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Preface

The goal of this book is to present recent results on general linear inequalities in discrete
and integral form with an emphasis on applications of higher order convexity. Namely, we
investigate inequalities containing the sums or integrals of the form Y, p;f(x:),
X pijf(xi,y;), | p(x)f(x)dx or similar for different classes of functions such as convex
functions of higher order, V-convex functions of higher order, starshaped functions, func-
tions convex at a point etc. Using a concept of higher order convexity introduced by T.
Popoviciu seven decades ago, we give necessary and sufficient conditions for positivity of
the weighted averages of function values. From the obtained inequalities we construct new
linear functionals as the differences of their left-hand and right-hand sides, and study their
properties. Corresponding mean value theorems and nontrivial classes of exponentially
convex functions are given also.

The book is organized in six chapters.

The first chapter is devoted to results involving sequences. We obtain some identities
which are used as the main tool for derivation of general linear inequalities and estab-
lishment of conditions under which the sums ¥; p;a; and 3, ; pija;; are nonnegative. The
sequences under consideration are convex, convex of higher order, V-convex of higher or-
der, starshaped of higher order, mean-convex and mean starshaped sequences. Mostly, we
are interested in results involving sequences of various kinds of higher order convexity.

In Chapter 2 we consider discrete convex and convex functions of higher order with
one variable. We give inequalities which involve the sum or integral and give identities and
inequalities for n-convex and V — n-convex functions, starshaped and n-convex functions
at a point. New proofs and generalizations of some known inequalities are presented by
using the new tools. The next chapter is devoted to functions with two or more variables
which are convex of higher order.

The fourth chapter deals with another class of functions - functions with nondecreasing
increments. Again we develop a concept of higher order of the characteristic property. In
this case, it is the property ”to have nondecreasing increments”. By using the obtained
results we get Levinson type inequalities and generalizations of Burkill-Mirsky-Pecarié
result.

In the fifth chapter we investigate identities and corresponding inequalities involving
discrete and integral weighted averages of n-convex functions by using of some interpola-
tion formulae. Inequalities which are related to higher order convexity are usually called
Popoviciu type inequalities due to the Romanian mathematician Tiberie Popoviciu who
defined n-convex functions and gave first results of this type. We consider formulae based



on the extended Montgomery identity, the Fink identity, the Taylor formula, and on the
Lidstone, Hermite and Abel-Gontscharoff interpolation polynomials. Also, in each case
we make a corresponding identity which involves the appropriate Green function. Using
certain additional conditions we get that the sum Y, p;f(x;) (or, analogously, the integral
J p(x)f(g(x))dx) is greater than a bound which depends only on the values of all higher
order derivatives of the function f at the boundary points a and b of the domain of f and the
values of some polynomials in points a,x,...,X,,b. From each of the considered identi-
ties we construct a linear functional and establish some of its properties. In particular, new
families of exponentially convex functions are generated.

In the first part of the sixth chapter we investigate three functionals: the discrete and
integral CebySev functionals and the Ky Fan functional. All of them involve a function
of two variable defined on a square [a,b] X [a,b], and we find identities which, in general,
have four parts. In the integral case, the first part of the formula is a sum of products where
one factor is a partial derivative of the function f in the point (a,a) and the second factor
depends on the weight. In the second and third parts of the formula partial derivatives of the
function f of all orders lower than the maximal one on the edges (x,a) and (a,x), x € [a,b],
appear, respectively, while the fourth part contains only the highest order partial derivative
of the function, i.e. the (N + 1,M + 1)-th partial derivative of the function f on the whole
square. The next step of investigation is to obtain an inequality for (N + 1, M + 1)-convex
functions and, after that, to prove some mean value theorems.

The main motif of investigation in the second part of the sixth chapter is the well-known
Montgomery identity for functions with one variable and its generalization for functions
with two variables. While the basic Montgomery identity involves only the first derivative
of the function under consideration, here we give an identity which involves function of
two variables and its partial derivatives of order less than or equal to N + M + 2. The main
formula has a form which is described in the previous paragraph. We also give several
estimations based on applications of the Holder inequality.

Authors

vi
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Chapter

General Linear Inequalities
for Sequences

In this chapter we prove several identities for sums Y, pray, > pija;b; involving finite for-
ward or backward differences of higher order. Using these identities we obtain necessary
and sufficient conditions under which the above-mentioned sums are nonnegative for dif-
ferent classes of sequences. We consider the classes of convex sequences of higher order,
V-convex sequences of higher order, starshaped sequences, the class of p,g-convex se-
quences etc.

1.1 Convex Sequences of Higher Order

This section is devoted to an identity for the sum Y pra; and to necessary and sufficient
conditions under which this sum is nonnegative for the class of convex sequences of higher
order. Let us define and discuss some basic concepts. For a real sequence a we usually
use notation (a;) or (a;);7>, when we want to stress that the first element is a;. Sometimes
under the word ”sequence” we mean n-tuple also, but it is always clear from the context.
The finite forward difference of a sequence a (or, simple, A-difference) is defined as

1 —
A a; = Aa,’ = daj+1 — 4,



2 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

while the difference of order m is defined as
A"a; = AA" 'a;), me {2,3,...}.
Similarly, the finite backward difference (V-difference) is defined as
Vlai =Va;:=a;—aj.,
and the V-difference of order m as
Vha; = V(V" a;).

For m = 0 we put AVq; = a;, and VOa; = a;. Tt is easy to see that

m o [m
Amai: 2(71)'"7 (k)a,-+k.
k=0

We say that a sequence a is convex of order m or m-convex if
Ama,- Z 0

holds for any i € N. If m = 1, then a is nondecreasing, while if m = 2, then 2-convexity
becomes the classical convexity, i.e. the following holds

aiyo —2a;11+a; >0, ieN.
We say that a sequence a is V-convex of order m if
Vma,- Z 0

holds for any i € N.
Also, the following notation is frequently used: for some fixed real @ and m € N:

d™ =a(@a—1)---(a—m+1), a¥=1.

In the following Lemma, proved in [61], we give an identity on which all the results
of this section are based. It can be observed as a generalization of the well-known Abel
identity for an n-tuple (ay,...,a,) with weights (py,...,ps), [51, p.334], given by

n n n n
N piai=a1 Y, pi+ Y, | Y pe | Aaiy. (I.D
i=1 i=1 i=2 \k=i

The structure of the Abel identity can be described as following: the sum Y | p;a;

is represented as a sum of two sums. In the first sum the difference of the order O of
element a; occures, while in the second sum the differences of the order 1 for the elements

ai,...,an—y, occur. The Abel identity can be looked upon as a discrete analogue of the
formula for integration by parts. The new identity has a similar structure: the right-hand
side of it consists of two sums, in the first sum differences of order 0,1,...,m — 1 of the

first element a; appear, while in the second sum only the differences of order m occur but
for elements ay, ..., a,—m-
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Lemma 1.1 Letm,n €N, m <n. Let (p1,...,pn), (a1,...,a,) be real n-tuples. Then

3 pa mzlip hia
l
i=1 k=0 i= k!
n An‘l -~
+ 2 3 pili—k4m— 1)l ) ZLhm (1.2)
kemt1 \i=k (m—1)!

