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Preface

In 1960, the Polish mathematician Zdzisław Opial proved the next integral inequality
([64]), which now bear his name:

Let x(t) ∈ C1[0,h] be such that x(0) = x(h) = 0 and x(t) > 0 for t ∈ (0,h).
Then ∫ h

0

∣∣x(t)x′(t)
∣∣dt ≤ h

4

∫ h

0

(
x′(t)

)2
dt, (1)

where the constant h/4 is the best possible.

This integral inequality, containing the derivative of the function, is recognized as a funda-
mental result in the analysis of qualitative properties of a solution of differential equations
(see [5, 61] and the references cited therein). Over the last five decades, an enormous
amount of work has been done on the Opial inequality: several simplifications of the orig-
inal proof, various extensions, generalizations and discrete analogues. More details can
be found in the monograph by Agarwal and Pang [5] which is dedicated to the theory of
Opial-type inequalities and its applications in theory of differential and difference equa-
tions.

Motivated with Opial-type inequalities, together with Jensen’s inequality, we improve
some known results and obtain new, interesting inequalities. For such inequalities we
construct functionals and give its mean value theorems. These Cauchy type mean value
theorems are used for Stolarsky type means, all defined by the observed inequalities, and
also, they are used to prove the n-exponential convexity for the functionals.

We study Opial-type inequalities not only for ordinary derivatives, but also for frac-
tional derivatives which leads us to the fractional calculus. It is a theory of differential and
integral operators of non-integer order that has become very useful due to its many appli-
cations in almost all the applied sciences. We study the Riemann-Liouville fractional inte-
grals and three types of fractional derivatives (the Riemann-Liouville, the Caputo and the
Canavati type), in the real domain. Obtaining improvements of composition identities for
the above mentioned fractional derivatives, we apply them on the fractional differentiation
inequalities that have applications in the fractional differential equations; the most impor-
tant ones are in establishing the uniqueness of the solution of initial problems and giving
upper bounds to their solutions. We give refinements, generate new extensions and gener-
alizations of some known Opial-type inequalities, investigate the possibility of obtaining
the best possible constant, compare results obtained by different methods and present some
new inequalities involving fractional integrals and fractional derivatives. Each Opial-type
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inequality is observed for the left-sided and the right-sided fractional derivatives, empha-
sizing special cases when order of derivatives belongs to N0, reducing to classical Opial-
type inequality for ordinary derivatives. The book is divided in nine chapters.

In the first chapter, notation, terms and overview of some important results are listed
for integrable functions, continuous functions, absolutely continuous functions and con-
vex functions with the Jensen inequality. Also, an overview of method of producing n-
exponentially convex and exponentially convex functions is given. Finally, Opial-type in-
equalities due to Beesack, Wirtinger, Willett, Godunova, Levin, Rozanova, Fink, Agarwal,
Pang, Alzer are listed.

In Chapter 2 we give definitions and basic properties of Riemann-Liouville fractional
integral and three types of fractional derivatives: the Riemann-Liouville, the Caputo and
the Canavati type. Fractional integrals and fractional derivatives are observed in the real
domain. Also, improvements of the known composition identities for fractional deriva-
tives are presented. Each of three types of fractional derivatives is specially treated, first
for the left-sided and then for the right-sided fractional derivatives. An overview of condi-
tions under which composition identities are valid is given. An attention was paid on the
role of initial conditions for a function involved in composition identities and the mutual
respect among the Riemann-Liouville fractional integrals and above mentioned fractional
derivatives.

In Chapter 3, extensions and generalizations of Opial’s inequalities due to Willett, Go-
dunova, Levin and Rozanova are obtained using Jensen’s inequality. Cauchy type mean
value theorems are proved and used in studying Stolarsky type means defined by the ob-
tained inequalities. An elegant method of producing n-exponentially convex and expo-
nentially convex functions is applied. Also, Willett’s and Rozanova’s generalizations of
Opial’s inequality are extended to multidimensional inequalities.

In Chapter 4, extensions of Opial-type integral inequalities are used to obtain general-
izations of inequalities due to Mitrinović and Pečarić for convex and for relative convex
functions. Again, Cauchy type mean value theorems are given, as well as Stolarsky type
means defined by the observed integral inequalities. Further, n-exponentially convex and
exponentially convex functions are produced. Also, some new Opial-type inequalities are
given for different types of fractional integrals and fractional derivatives as applications.

Obtained results from previous chapters are applied to the fractional differentiation
inequalities in Chapter 5 and Chapter 6. Opial-type inequalities are studied and inequalities
involving the Riemann-Liouville, the Caputo and the Canavati fractional derivatives are
presented. Some generalizations, extensions and refinements of Opial-type inequalities are
given and some new fractional differentiation inequalities are obtained. Possibilities to
obtain the best possible constants are investigated and a comparison of results obtained by
different methods is given. Special cases of order of fractional derivatives are emphasized,
in which inequalities are reduced to the classical Opial’s, Beesack’s, Wirtinger’s, Fink’s,
Agarwal-Pang’s or Alzer’s inequality for ordinary derivatives.

A new general inequalities for integral operators with a kernel and applications to a
Green function are presented in Chapter 7. Inequalities are observed on a measure space
(,,) for two functions, convex and concave. Results are applied to numerous sym-
metric functions and new results involving a Green function, Lidstone’s and Hermite’s
interpolating polynomials are obtained.
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The last chapter starts with improvements of some Opial-type inequalities in one vari-
able, following with multidimensional integral inequalities and theirs discrete versions.
These inequalities are similar to those of Nirenberg, Opial, Poincaré, Serrin, Sobolev and
Wirtinger. In this chapter, some elementary techniques such as appropriate integral rep-
resentations of functions, appropriate summation representations of discrete functions and
inequalities involving means are used to establish multidimensional integral (and discrete)
inequalities.

July 2015
Maja Andrić (Split, Croatia)

Josip Pečarić (Zagreb, Croatia)
Ivan Perić (Zagreb, Croatia)
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Chapter1
Preliminaries

1.1 Spaces of integrable, continuous and absolutely
continuous functions

In this section we listed definitions and properties of integrable functions, continuous func-
tions, absolutely continuous functions and basic properties of the Laplace transform. Also
we give required notation, terms and overview of some important results (more details
could be found in monographs [57, 59, 70, 74]).

Lp spaces

Let [a,b] be a finite interval in R, where−≤ a < b≤. We denote by Lp[a,b], 1≤ p <,
the space of all Lebesgue measurable functions f for which

∫ b
a | f (t)|p dt < , where

|| f ||p =
(∫ b

a
| f (t)|p dt

) 1
p

,

and by L[a,b] the set of all functions measurable and essentially bounded on [a,b] with

|| f || = esssup{| f (x)| : x ∈ [a,b]} .

Theorem 1.1 (INTEGRAL HÖLDER’S INEQUALITY) Let p,q∈R such that 1≤ p,q≤
and 1

p + 1
q = 1. Let f ,g : [a,b] → R be integrable functions such that f ∈ Lp[a,b] and

1



2 1 PRELIMINARIES

g ∈ Lq[a,b]. Then ∫ b

a
| f (t)g(t)|dt ≤ || f ||p ||g||q . (1.1)

Equality in (1.1) holds if and only if A | f (t)|p = B |g(t)|q almost everywhere, where A and
B are constants.

Spaces of continuous and absolutely continuous functions

We denote by Cn[a,b], n ∈ N0, the space of functions which are n times continuously
differentiable on [a,b], that is

Cn[a,b] =
{

f : [a,b]→ R : f (k) ∈C[a,b] ,k = 0,1, . . . ,n
}

.

In particular, C0[a,b] =C[a,b] is the space of continuous functions on [a,b] with the norm

|| f ||Cn =
n


k=0

|| f (k)||C =
n


k=0

max
x∈[a,b]

| f (k)(x)| ,

and for C[a,b]
|| f ||C = max

x∈[a,b]
| f (x)| .

Lemma 1.1 The space Cn[a,b] consists of those and only those functions f which are
represented in the form

f (x) =
1

(n−1)!

∫ x

a
(x− t)n−1(t)dt +

n−1


k=0

ck(x−a)k , (1.2)

where  ∈C[a,b] and ck are arbitrary constants (k = 0,1, . . . ,n−1).
Moreover,

(t) = f (n)(t) , ck =
f (k)(a)

k!
(k = 0,1, . . . ,n−1) . (1.3)

By Cn
a [a,b] we denote the subspace of the space Cn[a,b] defined by

Cn
a [a,b] =

{
f ∈Cn[a,b] : f (k)(a) = 0 ,k = 0,1, . . . ,n−1

}
.

For f ∈Cn[a,b] and 0 ≤  < 1 we define

| f |n, = sup

⎧⎨⎩
∣∣∣ f (n)(x)− f (n)(y)

∣∣∣
|x− y| : x,y ∈ [a,b],x �= y

⎫⎬⎭ .

Let  > 0,  �∈N, n the integral part of  (notation n = []) and let  = −n. By D [a,b]
we denote the space

D [a,b] =
{

f ∈Cn[a,b] : | f |n, < 
}

,
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and by D
a [a,b] the subspace of the space D [a,b]

D
a [a,b] =

{
f ∈ D [a,b] : f (k)(a) = 0 ,k = 0,1, . . . ,n

}
.

Specially, for  = n ∈ N we have Dn[a,b] = Cn[a,b] and Dn
a [a,b] =Cn

a [a,b].
The space of absolutely continuous functions on a finite interval [a,b] is denoted by

AC[a,b]. It is known that AC[a,b] coincides with the space of primitives of Lebesgue
integrable functions L1[a,b] (see Kolmogorov and Fomin [53, Chapter 33.2]):

f ∈ AC[a,b] ⇔ f (x) = f (a)+
∫ x

a
(t)dt ,  ∈ L1[a,b] ,

and therefore an absolutely continuous function f has an integrable derivative f ′(x) = (x)
almost everywhere na [a,b]. We denote by ACn[a,b], n ∈ N, the space

ACn[a,b] =
{

f ∈Cn−1[a,b] : f (n−1) ∈ AC[a,b]
}

.

In particular, AC1[a,b] = AC[a,b].

Lemma 1.2 The space ACn[a,b] consists of those and only those functions which can
be represented in the form (1.2), where  ∈ L1[a,b] and ck are arbitrary constants (k =
0,1, . . . ,n−1).
Moreover, (1.3) holds.

The next theorem has numerous applications involving multiple integrals.

Theorem 1.2 (FUBINI’S THEOREM) Let (X ,M ,) and (Y,N ,) be  -finite measure
spaces and f ×-measurable function on X ×Y. If f ≥ 0, then next integrals are equal∫
X×Y

f (x,y)d( ×)(x,y) ,
∫
X

(∫
Y

f (x,y)d(y)
)

d(x) and
∫
Y

(∫
X

f (x,y)d(x)
)

d(y).

If f is a complex function, then above equalities hold with additional requirement∫
X×Y

| f (x,y)|d(×)(x,y) <  .

Next equalities are consequences of this theorem:∫ b

a
dx

∫ d

c
f (x,y)dy =

∫ d

c
dy

∫ b

a
f (x,y)dx ;

∫ b

a
dx

∫ x

a
f (x,y)dy =

∫ b

a
dy

∫ b

y
f (x,y)dx . (1.4)
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The gamma and beta functions

The gamma function  is the function of complex variable defined by Euler’s integral
of second kind

(z) =
∫ 

0
tz−1 e−t dt , R(z) > 0 . (1.5)

This integral is convergent for each z ∈ C such that R(z) > 0. It has next property

(z+1) = z(z) , R(z) > 0 ,

from which follows
(n+1) = n! , n ∈ N0 .

For domain R(z) ≤ 0 we have

(z) =
(z+n)

(z)n
, R(z) > −n; n ∈ N; z �∈ Z

−
0 = {0,−1,−2, . . .} , (1.6)

where (z)n is the Pochhammer’s symbol defined for z ∈ C and n ∈ N0 by

(z)0 = 1; (z)n = z(z+1) · · ·(z+n−1), n ∈ N .

The gamma function is analytic in complex plane except in 0,−1,−2, . . . which are simple
poles.

The beta function is the function of two complex variables defined by Euler’s integral
of the first kind

B(z,w) =
∫ 1

0
tz−1 (1− t)w−1dt , R(z),R(w) > 0 . (1.7)

It is related to the gamma function with

B(z,w) =
(z)(w)
(z+w)

, z,w �∈ Z
−
0 ,

which gives

B(z+1,w) =
z

z+w
B(z,w) .

Next we proceed with examples of integrals often used in proofs and calculations in
this book.

Example 1.1 Let , > 0 and x ∈ [a,b]. Then by substitution t = x− s(x−a) we have∫ x

a
(x− t)−1(t−a)−1dt =

∫ 1

0
(x−a)+−1 s−1(1− s)−1ds

= B(, )(x−a)+−1 .

Analogously, by substitution t = x+ s(b− x), it follows∫ b

x
(t − x)−1(b− t)−1dt = B(, )(b− x)+−1 .
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Example 1.2 Let , > 0, f ∈ L1[a,b] and x ∈ [a,b]. Then interchanging the order of
integration and evaluating the inner integral we obtain∫ x

a
(x− t)−1

∫ t

a
(t− s)−1 f (s)dsdt =

∫ x

s=a
f (s)

∫ x

t=s
(x− t)−1(t− s)−1 dt ds

= B(, )
∫ x

a
(x− s)+−1 f (s)ds .

Analogously,∫ b

x
(t− x)−1

∫ b

t
(s− t)−1 f (s)dsdt = B(, )

∫ b

x
(s− x)+−1 f (s)ds .

The Laplace transform

Let f : [0,) → R be a function such that mapping t 	→ e−t | f (t)|,  > 0, is integrable on
[0,). Then for each p ≥  the Lebesgue integral

F(p) =
∫ 

0
e−pt f (t)dt (1.8)

exists. The mapping f 	→ F is called the Laplace transform and noted with L , that is

L [ f ](p) = F(p) .

Sufficient conditions for the Laplace transform existence are that function f is locally
integrable and exponentially bounded in , that is | f (t)| ≤ Met for t >  , where M, 
and  are constant. The abscissa of convergence 0 is the smallest value of  for which
| f (t)| ≤ Met .

Example 1.3 Let f : [0,) → R, f (t) = t , where  > −1. Obviously | f (t)| = t < et

for t > 0 and  ≥ 0. For −1 <  < 0, the function f is locally integrable and t ≤ 1 for
t ≥ 1. Therefore, by substitution pt = x, the Laplace transform has the form

L [ f ] (p) =
∫ 

0
e−pt t dt =

1
p+1

∫ 

0
e−x x dx =

( +1)
p+1 .

We give some properties and rules of the Laplace transform, and important uniqueness
theorem ([74, Teorem 6.3]):

convolution: L

[∫ t

0
f (t − )g()d

]
(p) = L [ f ](p)L [g](p)

differentiation: L
[
f (n)

]
(p) = pnL [ f ](p)−

n


k=1

pn−k f (k−1)(0)

Theorem 1.3 (UNIQUENESS THEOREM) Let f ,g : [0,)→R be two functions for which
the Laplaceova transform exists. If∫ 

0
e−pt f (t)dt =

∫ 

0
e−ptg(t)dt

for each p on common area of convergence, then f (t) = g(t) for almost every t ∈ [0,).
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1.2 Convex functions and Jensen’s inequalities

Definitions and properties of convex functions and Jensen’s inequality, with more details,
could be found in monographs [61, 62, 67].

Let I be an interval in R.

Definition 1.1 A function f : I → R is called convex if

f ((1− )x+y)≤ (1− ) f (x)+ f (y) (1.9)

for all points x and y in I and all  ∈ [0,1]. It is called strictly convex if the inequality
(1.9) holds strictly whenever x and y are distinct points and  ∈ (0,1). If − f is convex
(respectively, strictly convex) then we say that f is concave (respectively, strictly concave).
If f is both convex and concave, then f is said to be affine.

Lemma 1.3 (THE DISCRETE CASE OF JENSEN’S INEQUALITY) A real-valued function
f defined on an interval I is convex if and only if for all x1, . . . ,xn in I and all scalars
1, . . . ,n in [0,1] with n

k=1 k = 1 we have

f

(
n


k=1

kxk

)
≤

n


k=1

k f (xk) . (1.10)

The above inequality is strict if f is strictly convex, all the points xk are distinct and all
scalars k are positive.

Theorem 1.4 (JENSEN) Let f : I → R be a continuous function. Then f is convex if and
only if f is midpoint convex, that is,

f

(
x+ y

2

)
≤ f (x)+ f (y)

2
(1.11)

for all x,y ∈ I.

Corollary 1.1 Let f : I → R be a continuous function. Then f is convex if and only if

f (x+h)+ f (x−h)−2 f (x)≥ 0 (1.12)

for all x ∈ I and all h > 0 such that both x+h and x−h are in I.

Proposition 1.1 (THE OPERATIONS WITH CONVEX FUNCTIONS) (i) The addition of two
convex functions (defined on the same interval) is a convex function; if one of them
is strictly convex, then the sum is also strictly convex.

(ii) The multiplication of a (strictly) convex function with a positive scalar is also a (strictly)
convex function.
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(iii) The restriction of every (strictly) convex function to a subinterval of its domain is also
a (strictly) convex function.

(iv) If f : I → R is a convex (respectively a strictly convex) function and g : R → R is
a nondecreasing (respectively an increasing) convex function, then g ◦ f is convex
(respectively strictly convex)

(v) Suppose that f is a bijection between two intervals I and J. If f is increasing, then f is
(strictly) convex if and only if f−1 is (strictly) concave. If f is a decreasing bijection,
then f and f−1 are of the same type of convexity.

Definition 1.2 If g is strictly monotonic, then f is said to be (strictly) convex with respect
to g if f ◦ g−1 is (strictly) convex.

Proposition 1.2 If x1,x2,x3 ∈ I are such that x1 < x2 < x3, then the function f : I → R

is convex if and only if the inequality

(x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) ≥ 0

holds.

Proposition 1.3 If f is a convex function on an interval I and if x1 ≤ y1, x2 ≤ y2, x1 �= x2,
y1 �= y2, then the following inequality is valid

f (x2)− f (x1)
x2 − x1

≤ f (y2)− f (y1)
y2 − y1

.

If the function f is concave, then the inequality reverses.

The following theorems concern derivatives of convex functions.

Theorem 1.5 Let f : I → R be convex. Then

(i) f is Lipschitz on any closed interval in I;

(ii) f ′+ and f ′− exist and are increasing in I, and f ′− ≤ f ′+ (if f is strictly convex, then
these derivatives are strictly increasing);

(iii) f ′ exists, except possibly on a countable set, and on the complement of which it is
continuous.

Proposition 1.4 Suppose that f : I → R is a twice differentiable function. Then

(i) f is convex if and only if f ′′ ≥ 0;

(ii) f is strictly convex if and only if f ′′ ≥ 0 and the set of points where f ′′ vanishes does
not include intervals of positive length.

Next we need divided differences, commonly used when dealing with functions that
have different degree of smoothness.
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Definition 1.3 Let f : I →R, n∈N0 and let x0,x1, . . . ,xn ∈ I be mutually different points.
The n-th order divided difference of a function at x0, . . . ,xn is defined recursively by

[xi; f ] = f (xi) , i = 0,1, . . . ,n ,

[x0,x1; f ] =
[x0; f ]− [x1; f ]

x0− x1
=

f (x0)− f (x1)
x0− x1

,

[x0,x1,x2; f ] =
[x0,x1; f ]− [x1,x2; f ]

x0− x2
, (1.13)

...

[x0, . . . ,xn; f ] =
[x0, . . . ,xn−1; f ]− [x1, . . . ,xn; f ]

x0− xn
.

Remark 1.1 The value [x0,x1,x2; f ] is independent of the order of the points x0, x1 and
x2. This definition may be extended to include the case in which some or all the points
coincide. Namely, taking the limit x1 → x0 in (1.13), we get

lim
x1→x0

[x0,x1,x2; f ] = [x0,x0,x2; f ] =
f (x0)− f (x2)− f ′(x0)(x0− x2)

(x0− x2)2 , x2 �= x0

provided that f ′ exists, and furthermore, taking the limits xi → x0, i = 1,2 in (1.13), we
get

lim
x2→x0

lim
x1→x0

[x0,x1,x2; f ] = [x0,x0,x0; f ] =
f ′′(x0)

2

provided that f ′′ exists.

Definition 1.4 A function f : I → R is said to be n-convex (n ∈ N0) if for all choices of
n+1 distinct points x0, . . . ,xn ∈ I, the n-th order divided difference of f satisfies

[x0, . . . ,xn; f ] ≥ 0 . (1.14)

Thus the 1-convex functions are the nondecreasing functions, while the 2-convex functions
are precisely the classical convex functions.

Definition 1.5 A function f : I → (0,) is called log-convex if

f ((1− )x+y)≤ f (x)1− f (y) (1.15)

for all points x and y in I and all  ∈ [0,1].

If a function f : I → R is log-convex, then it is also convex, which is a consequence of the
weighted AG-inequality.

We end this section with the integral form of Jensen’s inequality.

Theorem 1.6 (INTEGRAL JENSEN’S INEQUALITY) Let (,A ,) be a finite measure
space, 0 < () <  and let f : → I be a -integrable function. If  : I → R is convex
function, then next inequality holds


(

1
()

∫


f d
)
≤ 1

()

∫

( ◦ f )d . (1.16)
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If  is strictly convex, then in (1.16) we have equality if and only f is constant -almost
everywhere on .

1.3 Exponential convexity

Following definitions and properties of exponentially convex functions comes from [28],
also [66]. Let I be an interval in R.

Definition 1.6 A function  : I → R is n-exponentially convex in the Jensen sense on I if

n


i, j=1

i  j
(

xi + x j

2

)
≥ 0

holds for all choices i ∈ R and xi ∈ I, i = 1, . . . ,n.
A function  : I → R is n-exponentially convex if it is n-exponentially convex in the

Jensen sense and continuous on I.

Remark 1.2 It is clear from the definition that 1−exponentially convex functions in the
Jensen sense are in fact nonnegative functions. Also, n-exponentially convex functions in
the Jensen sense are k−exponentially convex in the Jensen sense for every k ∈ N, k ≤ n.

By definition of positive semi-definite matrices and some basic linear algebra we have
the following proposition.

Proposition 1.5 If  is an n-exponentially convex in the Jensen sense, then the matrix[

(

xi + x j

2

)]k

i, j=1
is a positive semi-definite matrix for all k ∈ N,k ≤ n. Particularly,

det

[

(

xi + x j

2

)]k

i, j=1
≥ 0 for all k ∈ N, k ≤ n.

Definition 1.7 A function  : I → R is exponentially convex in the Jensen sense on I if it
is n-exponentially convex in the Jensen sense for all n ∈ N.

A function  : I → R is exponentially convex if it is exponentially convex in the Jensen
sense and continuous.

Remark 1.3 It is known (and easy to show) that : I → (0,) is log-convex in the Jensen
sense if and only if

2(x)+2
(

x+ y
2

)
+ 2(y) ≥ 0

holds for every , ∈ R and x,y ∈ I. It follows that a function is log-convex in the Jensen
sense if and only if it is 2−exponentially convex in the Jensen sense.

Also, using basic convexity theory it follows that a function is log-convex if and only
if it is 2−exponentially convex.
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One of the main features of exponentially convex functions is its integral representation
given by Bernstein ([32]) in the following theorem.

Theorem 1.7 The function  : I → R is exponentially convex on I if and only if

(x) =
∫ 

−
etxd(t), x ∈ I

for some non-decreasing function  : R → R.

1.4 Opial-type inequalities

In 1960. Opial published an inequality involving integrals of a function and its derivative,
which now bear his name ([64]). Over the last five decades, an enormous amount of work
has been done on Opial’s inequality: several simplifications of the original proof, various
extensions, generalizations and discrete analogues. More details can be found in the mono-
graph by Agarwal and Pang [5] which is dedicated to the theory of Opial-type inequalities
and its applications in theory of differential and difference equations. We observe Bee-
sack’s, Wirtinger’s, Willett’s, Godunova-Levin’s, Rozanova’s, Fink’s, Agarwal-Pang’s and
Alzer’s versions of Opial’s inequality.

Theorem 1.8 (OPIAL’S INEQUALITY) Let f ∈C1[0,h] be such that f (0) = f (h) = 0 and
f (x) > 0 for x ∈ (0,h). then∫ h

0

∣∣ f (x) f ′(x)
∣∣dx ≤ h

4

∫ h

0

[
f ′(x)

]2
dx , (1.17)

where constant h/4 is the best possible.

The novelty of Opial’s result is thus in establishing the best possible constant h/4.

Example 1.4 It is easy to construct the function which satisfy equality in (1.17). For
instance, let f be defined by

f (x) =

⎧⎨⎩
cx , 0 ≤ x ≤ h

2

c(h− x) , h
2 ≤ x ≤ h

where c > 0 is arbitrary constant. Although this function is not derivable in t = h/2, it could
be approximated by the function belonging to C1[0,h] that satisfy (1.17). Then constant
h/4 is the best possible.

Opial’s inequality (1.17) holds even if function f ′ has discontinuity at t = h/2, pro-
vided that f is absolutely continuous on both of the subintervals [0, h

2 ] and [ h
2 ,h], with

f (0) = f (h) = 0. Also, the positivity requirement of f on (0,h) is unnecessary, that is,
next Beesack’s inequality holds ([31]).
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Theorem 1.9 (BEESACK’S INEQUALITY) Let f ∈ AC[0,h] be such that f (0) = 0. Then∫ h

0

∣∣ f (x) f ′(x)
∣∣dx ≤ h

2

∫ h

0

[
f ′(x)

]2
dx . (1.18)

Equality in (1.18) holds if and only if f (x) = cx, where c is a constant.

Theorem 1.10 (WIRTINGER’S INEQUALITY) Let f : [0,h]→R be such that f ′ ∈L2[0,h].
If f (0) = f (h) = 0, then ∫ h

0
[ f (x)]2 dx ≤

(
h


)2 ∫ h

0

[
f ′(x)

]2
dx . (1.19)

Equality in (1.19) holds if and only if f (x) = csin x
h , where c is a constant.

Remark 1.4 A weaker form of Opial’s inequality can be obtained by combining Cauchy-
Schwarz-Buniakowski’s inequality and Wirtinger’s inequality:

∫ h

0

∣∣ f (x) f ′(x)
∣∣dx ≤

(∫ h

0
| f (x)|2 dx

) 1
2
(∫ h

0

∣∣ f ′(x)∣∣2 dx

) 1
2

≤ h


∫ h

0

[
f ′(x)

]2
dx .

Next inequality involving x(n), n ≥ 1, is given by Willett [75] (see also [5, p. 128]).

Theorem 1.11 (WILLETT’S INEQUALITY) Let x ∈Cn[0,h] be such that x(i)(0) = 0, i =
0, . . . ,n−1, n ≥ 1. Then∫ h

0

∣∣∣x(t)x(n)(t)
∣∣∣dt ≤ hn

2

∫ h

0

∣∣∣x(n)(t)
∣∣∣2 dt . (1.20)

More generalizations and extensions of Willett’s inequality are done by Boyd in [33].
Following generalization of Opial’s inequality is due to Godunova and Levin [46] (see

also [5, p. 74]).

Theorem 1.12 (GODUNOVA-LEVIN’S INEQUALITY) Let f be a convex and increasing
function on [0,) with f (0) = 0. Further, let x be absolutely continuous on [a,] and
x(a) = 0. Then, the following inequality holds∫ 

a
f ′ (|x(t)|) |x′(t)|dt ≤ f

(∫ 

a
|x′(t)|dt

)
. (1.21)

An extension of the inequality (1.21) is embodied in the following inequality by Rozanova
[69] (see also [5, p. 82]).

Theorem 1.13 (ROZANOVA’S INEQUALITY) Let f , g be convex and increasing func-
tions on [0,) with f (0) = 0, and let p(t) ≥ 0, p′(t) > 0, t ∈ [a,] with p(a) = 0. Further,
let x be absolutely continuous on [a,] and x(a) = 0. Then, the following inequality holds∫ 

a
p′(t)g

( |x′(t)|
p′(t)

)
f ′
(

p(t)g

( |x(t)|
p(t)

))
dt ≤ f

(∫ 

a
p′(t)g

( |x′(t)|
p′(t)

)
dt

)
. (1.22)

Moreover, equality holds in (1.22) for the function x(t) = c p(t).
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Remark 1.5 The condition in the two previous theorems that function f is to be increas-
ing is actually unneeded, and also, the condition g ≥ 0 is missing in Theorem 1.13 (it can
be easily seen from proofs of the theorems).

Among inequalities of Opial-type, there is a class of inequality involving higher order
derivatives. First we have Fink’s inequality ([45]).

Theorem 1.14 (FINK’S INEQUALITY) Let q≥ 1, 1
p + 1

q = 1, n≥ 2 and 0≤ i≤ j≤ n−1.

Let f ∈ ACn[0,h] be such that f (0) = f ′(0) = · · ·= f (n−1)(0) = 0 and f (n) ∈ Lq[0,h]. Then∫ h

0

∣∣∣ f (i)(x) f ( j)(x)
∣∣∣dx ≤Ch2n−i− j+1− 2

q

(∫ h

0

∣∣∣ f (n)(x)
∣∣∣q dx

) 2
q

, (1.23)

where C = C(n, i, j,q) is given by

C =
[
2

1
q (n− i−1)!(n− j)! [p(n− j)+1]

1
p [p(2n− i− j−1)+2]

1
p

]−1
. (1.24)

Inequality (1.23) is sharp for j = i+ 1, where equality in this case is achieved for q > 1
and function f such that

f (x) =
1

(n−1)!

∫ x

0
(x− t)n−1 (h− t)

p
q (n−i−1) dt .

Remark 1.6 Agarwal and Pang proved in [65] that Fink’s inequality does not hold for
i = j, and that is not necessary to assume that f (k)(0) = 0 for k < i.

Next inequality is due to Agarwal and Pang ([65]).

Theorem 1.15 (AGARWAL-PANG’S INEQUALITY) Let n ∈ N and f ∈ ACn[0,h] be such
that f (0) = f ′(0) = · · · = f (n−1)(0) = 0. Let w1 and w2 be positive, measurable functions
on [0,h]. Let ri > 0, i = 0, . . . ,n− 1, and let r = n−1

i=0 ri. Let sk > 1 and 1
sk

+ 1
s′k

= 1 for

k = 1,2, and q ∈ R such that q > s2. Further, let

P =
(∫ h

0
[w2(x)]

− s′2
q dx

) r
s′2

<  ,

Q =
(∫ h

0
[w1(x)]

s′1 dx

) 1
s′1

<  .

Then ∫ h

0
w1(x)

n−1


i=0

∣∣∣ f (i)(x)
∣∣∣ri dx ≤Ch

+ 1
s1

(∫ h

0
w2(x)

∣∣∣ f (n)(x)
∣∣∣q dx

) r
q

, (1.25)

where  =
n−1

i=0

Iri +r, I = n− i− 1,  = 1
s2
− 1

q , and C = C(n,{ri},w1,w2,s1,s2,q) is

given by

C ≤ QP
n−1


i=0

(I!)−ri

[
I


+1

]−ri
[

n−1


i=0

Iris1 +rs1 +1

]− 1
s1

,

provided that integral on the right side in (1.25) exists.
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Alzer’s inequalities are given in [10, 11], where second one includes higher order
derivatives of two functions.

Theorem 1.16 (ALZER’S INEQUALITY 1) Let n∈N and f ∈Cn[a,b] be such that f (a)=
f ′(a) = · · · = f (n−1)(a) = 0. Let w be continuous, positive, decreasing function on [a,b].
Let ri ≥ 0, i = 0, . . . ,n−1, and n−1

i=0 ri = 1. Let p ≥ 1, q > 0 and  = 1/(p+q). Then

∫ b

a
w(x)

(
n−1


i=0

∣∣∣ f (i)(x)
∣∣∣ri)p ∣∣∣ f (n)(x)

∣∣∣q dx ≤ A1

∫ b

a
w(x)

∣∣∣ f (n)(x)
∣∣∣p+q

dx , (1.26)

where

A1 =  qq

[
n−

n−1


i=1

iri

]− p

(b−a)
(n−

n−1

i=1

iri)p n−1


i=0

[(
1−

n− i−

)1− 1
(n− i−1)!

]ri p

.

Theorem 1.17 (ALZER’S INEQUALITY 2) Let p ≥ 0, q > 0, r > 1 and r > q. Let n ∈ N,
k ∈ N0, 0 ≤ k ≤ n−1. Let w1 ≥ 0 and w2 > 0 be measurable functions on [a,b]. Further,
let f ,g ∈ ACn[a,b] be such that f (i)(a) = g(i)(a) = 0 for i = 0, . . . ,n− 1 and let integrals∫ b
a w2(x)| f (n)(x)|r dx and

∫ b
a w2(x)|g(n)(x)|r dx exist. Then∫ b

a
w1(x)

[∣∣∣g(k)(x)
∣∣∣p ∣∣∣ f (n)(x)

∣∣∣q +
∣∣∣ f (k)(x)

∣∣∣p ∣∣∣g(n)(x)
∣∣∣q] dx

≤ A2

(∫ b

a
w2(x)

[∣∣∣ f (n)(x)
∣∣∣r +

∣∣∣g(n)(x)
∣∣∣r]dx

) p+q
r

, (1.27)

where

A2 =
2M

[(n− k−1)!]p

[
q

2(p+q)

] q
r
[∫ b

a
[w1(x)]

r
r−q [w2(x)]

q
q−r [s(x)]

p(r−1)
r−q dx

] r−q
r

,

s(x) =
∫ x

a
(x−u)

r(n−k−1)
r−1 [w2(u)]

1
1−r du ,

M =

⎧⎨⎩
(
1−2−

p
q

) q
r
, p ≥ q ,

2−
p
r , p ≤ q .





Chapter2
Fractional integrals and
fractional derivatives

Fractional calculus is a theory of differential and integral operators of non-integer order.
This chapter contains definitions and basic properties of the Riemann-Liouville fractional
integral and three main types of fractional derivatives (more detailed information may be
found in [38, 51, 68, 72]). The last part of the chapter is based on our results involving
composition identities for fractional derivatives: Andrić, Pečarić and Perić [23, 25, 26].
At the same time we investigate the role of the initial conditions on functions included
in composition identities, and also relations between the order of the Riemann-Liouville
fractional integrals and mentioned fractional derivatives.

Fractional integrals and fractional derivatives will be observed in the real domain. Let
[a,b]⊂R be a finite interval, that is −< a < b <. For the integral part of a real number
 we use notation []. Also,  is the gamma function defined by (1.5) on R

+, and by (1.6)
on R

−
0 \Z

−
0 . Throughout this chapter let x ∈ [a,b].

2.1 The Riemann-Liouville fractional integrals

In [48] G. H. Hardy showed that the Riemann-Liouville fractional integrals are defined for
a function f ∈ L1[a,b], existing almost everywhere on [a,b]. Also, which is in accordance
with the classical theorem of Vallée-Poussin and the Young convolution theorem, he proved
Ja+ f ,Jb− f ∈ L1[a,b].

15
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Definition 2.1 Let  > 0 and f ∈ L1[a,b]. The left-sided and the right-sided Riemann-
Liouville fractional integrals Ja+ f and Jb− f of order  are defined by

Ja+ f (x) =
1

()

∫ x

a
(x− t)−1 f (t)dt , x ∈ [a,b] , (2.1)

Jb− f (x) =
1

()

∫ b

x
(t− x)−1 f (t)dt , x ∈ [a,b] . (2.2)

For  = n ∈ N fractional integrals are actually n-fold integrals, that is

Jn
a+ f (x) =

∫ x

a
dt1

∫ t1

a
dt2 · · ·

∫ tn−1

a
f (tn)dtn

=
1

(n−1)!

∫ x

a
(x− t)n−1 f (t)dt , (2.3)

Jn
b− f (x) =

∫ b

x
dt1

∫ b

t1
dt2 · · ·

∫ b

tn−1

f (tn)dtn

=
1

(n−1)!

∫ b

x
(t− x)n−1 f (t)dt . (2.4)

Example 2.1 Let , > 0, f (x) = (x−a)−1 and g(x) = (b− x)−1. By Example 1.1,
for the left-sided Riemann-Liouville fractional integral of a function f we have

Ja+(x−a)−1 =
1

()

∫ x

a
(x− t)−1 (t −a)−1dt

=
(x−a)+−1

()
B(, )

=
( )

( + )
(x−a)+−1 .

Analogously, the right-sided Riemann-Liouville fractional integral of a function g is

Jb−(b− x)−1 =
( )

( + )
(b− x)+−1 .

Example 2.2 Let  > 0 and  ∈ R. By using Taylor series for the exponential function
we have

Ja+e x = Ja+

(
eae (x−a)

)
= Ja+

[
ea




n=0

 n(x−a)n

n!

]

= ea



n=0

 n

(n+1)
Ja+(x−a)n
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= ea(x−a)



n=0

 n(x−a)n

( +n+1)
,

Jb−e x = eb(b− x)



n=0

(− )n(b− x)n

( +n+1)
.

Next we give some properties of the Riemann-Liouville fractional integral, basically
presented by Samko et al. in [72] and by Canavati in [38]. Those result we will unify and
give complete proofs. We start with a following lemma by Canavati ([38]): the Riemann-
Liouville fractional integral of a continuous function is also continuous function.

Lemma 2.1 Let  > 0 and f ∈C[a,b]. Then for each x,y ∈ [a,b] we have∣∣Ja+ f (x)− Ja+ f (y)
∣∣≤ || f ||C

( +1)
(
2 |x− y| + |(x−a) − (y−a) |) . (2.5)

In particular, if 0 <  < 1, then∣∣Ja+ f (x)− Ja+ f (y)
∣∣≤ 3 || f ||C

( +1)
|x− y| . (2.6)

Proof. Let x < y. Then

Ja+ f (x)− Ja+ f (y)

=
1

()

∫ x

a
(x− t)−1 f (t)dt − 1

()

∫ y

a
(y− t)−1 f (t)dt

=
1

()

∫ x

a

[
(x− t)−1− (y− t)−1] f (t)dt − 1

()

∫ y

x
(y− t)−1 f (t)dt .

∣∣Ja+ f (x)− Ja+ f (y)
∣∣

≤ 1
()

∫ x

a

∣∣(x− t)−1− (y− t)−1
∣∣ | f (t)|dt +

1
()

∣∣∣∣∫ y

x
(y− t)−1 f (t)dt

∣∣∣∣
≤ || f ||C

()

∫ x

a

[
(x− t)−1− (y− t)−1]dt +

|| f ||C
()

∫ y

x
(y− t)−1 dt

=
|| f ||C

( +1)
(2(y− x) + (x−a) − (y−a))

≤ || f ||C
( +1)

(
2 |x− y| + |(x−a) − (y−a)|) .

The same inequality follows for x > y, that is (2.5) holds. If 0 < < 1, then
∣∣|a| −|b| ∣∣≤

|a−b| , and∣∣Ja+ f (x)− Ja+ f (y)
∣∣ ≤ || f ||C

( +1)
(
2 |x− y| + |(x−a) − (y−a)|)

≤ 3 || f ||C
( +1)

|x− y| .

�
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We give lemma for the right-sided Riemann-Liouville fractional integrals. The proof
is analogous to the previous one, and is omitted.

Lemma 2.2 Let  > 0 and f ∈C[a,b]. Then for each x,y ∈ [a,b] we have

∣∣Jb− f (x)− Jb− f (y)
∣∣≤ || f ||C

( +1)
(
2 |x− y| + |(b− x) − (b− y)|) . (2.7)

In particular, if 0 <  < 1, then

∣∣Jb− f (x)− Jb− f (y)
∣∣≤ 3 || f ||C

( +1)
|x− y| . (2.8)

Corollary 2.1 Let  > 0 and f ∈C[a,b]. Then Ja+ f ,Jb− f ∈C[a,b].

Next we observe the composition of fractional integrals (see Samko et al. [72], Section
2).

Lemma 2.3 Let , > 0 and f ∈ Lp[a,b], 1 ≤ p ≤ . Then for almost every x ∈ [a,b]
we have

Ja+Ja+ f (x) = J+
a+ f (x) , Jb−Jb− f (x) = J+

b− f (x) . (2.9)

If f ∈C[a,b] or  + > 1, then equalities (2.9) hold for each x in [a,b].

Proof. Straightforward calculations with Example 1.2 gives us

Ja+Ja+ f (x) =
1

()

∫ x

a
(x− t)−1Ja+ f (t)dt

=
1

()( )

∫ x

a
(x− t)−1

∫ t

a
(t− s)−1 f (s)dsdt

=
1

( + )

∫ x

a
(x− s)+−1 f (s)ds

= J+
a+ f (x) .

Analogously for the right-sided fractional integrals follows

Jb−Jb− f (x) =
1

( + )

∫ b

x
(s− x)+−1 f (s)ds = J+

b− f (x) .

If f ∈ C[a,b], then Ja+ f ∈ C[a,b] by Lemma 2.1, and also Ja+Ja+ f ∈ C[a,b], J+
a+ f ∈

C[a,b]. Hence, two function Ja+Ja+ f and J+
a+ f coincide almost everywhere on [a,b],

and by continuity follows that they coincide on whole interval [a,b]. If f ∈ Lp[a,b] and
 + > 1, then

Ja+Ja+ f = J+
a+ f = J+−1

a+ J1
a+ f

almost everywhere on [a,b]. Since J1
a+ f is continuous function, then J+

a+ = J+−1
a+ J1

a+ f ∈
C[a,b], that is once again they coincide on whole interval [a,b] due to continuity.
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The same goes for the right-sided Riemann-Liouville fractional integral, so we conclude
that equalities (2.9) hold for each x in [a,b]. �

The homogeneous Abel integral equation has only trivial solution (see Samko et al.
[72], Section 2.4).

Lemma 2.4 Let  > 0 and f ∈ L1[a,b]. Then integral equations Ja+ f = 0 and Jb− f = 0
have only trivial solution f = 0 (almost everywhere).

Proof. Let Ja+ f = 0. If 0 <  < 1, then by Lemma 2.3 follows J1
a+ f = J1−

a+ Ja+ f = 0.
Now we have

f =
d
dx

∫ x

a
f (t)dt =

d
dx

J1
a+ f = 0 .

Let  ≥ 1, m = [],  = m+ , 0≤  < 1. If  = 0, then  = m∈ N, and by (2.3) follows
f = dm

dxm Jm
a+ f = 0. Let  > 0. Again by Lemma 2.3 follows

Ja+Jm
a+ f = Ja+ f = 0,

and by just proven, for 0 <  < 1 we have Jm
a+ f = 0 and also f = 0. The proof is analogous

for the right-sided Riemann-Liouville fractional integral. �

Lemma 2.1 and Lemma 2.2 showed that the Riemann-Liouville fractional integral of
continuous function is also continuous function. Moreover, for the image of the Riemann-
Liouville fractional integral of continuous function we have next result by Canavati ([38]).

Lemma 2.5 Let  > 0 and f ∈C[a,b]. Then Ja+ f ∈ D
a [a,b] and Jb− f ∈ D

b [a,b].

Proof. Let m = [] and  = −m. For  = 0, that is  = m ∈ N (m≥ 1), we use (2.3)
and Lemma 2.3

dk

dxk Jm
a+ f (x) =

dk

dxk Jk
a+Jm−k

a+ f (x) = Jm−k
a+ f (x) , k = 0,1, . . . ,m−1 ,

that is dk

dxk Jm
a+ f (a) = 0, for k = 0,1, . . . ,m−1 (since f is continuous at a), and then Jm

a+ f ∈
Cm

a [a,b] = Dm
a [a,b].

Let 0 <  < 1. Then by Lemma 2.1 we have (2.6),∣∣Ja+ f (x)− Ja+ f (y)
∣∣≤ 3 || f ||C

( +1)
|x− y| ,

that is Ja+ f ∈C[a,b]. Since 0 <  < 1, then m = 0 and

∣∣Ja+ f
∣∣
m, = sup

{∣∣Ja+ f (x)− Ja+ f (y)
∣∣

|x− y|
}

≤ 3 || f ||C
( +1)

<  ,

that is Ja+ f ∈ D [a,b]. Further, Ja+ f (a) = 0, m = 0, and then Ja+ f ∈ D
a [a,b].

Let  > 1 (m ≥ 1) and 0 <  < 1. Then∣∣∣∣ dm

dxm Ja+ f (x)− dm

dxm Ja+ f (y)
∣∣∣∣ =

∣∣Ja+ f (x)− Ja+ f (y)
∣∣≤ 3 || f ||C

( +1)
|x− y| ,
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that is
∣∣Ja+ f

∣∣
m, ≤ 3 || f ||C

(+1) <  and Ja+ f ∈ D [a,b]. Again, using Lemma 2.3, (2.3)

and continuity of f at a, we have dk

dxk J

a+ f (a) = J−k

a+ f (a) = 0 za k = 0,1, . . . ,m, that is
Ja+ f ∈ D

a [a,b].
The proof is analogous for the right-sided Riemann-Liouville fractional integral. �

Since D
a [a,b],D

b [a,b]⊆ D [a,b] ⊆C[ ][a,b], next corollary is valid.

Corollary 2.2 Let  > 0, m = [] and f ∈C[a,b]. Then Ja+ f ,Jb− f ∈Cm[a,b].

Next result by Samko et al. ([72]) shows that the Riemann-Liouville fractional integral
is bounded operator on Lp[a,b].

Lemma 2.6 Let  > 0 and 1 ≤ p ≤ . Then the Riemann-Liouville fractional integrals
are bounded on Lp[a,b], that is

||Ja+ f ||p ≤ K|| f ||p , ||Jb− f ||p ≤ K|| f ||p , (2.10)

where

K =
(b−a)

( +1)
.

For C[a,b] we have

||Ja+ f ||C ≤ K|| f ||C , ||Jb− f ||C ≤ K|| f ||C . (2.11)

Proof. We give a proof for the left-sided fractional integrals in spaces Lp[a,b] and
C[a,b]. The proof for the right-sided fractional integrals is analogous. By Jensen’s in-
equality (1.16) and Fubini’s theorem follows∫ b

a
(x−a)

(
( +1)
(x−a)

∣∣Ja+ f (x)
∣∣)p

dx (2.12)

=
∫ b

a
(x−a)

(


(x−a)

∫ x

a
(x− t)−1| f (t)|dt

)p

dx

=
∫ b

a
(x−a)

(∫ x

a
(x− t)−1| f (t)|dt

/∫ x

a
(x− t)−1dt

)p

dx

≤
∫ b

a
(x−a)

(∫ x

a
(x− t)−1| f (t)|p dt

/∫ x

a
(x− t)−1dt

)
dx

=
∫ b

a

∫ x

a
(x− t)−1 | f (t)|p dt dx

=
∫ b

a
| f (t)|p

∫ b

t
(x− t)−1 dxdt

=
∫ b

a
| f (t)|p (b− t) dt . (2.13)

Since x ∈ [a,b] and (1− p) < 0, for (2.12) we have∫ b

a
(x−a)

(
( +1)
(x−a)

∣∣Ja+ f (x)
∣∣)p

dx
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=
∫ b

a
(x−a)(1−p) [( +1)]p

∣∣Ja+ f (x)
∣∣p dx

≥ (b−a)(1−p) [( +1)]p
∫ b

a

∣∣Ja+ f (x)
∣∣p dx , (2.14)

and for (2.13) ∫ b

a
(b− t) | f (t)|p dt ≤ (b−a)

∫ b

a
| f (t)|p dt . (2.15)

Now from (2.14) and (2.15) follows

(b−a)(1−p) [( +1)]p
∫ b

a

∣∣Ja+ f (x)
∣∣p dx ≤ (b−a)

∫ b

a
| f (t)|p dt ,

that is ∫ b

a

∣∣Ja+ f (x)
∣∣p dx ≤

[
(b−a)

( +1)

]p ∫ b

a
| f (t)|p dt . (2.16)

If we use exponent 1/p for both sides of inequality (2.16), we get that the left-sided
Riemann-Liouville fractional integrals are bounded on Lp[a,b].
For C[a,b] we have inequality

||Ja+ f ||C = max
x∈[a,b]

|Ja+ f (x)| ≤ max
x∈[a,b]

|Ja+1| · || f ||C

and by Example 2.1 for =1 we have Ja+1=(x−a)/(+1), that is max
x∈[a,b]

|Ja+1|=K. �

At the end of this section, we give our result showing that for  ∈ (0,1] the Riemann-
Liouville fractional integral of an absolutely continuous function is also absolutely contin-
uous.

Proposition 2.1 Let n ∈ N, 0 <  ≤ 1 and f ∈ ACn[a,b]. Then Ja+ f ∈ ACn[a,b].

Proof. Let f ∈ ACn[a,b], that is f ∈Cn−1[a,b] and f (n−1) ∈ AC[a,b]. Let

g(x) = f (x)−
n−1


and=0

f (k)(a)
k!

(x−a)k .

The statement Ja+ f ∈ ACn[a,b] will follow if we prove that Ja+g ∈ ACn[a,b].
First we prove that Ja+g ∈ Cn−1[a,b], that is dk

dxk J

a+g ∈ C[a,b] for k = 0, . . . ,n− 1.

Notice that g(a) = g′(a) = · · · = g(n−1)(a) = 0. Using integration by parts we get

Ja+g(x) =
1

()

∫ x

a
(x− t)−1g(t)dt

=
1

()

[
− (x− t)


g(t)

∣∣∣x
t=a

+
∫ x

a

(x− t)


g′(t)dt

]
=

1
( +1)

∫ x

a
(x− t) g′(t)dt .
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If we repeat this procedure k times (k ≤ n), then

Ja+g(x) =
1

( + k)

∫ x

a
(x− t)+k−1g(k)(t)dt = J+k

a+ g(k)(x). (2.17)

Since f (k) is continuous for k = 0, . . . ,n−1, then g(k) is also continuous, and since

dk

dxk J+k
a+ g(k)(x) =

dk

dxk Jk
a+Ja+g(k)(x) = Ja+g(k)(x) , (2.18)

then by Lemma 2.1, and Corollary 2.1, follows that Ja+g(k) is continuous too. Hence,
dk

dxk Ja+g ∈C[a,b] for k = 0, . . . ,n−1, that is Ja+g ∈Cn−1[a,b].

It remains to show that dn−1

dxn−1 Ja+g ∈ AC[a,b], that is dn

dxn Ja+g ∈ L1[a,b]. If we put k = n
in (2.17), then as in (2.18) we get

dn

dxn Ja+g(x) =
dn

dxn J+n
a+ g(n)(x) = Ja+g(n)(x) .

Since g(n) = f (n), and f (n) is integrable, that also Ja+g(n) ∈ L1[a,b]. �

We give analogous lemma for the right-sided Riemann-Liouville fractional integrals.
The proof is omitted.

Proposition 2.2 Let n ∈ N, 0 <  ≤ 1 and f ∈ ACn[a,b]. Then Jb− f ∈ ACn[a,b].

2.2 The Riemann-Liouville fractional derivatives

Definition 2.2 Let  > 0, n = []+ 1 and f : [a,b] → R. The left-sided and the right-
sided Riemann-Liouville fractional derivatives D

a+ f and D
b− f of order  are defined by

D
a+ f (x) =

dn

dxn Jn−
a+ f (x)

=
1

(n−)
dn

dxn

∫ x

a
(x− t)n−−1 f (t)dt , (2.19)

D
b− f (x) = (−1)n dn

dxn Jn−
b− f (x)

=
(−1)n

(n−)
dn

dxn

∫ b

x
(t− x)n−−1 f (t)dt . (2.20)

In particular, if 0 <  < 1, then

D
a+ f (x) =

1
(1−)

d
dx

∫ x

a
(x− t)− f (t)dt , (2.21)
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D
b− f (x) =

−1
(1−)

d
dx

∫ b

x
(t− x)− f (t)dt . (2.22)

For  = n ∈ N we have

Dn
a+ f (x) = f (n)(x) , Dn

b− f (x) = (−1)n f (n)(x) , (2.23)

and for  = 0
D0

a+ f (x) = D0
b− f (x) = f (x) . (2.24)

We will also use the notations

J−a+ f := D
a+ f , J−b− f := D

b− f ,  > 0 . (2.25)

Example 2.3 Let  ≥ 0,  > 0, f (x) = (x−a)−1 and g(x) = (b− x)−1. By Example
2.1, for the left-sided Riemann-Liouville fractional derivative of the function f we have

D
a+(x−a)−1 =

dn

dxn Jn−
a+ (x−a)−1

=
dn

dxn

( )
(n−+ )

(x−a)n−+−1

=
( )

(− + )
(x−a)−+−1 . (2.26)

Analogously, the right-sided Riemann-Liouville fractional derivative of the function g is

D
b−(b− x)−1 = (−1)n dn

dxn Jn−
b− (b− x)−1

=
( )

(− + )
(b− x)−+−1 . (2.27)

In particular, if  = 1, then f (x) = g(x) = 1 and we have

D
a+(1) =

(x−a)−

(1−)
, D

b−(1) =
(b− x)−

(1−)
,

that is, the Riemann-Liouville fractional derivatives of a constant function are, in general,
not equal to zero.
On the other hand, for j = 1,2, . . . ,n,

D
a+(x−a)− j =

(− j +1)
(1− j)

(x−a)− j = 0 , D
b−(b− x)− j = 0 , (2.28)

since the gamma function has simple poles in 0,−1,−2, . . .

From (2.28) we derive the following result indicating that the functions (x− a)− j,
and (b− x)− j, play the same role for fractional derivatives as the constants do in usual
differentiation.
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Corollary 2.3 Let  > 0 and n = []+1.

(i) The equality D
a+ f (x) = 0 is valid if and only if f (x) =

n

j=1

c j(x− a)− j, where

c j ∈ R ( j = 1, . . . ,n) are arbitrary constants.
In particular, when 0 <  ≤ 1, the relation D

a+ f (x) = 0 holds if and only if f (x) =
c(x−a)−1 with every c ∈ R.

(ii) The equality D
b− f (x) = 0 is valid if and only if f (x) =

n

j=1

d j(b− x)− j , where

d j ∈ R ( j = 1, . . . ,n) are arbitrary constants.
In particular, when 0 <  ≤ 1, the relation D

b− f (x) = 0 holds if and only if f (x) =
d(b− x)−1 with every d ∈ R.

Example 2.4 Let  > 0 and  ∈ R. For the exponential function we have

D
a+e x = D

a+

(
eae (x−a)

)
= D

a+

[
ea




k=0

 k(x−a)k

k!

]

= ea



k=0

 k

(k+1)
D

a+(x−a)k

=
ea

(x−a)



k=n

 k(x−a)k

(−+ k+1)
,

D
b−e x =

eb

(b− x)



k=n

(− )k(b− x)k

(−+ k+1)
.

We proceed with conditions for the existence of fractional derivatives in the space
ACn[a,b].

Theorem 2.1 Let  ≥ 0 and n = [] + 1. If f ∈ ACn[a,b], then the Riemann-Liouville
fractional derivatives D

a+ f and D
b− f exist almost everywhere on [a,b] and can be repre-

sented in the forms

D
a+ f (x) =

n−1


k=0

f (k)(a)
(k−+1)

(x−a)k− +
1

(n−)

∫ x

a
(x− t)n−−1 f (n)(t)dt , (2.29)

D
b− f (x) =

n−1


k=0

(−1)k f (k)(b)
(k−+1)

(b− x)k− +
(−1)n

(n−)

∫ b

x
(t − x)n−−1 f (n)(t)dt . (2.30)

Proof. Since f ∈ ACn[a,b] then by Lemma 1.2, Example 1.2 and Example 2.3 follows

D
a+ f (x)

= D
a+

(
n−1


k=0

f (k)(a)
k!

(x−a)k +
1

(n−1)!

∫ x

a
(x− t)n−1 f (n)(t)dt

)
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=
n−1


k=0

f (k)(a)
k!

D
a+(x−a)k +D

a+Jn
a+ f (n)(x)

=
n−1


k=0

f (k)(a)
k!

(k+1)
(k+1−)

(x−a)k−

+
1

(n−)(n)
dn

dxn

∫ x

a
(x− t)n−−1

∫ t

a
(t − s)n−1 f (n)(s)dsdt

=
n−1


k=0

f (k)(a)
(k+1−)

(x−a)k−

+
1

(n−)(n)
B(n−,n)

dn

dxn

∫ x

a
(x− s)2n−−1 f (n)(s)ds

=
n−1


k=0

f (k)(a)
(k+1−)

(x−a)k− +
1

(n−)

∫ x

a
(x− s)n−−1 f (n)(s)ds .

In last step we use (2.3) and the fact that for the ordinary derivatives and n-fold integrals
dn

dxn Jn
a+ =  is valid, that is

dn

dxn J2n−
a+ f (n)(x) =

dn

dxn Jn
a+Jn−

a+ f (n)(x) = Jn−
a+ f (n)(x) .

The equality (2.30) follows similarly by using next representation of the function g ∈
ACn[a,b]:

g(x) =
(−1)n

(n−1)!

∫ b

x
(t− x)n−1(t)dt +

n−1


k=0

(−1)kdk(b− x)k , (2.31)

where

 = g(n) ∈ L1[a,b] , dk =
g(k)(b)

k!
(k = 0,1, . . . ,n−1) . (2.32)

�

Corollary 2.4 Let 0 ≤  < 1 and f ∈ AC[a,b]. Then

D
a+ f (x) =

1
(1−)

[
(x−a)− f (a)+

∫ x

a
(x− t)− f ′(t)dt

]
, (2.33)

D
b− f (x) =

1
(1−)

[
(b− x)− f (b)−

∫ b

x
(t− x)− f ′(t)dt

]
. (2.34)

Let us now consider a relation between fractional differentiation and fractional inte-
gration. It is well known that differentiation and integration are reciprocal operation if
integration is applied first, that is (d/dx)

∫ x
a f (t)dt = f (x) while

∫ x
a f ′(t)dt = f (x)− f (a).

In the same way for n∈N we have (dn/dxn)Jn
a+ f ≡ f , but Jn

a+ f (n) �= f , differing from f by
a polynomial of the order n−1. Similarly, for  > 0, we will always have D

a+Ja+ f ≡ f ,
but Ja+D

a+ f �= f , since it may arise the linear combinations of functions (x− a)−k,
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k = 1,2, . . . , [] + 1. We will observe this in detail in Theorem 2.4. First, let us define
the following spaces of functions:

Let  > 0 and 1≤ p≤. By Ja+(Lp) and Jb−(Lp) denote next two spaces of functions

Ja+(Lp) =
{

f : f = Ja+ ,  ∈ Lp[a,b]
}

, (2.35)

Jb−(Lp) =
{

f : f = Jb− ,  ∈ Lp[a,b]
}

. (2.36)

The characterization of the space Ja+(L1) is given by the following theorem.

Theorem 2.2 Let  > 0 and n = []+1. Then f ∈ Ja+(L1) if and only if

Jn−
a+ f ∈ ACn[a,b] , (2.37)

dk

dxk Jn−
a+ f (a) = 0, k = 0,1, . . . ,n−1 . (2.38)

Proof. Necessity. Let f ∈ Ja+(L1), i.e. f = Ja+ , where  ∈ L1[a,b]. By Lemma 2.3
follows

Jn−
a+ f = Jn−

a+ Ja+ = Jn
a+ .

Using Lemma 1.2 we know that functions from ACn[a,b] have the form

Jn
a+(x)+

n−1


k=0

ck(x−a)k ,

where  ∈ L1[a,b], and ck are constants. Hence, Jn−
a+ f ∈ ACn[a,b] and

ck =
1
k!

dk

dxk Jn−
a+ f (a) = 0 ,

showing that conditions (2.37) and (2.38) are valid.
Sufficiency. Let conditions (2.37) and (2.38) hold. Then Jn−

a+ f = Jn
a+ follows from

Lemma 1.2 for  ∈ L1[a,b]. Again we use Lemma 2.3 which gives us

Jn−
a+ f = Jn

a+ = Jn−
a+ Ja+ ,

i.e.
Jn−
a+ ( f − Ja+) = 0 .

Since n− > 0, by Lemma 2.4 follows f − Ja+ = 0, that is f ∈ Ja+(L1). �

Analogously, for Jb−(L1) we have next theorem in which for function g∈ ACn[a,b] we
use (2.31) and (2.32).

Theorem 2.3 Let  > 0 and n = []+1. Then g ∈ Jb−(L1) if and only if

Jn−
b− g ∈ ACn[a,b] , (2.39)

dk

dxk Jn−
b− g(b) = 0, k = 0,1, . . . ,n−1 . (2.40)
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Definition 2.3 Let  > 0 and n = []+1. A function f ∈ L1[a,b] is said to have a left-
sided integrable fractional derivative D

a+ f if Jn−
a+ f ∈ ACn[a,b], and to have a right-sided

integrable fractional derivative D
b− f if Jn−

b− f ∈ ACn[a,b].

If D
a+ f = (dn/dxn)Jn−

a+ f exists in the usual sense, i.e. Jn−
a+ f is differentiable n times

at every point, then, f has a derivative in the sense of Definition 2.3. This holds also for
the right-sided fractional derivative.

Lemma 2.7 Let  > 0 and n = [] + 1. Then f ∈ L1[a,b] has the left-sided integrable
fractional derivative D

a+ f if and only if

D−k
a+ f ∈C[a,b] , k = 1, . . . ,n , (2.41)

D−1
a+ f ∈ AC[a,b] . (2.42)

Also, f ∈ Ja+(L1) if and only if f has the left-sided integrable fractional derivative D
a+ f

such that
D−k

a+ f (a) = 0 , k = 1, . . . ,n . (2.43)

Proof. Let f has the left-sided integrable fractional derivative D
a+ f , i.e. Jn−

a+ f ∈
ACn[a,b]. Then Jn−

a+ f ∈Cn−1[a,b], that is

dk

dxk Jn−
a+ f ∈C[a,b] , k = 0, . . . ,n−1

and
dn−1

dxn−1 Jn−
a+ f ∈ AC[a,b]. From [−n+ k]+1 = k follows

dk

dxk Jn−
a+ f (x) =

dk

dxk Jk−(−n+k)
a+ f (x) = D−n+k

a+ f (x), k = 0,1, . . . ,n−1 ,

which shows that conditions (2.41) and (2.42) are equivalent with (2.37). Also, a condition
(2.43) is equivalent with (2.38). In a case k = n we have n− ≤ 1, and by (2.25) follows
D−n

a+ f = Jn−
a+ f . �

Lemma 2.8 Let  > 0 and n = []+ 1. Then f ∈ L1[a,b] has the right-side integrable
fractional derivative D

b− f if and only if

D−k
b− f ∈C[a,b] , k = 1, . . . ,n , (2.44)

D−1
b− f ∈ AC[a,b] . (2.45)

Also, f ∈ Jb−(L1) if and only if f has the right-sided integrable fractional derivative D
b− f

such that
D−k

b− f (b) = 0 , k = 1, . . . ,n . (2.46)

Now we can present theorem about the composition of the fractional integration oper-
ator with the fractional differentiation operator.
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Theorem 2.4 Let  > 0, n = []+1 and 1 ≤ p ≤ .

(i) If  ∈ Lp[a,b], then relations

D
a+Ja+ =  , D

b−Jb− =  (2.47)

hold almost everywhere on [a,b].

(ii) If f ∈ Ja+(Lp) and g ∈ Jb−(Lp), then

Ja+D
a+ f = f , Jb−D

b−g = g . (2.48)

(iii) If f ∈ L1[a,b] has the left-sided integrable fractional derivative D
a+ f , then the

equality

Ja+D
a+ f (x) = f (x)−

n


k=1

D−k
a+ f (a)

(− k+1)
(x−a)−k (2.49)

holds almost everywhere on [a,b].
If g ∈ L1[a,b] has the right-sided integrable fractional derivative D

b−g, then the
equality

Jb−D
b−g(x) = g(x)−

n


k=1

(−1)n−k D−k
b− g(b)

(− k+1)
(b− x)−k (2.50)

holds almost everywhere on [a,b].
In particular, if 0 <  < 1, then

Ja+D
a+ f (x) = f (x)− J1−

a+ f (a)
()

(x−a)−1 , (2.51)

Jb−D
b−g(x) = g(x)− J1−

b− g(b)
()

(b− x)−1 , (2.52)

while for  = n ∈ N we have

Jn
a+Dn

a+ f (x) = f (x)−
n−1


k=0

f (k)(a)
k!

(x−a)k , (2.53)

Jn
b−Dn

b−g(x) = g(x)−
n−1


k=0

(−1)kg(k)(b)
k!

(b− x)k . (2.54)

Proof. We give a proof for the left-sided fractional integrals and derivatives, since for
the right-sided it follows analogously.

(i) Let  ∈ Lp[a,b]. Then

D
a+Ja+(x) =

1
()(n−)

dn

dxn

∫ x

a
(x− t)n−−1

∫ t

a
(t− s)−1(s)dsdt .
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Interchanging the order of integration, as in Example 1.2, we get

D
a+Ja+(x) =

1
(n)

dn

dxn

∫ x

a
(x− s)n−1(s)ds . (2.55)

Since
dn

dxn Jn
a+ =  , then relations in (2.47) follows from (2.3) and (2.55).

(ii) With the assumption f ∈ Ja+(Lp), the relation (2.48) follows immediately from
(2.47), that is

Ja+D
a+ f = Ja+D

a+Ja+ = Ja+ = f .

(iii) It remains for us to prove (2.49). Let f ∈ L1[a,b] has the left-sided integrable
fractional derivative D

a+ f , that is Jn−
a+ f ∈ ACn[a,b]. Then by Lemma 1.2 we have

Jn−
a+ f (x) = Jn

a+
dn

dxn Jn−
a+ f (x) +

n−1


k=0

(x−a)k

(k+1)
dk

dxk
Jn−
a+ f (a) ,

and since [−n+ k]+1 = k, also follows

Jn−
a+ f (x) = Jn

a+D
a+ f (x) +

n−1


k=0

(x−a)k

(k+1)
D−n+k

a+ f (a) .

Since n− > 0 and k+1 > 0 for k = 0, . . . ,n−1, we can use Example 2.3

Dn−
a+ (x−a)k =

(k+1)
(−n+ k+1)

(x−a)−n+k ,

and since −n+ k+1 > 0, by Example 2.1 we have

Jn−
a+ (x−a)−n+k =

(−n+ k+1)
(k+1)

(x−a)k ,

that is
Jn−
a+ Dn−

a+ (x−a)k = (x−a)k .

Using Lemma 2.3 follows

Jn−
a+ f (x) = Jn−

a+ Ja+D
a+ f (x)+ Jn−

a+ Dn−
a+

n−1


k=0

(x−a)k

(k+1)
D−n+k

a+ f (a)

= Jn−
a+

(
Ja+D

a+ f (x)+
n−1


k=0

Dn−
a+ (x−a)k

(k+1)
D−n+k

a+ f (a)

)

= Jn−
a+

(
Ja+D

a+ f (x)+
n−1


k=0

(x−a)−n+k

(−n+ k+1)
D−n+k

a+ f (a)

)

= Jn−
a+

(
Ja+D

a+ f (x)+
n


k=1

(x−a)−k

(− k+1)
D−k

a+ f (a)

)
,

where the last equality follows from changing the order of summation. Finally, since
n− > 0 we have (2.49) which follows by Lemma 2.4. �
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Corollary 2.5 Let  >  > 0, 1 ≤ p ≤  and  ∈ Lp[a,b]. Then relations

D
a+Ja+ = J−a+  , D

b−Jb− = J−b−  (2.56)

hold almost everywhere on [a,b].
In particular, if  = k ∈ N and  > k, then

dk

dxk Ja+(x) = J−k
a+ (x) ,

dk

dxk Jb−(x) = (−1)kJ−k
b− (x) . (2.57)

Corollary 2.6 Let  > 0 and m ∈ N.

(i) If the left-sided fractional derivatives D
a+ f and D+m

a+ f exist, then

dm

dxm D
a+ f (x) = D+m

a+ f (x) . (2.58)

(ii) If the right-sided fractional derivatives D
b− f and D+m

b− f , then

dm

dxm D
b− f (x) = (−1)mD+m

b− f (x) . (2.59)

Lemma 2.9 Let  >  > 0, n = []+1 and m = [ ]+1. Let f ∈ L1[a,b] has the left-sided

integrable fractional derivative D
a+ f and let g ∈ L1[a,b] has the right-sided integrable

fractional derivative D
b−g. Then relations

Ja+D
a+ f (x) = J−a+ f (x)−

m


k=1

(x−a)−k

(− k+1)
D−k

a+ f (a) , (2.60)

Jb−D
−bg(x) = J−b− g(x)−

m


k=1

(−1)m−k(b− x)−k

(− k+1)
D−k

b− g(b) , (2.61)

hold almost everywhere on [a,b].

Proof. Using (2.49) and Example 2.1 we have

Ja+D
a+ f (x) = J−a+ Ja+D

a+ f (x)

= J−a+

(
f (x)−

m


k=1

(x−a)−k

( − k+1)
D−k

a+ f (a)

)

= J−a+ f (x)−
m


k=1

J−a+ (x−a)−k

( − k+1)
D−k

a+ f (a)

= J−a+ f (x)−
m


k=1

(x−a)−k

(− k+1)
D−k

a+ f (a) .

Analogously follows equality (2.61) for the right-sided fractional integrals and deriva-
tives. �

The following lemma contains some assertions from Theorem 2.4 and its corollaries,
applied on functions f ∈Cn[a,b].
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Lemma 2.10 Let  >  > 0 and n = []+1.

(i) If  ∈C[a,b], then (2.47) holds at every point x ∈ [a,b].

(ii) If  ∈C[a,b], then (2.56) and (2.57) hold at every point x ∈ [a,b].

(iii) If f ∈ C[a,b] and Jn−
a+ f ∈ Cn[a,b], then (2.49) holds at every point x ∈ [a,b]. In

particular, if f ∈Cn[a,b], then (2.53) holds at every point x ∈ [a,b].

(iv) If g ∈ C[a,b] and Jn−
b− g ∈ Cn[a,b], then (2.50) holds at every point x ∈ [a,b]. In

particular, if g ∈Cn[a,b], then (2.54) holds at every point x ∈ [a,b].

Relations (2.49) and (2.50) represent Taylor’s formula for the Riemann-Liouville frac-
tional derivatives.

Corollary 2.7 (TAYLOR’S FORMULA FOR THE RIEMANN-LIOUVILLE FRACTIONAL

DERIVATIVES) Let  > 0 and n = [] + 1. Let f ∈ L1[a,b] has the left-sided integrable

fractional derivative D
a+ f and let g ∈ L1[a,b] has the right-sided integrable fractional

derivative D
b−g. Then

f (x) =
n


k=1

D−k
a+ f (a)

(− k+1)
(x−a)−k + Ja+D

a+ f (x) , (2.62)

g(x) =
n


k=1

(−1)n−k D−k
b− g(b)

(− k+1)
(b− x)−k + Jb−D

b−g(x) . (2.63)

Proposition 2.3 Let  > 0, n = []+1 and f ∈ ACn[a,b].

(i) If f (a)= f ′(a)= · · ·= f (n−2)(a)= 0, then D−1
a+ f (a)= D−2

a+ f (a)= · · ·= D−n
a+ f (a)

= 0.

(ii) If  /∈ N and D−1
a+ f is bounded in a neighborhood of x = a, then f (a) = f ′(a) =

· · · = f (n−2)(a) = 0.

Proof.
(i) Let f (i)(a) = 0 for i = 0, . . . ,n−2. Then by Theorem 2.1 for k = 1, . . . ,n−1 we

have

D−k
a+ f (x)

=
n−k−1


i=0

f (i)(a)
(i−+ k+1)

(x−a)i−+k +
1

(n−)

∫ x

a
(x− t)n−−1 f (n−k)(t)dt

=
1

(n−)

∫ x

a
(x− t)n−−1 f (n−k)(t)dt ,

that is D−k
a+ f (a) = 0, since f (n−k) ∈Cn−k[a,b], k = 1, . . . ,n−1. For k = n we have −n <

0, that is D−n
a+ f (x) = Jn−

a+ f (x) which gives us D−n
a+ f (a) = 0 (we use the fact f ∈C[a,b]).



32 2 FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES

(ii) Let  /∈ N and let D−1
a+ f be bounded in a neighborhood of x = a. For k = 1

follows

D−1
a+ f (x) =

n−2


i=0

f (i)(a)
(i−+2)

(x−a)i−+1

+
1

(n−)

∫ x

a
(x− t)n−−1 f (n−1)(t)dt . (2.64)

For 0< < 1 there is nothing to prove. Suppose > 1. Multiplying (2.64) with (x−a)−1

we get

(x−a)−1 D−1
a+ f (x)

=
n−2


i=0

f (i)(a)
(i−+2)

(x−a)i +
(x−a)−1

(n−)

∫ x

a
(x− t)n−−1 f (n−1)(t)dt

=
f (a)

(− +2)
+

n−2


i=1

f (i)(a)
(i−+2)

(x−a)i +
(x−a)−1

(n−)

∫ x

a
(x− t)n−−1 f (n−1)(t)dt .

(2.65)

Taking lim
x→a

of the both sides of (2.65) it follows f (a) = 0. For 1 <  < 2 the proof

is complete. For  > 2 the proof proceeds analogously by induction using successive
multiplications with (x−a)−i, i = 1, . . . ,n−1. �

The analogous proposition holds for the right-sidedRiemann-Liouville fractional deriva-
tives.

Proposition 2.4 Let  > 0, n = []+1 and f ∈ ACn[a,b].

(i) If f (b)= f ′(b)= · · ·= f (n−2)(b)= 0, then D−1
b− f (b)= D−2

b− f (b)= · · ·= D−n
b− f (b)

= 0.

(ii) If  /∈ N and D−1
b− f is bounded in a neighborhood of x = b, then f (b) = f ′(b)

= · · · = f (n−2)(b) = 0.

If we apply Proposition 2.3 and Proposition 2.4 on assertion (iii) of Theorem 2.4, then
next corollary holds.

Corollary 2.8 Let  > 0 and n = []+ 1. Let f ∈ L1[a,b] has the left-sided integrable

fractional derivative D
a+ f and let g ∈ L1[a,b] has the right-sided integrable fractional

derivative D
b−g.

