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Preface

Due to the scientific contribution of the Danish mathematician J. L. W. Jensen from 1905,
the theory of convex functions started to develop rapidly. The famous Jensen inequality, in
one of its elementary forms:

f

(
1
Pn

n


1=1

pixi

)
≤ 1

Pn

n


1=1

pi f (xi) (1)

holds for a convex function f : I → R, where I is an interval in R, for an n-tuple
x = (x1, . . . ,xn) ∈ In, n ≥ 2 and a nonnegative n-tuple p = (p1, . . . , pn), such that
Pn = n

i=1 pi > 0.
The Jensen inequality is one of the most important and most frequently applied in a

diversity of mathematical fields, especially in mathematical analysis and statistics. It has
been improved, generalized and adjusted to various environments in this process. Often
referred to as “king of inequalities”, it has been linked to other important inequalities, e.g.
Young’s, Hölder’s, Minkowski’s, Beckenbach-Dresher’s, Hilbert’s,. . . In this book, how-
ever, we present an aspect of development of Jensen’s famous inequality considering the
Jensen-type functionals in the first place, and then, in the second part, the results obtained
via a specific monotonicity principle. In order to do so, we make an almost one hundred
years shift in time, since the most important Jensen’s result has been established. Namely,
in 1996, S. S. Dragomir, J. E. Pečarić and L. E. Persson investigated the so called discrete
Jensen functional, deduced from (1), by subtracting its left-hand side from its right-hand
side. They proved that this functional was superadditive and increasing on the set of previ-
ously described n-tuples p in the case of a convex function f . This very result is the basis
for the variety of improvements, generalizations and applications to the classical inequali-
ties, presented in the first part of this book.

Thus in the second chapter, superadditivity on the space of real functions and mono-
tonicity as its consequence, are proved to be possessed by Jensen-type functionals (Jessen’s
and McShane’s functionals), both defined by means of a positive linear functional acting
on the space of real functions.

In a similar manner, the third chapter deals with Jensen-Steffensen’s and Jensen-Mer-
cer’s functionals, as well as with the Petrović-type functionals, in their discrete and integral
forms, depending on which are superadditivity and monotonicity discussed on the set of
real n-tuples or on the set of real functions, with their specific conditions involved.

Inequalities related to Jessen’s functional that were analyzed in Chapter 2 are reexam-
ined and improved in the fourth chapter of the book, under some new assumptions and due
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to some new results. In the same chapter, Jessen’s functional served as a basis in studying
superadditivity of the generalized form of the well known Levinson functional, as well.

What is of a special interest here is that for all of these functionals, their superadditivity
and monotonicity on the described sets provide their specific both-sided bounds, expressed
by means of the non-weight functionals of the same type. Presented refinements and con-
verses of a variety of classical inequalities are immediate consequences of such obtained
bounds.

Observe, for example, how widely this scope of investigation finally reached, that the
whole class of refinements and converses of the Hilbert inequality is established (Chapter
2), all by means of superadditivity of the Jensen-type functionals.

The fifth chapter is specific in its structure since it starts with some of the first published
results on superadditivity and then integrates a few different approaches to superadditivity.
These concern several classes of functionals that were studied recently, independently of
the previously described integrated research, but nevertheless significant in their contribu-
tion to this subject.

After this short digression, we go back to the unified approach to Jensen-type function-
als employed in this area of research, which leads us to the sixth chapter. Here we have a
transition from the domain of real analysis to the domain of the functional analysis. Thus
we have bounded self-adjoint operators on a Hilbert space as the arguments of the observed
Jensen-type functionals, and as applications – refinements and converses of the operator
mean inequalities: arithmetic-geometric, arithmetic-harmonic, arithmetic-Heinz,. . . Addi-
tionally, integral operator Jensen’s inequality with the correspondingly defined functional
is also studied, as well as the multidimensional Jensen’s functional for operators, with
some interesting applications to connections, solidarities and multidimensional weight ge-
ometric means.

In the seventh chapter, several refinements of the Heinz norm inequalities are derived,
by virtue of convexity of Heinz means and via the Jensen functional and, in the sequel,
some improved majorization relations and eigenvalue inequalities for matrix versions of
the Jensen inequality are also given.

A rich variety of the results of another group of authors is organized in the second part
of the book (chapters 8 to 11) and is based on a related, still different basic motivation.
Namely, in 1993 J. E. Pečarić investigated the method of interpolating inequalities which
have reversed inequalities of Aczél type. Using Jensen’s inequality and its reverse, he
proved that

n


i=1

pi f (xi)−Pn f

(
1
Pn

n


i=1

pixi

)
≥

n


i=1

qi f (xi)−Qn f

(
1
Qn

n


i=1

qixi

)
≥ 0, (2)

where f is a convex function on an interval I ⊂ R, x = (x1, . . . ,xn) ∈ In, n ≥ 2, and p and q
are positive n-tuples such that p ≥ q, (i.e. pi ≥ qi, i = 1, . . . ,n; Pn =n

i=1 pi, Qn =n
i=1 qi).

By means of a simple consequence of this result (thoroughly described in Chapter 1), a
whole series of results has been improved, as it is presented in the latter part of this book.

Only a few years after (2) had been established, in 1996, as we have already mentioned,
S. S. Dragomir, J. E. Pečarić and L. E. Persson obtained the analogous result in their joint
paper, but as a consequence of a quite different approach – via superadditivity.
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Although it is evident that the same monotonicity property of the Jensen’s functional
is obtained twice – for the first time as a side-result incorporated in the interpolating in-
equalities, and for the second time – as a consequence of the superadditivity property, it is
interesting that the first result was not even mentioned or referred to when the other one
was published!

Now, let us outline the contents of the remained chapters.
In the eighth chapter, due to the monotonicity principle (2), various variants of the

converse Jensen inequality are studied, improved and generalized. The first set of such
results (generalizations are obtained for positive linear functionals and furthermore, on
convex hulls and on k-simplices) is motivated by the Lah-Ribarič inequality, as the most
important converse Jensen’s inequality, and the second set is grouped around the Giaccardi-
Petrović inequality. A large family of n-exponentially convex and exponentially convex
functions is therefrom constructed, as it is similarly done in the following chapters, as
well.

In the ninth chapter, we proceed with the applications of the monotonicity property (2)
in a similar manner, with two improvements of the Jessen-Mercer inequality presented,
as well as a generalization of the Jessen-Mercer inequality on convex hulls: the results
accompanied with a k-dimensional variant of the Hammer-Bullen inequality and with an
improvement of the classical Hermite-Hadamard inequality.

When mentioning the Hermite-Hadamard inequality, the improvements of its various
forms (the ones of Fejèr, Lupaş, Brenner-Alzer, Beesack-Pečarić) are presented in the tenth
chapter. These improvements, as it will be seen, imply the Hammer-Bullen inequality and
are given in terms of positive linear functionals.

Finally, in eleventh chapter, several refinements of the Jensen operator inequality are
presented, for n-tuples of self-adjoint operators, unital n-tuples of positive linear mappings
and real valued continuous convex functions with the condition on the spectra of the op-
erators. Using these refinements, the refinements of inequalities among quasi-arithmetic
means, under similar conditions are obtained and, as an application of these results, a
refinement of inequalities among power means is additionally provided. The chapter is
concluded with the considerations on the converses of the generalized Jensen inequality
for a continuous field of self-adjoint operators, a unital field of positive linear mappings
and real valued convex functions, where new refined converses are presented using the
Mond-Pečarić method improvements.

Since this monograph integrates the whole variety of results that were previously pub-
lished by different authors in numerous papers, it was practically impossible, despite the
great effort, to quite unify the terminology and the notation in the book. Nevertheless,
starting with the introductory chapter, but also in each particular chapter, most of the used
terminology is defined and explained for the reader’s convenience. It is done, of course,
on the assumption that the reader is familiar with the basis in real and in functional mathe-
matical analysis.

Authors
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3.3 Superadditivity of the Petrović-type functionals . . . . . . . . . . . . . . 122

4 Some further improvements. Levinson’s functional 131
4.1 Refinements of the inequalities related to Jessen’s functional . . . . . . . 131

4.1.1 Application to weight generalized means . . . . . . . . . . . . . 134
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Chapter1

Basic notation and
fundamental results

In this chapter, a brief review of some fundamental results on the topics in the sequel is
given and a several basic motivating ideas are presented.

1.1 Jensen’s inequality and its variants

Classical Jensen’s inequality is the starting point for the variety of the results in this
book. Therefore we give its discrete and integral forms in the first place, then some
closely related inequalities like Jensen-Steffensen’s, Jensen-Mercer’s, Hölder’s, Hermite-
Hadamard’s etc., as well as some of their numerous variants and generalizations (e.g.
Jessen’s inequality and its multidimensional form – McShane’s inequality and, further-
more – their generalizations to the convex hulls.) Due to the close relation of Jensen’s
inequality to the class of convex functions, it is natural to start with the definition of con-
vex functions. More on this topic one can find e.g. in the monographs Convex Functions,
Partial Orderings, and Statistical Applications by J. E. Pečarić, F. Proschan and Y. L. Tong
or Convex Functions by A. W. Roberts and D. E. Varberg.
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2 1 BASIC NOTATION AND FUNDAMENTAL RESULTS

Definition 1.1 Let I be an interval in R. Function f : I → R is said to be a convex
function on I if for all x,y ∈ I and all  ∈ [0,1]

f (x+(1− )y)≤  f (x)+ (1− ) f (y) (1.1)

holds. If (1.1) is strict for all x,y ∈ I, x �= y and for all  ∈ (0,1), then f is said to be
strictly convex. If the inequality in (1.1) is reversed, then f is said to be concave.

In geometric terms, a function is convex (concave) if the part of the graph of the func-
tion between two points on that graph lies below (above) the chord which connects these
two points, or, equivalently, if the epigraph of the function is a convex (concave) set.

In 1934 T. Popoviciu introduced the following generalization of the notion of convexity.

Definition 1.2 Function f : [a,b] → R is said to be n-convex, n ∈ N0, if for every choice
of mutually different points y0, . . . ,yn ∈ [a,b]

[y0, . . . ,yn; f ] ≥ 0, (1.2)

where [y0, . . . ,yn; f ] denotes the n-th divided difference of the function f in y0, . . . ,yn,
inductively defined with

[yi; f ] = f (yi), i = 0, . . . ,n,

[y0, . . . ,yk; f ] =
[y0, . . . ,yk−1; f ]− [y1, . . . ,yk; f ]

y0− yk
, k = 1, . . . ,n. (1.3)

If (1.2) is strict, then f is said to be a strictly n-convex function. If (1.2) is reversed, then
f is said to be an n-concave function.

Remark 1.1 According to the definition, the notion of 0-convexity corresponds to non-
negativity of the function f , 1-convexity describes the increasing function f , whereas 2-
convexity corresponds to convexity in the sense of Definition 1.1. Namely, f [x0,x1,x2]≥ 0
if and only if f is a convex function.

As we previously announced, we finally quote the Jensen inequality which can also be
viewed as an alternative way of defining convex functions.

Theorem 1.1 (JENSEN’S INEQUALITY) Let I be an interval in R, function f : I → R be
convex on I and let p = (p1, . . . , pn) be a nonnegative n-tuple such that Pn = n

i=1 pi > 0.
Then for any x = (x1, . . . ,xn) ∈ In the following inequality holds:

f

(
1
Pn

n


i=1

pixi

)
≤ 1

Pn

n


i=1

pi f (xi). (1.4)

If f is strictly convex, then (1.4) is strict, unless xi = c for all i ∈ {
j : p j > 0

}
. If f is

concave, then (1.4) is reversed.

Here we also cite the accompanied reversed inequality for convex functions.



1.1 JENSEN’S INEQUALITY AND ITS VARIANTS 3

Theorem 1.2 (REVERSED JENSEN’S INEQUALITY) Let I be an interval in R, function
f : I →R be convex on I and let p = (p1, . . . , pn) be a real n-tuple such that p1 > 0, pi ≤ 0,
i = 2, . . . ,n, Pn = n

i=1 pi > 0. Then for xi ∈ I (i = 1, . . . ,n), such that 1
Pn
n

i=1 pixi ∈ I the
following inequality holds:

f

(
1
Pn

n


i=1

pixi

)
≥ 1

Pn

n


i=1

pi f (xi) . (1.5)

It is worth mentioning that when Danish mathematician J. L. W. Jensen established the
inequality (1.4) in 1905 (see [91]), he originally did it for the class of midconvex (Jensen-
convex) functions, that is for the class of functions for which

f

(
x+ y

2

)
≤ f (x)+ f (y)

2
. (1.6)

Since comparison of means is at the core of the notion of convexity, let us firstly recall
some of the basic related definitions, with an accent on means that we are going to use
extensively in the following chapters. For more details on this subject, the reader may be
referred e.g. to [165].

Definition 1.3 Let M : I× I → I be a continuous function, where I is an interval in R. If
M satisfies the condition

inf{s,t} ≤ M(s,t) ≤ sup{s,t}, for all s,t ∈ I,

then we say that M is a mean on the interval I.

The weight combinationsM(x,p), where x and p are positive real n-tuples, x=(x1, . . .,xn)
and p = (p1, . . . , pn), such that n

i=1 pi = 1, can be defined in the same manner, with the
condition

inf{x1, . . . ,xn} ≤ M(x,p) ≤ sup{x1, . . . ,xn}, for all x1, . . . ,xn ∈ I.

Let n ∈ N and let x = (x1, . . . ,xn) and p = (p1, . . . , pn) be positive real n-tuples such that
n

i=1 pi = 1. A quasi-arithmetic mean associated to a strictly monotonic continuous func-
tion  : I → R is defined by

M(x;p) = −1

(
n


i=1

pi(xi)

)
.

For n ∈ N and for positive real n-tuples x = (x1, . . . ,xn) and p = (p1, . . . , pn), such that
Pn = n

i=1 pi > 0, a weight power mean of order r of x is defined by

Mr(x,p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1
Pn
n

i=1 pixr
i

) 1
r
, r ∈ R, r �= 0;(

n
i=1 xpi

i

) 1
Pn , r = 0;

min{x1, . . . ,xn}, r →−;

max{x1, . . . ,xn}, r → .

(1.7)



4 1 BASIC NOTATION AND FUNDAMENTAL RESULTS

Note that for (x) = xr the weight power mean can be obtained as a special case of the
quasi-arithmetic mean. The following means are thus the special cases of the weight power
mean:

(i) M1(x,p) = An =
n


i=1

pixi . . . arithmetic mean,

(ii) M0(x,p) = Gn =
n


i=1

xpi
i . . . geometric mean,

(iii) M−1(x,p) = Hn =
1

n
i=1

pi
xi

. . . harmonic mean.

Stolarsky’s means are another class of means which are of interest for us in some of
the following chapters. These are defined by

Sp(s,t) =
[

sp − t p

ps− pt

] 1
p−1

, p �= 0,1.

The limiting cases p = 0 and p = 1 provide the definitions of the logarithmic and the
identric means, respectively:

S0(s,t) = lim
p→0

Sp(s,t) =
s− t

logs− logt
= L(s,t),

S1(s,t) = lim
p→1

Sp(s,t) =
1
e

(
tt

ss

) 1
t−s

= I(s, t).

After this short digression, we go back to analyzing the Jensen inequality. Notice that
M1(x,p) = 1

Pn
n

i=1 pixi represents a form of the weight arithmetic mean of x1, . . . ,xn.
Hence Jensen’s inequality (1.4) assumes the following form:

f (M1(x,p)) ≤ M1( f (x),p).

There are many integral variants of the Jensen inequality. The proof of the following
theorem can be found e.g. in ([177, p. 45]).

Theorem 1.3 (INTEGRAL JENSEN’S INEQUALITY) Let (,A ,) be a measure space
with 0 <  () <  and let  :  → R be a -integrable function. Let f : I → R be a
convex function such that Im ⊆ I and f ◦ is a -integrable function. Then

f

⎛⎝ 1
()

∫


(x)d(x)

⎞⎠≤ 1
()

∫


f ((x))d(x), (1.8)

or: f (M1( ;)) ≤ M1( f ◦ ;), where M1( ;) =
1

()

∫


(x)d(x), M1( ;) ∈ I. If

f is a strictly convex function, then (1.8) becomes equality if and only if  is a constant 
– almost everywhere on . If f is a concave function, then (1.8) is reversed.
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Now the discrete Jensen inequality (1.4) is obtained by means of the discrete measure
 on  = {1, . . . ,n} , with  ({i}) = pi, and  (i) = xi.

Another integral variant of Jensen’s inequality is based on the notion of the Riemann-
Stieltjes integral, for which a brief outline is given here. One can find more information on
the Riemann-Stieltjes integral in ([195]).

Let [a,b] ⊂ R and let f , : [a,b] → R be bounded functions. To each decomposition
D = {t0, t1, . . . ,tn} of [a,b] , such that t0 < t1 < · · · < tn−1 < tn Stieltjes’ integral sum

 ( f , ;D,1, . . . ,n) =
n


i=1

f (i)( (ti)− (ti−1))

is assigned, where i are from [ti−1,ti] , i ∈ {1,2, . . . ,n} . These sums will be denoted with
 ( f , ;D) in the sequel.

Definition 1.4 Let f , : [a,b] → R be bounded functions. Function f is said to be
Riemann-Stieltjes integrable regarding function  if there exists I ∈ R such that for every
 > 0 there exits a decomposition D0 of [a,b] , such that for every decomposition D ⊇ D0

of [a,b] and for every sum  ( f , ;D)

| ( f , ;D)− I|< 

holds. The unique number I is the Riemann-Stieltjes integral of the function f regarding
the function  and is denoted with ∫ b

a
f (t)d (t) . (1.9)

The Riemann-Stieltjes integral is a generalization of the Riemann integral and coin-
cides with it when  is an identity.

The notion of the Riemann-Stieltjes integral is narrowly related to the class of the
functions of bounded variation.

Let  : [a,b]→R be a real function. To each decomposition D = {t0,t1, . . . ,tn} of [a,b]
such that

a = t0 < t1 < · · · < tn−1 < tn = b (1.10)

belongs the sum

V ( ;D) =
n


i=1

| (ti)− (ti−1)| ,

which is said to be a variation of the function  regarding decomposition D.

Definition 1.5 Function  : [a,b] → R is said to be a function of bounded variation if
the set {V ( ;D) : D ∈ D} is bounded, where D is a family of all decompositions of the
interval (1.10). Number

V () = sup{V ( ;D) : D ∈ D}
is called a total variation of the function  .
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Theorem 1.4 The following assertions hold:

a) Every monotonic function f : [a,b] → R is a function of bounded variation on [a,b]
and Vb

a ( f ) = | f (b)− f (a)|;
b) Every function of bounded variation is a bounded function;

c) If f and g are functions of bounded variation on [a,b], then f + g is a function of
bounded variation on [a,b].

Theorem 1.5 Let f be a function of bounded variation on [a,b]. Then

a) f has at most countably many of step discontinuities on [a,b];

b) f can be presented as f = s f +g, where step-function s f and continuous function g
are both functions of bounded variation on [a,b].

Theorem 1.6 Let f : [a,b]→ R be a continuous function and  : [a,b]→R be a function
of bounded variation. Then there exists the Riemann-Stieltjes integral (1.9) and∣∣∣∣∫ b

a
f (t)d (t)

∣∣∣∣≤V () · max
t∈[a,b]

| f (t)| .

Regarding the Riemann-Stieltjes integral, we now induce yet another integral form of
Jensen’s inequality, dealt with in one of the following chapters (for more details on this
topic, the reader is referred to [177, p. 58]). It reads as follows:

f

(
1

 ( )− ()

∫ 


g(t)d (t)

)
≤ 1

 ( )− ()

∫ 


f (g(t))d (t), (1.11)

where g : [, ] → (a,b) is a continuous function, − <  <  < , − ≤ a < b ≤ ,
f : (a,b) → R is a convex function and  : [, ] → R is an increasing function, such that
 ( ) �=  ().

In 1919 J. F. Steffensen proved that inequality (1.4) held when the condition on non-
negativity of the n-tuple p was relaxed, but with simultaneously restricted choice on x. In
a more general form, Steffensen’s theorem reads as follows.

Theorem 1.7 (JENSEN-STEFFENSEN’S INEQUALITY) If f : I → R, I ⊆ R, is a convex
function, x ∈ In is a monotonic n-tuple and p is a real n-tuple such that

Pn > 0 and 0 ≤ Pk ≤ Pn, 1 ≤ k ≤ n−1,

where Pk = k
i=1 pi, k = 1, . . . ,n, then inequality (1.4) holds.

Recently, J. E. Pečarić provided yet another proof of Theorem 1.7 and one can find it
in [177, p. 57]. Integral variants of the previous theorem will be discussed in one of the
following chapters.

In 2003 A. McD. Mercer proved yet another variant of Jensen’s inequality (see [134]).
In a slightly generalized form his theorem is stated as below.
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Theorem 1.8 (JENSEN-MERCER’S INEQUALITY) Let [a,b] be an interval in R and x =
(x1, . . . ,xn) ∈ [a,b]n. Suppose p = (p1, . . . , pn) is a nonnegative real n-tuple such that
Pn = n

i=1 pi > 0. If f : [a,b]→ R is a convex function, then the following inequality
holds:

f

(
a+b− 1

Pn

n


i=1

pixi

)
≤ f (a)+ f (b)− 1

Pn

n


i=1

pi f (xi) . (1.12)

What is of an additional interest here is that in 2005 S. Abramovich et.al. in [2] proved
another variant of Jensen-Steffensen’s inequality, which included Mercer’s original result
as its special case. Jensen-Mercer’s inequality was proved under the Steffensen’s condi-
tions as in Theorem 1.7.

Theorem 1.9 (see [2]) Let [a,b] be an interval in R and let x ∈ [a,b]n be a monotonic
n-tuple. Suppose p is a real n-tuple, such that

Pn > 0 and 0 ≤ Pk ≤ Pn, 1 ≤ k ≤ n−1, (1.13)

where Pk = k
i=1 pi, k = 1,2, . . . ,n. If f : [a,b]→ R is a convex function, then inequality

(1.12) holds.

An integral variant of the previous theorem will be discussed in one of the following
chapters.

Strongly related to Jensen’s inequality is the converse Jensen inequality. Although
there are more variants of its converses, some of which are going to be explored in one of
the following chapters, here we single out the Lah-Ribarič inequality as one of the most
significant ones (see [125] or, for example, [151, p. 9]).

Theorem 1.10 (LAH-RIBARIČ) Let f : [a,b] → R be a convex function on [a,b], xi ∈
[a,b], pi ≥ 0, i = 1, . . . ,n and

n


i=1

pi = 1. Then the following inequality holds:

n


i=1

pi f (xi) ≤ b−n
i=1 pixi

b−a
f (a)+ n

i=1 pixi −a
b−a

f (b). (1.14)

If f is strictly convex, then (1.14) is strict unless xi ∈ {a,b} , for all i ∈ {
j : p j > 0

}
.

In 1931 Jensen’s inequality (1.4) was investigated by B. C. Jessen, who generalized it
by means of the positive linear functional acting on a space of real functions.

Let E be a nonempty set and L a linear class of functions f : E → R which possesses
the following properties:

L1: If f ,g ∈ L, then  f +g∈ L, for all  ,  ∈ R;

L2: 1 ∈ L, that is, if f (x) = 1, x ∈ E , then f ∈ L.

We consider positive linear functionals A : L → R, or in other words we assume:

A1: A( f +g) = A( f )+A(g), for f ,g ∈ L and , ∈ R;
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A2: If f (x) ≥ 0 for all x ∈ E, then A( f ) ≥ 0.

If additionally the condition

A3: A(1) = 1

is satisfied, we say that A is a normalized positive linear functional or that A( f ) is a linear
mean on L.

In the described environment we cite the Jessen’s result.

Theorem 1.11 (JESSEN’S INEQUALITY) Let E be a nonempty set and let L be a linear
class of functions f : E →R which possesses the properties L1 and L2. Suppose : I →R,
I ⊆ R is a continuous and convex function. If A : L → R is a normalized positive linear
functional, then for all f ∈ L, such that ( f ) ∈ L we have A( f ) ∈ I and the following
inequality holds:

(A( f )) ≤ A(( f )). (1.15)

In 1937 E. J. McShane gave an important generalization of Jessen’s inequality, in his
paper [133]. He observed  in (1.15) as a function of several variables. Namely, vector
function f : E → R

n was defined with f(x) = ( f1(x), . . . , fn(x)), where fi ∈ L, i = 1, . . . ,n.
Such multidimensional generalization of (1.15) is described in the following theorem.

Theorem 1.12 (MCSHANE’S INEQUALITY) Let E be a nonempty set and let L be a lin-
ear class of real functions defined on E, which possesses the properties L1 and L2. Let K ⊆
R

n be a closed convex set and let  : K → R be a continuous convex function. If A : L → R

is a normalized positive linear functional, then for all functions f = ( f1, . . . , fn) ∈ Ln, such
that (f) ∈ L we have A(f) ∈ K and the following inequality holds:

(A(f)) ≤ A((f)). (1.16)

In the previous theorem, acting of the functionalA to the vector function f = ( f1, . . . , fn)
is defined with A(f) = (A( f1), . . . ,A( fn)).

One can find the proofs of the theorems 1.11 and 1.12 in [177, from p. 47].
When dealing with the positive normalized linear functionals, we need to mention

that in 1985 J. Pečarić and P. R. Beesack presented a corresponding generalization of the
Theorem 1.10. Namely, they proved that for a convex function f defined on an interval
I = [m,M] ⊂ R, (−< m < M < ) and for all g ∈ L such that g(E)⊂ I and f (g) ∈ L the
following inequality holds:

A( f (g)) ≤ M−A(g)
M−m

f (m)+
A(g)−m
M−m

f (M). (1.17)

As for the generalized forms of the Jensen-type inequalities in this setting, let us men-
tion here the generalization of the Jensen-Mercer inequality (1.12) which involves positive
normalized linear functionals and is called the Jessen-Mercer inequality.

Theorem 1.13 (JESSEN-MERCER’S INEQUALITY) Let L satisfy L1, L2 on a nonempty
set E, and let A be a positive normalized linear functional. If  is a continuous convex
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function on [m,M], then for all f ∈ L such that  ( f ) , (m+M− f ) ∈ L (so that m ≤
f (t) ≤ M for all t ∈ E), we have

 (m+M−A( f )) ≤  (m)+ (M)−A( ( f )) . (1.18)

If the function  is concave, then (1.18) is reversed.

In some of the following chapters we deal with the generalizations of Jensen’s and
related inequalities on convex hulls in R

k and, as a special case, on k-simplices in R
k. For

that purpose we define the mentioned notions.
The convex hull of the vectors x1, . . . ,xn ∈ R

k is the set

K = co({x1, . . . ,xn}) =

{
n


i=1

ixi|i ∈ R,i ≥ 0,
n


i=1

i = 1

}
.

Barycentric coordinates over K are continuous real functions 1, . . . ,n on K with the
following properties:

i(x) ≥ 0, i = 1, . . . ,n,
n


i=1

i(x) = 1,

x =
n


i=1

i(x)xi. (1.19)

The k-simplex S = [v1, . . . ,vk+1] is a convex hull of its vertices v1, . . . ,vk+1 ∈R
k, where

v2 − v1, . . . ,vk+1− v1 ∈ R
k are linearly independent.

As an illustrative example serves a generalization of the result (1.17) that was obtained
in [88], where for x1, . . . ,xn ∈ R

k, K = co({x1, . . . ,xn}), as well as for a convex function f
on K, barycentric coordinates 1, . . . ,n over K and for all g ∈ Lk such that g(E) ⊂ K and
f (g),i(g) ∈ L, i = 1, . . . ,n, the inequality

A( f (g)) ≤
n


i=1

A(i(g)) f (xi) (1.20)

holds.

1.1.1 n-exponentially and exponentially convex functions

Notions of n-exponentially and exponentially convex functions are going to be explored in
some of the following chapters. For that purpose we define them here and provide some of
their characterizations.

Definition 1.6 A function  : I → R is n-exponentially convex in the Jensen sense on I
if

n


i, j=1

i j
(

xi + x j

2

)
≥ 0
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holds for all choices i ∈ R and xi ∈ I, i = 1, . . . ,n.
A function  : I → R is n-exponentially convex if it is n-exponentially convex in the

Jensen sense and is continuous on I.

Remark 1.2 It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are in fact nonnegative functions. Also, n-exponentially convex functions in
the Jensen sense are k-exponentially convex in the Jensen sense for every k ∈ N, k ≤ n.

The following proposition follows by the definition of positive semi-definite matrices
and by utilizing some basic linear algebra.

Proposition 1.1 If  is an n-exponentially convex function in the Jensen sense, then the

matrix

[

(

xi + x j

2

)]k

i, j=1
is a positive semi-definite matrix for all k ∈ N, k ≤ n. Particu-

larly, det

[

(

xi + x j

2

)]k

i, j=1
≥ 0, for all k ∈ N, k ≤ n.

Definition 1.7 A function  : I → R is exponentially convex in the Jensen sense on I if
it is n-exponentially convex in the Jensen sense for all n ∈ N.

A function  : I → R is exponentially convex if it is exponentially convex in the Jensen
sense and is continuous on I.

Definition 1.8 A positive function is said to be logarithmically convex (or log-convex)
on an interval I ⊆ R if log is a convex function on I, or equivalently, if

(x+(1− )y)≤  (x)1− (y)

holds for all x,y ∈ I and  ∈ [0,1].
A positive function  is log-convex in the Jensen sense if

2
(

x+ y
2

)
≤ (x)(y)

holds for all x,y ∈ I, i.e., if log is convex in the Jensen sense.

Remark 1.3 It is known (and easy to show) that  : I → R is a log-convex in the Jensen
sense if and only if

2(x)+2
(

x+ y
2

)
+ 2(y) ≥ 0

holds for every  ,  ∈R and x,y ∈ I. It follows that a function is log-convex in the Jensen-
sense if and only if it is 2-exponentially convex in the Jensen sense.

Also, using basic convexity theory it follows that a function is log-convex if and only
if it is 2-exponentially convex.

We will also need the following result (see for example [177]).
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Proposition 1.2 If  is a convex function on an interval I and if x1 ≤ y1, x2 ≤ y2,
x1 �= x2, y1 �= y2, then the following inequality is valid:

(x2)−(x1)
x2 − x1

≤ (y2)−(y1)
y2− y1

. (1.21)

If the function  is concave, the inequality reverses.

When dealing with functions with different degree of smoothness, divided differences
are found to be very useful.

Remark 1.4 Definition 1.2 provided the notion of the second order divided difference,
needed in the sequel. The value [y0,y1,y2; f ] is independent of the order of the points y0,y1

and y2. This definition may be extended to include the case in which some or all the points
coincide. Namely, taking the limit y1 → y0, we get

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y2; f ] =
f (y2)− f (y0)− f ′(y0)(y2 − y0)

(y2 − y0)2 , y2 �= y0,

provided f ′ exists, and furthermore, taking the limits yi → y0, i = 1,2 we get

lim
y2→y0

lim
y1→y0

[y0,y1,y2; f ] = [y0,y0,y0; f ] =
f ′′(y0)

2
,

provided that f ′′ exists.

We will use an idea from [90] to give an elegant method of producing n-exponentially
convex functions and exponentially convex functions, applying some functionals to a given
family with the same property.

1.2 Some classical inequalities

In this section we give an outline of some important classical inequalities to which we
will often refer throughout the following chapters. Namely, refinements and converses
of arithmetic-geometric, geometric-harmonic inequalities, as well as Young’s, Hölder’s,
Minkowski’s, Hilbert’s and some other classical inequalities are going to be presented
throughout this monograph. The reader can find more details on these topics, as well as
the results with the corresponding proofs e.g. in [151], [165] or [177].

Theorem 1.14 (WEIGHT ARITHMETIC-GEOMETRIC MEAN INEQUALITY) Let n ∈ N,
n ≥ 2, x1, . . . ,xn > 0, 1, . . . ,n ∈ (0,1) such that n

i=1i = 1. Then the inequality

n


i=1

ixi ≥
n


i=1

xi
i (1.22)

holds. Equality holds for x1 = · · · = xn.
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Corollary 1.1 (WEIGHT GEOMETRIC-HARMONIC MEAN INEQUALITY) Let n ∈ N, n ≥
2, x1, . . . ,xn > 0, 1, . . . ,n ∈ (0,1) such that n

i=1i = 1. Then

n


i=1

xi
i ≥ 1

n
i=1

i
xi

(1.23)

holds. Equality holds for x1 = · · · = xn.

Remark 1.5 From (1.22) and (1.23) and for 1 = · · · = n = 1
n we get the classical

arithmetic-geometric-harmonic mean inequality:

1
n

n


i=1

xi ≥
(

n


i=1

xi

) 1
n

≥ n

n
i=1

1
xi

, (1.24)

with corresponding equalities obtained for x1 = · · · = xn.

Family of so called Heinz means, denoted with H interpolates arithmetic and geomet-
ric mean of nonnegative real numbers a and b and is defined by

H(a,b) =
ab1− +a1−b

2
,  ∈ [0,1]. (1.25)

Obviously,
√

ab ≤ H (a,b) ≤ a+b
2

. (1.26)

Following inequality is closely related to the arithmetic-geometric mean inequality.

Theorem 1.15 (YOUNG’S INEQUALITY) Let f : [0,]→ [0,] be an increasing contin-
uous function such that f (0) = 0 and lim

x→
f (x) = . Then for all a,b ≥ 0

ab ≤
∫ a

0
f (x)dx+

∫ b

0
f−1(x)dx, (1.27)

holds. Equality holds if and only if b = f (a).

Remark 1.6 If the function f in Theorem 1.15 is defined with f (x) = xp−1, p > 1, we
get

ab ≤ ap

p
+

bq

q
, (1.28)

where 1
p + 1

q = 1, and the connection with the arithmetic-geometric mean inequality be-
comes obvious.

Young’s inequality is a starting point for Hölder’s inequality.
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Theorem 1.16 (DISCRETE HÖLDER’S INEQUALITY) Let ai, bi, i = 1, . . . ,n be complex
numbers and for p > 1 let q be defined by 1

p + 1
q = 1. Then for all n ∈ N the following

inequality holds:

n


i=1

|aibi| ≤
(

n


i=1

|ai|p
) 1

p
(

n


i=1

|bi|q
) 1

q

. (1.29)

Equality in (1.29) holds if and only if the n-tuples a1, . . . ,an and b1, . . . ,bn are propor-
tional.

Remark 1.7 For p = 2 inequality (1.29) is the well known Cauchy-Schwarz inequality.

Hölder’s inequality can be observed in a more general environment, involving the pos-
itive linear functionals acting on the space of real functions. For that purpose we refer to
the notation induced in the previous Section 1.1 and cite the following result.

Theorem 1.17 Let E be a nonempty set and L be a linear class of real functions defined
on E, which satisfies properties L1 and L2. Suppose pi > 1, i = 1, . . . ,n are such that

n
i=1

1
pi

= 1. Let fi ∈ L, i = 1, . . . ,n be nonnegative functions, such that n
i=1 f

1
pi

i ∈ L is
a nonnegative function. If A : L → R is a positive linear functional, then the following
inequality holds:

A

(
n


i=1

f
1
pi

i

)
≤

n


i=1

A
1
pi ( fi). (1.30)

The Minkowski inequality can also be observed in the discrete and in a more general
setting.

Theorem 1.18 (DISCRETE MINKOWSKI’S INEQUALITY) Let ai, bi, i = 1, . . . ,n be com-
plex numbers and let p ≥ 1. Then for all n ∈ N the following inequality holds:

(
n


i=1

|ai +bi|p
) 1

p

≤
(

n


i=1

|ai|p
) 1

p

+

(
n


i=1

|bi|p
) 1

p

. (1.31)

Theorem 1.19 Let E be a nonempty set and L be a linear class of real functions defined
on E, which satisfies properties L1 and L2. Suppose p ≥ 1. Let fi ∈ L, i = 1, . . . ,n be
nonnegative functions, such that f p

i , (n
i=1 fi)p ∈ L. If A : L → R is a positive linear

functional, then the following inequality holds:

A
1
p

[(
n


i=1

fi

)p]
≤

n


i=1

A
1
p ( f p

i ). (1.32)

In the early years of the last century two fundamental inequalities were proved. The
first one was discrete.
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Theorem 1.20 Let (am)m∈N and (bn)n∈N be nonnegative real sequences such that


m=1 ap

m <  and 
n=1 bp

n < . Suppose that for p > 1 q is defined by 1
p + 1

q = 1. Then




m=1




n=1

ambn

m+n
<


sin(p )

(



m=1

ap
m

) 1
p
(




n=1

bq
n

) 1
q

, (1.33)

unless (am)m∈N or (bn)n∈N is a null-sequence.

The second inequality was obtained in the integral form.

Theorem 1.21 Let f and g be nonnegative integrable functions such that
∫ 
0 f p(x)dx <

and
∫ 
0 gq(y)dy < . Suppose that for p > 1 is q defined by 1

p + 1
q = 1. Then

∫ 

0

∫ 

0

f (x)g(y)
x+ y

dxdy <


sin(p )

(∫ 

0
f p(x)dx

) 1
p
(∫ 

0
gq(y)dy

) 1
q

, (1.34)

unless f or g is a null-function.

The bilinear form 
m=1


n=1

ambn
m+n from (1.33) was in the first place investigated and

estimated by D. Hilbert in the nineteenth century, and thus both inequalities were named
after him as Hilbert’s inequalities. Their significance became obvious later in the 20th
century, for its many generalizations, improvements and various proofs have been given
by numerous famous mathematicians, for example, L. Fejér, G. H. Hardy, J. Littlewood,
G. Polya, I. Schur and many others. The detailed approach to this subject was given in the
monograph [83]. Recent results on Hilbert’s inequality, including the following one that
unifies its discrete and the integral case are presented in the monograph [122].

Theorem 1.22 Let⊆ (0,). Suppose p and q are conjugate parameters, i.e. 1
p + 1

q = 1
such that p > 1 and let K : × → R,  :  → R and  :  → R are nonnegative
measurable functions. Let F,G : → R be defined by

F(x) =
∫


K(x,y)
 p(y)

d2(y) and G(y) =
∫


K(x,y)
q(x)

d1(x), (1.35)

where 1 and 2 are  -finite measures. Then for any choice of nonnegative measurable
functions f ,g : → R the following inequality holds:∫



∫


K(x,y) f (x)g(y)d1(x)d2(y)

≤
[∫


 p(x)F(x) f p(x)d1(x)

] 1
p
[∫


q(y)G(y)gq(y)d2(y)

] 1
q

. (1.36)

Many important inequalities are established for the class of convex functions, but one
of the most famous is the Hermite-Hadamard inequality. This double inequality, which
was first discovered by C. Hermite in 1881, is stated as follows (see for example [177, p.
137]).
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Theorem 1.23 (HERMITE-HADAMARD) Let f be a convex function on [a,b]⊂R, where
a < b. Then

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
. (1.37)

This result was later incorrectly attributed to J. S. Hadamard who apparently was not
aware of Hermite’s discovery and today, when relating to (1.37), we use both names. It is
interesting to mention that the term convex also stems from a result obtained by Hermite in
1881.

Note that the first inequality in (1.37) is stronger than the second one.
The following inequality will be referred to as Hammer-Bullen’s in the sequel. Its

geometric proof was given in [79] and the analytic one in [46] (see also [177, p. 140]).

Theorem 1.24 (HAMMER-BULLEN) Let f be a convex function on [a,b] ⊂ R, where
a < b. Then

1
b−a

∫ b

a
f (x)dx− f

(
a+b

2

)
≤ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (x)dx. (1.38)

For the sake of further considerations throughout this monograph, we conclude this
section with recalling two famous theorems: the Lagrange and the Cauchy mean value
theorems, where the first one is a special case of the latter.

Theorem 1.25 (LAGRANGE MEAN VALUE THEOREM) If a function f is continuous on
the closed interval [a,b], where a < b and differentiable on the open interval (a,b), then
there exists point c in (a,b) such that

f ′(c) =
f (b)− f (a)

b−a
.

Theorem 1.26 (CAUCHY MEAN VALUE THEOREM) If f and g are continuous functions
on the closed interval [a,b], where a < b, if g(a) �= g(b), and both functions are differen-
tiable on the open interval (a,b), then there exists at least one point c in (a,b), a < c < b,
such that

f (b)− f (a)
g(b)−g(a)

=
f ′(c)
g′(c)

.

1.3 C*-algebras. Operators on a Hilbert space

Dealing with the Jensen-type functionals whose real arguments are substituted with the
bounded self-adjoint operators acting on a Hilbert space, the ones that we are also going
to investigate in the sequel, requires additional overview of some basic notions and results.
These concern C*-algebras and the theory on operators on a Hilbert space. For a more
detailed analysis, the reader is referred to e.g. [15] and [74].



16 1 BASIC NOTATION AND FUNDAMENTAL RESULTS

Recall that a linear space A over the field F, together with the multiplication (x,y) →
xy, x,y ∈ A , constitutes an algebra if the mapping (x,y) → xy possesses the following
properties:

(xy)z = x(yz), x(y+ z) = xy+ xz, (x+ y)z = xz+ yz,

(x)y = (xy) = x(y),

for all  ∈ F and for all x,y ∈ A . If F = R, algebra is called a real algebra and if F = C,
we call it a complex algebra. If there is an element 1 in A such that x ·1 = 1 ·x = x, for all
x ∈ A , then we say that A is an algebra with the unit 1.

Mapping x → ‖x‖ defined on an algebra A and with the values in R is a norm on
A if the following conditions are satisfied: x → ‖x‖ is a norm on the linear space of A ,
‖xy‖ ≤ ‖x‖‖y‖, x,y ∈ A , and, if A has a unit 1, then ‖1‖ = 1. Ordered pair (A ,‖ · ‖) is
called a normed algebra. Normed algebra is called a Banach algebra if the normed space
of A is a Banach space, that is a complete normed vector space.

Involution on algebra A is a conjugate linear mapping x → x∗ on A , such that x∗∗ = x
and (xy)∗ = y∗x∗, for all x,y ∈ A . Ordered pair (A ,∗) is called an involutive algebra or a
*-algebra. Now, a *-algebra A equipped with the complete submultiplicative norm such
that ‖x∗‖ = ‖x‖, for all x ∈ A constitutes a Banach *-algebra.

Finally, Banach *-algebra is a C*-algebra if for every x∈A , C*-identity ‖x∗x‖= ‖x‖2

holds. We say that a C*-algebra is unital if it contains the unit 1. The element a ∈ A
is called: self-adjoint if a = a∗, normal if a∗a = aa∗ and is called unitary (in the unital
algebra) if a∗a = aa∗ = 1. A standard example of the unital C*-algebra is the scalar field
C, where the involution is represented as the complex conjugation.

The environment that is of an interest for us in the sequel is the one of the bounded
linear operators on a Hilbert space, which we therefore specify here.

A Hilbert space H is a (complex) vector space H that is complete regarding the metric
d(x,y) = ‖x− y‖ defined by the norm which is induced by an inner product ‖x‖ := 〈x,x〉 1

2 .
In other words, Hilbert space is a complete unitary space.

A linear operator A on a Hilbert space H is bounded if

‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1,x ∈ H} < .

We say that ‖A‖ is an operator norm of A. The sum and the composition of the bounded
linear operators is again a bounded linear operator. The mapping (x,y) → 〈Ax,y〉 is linear
and continuous and according to the Riesz representation theorem (see e.g. [16]), it follows
that

〈x,A∗y〉 = 〈Ax,y〉, for A∗y ∈ H.

Thus another bounded linear operator A∗ on H is defined and A∗∗ = A. Bounded (hence
continuous) linear operators on H together with an operator norm and the corresponding
involution constitute a C*-algebra denoted with B(H). Spectrum of an operator A∈B(H)
is defined with

(A) := { ∈ C : A−1H not invertible inB(H)},
where 1H is a unit operator on H. This set is non-empty and compact for operators in
B(H). A bounded linear operator A on a Hilbert space H is self-adjoint if A = A∗. The
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following characterization holds: A ∈ B(H) is self-adjoint if and only if 〈Ax,x〉 ∈ R, for
all x ∈ H.

Bounded self-adjoint operators constitute the subspace of the C*-algebra of all bounded
linear operators and is denoted with Bh(H). We induce the partial ordering in Bh(H).

Definition 1.9 Operator A∈Bh(H) is positive semidefinite or positive (A≥ 0) if 〈Ax,x〉
≥ 0, for all x ∈H. Positive semidefinite operator A ∈ Bh(H) is positive definite or strictly
positive (A > 0) if there is a real number m > 0 such that 〈Ax,x〉 ≥ m〈x,x〉, x ∈ H, that
is A ≥ m1H. For operators A,B ∈ Bh(H) is B ≥ A or A ≤ B if B− A ≥ 0, that is if
〈Bx,x〉 ≥ 〈Ax,x〉, for all x∈H. Such ordering is called an operator ordering. In particular,
for scalars m and M is m1H ≤ A ≤ M1H if m ≤ 〈Ax,x〉 ≤ M, for every unit vector x ∈ H.

If for a self-adjoint operator A is (A) ⊆ [m,M], then m1H ≤ A ≤ M1H .
The set of all positive operators in Bh(H) is a convex cone in Bh(H) which defines

the order “≤” on Bh(H). This convex cone is denoted with B+(H). The set of all strictly
positive (or positive invertible) operators in Bh(H) is denoted with B++(H).

The continuous functional calculus is based on the Gelfand mapping  which is a
*-isometric isomorphism from the space C((A)) of all continuous functions that act on
the spectrum (A) of a self-adjoint operator A on H, onto the C*-algebra C∗(A) generated
with A and the identity. This mapping has the following properties:

(i) ( f +g) = ( f )+(g),

(ii) ( f g) = ( f )(g) and ( f ) = ( f )∗,

(iii) ‖( f )‖ = ‖ f‖ := sup
t∈(A)

| f (t)|,

(iv) ( f0) = 1H and ( f1) = A, where f0(t) = 1 and f1(t) = t,

f , g ∈C((A)), ,  ∈ C.
Thus the continuous functional calculus

f (A) = ( f ) (1.39)

provides acting of the function f ∈C((A)) on the self-adjoint operator A itself.
In that sense, if A is a positive operator and f1/2(t) =

√
t, then A1/2 = f1/2(A).

Furthermore, if A is a self-adjoint operator and f is a real valued continuous function
defined on (A) such that f (t) ≥ 0, for all t ∈ (A), then f (A) ≥ 0, i.e. f (A) is a positive
operator.

The following order preserving property is a consequence of the continuous functional
calculus.

Lemma 1.1 Let A ∈ Bh(H) and let f , g ∈C((A)).

If f (t) ≥ g(t), for all t ∈ (A), then f (A) ≥ g(A). (1.40)

Additionally, f (A) = g(A) if and only if f (t) = g(t), for all t ∈ (A).
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1.4 Operator monotone and operator convex
functions

Denote with C([m,M]) the set of all real valued continuous functions on [m,M] ⊂ R.

Definition 1.10 We say that the function f ∈ C([m,M]) is operator monotone if it pre-
serves the operator order: if A ≤ B then f (A) ≤ f (B), for all self-adjoint operators A, B
on a Hilbert space H, such that (A),(B) ⊆ [m,M].

Definition 1.11 We say that the function f ∈C([m,M]) is operator convex if for all self-
adjoint operators A, B on a Hilbert space H, such that (A),(B) ⊆ [m,M] and for all
 ∈ [0,1]

f ((1− )A+B)≤ (1− ) f (A)+ f (B). (1.41)

We say that the function f ∈C([m,M]) is operator concave if − f is operator convex, that
is if inequality (1.41) holds with the reverse sign.

Example 1.1 Function f : R → R, f (t) =  + t is operator monotone function, for all
 ∈ R and  ≥ 0 and is operator convex for all ,  ∈ R, (see [74]).

Example 1.2 Function f : (0,) → R, f (t) = − 1
t is operator monotone on (0,), (see

[74]).

The following characterization holds.

Theorem 1.27 Let f : [0,) → [0,) be a continuous function. Then f is operator
monotone if and only if f is operator concave.

The Löwner-Heinz inequality is a very important result which dates from 1934. For
more details and the proof, see [74].

Theorem 1.28 (LÖWNER-HEINZ INEQUALITY) Let A and B be positive operators on a
Hilbert space H. If A ≥ B ≥ 0, then Ar ≥ Br, for all r ∈ [0,1].

In other words, function f : [0,) → R, f (t) = tr is operator monotone on [0,), for
all r ∈ [0,1].

Remark 1.8 If we observe different examples of the operator functions and compare their
monotonicity and convexity on R with their operator monotonicity (convexity), we see that
there are some aberrations. Thus for example, the function f : [0,) → R, f (t) = t2 isn’t
operator monotone, although it is a monotone real valued function when defined on R.
Similarly, the function f : [0,)→R, f (t) = t3 isn’t operator convex, although it is convex
as a real valued function defined on R. For more examples the reader is referred to [74].
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Regarding the previous considerations and among many existing variants of operator
Jensen’s inequalities, we single out the one proved by B. Mond and J. Pečarić in [156]. It
states that

f

(
n


i=1

wii(Ai)

)
≤

n


i=1

wii ( f (Ai)) , (1.42)

for operator convex functions f defined on an interval I, where i : B(H) → B(K), i =
1, . . . ,n, are unital positive linear mappings, A1, . . . ,An are self-adjoint operators with the
spectra in I and w1, . . . ,wn are non-negative real numbers with n

i=1 wi = 1.

1.5 Connections and solidarities. Operator means

The theory of operator means for positive linear operators on a Hilbert space was estab-
lished and for most part developed by T. Ando and F. Kubo, (see [123]). In this process
they used the results from the Löwner’s theory on operator monotone functions. In the
monograph [74] one can find more details on this topic.

Operator means are defined via connections.

Definition 1.12 A binary operation (A,B) ∈B+(H)×B+(H)→ AB∈B+(H) in the
cone of positive operators on a Hilbert space H is called a connection if the following
conditions are satisfied:

(i) monotonicity: A ≤C and B ≤ D imply A B ≤C D,

(ii) upper continuity: An ↓ A and Bn ↓ B imply An Bn ↓ A B,

(iii) transformer inequality:T ∗(A B)T ≤ (T ∗AT ) (T ∗BT ), for every operator T .

If the normalized condition

(iv) 1H  1H = 1H ,

is satisfied, then we say that the connection is an operator mean.

An ↓ A in condition (ii) denotes the convergence of {An}, An ∈Bh(H), A1 ≥ A2 ≥ ·· · ,
to A ∈ Bh(H), in the strong operator topology.

If T is an invertible operator, then in (iii) the equality sign holds.
Furthermore, the following homogeneity property holds:

(A B) = (A) (B), for all  > 0.

Connections posses the property of joint concavity. More precisely, the inequality

(A1 +(1− )B1)  (A2 +(1− )B2) ≥  (A1 A2)+ (1− )(B1 B2) (1.43)
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holds for  ∈ [0,1] and A1,A2, B1,B2 ∈ B+(H).
Let us recall the basic operator means. Arithmetic mean is defined by

AB =
1
2
(A+B), (1.44)

where A, B ∈ B+(H).
Parallel sum A : B of operators A, B ∈ B++(H) is defined by

A : B =
(
A−1 +B−1)−1

(1.45)

and is a connection. Harmonic mean is defined as a normalized parallel sum by

A !B =
(

1
2
(A−1 +B−1)

)−1

. (1.46)

Geometric mean is defined by

A�B = A
1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2 , (1.47)

where A ∈ B++(H) and B ∈ B+(H).
Linear combination of two connections is defined as follows: if  ,  are connections

and a,b are nonnegative real numbers, then

A(a +b)B = a(A B)+b(AB). (1.48)

Thus in particular the class of operator means is a convex set.
Furthermore, respecting the order properties, if  ≥  then A B ≥ A B, for all A,

B ∈ B+(H). Hence the following inequalities hold:

A !B ≤ A�B ≤ AB. (1.49)

The basic result of the theory developed by F. Kubo and T. Ando concerns the isomor-
phism between connections and the nonnegative operator monotone functions.

Theorem 1.29 (KUBO-ANDO) Let  be a connection. If for a function f : [0,) → R

and t ≥ 0
f (t)1H = 1H  (t1H), (1.50)

then f is nonnegative and operator monotone function on [0,) and the following state-
ments are true:

(i) There is an isomorphism between the classes of all connections and all nonnegative
operator monotone functions on [0,). Furthermore, for all A,B ∈ B+(H) and t ≥ 0 is

A1 B ≤ A2 B if and only if f1(t) ≤ f2(t),

where 1 → f1, and 2 → f2 are the isomorphisms.
(ii) If A is an invertible operator, then A B = A

1
2 f (A− 1

2 BA− 1
2 )A

1
2 .

(iii) The connection  is an operator mean if and only if f is a normalized function,
i.e. f (1) = 1.
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The operator monotone function f is called a representation function for the connection
 . Since by Theorem 1.27 a continuous function f : [0,) → [0,) is operator monotone
if and only if f is operator concave, it follows that the representation function f is an
operator concave function.

Hence we have the following representation functions for the arithmetic, harmonic
and geometric mean: f(t) = 1+t

2 , f!(t) = 2t
1+t and f�(t) =

√
t. Thus inequalities f(t) ≥

f�(t) ≥ f!(t) imply the corresponding operator mean inequalities: ≥ � ≥!.
Operator means posses two important properties.

Theorem 1.30 Operator mean  possesses the property of subadditivity, that is

AC+BD ≤ (A+B) (C+D), (1.51)

as well as of the joint concavity:

 (AC)+ (1− )(BD) ≤ (A+(1− )B) (C+(1− )D), (1.52)

where A,B,C,D ∈ B+(H),  ∈ [0,1].

In the sequel we observe the weight operator arithmetic mean

A B = (1−)A+B, (1.53)

 ∈ [0,1] and A,B ∈ B+(H), then the weight operator geometric mean

A� B = A
1
2

(
A− 1

2 BA− 1
2

)
A

1
2 , (1.54)

where A ∈ B++(H) and B ∈ B+(H) and finally the weight operator harmonic mean

A ! B =
(
(1−)A−1 +B−1)−1

, (1.55)

A,B ∈ B++(H).
For A,B ∈ B++(H) and  ∈ [0,1] the weight operator arithmetic-geometric-harmonic

mean inequality holds:
A ! B ≤ A�B ≤ A B. (1.56)

Particularly, we observe the weight operator Heinz means as a special class of means de-
duced from the operator geometric mean:

H(A,B) =
A�B+A�1−B

2
, (1.57)

 ∈ [0,1].
J. Fujii et al. generalized in [71] the results on connections from Kubo-Ando theory.

They investigated the binary operation s = s f for an arbitrary operator monotone function
f defined on [0,) :

AsB = A
1
2 f (A− 1

2 BA− 1
2 )A

1
2 ,

analogously as in (ii) in Theorem 1.29. Domain of s f is the set of all ordered pairs (A,B)
for which AsB is a bounded operator, respecting f .
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Definition 1.13 A binary operation (A,B)∈Ds ⊆B+(H)×B+(H)→ (AsB)∈Bh(H)
is called a solidarity if it has the following properties:

(i) B ≤C implies AsB ≤ AsC,

(ii) Bn ↓ B implies AsBn ↓ AsB,

(iii) An → A implies An s1H → As1H ,

(iv) T ∗(AsB)T ≤ (T ∗AT )s(T ∗BT ), for all operators T,

where Ds is the domain of s.

Solidarity s is defined for an arbitrary pair of positive invertible operators, but not for
an arbitrary pair of positive operators. Thus Ds denotes the maximal subset of B+(H)×
B+(H) on which s is a bounded operator. (For more details on the domain Ds the reader
is referred to [71]).

In [71] the authors also proved that there was an isomorphism between the solidarities
and the operator monotone functions. Furthermore, solidarities posses the joint concavity
property. More precisely,

(A1 +(1− )B1) s (A2 +(1− )B2) ≥  (A1 sA2)+ (1− )(B1 sB2), (1.58)

where A1,A2, B1,B2 ∈ B++(H) and  ∈ [0,1] and under the assumption that all of the
operators included exist as the bounded operators.

Relative operator entropy, here denoted by S, is a common example among solidarities
and is defined by

S(X |Y ) = X
1
2

(
logX− 1

2YX− 1
2

)
X

1
2 , (1.59)

where X ,Y ∈ B++(H).
Tsallis’ relative operator entropy T is defined by

T (X |Y ) = X
1
2

(
log X− 1

2YX− 1
2

)
X

1
2 , X ,Y ∈ B++(H),  ∈ (0,1]. (1.60)

More on this topic can be found in [73].

1.6 On some properties of the discrete Jensen’s
functional. Superadditivity

In this section we give the basic motivation for the variety of the obtained results pre-
sented in the sequel. Firstly, we recall a few notions that are of an interest in the following
considerations.

Let C be a convex cone in the linear space X over F, where F = R or C, namely:
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a) if x,y ∈C, then x+ y ∈C;
b) if x ∈C, > 0, then x ∈C.
Let L be a real number, L �= 0. A functional f : C → R is called L-superadditive

(L-subadditive) on C if

f (x+ y) ≥ (≤)L( f (x)+ f (y)),

for any x,y ∈C. If L = 1, then a functional f is simply called superadditive (subadditive).
Let K be a non-negative real function. We say that a functional f is K-positive homo-

geneous if

f (tx) = K(t) f (x),

for any t ≥ 0 and x ∈ C. In particular, if K(t) = tk, we simply say that f is positive
homogeneous on C of order k. If k = 1, we call it positive homogeneous. It is easy to see
that K(1) = 1 and K is multiplicative. Moreover, we have either K ≡ 1 or K(0) = 0.

In the monograph [151, p. 717] J. E. Pečarić investigated the method of interpolating
inequalities which have reverse inequalities of Aczél type. Using Jensen’s inequality and
its reverse he proved the following result.

Theorem 1.31 If f is a convex function on an interval I ⊂R, x = (x1, . . . ,xn)∈ In, n≥ 2,
p and q are positive n-tuples such that p ≥ q, (i.e. pi ≥ qi, i = 1, . . . ,n; Pn = n

i=1 pi,
Qn = n

i=1 qi,) then

n


i=1

pi f (xi)−Pn f

(
1
Pn

n


i=1

pixi

)

≥
n


i=1

qi f (xi)−Qn f

(
1
Qn

n


i=1

qixi

)
≥ 0. (1.61)

Since Jensen’s inequality is the starting point for many other well known inequalities,
the same method of interpolating inequalities as in Theorem 1.31 was applied to Hölder’s
and Minkowski’s inequalities, in [168] or [151, p. 718].

Theorem 1.32 Let a,b,u,v ∈ R
n
+ with u ≥ v and p,q ∈ R with 1

p + 1
q = 1. If p > 1, then

(
n


i=1

uia
p
i

) 1
p
(

n


i=1

uib
q
i

) 1
q

−
n


i=1

uiaibi

≥
(

n


i=1

via
p
i

) 1
p
(

n


i=1

vib
q
i

) 1
q

−
n


i=1

viaibi ≥ 0. (1.62)

If p < 1 (�= 0), then the reverse inequalities are valid.
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Theorem 1.33 Let a,b,u,v ∈ R
n
+ with u ≥ v and p ∈ R. If p ≥ 1 or p < 0, then

(
n


i=1

uia
p
i

) 1
p
(

n


i=1

uib
q
i

) 1
q

−
n


i=1

uiaibi

≥
(

n


i=1

via
p
i

) 1
p
(

n


i=1

vib
q
i

) 1
q

−
n


i=1

viaibi ≥ 0. (1.63)

If 0 < p < 1, then the reverse inequalities are valid.

Remark 1.9 For p = 2 theorems 1.32 and 1.33 had been proved earlier in [14].

Here we cite a simple, but very important consequence of Theorem 1.31. Since a whole
series of existing results has been improved by means of it, it is given here as a lemma.

Lemma 1.2 Let f be a convex function on an interval I ⊂ R and let x = (x1, . . . ,xn) ∈ In,
n ≥ 2. Suppose p = (p1, . . . , pn) is a nonnegative n-tuple such that Pn =n

i=1 pi > 0. Then

min
1≤i≤n

{pi}
[

n


i=1

f (xi)−n f

(
1
n

n


i=1

xi

)]

≤
n


i=1

pi f (xi)−Pn f

(
1
Pn

n


i=1

pixi

)

≤ max
1≤i≤n

{pi}
[

n


i=1

f (xi)−n f

(
1
n

n


i=1

xi

)]
. (1.64)

Only a few years after Theorem 1.31 had been established, to be more precise, in 1996,
the authors S. S. Dragomir, J. E. Pečarić and L. E. Persson obtained the analogous result
in their joint paper [66], but as a consequence of a quite different approach. Namely, this
time they observed the discrete Jensen’s functional Jn( f ,x,p), deduced from the discrete
Jensen’s inequality (1.4), by subtracting its left from the right side:

Jn( f ,x,p) =
n


i=1

pi f (xi)−Pn f

(
1
Pn

n


i=1

pixi

)
. (1.65)

If we denote with P0
n the set of all nonnegative real n-tuples p = (p1, . . . , pn), such that

Pn = n
i=1 pi > 0, and if we fix f and x, then the functional Jn( f ,x, ·) can be observed as a

function on P0
n . So if f is a convex function, then Jn( f ,x,p) ≥ 0, for all p ∈ P0

n .
The authors established the following result in [66].

Theorem 1.34 Let I be an interval in R and let for n ∈ N, x = (x1, . . . ,xn) ∈ In. Suppose
p,q ∈ P0

n . If f : I → R is a convex function, then

Jn( f ,x,p+q) ≥ Jn( f ,x,p)+ Jn( f ,x,q), (1.66)
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that is, Jn( f ,x, ·) is superadditive on P0
n . If p,q ∈ P0

n are such that p ≥ q, (pi ≥ qi,
i = 1, . . . ,n), then

Jn( f ,x,p) ≥ Jn( f ,x,q) ≥ 0, (1.67)

that is, Jn( f ,x, ·) is increasing on P0
n .

Although it is evident that the same monotonicity property of the Jensen’s functional
is obtained twice – for the first time as a side-result incorporated in the interpolating in-
equalities, and for the second time – as a consequence of the superadditivity property, it is
interesting that the first result was not even mentioned or referred to when the other one
was published!

Dragomir continued the investigation of the properties of the normalized Jensen’s func-
tional and in his paper in 2006 he proved the following result for the comparative inequal-
ities. We cite it here because we are going to use it repeatedly in some of the following
chapters.

Theorem 1.35 Let f : C → R be a convex function defined on a convex set C in a real
linear space X. Suppose x = (x1, . . . ,xn) ∈ Cn. If p = (p1, . . . , pn) and q = (q1, . . . ,qn)
are real n-tuples such that pi ≥ 0, qi > 0, i = 1, . . . ,n and n

i=1 pi = n
i=1 qi = 1, then the

following inequalities hold:

min
1≤i≤n

{
pi

qi

}
Jn( f ,x,q) ≤ Jn( f ,x,p) ≤ max

1≤i≤n

{
pi

qi

}
Jn( f ,x,q). (1.68)





Chapter2
On Jessen’s and McShane’s
functionals

This chapter is focused on two related Jensen-type functionals, which are derived from
Jessen’s and McShane’s inequalities. Since these inequalities represent the generalizations
of Jensen’s inequality by means of positive linear functionals acting on a space of real func-
tions, the derived functionals are considered as the generalizations of the discrete Jensen’s
functional (1.65). It is interesting to comprehend a variety of applications to the classical
inequalities, when generalizing the properties of superadditivity and monotonicity of the
discrete Jensen’s functional to Jessen’s and McShane’s functionals. Such extensiveness
of the applications requires the whole separate section - on the related refinements and
converses of Hilbert’s inequality.

2.1 Properties of Jessen’s functional and
applications

We deduce the Jessen’s functional from the weight Jessen’s inequality and establish its
properties of superadditivity and monotonicity. Consequently, we derive the lower and the
upper bound for the functional, by means of the non-weight functional of the same type.
These bounds are very applicable for they provide refinements and converses of numerous
inequalities: starting with generalized weight means and, in particular, power means, as the

27
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final products we get difference and ratio type refinements and converses of the arithmetic-
geometric mean inequality, then Young’s and Hölder’s inequalities, which corresponds for
the most part to the contents of the published paper [108]. Finally, functionals that arise
from the Minkowski inequality are investigated. It is of an importance to underline that the
results on superadditivity and monotonicity of the corresponding Minkowski functionals
served as a motivation for the investigation of all previously described general cases and
as such were published earlier, see [87].

2.1.1 Jessen’s functional

First we are going to describe the environment needed for our considerations in the sequel.
Let E be a nonempty set and let L be a linear class of functions f : E → R satisfying the
following properties:

L1: f ,g ∈ L ⇒  f +g ∈ L, for all  ,  ∈ R;

L2: 1 ∈ L, that is, if f (x) = 1, for all x ∈ E , then f ∈ L.

By L+ ⊆ L the set of all nonnegative functions in L will be denoted. Moreover, let
A : L → R ba a positive linear functional, that is:

A1: A( f +g) = A( f )+A(g), for f ,g ∈ L, , ∈ R;

A2: f ∈ L, f (x) ≥ 0, for all x ∈ E ⇒ A( f ) ≥ 0.

If

A3: A(1) = 1,

A is said to be a normalized positive linear functional or we say that A( f ) is a linear mean
on L. Common examples are

A( f ) =
∫

E
f d or A( f ) = 

k∈E

pk fk,

where  is a positive measure on E in the first case, and in the other, E = {1,2, . . .} is
a countable set with the discrete measure (k) = pk ≥ 0, 0 < k∈E pk < , f (k) = fk,
defined on it.

Jessen’s inequality (1.15) in its elementary form will not suffice for our further consid-
erations, so we give here a reminder of its weight variant. For more details on the weight
Jessen’s inequality, see e.g. [177, p. 112].

Theorem 2.1 Let E be a nonempty set and let L be a linear class of functions f : E → R

satisfying L1 and L2. Suppose  : I → R, I ⊆ R, is a continuous convex function and let
p ∈ L+. If A : L → R is a positive linear functional, A(p) > 0, then for all f ∈ L, such that
p f , p( f ) ∈ L, the following inequality holds:

A(p)
(

A(p f )
A(p)

)
≤ A(p( f )) . (2.1)
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Remark 2.1 Denote A1( f ) = A(p f )
A(p) , A(p) > 0. It follows that A1 is a normalized (positive

linear) functional, i.e. A1(1) = 1, and inequality (1.15) can be applied.

Remark 2.2 We still need to show that A1( f ) ∈ I, for I is the domain of . Let I = [a,b].
Obviously, a ≤ f (x) ≤ b, for all x ∈ E . Since b− f (x) ≥ 0, by making use of A1, A2 and
A3, it follows b−A1( f ) = A1(b)−A1( f ) = A1(b− f ) ≥ 0, so A1( f ) ≤ b. Analogously,

a ≤ A1( f ). Hence A1( f ) = A(p f )
A(p) belongs to I.

We now deduce Jessen’s functional J (, f , p;A) from inequality (2.1) as follows:

J (, f , p;A) = A(p( f ))−A(p)
(

A(p f )
A(p)

)
. (2.2)

For fixed , f and A, we consider J (, f , ·;A) as a function on L+, as was previously
done in [66], regarding discrete Jensen’s functional (1.65). If  is a convex function, it
follows from (2.1) that J (, f , p;A) ≥ 0, for all p ∈ L+.

In the following section we work out the mentioned analogy with the discrete Jensen’s
functional in detail.

2.1.2 Superadditivity of Jessen’s functional

In the following theorem we establish the superadditivity on L+ of Jessen’s functional
(2.2), which then provides its other useful properties.

Theorem 2.2 Let A : L→R be a positive linear functional. Suppose f ∈ L and p, q∈ L+.
If  : I → R, I ⊆ R, is a continuous and convex function, then

J (, f , p+q;A) ≥ J (, f , p;A)+J (, f ,q;A) , (2.3)

that is, J (, f , ·;A) is superadditive on L+. Moreover, if p, q ∈ L+ are such that p ≥ q,
then

J (, f , p;A) ≥ J (, f ,q;A) ≥ 0, (2.4)

that is, J (, f , ·;A) is increasing on L+.

Proof. According to definition (2.2) and linearity of the functional A, it follows:

J (, f , p+q;A) = A((p+q)( f ))−A(p+q)
(

A((p+q) f )
A(p+q)

)
= A(p( f )+q( f ))− (A(p)+A(q))

(
A(p f +q f )
A(p)+A(q)

)
= A(p( f ))+A(q( f ))− (A(p)+A(q))

(
A(p f )+A(q f )
A(p)+A(q)

)
.

(2.5)
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On the other side, due to convexity of  we get


(

A(p f )+A(q f )
A(p)+A(q)

)
= 

(
A(p)

A(p)+A(q)
· A(p f )

A(p)
+

A(q)
A(p)+A(q)

· A(q f )
A(q)

)
≤ A(p)

A(p)+A(q)

(

A(p f )
A(p)

)
+

A(q)
A(p)+A(q)


(

A(q f )
A(q)

)
,

which can be rewritten as

(A(p)+A(q))
(

A(p f )+A(q f )
A(p)+A(q)

)
≤ A(p)

(
A(p f )
A(p)

)
+A(q)

(
A(q f )
A(q)

)
. (2.6)

Finally, (2.5) and (2.6) yield

J (, f , p+q;A) ≥ A(p( f ))+A(q( f ))−A(p)
(

A(p f )
A(p)

)
−A(q)

(
A(q f )
A(q)

)
= J (, f , p;A)+J (, f ,q;A) ,

that is, functional J (, f , ·;A) is superadditive on L+.
As for the increase on L+ of the functional J (, f , ·;A), we write p = (p−q)+q for

p ≥ q ≥ 0. Hence (2.3) yields

J (, f , p;A) = J (, f , p−q+q;A)≥ J (, f , p−q;A)+J (, f ,q;A) .

Since J (, f , p−q;A) ≥ 0, it follows that J (, f , p;A) ≥ J (, f ,q;A), which ends
the proof. �

Remark 2.3 If is a continuous and concave function, the signs of inequalities (2.3) and
(2.4) are reversed, that is, functional J (, f , ·;A) is subadditive and decreasing on L+.
Namely, in the case of  being concave, the sign of Jensen’s inequality is reversed and
J (, f , p;A) ≤ 0, for all p ∈ L+. Remark on the concavity of the function  is going to
be taken into account in the sequel, in all the similar results of the kind, even if it is not
accentuated.

The following corollary provides the lower and the upper bound for the functional
(2.2), which are expressed by means of the non-weight functional of the same type.

Corollary 2.1 Let function f and functional A be as in the Theorem 2.2. Suppose p ∈ L+

attains its minimal and maximal value on E. If : I →R, I ⊆R is a continuous and convex
function, then the following inequalities hold:[

min
x∈E

p(x)
]
J (, f ,1;A) ≤ J (, f , p;A) ≤

[
max
x∈E

p(x)
]
J (, f ,1;A) , (2.7)

where

J (, f ,1;A) = A(( f ) ·1)−A(1)
(

A( f )
A(1)

)
. (2.8)
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Proof. The inequalities are proved by making use of (2.4). Namely, as p ∈ L+ attains
minimal and maximal value on its domain, it is clear that

min
x∈E

p(x) ≤ p(x) ≤ max
x∈E

p(x),

and we observe two constant functions

p = min
x∈E

p(x) and p = max
x∈E

p(x).

Double application of the property (2.4) yields (2.7), since

J
(
, f , p ·1;A

)
= pJ (, f ,1;A) and J (, f , p ·1;A) = pJ (, f ,1;A) .

�

Remark 2.4 If p ∈ L+ is a bounded function on E, then infimum (supremum) in (2.7)
may be observed. This fact is going to be taken into account in all the results on the
non-weight bounds of the functionals.

A direct application of the monotonicity property (2.4) is an improvement of the The-
orem 1.35 on comparative inequalities for the discrete normalized Jensen’s functional. In
order to present how the idea developed, we first cite a generalization of the Dragomir’s
result, obtained in 2009 in [53].

Theorem 2.3 (SEE [53]) Let  : I → R, I ⊆ R be a continuous and convex function.
Suppose A is a positive linear functional and m and M real constants, such that for p and
q ∈ L+ and for all x ∈ E

p(x)−mq(x)≥ 0, Mq(x)− p(x)≥ 0 and

A(p)−mA(q) > 0, MA(q)−A(p) > 0.

Then the following inequalities hold:

MJ (, f ,q;A) ≥ J (, f , p;A) ≥ mJ (, f ,q;A) . (2.9)

Remark 2.5 The proof of Theorem2.3 is improvedwhen Theorem 2.2 is applied. Namely,
inequalities (2.9) follow easily from mq(x) ≤ p(x) ≤ Mq(x) when the monotonicity prop-
erty (2.4) is applied twice, since J (, f ,mq;A) = mJ (, f ,q;A) and J (, f ,Mq;A) =
MJ (, f ,q;A).

In particular, the discrete form of Dragomir’s comparative inequalities (1.68) is ob-
tained directly in an analogousway when observing a linear space of n-tuples x = (x1, . . . ,xn),
n ∈ N, and a discrete functional A : L → R, such that A(x) = n

i=1 xi, as well as p,q ∈ L,
such that pi ≥ 0, qi > 0, i = 1, . . . ,n and n

i=1 pi = 1, n
i=1 qi = 1. If we denote

m = min
1≤i≤n

{
pi

qi

}
and M = max

1≤i≤n

{
pi

qi

}
,

then relation Mqi ≥ pi ≥ mqi, i = 1,2, . . . ,n is the starting point for the double application
of the property (2.4).
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Remark 2.6 Finally, as for the direct application of Corollary 2.1, let us demonstrate how
a result from [196] is generalized. Using the discrete notation, inequalities (2.7) assume
the following form:

min
1≤i≤n

{pi}Jn(x) ≤ Jn( f ,x,p) ≤ max
1≤i≤n

{pi}Jn(x), (2.10)

where Jn( f ,x,p) is defined by (1.65) and Jn(x) = n
i=1 f (xi)− n f

(
n

i=1 xi
n

)
. Namely, in-

equalities (2.10) were established in [196], but only for n = 2 and the normalized functional
Jn( f ,x,p).

2.1.3 Application to weight generalized means

A weight generalized mean of a function f ∈ L is defined by means of a positive linear
functional A : L → R as

M ( f , p;A) = −1
(

A(p( f ))
A(p)

)
, (2.11)

where  : I → R, I ⊆ R is a continuous and strictly monotonic function and p ∈ L+ is a
weight function. On the assumptions that A(p) > 0 and ( f ), p( f ) ∈ L, it is easy to see
that (2.11) is a mean (for more details, see [177, p. 107]).

Now, for a continuous and strictly monotonic function  : I → R, such that ( f ),
p( f ) ∈ L and motivated by (2.11), we deduce the following Jessen-type functional:

J T ( ◦−1,( f ), p;A) = A(p)
[

(
M( f , p;A)

)− 
(
M( f , p;A)

)]
. (2.12)

For fixed  ◦−1, ( f ) and A, we observe the functional J T ( ◦−1,( f ), ·;A) as a
function on L+ and establish the following result.

Theorem 2.4 Let  , : I → R, I ⊆ R, be continuous and strictly monotonic functions.
Suppose f ∈L is such that( f )∈ L and A : L→R is a positive linear functional. If  ◦−1

is a convex function, then J T ( ◦−1,( f ), ·;A), defined by (2.12) is superadditive and
increasing on L+.

Proof. Making use of linearity of the functional A as well as (2.11), we may rearrange
the expressions in (2.12):

J T
(
 ◦−1,( f ), p;A

)
= A(p)

[

(
M( f , p;A)

)− 
(
M ( f , p;A)

)]
= A(p)

(
M( f , p;A)

)−A(p)
(
M ( f , p;A)

)
= A(p( f ))−A(p)

(
M( f , p;A)

)
= A

(
p · ( ◦−1 (( f ))

))−A(p)
(
−1

(
A(p( f ))

A(p)

))
.

This way it is obvious that (2.12) corresponds to the Jessen’s functional (2.2), with function
 substituted by  ◦−1, and f ∈ L by ( f ) ∈ L. Therefore, superadditivity and increase
of the functional (2.12) follow directly from Theorem 2.2. �
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Corollary 2.2 Let  ,  , f and A be as in Theorem 2.4 and let p ∈ L+ attain its minimal
and maximal value on E. If  ◦−1 is a convex function and functional J T ( ◦−1,
( f ), ·;A) is defined by (2.12), then the following inequalities hold:[

min
x∈E

p(x)
]
J T

(
 ◦−1,( f ),1;A

)
≤ J T

(
 ◦−1,( f ), p;A

)
≤

[
max
x∈E

p(x)
]
J T

(
 ◦−1,( f ),1;A

)
, (2.13)

where J T
(
 ◦−1,( f ),1;A

)
= A(1)

[

(
M( f ;A)

)− 
(
M( f ;A)

)]
(2.14)

and M ( f ;A) = −1
(

A(( f ))
A(1)

)
,  =  , . (2.15)

Proof. Since functional (2.12) is increasing on L+ according to Theorem 2.4, the proof
follows the same lines as Corollary 2.1. �

Let r ∈ R. We are going to observe the generalized weight power mean Mr ( f , p;A)
of a function f ∈ L+, f (x) > 0, x ∈ E, regarding the positive linear functional A : L → R.
Function  : I → R in (2.11) is here defined by r(x) = xr, for r �= 0 and r(x) = lnx, for
r = 0 :

Mr ( f , p;A) =

⎧⎪⎨⎪⎩
(

A(p f r)
A(p)

) 1
r
, r �= 0

exp
(

A(p ln( f ))
A(p)

)
, r = 0

, (2.16)

p ∈ L+ is a weight function. We additionally need to assume that p f r ∈ L+, p ln( f ) ∈ L
and A(p) > 0 in order to have the above expressions well defined.

Let r,s ∈ R and s �= 0. Let us define the functional

J P
(
 ◦−1,( f ), p;A

)
= A(p)

((
Ms( f , p;A)

)s −
(
Mr( f , p;A)

)s)
, (2.17)

where s,r : I →R are defined by s(x) = xs, s �= 0,r(x) = xr, for r �= 0 andr(x) = lnx,
for r = 0.

The functional (2.17) possesses the analogous properties to those in Theorem 2.4.

Corollary 2.3 Let s �= 0 and r be real numbers. If s > 0, s > r or s < 0, s < r or r = 0, then
functional J P

(
 ◦−1,( f ), ·;A) , defined by (2.17), is superadditive and increasing

on L+.

Proof. Follows directly from Theorem 2.4. If r �= 0, then it follows from (2.17) that

 ◦−1(x) = x
s
r , so

(
 ◦−1

)′′
(x) = s(s−r)

r2
x

s
r−2. Hence  ◦−1 is convex for s > 0, s > r

or s < 0, s < r. If r = 0, then it follows from (2.17) that  ◦−1(x) = esx, which is convex
for s �= 0. Applying Theorem 2.4 we end the proof. �
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Corollary 2.4 Let s �= 0 and r be real numbers, such that s > 0, s > r or s < 0, s < r or
r = 0. If p∈ L+ attains its minimal and maximal value on E, then the following inequalities
hold: [

min
x∈E

p(x)
]
J P

(
 ◦−1,( f ),1;A

)
≤ J P

(
 ◦−1,( f ), p;A

)
≤

[
max
x∈E

p(x)
]
J P

(
 ◦−1,( f ),1;A

)
, (2.18)

where

J P
(
 ◦−1,( f ),1;A

)
= A(1)

((
Ms( f ;A)

)s −
(
Mr( f ;A)

)s)
(2.19)

and

Mt ( f ;A) =

⎧⎪⎨⎪⎩
(

A( f r)
A(1)

) 1
t
, t �= 0

exp
(

A(ln( f ))
A(1)

)
, t = 0

, t = r,s. (2.20)

Proof. Since functional (2.17) is increasing on L+ according to Corollary 2.3, the
proof follows the same lines as in Corollary 2.1. �

Remark 2.7 If s > 0, s < r or s < 0, s > r, then  ◦−1 is a concave function, and the
functional J P

(
 ◦−1,( f ), ·;A) , defined by (2.17), is subadditive and decreasing on

L+, according to Remark 2.3. Inequalities (2.18) have the reverse signs in that setting.

Remark 2.8 In order to derive a converse and a refinement of the arithmetic-geometric
mean inequality, as well as of closely related Young’s inequality, we observe the discrete
variant of the inequalities (2.18). For that purpose, let E = {1,2, . . . ,n}, n ∈ N and let
L be a linear class of the real n-tuples x = (x1, . . . ,xn). In this setting, A : L → R is a
discrete functional, such that A(x) = n

i=1 xi. For nonnegative n-tuples p ∈ L is A(p) =
Pn = n

i=1 pi > 0 and A(1) = n
i=1 1 = n.

In the discrete notation, weight power mean (2.16) of x = (x1, . . . ,xn) reads

Mr(x,p) =

⎧⎪⎨⎪⎩
(

1
Pn
n

i=1 pixr
i

) 1
r
, r �= 0(

n
i=1 xpi

i

) 1
Pn , r = 0

. (2.21)

It is obvious that for r = 1 we get the expression for the arithmetic mean An(x,p) :=
M1(x,p) =

(
1
Pn
n

i=1 pixi

)
and for r = 0 we get the expression for the geometric mean

Gn(x,p) := M0(x,p) =
(
n

i=1 xpi
i

) 1
Pn . If we insert the constant n-tuples

p =
(

min
1≤i≤n

{pi}, . . . , min
1≤i≤n

{pi}
)

or p =
(

max
1≤i≤n

{pi}, . . . , max
1≤i≤n

{pi}
)

,
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expressions for the arithmetic and geometric means are G0
n(x) = (n

i=1 xi)
1
n and A0

n(x) =(
1
n 

n
i=1 xi

)
, and inequalities (2.18), for s = 1 and r = 0 assume the following form:

0 ≤ n min
1≤i≤n

{pi}
[
A0

n(x)−G0
n(x)

]≤ Pn [An(x,p)−Gn(x,p)]

≤ n max
1≤i≤n

{pi}
[
A0

n(x)−G0
n(x)

]
. (2.22)

The first inequality in (2.22) is a refinement, and the second is a converse of the arithmetic-
geometric mean inequality, obtained in the difference form. Thus this result generalizes
the refinement and the converse obtained in [97] for n = 2 :

min{,1−}
(√

a−
√

b
)2 ≤ (1−)a+b−a1−b

≤ max{,1−}
(√

a−
√

b
)2

. (2.23)

Remark 2.9 Notice that the classical inequality

ab1− ≤ a+(1−)b

implies that
(ab1−)m ≤ (a+(1−)b)m, (2.24)

for positive real numbers a and b, 0 ≤  ≤ 1 and for m = 1,2,3, . . ..
One can notice that in [97], Kittaneh and Manasrah gave a refinement of (2.24) in

the form of relation (2.23), for m = 1, by adding the expression r0(
√

a−√
b)2, where

r0 = min{,1−}.
On the other hand, Hirzallah and Kittaneh in [85] refined (2.24), for m = 2, by adding

the expression r2
0(a−b)2 :

(ab1−)2 + r2
0(a−b)2 ≤ (a+(1−)b)2. (2.25)

As it was mentioned in [97], there is no ordering between the refinements in (2.23) and
(2.25).

Finally, very recently, a new generalization of the refinement (2.24) was obtained in
[99], by adding the expression rm

0 (a
m
2 −b

m
2 )2, where m = 1,2,3, . . . , as a natural extension

of inequalities (2.23) and (2.25). Namely, the authors inductively proved that, if a,b > 0
and 0 ≤  ≤ 1, then for m = 1,2,3, . . . , the following inequality holds:

(ab1−)m + rm
0 (a

m
2 −b

m
2 )2 ≤ (a+(1−)b)m, (2.26)

where r0 = min{,1−}.

Remark 2.10 Young’s inequality follows directly from the arithmetic-geometric inequal-
ity. Hence the expected converse and refinement of Young’s inequality in the difference
form, for positive n-tuples x = (x1, . . . ,xn) and p = (p1, . . . , pn), such that n

i=1
1
pi

= 1 are
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contained in the following inequalities:

n min
1≤i≤n

{
1
pi

}[
A0

n(x
p)−G0

n(x
p)
] ≤ An(xp,p−1)−Gn(xp,p−1) (2.27)

≤ n max
1≤i≤n

{
1
pi

}[
A0

n(x
p)−G0

n(x
p)
]
,

where

xp =
(
xp1
1 , . . . ,xpn

n

)
and p−1 =

(
1
p1

, . . . ,
1
pn

)
.

The former considerations of the mean inequalities in the difference form motivate the
analogous results in the ratio form. Namely, when (2.17) was defined by means of (2.16),
the case s = 0 and r �= 0 wasn’t taken into consideration. By analyzing this case in the
sequel, we get new interesting applications. Let f ∈ L+ be such that f (x) > 0 for all x ∈ E,
A : L → R be a positive linear functional and let p ∈ L+. We define the functional

J P
(
 ◦−1,( f ), p;A

)
= A(p)

(
A(p ln f )

A(p)
− ln(Mr( f , p;A))

)
, (2.28)

where  , : I → R are defined by (x) = lnx, (x) = xr, r �= 0. We additionally need to
assume that p ln( f ) ∈ L and A(p) > 0.

Corollary 2.5 Suppose r < 0. Then functional J P
(
 ◦−1,( f ), ·;A) , defined by

(2.28) is superadditive and increasing on L+.

Proof. Follows directly from Theorem 2.4, since function  ◦−1, defined by  ◦
−1(x) = 1

r lnx is convex for r < 0. �

Corollary 2.6 Suppose r < 0. If p∈ L+ attains its minimal and maximal value on E, then
the following inequalities hold:[

min
x∈E

p(x)
]
J P

(
 ◦−1,( f ),1;A

)
≤ J P

(
 ◦−1,( f ), p;A

)
≤

[
max
x∈E

p(x)
]
J P

(
 ◦−1,( f ),1;A

)
, (2.29)

where

J P
(
 ◦−1,( f ),1;A

)
= A(1)

(
A(ln f )
A(1)

− ln(Mr( f ;A))
)

(2.30)

and Mr( f ;A) is defined by (2.20).

Proof. Follows the same lines as in Corollary 2.1. �
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Remark 2.11 If r > 0, then  ◦−1 is a concave function and according to Remark 2.3
is functional J P

(
 ◦−1,( f ), ·;A) , defined by (2.28) subadditive and decreasing on

L+, while inequalities (2.29) have the reverse signs.

Remark 2.12 In order to derive the converse and the refinement of the arithmetic-geome-
tric mean inequality in the ratio form, as well as of the closely related Young’s inequality,
we again use the discrete notation, as in Remark 2.8. Thus the expression A(p ln f )/A(p)
becomes

1
Pn

n


i=1

pi lnxi = ln

(
n


i=1

xi
pi

) 1
Pn

= lnGn(x,p).

For r = 1 we obtain the arithmetic mean and the inequalities (2.29) have the reverse signs.
By rearranging we finally get

1 ≤
[

A0
n(x)

G0
n(x)

]n min
1≤i≤n

{pi}
≤

[
An(x,p)
Gn(x,p)

]Pn

≤
[

A0
n(x)

G0
n(x)

]n max
1≤i≤n

{pi}
. (2.31)

The first inequality in (2.31) is a refinement, and the second is a converse of the arithmetic-
geometric mean inequality, in the ratio form.

According to the notation from Remark 2.10, the same is obtained for Young’s inequal-
ity: [

A0
n(x

p)
G0

n(xp)

]n min
1≤i≤n

{
1
pi

}
≤ An(xp,p−1)

Gn(xp,p−1)
≤

[
A0

n(x
p)

G0
n(xp)

]n max
1≤i≤n

{
1
pi

}
. (2.32)

2.1.4 Application to Hölder’s inequality

It is well known that Young’s inequality is a starting point in the proof of Hölder’s inequal-
ity. Hence it is natural to expect the converses and refinements analogous to those obtained
for Young’s inequality to be obtained for Hölder’s inequality as well. We are going to
apply the previous results to Hölder’s inequality expressed by means of a positive linear
functional A : L → R (see e.g. [151, p. 135] or [177, p. 113]):

A

(
n


i=1

f
1
pi

i

)
≤

n


i=1

A
1
pi ( fi), (2.33)

where pi, i = 1, . . . ,n, n ∈ N, are such that pi > 1, n
i=1

1
pi

= 1 and fi ∈ L+ are such that

n
i=1 f

1
pi

i ∈ L+.
Just like in the previous section, we first deal with the converse and the refinement in

the difference form.

Theorem 2.5 Let pi, i = 1, . . . ,n, n ∈ N, be such that pi > 1 and n
i=1

1
pi

= 1. Suppose

functions fi ∈ L+ are such that n
i=1 f

1
pi

i , n
i=1 fi1/n ∈ L+. If A : L → R is a positive linear
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functional, then the following inequalities hold:

n min
1≤i≤n

{
1
pi

}[
n


i=1

A
1
pi ( fi)−

n


i=1

A
1
pi
− 1

n ( fi) ·A
(

n


i=1

fi
1
n

)]

≤
n


i=1

A
1
pi ( fi)−A

(
n


i=1

fi
1
pi

)

≤ n max
1≤i≤n

{
1
pi

}[
n


i=1

A
1
pi ( fi)−

n


i=1

A
1
pi
− 1

n ( fi) ·A
(

n


i=1

fi
1
n

)]
.

(2.34)

Proof. Follows directly from (2.27) so we use the notation from Remark 2.10. Let

x = (x1, . . . ,xn) be defined by xi = [ fi/A( fi)]
1
pi , i = 1,2, . . . ,n. Then the expressions for

the difference between the arithmetic and the geometric mean in (2.27) become:

An(xp,p−1)−Gn(xp,p−1) =
n


i=1

fi
piA( fi)

−
n


i=1

fi
1
pi

A
1
pi ( fi)

,

A0
n(x

p)−G0
n(x

p) =
1
n

n


i=1

fi
A( fi)

−
n


i=1

fi
1
n

A
1
n ( fi)

.

If we act by a positive linear functional A on the expressions above, its linearity yields

A
[
An(xp,p−1)−Gn(xp,p−1)

]
=

n


i=1

A( fi)
piA( fi)

−
A
(
n

i=1 fi
1
pi

)
n

i=1 A
1
pi ( fi)

= 1−
A
(
n

i=1 fi
1
pi

)
n

i=1 A
1
pi ( fi)

and

A
[
A0

n(x
p)−G0

n(x
p)
]

=
1
n

n


i=1

A( fi)
A( fi)

−
A
(
n

i=1 fi
1
n

)
n

i=1 A
1
n ( fi)

= 1−
A
(
n

i=1 fi
1
n

)
n

i=1 A
1
n ( fi)

.

By application of A to inequalities (2.27), their signs are unchanged because of its positiv-
ity. Finally, by multiplying and rearranging of the above expressions, we easily conclude
the proof. �

Remark 2.13 The first inequality in (2.34) is a refinement, and the other one is a converse
of Hölder’s inequality, in the difference form. For n = 2 some related (integral) results had
been obtained earlier in [179].
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In the sequel we give the analogues of the above results concerning the ratio form.

Theorem 2.6 Let pi, i = 1, . . . ,n, n ∈ N, be such that pi > 1 and n
i=1

1
pi

= 1. Suppose

functions fi ∈ L+ are such that n
i=1 f

1
pi

i , n
i=1 fi1/n ∈ L+. If A : L → R is a positive linear

functional, then the following inequalities hold:

[
nn

n
i=1 A( fi)

] max
1≤i≤n

{
1
pi

}
A

⎛⎜⎝[
n


i=1

fi
piA( fi)

][
n

i=1 fi
1
n

n
i=1

fi
A( fi)

]n max
1≤i≤n

{
1
pi

}⎞⎟⎠
≤

A
(
n

i=1 fi
1
pi

)
n

i=1 A
1
pi ( fi)

≤
[

nn

n
i=1 A( fi)

] min
1≤i≤n

{
1
pi

}
A

⎛⎜⎝[
n


i=1

fi
piA( fi)

][
n

i=1 fi
1
n

n
i=1

fi
A( fi)

]n min
1≤i≤n

{
1
pi

}⎞⎟⎠ .

(2.35)

Proof. Follows from (2.32). By inverting, the inequalities (2.32) can be rewritten in
the following form:

An(xp,p−1)
[

G0
n(xp)

A0
n(xp)

]n max
1≤i≤n

{
1
pi

}
≤ Gn(xp,p−1)

≤ An(xp,p−1)
[
G0

n(x
p)

A0
n(xp)

]n min
1≤i≤n

{
1
pi

}
. (2.36)

Let x = (x1, . . . ,xn) be defined by xi = [ fi/A( fi)]
1
pi , i = 1,2, . . . ,n. The expressions from

(2.36) become

An(xp,p−1) =
n


i=1

fi
piA( fi)

, Gn(xp,p−1) =
n


i=1

fi
1
pi

A
1
pi ( fi)

,

A0
n(x

p) =
1
n

n


i=1

fi
A( fi)

, G0
n(x

p) =
n


i=1

fi
1
n

A
1
n ( fi)

.

By acting of the functional A on inequalities (2.36) and rearranging, we get (2.35). �

Remark 2.14 In this case, the first inequality in (2.35) provides the converse and the
second inequality is a refinement of Hölder’s inequality, in the ratio form. Namely, if we
make use of the notation from Theorem 2.6, then the ratio from (2.33) can be rewritten as
A
(
Gn(xp,p−1)

)
. Since G0

n(x
p) ≤ A0

n(x
p), it follows from the arithmetic-geometric mean

inequality that

Gn(xp,p−1) ≤ An(xp,p−1)
[
G0

n(x
p)

A0
n(xp)

]n min
1≤i≤n

{
1
pi

}
≤ An(xp,p−1). (2.37)
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By acting of the positive linear functional A on (2.37), the arrangement among the inequal-
ities remains unchanged. Since

A
(
An(xp,p−1)

)
=

n


i=1

A( fi)
piA( fi)

=
n


i=1

1
pi

= 1,

the middle expression in (2.37) yields the refinement of Hölder’s inequality.

Yet another class of refinements and converses of Hölder’s inequality can be obtained
making use of Corollary 2.1, if we recall that Hölder’s inequality can be deduced directly
from Jensen’s inequality (for details, see e.g. [151, p. 113]). For that purpose, we observe
the following setting.

Let r,s ∈ R be such that 1/r +1/s = 1. Suppose f ,g ∈ L+ and A : L → R is a positive
linear functional. Define the functional

J H

(
,

g
f
, f ;A

)
= rs

[
A

1
r ( f )A

1
s (g)−A

(
f

1
r g

1
s

)]
, (2.38)

where  : I → R, I ⊆ R, is defined by (x) = −rsx1/s.

Theorem 2.7 Let r,s ∈ R be such that 1/r + 1/s = 1. Suppose A : L → R is a positive
linear functional, f ,g ∈ L+ and let f attain its minimal and maximal value on E. If r > 1,
then the following inequalities hold:[

min
x∈E

f (x)
]
J H

(
,

g
f
,1;A

)
≤ J H

(
,

g
f
, f ;A

)
≤

[
max
x∈E

f (x)
]
J H

(
,

g
f
,1;A

)
, (2.39)

where

J H

(
,

g
f
,1;A

)
= rs

[
A

1
r (1)A

1
s

(
g
f

)
−A

((
g
f

) 1
s
)]

. (2.40)

Moreover, if 0 < r < 1, then inequalities in (2.39) have the reverse signs.

Proof. If we substitute f and p in (2.7) by g/ f and f respectively, we find out that
functional (2.38) corresponds to Jessen’s functional (2.7):

J H

(
,

g
f
, f ;A

)
= rs

[
A

1
r ( f )A

1
s (g)−A

(
f

1
r g

1
s

)]
= rs

[
A1− 1

s ( f )A
1
s (g)−A

(
f 1− 1

s g
1
s

)]
= A

(
f

(
g
f

))
−A( f )

(
A(g)
A( f )

)
.

If r > 1, then′′
(x) = x1/s−2, x > 0, i.e.  is a convex function and inequalities (2.39) hold

analogously as in Corollary 2.1. On the other hand, if 0 < r < 1, then rs < 0. Since the
expressions J H (,g/ f , f ;A) and J H (,g/ f ,1;A) contain the factor rs, inequalities
in (2.39) have the reverse signs. �



2.1 PROPERTIES OF JESSEN’S FUNCTIONAL AND APPLICATIONS 41

Similar considerations to those in the previous theorem lead to the following result.

Theorem 2.8 Let r,s ∈ R be such that 1/r + 1/s = 1. Suppose A : L → R is a positive
liner functional, f ,g ∈ L+, and let f attain its minimal and maximal value on E. If r > 1,
then the following inequalities hold:

[
min
x∈E

f (x)
][

As−1( f )A
(

g
f

)
−
(

A( f )
A(1)

)s−1

As

((
g
f

) 1
s
)]

≤
[
A

1
r ( f )A

1
s (g)

]s −As
(

f
1
r g

1
s

)
≤

[
max
x∈E

f (x)
][

As−1( f )A
(

g
f

)
−
(

A( f )
A(1)

)s−1

As

((
g
f

) 1
s
)]

.

(2.41)

If 0 < r < 1, then the inequalities in (2.41) have the reverse signs.

Proof. We observe the Jessen-type functional J H
(
,(g/ f )1/s, f ;A

)
, where (x) =

xs/(s(s−1)). It is obvious that  is convex for x > 0 since ′′
(x) = xs−2. It follows that

J H

(
,

(
g
f

) 1
s

, f ;A

)
= A

(
f

((
g
f

) 1
s
))

−A( f )

⎛⎝A
(

f
1
r g

1
s

)
A( f )

⎞⎠
=

1
s(s−1)

[
A(g)−A1−s( f )As

(
f

1
r g

1
s

)]
,

and

J H

(
,

(
g
f

) 1
s

,1;A

)
= A

(


((
g
f

) 1
s
))

−A(1)

⎛⎜⎜⎝A

((
g
f

) 1
s
)

A(1)

⎞⎟⎟⎠
=

1
s(s−1)

[
A

(
g
f

)
−A1−s(1)As

((
g
f

) 1
s
)]

.

Hence if we insert the above expressions in (2.7) and multiply obtained series of inequal-
ities by s(s− 1)As−1( f ), we get (2.41). If 0 < r < 1, then s(s− 1)As−1( f ) < 0, which
changes the signs of the inequalities in (2.41). �

Remark 2.15 Inequalities (2.39) and (2.41) present the refinements and the converses of
Hölder’s inequality. Some related converses of this type can also be found in [13].
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2.1.5 Properties of the functionals related to the Minkowski
inequality

As for the functionals derived from the Minkowski inequality, the one that is closely related
to Hölder’s inequality, these had been formerly investigated in [87]. They had been in the
first place derived from the integral form of the Minkowski inequality that we cite below
and then proceed with the accompanied elaboration from [87].

Theorem 2.9 Let (X ,X ,) and (Y,Y ,) be measure spaces and let f be a non-negative
function on X ×Y which is integrable with respect to the measure × . If p ≥ 1, then

[∫
X

(∫
Y

f (x,y)d(y)
)p

d(x)
] 1

p

≤
∫
Y

(∫
X

f p(x,y)d(x)
) 1

p

d(y).

If 0 < p < 1 and

(i)
∫

X

(∫
Y

f (x,y)d(y)
)p

d(x) > 0,
∫
Y

f (x,y)d(y) > 0,

then the reversed inequality holds.
If p < 0 and the above-mentioned assumptions (i) and the additional one

(ii)
∫

X
f p(x,y)d(x) > 0 -a.e. hold,

then the reversed inequality holds.

In specified settings, Theorem 2.9 also provides us with the discrete Minkowski in-
equality (1.18) and eventually, with its form for integrals.

Theorem 2.10 Let (X ,X ,) be a measure space and f1, . . . , fn be non-negative inte-
grable functions. If p ≥ 1, then(∫

X
( f1 + . . .+ fn)pd

)1/p ≤
(∫

X
f p
1 d

)1/p
+ . . .+

(∫
X

f p
n d

)1/p
. (2.42)

If 0 < p < 1 or if p < 0 with
∫
X f p

1 d > 0, . . .,
∫
X f p

n d > 0, then the reversed inequality
in (2.42) holds.

Now let us suppose that p is a real number, p �= 0, f is a non-negative function on
X ×Y ,  ∈ Cone(X),  ∈ Cone(Y ). With IX( f ,, p) we denote the set of all measures
 ∈Cone(X), such that f is integrable with respect to × and[∫

Y (
∫
X f p(x,y)d(x))

1
p d(y)

]p
and∫

X (
∫
Y f (x,y)d(y))p d(x) are finite,

if 0 < p < 1, condition (i) from Theorem 2.9 holds,

if p < 0, conditions (i) and (ii) from Theorem 2.9 hold.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.43)
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With JY ( f , , p) we denote the set of all measures  ∈Cone(Y ), such that f is inte-
grable with respect to × and

∫
Y (

∫
X f p(x,y)d(x))

1
p d (y) and

[
∫
X (

∫
Y f (x,y)d (y))p d(x)]

1
p are finite,

if 0 < p < 1, condition (i) from Theorem 2.9 holds,

if p < 0, conditions (i) and (ii) from Theorem 2.9 hold.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.44)

Let us consider the functionals M1( f , ·,, p) : IX ( f ,, p) → R and M2( f , , ·, p) :
JY ( f , , p) → R defined as

M1( f , ,, p)=

[∫
Y

(∫
X

f p(x,y)d(x)
) 1

p

d(y)

]p

−
∫

X

(∫
Y

f (x,y)d(y)
)p

d(x)

and

M2( f , , , p)=
∫
Y

(∫
X

f p(x,y)d(x)
) 1

p

d (y)−
[∫

X

(∫
Y

f (x,y)d (y)
)p

d(x)
] 1

p

.