Proof. We prove it by using mathematical induction on m. If m = 1, then we have

n n n n
Y piai=ar Y, pi+ Y, <2Pi> Ady—1,
i=1 i=1 k=2 \i=k

which is, in fact, the Abel identity. Suppose that (1.2) is valid. Writting the Abel identity
for (n —m)-tuple (A"a;,A"ay,...,A"ay_,) with weights (Opi1,Omi2,---,0n), Where

n
O = X (i—ktm—1)""Up,
i=k
we get
n n n n
2 QkA’"ak,m:Amal 2 Qj+ 2 ZQ] Am+1ak7mfl~

k=m+1 Jj=m+1 k=m+2 \ j=k

The sum Z?Zk Q;isequal to

For k = m+ 1 we have

n
: 1 :
Y 0=~ ¥ (-1)p = L3 (-1,
j=m+1 j:m+1 mj:l
where we use the fact that for j = 1,...,m the number (j — 1)(”’) is equal 0. So, we get
n
Y O ay_m
k=m+1
Am n n Am+1 o
2 i—1) mp]+ 2 2 j— k+m)(m)pj 2 %em-l (1.3)
j=1 k=m+2 \j=k m

Let us write the right-hand side of identity (1.2) for m + 1 instead of m:

m Ak n n A1 o

k=0i=1 : k=m+2 \i=k

=
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= (rnzl ipi( Amal)

1
k=0 i=1 m:

! 3 m m 1 ¢ . m
* W( 3 0y~ A S 1) >p1)

k=mt1 miz

m

Aa1

+ 2 (il’i(i—ker—l)('"l)) (An’:ilki;

k=m+1 \i=k

n
2 1—1

M= HM

plah

i=1

where we use (1.3) and the assumption of induction. So, by the principle of mathematical
induction, identity (1.2) holds. O

Remark 1.1 We use the above identity for m = n also. In that case the second sum
vanishes.

The following theorem about m-convex sequences is given in [61] by J. Pecari¢ (see also
[77, p. 253]):

Theorem 1.1 Let (p1,...,pn) be a real n-tuple and m € N, m < n. The inequality

n
Y piai >0 (1.4)
i=1

holds for every m-convex n-tuple (a;) if and only if

(i—1)®p;=0 (1.5)

-

1
holds for every k € {0,1,...,m—1} and

N (i—k+m—1)""p; >0 (1.6)
i=k

holds for every k € {m+1,...,n}.

Proof. If equalities (1.5) and inequalities (1.6) are satisfied, then the first sum in identity
(1.2) is equal to 0, the second sum is nonnegative and the inequality Y | p;a; > 0 holds.
Conversely, let us suppose that 1 pia; > 0 holds for any m-convex sequence (a;).
Since the sequence a; = (i— 1)¥), i € {1,...,n} is m-convex for every k € {0,...,m— 1},
we get Y pi(i— 1)(") >0. Convex1ty of the mentioned sequences are proved in Chapter 2
in detail. Similarly, since the sequence a; = — (i — 1)), i € {1,...,n} is m-convex for every
ke{0,...,m—1}, using (1.4) we get — X7 | pi(i— 1)( ) > 0. Hence, >rpili— H® =o.
Also the sequence

0, ie{l,....k—1},
a;= (1.7)
(i—k+m—1)0=0" ick,... n},
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is m-convex for every k € {m+1,...,n}. Thus, by (1.4), we get (1.6). ]
Remark 1.2 Itis easy to see that condition (1.5) is equivalent to the following conditions:

(i—1)fp;i=0, ke{0,1,....m—1} with 0°=1 (1.8)

M=

i=1

or

n
N i*pi=0, ke{0,1,....m—1}. (1.9)

i=1
Also, it is instructive to observe that

(ifkill)(") _ (ikl) (ik(+mml)1!)<”’1> _ (i/;jn;l).

In the first sum of (1.2) the numbers (i — 1)¥) are equal O for i = 1,...,k, so sometimes as
arange for i we use i from k+ 1 till n.

If an n-tuple (a;) is convex of several consecutive orders we have the following theorem
which is a consequence of Theorem 1.1. This result can be found in [71].

Theorem 1.2 Let (py,...,pn) be a real n-tuple and m € N, m <n, j € {1,...,m}. Then
inequality (1.4) holds for every n-tuple (ay, ... ,ay) that is convex of order j,j+1,...,mif
and only if

i(ifl)(k)pizo (1.10)
=1
holds for k € {0,1,...,j—1},
Enl(ifl)("’pizo (1.11)
i=1
holds forke {j,j+1,....m— 1} and
i(i—kjtm—l)("f‘)pizo (1.12)

i—k
holds for k € {m+1,....n}.

Proof. If k € {0,1,...,j — 1}, then the sequences ((i — 1)®)); and (—(i — 1)®)); are
convex of order j,j+1,...,m. So, for such &, ¥} (i — 1)®) p; = 0 holds. If k € {j,j+
1,...,m—1}, then the sequence ((i — 1)®)); is convex of order j, j+1,...,mand X, (i —
1)(k>pi > 0 for such k.

Since the sequence (a,) defined as in (1.7) is convex of order j, j+ 1,...,m, so (1.12)
holds. This proves one implication of the theorem while the other follows from Lemma
1.1. ad
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A sequence (a;) is called absolutely monotonic of order m if all the lower order differ-
ences of that sequence are nonnegative, i.e. if

Afg; >0 for ke {1,2,...,m}.

As a consequence of the previous Theorem 1.2 we get the following necessary and suffi-
cient conditions for positivity of sum Y p;a; for an absolutely monotonic sequence of order
m. Namely, we obtain the following theorem.

Corollary 1.1 Let (py,...,pn) be a real n-tuple and m € N, m < n. Then inequality (1.4)
holds for every n-tuple (ay, ... ,a,) that is absolutely monotonic of order m if and only if

(i—1)®pi>0

M=

pi:()v

M=

1 1

holds fork € {1,...,m—1}, and

N (i—k+m— )" Vp: >0 for ke {m+1,...,n}.
i=k

The following theorem describes how bounds for the sum Y, p;a; depend on bounds of
A"ay, (see [71]). In fact, using that result we can strengthen the initial inequality.

Theorem 1.3 Letme N, m <nand (ay,...,a,), (p1,-..,pn) be real n-tuples such that
n
Y- 1)¥p;=0 for ke{0,1,....m—1} (1.13)
=1
and
n
Ni—k+m—1)""Vp, >0 for ke {m+1,...,n}. (1.14)
i=k
If
a<A'"ar<Afor ke{l,2,....n—m}, (1.15)
then

n n

a . < A .
— ¥ pii™ <Y piai < =¥ pii™.
miz i=1 m-iz

Proof. The sequences
A
be = ag — —k™ and ¢p = kM — g
m! m!

have the following properties

Ambk = Amak —a and Amck =A— Amak.
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By (1.15), we get that the sequences (by) and (c) are m-convex. Since (pi) satisfies
conditions (1.13) and (1.14), then using Theorem 1.1 we get that

n n

Zpibi 2 0 and Zpici Z 0
i=1 i=1

and desired inequalities hold.

Remark 1.3 For a = —A condition (1.15) becomes |A"a;| < A and then the statement of
the above theorem becomes

n

A
. el (m)
< o izzlp,l .

Example 1.1 A nice application of Theorem 1.1 is a proof of the Nanson inequality. In
[52] E.J. Nanson proved the following inequality: If a real (2n+ 1)-tuple (ay,...,a2,+1) is

convex, then
aytast.. +ams  datast...tay (1.16)

n+1 n

The original proof of the Nanson inequality (1.16) and some historical remarks are given
in [49, pp.202 — 203]. Here we give a proof of (1.16) based on Theorem 1.1.
Putting

1

1
N:2n+1,p1:p3:...:p2n+]:—,p2:p4:...:p2n:7—
n+1 n

.:pl_nJrl n U n+l ono on+l \n+l o n n+l

i(i_l) 0 12 3 w2 el
: Pi " n+l n o on+l om0 o+l n n+1

2444420 1+43+...42n—1 n(n+1) ”zfo
- n+1 n ~ on+l no

and fork > 3

N
Z(i_k+1)pi:pk+2pk+l+3pk+2+---+(N_k+1)pN

At (2 2) () (A ) keven

(“t4+ )+ (24:5) + A (-2 + =), kodd
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(1) (=55
nn+1)

LNkl NIy o
nn+1) 2 2

>0, keven

Applying Theorem 1.1 for m =2 we get that 2?/:1 pia; > 0, i.e.

a  a as 7a_4+'”02n717aﬁ+a2n+120
n+1 n n+1 n n+1 n n+1

which is the desired inequality (1.16).

Let us use Theorem 1.3 to get an estimate for the difference of the left-hand and the
right-hand side of the Nanson inequality if the second differences are bounded. This result
is proved in [3] using different approach.