(i) If f (a) = f ′(a) = · · · = f (n−2)(a) = 0, then

f (x) = Ja+D
a+ f (x) . (2.66)

(ii) If g(b) = g′(b) = · · · = g(n−2)(b) = 0, then

g(x) = Jb−D
b−g(x) . (2.67)
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The next theorem is an extension of Lemma 2.3, and for its proof we use Theorem 2.4.

Theorem 2.5 Let 1 ≤ p ≤ . The relation

Ja+Ja+ = J+
a+  (2.68)

is valid in any of the following cases

(i)  > 0,  + > 0 i  ∈ Lp[a,b];

(ii)  < 0,  > 0 i  ∈ J−a+ (Lp);

(iii)  < 0,  + < 0 i  ∈ J−−a+ (Lp).

Proof.
(i) Let  > 0 and  ∈ Lp[a,b]. The case when  > 0 (and then also  + > 0) is

proven in Lemma 2.3. Suppose  < 0 and + > 0. Then

Ja+Ja+ = D−
a+ J−++

a+  = D−
a+ J−a+ J+

a+  .

Since − > 0, we can apply Theorem 2.4 (i) from which we obtain (2.68).

(ii) Let  < 0,  > 0 and  ∈ J−a+ (Lp). Then  = J−a+  , where  ∈ Lp[a,b] and

J+
a+  = J+

a+ J−a+  .

Since  + +(− ) > 0, then according to case (i) we have

J+
a+ J−a+  = Ja+ ,

and then by Theorem 2.4 (i), for − > 0 and  ∈ Lp[a,b] follows

 = D−
a+ J−a+  = D−

a+ .

Hence,
J+
a+  = Ja+ = Ja+D−

a+  = Ja+Ja+ .

(iii) Let  < 0,  +  < 0 and  ∈ J−−a+ (Lp). Then  = J−−a+  , where  ∈
Lp[a,b]. We have

Ja+Ja+ = Ja+Ja+J−−a+  = Ja+J−a+ 

where the last step follows according to case (i). Again, by Theorem 2.4 (i), for −− >
0 and  ∈ Lp[a,b] we have

 = D−−
a+ J−−a+  = D−−

a+  ,

which leads to
Ja+Ja+ = D−

a+ J−a+  =  = J+
a+  .

�

The analogous theorem holds for the composition of the right-sided fractional integrals.
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Theorem 2.6 Let 1 ≤ p ≤ . The relation

Jb−Jb− = J+
b−  (2.69)

is valid in any of the following cases

(i)  > 0,  + > 0 i  ∈ Lp[a,b];

(ii)  < 0,  > 0 i  ∈ J−b− (Lp);

(iii)  < 0, + < 0 i  ∈ J−−b− (Lp).

2.3 The Caputo fractional derivatives

The second type of fractional derivatives that we observe is the Caputo-type, which we
define using the Riemann-Liouville fractional derivatives. Again, let x ∈ [a,b]. For  ≥ 0
we define n in the following way:

n = []+1 , for  �∈ N0; n =  , for  ∈ N0 . (2.70)

Definition 2.4 Let  ≥ 0, n given by (2.70) and f : [a,b] → R. The left-sided Caputo
fractional derivative CD

a+ f is defined by

CD
a+ f (x) = D

a+

[
f (x)−

n−1


k=0

f (k)(a)
(k+1)

(x−a)k

]
, (2.71)

while the right-sided Caputo fractional derivative CD
b− f is defined by

CD
b− f (x) = D

b−

[
f (x)−

n−1


k=0

f (k)(b)
(k+1)

(b− x)k

]
. (2.72)

If �∈N0 and f is a function for which the Caputo fractional derivatives of order exist
together with the Riemann-Liouville fractional derivatives, then, according to Example 2.3,
we have

CD
a+ f (x) = D

a+ f (x)−
n−1


k=0

f (k)(a)
(k−+1)

(x−a)k− , (2.73)

CD
b− f (x) = D

b− f (x)−
n−1


k=0

f (k)(b)
(k−+1)

(b− x)k− . (2.74)

In particular, for 0 <  < 1 hold

CD
a+ f (x) = D

a+ f (x)− f (a)
(1−)

(x−a)− , (2.75)
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CD
b− f (x) = D

b− f (x)− f (b)
(1−)

(b− x)− , (2.76)

and for  = n ∈ N0

CDn
a+ f (x) = f (n)(x) , CDn

b− f (x) = (−1)n f (n)(x) . (2.77)

From the definition of the Caputo fractional derivatives it is clear that for  �∈ N0

the Caputo coincide with the Riemann-Liouville fractional derivatives if derivatives at the
boundary point vanishes, i.e.

CD
a+ f (x) = D

a+ f (x), f (a) = f ′(a) = · · · = f (n−1)(a) = 0 , (2.78)

CD
b− f (x) = D

b− f (x), f (b) = f ′(b) = · · · = f (n−1)(b) = 0 . (2.79)

Theorem 2.7 Let  ≥ 0 and n given by (2.70). If f ∈ ACn[a,b], then the left-sided and
the right-sided Caputo fractional derivatives CD

a+ f and CD
b− f exist almost everywhere

on [a,b].

(i) If  �∈ N0, then for CD
a+ f and CD

b− f we have

CD
a+ f (x) =

1
(n−)

∫ x

a
(x− t)n−−1 f (n)(t)dt = Jn−

a+ f (n)(x) , (2.80)

CD
b− f (x) =

(−1)n

(n−)

∫ b

x
(t− x)n−−1 f (n)(t)dt = (−1)nJn−

b− f (n)(x) . (2.81)

In particular, for 0 <  < 1 and f ∈ AC[a,b] hold

CD
a+ f (x) =

1
(1−)

∫ x

a
(x− t)− f ′(t)dt = J1−

a+ f ′(x) , (2.82)

CD
b− f (x) =

−1
(1−)

∫ b

x
(t − x)− f ′(t)dt = −J1−

b− f ′(x) . (2.83)

(ii) If  = n ∈ N0, then for CDn
a+ f and CDn

b− f the relation (2.77) holds. In particular,

CD0
a+ f (x) = CD0

b− f (x) = f (x) . (2.84)

Proof.
(i) Let  �∈ N0. Then

CD
a+ f (x) = D

a+

[
f (x)−

n−1


k=0

f (k)(a)
(k+1)

(x−a)k

]

=
1

(n−)
dn

dxn

∫ x

a
(x− t)n−−1

[
f (t)−

n−1


k=0

f (k)(a)
(k+1)

(t −a)k

]
dt .
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Integrating by parts the inner integral and differentiating leads to

CD
a+ f (x) =

1
(n−)

dn

dxn

{
− (x− t)n−

n−

[
f (t)−

n−1


k=0

f (k)(a)
(k+1)

(t −a)k

]∣∣∣x
t=a

+
∫ x

a

(x− t)n−

n−

[
f ′(t)−

n−1


k=1

f (k)(a)
(k)

(t −a)k−1

]
dt

}

=
1

(n−+1)
dn

dxn

∫ x

a
(x− t)n−

[
f ′(t)−

n−1


k=1

f (k)(a)
(k)

(t −a)k−1

]
dt .

Repeating the process we arrive to

CD
a+ f (x) =

1
(n−+2)

dn

dxn

∫ x

a
(x− t)n−+1

[
f ′′(t)−

n−1


k=2

f (k)(a)
(k−1)

(t −a)k−2

]
dt ,

and if we repeat in n times, then

CD
a+ f (x) =

1
(n−+n)

dn

dxn

∫ x

a
(x− t)n−+n−1 f (n)(t)dt =

dn

dxn J2n−
a+ f (n)(x) .

Hence

CD
a+ f (x) =

dn

dxn Jn
a+Jn−

a+ f (n)(x) = Jn−
a+ f (n)(x) .

Analogously follows (2.81) for the right-sided Caputo fractional derivatives.

(ii) We prove (2.77) for the left-sided Caputo fractional derivatives (analogously
follows for the right-sided). Let  = n ∈ N0. Since f ∈ ACn[a,b], by Lemma 1.2 and
(2.47) we get

CDn
a+ f (x) = Dn

a+

[
f (x)−

n−1


k=0

f (k)(a)
(k+1)

(x−a)k

]
= Dn

a+Jn
a+ f (n)(x) = f (n)(x) . (2.85)

�

The following theorem is analogous to the previous one for functions f ∈Cn[a,b].

Theorem 2.8 Let  ≥ 0, n given by (2.70) and f ∈Cn[a,b]. Then the Caputo fractional
derivatives CD

a+ f and CD
b− f are continuous on [a,b].

(i) If  �∈N0, then CD
a+ f and CD

b− f are represented by (2.80) and (2.81) respectively.
Moreover

CD
a+ f (a) = CD

b− f (b) = 0 . (2.86)

In particular, fractional derivatives have forms (2.82) and (2.83) for 0 <  < 1,
respectively.

(ii) If  = n ∈ N0, then for CDn
a+ f and CDn

b− f holds (2.77). In particular, for  = 0
holds (2.84).
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Proof.
(i) Let f ∈Cn[a,b]. Relations (2.80) and (2.81) are proved as in Theorem 2.7. The

continuity of functions CD
a+ f and CD

b− f follows by Corollary 2.2, since n− > 0 and

f (n) ∈C[a,b] gives us

Jn−
a+ f (n),Jn−

b− f (n) ∈C[n− ][a,b] = C1[a,b] .

The relations in (2.86) follow from the inequality

|Jn−
a+ f (n)(x)| ≤ |Jn−

a+ 1| · || f (n)||C
and Example 2.1 when  = 1

Jn−
a+ 1 =

(x−a)n−

(n−+1)
,

hence, lim
x→a+

CD
a+ f (x) = lim

x→a+
Jn−
a+ f (n)(x) = 0. Analogously,

|Jn−
b− f (n)(x)| ≤ (b− x)n−

(n−+1)
|| f (n)||C ,

that is lim
x→b−

CD
b− f (x) = 0.

(ii) Let  = n ∈ N0. Then CDn
a+ f (x) = f (n)(x) follows as in (2.85), using Lemma

1.1 and Lemma 2.10 (i). Analogously follows for the right-sided Caputo fractional deriva-
tives. �

Example 2.5 Let  > 0, n given by (2.70),  > n and let f (x) = (x−a)−1 and g(x) =
(b− x)−1. Using Example 2.1, the left-sided Caputo fractional derivative of the f is

CD
a+(x−a)−1 = Jn−

a+
dn

dxn (x−a)−1

= ( −1)( −2) · · ·( −n)Jn−
a+ (x−a)−n−1

= ( −1)( −2) · · ·( −n)
( −n)
(− + )

(x−a)−+−1

=
( )

(− + )
(x−a)−+−1 . (2.87)

Analogously, the right-sided Caputo fractional derivative of the function g is

CD
b−(b− x)−1 = (−1)n Jn−

b−
dn

dxn (b− x)−1

=
( )

(− + )
(b− x)−+−1 . (2.88)

Hence, for  > n relations (2.87) and (2.26) coincide, as well as (2.88) and (2.27), which
is true since we have (2.78) and (2.79).
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But, if  = 1, then f (x) = g(x) = 1 and Jn−
a+ f (n)(x) = Jn−

b− g(n)(x) = 0, that is

CD
a+(1) = CD

b−(1) = 0 .

Therefore, unlike with the Riemann-Liouville fractional derivatives, we have that the Ca-
puto fractional derivative of a constant function is equal zero.
Moreover, for k = 0,1, . . . ,n−1 we have

CD
a+(x−a)k = CD

b−(b− x)k = 0 . (2.89)

Example 2.6 Let  > 0 and  ∈ R. For the exponential function we have

CD
a+e x = CD

a+

(
eae (x−a)

)
= CD

a+

[
ea




k=0

 k(x−a)k

k!

]

= ea



k=0

 k

(k+1)
CD


a+(x−a)k

=
ea

(x−a)



k=n

 k(x−a)k

(− + k+1)
,

CD
b−e x =

eb

(b− x)



k=n

(− )k(b− x)k

(− + k+1)
.

Theorem 2.9 Let  > 0 and n given by (2.70).

(i) If f ∈ L[a,b], then
CD

a+Ja+ f = f , CD
b−Jb− f = f . (2.90)

(ii) If f ∈ ACn[a,b], then

Ja+
CD

a+ f (x) = f (x)−
n−1


k=0

f (k)(a)
k!

(x−a)k , (2.91)

Jb−
CD

b− f (x) = f (x)−
n−1


k=0

(−1)k f (k)(b)
k!

(b− x)k . (2.92)

In particular, for 0 <  ≤ 1 and f ∈ AC[a,b], hold

Ja+
CD

a+ f (x) = f (x)− f (a) , (2.93)

Jb−
CD

b− f (x) = f (x)− f (b) . (2.94)
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Proof.
(i) By Corollary 2.5, for k = 0,1, . . . ,n− 1 we have (2.57), that is dk

dxk Ja+ f (x) =
J−k
a+ f (x). Further,

|J−k
a+ f (x)| ≤ 1

(− k)

∫ x

a

∣∣∣(x− t)−k−1 f (t)
∣∣∣ dt

≤ 1
(− k)

(∫ x

a
(x− t)−k−1dt

)
|| f ||

=
(x−a)−k

(− k+1)
|| f || ,

and since f is bounded in a follows

lim
x→a+

J−k
a+ f (x) = lim

x→a+

dk

dxk Ja+ f (x) = 0 , k = 0,1, . . . ,n−1 .

Now from the definition of the Caputo fractional derivatives and Theorem 2.4 (i) follows

CD
a+Ja+ f (x) = D

a+

[
Ja+ f (x)−

n−1


k=0

(x−a)k

(k+1)
dk

dxk Ja+ f (a)

]
= f (x) .

In the case of the right-sided fractional integrals and derivatives, proof follows analogously.

(ii) Let  �∈ N and f ∈ ACn[a,b]. Then by the case (i) of Theorem 2.7 for CD
a+ f

and CD
b− f hold (2.80) and (2.81), respectively. Using Lemma 2.3 we have

Ja+
CD

a+ f = Ja+Jn−
a+ f (n) = Jn

a+Dn
a+ f ,

Jb−
CD

b− f = (−1)n Jb−Jn−
b− f (n) = Jn

b−Dn
b− f .

If we apply (2.53) and (2.54) on relations above, we get (2.91) and (2.92).
If  ∈ N then we apply (ii) of Theorem 2.7 and then once more (2.53), (2.54). �

The analogous theorem holds for the functions in the space Cn[a,b].

Theorem 2.10 Let  > 0 and n given by (2.70).

(i) If f ∈C[a,b], then (2.90) hold for every x ∈ [a,b].

(ii) If f ∈ Cn[a,b], then (2.91) and (2.92) holds for every x ∈ [a,b]. In particular, for
0 <  ≤ 1 and f ∈C[a,b] relations (2.93) and (2.94) hold for every x ∈ [a,b].

Corollary 2.9 (TAYLOR’S FORMULA FOR THE CAPUTO FRACTIONAL DERIVATIVES)
Let  ≥ 0, n given by (2.70) and f ,g ∈ ACn[a,b]. Then

f (x) =
n−1


k=0

f (k)(a)
k!

(x−a)k + Ja+
CD

a+ f (x) , (2.95)

g(x) =
n−1


k=0

(−1)k g(k)(b)
k!

(b− x)k + Jb−
CD

b−g(x) . (2.96)
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Corollary 2.10 Let  ≥ 0, n given by (2.70) and f ,g ∈ ACn[a,b].

(i) If f (a) = f ′(a) = · · · = f (n−1)(a) = 0, then

f (x) = Ja+
CD

a+ f (x) . (2.97)

(ii) If g(b) = g′(b) = · · · = g(n−1)(b) = 0, then

g(x) = Jb−
CD

b−g(x) . (2.98)

2.4 The Canavati fractional derivatives

Let  > 0 and n = []+1. With C
a+[a,b] and C

b−[a,b] we denote subspaces of Cn−1[a,b],
defined by

C
a+[a,b] =

{
f ∈Cn−1[a,b] : Jn−

a+ f (n−1) ∈C1[a,b]
}

, (2.99)

C
b−[a,b] =

{
f ∈Cn−1[a,b] : Jn−

b− f (n−1) ∈C1[a,b]
}

. (2.100)

Definition 2.5 Let  > 0, n = [] + 1, f ∈ C
a+[a,b] and g ∈ C

b−[a,b]. The left-sided
Canavati fractional derivative C1D

a+ f is defined by

C1D
a+ f (x) =

d
dx

Jn−
a+ f (n−1)(x) =

1
(n−)

d
dx

∫ x

a
(x− t)n−−1 f (n−1)(t)dt , (2.101)

while the right-sided Canavati fractional derivative C1D
b−g is defined by

C1D
b−g(x) = (−1)n d

dx
Jn−
b− g(n−1)(x) =

(−1)n

(n−)
d
dx

∫ b

x
(t − x)n−−1g(n−1)(t)dt .

(2.102)

For 0 < < 1 the Canavati fractional derivatives coincide with the Riemann-Liouville,
that is

C1D
a+ f (x) =

1
(1−)

d
dx

∫ x

a
(x− t)− f (t)dt = D

a+ f (x) , (2.103)

C1D
b−g(x) =

−1
(1−)

d
dx

∫ b

x
(t− x)− g(t)dt = D

b−g(x) . (2.104)

For  = n ∈ N hold

C1Dn
a+ f (x) = f (n)(x) , C1Dn

b− f (x) = (−1)n f (n)(x) , (2.105)

while for  = 0 we stipulate

C1D0
a+ f (x) = C1D0

b− f (x) = f (x) . (2.106)
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Example 2.7 Let  > 0, n = []+1,  > n−1 and let f (x) = (x−a)−1, g(x) = (b−
x)−1. By Example 2.1 for the left-sided Canavati fractional derivative of the function f
we have

C1D
a+(x−a)−1

=
d
dx

Jn−
a+

dn−1

dxn−1 (x−a)−1

= ( −1)( −2) · · ·( −n+1)
d
dx

Jn−
a+ (x−a)−n

= ( −1)( −2) · · ·( −n+1)
( −n+1)
(−+ +1)

d
dx

(x−a)−+

=
( )

(− + )
(x−a)−+−1 . (2.107)

Analogously, the right-sided Canavati fractional derivative of the function g is

C1D
b−(b− x)−1 = (−1)n d

dx
Jn−
b−

dn−1

dxn−1 (b− x)−1

=
( )

(− + )
(b− x)−+−1 . (2.108)

Hence, for  > n−1 relations (2.107) and (2.26) coincide, as well as (2.108) and (2.27).
If  = 1, then f (x) = g(x) = 1 and d

dx J
n−
a+ f (n−1)(x) = d

dxJ
n−
b− g(n−1)(x) = 0, that is

C1D
a+(1) = C1D

b−(1) = 0 .

Therefore, the Canavati fractional derivative (as well as the Caputo) of a constant function
is equal zero.
Moreover, for k = 0,1, . . . ,n−2 we have

C1D
a+(x−a)k = C1D

b−(b− x)k = 0 . (2.109)

Example 2.8 Let  > 0 and  ∈ R. For the exponential function we have

C1D
a+e x = C1D

a+

(
eae (x−a)

)
= C1D

a+

[
ea




k=0

 k(x−a)k

k!

]

= ea



k=0

 k

(k+1)
C1D


a+(x−a)k

=
ea

(x−a)



k=n−1

 k(x−a)k

(−+ k+1)
,

C1D
b−e x =

eb

(b− x)



k=n−1

(− )k(b− x)k

(−+ k+1)
.
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Theorem 2.11 Let  > 0, n = []+1, f ∈C
a+[a,b] and g ∈C

b−[a,b].

(i)
C1D

a+Ja+ f = f , C1D
b−Jb−g = g . (2.110)

(ii) If  ≥ 1, then

Ja+
C1D

a+ f (x) = f (x)−
n−2


k=0

f (k)(a)
k!

(x−a)k , (2.111)

Jb−
C1D

b−g(x) = g(x)−
n−2


k=0

(−1)kg(k)(b)
k!

(b− x)k . (2.112)

For 0 <  < 1 hold
Ja+

C1D
a+ f (x) = f (x) , (2.113)

Jb−
C1D

b−g(x) = g(x) . (2.114)

Proof.
(i) Let f ∈C

a+[a,b]. Then f ∈ L1[a,b], so we use Lemma 2.3 and the relation (2.57)
from Corollary 2.5 (since n−1 < ), which lead to

C1D
a+Ja+ f (x) =

d
dx

Jn−
a+

dn−1

dtn−1 Ja+ f (t) =
d
dx

Jn−
a+ J+1−n

a+ f (t)

=
d
dx

J1
a+ f (x) = f (x) ,

C1D
b−Jb−g(x) = (−1)n d

dx
Jn−
b−

dn−1

dtn−1 Jb−g(t) = − d
dx

Jn−
b− J+1−n

b− g(t)

= − d
dx

J1
b−g(x) = g(x) .

(ii) Let  �∈ N. If 0 <  < 1, then the Canavati fractional derivative coincides with
the Riemann-Liouville (for which hold (2.33) and (2.34)). Therefore

Ja+
C1D

a+ f (x) =
1

(1−)
Ja+

[
(x−a)− f (a)+

∫ x

a
(x− t)− f ′(t)dt

]
=

f (a)
(1−)

Ja+(x−a)− + Ja+J1−
a+ f ′(x)

= f (a)+ J1
a+

d
dx

f (x) = f (x) ,

Jb−
C1D

b−g(x) =
1

(1−)
Jb−

[
(b− x)−g(b)−

∫ b

x
(t− x)− g′(t)dt

]
=

g(b)
(1−)

Jb−(b− x)− − Jb−J1−
b− g′(x)
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= g(b)− J1
b−

d
dx

g(x) = g(x) .

Let  > 1. Since Jn−
a+ f (n−1),Jn−

b− g(n−1) ∈C1[a,b], by Theorem 2.5, Theorem 2.6, (2.101)
and (2.102), we arrive to

Ja+
C1D

a+ f (x) = Ja+
d
dx

Jn−
a+ f (n−1)(x) = J−1

a+ Jn−
a+ f (n−1)(x) = Jn−1

a+ Dn−1
a+ f (x) ,

Jb−
C1D

b−g(x) = (−1)nJb−
d
dx

Jn−
b− g(n−1)(x)

= (−1)n−1J−1
b− Jn−

b−
[
(−1)n−1Dn−1

b− g(x)
]

= Jn−1
b− Dn−1

b− g(x) .

If we apply (2.53) and (2.54) on relations above, we get (2.111) and (2.112).
If  ∈ N, then we apply (2.105) and once more (2.53), (2.54). �

Corollary 2.11 (TAYLOR’S FORMULA FOR THE CANAVATI FRACTIONAL DERIVATIVES)
Let f ∈C

a+[a,b] and g ∈C
b−[a,b].

(i) If  > 1,  �∈ N and n = []+1, then

f (x) =
n−2


k=0

f (k)(a)
k!

(x−a)k + Ja+
C1D

a+ f (x) , (2.115)

g(x) =
n−2


k=0

(−1)k g(k)(b)
k!

(b− x)k + Jb−
C1D

b−g(x) . (2.116)

(ii) If 0 ≤  < 1, then
f (x) = Ja+

C1D
a+ f (x) , (2.117)

g(x) = Jb−
C1D

b−g(x) . (2.118)

Corollary 2.12 Let  ≥ 1 and n = []+1.

(i) If f ∈C
a+[a,b] is such that f (a) = f ′(a) = · · · = f (n−2)(a) = 0, then (2.117) holds.

(ii) If g ∈C
b−[a,b] is such that g(b) = g′(b) = · · · = g(n−2)(b) = 0, then (2.118) holds.

2.5 Relations between different types of fractional
derivatives

Since all of the observe types of fractional derivatives are connected to each other, in this
section we will examine their relations.

First we observe the special case when  = n ∈ N0.
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Corollary 2.13 If  = n ∈ N0, then

Dn
a+ f (x) = CDn

a+ f (x) = C1Dn
a+ f (x) = f (n)(x) ,

Dn
b− f (x) = CDn

b− f (x) = C1Dn
b− f (x) = (−1)n f (n)(x) .

In particular,
D0

a+ f (x) = CD0
a+ f (x) = C1D0

a+ f (x) = f (x) ,

D0
b− f (x) = CD0

b− f (x) = C1D0
b− f (x) = f (x) .

From now on let  �∈ N0.

THE RIEMANN-LIOUVILLE AND THE CAPUTO FRACTIONAL DERIVATIVES

Relations between these two types of fractional derivatives follows from Theorem 2.1
and Theorem 2.7.

Corollary 2.14 Let  > 0, n = []+1 and f ∈ ACn[a,b]. Then

D
a+ f (x) =

n−1


k=0

f (k)(a)
(k−+1)

(x−a)k− + CD
a+ f (x) , (2.119)

D
b− f (x) =

n−1


k=0

(−1)k f (k)(b)
(k−+1)

(b− x)k− + CD
b− f (x) . (2.120)

Corollary 2.15 Let  > 0, n = []+1 and f ∈ ACn[a,b].

(i) If f (a) = f ′(a) = · · · = f (n−1)(a) = 0, then D
a+ f (x) = CD

a+ f (x).

(ii) If f (b) = f ′(b) = · · · = f (n−1)(b) = 0, then D
b− f (x) = CD

b− f (x).

Remark 2.1 Let g be the function defined by

g(x) =
1

(n)

∫ x

a
(x− t)n−1 f (t)dt = Jn

a+ f (x) .

Then g(n)(x) = f (x) and holds

D
a+ f (x) =

dn

dxn Jn−
a+ f (x) =

dn

dxn Jn−
a+ g(n)(x) ,

that is

D
a+ f (x) =

dn

dxn
CD

a+g(x) . (2.121)

Analogously,

D
b− f (x) =

dn

dxn
CD

b−g(x) . (2.122)
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Using integration by parts we obtain

C1D
a+ f (x) =

1
(n−)

d
dx

∫ x

a
(x− t)n−−1 f (n−1)(t)dt

=
1

(n−)
d
dx

[
(x−a)n−

n−
f (n−1)(a)+

∫ x

a

(x− t)n−

n−
f (n)(t)dt

]
=

f (n−1)(a)
(n−)

(x−a)n−−1 +
d
dx

Jn−+1
a+ f (n)(x) .

By (2.3) and Lemma 2.3 we have

d
dx

Jn−+1
a+ f (n)(x) =

d
dx

J1
a+ Jn−

a+ f (n)(x) = CD
a+ f (x) ,

that is
C1D

a+ f (x) =
f (n−1)(a)
(n−)

(x−a)n−−1 + CD
a+ f (x) .

The analogous equality holds for the right-sided fractional derivatives, contained in the
following corollaries.

Corollary 2.16 Let  > 0 and n = []+1.

(i) If f ∈ ACn[a,b]∩C
a+[a,b], then

C1D
a+ f (x) =

f (n−1)(a)
(n−)

(x−a)n−−1 + CD
a+ f (x) . (2.123)

(ii) If f ∈ ACn[a,b]∩C
b−[a,b], then

C1D
b− f (x) = (−1)n−1 f (n−1)(b)

(n−)
(b− x)n−−1 + CD

b− f (x) . (2.124)

Corollary 2.17 Let  > 0 and n = []+1.

(i) If f ∈ ACn[a,b]∩C
a+[a,b] and f (n−1)(a) = 0, then C1D

a+ f (x) = CD
a+ f (x).

(ii) If f ∈ ACn[a,b]∩C
b−[a,b] and f (n−1)(b) = 0, then C1D

b− f (x) = CD
b− f (x).

Remark 2.2 We also have

C1D
a+ f ′(x) =

d
dx

Jn−
a+ f (n)(x) ,

that is
C1D

a+ f ′(x) =
d
dx

CD
a+ f (x) , (2.125)

C1D
b− f ′(x) =

d
dx

CD
b− f (x) . (2.126)
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The following corollaries are obtained by combinations od the two previous relations
between different types of fractional derivatives.

Corollary 2.18 Let  > 1 and n = []+1.

(i) If f ∈ ACn[a,b]∩C
a+[a,b], then

D
a+ f (x) =

n−2


k=0

f (k)(a)
(k−+1)

(x−a)k− + C1D
a+ f (x) . (2.127)

(ii) If f ∈ ACn[a,b]∩C
b−[a,b], then

D
b− f (x) =

n−2


k=0

(−1)k f (k)(b)
(k−+1)

(b− x)k− + C1D
b− f (x) . (2.128)

Corollary 2.19 Let  > 1 and n = []+1.

(i) If f ∈ ACn[a,b]∩C
a+[a,b] and f (a) = f ′(a) = · · · = f (n−2)(a) = 0, then

D
a+ f (x) = C1D

a+ f (x) .

(ii) If f ∈ ACn[a,b]∩C
b−[a,b] and f (b) = f ′(b) = · · · = f (n−2)(b) = 0, then

D
b− f (x) = C1D

b− f (x) .

Corollary 2.20 Let 0 <  < 1.

(i) If f ∈ ACn[a,b]∩C
a+[a,b], then D

a+ f (x) = C1D
a+ f (x).

(ii) If f ∈ ACn[a,b]∩C
b−[a,b], then D

b− f (x) = C1D
b− f (x).

Remark 2.3 Let h be the function defined by

h(x) =
1

(n−1)

∫ x

a
(x− t)n−2 f (t)dt = Jn−1

a+ f (x) .

Then h(n−1)(x) = f (x) and holds

D
a+ f (x) =

dn

dxn Jn−
a+ f (x) =

dn−1

dxn−1

d
dx

Jn−
a+ h(n−1)(x) ,

that is

D
a+ f (x) =

dn−1

dxn−1
C1D

a+h(x) . (2.129)

Analogously,

D
b− f (x) =

dn−1

dxn−1
C1D

b−h(x) . (2.130)
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Finally, we give relations between the left-sided and the right-sided Riemann-Liouville
fractional integrals, and also for the observed types of fractional derivatives. We use the
reflection operator Q:

(Q)(x) = (a+b− x) .

Proposition 2.5 Let  > 0. Then

QJa+ = Jb−Q, QJb− = Ja+Q , (2.131)

QD
a+ = D

b−Q, QD
b− = D

a+Q , (2.132)

QCD
a+ = CD

b−Q, QCD
b− = CD

a+Q , (2.133)

QC1D
a+ = C1D

b−Q, QC1D
b− = C1D

a+Q . (2.134)

Proof. Using the substitution a+b− t = s ∈ [b,x] we have

QJa+ f (x) = Ja+ f (a+b− x)

=
1

()

∫ a+b−x

a
(a+b− x− t)−1 f (t)dt

=
1

()

∫ b

x
(s− x)−1 f (a+b− s)ds

= Jb−Qf (x) .

This gives us

QD
a+ f = (−1)n (QJn−

a+ f
)(n) = (−1)n (Jn−

b− Qf
)(n) = D

b−Qf .

Further,
QCD

a+ f = Q
(
Jn−
a+ f (n)

)
= (−1)nJn−

b− (Qf )(n) = CD
b−Qf ,

QC1D
a+ f = −

(
QJn−

a+ f (n−1)
)′

= (−1)n
(
Jn−
b− (Qf )(n−1)

)′
= C1D

b−Qf .

The proofs for the QJb−, QD
b−, QCD

b− and QC1D
b− are analogous. �

2.6 Composition identities for fractional derivatives

In general, for  >  ≥ 0 and x ∈ [a,b] the composition identity has a form

D f (x) =
1

(− )

∫ x

a
(x− t)−−1D f (t)dt , (2.135)

where equality (2.135) holds for all observed types, that is, D can be the left-sided Riemann-
Liouville D, the Caputo CD or the Canavati C1D fractional derivative (an analogous identity
holds for the right-sided fractional derivatives).
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2.6.1 Composition identities for the Riemann-Liouville
fractional derivatives

The theorem about the composition identity for the left-sided Riemann-Liouville fractional
derivatives was firstly given by Handley-Koliha-Pečarić in [47]:

Theorem 2.12 Let  >  ≥ 0 and n = []+1. Let f ∈ L1[a,b] has integrable fractional
derivative D

a+ f ∈ L[a,b] such that D−k
a+ f (a) = 0, k = 1, . . . ,n. Then

D
a+ f (x) =

1
(− )

∫ x

a
(x− t)−−1D

a+ f (t)dt , x ∈ [a,b] .

In the following theorem, Andrić-Pečarić-Perić give another approach to the composi-
tion identity, and use the Laplace transform as an elegant technique of proof ([25]).

Theorem 2.13 Let  >  ≥ 0, n = [] + 1, m = [ ] + 1 and let f ∈ ACn[a,b] be such

that D
a+ f ,D

a+ f ∈ L1[a,b].

(i) If  − �∈ N and f is such that D−k
a+ f (a) = 0 for k = 1, . . . ,n and D−k

a+ f (a) = 0
for k = 1, . . . ,m, then

D
a+ f (x) =

1
(− )

∫ x

a
(x− t)−−1D

a+ f (t)dt , x ∈ [a,b] . (2.136)

(ii) If − = l ∈N and f is such that D−k
a+ f (a) = 0 for k = 1, . . . , l, then (2.136) holds.

Proof. (i) Define auxiliary function h : [0,) → R with

h(x) =

⎧⎨⎩ f (x+a) , x ∈ [0,b−a]
n


k=0

f (k)(b)
k! (x−b+a)k , x ≥ b−a . (2.137)

Obviously h ∈ ACn[0,), D−k
0+ h(0) = 0, k = 1, . . . ,n and D−k

0+ h(0) = 0, k = 1, . . . ,m.
Also h has polynomial growth at , so the Laplace transform of h exists. Notice that both
sides of (2.136) are integrable functions. The composition identity (2.136) will follow if
we prove that for every x ≥ 0 holds

1
(m− )

dm

dxm

∫ x

0
(x− t)m−−1h(t)dt

=
1

(− )(n−)

∫ x

0
(x− t)−−1 dn

dtn

∫ t

0
(t− y)n−−1h(y)dydt . (2.138)

Using convolution for the Laplace transform, for the right side of the equality (2.138) we
have

L

[
1

(− )(n−)

∫ x

0
(x− t)−−1 dn

dtn

∫ t

0
(t− y)n−−1 h(y)dydt

]
(p)
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=
1

( − )(n−)
L

[
x−−1

]
(p)L

[
dn

dtn

∫ t

0
(t− y)n−−1 h(y)dy

]
(p) .

By substitution px = s, where p is a variable from the definition of the Laplace transform
(1.8), we obtain

L
[
x−−1

]
(p) =

∫ 

0
e−px x−−1 dx =

1

p−

∫ 

0
e−s s−−1 ds =

( − )
p−

,

and by the rule of differentiation of the Laplace transform follows

1
(− )(n−)

L
[
x−−1

]
(p)L

[(
d
dt

)n ∫ t

0
(t− y)n−−1h(y)dy

]
(p)

=
1

p− (n−)

{
pn L

[∫ t

0
(t − y)n−−1h(y)dy

]
(p)

−
n−1


k=0

pk dn−k−1

dtn−k−1

(∫ t

0
(t− y)n−−1h(y)dy

)
(0)

}

=
pn−+

(n−)
L

[
tn−−1](p)L [h](p)− 1

p−
n


k=1

pk−1D−k
0+ h(0) (2.139)

= pL [h](p) . (2.140)

For the left side of the equality (2.138) we have

L

[
1

(m− )
dm

dxm

∫ x

0
(x− t)m−−1h(t)dt

]
(p)

=
1

(m− )

{
pm L

[∫ x

0
(x− t)m−−1h(t)dt

]
(p)

−
m−1


k=0

pk dm−k−1

dxm−k−1

(∫ x

0
(x− t)m−−1h(t)dt

)
(0)

}

=
pm

(m− )
L

[
xm−−1

]
(p)L [h](p)−

m


k=1

pk−1D−k
0+ h(0) (2.141)

= p L [h](p) . (2.142)

Using (2.140) and (2.142) it follows that both sides of (2.138) have the same Laplace trans-
form, so by Theorem 1.3 we conclude that equality in (2.138) holds for every x ≥ 0.

(ii) Notice that from  =  + l, l ∈ N, follows n = m+ l, n− = m− . Again we
use function h : [0,) → R defined with (2.137) and conclude

D+l−k
0+ h(0) = 0, k = 1, . . . , l , (2.143)

and also h has polynomial growth at , that is, the Laplace transform of h exists. The
composition identity (2.136) will follow if we prove that for every x ≥ 0 holds

1
(m− )

dm

dxm

∫ x

0
(x− t)m−−1h(t)dt
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=
1

(l)(m− )

∫ x

0
(x− t)l−1 dm+l

dtm+l

∫ t

0
(t − y)m−−1h(y)dydt . (2.144)

As in the proof of the previous claim, using standard properties of the Laplace transform,
relations (2.139) and (2.140), for the right side of the equality (2.144) we have

L

[
1

(l)(m− )

∫ x

0
(x− t)l−1 dm+l

dtm+l

∫ t

0
(t− y)m−−1h(y)dydt

]
(p)

= pL [h](p)− 1
pl

m+l


k=1

pk−1D+l−k
0+ h(0) .

From (2.143) follows

1
pl

m+l


k=1

pk−1D+l−k
0+ h(0) =

m+l


k=l+1

pk−l−1D+l−k
0+ h(0)

=
m


k=1

p(k+l)−l−1D+l−(k+l)
0+ h(0) =

m


k=1

pk−1D−k
0+ h(0) ,

that is

L

[
1

(l)(m− )

∫ x

0
(x− t)l−1 dm+l

dtm+l

∫ t

0
(t− y)m−−1h(y)dydt

]
(p)

= pL [h](p)−
m


k=1

pk−1D−k
0+ h(0) . (2.145)

As in (2.141) and (2.142), for the left side we get

L

[
1

(m− )
dm

dxm

∫ x

0
(x− t)m−−1h(t)dt

]
(p)

= p L [h](p)−
m


k=1

pk−1D−k
0+ h(0) . (2.146)

Applying Theorem 1.3, from the equality of the Laplace transforms (2.145) and (2.146),
follows that for every x ≥ 0 equality (2.144) holds. �

According to Proposition 2.3, we summarize conditions for the identity (2.136).

Corollary 2.21 Let  >  ≥ 0, n = []+ 1 and m = [ ]+ 1. The composition identity
(2.136) is valid in one of the following conditions holds:

(i) f ∈ Ja+(L1).

(ii) Jn−
a+ f ∈ ACn[a,b] and D−k

a+ f (a) = 0 for k = 1, . . .n.

(iii) D−1
a+ f ∈ AC[a,b], D−k

a+ f ∈C[a,b] and D−k
a+ f (a) = 0 for k = 1, . . .n.
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(iv) f ∈ ACn[a,b], D
a+ f , D

a+ f ∈ L1[a,b],  −  /∈ N, D−k
a+ f (a) = 0 for

k = 1, . . . ,n and D−k
a+ f (a) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b],  −  = l ∈ N and D−k
a+ f (a) = 0 for k =

1, . . . , l.

(vi) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b] and f (k)(a) = 0 for k = 0, . . . ,n−2.

(vii) f ∈ ACn[a,b], D
a+ f ,D

a+ f ∈ L1[a,b],  /∈ N and D−1
a+ f is bounded in a neighbor-

hood of t = a.

Next theorem gives us the composition identity for the right-sided Riemann-Liouville
fractional derivatives.

Theorem 2.14 Let  >  ≥ 0, n = [] + 1, m = [ ] + 1 and let f ∈ ACn[a,b] be such

that D
b− f ,D

b− f ∈ L1[a,b].

(i) If  − �∈ N and f is such that D−k
b− f (b) = 0 for k = 1, . . . ,n and D−k

b− f (b) = 0
for k = 1, . . . ,m, then

D
b− f (x) =

1
(− )

∫ b

x
(t− x)−−1D

b− f (t)dt , x ∈ [a,b] . (2.147)

(ii) If − = l ∈N and f is such that D−k
b− f (b) = 0 for k = 1, . . . , l, then (2.147) holds.

Proof. According to relations (2.131) and (2.132) which use the reflection operator Q,
the proof of this theorem follows from Theorem 2.13, mentioned relations and

D
b− f = Q

(
QD

b− f
)

= Q
(
D

a+Qf
)

= Q
(
J−a+ D

a+Qf
)

= J−b− Q
(
D

a+Qf
)

= J−b− D
b−Q(Qf ) = J−b− D

b− f .

�

Corollary 2.22 Let  >  ≥ 0, n = []+ 1 and m = [ ]+ 1. The composition identity
(2.147) is valid if one of the following conditions holds:

(i) f ∈ Jb−(L1).

(ii) Jn−
b− f ∈ ACn[a,b] and D−k

b− f (b) = 0 for k = 1, . . .n.

(iii) D−1
b− f ∈ AC[a,b], D−k

b− f ∈C[a,b] and D−k
b− f (b) = 0 for k = 1, . . .n.

(iv) f ∈ ACn[a,b], D
b− f ,D

b− f ∈ L1[a,b], − /∈ N, D−k
b− f (b) = 0 for k = 1, . . . ,n and

D−k
b− f (b) = 0 for k = 1, . . . ,m.
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(v) f ∈ ACn[a,b], D
b− f ,D

b− f ∈ L1[a,b],  −  = l ∈ N and D−k
b− f (b) = 0 for k =

1, . . . , l.

(vi) f ∈ ACn[a,b], D
b− f ,D

b− f ∈ L1[a,b] and f (k)(b) = 0 for k = 0, . . . ,n−2.

(vii) f ∈ ACn[a,b], D
b− f ,D

b− f ∈ L1[a,b],  /∈ N and D−1
b− f is bounded in a neighbor-

hood of t = b.

2.6.2 Composition identities for the Caputo fractional
derivatives

The theorem on the composition identity for the left-sided Caputo fractional derivatives
was proven by Anastassiou in [12].

Theorem 2.15 Let  ≥  +1,  ≥ 0, n = []+1 and m = [ ]+1. Assume f ∈ ACn[a,b]
is such that f (i)(a) = 0 for i = 0,1, . . . ,n−1, and CD

a+ f ∈ L[a,b]. Then

CD
a+ f ∈C[a,b] , CD

a+ f (x) = Jm−
a+ f (m)(x) ,

CD
a+ f (x) =

1
(− )

∫ x

a
(x− t)−−1CD

a+ f (t)dt , x ∈ [a,b] .

In [26], Andrić-Pečarić-Perić proved that one doesn’t need all vanishing left-sided
(right-sided) derivatives of the function f at point a (at point b) and that condition ≥+1
can be relaxed. First we have theorem involving the left-sided Caputo fractional deriva-
tives.

Theorem 2.16 Let  >  ≥ 0, n and m given by (2.70). Let f ∈ ACn[a,b] be such that
CD

a+ f ,CD
a+ f ∈ L1[a,b] and f (i)(a) = 0 for i = m, . . . ,n−1. Then

CD
a+ f (x) =

1
(− )

∫ x

a
(x− t)−−1CD

a+ f (t)dt , x ∈ [a,b] . (2.148)

Proof. Let  >  ≥ 0. We give a proof for , �∈ N when n = []+1 and m = [ ]+1.
The proofs for  ∈ N or  ∈ N or , ∈ N are analogous.
Using the Fubini theorem and change of variables (1.4), also Example 1.2, we have

1
(− )

∫ x

a
(x− y)−−1CD

a+ f (y)dy

=
1

(− )(n−)

∫ x

y=a

∫ y

t=a
(x− y)−−1(y− t)n−−1 f (n)(t)dt dy

=
1

(− )(n−)

∫ x

t=a
f (n)(t)

∫ x

y=t
(x− y)−−1(y− t)n−−1dydt

=
B(− ,n−)

(− )(n−)

∫ x

a
(x− t)n−−1 f (n)(t)dt

=
1

(n− )

∫ x

a
(x− t)n−−1 f (n)(t)dt .
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Hence, for  >  ≥ 0 we have

1
(− )

∫ x

a
(x− y)−−1CD

a+ f (y)dy =
1

(n− )

∫ x

a
(x− t)n−−1 f (n)(t)dt .

Case 1. Let [] = [ ], that is n = m. Then (2.148) follows with no boundary conditions.

Case 2. Let [] > [ ]. Then [] >  also, and therefore n−  − 1 > 0. Using inte-
gration by parts, it follows

1
(n− )

∫ x

a
(x− t)n−−1 f (n)(t)dt

=
1

(n− )

[
(x− t)n−−1 f (n−1)(t)

∣∣∣x
a
+(n− −1)

∫ x

a
(x− t)n−−2 f (n−1)(t)dt

]
= f (n−1)(a) = 0

=
1

(n− −1)

∫ x

a
(x− t)n−−2 f (n−1)(t)dt .

Case 2a. Let [] = [ ]+1, that is m = n−1. Then with boundary condition f (n−1)(a) =
0 follows (2.148).

Case 2b. Let [] > [ ]+1. Then n− −2 > 0 and

1
(n− −1)

∫ x

a
(x− t)n−−2 f (n−1)(t)dt

=
1

(n− −1)

[
(x− t)n−−2 f (n−2)(t)

∣∣∣x
a
+(n− −2)

∫ x

a
(x− t)n−−3 f (n−2)(t)dt

]
= f (n−2)(a) = 0

=
1

(n− −2)

∫ x

a
(x− t)n−−3 f (n−2)(t)dt .

Case 2b.1. Let [] = [ ] + 2, that is m = n − 2. Then with boundary conditions
f (n−1)(a) = f (n−2)(a) = 0 follows (2.148).

Case 2b.2. Continuing in this way, in the last step, when m = n− (n−m), we have
that (2.148) is valid with boundary conditions f (n−1)(a) = · · · = f (m)(a) = 0. �

Remark 2.4 We also give an alternative proof of Theorem 2.16, using the Laplace trans-
form. Proof. Let  >  ≥ 0, , �∈ N, that is n = []+1 and m = [ ]+1. Let f (i)(a) = 0
for i = m, . . . ,n−1. Then by Lemma 2.3 we have

J−a+
CD

a+ f = J−a+ Jn−
a+ f (n) = Jn−

a+ f (n) .

Set g = f (m). Now (2.148) can be written as

Jm−
a+ g(x) = Jn−

a+ g(n−m)(x), (2.149)
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where x ∈ [a,b] and g(a) = g′(a) = · · · = g(n−m−1)(a) = 0. Define auxiliary function h :
[0,) → R with

h(x) =

⎧⎨⎩
g(x+a) , x ∈ [0,b−a]

n−m


k=0

g(k)(b)
k! (x−b+a)k , x ≥ b−a

. (2.150)

Obviously h(0) = h′(0) = · · · = h(n−m−1)(0) = 0. Also h has polynomial growth at , so
the Laplace transform exists. The composition identity (2.149) will follow if we prove that
for every x ≥ 0 holds

1
(m− )

∫ x

0
(x− t)m−−1h(t)dt =

1
(n− )

∫ x

0
(x− t)n−−1h(n−m)(t)dt . (2.151)

Using standard properties of the Laplace transform, for the left side of the equality (2.151)
we have

L

[
1

(m− )

∫ x

0
(x− t)m−−1h(t)dt

]
(p)

=
1

(m− )
L

[
xm−−1

]
(p)L [h](p) = p−mL [h](p) . (2.152)

For the right side of the equality (2.151) we have

L

[
1

(n− )

∫ x

0
(x− t)n−−1h(n−m)(t)dt

]
(p)

=
1

(n− )
L

[
xn−−1

]
(p)L

[
h(n−m)

]
(p)

= p−n · pn−mL [h](p) = p−mL [h](p) . (2.153)

By Theorem 1.3, since both sides have the same Laplace transform (2.152) and (2.153), it
follows that equality holds in (2.151) for every x ≥ 0. �

Next theorem gives us the composition identity for the right-sided Caputo fractional
derivatives.

Theorem 2.17 Let  >  ≥ 0, n and m given by (2.70). Let f ∈ ACn[a,b] be such that
CD

b− f ,CD
b− f ∈ L1[a,b] and f (i)(b) = 0 for i = m, . . . ,n−1. Then

CD
b− f (x) =

1
(− )

∫ b

x
(t − x)−−1CD

b− f (t)dt , x ∈ [a,b] . (2.154)

Proof. Let  >  ≥ 0. We give proof for , �∈ N when n = []+1 and m = [ ]+1.
The proofs for  ∈ N or  ∈ N or , ∈ N are analogous.

Using the Fubini theorem and change of variables (1.4), also Example 1.2, we have

1
(− )

∫ b

x
(y− x)−−1CD

b− f (y)dy
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=
(−1)n

( − )(n−)

∫ b

y=x

∫ b

t=y
(y− x)−−1(t− y)n−−1 f (n)(t)dt dy

=
(−1)n

( − )(n−)

∫ b

t=x
f (n)(t)

∫ t

y=x
(y− x)−−1(t− y)n−−1dydt

=
(−1)n B(− ,n−)
(− )(n−)

∫ b

x
(t− x)n−−1 f (n)(t)dt

=
(−1)n

(n− )

∫ b

x
(t − x)n−−1 f (n)(t)dt .

Hence, for  >  ≥ 0 we have

1
(− )

∫ b

x
(y− x)−−1CD

b− f (y)dy =
(−1)n

(n− )

∫ b

x
(t− x)n−−1 f (n)(t)dt .

Case 1. Let [] = [ ], that is n = m. Then (2.154) follows with no boundary conditions.

Case 2. Let [] > [ ]. Then [] >  also, and therefore n−  − 1 > 0. Using inte-
gration by parts, it follows

(−1)n

(n− )

∫ b

x
(t − x)n−−1 f (n)(t)dt

=
(−1)n

(n− )

[
(t − x)n−−1 f (n−1)(t)

∣∣∣b
x
− (n− −1)

∫ b

x
(t − x)n−−2 f (n−1)(t)dt

]
= f (n−1)(b) = 0

=
(−1)n−1

(n− −1)

∫ b

x
(t − x)n−−2 f (n−1)(t)dt .

Case 2a. Let [] = [ ]+1, that is m = n−1. Then with boundary condition f (n−1)(b) =
0 follows (2.154).

Case 2b. Let [] > [ ]+1. Then n− −2 > 0 and

(−1)n−1

(n− −1)

∫ b

x
(t− x)n−−2 f (n−1)(t)dt

=
(−1)n−1

(n− −1)

[
(t− x)n−−2 f (n−2)(t)

∣∣∣b
x
− (n−−2)

∫ b

x
(t− x)n−−3 f (n−2)(t)dt

]
= f (n−2)(b) = 0

=
(−1)n−2

(n− −2)

∫ b

x
(t− x)n−−3 f (n−2)(t)dt .

Case 2b.1. Let [] = [ ] + 2, that is m = n − 2. Then with boundary conditions
f (n−1)(b) = f (n−2)(b) = 0 follows (2.154).
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Case 2b.2. By inductions, in the last step, when m = n− (n−m), we have that (2.154)
is valid with boundary conditions f (n−1)(b) = · · · = f (m)(b) = 0. �

Remark 2.5 Previous theorem can be proven using the reflection operator Q from Propo-
sition 2.5 and by Theorem 2.16:

CD
b− f = Q

(
QCD

b− f
)

= Q
(

CD
a+Qf

)
= Q

(
J−a+

CD
a+Qf

)
= J−b− Q

(CD
a+Qf

)
= J−b−

CD
b−Q(Qf ) = J−b−

CD
b− f .

2.6.3 Composition identities for the Canavati fractional
derivatives

For the left-sided Canavati fractional derivatives, the composition identity was proven by
Anastassiou in [12].

Theorem 2.18 Let  ≥  +1,  ≥ 0, n = []+1 and m = [ ]+1. Let f ∈C
a+[a,b] be

such that f (i)(a) = 0, i = 0,1, . . . ,n−2. Then C1D
a+ f ∈C[a,b] and

C1D
a+ f (x) =

1
(− )

∫ x

a
(x− t)−−1C1D

a+ f (t)dt , x ∈ [a,b] .

In [23], Andrić-Pečarić-Perić improved this with relaxed restrictions on orders of frac-
tional derivatives in the composition identity, and vanishing derivatives of the function f
at point a.

Theorem 2.19 Let  >  ≥ 0, n = []+1 , m = [ ]+1. Let f ∈C
a+[a,b] be such that

f (i)(a) = 0 for i = m−1, . . . ,n−2. Then f ∈C
a+[a,b] and

C1D
a+ f (x) =

1
(− )

∫ x

a
(x− t)−−1C1D

a+ f (t)dt , x ∈ [a,b] . (2.155)

Proof. Let m = n, that is −n >  −m. By Lemma 2.3 we have

J−a+ Jn−
a+ f (n−1) = Jn−

a+ f (n−1) = Jm−
a+ f (m−1) .

Since Jn−
a+ f (n−1) ∈ C1[a,b], then Jn−

a+ f (n−1)(a) = 0, and using integrations by parts we
have

J−+1
a+

C1D
a+ f (x)

=
1

(− +1)

∫ x

a
(x− t)−

(
d
dt

Jn−
a+ f (n−1)(t)

)
dt

=
1

(− +1)

[
(x− t)−Jn−

a+ f (n−1)(t)
∣∣∣x
a
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+ (− )
∫ x

a
(x− t)−−1Jn−

a+ f (n−1)(t)dt

]

=
1

(− )

∫ x

a
(x− t)−−1Jn−

a+ f (n−1)(t)dt

= J−a+ Jn−
a+ f (n−1)(x) ,

that is,
Jm−
a+ f (m−1) = J−+1

a+
C1D

a+ f . (2.156)

Since C1D
a+ f (x) = d

dxJ
n−
a+ f (n−1)(x) ∈C[a,b] and − +1 > 1, by Corollary 2.2 follows

Jm−
a+ f (m−1) ∈C1[a,b].

If n > m, then using f (m−1)(a) = · · · = f (n−2)(a) = 0 and integration by parts, we have

Jn−m
a+ f (n−1)(x)

=
1

(n−m)

∫ x

a
(x− t)n−m−1 f (n−1)(t)dt

=
1

(n−m)

[
(x− t)n−m−1 f (n−2)(t)

∣∣∣x
a
+(n−m−1)

∫ x

a
(x− t)n−m−2 f (n−2)(t)dt

]
=

1
(n−m−1)

∫ x

a
(x− t)n−m−2 f (n−2)(t)dt = · · ·

=
∫ x

a
f (m)(t)dt = f (m−1)(x) .

Therefore
Jm−
a+ f (m−1) = Jm−

a+ Jn−m
a+ f (n−1) = Jn−

a+ f (n−1).

The result again follows from Corollary 2.2 since n−  > 1 and f (n−1) ∈ C[a,b]. This

proves that f ∈C
a+[a,b].

For the proof of the composition identity (2.155) we use the Laplace transform. Set
g = f (m−1). Now (2.155) can be written as

d
dx

Jm−
a+ g(x) = J−a+

d
dx

Jn−
a+ g(n−m)(x) ,

where x ∈ [a,b] and g(a) = g′(a) = · · · = g(n−m−1)(a) = 0. Define auxiliary function h :
[0,) → R with

h(x) =

⎧⎨⎩
g(x+a) , x ∈ [0,b−a]

n−m−1


k=0

g(k)(b)
k! (x−b+a)k , x ≥ b−a

. (2.157)

Obviously h ∈Cn−m[0,) and h(0) = h′(0) = · · · = h(n−m−1)(0) = 0. Also h has polyno-
mial growth at , so the Laplace transform of h exists. The composition identity (2.155)
will follow if we prove that for x ≥ 0 holds

1
(m− )

d
dx

∫ x

0
(x− t)m−−1h(t)dt



58 2 FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES

=
1

(− )(n−)

∫ x

0
(x− t)−−1 d

dt

∫ t

0
(t− y)n−−1h(n−m)(y)dydt . (2.158)

Using standard properties of the Laplace transform, for the left side of the equality (2.158)
we have

L

[
1

(m− )
d
dx

∫ x

0
(x− t)m−−1h(t)dt

]
(p)

=
p

(m− )
L

[∫ x

0
(x− t)m−−1h(t)dt

]
(p)

=
p

(m− )
L

[
xm−−1

]
(p)L [h](p) = p−m++1L [h](p) . (2.159)

On the other hand we have

L

[
1

(n−)(− )

∫ x

0
(x− t)−−1 d

dt

∫ t

0
(t − y)n−−1h(n−m)(y)dydt

]
(p)

=
1

(n−)(− )
L

[
x−−1

]
(p)L

[
d
dt

∫ t

0
(t− y)n−−1h(n−m)(y)dy

]
(p)

=
p−

(n−)
pL

[
tn−−1](p)L

[
h(n−m)

]
(p)

= p−
p

pn− pn−m L [h](p) = p−m++1L [h](p) . (2.160)

By Theorem 1.3, since both sides have the same Laplace transform (2.159) and (2.160), it
follows that the equality in (2.158) holds for every x ≥ 0. �

In the following theorem we give a proof of the composition identity for the right-sided
Canavati fractional derivatives.

Theorem 2.20 Let  >  ≥ 0, n = []+ 1 and m = [ ]+ 1. Let f ∈ C
b−[a,b] be such

that f (i)(b) = 0 for i = m−1, . . . ,n−2. Then f ∈C
b−[a,b] and

C1D
b− f (x) =

1
(− )

∫ b

x
(t − x)−−1C1D

b− f (t)dt , x ∈ [a,b] . (2.161)

Proof. As in the previous theorem, analogously we can prove that f ∈ C
b−[a,b]. Let

write the identity (2.161) as

(−1)m d
dx

Jm−
b− f (m−1)(x) = (−1)n J−b−

d
dx

Jn−
b− f (n−1)(x) .

Let n = m. Since Jn−
b− f (n−1) ∈ C1[a,b], then Jn−

b− f (n−1)(b) = 0. Using integration by
part, analogously to relation (2.156), we get

(−1)m−1Jm−
b− f (m−1) = J−+1

b−
C1D

b− f . (2.162)
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With this and relation (2.57) from Corollary 2.5, we have

C1D
b− f (x) = (−1)m d

dx
Jm−
b− f (m−1)

= (−1)
d
dx

J−+1
b−

C1D
b− f (x) = J−b−

C1D
b− f (x) .

Let n > m. Since f (m−1)(b) = f (m)(b) = · · · = f (n−2)(b) = 0, then

Jn−m
b− f (n−1)(x)

=
1

(n−m)

∫ b

x
(t− x)n−m−1 f (n−1)(t)dt

=
1

(n−m)

[
(t− x)n−m−1 f (n−2)(t)

∣∣∣b
x
− (n−m−1)

∫ b

x
(t− x)n−m−2 f (n−2)(t)dt

]
=

−1
(n−m−1)

∫ b

x
(t− x)n−m−2 f (n−2)(t)dt = · · ·

= (−1)n−m−1
∫ b

x
f (m)(t)dt = (−1)n−m f (m−1)(x) .

Now, by (i) from Theorem 2.6 follows

C1D
b− f (x) = (−1)m d

dx
Jm−
b− f (m−1)(x) = (−1)n d

dx
Jn−
b− f (n−1)(x) .

If we apply Corollary 2.5 and relation (2.57) with n− > 1 (since n > m), and then again
case (i) from Theorem 2.6, we get

C1D
b− f (x) = (−1)n+1Jn−−1

b− f (n−1)(x) = (−1)n+1J−−1
b− Jn−

b− f (n−1)(x) .

If − −1 > 0, then identity (2.161) holds, that is

C1D
b− f (x) = (−1)n+1J−−1

b− Jn−
b− f (n−1)(x) = (−1)nJ−b−

d
dx

Jn−
b− f (n−1)(x) .

If − −1 < 0 then J−−1
b−  = D−++1

b−  and we use (2.34) from Corollary 2.4

D−++1
b− (x) = −J−b−

d
dx

(x),

where (x) = Jn−
b− f (n−1)(x) and (b) = 0 since Jn−

b− f (n−1) ∈C1[a,b]. �

Remark 2.6 We give a simple proof of the previous theorem using the reflection operator
Q from Proposition 2.5, and Theorem 2.19:

C1D
b− f = Q

(
QC1D

b− f
)

= Q
(

C1D
a+Qf

)
= Q

(
J−a+

C1D
a+Qf

)
= J−b− Q

(C1D
a+Qf

)
= J−b−

C1D
b−Q(Qf ) = J−b−

C1D
b− f .





Chapter3
Jensen-Opial type inequalities

In this chapter we consider extensions and generalizations of Opial’s inequalities due to
Willett, Godunova, Levin and Rozanova, all obtained using Jensen’s inequality. Cauchy
type mean value theorems are proved and used in studying Stolarsky type means defined
by the obtained inequalities. Also, a method of producing n-exponentially convex and
exponentially convex functions is applied. This chapter is based on our results: Andrić,
Barbir and Pečarić [20, 21].

3.1 The Godunova-Levin and related inequalities

First inequality is motivated by Willett’s inequality (1.20) and Godunova-Levin’s inequal-
ity (1.21) together with its application given in [5, Theorem 2.17.2]. In a special case, it is
an improvement of Willett’s inequality (see Remark 3.1). We will use Jensen’s inequality
for integrals (see for example [67])



(∫ 
 (t)r(t)dt∫ 

 r(t)dt

)
≤

∫ 
  ((t))r(t)dt∫ 

 r(t)dt
, (3.1)

where (t) is convex on [, ],  ≤ (t) ≤  for all t ∈ [, ], r(t) > 0 and all integrals in
(3.1) exist.

61
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Theorem 3.1 Let f be a convex function on [0,) with f (0) = 0. Further, let x ∈
ACn[a,b] be such that x(i)(a) = x(i)(b) = 0, i = 0, . . . ,n−1, n ≥ 1. If f is a differentiable
function, then the following inequality holds

∫ b

a
f ′ (|x(t)|) |x(n)(t)|dt ≤ 2(n−1)!

(b−a)n

∫ b

a
f

(
(b−a)n |x(n)(t)|

2(n−1)!

)
dt . (3.2)

Proof. We start a proof as in Godunova and Levin’s generalizations of Opial’s inequal-
ity given in [5, Theorem 2.17.1, 2.17.2 ].

Let a <  < b. Let

y(t) =
∫ t

a

∫ tn−1

a
· · ·

∫ t1

a
|x(n)(s)|dsdt1 · · · dtn−1

=
1

(n−1)!

∫ t

a
(t− s)n−1 |x(n)(s)|ds , (3.3)

t ∈ [a,], so that y(n)(t) = |x(n)(t)| and y(t) ≥ |x(t)|. It is clear that for each 0 ≤ i ≤ n−1,
y(i)(t) ≥ 0 and nondecreasing on [a,]. Therefore, in view of y(i)(a) = 0, i = 0, . . . ,n−1,
it follows

y(t) ≤ (−a)n−1

(n−1)!
y(n−1)(t) , t ∈ [a,] , (3.4)

that is

y(t) ≤ (b−a)n−1

(n−1)!
y(n−1)(t) , t ∈ [a,] . (3.5)

Since f ′ is an increasing function, it follows∫ 

a
f ′ (|x(t)|) |x(n)(t)|dt

≤
∫ 

a
f ′ (y(t))y(n)(t)dt

≤
∫ 

a
f ′
(

(b−a)n−1

(n−1)!
y(n−1)(t)

)
y(n)(t)dt

=
(n−1)!

(b−a)n−1

∫ 

a

d
dt

[
f

(
(b−a)n−1

(n−1)!
y(n−1)(t)

)]
dt

=
(n−1)!

(b−a)n−1 f

(
(b−a)n−1

(n−1)!
y(n−1)()

)
=

(n−1)!
(b−a)n−1 f

(
(b−a)n−1

(n−1)!

∫ 

a
|x(n)(t)|dt

)
. (3.6)

Next we consider the interval [,b]. Thus, by defining

y(t) =
∫ b

t

∫ b

tn−1

· · ·
∫ b

t1
|x(n)(s)|dsdt1 · · · dtn−1
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=
1

(n−1)!

∫ b

t
(s− t)n−1 |x(n)(s)|ds , (3.7)

t ∈ [,b], analogously we obtain∫ b


f ′ (|x(t)|) |x(n)(t)|dt ≤ (n−1)!

(b−a)n−1 f

(
(b−a)n−1

(n−1)!

∫ b


|x(n)(t)|dt

)
. (3.8)

Let  be such that ∫ 

a
|x(n)(t)|dt =

∫ b


|x(n)(t)|dt =

1
2

∫ b

a
|x(n)(t)|dt . (3.9)

From (3.6), (3.8), (3.9) and Jensen’s inequality (3.1), we have∫ b

a
f ′ (|x(t)|) |x(n)(t)|dt ≤ 2(n−1)!

(b−a)n−1 f

(
(b−a)n−1

2(n−1)!

∫ b

a
|x(n)(t)|dt

)
=

2(n−1)!
(b−a)n−1 f

(
1

b−a

∫ b

a

(b−a)n |x(n)(t)|
2(n−1)!

dt

)

≤ 2(n−1)!
(b−a)n

∫ b

a
f

(
(b−a)n |x(n)(t)|

2(n−1)!

)
dt .

�

Remark 3.1 For f (x) = xr, r ≥ 1, the inequality (3.2) becomes∫ b

a
|x(t)|r−1 |x(n)(t)|dt ≤ (b−a)n(r−1)

2r−1 r [(n−1)!]r−1

∫ b

a
|x(n)(t)|r dt .

Notice, if we use (3.4) instead of (3.5) and apply Jensen’s inequality on (3.6), then for
r = 2 we get ∫ 

a
|x(t)| |x(n)(t)|dt ≤ (−a)n

2(n−1)!

∫ 

a
|x(n)(t)|2 dt ,

which is substantial improvement of Willett’s inequality (1.20) on [a,]. Specially, when
r = 2 and n = 1, for (3.2) we get∫ b

a
|x(t)| |x′(t)|dt ≤ b−a

4

∫ b

a
|x′(t)|2 dt ,

which is Opial’s inequality (1.17) on [a,b].

A special case of the previous theorem for n = 1 is given in the next corollary.

Corollary 3.1 Let f be a convex function on [0,) with f (0) = 0. Further, let x be
absolutely continuous on [a,b], satisfying x(a) = x(b) = 0. If f is a differentiable function,
then the following inequality holds∫ b

a
f ′ (|x(t)|) |x′(t)|dt ≤ 2

b−a

∫ b

a
f

(
(b−a) |x′(t)|

2

)
dt . (3.10)
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The same method is used on Theorem 1.13, which produces next generalized inequal-
ity.

Theorem 3.2 Let f be a convex function on [0,) with f (0) = 0. Let g be convex, non-
negative and increasing on [0,). Let w′(t) > 0, t ∈ [a,] with w(a) = 0. Further, let
x ∈ ACn[a,] be such that x(i)(a) = 0, i = 0, . . . ,n−1, n ≥ 1. If f is a differentiable func-
tion, then the following inequality holds∫ 

a
w′(t)g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

)
f ′
(

w(t)g

( |x(t)|
w(t)

))
dt

≤ 1
w()

∫ 

a
f

(
w()g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

))
w′(t)dt . (3.11)

Proof.
As in the proof of the previous theorem for t ∈ [a,] we have y(n)(t) = |x(n)(t)|, y(t) ≥

|x(t)| and

y(t) ≤ (−a)n−1

(n−1)!
y(n−1)(t) , t ∈ [a,] .

Since g is increasing, then from Jensen’s inequality (3.1) follows

g

( |x(t)|
w(t)

)
≤ g

(
y(t)
w(t)

)
≤ g

(
(−a)n−1

(n−1)!
y(n−1)(t)

w(t)

)

= g

⎛⎝ (−a)n−1

(n−1)!
∫ t
a w′(s) |x

(n)(s)|
w′(s) ds∫ t

a w′(s)ds

⎞⎠
≤ 1

w(t)

∫ t

a
w′(s)g

(
(−a)n−1

(n−1)!
y(n)(s)
w′(s)

)
ds .

Using the above inequality and increasing property of f ′, we obtain∫ 

a
w′(t)g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

)
f ′
(

w(t)g

( |x(t)|
w(t)

))
dt

≤
∫ 

a
w′(t)g

(
( −a)n−1

(n−1)!
y(n)(t)
w′(t)

)
f ′
(∫ t

a
w′(s)g

(
(−a)n−1

(n−1)!
y(n)(s)
w′(s)

)
ds

)
dt

=
∫ 

a

d
dt

[
f

(∫ t

a
w′(s)g

(
(−a)n−1

(n−1)!
y(n)(s)
w′(s)

)
ds

)]
dt

= f

(∫ 

a
w′(t)g

(
(−a)n−1

(n−1)!
y(n)(t)
w′(t)

)
dt

)

= f

(∫ 

a
w′(t)g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

)
dt

)
. (3.12)



3.1 THE GODUNOVA-LEVIN AND RELATED INEQUALITIES 65

Finally, by Jensen’s inequality (3.1), we have

∫ 

a
w′(t)g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

)
f ′
(

w(t)g

( |x(t)|
w(t)

))
dt

≤ f

(∫ 

a
w′(t)g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

)
dt

)

= f

(
1

w()

∫ 


w()w′(t)g

(
(−)n−1

(n−1)!
|x(n)(t)|
w′(t)

)
dt

)
(3.13)

= f

⎛⎜⎝
∫ 
 w()g

(
(−)n−1

(n−1)!
|x(n)(t)|
w′(t)

)
w′(t)dt∫ 

 w′(t)dt

⎞⎟⎠
≤ 1

w()

∫ 


f

(
w()g

(
(−)n−1

(n−1)!
|x(n)(t)|
w′(t)

))
w′(t)dt . (3.14)

�

For n = 1 we have the next inequality.

Corollary 3.2 Let f be a convex function on [0,) with f (0) = 0. Let g be convex,
nonnegative and increasing on [0,). Let w′(t) > 0, t ∈ [a,] with w(a) = 0. Further, let
x be absolutely continuous on [a,], satisfying x(a) = 0. If f is a differentiable function,
then the following inequality holds

∫ 

a
w′(t)g

( |x′(t)|
w′(t)

)
f ′
(

w(t)g

( |x(t)|
w(t)

))
dt

≤ 1
w()

∫ 

a
f

(
w()g

( |x′(t)|
w′(t)

))
w′(t)dt . (3.15)

We finish this section with a similar inequality (and its special case for n = 1) obtain
by using ( −a) instead of w() in (3.13). The proof is omitted.

Theorem 3.3 Let f be a convex function on [0,) with f (0) = 0. Let g be convex, non-
negative and increasing on [0,). Let w′(t) > 0, t ∈ [a,] with w(a) = 0. Further, let
x ∈ ACn[a,] be such that x(i)(a) = 0, i = 0, . . . ,n−1, n ≥ 1. If f is a differentiable func-
tion, then the following inequality holds

∫ 

a
w′(t)g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

)
f ′
(

w(t)g

( |x(t)|
w(t)

))
dt

≤ 1
−a

∫ 

a
f

(
(−a)w′(t)g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

))
dt . (3.16)
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Corollary 3.3 Let f be a convex function on [0,) with f (0) = 0. Let g be convex,
nonnegative and increasing on [0,). Let w′(t) > 0, t ∈ [a,] with w(a) = 0. Further, let
x be absolutely continuous on [a,], satisfying x(a) = 0. If f is a differentiable function,
then the following inequality holds∫ 

a
w′(t)g

( |x′(t)|
w′(t)

)
f ′
(

w(t)g

( |x(t)|
w(t)

))
dt

≤ 1
−a

∫ 

a
f

(
(−a)w′(t)g

( |x′(t)|
w′(t)

))
dt . (3.17)

3.2 Mean value theorems and exponential convexity

Motivated by the inequalities (1.21), (3.2), (3.10) and (1.22), (3.11), (3.15), we define next
functionals:

1( f ) = f

(∫ 

a
|x′(t)|dt

)
−
∫ 

a
f ′ (|x(t)|) |x′(t)|dt , (3.18)

where function x is as in Theorem 1.12;

2( f ) =
2

b−a

∫ b

a
f

(
(b−a) |x′(t)|

2

)
dt−

∫ b

a
f ′ (|x(t)|) |x′(t)|dt , (3.19)

where function x is as in Corollary 3.1;

3( f ) =
2(n−1)!
(b−a)n

∫ b

a
f

(
(b−a)n |x(n)(t)|

2(n−1)!

)
dt

−
∫ b

a
f ′ (|x(t)|) |x(n)(t)|dt , (3.20)

where function x is as in Theorem 3.1;

4( f ) = f

(∫ 

a
w′(t)g

( |x′(t)|
w′(t)

)
dt

)
−
∫ 

a
w′(t)g

( |x′(t)|
w′(t)

)
f ′
(

w(t)g

( |x(t)|
w(t)

))
dt , (3.21)

where functions g, w and x are as in Theorem 1.13;

5( f ) =
1

w()

∫ 

a
f

(
w()g

( |x′(t)|
w′(t)

))
w′(t)dt

−
∫ 

a
w′(t)g

( |x′(t)|
w′(t)

)
f ′
(

w(t)g

( |x(t)|
w(t)

))
dt , (3.22)
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where functions g, w and x are as in Corollary 3.2;

6( f ) =
1

w()

∫ 

a
f

(
w()g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

))
w′(t)dt

−
∫ 

a
w′(t)g

(
(−a)n−1

(n−1)!
|x(n)(t)|
w′(t)

)
f ′
(

w(t)g

( |x(t)|
w(t)

))
dt , (3.23)

where functions g, w and x are as in Theorem 3.2 (and, in all functionals, f is a differen-
tiable function with f (0) = 0).
If f is a convex function, Theorems 1.12, 1.13, 3.2, 3.2 and Corollaries 3.1, 3.2, imply that
i( f ) ≥ 0, i = 1, . . . ,6.

Next we give mean value theorems for the functionalsi. First consider the functional
1. Let 0 ≤ |x′| ≤ M. It follows

0 ≤
∫ 

a
|x′(t)|dt ≤ M (−a)

and

0 ≤ |x(t)| ≤
∫ t

a
|x′(s)|ds ≤ M (t−a)≤ M (−a) .

Hence, for the functional 1 let f : I1 → R where

I1 = [0,M (−a)] . (3.24)

Analogously, with |x(t)| ≤ M (−a) and |x(t)| ≤ M (b− ), for the functional2 follows

I2 =
[
0,

M (b−a)
2

]
. (3.25)

For 3 and 0 ≤
∣∣∣x(n)

∣∣∣≤ M we have

(b−a)n |x(n)(t)|
2(n−1)!