Some properties of these functionals are obvious. We have the following:
(i) Mappings M1 and M2 are positive homogeneous, i.e. M1( f ,a ,, p) = aM1( f , ,

, p), and M2( f , ,a , p) = aM2( f , , , p), for any a > 0.
(ii) If p ≥ 1 or p < 0 and  ∈ IX( f ,, p), then M1( f , ,, p) ≥ 0, and if 0 < p < 1,

then M1( f , ,, p) ≤ 0.
(iii) If p ≥ 1, then M2( f , , , p) ≥ 0, and if p < 1, p �= 0, then M2( f , , , p) ≤ 0 for

 ∈ JY ( f , , p).

Theorem 2.11 (i) If p ≥ 1 or p < 0, then M1( f , ·,, p) is superadditive on IX ( f ,, p). If
0 < p < 1, then M1( f , ·,, p) is subadditive.

If p ≥ 1, then M2( f , , ·, p) is superadditive on JY ( f , , p). If p < 1, p �= 0, then
M2( f , , ·, p) is subadditive.

(ii) If 1,2,2 −1 ∈ IX( f ,, p), then

0 ≤ M1( f ,1,, p) ≤ M1( f ,2,, p), for p ≥ 1 or p < 0, (2.45)

and if 0 < p < 1, then reversed signs in (2.45) hold. If 1,2,2−1 ∈ JY ( f , , p), then

0 ≤ M2( f , ,1, p) ≤ M2( f , ,2, p), for p ≥ 1, (2.46)

and if p < 1, p �= 0, then reversed signs in (2.46) hold.
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Proof. (i) Let us transform M1( f ,1 +2,, p)−M1( f ,1,, p)−M1( f ,2,, p).

M1( f ,1 +2,, p)−M1( f ,1,, p)−M1( f ,2,, p)

=

[∫
Y

(∫
X

f p(x,y)d(1 +2)(x)
) 1

p

d(y)

]p

−
∫

X

(∫
Y

f (x,y)d(y)
)p

d(1 +2)(x)

−
[∫

Y

(∫
X

f p(x,y)d1(x)
) 1

p

d(y)

]p

+
∫

X

(∫
Y

f (x,y)d(y)
)p

d1(x)

−
[∫

Y

(∫
X

f p(x,y)d2(x)
) 1

p

d(y)

]p

+
∫

X

(∫
Y

f (x,y)d(y)
)p

d2(x)

=

[∫
Y

(∫
X

f p(x,y)d(1 +2)(x)
) 1

p

d(y)

]p

−
[∫

Y

(∫
X

f p(x,y)d1(x)
) 1

p

d(y)

]p

−
[∫

Y

(∫
X

f p(x,y)d2(x)
) 1

p

d(y)

]p

.

Using the Minkowski inequality for integrals (2.42) with p replaced by
1
p

we have

M1( f ,1 +2,, p)−M1( f ,1,, p)−M1( f ,2,, p){≥ 0, if p ≥ 1 or p < 0

≤ 0, if 0 < p < 1.
(2.47)

So, M1 is superadditive for p ≥ 1 or p < 0 and it is subadditive for 0 < p < 1. The proof
for M2 is similar. After simple transforming, we have

M2( f , ,1 +2, p)−M2( f , ,1, p)−M2( f , ,2, p)

=
[∫

X

(∫
Y

f (x,y)d1(y)
)p

d(x)
] 1

p

+
[∫

X

(∫
Y

f (x,y)d2(y)
)p

d(x)
] 1

p

−
[∫

X

(∫
Y

f (x,y)d(1 +2)(y)
)p

d(x)
] 1

p

.

Using the Minkowski inequality for integrals (2.42) we have that the last sum is non-
negative for p ≥ 1 and it is non-positive for p < 1, p �= 0. So, the proof of case (i) is
established.

(ii) If p ≥ 1 or p < 0, then using superadditivity and positivity of M1 we obtain

M1( f ,2,, p) = M1( f ,1 +(2−1),, p)
≥ M1( f ,1,, p)+M1( f ,2 −1,, p)
≥ M1( f ,1,, p)

and the proof of (2.45) is established.
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If 0 < p < 1, then using subadditivity and negativity of M1 we obtain

M1( f ,2,, p) ≤ M1( f ,1,, p)+M1( f ,2 −1,, p)
≤ M1( f ,1,, p).

The proof for M2 is similar. �

Corollary 2.7 (i) Let 1, 2 ∈ IX ( f ,, p). If c,C ∈ R+ are such that C2 −1,1 −
c2 ∈ IX( f ,, p), then for p ≥ 1 or p < 0

c

{[∫
Y

(∫
X

f p(x,y)d2(x)
) 1

p

d(y)

]p

−
∫

X

(∫
Y

f (x,y)d(y)
)p

d2(x)

}

≤
[∫

Y

(∫
X

f p(x,y)d1(x)
) 1

p

d(y)

]p

−
∫

X

(∫
Y

f (x,y)d(y)
)p

d1(x)

≤ C

{[∫
Y

(∫
X

f p(x,y)d2(x)
) 1

p

d(y)

]p ∫
X

(∫
Y

f (x,y)d(y)
)p

d2(x)

}
.

If 0 < p < 1, then the above inequalities hold in reversed direction.
(ii) Let 1, 2 ∈ JY ( f , , p). If c,C ∈R+ are such thatC2−1,1−c2 ∈ JY ( f , , p),

then for p ≥ 1

c

{∫
Y

(∫
X

f p(x,y)d(x)
) 1

p

d2(y)−
[∫

X

(∫
Y

f (x,y)d2(y)
)p

d(x)
] 1

p
}

≤
∫
Y

(∫
X

f p(x,y)d(x)
) 1

p

d1(y)−
[∫

X

(∫
Y

f (x,y)d1(y)
)p

d(x)
] 1

p

≤ C

{∫
Y

(∫
X

f p(x,y)d(x)
) 1

p

d2(y)
[∫

X

(∫
Y

f (x,y)d2(y)
)p

d(x)
] 1

p
}

.

If p < 1, p �= 0, then the above inequalities hold in reversed direction.

Let us consider two other mappings. Let I ∈ X and J ∈ Y be non-empty sets, p ∈ R,
p �= 0,  ∈Cone(X),  ∈Cone(Y ) and f be a non-negative function which is (×)-
integrable. As usual, the characteristic mapping of set S is denoted by S.

Let us denote with A =A(J, f , ,, p)⊆X a family of sets A∈X for which condition
(2.43) holds when f → A×J f and with B = B(I, f , ,, p)⊆Y a family of sets B∈Y for
which condition (2.44) holds when f → I×B f . We define functionals M3(·,J, f , ,, p) :
A → R and M4(I, ·, f , ,, p) : B → R as follows:

M3(A,J, f , ,, p) = M1(A×J f , ,, p), A ∈ A

and
M4(I,B, f , ,, p) = M2(I×B f , ,, p), B ∈ B.

The following theorem describes properties of superadditivity and monotonicity of M3

and M4.
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Theorem 2.12 (i) If A1,A2 ∈ A with A1∩A2 = /0, then

M3(A1∪A2,J, f , ,, p) ≥ M3(A1,J, f , ,, p)+M3(A2,J, f , ,, p),

for p ≥ 1 or p < 0. If 0 < p < 1, then the reverse inequality holds.
If A1,A2 ∈ A with A1 ⊆ A2, then

M3(A1,J, f , ,, p) ≤ M3(A2,J, f , ,, p), for p ≥ 1 or p < 0,

M3(A1,J, f , ,, p) ≥ M3(A2,J, f , ,, p), for 0 < p < 1.

(ii) If B1,B2 ∈ B with B1∩B2 = /0, then

M4(I,B1∪B2, f , ,, p) ≥ M4(I,B1, f , ,, p)+M4(I,B2, f , ,, p),

for p ≥ 1. If p < 1, p �= 0, then the reverse inequality holds.
If B1,B2 ∈ B with B1 ⊆ B2, then

M4(I,B1, f , ,, p) ≤ M4(I,B2, f , ,, p), for p ≥ 1,

and the reverse inequality holds for p < 1, p �= 0.

Proof. Similar to the proof of the previous theorem and thus left to the reader. �

Theorem 2.13 Let  : [0,)→ [0,) be a concave function, f be a non-negative function
on X×Y, 1,2 ∈Cone(X) and  ∈Cone(Y ). If  ◦1,  ◦2 and  ◦(a1+(1−a)2)
belong to IX ( f ,, p) for some a ∈ [0,1], then

M1( f , ◦ (a1 +(1−a)2),, p) ≥ aM1( f , ◦1,, p)+ (1−a)M1( f , ◦2,, p),
(2.48)

where p ≥ 1. If 0 < p < 1, then the reversed sign in (2.48) holds.

Proof. For any I ∈ X we have

( ◦ (a1 +(1−a)2))(I) = (a1(I)+ (1−a)2(I))
≥ a(1(I))+ (1−a)(2(I))
= (a( ◦1)+ (1−a)( ◦2))(I),

where concavity of function  is used. For measures a( ◦1) + (1− a)( ◦2) and
 ◦ (a1 +(1−a)2) it follows

 ◦ (a1 +(1−a)2) ≥ a( ◦1)+ (1−a)( ◦2).

Using (2.47) and (2.45) we have the following

M1( f , ◦ (a1 +(1−a)2),, p) ≥ M1( f ,a( ◦1)+ (1−a)( ◦2),, p)
≥ M1( f ,a( ◦1),, p)+M1( f ,(1−a)( ◦2),, p)
= aM1( f , ◦1,, p)+ (1−a)M1( f , ◦2,, p)

and the proof is established. �

Similar result can be stated for the functional M2.
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Remark 2.16 If we employ various measures in theorems 2.11 and 2.12, we obtain var-
ious results concerning superadditivity and monotonicity of the functionals involved, re-
lated to the Minkowski inequality. Some of these results are well known ones, e.g., for
the discrete measure, properties of M1 and the corresponding refinements of the discrete
Minkowski inequality are given in [66], [168], [182].

Remark 2.17 Theorem 2.11 provides us nevertheless with another refinement of the
Minkowski inequality. Namely, put X ,Y ⊆ N and let  be a measure on X and 1 and
2 be measures on Y such that (i) = ui ≥ 0, i ∈ X , 1( j) = n j ≥ 0, 2( j) = p j ≥ 0, j ∈Y .
Then, for fixed f , , p, the functional M2 has a form

M2( f , ,1, p) = 
j∈Y

n j

(

i∈X

uia
p
i j

)1/p

−
(

i∈X

ui

(

j∈Y

n jai j

)p)1/p

,

where f (i, j) = ai j ≥ 0. If p≥ 1, then M2( f , , ·, p) is superadditive and if p j ≥ n j, ( j ∈Y ),
then

0 ≤ 
j∈Y

n j

(

i∈X

uia
p
i j

)1/p

−
(

i∈X

ui

(

j∈Y

n jai j

)p)1/p

≤ 
j∈Y

p j

(

i∈X

uia
p
i j

)1/p

−
(

i∈X

ui

(

j∈Y

p jai j

)p)1/p

,

where we suppose that all sums are finite. It is a refinement of the discrete Minkowski
inequality.

Let I, f , ,1, p be fixed objects described in the second section and in the introduction
of this section. Then M4 has the following form:

M4(B) = M4(I,B, f ,, , p)

= 
j∈B

n j

(

i∈I

uia
p
i j

)1/p

−
(

i∈I

ui

(

j∈B

n jai j

)p)1/p

,

where B ∈ Y is such that all sums are finite.
As a consequence of Theorem 2.12, for p ≥ 1, we have the following:
(i) if B1,B2 ∈ Y , B1 ∩B2 = /0, then

M4(B1 ∪B2) ≥ M4(B1)+M4(B2).

(ii) if Jm is a notation for a set from Y with m elements, then for Jm ⊃ Jm−1 ⊃ . . . ⊃ J2

we have
M4(Jm) ≥ M4(Jm−1) ≥ . . . ≥ M4(J2) ≥ 0

and
M4(Jm) ≥ max{M4(J2) : J2 ⊂ Jm, card(J2) = 2}.
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2.2 Properties of McShane’s functional and
applications

Following the analogous procedure to the one employed in the case of Jessen’s functional,
we deduce McShane’s functional from the weight McShane’s inequality and establish its
properties of superadditivity and monotonicity. These provide deriving the lower and up-
per bound for the functional, by means of the non-weight functional of the same type.
Again, such bounds are the starting point for the applications to the variety of the existing
inequalities. The contents of this section corresponds for the most part to the contents of
the published paper [111].

2.2.1 McShane’s functional

The environment of the positive linear functionals acting on a linear class of real valued
functions, described in the Section 2.1.1 is implicitly understood in this section as well.
Hence the previously used notation is still valid. Furthermore, the reminder of the needed
weight form of McShane’s inequality (1.16) is given in the following theorem.

Theorem 2.14 Let E be a nonempty set and let L be a linear class of real-valued func-
tions satisfying L1 and L2. Suppose : K →R is a continuous and convex function defined
on a closed convex set K ⊆ R

n, and let p ∈ L+. If A : L → R is a positive linear functional
with A(p) > 0, then for all functions f = ( f1, . . . , fn) ∈ Ln, such that pf∈ Ln and p(f) ∈ L
the following inequality holds:

A(p)
(

A(pf)
A(p)

)
≤ A(p(f)) . (2.49)

Remark 2.18 Denote A1(f) = A(pf)
A(p) , A(p) > 0. It follows that A1 is a normalized (positive

linear) functional, i.e. A1(1) = 1, and inequality (1.12) can be applied. One can find the
proof of the statement A1(f) ∈ K in [177, p. 48].

We now deduce McShane’s functional which can be interpreted as a multidimensional
generalization of Jessen’s functional (2.2), as follows:

M (, f, p;A) = A(p(f))−A(p)
(

A(pf)
A(p)

)
. (2.50)

For fixed , f and A, we consider M (, f, ·;A) as a function on L+. If  is a convex
function, it follows from (2.49) that M (, f, p;A) ≥ 0, for all p ∈ L+.



2.2 PROPERTIES OF MCSHANE’S FUNCTIONAL AND APPLICATIONS 49

2.2.2 Superadditivity of McShane’s functional

The following theorem is a generalization of Theorem 2.2.

Theorem 2.15 Let A : L → R be a positive linear functional. Suppose f = ( f1, . . . , fn) is
a function in Ln and p, q are functions in L+. If  : K → R is a continuous and convex
function defined on a closed convex set K ⊆ R

n, then

M (, f, p+q;A)≥ M (, f, p;A)+M (, f,q;A) , (2.51)

that is, M (, f, ·;A) is superadditive on L+. Moreover, if p, q ∈ L+ are such that p ≥ q,
then

M (, f, p;A) ≥ M (, f,q;A) ≥ 0, (2.52)

that is, M (, f, ·;A) is increasing on L+.

Proof. According to definition (2.50) and linearity of the functional A, it follows:

M (, f, p+q;A) = A((p+q)(f))−A(p+q)
(

A((p+q)f)
A(p+q)

)
= A(p(f)+q(f))− (A(p)+A(q))

(
A(pf+qf)

A(p)+A(q)

)
= A(p(f))+A(q(f))− (A(p)+A(q))

(
A(pf)+A(qf)
A(p)+A(q)

)
.

(2.53)

On the other side, due to convexity of  we get


(

A(pf)+A(qf)
A(p)+A(q)

)
= 

(
A(p)

A(p)+A(q)
· A(pf)

A(p)
+

A(q)
A(p)+A(q)

· A(qf)
A(q)

)
≤ A(p)

A(p)+A(q)

(

A(pf)
A(p)

)
+

A(q)
A(p)+A(q)


(

A(qf)
A(q)

)
,

which can be rewritten as

(A(p)+A(q))
(

A(pf)+A(qf)
A(p)+A(q)

)
≤ A(p)

(
A(pf)
A(p)

)
+A(q)

(
A(qf)
A(q)

)
. (2.54)

Finally, (2.53) and (2.54) yield

M (, f, p+q;A) ≥ A(p(f))+A(q(f))−A(p)
(

A(pf)
A(p)

)
−A(q)

(
A(qf)
A(q)

)
= M (, f, p;A)+M (, f,q;A) ,

that is, functional M (, f, ·;A) is superadditive on L+.
As for increase on L+ of the functional M (, f, ·;A) , we write p = (p− q)+ q, for

p ≥ q ≥ 0. Hence (2.51) yields

M (, f, p;A) = M (, f, p−q+q;A)≥ M (, f, p−q;A)+M (, f,q;A) .



50 2 ON JESSEN’S AND MCSHANE’S FUNCTIONALS

Since M (, f, p−q;A) ≥ 0, it follows that M (, f, p;A) ≥ M (, f,q;A) , which ends
the proof. �

Remark 2.19 If  is a continuous and concave function, the signs of inequalities (2.51)
and (2.52) are reversed, that is, functional M (, f, ·;A) is subadditive and decreasing on
L+. Namely, in the case of  being concave, the sign of Jensen’s inequality is reversed and
M (, f, p;A) ≤ 0, for all p ∈ L+. This remark on the concavity of the function is going
to be taken into account in the sequel, in all the similar results, even if it is not accentuated.

The following corollary provides the lower and the upper bound for the functional
(2.50), which are expressed by means of the non-weight functional of the same type.

Corollary 2.8 Let function f and functional A be as in Theorem 2.15. Suppose p ∈ L+

attains its minimal and maximal value on E. If  : K → R, where K ⊆ R
n is a closed

convex set, is a continuous and convex function, then the following inequalities hold:[
min
x∈E

p(x)
]
M (, f,1;A) ≤ M (, f, p;A) ≤

[
max
x∈E

p(x)
]
M (, f,1;A) , (2.55)

where

M (, f,1;A) = A((f) ·1)−A(1)
(

A(f)
A(1)

)
. (2.56)

Proof. The inequalities are proved by making use of (2.52). Namely, as p∈ L+ attains
its minimal and maximal value on E , it is clear that

min
x∈E

p(x) ≤ p(x) ≤ max
x∈E

p(x),

and we observe two constant functions

p = min
x∈E

p(x) and p = max
x∈E

p(x).

Double application of the property (2.52) yields (2.55), since

M
(
, f, p ·1;A

)
= pM (, f,1;A) and M (, f, p ·1;A) = pM (, f,1;A) .

�

Remark 2.20 If p ∈ L+ is a bounded function on E, then infimum (supremum) in (2.55)
are observed. This fact is going to be taken into account in all the results on the non-weight
bounds of the functionals of this type.

As for the first application of the monotonicity property (2.52), we recall Theorem 1.35
on comparative inequalities for the discrete Jensen’s functional, proved by S. S. Dragomir
and its generalization – Theorem 2.3 from [53], for which the multidimensional general-
ization is given in the same paper. We cite it here.
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Theorem 2.16 (SEE [53]) Let  : K → R be a continuous and convex function defined
on a closed convex set K ⊆ R

n. Suppose A is a positive linear functional and m and M are
real constants, such that for p and q ∈ L+ and for all x ∈ E

p(x)−mq(x)≥ 0, Mq(x)− p(x)≥ 0 and

A(p)−mA(q) > 0, MA(q)−A(p) > 0.

Then the following inequalities hold:

mM (, f,q;A) ≤ M (, f, p;A) ≤ MM (, f,q;A) . (2.57)

Remark 2.21 The proof of Theorem 2.16 is improved when Theorem 2.15 is applied.
Namely, inequalities (2.57) follow easily from mq(x) ≤ p(x) ≤ Mq(x) when the mono-
tonicity property (2.52) is applied twice, since M (, f,mq;A) = mM (, f,q;A) and
M (, f,Mq;A) = MM (, f,q;A).

For the sake of another application of the obtained results, we induce the discrete no-
tation. For n ∈ N, E = {1,2, . . . ,n} and linear space L of real n-tuples x = (x1, . . . ,xn), the
functional A : L→ R becomes a discrete functional, such that A(x) =n

i=1 xi. In particular,
for nonnegative n-tuples p ∈ L is A(p) = Pn = n

i=1 pi > 0 and A(1) = n
i=1 1 = n.

According to the discrete notation, the multidimensional functional (2.50) assumes the
following form

M(,X,p) =
n


i=1

pi(xi)−Pn

(
1
Pn

n


i=1

pixi

)
, (2.58)

where  is a convex function, X = (x1, . . . ,xn), with xi = (xi1 , . . . ,xin) ∈ In, I ⊆ R, for
i = 1, . . . ,n. Furthermore, p = (p1, . . . , pn), where pi ≥ 0, i = 1, . . . ,n, andn

i=1 pi = Pn > 0.
Now, let f : [a,b] → R be an (n + 1)-convex function. By means of the divided dif-

ference of the function f in xi1 , . . . ,xin , we define the function G : [a,b]n → R by G(xi) =
f [xi1 , . . . ,xin ]. It follows from [177, p. 74, Theorem 2.52.] that G is a convex function.

Substituting  with G, the functional (2.58) becomes

M(G,X,p) =
n


i=1

pi f [xi1 , . . . ,xin ]−Pn f

[
1
Pn

n


i=1

pixi1 , . . . ,
1
Pn

n


i=1

pixin

]
(2.59)

and hence possesses the analogous properties to those in Theorem 2.15 and Corollary 2.8,
as is described below.

Corollary 2.9 Suppose f : [a,b]→ R is an (n+1)-convex function. Let X = (x1, . . . ,xn),
where xi = (xi1 , . . . ,xin) ∈ [a,b]n, i = 1, . . . ,n, and let G : [a,b]n → R, defined by
G(xi1 , . . . ,xin) = f [xi1 , . . . ,xin ] be a convex function. Then the functional M(G,X, ·), de-
fined by (2.59) is superadditive and increasing on the set of all n-tuples p = (p1, . . . , pn),
such that pi ≥ 0, i = 1, . . . ,n, n

i=1 pi = Pn > 0. Moreover, the following inequalities hold[
min

1≤i≤n
{pi}

]
M(G,X) ≤ M(G,X,p) ≤

[
max
1≤i≤n

{pi}
]
M(G,X), (2.60)

where

M(G,X) =
n


i=1

f [xi1 , . . . ,xin ]−n f

[
1
n

n


i=1

xi1 , . . . ,
1
n

n


i=1

xin

]
.
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2.2.3 Application to weight generalized means

Weight generalized mean of a real valued function f ∈ L is defined by (2.11). In a similar
way, by means of a positive linear functional A : L → R, the same notion, but regarding
vector functions f = ( f1, . . . , fn) ∈ Ln is defined as

M ( (f) , p;A) = −1
(

A(p((f)))
A(p)

)
, (2.61)

where  : I → R, I ⊆ R, is a continuous and strictly monotonic function,  : K → R,
K ⊆ R

n is such that (f) ∈ I and p ∈ L+ is a weight function. On the assumptions that
A(p) > 0 and ((f)), p((f)) ∈ L, it is easy to see that (2.61) is a mean.

Making use of (2.61) we deduce the following McShane-type functional:

M T (H,(f), p;A)
= A(p)

[

(
M((f), p;A)

)− 
(

(
M1( f1, p;A), . . . ,Mn( fn, p;A)

))]
, (2.62)

where i : I → R, i = 1, . . . ,n, are continuous and strictly monotonic functions, such that
i( fi), pi( fi) ∈ L, Mi( fi, p;A) are defined by (2.11) and function H

H(s1,s2, . . . ,sn) =  ◦(−1
1 (s1), . . . ,−1

n (sn))

is assumed to be well defined. For the sake of an abbreviated notation, the acting of func-
tions i : I → R on fi, i = 1, . . . ,n is denoted by (f). For fixed H, (f) and A, functional
M T (H,(f), ·;A) is observed as a function on L+. In this setting the following result is
valid.

Theorem 2.17 Suppose A : L → R is a positive linear functional and f = ( f1, . . . , fn) is
a function in Ln. Let  : K → R, K ⊆ R

n, be such that (f) ∈ I, where I ⊆ R is domain of
real-valued, continuous and strictly monotonic functions  and i, i = 1, . . . ,n, such that
i( fi), pi( fi), ((f)), p((f)) ∈ L. If H(s1,s2, . . . ,sn) =  ◦(−1

1 (s1), . . . ,−1
n (sn))

is a convex function, then the functional M T (H,(f), ·;A), defined by (2.62) is superad-
ditive and increasing on L+.

Proof. Let p ∈ L+. Making use of linearity of the functional A as well as of (2.11) and
(2.61), we may rearrange the expressions in (2.62):

M T (H,(f), p;A)
= A(p)

[

(
M((f), p;A)

)− 
(

(
M1( f1, p;A), . . . ,Mn( fn, p;A)

))]
= A(p)

(
M((f), p;A)

)−A(p)
(

(
M1( f1, p;A), . . . ,Mn( fn, p;A)

))
= A(p (( f1, . . . , fn)))

−A(p)
(

(
−1

1

(
A(p1( f1))

A(p)

)
, . . . ,−1

n

(
A(pn( fn))

A(p)

)))
.

Functional (2.62) obviously corresponds to McShane’s functional (2.50), where  is
substituted by H and functions fi ∈ L by i( fi) ∈ L, i = 1, . . . ,n. We see that (f) =
H(1( f1), . . . ,n( fn)) = (( f1, . . . , fn)) ∈ L. Hence superadditivity and monotonicity of
(2.62) follow directly from Theorem 2.15. �
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Corollary 2.10 Suppose functions f,  ,  ,i, i = 1, . . . ,n and functional A are as in The-
orem 2.17 and let p∈L+ assumes its minimal and maximal value on E. If H(s1,s2, . . . ,sn)=
 ◦(−1

1 (s1), . . . ,−1
n (sn)) is a convex function and functional M T (H,(f), p;A) is de-

fined by (2.62), then the following inequalities hold:[
min
x∈E

p(x)
]
M T (H,(f),1;A) ≤ M T (H,(f), p;A)

≤
[
max
x∈E

p(x)
]
M T (H,(f),1;A), (2.63)

where

M T (H,(f),1;A) = A(1)
[

(
M((f);A)

)− 
(

(
M1( f1;A), . . . ,Mn( fn;A)

))]
,

(2.64)

M ((f);A) = −1
(

A(((f)))
A(1)

)
, Mi ( fi;A) = −1

i

(
A(i( fi))

A(1)

)
, i = 1, . . . ,n.

(2.65)

Proof. Since the functional (2.62) is increasing on L+, according to Theorem 2.17, the
proof follows the same lines as in Corollary 2.8. �

Let  : I → R, I ⊆ R, R = {R∪±}, be a continuous and strictly monotonic function,
a = (a1, . . . ,an), ak ∈ I, k = 1, . . . ,n, and w = (w1, . . . ,wn), wk ≥ 0 with n

k=1 wk = 1.
Weight quasiarithmetic mean (more details can be found in the monograph [151, p. 193])
is defined by

M(a,w) = −1

(
n


k=1

wk(ak)

)
. (2.66)

In the same monograph [151, p. 197, Theorem 1], a characterization of the convexity of
(2.66) by means of the concavity of the function  ′/ ′′ is given, provided  is a strictly
increasing and strictly convex function with the continuous second derivative. Now, if we
substitute the function  with M in the definition of the discrete McShane’s functional
(2.58), we deduce the following type of functional, making use of (2.66):

M(M ,X,p) =
n


i=1

pi−1

(
n


k=1

wk(xik)

)
−Pn−1

(
n


k=1

wk

(
1
Pn

n


i=1

pixik

))
, (2.67)

where, as we previously had, X = (x1, . . . ,xn), xi = (xi1 , . . . ,xin) ∈ In, I ⊆ R, i = 1, . . . ,n
and p = (p1, . . . , pn), pi ≥ 0, i = 1, . . . ,n, n

i=1 pi = Pn > 0.

Corollary 2.11 Suppose  : I → R, I ⊆ R is a strictly increasing and strictly convex
function with the continuous second derivative, such that  ′/ ′′ is concave. Let X =
(x1, . . . ,xn), xi = (xi1 , . . . ,xin) ∈ In, i = 1, . . . ,n and let M be a quasiarithmetic mean
defined by (2.66). Then the functional M(M ,X, ·), defined by (2.67) is superadditive and
increasing on the set of all n-tuples p = (p1, . . . , pn), such that pi ≥ 0, i = 1, . . . ,n and
n

i=1 pi = Pn > 0. Moreover, the following inequalities hold:[
min

1≤i≤n
{pi}

]
M(M ,X) ≤ M(M ,X,p) ≤

[
max
1≤i≤n

{pi}
]
M(M ,X), (2.68)
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where

M(M ,X) =
n


i=1

−1

(
n


k=1

wk(xik)

)
−n−1

(
n


k=1

wk

(
1
n

n


i=1

xik

))
.

Proof. According to [151, p. 197, Theorem 1], M is convex. Therefore, superaddi-
tivity and increase of the functional (2.67) follow directly from Theorem 2.17. Moreover,
the inequalities (2.68) are obtained by double application of the monotonicity property of
the functional to the relation pmin ≤ p ≤ pmax, where

pmin =
(

min
1≤i≤n

{pi}, . . . , min
1≤i≤n

{pi}
)

and pmax =
(

max
1≤i≤n

{pi}, . . . , max
1≤i≤n

{pi}
)

.

�

In [151, p. 193], a weight quasiarithmetic mean

M̃(a,w) = −1

(
n


k=1

wk(ak)

)
(2.69)

with altered conditions on  and w is also observed, and these conditions are:

(i) wi ≥ 1, i = 1, . . . ,n,

(ii)  : R
+ → R

+,

(iii) lim
x→0

(x) = + or lim
x→

(x) = +.

This type of means is provided with an analogous result to the previous one. It is based
on [151, p. 197, Theorem 2], which for a strictly increasing and strictly convex function
 with the continuous second derivative, such that / ′ is convex, provides convexity of
(2.69). When (2.69) is observed, the functional (2.67) is denoted by M(M̃ ,X).

Corollary 2.12 Suppose w and  are defined as in (2.69) and let  be a strictly increas-
ing and strictly convex function with the continuous second derivative, such that / ′ is
convex. Let X = (x1, . . . ,xn), xi = (xi1 , . . . ,xin)∈ In, i = 1, . . . ,n and let M̃ be a quasiarith-
metic mean defined by (2.69). Then the functional M(M̃ ,X, ·), defined by (2.67) is su-
peradditive and increasing on the set of all n-tuples p = (p1, . . . , pn), such that pi ≥ 0,
i = 1, . . . ,n and n

i=1 pi = Pn > 0. Moreover, the following inequalities hold:[
min

1≤i≤n
{pi}

]
M(M̃ ,X) ≤ M(M̃ ,X,p) ≤

[
max
1≤i≤n

{pi}
]
M(M̃ ,X), (2.70)

where

M(M̃ ,X) =
n


i=1

−1

(
n


k=1

wk(xik)

)
−n−1

(
n


k=1

wk

(
1
n

n


i=1

xik

))
.

Proof. According to [151, p. 197, Theorem 2], M̃ is convex. The proof is analogous
to the proof of Corollary 2.11. �
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2.2.4 Application to the additive and multiplicative-type
inequalities

We apply the results on generalized weight means which were presented in the previous
section to the additive and multiplicative-type inequalities, in order to obtain their refine-
ments and converses. The starting point are the well known results of E. Beck from [25]
that were recently used in [53], where the authors obtained the series of inequalities of
Hölder’s type, concerning multiplicative type inequalities and of Minkowski’s type, con-
cerning additive type inequalities, for the case of a vector function of two positive variables.
According to Remark 2.21, we improve here the results from [53] that were obtained for
the weight quasiarithmetic means generalized by means of positive linear functional, in
light of the analyzed properties of McShane’s functional from the previous section. We
first induce the needed notions and basic results from Beck’s paper [25].

Suppose M1 , M2 and M are quasiarithmetic means defined by (2.66). Beck observed
the inequalities

(M1(x;w),M2(y;w)) ≥ M((x,y);w), (2.71)

where ((x,y);w) = −1 (n
i=1 wi ((xi,yi))) , functions  , 1 and 2 are strictly in-

creasing and continuous function z := (x,y) has continuous partial derivatives of the first
and the second order on I× I. Beck investigated the impact of the convexity (concavity) of
the function  ◦(−1

1 (s1),−1
2 (s2)) on the inequalities (2.71). What follows is his basic

result.

Theorem 2.18 Inequalities (2.71) hold if and only if the function H(s1,s2) =
 ◦ (−1

1 (s1),−1
2 (s2)) is concave. Inequalities (2.71) are reverse if and only if H is

a convex function.

Theorem (2.18) is applied to additive and to multiplicative type of inequalities (2.71).
For (x,y) ≡ x+y the relation (2.71) yields additive inequalities

M1(x;w)+M2(y;w) ≥ M(x+y;w). (2.72)

Minkowski’s inequality belongs to this class of inequalities (compare to (1.31) or (1.32)).
The related result from [25] is given in the following corollary.

Corollary 2.13 Let E =  ′
1

 ′′
1
, F =  ′

2
 ′′

2
and G =  ′

 ′′ . If  ′,  ′
1, 

′
2 and  ′′,  ′′

1 ,  ′′
2 are all

positive functions, then inequalities (2.72) hold if and only if

G(x+ y)≥ E(x)+F(y).

If  ′,  ′
1,  ′

2 are positive and  ′′,  ′′
1 ,  ′′

2 are negative, then (2.72) are reversed if and only
if

G(x+ y)≤ E(x)+F(y).

For (x,y) ≡ x ·y the relation (2.71) yields the multiplicative inequalities

M1(x;w) ·M2(y;w) ≥ M(x ·y;w). (2.73)

Hölder’s inequality belongs to this class of inequality (compare to (1.29) or (1.30)). The
related result from [25] is given in the following corollary.
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Corollary 2.14 Let

A(t) =
 ′

1(t)
 ′

1(t)+ t ′′
1 (t)

, B(t) =
 ′

2(t)
 ′

2(t)+ t ′′
2 (t)

, C(t) =
 ′

(t)
 ′(t)+ t ′′(t)

,

t ∈ I. If  ′,  ′
1, 

′
2 and A, B, C are all positive functions, then inequalities (2.73) hold if

and only if
C(x · y) ≥ A(x)+B(y).

If  ′,  ′
1,  ′

2 are positive and A, B, C are negative, then (2.73) are reversed if and only if

C(x · y) ≤ A(x)+B(y).

We now go back to our considerations of the weight means generalized by means of
positive linear functional. We first observe the functional (2.62) when (f) = f1 + f2.
Acting of the functions 1 i 2 on f1 and f2, is denoted with (f). Function H is defined
by H(s1,s2) = (−1

1 (s1)+−1
2 (s2)). Functional (2.62) then becomes

M B(H,(f), p;A) = A(p)
[

(
M( f1 + f2, p;A)

)− 
(
M1( f1, p;A)+M2( f2, p;A)

)]
.

(2.74)
Theorem 2.17 and Corollary 2.10 are adjusted to the functional (2.74) in the following way.

Corollary 2.15 Suppose functional A and functions  , 1, 2, f = ( f1, f2) and  , with
(f) = f1 + f2, are as in Theorem 2.17 and let

E =
 ′

1

 ′′
1

, F =
 ′

2

 ′′
2
, G =

 ′

 ′′ .

If  ′,  ′
1, 

′
2 are positive and  ′′,  ′′

1 ,  ′′
2 are negative, then functional M B(H,(f), ·;A),

defined by (2.74) is superadditive and increasing on L+ if and only if G(x+ y) ≤ E(x)+
F(y), where H(s1,s2) = (−1

1 (s1)+−1
2 (s2)). Moreover, if p ∈ L+ attains its minimal

and maximal value on E, then the following inequalities hold:[
min
x∈E

p(x)
]
M B(H,(f),1;A) ≤ MB(H,(f), p;A)

≤
[
max
x∈E

p(x)
]
M B(H,(f),1;A), (2.75)

where

M B(H,(f),1;A) = A(1)
[

(
M( f1 + f2;A)

)− 
(
M1( f1;A)+M2( f2;A)

)]
, (2.76)

M ( f1 + f2;A) = −1
(

A(( f1 + f2))
A(1)

)
, Mi ( fi;A) = −1

i

(
A(i( fi))

A(1)

)
, i = 1,2.

(2.77)

Proof. The functional M B(H,(f), ·;A) is superadditive and increasing on L+ ac-
cording to Theorem 2.17 in the case of convex function H, for this functional is a special
case of the functional (2.62), for the choice of an additive function  . On the other side,
convexity of H is equivalent to the condition G(x+ y) ≤ E(x)+F(y), after Theorem 2.18
and Corollary 2.13. Inequalities (2.75) follow directly from Corollary 2.10. �
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Remark 2.22 According to Theorem 2.18 and Corollary 2.13, for positive  ′,  ′
1, 

′
2,

as well as  ′′,  ′′
1 ,  ′′

2 , the condition G(x + y) ≥ E(x) +F(y) is equivalent to concavity
of the function H, which then again, after Theorem 2.17 and Corollary 2.10 corresponds
to subadditivity and decrease on L+ of the functional M B(H,(f), ·;A) and changes the
signs in inequalities (2.75).

If we now observe the functional (2.62) for (f) = f1 · f2, then H is defined by H(s1,s2)
= (−1

1 (s1) ·−1
2 (s2)), and the functional (2.62) becomes

M B(H,(f), p;A) = A(p)
[

(
M( f1 · f2, p;A)

)− 
(
M1( f1, p;A) ·M2( f2, p;A)

)]
.

(2.78)
The corresponding results are valid for this functional, too.

Corollary 2.16 Suppose A,  ,1,2, f= ( f1, f2) and  ,(f)= f1 · f2, are as in Theorem
2.17 and let

A(t) =
 ′

1(t)
 ′

1(t)+ t ′′
1(t)

, B(t) =
 ′

2(t)
 ′

2(t)+ t ′′
2 (t)

, C(t) =
 ′

(t)
 ′(t)+ t ′′(t)

,

t ∈ I. If  ′,  ′
1,  ′

2 are positive and A, B, C are negative, then the functional M B(H,(f),
·;A), defined by (2.78) is superadditive and increasing on L+ if and only if C(x · y) ≤
A(x) + B(y), where H(s1,s2) = (−1

1 (s1) ·−1
2 (s2)). Moreover, if p ∈ L+ attains its

minimal and maximal value on E, then the following inequalities hold:[
min
x∈E

p(x)
]
M B(H,(f),1;A) ≤ M B(H,(f), p;A)

≤
[
max
x∈E

p(x)
]
M B(H,(f),1;A), (2.79)

where

M B(H,(f),1;A) = A(1)
[

(
M( f1 · f2;A)

)− 
(
M1( f1;A) ·M2( f2;A)

)]
, (2.80)

M ( f1 · f2;A) = −1
(

A(( f1 · f2))
A(1)

)
, Mi ( fi;A) = −1

i

(
A(i( fi))

A(1)

)
, i = 1,2.

(2.81)

Proof. Similarly as in the previous corollary, the functional M B(H,(f), ·;A) is
superadditive and increasing on L+ in the case of a convex function H, according to The-
orem 2.17. On the other hand, convexity of H is equivalent to the condition C(x · y) ≤
A(x) + B(y), after Theorem 2.18 and Corollary 2.14. Inequalities (2.79) follow directly
from Corollary 2.10. �

Remark 2.23 According to Theorem 2.18 and Corollary 2.14, for positive  ′,  ′
1,  ′

2, as
well as A, B, C, the conditionC(x ·y) ≥ A(x)+B(y) is equivalent to concavity of H, which
corresponds to subadditivity and decrease on L+ of the functional M B(H,(f), ·;A), after
Theorem 2.17 and Corollary 2.10 and changes the signs in inequalities (2.79).
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In the sequel we consider an application of the previous corollary for  ,1,2 being
power functions, in order to obtain a refinement and a converse of a multiplicative-type
inequality.

Corollary 2.17 Suppose A and f = ( f1, f2) are as in Theorem 2.17 and let  ,  and 
be real numbers. Let p ∈ L+ attain its minimal and maximal value on E. If the following
conditions are satisfied:

1◦  < 0 <  , or  , < 0 <  ;

2◦  <  , < 0 or  < 0 <  <  or  < 0 <  <  , for
1


≤ 1


+
1


;

3◦  <  < 0 <  or  <  < 0 <  , for
1


≥ 1


+
1


,

then the following inequalities hold:

min
x∈E

p(x)

⎡⎢⎣A
(

f 1 · f 2
)
−A(1)

⎛⎝(
A
(
f 1

)
A(1)

) 1


·
(

A( f 2 )
A(1)

) 1


⎞⎠⎤⎥⎦
≤ A

(
p · f 1 · f 2

)
−A(p)

⎡⎣(A
(
p f 1

)
A(p)

) 1


·
(

A(p f 2 )
A(p)

) 1


⎤⎦

≤ max
x∈E

p(x)

⎡⎢⎣A
(

f 1 · f 2
)
−A(1)

⎛⎝(
A
(
f 1

)
A(1)

) 1


·
(

A( f 2 )
A(1)

) 1


⎞⎠⎤⎥⎦ . (2.82)

Proof. If we define  ,  1 and 2 as: (f) = f1 · f2, (t) = t , 1(t) = t and
2(t) = t , then the functional (2.78) becomes

A
(

p · f 1 · f 2
)
−A(p)

⎡⎣(A
(
p f 1

)
A(p)

) 1


·
(

A(p f 2 )
A(p)

) 1


⎤⎦

(2.83)

and function H is then defined by H(s1,s2) = (−1
1 (s1) ·−1

2 (s2)) = (s
1

1 · s

1

2 ) . Func-

tional (2.83) is superadditive and increasing when H is convex. On the other hand, H is

convex if d2H ≥ 0, that is,



(


−1

)
≥ 0,




(


−1

)
≥ 0 and

 3



(
1

− 1

− 1


)
≥ 0,

which corresponds to the conditions 1◦, 2◦ and 3◦ on  , and  . Then inequalities (2.82)
follow from Corollary 2.10. �

Remark 2.24 Inequalities (2.82) have the reversed signs when functional is subadditive
and decreasing on L+, that is, when H is concave. Function H is concave when d2H ≤
0, that is, when




(


−1

)
≤ 0,




(


−1

)
≤ 0 and

 3



(
1

− 1

− 1


)
≥ 0. These

conditions are satisfied if
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1◦  , >  > 0, for
1


≥ 1


+
1


;

2◦  , <  < 0, for
1


≤ 1


+
1


.

Yet another application of Corollary 2.14 is obtained for exponential functions  , 1,
and 2.

Corollary 2.18 Suppose A and f = ( f1, f2) are as in Theorem 2.17 and let  ,  and  be
positive real numbers different from 1. Let p ∈ L+ attain its minimal and maximal value
on E. If the following conditions are satisfied:

1◦  < 1 <  , or  , < 1 <  ;

2◦  <  , < 1 or  < 1 <  <  or  < 1 <  <  , for
1

log
≤ 1

log
+

1
log

;

3◦  <  < 1 <  or  <  < 1 <  , for
1

log
≥ 1

log
+

1
log

,

then the following inequalities hold:

min
x∈E

p(x)

⎛⎜⎜⎝A
(
 f1+ f2

)−A(1)
log

A
(
 f1

)
A(1)

+ log
A
(
 f2

)
A(1)

⎞⎟⎟⎠

≤ A
(
p f1+ f2

)−A(p)
log

A
(
p · f1

)
A(p)

+ log
A
(
p · f2

)
A(p)

≤ max
x∈E

p(x)

⎛⎜⎜⎝A
(
 f1+ f2

)−A(1)
log

A
(
 f1

)
A(1)

+ log
A
(
 f2

)
A(1)

⎞⎟⎟⎠ .

(2.84)

Proof. If functions ,  1 and2 are defined by: (f) = f1 · f2, (t) =  t ,1(t) =  t

and 2(t) = t , then the function H becomes H(s1,s2) = (s
1

log
1 · s

1
log
2 )log . The statement

of the corollary follows easily from Corollary 2.17, when the following substitutions are
taken into account:  ↔ log ,  ↔ log and  ↔ log . �

Remark 2.25 Analogously as in Remark 2.24, inequalities (2.84) have reversed signs if:

1◦  , >  > 1, for
1

log
≥ 1

log
+

1
log

;

2◦  , <  < 1, for
1

log
≤ 1

log
+

1
log

.
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Now we observe the additive-type inequalities, defining again functions  , 1, and 2

as power functions. The following result is thus obtained.

Corollary 2.19 Suppose A and f = ( f1, f2) are as in Theorem 2.17 and let  ,  and 
are real numbers. Let p ∈ L+ attain its minimal and maximal value on E. If the following
conditions are satisfied:

1◦ 0 <  , ≤  < 1, for all f1, f2 > 0;

2◦ 0 <  ≤  ≤  < 1, for f2 ≥ (− )(1−)
( −)(1− )

f1 ≥ 0;

3◦ 0 <  ≤  ≤  < 1, for
( − )(1−)
(− )(1− )

f1 ≥ f2 ≥ 0,

then the following inequalities hold:

min
x∈E

p(x)

⎡⎢⎣A
(
( f1 + f2)


)
−A(1)

⎛⎝(
A
(
f 1

)
A(1)

) 1


+
(

A( f 2 )
A(1)

) 1


⎞⎠⎤⎥⎦
≤ A

(
p · ( f1 + f2)


)
−A(p)

⎛⎝(
A
(
p f 1

)
A(p)

) 1


+
(

A(p f 2 )
A(p)

) 1


⎞⎠

≤ max
x∈E

p(x)

⎡⎢⎣A
(
( f1 + f2)


)
−A(1)

⎛⎝(
A
(
f 1

)
A(1)

) 1


+
(

A( f 2 )
A(1)

) 1


⎞⎠⎤⎥⎦ .

(2.85)

Proof. If functions  , 1, and 2 are defined by (f) = f1 + f2, (t) = t , 1(t) = t

and 2(t) = t , then the functional (2.74) assumes the following form:

A
(

p · ( f1 + f2)

)
−A(p)

⎛⎝(
A
(
p f 1

)
A(p)

) 1


+
(

A(p f 2 )
A(p)

) 1


⎞⎠

, (2.86)

and function H is defined by H(s1,s2) = (−1
1 (s1)+−1

2 (s2)) = (s
1

1 + s

1

2 ) . Functional

(2.86) is superadditive and increasing when H is convex. According to Theorem 2.18 and
Corollary 2.13, H is convex if and only if G(x+ y) ≤ E(x)+F(y), for positive  ′, ′

1, ′
2

and negative  ′′, ′′
1 , ′′

2 , that is, for 0 <  , , < 1. If we rewrite this inequality, taking

the definitions of E, F and G into account, we get the inequality:
x+ y
 −1

≤ x
−1

+
y

−1
,

which holds if the following conditions are satisfied:

1◦ 0 <  , ≤  < 1, for all x,y > 0;
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2◦ 0 <  ≤  ≤  < 1, for y ≥ (− )(1−)
( −)(1− )

x ≥ 0;

3◦ 0 <  ≤  ≤  < 1, for
( − )(1−)
(− )(1− )

x ≥ y ≥ 0.

Since convexity of H yields superadditivity and increase of the functional (2.86) on L+,
inequalities (2.85) hold after Corollary 2.2. �

Remark 2.26 Inequalities (2.85) have reversed signs if the functional is subadditive and
decreasing on L+, that is, if H is concave. According to Theorem 2.18 and Corollary
2.14, H is concave if and only if G(x + y) ≥ E(x)+ F(y), for positive  ′, ′

1, ′
2 as well

as positive  ′′, ′′
1 , ′′

2 , that is, for  , , > 1. If we rewrite this inequality, taking the

definitions of E, F and G into account, we get the inequality:
x+ y
 −1

≥ x
−1

+
y

−1
,

which holds if the following conditions are satisfied:

1◦ 1 <  ≤  ,, for all x,y > 0;

2◦ 1 <  ≤  ≤  , for 0 ≤ y ≤ (− )(−1)
( −)(−1)

x;

3◦ 1 <  ≤  ≤ , for y ≥ ( − )(−1)
(− )(−1)

x ≥ 0.

In order to bring this considerations to a close, we cite an example which illustrates the
application of the refinement and the converse of the generalized additive-type inequality.

Example 2.1 Let (f) = f1 + f2 and (t) = 1(t) = 2(t) = −cost. Function H then
becomes H(s1,s2) =−cos(arccos(−s1)+(arccos(−s2)). Functions  ′, ′

1, ′
2, ′′, ′′

1 , ′′
2

are all positive for 0≤ t ≤ 
2 . In that case, tg(x+y)≥ tgx+ tgy if and only if H is concave.

The last inequality is satisfied if 0 ≤ x,y ≤ 
4 . Hence on the interval [0,


4

], according to

Remark 2.26 the following inequalities hold:

max
x∈E

p(x)
[
A(1) · cos

[
arccos

(
A(cos f1)

A(1)

)
+ arccos

(
A(cos f2)

A(1)

)]
− A(cos( f1 + f2))]

≤ A(p) · cos

[
arccos

(
A(p · cos f1)

A(p)

)
+ arccos

(
A(p · cos f2)

A(p)

)]
−A(p · cos( f1 + f2))

≤ min
x∈E

p(x)
[
A(1) · cos

[
arccos

(
A(cos f1)

A(1)

)
+ arccos

(
A(cos f2)

A(1)

)]
− A(cos( f1 + f2))] .
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2.2.5 Application to Hölder’s inequality

In view of the presented results on McShane’s functional, we again observe Hölder’s in-
equality, generalized by means of positive linear functional A : L → R :

A

(
n


i=1

fi
pi

)
≤

n


i=1

Api ( fi) , (2.87)

where pi ≥ 0, i = 1, . . . ,n are such that n
i=1 pi = 1 and f1, . . . , fn, n

i=1 fi pi ∈ L+.
V. Čuljak et al. stated in [53] the following theorem.

Theorem 2.19 (SEE [53]) Suppose pi, qi > 0, i = 1, . . . ,n are such thatn
i=1 pi =n

i=1 qi

= 1. Let m < 1 and M > 1 be real constants such that Mqi ≥ pi ≥ mqi, i = 1, . . . ,n. If

fi ∈ L are such that f pi
i , f qi

i , f
pi−mqi
1−m

i , f
Mqi−pi

M−1
i , n

i=1 fi pi , n
i=1 fiqi ∈ L, then the following

inequalities hold:[
n

i=1 Aqi( fi)
A
(
n

i=1 f qi
i

)]m

≤ n
i=1 Api( fi)

A
(
n

i=1 f pi
i

) ≤
[
n

i=1 Aqi( fi)
A
(
n

i=1 f qi
i

)]M

. (2.88)

If we generalize (2.87) by having n
i=1 pi = Pn > 0, Hölder’s inequality assumes the

form

A

(
n


i=1

fi
pi
Pn

)
≤

n


i=1

A
pi
Pn ( fi) , (2.89)

i.e.

APn

(
n


i=1

fi
pi
Pn

)
≤

n


i=1

Api ( fi) . (2.90)

This provides us with the definition of the following functional:

H (f,p;A) =
n

i=1 Api( fi)

APn

(
n

i=1 f
pi
Pn
i

) , (2.91)

where A : L → R, f = ( f1, . . . , fn), fi ∈ L+ and p = (p1, . . . , pn), pi ≥ 0, n
i=1 pi = Pn > 0.

Our aim here is to improve Theorem 2.19, by establishing the non-weight bounds for
the functional (2.91), for which the first step is proving this functional to be increasing on
L+, when observed as a function on the set of all described n-tuples p.

Theorem 2.20 Suppose p = (p1, . . . , pn) and q = (q1, . . . ,qn) are such that pi,qi ≥ 0,
i = 1, . . . ,n and n

i=1 pi = Pn > 0, n
i=1 qi = Qn > 0. Let f = ( f1, . . . , fn) be an n-tuple from

L+ and let n
i=1 fi

pi
Pn , n

i=1 fi
qi
Qn ∈ L+. If A : L → R is a positive linear functional, then the

following inequality holds:

H (f,p+q;A) ≥ H (f,p;A) ·H (f,q;A). (2.92)

Moreover, if p ≥ q, then
H (f,p;A) ≥ H (f,q;A). (2.93)
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Proof. It follows from the definition of the functional (2.91) that

H (f,p+q;A) = n
i=1 Api+qi( fi)

APn+Qn

(
n

i=1 f
pi+qi

Pn+Qn
i

) . (2.94)

On the other hand, we have

APn+Qn

(
n


i=1

fi
pi+qi

Pn+Qn

)
= APn+Qn

⎡⎣( n


i=1

fi
pi
Pn

) Pn
Pn+Qn

·
(

n


i=1

fi
qi
Qn

) Qn
Pn+Qn

⎤⎦
≤ APn

(
n


i=1

fi
pi
Pn

)
·AQn

(
n


i=1

fi
qi
Qn

)
. (2.95)

Now (2.94) and (2.95) yield

H (f,p+q;A) = n
i=1 Api ( fi) ·n

i=1 Aqi ( fi)

APn+Qn

(
n

i=1 fi
pi+qi

Pn+Qn

)
≥ n

i=1 Api ( fi) ·n
i=1 Aqi ( fi)

APn

(
n

i=1 fi
pi
Pn

)
·AQn

(
n

i=1 fi
qi
Qn

)
= H (f,p;A) ·H (f,q;A),

whence (2.92) is proved. Since p = (p−q)+q, the proved inequality (2.92) yields

H (f,p;A) = H (f,p−q+q;A) ≥ H (f,p−q;A) ·H (f,q;A)
≥ H (f,q;A) ,

where the last inequality follows from (2.90), that is, from H (f,p−q;A) ≥ 1. �

Corollary 2.20 Suppose f, n-tuple p and A are as in Theorem 2.20. Then the following
inequalities hold:⎡⎢⎢⎣ n

i=1 A( fi)

An

(
n

i=1 f
1
n

i

)
⎤⎥⎥⎦

min
1≤i≤n

{pi}

≤ H (f,p;A) ≤

⎡⎢⎢⎣ n
i=1 A( fi)

An

(
n

i=1 f
1
n
i

)
⎤⎥⎥⎦

max
1≤i≤n

{pi}

. (2.96)

Proof. If we insert

pmin =
(

min
1≤i≤n

{pi}, . . . , min
1≤i≤n

{pi}
)

,

pmax =
(

max
1≤i≤n

{pi}, . . . , max
1≤i≤n

{pi}
)



64 2 ON JESSEN’S AND MCSHANE’S FUNCTIONALS

in (2.91), we have

H (f,pmin;A) =

⎡⎢⎢⎣ n
i=1 A( fi)

An

(
n

i=1 f
1
n
i

)
⎤⎥⎥⎦

min
1≤i≤n

{pi}

,

H (f,pmax;A) =

⎡⎢⎢⎣ n
i=1 A( fi)

An

(
n

i=1 f
1
n

i

)
⎤⎥⎥⎦

max
1≤i≤n

{pi}

.

Since pmin ≤ p ≤ pmax, according to (2.91) the statement is proved. �

Remark 2.27 Inequalities (2.88) from [53] are now easily obtained by applying Theorem
2.20. Namely, if m, M, p and q are as in Theorem 2.19 and such that mq ≤ p ≤ Mq, then
by applying (2.93) it follows that

H (f,mq;A) ≤ H (f,p;A) ≤ H (f,Mq;A), (2.97)

which are actually inequalities (2.88).

2.3 Related results on Hilbert’s inequality

Hilbert’s inequality, although considered as a classical one, still presents a challenge to
mathematicians in providing its new improvements, generalizations and consequently its
various applications. Generalizations include inequalities with more general kernels, weight
functions and integration sets, extension to a multidimensional case, and so forth. The re-
sulting relations are usually called the Hilbert-type inequalities. Among the variety of
recent articles dealing with this problem area, we single out the following references:
[57, 58, 104, 115, 116, 117, 148, 149, 150, 191]. For a comprehensive inspection of the
initial development of the Hilbert-type inequalities, the reader is referred to classical mono-
graphs [83] and [151]. Recent investigations on Hilbert-type inequalities are contained in
the monograph [122].

2.3.1 On more accurate Hilbert-type inequalities in finite
measure spaces

One of the earliest versions of the Hilbert inequality, established at the beginning of the
20th century, asserts that∫ 

0

∫ 

0

f (x)g(y)
x+ y

dxdy ≤ 
sin 

p

‖ f‖Lp(R+)‖g‖Lq(R+), (2.98)
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where f ∈ Lp(R+) and g ∈ Lq(R+) are non-negative measurable functions. Here, param-
eters p and q are mutually conjugate, that is, they fulfill the condition 1

p + 1
q = 1, where

p > 1. In addition, the constant /sin 
p , appearing in (2.98), is the best possible.

Recent paper [117] provides a unified treatment of Hilbert-type inequalities with conju-
gate parameters. The corresponding result regards -finite measure spaces (1,1,1) and
(2,2,2), a non-negative measurable kernel K : 1 ×2 → R, a measurable, a.e. pos-
itive function  : 1 → R, and a measurable, a.e. positive function  : 2 → R. Then, if
1
p + 1

q = 1, p > 1, the inequality∫
1

∫
2

K(x,y) f (x)g(y)d1(x)d2(y) ≤ ‖F f‖Lp(1)‖Gg‖Lq(2) (2.99)

holds for all non-negative measurable functions f :1 → R and g : 2 → R, where

F(x) =
[∫

2

K(x,y)
 p(y)

d2(y)
] 1

p

, x ∈1, (2.100)

and

G(y) =
[∫

1

K(x,y)
q(x)

d1(x)
] 1

q

, y ∈2. (2.101)

Observe that the general Hilbert-type inequality (2.99) extends the classical Hilbert in-
equality (2.98). Namely, setting 1 = 2 = R+, d1(x) = dx, d2(y) = dy, K(x,y) =

(x+ y)−1, (x) = x
1
pq , (y) = y

1
pq in (2.99), we get (2.98).

In this section some more accurate versions of the general Hilbert’s inequality (2.99)
are derived. Since the crucial step in proving Hilbert-type inequalities is in applying the
well-known Hölder inequality, new results are based on several new improvements of the
Hölder inequality established in [108] (see also Section 2.1) in a more general environment.
However, improvements that are given here require the setting provided with finite measure
spaces. These are also contained in the paper [121].

More on refinements and converses of Hölder’s inequality

Generally speaking, the starting point in proving Hilbert-type inequalities is well-known
Hölder’s inequality which asserts that

‖ f g‖L1() ≤ ‖ f‖Lp()‖g‖Lq() (2.102)

holds for all non-negative measurable functions f ,g :  → R such that f ∈ Lp() and
g ∈ Lq(), where (,,) is a  -finite measure space and p,q are mutually conjugate
parameters with p > 1. In the sequel, Lr(), r ≥ 1, denotes the space of all measurable

functions f :→ R such that ‖ f‖Lr() = [
∫
 | f (x)|rd(x)]

1
r < .

Refinements and converses of Hölder’s inequality, expressed in a more general form –
by means of a positive linear functional, were established in [108] (see also Theorem 2.7),
whereas here, assuming that (,,) is a finite measure space (i.e. () < ) and that
f : → R is a non-negative bounded function, these inequalities become

f p
supJp,q( f ,g) ≥ ‖ f‖Lp()‖g‖Lq() −‖ f g‖L1() ≥ f p

infJp,q( f ,g), (2.103)
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where 1
p + 1

q = 1, p > 1, and the corresponding Jensen-type functional is defined by

Jp,q( f ,g) = 
1
p ()‖g f 1−p‖Lq()−‖g f 1−p‖L1().

In the above relation, f p
sup denotes a supremum of the function f p on , that is, f p

sup =
supx∈ f p(x), while f p

inf denotes its infimum on , i.e. f p
inf = infx∈ f p(x). This notation

is used in the sequel, as well.

Remark 2.28 Since 
1
p () = ‖1‖Lp(), it follows that Jp,q( f ,g) ≥ 0, due to Hölder’s

inequality (2.102) applied to the functions 1 and g f 1−p. In addition, having in mind that
f p
infg f 1−p ≤ f g ≤ f p

supg f 1−p, the inequality Jp,q( f ,g) ≥ 0 may be interpreted as the non-
weight Hölder inequality.

Clearly, the right inequality in (2.103) provides the refinement of (2.102), while the
left one yields the converse of (2.102). Moreover, the double inequality (2.103) is usually
referred to as the refinement and the converse of Hölder’s inequality, in a difference form.
In addition, if 0 < p < 1, then the inequality signs in (2.103) are reversed.

In [108], (see also Theorem 2.8), yet another accurate version of Hölder’s inequal-
ity, expressed by means of a positive linear functional, was established. Here the double
inequality of the type becomes

f p
supJ

∗
p,q( f ,g) ≥ ‖ f‖q

Lp()‖g‖q
Lq()−‖ f g‖q

L1() ≥ f p
infJ

∗
p,q( f ,g), (2.104)

where

J ∗
p,q( f ,g) = ‖ f‖q

Lp()

[
‖g f 1−p‖q

Lq()−
‖g f 1−p‖q

L1()

q−1()

]
refers to a finite measure space (,,) and a bounded non-negative function f :→ R.

According to Remark 2.28, it follows that J ∗
p,q( f ,g) ≥ 0, so inequalities in (2.104)

also provide the refinement and the converse of (2.102).

Refinements and converses of the general Hilbert-type inequality

Hölder-type inequalities in (2.103) and (2.104) lead to some improvements of the inequal-
ity (2.99), having in mind some extra conditions concerning boundedness of the appropri-
ate functions appearing in it. We firstly derive a refinement and a converse of the general
Hilbert-type inequality (2.99) making use of the Hölder-type inequalities in (2.103).

Theorem 2.21 Let 1
p + 1

q = 1, p > 1, and let (1,1,1), (2,2,2) be finite mea-
sure spaces. Let K be a non-negative measurable function on 1 ×2,  a measurable,
a.e. positive function on 1,  a measurable, a.e. positive function on2, and let the func-
tions F on 1 and G on 2 be defined by (2.100) and (2.101), respectively. If f :1 → R

and g :2 → R are non-negative measurable functions, and the function

L(x,y) = K(x,y)
( f )p(x)
 p(y)

, (x,y) ∈1×2,
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is bounded on 1×2, then the inequalities

LsupHp,q( f ,g, ,)

≥‖F f‖Lp(1)‖Gg‖Lq(2) −
∫
1

∫
2

K(x,y) f (x)g(y)d1(x)d2(y)

≥LinfHp,q( f ,g, ,)

(2.105)

hold, where

Hp,q( f ,g, ,) =
1
p

1 (1)
1
p

2 (2)‖−p f 1−p‖Lq(1)‖ pg‖Lq(2)

−‖−p f 1−p‖L1(1)‖ pg‖L1(2).

Proof. Let us rewrite the left-hand side of (2.99) in a form more suitable for applying
Hölder-type inequalities in (2.103). Thus, we start with an obvious relation∫

1

∫
2

K(x,y) f (x)g(y)d1(x)d2(y) =
∫
1

∫
2

(h1h2)(x,y)d1(x)d2(y),

where the functions h1 : 1×2 → R and h2 :1 ×2 → R are defined by

h1(x,y) = K
1
p (x,y)

( f )(x)
(y)

and h2(x,y) = K
1
q (x,y)

(g)(y)
(x)

.

The further step is to utilize inequalities in (2.103) with the above functions h1 and h2, with
respect to product measure 1 × 2 on 1 ×2. Making use of the Fubini theorem and
taking into account definition (2.100) of the function F , we have

‖h1‖Lp(1×2) =
[∫

1

∫
2

K(x,y)
( f )p(x)
 p(y)

d1(x)d2(y)
] 1

p

=
[∫

1

( f )p(x)
(∫

2

K(x,y)
 p(y)

d2(y)
)

d1(x)
] 1

p

=
[∫

1

(F f )p(x)d1(x)
] 1

p

= ‖F f‖Lp(1),

(2.106)

and similarly, ‖h2‖Lq(1×2) = ‖Gg‖Lq(2). In the same way, it follows that

‖h2h
1−p
1 ‖Lq(1×2) =

[∫
1

∫
2

(hq
2h

−p
1 )(x,y)d1(x)d2(y)

] 1
q

=
[∫

1

∫
2

(−pq f−p)(x)( pqgq)(y)d1(x)d2(y)
] 1

q

=
[∫

1

(−pq f−p)(x)d1(x)
] 1

q
[∫

2

( pqgq)(y)d2(y)
] 1

q

= ‖−p f 1−p‖Lq(1)‖ pg‖Lq(2)

(2.107)
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and

‖h2h
1−p
1 ‖L1(1×2) =

∫
1

∫
2

(h2h
1−p
1 )(x,y)d1(x)d2(y)

=
∫
1

∫
2

(−p f 1−p)(x)( pg)(y)d1(x)d2(y)

=
∫
1

(−p f 1−p)(x)d1(x)
∫
2

( pg)(y)d2(y)

= ‖−p f 1−p‖L1(1)‖ pg‖L1(2),

(2.108)

where we have used the fact that p and q are mutually conjugate parameters.
Finally, since (1 × 2)(1 ×2) = 1(1)2(2), the result follows from (2.103),

(2.106), (2.107) and (2.108). �

Remark 2.29 The right inequality in (2.105) provides the refinement of the general in-
equality (2.99), while the left one yields the converse of (2.105), in a difference form. On
the other hand, if 0 < p < 1, then the inequality signs in (2.105) are reversed.

The following theorem also provides the refinement and the converse of the Hilbert-
type inequality (2.99), this time by virtue of (2.104).

Theorem 2.22 Suppose that the assumptions of Theorem 2.21 are fulfilled. Then the
inequalities

LsupH
∗
p,q( f ,g, ,)

≥‖F f‖q
Lp(1)

‖Gg‖q
Lq(2)

−
[∫

1

∫
2

K(x,y) f (x)g(y)d1(x)d2(y)
]q

≥LinfH
∗
p,q( f ,g, ,)

(2.109)

hold, where

H ∗
p,q( f ,g, ,) =‖F f‖q

Lp(1)

[
‖−p f 1−p‖q

Lq(1)
‖ pg‖q

Lq(2)

−
‖−p f 1−p‖q

L1(1)
‖ pg‖q

L1(2)

q−1
1 (1)

q−1
2 (2)

]
.

If 0 < p < 1, then the inequality signs in (2.109) are reversed.

Proof. In order to derive (2.109), we utilize inequalities in (2.104) equipped with the
product measure space 1 ×2, and the functions h1,h2 : 1 ×2 → R, defined in the
proof of Theorem 2.21. Now, the result follows by virtue of (2.106), (2.107) and (2.108).

�
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Applications to homogeneous kernels

General results are now applied to homogeneous kernels and power weight functions, with
respect to Lebesgue measure spaces. Since theorems 2.21 and 2.22 regard finite measure
spaces, we investigate inequalities with integrals taken over bounded intervals in R+. More
precisely, we consider here the intervals1 = [a,A] and 2 = [b,B], where 0 < a < A <,
0 < b < B < , with respective Lebesgue measures d1(x) = dx and d2(y) = dy.

Recall that a function K : R+×R+ →R is said to be homogeneous of degree−s, s > 0,
if K(tx, ty) = t−sK(x,y), for every x,y,t ∈ R+. In addition, for such a function we define

k( ;r1,r2) =
∫ r2

r1
K(1,t)t−dt,

where 0 < r1 < r2 < . If nothing else is explicitly stated, we assume that the integral
k() converges for considered values of  . In addition, for the sake of simplicity, we also
assume convergence of all the integrals appearing in the sequel.

In order to summarize further discussion, we utilize Theorem 2.21 only. Namely, the
corresponding results following from Theorem 2.22 are derived similarly and are left to
the reader.

Theorem 2.23 Let 1
p + 1

q = 1, p > 1, ,  ∈ R, and let K : R+ ×R+ → R be a non-
negative homogeneous function of degree −s, s > 0. If f : [a,A] → R and g : [b,B] → R

are non-negative measurable functions, and the function

L(x,y) = K(x,y)
x p f p(x)

y p
, (x,y) ∈ [a,A]× [b,B], (2.110)

is bounded on [a,A]× [b,B], then the inequalities

LsupMp,q( f ,g;, ) ≥
[∫ A

a
k
(
 p; b

x ,
B
x

)
x1−s+(− )p f p(x)dx

] 1
p

×
[∫ B

b
k
(
2− s−q; y

A , y
a

)
y1−s+(−)qgq(y)dy

] 1
q

−
∫ A

a

∫ B

b
K(x,y) f (x)g(y)dxdy

≥LinfMp,q( f ,g;, )

(2.111)

hold, where

Mp,q( f ,g;, ) =[(A−a)(B−b)]
1
p

[∫ A

a
x− pq f−p(x)dx

] 1
q
[∫ B

b
y pqgq(y)dy

] 1
q

−
∫ A

a
x− p f 1−p(x)dx

∫ B

b
y pg(y)dy.

Proof. We utilize Theorem 2.21 with finite measure spaces 1 = [a,A], 0 < a < A <
, and 2 = [b,B], 0 < b < B < , with respective Lebesgue measures d1(x) = dx,
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d2(y) = dy, and with power weight functions (x) = x , (y) = y . Then, making use
of the homogeneity of the kernel K, and passing to the new variable t = y

x , we have

Fp(x) =
∫ B

b
K(x,y)y− pdy = x−s

∫ B

b
K
(
1,

y
x

)
y− pdy

= x1−s− p
∫ B

x

b
x

K(1,t)t− pdt = x1−s− pk

(
 p;

b
x
,
B
x

)
,

and similarly,

Gq(y) = y1−s−qk
(
2− s−q;

y
A

,
y
a

)
.

Now, the double inequality (2.111) follows by virtue of (2.105). �

Remark 2.30 Assume that  ,  > 0 and that the kernel K from Theorem 2.23 is decreas-
ing on [a,A]× [b,B] in each argument. This means that the function k1(x) = K(x,y) is
decreasing on [a,A], for any fixed y ∈ [b,B], as well as that the function k2(y) = K(x,y) is
decreasing on [b,B], for any fixed x ∈ [a,A]. Then, it follows that the double inequality

K(A,B)
a p

B p
f p(x) ≤ L(x,y) ≤ K(a,b)

A p

b p
f p(x)

holds for all (x,y) ∈ [a,A]× [b,B]. Moreover, if the function f is bounded on the interval
[a,A], then, it follows that

K(A,B)
a p

B p
f p
inf ≤ L(x,y) ≤ K(a,b)

A p

b p
f p
sup,

which means that

Linf ≥ K(A,B)
a p

B p
f p
inf and Lsup ≤ K(a,b)

A p

b p
f p
sup.

In the sequel, Hilbert-type inequalities with some particular homogeneous kernels that
are decreasing in each argument are encountered. Having in mind Remark 2.30, it suffices
to require boundedness of the non-negative function f : [a,A]→ R instead of boundedness
of the function L : [a,A]× [b,B]→ R, defined by (2.110).

Our first application of Theorem 2.23 deals with the homogeneous function K : R+ ×
R+ →R, defined by K(x,y) = (x+y)−s, s > 0. In this case, the weight function k( ;r1,r2)
can be expressed in terms of the incomplete Beta function. Recall that the incomplete Beta
function is defined by

Br (a,b) =
∫ r

0
ta−1 (1− t)b−1 dt, a,b > 0.

If r = 1, the incomplete Beta function coincides with the common Beta function. For more
details about the incomplete Beta function, the reader is referred to [3]. Now, making use



2.3 RELATED RESULTS ON HILBERT’S INEQUALITY 71

of the change of variable t = 1
u −1, it follows that

k( ;r1,r2) =
∫ r2

r1
(1+ t)−st−dt

=
∫ 1

r1+1

1
r2+1

us+−2(1−u)−du

= B 1
r1+1

(s+−1,1−)−B 1
r2+1

(s+−1,1−),

(2.112)

where 1− s <  < 1.
For the sake of the simplicity, we provide the corresponding consequence of Theorem

2.23 with parameters s = 1 and  =  = 1
pq .

Corollary 2.21 Let 1
p + 1

q = 1, p > 1, and let f : [a,A]→R, g : [b,B]→R be non-negative
measurable functions such that f is bounded on [a,A]. Then the inequalities

1
a+b

(
A
b

) 1
q

f p
supp,q( f ,g)

≥
[∫ A

a

(
B x

b+x

(
1
q , 1

p

)−B x
B+x

(
1
q , 1

p

))
f p(x)dx

] 1
p

×
[∫ B

b

(
B A

A+y

(
1
q , 1

p

)−B a
a+y

(
1
q , 1

p

))
gq(y)dy

] 1
q

−
∫ A

a

∫ B

b

f (x)g(y)
x+ y

dxdy

≥ 1
A+B

( a
B

) 1
q

f p
infp,q( f ,g)

(2.113)

hold, where

p,q( f ,g) =[(A−a)(B−b)]
1
p

[∫ A

a
x−1 f−p(x)dx

] 1
q
[∫ B

b
ygq(y)dy

] 1
q

−
∫ A

a
x−

1
q f 1−p(x)dx

∫ B

b
y

1
q g(y)dy.

Proof. We utilize inequalities in (2.111) with the kernel K(x,y) = (x+ y)−1, and with
the parameters s = 1,  =  = 1

pq . Now, observing that p,q( f ,g) = Mp,q( f ,g; 1
pq , 1

pq),
the inequalities in (2.113) hold by virtue of (2.112) and Remark 2.30, since the kernel K is
decreasing in each argument. �

Remark 2.31 It should be noticed here that the double inequality (2.113) represents an
improved version of the Hilbert inequality (2.98), for the case of bounded intervals in R+.

Remark 2.32 If p = q = 2, then the weight functions appearing in (2.113) can be ex-
pressed in terms of the inverse tangent function. More precisely, since Br

(
1
2 , 1

2

)
=

2arctan
√

r
1−r ,0 ≤ r ≤ 1, it follows that

B x
b+x

(
1
2
,
1
2

)
−B x

B+x

(
1
2
,
1
2

)
= 2arctan

√
Bx−√

bx

x+
√

Bb
, x > 0,
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and

B A
A+y

(
1
2
,
1
2

)
−B a

a+y

(
1
2
,
1
2

)
= 2arctan

√
Ay−√

ay

y+
√

Aa
, y > 0.

Utilizing Theorem 2.23 with the above kernel, for s = 1 and with parameters  =  =
1
pq , we obtain the following consequence:

Corollary 2.22 Let 1
p + 1

q = 1, p > 1, and let f : [a,A]→R, g : [b,B]→R be non-negative
measurable functions such that f is bounded on [a,A]. Then the inequalities

1
max{a,b}

(
A
b

) 1
q

f p
supp,q( f ,g)

≥
[∫ A

a
b,B(x) f p(x)dx

] 1
p
[∫ B

b
a,A(y)gq(y)dy

] 1
q

−
∫ A

a

∫ B

b

f (x)g(y)
max{x,y}dxdy

≥ 1
max{A,B}

( a
B

) 1
q

f p
infp,q( f ,g)

(2.114)

hold, where p,q(·, ·) is defined in Corollary 4.8, and a,A,b,B : R+ → R are functions
defined by

b,B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q

[(
x
b

) 1
q − (

x
B

) 1
q

]
, x ≤ b

p

[
1− (

b
x

) 1
p

]
+q

[
1− (

x
B

) 1
q

]
, b < x ≤ B

p

[(
B
x

) 1
p − (

b
x

) 1
p

]
, x > B

,

and

a,A(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p

[( y
a

) 1
p − ( y

A

) 1
p

]
, y ≤ a

p

[
1− ( y

A

) 1
p

]
+q

[
1−

(
a
y

) 1
q
]
, a < y ≤ A

q

[(
A
y

) 1
q −

(
a
y

) 1
q
]
, y > A

.

Proof. Utilizing (2.111) with the kernel K(x,y) = max−1{x,y}, and with the parame-
ters s = 1,  =  = 1

pq , it follows that

k

(
1
q
;
b
x
,
B
x

)
= b,B(x) and k

(
1
q
;
y
A

,
y
a

)
= a,A(y).

Now, the double inequality (2.114) holds due to Remark 2.30, since the function K(x,y) =
max−1{x,y} is decreasing in each argument. �
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A non-homogeneous example

Note that developed method for improving Hilbert-type inequalities may also be utilized
for kernels which are not homogeneous. Of course, in that case the starting point is Theo-
rem 2.21.

Similarly to the previous section, the following example deals with a non-homogene-
ous kernel K : R+ ×R+ → R, defined by K(x,y) = (1 + xy)−1, and with integrals taken
over bounded intervals in R+. In this case, the corresponding weight functions are also
expressed in terms of the incomplete Beta function.

Corollary 2.23 Let 1
p + 1

q = 1, p > 1, and let f : [a,A]→R, g : [b,B]→R be non-negative
measurable functions such that f is bounded on [a,A]. Then the inequalities

1
1+ab

(
A
b

) 1
q

f p
supp,q( f ,g)

≥
[∫ A

a
x

p−q
pq

(
B 1

1+bx

(
1
q , 1

p

)−B 1
1+Bx

(
1
q , 1

p

))
f p(x)dx

] 1
p

×
[∫ B

b
y

q−p
pq

(
B 1

1+ay

(
1
p , 1

q

)−B 1
1+Ay

(
1
p , 1

q

))
gq(y)dy

] 1
q

−
∫ A

a

∫ B

b

f (x)g(y)
1+ xy

dxdy

≥ 1
1+AB

( a
B

) 1
q

f p
infp,q( f ,g)

(2.115)

hold, where p,q(·, ·) is defined in Corollary 2.21.

Proof. Rewrite Theorem 2.21 for the finite measure spaces1 = [a,A], 0 < a < A <,
2 = [b,B], 0 < b < B <, with respective Lebesgue measures d1(x) = dx, d2(y) = dy,

and for K(x,y) = (1+ xy)−1, (x) = x
1
pq , (y) = y

1
pq . Then, passing to the new variable

t = xy and utilizing (2.112), it follows that

Fp(x) =
∫ B

b
(1+ xy)−1y−

1
q dy

= x−
1
p

∫ Bx

bx
(1+ t)−1t−

1
q dt

= x−
1
p

(
B 1

1+bx

(
1
q
,
1
p

)
−B 1

1+Bx

(
1
q
,
1
p

))
,

and similarly,

Gq(y) = y−
1
q

(
B 1

1+ay

(
1
p
,
1
q

)
−B 1

1+Ay

(
1
p
,
1
q

))
.

Moreover, since K(x,y) = (1 + xy)−1 is decreasing on R+ ×R+ in each argument, the
result follows by virtue of (2.105) and Remark 2.30. �
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Remark 2.33 Similarly to Remark 2.32, in the case of p = q = 2, the weight functions
appearing in (2.115) are also expressed in terms of the inverse tangent function, that is, we
have

B 1
1+bx

(
1
2
,
1
2

)
−B 1

1+Bx

(
1
2
,
1
2

)
= 2arctan

√
Bx−√

bx

1+ x
√

Bb
, x > 0,

and

B 1
1+ay

(
1
2
,
1
2

)
−B 1

1+Ay

(
1
2
,
1
2

)
= 2arctan

√
Ay−√

ay

1+ y
√

Aa
, y > 0.

2.3.2 Related results on multidimensional Hilbert’s inequality

Refinements and converses of multidimensional Hilbert’s inequality are mainly obtained
with the help of the previously presented improvements of Hölder’s inequality. These are
worked out for the case of the conjugate, as well as the non-conjugate exponents, in the
difference and/or in the ratio form. Corresponding results are then applied to homogeneous
kernels with the negative degree of homogeneity. The conditions on the best possible con-
stant factors in the obtained inequalities are also established and some particular settings
with homogeneous kernels and weight functions are considered. Finally, the comparison
to the existing results known from the literature is given.

The contents of this section corresponds for the most part to the contents of papers
[105] and [106].

Some extra notes on Hölder’s inequality

As it was previously pointed out, Hölder’s inequality is the starting point in obtaining
Hilbert’s inequality. In order to apply the presented improvements of Hölder’s inequal-
ity to multidimensional Hilbert’s inequality, we present its following form, as the most
convenient for this purpose:∫



n


i=1

Fi
i (x)d(x) ≤

n


i=1

||Fi
i ||1/i

, (2.116)

where Fi : → R, i = 1,2, . . . ,n, are non-negative measurable functions on  -finite mea-
sure space (,,) and i are positive real numbers such that n

i=1i = 1. The improve-
ment of the inequality (2.116) in the ratio form is given in the following lemma.

Lemma 2.1 Let (,,) be a  -finite measure space and let Fi :→R be non-negative
measurable functions, i = 1,2, . . . ,n. If n

i=1i = 1, i > 0, then the following series of
inequalities holds:[∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

]nmax1≤i≤n{i}

≤
∫


n
i=1 Fi

i (x)d(x)
n

i=1 ||Fi
i ||1/i

≤
[∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

]nmin1≤i≤n{i}
.

(2.117)
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Proof. The left-hand side of Hölder’s inequality (2.116) can be rewritten as

∫


n


i=1

Fi
i (x)d(x) =

∫


[
n


i=1

Fi
i (x)

]1−nm

·
[

n


i=1

F1/n
i (x)

]nm

d(x),

where m = min1≤i≤n{i} and i = (i −m)/(1−nm), i = 1,2, . . . ,n.
Since 1−nm≥ 0, the application of Hölder’s inequality to the previous relation yields

inequality

∫


n


i=1

Fi
i (x)d(x) ≤

[∫


n


i=1

Fi
i (x)d(x)

]1−nm

·
[∫



n


i=1

F1/n
i (x)d(x)

]nm

. (2.118)

On the other hand, the right-hand side of Hölder’s inequality (2.116) can be rewritten as

n


i=1

||Fi
i ||1/i

=

[
n


i=1

||Fi
i ||1/i

]1−nm

·
[

n


i=1

||F1/n
i ||n

]nm

. (2.119)

Now, relations (2.118) and (2.119) imply inequality∫


n
i=1 Fi

i (x)d(x)
n

i=1 ||Fi
i ||1/i

≤
[∫


n
i=1 Fi

i (x)d(x)

n
i=1 ||Fi

i ||1/i

]1−nm

·
[∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

]nm

.

(2.120)

Note that n
i=1i = 1, i ≥ 0, so yet another application of Hölder’s inequality implies∫


n
i=1 Fi

i (x)d(x)

n
i=1 ||Fi

i ||1/i

≤ 1,

that is, from (2.120) we get the right inequality in (2.117).
The left inequality in (2.117) is proved in a similar way. Namely, we use decomposition

∫


n


i=1

F1/n
i (x)d(x) =

∫


[
n


i=1

Fi
i (x)

]1/(nM)

·
[

n


i=1

Fi
i (x)

]1−1/(nM)

d(x),

where M = max1≤i≤n{i}, i = (M −i)/(nM − 1), i = 1,2, . . . ,n, and apply Hölder’s
inequality as in the first part of the proof. �

Clearly, the quotient between the left-hand side and the right-hand side of Hölder’s
inequality (2.116) is mutually bounded via the quotient of the same type involving equal

exponents. Moreover, since
∫


n
i=1 F1/n

i (x)d(x) ≤ n
i=1 ||F1/n

i ||n, the right inequality
in (2.117) yields a refinement, while the left one yields a converse of Hölder’s inequality
(2.116). The interpolating series of inequalities (2.117) is referred to as the refinement and
the converse of Hölder’s inequality in the ratio form.

On the other hand, the following lemma provides a refinement and a converse of
Hölder’s inequality in the difference form.
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Lemma 2.2 Let (,,) be a  -finite measure space and let Fi :→R be non-negative
measurable functions, i = 1,2, . . . ,n. If n

i=1i = 1, i > 0, then the following series of
inequalities holds:

n min
1≤i≤n

{i}
n


i=1

||Fi
i ||1/i

[
1−

∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

]

≤
n


i=1

||Fi
i ||1/i

−
∫


n


i=1

Fi
i (x)d(x)

≤ n max
1≤i≤n

{i}
n


i=1

||Fi
i ||1/i

[
1−

∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

]
.

(2.121)

Proof. The series of inequalities (2.121) can be derived throughout the refinement and
the converse of the classical arithmetic-geometric mean inequality. Namely, the difference
between the weight arithmetic and geometric mean can be rewritten as

n


i=1

iti −
n


i=1

ti
i =

n


i=1

(i −m)ti +m
n


i=1

ti−
[

n


i=1

ti
i

]1−nm

·
[

n


i=1

t1/n
i

]nm

, (2.122)

where m = min1≤i≤n{i}, i = (i −m)/(1− nm), ti > 0, i = 1,2, . . . ,n. In addition, the
arithmetic-geometric mean inequality yields[

n


i=1

ti
i

]1−nm

·
[

n


i=1

t1/n
i

]nm

≤ (1−nm)
n


i=1

ti
i +nm

n


i=1

t1/n
i , (2.123)

thus relations (2.122) and (2.123) provide inequality

n


i=1

iti −
n


i=1

ti
i ≥ (1−nm)

[
n


i=1

iti−
n


i=1

ti
i

]
+nm

[
n

i=1 xi

n
−

n


i=1

x1/n
i

]
,

that is,
n


i=1

iti −
n


i=1

ti
i ≥ nm

[
n

i=1 xi

n
−

n


i=1

x1/n
i

]
, (2.124)

since n
i=1i = 1 and n

i=1iti −n
i=1 ti

i ≥ 0.
Now, if we replace ti with Fi(x)/

∫
Fi(x)d(x) and taking into account that

∫
Fi(x)d(x)

= ||Fi
i ||1/i

1/i
= ||F1/n

i ||nn, inequality (2.124) takes form

n


i=1

i fi(x)∫
Fi(x)d(x)

− n
i=1 Fi

i (x)
n

i=1 ||Fi
i ||1/i

≥ nm

[
fi(x)

n
∫
Fi(x)d(x)

− n
i=1 F1/n

i (x)

n
i=1 ||F1/n

i ||n

]
,

that is,

1−
∫


n
i=1 Fi

i (x)d(x)
n

i=1 ||Fi
i ||1/i

≥ nm

[
1−

∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

]
,
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after integrating over  with respect to measure  .
To prove the right inequality in (2.121) we start with the relation

nM

[
n

i=1 xi

n
−

n


i=1

x1/n
i

]

=
n


i=1

(M−i)ti +
n


i=1

iti −nM

[
n


i=1

ti
i

]1/(nM)

·
[

n


i=1

tii

]1−1/(nM)

,

(2.125)

where M = max1≤i≤n{i} and i = (M−i)/(nM−1), i = 1,2, . . . ,n. Further, the arithmetic-
geometric mean inequality yields inequality

nM

[
n


i=1

ti
i

]1/(nM)

·
[

n


i=1

tii

]1−1/(nM)

≤
n


i=1

ti
i +(nM−1)

[
n


i=1

tii

]
. (2.126)

Therefore, the relations (2.125) and (2.126) imply inequality

nM

[
n

i=1 xi

n
−

n


i=1

x1/n
i

]
≥

n


i=1

iti −
n


i=1

ti
i +(nM−1)

[
n


i=1

iti −
n


i=1

tii

]
,

that is,

nM

[
n

i=1 xi

n
−

n


i=1

x1/n
i

]
≥

n


i=1

iti −
n


i=1

ti
i ,

since n
i=1 iti ≥n

i=1 tii , n
i=1 i = 1. The rest of the proof follows the same lines as the

proof of the left inequality in (2.121). �

Obviously, since
∫


n
i=1 F1/n

i (x)d(x) ≤n
i=1 ||F1/n

i ||n, the left inequality in (2.121)
yields the refinement, while the right one provides the converse of Hölder’s inequality. The
interpolating series of inequalities (2.121) is referred to as the refinement and the converse
of Hölder’s inequality in the difference form.

A refinement and a converse in ratio form: conjugate exponents

Some of the recent results concerning Hilbert’s inequality (1.36) include an extension to
multidimensional case, equipped with n conjugate exponents pi, that is, n

i=1 1/pi = 1,
pi > 1, n ≥ 2. For more details on the subject, the reader is referred to [37], [38], [118],
[184], [208] and the monograph [122]. Here we refer to paper [37], which provides a
unified treatment of the multidimensional Hilbert-type inequality in the setting with con-
jugate exponents. Suppose (i,i,i) are  -finite measure spaces and K : n

i=1i → R,
i j :  j → R, fi : i → R, i, j = 1,2, . . . ,n, are non-negative measurable functions. If
n

i, j=1i j(x j) = 1, then

∫


K(x)
n


i=1

fi(xi)d(x) ≤
n


i=1

||iii fi||pi , (2.127)
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where

i(xi) =

[∫
̂i

K(x)
n


j=1, j �=i

 pi
i j (x j)d̂ i(x)

]1/pi

(2.128)

and

=
n


i=1

i, ̂i
=

n


j=1, j �=i

 j, x = (x1,x2, . . . ,xn),

d(x) =
n


i=1

di(xi), d̂ i(x) =
n


j=1, j �=i

d j(x j).
(2.129)

The abbreviations as in (2.129) will be valid in the sequel. Also note that || · ||pi denotes
the usual norm in Lpi(i), that is

||iii fi||pi =
[∫

i

(iii fi)pi(xi)di(xi)
]1/pi

, i = 1,2, . . . ,n.

We are going to consider the ratio between the left-hand side and the right-hand side of
the inequality (2.127), in order to establish the lower and the upper bound for the above
mentioned quotient, expressed in terms of a similar quotient. By means of the lower bound
we get the converse of the Hilbert-type inequality (2.127), while the upper bound provides
its refinement. Such improvements will be referred to as the refinement and the converse
of the Hilbert-type inequality in the ratio form. Since Hilbert-type inequality is derived by
means of Hölder’s inequality, the main results are derived with the help of a sophisticated
use of Hölder’s inequality. The following theorem provides the refinement of the inequality
(2.127).

Theorem 2.24 Let (i,i,i) be  -finite measure spaces and let K :→ R, i j : j →
R, fi :i →R, i, j = 1,2, . . . ,n be non-negativemeasurable functions. Ifn

i, j=1i j(x j)= 1,
then ∫

K(x)n
i=1 fi(xi)d(x)

n
i=1 ||iii fi||pi

≤
[∫

K(x)n
i=1 f pi/n

i (xi)n
i, j=1 

pi/n
i j (x j)d(x)

]n/max1≤i≤n{pi}

n
i=1 ||iii fi||pi/max1≤i≤n{pi}

pi

,

(2.130)

where pi > 1 are conjugate exponents andi :i →R are defined by (2.128), i = 1,2, . . . ,n.

Proof. The left-hand side of the Hilbert-type inequality (2.127) can be rewritten in the
form

∫


K(x)
n


i=1

fi(xi)d(x) =
∫


[
n


i=1

F1/qi
i (x)

]1−n/M

·
[

n


i=1

F1/n
i (x)

]n/M

d(x),
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where the functions Fi :→ R are defined by

Fi(x) = K(x) f pi
i (xi)

n


j=1

 pi
i j (x j), i = 1,2, . . . ,n, (2.131)

M = max1≤i≤n{pi}, and

qi =
pi(M−n)
M− pi

, i = 1,2, . . . ,n.

Clearly, the above relation is meaningful because if M = pl for some l ∈ {1,2, . . . ,n}, then
1/ql = 0. Further, the application of Hölder’s inequality to the above form of the left-hand
side of inequality (2.127) yields inequality

∫


K(x)
n


i=1

fi(xi)d(x)

≤
[∫



n


i=1

F1/qi
i (x)d(x)

]1−n/M

·
[∫



n


i=1

F1/n
i (x)d(x)

]n/M

.

(2.132)

On the other hand, by using the well-known Fubini’s theorem we have

||F1/t
i ||t =

[∫


K(x)(ii fi)
pi (xi)

n


j=1, j �=i

 pi
i j (x j)d(x)

]1/t

=

[∫
i

(ii fi)pi (xi)

(∫
̂i

K(x)
n


j=1, j �=i

 pi
i j (x j)d̂ i(x)

)
di(xi)

]1/t

=
[∫

i

(iii fi)
pi (xi)di(xi)

]1/t

= ||iii fi||pi/t
pi , i = 1,2, . . . ,n, t > 0,

(2.133)

and the right-hand side of Hilbert-type inequality (2.127) can be rewritten in the form

n


i=1

||iii fi||pi =

[
n


i=1

||F1/qi
i ||qi

]1−n/M

·
[

n


i=1

||F1/n
i ||n

]n/M

.

Therefore, inequality (2.132) can be expressed in the following form:∫
K(x)n

i=1 fi(xi)d(x)
n

i=1 ||iii fi||pi

≤
[∫


n
i=1 F1/qi

i (x)d(x)

n
i=1 ||F1/qi

i ||qi

]1−n/M [∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

]n/M

.

(2.134)
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Obviously M ≥ n. If M > n, then qi > 0 and

n


i=1

1
qi

=
n


i=1

M− pi

pi(M−n)
=

1
M−n

[
M

n


i=1

1
pi

−n

]
= 1,

that is, qi are also conjugate exponents and Hölder’s inequality yields inequality∫


n
i=1 F1/qi

i (x)d(x) ≤n
i=1 ||F1/qi

i ||qi . Hence, relation (2.134) implies inequality

∫
K(x)n

i=1 fi(xi)d(x)
n

i=1 ||iii fi||pi

≤
[∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

]n/M

,

which is also valid if M = n. Finally, by substituting the functions Fi in the last inequality,
we get (2.130) as required. �

Remark 2.34 Bearing in mind the notation as in the proof of Theorem 2.24, by Hölder’s

inequality we have
∫


n
i=1 F1/n

i (x)d(x) ≤ n
i=1 ||F1/n

i ||n. Therefore, the quotient on
the right-hand side of inequality (2.130) is not greater than 1, which means that (2.130)
represents the refinement of inequality (2.127).

In a similar way, the converse of inequality (2.127) is obtained, which is the contents
of the following theorem.

Theorem 2.25 Let (i,i,i) be  -finite measure spaces and let K :→ R, i j : j →
R, fi :i → R, i, j = 1,2, . . . ,n, be non-negative measurable functions. If n

i, j=1 i j(x j) =
1, then ∫

K(x)n
i=1 fi(xi)d(x)

n
i=1 ||iii fi||pi

≥
[∫

K(x)n
i=1 f pi/n

i (xi)n
i, j=1 

pi/n
i j (x j)d(x)

]n/min1≤i≤n{pi}

n
i=1 ||iii fi||pi/min1≤i≤n{pi}

pi

,

(2.135)

where pi > 1 are conjugate exponents andi :i →R are defined by (2.128), i = 1,2, . . . ,n.

Proof. The starting point in obtaining (2.135) is the relation

∫


n


i=1

F1/n
i (x)d(x) =

∫


[
K(x)

n


i=1

fi(xi)

]m/n[ n


i=1

F1/ri
i (x)

]1−m/n

d(x),

where the functions Fi : → R are defined by (2.131), m = min1≤i≤n{pi} and

ri =
pi(n−m)
pi −m

, i = 1,2, . . . ,n.
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If m = pl for some l ∈ {1,2, . . . ,n}, then 1/rl = 0, which means that the above decompo-
sition is meaningful. Now, the application of Hölder’s inequality yields relation∫



n


i=1

F1/n
i (x)d(x)

≤
[∫


K(x)

n


i=1

fi(xi)d(x)

]m/n[∫


n


i=1

F1/ri
i (x)d(x)

]1−m/n

.

(2.136)

On the other hand, regarding relation (2.133) we have

n


i=1

||F1/n
i ||n =

[
n


i=1

||iii fi||pi

]m/n

·
[

n


i=1

||F1/ri
i ||ri

]1−m/n

.

If we divide inequality (2.136) with the previous relation, we get inequality∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

≤
[∫

K(x)n
i=1 fi(xi)d(x)

n
i=1 ||iii fi||pi

]m/n
[∫


n
i=1 F1/ri

i (x)d(x)

n
i=1 ||F1/ri

i ||ri

]1−m/n

.

(2.137)

Obviously m ≤ n. If m < n, then ri > 0 and

n


i=1

1
ri

=
n


i=1

pi−m
pi(n−m)

=
1

n−m

[
n−m

n


i=1

1
pi

]
= 1,

that is, ri are conjugate exponents. Hence, yet another application of Hölder’s inequality
implies that ∫


n
i=1 F1/ri

i (x)d(x)

n
i=1 ||F1/ri

i ||ri
≤ 1.

Therefore, inequality (2.137) yields∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n
≤

[∫
K(x)n

i=1 fi(xi)d(x)
n

i=1 ||iii fi||pi

]m/n

,

that is, [∫


n
i=1 F1/n

i (x)d(x)

n
i=1 ||F1/n

i ||n

]n/m

≤
∫
K(x)n

i=1 fi(xi)d(x)
n

i=1 ||iii fi||pi

.

Note that the last inequality also holds for m = n. Finally, making use of the definition
(2.131) of Fi, the last inequality yields (2.135). �

Remark 2.35 The proofs of theorems 2.24 and 2.25 are taken from paper [105]. Note
that they follow directly from Lemma 2.1, i.e. its relation (2.117).
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Application to homogeneous kernels

General results are now applied to homogeneous functions with the negative degree of
homogeneity. Further, regarding the notation from the previous considerations, we as-
sume that i = R+, equipped with the non-negative Lebesgue measures di(xi) = dxi,
i = 1,2, . . . ,n. In addition, we have = R

n
+ and dx = dx1dx2 . . .dxn.

We introduce the real parameters Ai j, i, j = 1,2, . . . ,n, such that n
i=1 Ai j = 0, j =

1,2, . . . ,n, and denote i = n
j=1 Ai j, i = 1,2, . . . ,n. Next, we consider the set of power

functions i j : R+ → R defined by

i j(x j) = x j
Ai j . (2.138)

Clearly, above defined power functions satisfy the condition

n


i, j=1

i j(x j) =
n


j=1

n


i=1

x j
Ai j =

n


j=1

x j
n

i=1 Ai j = 1,

since n
i=1 Ai j = 0. Therefore, functions i j , i, j = 1,2, . . . ,n satisfy the conditions as in

Theorems 2.24 and 2.25.
Recall that function K : R

n
+ → R is said to be homogeneous of degree −s, s > 0, if

K(tx) = t−sK(x) for all t > 0. Furthermore, for a = (a1,a2, . . . ,an) ∈ R
n, we define

ki(a) =
∫
R

n−1
+

K(ûi)
n


j=1, j �=i

u
a j
j d̂iu, i = 1,2, . . . ,n, (2.139)

where ûi =(u1, . . . ,ui−1,1,ui+1, . . . ,un), d̂iu = du1 . . .dui−1dui+1 . . .dun, and provided that
the above integral converges. Note that the constant factor ki(a) does not depend on the
component ai. Thus, the component ai can be replaced by an arbitrary real number, which
will be used in the sequel, for the sake of simplicity. Further, in the described setting we
can find the explicit formula for the weight function (2.128) including the constant factor
ki(a). More precisely, we use the substitution x j = u jxi, j �= i, that is, d̂ix = xn−1

i d̂iu, while
the homogeneity of the kernel K yields relation K(x) = x−s

i K(ûi). Moreover, regarding
definition (2.139) we have

i(xi) =

[∫
R

n−1
+

K(x)
n


j=1, j �=i

x j
piAi j d̂ix

]1/pi

=

[
x
n−1−s+n

j=1, j �=i piAi j

i

∫
R

n−1
+

K(ûi)
n


j=1, j �=i

u
piAi j
j d̂iu

]1/pi

= x(n−1−s)/pi+i−Aii
i k1/pi

i (piAi),

(2.140)

where Ai = (Ai1,Ai2, . . . ,Ain), i = 1,2, . . . ,n.
What follows is a simple consequence of theorems 2.24 and 2.25, in the described

setting with homogeneous kernels. Note that inequalities (2.130) and (2.135) can be inter-
preted as the interpolating series of inequalities for the quotient between the left-hand side
and the right-hand side of inequality (2.127).
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Corollary 2.24 Let pi > 1, i = 1,2, . . . ,n be conjugate exponents and let Ai j, i, j =
1,2, . . . ,n be the real parameters such that n

i=1 Ai j = 0, j = 1,2, . . . ,n. If K : R
n
+ → R

is a non-negative measurable homogeneous function of degree −s, s > 0, and fi : R+ →R,
i = 1,2, . . . ,n are non-negative measurable functions, then[∫

R
n
+

K(x)n
i=1 x

n
j=1 p jA ji/n

i f pi/n
i (xi)dx

]n/min1≤i≤n{pi}

[n
i=1 ki(piAi)]

1/min1≤i≤n{pi}n
i=1 ||x(n−1−s)/pi+i

i fi||pi/min1≤i≤n{pi}
pi

≤
∫
R

n
+

K(x)n
i=1 fi(xi)dx

n
i=1 k1/pi

i (piAi)n
i=1 ||x(n−1−s)/pi+i

i fi||pi

≤

[∫
R

n
+

K(x)n
i=1 x

n
j=1 p jA ji/n

i f pi/n
i (xi)dx

]n/max1≤i≤n{pi}

[n
i=1 ki(piAi)]

1/max1≤i≤n{pi}n
i=1 ||x(n−1−s)/pi+i

i fi||pi/max1≤i≤n{pi}
pi

,

(2.141)

where i = n
j=1 Ai j, i = 1,2, . . . ,n and ki(·), i = 1,2, . . . ,n is defined by (2.139).

Proof. The proof is a direct consequence of theorems 2.24 and 2.25. Namely, if
we substitute functions i j and i, i, j = 1,2, . . . ,n, defined respectively by (2.138) and
(2.140), in relations (2.130) and (2.135), we get the series of inequalities (2.141) by a
straightforward computation. �

Remark 2.36 The left-hand side inequality in (2.141) yields the converse, while the right-
hand side inequality provides the refinement of the general Hilbert-type inequality from
paper [184]. Moreover, by using xi = ui(ti), where ui : (ai,bi) → R are strictly increasing
differentiable functions satisfying ui(ai) = 0, ui(bi) = , the interpolating series (2.141)
also yields a refinement and a converse of the correspondingmultidimensional Hilbert-type
inequality from paper [208].

In papers [37], [38], [114] and [208] the authors investigated the conditions under
which the constant factors involved in appropriate Hilbert-type inequalities were the best
possible in the sense that they could not be replaced with the smaller constants.

In the sequel we consider the problem of the best possible constant factors involved in
the interpolating series of inequalities (2.141). By the similar reasoning as in the above
mentioned papers and within the same problem area, the best possible constant factors can
be obtained if they don’t contain conjugate parameters pi in the exponents. For that reason,
we assume

k1(p1A1) = k2(p2A2) = · · · = kn(pnAn). (2.142)

If we use the change of variables u1 = 1/t2, u3 = t3/t2, u4 = t4/t2, . . . ,un = tn/t2, which
provides the Jacobian of the transformation∣∣∣∣ (u1,u3, . . . ,un)

 (t2,t3, . . . ,tn)

∣∣∣∣ = t−n
2 ,
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we have

k2(p2A2) =
∫
R

n−1
+

K(t̂1)ts−n−p2(2−A22)
2

n


j=3

t
p2A2 j
j d̂1t

= k1(p1A11,s−n− p2(2 −A22), p2A23, . . . , p2A2n).