Let us suppose that for sequence (a;) the following holds

a<Aap <A, ke{l,2,..2n—1}

for some a,A € R. Then

2n+1a§ ay+as—+...+axy+1 _a2+a4+...—|—a2n < 2n+1A. (1.17)
6 n+1 n 6

From the previous calculation we have that (1.13) holds for k = 0,1 and (1.14) holds for
k = 2. Let us calculate YN | p;i(?).

N N N N
Y pii? =Y piit =Y pii=Y pii®
i~ i~ i=1 i=1

1
_ 2 2 2y | 192 2 2
_nH(l +3°+...+(2n+1) )+n(2 +47+...+(2n)°)

2n+1
3

From that result we get (1.17).

Example 1.2 Let us illustrate an application of Theorem 1.1 to another inequality due to
N. Ozeki. In [55], and also in [49, p.199], the following result is given: If a,,— | + a1 > 2ay
forn=2,3,..., then

Ap1+App1 224, n=23,..., (1.18)
where
_ai +...+ay,

A, =
n

In other words, if a sequence (g;) is convex, then the sequence (A;) of arithmetic means is
also convex.
Putting

1 1 2 1 2 1

n71+n+1

Pr=p2=...=Pn-1=
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we get
n+1 n+1 n+1

Y pi=0, Y (i—1)pi=0, ¥ (i—k+1)p; >0.
i=1 i=1 i=k

Using Theorem 1.1 for m = 2 we get that Z?jll pia; > 0, i.e.

1+12++ 1+12
@ n—1 n+1 n fn-1 n—1 +1 n

+ ! 2 + ! >0

an | — — - a

"\n+1 n nt1 ="

ay+ay+...+a,— +a1—|—a2+...+an+1 72a1+a2+...—|—an >0
n—1 n+1 n

which is the desired inequality (1.18).

Example 1.3 If (a;) is convex, then for any n > 1

ay+az+...+axyq (1.19)

artaz+...+ayp1 2> axtas+ ... +ay+

n+1
This inequality for a; = a is due to Steinig ([3, 93]).
To prove this, we use Theorem 1.1 for m = 2. Putting
N=2n+1l,pi=p3=...=pmp1=—=,P2=ps=-..=pm = —1

n+1
we get that property (1.13) holds for k =0, 1 and (1.14) holds for k = 2. So, by Theorem
1.1 inequality (1.19) holds. Furthermore, if (g;) satisfies (1.13) for k = 0,1, (1.14) for
k=2andifa <A’qy <A (k=1,...,2n—1), then
n(2n+1 ay+az+...+axy+1 n(2n—+1
%agal—az—i—tg—...ﬁ-aznjq— o et < ( 3 )
Let us again consider a basic identity from Lemma 1.1, with slightly modified indexing
in the first sum:

A.

m n Ak la
1
l—l (k—1)

,»:21 22"‘ (k—1)!

k=1i=
Amakfm
+ 2 Y pil (i—k+m—1)m=1 .
k=m+1 (z k (m—1)!
Putting p; = ... = p,—1 = 0 and p, = 1 we obtain the following
m Akfla]
(n—1)k—__—L
& w1
L Aay_
+ ) (n—k—f—m—l)(m*l)ﬂ, m<n,
an = k=m+1 (m - 1)'
n Ak*la1
~ k=1 =n.
,Zfl(” ) k-1 m=n




10 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

The above-mentioned identity can be considered as the Taylor formula for sequences.

The following theorem was published in [62] and it gives results about preservation of
convexity of a sequence which is made from a sequence (a;).

Let (ao,a1,az,...) be a real sequence and [p,,;], i =0,1,...,n;n=0,1,2,... a lower
triangular matrix of real numbers, i.e.

[po 0 0 0 ... 0
P1o P11 0 0 O
po p21p2 0 ... 0

DPn0 Pnl P2 Pn3 - Pan O...

Let (0,) be a sequence defined as
n
O = an,nfka/ﬂ n:071727"' (1.20)
k=0
Theorem 1.4 Let 0, be defined as in (1.20) and s € N. Then the implication
A"a, > 0= N0, >0
is valid for every sequence (ay) if and only if
NX,(k+1,k)=0 for ke{0,1,....m—1}; ne{0,1,2,...}

and
NX,(m,k) >0 for ke{m,...,n+s}; ne{0,1,2,...}

where

0 for n<k

X, (m,k) = "2" (n—k—l—m—l—j

)Pn,j for n>k. (1.21)
m—1

Jj=0

Proof. Let us write the difference A*c;, as a linear combination of the elements a;.
Using the notation:

(j) = 0 for n<j
an\J) = Pnn—j for n>j
we get the following
n+1 n
Ao, =0p11—0,= 2 Pn+1n+1—jadj — 2 Pnn—jdj
j=0 j=0

M=

(pn+1,n+17j - pn,nfj)aj + Pn+1,00n+1
j=0
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n+1
72Aqn (Jaj+Aqu(n+1)ay 1 = ZAqn Jaj,

n—+2 n+1

A Oy =A0u 1 —Ac,= 2 AQn+1 2 ACIn
j=0

n+1

= 2 A(‘InJrl (]) - qn(j))aj +Agnt1 (” +2)an 1
=0
n—+2 5

= 2 A Qn(j)a
=0

Similarly, we get
n+s
No, =Y Ngu(j)a; foreverys (1.22)

and
, S i—k4+m—1\ . .
AXy(m,k) = < q >A“qn(l).
i=k
Writting identity (1.2) for n+ s+ L-tuples (ag,ay, ... ,an+s) and
(A%qn(0),A%gn(1),...,A%q,(n+5)) and using the above results we get the identity

n+s

Ao, = 2 Nag AX, (k+1,k)+ Y A"ap_p AX, (m k). (1.23)
k=0 k=m
Hence, the statement follows from Theorem 1.1. ]

Theorem 1.4 is a generalization of several previously published results. Firstly, in [56]
N. Ozeki obtained conditions on a matrix [p, ;] implying that for each convex sequence (a;)
the sequence (0,) is also convex, i.e. it is a particular case of Theorem 1.4 for m = s = 2.
One decade later a particular case of Theorem 1.4 for m = s was published in [34] and [41].
A result which is based on identity (1.23) is given as the following theorem, [62].

Theorem 1.5 Let (a,) be a real sequence and let 6, be defined as in (1.20). If|A"a,| <N
forne{0,1,2,...}, and

NX,(k+1,k)=0 for ke{0,1,....m—1}; ne{0,1,2,...} (1.24)
where X,(m,k) is given in (1.21), then
n+s
|A'o,| <N 2 |A X, (m, k)|
k=m
Proof. This is an immediate consequence of (1.23). O

The following theorem also gives a bounds for A®g,,, (see [71]).
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Theorem 1.6 Ler m € N, m < n, (a,) be a real sequence and let o, be defined as in
(1.20). Let (pn,i) be reals such that

AX,(k+1,6)=0 for ke{0,1,...m—1}; ne{0,1,2,...} (1.25)

and
AN'X,(m,k) >0 for ke{m,...,n+s}; ne{0,1,2,...}. (1.26)

If
a<A"a, <A for ne{0,1,2,...}, (1.27)

then

A
iAsocn <Aoo, < —Aw,
m! m!
where 0, = Y _o Pnn—k km),

Proof. For the sequences

A
b, =a, — i'n(”” and ¢, = —'n(m) —ay
m! m!
we obtain the following:

A"b, =A"a,—a>0 and A"c,=A—A"a, > 0.

Since [p, ;] satisfies conditions (1.25) and (1.26), using Theorem 1.4 for sequences (by,)
and (c,) we get that

a A
Ao, — %Asan >0 and %Asan —A0,>0

and the desired inequalities hold. O

Remark 1.4 For a = —A condition (1.27) becomes |A™a,| < A and then the statement of
the above theorem becomes

A
Ao, < —Aop,.
m!
In [71] a general result which involves weighted arithmetic means is given.
Corollary 1.2 Let a sequence a = (ay) satisfy
a<A'"a,<Afor n=0,1,2,...

and let the sequence (p,) be given by

U+n—1
pnpo< . ),Uﬂ,n>0.
n Po
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where po, p1 are arbitrary positive numbers. Then
a m A m
A An(b) < Ady(a) < T A"Au(b),

where b = (b,) with b, = n™ and

poao+ pi1ai+ ...+ ppay

, n=0,1,2,...
potpi+...+pn

Ap (a) =

For a sequence which is convex of higher orders where these orders are consecutive
integers the following theorem, published in [71], holds.