≤ M (b−a)n

2(n−1)!

and

|x(t)| ≤ 1
(n−1)!

∫ t

a
(t− s)n−1|x(n)(s)|ds ≤ M (t−a)n

n!
≤ M (−a)n

n!

from which we obtain

I3 =
[
0,

M (b−a)n

2n!

]
. (3.26)

Next, for the functional4 let 0 < m≤w′ ≤M1, 0≤ |x′| ≤M and g≥ 0. Then 0≤ |x′|
w′ ≤ M

m .
It follows

m(−a) min
[0, M

m ]
g ≤

∫ 

a
w′(t)g

( |x′(t)|
w′(t)

)
dt ≤ M1 (−a) max

[0, M
m ]

g .



68 3 JENSEN-OPIAL TYPE INEQUALITIES

Also

0 ≤ |x(t)|
w(t)

≤
∫ t
a |x′(s)|ds∫ t
a w′(s)ds

≤ M
m

.

Since obviously w(t) ≤ M1 (−a), we get

0 ≤ w(t)g

( |x(t)|
w(t)

)
≤ M1 (−a) max

[0, M
m ]

g .

Hence, for the functional4 we have

I4 =

[
0,M1 (−a) max

[0, M
m ]

g

]
. (3.27)

For the functional 5 we have

0 ≤ w()g

( |x′(t)|
w′(t)

)
≤ M1 (−a) max

[0, M
m ]

g

which gives us the same interval, that is

I5 = I4 . (3.28)

Finally, for 6 and 0 ≤
∣∣∣x(n)

∣∣∣≤ M we have

w()g

(
(−a)n−1 |x(n)(t)|

(n−1)!w′(t)

)
≤ M1 (−a) max[

0,
M (−a)n−1

m (n−1)!

]g .

Also

0 ≤ |x(t)|
w(t)

≤ M (−a)n−1

mn!

and

0 ≤ w(t)g

( |x(t)|
w(t)

)
≤ M1 (−a) max[

0,
M (−a)n−1

mn!

]g ,

from which we obtain

I6 =

⎡⎢⎣0,M1 (−a) max[
0,

M(−a)n−1

mn!

]g
⎤⎥⎦ . (3.29)

Define next conditions:

(A1) Let x be absolutely continuous on [a,], x(a) = 0 and 0 ≤ |x′| ≤ M.

(A2) Let x be absolutely continuous on [a,b], x(a) = x(b) = 0 and 0 ≤ |x′| ≤ M.
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(A3) Let x∈ACn[a,b], x(i)(a) = x(i)(b) = 0 for i = 0, . . . ,n−1 (n≥ 1) and 0≤
∣∣∣x(n)

∣∣∣≤M.

(A4) Let g be convex, nonnegative and increasing function on [0,). Let w(t)≥ 0, w′(t) >

0, t ∈ [a,], w(a) = 0 and 0 < m ≤ w′ ≤ M1. Further, let x be absolutely continuous
on [a,], x(a) = 0 and 0 ≤ |x′| ≤ M.

(A5) Let g be convex, nonnegative and increasing function on [0,). Let w(t)≥ 0, w′(t) >

0, t ∈ [a,], w(a) = 0 and 0 < m ≤ w′ ≤ M1. Further, let x be absolutely continuous
on [a,], x(a) = 0 and 0 ≤ |x′| ≤ M.

(A6) Let g be convex, nonnegative and increasing function on [0,). Let w(t)≥ 0, w′(t) >
0, t ∈ [a,], w(a) = 0 and 0 < m ≤ w′ ≤ M1. Further, let x ∈ ACn[a,], x(i)(a) = 0

for i = 0, . . . ,n−1 (n ≥ 1) and 0 ≤
∣∣∣x(n)

∣∣∣≤ M.

Theorem 3.4 Let conditions (Ai) hold for the functionals i (i = 1, . . . ,6), respectively.
Let f ∈C2(Ii) and f (0) = 0. Then there exists  ∈ Ii such that

i( f ) =
f ′′( )

2
i( f0) , (i = 1, . . . ,6) , (3.30)

where f0(t) = t2.

Proof. We give a proof for the functional1. Since f ∈C2(I1), there exist real numbers
m = min

t∈I1
f ′′(t) and M = max

t∈I1
f ′′(t). It is easy to show that the functions f1 and f2 defined

by

f1(t) =
M
2

t2− f (t),

f2(t) = f (t)− m
2

t2

are convex. Therefore1( f1) ≥ 0, 1( f2) ≥ 0, and we get

m
2
1( f0) ≤ 1( f ) ≤ M

2
1( f0) .

If 1( f0) = 0 there is nothing to prove. Suppose 1( f0) > 0. We have

m ≤ 21( f )
1( f0)

≤ M .

Hence, there exists  ∈ I1 such that

1( f ) =
f ′′( )

2
1( f0) .

�
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Theorem 3.5 Let conditions (Ai) hold for the functionals i (i = 1, . . . ,6), respectively.
Let f ,u ∈C2(Ii) with f (0) = u(0) = 0. Then there exists  ∈ Ii such that

i( f )
i(u)

=
f ′′( )
u′′( )

, (i = 1, . . . ,6) , (3.31)

provided that the denominators are non-zero.

Proof. We give a proof for the functional 1. Define h ∈ C2(I1) by h = c1 f − c2u,
where

c1 = 1(u) , c2 = 1( f ) .

Now using Theorem 3.4 there exists  ∈ I1 such that(
c1

f ′′( )
2

− c2
u′′( )

2

)
1( f0) = 0 .

Since 1( f0) �= 0 (otherwise we have a contradiction with 1(u) �= 0 by Theorem 3.4), we
get

1( f )
1(u)

=
f ′′( )
u′′( )

.

�

An elegant method of producing n-exponentially convex and exponentially convex
functions is given in [50]. We use this to prove the n-exponential convexity for the func-
tionals i, i = 1, . . . ,6. Next theorem is analogous to the one given in [66, Theorem 3.9]
and we give a proof for the reader’s convenience.

Note here that for functionals i (i = 1, . . . ,6), intervals I are defined by (3.24)−
(3.29), respectively.

Theorem 3.6 Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function s 	→ [y0,y1,y2; fs] is n-exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I. Let
i (i = 1, . . . ,6) be linear functionals defined as in (3.18)− (3.23). Then s 	→ i( fs) is
n-exponentially convex function in the Jensen sense on J. If the function s 	→i( fs) is also
continuous on J, then it is n-exponentially convex on J.

Proof. For i ∈ R, si ∈ J, i = 1, . . . ,n, we define the function

h(y) =
n


i, j=1

i j f si+s j
2

(y) .

Using the assumption that the function s 	→ [y0,y1,y2; fs] is n-exponentially convex in the
Jensen sense, we have

[y0,y1,y2;h] =
n


i, j=1

i j[y0,y1,y2; f si+s j
2

] ≥ 0 ,
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which in turn implies that h is a convex function on I. Therefore we have i(h) ≥ 0,
i = 1, . . . ,6. Hence

n


i, j=1

i ji( f si+s j
2

) ≥ 0 .

We conclude that the function s 	→i( fs) is n-exponentially convex on J in the Jensen
sense. If the function s 	→i( fs) is also continuous on J, then it is n-exponentially convex
by definition. �

Corollary 3.4 Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function s 	→ [y0,y1,y2; fs] is exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I. Let
i (i = 1, . . . ,6) be linear functionals defined as in (3.18)− (3.23). Then s 	→ i( fs)
is exponentially convex function in the Jensen sense on J. If the function s 	→ i( fs) is
continuous on J, then it is exponentially convex on J.

Let us denote means for fs, fq ∈ by

s,q(i,) =

⎧⎪⎪⎨⎪⎪⎩
(
i( fs)
i( fq)

) 1
s−q

, s �= q ,

exp

(
d
dsi( fs)
i( fs)

)
, s = q .

(3.32)

Theorem 3.7 Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function s 	→ [y0,y1,y2; fs] is 2−exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I. Let
i (i = 1, . . . ,6) be linear functionals defined as in (3.18)− (3.23). Then the following
statements hold:

(i) If the function s 	→ i( fs) is continuous on J, then it is 2−exponentially convex
function on J. If the function s 	→ i( fs) is additionally positive, then it is also
log-convex on J, and for r,s,t ∈ J such that r < s < t, we have

(i( fs))t−r ≤ (i( fr))t−s (i( ft ))s−r , i = 1, . . . ,6 . (3.33)

(ii) If the function s 	→i( fs) is positive and differentiable on J, then for every s,q,r,t ∈
J, such that s ≤ r and q ≤ t, we have

s,q(i,) ≤ r,t(i,) , i = 1, . . . ,6 . (3.34)

Proof. (i) The first part is an immediate consequence of Theorem 3.6 and in second
part log-convexity on J follows from Remark 1.3. Since s 	→i( fs) is positive, for r,s,t ∈ J
such that r < s < t, with f (s) = logi( fs) in Proposition 1.2, we have

(t− s) logi( fr)+ (r− t) logi( fs)+ (s− r) logi( ft ) ≥ 0 .
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This is equivalent to inequality (3.33).
(ii) The function s 	→i( fs) is log-convex on J by (i), that is, the function s 	→ logi( fs)
is convex on J. Applying Proposition 1.3 we get

logi( fs)− logi( fq)
s−q

≤ logi( fr)− logi( ft)
r− t

(3.35)

for s ≤ r, q ≤ t, s �= q, r �= t, and therefore we have

s,q(i,) ≤ r,t(i,) .

Cases s = q and r = t follows from (3.35) as limit cases. �

Remark 3.2 Results from Theorem 3.6, Corollary 3.4 and Theorem 3.7 still hold when
two of the points y0,y1,y2 ∈ I coincide, for a family of differentiable functions fs such that
the function s 	→ [y0,y1,y2; fs] is n-exponentially convex in the Jensen sense (exponentially
convex in the Jensen sense, log-convex in the Jensen sense). Furthermore, they still hold
when all three points coincide for a family of twice differentiable functions with the same
property. The proofs can be obtained by recalling Remark 1.1 and suitable characterization
of convexity.

3.3 Applications to Stolarsky type means

We use Cauchy type mean value Theorems 3.4 and 3.5 for Stolarsky type means, defined
by the functionals i, i = 1, . . . ,6. Several families of functions which fulfil conditions
of Theorem 3.6, Corollary 3.4 and Theorem 3.7 (and Remark 3.2) that we present here,
enable us to construct large families of functions which are exponentially convex.

Example 3.1 Consider a family of functions

1 = { fs : R → R : s ∈ R}

defined by

fs(x) =

{
esx−1

s2
, s �= 0 ,

x2

2 , s = 0 .

Since d2 fs
dx2 (x) = esx > 0, then fs is convex on R for every s ∈ R, and s 	→ d2 fs

dx2 (x) is expo-
nentially convex by definition.
Analogously as in the proof of Theorem 3.6 we conclude that s 	→ [y0,y1,y2; fs] is expo-
nentially convex (and so exponentially convex in the Jensen sense).
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Notice that fs(0) = 0. By Corollary 3.4 we have that s 	→ i( fs) (i = 1, . . . ,6) is expo-
nentially convex in the Jensen sense. It is easy to verify that this mappings are continuous
(although mapping s 	→ fs is not continuous for s = 0), so they are exponentially convex.

For this family of functions, s,q(i,1) (i = 1, . . . ,6) from (3.32) become

s,q(i,1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
i( fs)
i( fq)

) 1
s−q

, s �= q ,

exp
(
i(id· fs)
i( fs)

− 2
s

)
, s = q �= 0 ,

exp
(
i(id· f0)
3i( f0)

)
, s = q = 0 ,

and using (3.34), they are monotonous functions in parameters s and q.
Consider for example the functional 1. If 1 is positive, then Theorem 3.5 applied

for f = fs ∈1 and u = fq ∈1 yields that there exists  ∈ I1 = [0,M (−a)] such that

e(s−q) =
1( fs)
1( fq)

.

It follows that
Ms,q(1,1) = logs,q(1,1)

satisfy 0 ≤ Ms,q(1,1) ≤ M (−a), which shows that Ms,q(1,1) is a mean, and by
(3.34) it is a monotonous mean. Analogously follows

0 ≤ Ms,q(2,1) ≤ M (b−a)
2

, (3.36)

0 ≤ Ms,q(3,1) ≤ M (b−a)n

2n!
, (3.37)

0 ≤ Ms,q(4,1) ≤ M1 (−a) max
[0, M

m ]
g , (3.38)

0 ≤ Ms,q(5,1) ≤ M1 (−a) max
[0, M

m ]
g , (3.39)

0 ≤ Ms,q(6,1) ≤ M1 (−a) max[
0,

M (−a)n−1
mn!

]g , (3.40)

hence, Ms,q(i,1) are also monotonous means, i = 2, . . . ,6.

Example 3.2 Consider a family of functions

2 = {gs : [0,) → R : s ∈ R}

defined by

gs(x) =

⎧⎪⎨⎪⎩
(x+1)s−1

s(s−1) , s �= 0,1 ,

− log(x+1) , s = 0 ,
(x+1) log(x+1) , s = 1 .
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Here, d2gs
dx2 (x) = (x + 1)s−2 = e(s−2) log(x+1) > 0 which shows that gs is convex for x > 0

and s 	→ d2gs
dx2 (x) is exponentially convex by definition. Also, gs(0) = 0. Arguing as in

Example 3.1 we get that the mapping s 	→ i(gs) is exponentially convex and also log-
convex. Hence, for r,s,t ∈ J such that r < s < t, we have

(i(gs))
t−r ≤ (i(gr))

t−s (i(gt))
s−r , i = 1, . . . ,6 . (3.41)

Particularly we observe the functional

2( f ) =
2

b−a

∫ b

a
f

(
(b−a) |x′(t)|

2

)
dt−

∫ b

a
f ′ (|x(t)|) |x′(t)|dt

and obtain

2(gs) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2
s(s−1) + 2

(b−a)s(s−1)

b∫
a

(
(b−a)|x′(t)|

2 +1
)s

dt

− 1
s−1

b∫
a

(|x(t)|+1)s−1 |x′(t)|dt, s �= 0,1 ,

− 2
b−a

b∫
a

log
(

(b−a)|x′(t)|
2 +1

)
dt +

b∫
a

|x′(t)|
|x(t)|+1 dt , s = 0 ,

2
b−a

b∫
a

(
(b−a)|x′(t)|

2 +1
)

log
(

(b−a)|x′(t)|
2 +1

)
dt

−
b∫
a
|x′(t)| [log(|x(t)|+1)+1]dt , s = 1 .

Further, for this family of functions, s,q(i,2) from (3.32) is equal to

s,q(i,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i(gs)
i(gq)

) 1
s−q

, s �= q ,

exp
(

1−2s
s(s−1) − i(g0gs)

i(gs)
− 1

s(s−1)
i(g0)
i(gs)

)
, s = q �= 0,1 ,

exp
(
1− i(g2

0)
2i(g0)

)
, s = q = 0 ,

exp
(
−1− i(g0g1)

2i(g1)

)
, s = q = 1 ,

and by (3.34) it is monotonous in parameters s and q.
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Hence, for the functional2 we get

s,q(2,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ q(q−1)

[
−2+ 2

b−a

b∫
a

(
(b−a)|x′(t)|

2 +1

)s

dt−s
b∫
a
(|x(t)|+1)s−1|x′(t)|dt

]

s(s−1)

(
−2+ 2

b−a

b∫
a

(
(b−a)|x′(t)|

2 +1
)q

dt−q
b∫
a
(|x(t)|+1)q−1|x′(t)|dt

]
⎞⎟⎠

1
s−q

,

s �= q ,

exp

(
1−2s
s(s−1) +

2
b−a

b∫
a

log

(
(b−a)|x′(t)|

2 +1

)(
(b−a)|x′(t)|

2 +1

)s

dt

−2+
b∫
a

[
2

a−b

(
(b−a)|x′(t)|

2 +1
)s
−s(|x(t)|+1)s−1|x′(t)|

]
dt

−
b∫
a
(|x(t)|+1)s−1|x′(t)|(1+s log(|x(t)|+1))dt

−2+
b∫
a

[
2

a−b

(
(b−a)|x′(t)|

2 +1
)s
−s(|x(t)|+1)s−1|x′(t)|

]
dt

)
,

s = q �= 0,1 ,

exp

⎛⎝1−
b∫
a

[
log2

(
(b−a)|x′(t)|

2 +1

)
−(b−a) log(|x(t)|+1) |x′(t)|

|x(t)|+1

]
dt

b∫
a

[
(b−a)|x′(t)|
|x(t)|+1 −2 log

(
(b−a)|x′(t)|

2 +1
)]

dt

⎞⎠ ,

s = q = 0 ,

exp

(
−1+

2
b−a

b∫
a

(
(b−a)|x′(t)|

2 +1

)
log2

(
(b−a)|x′(t)|

2 +1

)
dt

2
b∫
a

[
2

b−a

(
(b−a)|x′(t)|

2 +1
)

log
(

(b−a)|x′(t)|
2 +1

)
−|x′(t)|(log(|x(t)|+1)+1)

]
dt

−
b∫
a
|x′(t)|(log2(|x(t)|+1)+2 log(|x(t)|+1))dt

2
b∫
a

[
2

b−a

(
(b−a)|x′(t)|

2 +1
)

log
(

(b−a)|x′(t)|
2 +1

)
−|x′(t)|(log(|x(t)|+1)+1)

]
dt

)
,

s = q = 1 .

Applying Theorem 3.5 it follows that there exists  ∈ I2 such that

( +1)s−q =
2(gs)
2(gq)

.

Since the function  	→ ( +1)s−q is invertible for s �= q, we have

0 ≤
(
2(gs)
2(gq)

) 1
s−q

≤ M (b−a)
2

which together with the fact that s,q(2,2) is continuous, symmetric and monotonous,
shows that s,q(2,2) is a mean (analogously follows for ms,q(i,2), i = 1,3, . . . ,6).

Example 3.3 Consider a family of functions

3 = {hs : [0,) → R : s > 0}
defined by

hs(x) =

⎧⎨⎩
s−x−1
log2 s

, s �= 1 ,

x2

2 , s = 1 .
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Since s 	→ d2hs
dx2 (x) = s−x is the Laplace transform of a nonnegative function ([74]), that is

s−x =
1

(x)

∫ 

0
e−st tx−1 dt , it is exponentially convex on (0,). Obviously hs are convex

functions for every s > 0 and hs(0) = 0.
For this family of functions, s,q(i,3) from (3.32) is equal to

s,q(i,3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
i(hs)
i(hq)

) 1
s−q

, s �= q ,

exp
(
−i(id·hs)

si(hs)
− 2

s log s

)
, s = q �= 1 ,

exp
(
−i(id·h1)

3i(h1)

)
, s = q = 1 ,

and it is monotonous in parameters s and q by (3.34).
Applying Theorem 3.5 it follows that there exists  ∈ I1 such that(

s
q

)−
=

1(hs)
1(hq)

.

Hence,
Ms,q(1,3) = −L(s,q) logs,q(1,3),

satisfies 0 ≤ Ms,q(1,3) ≤ M (−a), which shows that Ms,q(1,3) is a mean.
L(s,q) is the logarithmic mean defined by

L(s,q) =

{
s−q

logs−logq , s �= q ,

s , s = q .

Analogously, for the family 3, we get as in (3.36)− (3.40), that is, Ms,q(i,3) are also
monotonous means, i = 2, . . . ,6.

Example 3.4 Consider a family of functions

4 = {ks : [0,) → R : s > 0}
defined by

ks(x) =
e−x

√
s −1
s

.

Again we conclude, since s 	→ d2ks
dx2 (x) = e−x

√
s is the Laplace transform of a nonnegative

function ([74]), that is e−x
√

s =
s

2
√


∫ 

0

e−ste−x2/4t

t
√

t
dt , it is exponentially convex on

(0,). For every s > 0, ks are convex functions and ks(0) = 0.
For this family of functions, s,q(i,4) from (3.32) is equal to

s,q(i,4) =

⎧⎪⎨⎪⎩
(
i(ks)
i(kq)

) 1
s−q

, s �= q ,

exp
(
− i(id·ks)

2
√

si(ks)
− 1

s

)
, s = q ,
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and by (3.34) it is monotonous in parameters s and q.
Applying Theorem 3.5 it follows that there exists  ∈ I1 such that

e−(
√

s−√
q) =

i(ks)
i(kq)

.

Hence,
Ms,q(1,4) = −(√

s+
√

q
)
logs,q(1,4)

satisfies 0 ≤ Ms,q(1,4) ≤ M (−a), which shows that Ms,q(1,4) is a mean. Analo-
gously, for the family4, follows (3.36)−(3.40), that is, Ms,q(i,4) are also monotonous
means, i = 2, . . . ,6.

3.4 Multidimensional generalizations of Opial-type
inequalities

In this section Willett’s (Theorem 3.1) and Rozanova’s (Theorem 3.3) generalizations of
Opial’s inequality are extended to multidimensional inequalities.

For this we use following notation:
Let  = m

j=1[a j,b j] and || = m
j=1(b j − a j). Let t = (t1, . . . ,tm) be a general point in

, t = m
j=1[a j,t j] and dt = dt1 . . .dtm. Further, let Du(x) = d

dxu(x), Dku(t1, . . . ,tm) =

 tk

u(t1, . . . ,tm) and Dku(t1, . . . ,tm)= D1 · · ·Dku(t1, . . . ,tm), 1≤ k≤m. Let′ =m
j=2[a j,b j]

and dt ′ = dt2 . . . ,dtm. Let Dj,lu(t1, . . . ,tm) =  jl

 tlj ... tl1
u(t1, . . . ,tm), 1 ≤ j ≤ m, 1 ≤ l ≤ n.

Also, by Cmn() we denote the space of all functions u on  which have continuous
derivatives Dj,lu for j = 1, . . . ,m and l = 1, . . . ,n.

In order to generalized Theorem 3.1 and Theorem 3.2, we follow idea of the next
theorem by Brnetić-Pečarić ([35]) which presents multidimensional inequality.

Theorem 3.8 Let m ≥ 2 and let xi, D jxi, i = 1, . . . , p, j = 1, . . . ,m, be real-valued con-
tinuous functions on  with

xi(t)|t j=a j = 0 , i = 1, . . . , p , j = 1, . . . ,m

or
xi(t)|t1=a1 = D1xi(t)|t2=a2 = . . . = Dm−1xi(t)|tm=am = 0 , i = 1, . . . , p .

Let f be a nonnegative and differentiable function on [0,)p with f (0, . . . ,0) = 0 such
that Di f , i = 1, . . . , p, are nonnegative, continuous and nondecreasing on [0,)p. Then the
integral inequality holds

∫


(
p


i=1

Di f
(|x1(t)| , . . . ,

∣∣xp(t)
∣∣) |Dmxi(t)|

)
dt
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≤ f

⎛⎝∫


|Dmx1(t)|dt, ...,
∫


∣∣Dmxp(t)
∣∣dt

⎞⎠ (3.42)

holds.

For proof, we will use next lemma about convex function of several variables ([67, page
11]).

Lemma 3.1 Suppose f is defined on the open convex set U ⊂ R
n. If f is convex (strictly)

on U and the gradient vector f ′(x) exists throughout U, then f ′ is (strictly) increasing on
U.

First theorem is a generalization of Theorem 3.8.

Theorem 3.9 Let m,n, p ∈ N. Let f be a nonnegative and differentiable function on
[0,)p, with f (0, . . . ,0) = 0. Further, for i = 1, . . . , p let xi ∈ Cmn() be such that
Dj,lxi(t)|t j=a j = 0, where j = 1, . . . ,m and l = 0, . . . ,n− 1. Also, let Di f , i = 1, . . . , p,
be nonnegative, continuous and nondecreasing on [0,)p. Then the following inequality
holds ∫



(
p


i=1

Di f
(|x1(t)| , . . . ,

∣∣xp(t)
∣∣) |Dm,nxi(t)|

)
dt

≤ (n−1)!m

||n−1 f

(
||n−1

(n−1)!m

∫


|Dm,nx1(t)|dt, ...,

||n−1

(n−1)!m

∫


∣∣Dm,nxp(t)
∣∣dt

)
. (3.43)

Proof. We extend technique used in Theorem3.1 and Theorem 3.2 on multidimensional
case. For continuous function g : → R we should define y :→ R such that

Dm,ny(x1, . . . ,xm) =
mny

xn
m · · ·xn

1
= g(x1, . . . ,xm) (3.44)

and

y(x1, . . . ,xm) =
1

(n−1)!m

∫
x

m


j=1

(x j − t j)n−1g(t1, . . . ,tm)dt1 · · ·dtm , (3.45)

where x = m
j=1[a j,x j].

Define

y(x) =
∫ x

a
dt1

∫ t1

a
dt2 · · ·

∫ tn−2

a
dtn−1

∫ tn−1

a
g(tn)dtn (3.46)

or, in different notations

y(x) =
∫
x

dt1
∫
t1

dt2 · · ·
∫

tn−2

dtn−1
∫

tn−1

g(tn)dtn , (3.47)
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where a = (a1, . . . ,am), x = (x1, . . . ,xm), ti = (ti1, . . . ,t
i
m), dti = dti1 · · ·dtim, i = 1, . . . ,n and

ti = m
j=1[a j,tij], ti ⊆ti−1 , i = 1, . . . ,n−1.

Since g is a continuous function, (3.44) obviously follows.
Obviously, integrals on the right-hand side of (3.46) or (3.47), can be written as iterations
of the integrals of the form∫ x j

a j

dt1j

∫ t1j

a j

dt2j · · ·
∫ tn−2

j

a j

dtn−1
j

∫ tn−1
j

a j

g̃(tnj )dtnj ,

which are known (and easy to deduce by interchanging the order of integration) to be equal
to

1
(n−1)!

∫ x j

a j

(x j − tnj )
n−1g̃(tnj )dtnj ,

j = 1, . . . ,m, from which (3.45) easily follows.

Let

yi(t) =
1

(n−1)!m

∫
t

m


j=1

(t j − s j)n−1|Dm,nxi(s)|ds , (3.48)

for t ∈ , i = 1, . . . , p. Hence Dm,nyi(t) = |Dm,nxi(t)| and yi(t) ≥ |xi(t)|. It is easy to
conclude that for each l = 0, . . . ,n− 1 we have Dj,lyi(t) ≥ 0 and nondecreasing on 
(i = 1, . . . , p and j = 1, . . . ,m). From Dj,lyi(t)|t j=a j = 0 follows

yi(t) ≤ ||n−1

(n−1)!m
Dm,n−1yi(t) , t ∈ .

Define

ui(t) =
||n−1

(n−1)!m
Dm,n−1yi(t)

for t ∈  and i = 1, . . . , p. Since Di f are nonnegative, continuous and nondecreasing on
[0,)p, it follows∫



[
p


i=1

Di f
(|x1(t)| , . . . ,

∣∣xp(t)
∣∣) |Dm,nxi(t)|

]
dt

≤
∫


[
p


i=1

Di f (y1(t), . . . ,yp(t))Dm,nyi(t)

]
dt (3.49)

≤
∫


[
p


i=1

Di f

( ||n−1

(n−1)!m
Dm,n−1y1(t), . . . ,

||n−1

(n−1)!m
Dm,n−1yp(t)

)

Dm,nyi(t)

]
dt

≤
∫ b1

a1

⎡⎣ p


i=1

Di f (u1(t1,b2, . . . ,bm), . . . ,up(t1,b2, . . . ,bm))×
∫
′

Dm,nyi(t)dt ′
⎤⎦dt1
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≤
∫ b1

a1

[
p


i=1

Di f (u1(t1,b2, . . . ,bm), . . . ,up(t1,b2, . . . ,bm))

(n−1)!m

||n−1 D1ui(t1,b2 . . . ,bm)

]
dt1

=
(n−1)!m

||n−1

∫ b1

a1

d
dt1

[ f (u1(t1,b2, . . . ,bm), . . . ,up(t1,b2, . . . ,bm))]dt1

=
(n−1)!m

||n−1 f (u1(b1,b2, . . . ,bm), . . . ,up(b1,b2, . . . ,bm))

=
(n−1)!m

||n−1 f

(
||n−1

(n−1)!m
∫


|Dm,nx1(t)|dt, . . . ,

||n−1

(n−1)!m

∫


∣∣Dm,nxp(t)
∣∣dt

)
. (3.50)

�

Remark 3.3 For n = 1 the inequality (3.43) becomes the inequality (3.42).

Next we proceed with inequality for convex function f .

Theorem 3.10 Let m,n, p ∈ N. Let f be a convex and differentiable function on [0,)p

with f (0, . . . ,0) = 0. Further, for i = 1, . . . , p let xi ∈Cmn() be such that Dj,lxi(t)|t j=a j =
0, where j = 1, . . . ,m and l = 0, . . . ,n−1. Then the following inequality holds

∫


(
p


i=1

Di f
(|x1(t)| , . . . ,

∣∣xp(t)
∣∣) |Dm,nxi(t)|

)
dt

≤ (n−1)!m

||n
∫


f

(
||n

(n−1)!m
|Dm,nx1(t)| , ...,

||n
(n−1)!m

∣∣Dm,nxp(t)
∣∣)dt . (3.51)

Proof. As in the proof of the previous theorem we obtain (3.43) with the difference of
applying Lemma 3.1 in (3.49) since f is a convex function. Then, from Jensen’s inequality
(3.1), we have

∫


[
p


i=1

Di f
(|x1(t)| , . . . ,

∣∣xp(t)
∣∣) |Dm,nxi(t)|

]
dt

≤ (n−1)!m

||n−1 f

(
||n−1

(n−1)!m

∫


|Dm,nx1(t)|dt, ...,
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||n−1

(n−1)!m

∫


∣∣Dm,nxp(t)
∣∣dt

)

=
(n−1)!m

||n−1 f

(
1
||

∫


||n
(n−1)!m

|Dm,nx1(t)|dt, ...,

1
||

∫


||n
(n−1)!m

∣∣Dm,nxp(t)
∣∣dt

)

≤ (n−1)!m

||n
∫


f

(
||n

(n−1)!m
|Dm,nx1(t)| , ...,

||n
(n−1)!m

∣∣Dm,nxp(t)
∣∣)dt .

�

Remark 3.4 As a special case for p = 1 and m = 1, Theorem 3.1 is reobtained.

Next theorem is a multidimensional generalization of Theorem 3.3.

Theorem 3.11 Let m,n, p ∈ N. Let f be a convex and differentiable function on [0,)p

with f (0, . . . ,0) = 0. Let gi be convex, nonnegative and increasing on [0,) for i = 1, . . . , p.
For i = 1, . . . , p let hi :→ [0,) be such that Dmhi is nonnegative with Dj−1hi(t)|t j=a j =
0, j = 1, . . . ,m. Further, for i = 1, . . . , p let xi ∈ Cmn() be such that Dj,lxi(t)|t j=a j = 0,
where j = 1, . . . ,m and l = 0, . . . ,n−1. Then the following inequality holds

∫


(
p


i=1

Di f

(
h1(t)g1

( |x1(t)|
h1(t)

)
, . . . ,hp(t)gp

( |xp(t)|
hp(t)

))

×Dmhi(t)gi

(
||n−1

(n−1)!m
|Dm,nxi(t)|
Dmhi(t)

))
dt

≤ 1
||

∫


f

(
||Dmh1(t)g1

(
||n−1

(n−1)!m
|Dm,nx1(t)|
Dmh1(t)

)
, . . . ,

||Dmhp(t)gp

(
||n−1

(n−1)!m
|Dm,nxp(t)|
Dmhp(t)

))
dt. (3.52)

Proof. As in the proof of Theorem 3.9, for i = 1, . . . , p, t ∈  we have Dm,nyi(t) =
|Dm,nxi(t)|, yi(t) ≥ |xi(t)| and

yi(t) ≤ ||n−1

(n−1)!m
Dm,n−1yi(t).
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From Jensen’s inequality, monotonicity and convexity of each gi (i = 1, . . . , p), we have

gi

( |xi(t)|
hi(t)

)
≤ gi

(
yi(t)
hi(t)

)
≤ gi

(
||n−1

(n−1)!m
Dm,n−1yi(t)

hi(t)

)

= gi

⎛⎝ ||n−1

(n−1)!m
∫
t

Dmhi(s)
|Dm,nxi(s)|
Dmhi(s)

ds∫
t

Dmhi(s)ds

⎞⎠
≤ 1

hi(t)

∫
t

Dmhi(s)gi

(
||n−1

(n−1)!m
Dm,nyi(s)
Dmhi(s)

)
ds .

Define

Ui(s) = Dmhi(s)gi

(
||n−1

(n−1)!m
Dm,nyi(s)
Dmhi(s)

)
for t ∈ and i = 1, . . . , p. Hence,

∫


[
p


i=1

Di f

(
h1(t)g1

( |x1(t)|
h1(t)

)
, . . . ,hp(t)gp

( |xp(t)|
hp(t)

))

×Dmhi(t)gi

(
||n−1

(n−1)!m
Dm,n|xi(t)|
Dmhi(t)

)]
dt

≤
∫


[
p


i=1

Di f

(∫
t

Dmh1(s)g1

(
||n−1

(n−1)!m
Dm,ny1(s)
Dmh1(s)

)
ds, . . . ,

∫
t

Dmhp(s)gp

(
||n−1

(n−1)!m
Dm,nyp(s)
Dmhp(s)

)
ds

)

×Dmhi(t)gi

(
||n−1

(n−1)!m
Dm,nyi(t)
Dmhi(t)

)]
dt

=
∫


[
p


i=1

Di f

(∫
t

U1(s)ds, . . . ,
∫
t

Up(s)ds

)
Ui(t)

]
dt

= f

(∫


U1(t)dt, . . . ,
∫


Up(t)dt

)
= f

(∫


Dmh1(t)g1

(
||n−1

(n−1)!m
Dm,ny1(t)
Dmh1(t)

)
dt, ...,

∫


Dmhp(t)gp

(
||n−1

(n−1)!m
Dm,nyp(t)
Dmhp(t)

)
dt

)
.

= f

(∫


Dmh1(t)g1

(
||n−1

(n−1)!m
|Dm,nx1(t)|
Dmh1(t)

)
dt, ...,
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∫


Dmhp(t)gp

(
||n−1

(n−1)!m

∣∣Dm,nxp(t)
∣∣

Dmhp(t)

)
dt

)
. (3.53)

Finally, by Jensen’s inequality we obtain

∫


[
p


i=1

Di f

(
h1(t)g1

( |x1(t)|
h1(t)

)
, . . . ,hp(t)gp

( |xp(t)|
hp(t)

))

×Dmhi(t)gi

(
||n−1

(n−1)!m
Dm,n|xi(t)|
Dmhi(t)

)]
dt

≤ f

(∫


Dmh1(t)g1

(
||n−1

(n−1)!m
|Dm,nx1(t)|
Dmh1(t)

)
dt, ...,

∫


Dmhp(t)gp

(
||n−1

(n−1)!m

∣∣Dm,nxp(t)
∣∣

Dmhp(t)

)
dt

)

= f

(
1
||

∫

||Dmh1(t)g1

(
||n−1

(n−1)!m
|Dm,nx1(t)|
Dmh1(t)

)
dt, ...,

1
||

∫

||Dmhp(t)gp

(
||n−1

(n−1)!m

∣∣Dm,nxp(t)
∣∣

Dmhp(t)

)
dt

)

≤ 1
||

∫


f

(
||Dmh1(t)g1

(
||n−1

(n−1)!m
|Dm,nx1(t)|
Dmh1(t)

)
, ...,

||Dmhp(t)gp

(
||n−1

(n−1)!m

∣∣Dm,nxp(t)
∣∣

Dmhp(t)

))
dt .

�

Remark 3.5 Theorem 3.2 follows for p = 1 and m = 1. Also, the inequality (3.53) is an
extension of the inequality given in [34, Theorem 1].





Chapter4
Generalizations of the
Mitrinović-Pečarić inequalities
In this chapter a certain class of convex functions in Opial-type integral inequality is con-
sidered. We give extensions of Opial-type integral inequalities and use them to obtain
generalizations of inequalities due to Mitrinović and Pečarić for convex and for relative
convex functions. Cauchy type mean value theorems are proved and used in studying
Stolarsky type means defined by the observed integral inequalities. Also, a method of
producing n-exponentially convex and exponentially convex functions is applied. Appli-
cations with respect to fractional derivatives and fractional integrals are also given. Some
new Opial-type inequalities are given for different types of fractional integrals and frac-
tional derivatives. This chapter is based on our results: Andrić, Barbir, Farid, Iqbal and
Pečarić [17, 18, 19].

4.1 The Mitrinović-Pečarić inequality for convex
functions

We say that a function u : [a,b] → R belongs to the class U(v,K) if it admits the represen-
tation

u(x) =
x∫

a

K(x,t)v(t)dt , (4.1)

where v is a continuous function and K is an arbitrary nonnegative kernel such that v(x) > 0
implies u(x) > 0 for every x ∈ [a,b]. We also assume that all integrals under consideration
exist and are finite.

85
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The following inequality is given by Mitrinović and Pečarić in [60] (also see [5, p. 89]
and [67, p. 236]).

Theorem 4.1 Let u1 ∈U(v1,K), u2 ∈U(v2,K) and v2(x) > 0 for every x∈ [a,b]. Further,
let (u) and f (u) be convex and increasing for u ≥ 0 and f (0) = 0. If f is a differentiable
function and M = maxK(x,t), then

M

b∫
a

v2 (t)
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣) f ′
(

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣))dt

≤ f

⎛⎝M

b∫
a

v2 (t)
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣)dt

⎞⎠ . (4.2)

In the following theorem we give the generalization of the inequality (4.2).

Theorem 4.2 Let u1 ∈U(v1,K), u2 ∈U(v2,K) and v2(x) > 0 for every x∈ [a,b]. Further,
let (u) be convex, nonnegative and increasing for u ≥ 0, f (u) be convex for u ≥ 0, and
f (0) = 0. If f is a differentiable function and M = maxK(x,t), then these inequalities are
valid:

M

b∫
a

v2 (t)
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣) f ′
(

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣))dt

≤ f

⎛⎝M

b∫
a

v2 (t)
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣)dt

⎞⎠ (4.3)

≤ 1
b−a

b∫
a

f

(
M(b−a)v2 (t)

(∣∣∣∣v1 (t)
v2 (t)

∣∣∣∣))dt. (4.4)

Proof. On the right side of the inequality (4.3), if we multiply and divide by the factor
(b−a) inside and outside the integral and use Jensen’s inequality for the function f , then
we obtain the inequality (4.4). �

The condition of Theorem 4.1 that the function f is increasing is actually unneeded.
From the proof of the theorem [67, p. 236] one can see that this property is never used,
therefore we omit it here. Also, a condition that is missing in Theorem 4.1 is that  has to
be nonnegative, which we add.

4.1.1 Mean value theorems and exponential convexity

Motivated by the inequalities given in Theorem 4.2, we define two functionals as:

1( f ) = f

⎛⎝M

b∫
a

v2 (t)
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣)dt

⎞⎠
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− M

b∫
a

v2 (t)
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣) f ′
(

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣))dt (4.5)

2( f ) =
1

b−a

b∫
a

f

(
M(b−a)v2 (t)

(∣∣∣∣v1 (t)
v2 (t)

∣∣∣∣))dt

− f

⎛⎝M

b∫
a

v2 (t)
(∣∣∣∣v1 (t)

v2 (t)

∣∣∣∣)dt

⎞⎠ , (4.6)

where f is a differentiable function with f (0) = 0, and M,  , ui, vi (i = 1,2) are as in
Theorem 4.1.

If f is a convex function, then Theorem 4.2 implies that i( f ) ≥ 0 (i = 1,2).

Now, we give mean value theorems for the functionals i (i = 1,2).
Let 0 < m2 ≤ v2 ≤ M2, 0 ≤ |v1| ≤ M1 and  ≥ 0. Then 0 ≤

∣∣∣ v1
v2

∣∣∣≤ M1
m2

. It follows

m2 M (b−a) min[
0,

M1
m2

] ≤ M

b∫
a

v2(t)
(∣∣∣∣v1(t)

v2(t)

∣∣∣∣)dt ≤ M2 M (b−a) max[
0,

M1
m2

] .

Also

0 ≤
∣∣∣∣u1(t)
u2(t)

∣∣∣∣≤ M1
∫ t
a K(x,)d

m2
∫ t
a K(x,)d

=
M1

m2
.

Since obviously |u2(t)| ≤ MM2 (b−a), we have

0 ≤ u2(t)
(∣∣∣∣u1(t)

u2(t)

∣∣∣∣)≤ MM2 (b−a) max[
0,

M1
m2

] .

Hence, from now on let f : I → R where

I =

⎡⎣0,MM2 (b−a) max[
0,

M1
m2

]
⎤⎦ . (4.7)

Theorem 4.3 Let u1 ∈U(v1,K), u2 ∈U(v2,K) and v2(x) > 0 for every x∈ [a,b]. Further,
let (u) be convex, nonnegative and increasing for u≥ 0. Let f ∈C2(I) and f (0) = 0. Then
there exists  ∈ I such that

i( f ) =
f ′′( )

2
i( f0), (i = 1,2), (4.8)

where f0(x) = x2.
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Proof. Since f ∈ C2(I), there exist real numbers m = min
x∈I

f ′′(x) and M = max
x∈I

f ′′(x).
Hence, the functions f1 and f2 defined by

f1(x) =
M
2

x2− f (x),

f2(x) = f (x)− m
2

x2

are convex. Thereforei( f1) ≥ 0, i( f2) ≥ 0 (i = 1,2), and we get

m
2
i( f0) ≤ i( f ) ≤ M

2
i( f0) .

If i( f0) = 0, then there is nothing to prove. Suppose i( f0) > 0. We have

m ≤ 2i( f )
i( f0)

≤ M .

Hence, there exists  ∈ I such that

i( f ) =
f ′′( )

2
i( f0) , (i = 1,2).

This completes the proof. �

Theorem 4.4 Let u1 ∈U(v1,K), u2 ∈U(v2,K) and v2(x) > 0 for every x∈ [a,b]. Further,
let (u) be convex, nonnegative and increasing for u ≥ 0. Let f ,g ∈ C2(I) and f (0) =
g(0) = 0. Then there exists  ∈ I such that

i( f )
i(g)

=
f ′′( )
g′′( )

, (i = 1,2), (4.9)

provided that the denominators are non-zero.

Proof. Define h ∈C2(I) by h = c1 f − c2g, where

c1 =i(g) , c2 =i( f ), (i = 1,2).

Now using Theorem 4.3 with f = h there exists  ∈ I such that(
c1

f ′′( )
2

− c2
g′′( )

2

)
i( f0) = 0, (i = 1,2).

Since i( f0) �= 0 (otherwise we have a contradiction with i(g) �= 0 by Theorem 4.3), we
get

i( f )
i(g)

=
f ′′( )
g′′( )

, (i = 1,2).

This completes the proof. �

We continue with the method of exponential convexity given in [50]. We use this
to prove the n-exponential convexity for the functionals i (i = 1,2). The next theorem
is analogous to the one given in [66, Theorem 3.9] and we give a proof for the reader’s
convenience.
Note here that for the functionals i (i = 1,2) interval I is defined by (4.7).
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Theorem 4.5 Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function s 	→ [y0,y1,y2; fs] is n-exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I. Let
i (i = 1,2) be linear functionals defined as in (4.5) and (4.6). Then s 	→ i( fs) is n-
exponentially convex function in the Jensen sense on J. If the function s 	→ i( fs) is also
continuous on J, then it is n-exponentially convex on J.

Proof. For i ∈ R, si ∈ J, i = 1, . . . ,n, we define the function

g(y) =
n


i, j=1

i j f si+s j
2

(y) .

Using the assumption that the function s 	→ [y0,y1,y2; fs] is n-exponentially convex in the
Jensen sense, we have

[y0,y1,y2;g] =
n


i, j=1

i j[y0,y1,y2; f si+s j
2

] ≥ 0,

which in turn implies that g is a convex function on I. Therefore we have i(g) ≥ 0
(i = 1,2). Hence

n


i, j=1

i ji( f si+s j
2

) ≥ 0.

We conclude that the function s 	→ i( fs) is n-exponentially convex on J in the Jensen
sense. If the function s 	→i( fs) is also continuous on J, then s 	→i( fs) is n-exponentially
convex by definition. �

Corollary 4.1 Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function s 	→ [y0,y1,y2; fs] is exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I.
Let i (i = 1,2) be linear functionals defined as in (4.5) and (4.6). Then s 	→ i( fs)
is exponentially convex function in the Jensen sense on J. If the function s 	→ i( fs) is
continuous on J, then it is exponentially convex on J.

Let us denote a mean for fs, fq ∈ by

s,q(i,) =

⎧⎪⎪⎨⎪⎪⎩
(
i( fs)
i( fq)

) 1
s−q

, s �= q ,

exp

(
d
dsi( fs)
i( fs)

)
, s = q .

(4.10)

Theorem 4.6 Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function s 	→ [y0,y1,y2; fs] is 2-exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I.
Let i (i = 1,2) be linear functionals defined as in (4.5) and (4.6). Then the following
statements hold:
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(i) If the function s 	→i( fs) is continuous on J, then it is 2-exponentially convex func-
tion on J. If the function s 	→i( fs) is additionally positive, then it is also log-convex
on J, and for r,s,t ∈ J such that r < s < t, we have

(i( fs))t−r ≤ (i( fr))t−s (i( ft))s−r , i = 1,2 . (4.11)

(ii) If the function s 	→ i( fs) is strictly positive and differentiable on J, then for every
s,q,r, t ∈ J, such that s ≤ r and q ≤ t, we have

s,q(i,) ≤ r,t(i,) , i = 1,2. (4.12)

Proof. (i) The first part is an immediate consequence of Theorem 4.5 and in second
part log-convexity on J follows from Remark 1.3. Since s 	→i( fs) is positive, for r,s,t ∈ J
such that r < s < t, with f (s) = logi( fs) in Proposition 1.2, we have

(t− s) logi( fr)+ (r− t) logi( fs)+ (s− r) logi( ft ) ≥ 0 .

This is equivalent to inequality (4.11).
(ii) The function s 	→i( fs) is log-convex on J by (i), that is, the function s 	→ logi( fs)
is convex on J. Applying Proposition 1.3 we get

logi( fs)− logi( fq)
s−q

≤ logi( fr)− logi( ft)
r− t

(4.13)

for s ≤ r, q ≤ t, s �= q, r �= t, and therefore we have

s,q(i,) ≤ r,t(i,) .

Cases s = q and r = t follows from (4.13) as limit cases. �

Remark 4.1 Results from Theorem 4.5, Corollary 4.1 and Theorem 4.6 still hold when
two of the points y0,y1,y2 ∈ I coincide, for a family of differentiable functions fs such that
the function s 	→ [y0,y1,y2; fs] is n-exponentially convex in the Jensen sense (exponentially
convex in the Jensen sense, log-convex in the Jensen sense). Furthermore, they still hold
when all three points coincide for a family of twice differentiable functions with the same
property. The proofs can be obtained by recalling Remark 1.1 and suitable characterization
of convexity.

Remark 4.2 As we prove the n-exponential convexity of the functionals 1 and 2 ob-
tained from the inequalities given in (4.3) and (4.4), similarly we can define the functionals
from the inequalities given in (4.14), (4.17), (4.19), (4.21), (4.24) and (4.26) and prove
the n-exponential convexity of our defined functionals.



4.1 INEQUALITIES FOR CONVEX FUNCTIONS 91

4.1.2 Applications to Stolarsky type means

We use Cauchy type mean value Theorem 4.3 and Theorem 4.4 for Stolarsky type means,
defined by the functionali (i = 1,2). Several families of functions which fulfil conditions
of Theorem 4.5, Corollary 4.1 and Theorem 4.6 (and Remark 4.1) that we present here,
enable us to construct large families of functions which are exponentially convex.

Example 4.1 Consider a family of functions

1 = { fs : R → R : s ∈ R}
defined by

fs(x) =

{
esx−1

s2
, s �= 0 ,

x2

2 , s = 0 .

Since d2 fs
dx2 (x) = esx > 0, then fs is convex on R for every s ∈ R, and s 	→ d2 fs

dx2 (x) is expo-
nentially convex by definition.
Analogously as in the proof of Theorem 4.5 we conclude that s 	→ [y0,y1,y2; fs] is expo-
nentially convex (and so exponentially convex in the Jensen sense).
Notice that fs(0) = 0. By Corollary 4.1 we have that s 	→i( fs) (i = 1,2) is exponentially
convex in the Jensen sense. It is easy to verify that this mapping is continuous (although
mapping s 	→ fs is not continuous for s = 0), so it is exponentially convex.
For this family of functions, s,q(i,1) (i = 1,2) from (4.10) is equal to

s,q(i,1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
i( fs)
i( fq)

) 1
s−q

, s �= q ,

exp
(
i(id· fs)
i( fs)

− 2
s

)
, s = q �= 0 ,

exp
(
i(id· f0)
3i( f0)

)
, s = q = 0 ,

and using (4.12) it is a monotonous in parameters s and q.
If i is positive, (i = 1,2), then Theorem 4.4 applied for f = fs ∈1 and g = fq ∈1

yields that there exists  ∈ I =
[
0,MM2 (b−a)max[

0,
M1
m2

] 
]

such that

e(s−q) =
i( fs)
i( fq)

.

It follows that
Ms,q(i,1) = logs,q(i,1)

satisfy 0 ≤ Ms,q(i,1) ≤ MM2 (b−a)max[
0,

M1
m2

]  , which shows that

Ms,q(i,1) is a mean, and by (4.12) it is a monotonous mean, i = 1,2.

Example 4.2 Consider a family of functions

2 = {gs : [0,) → R : s ∈ R}
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defined by

gs(x) =

⎧⎪⎨⎪⎩
(x+1)s−1

s(s−1) , s �= 0,1 ,

− log(x+1) , s = 0 ,
(x+1) log(x+1) , s = 1 .

Here, d2gs
dx2 (x) = (x+1)s−2 = e(s−2) log(x+1) > 0 which shows that gs is convex for x > 0 and

s 	→ d2gs
dx2 (x) is exponentially convex by definition. Also, gs(0) = 0. Arguing as in Example

4.1 we get that the mapping s 	→i(gs) is exponentially convex and also log-convex.
For this family of functions, s,q(i,2) from (4.10) is equal to

s,q(i,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i(gs)
i(gq)

) 1
s−q

, s �= q ,

exp
(

1−2s
s(s−1) − i(g0gs)

i(gs)
− 1

s(s−1)
i(g0)
i(gs)

)
, s = q �= 0,1 ,

exp
(
1− i(g2

0)
2i(g0)

)
, s = q = 0 ,

exp
(
−1− i(g0g1)

2i(g1)

)
, s = q = 1 ,

and by (4.12) it is monotonous in parameters s and q.
Using Theorem 4.4 it follows that there exists  ∈ I such that

( +1)s−q =
i(gs)
i(gq)

.

Since the function  	→ ( +1)s−q is invertible for s �= q, we have

0 ≤
(
i(gs)
i(gq)

) 1
s−q

≤ MM2 (b−a) max[
0,

M1
m2

]

which together with the fact that s,q(i,2) is continuous, symmetric and monotonous,
shows that s,q(i,2) is a mean, i = 1,2.

Example 4.3 Consider a family of functions

3 = {hs : [0,) → R : s > 0}

defined by

hs(x) =

⎧⎨⎩
s−x−1
log2 s

, s �= 1 ,

x2

2 , s = 1 .

Since s 	→ d2hs
dx2 (x) = s−x is the Laplace transform of a nonnegative function ([74]), that is

s−x =
1

(x)

∫ 

0
e−st tx−1 dt , it is exponentially convex on (0,). Obviously hs are convex
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functions for every s > 0 and hs(0) = 0.
For this family of functions, s,q(i,3) from (4.10) is equal to

s,q(i,3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
i(hs)
i(hq)

) 1
s−q

, s �= q ,

exp
(
−i(id·hs)

si(hs)
− 2

s logs

)
, s = q �= 1 ,

exp
(
−i(id·h1)

3i(h1)

)
, s = q = 1 ,

and it is monotonous in parameters s and q by (4.12).
Using Theorem 4.4 it follows that there exists  ∈ I such that(

s
q

)−
=

i(hs)
i(hq)

.

Hence,
Ms,q(i,3) = −L(s,q) logs,q(i,3),

satisfies 0 ≤ Ms,q(i,3) ≤ MM2 (b−a)max[
0,

M1
m2

]  , which shows that

Ms,q(i,3) is a mean, i = 1,2.
L(s,q) is the logarithmic mean defined by

L(s,q) =

{
s−q

log s−logq , s �= q ,

s , s = q .

Example 4.4 Consider a family of functions

4 = {ks : [0,) → R : s > 0}

defined by

ks(x) =
e−x

√
s −1
s

.

Again we conclude, since s 	→ d2ks
dx2 (x) = e−x

√
s is the Laplace transform of a nonnegative

function ([74]), that is e−x
√

s =
s

2
√


∫
0

e−st e−x2/4t

t
√

t
dt it is exponentially convex on (0,).

For every s > 0, ks are convex functions and ks(0) = 0.
For this family of functions, s,q(i,4) from (4.10) is equal to

s,q(i,4) =

⎧⎪⎨⎪⎩
(
i(ks)
i(kq)

) 1
s−q

, s �= q ,

exp
(
− i(id·ks)

2
√

si(ks)
− 1

s

)
, s = q ,

and by (4.12) it is monotonous in parameters s and q.
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Using Theorem 4.4 it follows that there exists  ∈ I such that

e−(
√

s−√
q) =

i(ks)
i(kq)

.

Hence,
Ms,q(i,4) = −(√

s+
√

q
)
logs,q(i,4)

satisfies 0 ≤ Ms,q(i,4) ≤ MM2 (b−a)max[
0,

M1
m2

]  , which shows that

Ms,q(i,4) is a mean, i = 1,2.

4.1.3 Opial-type inequalities for fractional integrals and frac-
tional derivatives

In this section we present some new Opial-type inequalities involving fractional integrals
and fractional derivatives, based on inequalities given in Theorem 4.2. For this we need
fractional integrals of a function with respect to another function, the Riemann-Liouville
and the Hadamard fractional integrals ([51, Section 2.1, 2.5 and 2.7]).

Let (a,b), −≤ a < b ≤, be a finite or infinite interval of the real line R and  > 0.
Also let g be an increasing function on (a,b) and g′ be a continuous function on (a,b).
The left-sided and right-sided fractional integrals of a function f with respect to another
function g on [a,b] are given by

Ja+;g f (x) =
1

()

x∫
a

g′(t) f (t)dt
[g(x)−g(t)]1−

, x > a ,

Jb−;g f (x) =
1

()

b∫
x

g′(t) f (t)dt
[g(t)−g(x)]1−

, x < b ,

respectively.

Theorem 4.7 Let  ≥ 1, (u) be convex, nonnegative and increasing for u ≥ 0 and
let f (u) be convex for u ≥ 0 with f (0) = 0. If f is a differentiable function, then these
inequalities are valid:

(g(b)−g(a))−1 max
x∈[a,b]

g′(x)

()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣) f ′
(

Ja+;gu2 (t)

(∣∣∣∣∣ Ja+;gu1 (t)
Ja+;gu2 (t)

∣∣∣∣∣
))

dt

≤ f

⎛⎜⎝ (g(b)−g(a))−1 max
x∈[a,b]

g′(x)

()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣)dt

⎞⎟⎠
≤ 1

b−a

b∫
a

f

⎛⎜⎝ (b−a)(g(b)−g(a))−1 max
x∈[a,b]

g′(x)

()
u2 (t)

(∣∣∣∣u1 (t)
u2 (t)

∣∣∣∣)
⎞⎟⎠dt. (4.14)
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Proof. We use Theorem 4.2 with the kernel

K(x,t) =

{
g′(t)

()(g(x)−g(t))1− , a < t ≤ x

0 , x < t ≤ b
. (4.15)

For  ≥ 1, we get

M = maxK(x,t) =
(g(b)−g(a))−1 max

x∈[a,b]
g′(x)

()
.

If we replace ui by Ja+;gui and vi by ui (i = 1,2) in inequalities given in (4.3) an (4.4),
then the inequality (4.14) follows. �

A similar result follows for the right-sided fractional integrals of a function f with
respect to another function g.

Theorem 4.8 Let  ≥ 1, (u) be convex, nonnegative and increasing for u ≥ 0 and
let f (u) be convex for u ≥ 0 with f (0) = 0. If f is a differentiable function, then these
inequalities are valid:

(g(b)−g(a))−1 max
x∈[a,b]

g′(x)

()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣) f ′
(

Jb−;gu2 (t)

(∣∣∣∣∣ J

b−;gu1 (t)

Jb−;gu2 (t)

∣∣∣∣∣
))

dt

≤ f

⎛⎜⎝ (g(b)−g(a))−1 max
x∈[a,b]

g′(x)

()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣)dt

⎞⎟⎠
≤ 1

b−a

b∫
a

f

⎛⎜⎝ (b−a)(g(b)−g(a))−1 max
x∈[a,b]

g′(x)

()
u2 (t)

(∣∣∣∣u1 (t)
u2 (t)

∣∣∣∣)
⎞⎟⎠dt. (4.16)

If g(x) = x, then Ja+;x f (x) reduces to Ja+ f (x), i.e. the left-sided Riemann-Liouville
fractional integral. Same follows for the right-sided fractional integral. This gives us the
next results.

Corollary 4.2 Let  ≥ 1, (u) be convex, nonnegative and increasing for u ≥ 0 and
let f (u) be convex for u ≥ 0 with f (0) = 0. If f is a differentiable function, then these
inequalities are valid:

(b−a)−1

()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣) f ′
(

Ja+u2 (t)
(∣∣∣∣Ja+u1 (t)

Ja+u2 (t)

∣∣∣∣))dt

≤ f

⎛⎝(b−a)−1

()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣)dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)

()
u2 (t)

(∣∣∣∣u1 (t)
u2 (t)

∣∣∣∣))dt. (4.17)



96 4 THE MITRINOVIĆ-PEČARIĆ INEQUALITIES

Corollary 4.3 Let  ≥ 1, (u) be convex, nonnegative and increasing for u ≥ 0 and
let f (u) be convex for u ≥ 0 with f (0) = 0. If f is a differentiable function, then these
inequalities are valid:

(b−a)−1

()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣) f ′
(

Jb−u2 (t)
(∣∣∣∣Jb−u1 (t)

Jb−u2 (t)

∣∣∣∣))dt

≤ f

⎛⎝ (b−a)−1

()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣)dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)

()
u2 (t)

(∣∣∣∣u1 (t)
u2 (t)

∣∣∣∣))dt. (4.18)

Let (a,b) be a finite or infinite interval of R
+ and  > 0. The left-sided and right-sided

Hadamard fractional integrals of order  > 0 are given by

HJa+ f (x) =
1

()

x∫
a

(
log

x
t

)−1 f (t)dt
t

, x > a ,

HJb− f (x) =
1

()

b∫
x

(
log

t
x

)−1 f (t)dt
t

, x < b .

Notice that the Hadamard fractional integrals of order  are special cases of the left-
sided and right-sided fractional integrals of a function f with respect to a function g(x) =
logx on (a,b), where 0 ≤ a < b ≤ .

Corollary 4.4 Let  ≥ 1, (u) be convex, nonnegative and increasing for u ≥ 0 and
let f (u) be convex for u ≥ 0 with f (0) = 0. If f is a differentiable function, then these
inequalities are valid:

(logb− loga)−1

a()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣) f ′
(

HJa+u2 (t)
(∣∣∣∣HJa+u1 (t)

HJa+u2 (t)

∣∣∣∣))dt

≤ f

⎛⎝ 1
a()

(logb− loga)−1

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣)dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)(logb− loga)−1

a()
u2 (t)

(∣∣∣∣u1 (t)
u2 (t)

∣∣∣∣))dt. (4.19)

Corollary 4.5 Let  ≥ 1, (u) be convex, nonnegative and increasing for u ≥ 0 and
let f (u) be convex for u ≥ 0 with f (0) = 0. If f is a differentiable function, then these
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inequalities are valid:

(logb− loga)−1

a()

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣) f ′
(

HJb−u2 (t)

(∣∣∣∣∣HJb−u1 (t)
HJb−u2 (t)

∣∣∣∣∣
))

dt

≤ f

⎛⎝ 1
a()

(logb− loga)−1

b∫
a

u2 (t)
(∣∣∣∣u1 (t)

u2 (t)

∣∣∣∣)dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)(logb− loga)−1

a()
u2 (t)

(∣∣∣∣u1 (t)
u2 (t)

∣∣∣∣))dt. (4.20)

Next inequalities include the Riemann-Liouville fractional derivatives. The composi-
tion identity for the left-sided fractional derivatives is valid if one of conditions (i)− (vii)
in Corollary 2.21 holds. For the right-sided Riemann-Liouville fractional derivatives we
use Corollary 2.22.

Theorem 4.9 Let  ≥ 0 and  >  + 1. Suppose that one of conditions (i)− (vii) in
Corollary 2.21 holds for {, ,ui}, i = 1,2. Let D

a+u2(x) > 0 on [a,b]. Further, let (u)
be convex, nonnegative and increasing for u ≥ 0 and let f (u) be convex for u ≥ 0 with
f (0) = 0. Then for a.e. x ∈ [a,b] hold

(b−a)−−1

(− )

b∫
a

D
a+u2 (t)

(∣∣∣∣D
a+u1 (t)

D
a+u2 (t)

∣∣∣∣) f ′
(

D
a+u2 (t)

(∣∣∣∣∣D

a+u1 (t)

D
a+u2 (t)

∣∣∣∣∣
))

dt

≤ f

⎛⎝ (b−a)−−1

(− )

b∫
a

D
a+u2 (t)

(∣∣∣∣D
a+u1 (t)

D
a+u2 (t)

∣∣∣∣)dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)−

(− )
D

a+u2 (t)
(∣∣∣∣D

a+u1 (t)
D

a+u2 (t)

∣∣∣∣)
)

dt. (4.21)

Proof. We use Theorem 4.2 with the kernel

K(x,t) =

{
(x−t)−−1

(− ) , a < t ≤ x

0 , x < t ≤ b
. (4.22)

For  >  +1, we get

M = maxK(x,t) =
(b−a)−−1

(− )
.

If we replace ui by D
a+ui and vi by D

a+ui (i = 1,2) in inequalities given in (4.3) and (4.4),
then the inequality (4.21) follows. �

Theorem 4.10 Let  ≥ 0 and  >  + 1. Suppose that one of conditions (i)− (vii) in
Corollary 2.22 holds for {, ,ui}, i = 1,2. Let D

b−u2(x) > 0 on [a,b]. Further, let (u)
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be convex, nonnegative and increasing for u ≥ 0 and let f (u) be convex for u ≥ 0 with
f (0) = 0. Then for a.e. x ∈ [a,b] hold

(b−a)−−1

(− )

b∫
a

D
b−u2 (t)

(∣∣∣∣∣D
b−u1 (t)

D
b−u2 (t)

∣∣∣∣∣
)

f ′
(

D
b−u2 (t)

(∣∣∣∣∣D

b−u1 (t)

D
b−u2 (t)

∣∣∣∣∣
))

dt

≤ f

⎛⎝ (b−a)−−1

(− )

b∫
a

D
b−u2 (t)

(∣∣∣∣∣D
b−u1 (t)

D
b−u2 (t)

∣∣∣∣∣
)

dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)−

(− )
D

b−u2 (t)

(∣∣∣∣∣D
b−u1 (t)

D
b−u2 (t)

∣∣∣∣∣
))

dt. (4.23)

Next inequalities include the Caputo fractional derivatives. The composition identity
for the left-sided fractional derivatives is given in Theorem 2.16. For the right-sided Caputo
fractional derivatives we use Theorem 2.17. The proofs of these theorems are similar to
the proof of Theorem 4.9.

Theorem 4.11 Let  ≥ 0,  >  +1 and n, m given by (2.70). Let ui ∈ ACn[a,b] be such

that u(k)
i (a) = 0 for k = m, . . . ,n− 1, i = 1,2. Let CD

a+u2(x) > 0 on [a,b]. Further, let
(u) be convex, nonnegative and increasing for u ≥ 0 and let f (u) be convex for u ≥ 0
with f (0) = 0. Then for a.e. x ∈ [a,b] hold

(b−a)−−1

(− )

b∫
a

CD
a+u2 (t)

(∣∣∣∣∣CD
a+u1 (t)

CD
a+u2 (t)

∣∣∣∣∣
)

f ′
(

CD
a+u2 (t)

(∣∣∣∣∣CD
a+u1 (t)

CD
a+u2 (t)

∣∣∣∣∣
))

dt

≤ f

⎛⎝ (b−a)−−1

(− )

b∫
a

CD
a+u2 (t)

(∣∣∣∣∣CD
a+u1 (t)

CD
a+u2 (t)

∣∣∣∣∣
)

dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)−

(− )
CD

a+u2 (t)

(∣∣∣∣∣CD
a+u1 (t)

CD
a+u2 (t)

∣∣∣∣∣
))

dt. (4.24)

Theorem 4.12 Let  ≥ 0,  >  +1 and n, m given by (2.70). Let ui ∈ ACn[a,b] be such

that u(k)
i (b) = 0 for k = m, . . . ,n− 1, i = 1,2. Let CD

b−u2(x) > 0 on [a,b]. Further, let
(u) be convex, nonnegative and increasing for u ≥ 0 and let f (u) be convex for u ≥ 0
with f (0) = 0. Then for a.e. x ∈ [a,b] hold

(b−a)−−1

(− )

b∫
a

CD
b−u2 (t)

(∣∣∣∣∣CD
b−u1 (t)

CD
b−u2 (t)

∣∣∣∣∣
)

f ′
(

CD
b−u2 (t)

(∣∣∣∣∣CD
b−u1 (t)

CD
b−u2 (t)

∣∣∣∣∣
))

dt

≤ f

⎛⎝ (b−a)−−1

(− )

b∫
a

CD
b−u2 (t)

(∣∣∣∣∣CD
b−u1 (t)

CD
b−u2 (t)

∣∣∣∣∣
)

dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)−

(− )
CD

b−u2 (t)

(∣∣∣∣∣CD
b−u1 (t)

CD
b−u2 (t)

∣∣∣∣∣
))

dt. (4.25)
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Next inequalities include the Canavati fractional derivatives. The composition identity
for the left-sided fractional derivatives is given in Theorem 2.19. For the right-sided Cana-
vati fractional derivatives we use Theorem 2.20. The proofs of these theorems are similar
to the proof of Theorem 4.9.

Theorem 4.13 Let  ≥ 0,  >  +1, n = []+1, m = [ ]+1. Let ui ∈C
a+[a,b] be such

that u(k)
i (a) = 0 for k = m− 1, . . . ,n− 2, i = 1,2. Let C1D

a+u2(x) > 0 on [a,b]. Further,
let (u) be convex, nonnegative and increasing for u ≥ 0 and let f (u) be convex for u ≥ 0
with f (0) = 0. Then for a.e. x ∈ [a,b] hold

(b−a)−−1

(− )

b∫
a

C1D
a+u2 (t)

(∣∣∣∣∣C1D
a+u1 (t)

C1D
a+u2 (t)

∣∣∣∣∣
)

f ′
(

C1D
a+u2 (t)

(∣∣∣∣∣C1D
a+u1 (t)

C1D
a+u2 (t)

∣∣∣∣∣
))

dt

≤ f

⎛⎝ (b−a)−−1

(− )

b∫
a

C1D
a+u2 (t)

(∣∣∣∣∣C1D
a+u1 (t)

C1D
a+u2 (t)

∣∣∣∣∣
)

dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)−

(− )
C1D

a+u2 (t)

(∣∣∣∣∣C1D
a+u1 (t)

C1D
a+u2 (t)

∣∣∣∣∣
))

dt. (4.26)

Theorem 4.14 Let  ≥ 0,  >  +1, n = []+1, m = [ ]+1. Let ui ∈C
b−[a,b] be such

that u(k)
i (b) = 0 for k = m− 1, . . . ,n− 2, i = 1,2. Let C1D

b−u2(x) > 0 on [a,b]. Further,
let (u) be convex, nonnegative and increasing for u ≥ 0 and let f (u) be convex for u ≥ 0
with f (0) = 0. Then for a.e. x ∈ [a,b] hold

(b−a)−−1

(− )

b∫
a

C1D
b−u2 (t)

(∣∣∣∣∣C1D
b−u1 (t)

C1D
b−u2 (t)

∣∣∣∣∣
)

f ′
(

C1D
b−u2 (t)

(∣∣∣∣∣C1D
b−u1 (t)

C1D
b−u2 (t)

∣∣∣∣∣
))

dt

≤ f

⎛⎝ (b−a)−−1

(− )

b∫
a

C1D
b−u2 (t)

(∣∣∣∣∣C1D
b−u1 (t)

C1D
b−u2 (t)

∣∣∣∣∣
)

dt

⎞⎠
≤ 1

b−a

b∫
a

f

(
(b−a)−

(− )
C1D

b−u2 (t)

(∣∣∣∣∣C1D
b−u1 (t)

C1D
b−u2 (t)

∣∣∣∣∣
))

dt. (4.27)
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4.2 The Mitrinović-Pečarić inequality for relative
convex functions

We observe following Opial-type inequality due to Agarwal and Pang ([5, p. 180]).

Theorem 4.15 Let u∈Cn−1[a,b] be such that u(i)(a) = 0, 0≤ i≤ n−1 where n≥ 1. Let
u(n−1) be absolutely continuous and

∫ b
a |u(n)(t)|q dt <  with 1

p + 1
q = 1. Then∫ b

a
|u(t)|p|u(n)(t)|q dt

≤ q
p+q

⎡⎣(b−a)n− 1
q

(n−1)!

(
q−1
nq−1

) q−1
q

⎤⎦p(∫ b

a
|u(n)(t)|q dt

) p+q
q

≤ q
p+q

⎡⎣ 1
(n−1)!

(
q−1
nq−1

) q−1
q

⎤⎦p

(b−a)np
∫ b

a
|u(n)(t)|p+q dt . (4.28)

Our object is to give a generalization of their result by extending some known Opial-type
integral inequalities, which will in a special case give inequality (4.28) (see Remark 4.3).
Inequalities that we extend are given in the following two theorems. Those are inequalities
by Mitrinović and Pečarić for relative convex functions ([46]; see also [67, p. 237], [5, p.
90]), and for them we need characterization as in previous chapter:

We say that a function u : [a,b] −→ R belongs to the class U1(v,K) if it admits the
representation

u(x) =
∫ x

a
K(x,t)v(t)dt , (4.29)

where v is a continuous function and K is an arbitrary nonnegative kernel such that v(x) > 0
implies u(x) > 0 for every x ∈ [a,b]. We also assume that all integrals under consideration
exist and are finite.

Theorem 4.16 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Let u ∈ U1(v,K) where (

∫ x
a (K(x, t))p dt)

1
p ≤ M

and 1
p + 1

q = 1. Then∫ b

a
|u(x)|1−q ′(|u(x)|)|v(x)|q dx ≤ q

Mq 
(
M
(∫ b

a
|v(x)|q dx

) 1
q
)
. (4.30)

If the function (x
1
q ) is concave, then the reverse inequality holds.

A similar result follows by using another class U2(v,K) of functions
u : [a,b] −→ R which admits representation

u(x) =
∫ b

x
K(x,t)v(t)dt. (4.31)
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Theorem 4.17 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Let u ∈ U2(v,K) where

(∫ b
x (K(x,t))pdt

) 1
p ≤ N

and 1
p + 1

q = 1. Then∫ b

a
|u(x)|1−q ′(|u(x)|)|v(x)|q dx ≤ q

Nq 
(
N
(∫ b

a
|v(x)|q dx

) 1
q
)
. (4.32)

If the function (x
1
q ) is concave, then the reverse inequality holds.

Now we extend inequalities (4.30) and (4.32), and use them to obtain a generalization
of the inequality (4.28).

Theorem 4.18 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Let u ∈ U1(v,K) where (

∫ x
a (K(x,t))p dt)

1
p ≤ M

and 1
p + 1

q = 1. Then ∫ b

a
|u(x)|1−q ′(|u(x)|)|v(x)|q dx

≤ q
Mq 

(
M
(∫ b

a
|v(x)|q dx

) 1
q
)

(4.33)

≤ q
Mq (b−a)

∫ b

a

(
(b−a)

1
q M|v(x)|

)
dx . (4.34)

If the function (x
1
q ) is concave, then reverse inequalities hold.

Proof. Inequality (4.33) holds by Theorem 4.16. Since (x
1
q ) is convex, the following

Jensen’s inequality holds


(( 1

b−a

∫ b

a
g(t)dt

) 1
q
)
≤ 1

b−a

∫ b

a

(
g

1
q (t)

)
dt . (4.35)

Applying (4.35) on (4.33) we get (4.34). �

Next we have a special case when (x) = xp+q.

Corollary 4.6 Let u ∈U1(v,K) where (
∫ x
a (K(x,t))p dt)

1
p ≤ M and 1

p + 1
q = 1. Then

∫ b

a
|u(x)|p|v(x)|q dx ≤ qMp

p+q

(∫ b

a
|v(x)|q dx

) p+q
q

≤ qMp(b−a)
p
q

p+q

∫ b

a
|v(x)|p+q dx . (4.36)

Remark 4.3 If we put v(x) = u(n)(x) in (4.36), then we get a generalization of Agarwal-

Pang’s inequality (4.28) (the inequality (4.28) follows for additionally M = (b−a)n−
1
q

(n−1)! ·(
q−1
nq−1

) q−1
q

). The same applies for the Corollary 4.7.
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The following results are obtained by extending the inequality (4.32).

Theorem 4.19 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Let u ∈U2(v,K) where

(∫ b
x (K(x, t))p dt

) 1
p ≤ N

and 1
p + 1

q = 1. Then

∫ b

a
|u(x)|1−q ′(|u(x)|)|v(x)|qdx

≤ q
Nq 

(
N
(∫ b

a
|v(x)|q dx

) 1
q
)

≤ q
Nq(b−a)

∫ b

a

(
(b−a)

1
q N|v(x)|

)
dx . (4.37)

If the function (x
1
q ) is concave, then reverse inequalities hold.