According to (2.142), we have p1A12 = s−n− p2(2 −A22), p1A13 = p2A23, . . . , p1A1n =
p2A2n. In a similar manner we express ki(piAi), i = 3, . . . ,n, in terms of k1(·). In such a
way we see that (2.142) is fulfilled if

p jA ji = s−n− pi(i −Aii), i, j = 1,2, . . . ,n, i �= j. (2.143)

The above set of conditions also implies that piAik = p jA jk, when k �= i, j. Hence, we use
abbreviations Ã1 = pnAn1 and Ãi = p1A1i, i �= 1. Since n

i=1 Ai j = 0, one easily obtains that
p jA j j = Ã j(1− p j) and n

i=1 Ãi = s−n (see also paper [208]).
In order to obtain the best possible constant factors, we establish some more specific

conditions about the convergence of the integral k1(a), a = (a1,a2, . . . ,an), defined by
(2.139). More precisely, we assume that k1(a) < for a2, . . . ,an >−1,n

i=2 ai < s−n+1,
and n ∈ N.

Hence, in the described setting, the interpolating series of inequalities (2.141) can be
rewritten as

k1−n/m
1 (Ã)

[∫
R

n
+

K(x)n
i=1 xÃi(1−pi/n)

i f pi/n
i (xi)dx

]n/m

n
i=1 ||x−Ãi−1/pi

i fi||pi/m
pi

≤
∫
R

n
+

K(x)n
i=1 fi(xi)dx

n
i=1 ||x−Ãi−1/pi

i fi||pi

≤k1−n/M
1 (Ã)

[∫
R

n
+

K(x)n
i=1 xÃi(1−pi/n)

i f pi/n
i (xi)dx

]n/M

n
i=1 ||x−Ãi−1/pi

i fi||pi/M
pi

,

(2.144)

where m = min1≤i≤n{pi}, M = max1≤i≤n{pi} and Ã = (Ã1, Ã2, . . . , Ãn). In the sequel, we
show that the constant factors involved in the series of inequalities (2.144) are the best
possible under certain assumptions on the homogeneous kernel.

Theorem 2.26 Let K : R
n
+ → R be a non-negative measurable homogeneous function of

degree −s, s > 0, such that for every i = 2,3, . . . ,n

K(1,t2, . . . ,ti, . . . ,tn) ≤CK(1,t2, . . . ,0, . . . ,tn), 0 ≤ ti ≤ 1, (2.145)

where C is a positive constant. Then the constant factors k1−n/M
1 (Ã) and k1−n/m

1 (Ã) are
the best possible in the series of inequalities (2.144).
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Proof. Suppose k1−n/M
1 (Ã) is not the best possible constant factor in (2.144), that

is, suppose there exists a positive constant  < k1−n/M
1 (Ã) such that the right-hand side

inequality in (2.144) holds if we replace k1−n/M
1 (Ã) with  . In other words,∫

R
n
+

K(x)n
i=1 fi(xi)dx

n
i=1 ||x−Ãi−1/pi

i fi||pi

≤
[∫

R
n
+

K(x)n
i=1 xÃi(1−pi/n)

i f pi/n
i (xi)dx

]n/M

n
i=1 ||x−Ãi−1/pi

i fi||pi/M
pi

(2.146)

holds for all non-negative measurable functions fi : R+ →R, provided that all the integrals
in the inequality converge. For this purpose, let’s substitute the functions

f̃i(xi) =

{
0, 0 < x < 1,

xÃi−/pi
i , x ≥ 1,

(2.147)

where 0 <  < min1≤i≤n{pi + piÃi}, in the previous inequality.

Since ||x−Ãi−1/pi
i f̃i||pi = ||x−(1+)/pi

i ||pi = −1/pi, the left-hand side of inequality (2.146)
becomes

I = 
∫

[1,〉n
K(x)

n


i=1

xÃi−/pi
i dx,

while the right-hand side becomes

IM = 

[

∫

[1,〉n
K(x)

n


i=1

xÃi−/n
i dx

]n/M

.

Obviously, by using the variable changes ui = xi/x1, i = 2, . . . ,n, and the homogeneity of
the kernel K, the left-hand side I can be rewritten as

I = 
∫ 

1
x−1−
1

[∫
[1/x1,〉n−1

K(û1)
n


i=2

uÃi−/pi
i d̂1u

]
dx1,

providing the inequality

I ≥
∫ 

1
x−1−
1

[∫
R

n−1
+

K(û1)
n


i=2

uÃi−/pi
i d̂1u

]
dx1

− 
∫ 

1
x−1−
1

[
n


i=2

∫
Di

K(û1)
n


j=2

u
Ã j−/p j
j d̂1u

]
dx1

=k1

(
Ã− 1/p

)
− 

∫ 

1
x−1−
1

[
n


i=2

∫
Di

K(û1)
n


j=2

u
Ã j−/p j
j d̂1u

]
dx1,

(2.148)
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where Di = {(u2,u3, . . . ,un);0 < ui ≤ 1/x1,u j > 0, j �= i} and 1/p = (1/p1, . . . ,1/pn).
Without loss of generality, it is enough to find the upper bound for the integral∫
D2

K(û1)n
j=2 u

Ã j−/p j
j d̂1u. Regarding (2.145), we have

∫
D2

K(û1)
n


j=2

u
Ã j−/p j
j d̂1u

≤C

[∫
R

n−2
+

K(1,0,u3, . . . ,un)
n


j=3

u
Ã j−/p j
j du3 . . .dun

]∫ 1/x1

0
uÃ2−/p2

2 du2

=C(1− /p2 + Ã2)−1x/p2−Ã2−1
1 k1(Ã1− /p1, Ã3− /p3, . . . , Ãn − /pn),

where k1(Ã1 − /p1, Ã3 − /p3, . . . , Ãn − /pn) is well defined since obviously n
i=3 Ãi <

s−n+2. Hence, we have∫
Di

K(û1)
n


j=2

u
Ã j−/p j
j d̂1u = x/pi−Ãi−1

1 O(1), i = 2,3, . . . ,n,

and consequently

∫ 

1
x−1−
1

[
n


i=2

∫
Di

K(û1)
n


j=2

u
Ã j−/p j
j d̂1u

]
dx1 = O(1).

Thus, by using (2.148), we have

I ≥ k1

(
Ã− 1/p

)
−o(1), when  → 0+. (2.149)

On the other hand, by using the fact thatn
i=1 Ãi = s−n, the expression IM can be bounded

from above in the following way:

IM = 

[

∫ 

1
x−1−
1

[∫
[1/x1,〉n−1

K(û1)
n


i=2

uÃi−/n
i d̂1u

]
dx1

]n/M

≤ 

[

∫ 

1
x−1−
1

[∫
R

n−1
+

K(û1)
n


i=2

uÃi−/n
i d̂1u

]
dx1

]n/M

= kn/M
1

(
Ã− /n1

)
, when  → 0+.

(2.150)

Here, 1 denotes the constant n-tuple (1,1, . . . ,1). Finally, relations (2.149) and (2.150)
yield inequality

k1

(
Ã− 1/p

)
−o(1)≤ kn/M

1

(
Ã− /n1

)
, when  → 0+,

i.e. k1−n/M
1 (Ã) ≤  , which is obviously opposite to our assumption.
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It remains to prove that k1−n/m
1 (Ã) is the best possible constant factor in the left-

hand side inequality in (2.144). Suppose, on the contrary, that there exists a constant

 > k1−n/m
1 (Ã), such that the inequality∫

R
n
+

K(x)n
i=1 fi(xi)dx

n
i=1 ||x−Ãi−1/pi

i fi||pi

≥
[∫

R
n
+

K(x)n
i=1 xÃi(1−pi/n)

i f pi/n
i (xi)dx

]n/m

n
i=1 ||x−Ãi−1/pi

i fi||pi/m
pi

(2.151)

holds for all non-negative measurable functions fi : R+ →R, provided that all the integrals
in the inequality converge. For the above choice of functions f̃i defined by (2.147), the left-
hand side of inequality (2.151) becomes I as before, while the right-hand side, denoted here
by Im, can be rewritten as

Im = 

[

∫ 

1
x−1−
1

[∫
[1/x1,〉n−1

K(û1)
n


i=2

uÃi−/n
i d̂1u

]
dx1

]n/m

.

Now, similarly as in the first part of the proof, we get the estimates

I ≤ k1

(
Ã− 1/p

)
,

Im ≥ k
n
m
1

(
Ã− /n1

)
−o(1),

(2.152)

i.e. k1(Ã− 1/p)≥ k
n
m
1 (Ã− /n1)−o(1), when  → 0+. Finally, by letting  → 0+ we

get k1−n/m
1 (Ã) ≥  , which is a contradiction. The proof is now completed. �

If we consider these results in some particular settings, we obtain the refinements and
the converses of some results previously known from the literature.

Example 2.2 Let

Aii =
(n− s)(pi−1)

p2
i

and Ai j =
s−n
pi p j

, i, j = 1,2, . . . ,n, i �= j. (2.153)

These parameters are symmetric and

n


i=1

Ai j =
n


j=1

Ai j =
(n− s)(pi−1)

p2
i

+
n


j=1, j �=i

s−n
pip j

=
n− s
pi

(
1−

n


j=1

1
p j

)
= 0.

Moreover, the above defined parameters satisfy conditions (2.143), so the resulting re-
lations will include the best possible constant factors. More precisely, in the described
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setting, the interpolating series of inequalities (2.144) reads

[k1((s−n)1/p)]1−n/m

[∫
R

n
+

K(x)n
i=1 x(s−n)(n−pi)/(npi)

i f pi/n
i (xi)dx

]n/m

n
i=1 ||x(n−1−s)/pi

i fi||pi/m
pi

≤
∫
R

n
+

K(x)n
i=1 fi(xi)dx

n
i=1 ||x(n−1−s)/pi

i fi||pi

≤ [k1((s−n)1/p)]1−n/M

[∫
R

n
+

K(x)n
i=1 x(s−n)(n−pi)/(npi)

i f pi/n
i (xi)dx

]n/M

n
i=1 ||x(n−1−s)/pi

i fi||pi/M
pi

,

(2.154)

where m = min1≤i≤n{pi}, M = max1≤i≤n{pi}. However, under assumption (2.145), the
constant factors [k1((s−n)1/p)]1−n/m and [k1((s−n)1/p)]1−n/M are the best possible in
the interpolating series (2.154).

A typical example of a homogeneous kernel with the negative degree of homogeneity
is the function K : R

n
+ → R, defined by

K(x) =
1

(n
i=1 xi)

s , s > 0. (2.155)

Clearly, K is a homogeneous function of degree −s and the constant (2.139) can be ex-
pressed in terms of the usual Gamma function . For that reason, we use the well-known
formula ∫

R
n
+

n−1
i=1 uai−1

i(
1+n−1

i=1 ui
)n

i=1 ai
d̂nu = n

i=1(ai)
(n

i=1 ai)
, (2.156)

which holds for ai > 0, i = 1,2, . . .n (see, e.g. [38]). In such a way, the constant factors
ki(piAi), i = 1,2, . . . ,n, involved in the series of inequalities (2.141) become

ki(piAi) =
(s−n+1− pii + piAii)

(s)

n


j=1, j �=i

(1+ piAi j), i = 1,2, . . . ,n,

provided that Ai j > −1/pi, i �= j and Aii −i > (n− s−1)/pi.
It is easy to see that the kernel (2.155) satisfies the relation (2.145). Hence, according

to Theorem 2.26, the interpolating series of inequalities (2.141), equipped with the kernel
(2.155) and the parameters Ai j satisfying conditions (2.143), contains the best possible
constant factors.

Remark 2.37 If K : R
n
+ → R is defined by (2.155), then, regarding (2.156), we easily

compute the constant factor k1((s−n)1/p) included in the interpolating series of inequal-
ities in (2.154). Namely, we have

k1((s−n)1/p) =
1

(s)

n


i=1


(

pi + s−n
pi

)
,
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provided that s > n−m. This constant factor appears in paper [38] as the best possible in
the Hilbert-type inequality determined with the middle quotient in the interpolating series
(2.154). Hence, relations as in (2.154) represent the refinement and the converse of the
corresponding Hilbert-type inequality from paper [38].

Example 2.3 Suppose Ai, i = 1,2, . . . ,n are the real parameters satisfying relations (n−
s−1)/pi−1 < Ai < 1/pi−1, provided that s > n−2. Of course, we use convention p0 = pn.
Now, we define parameters Ai j, i, j = 1,2, . . . ,n, by

Ai j =

⎧⎨⎩
Ai, j = i,
−Ai+1, j = i+1,
0 otherwise,

(2.157)

where the indices are taken modulo n from the set {1,2, . . . ,n}. Now, if the kernel K :
R

n
+ → R is defined by (2.155), then the series of inequalities (2.141) becomes{∫

R
n
+
(n

i=1 xi)−sn
i=1 x(pi−pi−1)Ai/n

i f pi/n
i (xi)dx

}n/min1≤i≤n{pi}

Rmn
i=1 ||x(n−1−s)/pi+Ai−Ai+1

i fi||pi/min1≤i≤n{pi}
pi

≤
∫
R

n
+
(n

i=1 xi)−sn
i=1 fi(xi)dx

Rn
i=1 ||x(n−1−s)/pi+Ai−Ai+1

i fi||pi

≤
{∫

R
n
+
(n

i=1 xi)−sn
i=1 x(pi−pi−1)Ai/n

i f pi/n
i (xi)dx

}n/max1≤i≤n{pi}

RMn
i=1 ||x(n−1−s)/pi+Ai−Ai+1

i fi||pi/max1≤i≤n{pi}
pi

,

(2.158)

where the constant factors Rm, R, and RM are given by

Rm =
[
n

i=1(s−n+1+ piAi+1)(1− piAi+1)
(s)

]1/min1≤i≤n{pi}
,

R = n
i=1(s−n+1+ piAi+1)

1/pi (1− piAi+1)1/pi

(s)
,

RM =
[
n

i=1(s−n+1+ piAi+1)(1− piAi+1)
(s)

]1/max1≤i≤n{pi}
.

Remark 2.38 The interpolating series of inequalities (2.158) provides the refinement and
the converse of the multidimensional Hilbert-type inequality from [43] (see also [118]).
Moreover, the parameters Ai j defined by (2.157), can satisfy the set of conditions as in
(2.143) only for n = 2. In this case, the set of conditions (2.143) reduces to the relation
p1A2 + p2A1 = 2− s, providing the best possible constant factors[

(1− p1A2)(1− p2A1)
(s)

]1−2/min{p1,p2}

and [
(1− p1A2)(1− p2A1)

(s)

]1−2/max{p1,p2}

in (2.158) for n = 2.
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Refinements and converses: non-conjugate exponents

In paper [42], a unified treatment of multidimensional Hilbert-type inequality in the setting
with non-conjugate exponents was provided. Thus we firstly recall the definition of non-
conjugate parameters.

Let pi be real parameters satisfying

n


i=1

1
pi

> 1, pi > 1, i = 1,2, . . . ,n. (2.159)

The parameters p′i are defined as associated conjugates, that is

1
pi

+
1
p′i

= 1, i = 1,2, . . . ,n. (2.160)

Since pi > 1, it follows that p′i > 1, i = 1,2, . . . ,n. In addition, we define

 =
1

n−1

n


i=1

1
p′i

. (2.161)

Clearly, relations (2.159) and (2.160) imply that 0 <  < 1. Finally, we introduce the
parameters qi defined by

1
qi

=  − 1
p′i

, i = 1,2, . . . ,n, (2.162)

assuming qi > 0, i = 1,2, . . . ,n. The conditions (2.159)–(2.162) establish the n-tuple of
non-conjugate exponents and were given by Bonsall in [41], more than half of a century
ago. The above conditions also imply relations  = n

i=1 1/qi and 1/qi + 1−  = 1/pi,
i = 1,2, . . . ,n. Of course, if  = 1, then n

i=1 1/pi = 1, which represents the setting with
conjugate parameters.

General multidimensional Hilbert-type inequality (2.127) with accompanied abbrevi-
ated notation (2.129) is provided in the above described setting with

i(xi) =

[∫
̂i

K(x)
n


j=1, j �=i

qi
i j (x j)d̂ i(x)

]1/qi

. (2.163)

In such a way, results from papers [38], [43], [44] and [118] are extended to the case
of non-conjugate exponents. For more details, the reader is referred to [42].

Similarly as it was done in the case of conjugate exponents, the ratio and also the differ-
ence between the left-hand side and the right-hand side of the inequality (2.127) are consid-
ered here, in its non-conjugate exponents setting. In such a way, two pairs of refinements
and converses of this inequality are obtained, all by means of the appropriate improvements
of related Hölder’s inequality. However, Hölder’s inequality includes conjugate parame-
ters. We use Bonsall’s idea from paper [41] about reduction of non-conjugate exponents to
the setting which includes conjugate exponents. Regarding the definitions (2.159)–(2.162)
of non-conjugate exponents, the essence of the above mentioned idea is the apparently
trivial observation that n

i=1 1/qi +(1− ) = 1 and the application of Hölder’s inequality
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to conjugate exponents qi, i = 1,2, . . . ,n, and 1/(1− ). In such a way, by using refine-
ments and converses of Hölder’s inequality from Section 2.3.2, we obtain refinements and
converses of multidimensional Hilbert-type inequality (2.127) as well.

Hence the following result provides the refinement and the converse of Hilbert-type
inequality (2.127) in the non-conjugate exponents setting, in the ratio form.

Theorem 2.27 Suppose that pi, p′i, qi, i = 1,2, . . . ,n and  are real parameters satisfying
conditions (2.159)–(2.162). Let (i,i,i) be  -finite measure spaces, and let K : →
R, i j :  j → R, fi : i → R, i, j = 1,2, . . . ,n be non-negative measurable functions. If
n

i, j=1i j(x j) = 1, then

{∫


[
Kn(x)n

i=1 (iii fi)
2pi (xi)−qi

i (xi)n
i, j=1, j �=i

qi
i j (x j)

]1/(n+1)
d(x)

}(n+1)M

n
i=1 ||iii fi||2Mpi

pi

≤
∫
K (x)n

i=1 fi(xi)d(x)
n

i=1 ||iii fi||pi

≤

{∫


[
Kn(x)n

i=1 (iii fi)2pi (xi)−qi
i (xi)n

i, j=1, j �=i
qi
i j (x j)

]1/(n+1)
d(x)

}(n+1)m

n
i=1 ||iii fi||2mpi

pi

,

(2.164)

where i :i → R are defined by (2.163) and m = min{1/q1,1/q2, . . . ,1/qn,1−}, M =
max{1/q1,1/q2, . . . ,1/qn,1−}.

Proof. The left-hand side of the Hilbert-type inequality (2.127) can be rewritten in the
form ∫


K (x)

n


i=1

fi(xi)d(x) =
∫


n


i=1

F1/qi
i (x) ·F1−

n+1 (x)d(x),

where

Fi(x) = K(x)
(iii fi)

pi (xi)
qi

i (xi)

n


j=1, j �=i

qi
i j (x j), i = 1,2, . . . ,n, (2.165)

and

Fn+1(x) =
n


i=1

(iii fi)pi (xi). (2.166)

Now we apply the interpolating series of inequalities (2.117) with n+ 1 instead of n and
the parameters i = 1/qi, i = 1,2, . . . ,n, and n+1 = 1− . Clearly, due to definitions of
non-conjugate exponents, we have n+1

i=1 i = 1. Moreover, by using Fubini’s theorem we
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have

||F1/qi
i ||qi =

[∫


K(x)
(iii fi)

pi (xi)
qi

i (xi)

n


j=1, j �=i

qi
i j (x j)d(x)

]1/qi

=

[∫
i

(iii fi)pi (xi)
qi

i (xi)

(∫
̂i

K(x)
n


j=1, j �=i

qi
i j (x j)d̂ i(x)

)
di(xi)

]1/qi

=
[∫

i

(iii fi)pi (xi)di(xi)
]1/qi

= ||iii fi||pi/qi
pi , i = 1,2, . . . ,n,

and

||F1−
n+1 ||1/1− =

[∫


n


i=1

(iii fi)
pi (xi)d(x)

]1−

=
n


i=1

[∫
i

(iii fi)pi (xi)di(xi)
]1−

=
n


i=1

||iii fi||pi(1− )
pi ,

which yields relation

n


i=1

||F1/qi
i ||qi · ||F1−

n+1 ||1/1− =
n


i=1

||iii fi||pi(1/qi+1− )
pi =

n


i=1

||iii fi||pi . (2.167)

Similarly, we have

||F1/n+1
i ||n+1 =

[∫
i

(iii fi)
pi (xi)di(xi)

]1/n+1

= ||iii fi||pi/n+1
pi , i = 1,2, . . . ,n,

and

||F1/n+1
n+1 ||n+1 =

n


i=1

[∫
i

(iii fi)pi (xi)di(xi)
]1/n+1

=
n


i=1

||iii fi||pi/n+1
pi ,

that is
n+1


i=1

||F1/n+1
i ||n+1 =

n


i=1

||iii fi||2pi/n+1
pi . (2.168)

It remains to compute the product of functions Fi, i = 1,2, . . . ,n+1. We have

n+1


i=1

Fi(x) = Kn(x)
n


i=1

(iii fi)
2pi (xi)

qi
i (xi)

n


i, j=1, j �=i

qi
i j (x j). (2.169)

Finally, if we substitute the expressions (2.167), (2.168) and (2.169) in the series of in-
equalities (2.117) where n is replaced with n+1, we get (2.164) and the proof is complete.

�
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Remark 2.39 According to the interpolating series of inequalities (2.117), we conclude
that the left inequality in (2.164) yields the converse, while the right one yields the refine-
ment of Hilbert-type inequality (2.127) with non-conjugate exponents, in the ratio form.

On the other hand, regarding the series of inequalities (2.121), we also obtain the refine-
ment and the converse of Hilbert-type inequality (2.127) with non-conjugate exponents, in
the difference form, as is presented in the following theorem.

Theorem 2.28 Let pi, p′i,qi, i = 1,2, . . . ,n, and  be real parameters satisfying condi-
tions (2.159)–(2.162), and let (i,i,i), i = 1,2, . . . ,n be  -finite measure spaces. If
K : → R, i j :  j → R, fi : i → R, i, j = 1,2, . . . ,n are non-negative measurable func-
tions with n

i, j=1 i j(x j) = 1, then

(n+1)m
n


i=1

||iii fi||pi

×

⎡⎢⎣1−
∫


[
Kn(x)n

i=1 (iii fi)2pi (xi)−qi
i (xi)n

i, j=1, j �=i
qi
i j (x j)

]1/(n+1)
d(x)

n
i=1 ||iii fi||2pi/(n+1)

pi

⎤⎥⎦
≤

n


i=1

||iii fi||pi −
∫


K (x)
n


i=1

fi(xi)d(x)

≤ (n+1)M
n


i=1

||iii fi||pi

×

⎡⎢⎣1−
∫


[
Kn(x)n

i=1 (iii fi)2pi (xi)−qi
i (xi)n

i, j=1, j �=i
qi
i j (x j)

]1/(n+1)
d(x)

n
i=1 ||iii fi||2pi/(n+1)

pi

⎤⎥⎦ ,

(2.170)

where i :i → R are defined by (2.163) and m = min{1/q1,1/q2, . . . ,1/qn,1−}, M =
max{1/q1,1/q2, . . . ,1/qn,1−}.

Proof. The proof is very similar to the proof of Theorem 2.27. Namely, we use
the same decomposition of the left-hand side of multidimensional Hilbert-type inequality
(2.127), involving functions Fi, i = 1,2, . . . ,n + 1, defined by (2.165) and (2.166). Now,
the result follows after substituting the expressions (2.167), (2.168) and (2.169) in the
interpolating series of inequalities (2.121) with n + 1 instead of n, and the parameters
i = 1/qi, i = 1,2, . . . ,n, and n+1 = 1− . �

Remark 2.40 Considering the interpolating series of inequalities (2.121), we conclude
that the left inequality in (2.170) yields the refinement, while the right one provides the
converse of Hilbert-type inequality (2.127) with non-conjugate exponents, in the difference
form.



94 2 ON JESSEN’S AND MCSHANE’S FUNCTIONALS

Applications to homogeneous functions

Now the general results are applied to homogenous functions with negative degree of ho-
mogeneity. Hence the same notation is still valid, except for the weight functions (2.140)
which in the non-conjugate setting and regarding the definition (2.139) assume the follow-
ing form:

i(xi) =

[∫
R

n−1
+

K(x)
n


j=1, j �=i

x j
qiAi j d̂ix

]1/qi

=

[
x
n−1−s+n

j=1, j �=i qiAi j

i

∫
R

n−1
+

K(ûi)
n


j=1, j �=i

u
qiAi j
j d̂iu

]1/qi

= x(n−1−s)/qi+i−Aii
i k1/qi

i (qiAi).

(2.171)

What follows are the consequences of theorems 2.27 and 2.28, in the described setting
with homogeneous kernels. The first one is the interpolating series of inequalities in the
ratio form.

Corollary 2.25 Let pi, p′i,qi, i = 1,2, . . . ,n and  be as in (2.159)–(2.162), and let Ai j,
i, j = 1,2, . . . ,n be the parameters such that n

i=1 Ai j = 0. If K : R
n
+ → R is a non-negative

measurable homogeneous function of degree−s, s > 0, and fi : R+ →R, i = 1,2, . . . ,n are
non-negative measurable functions, then{∫

R
n
+

[
Kn(x)n

i=1 x
(2pi/qi−1)(n−1−s)+(2pi−qi)i+n

j=1 q jA ji

i f 2pi
i (xi)

]1/(n+1)

dx

}(n+1)M

[n
i=1 ki(qiAi)]

Mn
i=1 ||x(n−1−s)/qi+i

i fi||2Mpi
pi

≤
∫
R

n
+

K (x)n
i=1 fi(xi)dx

n
i=1 k1/qi

i (qiAi)n
i=1 ||x(n−1−s)/qi+i

i fi||pi

≤

{∫
R

n
+

[
Kn(x)n

i=1 x
(2pi/qi−1)(n−1−s)+(2pi−qi)i+n

j=1 q jA ji

i f 2pi
i (xi)

]1/(n+1)

dx

}(n+1)m

[n
i=1 ki(qiAi)]

mn
i=1 ||x(n−1−s)/qi+i

i fi||2mpi
pi

,

(2.172)

where i =n
j=1 Ai j, i = 1,2, . . . ,n, m = min{1/q1,1/q2, . . . ,1/qn,1−}, M = max{1/q1,

1/q2, . . . ,1/qn,1−}, and ki(·), i = 1,2, . . . ,n are defined by (2.139).

Proof. The proof is a direct consequence of Theorem 2.27. Namely, if we substitute
the functions i j and i, i, j = 1,2, . . . ,n, defined respectively by (2.138) and (2.171), in
the relation (2.164), we get (2.172) after straightforward computation. �

The following result yields the interpolating series of inequalities in the difference
form.



2.3 RELATED RESULTS ON HILBERT’S INEQUALITY 95

Corollary 2.26 Suppose pi, p′i,qi, i = 1,2, . . . ,n and  are as in (2.159)–(2.162), and
Ai j, i, j = 1,2, . . . ,n are real parameters satisfying n

i=1 Ai j = 0. If K : R
n
+ → R is a non-

negative measurable homogeneous function of degree −s, s > 0, and fi : R+ → R, i =
1,2, . . . ,n are non-negative measurable functions, then

(n+1)m
n


i=1

k1/qi
i (qiAi)

n


i=1

||x(n−1−s)/qi+i
i fi||pi

×

⎡⎢⎢⎢⎣1−
∫
R

n
+

[
Kn(x)n

i=1 x
(2pi/qi−1)(n−1−s)+(2pi−qi)i+n

j=1 q jA ji

i f 2pi
i (xi)

]1/(n+1)

dx

[n
i=1 ki(qiAi)]

1/(n+1)n
i=1 ||x(n−1−s)/qi+i

i fi||2pi/(n+1)
pi

⎤⎥⎥⎥⎦
≤

n


i=1

k1/qi
i (qiAi)

n


i=1

||x(n−1−s)/qi+i
i fi||pi −

∫
R

n
+

K (x)
n


i=1

fi(xi)dx

≤ (n+1)M
n


i=1

k1/qi
i (qiAi)

n


i=1

||x(n−1−s)/qi+i
i fi||pi

×

⎡⎢⎢⎢⎣1−
∫
R

n
+

[
Kn(x)n

i=1 x
(2pi/qi−1)(n−1−s)+(2pi−qi)i+n

j=1 q jA ji

i f 2pi
i (xi)

]1/(n+1)

dx

[n
i=1 ki(qiAi)]

1/(n+1)n
i=1 ||x(n−1−s)/qi+i

i fi||2pi/(n+1)
pi

⎤⎥⎥⎥⎦ ,

(2.173)

where i =n
j=1 Ai j, i = 1,2, . . . ,n, m = min{1/q1,1/q2, . . . ,1/qn,1−}, M = max{1/q1,

1/q2, . . . ,1/qn,1−}, and ki(·), i = 1,2, . . . ,n are defined by (2.139).

Proof. We use Theorem 2.28. More precisely, if we insert the functions i j and i,
i, j = 1,2, . . . ,n, defined respectively by (2.138) and (2.171), in the relation (2.170), we get
(2.173) after straightforward computation. �

Now we discuss these results in some particular settings. More precisely, we consider
the homogeneous function K : R

n
+ → R defined by

K(x) =

(
n


i=1

xi

)−s

, s > 0. (2.174)

Clearly, K is a homogeneous function of degree −s. In this setting, the constant (2.139)
can be expressed in the terms of a gamma function . For that sake, we use the formula
(2.156). In such a way, the constant factors ki(qiAi), i = 1,2, . . . ,n, involved in the series
of inequalities (2.172) and (2.173) become

ki(qiAi) =
(s−n+1−qii +qiAii)

(s)

n


j=1, j �=i

(1+qiAi j), i = 1,2, . . . ,n,

provided that Ai j > −1/qi, i �= j and Aii −i > (n− s− 1)/qi. In the sequel we consider
some special choices of the parameters Ai j, i, j = 1,2, . . . ,n, which will bring us to some
results known from the literature.
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Example 2.4 Let Aii = (n−s)(qi−1)/q2
i and Ai j = (s−n)/(qiq j), i, j = 1,2, . . . ,n, i �=

j. One easily verifies thatn
i=1 Ai j =n

j=1 Ai j = 0, so the interpolating series of inequalities
(2.172) reduces to{∫

R
n
+

[
(n

i=1 xi)−nsn
i=1 x(2pi/qi−1)(n−1−s)+(n−s)(qi−n)/qi

i f 2pi
i (xi)

]1/(n+1)
dx

}(n+1)M

KMn
i=1 ||x(n−1−s)/qi

i fi||2Mpi
pi

≤
∫
R

n
+
(n

i=1 xi)− sn
i=1 fi(xi)dx

K n
i=1 ||x(n−1−s)/qi

i fi||pi

≤

{∫
R

n
+

[
(n

i=1 xi)−nsn
i=1 x(2pi/qi−1)(n−1−s)+(n−s)(qi−n)/qi

i f 2pi
i (xi)

]1/(n+1)
dx

}(n+1)m

Kmn
i=1 ||x(n−1−s)/qi

i fi||2mpi
pi

,

(2.175)

where

KM =
1

(s)M

n


i=1


(

pi + s−n
pi

)M n


i=1


(

qi + s−n
qi

)(n−1)M

,

K =
1

(s)
n


i=1


(

pi + s−n
pi

)1/qi n


i=1


(

qi + s−n
qi

)−(1/qi)

,

Km =
1

(s)m

n


i=1


(

pi + s−n
pi

)m n


i=1


(

qi + s−n
qi

)(n−1)m

,

assuming s > n−min1≤i≤n{pi,qi}.
Remark 2.41 If pi are conjugate exponents, that is pi = qi, i = 1,2, . . . ,n, and  = 1, then
the constant K from relation (2.175) reduces to K = 1/((s))n

i=1((pi + s− n)/pi),
that is, the middle term in (2.175) represents the quotient between the left-hand and right-
hand side of multidimensional inequality from [38]. Therefore, the interpolating series of
inequalities (2.175) can be regarded as a non-conjugate extension of the result from [38].

Example 2.5 If Aii = (qi − 1)/(q2
i ) and Ai j = −1/(qiq j), i, j = 1,2, . . . ,n, i �= j,

then it follows that n
i=1 Ai j = n

j=1 Ai j = 0. Now, if the degree of homogeneity of kernel
(2.174) is 1−n, that is s = n−1, the interpolating series of inequalities (2.172) becomes{∫

R
n
+

[
(n

i=1 xi)−n(n−1)n
i=1 x1−n/(qi)

i f 2pi
i (xi)

]1/(n+1)
dx

}(n+1)M

LMn
i=1 || fi||2Mpi

pi

≤
∫
R

n
+
(n

i=1 xi)− (n−1)n
i=1 fi(xi)dx

L n
i=1 || fi||pi

≤

{∫
R

n
+

[
(n

i=1 xi)−n(n−1)n
i=1 x1−n/(qi)

i f 2pi
i (xi)

]1/(n+1)
dx

}(n+1)m

Lmn
i=1 || fi||2mpi

pi

,

(2.176)
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where

LM =
1

[(n−2)!]M

[
n


i=1


(

1
 p′i

)]M

,

L =
1

[(n−2)!]

[
n


i=1


(

1
 p′i

)]
,

Lm =
1

[(n−2)!]m

[
n


i=1


(

1
 p′i

)]m

.

Remark 2.42 The middle term in (2.176) represents the quotient between the left-hand
and right-hand side of the non-conjugate Hilbert-type inequality which was proved by
Bonsall [41], in the case n = 3.

Note that the parameters Ai j, i, j = 1,2, . . . ,n were symmetric in the previous two ex-
amples, which is not the case in the following one.

Example 2.6 Suppose Ai, i = 1,2, . . . ,n, are real parameters satisfying relations (n− s−
1)/qi−1 < Ai < 1/qi−1, provided that s > n−2. Of course, we use the convention q0 = qn.
We define parameters Ai j, i, j = 1,2, . . . ,n, by

Ai j =

⎧⎨⎩
Ai, j = i,
−Ai+1, j = i+1,
0 otherwise,

where the indices are taken modulo n from the set {1,2, . . . ,n}. In the described setting
equipped with homogeneous kernel (2.174), the series of inequalities in (2.172) reads⎧⎨⎩ ∫

R
n
+

[
(

n

i=1

xi)−ns
n

i=1

x(2pi/qi−1)(n−1−s)+(2pi−qi−1)Ai−(2pi−qi)Ai+1
i f 2pi

i (xi)
]1/(n+1)

dx

⎫⎬⎭
(n+1)M

RM

n

i=1

||x(n−1−s)/qi+Ai−Ai+1
i fi||2Mpi

pi

≤

∫
R

n
+

(
n

i=1

xi)− s
n

i=1

fi(xi)dx

R
n

i=1

||x(n−1−s)/qi+Ai−Ai+1
i fi||pi

≤

⎧⎨⎩ ∫
R

n
+

[
(

n

i=1

xi)−ns
n

i=1

x(2pi/qi−1)(n−1−s)+(2pi−qi−1)Ai−(2pi−qi)Ai+1
i f 2pi

i (xi)
]1/(n+1)

dx

⎫⎬⎭
(n+1)m

Rm

n

i=1

||x(n−1−s)/qi+Ai−Ai+1
i fi||2mpi

pi

,

(2.177)
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where

RM =
1

(s)M

[
n


i=1

(s−n+1+qiAi+1)(1−qiAi+1)

]M

,

R =
1

(s)
n


i=1

(s−n+1+qiAi+1)
1/qi (1−qiAi+1)1/qi ,

Rm =
1

(s)m

[
n


i=1

(s−n+1+qiAi+1)(1−qiAi+1)

]m

.

Remark 2.43 The middle term in (2.177) represents the multidimensional inequality
from [43] and [44] in the conjugate setting.

Remark 2.44 It is important to emphasize that the multidimensional inequalities (in non-
conjugate setting) represented by the middle terms in relations (2.175), (2.176) and (2.177),
were also derived in [42]. Therefore, our relations (2.175), (2.176) and (2.177) represent
refinements and converses of the appropriate results from [42]. Refinements and converses
of these relations, although omitted here, can be obtained in the difference form, in an
analogous way.



Chapter3
Jensen-type functionals under
the Steffensen’s conditions.
Petrović-type functionals

In this chapter we make use of two variants of the Jensen inequality: Jensen-Steffensen’s
inequality (Theorem1.7) and Jensen-Mercer’s inequality (Theorem 1.8), in order to deduce
and investigate two corresponding Jensen-type functionals, that is, Jensen-Steffensen’s and
Jensen-Mercer’s functional, where the latter is additionally observed under the Steffensen’s
conditions. For both functionals, the properties of superadditivity and increase on certain
sets of the real n-tuples are expressed and investigated in the discrete and in the integral
cases as well, by using the Riemann-Stieltjes’ integral.

The functionals of this type were investigated earlier in [23] and [24]. The results that
were obtained there are here improved.

In the last part of the chapter, Petrović-type functionals, derived from the corresponding
Petrović and related inequalities are considered in a similar sense, also referring to their
superadditivity established on certain sets of the real n-tuples.

99
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3.1 Superadditivity of Jensen-Steffensen’s functional

We first consider Jensen-Steffensen’s functional, starting with its discrete form. After prov-
ing its superadditivity property, we apply it to establishing its increase property on the set
of the real n-tuples that satisfy the Steffensen’s conditions. The inequalities of the form

MJ( f ,x,q) ≥ J( f ,x,p) ≥ mJ( f ,x,q),

that were observed by S. S. Dragomir in [60] (see Theorem 1.35) and subsequently in
[23], are thus improved by obtaining the new form of the non-weight bounds for Jensen-
Steffensen’s functional.

The integral analogues of the discrete results are obtained making use of the Boas’ vari-
ant of the integral Jensen-Steffensen’s inequality. Some related additional integral results
of the Boas’ type are also established.

At the end of the considerations on the Jensen-Steffensen’s functional, we give an ap-
plication to the functional defined in [155], by means of the weight quasiarithmetic mean.

The contents of the Section 3.1 corresponds for the most part to the contents of the
published paper [113].

3.1.1 On discrete Jensen-Steffensen’s functional

As we already have mentioned (Theorem 1.7), J. F. Steffensen proved that if x ∈ In, I ⊆ R

is a monotonic (increasing or decreasing) n-tuple and p is a real n-tuple such that

Pn > 0 and 0 ≤ Pk ≤ Pn, 1 ≤ k ≤ n−1, (3.1)

where Pk = k
i=1 pi, k = 1, . . . ,n, then Jensen’s inequality

f

(
1
Pn

n


i=1

pixi

)
≤ 1

Pn

n


i=1

pi f (xi) (3.2)

holds for every convex function f : I → R. Under Steffensen’s conditions (3.1), inequality
(3.2) is referred to as Jensen-Steffensen’s inequality. In the sequel, the set of all real n-
tuples p that satisfy (3.1) will be denoted by Pn. Furthermore, P0

n ⊆ Pn, where P0
n is

(as in the previous considerations) the set of all nonnegative n-tuples p, such that n
i=1 pi =

Pn > 0.
Discrete Jensen-Steffensen’s functional J( f ,x,p) is now deduced from the inequality

(3.2), analogously as it was done with Jensen’s functional (1.65):

J( f ,x,p) =
n


i=1

pi f (xi)−Pn f

(
1
Pn

n


i=1

pixi

)
. (3.3)

For fixed f and x, functional J( f ,x, ·) can be observed as a function on Pn. Furthermore,
when f is a convex function, then (3.2) yields J( f ,x,p) ≥ 0, for all p ∈ Pn.

Nevertheless, superadditivity property of the functional (3.3) holds in a more general
environment of the previously described. Therefore we state it this time in a separate result.
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Theorem 3.1 Let I be an interval in R and let x = (x1, . . . ,xn) ∈ In. Suppose p =
(p1, . . . , pn) and q = (q1, . . . ,qn) are real n-tuples, such thatn

i=1 pi = Pn > 0 andn
i=1 qi =

Qn > 0 and 1
Pn
n

i=1 pixi,
1

Qn
n

i=1 qixi ∈ I. If f : I → R is a convex function, then functional
(3.3) is superadditive on the set of the described real n-tuples, that is

J( f ,x,p+q) ≥ J( f ,x,p)+J( f ,x,q). (3.4)

Proof. It follows from the definition of the functional (3.3) that

J( f ,x,p+q) =
n


i=1

(pi +qi) f (xi)− (Pn +Qn) f

(
n

i=1(pi +qi)xi

Pn +Qn

)
=

n


i=1

pi f (xi)+
n


i=1

qi f (xi)− (Pn +Qn) f

(
n

i=1(pi +qi)xi

Pn +Qn

)
,

(3.5)

whereas convexity of f yields

f

(
n

i=1(pi +qi)xi

Pn +Qn

)
= f

(
n

i=1 pixi +n
i=1 qixi

Pn +Qn

)
= f

(
Pn

Pn +Qn

n
i=1 pixi

Pn
+

Qn

Pn +Qn

n
i=1 qixi

Qn

)
≤ Pn

Pn +Qn
f

(
n

i=1 pixi

Pn

)
+

Qn

Pn +Qn
f

(
n

i=1 qixi

Qn

)
.

(3.6)

Finally, (3.5) and (3.6) yield

J( f ,x,p+q) ≥
n


i=1

pi f (xi)+
n


i=1

qi f (xi)−Pn f

(
n

i=1 pixi

Pn

)
−Qn f

(
n

i=1 qixi

Qn

)
= J( f ,x,p)+J( f ,x,q) ,

whereby the proof is concluded. �

Remark 3.1 The superadditivity of Jensen-Steffensen’s functional J( f ,x, ·) is proved as
it would be done for discrete Jensen’s functional J( f ,x, ·) in Theorem 1.34. Namely, the
classical Jensen’s inequality is applied in both proofs, where the only needed assumptions
are Pn, Qn > 0, 1

Pn
n

i=1 pixi and 1
Qn

n
i=1 qixi ∈ I. On the contrary, the property of increase

(3.3) of the functional needs to be proved depending on the choice of the real n-tuples from
Pn, as it will be done in the sequel.

Theorem 3.2 Suppose q and p−q are n-tuples in Pn, where p is a real n-tuple, such
that n

i=1 pi = Pn > 0. Let x ∈ In, I ⊆ R, be a monotonic (either nondecreasing or nonin-
creasing) n-tuple. If f : I → R is a convex function, then the following inequalities hold:

J( f ,x,p) ≥ J( f ,x,q) ≥ 0. (3.7)



102 3 JENSEN-TYPE FUNCTIONALS UNDER THE STEFFENSEN’S CONDITIONS.

Proof. Since J( f ,x,p) = J( f ,x,p−q+q), applying (3.3) to p−q and q, we get

J( f ,x,p) = J( f ,x,p−q+q)≥ J( f ,x,p−q)+J( f ,x,q) ≥ J( f ,x,q) ,

where the last inequality holds since J( f ,x,p−q) ≥ 0, according to Jensen-Steffensen’s
inequality, applied to a convex function f and p− q ∈ Pn. Analogously, for a convex
function f and q ∈ Pn, the last inequality in (3.7) holds. �

Dragomir’s Theorem 1.35 on comparative inequalities for normalized Jensen’s func-
tional was given an alternative proof in [23]. An analogous result, which we cite in the
sequel was established for n-tuples p and q satisfying the Steffensen’s conditions, where
normalized Jensen-Steffensen’s functional is denoted by Jn ( f ,x, ·).
Theorem 3.3 (SEE [23]) Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be two n-tuples sat-
isfying the following conditions:

0 ≤ Pk,Qk ≤ 1, k = 1, . . . ,n−1, Pn = Qn = 1.

For k ∈ {1, . . . ,n} denote Pk := k
i=1 pi, Qk := k

i=1 qi. Let m and M be any real constants
such that

Pk −mQk ≥ 0, (1−Pk)−m(1−Qk) ≥ 0, k = 1, . . . ,n−1

and
MQk −Pk ≥ 0, M(1−Qk)− (1−Pk) ≥ 0, k = 1, . . . ,n−1.

If f : I → R is a convex function defined on an interval I ⊆ R and if x = (x1, . . . ,xn) ∈ In is
any monotonic n-tuple, then

MJn( f ,x,q) ≥ Jn ( f ,x,p) ≥ mJn( f ,x,q). (3.8)

We cite here the accompanied corollary from [23], where the normalized Jensen-Stef-
fensen’s functional is bounded by means of the functional

Jn( f ,x) := Jn( f ,x,u) =
1
n

n


i=1

f (xi)− f

(
1
n

n


i=1

xi

)
,

regarding the uniform distribution u = ( 1
n , . . . , 1

n ).

Corollary 3.1 (SEE [23]) Let p = (p1, . . . , pn) be an n-tuple that satisfies

0 ≤ Pk ≤ 1, k = 1, . . . ,n−1, Pn = 1.

For k ∈ {1, . . . ,n} denote Pk := k
i=1 pi and define

m̃0 := n ·min

{
Pk

k
,
1−Pk

n− k
: k = 1, . . . ,n−1

}
,

M̃0 := n ·max

{
Pk

k
,
1−Pk

n− k
: k = 1, . . . ,n−1

}
.

If f : I → R is a convex function defined on an interval I ⊆ R and if x = (x1, . . . ,xn) ∈ In is
any monotonic n-tuple, then

M̃0Jn( f ,x) ≥ Jn ( f ,x,p) ≥ m̃0Jn( f ,x). (3.9)
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Remark 3.2 We now show that the statement of Theorem 3.3 from [23] can easily be
deduced from Theorem 3.2. Let m and M be real constants and let p be a real n-tuple
such that n

i=1 pi = Pn > 0. Suppose q, p−mq and Mq−p ∈ Pn. If f : I → R, I ⊆ R,
is a convex function and if x = (x1, . . . ,xn) ∈ In is a monotonic n-tuple, then, according to
Theorem 3.2:

J( f ,x,p) = J( f ,x,p−mq+mq)≥ J( f ,x,p−mq)+J( f ,x,mq) ≥ mJ( f ,x,q) .

Similarly,
J( f ,x,p) ≤ MJ( f ,x,q) ,

that is
MJ( f ,x,q) ≥ J( f ,x,p) ≥ mJ( f ,x,q) . (3.10)

Since p−mq ∈ Pn implies Pk ≥ mQk and (Pn −Pk) ≥ m(Qn −Qk), and Mq− p ∈ Pn

implies Pk ≤MQk and (Pn−Pk)≤M(Qn−Qk), k = 1, . . . ,n−1, which are the assumptions
of Theorem 3.3, only written in a slightly generalized, non-normalized form, the starting
assumptions yield the statement of Theorem 3.3.

Another application of Theorem 3.2 is deducing the lower and the upper bound for the
functional (3.3), by means of the non-weight functional of the same type. However, almost
identical result which slightly differs from this, for it was given in the normalized form,
was obtained in Corollary 3.1. Thus this proof is comprehended as an alternative one and
is consequently given within a remark.

Remark 3.3 Let us write Corollary 3.1 in a slightly generalized way:

Let p = (p1, . . . , pn) be an n-tuple in Pn. Define

m := min
1≤k≤n−1

{
Pk

k
,
Pn−Pk

n− k

}
, M := max

1≤k≤n−1

{
Pk

k
,
Pn−Pk

n− k

}
,

where Pk = k
i=1 pi and Pn = n

i=1 pi > 0. If f : I → R, I ⊆ R, is a convex
function and if x = (x1, . . . ,xn) ∈ In is a monotonic n-tuple, then

MJ( f ,x) ≥ J( f ,x,p) ≥ mJ( f ,x), (3.11)

where J( f ,x) = n
i=1 f (xi)−n f

( 1
n 

n
i=1 xi

)
.

Alternative proof of Corollary 3.1. Let us firstly prove the right-hand side inequality
in (3.11). Let qmin ∈ P0

n be a constant n-tuple, qmin = (,, . . . ,), where  > 0 since
Qn := n

i=1 qi > 0. The proof is based on the application of Theorem 3.2 to p and qmin

because

J( f ,x,qmin) = m

(
n


i=1

f (xi)−n f

(
n

i=1 xi

n

))
= mJ( f ,x).

However, we firstly need to hold an argumentation on the choice of  regarding the defined
m. In order to apply Theorem 3.2, one must provide the following conditions satisfied:
Pk ≥ Qk = k, Pn − Pk ≥ Qn −Qk = (n− k), k = 1, . . . ,n− 1, Pn > Qn = n, which
means:
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(i)  ≤ Pk
k , k = 1, . . . ,n−1,

(ii)  ≤ Pn−Pk
n−k , k = 1, . . . ,n−1,

(iii)  < Pn
n .

Obviously, m satisfies the conditions (i) and (ii) by definition and is a candidate for the
choice of  . Fix k ∈ {1, . . . ,n}. It easily follows from (i) and (ii) that nm≤ Pn, i.e. m≤ Pn

n
and m is a good choice for  . The left-hand side inequality is proved analogously, by
exchanging the roles of p and q. �

3.1.2 Integral variants of Jensen-Steffensen’s functional

Although Steffensen established the integral variant of Jensen’s inequality too, we take
here as the starting point the integral variant of Jensen-Stefensen’s inequality that was
proved by R. P. Boas in [39], but can be also found in e.g. [177, p. 59]. As for the
following considerations, we need to refer to the properties of Riemann-Stieltjes’ integral,
which are described in the first chapter and regarding to which we already cited the integral
form of Jensen’s inequality (1.11). Now we proceed in the similar way regarding Jensen’s
inequality under Steffensen’s conditions.

Theorem 3.4 (JENSEN-STEFFENSEN) Suppose x : [, ] → (a,b) is a continuous and
monotonic (either nondecreasing or nonincreasing) function, where −<  <  < and
− ≤ a < b ≤ , and let f : (a,b) → R be a convex function. If  : [, ] → R is either
continuous or of bounded variation, satisfying

 () ≤  (t) ≤  ( ), for all t ∈ [, ] and  ( )− () > 0, (3.12)

then the following inequality holds:

f

(
1

 ( )− ()

∫ 


x(t)d (t)

)
≤ 1

 ( )− ()

∫ 


f (x(t))d (t). (3.13)

The condition (3.12) on  can be regarded as a very weak monotonicity condition.
Still, the monotonicity condition required for x is quite restrictive. So Boas proved in [39]
that if one strengthens the hypothesis on  and correspondingly weakens the hypothesis
on x, the inequality (3.13) still holds.

Theorem 3.5 (BOAS) Let  : [, ] → R be either continuous or of bounded variation
and such that there exist k ≥ 2 points  = 0 < 1 < · · · < k =  , so that

 () ≤  (t1) ≤  (1) ≤  (t2) ≤ ·· · ≤  (k−1) ≤  (tk) ≤  ( ),
for all ti ∈ [i−1,i], i = 1, . . . ,k,  ( )− () > 0. (3.14)

If x : [, ] → (a,b) is a continuous function and monotonic (either nondecreasing or
nonincreasing) on each of the intervals [i−1,i], i = 1, . . . ,k, then (3.13) holds for any
convex function f : (a,b) → R.
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When the inequality (3.13) is observed under the Steffensen’s conditions (3.12), it is
called Jensen-Steffensen’s inequality. Otherwise, when it is observed under the conditions
(3.14), it is called Jensen-Steffensen-Boas’ inequality.

Finally, using the integral variants of the inequality (3.13), we can observe the corre-
sponding functionals J( f ,x, ), which are deduced as follows:

J( f ,x, ) =
∫ 


f (x(t))d (t)− ( ( )− ()) f

(
1

 ( )− ()

∫ 


x(t)d (t)

)
. (3.15)

The common form of the functional (3.15) is called (integral) Jensen-Steffensen’s or Jensen-
Steffensen-Boas’ functional, depending on the conditions under which it is observed: the
ones from Theorem 3.4 or those of Theorem 3.5. For the sake of simplicity and shortness,
we use the following notation:

[ , ],− <  <  < , for the class of all functions  : [, ] → R that are either con-
tinuous or of bounded variation and satisfy the conditions (3.12);

̃[ , ], for subclass of [ , ], that contains all  ∈ [ , ] satisfying the conditions (3.14).

We notice here that every nondecreasing function  : [, ] → R, such that  ( ) �=  (),
belongs to the class [ , ] (see inequality (1.11)). Moreover, notice that if f is convex,
then after (3.13) is J( f ,x, ) ≥ 0, for all  that are in ∈ [ , ] or ̃[ , ], which follows
from (3.13). When proving the properties of the functionals (3.15) that are analogous to
those in the discrete case, we observe J( f ,x, ·) as a function on [ , ] or ̃[ , ], with fixed
f and x.

Similarly as in the discrete case, superadditivity of both functionals defined by (3.15)
does not depend on the special classes of the functions  . Hence the result on the su-
peradditivity is proved as a common result for both functionals and only after that their
properties are analyzed separately.

Theorem 3.6 Let x : [, ] → (a,b), a,b ∈ R, be a continuous function and let  ,  :
[, ] → R be such that  ( )− () > 0, ( )− () > 0. If f : (a,b) → R is a con-
vex function, then functional J( f ,x, ·) defined by (3.15) is superadditive on the set of the
described functions  and  , that is

J( f ,x, + )≥ J( f ,x, )+J( f ,x,). (3.16)

Proof. Let us first denote  ( )− () := 
 and ( )− () := 

 . It follows
from the definition of the functional (3.15) that

J( f ,x,+) =
∫ 


f (x(t))d(+)(t)−

(

 +



)
f

(
1


 +



∫ 


x(t)d(+)(t)

)

=
∫ 


f (x(t))d (t)+

∫ 


f (x(t))d(t)−

(

 + 



)
·

× f

(
1


 + 



∫ 


x(t)d( + )(t)

)
, (3.17)
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whereas convexity of f yields

f

(
1


 + 



∫ 


x(t)d( + )(t)

)

= f

(




 + 


·
∫ 
 x(t)d (t)




+




 + 


·
∫ 
 x(t)d(t)




)

≤ 



 + 


· f

(∫ 
 x(t)d (t)




)
+





 + 


· f

(∫ 
 x(t)d(t)




)
. (3.18)

Finally, (3.17) and (3.18) yield

J( f ,x, + ) ≥
∫ 


f (x(t))d (t)+

∫ 


f (x(t))d(t)−

 · f

(∫ 
 x(t)d (t)




)

−
 · f

(∫ 
 x(t)d(t)




)
= J( f ,x, )+J( f ,x,) ,

which concludes the proof. �

We now focus on the integral variant of Jensen-Steffensen’s functional, starting with
the integral variant of Theorem 3.2.

Theorem 3.7 Suppose  and  −  are functions in [ , ], either continuous or of
bounded variation, where  : [, ] → R is such that  ( )− () > 0. Let x : [, ] →
(a,b), a,b ∈ R be a continuous and monotonic function. If f : (a,b) → R is a convex
function, then the following inequalities hold:

J( f ,x, ) ≥ J( f ,x,) ≥ 0. (3.19)

Proof. Since J( f ,x, ) = J( f ,x, − + ) , applying (3.16) to  −  and  , we get

J( f ,x, ) = J( f ,x, − + ) ≥ J( f ,x, − )+J( f ,x,) ≥ J( f ,x,) ,

where the last inequality holds since J( f ,x, − ) ≥ 0, according to Jensen-Steffensen’s
inequality, applied to a convex function f and  −  ∈ [ , ]. Analogously, for a convex
function f and  ∈ [ , ], the last inequality in (3.19) holds. �

Remark 3.4 Theorem 3.3 from [23] is accompaniedwith its integral variant in [23]. Now,
following the same lines as in Remark 3.2, its statement follows easily from Theorem 3.7.

Theorem 3.7 provides us with the lower and the upper bound for Jensen-Steffensen’s
functional (3.15), by means of the non-weight functional of the same type. However,
almost identical result which slightly differs from this, for it was given in the normalized
form, was obtained in [23]. Thus this proof is comprehended as an alternative one and is
consequently given within a remark.
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Remark 3.5 Let us rewrite [23, Corollary 6] in a slightly generalized way:

Let  be a function in [ , ]. Suppose x : [, ] → (a,b), a,b ∈ R is a contin-
uous and monotonic function and f : (a,b)→R is a convex function. If m and
M are real constants defined by

m := inf
<t<

{
 (t)− ()

t−
,
 ( )− (t)

 − t

}
,

M := sup
<t<

{
 (t)− ()

t−
,
 ( )− (t)

 − t

}
,

then
MJ( f ,x) ≥ J( f ,x, ) ≥ mJ( f ,x), (3.20)

where J( f ,x) :=
∫ 
 f (x(t))dt − ( −) f

(
1

−
∫ 
 x(t)dt

)
.

Alternative proof of [23, Corollary 6]. Let us prove the right-hand side inequality in
(3.20). Let  : [, ] → R be defined by (t) = mt. The proof is based on the application
of Theorem 3.7 to  and  because

J( f ,x,) =
∫ 


f (x(t))d(mt)− (m −m) f

(
1

m −m

∫ 


x(t)d(mt)

)
= m

(∫ 


f (x(t))dt − ( −) f

(
1

 −

∫ 


x(t)dt

))
= mJ( f ,x).

Namely, according to the definition of m is m≤  (t)− ()
t−

and m≤  (t)− ( )
t−

, which

is equivalent to  ()−m ≤  (t)−mt ≤  ( )−m , i.e.  ()−() ≤  (t)−(t) ≤
 ( )− ( ), t ∈ [, ], so  −  ∈ [ , ]. Furthermore, m ≥ 0 implies () ≤ (t) ≤
( ), t ∈ [, ], hence  ∈ [ , ]. The left-hand side inequality is proved analogously, by
exchanging the roles of  and  . �

In the sequel we observe the functional (3.15) under the conditions of Theorem 3.5,
that is, we obtain the results for (integral) Jensen-Steffensen-Boas’ functional. We start
with the integral variant of Theorem 3.2 under the conditions (3.14).

Theorem 3.8 Let  and  −  be functions in ̃[ , ], either continuous or of bounded
variation. Let  = 0 < 1 < · · · < k =  , k ≥ 2, be points in [, ]. Suppose x : [, ] →
(a,b), a,b∈ R is a continuous function that is monotonic on each of the intervals [i−1,i],
i = 1, . . . ,k. If f : (a,b) → R is a convex function, then the following inequalities hold:

J( f ,x, ) ≥ J( f ,x,) ≥ 0. (3.21)

Proof. Follows the same lines as in the proof of Theorem 3.7, with Jensen-Steffensen-
Boas’ inequality applied instead of Jensen-Steffensen’s, for  ,  −  ∈ ̃[ , ]. �
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Remark 3.6 The existing corresponding integral result [23, Theorem 6] can now easily
be proved by applying Theorem 3.8, according to Remark 3.2.

Theorem 3.8 provides us with the lower and upper bound for Jensen-Steffensen-Boas’
functional, by means of the non-weight functional of the same type. Again, almost identi-
cal result [23, Corollary 8] is supplemented by an alternative proof.

Remark 3.7 Let us rewrite [23, Corollary 8] in a slightly generalized form:

Let  be a function in ̃[ , ]. Let  = 0 < 1 < · · ·< k =  , k ≥ 2, be points

in [, ]. Suppose x : [, ] → (a,b), a,b ∈ R is a continuous function that is
monotonic on each of the intervals [i−1,i], i = 1, . . . ,k, and f : (a,b) → R is
a convex function. If m and M are real constants defined by

m := min
i=1,...,k

{
inf

{
 (t)− (i−1)

t− i−1
,
 (i)− (t)

i− t
: i−1 < t < i

}}
,

M := max
i=1,...,k

{
sup

{
 (t)− (i−1)

t− i−1
,
 (i)− (t)

i − t
: i−1 < t < i

}}
,

then
MJ( f ,x) ≥ J( f ,x, ) ≥ mJ( f ,x), (3.22)

where J( f ,x) :=
∫ 
 f (x(t))dt − ( −) f

(
1

−
∫ 
 x(t)dt

)
.

Alternative proof of [23, Corollary 8]. Let us prove the right-hand side inequality in
(3.22). Let  : [, ] → R be defined by (t) = mt. The proof is based on the application
of Theorem 3.8 to  and  because

J( f ,x,) =
∫ 


f (x(t))d(mt)− (m −m) f

(
1

m −m

∫ 


x(t)d(mt)

)
= m

(∫ 


f (x(t))dt − ( −) f

(
1

 −

∫ 


x(t)dt

))
= mJ( f ,x).

Namely, according to the definition of m is m≤  (t)− (i−1)
t− i−1

and m≤  (t)− (i)
t− i

, i =

1, . . . ,k, which is equivalent to  (i−1)−mi−1 ≤  (t)−mt ≤  (i)−mi, i.e.  (i−1)−
(i−1) ≤  (t)− (t) ≤  (i)− (i), for all t ∈ [i−1,i], i = 1, . . . ,k. Hence  −  ∈
̃[ , ]. Furthermore, m ≥ 0 implies (i−1) ≤ (t) ≤ (i), for all i−1 ≤ t ≤ i hence
 ∈ ̃[ , ]. The left-hand side inequality is proved analogously, by substituting the roles
of  and  . �

3.1.3 Application to quasiarithmetic means

Here we illustrate the application of the established properties of Jensen-Steffensen’s func-
tional to improvement of one of the results from [155]. Namely, in that paper a func-
tional of type (3.3) was investigated as well, only defined by means of weight quasiarith-
metic mean. In order to deduce it, recall that for a continuous and strictly monotonic
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function  : I → J, I,J ⊆ R, for x = (x1, . . . ,xn) ∈ In and p = (p1, . . . , pn), pi ≥ 0 and
n

i=1 pi = Pn > 0, a weight quasiarithmetic mean is defined by

M(x,p) = −1

(
n


i=1

pi(xi)

)
. (3.23)

In particular, if (x) = x, then (3.23) defines a weight arithmetic mean, whereas for (x) =
logx we have a weight geometric mean defined.

Let  : I → I and  : J → J, with I,J ⊆ R be continuous and strictly monotonic func-
tions. Function f : I → J is said to be (M ,M)-convex if for all x,y ∈ I and  ∈ [0,1] the
following inequality holds:

f (−1((1− )(x)+(y)))≤ −1((1− )( f (x))+( f (y))). (3.24)

In particular, when (x)=(x) = x, inequality (3.24) defines a convex function f , whereas
for (x) = x and (x) = logx a logarithmic convex function f is defined. Moreover, if f
is an (M ,M )-convex function, then g :=  ◦ f ◦ −1 is convex (for details, see [164]).

If we observe  as an identity function, then (x) = x implies that f ◦−1 is a convex
function. Function f is then simply said to be an M-convex function. Furthermore, if
x = (x1, . . . ,xn) is a monotonic n-tuple and (x) := ((x1), . . . ,(xn)), then (x) is also
a monotonic n-tuple. If additionally the n-tuple p = (p1, . . . , pn) satisfies the Steffensen’s
conditions (3.1), then inequality

( f ◦ −1)

(
1
Pn

n


i=1

pi(xi)

)
≤ 1

Pn

n


i=1

pi( f ◦ −1)((xi)) =
1
Pn

n


i=1

pi f (xi) (3.25)

corresponds to Jensen-Steffensen’s inequality (3.2). It was proved in [155] that min{x1, . . . ,
xn} ≤ 1

Pn
n

i=1 pi(xi) ≤ max{x1, . . . ,xn} , so the left-hand side expression in (3.25) is well
defined. Similarly as before, inequality (3.25) provides the following functional:

J( f ,x,p) =
n


i=1

pi f (xi)−Pn f

(
−1

(
1
Pn

n


i=1

pi(xi)

))
, (3.26)

that corresponds to Jensen-Steffensen’s functional (3.3) when the substitutions f ↔ f ◦−1

and xi ↔ (xi) are taken into consideration.
Hence for the functional (3.26) the following results are established.

Corollary 3.2 Let I be an interval in R and let x = (x1, . . . ,xn) ∈ In. Suppose p =
(p1, . . . , pn) and q = (q1, . . . ,qn) are real n-tuples, such that n

i=1 pi = Pn > 0, n
i=1 qi =

Qn > 0 and 1
Pn
n

i=1 pixi,
1

Qn
n

i=1 qixi ∈ I. Assume  : I → I is a continuous and strictly
monotonic function. If f : I → R is an M -convex function, then functional (3.26) is super-
additive on the set of the described n-tuples p and q, that is

J( f ,x,p+q) ≥ J( f ,x,p)+J( f ,x,q) ≥ 0. (3.27)

Proof. Since f ◦ −1 is a convex function, the proof follows the same lines as in
Theorem 3.1. �



110 3 JENSEN-TYPE FUNCTIONALS UNDER THE STEFFENSEN’S CONDITIONS.

Corollary 3.3 Let q and p−q be two n-tuples in Pn, where p is a real n-tuple, such
that n

i=1 pi = Pn > 0. Let x ∈ In, I ⊆ R be a monotonic n-tuple. Suppose  : I → I is a
continuous and strictly monotonic function. If f : I → R is an M -convex function, then
the following inequalities hold:

J ( f ,x,p) ≥ J ( f ,x,q) ≥ 0. (3.28)

Proof. Since (x) is a monotonic n-tuple and f ◦ −1 is a convex function, the proof
follows the same lines as in Theorem 3.2. �

Functional (3.26) possesses the lower and the upper bound expressed by the non-weight
functional of the same type.

Corollary 3.4 Let p, m and M be as in Remark 3.3. Suppose  : I → I, I ⊆ R is a
continuous and strictly monotonic function. If f : I → R is an M-convex function and
x = (x1, . . . ,xn) ∈ In is a monotonic n-tuple, then

MJ( f ,x) ≥ J ( f ,x,p) ≥ mJ( f ,x), (3.29)

where J( f ,x) = n
i=1 f (xi)−n f

(
−1

(
n

i=1 (xi)
n

))
.

Proof. Follows from the previous two corollaries, analogously as in Remark 3.3. �

Remark 3.8 Let us observe the left inequality in (3.29). As in Remark 3.3, it is defined:

M = max
1≤k≤n−1

{
Pk

k
,
Pn−Pk

n− k

}
. Let  = max{p1, . . . , pn}. Obviously, Pk ≤ k, so Pk

k ≤ 

and Pn−Pk
n−k ≤  . It follows that M ≤ , which is a better upper bound than the one obtained

in [155, Teorem 3.1.]

In order to obtain analogous integral results, we need to transform (3.15) by means of
M -convex function f and the substitutions of convex functions f ↔ f ◦−1, as well as of
monotonic functions x ↔  ◦ x. The following form of the functional is obtained:

J( f ,x, ) :=
∫ 


f (x(t))d (t)

−( ( )− ()) f

(
−1

(
1

 ( )− ()

∫ 


(x(t))d (t)

))
.

(3.30)

Remark 3.9 By applying the afore described substitutions ( f ↔ f ◦ −1 and x ↔  ◦
x) for  being a continuous and strictly monotonic function and f being an M -convex
function, all integral results from Section 3.1.2 can then be applied to the functional (3.30).
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3.2 Superadditivity of Jensen-Mercer’s functional

In the sequel we prove superadditivity of discrete Jensen-Mercer’s functional which we
then apply to prove that this functional is increasing on the set of nonnegative real n-tuples,
as well as on the set of the real n-tuples that satisfy the Steffensen’s conditions. We then
take into consideration the inequalities of the form

MM( f ,x,q) ≥ M( f ,x,p) ≥ mM( f ,x,q),

which were recently observed in [24], give a comparison with the results obtained in [24],
and finally obtain a new type of the bounds for Jensen-Mercer’s functional, expressed by
means of the non-weight functional of the same type.

All of the obtained discrete results are accompanied by their integral variants de-
duced from the integral form of Jensen-Mercer’s inequality established in [49], in the first
place, and then the integral form of Jensen-Mercer’s inequality under the conditions of the
Steffensen-Boas’ theorem which was proved in [24].

The contents of Section 3.2 corresponds for the most part to the contents of the pub-
lished paper [112].

3.2.1 Discrete Jensen-Mercer’s functional

As we already have mentioned (Theorem1.8), A. McD. Mercer proved that if x = (x1, . . . ,xn)
∈ [a,b]n , [a,b]⊂ R and p = (p1, . . . , pn) is such that pi ≥ 0 and Pn =n

i=1 pi > 0, then the
inequality

f

(
a+b− 1

Pn

n


i=1

pixi

)
≤ f (a)+ f (b)− 1

Pn

n


i=1

pi f (xi) (3.31)

holds for every convex function f : [a,b] → R. As usual, the set of the described non-
negative real n-tuples p will be denoted by P0

n .
Discrete Jensen-Mercer’s functional M( f ,x,p) is assigned to inequality (3.31) as fol-

lows:

M( f ,x,p) = Pn[ f (a)+ f (b)]−
n


i=1

pi f (xi)−Pn f

(
a+b− 1

Pn

n


i=1

pixi

)
. (3.32)

If f is convex, then (3.31) implies M( f ,x,p) ≥ 0, for all p ∈ P0
n . For fixed f and x, the

functional M( f ,x, ·) can be observed as a function on P0
n .

Nevertheless, superadditivity property of (3.32), that we are about to prove here, holds
in a more general environment.

Theorem 3.9 Let [a,b] be an interval in R and let x = (x1, . . . ,xn) ∈ [a,b]n. Suppose
p and q are real n-tuples, such that n

i=1 pi = Pn > 0, n
i=1 qi = Qn > 0 and a + b−
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1
Pn
n

i=1 pixi, a+ b− 1
Qn

n
i=1 qixi ∈ [a,b]. If f : [a,b] → R is a convex function, then func-

tional (3.32) is superadditive on the set of the described real n-tuples p and q, that is

M( f ,x,p+q) ≥ M( f ,x,p)+M( f ,x,q). (3.33)

Proof. It follows from the definition of the functional (3.32) that

M( f ,x,p+q) = (Pn +Qn)[ f (a)+ f (b)]−
n


i=1

(pi +qi) f (xi)

−(Pn +Qn) f

(
a+b− n

i=1(pi +qi)xi

Pn +Qn

)
= Pn[ f (a)+ f (b)]+Qn[ f (a)+ f (b)]−

n


i=1

pi f (xi)−
n


i=1

qi f (xi)

−(Pn +Qn) f

(
a+b− n

i=1(pi +qi)xi

Pn +Qn

)
, (3.34)

whereas convexity of f yields

f

(
a+b− n

i=1(pi +qi)xi

Pn +Qn

)
= f

(
n

i=1(pi +qi)(a+b− xi)
Pn +Qn

)
= f

(
Pn

Pn +Qn

n
i=1 pi(a+b− xi)

Pn
+

Qn

Pn +Qn

n
i=1 qi(a+b− xi)

Qn

)
≤ Pn

Pn +Qn
f

(
a+b− n

i=1 pixi

Pn

)
+

Qn

Pn +Qn
f

(
a+b− n

i=1 qixi

Qn

)
. (3.35)

Finally, (3.34) and (3.35) yield

M( f ,x,p+q) ≥ Pn[ f (a)+ f (b)]+Qn[ f (a)+ f (b)]−
n


i=1

pi f (xi)−
n


i=1

qi f (xi)

−Pn f

(
a+b− n

i=1 pixi

Pn

)
−Qn f

(
a+b− n

i=1 qixi

Qn

)
= M( f ,x,p)+M( f ,x,q) ,

and the proof is concluded. �

Functional (3.32) is increasing on the set P0
n , which we prove in the following theo-

rem.

Theorem 3.10 Let [a,b] be an interval in R and x = (x1, . . . ,xn) ∈ [a,b]n. Suppose p =
(p1, . . . , pn) and q = (q1, . . . ,qn) are two n-tuples in P0

n , such that p ≥ q, (i.e. pi ≥ qi,
i = 1, . . . ,n.) If f : [a,b] → R is a convex function, then the following inequalities hold:

M( f ,x,p) ≥ M( f ,x,q) ≥ 0, (3.36)

that is, M( f ,x, ·) is increasing on P0
n .



3.2 SUPERADDITIVITY OF JENSEN-MERCER’S FUNCTIONAL 113

Proof. If we write M( f ,x,p) as M( f ,x,p−q+q) and then apply the superadditivity
property of (3.32) to p−q and q, we get

M( f ,x,p) = M( f ,x,p−q+q)≥ M( f ,x,p−q)+M( f ,x,q) ≥ M( f ,x,q) ,

where we applied Jensen-Mercer’s inequality in order to prove the last inequality: convex-
ity of f and p−q ∈ P0

n imply M( f ,x,p−q) ≥ 0. In a similar way, convexity of f and
q ∈ P0

n imply the last inequality in (3.36). �

In the following corollary the lower and the upper bound for (3.32) by means of the
non-weight functional of the same type are obtained.

Corollary 3.5 Let p, x, f and functional M be as in Theorem 3.10. Then the following
inequalities hold:

max
1≤i≤n

{pi}M( f ,x) ≥ M( f ,x,p) ≥ min
1≤i≤n

{pi}M( f ,x), (3.37)

where M( f ,x) = n[ f (a)+ f (b)]−n
i=1 f (xi)−n f

(
a+b− 1

n

n


i=1

xi

)
.

Proof. Let pmin =
(

min
1≤i≤n

{pi}, . . . , min
1≤i≤n

{pi}
)

. Then p ≥ pmin, for all p ∈ P0
n . Ap-

plying Theorem 3.10 it follows

M( f ,x,p) ≥ M( f ,x,pmin) .

On the other hand,

M( f ,x,pmin) = min
1≤i≤n

{pi}
{

n[ f (a)+ f (b)]−
n


i=1

f (xi)−n f

(
a+b− 1

n

n


i=1

xi

)}
,

that is, M( f ,x,pmin) = min
1≤i≤n

{pi}M( f ,x), which was to obtain. The left inequality in

(3.37) is proved analogously, by substituting the roles of minimum and maximum. �

In [24], the following result concerning the normalized Jensen-Mercer’s functional
Mn( f ,x, ·) was proved.

Theorem 3.11 (SEE [24]) Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be two n-tuples in
P0

n . Suppose m and M are real constants such that

m ≥ 0, pi−mqi ≥ 0, Mqi − pi ≥ 0, i = 1, . . . ,n.

If f : [a,b] → R is a convex function and if x = (x1, . . . ,xn) is an n-tuple in [a,b]n, then the
following inequalities hold:

MMn( f ,x,q) ≥ Mn( f ,x,p) ≥ mMn( f ,x,q).
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Remark 3.10 The statement of Theorem 3.11 follows easily by applying Theorem 3.10,
as we explain in the sequel. Namely, for p,q ∈ P0

n and real constants m and M, such
that p−mq and Mq− p ∈ P0

n , for a convex function f : [a,b] → R, [a,b] ⊆ R and x =
(x1, . . . ,xn) ∈ [a,b]n, Theorem 3.10 yields

M( f ,x,p) ≥ M( f ,x,p−mq)+M( f ,x,mq) ≥ mM( f ,x,q) .

Similarly,
M( f ,x,p) ≤ MM( f ,x,q) ,

i.e.
MM( f ,x,q) ≥ M( f ,x,p) ≥ mM( f ,x,q)

which is indeed the statement of Theorem 3.11, only in a slightly generalized – non-
normalized form.

3.2.2 Integral Jensen-Mercer’s functional

In order to deduce the integral form of Jensen-Mercer’s functional, we use as a starting
point the integral variant of Jensen-Mercer’s inequality. It was proved in [49] that under
the assumption of (,A ,) being a probability measure space and x : → [a,b] , −<
a < b <  being a measurable function the inequality

f

⎛⎝a+b−
∫


xd

⎞⎠≤ f (a)+ f (b)−
∫


f (x)d (3.38)

holds for any continuous and convex function f : [a,b]→ R.
It can be proved analogously that for a measure space (,A ,) , where 0 <  ()<,

the integral Jensen-Mercer’s inequality

f

⎛⎝a+b− 1
 ()

∫


xd

⎞⎠≤ f (a)+ f (b)− 1
 ()

∫


f (x)d (3.39)

holds. In particular, for = [, ], −<  <  < and  : [, ] → R is an increasing
function, such that  ( ) �=  (), inequality (3.39) assumes the following form:

f

(
a+b− 1

 ( )− ()

∫ 


x(t)d (t)

)
≤ f (a)+ f (b)− 1

 ( )− ()

∫ 


f (x(t))d (t).

(3.40)
If we write  ( )− () := 

 , inequality (3.40) can be rewritten as

f

(
1



∫ 


(a+b− x(t)) d (t)

)
≤ 1



∫ 


( f (a)+ f (b)− f (x(t))) d (t). (3.41)

We now deduce the integral Jensen-Mercer’s functional M( f ,x, ) as follows:

M( f ,x, ) = 
 [ f (a)+ f (b)]−

∫ 


f (x(t))d (t)−

 f

(
a+b− 1




∫ 


x(t)d (t)

)
.

(3.42)
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If f is a convex function, then M( f ,x, ) ≥ 0, which is inherited from (3.41). In order to
obtain the results on the bounds of the functional M( f ,x, ·), we are going to observe it as a
function on the set of the (increasing) functions  , such that  ( ) �=  (). Nevertheless,
superadditivity of (3.42) is again proved in a more generalized environment.

Theorem 3.12 Let  , : [, ] → R, −<  <  <  be such that  ( ) >  () and
( ) > () and let x : [, ] → [a,b], − < a < b <  be a continuous function. If
f : [a,b] → R is a continuous and convex function, then functional M( f ,x, ·), defined by
(3.42) is superadditive on the set of the described functions  and  , that is

M( f ,x, + )≥ M( f ,x, )+M( f ,x,). (3.43)

Proof. It follows from the definition of (3.42) that

M( f ,x, + ) =
(

 + 



)
[ f (a)+ f (b)]−

∫ 


f (x(t))d( + )(t)

−
(

 + 



)
· f

(
a+b− 1


 + 



∫ 


x(t)d( + )(t)

)
,

(3.44)

whereas convexity of f yields

f

(
a+b− 1


 + 



∫ 


x(t)d( + )(t)

)

= f

(




 + 


·
∫ 
 (a+b− x(t))d (t)




+




 + 


·
∫ 
 (a+b− x(t))d(t)




)

≤ 



 + 


· f

(∫ 
 (a+b− x(t))d (t)




)
+





 + 


· f

(∫ 
 (a+b− x(t))d(t)




)
.

(3.45)

Finally, (3.44) and (3.45) yield

M( f ,x, + )

≥ 
 [ f (a)+ f (b)]−

∫ 


f (x(t))d (t)−

 · f

(
a+b−

∫ 
 x(t)d (t)




)

+
 [ f (a)+ f (b)]−

∫ 


f (x(t))d(t)− 

 · f

(
a+b−

∫ 
 x(t)d(t)




)
= M( f ,x, )+M( f ,x,) ,

which concludes the proof. �

The extra conditions on functions  and  are needed in the sequel.
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Theorem 3.13 Let  , : [, ] → R, −<  <  < , be such that  ( ) >  () and
( ) > (). Suppose x : [, ] → [a,b], − < a < b < , is a convex function and
f : [a,b] → R is a continuous and convex function. If  and  :=  −  are increasing
functions, then the following inequalities hold:

M( f ,x, ) ≥ M( f ,x,) ≥ 0. (3.46)

Proof. Since  and  :=  −  are increasing functions, the same holds for  . If we
write M( f ,x, ) = M( f ,x, − + ) , by applying Theorem 3.12 we get

M( f ,x, ) = M( f ,x, − + ) ≥ M( f ,x, − )+M( f ,x,) .

For a convex f and for an increasing  − , it follows from (3.41) that M( f ,x, − )≥ 0.
Hence M( f ,x, ) ≥ M( f ,x,). For the same reason is for an increasing function  the
right-hand side inequality in (3.46) satisfied. �

Remark 3.11 Theorem 3.11 from [24] that we concerned in the previous subsection has
its integral version [24, Theorem 5]. According to Remark 3.10, when applying Theorem
3.13, the statement of this integral theorem can be easily obtained.

Another application of Theorem 3.13 is obtaining the lower and the upper bound for
the functional (3.42), by means of the non-weight functional of the same type. However,
almost identical result was obtained in [24, Corollary 5], except for its normalized form.
Our proof can be considered as an alternative one and is thus given within a remark.

Remark 3.12 Regarding the previous considerations, we adjust the statement of the [24,
Corollary 5].

Let  : [, ]→ R be a nondecreasing function, such that  ( ) �=  (). Sup-
pose x : [, ] → [a,b], −< a < b <, is a continuous and f : [a,b]→ R is
a continuous and convex function. If m and M are real constants defined by

m := inf
<t<

{
inf

{
 (t)− (s)

t− s
,  ≤ s ≤  , s �= t

}}
,

M := sup
<t<

{
sup

{
 (t)− (s)

t− s
,  ≤ s ≤  , s �= t

}}
,

then the following inequalities hold:

MM( f ,x) ≥ M( f ,x, ) ≥ mM( f ,x), (3.47)

where

M( f ,x) := ( −)[ f (a)+ f (b)]− ∫ 
 f (x(t))dt− ( −) f

(
a+b− 1

−
∫ 
 x(t)dt

)
.
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Alternative proof. Let us prove the right-hand side inequality in (3.47). Let  : [, ]→
R be defined by (z) = mz. Then Theorem 3.13 can be applied to functions  and 
because

M( f ,x,) = (m −m)[ f (a)+ f (b)]−
∫ 


f (x(t))d(mt)

−(m −m) f

(
a+b− 1

m −m

∫ 


x(t)d(mt)

)
= mM( f ,x). (3.48)

Namely, according to the definition of m is m ≤  (t)− (s)
t− s

. Function  :=  −  is

nondecreasing since  (t)−mt− ( (s)−ms)≥ 0, for t > s, and  (s)−ms− ( (t)−mt)≥
0, for s > t. Theorem 3.13 then implies

M( f ,x, ) = M( f ,x, − + ) ≥ M( f ,x,). (3.49)

The left-hand side inequality in (3.47) is proved similarly, by exchanging the roles of 
and  . �

3.2.3 Discrete Jensen-Mercer’s functional under the
Steffensen’s conditions

As it was pointed out by Theorem 1.9, Jensen-Mercer’s inequality (3.31) holds under the
Steffensen’s conditions as well. Precisely, if [a,b] is an interval in R, x ∈ [a,b]n is a mono-
tonic n-tuple, either nondecreasing or nonincreasing and p is a real n-tuple such that

Pn > 0 and 0 ≤ Pk ≤ Pn, 1 ≤ k ≤ n−1, (3.50)

where Pk = k
i=1 pi, k = 1,2, . . . ,n, then inequality (3.31) holds for any convex function

f : [a,b]→ R . Jensen-Mercer’s functional (3.32) is now observed under the Steffensen’s
conditions. As in previous considerations of this type, the set of all real n-tuples p that
satisfy (3.50) is denoted by Pn. For fixed f and x, functional M( f ,x, ·) is observed as a
function on Pn. If f is convex, then M( f ,x,p) ≥ 0, for all p ∈ Pn.

The superadditivity property of the functional (3.32), established in Theorem 3.9 is
now applied to prove its increase on Pn.

Theorem 3.14 Let q and p−q be two n-tuples in Pn, where p is a real n-tuple, such that
n

i=1 pi = Pn > 0. Suppose x ∈ [a,b]n, [a,b] ⊆ R, is a monotonic, either nondecreasing or
nonincreasing n-tuple. If f : [a,b]→R is a convex function, then the following inequalities
hold:

M( f ,x,p) ≥ M( f ,x,q) ≥ 0. (3.51)

Proof. If we write M( f ,x,p) = M( f ,x,p−q+q) and then apply (3.32) to p−q and
q, we get

M( f ,x,p) = M( f ,x,p−q+q)≥ M( f ,x,p−q)+M( f ,x,q) ≥ M( f ,x,q) ,
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where the last inequality follows from M( f ,x,p−q)≥ 0, which is satisfied due to Jensen-
Mercer’s inequality under the Steffensen’s conditions. The same argument proves the last
inequality in (3.51), too. �

In [24], the following result on the comparative inequalities for the normalized Jensen-
Mercer’s functional Mn ( f ,x, ·) , under the Steffensen’s conditions was proved.

Theorem 3.15 (SEE [24]) Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be two n-tuples such
that

0 ≤ Pk,Qk ≤ 1, k = 1, . . . ,n−1, Pn = Qn = 1.

Let m and M be any real constants such that

m ≥ 0, Pk −mQk ≥ 0, (1−Pk)−m(1−Qk) ≥ 0, k = 1, . . . ,n−1

and

MQk −Pk ≥ 0, M(1−Qk)− (1−Pk) ≥ 0, k = 1, . . . ,n−1.

If f : [a,b]→ R, [a,b]⊆R is a convex function and x = (x1, . . . ,xn)∈ [a,b]n is a monotonic
n-tuple, then

MMn( f ,x,q) ≥ Mn( f ,x,p) ≥ mMn( f ,x,q).

The accompanied result in [24] was on the bounding of the normalized Jensen-Mercer’s
functional by means of the non-weight functional of the same type, defined by

Mn( f ,x) := Mn( f ,x,u) = f (a)+ f (b)− 1
n

n


i=1

f (xi)− f

(
a+b− 1

n

n


i=1

xi

)
,

regarding the uniform distribution u = ( 1
n , . . . , 1

n ).

Corollary 3.6 (SEE [24]) Let p = (p1, . . . , pn) be an n-tuple such that

0 ≤ Pk ≤ 1, k = 1, . . . ,n−1, Pn = 1.

For k ∈ {1, . . . ,n} denote Pk := k
i=1 pi and define

m̃0 := n ·min

{
Pk

k
,
1−Pk

n− k
: k = 1, . . . ,n−1

}
,

M̃0 := n ·max

{
Pk

k
,
1−Pk

n− k
: k = 1, . . . ,n−1

}
.

If f : [a,b] → R is a convex function and if x = (x1, . . . ,xn) ∈ [a,b]n is any monotonic
n-tuple, then

M̃0Mn( f ,x) ≥ Mn ( f ,x,p) ≥ m̃0Mn( f ,x). (3.52)
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Remark 3.13 We now show that the statement of Theorem 3.15 from [24] can easily be
deduced from Theorem 3.14. Let m and M be real constants and let p be a real n-tuple such
that n

i=1 pi = Pn > 0. Suppose q, p−mq and Mq−p ∈ Pn. If f : [a,b]→ R, [a,b]⊆R is
a convex function and if x = (x1, . . . ,xn) ∈ [a,b]n is a monotonic n-tuple, then, according
to Theorem 3.14:

M( f ,x,p) ≥ M( f ,x,p−mq)+M( f ,x,mq) ≥ mM( f ,x,q) .

Similarly,
M( f ,x,p) ≤ MM( f ,x,q) ,

that is
MM( f ,x,q) ≥ M( f ,x,p) ≥ mM( f ,x,q) . (3.53)

Since p−mq ∈ Pn implies Pk ≥ mQk and (Pn −Pk) ≥ m(Qn −Qk), and Mq− p ∈ Pn

implies Pk ≤MQk and (Pn−Pk)≤M(Qn−Qk), k = 1, . . . ,n−1, which are the assumptions
of Theorem 3.15, only written in a slightly generalized, non-normalized form, the starting
assumptions yield the statement of Theorem 3.15.

Another application of Theorem 3.14 is deducing the lower and the upper bound for
the functional (3.32), by means of the non-weight functional of the same type. However,
almost identical result which slightly differs from this, for it was given in the normalized
form, was obtained in Corollary 3.6. Thus this proof is comprehended as an alternative one
and is therefore presented within a remark.

Remark 3.14 Let us write Corollary 3.6 in a slightly generalized way:

Let p = (p1, . . . , pn) be an n-tuple in Pn. Define

m := min
1≤k≤n−1

{
Pk

k
,
Pn−Pk

n− k

}
, M := max

1≤k≤n−1

{
Pk

k
,
Pn−Pk

n− k

}
,

where Pk = k
i=1 pi and Pn = n

i=1 pi > 0. If f : [a,b] → R, [a,b] ⊆ R is a
convex function and if x = (x1, . . . ,xn) ∈ [a,b]n is a monotonic n-tuple, then

MM( f ,x) ≥ M( f ,x,p) ≥ mM( f ,x), (3.54)

where M( f ,x) = n[ f (a)+ f (b)]−n
i=1 f (xi)−n f

(
a+b− 1

n

n


i=1

xi

)
.

Alternative proof of Corollary 3.6. Let us firstly prove the right-hand side inequality
in (3.54). Let qmin ∈ P0

n be a constant n-tuple, qmin = (,, . . . ,), where  > 0 since
Qn := n

i=1 qi > 0. The proof is based on the application of Theorem 3.14 to p and qmin,
because

M( f ,x,qmin) = m

(
n[ f (a)+ f (b)]−

n


i=1

f (xi)−n f

(
a+b− 1

n

n


i=1

xi

))
= mM( f ,x).
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However, we firstly need to hold argumentation on the choice of  regarding the de-
fined m. In order to apply Theorem 3.14, one should provide the following conditions sat-
isfied: Pk ≥ Qk = k, Pn−Pk ≥ Qn−Qk = (n− k), k = 1, . . . ,n−1, and Pn > Qn = n,
which means:

(i)  ≤ Pk
k , k = 1, . . . ,n−1,

(ii)  ≤ Pn−Pk
n−k , k = 1, . . . ,n−1,

(iii)  < Pn
n .

Obviously, m satisfies the conditions (i) and (ii) by definition and is a candidate for the
choice of  . Fix k ∈ {1, . . . ,n}. It easily follows from (i) and (ii) that nm≤ Pn, i.e. m≤ Pn

n
and m is a good choice for  .

The left-hand side inequality is proved analogously, by exchanging the roles of p and
q. �

3.2.4 Integral Jensen-Mercer’s functional under the
Steffensen’s conditions

Integral variants of the results from the previous section make use of [24] where it was
proved that integral Jensen-Mercer’s inequality (3.40) was satisfied under the conditions
of Theorem 3.4. Recall, the condition on  being an increasing function was weakened by
a stricter choice of the function x. Precisely, the following theorem was established in [24].

Theorem 3.16 (SEE [24]) Let x : [, ] → [a,b] be a continuous and monotonic func-
tion, where −<  <  < and −< a < b <. Let function  : [, ] → R be either
continuous or of bounded variation, such that

 () ≤  (t) ≤  ( ), for all t ∈ [, ] and  ( )− () > 0. (3.55)

Then for any continuous convex function f : [a,b] → R the inequality (3.40) holds.

As in Section 3.1.2, with [ , ], −<  <  <, is denoted the class of all functions
 : [, ]→R that are either continuous or of bounded variations and satisfy the conditions
(3.55).

Integral Jensen-Mercer’s functional M( f ,x, ) defined by (3.42) will now be observed
under the conditions of Theorem 3.4.

We firstly prove that this functional is increasing on[ , ]. As superadditivity of (3.42)
does not depend on the particularly chosen functions from this class, we simply apply
Theorem 3.12, by which this property was proved in the first place.

Theorem 3.17 Let  and  −  be functions in [ , ], either both continuous or of
bounded variation where  : [, ] → R is such that  ( )−  () > 0. Suppose x :
[, ] → [a,b], −< a < b <, is a continuous and monotonic function. If f : [a,b]→ R

is a continuous and convex function, then the following inequalities hold:

M( f ,x, ) ≥ M( f ,x,) ≥ 0. (3.56)
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Proof. If we write M( f ,x, ) = M( f ,x, − + ) and then apply the property (3.43)
of the functional (3.42) to  −  and  , we get

M( f ,x, ) = M( f ,x, − + ) ≥ M( f ,x, − )+M( f ,x,) ≥ M( f ,x,) ,

where the last inequality follows from M( f ,x, − ) ≥ 0, which is again satisfied due to
the inequality (3.40) under the conditions of Theorem 3.16, for a convex f and  −  ∈
[ , ]. For a convex f and  ∈[ , ] is then in an analogous way proved the last inequality
in (3.56). �

Remark 3.15 Since Theorem 3.16 from [24] was given an integral variant [24, Theorem
6], following the analogy with the Remark 3.13 and applying Theorem 3.17, we can easily
obtain its statement as well.

Theorem 3.17 provides the lower and the upper bound for the functional (3.42) under
the conditions of Theorem 3.16. Since almost identical result was obtained in [24], only in
a normalized form, this alternative proof is given within the following remark.

Remark 3.16 We write [24, Corollary 7] in a more generalized (non-normalized) form:

Let  be a function in [ , ]. Let x : [, ] → [a,b] be a monotonic function
(either nondecreasing or nonincreasing) and let f : [a,b]→R be a continuous
convex function. If m and M are real constants defined by

m := inf
<t<

{
 (t)− ()

t−
,
 ( )− (t)

 − t

}
,

M := sup
<t<

{
 (t)− ()

t−
,
 ( )− (t)

 − t

}
,

then
MM( f ,x) ≥ M( f ,x, ) ≥ mM( f ,x), (3.57)

where

M( f ,x) := ( −)[ f (a)+ f (b)]− ∫ 
 f (x(t))dt− ( −) f

(
a+b− 1

−
∫ 
 x(t)dt

)
.

Alternative proof. Let us prove the right-hand side inequality in (3.57). Let  :
[, ] → R be defined by (t) = mt. The proof is based on the application of Theorem
3.17 to  and  because

M( f ,x,) = (m −m)[ f (a)+ f (b)]−
∫ 


f (x(t))d(mt)

−(m −m) f

(
a+b− 1

m −m

∫ 


x(t)d(mt)

)
= mM( f ,x). (3.58)

Namely, after the definition of m is m ≤  (t)− ()
t −

and m ≤  (t)− ( )
t−

, which is

equivalent with  ()−m ≤  (t)−mt ≤  ( )−m , that is  ()− () ≤  (t)−
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(t) ≤  ( )− ( ), t ∈ [, ]. Hence  −  ∈ [ , ]. Furthermore, m ≥ 0 yields
() ≤ (t)≤ ( ), t ∈ [, ], and so  ∈[ , ]. The left-hand side inequality is proved
analogously, by exchanging the roles of  and  . �

3.3 Superadditivity of the Petrović-type functionals

Here we present the Petrović and some related inequalities (see [177], p. 152–159) and
define the corresponding functionals whose properties of superadditivity and monotonic-
ity will be the subject in the sequel. The presented results were previously published in
[48]. For the sake of simplicity these inequalities will be referred to as the Petrović-type
inequalities, while the corresponding functionals will be referred to as the Petrović-type
functionals. We start with the following inequality.

Theorem 3.18 Let I = (0,a]⊆R+ be an interval, (x1, . . . ,xn)∈ In, and let (p1, . . . , pn)∈
R

n
+ be a non-negative real n-tuple such that

n


i=1

pixi ∈ I and
n


i=1

pixi ≥ x j for j = 1, . . . ,n. (3.59)

If f : I → R is such that the function f (x)/x is decreasing on I, then

f

(
n


i=1

pixi

)
≤

n


i=1

pi f (xi). (3.60)

In addition, if f (x)/x is increasing on I, then the sign of inequality in (3.60) is reversed.

Remark 3.17 It should be noticed here that if f (x)/x is strictly increasing function on I,
then the equality in (3.60) is valid if and only if we have equalities in (3.59) instead of
inequalities, that is, if x1 = · · · = xn and n

i=1 pi = 1.

Motivated by the above theorem, we define the Petrović-type functional P1, as a dif-
ference between the right-hand side and the left-hand side of inequality (3.60), that is,

P1(x,p; f ) =
n


i=1

pi f (xi)− f

(
n


i=1

pixi

)
, (3.61)

where x = (x1, . . . ,xn) ∈ In, I = (0,a], p = (p1, . . . , pn) ∈ R
n
+, and f is defined on the

interval I.

Remark 3.18 If (3.59) holds and f (x)/x is decreasing on I, then

P1(x,p; f ) ≥ 0. (3.62)

On the other hand, if (3.59) is valid and f (x)/x is increasing on I, then

P1(x,p; f ) ≤ 0. (3.63)
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The above functional (3.61) will also be considered under slightly altered assumptions
on real n-tuples x and p. For that sake, the following result from [177] will be used in due
course.

Theorem 3.19 Suppose I = (0,a] ⊆ R+, (x1, . . . ,xn) ∈ In is a real n-tuple such that 0 <
x1 ≤ ·· · ≤ xn, and let (p1, . . . , pn) ∈ R

n
+. Further, let f : I → R be such that f (x)/x is

increasing on I.

(i) If there exists m (≤ n) such that

P̄1 ≥ P̄2 ≥ ·· · ≥ P̄m ≥ 1, P̄m+1 = · · · = P̄n = 0, (3.64)

where Pk = k
i=1 pi, P̄k = Pn−Pk−1, k = 2, . . . ,n, and P̄1 = Pn, then (3.60) holds.

(ii) If there exists m (≤ n) such that

0 ≤ P̄1 ≤ P̄2 ≤ ·· · ≤ P̄m ≤ 1, P̄m+1 = · · · = P̄n = 0, (3.65)

then the reverse inequality in (3.60) holds.

Remark 3.19 If f (x)/x is increasing on I and (3.64) holds, then the Petrović-type func-
tional P1 is non-negative, i.e. inequality (3.62) is valid. Conversely, if f (x)/x is increasing
on I and conditions as in (3.65) are fulfilled, then relation (3.63) holds.

In order to define another Petrović-type functional, we cite the following Petrović-type
inequality involving a convex function.

Theorem 3.20 Let I = [0,a]⊆R+, (x1, . . . ,xn) ∈ In and let (p1, . . . , pn) ∈ R
n
+ fulfill con-

ditions as in (3.59). If f : I → R is a convex function, then

f

(
n


i=1

pixi

)
≥

n


i=1

pi f (xi)+

(
1−

n


i=1

pi

)
f (0). (3.66)

Remark 3.20 If f is a concave function then − f is convex, hence replacing f by − f in
Theorem 3.20, we obtain inequality

f

(
n


i=1

pixi

)
≤

n


i=1

pi f (xi)+

(
1−

n


i=1

pi

)
f (0). (3.67)

Remark 3.21 If the function f from Theorem 3.20 is strictly convex, then the inequality
in (3.66) is strict, if all xi’s are not equal or n

i=1 pi �= 1.

Now, regarding inequality (3.66) we define another Petrović-type functional P2 by the
formula

P2(x,p; f ) = f

(
n


i=1

pixi

)
−

n


i=1

pi f (xi)−
(

1−
n


i=1

pi

)
f (0), (3.68)

provided that x = (x1, . . . ,xn) ∈ In, I = [0,a], p = (p1, . . . , pn) ∈ R
n
+, and f is defined on I.
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Remark 3.22 If (3.59) holds and f : I → R is a convex function, then

P2(x,p; f ) ≥ 0. (3.69)

If (3.59) holds and f : I → R is a concave function, then

P2(x,p; f ) ≤ 0. (3.70)

Finally, we shall also be concerned with an integral form of the Petrović-type func-
tional, based on the following integral Petrović-type inequality.

Theorem 3.21 Let I ⊆ R be an interval, 0 ∈ I, and let f : I → R be a convex function.
Further, suppose h : [a,b]→ I is continuous and monotone with h(t0) = 0, where t0 ∈ [a,b]
is fixed, and g is a function of bounded variation with

G(t) :=
∫ t

a
dg(x), G(t) :=

∫ b

t
dg(x).

(a) If
∫ b
a h(t)dg(t) ∈ I and

0 ≤ G(t) ≤ 1 f or a ≤ t ≤ t0, 0 ≤ G(t) ≤ 1 f or t0 ≤ t ≤ b, (3.71)

then ∫ b

a
f (h(t))dg(t) ≥ f

(∫ b

a
h(t)dg(t)

)
+
(∫ b

a
dg(t)−1

)
f (0). (3.72)

(b) If
∫ b
a h(t)dg(t) ∈ I and either there exists an s ≤ t0 such that G(t) ≤ 0 for t < s,

G(t) ≥ 1 f or s ≤ t ≤ t0, and G(t) ≤ 0 f or t > t0 (3.73)

or there exists an s ≥ t0 such that G(t) ≤ 0 for t < t0,

G(t) ≥ 1 f or t0 < t < s, and G(t) ≤ 0 f or t ≥ s, (3.74)

then the reverse inequality in (3.72) holds.

In view of Theorem 3.21, we define the functional

P3(h,g; f ) =
∫ b

a
f (h(t))dg(t)− f

(∫ b

a
h(t)dg(t)

)
−
(∫ b

a
dg(t)−1

)
f (0), (3.75)

which represents the integral form of the Petrović-type functional.

Remark 3.23 If the functions f , g, and h are defined as in the statement of Theorem 3.21
and (3.71) holds, then the functional P3 is non-negative, i.e.

P3(h,g; f ) ≥ 0. (3.76)

Moreover, if either (3.73) or (3.74) holds then

P3(h,g; f ) ≤ 0. (3.77)
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For a comprehensive inspection on the Petrović-type inequalities including proofs and
diverse applications, the reader is referred to [177].

In the sequel we establish the conditions under which the appropriate functional is
superadditive (subadditive) and increasing (decreasing), with respect to the corresponding
n-tuple of real numbers. Our first result refers to the Petrović-type functional P1 defined
by (3.61).

Theorem 3.22 Let I = (0,a] ⊆ R+, x ∈ In, and let non-negative n-tuples p, q fulfill con-
ditions as in (3.59). If f : I → R is such that the function f (x)/x is decreasing on I, then
the functional (3.61) possesses the following properties:

(i) P1(x, .; f ) is superadditive on non-negative n-tuples, i.e.

P1(x,p+q; f ) ≥ P1(x,p; f )+P1(x,q; f ), (3.78)

provided that
n

i=1

(pi +qi)xi ∈ I.