Theorem 1.7 Let (a,) be a real sequence, let 6, be defined as in (1.20) and j € {1,2,...,m}.
The implication

Afa, >0, (ke{j,j+1,...,m})= A0, >0 (seN)

holds for every sequence (ay) if and only if

NX,(k+1,k)=0, ke{0,1,...,j—1},
NX,(k+1,k) >0, ke{j,j+1,....m—1},
AN'X,(m,k) >0, ke {m,...,n+s},neN.
Proof. The proof is similar to the proof of Theorem 1.2. O

1.2 V-Convex Sequences of Higher Order

Firstly, in this section we give formula for the sum Y, p;a; involving V-differences. This
result is given in [46] without proof. So, we give a detailed proof here.

Lemma 1.2 Let (py,...,pn), (ai1,...,ay) be real n-tuples, m € N and m < n. Then

mll

;piai: Zk'Va,,kZ I’l—l
1 n—m k
Y Y (k—itm—1)""p; | V"a. (1.28)

i=1

Proof. For m = 1 identity (1.28) becomes

szaz *an2p1+ 2 (2 i) Vay, (1.29)
i=1

i=1
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which is the second Abel identity, [51, p.334]. Let us suppose that for some m identity
(1.28) holds. We will prove that it holds for m + 1 also. Using notation involving binomial
coefficients the right-hand side of (1.28) for m + 1 becomes

kio (Zlk (" R i) Pi) Vit S (i (k _,if m) p,~> Ve,

k=1 i=1

n—k : n—m—1
2( >pi VEa, i+ 2 ANV g,

k=1

Ms

k=
where A, = Z " k ’*m ;. Furthermore, it is equal to

m
m—1 [n—k I’l

2 2 pt vk ay—i+ 2 ( )pivmanm
k=0 \i= m

n—m—1

2 Ak(VmakamakH)
k=1
m—1 k :
n— n—
:2 Z(k)plvank+2( )pzvanm
k=0 \i=1
n—m—1
+A1V"ay + 2 (Ak _Akfl)vmak — A1 V" . (1.30)
k=2
Since
m m—1
A1=( )mz( )Pl,
m m—1
n—m }’l*l
2 P n—m—1
i=1 \ M
m n—m—1 n—i—1
Gt 2 (C0)-(0)
1 n-m-l i—1 M n—i—1
(S R A R
and

we get that (1.30) is equal to

m—1n—k n—m k l+m n
> ( )PzV anit+ Y, Y, ( )Pivmak =Y piai,
i=1

k=0 i=1 k=1i=1

where in the last equality we use the assumption of mathematical induction. By the prin-

ciple of mathematical induction, identity (1.28) is valid. O
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Thus the following result is an analogue of Theorem 1.1 and it follows from identity
(1.28).

Theorem 1.8 Let (py,...,pn) be a real n-tuple (n > m, m € N). Then the inequality

n
Y piai >0 (1.31)
i=1
holds for every V-convex n-tuple (a;) of order m if and only if

n—k

> (n—i)Ppi=0 (1.32)
i=1

holds for k € {0,1,...,m—1} and

(k—i+m—1)""p, >0 (1.33)

DM~

1

holds for k € {1,...,n—m}.

Proof. If (1.32) and (1.33) are satisfied, then the first sum in identity (1.28) is equal to
0, the second sum is nonnegative and the inequality Y,/ p;a; > 0 holds.

Conversely, let us suppose that Y| p;a; > 0 holds for any V-convex n-tuple of order
m. Since the sequence a; = (n—i)*), i € {1,...,n} is V-convex of order m for every k €
{0,...,m—1}, we get %, p;(n —i)* > 0. Similarly, since the sequence a; = —(n —i)®),
i €{l,...,n} is V-convex of order m for every k € {0,...,m — 1}, using (1.31) we get
— > pi(n—1i)®) > 0. Hence, Y, pi(n—i)*®) = 0.

Also, since the sequence

A k—itm =)D e {1, kD,
“’_{ 0, ic{k+1,...,n}, (1.3
is V-convex of order m for every k € {1,...,n—m}, we have by (1.31) that (1.33) is valid.
O

If an n-tuple (a;) is V-convex of several consecutive orders, then, as in the previous
section we have the following result, [71].

Theorem 1.9 Let (py,...,pn) be a real n-tuple and m € N, m < n. Then the inequal-
ity X1, piai > 0 holds for every n-tuple (ay,...,a,) that is V-convex of orders j,j+
1,...,m(j€{1,...,m}) if and only if

n—k

Z(n—i)(k)pi:O, ke{0,1,...,j—1},

i=1
n—k

2(11—1)(]()])!207 ke{]7]+17am_1}7
i=1

and

(k—i+m—1)""Vp, >0, ke{m+1,....n}.

M=

1
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Proof. The proof is similar to the proof of Theorem 1.2. O
A sequence (a;) is called totally monotonic of order m if
Vka; >0 for ke {1,2,...,m}.

As a consequence of the previous Theorem 1.9 we get the following necessary and suffi-
cient conditions to positivity of the sum Y, p;a; for totally monotonic sequences of order m.
Namely, we obtain the following theorem.

Corollary 1.3 Let (py,...,pn) be a real n-tuple and m € N, m < n. Then inequality (1.4)
holds for every n-tuple (ay, ... ,a,) that is totally monotonic of order m if and only if

n n—k
Y pi=0, Y (n— )Pp; >0
i=1 i=1

holds fork € {1,...,m— 1}, and

(k—i+m—1)""Vp; >0 for ke {l,....n—m}.

-

1

In the rest of this section we pay attention to results about preservation of convexity. In
a similar manner as in the first section we define a lower triangular matrix of real numbers

[Pnil,i=0,1,...,n;n=0,1,2,... and a sequence (0,) associated to the sequence (a,);_,
by
n
On = Pupidr, n=0,1,2,... (1.35)
k=0

Theorem 1.10 Let 6, be defined as in (1.35), m,s € N. Then the implication
V'"a, >0=V'c, >0
is valid for every sequence (ay) if and only if

VY, (k+1,n—k)=0 for ke{0,1,...m—1}; ne{0,1,2,...}

and
VY, (m,k) >0 for ke{0,....n+s—m}; ne{0,1,2,...},
where
0 for n<k
k .
n(l’l’l,) ]2:()( I{I’l—l )pn,nijV n>k.

Proof. We proceed as in the proof of Theorem 1.4. We prove that

, n+s
Vio, = 2 VSCInU) aj
j=0
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and using the identity in (1.28) we obtain

m—1 n+s—m
Vio =Y Vi, VY(k+1Ln—k)+ Y V'@ V'Y, (m.k).
k=0 k=0
From this result the statement of the theorem follows directly. O

Finally, in the following theorem we get conditions on the numbers p, ; under which
the sequence (a,) is V-convex of several consecutive orders, [71].

Theorem 1.11 Let (a,) be a real sequence, let 0, be defined as in (1.20) and j €
{1,2,...,m}. The implication

Vka, >0, (ke{j,j+1,....,m})=V0,>0 (s e€N)

holds for every sequence (ay) if and only if

VSYn(k+ 17n7k)
VYa(k+ 10— k) >
VY, (m,k) >

07 ke{ovlvvjil}v

07 ke{]?]+177m71}7

0, ke{0,1,....n+s—m},neN.

Example 1.4 In this example we connect Lemmas 1.1 and 1.2 with results from [16].