Proof. As in the proof of the previous theorem, inequalities follow from Theorem 4.17
and Jensen’s inequality (4.35). �

Corollary 4.7 Let u ∈U2(v,K) where
(∫ b

x (K(x,t))p dt
) 1

p ≤ N and 1
p + 1

q = 1. Then

∫ b

a
|u(x)|p|v(x)|q dx ≤ qNp

p+q

(∫ b

a
|v(x)|q dx

) p+q
q

≤ qNp(b−a)
p
q

p+q

∫ b

a
|v(x)|p+q dx . (4.38)

4.2.1 Mean value theorems and exponential convexity

Motivated by the inequality (4.34), we define next functional:

 (u,v) =
q

Mq (b−a)

∫ b

a

(
(b−a)

1
q M|v(x)|

)
dx

−
∫ b

a
|u(x)|1−q  ′(|u(x)|)|v(x)|q dx , (4.39)

where functions  , u and v are as in Theorem 4.18.

If (x
1
q ) is a convex function (q > 1), then by Theorem 4.18  (u,v) ≥ 0.

For our results we need Definition 1.2 and next lemma from [43].

Lemma 4.1 Let I ⊆ (0,),  ∈C2(I), g(x) = xq, q > 1 and let

m1 ≤  ′′( )− (q−1) ′( )
q2 2q−1 ≤ M1 ,
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for all  ∈ I. Then the functions 1,2 defined as

1(x) =
M1 x2q

2
−(x) (4.40)

2(x) = (x)− m1 x2q

2
(4.41)

are convex functions with respect to g(x) = xq, that is i(x
1
q )(i = 1,2) are convex.

Next two theorems are our main results, and they follow methods used in [43, 44].

Theorem 4.20 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Let u ∈ U1(v,K) where (

∫ x
a (K(x,t))p dt)

1
p ≤ M

and 1
p + 1

q = 1. If  ∈ C2(I), where I ⊆ (0,) is closed interval, then there exists  ∈ I
such that the following equality holds

 (u,v) =
  ′′( )− (q−1) ′( )

2q 2q−1

·
(

(b−a)Mq
∫ b

a
|v(x)|2q dx−2

∫ b

a
|u(x)|q |v(x)|q dx

)
. (4.42)

Proof. Suppose that (y) is bounded and min((y)) = m1, max((y)) = M1 where

(y) =
y ′′(y)− (q−1) ′(y)

q2y2q−1 .

If we apply Theorem 4.18 for 1 defined by (4.40), then inequality (4.34) becomes

q
Mq (b−a)

∫ b

a

(
(b−a)

1
q M|v(x)|

)
dx−

∫ b

a
|u(x)|1−q  ′(|u(x)|)|v(x)|q dx

≤ qM1

2

(
(b−a)Mq

∫ b

a
|v(x)|2q dx−2

∫ b

a
|u(x)|q |v(x)|q dx

)
. (4.43)

Similarly, if we apply Theorem 4.18 for 2 defined by (4.41), then inequality (4.34) be-
comes

q
Mq (b−a)

∫ b

a

(
(b−a)

1
q M|v(x)|

)
dx−

∫ b

a
|u(x)|1−q  ′(|u(x)|)|v(x)|q dx

≥ qm1

2

(
(b−a)Mq

∫ b

a
|v(x)|2q dx−2

∫ b

a
|u(x)|q |v(x)|q dx

)
. (4.44)

By combining the above two inequalities with the fact

m1 ≤ y ′′(y)− (q−1) ′(y)
q2y2q−1 ≤ M1,

there exists  ∈ I such that (4.42) follows. �
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Theorem 4.21 Let 1,2 : [0,)−→R be differentiable functions such that for q > 1 the

function i(x
1
q ) is convex and i(0)= 0, i = 1,2. Let u∈U1(v,K) where (

∫ x
a (K(x, t))p dt)

1
p ≤

M and 1
p + 1

q = 1. If 1,2 ∈C2(I), where I ⊆ (0,) is closed interval and

(b−a)Mq
∫ b

a
|v(x)|2q dx−2

∫ b

a
|u(x)|q|v(x)|qdx �= 0 ,

then there exists an  ∈ I such that we have

1(u,v)
2(u,v)

=
  ′′

1 ( )− (q−1) ′
1( )

  ′′
2 ( )− (q−1) ′

2( )
, (4.45)

provided the denominators are not equal to zero.

Proof. Let us consider h ∈C2(I) defined by

h = 2(u,v)1 −1(u,v)2 .

For this function, (4.39) gives us h(u,v) = 0. By Theorem 4.20 used on h follows that
there exists  ∈ I such that

2(u,v)
 ′′

1 ( )− (q−1) ′
1( )

2q 2q−1 −1(u,v)
 ′′

2 ( )− (q−1) ′
2( )

2q 2q−1

·
(

(b−a)Mq
∫ b

a
|v(x)|2q dx−2

∫ b

a
|u(x)|q|v(x)|qdx

)
= 0.

From this we get (4.45). �

Remark 4.4 By considering nonnegative difference of inequality given in Theorem 4.19,
similar results can be done analogously (for details see [44]).

We continue with the method of producing n-exponentially convex and exponentially
convex functions given in [50], to prove the n-exponential convexity for the functional
 (u,v) defined by (4.39).

Theorem 4.22 Let J be an interval in R and  = {s : s ∈ J} be a family of functions
defined on an interval I in R, such that the function s 	→ [y0,y1,y2;Fs ] is n-exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I, where

Fs(y) = s(y
1
q ). Let s(u,v) be a linear functional defined by (4.39). Then s 	→s(u,v)

is n-exponentially convex function in the Jensen sense on J. If the function s 	→s(u,v) is
also continuous on J, then it is n-exponentially convex on J.

Proof. For i ∈ R, si ∈ J, i = 1, . . . ,n, we define the function

h(y) =
n


i, j=1

i j si+s j
2

(y) .
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Set
H(y) = h(y

1
q ) .

Using the assumption that the function s 	→ [y0,y1,y2;Fs ] is n-exponentially convex in the
Jensen sense, we have

[y0,y1,y2;H] =
n


i, j=1

i j[y0,y1,y2;F si+s j
2

] ≥ 0 ,

which in turn implies that H is a convex function on I. Therefore we have h(u,v) ≥ 0.
Hence

n


i, j=1

i j si+s j
2

(u,v) ≥ 0 .

We conclude that the function s 	→ s(u,v) is n-exponentially convex on J in the
Jensen sense. If the function s 	→s(u,v) is also continuous on J, then it is n-exponentially
convex by definition. �

Corollary 4.8 Let J be an interval in R and  = {s : s ∈ J} be a family of functions
defined on an interval I in R, such that the function s 	→ [y0,y1,y2;Fs ] is exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I, where

Fs(y) = s(y
1
q ). Let s(u,v) be a linear functional defined by (4.39). Then s 	→s(u,v)

is exponentially convex function in the Jensen sense on J. If the function s 	→ s(u,v) is
continuous on J, then it is exponentially convex on J.

Let us denote means for s,p ∈ by

s,p(,) =

⎧⎪⎪⎨⎪⎪⎩
(
s (u,v)
p (u,v)

) 1
s−p

, s �= p ,

exp

(
d
dss (u,v)
s (u,v)

)
, s = p .

(4.46)

Theorem 4.23 Let J be an interval in R and  = {s : s ∈ J} be a family of functions
defined on an interval I in R, such that the function s 	→ [y0,y1,y2;Fs ] is 2-exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I, where

Fs(y) = s(y
1
q ). Let s(u,v) be a linear functional defined by (4.39). Then the following

statements hold:

(i) If the function s 	→ s(u,v) is continuous on J, then it is 2-exponentially convex
function on J. If the function s 	→ s(u,v) is additionally positive, then it is also
log-convex on J, and for r,s,t ∈ J such that r < s < t, we have(

s(u,v)
)t−r ≤ (

r(u,v)
)t−s (t (u,v)

)s−r
. (4.47)

(ii) If the function s 	→s(u,v) is positive and differentiable on J, then for every s, p,r,t ∈
J, such that s ≤ r and p ≤ t, we have

s,p(,) ≤ r,t(,) . (4.48)
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Proof. (i) The first part is an immediate consequence of Theorem 4.22 and in second
part log-convexity on J follows from Remark 1.3. Since s 	→ s(u,v) is positive, for
r,s, t ∈ J such that r < s < t, with f (s) = logs(u,v) in Proposition 1.2, we have

(t− s) logr(u,v)+ (r− t) logs(u,v)+ (s− r) logt (u,v) ≥ 0 .

This is equivalent to inequality (4.47).
(ii) The function s 	→s(u,v) is log-convexon J by (i), that is, the function s 	→ logs(u,v)
is convex on J. Applying Proposition 1.3 we get

logs(u,v)− logp(u,v)
s− p

≤ logr(u,v)− logt (u,v)
r− t

(4.49)

for s ≤ r, p ≤ t, s �= p, r �= t, and therefore we have

s,p(,) ≤ r,t(,) .

Cases s = p and r = t follows from (4.49) as limit cases. �

Remark 4.5 Results from Theorem 4.22, Corollary 4.8 and Theorem 4.23 still hold when
two of the points y0,y1,y2 ∈ I coincide, for a family of differentiable functions s such that
the function s 	→ [y0,y1,y2;Fs ] is n-exponentially convex in the Jensen sense (exponen-
tially convex in the Jensen sense, log-convex in the Jensen sense). Furthermore, they still
hold when all three points coincide for a family of twice differentiable functions with the
same property. The proofs can be obtained by recalling Remark 1.1 and suitable charac-
terization of convexity.

4.2.2 Applications to Stolarsky type means

We use Cauchy type mean value Theorem 4.20 and Theorem 4.21 for Stolarsky type means
and functional  (u,v). Several families of functions which fulfil conditions of Theorem
4.22, Corollary 4.8 and Theorem 4.23 (and Remark 4.5) that we present here, enable us to
construct large families of functions which are exponentially convex.

Example 4.5 Consider a family of functions

1 = {s : [0,) → R : s > 0}
defined for q > 1 by

s(x) =

⎧⎨⎩
q2

s(s−q) xs, s �= 0,q ,

qxq logx, s = q .

Then
[
s(x

1
q )
]′′

= x
s−2q

q = e
s−2q

q lnx > 0 which show that s is convex function with respect

to g(x) = xq for x > 0, and s 	→
[
s(x

1
q )
]′′

is exponentially convex by definition. Notice

s(0) = 0, with the convention 0 log0 = 0.
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Analogously as in the proof of Theorem 4.22 we conclude that s 	→ [y0,y1,y2;Fs ] is
exponentially convex (and so exponentially convex in the Jensen sense), where Fs(y) =

s(y
1
q ). By Corollary 4.8 we have that s 	→s(u,v) is exponentially convex in the Jensen

sense. It is easy to verify that this mappings are continuous, so they are exponentially
convex.

Hence, we have

s (u,v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q3(b−a)
s
q −1Ms−q

s(s−q)

b∫
a
|v(x)|s dx− q2

s−q

b∫
a
|u(x)|s−q |v(x)|q dx ,

s �= 0,q ,

q2
b∫
a
|v(x)|q log

[
(b−a)

1
q M|v(x)|

]
dx−q

b∫
a
|v(x)|q [q log |u(x)|+1]dx ,

s = q .

For this family of functions, s,t(,1) from (4.46) becomes

s,t(,1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
s (u,v)
t (u,v)

) 1
s−t

, s �= t ,

exp
(

q−2s
s(s−q) + s·log(u,v)

s (u,v)

)
, s = t �= q ,

exp
(
− 1

q +
q·log(u,v)
2q (u,v)

)
, s = t = q ,

and by (4.48) it is monotonous in parameters s and t.
For the functional (u,v) we get

s,t(,1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ qt(t−q)(b−a)
s
q −1

Ms−q
b∫
a
|v(x)|s dx−s

b∫
a
|u(x)|s−q |v(x)|q dx

qs(s−q)(b−a)
t
q −1

Mt−q
b∫
a
|v(x)|t dx−t

b∫
a
|u(x)|t−q|v(x)|q dx

⎞⎠
1

s−t

,s �= t ,

exp

(
q−2s

s(s−q)

+
q(b−a)

s
q −1

Ms−q
b∫
a
|v(x)|s log

[
(b−a)

1
q M|v(x)|

]
dx−

b∫
a
[s log|u(x)|+1]|u(x)|s−q |v(x)|q dx

q(b−a)
s
q −1

Ms−q
b∫
a
|v(x)|s dx−s

b∫
a
|u(x)|s−q |v(x)|q dx

)
,

s = t �= q ,

exp

⎛⎝− 1
q +

q
b∫
a
|v(x)|q log2

[
(b−a)

1
q M|v(x)|

]
dx−

b∫
a
[q log|u(x)|+2]|v(x)|q log|u(x)|dx

2q
b∫
a
|v(x)|q log

[
(b−a)

1
q M|v(x)|

]
dx−2

b∫
a
[q log|u(x)|+1]|v(x)|q dx

⎞⎠ ,

s = t = q .

Example 4.6 Consider a family of functions

2 = {s : [0,) → R : s ∈ R}
defined for q > 1 by

s(x) =

⎧⎨⎩
esxq−1

s2
, s �= 0 ,

x2q

2 , s = 0 .
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Since
[
(x

1
q )
]′′

= esx > 0, then s is convex function with respect to g(x) = xq for x > 0,

and s 	→
[
s(x

1
q )
]′′

is exponentially convex by definition. Notice that s(0) = 0. Arguing

as in the previous example, we get that the mapping s 	→s(u,v) is exponentially convex.
We have

s (u,v) =

⎧⎪⎪⎨⎪⎪⎩
q

s2Mq(b−a)
∫ b
a {exp [s(b−a)Mq|v(x)|q]−1}dx

− q
s

∫ b
a |v(x)|q exp [s|u(x)|q]dx , s �= 0 ,

q(b−a)Mq

2

∫ b
a |v(x)|2qdx−q

∫ b
a |u(x)|q|v(x)|q dx , s = 0 .

For this family of functions, s,t(,2) from (4.46) becomes

s,t(,2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
s (u,v)
t (u,v)

) 1
s−t

, s �= t,

exp
(
− 2

s +
xq·s (u,v)
s (u,v)

)
, s = t �= 0 ,

exp

(
xq.0

(u,v)
30 (u,v)

)
, s = t = 0 ,

and by (4.48) it is monotonous in parameters s and t.
For the functional (u,v) we get

s,t(,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
s−2 ∫ b

a {exp [s(b−a)Mq |v(x)|q ]−1}dx−s−1Mq(b−a)
∫ b
a exp (s|u(x)|q)|v(x)|q dx

t−2 ∫ b
a {exp [t(b−a)Mq |v(x)|q ]−1}dx−t−1Mq(b−a)

∫ b
a exp(t|u(x)|q)|v(x)|q dx

) 1
s−t

,

s �= t ,

exp

(
− 2

s +
∫ b
a exp [s(b−a)Mq |v(x)|q ]|v(x)|q dx−∫ b

a (1+s|u(x)|q)exp (s|u(x)|q)|v(x)|q dx
1

Mq(b−a)
∫ b
a {exp [s(b−a)Mq |v(x)|q ]−1}dx−s

∫ b
a exp (s|u(x)|q)|v(x)|qdx

)
,

s = t �= 0 ,

exp

(
(b−a)2M2q ∫ b

a |v(x)|3qdx−3
∫ b
a |u(x)|2q |v(x)|qdx

3(b−a)Mq
∫ b
a |v(x)|2qdx−6

∫ b
a |u(x)|q |v(x)|qdx

)
,

s = t = 0 .

4.2.3 Opial-type inequalities for fractional integrals and frac-
tional derivatives

First result is based on Theorem 4.18 and the left-sided Riemann-Liouville fractional inte-
grals.

Theorem 4.24 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  > 1

q , 1
p + 1

q = 1 and v ∈ L1[a,b].
Then following inequalities hold∫ b

a

∣∣Ja+v(x)
∣∣1−q  ′ (∣∣Ja+v(x)

∣∣) |v(x)|q dx

≤
qq() p

q
p

(
− 1

q

) q
p

(b−a)q−1 

⎛⎜⎜⎝ (b−a)−
1
q

() p
1
p

(
− 1

q

) 1
p

(∫ b

a
|v(x)|q dx

) 1
q

⎞⎟⎟⎠



4.2 INEQUALITIES FOR RELATIVE CONVEX FUNCTIONS 109

≤
qq() p

q
p

(
− 1

q

) q
p

(b−a)q

∫ b

a


⎛⎜⎜⎝ (b−a) |v(x)|
() p

1
p

(
− 1

q

) 1
p

⎞⎟⎟⎠dx . (4.50)

If the function (x
1
q ) is concave, then reverse inequalities hold.

Proof. For x ∈ [a,b] let

K(x,t) =
{ 1

() (x− t)−1, a ≤ t ≤ x ;

0, x < t ≤ b ,

u(x) = Ja+v(x) =
1

()

∫ x

a
(x− t)−1v(t)dt , (4.51)

P(x) =
(∫ x

a
(K(x,t))p dt

) 1
p

=
(x−a)−

1
q

()
[
p
(
− 1

q

)] 1
p

.

It is easy to see that for  > 1
q the function P is increasing on [a,b], thus

max
x∈[a,b]

P(x) =
(b−a)−

1
q

() p
1
p

(
− 1

q

) 1
p

= M .

Hence (
∫ x
a K(x,t)pdt)

1
p ≤ M, which with the function u defined by (4.51) and Theorem

4.18 gives us (4.50). �

Corollary 4.9 Let  > 1
q , 1

p + 1
q = 1 and v ∈ L1[a,b]. Then following inequalities hold

∫ b

a

∣∣Ja+v(x)
∣∣p |v(x)|q dx ≤ q(b−a)p

(
− 1

q

)
(p+q)p() p

(
− 1

q

) (∫ b

a
|v(x)|qdx

) p+q
q

≤ q(b−a)p

(p+q)p() p
(
− 1

q

) ∫ b

a
|v(x)|p+qdx .

A similar results follows for the right-sided Riemann-Liouville fractional integrals.

Theorem 4.25 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  > 1

q , 1
p + 1

q = 1 and v ∈ L1[a,b].
Then following inequalities hold∫ b

a

∣∣Jb−v(x)
∣∣1−q  ′ (∣∣Jb−v(x)

∣∣) |v(x)|q dx
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≤
qq() p

q
p

(
− 1

q

) q
p

(b−a)q−1 

⎛⎜⎜⎝ (b−a)−
1
q

() p
1
p

(
− 1

q

) 1
p

(∫ b

a
|v(x)|qdx

) 1
q

⎞⎟⎟⎠

≤
qq() p

q
p

(
− 1

q

) q
p

(b−a)q

∫ b

a


⎛⎜⎜⎝ (b−a) |v(x)|
() p

1
p

(
− 1

q

) 1
p

⎞⎟⎟⎠dx . (4.52)

If the function (x
1
q ) is concave, then reverse inequalities hold.

Proof. The proof is similar to the proof of Theorem 4.24. �

Corollary 4.10 Let  > 1
q , 1

p + 1
q = 1 and v ∈ L1[a,b]. Then following inequalities hold

∫ b

a

∣∣Jb−v(x)
∣∣p |v(x)|q dx ≤ q(b−a)p

(
− 1

q

)
(p+q)p() p

(
− 1

q

) (∫ b

a
|v(x)|qdx

) p+q
q

≤ q(b−a)p

(p+q)p() p
(
− 1

q

) ∫ b

a
|v(x)|p+qdx .

Next, we observe the Caputo fractional derivatives (left-sided and then right-sided).

Theorem 4.26 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ≥ 0, n given by (2.70) and v ∈

ACn[a,b]. If n− > 1
q and 1

p + 1
q = 1, then following inequalities hold∫ b

a

∣∣CD
a+v(x)

∣∣1−q ′ (∣∣CD
a+v(x)

∣∣) ∣∣∣v(n)(x)
∣∣∣q dx

≤
qq(n−) p

q
p

(
n−− 1

q

) q
p

(b−a)q(n−)−1

·

⎛⎜⎜⎝ (b−a)n−− 1
q

(n−) p
1
p

(
n−− 1

q

) 1
p

(∫ b

a

∣∣∣v(n)(x)
∣∣∣q dx

) 1
q

⎞⎟⎟⎠

≤
qq(n−) p

q
p

(
n−− 1

q

) q
p

(b−a)q(n−)

·
∫ b

a


⎛⎜⎜⎝ (b−a)n−
∣∣∣v(n)(x)

∣∣∣
(n−) p

1
p

(
n−− 1

q

) 1
p

⎞⎟⎟⎠dx . (4.53)

If the function (x
1
q ) is concave, then reverse inequalities hold.
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Proof. For x ∈ [a,b] let

K(x,t) =
{ 1

(n−) (x− t)n−−1, a ≤ t ≤ x ;
0, x < t ≤ b .

u(x) = CD
a+v(x) =

1
(n−)

∫ x

a
(x− t)n−−1v(n)(t)dt , (4.54)

Q(x) =
(∫ x

a
(K(x,t))pdt

) 1
p

=
(x−a)n−− 1

q

(n−)
[
p
(
n−− 1

q

)] 1
p

.

For n− > 1
q the function Q is increasing on [a,b], thus

max
x∈[a,b]

Q(x) =
(b−a)n−− 1

q

(n−) p
1
p

(
n−− 1

q

) 1
p

= M .

Hence (
∫ x
a K(x,t)pdt)

1
p ≤ M, which with v = v(n), u as in (4.54) and Theorem 4.18 gives

us (4.53). �

Corollary 4.11 Let  ≥ 0, n given by (2.70) and v∈ ACn[a,b]. If n− > 1
q and 1

p + 1
q =

1, then following inequalities hold∫ b

a

∣∣CD
a+v(x)

∣∣p ∣∣∣v(n)(x)
∣∣∣q dx

≤ q(b−a)p
(
n−− 1

q

)
(p+q)p(n−) p

(
n−− 1

q

) (∫ b

a

∣∣∣v(n)(x)
∣∣∣q dx

) p+q
q

≤ q(b−a)p(n−)

(p+q)p(n−) p
(
n−− 1

q

) ∫ b

a

∣∣∣v(n)(x)
∣∣∣p+q

dx .

Theorem 4.27 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ≥ 0, n given by (2.70) and v ∈

ACn[a,b]. For 1
p + 1

q = 1 and even n such that n− > 1
q following inequalities hold∫ b

a

∣∣CD
b−v(x)

∣∣1−q  ′ (∣∣CD
b−v(x)

∣∣)∣∣∣v(n)(x)
∣∣∣q dx

≤
qq(n−) p

q
p

(
n−− 1

q

) q
p

(b−a)q(n−)−1

·

⎛⎜⎜⎝ (b−a)n−− 1
q

(n−) p
1
p

(
n−− 1

q

) 1
p

(∫ b

a

∣∣∣v(n)(x)
∣∣∣q dx

) 1
q

⎞⎟⎟⎠
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≤
qq(n−) p

q
p

(
n−− 1

q

) q
p

(b−a)q(n−)

·
∫ b

a


⎛⎜⎜⎝ (b−a)n−
∣∣∣v(n)(x)

∣∣∣
(n−) p

1
p

(
n−− 1

q

) 1
p

⎞⎟⎟⎠dx . (4.55)

If the function (x
1
q ) is concave, then reverse inequalities hold.

Proof. The proof is similar to the proof of Theorem 4.26. �

Corollary 4.12 Let  ≥ 0, n given by (2.70) and v ∈ ACn[a,b]. For 1
p + 1

q = 1 and even

n such that n− > 1
q following inequalities hold∫ b

a

∣∣CD
b−v(x)

∣∣p ∣∣∣v(n)(x)
∣∣∣q dx

≤ q(b−a)p
(
n−− 1

q

)
(p+q)p(n−) p

(
n−− 1

q

) (∫ b

a

∣∣∣v(n)(x)
∣∣∣q dx

) p+q
q

≤ q(b−a)p(n−)

(p+q)p(n−) p
(
n−− 1

q

) ∫ b

a

∣∣∣v(n)(x)
∣∣∣p+q

dx .

For the following inequality we use the composition identity for the left-sided Caputo
fractional derivatives given in Theorem 2.16.

Theorem 4.28 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let 1

p + 1
q = 1,  − > 1

q ,  ≥ 0, n and

m given by (2.70) for  and  respectively. Let v ∈ ACn[a,b] be such that v(i)(a) = 0 for

i = m, ...,n− 1. Let CD
a+v ∈ Lq[a,b] and CD

a+v ∈ L1[a,b]. Then following inequalities
hold ∫ b

a

∣∣∣CD
a+v(x)

∣∣∣1−q
 ′
(∣∣∣CD

a+v(x)
∣∣∣)∣∣CD

a+v(x)
∣∣q dx

≤
qq(− ) p

q
p

(
− − 1

q

) q
p

(b−a)q(− )−1

·

⎛⎜⎜⎝ (b−a)−−
1
q

(− ) p
1
p

(
− − 1

q

) 1
p

(∫ b

a

∣∣CD
a+v(x)

∣∣q dx

) 1
q

⎞⎟⎟⎠

≤
qq(− ) p

q
p

(
− − 1

q

) q
p

(b−a)q(− )
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·
∫ b

a


⎛⎜⎜⎝ (b−a)−
∣∣CD

a+v(x)
∣∣

(− ) p
1
p

(
− − 1

q

) 1
p

⎞⎟⎟⎠dx . (4.56)

If the function (x
1
q ) is concave, then reverse inequalities hold.

Proof. For x ∈ [a,b] let

K(x,t) =

{
1

(− )(x− t)−−1, a ≤ t ≤ x ;
0, x < t ≤ b .

u(x) = CD
a+v(x) =

1
(− )

∫ x

a
(x− t)−−1CD

a+v(t)dt , (4.57)

R(x) =
(∫ x

a
(K(x,t))pdt

) 1
p

=
(x−a)−−

1
q

(− )
[
p
(
− − 1

q

)] 1
p

.

For − > 1
q the function R is increasing on [a,b], thus

max
x∈[a,b]

R(x) =
(b−a)−−

1
q

(− ) p
1
p

(
− − 1

q

) 1
p

= M .

Hence (
∫ x
a K(x,t)pdt)

1
p ≤M, which with v = CD

a+v, u as in (4.57) and Theorem 4.18 gives
us (4.56). �

Corollary 4.13 Let 1
p + 1

q = 1, − > 1
q ,  ≥ 0, n and m given by (2.70) for  and 

respectively. Let v ∈ ACn[a,b] be such that v(i)(a) = 0 for i = m, ...,n− 1. Let CD
a+v ∈

Lp+q[a,b] and CD
a+v ∈ L1[a,b]. Then following inequalities hold

∫ b

a

∣∣∣CD
a+v(x)

∣∣∣p ∣∣CD
a+v(x)

∣∣q dx

≤ q(b−a)p
(
−− 1

q

)
(p+q)p(− ) p

(
− − 1

q

) (∫ b

a

∣∣CD
a+v(x)

∣∣q dx

) p+q
q

≤ q(b−a)p(− )

(p+q)p(− ) p
(
− − 1

q

) ∫ b

a

∣∣CD
a+v(x)

∣∣p+q
dx .

The composition identity for the right-sided Caputo fractional derivatives is given in The-
orem 2.17.
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Theorem 4.29 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let 1

p + 1
q = 1,  − > 1

q ,  ≥ 0, n and

m given by (2.70) for  and  respectively. Let v ∈ ACn[a,b] be such that v(i)(b) = 0 for

i = m, ...,n−1. Let CD
b−v∈ Lq[a,b] and CD

b−v∈ L1[a,b]. Then for even m and n following
inequalities hold∫ b

a

∣∣∣CD
b−v(x)

∣∣∣1−q
 ′
(∣∣∣CD

b−v(x)
∣∣∣)∣∣CD

b−v(x)
∣∣q dx

≤
qq(− ) p

q
p

(
− − 1

q

) 1
p

(b−a)q(− )−1

·

⎛⎜⎜⎝ (b−a)−−
1
q

(− ) p
1
p

(
− − 1

q

) 1
p

(∫ b

a

∣∣CD
b−v(x)

∣∣q dx

) 1
q

⎞⎟⎟⎠

≤
qq(− ) p

q
p

(
− − 1

q

) 1
p

(b−a)q(− )

·
∫ b

a


⎛⎜⎜⎝ (b−a)−
∣∣CD

b−v(x)
∣∣

(− ) p
1
p

(
− − 1

q

) 1
p

⎞⎟⎟⎠dx . (4.58)

If the function (x
1
q ) is concave, then reverse inequalities hold.

Proof. The proof is similar to the proof of Theorem 4.28. �

Corollary 4.14 Let 1
p + 1

q = 1,  − > 1
q ,  ≥ 0, n and m given by (2.70) for  and 

respectively. Let v ∈ ACn[a,b] be such that v(i)(b) = 0 for i = m, ...,n− 1. Let CD
b−v ∈

Lp+q[a,b] and CD
b−v ∈ L1[a,b]. Then for even m and n following inequalities hold∫ b

a

∣∣∣CD
b−v(x)

∣∣∣p ∣∣CD
b−v(x)

∣∣q dx

≤ q(b−a)p
(
−− 1

q

)
(p+q)p(− ) p

(
− − 1

q

) (∫ b

a

∣∣CD
b−v(x)

∣∣q dx

) p+q
q

≤ q(b−a)p(− )

(p+q)p(− ) p
(
− − 1

q

) ∫ b

a

∣∣CD
b−v(x)

∣∣p+q
dx .

Results given in Theorems and Corollaries 4.26–4.14 can be analogously done for two
other types of fractional derivatives that we observe: the Canavati type and the Riemann-
Liouville type. Here, as an example inequality for each type of fractional derivatives, we
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give inequality analogous to the (4.56) obtain with the composition identity, together with
a counterpart, a special case when (x) = xp+q, for the left-sided fractional derivatives.
Proofs are omitted.

Following two results include the left-sided Canavati fractional derivatives using the
composition identity given in Theorem 2.19.

Theorem 4.30 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let 1

p + 1
q = 1,  −  > 1

q ,  ≥ 0, n =
[]+1 and m = [ ]+1. Let v ∈C

a+[a,b] be such that v(i)(a) = 0 for i = m−1, ...,n−2.
Let C1D

a+v ∈ Lq[a,b]. Then following inequalities hold∫ b

a

∣∣∣C1D
a+v(x)

∣∣∣1−q
 ′
(∣∣∣C1D

a+v(x)
∣∣∣)∣∣C1D

a+v(x)
∣∣q dx

≤
qq(− ) p

q
p

(
− − 1

q

) 1
p

(b−a)q(− )−1

·

⎛⎜⎜⎝ (b−a)−−
1
q

(− ) p
1
p

(
− − 1

q

) 1
p

(∫ b

a

∣∣C1D
a+v(x)

∣∣q dx

) 1
q

⎞⎟⎟⎠

≤
qq(− ) p

q
p

(
− − 1

q

) 1
p

(b−a)q(− )

·
∫ b

a


⎛⎜⎜⎝ (b−a)−
∣∣C1D

a+v(x)
∣∣

(− ) p
1
p

(
− − 1

q

) 1
p

⎞⎟⎟⎠dx . (4.59)

If the function (x
1
q ) is concave, then reverse inequalities hold.

Corollary 4.15 Let 1
p + 1

q = 1,  −  > 1
q ,  ≥ 0, n = [] + 1 and m = [ ] + 1. Let

v ∈C
a+[a,b] be such that v(i)(a) = 0 for i = m−1, ...,n−2. Let C1D

a+v ∈ Lp+q[a,b]. Then
following inequalities hold∫ b

a

∣∣∣C1D
a+v(x)

∣∣∣p ∣∣C1D
a+v(x)

∣∣q dx

≤ q(b−a)p
(
−− 1

q

)
(p+q)p(− ) p

(
− − 1

q

) (∫ b

a

∣∣C1D
a+v(x)

∣∣q dx

) p+q
q

≤ q(b−a)p(− )

(p+q)p(− ) p
(
− − 1

q

) ∫ b

a

∣∣C1D
a+v(x)

∣∣p+q
dx .



116 4 THE MITRINOVIĆ-PEČARIĆ INEQUALITIES

We end with results for the left-sided Riemann-Liouville fractional derivatives using its
composition identity which is valid if one of conditions (i)− (vii) in Corollary 2.21 holds.

Theorem 4.31 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let 1

p + 1
q = 1, − > 1

q ,  ≥ 0. Suppose
that one of conditions (i)− (vii) in the Corollary 2.21 holds for {, ,v} and let D

a+v ∈
Lq[a,b]. Then following inequalities hold∫ b

a

∣∣∣D
a+v(x)

∣∣∣1−q
 ′
(∣∣∣D

a+v(x)
∣∣∣)∣∣D

a+v(x)
∣∣q dx

≤
qq(− ) p

q
p

(
− − 1

q

) 1
p

(b−a)q(− )−1

·

⎛⎜⎜⎝ (b−a)−−
1
q

(− ) p
1
p

(
− − 1

q

) 1
p

(∫ b

a

∣∣D
a+v(x)

∣∣q dx

) 1
q

⎞⎟⎟⎠

≤
qq(− ) p

q
p

(
− − 1

q

) 1
p

(b−a)q(− )

·
∫ b

a


⎛⎜⎜⎝ (b−a)−
∣∣D

a+v(x)
∣∣

(− ) p
1
p

(
− − 1

q

) 1
p

⎞⎟⎟⎠dx . (4.60)

If the function (x
1
q ) is concave, then reverse inequalities hold.

Corollary 4.16 Let 1
p + 1

q = 1,  − > 1
q ,  ≥ 0. Suppose that one of conditions (i)−

(vii) in the Corollary 2.21 holds for {, ,v} and let D
a+v ∈ Lp+q[a,b]. Then following

inequalities hold∫ b

a

∣∣∣D
a+v(x)

∣∣∣p ∣∣D
a+v(x)

∣∣q dx

≤ q(b−a)p
(
−− 1

q

)
(p+q)p(− ) p

(
− − 1

q

) (∫ b

a

∣∣D
a+v(x)

∣∣q dx

) p+q
q

≤ q(b−a)p(− )

(p+q)p(− ) p
(
− − 1

q

) ∫ b

a

∣∣D
a+v(x)

∣∣p+q
dx .

4.2.4 Opial-type equalities for fractional integrals and fractional
derivatives

Now we give some Opial-type equalities for fractional integrals and fractional derivatives
as an application of Theorem 4.20 and Theorem 4.21. First we observe the left-sided
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Riemann-Liouville fractional integrals.

Theorem 4.32 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ∈C2(I), where I ⊆ R+ is a closed

interval. Let 1
p + 1

q = 1,  > 1
q and v ∈ L1[a,b]. Then there exists  ∈ I such that the

following equality holds

 (Ja+v,v) =
 ′′( )− (q−1) ′( )

2q 2q−1

·

⎡⎢⎣ (b−a)q

q()
[
p(− 1

q)
] q

p

∫ b

a
|v(x)|2qdx−2

∫ b

a
|Ja+v(x)|q|v(x)|qdx

⎤⎥⎦ . (4.61)

Proof. We follow the same idea as in [43, Theorem 6] and [17, Theorem 3.1]. For x∈ [a,b]
let

K(x,t) =
{ 1

() (x− t)−1, a ≤ t ≤ x ;

0, x < t ≤ b ,

u(x) = Ja+v(x) =
1

()

∫ x

a
(x− t)−1v(t)dt , (4.62)

P(x) =
(∫ x

a
(K(x,t))p dt

) 1
p

=
(x−a)−

1
q

()
[
p
(
− 1

q

)] 1
p

.

It is easy to see that for  > 1
q the function P is increasing on [a,b], thus

max
x∈[a,b]

P(x) =
(b−a)−

1
q

() p
1
p

(
− 1

q

) 1
p

= M .

Hence (
∫ x
a K(x,t)pdt)

1
p ≤ M, which with the function u defined by (4.62) and Theorem

4.20 gives us (4.61). �

Theorem 4.33 Let 1,2 : [0,) −→ R be a differentiable function such that for q > 1

the function i(x
1
q ) is convex and i(0) = 0, i = 1,2. Further, let 1,2 ∈ C2(I), where

I ⊆ R+ is a closed interval. Let 1
p + 1

q = 1,  > 1
q and v ∈ L1[a,b]. Then there exists  ∈ I

such that the following equality holds

1 (J

a+v,v)

2 (J

a+v,v)

=
  ′′

1 ( )− (q−1) ′
1( )

  ′′
2 ( )− (q−1) ′

2( )
,

provided that denominators are not equal to zero.

Proof. It follows directly for the function u defined by (4.62) and Theorem 4.21. �

Using Theorems 4.19, 4.20 and 4.21, analogous results follows for the right-sided
Riemann-Liouville fractional integrals. The proofs are similar and omitted.
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Theorem 4.34 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ∈ C2(I), where I ⊆ R+ is a closed

interval. Let 1
p + 1

q = 1,  > 1
q and v ∈ L1[a,b]. Then there exists  ∈ I such that the

following equality holds

 (Jb−v,v) =
 ′′( )− (q−1) ′( )

2q 2q−1

·

⎡⎢⎣ (b−a)q

q()
[
p(− 1

q )
] q

p

∫ b

a
|v(x)|2qdx−2

∫ b

a
|Jb−v(x)|q|v(x)|qdx

⎤⎥⎦ . (4.63)

Theorem 4.35 Let 1,2 : [0,) −→ R be a differentiable function such that for q > 1

the function i(x
1
q ) is convex and i(0) = 0, i = 1,2. Further, let 1,2 ∈ C2(I), where

I ⊆ R+ is a closed interval. Let 1
p + 1

q = 1,  > 1
q and v ∈ L1[a,b]. Then there exists  ∈ I

such that the following equality holds
1(J


b−v,v)

2(J

b−v,v)

=
  ′′

1 ( )− (q−1) ′
1( )

  ′′
2 ( )− (q−1) ′

2( )
,

provided that denominators are not equal to zero.

Next, we observe the Caputo fractional derivatives. The proofs for the equalities in-
volving the right-sided Caputo fractional derivatives are omitted.

Theorem 4.36 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ∈ C2(I), where I ⊆ R+ is a closed

interval. Let  ≥ 0, n given by (2.70) and v ∈ ACn[a,b]. If n− > 1
q and 1

p + 1
q = 1, then

there exists  ∈ I such that the following equality holds

 (CD
a+v,v(n)) =

  ′′( )− (q−1) ′( )
2q 2q−1

·

⎡⎢⎣ (b−a)q(n−)

q(n−)
[
p
(
n− − 1

q

)] q
p

∫ b

a
|v(n)(x)|2qdx−2

∫ b

a
|CD

a+v(x)|q|v(n)(x)|qdx

⎤⎥⎦ .

(4.64)

Proof. For x ∈ [a,b] let

K(x,t) =
{ 1

(n−) (x− t)n−−1, a ≤ t ≤ x ;
0, x < t ≤ b .

u(x) = CD
a+v(x) =

1
(n−)

∫ x

a
(x− t)n−−1v(n)(t)dt , (4.65)

Q(x) =
(∫ x

a
(K(x,t))pdt

) 1
p

=
(x−a)n−− 1

q

(n−)
[
p
(
n−− 1

q

)] 1
p

.
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For n− > 1
q the function Q is increasing on [a,b], thus

max
x∈[a,b]

Q(x) =
(b−a)n−− 1

q

(n−) p
1
p

(
n−− 1

q

) 1
p

= M .

Hence (
∫ x
a K(x,t)pdt)

1
p ≤ M, which with v = v(n), u as in (4.65) and Theorem 4.20 gives

us (4.64). �

Theorem 4.37 Let 1,2 : [0,) −→ R be a differentiable function such that for q > 1

the function i(x
1
q ) is convex and i(0) = 0, i = 1,2. Further, let 1,2 ∈ C2(I), where

I ⊆ R+ is a closed interval. Let  ≥ 0, n given by (2.70) and v ∈ ACn[a,b]. If n− > 1
q

and 1
p + 1

q = 1, then there exists  ∈ I such that the following equality holds

1(
CD

a+v,v(n))
2(CD


a+v,v(n))

=
 ′′

1 ( )− (q−1) ′
1( )

 ′′
2 ( )− (q−1) ′

2( )
,

provided that denominators are not equal to zero.

Proof. It follows directly for the function u defined by (4.65) and Theorem 4.21. �

Theorem 4.38 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ∈C2(I), where I ⊆ R+ is a closed

interval. Let  ≥ 0, n given by (2.70) and v ∈ ACn[a,b]. If n− > 1
q and 1

p + 1
q = 1, then

there exists  ∈ I such that the following equality holds

 (CD
b−v,v(n)) =

  ′′( )− (q−1) ′( )
2q 2q−1

·

⎡⎢⎣ (b−a)q(n−)

q(n−)
[
p
(
n− − 1

q

)] q
p

∫ b

a
|v(n)(x)|2qdx−2

∫ b

a
|CD

b−v(x)|q|v(n)(x)|qdx

⎤⎥⎦ .

(4.66)

Theorem 4.39 Let 1,2 : [0,) −→ R be a differentiable function such that for q > 1

the function i(x
1
q ) is convex and i(0) = 0, i = 1,2. Further, let 1,2 ∈ C2(I), where

I ⊆ R+ is a closed interval. Let  ≥ 0, n given by (2.70) and v ∈ ACn[a,b]. If n− > 1
q

and 1
p + 1

q = 1, then there exists  ∈ I such that the following equality holds

1(
CD

b−v,v(n))
2(CD


b−v,v(n))

=
 ′′

1 ( )− (q−1) ′
1( )

 ′′
2 ( )− (q−1) ′

2( )
,

provided that denominators are not equal to zero.
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We continue with extensions that require the composition identity for the left-sided
Caputo fractional derivatives, given in Theorem 2.16.

Theorem 4.40 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ∈ C2(I), where I ⊆ R+ is a closed

interval. Let 1
p + 1

q = 1, − > 1
q ,  ≥ 0, n and m given by (2.70) for  and  respectively.

Let v ∈ ACn[a,b] be such that v(i)(a) = 0 for i = m, ...,n− 1. Let CD
a+v ∈ Lq[a,b] and

CD
a+v ∈ L1[a,b]. Then there exists  ∈ I such that the following equality holds

 (CD
a+v,CD

a+v) =
 ′′( )− (q−1) ′( )

2q 2q−1

·

⎡⎢⎣ (b−a)q(− )

q(− )
[
p
(
− − 1

q

)] q
p

∫ b

a
|CD

a+v(x)|2qdx−2
∫ b

a
|CD

a+v(x)|q|CD
a+v(x)|qdx

⎤⎥⎦ .

(4.67)

Proof. For x ∈ [a,b] let

K(x,t) =

{
1

(− ) (x− t)−−1, a ≤ t ≤ x ;

0, x < t ≤ b .

u(x) = CD
a+v(x) =

1
(− )

∫ x

a
(x− t)−−1CD

a+v(t)dt , (4.68)

R(x) =
(∫ x

a
(K(x,t))pdt

) 1
p

=
(x−a)−−

1
q

(− )
[
p
(
− − 1

q

)] 1
p

.

For − > 1
q the function R is increasing on [a,b], thus

max
x∈[a,b]

R(x) =
(b−a)−−

1
q

(− ) p
1
p

(
− − 1

q

) 1
p

= M .

Hence (
∫ x
a K(x, t)pdt)

1
p ≤M, which with v = CD

a+v, u as in (4.68) and Theorem 4.20 gives
us (4.67). �

Theorem 4.41 Let 1,2 : [0,) −→ R be a differentiable function such that for q > 1

the function i(x
1
q ) is convex and i(0) = 0, i = 1,2. Further, let 1,2 ∈ C2(I), where

I ⊆ R+ is a closed interval. Let 1
p + 1

q = 1,  − > 1
q ,  ≥ 0, n and m given by (2.70)

for  and  respectively. Let v ∈ ACn[a,b] be such that v(i)(a) = 0 for i = m, ...,n− 1.

Let CD
a+v ∈ Lq[a,b] and CD

a+v ∈ L1[a,b]. Then there exists  ∈ I such that the following
equality holds

1(
CD

a+v,CD
a+v)

2(CD

a+v,CD

a+v)
=

 ′′
1 ( )− (q−1) ′

1( )
 ′′

2 ( )− (q−1) ′
2( )

,

provided that denominators are not equal to zero.
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Proof. It follows directly for v = CD
a+v, u defined by (4.68) and Theorem 4.21. �

The composition identity for the right-sided Caputo fractional derivatives is given in
Theorem 2.17.

Theorem 4.42 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ∈C2(I), where I ⊆ R+ is a closed

interval. Let 1
p + 1

q = 1, − > 1
q ,  ≥ 0, n and m given by (2.70) for and  respectively.

Let v ∈ ACn[a,b] be such that v(i)(b) = 0 for i = m, ...,n− 1. Let CD
b−v ∈ Lq[a,b] and

CD
b−v ∈ L1[a,b]. Then there exists  ∈ I such that the following equality holds

 (CD
b−v,CD

b−v) =
 ′′( )− (q−1) ′( )

2q 2q−1

·

⎡⎢⎣ (b−a)q(− )

q(− )
[
p
(
− − 1

q

)] q
p

∫ b

a
|CD

b−v(x)|2qdx−2
∫ b

a
|CD

b−v(x)|q|CD
b−v(x)|qdx

⎤⎥⎦ .

(4.69)

Theorem 4.43 Let 1,2 : [0,) −→ R be a differentiable function such that for q > 1

the function i(x
1
q ) is convex and i(0) = 0, i = 1,2. Further, let 1,2 ∈ C2(I), where

I ⊆ R+ is a closed interval. Let 1
p + 1

q = 1,  − > 1
q ,  ≥ 0, n and m given by (2.70)

for  and  respectively. Let v ∈ ACn[a,b] be such that v(i)(b) = 0 for i = m, ...,n− 1.

Let CD
b−v ∈ Lq[a,b] and CD

b−v ∈ L1[a,b]. Then there exists  ∈ I such that the following
equality holds

1(
CD

b−v,CD
b−v)

2(CD

b−v,CD

b−v)
=

 ′′
1 ( )− (q−1) ′

1( )
 ′′

2 ( )− (q−1) ′
2( )

,

provided that denominators are not equal to zero.

Results given for the Caputo fractional derivatives can be analogously done for two
other types of fractional derivatives that we observe: the Canavati type and the Riemann-
Liouville type. Here, as an example equality for each type of fractional derivatives, we
give equality analogous to the (4.67) obtain with the composition identity, for the left-
sided fractional derivatives. Proofs are omitted.

Following result include the left-sided Canavati fractional derivatives using the com-
position identity given in Theorem 2.19.

Theorem 4.44 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ∈C2(I), where I ⊆ R+ is a closed

interval. Let 1
p + 1

q = 1, − > 1
q ,  ≥ 0, n = []+1 and m = [ ]+1. Let v ∈C

+[a,b]

be such that v(i)(a) = 0 for i = m− 1, ...,n− 2. Let CD
a+v ∈ Lq[a,b]. Then there exists

 ∈ I such that the following equality holds

 (C1D
a+v,C1D

a+v) =
 ′′( )− (q−1) ′( )

2q 2q−1
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·

⎡⎢⎣ (b−a)q(− )

q(− )
[
p
(
− − 1

q

)] q
p

∫ b

a
|C1D

a+v(x)|2qdx−2
∫ b

a
|C1D

a+v(x)|q|C1D
a+v(x)|qdx

⎤⎥⎦ .

We end with the result for the left-sided Riemann-Liouville fractional derivatives using
its composition identity which is valid if one of conditions (i)− (vii) in Corollary 2.21
holds.

Theorem 4.45 Let  : [0,) −→ R be a differentiable function such that for q > 1 the

function (x
1
q ) is convex and (0) = 0. Further, let  ∈ C2(I), where I ⊆ R+ is a closed

interval. Let 1
p + 1

q = 1,  − > 1
q ,  ≥ 0. Suppose that one of conditions (i)− (vii) in

Corollary 2.21 holds for {, ,v} and let CD
a+v ∈ Lq[a,b]. Then there exists  ∈ I such

that the following equality holds

 (D
a+v,D

a+v) =
 ′′( )− (q−1) ′( )

2q 2q−1

·

⎡⎢⎣ (b−a)q(− )

q(− )
[
p
(
− − 1

q

)] q
p

∫ b

a
|D

a+v(x)|2qdx−2
∫ b

a
|D

a+v(x)|q|D
a+v(x)|qdx

⎤⎥⎦ .



Chapter5
Generalizations of Opial-type
inequalities for fractional
derivatives

The monograph by Agarwal and Pang [5] gives an overview of Opial-type differential
inequalities (including ordinary derivatives) and its applications. Here we present Opial-
type inequalities involving the Riemann-Liouville, the Caputo and the Canavati fractional
derivatives and obtain theirs generalizations, extensions, improvements and refinements.
We observe inequalities with two fractional derivatives of a function on the left side of an
inequality, and emphasize special cases when order of derivatives belongs to N0, reducing
to classical Opial’s, Beesack’s, Wirtinger’s or Fink’s inequality for ordinary derivatives,
given in Section 1.4. Known generalizations and extensions of Opial-type inequalities in-
volving fractional derivatives ([12, 14, 15]) we give under new conditions using results
from Section 2.6, and also we give some new fractional differentiation inequalities. Fur-
ther, we investigate the possibility of obtaining the best possible constant and compare
results obtained by different methods. Each inequality is given for the Riemann-Liouville,
the Caputo and the Canavati fractional derivatives, the left-sided and the right-sided. This
chapter is based on our results: Andrić, Pečarić and Perić [16, 23, 26].

123
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5.1 Inequalities with fractional derivatives of order
 and 

Let D be a fractional derivative (the Riemann-Liouville, the Caputo or the Canavati type).
The first inequality that we observe has a form

∫ b

a
|D f (t)| |D f (t)|dt ≤ K

(∫ b

a
|D f (t)|q dt

) 2
q

,

where  >  ≥ 0, K > 0 is a constant and q ∈ R.
This inequality for the left-sided Riemann-Liouville fractional derivatives is given in

[14], and for the Caputo and the Canavati fractional derivatives in [12]. In the following
theorems we use results from Chapter 2.6, and give new conditions under which inequal-
ities hold. Some of the improved results for the Caputo fractional derivatives, Andrić-
Pečarić-Perić give in [26].

THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

Depending on parameters p and q, we differ next inequalities, first including the left-
sided Riemann-Liouville fractional derivatives, and then the right-sided. Thereby we use
composition identities for the Riemann-Liouville fractional derivatives given in Theorem
2.13 and Theorem 2.14. The composition identity for the left-sided fractional derivatives
is valid if one of conditions (i)− (vii) in Corollary 2.21 holds. For the right-sided we use
Corollary 2.22.

Theorem 5.1 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1
q and D

a+ f ∈ Lq[a,b].
Suppose that one of conditions (i)− (vii) in Corollary 2.21 holds. Then for a.e. x ∈ [a,b]
holds ∫ x

a
|D

a+ f (t)| |D
a+ f (t)|dt ≤ K1 (x−a)−−1+ 2

p

(∫ x

a

∣∣D
a+ f (t)

∣∣q dt

) 2
q

, (5.1)

where

K1 =
[
(− )(p(− −1)+1)

1
p (p(− −1)+2)

1
p 2

1
q

]−1
. (5.2)

Inequality (5.1) is sharp for  =  + 1, where equality is attained for a function f such
that D

a+ f (t) = 1, t ∈ [a,x].

Proof. Using Theorem 2.13, the triangle inequality and Hölder’s inequality we have

|D
a+ f (t)| ≤ 1

(− )

∫ t

a
(t− )−−1

∣∣D
a+ f ()

∣∣d (5.3)

≤ 1
(− )

(∫ t

a
(t− )p(−−1)d

) 1
p
(∫ t

a
|D

a+ f ()|q d
) 1

q

(5.4)
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=
1

(− )
(t−a)−−1+ 1

p

[p(− −1)+1]
1
p

(∫ t

a
|D

a+ f ()|q d
) 1

q

.

Let z(t) =
∫ t

a
|D

a+ f ()|q d . Then z′(t) = |D
a+ f (t)|q, that is |D

a+ f (t)| = (z′(t))
1
q , hence

|D
a+ f (t)| |D

a+ f (t)| ≤ 1
( − )

(t −a)−−1+ 1
p

[p(− −1)+1]
1
p

[
z(t)z′(t)

] 1
q . (5.5)

Again we use Hölder’s inequality to obtain∫ x

a
(t −a)−−1+ 1

p
[
z(t)z′(t)

] 1
q dt

≤
(∫ x

a
(t −a)p(−−1)+1dt

) 1
p
(∫ x

a
z(t)z′(t)dt

) 1
q

=
(x−a)−−1+ 2

p

[p(− −1)+2]
1
p

[
1
2

(∫ x

a
|D

a+ f (t)|q dt

)2
] 1

q

. (5.6)

From (5.5) and (5.6) follows∫ x

a
|D

a+ f (t)| |D
a+ f (t)|dt

≤ 1

(− ) [p(− −1)+1]
1
p

∫ x

a
(t−a)−−1+ 1

p
[
z(t)z′(t)

] 1
q dt

≤ 1

(− ) [p(− −1)+1]
1
p

(x−a)−−1+ 2
p

2
1
q [p(− −1)+2]

1
p

(∫ x

a
|D

a+ f (t)|q dt

) 2
q

,

which gives inequality (5.1).
Using the equality condition in Hölder’s inequality we have equality in (5.4) if and

only if |D
a+ f ()|q = K(t−)p(−−1) for some constant K ≥ 0 and every  ∈ [a,t]. Since

D
a+ f () depends only on  , this implies that −−1 = 0. Due to homogeneous property

of inequality (5.1) we can take that D
a+ f () = 1, which, by Theorem 2.13, gives us

D
a+ f (t) =

1
(− )

∫ t

a
(t− )−−1 D

a+ f ()d =
1

(1)

∫ t

a
d = t−a ,

that is∫ x

a
|D

a+ f (t)| |D
a+ f (t)|dt =

∫ x

a
|D

a+ f (t)|dt =
∫ x

a
(t −a)dt =

1
2
(x−a)2 . (5.7)

On the other hand K1 (x−a)−−1+ 2
p = 1

2 (x−a)
2
p , and we have

K1 (x−a)−−1+ 2
p

(∫ x

a

∣∣D
a+ f (t)

∣∣q dt

) 2
q
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=
1
2
(x−a)

2
p

(∫ x

a
dt

) 2
q

=
1
2
(x−a)

2
p (x−a)

2
q =

1
2
(x−a)2 . (5.8)

According to (5.7) and (5.8) we conclude that equality in (5.1) holds for a function f such
that D

a+ f (t) = 1 for every t ∈ [a,x]. �

Remark 5.1 Let  = 1,  = 0, q = 2 and x = b. Then K1 = 1
2 and inequality (5.1)

becomes Beesack’s inequality (1.18) on interval [a,b]∫ b

a

∣∣ f (t) f ′(t)
∣∣dt ≤ b−a

2

∫ b

a

[
f ′(t)

]2
dt . (5.9)

Boundary condition D−1
a+ f (a) = f (a) = 0 follows from conditions in Theorem 2.13.

The following result deals with the extreme case of the preceding theorem when p = 1
and q = .

Proposition 5.1 Let  >  ≥ 0 and D
a+ f ∈ L[a,b]. Suppose that one of conditions

(i)− (vii) in Corollary 2.21 holds. Then for a.e. x ∈ [a,b] holds∫ x

a
|D

a+ f (t)| |D
a+ f (t)|dt ≤ (x−a)−+1

(− +2)

∥∥D
a+ f

∥∥2
 . (5.10)

Proof. Using Theorem 2.13, the triangle inequality and Hölder’s inequality we have

|D
a+ f (t)| ≤ 1

(− )

∫ t

a
(t− )−−1

∣∣D
a+ f ()

∣∣ d

≤ 1
(− )

(∫ t

a
(t− )−−1d

)
‖D

a+ f‖

=
(t −a)−

(− +1)

∥∥D
a+ f

∥∥
 .

Hence, ∫ x

a
|D

a+ f (t)| |D
a+ f (t)|dt

≤ 1
(− +1)

(∫ x

a
(t−a)− |D

a+ f ()|d
)
‖D

a+ f‖

≤ 1
(− +1)

(∫ x

a
(t−a)− d

)
‖D

a+ f‖2


=
1

(− +2)
(x−a)−+1∥∥D

a+ f
∥∥2
 .

�

Now we present a counterpart of Theorem 5.1, a case when p ∈ (0,1) and q < 0. Since
q < 0, a sufficient condition is  >  , but we need 1/D

a+ f ∈ Lq[a,b]. The proof is similar
to the proof of Theorem 5.1, apart that we have equality in (5.3), since D

a+ f has a fixed
sign on [a,b], and then we use reverse Hölder’s inequality.
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Theorem 5.2 Let p∈ (0,1), q < 0 with 1
p + 1

q = 1. Let  >  ≥ 0 and let D
a+ f ∈ Lq[a,b]

be of fixed sign on [a,b], with 1/D
a+ f ∈ Lq[a,b]. Suppose that one of conditions (i)− (vii)

in Corollary 2.21 holds. Then reverse inequality in (5.1) holds.

Following inequalities include the right-sided Riemann-Liouville fractional derivatives.

Theorem 5.3 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1
q and D

b− f ∈ Lq[a,b].
Suppose that one of conditions (i)− (vii) in Corollary 2.22 holds. Then for a.e. x ∈ [a,b]
holds∫ b

x
|D

b− f (t)| |D
b− f (t)|dt ≤ K1 (b− x)−−1+ 2

p

(∫ b

x

∣∣D
b− f (t)

∣∣q dt

) 2
q

, (5.11)

where K1 is given by (5.2).
Inequality (5.11) is sharp for  =  + 1, where equality is attained for a function f

such that D
b− f (t) = 1, t ∈ [x,b].

We continue with cases for p = 1 and p ∈ (0,1).

Proposition 5.2 Let  >  ≥ 0 and D
b− f ∈ L[a,b]. Suppose that one of conditions

(i)− (vii) in Corollary 2.22 holds. Then for a.e. x ∈ [a,b] holds∫ b

x
|D

b− f (t)| |D
b− f (t)|dt ≤ (b− x)−+1

(− +2)

∥∥D
b− f

∥∥2
 . (5.12)

Theorem 5.4 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  >  ≥ 0 and let D
b− f ∈ Lq[a,b]

be of fixed sign on [a,b], with 1/D
b− f ∈ Lq[a,b]. Suppose that one of conditions (i)− (vii)

in Corollary 2.22 holds. Then reverse inequality in (5.11) holds.

Next corollary is a simple consequence of inequalities (5.1), (5.11) and elementary
inequality (x+ y) ≥ x + y which holds for  ≥ 1.

Corollary 5.1 Suppose that assumptions of Theorem 5.1 and Theorem 5.3 hold. If 1 <
q ≤ 2, then∫ a+b

2

a
|D

a+ f (t)| |D
a+ f (t)|dt +

∫ b

a+b
2

|D
b− f (t)| |D

b− f (t)|dt

≤ K1

(
b−a

2

)−−1+ 2
p
(∫ a+b

2

a

∣∣D
a+ f (t)

∣∣q dt +
∫ b

a+b
2

∣∣D
b− f (t)

∣∣q dt

) 2
q

.

(5.13)

Inequality (5.13) is sharp for  =  +1 and q = 2.

Remark 5.2 Let  = 1,  = 0 and q = 2. Then K1 = 1
2 and inequality (5.13) implies

classical Opial’s inequality (1.17) on interval [a,b]∫ b

a

∣∣ f (x) f ′(x)
∣∣dx ≤ b−a

4

∫ b

a

[
f ′(x)

]2
dx . (5.14)
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Boundary conditions D−1
a+ f (a) = f (a) = 0 and D−1

b− f (b) = f (b) = 0 follow from condi-
tions in Theorem 2.13 and Theorem 2.14.

THE CAPUTO FRACTIONAL DERIVATIVES

The compositions identities for the Caputo fractional derivatives are given in Theorem
2.16 and Theorem 2.17. Inequalities in Theorem 5.5, Theorem 5.7 and Corollary 5.2 are
given by Andrić-Pečarić-Perić in [26].

Theorem 5.5 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1
q and n, m given by (2.70).

Let f ∈ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n−1 and let CD
a+ f ∈ Lq[a,b]. Then

for a.e. x ∈ [a,b] holds

∫ x

a
|CD

a+ f (t)| |CD
a+ f (t)|dt ≤ K1 (x−a)−−1+ 2

p

(∫ x

a

∣∣CD
a+ f (t)

∣∣q dt

) 2
q

, (5.15)

where K1 is given by (5.2).
Inequality (5.15) is sharp for  =  + 1, where equality is attained for a function f

such that CD
a+ f (t) = 1, t ∈ [a,b].

Remark 5.3 Let  = 1,  = 0, q = 2 and x = b. Then K1 = 1
2 and inequality (5.15)

implies Beesack’s inequality (1.18), that is (5.9). We have n = 1, m = 0 and boundary
condition f (a) = 0 follows from conditions in Theorem 2.16.

Proposition 5.3 Let  >  ≥ 0 and n, m given by (2.70). Let f ∈ ACn[a,b] be such that
f (i)(a) = 0 for i = m, . . . ,n−1 and let CD

a+ f ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
|CD

a+ f (t)| |CD
a+ f (t)|dt ≤ (x−a)−+1

(− +2)

∥∥CD
a+ f

∥∥2
 . (5.16)

Theorem 5.6 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  >  ≥ 0 and n, m given by

(2.70). Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1 and let CD
a+ f ∈

Lq[a,b] be of fixed sign on [a,b], with 1/CD
a+ f ∈ Lq[a,b]. Then reverse inequality in

(5.15) holds.

Following inequalities include the right-sided Caputo fractional derivatives.

Theorem 5.7 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1
q and n, m given by (2.70).

Let f ∈ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n−1 and let CD
b− f ∈ Lq[a,b]. Then

for a.e. x ∈ [a,b] holds

∫ b

x
|CD

b− f (t)| |CD
b− f (t)|dt ≤ K1 (b− x)−−1+ 2

p

(∫ b

x

∣∣CD
b− f (t)

∣∣q dt

) 2
q

, (5.17)

where K1 is given by (5.2).
Inequality (5.17) is sharp for  =  + 1, where equality is attained for a function f

such that CD
b− f (t) = 1, t ∈ [a,b].
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Proposition 5.4 Let  >  ≥ 0 and n,m given by (2.70). Let f ∈ ACn[a,b] be such that
f (i)(b) = 0 for i = m, . . . ,n−1 and let CD

b− f ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
|CD

b− f (t)| |CD
b− f (t)|dt ≤ (b− x)−+1

(− +2)

∥∥CD
b− f

∥∥2
 . (5.18)

Theorem 5.8 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  >  ≥ 0 and n, m given by

(2.70). Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1 and let CD
b− f ∈

Lq[a,b] be of fixed sign on [a,b], with 1/CD
b− f ∈ Lq[a,b]. Then reverse inequality in

(5.17) holds.

Corollary 5.2 Suppose that assumptions of Theorem 5.5 and Theorem 5.7 holds. If 1 <
q ≤ 2, then

∫ a+b
2

a
|CD

a+ f (t)| |CD
a+ f (t)|dt +

∫ b

a+b
2

|CD
b− f (t)| |CD

b− f (t)|dt

≤ K1

(
b−a

2

)−−1+ 2
p
(∫ a+b

2

a

∣∣CD
a+ f (t)

∣∣q dt +
∫ b

a+b
2

∣∣CD
b− f (t)

∣∣q dt

) 2
q

.

(5.19)

Inequality (5.19) is sharp for  =  +1 and q = 2.

Remark 5.4 Let  = 1,  = 0 and q = 2. Then K1 = 1
2 and inequality (5.19) implies

classical Opial’s inequality (1.17), that is (5.14). We have n = 1, m = 0 and boundary
conditions f (a) = f (b) = 0 follow from conditions in Theorem 2.16 and Theorem 2.17.

THE CANAVATI FRACTIONAL DERIVATIVES

Composition identities for the Canavati fractional derivatives are given in Theorem
2.19 and Theorem 2.20. First we present inequalities involving the left-sided Canavati
fractional derivatives, and then the right-sided.

Theorem 5.9 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1
q , n = [] + 1 and

m = [ ] + 1. Let f ∈ C
a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
|C1D

a+ f (t)| |C1D
a+ f (t)|dt ≤ K1 (x−a)−−1+ 2

p

(∫ x

a

∣∣C1D
a+ f (t)

∣∣q dt

) 2
q

, (5.20)

where K1 is given by (5.2).
Inequality (5.20) is sharp for  =  + 1, where equality is attained for a function f

such that C1D
a+ f (t) = 1, t ∈ [a,b].
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Remark 5.5 Let  = 1,  = 0, q = 2 and x = b. Then K1 = 1
2 and inequality (5.20)

implies Beesack’s inequality (1.18), that is (5.9). Boundary condition f (a) = 0 follows
from conditions in Theorem 2.19 since n = 2 and m = 1.

Proposition 5.5 Let  >  ≥ 0, n = []+1 and m = [ ]+1. Let f ∈C
a+[a,b] be such

that f (i)(a) = 0 for i = m−1, . . . ,n−2 and let C1D
a+ f ∈ L[a,b]. Then for a.e. x ∈ [a,b]

holds ∫ x

a
|C1D

a+ f (t)| |C1D
a+ f (t)|dt ≤ (x−a)−+1

(− +2)

∥∥C1D
a+ f

∥∥2
 . (5.21)

Theorem 5.10 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  >  ≥ 0, n = []+1 and m =
[ ]+1. Let f ∈C

a+[a,b] be such that f (i)(a) = 0 for i = m−1, . . . ,n−2 and let C1D
a+ f ∈

Lq[a,b] be of fixed sign on [a,b], with 1/C1D
a+ f ∈ Lq[a,b]. Then reverse inequality in

(5.20) holds.

Following inequalities include the right-sided Canavati fractional derivatives.

Theorem 5.11 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1
q , n = [] + 1 and

m = [ ] + 1. Let f ∈ C
b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
|C1D

b− f (t)| |C1D
b− f (t)|dt ≤ K1 (b− x)−−1+ 2

p

(∫ b

x

∣∣C1D
b− f (t)

∣∣q dt

) 2
q

, (5.22)

where K1 is given by (5.2).
Inequality (5.22) is sharp for  =  + 1, where equality is attained for a function f

such that C1D
b− f (t) = 1, t ∈ [a,b].

Proposition 5.6 Let  >  ≥ 0, n = []+1 and m = [ ]+1. Let f ∈C
b−[a,b] be such

that f (i)(b) = 0 for i = m−1, . . . ,n−2 and let C1D
b− f ∈ L[a,b]. Then for a.e. x ∈ [a,b]

holds ∫ b

x
|C1D

b− f (t)| |C1D
b− f (t)|dt ≤ (b− x)−+1

(− +2)

∥∥C1D
b− f

∥∥2
 . (5.23)

Theorem 5.12 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  >  ≥ 0, n = []+1 and m =
[ ]+1. Let f ∈C

b−[a,b] be such that f (i)(b) = 0 for i = m−1, . . . ,n−2 and let C1D
b− f ∈

Lq[a,b] be of fixed sign on [a,b], with 1/C1D
b− f ∈ Lq[a,b]. Then reverse inequality in

(5.22) holds.

Corollary 5.3 Suppose that assumptions of Theorem 5.9 and Theorem 5.11 hold. If t
1 < q ≤ 2, then

∫ a+b
2

a
|C1D

a+ f (t)| |C1D
a+ f (t)|dt +

∫ b

a+b
2

|C1D
b− f (t)| |C1D

b− f (t)|dt
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≤ K1

(
b−a

2

)−−1+ 2
p
(∫ a+b

2

a

∣∣C1D
a+ f (t)

∣∣q dt +
∫ b

a+b
2

∣∣C1D
b− f (t)

∣∣q dt

) 2
q

.

(5.24)

Inequality (5.24) is sharp for  =  +1 and q = 2.

Remark 5.6 Let  = 1,  = 0 and q = 2. Then K1 = 1
2 and inequality (5.24) implies

classical Opial’s inequality (1.17), that is (5.14). Boundary conditions f (a) = f (b) = 0
follow from conditions of Theorem 2.19 and Theorem 2.20 since n = 2 and m = 1.

5.2 Inequalities with fractional derivatives of order
,  and  +1

Next we observe an inequality with a form

∫ b

a
|D f (t)| |D+1 f (t)|dt ≤ K

(∫ b

a
|D f (t)|q dt

) 2
q

,

where  >  +1,  ≥ 0, K > 0 is a constant and q ∈ R.
This inequality for the left-sided Riemann-Liouville fractional derivatives is given in

[14], and for the Caputo and the Canavati fractional derivatives in [12]. Now we give
them under improved conditions. Some of the improved results for the Caputo fractional
derivatives, Andrić-Pečarić-Perić give in [26].

THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

Theorem 5.13 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  +1 and D
a+ f ∈ Lq[a,b].

Suppose that one of conditions (i)− (vii) in Corollary 2.21 holds. Then for a.e. x ∈ [a,b]
holds

∫ x

a
|D

a+ f (t)| |D+1
a+ f (t)|dt ≤ K2 (x−a)2(−− 1

q )
(∫ x

a

∣∣D
a+ f (t)

∣∣q dt

) 2
q

, (5.25)

where

K2 =
[
22(− )(p(− −1)+1)

2
p

]−1
. (5.26)

Inequality (5.25) is sharp and equality in (5.25) is attained for a function f such that

D
a+ f (t) = (x− t)

p(−−1)
q , t ∈ [a,x].
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Proof. Using Theorem 2.13 and triangle inequality we have

|D
a+ f (t)| ≤ 1

(− )

∫ t

a
(t− )−−1|D

a+ f ()|d := U(t) .

Since  >  +1, then by (i) in Theorem 2.5 follows

|D+1
a+ f (t)| ≤ 1

(− −1)

∫ t

a
(t − )−−2|D

a+ f ()|d

= J−−1
a+ |D

a+ f (t)| = J−1
a+J−a+ |D

a+ f (t)|
= D1

a+J−a+ |D
a+ f (t)| = U ′(t) .

Now we use Hölder’s inequality∫ x

a
|D

a+ f (t)| |D+1
a+ f )(t)|dt

≤
∫ x

a
U(t)U ′(t)dt =

1
2

[
U2(x)−U2(a)

]
=

1
2

U2(x)

=
1

2 [(− )]2

(∫ x

a
(x− t)−−1 |D

a+ f (t)|dt

)2

≤ 1

2 [(− )]2

(∫ x

a
(x− t)p(−−1)dt

) 2
p
(∫ x

a
|D

a+ f (t)|q dt

) 2
q

(5.27)

=
1

2 [(− )]2
(x−a)

2p(−−1)+2
p

[p(− −1)+1]
2
p

(∫ x

a
|D

a+ f (t)|q dt

) 2
q

,

which gives inequality (5.25).
Using the equality condition in Hölder’s inequality, we have equality in (5.27) if and

only if |D
a+ f (t)|q = K(x− t)p(−−1) for some constant K ≥ 0 and every t ∈ [a,x]. �

We continue with cases for p = 1 and p ∈ (0,1).

Proposition 5.7 Let  ≥ 0,  >  +1 and D
a+ f ∈ L[a,b]. Suppose that one of condi-

tions (i)− (vii) in Corollary 2.21 holds. Then for a.e. x ∈ [a,b] holds∫ x

a
|D

a+ f (t)| |D+1
a+ f (t)|dt ≤ (x−a)2(− )

22(− +1)

∥∥D
a+ f

∥∥2
 . (5.28)

Proof. Using Theorem 2.13, the triangle inequality and Hölder’s inequality we have

|D
a+ f (t)| ≤ 1

(− )

∫ t

a
(t− )−−1|D

a+ f ()|d

≤ 1
(− )

(∫ t

a
(t− )−−1d

)
‖D

a+ f‖

=
(t −a)−

(− +1)
‖D

a+ f‖ .
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Also,

|D+1
a+ f (t)| ≤ (t−a)−−1

(− )
‖D

a+ f‖ .

Hence, ∫ x

a
|D

a+ f (t)| |D+1
a+ f (t)|dt

≤ 1
( − )(− +1)

(∫ x

a
(t −a)2(− )−1dt

)
‖D

a+ f‖2


=
(x−a)2(− )

( − )(− +1)2(− )
‖D

a+ f‖2
 .

�

Theorem 5.14 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  ≥ 0,  >  + 1 and let
D

a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/D
a+ f ∈ Lq[a,b]. Suppose that one of

conditions (i)− (vii) in Corollary 2.21 holds. Then reverse inequality in (5.25) holds.

Following inequalities include the right-sided Riemann-Liouville fractional derivatives.

Theorem 5.15 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  +1 and D
b− f ∈ Lq[a,b].

Suppose that one of conditions (i)− (vii) in Corollary 2.22 holds. Then for a.e. x ∈ [a,b]
holds∫ b

x
|D

b− f (t)| |D+1
b− f (t)|dt ≤ K2 (b− x)2(−− 1

q )
(∫ b

x

∣∣D
b− f (t)

∣∣q dt

) 2
q

, (5.29)

where K2 is given by (5.26).
Inequality (5.29) is sharp and equality in (5.29) is attained for a function f such that

D
b− f (t) = (t− x)

p(−−1)
q , t ∈ [x,b].

Next we observe cases for p = 1 and p ∈ (0,1).

Proposition 5.8 Let  ≥ 0,  >  +1 and D
b− f ∈ L[a,b]. Suppose that one of condi-

tions (i)− (vii) in Corollary 2.22 holds. Then for a.e. x ∈ [a,b] holds∫ b

x
|D

b− f (t)| |D+1
b− f (t)|dt ≤ (b− x)2(− )

22(− +1)

∥∥D
b− f

∥∥2
 . (5.30)

Theorem 5.16 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  ≥ 0,  >  + 1 and let
D

b− f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/D
b− f ∈ Lq[a,b]. Suppose that one of

conditions (i)− (vii) in Corollary 2.22 holds. Then reverse inequality in (5.29) holds.

