫
Yi

u2
i d i < . (5.6)

Then

lim
n→

∫
Y {1,...,n}

f

(
1
n

n


i=1

ui(yi)

)
d{1,...,n}(y1, ...,yn) = f

⎛⎝∫
Y1

u1d1

⎞⎠ .

The following result corresponds to (5.1) and (5.2).

Theorem 5.5 ([31]) Let I ⊂ R be an interval and let f : I → R be a convex function. Let
(X ,A,) be probability space, u : X → I be a -integrable function over X such that f ◦ u
is -integrable over X. Assume p1, ..., pn are nonnegative numbers such that n

i=1 pi = 1.
Then
(a)

f

⎛⎝∫
X

ud

⎞⎠≤
∫
Xn

f

(
n


i=1

piu(xi)

)
dn(x1, ...,xn) ≤

∫
X

f ◦ ud. (5.7)

(b)

∫
Xn+1

f

(
1

n+1

n+1


i=1

u(xi)

)
dn+1(x1, ...,xn+1) (5.8)

≤
∫
Xn

f

(
1
n

n


i=1

u(xi)

)
dn(x1, ...,xn) ≤

∫
Xn

f

(
n


i=1

piu(xi)

)
dn(x1, ...,xn).

(c) If f is bounded, then

lim
n→

∫
Xn

f

(
1
n

n


i=1

u(xi)

)
dn(x1, ...,xn) = f

⎛⎝∫
X

ud

⎞⎠ .

Suppose V := R and C := I in Theorem 5.1 and Theorem 5.2. Then the inequalities
(5.1) and (5.2) can be obtained easily from the inequalities in Theorem 5.3 and Theorem
5.5, but Theorem 5.3 and Theorem 5.5 are in more general settings.

An application: As an application, we give some discrete inequalities.
Let I ⊂ R be an interval, and let f : I → R be a convex function on I. Suppose Yi :=

{1, . . . ,ki} (i ∈ N+), Bi is the power set of Yi (i ∈ N+), and i({ j}) := ri j ≥ 0 (i ∈ N+,

j = 1, . . . ,ki) such that
ki


j=1

ri j = 1 (i ∈ N+). Let ui( j) := vi j ∈ I (i ∈ N+, j = 1, . . . ,ki).
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Suppose that for a fixed n ∈ N+, p1, . . . , pn are nonnegative numbers with p1 + . . . +
pn = 1. Now inequality (5.3) gives that

f

(
n


i=1

pi

(
ki


j=1

ri jvi j

))
≤ 

( j1,..., jn)∈Y{1,...,n}
f

(
n


i=1

pivi ji

)
r1 j1 . . . rn jn (5.9)

≤
n


i=1

pi

(
ki


j=1

ri j f (vi j)

)
,

which generalizes (5.2) (except the second member).
If f is bounded on I and

ki


j=1

ri jvi j = m, i ∈ N+, (5.10)

and



i=1

1
i2

(
ki


j=1

ri jv
2
i j

)
< . (5.11)

then it comes from Theorem 5.4 that

lim
n→ 

( j1,..., jn)∈Y{1,...,n}
f

(
1
n

n


i=1

vi ji

)
r1 j1 . . . rn jn = f (m).

Especially, suppose f := − ln, pi > 0 (i = 1, . . . ,n), ri j > 0 and vi j > 0 (i ∈ N+, j =
1, . . . ,ki). Then (5.9) yields that

− ln

(
n


i=1

pi

(
ki


j=1

ri jvi j

))
≤− ln

⎛⎝ 
( j1,..., jn)∈Y {1,...,n}

(
n


i=1

pivi ji

)r1 j1
...rn jn
⎞⎠

≤− ln

(
n


i=1

((
ki


j=1

v
ri j
i j

)pi
))

,

which shows the next inequality

n


i=1

pi

(
ki


j=1

ri jvi j

)
≥ 

( j1,..., jn)∈Y {1,...,n}

(
n


i=1

pivi ji

)r1 j1
...rn jn

(5.12)

≥
n


i=1

((
ki


j=1

v
ri j
i j

)pi
)

.

Further, if there are positive numbers a and b such that

a ≤ vi j ≤ b, i ∈ N+, j = 1, . . . ,ki,
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and (5.10) holds (obviously, (5.11) satisfies too), then

lim
n→ 

( j1,..., jn)∈Y {1,...,n}

(
1
n

n


i=1

vi ji

)r1 j1
...rn jn

= m. (5.13)

In order to proof the results as transparent as possible, we begin some preparatory
lemmas. First, we investigate the integrability properties of some functions.

Lemma 5.1 Let I ⊂ R be an interval, and let f : I → R be a convex function on I. Let
(Yi,Bi,i), i ∈ T := {1, . . . ,n} be probability spaces, and let the function ui : Yi → I be
i-integrable over Yi (i = 1, . . . ,n).

(a) The function ui ◦ prn
i is T -integrable over YT , and∫

YT

ui ◦ prn
i d

T =
∫
Yi

uidi, i = 1, . . . ,n. (5.14)

(b) If f ◦ ui is also i-integrable over Yi (i = 1, . . . ,n), then the function

f ◦
(

n


i=1

pi (ui ◦ prn
i )

)
, where pi ≥ 0 (i = 1, . . . ,n),

n


i=1

pi = 1 (5.15)

is T -integrable over YT .

Proof. (a) Since the image measure of T under the mapping prn
i is i (i = 1, . . . ,n),

and ui is i-integrable over Yi (i = 1, . . . ,n), we therefore get from the connection between
T -integrals and i-integrals that ui ◦ prn

i is T -integrable overYT (i = 1, . . . ,n), and (5.14)
holds.

(b) Since the range of ui is a subset of I (i = 1, . . . ,n), the properties of the numbers
p1, . . . , pn in (5.15) imply that the range of the function

n


i=1

pi (ui ◦ prn
i )

is a subset of I too. Thus the domain of the function (5.15) is YT .
The function f , being convex on I, is lower semicontinuous on I, and therefore f is

measurable on I.
The measurability of the function (5.15) now follows from the above statements.
Let a be a fixed interior point of I. Now the convexity of f on I insures that

f (t) ≥ f (a)+ f �
+(a)(t−a), t ∈ I,

where f �
+(a) denotes the right-hand derivative of f at a. Using the previous inequality, and

the convexity of f again, we have

f (a)+ f �
+(a)

(
n


i=1

piui(yi)−a

)
≤ f

(
n


i=1

piui(yi)

)
(5.16)

≤
n


i=1

pi f (ui(yi)), (y1, . . . ,yn) ∈YT .
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By what has already been proved in (a) the lower bound for the function (5.15) in (5.16)
is T -integrable over YT . The condition on f ◦ ui ensures that ui can be replaced by f ◦ ui

in (a), and thus the upper bound for the function (5.15) in (5.16) is T -integrable over YT

too. These and the inequality (5.16), together with the measurability of the function (5.15)
on YT imply the T -integrability of the function (5.15) on YT .

The proof is now complete. �

We derive an analog of Lemma 5.1 for a sequence of probability spaces.

Lemma 5.2 Let I ⊂ R be a bounded interval, and let f : I → R be a convex and bounded
function on I. Let (Yi,Bi,i), i ∈ T := N+ be probability spaces, and let the function
ui : Yi → I be i-integrable over Yi (i ∈ N+).

(a) The function ui ◦ pri is T -integrable over YT , and∫
YT

ui ◦ pri dT =
∫
Yi

uidi, i ∈ N+.

(b) If f ◦ ui is also i-integrable over Yi (i ∈ N+), then for every n ∈ N+

∫
YT

f ◦
(

1
n

n


i=1

ui ◦ pri

)
dT =

∫
Y{1,...,n}

f ◦
(

1
n

n


i=1

ui ◦ prn
i

)
d{1,...,n}. (5.17)

Proof. (a) We argue as in the proof of Lemma 5.1 (a).
(b) According to Lemma 5.1 (b), the function

f ◦
(

1
n

n


i=1

ui ◦ prn
i

)

is {1,...,n}-integrable over Y {1,...,n} (n ∈ N+). By the definition of T , the image measure
of T under the mapping pr1...n is {1,...,n} (n ∈ N+). Therefore the connection between
T -integrals and {1,...,n}-integrals gives (5.17).

The result is completely proved. �

The next result is simple to prove but useful.

Lemma 5.3 Let (X ,A ,) be a probability space, and let u : Xn → R be a n-integrable
function.

(a) Let  be a permutation of the numbers 1, . . . ,n, and let the mapping T : Xn → Xn

be defined by
T (x1, . . . ,xn) := (x(1), . . . ,x(n)).

Then the function u◦T is n-integrable on Xn and∫
Xn

u ◦Tdn =
∫
Xn

udn.
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(b) If 1 ≤ i < n, then

∫
Xn

udn =
∫

Xn−1

⎛⎝∫
X

u(x1, . . . ,xn)d(xi)

⎞⎠dn−1(x1, . . . ,xi−1,xi+1, . . . ,xn).

Proof. (a) Let T (n) be the image of n under the mapping T . Since T (n) = n, the
result follows from the connection between n-integrals and T (n)-integrals.

(b) We have only to apply (a) and the Fubini’s theorem. �

The last result that we discuss corresponds to the laws of large numbers.

Lemma 5.4 Let I ⊂ R be an interval, and let p : I → R be a function on I, which is
continuous at every interior point of I, and bounded on I.

(a) Let (Yi,Bi,i), i ∈ T := N+ be probability spaces, and let ui : Yi → I be a square
i-integrable function over Yi (i ∈ N+) such that∫

Yi

uidi =
∫
Y1

u1d1, i ∈ N+,

and



i=1

1
i2

∫
Yi

u2
i di < . (5.18)

Then

lim
n→

∫
Y {1,...,n}

p

(
1
n

n


i=1

ui(yi)

)
d{1,...,n}(y1, . . . ,yn) = p

⎛⎝∫
Y1

u1d1

⎞⎠ .

(b) Let (X ,A ,) be a probability space, and let u : X → I be a -integrable function
over X. Then

lim
n→

∫
Xn

p

(
1
n

n


i=1

u(xi)

)
dn(x1, . . . ,xn) = p

⎛⎝∫
X

ud

⎞⎠ .

Proof. (a) Since ui is a square i-integrable function over Yi, ui is i-integrable over
Yi (i ∈ N+). From Lemma 5.2 (a) we obtain that ui ◦ pri and u2

i ◦ pri (i ∈ N+) are T -
integrable over YT , and ∫

YT

ui ◦ pri dT =
∫
Yi

uidi =
∫
Y1

u1d1, (5.19)

and ∫
YT

u2
i ◦ pri dT =

∫
Yi

u2
i di. (5.20)
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If V (ui ◦ pri ) means the variance of the random variable ui ◦ pri (i ∈ N+), then by using
(5.19), (5.20) and (5.18), we have that




i=1

V (ui ◦ pri )
i2

=



i=1

1
i2

⎛⎜⎝∫
Yi

u2
i di −

⎛⎝∫
Y1

u1d1

⎞⎠2
⎞⎟⎠< .

It is easy to verify that the random variables ui ◦ pri (i ∈ N+) are independent. Now, Kol-
mogorov’s criterion (see [7]) implies that the sequence (ui ◦ pri )i∈N+

of random variables
obeys the strong law of large numbers, that is

lim
n→

1
n

n


i=1

ui ◦ pri =
∫
Y1

u1d1 T -almost everywhere on YT . (5.21)

If
∫
Y1

u1d1 is an interior point of I, then the continuity of p at
∫
Y1

u1d1 and (5.21) yield

that

lim
n→

p ◦
(

1
n

n


i=1

ui ◦ pri

)
= p

⎛⎝∫
Y1

u1d1

⎞⎠ T -almost everywhere on YT . (5.22)

Suppose
∫
Y1

u1d1 is either the left-hand endpoint or the right-hand endpoint of I. In

either case
ui =
∫
Y1

u1d1 i-almost everywhere on Yi i ∈ N+,

hence
ui ◦ pri =

∫
Y1

u1d1 T -almost everywhere on YT , i ∈ N+,

and this justifies (5.22).
Since p is bounded on I, it follows from (5.22) and Lebesgue’s convergence theorem

that

lim
n→

∫
YT

p ◦
(

1
n

n


i=1

ui ◦ pri

)
dT = p

⎛⎝∫
Y1

u1d1

⎞⎠ ,

thus we can apply Lemma 5.2 (b).
(b) In this case the proof of (a) also works if instead of Kolmogorov’s criterion Kol-

mogorov’s law of large numbers (see [7]) is used, since the random variables u ◦ pri
(i ∈ N+) are independent, T -integrable over YT , and identically distributed.

The whole theorem is proved. �
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Proof of Theorem 5.3 By Lemma 5.1 (a) and (b), the functions

n


i=1

pi(ui ◦ prn
i ) and f ◦

(
n


i=1

pi(ui ◦ prn
i )

)

are T -integrable over YT . An application of the integral form of Jensen’s inequality (see
Theorem 1.6) yields that

f

⎛⎝∫
YT

(
n


i=1

pi(ui ◦ prn
i )

)
dT

⎞⎠≤
∫
YT

(
f ◦
(

n


i=1

pi(ui ◦ prn
i )

)
dT

)
.

The first inequality in (5.3) follows from this, by (5.14).
It remains to prove the second inequality in (5.3). By Lemma 5.1 (a) (replaced ui by

f ◦ ui), the function f ◦ (ui ◦ prn
i ) is T -integrable over YT (i = 1, . . . ,n), and∫

YT

f ◦ (ui ◦ prn
i )dT =

∫
Yi

f ◦ uidi.

Applying this and taking account of the convexity of f on I, we calculate

∫
YT

f

(
n


i=1

piui(yi)

)
dT (y1, . . . ,yn) ≤

∫
YT

n


i=1

pi f (ui(yi))dT (y1, . . . ,yn)

=
n


i=1

pi

∫
Yi

f ◦ uidi,

and this completes the proof. �

Proof of Theorem 5.4 This is an immediate consequence of Lemma 5.2 (b), since f is
continuous at every interior point of I. �

Proof of Theorem 5.5 (a) This is an immediate consequence of Theorem 5.3.
(b) Since f is convex on I

∫
Xn+1

f

(
1

n+1

n+1


i=1

u(xi)

)
dn+1(x1, . . . ,xn+1)

=
∫

Xn+1

f

(
1

n+1

n+1


i=1

(
1
n 

j∈{1,...,n+1}\{i}
u(x j)

))
dn+1(x1, . . . ,xn+1)

≤
∫

Xn+1

1
n+1

n+1


i=1

f

(
1
n 

j∈{1,...,n+1}\{i}
u(x j)

)
dn+1(x1, . . . ,xn+1).
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By the Fubini’s theorem (see Lemma 5.3 (b)), the right-hand side of the previous inequality
can be written in the form

1
n+1

n+1


i=1

∫
Xn

⎛⎝∫
X

f

(
1
n 

j∈{1,...,n+1}\{i}
u(x j)

)
d(xi)

⎞⎠dn(x1, . . . ,xi−1,xi+1, . . . ,xn+1)

=
1

n+1

n+1


i=1

∫
Xn

f

(
1
n 

j∈{1,...,n+1}\{i}
u(x j)

)
dn(x1, . . . ,xi−1,xi+1, . . . ,xn+1)

=
∫
Xn

f

(
1
n

n


i=1

u(xi)

)
dn(x1, . . . ,xn),

confirming the first inequality in Theorem 5.5 (b).
Finally, we prove the second inequality in Theorem 5.5 (b). Let i( j) (i, j = 1, . . . ,n)

be the unique number from {1, . . . ,n} for which

i( j) ≡ i+ j−1 (mod n), i, j = 1, . . . ,n.

Then the functions i (i = 1, . . . ,n) are permutations of the numbers 1, . . . ,n. Clearly,
n

j=1

pi( j) = 1 (i = 1, . . . ,n), and i( j) =  j(i), i, j = 1, . . . ,n.

The convexity of f on I implies that∫
Xn

f

(
1
n

n


i=1

u(xi)

)
dn(x1, . . . ,xn) (5.23)

=
∫
Xn

f

(
1
n

n


i=1

(
n


j=1

pi( j)u(xi)

))
dn(x1, . . . ,xn)

≤
∫
Xn

n


j=1

1
n

f

(
n


i=1

p j(i)u(xi)

)
dn(x1, . . . ,xn)

=
n


i=1

1
n

∫
Xn

f

(
n


i=1

p j(i)u(xi)

)
dn(x1, . . . ,xn).

It follows from Lemma 5.3 (a) that∫
Xn

f

(
n


i=1

p j(i)u(xi)

)
dn(x1, . . . ,xn)

=
∫
Xn

f

(
n


i=1

piu(xi)

)
dn(x1, . . . ,xn), ( j = 1, . . . ,n).

This fact and (5.23) yields the result, bringing the proof to an end.
(c) It comes from Lemma 5.4 (b), since f is continuous at every interior point of I. �
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Remark 5.1 From Theorem 5.3, we can write

10( f ) = 10( f ,p,u) :=
n

i=1

pi
∫
Yi

f◦uidvi−
∫

YT
f

(
n

i=1

piui(yi)
)

dvT (y1, ...,yn) ≥ 0,

11( f ) = 11( f ,p,u) :=
∫

YT
f

(
n

i=1

piui(yi)
)

dvT (y1, ...,yn)− f

(
n

i=1

pi
∫
Yi

uidvi

)
≥ 0,

12( f ) = 12( f ,p,u) :=
n

i=1

pi
∫
Yi

f◦uidvi− f

(
n

i=1

pi
∫
Yi

uidvi

)
≥ 0,

where u:= (u1, ...,un).
From Theorem 5.5 (a), we can write

13( f ) = 13( f ,p,u) :=
∫
Xn

f

(
n

i=1

piu(xi)
)

dn(x1, .,xn)− f

(∫
X

ud
)
≥ 0,

14( f ) = 14( f ,p,u) :=
∫
X

f◦udv− ∫
Xn

f

(
n

i=1

piu(xi)
)

dn(x1, .,xn) ≥ 0,

15( f ) = 15( f ,u) :=
∫
X

f◦udv− f

(∫
X

ud
)
≥ 0.

Remark 5.2 The first inequality in Theorem 5.5 (b) provides the generalization of Theo-
rem 1.12 which is utilized in [6] to give the log-convexity and in [52] to give exponential
convexity for two classes of convex functions stated in Remark 1.4.

5.0.1 Mixed Symmetric Means Related to Theorems (5.3-5.5)

We need the following condition:
(H6) Let (Yi,Bi, i) be probability spaces, and let ui: Yi →R be a measurable function

(i = 1, . . . ,n). Suppose p = (p1, ..., pn) is a nonnegative n-tuples such that n
i=1 pi = 1.

The product of the probability spaces (Yi,Bi, i) is denoted by (YTn ,BTn ,Tn).
Assume (H6), and let ui be positive (i = 1, . . . ,n). By using (1.44) and (1.45), we

define weighted power means and mixed symmetric means as follows:
For every (y1, . . . ,yn) ∈YTn

Ms (u1, ...,un,p)(y1, . . . ,yn) := Ms (u1 (y1) , ...,un (yn) ,p) .

Let r,s∈ R, and suppose us
i is i-integrable if s 	= 0, and log◦ui is i-integrable if s = 0

(i = 1, . . . ,n). Then define

Mr,s (u1, ...,un,p) :=

⎧⎪⎪⎨⎪⎪⎩
(

n

i=1

piM̃r
s (ui, i)

) 1
r

, r 	= 0,

n

i=1

M̃pi
s (ui,i), r = 0.

.

Let r,s ∈ R, and suppose us
i and ur

i are i-integrable if s,r 	= 0, and log◦ui is i-
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integrable if either s = 0 or r = 0 (i = 1, . . . ,n). Then define

M̃r,s (u1, ...,un,p) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( ∫
YTn

Ms
r (u1, ...,un,p)dTn

) 1
r

, r 	= 0,

exp

( ∫
YTn

logMs (u1, ...,un,p)dTn

)
, r = 0.

. (5.24)

We can establish the relations among these means as an application of Theorem 5.3. It also
follows that the integrals in (5.24) are finite.

Corollary 5.1 Assume (H6), and let u := (u1, . . . ,un) be positive. Let r,s ∈ R, and sup-
pose us

i and ur
i are i-integrable if s,r 	= 0, and log◦ui is i-integrable if either s = 0 or

r = 0 (i = 1, . . . ,n). If s ≤ r, then we have

Ms,s (u,p) ≤ M̃r,s (u,p) ≤ Mr,r (u,p) , (5.25)

Mr,r (u,p) ≥ M̃s,r (u,p) ≥ Ms,s (u,p) . (5.26)

Proof. If r,s 	= 0, we set f (x) = x
r
s (x > 0), ui =ui

s in (5.3) and raising to the power 1
r ,

then we get (5.25). Similarly, we set f (x) = x
s
r (x > 0), ui =ui

r in (5.3) and raising to the
power 1

s , then we get (5.26).
When s = 0 or r = 0, we get the required results by taking limit. �

Corollary 5.2 Let (Yi,Bi, i), i ∈ N+ be probability spaces, and suppose ui : Yi → R

(i∈N+) are positive and measurable functions with a common upper bound. Let 0 < s≤ r.
If ∫

Yi

us
i di =

∫
Y1

us
1d1, i ∈ N+,

then

lim
n→

M̃r,s

(
u1, ...,un,

1
n

)
= M̃s (u1,1) ,

where 1
n denotes the n-tuples

(
1
n , . . . , 1

n

)
.

If ∫
Yi

ur
i di =

∫
Y1

ur
1d1, i ∈ N+,

lim
n→

M̃s,r

(
u1, ...,un,

1
n

)
= M̃r (u1,1) .

Proof. ut
i is obviously i-integrable for all t ≥ 0 (i ∈ N). We can apply Theorem 5.4

taking into account the proof of Corollary 5.1. �

We also need the following hypothesis:
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(H7) Let J ⊂R be an interval, and let h,g : J → R be continuous and strictly monotone
functions.
Assume (H6) and (H7), and let ui: Yi →J (i = 1, . . . ,n). Then quasi-arithmetic means can
be defined as follows:

For every (y1, . . . ,yn) ∈YTn

Mg (u1, ...,un,p)(y1, . . . ,yn) := Mg (u1 (y1) , ...,un (yn) ,p) .

Let g ◦ ui be i-integrable (i = 1, . . . ,n). Then define

M̃g (u1, ...,un,p) = g−1

⎛⎝ n


i=1

pi

∫
Yi

g ◦ uid i

⎞⎠ .

Let g ◦ ui and h ◦ ui be i-integrable (i = 1, . . . ,n). Then define

M̃h,g (u1, ...,un,p) = h−1

⎛⎝∫
YTn

h(Mg (u1, ...,un,p))dTn

⎞⎠ . (5.27)

The monotonicity of these means are described in the next result. We have that the
integral in (5.27) is finite too.

Corollary 5.3 Assume (H6) and (H7), and let ui: Yi →J (i = 1, . . . ,n). Suppose g ◦ ui

and h◦ui are i-integrable (i = 1, . . . ,n). If either h◦ g−1 is convex and h is increasing, or
h ◦ g−1 is concave and h is decreasing, then

M̃g (u1, ...,un,p) ≤ M̃h,g (u1, ...,un,p) ≤ M̃h (u1, ...,un,p) , (5.28)

while if either g ◦ h−1 is convex and g is decreasing, or g ◦ h−1 is concave and g is increas-
ing, then

M̃h (u1, ...,un,p) ≥ M̃g,h (u1, ...,un,p) ≥ M̃g (u1, ...,un,p) . (5.29)

Proof. By exchanging f for h ◦ g−1 and ui for g◦ui in (5.3) and applying h−1, we
obtain (5.28). We also exchange f for g ◦ h−1 and ui for h◦ui in (5.3) and apply g−1, (5.29)
is obtained. �

Corollary 5.4 Assume (H7). Let (Yi,Bi, i), i ∈ N+ be probability spaces, and suppose
ui : Yi → J (i ∈ N+) are measurable functions.

(a) Suppose that either h ◦ g−1 is bounded and convex and h is increasing, or h◦ g−1 is
bounded and concave and h is decreasing. If g◦ui is square i-integrable (i ∈ N), and∫

Yi

g ◦ uidi =
∫
Y1

g ◦ u1d1, i ∈ N+,

and



i=1

1
i2

∫
Yi

(g ◦ ui)2 di < ,
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then

lim
n→

M̃h,g

(
u1, ...,un,

1
n

)
= M̃g (u1,1) .

(b) Suppose that either g◦h−1 is bounded and convex and g is increasing, or g◦h−1 is
bounded and concave and g is decreasing. If h◦ui is square i-integrable (i ∈ N+), and∫

Yi

h ◦ uidi =
∫
Y1

h ◦ u1d1, i ∈ N+,

and



i=1

1
i2

∫
Yi

(h ◦ ui)
2 di < ,

then

lim
n→

M̃g,h

(
u1, ...,un,

1
n

)
= M̃h (u1,1) .

Proof. Apply Theorem 5.4 taking into account the proof of Corollary 5.3. �

We consider the special case of (H6) when the measure spaces (Yi,Bi, i) are equal.
(H̃6) Let (X ,A ,) be a probability space, and u : X → R be a measurable function.

Suppose p = (p1, ..., pn) is a nonnegative n-tuples such that n
i=1 pi = 1.

In this case simplified notations will be used to the introduced means: for example,
M̃r,s (u,p) means M̃r,s (u, ...,u,p).

Corollary 5.5 Assume (H̃6), and let u be positive. Let r,s∈ R, and suppose us and ur are
-integrable if s,r 	= 0, and log◦u is -integrable if either s = 0 or r = 0. If s ≤ r, then
we have

M̃s (u,) ≤ M̃r,s (u,p) ≤ M̃r (u,) ,

and
M̃r (u,) ≥ M̃s,r (u,p) ≥ M̃s (u,) .

Proof. Apply Theorem 5.5 (a) and follow the proof of Corollary 5.1. �

Corollary 5.6 Under the conditions Corollary 5.5, we have

M̃r,s

(
u,

1
n+1

)
≤ M̃r,s

(
u,

1
n

)
≤ M̃r,s (u,p) ,

and

M̃s,r

(
u,

1
n+1

)
≥ M̃s,r

(
u,

1
n

)
≥ M̃s,r (u,p) .

Proof. Apply Theorem 5.5 (b) and follow the proof of Corollary 5.1. �
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Corollary 5.7 Let (X ,A ,) be a probability space, and let u : X → R be a positive,
measurable and bounded function. If 0 < s ≤ r, then

lim
n→

M̃r,s

(
u,

1
n

)
= M̃s (u,) ,

lim
n→

M̃s,r

(
u,

1
n

)
= M̃r (u,) .

Proof. Apply Theorem 5.5 (c) and follow the proof of Corollary 5.1. �

Corollary 5.8 Assume (H̃6) and (H7), and let u : X →J. Suppose g ◦ u and h ◦ u are
-integrable. If either h◦ g−1 is convex and h is increasing, or h◦ g−1 is concave and h is
decreasing, then

M̃g (u,) ≤ M̃h,g (u,p) ≤ M̃h (u,) ,

while if either g ◦ h−1 is convex and g is decreasing, or g ◦ h−1 is concave and g is increas-
ing, then

M̃h (u,) ≥ M̃g,h (u,p) ≥ M̃g (u,) .

Proof. Apply Theorem 5.5 (a) and follow the proof of Corollary 5.3. �

Corollary 5.9 Assume (H̃6) and (H7), and let u : X →J. Suppose g ◦ u and h ◦ u are
-integrable. If either h◦ g−1 is convex and h is increasing, or h◦ g−1 is concave and h is
decreasing, then

M̃h,g

(
u,

1
n+1

)
≤ M̃h,g

(
u,

1
n

)
≤ M̃h,g (u,p) ,

while if either g ◦ h−1 is convex and g is decreasing, or g ◦ h−1 is concave and g is increas-
ing, then

M̃g,h

(
u,

1
n+1

)
≥ M̃g,h

(
u,

1
n

)
≥ M̃g,h (u,p) .

Proof. Apply Theorem 5.5 (b) and follow the proof of Corollary 5.3. �

Corollary 5.10 Let (X ,A ,) be a probability space, and let u : X → R be a measurable
function. Assume (H7). If either h◦ g−1 is bounded and convex and h is increasing, or
h ◦ g−1 is bounded and concave and h is decreasing, then

lim
n→

M̃h,g

(
u,

1
n

)
= M̃g (u,) ,

while if either g◦h−1 is bounded and convex and g is increasing, or g◦h−1 is bounded and
concave and g is decreasing, then

lim
n→

M̃g,h

(
u,

1
n

)
= M̃h (u,) .

Proof. Apply Theorem 5.5 (c) and follow the proof of Corollary 5.3. �
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5.1 New Refinement of Classical Jensen’s
Inequality

Consider t : = (t1, ...,tn−1), where ti ∈ [0,1] (n ≥ 2). Then the following interpolation of
the classical discrete Jensen’s inequality was proved by Pečarić:

Theorem 5.6 ([65]) Let C be a convex subset of a real vector spaceV , and let f :C →R

be a convex function. Suppose x = (x1, ...,xn) ∈Cn, and p = (p1, ..., pn) is a nonnegative
n-tuple such that n

i=1 pi = 1. Define

fn,k = fn,k(x,p, t, f ) :=
n


i1=1
...

n


ik=1
pi1 ...pik f

(
xi1(1− t1)+

k−1

j=1

xi j(1− t j+1)t1...t j + x̄t1...tk

)
;

for k = 1, ...,n−1, where x̄ =
n

i=1

pixi. Then

f

(
n

i=1

pixi

)
≤ fn,1 ≤ fn,2 ≤ ... ≤ fn,n−1 ≤

≤
n


i1=1
...

n


in=1
pi1 ...pin f

(
xi1(1− t1)+

n−2

j=1

xi j (1− t j+1)t1...t j + xint1...tn−1

)
≤

n

i=1

pi f (xi).

We generalize this result for integrals.

Theorem 5.7 ([51]) Let I ⊂ R be an interval and let f : I → R be a convex function. Let
(X ,A,) be probability space, u : X → I be a -integrable function over X such that f ◦ u
is -integrable over X. We define

Qn,k :=
∫
Xk

f ((1− t1)u(x1)+
k−1

j=1

(1− t j+1)t1...t ju(x j)+ t1...tkū)dk(x1, ...xk),

where ū : =
∫
X
ud and ti ∈ [0,1] i = 1, ...n−1. Then

f (
∫
X

ud) ≤ Qn,1 ≤ Qn,2 ≤ ... ≤ Qn,n−1 ≤

≤ ∫
Xn

f ((1− t1)u(x1)+
n−2

j=1

(1− t j+1)t1...t ju(x j)+ t1...tn−1u(xn))dn(x1, ...xn)

≤ ∫
X

f ◦ ud.
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Proof. By using the integral Jensen’s inequality and integrate with respect to  , we
have:∫

X
f ◦ ud =

∫
Xn

((1− t1) f (u(x1))+
n−2

j=1

(1− t j+1)t1...t j f (u(x j))+t1...tn−1 f (u(xn)))dn(x1, ...xn)

≥ ∫
Xn

f ((1− t1)u(x1)+
n−2

j=1

(1− t j+1)t1...t ju(x j)+ t1...tn−1u(xn))dn(x1, ...xn)

≥ ∫
Xn−1

f ((1− t1)u(x1)+
n−2

j=1

(1− t j+1)t1...t ju(x j)+ t1...tn−1ū)dn−1(x1, ...xn−1)

≥
.

.

.

≥ ∫
X

f ((1− t1)u(x1)+ t1ū)d(x1) ≥ f (
∫
X

ud).

�

Remark 5.3 From Theorem 5.6, we write

16( f ) = 16( f ,x,p, t) :=
n

i=1

pi f (xi)−
n


i1=1
...

n


in=1
pi1 ...pin f (xi1 (1− t1)+

n−2

j=1

xi j (1− t j+1)t1...t j + xint1...tn−1)

≥ 0,

17( f ) = 17( f ,x,p, t) :=
n

i=1

pi f (xi)− fn,k ≥ 0, k = 1, ...,n−1,

18( f ) = 18( f ,x,p, t) := fn,k − f

(
n

i=1

pixi

)
≥ 0, k = 1, ...,n−1,

19( f ) = 19( f ,x,p, t) :=
n


i1=1
...

n


in=1
pi1 ...pin f (xi1(1− t1)+

n−2

j=1

xi j (1− t j+1)t1...t j + xint1...tn−1)

− f

(
n

i=1

pixi

)
≥ 0.

From Theorem 5.7 we write
20( f ) = 20( f , t,u) :=

∫
X

f◦ud−
∫
Xn

f ((1− t1)u(x1)+
n−2

j=1

(1− t j+1)t1...t ju(x j)+ t1...tn−1u(xn))dn(x1, ...xn)

≥ 0,
21( f ) = 21( f , t,u) :=

∫
X

f◦ud−Qn,k ≥ 0, k = 1, ...,n−1,

22( f ) = 22( f , t,u) := Qn,k − f (
∫
X

ud) ≥ 0, k = 1, ...,n−1,
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23( f ) = 23( f , t,u) :=∫
Xn

f ((1− t1)u(x1)+
n−2

j=1

(1− t j+1)t1...t ju(x j)+ t1...tn−1u(xn))dn(x1, ...xn)

− f (
∫
X

ud) ≥ 0.

5.1.1 Mixed Symmetric Means Related to Theorem 5.7

(H8) Let (X ,A ,) be a probability space, and u : X → R be a measurable function. Let
t : = (t1, ...,tn−1), where ti ∈ [0,1] (n ≥ 2).

Assume (H8), and let u be positive. Then associated to the core term of Theorem 5.7,
we define mixed means as follows:

Let s ∈ R, and suppose us is -integrable if s 	= 0, and log◦u is -integrable if s = 0.
For k = 1, ...,n−1 and for every (x1, . . . ,xk) ∈ Xk

Ms(u, t,k)(x1, . . . ,xk) :=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
(1− t1)us(x1)+

k−1

j=1

(1− t j+1)t1...t jus(x j)+ t1...tkM̃s
s(u,)

) 1
s

, s 	= 0,

exp

⎛⎜⎝ (1− t1) logu(x1)+
k−1

j=1

(1− t j+1)t1...t j logu(x j)+ t1...tk logM̃0(u,)

⎞⎟⎠ , s = 0.

Let r,s∈R, and suppose us and ur are -integrable if s,r 	= 0, and log◦u is -integrable
if either s = 0 or r = 0. For k = 1, ...,n−1 define

M̃r,s(n,k,u, t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∫
Xk

Mr
s (u, t;k)dk

) 1
r

, r 	= 0,

exp

(∫
Xk

logMs(u, t;k)dk

)
, r = 0.

Corollary 5.11 ([51]) Assume (H8). Let r,s∈R, and suppose us and ur are -integrable
if s,r 	= 0, and log◦u is -integrable if either s = 0 or r = 0. If s ≤ r, then

M̃s(u,) ≤ M̃r,s(n,1,u, t)≤ ... ≤ M̃r,s(n,n−1,u, t)≤ M̃r,s(u, t) ≤ M̃r(u,),

and

M̃r(u,) ≤ M̃s,r(n,1,u, t)≤ ... ≤ M̃s,r(n,n−1,u, t)≤ M̃s,r(u, t) ≤ M̃s(u,).

Proof. Apply Theorem 5.7 and follow the proof of Corollary 5.1. �

We need
(H7) Let J ⊂R be an interval, and let h,g : J →R be continuous and strictly monotone

functions.
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Assume (H8) and (H7). Then using Qn,k from Theorem 5.7, we define the generalized
means as follows:

Let g ◦ u be -integrable. For k = 1, ...,n−1 and for every (x1, . . . ,xk) ∈ Xk

Mg(u, t,k) :=

g−1

(
(1− t1)g(u(x1))+

k−1

j=1

(1− t j+1)t1...t jg(u(x j))+t1...tkg(M̃g(u))

)
.