(ii) If p,q ∈ R
n
+ are such that p ≥ q and

n

i=1

(pi −qi)xi ≥ x j, j = 1, . . . ,n, then

P1(x,p; f ) ≥ P1(x,q; f ) ≥ 0, (3.79)

that is, P1(x, .; f ) is increasing on non-negative n-tuples.

(iii) If f (x)/x is increasing on I, then the signs of inequalities in (3.78) and (3.79) are
reversed, i.e. P1(x, .; f ) is subadditive and decreasing on non-negative n-tuples.

Proof. (i) Using definition (3.61) of the Petrović-type functional P1 and utilizing the
linearity of the sum, we have

P1(x,p+q; f ) =
n


i=1

(pi +qi) f (xi)− f

(
n


i=1

(pi +qi)xi

)

=
n


i=1

pi f (xi)+
n


i=1

qi f (xi)− f

(
n


i=1

pixi +
n


i=1

qixi

)
. (3.80)

On the other hand, since f (x)/x is decreasing function, Theorem 3.18 in the non-weight
case (for n = 2), yields inequality

f

(
n


i=1

pixi +
n


i=1

qixi

)
≤ f (

n


i=1

pixi)+ f (
n


i=1

qixi). (3.81)

Finally, combining relations (3.80) and (3.81), we obtain

P1(x,p+q; f ) ≥
n


i=1

pi f (xi)+
n


i=1

qi f (xi)− f (
n


i=1

pixi)− f (
n


i=1

qixi).
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Therefore we have

P1(x,p+q; f ) ≥ P1(x,p; f )+P1(x,q; f ),

as claimed.
(ii) Monotonicity follows easily from the superadditivity property. Since p ≥ q ≥ 0,

we can represent p as the sum of two non-negative n-tuples, namely p = (p−q)+q. Now,
from relation (3.78) we get

P1(x,p; f ) = P1(x,p−q+q; f ) ≥ P1(x,p−q; f )+P1(x,q; f ).

Finally, if the conditions as in (ii) are fulfilled, then, taking into account Theorem 3.18 we
have that P1(x,p−q; f ) ≥ 0, which implies that P1(x,p; f ) ≥ P1(x,q; f ).

(iii) The case of increasing function f (x)/x is treated in the same way as in (i) and (ii),
taking into account that the sign of the corresponding Petrović-type inequality is reversed.

�

By virtue of Theorem 3.19, the above properties of the functional P1 can also be
derived in a slightly different setting.

Theorem 3.23 Let I = (0,a] ⊆ R+, x ∈ In, and let real n-tuples p, q fulfill conditions as
in (3.64). If f : I →R is such that the function f (x)/x is increasing on I, then the functional
P1 has the following properties:

(i) P1(x, .; f ) is superadditive on real n-tuples, i.e.

P1(x,p+q; f ) ≥ P1(x,p; f )+P1(x,q; f ), (3.82)

provided that
n

i=1

(pi +qi)xi ∈ I and 0 <
n

i=1

pixi ≤
n

i=1

qixi.

(ii) If 0 < x1 ≤ ·· · ≤ xn, p ≥ q, and there exist m (≤ n) such that

P̄1− Q̄1 ≥ P̄2− Q̄2 ≥ ·· · ≥ P̄m− Q̄m ≥ 1,

P̄m+1 = Q̄m+1 = · · · = P̄n = Q̄n = 0, (3.83)

where Pk =k
i=1 pi, Qk =k

i=1 qi, P̄k−Q̄k = (Pn +Qn)−(Pk−1 +Qk−1), k = 2, . . . ,n,
P̄1 = Pn, and Q̄1 = Qn, then

P1(x,p; f ) ≥ P1(x,q; f ) ≥ 0, (3.84)

i.e. P1(x, .; f ) is increasing on real n-tuples.

(iii) If real n-tuples p and q fulfill conditions as in (3.65), then the signs of inequalities
in (3.82) and (3.84) are reversed, that is, P1(x, .; f ) is subadditive and decreasing
on real n-tuples.
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Proof. (i) The proof follows the same lines as the proof of the previous theorem.
Namely, the left-hand side of (3.82) can be rewritten as

P1(x,p+q; f ) =
n


i=1

(pi +qi) f (xi)− f

(
n


i=1

(pi +qi)xi

)

=
n


i=1

pi f (xi)+
n


i=1

qi f (xi)− f

(
n


i=1

pixi +
n


i=1

qixi

)
. (3.85)

Moreover, f (x)/x is increasing, hence Theorem 3.19 for n = 2 yields inequality

f

(
n


i=1

pixi +
n


i=1

qixi

)
≤ f (

n


i=1

pixi)+ f (
n


i=1

qixi). (3.86)

Finally, relations (3.85) and (3.86) imply inequality

P1(x,p+q; f ) ≥
n


i=1

pi f (xi)+
n


i=1

qi f (xi)− f (
n


i=1

pixi)− f (
n


i=1

qixi),

i.e. we obtain (3.82).
(ii) Considering p≥ q≥ 0, the real n-tuple p can be rewritten as p = (p−q)+q. Now,

regarding relation (3.82) we have

P1(x,p; f ) = P1(x,p−q+q; f ) ≥ P1(x,p−q; f )+P1(x,q; f ).

Finally, taking into account conditions as in (3.83), it follows by Theorem 3.19 that
P1(x,p−q; f ) ≥ 0, that is, P1(x,p; f ) ≥ P1(x,q; f ), which completes the proof.

(iii) This case is treated in the same way as in (i) and (ii), taking into account that the
sign of the corresponding Petrović-type inequality is reversed. �

Superadditivity and monotonicity properties stated in Theorem 3.22 play an important
role in numerous applications of the Petrović-type inequalities. In the sequel we utilize
the monotonicity property of the Petrović-type functional P1. More precisely, we derive
some bounds for this functional, expressed in terms of the non-weight functional of the
same type.

Corollary 3.7 Let I = (0,a] ⊆ R+, x ∈ In, and let f : I → R be such that f (x)/x is de-
creasing on I. Further, suppose p ∈ R

n
+ is such that n

i=1(pi −m)xi ≥ x j and n
i=1(M−

pi)xi ≥ x j, j = 1,2, . . . ,n, where m = min1≤i≤n{pi} and M = max1≤i≤n{pi}.
If m > 1 then the Petrović-type functional P1 fulfills inequality

P1(x,p; f ) ≥ mP0
1 (x; f ), (3.87)

while for M < 1 we have
P1(x,p; f ) ≤ MP0

1 (x; f ), (3.88)

where

P0
1 (x; f ) =

n


i=1

f (xi)− f

(
n


i=1

xi

)
. (3.89)
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Moreover, if f (x)/x is increasing on I, then the signs of inequalities in (3.87) and (3.88)
are reversed.

Proof. Since p = (p1, . . . , pn) ≥ m = (m,m, . . . ,m), monotonicity of the Petrović-type
functional implies that P1(x,p; f ) ≥ P1(x,m; f ).

On the other hand, if f (x)/x is decreasing function, we have

f (au) ≤ a f (u), a > 1 and f (au) ≥ a f (u), a < 1. (3.90)

Now, regarding (3.90) we have

P1(x,m; f ) = m
n


i=1

f (xi)− f

(
m

n


i=1

xi

)
≥ m

n


i=1

f (xi)−mf

(
n


i=1

xi

)
,

that is, we obtain (3.87). Inequality (3.88) is derived in a similar way, by using the second
inequality in (3.90). �

Our next result provides superadditivity and monotonicity properties of the Petrović-
type functional defined by (3.68).

Theorem 3.24 Let I = [0,a]⊆R+, x∈ In, and let p,q∈R
n
+ fulfill conditions as in (3.59).

If f : I → R is a convex function, then the functional (3.68) has the following properties:

(i) P2(x, .; f ) is superadditive on non-negative n-tuples, i.e.

P2(x,p+q; f ) ≥ P2(x,p; f )+P2(x,q; f ), (3.91)

provided that
n

i=1

(pi +qi)xi ∈ I.

(ii) If p,q are such that p ≥ q and
n

i=1

(pi −qi)xi ≥ x j, j = 1, . . . ,n, then

P2(x,p; f ) ≥ P2(x,q; f ) ≥ 0, (3.92)

that is, P2(x, .; f ) is increasing on non-negative n-tuples.

(iii) If f : I → R is a concave function, then the signs of inequalities in (3.91) and (3.92)
are reversed, i.e. P2(x, .; f ) is subadditive and decreasing on non-negative n-tuples.

Proof. (i) The left-hand side of inequality (3.91) can be rewritten as

P2(x,p+q; f ) = f

(
n


i=1

(pi +qi)xi

)
−

n


i=1

(pi +qi) f (xi)−
(

1−
n


i=1

(pi +qi)

)
f (0)

= f

(
n


i=1

pixi +
n


i=1

qixi

)
−

n


i=1

pi f (xi)−
n


i=1

qi f (xi)

−
(

1− (
n


i=1

pi +
n


i=1

qi)

)
f (0). (3.93)
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Further, Theorem 3.20 in the non-weight case (for n = 2) yields inequality

f

(
n


i=1

pixi +
n


i=1

qixi

)
≥ f (

n


i=1

pixi)+ f (
n


i=1

qixi)− f (0), (3.94)

hence combining relations (3.93) and (3.94), we get

P2(x,p+q; f ) ≥ f (
n


i=1

pixi)−
n


i=1

pi f (xi)−
(

1−
n


i=1

pi

)
f (0)

+ f (
n


i=1

pixi)−
n


i=1

qi f (xi)−
(

1−
n


i=1

qi

)
f (0). (3.95)

Thus, considering definition (3.68) we obtain (3.91), as claimed.
(ii) Monotonicity property follows from the corresponding superadditivity property

(3.91), as in Theorem 3.23.
(iii) The case of concave function f follows from the fact that the sign of the corre-

sponding Petrović-type inequality is reversed. �

Finally, we derive the properties of the integral Petrović-type functional, defined by
(3.75).

Theorem 3.25 Suppose f : I = [0,a] → R is a convex function, h : [a,b] → I is continu-
ous and monotone with h(t0) = 0, where t0 ∈ [a,b] is fixed, and let g1,g2 be functions of
bounded variation with

Gi(t) :=
∫ t

a
dgi(x), Gi(t) :=

∫ b

t
dgi(x) f or i = 1,2.

Then the functional P3, defined by (3.75), has the following properties:

(i) P3(h, .; f ) is subadditive with respect to functions of bounded variation, i.e.

P3(h,g1 +g2; f ) ≤ P3(h,g1; f )+P3(h,g2; f ), (3.96)

where
∫ b
a h(t)dg1(t) ≥ 0,

∫ b
a h(t)dg2(t) ≥ 0, and

∫ b
a h(t)dg1(t)+

∫ b
a h(t)dg2(t) ∈ I.

(ii) If
∫ b
a h(t)d(g1)(t)−

∫ b
a h(t)d(g2)(t) ∈ I and either there exists an s ≤ t0 such that

G1(t) ≤ G2(t) for t < s, G1(t)−G2(t) ≥ 1 for s ≤ t ≤ t0, and G1(t) ≤ G2(t) for
t > t0, or there exists an s ≥ t0 such that G1(t) ≤ G2(t) for t < t0, G1(t)−G2(t) ≥ 1
for t0 < t < s, and G1(t) ≤ G2(t) for t ≥ s, then

P3(h,g1; f ) ≤ P3(h,g2; f ). (3.97)

Proof. (i) Regarding definition (3.75) of the Petrović-type integral functional, we have

P3(h,g1 +g2; f ) =
∫ b

a
f (h(t))d(g1 +g2)(t)− f

(∫ b

a
h(t)d(g1 +g2)(t)

)
−
(∫ b

a
d(g1 +g2)(t)−1

)
f (0),
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that is,

P3(h,g1 +g2; f ) =
∫ b

a
f (h(t))dg1(t)+

∫ b

a
f (h(t))dg2(t)

− f

(∫ b

a
h(t)dg1(t)+

∫ b

a
h(t)dg2(t)

)
−
(∫ b

a
dg1(t)+

∫ b

a
dg2(t)−1

)
f (0), (3.98)

by the linearity of the differential. Now, applying inequality (3.66) to term

f

(∫ b

a
h(t)dg1(t)+

∫ b

a
h(t)dg2(t)

)
,

we obtain

f

(∫ b

a
h(t)dg1(t)+

∫ b

a
h(t)dg2(t)

)
≥ f

(∫ b

a
h(t)dg1(t)

)
+ f

(∫ b

a
h(t)dg2(t)

)
− f (0).

(3.99)
Further, inserting (3.99) in (3.98), we have

P3(h,g1 +g2; f ) ≤
∫ b

a
f (h(t))dg1(t)+

∫ b

a
f (h(t))dg2(t)

− f

(∫ b

a
h(t)dg1(t)

)
− f

(∫ b

a
h(t)dg2(t)

)
+ f (0)

−
(∫ b

a
dg1(t)+

∫ b

a
dg2(t)−1

)
f (0),

i.e. by rearranging,

P3(h,g1 +g2; f ) ≤ P3(h,g1; f )+P3(h,g2; f ).

(ii) Monotonicity follows from the subadditivity property (3.96). Namely, representing g1

as g1 = (g1−g2)+g2, we have

P3(h,g1; f ) = P3(h,(g1−g2)+g2; f ) ≤ P3(h,g1−g2; f )+P3(h,g2; f ).

Clearly, under assumptions as in the statement of theorem, we have P3(h,g1−g2; f ) ≤ 0
(see also Remark 3.23), hence it follows that P3(h,g1; f )≤P3(h,g2; f ), which completes
the proof. �



Chapter4
Some further improvements.
Levinson’s functional

In the first part of this chapter some additional refinements concerning Jessen’s functional
(2.2) (see also [22]) are presented. Inequalities observed in Chapter 2 are in this part
reexamined under new assumptions and by means of new results involved. It is interesting
to see how non-weight bounds for discrete Jensen’s functional, given in Lemma 1.2 served
as a tool in obtaining these new refinements.

In the second part of the chapter, superadditivity of Levinson’s functional is studied,
as it was previously done in [109]. Closely related to the Jensen inequality, this functional
is here observed in a more general setting that again belongs to the Jessen’s variant of this
inequality.

In view of this facts, this chapter can be regarded as a continuation of Chapter 2 and
thus inherits its environment of the positive linear functionals acting on the space of real
valued functions.

4.1 Refinements of the inequalities related to
Jessen’s functional

Properties of superadditivity and increase of Jessen’s functional (2.2) proved in Theorem
2.2 are improved in the following theorem. Remarks 2.1 and 2.2 concerning conditions on

131
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well-defining of Jessen’s functional need to be taken into account in the sequel, as well.

Theorem 4.1 Let A : L → R be a positive linear functional. Suppose f , p and q ∈ L. If
 : I → R, I ⊆ R is a continuous and convex function, then

min{A(p),A(q)}
[

(

A(p f )
A(p)

)
+

(
A(q f )
A(q)

)
−2

(
A(p f )
2A(p)

+
A(q f )
2A(q)

)]
≤ J (, f , p+q;A)−J (, f , p;A)−J (, f ,q;A)

≤ max{A(p),A(q)}
[

(

A(p f )
A(p)

)
+

(
A(q f )
A(q)

)
−2

(
A(p f )
2A(p)

+
A(q f )
2A(q)

)]
. (4.1)

Moreover, if p ≥ q, A(p) �= A(q) and A(p f )−A(q f )
A(p)−A(q) ∈ I, then

J (, f , p;A)−J (, f ,q;A)

≥ min{A(p)−A(q),A(q)}
[

(

A(p f )−A(q f )
A(p)−A(q)

)
+

(
A(q f )
A(q)

)
− 2

{
1
2

[
A(p f )−A(q f )
A(p)−A(q)

+
A(q f )
A(q)

]}]
. (4.2)

Proof. In order to prove relation (4.1), we use non-weight bounds from Lemma 1.2.
For convex function  and in case n = 2 relation (1.64) reads:

min{ p̄, q̄}
[
(x)+(y)−2

(
x+ y

2

)]
≤ p̄(x)+ q̄(y)− (p̄+ q̄)

(
p̄x+ q̄y
p̄+ q̄

)
≤ max{ p̄, q̄}

[
(x)+(y)−2

(
x+ y

2

)]
. (4.3)

If we substitute p̄ with A(p), q̄ with A(q), x with A(p f )
A(p) and y with A(q f )

A(q) in (4.3) we obtain

min{A(p),A(q)}
[

(

A(p f )
A(p)

)
+

(
A(q f )
A(q)

)
−2

(
A(p f )
2A(p)

+
A(q f )
2A(q)

)]
≤ A(p)

(
A(p f )
A(p)

)
+A(q)

(
A(q f )
A(q)

)
− (A(p)+A(q))

(
A(p f )+A(q f )
A(p)+A(q)

)
≤ max{A(p),A(q)}

[

(

A(p f )
A(p)

)
+

(
A(q f )
A(q)

)
−2

(
A(p f )
2A(p)

+
A(q f )
2A(q)

)]
. (4.4)

From the definition (2.2) of Jessen’s functional it follows that

J (, f , p+q;A)−J (, f , p;A)−J (, f ,q;A)

= A(p)
(

A(p f )
A(p)

)
+A(q)

(
A(q f )
A(q)

)
− (A(p)+A(q))

(
A(p f )+A(q f )
A(p)+A(q)

)
.

(4.5)
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Combining relations (4.4) and (4.5) we get (4.1).
Functional J (, f , ·,A) is superadditive and increasing on L and satisfies relation

(4.1). Hence for p ≥ q, A(p) �= A(q) and A(p f )−A(g f )
A(p)−A(q) ∈ I the following holds:

J (, f , p;A)−J (, f , p−q;A)−J (, f ,q;A)

≥ min{A(p−q),A(q)}
[

(

A((p−q) f )
A(p−q)

)
+

(
A(q f )
A(q)

)
− 2

(
A((p−q) f )
2A(p−q)

+
A(q f )
2A(q)

)]
= min{A(p)−A(q),A(q)}

[

(

A(p f )−A(q f )
A(p)−A(q)

)
+

(
A(q f )
A(q)

)
− 2

{
1
2

[
A(p f )−A(q f )
A(p)−A(q)

+
A(q f )
A(q)

]}]
. (4.6)

Since J (, f , p−q;A) ≥ 0, we obtain (4.2). This completes the proof. �

Theorem 4.1 provides the refinement and the converse of the superadditivity property
(2.3) from Theorem 2.2 and refines the monotonicity property (2.4) from the same theorem.
Note also that the statements of Theorem 4.1 are formulated in a more general setting with
p,q ∈ L, since for n = 2 this condition is as valid as with p,q ∈ L+.

Corollary 4.1 Let A : L → R be a positive linear functional and  : I → R, I ⊂ R be a
continuous and convex function. Suppose f ∈ L and p,q ∈ L+. Then the inequality (4.1)
holds. If p ≥ q and A(p) �= A(q) > 0, then (4.2) holds.

Corollary 4.2 Let A : L→ R be a positive linear functional, f ∈ L and let  : I → R, I ⊂
R be a continuous and convex function. If p∈L+ attains its minimal value p = minx∈E p(x)
and its maximal value p = maxx∈E p(x), then the following series of inequalities holds:

pJ (, f ,1;A)−J (, f , p;A)

≥ min{pA(1)−A(p),A(p)}
[

(

pA( f )−A(p f )
pA(1)−A(p)

)
+

(
A(p f )
A(p)

)
− 2

{
1
2

[
pA( f )−A(p f )
pA(1)−A(p)

+
A(p f )
A(p)

]}]
, (4.7)

J (, f , p;A)− pJ (, f ,1;A)

≥ min{A(p)− pA(1), pA(1)}
[


(
A(p f )− pA( f )
A(p)− pA(1)

)
+

(
A( f )
A(1)

)

− 2

{
1
2

[
A(p f )− pA( f )
A(p)− pA(1)

+
A( f )
A(1)

]}]
, (4.8)

where

J (, f ,1;A) = A(( f ))−A(1)
(

A( f )
A(1)

)
. (4.9)
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Proof. Since
p ≥ p(x) ≥ p,

double application of property (4.2) yields required result since

J (, f , p;A) = pJ (, f ,1;A) and J
(
, f , p;A

)
= pJ (, f ,1;A) .

�

Remark 4.1 Let’s rewrite relations (4.7) and (4.8) from Corollary 4.2 in the discrete form.
We suppose E = {1,2, . . . ,n} and L is the class of real n-tuples. If we consider discrete
functional A defined by A(x) = n

i=1 xi, where x = (x1,x2, . . . ,xn), then we deal with the
discrete Jensen’s functional (1.65) and the relation (4.7) takes form

max
1≤i≤n

{pi}Jn(,x)− Jn(,x,p)

≥ min{n max
1≤i≤n

{pi}−Pn,Pn}
⎡⎣

⎛⎝max
1≤i≤n

{pi}n
i=1 xi −n

i=1 pixi

n max
1≤i≤n

{pi}−Pn

⎞⎠+
(
n

i=1 pixi

Pn

)

− 2

⎧⎨⎩1
2

⎡⎣ max
1≤i≤n

{pi}n
i=1 xi −n

i=1 pixi

n max
1≤i≤n

{pi}−Pn
+ n

i=1 pixi

Pn

⎤⎦⎫⎬⎭
⎤⎦ ,

(4.10)

and the relation (4.8) takes form

Jn(,x,p)− min
1≤i≤n

{pi}Jn(,x)

≥ min{Pn−n min
1≤i≤n

{pi},n min
1≤i≤n

{pi}}
⎡⎣

⎛⎝n
i=1 pixi − min

1≤i≤n
{pi}n

i=1 xi

Pn−n min
1≤i≤n

{pi}

⎞⎠
+

(
n

i=1 xi

n

)
− 2

⎧⎨⎩1
2

⎡⎣n
i=1 pixi − min

1≤i≤n
{pi}n

i=1 xi

Pn−n min
1≤i≤n

{pi} +
n

i=1 xi

n

⎤⎦⎫⎬⎭
⎤⎦,

(4.11)

where the functional Jn(,x,p) is defined by (1.65) and Jn(,x)=n
i=1(xi)−n

(
n

i=1 xi
n

)
.

4.1.1 Application to weight generalized means

As expected, basic results from the previous section are applied to weight generalized
means (2.11) with respect to positive linear functional A : L → R and thus the correspond-
ing results from Section 2.1.3 are improved. We firstly establish the improvement of The-
orem 2.4 concerning the Jensen-type functional (2.12). Again, notation and the definition
conditions induced in Section 2.1.3 remain valid in the sequel, as well.
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Theorem 4.2 Let A : L → R be a positive linear functional and  , : I → R, I ⊆ R be
continuous and strictly monotonic functions. Suppose f ∈ L is such that ( f ) ∈ L and
p,q∈ L+. If  ◦−1 is a convex function, then functional J ( ◦−1,( f ), ·;A) defined
by (2.12) possesses the following properties

min{A(p),A(q)}
[
 ◦−1

(
A(p( f ))

A(p)

)
+  ◦−1

(
A(q( f ))

A(q)

)
− 2 ◦−1

(
A(p( f ))

2A(p)
+

A(q( f ))
2A(q)

)]
≤ J ( ◦−1,( f ), p+q;A)−J ( ◦−1,( f ), p;A)−J ( ◦−1,( f ),q;A)

≤ max{A(p),A(q)}
[
 ◦−1

(
A(p( f ))

A(p)

)
+  ◦−1

(
A(q( f ))

A(q)

)
− 2 ◦−1

(
A(p( f ))

2A(p)
+

A(q( f ))
2A(q)

)]
. (4.12)

Moreover, if p ≥ q, then

J ( ◦−1,( f ), p;A)−J ( ◦−1,( f ),q;A)

≥ min{A(p)−A(q),A(q)}
[
 ◦−1

(
A(p( f ))−A(q( f ))

A(p)−A(q)

)
+  ◦−1

(
A(q( f ))

A(q)

)
− 2 ◦−1

{
1
2

[
A(p( f ))−A(q( f ))

A(p)−A(q)
+

A(q( f ))
A(q)

]}]
. (4.13)

Proof. We consider Jessen’s functional (2.2) where the convex function  is replaced
with  ◦−1 and f ∈ L with ( f ) ∈ L. Functional (2.12) can be rewritten in the following
way:

J  ( ◦−1,( f ), p;A
)

= A
(
p · ( ◦−1 (( f ))

))−A(p)
(
−1

(
A(p( f ))

A(p)

))
= A(p( f ))−A(p)

(
M( f , p;A)

)
= A(p)

(
M( f , p;A)

)−A(p)
(
M( f , p;A)

)
= A(p)

[

(
M( f , p;A)

)− 
(
M( f , p;A)

)]
.

Now, inequalities (4.12) and (4.13) follow from Theorem 4.1. �

Using the similar substitutions as in the previous theorem, we give its consequence in
the form of the following corollary, which is also an improvement of the corresponding
Corollary 2.2.

Corollary 4.3 Let functions  , , f and functional A be defined as in Theorem 4.2 and let
p ∈ L+ attain its minimal value p = minx∈E p(x) and its maximal value p = maxx∈E p(x).
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If  ◦−1 is a convex function, then the following series of inequalities holds:

pJ  ( ◦−1,( f ),1;A
)−J  ( ◦−1,( f ), p;A

)
≥ min{pA(1)−A(p),A(p)}

[
 ◦−1

(
pA(( f ))−A(p( f ))

pA(1)−A(p)

)
+ ◦−1

(
A(p( f ))

A(p)

)
−2 ◦−1

{
1
2

[
pA(( f ))−A(p( f ))

pA(1)−A(p)
+

A(p( f ))
A(p)

]}]
,

(4.14)

J  ( ◦−1,( f ), p;A
)− pJ  ( ◦−1,( f ),1;A

)
≥ min{A(p)− pA(1), pA(1)}

[
 ◦−1

(
A(p( f ))− pA(( f ))

A(p)− pA(1)

)

+ ◦−1
(

A(( f ))
A(1)

)
−2 ◦−1

{
1
2

[
A(p( f ))− pA(( f ))

A(p)− pA(1)
+

A(( f ))
A(1)

]}]
,

(4.15)

where

J  ( ◦−1,( f ),1;A
)

= A(1)
[

(
M( f ;A)

)− 
(
M( f ;A)

)]
(4.16)

and

M ( f ;A) = −1
(

A(( f ))
A(1)

)
,  =  , . (4.17)

We now observe the Jensen-type functional (2.17) defined by means of a generalized
weight power mean (2.16).

Corollary 4.4 Let r and s �= 0 be real numbers and functions f , p,q ∈ L, f (x) > 0, x ∈ E.
Suppose A : L→R is a positive linear functional such that A(p),A(q) > 0. Then functional
(2.17) possesses the following properties:

(i) If r �= 0 and s > 0, s > r or s < 0, s < r, then

min{A(p),A(q)}
[(

A(p f r)
A(p)

) s
r

+
(

A(q f r)
A(q)

) s
r

−2

(
A(p f r)
2A(p)

+
A(q f r)
2A(q)

) s
r
]

≤ J P ( ◦−1,( f ), p+q;A)−J P ( ◦−1,( f ), p;A)−J P ( ◦−1,( f ),q;A)

≤ max{A(p),A(q)}
[(

A(p f r)
A(p)

) s
r

+
(

A(q f r)
A(q)

) s
r

−2

(
A(p f r)
2A(p)

+
A(q f r)
2A(q)

) s
r
]

.

(4.18)

(ii) If r �= 0 and s > 0, s > r or s < 0, s < r, then for p,q ∈ L+ such that p ≥ q the
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following inequality holds:

J P( ◦−1,( f ), p;A)−J P( ◦−1,( f ),q;A)

≥ min{A(p−q),A(q)}
[(

A(p f r)−A(q f r)
A(p)−A(q)

) s
r

+
(

A(q f r)
A(q)

) s
r

− 21− s
r

(
A(p f r)−A(q f r)

A(p)−A(q)
+

A(q f r)
A(q)

) s
r
]

. (4.19)

(iii) If r = 0, then

min{A(p),A(q)}
[
exp

(
sA(p ln f )

A(p)

)
+ exp

(
sA(q ln f )

A(q)

)
− 2exp

(
sA(p ln f )

2A(p)
+

sA(q ln f )
2A(q)

)]
≤ J P( ◦−1,( f ), p+q;A)−J P( ◦−1,( f ), p;A)−J P( ◦−1,( f ),q;A)

≤ max{A(p),A(q)}
[
exp

(
sA(p ln f )

A(p)

)
+ exp

(
sA(q ln f )

A(q)

)
− 2exp

(
sA(p ln f )

2A(p)
+

sA(q ln f )
2A(q)

)]
. (4.20)

(iv) If r = 0, then for p,q ∈ L+ such that p ≥ q the following inequality holds:

J P ( ◦−1,( f ), p;A)−J P ( ◦−1,( f ),q;A)

≥ min{A(p−q),A(q)}
[
exp

(
sA(p ln f )− sA(q ln f )

A(p)−A(q)

)
+ exp

(
sA(q ln f )

A(q)

)
− 2exp

{
s
2

[
A(p ln f )−A(q ln f )

A(p)−A(q)
+

A(q ln f )
A(q)

]}]
. (4.21)

Proof. Follows directly from Theorem 4.2. We have to consider two cases depending
on whether r �= 0 or r = 0.

If r �= 0, we define (x) = xs and (x) = xr. Then,  ◦−1(x) = x
s
r and

(
 ◦−1

)′′
(x)

= s(s−r)
r2

x
s
r−2. Thus,  ◦−1 is convex if s > 0, s > r or s < 0, s < r. On the other hand,

 ◦−1 is concave if s > 0, s < r or s < 0, s > r.
If r = 0, we put (x) = xs and (x) = lnx. Then,  ◦−1(x) = esx is convex under

assumption s �= 0. Results follow immediately from Theorem 4.2. �

Corollary 4.5 Let s �= 0 and r be real numbers such that r �= 0, s > 0, s > r or s < 0,
s < r and let p ∈ L attain its minimal value p = minx∈E p(x) and its maximal value p =
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maxx∈E p(x). Then the following series of inequalities holds:

pJ P
(
 ◦−1,( f ),1;A

)−J P
(
 ◦−1,( f ), p;A

)
≥ min{pA(1)−A(p),A(p)}

[(
pA( f r)−A(p f r)

pA(1)−A(p)

) s
r

+
(

A(p f r)
A(p)

) s
r

− 21− s
r

(
pA( f r)−A(p f r)

pA(1)−A(p)
+

A(p f r)
A(p)

) s
r
]

, (4.22)

J P
(
 ◦−1,( f ), p;A

)− pJ P
(
 ◦−1,( f ),1;A

)
≥ min{A(p)− pA(1), pA(1)}

⎡⎣(A(p f r)− pA( f r)
A(p)− pA(1)

) s
r

+
(

A( f r)
A(1)

) s
r

− 21− s
r

(
A(p f r)− pA( f r)

A(p)− pA(1)
+

A( f r)
A(1)

) s
r
⎤⎦ . (4.23)

If r = 0, then

pJ P
(
 ◦−1,( f ),1;A

)−J P
(
 ◦−1,( f ), p;A

)
≥ min{pA(1)−A(p),A(p)}

[
exp

(
s
pA(ln f )−A(p ln f )

pA(1)−A(p)

)
+exp

(
sA(p ln f )

A(p)

)
− 2exp

{
s
2

[
pA(ln f )−A(p ln f )

pA(1)−A(p)
+

A(p ln f )
A(p)

]}]
, (4.24)

J P
(
 ◦−1,( f ), p;A

)− pJ P
(
 ◦−1,( f ),1;A

)
≥ min{A(p)− pA(1), pA(1)}

[
exp

(
s
A(p ln f )− pA(ln f )

A(p)− pA(1)

)

+exp

(
sA(ln f )

A(1)

)
− 2exp

{
s
2

[
A(p ln f )− pA(ln f )

A(p)− pA(1)
+

A(ln f )
A(1)

]}]
. (4.25)

where
J P

(
 ◦−1,( f ),1;A

)
= A(1){[Ms( f ;A)]s− [Mr( f ;A)]s} (4.26)

and

Mt ( f ;A) =

⎧⎪⎨⎪⎩
(

A( f r)
A(1)

) 1
t
, t �= 0

exp
(

A(ln( f ))
A(1)

)
, t = 0

, t = r,s. (4.27)

Now, we consider discrete variants of relations (4.22)–(4.25). We suppose E = {1,2, . . . ,
n}, n ∈ N and L is a class of real n-tuples. Hence we consider discrete functional defined
by A(x) = n

i=1 xi, where x = (x1,x2, . . . ,xn). Clearly, A(1) = n
i=1 1 = n.
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Recall the discrete form

Mr(x,p) =

⎧⎨⎩
(
n

i=1 pix
r
i

Pn

) 1
r
, r �= 0(

n
i=1 xpi

i

) 1
Pn , r = 0

(4.28)

that generalized weight power mean (2.16) assumes in this environment. For r = 1 we

obtain arithmetic mean An(x,p) = M1(x,p) =
(

1
Pn
n

i=1 pixi

)
, while for r = 0 geometric

mean Gn(x,p) = M0(x,p) =
(
n

i=1 xpi
i

) 1
Pn is obtained. Now, if we insert constant n-tuples

p =
(

max
1≤i≤n

{pi}, . . . , max
1≤i≤n

{pi}
)

or p =
(

min
1≤i≤n

{pi}, . . . , min
1≤i≤n

{pi}
)

,

expressions for arithmetic and geometric mean reduce to

A0
n(x) =

1
n

n


i=1

xi and G0
n(x) =

(
n


i=1

xi

) 1
n

(4.29)

and inequalities (4.24) and (4.25) for s = 1 and r = 0 can be rewritten as

n max
1≤i≤n

{pi}
[
A0

n(x)−G0
n(x)

]−Pn [An(x,p)−Gn(x,p)]

≥ min{n max
1≤i≤n

{pi}−Pn,Pn}
[
exp

(
max1≤i≤n{pi} ln(G0

n(x))n− ln(Gn(x,p))Pn

nmax1≤i≤n{pi}−Pn

)
+Gn(x,p)−2exp

{
1
2

[
max1≤i≤n{pi} ln(G0

n(x))n−ln(Gn(x,p))Pn

nmax1≤i≤n{pi}−Pn
+lnGn(x,p)

]}]
,

(4.30)

Pn [An(x,p)−Gn(x,p)]−n min
1≤i≤n

{pi}
[
A0

n(x)−G0
n(x)

]
≥ min{Pn−n min

1≤i≤n
{pi},n min

1≤i≤n
{pi}}

[
exp

(
ln(Gn(x,p))Pn −min1≤i≤n{pi} ln(G0

n(x))n

Pn−nmin1≤i≤n{pi}
)

+G0
n(x)−2exp

{
1
2

[
ln(Gn(x,p))Pn−min1≤i≤n{pi} ln(G0

n(x))n

Pn−nmin1≤i≤n{pi} +lnG0(x)
]}]

.

(4.31)

Some variants of inequalities (4.30 ) and (4.31) were studied in papers [4]–[9].

Remark 4.2 As we previously discussed (see Chapter 2.1), Young’s inequality follows
directly from arithmetic-geometric mean inequality, so relations (4.30) and (4.31) provide
refinements of Young’s inequality, as well. Let x = (x1,x2, . . . ,xn) and p = (p1, p2, . . . , pn)
be positive n-tuples such that n

i=1
1
pi

= 1. We denote

xp =
(
xp1
1 ,xp2

2 , . . . ,xpn
n

)
and p−1 =

(
1
p1

,
1
p2

, . . . ,
1
pn

)
.
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Series of inequalities (4.30) and (4.31) can be rewritten in the form

n max
1≤i≤n

{
1
pi

}[
A0

n(x
p)−G0

n(x
p)
]− [An(xp,p−1)−Gn(xp,p−1)]

≥ min

{
n max

1≤i≤n

{
1
pi

}
−1,1

}⎡⎢⎣exp

⎛⎜⎝ max
1≤i≤n

{
1
pi

}
ln(G0

n(x
p))n − ln(xp,p−1)

n max
1≤i≤n

{
1
pi

}
−1

⎞⎟⎠
+Gn(xp,p−1)

− 2exp

⎧⎪⎨⎪⎩1
2

⎡⎢⎣ max
1≤i≤n

{
1
pi

}
ln(G0

n(xp))n− lnGn(xp,p−1)

n max
1≤i≤n

{
1
pi

}
−1

+ lnGn(xp,p−1)

⎤⎥⎦
⎫⎪⎬⎪⎭
⎤⎥⎦ ,

(4.32)

An(xp,p−1)−Gn(xp,p−1)−n min
1≤i≤n

{
1
pi

}[
A0

n(x
p)−G0

n(x
p)
]

≥ min

{
1−n min

1≤i≤n

{
1
pi

}
,n min

1≤i≤n

{
1
pi

}}

×

⎡⎢⎣exp

⎛⎜⎝ lnGn(xp,p−1)− min
1≤i≤n

{
1
pi

}
ln(G0

n(xp))n

1−n min
1≤i≤n

{
1
pi

}
⎞⎟⎠

+G0
n(x

p)− 2exp

⎧⎪⎨⎪⎩1
2

⎡⎢⎣ lnGn(xp,p−1)− min
1≤i≤n

{
1
pi

}
ln(G0

n(xp))n

1−n min
1≤i≤n

{
1
pi

} + ln(G0(xp))

⎤⎥⎦
⎫⎪⎬⎪⎭
⎤⎥⎦ .

(4.33)

Since corollaries 4.4 and 4.5 do not cover the case with s = 0 and r �= 0, this case
ought to be considered separately, as it was done in Chapter 2.1, where for that purpose
functional (2.28) was defined. The refinements that correspond to this functional are given
in the following corollary.

Corollary 4.6 Let r < 0 and let f , p,q ∈ L, f (x) > 0, x ∈ E. Suppose A : L → R is a
positive linear functional such that A(p),A(q) > 0. Then functional (2.28) possesses the
following properties:

(i)

min{A(p),A(q)}1
r

[
ln

(
A(p f r)
A(p)

)
+ ln

(
A(q f r)
A(q)

)
−2ln

(
A(p f r)
2A(p)

+
A(q f r)
2A(q)

)]
≤ J P ( ◦−1,( f ), p+q;A)−J P ( ◦−1,( f ), p;A)−J P ( ◦−1,( f ),q;A)

≤ max{A(p),A(q)}1
r

[
ln

(
A(p f r)
A(p)

)
+ ln

(
A(q f r)
A(q)

)
−2ln

(
A(p f r)
2A(p)

+
A(q f r)
2A(q)

)]
.

(4.34)
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(ii) If p,q ∈ L+ with p ≥ q and A(p) ≥ A(q) ≥ 0, then

J P( ◦−1,( f ), p;A)−J P( ◦−1,( f ),q;A)

≥ min{A(p)−A(q),A(q)}1
r

[
ln

(
A(p f r)−A(q f r)

A(p)−A(q)

)
+ ln

(
A(q f r)
A(q)

)
− 2ln

{
1
2

[
A(p f r)−A(q f r)

A(p)−A(q)
+

A(q f r)
A(q)

]}]
. (4.35)

Proof. The proof is direct consequence of Theorem 4.2. We define (x) = lnx and
(x) = xr. Then function  ◦−1(x) = 1

r lnx is convex if r < 0 and concave if r > 0. That
completes the proof. �

The analogue of Corollary 4.5, that covers the case s = 0 and r �= 0 is contained in the
following result.

Corollary 4.7 Let r < 0, f ∈ L+, f (x) > 0, x ∈ E and A : L → R be a positive linear
functional. Suppose p ∈ L+ attains its minimal value p = minx∈E p(x) and its maximal
value p = maxx∈E p(x). Then the following series of inequalities holds:

pJ P
(
 ◦−1,( f ),1;A

)−J P
(
 ◦−1,( f ), p;A

)
≥ min{pA(1)−A(p),A(p)}1

r

[
ln

(
pA( f r)−A(p f r)

pA(1)−A(p)

)
+ ln

(
A(p f r)
A(p)

)
−2ln

{
1
2

[
pA( f r)−A(p f r)

pA(1)−A(p)
+

A( f r)
A(p)

]}]
, (4.36)

J P
(
 ◦−1,( f ), p;A

)− pJ P
(
 ◦−1,( f ),1;A

)
≥ min{A(p)− pA(1), pA(1)}1

r

[
ln

(
A(p f r)− pA( f r)

A(p)− pA(1)

)

+ ln

(
A( f r)
A(1)

)
−2ln

{
1
2

[
A(p f r)− pA( f r)

A(p)− pA(1)
+

A( f r)
A(1)

]}]
, (4.37)

where

J P
(
 ◦−1,( f ),1;A

)
= A(1)

(
A(ln f )
A(1)

− ln [Mr( f ;A)]
)

. (4.38)

4.1.2 Application to Hölder’s inequality

Refinements presented in the previous section, considering arithmetic-geometric and
Young’s inequality imply that the analogous ones can be obtained for Hölder’s inequal-
ity (2.33), expressed by means of a positive linear functional, in a continuation to the
corresponding results from Chapter 2.1 An improvement of Theorem 2.5 is thus given in
the following theorem. Here it involves inequality (4.32), although an analogous result can
be obtained for inequality (4.33).
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Theorem 4.3 Let pi > 1, i = 1,2, . . . ,n be such that n
i=1

1
pi

= 1. Suppose fi ∈ L+, i =

1,2, . . . ,n are such that n
i=1 fi1/pi , n

i=1 fi1/n ∈ L+. If A : L → R is a positive linear
functional, then the following inequality holds:

n max
1≤i≤n

{
1
pi

}[
n


i=1

A
1
pi ( fi)−

n


i=1

A
1
pi
− 1

n ( fi) ·A
(

n


i=1

fi
1
n

)
−

n


i=1

A
1
pi ( fi)−A

(
n


i=1

fi
1
pi

)]

≥ min{n max
1≤i≤n

{
1
pi

}
−1,1}

n


i=1

A
1
pi ( fi)

×

⎡⎢⎢⎢⎣A

⎧⎪⎪⎪⎨⎪⎪⎪⎩exp

⎛⎜⎜⎜⎝
n max

1≤i≤n

{
1
pi

}
lnn

i=1
fi

1
n

A
1
n ( fi)

− lnn
i=1

fi
1
pi

A
1
pi ( fi)

n max
1≤i≤n

{
1
pi

}
−1

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭+A

(
n


i=1

fi
1
pi

)

− 2A

⎧⎪⎪⎪⎨⎪⎪⎪⎩exp

⎛⎜⎜⎜⎝
n max

1≤i≤n

{
1
pi

}
lnn

i=1
fi

1
n

A
1
n ( fi)

−lnn
i=1

fi
1
pi

A
1
pi ( fi)

2(n max
1≤i≤n

{
1
pi

}
−1)

+
1
2

ln
n


i=1

fi
1
pi

A
1
pi ( fi)

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎦ .

(4.39)

Proof. If we consider n-tuple x = (x1,x2, . . . ,xn), where xi = [ fi/A( fi)]
1
pi , i = 1,2, . . . ,n,

the expressions in (4.32) that represent the difference between arithmetic and geometric
mean, become

An(xp,p−1)−Gn(xp,p−1) =
n


i=1

fi
piA( fi)

−
n


i=1

fi
1
pi

A
1
pi ( fi)

,

A0
n(x

p)−G0
n(x

p) =
1
n

n


i=1

fi
A( fi)

−
n


i=1

fi
1
n

A
1
n ( fi)

.

Now, if we apply functional A to the above expressions, and use its linearity, we get

A
[
An(xp,p−1)−Gn(xp,p−1)

]
=

n


i=1

A( fi)
piA( fi)

−
A
(
n

i=1 fi
1
pi

)
n

i=1 A
1
pi ( fi)

= 1−
A
(
n

i=1 fi
1
pi

)
n

i=1 A
1
pi ( fi)

and

A
[
A0

n(x
p)−G0

n(x
p)
]

=
1
n

n


i=1

A( fi)
A( fi)

−
A
(
n

i=1 fi
1
n

)
n

i=1 A
1
n ( fi)

= 1−
A
(
n

i=1 fi
1
n

)
n

i=1 A
1
n ( fi)

.

Applying functional A to the inequality (4.32), the sign of the inequality does not change,
since A is linear and positive. �

Yet another improvement of the previously presented results is motivated by recalling
the fact that Hölder’s inequality can be deduced directly from Jensen’s inequality, which
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was described in detail in Chapter 2.1 where functional (2.38) was deduced and Theorem
2.7 was established. We now give its refined form.

Theorem 4.4 Let r and s∈R be such that 1/r+1/s= 1. Suppose A : L→R is a positive
linear functional, f ,g ∈ L+ and f attains its minimal and its maximal value on E. If r > 1,
then

[max
x∈E

f (x)]

[
A

1
r (1)A

1
s

(
g
f

)
−A

((
g
f

) 1
s
)]

−A
1
r ( f )A

1
s (g)−A

(
f

1
r g

1
s

)

≥ min{[max
x∈E

f (x)]A(1)−A( f ),A( f )}

⎡⎢⎢⎣21− 1
s

⎛⎝ [maxx∈E f (x)]A
(

g
f

)
−A(g)

[maxx∈E f (x)]A(1)−A( f )
+

A(g)
A( f )

⎞⎠
1
s

−
⎛⎝ [maxx∈E f (x)]A

(
g
f

)
−A(g)

[maxx∈E f (x)]A(1)−A( f )

⎞⎠
1
s

+A
1
r ( f )A

1
s (g)

⎤⎥⎥⎦ . (4.40)

Proof. We consider relation (4.7) from Corollary 4.2 with arguments f and p respe-
ctively replaced with g/ f and f , where (x) = −rsx1/s. Clearly, ′′

(x) = x1/s−2, so  is
convex function if x > 0. In this setting, Jessen’s functional (2.2) reads

J H

(
,

g
f
, f ;A

)
= A

(
f

(
g
f

))
−A( f )

(
A(g)
A( f )

)
= rs

[
A1− 1

s ( f )A
1
s (g)−A

(
f 1− 1

s g
1
s

)]
= rs

[
A

1
r ( f )A

1
s (g)−A

(
f

1
r g

1
s

)]
.

Further,

J H

(
,

g
f
,1;A

)
= A

(

(

g
f

))
−A(1)

⎛⎝A
(

g
f

)
A(1)

⎞⎠
= rs

[
A1− 1

s (1)A
1
s

(
g
f

)
−A

((
g
f

) 1
s
)]

= rs

[
A

1
r (1)A

1
s

(
g
f

)
−A

((
g
f

) 1
s
)]

.

Now, we insert obtained expressions J H (,g/ f , f ;A) and J H (,g/ f ,1;A) in (4.7)
and obtain (4.40). �
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4.2 Superadditivity of Levinson’s functional

In 1964, N. Levinson [126], proved the following:
If f : (0,2c) → R has a non-negative third derivative and pi, xi, yi, i = 1,2, . . . ,n, are

such that pi > 0, n
i=1 pi = 1, 0 ≤ xi ≤ c, and

x1 + y1 = x2 + y2 = · · · = xn + yn = 2c, (4.41)

then the inequality
n


i=1

pi f (xi)− f (x) ≤
n


i=1

pi f (yi)− f (y) (4.42)

holds, where x = n
i=1 pixi and y = n

i=1 piyi are the weight arithmetic means.
During decades, Levinson’s result has been generalized and extended in several di-

rections. Popoviciu [189], noted that the assumptions on the differentiability of f can be
weakened and for the inequality (4.42) it suffices to assume that f is 3-convex.

Recall that f : I → R is n-convex if its nth order divided difference is non-negative,
that is, if [x0,x1, . . . ,xn] f ≥ 0, for all choices of n+1 distinct points x0,x1, . . . ,xn ∈ I. The
nth order divided difference of a function f : I → R at distinct points x0,x1, . . . ,xn ∈ I is
defined inductively by

[xi] f = f (xi), i = 0,1,2, . . . ,n,

and

[x0,x1, . . . ,xn] f =
[x1, . . . ,xn] f − [x0, . . . ,xn−1] f

xn− x0
.

If the nth derivative f (n) of an n-convex function exists, then f (n) ≥ 0, but f (n) may not
exist (for more details, see [177]).

Bullen [45], gave another proof of the Popoviciu result rescaled to a general interval:
if f : [a,b] → R is 3-convex and pi,xi,yi, i = 1,2, . . . ,n, are such that pi > 0, n

i=1 pi = 1,
a ≤ xi,yi ≤ b, (4.41) holds for some c ∈ [a,b] and

max{x1, . . . ,xn} ≤ min{y1, . . . ,yn}, (4.43)

then (4.42) holds.
The aforementioned generalizations of the Levinson inequality assume that the distri-

bution of the points xi is equal to the distribution of the points yi reflected around the point
c ∈ [a,b]. A few years ago, Mercer [135], gave an important extension of the Levinson
inequality by replacing the condition of symmetric distribution with the weaker one that
the variances of the corresponding sequences are equal. More precisely, he showed that if
a function f has a non-negative third derivative and (4.43) holds, then the inequality (4.42)
is valid when the condition (4.41) is replaced by a weaker assumption

n


i=1

pi(xi − x)2 =
n


i=1

pi(yi − y)2. (4.44)
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Witkowski [213], extended the result of Mercer to hold for a 3-convex function and he
further weakened the condition (4.44) by replacing equality of variances with the inequality
in a certain direction.

Motivated by the ideas of Witkowski, Pečarić et.al. [176] (see also [21]), showed that
the Levinson inequality under the Mercer assumption (4.44) holds for a more general class
of functions described in the following definition.

Definition 4.1 Let  : I → R and c ∈ I0, where I0 is the interior of the interval I. We say
that  ∈ K c

1 (I) ( ∈ K c
2 (I)) if there exists a constant  such that the function F(x) =

(x)− 
2 x2 is concave (resp. convex) on I ∩ (−,c] and convex (resp. concave) on I ∩

[c,).

Remark 4.3 It should be noticed here that the constant  appearing in Definition 4.1 is
not necessarily unique. For example, it has been shown in [21] that if  ∈ K c

1 (I) and
there exist one-sided second order derivatives ′′−(c),′′

+(c), then  can be chosen to be
any real number from the interval

[
′′−(c),′′

+(c)
]
. In particular, if there exists the second

order derivative′′(c), then  =′′(c), which yields the uniqueness of the constant in this
case.

A function  ∈ K c
1 (I) is said to be 3-convex at point c and K c

1 (I) generalizes 3-
convex functions in the following sense: a function is 3-convex on I if and only if it is
3-convex at every c ∈ I0. For example, (x) = x4 is an example of a function that belongs
to K 2

1 (−1,3), but is not 3-convex on (−1,3). Moreover, function (x) = |x| belongs to
K 0

1 (−1,1), but is not differentiable at 0 (for more details, see [21]).
Pečarić et.al. [176], proved a more general probabilistic version of the Levinson in-

equality under the assumption of equality of variances. In particular, they showed that in
the discrete Levinson inequality the number of the points of two sequences and associ-
ated weights do not need to be same. More precisely, they showed that if xi ∈ I∩ (−,c],
y j ∈ I∩ [c,), pi > 0, q j > 0, i = 1,2, . . . ,n, j = 1,2, . . . ,m, are such that

n


i=1

pi =
m


j=1

q j = 1 and
n


i=1

pi(xi − x)2 =
m


j=1

q j(y j − y)2,

where x = n
i=1 pixi and y = m

j=1 q jy j, then the inequality

n


i=1

pi(xi)−(x) ≤
m


j=1

q j(y j)−(y) (4.45)

holds for every  ∈ K c
1 (I).

Note also that paper [176] shows that K c
1 (I) is the largest class of the functions for

which the Levinson inequality holds. In other words, class K c
1 (I) characterizes the Levin-

son inequality.
The recent investigation on this topic ([109]) related to the previously presented results

on superadditivity of Jessen’s functional in Chapter 2, again takes place in the linear space
of the real valued functions and the positive linear functionals acting on it. Thus Levinson’s
functional is established in the above setting, and its corresponding properties are analyzed.
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Similarly to the concept of the Jessen functional, the Levinson functional may be re-
garded as the difference between the right-hand side and the left-hand side of the Levinson
inequality. We deal with the difference between two Jessen functionals. The associated
linear spaces and functionals need not to be the same.

Let L1 and L2 be the linear spaces of real-valued functions defined on nonempty sets
E1 and E2, respectively. Further, let A1 and A2 be positive linear functionals defined on
L1 and L2, respectively. In this setting, the Levinson functional LA1,A2 is defined as the
difference between the corresponding Jessen functionals, i.e.

LA1,A2(, f1, f2, p1, p2) = JA2(, f2, p2)−JA1(, f1, p1), (4.46)

where Ai : Li → R are positive linear functionals, fi ∈ Li, pi ∈ L+
i , i = 1,2, and  ∈K c

1 (I)
(or K c

2 (I)). Recall that L+
i stands for the subset of Li, i = 1,2, consisting of all non-

negative functions.
In order to show that the Levinson functional possesses the properties of superadditivity

and monotonicity, Jessen functional’s properties of the same kind are employed.

Remark 4.4 While the Jessen functional is accompanied with a convex or a concave
function, the Levinson functional is related to a class K c

1 (I) or K c
2 (I). Thus, if∈K c

1 (I)
(or K c

2 (I)), the expression JA(, f , p) should be transformed so that it contains a convex
(or a concave) function as an argument. More precisely, let F(x) =(x)− 

2 x2, where  is
an arbitrary constant fulfilling conditions as in Definition 4.1. Then, utilizing the definition
of the Jessen functional, we have

JA(, f , p) = A(pF( f ))−A(p)F
(

A(p f )
A(p)

)
+

2

[
A(p f 2)− (A(p f ))2

A(p)

]
= JA(F, f , p)+


2

A

(
p

(
f − A(p f )

A(p)

)2
)

.

It should be noticed here that if A(p) = 1, then the quantity A
(
p( f − A(p f )

A(p) )2
)

represents a
variance of the function f . In order to summarize our discussion, we use the abbreviation

A( f , p) = A

(
p

(
f − A(p f )

A(p)

)2)
,

so that the previous relation can be rewritten as

JA(, f , p) = JA(F, f , p)+

2
A( f , p). (4.47)

This relation will be extensively used in deriving the properties of the Levinson functional.
Clearly, the relation (4.47) depends on the chosen constant  .

The following proposition yields conditions under which the Levinson functional is
positive (or negative). It corresponds to a probabilistic version of the Levinson inequality
derived in [176] (see Theorem 2.3).
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Proposition 4.1 Suppose Ai : Li → R are positive linear functionals and let fi ∈ Li, pi ∈
L+

i , i = 1,2. Further, let fi(Ei) ⊆ I, i = 1,2, where I is an interval, and suppose that there
exists c ∈ I0 such that

sup
x∈E1

f1(x) ≤ c ≤ inf
x∈E2

f2(x). (4.48)

If A1( f1, p1) = A2( f2, p2), then the inequality

LA1,A2(, f1, f2, p1, p2) ≥ 0 (4.49)

holds for every continuous function ∈K c
1 (I), provided that pi fi, pi f 2

i , pi( fi) ∈ Li, and
Ai(pi) > 0, i = 1,2. If  ∈ K c

2 (I) is a continuous function, then the sign of inequality
(4.49) is reversed.

Proof. Since A1( f1, p1) = A2( f2, p2), taking into account the relation (4.47), we
have

LA1,A2(, f1, f2, p1, p2) = JA2(, f2, p2)−JA1(, f1, p1)

= JA2(F, f2, p2)−JA1(F, f1, p1)+

2

(A2( f2, p2)−A1( f1, p1))

= JA2(F, f2, p2)−JA1(F, f1, p1),

where F and  are as in Definition 4.1. Moreover, since F is convex on I ∩ [c,) and
concave on I ∩ (−,c], utilizing the Jensen inequality (2.1) we have JA2(F, f2, p2) ≥ 0
and JA1(F, f1, p1) ≤ 0, which completes the proof. �

Rewriting inequality (4.49) in its expanded form yields

A2(p2( f2))−A2(p2)
(

A2(p2 f2)
A2(p2)

)
≥ A1(p1( f1))−A1(p1)

(
A1(p1 f1)
A1(p1)

)
, (4.50)

which represents the Levinson inequality in this setting.

Remark 4.5 It is obvious from the proof of the Proposition 4.1 that the inequality (4.49)
holds if the condition A1( f1, p1) = A2( f2, p2) is replaced by the weaker condition

 (A2( f2, p2)−A1( f1, p1)) ≥ 0,

where  is any constant fulfilling the conditions as in Definition 4.1. Since ′′−(c) ≤
 ≤ ′′

+(c) (for more details, see [21]), if, additionally,  is convex (resp. concave), this
condition can be further weakened to A2( f2, p2)−A1( f1, p1) ≥ 0 (resp. ≤ 0).

The following theorem provides the superadditivity property of the Levinson functional
which is the crucial result in further investigation.

Theorem 4.5 Suppose Ai : Li → R are positive linear functionals and let fi ∈ Li, pi,qi ∈
L+

i , i = 1,2. Further, let fi(Ei) ⊆ I, i = 1,2, where I is an interval, and suppose that there
exists c ∈ I0 such that the condition (4.48) is fulfilled. If

A1( f1, p1)+A1( f1,q1)−A1( f1, p1 +q1)
=A2( f2, p2)+A2( f2,q2)−A2( f2, p2 +q2),

(4.51)
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then for every continuous function  ∈ K c
1 (I) one has

LA1,A2(, f1, f2, p1 +q1, p2 +q2) ≥ LA1,A2(, f1, f2, p1, p2)+LA1,A2(, f1, f2,q1,q2),
(4.52)

provided that pi fi,qi fi, pi f 2
i ,qi f 2

i , pi( fi),qi( fi) ∈ Li, and Ai(pi) > 0, Ai(qi) > 0, i =
1,2. If  ∈ K c

2 (I) is a continuous function, then the sign of inequality (4.52) is reversed.

Proof. Let  ∈ K c
1 (I) and F(x) = (x)− 

2 x2, where  is any constant fulfilling
conditions as in Definition 4.1. Then, taking into account the relation (4.47) and the fact
that the function F is convex on I∩ [c,), it follows that

JA2(, f2, p2 +q2) = JA2(F, f2, p2 +q2)+

2
A2( f2, p2 +q2)

≥ JA2(F, f2, p2)+JA2(F, f2,q2)+

2
A2( f2, p2 +q2)

= JA2(, f2, p2)+JA2(, f2,q2)− 
2
A2( f2, p2)− 

2
A2( f2,q2)

+

2
A2( f2, p2 +q2),

due to the superadditivity of the Jessen functional. Similarly, since F is concave on I ∩
(−,c], utilizing the subadditivity property of the Jessen functional, we have

JA1(, f1, p1 +q1) ≤ JA1(, f1, p1)+JA1(, f1,q1)− 
2
A1( f1, p1)− 

2
A1( f1,q1)

+

2
A1( f1, p1 +q1).

Finally, since

LA1,A2(, f1, f2, p1 +q1, p2 +q2) = JA2(, f2, p2 +q2)−JA1(, f1, p1 +q1),

subtracting the previous two inequalities and taking into account the assumption (4.51), we
obtain (4.52), as required. �

Remark 4.6 It should be noticed here that the properties of positivity and superadditivity
of the Levinson functional are not directly related. Namely, the functionals appearing in
relation (4.52) are not positive in general. They are positive if in addition A1( f1, p1) =
A2( f2, p2) and A1( f1,q1) = A2( f2,q2).

Corollary 4.8 Suppose Ai : Li → R are positive linear functionals and let fi ∈ Li, pi,qi ∈
L+

i , i = 1,2. Further, let fi(Ei) ⊆ I, i = 1,2, where I is an interval, and suppose that there
exists c ∈ I0 such that (4.48) holds. If pi ≥ qi, i = 1,2,

A1( f1, p1 −q1) = A2( f2, p2−q2), (4.53)

and
A1( f1, p1)−A1( f1,q1) = A2( f2, p2)−A2( f2,q2), (4.54)
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then the inequality

LA1,A2(, f1, f2, p1, p2) ≥ LA1,A2(, f1, f2,q1,q2) (4.55)

holds for every continuous function∈K c
1 (I), provided that pi fi, qi fi, pi f 2

i , qi f 2
i , pi( fi),

qi( fi) ∈ Li, and Ai(pi) > 0, Ai(qi) > 0, i = 1,2. If  ∈ K c
2 (I) is a continuous function,

then the sign of inequality (4.55) is reversed.

Proof. Due to superadditivity property (4.52), it follows that

LA1,A2(, f1, f2, p1, p2) ≥ LA1,A2(, f1, f2, p1−q1, p2−q2)+LA1,A2(, f1, f2,q1,q2).

In addition, since A1( f1, p1 −q1) = A2( f2, p2−q2), it follows that

LA1,A2(, f1, f2, p1 −q1, p2−q2) ≥ 0,

so (4.52) holds. �

Remark 4.7 Similarly to Remark 4.5, it should be noticed here that the superadditivity
and monotonicity properties of the Levinson functional hold under some weaker condi-
tions. Namely, taking into account the proof of Theorem 4.5, it follows that the inequality
(4.52) holds if the condition (4.51) is replaced by

 (A2( f2, p2 +q2)−A2( f2, p2)−A2( f2,q2))
≥ (A1( f1, p1 +q1)−A1( f1, p1)−A1( f1,q1)) ,

where  is any constant fulfilling conditions as in Definition 4.1. In the same way the
inequality (4.55) holds if the conditions (4.53) and (4.54) are respectively replaced by
weaker conditions

 (A2( f2, p2−q2)−A1( f1, p1−q1)) ≥ 0

and

 (A2( f2, p2)−A2( f2, p2−q2)−A2( f2,q2))
≥ (A1( f1, p1)−A1( f1, p1−q1)−A1( f1,q1)) .

Monotonicity of the Levinson functional can be employed in obtaining bounds for the
corresponding functional. Namely, if the weights p1 and p2 are bounded functions, the
Levinson functional LA1,A2(, f1, f2, p1, p2) can mutually be bounded by a non-weight
functional of the same type. The non-weight Levinson functional is defined by

L 0
A1,A2

(, f1, f2) = LA1,A2(, f1, f2,1,1), (4.56)

that is, when p1(x) = 1 and p2(y) = 1, for all x ∈ E1 and y ∈ E2. The importance of the
following result lies in the fact that it provides both a refinement and a converse of the
Levinson inequality. Of course, in order to obtain such relations, it is necessary to assume
positivity of the Levinson functionals appearing there.
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Theorem 4.6 Suppose Ai : Li → R are positive linear functionals and fi ∈ Li, i = 1,2.
Let fi(Ei) ⊆ I, i = 1,2, where I is an interval, and suppose that there exists c ∈ I0 such
that (4.48) holds. Further, suppose pi ∈ L+

i , i = 1,2, are bounded functions and let mi =
infx∈Ei pi(x), Mi = supx∈Ei

pi(x), i = 1,2. If

A1( f1, p1) = A2( f2, p2), (4.57)

A1( f1, p1−min{m1,m2}) = A2( f2, p2−min{m1,m2}), (4.58)

and
A1( f1,1) = A2( f2,1), (4.59)

then the inequality

LA1,A2(, f1, f2, p1, p2) ≥ min{m1,m2}L 0
A1,A2

(, f1, f2) (4.60)

holds for every continuous function∈K c
1 (I), provided that pi fi, pi f 2

i , f 2
i ,( fi), pi( fi)

∈ Li, and Ai(pi), Ai(1) > 0, i = 1,2. In addition, if the condition (4.58) is replaced by

A1( f1,max{m1,m2}− p1) = A2( f2,max{m1,m2}− p2), (4.61)

then
LA1,A2(, f1, f2, p1, p2) ≤ max{m1,m2}L 0

A1,A2
(, f1, f2). (4.62)

If  ∈ K c
2 (I) is a continuous function, then the signs of inequalities (4.60) and (4.62) are

reversed.

Proof. Since pi(x) ≥min{m1,m2}, for all x ∈ Ei, i = 1,2, we utilize the relation (4.55)
with constant functions qi(x) = min{m1,m2}, x ∈ Ei, i = 1,2. Now, since

LA1,A2(, f1, f2,min{m1,m2},min{m1,m2}) = min{m1,m2}L 0
A1,A2

(, f1, f2),

the inequality (4.60) holds. The remaining inequality (4.62) is proved in the same way. �

It should be noticed here that the relation (4.60) provides a refinement of the Levin-
son inequality (4.50), while (4.62) yields its converse. Rewriting these inequalities in the
expanded forms, we have

A2(p2( f2))−A2(p2)
(

A2(p2 f2)
A2(p2)

)
−A1(p1( f1))+A1(p1)

(
A1(p1 f1)
A1(p1)

)
≥ min{m1,m2}

[
A2(( f2))−A2(1)

(
A2( f2)
A2(1)

)
−A1(( f1))+A1(1)

(
A1( f1)
A1(1)

)]
(4.63)

and

A2(p2( f2))−A2(p2)
(

A2(p2 f2)
A2(p2)

)
−A1(p1( f1))+A1(p1)

(
A1(p1 f1)
A1(p1)

)
≤ max{m1,m2}

[
A2(( f2))−A2(1)

(
A2( f2)
A2(1)

)
−A1(( f1))+A1(1)

(
A1( f1)
A1(1)

)]
.

(4.64)

We say that the relations (4.63) and (4.64) represent the refinement and the converse of the
Levinson inequality in the difference form.
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Remark 4.8 Similarly to Remark 2.29 and Remark 4.7, the inequalities (4.60) and (4.62)
hold if the assumptions (4.57), (4.58), (4.59) and (4.61) are respectively replaced by weaker
conditions

 (A2( f2, p2)−A1( f1, p1)) ≥ 0,

 (A2( f2, p2 −min{m1,m2})−A1( f1, p1−min{m1,m2})) ≥ 0,

 (A2( f2,1)−A1( f1,1)) ≥ 0,

 (A2( f2,max{m1,m2}− p2)−A1( f1,max{m1,m2}− p1)) ≥ 0,

where  is any constant fulfilling conditions as in Definition 4.1.

4.2.1 Applications

In this section we give a refinement and a converse of the Levinson inequality in the discrete
form. Let L1 and L2 be linear spaces of real-valued functions defined on finite sets E1 =
{1,2, . . . ,n} and E2 = {1,2, . . . ,m}. Further, suppose that the corresponding functionals
are defined as the sums of coordinates, that is, A1(x) = n

i=1 xi for x = (x1,x2, . . . ,xn), and
A2(y) = m

j=1 y j for y = (y1,y2, . . . ,ym). Notice that in this setting we have A1(1) = n and
A2(1) = m. Now, employing Theorem 4.6 and Remark 4.8, as well as the relations (4.63)
and (4.64), we obtain the following consequence.

Corollary 4.9 Let c ∈ I0, where I is an interval, xi ∈ I ∩ (−,c], y j ∈ I ∩ [c,), i =
1,2, . . . ,n, j = 1,2, . . . ,m, and pi > 0, q j > 0 be such that n

i=1 pi = m
j=1 q j = 1. Further,

suppose  ∈ K c
1 (I) and let  be any constant fulfilling conditions as in Definition 4.1. If


n


i=1

pi(xi − x)2 ≤ 
m


j=1

q j(y j − y)2, (4.65)


n


i=1

(pi− )
(

xi− x− nx0

1− n

)2

≤ 
m


j=1

(q j − )
(

y j − y− my0

1− m

)2

(4.66)

and


n


i=1

(xi − x0)2 ≤ 
m


j=1

(y j − y0)2, (4.67)

where  = min{pi,q j; i = 1,2, . . . ,n, j = 1,2, . . . ,m}, x = n
i=1 pixi, y = m

j=1 q jy j, x0 =
1
n 

n
i=1 xi, y0 = 1

m m
j=1 y j, then the inequality

m


j=1

q j(y j)−(y)−
n


i=1

pi(xi)+(x)

≥ 
[ m


j=1

(y j)−m(y0)−
n


i=1

(xi)+n(x0)
] (4.68)

holds. In addition, if


n


i=1

(− pi)
(

xi − nx0− x
n−1

)2

≤ 
m


j=1

(−q j)
(

y j − my0− y
m−1

)2

, (4.69)
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where  = max{pi,q j; i = 1,2, . . . ,n, j = 1,2, . . . ,m}, then

m


j=1

q j(y j)−(y)−
n


i=1

pi(xi)+(x)

≤ 
[ m


j=1

(y j)−m(y0)−
n


i=1

(xi)+n(x0)
]
.

(4.70)

If  ∈ K c
2 (I), then the signs of inequalities (4.68) and (4.70) are reversed.

Notice that inequalities (4.68) and (4.70) yield a refinement and a converse of the in-
equality (4.45).

Remark 4.9 With notation as in Corollary 4.9, it follows that

 ≤ min

{
1
m

,
1
n

}
≤ max

{
1
m

,
1
n

}
≤ .

For example, if  = 1
n , then the expression

x− nx0

1− n
appearing in (4.66) is taken to be

zero. The remaining limiting cases are treated in the same way.

Remark 4.10 Suppose that m = n and pi = qi, i = 1,2, . . . ,n, in Corollary 4.9. It is easy
to see that in the case of a symmetric distribution of points xi, yi around the point c, that
is, when the assumption (4.41) is fulfilled, the conditions (4.65), (4.66), (4.67) and (4.69)
hold trivially. In fact, we have equality signs in these relations.

Corollary 4.9 can be employed in order to obtain more precise estimates for some
known inequalities involving the arithmetic, geometric and harmonic means. In particular
– a refinement of the famous Ky Fan inequality.

Example 4.1 Let us consider Corollary 4.9 for the case of the function (x) = logx,
defined on the interval I = (0,), and let c ∈ I. Obviously,  ∈ K c

1 (I) for every c ∈ I and
the corresponding parameter  from Definition 4.1 is  = f ′′(c) = − 1

c2 < 0. Moreover, in
this case the inequality (4.68) reads

Gm(y,q)
Gn(x, p)

≥
[
Gm(y)
Am(y)

]m [An(x)
Gn(y)

]n Am(y,q)
An(x, p)

, (4.71)

where An(x, p), Gn(x, p), An(x), Gn(x) are the arithmetic and geometric means in both
weight and non-weight forms, i.e. An(x, p) = n

i=1 pixi, Gn(x, p) = n
i=1 xpi

i , An(x) =
1
n 

n
i=1 xi, Gn(x) = n

i=1 x
1
n
i , and the parameter  is defined in Corollary 4.9. Note that,

due to the Levinson inequality, we have[
Gm(y)
Am(y)

]m [
An(x)
Gn(y)

]n

≥ 1. (4.72)

If m = n, the inequality (4.72) represents the Ky Fan inequality for arithmetic and geometric
means in a non-weight form. Originally, the Ky Fan inequality was proved on the interval
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(0,1), with a symmetric distribution of points xi and yi around the point 1
2 (for more details,

see [126]). Therefore, the inequality (4.71) represents the refinement of the weight Ky Fan
inequality. Similarly, utilizing the relation (4.70), we obtain

Gm(y,q)
Gn(x, p)

≤
[
Gm(y)
Am(y)

]m [An(x)
Gn(y)

]n Am(y,q)
An(x, p)

, (4.73)

which represents the converse of the weight Ky Fan inequality. Finally, taking into account
the Remark 4.5 and by virtue of concavity of the function (x) = logx, we conclude that
inequalities (4.71) and (4.73) hold when in conditions (4.65), (4.66), (4.67) and (4.69) the
parameter  is removed and the signs of inequalities are reversed.

Example 4.2 In this example, we refer to the concave function (x) = − 1
x defined on

I = (0,). In this case, Corollary 4.9 yields more precise estimates for differences of re-
ciprocals of arithmetic and harmonic means. More precisely, with notation as in Corollary
4.9, we obtain the refinement

1
Am(y,q)

− 1
Hm(y,q)

− 1
An(x, p)

+
1

Hn(x, p)

≥ 
[

m
Am(y)

− m
Hm(y)

− n
An(x)

+
n

Hn(x)

]
and the converse

1
Am(y,q)

− 1
Hm(y,q)

− 1
An(x, p)

+
1

Hn(x, p)

≤ 
[

m
Am(y)

− m
Hm(y)

− n
An(x)

+
n

Hn(x)

]
,

where Hn(x, p) =
(
n

i=1
pi
xi

)−1
, Hn(x) =

(
1
n 

n
i=1

1
xi

)−1
is the harmonic mean in its weight

and non-weight form, respectively. Like in the previous example, these inequalities hold
with the conditions (4.65), (4.66), (4.67) and (4.69) reduced to the forms without the pa-
rameter  and with reversed signs of inequalities.





Chapter5
Different approaches to
superadditivity

This chapter integrates the results on superadditivity for several classes of functionals, each
having its own specificities and thus requiring a specific approach developed. In the first
place, we use the opportunity to present here a few not so recent, but nevertheless basic
important results on superadditivity, developed by D. S. Mitrinović, J. E. Pečarić and L. E.
Persson in 1992, see [152].

In the second part of the chapter, quasilinearity of the functional (h◦v) ·(◦ g
v

)
is ana-

lyzed, where  is a monotone h-concave (h-convex) function, v and g are functionals with
certain super(sub)additivity properties. General results of the type are then applied to the
functionals generated with the Jensen, the Jensen-Mercer, the Beckenbach, the Chebyshev
and the Milne inequality. This approach was firstly developed in [167]. Finally, in the
third section, superadditivity of the functionals associated with the Gauss-Winckler and
the Gauss-Polya inequalities is proved, as it was previously done in [207].

5.1 On a general inequality with applications

The authors in [152] proved a general set-valued inequality in two analogical forms. As
applications, they obtained some simple inequalities for convex, concave, subadditive and
superadditive functions, also pointing out that some classical inequalities (e.g. those by

155
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Minkowski, Beckenbach and Dresher, as well as those by Pečarić and Beesack (see [31])
or by Peetre and Persson (see [183])) are the special cases of their obtained results. To be
more specific, those results are the special cases of the following proposition. The details
are worked out in the sequel.

Proposition 5.1 Let F : I → R, g : D → R+ and f : D → I, where D is an additive
Abelian semigroup and I is a subset of R

n.

1◦ Assume that F is convex and that one of the following conditions holds:

(i) f is affine;

(ii) F is non-increasing and f is superadditive;

(iii) F is non-decreasing and f is subadditive.

If g is affine or if g is superadditive and F(0) ≤ 0, then

g(x+ y)F
(

f (x+ y)
g(x+ y)

)
≤ g(x)F

(
f (x)
g(x)

)
+g(y)F

(
f (y)
g(y)

)
. (5.1)

2◦ Suppose that F is concave and that one of the following conditions holds:

(i) f is affine;

(iv) F is non-increasing and f is subadditive;

(v) F is non-decreasing and f is superadditive.

If g is affine or if g is superadditive and F(0) ≥ 0, then

g(x+ y)F
(

f (x+ y)
g(x+ y)

)
≥ g(x)F

(
f (x)
g(x)

)
+g(y)F

(
f (y)
g(y)

)
. (5.2)

Let P() denote the power set of the set , i.e., the set of all subsets of . The
following “set-valued” versions of the inequalities from Proposition 5.1 are proved in two
analogical forms, as follows.

Theorem 5.1 Let F : I → R be a convex function and let G : D→P(R+) and f : D→ I
be arbitrary functions. Then the function

f1(x) = inf
a∈G(x)

aF

(
f (x)
a

)
, x ∈ D, (5.3)

is subadditive if one of the conditions (i), (ii) or (iii) holds, and if, for all a ∈ G(x) and
b∈G(y,) a+b∈G(x+y) or if there exists c≥ a+b, such that c∈G(x+y) and F(0)≤ 0.

Proof. First we assume that F(0) ≤ 0, f is non-decreasing, f is subadditive and, for
all a∈G(x) and b∈G(y), there exists c≥ a+b, such that c ∈G(x+y). Consider a∈G(x)
and b ∈ G(y). We note that the function H(t) = F(t f (x)), t ≥ 0, is convex and (since also
F(0)≤ 0) we conclude that the function H(t)/t is non-decreasing. Therefore, by using the
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assumption that f is subadditive and F is convex and non-decreasing, we obtain that, for
some c ≥ a+b, such that c ∈ G(x+ y),

cF

(
f (x+ y)

c

)
≤ (a+b)F

(
f (x+ y)
a+b

)
≤ (a+b)F

(
f (x)+ f (y)

a+b

)
≤ aF

(
f (x)
a

)
+bF

(
f (y)
b

)
. (5.4)

Therefore, for any , 0 <  < 1
2 , there exists c ∈ G(x+ y), such that

cF

(
f (x+ y)

c

)
≤ (1+ ) f1(x)+ (1+ ) f1(y). (5.5)

By taking infimum once more and letting  → 0, we obtain

f1(x+ y) ≤ f1(x)+ f1(y).

The proofs of the remaining cases consist of making obvious modifications of the proof
above, so the details are omitted. �

Theorem 5.2 Let F : I →R be a concave function and let G : D→P(R+) and f : D→ I
be arbitrary functions. Then the function

f2(x) = sup
a∈G(x)

aF

(
f (x)
a

)
, x ∈ D, (5.6)

is superadditive if one of the conditions (i), (iv) or (v) holds, and if, for all a ∈ G(x) and
b∈G(y), a+b∈G(x+y) or if there exists c≥ a+b, such that c ∈G(x+y) and F(0)≥ 0.

Proof. Suppose that f is superadditive, F(0) ≥ 0, F is non-decreasing and, for all
a ∈ G(x) and b ∈ G(y), there exists c ≥ a+b, such that c ∈ G(x+ y). Then, in particular,
we find that H(t) = F(t f (x)), t ≥ 0, is a concave function and, thus, that the function
H(t)/t is non-increasing. Hence, by arguing in a similar way as in the proof of Theorem
5.1, we find that, for any , 0 <  < 1

2 , and some c ∈ G(x+ y),

(1− ) f2(x)+ (1− ) f2(y) ≤ cF

(
f (x+ y)

c

)
, (5.7)

and, by taking supremum once more and letting  → 0, we find that the function f2 is
superadditive. The proofs of the other cases are similar. �

Remark 5.1 Theorem 5.1 may be seen as a further generalization of results in [183] and
[186]. Moreover, Theorem 5.2 generalizes the corresponding result from [186] in a similar
way.

Proof of Proposition 5.1. Follows by applying theorems 5.1 and 5.2 with G(x) = [g(x)]
(the singleton case). �
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Concluding remarks and examples

When Proposition 5.1 is applied with F(u) = up, p = 
− , f (x) = (

∫
 xd)

1
 , g(x) =

(
∫
 xd)

1
 , the following form of the Beckenbach-Dresher inequality (see e.g. [26, 28,

47, 183]) is obtained.

Example 5.1 Let x,y > 0 a.e. on . If 0 ≤  ≤ 1 ≤  or if 0 ≤  ≤ 1 ≤ ,  �=  , then(∫
(x+ y)d∫
(x+ y)d

) 1
− ≤

(∫
 xd∫
 xd

) 1
−

+
(∫

 yd∫
 yd

) 1
−

. (5.8)

If  ≤ 0 ≤  ≤ 1 or if  ≤ 0 ≤  ≤ 1, then (5.8) holds in the reversed direction.

Remark 5.2 In view of the discussion above, it is obvious that Example 5.1 can be easily
generalized in various directions. Here are a few such generalizations (complements):

(i) By using a positive linear functional A acting on the space of real functions, instead
of the special cases A(x) =

∫
 xd , we obtain (generalized forms of) some versions

of the Beckenbach-Dresher inequality, previously proved by Pečarić and Beesack
(see [31]) and by Peetre and Persson (see [185, 186]).

(ii) The inequality (5.8), in its turn, is a subadditivity condition and the reversed in-
aquality is a superadditivity condition. Therefore, we can use Proposition 5.1 and
iterate the procedure. After the first step, we obtain the following generalization of
Example 5.1: If 0 ≤  ≤ 1 ≤ ,  ≤ 0 ≤  ≤ 1,  �=  ,  �=  ,  − −  +  ≥ 0,
then(∫

(x+ y)d
∫
(x+ y)d∫

(x+ y)d
∫
(x+ y)d

) 1
−−+

≤
(∫

 xd
∫
 xd∫

 xd
∫
 xd

) 1
−−+

+

(∫
 yd

∫
 yd∫

 yd
∫
 yd

) 1
−−+

.

Moreover, if  ≤ 0 ≤  ≤ 1,  ≤ 0 ≤  ≤ 1,  �=  ,  �=  , − − +  ≥ 0, then(∫
(x+ y)d

∫
(x+ y)d∫

(x+ y)d
∫
(x+ y)d

) 1
−−+ ≥

(∫
 xd

∫
 xd∫

 xd
∫
 xd

) 1
−−+

+
(∫

 yd
∫
 yd∫

 yd
∫
 yd

) 1
−−+

.

(iii) By using the continuity property of generalized Gini means (see [183]), we obtain
the inequalities corresponding to the exceptional cases in Example 5.1 (and the in-
equalities in case 2 above). For example, for the extremal case:  =  = 1, the
inequality (5.8) reads:

exp

(∫
(x+ y) ln(x+ y)d∫

(x+ y)d

)
≤ exp

(∫
 x lnxd∫
 xd

)
+ exp

(∫
 y lnyd∫
 yd

)
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and the corresponding inequality for the other limiting case:  =  = 0 reads:

exp

(
1

()

∫


ln(x+ y)d
)
≥ exp

(
1

()

∫


lnxd
)

+ exp

(
1

()

∫


lnyd
)

.

A special case of this inequality is the following well-known inequality for positive
sequences (see e.g. [28, p. 26]):

(
n


i=1

(xk + yk)

) 1
n

≥
(

n


i=1

xk

) 1
n

+

(
n


i=1

yk

) 1
n

.

So far, the only applications of the general theorems have been given for the single-
valued case presented in Proposition 5.1. An application for another extremal case, when
G(x) = R+, for all x ∈ D, is given within the following example.

Example 5.2 Let D = R
n, f (x) = x = (x1, . . . ,xn), G(x) = R+, for all x∈D and consider

the (Amemiya) norm

‖x‖ = inf
a∈R+

a

(
1+

n


k=1


(xk

a

))
,

where  : R+ → R+ is a convex function. By applying Theorem 5.1 with

F(u) = 1+
n


k=1

(|uk|),

we find that

‖x+y‖ ≤ ‖x‖+‖y‖,

and thus we have obtained another proof of the Minkowski inequality for Orlicz sequence
spaces. Moreover, by using Theorem 5.2 in a similar way, we find that the inequality

‖x+y‖ ≥ ‖x‖+‖y‖

holds, where  : R+ → R+ is a concave function and

‖x‖ = sup
a∈R+

a

(
1+

n


k=1


(xk

a

))
.

Finally, we remark that the Beckenbach-Dresher inequality (Example 5.1) means that (inte-
gral forms of) the classical Gini means (investigated e.g. in [183] and [187]) are subadditive
or superadditive, with certain restrictions on the parameters involved.
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5.2 Properties of some functionals associated
with h-concave and quasilinear functions
with applications to inequalities

In [61], [62], [63], [64] S.S. Dragomir researched functionals which arise from quasilinear
functionals related to the classical inequalities. For example, he considered the functionals

v log( g
v ) (in [61]), vq− q

p gq, v
q− q

p

gq (both in [62]), v
p−q
p gq (in [63]), and finally, v · (◦ g

v

)
(in [64]), where v is additive, g is super(sub)additive,  is a concave (convex) function
and p and q are real numbers with some properties. In each paper he applied the given
results about composite functional to some of the classical inequalities such are the Jensen,
the Hölder or the Minkowski inequality. L. Nikolova and S. Varošanec in [167] gener-
alized his results. They investigated similar functionals related to an h-convex function
 under assumptions which are weaker than the assumptions in the above mentioned pa-
pers. More specifically, they investigated quasilinearity of the functional (h ◦ v) · (◦ g

v

)
,

where  is a monotone h-concave (h-convex) function, v and g are functionals with cer-
tain super(sub)additivity properties. They applied those general results to some special
functionals generated with several inequalities such as the Jensen, the Jensen-Mercer, the
Beckenbach, the Chebyshev and the Milne inequality.

In the sequel, I and J are intervals in R, (0,1) ⊆ J and functions h and f are non-
negative functions defined on J and I, respectively.

Let us recall that function h : J ⊆ R → R is said to be a supermultiplicative function if

h(xy) ≥ h(x)h(y), (5.9)

for all x,y ∈ J. If the inequality (5.9) is reverse, then h is said to be a submultiplicative
function. If equality holds in (5.9), then h is said to be a multiplicative function.

Definition 5.1 (SEE [206]) Let h : J → R be a non-negative function, h �≡ 0. Function
f : I → R is an h-convex function if f is non-negative and for all x,y ∈ I, ∈ (0,1),

f (x+(1−)y)≤ h() f (x)+h(1−) f (y).

If the inequality is reverse, then f is an h-concave function.

5.2.1 Functionals associated with monotone h-concave and
h-convex functions

Lemma 5.1 Let x,y∈C and f :C→R be a non-negative, L-superadditive and K-positive
homogeneous functional on C. If M ≥ m > 0 are such that x−my and My− x ∈C, then

1
L

K(M) f (y) ≥ f (x) ≥ LK(m) f (y).
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Proof. Using L-superadditivity and K-positive homogenity of f we have

f (x) = f (x−my+my)≥ L( f (x−my)+ f (my))
≥ L f (my) = LK(m) f (y),

giving the second inequality. Similarly, we get the first inequality. Namely, using ho-
mogenity and L-superadditivity we get

1
L

K(M) f (y) =
1
L

f (My) =
1
L

f (My− x+ x) ≥ f (My− x)+ f (x) ≥ f (x).

�

The above-proved lemma is a generalization of a result from [61] in which f is super-
additive and positive homogeneous of order s.

Theorem 5.3 Let h be a non-negative function which is k1-positive homogeneous. Let C
be a convex cone in the linear space X and v : C → (0,) be an L-superadditive functional
on C.

(i) If h is submultiplicative, g : C → [0,) is an L-superadditive (L-subadditive) func-
tional onC and : [0,)→ [0,) is h-concave and non-decreasing (non-increasing), then
the functional  : C → R defined by

(x) := h(v(x))
(

g(x)
v(x)

)
is k1(L)-superadditive on C.

(ii) If h is supermultiplicative, g is L-subadditive,  is h-convex and non-decreasing
with (0) = 0, then  is k1(L)-subadditive.

Proof. (i) Let us suppose that h is submultiplicative, g is L-superadditive,  is h-
concave and non-decreasing. Let  = L v(x)

v(x+y) ,  = L v(y)
v(x+y) . Since v is L-superadditive, we

have + ≤ 1 and


(

g(x+ y)
v(x+ y)

)
≥

(
Lg(x)+Lg(y)

v(x+ y)

)
= 

(
Lv(x)

v(x+ y)
g(x)
v(x)

+
Lv(y)

v(x+ y)
g(y)
v(y)

)
≥ h

(
Lv(x)

v(x+ y)

)

(

g(x)
v(x)

)
+h

(
Lv(y)

v(x+ y)

)

(

g(y)
v(y)

)
= k1(L)

[
h

(
v(x)

v(x+ y)

)

(

g(x)
v(x)

)
+h

(
v(y)

v(x+ y)

)

(

g(y)
v(y)

)]
≥ k1(L)

[
h(v(x))

h(v(x+ y))

(

g(x)
v(x)

)
+

h(v(y))
h(v(x+ y))


(

g(y)
v(y)

)]
.

The first inequality holds because  is non-decreasing and because of the L-superaddi-
tivity of g. The second inequality follows h-concavity of . Next we use k1-positive
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homogeneity of h and finally the submultiplicativity of h. Multiplying with h(v(x+ y)) we
have

h(v(x+ y))
(

g(x+ y)
v(x+ y)

)
≥ k1(L)

[
h(v(x)

(
g(x)
v(x)

)
+h(v(y)

(
g(y)
v(y)

)]
.

Hence  is k1(L)-superadditive. The proofs of the other cases follow in a similar manner.
�

A superadditive and non-negative functional has the following property.

Corollary 5.1 Let h be a non-negative submultiplicative function which is k1-positive
homogeneous. Let C be a convex cone in the linear space X and v : C → (0,) be L-
superadditive and k2-positive homogeneous on C. Let x,y ∈C and assume that there exist
M ≥ m > 0 such that x−my and My− x ∈ C. Let K(t) = k1(k2(t)). If g : C → [0,)
is an L-superadditive (L-subadditive) and k2-positive homogeneous functional on C and
 : [0,) → [0,) is h-concave and non-decreasing (non-increasing), then

1
k1(L)

K(M)(y) ≥ (x) ≥ k1(L)K(m)(y).

Proof. Note that h(v(x)) = h(k2()v(x)) = k1(k2())h(v(x)) = K()h(v(x)). We
observe that if v and g are k2-positive homogeneous functionals, then (x) = h(v(x))

(

g(x)
v(x)

)
is a K-positive homogeneous functional and, by Theorem 5.3, it follows that 

is a k1(L)-superadditive functional on C. By applying Lemma 5.1 we get the result. �

Corollary 5.2 Let h be a non-negative submultiplicative function which is positive ho-
mogeneous of order s1. Let C be a convex cone in the linear space X and v : C → [0,)
be L-superadditive and positive homogeneous of order s2 on C. Let x,y ∈ C and assume
that there exist M ≥ m > 0 such that x−my and My− x ∈ C. If g : C → [0,) is an L-
superadditive and positive homogeneous functional of order s2 onC and : [0,)→ [0,)
is h-concave and non-decreasing, then

Ms

Ls1
(y) ≥ (x) ≥ msLs1(y)

where s = s1s2.

Proof. Put in the previous corollary k1(t) = ts1 , k2(t) = ts2 , and K(t) = ts1s2 = ts. �

Remark 5.3 If L = 1, then the assumption about homogeneity of h can be omitted and
the statement of Theorem 5.3 still holds, namely we get superadditivity (subadditivity) of
.

If we consider the additive function v, then using the same proof (L = 1 and the first
inequality is just equality) we get the following statements:

(i) If g is superadditive (subadditive),  is h-concave and non-decreasing (non-incre-
asing), where h is submultiplicative, then the functional  is superadditive.
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(ii) If g is superadditive (subadditive),  is h-convex and non-increasing (non-decrea-
sing), where h is supermultiplicative, then the functional  is subadditive.

Comparing these statements with the results of Theorem 5 from the paper [60] we see
that if  is a non-negative function, then we have results for wider class of functions ,
i.e. for h-concave or h-convex functions.

The case s1 = 1, h(t) = t gives results for concave , as it is in [60], but for v and
g superadditive and s2-positive homogeneous. The case when v is only superadditive is
important for applications – see the application to the Chebyshev and Milne functionals.

Moreover, Corollary 5.1 under assumptions that v is additive and L = 1, k1(t) = k2(t) =
t, becomes the same as Corollary 1 a) from [60].

More about Corollary 5.1: If h(t) = ts, s2 = 1, L = 1 and we use as an example(x) =
s

1(x), s ≥ 1, 1 is concave non-decreasing, then we get the result of Corollary 1 from
[60].

5.2.2 Case 1: function v is additive

Application to Jensen-type inequalities

Let f be a real mapping on a convex subset C1 of a linear space. Let us fix n ∈ N and
xi ∈C1, (i = 1, . . . ,n), and let S+(n) := {p = (p1, . . . , pn) : pi ≥ 0, i = 1, . . . ,n and Pn =
n

i=1 pi > 0}. S+(n) is a convex cone.
As usual, the Jensen functional J : S+(n) → R is given by

J(p) =
n


i=1

pi f (xi)−Pn f

(
1
Pn

n


i=1

pixi

)
,

i.e. is a difference between the right-hand and the left-hand sides of the Jensen inequality
for the convex function. As we know, J is positive homogeneous; if f is convex, then
J is non-negative and superadditive, while, if f is concave, then J is non-positive and
subadditive. The comparative inequalities for the Jensen functional are derived in [61]: if
M ≥ m > 0 such that Mp ≥ q ≥ mp (i.e. Mpi ≥ qi ≥ mpi for each i = 1, . . . ,n), then

MJ(p) ≥ J(q) ≥ mJ(p).

As an application of the results from the previous section we have the following theo-
rem.

Theorem 5.4 Let h be a non-negative submultiplicative function and f be convex. Sup-
pose  is h-concave and non-decreasing on [0,). Then the composite functional  :
S+(n) → R defined by

(p) = h(Pn)

(
n


i=1

pi

Pn
f (xi)− f

(
n


i=1

pi

Pn
xi

))
(5.10)

is superadditive. Let, furthermore, h be k-positive homogeneous. Suppose p, q ∈ S+(n)
and let M ≥ m > 0 be such that Mp ≥ q ≥ mp. Then

k(M)h(Pn)
(

J(p)
Pn

)
≥ h(Qn)

(
J(q)
Qn

)
≥ k(m)h(Pn)

(
J(p)
Pn

)
.
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Proof. Take v(p) = Pn and g(p) = J(p). The functionals v and g are positive homoge-
neous, v is additive and g is superadditive. Using Theorem 5.3 we get that the composite
functional  is superadditive on S+(n) and k-positive homogeneous. Hence, we apply
Lemma 5.1 and get the wanted inequalities. �

Remark 5.4 If h(t) = t, then we get results from [60].

On the Jensen-Steffensen conditions

Now, let f be a real function on an interval I ⊆ R. In the previous theorem weights pi are
non-negative and considered cone C is the cone S+(n). As we have already discussed in
the previous chapters, for some choices of points x1, . . . ,xn ∈ I this cone can be substituted
with a larger cone. Let x = (x1, . . . ,xn) be fixed monotonic n-tuple of elements from I and
let us define the set S(x,n) as the set of all p ∈ R

n such that Pn > 0, 0 ≤ Pk ≤ Pn, where
Pk = k

i=1 pi, n
i=1

pi
Pn

xi ∈ I.
The set S(x,n) is a cone. By the Jensen-Steffensen inequality [177, p. 57], the dif-

ference J(p) = n
i=1 pi f (xi)− Pn f

(
n

i=1
pi
Pn

xi

)
, where f is convex on I, is non-negative

for each p ∈ S(x,n). Using a similar proof as for the Jensen functional on S+(n) we get
that J is superadditive for convex function f and applying Theorem 5.3 we obtain that the
functional  given by (5.10) is superadditive and corresponding comparative inequalities
hold. Let us recall that these comparative inequalities under the Jensen-Steffensen condi-
tions with an additional normalizing property Pn = 1 were proved in [23], only by using a
different method.

Applications to the Jensen-Mercer functional

As we have already considered, A. McD. Mercer in the paper [134] proved the Jensen-type
inequality which includes boundary points of an interval – the Jensen-Mercer inequality
(1.12).

The Jensen-Mercer functional JM : S+(n) → R defined by

JM(p) = Pn( f (a)+ f (b))− pi f (xi)−Pn f (a+b− 1
Pn
 p1xi)

is positive homogeneous, non-negative for a convex function f and non-positive for con-
cave function f . We have already established its superadditivity in Chapter 3, and now,
applying the results from the previous section, we have the following theorem.

Theorem 5.5 Let h be a non-negative submultiplicative function, f be a convex function
and let  : [0,) → [0,) be a h-concave non-decreasing function. Then the functional
 : S+(n) → R defined by

 (p) = h(Pn)

(
f (a)+ f (b)− 1

Pn

n


i=1

pi f (xi)− f (a+b− 1
Pn

n


i=1

pixi)

)

is superadditive on S+(n).
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Proof. Consider the functionals v(p) = Pn and g(p) = JM(p). The functional v is
additive and g is superadditive and

(p) = h(v(p))
(

g(p)
v(p)

)
=  (p).

Hence, by applying Theorem 5.3 we get the desired result. �

Corollary 5.3 Let us suppose that the assumptions of Theorem 5.5 are fulfilled and let h
be k-positive homogeneous. If p, q ∈ S+(n) and M ≥ m > 0 are such that Mp ≥ q ≥ mp,
then

k(M)h(Pn)
(

JM(p)
Pn

)
≥ h(Qn)

(
JM(q)

Qn

)
≥ k(m)h(Pn)

(
JM(p)

Pn

)
.

The proof follows from Corollary 5.1.

Applications to the Beckenbach functional

As [27], Theorem 5, shows: if f is convex for x ∈ [0,a] and starshaped in [0,b], (i.e.
f (x) ≤  f (x) for any  ∈ (0,1),) b > a, then for xi ∈ [0,b] and i ∈ (0,1), n

i=1i = 1,
we have

f (
a
b

n


i=1

ixi) ≤ a
b

n


i=1

i f (xi).

That inequality is known as the Beckenbach inequality. Let us consider the Beckenbach
functional Ja,b:

Ja,b(p) =
a
b

n


i=1

pi f (xi)−Pn f

(
a
b

n


i=1

pi

Pn
xi

)
,

where p,q ∈ S+(n) and a,b, f satisfy assumptions of the Beckenbach inequality. The
above-mentioned theorem shows that Ja,b(p) ≥ 0.

Proposition 5.2 The functional Ja,b is superadditive.

Proof. It yields that

Ja,b(p+q)− Ja,b(p)− Ja,b(q)

= −(Pn +Qn) f

(
Pn

Pn +Qn

a
b

n


i=1

pi

Pn
xi +

Qn

Pn +Qn

a
b

n


i=1

qi

Qn
xi

)

+Pn f

(
a
b

n


i=1

pi

Pn
xi

)
+Pn f

(
a
b

n


i=1

qi

Qn
xi

)

≥ −(Pn +Qn)

[
Pn

Pn +Qn
f

(
a
b

n


i=1

pi

Pn
xi

)
+

Qn

Pn +Qn
f

(
a
b

n


i=1

qi

Qn
xi

)]

+Pn f

(
a
b

n


i=1

pi

Pn
xi

)
+Pn f

(
a
b

n


i=1

qi

Qn
xi

)
= 0,
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because f is convex on [0,a] and

a
b

n


i=1

pi

Pn
xi ≤ a,

a
b

n


i=1

qi

Qn
xi ≤ a.

�

Theorem 5.6 Let h be a non-negative submultiplicative function, f be a convex function
and let  : [0,) → [0,) be an h-concave non-decreasing function. Then the functional
 : S+(n) → R defined by

(p) = h(Pn)

(
a
b

n


i=1

pi

Pn
f (xi)− f

(
a
b

n


i=1

pi

Pn
xi

))

is superadditive on S+(n). Furthermore, if h is k-positive homogeneous, p, q ∈ S+(n) and
M ≥ m > 0 such that Mp ≥ q ≥ mp, then

k(M)h(Pn)
(

Ja,b(p)
Pn

)
≥ h(Qn)

(
Ja,b(q)

Qn

)
≥ k(m)h(Pn)

(
Ja,b(p)

Pn

)
.

Proof. Consider the functionals v(p) = Pn and g(p) = Ja,b(p). The functional v is
additive and g is superadditive, and applying Theorem 5.3 we get that  is superadditive.
The comparative inequalities follow from Corollary 5.1. �

5.2.3 Case 2: function v is superadditive

What follows in this section are some applications concerning the superadditive function
v.

Applications to the Chebyshev functional for sums

Let a and b be two real n-tuples. We call it similarly ordered if

(ai−a j)(bi−b j) ≥ 0

for any i, j = 1, . . . ,n. If the above inequality is reversed, then n-tuples are called oppositely
ordered.

Let us denote

T (a,b, p) =
n


i=1

pi

n


i=1

piaibi −
n


i=1

piai

n


i=1

pibi.

The statement of the classical Chebyshev inequality is the following (see [177, p. 197–
204]).

The Chebyshev inequality. Let a = (a1, . . . ,an) and b = (b1, . . . ,bn) be two n-tuples
of real numbers and p = (p1, . . . , pn) be a non-negative n-tuple. If a and b are similarly
ordered, then the Chebyshev inequality

T (a,b, p) ≥ 0
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holds. If a and b are oppositely ordered, then the reverse inequality holds.
In the following theorem we consider quasilinear property of the Chebyshev functional

p → T (a,b, p).

Theorem 5.7 If a and b are similarly ordered real n-tuples, p ≥ 0, then the functional
T (a,b, p) is superadditive in the variable p. If a and b are oppositely ordered real n-tuples,
then the functional T (a,b, p) is subadditive.

Proof. Let us suppose that a and b are similarly ordered n-tuples and let us consider
the sum T (a,b, p+q)−T(a,b, p)−T (a,b,q). We have

T (a,b, p+q)−T(a,b, p)−T(a,b,q)

=
n


i=1

pi

n


i=1

qiaibi +
n


i=1

qi

n


i=1

piaibi −
n


i=1

piai

n


i=1

qibi−
n


i=1

qiai

n


i=1

pibi = Ln.

After simple calculation we get

Ln+1 = Ln +
n


j=1

(pn+1q j +qn+1p j)(a j −an+1)(b j −bn+1).

Since p and q are non-negative and a and b are similarly ordered, we have

Ln+1 ≥ Ln ≥ Ln−1 ≥ . . . ≥ L1 = 0,

which means that T (a,b, p) is superadditive. If a and b are oppositely ordered, the proof is
similar. �

Let us apply the previously obtained results to the functional T (a,b, p).

Theorem 5.8 Let h be a non-negative submultiplicative function, and : [0,) → [0,)
is h-concave and non-decreasing.

(i) If a and b are similarly ordered, then the functional (p) = h(P2
n )

(
T (a,b,p)

P2
n

)
is

superadditive on S+(n).
Furthermore, if h is k-positive homogeneous, p,q ∈ S+(n) and M ≥ m > 0 are such

that Mp ≥ q ≥ mp, then

k(M2)h(P2
n )

(
T (a,b, p)

P2
n

)
≥ h(Q2

n)
(

T (a,b,q)
Q2

n

)
(5.11)

≥ k(m2)h(P2
n )

(
T (a,b, p)

P2
n

)
.

(ii) If a and b are oppositely ordered, then the functional (p) = h(P2
n )

(−T(a,b,p)
P2
n

)
is superadditive on S+(n). If additionally, the assumptions on h, p,q,M and m are satisfied
as in case (i), then the inequalities (5.11) hold with substitution T →−T.
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Proof. If a and b are similarly ordered, let us define v and g as v(p) = P2
n and g(p) =

T (a,b, p). These functionals are positive homogeneous of order 2 and superadditive. By
Theorem 5.3 with L = 1 we have that  is superadditive, and by Corollary 5.1 for the
functional , we obtain the inequality (5.11).