THE CAPUTO FRACTIONAL DERIVATIVES

Inequalities in Theorem 5.17 and Theorem 5.19 are given by Andrić-Pečarić-Perić in
[26].
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Theorem 5.17 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1 and n, m given by

(2.70). Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1 and let CD
a+ f ∈

Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
|CD

a+ f (t)| |CD+1
a+ f (t)|dt ≤ K2 (x−a)2(−− 1

q )
(∫ x

a

∣∣CD
a+ f (t)

∣∣q dt

) 2
q

, (5.31)

where K2 is given by (5.26).
Inequality (5.31) is sharp and equality in (5.31) is attained for a function f such that

CD
a+ f (t) = (x− t)

p(−−1)
q , t ∈ [a,x].

Proposition 5.9 Let  ≥ 0,  >  + 1 and n, m given by (2.70). Let f ∈ ACn[a,b] be
such that f (i)(a) = 0 for i = m, . . . ,n−1 and let CD

a+ f ∈ L[a,b]. Then for a.e. x ∈ [a,b]
holds ∫ x

a
|CD

a+ f (t)| |CD+1
a+ f (t)|dt ≤ (x−a)2(− )

22(− +1)

∥∥CD
a+ f

∥∥2
 . (5.32)

Theorem 5.18 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  ≥ 0,  >  + 1 and n, m

given by (2.70). Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1 and let
CD

a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/CD
a+ f ∈ Lq[a,b]. Then reverse inequality

in (5.31) holds.

Following inequalities include the right-sided Caputo fractional derivatives.

Theorem 5.19 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1 and n, m given by

(2.70). Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1 and let CD
b− f ∈

Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
|CD

b− f (t)| |CD+1
b− f (t)|dt ≤ K2 (b− x)2(−− 1

q )
(∫ b

x

∣∣CD
b− f (t)

∣∣q dt

) 2
q

, (5.33)

where K2 is given by (5.26).
Inequality (5.33) is sharp and equality in (5.33) is attained for a function f such that

CD
b− f (t) = (t − x)

p(−−1)
q , t ∈ [x,b].

Proposition 5.10 Let  ≥ 0,  >  +1 and n, m given by (2.70). Let f ∈ ACn[a,b] be
such that f (i)(b) = 0 for i = m, . . . ,n−1 and let CD

b− f ∈ L[a,b]. Then for a.e. x ∈ [a,b]
holds ∫ b

x
|CD

b− f (t)| |CD+1
b− f (t)|dt ≤ (b− x)2(− )

22(− +1)

∥∥CD
b− f

∥∥2
 . (5.34)

Theorem 5.20 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  ≥ 0,  >  + 1 and n, m

given by (2.70). Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1 and let
CD

b− f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/CD
b− f ∈ Lq[a,b]. Then reverse inequality

in (5.33) holds.
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THE CANAVATI FRACTIONAL DERIVATIVES

Theorem 5.21 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1, n = [] + 1 and

m = [ ] + 1. Let f ∈ C
a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
|C1D

a+ f (t)| |C1D+1
a+ f (t)|dt ≤ K2 (x−a)2(−− 1

q )
(∫ x

a

∣∣C1D
a+ f (t)

∣∣q dt

) 2
q

, (5.35)

where K2 is given by (5.26).
Inequality (5.35) is sharp and equality in (5.35) is attained for a function f such that

C1D
a+ f (t) = (x− t)

p(−−1)
q , t ∈ [a,x].

Proposition 5.11 Let  ≥ 0,  >  +1, n = []+1 and m = [ ]+1. Let f ∈C
a+[a,b]

be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2 and let C1D
a+ f ∈ L[a,b]. Then for a.e.

x ∈ [a,b] holds∫ x

a
|C1D

a+ f (t)| |C1D+1
a+ f (t)|dt ≤ (x−a)2(− )

22(− +1)

∥∥C1D
a+ f

∥∥2
 . (5.36)

Theorem 5.22 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  ≥ 0,  >  + 1, n = []+ 1

and m = [ ] + 1. Let f ∈ C
a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2 and

let C1D
a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/C1D

a+ f ∈ Lq[a,b]. Then reverse
inequality in (5.35) holds.

We continue with the right-sided Canavati fractional derivatives.

Theorem 5.23 Let p,q > 1 with 1
p + 1

q = 1. Let  ≥ 0,  >  + 1, n = [] + 1 and

m = [ ] + 1. Let f ∈ C
b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds∫ b

x
|C1D

b− f (t)| |C1D+1
b− f (t)|dt ≤ K2 (b− x)2(−− 1

q )
(∫ b

x

∣∣C1D
b− f (t)

∣∣q dt

) 2
q

, (5.37)

where K2 is given by (5.26).
Inequality (5.37) is sharp and equality in (5.37) is attained for a function f such that

C1D
b− f (t) = (t− x)

p(−−1)
q , t ∈ [x,b].

Proposition 5.12 Let  ≥ 0,  >  +1, n = []+1 and m = [ ]+1. Let f ∈C
b−[a,b]

be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2 and let C1D
b− f ∈ L[a,b]. Then for a.e.

x ∈ [a,b] holds∫ b

x
|C1D

b− f (t)| |C1D+1
b− f (t)|dt ≤ (b− x)2(− )

22(− +1)

∥∥C1D
b− f

∥∥2
 . (5.38)

Theorem 5.24 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  ≥ 0,  >  + 1, n = []+ 1

and m = [ ] + 1. Let f ∈ C
b−[a,b] such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2 and

let C1D
b− f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/C1D

b− f ∈ Lq[a,b]. Then reverse
inequality in (5.37) holds.
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5.3 Inequalities with fractional derivatives of order
 , 1 and 2

Following inequality is motivated by Fink’s inequality (1.23) for ordinary derivatives whose
form is ∫ b

a
|D1 f (t)| |D2 f (t)|dt ≤ K

(∫ b

a
|D f (t)|q dt

) 2
q

,

where  > i ≥ 0, K > 0 is a constant and q ∈ R.
This inequality is given in [15] for the left-sided Riemann-Liouville fractional deriva-

tives and for the Caputo in [12] (obtained by Fink’s method from [45]). Here we will
give them under improved conditions using results from Section 2.6 Inequality for the
left-sided Canavati fractional derivatives (here Theorem 5.38), Andrić-Pečarić-Perić give
in [23] where improved composition identity for the left-sided Canavati fractional deriva-
tives is used. Also, another estimation for the same inequality using method different from
Fink’s is obtained in [23] with a comparison of results (here Theorem 5.37 and Remark
5.9). Finally, here we will give analogous results for inequalities involving the Riemann-
Liouville and the Caputo fractional derivatives. Some of the improved results for the Ca-
puto fractional derivatives, Andrić-Pečarić-Perić give in [26].

RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

Theorem 5.25 Let p,q > 1 with 1
p + 1

q = 1. Let i ≥ 0,  > i + 1
q for i = 1,2 and let

D
a+ f ∈ Lq[a,b]. Suppose that one of conditions (i)− (vii) in Corollary 2.21 holds for

{,1} and {,2}. Then for a.e. x ∈ [a,b] holds

∫ x

a
|D1

a+ f (t)| |D2
a+ f (t)|dt ≤ K3 (x−a)2−1−2−1+ 2

p

(∫ x

a

∣∣D
a+ f (t)

∣∣q dt

) 2
q

, (5.39)

where

K3 =

[(
2−1−2−1+

2
p

) 2


i=1

(−i)(p(−i−1)+1)
1
p

]−1

. (5.40)

Proof. Using Theorem 2.13 and the triangle inequality, for i = 1,2 follows

|Di
a+ f (t)| ≤ 1

(−i)

∫ t

a
(t− )−i−1

∣∣D
a+ f ()

∣∣d
≤ 1

(−i)

(∫ t

a
(t − )p(−i−1) d

) 1
p
(∫ t

a
|D

a+ f ()|q d
) 1

q

=
1

(−i)
(t −a)−i−1+ 1

p

[p(−i−1)+1]
1
p

(∫ t

a
|D

a+ f ()|q d
) 1

q
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≤ 1
(−i)

(t −a)−i−1+ 1
p

[p(−i−1)+1]
1
p

(∫ x

a
|D

a+ f ()|q d
) 1

q

.

Hence, ∫ x

a
|D1

a+ f (t)| |D2
a+ f (t)|dt

≤ 1

2
i=1(−i) [p(−i−1)+1]

1
p

(∫ x

a
|D

a+ f ()|q d
) 2

q

·
∫ x

a
(t −a)2−1−2−2+ 2

p dt

=
1

2
i=1(−i) [p(−i−1)+1]

1
p

(∫ x

a
|D

a+ f ()|q d
) 2

q

· (x−a)2−1−2−1+ 2
p

2−1−2−1+ 2
p

.

�

Using a different technique due to Fink ([45]), we obtain yet another estimation for the
inequality (5.39).

Theorem 5.26 Let p,q > 1 with 1
p + 1

q = 1. Let 1 ≥ 0,  > 2 ≥ 1 + 1 and D
a+ f ∈

Lq[a,b]. Suppose that one of conditions (i)− (vii) in Corollary 2.21 holds for {,1} and
{,2}. Then for a.e. x ∈ [a,b] holds

∫ x

a
|D1

a+ f (t)| |D2
a+ f (t)|dt ≤ F (x−a)2−1−2−1+ 2

p

(∫ x

a

∣∣D
a+ f (t)

∣∣q dt

) 2
q

, (5.41)

where

F =
[
(−1)(−2 +1)[p(−2)+1]

1
p [p(2−1−2−1)+2]

1
p 2

1
q

]−1
.

(5.42)
Inequality (5.41) is sharp for 2 = 1 +1, where equality is attained for a function f

such that D
a+ f (t) = (x− t)

p(−2)
q , t ∈ [a,x].

Proof. Set 1 =−1−1 and 2 =−2−1. Then 1−2−1≥ 0 since 2 ≥ 1 +1.
Let a ≤  ≤  ≤ t ≤ x. Then

(t − )1(t−)2 +(t−)1(t− )2

= (t − )1−2−1(t− )2+1(t −)2 + (t−)1−2−1(t−)2+1(t − )2

≤ (x− )1−2−1[(t− )2+1(t−)2 + (t −)2+1(t− )2 ] . (5.43)
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In the last step (5.43) we use 1 − 2 − 1 ≥ 0, and it is obvious that for 1 − 2 − 1 = 0
equality holds in (5.43). Let

(t− )r
+ =

{
(t− )r , a ≤  < t ≤ x ,

0 , a ≤ t ≤  ≤ x .
(5.44)

Using integration by parts we get∫ x

a

[
(t− )2+1

+ (t−)2
+

]
dt

= (t− )2+1
+

(t −)2+1
+

2 +1

∣∣∣∣x
a
−
∫ x

a

[
(t− )2

+ (t −)2+1
+

]
dt

=
(x− )2+1(x−)2+1

2 +1
−
∫ x

a

[
(t− )2

+ (t −)2+1
+

]
dt ,

that is∫ x

a
[(t− )2+1

+ (t−)2
+ + (t−)2+1

+ (t− )2
+ ]dt =

1
2 +1

[(x− )(x−)]2+1 . (5.45)

Now from (5.43) and (5.45) we have∫ x

a
[(t− )1

+ (t −)2
+ + (t−)1

+ (t− )2
+ ]dt ≤ 1

(−2)
(x− )1(x−)2+1 . (5.46)

Next we abbreviate

c1 := [(−2)(−1)]
−1 , c2 := [(−2 +1)(−1)]

−1 ,

c3 := p(−2)+1 ,  := 2−1−2−1+
1
p
.

Let a ≤ t ≤ x and i = 1,2. Using Theorem 2.13 we have

Di
a+ f (t) =

1
(−i)

∫ x

a
(t − )i

+ D
a+ f ()d .

With this representation, the triangle inequality, inequality (5.46) and Hölder’s inequality,
we obtain∫ x

a
|D1

a+ f (t)| |D2
a+ f (t)|dt

≤ c1

∫ x

a

(∫ x

a
|D

a+ f ()|(t− )1
+ d

)(∫ x

a
|D

a+ f ()|(t−)2
+ d

)
dt (5.47)

= c1

∫ x

a
|D

a+ f ()|
{∫ x


|D

a+ f ()|

·
(∫ x

a

[
(t− )1

+ (t−)2
+ + (t−)1

+ (t− )2
+

]
dt

)
d

}
d
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≤ c2

∫ x

a
|D

a+ f ()|
(∫ x


|D

a+ f ()|(x− )1 (x−)2+1 d
)

d

≤ c2

∫ x

a
|D

a+ f ()|(x− )1

(∫ x


|D

a+ f ()|q d
) 1

q
(∫ x


(x−)p(2+1) d

) 1
p

d

(5.48)

= c2 c
− 1

p
3

∫ x

a
|D

a+ f ()|(x− )
(∫ x


|D

a+ f ()|q d
) 1

q

d

≤ c2 c
− 1

p
3

{∫ x

a
|D

a+ f ()|q
(∫ x


|D

a+ f ()|q d
)

d
} 1

q
(∫ x

a
(x− ) p d

) 1
p

(5.49)

= c2 c
− 1

p
3 ( p+1)−

1
p (x−a)+

1
p

{
1
2

(∫ x

a
|D

a+ f ()|q d
)2
} 1

q

.

In the last step we use: let G() =
x∫

|D

a+ f ()|q d , then G′() = −|D
a+ f ()|q and

∫ x

a
−G′()G()d = −1

2

∫ x

a
dG2() =

1
2

(∫ x

a
|D

a+ f ()|q d
)2

.

It is obvious that in the case 2 = 1 + 1 we have equality in (5.46). Using the equality
condition for Hölder’s inequality, we have equality in (5.48) if and only if |D

a+ f ()|q =
K(x−)p(2+1) for some constant K ≥ 0 and every  ∈ [a,x]. Let’s prove that equality
holds in (5.49) (equality in (5.47) is obvious):

∫ x

a
|D

a+ f ()|(x− )
(∫ x


|D

a+ f ()|q d
) 1

q

d

=
∫ x

a
K

1
q (x− )

p(2+1)
q (x− )

(∫ x


K(x−)p(2+1) d

) 1
q

d

=
∫ x

a
K

1
q (x− )

p(2+1)
q +

(
K(x− )p(2+1)+1

p(2 +1)+1

) 1
q

d

=
K

2
q

[p(2 +1)+1]
1
q

∫ x

a
(x− )

2p(2+1)
q ++ 1

q d

=
K

2
q

[p(2 +1)+1]
1
q

(x−a)
2p(2+1)

q ++ 1
q +1 1

2p
q (2 +1)+ +1+ 1

q

.

Since p
q = p−1 and from 2 = 1 +1 follows  = 2(2 +1)+ 1

p , we have

∫ x

a
|D

a+ f ()|(x− )
(∫ x


|D

a+ f ()|q d
) 1

q

d
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=
K

2
q

[p(2 +1)+1]
1
q

(x−a)2p(2+1)+2

2p(2 +1)+2
. (5.50)

On the other hand{∫ x

a
|D

a+ f ()|q
(∫ x


|D

a+ f ()|q d
)

d
} 1

q
(∫ x

a
(x− ) p d

) 1
p

=
(x−a)+

1
p

( p+1)
1
p

{∫ x

a
K(x− )p(2+1)

(∫ x


K(x−)p(2+1) d

)
d
} 1

q

=
(x−a)+

1
p

[2p(2 +1)+2]
1
p

K
2
q

[p(2 +1)+1]
1
q

{∫ x

a
(x− )p(2+1)(x− )p(2+1)+1 d

} 1
q

=
(x−a)+

1
p

[2p(2 +1)+2]
1
p

K
2
q

[p(2 +1)+1]
1
q

(x−a)
2p(2+1)+2

q

[2p(2 +1)+2]
1
q

=
K

2
q

[p(2 +1)+1]
1
q

(x−a)2p(2+1)+2

2p(2 +1)+2
. (5.51)

According to (5.50) and (5.51) we conclude that for |D
a+ f ()|q = K(x−)p(2+1) equal-

ity holds in (5.49). �

Remark 5.7 Let  = n ∈ N, 1 = i ∈ N, 2 = j ∈ N, i < j ≤ n− 1 and x = b. Then
inequality (5.41) implies Fink’s inequality (1.23) on interval [a,b]

∫ b

a

∣∣∣ f (i)(t) f ( j)(t)
∣∣∣dt ≤ F (a−b)2n−i− j+1− 2

q

(∫ b

a

∣∣∣ f (n)(t)
∣∣∣q dt

) 2
q

(5.52)

with F = C(n, i, j,q) from relation (1.24). By Notation 1.6 we know that sufficient condi-
tion for the vanishing derivatives is f (k)(a)= 0 for k = i, . . . ,n−1. Since−i ∈N, we use
(ii) in Theorem 2.13, which gives us boundary conditions Dn−k

a+ f (a) = 0, k = 1, . . . ,n− i,
that is Dk

a+ f (a) = f (k)(a) = 0 for = i, . . . ,n−1.

Remark 5.8 Let f be such that D
a+ f ∈C[a,b]. Then

lim
2→−0

D2
a+ f (t) = lim

2→−0

1
( −2)

∫ t

a
(t− )−2−1 D

a+ f ()d ,

so we can formally compare estimations from Theorem 5.1 and Theorem 5.26, obtained in
a different way. Setting  = 2 and  = 1, we have

F =
1

2
1
q (− ) [p(− −1)+2]

1
p

so obviously K1 < F for  >  + 1, hence, estimation in Theorem 5.1 is better then esti-
mation in Theorem 5.26.
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Remark 5.9 Constants K3 and F from the two previous theorems are in general not com-
parable, but there are cases when we can do that. Notice

F
K3

=
(−1−1+ 1

p )
1
p (−2−1+ 1

p)
1
p (2−1−2−1+ 2

p)
1
q

2
1
q (−2)(−2 + 1

p )
1
p

.

We want to find cases when K3 < F . Set  −2 = d2, 2 −1 = d1 ≥ 1. Then  −1 =
d1 +d2 and inequality K3 < F is equivalent to

1

(d1 +d2−1+ 1
p)

1
p (d1 +2d2−1+ 2

p)1− 1
p

<
(d2−1+ 1

p)
1
p

21− 1
p d2 (d2 + 1

p)
1
p

. (5.53)

If d1 is big enough, then the left side of (5.53) tends to zero, while the right side is inde-
pendent of d1. Therefore, in this case K3 < F .

Let d1 = 1, that is 2 = 1 +1 (see the discussion on sharpness in Theorem 5.26). Then
the reverse inequality in (5.53) is equivalent to

1

(d2 + 1
p )

1
p (2d2 + 2

p )1− 1
p

>
(d2−1+ 1

p )
1
p

21− 1
p d2 (d2 + 1

p)
1
p

,

that is
pd2 +1

pd2− p+1
>

(
1+

1
pd2

)p

,

which is equivalent to inequality(
pd2 +1− p

pd2 +1

) 1
p

<
pd2

1+ pd2
. (5.54)

This (5.54) is a simple consequence of Bernoulli’s inequality, since(
pd2 +1− p

pd2 +1

) 1
p

=
(

1+
−p

pd2 +1

) 1
p

< 1+
1
p
· −p
1+ pd2

=
pd2

1+ pd2
.

Therefore, if 2 = 1 +1, then F < K3, and this is in accordance with Theorem 5.26.

An illustrative case is p = q = 2. Then (5.53) is equivalent to

12(d1−1)d2
2 +2(2d2

1 −4d1 +1)d2−2d2
1 +d1 > 0.

That is, K3 < F is equivalent to

d2 > d̃2 =
−2d2

1 +4d1−1+
√

4d4
1 +8d3

1 −16d2
1 +4d1 +1

12(d1−1)
.
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Notice that lim
d1→1

d̃2 =  and lim
d1→

d̃2 = 1
2 . Roughly speaking, for d1 ≈ 1 or d2 ≈ 0.5 esti-

mation in Theorem 5.26 is better that estimation in Theorem 5.25, otherwise the opposite

conclusion holds. For example, for d1 = 2 and d2 > −1+
√

73
12 ≈ 0.62867 or for d2 = 1 and

d1 > −5+
√

105
4 ≈ 1.31174 estimation in Theorem 5.25 is better than estimation in Theorem

5.26.

We continue with cases for p = 1, and then for p ∈ (0,1), in which we use method
from Theorem 5.25.

Proposition 5.13 Let  > i ≥ 0 for i = 1,2 and D
a+ f ∈ L[a,b]. Suppose that one

of conditions (i)− (vii) in Corollary 2.21 holds for {,1} and {,2}. Then for a.e.
x ∈ [a,b] holds

∫ x

a
|D1

a+ f (t)| |D2
a+ f (t)|dt ≤ (x−a)2−1−2+1

(2−1−2 +1)
2

i=1

(−i +1)

∥∥D
a+ f

∥∥2
 . (5.55)

Proof. Using Theorem 2.13 and the triangle inequality, for i = 1,2 we have

|Di
a+ f (t)| ≤ 1

( −i)

∫ t

a
(t − )−i−1

∣∣D
a+ f ()

∣∣d
≤ 1

( −i)

(∫ t

a
(t − )−i−1 d

)
‖D

a+ f‖ =
(t−a)−i

(−i +1)
‖D

a+ f‖ .

Therefore ∫ x

a
|D1

a+ f (t)| |D2
a+ f (t)|dt

≤ 1
2

i=1

(−i +1)
‖D

a+ f‖2


∫ x

a
(t −a)2−1−2 dt

=
1

2

i=1

(−i +1)
‖D

a+ f‖2


(x−a)2−1−2+1

2−1−2 +1
.

�

Theorem 5.27 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  > i ≥ 0 for i = 1,2. Let
D

a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/D
a+ f ∈ Lq[a,b]. Suppose that one of con-

ditions (i)− (vii) in Corollary 2.21 holds for {,1} and {,2}. Then reverse inequality
in (5.39) holds.

Next inequalities include the right-sided Riemann-Liouville fractional derivatives.
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Theorem 5.28 Let p,q > 1 with 1
p + 1

q = 1. Let i ≥ 0,  > i + 1
q for i = 1,2 and

D
b− f ∈ Lq[a,b]. Suppose that one of conditions (i)− (vii) in Corollary 2.22 holds for

{,1} and {,2}. Then for a.e. x ∈ [a,b] holds

∫ b

x
|D1

b− f (t)| |D2
b− f (t)|dt ≤ K3 (b− x)2−1−2−1+ 2

p

(∫ b

x

∣∣D
b− f (t)

∣∣q dt

) 2
q

, (5.56)

where K3 is given by (5.40).

In the following theorem again we use Fink’s method and obtain new estimation for the
inequality (5.56). The same comparison of constants holds as with the left-sided Riemann-
Liouville fractional derivatives, that is for Theorem 5.28 and Theorem 5.29 Remark 5.9 is
valid also.

Theorem 5.29 Let p,q > 1 with 1
p + 1

q = 1. Let 1 ≥ 0,  > 2 ≥ 1 + 1 and D
b− f ∈

Lq[a,b]. Suppose that one of conditions (i)− (vii) in Corollary 2.22 holds for {,1} and
{,2}. Then for a.e. x ∈ [a,b] holds

∫ b

x
|D1

b− f (t)| |D2
b− f (t)|dt ≤ F (b− x)2−1−2−1+ 2

p

(∫ b

x

∣∣D
b− f (t)

∣∣q dt

) 2
q

, (5.57)

where F is given by (5.42).
Inequality (5.57) is sharp for 2 = 1 +1, where equality is attained for a function f

such that D
b− f (t) = (x− t)

p(−2)
q , t ∈ [x,b].

A technique from Theorem 5.28 is used in the following cases for p = 1 and p ∈ (0,1).

Proposition 5.14 Let  > i ≥ 0 for i = 1,2 and D
b− f ∈ L[a,b]. Suppose that one

of conditions (i)− (vii) in Corollary 2.22 holds for {,1} and {,2}. Then for a.e.
x ∈ [a,b] holds

∫ b

x
|D1

b− f (t)| |D2
b− f (t)|dt ≤ (b− x)2−1−2+1

(2−1−2 +1)
2

i=1

(−i +1)

∥∥D
b− f

∥∥2
 . (5.58)

Theorem 5.30 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  > i ≥ 0 for i = 1,2. Let
D

b− f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/D
b− f ∈ Lq[a,b]. Suppose that one of con-

ditions (i)− (vii) in Corollary 2.22 holds for {,1} and {,2}. Then reverse inequality
in (5.56) holds.

Next two corollaries represent generalization of the classical Opial’s inequality. In the
first one, its inequality is a consequence of inequalities (5.39) and (5.56), and in the second
corollary a consequence of inequalities (5.41) and (5.57).
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Corollary 5.4 Suppose that assumptions of Theorem 5.25 and Theorem 5.28 hold and let
1 < q ≤ 2. Then∫ a+b

2

a
|D1

a+ f (t)| |D2
a+ f (t)|dt +

∫ b

a+b
2

|D1
b− f (t)| |D2

b− f (t)|dt

≤ K3

(
b−a

2

)2−1−2−1+ 2
p
(∫ a+b

2

a

∣∣D
a+ f (t)

∣∣q dt +
∫ b

a+b
2

∣∣D
b− f (t)

∣∣q dt

) 2
q

.

(5.59)

Remark 5.10 Let  = 1, 1 = 2 = 0 and q = 2. Then K3 = 1
2 and inequality (5.59)

implies Wirtinger-type inequality (1.19) on interval [a,b]∫ b

a
[ f (x)]2 dx ≤ (b−a)2

8

∫ b

a

[
f ′(x)

]2
dx . (5.60)

Boundary conditions D−1
a+ f (a) = f (a) = 0 and D−1

b− f (b) = f (b) = 0 follow from condi-
tions of Theorem 2.13 and Theorem 2.14. Notice that the best possible estimation of the

Wirtinger inequality
(

b−a

)2

is not obtained here.

Corollary 5.5 Suppose that assumptions of Theorem 5.26 and Theorem 5.29 hold and let
1 < q ≤ 2. Then∫ a+b

2

a
|D1

a+ f (t)| |D2
a+ f (t)|dt +

∫ b

a+b
2

|D1
b− f (t)| |D2

b− f (t)|dt

≤ F

(
b−a

2

)2−1−2−1+ 2
p
(∫ a+b

2

a

∣∣D
a+ f (t)

∣∣q dt +
∫ b

a+b
2

∣∣D
b− f (t)

∣∣q dt

) 2
q

.

(5.61)

Inequality (5.61) is sharp for 2 = 1 +1 and q = 2.

Wirtinger-type inequality does not follow from Corollary 5.5 due to conditions on  , 1

and 2.

THE CAPUTO FRACTIONAL DERIVATIVES

Inequalities in Theorem 5.32, Theorem 5.35 and Corollary 5.6 are given by Andrić-
Pečarić-Perić in [26].

Theorem 5.31 Let p,q > 1 with 1
p + 1

q = 1. For i = 1,2 let i ≥ 0,  > i + 1
q and mi,

n given by (2.70). Let m = min{m1,m2}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for
i = m, . . . ,n−1 and let CD

a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
|CD1

a+ f (t)| |CD2
a+ f (t)|dt ≤ K3 (x−a)2−1−2−1+ 2

p

(∫ x

a

∣∣CD
a+ f (t)

∣∣q dt

) 2
q

, (5.62)

where K3 is given by (5.40).
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Next theorem gives a second estimation of the inequality (5.62).

Theorem 5.32 Let p,q > 1 with 1
p + 1

q = 1. Let  > 2 ≥ 1 + 1, 1 ≥ 0 and n, m1

given by (2.70). Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m1, . . . ,n− 1 and let
CD

a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
|CD1

a+ f (t)| |CD2
a+ f (t)|dt ≤ F (x−a)2−1−2−1+ 2

p

(∫ x

a

∣∣CD
a+ f (t)

∣∣q dt

) 2
q

, (5.63)

where F is given by (5.42).
Inequality (5.63) is sharp for 2 = 1 +1, where equality is attained for a function f

such that CD
a+ f (t) = (x− t)

p(−2)
q , t ∈ [a,x].

Remark 5.11 Let  = n ∈ N, 1 = i ∈ N, 2 = j ∈ N, i < j ≤ n− 1 and x = b. Then
inequality (5.63) implies Fink’s inequality (1.23), that is (5.52). Also, F = C(n, i, j,q)
from (1.24). By Notation 1.6 and conditions from Theorem 2.16, we have boundary con-
ditions for Fink’s inequality: f (k)(a) = 0 for k = [1], . . . , []− 1, that is f (k)(a) = 0 for
k = i, . . . ,n−1.

Next cases are for p = 1 and p ∈ (0,1), obtained by technique from Theorem 5.31.

Proposition 5.15 For i = 1,2 let  > i ≥ 0 and mi, n given by (2.70). Let m =
min{m1,m2}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1 and let
CD

a+ f ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
|CD1

a+ f (t)| |CD2
a+ f (t)|dt ≤ (x−a)2−1−2+1

(2−1−2 +1)
2

i=1

(−i +1)

∥∥CD
a+ f

∥∥2
 . (5.64)

Theorem 5.33 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. For i = 1,2 let  > i ≥ 0 and mi,

n given by (2.70). Let m = min{m1,m2}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for
i = m, . . . ,n−1 and let CD

a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/CD
a+ f ∈ Lq[a,b].

Then reverse inequality in (5.62) holds.

We proceed with inequalities for the right-sided Caputo fractional derivatives.

Theorem 5.34 Let p,q > 1 with 1
p + 1

q = 1. For i = 1,2 let i ≥ 0,  > i + 1
q and mi,

n given by (2.70). Let m = min{m1,m2}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for
i = m, . . . ,n−1 and let CD

b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
|CD1

b− f (t)| |CD2
b− f (t)|dt ≤ K3 (b− x)2−1−2−1+ 2

p

(∫ b

x

∣∣CD
b− f (t)

∣∣q dt

) 2
q

, (5.65)

where K3 is given by (5.40).
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Theorem 5.35 Let p,q > 1 with 1
p + 1

q = 1. Let  > 2 ≥ 1 + 1, 1 ≥ 0 and n, m1

given by (2.70). Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m1, . . . ,n− 1 and let
CD

b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
|CD1

b− f (t)| |CD2
b− f (t)|dt ≤ F (b− x)2−1−2−1+ 2

p

(∫ b

x

∣∣CD
b− f (t)

∣∣q dt

) 2
q

, (5.66)

where F is given by (5.42).
Inequality (5.66) is sharp for 2 = 1 +1, where equality is attained for a function f

such that CD
b− f (t) = (x− t)

p(−2)
q , t ∈ [x,b].

Next we have cases for p = 1 and p∈ (0,1), obtained with method from Theorem 5.34.

Proposition 5.16 For i = 1,2 let  > i ≥ 0 and mi, n given by (2.70). Let m =
min{m1,m2}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n − 1 and let
CD

b− f ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
|CD1

b− f (t)| |CD2
b− f (t)|dt ≤ (b− x)2−1−2+1

(2−1−2 +1)
2

i=1

(−i +1)

∥∥CD
b− f

∥∥2
 . (5.67)

Theorem 5.36 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. For i = 1,2 let  > i ≥ 0, and mi,

n given by (2.70). Let m = min{m1,m2}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for
i = m, . . . ,n−1 and let CD

b− f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/CD
b− f ∈ Lq[a,b].

Then reverse inequality in (5.65) holds.

A comparison of estimations in Remark 5.9 is also valid for Theorems 5.31, 5.32 and
Theorems 5.34, 5.35.

Corollary 5.6 Suppose that assumptions of Theorem 5.31 and Theorem 5.34 hold and let
1 < q ≤ 2. Then

∫ a+b
2

a
|CD1

a+ f (t)| |CD2
a+ f (t)|dt +

∫ b

a+b
2

|CD1
b− f (t)| |CD2

b− f (t)|dt

≤ K3

(
b−a

2

)2−1−2−1+ 2
p
(∫ a+b

2

a

∣∣CD
a+ f (t)

∣∣q dt +
∫ b

a+b
2

∣∣CD
b− f (t)

∣∣q dt

) 2
q

.

(5.68)

Remark 5.12 Let  = 1, 1 = 2 = 0 and q = 2. Then K3 = 1
2 and inequality (5.68) im-

plies Wirtinger-type inequality (1.19), that is (5.60). Boundary conditions f (a) = f (b) = 0
follow from conditions of Theorem 2.16 and Theorem 2.17 since n = 1 and m = 0.



5.3 INEQUALITIES WITH DERIVATIVES OF ORDER  , 1 AND 2 147

Corollary 5.7 Suppose that assumptions of Theorem 5.32 and Theorem 5.35 hold and let
1 < q ≤ 2. Then

∫ a+b
2

a
|CD1

a+ f (t)| |CD2
a+ f (t)|dt +

∫ b

a+b
2

|CD1
b− f (t)| |CD2

b− f (t)|dt

≤ F

(
b−a

2

)2−1−2−1+ 2
p
(∫ a+b

2

a

∣∣CD
a+ f (t)

∣∣q dt +
∫ b

a+b
2

∣∣CD
b− f (t)

∣∣q dt

) 2
q

.

(5.69)

Inequality (5.69) is sharp for 2 = 1 +1 and q = 2.

THE CANAVATI FRACTIONAL DERIVATIVES

Theorem 5.37 Let p,q > 1 with 1
p + 1

q = 1. Let i ≥ 0,  > i + 1
q , mi = [i] + 1 for

i = 1,2 and n = []+1, m = min{m1,m2}. Let f ∈C
a+[a,b] be such that f (i)(a) = 0 for

i = m−1, . . . ,n−2 and let C1D
a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
|C1D1

a+ f (t)| |C1D2
a+ f (t)|dt ≤ K3 (x−a)2−1−2−1+ 2

p

(∫ x

a

∣∣C1D
a+ f (t)

∣∣q dt

) 2
q

,

(5.70)
where K3 is given by (5.40).

Theorem 5.38 Let p,q > 1 with 1
p + 1

q = 1. Let  > 2 ≥ 1 +1, 1 ≥ 0 and n = []+1,

m1 = [1]+ 1. Let f ∈ C
a+[a,b] be such that f (i)(a) = 0 for i = m1 − 1, . . . ,n− 2 and let

C1D
a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
|C1D1

a+ f (t)| |C1D2
a+ f (t)|dt ≤ F (x−a)2−1−2−1+ 2

p

(∫ x

a

∣∣C1D
a+ f (t)

∣∣q dt

) 2
q

,

(5.71)
where F is given by (5.42).

Inequality (5.71) is sharp for 2 = 1 +1, where equality is attained for a function f

such that C1D
a+ f (t) = (x− t)

p(−2)
q , t ∈ [a,x].

Remark 5.13 Let  = n ∈ N, 1 = i ∈ N, 2 = j ∈ N, i < j ≤ n− 1 and x = b. Then
inequality (5.71) implies Fink’s inequality (1.23), that is (5.52). Also, F = C(n, i, j,q)
from relation (1.24). By Notation 1.6 and conditions in Theorem 2.19, we have boundary
conditions for Fink’s inequality: f (k)(a) = 0 for k = [1] + 1− 1, . . . , [] + 1− 2, that is
f (k)(a) = 0 for k = i, . . . ,n−1.

A technique from Theorem 5.37 is used for cases when p = 1 and p ∈ (0,1).
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Proposition 5.17 Let  > i ≥ 0, mi = [i] + 1 for i = 1,2 and n = [] + 1, m =
min{m1,m2}. Let f ∈ C

a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2 and let
C1D

a+ f ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
|C1D1

a+ f (t)| |C1D2
a+ f (t)|dt ≤ (x−a)2−1−2+1

(2−1−2 +1)
2

i=1

(−i +1)

∥∥C1D
a+ f

∥∥2
 .

(5.72)

Theorem 5.39 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  > i ≥ 0, mi = [i] + 1 for

i = 1,2 and n = []+1, m = min{m1,m2}. Let f ∈C
a+[a,b] be such that f (i)(a) = 0 for

i = m− 1, . . . ,n− 2 and let C1D
a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/C1D

a+ f ∈
Lq[a,b]. Then reverse inequality in (5.70) holds.

We continue with inequalities for the right-sided Canavati fractional derivatives.

Theorem 5.40 Let p,q > 1 with 1
p + 1

q = 1. Let i ≥ 0,  > i + 1
q , mi = [i] + 1 for

i = 1,2 and n = []+1, m = min{m1,m2}. Let f ∈C
b−[a,b] be such that f (i)(b) = 0 for

i = m−1, . . . ,n−2 and let C1D
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
|C1D1

b− f (t)| |C1D2
b− f (t)|dt ≤ K3 (b− x)2−1−2−1+ 2

p

(∫ b

x

∣∣C1D
b− f (t)

∣∣q dt

) 2
q

,

(5.73)
where K3 is given by (5.40).

Theorem 5.41 Let p,q > 1 with 1
p + 1

q = 1. Let  > 2 ≥ 1 +1, 1 ≥ 0 and n = []+1,

m1 = [1]+ 1. Let f ∈C
b−[a,b] be such that f (i)(b) = 0 for i = m1 − 1, . . . ,n− 2 and let

C1D
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
|C1D1

b− f (t)| |C1D2
b− f (t)|dt ≤ F (b− x)2−1−2−1+ 2

p

(∫ b

x

∣∣C1D
b− f (t)

∣∣q dt

) 2
q

,

(5.74)
where F is given by (5.42).

Inequality (5.74) is sharp for 2 = 1 +1, where equality is attained for a function f

such that C1D
b− f (t) = (x− t)

p(−2)
q , t ∈ [x,b].

For cases p = 1 and p ∈ (0,1) we use method from Theorem 5.40.

Proposition 5.18 Let  > i ≥ 0, mi = [i] + 1 for i = 1,2 and n = [] + 1, m =
min{m1,m2}. Let f ∈ C

b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2 and let
C1D

b− f ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds∫ b

x
|C1D1

b− f (t)| |C1D2
b− f (t)|dt ≤ (b− x)2−1−2+1

(2−1−2 +1)
2

i=1

(−i +1)

∥∥C1D
b− f

∥∥2
 .

(5.75)
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Theorem 5.42 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  > i ≥ 0, mi = [i] + 1 for

i = 1,2 and n = []+1, m = min{m1,m2}. Let f ∈C
b−[a,b] be such that f (i)(b) = 0 for

i = m− 1, . . . ,n− 2 and let C1D
b− f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/C1D

b− f ∈
Lq[a,b]. Then reverse inequality in (5.73) holds.

A comparison of estimations in Remark 5.9 is also valid for Theorems 5.37, 5.38 and
Theorems 5.40, 5.41.

Corollary 5.8 Suppose that assumptions of Theorem 5.37 and Theorem 5.40 hold and let
1 < q ≤ 2. Then∫ a+b

2

a
|C1D1

a+ f (t)| |C1D2
a+ f (t)|dt +

∫ b

a+b
2

|C1D1
b− f (t)| |C1D2

b− f (t)|dt

≤ K3

(
b−a

2

)2−1−2−1+ 2
p
(∫ a+b

2

a

∣∣C1D
a+ f (t)

∣∣q dt +
∫ b

a+b
2

∣∣C1D
b− f (t)

∣∣q dt

) 2
q

.

(5.76)

Remark 5.14 Let  = 1, 1 = 2 = 0 and q = 2. Then K3 = 1
2 and inequality (5.76) im-

plies Wirtinger-type inequality (1.19), that is (5.60). Boundary conditions f (a) = f (b) = 0
follow from conditions of Theorem 2.19 and Theorem 2.20 since n = 2 and m = 1.

Corollary 5.9 Suppose that assumptions of Theorem 5.38 and Theorem 5.41 hold and let
1 < q ≤ 2. Then∫ a+b

2

a
|C1D1

a+ f (t)| |C1D2
a+ f (t)|dt +

∫ b

a+b
2

|C1D1
b− f (t)| |C1D2

b− f (t)|dt

≤ F

(
b−a

2

)2−1−2−1+ 2
p
(∫ a+b

2

a

∣∣C1D
a+ f (t)

∣∣q dt +
∫ b

a+b
2

∣∣C1D
b− f (t)

∣∣q dt

) 2
q

.

(5.77)

Inequality (5.77) is sharp for 2 = 1 +1 and q = 2.

Next we observe a weighted version of the previous inequality for q = 2, with a form

∫ b

a
w(t) |D1 f (t)| |D2 f (t)|dt ≤ K

(∫ b

a
[w(t)]2 dt

) 1
2 ∫ b

a
|D f (t)|2 dt ,

where w ∈C[a,b] is a nonnegative weight function,  > i ≥ 0 and K > 0 is a constant.
This inequality is given in [12] for the left-sided Canavati fractional derivatives, with

estimation K4 (here Theorem 5.55, given under new conditions). In [23] Andrić-Pečarić-
Perić give two more estimations of this inequality obtained with several applications of
Hölder’s inequality on different factors with different indices (here Theorem 5.56 and The-
orem 5.57) involving the Canavati fractional derivatives. We give analogous results for the
inequalities involving the Riemann-Liouville and the Caputo fractional derivatives.
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THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

Theorem 5.43 Let i ≥ 0,  > i + 5
6 for i = 1,2 and D

a+ f ∈ L2[a,b]. Suppose that
one of conditions (i)− (vii) in Corollary 2.21 holds for {,1} and {,2}. Let w be
continuous nonnegative weight function on [a,x]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t) |D1

a+ f (t)| |D2
a+ f (t)|dt ≤ K4(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣D
a+ f (t)

∣∣2 dt , (5.78)

where

(x) =
(∫ x

a
[w(t)]2 dt

) 1
2

, (5.79)

K4 =

[(
4−21−22− 7

3

) 1
2 2


i=1

(−i)(6−6i−5)
1
6

]−1

. (5.80)

Proof. Set i =  −i − 1, i = 1,2. Using Theorem 2.13, the triangle inequality and
Hölder’s inequality, for t ∈ [a,x] we have∫ x

a
w(t) |D1

a+ f (t)| |D2
a+ f (t)|dt

≤
(∫ x

a
[w(t)]2 dt

) 1
2
(∫ x

a

2


i=1

|Di
a+ f (t)|2 dt

) 1
2

≤ (x)
1

2

i=1

(i +1)

{∫ x

a

2


i=1

(∫ t

a
(t− )i |D

a+ f ()|d
)2

dt

} 1
2

.

Again we use Hölder’s inequality for {p = 3,q = 3
2}∫ t

a
(t− )i |D

a+ f ()|d ≤
(∫ t

a
d
) 1

3
(∫ t

a
(t− )

3
2 i |D

a+ f ()| 3
2 d

) 2
3

,

and {p = 4,q = 4
3}∫ t

a
(t − )

3
2 i |D

a+ f ()| 3
2 d ≤

(∫ t

a
(t− )6i d

) 1
4
(∫ t

a
|D

a+ f ()|2 d
) 3

4

.

Hence,∫ x

a
w(t) |D1

a+ f (t)| |D2
a+ f (t)|dt

≤ (x)
2

i=1

(i +1)

{∫ x

a
(t −a)

4
3

2


i=1

(∫ t

a
(t− )

3
2i |D

a+ f ()| 3
2 d

) 4
3

dt

} 1
2
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≤ (x)
2

i=1

(i +1)

⎧⎨⎩
∫ x

a
(x−a)

4
3

(∫ t

a
|D

a+ f ()|2 d
)2 2


i=1

(
(t−a)6i+1

6i +1

) 1
3

dt

⎫⎬⎭
1
2

=
(x)(x−a)

2
3

2

i=1

(i +1)(6i +1)
1
6

{∫ x

a

(∫ t

a
|D

a+ f ()|2 d
)2

(t−a)21+22+ 2
3 dt

} 1
2

≤ (x)(x−a)
2
3

2

i=1

(i +1)(6i +1)
1
6

∫ x

a
|D

a+ f ()|2 d
(∫ x

a
(t −a)21+22+ 2

3 dt

) 1
2

=
(x)(x−a)

2
3

2

i=1

(i +1)(6i +1)
1
6

∫ x

a
|D

a+ f ()|2 d
(x−a)1+2+ 5

6(
21 +22 + 5

3

) 1
2

=
(x)

2

i=1

(−i)(6−6i−5)
1
6

∫ x

a
|D

a+ f ()|2 d
(x−a)2−1−2− 1

2(
4−21−21− 7

3

) 1
2

.

�

Theorem 5.44 Let i ≥ 0,  > i + 5
6 for i = 1,2 and D

a+ f ∈ L2[a,b]. Suppose that
one of conditions (i)− (vii) in Corollary 2.21 holds for {,1} and {,2}. Let w be
continuous nonnegative weight function on [a,x]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t) |D1

a+ f (t)| |D2
a+ f (t)|dt ≤ K5(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣D
a+ f (t)

∣∣2 dt , (5.81)

where  is given by (5.79) and

K5 =

[
(4−21−22−1)

1
2

2


i=1

(−i)(6−6i−5)
1
6

]−1

. (5.82)

Proof. Set i =  −i − 1, i = 1,2. Using Theorem 2.13, the triangle inequality and
Hölder’s inequality, for t ∈ [a,x] we have∫ x

a
w(t) |D1

a+ f (t)| |D2
a+ f (t)|dt

≤
(∫ x

a
[w(t)]2 dt

) 1
2
(∫ x

a

2


i=1

|Di
a+ f (t)|2 dt

) 1
2

≤ (x)
1

2

i=1

(i +1)

{∫ x

a

2


i=1

(∫ t

a
(t − )i |D

a+ f ()|d
)2

dt

} 1
2

.
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Again by Hölder’s inequality for {p = 3,q = 3
2} we have

∫ t

a
(t− )i |D

a+ f ()|d ≤
(∫ t

a
d
) 1

3
(∫ t

a
(t− )

3
2 i |D

a+ f ()| 3
2 d

) 2
3

,

and for {p = 4,q = 4
3}∫ t

a
(t − )

3
2 i |D

a+ f ()| 3
2 d ≤

(∫ t

a
(t− )6i d

) 1
4
(∫ t

a
|D

a+ f ()|2 d
) 3

4

.

Hence,∫ x

a
w(t) |D1

a+ f (t)| |D2
a+ f (t)|dt

≤ (x)
2

i=1

(i +1)

{∫ x

a
(t −a)

4
3

2


i=1

(∫ t

a
(t− )

3
2 i |D

a+ f ()| 3
2 d

) 4
3

dt

} 1
2

≤ (x)
2

i=1

(i +1)

⎧⎨⎩
∫ x

a
(t −a)

4
3

(∫ t

a
|D

a+ f ()|2 d
)2 2


i=1

(
(t−a)6i+1

6i +1

) 1
3

dt

⎫⎬⎭
1
2

≤ (x)
2

i=1

(i +1)(6i +1)
1
6

∫ x

a
|D

a+ f ()|2 d
(∫ x

a
(t−a)21+22+2 dt

) 1
2

=
(x)

2

i=1

(i +1)(6i +1)
1
6

∫ x

a
|D

a+ f ()|2 d
(x−a)1+2+ 3

2

(21 +22 +3)
1
2

=
(x)

2

i=1

(−i)(6−6i−5)
1
6

∫ x

a
|D

a+ f ()|2 d
(x−a)2−1−2− 1

2

(4−21−21−1)
1
2

.

�

Theorem 5.45 Let i ≥ 0,  > i + 1
2 for i = 1,2 and D

a+ f ∈ L2[a,b]. Suppose that
one of conditions (i)− (vii) in Corollary 2.21 holds for {,1} and {,2}. Let w be
continuous nonnegative weight function on [a,x]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t) |D1

a+ f (t)| |D2
a+ f (t)|dt ≤ K6(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣D
a+ f (t)

∣∣2 dt , (5.83)

where  is given by (5.79) and

K6 =

[
(4−21−22−1)

1
2

2


i=1

(−i)(2−2i−1)
1
2

]−1

. (5.84)
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Proof. Set i =  −i − 1, i = 1,2. Using Theorem 2.13, the triangle inequality and
Hölder’s inequality, for t ∈ [a,x] we have∫ x

a
w(t) |D1

a+ f (t)| |D2
a+ f (t)|dt

≤
∫ x

a
w(t)

2


i=1

(
1

(i +1)

∫ t

a
(t − )i |D

a+ f ()|d
)

dt

≤ 1
2

i=1

(i +1)

∫ x

a
w(t)

(∫ t

a
|D

a+ f ()|2 d
) 2


i=1

(∫ t

a
(t − )2i d

) 1
2

dt

≤ 1
2

i=1

(i +1)(2i +1)
1
2

(∫ x

a
|D

a+ f ()|2 d
)∫ x

a
w(t)(t −a)1+2+1 dt

≤ 1
2

i=1

(i +1)(2i +1)
1
2

(∫ x

a
|D

a+ f ()|2 d
)

·
(∫ x

a
[w(t)]2 dt

) 1
2
(∫ x

a
(t−a)21+22+2 dt

) 1
2

=
(x)

2

i=1

(i +1)(2i +1)
1
2

(∫ x

a
|D

a+ f ()|2 d
)

(x−a)1+2+ 3
2

(21 +22 +3)
1
2

=
(x)

2

i=1

(−i)(2−2i−1)
1
2

(∫ x

a
|D

a+ f ()|2 d
)

(x−a)2−1−2− 1
2

(4−21−22−1)
1
2

.

�

Remark 5.15 Comparing three constants Ki from Theorem 5.43, Theorem 5.44 and The-
orem 5.45, we conclude

K6 ≤ K5 < K4. (5.85)

The second inequality K5 < K4 is obvious, and inequality K6 ≤ K5 is equivalent to

3
√

6−61−5
2−21−1

3
√

6−62−5
2−22−1

≤ 1 , (5.86)

for −i > 5
6 , i = 1,2. Equality in (5.86) holds for −i = 1 when K6 = K5 = 3−

1
2 . In

all other cases, since
3√3x−5
x−1 < 1 for x > 5

3 and x �= 2, holds K6 < K5.

Following inequalities include the right-sided Riemann-Liouville fractional derivatives.
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Theorem 5.46 Let i ≥ 0,  > i + 5
6 for i = 1,2 and D

b− f ∈ L2[a,b]. Suppose that
one of conditions (i)− (vii) in Corollary 2.22 holds for {,1} and {,2}. Let w be
continuous nonnegative weight function on [x,b]. Then for a.e. x ∈ [a,b] holds∫ b

x
w(t) |D1

b− f (t)| |D2
b− f (t)|dt ≤ K4 ̃(x)(b− x)2−1−2− 1

2

∫ b

x

∣∣D
b− f (t)

∣∣2 dt , (5.87)

where

̃(x) =
(∫ b

x
[w(t)]2 dt

) 1
2

(5.88)

and K4 is given by (5.80).

Theorem 5.47 Let i ≥ 0,  > i + 5
6 for i = 1,2 and D

b− f ∈ L2[a,b]. Suppose that
one of conditions (i)− (vii) in Corollary 2.22 holds for {,1} and {,2}. Let w be
continuous nonnegative weight function on [x,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t) |D1

b− f (t)| |D2
b− f (t)|dt ≤ K5 ̃(x)(b− x)2−1−2− 1

2

∫ x

a

∣∣D
b− f (t)

∣∣2 dt , (5.89)

where ̃ and K5 are given by (5.88) and (5.82), respectively.

Theorem 5.48 Let i ≥ 0,  > i + 1
2 for i = 1,2 and D

b− f ∈ L2[a,b]. Suppose that
one of conditions (i)− (vii) in Corollary 2.22 holds for {,1} and {,2}. Let w be
continuous nonnegative weight function on [x,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t) |D1

b− f (t)| |D2
b− f (t)|dt ≤ K6 ̃(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣D
b− f (t)

∣∣2 dt , (5.90)

where ̃ and K6 are given by (5.88) and (5.84), respectively.

For Theorems 5.46, 5.47 and 5.48, a comparison of estimations in Remark 5.15 is also
valid.

THE CAPUTO FRACTIONAL DERIVATIVES

Theorem 5.49 Let i = 1,2, i ≥ 0,  > i + 5
6 and mi, n given by (2.70). Let m =

min{m1,m2}. Let f ∈ACn[a,b] be such that f (i)(a)= 0 for i = m, . . . ,n−1 and let CD
a+ f ∈

L2[a,b]. Let w be continuous nonnegative weight function on [a,x]. Then for a.e. x ∈ [a,b]
holds∫ x

a
w(t) |CD1

a+ f (t)| |CD2
a+ f (t)|dt ≤ K4(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣CD
a+ f (t)

∣∣2 dt ,

(5.91)
where  and K4 are given by (5.79) and (5.80), respectively.

Theorem 5.50 Let i = 1,2, i ≥ 0,  > i + 5
6 and mi, n given by (2.70). Let m =

min{m1,m2}. Let f ∈ACn[a,b] be such that f (i)(a)= 0 for i = m, . . . ,n−1 and let CD
a+ f ∈
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L2[a,b]. Let w be continuous nonnegative weight function on [a,x]. Then for a.e. x ∈ [a,b]
holds∫ x

a
w(t) |CD1

a+ f (t)| |CD2
a+ f (t)|dt ≤ K5(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣CD
a+ f (t)

∣∣2 dt ,

(5.92)
where  and K5 are given by (5.79) and (5.82), respectively.

Theorem 5.51 Let i = 1,2, i ≥ 0,  > i + 1
2 and mi, n given by (2.70). Let m =

min{m1,m2}. Let f ∈ACn[a,b] be such that f (i)(a)= 0 for i = m, . . . ,n−1 and let CD
a+ f ∈

L2[a,b]. Let w be continuous nonnegative weight function on [a,x]. Then for a.e. x ∈ [a,b]
holds∫ x

a
w(t) |CD1

a+ f (t)| |CD2
a+ f (t)|dt ≤ K6(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣CD
a+ f (t)

∣∣2 dt ,

(5.93)
where  and K6 are given by (5.79) and (5.84), respectively.

We continue with the inequalities for the right-sided Caputo fractional derivatives.

Theorem 5.52 Let i = 1,2, i ≥ 0,  > i + 5
6 and mi, n given by (2.70). Let m =

min{m1,m2}. Let f ∈ACn[a,b] be such that f (i)(b)= 0 for i = m, . . . ,n−1 and let CD
b− f ∈

L2[a,b]. Let w be continuous nonnegative weight function on [x,b]. Then for a.e. x ∈ [a,b]
holds∫ b

x
w(t) |CD1

b− f (t)| |CD2
b− f (t)|dt ≤ K4 ̃(x)(b− x)2−1−2− 1

2

∫ b

x

∣∣CD
b− f (t)

∣∣2 dt ,

(5.94)
where ̃ and K4 are given by (5.88) and (5.80), respectively.

Theorem 5.53 Let i = 1,2, i ≥ 0,  > i + 5
6 and mi, n given by (2.70). Let m =

min{m1,m2}. Let f ∈ACn[a,b] be such that f (i)(b)= 0 for i = m, . . . ,n−1 and let CD
b− f ∈

L2[a,b]. Let w be continuous nonnegative weight function on [x,b]. Then for a.e. x ∈ [a,b]
holds∫ x

a
w(t) |CD1

b− f (t)| |CD2
b− f (t)|dt ≤ K5 ̃(x)(b− x)2−1−2− 1

2

∫ x

a

∣∣CD
b− f (t)

∣∣2 dt ,

(5.95)
where ̃ and K5 are given by (5.88) and (5.82), respectively.

Theorem 5.54 Let i = 1,2, i ≥ 0,  > i + 1
2 and mi, n given by (2.70). Let m =

min{m1,m2}. Let f ∈ACn[a,b] be such that f (i)(b)= 0 for i = m, . . . ,n−1 and let CD
b− f ∈

L2[a,b]. Let w be continuous nonnegative weight function on [x,b]. Then for a.e. x ∈ [a,b]
holds∫ x

a
w(t) |CD1

b− f (t)| |CD2
b− f (t)|dt ≤ K6 ̃(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣CD
b− f (t)

∣∣2 dt ,

(5.96)
where ̃ and K6 are given by (5.88) and (5.84), respectively.
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Since these inequalities for the Caputo fractional derivatives have same constants K4,
K5 and K6, as inequalities for the Riemann-Liouville fractional derivatives, then Remark
5.15 is also valid here.

THE CANAVATI FRACTIONAL DERIVATIVES

Theorem 5.55 Let i ≥ 0,  > i + 5
6 , mi = [i] + 1 for i = 1,2 and n = [] + 1, m =

min{m1,m2}. Let f ∈ C
a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
a+ f ∈ L2[a,b]. Let w be continuous nonnegative weight function on [a,x]. Then for a.e.

x ∈ [a,b] holds∫ x

a
w(t) |C1D1

a+ f (t)| |C1D2
a+ f (t)|dt ≤ K4(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣C1D
a+ f (t)

∣∣2 dt ,

(5.97)
where  and K4 are given by (5.79) and (5.80), respectively.

Theorem 5.56 Let i ≥ 0,  > i + 5
6 , mi = [i] + 1 for i = 1,2 and n = [] + 1, m =

min{m1,m2}. Let f ∈ C
a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
a+ f ∈ L2[a,b]. Let w be continuous nonnegative weight function on [a,x]. Then for a.e.

x ∈ [a,b] holds∫ x

a
w(t) |C1D1

a+ f (t)| |C1D2
a+ f (t)|dt ≤ K5(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣C1D
a+ f (t)

∣∣2 dt ,

(5.98)
where  and K5 are given by (5.79) and (5.82), respectively.

Theorem 5.57 Let i ≥ 0,  > i + 1
2 , mi = [i] + 1 for i = 1,2 and n = [] + 1, m =

min{m1,m2}. Let f ∈ C
a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
a+ f ∈ L2[a,b]. Let w be continuous nonnegative weight function on [a,x]. Then for a.e.

x ∈ [a,b] holds∫ x

a
w(t) |C1D1

a+ f (t)| |C1D2
a+ f (t)|dt ≤ K6(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣C1D
a+ f (t)

∣∣2 dt ,

(5.99)
where  and K6 are given by (5.79) and (5.84), respectively.

Next inequalities include the right-sided Canavati fractional derivatives.

Theorem 5.58 Let i ≥ 0,  > i + 5
6 , mi = [i] + 1 for i = 1,2 and n = [] + 1, m =

min{m1,m2}. Let f ∈ C
b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
b− f ∈ L2[a,b]. Let w be continuous nonnegative weight function on [x,b]. Then for a.e.

x ∈ [a,b] holds∫ b

x
w(t) |C1D1

b− f (t)| |C1D2
b− f (t)|dt ≤ K4 ̃(x)(b− x)2−1−2− 1

2

∫ b

x

∣∣C1D
b− f (t)

∣∣2 dt ,

(5.100)
where ̃ and K4 are given by (5.88) and (5.80), respectively.
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Theorem 5.59 Let i ≥ 0,  > i + 5
6 , mi = [i] + 1 for i = 1,2 and n = [] + 1, m =

min{m1,m2}. Let f ∈ C
b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
b− f ∈ L2[a,b]. Let w be continuous nonnegative weight function on [x,b]. Then for a.e.

x ∈ [a,b] holds∫ x

a
w(t) |C1D1

b− f (t)| |C1D2
b− f (t)|dt ≤ K5 ̃(x)(b− x)2−1−2− 1

2

∫ x

a

∣∣C1D
b− f (t)

∣∣2 dt ,

(5.101)
where ̃ and K5 are given by (5.88) and (5.82), respectively.

Theorem 5.60 Let i ≥ 0,  > i + 1
2 , mi = [i] + 1 for i = 1,2 and n = [] + 1, m =

min{m1,m2}. Let f ∈ C
b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2 and let

C1D
b− f ∈ L2[a,b]. Let w be continuous nonnegative weight function on [x,b]. Then for a.e.

x ∈ [a,b] holds∫ x

a
w(t) |C1D1

b− f (t)| |C1D2
b− f (t)|dt ≤ K6 ̃(x)(x−a)2−1−2− 1

2

∫ x

a

∣∣C1D
b− f (t)

∣∣2 dt ,

(5.102)
where ̃ and K6 are given by (5.88) and (5.84), respectively.

A comparison of constants K4, K5 and K6 from Remark 5.15 is also valid for the Cana-
vati fractional derivatives.





Chapter6
Extensions of Opial-type
inequalities for fractional
derivatives

In this chapter we observe Opial-type inequalities involving fractional derivatives of order
 and i, i = 1, . . . ,N, and also obtain theirs generalizations, extensions, improvements
and refinements. As in the previous chapter, we investigate the possibility of obtaining the
best possible constant and compare results obtained by different methods. This chapter is
based on our results: Andrić, Pečarić and Perić [16, 23, 24, 25, 27].

6.1 Extensions of the Fink Opial-type inequality

Our first inequality is the multiple generalization of Fink’s inequality (1.23)

∫ b

a

N


i=1

|Di f (t)|dt ≤ K

(∫ b

a
|D f (t)|q dt

)N
q

,

where  > i ≥ 0, K > 0 is a constant and q ∈ R.
This inequality is a special case of Opial-type inequality due to Agarwal-Pang, which

we observe in section 3.2.2. It is given for the left-sided Riemann-Liouville fractional

159
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derivatives in [25] by Andrić-Pečarić-Perić where Agarwal-Pang’s method from [2] (here
Theorem 6.1) is used as well as generalization of Fink’s method from [45] (Theorem 6.2).
The comparison of the obtained results is also given in [25] (Remark 6.1).

THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

Theorem 6.1 Let p,q > 1 with 1
p + 1

q = 1. Let i ≥ 0,  > i + 1
q for i = 1, . . .N, N ∈ N,

N ≥ 2. Suppose that one of conditions (i)− (vii) in Corollary 2.21 holds for all pairs
{,i}, i = 1, . . . ,N. Let D

a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|Di
a+ f (t)|dt ≤ T1 (x−a)

N


i=1
(−i)+1− N

q
(∫ x

a
|D

a+ f (t)|q dt

)N
q

, (6.1)

where

T1 =

[(
N


i=1

(−i)
(
−i− 1

q

) 1
p
)

p
N
p

(
N


i=1

(−i)+1− N
q

)]−1

. (6.2)

Proof. Set i =  −i − 1, i = 1, . . . ,N. Using Theorem 2.13, the triangle inequality
and Hölder’s inequality we have

∫ x

a

N


i=1

|Di
a+ f (t)|dt

≤ 1
N

i=1

(i +1)

∫ x

a

N


i=1

(∫ t

a
(t − )i |D

a+ f ()|d
)

dt

≤ 1
N

i=1

(i +1)

∫ x

a

N


i=1

[(∫ t

a
(t− )pi d

) 1
p
(∫ t

a
|D

a+ f ()|q d
) 1

q
]

dt

=
1

N

i=1

(i +1)(pi +1)
1
p

∫ x

a
(t −a)

N
i=1 i+ N

p

(∫ t

a
|D

a+ f ()|q d
)N

q

dt

≤ 1
N

i=1

(i +1)(pi +1)
1
p

(∫ x

a
|D

a+ f ()|q d
)N

q (x−a)
N
i=1 i+1+ N

p

N

i=1

i +1+ N
p

.

�

In the next theorem we will obtain new estimation of inequality (6.1) using generalized
Fink’ method from [45].
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Theorem 6.2 Let p,q > 1 with 1
p + 1

q = 1. Let i ≥ 0,  > 1 ≥ i + 1 for i = 2, . . .N,
N ∈ N, N ≥ 2. Suppose that one of conditions (i)− (vii) in Corollary 2.21 holds for all
pairs {,i}, i = 1, . . . ,N. Let D

a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|Di
a+ f (t)|dt ≤ FN (x−a)

N


i=1
(−i)+1− N

q
(∫ x

a
|D

a+ f (t)|q dt

)N
q

, (6.3)

where

FN =

⎡⎣( N


i=1

(−i)

)
(−1) p

N
p

(
−1 +

1
p

)N−1
p

N
1
q

(
N


i=1

(−i)+1− N
q

) 1
p
⎤⎦−1

.

(6.4)
Inequality (6.3) is sharp for 1 = 2 + 1 = · · · = N + 1, where equality is attained for a

function f such that D
a+ f (t) = (x− t)

p(−1)
q , t ∈ [a,x].

Proof. Set i =  −i − 1, i = 1, . . . ,N. Using Theorem 2.13, the triangle inequality
and Hölder’s inequality we have∫ x

a

N


i=1

|Di
a+ f (t)|dt

≤ 1
N

i=1

(i +1)

∫ x

a

(
N


i=1

∫ x

a
|D

a+ f (i)|(t− i)i
+ di

)
dt

=
1

N

i=1

(i +1)

∫
[a,x]N

N


i=1

|D
a+ f (i)|

(∫ x

a

N


i=1

(t− i)i
+ dt

)
d1 · · ·dN

=
1

N

i=1

(i +1)

∫
[a,x]N

N


i=1

|D
a+ f (i)|

(∫ x

max{1,...,N}

N


i=1

(t− i)i dt

)
d1 · · ·dN

=
1

N

i=1

(i +1)

∫
N

N


i=1

|D
a+ f (i)|

(∫ x

N

∈SN

N


i=1

(t− i)(i) dt

)
dN · · ·d1 ,

(6.5)

where N = {(1, . . . ,N) : a ≤ 1 ≤ ·· · ≤ N ≤ x} and SN is the group of all permutations
of the set {1,2, . . . ,N}. The last equality in (6.5) follows by dividing the cube [a,x]N into
parts where a ≤ (1) ≤ (2) ≤ ·· · ≤ (N) ≤ x for some  ∈ SN , and symmetry of the
involved expressions. Suppose that  ∈ SN is given and suppose that j ∈ {1, . . . ,N} is such
that ( j) = 1. Then

N


i=1

(t− i)(i) = 
i�= j

(t− i)(i)−1−1(t −  j)1
i�= j

(t − i)1+1
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≤ (t− 1)
N
i=2 i−(N−1)(1+1)(t −  j)1

i�= j

(t− i)1+1 . (6.6)

Since the group SN has N! permutations, then ( j) = 1 is on a certain position in permuta-
tion exactly (N−1)! times. Therefore using (6.6) we have∫ x

N

∈SN

N


i=1

(t − i)(i) dt

≤
∫ x

N

∈SN

[
(t − 1)

N
i=2 i−(N−1)(1+1)(t−  j)1

i�= j

(t − i)1+1

]
dt

=
∫ x

N
(N−1)!

N


j=1

(t− 1)
N
i=2 i−(N−1)(1+1)(t −  j)1

i�= j

(t− i)1+1 dt

= (N−1)!
∫ x

N
(t − 1)

N
i=2 i−(N−1)(1+1)

N


j=1

(t−  j)1
i�= j

(t− i)1+1 dt

=
(N−1)!
1 +1

∫ x

N
(t − 1)

N
i=2 i−(N−1)(1+1) d

dt

(
N


i=1

(t− i)1+1

)
dt .

Using integration by parts we get∫ x

N
(t− 1)

N
i=2 i−(N−1)(1+1) d

dt

(
N


i=1

(t − i)1+1

)
dt

≤ (x− 1)
N
i=2 i−(N−1)(1+1)

N


i=1

(x− i)1+1

= (x− 1)
N
i=2 i−(N−2)(1+1)

N


i=2

(x− i)1+1 ,

which leads to∫ x

N

∈SN

N


i=1

(t− i)(i) dt ≤ (N−1)!
1 +1

(x− 1)
N
i=2 i−(N−2)(1+1)

N


i=2

(x− i)1+1 .

Set A = (N−1)!
(1+1)N

i=1(i+1)
. Then

∫ x

a

N


i=1

|Di
a+ f (t)|dt

≤ 1
N

i=1

(i +1)

∫
N

N


i=1

|D
a+ f (i)|

(∫ x

N

∈SN

N


i=1

(t− i)(i) dt

)
dN · · ·d1

≤ A
∫
N

N


i=1

|D
a+ f (i)|(x− 1)

N
i=2 i−(N−2)(1+1)

N


i=2

(x− i)1+1 dN · · ·d1
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= A
∫ x

a
(x− 1)

N
i=2 i−(N−2)(1+1)|D

a+ f (1)|d1
∫ x

1
(x− 2)1+1|D

a+ f (2)|d2

· · ·
∫ x

N−1

(x− N)1+1|D
a+ f (N)|dN . (6.7)

Applying Hölder’s inequality on the last integral in (6.7) we get∫ x

N−1

(x− N)1+1|D
a+ f (N)|dN

≤
(∫ x

N−1

(x− N)p(1+1) dN
) 1

p
(∫ x

N−1

|D
a+ f (N)|q dN

) 1
q

(6.8)

=
(x− N−1)

1+1+ 1
p

[p(1 +1)+1]
1
p

(∫ x

N−1

|D
a+ f (N )|q dN

) 1
q

.

Again we use Hölder’s inequality, that is

∫ x

N−2

(x− N−1)
2(1+1)+ 1

p |D
a+ f (N−1)|

(∫ x

N−1

|D
a+ f (N)|q dN

) 1
q

dN−1

≤
(∫ x

N−2

(x− N−1)2p(1+1)+1 dN−1

) 1
p

·
[∫ x

N−2

|D
a+ f (N−1)|q

(∫ x

N−1

|D
a+ f (N)|q dN

)
dN−1

] 1
q

=
(x− N−2)

2(1+1)+ 2
p

[2p(1 +1)+2]
1
p

1

2
1
q

(∫ x

N−2

|D
a+ f (N)|q dN

) 2
q

.

Notice

[2p(1 +1)+2]
1
p 2

1
q = 2

1
p + 1

q [p(1 +1)+1]
1
p = 2 [p(1 +1)+1]

1
p .

Next step gives us

∫ x

N−3

(x− N−2)
3(1+1)+ 2

p |D
a+ f (N−2)|

(∫ x

N−2

|D
a+ f (N)|q dN

) 2
q

dN−2

≤
(∫ x

N−3

(x− N−2)3p(1+1)+2dN−2

) 1
p

·
[∫ x

N−3

|D
a+ f (N−2)|q

(∫ x

N−2

|D
a+ f (N)|q dN

)2

dN−2

] 1
q

=
(x− N−3)

3(1+1)+ 3
p

[3p(1 +1)+3]
1
p

1

3
1
q

(∫ x

N−3

|D
a+ f (N)|q dN

) 3
q

.
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Finally, we have∫ x

a

N


i=1

|Di
a+ f (t)|dt

≤ A

(N−2)![p(1 +1)+1]
N−2

p

∫ x

a
(x− 1)

N
i=2 i−(N−2)(1+1)|D

a+ f (1)|d1

· (x− 1)(N−1)(1+1)+ N−1
p

[(N−1)p(1 +1)+N−1]
1
p (N−1)

1
q

(∫ x

1
|D

a+ f (N)|q dN
) N−1

q

d1

=
A

(N−1)![p(1 +1)+1]
N−1

p

∫ x

a
(x− 1)

N
i=1 i+1+ N−1

p |D
a+ f (1)|d1

·
(∫ x

1
|D

a+ f (N)|q dN
)N−1

q

d1

≤ 1
N

i=1

(i +1)(1 +1) [p(1 +1)+1]
N−1

p

(∫ x

a
(x− 1)pN

i=1 i+p+N−1 d1
) 1

p

·
[∫ x

a
|D

a+ f (1)|q
(∫ x

1
|D

a+ f (N)|q dN
)N−1

d1

] 1
q

=
1

N

i=1

(i +1)(1 +1) [p(1 +1)+1]
N−1

p

· (x−a)
N
i=1 i+1+ N

p

[p(N
i=1 i +1)+N]

1
p

· 1

N
1
q

(∫ x

a
|D

a+ f (N)|q dN
)N

q

.

This proves the inequality (6.3).
Consider the case 1 = 2 +1 = · · ·= N +1. Using the equality condition in Hölder’s

inequality we have equality in (6.8) if and only if |D
a+ f (N)|q = K(x−N)p(1+1) for some

constant K ≥ 0 and every N ∈ [N−1,x]. Straightforward calculation will show that for a

function D
a+ f (t) = (x− t)

p(−1)
q inequality (6.3) is sharp.

FN (x−a)
N


i=1
(−i)+1− N

q =
(x−a)N(−1)+ N

p

N [p(−1)+1]
N
p [(−1)]N (−1)N

,

(∫ x

a
|D

a+ f (t)|q dt

)N
q

=
(∫ x

a
Kq(x− t)p(−1) dt

)N
q

=
KN (x−a)

Np
q (−1)+ N

q

[p(−1)+1]
N
q

,

and for the right side of the inequality (6.3) we have

KN (x−a)Np(−1)+N

N [p(−1)+1]N [(−1)]
N (−1)N

. (6.9)
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For the left side of the inequality (6.3) we get

∫ x

a

N


i=1

|Di
a+ f (t)|dt =

∫ x

a
|D1

a+ f (t)||D1−1
a+ f (t)|N−1 dt =

|D1−1
a+ f (x)|N

N

=
1

N [(−1 +1)]N

(∫ x

a
(x− )−1 |D

a+ f ()|d
)N

=
KN

N (−1)
N [(−1)]

N

(∫ x

a
(x− )p(−1) d

)N

=
KN (x−a)Np(−1)+N

N (−1)
N [(−1)]

N [p(−1)+1]N
, (6.10)

so (6.9) and (6.10) are equal. This proves theorem. �

Remark 6.1 The constants T1 and FN from the two previous theorems are in general not
comparable, but there are cases when we can do that. Although the constat FN gives the
best possible estimation in the case 1 = 2 + 1 = · · · = N + 1, it seems that constant T1

gives more uniform estimation which is partially justified by the following discussion (in
Remark 5.9 we give comparison for N = 2). Notice

FN

T1
=

[
N

i=1

(−i)+1−N+ N
p

] 1
q N

i=1

(
−i−1+ 1

p

) 1
p

N
1
q (−1)

(
−1 + 1

p

) N−1
p

.

We want to find cases when T1 < FN . Set  −1 = d, 1 −i = i ≥ 1 for i = 2, . . . ,N.
Then inequality T1 < FN is equivalent to

1(
Nd +

N

i=2

i +1−N+ N
p

)1− 1
p N

i=2

(
d + i−1+ 1

p

) 1
p

<

(
d−1+ 1

p

) 1
p

N1− 1
p d

(
d + 1

p

)N−1
p

. (6.11)

If i are big enough, then the left side of (6.11) tends to zero, while the right side depends
only of d. Therefore, in this case T1 < FN .

Let i = 1, that is 1 = i +1, i = 2, . . . ,N (see the discussion of sharpness in Theorem
6.2). Then the reverse inequality (6.11) is equivalent to

1(
Nd + N

p

)1− 1
p
(
d + 1

p

)N−1
p

>

(
d−1+ 1

p

) 1
p

N1− 1
p d

(
d + 1

p

)N−1
p

,

that is
pd +1

pd− p+1
>

(
1+

1
pd

)p

.
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This is equivalent to inequality (
pd +1− p

pd +1

) 1
p

<
pd

1+ pd

which is a simple consequence of Bernoulli’s inequality. This is in accordance with The-
orem 6.2. Numerical calculations indicate that there is a very narrow area around the best
possible case 1 = i +1, i = 2, . . . ,N, where FN gives better estimation than T1.