Let g ◦ u and h ◦ u be -integrable. For k = 1, ...,n−1

M̃h,g(n,k,u, t) := h−1

⎛⎝∫
Xk

h(Mg(u,t,k))dk

⎞⎠ ,

Corollary 5.12 ([51]) Assume (H8) and (H7). Suppose g◦u and h◦u are -integrable.
If either h◦ g−1 is convex and h is increasing, or h◦ g−1 is concave and h is decreasing,
then

M̃g(u,) ≤ M̃h,g(n,1,u, t) ≤ ... ≤ M̃h,g(n,n−1,u, t)≤ M̃h,g(u, t) ≤ M̃h(u,),

while if either g ◦ h−1 is convex and g is decreasing, or g ◦ h−1 is concave and g is increas-
ing, then

M̃h(u,) ≤ M̃g,h(n,1,u, t)≤ ... ≤ M̃g,h(n,n−1,u, t)≤ M̃g,h(u, t) ≤ M̃g(u,).

Proof. Apply Theorem 5.7 and follow the proof of Corollary 5.3. �

Remark 5.4 Similarly to Corollary 5.11 and Corollary 5.12, we can give the results for
Theorem 5.6 and those will be special cases of Corollary 5.11 and Corollary 5.12 with
discrete measure.

5.2 Another Refinement of integral form of Jensen’s
Inequality

For the results from integration theory see [29].
We consider the following conditions:

(C1) Let (X ,A ,) be a  -finite measure space such that (X) > 0.

The integrable functions are considered to be measurable.

(C2) Let  be a positive function on X such that
∫
X
d = 1.
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In this case the measure P defined on A by

P(A) :=
∫
A

d

is a probability measure having density  with respect to  . An A -measurable function
g : X → R is P-integrable if and only if g is -integrable, and the relationship between
the P- and -integrals is ∫

X

gdP =
∫
X

gd .

(C3) Let k ≥ 2 be a fixed integer.

The  -algebra in Xk generated by the projection mappings prm : Xk →X (m = 1, . . . ,k)

prm (x1, . . . ,xk) := xm

is denoted by A k. k means the product measure on A k: this measure is uniquely ( is
 -finite) specified by

k (A1× . . .×Ak) :=  (A1) . . . (Ak) , Am ∈ A , m = 1, . . . ,k.

We shall also use the following projection mappings: for m = 1, . . . ,k define prm : Xk →
Xk−1 by

prm (x1, . . . ,xk) := (x1, . . . ,xm−1,xm+1, . . . ,xk) .

For every Q ∈ A k and for all m = 1, . . . ,k the sets

Qm,x :=
{
(x1, . . . ,xm−1,xm+1, . . . ,xk) ∈ Xk−1 |

(x1, . . . ,xm−1,x,xm+1, . . . ,xk) ∈ Q}
and

Qx1,...,xm−1,xm+1,...,xk := {x ∈ X | (x1, . . . ,xm−1,x,xm+1, . . . ,xk) ∈ Q}
are called x-sections of Q (x ∈ X) and (x1, . . . ,xm−1,xm+1, . . . ,xk)-sections of Q
((x1, . . . ,xm−1,xm+1, . . . ,xk) ∈ Xk−1), respectively. We note that the sets Qm,x lie in A k−1,
while Qx1,...,xm−1,xm+1,...,xk ∈ A .

(C4) Let S ∈ A k such that
(i)

prm (S) ∈ A , m = 1, . . . ,k and
k⋃

m=1

prm (S) = X , (5.30)

and
(ii)

l(x) :=
k


m=1

mk−1 (Sm,x) ∈ ]0,[ , x ∈ X ,
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where 1, . . .k are fixed positive numbers.

We stress that the first condition in (5.30) is necessary. For example, there exists a
Borel set in R2 whose image under the first projection map is not a Borel set in R (see
[50]). The function l is A -measurable.

Under the conditions (C1)-(C4) we introduce the functions  : Xk → ]0,[

 (x1, . . . ,xk) :=
k


j=1

 j (x j)
l (x j)

and  i : Xk−1 → ]0,[ (i = 1, . . . ,k)

 i (x1, . . . ,xi−1,xi+1, . . . ,xk) :=
k


j=1
j 	=i

 j (x j)
l (x j)

.

Since

 =
k


j=1

 j ( ◦ pr j)
l ◦ pr j

,

 is A k-measurable. Similarly,  i (i = 1, . . . ,k) is A k−1-measurable.

(C5) Suppose prm(S) ∈ A k−1 (m = 1, . . . ,k).

Theorem 5.8 Assume (C1)-(C4). Let f : X → R be a P-integrable function taking values
in an interval I ⊂ R, and let q be a convex function on I such that q ◦ f is P-integrable.
Then

(a)

q

⎛⎝∫
X

f dP

⎞⎠= q

⎛⎝∫
X

fd

⎞⎠≤ Nk

:=
∫
S

q

(
1

 (x1, . . . ,xk)

k


j=1

 j (x j)
l (x j)

f (x j)

)
 (x1, . . . ,xk)dk (x1, . . . ,xk)

≤
∫
X

(q ◦ f )d =
∫
X

q ◦ f dP.

(b) If (C5) is also satisfied, then

q

⎛⎝∫
X

f dP

⎞⎠= q

⎛⎝∫
X

fd

⎞⎠≤ Nk ≤ Nk−1 :=
1

k−1

k


i=1

∫
pri(S)⎛⎜⎝ (Sx1,...,xi−1,xi+1,...,xk

)
q

⎛⎜⎝ 1
 i (x1, . . . ,xi−1,xi+1, . . . ,xk)

k


j=1
j 	=i

 j (x j)
l (x j)

f (x j)

⎞⎟⎠



108 5 REFINEMENTS INCLUDING INTEGRAL JENSEN’S INEQUALITY

· i (x1, . . . ,xi−1,xi+1, . . . ,xk)

⎞⎟⎠dk−1 (x1, . . . ,xi−1,xi+1, . . . ,xk)

≤
∫
X

(q ◦ f )d =
∫
X

q ◦ f dP.

By applying the method used in the proof of the preceding theorem, it is possible to
obtain a chain of refinements of the form

q

⎛⎝∫
X

fd

⎞⎠≤ Nk ≤ Nk−1 ≤ . . . ≤ N2 ≤ N1 =
∫
X

(q ◦ f )d ,

but some measurability problems crop up and it is not so easy to construct the expressions
Ni (i = k−2, . . . ,2). These difficulties disappear entirely if S := X . In this case we have

Theorem 5.9 Assume (C1)-(C3), and let  (X) < . If f : X → R is a P-integrable func-
tion taking values in an interval I ⊂ R, and q is a convex function on I such that q ◦ f is
P-integrable, then

q

⎛⎝∫
X

f dP

⎞⎠= q

⎛⎝∫
X

fd

⎞⎠
≤ . . . ≤ Nk ≤ . . . ≤ N2 ≤ N1 =

∫
X

(q ◦ f )d =
∫
X

q ◦ f dP, k ≥ 1,

where

Nk :=
1

k(X)k−1

∫
Xk

q

⎛⎜⎜⎜⎝
k

j=1

 (x j) f (x j)

k

j=1

 (x j)

⎞⎟⎟⎟⎠ k


j=1

 (x j)dk (x1, . . . ,xk) , k ≥ 1.

Applications: The following special situations show the force of our results: they ex-
tend and generalize some earlier results; new refinements of the discrete Jensen’s inequality
can be constructed; the integral version of known discrete inequalities can be derived.

1. Suppose (X ,A ,) is a probability space, (x) := 1 (x ∈ X), S := Xk, and
k


m=1
m =

1. Then (C1)-(C5) are satisfied. Suppose also that f : X → R is a -integrable function
taking values in an interval I ⊂ R, and q is a convex function on I such that q ◦ f is
-integrable. In this case Theorem 5.8 (a) gives Theorem 5.5 (a):

q

⎛⎝∫
X

f d

⎞⎠≤
∫
Xk

q

(
k


j=1

 j f (x j)

)
dk (x1, . . . ,xk) ≤

∫
X

(q ◦ f )d . (5.31)



5.2 ANOTHER REFINEMENT OF INTEGRAL FORM OF JENSEN’S INEQUALITY 109

If m = 1
k (m = 1, . . . ,k) also holds, then Theorem 5.5 (b) comes from Theorem 5.8 (b):

∫
Xk+1

q

(
1

k+1

k+1


j=1

f (x j)

)
dk+1 (x1, . . . ,xk+1) (5.32)

≤
∫
Xk

q

(
1
k

k


j=1

f (x j)

)
dk (x1, . . . ,xk) , k ≥ 1.

We can see that Theorem 5.8 much more general than (5.31) even if  is a probability
measure. Moreover, Theorem 5.8 (b) makes it possible to obtain a chain of refinements in
(5.31):

q

⎛⎝∫
X

f d

⎞⎠≤
∫
Xk

q

(
k


j=1

 j f (x j)

)
dk (x1, . . . ,xk) ≤ 1

(k−1)

·
k


i=1

(1−i)
∫

Xk−1

q

⎛⎜⎝ 1
1−i

k


j=1
j 	=i

 j f (x j)

⎞⎟⎠dk−1 (x1, . . . ,xi−1,xi+1, . . . ,xk)

≤
∫
X

(q ◦ f )d .

2. Let X := [a,b]⊂ R (a < b). The set of the Borel subsets of R (Rk) is denoted by B
(Bk).  means the Lebesgue measure on B. Let q : [a,b]→ R be a convex function.

The classical Hermite-Hadamard inequality (see [24]) says:

q

(
a+b

2

)
≤ 1

b−a

b∫
a

q ≤ q(a)+q(b)
2

.

We can obtain the following refinement of the left hand side of the Hermite-Hadamard
inequality:

Corollary 5.13 Let S ⊂ [a,b]k be a Borel set such that

prm (S) ∈ B, m = 1, . . . ,k and
k⋃

m=1

prm (S) = [a,b] ,

and

l(x) =
k


m=1

m k−1 (Sm,x) > 0, x ∈ [a,b] ,

where m > 0 (m = 1, . . . ,k).
Then

q

(
a+b

2

)
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≤
∫
S

q

(
1

(b−a) (x1, . . . ,xk)

k


j=1

 jx j

l (x j)

)
 (x1, . . . ,xk)dk (x1, . . . ,xk) (5.33)

≤ 1
b−a

b∫
a

q.

Proof. We can apply Theorem 5.8 (a) to the pair of functions  , f : [a,b]→ R,  (x) =
1

b−a and f (x) = x. �

If S = [a,b]k and
k


m=1
m = 1, then we have from (5.33) and Theorem 5.8 (b) one of the

main results in [87] as a special case:

q

(
a+b

2

)
≤ 1

(b−a)k

∫
[a,b]k

q

(
k


j=1

 jx j

)
d k (x1, . . . ,xk)

≤
k


i=1

1−i

(k−1)(b−a)k−1

∫
[a,b]k−1

q

⎛⎜⎝ 1
1−i

k


j=1
j 	=i

 jx j

⎞⎟⎠

d k−1 (x1, . . . ,xi−1,xi+1, . . . ,xk) ≤ 1
b−a

b∫
a

q.

Another concrete example can be constructed for (5.33) by using Corollary 5.15.

3. In the following results we consider noteworthy proper subsets of Rk.
(a) Let z, w ∈ R, z < w, and let m ≥ 1 be an integer. The simplex Sm

z,w is defined by

Sm
z,w := {(x1, . . . ,xm) ∈ Rm | z ≤ x1 ≤ . . . ≤ xm ≤ w} .

Let X := [a,b]⊂ R (a < b), and  be a finite measure on the trace  -algebra [a,b]∩B
such that ([a,b]) > 0. Suppose  : [a,b]→R is a positive function such that

∫
[a,b]

d = 1.

Fix an integer k ≥ 2, and let m > 0 (m = 1, . . . ,k).
Choose S := Sk

a,b. Then

S1,x = Sk−1
x,b , Sk,x = Sk−1

a,x , Sm,x = Sm−1
a,x ×Sk−m

x,b , 2 ≤ m ≤ k−1,

once the appropriate identification of Rk−1 with R j−1 ×Rk− j (2 ≤ j ≤ k− 1) has been
made. Therefore

l(x) =
k


m=1

mm−1 (Sm−1
a,x

)
k−m
(
Sk−m

x,b

)
> 0, x ∈ [a,b] ,
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where 0
(
S0

a,x

)
= 0
(
S0

x,b

)
:= 1. Thus

 (x1, . . . ,xk) =
k


j=1

 j(x j)
k


m=1
mm−1

(
Sm−1

a,x j

)
k−m
(
Sk−m

xj ,b

) , (x1, . . . ,xk) ∈ [a,b]k .

We can see that under the above assumptions (C1)-(C4) are satisfied, so Theorem 5.8
can be applied:

Corollary 5.14 If f : [a,b] → R is a P-integrable function taking values in an interval
I ⊂ R, and q is a convex function on I such that q◦ f is P-integrable, then

q

⎛⎜⎝ ∫
[a,b]

f dP

⎞⎟⎠= q

⎛⎜⎝ ∫
[a,b]

fd

⎞⎟⎠

≤
∫
S

q

⎛⎜⎜⎜⎜⎜⎝
1

k

j=1

 j(x j)
k


m=1
mm−1

(
Sm−1
a,x j

)
k−m

(
Sk−m
x j ,b

)
k


j=1

 j (x j) f (x j)
k


m=1
mm−1

(
Sm−1

a,x j

)
k−m
(
Sk−m

xj ,b

)
⎞⎟⎟⎟⎟⎟⎠ (5.34)

·
k


j=1

 j(x j)
k


m=1
mm−1

(
Sm−1

a,x j

)
k−m
(
Sk−m

xj ,b

)dk (x1, . . . ,xk)

≤
∫

[a,b]

(q ◦ f )d =
∫

[a,b]

q ◦ f dP.

Specifically, if  =  , we have

l(x) =
1

(k−1)!

k


m=1

m

(
k−1
m−1

)
(x j −a)m−1 (b− x j)

k−m , x ∈ [a,b] .

When 1 = . . . = k =  , this says

l(x) =


(k−1)!
(b−a)k−1 , x ∈ [a,b] ,

and in this case we have the inequality for the cube [a,b]k

q

⎛⎝ b∫
a

fd

⎞⎠≤ (k−1)!

(b−a)k−1

∫
S

q

⎛⎜⎜⎜⎝ 1
k

j=1

(x j)

k


j=1

(x j) f (x j)

⎞⎟⎟⎟⎠
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·
k


j=1

(x j)d k (x1, . . . ,xk) =
1

k (b−a)k−1

∫
[a,b]k

q

⎛⎜⎜⎜⎝ 1
k

j=1

(x j)

k


j=1

(x j) f (x j)

⎞⎟⎟⎟⎠
·

k


j=1

(x j)d k (x1, . . . ,xk) ≤
b∫

a

(q ◦ f )d .

Next, we show that inequality (5.34) extends Theorem 1.9, a well known discrete in-
equality to an integral form. Similar results are quite rare in the literature (see [31]). We
give Theorem 1.9 again:
Theorem C. Let I be an interval in R, and let q : I →R be a convex function. If v1, . . . ,vn ∈
I, then for each k ≥ 1

q

(
1
n

n


i=1

vi

)
≤ 1(n+k−1

k

) 
1≤i1≤...≤ik≤n

q

(
vi1 + . . .+ vik

k

)
≤ 1

n

n


i=1

q(vi) . (5.35)

Let X := [1,n] ⊂ R (n ≥ 1 is an integer), and let  be the measure on the trace  -

algebra [1,n]∩B defined by  :=
n


m=1

1
nm, where m is the unit mass at m (m = 1, . . . ,n).

Suppose (x) := 1 (x ∈ [1,n]), k ≥ 2 is a fixed integer, and m = 1 (m = 1, . . . ,k).
Some easy combinatorial considerations yield that for every x ∈ [1,n] and m = 1, . . . ,k

k−1(Sm,x) =
1

nk−1

(
[x]+m−2

m−1

)(
n− [x]+ k−m

k−m

)
,

where [x] is the largest natural number that does not exceed x. Therefore

l(x) =
1

nk−1

(
n+ k−1

k−1

)
, x ∈ [1,n] .

Now, if I is an interval in R, q : I → R is a convex function, and f : [1,n] → R defined
by

f (i) :=

{
vi, i = 1, . . . ,n

0, elsewhere
,

then (5.35) follows immediately from (5.34).

(b) Let m≥ 1 be an integer, let z∈ Rm, and let r > 0. The open ball of radius r centered
at the point z is denoted by Bm(z,r).

Consider the measure space (]a,b[ ,B, ) (a < b). Suppose  : ]a,b[→ R is a positive

function such that
b∫
a
d = 1. Fix an integer k ≥ 2, and let m > 0 (m = 1, . . . ,k). Choose

S := Bk

((
a+b

2
, . . . ,

a+b
2

)
,
b−a

2

)
.
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Then for all x ∈ ]a,b[ and m = 1, . . . ,k

Sm,x = Bk−1

((
a+b

2
, . . . ,

a+b
2

)
,
√

(b− x)(x−a)
)

.

Consequently

l(x) = k
2k−1

(k−1)!!

(
2

)[ k−1
2 ]

((b− x)(x−a))
k−1
2 , x ∈ ]a,b[ ,

where
(k−1)!! := (k−1)(k−3) . . .k−1

and

k−1 :=

{
2, k is odd

1, k is even
.

According to this, for all (x1, . . . ,xk) ∈ ]a,b[k

 (x1, . . . ,xk) =
1

k 2k−1

(k−1)!!

(
2

)[ k−1
2 ]

k


j=1

 j(x j)
k


m=1
m ((b− x j)(x j −a))

k−1
2

.

It is not hard to check that (C1)-(C4) are satisfied in this situation, and thus Theorem
5.8 says:

Corollary 5.15 If f : ]a,b[ → R is a P-integrable function taking values in an interval
I ⊂ R, and q is a convex function on I such that q◦ f is P-integrable, then

q

⎛⎜⎝ ∫
]a,b[

f dP

⎞⎟⎠= q

⎛⎝ b∫
a

fd

⎞⎠≤ 1

k 2k−1

(k−1)!!

(
2

)[ k−1
2 ]

·
∫
S

q

⎛⎜⎜⎜⎜⎜⎝
1

k

j=1

 j(x j)
k


m=1
m((b−x j)(x j−a))

k−1
2

k


j=1

 j(x j) f (x j)
k


m=1
m ((b− x j)(x j −a))

k−1
2

⎞⎟⎟⎟⎟⎟⎠
·

k


j=1

 j(x j)
k


m=1
m ((b− x j)(x j −a))

k−1
2

d k (x1, . . . ,xk)

≤
b∫

a

(q ◦ f )d =
∫

]a,b[

q ◦ f dP.
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By applying this result ( , f : [a,b] → R,  (x) = 1
b−a and f (x) = x), we can have a

special case of the refinement of the left hand side of the Hermite-Hadamard inequality in
(5.33).

4. We turn now to the case where X is a countable set.
(C1

1) Consider the measure space
(
X ,2X ,

)
, where either X := {1, . . . ,n} for some

positive integer n or X := {0,1, . . .}, 2X denotes the power set of X , and  ({u}) := u is a
positive number for all u ∈ X .

(C1
2) Let (pu)u∈X be a sequence of positive numbers for which 

u∈X
puu = 1.

(C1
3) Let k ≥ 2 be a fixed integer.

We define the functions  j
v (v ∈ X , j = 1, . . . ,k) on Xk by

 j
v (u1, . . . ,uk) :=

{
1, if u j = v

0, if u j 	= v
.

Then
k

j=1

 j
v (u1, . . . ,uk) means the number of occurrences of v in (u1, . . . ,uk) ∈ Xk. If

S ⊂ Xk, we introduce the following sums

 j
S,v := 

(u1,...,uk)∈S

 j
v (u1, . . . ,uk) , v ∈ X , j = 1, . . . ,k

and

S,v :=
k


j=1

 j
S,v, v ∈ X .

Every sum is either a nonnegative integer or .
(C1

4) Let S ⊂ Xk such that S,v ≥ 1 for all v ∈ X , and

l(u) :=
k


m=1

mk−1 (Sm,u) < , u ∈ X ,

where m > 0 (m = 1, . . . ,k).
Since u > 0 for all u ∈ X , l(u) > 0 for all u ∈ X . By the definition of the measure 

l(u) =
k


m=1

m 
(u1,...,u j−1,u,u j+1,...,uk)∈S

u1 . . .u j−1u j+1 . . .uk , u ∈ X .

In this case the function  has the form

 : Xk → ]0,[ ,  (u1, . . . ,uk) :=
k


j=1

 j pu j

l (u j)
.

Now Theorem 5.8 (a) can be formulated in the following way:
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Corollary 5.16 Assume (C1
1)-(C

1
4), and let ( fu)u∈X be a sequence taking values in an

interval I ⊂ R such that 
u∈X

| fu| puu < . If q is a convex function on I such that


u∈X

|q( fu)| puu < , then

q

(

u∈X

fupuu

)

≤ 
(u1,...,uk)∈S

q

(
1

 (u1, . . . ,uk)

k


j=1

 j pu j

l (u j)
fu j

)
 (u1, . . . ,uk)u1 . . .uk

≤ 
u∈X

q( fu) puu.

Assume (C1
1)-(C

1
4), and suppose  is the counting measure on P(X), that is u := 1 for

all u ∈ X . For a set A ∈ 2X let |A| denote the number of elements of A. Then 
u∈X

pu = 1,

l(u) =
k


m=1

mm
S,u, u ∈ X ,

and

 : Xk → ]0,[ ,  (u1, . . . ,uk) :=
k


j=1

 j pu j

k


m=1
mm

S,u j

.

We note explicitly this particular case of Corollary 5.16:

Corollary 5.17 Assume (C1
1)-(C

1
4), where  is the countingmeasure on 2X , and let ( fu)u∈X

be a sequence taking values in an interval I ⊂ R such that 
u∈X

| fu| pu <. If q is a convex

function on I such that 
u∈X

|q( fu)| pu < , then

q

(

u∈X

fupu

)

≤ 
(u1,...,uk)∈S

⎛⎜⎜⎝ k


j=1

 j pu j

k


m=1
mm

S,u j

⎞⎟⎟⎠q

⎛⎜⎜⎜⎜⎜⎝
1

k

j=1

 j pu j
k


m=1
mm

S,u j

k


j=1

 j pu j

k


m=1
mm

S,u j

fu j

⎞⎟⎟⎟⎟⎟⎠
≤ 

u∈X
q( fu) pu.
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Corollary 5.16 corresponds to Theorem 2.4, but in that result only finite sets are con-
sidered. If X = {1, . . . ,n} and m = 1 (m = 1, . . . ,k), then Theorem 2.1 contains Corollary
5.17, but Corollary 5.16 makes sense in a lot of other cases (for example, for countably
infinite sets).

Next, some examples are given.
The first example deals with a relatively flexile case.

Example 5.1 (a) Assume (C1)-(C3), and let Am ∈A (m = 1, . . . ,k) such that 0 < (Am)<

 (m = 1, . . . ,k) and
k⋃

m=1
Am = X . Define S := A1× . . .×Ak. Then (5.30) holds and

l(x) =

(
k


m=1

(Am)

)
k


m=1

(
mm(x)
(Am)

)
, x ∈ X ,

where m > 0 (m = 1, . . . ,k), and m : X → R means the characteristic function of Am

(m = 1, . . . ,k). We can see that (C4) is satisfied and

 (x1, . . . ,xk) =
1(

k


m=1
(Am)

) k


j=1

 j (x j)
k


m=1

(
mm(x j)
(Am)

) , (x1, . . . ,xk) ∈ Xk.

The condition (C5) is also true, since

prm(S) = A1× . . .×Am−1×Am+1× . . .×Ak, m = 1, . . . ,k.

Moreover for m = 1, . . . ,k

Sx1,...,xm−1,xm+1,...,xk =

{
Am,

/0,

if (x1, . . . ,xm−1,xm+1, . . . ,xk) ∈ A1× . . .×Am−1×Am+1× . . .×Ak

otherwise
.

It follows that Theorem 5.8 can be applied.
(b) We consider the special case of (a), when the sets Am (m = 1, . . . ,k) are pairwise

disjoint (a special partition of X). Let the function  be defined on X by

(x) := m, if x ∈ Am.

Then

l(x) =

(
k


m=1

(Am)

)
(x)

(A(x))
, x ∈ X ,

and

 (x1, . . . ,xk) =
1(

k


m=1
(Am)

) k


j=1

 j (x j)(A(x j))

(x j)
, (x1, . . . ,xk) ∈ Xk.
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The second example corresponds to Corollary 5.16.

Example 5.2 Let X := {0,1, . . .}, let (pu)

u=0 be a sequence of positive numbers for

which



u=0
pu = 1, and let ( fu)


u=0 be a sequence taking values in an interval I ⊂ R such

that



u=0
| fu| pu < . Define

S :=
{
(u1,u2) ∈ X2 | u1 ≤ u2 ≤ 2u1

}
.

An easy calculation shows that l(u) = S,u = u +
[

u
2

]
+ 2(≥ 2) for all u ∈ X , where

[
u
2

]
denotes the greatest integer that does not exceed u

2 . If q is a convex function on I such that



u=0
|q( fu)| pu < , then by Corollary 5.17

q

(



u=0

fu pu

)
≤




u=0

(
2u


v=u

(
pu

u+
[

u
2

]
+2

+
pv

v+
[

v
2

]
+2

)

·q
⎛⎝ pu

u+[ u
2 ]+2

fu + pv

v+[ v
2 ]+2

fv
pu

u+[ u
2 ]+2

+ pv

v+[ v
2 ]+2

⎞⎠⎞⎠≤



u=0

q( fu) pu.

The final example illustrates the case X := R.

Example 5.3 Consider the measure space (R,B, ). The function  : R → R,  (x) =
1√
2 e−x2/2 is the density of the standard normal distribution on R, and thus

∫
−

 = 1. Let

S :=
{
(x,y) ∈ R2 | x−1 ≤ y ≤ x+1

}
.

Then (C1)-(C3) are satisfied. Let f : R → R be a Borel measurable function taking values
in an interval I ⊂ R such that f is integrable, and let q be a convex function on I such
that (q ◦ f ) is integrable. By Theorem 5.8 (a)

q

⎛⎝ ∫
−

f

⎞⎠

≤ 1

4
√

2

∫
−

⎛⎝ x+1∫
x−1

q

(
e−x2/2 f (x)+ e−y2/2 f (y)

e−x2/2 + e−y2/2

)(
e−x2/2 + e−y2/2

)
dy

⎞⎠dx

≤
∫

−
(q ◦ f ) .
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Now, we prove our results.
We first establish a result which will be fundamental to our treatment.

Lemma 5.5 Assume (C1)-(C4), and let f : X → R be a P-integrable function. Then

∫
X

f dP =
∫
X

fd =
∫
S

(
k


j=1

 j (x j)
l (x j)

f (x j)

)
dk (x1, . . . ,xk) .

Proof. The functions

 j ( ◦ pr j)
l ◦ pr j

f ◦ pr j, j = 1, . . . ,k

are obviously A k-measurable on S.
Suppose first that the function f is nonnegative. By (C3), pr j(S) ∈ A , and hence the

theorem of Fubini implies that∫
S

 j (x j)
l (x j)

f (x j)dk (x1, . . . ,xk)

=
∫

pr j(S)

⎛⎜⎝ ∫
S j ,x j

 j (x j)
l (x j)

f (x j)dk−1(
(
x1, . . . ,x j−1,x j+1, . . . ,xk

)
)

⎞⎟⎠d(x j)

=
∫

pr j(S)

 j (x j)
l (x j)

f (x j)k−1 (S j,x j

)
d(x j), j = 1, . . . ,k. (5.36)

It follows from (5.36) that

∫
S

(
k


j=1

 j (x j)
l (x j)

f (x j)

)
dk (x1, . . . ,xk) (5.37)

=
k


j=1

∫
pr j(S)

 j (x j)
l (x j)

f (x j)k−1 (S j,x j

)
d(x j).

If (i1, . . . , ik) ∈ {0,1}k, then let

Ai1,...,ik :=
k⋂

m=1

prm(S)(im),

where

prm(S)(im) :=

{
prm(S), if im = 1

X \ prm(S), if im = 0
m = 1, . . . ,k.
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The sets Ai1,...,ik ((i1, . . . , ik) ∈ {0,1}k) are pairwise disjoint and measurable. Moreover, by
(5.30) ⋃

(i1,...,ik)∈{0,1}k

Ai1,...,ik =
k⋃

m=1

prm (S) = X .

These establishments with (5.37) imply that

∫
S

(
k


j=1

 j (x j)
l (x j)

f (x j)

)
dk (x1, . . . ,xk)

= 
(i1,...,ik)∈{0,1}k

∫
Ai1,...,ik

⎛⎜⎝ (x)
l (x)

f (x) 
m∈{1,...,k}

im=1

mk−1 (Sm,x)

⎞⎟⎠d(x). (5.38)

Choose (i1, . . . , ik) ∈ {0,1}k. It is clear that Sm,x = /0 if x ∈ Ai1,...,ik and im = 0, and hence


m∈{1,...,k}

im=1

mk−1 (Sm,x) = l(x), x ∈ Ai1,...,ik .

Therefore (5.38) gives

∫
S

(
k


j=1

 j (x j)
l (x j)

f (x j)

)
dk (x1, . . . ,xk)

= 
(i1,...,ik)∈{0,1}k

∫
Ai1,...,ik

 f d =
∫
X

fd .

Having disposed of the nonnegativity of the function f , we have from the first part of
the proof that

∫
X

| f |dP =
∫
X

| f |d =
∫
S

(
k


j=1

 j (x j)
l (x j)

∣∣ f (x j)
∣∣)dk (x1, . . . ,xk) ,

and therefore the functions

 j ( ◦ pr j)
l ◦ pr j

f ◦ pr j, j = 1, . . . ,k

are k-integrable over S. By using this, the result follows by an argument entirely similar
to that for the nonnegative case.

The proof is complete. �
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Remark 5.5 Under the conditions of Lemma 5.5, we have
(a) The functions

 j ( ◦ pr j)
l ◦ pr j

f ◦ pr j, j = 1, . . . ,k

are k-integrable over S.
(b) The measure Pk defined on S∩A k by

Pk (A) :=
∫
A

dk =
∫
A

(
k


j=1

 j (x j)
l (x j)

)
dk (x1, . . . ,xk)

is a probability measure.

Lemma 5.6 Assume (C1)-(C4). Let f : X → R be a P-integrable function taking values
in an interval I ⊂ R, and let q be a convex function on I such that q◦ f is P-integrable.

(a) The function

g :=

(
q ◦
(

1


k


j=1

 j ( ◦ pr j)
l ◦ pr j

( f ◦ pr j)

))


is k-integrable over S.
(b) The functions

hi :=

⎛⎜⎝q ◦

⎛⎜⎝ 1
 i ◦ pri

k


j=1
j 	=i

 j ( ◦ pr j)
l ◦ pr j

( f ◦ pr j)

⎞⎟⎠
⎞⎟⎠( i ◦ pri) , i = 1, . . . ,k

are k-integrable over S.

Proof. (a) It is easy to check that for fixed (x1, . . . ,xk) ∈ S

1
 (x1, . . .xk)

 j (x j)
l (x j)

, j = 1, . . . ,k

are positive numbers with

1
 (x1, . . . ,xk)

k


j=1

 j (x j)
l (x j)

= 1.

This gives immediately that for every (x1, . . . ,xk) ∈ S

1
 (x1, . . .xk)

k


j=1

 j (x j)
l (x j)

f (x j) ∈ I,

and therefore by the discrete Jensen’s inequality,

g(x1, . . . ,xk) ≤
k


j=1

 j (x j)
l (x j)

q( f (x j)) , (x1, . . . ,xk) ∈ S. (5.39)
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Since the function q is convex on I, it is lower semicontinuous on I, and therefore the
function g is A k-measurable.

Choose an interior point a of I. The convexity of q on I implies that

q(t) ≥ q(a)+q
′
+(a)(t−a), t ∈ I,

where q
′
+(a) means the right-hand derivative of q at a. It follows from this and from (5.39)

that

q(a) (x1, . . .xk)+q
′
+(a)

(
k


j=1

 j (x j)
l (x j)

f (x j)−a (x1, . . .xk)

)

≤ g(x1, . . . ,xk) ≤
k


j=1

 j (x j)
l (x j)

q( f (x j)) , (x1, . . . ,xk) ∈ S.

Now we can apply Remark 5.5 (a), by the P-integrability of the functions 1X , f and q ◦ f .
(b) Fix i from the set {1, . . . ,k}. We can prove as in (a) by using the A k-measurability

of hi and the estimates
q(a) i (x1, . . . ,xi−1,xi+1, . . . ,xk)

+q
′
+(a)

⎛⎜⎝ k


j=1
j 	=i

 j (x j)
l (x j)

f (x j)−a i (x1, . . . ,xi−1,xi+1, . . . ,xk)

⎞⎟⎠
≤ hi (x1, . . . ,xk) ≤

k


j=1
j 	=i

 j (x j)
l (x j)

q( f (x j)) , (x1, . . . ,xk) ∈ S.

The proof is complete. �

Proof of Theorem 5.8 (a) By Lemma 5.5

q

⎛⎝∫
X

f dP

⎞⎠= q

⎛⎝∫
X

fd

⎞⎠= q

⎛⎝∫
S

(
k


j=1

 j (x j)
l (x j)

f (x j)

)
dk (x1, . . . ,xk)

⎞⎠

= q

⎛⎝∫
S

(
1

 (x1, . . .xk)

k


j=1

 j (x j)
l (x j)

f (x j) (x1, . . .xk)

)
dk (x1, . . . ,xk)

⎞⎠
= q

⎛⎝∫
S

(
1

 (x1, . . .xk)

k


j=1

 j (x j)
l (x j)

f (x j)

)
dPk (x1, . . . ,xk)

⎞⎠ .

Since Pk is a probability measure on S∩A k, it follows from the previous part, the
classical Jensen’s inequality, Lemma 5.5 and Lemma 5.6 (a) that

q

⎛⎝∫
X

f dP

⎞⎠= q

⎛⎝∫
X

fd

⎞⎠



122 5 REFINEMENTS INCLUDING INTEGRAL JENSEN’S INEQUALITY

≤
∫
S

q

(
1

 (x1, . . .xk)

k


j=1

 j (x j)
l (x j)

f (x j)

)
dPk (x1, . . . ,xk)

=
∫
S

q

(
1

 (x1, . . .xk)

k


j=1

 j (x j)
l (x j)

f (x j)

)
 (x1, . . .xk)dk (x1, . . .xk)

≤
∫
S

(
k


j=1

 j (x j)
l (x j)

q( f (x j))

)
dk =

∫
X

(q ◦ f )d =
∫
X

q ◦ f dP.

Now (a) has been proven.
(b) By using the convexity of q, an easy manipulation leads to

q

(
1

 (x1, . . . ,xk)

k


j=1

 j (x j)
l (x j)

f (x j)

)

= q

⎛⎜⎜⎜⎜⎜⎝
k


i=1

k

j=1
j 	=i

 j(x j)
l(x j)

f (x j)

 i (x1, . . . ,xi−1,xi+1, . . . ,xk)
 i (x1, . . . ,xi−1,xi+1, . . . ,xk)

(k−1) (x1, . . . ,xk)

⎞⎟⎟⎟⎟⎟⎠
≤ 1

(k−1) (x1, . . . ,xk)

k


i=1

 i (x1, . . . ,xi−1,xi+1, . . . ,xk)

·q

⎛⎜⎝ 1
 i (x1, . . . ,xi−1,xi+1, . . . ,xk)

k


j=1
j 	=i

 j (x j)
l (x j)

f (x j)

⎞⎟⎠

≤ 1
(k−1) (x1, . . . ,xk)

k


i=1

⎛⎜⎝ k


j=1
j 	=i

 j (x j)
l (x j)

q( f (x j))

⎞⎟⎠
=

1
 (x1, . . . ,xk)

k


j=1

 j (x j)
l (x j)

q( f (x j)) , (x1, . . . ,xk) ∈ S.