If a and b are oppositely ordered, then the functional −T (a,b, p) is superadditive and
non-negative and we proceed as in the proof of case (i). �

Remark 5.5 If (x) = x, i.e. h(t) = t, k(t) = t, and if a and b are similarly ordered
n-tuples, then for p,q such that Mp ≥ q ≥ mp, we get

M2T (a,b, p) ≥ T (a,b,q) ≥ m2T (a,b, p). (5.12)

If p ≥ q, i.e. M = 1, then from the above inequalities we get the following property of
monotonicity:

T (a,b, p) ≥ T (a,b,q). (5.13)

If a and b are oppositely ordered, then the reversed inequalities in (5.12) and (5.13)
hold.

Let us take p = p(n) = (p1, p2, . . . , pn), p(n−1) = (p1, p2, . . . , pn−1,0), p(n−2) = (p1,

p2, . . . , pn−2,0,0), . . . , p(2) = (p1, p2,0, . . . ,0,0). Since p(n) ≥ p(n−1) ≥ . . . ≥ p(2) we can
use the above monotonicity to obtain the following result.

Corollary 5.4 If a and b are similarly ordered n-tuples and p ≥ 0, then

T (a,b, p(n)) ≥ T (a,b, p(n−1)) ≥ T (a,b, p(n−2)) ≥ . . . ≥ T (a,b, p(2)) ≥ 0

and

T (a,b, p) ≥ max
1≤i< j≤n

[(pi + p j)(piaibi + p ja jb j)− (piai + p ja j)(pibi + p jb j)].

If a and b are oppositely ordered, then the reversed inequalities in the above inequali-
ties hold with the substitution max → min in the second result.

Chebyshev functional for integrals

Let f ,g be real functions on I = [a,b]. Let S+(I) be the cone of non-negative functions p
on I such that p, p f , pg and p f g are integrable. Denote

T ( f ,g, p) =
∫ b

a
p(x)dx

∫ b

a
p(x) f (x)g(x)dx−

∫ b

a
p(x) f (x)dx

∫ b

a
p(x)g(x)dx.

The Chebyshev inequality for integrals states that T ( f ,g, p)≥ 0 when f and g are similarly
ordered, i.e.

( f (x)− f (y))(g(x)−g(y)) ≥ 0.

If f and g are oppositely ordered, then T ( f ,g, p)≤ 0. It is known that the following identity
holds:

T ( f ,g, p) =
1
2

∫ b

a

∫ b

a
p(x)p(y)( f (x)− f (y))(g(x)−g(y))dxdy.
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Using that identity we obtain that

T ( f ,g, p+q)−T( f ,g, p)−T ( f ,g,q)

=
1
2

∫ b

a

∫ b

a
[p(x)q(y)+q(x)p(y)]( f (x)− f (y))(g(x)−g(y))dxdy≥ 0

when f and g are similarly ordered. Thus follows superadditivity of p → T ( f ,g, p) on the
cone S+(I). If f and g are oppositely ordered, then the functional −T ( f ,g, p) is superad-
ditive. Corollary 5.1 refers to this case.

Corollary 5.5 Let h be a non-negative submultiplicative function, which is k-positive ho-
mogeneous and  : [0,) → [0,) is h-concave and non-decreasing. Let f and g be
similarly ordered. If p,q ∈ S+(I) such that P =

∫ b
a p(x)dx > 0, Q =

∫ b
a q(x)dx > 0 and

M ≥ m > 0 are such that Mp(x) ≥ q(x) ≥ mp(x), then

k(M2)h(P2)
(

T ( f ,g, p)
P2

)
≥ Q2

(
T ( f ,g,q)

Q2

)
≥ k(m2)h(P2)

(
T ( f ,g, p)

P2

)
.

Proof. Let the function v be defined by v(p) =
(∫ b

a p(x)dx
)2

. It is superadditive and

positive homogeneous of order s2 = 2. The function g will be the Chebyshev functional
T ( f ,g, p). It is also positive homogeneous of order s2 = 2, superadditive and non-negative.

By Corollary 5.1 for the functional (p) = h(v(p))
(

g(p)
v(p)

)
= h(P2)

(
T ( f ,g,p)

P2

)
with

L = 1, K(t) = k(t2), the wanted inequality is obtained. �

Remark 5.6 If (x) = x, i.e. h(t) = t, k(t) = t, and if the functions f and g are similarly
ordered, then for p,q ∈ S+(I) such that such that Mp(x) ≥ q(x) ≥ mp(x) we get

M2T ( f ,g, p) ≥ T ( f ,g,q) ≥ m2T ( f ,g, p).

If p(x) ≥ q(x), i.e. M = 1, then from the above inequalities we get the following
property of monotonicity:

T ( f ,g, p) ≥ T ( f ,g,q).

If f and g are oppositely ordered, then the reversed inequalities hold.

Applications to the Milne functional

Here we consider the Milne inequality (see [83, p. 61–62]). Let ai,bi, i = 1, . . . ,n, be
positive real numbers. Then

n


i=1

(ai +bi)
n


i=1

aibi

ai +bi
≤

n


i=1

ai

n


i=1

bi.

It is easy to get a weight version of the Milne inequality using substitutions

ai → piai, bi → pibi,
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where p1, . . . , pn are positive real numbers. Of course, it can be improved to non-negative
weights.

The Milne functional is defined as follows:

JMi(p) =
n


i=1

piai

n


i=1

pibi−
n


i=1

pi(ai +bi)
n


i=1

piaibi

ai +bi
.

The weight Milne inequality means that JMi(p)≥ 0. Also, it is easy to see that JMi( p)
= 2JMi(p), i.e. JMi is positive homogeneous of order 2.

Theorem 5.9 The functional JMi(p) is superadditive on S+(n).

Proof. It yields that

JMi(p+q)− JMi(p)− JMi(q)

=
n


i=1

piai

n


i=1

qibi+
n


i=1

qiai

n


i=1

pibi−
(

n


i=1

pi(ai+bi)
n


i=1

qiaibi

ai+bi
+

n


i=1

qi(ai +bi)
n


i=1

piaibi

ai +bi

)
= Ln.

After some (not so short, but simple) calculations we get

Ln+1−Ln = pn

(
an

n


i=1

qibi+bn

n


i=1

qiai− anbn

an+bn

n


i=1

qi(ai+bi)−(an+bn)
n


i=1

qiaibi

ai+bi

)

+qn

(
an

n


i=1

pibi+bn

n


i=1

piai− anbn

an+bn

n


i=1

pi(ai+bi)−(an+bn)
n


i=1

piaibi

ai+bi

)
.

The term in the first bracket can be written as:

1
an +bn

n


i=1

qi

ai +bi
(anbi−aibn)2.

Thus
Ln+1 ≥ Ln ≥ Ln−1 ≥ . . . ≥ L1 = 0,

which means that JMi is superadditive and the proof is complete. �

Let v(p) = P2
n and g(p) = JMi(p). Then the functional  defined by

(p) = h(P2
n )

(
JMi(p
P2

n

)
is superadditive and it has boundedness property which follows from Corollary 5.1. The
following chain of inequalities hold.

Corollary 5.6 If a,b, p ≥ 0, then

JMi(p(n)) ≥ JMi(p(n−1)) ≥ JMi(p(n−2)) ≥ . . . ≥ JMi(p(2)) ≥ 0

and

JMi(p)≥ max
1≤i< j≤n

[
(piai+p ja j)(pibi+p jb j)−(pi(ai+bi)+p j(a j+b j))

(
piaibi

ai+bi
+

p ja jb j

a j+b j

)]
.
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5.3 Superadditivity of functionals related to Gauss’
type inequalities

In [207] superadditivity of some functionals associated with the Gauss-Winckler and the
Gauss-Pólya inequalities was investigated. In [75] C. F. Gauss mentioned the following
inequality between the second and the fourth absolute moments.

If f is a non-negative and decreasing function, then(∫ 

0
x2 f (x)dx

)2

≤ 5
9

∫ 

0
f (x)dx

∫ 

0
x4 f (x)dx. (5.14)

There have been many generalizations, sharpenings and improvements of inequality (5.14).
One of the major lines of generalization is due to A. Winckler and the other due to the pair
of the results of G. Pólya.

A. Winckler, [212], gave the following result which is known as the Gauss-Winckler
inequality in the recent literature. More about it and its history one can find in [29].

Theorem 5.10 If f is a non-negative, continuous and non-increasing function on [0,)
such that

∫ 
0 f (x)dx = 1, then for m ≤ r

(
(m+1)

∫ 

0
xm f (x)dx

) 1
m

≤
(

(r+1)
∫ 

0
xr f (x)dx

) 1
r

. (5.15)

Another generalization was done by G. Pólya and today all of the inequalities of the
type are called the Gauss-Pólya inequalites. Namely, in the book “Problems and Theorems
in Analysis” (see [188, Vol I, p. 83, Vol II, p. 129] one can find the following results.

Theorem 5.11 (i) Let f : [0,)→R be a non-negative and decreasing function. If a and
b are non-negative real numbers, then(∫ 

0
xa+b f (x)dx

)2

≤
(

1−
(

a−b
a+b+1

)2
)∫ 

0
x2a f (x)dx

∫ 

0
x2b f (x)dx

if all the integrals exist.
(ii) Let f : [0,1] → R be a non-negative and increasing function. If a and b are non-

negative real numbers, then(∫ 1

0
xa+b f (x)dx

)2

≥
(

1−
(

a−b
a+b+1

)2
)∫ 1

0
x2a f (x)dx

∫ 1

0
x2b f (x)dx.

J. Pečarić and S. Varošanec treated the above mentioned inequalities in a unified way
and proved the following generalizations (see [180], [181]).
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Theorem 5.12 Let g : [a,b] → R be a non-negative increasing differentiable function

and let f : [a,b] → R, be a non-negative function such that x → f (x)
g′(x) is a non-decreasing

function. Let pi (i = 1, . . . ,n) be positive real numbers such that n
i=1

1
pi

= 1. If ai (i =
1, . . . ,n) are real numbers such that ai > − 1

pi
, then

∫ b

a
g(x)a1+···+an f (x)dx ≥ n

i=1(aipi +1)
1
pi

1+n
i=1 ai

n


i=1

(∫ b

a
g(x)ai pi f (x)dx

) 1
pi

. (5.16)

If g(a) = 0 and if the quotient function f
g′ is non-increasing, then the reverse inequality in

(5.16) holds.

As a consequence of the above results one can conclude that if f and g satisfy the
assumptions of Theorem 5.12, then the function

Q(r) = (r+1)
∫ b

a
gr(x) f (x)dx

is log-concave when f
g′ is a non-decreasing function and the function Q is log-convexwhen

g(a) = 0 and f
g′ is non-increasing.

Using that property, the following generalization of the Gauss-Winckler inequality was
proved in [180]:

Theorem 5.13 Let f and g be defined as in Theorem 5.12, f
g′ be a non-decreasing func-

tion and p, q, r, s be real numbers from the domain of definition of the function Q.
If p ≤ q, r ≤ s and p > r, q > s, then(

(p+1)
∫ b
a gp(x) f (x)dx

(r+1)
∫ b
a gr(x) f (x)dx

) 1
p−r

≥
(

(q+1)
∫ b
a gq(x) f (x)dx

(s+1)
∫ b
a gs(x) f (x)dx

) 1
q−s

. (5.17)

If g(a) = 0 and f
g′ is non-increasing, then the reverse inequality holds.

Remark 5.7 In [180] authors considered the case when g(x) = x, f is non-increasing and
a = 0. In that case inequalities (5.16) and (5.17) hold with b =  and thus the results for
moments follow.

Investigation of the properties of the mapping which arises from Gauss-Pólya’s in-
equalities or Gauss-Winckler inequality requires the specific tool which is here the follow-
ing type of the Hölder inequality, [151]:

Proposition 5.3 Let ai,bi, pi, (i = 1, . . . ,n) be non-negative real numbers such thatn
i=1

1
pi

= 1. Then

a
1
p1
1 · · ·a

1
pn
n +b

1
p1
1 · · ·b

1
pn
n ≤

n


i=1

(ai +bi)
1
pi . (5.18)
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It is a simple consequence of the weight arithmetic-geometric mean inequality:

a
1
p1
1 · · ·a

1
pn
n

(a1 +b1)
1
p1 · · · (an +bn)

1
pn

+
b

1
p1
1 · · ·b

1
pn
n

(a1 +b1)
1
p1 · · · (an +bn)

1
pn

≤ a1

p1(a1 +b1)
+ · · ·+ an

pn(an +bn)
+

b1

p1(a1 +b1)
+ · · ·+ bn

pn(an +bn)
= 1.

5.3.1 Functionals related to Gauss-Pólya inequalites

Throughout this section functions f ,g : [a,b] → R are non-negative, g is increasing dif-
ferentiable, numbers pi (i = 1, . . . ,n) are positive reals such that n

i=1
1
pi

= 1 and ai (i =
1, . . . ,n) are real numbers such that ai > − 1

pi
.

Let us consider the functional G defined as

G( f ) =
n


i=1

(aipi +1)
1
pi

n


i=1

(∫ b

a
g(x)ai pi f (x)dx

) 1
pi − (1+

n


i=1

ai)
∫ b

a
g(x)a1+···+an f (x)dx.

It is obvious that f → G( f ) is positive homogeneous, i.e. G( f ) = G( f ), for any  ≥ 0.
As a consequence of Theorem 5.12, if f/g′ is a non-decreasing function, then G( f ) ≤ 0,
while if f/g′ is non-increasing and g(a) = 0, then G( f ) ≥ 0.

The following theorem provides the superadditivity property of the functional G.

Theorem 5.14 Let f1, f2,g : [a,b] → R be non-negative functions, g increasing differen-
tiable, numbers pi (i = 1, . . . ,n) be positive reals such thatn

i=1
1
pi

= 1 and ai (i = 1, . . . ,n)
be real numbers such that ai > − 1

pi
. Then

G( f1 + f2) ≥ G( f1)+G( f2),

i.e. G is a superadditive functional. Furthermore, if f1 ≥ f2 are such that f1− f2
g′ is non-

increasing, g(a) = 0, then

G( f1) ≥ G( f2),

i.e. G is non-decreasing.

Proof. Let us consider the difference G( f1 + f2)−G( f1)−G( f2).

G( f1 + f2)−G( f1)−G( f2)

=
n


i=1

(aipi +1)
1
pi

n


i=1

(∫ b

a
g(x)ai pi( f1 + f2)(x)dx

) 1
pi

−(1+
n


i=1

ai)
∫ b

a
g(x)a1+···+an( f1+ f2)(x)dx−

n


i=1

(aipi +1)
1
pi

n


i=1

(∫ b

a
g(x)ai pi f1(x)dx

) 1
pi
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+(1+
n


i=1

ai)
∫ b

a
g(x)a1+···+an f1(x)dx−

n


i=1

(aipi +1)
1
pi

n


i=1

(∫ b

a
g(x)ai pi f2(x)dx

) 1
pi

+(1+
n


i=1

ai)
∫ b

a
g(x)a1+···+an f2(x)dx

=
n


i=1

(aipi +1)
1
pi

[
n


i=1

(∫ b

a
g(x)ai pi( f1 + f2)(x)dx

) 1
pi

−
n


i=1

(∫ b

a
g(x)ai pi f1(x)dx

) 1
pi −

n


i=1

(∫ b

a
g(x)ai pi f2(x)dx

) 1
pi

]
.

Setting in (5.18):

ai =
∫ b

a
g(x)ai pi f1(x)dx, bi =

∫ b

a
g(x)ai pi f2(x)dx, i = 1,2, . . . ,n

and using the Hölder inequality we have that G( f1 + f2)−G( f1)−G( f2) ≥ 0, so G is
superadditive.

If f1 ≥ f2,
f1− f2

g′ is non-increasing and g(a) = 0, then G( f1 − f2) ≥ 0. Thus

G( f1) = G( f2 +( f1− f2)) ≥ G( f2)+G( f1− f2) ≥ G( f2). �

Corollary 5.7 Let f1, f2,g be non-negative functions on [a,b], g increasing differentiable,
g(a) = 0, numbers pi (i = 1, . . . ,n) be positive reals such that n

i=1
1
pi

= 1, ai (i = 1, . . . ,n)
be real numbers such that ai > − 1

pi
and c,C ∈ R such that C f2 − f1, f1 − c f2 are non-

negative and C f2− f1
g′ , f1−c f2

g′ are non-negative non-increasing functions. Then

C

{
n


i=1

(aipi +1)
1
pi

n


i=1

(∫ b

a
g(x)ai pi f2(x)dx

) 1
pi − (1+

n


i=1

ai)
∫ b

a
g(x)a1+···+an f2(x)dx

}

≥
n


i=1

(aipi +1)
1
pi

n


i=1

(∫ b

a
g(x)ai pi f1(x)dx

) 1
pi − (1+

n


i=1

ai)
∫ b

a
g(x)a1+···+an f1(x)dx

≥ c

{
n


i=1

(aipi +1)
1
pi

n


i=1

(∫ b

a
g(x)ai pi f2(x)dx

) 1
pi − (1+

n


i=1

ai)
∫ b

a
g(x)a1+···+an f2(x)dx

}
.

Proof. Using the previous results we have

CG( f2) = G(C f2) = G((C f2 − f1)+ f1) ≥ G(C f2 − f1)+G( f1) ≥ G( f1)

and

G( f1) = G(( f1 − c f2)+ c f2) ≥ G( f1 − c f2)+G(c f2) ≥ G(c f2) = cG( f2)

which concludes the proof. �

The following theorem contains a result on concavity of function G ◦  , where  is a
concave function.
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Theorem 5.15 Let  : [0,) → [0,) be a concave function, f1, f2, g be non-negative
functions on [a,b] such that ( ◦ ( f1 +(1−) f2)− [( ◦ f1)+ (1−)( ◦ f2)])/g′ is
non-increasing for some  ∈ [0,1], g(a) = 0. Then

G◦ ◦ ( f1 +(1−) f2) ≥ (G◦ ◦ f1)+ (1−)(G◦ ◦ f2).

Proof. For any x ∈ [a,b] we have

( ◦ ( f1 +(1−) f2))(x) = ( f1(x)+ (1−) f2(x))
≥ ( f1(x))+ (1−)( f2(x))
= (( ◦ f1)+ (1−)( ◦ f2))(x),

where concavity of the function  is used. So, we have  ◦ ( f1 + (1−) f2) ≥ ( ◦
f1)+ (1−)( ◦ f2). Using properties of G and the above-proved inequality we have

G( ◦ ( f1 +(1−) f2)) ≥ G(( ◦ f1)+ (1−)( ◦ f2))
≥ G(( ◦ f1))+G((1−)( ◦ f2))
= G( ◦ f1)+ (1−)G( ◦ f2)

and the proof is established. �

Remark 5.8 Let us consider the case when g(x)= x, a= 0, b = and f is non-increasing.
Let us denote by r( f ) a moment of the order r, i.e.

r( f ) =
∫ 

0
xr f (x)dx.

Then the functional G has a form

G( f ) =
n


i=1

(aipi +1)
1
pi

n


i=1


1
pi

ai pi( f )− (1+
n


i=1

ai)a1+···+an( f )

and G is superadditive. Also, if f1 ≥ f2 such that f1 − f2 is non-increasing, then G( f1) ≥
G( f2).

5.3.2 Functionals related to the Gauss-Winckler inequality

Putting in (5.17) r = s = 0 we get the Gauss-Winckler inequality for f/g′ non-decreasing
function: (

(p+1)
∫ b
a gp(x) f (x)dx∫ b

a f (x)dx

) 1
p

≥
(

(q+1)
∫ b
a gq(x) f (x)dx∫ b

a f (x)dx

) 1
q

,

where 0 < p ≤ q. If f/g′ is non-increasing and g(a) = 0, then the reversed inequality
holds.

Let us consider the functional W defined as

W ( f ) =
(∫ b

a
f (x)dx

)1− p
q
(

(q+1)
∫ b

a
gq(x) f (x)dx

) p
q

− (p+1)
∫ b

a
gp(x) f (x)dx.

The following theorem provides its superadditivity and monotonicity.
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Theorem 5.16 Let f1, f2,g : [a,b] → R be non-negative functions, g increasing differen-
tiable function and numbers p,q be positive reals such that p ≤ q. Then

W ( f1 + f2) ≥W ( f1)+W( f2).

Additionaly, if f1 ≥ f2 are such that f1− f2
g′ is non-increasing, g(a) = 0, then

W ( f1) ≥W ( f2).

Proof. Let us transform W ( f1 + f2)−W( f1)−W( f2).

W ( f1 + f2)−W( f1)−W( f2)

=
(∫ b

a
( f1 + f2)(x)dx

)1− p
q
(

(q+1)
∫ b

a
gq(x)( f1 + f2)(x)dx

) p
q

−(p+1)
∫ b

a
gp(x)( f1 + f2)(x)dx

−
(∫ b

a
f1(x)dx

)1− p
q
(

(q+1)
∫ b

a
gq(x) f1(x)dx

) p
q

+(p+1)
∫ b

a
gp(x) f1(x)dx−

(∫ b

a
f2(x)dx

)1− p
q
(

(q+1)
∫ b

a
gq(x) f2(x)dx

) p
q

+(p+1)
∫ b

a
gp(x) f2(x)dx

=
(∫ b

a
( f1 + f2)(x)dx

)1− p
q
(

(q+1)
∫ b

a
gq(x)( f1 + f2)(x)dx

) p
q

−
(∫ b

a
f1(x)dx

)1− p
q
(

(q+1)
∫ b

a
gq(x) f1(x)dx

) p
q

−
(∫ b

a
f2(x)dx

)1− p
q
(

(q+1)
∫ b

a
gq(x) f2(x)dx

) p
q

≥ 0,

where in the last inequality we use the Hölder inequality with

n = 2,
1
p1

= 1− p
q

> 0,
1
p2

=
p
q

> 0, a1 =
∫ b

a
f1(x)dx, b1 =

∫ b

a
f2(x)dx,

a2 = (q+1)
∫ b

a
gq(x) f1(x)dx, b2 = (q+1)

∫ b

a
gq(x) f2(x)dx.

So, superadditivity of the functional W is established.
If f1− f2

g′ is non-increasing, g(a) = 0, then from Theorem 5.13 we obtainW ( f1− f2)≥ 0
and

W ( f1) = W ( f2 +( f1 − f2)) ≥W ( f2)+W( f1 − f2) ≥W ( f2).

�
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Remark 5.9 Let us consider the case when g(x)= x, a= 0, b = and f is non-increasing.
Now the functional W has the form

W ( f ) = (q+1)
p
q (0( f ))1− p

q 
p
q
q ( f )− (p+1)p( f )

and W is superadditive. Also, if f1 ≥ f2 are such that f1 − f2 is non-increasing, then
W ( f1) ≥W ( f2).

The following result is an interesting inequality for the Beta function.

Corollary 5.8 Let 0 < p ≤ q, y1,y2 > −1. Then(
1

y1 +1
+

1
y2 +1

)1− p
q [

B(q+1,y1 +1)+B(q+1,y2+1)
] p

q

≥
(

1
y1 +1

)1− p
q

B
p
q (q+1,y1 +1)+

(
1

y2 +1

)1− p
q

B
p
q (q+1,y2 +1)

where B is the Beta function defined as B(x+1,y+1) =
∫ 1
0 tx(1− t)ydt.

Proof. It is a consequence of the previous theorem with [a,b] = [0,1], fi(t) = (1− t)yi ,
i = 1,2, g(x) = x. �





Chapter6
Jensen-type functionals for
the operators on a Hilbert
space

In this chapter we present the refinements and the converses of the operator mean inequal-
ities (arithmetic-geometric, arithmetic-harmonic, arithmetic-Heinz,. . . ), all of which are
deduced from the superadditivity of the Jensen functional for the operators on a Hilbert
space, in its several variants. These improvements are obtained due to the inventive method
developed by J. Pečarić, which is employed on the discrete Jensen functional (1.65) whose
real arguments are now substituted by operators on a Hilbert space. Some of the references
used in this chapter are e.g. [97], [98], [145], [147], [215] and the contents is for the most
part included within the published papers [96] and [107].

In the second part of the chapter, integral operator Jensen’s inequality is the base for
defining the corresponding functional, whose superadditivity and monotonicity are then
proved. Apart from this, but published in the same paper [110], an analysis of the multidi-
mensional Jensen’s functional for operators is presented, accompanied with several inter-
esting applications.

179
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6.1 Motivation

F. Kittaneh i Y. Manasrah in [97] obtained the following improvement of the classical
arithmetic-geometric mean inequality:

ab1− +max{,1−}(√a−
√

b
)2 ≥ a+(1−)b

≥ ab1− +min{,1−}(√a−
√

b
)2

, (6.1)

a,b ≥ 0,  ∈ [0,1], with its converse contained in the left inequality and the refinement in
the right one. It is well known that Heinz means

H(a,b) =
ab1− +a1−b

2
, (6.2)

 ∈ [0,1], interpolate the geometric and the arithmetic mean of a,b≥ 0, wherefrom authors
in [97] managed to obtain the improvement in the following form:

H(a,b)+min{,1−}(√a−
√

b
)2 ≤ a+b

2
. (6.3)

On the other hand, recall that in not so recent paper [136] of R. Merris and S. Pierce
the matrix variant of the arithmetic-geometric inequality was given:

A
1
2

(
A− 1

2 BA− 1
2

)
A

1
2 ≤ A B, (6.4)

A,B ∈ Mn(C), such that B is positive semidefinite and A is positive definite,  ∈ [0,1].
It was by means of (6.4) that Kittaneh and Manasrah in their another paper [98] ob-

tained new matrix generalizations of the relations (6.1) and (6.3). In that sense, matrix
variant of (6.1) reads

2max{,1−}
[
AB−A

1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2

]
≥ A B−A

1
2

(
A− 1

2 BA− 1
2

)
A

1
2

≥ 2min{,1−}
[
AB−A

1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2

]
, (6.5)

where A ∈ Mn(C) is positive definite and B ∈ Mn(C) is positive semidefinite,  ∈ [0,1].
These mean inequalities are of a special interest here because in the sequel we present

the results published in [96] and [107], where authors obtained the corresponding operator
(infinite dimensional) variant of these (finite dimensional) matrix inequalities.

For the sake of the further analysis concerning operators on a Hilbert space, let’s
mention here that H. Zuo et al. obtained in [215] the refinement of the weight operator
arithmetic-harmonic mean inequality in the difference form:

A B−A ! B ≥ 2min{,1−} [AB−A !B], (6.6)

where A and B are positive invertible operators and  ∈ [0,1].
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6.2 Superadditivity of the Jensen functional for the
operators on a Hilbert space

Here we define the functional for the operators on a Hilbert space whose properties will
provide us with the improvements of the operator mean inequalities.

Recall that the self-adjoint operators constitute the subspace of the C*-algebra of all
bounded linear operators and is denoted with Bh(H), the set of all positive operators in
Bh(H) is a convex cone in Bh(H) which defines the order ” ≤ ” on Bh(H). This con-
vex cone is denoted with B+(H). The set of all strictly positive (or positive invertible)
operators in Bh(H) is denoted with B++(H).

The idea on which the method developed by J. Pečarić was based has as a starting point
the discrete Jensen functional J( f ,x,p) defined by (1.65) and analysed in [66]. We write
x = (x, ) and the first coordinate substitute with the self-adjoint operator D.

Let [a,b] be an interval in R and  ∈ [a,b]. Suppose p = (p1, p2) is a nonnegative pair
of real numbers such that p1 + p2 > 0. The set of all such pairs p will be denoted with P0.
Now, let D ∈ Bh(H) be such that a1H ≤ D ≤ b1H , where 1H is a unit operator on H and
let f : [a,b]→ R be a continuous function. Then Jensen’s functional J ( f ,D, ,p) for the
operators on a Hilbert space is defined by

J ( f ,D, ,p) = p1 f (D)+ p2 f ( )1H − (p1 + p2) f

(
p1D+ p21H

p1 + p2

)
. (6.7)

If f is a convex function, then J ( f ,D, ,p) ≥ 0, for all p ∈ P0, as a consequence of the
Jensen inequality and the monotonicity property (1.40) valid for the operator functions.

Furthermore, if we fix f , D and  , then we can observe J ( f ,D, , ·) as a function on
P0.

Theorem 6.1 Let [a,b] be an interval in R and let  ∈ [a,b]. Suppose D is an operator
in Bh(H) such that a1H ≤ D ≤ b1H and p = (p1, p2),q = (q1,q2) ∈ P0. If f : [a,b] → R

is a continuous and convex function, then

J ( f ,D, ,p+q) ≥ J ( f ,D, ,p)+J ( f ,D, ,q) , (6.8)

that is, J ( f ,D, , ·) is superadditive on P0. Furthermore, if p,q ∈ P0 are such that
p ≥ q, (i.e. p1 ≥ q1, p2 ≥ q2), then

J ( f ,D, ,p) ≥ J ( f ,D, ,q) ≥ 0, (6.9)

that is, J ( f ,D, , ·) is increasing on P0.

Proof. Discrete Jensen’s functional J( f ,x,p) defined by (1.65) for n = 2 and x = (x, )
assumes the following form:

j( f ,x, ,p) = p1 f (x)+ p2 f ( )− (p1 + p2) f

(
p1x+ p2
p1 + p2

)
. (6.10)
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Since the functional (1.65) is superadditive and increasing on P0, the functional j( f ,x, ,p)
possesses the corresponding properties:

j( f ,x, ,p+q) ≥ j( f ,x, ,p)+ j( f ,x, ,q), (6.11)

j( f ,x, ,p) ≥ j( f ,x, ,q), p ≥ q. (6.12)

Continuous functional calculus (1.39) provides for the function f , which is continuous on
the spectrum of the operator D, to act on the self-adjoint operator D. Order preserving
property (1.40) for operator functions provides that inequalities (6.11) and (6.12) hold if
we substitute x by D, a1H ≤ D ≤ b1H . Hence the statement of the theorem is true. �

The lower and the upper bound for the functional J( f ,D, ,p) are expressed by means
of the non-weight functional of the same type.

Corollary 6.1 Let f , D,  , p and functional J be as in Theorem 6.1. Then the following
inequalities hold:

2max{p1, p2}J ( f ,D, ) ≥ J ( f ,D, ,p) ≥ 2min{p1, p2}J ( f ,D, ), (6.13)

where

J ( f ,D, ) =
f (D)+ f ( )1H

2
− f

(
D+ 1H

2

)
.

Proof. If we compare the ordered pair p = (p1, p2) ∈ P0 with the constant pairs

pmax =
(
max{p1, p2},max{p1, p2}

)
and pmin =

(
min{p1, p2},min{p1, p2}

)
,

we see that pmax ≥ p ≥ pmin, so by applying (6.9) the following inequalities hold:

J ( f ,D, ,pmax) ≥ J ( f ,D, ,p) ≥ J ( f ,D, ,pmin) .

Finally, since J ( f ,D, ,pmax) = 2max{p1, p2}J ( f ,D, ) and J ( f ,D, ,pmin) =
2min{p1, p2}J ( f ,D, ), inequalities (6.13) hold. �

With f ,  , p and q as in Theorem 6.1, let A ∈ B++(H) and B ∈ Bh(H). Sup-
pose that aA ≤ B ≤ bA. Now from the Jensen functional (6.7) we deduce the functional

A
1
2 J

(
f ,A− 1

2 BA− 1
2 , ,p

)
A

1
2 defined as

A
1
2 J

(
f ,A− 1

2 BA− 1
2 , ,p

)
A

1
2

= p1A
1
2 f (A− 1

2 BA− 1
2 )A

1
2 + p2 f ( )A− (p1 + p2)A

1
2 f

(
p1A− 1

2 BA− 1
2 + p21H

p1 + p2

)
A

1
2 .

(6.14)

Remark 6.1 The functional (6.14) is well defined because the condition aA ≤ B ≤ bA
implies a1H ≤ A− 1

2 BA− 1
2 ≤ b1H , that is, the spectrum of the operator A− 1

2 BA− 1
2 does

belong to the domain of the function f .
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The functional (6.14) also possesses the properties described in Theorem 6.1.

Theorem 6.2 Let A ∈ B++(H) and B ∈ Bh(H). Suppose aA ≤ B ≤ bA. If f ,  , p and q
and the functional J are as in Theorem 6.1, then

A
1
2 J

(
f ,A− 1

2 BA− 1
2 , ,p+q

)
A

1
2

≥ A
1
2 J

(
f ,A− 1

2 BA− 1
2 , ,p

)
A

1
2 +A

1
2 J

(
f ,A− 1

2 BA− 1
2 , ,q

)
A

1
2 , (6.15)

that is, A
1
2 J

(
f ,A− 1

2 BA− 1
2 , , ·

)
A

1
2 is superadditive on P0. Furthermore, if p,q ∈ P0

are such that p ≥ q, then

A
1
2 J

(
f ,A− 1

2 BA− 1
2 , ,p

)
A

1
2 ≥ A

1
2 J

(
f ,A− 1

2 BA− 1
2 , ,q

)
A

1
2 ≥ 0, (6.16)

that is, A
1
2 J

(
f ,A− 1

2 BA− 1
2 , , ·

)
A

1
2 is increasing on P0.

Proof. According to Remark 6.1, functional J
(

f ,A− 1
2 BA− 1

2 , ,p
)

is well defined.

Because of the superadditivity in (6.8), the functional

J
(

f ,A− 1
2 BA− 1

2 , ,p+q
)
−J

(
f ,A− 1

2 BA− 1
2 , ,p

)
−J

(
f ,A− 1

2 BA− 1
2 , ,q

)
(6.17)

is non-negative. Multiplicating this functional by A
1
2 both-sidedly, its non-negativity stays

preserved. Thus superadditivity in (6.15) follows directly, as well as monotonicity property
in (6.16). �

Both sided bounds, analogous to those of the functional (6.7) are obtained for (6.14),
as a consequence of Theorem 6.2. These bounds are of a special interest for they allow us
to observe some refinements and converses of the operator mean inequalities, which are
analyzed in the sequel.

Corollary 6.2 Let A ∈ B++(H) and B ∈ Bh(H) with aA ≤ B ≤ bA. Suppose  ∈ [a,b],
[a,b] ⊆ R, p = (p1, p2) ∈ P0 and let f : [a,b] → R be a continuous and convex function.
Then the following inequalities hold:

2max{p1, p2}A 1
2 J

(
f ,A− 1

2 BA− 1
2 ,

)
A

1
2 ≥ A

1
2 J

(
f ,A− 1

2 BA− 1
2 , ,p

)
A

1
2

≥ 2min{p1, p2}A 1
2 J

(
f ,A− 1

2 BA− 1
2 ,

)
A

1
2 , (6.18)

where

J ( f ,A− 1
2 BA− 1

2 , ) =
f (A− 1

2 BA− 1
2 )+ f ( )1H

2
− f

(
A− 1

2 BA− 1
2 + 1H

2

)
.
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6.3 Application to operator means

Let us observe the functional (6.14) with the continuous convex function f : R → R+ de-
fined by f (x)= expx, for  = 0 and for the operatorA− 1

2 BA− 1
2 substituted by log(A− 1

2 BA− 1
2 ),

where therefore B ∈ B++(H). With these definition adjustments made, we deduce the
functional that is the difference between the operator arithmetic and geometric mean:

L (A,B,p) = (p1 + p2)
[
A p1

p1+p2
B−A� p1

p1+p2
B

]
, (6.19)

where aA ≤ B ≤ bA.
The statements of the Theorem 6.2 and Corollary 6.2 referring to the functional (6.14)

are valid for its specified form - functional (6.19). Thus the relation (6.18) assumes the
following form:

2max{p1, p2} [AB−A�B] ≥ (p1 + p2)
[
A p1

p1+p2
B−A� p1

p1+p2
B

]
≥ 2min{p1, p2} [AB−A�B] , (6.20)

which actually presents the converse and the refinement of the operator arithmetic-geometric
mean inequality. In that sense, inequalities (6.20) are the operator generalization of the ma-
trix inequalities (6.5) from [98].

In order to analyze and improve the operator arithmetic-Heinz inequality, let us firstly
show how operator Heinz mean interpolates operator arithmetic and geometric means, con-
sidering the operator order. Recall that the operator Heinz mean is defined by

H(A,B) =
A�B+A�1−B

2
, (6.21)

 ∈ [0,1], A,B ∈ B++(H).

Proposition 6.1 Let H be a Hilbert space and A,B ∈ B++(H). If  ∈ [0,1], then

A�B ≤ H(A,B) ≤ AB. (6.22)

Proof. Since

A
1
2

(
A− 1

2 BA− 1
2

)
A

1
2 +A

1
2

(
A− 1

2 BA− 1
2

)1−
A

1
2 ≤ A B+A1− B = A+B,

the second inequality in (6.22) holds.
With the aim of proving the first inequality in (6.22), we observe the scalar inequality

x + x1− ≥ 2
√

x
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which holds for all x ∈ R+. On the other hand, the operator A− 1
2 BA− 1

2 has a positive
spectrum. Thus according to the order preservation property (1.40) we can write

(
A− 1

2 BA− 1
2
) +

(
A− 1

2 BA− 1
2
)1− ≥ 2

(
A− 1

2 BA− 1
2
) 1

2
. (6.23)

By multiplying the inequality (6.23) both sidedly by A
1
2 , the first inequality in (6.22) is

also proved. �

Inequality (6.3) described in the introductory part of this chapter improves the classical
arithmetic-Heinz inequality. Related results for the finite dimensional matrix variant also
exist and here we deal with the analogous results for the means defined by the operators on
a Hilbert space. In order to measure the difference between the arithmetic and the weight
Heinz mean on a Hilbert space, according to relation (6.22), we deduce the functional

M (A,B,p) =
1
2
(p1 + p2)

[
2AB−A� p1

p1+p2
B−A� p2

p1+p2
B

]
, (6.24)

where p = (p1, p2) ∈ P0 and A,B ∈ B++(H). From (6.22) it follows that M (B,C,p) ≥
0. Superadditivity and monotonicity of this functional are the contents of the following
theorem.

Theorem 6.3 Let H be a Hilbert space and A,B ∈ B++(H). Suppose p,q ∈ P0. Then

M (A,B,p+q) ≥ M (A,B,p)+M (A,B,q) , (6.25)

that is, M (A,B, ·) is superadditive on P0. Furthermore, if p,q ∈ P0 are such that p ≥ q
(p1 ≥ q1, p2 ≥ q2), then

M (A,B,p) ≥ M (A,B,q) ≥ 0, (6.26)

that is, M (A,B, ·) is increasing on P0.

Proof. We make use of superadditivity of the functional L , defined by (6.19). For
ordered tuples p = (p1, p2) and q = (q1,q2) is

L (A,B,p+q) ≥ L (A,B,p)+L (A,B,q) . (6.27)

For ordered tuples p̃ = (p2, p1) and q̃ = (q2,q1) is also

L (A,B, p̃+ q̃) ≥ L (A,B, p̃)+L (A,B, q̃) . (6.28)

Since

L (A,B,p)+L (A,B, p̃)

= (p1 + p2)
[
A p1

p1+p2
B−A� p1

p1+p2
B

]
+(p1 + p2)

[
A p2

p1+p2
B−A� p2

p1+p2
B

]
= (p1 + p2)

[
2AB−A� p1

p1+p2
B−A� p2

p1+p2
B

]
= 2M (A,B,p) ,
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by adding up inequalities (6.27) and (6.28) is (6.25) proved.
Since p ≥ q, the ordered tuples p−q i q have nonnegative coordinates and thus

M (A,B,p) = M (A,B,p−q+q)≥ M (A,B,p−q)+M (A,B,q) .

As M (A,B,p−q)≥ 0, it follows that M (A,B,p) ≥ M (A,B,q), which proves the mono-
tonicity property. �

Corollary 6.3 Let H be a Hilbert space. Suppose A,B ∈ B++(H) and p ∈ P0. Then

(p1 + p2) [AB−A�B]≥ M (A,B,p) ≥ 2min{p1, p2} [AB−A�B]. (6.29)

Proof. The first inequality in (6.29) is proved trivially by means of (6.22). When
proving the second inequality in (6.29), we compare the ordered pair p with the constant
ordered pair pmin. Since p ≥ pmin, due to the monotonicity property of the functional M
we have

M (A,B,p) ≥ M (A,B,pmin) .

Now, since

M (A,B,pmin) = min{p1, p2} [2AB−2A�B]
= 2min{p1, p2} [AB−A�B],

the second inequality in (6.29) is proved. �

Remark 6.2 The first inequality in (6.29) stands for the converse of the arithmetic-Heinz
inequality and the second one is its refinement. Recall that the second inequality also
generalizes the improvement obtained for the classical arithmetic-Heinz inequality (6.3) to
the case of the inequality for the operators on a Hilbert space.

Remark 6.3 In Corollary 6.3 the constant ordered tuple pmax wasn’t observed. Namely,
pmax ≥ p and monotonicity of the functional M yield

2max{p1, p2} [AB−A �B]≥ M (A,B,p) . (6.30)

If we write r = 2max{p1, p2}/(p1 + p2), inequality (6.30) assumes the form

H p1
p1+p2

(A,B) ≥ A �B− (r−1) [AB−A �B]. (6.31)

Since r ≥ 1 and AB−A�B≥ 0, the last inequality (6.31) is weaker result than the starting
inequality H p1

p1+p2
(A,B) ≥ A �B. This justifies omitting this part from consideration.

Finally, let us refer to the inequality (6.6) obtained in [215] which represents the re-
finement of the operator arithmetic-harmonic inequality. Using the tool developed here,
we supplement it with its converse as follows.
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Remark 6.4 Observe the inequality sequence (6.18). Define the continuous convex func-
tion f : (0,) → R by f (x) = 1/x and let  = 1. If we substitute the operators A, B ∈
B++(H) with A−1 and B−1, the right inequality in (6.18) is actually the inequality (6.6) of
refinement of the operator arithmetic-harmonic inequality. The left inequality obtained in
(6.18) is then its converse in the following form:

2max{p1, p2} [AB−A !B]≥ (p1 + p2)
[
A p1

p1+p2
B−A ! p1

p1+p2
B

]
. (6.32)

6.4 Integral Jensen’s functional for the operators on
a Hilbert space

Suppose T is a locallly compact Hausdorff space and A is a C∗-algebra of bounded oper-
ators on a Hilbert space H. A field (Xt)t∈T of operators in A is continuous if the function
t → ‖Xt‖ is continuous on T . Moreover, by introducing bounded Radon measure  on
T and assuming the function t → ‖Xt‖ is integrable, we can form the Bochner integral∫
T Xtd(t). Recall, the Bochner integral is the unique element in A which satisfies the

relation


(∫

T
Xtd(t)

)
=

∫
T
 (Xt)d(t),

for every linear functional  in the norm dual A ∗ of A (see [82]).
In addition, we consider a field (t)t∈T of positive linear mappings t : A →B from A

to anotherC∗-algebra B of bounded operators on Hilbert space K. Such field is assumed to
be continuous if the function t → t(X) is continuous for all X ∈A . Now, in the described
setting the authors in [144] obtained the following operator integral variant of Jensen’s
inequality.

Theorem 6.4 (INTEGRAL OPERATOR JENSEN’S INEQUALITY) Suppose A and B are
unital C∗-algebras on H and K respectively and (Xt)t∈T is a bounded continuous field
of self-adjoint elements in A with spectra in an interval I defined on a locally compact
Hausdorff space T , equipped with a bounded Radon measure  . Furthermore, let (t)t∈T
be a field of positive linear maps t : A → B, such that the field t → t (1H) is integrable
and

∫
T t (1H)d(t) = k1K for some positive constant k. If f : I → R is operator convex

function, then

f

(
1
k

∫
T
t (Xt)d(t)

)
≤ 1

k

∫
T
t ( f (Xt))d(t). (6.33)

In addition, if f : I → R is operator concave, then the sign of inequality in (6.33) is re-
versed.

If k = 1, one obtains the non-weight form of the above mentioned inequality (6.33)
(see [80]).
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Integral Jensen’s functional Jt ( f ,Xt ,) is deduced from (6.33) as follows:

Jt ( f ,Xt ,) =
∫

T
t ( f (Xt))d(t)− k f

(
1
k

∫
T
t (Xt)d(t)

)
. (6.34)

If f : I → R is operator convex, then Jt ( f ,Xt ,) ≥ 0. If f : I → R is operator concave
function, then Jt ( f ,Xt ,) ≤ 0.

In the sequel we investigate the properties of the above defined Jensen’s integral ope-
rator, dependent on bounded Radon measure. For that sake, we define M+ to be the set
of all bounded Radon measures  on T such that the field t → t (1H) is integrable and∫
T t (1H)d(t) = k1K , for some positive constant k .

Further, suppose that  , ∈ M+ are bounded Radon measures such that∫
T
t (1H)d(t) = k1K , k > 0 and

∫
T
t (1H)d(t) = k1K , k > 0. (6.35)

If  = − is bounded Radon measure in M+, then∫
T
t (1H)d (t) = (k − k)1K ,

which implies k > k .
When Jensen’s functional (6.34) is observed for a convex function f , we get the fol-

lowing result.

Theorem 6.5 Suppose Jt ( f ,Xt ,) is the functional defined by (6.34), in the setting as
in Theorem 6.4. If f : I → R is an operator convex function, then

Jt ( f ,Xt , +) ≥ Jt ( f ,Xt ,)+Jt ( f ,Xt ,) , (6.36)

i.e. Jt ( f ,Xt , ·) is superadditive on M+. Furthermore, if  , ∈M+ are such that − ∈
M+, then

Jt ( f ,Xt ,) ≥ Jt ( f ,Xt ,) ≥ 0, (6.37)

i.e. Jt ( f ,Xt , ·) is increasing on M+.

Proof. Suppose  and  are bounded Radon measures satisfying relation (6.35). Ac-
cording to the definition of the functional (6.34) it follows

Jt ( f ,Xt ,+)

=
∫

T
t ( f (Xt))d(+)(t)− (k + k) f

(
1

k + k

∫
T
t (Xt)d(+)(t)

)
=

∫
T
t ( f (Xt))d(t)+

∫
T
t ( f (Xt))d(t)− (k + k)

× f

(
k

k + k
· 1
k

∫
T
t (Xt)d(t)+

k
k + k

· 1
k

∫
T
t (Xt)d(t)

)
. (6.38)
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Operator convexity of f implies

f

(
k

k + k
· 1
k

∫
T
t (Xt)d(t)+

k
k + k

· 1
k

∫
T
t (Xt)d(t)

)
≤ k

k + k
f

(
1
k

∫
T
t (Xt)d(t)

)
+

k
k + k

f

(
1
k

∫
T
t (Xt)d(t)

)
.

(6.39)

Now (6.38) and (6.39) imply

Jt ( f ,Xt ,+) ≥
∫

T
t ( f (Xt))d(t)− k f

(
1
k

∫
T
t (Xt)d(t)

)
+

∫
T
t ( f (Xt))d(t)− k f

(
1
k

∫
T
t (Xt)d(t)

)
= Jt ( f ,Xt ,)+Jt ( f ,Xt ,) ,

that is, superadditivity of Jt ( f ,Xt , ·) on M+.
Since  −  ∈ M+, the measure  can be represented as the sum of two Radon mea-

sures in M+, i.e.  = (−)+ . Thus, superadditivity property (6.36) yields inequality

Jt ( f ,Xt ,) = Jt ( f ,Xt ,(−)+)≥ Jt ( f ,Xt ,−)+Jt ( f ,Xt ,) .

Since Jt ( f ,Xt ,−) ≥ 0, it follows that Jt ( f ,Xt ,) ≥ Jt ( f ,Xt ,) ≥ 0. �

Remark 6.5 When f : I → R is an operator concave function, inequalities (6.36) and
(6.37) are with the reversed sign, that is, functional (6.34) is subadditive and decreasing on
M+.

Let  , ∈ M+ be the bounded Radon measures on a locally compact Hausdorff space
T such that  is absolutely continuous with respect to  . The Radon-Nikodym theorem
(see [195, p. 122]) states that there exists a non-negative integrable function p : T → R, the
so called Radon-Nikodym derivative, such that d(t) = p(t)d(t).

In the described setting, we have the following result.

Corollary 6.4 Supppose  , ∈ M+ are bounded Radon measures on a locally compact
Hausdorff space T, such that  is absolutely continuous with respect to  and let p : T →R

be the Radon-Nikodym derivative, i.e. d(t) = p(t)d(t). If p is a bounded function, then[
sup
t∈T

p(t)
]
Jt ( f ,Xt ,) ≥ Jt ( f ,Xt ,) ≥

[
inf
t∈T

p(t)
]
Jt ( f ,Xt ,) , (6.40)

where Jt ( f ,Xt , ·) is defined by (6.34).

Proof. Let us define the measures sup and inf by

dsup(t) =
[
sup
t∈T

p(t)
]
d(t) and dinf(t) =

[
inf
t∈T

p(t)
]
d(t).
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Since
∫
T t (1H)d(t) = k1H , k > 0, we have

∫
T
t (1H)dsup(t) =

[
sup
t∈T

p(t)
]
k1K

and ∫
T
t (1H)dinf(t) =

[
inf
t∈T

p(t)
]
k1K ,

that is, sup,inf ∈ M+. Moreover, it is obvious that sup −  and  − inf ∈ M+, so the
double use of (6.37) yields the interpolating series of inequalities

Jt

(
f ,Xt ,sup

)≥ Jt ( f ,Xt ,) ≥ Jt ( f ,Xt ,inf) .

Finally, since

Jt

(
f ,Xt ,sup

)
=

[
sup
t∈T

p(t)
]
Jt ( f ,Xt ,)

and

Jt ( f ,Xt ,inf) =
[
inf
t∈T

p(t)
]
Jt ( f ,Xt ,) ,

we get the lower and the upper bound for Jensen’s integral functional for the operators, as
in (6.40). �

Remark 6.6 The left inequality in (6.40) is a converse and the right one is a refinement
of the inequality (6.33).

6.5 Multidimensional Jensen’s functional for the
operators on a Hilbert space

After observing the operator convex (concave) functions of several variables, we intro-
duce the multidimensional Jensen’s functional for the operators on a Hilbert space and
then prove its superadditivity and monotonicity on the set of real nonnegative n-tuples.
Accompanied both-sided bounds expressed by the non-weight functional of the same type
provide us with the converse and the refinement of the multidimensional Jensen inequality.
The general results of this type are then applied to the weight multidimensional geometric
means which had been defined in [70]. A special type of the Jensen functional is derived for
connections and solidarities, which then leads to new types of converses and refinements
of Hölder’s inequalitiy and the inequality of Minkowski.

The contents of this section is published in [110].
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6.5.1 Multidimensional operator convexity and concavity

Let Hj, j = 1, . . . ,m be Hilbert spaces and let X ⊆m
j=1 Bh(Hj) be a convex set.

Definition 6.1 Function F : X → R is operator convex in m variables if for all A =
(A1,A2, . . . ,Am), B = (B1,B2, . . . ,Bm) ∈ X and for 0 ≤  ≤ 1 is

F (A+(1− )B)≤ F(A)+ (1− )F(B). (6.41)

If the reverse inequality holds in (6.41), then the function F is operator concave in m
variables.

Inequality (6.41) is going to be referred to as the multidimensional operator Jensen’s
inequality. Similarly as was the case with the classical Jensen inequality, we can observe
(6.41) for n operators, n ∈ N.

Proposition 6.2 Let p = (p1, p2, . . . , pn) be a nonnegative real n-tuple such that Pn =
n

i=1 pi > 0 and let Ai ∈ X, i = 1,2, . . . ,n. If F : X → R is an operator convex function in
m variables, then the folowing inequality holds:

F

(
1
Pn

n


i=1

piAi

)
≤ 1

Pn

n


i=1

piF(Ai). (6.42)

If F is an operator concave function in m variables, then (6.42) holds with the reverse sign.

Proof. We are going to prove (6.42) by means of mathematical induction. For n = 2
inequality (6.42) holds according to Definition 6.1. Suppose that inequality (6.42) holds
for n ∈ N. Using Pn+1 = n+1

i=1 pi, and applying (6.41) it follows that

F

(
1

Pn+1

n+1


i=1

piAi

)
= F

(
Pn

Pn+1
· 1
Pn

n


i=1

piAi +
pn+1

Pn+1
An+1

)

≤ Pn

Pn+1
F

(
1
Pn

n


i=1

piAi

)
+

pn+1

Pn+1
F(An+1)

≤ Pn

Pn+1
· 1
Pn

n


i=1

piF(Ai)+
pn+1

Pn+1
F(An+1)

=
1

Pn+1

n+1


i=1

piF(Ai),

which was to prove. The reverse inequality for the case of a concave function F is proved
in a similar manner. �

The set of all nonnegative real n-tuples p = (p1, p2, . . . , pn) such that Pn = n
i=1 pi > 0

is going to be denoted with P0
n in the sequel.



192 6 JENSEN-TYPE FUNCTIONALS FOR THE OPERATORS ON A HILBERT SPACE

6.5.2 Superadditivity of the multidimensional Jensen functional
for the operators on a Hilbert space

Multidimensional Jensen’s functional J (F,A1, . . . ,An;p) for the operators on a Hilbert
space is deduced from (6.42) as follows:

J (F,A1, . . . ,An;p) =
n


i=1

piF(Ai)−PnF

(
1
Pn

n


i=1

piAi

)
. (6.43)

By fixing the first n+1 parameters, functional (6.43) can be observed as a function on P0
n .

If the function F is operator convex, then due to Proposition 6.2 is J (F,A1, . . . ,An;p) ≥
0, for all p ∈ P0

n . If F is operator concave, then J (F,A1, . . . ,An;p) ≤ 0, for all p ∈ P0
n .

Properties of the functional (6.43) are established in the following theorem.

Theorem 6.6 Let Ai ∈ X , i = 1,2, . . . ,n, and p = (p1, p2, . . . , pn), q = (q1,q2, . . . ,qn) ∈
P0

n . If F : X → R is an operator convex function, then

J (F,A1, . . . ,An;p+q) ≥ J (F,A1, . . . ,An;p)+J (F,A1, . . . ,An;q) , (6.44)

that is, J (F,A1, . . . ,An; ·) is superadditive on P0
n . Furthermore, if p and q ∈ P0

n are
such that p ≥ q, then

J (F,A1, . . . ,An;p) ≥ J (F,A1, . . . ,An;q) ≥ 0, (6.45)

that is, J (F,A1, . . . ,An; ·) is increasing on P0
n .

Proof. Let us write

J (F,A1, . . . ,An;p+q)

=
n


i=1

(pi +qi)F(Ai)− (Pn +Qn)F

(
1

Pn +Qn

n


i=1

(pi +qi)Ai

)

=
n


i=1

piF(Ai)+
n


i=1

qiF(Ai)−(Pn+Qn)F

(
Pn

Pn+Qn
· 1
Pn

n


i=1

piAi+
Qn

Pn+Qn
· 1
Qn

n


i=1

qiAi

)
.

(6.46)

On the other hand, operator convexity of the function F yields

F

(
Pn

Pn +Qn
· 1
Pn

n


i=1

piAi +
Qn

Pn +Qn
· 1
Qn

n


i=1

qiAi

)

≤ Pn

Pn +Qn
F

(
1
Pn

n


i=1

piAi

)
+

Qn

Pn +Qn
F

(
1
Qn

n


i=1

qiAi

)
. (6.47)

From (6.46) and (6.47) we prove superadditivity:

J (F,A1, . . . ,An;p+q) ≥
n


i=1

piF(Ai)−PnF

(
1
Pn

n


i=1

piAi

)
+

n


i=1

qiF(Ai)

−QnF

(
1
Qn

n


i=1

qiAi

)
.
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If p = q, then the relation (6.45) obviously holds. If p > q, we can write p = (p−q)+q.
Applying (6.44) it follows:

J (F,A1, . . . ,An;p) = J (F,A1, . . . ,An;p−q+q)
≥ J (F,A1, . . . ,An;p−q)+J (F,A1, . . . ,An;q) .

Since p−q ∈ P0
n , it follows J (F,A1, . . . ,An;p−q) ≥ 0 and finally

J (F,A1, . . . ,An;p) ≥ J (F,A1, . . . ,An;q) ≥ 0,

which was to prove. �

Remark 6.7 When F is an operator concave function, the inequalities (6.44) and (6.45)
change their sign, i.e. J (F,A1, . . . ,An; ·) is subadditive and decreasing on P0

n . Namely,
concavity of F changes the sign in Jensen’s inequality (6.42) and J (F,A1, . . . ,An;p)≤ 0,
for all p ∈ P0

n .

The property (6.45) of Jensen’s functional yields the both-sided bounds of the func-
tional expressed by means of the non-weight functional of the same type.

Corollary 6.5 SupposeAi ∈X , i= 1,2, . . . ,n and p =(p1, p2, . . . , pn)∈P0
n . If F : X →R

is an operator convex function, then

max
1≤i≤n

{pi}J (F,A1, . . . ,An) ≥ J (F,A1, . . . ,An;p) ≥ min
1≤i≤n

{pi}J (F,A1, . . . ,An),

(6.48)
where

J (F,A1, . . . ,An) =
n


i=1

F(Ai)−nF

(
1
n

n


i=1

Ai

)
. (6.49)

Proof. If we compare the n-tuple p = (p1, p2, . . . , pn) ∈ P0
n with the constant n-tuples

pmax =
(

max
1≤i≤n

{pi}, . . . , max
1≤i≤n

{pi}
)

and pmin =
(

min
1≤i≤n

{pi}, . . . , min
1≤i≤n

{pi}
)
,

it is obvious that pmax ≥ p ≥ pmin, and convexity of F as well as the property (6.45) yield

J (F,A1, . . . ,An;pmax) ≥ J (F,A1, . . . ,An;p) ≥ J (F,A1, . . . ,An;pmin) .

Since
J (F,A1, . . . ,An;pmax) = max

1≤i≤n
{pi}J (F,A1, . . . ,An)

and
J (F,A1, . . . ,An;pmin) = min

1≤i≤n
{pi}J (F,A1, . . . ,An),

we proved the inequalities (6.48). �

Remark 6.8 When F is operator concave, inequalities (6.48) change their sign.

Remark 6.9 Bounds (6.48) for the functional (6.43) are the converse and the refinement
of the multidimensional operator Jensen’s inequality (6.42).
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6.5.3 Connections

As we analyzed in Section 1.5, there is an isomorphism established between connections
and the operator monotone nonnegative functions defined on [0,), which are in that case,
as we also remarked – operator concave. These are called the representation functions for
connections. Having this in mind, we apply our previously derived results to an arbitrary
connection  .

For Ai = (Xi,Yi) ∈ B+(H)×B+(H), i = 1, . . . ,n, the functional (6.43) assumes the
following form:

J  (X,Y;p) =
n


i=1

pi (XiYi)−Pn

(
1
Pn

n


i=1

piXi

)


(
1
Pn

n


i=1

piYi

)
,

where X and Y stay for the ordered n-tuples (X1,X2, . . . ,Xn) and (Y1,Y2, . . . ,Yn) of the posi-
tive operators. Furthermore, the property of positive homogeneity (XY )= (X) (Y ),
X ,Y ∈ B+(H),  > 0, yields

J  (X,Y;p) =
n


i=1

pi (XiYi)−
(

n


i=1

piXi

)


(
n


i=1

piYi

)
. (6.50)

Functional (6.50) is Jensen’s functional for connections.
According to Proposition 6.2, J  (X,Y;p) ≤ 0, for all p ∈ P0

n and acccording to
Theorem 6.6 is J  (X,Y; ·) subadditive and decreasing on P0

n .
If we apply Corollary 6.5 to functional J  (X,Y;p), we obtain its both-sided non-

weight bounds expressed by the functional of the same type.

Corollary 6.6 Let H be a Hilbert space, X = (X1,X2, . . . ,Xn) and Y = (Y1,Y2, . . . ,Yn)
∈ [B+(H)]n , p = (p1, p2, . . . , pn) ∈ P0

n . If  is a connection, then

max
1≤i≤n

{pi}J  (X,Y) ≤ J  (X,Y;p) ≤ min
1≤i≤n

{pi}J  (X,Y), (6.51)

where

J  (X,Y) =
n


i=1

(XiYi)−
(

n


i=1

Xi

)


(
n


i=1

Yi

)
. (6.52)

Proof. Follows directly from Corollary 6.5, relation (6.50) and positive homogeneity
of the connection  . �

Remark 6.10 We are going to analyze some special cases of connections by means of
which we are going to derive the operator variants of some well known operator inequali-
ties. Let s and t be conjugate exponents, i.e. such that 1/s+1/t = 1, s > 1. If we consider
 a geometric mean �1/s and substitute the operators Xi and Yi with Xs

i and Yt
i , where
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Xi,Yi ∈ B++(H), the inequalities (6.51) are given in the following form:

max
1≤i≤n

{pi}
[

n


i=1

(
Xs

i �1/sY
t
i

)−(
n


i=1

Xs
i

)
�1/s

(
n


i=1

Yt
i

)]

≤
n


i=1

pi
(
Xs

i �1/sY
t
i

)−(
n


i=1

piX
s
i

)
�1/s

(
n


i=1

piY
t
i

)

≤ min
1≤i≤n

{pi}
[

n


i=1

(
Xs

i �1/sY
t
i

)−(
n


i=1

Xs
i

)
�1/s

(
n


i=1

Yt
i

)]
. (6.53)

We clearly see that in (6.53) we have the refinement and the converse of the weight operator
Hölder inequality, expressed via its non-weight form. In particular, for s = t = 2, we have
the same for the Cauchy inequality.

Another application of Corollary 6.6 refers to the parallel sum. Recall that for X ,Y ∈
B++(H) a parallel sum is defined by X : Y =

(
X−1 +Y−1

)−1
. If we substitute invertible

operators Xi, Yi, i = 1,2, . . . ,n with X−1
i , Y−1

i , i = 1,2, . . . ,n, inequalities in (6.51) become

max
1≤i≤n

{pi}

⎡⎢⎣ n


i=1

(Xi +Yi)−1 −
⎛⎝(

n


i=1

X−1
i

)−1

+

(
n


i=1

Y−1
i

)−1
⎞⎠−1

⎤⎥⎦
≤

n


i=1

pi (Xi +Yi)−1−
⎛⎝(

n


i=1

piX
−1
i

)−1

+

(
n


i=1

piY
−1
i

)−1
⎞⎠−1

≤ min
1≤i≤n

{pi}

⎡⎢⎣ n


i=1

(Xi +Yi)−1−
⎛⎝(

n


i=1

X−1
i

)−1

+

(
n


i=1

Y−1
i

)−1
⎞⎠−1

⎤⎥⎦ . (6.54)

Similarly as before, in (6.54) we have the refinement and the converse of the operator
Minkowski inequality. Formerly, the idea of relating connections and the operator inequal-
ities of Hölder and Minkowski had been presented in [160]. The scalar inequalities that
correspond to the relations (6.53) and (6.54) were obtained in [168] and are also contained
in the monograph [151, pp. 718].

6.5.4 Solidarities

In Section 1.5 we introduced solidarities, which, being understood as generalized connec-
tions, also possess the property of joint concavity described in relation (1.58).

For Ai = (Xi,Yi) ∈B++(H)×B++(H), i = 1, . . . ,n, the functional (6.43) assumes the
following form:

J s(X,Y;p) =
n


i=1

pi (XisYi)−Pn

(
1
Pn

n


i=1

piXi

)
s

(
1
Pn

n


i=1

piYi

)
,



196 6 JENSEN-TYPE FUNCTIONALS FOR THE OPERATORS ON A HILBERT SPACE

where X = (X1,X2, . . . ,Xn) and Y = (Y1,Y2, . . . ,Yn). Since solidarities also possess the
property of positive homogeneity, (see [71] for more details), it follows that

J s(X,Y;p) =
n


i=1

pi (XisYi)−
(

n


i=1

piXi

)
s

(
n


i=1

piYi

)
. (6.55)

According to Proposition 6.2 is J s(X,Y;p) ≤ 0, for X,Y ∈ [B++(H)]n , p ∈ P0
n . Ac-

cording to Theorem 6.6 is J s(X,Y; ·) subadditive and decreasing on P0
n . Functional

J s(X,Y;p) also possesses the non-weight bounds, analogous to those described for the
functional for connections.

Corollary 6.7 Let H be a Hilbert space, X = (X1,X2, . . . ,Xn) and Y = (Y1,Y2, . . . ,Yn)
∈ [B++(H)]n and p = (p1, p2, . . . , pn) ∈ P0

n . If s is a solidarity, then

max
1≤i≤n

{pi}J s(X,Y) ≤ J s(X,Y;p) ≤ min
1≤i≤n

{pi}J s(X,Y), (6.56)

where

J s(X,Y) =
n


i=1

(XisYi)−
(

n


i=1

Xi

)
s

(
n


i=1

Yi

)
. (6.57)

Remark 6.11 We are going to apply the functional (6.55) to a special type of solidar-
ities – the relative operator entropy defined by (1.59). To be more precise, for X,Y ∈
[B++(H)]n functional (6.55) becomes

J S(X,Y;p) =
n


i=1

piS(Xi|Yi)−S

(
n


i=1

piXi

∣∣∣∣∣ n


i=1

piYi

)
, (6.58)

and is called Jensen’s functional for the relative operator entropy. In particular, J S(X,Y;p)
≤ 0, for X,Y ∈ [B++(H)]n , p ∈ P0

n and J S(X,Y; ·) is subadditive and decreasing on
P0

n . Analogous non-weight bounds are inherited from the previously analyzed functional
for solidarities:

max
1≤i≤n

{pi}J S(X,Y) ≤ J S(X,Y;p) ≤ min
1≤i≤n

{pi}J S(X,Y), (6.59)

where

J S(X,Y) =
n


i=1

S(Xi|Yi)−S

(
n


i=1

Xi

∣∣∣∣∣ n


i=1

Yi

)
. (6.60)

Inequalities in (6.56) and (6.59) represent the weight forms of the operator inequalities
which had been earlier obtained in [160], but only in its non-weight form.

Let us just mention here that Tsallis’ relative operator entropy defined by (1.60) could
also be analyzed in view of a special type of the functional defined as a parametric ex-
tension of (6.58) and this functional also possesses all of the properties of the previously
observed functionals for the operators.
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6.5.5 Multidimensional weight geometric means

Multidimensional weight geometric mean G[n,t], 0≤ t ≤ 1, of positive invertible operators
A1,A2, . . . ,An was defined inductively in [70], using (1.54).

Let G[2,t](A1,A2) = A1�tA2 = A
1
2
1

(
A
− 1

2
1 A2A

− 1
2

1

)t
A

1
2
1 . For n ≥ 3 we have the following

consideration. Let A(1)
i = Ai, for all i = 1,2, . . . ,n and inductively for r

A(r)
i = G[n−1,t]

(
A(r−1)

1 , . . . ,A(r−1)
i−1 ,A(r−1)

i+1 , . . . ,A(r−1)
n

)
.

Then, there exists the limit limr→A(r)
i in the Thompsonmetric on the convex cone B++(H)

and it does not depend on i (see [70]). Thus one can define

G[n,t](A1,A2, . . . ,An) = lim
r→

A(r)
i .

Multidimensional weight geometric mean possesses the property of joint concavity (which
can be proved by induction, considering (1.52), for n = 2):

G[n,t]

(
n


i=1

iAi

)
≥

n


i=1

iG[n,t] (Ai) , (6.61)

where i ≥ 0,n
i=1i = 1 and Ai = (Ai1,Ai2, . . . ,Ain), i = 1,2, . . . ,n are the ordered n-tuples

of positive invertible operators on a Hilbert space.
Now, suppose Ai = (Ai1,Ai2, . . . ,Ain)∈ [B++(H)]n, i = 1,2, . . . ,n, p = (p1, p2, . . . , pn)

∈ P0
n , 0 ≤ t ≤ 1 and G[n,t] is a multidimensional weight geometric mean. Motivated by

(6.61) we deduce the Jensen functional for multidimensional weight geometric means:

J G[n,t] (A1, . . . ,An;p) =
n


i=1

piG[n,t] (Ai)−PnG[n,t]

(
1
Pn

n


i=1

piAi

)
. (6.62)

Since G[n, t] (1/Pnn
i=1 piAi) = 1/PnG[n,t] (n

i=1 piAi), functional (6.62) becomes

J G[n,t] (A1, . . . ,An;p) =
n


i=1

piG[n,t] (Ai)−G[n,t]

(
n


i=1

piAi

)
. (6.63)

As a consequence of the joint concavity property of G[n,t] it follows that the functional
(6.63) is non-positive and after Theorem 6.6 is subadditive and decreasing on P0

n . Both-
sided bounds of the functional (6.63) are given in the following corollary.

Corollary 6.8 Let H be a Hilbert space, Ai = (Ai1,Ai2, . . . ,Ain)∈ [B++(H)]n, i = 1,2, . . . ,
n, p = (p1, p2, . . . , pn)∈P0

n and 0≤ t ≤ 1. If G[n, t] is a multidimensional weight geomet-
ric mean, then

max
1≤i≤n

{pi}J G[n,t] (A1, . . . ,An) ≤ J G[n,t] (A1, . . . ,An;p)

≤ min
1≤i≤n

{pi}J G[n,t] (A1, . . . ,An) , (6.64)
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where

J G[n,t] (A1, . . . ,An) =
n


i=1

G[n,t] (Ai)−G[n,t]

(
n


i=1

Ai

)
. (6.65)

Proof. Follows directly from Corollary 6.5, relation (6.63) and positive homogeneity
of the geometric mean G[n,t]. �

Remark 6.12 Bounds in (6.64) represent the refinement and the converse of the inequal-
ity (6.61).



Chapter7
Improvements of some matrix
and operator inequalities via
the Jensen functional

In this chapter, according to published paper [119], several refinements of Heinz norm
inequalities are derived by virtue of convexity of Heinz means and with the help of the
Jensen functional. Operator analogues of refined Heinz norm inequalities are also derived.

In the second part of the chapter, as it was published in [120] some improved weak
majorization relations and eigenvalue inequalities for matrix versions of the Jensen in-
equalities regarding convexity are derived, with corresponding applications to log convex
functions and the refinements of some related matrix inequalities.

7.1 Improved Heinz inequalities via the Jensen
functional

Recall that Heinz mean in parameter t ∈ [0,1], defined by

ht(a,b) =
atb1−t +a1−tbt

2
, a,b ≥ 0, (7.1)

199
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interpolates between the geometric mean and the arithmetic mean, i.e.

√
ab ≤ ht(a,b) ≤ a+b

2
, t ∈ [0,1].

Clearly, h0(a,b) = h1(a,b) = a+b
2 and h1/2(a,b) =

√
ab. Moreover, it is easy to see that

the Heinz mean, considered as a function of t, t ∈ [0,1], is convex, attains its minimum at
t = 1/2, and attains its maximum at t = 0 and t = 1. Moreover, ht(a,b) is symmetric with
respect to t = 1/2, that is, ht(a,b) = h1−t(a,b), t ∈ [0,1].

The previous discussion is likewise extended to the operator level in the following
sense: If A,B, and X are operators on a complex separable Hilbert space such that A and B
are positive, then for every unitarily invariant norm ||| · |||, the function

fh(t) = |||AtXB1−t +A1−tXBt ||| (7.2)

is also convex on [0,1], attains minimum at t = 1/2, attains maximum at t = 0 and t = 1,
and is symmetric with respect to t = 1/2, i.e. fh(t) = fh(1− t).

Remark 7.1 Considering the Hilbert space Mn(C) of n×n complex matrices, the unitar-
ily invariance of the norm ||| · ||| means that |||UAV |||= |||A||| for all A∈Mn(C) and for all
unitary matrices U,V ∈ Mn(C). Examples of unitarily invariant norms are the Hilbert-
Schmidt norm, the trace norm, and the spectral norm defined respectively by ‖A‖2 =(
n

i=1 s2
i (A)

)1/2
, ‖A‖1 = n

i=1 si(A), and ‖A‖ = s1(A), where s1(A) ≥ . . . ≥ sn(A) are the
singular values of A ∈ Mn(C), that is, the eigenvalues of the positive semi-definite matrix

|A| = (
A∗A

)1/2
. For more details the reader is referred to [34]. By a slight modification,

the notion of unitarily invariant norms can also be extended to operators on a complex sep-
arable Hilbert space (see e.g. [202]). In such setting, when considering |||A|||, the operator
A is implicitly assumed to belong to the norm ideal associated with ||| · |||.

Hence, for every unitarily invariant norm, the Heinz norm inequalities (see [34]) read

2|||A 1
2 XB

1
2 ||| ≤ |||AtXB1−t +A1−tXBt ||| ≤ |||AX +XB|||. (7.3)

The first inequality in (7.3) will be referred to as the left Heinz norm inequality, while the
second one will be referred to as the right Heinz norm inequality. For a comprehensive
inspection of the results concerning the above norm inequalities the reader is referred to
[34], [35], [36] and [84], where one can also find proofs of the properties of function fh
defined by (7.2).

The following presented results were motivated by [95], where Kittaneh had obtained
several refinements of Heinz norm inequalities (7.3) by utilizing convexity of function
fh and the well-known Hermite-Hadamard inequality (see e.g. [151]). The above norm
inequalities are here improved via convexity of function fh, by means of the properties of
the discrete Jensen functional

J n( f ,x,p) =
n


i=1

pi f (xi)−Pn f

(
n

i=1 pixi

Pn

)
, (7.4)
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where f : I ⊂ R → R is a convex function, x = (x1,x2, . . . ,xn) ∈ In, n ≥ 2, and p =
(p1, p2, . . . , pn) is a positive n-tuple of real numbers with Pn =n

i=1 pi, whose properties of
superadditivity (1.66) and monotonicity (1.67) were extensively exploited in the previous
chapters of this monograph.

7.1.1 Improved Heinz norm inequalities via boundedness of
the Jensen functional

In order to improve Heinz norm inequalities (7.3), we are going to exploit properties of
the Jensen functional (7.4) and convexity of function fh defined by (7.2). For that sake we
consider the Jensen functional in the form that will be more suitable in our research. More
precisely, we consider the two-dimensional normalized Jensen functional, that is,

J ( f ,x,t) = (1− t) f (x1)+ t f (x2)− f ((1− t)x1 + tx2), (7.5)

where t ∈ [0,1] and x = (x1,x2). Taking into account order relation as in (1.67), the ordered
pair (t,1− t) can mutually be bounded with the constant pairs, i.e. we have

(min{t,1− t},min{t,1− t})≤ (t,1− t)≤ (max{t,1− t},max{t,1− t}).
Therefore, by virtue of the monotonicity property (1.67), the above relation yields bounds
for the two-dimensional normalized Jensen functional (7.5), that is,

2min{t,1− t}J0( f ,x) ≤ J ( f ,x,t) ≤ 2max{t,1− t}J0( f ,x), (7.6)

where

J0( f ,x) =
f (x1)+ f (x2)

2
− f

(
x1 + x2

2

)
.

In other words, functional (7.5) is mutually bounded by a non-weight functional of the
same type. The double inequality (7.6) will be crucial in deriving improvements of Heinz
norm inequalities. Namely, we are going to study relations (7.6) equipped with the convex
function (7.2) on certain subintervals of [0,1]. This will provide various improvements of
Heinz norm inequalities.

In the sequel let Hs denote a complex separable Hilbert space, while B+(Hs) denotes
the set of positive operators on Hs. For the sake of a simpler notation, we here use the
abbreviation

Ht(A,B,X) = AtXB1−t +A1−tXBt ,

where A,B,X are operators on Hs such that A,B∈B+(Hs) and t ∈ [0,1]. Clearly, operator
Ht(A,B,X)/2 has the meaning of Heinz operator mean. The following result is an immedi-
ate consequence of the first inequality in (7.6), for convex function fh(t) = |||Ht(A,B,X)|||
considered on the interval [0,1].

Theorem 7.1 Let A,B and X be operators on a complex separable Hilbert space Hs such
that A,B ∈ B+(Hs). Then for every unitarily invariant norm ||| · ||| the inequality

|||AX +XB|||− |||Ht(A,B,X)||| ≥ 2min{t,1− t}
[
|||AX +XB|||−2|||A 1

2 XB
1
2 |||

]
≥ 0

(7.7)
holds for every t ∈ [0,1].



202 7 IMPROVEMENTS OF SOME INEQUALITIES VIA THE JENSEN FUNCTIONAL

Proof. Let x0 = (0,1) and let fh(t) = |||Ht(A,B,X)|||. Considering the first inequality
in (7.6), that is, J ( fh,x0,t) ≥ 2min{t,1− t}J0( fh,x0), we have

(1− t) fh(0)+ t fh(1)− fh(t) ≥ 2min{t,1− t}
[

fh(0)+ fh(1)
2

− fh

(
1
2

)]
.

Now, since fh(0) = fh(1), the previous inequality reduces to

fh(0)− fh(t) ≥ 2min{t,1− t}
[
fh(0)− fh

(
1
2

)]
,

which represents (7.7). �

The inequality (7.7) was obtained in [95] with a slightly different technique (see also
[97] where this result was derived for the Hilbert-Schmidt norm). On the other hand, since
the function fh(t) = |||Ht(A,B,X)||| is symmetric with respect to t = 1/2, i.e. fh(t) =
fh(1− t), t ∈ [0,1], it suffices to consider the Jensen functional on the interval [0,1/2].

Theorem 7.2 Let A,B and X be operators on a complex separable Hilbert space Hs such
that A,B ∈ B+(Hs). If t ∈ [0,1/2], then the inequality

|||AX +XB|||− |||Ht(A,B,X)|||
≥ min{2t,1−2t}

[
|||AX +XB|||+2|||A 1

2 XB
1
2 |||−2|||H 1

4
(A,B,X)|||

]
+2t

[
|||AX +XB|||−2|||A 1

2 XB
1
2 |||

]
≥ 0 (7.8)

holds for every unitarily invariant norm ||| · |||. Moreover, if t ∈ [1/2,1], then

|||AX +XB|||− |||Ht(A,B,X)|||
≥ min{2−2t,2t−1}

[
|||AX +XB|||+2|||A 1

2 XB
1
2 |||−2|||H 1

4
(A,B,X)|||

]
+(2−2t)

[
|||AX +XB|||−2|||A 1

2 XB
1
2 |||

]
≥ 0. (7.9)

Proof. Considering the first inequality in (7.6) with fh(t) = |||Ht(A,B,X)||| and x1 =
(0,1/2), we have J ( fh,x1,t) ≥ 2min{t,1− t}J0( fh,x1), that is,

(1− t) fh(0)+ t fh

(
1
2

)
− fh

( t
2

)
≥ min{t,1− t}

[
fh(0)+ fh

(
1
2

)
−2 fh

(
1
4

)]
.

The previous inequality can be rewritten in the form

fh(0)− fh
( t

2

)
≥ min{t,1− t}

[
fh(0)+ fh

(
1
2

)
−2 fh

(
1
4

)]
+ t

[
fh(0)− fh

(
1
2

)]
,

that is,

fh(0)− fh (t) ≥ min{2t,1−2t}
[
fh(0)+ fh

(
1
2

)
−2 fh

(
1
4

)]
+2t

[
fh(0)− fh

(
1
2

)]
,

(7.10)
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where t ∈ [0,1/2]. Hence, we get inequality (7.8).
On the other hand, if t ∈ [1/2,1], then 1− t ∈ [0,1/2]. Hence, replacing t with 1− t in

(7.10) and using the fact that fh(t) = fh(1− t), relation (7.10) yields inequality

fh(0)− fh (t) ≥ min{2−2t,2t−1}
[

fh(0)+ fh

(
1
2

)
−2 fh

(
1
4

)]
+(2−2t)

[
fh(0)− fh

(
1
2

)]
, t ∈ [1/2,1] ,

that is, we obtain (7.9). The proof is now completed. �

Remark 7.2 It should be noticed here that inequalities (7.8) and (7.9) yield the refinement
of inequality (7.7). More precisely, due to convexity of function fh(t) = |||Ht(A,B,X)|||
one has

|||AX +XB|||+2|||A 1
2 XB

1
2 |||−2|||H 1

4
(A,B,X)||| ≥ 0,

so the right-hand sides of inequalities (7.8) and (7.9) are not less than the right-hand side
of inequality (7.7).

In order to obtain the refinement of the left Heinz norm inequality, we have to apply
the second inequality in (7.6), together with a convex function fh(t) = |||Ht(A,B,X)|||.
Remark 7.3 By considering the upper bound for the Jensen functional, that is, the second
inequality in (7.6), and x0 = (0,1), we have

fh(0)− fh(t) ≤ 2max{t,1− t}
[
fh(0)− fh

(
1
2

)]
.

The above inequality is equivalent to

fh(t)− fh

(
1
2

)
≥ (1−2max{t,1− t})

[
fh(0)− fh

(
1
2

)]
. (7.11)

Since maxt∈[0,1]{t,1− t} ≥ 1/2, the right-hand side of inequality (7.11) is non-positive,
which means that in this case we actually obtain worse result than the original inequality
in (7.3).

Although the application of the second inequality in (7.6) on interval [0,1] does not
provide refinement of the left Heinz norm inequality, we can obtain some refinements by
considering certain subintervals of [0,1].

Theorem 7.3 Let A,B and X be operators on a complex separable Hilbert space Hs such
that A,B ∈ B+(Hs), and let 0 ≤ a < 1/2. If ||| · ||| is unitarily invariant norm, then the
inequality

|||Ht(A,B,X)|||−2|||A 1
2 XB

1
2 ||| ≥ 2|1−2t|

1−2a

[
|||H 2a+1

4
(A,B,X)|||−2|||A 1

2 XB
1
2 |||

]
≥ 0

(7.12)
holds for all t ∈ [

a, 1+2a
4

]∪ [
2a+3

4 ,1−a
]
.
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Proof. Considering the second inequality in (7.6) equipped with x =
(
a, 1

2

)
and fh(t) =

|||Ht(A,B,X)|||, we have J ( fh,x,t) ≤ 2max{t,1− t}J0( fh,x), that is,

(1− t) fh(a)+ t fh

(
1
2

)
− fh

(
(1−2a)t +2a

2

)
≤ 2max{t,1− t}

[
fh(a)+ fh( 1

2 )
2

− fh

(
2a+1

4

)]
.

The previous inequality can be rewritten in the form

fh

(
(1−2a)t +2a

2

)
− fh

(
1
2

)
≥ (1− t−max{t,1− t}) fh(a)+ ((t −1−max{t,1− t}) fh

(
1
2

)
+2max{t,1− t} fh

(
2a+1

4

)
. (7.13)

Generally speaking, the right-hand side of inequality (7.13) is not always non-negative.
Hence, we are going to find a restricted set of parameters t such that the right-hand side of
(7.13) is non-negative.

For that sake we assume that 1− t −max{t,1− t} ≥ 0, that is, max{t,1− t} ≤ 1− t.
In that case t ≤ 1/2 and also max{t,1− t} = 1− t. Under such conditions, the above
inequality (7.13) reduces to

fh

(
(1−2a)t +2a

2

)
− fh

(
1
2

)
≥ 2(1− t)

[
fh

(
2a+1

4

)
− fh

(
1
2

)]
, t ∈

[
0,

1
2

]
,

which is equivalent to

fh (t)− fh

(
1
2

)
≥ 2(1−2t)

1−2a

[
fh

(
2a+1

4

)
− fh

(
1
2

)]
, t ∈

[
a,

1+2a
4

]
. (7.14)

On the other hand, if t ∈ [ 2a+3
4 ,1−a

]
, then 1− t ∈ [

a, 1+2a
4

]
, so replacing t with 1− t in

(7.14), together with the symmetry argument, yields inequality

fh (t)− fh

(
1
2

)
≥ 2(2t−1)

1−2a

[
fh

(
2a+1

4

)
− fh

(
1
2

)]
, t ∈

[
2a+3

4
,1−a

]
. (7.15)

Finally, inequalities (7.14) and (7.15) provide (7.12) and the proof is completed. �

Note that the previous theorem yields the refinement of the left Heinz norm inequal-
ity on the subset of [0,1] which consists of two symmetric intervals with respect to the
midpoint of [0,1]. On the other hand, the interval [0,1] can be covered with such symmet-
ric intervals, hence we can obtain refinements of the Heinz inequality on each symmetric
subset. This procedure is described in the following result.
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Theorem 7.4 Let A,B and X be operators on a complex separable Hilbert space Hs such
that A,B ∈B+(Hs), and let n∈ N. If ||| · ||| is unitarily invariant norm, then the inequality

|||Ht(A,B,X)|||−2|||A 1
2 XB

1
2 ||| ≥ 2n|1−2t|

[
|||H 2n−1

2n+1
(A,B,X)|||−2|||A 1

2 XB
1
2 |||

]
≥ 0

(7.16)

holds for all t ∈
[

2n−1−1
2n , 2n−1

2n+1

]
∪
[

2n+1
2n+1 , 2n−1+1

2n

]
.

Proof. In order to cover the interval [0,1], we repeatedly utilize Theorem 7.3. At the
first step, we use inequality (7.12) with a = 0, which yields inequality

|||Ht(A,B,X)|||−2|||A 1
2 XB

1
2 ||| ≥ 2|1−2t|

[
|||H 1

4
(A,B,X)|||−2|||A 1

2 XB
1
2 |||

]
,

valid for all t ∈ [
0, 1

4

]∪ [
3
4 ,1

]
.

At the second step we apply the previous theorem to the endpoint of the interval that
establishes the inequality in the previous step, that is, a = 1/4. In this case relation (7.12)
yields inequality

|||Ht(A,B,X)|||−2|||A 1
2 XB

1
2 ||| ≥ 22|1−2t|

[
|||H 3

8
(A,B,X)|||−2|||A 1

2 XB
1
2 |||

]
,

which is valid for the values t ∈ [
1
4 , 3

8

]∪ [
5
8 , 3

4

]
.

Now, the further construction is explicitly determined. At the n-th step we consider
inequality (7.12) for a = an, where an is the solution of the recurrence relation

an =
2an−1 +1

4
, (7.17)

with the initial condition a1 = 0. The above recurrence relation (7.17) is linear non-
homogeneous of the first degree. Using the usual methods for solving recurrence rela-
tions or by a mathematical induction principle, we easily obtain solution of (7.17), that is,
an = 2n−1−1

2n . Finally, considering (7.12) with this solution an, we exactly obtain inequality
(7.16) as required. The proof is now completed. �

7.1.2 Operator analogues of the Heinz norm inequalities

Although it was previously explored (Chapter 6), it is not redundant to come up with
the introduced notation once more: B(H ) denotes the semi-space of all bounded linear
self-adjoint operators on Hilbert space H , while B++(H ) denote the set of all positive
invertible operators in B(H ). The weight operator arithmetic mean t and geometric
mean �t , for t ∈ [0,1] and A,B ∈ B++(H ), are defined as follows:

AtB = (1− t)A+ tB,

A�tB = A
1
2
(
A− 1

2 BA− 1
2
)t

A
1
2 .
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If t = 1/2, the arithmetic and the geometric mean are denoted respectively by  and �, for
brevity. Recall e.g. (6.21) that the definition of Heinz means in real case can be raised up
to the level of operators, by

H̃t(A,B) =
A�tB+A�1−tB

2

and, as we have already seen, Heinz mean H̃t(·, ·) interpolates between the non-weight
arithmetic and geometric mean, that is,

A�B ≤ H̃t(A,B) ≤ AB. (7.18)

The first inequality in (7.18) will be referred to as the left Heinz operator inequality, while
the second one will be referred to as the right Heinz operator inequality. As we have
already discussed in Chapter 6, authors in [96] obtained the following refinement of the
right Heinz operator inequality:

AB− H̃t(A,B) ≥ 2min{t,1− t}(AB−A�B) , (7.19)

which corresponds to the norm inequality (7.7). The same result had been obtained in
paper [98], for matrices.

The previous refinement (in general case) was established with the help of the appro-
priate scalar inequality and the well-known monotonicity principle (1.40).

Remark 7.4 Inequality (7.19) is a simple consequence of a more general method devel-
oped in [107]. More precisely, recall (Chapter 6) that the authors in [107] established the
Jensen functional for bounded self-adjoint operators. Such functional is defined by

J̃ ( f ,X , ,t) = (1− t) f (X)+ t f ( )1H − f ((1− t)X + t1H ) , (7.20)

where f : [a,b] → R is a convex function, X ∈ B(H ), a1H ≤ X ≤ b1H , and 1H de-
notes identity operator on Hilbert space H . The above defined functional possesses both
monotonicity (1.67) and superadditivity (1.66) properties as in the real case, which implies
mutually boundedness of the functional (7.20) via the non-weight functional:

2min{t,1− t}J̃0( f ,X , ) ≤ J̃ ( f ,X , ,t) ≤ 2max{t,1− t}J̃0( f ,X , ), (7.21)

where

J̃0( f ,X , ) =
f (X)+ f ( )1H

2
− f

(
X + 1H

2

)
.

Hence, considering the first inequality in (7.21) equipped with the exponential mapping
f (x) = expx,  = 0, and X = log

(
A− 1

2 BA− 1
2
)
, [107] provides inequality

A1−tB−A�1−tB ≥ 2min{t,1− t}(AB−A�B). (7.22)

Finally, considering inequality (7.22) with 1− t instead of t and adding these two inequal-
ities, we get (7.19).
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It should be noticed here that the second inequality in (7.21), i.e. the method developed
in [107], did not provide the refinement of the left Heinz operator inequality, similarly as in
Section 7.1.1 (see Remark 7.3).

On the other hand, such improvement can be established by virtue of the following
classical inequality. Namely, it is well-known that the logarithmic mean L(x,y) = x−y

logx−logy ,
x �= y, L(x,x) = x, x,y > 0, interpolates between the non-weight arithmetic and geometric
mean: √

xy ≤ L(x,y) ≤ x+ y
2

, x,y > 0. (7.23)

The above interpolating series of inequalities can be used in obtaining a refinement of the
left Heinz operator mean.

Theorem 7.5 Let A,B ∈ B++(H ) and let t ∈ [0,1]\ {1/2}. Then

A�B ≤ 1
2t−1

A
1
2 Ft

(
A− 1

2 BA− 1
2
)
A

1
2 ≤ H̃t(A,B), (7.24)

where

Ft(x) =

{
xt−x1−t

logx , x > 0,x �= 1
2t−1, x = 1.

Proof. Starting from (7.23), we have

√
x ≤ xt − x1−t

(2t−1) logx
≤ xt + x1−t

2
, x > 0,x �= 1,

that is,
√

x ≤ 1
2t−1

Ft(x) ≤ xt + x1−t

2
, x > 0.

Since A− 1
2 BA− 1

2 ≥ 0, monotonicity principle (1.40) for operator functions yields inequality

(
A− 1

2 BA− 1
2
) 1

2 ≤ 1
2t−1

Ft
(
A− 1

2 BA− 1
2
)≤ (

A− 1
2 BA− 1

2
)t +

(
A− 1

2 BA− 1
2
)1−t

2
.

Moreover, multiplying both sides of the previous series of inequalities by A
1
2 , we have

(7.24), as claimed. �

Remark 7.5 If t = 1/2, the above inequality (7.24) reduces to a trivial equality.

Note that the improvements (7.19) and (7.24) of the Heinz operator inequalities were
derived without utilizing convexity of the Heinz means. If this fact is taken into account,
we can derive operator analogues of all results from Sections 7.1.1 and 7.1.2

For that sake, we here define the function fx : [0,1]→ R, x > 0, by

fx(t) =
xt + x1−t

2
. (7.25)
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Clearly, the above function represents the Heinz mean in the real case, that is, we have
fx(t) = ht(1,x). Recall that fx is convex on [0,1], attains minimum at t = 1/2, attains
maximum at t = 0 and t = 1, and is symmetric with respect to the midpoint of interval
[0,1].

On the other hand, the same properties of function fh defined by (7.2), were exploited
in Sections 7.1.1 and 7.1.2, in order to obtain improved Heinz norm inequalities.

Therefore, in the sequel we consider the Jensen functional (7.5) equipped with the
above function fx. In addition, using the same technique as in the previous section, we ob-
tain appropriate scalar inequalities, which will, by virtue of monotonicity principle (1.40)
for operator functions, yield the corresponding operator analogues of the Heinz norm in-
equalities.

What follows is an operator analogue of Theorem 7.2.

Theorem 7.6 Suppose A,B ∈ B++(H ). If t ∈ [0,1/2], then the inequality

AB− H̃t(A,B) ≥ min{2t,1−2t}
[
AB+A�B−2H̃ 1

4
(A,B)

]
+2t [AB−A�B]≥ 0 (7.26)

holds. Moreover, if t ∈ [1/2,1], then

AB− H̃t(A,B) ≥ min{2−2t,2t−1}
[
AB+A�B−2H̃ 1

4
(A,B)

]
+(2−2t) [AB−A�B]≥ 0. (7.27)

Proof. Considering the first inequality in (7.6) with fx(t) = xt+x1−t

2 , x > 0, and x1 =(
0, 1

2

)
, we have J ( fx,x1,t) ≥ 2min{t,1− t}J0( fx,x1), that is,

(1− t) fx(0)+ t fx

(
1
2

)
− fx

( t
2

)
≥ min{t,1− t}

[
fx(0)+ fx

(
1
2

)
−2 fx

(
1
4

)]
.

The previous inequality can be rewritten in the form

fx(0)− fx (t) ≥ min{2t,1−2t}
[
fx(0)+ fx

(
1
2

)
−2 fx

(
1
4

)]
+2t

[
fx(0)− fx

(
1
2

)]
,

where t ∈ [0,1/2], that is,

1+ x
2

− xt + x1−t

2
≥ min{2t,1−2t}

[
1+ x

2
+ x

1
2 − x

1
4 − x

3
4

]
+2t

[
1+ x

2
− x

1
2

]
, (7.28)

where t ∈ [0,1/2]. Since inequality (7.28) holds for all x > 0, using the monotonicity

principle (1.40) and the fact that A− 1
2 BA− 1

2 ≥ 0, we have

1H +A− 1
2 BA− 1

2

2
−

(
A− 1

2 BA− 1
2
)t +

(
A− 1

2 BA− 1
2
)1−t

2

≥ min{2t,1−2t}
[
1H +A− 1

2 BA− 1
2

2
+
(
A− 1

2 BA− 1
2
) 1

2 − (
A− 1

2 BA− 1
2
) 1

4

−(
A− 1

2 BA− 1
2
) 3

4

]
+2t

[
1H +A− 1

2 BA− 1
2

2
− (

A− 1
2 BA− 1

2
) 1

2

]
. (7.29)
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Finally, multiplying both sides of inequality (7.29) by A
1
2 , we obtain (7.26). Obviously,

the inequality (7.27) follows by the symmetry argument, since H̃t(A,B) = H̃1−t(A,B). �

Remark 7.6 Since fx is a convex function, by virtue of monotonicity principle (1.40) for
operator functions, we have AB+A�B− 2H̃ 1

4
(A,B) ≥ 0. Therefore, the above Theorem

7.6 yields an improvement of inequality (7.19).

Note that the proof of Theorem 7.6 follows the same lines as the proof of Theorem 7.2.
This is meaningful since the functions fh and fx, defined respectively by (7.2) and (7.25),
have the same properties concerning monotonicity, symmetry and extrema points.

Therefore, the proofs of theorems 7.3 and 7.4 together with the monotonicity princi-
ple (1.40) for operator functions can also be utilized in deriving the operator versions of
inequalities (7.12) and (7.16). More precisely, we consider the mentioned proofs with a
function fx instead of fh, and use the monotonicity property (1.40) in the same way as in
the proof of Theorem 7.6.

Theorem 7.7 Suppose A,B ∈ B++(H ) and let 0 ≤ a < 1/2. Then the inequality

H̃t(A,B)−A�B≥ 2|1−2t|
1−2a

[
H̃ 2a+1

4
(A,B)−A�B

]
≥ 0

holds for all t ∈ [
a, 1+2a

4

]∪ [
2a+3

4 ,1−a
]
.

Theorem 7.8 Let A,B ∈ B++(H ) and let n ∈ N. Then the inequality

H̃t(A,B)−A�B≥ 2n|1−2t|
[
H̃ 2n−1

2n+1
(A,B)−A�B

]
≥ 0

holds for all t ∈
[

2n−1−1
2n , 2n−1

2n+1

]
∪
[

2n+1
2n+1 , 2n−1+1

2n

]
.

Of course, theorems 7.7 and 7.8 provide refinements of the first Heinz operator inequal-
ity.

7.2 More accurate weak majorization relations for
the Jensen and some related inequalities

Throughout this section we deal with the algebra Mn of all n×n complex matrices, where
Hn stands for the set of all Hermitian matrices in Mn. For an interval J ⊆ R, we denote
by Hn(J) the set of all Hermitian matrices in Mn whose spectrum is contained in J. We
denote by Sn the set of all positive semi-definite matrices in Mn, while Pn stands for the
set of all positive definite matrices in Mn. For column vectors x,y ∈ C

n their inner product
is denoted by 〈x,y〉 = y∗x.
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For Hermitian matrices A and B we define an operator order, i.e. A ≤ B if B−A ∈ Sn.
Further, for A ∈ Hn we denote by 1(A) ≥ 2(A) ≥ ·· · ≥ n(A) the eigenvalues of A ar-
ranged in a decreasing order with their multiplicities counted. The notation  (A) stands for
the row vector (1(A),2(A), . . . ,n(A)). The eigenvalue inequality  (A) ≤  (B) means
that  j(A) ≤  j(B) for all 1 ≤ j ≤ n. The weak majorization inequality  (A) ≺w  (B)
means k

j=1 j(A) ≤ k
j=1 j(B), k = 1,2, . . . ,n. The above three kinds of ordering sat-

isfy A ≤ B ⇒  (A) ≤  (B) ⇒  (A) ≺w  (B). Note that the first implication is the Weyl
monotonicity theorem (see, e.g. [34, p. 63]), while the second holds trivially.

On the other hand, f : J → R is operator convex if

f (tA+(1− t)B)≤ t f (A)+ (1− t) f (B), (7.30)

for all 0 ≤ t ≤ 1 and A,B ∈ Hn(J). Recall that for a Hermitian matrix H ∈ Hn(J), f (H) is
defined by familiar functional calculus.

One of the numerous operator versions of the Jensen inequality asserts that if f : J →R

is an operator convex function such that 0 ∈ J and f (0) ≤ 0, then

f (X∗AX) ≤ X∗ f (A)X (7.31)

holds for all A ∈ Hn(J) and contractions X ∈ Mn. Recall that X ∈ Mn is called contrac-
tion if ||X || ≤ 1, considering spectral norm || · ||. For some related versions of the Jensen
operator inequality, the reader is referred to [74].

Some ten years ago, Aujla and Silva [20] proved that if f : J → R is a convex func-
tion, then the eigenvalues of f (tA+(1− t)B) are weakly majorized by the eigenvalues of
t f (A)+ (1− t) f (B), that is,

 ( f (tA+(1− t)B))≺w  (t f (A)+ (1− t) f (B)), (7.32)

where A,B ∈ Hn(J) and 0 ≤ t ≤ 1. In addition, if 0 ∈ J and f (0) ≤ 0, they also showed
that

 ( f (X∗AX)) ≺w  (X∗ f (A)X) (7.33)

holds for all A ∈ Hn(J) and contractions X ∈ Mn. It has also been shown in [20] that
if f is additionally a monotone function, then the relations (7.32) and (7.33) become the
eigenvalue inequalities.

Here we derive the improvements of weak majorization inequalities (7.32) and (7.33),
as well as the improvements of their eigenvalue counterparts, as it was previously published
in paper [120]. Firstly, we cite several auxiliary results, needed for this study.

The following two lemmas were utilized in proving weak majorization inequalities
(7.32) and (7.33). First of them is an operator version of the Jensen inequality with regard
to an inner product 〈·, ·〉.

Lemma 7.1 (SEE [158]) Let A ∈ Hn(J) and let f : J → R be a convex function. Then
the inequality

f (〈Au,u〉) ≤ 〈 f (A)u,u〉 (7.34)

holds for every unit vector u ∈ C
n.
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What follows is the extremal representation for eigenvalueswhich is known in literature
as the Ky Fan maximum principle.

Lemma 7.2 (SEE [34], P. 35) If A ∈ Hn, then

k


i=1

i(A) = max
k


i=1

〈Aui,ui〉, k = 1,2, . . . ,n, (7.35)

where the maximum is taken over all choices of orthonormal vectors u1,u2, . . . ,uk.

In the sequel, in order to improve weak majorization inequalities (7.32) and (7.33), we
again employ the well known properties of the discrete Jensen functional

J m( f ,x, p) =
m


i=1

pi f (xi)−Pm f

(
m

i=1 pixi

Pm

)
,

where f : J →R is a convex function, x = (x1,x2, . . . ,xm)∈ Jm, m≥ 2, and p = (p1, p2, . . . ,
pm) is a positive m-tuple of real numbers with Pm = m

i=1 pi. These properties were ana-
lyzed in detail in Chapter 1 and Chapter 2, but we cite them, nevertheless, repeatedly
whenever a new environment with its specific conditions and applications is involved.

Since the above functional is increasing on the set of positive real m-tuples in the sense
that

J m( f ,x, p) ≥ J m( f ,x,q) ≥ 0,

whenever p ≥ q. i.e. pi ≥ qi, i = 1,2, . . . ,m the following converse and the refinement of
the corresponding discrete Jensen inequality are immediate consequences:

m max
1≤i≤m

{pi}J m
0 ( f ,x) ≥ J m( f ,x, p) ≥ m min

1≤i≤m
{pi}J m

0 ( f ,x), (7.36)

where J m
0 ( f ,x) = m

i=1 f (xi)
m − f

(
m

i=1 xi
m

)
.

7.2.1 Improved weak majorization inequalities for the Jensen
inequality

The crucial step in obtaining weak majorization inequalities that are more precise than
(7.32) and (7.33) is an improvement of the Jensen inequality described in the previous
section (the second inequality in (7.36)).