In the following cases, when p = 1 and p ∈ (0,1), we use a method from 6.1.

Proposition 6.1 Let  > i ≥ 0 for i = 1, . . .N, N ∈ N, N ≥ 2. Suppose that one of
conditions (i)−(vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let D

a+ f ∈
L[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|Di
a+ f (t)|dt ≤ (x−a)

N


i=1
(−i)+1[

N

i=1

(−i)+1

]
N

i=1

( −i +1)

∥∥D
a+ f (t)

∥∥N
 . (6.12)

Proof. Set i =  −i − 1, i = 1, . . . ,N. Using Theorem 2.13, the triangle inequality
and Hölder’s inequality we have∫ x

a

N


i=1

|Di
a+ f (t)|dt ≤ 1

N
i=1(i +1)

∫ x

a

N


i=1

(∫ t

a
(t− )i |D

a+ f ()|d
)

dt

≤ 1

N
i=1(i +1)

∫ x

a

N


i=1

[(∫ t

a
(t− )i d

)∥∥D
a+ f

∥∥


]
dt

=

∥∥D
a+ f

∥∥N


N
i=1(i +2)

∫ x

a
(t−a)

N
i=1 i+N dt

=

∥∥D
a+ f

∥∥N


N
i=1(i +2)

(x−a)
N
i=1 i+N+1

N
i=1 i +N +1

.

�

Theorem 6.3 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  > i ≥ 0 for i = 1, . . .N, N ∈ N,
N ≥ 2. Let D

a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/D
a+ f ∈ Lq[a,b]. Suppose that

one of conditions (i)−(vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Then
reverse inequality in (6.1) holds.

Next inequalities include the right-sided Riemann-Liouville fractional derivatives.

Theorem 6.4 Let p,q > 1 with 1
p + 1

q = 1. Let i ≥ 0,  > i + 1
q for i = 1, . . .N, N ∈ N,

N ≥ 2. Suppose that one of conditions (i)− (vii) in Corollary 2.22 holds for all pairs
{,i}, i = 1, . . . ,N. Let D

b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|Di
b− f (t)|dt ≤ T1 (b− x)

N


i=1
(−i)+1− N

q
(∫ b

x
|D

b− f (t)|q dt

)N
q

, (6.13)
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where T1 is given by (6.2).

In the following theorem again we use Fink’s method to obtain a new estimation for
the inequality (6.13). The same comparison holds as with the left-sided Riemann-Liouville
fractional derivatives, i.e., for Theorem 6.4 and Theorem 6.5, Remark 6.1 is valid also.

Theorem 6.5 Let p,q > 1 with 1
p + 1

q = 1. Let i ≥ 0,  > 1 ≥ i + 1 for i = 2, . . .N,
N ∈ N, N ≥ 2. Suppose that one of conditions (i)− (vii) in Corollary 2.22 holds for all
pairs {,i}, i = 1, . . . ,N. Let D

b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|Di
b− f (t)|dt ≤ FN (b− x)

N


i=1
(−i)+1− N

q
(∫ b

x
|D

b− f (t)|q dt

)N
q

, (6.14)

where FN is given by (6.4).
Inequality (6.14) is sharp for 1 = 2 + 1 = · · · = N + 1, where equality is attained

for a function f such that D
b− f (t) = (t− x)

p(−1)
q , t ∈ [x,b].

In the following cases, when p = 1 and p∈ (0,1), we use a method from Theorem 6.4.

Proposition 6.2 Let  > i ≥ 0 for i = 1, . . .N, N ∈ N, N ≥ 2. Suppose that one of
conditions (i)−(vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let D

b− f ∈
L[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|Di
b− f (t)|dt ≤ (b− x)

N


i=1
(−i)+1[

N

i=1

(−i)+1

]
N

i=1

(−i +1)

∥∥D
b− f (t)

∥∥N
 . (6.15)

Theorem 6.6 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let  > i ≥ 0 for i = 1, . . .N, N ∈ N,
N ≥ 2. Let D

b− f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/D
b− f ∈ Lq[a,b]. Suppose that

one of conditions (i)−(vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Then
reverse inequality in (6.1) holds.



168 6 FRACTIONAL EXTENSIONS OF OPIAL-TYPE INEQUALITIES

THE CAPUTO FRACTIONAL DERIVATIVES

Theorem 6.7 Let p,q > 1 with 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N, i ≥ 0,

 > i + 1
q , and mi, n given by (2.70) with m = min{mi}. Let f ∈ ACn[a,b] be such that

f (i)(a) = 0 for i = m, . . . ,n−1 and let CD
a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|CDi
a+ f (t)|dt ≤ T1 (x−a)

N


i=1
(−i)+1− N

q
(∫ x

a
|CD

a+ f (t)|q dt

)N
q

, (6.16)

where T1 is given by (6.2).

Next theorem gives a new estimation of the inequality (6.16).

Theorem 6.8 Let p,q> 1 with 1
p + 1

q = 1. Let N ∈N, N ≥ 2, i = 1, . . . ,N,  >1 ≥i+1,
i ≥ 0, and mi, n given by (2.70) with m = min{mi}. Let f ∈ ACn[a,b] be such that
f (i)(a) = 0 for i = m, . . . ,n−1 and let CD

a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|CDi
a+ f (t)|dt ≤ FN (x−a)

N


i=1
(−i)+1− N

q
(∫ x

a
|CD

a+ f (t)|q dt

)N
q

, (6.17)

where FN is given by (2.70).
Inequality (6.17) is sharp for 1 = 2 + 1 = · · · = N + 1, where equality is attained

for a function f such that CD
a+ f (t) = (x− t)

p(−1)
q , t ∈ [a,x].

In the following cases, when p = 1 and p ∈ (0,1), we use a method from Theorem 6.7.

Proposition 6.3 Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, and mi, n given by (2.70)
with m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1 and let
CD

a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|CDi
a+ f (t)|dt ≤ (x−a)

N


i=1
(−i)+1[

N

i=1

(−i)+1

]
N

i=1

( −i +1)

∥∥CD
a+ f (t)

∥∥N
 . (6.18)

Theorem 6.9 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N,
 > i ≥ 0, and mi, n given by (2.70) with m = min{mi}. Let f ∈ ACn[a,b] be such
that f (i)(a) = 0 for i = m, . . . ,n− 1. Let CD

a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with
1/CD

a+ f ∈ Lq[a,b]. Then reverse inequality in (6.16) holds.

Following inequalities include the right-sided Caputo fractional derivatives.
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Theorem 6.10 Let p,q > 1 with 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N, i ≥ 0,

 > i + 1
q , and mi, n given by (2.70) with m = min{mi}. Let f ∈ ACn[a,b] be such that

f (i)(b) = 0 for i = m, . . . ,n−1 and let CD
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|CDi
b− f (t)|dt ≤ T1 (b− x)

N


i=1
(−i)+1− N

q
(∫ b

x
|CD

b− f (t)|q dt

)N
q

, (6.19)

where T1 is given by (6.2).

Theorem 6.11 Let p,q > 1 with 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > 1 ≥
i +1, i ≥ 0, and mi, n given by (2.70) with m = min{mi}. Let f ∈ ACn[a,b] be such that
f (i)(b) = 0 for i = m, . . . ,n−1 and let CD

b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|CDi
b− f (t)|dt ≤ FN (b− x)

N


i=1
(−i)+1− N

q
(∫ b

x
|CD

b− f (t)|q dt

)N
q

, (6.20)

where FN is given by (6.4).
Inequality (6.20) is sharp for 1 = 2 + 1 = · · · = N + 1, where equality is attained

for a function f such that CD
b− f (t) = (t− x)

p(−1)
q , t ∈ [x,b].

In the following cases, when p = 1 and p ∈ (0,1), we use a method from Theorem
6.10.

Proposition 6.4 Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, and mi, n given by (2.70)
with m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1 and let
CD

b− f ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|CDi
b− f (t)|dt ≤ (b− x)

N


i=1
(−i)+1[

N

i=1

(−i)+1

]
N

i=1

(−i +1)

∥∥CD
b− f (t)

∥∥N
 . (6.21)

Theorem 6.12 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N,
 > i ≥ 0, and mi, n given by (2.70) with m = min{mi}. Let f ∈ ACn[a,b] be such
that f (i)(b) = 0 for i = m, . . . ,n− 1. Let CD

b− f ∈ Lq[a,b] be of fixed sign on [a,b], with
1/CD

b− f ∈ Lq[a,b]. Then reverse inequality in (6.16) holds.

The same comparison as in Remark 6.1 holds also for Theorems 6.7, 6.8 and Theorems
6.10, 6.11.
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THE CANAVATI FRACTIONAL DERIVATIVES

Theorem 6.13 Let p,q > 1 with 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N, i ≥ 0,

 > i + 1
q , n = []+ 1, mi = [i]+ 1 with m = min{mi}. Let f ∈ C

a+[a,b] be such that

f (i)(a) = 0 for i = m−1, . . . ,n−2 and let C1D
a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|C1Di
a+ f (t)|dt ≤ T1 (x−a)

N


i=1
(−i)+1− N

q
(∫ x

a
|C1D

a+ f (t)|q dt

)N
q

, (6.22)

where T1 is given by (6.2).

Next theorem gives a new estimation of the inequality (6.22).

Theorem 6.14 Let p,q > 1 with 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > 1 ≥
i +1, i ≥ 0, n = []+1, mi = [i]+1 with m = min{mi}. Let f ∈C

a+[a,b] be such that
f (i)(a) = 0 for i = m−1, . . . ,n−2 and let C1D

a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|C1Di
a+ f (t)|dt ≤ FN (x−a)

N


i=1
(−i)+1− N

q
(∫ x

a
|C1D

a+ f (t)|q dt

)N
q

, (6.23)

where FN is given by (2.70).
Inequality (6.23) is sharp for 1 = 2 + 1 = · · · = N + 1, where equality is attained

for a function f such that C1D
a+ f (t) = (x− t)

p(−1)
q , t ∈ [a,x].

In the following cases, when p = 1 and p ∈ (0,1), we use a method from Theorem
6.13.

Proposition 6.5 Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, n = []+1, mi = [i]+1
with m = min{mi}. Let f ∈C

a+[a,b] be such that f (i)(a) = 0 for i = m−1, . . . ,n−2 and
let C1D

a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|C1Di
a+ f (t)|dt ≤ (x−a)

N


i=1
(−i)+1[

N

i=1

(−i)+1

]
N

i=1

( −i +1)

∥∥C1D
a+ f (t)

∥∥N
 . (6.24)

Theorem 6.15 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N,
 > i ≥ 0, n = []+ 1, mi = [i]+ 1 with m = min{mi}. Let f ∈ C

a+[a,b] be such that
f (i)(a) = 0 for i = m− 1, . . . ,n− 2. Let C1D

a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with
1/C1D

a+ f ∈ Lq[a,b]. Then reverse inequality in (6.22) holds.

Following inequalities include the right-sided Canavati fractional derivatives.
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Theorem 6.16 Let p,q > 1 with 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N, i ≥ 0,

 > i + 1
q , n = []+ 1, mi = [i]+ 1 with m = min{mi}. Let f ∈C

b−[a,b] be such that

f (i)(b) = 0 for i = m−1, . . . ,n−2 and let C1D
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|C1Di
b− f (t)|dt ≤ T1 (b− x)

N


i=1
(−i)+1− N

q
(∫ b

x
|C1D

b− f (t)|q dt

)N
q

, (6.25)

where T1 is given by (6.2).

Theorem 6.17 Let p,q > 1 with 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > 1 ≥
i +1, i ≥ 0, n = []+1, mi = [i]+1 with m = min{mi}. Let f ∈C

b−[a,b] be such that

f (i)(b) = 0 for i = m−1, . . . ,n−2 and let C1D
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|C1Di
b− f (t)|dt ≤ FN (b− x)

N


i=1
(−i)+1− N

q
(∫ b

x
|C1D

b− f (t)|q dt

)N
q

, (6.26)

where FN is given by (6.4).
Inequality (6.26) is sharp for 1 = 2 + 1 = · · · = N + 1, where equality is attained

for a function f such that C1D
b− f (t) = (t− x)

p(−1)
q , t ∈ [x,b].

In the following cases, when p = 1 and p ∈ (0,1), we use a method from Theorem
6.16.

Proposition 6.6 Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, n = []+1, mi = [i]+1
with m = min{mi}. Let f ∈C

b−[a,b] be such that f (i)(b) = 0 for i = m−1, . . . ,n−2 and
let C1D

b− f ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|C1Di
b− f (t)|dt ≤ (b− x)

N


i=1
(−i)+1[

N

i=1

(−i)+1

]
N

i=1

(−i +1)

∥∥C1D
b− f (t)

∥∥N
 . (6.27)

Theorem 6.18 Let p ∈ (0,1), q < 0 and 1
p + 1

q = 1. Let N ∈ N, N ≥ 2, i = 1, . . . ,N,
 > i ≥ 0, n = []+ 1, mi = [i]+ 1 with m = min{mi}. Let f ∈C

b−[a,b] be such that

f (i)(b) = 0 for i = m− 1, . . . ,n− 2. Let C1D
b− f ∈ Lq[a,b] be of fixed sign on [a,b], with

1/C1D
b− f ∈ Lq[a,b]. Then reverse inequality in (6.22) holds.

The same comparison as in Remark 6.1 holds also for Theorems 6.13, 6.14 and Theo-
rems 6.16, Theorem 6.17.
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6.2 Extensions of the Agarwal-Pang Opial-type
inequality

Next inequality is motivated by the extension of Agarwal-Pang given in (1.25), which for
fractional derivatives has a form∫ b

a
w1(t)

N


i=1

|Di f (t)|ri dt

≤ K

(∫ b

a
[w1(t)]

 dt

) 1

(∫ b

a
[w2(t)]

 dt

) (∫ b

a
w2(t) |D f (t)|q dt

) r
q

,

where w1,w2 ∈ C[a,b] are positive weight functions,  > i ≥ 0, K > 0 is a constant,
r = ri and q,, , ∈ R.

This inequality is given for the left-sided Riemann-Liouville fractional derivatives in
[15], and for the Caputo fractional derivatives in [12]. In the following theorems we use re-
sults from Chapter 2.6, and give new conditions under which inequalities hold. An inequal-
ity for the left-sided Canavati fractional derivatives (here Theorem 6.27), Andrić-Pečarić-
Perić give in [23] where improved the composition identity for the left-sided Canavati
fractional derivatives is used.

THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

Theorem 6.19 Let N ∈ N, N ≥ 2,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of
conditions (i)− (vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let w1,
w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N

i=1 ri, sk > 1 and
1
sk

+ 1
s′k

= 1 for k = 1,2. Let q > s2,  = 1
s2
− 1

q ,  = N
i=1 ri( − i − 1)+ r and  >

i +1− for i = 1, . . . ,N. Let D
a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] hold

∫ x

a
w1(t)

N


i=1

|Di
a+ f (t)|ri dt

≤ T2 P(x)
∫ x

a
w1(t)(t −a) dt

(∫ x

a
w2(t) |D

a+ f (t)|q dt

) r
q

(6.28)

≤ T3 P(x)Q(x)(x−a)+ 1
s1

(∫ x

a
w2(t) |D

a+ f (t)|q dt

) r
q

, (6.29)

where

P(x) =
(∫ x

a
[w2(t)]

− s′2
q dt

) r
s′2

, (6.30)

Q(x) =
(∫ x

a
[w1(t)]

s′1 dt

) 1
s′1 , (6.31)
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T2 =
 r

N

i=1

[(−i)(−i−1+) ]ri
, (6.32)

T3 =
T2

(s1 +1)
1
s1

. (6.33)

Proof. We notice that conditions on s2 and q ensure  = 1
s2
− 1

q > 0. Set i =−i−1,
i = 1, . . . ,N. Using Theorem 2.13 and the triangle inequality, for t ∈ [a,x] we have

|Di
a+ f (t)| ≤ 1

(i +1)

∫ t

a
(t− )i |D

a+ f ()|d .

Since ∫ t

a
(t− )i |D

a+ f ()|d =
∫ t

a
[w2()]−

1
q [w2()]

1
q (t− )i |D

a+ f ()|d ,

applying Hölder’s inequality for { q
q−1 ,q} we obtain

≤
(∫ t

a
[w2()]−

1
q−1 (t− )

q
q−1i d

) q−1
q
(∫ x

a
w2() |D

a+ f ()|q d
) 1

q

.

Now follows∫ x

a
w1(t)

N


i=1

|Di
a+ f (t)|ri dt

≤ 1

N
i=1 [(i +1)]ri

∫ x

a
w1(t)

N


i=1

(∫ t

a
(t− )i |D

a+ f ()|d
)ri

dt

≤ 1

N
i=1 [(i +1)]ri

(∫ x

a
w2() |D

a+ f ()|q d
) r

q

·
∫ x

a
w1(t)

N


i=1

(∫ t

a
[w2()]−

1
q−1 (t− )

q
q−1i d

) q−1
q ri

dt .

Again by Hölder’s inequality for
s′2(q−1)

q and
s′2(q−1)

s′2(q−1)−q = q−1
q follow

∫ x

a
w1(t)

N


i=1

|Di
a+ f (t)|ri dt

≤ 1
N

i=1

[(i +1)]ri

(∫ x

a
w2() |D

a+ f ()|q d
) r

q

·
∫ x

a
w1(t)

N


i=1

(∫ x

a
[w2(t)]

− s′2
q dt

) ri
s′2
(∫ t

a
(t− )

i
 d

)ri

dt
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=
P(x) r

N

i=1

[(i +1)]ri (i +)ri

(∫ x

a
w2() |D

a+ f ()|q d
) r

q
∫ x

a
w1(t)(t −a) dt

≤ T2 P(x)
(∫ x

a
w2() |D

a+ f ()|q d
) r

q
(∫ x

a
[w1(t)]

s′1 dt

) 1
s′1
(∫ x

a
(t −a)s1 dt

) 1
s1

=
T2 Q(x)P(x)(x−a)+ 1

s1

(s1 +1)
1
s1

(∫ x

a
w2() |D

a+ f ()|q d
) r

q

.

�

Next is the case for q = .

Proposition 6.7 Let N ∈ N, N ≥ 2,  > i ≥ 0 for i = 1, . . . ,N and let D
a+ f ∈ L[a,b].

Suppose that one of conditions (i)− (vii) in Corollary 2.21 holds for all pairs {,i}, i =
1, . . . ,N. Let w be continuous nonnegative weight function on [a,x]. Let ri > 0, r =N

i=1 ri.
Then for a.e. x ∈ [a,b] holds∫ x

a
w(t)

N


i=1

|Di
a+ f (t)|ri dt

≤ (x−a)
N

i=1

ri(−i)+1[
N

i=1

ri(−i)+1

]
N

i=1

[(−i +1)]ri
‖w‖‖D

a+ f‖r
 . (6.34)

Proof. Set i =  −i − 1, i = 1, . . . ,N. Using Theorem 2.13, the triangle inequality
and Hölder’s inequality, for t ∈ [a,x] we have

|Di
a+ f (t)| ≤ 1

(i +1)

∫ t

a
(t − )i |D

a+ f ()|d

≤ 1
(i +1)

(∫ t

a
(t− )i d

)
‖D

a+ f‖

=
(t−a)i+1

(i +2)
‖D

a+ f‖ .

Hence ∫ x

a
w(t)

N


i=1

|Di
a+ f (t)|ri dt

≤ 1
N

i=1

[(i +2)]ri

(∫ x

a
w(t)(t −a)

N
i=1 ri(i+1) dt

)
‖D

a+ f‖r


≤ 1
N

i=1

[(i +2)]ri
‖w‖

(∫ x

a
(t−a)−1 dt

)
‖D

a+ f‖r
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=
(x−a)

 N
i=1 [(i +2)]ri

‖w‖ ‖D
a+ f‖r

 .

�

In the following theorem we have negative q and s1,s2 ∈ (0,1) (which again ensure
 = 1

s2
− 1

q > 0). Since q < 0, then we use reverse Hölder’s inequality and we need a
condition 1/D

a+ f ∈ Lq[a,b].

Theorem 6.20 Let N ∈ N, N ≥ 2,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of
conditions (i)− (vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let w1,
w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N

i=1 ri, sk ∈ (0,1)
and 1

sk
+ 1

s′k
= 1 for k = 1,2. Let q < 0,  = 1

s2
− 1

q ,  = N
i=1 ri( − i − 1)+ r and

 > i +1− , i = 1, . . . ,N. Let D
a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/D

a+ f ∈
Lq[a,b]. Then reverse inequalities in (6.28) and (6.29) hold.

Next inequalities include the right-sided Riemann-Liouville fractional derivatives.

Theorem 6.21 Let N ∈ N, N ≥ 2,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of
conditions (i)− (vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let w1,
w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N

i=1 ri, sk > 1 and
1
sk

+ 1
s′k

= 1 for k = 1,2. Let q > s2,  = 1
s2
− 1

q ,  = N
i=1 ri( − i − 1)+ r and  >

i +1− for i = 1, . . . ,N. Let D
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] hold

∫ b

x
w1(t)

N


i=1

|Di
b− f (t)|ri dt

≤ T2 P̃(x)
∫ b

x
w1(t)(b− t) dt

(∫ b

x
w2(t) |D

b− f (t)|q dt

) r
q

(6.35)

≤ T3 P̃(x)Q̃(x)(b− x)+ 1
s1

(∫ b

x
w2(t) |D

b− f (t)|q dt

) r
q

, (6.36)

where T2 and T3 are given by (6.32) and (6.33), and

P̃(x) =
(∫ b

x
[w2(t)]

− s′2
q dt

) r
s′2

, (6.37)

Q̃(x) =
(∫ b

x
[w1(t)]

s′1 dt

) 1
s′1

. (6.38)

Following cases are for q =  and q < 0.

Proposition 6.8 Let N ∈ N, N ≥ 2,  > i ≥ 0 for i = 1, . . . ,N and let D
b− f ∈ L[a,b].

Suppose that one of conditions (i)− (vii) in Corollary 2.22 holds for all pairs {,i}, i =
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1, . . . ,N. Let w be continuous nonnegative weight function on [a,x]. Let ri > 0, r =N
i=1 ri.

Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

N


i=1

|Di
b− f (t)|ri dt

≤ (b− x)
N

i=1

ri(−i)+1[
N

i=1

ri(−i)+1

]
N

i=1

[(−i +1)]ri
‖w‖‖D

b− f‖r
 . (6.39)

Theorem 6.22 Let N ∈ N, N ≥ 2,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of
conditions (i)− (vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let w1,
w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N

i=1 ri, sk ∈ (0,1)
and 1

sk
+ 1

s′k
= 1 for k = 1,2. Let q < 0,  = 1

s2
− 1

q ,  = N
i=1 ri( − i − 1)+ r and

 > i +1− , i = 1, . . . ,N. Let D
b− f ∈ Lq[a,b] be of fixed sign on [a,b], with 1/D

b− f ∈
Lq[a,b]. Then reverse inequalities in (6.35) and (6.36) hold.

THE CAPUTO FRACTIONAL DERIVATIVES

Theorem 6.23 Let N ∈N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n−1. Let w1, w2 be
continuous positive weight functions on [a,x]. Let ri > 0, r =N

i=1 ri, sk > 1 and 1
sk

+ 1
s′k

= 1

for k = 1,2. Let q > s2,  = 1
s2
− 1

q ,  = N
i=1 ri( −i−1)+ r and  > i +1− for

i = 1, . . . ,N. Let CD
a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] hold

∫ x

a
w1(t)

N


i=1

|CDi
a+ f (t)|ri dt

≤ T2 P(x)
∫ x

a
w1(t)(t −a) dt

(∫ x

a
w2(t) |CD

a+ f (t)|q dt

) r
q

(6.40)

≤ T3 P(x)Q(x)(x−a)+ 1
s1

(∫ x

a
w2(t) |CD

a+ f (t)|q dt

) r
q

, (6.41)

where P, Q, T2 and T3 are given by (6.30), (6.31), (6.32) and (6.33), respectively.

Proposition 6.9 Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, and mi, n given by (2.70)
with m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1 and let
CD

a+ f ∈ L[a,b]. Let w be continuous nonnegative weight function on [a,x]. Let ri > 0,
r = N

i=1 ri. Then for a.e. x ∈ [a,b] holds

∫ x

a
w(t)

N


i=1

|CDi
a+ f (t)|ri dt
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≤ (x−a)
N

i=1

ri(−i)+1[
N

i=1

ri(−i)+1

]
N

i=1

[(−i +1)]ri
‖w‖ ‖CD

a+ f‖r
 . (6.42)

Theorem 6.24 Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, and mi, n given by (2.70)
with m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1. Let
w1, w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N

i=1 ri, sk ∈
(0,1) and 1

sk
+ 1

s′k
= 1 for k = 1,2. Let q < 0,  = 1

s2
− 1

q ,  = N
i=1 ri( −i − 1)+ r

and  > i + 1−  , i = 1, . . . ,N. Let CD
a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with

1/CD
a+ f ∈ Lq[a,b]. Then reverse inequalities in (6.40) and (6.41) hold.

Following inequalities include the right-sided Caputo fractional derivatives.

Theorem 6.25 Let N ∈N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n−1. Let w1, w2 be
continuous positive weight functions on [a,x]. Let ri > 0, r =N

i=1 ri, sk > 1 and 1
sk

+ 1
s′k

= 1

for k = 1,2. Let q > s2,  = 1
s2
− 1

q ,  = N
i=1 ri(−i −1)+ r and  > i +1− for

i = 1, . . . ,N. Let CD
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] hold

∫ b

x
w1(t)

N


i=1

|CDi
b− f (t)|ri dt

≤ T2 P̃(x)
∫ b

x
w1(t)(b− t) dt

(∫ b

x
w2(t) |CD

b− f (t)|q dt

) r
q

(6.43)

≤ T3 P̃(x)Q̃(x)(b− x)+ 1
s1

(∫ b

x
w2(t) |CD

b− f (t)|q dt

) r
q

, (6.44)

where P̃, Q̃, T2 and T3 are given by (6.37), (6.38), (6.32) and (6.33), respectively.

Proposition 6.10 Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, and mi, n given by (2.70)
with m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1 and let
CD

b− f ∈ L[a,b]. Let w be continuous nonnegative weight function on [a,x]. Let ri > 0,
r = N

i=1 ri. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

N


i=1

|CDi
b− f (t)|ri dt

≤ (b− x)
N

i=1

ri(−i)+1[
N

i=1

ri(−i)+1

]
N

i=1

[(−i +1)]ri
‖w‖ ‖CD

b− f‖r
 . (6.45)

Theorem 6.26 Let N ∈ N, N ≥ 2, i = 1, . . . ,N,  > i ≥ 0, and mi, n given by (2.70)
with m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1. Let
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w1, w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N
i=1 ri, sk ∈

(0,1) and 1
sk

+ 1
s′k

= 1 for k = 1,2. Let q < 0,  = 1
s2
− 1

q ,  = N
i=1 ri( −i − 1)+ r

and  > i + 1− , i = 1, . . . ,N. Let CD
b− f ∈ Lq[a,b] be of fixed sign on [a,b], with

1/CD
b− f ∈ Lq[a,b]. Then reverse inequalities in (6.43) and (6.44) hold.

THE CANAVATI FRACTIONAL DERIVATIVES

Theorem 6.27 Let N ∈N, N ≥ 2,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N
and n = [] + 1. Let f ∈ C

a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2. Let
w1, w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N

i=1 ri, sk > 1
and 1

sk
+ 1

s′k
= 1 for k = 1,2. Let q > s2,  = 1

s2
− 1

q ,  = N
i=1 ri( − i − 1)+ r and

 > i +1− for i = 1, . . . ,N. Let C1D
a+ f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
w1(t)

N


i=1

|C1Di
a+ f (t)|ri dt

≤ T2 P(x)
∫ x

a
w1(t)(t −a) dt

(∫ x

a
w2(t) |C1D

a+ f (t)|q dt

) r
q

(6.46)

≤ T3 P(x)Q(x)(x−a)+ 1
s1

(∫ x

a
w2(t) |C1D

a+ f (t)|q dt

) r
q

, (6.47)

where P, Q, T2 and T3 are given by (6.30), (6.31), (6.32) and (6.33), respectively.

Proposition 6.11 Let N ∈ N, N ≥ 2,  > i ≥ 0, mi = [i] + 1, m = min{mi} for i =
1, . . . ,N and n = []+1. Let f ∈C

a+[a,b] be such that f (i)(a) = 0 for i = m−1, . . . ,n−2
and let C1D

a+ f ∈ L[a,b]. Let w be continuous nonnegative weight function on [a,x]. Let
ri > 0, r = N

i=1 ri. Then for a.e. x ∈ [a,b] holds

∫ x

a
w(t)

N


i=1

|C1Di
a+ f (t)|ri dt

≤ (x−a)
N

i=1

ri(−i)+1[
N

i=1

ri(−i)+1

]
N

i=1

[(−i +1)]ri
‖w‖‖C1D

a+ f‖r
 . (6.48)

Theorem 6.28 Let N ∈N, N ≥ 2,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N
and n = [] + 1. Let f ∈ C

a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2. Let
w1, w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N

i=1 ri, sk ∈
(0,1) and 1

sk
+ 1

s′k
= 1 for k = 1,2. Let q < 0,  = 1

s2
− 1

q ,  = N
i=1 ri( −i − 1)+ r

and  > i + 1− , i = 1, . . . ,N. Let C1D
a+ f ∈ Lq[a,b] be of fixed sign on [a,b], with

1/C1D
a+ f ∈ Lq[a,b]. Then reverse inequalities in (6.46) and (6.47) hold.

Following inequalities include the right-sided Canavati fractional derivatives.
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Theorem 6.29 Let N ∈N, N ≥ 2,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N
and n = [] + 1. Let f ∈ C

b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2. Let
w1, w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N

i=1 ri, sk > 1
and 1

sk
+ 1

s′k
= 1 for k = 1,2. Let q > s2,  = 1

s2
− 1

q ,  = N
i=1 ri( − i − 1)+ r and

 > i +1− for i = 1, . . . ,N. Let C1D
b− f ∈ Lq[a,b]. Then for a.e. x ∈ [a,b] hold

∫ b

x
w1(t)

N


i=1

|C1Di
b− f (t)|ri dt

≤ T2 P̃(x)
∫ b

x
w1(t)(b− t) dt

(∫ b

x
w2(t) |C1D

b− f (t)|q dt

) r
q

(6.49)

≤ T3 P̃(x)Q̃(x)(b− x)+ 1
s1

(∫ b

x
w2(t) |C1D

b− f (t)|q dt

) r
q

, (6.50)

where P̃, Q̃, T2 and T3 are given by (6.37), (6.38), (6.32) and (6.33), respectively.

Proposition 6.12 Let N ∈ N, N ≥ 2,  > i ≥ 0, mi = [i] + 1, m = min{mi} for i =
1, . . . ,N and n = []+1. Let f ∈C

b−[a,b] be such that f (i)(b) = 0 for i = m−1, . . . ,n−2
and let C1D

b− f ∈ L[a,b]. Let w be continuous nonnegative weight function on [a,x]. Let
ri > 0, r = N

i=1 ri. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

N


i=1

|C1Di
b− f (t)|ri dt

≤ (x−a)
N

i=1

ri(−i)+1[
N

i=1

ri(−i)+1

]
N

i=1

[(−i +1)]ri
‖w‖ ‖C1D

b− f‖r
 . (6.51)

Theorem 6.30 Let N ∈N, N ≥ 2,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N
and n = [] + 1. Let f ∈ C

b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2. Let
w1, w2 be continuous positive weight functions on [a,x]. Let ri > 0, r = N

i=1 ri, sk ∈
(0,1) and 1

sk
+ 1

s′k
= 1 for k = 1,2. Let q < 0,  = 1

s2
− 1

q ,  = N
i=1 ri( −i − 1)+ r

and  > i + 1− , i = 1, . . . ,N. Let C1D
b− f ∈ Lq[a,b] be of fixed sign on [a,b], with

1/C1D
b− f ∈ Lq[a,b]. Then reverse inequalities in (6.49) and (6.50) hold.
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6.3 Extensions of the Alzer Opial-type inequalities

We observe two Alzer’s inequalities given in Theorem 1.16 and Theorem 1.17. First in-
equality (1.26) applied on fractional derivatives has a form

∫ b

a
w(t)

(
N


i=1

|Di f (t)|ri
)p

|D f (t)|q dt ≤ K

(∫ b

a
w(t) |D f (t)|p+q dt

) pr+q
p+q

,

where w ∈ C[a,b] is positive weight function,  > i ≥ 0, K > 0 is a constant, r = ri,
and p,q ∈ R.

This inequality is given only for the ordinary derivatives, so in [24] Andrić-Pečarić-
Perić give its fractional version involving the left-sided Canavati fractional derivatives
and monotonous weight function (here Theorem 6.47) under new and relaxed condition
(using improved composition identity for the Canavati fractional derivatives), as well as
non-weighted version (Theorem 6.50), two-weighted version (Theorem 6.67) and version
including bounded weight function (Theorem 6.48). We give analogous results for the
Riemann-Liouville and the Caputo fractional derivatives.

We start with one-weighted inequalities.

THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

Theorem 6.31 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let w be continuous
positive decreasing weight function on [a,x]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let p > 0, q ≥ 0,
 = 1

p+q < 1,  = N
i=1 ri( − i)− r and  > i + for i = 1, . . . ,N. Let D

a+ f ∈
Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
w(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ T4 (x−a)(+)p [w(x)]
p(1−r)
p+q

(∫ x

a
w(t) |D

a+ f (t)|p+qdt

) pr+q
p+q

, (6.52)

where

T4 =
 p qq (1−)(1−)rp

( +) p (rp+q)q
N

i=1

[( −i)( −i−)1− ]ri p
. (6.53)

Proof. Let q �= 0, i =  −i − 1, i = 1, . . . ,N. Since w is decreasing, then for  ≤ t
holds

1 ≤
[
w()
w(t)

]
. (6.54)
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Using Theorem 2.13, the triangle inequality and (6.54), for t ∈ [a,x] we have

N


i=1

|Di
a+ f (t)|ri p

≤ 1
N

i=1

[(i +1)]ri p

N


i=1

[∫ t

a
(t− )i |D

a+ f ()|d
]ri p

≤ 1
N

i=1

[(i +1)]ri p
[w(t)]−rp

N


i=1

[∫ t

a
(t − )i [w()] |D

a+ f ()|d
]ri p

.

By Hölder’s inequality for { 1
1− , 1

 } follows∫ t

a
(t − )i [w()] |D

a+ f ()|d

≤
(∫ t

a
(t − )

i
1− d

)1− (∫ t

a
w() |D

a+ f ()| 1
 d

)

=
(

1−
i +1−

)1−
(t −a)i+1−

(∫ t

a
w() |D

a+ f ()| 1
 d

)
,

where i +1− > 0, that is  > i + , i = 1, . . . ,N. Therefore∫ x

a
w(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ 1
N

i=1

[(i +1)]ri p

∫ x

a
[w(t)]1−rp |D

a+ f (t)|q

·
N


i=1

[(
1−

i +1−

)1−
(t −a)i+1−

(∫ t

a
w() |D

a+ f ()| 1
 d

)
]ri p

dt

=
N


i=1

[(
1−

i +1−

)1− 1
(i +1)

]ri p

(6.55)

·
∫ x

a
[w(t)]1−rp |D

a+ f (t)|q (t−a)
N
i=1(i+1−)rip

(∫ t

a
w() |D

a+ f ()| 1
 d

)rp

dt .

(6.56)

Applying Hölder’s inequality for { 1
 p ,

1
q} with  p =

N

i=1

(i +1−)rip, we obtain

∫ x

a
[w(t)]1−rp |D

a+ f (t)|q (t−a) p
(∫ t

a
w() |D

a+ f ()| 1
 d

)rp

dt

≤
(∫ x

a
(t−a)


 dt

) p
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·
(∫ x

a
[w(t)]

1−rp−q
q w(t) |D

a+ f (t)| 1


(∫ t

a
w() |D

a+ f ()| 1
 d

) rp
q

dt

)q

≤ (x−a)(+)p
(


 +

) p

[w(x)]
p(1−r)
p+q

(
q

rp+q

)q(∫ x

a
w(t)|D

a+ f (t)| 1
 dt

)(rp+q)

.

(6.57)

In the last step we use∫ x

a
G′(t)G(t)dt =

1
 +1

∫ x

a
d G+1(t) =

1
 +1

[G+1(x)−G+1(a)] ,

where G(t) =
∫ t
a w() |D

a+ f ()| 1
 d and  = rp

q , which gives us

∫ x

a
G′(t)G(t)dt =

q
rp+q

(∫ x

a
w() |D

a+ f ()| 1
 d

) rp+q
q

.

Inequality (6.52) now follows from (6.55) and (6.57).
If q = 0 (and  = 1

p < 1), then the proof after (6.55) and (6.56) simplifies, that is

∫ x

a
w(t)

N


i=1

|Di
a+ f (t)|ri p dt

≤
N


i=1

[(
1−

i +1−

)1− 1
(i +1)

]ri p

·
∫ x

a
[w(t)]1−r (t −a)

N
i=1(i+1)ri p−r

(∫ t

a
w() |D

a+ f ()|p d
)r

dt

≤ (1−)(1−)rp

N

i=1

[
(i +1)(i +1−)1−

]ri p
[w(x)]1−r

·
(∫ x

a
w() |D

a+ f ()|p d
)r ∫ x

a
(t−a)

N
i=1(i+1)ri p−r dt

=
(p−1)(p−1)r

N

i=1

[
(i +1)(p(i +1)−1)

p−1
p

]ri p
[w(x)]1−r

·
(∫ x

a
w() |D

a+ f ()|p d
)r (x−a)

N
i=1(i+1)ri p−r+1

N

i=1

(i +1)rip− r+1
.

�

If r = 1, then we have Alzer’s inequality (1.26) for the left-sided Riemann-Liouville
fractional derivatives.
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Corollary 6.1 Suppose that assumptions of Theorem 6.31 hold and let r = 1. Then∫ x

a
w(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ T̃4 (x−a)
N


i=1
ri(−i)p

∫ x

a
w(t) |D

a+ f (t)|p+qdt , (6.58)

where

T̃4 =  qq

[
N


i=1

ri(−i)

]− p N


i=1

[(
1−

−i−

)1− 1
(−i)

]ri p

. (6.59)

For the next theorem we suppose that weight function is bounded.

Theorem 6.32 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let w be continuous
positive weight function on [a,x] such that A ≤ w(t) ≤ B for t ∈ [a,x]. Let ri ≥ 0, r =
N

i=1 ri ≥ 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri(−i)− r and  > i + for
i = 1, . . . ,N. Let D

a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ T4 (x−a)(+)p
(

B
Ar

) p(∫ x

a
w(t) |D

a+ f (t)|p+qdt

) pr+q
p+q

, (6.60)

where T4 is given by (6.53).

Proof. The proof of (6.60) is the same as the one for (6.52), except two changes. Instead
of inequality (6.54) we use 1 ≤ (w()/A) . Moreover, in (6.56) we apply the inequality
w(t) = [w(t)] p [w(t)]q ≤ B p [w(t)]q. These two changes lead to the inequality (6.60).
�

In the following extreme case we don’t assume that w is decreasing, and for r we have
condition r > 0.

Proposition 6.13 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N and let D
a+ f ∈ L[a,b].

Suppose that one of conditions (i)− (vii) in Corollary 2.21 holds for all pairs {,i},
i = 1, . . . ,N. Let w be continuous nonnegative weight function on [a,x]. Let p > 0, q ≥ 0,
ri ≥ 0, r = N

i=1 ri > 0. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ (x−a)
N

i=1

ri(−i)p+1[
N

i=1

ri(−i)p+1

]
N

i=1

[(−i +1)]ri p
‖w‖ ‖D

a+ f‖rp+q
 . (6.61)
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Proof. Set i =−i−1, i = 1, . . . ,N. Using Theorem 2.13 and the triangle inequality,
for t ∈ [a,x] we have

N


i=1

|Di
a+ f (t)|ri p ≤ 1

N
i=1 [(i +1)]ri p

N


i=1

[∫ t

a
(t− )i |D

a+ f ()|d
]ri p

≤ 1

N
i=1 [(i +1)]ri p

N


i=1

[(∫ t

a
(t− )i d

)
‖D

a+ f‖
]ri p

=
(t −a)

N
i=1 ri(i+1)p

N
i=1 [(i +2)]ri p

‖D
a+ f‖rp



Therefore∫ x

a
w(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ 1
N

i=1

[(i +2)]ri p
‖D

a+ f‖rp


∫ x

a
w(t)(t −a)

N
i=1 ri(i+1)p |D

a+ f (t)|q dt

≤ 1
N

i=1

[(i +2)]ri p
‖D

a+ f‖rp+q


(∫ x

a
w(t)(t −a)

N
i=1 ri(i+1)p dt

)

≤ 1
N

i=1

[(i +2)]ri p
‖D

a+ f‖rp+q
 ‖w‖

(∫ x

a
(t−a)

N
i=1 ri(i+1)p dt

)

=
1

N

i=1

[(i +2)]ri p
‖D

a+ f‖rp+q
 ‖w‖ (x−a)

N
i=1 ri(i+1)p+1

N

i=1

ri(i +1)p+1
.

�

In the next case we have p+q < 0. Since  < 0, in (6.54) we have reverse inequality.
Further, conditions on p and q allow us to use reverse Hölder’s inequalities, for { 1

1− ∈
(0,1), 1

 < 0} and { 1
 p ∈ (0,1), 1

q < 0}. The proof is similar to the proof of Theorem
6.31.

Theorem 6.33 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let w be continuous
positive decreasing weight function on [a,x]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let p < 0, q ≥ 0,
 = 1

p+q < 0,  = N
i=1 ri( −i)− r . Let D

a+ f ∈ Lp+q[a,b] be of fixed sign on [a,b],
with 1/D

a+ f ∈ Lp+q[a,b]. Then reverse inequality in (6.52) holds.

Next theorem is a non-weighted version of Theorem 6.31. Since we have condition
r > 0 instead of r ≥ 1, it can’t be considered as a corollary of Theorem 6.31.
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Theorem 6.34 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)−(vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let ri ≥ 0, r =N

i=1 ri >
0. Let p > 0, q≥ 0,  = 1

p+q < 1,  =N
i=1 ri(−i)−r and  > i + for i = 1, . . . ,N.

Let D
a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|Di
a+ f (t)|ri p|D

a+ f (t)|q dt ≤ T4 (x−a)(+)p
(∫ x

a
|D

a+ f (t)|p+qdt

) pr+q
p+q

, (6.62)

where T4 is given by (6.53).
Inequality (6.62) is sharp for  = i + 1, i = 1, . . . ,N and q = 1, where equality is

attained for a function f such that D
a+ f (t) = (x− t)

p(−1)
q , t ∈ [a,x].

Proof. Let q �= 0, i =  − i − 1, i = 1, . . . ,N. Using Theorem 2.13, the triangle
inequality and Hölder’s inequality for { 1

1− , 1
 }, for t ∈ [a,x] follows

N


i=1

|Di
a+ f (t)|ri p

≤ 1
N

i=1

[(i +1)]ri p

N


i=1

[∫ t

a
(t− )i |D

a+ f ()|d
]ri p

≤ 1
N

i=1

[(i +1)]ri p

N


i=1

[(∫ t

a
(t− )

i
1− d

)1− (∫ t

a
|D

a+ f ()| 1
 d

)
]ri p

(6.63)

=
1

N

i=1

[(i +1)]ri p

N


i=1

[(
1−

i +1−

)1−
(t−a)i+1−

(∫ t

a
|D

a+ f ()| 1
 d

)
]ri p

=
(1−)(1−)rp (t −a)

N
i=1(i+1−)ri p

N

i=1

[
(i +1)(i +1−)1−

]ri p

(∫ t

a
|D

a+ f ()| 1
 d

)rp

.

Now we have∫ x

a

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt ≤ (1−)(1−)rp

N

i=1

[
(i +1)(i +1−)1−

]ri p

·
∫ x

a
(t−a)

N
i=1(i+1−)ri p

(∫ t

a
|D

a+ f ()| 1
 d

)rp

|D
a+ f (t)|q dt . (6.64)

By Hölder’s inequality for { 1
 p ,

1
q} with  p =

N

i=1

(i +1−)rip, we get

∫ x

a

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt
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≤ (1−)(1−)rp

N

i=1

[
(i +1)(i +1−)1−

]ri p

(∫ x

a
(t−a)


 dt

) p

·
(∫ x

a
|D

a+ f (t)| 1


(∫ t

a
|D

a+ f ()| 1
 d

) rp
q

dt

)q

=
(1−)(1−)rp

N

i=1

[
(i +1)(i +1−)1−

]ri p

 p (x−a)(+)p

( +) p

·
(

q
rp+q

)q(∫ x

a
|D

a+ f (t)| 1
 dt

)(rp+q)

.

If q = 0 (and  = 1
p < 1) then the proof after (6.64) simplifies, that is

∫ x

a

N


i=1

|Di
a+ f (t)|ri p dt

≤ (1−)(1−)rp

N

i=1

[
(i +1)(i +1−)1−

]ri p

·
∫ x

a
(t −a)

N
i=1(i+1)ri p−r

(∫ t

a
|D

a+ f ()|p d
)r

dt

≤ (1−)(1−)rp

N

i=1

[
(i +1)(i +1−)1−

]ri p

·
(∫ x

a
|D

a+ f ()|p d
)r ∫ x

a
(t−a)

N
i=1(i+1)ri p−r dt

=
(p−1)(p−1)r

N

i=1

[
(i +1)(p(i +1)−1)

p−1
p

]ri p

·
(∫ x

a
|D

a+ f ()|p d
)r (x−a)

N
i=1(i+1)ri p−r+1

N

i=1

(i +1)rip− r+1
.

This proves the inequality (6.62).

Using the equality condition in Hölder’s inequality we have equality in (6.63) if and

only if |D
a+ f ()| 1

 = K(t − )
i

1− for some constant K ≥ 0 and every  ∈ [a,t]. Since
D

a+ f () depends only on  , then i = 0, that is  = i +1, i = 1, . . . ,N. Due to homoge-

neous property of inequality (6.62), we can take D
a+ f () = 1, which gives us Di

a+ f () =
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D−1
a+ f () = −a, i = 1, . . . ,N. Substituting this in equality (6.62), for the left side we get

∫ x

a

N


i=1

(t−a)ri p dt =
∫ x

a
(t−a)rp dt =

(x−a)rp+1

rp+1
(6.65)

For the right side, with  = r− r , follows

T4 (x−a)(+)p
(∫ x

a
dt

) pr+q
p+q

=
 p qq

(r− r +) p (rp+q)q (x−a)(r−r+)p (x−a)(pr+q)

=
 p qq

(r− r +) p (rp+q)q (x−a)rp+1 . (6.66)

Hence
1

rp+1
=

q
q

p+q

[r(p+q)− r+1]
p

p+q (rp+q)
q

p+q

which is equivalent to

[r(p+q)− r+1]p [rp+q]q = qq(rp+1)p+q . (6.67)

For q = 1 equality (6.67) obviously holds. For q = 0 equality (6.67) implies r = 0, which
gives trivial identity in (6.62). By simple rearrangements, equation (6.67) becomes[

1+ r
q−1
rp+1

]p[
1+ r

p
q

1−q
rp+1

]q

= 1. (6.68)

For p = q the left side of equation (6.68) is equal to

[
1−

(
r 1−p

rp+1

)2
]p

, which is strictly less

then 1, except in trivial cases. For 0 < p < q, q �= 1, r > 0, using the Bernoulli inequality,
we have [

1+ r
q−1
rp+1

] p
q
[
1+ r

p
q

1−q
rp+1

]
<

[
1+ r

p
q

q−1
rp+1

][
1+ r

p
q

1−q
rp+1

]
,

which is obviously strictly less then 1. For 0 < q < p, q �= 1, r > 0, using the Bernoulli
inequality, we have[

1+ r
q−1
rp+1

][
1+ r

p
q

1−q
rp+1

] p
q

<

[
1+ r

q−1
rp+1

][
1+ r

1−q
rp+1

]
,

which is again obviously strictly less then 1. It follows that (6.67) holds if and only if
q = 1. �
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Remark 6.2 Let N = 1,  = 1, 1 = 0, r1 = r = 1, p = q = 1, a = 0 and x = h. Then
inequality (6.62) becomes Beesack’s inequality∫ h

0

∣∣ f (t) f ′(t)
∣∣dt ≤ h

2

∫ h

0

[
f ′(t)

]2
dt , (6.69)

which is valid for any function f absolutely continuous on [0,h] satisfying single boundary
condition f (0) = 0.

Following inequalities include the right-sidedRiemann-Liouville fractional derivatives.

Theorem 6.35 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let w be continuous
positive increasing weight function on [x,b]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let p > 0, q ≥ 0,
 = 1

p+q < 1,  = N
i=1 ri( − i)− r and  > i + for i = 1, . . . ,N. Let D

b− f ∈
Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds∫ b

x
w(t)

N


i=1

|Di
b− f (t)|ri p |D

b− f (t)|q dt

≤ T4 (b− x)(+)p [w(x)]
p(1−r)
p+q

(∫ b

x
w(t) |D

b− f (t)|p+qdt

) pr+q
p+q

, (6.70)

where T4 is given by (6.53).

Corollary 6.2 Suppose that assumptions of Theorem 6.35 hold and let r = 1. Then∫ b

x
w(t)

N


i=1

|Di
b− f (t)|ri p |D

b− f (t)|q dt

≤ T̃4 (b− x)
N

i=1

ri(−i)p
∫ b

x
w(t) |D

b− f (t)|p+qdt , (6.71)

where T̃4 is given by (6.59).

Next we have bounded weight function.

Theorem 6.36 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let w be continuous
positive weight function on [x,b] such that A ≤ w(t) ≤ B for t ∈ [x,b]. Let ri ≥ 0, r =
N

i=1 ri ≥ 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri( −i)− r and  > i + for
i = 1, . . . ,N. Let D

b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds∫ b

x
w(t)

N


i=1

|Di
b− f (t)|ri p |D

b− f (t)|q dt

≤ T4 (b− x)(+)p
(

B
Ar

) p(∫ b

x
w(t) |D

b− f (t)|p+qdt

) pr+q
p+q

, (6.72)

where T4 is given by (6.53).
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Proposition 6.14 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N and let D
b− f ∈ L[a,b].

Suppose that one of conditions (i)− (vii) in Corollary 2.22 holds for all pairs {,i},
i = 1, . . . ,N. Let w be continuous nonnegative weight function on [x,b]. Let p > 0, q ≥ 0,
ri ≥ 0, r = N

i=1 ri > 0. Then for a.e. x ∈ [a,b] holds∫ b

x
w(t)

N


i=1

|Di
b− f (t)|ri p |D

b− f (t)|q dt

≤ (b− x)
N

i=1

ri(−i)p+1[
N

i=1

ri(−i)p+1

]
N

i=1

[(−i +1)]ri p
‖w‖ ‖D

b− f‖rp+q
 . (6.73)

Theorem 6.37 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let w be continuous
positive increasing weight function on [x,b]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let p < 0, q ≥ 0,
 = 1

p+q < 0,  = N
i=1 ri( −i)− r . Let D

b− f ∈ Lp+q[a,b] be of fixed sign on [a,b],
with 1/D

b− f ∈ Lp+q[a,b]. Then reverse inequality in (6.70) holds.

Next theorem is a non-weighted version of Theorem 6.35 with weakened condition on
r.

Theorem 6.38 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)−(vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let ri ≥ 0, r =N

i=1 ri >
0. Let p > 0, q≥ 0,  = 1

p+q < 1,  =N
i=1 ri(−i)−r and  > i + for i = 1, . . . ,N.

Let D
b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|Di
b− f (t)|ri p|D

b− f (t)|q dt ≤ T4 (b− x)(+)p
(∫ b

x
|D

b− f (t)|p+qdt

) pr+q
p+q

, (6.74)

where T4 is given by (6.53).
Inequality (6.74) is sharp for  = i + 1, i = 1, . . . ,N and q = 1, where equality is

attained for a function f such that D
b− f (t) = (x− t)

p(−1)
q , t ∈ [x,b].

Remark 6.3 In order to get classical Opial’s inequality (1.17) we need the inequality
(6.74) for N = 1, r1 = r = 1 and p = q = 1:∫ b

x
|D1

b− f (t)| |D
b− f (t)|dt ≤ T4 (b− x)

∫ b

x
|D

b− f (t)|2 dt (6.75)

satisfying f (b) = 0. Observe the inequality∫ a+b
2

a
|D1

a+ f (t)| |D
a+ f (t)|dt +

∫ b

a+b
2

|D1
b− f (t)| |D

b− f (t)|dt

≤ T4

(
b−a

2

)(∫ a+b
2

a

∣∣D
a+ f (t)

∣∣2 dt +
∫ b

a+b
2

∣∣D
b− f (t)

∣∣2 dt

)
. (6.76)
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If we put  = 1, 1 = 0, a = 0 and b = h, then inequality (6.76) becomes Opial’s inequality∫ h

0

∣∣ f (x) f ′(x)
∣∣dx ≤ h

4

∫ h

0

[
f ′(x)

]2
dx ,

having boundary conditions f (0) = f (h) = 0.

THE CAPUTO FRACTIONAL DERIVATIVES

Theorem 6.39 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1. Let w be
continuous positive decreasing weight function on [a,x]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let
p > 0, q ≥ 0,  = 1

p+q < 1,  = N
i=1 ri(−i)− r and  > i + for i = 1, . . . ,N. Let

CD
a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t)

N


i=1

|CDi
a+ f (t)|ri p |CD

a+ f (t)|q dt

≤ T4 (x−a)(+)p [w(x)]
p(1−r)
p+q

(∫ x

a
w(t) |CD

a+ f (t)|p+qdt

) pr+q
p+q

, (6.77)

where T4 is given by (6.53).

If r = 1, then we have Alzer’s inequality (1.26) for the left-sided Caputo fractional
derivatives.

Corollary 6.3 Suppose that assumptions of Theorem 6.39 hold and let r = 1. Then∫ x

a
w(t)

N


i=1

|CDi
a+ f (t)|ri p |CD

a+ f (t)|q dt

≤ T̃4 (x−a)
N


i=1
ri(−i)p

∫ x

a
w(t) |CD

a+ f (t)|p+qdt , (6.78)

where T̃4 is given by (6.59).

Next we have bounded weight function.

Theorem 6.40 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1. Let w be
continuous positive weight function on [a,x] such that A ≤ w(t) ≤ B for t ∈ [a,x]. Let
ri ≥ 0, r = N

i=1 ri ≥ 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri( − i)− r and

 > i + for i = 1, . . . ,N. Let CD
a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t)

N


i=1

|CDi
a+ f (t)|ri p |CD

a+ f (t)|q dt

≤ T4 (x−a)(+)p
(

B
Ar

) p(∫ x

a
w(t) |CD

a+ f (t)|p+qdt

) pr+q
p+q

, (6.79)

where T4 is given by (6.53).
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Proposition 6.15 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1 and let
CD

a+ f ∈ L[a,b]. Let w be continuous nonnegative weight function on [a,x]. Let p > 0,
q ≥ 0, ri ≥ 0, r = N

i=1 ri > 0. Then for a.e. x ∈ [a,b] holds

∫ x

a
w(t)

N


i=1

|CDi
a+ f (t)|ri p |CD

a+ f (t)|q dt

≤ (x−a)
N

i=1

ri(−i)p+1[
N

i=1

ri(−i)p+1

]
N

i=1

[(−i +1)]ri p
‖w‖ ‖CD

a+ f‖rp+q
 . (6.80)

Theorem 6.41 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1. Let w be
continuous positive decreasing weight function on [a,x]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let
p < 0, q ≥ 0,  = 1

p+q < 0,  = N
i=1 ri( −i)− r . Let CD

a+ f ∈ Lp+q[a,b] be of fixed

sign on [a,b], with 1/CD
a+ f ∈ Lp+q[a,b]. Then reverse inequality in (6.77) holds.

Next theorem is a non-weighted version of Theorem 6.39 with weakened condition on
r.

Theorem 6.42 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with m =
min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1. Let ri ≥ 0,
r = N

i=1 ri > 0. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri(−i)− r and  > i +
for i = 1, . . . ,N. Let CD

a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|CDi
a+ f (t)|ri p|CD

a+ f (t)|q dt ≤ T4 (x−a)(+)p
(∫ x

a
|CD

a+ f (t)|p+qdt

) pr+q
p+q

,

(6.81)
where T4 is given by (6.53).

Inequality (6.81) is sharp for  = i + 1, i = 1, . . . ,N and q = 1, where equality is

attained for a function f such that CD
a+ f (t) = (x− t)

p(−1)
q , t ∈ [a,x].

Following inequalities include the right-sided Caputo fractional derivatives.

Theorem 6.43 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1. Let w be
continuous positive increasing weight function on [x,b]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let
p > 0, q ≥ 0,  = 1

p+q < 1,  = N
i=1 ri(−i)− r and  > i + for i = 1, . . . ,N. Let

CD
b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

N


i=1

|CDi
b− f (t)|ri p |CD

b− f (t)|q dt
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≤ T4 (b− x)(+)p [w(x)]
p(1−r)
p+q

(∫ b

x
w(t) |CD

b− f (t)|p+qdt

) pr+q
p+q

, (6.82)

where T4 is given by (6.53).

Corollary 6.4 Suppose that assumptions of Theorem 6.43 hold and let r = 1. Then

∫ b

x
w(t)

N


i=1

|CDi
b− f (t)|ri p |CD

b− f (t)|q dt

≤ T̃4 (b− x)
N


i=1
ri(−i)p

∫ b

x
w(t) |CD

b− f (t)|p+qdt , (6.83)

where T̃4 is given by (6.59).

Next we have bounded weight function.

Theorem 6.44 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1. Let w be
continuous positive weight function on [x,b] such that A ≤ w(t) ≤ B for t ∈ [x,b]. Let
ri ≥ 0, r = N

i=1 ri ≥ 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri( − i)− r and

 > i + for i = 1, . . . ,N. Let CD
b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

N


i=1

|CDi
b− f (t)|ri p |CD

b− f (t)|q dt

≤ T4 (b− x)(+)p
(

B
Ar

) p(∫ b

x
w(t) |CD

b− f (t)|p+qdt

) pr+q
p+q

, (6.84)

where T4 is given by (6.53).

Proposition 6.16 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1 and let
CD

b− f ∈ L[a,b]. Let w be continuous nonnegative weight function on [x,b]. Let p > 0,
q ≥ 0, ri ≥ 0, r = N

i=1 ri > 0. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

N


i=1

|CDi
b− f (t)|ri p |CD

b− f (t)|q dt

≤ (b− x)
N

i=1

ri(−i)p+1[
N

i=1

ri(−i)p+1

]
N

i=1

[(−i +1)]ri p
‖w‖ ‖CD

b− f‖rp+q
 . (6.85)
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Theorem 6.45 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with
m = min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1. Let w be
continuous positive increasing weight function on [x,b]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let
p < 0, q ≥ 0,  = 1

p+q < 0,  = N
i=1 ri( −i)− r . Let CD

b− f ∈ Lp+q[a,b] be of fixed

sign on [a,b], with 1/CD
b− f ∈ Lp+q[a,b]. Then reverse inequality in (6.82) holds.

Theorem 6.46 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with m =
min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1. Let ri ≥ 0,
r = N

i=1 ri > 0. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri(−i)− r and  > i +
for i = 1, . . . ,N. Let CD

b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|CDi
b− f (t)|ri p|CD

b− f (t)|q dt ≤ T4 (b− x)(+)p
(∫ b

x
|CD

b− f (t)|p+qdt

) pr+q
p+q

,

(6.86)
where T4 is given by (6.53).

Inequality (6.86) is sharp for  = i + 1, i = 1, . . . ,N and q = 1, where equality is

attained for a function f such that CD
b− f (t) = (x− t)

p(−1)
q , t ∈ [x,b].

THE CANAVATI FRACTIONAL DERIVATIVES

Theorem 6.47 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+ 1. Let f ∈ C

a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2. Let w be
continuous positive decreasing weight function on [a,x]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let
p > 0, q ≥ 0,  = 1

p+q < 1,  = N
i=1 ri(−i)− r and  > i + for i = 1, . . . ,N. Let

C1D
a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t)

N


i=1

|C1Di
a+ f (t)|ri p |C1D

a+ f (t)|q dt

≤ T4 (x−a)(+)p [w(x)]
p(1−r)
p+q

(∫ x

a
w(t) |C1D

a+ f (t)|p+qdt

) pr+q
p+q

, (6.87)

where T4 is given by (6.53).

If r = 1, then we have Alzer’s inequality (1.26) for the left-sided Canavati fractional
derivatives.

Corollary 6.5 Suppose that assumptions of Theorem 6.47 hold and let r = 1. Then∫ x

a
w(t)

N


i=1

|C1Di
a+ f (t)|ri p |C1D

a+ f (t)|q dt

≤ T̃4 (x−a)
N


i=1
ri(−i)p

∫ x

a
w(t) |C1D

a+ f (t)|p+qdt , (6.88)

where T̃4 is given by (6.59).
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Next we have bounded weight function.

Theorem 6.48 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+ 1. Let f ∈ C

a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2. Let w be
continuous positive weight function on [a,x] such that A≤w(t)≤B for t ∈ [a,x]. Let ri ≥ 0,
r = N

i=1 ri ≥ 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri(−i)− r and  > i +
for i = 1, . . . ,N. Let C1D

a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
w(t)

N


i=1

|C1Di
a+ f (t)|ri p |C1D

a+ f (t)|q dt

≤ T4 (x−a)(+)p
(

B
Ar

) p(∫ x

a
w(t) |C1D

a+ f (t)|p+qdt

) pr+q
p+q

, (6.89)

where T4 is given by (6.53).

Proposition 6.17 Let N ∈ N,  > i ≥ 0, mi = [i]+ 1, m = min{mi} for i = 1, . . . ,N
and n = []+1. Let f ∈C

a+[a,b] be such that f (i)(a) = 0 for i = m−1, . . . ,n−2 and let
C1D

a+ f ∈ L[a,b]. Let w be continuous nonnegative weight function on [a,x]. Let p > 0,
q ≥ 0, ri ≥ 0, r = N

i=1 ri > 0. Then for a.e. x ∈ [a,b] holds

∫ x

a
w(t)

N


i=1

|C1Di
a+ f (t)|ri p |C1D

a+ f (t)|q dt

≤ (x−a)
N

i=1

ri(−i)p+1[
N

i=1

ri(−i)p+1

]
N

i=1

[( −i +1)]ri p
‖w‖ ‖C1D

a+ f‖rp+q
 . (6.90)

Theorem 6.49 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+ 1. Let f ∈ C

a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2. Let w be
continuous positive decreasing weight function on [a,x]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let
p < 0, q ≥ 0,  = 1

p+q < 0,  = N
i=1 ri( −i)− r . Let C1D

a+ f ∈ Lp+q[a,b] be of fixed

sign on [a,b], with 1/C1D
a+ f ∈ Lp+q[a,b]. Then reverse inequality in (6.87) holds.

Next theorem is a non-weighted version of Theorem 6.47 with weakened condition on
r.

Theorem 6.50 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+1. Let f ∈C

a+[a,b] be such that f (i)(a) = 0 for i = m−1, . . . ,n−2. Let ri ≥ 0,
r = N

i=1 ri > 0. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri(−i)− r and  > i +
for i = 1, . . . ,N. Let C1D

a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a

N


i=1

|C1Di
a+ f (t)|ri p|C1D

a+ f (t)|q dt ≤ T4 (x−a)(+)p
(∫ x

a
|C1D

a+ f (t)|p+qdt

) pr+q
p+q

,

(6.91)
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where T4 is given by (6.53).
Inequality (6.91) is sharp for  = i + 1, i = 1, . . . ,N and q = 1, where equality is

attained for a function f such that C1D
a+ f (t) = (x− t)

p(−1)
q , t ∈ [a,x].

Following inequalities include the right-sided Canavati fractional derivatives.

Theorem 6.51 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+ 1. Let f ∈ C

b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2. Let w be
continuous positive increasing weight function on [x,b]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let
p > 0, q ≥ 0,  = 1

p+q < 1,  = N
i=1 ri(−i)− r and  > i + for i = 1, . . . ,N. Let

C1D
b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

N


i=1

|C1Di
b− f (t)|ri p |C1D

b− f (t)|q dt

≤ T4 (b− x)(+)p [w(x)]
p(1−r)
p+q

(∫ b

x
w(t) |C1D

b− f (t)|p+qdt

) pr+q
p+q

, (6.92)

where T4 is given by (6.53).

Corollary 6.6 Suppose that assumptions of Theorem 6.51 hold and let r = 1. Then

∫ b

x
w(t)

N


i=1

|C1Di
b− f (t)|ri p |C1D

b− f (t)|q dt

≤ T̃4 (b− x)
N


i=1
ri(−i)p

∫ b

x
w(t) |C1D

b− f (t)|p+qdt , (6.93)

where T̃4 is given by (6.59).

Next we have bounded weight function.

Theorem 6.52 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+ 1. Let f ∈ C

b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2. Let w be
continuous positive weight function on [x,b] such that A≤w(t)≤ B for t ∈ [x,b]. Let ri ≥ 0,
r = N

i=1 ri ≥ 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri(−i)− r and  > i +
for i = 1, . . . ,N. Let C1D

b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

N


i=1

|C1Di
b− f (t)|ri p |C1D

b− f (t)|q dt

≤ T4 (b− x)(+)p
(

B
Ar

) p(∫ b

x
w(t) |C1D

b− f (t)|p+qdt

) pr+q
p+q

, (6.94)

where T4 is given by (6.53).
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Proposition 6.18 Let N ∈ N,  > i ≥ 0, mi = [i]+ 1, m = min{mi} for i = 1, . . . ,N
and n = []+1. Let f ∈C

b−[a,b] be such that f (i)(b) = 0 for i = m−1, . . . ,n−2 and let
C1D

b− f ∈ L[a,b]. Let w be continuous nonnegative weight function on [x,b]. Let p > 0,
q ≥ 0, ri ≥ 0, r = N

i=1 ri > 0. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

N


i=1

|C1Di
b− f (t)|ri p |C1D

b− f (t)|q dt

≤ (b− x)
N

i=1

ri(−i)p+1[
N

i=1

ri(−i)p+1

]
N

i=1

[( −i +1)]ri p
‖w‖ ‖C1D

b− f‖rp+q
 . (6.95)

Theorem 6.53 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+ 1. Let f ∈ C

b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2. Let w be
continuous positive increasing weight function on [x,b]. Let ri ≥ 0, r = N

i=1 ri ≥ 1. Let
p < 0, q ≥ 0,  = 1

p+q < 0,  = N
i=1 ri( −i)− r . Let C1D

b− f ∈ Lp+q[a,b] be of fixed

sign on [a,b], with 1/C1D
b− f ∈ Lp+q[a,b]. Then reverse inequality in (6.92) holds.

Theorem 6.54 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+1. Let f ∈C

b−[a,b] be such that f (i)(b) = 0 for i = m−1, . . . ,n−2. Let ri ≥ 0,
r = N

i=1 ri > 0. Let p > 0, q ≥ 0,  = 1
p+q < 1,  = N

i=1 ri(−i)− r and  > i +
for i = 1, . . . ,N. Let C1D

b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x

N


i=1

|C1Di
b− f (t)|ri p|C1D

b− f (t)|q dt ≤ T4 (b− x)(+)p
(∫ b

x
|C1D

b− f (t)|p+qdt

) pr+q
p+q

,

(6.96)
where T4 is given by (6.53).

Inequality (6.96) is sharp for  = i + 1, i = 1, . . . ,N and q = 1, where equality is

attained for a function f such that C1D
b− f (t) = (x− t)

p(−1)
q , t ∈ [x,b].

Next inequality is a two-weighted extension of Alzer’s inequality (1.26)

∫ b

a
w1(t)

(
N


i=1

|Di f (t)|ri
)p

|D f (t)|q dt

≤ K

(∫ b

a
[w1(t)]

 dt

) 1

(∫ b

a
w2(t) |D f (t)|p+q dt

) pr+q
p+q

,

where w1,w2 ∈ C[a,b] are positive weight functions,  > i ≥ 0, K > 0 is a constant,
r = ri, and p,q, ∈ R.

It is given for the left-sided Riemann-Liouville fractional derivatives in [41]. In [24]
Andrić-Pečarić-Perić give its version involving the left-sided Canavati fractional deriva-
tives under new and relaxed conditions using improved composition identity for the Cana-
vati fractional derivatives and monotonous weight functions (here Theorem 6.67), and also
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version including bounded weight functions (Theorem 6.68). We give analogous results
for the Riemann-Liouville and the Caputo fractional derivatives.

THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

Theorem 6.55 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let w1 and w2 be
continuous positive weight functions on [a,x] and let w2 be decreasing function. Let ri ≥ 0,
r = N

i=1 ri > 0. Let s,s′ > 1 with 1
s + 1

s′ = 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,  =

N
i=1 ri(−i)− r and  > i + for i = 1, . . . ,N. Let D

a+ f ∈ Lp+q[a,b]. Then for a.e.
x ∈ [a,b] holds∫ x

a
w1(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ T5 R(x)(x−a) p+  p
s [w2(x)]

−(rp+q)
(∫ x

a
w2(t) |D

a+ f (t)|p+q dt

) pr+q
p+q

,

(6.97)

where

R(x) =
(∫ x

a
[w1(t)]

s′
p dt

) p
s′

, (6.98)

T5 =


 p
s qq (1−)(1−)rp

(s+)
 p
s (rp+q)q

N

i=1

[(−i)(−i−)1− ]ri p
. (6.99)

Proof. Let q �= 0 , i =  − i − 1, i = 1, . . . ,N. Using Theorem 2.13, the triangle
inequality and Hölder’s inequality for { 1

1− , 1
 }, for t ∈ [a,x] follows

|Di
a+ f (t)|

≤ 1
(i +1)

∫ t

a
(t− )i |D

a+ f ()|d

=
1

(i +1)

∫ t

a
[w2()]− [w2()] (t− )i |D

a+ f ()|d

≤ 1
(i +1)

(∫ t

a
[w2()]−


1− (t− )

i
1− d

)1− (∫ t

a
w2()

∣∣D
a+ f ()

∣∣ 1
 d

)
.

Now we have∫ x

a
w1(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ 1
N

i=1

[(i +1)]ri p

∫ x

a
w1(t) [w2(t)]

−q [w2(t)]
q |D

a+ f (t)|q (6.100)
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·
(∫ t

a
w2() |D

a+ f ()| 1
 d

)rp N


i=1

(∫ t

a
[w2()]−


1− (t − )

i
1− d

)(1−)rip

dt .

(6.101)

By Hölder’s inequality for { 1
 p ,

1
q}, we get

∫ x

a
w1(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ 1
N

i=1

[(i +1)]ri p

·
⎡⎣∫ x

a
[w1(t)]

1
p [w2(t)]

− q
p

N


i=1

(∫ t

a
[w2()]−


1− (t− )

i
1− d

) (1−)ri


dt

⎤⎦ p

·
[∫ x

a
w2(t) |D

a+ f (t)| 1


(∫ t

a
w2() |D

a+ f ()| 1
 d

) p
q r

dt

]q

=
1

N

i=1

[(i +1)]ri p

(
q

rp+q

)q(∫ x

a
w2(t) |D

a+ f (t)| 1
 dt

)(rp+q)

(6.102)

·
⎡⎣∫ x

a
[w1(t)]

1
p [w2(t)]

− q
p

N


i=1

(∫ t

a
[w2()]−


1− (t− )

i
1− d

) (1−)ri


dt

⎤⎦ p

.

Since w2 is decreasing, we have

∫ x

a
[w1(t)]

1
p [w2(t)]

− q
p

N


i=1

(∫ t

a
[w2()]−


1− (t − )

i
1− d

) (1−)ri


dt

≤
∫ x

a
[w1(t)]

1
p [w2(t)]

− q
p

N


i=1

(∫ t

a
[w2(t)]

− 
1− (t− )

i
1− d

) (1−)ri


dt

=
∫ x

a
[w1(t)]

1
p [w2(t)]

− q
p−r

N


i=1

(∫ t

a
(t− )

i
1− d

) (1−)ri


dt

≤ (1−)
(1−)r



N

i=1

(i +1−)
(1−)ri



[w2(x)]
− q

p−r
∫ x

a
[w1(t)]

1
p (t−a)

N
i=1(i+1−)ri

 dt .

Again we use Hölder’s inequality for {s,s′} to obtain

∫ x

a
[w1(t)]

1
p (t−a)


 dt ≤

(∫ x

a
[w1(t)]

s′
p dt

) 1
s′
(∫ x

a
(t−a)


 s dt

) 1
s
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= [R(x)]
1
 p (x−a)


 + 1

s


1
s

(s+)
1
s

.