The following identity is due to M.P. Drazin.
For any sequence (;) and any y

n n i n n X —k
N )ya==1)") (—=1—y)*A"*ar, n>0. (1.36)
i=0 \! =0 \k
By using this identity, Drazin proved the following inequalities:

(i) If (—=1)"%A"*a; > 0 (k € {0,...,n}) with at least one strict inequality, then

n

D (7)y"a,~ >0 for y>—1.
i=0 \!
(i) If A" *a; > 0 (k € {0,...,n}) with at least one strict inequality, then
n n X
D (,)y‘ai >0 for y< —1.
i

i=0

We give a proof of the above results using the basic identities (1.2) and (1.28), [78].
Namely, putting n = m in (1.2) and (1.28) and starting numeration of sequences at 0, we
get the following identities:

n k
Y piai = Y, (Y, Pii(k)) Akflo (1.37)
i=0 i :

n n k n—k
> piai = Z(Zpi(n—iﬂ"*"))v - (1.38)
i=0 i —K):
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Setting p; = (n) y'in (1.38) we get
i

%(’Z)y"af e Een (s (:;) (”) Yot
3 ()t

which is (1.36). Similarly, setting p; = <n> y"lin (1.37) we get
i

n n » n n 7k k
i)y a=) (14+y)" *Atag.
i=0 \! i—o \k

In [78] the authors gave result for sequences (a;) whose kth differences have alternating
signs. More precisely, the following theorem holds.

Theorem 1.12 Let (ry) be a given (n+ 1)-tuple, ry € {0,1}.
(@) If (po, p1s---,pn) is a real (n+ 1)-tuple such that

rkZpl >0 for 0<k<n,

then Y}_q prax > 0 for all (n+1)-tuples (ay, ... ,a,) such that (—1)*Akag >0 for 0 <k <
n.

(i) If (po, p1, - - -, Pn) satisfies

k
(71)rk+n7k2pi(nil-)(n7k) > 0 for 0 < k < n,
i=0

then ¥ _o pray > 0 for all (n+ 1)-tuples (ag, ... ,ay) such that (—1)*A" *a; > 0 for 0 <
k<n.

Proof. (i) Identity (1.37) can be written as
n n 1 n " % n %
Y k=Y, EZPJ” Nag= Y ( ( rk—ZPz 1)"*A%ap.
k=0 k=0 \ " i=k k=0

Using assumptions of the theorem we get desired statement.
The proof of (i7) is based on (1.38) and it is similar to the previous one. ad
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1.3 Starshaped Sequences

In this section we investigate necessary and sufficient conditions for general linear inequal-
ities for starshaped sequences of higher order.
The sequence a = (agp,ay,az,...) is said to be starshaped of order m, m > 2, (or m-

. ap—a .
starshaped) if the sequence 0 s (m —1)-convex.
n

The following lemma give us an idélntity on which further theorems are based, [70].

Lemma 1.3 For real sequences (ap,ay,az,...), (po,p1,P2,---) and 2 < m < n the folow-
ing identity holds

m—1 .
zplal —a02p1+ 2 ka ai 2 (;{)pi
i=k

i—k+m—2
+ 2 Tm Af— m+l)2 ( m—2 )pi7 (1.39)

k=m i=k

_ aj;—ap
Ti(aj) = A (—]j )

Proof. Let us consider a new sequence (by,bs,...) defined as

where

aj—aop

p, =4
! j

Then A"~ 'b; = T,,(a;). Let us write the basic identity from Lemma 1.1 for m — m — 1:

n m—2 n
Spa="3 3 pli-10r0
i=1 k=0 i=k+1 k!

n n Ami]a,
; . ) (mfz) k m+l.
+ 2 (2[)(1 k+m—2) >7(m2)!

k=m \i=k
Putting in the above identity substitutions
pi — ipi, ai — bj,

we get the equation

M=

m—2
=
k=0 i=

i Tn(ar—m+1)
i (m—2) n\Uk—m—+1
+ ) <le, i—k+m—2) ) 2

k=m \i=k

n

T

> ipfi - 1y i)
k+1



20 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

Changing index k in the first sum on the right-hand side (k+ 1 — k) we get that the right-
hand side has a form

m—1n Cl n n . Tm(a m )
5 -1 (S -kl

k=1li= 'kmlk

o . . . (i—1)h i—1
which is equal to the right-hand side of (1.39) after using ——————— = and

(k—1)! k—1
(i—k+m—-2)""2  (i—ktm—2
(m—2)! B m—2

) . Simple transformations of the left-hand side give:

n

n PR—
Y ipibi = Y ipi = —

i=1 i=1

n

n
= Zpiai*HOZPi
i=1

which finishes the proof. ]

The consequences of identity (1.39) are the following theorems.

Theorem 1.13 Let (po, p1,...) be a real sequence and 2 < m < n. Then the inequality

n
2 pia; > 0 holds for every real sequence a starshaped of order m if and only if
i=0

n

Y pi=0, (1.40)
i=0

no /i

2(k>p,~=o fork=1,2,....m—1, (1.41)
i=k

no i ktm—2

2i<l tm >p,zo fork=m,...,n. (1.42)
i=k m—2

Proof. If equalities (1.40), (1.41) and (1.42) are satisfied, then the first two sums in
identity (1.39) are equal to O, the third sum is nonnegative for starshaped sequence of order
n

m and inequality 2 pia; > 0 holds.
i=0
' n
Let us suppose that the inequality 2 pia; > 0 holds for any starshaped sequence of
i=0
order m. We consider sequences a!, a, a3 and a** defined as:

(171717 ) 32:7317

3:(0,1<’<>,2<’<>,... '
fork=1,2,....m—1.

All these sequences are starshaped of order m, so we have the following inequalities

n n
Zpi 2 07 sz S 07
i=0 i=0
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n n
> pi® >0, ¥ pi <0
i=0 i=0

from which conditions (1.40) and (1.41) follow. Condition (1.42) follows from the fact
that the sequence

o 0, i€{0,....k—1}
U= Vili—k+m—2)m2 e {k...n}
is starshaped of order m for every k € {m,...,n}. o

Theorem 1.14 Let (po,pi1,...) be a real sequence and2 < m <n, 2 < j < m. Then the
n

inequality 2 pia; > 0 holds for every sequence a starshaped of orders j, j+1,... mif and

i=0
only if
n
pi =0,
i=0
e
2(),9,»0 fork=12,...,j—1,
i=k k
e
2(k>pizo fork=j,j+1,....m—1 (1.43)
i=k
n
zi(l km z)piZO fork=m,...,n.
i=k m—2

For j =m, (1.43) is not necessary.

1.4 Mean-convex and Mean-starshaped Sequences

In this section we consider mean-convex and mean-starshaped sequences. In general, we
say that a sequence a has a mean-property P if the sequence (A,) has the property P, where

. ag+ar+...+ay
n+1 ’
We give results about positivity of the sum Y, p;a; for mean-convex and a mean-starshaped

sequences, [48], [92]. A real sequence (ag,ay,...) is called mean-convex if the sequence
(A,) defined as in (1.44) is convex.

An (1.44)

Theorem 1.15 Let (po, p1,...) be a real sequence. The inequality

n
Y prax >0
k=0
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holds for every mean-convex sequence a if and only if the following conditions

n
Y =0 (1.45)
k=0
n
Y kpr=0 (1.46)
k=1
n
Y (2j—k+1)p;>0 fork=2,3,...,n, (1.47)

>~

~

are fulfilled.

Proof. Let us suppose that Y7 prar > 0 holds. Since the sequences (c,c,c,...)
and (—c,—c,—c,...) are mean-convex, condition (1.45) is valid. Further, (0,1,2,...)
and (0,—1,—2,...) are also mean-convex, so condition (1.46) holds. Finally, condition
(1.47) follows from the fact that the sequence (ag,ay,...) where aqp =a; = ... = a; =0,
aj=2j—k+1,j=k+1,k+2,..., is mean-convex.