Observe that, due to the discrete Jensen inequality (1.4), the relation (7.32) can be
stated in the following multivariate form:


(

f

( m


i=1

piAi

))
≺w 

( m


i=1

pi f (Ai)
)

, (7.37)

where f : J → R is a convex function, A1,A2, . . . ,Am ∈ Hn(J), and m
i=1 pi = 1, pi ≥ 0,

i = 1,2, . . . ,m.
The following theorem provides an improvement of inequality (7.37) (In stands for a

unit matrix in Mn.)
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Theorem 7.9 Let f : J →R be a continuous convex function and A1,A2, . . . ,Am ∈Hn(J).
If m

i=1 pi = 1, pi ≥ 0, i = 1,2, . . . ,m, then


(

f

( m


i=1

piAi

)
+ In

)
≺w 

( m


i=1

pi f (Ai)
)

, (7.38)

where  = min{p1, p2, . . . , pm} and

 = min
‖u‖=1

u∈Cn

m


i=1

f (〈Aiu,u〉)−mf

(〈 1
m

( m


i=1

Ai
)
u,u

〉)
. (7.39)

Proof. Let 1,2, . . . ,n be the eigenvalues of m
i=1 piAi arranged so that f (1) ≥

f (2) ≥ ·· · ≥ f (n), and let u1,u2, . . . ,un be the corresponding orthonormal eigenvectors.
Then, utilizing (7.39) and the second inequality in (7.36), we have

k


j=1

 j

(
f

( m


i=1

piAi

))
+ k

=
k


j=1

f

(〈( m


i=1

piAi
)
u j,u j

〉)
+ k

≤
k


j=1

f

( m


i=1

pi
〈
Aiu j,u j

〉)
+ 

k


j=1

( m


i=1

f (〈Aiu j,u j〉)−mf

(〈 1
m

( m


i=1

Ai
)
u j,u j

〉))

≤
k


j=1

( m


i=1

pi f
(〈

Aiu j,u j
〉))

.

Moreover, by virtue of the inequality (7.34) and the Ky Fan maximum principle (7.35), it
follows that

k


j=1

( m


i=1

pi f
(〈

Aiu j,u j
〉))≤

k


j=1

( m


i=1

pi
〈
f (Ai)u j,u j

〉)

=
k


j=1

〈( m


i=1

pi f (Ai)
)
u j,u j

〉
≤

k


j=1

 j

( m


i=1

pi f (Ai)
)

,

that is,
k


j=1

 j

(
f

( m


i=1

piAi

)
+ In

)
≤

k


j=1

 j

( m


i=1

pi f (Ai)
)

,

for k = 1,2, . . . ,n. This proves our assertion. �

It should be noticed here that the scalars  and  appearing in Theorem 7.9 are non-
negative. Of course, it is possible to achieve that they are positive.
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Example 7.1 Let f : R → R be defined by f (x) = |x| and let

A =
(−6 5

5 −6

)
, B =

(
11 0
0 1

)
.

Then, 
(|A+B

2 |) =
(

5
√

2
2 , 5

√
2

2

)
and 

(
1
2 |A|+ 1

2 |B|
)
=

(
12+5

√
2

2 , 12−5
√

2
2

)
, that is, we have(

5
√

2
2 , 5

√
2

2

)
≺w

(
12+5

√
2

2 , 12−5
√

2
2

)
, by virtue of (7.32).

Utilizing Theorem 7.9 we can get even a more precise estimate. Namely, defining

g(u) = |〈Au,u〉|+ |〈Bu,u〉| − |〈(A + B)u,u〉|, where u =
(

u1
u2

)
∈ C

2, ||u|| = 1, it follows

that

g(u) = 7+10|u1|2 −10Re(u1u2)−
∣∣10|u1|2 +10Re(u1u2)−5

∣∣ .
Now, if 10|u1|2 +10Re(u1u2)−5≥ 0 then g(u) = 12−20Re(u1u2)≥ 2 since Re(u1u2) ≤
|u1|2+|u2|2

2 ≤ 1
2 . Otherwise, if 10|u1|2 + 10Re(u1u2)− 5 < 0, then g(u) = 2+ 20|u1|2 ≥ 2.

Moreover, since g(u0) = 2, where u0 =
(

0
1

)
, it follows that

 = min
‖u‖=1

u∈C2

|〈Au,u〉|+ |〈Bu,u〉|− |〈(A+B)u,u〉|= 2.

Therefore, the relation (7.38) yields a more accurate estimate(
5
√

2
2

,
5
√

2
2

)
+

1
2
·2(1,1) =

(
2+5

√
2

2
,
2+5

√
2

2

)
≺w

(
12+5

√
2

2
,
12−5

√
2

2

)
.

Remark 7.7 If f : J → R is a strictly convex function and there exist indices i, j ∈
{1,2, . . . ,m} such that Ai < Aj, then

g(u) :=
m


i=1

f (〈Aiu,u〉)−mf

(〈 1
m

( m


i=1

Ai
)
u,u

〉)
> 0, u ∈ C

n, ‖u‖ = 1.

Since the set S = {u ∈ C
n;‖u‖ = 1} is compact, the function g : S → R attains its mini-

mum on S which implies that  > 0. Hence, in this case the relation (7.38) represents the
refinement of (7.37).

Our next intention is to give the corresponding refinement of the inequality (7.33).
Clearly, the multivariate version of (7.33) asserts that if f : J → R is a convex function
such that 0 ∈ J and f (0) ≤ 0, then


(

f

( m


i=1

X∗
i AiXi

))
≺w 

( m


i=1

X∗
i f (Ai)Xi

)
, (7.40)

for A1,A2, . . . ,Am ∈ Hn(J) and X1,X2, . . . ,Xm ∈ Mn such that m
i=1 X∗

i Xi ≤ In.
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Theorem 7.10 Let f : J → R be a continuous convex function and A1,A2, . . . ,Am ∈
Hn(J). Further, let X1,X2, . . . ,Xm ∈Mn be such thatm

i=1 X∗
i Xi ≤ In. If 0∈ J and f (0)≤ 0,

then


(

f

( m


i=1

X∗
i AiXi

)
+  ′ ′In

)
≺w 

( m


i=1

X∗
i f (Ai)Xi

)
, (7.41)

where the scalars  ′ and  ′ are defined by

 ′ = 1−max

{
‖In−X∗

1 X1‖,‖In−X∗
2 X2‖, . . . ,‖In−X∗

mXm‖,‖
m


i=1

X∗
i Xi‖

}
and

 ′ = min
‖u‖=1

u∈Cn

m


i=1

f (〈Aiu,u〉)+ f (0)− (m+1) f

(〈 1
m+1

( m


i=1

Ai
)
u,u

〉)
.

Proof. We give only the sketch of the proof. Let 1,2, . . . ,n be the eigenvalues of
m

i=1 X∗
i AiXi arranged so that f (1) ≥ f (2) ≥ ·· · ≥ f (n), and let u1,u2, . . . ,un be the

corresponding orthonormal eigenvectors.
Without loss of generality we can assume that ‖Xiu j‖ �= 0 for all indices i∈{1,2, . . . ,m}

and j ∈ {1,2, . . . ,n}. Then, it follows that

 j

(
f

( m


i=1

X∗
i AiXi

))
= f

( m


i=1

‖Xiu j‖2
〈

Ai
Xiu j

‖Xiu j‖ ,
Xiu j

‖Xiu j‖
〉

+
(
1−

m


i=1

‖Xiu j‖2) ·0),

for j = 1,2, . . . ,n. Now, taking into account the above relation, the obvious inequality  ′ ≤
min{‖X1u j‖2,‖X2u j‖2, . . . ,‖Xmu j‖2,1−m

i=1‖Xiu j‖2}, j = 1,2, . . . ,n, and the condition
f (0) ≤ 0, the proof follows the lines of the proof of Theorem 7.9 with scalars  ′ and  ′
instead of  and  . �

Example 7.2 Let f : R → R be defined by f (x) = x4 and let

A =

(√
2 0

0 1√
2

)
, X =

(
0 1√

2
− 1√

2
0

)
.

In this setting, 
(
(X∗AX)4

)
=

(
1
4 , 1

64

) ≺w
(
2, 1

8

)
= 

(
X∗A4X

)
, due to (7.33). Now, uti-

lizing Theorem 7.10, it follows that  ′ = 1
2 since ||X∗X || = ||I2−X∗X || = 1

2 , and

 ′ =
7
8

min
‖u‖=1

u∈C2

〈Au,u〉4 =
7
32

.

Finally, the inequality (7.41) yields more precise relation(
1
4
,

1
64

)
+

7
64

(1,1) =
(

23
64

,
1
8

)
≺w

(
2,

1
8

)
.
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Remark 7.8 The previous example shows that it is possible to achieve that the scalars
 ′ and  ′ appearing in Theorem 7.10 are positive. More generally, if X∗

i Xi ∈ Pn, i =
1,2, . . . ,m, and m

i=1 X∗
i Xi < In, then  ′ > 0. In addition, if f : J → R is a strictly convex

function and if either there exist indices i, j ∈ {1,2, . . . ,m} such that Ai < Aj, or there exists
index i ∈ {1,2, . . . ,m} such that Ai ∈ Pn or −Ai ∈ Pn, then  ′ > 0.

If f is a non-negative function, then the relations (7.38) and (7.41) entail the corre-
sponding inequalities for unitarily invariant norms. Recall that a norm ||| · ||| on Mn is
called unitarily invariant if |||UAV ||| = |||A||| for all A ∈ Mn and for all unitary matrices
U,V ∈ Mn. One of the most basic classes of unitarily invariant norms are the Ky Fan
norms || · ||(k), k = 1,2, . . . ,n, defined as

||A||(k) =
k


j=1

s j(A), k = 1,2, . . . ,n,

where s1(A) ≥ s2(A) ≥ ·· · ≥ sn(A) are the singular values of A, that is, the eigenvalues
of |A| = (A∗A)1/2. The Fan Dominance Theorem (see, e.g. [34, p. 93]) asserts that if
||A||(k) ≤ ||B||(k) for k = 1,2, . . . ,n, then |||A||| ≤ |||B||| for all unitarily invariant norms.

If f is a non-negative function, then the eigenvalues appearing in relations (7.38) and
(7.41) coincide with the corresponding singular values. Thus, by virtue of the Fan Domi-
nance Theorem, theorems 7.9 and 7.10 entail the inequalities for unitarily invariant norms.

Corollary 7.1 Let f : J →R be a non-negative continuous convex function and A1,A2, . . . ,
Am ∈ Hn(J). If m

i=1 pi = 1, pi ≥ 0, i = 1,2, . . . ,m, then the inequality

||| f ( m


i=1

piAi
)
+ In||| ≤ |||

m


i=1

pi f (Ai)|||

holds for any unitarily invariant norm ||| · |||, where the scalars  and  are defined as in
Theorem 7.9. In addition, if 0 ∈ J and f (0) = 0, then

||| f ( m


i=1

X∗
i AiXi

)
+  ′ ′In||| ≤ |||

m


i=1

X∗
i f (Ai)Xi|||,

where X1,X2, . . . ,Xm ∈ Mn are such that m
i=1 X∗

i Xi ≤ In, and the scalars  ′ and  ′ are
defined as in Theorem 7.10.

Observe that the relations derived in Example 7.2 are eigenvalue inequalities since the
corresponding function f (x) = x4 is increasing on R

+. Namely, it has been shown in [20]
that if f : J → R is a monotone convex function, then there is a stronger result with regard
to weak majorization inequalities (7.32) and (7.33), i.e (7.37) and (7.40). More precisely,
if f : J → R is in addition a monotone function, then


(

f

( m


i=1

piAi

))
≤ 

( m


i=1

pi f (Ai)
)
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and


(

f

( m


i=1

X∗
i AiXi

))
≤ 

( m


i=1

X∗
i f (Ai)Xi

)
,

provided that the assumptions of Theorem 7.9 and Theorem 7.10 are fulfilled. The above
eigenvalue inequalities have been derived by virtue of the following minimax characteri-
zation of eigenvalues (see, e.g. [34, p. 58]):

 j(H) = max
dim M= j

min{〈Hu,u〉;u ∈ M ,‖u‖ = 1}

= min
dim M=n− j+1

max{〈Hu,u〉;u ∈ M ,‖u‖ = 1} , j = 1,2, . . . ,n,
(7.42)

where H is a Hermitian matrix and M is a subspace of C
n.

Having in mind the results of theorems 7.9 and 7.10, we can also derive refinements of
these eigenvalue inequalities, again by virtue of the above minimax principle.

Theorem 7.11 Let f : J →R be a monotone continuous convex function and A1,A2, . . . ,Am

∈ Hn(J). If m
i=1 pi = 1, pi ≥ 0, i = 1,2, . . . ,m, then


(

f

( m


i=1

piAi

)
+ In

)
≤ 

( m


i=1

pi f (Ai)
)

, (7.43)

where the scalars  and  are defined as in Theorem 7.9. In addition, if 0∈ J and f (0)≤ 0,
then


(

f

( m


i=1

X∗
i AiXi

)
+  ′ ′In

)
≤ 

( m


i=1

X∗
i f (Ai)Xi

)
, (7.44)

where X1,X2, . . . ,Xm ∈ Mn are such that m
i=1 X∗

i Xi ≤ In, and the scalars  ′ and  ′ are
defined as in Theorem 7.10.

Proof. We prove (7.43) only. The proof of the inequality (7.44) is similar.
If f : J → R is increasing, then  j( f (H)) = f ( j(H)), j = 1,2, . . . ,n, for any H ∈

Hn(J). Moreover, since f is increasing, it follows that

 j( f (H)) = f ( j(H)) = f

(
max

dim M= j
min{〈Hu,u〉;u ∈ M ,‖u‖ = 1}

)
= max

dim M= j
min{ f (〈Hu,u〉);u ∈ M ,‖u‖ = 1} .

Now, since the function g : J →R, defined by g(x) = f (x)+ is also increasing, we have
that

 j

(
f

( m


i=1

piAi

)
+ In

)
= max

dim M= j
min

{
f
(〈( m


i=1

piAi
)
u,u

〉)
+ ;u ∈ M ,‖u‖ = 1

}
.

(7.45)
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Now, utilizing (7.39), the second inequality in (7.36), and the inequality (7.34), we have

f

(〈( m


i=1

piAi
)
u,u

〉)
+ 

≤ f

( m


i=1

pi〈Aiu,u〉
)

+ 
( m


i=1

f (〈Aiu,u〉)−mf

(〈 1
m

( m


i=1

Ai
)
u,u

〉))
≤

m


i=1

pi f
(〈Aiu,u〉)≤ m


i=1

pi〈 f (Ai)u,u〉 =
〈 m


i=1

pi f (Ai)u,u
〉
, ‖u‖ = 1.

Combining this with (7.45) and the minimax principle (7.42), we have

 j

(
f

( m


i=1

piAi

)
+ In

)
≤  j

( m


i=1

pi f (Ai)
)

,

which proves our assertion in the case of increasing function. The same conclusion can be
drawn for the case of decreasing function f since in that case  j( f (H)) = f (n− j+1(H)),
j = 1,2, . . . ,n, H ∈ Hn(J). �

As an application of Theorem 7.11, we give the following consequence.

Corollary 7.2 Let Ai ∈Sn, i = 1,2, . . . ,m, r ≥ 1 or Ai ∈ Pn, i = 1,2, . . . ,m, r ≤ 0. Then,



(( m


i=1

Ai

)r

+mr−1In

)
≤ 

(
mr−1

m


i=1

Ar
i

)
, (7.46)

where

 = min
‖u‖=1

u∈Cn

m


i=1

〈Aiu,u〉r −m1−r〈( m


i=1

Ai
)
u,u

〉r
.

Further, if Ai ∈ Sn, i = 1,2, . . . ,m, and 0 < r < 1, then



(( m


i=1

Ai

)r

−0m
r−1In

)
≥ 

(
mr−1

m


i=1

Ar
i

)
, (7.47)

where

0 = min
‖u‖=1

u∈Cn

m1−r〈( m


i=1

Ai
)
u,u

〉r −
m


i=1

〈Aiu,u〉r.

Proof. If r ≥ 1, then f (x) = xr is increasing convex function. On the other hand,
if r ≤ 0, then f (x) = xr is decreasing convex function. Therefore, the application of the
eigenvalue inequality (7.43) yields (7.46) in both cases.

Similarly, to obtain (7.47) we utilize (7.43) equipped with the decreasing convex func-
tion f (x) = −xr, 0 < r < 1. �
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Remark 7.9 It should be noticed here that the Corollary 7.2 provides the refinements of
the corresponding results from [11], [17], and [20]. Observe that for r = −1 and for oper-
ators Ai replaced by their inverses A−1

i , relation (7.46) represents a strengthened version of
a harmonic-arithmetic mean inequality.

Let us now consider the case of a concave function. To do this, we need the notion
of a weak supermajorization. Let x,y ∈ R

n be the vectors with coordinates arranged in an
increasing order, i.e. x1 ≤ x2 ≤ ·· · ≤ xn and y1 ≤ y2 ≤ ·· · ≤ yn. We say that x is weakly
supermajorized by y, in symbols x ≺w y, if k

j=1 x j ≥ k
j=1 y j, k = 1,2, . . . ,n.

Remark 7.10 Let f : J → R be a concave function. Applying Theorem 7.9 to the convex
function − f and utilizing that x ≺w y implies −x ≺w −y (see [34, p. 30]), it follows that

 ↑
(

f

( m


i=1

piAi

)
− 1In

)
≺w  ↑

( m


i=1

pi f (Ai)
)

,

where  = min{p1, p2, . . . , pm},

1 = min
‖u‖=1

u∈Cn

m f

(〈 1
m

( m


i=1

Ai
)
u,u

〉)−
m


i=1

f (〈Aiu,u〉) ,

and ↑ means that the eigenvalues of the corresponding matrix are arranged in an increasing
order. If f is in addition a monotone function, then, utilizing Theorem 7.11, we obtain the
corresponding eigenvalue relation, that is,


(

f

( m


i=1

piAi

)
− 1In

)
≥ 

( m


i=1

pi f (Ai)
)

.

The same conclusion can be drawn for the weak majorization relation (7.41) and its eigen-
value counterpart (7.44).

Our next application of weak majorization inequalities deals with a version of the
Jensen inequality due to Mercer [134]. Recall, if f : [, ] → R is a convex function,
then

f
(
 + −

m


i=1

pixi
)≤ f ()+ f ( )−

m


i=1

pi f (xi), (7.48)

where m
i=1 pi = 1, pi ≥ 0, and xi ∈ [, ], i = 1,2, . . . ,m. This inequality has been derived

as a consequence of the original Jensen inequality (see Chapter 1 for details). Having in
mind this fact, we derive here the weak majorization inequality that corresponds to (7.48).

Corollary 7.3 Suppose that f : [, ] → R is a continuous convex function and let
A1,A2, . . . ,Am ∈ Hn([, ]). If m

i=1 pi = 1, pi ≥ 0, i = 1,2, . . . ,m, then


(

f

(
( + )In−

m


i=1

piAi

)
+ In

)
≺w 

((
f ()+ f ( )

)
In−

m


i=1

pi f (Ai)
)

, (7.49)
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where  = min{p1, p2, . . . , pm} and

 = min
‖u‖=1

u∈Cn

m


i=1

f ( + −〈Aiu,u〉)−mf

(
 + − 〈 1

m

( m


i=1

Ai
)
u,u

〉)
.

Proof. Rewriting relation (7.38) with operators ( +  )In − Ai instead of Ai, i =
1,2, . . . ,m, we obtain


(

f

(
( + )In−

m


i=1

piAi

)
+ In

)
≺w 

( m


i=1

pi f
(
( + )In−Ai

))
. (7.50)

On the other hand, since f is convex on [, ], it follows that

f ( + − x)≤ f ()+ f ( )− f (x), x ∈ [, ],

and consequently,

pi f
(
( + )In−Ai

)≤ pi
(
f ()+ f ( )

)
In− pi f (Ai), i = 1,2, . . . ,m.

Here, ≤ means the operator order. Now, adding these m inequalities, we have

m


i=1

pi f
(
( + )In−Ai

)≤ ( f ()+ f ( )) In−
m


i=1

pi f (Ai),

that is,


( m


i=1

pi f
(
( + )In−Ai

))≤ 
((

f ()+ f ( )
)
In−

m


i=1

pi f (Ai)
)

, (7.51)

by the Weyl monotonicity principle. Now, relations (7.50) and (7.51) entail the inequality
(7.49). �

If f is in addition a non-negative function, Corollary 7.3 entails the corresponding
inequality for unitarily invariant norms, while in the case of a monotone function f the
relation (7.49) becomes the eigenvalue inequality. These relations are omitted here.

7.2.2 Applications to log convex functions

A positive function f : J → R is called log convex if

f (tx+(1− t)y)≤ f (x)t f (y)1−t ,

for all 0 ≤ t ≤ 1 and x,y ∈ J. Obviously, f is a log convex function if and only if log f is a
convex function.

By virtue of (7.32), Aujla and Silva [20] proved that if f : J → R is a log convex
function, A,B ∈Hn(J), and 0 ≤ t ≤ 1, then the eigenvalues of f (tA+(1− t)B) are weakly
majorized by the eigenvalues of f (A)t f (B)1−t , that is,

 ( f (tA+(1− t)B))≺w 
(
f (A)t f (B)1−t) . (7.52)

Taking into account Theorem 7.9, we can improve relation (7.52). In order to do this, we
first cite the following lemma.
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Lemma 7.3 (SEE [18]) Let A,B ∈ Pn. Then,

 (logA+ logB) ≺w 
(
log

(
A

1
2 BA

1
2
))

.

The following result yields a general refinement of the inequality (7.52).

Theorem 7.12 Let f : J → R be a continuous log convex function. Then

 ( f (tA+(1− t)B))≺w −
(
f (A)t f (B)1−t) (7.53)

for all A,B ∈ Hn(J) and 0 ≤ t ≤ 1, where  = min{t,1− t} and

 = min
‖u‖=1

u∈Cn

f (〈Au,u〉) f (〈Bu,u〉)[
f (〈A+B

2 u,u〉)]2 .

Proof. The function log f is convex on interval J. Therefore, by Theorem 7.9 and
Lemma 7.3, we obtain


(
log

(
  f (tA+(1− t)B)

))
= 

(
log f (tA+(1− t)B)+  log In

)
≺w 

(
t log f (A)+ (1− t) log f (B)

)
= 

(
log f (A)t + log f (B)1−t)

≺w 
(
log

(
f (A)

t
2 f (B)1−t f (A)

t
2
))

.

Now, since the function x → ex is increasing and convex (see also [34, p. 42]), it follows
that


(
  f (tA+(1− t)B)

)≺w 
(
f (A)

t
2 f (B)1−t f (A)

t
2
)

= 
(
f (A)t f (B)1−t) ,

which entails the relation (7.53). �

By the Weyl Majorant Theorem (see [34, p. 42]) it follows that | (X)| ≺w  (|X |) holds
for any X ∈ Mn. Consequently, the Theorem 7.12 entails the corresponding inequality for
unitarily invariant norms.

Corollary 7.4 Let f : J → R be a continuous log convex function and A,B ∈ Hn(J). If
0 ≤ t ≤ 1, then the inequality

||| f (tA+(1− t)B)||| ≤ − ||| f (A)t f (B)1−t |||

holds for any unitarily invariant norm ||| · |||, where the scalars  and  are defined as in
Theorem 7.12.

Our last application of Theorem 7.12 refers to the function x → x−r, r ≥ 0. Clearly,
this function is log convex on R

+.
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Corollary 7.5 Let A,B ∈ Pn and 0 ≤ t ≤ 1. Then


(
(tA−1 +(1− t)B−1)−r)≺w −

1 
(
AtrB(1−t)r), (7.54)

where r ≥ 0,  = min{t,1− t}, and

1 =
1
4r min

‖u‖=1

u∈Cn

〈(A+B)u,u〉2r

〈Au,u〉r〈Bu,u〉r .

Proof. It follows from (7.53) by setting f (x) = x−r, r ≥ 0, and replacing A and B by
A−1 and B−1 respectively. �

The relation (7.54) improves the corresponding result from [20]. In particular, putting
t = 1

2 and r = 1 in (7.54), we obtain the inequality


((

A−1 +B−1

2

)−1)
≺w − 1

2
2 

(
A

1
2 B

1
2
)
,

where

2 =
1
4

min
‖u‖=1

u∈Cn

〈(A+B)u,u〉2
〈Au,u〉〈Bu,u〉 .

The previous relation represents a more accurate form of a harmonic-geometric mean in-
equality.





Chapter8
The converse Jensen
inequality: variants,
improvements and
generalizations

In this chapter, various variants of the converse Jensen inequality are studied. The Lah-
Ribarič inequality, as the most important converse Jensen’s inequality, motivates the first
group of its accompanied generalizations and improvements. Generalizations are obtained
for positive linear functionals and furthermore, on convex hulls and on k-simplices. The
main tool for improvements in this part is Lemma 1.2. All of these results were published
in [102]. From these results are then derived k-dimensional variant of the Hammer-Bullen
inequality and an improvement of the classical Hermite-Hadamard inequality. Another
important variant of the converse Jensen inequality is the Giaccardi-Petrović inequality. Its
improvements are also derived by means of Lemma 1.2, as well as from some previous
improvements. Motivated by the obtained results, two functionals (the Giaccardi-Petrović
differences) are defined and for those are Lagrange and Cauchy type mean value theorems
proved. A large family of n-exponentially convex and exponentially convex functions is
constructed. Most of the results regarding the Giaccardi-Petrović inequality correspond to
the contents of the paper [173].

Finally, we present results from paper [175], where the generalizations and the im-
provements of the converse Hölder and Minkowski inequalities are studied, with their ac-
companied applications to mixed means.

223
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8.1 Variants of the converse Jensen inequality

Strongly related to Jensen’s inequality is the converse Jensen inequality. As it was de-
scribed (Theorem 1.10) in the introductory chapter, one of its most important variants is
the Lah-Ribarič inequality, which for a real convex function defined on an interval [a,b]

and for xi ∈ [a,b], pi ≥ 0, i = 1, . . . ,n, with
n


i=1

pi = 1, claims that

n


i=1

pi f (xi) ≤ b−n
i=1 pixi

b−a
f (a)+ n

i=1 pixi −a
b−a

f (b), (8.1)

where (8.1) is strict for a strictly convex function f , unless xi ∈ {a,b} , i ∈ {
j : p j > 0

}
.

Another related result can be found in [154] (see also [151, p. 690]) where the authors
proved the following theorem.

Theorem 8.1 Let x = (x1, . . . ,xn) be an n-tuple in In, p = (p1, . . . , pn) a nonnegative
n-tuple such that Pn = n

i=1 pi > 0, m = min{x1, . . . ,xn} and M = max{x1, . . . ,xn}. If
f : I → R is differentiable and f ′ strictly increasing, then the inequalities

f

(
1
Pn

n


i=1

pixi

)
≤ 1

Pn

n


i=1

pi f (xi) ≤  + f

(
1
Pn

n


i=1

pixi

)
(8.2)

hold, where

 =
f (M)− f (m)

M−m

(
f
′)−1

(
f (M)− f (m)

M−m

)
+

M f (m)−mf (M)
M−m

− f

((
f
′)−1

(
f (M)− f (m)

M−m

))
.

In the sequel, we again observe the environment of E being a nonempty set and L a
linear class of functions f : E → R which possesses the following properties:

L1: If f ,g ∈ L, then  f +g ∈ L, for all  ,  ∈ R;

L2: 1 ∈ L, that is, if f (x) = 1, x ∈ E , then f ∈ L.

We consider positive linear functionals A : L → R, or in other words we assume:

A1: A( f +g) = A( f )+A(g), for f ,g ∈ L and , ∈ R;

A2: If f (x) ≥ 0 for all x ∈ E, then A( f ) ≥ 0.

If additionally the condition

A3: A(1) = 1
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is satisfied, we say that A is a normalized positive linear functional or that A( f ) is a linear
mean on L.

In [30] (or see [177, p. 98]), Beesack and Pečarić gave the following generalization of
the Lah-Ribarič inequality, which involves positive normalized linear functionals, leaning
on the appropriate variant of Jensen’s inequality, i.e. Jessen’s inequality (1.15).

Theorem 8.2 Let L and A be as in Theorem 1.11. If  : [m,M] → R is a convex function,
then for all g ∈ L such that  (g) ∈ L the inequality

A( (g)) ≤ M−A(g)
M−m

(m)+
A(g)−m
M−m

(M) (8.3)

holds.

Remark 8.1 The right hand side of (8.3) is an increasing function of M and a decreasing
function of m. This follows by writing it in the form

(m)+ (A(g)−m)
(M)−(m)

M−m
= (M)− (M−A(g))

(M)−(m)
M−m

and noting that m ≤ A(g) ≤ M, while both functions m → ((M)−(m))/(M−m) and
M → ((M)−(m))/(M−m) are increasing by the convexity of  .

In the same paper [30] (or see [177, p. 100–101]), the authors also proved the following
theorem.

Theorem 8.3 Let L, A and g be as in Theorem 1.11 and let  : [m,M] → R be a differen-
tiable function.

(i) If  ′ is strictly increasing on [m,M] then

A((g)) ≤  +(A(g)) (8.4)

for some  satisfying 0 <  < (M−m)(− ′ (m)) , where

 =
 (M)− (m)

M−m
.

More precisely,  may be determined as follows: Let x̃ be the (unique) solution of
the equation  ′ (x) =  . Then

 =  (m)+  (x̃−m)− (x̃)

satisfies (8.4).

(ii) If  ′ is strictly decreasing on [m,M] then

(A(g)) ≤  +A((g)) (8.5)

for some  satisfying 0 <  < (M−m)( ′ (m)− ) , where  is defined as in (i).
More precisely, for x̃ defined as in (i) we have that

 =  (x̃)− (m)−  (x̃−m)

satisfies (8.5).
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It can easily be verified that the right hand side of (8.2) from Theorem 8.1 can be ob-
tained as a special case of (8.4): we just have to consider E = [m,M], L = R

E = { f | f : E →
R}, g = idE and A( f ) = 1

Pn
n

i=1 pi f (xi) , where pi ≥ 0, xi ∈ [m,M], i = 1, . . . ,n, and
Pn = n

i=1 pi �= 0. After a few simple steps we obtain the same  . The left hand side
of (8.2) is obviously a special case of (1.15).

In [32] (or see [177, p. 101]) Beesack and Pečarić gave the following generalization of
Theorem 8.3, which at the same time presents a generalization of Knopp’s inequality for
convex functions (see [103]).

Theorem 8.4 Let L and A be as in Theorem 1.11. Let  : [m,M]→R be a convex function
and J an interval in R such that  ([m,M]) ⊂ J. If F : J× J → R is increasing in the first
variable then for all g ∈ L such that  (g) ∈ L the following inequality holds

F (A( (g)) , (A(g))) ≤ max
x∈[m,M]

F

(
M− x
M−m

 (m)+
x−m
M−m

 (M) , (x)
)

(8.6)

= max
∈[0,1]

F ( (m)+ (1− ) (M) , (m+(1− )M)) .

Furthermore, the right-hand side of (8.6) is an increasing function of M and a decreasing
function of m.

It is quite simple to prove that Theorem 8.3 is a special case of Theorem 8.4. Namely,
if we apply Theorem 8.4 to  which is differentiable and strictly convex on [m,M] (at the
end points x = m and x = M we may consider the right and the left derivatives respectively)
in a few easy steps we obtain (8.4). Here we give the proof only for the first case (i); (ii)
can be obtained in a similar way if in Theorem 8.4 we take −F instead of F and consider
 which is differentiable and strictly concave.

If F is defined by F (x,y) = x− y, the inequality in (8.6) becomes

A( (g))− (A(g)) ≤ max
x∈[m,M]

f (x;m,M,) , (8.7)

where f : [m,M] → R is defined by

f (x) := f (x;m,M,) =
(M− x) (m)+ (x−m) (M)

M−m
− (x) .

Note that f (m) = f (M) = 0 and

f ′ (x) =
 (M)− (m)

M−m
− ′ (x) = − ′ (x) .

Since  is strictly convex, f ′ is strictly decreasing on [m,M] and the equation f ′ (x) = 0
(that is,  ′ (x) = ) holds for a unique x = x̃ ∈ (m,M). It follows that f (x) ≥ 0 for all
x ∈ [m,M] with equality for x ∈ {m,M}. Consequently, the maximum value on the right
hand side of (8.7) is attained at x = x̃ and thus for

 = f (x̃) =
(M− x̃) (m)+ (x̃−m) (M)

(M−m)
− (x̃)

=  (m)+  (x̃−m)− (x̃)
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we have that
A((g)) ≤  +(A(g)).

The discrete version of Theorem 8.4 can be found in [151, Theorem 8, p. 9–10]. Some
results of this type were considered in [74], where generalizations for positive linear op-
erators were obtained. Further generalizations for positive operators are given in [147].
Some related results for convex functions of higher order can be found in [52], [54] and
[55]. Recently, S. Ivelić and J. Pečarić [88] have obtained generalizations of Theorem 8.4
for convex functions defined on convex hulls.

Throughout this section, without further noticing, when using [m,M] , we assume that
−< m < M <. We will also need to equip our linear class L with the additional lattice
property:

L3: (∀ f ,g ∈ L)(min{ f ,g} ∈ L∧max{ f ,g} ∈ L) .

Obviously,
(
R

E ,≤)
(with the standard ordering) is a lattice. It can also be easily veri-

fied that a subspace X ⊆R
E is a lattice if and only if x∈ X implies |x| ∈ X . This is a simple

consequence of the fact that for every x ∈ X the functions |x| , x− and x+ can be defined by

|x|(t) = |x(t)| , x+ (t) = max{0,x(t)} , x− (t) = −min{0,x(t)} , t ∈ E,

and
x+ + x− = |x| , x+ − x− = x,

min{x,y} =
1
2

(x+ y−|x− y|) , max{x,y} =
1
2

(x+ y+ |x− y|) . (8.8)

8.2 Improvements and generalizations of the
Lah-Ribarič inequality

In order to prove our main result related to the Lah-Ribarič inequality, we make use of
Lemma 1.2, which we, for the reader’s convenience, cite again for n = 2. From its de-
scribed monotonicity property, which is the main tool for all improvements presented in
the second part of the book, also follow the improvements of some related inequalities
from the previous section.

Lemma 8.1 Let  be a convex function on D , x,y∈D and p,q∈ [0,1] such that p+q =
1. Then

min{p,q}
[
 (x)+ (y)−2

(
x+ y

2

)]
≤ p (x)+q (y)− (px+qy) (8.9)

≤ max{p,q}
[
 (x)+ (y)−2

(
x+ y

2

)]
.
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The following theorem [102] is an improvement of Theorem 8.2.

Theorem 8.5 Let L satisfy L1, L2, L3 on a nonempty set E and let A be a positive nor-
malized linear functional. If  is a convex function on [m,M] , then for all g ∈ L such that
 (g) ∈ L we have A(g) ∈ [m,M] and

A( (g)) ≤ M−A(g)
M−m

 (m)+
A(g)−m
M−m

 (M)−A(g̃) , (8.10)

where

g̃ =
1
2
1−

∣∣g− m+M
2 1

∣∣
M−m

,  =  (m)+ (M)−2
(

m+M
2

)
.

Proof. First note that  (g) ∈ L also means that the composition  (g) is well defined,
hence g(E) ⊆ [m,M]. Now we have m1 ≤ g ≤ M1 and

m = A(m1) ≤ A(g) ≤ A(M1) = M.

Let the functions p,q : [m,M] → R be defined by

p(x) =
M− x
M−m

, q(x) =
x−m
M−m

.

For any x ∈ [m,M] we can write

 (x) = 
(

M− x
M−m

m+
x−m
M−m

M

)
=  (p(x)m+q(x)M) .

By Lemma 8.1 we get

 (x) ≤ p(x) (m)+q(x) (M)−min{p(x) ,q(x)}
[
 (m)+ (M)−2

(
m+M

2

)]
.

Let g ∈ L be such that  (g) ∈ L. In this case we have p(g), q(g) ∈ L and applying A to the
above inequality with x ↔ g(x) we obtain

A( (g)) ≤ A(p(g)) (m)+A(q(g)) (M)−A(g̃)
[
 (m)+ (M)−2

(
m+M

2

)]
,

where the function g̃ is defined on E by

g̃(x) = (min{p(g) ,q(g)})(x) =
1
2
−

∣∣g(x)− m+M
2

∣∣
M−m

and by L3 it belongs to L. Since p and q are linear functions, we have A(p(g)) = p(A(g))
and A(q(g)) = q(A(g)) , hence

A( (g)) ≤ p(A(g)) (m)+q(A(g)) (M)−A(g̃) ,

which is (8.10). �
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Remark 8.2 Obviously, if applied to an appropriate L, Theorem 8.5 is an improvement
of Theorem 8.2, since under the required assumptions we have

A(g̃) = A

(
1
2
1−

∣∣g− m+M
2 1

∣∣
M−m

)(
 (m)+ (M)−2

(
m+M

2

))
≥ 0.

Corollary 8.1 Let p be a nonnegative n-tuple with Pn = n
i=1 pi �= 0 and x ∈ [m,M]n. If

 : [m,M] → R is a convex function then

1
Pn

n


i=1

pi (xi) ≤ M− x̄
M−m

 (m)+
x̄−m
M−m

 (M)− 
Pn

n


i=1

pi

(
1
2
−

∣∣xi − m+M
2

∣∣
M−m

)
, (8.11)

where x̄ = 1
Pn
n

i=1 pixi and  is defined as in Theorem 8.5.

Proof. If we consider E = [m,M], L = R
[m,M], g = idE , A( f ) = 1

Pn
n

i=1 pi f (xi), then
the inequality in (8.10) becomes (8.11). �

We can use Theorem 8.5 to obtain refinements of some other inequalities mentioned
previously. First we give an improvement of Theorem 8.4 in the special case of F (x,y) =
x− y.

Theorem 8.6 Under the assumptions of Theorem 8.5, the following inequality holds:

A( (g))− (A(g))

≤ max
x∈[m,M]

{
M− x
M−m

 (m)+
x−m
M−m

 (M)− (x)
}
−A(g̃)

= max
∈[0,1]

{ (m)+ (1− ) (M)− (m+(1− )M)}−A(g̃) ,

where g̃ and  are defined as in Theorem 8.5.

Proof. This is an immediate consequence of Theorem 8.5. The identity follows from
the change of variable  = (M− x)/(M−m) , so that for x ∈ [m,M] we have  ∈ [0,1] and
x = m+(1− )M. �

Next we give an improvement of Theorem 8.3. We will consider only the case when
 ′ is strictly increasing (and therefore is  convex), since an analogous result for  ′ being
strictly decreasing can be obtained in a similar way.

Theorem 8.7 Let L and A be as in Theorem 8.5. If  : [m,M] → R is a differentiable
function such that  ′ is strictly increasing on [m,M] , then for all g ∈ L such that  (g) ∈ L
the inequality

A((g)) ≤  +(A(g))−A(g̃) (8.12)

holds for some  satisfying 0 <  < (M−m)(− ′ (m)) , where

 =
 (M)− (m)

M−m
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and g̃,  are defined as in Theorem 8.5.
More precisely,  may be determined as follows: let x̃ be the (unique) solution of the

equation  ′ (x) =  . Then

 =  (m)+  (x̃−m)− (x̃)

satisfies (8.12).

Proof. The proof follows by the same argument we used in the previous section, since
by Theorem 8.6 we have

A( (g))− (A(g)) ≤ max
x∈[m,M]

f (x;m,M,)−A(g̃) ,

where f is defined as in (8.7). �

Another interesting consequence of Theorem 8.5 is the following Hadamard type in-
equality which is an improvement of a result from [31].

Theorem 8.8 Let L and A be as in Theorem 8.5. If  : [m,M]→ R is a continuous convex
function, then for all g ∈ L such that  (g) ∈ L the inequalities


(

pm+qM
p+q

)
≤ A( (g)) ≤ p (m)+q (M)

p+q
−A(g̃) (8.13)

hold, where p and q are any nonnegative real numbers such that

A(g) =
pm+qM

p+q
(8.14)

and g̃,  are defined as in Theorem 8.5.

Proof. First note that  (g)∈ L implies A(g) ∈ [m,M]. Hence there exist a unique non-
negative real number  ∈ [0,1] such that A(g) = m+(1− )M. If p,q are nonnegative
real numbers satisfying (8.14) then obviously

p
p+q

=  ,
q

p+q
= 1− .

From Theorem 1.11 we have


(

pm+qM
p+q

)
=  (A(g)) ≤ A( (g)) ,

which is the first inequality in (8.13).
Since

M−A(g)
M−m

 (m)+
A(g)−m
M−m

 (M) =
p

p+q
 (m)+

q
p+q

 (M) ,
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by (8.10) we obtain

A( (g)) ≤ p (m)+q (M)
p+q

−A(g̃) ,

which is the second inequality in (8.13). �

As a corollary of Theorem 8.8 we obtain a result from [46] where it was proved that
trapezoid rule produces a bigger error than the mid-point rule.

Corollary 8.2 If  : [m,M] → R is a continuous convex function, then the inequalities

 (m)+ (M)
2

− 1
M−m

∫ M

m
 (x)dx (8.15)

≥ 1
M−m

∫ M

m
 (x)dx−

(
m+M

2

)
≥ 0

hold.

Proof. This is a special case of Theorem 8.8 attained for E = [m,M], L = C ([m,M]) ,
g = idE , A( f ) = 1

M−m

∫ M
m f (x)dx, p = q = 1. We obtain


(

m+M
2

)
≤ 1

M−m

∫ M

m
 (x)dx (8.16)

≤  (m)+ (M)
2

− 
M−m

∫ M

m
g̃(x)dx.

A simple calculation gives
1

M−m

∫ M

m
g̃(x)dx =

1
4
,

hence

 (m)+ (M)
2

− 
M−m

∫ M

m
g̃(x)dx

=
 (m)+ (M)

2
− 1

4

[
 (m)+ (M)−2

(
m+M

2

)]
=

1
2

(

m+M
2

)
+
 (m)+ (M)

4
. (8.17)

From (8.16) and (8.17) we obtain

2
(

m+M
2

)
≤ 2

M−m

∫ M

m
 (x)dx

≤ 
(

m+M
2

)
+
 (m)+ (M)

2
,
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which is equivalent to


(

m+M
2

)
− 1

M−m

∫ M

m
 (x)dx

≤ 1
M−m

∫ M

m
 (x)dx−

(
m+M

2

)
≤  (m)+ (M)

2
− 1

M−m

∫ M

m
 (x)dx.

By the Hermite-Hadamard inequality for convex functions we know that

0 ≤ 1
M−m

∫ M

m
 (x)dx−

(
m+M

2

)
,

hence (8.15) is proved. �

What follows are some further applications of our main result.

Corollary 8.3 Let L and A be as in Theorem 8.5. If g ∈ L is such that logg belongs to L
and g(E) ⊆ [m,M] ⊂ R+, then

A(g) ≤ exp(A(logg))
expS

(
M
m

)[
(m+M)2

4mM

]A(g̃) , (8.18)

where S (·) is Specht ratio and g̃ is defined as in Theorem 8.5.

Proof. This is a special case of Theorem 8.7 for  =− log. In this case (8.12) becomes

−A(logg) ≤  − logA(g)−A(g̃)− log,

that is,

explogA(g) = A(g) ≤ exp
(
A(logg)+ −A(g̃)− log

)
= exp(A(logg))

exp
exp

(
A(g̃)− log

) ,

where

− log = − logm− logM +2log
m+M

2
= log

(m+M)2

4mM
,

 =
logm− logM

M−m
, x̃ = − 1


=

M−m
logM− logm

,

hence

 = − logm+  (x̃−m)+ log x̃

= log

(
M
m

) m
M−m

e log
(

M
m

) m
M−m

= S

(
M
m

)
,
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where S (·) is Specht ratio (see for example [74, p. 71]), defined by

S (h) =
h

1
h−1

e logh
1

h−1

, h ∈ R+ \ {1} .

Considering all this, we obtain (8.18). �

Corollary 8.4 Let L and A be as in Theorem 8.5. If p ∈ L is such that log(p) belongs to
L and p(E) ⊆ [m,M] ⊂ R+, then

A(p) ≤ expA(log p)+
M−m

log M
m

S

(
M
m

)
−A(p̃)

(
m+M−2

√
mM

)
, (8.19)

where S (·) is Specht ratio and p̃ is defined by

p̃ =
1
2
1−

∣∣log p− log
√

mM1
∣∣

logM− logm
.

Proof. This is a special case of Theorem 8.7 for  = exp and g = log p. In this case
(8.12) becomes

A(explog p) ≤  + expA(log p)−A(p̃)exp,

where

exp = explogm+ explogM−2exp
logm+ logM

2
= m+M−2

√
mM,

 =
M−m

logM− logm
, x̃ = log = log

M−m
logM− logm

,

hence

 = explogm+  (x̃− logm)− exp x̃

= m+
M−m

logM− logm

(
log

M−m
logM− logm

− logm−1

)
=

M−m

log M
m

S

(
M
m

)
.

Considering all this we obtain (8.19). �

Now we give generalizations and improvements of Lah-Ribarič and related inequalities
for convex functions on convex hulls in R

k and, analogously, for convex functions on
k-simplices in R

k. We also verify that this is a generalization and an improvement of
the Hermite-Hadamard inequality for simplices and generalization of the Hammer-Bullen
inequality.
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Theorem 8.9 Let U be a convex subset of R
k and n ∈ N. If f : U → R is a convex

function, x1, . . . ,xn ∈ U and p1, . . . , pn nonnegative real numbers with Pn = n
i=1 pi > 0,

then Jensen’s inequality

f

(
1
Pn

n


i=1

pixi

)
≤ 1

Pn

n


i=1

pi f (xi) (8.20)

holds.

At this point, the reader is referred to Section 1.1, in order to recall the notions of a
convex hull, k-simplex and barycentric coordinates, which define the new environment in
the sequel.

With Lk we denote the linear class of functions g : E → R
k defined by

g(t) = (g1(t), . . . ,gk(t)) , gi ∈ L, i = 1, . . . ,k.

For a given linear functional A, we also consider linear operator Ã = (A, . . . ,A) : Lk → R
k

defined by
Ã(g) = (A(g1), . . . ,A(gk)) (8.21)

If A3 is satisfied, then using A1 we also have:

A4: A( f (g)) = f
(
Ã(g)

)
for every linear function f on R

k.

Remark 8.3 If we choose F(x,y) = x− y, as a simple consequence of Theorem 8.4 it
follows

A( f (g))− f (A(g)) ≤ max
∈[0,1]

[ f (m)+ (1− ) f (M)− f (m+(1− )M)]. (8.22)

Taking F(x,y) = x
y , for f > 0, it follows

A( f (g))
f (A(g))

≤ max
∈[0,1]

[
 f (m)+ (1− ) f (M)

f (m+(1− )M)

]
. (8.23)

As already mentioned in the introductory part, (see Theorem 1.12), McShane proved an
additional generalization of Jessen’s inequality (1.15). According to the above described
setting, this theorem states that for a continuous convex function f defined on a closed
convex set U ⊂R

k and for all g∈ Lk such that g(E)⊂U and f (g) ∈ L, with A being a pos-
itive normalized linear functional on L and Ã defined as in (8.21), the following inequality
holds:

f (Ã(g)) ≤ A( f (g)). (8.24)

J. Pečarić and S. Ivelić proved in [88] the following generalization of Theorem 8.2.

Theorem 8.10 Let L satisfy properties L1 and L2 on a nonempty set E and A be a positive
normalized linear functional on L. Let x1, . . . ,xn ∈ R

k and K = co({x1, . . . ,xn}). Let f be
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a convex function on K and 1, . . . ,n barycentric coordinates over K. Then for all g ∈ Lk

such that g(E) ⊂ K and f (g), i(g) ∈ L, i = 1, . . . ,n we have

A( f (g)) ≤
n


i=1

A(i(g)) f (xi) .

We give generalizations and improvements of theorems 8.4 and 8.10 which will be
obtained using the following lemma, which is a generalization of Lemma 1.2 on convex
sets.

Lemma 8.2 Let  be a convex function on U where U is a convex set in R
k, (x1, . . . ,xn) ∈

Un and p = (p1, . . . , pn) be nonnegative n-tuple such that
n


i=1

pi = 1. Then

min{p1, . . . , pn}
[

n


i=1

(xi)−n

(
1
n

n


i=1

xi

)]

≤
n


i=1

pi(xi)−

(
n


i=1

pixi

)

≤ max{p1, . . . , pn}
[

n


i=1

(xi)−n

(
1
n

n


i=1

xi

)]
.

For n ∈ N we denote

n−1 =

{
(1, . . . ,n) : i ≥ 0, i ∈ {1, . . . ,n},

n


i=1

i = 1

}
.

If f is a function defined on a convex subset U ⊆ R
k and x1,x2, . . . ,xn ∈U , we denote

Sn
f (x1, . . . ,xn) =

n


i=1

f (xi)−n f

(
1
n

n


i=1

xi

)
.

Obviously, if f is convex, Sn
f (x1, . . . ,xn) ≥ 0.

The following theorem presents an improvement of Theorem 8.10.

Theorem 8.11 Let L satisfy properties L1, L2 and L3 on a nonempty set E and A be a
positive normalized linear functional on L. Let x1, . . . ,xn ∈ R

k and K = co({x1, . . . ,xn}).
Let f be a convex function on K and 1, . . . ,n barycentric coordinates over K. Then for
all g ∈ Lk such that g(E) ⊂ K and f (g), i(g) ∈ L, i = 1, . . . ,n, we have

A( f (g)) ≤
n


i=1

A(i(g)) f (xi)−A(min{i(g)})Sn
f (x1, . . . ,xn). (8.25)
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Proof. For each t ∈ E we have g(t) ∈ K. Using barycentric coordinates we have
i(g(t)) ≥ 0, i = 1, . . . ,n, n

i=1i(g(t)) = 1 and

g(t) =
n


i=1

i(g(t))xi.

Since f is convex, we can apply Lemma 8.2, and then

f (g(t)) = f

(
n


i=1

i(g(t))xi

)

≤
n


i=1

i(g(t)) f (xi)−min{i(g(t))}
[

n


i=1

f (xi)−n f

(
1
n

n


i=1

xi

)]
. (8.26)

Now, applying the functional A to (8.26), we get

A( f (g)) ≤ A

(
n


i=1

i(g) f (xi)−min{i(g)}Sn
f (x1, . . . ,xn)

)

=
n


i=1

A(i(g)) f (xi)−A(min{i(g)})Sn
f (x1, . . . ,xn).

�

Remark 8.4 Theorem 8.11 is an improvement of Theorem 8.10, since under the required
assumptions we have

A(min{i(g)})Sn
f (x1, . . . ,xn) ≥ 0.

Remark 8.5 If all the assumptions of Theorem 8.11 are satisfied and additionally is f a
continuous function, then

f (Ã(g)) ≤ A( f (g)) ≤
n


i=1

A(i(g)) f (xi)−A(min{i(g)})Sn
f (x1, . . . ,xn),

where the first inequality is actually McShane’s inequality (8.24) and the second one is the
statement of Theorem 8.11.

Remark 8.6 We know that under the assumptions of Theorem 8.11 we have

A( f (g)) ≤
n


i=1

A(i(g)) f (xi)−A(min{i(g)})Sn
f (x1, . . . ,xn).

Dividing by f (g(t)) = f

(
n


i=1

i(g(t))xi

)
, when f > 0, we obtain

A( f (g))

f
(
Ã(g)

) ≤ n
i=1 A(i(g)) f (xi)

f (n
i=1 A(i(g))xi)

− A(min{i(g) : i = 1, . . . ,n})
f
(
Ã(g)

) Sn
f (x1, . . . ,xn)

≤ max
n−1

n
i=1 i f (xi)

f (n
i=1 ixi)

− A(min{i(g) : i = 1, . . . ,n})
f
(
Ã(g)

) Sn
f (x1, . . . ,xn),



8.2 IMPROVEMENTS OF THE LAH-RIBARIČ INEQUALITY 237

which is equivalent to

A( f (g)) ≤ max
n−1

n
i=1 i f (xi)

f (n
i=1 ixi)

f
(
Ã(g)

)
−A(min{i(g) : i = 1, . . . ,n})Sn

f (x1, . . . ,xn).

(8.27)
This is an improvement of the inequality (2.6) from [88].

Now, making use of Theorem 8.11 we are able to obtain a generalization and an im-
provement of Theorem 8.4.

Theorem 8.12 Let L satisfy properties L1, L2 and L3 on a nonempty set E, A be a pos-
itive normalized linear functional on L and Ã defined as in (8.21). Let x1, . . . ,xn ∈ R

k

and K = co({x1, . . . ,xn}). Let f be a convex function on K and 1, . . . ,n barycentric
coordinates over K. If J is an interval in R such that f (K) ⊂ J and F : J × J → R is
an increasing function in the first variable, then for all g ∈ Lk such that g(E) ⊂ K and
f (g),i(g) ∈ L, i = 1, . . . ,n the following inequalities hold:

F
(
A( f (g)), f (Ã(g))

)
≤ F

(
n


i=1

A(i(g)) f (xi)−A(min{i(g)})Sn
f (x1, . . . ,xn), f (Ã(g))

)

≤ max
n−1

F

(
n


i=1

i f (xi)−A(min{i(g)})Sn
f (x1, . . . ,xn), f

(
n


i=1

ixi

))
.

(8.28)

Proof. For each t ∈ E is g(t) ∈ K. Using barycentric coordinates it follows that
i(g(t)) ≥ 0, i = 1, . . . ,n, n

i=1i(g(t)) = 1 and

g(t) =
n


i=1

i(g(t))xi.

Since A is a positive normalized linear functional on L and Ã a linear operator on Lk, it
follows that

Ã(g) = (A(g1), . . . ,A(gk)) =
n


i=1

A(i(g))xi,

where A(i(g)) ≥ 0, i = 1, . . . ,n and n
i=1 A(i(g)) = A(n

i=1i(g)) = A(1) = 1. There-
fore, Ã(g) ∈ K.

Since F : J×J → R is an increasing function in the first variable, using (8.25) we have

F
(
A( f (g)), f (Ã(g))

)
≤ F

(
n


i=1

A(i(g)) f (xi)−A(min{i(g(t))})Sn
f (x1, . . . ,xn), f (Ã(g))

)
. (8.29)
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By substitutions
A(i(g)) = i, i = 1, . . . ,n,

it follows

Ã(g) =
n


i=1

ixi.

Now we have

F

(
n


i=1

A(i(g)) f (xi)−A(min{i(g(t))})Sn
f (x1, . . . ,xn), f (Ã(g))

)

= F

(
n


i=1

i f (xi)−A(min{i(g(t))})Sn
f (x1, . . . ,xn), f

(
n


i=1

ixi

))

≤ max
n−1

F

(
n


i=1

i f (xi)−A(min{i(g(t))})Sn
f (x1, . . . ,xn), f

(
n


i=1

ixi

))
.

By combining (8.29) and the last inequality we get (8.28). �

Remark 8.7 If we choose F(x,y) = x− y, as a simple consequence of Theorem 8.12 it
follows

A( f (g))− f (Ã(g)) ≤ max
n−1

(
n


i=1

i f (xi)− f

(
n


i=1

ixi

)
−A(min{i(g)})Sn

f (x1, . . . ,xn)

)
.

(8.30)

Taking F(x,y) = x
y , for f > 0, it follows

A( f (g))

f (Ã(g))
≤ max

n−1

(
n

i=1 i f (xi)−A(min{i(g)})Sn
f (x1, . . . ,xn)

f (n
i=1 ixi)

)
. (8.31)

The inequalities (8.30) and (8.31) present generalizations and improvements of (8.22) and
(8.23).

If we replace F by −F in Theorem 8.12 we obtain the following result.

Theorem 8.13 Let L satisfy properties L1, L2 and L3 on a nonempty set E, A be a pos-
itive normalized linear functional on L and Ã defined as in (8.21). Let x1, . . . ,xn ∈ R

k

and K = co({x1, . . . ,xn}). Let f be a convex function on K and 1, . . . ,n barycentric
coordinates over K. If J is an interval in R such that f (K) ⊂ J and F : J × J → R is
a decreasing function in the first variable, then for all g ∈ Lk such that g(E) ⊂ K and
f (g),i(g) ∈ L, i = 1, . . . ,n the following inequalities hold:

F
(
A( f (g)), f (Ã(g))

)
≥ F

(
n


i=1

A(i(g)) f (xi)−A(min{i(g)})Sn
f (x1, . . . ,xn), f (Ã(g))

)

≥ min
n−1

F

(
n


i=1

i f (xi)−A(min{i(g)})Sn
f (x1, . . . ,xn), f

(
n


i=1

ixi

))
. (8.32)
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Now we consider the special case where the convex hull is a k-simplex.
Let S be a k-simplex in R

k with vertices v1,v2, . . . ,vk+1 ∈ R
k. The barycentric co-

ordinates 1, . . .k+1 over S are nonnegative linear polynomials which satisfy Lagrange’s
property

i(v j) = i j =
{

1, i = j
0, i �= j.

It is known (see [33]) that for each x ∈ S barycentric coordinates 1(x), . . . ,k+1(x)
have the form

1(x) =
Volk ([x,v2, . . . ,vk+1])

Volk(S)
,

2(x) =
Volk ([v1,x,v3, . . . ,vk+1])

Volk(S)
,

...

k+1(x) =
Volk ([v1, . . . ,vk,x])

Volk(S)
, (8.33)

where Volk(F) denotes the k-dimensional Lebesgue measure of a measurable set F ⊂ R
k.

Here, for example, [v1,x, . . . ,vk+1] denotes the subsimplex obtained by replacing v2 by x,
i.e. the subsimplex opposite to v2, when adding x as a new vertex.

The signed volume Volk(S) is given by (k+1)× (k+1) determinant

Volk (S) =
1
k!

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
v11 v21 vk+11
v12 v22 vk+12
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣
,

where v1 = (v11,v12, . . . ,v1k), . . . ,vk+1 = (vk+11,vk+12, . . . ,vk+1k) (see [193]).
Since vectors v2 − v1, . . . ,vk+1 − v1 are linearly independent, then each x ∈ S can be

written as a convex combination of v1, . . . ,vk+1 in the form

x =
Volk ([x,v2, . . . ,vk+1])

Volk(S)
v1 + · · ·+ Volk ([v1, . . . ,vk,x])

Volk(S)
vk+1. (8.34)

Now we present an analogue of Theorem 8.11 for convex functions defined on k-
simplices in R

k.

Theorem 8.14 Let L satisfy properties L1, L2 and L3 on a nonempty set E, A be a posi-
tive normalized linear functional on L and Ã defined as in (8.21). Let f be a convex function
on a k-simplex S = [v1,v2, . . . ,vk+1] in R

k and 1, . . . ,k+1 be barycentric coordinates over
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S. Then for all g ∈ Lk such that g(E) ⊂ S and f (g) ∈ L we have

A( f (g)) ≤
k+1


i=1

A(i(g)) f (vi)−A(min{i(g)})Sk+1
f (v1, . . . ,vk+1)

=
Volk

([
Ã(g),v2, . . . ,vk+1

])
Volk(S)

f (v1)+ · · ·+
Volk

([
v1,v2, . . . , Ã(g)

])
Volk(S)

f (vk+1)

−A(min{i(g)})Sk+1
f (v1, . . . ,vk+1). (8.35)

Proof. Analogous to the proof of Theorem 8.11, with

1 (g(t)) =
Volk ([g(t),v2, . . . ,vk+1])

Volk(S)
=

1
k!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

g1(t) v21 vk+11
...

...
...

gk(t) v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣
1
k!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

v11 v21 vk+11
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣

,

...

k+1(g(t)) =
Volk ([v1, . . . ,vk,g(t)])

Volk(S)
=

1
k!

∣∣∣∣∣∣∣∣∣
1 · · · 1 1

v11 vk1 g1(t)
...

...
...

v1k · · · vkk gk(t)

∣∣∣∣∣∣∣∣∣
1
k!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

v11 v21 vk+11
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣

,

and

A(1 (g)) =

1
k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
A(g1) v21 vk+11

...
...

...
A(gk) v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣∣
1
k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
v11 v21 vk+11
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣∣

=
Volk

([
Ã(g),v2, . . . ,vk+1

])
Volk(S)

,

... (8.36)
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A(k+1 (g)) =

1
k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1
v11 vk1 A(g1)
...

...
...

v1k · · · vkk A(gk)

∣∣∣∣∣∣∣∣∣∣∣∣
1
k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
v11 v21 vk+11
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣∣

=
Volk

([
v1, . . . ,vk, Ã(g)

])
Volk(S)

,

�

Using Theorem 8.14 we prove an analogue of Theorem 8.12 for k-simplices in R
k.

Theorem 8.15 Let L satisfy properties L1, L2 and L3 on a nonempty set E, A be a posi-
tive normalized linear functional on L and Ã defined as in (8.21). Let f be a convex function
on a k-simplex S = [v1,v2, . . . ,vk+1] in R

k and 1, . . . ,k+1 be barycentric coordinates over
S. If J is an interval in R such that f (S) ⊂ J and F : J× J → R an increasing function in
the first variable, then for all g ∈ Lk such that g(E) ⊂ S and f (g) ∈ L we have

F
(
A( f (g)), f (Ã(g))

)
(8.37)

≤ max
x∈S

F
(Volk ([x,v2, . . . ,vk+1])

Volk(S)
f (v1)+ · · ·+ Volk ([v1, . . . ,vk,x])

Volk(S)
f (vk+1)

−A(min{i(g)})Sk+1
f (v1, . . . ,vk+1), f (x)

)
= max

k

F

(
k+1


i=1

i f (vi)−A(min{i(g)})Sk+1
f (v1, . . . ,vk+1), f

(
k+1


i=1

ivi

))
.

Proof. Analogous to the proof of Theorem 8.12, with substitutions

1 =
Volk ([x,v2, . . . ,vk+1])

Volk(S)
, . . . ,k+1 =

Volk ([v1, . . . ,vk,x])
Volk(S)

,

and

x =
k+1


i=1

ivi.

�

Remark 8.8 If all the assumptions of Theorem 8.14 are satisfied and in addition f is
continuous, then

f (Ã(g)) ≤ A( f (g))

≤
k+1


i=1

A(i(g)) f (vi)−A(min{i(g)})Sk+1
f (v1, . . . ,vk+1)
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=
Volk

([
Ã(g),v2, . . . ,vk+1

])
Volk(S)

f (v1)+ · · ·+
Volk

([
v1,v2, . . . , Ã(g)

])
Volk(S)

f (vk+1)

−A(min{i(g)})Sk+1
f (v1, . . . ,vk+1). (8.38)

The first inequality is McShane’s (8.24) and the second one is Theorem 8.14.

Example 8.1 Let S = [v1,v2, . . . ,vk+1] be a k-simplex in R
k and f a continuous convex

function on S. Let (E,A , ) be a measure space with positive measure  such that  (E) <
. Let L be a linear class of measurable real functions on E . We define the functional
A : L → R by

A(g) =
1

 (E)

∫
E

g(t)d (t).

It is obvious that A is a positive normalized linear functional on L. Then the linear operator
Ã is defined by

Ã(g) =
1

 (E)

∫
E

g(t)d (t).

We denote g = 1
 (E)

∫
E g(t)d (t). If g(E) ⊂ S and f (g) ∈ L, then from (8.38) it follows

f (g) ≤ A( f (g)) (8.39)

≤ Volk ([g,v2, . . . ,vk+1])
Volk(S)

f (v1)+ · · ·+ Volk ([v1, . . . ,vk,g])
Volk(S)

f (vk+1)

−
(

1
 (E)

∫
E

min{i(g(t)) : i = 1, . . . ,k+1}d (t)
)

Sk+1
f (v1, . . . ,vk+1).

Remark 8.9 Let S = [v1, . . . ,vk+1] be a k-simplex in R
k. If we put E = S,g = idS and 

is a Lebesgue measure on S from Example 8.1, we get

idS =
1
|S|

∫
S
tdt = v∗ =

1
k+1

k+1


i=1

vi

A( f (idS)) =
1
|S|

∫
S

f (t)dt,

where v∗ is the barycenter of S. Now we have

f (v∗) ≤ 1
|S|

∫
S

f (t)dt

≤ Volk ([v∗,v2, . . . ,vk+1])
|S| f (v1)+ · · ·+ Volk ([v1, . . . ,vk,v∗])

|S| f (vk+1)

−
(

1
|S|

∫
S
min{i(t) : i = 1, . . . ,k+1}dt

)[
k+1


i=1

f (vi)− (k+1) f (v∗)

]

=
1

k+1

(
k+1


i=1

f (vi)

)
−
(

1
|S|

∫
S
min{i(t) : i = 1, . . . ,k+1}dt

)

×
[

k+1


i=1

f (vi)− (k+1) f (v∗)

]
. (8.40)
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For i = 1, . . . ,k+1, let Si be the simplex whose vertices are v∗ and all vertices of S except
vi. Denote by v∗i the barycentre of Si, i = 1, . . . ,k + 1. Since Volk (Si) = Volk (S j), i, j =
1, . . . ,k+1, it follows from (8.33) that t ∈ S j implies mini i(t) =  j(t). It follows

∫
S
min

i
i(t)dt =

k+1


j=1

∫
S j

 j(t)dt. (8.41)

We have∫
S j

 j(t)dt =
1
|S|

∫
S j

Volk [v1, . . . ,t, . . . ,vk+1]dt

=
1
|S|Volk

[
v1, . . . ,

∫
S j

tdt, . . . ,vk+1

]
=

|S j|
|S| Volk

[
v1, . . . ,v

∗
j , . . . ,vk+1

]
=

1
k+1

Volk
[
v1, . . . ,v

∗
j , . . . ,vk+1

]
=

1
(k+1)2 Volk [v1, . . . ,v

∗, . . . ,vk+1] =
1

(k+1)3 |S|. (8.42)

Using (8.41) and (8.42) we get∫
S
min

i
i(t)dt =

1
(k+1)2 |S|. (8.43)

Now, putting (8.43) in (8.40), we have

f (v∗) ≤ 1
|S|

∫
S

f (t)dt

≤ k
(k+1)2

k+1


i=1

f (vi)+
1

k+1
f (v∗),

which is obtained in [78, Theorem 4.1].
It can be easily verified that the right-hand side of this inequality is equivalent to the

k-dimensional version of the Hammer-Bullen inequality, namely

1
|S|

∫
S

f (t)dt − f (v∗) ≤ k
k+1

k+1


i=1

f (vi)− k
|S|

∫
S

f (t)dt,

which is proved, for example in [210].
In one-dimensional case, this is an improvement of classical Hermite-Hadamard in-

equality

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
− 1

4
S2

f (a,b),

where S2
f (a,b) = f (a)+ f (b)−2 f

(
a+b

2

)
.
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8.3 Improvements of the Giaccardi and the Petrović
inequality

Another variant of converse Jensen’s inequality is the Giaccardi inequality, the special
case of which is the Petrović inequality (for the latter, see also Chapter 3). Improvements
of these inequalities are again obtained by means of Lemma 1.2 and are given in the sequel.

Theorem 8.16 (GIACCARDI’S INEQUALITY) Let  be a convex function on an interval
I, p a nonnegative n-tuple with n

i=1 pi = Pn �= 0 and x a real n-tuple. If x ∈ In and x0 ∈ I
are such that n

i=1 pixi = x̃ ∈ I, x̃ �= x0 and

(xi − x0)(x̃− xi) ≥ 0, i = 1, . . . ,n,

then
n


i=1

pi(xi) ≤ A(x̃)+B

( n


i=1

pi −1

)
(x0),

where

A =
n

i=1 pi(xi − x0)
n

i=1 pixi − x0
, B =

n
i=1 pixi

n
i=1 pixi − x0

.

A simple consequence of the Giaccardi inequality is the Petrović inequality:

Corollary 8.5 (PETROVIĆ’ INEQUALITY) Let  be a convex function on [0,a],0 < a <
. Then for every nonnegative n-tuple p and every x∈ [0,a]n such thatn

i=1 pixi = x̃∈ (0,a]
and

n


i=1

pixi ≥ x j, j = 1, . . . ,n,

the following inequality holds:

n


i=1

pi(xi) ≤ (x̃)+
( n


i=1

pi−1

)
(0).

For further details on the Giaccardi and the Petrović inequality see [177].
In order to improve these two inequalities, we use the left-hand side of Lemma 1.2,

which is here observed for n = 2 and for a convex function  defined on an interval I, it
states that

min{p,q}
[
(x)+(y)−2

(
x+ y

2

)]
≤ p(x)+q(y)−(px+qy), (8.44)

where x,y ∈ I and p,q ∈ [0,1] are such that p+q = 1.
Furthermore, we also prove the Lagrange and the Cauchy-type mean value theorems,

which we then use in studying Stolarsky-type means defined by the Giaccardi and the
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Petrović differences. By means of these differences, n-exponentially convex and exponen-
tially convex functions are produced, making use of some known families of functions of
the same type.

The following theorem is our main result in this scope.

Theorem 8.17 Let  be a convex function on an interval I, p a nonnegative n-tuple with
n

i=1 pi = Pn �= 0 and x a real n-tuple. If x ∈ In and x0 ∈ I are such that n
i=1 pixi = x̃ ∈

I, x̃ �= x0 and
(xi − x0)(x̃− xi) ≥ 0, i = 1, . . . ,n, (8.45)

then

n


i=1

pi(xi) ≤ A(x̃)+B

(
n


i=1

pi−1

)
(x0)− 

2
Pn + 

n


i=1

pi

∣∣∣∣∣xi− x0+x̃
2

x̃− x0

∣∣∣∣∣ , (8.46)

where

A =
n

i=1 pi(xi− x0)
n

i=1 pixi− x0
, B =

n
i=1 pixi

n
i=1 pixi− x0

,  = (x0)+(x̃)−2
(

x0 + x̃
2

)
.

Proof. The condition (xi − x0)(x̃− xi) ≥ 0, i = 1, . . . ,n, means that either x0 ≤ xi ≤ x̃
or x̃ ≤ xi ≤ x0, i = 1, . . . ,n. Consider the first case (the second is analogous).

Let the functions p, q : [x0, x̃] → [0,1] be defined by

p(x) =
x̃− x
x̃− x0

, q(x) =
x− x0

x̃− x0
.

For any x ∈ [x0, x̃] we can write

(x) = 
(

x̃− x
x̃− x0

x0 +
x− x0

x̃− x0
x̃

)
= (p(x)x0 +q(x)x̃).

By inequality (8.44) we get for x ∈ [x0, x̃]

min{p(x),q(x)}
[
(x0)+(x̃)−2

(
x0 + x̃

2

)]
≤ p(x)(x0)+q(x)(x̃)−(p(x)x0 +q(x)x̃)

and then,

(x) = (p(x)x0 +q(x)x̃)

≤ (x0)+q(x)(x̃)−min{p(x),q(x)}
[
(x0)+(x̃)−2

(
x0 + x̃

2

)]
.

Multiplying (xi) by pi and summing, we get

n


i=1

pi(xi) ≤
n


i=1

pi

[
p(xi)(x0)+q(xi)(x̃)−min{p(xi),q(xi)}

×
[
(x0)+(x̃)−2

(
x0 + x̃

2

)]]
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= (x̃)
n


i=1

pi
xi − x0

x̃− x0
+(x0)

n


i=1

pi
x̃− xi

x̃− x0
− 

n


i=1

pi min{p(xi),q(xi)}

= A(x̃)+B(
n


i=1

pi −1)(x0)− 
2

Pn + 
n


i=1

pi

∣∣∣∣∣xi − x0+x̃
2

x̃− x0

∣∣∣∣∣ .
�

Remark 8.10 Obviously, Theorem 8.17 is an improvement of Theorem 8.16, since under
the required assumptions we have


n


i=1

pi min{p(xi),q(xi)} ≥ 0.

What follows is an improvement of the Petrović inequality.

Theorem 8.18 Let  be a convex function on [0,a], 0 < a < . Then for every nonnega-
tive n-tuple p and every x ∈ [0,a]n such that n

i=1 pixi = x̃ ∈ (0,a] and

n


i=1

pixi ≥ x j, j = 1, . . . ,n, (8.47)

the following inequality holds

n


i=1

pi(xi) ≤ (x̃)+

(
n


i=1

pi −1

)
(0)− 

2
Pn + 

n


i=1

pi

∣∣∣∣xi

x̃
− 1

2

∣∣∣∣ , (8.48)

where  = (0)+(x̃)−2
(

x̃
2

)
.

Proof. This is a special case of Theorem 8.17; choose x0 = 0. �

Remark 8.11 The Giaccardi inequality can also be improved by means of Theorem 8.5,
viewed as a special case, similarly as in Corollary 8.1.

Assume x0 < x̃. For m = x0 and M = x̃, from (8.45) we have x ∈ [m,M]n and Corollary
8.1 implies

n


i=1

pi (xi) ≤ Pnx̃− x̃
x̃− x0

 (x0)+
x̃− x0Pn

x̃− x0
 (x̃)− 

2
Pn + 

n


i=1

pi

∣∣∣∣∣xi− x0+x̃
2

x̃− x0

∣∣∣∣∣
= A

(
n


i=1

pixi

)
+B

(
n


i=1

pi−1

)
 (x0)− 

2
Pn + 

n


i=1

pi

∣∣∣∣∣xi− x0+x̃
2

x̃− x0

∣∣∣∣∣ .
For x0 > n

i=1 pixi we define m = n
i=1 pixi, M = x0, so the rest of the proof is similar to

the one above.
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8.3.1 Giaccardi-Petrović differences

At the very beginning of the current section, the reader is referred to Section 1.1 in order to
study or recall the notions of n–exponentially convex and exponentially convex functions,
as well as some other related notions.

Motivated by inequalities (8.46) and (8.48), we define two functionals:

1(x,p, f ) = A f (x̃)+B

(
n


i=1

pi−1

)
f (x0)−  f

2
Pn +  f

n


i=1

pi

∣∣∣∣∣xi − x0+x̃
2

x̃− x0

∣∣∣∣∣− n


i=1

pi f (xi),

(8.49)
where f is a function on an interval I, p is a nonnegative n-tuple, x is a real n-tuple, x̃, Pn,
 f ,A,B are as in Theorem 8.17, and

2(x,p, f ) = f (x̃)+

(
n


i=1

pi−1

)
f (0)− 

2
Pn +  f

n


i=1

pi

∣∣∣∣xi

x̃
− 1

2

∣∣∣∣− n


i=1

pi f (xi) , (8.50)

where f is a function on an interval [0,a], p is a nonnegative n-tuple, x is a real n-tuple and
x̃, Pn,  f are as in Corollary 8.18.

If f is a convex function, then Theorem8.17 and Corollary 8.18 imply thati(x,p, f )≥
0, i = 1,2.

Now, we present Lagrange and Cauchy type mean value theorems for the functionals
i, i = 1,2.

Theorem 8.19 Let I = [a,b], p be a nonnegative n-tuple with n
i=1 pi = Pn �= 0 and x a

real n-tuple. Let x ∈ In and x0 ∈ I be such that n
i=1 pixi = x̃ ∈ I, x̃ �= x0 and (8.45) holds.

Let f ∈C2(I). Then there exists  ∈ I such that

1(x,p, f ) =
f ′′( )

2
1(x, p, f0), (8.51)

where f0(x) = x2.

Proof. Since f ∈C2(I), there exist real numbers m = min
x∈[a,b]

f ′′(x) and M = max
x∈[a,b]

f ′′(x).

It is easy to show that the functions f1 and f2 defined by

f1(x) =
M
2

x2 − f (x),

f2(x) = f (x)− m
2

x2

are convex. Therefore

1(x,p, f1) ≥ 0,

1(x,p, f2) ≥ 0,

and we get

1(x,p, f ) ≤ M
2
1(x,p, f0), (8.52)
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1(x,p, f ) ≥ m
2
1(x,p, f0). (8.53)

From (8.52) and (8.53) we get

m
2
1(x,p, f0) ≤1(x,p, f ) ≤ M

2
1(x,p, f0).

If 1(x,p,x2) = 0 there is nothing left to prove. Suppose 1(x,p,x2) > 0. Then

m ≤ 21(x,p, f )
1(x,p,x2)

≤ M.

Hence, there exists  ∈ I such that

1(x,p, f ) =
f ′′( )

2
1(x,p, f0).

�

Theorem 8.20 Let I = [0,a], p be a nonnegative n-tuple and x a real n-tuple. Let x ∈
[0,a]n such that n

i=1 pixi = x̃ ∈ I and (8.47) holds. Let f ∈C2(I). Then there exists  ∈ I
such that

2(x,p, f ) =
f ′′( )

2
2(x,p, f0), (8.54)

where f0(x) = x2.

Proof. Analogous to the proof of Theorem 8.19. �

Theorem 8.21 Let I = [a,b], p be a nonnegative n-tuple with n
i=1 pi = Pn �= 0 and x be

a real n-tuple. Let x ∈ In and x0 ∈ I be such that n
i=1 pixi = x̃ ∈ I, x̃ �= x0 and (8.45) holds.

Let f ,g ∈C2(I). Then there exists  ∈ I such that

1(x,p, f )
1(x,p,g)

=
f ′′( )
g′′( )

, (8.55)

provided that the denominators are non-zero.

Proof. Define h ∈C2([a,b]) by

h = c1 f − c2g,

where
c1 = 1(x,p,g), c2 = 1(x,p, f ).

Now by Theorem 8.19 there exists  ∈ [a,b] such that(
c1

f ′′( )
2

− c2
g′′( )

2

)
1(x,p, f0) = 0.
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Since1(x,p, f0) �= 0 (otherwise we have a contradiction with1(x,p,g) �= 0, by Theorem
8.19), we get

1(x,p, f )
1(x,p,g)

=
f ′′( )
g′′( )

.

�

Theorem 8.22 Let I = [0,a], p be a nonnegative n-tuple and x be a real n-tuple. Let
x ∈ [0,a]n be such that n

i=1 pixi = x̃ ∈ I and (8.47) holds. Let f ,g ∈ C2(I). Then there
exists  ∈ I such that

2(x,p, f )
2(x,p,g)

=
f ′′( )
g′′( )

, (8.56)

provided that the denominators are non zero.

Proof. Analogous to the proof of Theorem 8.21. �

We use an idea from [90] to give an elegant method of producing an n-exponentially
convex functions and exponentially convex functions applying the functionals 1 and 2

to a given family with the same property.

Theorem 8.23 Let = { fs : s ∈ J}, J is an interval in R, be a family of functions defined
on an interval I in R, such that the function s → [y0,y1,y2; fs] is n-exponentially convex in
the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I. Let i (i =
1,2) be linear functionals defined as in (8.49) and (8.50). Then s → i(x,p, fs) is an n-
exponentially convex function in the Jensen sense on J. If the function s → i(x,p, fs) is
continuous on J, then it is n-exponentially convex on J.

Proof. For i ∈ R and si ∈ J, i = 1, . . . ,n, we define the function

g(y) =
n


i, j=1

i j f si+s j
2

(y).

Using the assumption that the function s → [y0,y1,y2; fs] is n-exponentially convex in the
Jensen sense, we have

[y0,y1,y2;g] =
n


i, j=1

i j[y0,y1,y2; f si+s j
2

] ≥ 0,

which in turn implies that g is a convex function on I and therefore we havei(x,p,g)≥ 0,
i = 1,2. Hence

n


i, j=1

i ji(x,p, f si+s j
2

) ≥ 0.

We conclude that the function s →i(x,p, fs) is n-exponentially convex on J in the Jensen
sense.

If the function s → i(x,p, fs) is also continuous on J, then s → i(x,p, fs) is n-
exponentially convex by definition. �

The following corollary is an immediate consequence of the above theorem.
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Corollary 8.6 Let  = { fs : s ∈ J}, J is an interval in R, be a family of functions defined
on an interval I in R, such that the function s → [y0,y1,y2; fs] is exponentially convex in the
Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I. Leti (i = 1,2) be
linear functionals defined as in (8.49) and (8.50). Then s →i(x,p, fs) is an exponentially
convex function in the Jensen sense on J. If the function s → i(x,p, fs) is continuous on
J, then it is exponentially convex on J.

Corollary 8.7 Let  = { fs : s ∈ J}, where J an interval in R, be a family of functions
defined on an interval I in R, such that the function s → [y0,y1,y2; fs] is 2-exponentially
convex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I.
Let i, i = 1,2, be linear functionals defined as in (8.49) and (8.50). Then the following
statements hold:

(i) If the function s → i(x,p, fs) is continuous on J, then it is 2-exponentially convex
function on J, and thus log-convex function.

(ii) If the function s → i(x,p, fs) is strictly positive and differentiable on J, then for
every s,q,u,v ∈ J, such that s ≤ u and q ≤ v, we have

s,q(x,i,) ≤ u,v(x,i,), i = 1,2, (8.57)

where

s,q(x,i,) =

⎧⎪⎪⎨⎪⎪⎩
(
i(x,p, fs)
i(x,p, fq)

) 1
s−q

, s �= q,

exp

(
d
dsi(x,p, fs)
i(x,p, fs)

)
, s = q,

(8.58)

for fs, fq ∈.

Proof. (i) This is an immediate consequence of Theorem 8.23 and Remark 1.3.
(ii) Since by (i) the function s → i(x,p, fs) is log-convex on J, that is, the function

s → logi(x,p, fs) is convex on J. Applying Proposition 1.2 we get

logi(x,p, fs)− logi(x,p, fq)
s−q

≤ logi(x,p, fu)− logi(x,p, fv)
u− v

, (8.59)

for s ≤ u, q ≤ v, s �= q, u �= v, and therefrom conclude that

s,q(x,i,) ≤ u,v(x,i,), i = 1,2.

Cases s = q and u = v follow from (8.59) as limit cases. �

Remark 8.12 Note that the results from Theorem 8.23, Corollary 8.6, Corollary 8.7 still
hold when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0, for a family of differen-
tiable functions fs, such that the function s → [y0,y1,y2; fs] is n-exponentially convex in the
Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense),
and furthermore, they still hold when all three points coincide for a family of twice differ-
entiable functions with the same property. The proofs are obtained by recalling Remark 1.4
and suitable characterization of convexity.
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We present several families of functions which fulfil the conditions of Theorem 8.23,
Corollary 8.6 and Corollary 8.7 (and Remark 8.12). This enable us to construct a large fam-
ily of functions which are exponentially convex. For a discussion related to this problem
see [68].

Example 8.2 Consider a family of functions

1 = {gs : R → [0,) : s ∈ R}

defined by

gs(x) =

{
1
s2

esx, s �= 0,

1
2 x2, s = 0.

We have d2gs
dx2 (x) = esx > 0 which shows that gs is convex on R for every s ∈ R and s →

d2gs
dx2 (x) is exponentially convex by definition. Using analogous arguing as in the proof of
Theorem 8.23 we also have that s → [y0,y1,y2;gs] is exponentially convex (and so exponen-
tially convex in the Jensen sense). Using Theorem 8.6 we conclude that s → i(x,p,gs),
i = 1,2, are exponentially convex in the Jensen sense. It is easy to verify that these map-
pings are continuous (although mapping s → gs is not continuous for s = 0), so they are
exponentially convex.

For this family of functions, s,q(x,i,1), i = 1,2, from (8.58) becomes

s,q(x,i,1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
i(x,p,gs)
i(x,p,gq)

) 1
s−q

, s �= q,

exp
(
i(x,p,id·gs)
i(x,p,gs)

− 2
s

)
, s = q �= 0,

exp
(
i(x,p,id·g0)
3i(x,p,g0)

)
, s = q = 0,

and using (8.57) they are monotonic functions in parameters s and q.
Using theorems 8.21 and 8.22 it follows that for i = 1,2

Ms,q(x,i,1) = logs,q(x,i,1)

satisfy min{x0, x̃} ≤ Ms,q(x,i,1) ≤ max{x0, x̃}, which shows that Ms,q(x,i,1) are
means (of x0,x1, . . .xn, x̃). Notice that by (8.57) they are monotonic means.

Example 8.3 Consider a family of functions

2 = { fs : (0,) → R : s ∈ R}

defined by

fs(x) =

⎧⎪⎨⎪⎩
xs

s(s−1) , s �= 0,1,

− logx, s = 0,

x logx, s = 1.
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Here, d2 fs
dx2 (x) = xs−2 = e(s−2) logx > 0 which shows that fs is convex for x > 0 and s →

d2 fs
dx2 (x) is exponentially convex by definition. Arguing as in Example 8.2 we get that
the mapping s → 1(x,p,gs) is exponentially convex. In this case we assume x j > 0,
j = 0,1 . . . ,n. Notice that the functional 2 is not defined in this case (of course it can be
defined for s ≥ 0). Functions (8.58) in this case are equal to:

s,q(x,1,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1(x,p, fs)
1(x,p, fq)

) 1
s−q

, s �= q,

exp
(

1−2s
s(s−1) − 1(x,p, fs f0)

1(x,p, fs)

)
, s = q �= 0,1,

exp
(
1− 1(x,p, f 2

0 )
21(x,p, f0)

)
, s = q = 0,

exp
(
−1− 1(x,p, f0 f1)

21(x,p, f1)

)
, s = q = 1.

If 1 is positive, then Theorem 8.21 and Theorem 8.22, applied for f = fs ∈ 2 and
g = fq ∈2 yield that there exists  ∈ [min{x0, x̃} ,max{x0, x̃}] such that

 s−q =
1(x,p, fs)
1(x,p, fq)

.

Since the function  →  s−q is invertible for s �= q, we have

min{x0, x̃} ≤
(
1(x,p, fs)
1(x,p, fq)

) 1
s−q

≤ max{x0, x̃} , (8.60)

which together with the fact that s,q(x,1,2) is continuous, symmetric and monotonic
(by (8.57)), shows that s,q(x,1,2) is a mean. Now, by substitutions xi → xt

i , s → s
t ,

q → q
t (t �= 0, s �= q) from (8.60) we get

min
{
xt
0, x̃

t}≤
(1(xt ,p, fs/t
1(xt ,p, fq/t

) t
s−q

≤ max
{
xt
0, x̃

t} ,

where xt = (xt
1, . . . ,x

t
n). We define a new mean as follows:

s,q;t(x,1,2) =

⎧⎨⎩
(
 s

t ,
q
t
(xt ,1,2)

)1/t
, t �= 0

s,q(logx,1,1), t = 0.
(8.61)

These new means are also monotonic. More precisely, for s,q,u,v ∈ R, such that s ≤ u,
q ≤ v, s �= u, q �= v, we have

s,q;t(x,1,2) ≤ u,v;t(x,1,2). (8.62)

We know that

 s
t ,

q
t
(x,1,2) =

(1(x,p, fs/t)
1(x,p, fq/t)

) t
s−q

≤  u
t , v

t
(x,1,2) =

(1(x,p, fs/t)
1(x,p, fq/t)

) t
s−q

,
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for s,q,u,v ∈ I, such that s/t ≤ u/t, q/t ≤ v/t and t �= 0. Since s,q(x,1,2) are mono-
tonic in both parameters, the claim follows. For t = 0, we obtain the required result by
taking the limit t → 0.

Example 8.4 Consider a family of functions

3 = {hs : (0,) → (0,) : s ∈ (0,)}
defined by

hs(x) =

⎧⎨⎩
s−x

log2 s
, s �= 1,

x2

2 , s = 1.

Since s → d2hs
dx2 (x) = s−x is the Laplace transform of a non-negative function (see [211]), it

is exponentially convex. Obviously hs are convex functions for every s > 0.
For this family of functions, s,q(x,1,3), in this case for x j > 0, j = 0,1, . . . ,n, from

(8.58) becomes

s,q(x,1,3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1(x,p,hs)
1(x,p,hq)

) 1
s−q

, s �= q,

exp
(
−1(x,p,id·hs)

s1(x,p,hs)
− 2

s logs

)
, s = q �= 1,

exp
(
−1(x,p,id·h1)

31(x,p,h1)

)
, s = q = 1,

and it is monotonic in parameters s and q by (8.57).
Using Theorem 8.21, it follows that

Ms,q (x,1,3) = −L(s,q) logs,q(x,1,3),

satisfies min{x0, x̃} ≤ Ms,q(x,1,3) ≤ max{x0, x̃}, which shows that Ms,q(x,1,3) is
a mean (of x0,x1, . . .xn, x̃). L(s,q) is the logarithmic mean defined by L(s,q) = s−q

log s−logq ,
s �= q, L(s,s) = s.

Example 8.5 Consider a family of functions

4 = {ks : (0,) → (0,) : s ∈ (0,)}
defined by

ks(x) =
e−x

√
s

s
.

Since s → d2ks
dx2 (x) = e−x

√
s is the Laplace transform of a non-negative function (see [211]),

it is exponentially convex. Obviously ks are convex functions for every s > 0.
For this family of functions, s,q(x,1,4), in this case for x j > 0, j = 0,1, . . . ,n, from

(8.58) becomes

s,q(x,1,4) =

⎧⎪⎨⎪⎩
(
1(x,p,ks)
1(x,p,kq)

) 1
s−q

, s �= q,

exp
(
− 1(x,p,id·ks)

2
√

s(x,p,ks)
− 1

s

)
, s = q,
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and it is monotonic function in parameters s and q by (8.57).
Using Theorem 8.21, it follows that

Ms,q(x,1,4) = −(√
s+

√
q
)
logs,q(x,1,4)

satisfies min{x0, x̃} ≤ Ms,q(x,1,4) ≤ max{x0, x̃}, which shows that Ms,q(x,1,4) is
a mean (of x0,x1, . . .xn, x̃).

8.4 Refinements of the converse Hölder and
Minkowski inequalities

Most of the classical inequalities have their variants involving positive linear functionals.
Among others, in [177, p. 115] we can find the following generalization of this type for the
converse Hölder inequality.

Theorem 8.24 Let L satisfy conditions L1 and L2 and let A be an isotonic linear func-
tional. Let p > 1, q = p/(p− 1), and w, f ,g ≥ 0 on E with w f p, wgq, w f g ∈ L. If
0 < m ≤ f (x)g−q/p(x) ≤ M for x ∈ E, then

K(p,m,M)A
1
p (wf p)A

1
q (wgq) ≤ A(w fg) (8.63)

where K(p,m,M) is a constant defined as

K(p,m,M) = |p| 1
p |q| 1

q
(M−m)

1
p |mMp−Mmp| 1

q

|Mp −mp| . (8.64)

If p < 0 or 0 < p < 1, then the reverse inequality in (8.63) holds, provided either A(wf p) >
0 or A(wgq) > 0.

In the sequel, we present a refinement of the converse Hölder inequality, and, as its
consequence – a refinement of the converse Beckenbach inequality. We consider the
Minkowski inequality for infinitely many functions and for functionals, state its converse
and give refinements of both variants of the converse Minkowski inequality. Finally, ob-
tained results are applied to integral mixed means.

The starting point of this consideration is Theorem 1.31, cited in the introductory part
and for the sake of simplicity is again cited here, in a more suitable form.

Theorem 8.25 If  is a convex function on an interval I ⊆ R, x = (x1, . . . ,xn) ∈ In (n ≥
2), p and q are positive n-tuples such that pi ≥ qi for all i = 1,2, . . . ,n, Pn = n

i=1 pi,
Qn = n

i=1 qi, then

n


i=1

pi(xi)−Pn

(
1
Pn

n


i=1

pixi

)
≥

n


i=1

qi(xi)−Qn

(
1
Qn

n


i=1

qixi

)
≥ 0. (8.65)
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Furthermore, let us recall the AG inequality in the following form.

Proposition 8.1 (AG inequality) Let a,b be positive real numbers. If  ,  are positive
real numbers such that  + = 1, then

a+b≥ ab . (8.66)

If  < 0 or  > 1, then the reversed inequality in (8.66) holds.

The following theorem contains, as the main result here, a refinement of the converse
Hölder inequality.

Theorem 8.26 Let L satisfy L1, L2 on a nonempty set E and let A be a positive linear
functional. Let p ∈ R, q = p

p−1 , and w, f ,g ≥ 0 on E with w f p, wgq, w f g ∈ L.

Let m,M be such that 0 < m ≤ f (x)g−q/p(x) ≤ M for x ∈ E.
If p > 1, then

A(w fg) ≥ K(p,m,M)A
1
p (wf p)A

1
q (wgq)+(gq, f g)N(p,m,M) (8.67)

≥ K(p,m,M)A
1
p (wf p)A

1
q (wgq), (8.68)

where

K(p,m,M) = |p| 1
p |q| 1

q
(M−m)

1
p |mMp−Mmp| 1

q

|Mp−mp| ,

N(p,m,M) =
mp +Mp−2

(
m+M

2

)p

Mp −mp

and

(gq, f g) = A

(
w

(
M−m

2
gq−

∣∣∣∣ f g− m+M
2

gq

∣∣∣∣))
.

If 0 < p < 1 and A(wgq) > 0, or p < 0 and A(wf p) > 0, then the reversed inequalities in
(8.67) and (8.68) hold.

Proof. Putting in (8.65) p1 =  , p2 =  where  and  are positive real numbers such
that  + = 1, q1 = q2 = min{,}, (x) = xp, p > 1, we have:

(x+y)p ≤ xp +yp−min{,}
(

xp + yp−2

(
x+ y

2

)p)
. (8.69)

Let h be a function in L such that 0 < m ≤ h(x) ≤ M for x ∈ E , m �= M, and define 
and  as follows:

(x) =
M−h(x)
M−m

,  (x) =
h(x)−m
M−m

.

Obviously, (x)+ (x) = 1, h(x) = (x)m+ (x)M. Putting in (8.69): x = m, y = M,
and above-defined (x) and  (x), we have

hp(x) ≤ M−h(x)
M−m

mp +
h(x)−m
M−m

Mp−min{(x), (x)}
(

mp +Mp−2

(
m+M

2

)p)
.
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Multiplying that inequality with k(x) ≥ 0 and using linear functional A we obtain:

A(khp) ≤ mp

M−m
(MA(k)−A(kh))+

Mp

M−m
(A(kh)−mA(k))

−A(kmin{,})
(

mp +Mp−2

(
m+M

2

)p)
.

Using formula min{,} = 1
2 ( + −| −|), putting h = f g−

q
p , k = wgq, where 1

p +
1
q = 1 after multiplying with M−m we get

(M−m)A(wf p)+ (mMp−Mmp)A(wgq)

+A

(
w

(
M−m

2
gq−

∣∣∣∣ f g− m+M
2

gq

∣∣∣∣))[
mp +Mp−2

(
m+M

2

)p]
≤ (Mp −mp)A(w fg). (8.70)

In the following text, the term A

(
w

(
M−m

2
F −

∣∣∣∣G− m+M
2

F

∣∣∣∣))
is denoted by

(F,G).
Using AG inequality (8.66) with  = 1

p > 0,  = 1
q > 0, a = p(M−m)A(wf p)≥ 0 and

b = q(mMp−Mmp)A(wgq) ≥ 0 we obtain:

(M−m)A(wf p)+ (mMp−Mmp)A(wgq)

=
p
p
(M−m)A(wf p)+

q
q

(mMp −Mmp)A(wgq)

≥ p
1
p q

1
q (M−m)

1
p (mMp −Mmp)

1
q A

1
p (wf p)A

1
q (wgq). (8.71)

Combining (8.70) and (8.71) and rearranging, we finally have

p
1
p q

1
q (M−m)

1
p (mMp −Mmp)

1
q A

1
p (wf p)A

1
q (wgq)

+(gq, f g)
[
mp +Mp−2

(
m+M

2

)p]
≤ (Mp −mp)A(w fg).

If p > 1, then Mp−mp > 0, and after dividing with Mp −mp we get

K(p,m,M)A
1
p (wf p)A

1
q (wgq)+(gq, f g)N(p,m,M) ≤ A(w fg), (8.72)

where K(p,m,M) is a constant from (8.64) and N(p,m,M) is a constant defined as

N(p,m,M) =
mp +Mp−2

(
m+M

2

)p

Mp−mp . (8.73)

Since the term (gq, f g)N(p,m,M) is non-negative for p > 1, inequality (8.72) is an
improvement of the converse Hölder inequality (8.63).

Let us discuss other cases for exponent p.
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Let p < 0. Then the function x → xp is also convex on (0,), so inequality (8.70)
holds. Also we want to use AG inequality, but now,  < 0, a < 0 and b ≤ 0 since in this
case mMp−Mmp ≤ 0. So, we have a+b = −(|a|+ |b|)≥−|a| |b| and

(M−m)A(wf p)+ (mMp−Mmp)A(wgq)

= −
(

1
p
|p(M−m)A(wf p)|+ 1

q
|q(mMp−Mmp)A(wgq)|

)
≥ −|p| 1

p |q| 1
q (M−m)

1
p |mMp −Mmp| 1

q A
1
p (wf p)A

1
q (wgq).

Combining above inequality with (8.70) and multiplying with −1 we obtain

|p| 1
p q

1
q (M−m)

1
p |mMp −Mmp| 1

q A
1
p (wf p)A

1
q (wgq)

−(gq, f g)
[
mp +Mp−2

(
m+M

2

)p]
≥ −(Mp−mp)A(w fg) = |Mp −mp|A(w fg).

A term mp + Mp − 2
(

m+M
2

)p
is positive because it is a consequence of the Jensen

inequality for a strictly convex function x → xp, p < 0. After dividing with |Mp −mp| =
−(Mp−mp) we obtain

K(p,m,M)A
1
p (wf p)A

1
q (wgq)+(gq, f g)N(p,m,M) ≥ A(w fg). (8.74)

Let us point out that in this case the factor N(p,m,M) is negative.
If 0 < p < 1, then x → xp is concave on [0,) and in (8.70) reversed sign holds. Using

AG inequality for  = 1
p > 1,  = 1

q < 0, a = p(M−m)A(wf p) ≥ 0 and b = q(mMp −
Mmp)A(wgq) = |q| · |mMp−Mmp|A(wgq) ≥ 0 we obtain:

p
1
p |q| 1

q (M−m)
1
p |mMp−Mmp| 1

q A
1
p (wf p)A

1
q (wgq)

+ (gq, f g)
[
mp +Mp−2

(
m+M

2

)p]
≥ (Mp−mp)A(w fg).

In this case Mp−mp > 0 and dividing above inequality with Mp−mp we obtain (8.74).
Let us mention that in this case mp +Mp−2

(
m+M

2

)p
is negative, so the factor N(p,m,M)

is negative. �

One of the numerous generalizations of the Hölder inequality is the well-known Beck-
enbach inequality ([214]). Here we pay attention to the converse Beckenbach inequality.
In [157] the following result (slightly modified) is given.

Theorem 8.27 Suppose that 1
p + 1

q = 1, a,b,c,xi,yi > 0 and zi =
(ayi

b

)q/p
, (i = 1,2, . . . ,n).

Let there exist positive numbers m and M such that

m ≤
(a

b

)q/p ≤ M and m ≤ xi

yq/p
i

≤ M, i = 1,2, . . . ,n.
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If p > 1, then (
a+ c

n


i=1

xp
i

) 1
p

b+ c
n


i=1

xiyi

≤ 1
K(p,m,M)

(
a+ c

n


i=1

zp
i

) 1
p

b+ c
n


i=1

ziyi

. (8.75)

If p < 1 (p �= 0), the reverse inequality holds in (8.75).

The following theorem provides a refinement of the above-mentioned converse Beck-
enbach inequality.

Theorem 8.28 Suppose that assumptions of Theorem 8.27 hold. If p > 1, then(
a+ c

n


i=1

xp
i

) 1
p

b+ c
n


i=1

xiyi

≤ 1
K(p,m,M)

(
a+ c

n


i=1

zp
i

) 1
p

b+ c
n


i=1

ziyi

⎛⎜⎜⎜⎝1− N(p,m,M)

b+ c
n


i=1

xiyi

⎞⎟⎟⎟⎠

≤ 1
K(p,m,M)

(
a+ c

n


i=1

zp
i

) 1
p

b+ c
n


i=1

ziyi

,

where

=
M−m

2

(
a−

q
p bq + c

n


i=1

yq
i

)
−
∣∣∣∣b− m+M

2aq/pb−q

∣∣∣∣− c
n


i=1

∣∣∣∣xiyi− m+M
2

yq
i

∣∣∣∣
and K(p,m,M) is defined as in (8.64). If p < 1 (p �= 0), the reverse inequalities hold.

Proof. Let p > 1. From equality q
p +1 = q we have(ayi

b

) q
p
yi =

(a
b

) q
p
yq
i ,

and using that equality we obtain(
a+ c

n


i=1

zp
i

) 1
p

b+ c
n


i=1

ziyi

=

(
a+

(a
b

)q
c

n


i=1

yq
i

) 1
p

b+
(a

b

) q
p
c

n


i=1

yq
i

=

(
a−

q
p bq + c

n


i=1

yq
i

)− 1
q

. (8.76)
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The product

(
a+ c

n


i=1

xp
i

) 1
p
(

a−
q
p bq + c

n


i=1

yq
i

) 1
q

is one side of the Hölder inequality

for two sequences: (a
1
p ,x1, . . . ,xn) and (a−

1
p b,y1, . . . ,yn) with weights (1,c, . . . ,c). Using

inequality (8.67) we get(
a+ c

n


i=1

xp
i

) 1
p
(

a−
q
p bq + c

n


i=1

yq
i

) 1
q

≤ 1
K(p,m,M)

(
b+ c

n


i=1

xiyi− ·N(p,m,M)

)
,

where K and N are defined in Theorem 8.26 and  is defined in Theorem 8.28. Dividing
the above inequality with (b+ cn

i=1 xiyi)(a−q/pbq + cn
i=1 yq

i )
1/q and using result (8.76),

we get the desired improvement. �

Now we investigate the converseMinkowski inequality for functionals and the converse
of the continuous form of the Minkowski inequality. In [177, p. 116] one can find the
following form of the converse Minkowski inequality for functionals.

Theorem 8.29 Let A, p,q,w, f ,g be as in Theorem 8.26 with additional property w( f +
g)p ∈ L. Let m and M be such that 0 < m < f (x)( f (x) + g(x))−1 ≤ M and 0 < m <
g(x)( f (x)+g(x))−1 ≤ M, for x ∈ E.