Consequently, by applying (C5), Lemma 5.6 (b) and the theorem of Fubini, we have

Nk =
∫
S

q

(
1

 (x1, . . . ,xk)

k


j=1

 j (x j)
l (x j)

f (x j)

)
 (x1, . . . ,xk)dk (x1, . . . ,xk)

≤ 1
k−1

k


i=1

∫
S

q

⎛⎜⎝ 1
 i (x1, . . . ,xi−1,xi+1, . . . ,xk)

k


j=1
j 	=i

 j (x j)
l (x j)

f (x j)

⎞⎟⎠
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· i (x1, . . . ,xi−1,xi+1, . . . ,xk)dk (x1, . . . ,xk) =
1

k−1

k


i=1

∫
pri(S)⎛⎜⎝ ∫

Sx1,...,xi−1,xi+1,...,xk

q

⎛⎜⎝ 1
 i (x1, . . . ,xi−1,xi+1, . . . ,xk)

k


j=1
j 	=i

 j (x j)
l (x j)

f (x j)

⎞⎟⎠d(xi)

⎞⎟⎠
· i (x1, . . . ,xi−1,xi+1, . . . ,xk)dk−1 (x1, . . . ,xi−1,xi+1, . . . ,xk)

= Nk−1 ≤
∫
X

(q ◦ f )d .

The proof is complete. �

Proof of Theorem 5.9 Apply Theorem 5.8 with S := Xk and m = 1 (m = 1, . . . ,k).
Then the conditions (C4) (by using  (X) < ) and (C5) are satisfied,

 (x1, . . . ,xk) :=
1

k(X)k−1

k


j=1

 (x j) , (x1, . . . ,xk) ∈ S,

and  i : Xk−1 → ]0,[ (i = 1, . . . ,k) has the form

 i (x1, . . . ,xi−1,xi+1, . . . ,xk) :=
1

k(X)k−1

k


j=1
j 	=i

 (x j) .

Therefore

Nk =
1

k(X)k−1

∫
Xk

q

⎛⎜⎜⎜⎝
k

j=1

 (x j) f (x j)

k

j=1

 (x j)

⎞⎟⎟⎟⎠ k


j=1

 (x j)dk (x1, . . . ,xk)

and

Nk−1 =
1

k−1

k


i=1

∫
Xk−1

⎛⎜⎜⎜⎜⎜⎝(X)q

⎛⎜⎜⎜⎜⎜⎝
k

j=1
j 	=i

(x j)
l(x j)

f (x j)

k

j=1
j 	=i

 (x j)

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

· 1
k(X)k−1

k


j=1
j 	=i

 (x j)dk−1 (x1, . . . ,xi−1,xi+1, . . . ,xk)



124 5 REFINEMENTS INCLUDING INTEGRAL JENSEN’S INEQUALITY

=
1

(k−1)(X)k−2

∫
Xk−1

q

⎛⎜⎜⎜⎝
k−1

j=1

 (x j) f (x j)

k−1

j=1

 (x j)

⎞⎟⎟⎟⎠ k−1


j=1

 (x j)dk−1 (x1, . . . ,xk−1) .

The proof is complete. �



Chapter6
Mean Value Theorems and
Exponential Convexity

6.1 Mean Value Theorems

The first two mean value theorems are found in [40].

Theorem 6.1 Let I ⊂ R be an interval. Let  be a linear functional on a subspace D()
of the vector space of real functions defined on I such that id2 ∈D()

(
id2 (x) = x2, x ∈ I

)
.

Suppose further that [a,b]⊂ I is an interval with the following property:
(i) if f ∈ D() such that the restriction of f on [a,b] is convex, then ( f ) ≥ 0.
If g ∈C2 (I)∩D(), then there exists  ∈ [a,b] such that

(g) =
1
2
g′′ ( )

(
id2) .

Proof. Since g∈C2 (I), there exist the real numbersm = min
x∈[a,b]

g′′(x) and M = max
x∈[a,b]

g′′(x).

It is easy to show that the functions 1 and 2 defined on I by

1(x) =
M
2

x2−g(x) ,

and
2(x) = g(x)− m

2
x2,

125
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belong to D(), and their restrictions on [a,b] are convex.
By applying the functional  to the functions 1 and 2, we have from the properties

of  that


(

M
2

id2−g

)
≥ 0,

⇒ (g) ≤ M
2

(
id2) , (6.1)

and

(
g− m

2
id2
)

� 0

⇒ m
2

(
id2)≤ (g) . (6.2)

From (6.1) and from (6.2), we get

m
2

(
id2)≤ (g) ≤ M

2

(
id2) .

If 
(
id2)= 0, then nothing to prove. If 

(
id2) 	= 0, then

m ≤ 2(g)

(
id2) ≤ M.

Hence we have

(g) =
1
2
g′′ ( )

(
id2) .

�

Remark 6.1 (a) Under the conditions of the previous theorem, ( f ) ≥ 0 for every convex
f ∈ D().

(b) Define the linear functional  : C (I) → R on the vector space of real continuous
functions defined on an interval I ⊂ R by

( f ) :=
f (a)+ f (b)

2
− f

(
a+b

2

)
,

where a,b ∈ I and a < b. Then  is linear, id2 ∈ C (I), and ( f ) ≥ 0 for every f ∈ C (I)
such that the restriction of f on [a,b] is convex.

Theorem 6.2 Let I ⊂ R be an interval. Let  be a linear functional on a subspace D()
of the vector space of real functions defined on I such that id2 ∈ D(). Suppose further
that [a,b] ⊂ I is an interval with the following property:

(i) if f ∈ D() such that the restriction of f on [a,b] is convex, then ( f ) ≥ 0.
If g,h ∈C2 (I)∩D(), then there exists  ∈ [a,b] such that

(g)
(h)

=
g′′ ( )
h′′ ( )

,

provided that (h) 	= 0 and h′′ (x) 	= 0 (x ∈ [a,b]).
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Proof. Define f ∈C2 (I)∩D() by

f := c1g− c2h,

where
c1 : = (h)

and
c2 : = (g) .

Now, by applying Theorem 6.1 for the function f , we have(
c1

g′′ ( )
2

− c2
h′′ ( )

2

)

(
id2)= 0. (6.3)

Since (h) 	= 0, Theorem 6.1 implies that 
(
id2) 	= 0, and therefore (6.3) and h′′ (x) 	= 0

(x ∈ [a,b]) give
(g)
(h)

=
g′′ ( )
h′′ ( )

.

�

Now we give two additional mean value theorems.

Theorem 6.3 Let n,k ∈ N, n ≥ 3, 2 ≤ k ≤ n− 1, [, ] ⊂ R, x = (x1, ...,xn) ∈ [, ]n,
and p = (p1, ..., pn) be a real n-tuple such that k

j=1 pi j 	= 0 for any 1 ≤ i1 < ... < ik ≤ n,

n
i=1 pi = 1 and

k

j=1

pi j xi j

k

j=1

pi j

∈ [, ] for any 1 ≤ i1 < ... < ik ≤ n. Assume f : [, ] → R is a

function from C2([, ]), and let

fk,n(x,p) :=
1(n−1

k−1

) 
1≤i1<...<ik≤n

(
k


j=1

pi j

)
f

⎛⎜⎜⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

⎞⎟⎟⎟⎠ ,

and

(x,p, f ) :=
n− k
n−1

f1,n(x,p)+
k−1
n−1

fn,n(x,p)− fk,n(x,p). (6.4)

If for all s ∈ [, ] either the inequality (4.7) holds or the reverse inequality holds in (4.7),
then there exists  ∈ [, ] such that

(x,p, f ) =
1
2

f ′′( )(x,p, id2),

where id2(t) = t2 (t ∈ [, ]).
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Proof. By the assumption, we have that the function f
′′

is continuous and

n− k
n−1

G1,n(x,s,p)+
k−1
n−1

Gn,n(x,s,p)−Gk,n(x,s,p)

does not change its sign on [, ]. By applying the integral mean value theorem, we have
from (4.8) that there exists a  ∈ [, ] such that

(x,p, f )

= f ′′( )
∫


(
n−k
n−1G1,n(x,s,p)+ k−1

n−1Gn,n(x,s,p)−Gk,n(x,s,p)
)
ds.

(6.5)
By the definition of the function G, we can observe that

∫


G(t,s)ds =
1
2
(t−)(t− ). (6.6)

Now, we calculate the integral on the right hand side of (6.5) with the help of (6.6): x̄

means
n

i=1

pixi;

(x,p, f ) = f ′′( )

⎛⎜⎜⎜⎜⎜⎜⎜⎝

n−k
n−1

n

i=1

pi

∫


G(xi,s)ds+ k−1
n−1

∫


G(x̄,s)ds

− 1
(n−1

k−1)


1≤i1<...<ik≤n

(
k

j=1

pi j

) ∫


G

⎛⎜⎜⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

,s

⎞⎟⎟⎟⎠ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= f ′′( )
2

⎛⎜⎜⎜⎜⎝
n−k
n−1

n

i=1

pi(xi −)(xi − )+ k−1
n−1(x̄−)(x̄− )

− 1
(n−1

k−1)


1≤i1<...<ik≤n

(
k

j=1

pi j

)⎛⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

−

⎞⎟⎠
⎛⎜⎝

k

j=1

pi j xi j

k

j=1

pi j

−

⎞⎟⎠
⎞⎟⎟⎟⎟⎠

= f ′′( )
2

⎛⎜⎝ n−k
n−1

n

i=1

pix2
i + k−1

n−1 x̄2 − 1
(n−1

k−1)


1≤i1<...<ik≤n

(
k

j=1

pi j

)⎛⎜⎝
k

j=1

pi j xi j

k

j=1

pi j

⎞⎟⎠
2⎞⎟⎠

= 1
2 f ′′( )(x,p, id2),
which completes the proof. �

Theorem 6.4 Let n,k ∈ N, n ≥ 3, 2 ≤ k ≤ n− 1, [, ] ⊂ R, x = (x1, ...,xn) ∈ [, ]n,
and p = (p1, ..., pn) be a real n-tuple such that k

j=1 pi j 	= 0 for any 1 ≤ i1 < ... < ik ≤ n,

n
i=1 pi = 1 and

k

j=1

pi j xi j

k

j=1

pi j

∈ [, ] for any 1 ≤ i1 < ... < ik ≤ n. Assume f ,g : [, ] →
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R are functions from C2([, ]) such that g′′(s) 	= 0, s ∈ [, ]. Assume further that
(x,p,id2) 	= 0, where  is defined in (6.4).

If for all s ∈ [, ] either the inequality (4.7) holds or the reverse inequality holds in
(4.7), then there exists  ∈ [, ] such that

(x,p, f )
(x,p,g)

=
f ′′( )
g′′( )

. (6.7)

Proof. Consider the function

h(t) = (x,p,g) f (t)−(x,p, f )g(t), t ∈ [, ].

Then h ∈C2([, ]). Therefore we can apply Theorem 6.3 to the function h which shows
that there exists a  ∈ [, ] such that

(x,p,h) =
h′′( )

2

[
(x,p,id2)

]
. (6.8)

Since (x,p,h) = 0 and (x,p,id2) is nonzero, hence on the one hand

h′′( ) = 0,

and on the other hand Theorem 6.3 applied to the function g, shows that (x,p,g) 	= 0.
This completes the proof. �

The following lemma is given in [3]:

Lemma 6.1 Let h∈C2(I) for a compact interval I ⊂R\{0} and consider m,M ∈R such
that

m ≤ x2h′′(x)−2xh′(x)+2h(x)
x3 ≤ M, x ∈ I.

If the functions h1,h2 are defined on I by

h1(x) = M
x3

2
−h(x)

and

h2(x) = h(x)−m
x3

2
,

then the functions x → h1(x)
x and x → h2(x)

x (x ∈ I) are convex.

Theorem 6.5 Let I ⊂ R\{0} be an interval. Let  be a linear functional on a subspace
of the vector space of real functions defined on I such that f ∈ D() implies f

id ∈ D()
and id3 ∈ D(). Suppose further that [a,b] ⊂ I is an interval with the following property:

(i) if f ∈ D() such that the restriction of f
id to [a,b] is convex, then ( f ) ≥ 0.

If g ∈C2 (I)∩D(), then there exists  ∈ [a,b] such that

(g) =
 2g

′′( )−2g′( )+2g( )
2 3 (id3).
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Proof. By g ∈C2 (I), there exist

m := min
x∈[a,b]

x2g
′′(x)−2xg′(x)+2g(x)

x3 ,

and

M := max
x∈[a,b]

x2g
′′(x)−2xg′(x)+2g(x)

x3 .

Define the functions u and v on I by

u(x) = M
x3

2
−g(x)

and

v(x) = g(x)−m
x3

2
.

Lemma 6.1 implies that the functions x → u(x)
x and x → v(x)

x (x ∈ I) are convex on [a,b],
and therefore (i) shows that (u) ≥ 0 and (v) ≥ 0. By the linearity of , we have

m
2
(id3) ≤(g) ≤ M

2
(id3).

If 
(
id3)= 0, then nothing to prove. 

(
id3) 	= 0 yields

m ≤ 2(g)
(id3)

≤ M,

which gives the result. �

Remark 6.2 The previous theorem can be applied to the functional defined in (4.10).

Theorem 6.6 Let I ⊂ R\{0} be an interval. Let  be a linear functional on a subspace
of the vector space of real functions defined on I such that f ∈ D() implies f

id ∈ D()
and id3 ∈ D(). Suppose further that [a,b] ⊂ I is an interval with the following property:

(i) if f ∈ D() such that the restriction of f
id to [a,b] is convex, then ( f ) ≥ 0.

If g,h ∈C2 (I)∩D(), then there exists  ∈ [a,b] such that

(g)
(h)

=
 2g

′′( )−2g′( )+2g( )
 2h′′( )−2h′( )+2h( )

,

provided that (h) 	= 0 and x2h
′′(x)−2xh′(x)+2h(x) 	= 0 (x ∈ [a,b]).

Proof. Define f ∈C2 (I)∩D() by

f := c1g− c2h,
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where

c1 : = (h)

and

c2 : = (g) .

Now, by using Theorem 6.5 for the function f , we have(
c1
 2g

′′( )−2g′( )+2g( )
2 3 − c2

 2h
′′( )−2h′( )+2h( )

2 3

)
(id3) = 0. (6.9)

Since (h) 	= 0, Theorem 6.5 implies that (id3) 	= 0, and therefore (6.9) and
x2h

′′(x)−2xh′(x)+2h(x) 	= 0 (x ∈ [a,b]) give the result. �

6.2 Exponential Convexity

The notion of n-exponentially convex functions is initiated in [68], while exponentially
convex functions are invented by Bernstein in [10].

Definition 6.1 Let I ⊂ R be an interval. A function g : I → R is called n-exponentially
convex in the Jensen sense if

n


i, j=1

aia jg

(
xi + x j

2

)
≥ 0

holds for every ai ∈ R and xi ∈ I, i = 1,2, ...,n.
A function g : I → R is n-exponentially convex if it is n-exponentially convex in the

Jensen sense and continuous on I.

Remark 6.3 From the definition it is clear that 1-exponentially convex functions on I in
the Jensen sense are in fact the nonnegative functions on I. Also, n-exponentially convex
functions in the Jensen sense are m-exponentially convex in the Jensen sense for every
m ∈ N+, m ≤ n.

Definition 6.2 Let I ⊂ R be an interval.
A function g : I → R is exponentially convex in the Jensen sense, if it is n-exponentially

convex in the Jensen sense for all n ∈ N+.
A function g : I → R is exponentially convex if it is exponentially convex in the Jensen

sense and continuous.
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Remark 6.4 Let I ⊂R be an interval. Lemma 1.1 shows that a positive function g : I →R

is log-convex in the Jensen sense if and only if it is 2-exponentially convex in the Jensen
sense, that is

a2
1g(x)+2a1a2g

(
x+ y

2

)
+a2

2g(y) ≥ 0

holds for every a1,a2 ∈ R and x,y ∈ I.
Similarly, if g is positive and 2-exponentially convex, then g is log-convex. Conversely,

if g is log-convex and continuous, then g is 2-exponentially convex.

The following result will be used later. This is a special case of a much more general
result (see [2]).

Theorem 6.7 Let I ⊂ R be an interval. If g : I → R is a continuous function which has
the form

g(x) =
∫

−
e−xtd (t) , x ∈ I,

with a measure  on the Borel sets of R, then g is exponentially convex.

Proof. Let ai ∈ R and xi ∈ I (i = 1,2, ...,n). Then

n


i, j=1

aia jg

(
xi + x j

2

)
=

n


i, j=1

aia j

∫
−

e−
xi+x j

2 t d (t)

=
∫

−

n


i, j=1

aia je
− xi

2 t e−
x j
2 td (t) =

∫
−

(
n


i=1

aie
− xi

2 t

)2

d (t) ≥ 0.

�

Divided differences are fertile to study functions having different degree of smooth-
ness.

Definition 6.3 Let I ⊂R be an interval. The second order divided difference of a function
g : I → R at mutually different points y0,y1,y2 ∈ I is defined recursively by

[yi;g] = g(yi), i = 0,1,2

[yi,yi+1;g] =
g(yi+1)−g(yi)

yi+1− yi
, i = 0,1

[y0,y1,y2;g] =
[y1,y2;g]− [y0,y1;g]

y2− y0
. (6.10)
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Remark 6.5 The value [y0,y1,y2;g] is independent of the order of the points y0,y1, and
y2. By taking limits this definition may be extended to include the cases in which any two
or all three points coincide as follows: for y0, y1, y2 ∈ I such that y2 	= y0

[y0,y0,y2;g] := lim
y1→y0

[y0,y1,y2;g] =
g(y2)−g(y0)−g

′
(y0)(y2− y0)

(y2 − y0)
2

provided that g′ exists, and furthermore, taking the limits yi → y0, i = 1,2 in (6.10), we get

[y0,y0,y0;g] := lim
y1→y0, y2→y0

[y0,y1,y2;g] =
g
′′
(y0)
2

provided that g
′′

exist on I.

The following lemma is well known.

Lemma 6.2 Let I ⊂ R be an interval, and g : I → R.
(a) g is convex if and only if [y0,y1,y2;g]≥ 0 for every mutually different points y0,y1,y2 ∈

I.
(b) Suppose g is differentiable. g is convex if and only if [y0,y0,y2;g]≥ 0 ([y0,y1,y1;g] ≥ 0)

for every y0,y2 ∈ I, y0 	= y2 (y1,y2 ∈ I,y1 	= y2).
(c) Suppose g is twice differentiable. g is convex if and only if [y0,y0,y0;g] ≥ 0 for

every y0 ∈ I.

F (X) will means the space of all real valued functions defined on the set X .
By analyzing the essential properties of the functionals i (i = 1, . . . ,23), we introduce

the following condition:
(F) Let I ⊂R be an interval, and let  : D() →R be a linear functional on a subspace

of F (I) such that ( f ) ≥ 0 for every convex f from D().

Theorem 6.8 Assume (F). Let J ⊂ R be an interval, and let  := {t | t ∈ J} ⊂ D()
such that the function t → [y0,y1,y2;t ] (t ∈ J) is n-exponentially convex in the Jensen
sense on J for every three mutually different points y0,y1,y2 ∈ I. Then t → (t ) (t ∈ J)
is an n-exponentially convex function in the Jensen sense on J. If the function t → (t )
(t ∈ J) is continuous, then it is n-exponentially convex on J.

Proof. Let tk,tl ∈ J, tkl := tk+tl
2 and bk ∈ R for k, l = 1,2, ...,n, and define the function

 by

 :=
n


k,l=1

bkbltkl .

Then  ∈ D(). By hypothesis the function t → [y0,y1,y2;t ] (t ∈ J) is n-exponentially
convex in the Jensen sense, therefore we have

[y0,y1,y2; ] =
n


k,l=1

bkbl[y0,y1,y2;tkl ] ≥ 0,
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which implies that  is a convex function on I. Therefore we have () ≥ 0, which yields
by the linearity of , that

n


k,l=1

bkbl(tkl ) ≥ 0.

We conclude that the function t → (t ) (t ∈ J) is an n-exponentially convex function in
the Jensen sense on J.

If the function t → (t ) (t ∈ J) is continuous on J, then it is n-exponentially convex
on J by definition. �

As a consequence of the above theorem we can give the following corollaries.

Corollary 6.1 Assume (F). Let J ⊂ R be an interval, and let  := {t | t ∈ J} ⊂ D()
such that the function t → [y0,y1,y2;t ] (t ∈ J) is exponentially convex in the Jensen sense
on J for every three mutually different points y0,y1,y2 ∈ I. Then t → (t ) (t ∈ J) is an
exponentially convex function in the Jensen sense on J. If the function t → (t ) (t ∈ J) is
continuous, then it is exponentially convex on J.

Corollary 6.2 Assume (F). Let J ⊂ R be an interval, and let  := {t | t ∈ J} ⊂ D()
such that the function t → [y0,y1,y2;t ] (t ∈ J) is 2-exponentially convex in the Jensen
sense on J for every three mutually different points y0,y1,y2 ∈ I. Then the following two
statements hold:

(i) If the function t → (t ) (t ∈ J) is positive and continuous, then it is log-convex on
J.

(ii) If the function t →(t ) (t ∈ J) is positive and differentiable, then for every s,t,u,v∈
J, such that s ≤ u and t ≤ v, we have

us,t(,) ≤ uu,v(,) (6.11)

where for s, t ∈ J

us,t(,) :=

⎧⎪⎨⎪⎩
(
(s)
(t)

) 1
s−t

, s 	= t,

exp

(
d
ds(s)
(s)

)
, t = s.

(6.12)

Proof.

(i) See Remark 6.4 and Theorem 6.8.

(ii) It is well known that if  is a convex function on J, then

 (s) −  (t)
s − t

≤  (u) −  (v)
u − v

, (6.13)

for every s, t,u,v ∈ J such that s ≤ u, t ≤ v, s 	= t, u 	= v.
By (i), s→(s), s∈ J is log-convex, and hence (6.13) shows with(s) = log(s),
s ∈ J that

log(s) − log(t )
s− t

≤ log(u)− log(v)
u− v

(6.14)
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for every s,t,u,v∈ J such that s≤ u, t ≤ v, s 	= t, u 	= v, which is equivalent to (6.11).
For s = t or u = v (6.11) follows from (6.14) by taking limit.

�

Remark 6.6 Suppose the function t → (t ) (t ∈ J) is positive and continuous in (ii). It
can be seen from the proof of (ii) that (6.11) remains true for every s,t,u,v ∈ J such that
s ≤ u, t ≤ v, s 	= t and u 	= v.

Remark 6.7 Note that the results Theorem 6.8, Corollary 6.1 and Corollary 6.2 are valid
when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0, for a family of differentiable
functions= {t | t ∈ J}⊂D() such that the function t → [y0,y0,y2;t ] is n-exponentially
convex or exponentially convex or 2-exponentially convex in the Jensen sense on J for ev-
ery two mutually different points y0,y2 ∈ I. Moreover, they are also valid when all three
points coincide for a family of twice differentiable functions= {t | t ∈ J} ⊂ D() with
the same properties. The proofs can be obtained by recalling Remark 6.5 and Lemma 6.2.

Remark 6.8 A refinement of the inequality of Popoviciu from [67] is given by Niculescu
and Popoviciu in [63]. An integral version of Theorem 4.1 is given by Niculescu in [62].
Results, similar to Theorem 4.2, Theorem 6.3, Theorem 6.4, Theorem 6.8, Corollary 6.1
and Corollary 6.2 can also be obtained from the results of the mentioned papers.

Remark 6.9 The functional defined in (4.10) depends on a real valued function defined
on either (0,a] or [,a] ( > 0) and some other parameters. The parameters will be fixed
except the function. The common notation of (0,a] and [,a] is I. The functional  can

be defined on F (I), and ( f ) ≥ 0 for every function f ∈ F (I) for which x → f (x)
x , x ∈ I

is convex. Moreover, is linear on F (I).

By taking into account this remark, we introduce the following condition:
(G) Let I ⊂ R \ {0} be an interval, and denote id the identity function on I. Let  :

D() → R be a linear functional which satisfies
(i) D() is a subspace of F (I) such that f ∈ D() implies f

id ∈ D(),
(ii) ( f ) ≥ 0 for every f ∈ D() for which f

id is convex.

Theorem 6.9 Assume (G). Let J ⊂ R be an interval, and let  := {t | t ∈ J} ⊂ D()
such that the function t → [y0,y1,y2;

t
id ] (t ∈ J) is n-exponentially convex in the Jensen

sense on J for every three mutually different points y0,y1,y2 ∈ I. Then t → (t) (t ∈ J)
is an n-exponentially convex function in the Jensen sense on J. If the function t → (t)
(t ∈ J) is continuous, then it is n-exponentially convex on J.

Proof. Let tk,tl ∈ J, tkl := tk+tl
2 and bk ∈ R for k, l = 1,2, ...,n, and define the function

 by

 :=
n


k,l=1

bkbltkl .
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Then , id ∈D(). By hypothesis the function t → [y0,y1,y2;
t
id ] (t ∈ J) is n-exponentially

convex in the Jensen sense, therefore we have

[y0,y1,y2;

id

] =
n


k,l=1

bkbl[y0,y1,y2;
tkl

id
] ≥ 0,

which implies that 
id is a convex function on I. Therefore we have()≥ 0, which yields

by the linearity of , that
n


k,l=1

bkbl(tkl ) ≥ 0.

We conclude that the function t → (t) (t ∈ J) is an n-exponentially convex function in
the Jensen sense on J.

If the function t → (t) (t ∈ J) is continuous on J, then it is n-exponentially convex
on J by definition. �

As a consequence of the above theorem we can give the following corollaries.

Corollary 6.3 Assume (G). Let J ⊂ R be an interval, and let  := {t | t ∈ J} ⊂ D()
such that the function t → [y0,y1,y2;

t
id ] (t ∈ J) is exponentially convex in the Jensen sense

on J for every three mutually different points y0,y1,y2 ∈ I. Then t → (t) (t ∈ J) is an
exponentially convex function in the Jensen sense on J. If the function t →(t) (t ∈ J) is
continuous, then it is exponentially convex on J.

Corollary 6.4 Assume (G). Let J ⊂ R be an interval, and let  := {t | t ∈ J} ⊂ D()
such that the function t → [y0,y1,y2;

t
id ] (t ∈ J) is 2-exponentially convex in the Jensen

sense on J for every three mutually different points y0,y1,y2 ∈ I. Then the following two
statements hold:

(i) If the function t →(t) (t ∈ J) is positive and continuous, then it is log-convex.

(ii) If the function t →(t) (t ∈ J) is positive and differentiable, then for every s, t,u,v∈
J, such that s ≤ u and t ≤ v, we have

ūs,t(,) ≤ ūu,v(,) (6.15)

where for s, t ∈ J

ūs,t(,) :=

⎧⎪⎨⎪⎩
(
(s)
(t)

) 1
s−t

, s 	= t,

exp

(
d
ds(s)
(s)

)
, t = s.

(6.16)

Proof. The proof is similar to the proof of Corollary 6.2. �

Remark 6.10 Suppose the function t → (t) (t ∈ J) is positive and continuous in (ii).
It can be seen that (6.15) remains true for every s,t,u,v ∈ J such that s ≤ u, t ≤ v, s 	= t and
u 	= v.
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Remark 6.11 Note that the results Theorem 6.9, Corollary 6.3 and Corollary 6.4 are
valid when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0, for a family of differ-
entiable functions  = {t | t ∈ J} ⊂ D() such that the function t → [y0,y0,y2;

t
id ] is

n-exponentially convex or exponentially convex or 2-exponentially convex in the Jensen
sense on J for every two mutually different points y0,y2 ∈ I. Moreover, they are also valid
when all three points coincide for a family of twice differentiable functions  = {t | t ∈
J} ⊂ D() with the same properties. The proofs can be obtained by recalling Remark 6.5
and Lemma 6.2.

The next result related to the first condition of Theorem 6.8 is given in [40].

Theorem 6.10 Assume J ⊂ R is an interval, and assume  = {t | t ∈ J} is a family of
twice differentiable functions defined on an interval I ⊂R such that the function t →  ′′

t (x)
(t ∈ J) is exponentially convex for every fixed x ∈ I. Then the function t → [y0,y1,y2;t ]
(t ∈ J) is exponentially convex in the Jensen sense for any three points y0, y1, y2 ∈ I.

Proof. Let n be a positive integer, tk,tl ∈ J, tkl := tk+tl
2 and bk ∈ R for k, l = 1,2, ...,n.

Then (
n


k,l=1

bkbltkl

)′′
(x) =

n


k,l=1

bkbl ′′
tkl (x) ≥ 0, x ∈ I.

It follows that the function
n


k,l=1

bkbltkl

is convex, and hence (see Lemma 6.2)

n


k,l=1

bkbl[y0,y1,y2;tkl ] = [y0,y1,y2;
n


k,l=1

bkbltkl ] ≥ 0

for every points y0,y1,y2 ∈ I. This implies the exponential convexity of t → [y0,y1,y2;t ]
(t ∈ J) in the Jensen sense. �

Remark 6.12 It comes from either the conditions of Theorem 6.10 or the proof of this
theorem that the functions t , t ∈ J are convex.

6.3 Applications to Cauchy Means

In this section we generate new Cauchy means by applying the results in the previous
section to some special classes of functions. We remind the condition

(F) Let I ⊂R be an interval, and let  : D() →R be a linear functional on a subspace
of F (I) such that ( f ) ≥ 0 for every convex f from D().

First, we summarize the essential properties of the functionals i (i = 1, . . . ,23).
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Remark 6.13 (a) Every functional i (i = 1, . . . ,23) depends on a real valued function
defined on a convex set, and some other parameters. In this chapter the convex set will be
an interval I ⊂ R, and the parameters will be fixed except the function. By considering 9,
it is supposed that I is compact and the inequality (4.7) holds.

(b) The functionals i (i = 1, . . . ,23) can be defined on a subspace D(i) ⊂ F (I). It
is easy to see that D(i) = F (I), when 1 ≤ i ≤ 9 and 16 ≤ i ≤ 19, but in the other cases
some integrability conditions are necessary, and hence D(i) is a proper subspace of F (I)
in general.

(c) i is linear on D(i), and i( f ) ≥ 0 for every convex f from D(i) (i = 1, . . . ,23).
It would be worthwhile to study the following problem: give those convex functions from
D(i) for which the value of i is positive.

(d) Consider the functionals i, when 1≤ i≤ 9 and 16≤ i≤ 19. Every such functional
depends on a fixed n-tuples (x1, ...,xn) ∈ In. Let

a := min
1≤i≤n

xi and b := max
1≤i≤n

xi.

Then [a,b] ⊂ I, and if f ∈ D(i) such that the restriction of f on [a,b] is convex, then
i( f ) ≥ 0 (1 ≤ i ≤ 9, 16 ≤ i ≤ 19).

(e) Consider the functionals i, when 10 ≤ i ≤ 12. These functionals depends on
functions ui (1 ≤ i ≤ n), whose ranges are subsets of I. If the ranges of the functions
ui (1 ≤ i ≤ n) are subsets of an interval Î ⊂ I, and if f ∈ D(i) such that the restriction of
f on Î is convex, then i( f ) ≥ 0 (10 ≤ i ≤ 12).

(f) Consider the functionals i, when 13 ≤ i ≤ 15, and 20 ≤ i ≤ 23. These functionals
depends on a function u, whose range is a subset of I. If the range of the function u is a
subset of an interval Î ⊂ I, and if f ∈ D(i) such that the restriction of f on Î is convex,
then i( f ) ≥ 0 (13 ≤ i ≤ 15, 20 ≤ i ≤ 23).

Example 6.1 Assume (F) with I = R and D() = C (R). Consider the class of continu-
ous convex functions

1 := {t : R → [0,) | t ∈ R},
where

t(x) :=

{
1
t2

etx; t 	= 0,
1
2x2; t = 0.

(6.17)

Elementary calculations show that t →  ′′
t (x) = etx (t ∈ R) is exponentially convex for

every fixed x ∈ R, and therefore Theorem 6.10 implies that the function t → [y0,y1,y2;t ],
t ∈ R is exponentially convex in the Jensen sense for every three mutually different points
y0,y1,y2 ∈ R.

(a) By applying Corollary 6.1 with J = R and  = 1, we get the exponential con-
vexity of t → (t ) (t ∈ R) in the Jensen sense. If the mapping t → (t ) (t ∈ R) is also
continuous, then it is exponentially convex.

(b) If the mapping t → (t ) (t ∈ R) is positive and differentiable, then Corollary 6.2
(ii) gives the monotonicity of the function us,t(,1) (s,t ∈ R) (defined by (6.12) with
 = 1) in both parameters.
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(c) Suppose the mapping t → (t) (t ∈ R) is positive and differentiable. Suppose
further that [a,b] ⊂ R is an interval with the following property:

(i) if f ∈ D() such that the restriction of f on [a,b] is convex, then ( f ) ≥ 0.
Introduce

Ms,t(,1) := logus,t(,1), s,t ∈ R.

If s 	= t, we have from Theorem 6.2 (the conditions of the theorem are satisfied) that there
exists  ∈ [a,b] for which

Ms,t(,1) =
1

s− t
log

(
(s)
(t )

)
=

1
s− t

log

(
 ′′

s ( )
 ′′

t ( )

)

=
1

s− t
log

es

et =  ∈ [a,b] .

It follows from this by taking limit that

Ms,s(,1) ∈ [a,b] , s ∈ R.

It can be seen that
a ≤ Ms,t(,1) ≤ b, s,t ∈ R.

The monotonicity of the function Ms,t(,1) in both parameters comes from the similar
property of us,t(,1).

(d) Remark 6.13 shows that the functionals i (i = 1, . . . ,23) satisfy condition (F). 
denotes one of the functionals i (i = 1, . . . ,23).

Suppose the mapping t → (t ) (t ∈ R) is positive (see Remark 6.13 (c)).
If 1 ≤ i ≤ 9 or 16 ≤ i ≤ 19, then it is easy to check that the mapping t → (t) (t ∈ R)

is differentiable and

us,t(,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
(s)
(t)

) 1
s−t

, s 	= t,

exp
(
(id s)
(s)

− 2
s

)
, s = t 	= 0,

exp
(
(id 0)
3(0)

)
, s = t = 0.

(6.18)

In these cases (c) and Remark 6.13 (d) yield that Ms,t(,1) (s,t ∈ R) are means on
Rn, and they are monotonic in both parameters.

If 10≤ i≤ 15 or 20≤ i≤ 23, then the differentiability of the mapping t →(t ) (t ∈R)
does not follow in general. It is also not trivial whether (6.18) remains true provided
t → (t ) (t ∈ R) is differentiable (this concerns the behaviour of parameter dependent
integrals). But, if the ranges of the functions ui (1 ≤ i ≤ n) and u (see Remark 6.13 (e) and
(f)) are subsets of an interval [a,b] ⊂ I, and t → (t) (t ∈ R) is differentiable, then as in
the previous cases, Ms,t(,1) (s,t ∈ R) are means defined by integrals.

Example 6.2 Assume (F) with I = (0,) and D() = C (0,). Consider the class of
continuous convex functions

2 := {t : (0,) → R | t ∈ R},
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where

t(x) :=

⎧⎪⎪⎨⎪⎪⎩
xt

t(t−1) ; t 	= 0,1,

− logx; t = 0,

x logx; t = 1.

As in the previous example, t →  ′′
t (x) = xt−2 = e(t−2) logx (t ∈ R) is exponentially

convex for every fixed x∈ (0,), and therefore Theorem 6.10 implies that the function t →
[y0,y1,y2;t ], t ∈ R is exponentially convex in the Jensen sense for every three mutually
different points y0,y1,y2 ∈ (0,).

(a) By applying Corollary 6.1 with J = R and = 2, we get the exponential convex-
ity of t → (t ) (t ∈ R) in the Jensen sense. If the mapping t → (t ) (t ∈ R) is also
continuous, then it is exponentially convex.