The sufficiency of conditions (1.45), (1.46), and (1.47) is a consequence of the follow-
ing identity:

n n n n n
N prax=a0 Y, pk+200 Y kpk+ X, [ Y pi(2j—k+1) | A*As.
k=0 k=0 =0 =2 \j=k

O

The following result is given in [92] and it gives an answer to the question of neces-
sarity and sufficiency of p; if considered sequence is mean-starshaped. A real sequence
(ag,ay,...) is called mean-starshaped if the sequence (A,) defined as in (1.44) is star-

A _
shaped, i.e. if A (M) > 0 holds for n > 2.
n

Theorem 1.16 Let (po, p1,...) be a real sequence. Then for a fixed n > 2 the inequality

n
Y prax >0
k=0
holds for every mean-starshaped sequence (ag,ay,...) if and only if the following condi-
tions
n
> p=0 (1.48)
k=0
n
N kpi=0 (1.49)
k=1
n
k(k—l)pk—l—ZZipiZO fork=2,3,....n (1.50)
i=k

are fulfilled.
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Proof. Let us suppose that Y, prax > 0 holds. Like in the proof of the previous theo-
rem, since the sequences (c,c,c,...) and (—c¢,—c,—c,...) are mean-starshaped, condition
(1.48) is valid. Further, (0,1,2,...) and (0,—1,—2,...) are also mean-starshaped, so con-
dition (1.49) holds. Since the sequence (ag,ay,...), ag = ... = a1 = 0, ar = k(k+ 1),
a1 =2(k+1), a2 =2(k+2),...,is mean-starshaped, then (1.50) holds.

The sufficiency of conditions (1.48), (1.49), and (1.50) is a consequence of the follow-
ing identity:

n n n
N prax = a0 Y, pr+ (a1 —ag) Y, kpk
=0 k=0 =1

+ 2 (k(k Dpr+ iZipi) A (Ai"(“"n) “°> :
k=2

i=k

O

The following theorem gives conditions under which the sequence 6, = ¥} pu xax is
also mean-starshaped when a sequence (ay) is mean-starshaped, (see [92]).

Theorem 1.17 Let (ag,ai,...) be a mean-starshaped sequence and (0y, 0y, ...) be the
sequence O, = Y _, Pn ki, Where p,  are reals. Then the sequence () is mean-starshaped
if and only if

n
2 Wnk = 0
k=0

n
2 kWn,k =0
k=1

n
k(k+1)wn,k+ 2 2iwn; >0 fork=2.3,....n,
i=k+1

where w, ;. are defined as

1 2 n—1
nn+1) (Pno+Poo) — 22— 1) ,2::1 Pjo,

Wn,O = n(n+

1 2 n—1
= — i k=12,....n—1
Wn k n(n+1)P;z,k n(nz_ l)jz::kp],kv 3 & 1

1
Wnoin =

, ml’n,n-
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1.5 p-monotone and p,g-convex Sequences

In this section we consider somewhat different generalization of convex sequences. Let
p # 0 be a real number. We define the operator L, by

Lp(a;) = ajr1 —pa;, i€N.

For a sequence («;), we say that it is p-monotone or that it belongs to the class K, if
the inequality L, (a;) > 0 holds for all i € N, ([37]). It is obvious that for p = 1 we get
nondecreasing sequence. Let us obtain an identity for the sum Y, w;a; involving an
operator L,. From L,(a;) = a;41 — pa; we get

Ly(ar—1) = ax— pay_;
pLp(ax—2) = paj_1 —p*a_»
P*Ly(ar—3) = p a2 —p ai_3

P PLy(a) = .Pkfzaz -pan.
Summing all the above equalities we get
Ly(ax 1) +pLp(ar2) +...+p"2Ly(a)) =ax — play, k=2,....n
Multiplying the equality for a; with wy and writting them for k =2,...,n we get
waL,(a1) = waaz —wapa

wiLy(az) +wipLy(ar) = wiaz —W3P2a1

waLy(az) +wapLy(az) + W4p2Lp(a1) = waas —wap ay

wnL,,(a,,,l)eranp(an,z)+...+wnp"’2Lp(a1) = Waan —wap" lay.

Summing the above equalities we get

n

n n
L,(ay) 2 wjpf’2 + Ly(az) 2 wjp]*3 +...+Ly(ay—2) 2 wjp]*"+1
Jj=2 j=3 j=n—1

1
+L an lwnfzwlaz*alzwzp ,

n n .
2<2ijjk> (ak-1) Zwal—mzwzp L

k=2 \j=k
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i.e. we get the following identity involving the operator L:

n n n n
Zwiai:al Zplflwﬂr 2 <2plkw,-> Ly(ax—1). (1.51)
i=1 i=1 k

=2 \i=k
Thus, from (1.51) we can easily obtain the following theorem, ([60]).
Theorem 1.18 Let w = (w;) be an arbitrary real sequence.
(i) The inequality
n
Y wia; >0 (1.52)

1
holds for every p-monotone sequence (a;) if and only if
n .
S pwi=0 (1.53)

and .
N prwi >0, ke {2,....n}. (1.54)
i=k
(ii) Inequality (1.52) holds for every p-monotone sequence (a;) such that a; > 0 if and
only if
n
> piFwi>0, ke {l,...,n}.

i=1

Proof. 1f conditions (1.53) and (1.54) hold, then from identity (1.51) we get that the
sum Y, w;a; is nonnegative for any p-monotone sequence.
On the other hand, since the sequences (p~!);, (—p'~!); and

{ 0, ie{l,....k—1},
a; =
p

= ik,
are p-monotone, using (1.52) we get conditions (1.53) and (1.54). O
Let us consider a triangular matrix of real numbers [p,;] (i € {1,...,n}; n € N) Define

the sequence (o,) for a given (a,) with
n
On =Y Pnn+i-ii. (1.55)
i=1

The following preservation theorem is given in a slightly modified form in [60].
Theorem 1.19 Necessary and sufficient conditions such that the implication
(an) €K, = (0,) € Ky

holds for every sequence (ay), where the sequence (0,) is given by (1.55), are that for
every n we have
but11—qbp1 =0, byi1p41 20,
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bpi1k—aqbpi >0 (ke{2,...,n}),
n—k+1 .
where b’bk = 2 pH Pnn—k—i+2-
i=1

=

Proof. We have

n+1 n
Lq(Gn) = Op+1—(O0n = 2 Pn+1pn+2—jdj —(q 2 Pnn+1-jdj
J=1 J=1

n+1
(pn+l,n+27j - qpn,n+lfj)aj+pn+l,1an+1 = 2 wjdj,
J=1

M=

j=1

where Wi = puiin+2—j — gPunti—j for j=1,...,n and w1 = pyi1,1. Using Theo-
n+l

rem 1.18 we get that the inequality L,(0o,) > 0 holds if and only if 2 P
i=1

lwi =0 and
n+l

2 p’fkw,- >0fork=2,...,n+ 1. The first equality is transformed to

i=k

n+1 . n .
0 =Y p'wi=Y P N putipsa—i— aPuni1—i) + P Pusi 1
i=1 i=1

i—1
)4 pn,n+17i:bn+l,l *qbn,l~

n
= (2 P Past i +Pnpn+1,1> —q

n
i=1 i—

i=1

The second condition splits to two cases: k € {2,...,n} andk=n+1. Fork=n+1 we
get by 1,41 > 0 and for k € {2,...,n} we get that Z:Zrkl P~ %w; > 0 are equivalent with
bn+1,k - qbn,k > 0. O

The following type of sequences can be consider as a twofold generalization. Firstly, it
is a generalization of the p-monotone sequences, and secondly, it is a generalization of the
classical convexity of sequence.

Let p,q be real numbers, (a;) be a real sequence and let us define an operator L, as
follows:

Lpg(a;) = Ly(Lg(a:)) = Ly(Lp(ai)) = air2 — (p +q)air1 + pqai.

If L,q(a;) > 0 for any i, then a sequence (a;) is called p,g-convex sequence. Obviously,
if p=qg=1, thena 1, 1-convex sequence becomes a convex sequence in the classical sense.

Necessary and sufficient conditions for validation of (1.4) for all p, g-convex sequences
are given in [43].