Hence, ⎡⎣∫ x

a
[w1(t)]

1
p [w2(t)]

− q
p

N


i=1

(∫ t

a
[w2()]−


1− (t − )

i
1− d

) (1−)ri


dt

⎤⎦ p

≤ (1−)(1−)rp

N

i=1

(i +1−)(1−)ri p
[w2(x)]

−(rp+q)
[∫ x

a
[w1(t)]

1
p (t−a)


 dt

] p

≤ (1−)(1−)rp

N

i=1

(i +1−)(1−)ri p
[w2(x)]

−(rp+q) R(x)


 p
s (x−a) p+  p

s

(s+)
 p
s

(6.103)

Inequality (6.97) now follows from (6.102) and (6.103).
If q = 0 (and  = 1

p < 1), then the proof after (6.100) and (6.101) simplifies, that is

∫ x

a
w1(t)

N


i=1

|Di
a+ f (t)|ri p dt

≤ 1
N

i=1

[(i +1)]ri p

∫ x

a
w1(t)

(∫ t

a
w2() |D

a+ f ()|p d
)r

·
N


i=1

(∫ t

a
[w2()]

1
1−p (t − )

i p
p−1 d

)(p−1)ri
dt

≤ 1
N

i=1

[(i +1)]ri p

(∫ x

a
w2() |D

a+ f ()|p d
)r

·
∫ x

a
w1(t) [w2(t)]

−r
N


i=1

(∫ t

a
(t − )

i p
p−1 d

)(p−1)ri
dt

=
1

N

i=1

[(i +1)]ri p

(∫ x

a
w2() |D

a+ f ()|p d
)r (p−1)(p−1)r

N

i=1

[i p+ p−1](p−1)ri

·
∫ x

a
w1(t) [w2(t)]

−r (t−a)
N
i=1(i p+p−1)ri dt

≤ (p−1)(p−1)r [w2(x)]
−r

N

i=1

[
(i +1)(i p+ p−1)

p−1
p

]ri p

(∫ x

a
w2() |D

a+ f ()|p d
)r

·
(∫ x

a
[w1(t)]

s′ dt

) 1
s′
(∫ x

a
(t−a)

N
i=1(i p+p−1)ris dt

) 1
s
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=
(p−1)(p−1)r [w2(x)]

−r

N

i=1

[
(i +1)(i p+ p−1)

p−1
p

]ri p

(∫ x

a
w2() |D

a+ f ()|p d
)r

·
(∫ x

a
[w1(t)]

s′ dt

) 1
s′ (x−a)

N
i=1(i p+p−1)ri+ 1

s[
N

i=1(i p+ p−1)ri +1
] 1

s

.

�

For the next theorem we suppose that weight functions are bounded.

Theorem 6.56 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let w1 and w2 be
continuous positive weight functions on [a,x] such that w1(t) ≤ B and A ≤ w2(t) for t ∈
[a,x]. Let ri ≥ 0, r =N

i=1 ri > 0. Let p > 0, q ≥ 0,  = 1
p+q < 1,  =N

i=1 ri(−i)− r
and  > i + for i = 1, . . . ,N. Let D

a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
w1(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ T4 (x−a)(+)p BA−(rp+q)
(∫ x

a
w2(t) |D

a+ f (t)|p+q dt

) pr+q
p+q

,

(6.104)

where T4 is given by (6.53).

Proof. We start the proof with obtained inequality (6.102)

∫ x

a
w1(t)

N


i=1

|Di
a+ f (t)|ri p |D

a+ f (t)|q dt

≤ 1
N

i=1

[(i +1)]ri p

(
q

rp+q

)q(∫ x

a
w2(t) |D

a+ f (t)| 1
 dt

)(rp+q)

·
⎡⎣∫ x

a
[w1(t)]

1
p [w2(t)]

− q
p

N


i=1

(∫ t

a
[w2()]−


1− (t− )

i
1− d

) (1−)ri


dt

⎤⎦ p

.

From conditions w1(t) ≤ B and A ≤ w2(t) for t ∈ [a,x] we have⎡⎣∫ x

a
[w1(t)]

1
p [w2(t)]

− q
p

N


i=1

(∫ t

a
[w2()]−


1− (t − )

i
1− d

) (1−)ri


dt

⎤⎦ p

≤ BA]−(rp+q)

⎡⎣∫ x

a

N


i=1

(∫ t

a
(t − )

i
1− d

) (1−)ri


dt

⎤⎦ p
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= BA−(rp+q) (1−)(1−)rp

N

i=1

(i +1−)(1−)ri p
(x−a)(+)p  p

( +) p . (6.105)

The inequality (6.104) now follows from (6.102) and (6.105). �

Remark 6.4 For the extreme case we have one weight function, only w1, and this is given
in Proposition 6.13.

Next is the case for p+q < 0. Conditions on p and q allow us to use reverse Hölder’s
inequalities, for { 1

1− ∈ (0,1), 1
 < 0} and { 1

 p ∈ (0,1), 1
q < 0}. The proof is similar to

the proof of Theorem 6.55.

Theorem 6.57 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.21 holds for all pairs {,i}, i = 1, . . . ,N. Let w1 and w2 be
continuous positive weight functions on [a,x] and let w2 be decreasing function. Let ri ≥ 0,
r = N

i=1 ri > 0. Let s ∈ (0,1), s′ < 0 with 1
s + 1

s′ = 1. Let p < 0, q ≥ 0,  = 1
p+q < 0,

 = N
i=1 ri( −i)− r . Let D

a+ f ∈ Lp+q[a,b] be of fixed sign on [a,b], with 1/D
a+ f ∈

Lp+q[a,b]. Then reverse inequality in (6.97) holds.

Following inequalities include the right-sided Riemann-Liouville fractional derivatives.

Theorem 6.58 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let w1 and w2 be
continuous positive weight functions on [x,b] and let w2 be increasing function. Let ri ≥ 0,
r = N

i=1 ri > 0. Let s,s′ > 1 with 1
s + 1

s′ = 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,  =

N
i=1 ri(−i)− r and  > i + for i = 1, . . . ,N. Let D

b− f ∈ Lp+q[a,b]. Then for a.e.
x ∈ [a,b] holds

∫ b

x
w1(t)

N


i=1

|Di
b− f (t)|ri p |D

b− f (t)|q dt

≤ T5 R̃(x)(b− x) p+  p
s [w2(x)]

−(rp+q)
(∫ b

x
w2(t) |D

b− f (t)|p+q dt

) pr+q
p+q

,

(6.106)

where T5 is given by (6.99) and

R̃(x) =
(∫ b

x
[w1(t)]

s′
p dt

) p
s′

. (6.107)

Theorem 6.59 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let w1 and w2 be
continuous positive weight functions on [x,b] such that w1(t) ≤ B and A ≤ w2(t) for t ∈
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[x,b]. Let ri ≥ 0, r =N
i=1 ri > 0. Let p > 0, q ≥ 0,  = 1

p+q < 1,  =N
i=1 ri(−i)− r

and  > i + for i = 1, . . . ,N. Let D
b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w1(t)

N


i=1

|Di
b− f (t)|ri p |D

b− f (t)|q dt

≤ T4 (b− x)(+)p BA−(rp+q)
(∫ b

x
w2(t) |D

b− f (t)|p+q dt

) pr+q
p+q

,

(6.108)

where T4 is given by (6.53).

Remark 6.5 For the extreme case we have one weight function, only w1, and this is given
in Proposition 6.14.

Theorem 6.60 Let N ∈ N,  > i ≥ 0 for i = 1, . . . ,N. Suppose that one of conditions
(i)− (vii) in Corollary 2.22 holds for all pairs {,i}, i = 1, . . . ,N. Let w1 and w2 be
continuous positive weight functions on [x,b] and let w2 be increasing function. Let ri ≥ 0,
r = N

i=1 ri > 0. Let s ∈ (0,1), s′ < 0 with 1
s + 1

s′ = 1. Let p < 0, q ≥ 0,  = 1
p+q < 0,

 = N
i=1 ri(−i)− r . Let D

b− f ∈ Lp+q[a,b] be of fixed sign on [a,b], with 1/D
b− f ∈

Lp+q[a,b]. Then reverse inequality in (6.106) holds.

THE CAPUTO FRACTIONAL DERIVATIVES

Theorem 6.61 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with m =
min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1. Let w1 and w2

be continuous positive weight functions on [a,x] and let w2 be decreasing function. Let
ri ≥ 0, r = N

i=1 ri > 0. Let s,s′ > 1 with 1
s + 1

s′ = 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,

 = N
i=1 ri( −i)− r and  > i + for i = 1, . . . ,N. Let CD

a+ f ∈ Lp+q[a,b]. Then
for a.e. x ∈ [a,b] holds

∫ x

a
w1(t)

N


i=1

|CDi
a+ f (t)|ri p |CD

a+ f (t)|q dt

≤ T5 R(x)(x−a) p+  p
s [w2(x)]

−(rp+q)
(∫ x

a
w2(t) |CD

a+ f (t)|p+q dt

) pr+q
p+q

,

(6.109)

where R and T5 are given by (6.98) and (6.99), respectively.

For the next theorem we suppose that weight functions are bounded.

Theorem 6.62 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with m =
min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1. Let w1 and w2

be continuous positive weight functions on [a,x] such that w1(t) ≤ B and A ≤ w2(t) for t ∈
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[a,x]. Let ri ≥ 0, r =N
i=1 ri > 0. Let p > 0, q ≥ 0,  = 1

p+q < 1,  =N
i=1 ri(−i)− r

and  > i + for i = 1, . . . ,N. Let CD
a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ x

a
w1(t)

N


i=1

|CDi
a+ f (t)|ri p |CD

a+ f (t)|q dt

≤ T4 (x−a)(+)p BA−(rp+q)
(∫ x

a
w2(t) |CD

a+ f (t)|p+q dt

) pr+q
p+q

,

(6.110)

where T4 is given by (6.53).

Theorem 6.63 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with m =
min{mi}. Let f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m, . . . ,n− 1. Let w1 and
w2 be continuous positive weight functions on [a,x] and let w2 be decreasing function.
Let ri ≥ 0, r = N

i=1 ri > 0. Let s ∈ (0,1), s′ < 0 with 1
s + 1

s′ = 1. Let p < 0, q ≥ 0,
 = 1

p+q < 0,  = N
i=1 ri(−i)− r . Let CD

a+ f ∈ Lp+q[a,b] be of fixed sign on [a,b],
with 1/CD

a+ f ∈ Lp+q[a,b]. Then reverse inequality in (6.109) holds.

Following inequalities include the right-sided Caputo fractional derivatives.

Theorem 6.64 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with m =
min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1. Let w1 and w2

be continuous positive weight functions on [x,b] and let w2 be increasing function. Let
ri ≥ 0, r = N

i=1 ri > 0. Let s,s′ > 1 with 1
s + 1

s′ = 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,

 = N
i=1 ri( −i)− r and  > i + for i = 1, . . . ,N. Let CD

b− f ∈ Lp+q[a,b]. Then
for a.e. x ∈ [a,b] holds

∫ b

x
w1(t)

N


i=1

|CDi
b− f (t)|ri p |CD

b− f (t)|q dt

≤ T5 R̃(x)(b− x) p+  p
s [w2(x)]

−(rp+q)
(∫ b

x
w2(t) |CD

b− f (t)|p+q dt

) pr+q
p+q

,

(6.111)

where R̃ and T5 are given by (6.107) and (6.99), respectively.

Theorem 6.65 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with m =
min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1. Let w1 and w2

be continuous positive weight functions on [x,b] such that w1(t) ≤ B and A ≤ w2(t) for t ∈
[x,b]. Let ri ≥ 0, r =N

i=1 ri > 0. Let p > 0, q ≥ 0,  = 1
p+q < 1,  =N

i=1 ri(−i)− r
and  > i + for i = 1, . . . ,N. Let CD

a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w1(t)

N


i=1

|CDi
b− f (t)|ri p |CD

b− f (t)|q dt
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≤ T4 (b− x)(+)p BA−(rp+q)
(∫ b

x
w2(t) |CD

b− f (t)|p+q dt

) pr+q
p+q

,

(6.112)

where T4 is given by (6.53).

Theorem 6.66 Let N ∈ N, i = 1, . . . ,N,  > i ≥ 0 and mi, n given by (2.70) with m =
min{mi}. Let f ∈ ACn[a,b] be such that f (i)(b) = 0 for i = m, . . . ,n− 1. Let w1 and
w2 be continuous positive weight functions on [x,b] and let w2 be increasing function.
Let ri ≥ 0, r = N

i=1 ri > 0. Let s ∈ (0,1), s′ < 0 with 1
s + 1

s′ = 1. Let p < 0, q ≥ 0,
 = 1

p+q < 0,  = N
i=1 ri( −i)− r . Let CD

b− f ∈ Lp+q[a,b] be of fixed sign on [a,b],
with 1/CD

b− f ∈ Lp+q[a,b]. Then reverse inequality in (6.111) holds.

Extreme cases, with only one weight function w1, are given in Proposition 6.15 and
Proposition 6.16.

THE CANAVATI FRACTIONAL DERIVATIVES

Theorem 6.67 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = [] + 1. Let f ∈ C

a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2. Let w1

and w2 be continuous positive weight functions on [a,x] and let w2 be decreasing function.
Let ri ≥ 0, r = N

i=1 ri > 0. Let s,s′ > 1 with 1
s + 1

s′ = 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,

 = N
i=1 ri( −i)− r and  > i + for i = 1, . . . ,N. Let C1D

a+ f ∈ Lp+q[a,b]. Then
for a.e. x ∈ [a,b] holds∫ x

a
w1(t)

N


i=1

|C1Di
a+ f (t)|ri p |C1D

a+ f (t)|q dt

≤ T5 R(x)(x−a) p+  p
s [w2(x)]

−(rp+q)
(∫ x

a
w2(t) |C1D

a+ f (t)|p+q dt

) pr+q
p+q

,

(6.113)

where R and T5 are given by (6.98) and (6.99), respectively.

For the next theorem we suppose that weight functions are bounded.

Theorem 6.68 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+1. Let f ∈C

a+[a,b] be such that f (i)(a)= 0 for i =m−1, . . . ,n−2. Let w1 and w2

be continuous positive weight functions on [a,x] such that w1(t) ≤ B and A ≤ w2(t) for t ∈
[a,x]. Let ri ≥ 0, r =N

i=1 ri > 0. Let p > 0, q ≥ 0,  = 1
p+q < 1,  =N

i=1 ri(−i)− r
and  > i + for i = 1, . . . ,N. Let C1D

a+ f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w1(t)

N


i=1

|C1Di
a+ f (t)|ri p |C1D

a+ f (t)|q dt

≤ T4 (x−a)(+)p BA−(rp+q)
(∫ x

a
w2(t) |C1D

a+ f (t)|p+q dt

) pr+q
p+q

,

where T4 is given by (6.53).
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Theorem 6.69 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = [] + 1. Let f ∈ C

a+[a,b] be such that f (i)(a) = 0 for i = m− 1, . . . ,n− 2. Let w1

and w2 be continuous positive weight functions on [a,x] and let w2 be decreasing function.
Let ri ≥ 0, r = N

i=1 ri > 0. Let s ∈ (0,1), s′ < 0 with 1
s + 1

s′ = 1. Let p < 0, q ≥ 0,
 = 1

p+q < 0,  = N
i=1 ri(−i)− r . Let C1D

a+ f ∈ Lp+q[a,b] be of fixed sign on [a,b],
with 1/C1D

a+ f ∈ Lp+q[a,b]. Then reverse inequality in (6.113) holds.

Following inequalities include the right-sided Canavati fractional derivatives.

Theorem 6.70 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = [] + 1. Let f ∈ C

b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2. Let w1

and w2 be continuous positive weight functions on [x,b] and let w2 be increasing function.
Let ri ≥ 0, r = N

i=1 ri > 0. Let s,s′ > 1 with 1
s + 1

s′ = 1. Let p > 0, q ≥ 0,  = 1
p+q < 1,

 = N
i=1 ri(−i)− r and  > i + for i = 1, . . . ,N. Let C1D

b− f ∈ Lp+q[a,b]. Then
for a.e. x ∈ [a,b] holds∫ b

x
w1(t)

N


i=1

|C1Di
b− f (t)|ri p |C1D

b− f (t)|q dt

≤ T5 R̃(x)(b− x) p+  p
s [w2(x)]

−(rp+q)
(∫ b

x
w2(t) |C1D

b− f (t)|p+q dt

) pr+q
p+q

,

(6.114)

where R̃ and T5 are given by (6.107) and (6.99), respectively.

Theorem 6.71 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = []+1. Let f ∈C

b−[a,b] be such that f (i)(b)= 0 for i = m−1, . . . ,n−2. Let w1 and w2

be continuous positive weight functions on [x,b] such that w1(t) ≤ B and A ≤ w2(t) for t ∈
[x,b]. Let ri ≥ 0, r =N

i=1 ri > 0. Let p > 0, q ≥ 0,  = 1
p+q < 1,  =N

i=1 ri(−i)− r
and  > i + for i = 1, . . . ,N. Let C1D

b− f ∈ Lp+q[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w1(t)

N


i=1

|C1Di
b− f (t)|ri p |C1D

b− f (t)|q dt

≤ T4 (b− x)(+)p BA−(rp+q)
(∫ b

x
w2(t) |C1D

b− f (t)|p+q dt

) pr+q
p+q

,

(6.115)

where T4 is given by (6.53).

Theorem 6.72 Let N ∈ N,  > i ≥ 0, mi = [i]+1, m = min{mi} for i = 1, . . . ,N and
n = [] + 1. Let f ∈ C

b−[a,b] be such that f (i)(b) = 0 for i = m− 1, . . . ,n− 2. Let w1

and w2 be continuous positive weight functions on [x,b] and let w2 be increasing function.
Let ri ≥ 0, r = N

i=1 ri > 0. Let s ∈ (0,1), s′ < 0 with 1
s + 1

s′ = 1. Let p < 0, q ≥ 0,
 = 1

p+q < 0,  = N
i=1 ri(−i)− r . Let C1D

b− f ∈ Lp+q[a,b] be of fixed sign on [a,b],
with 1/C1D

b− f ∈ Lp+q[a,b]. Then reverse inequality in (6.114) holds.
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Extreme cases, with only one weight function w1, are given in Proposition 6.17 and
Proposition 6.18.

The last inequality that we observe in this section is Alzer’s inequality involving two
functions (1.27). Applied on fraction derivatives it has a form∫ x

a
w1(t)

[
|Dg(t)|p |D f (t)|q + |D f (t)|p |Dg(t)|q

]
dt

≤ K

(∫ x

a
w2(t)

[
|D f (t)|r + |Dg(t)|r

]
dt

) p+q
r

,

where w1,w2 ∈C[a,b] are positive weight functions,  >  ≥ 0, K > 0 is a constant and
p,q,r ∈ R.

This inequality is given in [12] for all three types of fractional derivatives. Its estimation
is based on inequality due to Agarwal and Pang ([5]) given for ordinary derivatives. Since
Alzer improved Agarwal-Pang’s inequality in [11], Andrić-Pečarić-Perić applied Alzer’s
result on inequalities involving fractional derivatives in [27]. Some new inequalities, for
the case r < 0, is also given in [27].

THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

Theorem 6.73 Let  >  ≥ 0 and suppose that one of conditions (i)− (vii) in Corollary
2.21 holds for {, , f} and {, ,g}. Let w1 ≥ 0 and w2 > 0 be continuous weight
functions on [a,x]. Let r > 1, r > q > 0 and p ≥ 0. Let D

a+ f ,D
a+g ∈ Lr[a,b]. Then for

a.e. x ∈ [a,b] holds∫ x

a
w1(t)

[
|D

a+g(t)|p |D
a+ f (t)|q + |D

a+ f (t)|p |D
a+g(t)|q

]
dt

≤ T6 MS(x)
(∫ x

a
w2(t)

[
|D

a+ f (t)|r + |D
a+g(t)|r

]
dt

) p+q
r

, (6.116)

where

S(x) =
[∫ x

a
[w1(t)]

r
r−q [w2(t)]

q
q−r [s(t)]

p(r−1)
r−q dt

] r−q
r

, (6.117)

s(t) =
∫ t

a
(t− )

r(−−1)
r−1 [w2()]

1
1−r d , (6.118)

M =

⎧⎨⎩
(
1−2−

p
q

) q
r

, p ≥ q ,

2−
p
r , p ≤ q ,

(6.119)

T6 =
2

[(− )]p

[
q

2(p+q)

] q
r

. (6.120)

Proof. Using Theorem2.13, the triangle inequality and Hölder’s inequality for { r
r−1 ,r},

for t ∈ [a,x] we have

|D
a+g(t)| ≤ 1

(− )

∫ t

a
(t− )−−1 |D

a+g()|d
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=
1

(− )

∫ t

a
(t− )−−1 [w2()]−

1
r [w2()]

1
r |D

a+g()|d

≤ 1
(− )

(∫ t

a
(t− )

r(−−1)
r−1 [w2()]

1
1−r d

) r−1
r
(∫ t

a
w2() |D

a+g()|r d
) 1

r

=
1

(− )
[s(t)]

r−1
r [G(t)]

1
r , (6.121)

where

G(t) =
∫ t

a
w2() |D

a+g()|r d . (6.122)

Let

F(t) =
∫ t

a
w2() |D

a+ f ()|r d . (6.123)

Then F ′(t) = w2(t) |D
a+ f (t)|r, that is

|D
a+ f (t)|q =

[
F ′(t)

] q
r [w2(t)]

− q
r . (6.124)

Now (6.121) and (6.124) imply

w1(t) |D
a+g(t)|p |D

a+ f (t)|q ≤ h(t) [G(t)]
p
r
[
F ′(t)

] q
r , (6.125)

where

h(t) =
1

[(− )]p
w1(t) [w2(t)]

− q
r [s(t)]

p(r−1)
r . (6.126)

Integrating (6.125) and applying Hölder’s inequality for { r
r−q , r

q}, we obtain∫ x

a
w1(t) |D

a+g(t)|p |D
a+ f (t)|q dt

≤
∫ x

a
h(t) [G(t)]

p
r
[
F ′(t)

] q
r dt

≤
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
(∫ x

a
[G(t)]

p
q F ′(t)dt

) q
r

. (6.127)

Similarly we get ∫ x

a
w1(t) |D

a+ f (t)|p |D
a+g(t)|q dt

≤
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
(∫ x

a
[F(t)]

p
q G′(t)dt

) q
r

. (6.128)

In the next step we need simple inequalities

c(A+B) ≤ A +B ≤ d(A+B) , (A,B ≥ 0) , (6.129)

where

c =
{

1 , 0 ≤  ≤ 1 ,
21− ,  ≥ 1 ,

, d =
{

21− , 0 ≤  ≤ 1 ,
1 ,  ≥ 1 .
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Therefore, from (6.127), (6.128) and (6.129), with r > q, we conclude∫ x

a
w1(t)

[
|D

a+g(t)|p |D
a+ f (t)|q + |D

a+ f (t)|p |D
a+g(t)|q

]
dt

≤
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
[(∫ x

a
[G(t)]

p
q F ′(t)dt

) q
r

+
(∫ x

a
[F(t)]

p
q G′(t)dt

) q
r
]

≤
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r

21− q
r

(∫ x

a

[
[G(t)]

p
q F ′(t)+ [F(t)]

p
q G′(t)

]
dt

) q
r

. (6.130)

Since G(a) = F(a) = 0, then with (6.129) follows∫ x

a

[
[G(t)]

p
q F ′(t)+ [F(t)]

p
q G′(t)

]
dt

=
∫ x

a

[
[G(t)]

p
q +[F(t)]

p
q

][
G′(t)+F ′(t)

]
dt−

∫ x

a

[
[G(t)]

p
q G′(t)+ [F(t)]

p
q F ′(t)

]
dt

≤ d p
q

∫ x

a
[G(t)+F(t)]

p
q [G(t)+F(t)]′ dt− q

p+q

[
G(x)

p
q +1 +F(x)

p
q +1

]
=

q
p+q

d p
q
[G(x)+F(x)]

p
q +1− q

p+q

[
G(x)

p
q +1 +F(x)

p
q +1

]
≤ q

p+q

(
d p

q
−2−

p
q

)
[G(x)+F(x)]

p
q +1 . (6.131)

Hence from (6.130) and (6.131) we obtain∫ x

a
w1(t)

[
|D

a+g(t)|p |D
a+ f (t)|q + |D

a+ f (t)|p |D
a+g(t)|q

]
dt

≤ 21− q
r

(
d p

q
−2−

p
q

) q
r
(

q
p+q

) q
r
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r

[G(x)+F(x)]
p+q
r

=
2

[(− )]p
(
d p

q
−2−

p
q

) q
r
[

q
2(p+q)

] q
r

S(x) [G(x)+F(x)]
p+q
r .

If p ≥ q, then (
d p

q
−2−

p
q

) q
r

=
(
1−2−

p
q

) q
r
,

while for p ≤ q (
d p

q
−2−

p
q

) q
r
=
(
21− p

q −2−
p
q

) q
r

= 2−
p
r ,

which proves the theorem. �

The following result deals with the extreme case of the preceding theorem when r =.

Proposition 6.19 Let  > 1,2 ≥ 0 and suppose that one of conditions (i)− (vii) in
Corollary 2.21 holds for {,i, f} and {,i,g}, i = 1,2. Let w be continuous nonnegative
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weight function on [a,x] and let p,q1,q2 ≥ 0. Let D
a+ f ,D

a+g ∈ L[a,b]. Then for a.e.
x ∈ [a,b] holds∫ x

a
w(t)

[
|D1

a+ f (t)|q1 |D2
a+g(t)|q2 |D

a+ f (t)|p

+ |D2
a+ f (t)|q2 |D1

a+g(t)|q1 |D
a+g(t)|p

]
dt

≤ T7 (x−a)q1(−1)+q2(−2)+1 ‖w‖
·
[
‖D

a+ f‖2(q1+p)
 +‖D

a+ f‖2q2
 +‖D

a+g‖2q2
 +‖D

a+g‖2(q1+p)


]
, (6.132)

where

T7 =
[
2 [(−1 +1)]q1 [(−2 +1)]q2 [q1(−1)+q2(−2)+1]

]−1
. (6.133)

Proof. Using Theorem 2.13, the triangle inequality and Hölder’s inequality, for i = 1,2
and t ∈ [a,x] we have

|Di
a+ f (t)|qi ≤ 1

[( −i)]qi

(∫ t

a
(t − )−i−1 |D

a+ f ()|d
)qi

≤ 1
[( −i)]

qi

(∫ t

a
(t − )−i−1 d

)qi

‖D
a+ f‖qi



=
(t −a)qi(−i)

[( −i +1)]qi
‖D

a+ f‖qi
 .

By analogy, for i = 1,2 we get

|Di
a+g(t)|qi ≤ (t−a)qi(−i)

[(−i +1)]qi
‖D

a+g‖qi
 .

Also,
|D

a+ f (t)|p ≤ ‖D
a+ f‖p

 , |D
a+g(t)|p ≤ ‖D

a+g‖p
 .

Hence

|D1
a+ f (t)|q1 |D2

a+g(t)|q2 |D
a+ f (t)|p

≤ (t −a)q1(−1)+q2(−2)

[(−1 +1)]q1 [(−2 +1)]q2
‖D

a+ f‖q1+p
 ‖D

a+g‖q2
 , (6.134)

|D2
a+ f (t)|q2 |D1

a+g(t)|q1 |D
a+g(t)|p

≤ (t −a)q2(−2)+q1(−1)

[(−1 +1)]q1 [(−2 +1)]q2
‖D

a+ f‖q2
 ‖D

a+g‖q1+p
 . (6.135)

Form (6.134) and (6.135) follow∫ x

a
w(t)

[
|D1

a+ f (t)|q1 |D2
a+g(t)|q2 |D

a+ f (t)|p + |D2
a+ f (t)|q2 |D1

a+g(t)|q1 |D
a+g(t)|p

]
dt
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≤ 1
[(−1 +1)]q1 [(−2 +1)]q2

∫ x

a
w(t)(t −a)q1(−1)+q2(−2) dt

·
[
‖D

a+ f‖q1+p
 ‖D

a+g‖q2
 +‖D

a+ f‖q2
 ‖D

a+g‖q1+p


]
≤ ‖w‖

[(−1 +1)]q1 [(−2 +1)]q2

∫ x

a
(t−a)q1(−1)+q2(−2) dt

·1
2

[
‖D

a+ f‖2(q1+p)
 +‖D

a+ f‖2q2
 +‖D

a+g‖2q2
 +‖D

a+g‖2(q1+p)


]
,

from which we obtain inequality (6.132). �

Now we present a counterpart of the previous theorem for the case r < 0. Conditions
on r and q allow us to apply reverse Hölder’s inequalities, first with parameters { r

r−1 ∈
(0,1),r < 0}, then with { r

r−q ∈ (0,1), r
q < 0}. Apart from using inequalities (6.129), we

have to require similar inequalities for negative power, that is (6.142). Hence, instead of
constant factor M we get M̃.

Theorem 6.74 Let  >  ≥ 0 and suppose that one of conditions (i)− (vii) in Corollary
2.21 holds for {, , f} and {, ,g}. Let w1 ≥ 0 and w2 > 0 be continuous weight
functions on [a,x]. Let r < 0, q > 0 and p ≥ 0. Let D

a+ f ,D
a+g ∈ Lr[a,b] be of fixed sign

on [a,b], with 1/D
a+ f ,1/D

a+g ∈ Lr[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w1(t)

[
|D

a+g(t)|p |D
a+ f (t)|q + |D

a+ f (t)|p |D
a+g(t)|q

]
dt

≥ T6 M̃ S(x)
(∫ x

a
w2(t)

[
|D

a+ f (t)|r + |D
a+g(t)|r

]
dt

) p+q
r

, (6.136)

where S and T6 are given by (6.117) and (6.120), respectively, and

M̃ =

⎧⎨⎩ 2−
p
r , p ≥ q ,(

1−2−
p
q

) q
r

, p ≤ q .
(6.137)

Proof. Using Theorem 2.13, fixed sign of D
a+g on [a,b], and reverse Hölder’s inequal-

ity for { r
r−1 ,r}, for t ∈ [a,x] we have

|D
a+g(t)|

=
1

(− )

∫ t

a
(t− )−−1 |D

a+g()|d

=
1

(− )

∫ t

a
(t− )−−1 [w2()]−

1
r [w2()]

1
r |D

a+g()|d

≥ 1
(− )

(∫ t

a
(t− )

r(−−1)
r−1 [w2()]

1
1−r d

) r−1
r
(∫ t

a
w2() |D

a+g()|r d
) 1

r

=
1

(− )
[s(t)]

r−1
r [G(t)]

1
r , (6.138)
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where G is defined by (6.122). Let F be defined by (6.123). Then (6.124) holds, and by
(6.138) and (6.124) follows

w1(t) |D
a+g(t)|p |D

a+ f (t)|q ≥ h(t) [G(t)]
p
r
[
F ′(t)

] q
r , (6.139)

where h is defined by (6.126). Integrating (6.139) and applying reverse Hölder’s inequality
for { r

r−q , r
q}, follows

∫ x

a
w1(t) |D

a+g(t)|p |D
a+ f (t)|q dt

≥
∫ x

a
h(t) [G(t)]

p
r
[
F ′(t)

] q
r dt

≥
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
(∫ x

a
[G(t)]

p
q F ′(t)dt

) q
r

. (6.140)

Similarly we get ∫ x

a
w1(t) |D

a+ f (t)|p |D
a+g(t)|q dt

≥
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
(∫ x

a
[F(t)]

p
q G′(t)dt

) q
r

. (6.141)

For negative power we use inequality

A +B ≥ 21− (A+B) , ( < 0 and A,B > 0) , (6.142)

since x is convex function on (0,) for  < 0. Using (6.142) for q
r < 0, (6.140) and

(6.141), we conclude∫ x

a
w1(t)

[
|D

a+g(t)|p |D
a+ f (t)|q + |D

a+ f (t)|p |D
a+g(t)|q

]
dt

≥
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
[(∫ x

a
[G(t)]

p
q F ′(t)dt

) q
r

+
(∫ x

a
[F(t)]

p
q G′(t)dt

) q
r
]

≥
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r

21− q
r

(∫ x

a

[
[G(t)]

p
q F ′(t)+ [F(t)]

p
q G′(t)

]
dt

) q
r

. (6.143)

For p
q > 0 we use (6.129), and with G(a) = F(a) = 0, we get

∫ x

a

[
[G(t)]

p
q F ′(t)+ [F(t)]

p
q G′(t)

]
dt

=
∫ x

a

[
[G(t)]

p
q +[F(t)]

p
q

][
G′(t)+F ′(t)

]
dt−

∫ x

a

[
[G(t)]

p
q G′(t)+ [F(t)]

p
q F ′(t)

]
dt

≥ c p
q

∫ x

a
[G(t)+F(t)]

p
q [G(t)+F(t)]′ dt− q

p+q

[
G(x)

p
q +1 +F(x)

p
q +1

]
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≥ q
p+q

(
c p

q
−2−

p
q

)
[G(x)+F(x)]

p
q +1 . (6.144)

Now from (6.143) and (6.144) follow∫ x

a
w1(t)

[
|D

a+g(t)|p |D
a+ f (t)|q + |D

a+ f (t)|p |D
a+g(t)|q

]
dt

≥ 21− q
r

(
c p

q
−2−

p
q

) q
r
(

q
p+q

) q
r
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r

[G(x)+F(x)]
p+q
r

=
2

[(− )]p
(
c p

q
−2−

p
q

) q
r
[

q
2(p+q)

] q
r

S(x) [G(x)+F(x)]
p+q
r .

If p ≥ q, then (
c p

q
−2−

p
q

) q
r

=
(
21− p

q −2−
p
q

) q
r

= 2−
p
r ,

while for p ≤ q (
c p

q
−2−

p
q

) q
r =

(
1−2−

p
q

) q
r
,

which proves the theorem. �

Following inequalities include the right-sidedRiemann-Liouville fractional derivatives.

Theorem 6.75 Let  >  ≥ 0 and suppose that one of conditions (i)− (vii) in Corollary
2.22 holds for {, , f} and {, ,g}. Let w1 ≥ 0 and w2 > 0 be continuous weight
functions on [x,b]. Let r > 1, r > q > 0 and p ≥ 0. Let D

b− f ,D
b−g ∈ Lr[a,b]. Then for

a.e. x ∈ [a,b] holds

∫ b

x
w1(t)

[
|D

b−g(t)|p |D
b− f (t)|q + |D

b− f (t)|p |D
b−g(t)|q

]
dt

≤ T6 MS̃(x)
(∫ b

x
w2(t)

[
|D

b− f (t)|r + |D
b−g(t)|r

]
dt

) p+q
r

, (6.145)

where M and T6 are given by (6.119) and (6.120), respectively, and

S̃(x) =
[∫ b

x
[w1(t)]

r
r−q [w2(t)]

q
q−r [s̃(t)]

p(r−1)
r−q dt

] r−q
r

, (6.146)

s̃(t) =
∫ b

t
(− t)

r(−−1)
r−1 [w2()]

1
1−r d . (6.147)

Following cases are for r =  and r < 0.

Proposition 6.20 Let  > 1,2 ≥ 0 and suppose that one of conditions (i)− (vii) in
Corollary 2.22 holds for {,i, f} and {,i,g}, i = 1,2. Let w be continuous nonnegative
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weight function on [x,b] and let p,q1,q2 ≥ 0. Let D
b− f ,D

b−g ∈ L[a,b]. Then for a.e.
x ∈ [a,b] holds∫ b

x
w(t)

[
|D1

b− f (t)|q1 |D2
b−g(t)|q2 |D

b− f (t)|p

+ |D2
b− f (t)|q2 |D1

b−g(t)|q1 |D
b−g(t)|p

]
dt

≤ T7 (b− x)q1(−1)+q2(−2)+1 ‖w‖
·
[
‖D

b− f‖2(q1+p)
 +‖D

b− f‖2q2
 +‖D

b−g‖2q2
 +‖D

b−g‖2(q1+p)


]
, (6.148)

where T7 is given by (6.133).

Theorem 6.76 Let  >  ≥ 0 and suppose that one of conditions (i)− (vii) in Corollary
2.22 holds for {, , f} and {, ,g}. Let w1 ≥ 0 and w2 > 0 be continuous weight
functions on [x,b]. Let r < 0, q > 0 and p ≥ 0. Let D

b− f ,D
b−g ∈ Lr[a,b] be of fixed sign

on [a,b], with 1/D
b− f ,1/D

b−g ∈ Lr[a,b]. Then for a.e. x ∈ [a,b] holds∫ b

x
w1(t)

[
|D

b−g(t)|p |D
b− f (t)|q + |D

b− f (t)|p |D
b−g(t)|q

]
dt

≥ T6 M̃ S̃(x)
(∫ b

x
w2(t)

[
|D

b− f (t)|r + |D
b−g(t)|r

]
dt

) p+q
r

, (6.149)

where S̃, M̃ and T6 are given by (6.146), (6.137) and (6.120), respectively.

THE CAPUTO FRACTIONAL DERIVATIVES

Theorem 6.77 Let  >  ≥ 0 with n and m given by (2.70). Let f ,g ∈ ACn[a,b] be such
that f (i)(a) = g(i)(a) = 0 for i = m, . . . ,n−1. Let w1 ≥ 0 and w2 > 0 be continuous weight
functions on [a,x]. Let r > 1, r > q > 0 and p ≥ 0. Let CD

a+ f ,CD
a+g ∈ Lr[a,b]. Then for

a.e. x ∈ [a,b] holds∫ x

a
w1(t)

[∣∣∣CD
a+g(t)

∣∣∣p ∣∣CD
a+ f (t)

∣∣q +
∣∣∣CD

a+ f (t)
∣∣∣p ∣∣CD

a+g(t)
∣∣q]dt

≤ T6 MS(x)
(∫ x

a
w2(t)

[∣∣CD
a+ f (t)

∣∣r +
∣∣CD

a+g(t)
∣∣r ]dt

) p+q
r

, (6.150)

where S, M and T6 are given by (6.117), (6.119) and (6.120), respectively.

Proposition 6.21 Let  > 1,2 ≥ 0 with n, m1 and m2 given by (2.70). Let m =
min{m1,m2} and f ,g ∈ ACn[a,b] be such that f (i)(a) = g(i)(a) = 0 for i = m, . . . ,n−
1. Let w be continuous nonnegative weight function on [a,x] and let p,q1,q2 ≥ 0. Let
CD

a+ f ,CD
a+g ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t)

[
|CD1

a+ f (t)|q1 |CD2
a+g(t)|q2 |CD

a+ f (t)|p
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+ |CD2
a+ f (t)|q2 |CD1

a+g(t)|q1 |CD
a+g(t)|p

]
dt

≤ T7 (x−a)q1(−1)+q2(−2)+1 ‖w‖
·
[
‖CD

a+ f‖2(q1+p)
 +‖CD

a+ f‖2q2
 +‖CD

a+g‖2q2
 +‖CD

a+g‖2(q1+p)


]
,

(6.151)

where T7 is given by (6.133).

Theorem 6.78 Let  >  ≥ 0 with n and m given by (2.70). Let f ,g ∈ ACn[a,b] be such
that f (i)(a) = g(i)(a) = 0 for i = m, . . . ,n−1. Let w1 ≥ 0 and w2 > 0 be continuous weight
functions on [a,x]. Let r < 0, q > 0 and p ≥ 0. Let CD

a+ f ,CD
a+g∈ Lr[a,b] be of fixed sign

on [a,b], with 1/CD
a+ f ,1/CD

a+g ∈ Lr[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w1(t)

[∣∣∣CD
a+g(t)

∣∣∣p ∣∣CD
a+ f (t)

∣∣q +
∣∣∣CD

a+ f (t)
∣∣∣p ∣∣CD

a+g(t)
∣∣q]dt

≥ T6 M̃ S(x)
(∫ x

a
w2(t)

[∣∣CD
a+ f (t)

∣∣r +
∣∣CD

a+g(t)
∣∣r ]dt

) p+q
r

, (6.152)

where S, M̃ and T6 are given by (6.117), (6.137) and (6.120), respectively.

Following inequalities include the right-sided Caputo fractional derivatives.

Theorem 6.79 Let  >  ≥ 0 with n and m given by (2.70). Let f ,g ∈ ACn[a,b] be such
that f (i)(b) = g(i)(b) = 0 for i = m, . . . ,n−1. Let w1 ≥ 0 and w2 > 0 be continuous weight
functions on [x,b]. Let r > 1, r > q > 0 and p ≥ 0. Let CD

b− f ,CD
b−g ∈ Lr[a,b]. Then for

a.e. x ∈ [a,b] holds∫ b

x
w1(t)

[∣∣∣CD
b−g(t)

∣∣∣p ∣∣CD
b− f (t)

∣∣q +
∣∣∣CD

b− f (t)
∣∣∣p ∣∣CD

b−g(t)
∣∣q]dt

≤ T6 MS̃(x)
(∫ b

x
w2(t)

[∣∣CD
b− f (t)

∣∣r +
∣∣CD

b−g(t)
∣∣r ]dt

) p+q
r

, (6.153)

where S̃, M and T6 are given by (6.146), (6.119) and (6.120), respectively.

Proposition 6.22 Let  > 1,2 ≥ 0 with n, m1 and m2 given by (2.70). Let m =
min{m1,m2} and f ,g ∈ ACn[a,b] be such that f (i)(b) = g(i)(b) = 0 for i = m, . . . ,n−
1. Let w be continuous nonnegative weight function on [x,b] and let p,q1,q2 ≥ 0. Let
CD

b− f ,CD
b−g ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

[
|CD1

b− f (t)|q1 |CD2
b−g(t)|q2 |CD

b− f (t)|p

+ |CD2
b− f (t)|q2 |CD1

b−g(t)|q1 |CD
b−g(t)|p

]
dt

≤ T7 (b− x)q1(−1)+q2(−2)+1 ‖w‖
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·
[
‖CD

b− f‖2(q1+p)
 +‖CD

b− f‖2q2
 +‖CD

b−g‖2q2
 +‖CD

b−g‖2(q1+p)


]
,

(6.154)

where T7 is given by (6.133).

Theorem 6.80 Let  >  ≥ 0 with n and m given by (2.70). Let f ,g ∈ ACn[a,b] be such
that f (i)(b) = g(i)(b) = 0 for i = m, . . . ,n−1. Let w1 ≥ 0 and w2 > 0 be continuous weight
functions on [x,b]. Let r < 0, q > 0 and p≥ 0. Let CD

b− f ,CD
b−g ∈ Lr[a,b] be of fixed sign

on [a,b], with 1/CD
b− f ,1/CD

b−g ∈ Lr[a,b]. Then for a.e. x ∈ [a,b] holds∫ b

x
w1(t)

[∣∣∣CD
b−g(t)

∣∣∣p ∣∣CD
b− f (t)

∣∣q +
∣∣∣CD

b− f (t)
∣∣∣p ∣∣CD

b−g(t)
∣∣q]dt

≥ T6 M̃ S̃(x)
(∫ b

x
w2(t)

[∣∣CD
b− f (t)

∣∣r +
∣∣CD

b−g(t)
∣∣r ]dt

) p+q
r

, (6.155)

where S̃, M̃ and T6 are given by (6.146), (6.137) and (6.120), respectively.

THE CANAVATI FRACTIONAL DERIVATIVES

Theorem 6.81 Let  >  ≥ 0, n = []+1 and m = [ ]+1. Let f ,g ∈C
a+[a,b] be such

that f (i)(a) = g(i)(a) = 0 for i = m− 1, . . . ,n− 2. Let w1 ≥ 0 and w2 > 0 be continuous
weight functions on [a,x]. Let r > 1, r > q > 0 and p ≥ 0. Let C1D

a+ f ,C1D
a+g ∈ Lr[a,b].

Then for a.e. x ∈ [a,b] holds∫ x

a
w1(t)

[∣∣∣C1D
a+g(t)

∣∣∣p ∣∣C1D
a+ f (t)

∣∣q +
∣∣∣C1D

a+ f (t)
∣∣∣p ∣∣C1D

a+g(t)
∣∣q]dt

≤ T6 MS(x)
(∫ x

a
w2(t)

[∣∣C1D
a+ f (t)

∣∣r +
∣∣C1D

a+g(t)
∣∣r ]dt

) p+q
r

, (6.156)

where S, M and T6 are given by (6.117), (6.119) and (6.120), respectively.

Proposition 6.23 Let  > 1,2 ≥ 0, n = []+ 1 and mi = [i]+ 1, i = 1,2. Let m =
min{m1,m2} and f ,g ∈C

a+[a,b] be such that f (i)(a) = g(i)(a) = 0 for i = m−1, . . . ,n−
2. Let w be continuous nonnegative weight function on [a,x] and let p,q1,q2 ≥ 0. Let
C1D

a+ f ,C1D
a+g ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w(t)

[
|C1D1

a+ f (t)|q1 |C1D2
a+g(t)|q2 |C1D

a+ f (t)|p

+ |C1D2
a+ f (t)|q2 |C1D1

a+g(t)|q1 |C1D
a+g(t)|p

]
dt

≤ T7 (x−a)q1(−1)+q2(−2)+1 ‖w‖
·
[
‖C1D

a+ f‖2(q1+p)
 +‖C1D

a+ f‖2q2
 +‖C1D

a+g‖2q2
 +‖C1D

a+g‖2(q1+p)


]
,

(6.157)

where T7 is given by (6.133).
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Theorem 6.82 Let  >  ≥ 0, n = []+1 and m = [ ]+1. Let f ,g ∈C
a+[a,b] be such

that f (i)(a) = g(i)(a) = 0 for i = m− 1, . . . ,n− 2. Let w1 ≥ 0 and w2 > 0 be continuous
weight functions on [a,x]. Let r < 0, q > 0 and p ≥ 0. Let C1D

a+ f ,C1D
a+g ∈ Lr[a,b] be of

fixed sign on [a,b], with 1/C1D
a+ f ,1/C1D

a+g ∈ Lr[a,b]. Then for a.e. x ∈ [a,b] holds∫ x

a
w1(t)

[∣∣∣C1D
a+g(t)

∣∣∣p ∣∣C1D
a+ f (t)

∣∣q +
∣∣∣C1D

a+ f (t)
∣∣∣p ∣∣C1D

a+g(t)
∣∣q]dt

≥ T6 M̃ S(x)
(∫ x

a
w2(t)

[∣∣C1D
a+ f (t)

∣∣r +
∣∣C1D

a+g(t)
∣∣r ]dt

) p+q
r

, (6.158)

where S, M̃ and T6 are given by (6.117), (6.137) and (6.120), respectively.

Following inequalities include the right-sided Canavati fractional derivatives.

Theorem 6.83 Let  >  ≥ 0, n = []+1 and m = [ ]+1. Let f ,g ∈C
b−[a,b] be such

that f (i)(b) = g(i)(b) = 0 for i = m− 1, . . . ,n− 2. Let w1 ≥ 0 and w2 > 0 be continuous
weight functions on [x,b]. Let r > 1, r > q > 0 and p ≥ 0. Let C1D

b− f ,C1D
b−g ∈ Lr[a,b].

Then for a.e. x ∈ [a,b] holds∫ b

x
w1(t)

[∣∣∣C1D
b−g(t)

∣∣∣p ∣∣C1D
b− f (t)

∣∣q +
∣∣∣C1D

b− f (t)
∣∣∣p ∣∣C1D

b−g(t)
∣∣q]dt

≤ T6 MS̃(x)
(∫ b

x
w2(t)

[∣∣C1D
b− f (t)

∣∣r +
∣∣C1D

b−g(t)
∣∣r ]dt

) p+q
r

, (6.159)

where S̃, M and T6 are given by (6.146), (6.119) and (6.120), respectively.

Proposition 6.24 Let  > 1,2 ≥ 0, n = []+ 1 and mi = [i]+ 1, i = 1,2. Let m =
min{m1,m2} and f ,g ∈C

b−[a,b] be such that f (i)(b) = g(i)(b) = 0 for i = m−1, . . . ,n−
2. Let w be continuous nonnegative weight function on [x,b] and let p,q1,q2 ≥ 0. Let
C1D

b− f ,C1D
b−g ∈ L[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w(t)

[
|C1D1

b− f (t)|q1 |C1D2
b−g(t)|q2 |C1D

b− f (t)|p

+ |C1D2
b− f (t)|q2 |C1D1

b−g(t)|q1 |C1D
b−g(t)|p

]
dt

≤ T7 (x−a)q1(−1)+q2(−2)+1 ‖w‖
·
[
‖C1D

b− f‖2(q1+p)
 +‖C1D

b− f‖2q2
 +‖C1D

b−g‖2q2
 +‖C1D

b−g‖2(q1+p)


]
,

(6.160)

where T7 is given by (6.133).

Theorem 6.84 Let  >  ≥ 0, n = []+1 and m = [ ]+1. Let f ,g ∈C
b−[a,b] be such

that f (i)(b) = g(i)(b) = 0 for i = m− 1, . . . ,n− 2. Let w1 ≥ 0 and w2 > 0 be continuous
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weight functions on [x,b]. Let r < 0, q > 0 and p ≥ 0. Let C1D
b− f ,C1D

b−g ∈ Lr[a,b] be of
fixed sign on [a,b], with 1/C1D

b− f ,1/C1D
b−g ∈ Lr[a,b]. Then for a.e. x ∈ [a,b] holds

∫ b

x
w1(t)

[∣∣∣C1D
b−g(t)

∣∣∣p ∣∣C1D
b− f (t)

∣∣q +
∣∣∣C1D

b− f (t)
∣∣∣p ∣∣C1D

b−g(t)
∣∣q]dt

≥ T6 M̃ S̃(x)
(∫ b

x
w2(t)

[∣∣C1D
b− f (t)

∣∣r +
∣∣C1D

b−g(t)
∣∣r ]dt

) p+q
r

, (6.161)

where S̃, M̃ and T6 are given by (6.146), (6.137) and (6.120), respectively.

Remark 6.6 Comparing theorems with left-sided fractional derivatives with ones from
[12] we conclude: With relaxed restrictions and smaller constant M, defined by (6.119),
Theorem 6.73 including the Riemann-Liouville derivatives improves [12, Theorem 7.5],
Theorem 6.77 including the Caputo derivatives improves [12, Theorem 16.31] and Theo-
rem 6.81 including the Canavati derivatives improves [12, Theorem 6.6]. In theorems from
[12] the role of constant M has


q
r

3 =

{(
2

p
q −1

) q
r

, p ≥ q ,

1 , p ≤ q .

Obviously,  q/r
3 ≥ 1, while M ≤ 1. Since lim

p→
 q/r

3 = , for all sufficiently large p we

obtain a substantial improvement of inequality.
Further, with relaxed restrictions Theorem 6.19 improves [12, Theorem 7.18], Theorem

6.21 improves [12, Theorem 16.38] and Theorem 6.23 improves [12, Theorem 6.18].
Theorems 6.74, 6.78 and 6.82 are newly presented.





Chapter7
Inequalities for integral
operators with a kernel and
applications to a Green
function

In this chapter we give general Opial-type inequalities on a measure space (,,), for
two functions, convex and concave. Integrals in these inequalities contain function and its
integral representation. Results are applied to numerous symmetric functions and new re-
sults involving the Green function, the Lidstone polynomials and the Hermite interpolating
polynomials are obtained by Barbir, Krulić Himmelreich and Pečarić in [29, 30].

7.1 Inequalities for integral operators with a kernel

In [54] (see also [55, Chapter II, p. 15]), Krulić-Pečarić-Persson studied measure spaces
(1,1,1), (2,2,2), and the general integral operator Ak defined by

Ak f (x) =
1

K(x)

∫
2

k(x,y) f (y)d(y), x ∈1, (7.1)

219
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where f :2 −→ R is a measurable function, k :1×2 → R is measurable and nonneg-
ative, and

K(x) =
∫
2

k(x,y)d(y) > 0, x ∈1. (7.2)

Just by using Jensen’s inequality and Fubini’s theorem, they proved the weighted inequality∫
1

u(x)(Ak f (x))d(x) ≤
∫
2

v(y)( f (y))d(y), (7.3)

where u :1 → R is a nonnegative measurable function, x 	→ u(x) k(x,y)
K(x) is integrable on 1

for each fixed y ∈2, v is defined on 2 by

v(y) =
∫
1

u(x)
k(x,y)
K(x)

d(x), (7.4)

 is a convex function on an interval I ⊆ R, and f : 2 → R is such that f (y) ∈ I, for all
y ∈2.

In particular, inequality (7.3) unifies and generalizes most of results of this type (in-
cluding the classical ones by Hardy, Hilbert and Godunova).

In the sequel let (,,) be a measure space and let k : ×→ R be a symmetric
nonnegative or nonpositive function such that

K(x) :=
∫


k(x,y)d(y), K(x) �= 0, a.e.x ∈, (7.5)

where |K(x)| < . We assume that all integrals are well defined.

Theorem 7.1 Let k :×→R be a symmetric nonnegative or nonpositive function. If f
is a positive convex function, g a positive concave function on an interval I ⊆R, v :→ R

is either nonnegative or nonpositive, such that Im|v| ⊆ I and u defined by

u(x) :=
∫


k(x,y)v(y)d(y) < , (7.6)

then the following inequality∫

|K(x)| f

(∣∣∣∣ u(x)
K(x)

∣∣∣∣)g(|v(x)|)d(x)

≤
∫

|K(x)| f (|v(x)|)g

(∣∣∣∣ u(x)
K(x)

∣∣∣∣)d(x) (7.7)

holds, where K is defined by (7.5).

Proof. We notice that
∣∣∣ u(x)
K(x)

∣∣∣ ∈ I, for all x ∈. The motivation for this is that
∣∣∣ u(x)
K(x)

∣∣∣ is

simply a generalized mean and since |v(y)| ∈ I for all y ∈ (by assumption), then also the

mean
∣∣∣ u(x)
K(x)

∣∣∣ ∈ I.
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Now, let us prove the inequality (7.7). By using Jensen’s inequality and the Fubini theorem
we find that ∫


|K(x)| f

(∣∣∣∣ u(x)
K(x)

∣∣∣∣)g(|v(x)|)d(x)

=
∫

|K(x)| f

( |∫ k(x,t)v(t)d(t)|
|K(x)|

)
g(|v(x)|)d(x)

=
∫

|K(x)| f

(∫
 |k(x,t)v(t)|d(t)

|K(x)|
)

g(|v(x)|)d(x)

≤
∫


(∫

|k(x,t)| f (|v(t)|)d(t)

)
g(|v(x)|)d(x)

=
∫


f (|v(t)|)
(∫


|k(x,t)|g(|v(x)|)d(x)

)
d(t).

Since k is a symmetric function we get that |k(x,t)| = |k(t,x)|, and by using Jensen’s in-
equality we obtain that∫


f (|v(t)|)

(∫

|k(t,x)|g(|v(x)|)d(x)

)
d(t)

≤
∫


f (|v(t)|) |K(t)|g
(

1
|K(t)|

∫

|k(t,x)v(x)|d(x)

)
d(t)

=
∫


f (|v(t)|) |K(t)|g
( |u(t)|
|K(t)|

)
d(t)

and the proof is complete. �

Remark 7.1 By applying (7.3) with 1 = 2 =  and u(x) = K(x), inequality (7.3)
reduces to ∫


K(x)

(
1

K(x)

∫


k(x,y) f (y)d(y)
)

d(x)

≤
∫

( f (y))

∫


k(x,y)d(x)d(y). (7.8)

Notice that if we apply Theorem 7.1 with function g(x) = 1, then inequality (7.7) reduces
to ∫


|K(x)| f

(
1

|K(x)|
∫

|k(x,y)v(y)|d(y)

)
d(x)

≤
∫


f (|v(y)|)
∫

|k(x,y)|d(x)d(y) , (7.9)

that is, inequalities (7.8) and (7.9) are equivalent.

Related interesting result is given in the following theorem.
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Theorem 7.2 Let 0 < q < 1, k : ×→ R be a symmetric nonnegative or nonpositive
function, S :  → R+. If f is a positive convex function on an interval I ⊆ R, function
v :→ R is either nonnegative or nonpositive, such that Im|v| ⊆ I and u defined by (7.6),
then the inequality∫


S(x) f

(∣∣∣∣ u(x)
K(x)

∣∣∣∣) |v(x)|qd(x) ≤
∫


R(x) f (|v(x)|)|u(x)|qd(x) (7.10)

holds, where K is defined by (7.5) and

R(t) =

[∫


(
S(x)
|K(x)|

) 1
1−q

|k(x,t)|d(x)

]1−q

.

Proof. ∫


S(x) f

(∣∣∣∣ u(x)
K(x)

∣∣∣∣) |v(x)|q d(x)

=
∫


S(x) f

(∣∣∣∣∫ k(x,t)v(t)d(t)
K(x)

∣∣∣∣) |v(x)|q d(x)

≤
∫


S(x)
|v(x)|q
|K(x)|

(∫

|k(x,t)| f (|v(t)|)d(t)

)
d(x)

=
∫


f (|v(t)|)
(∫



S(x)
|K(x)| |k(x,t)||v(x)|

q d(x)
)

d(t)

=
∫


f (|v(t)|)
(∫



S(x)
|K(x)| |k(x,t)|

1−q|k(x,t)v(x)|q d(x)
)

d(t).

By Hölder’s inequality we get∫


S(x) f

(∣∣∣∣ u(x)
K(x)

∣∣∣∣) |v(x)|q d(x)

≤
∫


f (|v(t)|)
[∫



(
S(x)
|K(x)| |k(x,t)|

1−q
) 1

1−q

d(x)

]1−q

×
[∫


|k(x,t)v(x)|d(x)

]q

d(t) .

Since k is symmetric function, i.e. k(t,x) = k(x,t), we have[∫

|k(x,t)v(x)|d(x)

]q

=
[∫


|k(t,x)v(x)|d(x)

]q

= |u(t)|q ,

from which follows (7.10). �

Remark 7.2 Notice that if S(x) = |K(x)|, then we obtain∫

|K(x)| f

(∣∣∣∣ u(x)
K(x)

∣∣∣∣) |v(x)|qd(x) ≤
∫

|K(x)|1−q f (|v(x)|)|u(x)|qd(x) ,

which is a special case of Theorem 7.1 for concave function g(x) = xq, 0 < q < 1.
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Finally, we give a result for the quotient of functions.

Theorem 7.3 Let k : × → R be a symmetric nonnegative or nonpositive function.
If f is a positive convex function, g a positive concave function on an interval I ⊆ R,
v,v1 : → R are either nonnegative or nonpositive, such that Im|v|, Im| v

v1
| ⊆ I, u defined

by (7.6) and u1 defined by

u1(x) :=
∫


k(x,y)v1(y)d(y) < , (7.11)

then the following inequality∫

|u1(x)| f

(∣∣∣∣ u(x)
u1(x)

∣∣∣∣)g(|v(x)|)d(x)

≤
∫

|v1(x)||K(x)| f

(∣∣∣∣ v(x)
v1(x)

∣∣∣∣)g

(∣∣∣∣ u(x)
K(x)

∣∣∣∣)d(x) (7.12)

holds, where K is defined by (7.5).

Proof. By using Jensen’s inequality and the Fubini theorem we find that∫

|u1(x)| f

(∣∣∣∣ u(x)
u1(x)

∣∣∣∣)g(|v(x)|)d(x)

=
∫

|u1(x)| f

( |∫ k(x,t)v(t)d(t)|
|u1(x)|

)
g(|v(x)|)d(x)

=
∫

|u1(x)| f

(∫


|k(x,t)v1(t)|
|u1(x)|

|v(t)|
|v1(t)|d(t)

)
g(|v(x)|)d(x)

≤
∫


(∫

|k(x,t)v1(t)| f

( |v(t)|
|v1(t)|

)
d(t)

)
g(|v(x)|)d(x)

=
∫


f

( |v(t)|
|v1(t)|

)
|v1(t)|

(∫

|k(x, t)|g(|v(x)|)d(x)

)
d(t).

Since k is a symmetric function we get that |k(x,t)| = |k(t,x)|, so by using Jensen’s in-
equality we obtain

f

( |v(t)|
|v1(t)|

)
|v1(t)|

(∫

|k(t,x)|g(|v(x)|)d(x)

)
d(t)

≤
∫

|v1(t)| f

( |v(t)|
|v1(t)|

)
|K(t)|g

(
1

|K(t)|
∫

|k(t,x)v(x)|d(x)

)
d(t)

=
∫

|v1(t)| f

( |v(t)|
|v1(t)|

)
|K(t)|g

( |u(t)|
|K(t)|

)
d(t)

and the proof is complete. �

Remark 7.3 If v1(t) = 1, then u1(x) = K(x) and inequality (7.12) reduces to (7.7).
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7.2 Opial-type inequalities using a Green function

Now we consider special symmetric functions k and obtain new results involving the Green
function, the Lidstone polynomials and the Hermite interpolating polynomials.

The Green function G is defined on [a,b]× [a,b] by

G(t,s) =

⎧⎨⎩
(t−b)(s−a)

b−a , a ≤ s ≤ t ;

(t−a)(s−b)
b−a , t ≤ s ≤ b.

(7.13)

The function G is convex under s and t, continuous under s and t and it is symmetric
nonpositive function. For any function  ∈ C2[a,b], we can easily show integrating by
parts that the following is valid

(x) =
b− x
b−a

(a)+
x−a
b−a

(b)+
∫ b

a
G(x,s) ′′(s)ds, (7.14)

where the function G is defined as above in (7.13).

In the following, by using identities where the Green function G is a kernel, we obtain
several Opial-type inequalities. First, since the function G is a nonpositive symmetric
function, we can apply Theorem 7.1 and obtain the following corollary.

Corollary 7.1 If f is a positive convex function and g a positive concave function on an
interval I ⊆ R, then the inequality

∫ b

a
(b− x)(x−a) f

(
2|(x)− b−x

b−a(a)− x−a
b−a(b)|

(b− x)(x−a)

)
g(| ′′(x)|)dx

≤
∫ b

a
(b− x)(x−a) f (| ′′(x)|)g

(
2|(x)− b−x

b−a(a)− x−a
b−a(b)|

(b− x)(x−a)

)
dx

(7.15)

holds for all functions  ∈C2[a,b].

Proof. For the function G we can apply Theorem 7.1. Let  = [a,b], k(x,s) = G(x,s),
v(s) =  ′′(s). Then

|K(x)| =
∫ b

a
|G(x,s)|ds =

(b− x)(x−a)
2

, (7.16)

u(x) =
∫ b

a
G(x,s) ′′(s)ds = (x)− b− x

b−a
(a)− x−a

b−a
(b) (7.17)

and inequality (7.7) becomes (7.15). �
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Remark 7.4 If (a) = (b) = 0, then (7.15) reduces to∫ b

a
(b− x)(x−a) f

(
2|(x)|

(b− x)(x−a)

)
g(| ′′(x)|)dx

≤
∫ b

a
(b− x)(x−a) f (| ′′(x)|)g

(
2|(x)|

(b− x)(x−a)

)
dx.

Next is a special case of Theorem 7.2 for Green’s function.

Corollary 7.2 Let 0 < q < 1, S : [a,b] → R+ and  ∈ C2[a,b]. If f is a positive convex
function on an interval I ⊆ R, then the inequality∫ b

a
S(x) f

(
2|(x)− b−x

b−a(a)− x−a
b−a(b)|

(b− x)(x−a)

)
| ′′(x)|qdx

≤
∫ b

a
R(x) f (| ′′(x)|)

(
2|(x)− b−x

b−a(a)− x−a
b−a(b)|

(b− x)(x−a)

)q

dx (7.18)

holds, where

R(t) =

[∫ b

a

(
2S(x)

(b− x)(x−a)

) 1
1−q

|G(x,t)|dx

]1−q

.

Proof. For the function G we can apply Theorem 7.2 with = [a,b], k(x,s) = G(x,s),
v(s) =  ′′(s). Then by (7.16) and (7.17) inequality (7.10) becomes (7.18). �

Remark 7.5 If (a) = (b) = 0, then (7.18) reduces to∫ b

a
S(x) f

(
2|(x)|

(b− x)(x−a)

)
| ′′(x)|qdx

≤
∫ b

a
R(x) f (| ′′(x)|)

(
2|(x)|

(b− x)(x−a)

)q

dx .

We proceed with a special case of Theorem 7.3 for Green’s function.

Corollary 7.3 If f is a positive convex function and g a positive concave function on an
interval I ⊆ R, then the inequality∫ b

a
|(x)− b− x

b−a
(a)− x−a

b−a
(b)| f

(
|(x)− b−x

b−a(a)− x−a
b−a(b)|

|(x)− b−x
b−a(a)− x−a

b−a(b)|

)
×g(| ′′(x)|)dx

≤ 1
2

∫ b

a
| ′′(x)|(b− x)(x−a) f

( | ′′(x)|
| ′′(x)|

)
×g

(
2|(x)− b−x

b−a(a)− x−a
b−a(b)|

(b− x)(x−a)

)
dx (7.19)

holds for all functions  , ∈ C2[a,b] such that  ′′ is either nonnegative or nonpositive
function, and  ′′ is either nonnegative or nonpositive function.
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Proof. Since the function G defined by (7.13) is a nonpositive symmetric function we
can apply Theorem 7.3. Let  = [a,b], k(x,s) = G(x,s),v(s) =  ′′(s) and v1(x) =  ′′(x).
Then by (7.16), (7.17) and

(x) =
∫ b

a
G(x,s) ′′(s)ds = (x)− b− x

b−a
(a)− x−a

b−a
(b)

inequality (7.12) becomes (7.19). �

Remark 7.6 If (a) = (b) = 0, then (7.19) reduces to

∫ b

a
|(x)− b− x

b−a
(a)− x−a

b−a
(b)| f

(
|(x|

|(x)− b−x
b−a(a)− x−a

b−a(b)|

)
×g(| ′′(x)|)dx

≤ 1
2

∫ b

a
| ′′(x)|(b− x)(x−a) f

( | ′′(x)|
| ′′(x)|

)
g

(
2|(x)|

(b− x)(x−a)

)
dx .

Remark 7.7 If  ′′(x) = 1, then (x) = K(x) and (7.19) reduces to

∫ b

a
(b− x)(x−a) f

(
2|(x)− b−x

b−a(a)− x−a
b−a(b)|

(b− x)(x−a)

)
g(| ′′(x)|)dx

≤
∫ b

a
(b− x)(x−a) f (| ′′(x)|)g

(
2|(x)− b−x

b−a(a)− x−a
b−a(b)|

(b− x)(x−a)

)
dx

which is given in Corollary 7.1.

We continue with the definition of the Lidstone polynomials, that is a generalization
of the Taylor polynomials. It approximates to a given function in the neighborhood of two
points (instead of one). Such polynomials have been studied by G. J. Lidstone (1929), H.
Poritsky (1932), J. M. Whittaker (1934) and others: Let  ∈ C[0,1], then the Lidstone
polynomial has the form




k=0

(
(2k)(0)k(1− x)+(2k)(1)k(x)

)
,

where n is a polynomial of degree 2n+1 defined by the relations

0(t) = t,

′′
n(t) = n−1(t), (7.20)

n(0) = n(1) = 0, n ≥ 1.
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Another explicit representations of the Lidstone polynomial are given by [9] and [73]:

n(t) = (−1)n 2
2n+1




k=1

(−1)k+1

k2n+1 sinkt,

n(t) = −
n


k=0

2(22k−1−1)
(2k)!

B2k

(2n−2k+1)!
t2n−2k+1, n = 1,2, . . . ,

n(t) =
22n+1

(2n+1)!
B2n+1

(
1+ t

2

)
, n = 1,2 . . . ,

where B2k is the 2k-th Bernoulli number and B2n+1
(

1+t
2

)
is the Bernoulli polynomial.

Widder proved next fundamental lemma in [74].

Lemma 7.1 If  ∈C2n[0,1], then

(t) =
n−1


k=0

[
(2k)(0)k(1− t)+(2k)(1)k(t)

]
+
∫ 1

0
Gn(t,s)(2n)(s)ds, (7.21)

where

G1(t,s) = G(t,s) =
{

(t−1)s, s ≤ t,
(s−1)t, t ≤ s,

(7.22)

is the homogeneous Green’s function of the differential operator d2

ds2
on [0,1], and with the

successive iterates of G(t,s)

Gn(t,s) =
∫ 1

0
G1(t, p)Gn−1(p,s)dp, n ≥ 2. (7.23)

We can see that the equation (7.21) is the generalization of (7.14).

Lidstone’s polynomial can be expressed in terms of Gn(t,s) as

n(t) =
∫ 1

0
Gn(t,s)sds.

Notice that Gn(t,s) is a symmetric function. Now we give the following special case of
Theorem 7.1.

Corollary 7.4 Let  ∈C2n[a,b], n ≥ 1. If f is a positive convex function and g a positive
concave function on an interval I ⊆ R, then the inequality

∫ b

a
E2n(x) f

⎛⎝ |(x)−n−1
k=0(b−a)2k

[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

( x−a
b−a

)] |
E2n(x)

⎞⎠
×g(|(2n)(x)|)dx

≤
∫ b

a
E2n(x)g

⎛⎝ |(x)−n−1
k=0(b−a)2k

[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

( x−a
b−a

)] |
E2n(x)

⎞⎠
× f (|(2n)(x)|)dx (7.24)

holds, where E2n is the Euler polynomial.
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Proof. By Widder’s lemma we can represent every function  ∈C2n[a,b] in the form

(x)−
n−1


k=0

(b−a)2k
[
(2k)(a)k

(
b− x
b−a

)
+(2k)(b)k

(
x−a
b−a

)]
= (b−a)2n−1

∫ b

a
Gn

(
x−a
b−a

,
s−a
b−a

)
(2n)(s)ds . (7.25)

Now by Theorem 7.1 with k(x,s) = (b−a)2n−1Gn
(

x−a
b−a , s−a

b−a

)
and v(s) = (2n)(s) follows

K(x) = (b−a)2n−1
∫ b

a
Gn

(
x−a
b−a

,
s−a
b−a

)
ds = E2n(x) , (7.26)

u(x) = (b−a)2n−1
∫ b

a
Gn

(
x−a
b−a

,
s−a
b−a

)
(2n)(s)ds

= (x)−
n−1


k=0

(b−a)2k
[
(2k)(a)k

(
b− x
b−a

)
+(2k)(b)k

(
x−a
b−a

)]
(7.27)

and inequality (7.7) becomes (7.24), which completes the proof. �

Remark 7.8 If (2k)(a) = (2k)(b) = 0, then (7.24) reduces to∫ b

a
E2n(x) f

( |(x)|
E2n(x)

)
g(|(2n)(x)|)dx

≤
∫ b

a
E2n(x) f (|(2n)(x)|)g

( |(x)|
E2n(x)

)
dx .

Following result is a special case of Theorem 7.2 involving the Lidstone polynomials.

Corollary 7.5 Let 0 < q < 1, S : [a,b] → R+ and  ∈C2n[a,b], n ≥ 1. If f is a positive
convex function on an interval I ⊆ R, then the inequality

∫ b

a
S(x) f

⎛⎝ |(x)−n−1
k=0(b−a)2k

[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

(
x−a
b−a

)] |
E2n(x)

⎞⎠
×|(2n)(x)|q dx

≤
∫ b

a
R(x)

⎛⎝ |(x)−n−1
k=0(b−a)2k

[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

(
x−a
b−a

)] |
E2n(x)

⎞⎠q

× f (|(2n)(x)|)dx , (7.28)

holds, where

R(t) =

[
(b−a)2n−1

∫ b

a

(
S(x)

E2n(x)

) 1
1−q

|Gn

(
x−a
b−a

,
t−a
b−a

)
|dx

]1−q

.
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Proof. We apply Theorem 7.2 with k(x,s) = (b−a)2n−1Gn
(

x−a
b−a , s−a

b−a

)
, v(s) = (2n)(s),

n ≥ 1. Then by (7.26) and (7.27) inequality (7.10) becomes (7.28). �

Remark 7.9 If (2k)(a) = (2k)(b) = 0, then (7.28) reduces to∫ b

a
S(x) f

( |(x)|
E2n(x)

)
|(2n)(x)|qdx

≤
∫ b

a
R(x)

( |(x)|
E2n(x)

)q

f (|(2n)(x)|)dx .

We also give a special case of Theorem 7.3.

Corollary 7.6 Let  , ∈ C2n[a,b], n ≥ 1, such that (2n) is either nonnegative or non-
positive function, and (2n) is either nonnegative or nonpositive function. If f is a positive
convex function and g a positive concave function on an interval I ⊆R, then the inequality∫ b

a
|(x)−

n−1


k=0

(b−a)2k
[
(2k)(a)k

(
b− x
b− a

)
+(2k)(b)k

(
x− a
b− a

)]
|

× f

⎛⎝ |(x)−n−1
k=0(b−a)2k

[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

(
x−a
b−a

)] |
|(x)−n−1

k=0(b−a)2k
[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

(
x−a
b−a

)] |
⎞⎠

×g(|(2n)(x)|)dx

≤
∫ b

a
E2n(x)|(2n)(x)|

×g

⎛⎝ |(x)−n−1
k=0(b−a)2k

[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

(
x−a
b−a

)] |
E2n(x)

⎞⎠
× f

(∣∣∣∣∣(2n)(x)
(2n)(x)

∣∣∣∣∣
)

dx (7.29)

holds, where E2n is Euler polynomial.

Proof. By Widder’s lemma we can represent every function  ∈ C2n[a,b] in the form
(7.25). Now we apply Theorem 7.3 with k(x,s) = (b − a)2n−1Gn

(
x−a
b−a , s−a

b−a

)
, v(s) =

(2n)(s) and v1(x) = (2n)(x), from which follows (7.26), (7.27) and

(x) = (b−a)2n−1
∫ b

a
Gn

(
x− a
b− a

,
s− a
b− a

)
(2n)(s)ds

= (x)−
n−1


k=0

(b−a)2k
[
(2k)(a)k

(
b− x
b− a

)
+(2k)(b)k

(
x− a
b− a

)]
.

Hence, inequality (7.12) becomes (7.29). �

We continue with the following special case of inequality (7.29).
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Remark 7.10 If (2k)(a) = (2k)(b) = 0, then (7.29) reduces to∫ b

a
|(x)−

n−1


k=0

(b−a)2k
[
(2k)(a)k

(
b− x
b− a

)
+(2k)(b)k

(
x− a
b− a

)]
|

× f

(
|(x|

|(x)−n−1
k=0(b−a)2k

[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

(
x−a
b−a

)] |
)

×g(|(2n)(x)|)dx

≤
∫ b

a
E2n(x)|(2n)(x)|g

( |(x)|
E2n(x)

)
f

(∣∣∣∣∣(2n)(x)
(2n)(x)

∣∣∣∣∣
)

dx .

Remark 7.11 If v1(x) = 1, then (x) = K(x) and (7.29) reduces to

∫ b

a
E2n(x) f

⎛⎝ |(x)−n−1
k=0(b−a)2k

[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

(
x−a
b−a

)] |
E2n(x)

⎞⎠
×g(|(2n)(x)|)dx

≤
∫ b

a
E2n(x)g

⎛⎝ |(x)−n−1
k=0(b−a)2k

[
(2k)(a)k

(
b−x
b−a

)
+(2k)(b)k

(
x−a
b−a

)] |
E2n(x)

⎞⎠
× f (|(2n)(x)|)dx

which is given in Corollary 7.4.