(b) If the mapping t → (t ) (t ∈ R) is positive and differentiable, then Corollary 6.2
(ii) gives the monotonicity of the function us,t(,2) (defined by (6.12) with  = 2) in
both parameters.

(c) Suppose the mapping t → (t ) (t ∈ R) is positive and differentiable. Suppose
further that [a,b] ⊂ (0,) is an interval with the following property:

(i) if f ∈ D() such that the restriction of f on [a,b] is convex, then ( f ) ≥ 0.
If s 	= t, we can apply Theorem 6.2 (the conditions of the theorem are satisfied) which

shows that there exists  ∈ [a,b] such that

us,t(,2) =
(
(s)
(t)

) 1
s−t

=
(
 ′′

s ( )
 ′′

t ( )

) 1
s−t

=
(
e(s−t) log( )

) 1
s−t =  ∈ [a,b] .

It follows from this by taking limit that

us,s(,2) ∈ [a,b] , s ∈ R.

It can be seen that
a ≤ us,t(,2) ≤ b, s,t ∈ R.

(d) Now, we consider functionals i (i = 1, . . . ,23) which satisfy condition (F), by
Remark 6.13.  denotes one of the functionals i (i = 1, . . . ,23).

Suppose the mapping t → (t ) (t ∈ R) is positive (see Remark 6.13 (c)).
(d1) If 1 ≤ i ≤ 9 or 16 ≤ i ≤ 19, then it is easy to check that the mapping t → (t)

(t ∈ R) is differentiable and

us,t(,2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
(s)
(t)

) 1
s−t

, s 	= t,

exp
(

1−2s
s(s−1) − (s0)

(s)

)
, s = t 	= 0,1,

exp
(
1− (2

0 )
2(0)

)
, s = t = 0,

exp
(
−1− (01)

2(1)

)
, s = t = 1.

(6.19)
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In these cases (c) and Remark 6.13 (d) yield that us,t(,2) (s,t ∈ R) are means on
(0,)n, and they are monotonic in both parameters.

If 10 ≤ i ≤ 15 or 20 ≤ i ≤ 23, then the differentiability of the mapping t → (t )
(t ∈R) does not follow in general. It is also not trivial whether (6.19) remains true provided
t → (t) (t ∈ R) is differentiable (see Example 6.1 (d)). But, if t → (t) (t ∈ R) is
differentiable, then as in the previous cases, us,t(,2) (s,t ∈ R) are means defined by
integrals.

(d2) Let 1≤ i≤ 9 or 16≤ i≤ 19. As we have mentioned in Remark 6.13 (d),  depends
on a fixed n-tuples x = (x1, ...,xn) which must belong to (0,)n in the present situation.
Henceforth this dependence is important, thus we shall make out it. For r ∈ R, denote
xr := (xr

1, ...,x
r
n). log(x) means (logx1, . . . , log(xn)).

Let s, t,r ∈ R, r 	= 0. Since t → (t) (t ∈ R) is differentiable, we can introduce

us,t,r(,x,2) :=
(
us/r,t/r(,xr,2)

)1/r

=

⎧⎪⎪⎨⎪⎪⎩
((s/r ,x

r)
(t/r,xr)

) 1
s−t

, s 	= t,

exp

(
d
ds(s/r ,x

r)
(s/r ,xr)

)
, t = s.

It follows from (c) that

ar ≤ us/r,t/r(,xr,2) ≤ br, s,t,r ∈ R, r 	= 0,

and therefore
a ≤ us,t,r(,x,2) ≤ b, s,t,r ∈ R, r 	= 0. (6.20)

(6.19) yields that

us,t,r(,x,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

((s/r ,x
r)

(t/r,xr)

) 1
s−t

, s 	= t, r 	= 0,

exp
(

r−2s
s(s−r) −

(s/r0)
r(s/r)

)
, s = t 	= 0,r, r 	= 0,

exp
(

1
r−

(2
0 )

2r(0)

)
, s = t = 0, r 	= 0,

exp
(
− 1

r−(01)
2r(1)

)
, s = t = r 	= 0.

(6.21)

By taking limit r → 0, we can extend the meaning of us,t,r(,x,2) for r = 0 with some
tedious calculations:

us,t,0(,x,2) =
(
(s,log(x))
(t ,log(x))

) 1
s−t

, s 	= t,

us,s,0(,x,2) = exp
(
− 2

s + (id·s,log(x))
(s,log(x))

)
, s = t 	= 0,

u0,0,0(,x,2) = exp
(
(id·0,log(x))
3(0,log(x))

)
,

where the definition of the function t (t ∈ R) can be found in (6.17), and id (x) := x
(x ∈ R).
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According to (6.20)

a ≤ us,t,r(,x,2) ≤ b, s, t,r ∈ R,

thus we have obtained new means on (0,)n with three parameters.
The monotonicity of the means us,t(,2) (s,t ∈ R) implies that for s ≤ u, t ≤ v and

r ∈ R

us,t,r(,x,2) ≤ uu,v,r(,x,2).

(d3) Let 10≤ i≤ 12. Then  depends on functions u1, ...,un which have positive ranges
in the present investigation (see Remark 6.13 (e)). Let u = (u1, ...,un). If some integrability
conditions are satisfied (see Theorem 5.3), and t → (t ) (t ∈ R) is differentiable, then we
can introduce

us,t,r(,u,2) :=
(
us/r,t/r(,ur ,2)

)1/r

=

⎧⎪⎪⎨⎪⎪⎩
((s/r ,u

r)
(t/r ,ur)

) 1
s−t

, s 	= t,

exp

(
d
ds(s/r ,u

r)
(s/r ,ur)

)
, t = s,

for s, t,r ∈ R, r 	= 0. If the ranges of the functions ui (1 ≤ i ≤ n) are subsets of an interval
[a,b] ⊂ (0,), then as in the previous cases, us,t,r(,u,2) (s,t,r ∈ R, r 	= 0) are means
defined by integrals. It requires further study whether (6.21) remains true (this concerns
the behaviour of parameter dependent integrals), and how can we extended us,t,r(,u,2)
for r = 0.

(d4) Let 13 ≤ i ≤ 15 or 20 ≤ i ≤ 23. Then  depends on a functions u which has
positive range in the present investigation (see Remark 6.13 (f)). If some integrability
conditions are satisfied (see Theorem 5.5), and t → (t ) (t ∈ R) is differentiable, then we
can introduce

us,t,r(,u,2) :=
(
us/r,t/r(,ur,2)

)1/r

=

⎧⎪⎪⎨⎪⎪⎩
((s/r ,u

r)
(t/r,u

r)

) 1
s−t

, s 	= t,

exp

(
d
ds(s/r ,u

r)
(s/r ,u

r)

)
, t = s,

for s, t,r ∈ R, r 	= 0. If the range of the functions u is a subset of an interval [a,b] ⊂
(0,), then as in the previous cases, us,t,r(,u,2) (s,t,r ∈ R, r 	= 0) are means defined
by integrals. Like (d3), it requires further study whether (6.21) remains true (this concerns
the behaviour of parameter dependent integrals), and how can we extended us,t,r(,u,2)
for r = 0.

Example 6.3 Assume (F) with I = (0,) and D() = C (0,). Consider the class of
continuous convex functions

3 := {t : (0,) → (0,) | t ∈ (0,)},
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where

t(x) :=

{
t−x

log2t
; t 	= 1,

x2

2 ; t = 1.

For every fixed x ∈ (0,), he function t →  ′′
t (x) = t−x = e−x logt (t ∈ (0,)) is the restric-

tion of the Laplace transform of the nonnegative function s → sx−1

(x) (s ∈ (0,)) (see [75]),
and hence Theorem 6.7 shows that it is exponentially convex. Now, Theorem 6.10 yields
that the function t → [y0,y1,y2;t ], t ∈ (0,) is exponentially convex in the Jensen sense
for every three mutually different points y0,y1,y2 ∈ (0,).

(a) By applying Corollary 6.1 with J = (0,) and  = 3, we get the exponential
convexity of t → (t ) (t ∈ (0,)) in the Jensen sense. If the mapping t → (t ) (t ∈
(0,)) is also continuous, then it is exponentially convex.

(b) If the mapping t → (t ) (t ∈ (0,)) is positive and differentiable, then Corollary
6.2 (ii) gives the monotonicity of the function us,t(,3) (defined by (6.12) with  = 3)
in both parameters.

(c) Suppose the mapping t → (t) (t ∈ (0,)) is positive and differentiable. Suppose
further that [a,b] ⊂ (0,) is an interval with the following property:

(i) if f ∈ D() such that the restriction of f on [a,b] is convex, then ( f ) ≥ 0.
By using the well known logarithmic mean

L(s,t) :=

{
t−s

logt−log s , s 	= t,

s, t = s.
, s,t > 0, (6.22)

we introduce
Ms,t(,3) := −L(s,t) logus,t(,3), s, t > 0.

If s 	= t, we can apply Theorem 6.2 (the conditions of the theorem are satisfied) which
shows that there exists  ∈ [a,b] such that

Ms,t(,3) = −L(s,t)
1

s− t
log

(
(s)
(t )

)
=

1
logt − logs

log

(
 ′′

s ( )
 ′′

t ( )

)

=
− (logs− logt)

logt− logs
=  ∈ [a,b] .

It follows from this by taking limit that

Ms,s(,3) ∈ [a,b] , s ∈ (0,).

It can be seen that
a ≤ Ms,t(,3) ≤ b, s,t ∈ (0,).

The function Ms,t(,3) is decreasing in both parameters, because us,t(,3) and L(s,t)
are increasing in both parameters: if s,t,u,v ∈ (0,) such that s ≤ u and t ≤ v, then

Ms,t(,3) ≥ Mu,v(,3).
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(d) Now, we consider functionals i (i = 1, . . . ,23) which satisfy condition (F), by
Remark 6.13.  denotes one of the functionals i (i = 1, . . . ,23).

Suppose the mapping t → (t ) (t ∈ (0,)) is positive (see Remark 6.13 (c)).
If 1 ≤ i ≤ 9 or 16 ≤ i ≤ 19, then it is easy to check that the mapping t → (t ) (t ∈

(0,)) is differentiable and

us,t(,3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
(s)
(t)

) 1
s−t

, s 	= t,

exp
(
− 2

slogs − (ids)
s(s)

)
, s = t 	= 1,

exp
(
−(id1)

3(1)

)
, s = t = 1.

(6.23)

In these cases (c) and Remark 6.13 (d) yield that Ms,t(,3) (s,t ∈ (0,)) are means on
(0,)n, and they are monotonic in both parameters.

If 10 ≤ i ≤ 15 or 20 ≤ i ≤ 23, then the differentiability of the mapping t → (t ) (t ∈
(0,)) does not follow in general. It is also not trivial whether (6.23) remains true provided
t →(t) (t ∈ (0,)) is differentiable (this concerns the behaviour of parameter dependent
integrals). But, if the ranges of the functions ui (1 ≤ i ≤ n) and u (see Remark 6.13 (e) and
(f)) are subsets of an interval [a,b]⊂ I, and t → (t) (t ∈ (0,)) is differentiable, then as
in the previous cases, Ms,t(,3) (s,t ∈ (0,)) are means defined by integrals.

Example 6.4 Assume (F) with I = (0,) and D() = C (0,). Consider the class of
continuous convex functions

4 := {t : (0,) → (0,) | t ∈ (0,)},
where

t(x) :=
e−x

√
t

t
.

For every fixed x ∈ (0,), he function t →  ′′t (x) = e−x
√

t (t ∈ (0,)) is the restriction of
the Laplace transform of the nonnegative function s→ x

2
√
s3

e−x2/4s (s ∈ (0,)) (see [75]),
and hence Theorem 6.7 shows that it is exponentially convex. Now, Theorem 6.10 yields
that the function t → [y0,y1,y2;t ], t ∈ (0,) is exponentially convex in the Jensen sense
for every three mutually different points y0,y1,y2 ∈ (0,).

(a) By applying Corollary 6.1 with J = (0,) and  = 4, we get the exponential
convexity of t → (t ) (t ∈ (0,)) in the Jensen sense. If the mapping t → (t ) (t ∈
(0,)) is also continuous, then it is exponentially convex.

(b) If the mapping t → (t ) (t ∈ (0,)) is positive and differentiable, then Corollary
6.2 (ii) gives the monotonicity of the function us,t(,4) (defined by (6.12) with  = 4)
in both parameters.

(c) Suppose the mapping t → (t ) (t ∈ (0,)) is positive and differentiable. Suppose
further that [a,b] ⊂ (0,) is an interval with the following property:

(i) if f ∈ D() such that the restriction of f on [a,b] is convex, then ( f ) ≥ 0.
Introduce

Ms,t(,4) := −(
√

s+
√

t) logus,t(,4), s,t ∈ (0,).
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If s 	= t, we can apply Theorem 6.2 (the conditions of the theorem are satisfied) which
shows that there exists  ∈ [a,b] such that

Ms,t(,4) = −(
√

s+
√

t)
1

s− t
log

(
(s)
(t )

)
=

1√
t−√

s
log

(
 ′′s ( )
 ′′t ( )

)

=
1√

t−√
s
loge−(

√
s−√

t) =  ∈ [a,b] .

It follows from this by taking limit that

Ms,s(,4) ∈ [a,b] , s ∈ (0,).

It can be seen that
a ≤ Ms,t(,4) ≤ b, s,t ∈ (0,).

The function Ms,t(,4) is decreasing in both parameters, because us,t(,4) is increasing
in both parameters: if s,t,u,v ∈ (0,) such that s ≤ u and t ≤ v, then

Ms,t(,4) ≥ Mu,v(,4).

(d) Now, we consider functionals i (i = 1, . . . ,23) which satisfy condition (F), by
Remark 6.13.  denotes one of the functionals i (i = 1, . . . ,23).

Suppose the mapping t → (t) (t ∈ R) is positive (see Remark 6.13 (c)).
If 1 ≤ i ≤ 9 or 16 ≤ i ≤ 19, then it is easy to check that the mapping t → (t) (t ∈

(0,)) is differentiable and

us,t(2,4) =

⎧⎪⎨⎪⎩
(
2(s)
2(t)

) 1
s−t

, s 	= t,

exp
(
− 1

t − 2(idt)
2
√

t2(t)

)
, s = t.

(6.24)

In these cases (c) and Remark 6.13 (d) yield that Ms,t(,4) (s,t ∈ (0,)) are means on
(0,)n, and they are monotonic in both parameters.

If 10 ≤ i ≤ 15 or 20 ≤ i ≤ 23, then the differentiability of the mapping t → (t ) (t ∈
(0,)) does not follow in general. It is also not trivial whether (6.24) remains true provided
t →(t ) (t ∈ (0,)) is differentiable (this concerns the behaviour of parameter dependent
integrals). But, if the ranges of the functions ui (1 ≤ i ≤ n) and u (see Remark 6.13 (e) and
(f)) are subsets of an interval [a,b]⊂ I, and t → (t ) (t ∈ (0,)) is differentiable, then as
in the previous cases, Ms,t(,4) (s,t ∈ (0,)) are means defined by integrals.

In the remaining examples (Example 6.5-6.8) we need the following condition which
was introduced previously:

(G) Let I ⊂ R \ {0} be an interval, and denote id the identity function on I. Let  :
D() → R be a linear functional which satisfies

(i) D() is a subspace of F (I) such that f ∈ D() implies f
id ∈ D(),

(ii) ( f ) ≥ 0 for every f ∈ D() for which f
id is convex.



146 6 MEAN VALUE THEOREMS AND EXPONENTIAL CONVEXITY

Example 6.5 Assume (G) with I = (0,) and D() = C (0,). Consider the class of
continuous convex functions

1 := {t : (0,) → (0,) | t ∈ R},
where

t(x) :=

{
xetx

t2
; t 	= 0,

x3

2 ; t = 0.

Then the function t
id is the restriction of t (see Example 6.1) to (0,) (which will be

denoted by t too) for every t ∈ R. Thus, as we have seen in Example 6.1 the function
t → [y0,y1,y2;

t
id ] = [y0,y1,y2;t ], t ∈ R is exponentially convex in the Jensen sense for

every three mutually different points y0,y1,y2 ∈ (0,).
(a) By applying Corollary 6.3 with J = R and  = 1, we get the exponential con-

vexity of t → (t) (t ∈ R) in the Jensen sense. If the mapping t → (t) (t ∈ R) is also
continuous, then it is exponentially convex.

(b) If the mapping t →(t ) (t ∈ R) is positive and differentiable, then Corollary 6.4
(ii) gives the monotonicity of the function us,t(,1) (defined by (6.16) with  = 1) in
both parameters.

(c) Suppose the mapping t → (t ) (t ∈ R) is positive and differentiable. Suppose
further that [a,b] ⊂ (0,) is an interval with the following property:

(i) if f ∈ D() such that the restriction of f
id to [a,b] is convex, then ( f ) ≥ 0.

Introduce
M̄s,t(,1) := logus,t(,1), s,t ∈ R.

If s 	= t, we can apply Theorem 6.6 (the conditions of the theorem are satisfied) which
shows that there exists  ∈ [a,b] such that

M̄s,t(,1) = log

(
(s)
(t )

) 1
s−t

= log

(
 2 ′′s ( )−2 ′s( )+2s( )
 2 ′′t ( )−2 ′t ( )+2t( )

) 1
s−t

= log
(
e(s−t)

) 1
s−t =  ∈ [a,b] .

It follows from this by taking limit that

M̄s,s(,1) ∈ [a,b] , s ∈ R.

It can be seen that
a ≤ M̄s,t(,1) ≤ b, s, t ∈ R.

The monotonicity of the function M̄s,t(,1) in both parameters comes from the similar
property of us,t(,1).

(d) Now, we consider the functional  defined in (4.10): let n,k ∈ N, n ≥ 3, 2 ≤ k ≤
n−1, x = (x1, ...,xn) ∈ In such that x = n

i=1 xi ∈ I; then

fk,n(x) :=
1(n−1

k−1

) 
1≤i1<...<ik≤n

f

(
k


j=1

xi j

)
,
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and

( f ) = (k,x, f ) :=
n− k
n−1

f1,n(x)+
k−1
n−1

fn,n(x)− fk,n(x).

In this case  is a linear functional defined on D() = F (I), and ( f ) ≥ 0 for every f ∈
D() for which f

id is convex, and therefore  satisfies (G). It should analyse: give all the

functions f ∈ D() for which f
id is convex and ( f ) > 0.

Suppose the mapping t →(t) (t ∈ R) is positive.
It is easy to check that the mapping t → (t ) (t ∈ R) is differentiable. By applying

(c), we have that

min
1≤i≤n

xi ≤ M̄s,t(,x,1) ≤
n


i=1

xi, s, t ∈ R, (6.25)

which shows that M̄s,t(,x,1) is not a mean of the numbers xi (1 ≤ i ≤ n).
To construct means of the numbers xi (1 ≤ i ≤ n), we assume that

x1 ≤ xi − xi−1, 2 ≤ i ≤ n.

Introduce
�x :=(y1,y2, . . .yn) = (x1,x2− x1, . . . ,xn − xn−1) .

Then x1 < .. . < xn, min
1≤i≤n

yi = x1 and
n

i=1

yi = xn = max
1≤i≤n

xi. It is not hard to calculate that

us,t(,�x,1)

=

⎛⎜⎜⎜⎜⎜⎜⎝
t2

s2

n−k
n−1

n

i=1

yiesyi + k−1
n−1xnesxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
e
s

(
k

j=1

yi j

)

n−k
n−1

n

i=1

yietyi + k−1
n−1xnetxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
e
t

(
k

j=1

yi j

)

⎞⎟⎟⎟⎟⎟⎟⎠

1
s−t

,
s 	= t,

s,t 	= 0,

=

⎛⎜⎜⎜⎜⎜⎜⎝
2
s2

n−k
n−1

n

i=1

yiesxi + k−1
n−1xnesxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
e
s

(
k

j=1

yi j

)

n−k
n−1

n

i=1

y3
i + k−1

n−1x3
n− 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)3

⎞⎟⎟⎟⎟⎟⎟⎠

1
s

,
s 	= 0,

t = 0,

=

⎛⎜⎜⎜⎜⎜⎜⎝
t2

2

n−k
n−1

n

i=1

y3
i + k−1

n−1x3
n− 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)3

n−k
n−1

n

i=1

yietyi + k−1
n−1xnetxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
e
t

(
k

j=1

yi j

)

⎞⎟⎟⎟⎟⎟⎟⎠

− 1
t

,
s = 0,

t 	= 0,
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= exp

⎛⎜⎜⎜⎜⎜⎜⎝
n−k
n−1

n

i=1

y2
i e

syi + k−1
n−1x2

ne
sxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)2

e
s

(
k

j=1

yi j

)

n−k
n−1

n

i=1

yiesyi + k−1
n−1xnesxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
e
s

(
k

j=1

yi j

) − 2
s

⎞⎟⎟⎟⎟⎟⎟⎠ ,

s = t 	= 0,

= exp

⎛⎜⎜⎜⎜⎜⎝
1
3

n−k
n−1

n

i=1

y4
i + k−1

n−1x4
n − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)4

n−k
n−1

n

i=1

y3
i + k−1

n−1x3
n − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)3

⎞⎟⎟⎟⎟⎟⎠ , s = t = 0.

(6.25) yields that M̄s,t(,�x,1) (s,t ∈ R) are means (of the numbers x1 < .. . < xn)
on

{(x1, . . . ,xn) | x1 > 0, x1 ≤ xi − xi−1, 2 ≤ i ≤ n} ,

and they are monotonic in both parameters.

Example 6.6 Assume (G) with I = (0,) and D() = C (0,). Consider the class of
continuous convex functions

2 = {t : (0,) → R | t ∈ R},
where

t(x) :=

⎧⎪⎪⎨⎪⎪⎩
xt+1

t(t−1) ; t 	= 0,1,

−x logx; t = 0,

x2 logx; t = 1.

Then the function t
id is t (see Example 6.2) for every t ∈ R. Thus, as we have seen in

Example 6.2 the function t → [y0,y1,y2;
t
id ] = [y0,y1,y2;t ], t ∈ R is exponentially convex

in the Jensen sense for every three mutually different points y0,y1,y2 ∈ (0,).
(a) By applying Corollary 6.3 with J = R and=2, we get the exponential convexity

of t → (t) (t ∈ R) in the Jensen sense. If the mapping t → (t) (t ∈ R) is also
continuous, then it is exponentially convex.

(b) If the mapping t →(t) (t ∈ R) is positive and differentiable, then Corollary 6.4
(ii) gives the monotonicity of the function us,t(,2) (defined by (6.16) with  = 2) in
both parameters..

(c) Suppose the mapping t → (t) (t ∈ R) is positive and differentiable. Suppose
further that [a,b] ⊂ (0,) is an interval with the following property:

(i) if f ∈ D() such that the restriction of f
id to [a,b] is convex, then ( f ) ≥ 0.

If s 	= t, we can apply Theorem 6.6 (the conditions of the theorem are satisfied) which
shows that there exists  ∈ [a,b] such that

ūs,t(,2) =
(
(s)
(t)

) 1
s−t

=
(
 2 ′′

s ( )−2 ′
s( )+2s( )

 2 ′′
t ( )−2 ′

t ( )+2t( )

) 1
s−t
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=
(
 s−t) 1

s−t =  ∈ [a,b] .

It follows from this by taking limit that

ūs,s(,2) ∈ [a,b] , s ∈ R.

It can be seen that
a ≤ ūs,t(,2) ≤ b, s,t ∈ R.

The function ūs,t(,2) is monotonic in both parameters.
(d) Now, we consider the functional  defined in (4.10) (see (d) in the previous exam-

ple).
Suppose the mapping t →(t) (t ∈ R) is positive.
It is easy to check that the mapping t →(t) (t ∈ R) is differentiable. It follows from

(c) that

min
1≤i≤n

xi ≤ ūs,t(,x,2) ≤
n


i=1

xi, s,t ∈ R,

and therefore ūs,t(,x,2) is not a mean of the numbers xi (1 ≤ i ≤ n).
To construct means of the numbers xi (1 ≤ i ≤ n), we assume that

x1 ≤ xi − xi−1, 2 ≤ i ≤ n.

As in the previous example we use the notation

�x :=(y1,y2, . . .yn) = (x1,x2− x1, . . . ,xn − xn−1) .

Then x1 < .. . < xn, min
1≤i≤n

yi = x1 and
n

i=1

yi = xn = max
1≤i≤n

xi.

It is not hard to calculate
ūs,t(,�x,2)

=

⎛⎜⎜⎜⎜⎜⎝
t(t−1)
s(s−1)

n−k
n−1

n

i=1

yi
s+1 + k−1

n−1xs+1
n − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)s+1

n−k
n−1

n

i=1

yi
t+1 + k−1

n−1xt+1
n − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)t+1

⎞⎟⎟⎟⎟⎟⎠

1
s−t

,

s 	= t, s, t 	= 0,1,

=

⎛⎜⎜⎜⎜⎜⎝
−1

s(s−1)

n−k
n−1

n

i=1

yi
s+1 + k−1

n−1xs+1
n − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)s+1

n−k
n−1

n

i=1

yi logyi + k−1
n−1xn logxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
log

(
k

j=1

yi j

)
⎞⎟⎟⎟⎟⎟⎠

1
s

,

t = 0, s 	= 0,1,
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=

⎛⎜⎜⎜⎜⎜⎝
1

s(s−1)

n−k
n−1

n


i=1
yi

s+1 + k−1
n−1xs+1

n − 1
(n−1

k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)s+1

n−k
n−1

n


i=1
y2
i logyi + k−1

n−1 x2
n logxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)2

log

(
k

j=1

yi j

)
⎞⎟⎟⎟⎟⎟⎠

1
s−1

,

t = 1, s 	= 0,1,

= −
n−k
n−1

n


i=1
yi

2 + k−1
n−1x2

nlogxn− 1
(n−1

k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)2

log

(
k

j=1

yi j

)
n−k
n−1

n

i=1

yi logyi + k−1
n−1xn logxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
log

(
k

j=1

yi j

) ,

t = 0, s = 1,

= exp

⎛⎜⎜⎜⎜⎜⎝
1−2s

s(s−1)
+

n−k
n−1

n

i=1

yi
s+1 logyi + k−1

n−1xs+1
n logxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)s+1

log

(
k

j=1

yi j

)

n−k
n−1

n


i=1
yi

s+1 + k−1
n−1xs+1

n − 1
(n−1

k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)s+1

⎞⎟⎟⎟⎟⎟⎠ ,

s = t 	= 0,1,

= exp

⎛⎜⎜⎜⎜⎝1+

n−k
n−1

n

i=1

yilog2yi + k−1
n−1 log

2
xn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
log2

(
k

j=1

yi j

)

2

(
n−k
n−1

n

i=1

yi logyi + k−1
n−1xn logxn− 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
log

(
k

j=1

yi j

))
⎞⎟⎟⎟⎟⎠ ,

s = t = 0,

= exp

⎛⎜⎜⎜⎜⎜⎜⎝ −1+

n−k
n−1

n


i=1
y2
i log2yi + k−1

n−1x2
nlog

2
xn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)2

log2

(
k

j=1

yi j

)

2

⎛⎝ n−k
n−1

n


i=1
y2
i logyi + k−1

n−1x2
n logxn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)2

log

(
k

j=1

yi j

)⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠ ,

s = t = 1.

For simplicity, we don’t list the cases s = 0, t 	= 0,1 and t = 1, s 	= 0,1 and s = 0, t = 1
in the previous table. They can be easily obtained from the similar cases when s and t are
reversed.

By applying (c), we have that ūs,t(,�x,2) (s,t ∈ R) are means (of the numbers
x1 < .. . < xn) on

{(x1, . . . ,xn) | x1 > 0, x1 ≤ xi − xi−1, 2 ≤ i ≤ n} ,

and they are monotonic in both parameters.
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Example 6.7 Assume (G) with I = (0,) and D() = C (0,). Consider the class of
continuous convex functions

3 = {t : (0,) → (0,) | t ∈ (0,)},

where

t(x) :=

{
xt−x

log2t
, t 	= 1,

x3

2 , t = 1.

Then the function t
id is t (see Example 6.3) for every t ∈ (0,). Thus, as we have seen

in Example 6.3 the function t → [y0,y1,y2;
 t
id ] = [y0,y1,y2;t ], t ∈ (0,) is exponentially

convex in the Jensen sense for every three mutually different points y0,y1,y2 ∈ (0,).
(a) By applying Corollary 6.3 with J = (0,) and  = 3, we get the exponential

convexity of t → (t) (t ∈ (0,)) in the Jensen sense. If the mapping t → (t) (t ∈
(0,)) is also continuous, then it is exponentially convex.

(b) If the mapping t →(t) (t ∈ (0,)) is positive and differentiable, then Corollary
6.4 (ii) gives the monotonicity of the function us,t(,3) (defined by (6.16) with =3)
in both parameters..

(c) Suppose the mapping t →(t) (t ∈ (0,)) is positive and differentiable. Suppose
further that [a,b] ⊂ (0,) is an interval with the following property:

(i) if f ∈ D() such that the restriction of f
id to [a,b] is convex, then ( f ) ≥ 0.

By using the logarithmic mean (see (6.22))

L(s,t) :=

{
t−s

logt−log s , s 	= t,

s, t = s.
, s,t > 0,

we introduce
M̄s,t(,3) := −L(s,t) log ūs,t(,3), s,t > 0.

If s 	= t, we can apply Theorem 6.6 (the conditions of the theorem are satisfied) which
shows that there exists  ∈ [a,b] such that

M̄s,t(,3) = −L(s,t)
1

s− t
log

(
( s)
(t)

)
=

1
logt− logs

log

(
 2 ′′

s ( )−2  ′
s( )+2s( )

 2 ′′
t ( )−2  ′

t ( )+2t( )

)

=
− (logs− logt)

logt− logs
=  ∈ [a,b] .

It follows from this by taking limit that

M̄s,s(,3) ∈ [a,b] , s ∈ (0,).

It can be seen that
a ≤ M̄s,t(,3) ≤ b, s,t ∈ (0,).
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The function M̄s,t(,3) is decreasing in both parameters, because us,t(,3) and L(s,t)
are increasing in both parameters: if s,t,u,v ∈ (0,) such that s ≤ u and t ≤ v, then

M̄s,t(,3) ≥ M̄u,v(,3).

(d) Now, we consider the functional defined in (4.10) (see (d) in Example 6.5).
Suppose the mapping t →(t) (t ∈ (0,)) is positive.
It is easy to check that the mapping t →(t) (t ∈ (0,)) is differentiable. It follows

from (c) that

min
1≤i≤n

xi ≤ M̄s,t(,x,3) ≤
n


i=1

xi, s,t ∈ (0,),

and therefore M̄s,t(,x,3) is not a mean of the numbers xi (1 ≤ i ≤ n).
To construct means of the numbers xi (1 ≤ i ≤ n), we assume as in the previous two

examples that
x1 ≤ xi − xi−1, 2 ≤ i ≤ n.

We also use the notation

�x :=(y1,y2, . . .yn) = (x1,x2− x1, . . . ,xn − xn−1) .

Then x1 < .. . < xn, min
1≤i≤n

yi = x1 and
n

i=1

yi = xn = max
1≤i≤n

xi.

It is not hard to calculate
ūs,t(,�x,3)

=

⎛⎜⎜⎜⎜⎜⎜⎝
log2t

log2s

n−k
n−1

n

i=1

yis−yi + k−1
n−1xns−xn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
s
−
(

k

j=1

yi j

)

n−k
n−1

n

i=1

yit−yi + k−1
n−1xnt−xn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
t
−
(

k

j=1

yi j

)

⎞⎟⎟⎟⎟⎟⎟⎠

1
s−t

,

s 	= t, s,t 	= 1,

=

⎛⎜⎜⎜⎜⎜⎜⎝
2

log2s

n−k
n−1

n

i=1

yis−yi + k−1
n−1xns−xn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
s
−
(

k

j=1

yi j

)

n−k
n−1

n

i=1

y3
i + k−1

n−1x3
n− 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)3

⎞⎟⎟⎟⎟⎟⎟⎠

1
s−1

,

t = 1, s 	= 1,

= exp

⎛⎜⎜⎜⎜⎜⎜⎝−
2

s logs
−

n−k
n−1

n

i=1

y2
i s

−yi + k−1
n−1x2

ns
− xn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)2

s
−
(

k

j=1

yi j

)

s

⎛⎝ n−k
n−1

n

i=1

yis−yi + k−1
n−1 xns−xn − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
s
−
(

k

j=1

yi j

)⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠ ,

s = t 	= 1,
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= exp

⎛⎜⎜⎜⎜⎜⎝−
1
3

n−k
n−1

n

i=1

y4
i + k−1

n−1x4
n − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)4

n−k
n−1

n

i=1

y3
i + k−1

n−1x3
n − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)3

⎞⎟⎟⎟⎟⎟⎠ , s = t = 1.

By applying (c), we have that M̄s,t(,x,3) (s,t ∈ (0,)) are means (of the numbers
x1 < .. . < xn) on

{(x1, . . . ,xn) | x1 > 0, x1 ≤ xi− xi−1, 2 ≤ i ≤ n} ,

and they are monotonic in both parameters.

Example 6.8 Assume (G) with I = (0,) and D() = C (0,). Consider the class of
continuous convex functions

4 = {t : (0,) → (0,) | t ∈ (0,)},
where

t(x) :=
xe−x

√
t

t
.

Then the function  t
id is t (see Example 6.4) for every t ∈ (0,). Thus, as we have seen

in Example 6.4 the function t → [y0,y1,y2;
 t
id ] = [y0,y1,y2;t ], t ∈ (0,) is exponentially

convex in the Jensen sense for every three mutually different points y0,y1,y2 ∈ (0,).
(a) By applying Corollary 6.3 with J = (0,) and  = 4, we get the exponential

convexity of t → (t) (t ∈ (0,)) in the Jensen sense. If the mapping t → (t) (t ∈
(0,)) is also continuous, then it is exponentially convex.

(b) If the mapping t →(t) (t ∈ (0,)) is positive and differentiable, then Corollary
6.4 (ii) gives the monotonicity of the function us,t(,4) (defined by (6.16) with =4)
in both parameters..

(c) Suppose the mapping t →(t) (t ∈ (0,)) is positive and differentiable. Suppose
further that [a,b] ⊂ (0,) is an interval with the following property:

(i) if f ∈ D() such that the restriction of f
id to [a,b] is convex, then ( f ) ≥ 0.

Introduce

M̄s,t(,4) := −(
√

s+
√

t) logus,t(,4), s,t ∈ (0,).

If s 	= t, we can apply Theorem 6.6 (the conditions of the theorem are satisfied) which
shows that there exists  ∈ [a,b] such that

M̄s,t(,4) = −(
√

s+
√

t)
1

s− t
log

(
( s)
(t)

)
=

1√
t−√

s
log

(
 2 ′′

s ( )−2 ′
s( )+2s( )

 2 ′′
t ( )−2 ′

t ( )+2t( )

)
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=
1√

t−√
s
loge−(

√
s−√

t) =  ∈ [a,b] .

It follows from this by taking limit that

M̄s,s(,4) ∈ [a,b] , s ∈ (0,).

It can be seen that
a ≤ M̄s,t(,4) ≤ b, s,t ∈ (0,).

The function M̄s,t(,4) is decreasing in both parameters, because us,t(,4) is increas-
ing in both parameters: if s,t,u,v ∈ (0,) such that s ≤ u and t ≤ v, then

M̄s,t(,4) ≥ M̄u,v(,4).

(d) Now, we consider the functional defined in (4.10) (see (d) in Example 6.5).
Suppose the mapping t →(t) (t ∈ (0,)) is positive.
It is easy to check that the mapping t →(t) (t ∈ (0,)) is differentiable. It follows

from (c) that

min
1≤i≤n

xi ≤ M̄s,t(,x,4) ≤
n


i=1

xi, s,t ∈ (0,),

and therefore M̄s,t(,x,4) is not a mean of the numbers xi (1 ≤ i ≤ n).
To construct means of the numbers xi (1 ≤ i ≤ n), we assume as in the previous three

examples that
x1 ≤ xi − xi−1, 2 ≤ i ≤ n.