Theorem 1.20 Letr w = (w;) be an arbitrary real sequence. The inequality

n
Y wia; >0 (1.56)
i=1
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holds for every p,q-convex sequence (a;), p # q, p,q # 0, if and only if

n n i—1 1

i
S twi=0, YTy —0 (1.57)
i=1 i— P4

and

n pi7r+l _ qifr+]
w; >0, re{3,...,n}. (1.58)
i=r P—q

If p = q, then conditions (1.57) and (1.58) become

n n

Zpl;lw,' =0, Y (i— )p'~%w; =0,
= i=2

n
N(i—r+1)p~"w; >0, re{3,...,n}.
i=r
Proof. Let us obtain an identity for ) w;a; involving the operator L,,. We start with an
identity which involves L:
n n i n
wid; = dy plilwi + 2 WkLp(ak,l), (1.59)
=1 =1 k=2

= =

=

where W, = Z?Zk pj “kyy ;. Using the same identity for the sum Y, Wby with the operator
Lg, where by = L,(a;—1) we get

n n n
D Wb =bs (2 q”Wj> + X WiLy(bi-1), (1.60)
k=2 j=2

k=3

n
where W; = 2 qjiij. Now, Lq(bk,l) = Lq(Lp (akfz)) = qu(ak,z) and
=k

n n n
Wi =X 'wi=Yq¢* (2 Pr]Wr> =wi +wir1(p+q)
=t j=k =i

w2 (PP +pa+ %) + .o+ wa(p" g )

2 2 n—k+1 _ n—k+1

Wk+Wk+1p 1 +---+Wn%7 P#4q
= pP—q pP—q

Wi+ 2pwig1 +3p* Wi + .+ (n—k+1)p"Fw,,  p=gq

n ikt 1 _ L i—k+1

p —q

Zwi?a P#q

_ )& (1.61)

n

N(i—k+1)p ™ wi,  p=gq.
i=k
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In particular, for k = 2 we get

. >k p:Z . P#4
N g W= 32 . (1.62)
=2 D—1p 7w, p=gq.
i=2

Putting (1.61) and (1.62) in (1.60) and combining with (1.59) we obtain that for p # ¢

n no | n pifl o qifl
Y owiai =ai | Y p" wi | +Lplar) Y, wi———
i=1 i=1 i=2 r—q
n n pi7k+1 _ qi7k+1
+ Zw,»T Lpg(ai—2) (1.63)
k=3 \i=k

and for p = ¢q the following holds

n

n n
Zwiai =q <2p’lw,~> +Lp(a1)2(i— 1)p'2w;
i=1 i=1

i=2

+3 (2(i—k+ l)pikwi> Lyp(ar—2). (1.64)

k=3 \i=k

Let us suppose that p # ¢g. Now it is obvious that if (;) is a p,g-convex sequence with
properties (1.57) and (1.58), then using identity (1.63) we get that Y w;a; is nonnegative.

Conversely, let us suppose that Y w;a; is nonnegative for every p,g-convex sequence.
Let us consider the sequence («;) defined with

piogq  pitl gt
+

pP—4q P—q

ai=—q

Since Lpg(a;) =0, ie. (a;) is p,q-convex, we have X wia; > 0, i.e. from identity
(1.63) we get Py p”lw,' > 0. Similarly, for a P, g-convex sequence (—a;) we obtain
—p3™ , p"~tw; > 0. Together, we conclude 37, p'~'w; = 0.

Furthermore, let us consider the sequence (a;) defined as

pioq  ptl gt
ai=—(p+q) +
P—9q pP—q
n pifl o qifl
Itis p,g-convex. Since the sequence (—a;) is also p,g-convex, we get that 2 —_—w;=
i P4
0.
And finally, fix r € {3,...,n} and let us consider the sequence (a}) defined as a; = a, =
pi7r+1 _ qifr+1

co.=a,1 =0,a=—————fori=r,...,n. Since (a}) is p,q-convex condition

pP—q

(1.58) holds. O
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1.6 Multilinear Forms

In the previous sections we consider a positivity of the sum Y, p;a; for only one sequence
(a;). What happens if we consider a sum in which two sequences appear? Results of such
type are given in this section.

1.6.1 Results for A- and V-convex sequences

Bilinear sums were investigated by T. Popoviciu in [87] where monotone sequences (a;)
and (b;) have the same number of members. The case when monotone sequences (a;) and
(b;) have different numbers of elements was done by J. Pe€arié¢ in [57] and A. Kovalec in
[35]. A generalization of the above mentioned results with several monotone sequences is
given in [58]. As we know, a monotone sequence is in fact a I-convex sequence, so we are
interested in results which involve two or more sequences of higher ordered convexity. In
the subsequent text we give a detailed proof of one of such results from [72]. Other related
results will be given without proof.

Theorem 1.21 Let x;j, a;, bj, (1 <i < N;1 < j<M), be real numbers, n,m € N, n <
N,m < M. The inequality

F(a,b) = xijaibj >0 (1.65)

Il
_

M=
EMa

i

holds for every n-convex sequence (a;) and m-convex sequence (b;) if and only if

(r—1)(s=1)Vx =0 (1.66)

M=
Mz

Il
“
I

for i€{0,....n—1},j€{0,....m—1},

r=1)(s—j+m—1)" Yy =0

M=
Mz

Il
“
I

for i€{0,....n—1},je{m+1,... M},

(r—i+n—1)""Ys-1)Vx, =0

M=
Ve

\
Il

—_
Il
—_

for ie{n+1,...,N},j€{0,....m—1},

(V*i#’i’l*1)(’171)(S*j+m*1)(m71)xrs >0 (1.67)

M=
M

\
Il

—_
Il
—_

for ie{n+1,... N}, je{m+1,.... M}.

Proof. The following identity has a crucial role in the proof:

3 zx,,ab —nzlmzlA’alAJbl <2 s ( ) ( J 1>x,s>

i=1j= i=0 j=0 r=1s=1
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n—1 M N M .
i r—=1\/s—j+m—1
+ 2 2 AlCl]Ambjfm ( 2 ( ; ) ( ‘I{n*l )xl‘s>

i=0 j=m+1

N m—1 N M o _ _
¢ 35 (22(’ el .1))%)
i=n+1 j=0 i n—1 J

N M . .
my, r—i+n—1\/s—j+m—1
+ 2 ZA a;— nA j—m 22( 1 )( J 1 )x,.s .
i=n+1lj=m+1 =is=j n— m-—

We have

M

Similarly, we have

205 () B2 (5 (7))

r=1

("7
(B0 (B (7))

. j+m—1
+ 2 A lbj m 2 ( > < -/ 1 >xrs .
Jj=m+1 r=1s=j m—

Using the same idea we have

i(r—ijLn.—l)Wr:g(r itn— )Zb;xu
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(592
\ L (s—j+m—1 No(r—i+n—1
+ A"bj- ( ) ( . >xA
S MU r—itn—1)[(s—1
_ Albl ( i )( .)xr
2 (lzlszl n—i J *

S BE(CN0 )e)

j=m+1 r=is=j
Using these two identities we obtain the desired identity. o

The identity from Theorem 1.21 has combinations of A-differences of sequences (a;), (b;).
There exist identitites which involve combinations of V-differences or A-differences of the
sequence (a;) with V-differences of the sequence (b;). We write them here without a de-
tailed proof.

Theorem 1.22 Let xij, a;, bj, (1 <i<N;1 < j< M), be real numbers, m,n € N, m <M,
n<N.
The following identities hold

55 o5 S (350

i=1j=1 i=0 j=0 r=1s=1

nlM—m J —r\[(j—s+m—1
Jrz 2 Viay_iV" 'bj 22( )( { )er

i=0 j= r=1s=1 -

N—nm—1 i M .

. i—r+n—1\ /M—s

+2 ZV"aiV/bM,j 2( )( . )xrs

i=1 j=0 r=1s=1 n—1 J

N—nM-m i J _ —1 j — —1
> zvnaivmbj( (A [ ]
i r

m—1

and

1:11:1 i=0 j=0 r=1s= i -]
n—1M—m N J 1 . 1
+3 2 ANayvb; [ 3 (r , )(1 s )xm
i=0 j= r=ls=1 t m—1
N m—1
r—i+n—1\[/M—s
+ 2 ZAaz nV]bM j 22( 1 )( . )xrs
i=n+1 j=0 r=is=1 n— J

+ i MzmA V"D <§2 (r_i+”_1) (j_”m_l)xm).

i=n+1 j=1
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A similar result, analogous to Theorem 1.65 based on the identities from the previous
theorem can be given, see [72].