Next we present several results involving the Hermite interpolating polynomial. Fol-
lowing lemma for two-point Taylor conditions comes from [9].

Lemma 7.2 Let  ∈Cn[a,b], (n ≥ 2, n = 2m). Then

(x) =
m−1


i=0

m−1−i


k=0

(
m+ k−1

k

)[
(i)(a)i(x)+(i)(b)i(x)

]
(7.30)

+
∫ b

a
(2m)(s)G2T (x,s)ds ,

where i and i are defined on [a,b] with

i(x) =
(x−a)i

i!

(
x−b
a−b

)m( x−a
b−a

)k

, (7.31)

i(x) =
(x−b)i

i!

(
x−a
b−a

)m( x−b
a−b

)k

, (7.32)

G2T is Green’s function of the two-point Taylor problem

G2T (t,s) =

⎧⎪⎨⎪⎩
(−1)m

(2m−1)! p
m(t,s)m−1

j=0

(m−1+ j
j

)
(t − s)m−1− jq j(t,s), s ≤ t ,

(−1)m

(2m−1)!q
m(t,s)m−1

j=0

(m−1+ j
j

)
(s− t)m−1− j p j(t,s), s ≥ t ,

(7.33)
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and for all t,s ∈ [a,b]

p(t,s) =
(s−a)(b− t)

b−a
, q(t,s) = p(s,t) .

Now, we give a special case of Theorem 7.1 that involves the Hermite interpolating
polynomial.

Corollary 7.7 Let  ∈C2m[a,b]. If f is a positive convex function and g a positive con-
cave function on an interval I ⊆ R, then the inequality∫ b

a
(x−a)m(b− x)m

× f

(
(2m)!|(x)−m−1

i=0 m−1−i
k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)]|

(x−a)m(b− x)m

)
×g

(
|(2m)(x)|

)
dx

≤
∫ b

a
(x−a)m(b− x)m

×g

(
(2m)!|(x)−m−1

i=0 m−1−i
k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)]|

(x−a)m(b− x)m

)
× f

(
|(2m)(x)|

)
dx (7.34)

holds.

Proof. Since G2T (t,s) is a symmetric function, we define

(x)−
m−1


i=0

m−1−i


k=0

(
m+ k−1

k

)
· [(i)(a)i(x)+(i)(b)i(x)] (7.35)

=
∫ b

a
(2m)(s)G2T (x,s)ds .

Now by Theorem 7.1 with k(x,s) = G2T (x,s) and v(s) = (2m)(s) follows

|K(x)| =
∫ b

a
|G2T (x,s)|ds =

1
(2m)!

|(x−a)m(x−b)m|

=
1

(2m)!
(x−a)m(b− x)m , (7.36)

u(x) =
∫ b

a
G2T (x,s)(2m)(s)ds

= (x)−
m−1


i=0

m−1−i


k=0

(
m+ k−1

k

)
· [(i)(a)i(x)+(i)(b)i(x)] (7.37)

and inequality (7.7) becomes (7.34). �
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Remark 7.12 If (i)(a) = (i)(b) = 0, then inequality (7.34) reduces to∫ b

a
(x−a)m(b− x)m f

(
(2m)!|(x)|

(x−a)m(b− x)m

)
g(|(2m)(x)|)dx

≤
∫ b

a
(x−a)m(b− x)mg

(
(2m)!|(x)|

(x−a)m(b− x)m

)
f (|(2m)(x)|)dx. (7.38)

We proceed with a special case of Theorem 7.2.

Corollary 7.8 Let 0 < q < 1, S : [a,b] → R+ and  ∈C2m[a,b]. If f is a positive convex
function on an interval I ⊆ R, then the inequality

∫ b

a
S(x) f

(
(2m)!|(x)−m−1

i=0 m−1−i
k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)]|

(x−a)m(b− x)m

)
×|(2m)(x)|q dx

≤
∫ b

a
S(x)

(
(2m)!|(x)−m−1

i=0 m−1−i
k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)]|

(x−a)m(b− x)m

)q

× f (|(2m)(x)|)dx (7.39)

holds, where

R(t) =

[∫


(
(2m)!S(x)

(x−a)m(b− x)m

) 1
1−q

|G2T (x,t)|dx

]1−q

.

Proof. By Theorem 7.2 with k(x,s) = G2T (x,s) and v(s) = (2m)(s) follows (7.36),
(7.37), hence, inequality (7.10) becomes (7.39). �

Remark 7.13 If (i)(a) = (i)(b) = 0, then (7.39) becomes∫ b

a
S(x) f

(
(2m)!|(x)|

(x−a)m(b− x)m

)
|(2m)(x)|q dx

≤
∫ b

a
S(x)

(
(2m)!|(x)|

(x−a)m(b− x)m

)q

f (|(2m)(x)|)dx.

Finally, we conclude with a special case of Theorem 7.3 for the Hermite interpolating
polynomial.

Corollary 7.9 Let  , ∈ C2m[a,b] such that (2m) is either nonnegative or nonpositive
function, and (2m) is either nonnegative or nonpositive function. If f is a positive convex
function and g a positive concave function on an interval I ⊆ R, then the inequality

∫ b

a
|(x)−

m−1


i=0

m−1−i


k=0

(
m+ k−1

k

)
[(i)(a)i(x)+(i)(b)i(x)])|
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× f

(
|(x)−m−1

i=0 m−1−i
k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)]|

|(x)−m−1
i=0 m−1−i

k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)])|

)
×g(|(2m)(x)|)dx

≤
∫ b

a

1
(2m)!

(x−a)m(b− x)m|(2m)(x)| f
(∣∣∣∣∣(2m)(x)

(2m)(x)

∣∣∣∣∣
)

×g

(
(2m)!|(x)−m−1

i=0 m−1−i
k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)]|

(x−a)m(b− x)m

)
dx (7.40)

holds.

Proof. Since G2T (t,s) is a symmetric function, (7.35) holds. Now from Theorem 7.3
with k(x,s) = G2T (x,s), v(s) = (2m)(s) and v1(x) =(2m)(x), we obtain (7.36), (7.37) and

(x) =
∫ b

a
G2T (x,s)(2m)(s)ds

= (x)−
m−1


i=0

m−1−i


k=0

(
m+ k−1

k

)
· [(i)(a)i(x)+(i)(b)i(x)] .

Hence, inequality (7.12) becomes (7.40), which completes the proof. �

Remark 7.14 If (i)(a) = (i)(b) = 0, then inequality (7.40) reduces to

∫ b

a
|(x)−

m−1


i=0

m−1−i


k=0

(
m+ k−1

k

)
[(i)(a)i(x)+(i)(b)i(x)])|

× f

(
|(x)|

|(x)−m−1
i=0 m−1−i

k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)])

)
×g(|(2m)(x)|)dx

≤
∫ b

a

1
(2m)!

(x−a)m(b− x)m|(2m)(x)| f
(∣∣∣∣∣(2m)(x)

(2m)(x)

∣∣∣∣∣
)

×g

(
(2m)!|(x)|

(x−a)m(b− x)m

)
dx .

Remark 7.15 If v1(x) = 1, then (x) = K(x) and (7.40) reduces to∫ b

a
(x−a)m(b− x)m

× f

(
(2m)!|(x)−m−1

i=0 m−1−i
k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)]|

(x−a)m(b− x)m

)
×g(|(2m)(x)|)dx
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≤
∫ b

a
(x−a)m(b− x)m

×g

(
(2m)!|(x)−m−1

i=0 m−1−i
k=0

(m+k−1
k

)
[(i)(a)i(x)+(i)(b)i(x)]|

(x−a)m(b− x)m

)
× f (|(2m)(x)|)dx

which is given in Corollary 7.7.



Chapter8
Weighted integral and discrete
Opial-type inequalities

We will start this chapter with improvements of some Opial-type inequalities in one vari-
able due to Agarwal and Pang ([3]). In [8], Agarwal and Sheng proved a total of 25 results
on integral inequalities in n variables. These inequalities are similar to those of Nirenberg,
Opial, Poincaré, Serrin, Sobolev and Wirtinger. Furthermore, in [4], Agarwal and Pang
proved several Opial and Wirtinger type discrete inequalities, and also multidimensional
generalizations. The sharpness as well as the unification of several known results, mainly
of Pachpatte, was shown in the numerous remarks.

In this chapter we will use some elementary techniques such as appropriate integral rep-
resentations of functions, appropriate summation representations of discrete functions and
inequalities involving means to establish integral, and discrete, multidimensional inequal-
ities. The obtained results are sharper than those known in the literature [3, 4, 5, 8]. This
chapter is based on our results: Agarwal, Andrić, Brnetić, Pečarić and Perić [6, 7, 22, 36].

8.1 Integral inequalities in one variable

We will improve following results by Agarwal and Pang from [3].

Theorem 8.1 Let  ≥ 1 be a given real number and let p be a nonnegative and contin-
uous function on [0,h]. Further, let x be an absolutely continuous function on [0,h], with

235
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x(0) = x(h) = 0. Then, the following inequality holds

∫ h

0
p(t)|x(t)|dt ≤ 1

2

(∫ h

0

(
t(h− t)

)−1
2 p(t)dt

)∫ h

0
|x′(t)|dt . (8.1)

For p(t) = const. the inequality (8.1) reduces to

∫ h

0
|x(t)|dt ≤ h

2
B

(
 +1

2
,
 +1

2

)∫ h

0
|x′(t)|dt , (8.2)

where B is the beta function.

Theorem 8.2 Assume that

(i) l, m,  and  are nonnegative real numbers such that 1
 + 1

 = 1 and l ≥ 1,

(ii) q is a nonnegative and continuous function on [0,h],

(iii) x1 and x2 are absolutely continuous functions on [0,h], with x1(0) = x1(h) = x2(0) =
x2(h) = 0.

Then, the following inequality holds

∫ h

0
q(t)

(|x1(t)|l|x′2(t)|m + |x2(t)|l |x′1(t)|m
)
dt ≤

(
1
2

∫ h

0

(
t(h− t)

) l−1
2 q(t)dt

) 1


×
∫ h

0

( 1


(|x′1(t)|l + |x′2(t)|l)+
1


(|x′1(t)|m + |x′2(t)|m )
)
dt .

Theorem 8.3 Let rk, k = 0, . . . ,n−1, and l be nonnegative real numbers such that l ≥ 1,
where  = n−1

k=0 rk and let p be a nonnegative continuous function on [0,h]. Further, let
x ∈C(n−1)[0,h] be such that x(i)(0) = x(i)(h) = 0, i = 0, . . . ,n−1, and x(n−1) is absolutely
continuous. Then, the following inequality holds

∫ h

0
p(t)

(n−1


k=0

|x(k)(t)|rk
)l

dt ≤ 1
2

(∫ h

0

(
t(h− t)

) l−1
2 p(t)dt

)

×
n−1


k=0

rk

∫ h

0
|x(k+1)(t)|ldt .

First we give a generalization of Theorem 8.1 involving submultiplicative convex func-
tion. Recall that function f : [0,) → [0,) is called submultiplicative function if it satis-
fies the inequality

f (xy) ≤ f (x) f (y) , for all x,y ∈ [0,) .

In a special case this theorem will improve Theorem 8.1 (see Remark 8.2).
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Theorem 8.4 Let f be an increasing, submultiplicative convex function on [0,) and let
p be a nonnegative and integrable function on [0,h]. Further, let x ∈ AC[0,h] be such that
x(0) = x(h) = 0. Then the following inequality holds

∫ h

0
p(t) f (|x(t)|)dt ≤

(∫ h

0

(
t

f (t)
+

h− t
f (h− t)

)−1

p(t)dt

)∫ h

0
f
(|x′(t)|)dt . (8.3)

Proof. As in [3] from the hypotheses of theorem we have

x(t) =
∫ t

0
x′(s)ds ,

x(t) = −
∫ h

t
x′(s)ds .

Since f is an increasing and convex function, we use Jensen’s inequality to obtain

f (|x(t)|) ≤ f

(
1
t

∫ t

0
t |x′(s)|ds

)
≤ 1

t

∫ t

0
f
(
t |x′(s)|)ds

and by submultiplicativity of f follows

f (|x(t)|) ≤ 1
t

∫ t

0
f (t) f (|x′(s)|)ds =

f (t)
t

∫ t

0
f (|x′(s)|)ds . (8.4)

Analogously we obtain

f (|x(t)|) ≤ f

(
1

h− t

∫ h

t
(h− t) |x′(s)|ds

)
≤ 1

h− t

∫ h

t
f
(
(h− t) |x′(s)|)ds

≤ 1
h− t

∫ h

t
f (h− t) f (|x′(s)|)ds

=
f (h− t)
h− t

∫ h

t
f (|x′(s)|)ds . (8.5)

Multiplying (8.4) by t
f (t) and (8.5) by h−t

f (h−t) and adding these inequalities, we find(
t

f (t)
+

h− t
f (h− t)

)
f (|x(t)|) ≤

∫ h

0
f
(|x′(s)|)ds ,

i.e.

f (|x(t)|) ≤
(

t
f (t)

+
h− t

f (h− t)

)−1 ∫ h

0
f
(|x′(s)|)ds . (8.6)

Now multiplying (8.6) by p and integrating on [0,h] we obtain the inequality (8.3). �
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Remark 8.1 For a special class of a submultiplicative convex functions f on [0,) with
f (0) = 0, Theorem 8.4 also holds. Namely, submultiplicativity of a function implies its
positivity, and if f is a convex, nonnegative function on [0,) with f (0) = 0, then f is
obviously an increasing function.

Corollary 8.1 Let f be an increasing, submultiplicative convex function on [0,) and let
p be a nonnegative and integrable function on [0,h]. Further, let x ∈ AC[0,h] be such that
x(0) = x(h) = 0. Then the following inequality holds

∫ h

0
p(t) f (|x(t)|)dt ≤ 1

2

(∫ h

0

(
f (t) f (h− t)

t (h− t)

) 1
2

p(t)dt

)∫ h

0
f
(|x′(t)|)dt . (8.7)

Proof. The inequality (8.7) follows by the harmonic-geometric inequality

2

(
t

f (t)
+

h− t
f (h− t)

)−1

≤
(

f (t) f (h− t)
t (h− t)

) 1
2

.

�

Next is a special case of Theorem 8.4.

Corollary 8.2 Let  ≥ 1 be a given real number and let p be a nonnegative and contin-
uous function on [0,h]. Further, let x ∈ AC[0,h] be such that x(0) = x(h) = 0. Then, the
following inequality holds∫ h

0
p(t)|x(t)|dt ≤

(∫ h

0

(
t1− +(h− t)1−)−1

p(t)dt

)∫ h

0
|x′(t)|dt . (8.8)

Proof. The inequality (8.8) will follow if we use function f (t) = t and apply Theorem
8.4. �

Remark 8.2 By the harmonic-geometric inequality, we have

2
(
t1− +(h− t)1−)−1 ≤ (

t−1(h− t)−1) 1
2 .

Hence, it is clear that (8.8) improves (8.1).

Corollary 8.3 Let  ≥ 1 be a given real number and let x ∈ AC[0,h] be such that x(0) =
x(h) = 0. Then, the following inequality holds∫ h

0
|x(t)|dt ≤ h I( )

∫ h

0
|x′(t)|dt , (8.9)

where

I( ) =
∫ 1

0

(
t1− +(1− t)1−

)−1
dt , (8.10)
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Proof. By putting p(t) = const. in (8.8) we obtain∫ h

0
|x(t)|dt ≤

(∫ h

0

(
t1− +(h− t)1−)−1

dt

)∫ h

0
|x′(t)|dt .

The inequality (8.9) is now clear. �

Remark 8.3 By applying some Wirtinger-type inequalities, Saker established new large
spaces between the zeros of the Riemann zeta-function in [71]. Our inequality (8.9) is used
in [71, Theorem 2.2].

Corollary 8.4 Let  ≥ 1 be a given real number and let x ∈ AC[0,h] be such that x(0) =
x(h) = 0. Then, the following inequalities hold:∫ h

0
|x(t)|2dt ≤ h2

6

∫ h

0
|x′(t)|2dt , (8.11)∫ h

0
|x(t)|3dt ≤ 3−8

24
h3
∫ h

0
|x′(t)|3dt , (8.12)∫ h

0
|x(t)|4dt ≤ 20

√
3−81
1215

h4
∫ h

0
|x′(t)|4dt . (8.13)

Proof. It is a special case of Corollary 8.3 for  = 2,3,4. The integrals I(2) = 1
6 ,

I(3) = 3−8
24 and I(4) = 20

√
3−81

1215 are computed easily. �

Remark 8.4 It is interesting to compare this results with the inequalities which follow
from Theorem 8.1 by taking p(t) = const. and  = 2,3,4. From (8.2), the inequalities

corresponding to (8.11)− (8.13) will have corresponding constants h2

16 , h3

12 and 3h4

256 .

Now we will improve the result of Theorem 8.2.

Theorem 8.5 Assume that

(i) l, m,  and  are nonnegative real numbers such that 1
 + 1

 = 1 and l ≥ 1,

(ii) q is a nonnegative and continuous function on [0,h],

(iii) x1,x2 ∈ AC[0,h] be such that x1(0) = x1(h) = x2(0) = x2(h) = 0.

Then, the following inequality holds∫ h

0
q(t)

(|x1(t)|l |x′2(t)|m+|x2(t)|l |x′1(t)|m
)
dt

≤
(∫ h

0

(
t1−l+(h− t)1−l)−1

q(t)dt

) 1


×
∫ h

0

( 1


(|x′1(t)|l+|x′2(t)|l)+
1


(|x′1(t)|m+|x′2(t)|m )
)
dt . (8.14)
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Proof. From Hölder’s inequality with indices  and  we have

∫ h

0
q(t)|x1(t)|l|x′2(t)|mdt ≤

(∫ h

0
q(t)|x1(t)|ldt

) 1

(∫ h

0
|x′2(t)|mdt

) 1

.

Now, from (8.8) we find

∫ h

0
q(t)|x1(t)|l|x′2(t)|mdt ≤

(∫ h

0

(
t1−l +(h− t)1−l)−1

q(t)dt

) 1


×
(∫ h

0
|x′1(t)|ldt

) 1

(∫ h

0
|x′2(t)|mdt

) 1

,

and from Young’s inequality it follows that

∫ h

0
q(t)|x1(t)|l |x′2(t)|mdt ≤

(∫ h

0

(
t1−l +(h− t)1−l)−1

q(t)dt

) 1


×
∫ h

0

( 1

|x′1(t)|l +

1

|x′2(t)|m

)
dt . (8.15)

Similarly, we obtain

∫ h

0
q(t)|x′1(t)|m|x2(t)|ldt ≤

(∫ h

0

(
t1−l +(h− t)1−l)−1

q(t)dt

) 1


×
∫ h

0

( 1

|x′1(t)|m +

1

|x′2(t)|l

)
dt . (8.16)

An addition of (8.15) and (8.16) gives the inequality (8.14). �

Now we will establish Opial-type inequality involving higher order derivatives which
improves the result of Theorem 8.3.

Theorem 8.6 Let rk, k = 0, . . . ,n−1, and l be nonnegative real numbers such that l ≥ 1,
where  = n−1

k=0 rk and let p be a nonnegative continuous function on [0,h]. Further, let
x ∈ ACn[0,h] be such x(i)(0) = x(i)(h) = 0, i = 0, . . . ,n− 1, n ≥ 1. Then, the following
inequality holds

∫ h

0
p(t)

(n−1


k=0

|x(k)(t)|rk
)l

dt ≤ 1


(∫ h

0

(
t1−l +(h− t)1−l)−1

p(t)dt

)

×
n−1


k=0

rk

∫ h

0
|x(k+1)(t)|ldt . (8.17)

Proof. Using some well-known elementary inequalities, we have(n−1


k=0

|x(k)(t)|rk
)l

=
(n−1


k=0

|x(k)(t)| rk


)l
≤

(n−1


k=0

rk


|x(k)(t)|

)l
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≤
n−1


k=0

rk


|x(k)(t)|l . (8.18)

The inequality (8.17) now follows from (8.18) and (8.8). �

8.2 Multidimensional integral inequalities

Let  be a bounded domain in R
m defined by  = m

j=1[a j,b j]. Let x = (x1, . . . ,xm)
be a general point in  and dx = dx1 . . .dxm. For any continuous real-valued function u
defined on  we denote

∫
 u(x)dx the m-fold integral

∫ b1
a1

· · ·∫ bm
am

u(x1, . . . ,xm)dx1 . . .dxm.

Let Dku(x1, . . . ,xm) = 
xk

u(x1, . . . ,xm) and Dku(x1, . . . ,xm) = D1 · · ·Dku(x1, . . . ,xm), 1 ≤
k ≤ m. We denote by G() the class of continuous functions u :→ R for which Dmu(x)
exists with u(x)|x j=a j = u(x)|x j=b j = 0, 1 ≤ j ≤ m.
Further, let u(x;s j) = u(x1, . . . ,x j−1,s j,x j+1, . . . ,xm), and

‖gradu(x)‖ =

(
m


j=1

∣∣∣∣ 
x j

u(x)
∣∣∣∣
) 1



.

Also let  = (1, . . . ,m) and  = (
1 , . . . ,

m),  ∈ R. In particular, (b− a) = (b1 −
a1, . . . ,bm − am) and (b− a) = ((b1 − a1) , . . . ,(bm − am) ). For the geometric and the
harmonic means of 1, . . . ,m we will use Gm() and Hm(), respectively. Let M[k]()
denote the mean of order k of 1, . . . ,m.

We will improve the following results by Agarwal and Sheng from [8]. First theorem
includes Poincaré-type inequality.

Theorem 8.7 Let  , ≥ 1 and let u ∈ G(). Then, the following inequality holds∫

|u(x)| dx ≤ K( ,)

∫

‖gradu(x)‖ dx ,

where

K( ,) =
1

2m
B

(
1+

2
,
1+

2

)
C

(



)
Gm

(
(b−a)

)
, (8.19)

C() =

{
1 ,  ≥ 1 ,

m1− , 0 ≤  ≤ 1
(8.20)

and B is the beta function.

Next result is involving certain Writinger-type inequality.
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Theorem 8.8 Let p, , ≥ 1 with 1
 + 1

 = 1 and let u ∈ G(). Then, the following
inequality holds

∫

|u(x)|p dx ≤ M[](b−a)

2m
1


(∫

|u(x)|(p−1)dx

) 1

(∫


‖gradu(x)‖ dx

) 1


.

We continue with Sobolev-type inequality.

Theorem 8.9 Let p ≥ 1 and let u ∈ G(). Then, the following inequality holds

(∫

|u(x)|2p dx

) 1
p

≤  p22

16m

(∫

‖gradu(x)‖2p

p dx

) 1
p

,

where  = max{(b1−a1), . . . ,(bm −am)}.
The following two theorems are derived from the inequalities due to Pachpatte.

Theorem 8.10 Let l ≥ 0, n ≥ 1 and let u ∈ G(). Then, the following inequality holds∫

|u(x)|l+n dx ≤ 1

m

(
l +n
2n

)n m


i=1

(bi−ai)n
∫

|u(x)|l

∣∣∣∣ xi
u(x)

∣∣∣∣n dx.

Theorem 8.11 Let p,n≥ 0 be such that p+n ≥ 1 and let u ∈G(). Then, the following
inequality holds∫


|u(x)|p‖gradu(x)‖n

2 dx ≤ (K(p+n,2))
p

p+n

∫

‖gradu(x)‖p+n

2 dx ,

where K is defined by (8.19).

8.2.1 Improvements of Poincaré-type inequality

We start with a weighted extension of Theorem 8.7 involving submultiplicative convex
function.

Theorem 8.12 Let f be an increasing, submultiplicative convex function on [0,). Let
p be a nonnegative and integrable function on  and u ∈ G(). Then, the following
inequality holds

∫


p(x) f (|u(x)|)dx ≤ 1
m

Hm()
∫


(
m


i=1

f

(∣∣∣∣ xi
u(x)

∣∣∣∣)
)

dx, (8.21)

where  = (1, . . . ,m) and

i =
∫ bi

ai

(
xi −ai

f (xi −ai)
+

bi − xi

f (bi − xi)

)−1

p(x)dxi , i = 1, . . . ,m .
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Proof. For each fixed i, i = 1, . . . ,m, we have

u(x) =
∫ xi

ai


 si

u(x;si)dsi

and

u(x) = −
∫ bi

xi


 si

u(x;si)dsi .

First we use Jensen’s inequality (since f is an increasing convex function) and then sub-
multiplicativity of f , to obtain

f (|u(x)|) ≤ f

(
1

xi −ai

∫ xi

ai

(xi −ai)
∣∣∣∣  si

u(x;si)
∣∣∣∣dsi

)
≤ 1

xi −ai

∫ xi

ai

f

(
(xi −ai)

∣∣∣∣  si
u(x;si)

∣∣∣∣)dsi

≤ 1
xi −ai

∫ xi

ai

f (xi −ai) f

(∣∣∣∣  si
u(x;si)

∣∣∣∣)dsi

=
f (xi −ai)
xi −ai

∫ xi

ai

f

(∣∣∣∣  si
u(x;si)

∣∣∣∣)dsi (8.22)

and analogously

f (|u(x)|) ≤ f (bi − xi)
bi− xi

∫ bi

xi

f

(∣∣∣∣  si
u(x;si)

∣∣∣∣)dsi , (8.23)

for i = 1, . . . ,m. Multiplying (8.22) by xi−ai
f (xi−ai)

and (8.23) by bi−xi
f (bi−xi)

and adding these
inequalities, we find(

xi−ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)
f (|u(x)|) ≤

∫ bi

ai

f

(∣∣∣∣  si
u(x;si)

∣∣∣∣)dsi ,

i.e.

f (|u(x)|) ≤
(

xi −ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)−1 ∫ bi

ai

f

(∣∣∣∣  si
u(x;si)

∣∣∣∣)dsi , (8.24)

for i = 1, . . . ,m. Now multiplying (8.24) by p and integrating on  we obtain∫


p(x) f (|u(x)|)dx ≤
∫ bi

ai

(
xi −ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)−1

p(x)dxi

×
∫


f

(∣∣∣∣ xi
u(x)

∣∣∣∣)dx , (8.25)

i.e. (∫ bi

ai

(
xi −ai

f (xi −ai)
+

bi − xi

f (bi − xi)

)−1

p(x)dxi

)−1 ∫


p(x) f (|u(x)|)dx
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≤
∫


f

(∣∣∣∣ xi
u(x)

∣∣∣∣)dx , (8.26)

for i = 1, . . . ,m. Notice that

−1
i =

(∫ bi

ai

(
xi −ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)−1

p(x)dxi

)−1

, i = 1, . . . ,m . (8.27)

Now, by summing these m inequalities (8.26), we find

m


i=1

−1
i

∫


p(x) f (|u(x)|)dx ≤
m


i=1

∫


f

(∣∣∣∣ xi
u(x)

∣∣∣∣)dx ,

which is the same as the inequality (8.21). �

Corollary 8.5 Let f be an increasing, submultiplicative convex function on [0,). Let
p be a nonnegative and integrable function on  and let u ∈ G(). Then, the following
inequality holds

∫


p(x) f (|u(x)|)dx ≤ 1
2m

Hm( )
∫


(
m


i=1

f

(∣∣∣∣ xi
u(x)

∣∣∣∣)
)

dx . (8.28)

where  = (1, . . . ,m) and

i =
∫ bi

ai

(
f (xi −ai) f (bi − xi)
(xi−ai)(bi − xi)

) 1
2

p(x)dxi , i = 1, . . . ,m .

Proof. By harmonic-geometric inequality we have

2

(
xi −ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)−1

≤
(

f (xi −ai) f (bi − xi)
(xi −ai)(bi − xi)

) 1
2

.

Applying this and using Hm( 1
2 ) = 1

2Hm(), the inequality (8.28) follows. �

Next we have an improvement of Theorem 8.7.

Corollary 8.6 Let  , ≥ 1 and let u ∈ G(). Then, the following inequality holds∫

|u(x)| dx ≤ K1( ,)

∫

‖gradu(x)‖ dx , (8.29)

where

K1( ,) =
1
m

I( )C
(



)
Hm

(
(b−a)

)
, (8.30)

I is defined by (8.10) and C is defined by (8.20).
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Proof. We follow steps from the proof of Theorem 8.12, using function f (t) = t , up
to the inequality (8.25), which is now equal to

∫

|u(x)| dx ≤

∫ bi

ai

(
(xi−ai)1− +(bi− xi)1−

)−1
dxi

∫


∣∣∣∣ xi
u(x)

∣∣∣∣ dx (8.31)

for i = 1, . . . ,m. However, since∫ bi

ai

(
(xi −ai)1− +(bi− xi)1−

)−1
dxi = (bi −ai)

∫ 1

0

(
t1− +(1− t)1−

)−1
dt

= (bi −ai) I( ) ,

the inequality (8.31) can be written as

∫

|u(x)| dx ≤ (bi−ai) I( )

∫


∣∣∣∣ xi
u(x)

∣∣∣∣ dx . (8.32)

Multiplying both sides of the inequality (8.32) by (bi −ai)− , i = 1, . . . ,m, and then sum-
ming these inequalities, we obtain

m


i=1

(bi −ai)−
∫

|u(x)| dx ≤ I( )

∫


(
m


i=1

∣∣∣∣ xi
u(x)

∣∣∣∣
)

dx ,

i.e. ∫

|u(x)| dx ≤ 1

m
I( )Hm

(
(b−a)

)∫


(
m


i=1

∣∣∣∣ xi
u(x)

∣∣∣∣
)

dx . (8.33)

Our result now follows from (8.33) and the elementary inequality

m


i=1

ai ≤C()

(
m


i=1

ai

)

, ai ≥ 0 . (8.34)

�

Remark 8.5 By the harmonic-geometric means inequality, we have

2
(
s1− +(1− s)1−

)−1 ≤
(
s−1(1− s)−1

) 1
2
,

and hence,

I( ) ≤ 1
2

∫ 1

0
t
−1

2 (1− t)
−1

2 dt =
1
2

B

(
 +1

2
,
 +1

2

)
. (8.35)

Thus, again from the harmonic-geometric means inequality, and (8.35), it follows that
Corollary 8.6 improves Theorem 8.7.
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Corollary 8.7 For u ∈ G(), the following Poincaré type inequalities hold∫

|u(x)|2 dx ≤ 1

6m
Hm

(
(b−a)2)∫


‖gradu(x)‖2

2 dx , (8.36)∫

|u(x)|3 dx ≤ 3−8

24m
Hm

(
(b−a)3)∫


‖gradu(x)‖3

2 dx , (8.37)∫

|u(x)|4 dx ≤ 20

√
3−81

1215m
Hm

(
(b−a)4)∫


‖gradu(x)‖4

2 dx . (8.38)

Remark 8.6 From Theorem 8.7, the inequalities corresponding to (8.36)-(8.38) will con-
tain geometric means instead of harmonic means, moreover, the corresponding constants
are ( 

16m), ( 1
12m) and ( 3

256m).

Corollary 8.8 Let k > 0, k ≥ 1 be given real numbers such that n
k=1(k/k) = 1, and

let uk ∈ G(), k = 1, . . . ,n. Then, the following inequality holds∫


n


k=1

|uk(x)|k dx ≤
n


k=1

k

k
K1(k,2)

∫

‖graduk(x)‖k

2 dx , (8.39)

where the constant K1 is defined by (8.30).

Proof. Using weighted arithmetic-geometric means inequality, we find

n


k=1

|uk(x)|k dx =
n


k=1

(
|uk(x)|k

) k
k dx ≤

n


k=1

k

k
|uk(x)|k dx .

The inequality (8.39) now follows from Corollary 8.6 with  = k and  = 2. �

Remark 8.7 Inequality (8.39) improves Corollary 7 proved in [8].

In the following remarks, we will state several important particular cases of the in-
equality (8.39). The obtained inequalities improve corresponding results established in
[8].

Remark 8.8 Let 1,2 > 0 be such that 1 + 2 ≥ 2 and let u1,u2 ∈ G(). Then, for
n = 2 and 1 = 2 = 1 + 2 the inequality (8.39) reduces to∫


|u1(x)|1 |u2(x)|2 dx ≤ 1

m
Hm

(
(b−a)1+2

)
I(1 + 2)

×
(

1

1 + 2

∫

‖gradu1(x)‖1+2

2 dx+
2

1 + 2

∫

‖gradu2(x)‖1+2

2 dx

)
.

(8.40)

In particular, for 1 = 2 = 1, the inequality (8.40) is the same as∫

|u1(x)| |u2(x)|dx ≤ Hm

(
(b−a)2

)
12m

×
(∫


‖gradu1(x)‖2

2 dx+
∫

‖gradu2(x)‖2

2 dx

)
.
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Remark 8.9 Let 1 ≤ 1,2 < 2 be such that 1
1

+ 1
2

= 1, and let u1,u2 ∈ G(). Then,
for n = 2 and 1 = 2 = 1 the inequality (8.39) leads to∫


|u1(x)| |u2(x)|dx ≤ 1

1 m
1
2

Hm

(
(b−a)1

)
I(1)

∫

‖gradu1(x)‖1

2 dx

+
1

2 m
2
2

Hm

(
(b−a)2

)
I(2)

∫

‖gradu2(x)‖2

2 dx .

Remark 8.10 Let 1,2 > 0 be such that 1 ≤ 1 + 2 < 2 and let u1,u2 ∈ G(). Then,
for n = 2 and 1 = 2 = 1 + 2 the inequality (8.39) gives∫


|u1(x)|1 |u2(x)|2 dx ≤ 1

m
1+2

2

Hm
(
(b−a)1+2

)
I(1 + 2)

×
(

1

1 + 2

∫

‖gradu1(x)‖1+2

2 dx+
2

1 + 2

∫

‖gradu2(x)‖1+2

2 dx

)
.

Remark 8.11 Let k > 0, k ≥ 1, k = 1,2,3, be such that 1
1

+ 2
2

= 1, 2
2

+ 3
3

= 1,
3
3

+ 1
1

= 1, and let uk ∈ G(), k = 1,2,3. Then, the following inequality holds∫


(
|u1(x)|1 |u2(x)|2 + |u2(x)|2 |u3(x)|3 + |u3(x)|3 |u1(x)|1

)
dx

≤
3


k=1

2k

k
K1(k,2)

∫

‖graduk(x)‖k

2 dx , (8.41)

where K1 is defined by (8.30).
Indeed, for n = 2, Corollary 8.8 gives∫


|u1(x)|1 |u2(x)|2 dx ≤ 1

1
K1(1,2)

∫

‖gradu1(x)‖1

2 dx

+
2

2
K1(2,2)

∫

‖gradu2(x)‖2

2 dx .

Similar to this inequality, we have two more inequalities involving 2, 3, 2, 3, u2, u3

and 3, 1, 3, 1, u3, u1. An addition of these three inequalities gives (8.41).
In particular, for k = 2k, k = 1,2,3, where k ≥ 1, the inequality (8.41) reduces to∫



(
|u1(x)|1 |u2(x)|2 + |u2(x)|2 |u3(x)|3 + |u3(x)|3 |u1(x)|1

)
dx

≤ 1
m

3


k=1

I(2k)Hm
(
(b−a)2k

)∫

‖graduk(x)‖2k

2 dx . (8.42)

Further, when 1
2 ≤ k < 1, k = 1,2,3, the inequality (8.41) gives∫



(
|u1(x)|1 |u2(x)|2 + |u2(x)|2 |u3(x)|3 + |u3(x)|3 |u1(x)|1

)
dx

≤
3


k=1

1
mk

I(2k)Hm
(
(b−a)2k

)∫

‖graduk(x)‖2k

2 dx . (8.43)
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Remark 8.12 Let k > 0, k ≥ 1, k = 1,2,3, be such that 1
1

+ 2
2

= 1, 2
2

+ 3
3

= 1,
3
3

+ 1
1

= 1, and let uk ∈ G(), k = 1,2,3. Then, the following inequality holds∫

|u1(x)|1 |u2(x)|2 |u3(x)|3

(
|u1(x)|1 + |u2(x)|2 + |u3(x)|3

)
dx

≤ 2
m

3


k=1

k

k
I(2k)Hm

(
(b−a)2k

)∫

‖graduk(x)‖2k

2 dx . (8.44)

Indeed, the inequality (8.44) follows from the elementary inequality 123(1 +2 +
3)≤ 2

1
2
2 +2

2
2
3 +2

3
2
1 , and the inequality (8.41) with k and k replaced by 2k and

2k.
In particular, for k = 2k, k = 1,2,3, where k ≥ 2−1, the inequality (8.44) reduces to∫


|u1(x)|1 |u2(x)|2 |u3(x)|3

(
|u1(x)|1 + |u2(x)|2 + |u3(x)|3

)
dx

≤ 1
m

3


k=1

I(4k)Hm
(
(b−a)4k

)∫

‖graduk(x)‖4k

2 dx .

The following theorem is a consequence of Corollary 8.6.

Theorem 8.13 Let k > 0, k ≥ 1, k = 1, . . . ,n, be real numbers such that n
k=1

k
k

= 1
and let u,uk ∈ G(), k = 1, . . . ,n. Then, the following inequality holds∫



n


k=1

|uk(x)|kdx ≤ M[−2] (b−a)√
6m

n


k=1

k

k

(∫

|u(x)|2(k−1)dx

) 1
2

×
(∫


‖gradu(x)‖2

2 dx

) 1
2

. (8.45)

Proof. By applying Cauchy-Schwarz inequality and the result of Corollary 8.6 for
 = 2 and  = 2, we find∫


|u(x)|kdx ≤

(∫

|u(x)|2(k−1)dx

) 1
2
(∫


|u(x)|2dx

) 1
2

≤ M[−2] (b−a)√
6m

(∫

|u(x)|2(k−1)dx

) 1
2
(∫


‖gradu(x)‖2

2 dx

) 1
2

.

(8.46)

The inequality (8.45) now follows from (8.46) by using weighted arithmetic-geometric
inequality. �

Remark 8.13 In Remark 8.17 a special case of Theorem 8.13 (for n = 2 and 1 = 2 = 1)
is proved. In [8] Agarwal and Sheng obtained the same type of inequality for n = 2 and

with the right-hand side of the inequality (8.45) multiplied by
√

3
8 and the term Gm(b−

a) instead of M[−2](b− a). On the other hand, in [40], Cheung obtained the same type

of inequality with the right-hand side of the inequality (16) multiplied by
√

6
2 , the term

max{bi−ai : i = 1, . . . ,n} instead of M[−2](b−a) and the term k instead of k/k.



8.2 MULTIDIMENSIONAL INTEGRAL INEQUALITIES 249

8.2.2 Improvements of Wirtinger-type inequality

In our next result we will improve Theorem 8.8.

Theorem 8.14 Let p, , ≥ 1 with 1
 + 1

 = 1 and let u ∈ G(). Then, the following
inequality holds

∫

|u(x)|p dx ≤ Hm (b−a)

2m
1


(∫

|u(x)|(p−1) dx

) 1

(∫


‖gradu(x)‖ dx

) 1


. (8.47)

Proof. From the hypotheses, we have

up(x) = up−1(x)
∫ xi

ai


 si

u(x;si)dsi

and

up(x) = −up−1(x)
∫ bi

xi


 si

u(x;si)dsi

for i = 1, . . . ,m. Using Hölder’s inequality in the above inequalities with indices  and  ,
and summing, we obtain

|u(x)|p ≤ 1
2
|u(x)|p−1

∫ bi

ai

∣∣∣∣  si
u(x;si)

∣∣∣∣dsi

≤ 1
2
|u(x)|p−1 (bi−ai)

1


(∫ bi

ai

∣∣∣∣  si
u(x;si)

∣∣∣∣ dsi

) 1


.

Now, multiplying both sides of the above inequality by Ai = (bi − ai)−1, i = 1, . . . ,m,
summing these inequalities, and then integrating both sides on , we get∫


|u(x)|p dx ≤ 1

2m
i=1 Ai

m


i=1

Ai(bi−ai)
1


×
∫

|u(x)|p−1

(∫ bi

ai

∣∣∣∣  si
u(x;si)

∣∣∣∣ dsi

) 1


dx.

Applying Hölder’s inequality with indices  and  , we find

∫

|u(x)|p dx ≤ 1

2m
i=1 Ai

(∫

|u(x)|(p−1) dx

) 1
 m


i=1

Ai(bi −ai)
1


×
(∫



∫ bi

ai

∣∣∣∣  si
u(x;si)

∣∣∣∣ dsi dx

) 1


≤ 1
2m

i=1 Ai

(∫

|u(x)|(p−1) dx

) 1
 m


i=1

Ai(bi −ai)
1
 + 1
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×
(∫



∣∣∣∣ xi
u(x)

∣∣∣∣ dx

) 1


.

Obviously, Ai(bi −ai)
1
 + 1

 = 1, i = 1, . . . ,m. Thus, it follows that

∫

|u(x)|p dx ≤ 1

2m
i=1 Ai

(∫

|u(x)|(p−1) dx

) 1
 m


i=1

(∫


∣∣∣∣ xi
u(x)

∣∣∣∣ dx

) 1


. (8.48)

Again from Hölder’s inequality with indices  and  , we have

m


i=1

(∫


∣∣∣∣ xi
u(x)

∣∣∣∣ dx

) 1


≤ m
1


(∫

‖gradu(x)‖

) 1


. (8.49)

On combining (8.48) and (8.49) the required inequality (8.47) follows. �

Remark 8.14 By the harmonic-geometric means inequality it is clear that (8.47) is an
improvement over the inequality in Theorem 8.8.

Theorem 8.15 Let p, , ≥ 1 with 1
 + 1

 = 1 and let u ∈ G(). Let r ≥ 1. Then, the
following inequality holds

∫

|u(x)|p dx ≤ (K1( ,r))

1


(∫

|u(x)|(p−1) dx

) 1

(∫


‖gradu(x)‖r dx

) 1


. (8.50)

Proof. Applying Hölder’s inequality with indices  and  , we find∫

|u(x)|p dx =

∫

|u(x)|p−1 |u(x)|dx

≤
(∫


|u(x)|(p−1) dx

) 1

(∫


|u(x)| dx

) 1


.

The inequality (8.50) now follows from Corollary 8.6. �

Remark 8.15 For  ≥ r, the inequality (8.50) can be written as

∫

|u(x)|p dx ≤ M[− ](b−a)

m
1


(I( ))
1


×
(∫


|u(x)|(p−1) dx

) 1

(∫


‖gradu(x)‖r dx

) 1


.

Thus, in view of I( ) ≤ 2− and the harmonic-geometric means inequality, it is clear that
for r =  , the inequality (8.50) improves (8.47).
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By letting  =  = r = 2 in Theorem 8.15, we obtain the following interesting Sobolev
type inequality.

Corollary 8.9 Let p ≥ 1 and let u ∈ G(). Then, the following inequality holds

∫

|u(x)|p dx ≤ M[−2](b−a)√

6m

(∫

|u(x)|2(p−1) dx

) 1
2
(∫


‖gradu(x)‖2

2 dx

) 1
2

.

8.2.3 Improvements of Sobolev-type inequality

The following result generalizes as well as improves Theorem 8.9.

Theorem 8.16 Let p, ≥ 1 and let u ∈ G(). Then, the following inequality holds(∫

|u(x)| p dx

) 1
p

≤ pHm
(
(b−a)

)
m

I( )
(∫


‖gradu(x)‖ p

 dx

) 1
p

. (8.51)

Proof. From the hypotheses, we have

up(x) = p
∫ xi

ai

up−1(x;si)

 si

u(x;si)dsi

for i = 1, . . . ,m, which gives

|u(x)|p ≤ p
(∫ xi

ai

∣∣up−1(x;si)
∣∣ ∣∣∣∣  si

u(x;si)
∣∣∣∣dsi

)
.

Applying Hölder’s inequality with indices  and 
−1 , it follows that

|u(x)|p ≤ p (xi−ai)−1
∫ xi

ai

|u(x;si)| (p−1)
∣∣∣∣  si

u(x;si)
∣∣∣∣ dsi . (8.52)

Similarly, we obtain

|u(x)|p ≤ p (bi− xi)−1
∫ bi

xi

|u(x;si)| (p−1)
∣∣∣∣  si

u(x;si)
∣∣∣∣ dsi . (8.53)

Multiplying (8.52) by (xi − ai)1− and (8.53) by (bi − xi)1− , then adding the resulting
inequalities, we get(

(xi −ai)1− +(bi− xi)1−
)
|u(x)|p ≤ p

∫ bi

ai

|u(x;si)| (p−1)
∣∣∣∣  si

u(x;si)
∣∣∣∣ dsi ,

and hence

|u(x)|p ≤ p
(
(xi −ai)1− +(bi− xi)1−

)−1∫ bi

ai

|u(x;si)| (p−1)
∣∣∣∣  si

u(x;si)
∣∣∣∣ dsi .

(8.54)
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Integrating (8.54) on , we get∫

|u(x)|p dx ≤ p

∫ bi

ai

(
(xi −ai)1− +(bi− xi)1−

)−1
dxi

×
∫

|u(x)| (p−1)

∣∣∣∣ xi
u(x)

∣∣∣∣ dx .

It is clear that this inequality is the same as

∫

|u(x)|p dx ≤ p (bi −ai) I( )

∫

|u(x)| (p−1)

∣∣∣∣ xi
u(x)

∣∣∣∣ dx ,

where I( ) is the same as in Corollary 8.6.
Multiplying each of the above inequalities by (bi − ai)− , i = 1, . . . ,m, and summing

these inequalities, we find

m


i=1

(bi−ai)−
∫

|u(x)|p dx ≤ p I( )

∫

|u(x)| (p−1)

(
m


i=1

∣∣∣∣ xi
u(x)

∣∣∣∣
)

dx .

Thus, we have

∫

|u(x)|p dx ≤ p Hm

(
(b−a)

)
m

I( )
∫

|u(x)| (p−1)

(
m


i=1

∣∣∣∣ xi
u(x)

∣∣∣∣
)

dx . (8.55)

Finally, the inequality (8.51) follows from (8.55) on applying Hölder’s inequality with
indices p and p

p−1 . �

Remark 8.16 From (8.55), for  ≥ 2, instead of the inequality (8.51), we can establish
the following weaker inequality(∫


|u(x)| p dx

) 1
p

≤ p Hm
(
(b−a)

)
m

I( )
(∫


‖gradu(x)‖ p

2 dx

) 1
p

.

Corollary 8.10 For p ≥ 1 and let u ∈ G(). Then, the following inequalities hold

(∫

|u(x)|2p dx

) 1
p

≤ p2 Hm
(
(b−a)2

)
6m

(∫

‖gradu(x)‖2p

2 dx

) 1
p

, (8.56)

(∫

|u(x)|3p dx

) 1
p

≤ p3 (3−8)Hm
(
(b−a)3

)
24m

(∫

‖gradu(x)‖3p

2 dx

) 1
p

, (8.57)

(∫

|u(x)|4p dx

) 1
p

≤ p4
(
20

√
3−81

)
Hm

(
(b−a)4

)
1215m

(∫

‖gradu(x)‖4p

2 dx

) 1
p

. (8.58)
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Corollary 8.11 Let p, ≥ 1 and let u ∈ G(). Then, the following inequality holds∫

|u(x)| p dx ≤ I( p)Hm

(
(b−a) p

)
m

∫

‖gradu(x)‖ p

 dx. (8.59)

Proof. From Corollary 8.6 we have∫

|u(x)| p dx ≤ K1( p, )

∫

‖gradu(x)‖ p

 dx ,

which gives the inequality (8.59). �

In the following remarks, we will obtain Sobolev type inequalities involving two and
three functions. These inequalities improve several known results in the literature.

Remark 8.17 Let 1,2 > 1 be such that 1
1

+ 1
2

= 1 and let ul,u2 ∈ G(). Then, from
the arithmetic-geometric means inequality and Corollary 8.9 with p = k, u = uk, k = 1,2,
the following inequality holds

∫

|u1(x)| |u2(x)|dx ≤ M[−2] (b−a)√

6m

2


k=1

1
k

(∫

|uk(x)|2(k−1) dx

) 1
2

×
(∫


‖graduk(x)‖2

2 dx

) 1
2

.

Remark 8.18 Let 1,2 ≥ 1 and let ul,u2 ∈ G(). Then, from the arithmetic-geometric
means inequality and Corollary 8.9 with p = 1 + 2, u = uk, k = 1,2, the following
inequality holds

∫

|u1(x)|1 |u2(x)|2 dx ≤ M[−2] (b−a)√

6m(1 + 2)

2


k=1

k

(∫

|uk(x)|2(1+2−1) dx

) 1
2

×
(∫


‖graduk(x)‖2

2 dx

) 1
2

.

Remark 8.19 Let k ≥ 1, uk ∈ G(), k = 1,2,3. Then, from the elementary inequality
12 + 23 +31 ≤ 2

1 + 2
2 +2

3 and (8.56) with p = k, u = uk, k = 1,2,3, the
following inequality holds∫



(
|u1(x)|1 |u2(x)|2 + |u2(x)|2 |u3(x)|3 + |u3(x)|3 |u1(x)|1

)
dx

≤ 1
6m

Hm
(
(b−a)2) 3


k=1

2
k

(∫

|uk(x)|2k dx

) k−1
k

(∫

‖graduk(x)‖2k

2 dx

) 1
k

.

Remark 8.20 Let k ≥ 1, uk ∈ G(), k = 1,2,3. Then, from the elementary inequali-
ties used in Remark 8.12 and 8.19, (8.58) with p = k, u = uk, k = 1,2,3, the following
inequality holds∫


|u1(x)|1 |u2(x)|2 |u3(x)|3

(
|u1(x)|1 + |u2(x)|2 + |u3(x)|3

)
dx
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≤ 20
√

3−81
1215m

Hm
(
(b−a)4) 3


k=1

4
k

(∫

|uk(x)|4k dx

) k−1
k

×
(∫


‖graduk(x)‖4k

2 dx

) 1
k

.

8.2.4 Improvements of inequalities due to Pachpatte

Our next result improves Theorem 8.10.

Theorem 8.17 Let l ≥ 0,n ≥ 1 and let u ∈ G(). Then, the following inequality holds∫

|u(x)|l+n dx ≤ 1

m

(
l +n

n

)n

I(n)
m


i=1

(bi−ai)n
∫

|u(x)|l

∣∣∣∣ xi
u(x)

∣∣∣∣n dx. (8.60)

Proof. For each fixed i, i = 1, . . . ,m, we have

(u(x))l+n =
l +n

n
(u(x))

(n−1)(l+n)
n

∫ xi

ai

(u(x;si))
l
n

 si

u(x;si)dsi .

Thus, on applying Hölder’s inequality with indices n and n
n−1 , it follows that

|u(x)|l+n ≤ l +n
n

|u(x)| (n−1)(l+n)
n

×(xi−ai)
n−1
n

(∫ xi

ai

|u(x;si)|l
∣∣∣∣  si

u(x;si)
∣∣∣∣n dsi

) 1
n

.

Now, since

|u(x)|(l+n)(1− n−1
n ) = |u(x)| l+n

n

we get

|u(x)| l+n
n ≤ l +n

n
(xi−ai)

n−1
n

(∫ xi

ai

|u(x;si)|l
∣∣∣∣  si

u(x;si)
∣∣∣∣n dsi

) 1
n

,

i.e.,

|u(x)|l+n ≤
(

l +n
n

)n

(xi−ai)n−1
∫ xi

ai

|u(x;si)|l
∣∣∣∣  si

u(x;si)
∣∣∣∣n dsi. (8.61)

Similarly, we have

|u(x)|l+n ≤
(

l +n
n

)n

(bi− xi)n−1
∫ bi

xi

|u(x;si)|l
∣∣∣∣  si

u(x;si)
∣∣∣∣n dsi. (8.62)

Multiplying (8.61) by (xi − ai)1−n and (8.62) by (bi − xi)1−n, then adding the resulting
inequalities, we get

(
(xi −ai)1−n +(bi− xi)1−n) |u(x)|l+n ≤

(
l +n

n

)n
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×
∫ bi

ai

|u(x;si)|l
∣∣∣∣  si

u(x;si)
∣∣∣∣n dsi ,

which is the same as

|u(x)|l+n ≤ (
(xi −ai)1−n +(bi− xi)1−n)−1

(
l +n

n

)n

×
∫ bi

ai

|u(x;si)|l
∣∣∣∣  si

u(x;si)
∣∣∣∣n dsi . (8.63)

Finally, integrating (8.63) on , we get∫

|u(x)|l+n dx ≤

(
l +n

n

)n ∫ bi

ai

(
(xi −ai)1−n +(bi− xi)1−n)−1

dxi

×
∫

|u(x)|l

∣∣∣∣ xi
u(x)

∣∣∣∣n dx ,

i.e., ∫

|u(x)|l+n dx ≤

(
l +n

n

)n

I(n)(bi−ai)n
∫

|u(x)|l

∣∣∣∣ xi
u(x)

∣∣∣∣n dx . (8.64)

The required inequality (8.60) follows on adding these m inequalities. �

Remark 8.21 Since I(n) ≤ 2−n the inequality (8.60) improves Theorem 8.10.

Theorem 8.18 Let l ≥ 0,n ≥ 1 and let u ∈ G(). Then, the following inequality holds

∫

|u(x)|l+n dx ≤ Hm ((b−a)n)

m

(
l +n

n

)n

I(n)
m


i=1

∫

|u(x)|l

∣∣∣∣ xi
u(x)

∣∣∣∣n dx. (8.65)

Proof. The main part of the proof is the same as that of Theorem 8.17. We multiply
(8.64) by (bi −ai)−n, i = 1, . . . ,m and add these m inequalities, to obtain

m


i=1

(bi−ai)−n
∫

|u(x)|l+n dx ≤

(
l +n

n

)n

I(n)
m


i=1

∫

|u(x)|l

∣∣∣∣ xi
u(x)

∣∣∣∣n dx .

This inequality is the same as (8.65). �

Now we will prove another interesting inequality which improves Theorem 8.11.

Theorem 8.19 Let p,n ≥ 0 be such that p+n≥ 1 and let u∈ G(). Then, the following
inequality holds∫


|u(x)|p ‖gradu(x)‖n

2 dx ≤ (K1(p+n,2))
p

p+n

∫

‖gradu(x)‖p+n

2 dx. (8.66)
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Proof. Inequality (8.66) is an easy consequence of the result of Corollary 8.6. Indeed,
first we apply Hölder’s inequality with indices p+n

p and p+n
n in the left side of (8.66) and

then apply (8.29) with  = p+n and  = 2. �

Finally, in the following remarks we will deduce some inequalities from (8.66). These
inequalities improve several results known in the literature.

Remark 8.22 For p = 1 and n = l−1, l ≥ 2, the inequality (8.66) reduces to∫

|u(x)|‖gradu(x)‖l−1

2 dx ≤ M[−l] (b−a)

m
1
l

I(l)
1
l

∫

‖gradu(x)‖l

2 dx.

Remark 8.23 For p = n = 1, the inequality (8.66) reduces to∫

|u(x)|‖gradu(x)‖2 dx ≤ M[−2] (b−a)√

6m

∫

‖gradu(x)‖2

2 dx.

Remark 8.24 Let u1,u2 ∈ G(). Then, the following inequality holds∫


(
|u1(x)|‖gradu2(x)‖2 + |u2(x)|‖gradu1(x)‖2

)
dx

≤ M[−2] (b−a)√
6m

∫


(‖gradu1(x)‖2
2 +‖gradu2(x)‖2

2

)
dx.

Indeed, it follows on applying Cauchy-Schwarz inequality for each term of the left side,
and then on applying the inequality (8.36), and finally using the arithmetic-geometric
means inequality.

Remark 8.25 Let pk,nk ≥ 0 be such that r(pk +nk) ≥ 1 and let uk ∈ G(), k = 1, . . . ,r.
Then, the following inequality holds∫



r


k=1

|uk(x)|pk ‖graduk(x)‖nk
2 dx

≤ 1
r

r


k=1

(K1(r(pk +nk),2))
pk

pk+nk

∫

‖graduk(x)‖r(pk+nk)

2 dx.

8.3 Multidimensional discrete inequalities

Let x,X ∈ N
m
0 be such that x ≤ X , i.e., xi ≤ Xi, i = 1, . . . ,m. Let  = [0,X ], where

[0,X ]⊂N
m
0 . We denote by G() the class of functions u :→R, which satisfy conditions

u(x)|xi=0 = u(x)|xi=Xi = 0, i = 1, . . . ,m. For u we define forward difference operators i,
i = 1, . . . ,m, as

i u(x) = u(x1, . . . ,xi−1,xi +1,xi+1, . . . ,xm)−u(x) .
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As in a previous section, let u(x;si) stand for u(x1, . . . ,xi−1,si,xi+1, . . . ,xm),  = (1, . . . ,m)

and let Hm() denote the harmonic mean of 1, . . . ,m. Also, let
X−1


x=1
denote

m

j=1

Xj−1


x j=1

.

The following results by Agarwal and Pang are given in [4]. We will present obtained
extensions and improvements.

Theorem 8.20 Let  ≥ 1 and let u ∈ G(). Then, the following inequality holds

X−1


x=1

|u(x)| ≤ K( )
X−1


x=0

(
m


i=1

|i u(x)|2
) 

2

,

where

K( ) =
1
m

C

(

2

) m


i=1

(
Xi−1


xi=1

1
2

(xi(Xi− xi))
−1

2

) 1
m

(8.67)

and C is defined by (8.20).

Theorem 8.21 Let k ≥ 0, k ≥ 1, k = 1,2 be such that 1
1

+ 2
2

= 1 and let u1,u2 ∈G().
Then, the following inequality holds

X−1


x=1

|u1(x)|1 |u2(x)|2

≤
2


k=1

k

mk
max

1≤i≤m

(
Xi−1


xi=1

1
2

(xi(Xi − xi))
k−1

2

)
X−1


x=0

m


i=1

|i uk(x)|k .

Theorem 8.22 Let p,n ≥ 0 be such that p+n≥ 1 and let u∈ G(). Then, the following
inequality holds

X−1


x=1

|u(x)|p
(

m


i=1

|i u(x)|2
) n

2

≤ (K(p+n))
p

p+n

X−1


x=0

(
m


i=1

|i u(x)|2
) p+n

2

,

where K is defined by (8.67).

8.3.1 Improvements of the Agarwal-Pang inequality I

We start with a weighted extension of Theorem 8.20 involving submultiplicative convex
function.

Theorem 8.23 Let f be a submultiplicative convex function on [0,) with f (0) = 0. Let
p be a nonnegative function on  and u ∈ G(). Then, the following inequality holds

X−1


x=1

p(x) f (|u(x)|) ≤ 1
m

Hm ()
X−1


x=0

m


i=1

f (|i u(x)|) , (8.68)
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where  = (1, . . . ,m) and

i =
Xi−1


xi=1

(
xi

f (xi)
+

Xi− xi

f (Xi − xi)

)−1

p(x) , i = 1, . . . ,m .

Proof. For each fixed i, i = 1, . . . ,m, we have

u(x) =
xi−1


si=0

i u(x;si) , u(x) = −
Xi−1


si=xi

i u(x;si) .

From the discrete case of Jensen’s inequality (since f is an increasing convex function) and
the submultiplicativity of f , we have

f (|u(x)|) ≤ f

(
1
xi

xi−1


si=0

xi |i u(x;si)|
)

≤ 1
xi

xi−1


si=0

f (xi |i u(x;si)|)

≤ 1
xi

xi−1


si=0

f (xi) f (|i u(x;si)|)

=
f (xi)
xi

xi−1


si=0

f (|i u(x;si)|) (8.69)

and analogously

f (|u(x)|) ≤ f (Xi − xi)
Xi − xi

Xi−1


si=xi

f (|i u(x;si)|) (8.70)

for i = 1, . . . ,m. We multiply (8.69) by xi
f (xi)

and (8.70) by Xi−xi
f (Xi−xi)

. Then we add these
resulting inequalities, to obtain(

xi

f (xi)
+

Xi− xi

f (Xi − xi)

)
f (|u(x)|) ≤

Xi−1


si=0

f (|i u(x;si)|) ,

i.e.

f (|u(x)|) ≤
(

xi

f (xi)
+

Xi− xi

f (Xi − xi)

)−1 Xi−1


si=0

f (|i u(x;si)|) (8.71)

for i = 1, . . . ,m. Now multiplying (8.71) by p and summing from x = 1 to x = X − 1, we
get

X−1


x=1

p(x) f (|u(x)|) ≤
Xi−1


xi=1

(
xi

f (xi)
+

Xi− xi

f (Xi − xi)

)−1

p(x)

×
X−1


x=0

f (|i u(x)|) (8.72)
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for i = 1, . . . ,m. Multiplying both sides of the inequality (8.72) by −1
i and then adding

these m inequalities , we obtain

m


i=1

−1
i

X−1


x=1

p(x) f (|u(x)|) ≤
m


i=1

X−1


x=0

f (|i u(x)|) ,

which is the same as the inequality (8.68). �

Corollary 8.12 Let f be a submultiplicative convex function on [0,) with f (0) = 0. Let
p be a nonnegative function on  and u ∈ G(). Then, the following inequality holds

X−1


x=1

p(x) f (|u(x)|) ≤ 1
2m

Hm ( )
X−1


x=0

m


i=1

f (|i u(x)|) , (8.73)

where  = (1, . . . ,m) and

i =
Xi−1


xi=1

(
f (xi) f (Xi − xi)

xi (Xi− xi)

) 1
2

p(x), i = 1, . . . ,m .

Proof. By harmonic-geometric inequality we have

2

(
xi

f (xi)
+

Xi− xi

f (Xi − xi)

)−1

≤
(

f (xi) f (Xi − xi)
xi (Xi − xi)

) 1
2

.

Applying this and using Hm( 1
2 ) = 1

2Hm(), the inequality (8.73) follows. �

In the following inequalities let

h(x,X , ) = (h1(x,X , ), . . . ,hm(x,X , )) (8.74)

and

hi(x,X , ) =
Xi−1


xi=1

(
x1−
i +(Xi− xi)1−

)−1
, i = 1, . . . ,m .

Next we have an improvement of Theorem 8.20.

Corollary 8.13 Let  , ≥ 1 and let u ∈ G(). Then, the following inequality holds

X−1


x=1

|u(x)| ≤ K1( ,)
X−1


x=0

(
m


i=1

|i u(x)|
) 



, (8.75)

where

K1( ,) =
1
m

C

(



)
Hm (h(x,X , )) , (8.76)

C is defined by (8.20) and h by (8.74).



260 8 WEIGHTED INTEGRAL AND DISCRETE OPIAL-TYPE INEQUALITIES

Proof. From Theorem 8.23 using function f (t) = t we have

X−1


x=1

|u(x)| ≤ 1
m

Hm (h(x,X , ))
X−1


x=0

m


i=1

|i u(x)| . (8.77)

The inequality (8.75) now follows from (8.77) and the elementary inequality (8.34). �

Remark 8.26 By the harmonic-geometric means inequality, we have

2
(
s1− +(1− s)1−

)−1 ≤
(
s−1(1− s)−1

) 1
2
.

Thus, again from the harmonic-geometric means inequality it follows that Corollary 8.13
for  = 2 improves Theorem 8.20.

8.3.2 Improvements of the Agarwal-Pang inequalities II and III

In our next result, we will improve Theorem 8.21.

Theorem 8.24 Let  ≥ 1 and k ≥ 0, k ≥ 1 be such that n
k=1 k/k = 1 and let uk ∈

G(), k = 1, . . . ,n. Then, the following inequality holds

X−1


x=1

n


k=1

|uk(x)|k ≤
n


k=1

k

k
K1(k,)

X−1


x=0

(
m


i=1

|i uk(x)|
) k



, (8.78)

where K1 is defined by (8.76).

Proof. Using weighted arithmetic-geometric means inequality, we find

n


k=1

|uk(x)|k =
n


k=1

(
|uk(x)|k

) k
k ≤

n


k=1

k

k
|uk(x)|k .

The inequality (8.78) now follows from Corollary 8.13 with  = k. �

In the following remarks, we will state several important particular cases of the in-
equality (8.78). The obtained inequalities improve corresponding results established in
[4].

Remark 8.27 Let 1,2 > 0 be such that 1 + 2 ≥ 2 and let u1,u2 ∈ G(). Then, for
n =  = 2 and 1 = 2 = 1 + 2 the inequality (8.78) reduces to

X−1


x=1

|u1(x)|1 |u2(x)|2

≤ 1
m

Hm (h(x,X ,1 + 2))

[
1

1 + 2

X−1


x=0

(
m


i=1

|i u1(x)|2
) 1+2

2
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+
2

1 + 2

X−1


x=0

(
m


i=1

|i u2(x)|2
) 1+2

2
]
. (8.79)

In particular, for 1 = 2 = 1, the inequality (8.79) is the same as

X−1


x=1

|u1(x)| |u2(x)|

≤ 1
2m

Hm (h(x,X ,2))

[
X−1


x=0

(
m


i=1

|i u1(x)|2
)

+
X−1


x=0

(
m


i=1

|i u2(x)|2
)]

.

Remark 8.28 Let 1 ≤ 1,2 < 2 be such that 1
1

+ 1
2

= 1, and let u1,u2 ∈ G(). Then,
for n =  = 2 and 1 = 2 = 1 the inequality (8.78) leads to

X−1


x=1

|u1(x)| |u2(x)| ≤ 1

1 m
1
2

Hm (h(x,X ,1))
X−1


x=0

(
m


i=1

|i u1(x)|2
) 1

2

+
1

2 m
2
2

Hm (h(x,X ,2))
X−1


x=0

(
m


i=1

|i u2(x)|2
) 2

2

.

Remark 8.29 Let 1,2 > 0 be such that 1 ≤ 1 + 2 < 2 and let u1,u2 ∈ G(). Then,
for n =  = 2 and 1 = 2 = 1 + 2 the inequality (8.78) gives

X−1


x=1

|u1(x)|1 |u2(x)|2 ≤ 1

m
1+2

2

Hm (h(x,X ,1 + 2))

×
[

1

1 + 2

X−1


x=0

(
m


i=1

|i u1(x)|2
) 1+2

2

+
2

1 + 2

X−1


x=0

(
m


i=1

|i u2(x)|2
) 1+2

2
]
.

Remark 8.30 Let k > 0, k ≥ 1, k = 1,2,3, be such that 1
1

+ 2
2

= 1, 2
2

+ 3
3

= 1,
3
3

+ 1
1

= 1, and let  ≥ 1, uk ∈ G(), k = 1,2,3. Then, the following inequality holds

X−1


x=1

(
|u1(x)|1 |u2(x)|2 + |u2(x)|2 |u3(x)|3 + |u3(x)|3 |u1(x)|1

)

≤
3


k=1

2k

k
K1(k,)

X−1


x=0

(
m


i=1

|i uk(x)|
) k



(8.80)

where K1 is defined by (8.76).
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Indeed, for n = 2, Theorem 8.24 gives

X−1


x=1

|u1(x)|1 |u2(x)|2 ≤ 1

1
K1(1,)

X−1


x=0

(
m


i=1

|i u1(x)|
) 1



+
2

2
K1(2,)

X−1


x=0

(
m


i=1

|i u2(x)|
) 2



.

Similar to this inequality, we have two more inequalities involving 2, 3, 2, 3, u2, u3

and 3, 1, 3, 1, u3, u1. An addition of these three inequalities gives (8.80).
In particular, for  = 2, k = 2k, k = 1,2,3, where k ≥ 1, the inequality (8.80)

reduces to
X−1


x=1

(
|u1(x)|1 |u2(x)|2 + |u2(x)|2 |u3(x)|3 + |u3(x)|3 |u1(x)|1

)
≤ 1

m

3


k=1

Hm (h(x,X ,2k))
X−1


x=0

(
m


i=1

|i uk(x)|2
)k

.

Further, when 1
2 ≤ k < 1, k = 1,2,3, the inequality (8.80) gives

X−1


x=1

(
|u1(x)|1 |u2(x)|2 + |u2(x)|2 |u3(x)|3 + |u3(x)|3 |u1(x)|1

)
≤

3


k=1

1
mk

Hm (h(x,X ,2k))
X−1


x=0

(
m


i=1

|i uk(x)|2
)k

.

Remark 8.31 Let k > 0, k ≥ 1, k = 1,2,3, be such that 1
1

+ 2
2

= 1, 2
2

+ 3
3

= 1,
3
3

+ 1
1

= 1, and let  ≥ 1, uk ∈ G(), k = 1,2,3. Then, the following inequality holds

X−1


x=1

|u1(x)|1 |u2(x)|2 |u3(x)|3

(
|u1(x)|1 + |u2(x)|2 + |u3(x)|3

)

≤ 2
m

3


k=1

k

k
Hm (h(x,X ,2k))

X−1


x=0

(
m


i=1

|i uk(x)|2
)k

. (8.81)

Indeed, the inequality (8.81) follows from the elementary inequality 123(1 +2 +
3) ≤ 2

1
2
2 +2

2
2
3 +2

3
2
1 , and the inequality (8.80) for  = 2 with k and k replaced

by 2k and 2k.
In particular, for k = 2k, k = 1,2,3, where k ≥ 2−1, the inequality (8.81) reduces to

X−1


x=1

|u1(x)|1 |u2(x)|2 |u3(x)|3

(
|u1(x)|1 + |u2(x)|2 + |u3(x)|3

)

≤ 1
m

3


k=1

Hm (h(x,X ,4k))
X−1


x=0

(
m


i=1

|i uk(x)|2
)2k

.
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Now we will prove two results which complement Theorem 8.20.

Theorem 8.25 Let p, , ≥ 1 with 1
 + 1

 = 1 and let u ∈ G(). Then, the following
inequality holds

X−1


x=1

|u(x)|p ≤ m
1


2m
i=1 X−1

i

(
X−1


x=1

|u(x)|(p−1)

) 1

(

X−1


x=0

m


i=1

|i u(x)|
) 1



. (8.82)

Proof. From the hypotheses, we have

up(x) = up−1(x)
xi−1


si=0

i u(x;si)

and

up(x) = −up−1(x)
Xi−1


si=xi

i u(x;si)

for i = 1, . . . ,m. Using Hölder’s inequality in the above inequalities with indices  and  ,
we obtain

|u(x)|p ≤ 1
2
|u(x)|p−1

Xi−1


si=0

|i u(x;si)|

≤ 1
2
|u(x)|p−1 X

1

i

(
Xi−1


si=0

|i u(x;si)|
) 1



.

Now, multiplying both sides of the above inequality by X−1
i , i = 1, . . . ,m, summing these

inequalities, and then summing both sides from x = 1 to x = X −1, we get

X−1


x=1

|u(x)|p ≤ 1

2m
i=1 X−1

i

m


i=1

X
− 1


i

X−1


x=1

|u(x)|p−1

(
Xi−1


si=0

|i u(x;si)|
) 1



.

Applying Hölder’s inequality with indices  and  , we find

X−1


x=1

|u(x)|p ≤ 1

2m
i=1 X−1

i

(
X−1


x=1

|u(x)|(p−1)

) 1
 m


i=1

X
− 1


i

×
(

X−1


x=1

Xi−1


si=0

|i u(x;si)|
) 1



≤ 1

2m
i=1 X−1

i

(
X−1


x=1

|u(x)|(p−1)

) 1
 m


i=1

(
X−1


x=0

|i u(x)|
) 1



.

Finally, once again on applying Hölder’s inequality with indices  and  , we obtained the
required inequality (8.82). �
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Theorem 8.26 Let p, , ≥ 1 with 1
 + 1

 = 1 and let u ∈ G(). Let r ≥ 1. Then, the
following inequality holds

X−1


x=1

|u(x)|p ≤ (K1( ,r))
1


(
X−1


x=1

|u(x)|(p−1)

) 1

⎛⎝X−1


x=0

(
m


i=1

|i u(x)|r
) 

r
⎞⎠

1


. (8.83)

Proof. Applying Hölder’s inequality with indices  and  , we find

X−1


x=1

|u(x)|p =
X−1


x=1

|u(x)|p−1 |u(x)|

≤
(

X−1


x=1

|u(x)|(p−1)

) 1

(

X−1


x=1

|u(x)|
) 1



.

The inequality (8.83) now follows as an application of Corollary 8.13. �

Next we give another interesting inequality which improves Theorem 8.22.

Theorem 8.27 Let p,n≥ 0 be such that p+n ≥ 1 and let u ∈G(). Then, the following
inequality holds

X−1


x=1

|u(x)|p
(

m


i=1

|i u(x)|2
) n

2

≤ (K1(p+n,2))
p

p+n

X−1


x=0

(
m


i=1

|i u(x)|2
) p+n

2

, (8.84)

where K1 is defined by (8.76).

Proof. Inequality (8.84) is an easy consequence of the result of Corollary 8.13. Indeed,
first we apply Hölder’s inequality with indices p+n

p and p+n
n in the left side of (8.84) and

then apply (8.75) with  = p+n and  = 2. �

Remark 8.32 For p = 1 and n = l−1, l ≥ 2, the inequality (8.84) reduces to

X−1


x=1

|u(x)|
(

m


i=1

|i u(x)|2
) l−1

2

≤ 1

m
1
l

Hm (h(x,X , l))
1
l

X−1


x=0

(
m


i=1

|i u(x)|2
) l

2

.

Finally, in the following we state a generalization of Theorem 8.27. which improves
Corollary 11 established in [4].
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Remark 8.33 Let pk,nk ≥ 0 be such that r(pk +nk) ≥ 1 and let uk ∈ G(), k = 1, . . . ,r.
Then, the following inequality holds

X−1


x=1

r


k=1

|uk(x)|pk

(
m


i=1

|i uk(x)|2
) nk

2

≤ 1
r

r


k=1

(K1(r(pk +nk),2))
pk

pk+nk

X−1


x=0

(
m


i=1

|i uk(x)|2
) r(pk+nk)

2

.
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derivatives, Inter. J. Math & Math. Sci. 31 (2) (2002), 85–95.
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[36] I. Brnetić, J. Pečarić, Some new Opial-type inequalities, Math. Inequal. Appl. 1(3)
(1998), 385–390.
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[50] J. Jakšetić, J. Pečarić, Exponential Convexity Method, J. Convex Anal. 20 (1) (2013),
181–197.

[51] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam, Netherlands (2006).
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