We also use the notation

�x :=(y1,y2, . . .yn) = (x1,x2− x1, . . . ,xn − xn−1) .

Then x1 < .. . < xn, min
1≤i≤n

yi = x1 and
n

i=1

yi = xn = max
1≤i≤n

xi.

It is easy to calculate
us,t(,4)

=

⎛⎜⎜⎜⎜⎜⎜⎝
t
s

n−k
n−1

n

i=1

yie−yi
√

s + k−1
n−1xne−xn

√
s − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
e
−
(

k

j=1

yi j

)
√

s

n−k
n−1

n

i=1

yie−yi
√

t + k−1
n−1xne−xn

√
t − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
e
−
(

k

j=1

yi j

)
√

t

⎞⎟⎟⎟⎟⎟⎟⎠

1
s−t

,

s 	= t,

= exp

⎛⎜⎜⎜⎜⎜⎝ −1
s
− 1

2
√

s

n−k
n−1

n


i=1
y2
i e

−yi
√

s + k−1
n−1x2

ne
−xn

√
s − 1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)2

e
−
(

k

j=1

yi j

)√
s

n−k
n−1

n


i=1
yie−yi

√
s + k−1

n−1xne−xn
√

s − 1
(n−1

k−1)


1≤i1<...<ik≤n

(
k

j=1

yi j

)
e
−
(

k

j=1

yi j

)√
s

⎞⎟⎟⎟⎟⎟⎠ ,

s = t.
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By applying (c), we have that M̄s,t(,x,4) (s,t ∈ (0,)) are means (of the numbers
x1 < .. . < xn) on

{(x1, . . . ,xn) | x1 > 0, x1 ≤ xi− xi−1, 2 ≤ i ≤ n} ,

and they are monotonic in both parameters.





Chapter7
Refinements of Hölder’s and
Minkowski’s inequalities

The results about interpolation of Mixed Means given in [58] are without weights. But in
[38], we have given results with weights and improved the results given in [58] by using a
refinement of the discrete Jensen’s inequality from [44]. Further, in [39] we work on the
refinement given in [32] to establish the generalizations of corresponding results given in
[38] and we presents some parameter dependent refinements of Hölder’s and Minkowski’s
inequalities with the help of [33].

The results of this chapter are given in [38] and [39].
We start with the extensions of Beck’s results [9], given in [38]. The following hypoth-

esis is assumed:
(A1) Let Lt : It → R (t = 1, ...,m) and N : IN → R be continuous and strictly monotone

functions whose domains are intervals in R, and let f : I1 × ...× Im → IN be a continuous
function. Let x(1), ...,x(m) ∈ Rn (n ≥ 2) such that x(t) ∈ I

n
t for each t = 1, . . . ,m, and let

p = (p1, ..., pn) be a nonnegative n-tuple such that n
i=1 pi = 1.

The following result is a simple consequence of the discrete Jensen’s inequality (The-
orem 1.5).

Theorem 7.1 [38] Assume (A1). If N is an increasing function, then the inequality

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≥ N−1

(
n


i=1

piN( f (x(1)
i , ...,x(m)

i ))

)
, (7.1)

holds for all possible x(t) (t = 1, . . . ,m) and p, if and only if the function H defined on

157
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L1(I1)× ...×Lm(Im) by

H(t1, ...,tm) := N
(
f
(
L−1

1 (t1), ...,L−1
m (tm)

))
is concave. The inequality in (7.1) is reversed for all possible x(t) (t = 1, . . . ,m) and p, if
and only if H is convex.

Beck’s original result was the special case of Theorem 7.1, where m = 2 and I1 =
[k1,k2], I2 = [l1, l2] and IN = [n1,n2] (see [12], p. 249).

For simplicity, in the case m = 2 we use the following form of (A1):
(A2) Let K : IK → R, L : IL → R and N : IN → R be continuous and strictly mono-

tone functions whose domains are intervals in R, and let f : IK × IL → IN be a continuous
function. Let a, b ∈ Rn (n ≥ 2) such that a ∈ In

K and b ∈ In
L , and let p = (p1, ..., pn) be a

nonnegative n-tuple such that n
i=1 pi = 1.

Then (7.1) has the form

f (Kn(a;p),Ln(b;p)) ≥ Nn( f (a,b);p), (7.2)

where f (a,b) means ( f (a1,b1), ..., f (an,bn)).
The following results are important special cases of Theorem 7.1, and generalize the

corresponding results of Beck. The next hypothesis will be used:
(A3) Let K : IK → R, L : IL → R and N : IN → R be continuous and strictly monotone

functions whose domains are intervals in R such that either IK + IL ⊂ IN and f (x,y) = x+y
((x,y) ∈ IK × IL) or IK , IL ⊂ (0,), IK · IL ⊂ IN and f (x,y) = xy ((x,y) ∈ IK × IL). Assume
further that the functions K, L and N are twice continuously differentiable on the interior
of their domains, respectively. Let a, b ∈ Rn (n ≥ 2) such that a ∈ In

K and b ∈ In
L , and let

p = (p1, ..., pn) be a nonnegative n-tuple such that n
i=1 pi = 1.

The interior of a subset A of R is denoted by A◦.

Corollary 7.1 [38] Assume (A3) with f (x,y) = x+ y ((x,y) ∈ IK × IL), and assume that
K′, L′, N′, K′′, L′′ and N′′ are all positive. Introducing E := K′

K′′ , F := L′
L′′ , G := N′

N′′ , (7.2)
holds for all possible a, b and p if and only if

E(x)+F(y) ≤ G(x+ y), (x,y) ∈ I◦K × I◦L. (7.3)

Corollary 7.2 [38] Assume (A3) with f (x,y) = xy ((x,y)∈ IK×IL). Suppose the functions

A(x) := K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x) andC(x) := N′(x)
N′(x)+xN′′(x) are defined on I◦K, I◦L and

I◦N, respectively. Assume further that K′, L′, N′, A, B and C are all positive. Then (7.2)
holds for all possible a, b and p if and only if

A(x)+B(y) ≤C(xy), (x,y) ∈ I◦K × I◦L.

To prove these corollaries, similar arguments can be applied as in the analogous results
of Beck. We just sketch the proof of Corollary 7.1.
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Proof. By Theorem 7.1, it is enough to prove that the function

H : K(IK)×L(IL), H(t,s) := N
(
K−1(t)+L−1(s)

)
is concave. Since H is continuous, and twice continuously differentiable on the interior
K(I◦K)×L(I◦L) of its domain, we have to show that

D11H(t,s)h2
1 +2D12H(t,s)h1h2 +D22H(t,s)h2

2 ≤ 0

for all (t,s) ∈ K(I◦K)×L(I◦L) and (h1,h2) ∈ R2. By computing the partial derivatives of H
of order 2 at the points of K(I◦K)×L(I◦L), we have that this condition follows from (7.3). �

In [58], Mitrinović and Pečarić obtained a new inequality like (7.2), which is based on
Theorem 1.7.

Assume (A2). We denote by k
i (1 ≤ i ≤ v) and  k

i (1 ≤ i ≤ v) the k-tuples of a and b

respectively, where v =

(
n

k

)
. Following [58], we introduce the mixed N-K-L means of a

and b:

M(N,K,L;k) := Nv( f (Kk(k
i ),Lk( k

i )); 1 ≤ i ≤ v), 1 < k < n, (7.4)

and
M(N,K,L;1) := Nn( f (a,b)),

M(N,K,L;n) := f (Kn(a),Ln(b)) .

The promised theorem from [58] is the next:
Theorem A. Assume (A2). Let N be an increasing (decreasing) function, and let

H : K(IK)×L(IL) → R, H(s,t) := N
(
f
(
K−1(s),L−1(t)

))
be a convex (concave) function. Then

M(N,K,L;k+1) ≤ M(N,K,L;k), k = 1, ...,n−1. (7.5)

If N is increasing (decreasing) but H is concave (convex) then the inequalities in (7.5) are
reversed.
Here we can apply Theorem 1.7 to the function H and to the points (K(ai),L(bi)) (1 ≤ i ≤
n).

On the analogy of Corollary 7.1 and Corollary 7.2, we have the following consequences
of Theorem A.

Corollary A. Assume (A3) with f (x,y) = x+ y ((x,y) ∈ IK × IL). Assume further that K′,
L′, N′, K′′, L′′ and N′′ are all positive and E(x)+F(y) ≤ G(x+y) ((x,y) ∈ I◦K × I◦L), where
E := K′

K′′ , F := L′
L′′ , G := N′

N′′ . Then (7.5) with reverse inequality is valid.

Corollary B. Assume (A3) with f (x,y) = xy ((x,y) ∈ IK × IL). Suppose the functions

A(x) := K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x) and C(x) := N′(x)
N′(x)+xN′′(x) are defined on I◦K, I◦L



160 7 MEAN VALUE THEOREMS AND EXPONENTIAL CONVEXITY

and I◦N , respectively. If K′, L′, M′, A, B and C are all positive and A(x)+ B(y) ≤ C(xy)
((x,y) ∈ I◦K × I◦L), then (7.5) with reverse inequality is valid.

Next, we collect four results which are special cases of earlier results. We need the
following hypothesis:

(G1) Let U be a convex set in Rm, x1, . . . ,xn ∈U , and let p := (p1, ..., pn) be a positive
n-tuples such that n

i=1 pi = 1. Further, let f : U → R be a convex function.
By using the notations introduced in Section 2.1 (see N1), we remind:
(H0) For fixed integers n ≥ 1 and k ≥ 2 consider a subset Ik of {1, ...,n}k such that

Ik ,i ≥ 1, 1 ≤ i ≤ n.

For any k ≥ l ≥ 1 set

Al,l = Al,l(Il;x1, . . . ,xn;p) := 
(i1,...,il)∈Il

(
l


s=1

pis
Il ,is

)
f

⎛⎝ l


s=1

pis
Il ,is

xis

l


s=1

pis
Il ,is

⎞⎠ , (7.6)

and associate to each k−1≥ l ≥ 1 the number

Ak,l = Ak,l(Ik;x1, . . . ,xn;p)

:= 1
(k−1)...l 

(i1,...,il)∈Il

tIk ,l(i1, ..., il)
(

l


s=1

pis
Ik,is

)
f

⎛⎝ l


s=1

pis
Ik ,is

xis

l


s=1

pis
Ik ,is

⎞⎠ . (7.7)

The following refinement of the discrete Jensen’s inequality is coming from Theorem
2.1.

Theorem B. Assume (H0) and (G1). Then

f

(
n


i=1

pixi

)
≤ Ak,k ≤ Ak,k−1 ≤ ... ≤ Ak,2 ≤ Ak,1 =

n


i=1

pi f (xi), (7.8)

where the numbers Ak,l (k≥ l ≥ 1) are defined in (7.6) and (7.7). If f is a concave function
then the inequalities in (7.8) are reversed.

The following result is a special case of Theorem 2.2.

Theorem C. Assume (H0) and (G1), and suppose
∣∣HIl ( j1, ..., jl−1)

∣∣ = l−1 for any
( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). Then

Ak,l = Al,l =
n

l |Il| 
(i1,...,il)∈Il

(
l


s=1

pis

)
f

⎛⎜⎜⎝
l


s=1
pisxis

l


s=1
pis

⎞⎟⎟⎠ , k ≥ l ≥ 1,

and thus

f

(
n


r=1

prxr

)
≤ Ak,k ≤ Ak−1,k−1 ≤ ... ≤ A2,2 ≤ A1,1 =

n


r=1

pr f (xr). (7.9)



7.0 APPLICATIONS TO CAUCHY MEANS 161

If f is a concave function then the inequalities in (7.9) are reversed.
By the virtue of hypotheses (they are introduced in Section 2.2)
(H4) Let S1, . . . ,Sn be finite, pairwise disjoint and nonempty sets, let

S :=
n⋃

j=1

S j,

and let c be a function from S into R such that

c(s) > 0, s ∈ S, and 
s∈S j

c(s) = 1, j = 1, . . . ,n.

Let the function  : S → {1, . . . ,n} be defined by

(s) := j, if s ∈ S j.

and
(H5) Suppose A ⊂ P(S) is a partition of S into pairwise disjoint and nonempty sets.

Let
k := max{|A| | A ∈ A } ,

and let
Al := {A ∈ A | |A| = l} , l = 1, . . . ,k.

we state the following refinement of the discrete Jensen’s inequality which is contained
in Theorem 2.3:

Theorem D. Assume (H4), (H5) and (G1). Then

f

(
n


j=1

p jx j

)
≤ Ak ≤ Ak−1 ≤ . . . ≤ A2 ≤ A1 =

n


j=1

p j f (x j),

where

Ak :=
k


l=1

⎛⎝ 
A∈Al

⎛⎝(
s∈A

c(s)p(s)

)
f

⎛⎝ 
s∈A

c(s)p(s)x(s)


s∈A

c(s)p(s)

⎞⎠⎞⎠⎞⎠ , (7.10)

and for every 1 ≤ d ≤ k−1 the number Ak−d is given by

Ak−d :=
d


l=1

(


A∈Al

(

s∈A

c(s)p(s) f (x(s))

))
+

k


l=d+1

(
d!

(l−1) . . .(l−d)
(7.11)

· 
A∈Al

⎛⎝ 
B∈Pl−d(A)

⎛⎝(
s∈B

c(s)p(s)

)
f

⎛⎝ 
s∈B

c(s)p(s)x(s)


s∈B

c(s)p(s)

⎞⎠⎞⎠⎞⎠⎞⎠ .

From the parameter dependent refinement of the discrete Jensen’s inequality (see Theorem
2.5), we have
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Theorem E. For any real number  ≥ 1, we suppose (G1) and consider the sets

Sk :=

{
(i1, . . . , in) ∈ Nn |

n


j=1

i j = k

}
, k ∈ N. (7.12)

Let
Ck( ) = Ck(x1, . . . ,xn; p1, . . . , pn; )

:=
1

(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

(
n


j=1

 i j p j

)
f

⎛⎜⎜⎝
n

j=1

 i j p jx j

n

j=1

 i j p j

⎞⎟⎟⎠ , (7.13)

for any k ∈ N. Then

f

(
n


j=1

p jx j

)
= C0( ) ≤C1( ) ≤ . . . ≤Ck( ) ≤ . . . ≤

n


j=1

p j f (x j), k ∈ N.

7.1 Generalizations of Beck’s result

In what follows (A1) and (H0) are assumed. The weighted mixed means relative to (7.6)
and (7.7) are defined in the following ways:

M1
k,k(L1, ...,Lm;x(1), ...,x(m);p) :=

N−1

(


ik∈Ik

(
k


s=1

pis
Ik,is

)
N
(

f
(
L1(x(1); p

Ik
;k), ...,Lm(x(m); p

Ik
;k)
)))

and for k−1≥ l ≥ 1

M1
k,l(L1, ...,Lm;x(1), ...,x(m);p) :=

N−1

(
1

(k−1)...l 
il∈Il

tIk ,l(i
l)
(

l


s=1

pis
Ik,is

)
N
(

f
(
L1(x(1); p

Ik
; l), ...,Lm(x(m); p

Ik
; l)
)))

where for k ≥ l ≥ 1

Lt(x(t);
p
Ik

; l) := L−1
t

⎛⎜⎜⎝
l


s=1

pis
Ik,is

Lt(x
(t)
is

)

l


s=1

pis
Ik,is

⎞⎟⎟⎠ , t = 1, . . . ,m,

respectively, and il := (i1, ..., il).

Now, we get an interpolation of (7.1) by the direct application of Theorem B as follows.
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Theorem 7.2 Assume (A1) and (H0). If N is an increasing (decreasing) function, then
the inequalities

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ M1

k,k(L1, ...,Lm;x(1), ...,x(m);p)

≤ M1
k,k−1(L1, ...,Lm;x(1), ...,x(m);p)

≤
...
≤
≤ M1

k,2(L1, . . . ,Lm;x(1), . . . ,x(m);p)
≤ M1

k,1(L1, ...,Lm;x(1), ...,x(m);p)

= N−1

(
n


i=1

piN( f (x(1)
i , ...,x(m)

i ))

)
(7.14)

hold for all possible x(t) (t = 1, . . . ,m) and p, if and only if the function H defined in
Theorem 7.1 is convex (concave). If N is an increasing (decreasing) function, then the
inequalities in (7.14) are reversed for all possible x(t) (t = 1, . . . ,m) and p, if and only if H
is concave (convex).

Proof. Suppose N is increasing and the function H : L1(I1)× ...×Lm(Im) → R,

H(t1, ...,tm) = N
(
f
(
L−1

1 (t1), ...,L−1
m (tm)

))
is convex. We apply Theorem B to the function H and to the vectors (L1(x1

i ), . . . ,Lm(xm
i )),

i = 1, . . . ,n. Then the first term in (7.8) gives

H

(
n

i=1

pi(L1(x1
i ), . . . ,Lm(xm

i ))
)

= N

(
f

(
L−1

1 (
n

i=1

piL1(x1
i )), ...,L

−1
m (

n

i=1

piLm(xm
i ))
))

= N
(

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

))
.

The last term in (7.8) will be

n


i=1

piH(L1(x1
i ), . . . ,Lm(xm

i )) =
n


i=1

piN
(
f
(
x1
i , . . . ,x

m
i

))
.

Ak,k in (7.8) has the form


(i1,...,ik)∈Ik

(
k


s=1

pis
Ik ,is

)
H

⎛⎝ k


s=1

pis
Ik ,is

(L1(x1
is ),...,Lm(xm

is
))

k


s=1

pis
Ik ,is

⎞⎠
= 

(i1,...,ik)∈Ik

(
k


s=1

pis
Ik,is

)
N

⎛⎝ f

⎛⎝L−1
1

⎛⎝ k


s=1

pis
Ik ,is

L1(x1
is )

k


s=1

pis
Ik ,is

⎞⎠ , . . . ,L−1
m

⎛⎝ k


s=1

pis
Ik,is

Lm(xm
is )

k


s=1

pis
Ik ,is

⎞⎠⎞⎠⎞⎠
= 

ik∈Ik

(
k


s=1

pis
Ik,is

)
N
(

f
(
L1(x(1); p

Ik
;k), ...,Lm(x(m); p

Ik
;k)
))
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= M1
k,k(L1, ...,Lm;x(1), ...,x(m);p).
A similar argument shows that for k−1 ≥ l ≥ 1 Ak,l in (7.8) can be written as

M1
k,l(L1, ...,Lm;x(1), ...,x(m);p).

The inequality (7.14) follows from these observations and Theorem B since N−1 is
increasing.

The converse is obtained by Theorem 7.1. �

The following applications of Theorem 7.2 are motivated by Example 2.1 and Example
2.2 corresponding to Theorem B.

Example 7.1 Assume (A1). Consider

I2 : = {(i1, i2) ∈ {1, ...,n}2 | i1|i2},
where i1|i2 means that i1 divides i2. Since i|i (i = 1, ...,n), therefore (H0) holds and

I2 ,i =
[n

i

]
+d(i), i = 1, ...,n,

where [ n
i ] is the largest positive integer not greater than n

i , and d(i) means the number of
positive divisors of i. Then a corresponding weighted mixed mean is

M1
2,2(L1, ...,Lm;x(1), ...,x(m);p)

= N−1

(


(i1,i2)∈I2

(
2


s=1

pis

[ n
is ]+d(is)

)
N
(

f
(
L1(x(1); p

I2
), ...,Lm(x(m); p

I2
)
)))

,

where

Lt(x(t);
p
I2

) := L−1
t

⎛⎜⎜⎝
2


s=1

pis

[ n
is ]+d(is)

Lt(x
(t)
is

)

2


s=1

pis

[ n
is ]+d(is)

⎞⎟⎟⎠ , t = 1, ...,m.

If N is increasing and the function H defined in Theorem 7.1 is convex, then Theorem 7.2
gives

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ M1

2,2(L1, ...,Lm;x(1), ...,x(m);p) ≤ N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

.

Example 7.2 Assume (A1). Let ci ≥ 1 (i = 1, ...,n) be integers, let k :=
n

i=1

ci, and also

let Ik = Pc1,...,cn
k consist of all sequences (i1, ..., ik) in which the number of occurrences of

i ∈ {1, ...,n} is ci (i = 1, ...,n). Then (H0) is satisfied, and

Ik−1 =
n⋃

i=1

Pc1,...,ci−1,ci−1,ci+1,...,cn
k−1 , Ik ,i =

k!
c1!...cn!

ci, i = 1, ...,n,
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Moreover, tIk ,k−1(i1, ...., ik−1) = k for

(i1, ...., ik−1) ∈ Pc1,...,ci−1,ci−1,ci+1,...,cn
k−1 , i = 1, ...,n.

Then we can write a corresponding mixed mean as follows:

M1
k,k−1(L1, ...,Lm;x(1), ...,x(m);p)

= N−1

(
1

k−1

n

i=1

(ci − pi)N
(

f
(
L1(x; p

ci
), ...,Lm(x; p

ci
)
)))

,

where

Lt(x;
p
ci

) := L−1
t

⎛⎜⎜⎝
n


r=1
prLt(x

(t)
r )− pi

ci
Lt(x

(t)
i )

1− pi
ci

⎞⎟⎟⎠ , t = 1, ...,m.

If M is increasing and the function H defined in Theorem 7.1 is convex, then Theorem 7.2
gives

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ M1

k,k−1(L1, ...,Lm;x(1), ...,x(m);p) ≤ N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

.

Now, we assume (A1), (H0) and suppose
∣∣HIl ( j1, ..., jl−1)

∣∣= l−1 for any ( j1, ..., jl−1)∈
Il−1 (k≥ l ≥ 2). Then corresponding to the core term of Theorem C, we define for k≥ l ≥ 1

M2
l,l(L1, ...,Lm;x(1), ...,x(m);p)

= N−1

(
n

l|Il |
n


il∈Il

(
l


s=1
pis

)
N
(

f
(
L1(x(1);pIl

), ...,Lm(x(m);pIl )
)))

,
(7.15)

where

Lt(x(t);pIl ) := L−1
t

⎛⎜⎜⎝
l


s=1
pisLt(x

(t)
is

)

l


s=1
pis

⎞⎟⎟⎠ , t = 1, . . . ,m.

In this case Theorem C gives another interpolation of (7.1) as follows:

Theorem 7.3 Assume (A1), (H0) and suppose
∣∣HIl ( j1, ..., jl−1)

∣∣= l−1 for any ( j1, ..., jl−1)∈
Il−1 (k ≥ l ≥ 2). If N is an increasing (decreasing) function, then inequalities

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ M2

k,k(L1, ...,Lm;x(1), ...,x(m);p) ≤
≤ M2

k−1,k−1(L1, ...,Lm;x(1), ...,x(m);p) ≤ ... ≤ M2
2,2(L1, ...,Lm;x(1), ...,x(m);p) ≤

≤ M2
1,1(L1, ...,Lm;x(1), ...,x(m);p) = N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

.

(7.16)
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hold for all possible x(t) (t = 1, . . . ,m) and p, if and only if the function H defined in
Theorem 7.1 is convex (concave). If N is an increasing (decreasing) function, then the
inequalities in (7.16) are reversed for all possible x(t) (t = 1, . . . ,m) and p, if and only if H
is concave (convex).

Proof. The proof is similar to the proof of Theorem 7.2. �

Now, we give some applications of Theorem 7.3 with the help of Examples 2.4-2.7.

Example 7.3 Assume (A1). If we set

Ik : = {(i1, ..., ik) ∈ {1, ...,n}k | i1 < ... < ik}, 1 ≤ k ≤ n,

then In,i = 1 (i = 1, ...,n) i.e. (H0) is satisfied for k = n. It comes easily that Tk(Ik) =
Ik−1 (k = 2, ...,n), |Ik| =

(n
k

)
(k = 1, ...,n), and for each k = 2, ...,n∣∣HIk ( j1, ..., jk−1)
∣∣= n− (k−1), ( j1, ..., jk−1) ∈ Ik−1.

In this case (7.15) becomes for n ≥ k ≥ 1

M2
k,k(L1, ...,Lm;x(1), ...,x(m);p)

= N−1

⎛⎜⎜⎜⎜⎝ 1⎛⎜⎝ n−1

k−1

⎞⎟⎠


1≤i1<...<ik≤n

(
k


s=1
pis

)
N
(

f
(
L1(x(1);pIk ), ...,Lm(x(m);pIk )

))
⎞⎟⎟⎟⎟⎠ .

(7.17)
If N is increasing and the function H defined in Theorem 7.1 is convex, then Theorem 7.3
gives

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ M2

n,n(L1, ...,Lm;x(1), ...,x(m);p) ≤
≤ M2

n−1,n−1(L1, ...,Lm;x(1), ...,x(m);p) ≤ ... ≤ M2
2,2(L1, . . . ,Lm;x(1), ...,x(m);p) ≤

≤ M2
1,1(L1, . . . ,Lm;x(1), ...,x(m);p) = N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

.

(7.18)

Remark 7.1 If we take p1 = ... = pn = 1
n and m = 2 in (7.17), then we get (7.4). Hence

the interpolation given in (7.18) is a generalization of (7.5).

Example 7.4 Assume (A1). If we set

Ik : = {(i1, ..., ik) ∈ {1, ...,n}k | i1 ≤ ... ≤ ik}, k ≥ 1,

then Ik ,i ≥ 1 (i = 1, ...,n) and thus (H0) is satisfied. It is easy to see that Tk(Ik) = Ik−1 (k =
2, ...), |Ik| =

(n+k−1
k

)
(k = 1, ...), and for each l = 2, ...,k∣∣HIl ( j1, ..., jl−1)

∣∣= n, ( j1, ..., jl−1) ∈ Il−1.
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Under these settings (7.15) becomes

M2
k,k(L1, ...,Lm;x(1), ...,x(m);p)

= N−1

⎛⎜⎜⎜⎜⎝ 1⎛⎜⎝ n+ k−1

k

⎞⎟⎠


1≤i1≤...≤ik≤n

(
k


s=1
pis

)
N
(

f
(
L1(x(1);pIk

), ...,Lm(x(m);pIk )
))
⎞⎟⎟⎟⎟⎠ .

If N is increasing and the function H defined in Theorem 7.1 is convex, then Theorem 7.3
gives

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ ... ≤ M2

k,k(L1, . . . ,Lm;x(1), . . . ,x(m);p) ≤
≤ ... ≤ M2

k,1(L1, ...,Lm;x(1), ...,x(m);p) = N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

.

Example 7.5 Assume (A1). Let

Ik : = {1, ...,n}k, k ≥ 1.

Then Ik ,i ≥ 1 (i = 1, ...,n), hence (H0) holds and Tk(Ik) = Ik−1 (k = 2, ...), |Ik| = nk

(k = 1, ...), also for l = 2, ...,k∣∣HIl ( j1, ..., jl−1)
∣∣= nl, ( j1, ..., jl−1) ∈ Il−1.

Therefore under these settings, for k ≥ 1, (7.15) leads to

M2
k,k(L1,L2;x(1),x(2);p)

= N−1

(
1

knk−1 
(i1,...,ik)∈Ik

(
k


s=1
pis

)
N
(

f
(
L1(x(1);pIk

), ...,Lm(x(m);pIk )
)))

.

If N is increasing and the function H defined in Theorem 7.1 is convex, then for k ≥ 1
Theorem 7.3 gives

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ ... ≤ M2

k,k(L1, .,Lm;x(1), . . . ,x(m);p) ≤
≤ ... ≤ M2

1,1(L1, ...,Lm;x(1), ...,x(m);p) = N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

.

Example 7.6 Assume (A1). Let 1 ≤ k ≤ n and let Ik consist of all sequences (i1, ..., ik) of
k distinct numbers from {1, ...,n}. Then In,i ≥ 1 (i = 1, ...,n), and (H0) is satisfied. It is
immediate that Tk(Ik) = Ik−1 (k = 2, ...), |Ik| = n(n−1)...(n− k+1) (k = 1, ...,n), and for
every k = 2, ...,n∣∣HIk ( j1, ..., jk−1)

∣∣= (n− k+1)k, ( j1, ..., jk−1) ∈ Ik−1.
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Therefore under these settings, for k = 1, ...,n, (7.15) gives

M2
k,k(L1, .,Lm;x(1), . . . ,x(m);p)

= N−1

(
n

kn(n−1)(n−k+1) 
(i1,.,ik)∈Ik

(
k


s=1
pis

)
N
(

f
(
L1(x(1);pIk

), ...,Lm(x(m);pIk )
)))

.

If N is increasing and the function H defined in Theorem 7.1 is convex, then Theorem 7.3
gives

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ M2

n,n(L1, ...,Lm;x(1), ...,x(m);p) ≤
≤ ... ≤ M2

k,k(L1, . . . ,Lm;x(1), . . . ,x(m);p) ≤ ... ≤
≤ M2

1,1(L1, ...,Lm;x(1), ...,x(m);p) = N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

.

Assume (A1) with positive n-tuple p, (H4) and (H5). Let

Lt(x(t);cp;B) = L−1
t

⎛⎜⎝ 
s∈B

c(s)p(s)Lt(x(t)
(s)

)


s∈B

c(s)p(s)

⎞⎟⎠ , t = 1, . . . ,m, B ⊂ S,

and let
xi :=
(
x(1)
i , . . . ,x(m)

i

)
, i = 1, . . . ,n.

Then weighted mixed means corresponding to (7.10) and (7.11) are defined in the follow-
ing ways:

M1
k := M1

k (L1, ...,Lm;x(1), ...,x(m);cp) :=

N−1

(
k

l=1

(


A∈Al

((


s∈A
c(s)p(s)

)
N
(

f
(
L1(x(1);cp;A), ...,Lm(x(m);cp;A)

)))))
,

and for 1 ≤ d ≤ k−1

M1
k−d := M1

k−d(L1, ...,Lm;x(1), ...,x(m);cp) :=

N−1

⎛⎜⎜⎜⎜⎝
d

l=1

(


A∈Al

(


s∈A
c(s)p(s)N( f (x(s)))

))
+

k


l=d+1

(
d!

(l−1)...(l−d)


A∈Al

(


B∈Pl−d(A)

((


s∈B
c(s)p(s)

)
N( f (L1(x(1);cp;B), ...,Lm(x(m);cp;B)))

)))
⎞⎟⎟⎟⎟⎠ .

Now, we get an interpolation of (7.1) by the direct application of Theorem D as follows.

Theorem 7.4 Assume (A1) with a positive n-tuple p, (H4) and (H5). If N is a strictly
increasing (decreasing) function, then the inequalities

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ M1

k ≤ M1
k−1 ≤ ... ≤

≤ M1
2 ≤ M1

1 = N−1

(
n

i=1

piN( f (xi))
)

,
(7.19)
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hold for all possible x(t) (t = 1, . . . ,m) and p, if and only if the function H defined in
Theorem 7.1 is convex (concave). If N is a strictly increasing (decreasing) function, then
the inequalities in (7.19) are reversed for all possible x(t) (t = 1, . . . ,m) and p, if and only
if H is concave (convex).

Proof. It comes from Theorem D and Theorem 7.1. We can apply Theorem D to the
vectors (

L1

(
x(1)
i

)
, . . . ,L1

(
x(m)
i

))
, i = 1, . . . ,n,

and the function H if either H is convex and N is strictly increasing or H is concave and N
is strictly decreasing. −H is used if either H is convex and N is strictly decreasing or H is
concave and N is strictly increasing. �

The following applications of Theorem 7.4 are based on Theorem 2.4, Example 2.9
and Example 2.10.

Example 7.7 Let n ≥ 1 and k ≥ 1 be fixed integers, and let Ik ⊂ {1, . . . ,n}k such that

Ik ,i ≥ 1, 1 ≤ i ≤ n,

where Ik ,i means the number of occurrences of i in the sequences ik :=(i1,. . ., ik)∈ Ik. For
j = 1, . . . ,n we introduce the sets

S j := {((i1, . . . , ik) , l) | (i1, . . . , ik) ∈ Ik, 1 ≤ l ≤ k, il = j} .

Let c be a positive function on S :=
n⋃

j=1
S j such that


((i1,...,ik),l)∈S j

c((i1, . . . , ik) , l) = 1, j = 1, . . . ,n.

Assume (A1) with positive n-tuple p. Then the corresponding weighted mixed means are

M1
k := N−1

⎛⎜⎝ 
(i1,...,ik)∈Ik

⎛⎜⎝
(

k

l=1

c((i1, . . . , ik) , l) pil

)
×N( f (L1(x(1);cp; ik), ...,Lm(x(m);cp; ik)))

⎞⎟⎠
⎞⎟⎠ ,

where

Lt(x(t);cp; ik) = L−1
t

⎛⎜⎜⎝
k

l=1

c((i1, . . . , ik) , l) pil Lt(x(t)
il

)

k

l=1

c((i1, . . . , ik) , l) pil

⎞⎟⎟⎠ ; ik ∈ Ik, 1 ≤ t ≤ m,

while for 1 ≤ d ≤ k−1,

M1
k−d :=

N−1

⎧⎪⎪⎨⎪⎪⎩
{

d!
(k−1)...(k−d) 

(i1,...,ik)∈Ik

(


1≤l1<...<lk−d≤k

((
k−m

j=1

c((i1, . . . , ik) , l j) pil j

)
×N( f (L1(x(1);cp; ik; lk−d), ...,Lm(x(m);cp; ik; lk−d)))

))
⎫⎪⎪⎬⎪⎪⎭ ,
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where

Lt(x(t);cp; ik; lk−d)

= L−1
t

⎛⎜⎜⎜⎝
k−d

j=1

c
(
(i1, . . . , ik) , l j

)
pil j

Lt(x(t)
il j

)

k−d

j=1

c
(
(i1, . . . , ik) , l j

)
pil j

⎞⎟⎟⎟⎠ ,
1 ≤ l1 < .. . < lk−d ≤ k,

1 ≤ t ≤ m.
(7.20)

If N is strictly increasing and the function H defined in Theorem 7.1 is convex, then
Theorem 7.2 gives

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ M1

k ≤ M1
k−1 ≤ ... ≤

≤ M1
2 ≤ M1

1 = N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

.
(7.21)

Taking

c((i1, ..., ik), l) =
1∣∣S j
∣∣ = 1

Ik , j
; ((i1, ..., ik), l) ∈ S j,

in (7.21) we get Theorem 2.1 of [38].

Example 7.8 We summarize the essence of Example 2.9.
Let n, r be fixed integers, where n ≥ 3, and 1 ≤ r ≤ n− 2. In this example, for every

i = 1,2, . . . ,n and for every l = 0,1, . . . ,r the integer i+ l will be identified with the uniquely
determined integer j from {1, . . . ,n} for which

l + i≡ j (mod n).

Introducing the notation
D := {1, . . . ,n}×{0, . . . ,r} ,

let for every j ∈ {1, . . . ,n}

S j := {(i, l) ∈ D | i+ l ≡ j (mod n)}
⋃

{ j} ,

and let A ⊂ P(S) (S :=
n⋃

j=1
S j) contain the following sets:

Ai := {(i, l) ∈ D | l = 0, . . . ,r} , i = 1, . . . ,n

and
A := {1, . . . ,n} .

Let c be a positive function on S such that


(i,l)∈S j

c(i, l)+ c( j) = 1, j = 1, . . . ,n.
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Then the sets S1, . . . ,Sn, the partition A , and the function c defined above satisfy the con-
ditions (H4) and (H5).