If p > 1, then

A
1
p (w( f +g)p) ≥ K(p,m,M) ·

(
A

1
p (wf p)+A

1
p (wgp)

)
, (8.77)

where K(p,m,M) is defined as in (8.64).
If 0 < p < 1 or if p < 0, then the reverse inequality in (8.77) holds, provided that

A(w( f +g)p) > 0, for p < 0.

Using the improvement of the converse Hölder inequality, we can prove the following
improvement of the converse Minkowski inequality for functionals.

Theorem 8.30 Let the assumptions of Theorem 8.29 be satisfied. Then for p > 1

A
1
p (w( f +g)p) ≥ K(p,m,M)

(
A

1
p (wf p)+A

1
p (wgp)

)
(8.78)

+N(p,m,M)
(( f +g)p, f ( f +g)p−1)+(( f +g)p,g( f +g)p−1)

A1− 1
p (w( f +g)p)

,

and for p < 1 (p �= 0) the reversed inequality holds.

Proof. Let p > 1. Writing A(w( f +g)p) as

A(w( f +g)( f +g)p−1) = A(wf ( f +g)p−1 +wg( f +g)p−1)

and using inequality (8.67) we obtain

A(w( f +g)p) = A(wf ( f +g)p−1)+A(wg( f +g)p−1)

≥ K(p,m,M)A
1
p (wf p)A

1
q (w( f +g)p)+(( f +g)p, f ( f +g)p−1)N(p,m,M)

+K(p,m,M)A
1
p (wgp)A

1
q (w( f +g)p)+(( f +g)p,g( f +g)p−1)N(p,m,M)
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= K(p,m,M)A
1
q (w( f +g)p)

(
A

1
p (wf p)+A

1
p (wgp)

)
+N(p,m,M)

(
(( f +g)p, f ( f +g)p−1)+(( f +g)p,g( f +g)p−1)

)
.

Dividing by A
1
q (w( f +g)p) we get desired result.

If p > 1, then the second term in the sum on the right-hand side in (8.78) is non-negative
and inequality (8.78) is a refinement of the known converse (8.77). Similar proof holds for
p < 1, (p �= 0). �

The previous investigation does not cover the so-called Minkowski integral inequality.
Let (X ,X ,) and (Y,Y ,) be two measure spaces with  -finite measures  and  re-
spectively. Let f be a non-negative function on X ×Y which is integrable with respect to
the measure × .

If p ≥ 1, then

[∫
X

(∫
Y

f (x,y)d(y)
)p

d(x)
] 1

p

≤
∫
Y

(∫
X

f p(x,y)d(x)
) 1

p

d(y). (8.79)

The above result is also called “the continuous form of the Minkowski inequality” or
“the Minkowski inequality for infinitely many functions” and, for example, it can be found
in [128, p. 41]. Considering the proof of this inequality we can conclude that there exist a
related result for other values of the exponent p (see [87]).

If 0 < p < 1 and

∫
X

(∫
Y

f (x,y)d(y)
)p

d(x) > 0,
∫
Y

f (x,y)d(y) > 0,(−a.e.) (8.80)

then the reverse inequality holds.

If p < 0 and the above-mentioned assumptions (8.80) hold as well as the additional
one: ∫

X
f p(x,y)d(x) > 0 (−a.e.), (8.81)

then the reverse inequality holds.

As we know, in the literature there is no result corresponding to the converse of the
above mentioned results. In the following theorem we state a converse of that variant of
the Minkowski inequality.

Theorem 8.31 Let (X ,X ,) and (Y,Y ,) be two measure spaces with  -finite mea-
sures  and  respectively. Let f be a non-negative function on X ×Y which is integrable
with respect to the measure × .
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If 0 < m ≤ f (x,y)∫
Y f (x,y)d(y)

≤ M for all x ∈ X, y ∈ Y , then for p ≥ 1

[∫
X

(∫
Y

f (x,y)d(y)
)p

d(x)
] 1

p

≥ K(p,m,M)
∫
Y

(∫
X

f p(x,y)d(x)
) 1

p

d(y)+N(p,m,M)
[∫

X
Hp(x)d(x)

] 1−p
p

1 (8.82)

≥ K(p,m,M)
∫
Y

(∫
X

f p(x,y)d(x)
) 1

p

d(y), (8.83)

where K(p,m,M) is defined with (8.64), N(p,m,M) is defined with (8.73), H(x) =∫
Y f (x,y)d(y) and

1 =
∫
Y

(∫
X

(
m−M

2
Hp(x)−| f (x,y)Hp−1(x)− m+M

2
Hp(x)|

)
d(x)

)
d(y).

If 0 < p < 1 with (8.80) or p < 0 with (8.80) and (8.81), then the reversed inequality holds.

Proof. Let us denote

H(x) =
∫
Y

f (x,y)d(y).

Using Fubini’s theorem we get∫
X

(∫
Y

f (x,y)d(y)
)p

d(x) =
∫

X
Hp(x)d(x)

=
∫

X

(∫
Y

f (x,y)d(y)
)

Hp−1(x)d(x)

=
∫
Y

(∫
X

f (x,y)Hp−1(x)d(x)
)

d(y).

Using (8.68) for functional A() =
∫
X (x)d(x) we get∫

Y

(∫
X

f (x,y)Hp−1(x)d(x)
)

d(y)

≥ K(p,m,M)
∫
Y

(∫
X

f p(x,y)d(x)
)1/p(∫

X
Hp(x)d(x)

) p−1
p

d(y)+N(p,m,M)1

≥ K(p,m,M)
∫
Y

(∫
X

f p(x,y)d(x)
)1/p(∫

X
Hp(x)d(x)

) p−1
p

d(y).

Dividing by

(∫
X

Hp(x)d(x)
) p−1

p

we get inequalities (8.82) and (8.83). �
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8.4.1 Application to mixed means

Let r,s be two positive numbers, r < s. Let us put p = s
r and f → f r in inequalities (8.79)

and (8.83). After powering by 1
r and dividing with ((X))1/s and ((Y ))1/r we get the

following relations⎡⎢⎣
∫
X

(∫
Y f r(x,y)d(y)

(Y )

) s
r
d(x)

(X)

⎤⎥⎦
1
s

≤

⎡⎢⎣
∫
Y

(∫
X f s(x,y)d(x)

(X)

) r
s
d(y)

(Y )

⎤⎥⎦
1
r

(8.84)

and⎡⎢⎣
∫
X

(∫
Y f r(x,y)d(y)

(Y )

) s
r
d(x)

(X)

⎤⎥⎦
1
s

≥ K
1
r

( s
r
,m,M

)⎡⎢⎣
∫
Y

(∫
X f s(x,y)d(x)

(X)

) r
s
d(y)

(Y )

⎤⎥⎦
1
r

, (8.85)

where in (8.85) m and M are real numbers such that 0 < m≤ f r(x,y)∫
Y f r(x,y)d(y)

≤ M. Using

notation

M[r]( f ,) =

⎧⎪⎨⎪⎩
(∫

X f r(x)d(x)
(X)

) 1
r
; r �= 0

exp
(∫

X log f (x)d(x)
(X)

)
; r = 0

in inequalities (8.84) and (8.85) we obtain the following theorem.

Theorem 8.32 Let the assumptions of Theorem 8.31 be valid. If r < s, r,s �= 0, then

M[s]
(
M[r]( f ,),

)
≤ M[r]

(
M[s]( f ,),

)
. (8.86)

If m and M are real numbers such that 0 < m ≤ f r(x,y)∫
Y f r(x,y)d(y)

≤ M, then

M[s]
(
M[r]( f ,),

)
≥ K

1
r

( s
r
,m,M

)
·M[r]

(
M[s]( f ,),

)
, (8.87)

where K is defined by (8.64)

Making use of (8.82), the refinement of the above mixed mean inequality can be ob-
tained. These are inequalities for mixed means, the second one is a converse of the first
inequality. Discrete version of (8.86) is given in [151, p. 109], while its converse is a new
result. It is instructive to calculate mixed means for some special spaces and measures.

Corollary 8.8 Let a,b,,,r,s ∈ R be such that a < b, r < s, , > 0, r,s �= 0. If g :
[a,b] → R is a non-negative measurable function, then the following inequality holds:[

1
(b−a)

∫ b

a
(y−a)−1

(
1

(y−a)

∫ y

a
gr(t)(t−a)−1dt

) s
r

dy

] 1
s

(8.88)

≤
[

1
(b−a)

∫ b

a
(y−a)−1

(
1

(y−a)

∫ y

a
gs(t)(t−a)−1dt

) r
s

dy

] 1
r

.
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Furthermore, if m and M are real numbers such that for x ∈ [0,1], y ∈ [a,b]

0 < m ≤ gr(a+ x(y−a))∫ b
a gr(a+ x(y−a))(y−a)−1dy

≤ M,

then [
1

(b−a)

∫ b

a
(y−a)−1

(
1

(y−a)

∫ y

a
gr(t)(t −a)−1dt

) s
r

dy

] 1
s

(8.89)

≥ K
1
r (

s
r
,m,M) ·

[
1

(b−a)

∫ b

a
(y−a)−1

(
1

(y−a)

∫ y

a
gs(t)(t−a)−1dt

) r
s

dy

] 1
r

.

Proof. Let us put in (8.86) the following: X = [0,1], Y = [a,b], d(x) = x−1dx and
d(y) = (y−a)−1dy, , ∈ R\{0}, f (x,y) = g(a+ x(y−a)) where g is a non-negative
measurable function. Then (Y ) = 1

 (b−a) and (X) = 1
 .

After substitutions, inequality (8.84) becomes

[
s/r

(b−a)s/r

∫ 1

0

(∫ b

a
gr(a+ x(y−a))(y−a)−1dy

) s
r

x−1dx

] 1
s

(8.90)

≤
[

r/s
(b−a)

∫ b

a

(∫ 1

0
gs(a+ x(y−a))x−1dx

) r
s

(y−a)−1dy

] 1
r

.

Putting in the right-hand side of the inequality a new variable t = a+ x(y−a), we get that
the right-hand side has a form

[
r/s

(b−a)

∫ b

a

(
1

(y−a)

∫ y

a
gs(t)(t−a)−1dt

) r
s

(y−a)−1dy

] 1
r

. (8.91)

The same substitution is done in the left-hand side of (8.90) and we get that the left-hand
side is equal to:

[
s/r

(b−a)s/r

∫ 1

0
x−1

(
1
x

∫ a+x(b−a)

a
gr(t)(t−a)−1dt

) s
r

dx

] 1
s

.

By the change of the variable y = a+ x(b−a) in outer integral, it is further equal to

[
s/r

(b−a)s/r

∫ b

a

(y−a)−1

(b−a)−1

(
(b−a)

(y−a)

∫ y

a
gr(t)(t −a)−1dt

) s
r dy
b−a

] 1
s

.
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Finally, we get[
1

(b−a)

∫ b

a
(y−a)−1

(
1

(y−a)

∫ y

a
gr(t)(t−a)−1dt

) s
r

dy

] 1
s

(8.92)

≤
[

1
(b−a)

∫ b

a
(y−a)−1

(
1

(y−a)

∫ y

a
gs(t)(t−a)−1dt

) r
s

dy

] 1
r

,

where , > 0, r < s, r,s �= 0.
From (8.85), using the same substitutions, the converse of (8.88) follows. �

Let us point out that inequality (8.88) was firstly obtained in [51, Theorem 3] and it
was used for proving the well-known Hardy’s inequality. Also, let us mention that the
above inequalities about mixed means can be refined like it was done with the inequalities
in previous sections.



Chapter9
Further improvements and
generalizations of the
Jessen-Mercer inequality

As we have already comprehended, Lemma 1.2 has a great impact considering the im-
provements and generalizations of a variety of the Jensen-type inequalities. We proceed
with the applications of this important monotonicity property in a similar manner. Thus
in the first section of this chapter, two improvements of the Jessen-Mercer inequality are
presented, and in the second section - a generalization of the Jessen-Mercer inequality (as
a consequence of the analogous one for the Jensen inequality) on convex hulls, with an im-
provement obtained by means of Lemma 1.2. What follows are the k-dimensional variant
of the Hammer-Bullen inequality, as well as an improvement of the classical Hermite-
Hadamard inequality. Two functionals (Jessen-Mercer differences) are consequently de-
fined and Lagrange and Cauchy type mean value theorems are proved in this setting, too.
Hence it was possible to construct a large family of functions which are n-exponentially
convex and exponentially convex, which is finally presented at the end of the chapter.

Most of the results presented in this chapter were previously published in [132].

265
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9.1 Improvements of the Jessen-Mercer inequality

Jensen-Mercer inequality (1.12) generalized by means of a positive linear functional is
called Jessen-Mercer’s inequality ([49]) and was cited in Theorem 1.13 in the introductory
part of the monograph: for a positive normalized linear functional A, for L satisfying L1
and L2 and for a continuous convex function  defined on [m,M], the inequality

 (m+M−A( f )) ≤  (m)+ (M)−A( ( f )) (9.1)

holds for all f ∈ L, such that  ( f ) , (m+M− f )∈ L (so that m≤ f (t)≤M for all t ∈ E),
and is reversed if  is concave.

Remark 9.1 In fact, to be more specific, the following series of inequalities was proved:

 (m+M−A( f )) ≤ A( (m+M− f ))

≤ M−A( f )
M−m

(M)+
A( f )−m
M−m

(m)

≤  (m)+ (M)−A( ( f )) . (9.2)

Furthermore, according to [102] and already cited Theorem 8.5, it was proved that if
 is a convex function defined on [m,M], then for all g ∈ L such that  (g) ∈ L we have
A(g) ∈ [m,M] and the following inequality holds:

A( (g)) ≤ M−A(g)
M−m

 (m)+
A(g)−m
M−m

 (M)−A(g̃) , (9.3)

where

g̃ =
1
2
− 1

M−m

∣∣∣∣g− m+M
2

∣∣∣∣ ,  =  (m)+ (M)−2
(

m+M
2

)
.

Utilizing inequality (9.3) and Lemma 8.2, which is the generalization of Lemma 1.2
on convex sets, we will refine the series of inequalities (9.2).

The following two theorems are the main results.

Theorem 9.1 Let L satisfy L1, L2, L3 on a nonempty set E, and let A be a positive
normalized linear functional. If  is a continuous convex function on [m,M], then for all
f ∈ L such that  ( f ) , (m+M− f ) ∈ L, we have

 (m+M−A( f )) ≤ A((m+M− f ))

≤ M−A( f )
M−m

 (M)+
A( f )−m

M−m
 (m)−A

(
1
2
− 1

M−m

∣∣∣∣ f−m+M
2

∣∣∣∣)

≤  (m)+ (M)−A( ( f ))−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]


≤  (m)+ (M)−A( ( f )) ,
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where

 =  (m)+ (M)−2
(

m+M
2

)
. (9.4)

Proof. Using the first inequality from the series (9.2) and applying inequality (9.3) ,
firstly to the function g = m+M− f , and then to the function f , we obtain

 (m+M−A( f ))
≤ A((m+M− f ))

≤ M−A( f )
M−m

 (M)+
A( f )−m
M−m

 (m)−A

(
1
2
− 1

M−m

∣∣∣∣ f − m+M
2

∣∣∣∣)

=  (m)+ (M)−
[
M−A( f )

M−m
 (m)+

A( f )−m
M−m

 (M)
]
−A

(
1
2
− 1

M−m

∣∣∣∣ f−m+M
2

∣∣∣∣)

≤  (m)+ (M)−A( ( f ))−2A

(
1
2
− 1

M−m

∣∣∣∣ f − m+M
2

∣∣∣∣)

=  (m)+ (M)−A( ( f ))−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]


≤  (m)+ (M)−A( ( f )) .

The last inequality is a simple consequence of the easily provable facts that  =  (m)+
 (M)−2

(
m+M

2

)≥ 0 and 1− 2
M−mA

(∣∣ f − m+M
2

∣∣)≥ 0. �

Theorem 9.2 Let L satisfy L1, L2, L3 on a nonempty set E, and let A be a positive
normalized linear functional. If  is a continuous convex function on [m,M], then for all
f ∈ L such that  ( f ) , (m+M− f ) ∈ L, we have

 (m+M−A( f ))

≤ M−A( f )
M−m

 (M)+
A( f )−m
M−m

 (m)−
(

1
2
− 1

M−m

∣∣∣∣A( f )− m+M
2

∣∣∣∣)

≤  (m)+ (M)−A(( f ))−
[
1− 1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣)]


≤  (m)+ (M)−A(( f ))−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]


≤  (m)+ (M)−A( ( f )) ,

where  is defined as in (9.4).

Proof. Inequality (9.3) provides:

A(( f )) ≤ M−A( f )
M−m

 (m)+
A( f )−m
M−m

 (M)−A

(
1
2
− 1

M−m

∣∣∣∣ f − m+M
2

∣∣∣∣) .

(9.5)
Let the functions p,q : [m,M] → R be defined by

p(t) =
M− t
M−m

, q(t) =
t−m
M−m

.
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For any t ∈ [m,M] we can write

(t) = (
M− t
M−m

m+
t−m
M−m

M) = (p(t)m+q(t)M).

By Lemma 8.2, for n = 2, it follows:

(t) ≤ p(t) (m)+q(t) (M)−min{p(t) ,q(t)} ,

where  =  (m)+ (M)−2
(

m+M
2

)
. Using (8.8) we can write it in the form

(t) ≤ M− t
M−m

 (m)+
t−m
M−m

 (M)−
(

1
2
− 1

M−m

∣∣∣∣t− m+M
2

∣∣∣∣) .

Substituting t ↔ A(g), where g ∈ L such that A(g) ∈ [m,M], we get

(A(g)) ≤ M−A(g)
M−m

 (m)+
A(g)−m
M−m

 (M)−
(

1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣) .

(9.6)
Now, applying inequality (9.6) to g = m+M− f (and using linearity and normality of A),
and then using inequality (9.5), we have

 (m+M−A( f ))

≤ M−A( f )
M−m

 (M)+
A( f )−m
M−m

 (m)−
(

1
2
− 1

M−m

∣∣∣∣A( f )− m+M
2

∣∣∣∣)

=  (m)+ (M)−
[
M−A( f )

M−m
 (m)+

A( f )−m
M−m

 (M)
]
−
(

1
2
− 1

M−m

∣∣∣∣A( f )−m+M
2

∣∣∣∣)

≤  (m)+ (M)−A(( f ))−A

(
1
2
− 1

M−m

∣∣∣∣ f − m+M
2

∣∣∣∣)

−
(

1
2
− 1

M−m

∣∣∣∣A( f )− m+M
2

∣∣∣∣)

=  (m)+ (M)−A(( f ))−
[
1− 1

M−m

(
A

(∣∣∣∣ f−m+M
2

∣∣∣∣)+
∣∣∣∣A( f )−m+M

2

∣∣∣∣)]


≤  (m)+ (M)−A(( f ))−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]
 .

The last inequality is obtained applying Jessen’s inequality to the continuous and convex
function |x| so that∣∣∣∣A( f )− m+M

2

∣∣∣∣ =
∣∣∣∣A(

f − m+M
2

)∣∣∣∣≤ A

(∣∣∣∣ f − m+M
2

∣∣∣∣) .

�

Using Theorem 9.2 we can get an upper bound for the difference A( ( f ))− (A( f )) ,
obtained in [174].
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Corollary 9.1 Let L satisfy L1, L2, L3 on a nonempty set E, and let A be a positive
normalized linear functional. If  is a continuous convex function on [m,M], then for all
f ∈ L such that  ( f ) , (m+M− f ) ∈ L, we have

A( ( f ))− (A( f )) ≤ 1
M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣) ,

where  is defined as in (9.4).

Proof. Theorem 9.2 gives us

A( ( f )) ≤  (m)+ (M)− (A( f )−m+M)

−
[
1− 1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣)]
 . (9.7)

Since the function  is convex, it follows that

 (m+M−A( f ))+ (A( f )) ≥ 2
(

m+M
2

)
. (9.8)

Combining inequalities (9.7) and (9.8) we obtain

A( ( f ))− (A( f ))
≤  (m)+ (M)− [ (m+M−A( f ))+ (A( f ))]

−
[
1− 1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣)]


≤  (m)+ (M)−2
(

m+M
2

)
−
[
1− 1

M−m

(
A

(∣∣∣∣ f−m+M
2

∣∣∣∣)+
∣∣∣∣A( f )−m+M

2

∣∣∣∣)]


=
1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣A( f )− m+M

2

∣∣∣∣) .

�

9.2 Generalization on convex hulls

We present a generalization of the Jessen-Mercer inequality for convex functions on convex
hulls in R

k and give its improvement. From these results we obtain a k-dimensional variant
of the Hammer-Bullen inequality and an improvement of the classical Hermite-Hadamard
inequality.

Let’s notice that  from (9.3) is equal to S2
(m,M) = f (m)+ f (M)−2 f

(
m+M

2

)
.

The following variant of Jensen’s inequality (generalization on convex hulls) was proved
by A. Matković and J. Pečarić in [136].
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Theorem 9.3 Let U be a convex subset in R
k,x1, . . . ,xn ∈U and y1, . . . ,ym ∈ co({x1, . . . ,

xn}). If  is a convex function on U, then the inequality


(
n

i=1 pixi−m
j=1 wjy j

Pn−Wm

)
≤ n

i=1 pi (xi)−m
j=1 wj

(
y j

)
Pn−Wm

(9.9)

holds for all positive real numbers p1, . . . , pn and w1, . . . ,wm satisfying the condition

pi ≥Wm, i = 1, . . . ,n,

where Pn =
n


i=1

pi and Wm =
m


j=1

wj.

Our following theorem generalizes and improves Theorem 9.3.

Theorem 9.4 Let L satisfy properties L1, L2, L3 on a nonempty set E, A be a posi-
tive linear functional on L and Ã be defined as in (8.21). Let x1, . . . ,xn ∈ R

k and K =
co({x1, . . . ,xn}). Let  be a convex function on K and 1, . . . ,n be barycentric coordi-
nates over K. Then for all g ∈ Lk such that g(E)⊂ K and (g),i(g) ∈ L, i = 1, . . . ,n, and
positive real numbers p1, . . . , pn, with Pn = n

i=1 pi, satisfying the condition

pi ≥ A(1) , i = 1, . . . ,n, (9.10)

we have



(
n

i=1 pixi − Ã(g)
Pn−A(1)

)

≤ n
i=1 pi (xi)−n

i=1 A(i(g)) (xi)−mini {pi −A(i(g))}Sn
(x1, . . . ,xn)

Pn−A(1)

≤ n
i=1 pi (xi)−A((g))−Sn

(x1, . . . ,xn) [mini {pi −A(i(g))}+A(mini {i(g)})]
Pn−A(1)

.

(9.11)

Proof. For each t ∈ E we have g(t) ∈ K. Using barycentric coordinates we have

i(g(t)) ≥ 0, i = 1, . . . ,n,
n


i=1

i(g(t)) = 1 and

g(t) =
n


i=1

i(g(t))xi.

Since  is convex on K, it follows that

(g(t)) ≤
n


i=1

i(g(t))(xi)−min
i
{i(g(t))}Sn

(x1, . . . ,xn). (9.12)
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Applying positive linear functional A to (9.12) we get

A((g)) ≤
n


i=1

A(i(g))(xi)−A

(
min

i
{i(g)}

)
Sn
(x1, . . . ,xn),

where
n


i=1

A(i(g)) = A

(
n


i=1

i(g)

)
= A(1)

and
A(1) ≥ A(i(g)) ≥ 0, i = 1, . . . ,n.

Also we have

Ã(g) =
n


i=1

A(i(g))xi.

Now we can write

n
i=1 pixi − Ã(g)
Pn−A(1)

=
1

Pn−A(1)

(
n


i=1

pixi −
n


i=1

A(i(g))xi

)

=
1

Pn−A(1)

n


i=1

(pi−A(i(g)))xi.

We have
1

Pn−A(1)

n


i=1

(pi −A(i(g))) = 1

and
1

Pn−A(1)
(pi −A(i(g))) ≥ 0, i = 1, . . . ,n,

since
pi ≥ A(1) ≥ A(i(g)) , i = 1, . . . ,n.

Therefore, expression
n

i=1 pixi − Ã(g)
Pn−A(1)

is a convex combination of vectors x1, . . . ,xn and

belongs to K.
Since  is convex on K, we have



(
n

i=1 pixi − Ã(g)
Pn−A(1)

)

= 

(
1

Pn−A(1)

n


i=1

(pi−A(i(g)))xi

)

≤ 1
Pn−A(1)

n


i=1

(pi−A(i(g))) (xi)−min
i

{
pi −A(i(g))

Pn−A(1)

}
Sn
(x1, . . . ,xn)

=
n

i=1 pi (xi)−n
i=1 A(i(g)) (xi)−mini {pi−A(i(g))}Sn

(x1, . . . ,xn)
Pn−A(1)



272 9 IIMPROVEMENTS OF THE JESSEN-MERCER INEQUALITY

≤ n
i=1 pi (xi)−A((g))−Sn

(x1, . . . ,xn) [mini {pi −A(i(g))}+A(mini {i(g)})]
Pn−A(1)

.

�

The following corollary shows that Theorem 9.4 is also a generalization of Theorem
9.2 on convex hulls.

Corollary 9.2 Let L satisfy properties L1, L2, L3 on a nonempty set E, and A be a positive
normalized linear functional on L. Let  be a convex function on an interval I = [m,M] ⊂
R. Then for all g ∈ L such that g(E) ⊂ I and (g) ∈ L, we have

 (m+M−A(g))

≤ A(g)−m
M−m

(m)+
M−A(g)
M−m

(M)−
(

1
2
− 1

M−m

∣∣∣∣A(g)−m+M
2

∣∣∣∣)S2
(m,M)

≤ (m)+(M)−A((g))−
[
1− 1

M−m

(∣∣∣∣A(g)−m+M
2

∣∣∣∣+A

(∣∣∣∣g−m+M
2

∣∣∣∣))]
S2
(m,M).

(9.13)

Proof. For each t ∈ E we have g(t) ∈ I.
Since interval I = [m,M] is 1-simplex with vertices m and M, then the barycentric

coordinates have the special form:

1(g(t)) =
M−g(t)
M−m

and 2(g(t)) =
g(t)−m
M−m

.

Applying functional A we have

A(1(g)) =
M−A(g)
M−m

and A(2(g)) =
A(g)−m
M−m

. (9.14)

Choosing n = 2, p1 = p2 = 1, x1 = m, x2 = M, it follows from (9.11) that

 (m+M−A(g))

≤ (m)+(M)−
[
M−A(g)
M−m

(m)+
A(g)−m
M−m

(M)
]

−
(

1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣)[
(m)+(M)−2

(
m+M

2

)]
=

A(g)−m
M−m

(m)+
M−A(g)
M−m

(M)−
(

1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣)S2
(m,M)

≤ (m)+(M)−A((g))

−
[
1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣+A

(
1
2
− 1

M−m

∣∣∣∣g− m+M
2

∣∣∣∣)]
S2
(m,M)

= (m)+(M)−A((g))−
[
1− 1

M−m

(∣∣∣∣A(g)−m+M
2

∣∣∣∣+A

(∣∣∣∣g−m+M
2

∣∣∣∣))]
S2
(m,M).

�
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Theorem 9.5 Let L satisfy properties L1, L2, L3 on a nonempty set E, A be a posi-
tive linear functional on L and Ã be defined as in (8.21). Let x1, . . . ,xn ∈ R

k and K =
co({x1, . . . ,xn}). Let  be a convex function on K and 1, . . . ,n barycentric coordinates
over K. Then for all g ∈ Lk such that g(E) ⊂ K and (g),i(g) ∈ L, i = 1, . . . ,n and pos-
itive real numbers p1, . . . , pn satisfying the conditions Pn−A(1) > 0, where Pn = n

i=1 pi,
and

n
i=1 pixi − Ã(g)

Pn−A(1)
∈ K, (9.15)

we have



(
n

i=1 pixi − Ã(g)
Pn−A(1)

)

≥
Pn

(
1
Pn
n

i=1 pixi

)
−A(1)

(
1

A(1) Ã(g)
)

Pn−A(1)

≥
Pn

(
1
Pn
n

i=1 pixi

)
−n

i=1 A(i(g)) (xi)+mini {A(i(g))}Sn
(x1, . . . ,xn)

Pn−A(1)
.

(9.16)

Proof. For each t ∈ E we have g(t) ∈ K. Using barycentric coordinates we have
i(g(t)) ≥ 0, i = 1, . . . ,n, n

i=1i(g(t)) = 1 and

g(t) =
n


i=1

i(g(t))xi.

Also we have

Ã(g) =
n


i=1

A(i(g))xi.

We can easily see that

1
A(1)

Ã(g) =
1

A(1)

n


i=1

A(i(g))xi ∈ K,

since
1

A(1)

n


i=1

A(i(g)) = 1 and
1

A(1)
A(i(g)) ≥ 0, i = 1, . . . ,n.

Since  is convex on K, then using Lemma 8.2


(

1
A(1)

Ã(g)
)
≤ 1

A(1)

n


i=1

A(i(g))(xi)−min
i

{
A(i(g))

A(1)

}
Sn
(x1, . . . ,xn). (9.17)
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Using reversed Jensen’s inequality (see [177, p. 83]) and (9.17) we have



⎛⎝Pn

(
1
Pn
n

i=1 pixi

)
−A(1)

(
1

A(1) Ã(g)
)

Pn−A(1)

⎞⎠
≥

Pn
(

1
Pn
n

i=1 pixi

)
−A(1)

(
1

A(1) Ã(g)
)

Pn−A(1)

≥
Pn

(
1
Pn
n

i=1 pixi

)
−A(1) 1

A(1) 
n
i=1 A(i(g)) (xi)+mini {A(i(g))}Sn

(x1, . . . ,xn)

Pn−A(1)
.

�

Remark 9.2 If positive real numbers p1, . . . , pn satisfy condition (9.10), then condition
(9.15) is also satisfied since K is a convex set. Hence (9.11) can be extended as follows:

Pn
(

1
Pn
n

i=1 pixi

)
−n

i=1 A(i(g)) (xi)+mini {A(i(g))}Sn
(x1, . . . ,xn)

Pn−A(1)

≤
Pn

(
1
Pn
n

i=1 pixi

)
−A(1)

(
1

A(1) Ã(g)
)

Pn−A(1)

≤ 

(
n

i=1 pixi − Ã(g)
Pn−A(1)

)

≤ n
i=1 pi (xi)−n

i=1 A(i(g)) (xi)−mini {pi −A(i(g))}Sn
(x1, . . . ,xn)

Pn−A(1)

≤ n
i=1 pi (xi)−A((g))−Sn

(x1, . . . ,xn) [mini {pi −A(i(g))}+A(mini {i(g)})]
Pn−A(1)

.

Corollary 9.3 Let L satisfy properties L1, L2, L3 on a nonempty set E, and A be a positive
normalized linear functional on L. Let  be a convex function on an interval I = [m,M] ⊂
R. Then for all g ∈ L such that g(E) ⊂ I and (g) ∈ L, we have

 (m+M−A(g))≥ 2
(

m+M
2

)
− (A(g))

≥ 2
(

m+M
2

)
−
[
M−A(g)
M−m

(m)+
A(g)−m
M−m

(M)
]

+
(

1
2
− 1

M−m

∣∣∣∣A(g)− m+M
2

∣∣∣∣)S2
(m,M). (9.18)

Proof. Choosing n = 2, x1 = m, x2 = M, p1 = p2 = 1 and using (9.14), the inequalities
in (9.18) easily follow from (9.16). �
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Corollary 9.4 Let L satisfy properties L1, L2, L3 on a nonempty set E, A be a positive
normalized linear functional on L and Ã be defined as in (8.21). Let  be a convex function
on k-simplex S = [v1,v2, . . . ,vk+1] in R

k and 1, . . . ,k+1 barycentric coordinates over S.
Then for all g ∈ Lk such that g(E) ⊂ S and (g) ∈ L we have

(k+1)
(

1
k+1 

k+1
i=1 vi

)−k+1
i=1 i(Ã(g)) (vi)+mini

{
i(Ã(g))

}
Sk+1
 (v1, . . . ,vk+1)

k

≤ (k+1)
( 1

k+1 
k+1
i=1 vi

)−(Ã(g))
k

≤ 

(
k+1

i=1 vi − Ã(g)
k

)

≤
k+1

i=1  (vi)−k+1
i=1 i(Ã(g)) (vi)−mini

{
1−i(Ã(g))

}
Sk+1
 (v1, . . . ,vk+1)

k

≤
k+1

i=1  (vi)−A((g))−Sk+1
 (v1, . . . ,vk+1)

[
mini

{
1−i(Ã(g))

}
+A(mini {i(g)})

]
k

.

(9.19)

Proof. Since barycentric coordinates 1, . . . ,k+1 over k-simplex S in R
k are nonneg-

ative linear polynomials, then A(i(g)) = i(Ã(g)), i = 1, . . . ,k+1.
Choosing xi = vi, i = 1, . . . ,k + 1 and p1 = p2 = · · · = pk+1 = 1, the inequalities in

(9.19) easily follow from (9.11) and (9.16). �

Remark 9.3 As a special case of Corollary 9.4, for k = 1, and if we take p and q as non-

negative real numbers such that A(g) =
pm+qM

p+q
, we get right hand side of the inequality

(2.3) in [101].

Remark 9.4 Using the same technique and the same special case as in Example 8.1 and
Remark 8.9, from (9.19) we get the same results, that is, the k-dimensional version of the
Hammer-Bullen inequality, namely

1
|S|

∫
S

f (t)dt − f (v∗) ≤ k
k+1

k+1


i=1

f (vi)− k
|S|

∫
S

f (t)dt,

and, as a special case in one dimension, an improvement of the classical Hermite-Hadamard
inequality:

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (t)dt ≤ f (a)+ f (b)

2
− 1

4
S2

f (a,b),

where S2
f (a,b) = f (a)+ f (b)−2 f

(
a+b

2

)
.
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9.2.1 Jessen-Mercer differences

Motivated by theorems 9.1 and 9.2, we define two functionals i : Lf → R, i = 1,2, by

1() =  (m)+ (M)− (m+M−A( f ))−A( ( f ))

−
[
1− 2

M−m
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)]
 (9.20)

and

2() =  (m)+ (M)− (m+M−A( f ))−A(( f ))

−
[
1− 1

M−m

(
A

(∣∣∣∣ f − m+M
2

∣∣∣∣)+
∣∣∣∣m+M

2
−A( f )

∣∣∣∣)]
 , (9.21)

where A, f and  are as in Theorem 9.1, Lf = { : I → R : ( f ),(m+M− f ) ∈ L},
[m,M] ⊆ I. Obviously, 1 and 2 are linear.

If  is additionally continuous and convex, then theorems 9.1 and 9.2 imply i( f ) ≥
0, i = 1,2.

In the following, with 0 we denote the function defined by 0 (x) = x2, on any domain
we need.

Now we provide Lagrange and Cauchy mean value type theorems regarding the func-
tionals i, i = 1,2.

Theorem 9.6 Let L satisfy L1, L2 and L3 on a nonempty set E, and let A be a positive
normalized linear functional on L. Let f ∈ L be such that 0 ∈ Lf , f (E) ⊆ [m,M] ⊆ I and
let  ∈C2(I) be such that  ∈ Lf . If 1 and 2 are linear functionals defined as in (9.20)
and (9.21), then there exist i ∈ [m,M], i = 1,2 such that

i() =
 ′′ (i)

2
i(0), i = 1,2.

Proof. We give the proof for the functional 1. Since  ∈ C2(I), there exist real
numbers a = min

x∈[m,M]
 ′′(x) and b = max

x∈[m,M]
 ′′(x). It is easy to show that the functions

1,2 defined by

1(x) =
b
2
x2 −(x), 2(x) = f (x)− a

2
x2

are continuous and convex, hence 1(1) ≥ 0, 1(2) ≥ 0. This implies

a
2
1(0) ≤1() ≤ b

2
1(0).

If 1(0) = 0, there is nothing to prove. Suppose 1(0) > 0. We have

a ≤ 21()
1(0)

≤ b.

Hence, there exists 1 ∈ [m,M] such that

1() =
 ′′(1)

2
1(0).

�
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Theorem 9.7 Let L satisfy L1, L2 and L3 on a non-empty set E, and let A be a positive
normalized linear functional on L. Let f ∈ L be such that 0 ∈ Lf , f (E) ⊆ [m,M] ⊆ I and
1,2 ∈ C2(I) such that 1,2 ∈ Lf . If 1 and 2 are linear functionals defined as in
(9.20) and (9.21), then there exist i ∈ [m,M], i = 1,2 such that

i(1)
i(2)

=
 ′′

1 (i)
 ′′

2 (i)
, i = 1,2,

provided that the denominators are non-zero.

Proof. We give the proof for the functional 1. Define 3 ∈C2([m,M]) by

3 = c11 − c22, where c1 = 1(2), c2 = 1(1).

Using Theorem 9.6, we get that there exists 1 ∈ [m,M] such that(
c1
 ′′

1 (1)
2

− c2
 ′′

2 (1)
2

)
1(0) = 0.

Since 1(0) �= 0, (otherwise we have a contradiction with 1(2) �= 0, by Theorem 9.6),
we obtain

1(1)
1(2)

=
 ′′

1 (1)
 ′′

2 (1)
.

�

We use an idea from [90] to give an elegant method of producing n-exponentially con-
vex and exponentially convex functions, applying the functionals 1 and 2 to a given
family of functions with the same property.

Theorem 9.8 Let i, i = 1,2, be linear functionals defined as in (9.20) and (9.21). Let
 = {s : s ∈ J}, where J is an interval in R, be a family of functions defined on an open
interval I such that ⊆ Lf and that the function s → [y0,y1,y2;s] is n-exponentially con-
vex in the Jensen sense on J for every three mutually different points y0,y1,y2 ∈ I. Then
s →i(s) is an n-exponentially convex function in the Jensen sense on J. If the function
s →i(s) is also continuous on J, then it is n-exponentially convex on J.

Proof. For i ∈ R, i = 1, . . . ,n and si ∈ J, i = 1, . . . ,n, we define the function  : I → R

by

(y) =
n


i, j=1

i j si+s j
2

(y).

Using the assumption that the function s → [y0,y1,y2;s] is n-exponentially convex in the
Jensen sense, we obtain

[y0,y1,y2; ] =
n


i, j=1

i j[y0,y1,y2; si+s j
2

] ≥ 0,
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which in turn implies that  is a convex (and continuous) function on I, and therefore
i() ≥ 0, i = 1,2. Hence

n


i, j=1

i ji( si+s j
2

) ≥ 0.

We conclude that the function s → i(s) is n-exponentially convex on J in the Jensen
sense. If the function s →i(s) is also continuous on J, then s →i(s) is n-exponentially
convex by definition. �

The first of the following two corollaries is an immediate consequence of Theorem 9.8.

Corollary 9.5 Let i, i = 1,2, be linear functionals defined as in (9.20) and (9.21). Let
 = {s : s ∈ J}, where J is an interval in R, be a family of functions defined on an open
interval I such that ⊆ Lf and that the function s → [y0,y1,y2;s] is exponentially convex
in the Jensen sense on J, for every three mutually different points y0,y1,y2 ∈ I. Then
s → i(s) is an exponentially convex function in the Jensen sense on J. If the function
s →i(s) is continuous on J, then it is exponentially convex on J.

Corollary 9.6 Let i, i = 1,2, be linear functionals defined as in (9.20) and (9.21). Let
 = {s : s ∈ J}, where J is an interval in R, be a family of functions defined on an open
interval I such that  ⊆ Lf and that the function s → [y0,y1,y2;s] is 2-exponentially
convex in the Jensen sense on J, for every three mutually different points y0,y1,y2 ∈ I.
Then the following statements hold:

(i) If the function s →i(s) is continuous on J, then it is 2-exponentially convex func-
tion on J. If s →i(s) is additionally strictly positive, then it is also log-convex on
J.

(ii) If the function s → i(s) is strictly positive and differentiable on J, then for every
s,q,u,v ∈ J, such that s ≤ u and q ≤ v, we have

s,q(i,) ≤ u,v(i,), i = 1,2, (9.22)

where

s,q(i,) =

⎧⎪⎨⎪⎩
(
i(s)
i(q)

) 1
s−q

, s �= q,

exp

(
d
dsi(s)
i(s)

)
, s = q,

(9.23)

for s,q ∈ (s,q(i,), i = 1,2, are the Stolarsky type means.)

Proof. (i) This is an immediate consequence of Theorem 9.8 and Remark 1.3.
(ii) Since by (i) the function s → i(s) is log-convex on J, that is, the function s →

logi(s) is convex on J, applying Proposition 1.2 we get

logi(s)− logi(q)
s−q

≤ logi(u)− logi(v)
u− v

(9.24)
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for s ≤ u, q ≤ v, s �= q, u �= v, and therefrom conclude that

s,q(i,) ≤ u,v(i,), i = 1,2.

Cases s = q and u = v follow from (9.24) as limit cases. �

Remark 9.5 Note that the results from Theorem 9.8, Corollary 9.5, Corollary 9.6 still
hold when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0, for a family of differ-
entiable functions s, such that the function s → [y0,y1,y2;s] is n-exponentially convex
in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen
sense), and furthermore, they still hold when all three points coincide for a family of twice
differentiable functions with the same property. The proofs are obtained by recalling Re-
mark 1.4 and suitable characterization of convexity.

Now, we present several families of functions which fulfil the conditions of Theorem
9.8, Corollary 9.5 and Corollary 9.6 (and Remark 9.5). This enables us to construct a
large family of functions which are exponentially convex. For a discussion related to this
problem see [68].

In the rest of the section we consider only 1 and 2 defined as in (9.20) and (9.21),
with A being continuous and f such that compositions with any function from the chosen
familyi, as well as with other functions which appear as arguments of1 and2, remain
in L.

Example 9.1 Consider a family of functions

1 = {gs : R → [0,) : s ∈ R}
defined by

gs(x) =

{
1
s2

esx, s �= 0,

1
2 x2, s = 0.

We have d2gs
dx2 (x) = esx > 0, which shows that gs is convex on R, for every s ∈ R and

s → d2gs
dx2 (x) is exponentially convex by definition. Using analogous arguing as in the proof

of Theorem 9.8 we also have that s → [y0,y1,y2;gs] is exponentially convex (and thus
exponentially convex in the Jensen sense). Using Corollary 9.5 we conclude that s →
i(gs), i = 1,2, are exponentially convex in the Jensen sense. It is easy to verify that these
mappings are continuous (although mapping s → gs is not continuous for s = 0), so they
are exponentially convex.

For this family of functions, s,q(i,1), i = 1,2, from (9.23) become

s,q(i,1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
i(gs)
i(gq)

) 1
s−q

, s �= q,

exp
(
i(id·gs)
i(gs)

− 2
s

)
, s = q �= 0,

exp
(

i(id·g0)
3i(g0)

)
, s = q = 0,
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and, by (9.22), they are monotonic functions in parameters s and q.
Using Theorem 9.7, it follows that for i = 1,2

Ms,q(i,1) = logs,q(i,1)

satisfy m ≤ Ms,q(i,1) ≤ M, which shows that Ms,q(i,1) are means (of a function g).
Notice that by (9.22) they are monotonic.

Example 9.2 Consider a family of functions

2 = { fs : (0,) → R : s ∈ R}
defined by

fs(x) =

⎧⎪⎨⎪⎩
xs

s(s−1) , s �= 0,1,

− logx, s = 0,

x logx, s = 1.

Here, d2 fs
dx2 (x) = xs−2 = e(s−2) lnx > 0, which shows that fs is convex for x > 0 and s →

d2 fs
dx2 (x) is exponentially convex by definition. Arguing as in Example 9.1 we get that the
mappings s → i(gs), i = 1,2 are exponentially convex. Functions (9.23) in this case are
equal to:

s,q(i,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i( fs)
i( fq)

) 1
s−q

, s �= q,

exp
(

1−2s
s(s−1) − i( fs f0)

i( fs)

)
, s = q �= 0,1,

exp
(
1− i( f 2

0 )
2i( f0)

)
, s = q = 0,

exp
(
−1− i( f0 f1)

2i( f1)

)
, s = q = 1.

If i is positive, then Theorem 9.7 applied for f = fs ∈ 2 and g = fq ∈ 2 yields that
there exists  ∈ [m,M] such that

 s−q =
i( fs)
i( fq)

.

Since the function  →  s−q is invertible for s �= q, we then have

m ≤
(
i( fs)
i( fq)

) 1
s−q

≤ M, (9.25)

which together with the fact that s,q(i,2) is continuous, symmetric and monotonic (by
(9.22)), shows that s,q(i,2) is a mean (of a function f ).

Example 9.3 Consider a family of functions

3 = {hs : (0,) → (0,) : s ∈ (0,)}
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defined by

hs(x) =

⎧⎨⎩
s−x

ln2 s
, s �= 1,

x2

2 , s = 1.

Since s → d2hs
dx2 (x) = s−x is the Laplace transform of a nonnegative function (see [211]), it

is exponentially convex. Obviously, hs are convex functions for every s > 0.
For this family of functions, s,q(i,3), i = 1,2, from (9.23) become

s,q(i,3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
i(hs)
i(hq)

) 1
s−q

, s �= q,

exp
(
−i(id·hs)

si(hs)
− 2

s lns

)
, s = q �= 1,

exp
(
− 2i(id·h1)

3i(h1)

)
, s = q = 1,

and are monotonic in parameters s and q by (9.22).
Using Theorem 9.7, it follows that

Ms,q (i,3) = −L(s,q) logs,q(i,3)

satisfies m≤Ms,q(i,3)≤M, which shows that Ms,q(i,3) is a mean (of a function h).
L(s,q) is the logarithmic mean defined by L(s,q) = s−q

logs−logq , s �= q, L(s,s) = s.

Example 9.4 Consider a family of functions

4 = {ks : (0,) → (0,) : s ∈ (0,)}

defined by

ks(x) =
e−x

√
s

s
.

Since s → d2ks
dx2 (x) = e−x

√
s is the Laplace transform of a nonnegative function (see [211]),

it is exponentially convex. Obviously, ks are convex functions for every s > 0.
For this family of functions, s,q(i,4), i = 1,2, from (9.23) become

s,q(i,4) =

⎧⎪⎨⎪⎩
(
i(ks)
i(kq)

) 1
s−q

, s �= q,

exp
(
− i(id·ks)

2
√

si(ks)
− 1

s

)
, s = q,

and are monotonic in parameters s and q, by (9.22).
Using Theorem 9.7, it follows that

Ms,q(i,4) = −(√
s+

√
q
)
logs,q(i,4)

satisfies m≤Ms,q(i,4)≤M, which shows that Ms,q(i,4) is a mean (of a function k).





Chapter10
New improved forms of the
Hermite-Hadamard-type
inequalities

In this chapter, improvements of various forms of the Hermite-Hadamard inequality (the
ones of Fejèr, Lupaş, Brenner-Alzer, Beesack-Pečarić) are presented. It is interesting that
these improvements also imply the Hammer-Bullen inequality which deals with a compar-
ison of the left-hand and the right-hand side of the Hermite-Hadamard inequality. These
improvements are given in terms of positive linear functionals and are again obtained by
means of the monotonicity property of Lemma 1.2, adjusted to this environment. Obtained
results are used in constructing new families of exponentially convex functions.

All new results in this chapter are contained in paper [101].

10.1 More on the Hermite-Hadamard inequality

The Hermite-Hadamard inequality was discussed in detail in Chapter 1, (see Theorem
1.23). Namely, for a convex function f defined on [a,b] ⊂ R, where a < b, is

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
. (10.1)

283
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The Hammer-Bullen inequality, (see Theorem 1.24 and the related considerations in
Chapter 1 for details), proves that the first inequality in (10.1) is stronger than the second
one:

1
b−a

∫ b

a
f (x)dx− f

(
a+b

2

)
≤ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (x)dx. (10.2)

In 1906, Fejér, while studying trigonometric polynomials, obtained inequalities which
generalized those of Hermite. He proved that if w : [a,b] → R is a nonnegative integrable
function such that the curve y = w(x) is symmetric with respect to the straight line x =
(a+b)/2, then for every convex function f : [a,b] → R the following inequalities hold
(see [177, p. 138]):

f

(
a+b

2

)∫ b

a
w(x)dx ≤

∫ b

a
w(x) f (x)dx ≤ f (a)+ f (b)

2

∫ b

a
w(x)dx. (10.3)

Obviously, for w = 1, the inequalities in (10.3) become the Hermite-Hadamard in-
equality. Another generalization of the Hermite-Hadamard inequality was given in [124]
and [130] (or see [177, p. 143]).

Theorem 10.1 Let p,q be given positive numbers and [a,b]⊆ I, a < b. Then the inequal-
ities

f

(
pa+qb
p+q

)
≤ 1

2y

∫ T+y

T−y
f (x)dx ≤ p f (a)+q f (b)

p+q
(10.4)

hold for T = (pa+qb)/(p+q), y > 0 and all continuous convex functions f : I → R if

y ≤ b−a
p+q

min{p,q} .

It can be easily verified that for p = q = 1 and y = (b−a)/2 the inequalities in (10.4)
become the Hermite-Hadamard inequalities. Using the same technique as in the proof of
(10.2) (see [170]) it can be proved that the first inequality in (10.4) is stronger than the
second one, that is,

1
2y

∫ T+y

T−y
f (x)dx− f

(
pa+qb
p+q

)
≤ p f (a)+q f (b)

p+q
− 1

2y

∫ T+y

T−y
f (x)dx. (10.5)

In [10] Brenner and Alzer proved the following generalization of the Hermite-Hadamard
inequality which is in fact a Fejér-type variant of (10.4).

Theorem 10.2 Let p,q be given positive numbers and let w : [a,b] → R
+
0 be integrable

and symmetric with respect to the line x = (pa+qb)/(p+q)= T, in the sense that w(T + t)
= w(T − t) , for all t ∈

[
0, b−a

p+q min{p,q}
]
. If f : [a,b] → R is a convex function, then for

all y ∈ R such that

0 < y ≤ b−a
p+q

min{p,q} (10.6)

the following inequalities hold:

f

(
pa+qb
p+q

)∫ T+y

T−y
w(x)dx ≤

∫ T+y

T−y
w(x) f (x)dx ≤ p f (a)+q f (b)

p+q

∫ T+y

T−y
w(x)dx.

(10.7)
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Theorem 10.1 was generalized for positive linear functionals in [31].

Theorem 10.3 Let L satisfy L1, L2 on a nonempty set E and let A be a positive normal-
ized linear functional. If f : I → R is a continuous convex function and [a,b] ⊆ I, where
a < b, then for all g ∈ L such that f (g) ∈ L the inequalities

f

(
pa+qb
p+q

)
≤ A( f (g)) ≤ p f (a)+q f (b)

p+q
(10.8)

hold, where p and q are any nonnegative real numbers such that

A(g) =
pa+qb
p+q

. (10.9)

Remark 10.1 It can be easily verified that Theorem 10.2 (and therefore Theorem 10.1)
can be obtained as a special case of Theorem 10.3. Namely, for given positive numbers p
and q, T and w as in Theorem 10.2 and y satisfying (10.6) such that w =

∫ T+y
T−y w(x)dx �= 0,

we define E = [a,b], L = R (E), g = idE and

A( f ) =
1
w

∫ T+y

T−y
w(x) f (x)dx.

Here R (E) denotes the subspace of all (bounded) R-integrable functions on E = [a,b].
Observe that A is a positive normalized linear functional and

A(g) = A(idE) =
1
w

∫ T+y

T−y
w(x)xdx = T =

pa+qb
p+q

.

By Theorem 10.3 we immediately obtain (10.7).

10.2 Improvements

We now provide the improvements of the forms of the Hermite-Hadamard inequality,
which were analyzed in the previous section. By means of these, new families of ex-
ponentially convex functions are constructed.

With I we denote an interval in R and with [a,b] an interval in R such that − < a <
b < .

We make use of Lemma 8.1, as a a special case of Lemma 1.2 for n = 2.
Our main result in this scope is the following improvement of Theorem 10.3.

Theorem 10.4 Let L satisfy L1, L2 and L3 on a nonempty set E and let A be a positive
normalized linear functional. If f : I → R is a continuous convex function and [a,b] ⊆ I,
then for all g ∈ L such that g(E) ⊆ [a,b] and f (g) ∈ L we have A(g) ∈ [a,b] and

f

(
pa+qb
p+q

)
≤ A( f (g)) ≤ p f (a)+q f (b)

p+q
−A(g̃) f , (10.10)
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where p and q are any nonnegative real numbers such that

A(g) =
pa+qb
p+q

(10.11)

and g̃,  f are defined by

g̃ =
1
2
1−

∣∣g− a+b
2 1

∣∣
b−a

,  f = f (a)+ f (b)−2 f

(
a+b

2

)
.

Proof. Firstly, note that g(E) ⊆ [a,b] implies

a = A(a1) ≤ A(g) ≤ A(b1) = b,

hence there exists a unique nonnegative real number  ∈ [0,1] such that A(g) = a +
(1− )b. If p,q are nonnegative real numbers satisfying (10.11), then

p
p+q

=  ,
q

p+q
= 1− .

From Jessen’s inequality we have

f

(
pa+qb
p+q

)
= f (A(g)) ≤ A( f (g)) ,

which is the first inequality in (10.10).
By Lemma 8.1, for n = 2, we have

f (g(x)) = f

(
b−g(x)

b−a
a+

g(x)−a
b−a

b

)
≤ b−g(x)

b−a
f (a)+

g(x)−a
b−a

f (b)

−min

{
b−g(x)

b−a
,
g(x)−a

b−a

}[
f (a)+ f (b)−2 f

(
a+b

2

)]
.

Applying A to the above inequality, we obtain

A( f (g)) ≤ b−A(g)
b−a

f (a)+
A(g)−a

b−a
f (b)−A(g̃)

[
f (a)+ f (b)−2 f

(
a+b

2

)]
,

where g̃ is defined on E by

g̃(x) = min

{
b−g(x)

b−a
,
g(x)−a

b−a

}
=

1
2
−

∣∣g(x)− a+b
2

∣∣
b−a

and by L3 it belongs to L. By (10.11) we obtain

A( f (g)) ≤ p f (a)+q f (b)
p+q

−A(g̃) f ,

which is the second inequality in (10.10). �
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Remark 10.2 Theorem 10.4 is an improvement of Theorem 10.3, since under the re-
quired assumptions we have

A(g̃) f = A

(
1
2
1−

∣∣g− a+b
2 1

∣∣
b−a

)(
f (a)+ f (b)−2 f

(
a+b

2

))
≥ 0.

Furthermore (this will be important in the following considerations)

0 ≤ A

(
1
2
1−

∣∣g− a+b
2 1

∣∣
b−a

)
≤ 1

2
.

The following theorem is another improvement of Theorem 10.3.

Theorem 10.5 Let L satisfy L1, L2 and L3 on a nonempty set E and let A be a positive
normalized linear functional. If f : I → R is a continuous convex function and [a,b] ⊆ I,
then for all g ∈ L such that

g(E) ⊆ [a,b] and f (g) ∈ L

and for all y such that

0 < y ≤ b−a
p+q

min{p,q} , (10.12)

we have

f

(
pa+qb
p+q

)
≤ A( f (g)) (10.13)

≤ p f (a)+q f (b)
p+q

−2A(g̃)
[

p f (a)+q f (b)
p+q

− f

(
pa+qb
p+q

)]
,

where p and q are any nonnegative real numbers such that

A(g) =
pa+qb
p+q

(10.14)

and g̃ is defined by

g̃ =
1
2
1− |g−A(g)1|

2y
.

Proof. First note that from g(E) ⊆ [a,b] follows A(g) ∈ [a,b] and by (10.12) we have

a ≤ A(g)− y < A(g)+ y ≤ b.

If we apply Theorem 10.4 to a1 = A(g)− y, b1 = A(g)+ y, we have that

A(g) =
A(g)− y+A(g)+ y

2
=

a1 +b1

2
,
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which implies that we can set p = q = 1 and by (10.10) we obtain

f (A(g)) ≤ A( f (g))

and

A( f (g)) ≤ f (A(g)− y)+ f (A(g)+ y)
2

−A(g̃) [ f (A(g)− y)+ f (A(g)+ y)−2 f (A(g))]

= (1−2A(g̃))
f (A(g)− y)+ f (A(g)+ y)

2
+2A(g̃) f (A(g)) .

Since f is convex on [a,b] , we know that

f (A(g)− y) ≤ b− (A(g)− y)
b−a

f (a)+
A(g)− y−a

b−a
f (b) ,

f (A(g)+ y) ≤ b− (A(g)+ y)
b−a

f (a)+
A(g)+ y−a

b−a
f (b) ,

hence
f (A(g)− y)+ f (A(g)+ y)

2
≤ b−A(g)

b−a
f (a)+

A(g)−a
b−a

f (b) .

If p and q are any nonnegative numbers such that (10.14) holds (note that they are different
from those we started with), we obtain

f (A(g)− y)+ f (A(g)+ y)
2

≤ p f (a)+q f (b)
p+q

.

Considering all this and the fact that 1−2A(g̃) ≥ 0 (see Remark 10.2), we deduce

A( f (g)) ≤ (1−2A(g̃))
p f (a)+q f (b)

p+q
+2A(g̃) f (A(g))

=
p f (a)+q f (b)

p+q
−2A(g̃)

[
p f (a)+q f (b)

p+q
− f

(
pa+qb
p+q

)]
.

�

From (10.13) we can easily obtain a Hammer-Bullen type inequality for positive linear
functionals.

Corollary 10.1 Under the conditions of Theorem 10.5 the following inequality holds:

(1−2A(g̃))
[

p f (a)+q f (b)
p+q

−A( f (g))
]
≥ 2A(g̃)

[
A( f (g))− f

(
pa+qb
p+q

)]
.

In the sequel, we show how these results can be used to obtain refinements of the
previously given inequalities as well as the related Hammer-Bullen type inequalities.
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Corollary 10.2 Let p,q be given positive numbers and let w : [a,b]→R
+
0 be an integrable

function which is symmetric with respect to the line x = (pa+qb)/(p+q) = T, in the
sense that (

∀t ∈
[
0,

b−a
p+q

min{p,q}
])

w(T + t) = w(T − t) .

If f : [a,b] → R is a convex function, then for all y ∈ R such that

0 < y ≤ b−a
p+q

min{p,q} (10.15)

and

w =
∫ T+y

T−y
w(x)dx �= 0

the following inequalities hold:

f

(
pa+qb
p+q

)
≤ 1

w

∫ T+y

T−y
w(x) f (x)dx ≤ p f (a)+q f (b)

p+q
−w f , (10.16)

where

w =
1
2
− 1

w

∫ T+y

T−y
w(x)

∣∣x− a+b
2

∣∣
b−a

dx,

 f = f (a)+ f (b)−2 f

(
a+b

2

)
.

Proof. This is a special case of Theorem 10.4. First note that for some given positive
numbers p,q and T = (pa+qb)/(p+q) the assumptions on y imply a ≤ T −y < T +y≤
b, hence f is defined on [T − y,T + y]. If we choose E, L, A and g as in Remark 10.1, all
the conditions of Theorem 10.4 will be satisfied and (10.10) accordingly becomes

f

(
pa+qb
p+q

)
≤ 1

w

∫ T+y

T−y
w(x) f (x)dx ≤ p f (a)+q f (b)

p+q
−A(g̃) f ,

where

A(g̃) =
1
w

∫ T+y

T−y
w(x) g̃(x)dx (10.17)

=
1
2
− 1

w

∫ T+y

T−y
w(x)

∣∣x− a+b
2

∣∣
b−a

dx = w.

The condition on continuity of f on [a,b] , required in Theorem 10.4 for an arbitrary chosen
A, just like in Jessen’s inequality, can be omitted in this special case. �

Remark 10.3 Let us emphasize here that under the conditions of Corollary 10.2 we have
w f > 0, hence (10.16) is a refinement of (10.7).

If we want to simplify w from the previous theorem we have to consider four cases:
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(i) T ∈ (a,(3a+b)/4] and y satisfying (10.15) or T ∈ ((3a+b)/4,(a+b)/2] and 0 <
y ≤ (a+b)/2−T .

For such T and y we have x− (a+b)/2 ≤ 0, for all x ∈ [T − y,T + y] , hence

w =
1
2

+
1
w

∫ T+y

T−y
w(x)

x− a+b
2

b−a
dx

=
1
2

+
T

b−a
− a+b

2(b−a)
=

T −a
b−a

.

Here we used the fact that symmetry of w yields

1
w

∫ T+y

T−y
w(x)xdx = T.

(ii) T ∈ ((3a+b)/4,(a+b)/2] and y > (a+b)/2−T, but still satisfying (10.15) .
For such T and y the function defined by v = x− (a+b)/2 changes sign on [T − y,
T + y], hence we leave w in the form (10.17).

(iii) T ∈ ((a+b)/2,(a+3b)/4, ] and y > T − (a+b)/2, but still satisfying (10.15).
For such T and y the function v defined by v = x− (a+b)/2 changes sign on
[T − y,T + y] , hence we again leave w in the form (10.17).

(iv) T ∈ ((a+b)/2,(a+3b)/4, ] and 0 < y ≤ T − (b+a)/2 or T ∈ [(a+3b)/4,b) and
y satisfying (10.15).
For such T and y we have x− (a+b)/2 ≥ 0, for all x ∈ [T − y,T + y] , hence in a
similar way as in (ii) we obtain

w =
b−T
b−a

.

As a special case of Corollary 10.2, we obtain the Hammer-Bullen inequality (10.2).

Corollary 10.3 If f : [a,b] → R is a convex function, then the inequality

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx ≥ 1

b−a

∫ b

a
f (x)dx− f

(
a+b

2

)
(10.18)

holds.

Proof. This is a special case of Corollary 10.2 for w = 1, p = q = 1, y = (b−a)/2. In
this case we have ∫ T+y

T−y
w(x)dx =

∫ b

a
dx = b−a,

so it follows from (10.16) that

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
−w f . (10.19)
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A simple calculation gives w = 1/4, hence

f (a)+ f (b)
2

−w f =
f (a)+ f (b)

2
− 1

4

[
f (a)+ f (b)−2 f

(
a+b

2

)]
=

1
2

f

(
a+b

2

)
+

f (a)+ f (b)
4

. (10.20)

From (10.19) and (10.20) we obtain

2 f

(
a+b

2

)
≤ 2

b−a

∫ b

a
f (x)dx ≤ f

(
a+b

2

)
+

f (a)+ f (b)
2

,

which implies

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx ≥ 1

b−a

∫ b

a
f (x)dx− f

(
a+b

2

)
.

�

In a similar way, as a special case of Corollary 10.2 we obtain (10.5) , but we skip its
proof here.

Corollary 10.4 Let p,q be given positive numbers and let w : [a,b]→R
+
0 be an integrable

function, symmetric with respect to the line x = (pa+qb)/(p+q) = T, in the sense that

(∀t ∈ [0,min{T −a,b−T}])w(T + t) = w(T − t) .

If f : [a,b] → R is a convex function, then for all y such that

0 < y ≤ b−a
p+q

min{p,q} and w =
∫ T+y

T−y
w(x)dx �= 0

the following inequalities hold

f

(
pa+qb
p+q

)
≤ 1

w

∫ T+y

T−y
w(x) f (x)dx (10.21)

≤ p f (a)+q f (b)
p+q

−w

(
p f (a)+q f (b)

p+q
− f

(
pa+qb
p+q

))
,

where

w = 1− 1
yw

[∫ T+y

T
w(x)xdx−

∫ T

T−y
w(x)xdx

]
.

Proof. This is a special case of Theorem 10.5, for E, L, A and g as in Remark 10.1. In
this case (10.13) becomes

f

(
pa+qb
p+q

)
≤ 1

w

∫ T+y

T−y
w(x) f (x)dx

≤ p f (a)+q f (b)
p+q

−2A(g̃)
[

p f (a)+q f (b)
p+q

− f

(
pa+qb
p+q

)]
,
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where

A(g̃) =
1
2
− 1

2yw

∫ T+y

T−y
w(x) |x−T |dx

=
1
2
− 1

2yw

[
T
∫ T

T−y
w(x)dx−T

∫ T+y

T
w(x)dx−

∫ T

T−y
w(x)xdx+

∫ T+y

T
w(x)xdx

]
=

1
2
− 1

2yw

[∫ T+y

T
w(x)xdx−

∫ T

T−y
w(x)xdx

]
=

1
2
w.

�

Remark 10.4 A Hammer-Bullen type inequality follows easily from (10.21). Namely,
under the conditions of Corollary 10.4, the following inequality holds:

(1−w)
[

p f (a)+q f (b)
p+q

− 1
w

∫ T+y

T−y
w(x) f (x)dx

]
≥ w

[
1
w

∫ T+y

T−y
w(x) f (x)dx− f

(
pa+qb
p+q

)]
.

In the following corollary we give a refinement of the discrete analogue of the Hermite-
Hadamard inequality (see [177, p. 145]).

Corollary 10.5 Let x1 < x2 < · · · < xn be equidistant points in I. Then for every convex
function f : I → R the following inequalities are valid:

f

(
x1 + xn

2

)
≤ 1

n

n


i=1

f (xi)

≤ f (x1)+ f (xn)
2

−n

(
f (x1)+ f (xn)

2
− f

(
x1 + xn

2

))
,

where

n =

{
1− k+1

2k+1 , n = 2k+1

1− k
2k−1 , n = 2k

, k ∈ N0.

Proof. This is a special case of Theorem 10.4 for E = [a,b] = [x1,xn], L = R
E , g =

idE and A defined by

A( f ) =
1
n

n


i=1

f (xi) .

Since
(∀i ∈ {1, . . . ,n−1}) xi+1− xi = h,

we have

A(g) = A(idE) =
1
n

n


i=1

xi =
nx1 + (n−1)(h+(n−1)h)

2

n

=
2x1 +(n−1)h

2
=

x1 + xn

2
,
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that is, we can choose p = q = 1 and (10.10) becomes

f

(
x1 + xn

2

)
≤ 1

n

n


i=1

f (xi) ≤ f (x1)+ f (xn)
2

−A(g̃) f ,

where

 f = 2

(
f (x1)+ f (xn)

2
− f

(
x1 + xn

2

))
and

A(g̃) =
1
2
− 1

n(xn− x1)

n


i=1

∣∣∣∣xi− x1 + xn

2

∣∣∣∣
=

1
2
− 1

n(n−1)h

n


i=1

∣∣∣∣x1 +(i−1)h− 2x1 +(n−1)h
2

∣∣∣∣
=

1
2
− 1

2n(n−1)

n


i=1

|2i−n−1|.

Considering the parity of n, we obtain

A(g̃) =

{ 1
2 − 1

2k(2k+1) 
k
i=1 2i, n = 2k+1

1
2 − 1

2k(2k−1) 
k
i=1 (2i−1), n = 2k

=

{ 1
2

(
1− k+1

2k+1

)
, n = 2k+1

1
2

(
1− k

2k−1

)
, n = 2k

=
1
2
n.

Note that for n = 1 and n = 2 we have n = 0. �

In order to provide another result, we need to add yet another property to the linear
class L.

Let A be an algebra of subsets of E and let L be a class of functions f : E → R having
the properties L1,L2,L3 and

L4: (∀ f ∈ L) (∀E1 ∈ A ) fCE1 ∈ L,

where CE1 is the characteristic function of E1, that is,

CE1 (t) =
{

1, t ∈ E1

0, t ∈ E \E1
.

It can be easily seen that for every E1 ∈ A the following assertions are true:

(i) CE1 ∈ L;

(ii) If A is a positive linear functional on L such that A(CE1) > 0 and g ∈ L, then A1

defined by

A1 (g) =
A(gCE1)
A(CE1)

is a positive normalized linear functional;
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(iii) If A is a positive linear functional on L and g ∈ L, then

A(CE1)+A
(
CE\E1

)
= 1

and
A(gCE1)+A

(
gCE\E1

)
= A(g) .

Theorem 10.6 Let L satisfy L1− L4 on a nonempty set E and let f : I → R be a con-
tinuous convex function while g,h ∈ L are such that f (g) , f (h) ∈ L. Let A, B be two
positive normalized linear functionals on L such that A(h) = B(g). If E1 ∈ A satisfies
A(CE1) > 0, A

(
CE\E1

)
> 0 and

(∀t ∈ E) a ≤ g(t) ≤ b,

where

a = min

{
A(hCE1)
A(CE1)

,
A
(
hCE\E1

)
A
(
CE\E1

) }
,

b = max

{
A(hCE1)
A(CE1)

,
A
(
hCE\E1

)
A
(
CE\E1

) }
,

then
f (A(h)) ≤ B( f (g)) ≤ A( f (h))−B(g̃) f , (10.22)

where g̃ and  f are defined as in Theorem 10.4. In the limiting case a = b, (10.22) becomes

f (A(h)) = B( f (g)) ≤ A( f (h)) .

Proof. By Jessen’s inequality we have

f

(
A(hCE1)
A(CE1)

)
≤ A( f (h)CE1)

A(CE1)

and

f

(
A
(
hCE\E1

)
A
(
CE\E1

) )
≤ A

(
f (h)CE\E1

)
A
(
CE\E1

) .

Without loss of generality we may assume

a = min

{
A(hCE1)
A(CE1)

,
A
(
hCE\E1

)
A
(
CE\E1

) }
=

A(hCE1)
A(CE1)

,

b = max

{
A(hCE1)
A(CE1)

,
A
(
hCE\E1

)
A
(
CE\E1

) }
=

A
(
hCE\E1

)
A
(
CE\E1

) .

If a < b and
p = A(CE1) , q = A

(
CE\E1

)
,
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we have

p+q = A(CE) = A(1) = 1,

B(g) = A(h) = A(hCE1)+A
(
hC

E\E1

)
= pa+qb,

and applying Theorem 10.4 to B and g, by (10.10) we obtain

f (A(h)) = f (B(g)) ≤ B( f (g)) ≤ p f (a)+q f (b)−B(g̃) f

= A(CE1) f

(
A(hCE1)
A(CE1)

)
+A

(
CE\E1

)
f

(
A
(
hCE\E1

)
A
(
CE\E1

) )
−B(g̃) f

≤ A( f (h)CE1)+A
(
f (h)CE\E1

)−B(g̃) f

= A( f (h))−B(g̃) f .

If a = b, it follows that g is a constant function and the limiting case follows immediately.
�

Theorem 10.6 is an improvement of [177, Theorem 5.14] and at the same time it gives
a refinement of Jessen’s inequality. We also give the following improvement of [177,
Theorem 5.14].

Theorem 10.7 Suppose that the assumptions of Theorem 10.6 hold. If a < b, then for all
y such that

0 < y ≤ min{B(g)−a,b−B(g)} (10.23)

the following inequalities are valid:

f (A(h)) ≤ B( f (g))

≤ A( f (h))−2B(g̃)
[
A(CE1) f (a)+A

(
CE\E1

)
f (b)− f (B(g))

]
,

where

g̃ =
1
2
1− |g−B(g)1|

2y
.

Proof. This proof is almost identical to the proof of Theorem 10.6, except that we use
Theorem 10.5 instead of Theorem 10.4, hence for a < b and y satisfying (10.23) , using
(10.13) we obtain

f (A(h)) ≤ B( f (g))

≤ A( f (h))−2B(g̃)
[
A(CE1) f (a)+A

(
CE\E1

)
f (b)− f (B(g))

]
.

�
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10.3 Hammer-Bullen differences

Motivated by theorems 10.4 and 10.5, we define two functionals i : Lg → R, i = 1,2, by

1( f ) =
p f (a)+q f (b)

p+q
−A( f (g))−A(g̃) f , (10.24)

where A,g, g̃, p and q are as in Theorem 10.4, Lg = { f : I → R : f (g) ∈ L}, [a,b] ⊆ I and

2( f ) =
p f (a)+q f (b)

p+q
−A( f (g))−2A(g̃)

[
p f (a)+q f (b)

p+q
− f

(
pa+qb
p+q

)]
, (10.25)

where A,g, g̃, p and q are as in Theorem 10.5, Lg as above and [a,b] ⊆ I. Obviously, 1

and 2 are linear.
If f is additionally continuous and convex, then theorems 10.4 and 10.5 implyi( f )≥

0, i = 1,2.
In the sequel, with f0 we denote the function defined by f0 (x) = x2 on any domain we

might need.
Now, we give Lagrange and Cauchy type mean value theorems for the functionals i,

i = 1,2.

Theorem 10.8 Let L satisfy L1, L2 and L3 on a nonempty set E and let A be a positive
normalized linear functional on L. Let g ∈ L be such that f0 ∈ Lg , g(E) ∈ [a,b], [a,b] ⊆ I
and let f ∈ C2(I) be such that f ∈ Lg. If 1 and 2 are linear functionals defined as in
(10.24) and (10.25), then there exist i ∈ [a,b] such that

i( f ) =
f ′′ (i)

2
i( f0), i = 1,2.

Proof. We give a proof for the functional1. Since f ∈C2(I), there exist real numbers
m = minx∈[a,b] f ′′(x) and M = maxx∈[a,b] f ′′(x). It is easy to show that the functions f1, f2
defined by

f1(x) =
M
2

x2 − f (x), f2(x) = f (x)− m
2

x2

are continuous and convex, therefore1( f1) ≥ 0,1( f2) ≥ 0. This implies

m
2
1( f0) ≤1( f ) ≤ M

2
1( f0).

If 1( f0) = 0, there is nothing left to prove. Suppose 1( f0) > 0. We have

m ≤ 21( f )
1(x2)

≤ M.

Hence, there exists 1 ∈ [a,b] such that

1( f ) =
f ′′(1)

2
1( f0).

�
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Theorem 10.9 Let L satisfy L1, L2 and L3 on a non-empty set E and let A be a positive
normalized linear functional on L. Let g ∈ L be such that f0 ∈ Lg, g(E) ∈ [a,b], [a,b] ⊆ I
and f1, f2 ∈C2(I) such that f1, f2 ∈ Lg. If 1 and 2 are linear functionals defined as in
(10.24) and (10.25), then there exist i ∈ [a,b] such that

i( f1)
i( f2)

=
f ′′1 (i)
f ′′2 (i)

, i = 1,2,

provided that the denominators are non-zero.

Proof. We give a proof for the functional1. Define f3 ∈C2([a,b]) by

f3 = c1 f1 − c2 f2, where c1 = 1( f2), c2 = 1( f1).

Using Theorem 10.8 we get that there exists 1 ∈ [a,b] such that(
c1

f ′′1 (1)
2

− c2
f ′′2 (1)

2

)
1( f0) = 0.

Since1( f0) �= 0, (otherwise we have a contradiction with 1( f2) �= 0, by Theorem 10.8),
we obtain

1( f1)
1( f2)

=
f ′′1 (1)
f ′′2 (1)

.

�

As we did in the previous chapters when we considered the similar subjects, we make
use of an idea from [90] in employing an elegant method of producing an n-exponentially
convex functions and exponentially convex functions, applying the functionals1 and 2

to a given family with the same property.

Theorem 10.10 Leti, i = 1,2, be linear functionals defined as in (10.24) and (10.25).
Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions defined on an
open interval I such that ⊆ Lg and that the function s → [y0,y1,y2; fs] is n-exponentially
convex in the Jensen sense on J, for every three mutually different points y0,y1,y2 ∈ I. Then
s → i( fs) is an n-exponentially convex function in the Jensen sense on J. If the function
s →i( fs) is continuous on J, then it is n-exponentially convex on J.

Proof. For i ∈ R, i = 1, . . . ,n and si ∈ J, i = 1, . . . ,n, we define the function h : I → R

by

h(y) =
n


i, j=1

i j f si+s j
2

(y).

Using the assumption that the function s → [y0,y1,y2; fs] is n-exponentially convex in the
Jensen sense we obtain

[y0,y1,y2;h] =
n


i, j=1

i j[y0,y1,y2; f si+s j
2

] ≥ 0,
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which in turn implies that h is a convex (and continuous) function on I, therefore i(h) ≥
0, i = 1,2. Hence

n


i, j=1

i ji( f si+s j
2

) ≥ 0.

We conclude that the function s → i( fs) is n-exponentially convex on J in the Jensen
sense. If the function s →i( fs) is also continuous on J, then s →i( fs) is n-exponentially
convex by definition. �

The following corollary is an immediate consequence of the above theorem.

Corollary 10.6 Leti, i = 1,2, be linear functionals defined as in (10.24) and (10.25).
Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions defined on an
open interval I, such that  ⊆ Lg and that the function s → [y0,y1,y2; fs] is exponentially
convex in the Jensen sense on J, for every three mutually different points y0,y1,y2 ∈ I. Then
s → i( fs) is an exponentially convex function in the Jensen sense on J. If the function
s →i( fs) is continuous on J, then it is exponentially convex on J.

Corollary 10.7 Leti, i = 1,2, be linear functionals defined as in (10.24) and (10.25).
Let  = { fs : s ∈ J}, where J is an interval in R, be a family of functions defined on an
open interval I such that ⊆ Lg and that the function s → [y0,y1,y2; fs] is 2-exponentially
convex in the Jensen sense on J, for every three mutually different points y0,y1,y2 ∈ I. Then
the following statements hold:

(i) If the function s →i( fs) is continuous on J, then it is 2-exponentially convex func-
tion on J. If s →i( fs) is additionally strictly positive, then it is also log-convex on
J.

(ii) If the function s → i( fs) is strictly positive and differentiable on J, then for every
s,q,u,v ∈ J, such that s ≤ u and q ≤ v, we have

s,q(i,) ≤ u,v(i,), i = 1,2, (10.26)

where

s,q(i,) =

⎧⎪⎪⎨⎪⎪⎩
(
i( fs)
i( fq)

) 1
s−q

, s �= q,

exp

(
d
dsi( fs)
i( fs)

)
, s = q,

(10.27)

for fs, fq ∈.

Proof. (i) This is an immediate consequence of Theorem 10.10 and Remark 1.3.
(ii) Since by (i) the function s → i( fs) is log-convex on J, that is, the function s →

logi( fs) is convex on J, applying Proposition 1.2 we get

logi( fs)− logi( fq)
s−q

≤ logi( fu)− logi( fv)
u− v

, (10.28)
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for s ≤ u, q ≤ v, s �= q, u �= v, and therefrom conclude that

s,q(i,) ≤ u,v(i,), i = 1,2.

Cases s = q and u = v follow from (10.28) as limit cases. �

Remark 10.5 Note that the results from Theorem 10.10, Corollary 10.6, Corollary 10.7
still hold when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0, for a family of differen-
tiable functions fs such that the function s → [y0,y1,y2; fs] is n-exponentially convex in the
Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense),
and furthermore, they still hold when all three points coincide for a family of twice differ-
entiable functions with the same property. The proofs are obtained by recalling Remark 1.4
and the suitable characterization of convexity.

Now, we present several families of functions which fulfil the conditions of Theorem
10.10, Corollary 10.6 and Corollary 10.7 (and Remark 10.5). This enable us to construct a
large family of functions which are exponentially convex. For a discussion related to this
problem see [68].

In the rest of the section we consider only 1 and 2 defined as in (10.24) and (10.25)
with A which is continuous and g such that compositions with any function from the chosen
famillyi, as well as with other functions which appear as arguments of1 and2, remain
in L.

Example 10.1 Consider a family of functions

1 = {gs : R → [0,) : s ∈ R}
defined by

gs(x) =

{
1
s2

esx, s �= 0,

1
2 x2, s = 0.

We have d2gs
dx2 (x) = esx > 0 which shows that gs is convex on R for every s ∈ R and

s → d2gs
dx2 (x) is exponentially convex by definition. Using analogous arguing as in the proof

of Theorem 10.10 we also have that s → [y0,y1,y2;gs] is exponentially convex (and so
exponentially convex in the Jensen sense). Using Theorem 10.6 we conclude that s →
i(gs), i = 1,2, are exponentially convex in the Jensen sense. It is easy to verify that these
mappings are continuous (although mapping s → gs is not continuous for s = 0), so they
are exponentially convex.

For this family of functions, s,q(i,1), i = 1,2, from (10.27) become

s,q(i,1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
i(gs)
i(gq)

) 1
s−q

, s �= q,

exp
(
i(id·gs)
i(gs)

− 2
s

)
, s = q �= 0,

exp
(

i(id·g0)
3i(g0)

)
, s = q = 0,
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and using (10.26) they are monotonic functions in parameters s and q.
Using Theorem 10.9 it follows that for i = 1,2

Ms,q(i,1) = logs,q(i,1)

satisfy a ≤ Ms,q(i,1) ≤ b, which shows that Ms,q(i,1) are means (of a function g).
Notice that by (10.26) they are monotonic.

Example 10.2 Consider a family of functions

2 = { fs : (0,) → R : s ∈ R}

defined by

fs(x) =

⎧⎪⎨⎪⎩
xs

s(s−1) , s �= 0,1,

− logx, s = 0,

x logx, s = 1.

Here, d2 fs
dx2 (x) = xs−2 = e(s−2) lnx > 0 which shows that fs is convex for x> 0 and s → d2 fs

dx2 (x)
is exponentially convex by definition. Arguing as in Example 10.1 we get that the mappings
s → i(gs), i = 1,2 are exponentially convex. Functions (10.27) in this case are equal
to:

s,q(i,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i( fs)
i( fq)

) 1
s−q

, s �= q,

exp
(

1−2s
s(s−1) − i( fs f0)

i( fs)

)
, s = q �= 0,1,

exp
(
1− i( f 2

0 )
2i( f0)

)
, s = q = 0,

exp
(
−1− i( f0 f1)

2i( f1)

)
, s = q = 1.

If i is positive, then Theorem 10.9 applied for f = fs ∈ 2 and g = fq ∈ 2 yields that
there exists  ∈ [a,b] such that

 s−q =
i( fs)
i( fq)

.

Since the function  →  s−q is invertible for s �= q, we then have

a ≤
(
i( fs)
i( fq)

) 1
s−q

≤ b, (10.29)

which together with the fact that s,q(i,2) is continuous, symmetric and monotonic (by
(10.26)), shows that s,q(i,2) is a mean (of a function h).

Example 10.3 Consider a family of functions

3 = {hs : (0,) → (0,) : s ∈ (0,)}
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defined by

hs(x) =

⎧⎨⎩
s−x

ln2 s
, s �= 1,

x2

2 , s = 1.

Since s → d2hs
dx2 (x) = s−x is the Laplace transform of a non-negative function (see [211]), it

is exponentially convex. Obviously hs are convex functions for every s > 0.
For this family of functions, s,q(i,3), from (10.27) becomes

s,q(i,3) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
i(hs)
i(hq)

) 1
s−q

, s �= q,

exp
(
−i(id·hs)

si(hs)
− 2

s lns

)
, s = q �= 1,

exp
(
− 2i(id·h1)

3i(h1)

)
, s = q = 1,

and it is monotonic in parameters s and q by (10.26).
Using Theorem 10.9, it follows that

Ms,q (i,3) = −L(s,q) logs,q(i3)

satisfies a ≤ Ms,q(i,3) ≤ b, which shows that Ms,q(i,3) is a mean (of a function h).
L(s,q) is the logarithmic mean defined by L(s,q) = s−q

logs−logq , s �= q, L(s,s) = s.

Example 10.4 Consider a family of functions

4 = {ks : (0,) → (0,) : s ∈ (0,)}

defined by

ks(x) =
e−x

√
s

s
.

Since s → d2ks
dx2 (x) = e−x

√
s is the Laplace transform of a non-negative function (see [211]),

it is exponentially convex. Obviously ks are convex functions for every s > 0.
For this family of functions, s,q(i,4) from (10.27) becomes

s,q(i,4) =

⎧⎪⎨⎪⎩
(
i(ks)
i(kq)

) 1
s−q

, s �= q,

exp
(
− i(id·ks)

2
√

si(ks)
− 1

s

)
, s = q,

and it is monotonic function in parameters s and q by (10.26).
Using Theorem 10.9, it follows that

Ms,q(i,4) = −(√
s+

√
q
)
logs,q(i,4)

satisfies a ≤ Ms,q(i,4) ≤ b, which shows that Ms,q(i,4) is a mean (of a function h).





Chapter11

On the refinements of the
Jensen operator inequality

In this chapter, several refinements of the Jensen operator inequality are presented, for n-
tuples of self-adjoint operators, unital n-tuples of positive linear mappings and real valued
continuous convex functions with the condition on the spectra of the operators. Using these
refinements, the refinements of inequalities among quasi-arithmetic means, under similar
conditions are obtained and, as an application of these results, a refinement of inequalities
among power means is additionally provided.

The chapter is concluded with the considerations on the converses of the generalized
Jensen inequality for a continuous field of self-adjoint operators, a unital field of positive
linear mappings and real valued continuous convex functions, where new refined converses
are presented using the Mond-Pečarić method improvements.

The reader can find the presented results published in [141], [142] and [143].

11.1 Jensen’s operator inequality

At the very start of our consideration, we recall the basic notions and definitions, some of
which have already been used throughout the monograph. Let B(H) be a C∗-algebra of all
bounded linear operators on a Hilbert space H, where 1H stands for the identity operator.

303
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We define bounds of a self-adjoint operator A ∈ B(H) by

mA = inf
‖x‖=1

〈Ax,x〉 and MA = sup
‖x‖=1

〈Ax,x〉,

for x ∈ H. If Sp(A) denotes the spectrum of A, then Sp(A) is real and Sp(A) ⊆ [mA,MA].
Furthermore, for an operator A ∈ B(H) we define operators |A|, A+, A− by

|A| = (A∗A)1/2, A+ = (|A|+A)/2, A− = (|A|−A)/2.

Obviously, if A is self-adjoint, then |A| = (A2)1/2 and A+,A− ≥ 0 (called positive and
negative parts of A = A+−A−).

In [156], B. Mond and J. Pečarić proved the following version of the Jensen operator
inequality:

f

(
n


i=1

wii(Ai)

)
≤

n


i=1

wii ( f (Ai)) , (11.1)

for an operator convex function f defined on an interval I, where i : B(H) → B(K),
i = 1, . . . ,n, are unital positive linear mappings, A1, . . . ,An are self-adjoint operators with
the spectra in I and w1, . . . ,wn are non-negative real numbers with n

i=1 wi = 1.
In [80], F. Hansen, J. Pečarić and I. Perić gave a generalization of (11.1) for a unital

field of positive linear mappings. The following discrete version of their inequality:

f

(
n


i=1

i(Ai)

)
≤

n


i=1

i ( f (Ai)) (11.2)

holds for an operator convex function f defined on an interval I, where i : B(H) →
B(K), i = 1, . . . ,n, are unital fields of positive linear mappings (i.e. n

i=1i(1H) = 1K),
A1, . . . ,An are self-adjoint operators with the spectra in I.

Very recently, in [139, Theorem 1], J. Mićić, Z. Pavić and J. Pečarić provided the form
of the Jensen operator inequality without operator convexity, as follows.

Theorem 11.1 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (1, . . . ,n) be an n-tuple of positive linear
mappings i : B(H) → B(K), i = 1, . . . ,n, such that n

i=1i(1H) = 1K. If

(mA,MA)∩ [mi,Mi] = /0, for i = 1, . . . ,n, (11.3)

where mA and MA, mA ≤MA, are bounds of the self-adjoint operator A =n
i=1i(Ai), then

f

(
n


i=1

i(Ai)

)
≤

n


i=1

i ( f (Ai)) (11.4)

holds for every continuous convex function f : I → R provided that the interval I contains
all mi,Mi.

If f : I → R is concave, then the reverse inequality is valid in (11.4).
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Furthermore, they considered in [138, Theorem 2.1] the case when (mA,MA)∩[mi,Mi] =
/0 is valid for several i∈ {1, . . . ,n}, but not for all i = 1, . . . ,n and thus obtained an extension
of (11.2), as follows.

Theorem 11.2 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (1, . . . ,n) be an n-tuple of positive
linear mappings i : B(H) → B(K), such that n1

i=1i(1H) =  1K, n
i=n1+1i(1H) =

 1K, where 1 ≤ n1 < n, , > 0 and  + = 1. Let m = min{m1, . . . ,mn1} and M =
max{M1, . . . ,Mn1}. If

(m,M)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n,

and one of two equalities

1


n1


i=1

i(Ai) =
n


i=1

i(Ai) =
1


n


i=n1+1

i(Ai)

is valid, then
1


n1


i=1

i( f (Ai)) ≤
n


i=1

i( f (Ai)) ≤ 1


n


i=n1+1

i( f (Ai)) (11.5)

holds for every continuous convex function f : I → R provided that the interval I contains
all mi,Mi, i = 1, . . . ,n.

If f : I → R is concave, then the reverse inequality is valid in (11.5).

In order to obtain our main result, we make use of the left hand side of Lemma 1.2, for
n = 2, which for a convex function f defined on an interval I and for x,y∈ I, p1, p2 ∈ [0,1],
such that p1 + p2 = 1 provides

min{p1, p2}
[

f (x)+ f (y)−2 f

(
x+ y

2

)]
≤ p1 f (x)+ p2 f (y)− f (p1x+ p2y). (11.6)

In Theorem 11.1 it was shown that Jensen’s operator inequality holds for every contin-
uous convex function and for every n-tuple of self-adjoint operators (A1, . . . ,An), for every
n-tuple of positive linear mappings (1, . . . ,n) in the case when the interval with bounds
of the operator A = n

i=1i(Ai) has no intersection points with the interval with bounds
of the operator Ai for each i = 1, . . . ,n. Now, by means of (11.6) we obtain a refinement
of this inequality. We still need another result, utilizing the idea previously moderated in
[102, Theorem 12].

Lemma 11.1 Let A be a self-adjoint operator A ∈ B(H) with Sp(A) ⊆ [m,M], for some
scalars m < M. Then

f (A) ≤ M1H −A
M−m

f (m)+
A−m1H

M−m
f (M)−  f Ã (11.7)

(resp. f (A) ≥ M1H −A
M−m

f (m)+
A−m1H

M−m
f (M)+  f Ã)
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holds for every continuous convex (resp. concave) function f : [m,M] → R, where

 f = f (m)+ f (M)−2 f
(

m+M
2

)
(resp.  f = 2 f

(
m+M

2

)− f (m)− f (M)),

and Ã = 1
21H − 1

M−m

∣∣A− m+M
2 1H

∣∣ .
Proof. We prove only the convex case. Putting x = m,y = M in (11.6) it follows that

f (p1m+ p2M) ≤ p1 f (m)+ p2 f (M)
−min{p1, p2}

(
f (m)+ f (M)−2 f

(
m+M

2

)) (11.8)

holds for every p1, p2 ∈ [0,1] such that p1 + p2 = 1. For any t ∈ [m,M] we can write

f (t) = f

(
M− t
M−m

m+
t−m
M−m

M

)
.

Then by using (11.8) for p1 = M−t
M−m and p2 = t−m

M−m we get

f (t) ≤ M− t
M−m

f (m)+
t−m
M−m

f (M)

−
(

1
2
− 1

M−m

∣∣∣∣t− m+M
2

∣∣∣∣)(
f (m)+ f (M)−2 f

(
m+M

2

))
,

(11.9)

since

min

{
M− t
M−m

,
t−m
M−m

}
=

1
2
− 1

M−m

∣∣∣∣t− m+M
2

∣∣∣∣ .
Finally, we use the continuous functional calculus for a self-adjoint operator A: f ,g ∈
C (I),Sp(A) ⊆ I and f ≥ g implies f (A) ≥ g(A); and h(t) = |t| implies h(A) = |A|. Then,
by using (11.9), we obtain the desired inequality (11.7). �

Theorem 11.3 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (1, . . . ,n) be an n-tuple of positive
linear mappings i : B(H) → B(K), i = 1, . . . ,n, such that n

i=1i(1H) = 1K. Let

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m < M,

where mA and MA, mA ≤ MA, are the bounds of the operator A = n
i=1i(Ai) and

m = max{Mi : Mi ≤ mA, i ∈ {1, . . . ,n}} , M = min{mi : mi ≥ MA, i ∈ {1, . . . ,n}} .

If f : I → R is a continuous convex (resp. concave) function provided that the interval I
contains all mi,Mi, then

f

(
n


i=1

i(Ai)

)
≤

n


i=1

i ( f (Ai))−  f Ã ≤
n


i=1

i ( f (Ai)) (11.10)

(resp. f

(
n


i=1

i(Ai)

)
≥

n


i=1

i ( f (Ai))+  f Ã ≥
n


i=1

i ( f (Ai))) (11.11)
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holds, where

 f ≡  f (m̄,M̄) = f (m̄)+ f (M̄)−2 f
(

m̄+M̄
2

)
(resp.  f ≡  f (m̄,M̄) = 2 f

(
m̄+M̄

2

)
− f (m̄)− f (M̄) ),

Ã ≡ ÃA(m̄,M̄) = 1
21K − 1

M̄−m̄

∣∣∣A− m̄+M̄
2 1K

∣∣∣ (11.12)

and m̄ ∈ [m,mA], M̄ ∈ [MA,M], m̄ < M̄, are arbitrary numbers.

Proof. We prove only the convex case.
Since A = n

i=1i(Ai) ∈ B(K) is the self-adjoint operator such that m̄1K ≤ mA1K ≤
n

i=1i(Ai)≤MA1K ≤ M̄1K and f is convex on [m̄,M̄]⊆ I, then by Lemma 11.1 we obtain

f

(
n


i=1

i(Ai)

)
≤ M̄1K −n

i=1i(Ai)
M̄− m̄

f (m̄)+
n

i=1i(Ai)− m̄1K

M̄− m̄
f (M̄)−  f Ã, (11.13)

where  f and Ã are defined by (11.12).
But since f is convex on [mi,Mi] and since (mA,MA)∩ [mi,Mi] = /0 implies (m̄,M̄)∩

[mi,Mi] = /0, then

f (Ai) ≥ M̄1H −Ai

M̄− m̄
f (m̄)+

Ai− m̄1H

M̄− m̄
f (M̄), i = 1, . . . ,n

holds. Applying a positive linear mapping i, summing and adding − f Ã, we obtain

n


i=1

i ( f (Ai))−  f Ã ≥ M̄1K −n
i=1i(Ai)

M̄− m̄
f (m̄)+ n

i=1i(Ai)− m̄1K

M̄− m̄
f (M̄)−  f Ã,

(11.14)
sincen

i=1i(1H) = 1K . Combining inequalities (11.13) and (11.14), we have the left hand
side of (11.10). Since  f ≥ 0 and Ã ≥ 0, we also have the right hand side of (11.10). �

Remark 11.1 In particular, if mA < MA, then Theorem 11.3 in the convex case yields

f

(
n


i=1

i(Ai)

)
≤

n


i=1

i ( f (Ai))− ̄ f Ā ≤
n


i=1

i ( f (Ai)) ,

where

̄ f ≡  f (mA,MA) = f (mA)+ f (MA)−2 f

(
mA +MA

2

)
and

Ā ≡ ÃA(mA,MA) =
1
2
1K − 1

MA −mA

∣∣∣∣A− mA +MA

2
1K

∣∣∣∣ .
Note that if m < M and mA = MA, then inequality (11.10) holds, but ̄ f Ā is not defined.

This case is worked out in Example 11.1 (I) and (II).



308 11 ON THE REFINEMENTS OF THE JENSEN OPERATOR INEQUALITY

m M

m1 M m1= m M2=mA MA M2

f A( ( )+ )� �1 1 � � � ��

� �

���������������� � �

2 2 1 1 2 2

1 1 2 2

( ) ( ( ))+ ( ( )) ,
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= ( ) + ( ) 2 (( + )/2),
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A f A f A A
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f

f
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~
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2

1

M m�

M m�

2

Figure 11.1: Refinement for two operators and a convex function f

Example 11.1 We give three examples for the matrix case and n = 2.
We put f (t) = t4 which is convex, but not operator convex in (11.10) (see [74]). Also,

we define mappings1,2 : M3(C)→M2(C) as follows: 1((ai j)1≤i, j≤3)= 1
2(ai j)1≤i, j≤2,

2 = 1 (then 1(I3)+2(I3) = I2).
I) Firstly, we observe an example when  f Ã is equal to the difference of the right

hand side and the left hand side of Jensen’s inequality. If A1 = −3I3 and A2 = 2I3, then
A = 1(A1)+2(A2) = −0.5I2, so m = −3, M = 2. We also put m̄ = −3 and M̄ = 2 and
obtain

(1(A1)+2(A2))
4 = 0.0625I2 ≤ 48.5I2 = 1

(
A4

1

)
+2

(
A4

2

)
and its improvement

(1(A1)+2(A2))
4 = 0.0625I2 = 1

(
A4

1

)
+2

(
A4

2

)−48.4375I2,

since  f = 96.875, Ã = 0.5I2.
II) Next, we observe an example when  f Ã is not equal to the difference of the right

hand side and the left hand side of Jensen’s inequality. If

A1 =

⎛⎝−1 0 0
0 −2 0
0 0 −1

⎞⎠ and A2 =

⎛⎝2 0 0
0 3 0
0 0 4

⎞⎠ , then A =
1
2

(
1 0
0 1

)
,

so m = −1, M = 2. We put m̄ = −1 and M̄ = 2 and obtain

(1(A1)+2(A2))
4 =

1
16

(
1 0
0 1

)
≤

( 17
2 0
0 97

2

)
= 1

(
A4

1

)
+2

(
A4

2

)
and its improvement

(1(A1)+2(A2))
4 =

1
16

(
1 0
0 1

)
≤ 1

16

(
1 0
0 641

)
= 1

(
A4

1

)
+2

(
A4

2

)− 135
16

(
1 0
0 1

)
,

since  f = 135/8, Ã = I2/2.
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III) Next, we observe another example with matrices A1 and A2. If

A1 =

⎛⎝−4 1 1
1 −2 −1
1 −1 −1

⎞⎠ and A2 =

⎛⎝ 5 −1 −1
−1 2 1
−1 1 3,

⎞⎠ then A =
1
2

(
1 0
0 0

)
,

so m1 =−4.8662, M1 =−0.3446, m2 = 1.3446, M2 = 5.8662, m =−0.3446, M = 1.3446
and we put m̄ = m, M̄ = M (rounded to four decimal places). We have

(1(A1)+2(A2))
4 =

1
16

(
1 0
0 0

)
≤

( 1283
2 −255

−255 237
2

)
= 1

(
A4

1

)
+2

(
A4

2

)
and its improvement

(1(A1)+2(A2))
4 =

1
16

(
1 0
0 0

)
≤

(
639.9213 −255
−255 117.8559

)
= 1

(
A4

1

)
+2

(
A4

2

)−(
1.5787 0

0 0.6441

)
(rounded to four decimal places), since

 f = 3.1574, Ã =
(

0.5 0
0 0.2040

)
.

But, if we put m̄ = mA = 0, M̄ = MA = 0.5, then Ã = 0, so we do not have an improve-

ment of Jensen’s inequality. Also, if we put m̄ = 0, M̄ = 1, then Ã = 0.5

(
1 0
0 1

)
,  f = 7/8

and  f Ã = 0.4375

(
1 0
0 1

)
, which is worse than the above improvement.

What follows is a corollary of Theorem 11.3 involving the convex combination of
operators Ai, i = 1, . . . ,n.

Corollary 11.1 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (1, . . . ,n) be an n-tuple of nonnegative
real numbers such that n

i=1i = 1. Let

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m < M,

where mA and MA, mA ≤ MA, are the bounds of A = n
i=1iAi and

m = max{Mi ≤ mA, i ∈ {1, . . . ,n}} , M = min{mi ≥ MA, i ∈ {1, . . . ,n}} .

If f : I → R is a continuous convex (resp. concave) function provided that the interval I
contains all mi,Mi, then

f

(
n


i=1

iAi

)
≤ n

i=1i f (Ai)−  f
˜̃A ≤ n

i=1i f (Ai)

(resp. f

(
n


i=1

iAi

)
≥ n

i=1i f (Ai)+  f
˜̃A ≥ n

i=1i f (Ai))
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holds, where  f is defined by (11.12), ˜̃A = 1
21H − 1

M̄−m̄

∣∣∣n
i=1iAi − m̄+M̄

2 1H

∣∣∣ and m̄ ∈
[m,mA], M̄ ∈ [MA,M], m̄ < M̄, are arbitrary numbers.

Proof. We apply Theorem 11.3 for positive linear mappings i : B(H) → B(H)
defined by i : B → iB, i = 1, . . . ,n. �

In the following theorem we give an extension of Jensen’s operator inequality given in
Theorem 11.1 and a refinement of Theorem 11.2.

Theorem 11.4 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (1, . . . ,n) be an n-tuple of positive
linear mappings i : B(H) → B(K), such that n1

i=1i(1H) =  1K, n
i=n1+1i(1H) =

 1K, where 1 ≤ n1 < n, , > 0 and  +  = 1. Let mL = min{m1, . . . ,mn1}, MR =
max{M1, . . . ,Mn1} and

m =
{

mL, if {Mi : Mi ≤ mL, i ∈ {n1 +1, . . . ,n}} = /0,
max{Mi : Mi ≤ mL, i ∈ {n1 +1, . . . ,n}} , otherwise,

M =
{

MR, if {mi : mi ≥ MR, i ∈ {n1 +1, . . . ,n}} = /0,
min{mi : mi ≥ MR, i ∈ {n1 +1, . . . ,n}} , otherwise.

If
(mL,MR)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n, m < M,

and one of two equalities

1


n1


i=1

i(Ai) =
n


i=1

i(Ai) =
1


n


i=n1+1

i(Ai)

is valid, then

1


n1


i=1

i( f (Ai)) ≤ 1


n1


i=1

i( f (Ai))+ f Ã ≤
n


i=1

i( f (Ai))

≤ 1


n


i=n1+1

i( f (Ai))− f Ã ≤ 1


n


i=n1+1

i( f (Ai)) (11.15)

holds for every continuous convex function f : I → R provided that the interval I contains
all mi,Mi, i = 1, . . . ,n, where

 f ≡  f (m̄,M̄) = f (m̄)+ f (M̄)−2 f

(
m̄+ M̄

2

)
Ã ≡ ÃA,,n1,(m̄,M̄) =

1
2
1K − 1

(M̄− m̄)

n1


i=1

i

(∣∣∣∣Ai− m̄+ M̄
2

1H

∣∣∣∣) (11.16)

and m̄ ∈ [m,mL], M̄ ∈ [MR,M], m̄ < M̄, are arbitrary numbers.
If f : I → R is concave, then the reverse inequality is valid in (11.15).
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Proof. We prove only the convex case.
Let us denote

A =
1


n1


i=1

i(Ai), B =
1


n


i=n1+1

i(Ai), C =
n


i=1

i(Ai).