Assume (A1) with positive n-tuple p. If N is increasing and the function H defined in
Theorem 7.1 is convex, then from Theorem 7.2 we get

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)

≤ N−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

i=1

(
r

l=0

c(i, l) pi+l

)
N
(

f
(
L1(x(1),cp; i), ...,Lm(x(m),cp; i)

))
+

(
n

j=1

c( j)p j

)
N
(

f
(
L1(x(1),cp), ...,Lm(x(m),cp)

))
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ N−1

(
n

i=1

piN( f (xi
(1), ...,x(m)

i ))
)

,

where

Lt(x(t),cp; i) = L−1
t

⎛⎜⎜⎝
r

l=0

c(i, l) pi+lLt(x
(t)
i+l)

r

l=0

c(i, l) pi+l

⎞⎟⎟⎠ , 1 ≤ i ≤ n, 1 ≤ t ≤ m,

and

Lt(x(t),cp) = L−1
t

⎛⎜⎜⎝
n

j=1

c( j)p jLt(x
(t)
j )

n

j=1

c( j)p j

⎞⎟⎟⎠ , 1 ≤ t ≤ m.

Example 7.9 We describe the basic situation in Example 2.10.
Let n and k be fixed positive integers. Let

D := {(i1, . . . , in) ∈ {1, . . . ,k}n | i1 + . . .+ in = n+ k−1},

and for each j = 1, . . . ,n, denote S j the set

S j := D×{ j} .

For every in := (i1, . . . , in) ∈ D designate by A(i1,...,in) the set

A(i1,...,in) := {((i1, . . . , in) , l) | l = 1, . . . ,n} .

It is obvious that S j ( j = 1, . . . ,n) and A(i1,...,in) ((i1, . . . , in) ∈ D) are decompositions of

S :=
n⋃

j=1
S j into pairwise disjoint and nonempty sets, respectively. Let c be a function on S

such that
c((i1, . . . , in) , j) > 0, ((i1, . . . , in) , j) ∈ S

and


(i1,...,in)∈D

c((i1, . . . , in) , j) = 1, j = 1, . . . ,n.



172 7 REFINEMENTS OF HÖLDER’S AND MINKOWSKI’S INEQUALITIES

Then we have that the conditions (H4) and (H5) are satisfied.
Assume (A1) with positive n-tuple p. If N is strictly increasing and the function H

defined in Theorem 7.1 is convex, then from Theorem 7.2 we get

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≤ N−1

(


(i1,...,in)∈D

((
n

l=1

c((i1, . . . , in) , l) pl

)
N
(

f
(
L1(x(1),cp;in), ...,Lm(x(m),cp;in)

)))
≤ N−1

(
n

i=1

piN( f (xi
(1), ...,x(m)

i ))
)

,

where

Lt(x(t),cp;in) = L−1
t

⎛⎜⎜⎝
n

l=1

c((i1, . . . , in) , l) plLt(x
(t)
l )

n

l=1

c((i1, . . . , in) , l) pl

⎞⎟⎟⎠ ; in ∈ D, 1 ≤ t ≤ m.

Now assume (A1), consider a real number  ≥ 1, and let Sk be the set defined in (7.12).
Then the mixed means corresponding to (7.13) are

M2
k ( ) := M2

k (L1, ...,Lm;x(1), ...,x(m);p; ) :=

N−1

⎛⎜⎜⎝ 1
(n+−1)k


(i1,...,in)∈Sk

(
k!

i1!...in!

(
n

j=1

 i j p j

)
×N
(

f
(
L1(x(1);p; in,k; ), ...,Lm(x(m);p; in,k; )

)))
⎞⎟⎟⎠ ,

where

Lt(x(t);p; in,k; ) = L−1
t

⎛⎜⎜⎝
n

j=1

 i j p jLt(x
(t)
j )

n

j=1

 i j p j

⎞⎟⎟⎠ , in,k ∈ Sk, 1 ≤ t ≤ m.

In this case Theorem E gives another interpolation of (7.1) as follows:

Theorem 7.5 Assume (A1), let  ≥ 1 be a real number, and let Sk be the set defined in
(7.12). If N is a strictly increasing (decreasing) function, then the inequalities

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
= M2

0( ) ≤ M2
1( ) ≤ . . . ≤

≤ M2
k ( ) ≤ . . . ≤ N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

, k ∈ N,
(7.22)

hold for all possible x(t) (t = 1, . . . ,m) and p, if and only if the function H defined in
Theorem 7.1 is convex (concave). If N is an increasing (decreasing) function, then the
inequalities in (7.22) are reversed for all possible x(t) (t = 1, . . . ,m) and p, if and only if H
is concave (convex).

Proof. Similar to the proof of Theorem 7.4. �
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7.2 Generalizations of the Consequences of Beck’s
Result

Assume (A2) and (H0). Then, for m = 2, the reverse of (7.14) can be written as

f (Kn(a;p),Ln(b;p)) ≥ M1
k,k(K,L;a,b;p) ≥ M1

k,k−1(K,L;a,b;p) ≥·· · ≥
≥ M1

k,2(K,L;a,b;p) ≥ M1
k,1(K,L;a,b;p) =N−1

(
n

i=1

piN( f (ai,bi))
)

.
(7.23)

Analogous to the results of Corollary A and Corollary B (see [58] and also [60, p.195]),
we have immediately from Theorem 7.2 and Corollaries 7.1, 7.2 that

Corollary 7.3 Assume (A3) with f (x,y) = x+ y ((x,y) ∈ IK × IL), assume (H0), and as-
sume that K′, L′, N′, K′′, L′′ and N′′ are all positive. Introducing E := K′

K′′ , F := L′
L′′ ,

G := N′
N′′ , (7.23) holds for all possible a, b and p if and only if

E(x)+F(y) ≤ G(x+ y), (x,y) ∈ I◦K × I◦L.

In this case
M1

k,k(K,L;a,b;p) =

N−1

(


ik∈Ik

(
k


s=1

pis
Ik ,is

)
N
(
K(a; p

Ik
;k)+L(b; p

Ik
;k)
))

,
(7.24)

and for k−1 ≥ l ≥ 1

Mk,l(K,L;a,b;p) =

N−1

(
1

(k−1)...l 
il∈Il

tIk ,l(i
l)
(

l


s=1

pis
Ik ,is

)
N
(
K(a; p

Il
; l)+L(b; p

Il
; l)
))

,
(7.25)

respectively, where il := (i1, ..., il).

Corollary 7.4 Assume (A3) with f (x,y) = xy ((x,y)∈ IK × IL) and assume (H0). Suppose

the functions A(x) := K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x) and C(x) := N′(x)
N′(x)+xN′′(x) are defined

on I◦K, I◦L and I◦N respectively. Assume further that K′, L′, M′, A, B and C are all positive.
Then (7.23) holds for all possible a, b and p if and only if

A(x)+B(y)≤C(xy), (x,y) ∈ I◦K × I◦L.

In this case
M1

k,k(K,L;a,b;p) =

N−1

(


ik∈Ik

(
k


s=1

pis
Ik,is

)
N
(
K(a; p

Ik
;k)L(b; p

Ik
;k)
))

,
(7.26)
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and for k−1 ≥ l ≥ 1

Mk,l(K,L;a,b;p) =

N−1

(
1

(k−1)...l 
il∈Il

tIk ,l(i
l)
(

l


s=1

pis
Ik ,is

)
N
(
K(a; p

Il
; l)L(b; p

Il
; l)
))

,
(7.27)

respectively, where il := (i1, ..., il).

We also give some special cases of the Corollaries 7.3 and 7.4 as illustrations.

Remark 7.2 Under the settings of Example 7.1, if f (x1,x2) = x1 + x2, then (7.24) be-
comes

M1
2,2(K,L;a,b;p)

= N−1

(


(i1,i2)∈I2

(
2


s=1

pis

[ n
is ]+d(is)

)
N
(
K(a; p

I2
)+L(b; p

I2
)
))

.

Under the conditions of Corollary 7.3

Kn(a;p)+Ln(a;p) ≥M1
2,2(K,L;a,b;p) ≥ N−1

(
n


i=1

piN(ai +bi)

)
.

Similarly, if f (x1,x2) = x1x2, then from (7.26) we have

M1
2,2(K,L;a,b;p)

= N−1

(


(i1,i2)∈I2

(
2


s=1

pis

[ n
is ]+d(is)

)
N
(
K(a; p

I2
)L(b; p

I2
)
))

.

Under the conditions of Corollary 7.4

Kn(a;p)Ln(a;p) ≥M1
2,2(K,L;a,b;p) ≥ N−1

(
n


i=1

piN(aibi)

)
.

Remark 7.3 Under the settings of Example 7.2, if f (x1,x2)= x1+x2 then (7.25) becomes

M1
k,k−1(K,L;a,b;p) = N−1

(
1

k−1

n

i=1

(ci − pi)N
(
K(a; p

ci
)+L(b; p

ci
)
))

,

Under the conditions of Corollary 7.3

Kn(a;p)+Ln(a;p)≥M1
k,k−1(K,L;a,b;p) ≥ N−1

(
n


i=1

piN(ai +bi)

)
.

Similarly if f (x1,x2) = x1x2 then from (7.27) we have

M1
k,k−1(K,L;a,b;p)

= N−1

(
1

k−1

n

i=1

(ci − pi)N
(
K(a; p

ci
)L(b; p

ci
)
))

,
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Under the conditions of Corollary 7.4

Kn(a;p)Ln(a;p)≥M1
k,k−1(K,L;a,b;p) ≥ N−1

(
n


i=1

piN(aibi)

)
.

Next, assume (A2), (H0) and suppose |HII ( j1, ..., jl−1)| = l−1 for any ( j1, ..., jl−1) ∈
Il−1 (k ≥ l ≥ 2). For m = 2, the reverse of (7.16) becomes

f (Kn(a;p),Ln(b;p)) ≥ M2
k,k(K,L;a,b;p) ≥ M2

k−1,k−1(K,L;a,b;p)

≥ ... ≥ M2
2,2(K,L;a,b;p) ≥ M2

1,1(K,L;a,b;p) = N−1

(
n

i=1

piN( f (ai,bi))
)

,
(7.28)

where

M2
l,l(K,L;a,b;p)

= N−1

(
n

l|Il |
n


il∈Il

(
l


s=1
pis

)
N
(

f (K(a;pIl
),L(b;pIl ))

))
for k ≥ l ≥ 1.
Now using Theorem 7.3 (for m = 2) and Corollaries 7.1, 7.2, we get generalizations of
Beck’s results in [9] (see [58] and also [60, p.195]).

Corollary 7.5 Assume (A3) with f (x,y) = x+ y ((x,y) ∈ IK × IL),assume (H0), and sup-
pose |HII ( j1, ..., jl−1)| = l−1 for any ( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). Assume further that
K′, L′, N′, K′′, L′′ and N′′ are all positive. Introducing E := K′

K′′ , F := L′
L′′ , G := N′

N′′ , (7.28)
holds for all possible a, b and p if and only if

E(x)+F(y) ≤ G(x+ y), (x,y) ∈ I◦K × I◦L.

In this case for k ≥ l ≥ 1

M2
l,l(K,L;a,b;p)

= N−1

(
n

l|Il |
n


il∈Il

(
l


s=1
pis

)
N
(
K(a;pIl

)+L(b;pIl )
))

,
(7.29)

where il := (i1, ..., il).

Corollary 7.6 Assume (A3) with f (x,y) = xy ((x,y)∈ IK× IL), assume (H0), and suppose
|HII ( j1, ..., jl−1)| = l−1 for any ( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). Suppose the functions

A(x) := K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x) and C(x) := N′(x)
N′(x)+xN′′(x) are defined on I◦K, I◦L and

I◦N respectively. Assume further that K′, L′, M′, A, B and C are all positive. Then (7.28)
holds for all possible a, b and p if and only if

A(x)+B(y)≤C(xy), (x,y) ∈ I◦K × I◦L.
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In this case for k ≥ l ≥ 1

M2
l,l(K,L;a,b;p)

= N−1

(
n

l|Il |
n


il∈Il

(
l


s=1
pis

)
N
(
K(a;pIl

)+L(b;pIl )
))

,
(7.30)

where il := (i1, ..., il).

The special cases correspond to Examples 7.3, 7.4, 7.5 and 7.6 are as follows:

Remark 7.4 Under the settings of Example 7.3, for n ≥ k ≥ 1, (7.29) becomes

N2
k,k(K,L;a,b;p)

= N−1

⎛⎜⎜⎜⎜⎝ 1⎛⎜⎝ n−1

k−1

⎞⎟⎠


1≤i1<...<ik≤n

(
k


s=1
pis

)
N
(
K(a;pIk

)+L(b;pIk
)
)
⎞⎟⎟⎟⎟⎠ .

Under the conditions of Corollary 7.5

Kn(a;p)+Ln(b;p) ≥M2
k,k(K,L;a,b;p) ≥ M2

k−1,k−1(K,L;a,b;p)

≥ ... ≥ M2
2,2(K,L;a,b;p) ≥ M2

1,1(K,L;a,b;p) = N−1

(
n

i=1

piN(ai+bi)
)

.

Similarly if f (x1,x2) = x1x2 then for n ≥ k ≥ 1, (7.30) can be written as

M2
k,k(K,L;a,b;p)

= N−1

⎛⎜⎜⎜⎜⎝ 1⎛⎜⎝ n−1

k−1

⎞⎟⎠


1≤i1<...<ik≤n

(
k


s=1
pis

)
N
(
K(a;pIk

)L(b;pIk
)
)
⎞⎟⎟⎟⎟⎠ .

Under the conditions of Corollary 7.6

Kn(a;p)Ln(b;p) ≥M2
k,k(K,L;a,b;p) ≥ M2

k−1,k−1(K,L;a,b;p)

≥ ... ≥ M2
2,2(K,L;a,b;p) ≥ M2

1,1(K,L;a,b;p) = N−1

(
n

i=1

piN(aibi)
)

.

Remark 7.5 Under the settings of Example 7.4, for k ≥ 1, (7.29) becomes

M2
k,k(K,L;a,b;p)

= N−1

⎛⎜⎜⎜⎜⎝ 1⎛⎜⎝ n+ k−1

k

⎞⎟⎠


1≤i1≤...≤ik≤n

(
k


s=1
pis

)
N
(
K(a;pIk

)+L(b;pIk
)
)
⎞⎟⎟⎟⎟⎠ ,
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Under the conditions of Corollary 7.5

Kn(a;p)+Ln(b;p) ≥M2
k,k(K,L;a,b;p) ≥ M2

k−1,k−1(K,L;a,b;p)

≥ ... ≥ M2
2,2(K,L;a,b;p) ≥ M2

1,1(K,L;a,b;p) = N−1

(
n

i=1

piN(ai+bi)
)

.

Similarly if f (x1,x2) = x1x2 then for k ≥ 1, (7.30) can be written as

M2
k,k(K,L;a,b;p)

= N−1

⎛⎜⎜⎜⎜⎝ 1⎛⎜⎝ n+ k−1

k

⎞⎟⎠


1≤i1≤...≤ik≤n

(
k


s=1
pis

)
N
(
K(a;pIk

)L(b;pIk
)
)
⎞⎟⎟⎟⎟⎠ ,

Under the conditions of Corollary 7.6

Kn(a;p)Ln(b;p) ≥ M2
k,k(K,L;a,b;p)

≥ ... ≥ M2
k,1(K,L;a,b;p) = N−1

(
n

i=1

piN(aibi)
)

.

Remark 7.6 Under the settings of Example 7.5, for k ≥ 1, (7.29) becomes

M2
k,k(K,L;a,b;p)

= N−1

(
1

knk−1 
(i1,...,ik)∈Ik

(
k


s=1
pis

)
N
(
K(a;pIk

)+L(b;pIk
)
))

.

Under the conditions of Corollary 7.5

Kn(a;p)+Ln(b;p) ≥ ... ≥ M2
k,k(K,L;a,b;p)

≥ ... ≥ M2
1,1(K,L;a,b;p) = N−1

(
n

i=1

piN(ai +bi)
)

.

Similarly if f (x1,x2) = x1x2 then for k ≥ 1, (7.30) can be written as

M2
k,k(K,L;a,b;p)

= N−1

(
1

knk−1 
(i1,...,ik)∈Ik

(
k


s=1
pis

)
N
(
K(a;pIk

)L(b;pIk
)
))

.

Under the conditions of Corollary 7.6 gives

Kn(a;p)Ln(b;p) ≥ ... ≥ M2
k,k(K,L;a,b;p)

≥ ... ≥ M2
1,1(K,L;a,b;p) = N−1

(
n

i=1

piN(aibi)
)

.
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Remark 7.7 Under the settings of Example 7.6, if f (x1,x2) = x1 + x2 then for 1 ≤ k ≤ n,
(7.29) becomes

M2
k,k(K,L;a,b;p)

= N−1

(
n

kn(n−1)...(n−k+1) 
(i1,...,ik)∈Ik

(
k


s=1
pis

)
N
(
K(a;pIk

)+L(b;pIk
)
))

.

Under the conditions of Corollary 7.5

Kn(a;p)+Ln(b;p) ≥ M2
n,n(K,L;a,b;p) ≥ ... ≥ M2

k,k(K,L;a,b;p) ≥
≥ ... ≥ M2

1,1(K,L;a,b;p) = N−1

(
n

i=1

piN(ai +bi)
)

.

Similarly if f (x1,x2) = x1x2 then for 1 ≤ k ≤ n, (7.30) can be written as

M2
k,k(K,L;a,b;p)

= N−1

(
n

kn(n−1)...(n−k+1) 
(i1,...,ik)∈Ik

(
k


s=1
pis

)
N
(
K(a;pIk

)L(b;pIk
)
))

.

Under the conditions of Corollary 7.6

Kn(a;p)Ln(b;p) ≥ M2
n,n(K,L;a,b;p) ≥ ... ≥ M2

k,k(K,L;a,b;p) ≥
≥ ... ≥ M2

1,1(K,L;a,b;p) = N−1

(
n

i=1

piN(aibi)
)

.

Assume (A2) with positive n-tuple p, (H4) and (H5). Then for m = 2, the reverse of
(7.19) can be written as

f (Kn(a;p),Ln(b;p)) ≥ M1
k ≥ M1

k−1 ≥ ... ≥ M1
1 = N−1

(
n


j=1

p jN( f (a j,b j))

)
. (7.31)

Analogous to the results of Corollary A and Corollary B (see [59] and also [60, p.195]),
we have immediately from Theorem 7.4 and Corollaries 7.1, 7.2 that

Corollary 7.7 Assume (A3) with f (x,y) = x + y ((x,y) ∈ IK × IL) and with positive n-
tuple p, assume (H4)-(H5), and assume that K′, L′, N′, K′′, L′′ and N′′ are all positive.
Introducing E := K′

K′′ , F := L′
L′′ , G := N′

N′′ , (7.31) holds for all possible a, b and p if and only
if

E(x)+F(y) ≤ G(x+ y), (x,y) ∈ I◦K × I◦L.

In this case

M1
k := M1

k (K,L;a,b;cp) :=

N−1

(
k

l=1

(


A∈Al

((


s∈A
c(s)p(s)

)
N ((K(a;cp;A)+L(b;cp;A)))

)))
,

(7.32)
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and for 1 ≤ d ≤ k−1

M1
k−d := M1

k−d(K,L;a,b;cp) :=

N−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d

l=1

(


A∈Al

(


s∈A
c(s)p(s)N(a(s)+b(s))

))
+

k


l=d+1

(
d!

(l−1)...(l−d)


A∈Al

(


B∈Pl−d(A)

((


s∈B
c(s)p(s)

)
N(K(a;cp;B)+L(b;cp;B))

)))
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.
(7.33)

Corollary 7.8 Assume (H4), (H5) and consider (A3) with f (x,y) = xy ((x,y) ∈ IK × IL)
and with positive n-tuple p. Suppose the functions A(x) := K′(x)

K′(x)+xK′′(x) , B(x) := L′(x)
L′(x)+xL′′(x)

and C(x) := N′(x)
N′(x)+xN′′(x) are defined on I◦K, I◦L and I◦N respectively. Assume further that K′,

L′, M′, A, B and C are all positive. Then (7.31) holds for all possible a, b and p if and only
if

A(x)+B(y)≤C(xy), (x,y) ∈ I◦K × I◦L.

In this case

M1
k := M1

k (K,L;a,b;cp) :=

N−1

(
k

l=1

(


A∈Al

((


s∈A
c(s)p(s)

)
N ((K(a;cp;A)L(b;cp;A)))

)))
,

(7.34)

and for 1 ≤ d ≤ k−1,

M1
k−d := M1

k−d(K,L;a,b;cp) :=

N−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d

l=1

(


A∈Al

(


s∈A
c(s)p(s)N(a(s)b(s))

))
+

k


l=d+1

(
d!

(l−1)...(l−d)


A∈Al

(


B∈Pl−d(A)

((


s∈B
c(s)p(s)

)
N(K(a;cp;B)L(b;cp;B))

)))
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.
(7.35)

Under the considerations of examples in Section 2, we show some special cases of the
Corollaries 7.7 and 7.8.

Remark 7.8 Under the settings of Example 7.7, if f (x1,x2) = x1 + x2, then (7.32) be-
comes

M1
k := M1

k (K,L;a,b;cp) :=

N−1

(


(i1,...,ik)∈Ik

((
k

l=1

c((i1, . . . , ik) , l) pil

)
N(K(a;cp; ik)+L(b;cp; ik))

))
,

and for 1 ≤ d ≤ k−1 (7.33) becomes

M1
k−d := M1

k (K,L;a,b;cp) :=

N−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d!

(k−1) . . .(k−d)


(i1,...,ik)∈Ik

(


1≤l1<...<lk−d≤k

((
k−m

j=1

c((i1, . . . , ik), l j)pil j

)

×N(K(a;cp; ik; lk−d)+L(b;cp; ik; lk−d))

))
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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Under the conditions of Corollary 7.7, we have

Kn(a;p)+Ln(a;p) ≥ M1
k ≥ M1

k−1 ≥ ... ≥ M1
1 = N−1

(
n


i=1

piN(ai +bi)

)
. (7.36)

Similarly, if f (x1,x2) = x1x2, then from (7.34) we have

M1
k := M1

k (K,L;a,b;cp) :=

N−1

(


(i1,...,ik)∈Ik

((
k

l=1

c((i1, . . . , ik) , l) pil

)
N(K(a;cp; ik)L(b;cp; ik))

))
,

and for 1 ≤ d ≤ k−1, we have from (7.35)

M1
k−d := M1

k (K,L;a,b;cp) :=

N−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d!

(k−1) . . .(k−d)


(i1,...,ik)∈Ik

(


1≤l1<...<lk−d≤k

((
k−m

j=1

c((i1, . . . , ik), l j)pil j

)

×N(K(a;cp; ik; lk−d)L(b;cp; ik; lk−d))

))
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Under the conditions of Corollary 7.8, we have

Kn(a;p)Ln(a;p) ≥ M1
k ≥ M1

k−1 ≥ ... ≥ M1
1 = N−1

(
n


i=1

piN(aibi)

)
. (7.37)

Taking

c((i1, ..., ik), l) =
1∣∣S j
∣∣ = 1

Ik , j
; ((i1, ..., ik), l) ∈ S j,

in (7.36) and (7.37), we get Corollary 7.3 and Corollary 7.4, respectively.

Remark 7.9 We consider Example 7.8. If f (x1,x2) = x1 + x2, then under the conditions
of Corollary 7.7 we have

Kn(a;p)+Ln(b;p)

≥ N−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

i=1

(
r

l=0

c(i, l) pi+l

)
N (Kr(a,cp; i)+Lr(b,cp; i))

+

(
n

j=1

c( j)p j

)
N (Kn(a;cp)+Ln(b;cp))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≥ N−1

(
n

i=1

piN(aibi)
)

.

Similarly, if f (x1,x2) = x1x2, then under the conditions of Corollary 7.8 we have
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Kn(a;p)Ln(b;p)

≥ N−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

i=1

(
r

l=0

c(i, l) pi+l

)
N (Kr(a;cp; i)Lr(b;cp; i))

+

(
n

j=1

c( j)p j

)
N (Kn(a;cp)Ln(b;cp))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≥ N−1

(
n

i=1

piN(aibi)
)

.

Remark 7.10 We now consider Example 7.9. If f (x1,x2) = x1 + x2, then under the con-
ditions of Corollary 7.7 we have

Kn(a;p)+Ln(b;p)

≥ N−1

(


(i1,...,in)∈D

((
n

l=1

c((i1, . . . , in) , l) pl

)
N (Kn(a;cp,in)+Ln(b;cp,in))

)
≥ N−1

(
n

i=1

piN(ai +bi)
)

.

Similarly, if f (x1,x2) = x1x2, then under the conditions of Corollary 7.8 we have

Kn(a;p)Ln(b;p)

≥ N−1

(


(i1,...,in)∈D

((
n

l=1

c((i1, . . . , in) , l) pl

)
N (Kn(a,cp,in)Ln(b,cp,in))

)
≥ N−1

(
n

i=1

piN(aibi)
)

.

Next, assume (A2), let  ≥ 1, and let Sk be the set defined in (7.12). Then for m = 2,
the reverse of (7.22) becomes

f (Kn(a;p),Ln(b;p)) = M2
0( ) ≥ M2

1( ) ≥ . . . ≥
≥ M2

k ( ) ≥ . . . ≥ N−1

(
n

i=1

piN( f (ai,bi))
)

; k ∈ N,
(7.38)

where
M2

k ( ) := M2
k (K,L;a,b;p; ) :=

N−1

⎛⎜⎜⎝ 1
(n+−1)k


(i1,...,in)∈Sk

(
k!

i1!...in!

(
n

j=1

 i j p j

)
×N
(

f
(
Kn(a;p; in,k; ),Ln(x(m);p; in,k; )

)))
⎞⎟⎟⎠ ,

By using Theorem 7.5 (for m = 2) and Corollaries 7.1, 7.2, we get parameter dependent
generalizations of Beck’s results.

Corollary 7.9 Assume (A3) with f (x,y) = x+ y ((x,y) ∈ IK × IL), let  ≥ 1, and let Tk be
the set defined in (7.12). Assume further that K′, L′, N′, K′′, L′′ and N′′ are all positive.
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Introducing E := K′
K′′ , F := L′

L′′ , G := N′
N′′ , (7.38) holds for all possible a, b and p if and only

if
E(x)+F(y) ≤ G(x+ y), (x,y) ∈ I◦K × I◦L.

In this case for k ∈ N, we have

M2
k ( ) := M2

k (K,L;a,b;p; ) :=

N−1

⎛⎜⎜⎝ 1
(n+−1)k


(i1,...,in)∈Sk

(
k!

i1!...in!

(
n

j=1

 i j p j

)
×N
(
Kn(a;p; in,k; )+Ln(x(m);p; in,k; )

))
⎞⎟⎟⎠ .

Corollary 7.10 Assume (A3) with f (x,y) = xy ((x,y) ∈ IK × IL), let  ≥ 1, and let Tk be

the set defined in (7.12). Suppose the functions A(x) := K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x)

and C(x) := N′(x)
N′(x)+xN′′(x) are defined on I◦K, I◦L and I◦N respectively. Assume further that K′,

L′, M′, A, B and C are all positive. Then (7.38) holds for all possible a, b and p if and only
if

A(x)+B(y) ≤C(xy), (x,y) ∈ I◦K × I◦L.

In this case for k ∈ N, we have

M2
k ( ) := M2

k (K,L;a,b;p; ) :=N−1

⎛⎜⎜⎝ 1
(n+−1)k


(i1,...,in)∈Sk

(
k!

i1!...in!

(
n

j=1

 i j p j

)
×N
(
Kn(a;p; in,k; )Ln(x(m);p; in,k; )

))
⎞⎟⎟⎠ .

7.3 Generalization of Minkowski’s inequality

(A4) Let I be an interval in R, and let  : I → R be a continuous and strictly monotone
function. Let xi ∈ Im (i = 1, . . . ,n), let p = (p1, . . . , pn) be a positive n-tuple such that
n

i=1

pi = 1, and let w = (w1, ...,wm) be a nonnegative m-tuple such that
m

i=1

wi = 1.

We give a generalization of the Minkowski’s inequality by using Theorem B.

Theorem 7.6 Assume (A4) and (H0), and assume that the quasi-arithmetic mean func-
tion

x → M (x,w), x ∈ Im

is convex. Then

M (
n


r=1

prxr,w) ≤ Ak,k ≤ Ak,k−1 ≤ ... ≤ Ak,2 ≤ Ak,1 =
n


r=1

prM (xr,w), (7.39)
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where

Ak,k := 
(i1,...,il)∈Ik

(
k


s=1

pis

Ik ,is

)
M

⎛⎜⎜⎝
k


s=1

pis
Ik,is

xis

k


s=1

pis
Ik ,is

,w

⎞⎟⎟⎠, (7.40)

and

Ak,l :=
1

(k−1)...l 
(i1,...,il)∈Il

tIk ,l(i1, ..., il)

(
l


s=1

pis

Ik ,is

)
M

⎛⎜⎜⎝
l


s=1

pis
Ik,is

xis

l


s=1

pis
Ik,is

,w

⎞⎟⎟⎠ , (7.41)

for k−1≥ l ≥ 1.

Proof. This is obtained by applying Theorem B to the function M(·,w) and to the
vectors xi (i = 1, . . . ,n). It is enough to show that Ak,l in (7.8) has the form (7.40) and
(7.41) depending on l, but this is easy to check. �

Similarly, by using Theorem C we get

Theorem 7.7 Assume (A4), (H0), and suppose |HII ( j1, ..., jl−1)| = l−1 for any
( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). Then

M(
n


r=1

prxr,w) ≤ Ak,k ≤ Ak−1,k−1 ≤ ... ≤ A2,2 ≤ A1,1 =
n


r=1

prM (xr,w),

where

Al,l :=
n

l |Il| 
(i1,...,il)∈Il

(
l


s=1

pis

)
M

⎛⎜⎜⎝
l


s=1
pisxis

l


s=1
pis

,w

⎞⎟⎟⎠, k ≥ l ≥ 1.

We give a generalization of the Minkowski’s inequality by using Theorem D.

Theorem 7.8 Assume (A4), (H4) and (H5). Further, assume that the quasi-arithmetic
mean function

x → M (x,w), x ∈ Im

is convex. Then

M (
n


r=1

prxr,w) ≤ Ak ≤ Ak−1 ≤ . . . ≤ A2 ≤ A1 =
n


r=1

prM (xr,w),

where

Ak :=
k


l=1

⎛⎝ 
A∈Al

⎛⎝(
s∈A

c(s)p(s)

)
M

⎛⎝ 
s∈A

c(s)p(s)x(s)


s∈A

c(s)p(s)
,w

⎞⎠⎞⎠⎞⎠, (7.42)
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and for 1 ≤ d ≤ k−1

Ak−d :=
d

l=1

(


A∈Al

(


s∈A
c(s)p(s)M(x(s),w)

))
+

k


l=d+1

(
d!

(l−1)...(l−d)

· 
A∈Al

(


B∈Pl−d(A)

((


s∈B
c(s)p(s)

)
M

(


s∈B
c(s)p(s)x(s)


s∈B

c(s)p(s)
,w

))))
.

(7.43)

Proof. We apply Theorem D to the convex function M(·,w) and the vectors xi (i =
1, . . . ,n). We get Ad (k ≥ d ≥ 1) in (7.42) and (7.43) from (7.10) and (7.11) respectively.

�

Similarly, by using Theorem E we get

Theorem 7.9 Let  ≥ 1 be a real number, assume (A4) and suppose Sk (k ∈ N) is the set
given in (7.12). If the quasi-arithmetic mean function

x → M(x,w), x ∈ Im

is convex, then

M

(
n


r=1
prxr,w

)
= C0( ) ≤C1( ) ≤ . . . ≤

≤Ck( ) ≤ . . . ≤
n


r=1
prM(xr,w), k ∈ N,

where

Ck( ) =Ck(x1, . . . ,xn; p1, . . . , pn; )

:= 1
(n+−1)k


(i1,...,in)∈Sk

k!
i1!...in!

(
n

j=1

 i j p j

)
M

⎛⎝ n

j=1

 i j p jx j

n

j=1

 i j p j

,w

⎞⎠ , k ∈ N.

The following special case a necessary and sufficient condition for the quasi-arithmetic
mean function to be convex is given in [60], p. 197:

Theorem F. If  : [m1,m2]→R has continuous derivatives of second order and it is strictly
increasing and strictly convex, then the quasi-arithmetic mean function M (·,w) is convex
if and only if  ′/ ′′ is a concave function.

(A5) Let  : (0,) → (0,) be a continuous and strictly monotone function such that
lim
x→0

(x) =  or lim
x→

(x) = . Let x = (x1, ...,xm) and w = (w1, ...,wm) be positive m-

tuples such that wi ≥ 1 (i = 1, ...,m). Let p = (p1, . . . , pn) be a positive n-tuple such that
n

i=1

pi = 1.

Then we define

M̃ (x;w) = −1

(
m


i=1

wi(xi)

)
. (7.44)

The following result is also given in [60, p.197]:
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Theorem G. If  : (0,) → (0,) has continuous derivatives of second order and it is
strictly increasing and strictly convex, then M̃ (·,w) is a convex function if / ′ is a
convex function.

By using (7.44) we have

Theorem 7.10 Assume (A5) and (H0). If the function

x → M̃(x,w), x ∈ (0,)m

is convex, then Theorem 7.6 and Theorem 7.7 (in this case we suppose |HII ( j1, ..., jl−1)| =
l−1 for any ( j1, ..., jl−1)∈ Il−1 (k≥ l ≥ 2)) remain valid for M̃(x,w) instead of M(x,w).

Remark 7.11 All special cases (as given in Section 2) can be considered for Theorem
7.6, Theorem 7.7 and Theorem 7.10.

Again by using (7.44) we have

Theorem 7.11 Assume (A5) and let

x → M̃(x,w), x ∈ (0,)m

be a convex function.
(a) Consider (H4) and (H5). Then Theorem 7.8 remains valid for M̃ (x,w) instead of

M(x,w).
(b) Consider  ∈ R such that  ≥ 1 and suppose Sk (k ∈ N) is the set defined in (7.12).

Then Theorem 7.9 also remains valid for M̃(x,w) instead of M(x,w).

Remark 7.12 All special cases (as given in Section 2) can also be considered for Theo-
rem 7.8, Theorem 7.9 and Theorem 7.11.





Chapter8
Refinements of Jensen’s
Inequality for Operator
Convex Functions

In this chapter, we consider the class of self-adjoint operators defined on a complex Hilbert
space, whose spectra are contained in an interval. We give several refinements of the
well known discrete Jensen’s inequality in this class. The corresponding mixed symmetric
means are defined for a subclass of positive self-adjoint operators which insure the refine-
ments of inequality between power means of strictly positive operators.

8.1 Introduction and Preliminary Results

Let H denote a complex Hilbert space. S(I) means the class of all self-adjoint bounded op-
erators on H whose spectra are contained in an interval I ⊂ R. The spectrum of a bounded
operator A on H is denoted by Sp(A).

Let f : Df (⊂ R) → R be a function and let I ⊂ Df be an interval. f is said to be
operator monotone on I if f is continuous on I and A, B ∈ S(I), A ≤ B (i.e. A−B is a
positive operator) imply f (A) ≤ f (B). The function f is said to be operator convex on I if
f is continuous on I and

f (sA+ tB) ≤ s f (A)+ t f (B)

187
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for all A, B ∈ S(I) and for all positive numbers s and t such that s+ t = 1. The function f
is called operator concave on I if − f is operator convex on I.

Jensen’s Operator Inequality: Let I ⊂ R be an interval, and let f : I → R be an
operator convex function on I. If Ti ∈ S(I) (i = 1, . . . ,n), and wi > 0 (i = 1, ...,n) such that
n

i=1 wi = 1, then

f

(
n


i=1

wiTi

)
≤

n


i=1

wi f (Ti). (8.1)

If f is an operator concave function on I, then the inequality in (8.1) is reversed.
Some interpolations of (8.1) are given in [61] as follows.

Theorem 8.1 Under the conditions of the Jensen’s operator inequality

f (
n


i=1

wiTi) = fn,n ≤ ... ≤ fk,n ≤ ... ≤ f1,n =
n


i=1

wi f (Ti),

where for 1 ≤ k ≤ n

fk,n :=
1(n−1

k−1

) 
1≤i1<...<ik≤n

(
k


j=1

wij

)
f

⎛⎜⎜⎜⎝
k

j=1

wijTi j

k

j=1

wij

⎞⎟⎟⎟⎠. (8.2)

Theorem 8.2 If the conditions of the Jensen’s operator inequality are satisfied, then

f (
n


i=1

wiTi) ≤ ... ≤ f k+1,n ≤ f k,n ≤ ... ≤ f 1,n =
n


i=1

wi f (Ti),

where for k ≥ 1

f k,n =
1(n+k−1

k−1

) 
1≤i1≤...≤ik≤n

(
k


j=1

wij

)
f

⎛⎜⎜⎜⎝
k

j=1

wijTi j

k

j=1

wij

⎞⎟⎟⎟⎠. (8.3)

A self-adjoint bounded operator A on H is called strictly positive if it is positive and
invertible, or equivalently, Sp(A) ⊂ [m,M] for some 0 < m < M.

The power means for strictly positive operators T := (T1, ...,Tn) with positive weights
w := (w1, ...,wn) are defined in [61] as follows:

Mr(T,w) = Mr (T1, ...,Tn;w1, ...,wn) :=

(
1

Wn

n


i=1

wiT
r
i

) 1
r

,

where r ∈ R\{0} and Wn : =
n

i=1

wi. The following result about the monotonicity of power

means is also given in [61]:
Ms(T,w) ≤ Mr(T,w) (8.4)
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holds if either s ≤ r, s /∈ (−1,1), r /∈ (−1,1) or 1/2 ≤ s ≤ 1 ≤ r or s ≤−1 ≤ r ≤−1/2.
Some symmetric mixed means, corresponding to the expressions (8.2) and (8.3) are

introduced in [61]: for r,s ∈ R\ {0} and for Wn = 1, define

Mn(s,r;k) :=(
1

(n−1
k−1)


1≤i1<...<ik≤n

(
k

j=1

wij

)
Ms

r (Ti1 , ...,Tik ;wi1 , ...,wik )

) 1
s

,

where 1 ≤ k ≤ n, and

Mn(s,r;k) :=(
1

(n+k−1
k−1 ) 

1≤i1≤...≤ik≤n

(
k

j=1

wij

)
Ms

r (Ti1 , ...,Tik ;wi1 , ...,wik )

) 1
s

,

where k ≥ 1.
The following result from [61] gives some refinements of (8.4).

Theorem 8.3 Let T be an n-tuple of strictly positive operators, and let wi > 0 (i = 1, ...,n)
such that Wn = 1. Then the following inequalities are valid

Ms(T,w) = Mn(s,r;1) ≤ ... ≤ Mn(s,r;k) ≤ ... ≤ Mn(s,r;n) = Mr(T,w),

and
Ms(T,w) = Mn(s,r;1) ≤ ... ≤ Mn(s,r;k) ≤ ... ≤ Mr(T,w),

if either

(i) 1 ≤ s ≤ r or

(ii) −r ≤ s ≤−1 or

(iii) s ≤−1, r ≥ s ≥ 2r;
while the reverse inequalities are valid if either

(iv) r ≤ s ≤−1 or

(v) 1 ≤ s ≤−r or

(vi) s ≥ 1, r ≤ s ≤ 2r.

In [41], we generalize the above results of [61] by using a refinement of the Jensen’s
inequality from [44].

We use the notations from [44] (see N1 of Section 2.1).
The following hypotheses will give the basic context of our results.
(O1) Let n ≥ 1 and k ≥ 2 be fixed integers, and let Ik be a subset of {1, . . . ,n}k such

that
Ik ,i ≥ 1, 1 ≤ i ≤ n.
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(O2) Let I ⊂ R be an interval, and let Ti ∈ S(I) (1 ≤ i ≤ n).

(O3) Let w1, . . . ,wn be positive numbers such that
n

j=1

wj = 1.

(O4) Let the function f : I → R be operator convex.
(O5) Let h, g : I → R be continuous and strictly operator monotone functions.
Here (O1) is the same as (H0) stated in Section 2.1, in seek of symmetry we change

the symbol.

8.2 Refinement of Jensen’s Operator Inequality

The main results of this section involve some special expressions, which we now describe.
Suppose (O1)-(O4). For any k ≥ l ≥ 1 let

Al,l = Al,l (Ik,T1, . . . ,Tn,w1, . . . ,wn) (8.5)

:= 
(i1,...,il)∈Il

(
l


s=1

wis

Il ,is

)
f

⎛⎜⎜⎝
l


s=1

wis
Il ,is

Tis

l


s=1

wis
Il ,is

⎞⎟⎟⎠ ,

and associate to each k−1≥ l ≥ 1 the operator

Ak,l = Ak,l (Ik,T1, . . . ,Tn,w1, . . . ,wn) (8.6)

:=
1

(k−1). . . l 
(i1,...,il)∈Il

tIk ,l (i1, . . . , il)

(
l


s=1

wis

Ik ,is

)
f

⎛⎜⎜⎝
l


s=1

wis
Ik,is

Tis

l


s=1

wis
Ik,is

⎞⎟⎟⎠ .

With these preparations out of the way we come to

Theorem 8.4 Assume (O1)-(O4). Then
(a)

f

(
n


r=1

wrTr

)
≤ Ak,k ≤ Ak,k−1 ≤ . . . ≤ Ak,2 ≤ Ak,1 =

n


r=1

wr f (Tr). (8.7)

(b) Suppose
∣∣HIl ( j1, . . . , jl−1)

∣∣= l−1 for any ( j1, . . . , jl−1) ∈ Il−1 (k ≥ l ≥ 2). Then

Ak,l = Al,l =
n

l |Il| 
(i1,...,il)∈Il

(
l


s=1

wis

)
f

⎛⎜⎜⎝
l


s=1
wisTis

l


s=1
wis

⎞⎟⎟⎠ , (k ≥ l ≥ 1) , (8.8)
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and thus

f

(
n


r=1

wrTr

)
≤ Ak,k ≤ Ak−1,k−1 ≤ . . . ≤ A2,2 ≤ A1,1 =

n


r=1

wr f (Tr).

To prove these results we can use the same method as in the proofs of Theorem 2.1 and
Theorem 2.2, so we omit the proofs.

8.2.1 Applications of Theorem 8.4 to some special cases

Throughout Examples 8.1-8.6 (based on Examples 2.4-2.7, Example 2.2 and Example 2.1)
the conditions (O2)-(O4) will be assumed.

Theorem 8.4 contains Theorem 8.1, as the first example shows.

Example 8.1 Let

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 < .. . < ik

}
, 1 ≤ k ≤ n.

Then, by taking into account Examples 2.4, Theorem 8.4 (b) can be applied: we have

Ak,k =
1(n−1

k−1

) 
1≤i1<...<ik≤n

(
k


s=1

wis

)
f

⎛⎜⎜⎝
k


s=1
wisTis

k


s=1
wis

⎞⎟⎟⎠ , k = 1, . . . ,n.

and

f

(
n


r=1

wrTr

)
≤ Ak,k ≤ Ak−1,k−1 ≤ . . . ≤ A2,2 ≤ A1,1 =

n


r=1

wr f (Tr). (8.9)

If w1 = . . . = wn = 1
n , then

Ak,k =
1(n
k

) 
1≤i1<...<ik≤n

f

(
Ti1 + . . .+Tik

k

)
, k = 1, . . . ,n,

and thus (8.9) gives Theorem 8.1.

The next example illustrates that Theorem 8.2 is a also special case of Theorem 8.4.

Example 8.2 Let

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 ≤ . . . ≤ ik

}
, k ≥ 1.

Then, by taking into account Examples 2.5, Theorem 8.4 (b) can be applied: we can deduce

Ak,k =
1(n+k−1

k−1

) 
1≤i1≤...≤ik≤n

(
k


s=1

wis

)
f

⎛⎜⎜⎝
k


s=1
wisTis

k


s=1
wis

⎞⎟⎟⎠ , k ≥ 1,
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and

f

(
n


r=1

wrTr

)
≤ . . . ≤ Ak,k ≤ . . . ≤ Ak,1 =

n


r=1

wr f (Tr). (8.10)

By taking w1 = . . . = wn = 1
n , we obtain that

Ak,k =
1(n+k−1
k

) 
1≤i1≤...≤ik≤n

f

(
Ti1 + . . .+Tik

k

)
, k ≥ 1,

and thus (8.10) gives Theorem 8.2.

The following two examples are particular cases of Theorem 8.4 (b).

Example 8.3 Let
Ik := {1, . . . ,n}k , k ≥ 1.

Then, by taking into account Examples 2.6, Theorem 8.4 (b) can be applied: this leads to

Ak,k =
1

knk−1 
(i1,...,ik)∈Ik

(
k


s=1

wis

)
f

⎛⎜⎜⎝
k


s=1
wisTis

k


s=1
wis

⎞⎟⎟⎠ , k ≥ 1,

and

f

(
n


r=1

wrTr

)
≤ . . . ≤ Ak,k ≤ . . . ≤ A1,1 =

n


r=1

wr f (Tr), k ≥ 1.

Especially, for w1 = . . .wn = 1
n we find that

Ak,k =
1
nk 

(i1,...,ik)∈Ik

f

(
Ti1 + . . .+Tik

k

)
, k = 1, . . . ,n.

Example 8.4 For 1≤ k≤ n let Ik consist of all sequences (i1, . . . , ik) of k distinct numbers
from {1, . . . ,n}.

Then, by taking into account Examples 2.7, Theorem 8.4 (b) can be applied: it follows
that

Ak,k =
n

kn(n−1) . . .(n− k+1)

· 
(i1,...,ik)∈Ik

(
k


s=1

wis

)
f

⎛⎜⎜⎝
k


s=1
wisTis

k


s=1
wis

⎞⎟⎟⎠ , k = 1, . . . ,n

and

f

(
n


r=1

wrTr

)
≤ An,n ≤ . . . ≤ Ak,k ≤ . . . ≤ A1,1 =

n


r=1

wr f (Tr).
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If we set w1 = . . . = wn = 1
n , then

Ak,k =
1

n(n−1) . . .(n− k+1) 
(i1,...,ik)∈Ik

f

(
Ti1 + . . .+Tik

k

)
, k = 1, . . . ,n.

In the sequel two interesting consequences of Theorem 8.4 (a) are given.

Example 8.5 Let ci ≥ 1 be an integer (i = 1, . . . ,n), let k :=
n

i=1

ci, and let Ik = Pc1,...,cn

consist of all sequences (i1, . . . , ik) in which the number of occurrences of i ∈ {1, . . . ,n} is
ci (i = 1, . . . ,n).

By taking into account Examples 2.2, Theorem 8.4 (a) can be applied. According to
the result

f

(
n


r=1

wrTr

)
≤ Ak,k−1 ≤

n


r=1

wr f (Tr),

where

Ak,k−1 =
1

k−1

n


i=1

(ci−wi) f

⎛⎜⎜⎝
n


r=1
wrTr − wi

ci
Ti

1− wi
ci

⎞⎟⎟⎠ .

Example 8.6 Let

I2 :=
{

(i1, i2) ∈ {1, . . . ,n}2 | i1|i2
}

.

The notation i1|i2 means that i1 divides i2.
[

n
i

]
is the largest natural number that does not

exceed n
i , and d(i) denotes the number of positive divisors of i.

By taking into account Examples 2.1, Theorem 8.4 (a) can be applied. We have

f

(
n


r=1

wrTr

)
≤ 

(i1,i2)∈I2

⎛⎝ wi1[
n
i1

]
+d(i1)

+
wi2[

n
i2

]
+d(i2)

⎞⎠

· f

⎛⎜⎝
wi1[

n
i1

]
+d(i1)

Ti1 +
wi2[

n
i2

]
+d(i2)

Ti2

wi1[
n
i1

]
+d(i1)

+
wi2[

n
i2

]
+d(i2)

⎞⎟⎠≤
n


r=1

wr f (Tr).

8.2.2 Symmetric Means related to Theorem 8.4

Assume (O1)-(O3). The power means corresponding to il := (i1, . . . , il) ∈ Il (l = 1, . . . ,k)
are given as:

Mr(Ik, il) :=

⎛⎜⎜⎝
l


s=1

wis
Ik,is

T r
is

l


s=1

wis
Ik,is

⎞⎟⎟⎠
1
r

, r 	= 0.
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Next, we introduce the mixed symmetric means corresponding to the expressions (8.5) and
(8.6) as follows:

M1
s,r(Ik,k) :=

⎛⎝ 
ik=(i1,...,ik)∈Ik

(
k


j=1

wij

Ik ,i j

)(
Mr(Ik, i

k)
)s⎞⎠

1
s

, s 	= 0,

and for k−1≥ l ≥ 1

M1
s,r(Ik, l) :=⎛⎝ 1
(k−1)...l 

il=(i1,...,il)∈Il

tIk ,l(i
l)

(
l

j=1

wi j
Ik ,i j

)(
Mr(Ik, il)

)s⎞⎠
1
s

, s 	= 0.
(8.11)

The following result is a comprehensive generalization of Theorem 8.3.

Theorem 8.5 Assume (O1)-(O3) for an n-tuple T of strictly positive operators. Then

Ms(T,w) = M1
s,r(Ik,1) ≤ .... ≤ M1

s,r(Ik,k) ≤ Mr(T,w). (8.12)

holds if either
(i) 1 ≤ s ≤ r or
(ii) −r ≤ s ≤−1 or
(iii) s ≤−1, r ≥ s ≥ 2r;
while the reverse inequalities hold in (8.12) if either
(iv) r ≤ s ≤−1 or
(v) 1 ≤ s ≤−r or
(vi) s ≥ 1, r ≤ s ≤ 2r.

Proof. It is well known (see [21]) that the function f : Df (⊂ R) → R, f (x) = xp is
operator convex on (0,) if either 1 ≤ p ≤ 2 or −1 ≤ p ≤ 0, and operator concave on
(0,) if 0 ≤ p ≤ 1, while f is operator monotone on (0,) if 0 ≤ p ≤ 1. It is also true
that − f is operator monotone on (0,) if −1 ≤ p ≤ 0. By using these facts, we can apply
Theorem 8.4 (a) to the function f (x) = x

s
r , and the operators Tr

i (i = 1, . . . ,n). �

Assume (O1)-(O3) and (O5). Then we define the quasi-arithmetic means with respect
to (8.5) and (8.6) as follows:

M1
h,g(Ik,k) := h−1

⎛⎜⎜⎝ 
(i1,...,ik)∈Ik

(
k


s=1

wis

Ik ,is

)
h ◦ g−1

⎛⎜⎜⎝
k


s=1

wis
Ik,is

g(Tis)

k


s=1

wis
Ik,is

⎞⎟⎟⎠
⎞⎟⎟⎠ , (8.13)

and for k−1≥ l ≥ 1

M1
h,g(Ik, l) :=

h−1

⎛⎝ 1
(k−1)...l 

il=(i1,...,il)∈Il

tIk ,l(i
l)
(

l


s=1

wis
Ik,is

)
h ◦ g−1

⎛⎝ l


s=1

wis
Ik ,is

g(Tis )

l


s=1

wis
Ik ,is

⎞⎠⎞⎠ .
(8.14)
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The monotonicity of these generalized means is obtained in the next corollary.

Corollary 8.1 Assume (O1)-(O3) and (O5). For a continuous and strictly operator mono-
tone function q : I → R we define

Mq := q−1

(
n


i=1

wiq(Ti)

)
.

Then
Mh = M1

h,g(Ik,1) ≥ ... ≥ M1
h,g(Ik,k) ≥ Mg, (8.15)

if either h◦ g−1 is operator convex and h−1 is operator monotone or h◦ g−1 is operator
concave and −h−1 is operator monotone;

Mg = M1
g,h(Ik,1) ≤ ... ≤ M1

g,h(Ik,k) ≤ Mh, (8.16)

if either g◦ h−1 is operator convex and −g−1 is operator monotone or g◦ h−1 is operator
concave and g−1 is operator monotone.

Proof. First, we apply Theorem 8.4 (a) to the function h ◦ g−1 and replace Ti to g(Ti),
then we apply h−1 to the inequality coming from (8.7). This gives (8.15). A similar
argument gives (8.16): g ◦ h−1, Ti = h(Ti) and g−1can be used. �

Assume (O1)-(O3), and suppose |HII ( j1, ..., jl−1)| = l−1 for any ( j1, ..., jl−1) ∈ Il−1
(k≥ l ≥ 2). In this case the power means corresponding to il := (i1, . . . , il)∈ Il (l = 1, . . . ,k)
has the form

Mr(Il , il) = Mr(Ik, il) =

⎛⎜⎜⎝
l


s=1
wijT

r
i j

l


s=1
wij

⎞⎟⎟⎠
1
r

, r 	= 0.

Now, for k ≥ l ≥ 1 we introduce the mixed symmetric means related to (8.8) as follows:

M2
s,r(Il) :=

⎡⎣ n
l |Il| 

il=(i1,...,il)∈Il

(
l


j=1

wij

)(
Mr

(
Il, i

l
))

s

⎤⎦
1
s

, s 	= 0. (8.17)

Corollary 8.2 Assume (O1)-(O3), and suppose |HII ( j1, ..., jl−1)|= l−1 for any ( j1, ..., jl−1)∈
Il−1 (k ≥ l ≥ 2). Then

Ms(T,w) = M2
s,r(I1) ≤ . . . ≤ M2

s,r(Ik) ≤ Mr(T,w). (8.18)

holds if either

(i) 1 ≤ s ≤ r or

(ii) −r ≤ s ≤−1 or
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(iii) s ≤−1, r ≥ s ≥ 2r;
while the reverse inequalities hold in (8.18) if either

(iv) r ≤ s ≤−1 or

(v) 1 ≤ s ≤−r or

(vi) s ≥ 1, r ≤ s ≤ 2r.

Proof. It comes from Theorem 8.5. �

Assume (O1)-(O3) and (O5), and suppose |HII ( j1, ..., jl−1)|= l−1 for any ( j1, ..., jl−1)∈
Il−1 (k ≥ l ≥ 2). We define for k ≥ l ≥ 1 the quasi-arithmetic means with respect to (8.8)
as follows:

M2
h,g(Il) := h−1

⎛⎝ n
l|Il | 

(i1,...,il)∈Il

(
l


s=1
wis

)
h ◦ g−1

⎛⎝ l


s=1
wisg(Tis )

l


s=1
wis

⎞⎠⎞⎠ . (8.19)

Corollary 8.3 Assume (O1)-(O3) and (O5), and suppose |HII ( j1, ..., jl−1)|= l−1 for any
( j1, ..., jl−1) ∈ Il−1 (k ≥ l ≥ 2). Then

Mh = M2
h,g(I1) ≥ . . . ≥ M2

h,g(Ik) ≥ Mg,

where either h◦ g−1 is operator convex and h−1 is operator monotone or h◦ g−1 is operator
concave and −h−1 is operator monotone;

Mg = M2
g,h(I1) ≤ . . . ≤ M2

g,h(Ik) ≤ Mh,

where either g◦ h−1 is operator convex and −g−1 is operator monotone or g◦ h−1 is oper-
ator concave and g−1 is operator monotone.

Proof. Similar to the proof of Corollary 8.1. �

Finally, we apply the results of this section in some special cases. ThroughoutRemarks
8.1-8.4 and 8.5-8.6, which are based on Examples 2.4-2.7, Example 2.2 and Example 2.1,
the conditions (O2)-(O3) (in the mixed symmetric means) and (O5) (in the quasi-arithmetic
means) will be assumed.

Remark 8.1 In the case of Example 8.1, for n ≥ k ≥ 1 (8.17) becomes

M2
s,r(Ik) =

(
1(n−1

k−1

) 
1≤i1<...<ik≤n

(
k


j=1

wij

)(
Mr(Ik, i

k)
)s) 1

s

, s 	= 0. (8.20)

and (8.19) has the form

M2
h,g(Ik) = h−1

⎛⎜⎜⎝ 1(n−1
k−1

) 
1≤i1<...<ik≤n

(
k


s=1

wis

)
h ◦ g−1

⎛⎜⎜⎝
k


s=1
wisg(Tis)

k


s=1
wis

⎞⎟⎟⎠
⎞⎟⎟⎠. (8.21)
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Remark 8.2 Under the setting of Example 8.2, for k ≥ 1 (8.17) becomes

M2
s,r(Ik) =

(
1(n+k−1

k−1

) 
1≤i1≤...≤ik≤n

(
k


j=1

wij

)(
Mr(Ik, i

k)
)s) 1

s

, s 	= 0.

and (8.19) has the form

M2
h,g(Ik) = h−1

⎛⎜⎜⎝ 1(n+k−1
k−1

) 
1≤i1≤...≤ik≤n

(
k


s=1

wis

)
h ◦ g−1

⎛⎜⎜⎝
k


s=1
wisg(Tis)

k


s=1
wis

⎞⎟⎟⎠
⎞⎟⎟⎠.

(8.20) and (8.2) represents mixed symmetric means as given in [61]. Therefore Corollary
8.2 is a generalization of results given in [61].

Remark 8.3 Under the setting of Example 8.3, for k ≥ 1, (8.17) leads to

M2
s,r(Ik) =

⎛⎝ 1
knk−1 

ik=(i1,...,ik)∈Ik

(
k


j=1

wij

)(
Mr(Ik,i

k)
)s⎞⎠

1
s

, s 	= 0.

and (8.19) gives

M2
h,g(Ik) = h−1

⎛⎜⎜⎝ 1
knk−1 

ik=(i1,...,ik)∈Ik

(
k


s=1

wis

)
h ◦ g−1

⎛⎜⎜⎝
k


s=1
wisg(Tis)

k


s=1
wis

⎞⎟⎟⎠
⎞⎟⎟⎠,

respectively.

Remark 8.4 Under the setting of Example 8.4, for k = 1, ...,n, (8.17) gives

M2
s,r(Ik) =

(
n

kn(n−1)...(n−k+1) 
ik=(i1,...,ik)∈Ik

(
k

j=1

wij

)(
Mr(Ik, i

k)
)s) 1

s

, s 	= 0.

and (8.19) has the form

M2
h,g(Ik)

= h−1

⎛⎝ n
kn(n−1)...(n−k+1) 

ik=(i1,...,ik)∈Ik

(
k


s=1
wis

)
h ◦ g−1

⎛⎝ k


s=1
wisg(Tis )

k


s=1
wis

⎞⎠⎞⎠ ,

respectively.
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Remark 8.5 Under the construction of Example 8.5, (8.11) is written as

M1
s,r(Ik,k−1) =

⎛⎜⎜⎜⎝ 1
k−1

n


i=1

(ci −wi)

⎛⎜⎜⎝
n

j=1

wjT r
j −wi

ci
T r
i

1− wi
ci

⎞⎟⎟⎠
s
r
⎞⎟⎟⎟⎠

1
s

, s 	= 0, r 	= 0,

while (8.14) becomes

M1
h,g(Ik,k−1) = h−1

⎛⎜⎜⎝ 1
k−1

n


i=1

(ci −wi)h ◦ g−1

⎛⎜⎜⎝
n


r=1
wrg(Tr)− wi

ci
g(Ti)

1− wi
ci

⎞⎟⎟⎠
⎞⎟⎟⎠.

Remark 8.6 Under the construction of Example 8.6, (8.2.2) gives

M1
s,r(I2,2) =

⎛⎝ 
i2=(i1,i2)∈I2

⎛⎝ 2


j=1

wij[
n
i j

]
+d(i j)

⎞⎠(Mr(I2, i
2)
)s⎞⎠

1
s

, s 	= 0.

while (8.13) gives

M1
h,g(I2,2)

= h−1

⎛⎜⎝ 
(i1,i2)∈I2

(
2


s=1

wis

[ n
is ]+d(is)

)
h ◦ g−1

⎛⎜⎝
2


s=1

wis

[ n
is ]+d(is)

g(Tis )

2


s=1

wis

[ n
is ]+d(is)

⎞⎟⎠
⎞⎟⎠ .

8.3 Further Refinement of Jensen’s Operator
Inequality

In this section, we first use the method of Horváth adopted in [32] (see section 2.2) to
construct a new refinement of Jensen’s inequality for operator convex functions. In this
way we are able to generalize the refinement results given in [41] as well as the results of
Mond and Pečarić in [61]. The results of this section are published in [42].

Now, we give the generalization of Theorem 8.4. For this we use two further hypothe-
ses (H4) and (H5) given in Section 2.2:

(H4) Let S1, . . . ,Sn be finite, pairwise disjoint and nonempty sets, let

S :=
n⋃

j=1

S j,
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and let c be a function from S into R such that

c(s) > 0, s ∈ S, and 
s∈S j

c(s) = 1, j = 1, . . . ,n.

Let the function  : S → {1, . . . ,n} be defined by

(s) := j, if s ∈ S j.

(H5) Suppose A ⊂ P(S) is a partition of S into pairwise disjoint and nonempty sets.
Let

k := max{|A| | A ∈ A } ,

and let
Al := {A ∈ A | |A| = l} , l = 1, . . . ,k.

Then Al (l = 1, . . . ,k−1) may be the empty set, and |S|=
k

l=1

l |Al|.

Theorem 8.6 [42] If (O2)-(O4) and (H4)-(H5) are satisfied, then

f

(
n


j=1

wjTj

)
≤ Nk ≤ Nk−1 ≤ . . . ≤ N2 ≤ N1 =

n


j=1

wj f (Tj),

where

Nk :=
k


l=1

⎛⎝ 
A∈Al

⎛⎝(
s∈A

c(s)w(s)

)
f

⎛⎝ 
s∈A

c(s)w(s)T(s)


s∈A

c(s)w(s)

⎞⎠⎞⎠⎞⎠ ,

and for every 1 ≤ m ≤ k−1 the operator Nk−m is given by

Nk−m :=
m


l=1

(


A∈Al

(

s∈A

c(s)w(s) f (T(s))

))
+

k


l=m+1

(
m!

(l−1) . . .(l−m)

· 
A∈Al

⎛⎝ 
B∈Pl−m(A)

⎛⎝(
s∈B

c(s)w(s)

)
f

⎛⎝ 
s∈B

c(s)w(s)T(s)


s∈B

c(s)w(s)

⎞⎠⎞⎠⎞⎠⎞⎠ .

Proof. The proof is entirely similar to the proof of Theorem 2.3, so we omit it. �

8.3.1 Applications of Theorem 8.6 to some Special Cases

The first application of Theorem 8.6 leads to a generalization of Theorem 8.4.

Theorem 8.7 Assume that (O2)-(O4) are satisfied, let k ≥ 1 be a fixed integer, and let
Ik ⊂ {1, . . . ,n}ksuch that

Ik ,i ≥ 1, 1 ≤ i ≤ n,
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where Ik ,i means the number of occurrences of i in the sequences (i1, . . . , ik) ∈ Ik. For
j = 1, . . . ,n we consider the sets

S j := {((i1, . . . , ik) , l) | (i1, . . . , ik) ∈ Ik, 1 ≤ l ≤ k, il = j} .

Let c be a positive function on S :=
n⋃

j=1
S j such that


((i1,...,ik),l)∈S j

c((i1, . . . , ik) , l) = 1, j = 1, . . . ,n.

Then

f

(
n


j=1

wjTj

)
≤ Nk ≤ Nk−1 ≤ . . . ≤ N2 ≤ N1 =

n


j=1

wj f (Tj), (8.22)

where

Nk := 
(i1,...,ik)∈Ik

⎛⎜⎜⎝
(

k


l=1

c((i1, . . . , ik) , l)wil

)
f

⎛⎜⎜⎝
k

l=1

c((i1, . . . , ik) , l)wil Til

k

l=1

c((i1, . . . , ik) , l)wil

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

and for every 1 ≤ m ≤ k−1

Nk−m :=
m!

(k−1) . . .(k−m) 
(i1,...,ik)∈Ik

(


1≤l1<...<lk−m≤k⎛⎜⎜⎝
(

k−m


j=1

c((i1, . . . , ik) , l j)wil j

)
f

⎛⎜⎜⎝
k−m

l=1

c((i1, . . . , ik) , l j)wil j
Til j

k−m

l=1

c((i1, . . . , ik) , l j)wil j

⎞⎟⎟⎠
⎞⎟⎟⎠
⎞⎟⎟⎠ .

An immediate consequence of the previous result is Theorem 8.4: choosing

c((i1, . . . , ik) , l) =
1∣∣S j
∣∣ = 1

Ik , j
if ((i1, . . . , ik) , l) ∈ S j,

it can be checked easily that inequality (8.22) corresponds to inequality (8.7).
Theorem 8.4 has the interestng special cases Example 8.1 and Example 8.2. Theorem

8.7 generalizes these results: apply it to either

Ik :=
{

(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 < .. . < ik
}

, 1 ≤ k ≤ n,

or
Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 ≤ . . . ≤ ik

}
, 1 ≤ k.

Now we apply Theorem 8.6 to some special situations which correspond to some re-
sults about operator convexity. The next examples based on Examples 2.9-2.10 and Exam-
ple 5 in [32].
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Example 8.7 Let n, m, r be fixed integers, where n ≥ 3, m ≥ 2 and 1 ≤ r ≤ n− 2. In
this example, for every i = 1,2, . . . ,n and for every l = 0,1, . . . ,r the integer i+ l will be
identified with the uniquely determined integer j from {1, . . . ,n} for which

l + i ≡ j (mod n).

Introducing the notation
D := {1, . . . ,n}×{0, . . . ,r} ,

let for every j ∈ {1, . . . ,n}

S j := {(i, l) ∈ D | i+ l ≡ j (mod n)}
⋃

{ j} ,

and let A ⊂ P(S) (S :=
n⋃

j=1
S j) contain the following sets:

Ai := {(i, l) ∈ D | l = 0, . . . ,r} , i = 1, . . . ,n

and
A := {1, . . . ,n} .

Let c be a positive function on S such that


(i,l)∈S j

c(i, l)+ c( j) = 1, j = 1, . . . ,n.

As we have seen in Example 2.9, the sets S1, . . . ,Sn, the partition A and the function c
defined above satisfy the conditions (H4) and (H5).

Now we suppose (O2)-(O4) are satisfied. Then by Theorem 8.6

f

(
n


j=1

wjTj

)
≤ Nk =

n


i=1

⎛⎜⎜⎝
(

r


l=0

c(i, l)wi+l

)
f

⎛⎜⎜⎝
r

l=0

c(i, l)wi+lTi+l

r

l=0

c(i, l)wi+l

⎞⎟⎟⎠
⎞⎟⎟⎠

+

(
n


j=1

c( j)wj

)
f

⎛⎜⎜⎝
n

j=1

c( j)wjTj

n

j=1

c( j)wj

⎞⎟⎟⎠≤
n


j=1

wj f (Tj). (8.23)

In case

wj :=
1
n
, j = 1, . . . ,n,

c(i, l) :=
1

m(r+1)
, (i, l) ∈ D, c( j) :=

m−1
m

j = 1, . . . ,n,

it follows from (8.23) that

f

(
1
n

n


j=1

Tj

)
≤ 1

mn

n


i=1

f

(
Ti +Ti+1 + . . .+Ti+r

r+1

)
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+
m−1

m
f

(
1
n

n


j=1

Tj

)
≤ 1

n

n


j=1

f (Tj).

Example 8.8 Let n and k be fixed positive integers. Let

D := {(i1, . . . , in) ∈ {1, . . . ,k}n | i1 + . . .+ in = n+ k−1},

and for each j = 1, . . . ,n, denote S j the set

S j := D×{ j} .

For every (i1, . . . , in) ∈ D designate by A(i1,...,in) the set

A(i1,...,in) := {((i1, . . . , in) , l) | l = 1, . . . ,n} .

It is obvious that S j ( j = 1, . . . ,n) and A(i1,...,in) ((i1, . . . , in) ∈ D) are decompositions of

S :=
n⋃

j=1
S j into pairwise disjoint and nonempty sets, respectively. Let c be a function on S

such that
c((i1, . . . , in) , j) > 0, ((i1, . . . , in) , j) ∈ S

and


(i1,...,in)∈D

c((i1, . . . , in) , j) = 1, j = 1, . . . ,n. (8.24)

As in Example 2.10 we have that the conditions (H4) and (H5) are valid.
Suppose (O2)-(O4) are satisfied. Then by Theorem 8.6

f

(
n


j=1

wjTj

)
≤ Nk = 

(i1,...,in)∈D

((
n


l=1

c((i1, . . . , in) , l)wl

)

f

⎛⎜⎜⎝
n

l=1

c((i1, . . . , in) , l)wlTl

n

l=1

c((i1, . . . , in) , l)wl

⎞⎟⎟⎠
⎞⎟⎟⎠≤

n


j=1

wj f (Tj). (8.25)

If we set

wj :=
1
n
, j = 1, . . . ,n,

and

c((i1, . . . , in) , j) :=
i j(n+k−1

k−1

) ,
then (8.24) holds, since by some combinatorial considerations

|D| =
(

n+ k−2
n−1

)
,
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and


(i1,...,in)∈D

i j =
n+ k−1

n

(
n+ k−2

n−1

)
=
(

n+ k−1
k−1

)
, j = 1, . . . ,n.

In this situation (8.25) can therefore be expressed as

f

(
1
n

n


j=1

Tj

)
≤ 1(n+k−2

k−1

) 
(i1,...,in)∈D

f

(
1

n+ k−1

n


l=1

ilTl

)
≤ 1

n

n


j=1

f (Tj).

Let us close this section by deriving a sharpened version of the arithmetic mean -
geometric mean inequality. We note that ln is operator concave in (0,).

Example 8.9 Let n ≥ 2 be a fixed positive integer, let

S j :=
{

(i, j) ∈ {1, . . . ,n}2 | i = 1, . . . , j
}

, j = 1, . . . ,n,

and let
Ai :=
{
(i, j) ∈ {1, . . . ,n}2 | j = i, . . . ,n

}
, i = 1, . . . ,n.

If T1, . . . ,Tn are strictly positive operators, then it follows from Theorem 8.6 that

− ln

(
T1 + . . .+Tn

n

)
≤

n


i=1

⎛⎜⎜⎝−
(

1
n

n


j=i

1
j

)
ln

⎛⎜⎜⎝
n

j=i

Tj
j

n

j=i

1
j

⎞⎟⎟⎠
⎞⎟⎟⎠

≤− ln(T1)+ . . .+ ln(Tn)
n

,

and therefore

(T1 . . .Tn)
1
n ≤

n


i=1

⎛⎜⎜⎝
n

j=i

Tj
j

n

j=i

1
j

⎞⎟⎟⎠
1
n

n

j=i

1
j

≤ T1 + . . .+Tn

n
.

8.4 Parameter Dependent Refinement of Jensen’s
Operator Inequality

In this section, we introduce a parameter dependent refinement of (8.1) by using the method
given in Section 2.3. With the help of this new refinement, we construct the parameter
dependent mixed symmetric means for a subclass of S(I) and also give the monotonicity
property of these operator means. The results of this section are published in [42].
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Now, we give a parameter dependent refinement of the discrete Jensen’s operator in-
equality (8.1).

we also need the following hypothesis:
(O6) Consider a real number  such that  ≥ 1.

Theorem 8.8 [42] Suppose (O2)-(O4) and (O6). For k ∈ N, we introduce the sets

Sk :=

{
(i1, . . . , in) ∈ Nn |

n


j=1

i j = k

}
, k ∈ N,

and define the operators

Ck( ) = Ck(T1, . . . ,Tn;w1, . . . ,wn; )

:=
1

(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

(
n


j=1

 i jw j

)
f

⎛⎜⎜⎝
n

j=1

 i jw jTj

n

j=1

 i jw j

⎞⎟⎟⎠ . (8.26)

Then
(a)

f

(
n


j=1

wjTj

)
= C0( ) ≤C1( ) ≤ . . . ≤Ck( ) ≤ . . . ≤

n


j=1

wj f (Tj), k ∈ N.

(b) For every fixed  > 1

lim
k→

Ck( ) =
n


j=1

wj f (Tj).