It is easy to verify that A = B or B = C or A = C implies A = B = C.
Since f is convex on [m̄,M̄] and Sp(Ai) ⊆ [mi,Mi] ⊆ [m̄,M̄] for i = 1, . . . ,n1, it follows

from Lemma 11.1 that

f (Ai) ≤ M̄1H −Ai

M̄− m̄
f (m̄)+

Ai − m̄1H

M̄− m̄
f (M̄)−  f Ãi, i = 1, . . . ,n1

holds, where  f = f (m̄)+ f (M̄)−2 f
(

m̄+M̄
2

)
and Ãi = 1

21H − 1
M̄−m̄

∣∣∣Ai − m̄+M̄
2 1H

∣∣∣. Apply-

ing a positive linear mapping i and summing, we obtain

n1


i=1

i ( f (Ai)) ≤ M̄1K −n1
i=1i(Ai)

M̄− m̄
f (m̄)+

n1
i=1i(Ai)− m̄1K

M̄− m̄
f (M̄)

− f

(

2

1K − 1
M̄− m̄

n1


i=1

i

(∣∣∣∣Ai− m̄+ M̄
2

1H

∣∣∣∣)
)

,

since n1
i=1i(1H) = 1K . It follows that

1


n1


i=1

i ( f (Ai)) ≤ M̄1K −A
M̄− m̄

f (m̄)+
A− m̄1K

M̄− m̄
f (M̄)−  f Ã, (11.17)

where Ã = 1
21K − 1

(M̄−m̄) 
n1
i=1i

(∣∣∣Ai − m̄+M̄
2 1H

∣∣∣).

In addition, since f is convex on all [mi,Mi] and (m̄,M̄)∩ [mi,Mi] = /0 for i = n1 +
1, . . . ,n, then

f (Ai) ≥ M̄1H −Ai

M̄− m̄
f (m̄)+

Ai− m̄1H

M̄− m̄
f (M̄), i = n1 +1, . . . ,n.

It follows

1


n


i=n1+1

i ( f (Ai))−  f Ã ≥ M̄1K −B
M̄− m̄

f (m̄)+
B− m̄1K

M̄− m̄
f (M̄)−  f Ã. (11.18)

Combining (11.17) and (11.18) and taking into account that A = B, we obtain

1


n1


i=1

i ( f (Ai)) ≤ 1


n


i=n1+1

i ( f (Ai))−  f Ã. (11.19)

Next, we obtain

1


n1


i=1

i( f (Ai))

=
n1


i=1

i( f (Ai))+



n1


i=1

i( f (Ai)) (by  + = 1)
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≤
n1


i=1

i( f (Ai))+
n


i=n1+1

i( f (Ai))− f Ã (by (11.19))

≤ 


n


i=n1+1

i( f (Ai))− f Ã+
n


i=n1+1

i( f (Ai))− f Ã (by (11.19))

=
1


n


i=n1+1

i( f (Ai))−  f Ã (by  + = 1),

which gives the following double inequality

1


n1


i=1

i( f (Ai)) ≤
n


i=1

i( f (Ai))− f Ã ≤ 1


n


i=n1+1

i( f (Ai))−  f Ã.

Adding  f Ã in the above inequalities, we get

1


n1


i=1

i( f (Ai))+ f Ã ≤
n


i=1

i( f (Ai)) ≤ 1


n


i=n1+1

i( f (Ai))− f Ã. (11.20)

Now, we prove that  f ≥ 0 and Ã ≥ 0.
Indeed, since f is convex, then f ((m̄+ M̄)/2)≤ ( f (m̄)+ f (M̄))/2, which implies that

 f ≥ 0. Also, since

Sp(Ai) ⊆ [m̄,M̄] ⇒
∣∣∣∣Ai − M̄ + m̄

2
1H

∣∣∣∣≤ M̄− m̄
2

1H , for i = 1, . . . ,n1,

then
n1


i=1

i

(∣∣∣∣Ai − M̄ + m̄
2

1H

∣∣∣∣)≤ M̄− m̄
2

1K ,

which gives

0 ≤ 1
2
1K − 1

(M̄− m̄)

n1


i=1

i

(∣∣∣∣Ai− M̄ + m̄
2

1H

∣∣∣∣) = Ã.

Consequently, the following inequalities

1


n1


i=1

i( f (Ai)) ≤ 1


n1


i=1

i( f (Ai))+ f Ã,

1


n


i=n1+1

i( f (Ai))− f Ã ≤ 1


n


i=n1+1

i( f (Ai))

hold, which together with (11.20) proves inequalities (11.15). �
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Example 11.2 We observe the matrix case of Theorem 11.4 for f (t) = t4, which is the
convex function but not operator convex, n = 4, n1 = 2. We present an example such that

1

(
1(A4

1)+2(A4
2)
)

<
1


(
1(A4

1)+2(A4
2)
)
+ f Ã

< 1(A4
1)+2(A4

2)+3(A4
3)+4(A4

4) (11.21)

<
1

(
3(A4

3)+4(A4
4)
)− f Ã <

1

(
3(A4

3)+4(A4
4)
)

holds, where  f = M̄4 + m̄4− (M̄ + m̄)4/8 and

Ã =
1
2
I2− 1

(M̄− m̄)

(
1

(
|A1− M̄ + m̄

2
Ih|

)
+2

(
|A2− M̄ + m̄

2
I3|

))
.

We define mappings i : M3(C) → M2(C) as follows: i((a jk)1≤ j,k≤3) = 1
4 (a jk)1≤ j,k≤2,

i = 1, . . . ,4. Then 4
i=1i(I3) = I2 and  =  = 1

2 .
Let

A1 = 2

⎛⎝ 2 9/8 1
9/8 2 0
1 0 3

⎞⎠ , A2 = 3

⎛⎝ 2 9/8 0
9/8 1 0
0 0 2

⎞⎠ ,

A3 = −3

⎛⎝ 4 1/2 1
1/2 4 0
1 0 2

⎞⎠ , A4 = 12

⎛⎝5/3 1/2 0
1/2 3/2 0
0 0 3

⎞⎠ .

Then m1 = 1.28607, M1 = 7.70771, m2 = 0.53777, M2 = 5.46221, m3 =−14.15050, M3 =
−4.71071, m4 = 12.91724, M4 = 36. Hence mL = m2, MR = M1, m = M3 and M = m4

(rounded to five decimal places). Also,

1


(1(A1)+2(A2)) =
1


(3(A3)+4(A4)) =
(

4 9/4
9/4 3

)
,

and

Af ≡ 1


(
1(A4

1)+2(A4
2)
)

=
(

989.00391 663.46875
663.46875 526.12891

)
,

Cf ≡1(A4
1)+2(A4

2)+3(A4
3)+4(A4

4) =
(

68093.14258 48477.98437
48477.98437 51335.39258

)
,

Bf ≡ 1

(
3(A4

3)+4(A4
4)
)

=
(

135197.28125 96292.5
96292.5 102144.65625

)
.

Then
Af < Cf < Bf (11.22)

holds (which is consistent with (11.5)).
We will choose three pairs of numbers (m̄,M̄), m̄∈ [−4.71071,0.53777], M̄ ∈ [7.70771,

12.91724] as follows:
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i) m̄ = mL = 0.53777, M̄ = MR = 7.70771, then

̃1 =  f Ã = 0.5 ·2951.69249 ·
(

0.15678 0.09030
0.09030 0.15943

)
=

(
231.38908 133.26139
133.26139 235.29515

)
,

ii) m̄ = m = −4.71071, M̄ = M = 12.91724, then

̃2 =  f Ã = 0.5 ·27766.07963 ·
(

0.36022 0.03573
0.03573 0.36155

)
=

(
5000.89860 496.04498
496.04498 5019.50711

)
,

iii) m̄ = −1, M̄ = 10, then

̃3 =  f Ã = 0.5 ·9180.875 ·
(

0.28203 0.08975
0.08975 0.27557

)
=

(
1294.66 411.999
411.999 1265.

)
.

Next, we obtain the following improvement of (11.22) (see (11.21)):

i) Af <Af + ̃1=
(

1220.39299 796.73014
796.73014 761.42406

)
<Cf <

(
134965.89217 96159.23861
96159.23861 101909.36110

)
= Bf − ̃1 < Bf ,

ii) Af <Af +̃2=
(

5989.90251 1159.51373
1159.51373 5545.63601

)
<Cf <

(
130196.38265 95796.45502
95796.45502 97125.14914

)
= Bf − ̃2 < Bf ,

iii) Af <Af +̃3=
(

2283.66362 1075.46746
1075.46746 1791.12874

)
<Cf <

(
133902.62153 95880.50129
95880.50129 100879.65641

)
= Bf − ̃3 < Bf .

By means of Theorem 11.4, we get the following result.

Corollary 11.2 Let the assumptions of Theorem 11.4 hold. Then

1


n1


i=1

i( f (Ai)) ≤ 1


n1


i=1

i( f (Ai))+ 1 f Ã ≤ 1


n


i=n1+1

i( f (Ai)) (11.23)

and

1


n1


i=1

i( f (Ai)) ≤ 1


n


i=n1+1

i( f (Ai))− 2 f Ã ≤ 1


n


i=n1+1

i( f (Ai)) (11.24)

holds for every 1,2 in the closed interval [, ], where  f and Ã are defined by (11.16).

Proof. Adding  f Ã in (11.15) and noticing  f Ã ≥ 0, we obtain

1


n1


i=1

i( f (Ai)) ≤ 1


n1


i=1

i( f (Ai))+ f Ã ≤ 1


n


i=n1+1

i( f (Ai)).

Taking into account the above inequality and the left hand side of (11.15)we obtain (11.23).
Similarly, subtracting  f Ã in (11.15) we obtain (11.24). �
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Remark 11.2 Let the assumptions of Theorem 11.4 be valid.
1) We observe that the following inequality

f

(
1


n


i=n1+1

i(Ai)

)
≤ 1



n


i=n1+1

i( f (Ai))−  f Ã ≤ 1


n


i=n1+1

i( f (Ai))

holds for every continuous convex function f : I → R provided that the interval I contains
all mi,Mi, i = 1, . . . ,n, where  f is defined by (11.16),

Ã ≡ Ã ,A,,n1
(m̄,M̄) =

1
2
1K − 1

M̄− m̄

∣∣∣∣∣ 1


n


i=n1+1

iAi − m̄+ M̄
2

1K

∣∣∣∣∣
and m̄ ∈ [m,mL], M̄ ∈ [MR,M], m̄ < M̄, are arbitrary numbers.

Indeed, by the assumptions of Theorem 11.4 we have

mL1H ≤
n1


i=1

i(Ai) ≤ MR1H and
1


n1


i=1

i(Ai) =
1


n


i=n1+1

i(Ai),

which implies

mL1H ≤ 1


n


i=n1+1

i(Ai) ≤ MR1H .

Also (mL,MR)∩[mi,Mi] = /0 for i = n1+1, . . . ,n andn
i=n1+1

1
 i(1H)= 1K . Hence we can

apply Theorem 11.3 to operators An1+1, . . . ,An and mappings 1
 i wherefrom we obtain

the desired inequality.
2) We denote by mC and MC the bounds ofC =n

i=1i(Ai). If (mC,MC)∩[mi,Mi] = /0,
i = 1, . . . ,n1, then series of inequalities (11.15) can be extended from the left side if we use
refined Jensen’s operator inequality (11.10):

f

(
n


i=1

i(Ai)

)
= f

(
1


n1


i=1

i(Ai)

)
≤ 1



n1


i=1

i( f (Ai))−  f Ã

≤ 1


n1


i=1

i( f (Ai)) ≤ 1


n1


i=1

i( f (Ai))+ f Ã ≤
n


i=1

i( f (Ai))

≤ 1


n


i=n1+1

i( f (Ai))− f Ã ≤ 1


n


i=n1+1

i( f (Ai)),

where  f and Ã are defined by (11.16),

Ã ≡ Ã ,A,,n1(m̄,M̄) =
1
2
1K − 1

M̄− m̄

∣∣∣∣∣ 1


n


i=n1+1

iAi − m̄+ M̄
2

1K

∣∣∣∣∣ .
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Remark 11.3 We obtain the equivalent inequalities to the ones in Theorem 11.4 in the
case when n

i=1i(1H) =  1K , for some positive scalar  . If  + =  and one of two
equalities

1


n1


i=1

i(Ai) =
1


n


i=n1+1

i(Ai) =
1


n


i=1

i(Ai)

is valid, then

1


n1


i=1

i( f (Ai)) ≤ 1


n1


i=1

i( f (Ai))+


 f Ã ≤ 1



n


i=1

i( f (Ai))

≤ 1


n


i=n1+1

i( f (Ai))− 

 f Ã ≤ 1



n


i=n1+1

i( f (Ai))

holds for every continuous convex function f : I → R provided that the interval I contains
all mi,Mi, i = 1, . . . ,n, where  f and Ã are defined by (11.16).

With respect to Remark 11.3, we obtain the following obvious corollary of Theo-
rem 11.4 with the convex combination of operators Ai, i = 1, . . . ,n.

Corollary 11.3 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (p1, . . . , pn) be an n-tuple of non-
negative numbers such that 0 < n1

i=1 pi = pn1 < pn = n
i=1 pi, where 1 ≤ n1 < n. Let

mL = min{m1, . . . ,mn1}, MR = max{M1, . . . ,Mn1} and

m =
{

mL, if {Mi : Mi ≤ mL, i ∈ {n1 +1, . . . ,n}} = /0,
max{Mi : Mi ≤ mL, i ∈ {n1 +1, . . . ,n}} , otherwise,

M =
{

MR, if {mi : mi ≥ MR, i ∈ {n1 +1, . . . ,n}} = /0,
min{mi : mi ≥ MR, i ∈ {n1 +1, . . . ,n}} , otherwise.

If
(mL,MR)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n, m < M,

and one of two equalities

1
pn1

n1


i=1

piAi =
1
pn

n


i=1

piAi =
1

pn −pn1

n


i=n1+1

piAi

is valid, then

1
pn1

n1


i=1

pi f (Ai) ≤ 1
pn1

n1


i=1

pi f (Ai)+
(

1− pn1

pn

)
 f Ã ≤ 1

pn

n


i=1

pi f (Ai)

≤ 1
pn −pn1

n


i=n1+1

pi f (Ai)− pn1

pn
 f Ã ≤ 1

pn −pn1

n


i=n1+1

pi f (Ai)
(11.25)

holds for every continuous convex function f : I → R provided that the interval I contains
all mi,Mi, i = 1, . . . ,n, where  f is defined by (11.16),

Ã ≡ ÃA,p,n1(m̄,M̄) =
1
2
1H − 1

pn1(M̄− m̄)

n1


i=1

pi

(∣∣∣∣Ai − m̄+ M̄
2

1H

∣∣∣∣)
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and m̄ ∈ [m,mL], M̄ ∈ [MR,M], m̄ < M̄, are arbitrary numbers.
If f : I → R is concave, then the reverse inequality is valid in (11.25).

As a special case of Corollary 11.3 we obtain an extension of Corollary 11.1.

Corollary 11.4 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (p1, . . . , pn) be an n-tuple of non-negative
numbers such that n

i=1 pi = 1. Let

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m < M,

where mA and MA, mA ≤ MA, are the bounds of A = n
i=1 piAi and

m = max{Mi ≤ mA, i ∈ {1, . . . ,n}} , M = min{mi ≥ MA, i ∈ {1, . . . ,n}} .

If f : I → R is a continuous convex function provided that the interval I contains all
mi,Mi, then

f (
n


i=1

piAi) ≤ f (
n


i=1

piAi)+
1
2
 f

˜̃A ≤ 1
2

f (
n


i=1

piAi)+
1
2

n


i=1

pi f (Ai)

≤
n


i=1

pi f (Ai)− 1
2
 f

˜̃A ≤
n


i=1

pi f (Ai)
(11.26)

holds, where  f is defined by (11.16), ˜̃A = 1
21H − 1

M̄−m̄

∣∣∣n
i=1 piAi − m̄+M̄

2 1H

∣∣∣ and m̄ ∈
[m,mA], M̄ ∈ [MA,M], m̄ < M̄, are arbitrary numbers.

If f : I → R is concave, then the reverse inequality is valid in (11.26).

Proof. We prove only the convex case.
We define (n+1)-tuple of operators (B1, . . . ,Bn+1), Bi ∈B(H), by B1 = A =n

i=1 piAi

and Bi = Ai−1, i = 2, . . . ,n + 1. Then mB1 = mA, MB1 = MA are the bounds of B1 and
mBi = mi−1, MBi = Mi−1 are the ones of Bi, i = 2, . . . ,n+1. Also, we define (n+1)-tuple
of non-negative numbers (q1, . . . ,qn+1) by q1 = 1 and qi = pi−1, i = 2, . . . ,n+1. We have
that n+1

i=1 qi = 2 and

(mB1 ,MB1)∩ [mBi ,MBi ] = /0, for i = 2, . . . ,n+1 and m < M (11.27)

holds. Since
n+1


i=1

qiBi = B1 +
n+1


i=2

qiBi =
n


i=1

piAi +
n


i=1

piAi = 2B1,

then

q1B1 =
1
2

n+1


i=1

qiBi =
n+1


i=2

qiBi. (11.28)

Taking into account (11.27) and (11.28), we can apply Corollary 11.3 for n1 = 1 and
Bi, qi as above, and we get

q1 f (B1) ≤ q1 f (B1)+
1
2
 f B̃ ≤ 1

2

n+1


i=1

qi f (Bi) ≤
n+1


i=2

qi f (Bi)− 1
2
 f B̃ ≤

n+1


i=2

qi f (Bi),

where B̃ = 1
21H − 1

M̄−m̄

∣∣∣B1− m̄+M̄
2 1H

∣∣∣ , which yields the desired inequality (11.26). �
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11.2 Application to quasi-arithmetic and power
means

In this section we study an application of the results obtained in the previous section to
quasi-arithmetic operator means as well as to their special case – power means.

A quasi-arithmetic operator mean is defined by

M(A,,n) = −1

(
n


i=1

i ((Ai))

)
, (11.29)

where (A1, . . . ,An) is an n-tuple of self-adjoint operators in B(H) with the spectra in
I, (1, . . . ,n) is an n-tuple of positive linear mappings i : B(H) → B(K), such that
n

i=1i(1H) = 1K , and  : I → R is a continuous strictly monotone function.
The following result about the monotonicity of this mean was proven in [139, Theo-

rem 3].

Theorem 11.5 Let (A1, . . . ,An) and (1, . . . ,n) be as in the definition of the quasi-
arithmetic mean (11.29). Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let
 , : I → R be continuous strictly monotone functions on an interval I which contains all
mi,Mi. Let m and M , m ≤ M , be the bounds of the mean M(A,,n), such that(

m ,M
)∩ [mi,Mi] = /0, for i = 1, . . . ,n. (11.30)

If one of the following conditions

(i)  ◦−1 is convex and −1 is operator monotone,

(i’)  ◦−1 is concave and −−1 is operator monotone,

is satisfied, then
M(A,,n) ≤ M(A,,n). (11.31)

If one of the following conditions

(ii)  ◦−1 is concave and −1 is operator monotone,

(ii’)  ◦−1 is convex and −−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (11.31).

For convenience, we introduce the following notation:

,(m,M) = (m)+(M)−2 ◦−1
(
(m)+(M)

2

)
,

Ã(m,M) = 1
21K − 1

|(M)−(m)|
∣∣∣n

i=1i((Ai))− (M)+(m)
2 1K

∣∣∣ , (11.32)
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where (A1, . . . ,An) is an n-tuple of self-adjoint operators in B(H) with the spectra in
I, (1, . . . ,n) is an n-tuple of positive linear mappings i : B(H) → B(K) such that
n

i=1i(1H) = 1K ,  , : I → R are continuous strictly monotone functions and m,M ∈ I,
m < M. We include implicitly that Ã(m,M) ≡ Ã,A(m,M), where A = n

i=1i((Ai)).
In the following theorem we make use of Theorem 11.3 and give a refinement of the

results presented in Theorem 11.5.

Theorem 11.6 Let (A1, . . . ,An) and (1, . . . ,n) be as in the definition of the quasi-
arithmetic mean (11.29). Let  , : I → R be continuous strictly monotone functions on
an interval I which contains all mi,Mi. Let(

m ,M
)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m < M,

where m and M , m ≤ M , are the bounds of the mean M(A,,n) and m =
max

{
Mi : Mi ≤ m , i ∈ {1, . . . ,n}}, M = min

{
mi : mi ≥ M , i ∈ {1, . . . ,n}}.

(i) If  ◦−1 is convex and −1 is operator monotone, then

M(A,,n) ≤ −1

(
n


i=1

i ((Ai))− , Ã

)
≤ M(A,,n) (11.33)

holds, where , ≥ 0 and Ã ≥ 0.
(i′) If  ◦−1 is convex and −−1 is operator monotone, then the reverse inequality

is valid in (11.33), where , ≥ 0 and Ã ≥ 0.
(ii) If  ◦−1 is concave and −−1 is operator monotone, then (11.33) holds, where

, ≤ 0 and Ã ≥ 0.
(ii′) If  ◦−1 is concave and −1 is operator monotone, then the reverse inequality

is valid in (11.33), where , ≤ 0 and Ã ≥ 0.

In all the above cases, we assume that , ≡ ,(m̄,M̄), Ã ≡ Ã(m̄,M̄) are defined
by (11.32) and m̄ ∈ [m,m ], M̄ ∈ [M ,M], m̄ < M̄, are arbitrary numbers.

Proof. We only prove the case (i). Suppose that  is a strictly increasing function.
Since mi1H ≤ Ai ≤ Mi1H , i = 1, . . . ,n, and m1K ≤ M(A,,n) ≤ M1K , then

(mi)1H ≤ (Ai) ≤ (Mi)1H , i = 1, . . . ,n,

(m)1K ≤ n
i=1i((Ai)) ≤ (M)1K .

Also (
m ,M

)∩ [mi,Mi] = /0 for i = 1, . . . ,n

implies (
(m ),(M )

)∩ [(mi),(Mi)] = /0 for i = 1, . . . ,n. (11.34)

Replacing Ai by (Ai) in (11.10) and taking into account (11.34), we obtain that

f

(
n


i=1

i((Ai))

)
≤

n


i=1

i ( f ((Ai)))−  f Ã ≤
n


i=1

i ( f ((Ai))) (11.35)
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holds for every convex function f : J →R on an interval J which contains all [(mi),(Mi)]
= ([mi,Mi]), where

 f = f ((m̄))+ f ((M̄))−2 f

(
(m̄)+(M̄)

2

)
≥ 0 (11.36)

and Ã = 1
21K − 1

(M̄)−(m̄)

∣∣∣n
i=1i((Ai))− (M̄)+(m̄)

2 1K

∣∣∣≥ 0.

Also, if  is strictly decreasing, then we check that (11.35) holds for convex function
f : J → R on J which contains all [(Mi),(mi)] = ([mi,Mi]), where  f is defined by

(11.36) and Ã = 1
21K − 1

(m̄)−(M̄)

∣∣∣n
i=1i((Ai))− (M̄)+(m̄)

2 1K

∣∣∣≥ 0.

Putting f =  ◦−1 in (11.35) and then applying an operator monotone function−1,
we obtain (11.33).

The proof of the case (ii) is similar to the above case with the inequality (11.11) instead
of (11.10). �

Now, we give a special case of the above theorem. It is a refinement of [139, Corol-
lary 5].

Corollary 11.5 Let (A1, . . . ,An) and (1, . . . ,n) be as in the definition of the quasi-
arithmetic mean (11.29). Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let
 , : I → R be continuous strictly monotone functions on an interval I which contains all
mi,Mi and I be the identity function on I.

(i) If −1 is convex and(
m ,M

)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m[] < M[] (11.37)

is valid, where m and M , m ≤ M are the bounds of M (A,,n) and m[] =
max

{
Mi : Mi ≤ m , i ∈ {1, . . . ,n}}, M[] = min

{
mi : mi ≥ M , i ∈ {1, . . . ,n}} , then

M(A,,n) ≤ MI (A,,n)− ,I (m̄,M̄)Ã(m̄,M̄) ≤ MI (A,,n) (11.38)

holds for every m̄∈ [m[],m ], M̄ ∈ [M ,M[]], m̄ < M̄, where ,I (m̄,M̄)≥ 0 and Ã(m̄,M̄)
≥ 0 are defined by (11.32).

(ii) If −1 is concave and (11.37) is valid, then

M(A,,n) ≥ MI (A,,n)− ,I (m̄,M̄)Ã(m̄,M̄) ≥ MI (A,,n) (11.39)

holds for every m̄∈ [m[],m ], M̄ ∈ [M ,M[]], m̄ < M̄, where ,I (m̄,M̄)≤ 0 and Ã(m̄,M̄)
≥ 0 are defined by (11.32).

(iii) If −1 is convex and (11.37) is valid and if −1 is concave, and(
m ,M

)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m[] < M[]

is valid, where m and M , m ≤ M are the bounds of M (A,,n) and m[] =
max

{
Mi : Mi ≤ m , i ∈ {1, . . . ,n}}, M[] = min

{
mi : mi ≥ M , i ∈ {1, . . . ,n}} , then

M (A,,n) ≤ MI (A,,n)− ,I (m̄,M̄)Ã(m̄,M̄) ≤ MI (A,,n)

≤ MI (A,,n)− ,I ( ¯̄m, ¯̄M)Ã ( ¯̄m, ¯̄M) ≤ M (A,,n)
(11.40)
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holds for every m̄ ∈ [m[],m ], M̄ ∈ [M ,M[]], m̄ < M̄ and every ¯̄m ∈ [m[],m ], ¯̄M ∈
[M ,M[]], ¯̄m < ¯̄M, where ,I (m̄,M̄)≥ 0, Ã(m̄,M̄)≥ 0 and ,I ( ¯̄m, ¯̄M)≤ 0, Ã( ¯̄m, ¯̄M)≥
0 are defined by (11.32).

Proof. (i)–(ii): Putting  = I in Theorem 11.6 (i) and (ii’), we obtain (11.38) and
(11.39), respectively.

(iii): Replacing  by  in (ii) and combining this with (i), we obtain the desired in-
equality (11.40). �

Remark 11.4 Let the assumptions of Corollary 11.5 (iii) be valid. We get the following
refinement of the inequalities between quasi-arithmetic means

M(A,,n) ≤ M (A,,n)+,(m̄,M̄, ¯̄m, ¯̄M) ≤ M (A,,n),

where

,(m̄,M̄, ¯̄m, ¯̄M) = ,I (m̄,M̄)Ã (m̄,M̄)− ,I ( ¯̄m, ¯̄M)Ã ( ¯̄m, ¯̄M) ≥ 0.

In particular,

M(A,,n) ≤ M (A,,n)+ ̄(m̄,M̄)Ã(m̄,M̄)+ ̄(m̄,M̄)Ã (m̄,M̄) ≤ M (A,,n),

where
̄(m̄,M̄) = m̄+ M̄−2−1

(
(m̄)+(M̄)

2

)
≥ 0,

̄(m̄,M̄) = 2−1
(
(m̄)+(M̄)

2

)
− m̄− M̄ ≥ 0.

It is interesting to study a refinement of (11.31) under the condition placed only on
the bounds of operators whose means we are considering. We study it in the following
corollary. It is a refinement of the result given in [140, Theorem 2.1].

Corollary 11.6 Let Ai, i, mi, Mi, i = 1, . . . ,n, and  , ,I as in the assumptions of
Corollary 11.5.

Let
(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m < M

be valid, where mA and MA, mA ≤ MA, are the bounds of A = n
i=1i(Ai) and

m = max{Mi : Mi ≤ mA, i ∈ {1, . . . ,n}} , M = min{mi : mi ≥ MA, i ∈ {1, . . . ,n}} .

If  is convex, −1 is operator monotone,  is concave, −1 is operator monotone,
then

M(A,,n) ≤ −1
(
n

i=1i ((Ai))+  Ã
)
≤ MI (A,,n)

≤ −1
(
n

i=1i ((Ai))−  Ā
)≤ M(A,,n)

(11.41)

holds, where

 = 2
(

m̄+M̄
2

)
−(m̄)−(M̄) ≥ 0,  = ( ¯̄m)+( ¯̄M)−2

(
¯̄m+ ¯̄M

2

)
≥ 0,
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Ã = 1
21K − 1

M̄−m̄

∣∣∣A− m̄+M̄
2 1K

∣∣∣ , Ā = 1
21K − 1

¯̄M− ¯̄m

∣∣∣A− ¯̄m+ ¯̄M
2 1K

∣∣∣
and m̄, ¯̄m ∈ [m,mA], M̄, ¯̄M ∈ [MA,M], m̄ < M̄, ¯̄m < ¯̄M are arbitrary numbers.

If is convex,−−1 is operator monotone,  is concave,−−1 is operator monotone,
then the reverse inequality is valid in (11.41).

Proof. We only prove (11.41). By replacing  by I and next  by  in Theorem 11.6
(ii’) we obtain left hand side of (11.41). Also, by replacing  by I in Theorem 11.6 (i)
we obtain right hand side of (11.41). �

Now we illustrate an application of Theorem 11.6 and Remark 11.4 to power functions.
Results for arbitrary power means are given in Corollary 11.8 in the next section.

Example 11.3 We put (t) = t1/3, (t) = t5 and we define1,2 : M2(C)→M2(C) by
1(B) = 2(B) = 1

2B, for B ∈ M2(C) (then 1(I2)+2(I2) = I2).

If A1 =
(

13 8
8 5

)
and A2 = 125

(
1 0
0 1

)
, then

M1/3 ≡ M1/3(A,,2) =
(

1
2

3
√

A1 + 1
2

3
√

A2
)3 =

(
45.375 16

16 29.375

)
,

M5 ≡ M5(A,,2) = 5
√

1
2A5

1 + 1
2A5

2 =
(

108.81978 0.00059
0.00059 108.81919

)
and we can take m = 17.94427, M = 125. We put also that m̄ = ¯̄m = 17.94427, M̄ = ¯̄M =
125. It follows 1/3,5 ≡ , = 2.94885× 1010, 1/3 ≡ ,I = 32.41718, 5 ≡ ,I =

74.69602, Ã1/3 ≡ Ã =
(

0.37027 0.20991
0.20991 0.16036

)
, Ã5 ≡ Ã =

(
0.49999 0.00001
0.00001 0.49998

)
(rounded

to five decimal places).
Then the following inequality holds:

M1/3 ≤ 5

√
1
2
A5

1 +
1
2
A5

2− 1/3,5Ã1/3 =
(

69.70109 −23.36045
−23.36045 93.06154

)
≤ M5,

which is in accordance with Theorem 11.6, and

M1/3 ≤ M1/3 + 1/3Ã1/3 + 5Ã5 =
(

94.72543 22.80573
22.80573 71.91970

)
≤ M5,

which is accordance with the special case of Remark 11.4.

As a special case of the quasi-arithmetic mean (11.29) we can study the operator power
mean

M
[r]
n (A,) =

{
(n

i=1i (Ar
i ))

1/r , r ∈ R\{0},
exp(n

i=1i (ln(Ai))) , r = 0,
(11.42)

where (A1, . . . ,An) is an n-tuple of strictly positive operators in B(H) and (1, . . . ,n) is
an n-tuple of positive linear mappings i : B(H) → B(K) such that n

i=1i(1H) = 1K .
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For convenience, we introduce notation as special cases of (11.32), as follows:

r,s(m,M) =

⎧⎨⎩ms +Ms −2
(

mr+Mr

2

)s/r
, r �= 0,

ms +Ms −2(mM)s/2 , r = 0,

Ãr(m,M) =

⎧⎨⎩
1
21K − 1

|Mr−mr |
∣∣∣n

i=1i(Ar
i )− Mr+mr

2 1K

∣∣∣ , r �= 0,

1
21K −| ln(M

m

) |−1
∣∣n

i=1i(lnAi)− ln
√

Mm1K
∣∣ , r = 0,

(11.43)

where m,M ∈ R, 0 < m < M and r,s ∈ R, r ≤ s. We include implicitly that Ãr(m,M) ≡
Ãr,A(m,M), where A = n

i=1i(Ar
i ) for r �= 0 and A =n

i=1i(lnAi) for r = 0.
Applying Theorem 11.6 to the operator power means, we obtain the following refine-

ment of inequalities among power means given in [139, Corollary 7].

Corollary 11.7 Let (A1, . . . ,An) and (1, . . . ,n) be as in the definition of the power
mean (11.42). Let mi and Mi, 0 < mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n.

(i) If r ≤ s, s ≥ 1 or r ≤ s ≤−1,(
m[r],M[r]

)
∩ [mi,Mi] = /0, i = 1, . . . ,n, and m < M,

where m[r] and M[r], m[r] ≤ M[r] are the bounds of M
[r]
n (A,) and m = max

{
Mi : Mi ≤

m[r], i ∈ {1, . . . ,n}
}
, M = min

{
mi : mi ≥ M[r], i ∈ {1, . . . ,n}

}
, then

M
[r]
n (A,) ≤

(
n


i=1

i (As
i )− r,sÃr

)1/s

≤ M
[s]
n (A,) (11.44)

holds, where r,s ≥ 0, for s ≥ 1, r,s ≤ 0 for s ≤ −1 and Ãr ≥ 0. Here we assume that
r,s ≡ r,s(m̄,M̄), Ãr ≡ Ãr(m̄,M̄) are defined by (11.43) and m̄ ∈ [m,m[r]], M̄ ∈ [M[r],M],
m̄ < M̄, are arbitrary numbers.

(ii) If r ≤ s, r ≤−1 or 1 ≤ r ≤ s,(
m[s],M[s]

)
∩ [mi,Mi] = /0, i = 1, . . . ,n, and m < M,

where m[s] and M[s], m[s] ≤M[s] are the bounds of M [s]
n (A,) and m =max

{
Mi : Mi ≤m[s],

i ∈ {1, . . . ,n}
}

, M = min
{

mi : mi ≥ M[s], i ∈ {1, . . . ,n}
}

, then

M
[r]
n (A,) ≤

(
n


i=1

i (Ar
i )− s,rÃs

)1/r

≤ M
[s]
n (A,)

holds, where s,r ≥ 0 for r ≤ −1, s,r ≤ 0 for r ≥ 1 and Ãs ≥ 0. Here we assume that
s,r ≡ s,r(m̄,M̄), Ãs ≡ Ãs(m̄,M̄) are defined by (11.43) and m̄ ∈ [m,m[s]], M̄ ∈ [M[s],M],
m̄ < M̄, are arbitrary numbers.
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Proof. We prove only the case (i) by putting (t) = tr and (t) = ts, for t > 0.
Then  ◦−1(t) = ts/r is concave for r ≤ s, s≤ 0 and r �= 0. Since −−1(t) = −t1/s is

operator monotone for s≤−1 and
(
m[r],M[r]

)
∩ [mi,Mi] = /0 is satisfied, then, by applying

Theorem 11.6 (ii) we obtain (11.44) for r ≤ s ≤−1.
But,  ◦−1(t) = ts/r is convex for r ≤ s, s ≥ 0 and r �= 0. Since −1(t) = t1/s is

operator monotone for s ≥ 1, then by applying Theorem 11.6 (i) we obtain (11.44) for
r ≤ s, s ≥ 1, r �= 0.

If r = 0 and s ≥ 1, we put (t) = ln t and (t) = ts, t > 0. Since  ◦−1(t) = exp(st)
is convex, then, similarly as above, we obtain the desired inequality.

In the case (ii) we put (t) = ts and (t) = tr, for t > 0 and we use the same technique
as in the case (i). �

Example 11.4 Figure 11.2 shows regions (1), (2), (4), (6), (7) in which the monotonicity
of the power mean holds true [139, Corollary 6]. On the other hand, Figure 11.2 also
shows regions (1)–(7) in which the same holds true, but with the condition on spectra [139,
Corollary 7]. In [139, Example 2], it was shown that the order among power means does
not hold generally without the condition on spectra in regions (3), (5). Now, by using
Corollary 11.7, we give a refinement of inequalities among power means in the regions
(2)–(6) (see Remark 11.5).

M A,n

[ ]r
( )� � M A,n

[ ]s
( )  in  (1), (2), (4), (6), (7)

without condition on spectra

�

M A,n

[ ]r
( )� � M A,n

[ ]s
( )

in  (2), (3), (4) or (4), (5), (6)

without condition on spectra

�M A, r  a  An

[ ]r
( ) + ( , , )� �

1

1

(7)

(5)

(4) (5) (2) (1)

(6)

�1

�1

�1/2

1/2

s

r

Figure 11.2: Regions describing inequalities among power means

Corollary 11.8 Let (A1, . . . ,An) and (1, . . . ,n) be as in the definition of the power
mean (11.42). Let mi and Mi, 0 < mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let(

m[r],M[r]
)
∩ [mi,Mi] = /0, i = 1, . . . ,n, m[r] < M[r],(

m[s],M[s]
)
∩ [mi,Mi] = /0, i = 1, . . . ,n, m[s] < M[s],
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where m[r], M[r], m[r] ≤ M[r] and m[s], M[s], m[s] ≤ M[s] are the bounds of M
[r]
n (A,) and

M
[r]
n (A,), respectively, and

m[r] = max
{

Mi ≤ m[r], i ∈ {1, . . . ,n}
}

, M[r] = min
{

mi ≥ M[r], i ∈ {1, . . . ,n}
}

,

m[s] = max
{

Mi ≤ m[s], i ∈ {1, . . . ,n}
}

, M[s] = min
{

mi ≥ M[s], i ∈ {1, . . . ,n}
}

.

Let m̄ ∈ [m[r],m
[r]], M̄ ∈ [M[r],M[r]], m̄ < M̄, and ¯̄m ∈ [m[s],m

[s]], ¯̄M ∈ [M[s],M[s]], ¯̄m < ¯̄M be
arbitrary numbers.

(i) If r ≤ 1 ≤ s, then

M
[r]
n (A,) ≤ n

i=1i (Ai)− r,1(m̄,M̄)Ãr(m̄,M̄) ≤ M
[1]
n (A,)

≤ n
i=1i (Ai)− s,1( ¯̄m, ¯̄M)Ãs( ¯̄m, ¯̄M) ≤ M

[s]
n (A,)

(11.45)

holds, where r,1(m̄,M̄) ≥ 0, Ãr(m̄,M̄) ≥ 0, s,1( ¯̄m, ¯̄M) ≤ 0 and Ãs( ¯̄m, ¯̄M) ≥ 0 are defined
by (11.43).

(ii) Furthermore if r ≤−1 ≤ s, then

M
[r]
n (A,) ≤

(
n

i=1i
(
A−1

i

)− r,−1(m̄,M̄)Ãr(m̄,M̄)
)−1 ≤ M

[−1]
n (A,)

≤
(
n

i=1i
(
A−1

i

)− s,−1( ¯̄m, ¯̄M)Ãs( ¯̄m, ¯̄M)
)−1 ≤ M

[s]
n (A,)

(11.46)

holds, where r,−1(m̄,M̄)≤ 0, Ãr(m̄,M̄)≥ 0, s,−1( ¯̄m, ¯̄M)≥ 0 and Ãs( ¯̄m, ¯̄M)≥ 0 are defined
by (11.43).

(iii) Furthermore if r ≤−1, s ≥ 1, then

M
[r]
n (A,) ≤

(
n

i=1i
(
A−1

i

)− r,−1(m̄,M̄)Ãr(m̄,M̄)
)−1 ≤ M

[−1]
n (A,)

≤ M
[1]
n (A,) ≤ n

i=1i (Ai)− s,1( ¯̄m, ¯̄M)Ãs( ¯̄m, ¯̄M) ≤ M
[s]
n (A,)

(11.47)

holds, where r,−1(m̄,M̄) ≤ 0, Ãr(m̄,M̄) ≥ 0, s,1( ¯̄m, ¯̄M) ≤ 0, Ãs( ¯̄m, ¯̄M) ≥ 0 are defined by
(11.43).

Proof. We prove only (11.45). If r ≤ 1, then putting s = 1 in Corollary 11.7 (i) we get
the left hand side of (11.45). Also, if s ≥ 1, then putting r = 1 in Corollary 11.7 (ii) we get
the right hand side of (11.45). �

Remark 11.5 Let the assumptions of Corollary 11.8 be valid. We get a refinement of
inequalities among power means as follows.

If r ≤ 1 ≤ s, then

M
[r]
n (A,) ≤ M

[r]
n (A,)+ r,1(m̄,M̄)Ãr(m̄,M̄)− s,1( ¯̄m, ¯̄M)Ãs( ¯̄m, ¯̄M) ≤ M

[s]
n (A,).

If r ≤−1 ≤ s, then

M
[r]
n (A,) ≤ M

[r]
n (A,)+

(
n

i=1i
(
A−1

i

)− s,−1( ¯̄m, ¯̄M)Ãs( ¯̄m, ¯̄M)
)−1

−
(
n

i=1i
(
A−1

i

)− r,−1(m̄,M̄)Ãr(m̄,M̄)
)−1 ≤ M

[s]
n (A,).
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If r ≤−1, s ≥ 1, then

M
[r]
n (A,) ≤ M

[r]
n (A,)+M

[1]
n (A,)− s,1( ¯̄m, ¯̄M)Ãs( ¯̄m, ¯̄M)

−
(
n

i=1i
(
A−1

i

)− r,−1(m̄,M̄)Ãr(m̄,M̄)
)−1 ≤ M

[s]
n (A,).

Finally, we give a refinement of inequalities among power means under the condition
placed only on the bounds of operators whose means we are considering.

Corollary 11.9 Let (A1, . . . ,An) and (1, . . . ,n) be as in the definition of the quasi-
arithmetic mean (11.29). Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . ,n. Let

(m[1],M[1])∩ [mi,Mi] = /0, i = 1, . . . ,n, m[1] < M[1],

(m[−1],M[−1])∩ [mi,Mi] = /0, i = 1, . . . ,n, m[−1] < M[−1],

where m[1], M[1], m[1] ≤M[1], and m[−1], M[−1], m[−1] ≤M[−1], are the bounds of M [1]
n (A,)

and M
[−1]
n (A,), respectively, and

m[1] = max
{

Mi ≤ m[1], i ∈ {1, . . . ,n}
}

, M[1] = min
{

mi ≥ M[1], i ∈ {1, . . . ,n}
}

,

m[−1] = max
{

Mi ≤ m[−1], i ∈ {1, . . . ,n}
}

, M[−1] = min
{

mi ≥ M[−1], i ∈ {1, . . . ,n}
}

.

Let m̄ ∈ [m[1],m
[1]], M̄ ∈ [M[1],M[1]], m̄ < M̄, and ¯̄m ∈ [m[−1],m

[−1]], ¯̄M ∈ [M[−1],M[−1]],
¯̄m < ¯̄M be arbitrary numbers.

If r ≤−1, s ≥ 1, then

M
[r]
n (A,) ≤

(
n

i=1i (Ar
i )− −1,r(m̄,M̄)Ã−1(m̄,M̄)

)1/r ≤ M
[−1]
n (A,)

≤ M
[r]
1 (A,) ≤

(
n

i=1i (As
i )− 1,s( ¯̄m, ¯̄M)Ã1( ¯̄m, ¯̄M)

)1/s ≤ M
[s]
n (A,)

(11.48)

holds, where −1,r(m̄,M̄) ≥ 0, Ã−1(m̄,M̄) ≥ 0, 1,s( ¯̄m, ¯̄M) ≥ 0 and Ã1( ¯̄m, ¯̄M) ≥ 0 are de-
fined by (11.43).

Proof. If r ≤ −1, then by putting s = −1 in Corollary 11.7 (ii) we obtain left hand
side of (11.48). Also, if s≥ 1, then putting r = 1 in Corollary 11.7 (i) we obtain right hand

side of (11.48). Finally, we apply the order M
[−1]
n (A,) ≤ M

[1]
n (A,). �

Now we give an application of Theorem11.4 to the quasi-arithmeticmean with weights.
For a subset {An1 , . . . ,An2} of {A1, . . . ,An}, we denote the quasi-arithmetic mean by

M(,A,,n1,n2) = −1

(
1


n2


i=n1

i ((Ai))

)
, (11.49)

where (An1 , . . . ,An2) are self-adjoint operators in B(H) with the spectra in I, (n1 , . . . ,n2)
are positive linear mappings i : B(H) → B(K) such that n2

i=n1
i(1H) =  1K and  :

I → R is a continuous strictly monotone function.
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Under the same conditions, we introduce, for convenience, the following notation:

, (m,M) = (m)+(M)−2 ◦−1
(
(m)+(M)

2

)
,

Ã,n1, (m,M) =
1
2
1K − 1

(M−m)

n1


i=1

i

(∣∣∣∣(Ai)− (M)+(m)
2

1H

∣∣∣∣) ,

(11.50)

where  , : I → R are continuous strictly monotone functions and m,M ∈ I, m < M. We
include implicitly that Ã,n1,(m,M) ≡ Ã,A,,n1,(m,M).

The following theorem is an extension of Theorem 11.6 and a refinement of [138,
Theorem 3.1].

Theorem 11.7 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let  , : I → R be continuous strictly
monotone functions on an interval I which contains all mi,Mi. Let (1, . . . ,n) be an
n-tuple of positive linear mappings i : B(H) → B(K), such that n1

i=1i(1H) =  1K,
n

i=n1+1i(1H) =  1K, where 1 ≤ n1 < n, , > 0 and  + = 1. Let one of two equal-
ities

M(,A,,1,n1) = M(1,A,,1,n) = M( ,A,,n1 +1,n) (11.51)

be valid and let

(mL,MR)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n, m < M,

where mL = min{m1, . . . ,mn1}, MR = max{M1, . . . ,Mn1},

m =
{

mL, if {Mi : Mi ≤ mL, i ∈ {n1 +1, . . . ,n}} = /0,
max{Mi : Mi ≤ mL, i ∈ {n1 +1, . . . ,n}} , otherwise,

M =
{

MR, if {mi : mi ≥ MR, i ∈ {n1 +1, . . . ,n}} = /0,
min{mi : mi ≥ MR, i ∈ {n1 +1, . . . ,n}} , otherwise.

(i) If  ◦−1 is convex and −1 is operator monotone, then

M(,A,,1,n1) ≤ −1

(
1


n1


i=1

i ((Ai))+, Ã,n1,

)
≤ M(1,A,,1,n)

≤ −1

(
1


n


i=n1+1

i ((Ai))−, Ã,n1,

)
≤ M( ,A,,n1 +1,n)

(11.52)

holds, where , ≥ 0 and Ã,n1, ≥ 0.
(i′) If  ◦−1 is convex and −−1 is operator monotone, then the reverse inequality

is valid in (11.52), where , ≥ 0 and Ã,n1, ≥ 0.
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(ii) If  ◦−1 is concave and −−1 is operator monotone, then (11.52) holds, where
, ≤ 0 and Ã,n1, ≥ 0.

(ii′) If  ◦−1 is concave and −1 is operator monotone, then the reverse inequality
is valid in (11.52), where , ≤ 0 and Ã,n1, ≥ 0.

In all the above cases, we assume that , ≡ ,(m̄,M̄), Ã,n1, ≡ Ã,n1,(m̄,M̄) are
defined by (11.50) and m̄ ∈ [m,mL], M̄ ∈ [MR,M], m̄ < M̄, are arbitrary numbers.

Proof. We only prove the case (i). Suppose that  is a strictly increasing function.
Then

(mL,MR)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n

implies

((mL),(MR))∩ [(mi),(Mi)] = /0 for i = n1 +1, . . . ,n. (11.53)

Also, by using (11.51), we have

1


n1


i=1

i ((Ai)) =
n


i=1

i ((Ai)) =
1


n


i=n1+1

i ((Ai)) .

Taking into account (11.53) and the above double equality, we obtain by Theorem 11.4
that

1


n1


i=1

i( f ((Ai))) ≤ 1


n1


i=1

i( f ((Ai)))+ f Ã,n1, ≤
n


i=1

i( f ((Ai)))

≤ 1


n


i=n1+1

i( f ((Ai)))− f Ã,n1, ≤ 1


n


i=n1+1

i( f ((Ai))),

(11.54)

for every continuous convex function f : J → R on an interval J which contains all [(mi),
(Mi)] = ([mi,Mi]), i = 1, . . . ,n, where  f = f ((m))+ f ((M))−2 f

(
(m)+(M)

2

)
.

Also, if  is strictly decreasing, then we check that (11.54) holds for convex function
f : J → R on J which contains all [(Mi),(mi)] = ([mi,Mi]).

Putting f =  ◦−1 in (11.54), we obtain

1


n1


i=1

i ((Ai)) ≤ 1


n1


i=1

i ((Ai))+, Ã,n1, ≤
n


i=1

i ((Ai))

≤ 1


n


i=n1+1

i ((Ai))−, Ã,n1, ≤ 1


n


i=n1+1

i ((Ai)) .

Applying an operator monotone function −1 to the above double inequality, we obtain
the desired inequality (11.52). �

We now give some results that can be derived from Theorem 11.7, which are extensions
of Corollary 11.5, Corollary 11.6 and a refinement of [138, Corollary 3.3].
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Corollary 11.10 Let (A1, . . . ,An) and (1, . . . ,n), mi, Mi, m, M, mL, MR,  and  be
as in Theorem 11.7. Let I be an interval which contains all mi,Mi and

(mL,MR)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n, m < M.

I) If one of two equalities

M(,A,,1,n1) = M(1,A,,1,n) = M( ,A,,n1 +1,n)

is valid, then

1


n1


i=1

i(Ai) ≤ 1


n1


i=1

i(Ai)+−1Ã,n1, ≤
n


i=1

i(Ai)

≤ 1


n


i=n1+1

i(Ai)−−1Ã,n1, ≤ 1


n


i=n1+1

ii(Ai)
(11.55)

holds for every continuous strictly monotone function  : I → R such that −1 is convex

on I, where −1 = m̄+ M̄−2 −1
(
(m̄)+(M̄)

2

)
≥ 0,

Ã,n1, =
1
2
1K − 1

(M̄− m̄)

n1


i=1

i

(∣∣∣∣(Ai)− (M̄)+(m̄)
2

1H

∣∣∣∣)
and m̄ ∈ [m,mL], M̄ ∈ [MR,M], m̄ < M̄, are arbitrary numbers.

But, if −1 is concave, then the reverse inequality is valid in (11.55) for −1 ≤ 0.
II) If one of two equalities

1


n1


i=1

i(Ai) =
n


i=1

i(Ai) =
1


n


i=n1+1

i(Ai)

is valid, then

M(,A,,1,n1) ≤ −1

(
1


n1


i=1

i ((Ai))+ Ãn1

)
≤ M(1,A,,1,n)

≤ −1

(
1


n


i=n1+1

i ((Ai))− Ãn1

)
≤ M( ,A,,n1 +1,n)

(11.56)

holds for every continuous strictly monotone function  : I → R such that one of the fol-
lowing conditions

(i)  is convex and −1 is operator monotone,

(i’)  is concave and −−1 is operator monotone,
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is satisfied, where  = (m̄)+(M̄)−2
(

m̄+M̄
2

)
,

Ãn1 =
1
2
1K − 1

(M̄− m̄)
·

n1


i=1

i

(∣∣∣∣Ai − m̄+ M̄
2

1H

∣∣∣∣)

and m̄ ∈ [m,mL], M̄ ∈ [MR,M], m̄ < M̄, are arbitrary numbers. But, if one of the following
conditions

(ii)  is concave and −1 is operator monotone,

(ii’)  is convex and −−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (11.56).

Proof. The inequalities (11.55) follow from Theorem 11.7, by replacing  with the
identity function, while the inequalities (11.56) follow by replacing  with the identity
function and  with  . �

Remark 11.6 Let the assumptions of Theorem 11.7 be valid.
1) Note that if one of the following conditions

(i)  ◦−1 is convex and −1 is operator monotone,

(i’)  ◦−1 is concave and −−1 is operator monotone,

is satisfied, then the following obvious inequality

M( ,A,,n1 +1,n)≤ −1

(
1


n


i=n1+1

i((Ai))−  Ã

)
≤ M( ,A,,n1 +1,n)

holds, (see Remark 11.2), where  = (m̄)+(M̄)−2
(

m̄+M̄
2

)
,

Ã =
1
2
1K − 1

M̄− m̄

∣∣∣∣∣ 1


n


i=n1+1

iAi − m̄+ M̄
2

1K

∣∣∣∣∣
and m̄ ∈ [m,mL], M̄ ∈ [MR,M], m̄ < M̄, are arbitrary numbers.

2) We denote by m and M the bounds of M(1,A,,1,n). If (m ,M )∩ [mi,Mi] =
/0, i = 1, . . . ,n1, and one of two following conditions

(i)  ◦−1 is convex and −1 is operator monotone

(ii)  ◦−1 is concave and −−1 is operator monotone
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is satisfied, then the double inequality (11.52) can be extended from the left side as follows:

M(1,A,,1,n) = M(1,A,,1,n1) ≤ −1

(
1


n1


i=1

i( f (Ai))− , Ã

)

≤ M(,A,,1,n1) ≤ −1

(
1


n1


i=1

i ((Ai))+, Ã,n1,

)
≤ M(1,A,,1,n)

≤ −1

(
1


n


i=n1+1

i ((Ai))−, Ã,n1,

)
≤ M( ,A,,n1 +1,n),

where , and Ã,n1, are defined by (11.50),

Ã =
1
2
1K − 1

M̄− m̄

∣∣∣∣∣ 1


n


i=n1+1

iAi − m̄+ M̄
2

1K

∣∣∣∣∣ .
As a special case of the quasi-arithmetic mean (11.49), we can study the weight power

mean as follows. For a subset {Ap1 , . . . ,Ap2} of {A1, . . . ,An} we define this mean by

M[r](,A,, p1, p2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1


p2


i=p1

i (Ar
i )

)1/r

, r ∈ R\{0},

exp

(
1


p2


i=p1

i (ln(Ai))

)
, r = 0,

where (Ap1 , . . . ,Ap2) are strictly positive operators, (p1 , . . . ,p2) are positive linear map-
pings i : B(H) → B(K) such that p2

i=p1
i(1H) =  1K .

Under the same conditions, we introduce for convenience denotations as special cases
of (11.50), as follows:

r,s(m,M) =

⎧⎨⎩ms +Ms −2
(

mr+Mr

2

)s/r
, r �= 0,

ms +Ms −2(mM)s/2 , r = 0,

Ãr(m,M) =

⎧⎨⎩
1
21K − 1

|Mr−mr |
∣∣∣n

i=1i(Ar
i )− Mr+mr

2 1K

∣∣∣ , r �= 0,

1
21K −| ln(M

m

) |−1
∣∣n

i=1i(lnAi)− ln
√

Mm1K
∣∣ , r = 0,

(11.57)

where m,M ∈ R, 0 < m < M and r,s ∈ R, r ≤ s. We include implicitly that Ãr(m,M) ≡
Ãr,A(m,M), where A = n

i=1i(Ar
i ) for r �= 0 and A =n

i=1i(lnAi) for r = 0.
We obtain the following corollary by applying Theorem 11.7 to the above mean. This

is an extension of Corollary 11.8 and a refinement of [138, Corollary 3.4].

Corollary 11.11 Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with
the bounds mi and Mi, mi ≤ Mi, i = 1, . . . ,n. Let (1, . . . ,n) be an n-tuple of positive
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linear mappings i : B(H) → B(K), such that n1
i=1i(1H) =  1K, n

i=n1+1i(1H) =
 1K, where 1 ≤ n1 < n, , > 0 and  + = 1. Let

(mL,MR)∩ [mi,Mi] = /0 for i = n1 +1, . . . ,n, m < M,

where mL = min{m1, . . . ,mn1}, MR = max{M1, . . . ,Mn1} and

m =
{

mL, if {Mi : Mi ≤ mL, i ∈ {n1 +1, . . . ,n}} = /0,
max{Mi : Mi ≤ mL, i ∈ {n1 +1, . . . ,n}} , otherwise,

M =
{

MR, if {mi : mi ≥ MR, i ∈ {n1 +1, . . . ,n}} = /0,
min{mi : mi ≥ MR, i ∈ {n1 +1, . . . ,n}} , otherwise.

(i) If either r ≤ s, s ≥ 1 or r ≤ s ≤−1 and also one of two equalities

M [r](,A,,1,n1) = M [r](1,A,,1,n) = M [r]( ,A,,n1 +1,n)

is valid, then

M [s](,A,,1,n1) ≤
(

1


n1


i=1

i (As
i )+r,sÃs,n1,

)1/s

≤ M [s](1,A,,1,n)

≤
(

1


n


i=n1+1

i (As
i )−r,sÃs,n1,

)1/s

≤ M [s]( ,A,,n1 +1,n)

holds, where r,s ≥ 0 and Ãs,n1, ≥ 0.
In this case, we assume that r,s ≡ r,s(m̄,M̄), Ãs,n1, ≡ Ãs,n1,(m̄,M̄) are defined by

(11.57) and m̄ ∈ [m,mL], M̄ ∈ [MR,M], m̄ < M̄, are arbitrary numbers.
(ii) If either r ≤ s, r ≤−1 or 1 ≤ r ≤ s and also one of two equalities

M [s](,A,,1,n1) = M [s](1,A,,1,n) = M [s]( ,A,,n1 +1,n)

is valid, then

M [r](,A,,1,n1) ≥
(

1


n1


i=1

i (Ar
i )+s,rÃr,n1,

)1/r

≥ M [r](1,A,,1,n)

≥
(

1


n


i=n1+1

i (Ar
i )−s,rÃr,n1,

)1/r

≥ M [r]( ,A,,n1 +1,n)

holds, where s,r ≤ 0 and Ãs,n1, ≥ 0.
In this case, we assume that s,r ≡ s,r(m̄,M̄), Ãr,n1, ≡ Ãr,n1,(m̄,M̄) are defined by

(11.57) and m̄ ∈ [m,mL], M̄ ∈ [MR,M], m̄ < M̄, are arbitrary numbers.

Proof. In the case (i) we put (t) = ts and (t) = tr if r �= 0 or (t) = ln t if r �= 0
in Theorem 11.7. In the case (ii) we put (t) = tr and (t) = ts if s �= 0 or (t) = ln t if
s �= 0. The details are here omitted. �



11.3 CONVERSES OF JENSEN’S OPERATOR INEQUALITY 333

11.3 Converses of Jensen’s operator inequality

In the sequel, converses of a generalized Jensen’s inequality for a continuous field of self-
adjoint operators, a unital field of positive linear mappings and real valued continuous
convex functions are studied. New refined converses are presented by using the Mond-
Pečarić method improvement. Obtained results are then applied in order to refine some
selected inequalities that include power functions.

We firstly recall some definitions needed in the sequel. Let T be a locally compact
Hausdorff space and let A be a C∗-algebra of operators on some Hilbert space H. We say
that a field (xt)t∈T of operators in A is continuous if the function t → xt is norm continuous
on T. If in addition  is a Radon measure on T and the function t → ‖xt‖ is integrable,
then we can form the Bochner integral

∫
T xt d(t), which is the unique element in A such

that


(∫

T
xt d(t)

)
=

∫
T
(xt)d(t),

for every linear functional  in the norm dual A ∗.
Assume further that there is a field (t)t∈T of positive linear mappings t : A → B

from A to another C ∗-algebra B of operators on a Hilbert space K. We recall that a linear
mapping t : A → B is said to be a positive mapping if t(xt) ≥ 0, for all xt ≥ 0. We say
that such a field is continuous if the function t → t(x) is continuous for every x ∈ A . Let
the C ∗-algebras include the identity operators and the function t → t(1H) be integrable
with

∫
T t (1H)d(t) = k1K , for some positive scalar k. Specially, if

∫
T t(1H)d(t) = 1K ,

we say that a field (t )t∈T is unital.
Let f be an operator convex function defined on an interval I. Davis [56] proved the

Schwarz inequality

f ((x)) ≤  ( f (x)) , (11.58)

where  : A → B(K) is a unital completely positive linear mapping from a C∗-algebra
A to linear operators on a Hilbert space K, and x is a self-adjoint element in A with its
spectrum in I. Subsequently, Choi [50] noted that it is enough to assume that  is unital
and positive.

The authors in [156]–[160] and [74] observed converses of Jensen’s inequality. In order
to present these results, we introduce some abbreviations. Let f : [m,M]→R, m <M. Then
a linear function through (m, f (m)) and (M, f (M)) has the form h(z) = k f z+ l f , where

k f :=
f (M)− f (m)

M−m
and l f :=

M f (m)−mf (M)
M−m

. (11.59)

Using the Mond-Pečarić method, in [146] the following generalized converse of a
Schwarz inequality (11.58) is presented:

F [ ( f (A)) ,g((A))] ≤ max
m≤z≤M

F
[
k f z+ l f ,g(z)

]
1ñ, (11.60)
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for convex functions f defined on an interval [m,M], m < M, where g is a real valued
continuous function on [m,M], F(u,v) is a real valued function defined on U ×V , matrix
non-decreasing in u, U ⊃ f [m,M], V ⊃ g[m,M],  : Hn → Hñ is a unital positive linear
mapping and A is a Hermitian matrix with its spectrum contained in [m,M].

A continuous version of (11.60) for operators and in the case of
∫
T t(1H)d(t) = k1K ,

for some positive scalar k, was presented in [145]. Recently, Mićić, Pavić and Pečarić
[138] obtained a better bound than the one given in (11.60), as is cited below.

Theorem 11.8 Let (xt)t∈T be a bounded continuous field of self-adjoint elements in a
unital C∗-algebra A with the spectra in [m,M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure  , and let (t)t∈T be a unital
field of positive linear maps t : A → B from A to another unital C∗-algebra B. Let
mx and Mx, mx ≤ Mx, be the bounds of the self-adjoint operator x =

∫
T t(xt)d(t) and

f : [m,M] → R, g : [mx,Mx] → R, F : U ×V → R, where f ([m,M]) ⊆U, g([mx,Mx]) ⊆ V
and F be bounded.

If f is convex and F is operator monotone in the first variable, then

F

[∫
T
t( f (xt ))d(t) , g(

∫
T
t(xt)d(t))

]
≤C1 1K ≤C1K , (11.61)

where constants C1 ≡C1(F, f ,g,m,M,mx,Mx) and C ≡C(F, f ,g,m,M) are

C1 = sup
mx≤z≤Mx

F
[
k f z+ l f ,g(z)

]
= sup

M−Mx
M−m ≤p≤M−mx

M−m

F [p f (m)+ (1− p) f (M) , g(pm+(1− p)M)],

C = sup
m≤z≤M

F
[
k f z+ l f ,g(z)

]
= sup

0≤p≤1
F[p f (m)+ (1− p) f (M) , g(pm+(1− p)M)].

If f is concave, then the reverse inequalities are valid in (11.61) with inf instead of sup in
bounds C1 and C.

In the sequel, we assume that (xt)t∈T is a bounded continuous field of self-adjoint ele-
ments in a unital C∗-algebra A defined on a locally compact Hausdorff space T equipped
with a bounded Radon measure  and (t )t∈T is a unital field of positive linear mappings
t : A → B from A to another unital C∗-algebra B.

For convenience, we introduce abbreviations x̃ and  f as follows:

x̃ ≡ x̃xt ,t (m,M) :=
1
2
1K − 1

M−m

∫
T
t

(
|xt − m+M

2
1H |

)
d(t), (11.62)

where m,M, m < M, are some scalars such that the spectra of xt , t ∈ T , are in [m,M];

 f ≡  f (m,M) := f (m)+ f (M)−2 f

(
m+M

2

)
, (11.63)
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where f : [m,M] → R is a continuous function.
We remark that m1H ≤ xt ≤ M1H , t ∈ T implies

∫
T t

(|xt − m+M
2 1H |

)
d(t) ≤ M−m

2 1K.
It follows that x̃ ≥ 0. Also, if f is convex (resp. concave), then easily follows  f ≥ 0 (resp.
 f ≤ 0).

In order to prove our main result related to the converse Jensen’s inequality, we again
make use of Lemma 1.2, which has already served as our main tool throughout the second
part of this monograph.

What follows is the main result. We use the Mond-Pečarić method improvement.

Lemma 11.2 Let (xt)t∈T and (t)t∈T be as above. If the spectra of xt , t ∈ T are in [m,M],
for some scalars m < M, then∫

T
t( f (xt ))d(t) ≤ k f

∫
T
t(xt)d(t)+ l f 1K −  f x̃ ≤ k f

∫
T
t(xt)d(t)+ l f 1K , (11.64)

for every continuous convex function f : [m,M]→R, where x̃ and  f are defined by (11.62)
and (11.63), respectively.

If f is concave, then the reverse inequality is valid in (11.64).

Proof. We prove the convex case only. By using Lemma 1.2 we get

f (p1m+ p2M)

≤ p1 f (m)+ p2 f (M)−min{p1, p2}
[

f (m)+ f (M)−2 f

(
m+M

2

)]
,

(11.65)

for every p1, p2 ∈ [0,1], such that p1 + p2 = 1. Let functions p1, p2 : [m,M]→R be defined
by

p1(z) =
M− z
M−m

, p2(z) =
z−m
M−m

.

Then for any z ∈ [m,M] we can write

f (z) = f

(
M− z
M−m

m+
z−m
M−m

M

)
= f (p1(z)m+ p2(z)M) .

By (11.65) we get

f (z) ≤ M− z
M−m

f (m)+
z−m
M−m

f (M)− z̃

[
f (m)+ f (M)−2 f

(
m+M

2

)]
, (11.66)

where

z̃ =
1
2
− 1

M−m

∣∣∣∣z− m+M
2

∣∣∣∣ ,
since

min

{
M− z
M−m

,
z−m
M−m

}
=

1
2
− 1

M−m

∣∣∣∣z− m+M
2

∣∣∣∣ .
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Now, we use the following properties of a functional calculus for a self-adjoint operator
xt : f ,g ∈ C ([m,M]),Sp(xt) ⊆ [m,M] and f ≤ g on [m,M] implies f (xt ) ≤ g(xt); h(z) = |z|
implies h(xt) = |xt |, t ∈ T . By using (11.66) we obtain

f (xt ) ≤ M− xt

M−m
f (m)+

xt −m
M−m

f (M)− x̃t

[
f (m)+ f (M)−2 f

(
m+M

2

)]
,

where

x̃t =
1
2
1H − 1

M−m

∣∣∣∣xt − m+M
2

1H

∣∣∣∣ .
Applying a positive linear mapping t , integrating and using

∫
T t (1H)d(t) = 1K , we get

the first inequality in (11.64), since

x̃ =
∫

T
t (x̃t) d(t) =

1
2
1K − 1

M−m

∫
T
t

(
|xt − m+M

2
1H |

)
d(t).

The fact that  f x̃ ≥ 0 yields the second inequality in (11.64). �

At this point, Lemma 11.2 may provide the refinements of some other, previously
mentioned inequalities. In the first place, we present a refinement of Theorem 11.8.

Theorem 11.9 Let the assumptions be as in Lemma 11.2. Let mx and Mx, mx ≤ Mx be
the bounds of the operator x =

∫
T t (xt)d(t) and mx̃ be the lower bound of the operator

x̃.
If f is convex and F is operator monotone in the first variable, then

F

[∫
T
t( f (xt ))d(t) , g

(∫
T
t(xt)d(t)

)]
≤ sup

mx≤z≤Mx

F
[
k f z+ l f −  f mx̃,g(z)

]
1K ≤ sup

mx≤z≤Mx

F
[
k f z+ l f ,g(z)

]
1K .

(11.67)

If f is concave, then the reverse inequality is valid in (11.67) with inf instead of sup.

Proof. We only prove the case when f is convex. Then  f ≥ 0 implies 0 ≤  f mx̃1K ≤
 f x̃. By using (11.64) it follows that∫

T
t( f (xt ))d(t) ≤ k f

∫
T
t(xt)d(t)+ l f −  f x̃

≤ k f

∫
T
t(xt)d(t)+ l f −  f mx̃1K ≤ k f

∫
T
t(xt)d(t)+ l f .

Taking into account operator monotonicity of F(·,v) in the first variable, we obtain (11.67).
�

11.3.1 Difference type converse inequalities

By using Jensen’s inequality, we obtain that

g

(∫
T
t(xt)d(t)

)
≤

∫
T
t ( f (xt ))d(t) (11.68)
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holds for every operator convex function f on [m,M], every function g and real number
 such that g ≤ f on [m,M]. Further, applying Lemma 11.2 we obtain the following
converse of (11.68). It is also a refinement of [138, Theorem 3.1].

Theorem 11.10 Let the assumptions be as in Lemma 11.2. Let mx and Mx, mx ≤ Mx,
be the bounds of the operator x =

∫
T t (xt)d(t) and f : [m,M] → R, g : [mx,Mx] → R be

continuous functions.
If f is convex and  ∈ R, then∫
T
t( f (xt ))d(t)−g

(∫
T
t(xt)d(t)

)
≤ max

mx≤z≤Mx

{
k f z+ l f −g(z)

}
1K −  f x̃,

(11.69)
where x̃ and  f are defined by (11.62) and (11.63), respectively.

If f is concave, then the reverse inequality with min instead of max is valid in (11.69).

Proof. We only prove the convex case. By using the first inequality in (11.64), we
obtain ∫

T
t( f (xt ))d(t)−g

(∫
T
t(xt)d(t)

)
≤ k f

∫
T
t(xt)d(t)+ l f 1K −  f x̃−g

(∫
T
t(xt)d(t)

)
≤ max

mx≤z≤Mx

{
k f z+ l f −g(z)

}
1K −  f x̃.

The function z → k f z+ l f −g(z) is continuous on [mx,Mx], so the above global extremes
exist. �

Remark 11.7 1) We remark that by using (11.69) and Theorem 11.9 the following in-
equalities: ∫

T
t( f (xt ))d(t)−g

(∫
T
t(xt)d(t)

)
≤ max

mx≤z≤Mx

{
k f z+ l f −g(z)

}
1K −  f ỹ ≤ max

mx≤z≤Mx

{
k f z+ l f −g(z)

}
1K

hold for every convex function f , every  ∈ R, and mx̃1K ≤ ỹ ≤ x̃, where mx̃ is the lower
bound of x̃.

2) According to [138, Corollary 3.2] we can determine the constant in the right hand
side of (11.69).

i) Let f be convex. We can determine the bound C in∫
T
t( f (xt ))d(t)−g

(∫
T
t(xt)d(t)

)
≤C1K −  f x̃

more precisely as follows:
• if  ≤ 0 and g is convex, then

C = max
{
k f mx + l f −g(mx) , k f Mx + l f −g(Mx)

}
; (11.70)
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• if  ≤ 0 and g is concave, then

C =

⎧⎪⎨⎪⎩
k f mx + l f −g(mx) if g′−(z) ≥ k f for every z∈(mx,Mx),

k f z0 + l f −g(z0) if g′−(z0) ≤ k f ≤ g′+(z0) for some z0∈(mx,Mx),

k f Mx + l f −g(Mx) if g′+(z) ≤ k f for every z∈(mx,Mx),
(11.71)

• if  ≥ 0 and g is convex, then C is defined by (11.71);
• if  ≥ 0 and g is concave, then C is defined by (11.70).

ii) Let f be concave. We can determine the bound c in

c1K −  f x̃ ≤
∫

T
t( f (xt ))d(t)−g

(∫
T
t (xt)d(t)

)
more precisely as follows:
• if  ≤ 0 and g is convex, then c is equal to the right side in (11.71) with reverse
inequality signs;
• if  ≤ 0 and g is concave, then c is equal to the right side in (11.70) with min instead
of max;
• if  ≥ 0 and g is convex, then c is equal to the right side in (11.70) with min instead of
max;
• if  ≥ 0 and g is concave, then c is equal to the right side in (11.71) with reverse
inequality signs.

Theorem 11.10 and Remark 11.7-2 applied to functions f (z) = zp and g(z) = zq provide
the following refinement of [138, Corollary 3.3].

Corollary 11.12 Let the assumptions be as in Lemma 11.2. Let mx and Mx, mx ≤ Mx, be
the bounds of the operator x =

∫
T t(xt)d(t) and additionally let operators xt be strictly

positive. Let x̃ be defined by (11.62).
(i) Let p ∈ (−,0]∪ [1,). Then∫

T
t(x

p
t )d(t)−

(∫
T
t(xt)d(t)

)q

≤C�
1K − (

mp +Mp−21−p(m+M)p) x̃,

where the bound C�
 is determined as follows:

• if  ≤ 0 and q ∈ (−,0]∪ [1,), then

C�
 = max{kt pmx + lt p −mq

x,kt pMx + lt p −Mq
x } ; (11.72)

• if  ≤ 0 and q ∈ (0,1), then

C�
 =

⎧⎪⎪⎨⎪⎪⎩
kt pmx + lt p −mq

x if ( q/kt p)1/(1−q) ≤ mx,

lt p +(q−1)( q/kt p)q/(1−q) if mx ≤ ( q/kt p)1/(1−q) ≤ Mx,

kt pMx + lt p −Mq
x if ( q/kt p)1/(1−q) ≥ Mx,

(11.73)
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where kt p := (Mp−mp)/(M−m) and lt p := (Mmp−mMp)/(M−m) (i.e. replacing f with
zp in (11.59));
• if  ≥ 0 and q ∈ (−,0]∪ [1,), then C�

 is defined by (11.73);
• if  ≥ 0 and q ∈ (0,1), then C�

 is defined by (11.72).
(ii) Let p ∈ (0,1). Then

c�
1K +

(
21−p(m+M)p−mp−Mp) x̃ ≤

∫
T
t(x

p
t )d(t)−

(∫
T
t(xt)d(t)

)q

,

where the bound c�
 is determined as follows:

• if  ≤ 0 and q ∈ (−,0]∪ [1,), then c�
 is equal to the right side in (11.73);

• if  ≤ 0 and q ∈ (0,1), then c�
 is equal to the right side in (11.72) with min instead of

max;
• if  ≥ 0 and q ∈ (−,0]∪ [1,), then c�

 is equal to the right side in (11.72) with min
instead of max;
• if  ≥ 0 and q ∈ (0,1), then c�

 is equal to the right side in (11.73).

Using Theorem 11.10 and Remark 11.7 for g ≡ f and  = 1 we obtain the following
result.

Theorem 11.11 Let the assumptions be as in Lemma 11.2. Let mx and Mx, mx ≤ Mx, be
the bounds of the operator x =

∫
T t(xt)d(t) and f : [m,M]→R be a continuous function.

If f is convex, then

0 ≤
∫

T
t( f (xt ))d(t)− f

(∫
T
t(xt)d(t)

)
≤ C̄1K −  f x̃, (11.74)

where x̃ and  f are defined by (11.62) and (11.63), respectively, and

C̄ = max
mx≤z≤Mx

{
k f z+ l f − f (z)

}
. (11.75)

Furthermore, if f is strictly convex and differentiable, then the bound C̄1K −  f x̃ satisfies
the following condition:

0 ≤ C̄1K −  f x̃ ≤
{

f (M)− f (m)− f ′(m)(M−m)−  fmx̃
}

1K , (11.76)

where mx̃ is the lower bound of the operator x̃. We can determine more precisely the value
C̄ ≡ C̄(m,M,mx,Mx, f ) in (11.75), as follows:

C̄ = k f z0 + l f − f (z0), (11.77)

where

z0 =

⎧⎨⎩
mx if f ′(mx) ≥ k f ,
f ′−1

(
k f
)

if f ′(mx) ≤ k f ≤ f ′(Mx),
Mx if f ′(Mx) ≤ k f .

(11.78)

In the dual case, when f is concave, then the reverse inequality is valid in (11.74) with
min instead of max in (11.75). Furthermore, if f is strictly concave differentiable, then the
bound C̄1K −  f x̃ satisfies the following condition:{

f (M)− f (m)− f ′(m)(M−m)−  fmx̃
}

1K ≤ C̄1K −  f x̃ ≤ 0.
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We can determine more precisely the value C̄ in (11.77), with z0 which equals the right side
in (11.78) with reverse inequality signs.

Proof. We only prove the right hand side of (11.76). Let the maximum value of a
continuous function z → k f z+ l f − f (z) on [mx,Mx] be attained in z0. Since f is a strictly
convex function, it follows that f (m)− f (z0) ≤ f ′(m)(m− z0). Then

C̄ = max
mx≤z≤Mx

{
k f z+ l f − f (z)

}
= k f z0 + l f − f (z0) = f (m)− f (z0)+ k f (z0 −m)
≤ (− f ′(m)+ k f

)
(z0 −m) ≤ (− f ′(m)+ k f

)
(M−m).

Taking into account that  f mx̃1K ≤  f x̃ and the above inequalities, we obtain (11.76). �

Example 11.5 We illustrate examples for matrix case and T = {1,2} by putting f (t) =
t4, which is convex, but not operator convex. Also, we define mappings1,2 : M3(C) →
M2(C) as follows: 1((ai j)1≤i, j≤3) = 1

2 (ai j)1≤i, j≤2, 2 =1 (then 1(I3)+2(I3) = I2).
I) Firstly, we observe an example without the spectra condition (see Figure 11.3).

Then we obtain a refined inequality as in (11.74), but don’t have a refined Jensen’s in-
equality.

m M

m1 mx m2 M1 M2

m M

m1 m2mx M2Mx

m

M1 Mx

a b M

Figure 11.3: Refinement for two operators and a convex function f

If X1 = 2

⎛⎝1 0 1
0 0 1
1 1 1

⎞⎠ and X2 = 2

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ , then X = 2

(
1 0
0 0

)

and m1 =−1.604, M1 = 4.494, m2 = 0, M2 = 2, m =−1.604, M = 4.494 (rounded to three
decimal places). We have

(1(X1)+2(X2))
4 =

(
16 0
0 0

)
��

(
80 40
40 24

)
= 1

(
X4

1

)
+2

(
X4

2

)
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and

1
(
X4

1

)
+2

(
X4

2

)
=

(
80 40
40 24

)
<

(
111.742 39.327
39.327 142.858

)
= 1

(
X4

1

)
+2

(
X4

2

)
+ C̄I2−  f X̃

<

(
243.758 0

0 227.758

)
= (1(X1)+2(X2))

4 + C̄I2,

since C̄ = 227.758,  f = 405.762, X̃ =
(

0.325 −0.097
−0.097 0.2092

)
.

II) Next, we observe an example with the spectra condition (see Figure 11.3). Then
we obtain a series of inequalities involving the refined Jensen’s inequality and its converses.

If X1 =

⎛⎝−4 1 1
1 −2 −1
1 −1 −1

⎞⎠ and X2 =

⎛⎝ 5 −1 −1
−1 2 1
−1 1 3

⎞⎠ , then X =
1
2

(
1 0
0 0

)
and m1 = −4.866, M1 = −0.345, m2 = 1.345, M2 = 5.866, m = −4.866, M = 5.866,
a = −0.345, b = 1.345 and we put m̄ = a, M̄ = b (rounded to three decimal places). We
have

(1(X1)+2(X2))
4 =

(
0.0625 0

0 0

)
<

(
639.921 −255
−255 117.856

)
= 1

(
X4

1

)
+2

(
X4

2

)−  f (a,b)X̄

<

(
641.5 −255
−255 118.5

)
= 1

(
X4

1

)
+2

(
X4

2

)
<

(
731.649 −162.575
−162.575 325.15

)
= (1(X1)+2(X2))

4 + C̄I2−  f (m,M)X̃

<

(
872.471 0

0 872.409

)
= (1(X1)+2(X2))

4 + C̄I2,

since  f (a,b) = 3.158, X̄ =
(

0.5 0
0 0.204

)
,  f (m,M) = 1744.82, X̃ =

(
0.325 −0.097
−0.097 0.2092

)
and C̄ = 872.409.

Applying Theorem 11.11 to f (t) = t p, we obtain the following refinement of [138,
Corollary 3.6].

Corollary 11.13 Let the assumptions be as in Lemma 11.2. Let mx and Mx, mx ≤ Mx, be
the bounds of the operator x =

∫
T t(xt)d(t) and additionally let operators xt be strictly

positive. Let x̃ is defined by (11.62). Then

0 ≤
∫

T
t(x

p
t )d(t)−

(∫
T
t(xt)d(t)

)p

≤ C̄(mx,Mx,m,M, p)1K − (
mp +Mp−21−p(m+M)p) x̃

≤ C̄(mx,Mx,m,M, p)1K ≤C(m,M, p)1K
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for p �∈ (0,1), and

C(m,M, p)1K ≤ c̄(mx,Mx,m,M, p)1K

≤ c̄(mx,Mx,m,M, p)1K +
(
21−p(m+M)p−mp−Mp) x̃

≤
∫

T
t(x

p
t )d(t)−

(∫
T
t(xt)d(t)

)p

≤ 0

for p ∈ (0,1), where

C̄(mx,Mx,m,M, p) =

⎧⎪⎪⎨⎪⎪⎩
kt p mx + lt p −mp

x if pmp−1
x ≥ kt p ,

C(m,M, p) if pmp−1
x ≤ kt p ≤ pMp−1

x ,

kt p Mx + lt p −Mp
x if pMp−1

x ≤ kt p ,

(11.79)

and c̄(mx,Mx,m,M, p) equals the right side in (11.79) with reverse inequality signs.
C(m,M, p) is the well known Kantorovich type constant for difference (see e.g. [74, §2.7]):

C(m,M, p) = (p−1)
(

Mp−mp

p(M−m)

)1/(p−1)

+
Mmp−mMp

M−m
, for p ∈ R.

11.3.2 Ratio type converse inequalities

In [138, Theorem 4.1], the following ratio type converse of (11.68) was given:∫
T
t( f (xt ))d(t) ≤ max

mx≤z≤Mx

{
k f z+ l f

g(z)

}
g

(∫
T
t (xt)d(t)

)
, (11.80)

where f is convex and g > 0. Applying Theorem 11.9 and Theorem 11.10, we obtain the
following two refinements of (11.80).

Theorem 11.12 Let the assumptions be as in Lemma 11.2. Let mx and Mx, mx ≤ Mx be
the bounds of the operator x =

∫
T t(xt)d(t) and f : [m,M] → R, g : [mx,Mx] → R be

continuous functions.
If f is convex and g > 0, then∫

T
t( f (xt ))d(t) ≤ max

mx≤z≤Mx

{
k f z+ l f

g(z)

}
g

(∫
T
t(xt)d(t)

)
−  f x̃ (11.81)

and ∫
T
t( f (xt ))d(t) ≤ max

mx≤z≤Mx

{
k f z+ l f −  f mx̃

g(z)

}
g

(∫
T
t(xt)d(t)

)
, (11.82)

where x̃ and  f are defined by (11.62) and (11.63) respectively and mx̃ is the lower bound
of the operator x̃. If f is concave, then the reverse inequalities are valid in (11.81) and
(11.82) with min instead of max.
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Proof. We only prove the convex case. Let

1 = max
mx≤z≤Mx

{
k f z+ l f

g(z)

}
.

Then there is z0 ∈ [mx,Mx] such that 1 = k f z0+l f
g(z0)

and
k f z+l f
g(z) ≤ 1, for all z ∈ [mx,Mx]. It

follows that k f z0 + l f −1g(z0) = 0 and k f z+ l f −1g(z) ≤ 0, for all z ∈ [mx,Mx], since
g > 0. Hence

max
mx≤z≤Mx

{
k f z+ l f −1g(z)

}
= 0.

By using (11.69) we obtain (11.81). The inequality (11.82) follows directly from Theo-

rem 11.9 by putting F(u,v)= v−1/2uv−1/2. Finally, functions z → k f z+l f
g(z) and z → k f z+l f− f mx̃

g(z)
are continuous on [mx,Mx], so the global extremes exist in (11.81) and (11.82). �

Remark 11.8 1) Inequality (11.81) is a refinement of (11.80) since  f x̃≥ 0. Also, (11.82)
is a refinement of (11.80) since mx̃ ≥ 0 and g > 0 imply

max
mx≤z≤Mx

{
k f z+ l f −  f mx̃

g(z)

}
≤ max

mx≤z≤Mx

{
k f z+ l f

g(z)

}
.

2) Let the assumptions of Theorem 11.12 hold. Generally, there is no relation between
the right sides of the inequalities (11.81) and (11.82) under the operator order (see Exam-
ple 11.3). But, e.g. if g(

∫
T t(xt)d(t)) ≤ g(z0)1K , where z0 ∈ [mx,Mx] is the point where

it attains max
mx≤z≤Mx

{
k f z+l f
g(z)

}
, then the following order

∫
T
t( f (xt ))d(t) ≤ max

mx≤z≤Mx

{
k f z+ l f

g(z)

}
g

(∫
T
t(xt)d(t)

)
−  f x̃

≤ max
mx≤z≤Mx

{
k f z+ l f −  f mx̃

g(z)

}
g

(∫
T
t(xt)d(t)

)
holds.

Example 11.6 Let T = {1,2}, f (t) = g(t) = t4, k((ai j)1≤i, j≤3) = 1
2 (ai j)1≤i, j≤2, k =

1,2.

If X1 =

⎛⎝4 1 1
1 2 0
1 0 1

⎞⎠ and X2 =

⎛⎝ 5 −1 −1
−1 2 1
−1 1 3

⎞⎠ , then X =
(

4.5 0
0 2

)
and m1 = 0.623, M1 = 4.651, m2 = 1.345, M2 = 5.866, m = 0.623, M = 5.866 (rounded
to three decimal places). We have

1
(
X4

1

)
+2

(
X4

2

)
=

(
629.5 −87.5
−87.5 99

)
< 1 (1(X1)+2(X2))

4 −  f x̃ =
(

7823.449 −53.737
−53.737 139.768

)
< 1 (1(X1)+2(X2))

4 =
(

7974.38 0
0 311.148

)
, (11.83)
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since 1 = 19.447 (defined as in the right hand side of (11.81)),  f = 962.73,

x̃ =
(

0.157 0.056
0.056 0.178

)
. Further,

1
(
X4

1

)
+2

(
X4

2

)
=

(
629.5 −87.5
−87.5 99

)
< 2 (1(X1)+2(X2))

4 =
(

5246.13 0
0 204.696

)
< 1 (1(X1)+2(X2))

4 =
(

7974.38 0
0 311.148

)
, (11.84)

since 2 = 12.794 (defined as in the right hand side of (11.82)). We see that in this example
there is no relation between matrices in the right sides of the equalities (11.83) and (11.84).

Remark 11.9 Similarly as in [138, Corollary 4.2], we can determine the constant in the
right hand side of (11.82).

(i) Let f be convex. We can determine the bound C in∫
T
t( f (xt))d(t) ≤Cg

(∫
T
t(xt)d(t)

)
more precisely as follows:
• if g is convex, then

C =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k f mx + l f −  f mx̃

g(mx)
if g′−(z) ≥ k f g(z)

k f z+ l f −  f mx̃
for every z∈(mx,Mx),

k f z0 + l f −  f mx̃

g(z0)
if g′−(z0) ≤ k f g(z0)

k f z0 + l f −  f mx̃
≤ g′+(z0) forsome z0∈(mx,Mx),

k f Mx + l f −  f mx̃

g(Mx)
if g′+(z) ≤ k f g(z)

k f z+ l f −  f mx̃
for every z∈(mx,Mx);

(11.85)
• if g is concave, then

C = max

{
k f mx + l f −  f mx̃

g(mx)
,
k f Mx + l f −  f mx̃

g(Mx)

}
. (11.86)

Also, we can determine the bound D in∫
T
t( f (xt))d(t) ≤ Dg

(∫
T
t(xt)d(t)

)
−  f x̃

in the same way as the above bound C, but without mx̃.
(ii) Let f be concave. We can determine the bound c in

cg

(∫
T
t(xt)d(t)

)
≤

∫
T
t( f (xt ))d(t)
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more precisely, as follows:
• if g is convex, then c is equal to the right side in (11.86) with min instead of max;
• if g is concave, then c is equal to the right side in (11.85) with reverse inequality signs.

Also, we can determine the bound d in

d g

(∫
T
t(xt)d(t)

)
−  f x̃ ≤

∫
T
t ( f (xt))d(t)

in the same way as the above bound c, but without mx̃.

Theorem 11.12 and Remark 11.9 applied to functions f (z) = zp and g(z) = zq provide
the following corollary, which is a refinement of [138, Corollary 4.4].

Corollary 11.14 Let the assumptions be as in Lemma 11.2. Let mx and Mx, mx ≤ Mx be
the bounds of the operator x =

∫
T t(xt)d(t) and additionally let operators xt be strictly

positive. Let x̃ be defined by (11.62), p := mp +Mp−21−p(m+M)p and mx̃ be the lower
bound of the operator x̃.

(i) Let p ∈ (−,0]∪ [1,). Then∫
T
t (x

p
t )d(t) ≤C�

(∫
T
t(xt)d(t)

)q

,

where the bound C� is determined as follows:
• if q ∈ (−,0]∪ [1,), then

C� =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

kt p mx + lt p − pmx̃

mq
x

if
q

1−q
lt p − pmx̃

kt p
≤ mx,

lt p − pmx̃

1−q

(
1−q

q
ktp

lt p − pmx̃

)q

if mx ≤ q
1−q

lt p − pmx̃

kt p
≤ Mx,

kt p Mx + lt p − pmx̃

Mq
x

if q
1−q

lt p−pmx̃
kt p

≥ Mx;

(11.87)

• if q ∈ (0,1), then

C� = max

{
kt p mx + lt p − pmx̃

mq
x

,
kt pq,Mx + lt p − pmx̃

Mq
x

}
. (11.88)

Also, ∫
T
t(x

p
t )d(t) ≤ D�

(∫
T
t(xt)d(t)

)q

− px̃

holds, where D� is determined in the same way as the above bound C�, but without mx̃.
(ii) Let p ∈ (0,1). Then

c�

(∫
T
t (xt)d(t)

)q

≤
∫

T
t(x

p
t )d(t),

where the bound c� is determined as follows:
• if q ∈ (−,0]∪ [1,), then c� is equal to the right side in (11.88) with min instead of
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max;
• if q ∈ (0,1), then c�

 is equal to the right side in (11.87).
Also,

d�

(∫
T
t(xt)d(t)

)q

− px̃ ≤
∫

T
t(x

p
t )d(t)

holds, where p ≤ 0, x̃ ≥ 0 and d� is determined in the same way as the above bound d�,
but without mx̃.

Applying Theorem 11.12 and Remark 11.9 for g ≡ f , we obtain the following result.

Theorem 11.13 Let the assumptions be as in Lemma 11.2. Let mx and Mx, mx ≤ Mx be
the bounds of the operator x =

∫
T t (xt)d(t) and f : [m,M]→R be a continuous function.

If f : [m,M] → R is a continuous convex function and strictly positive on [mx,Mx], then∫
T
t( f (xt ))d(t) ≤ max

mx≤z≤Mx

{
k f z+ l f −  f mx̃

f (z)

}
f

(∫
T
t(xt)d(t)

)
(11.89)

and ∫
T
t ( f (xt))d(t) ≤ max

mx≤z≤Mx

{
k f z+ l f

f (z)

}
f

(∫
T
t(xt)d(t)

)
−  f x̃, (11.90)

where x̃ and  f are defined by (11.62) and (11.63), respectively, and mx̃ is the lower bound
of the operator x̃.

In the dual case, if f is concave, then the reverse inequalities are valid in (11.89) and
(11.90), with min instead of max.

Furthermore, if f is convex and differentiable on [mx,Mx], we can determine the bound

1 ≡ 1(m,M,mx,Mx, f ) = max
mx≤z≤Mx

{
k f z+ l f −  f mx̃

f (z)

}
in (11.89) more precisely, as follows:

1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k f mx + l f −  f mx̃

f (mx)
if f ′(z) ≥ k f f (z)

k f z+ l f −  f mx̃
for every z∈(mx,Mx),

k f z0 + l f −  f mx̃

f (z0)
if f ′(z0) =

k f f (z0)
k f z0 + l f −  f mx̃

for some z0∈(mx,Mx),

k f Mx + l f −  f mx̃

f (Mx)
if f ′(z) ≤ k f f (z)

k f z+ l f −  f mx̃
for every z∈(mx,Mx).

(11.91)

Also, if f is strictly convex and twice differentiable on [mx,Mx], then we can determine
the bound

2 ≡ 2(m,M,mx,Mx, f ) = max
mx≤z≤Mx

{
k f z+ l f

f (z)

}
in (11.90) more precisely, as follows:

2 =
k f z0 + l f

f (z0)
, (11.92)
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where z0 ∈ (mx,Mx) is defined as the unique solution of the equation k f f (z) = (k f z +
l f ) f ′(z) provided (k f mx + l f ) f ′(mx)/ f (mx) ≤ k f ≤ (k f Mx + l f ) f ′(Mx) / f (Mx), otherwise
z0 is defined as mx or Mx provided k f ≤ (k f mx + l f ) f ′(mx) / f (mx) or k f ≥ (k f Mx +
l f ) f ′(Mx) / f (Mx), respectively.

In the dual case, if f is concave differentiable, then the value 1 is equal to the right
side in (11.91) with reverse inequality signs. Also, if f is strictly concave twice differen-
tiable, then we can determine more precisely the value 2 in (11.92), with z0 which equals
the right side in (11.92) with reverse inequality signs.

Proof. The value 1 follows from Remark 11.9. The value 2 follows from [138,
Corollary 4.7]. �

Remark 11.10 If f is convex and strictly negative on [mx,Mx], then (11.89) and (11.90)
are valid with min instead of max. If f is concave and strictly negative, then the reverse
inequalities are valid in (11.89) and (11.90).

Applying Theorem 11.13 to f (t) = t p, we obtain the following refinement of [138,
Corollary 4.8].

Corollary 11.15 Let the assumptions be as in Lemma 11.2. Let mx and Mx, mx ≤ Mx be
the bounds of the operator x =

∫
T t(xt)d(t) and additionally let operators xt be strictly

positive. Let x̃ be defined by (11.62), p := mp +Mp−21−p(m+M)p and mx̃ be the lower
bound of the operator x̃.

If p �∈ (0,1), then

0 ≤
∫

T
t(x

p
t )d(t) ≤ K̄(mx,Mx,m,M, p,0)

(∫
T
t(xt)d(t)

)p

− p

≤ K̄(mx,Mx,m,M, p,0)
(∫

T
t(xt)d(t)

)p

(11.93)

≤ K(m,M, p)
(∫

T
t(xt)d(t)

)p

and

0 ≤
∫

T
t(x

p
t )d(t) ≤ K̄(mx,Mx,m,M, p,mx̃)

(∫
T
t(xt)d(t)

)p

≤ K̄(mx,Mx,m,M, p,0)
(∫

T
t (xt)d(t)

)p

(11.94)

≤ K(m,M, p)
(∫

T
t(xt)d(t)

)p

,

where K̄(mx,Mx,m,M, p,c)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

kt p mx + lt p − cp

mp
x

if
p(lt p − cp)

mx
≥ (1− p)kt p ,

K(m,M, p,c) if
p(lt p − cp)

mx
< (1− p)kt p <

p(lt p − cp)
Mx

,

kt p Mx + lt p − cp

Mp
x

if
p(lt p − cp)

Mx
≤ (1− p)kt p .

(11.95)
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K(m,M, p,c) is a generalization of the well known Kantorovich constant K(m,M, p) ≡
K(m,M, p,0) (defined in [74, §2.7]), as follows

K(m,M, p,c) :=
mMp −Mmp + cp(M−m)

(p−1)(M−m)

(
p−1

p
Mp−mp

mMp−Mmp + cp(M−m)

)p

,

(11.96)
for p ∈ R and 0 ≤ c ≤ 0.5.

If p ∈ (0,1), then

∫
T
t(x

p
t )d(t) ≥ k̄(mx,Mx,m,M, p,0)

(∫
T
t(xt)d(t)

)p

− px̃

≥ k̄(mx,Mx,m,M, p,0)
(∫

T
t(xt)d(t)

)p

≥ K(m,M, p)
(∫

T
t(xt)d(t)

)p

≥ 0

and ∫
T
t(x

p
t )d(t) ≥ k̄(mx,Mx,m,M, p,mx̃)

(∫
T
t(xt)d(t)

)p

≥ k̄(mx,Mx,m,M, p,0)
(∫

T
t(xt)d(t)

)p

≥ K(m,M, p)
(∫

T
t(xt)d(t)

)p

≥ 0,

where k̄(mx,Mx,m,M, p,c) equals the right side in (11.95) with reverse inequality signs.

Proof. The second inequalities in (11.93) and (11.94) follow directly from (11.90) and
(11.89) by using (11.92) and (11.91), respectively. The last inequality in (11.93) follows
from

K̄(mx,Mx,m,M, p,0) = max
mx≤z≤Mx

{
kt p z+ lt p

zp

}
≤ max

m≤z≤M

{
kt p z+ lt p

zp

}
= K(m,M, p).

The third inequality in (11.94) follows from

K̄(mx,Mx,m,M, p,mx̃) = max
mx≤z≤Mx

{
kt p z+ lt p − pmx̃

zp

}
≤ K̄(mx,Mx,m,M, p,0),

since pmx̃ ≥ 0, for p �∈ (0,1) and Mx ≥ mx ≥ 0. �
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11.3.3 A new generalization of the Kantorovich constant

Definition 11.1 Let h > 0. Further generalization of the Kantorovich constant K(h, p)
(given in [74, Definition 2.2]) is defined by

K(h, p,c) :=
hp−h+ c(hp +1−21−p(h+1)p)(h−1)

(p−1)(h−1)

×
(

p−1
p

hp−1
hp−h+ c(hp+1−21−p(h+1)p)(h−1)

)p

,

for any real number p ∈ R and any 0 ≤ c ≤ 0.5. The constant K(h, p,c) is sometimes
briefly denoted by K(p,c).

0 1

1

p

K p c( , )

c=0 c=0.1

c=0.3

c=0.5

Figure 11.4: Relation between K(p,c) for p ∈ R and 0 ≤ c ≤ 0.5

By inserting c = 0 in K(h, p,c) we obtain the Kantorovich constant K(h, p). The con-
stant K(m,M, p,c) defined by (11.96) coincides with K(h, p,c) when putting h = M/m > 1.

Lemma 11.3 Let h > 0. The generalized Kantorovich constant K(h, p,c) has the follow-
ing properties:

(i) K(h, p,c) = K( 1
h , p,c), for all p ∈ R,

(ii) K(h,0,c) = K(h,1,c) = 1, for all 0 ≤ c ≤ 0.5 and K(1, p,c) = 1, for all p ∈ R,

(iii) K(h, p,c) is decreasing in c for p �∈ (0,1) and increasing for p ∈ (0,1),

(iv) K(h, p,c) ≥ 1, for all p �∈ (0,1) and 0 < K(h,0.5,0) ≤ K(h, p,c) ≤ 1, for all p ∈
(0,1),

(v) K(h, p,c) ≤ hp−1, for all p ≥ 1.
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Proof. (i): We use an easy calculation:

K

(
1
h
, p,c

)
=

h−p−h−1 + c(h−p +1−21−p(h−1 +1)p)(h−1−1)
(p−1)(h−1−1)

×
(

p−1
p

h−p−1
h−p−h−1 + c(h−p +1−21−p(h−1 +1)p)(h−1−1)

)p

=
h−hp + c(1+hp−21−p(h+1)p)(1−h)

(p−1)(1−h)

×
(

p−1
p

1−hp

h−hp + c(1+hp−21−p(h+1)p)(1−h)

)p

= K(h, p,c).

(ii): Let h > 1. The logarithms calculation and the L’Hospital’s rule give K(h, p,b)→ 1
as p → 1, K(h, p,b)→ 1 as p → 0 and K(h, p,b)→ 1 as h→ 1+. Now, using (i) we obtain
(ii).

(iii): Let h > 0 and 0 ≤ c ≤ 0.5. We have:

dK(h, p,c)
dc

= 2

((
h+1

2

)p

− hp +1
2

)
×
(

p−1
p

hp−1
h−hp + c(hp +1−21−p(h+1)p)(h−1)

)p

.

Since the function z→ zp is convex (resp. concave) on (0,) if p �∈ (0,1) (resp. p∈ (0,1)),
then ( h+1

2 )p ≤ hp+1
2 (resp. ( h+1

2 )p ≥ hp+1
2 ), for every h > 0. Then dK(h,p,c)

dc ≤ 0 if p �∈ (0,1)
and dK(h,p,c)

dc ≥ 0 if p ∈ (0,1), which gives that K(h, p,c) is decreasing in c if p �∈ (0,1) and
increasing if p ∈ (0,1).

(iv): Let h > 1 and 0 ≤ c ≤ 0.5. If p > 1 then

0 <
(p−1)(h−1)

hp−h+ c(hp +1−21−p(h+1)p)(h−1)

≤ p−1
p

hp−1
hp−h+ c(hp+1−21−p(h+1)p)(h−1)

implies

(p−1)(h−1)
hp−h+ c(hp +1−21−p(h+1)p)(h−1)

≤
(

p−1
p

hp−1
hp−h+ c(hp +1−21−p(h+1)p)(h−1)

)p

,

which gives K(h, p,c)≥ 1. Similarly, K(h, p,c)≥ 1 if p < 0 and K(h, p,c)≤ 1 if p∈ (0,1).
Hence (iii) and [74, Theorem 2.54 (iv)] yield K(h, p,c) ≥ K(h, p,0) ≥ K(h,0.5,0), for
p ∈ (0,1).

(v): Let p ≥ 1. Then (iii) and [74, Theorem 2.54 (vi)] yield K(h, p,c) ≤ K(h, p,0) ≤
hp−1. �
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for isotonic sublinear functionals, Acta. Sci. Math. (Szeged) 1–4 61 (1995), 373–
382.
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[89] S. Ivelić, J. Pečarić, Remarks on the paper “On a converse of Jensen’s discrete
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[151] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Anal-
ysis, Dordrecht-Boston-London: Kluwer Acad. Publ. (1993).
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[159] B. Mond, J. Pečarić, On Jensen’s inequality for operator convex functions, Houston
J. Math. 21 (1995), 739–754.
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