It follows from the definition of Sk that Sk ⊂ {0, . . . ,k}n (k ∈ N), and it is obvious that

Ck(1) = f

(
n


j=1

wjTj

)
, k ∈ N.

The proof of Theorem 8.8 is essentially the same as the proofs of Theorem 2.5 and
Theorem 2.6, so it is omitted. But to prove the second part of the theorem we need the
following two results. First, we generalize Lemma 2.7.

Lemma 8.1 [42] Let (X ,‖·‖) be a normed space. Let p1, . . . , pn be a discrete distribution
with n≥ 2, and let  > 1. Let l ∈ {1, . . . ,n} be fixed. el denotes the vector in Rn that has 0s
in all coordinate positions except the lth, where it has a 1. Let q1, . . . ,qn be also a discrete
distribution such that q j > 0 (1 ≤ j ≤ n) and

ql > max(q1, . . .ql−1,ql+1, . . . ,qn) .
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If

g :

{
(t1, . . . ,tn) ∈ Rn | t j > 0 (1 ≤ j ≤ n),

n


j=1

t j = 1

}
→ X

is a bounded function for which
l := lim

el
g

exists, and pl > 0, then

lim
k→ 

(i1,...,in)∈Sk

k!
i1! . . . in!

qi1
1 . . .qin

n g

⎛⎜⎜⎝  i1 p1
n

j=1

 i j p j

, . . . ,
 in pn
n

j=1

 i j p j

⎞⎟⎟⎠= l .

Proof. We have to modify just the final part of the proof of Lemma 2.7. We can suppose
that l = 1.

Choose 0 <  < 1. Since the distribution function Fn−1 of the Chi-squared distribution
(2-distribution) with n− 1 degrees of freedom is continuous, and strictly increasing on
(0,), there exists a unique t > 0 such that

Fn−1(t) = 1− .

Define

S1
k :=

⎧⎪⎨⎪⎩(i1k, . . . , ink) ∈ Sk |
n


j=1

k

(
i jk
k −q j

)2
q j

< t

⎫⎪⎬⎪⎭ ,

let S2
k := Sk \ S1

k (k ∈ N+), and consider the sequences

a1
k := 

(i1k,...,ink)∈S1
k

k!
i1k! . . . ink!

qi1k
1 . . .qink

n g

⎛⎜⎜⎝  i1k p1
n

j=1

 i jk p j

, . . . ,
 ink pn
n

j=1

 i jk p j

⎞⎟⎟⎠ ,

and

a2
k := 

(i1k,...,ink)∈S2
k

k!
i1k! . . . ink!

qi1k
1 . . .qink

n g

⎛⎜⎜⎝  i1k p1
n

j=1

 i jk p j

, . . . ,
 ink pn
n

j=1

 i jk p j

⎞⎟⎟⎠ ,

where k ∈ N+.
By using the first part of the proof of Lemma 2.7, we have that
(i)


(i1k,...,ink)∈S1

k

k!
i1k! . . . ink!

qi1k
1 . . .qink

n = 1− + (k), k ∈ N+,

where lim
k→

 (k) = 0 (let k ∈ N+ such that  (k) <  for all k > k ),
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(ii) for every 1 > 0 we can find an integer k1 > k such that for all k > k1∥∥∥∥∥∥∥∥g
⎛⎜⎜⎝  i1k p1

n

j=1

 i jk p j

, . . . ,
 ink pn
n

j=1

 i jk p j

⎞⎟⎟⎠− 1

∥∥∥∥∥∥∥∥< 1, (i1k, . . . , ink) ∈ S1
k .

Since g bounded on its domain (‖g− 1‖ ≤ m), it follows from (i) and (ii) that∥∥∥∥∥∥∥∥ 
(i1,...,in)∈Sk

k!
i1! . . . in!

qi1
1 . . .qin

n g

⎛⎜⎜⎝  i1 p1
n

j=1

 i j p j

, . . . ,
 in pn
n

j=1

 i j p j

⎞⎟⎟⎠− 1

∥∥∥∥∥∥∥∥

≤ 
(i1,...,in)∈S1

k

k!
i1! . . . in!

qi1
1 . . .qin

n

∥∥∥∥∥∥∥∥g
⎛⎜⎜⎝  i1 p1

n

j=1

 i j p j

, . . . ,
 in pn
n

j=1

 i j p j

⎞⎟⎟⎠− 1

∥∥∥∥∥∥∥∥
+ 

(i1,...,in)∈S2
k

k!
i1! . . . in!

qi1
1 . . .qin

n

∥∥∥∥∥∥∥∥g
⎛⎜⎜⎝  i1 p1

n

j=1

 i j p j

, . . . ,
 in pn
n

j=1

 i j p j

⎞⎟⎟⎠− 1

∥∥∥∥∥∥∥∥
≤ 1 (1− + (k))+m(− (k)) , k > k1 ,

and this gives the result. �

The second lemma corresponds to the symbolic calculus for self-adjoint operators.

Lemma 8.2 [42] Assume (O2) and let f : I → R be continuous. Let the function

g :

{
(t1, . . . ,tn) ∈ Rn | t j > 0 (1 ≤ j ≤ n),

n


j=1

t j = 1

}
→ B(H)

defined by

g(t1, . . . ,tn) := f

(
n


j=1

t jTj

)
.

Then
lim
el

g = f (Tl), 1 ≤ l ≤ n.

Proof. Let

 := min
1≤ j≤n

(minSp(Tj)) and  := max
1≤ j≤n

(maxSp(Tj)) ,
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where Sp(T) denotes the spectrum of T . Then

Sp

(
n


j=1

t jTj

)
⊂ [, ] ⊂ I

for all t j ≥ 0 (1 ≤ j ≤ n) with
n

j=1

t j = 1.

It is enough to prove that f is continuous on S([, ]).
To prove this let  > 0 be fixed, and let (An)n∈N be a sequence in S([, ]) such that

An → A ∈ S([, ]).
Since f is continuous on [, ], the Stone-Weierstrass theorem implies the existence

of a sequence of real polynomial functions ( fk)k∈N which converges uniformly on [, ]
to f . It follows that there exists k0 ∈ N such that

∣∣ fk0(t)− f (t)
∣∣< 

3
, t ∈ [, ] .

The fundamental result for continuous functional calculus (see for example [27]) yields
that ∥∥ f (An)− fk0(An)

∥∥=
∥∥( f − fk0

)
(An)
∥∥= sup

t∈Sp(An)

∣∣ f (t)− fk0(t)
∣∣ (8.27)

≤ sup
t∈[ , ]

∣∣ f (t)− fk0(t)
∣∣< 

3
, n ∈ N,

where ‖·‖ means the norm on H. Similarly, we have

∥∥ fk0 (A)− f (A)
∥∥<


3
. (8.28)

Since An → A, we obtain Ai
n → Ai for every i ∈ N, and therefore there is n0 ∈ N such that

∥∥ fk0(An)− fk0(A)
∥∥<


3

(8.29)

for all n > n0.
Now the inequalities (8.27-8.29) give that

‖ f (An)− f (A)‖ ≤ ∥∥ f (An)− fk0(An)
∥∥+∥∥ fk0 (An)− fk0(A)

∥∥
+
∥∥ fk0(A)− f (A)

∥∥< 

for all n > n0, and hence f (An) → f (A).
The proof is complete. �
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8.4.1 Applications

Suppose (O2)-(O4) and (O6). We consider three special cases of (8.26).
(a) k = 1, n ∈ N+ :

C1( ) =
1

n+ −1

n


i=1

(1+( −1)wi) f

⎛⎜⎜⎝
n

j=1

wjTj +( −1)wiTi

1+( −1)wi

⎞⎟⎟⎠ .

(b) k ∈ N, n = 2 :

Ck( ) =
1

( +1)k
k


i=0

(
k
i

)(
 iw1 + k−iw2

)
f

(
 iw1T1 + k−iw2T2

 iw1 + k−iw2

)
.

(c) w1 = . . . = wn := 1
n :

Ck( ) =
1

n(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

(
n


j=1

 i j

)
f

⎛⎜⎜⎝
n

j=1

 i j Tj

n

j=1

 i j

⎞⎟⎟⎠ .

8.4.2 Parameter Dependent Operator Means

Next, we define some further operator means with parameter and study their monotonicity
and convergence.

Definition 8.1 [42] We assume that (O2), (O3) and (O5) are satisfied and  ≥ 1. Then
we define the operator means with respect to (8.26) by

Mh,g(k, ) := h−1

(
1

(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

(
n


j=1

 i jw j

)

·(h ◦ g−1)

⎛⎜⎜⎝
n

j=1

 i jw jg(Tj)

n

j=1

 i jw j

⎞⎟⎟⎠
⎞⎟⎟⎠ , k ∈ N. (8.30)

We now give the monotonicity of the means (8.30) by the virtue of Theorem 8.8.

Proposition 8.1 [42] For  ≥ 1, we assume (O2), (O3) and (O5). Then
(a)

Mg = Mh,g(0, ) ≤ . . . ≤ Mh,g(k, ) ≤ . . . ≤ Mh, k ∈ N,

if either h ◦ g−1 is operator convex and h−1 is operator monotone or h ◦ g−1 is operator
concave and −h−1 is operator monotone.
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(b)
Mg = Mh,g(0, ) ≥ . . . ≥ Mh,g(k, ) ≥ . . . ≥ Mh, k ∈ N,

if either h◦ g−1 is operator convex and −h−1 is operator monotone or h◦ g−1 is operator
concave and h−1 is operator monotone.

(c) In both cases
lim
k→

Mh,g(k, ) = Mh.

Proof. The idea of the proof is the same as given in Corollary 8.1. �

As a special case we consider the following example.

Example 8.10 [42] If I := (0,), h := ln and g(x) := x (x ∈ (0,)), then by Proposition
8.1 (b), we have the following inequality: for every Tj > 0 (1 ≤ j ≤ n),  ≥ 1, and k ∈ N+

n


j=1

T
wj
j ≤ 

(i1,...,in)∈Sk

⎛⎜⎜⎝
n

j=1

 i jw jTj

n

j=1

 i jw j

⎞⎟⎟⎠
1

(n+−1)k
k!

i1!...in!

n

j=1

 i j w j

≤
n


j=1

wjTj,

which gives a sharpened version of the arithmetic mean - geometric mean inequality

n


j=1

T
1
n
j ≤ 

(i1,...,in)∈Sk

⎛⎜⎜⎝
n

j=1

 i j Tj

n

j=1

 i j

⎞⎟⎟⎠
1

n(n+−1)k
k!

i1!...in!

n

j=1

 i j

≤ 1
n

n


j=1

Tj.

Supported by the power means we can introduce mixed symmetric operator means
corresponding to (8.26):

Definition 8.2 [42] Assume (O2) with I := (0,) and (O3). We define the mixed symmet-
ric means with respect to (8.26) by

Ms,r(k, ) :=

(
1

(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

(
n


j=1

 i jw j

)

·Ms
r

⎛⎜⎜⎝T1, . . . ,Tn;
 i1w1
n

j=1

 i jw j

, . . . ,
 inwn
n

j=1

 i jw j

⎞⎟⎟⎠
⎞⎟⎟⎠

1
s

,

if s, r ∈ R and s 	= 0.

The monotonicity and the convergence of the previous means is studied in the next
result.
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Proposition 8.2 [42] Assume (O2) with I := (0,) and (O3). Then
(a)

Ms ≤ . . . ≤ Ms,r(k, ) ≤ . . . ≤ Ms,r(0, ) = Mr, (8.31)

if either
(i) 1 ≤ s ≤ r or
(ii) −r ≤ s ≤−1 or
(iii) s ≤−1, r ≥ s ≥ 2r;
while the reverse inequalities hold in (8.31) if either
(iv) r ≤ s ≤−1 or
(v) 1 ≤ s ≤−r or
(vi) s ≥ 1, r ≤ s ≤ 2r.
(b) All of these cases

lim
k→

Ms,r(k, ) = Ms

for each fixed  > 1.

Proof. We apply Proposition 8.1 (b). �



Chapter9
Refinements of Determinantal
Inequalities of Jensen’s type

In this chapter, some new refinements are given for Jensen’s type inequalities involving the
determinants of positive definite matrices. Bellman-Bergstrom-Fan functionals are consid-
ered. These functionals are not only concave, but superlinear which is a stronger condition.
The results take advantage of this property.

The results of this chapter are given in [43].

9.1 Introduction and Preliminary Results

We start this section with the following notations introduced in [59] (see also [60]):
Mm denotes the set of positive definite matrices of order m. It is evident that Mm is closed
under addition and multiplication with a positive number, i.e. if M1,M2 ∈Mm, a > 0, then
M1 +M2, aM1 ∈ Mm (Mm is a convex cone).
If M ∈ Mm, let
|M| := the determinant of M,
|M|k = k

j=1 j, k = 1, ...,m, where 1, ...,m are the eigenvalues of M with 1 ≤ ... ≤ m

(here |M|m = |M|),
M( j) := the submatrix of M obtained by deleting the jth row and column of M,
M[k] := the principal submatrix of M formed by taking the first k rows and columns of M;

211
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then M[m] = M, M[m−1] = M(m) and M[0]:= the identity matrix.
BBF means the class of Bellman-Bergstrom-Fan functionals i,  j and k defined on Mm

by

i(M) = |M|
1
i
i , i = 1, ...,m,

 j(M) =
|M|

|M( j)| , j = 1, ...,m,

and

k(M) =
( |M|
|M[k]|

) 1
(m−k)

, k = 1, ...,m,

respectively.
The BBF functionals are superlinear (see [59]), i.e. f ∈ BBF is both superadditive

f (M1 +M2) ≥ f (M1)+ f (M2), M1,M2 ∈ Mm

and positive homogeneous

f (pM) = p f (M), M1,M2 ∈ Mm, p > 0.

More generally, for f ∈ BBF , Mi ∈Mm, pi > 0 (i = 1, ...,n), and Pk =k
i=1 pi (k = 1, ...,n),

we have (see also [59]):

f

(
n


i=1

piMi

)
≥

n


i=1

pi f (Mi) ≥ Pn

n


i=1

f (Mi)
pi
Pn , (9.1)

which is an interpolating inequality for

f

(
1
Pn

n


i=1

piMi

)
≥

n


i=1

f (Mi)
pi
Pn . (9.2)

Remark 9.1 (a) Since a functional f ∈ BBF is superlinear, it is also concave. The in-
equality (9.2) comes from the second inequality in (9.1), which is just an arithmetic-
geometric mean inequality, by using only the concavity of f .

For Pn = 1, interpolations corresponding to the second inequality in (9.1) can be found
in [37] and [40]. In [33] parameter dependent interpolations are given.

(b) A concave functional on Mm is not superlinear in general, hence the interpolations
of the first inequality in (9.1) are the most interesting (of course, in the case Pn 	= 1).

Unweighted versions of (9.1) and (9.2) are given by

f

(
1
n

n


i=1

Mi

)
≥ 1

n

n


i=1

f (Mi) ≥
n


i=1

f (Mi)
1
n , (9.3)

and
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f

(
1
n

n


i=1

Mi

)
≥

n


i=1

f (Mi)
1
n , (9.4)

respectively.
The following interpolations of the first inequality in (9.3) are given in [59]:

f

(
1
n

n


i=1

Mi

)
= fn,n ≥ ... ≥ fk+1,n ≥ fk,n ≥ ... ≥ f1,n =

1
n

n


i=1

f (Mi), (9.5)

where

fk,n =
1(n
k

) 
1≤i1<...<ik≤n

f

(
1
k

(
Mi1 + ...+Mik

))
.

[59] contains interpolations for the second inequality in (9.3) too:

1
n

n


i=1

f (Mi) = gn,n ≥ ... ≥ gk+1,n ≥ gk,n ≥ ... ≥ g1,n =
n


i=1

f (Mi)
1
n , (9.6)

where

gk,n = 
1≤i1<...<ik≤n

(
1
k

(
f (Mi1)+ ...+ f (Mik)

)) 1
(nk)

,

and
1
n

n


i=1

f (Mi) = h1,n ≥ ... ≥ hk,n ≥ hk+1,n ≥ ... ≥ hn,n =
n


i=1

f (Mi)
1
n , (9.7)

where

hk,n =
1(n
k

) 
1≤i1<...<ik≤n

(
f (Mi1)... f (Mik )

) 1
k .

There are similar interpolations for (9.4) in [59]:

f

(
1
n

n


i=1

Mi

)
= rn,n ≥ ... ≥ rk+1,n ≥ rk,n ≥ ... ≥ r1,n =

n


i=1

f (Mi)
1
n , (9.8)

where

rk,n = 
1≤i1<...<ik≤n

f

(
1
k

(
Mi1 + ...+Mik

)) 1
(nk)

.

The above interpolations from [59] based on the concavity of f .
We give interpolations of the first inequality in (9.1) (see Remark 9.1 (b)), which insure
generalizations of (9.5). By using the results in the papers [37], [40] and [33], we can also
generalize the second inequality in (9.3) and the inequality (9.4), and thus inequalities (9.6-
9.8), but these interpolations are just concrete examples of the inequalities in the papers
[37], [40] and [33] (see Remark 9.1 (a)).

We consider the notations introduced in (N1); see Section 2.1 of Chapter 2 (see also
[44, 43]).
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The following hypotheses are required to give the basic context of our results.
(D1) Let n ≥ 1 and k ≥ 2 be fixed integers, and let Ik be a subset of {1, . . . ,n}k such

that
Ik ,i ≥ 1, 1 ≤ i ≤ n.

(D2) Let M1, ...,Mn ∈ Mm.

(D3) Let p1, . . . , pn be positive real numbers. Let Pn :=
n

i=1

pi.

(D4) Let the function f : Mm → R be a Bellman-Bergström-Fan (BBF) functional.
(D5) Let

∣∣HIl ( j1, . . . , jl−1)
∣∣= l−1 for any ( j1, . . . , jl−1) ∈ Il−1 (k ≥ l ≥ 2).

(D1) is the same as (H0) given in Section 2.1 of Chapter 2, in seek of symmetry we
use this.

9.2 Refinement Results

The refinement results of this section involve some special expressions, which we now
describe. Assume (D1)-(D4). We shall use that f ∈ BBF is positive homogeneous. For any
k ≥ l ≥ 1 let

Al,l = Al,l (Ik,M1, . . . ,Mn, p1, . . . , pn)

:= 
(i1,...,il)∈Il

(
l


s=1

pis

Il ,is

)
f

⎛⎜⎜⎝
l


s=1

pis
Il ,is

Mis

l


s=1

pis
Il ,is

⎞⎟⎟⎠ (9.9)

= 
(i1,...,il)∈Il

f

(
l


s=1

pis

Il ,is
Mis

)
,

and associate to each k−1≥ l ≥ 1 the number

Ak,l = Ak,l (Ik,M1, . . . ,Mn, p1, . . . , pn)

:=
1

(k−1) . . . l 
(i1,...,il)∈Il

tIk ,l (i1, . . . , il)

(
l


s=1

pis

Ik ,is

)
f

⎛⎜⎜⎝
l


s=1

pis
Ik,is

Mis

l


s=1

pis
Ik,is

⎞⎟⎟⎠

=
1

(k−1) . . . l 
(i1,...,il)∈Il

tIk ,l (i1, . . . , il) f

(
l


s=1

pis

Ik ,is
Mis

)
.

Under the above constructions we come to
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Theorem 9.1 Assume (D1)-(D4). Then
(a)

f

(
n


r=1

prMr

)
≥ Ak,k ≥ Ak,k−1 ≥ . . . ≥ Ak,2 ≥ Ak,1 =

n


r=1

pr f (Mr). (9.10)

(b) Assume (D5) is also satisfied. Then

Ak,l = Al,l =
n

l |Il| 
(i1,...,il)∈Il

f

(
l


s=1

pisMis

)
, (k ≥ l ≥ 1) ,

and thus

f

(
n


r=1

prMr

)
≥ Ak,k ≥ Ak−1,k−1 ≥ . . . ≥ A2,2 ≥ A1,1 =

n


r=1

pr f (Mr).

Proof. We prove (a), (b) can be proved similarly. Since f is a Bellman-Bergström-Fan
functional, it is concave. Therefore Theorem 2.1 implies that

f

(
1
Pn

n


r=1

prMr

)
≥ Āk,k ≥ Āk,k−1 ≥ . . . ≥ Āk,2 ≥ Āk,1 =

1
Pn

n


r=1

pr f (Mr), (9.11)

where

Āl,l := Al,l

(
Ik,M1, . . . ,Mn,

p1

Pn
, . . . ,

pn

Pn

)
, k ≥ l ≥ 1

and

Āk,l := Ak,l

(
Ik,M1, . . . ,Mn,

p1

Pn
, . . . ,

pn

Pn

)
for k−1 ≥ l ≥ 1. The result now follows from (9.11), since f is positive homogeneous. �

9.2.1 Discussion and Applications Related to Theorem 9.1

ThroughoutExamples (9.1-9.6) the conditions (D2)-(D4) will be assumed. These examples
based on Examples 2.4-2.7, Example 2.2 and Example 2.1.

First, we generalize (9.5).

Example 9.1 Let

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 < .. . < ik

}
, 1 ≤ k ≤ n.

Then, by right of Examples 2.4, Theorem 9.1 (b) can be applied: we have

Ak,k =
1(n−1

k−1

) 
1≤i1<...<ik≤n

f

(
k


s=1

pisMis

)
, k = 1, . . . ,n.
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and

f

(
n


r=1

prMr

)
≥ Ak,k ≥ Ak−1,k−1 ≥ . . . ≥ A2,2 ≥ A1,1 =

n


r=1

pr f (Mr). (9.12)

If p1 = . . . = pn = 1
n , then (see (9.9))

Ak,k =
1(n
k

) 
1≤i1<...<ik≤n

f

(
Mi1 + . . .+Mik

k

)
, k = 1, . . . ,n,

and thus (9.12) gives the generalization of (9.5).

The structure of the second example is similar to the previous one.

Example 9.2 Let

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 ≤ . . . ≤ ik

}
, k ≥ 1.

Then, by right of Examples 2.5, Theorem 9.1 (b) can be applied: we can deduce

Ak,k =
1(n+k−1

k−1

) 
1≤i1≤...≤ik≤n

f

(
k


s=1

pisMis

)
, k ≥ 1,

and

f

(
n


r=1

prMr

)
≥ . . . ≥ Ak,k ≥ . . . ≥ Ak,1 =

n


r=1

pr f (Mr).

By taking p1 = . . . = pn = 1
n we obtain (see (9.9))

Ak,k =
1(n+k−1
k

) 
1≤i1≤...≤ik≤n

f

(
Mi1 + . . .+Mik

k

)
, k ≥ 1.

The following two examples are particular cases of Theorem 9.1 (b).

Example 9.3 Let
Ik := {1, . . . ,n}k , k ≥ 1.

Then, by right of Examples 2.6, Theorem 9.1 (b) can be applied: this leads to

Ak,k =
1

knk−1 
(i1,...,ik)∈Ik

f

(
k


s=1

pisMis

)
, k ≥ 1,

and

f

(
n


r=1

prMr

)
≥ . . . ≥ Ak,k ≥ . . . ≥ A1,1 =

n


r=1

pr f (Mr), k ≥ 1.

Especially, for p1 = . . . = pn = 1
n we find (see (9.9)) that

Ak,k =
1
nk 

(i1,...,ik)∈Ik

f

(
Mi1 + . . .+Mik

k

)
, k = 1, . . . ,n.
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Example 9.4 For 1≤ k≤ n let Ik consist of all sequences (i1, . . . , ik) of k distinct numbers
from {1, . . . ,n}.

Then, by right of Examples 2.7, Theorem 9.1 (b) can be applied: it follows that

Ak,k =
n

kn(n−1) . . .(n− k+1) 
(i1,...,ik)∈Ik

f

(
k


s=1

pisMis

)
, k = 1, . . . ,n

and

f

(
n


r=1

prMr

)
≥ An,n ≥ . . . ≥ Ak,k ≥ . . . ≥ A1,1 =

n


r=1

pr f (Mr).

If we set p1 = . . . = pn = 1
n , then by (9.9)

Ak,k =
1

n(n−1) . . .(n− k+1) 
(i1,...,ik)∈Ik

f

(
Mi1 + . . .+Mik

k

)
, k = 1, . . . ,n.

In the sequel two interesting consequences of Theorem 9.1 (a) are given.

Example 9.5 Let ci ≥ 1 be an integer (i = 1, . . . ,n), let k :=
n

i=1

ci, and let Ik = Pc1,...,cn

consist of all sequences (i1, . . . , ik) in which the number of occurrences of i ∈ {1, . . . ,n} is
ci (i = 1, . . . ,n).

Then, by right of Examples 2.2, Theorem 9.1 (a) can be applied. According to the
result

f

(
n


r=1

prMr

)
= Ak,k

=
c1! . . .cn!

k! 
(i1,...,ik)∈Ik

f

(
k


s=1

pis

cis
Mis

)
≥ Ak,k−1

=
1

k−1

n


i=1

ci f

(
n


r=1

prMr − pi

ci
Mi

)
≥

n


r=1

pr f (Mr).

Example 9.6 Let

I2 :=
{

(i1, i2) ∈ {1, . . . ,n}2 | i1|i2
}

.

The notation i1|i2 means that i1 divides i2.
[

n
i

]
is the largest natural number that does not

exceed n
i , and d(i) denotes the number of positive divisors of i.

Then, by right of Examples 2.1, Theorem 9.1 (a) can be applied. We have

f

(
n


r=1

prMr

)
≥

= 
(i1,i2)∈I2

f

⎛⎝ pi1[
n
i1

]
+d(i1)

Mi1 +
pi2[

n
i2

]
+d(i2)

Mi2

⎞⎠≥
n


r=1

pr f (Mr).
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9.3 Generalization of Theorem 9.1

In this section, we give the generalization of some refinements given in Section 9.2. Here
we consider the hypotheses (H4) and (H5) from Section 2.2 of Chapter 2 (see also [32,
43]).

By virtue of the above considerations we give another refinement of the first inequality
in (9.1).

Theorem 9.2 If (D2-D4) and (H4-H5) are satisfied, then

f

(
n


j=1

p jMj

)
≥ Nk ≥ Nk−1 ≥ . . . ≥ N2 ≥ N1 =

n


j=1

p j f (Mj),

where

Nk :=
k


l=1

⎛⎝ 
A∈Al

⎛⎝(
s∈A

c(s)p(s)

)
f

⎛⎝ 
s∈A

c(s)p(s)M(s)


s∈A

c(s)p(s)

⎞⎠⎞⎠⎞⎠ (9.13)

=
k


l=1

(


A∈Al

(
f

(

s∈A

c(s)p(s)M(s)

)))
,

and for every 1 ≤ m ≤ k−1 the number Nk−m is given by

Nk−m :=
m


l=1

(


A∈Al

(

s∈A

c(s)p(s) f (M(s))

))
+

k


l=m+1

(
m!

(l−1) . . . (l−m)

· 
A∈Al

⎛⎝ 
B∈Pl−m(A)

⎛⎝(
s∈B

c(s)p(s)

)
f

⎛⎝ 
s∈B

c(s)p(s)M(s)


s∈B

c(s)p(s)

⎞⎠⎞⎠⎞⎠⎞⎠

=
m


l=1

(


A∈Al

(

s∈A

c(s)p(s) f (M(s))

))
+

k


l=m+1

(
m!

(l−1) . . . (l−m)

· 
A∈Al

(


B∈Pl−m(A)

(
f

(

s∈B

c(s)p(s)M(s)

))))
.

Proof. We can prove as in Theorem 9.1, by applying Theorem 2.3. �
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9.3.1 Discussion and Applications related to Theorem 9.2

The first application of Theorem 9.2 leads to a generalization of Theorem 9.1.

Theorem 9.3 Assume (D2-D4). For j = 1, . . . ,n, we introduce the sets

S j := {((i1, . . . , ik) , l) | (i1, . . . , ik) ∈ Ik, 1 ≤ l ≤ k, il = j} .

Let c be a positive function on S :=
n⋃

j=1
S j such that


((i1,...,ik),l)∈S j

c((i1, . . . , ik) , l) = 1, j = 1, . . . ,n.

Then we have

f

(
n


j=1

p jMj

)
≥ Nk ≥ Nk−1 ≥ . . . ≥ N2 ≥ N1 =

n


j=1

p j f (Mj), (9.14)

where the numbers Nk−m (0 ≤ m ≤ k−1) can be written in the following forms:

Nk = 
(i1,...,ik)∈Ik

(
f

(
k


l=1

c((i1, . . . , ik) , l) pil Mil

))
,

and for every 1 ≤ m ≤ k−1

Nk−m :=
m!

(k−1) . . . (k−m) 
(i1,...,ik)∈Ik

(


1≤l1<...<lk−m≤k(
f

(
k−m


l=1

c((i1, . . . , ik) , l j) pil j
Mil j

)))
.

An immediate consequence of the previous result is Theorem 9.1: by choosing

c((i1, . . . , ik) , l) :=
1∣∣S j
∣∣ = 1

Ik , j
if ((i1, . . . , ik) , l) ∈ S j,

we can see that the inequality (9.14) corresponds to the inequality (9.10).
By applying Theorem 9.3 to either the set

Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 < .. . < ik

}
, 1 ≤ k ≤ n,

or the set
Ik :=
{
(i1, . . . , ik) ∈ {1, . . . ,n}k | i1 ≤ . . . ≤ ik

}
, 1 ≤ k,

generalizations of Example 9.1 and Example 9.2 are obtained. Therefore Theorem 9.2 also
provides the generalizations of the corresponding results given in [59].

Now we apply Theorem 9.2 to some special situations based on Examples 2.9-2.10.
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Example 9.7 Let n, m, r be fixed integers, where n ≥ 3, m ≥ 2 and 1 ≤ r ≤ n− 2. In
this example, for every i = 1,2, . . . ,n and for every l = 0,1, . . . ,r the integer i+ l will be
identified with the uniquely determined integer j from {1, . . . ,n} for which

l + i ≡ j (modn). (9.15)

Introducing the notation

D := {1, . . . ,n}×{0, . . . ,r} ,

let for every j ∈ {1, . . . ,n}
S j := {(i, l) ∈ D | i+ l ≡ j (modn)}

⋃
{ j} ,

and let A ⊂ P(S) (S :=
n⋃

j=1
S j) contain the following sets:

Ai := {(i, l) ∈ D | l = 0, . . . ,r} , i = 1, . . . ,n

and
A := {1, . . . ,n} .

Let c be a positive function on S such that


(i,l)∈S j

c(i, l)+ c( j) = 1, j = 1, . . . ,n.

As we have seen in Example 2.9, the sets S1, . . . ,Sn, the partition A and the function c
defined above satisfy the conditions (H4) and (H5).

Now we suppose that (D2)-(D4) are satisfied. Then by Theorem 9.2, we have

f

(
n


j=1

p jMj

)
≥ Nn =

n


i=1

(
f

(
r


l=0

c(i, l) pi+lMi+l

))
(9.16)

+ f

(
n


j=1

c( j)p jMj

)
≥

n


j=1

p j f (Mj).

In case

p j :=
1
n
, j = 1, . . . ,n,

c(i, l) :=
1

m(r+1)
, (i, l) ∈ D, c( j) :=

m−1
m

j = 1, . . . ,n,

it follows from (9.16) and (9.13) that

f

(
1
n

n


j=1

Mj

)
≥ 1

mn

n


i=1

f

(
Mi +Mi+1 + . . .+Mi+r

r+1

)

+
m−1

m
f

(
1
n

n


j=1

Mj

)
≥ 1

n

n


j=1

f (Mj).
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Example 9.8 Let n and k be fixed positive integers. Let

D := {(i1, . . . , in) ∈ {1, . . . ,k}n | i1 + . . .+ in = n+ k−1},

and for each j = 1, . . . ,n, denote S j the set

S j := D×{ j} .

For every (i1, . . . , in) ∈ D designate by A(i1,...,in) the set

A(i1,...,in) := {((i1, . . . , in) , l) | l = 1, . . . ,n} .

It is obvious that S j ( j = 1, . . . ,n) and A(i1,...,in) ((i1, . . . , in) ∈ D) are decompositions of

S :=
n⋃

j=1
S j into pairwise disjoint and nonempty sets, respectively. Let c be a function on S

such that
c((i1, . . . , in) , j) > 0, ((i1, . . . , in) , j) ∈ S

and


(i1,...,in)∈D

c((i1, . . . , in) , j) = 1, j = 1, . . . ,n. (9.17)

As in Example 2.10 we have that the conditions (H4) and (H5) are valid.
Now we suppose that (D2)-(D4) are satisfied. Then, by Theorem 9.2, we have

f

(
n


j=1

p jMj

)
≥ Nn = 

(i1,...,in)∈D

f

(
n


l=1

c((i1, . . . , in) , l) plMl

)

≥
n


j=1

p j f (Mj). (9.18)

If we set

p j :=
1
n
, j = 1, . . . ,n,

and

c((i1, . . . , in) , j) :=
i j(n+k−1

k−1

) ,
then (9.17) holds, since by some combinatorial considerations

|D| =
(

n+ k−2
n−1

)
,

and


(i1,...,in)∈D

i j =
n+ k−1

n

(
n+ k−2

n−1

)
=
(

n+ k−1
k−1

)
, j = 1, . . . ,n.

In this situation (9.18) can therefore be expressed thus

f

(
1
n

n


j=1

Mj

)
≥ 1(n+k−2

k−1

) 
(i1,...,in)∈D

f

(
1

n+ k−1

n


l=1

ilMl

)
≥ 1

n

n


j=1

f (Mj).
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9.4 Parameter Dependent Refinements

Now, we give parameter dependent refinements for determinantal inequalities of Jensen’s
type. We use the constructions introduced in Section 2.3.

Theorem 9.4 Let  ≥ 1 be a real number. Suppose (D2)-(D4) are satisfied, consider the
sets

Sk :=

{
(i1, . . . , in) ∈ Nn |

n


j=1

i j = k

}
, k ∈ N,

and for k ∈ N define the numbers

Ck( ) = Ck(M1, . . . ,Mn; p1, . . . , pn; )

:=
1

(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

(
n


j=1

 i j p j

)
f

⎛⎜⎜⎝
n

j=1

 i j p jMj

n

j=1

 i j p j

⎞⎟⎟⎠
=

1

(n+ −1)k


(i1,...,in)∈Sk

k!
i1! . . . in!

f

(
n


j=1

 i j p jMj

)
.

Then

f

(
n


j=1

p jMj

)
= C0( ) ≥C1( ) ≥ . . . ≥Ck( ) ≥ . . . ≥

n


j=1

p j f (Mj), k ∈ N.

Proof. It is similar to the proof of Theorem 9.1, by applying Theorem 2.5. �
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equalities, Element, Zagreb, 2005.

[22] C. B. Gao and J.J. Wen, Inequalities of Jensen-Pečarić -Svrtan-Fan type, JIPAM, 9:
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for operators, 203
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BBF functional, 212

Concave function, 2
operator concave function, 188

Convex function, 1
J-convex, 1
2D-convex function, 84
log-convex, 132
n-exponentially convex, 131
exponentially convex, 131

integral form, 132
operator convex function, 187
Jensen sense, 1
mid convex, 1

Divided difference, 132

Green function, 82

Hermite-Hadamard inequality, 109

Jensen’s inequality
2D analogue, 85
discrete, 3

parameter dependent refinement, 55
for operator convex function, 188
integral analogue, 3

Linear functional, 126
for convex function, 133

Mean, 19
Cauchy mean, 137
Dresher mean, 14
Hamy’s mean, 24
arithmetic mean, 8
geometric mean, 8
integral mean, 19

integral power mean, 20
logarithmic mean, 143
power mean, 19

for operators, 188
symmetric mean, 19
quasi-arithmetic mean, 19

for operators, 194
parameter dependent, 208

Mean value theorem, 125
Minkowski’s inequality, 182

Operator monotone function, 187

Popoviciu’s inequality, 84
integral version, 135
of several variables, 84
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