It is interesting to estimate the sum F if the finite differences of the sequences (a;) and
(b;) are bounded. Firstly we get a result with lower bounds.

Corollary 1.4 Let Xij, ai, bj, (1 <i<N;1<j<M), be real numbers satisfying condi-
tions (1.66)-(1.67) of Theorem 1.21 and let

N'a;>o, N"b;>B, 1<i<N-n 1<j<M—m.

Then

N M
ZZX,-jaibj_ 22 l*l x,j
i=1j=1

11]

Proof. Under the assumptions of Corollary, the identity from the proof of Theorem
1.21 becomes

N M N M
2 injaibj = 2 2 xl’jAnaianmbjfmx

i=1j=1 i=n+1 j=m+1

NM (r—itn—1\[s—j+m—1
x(;;j( A [ QA I

aﬁZ 3y (22( —itn— 1> <sj+m1)x”>

zljlrts;

Y

= n|m|22 l_l xl/
i=1j=1

since A"(i—1)"=n!and A"(j —1)" = m!. O

Using the same method we obtain the following result, [72].

Corollary 1.5 Let x;j, a;, bj, (1 <i < N;1 < j<M), be real numbers satisfying condi-
tions (1.66)-(1.67) of Theorem 1.21 and let

N'a; <R, A"b;<S, 1<i<N—n 1<j<M—m. (1.68)

Then
M

RS N
m 2 2 )" xij.

i=1j=

N M
2 2 Xijaibj
i=1j=1

Remark 1.5 Theorem 1.21 can be generalized. Namely, the statement is true if instead of
the two sequences (a;, ...,ay) and (by,...,by) we involve a matrix [a;;], j=1,...,N,j =
1,...,M and the product a;b; is substituted with a;;. In that case, the phrase "holds for
every n-convex sequence (g;) and m-convex sequence (b;j)” is substituted by “holds for
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every (n,m)-convex (aj;)”, where the sequence (a;j), ;. is (n,m)-convex if A""a;; >0,
(i,j =1,2,...) with notations
An’ma,’j:Arf( gla,-j), Ala,-j:apr]’jfa,-j,
Maii=a i1 —ai. Aa:=Aa:=a:
2dij i,j+1 ijs 14ij 24ij ij

The particular case of Theorem 1.21 for n =m = 1, i.e. for monotone sequences («;)
and (b;) deserves special attention. Let us repeat the statement of Theorem 1.21 for the
monotone sequences, [57].

Corollary 1.6 Ler x;j, (i =1,...,n;j = 1,...,m) be real numbers. For all sequences

(ai,...,an) and (by,...,by) monotone in the same sense the inequality
n m
2 2 xjjaib; >0
i=1j=
holds if and only if

X,1=0 (r=1,...,n), Xi,=0 (s=2,...,m),

where
n m

Xis = 2 X xij-

i=rj=s

In the subsequent text we show how this result leads to the discrete CebySev and Griiss
inequalities. Let a = (ay,...,a,), b= (b1,...,b,) and p = (p1,...,pn) be given n-tuples,
P1s---,pn > 0. Let us define the Cebysev difference D(a,b,p) as

n n
D(a,b,p) = ZPzZPﬂ ibi— Y piai Y, pibi.
=1 =1

Let x;j, (i,j=1,...,n) be defined as

n
xij=—pipj, i #Jj);  Xi=pi (2 Pk_Pi> .

k=1

It is easy to see that for these particular numbers x;; the following equalities and in-
equalities hold:
X=0 (r=1,...,n), X;,=0 (s=2,...,n),
X520, ns=12,....n
Using identity from the proof of Theorem 1.21 for m = n = 1 we get that for sequences
a and b the following holds:

n n n n

D(a,b,p) = Zlejab —ZZX,S —a,_1)(bs—bs_1).

i=1j= r=2s=
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Furthermore, since X, ; > 0, a and b are monotone in the same sense, then
D(aabap) Z 07

i.e.

Zplzplab > Zptalzpt i
i=1 =1
which is, in fact, the discrete Ceby§ev inequality. More results about the (v?ebyéev inequal-
ity will be given in Chapter 6.
If a and b are monotone, then

|D(3,b,P)| = 2 Zer —dar-1 (b bsfl)
r=2s=2
< 1I<1’1aX |er||an al||bn*bl|
= |a, —ai||b, — by| max Zp, 2 i (1.69)

I<k<n—17] imkr ]

Now we can state and prove the discrete Griiss inequality.
Proposition 1.1 Ler a, b be given real n-tuples such that
a<a;<A, b<b;<B, (i=1,2,...,n).

Then

ID(a,b,1)] < (A—a)(B—b) [g} (nf [SD (1.70)

Proof. Leta = (ay,...,a,) be the increasing rearrangement of a, and a = (ai,...,a,)
be the decreasing rearrangement of a and define b, b similarly. Then

n n no_
Z Z < Y @b,
i=1 i=1

D(ab,1) <D(ab,1) < D(ab,1).
Using (1.69) on the pairs of the monotone sequences a and b and on a and b we get

|D(57h71)|7|D(57B71)|§( 70)(3 b) max Zpl 2 Pi
I1<k<n—1:Z =kt 1

a0 3] (- 2)

from which inequality (1.70) follows. O

Let us mention that the above discrete Griiss inequality was proved in 1950 by M. Bier-
nacki, H. Pidek and C. Ryll-Nardzewski, [51, p.299].
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The following theorem is a multilinear generalization of Theorem 1.6, (see [58]). We

consider m monotone sequences, give an identity for the sum
nj nm
2 2 Xiy..imQliy - - - Ami,, and necessary and sufficient conditions for positivity of that

i1=1 im=1
sum.

Theorem 1.23 Lerxj, i, (ix=1,...,m:k=1,...,m) be real numbers.
(i) The inequality
ny m

N oY Xiinati - i, >0 (1.71)

i1=1 im=1
holds for all nondecreasing sequences aj = (aj1,...,ajn;), (j = 1,...,m) if and only if
Xoposy 20 (sj=2,...n53j=1,....m),
=0

orsi=1,...,n;; j=1,...;k—1Lk+1,....om; k=1,....,m, where
J J

Xs

1eSk—15 L3Sk 150-Sm

Ny

n
XSI"‘Sm = 2 2 xil---im'

i1:S| im:Sm

(if) Inequality (1.71) holds for all nonnegative nondecreasing sequences aj, (j =
1,...,m) if and only if

Xoyosy >0 (sj=1,....n5j=1,....m).

Proof. The proof is based on the identity:

ny N

N oY Xy @iy - Qi = 11 - A1 X1

i1=1 im=1

m—1 Ng+1 Ny m
+ Y Y lain-can Y, Y Xidsersn 1] (@s; —ajis;1)
=1(%)

Sk41=2 Sm=2 j=k+1
] m m
+ 2 2 XSI"‘SmH(ajaSj_ajrsjfl)'
51=2 sm=2 j=1

O

The above-mentioned article [58] contains some further results connected with lower
and upper bounds for this sum also.

1.6.2 Results for p-monotone, p,g-convex and
Starshaped Sequences
As like for convex sequence of higher order, similar results about necessary and suffi-

cient conditions for the numbers x;; such that inequality >} , 2?’:1 x;jaibj > 0 holds for
p-monotone and p, g-convex sequences is stated in [60].
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Theorem 1.24 (i) Let (a;), (b;) be real sequences and x;j, (i € {1,2,....n},j€{1,2,...,m})
be real numbers. The inequality

n m

> X xijaib; > 0

i=1j=1

holds for every p-monotone sequence (a;) and for every g-monotone sequence (b;) if and
only if

Xis,=0, X1 =0, se{1,2,....m},re{l,2,...,n}, (1.72)

X5 >0, se€{2,....m},re{2,...,n}, (1.73)

where
n

m ) .
Xes =2 0" q i

i=rj=s
n m
(ii) The inequality Y, Y x;;a;ib; > 0 holds for every p-monotone sequence (a;) and for
i=1j=1
every g-monotone sequence (b;) such that ay > 0 and by > 0 if and only if
Xs>0, se{l,2,...,m},re{l,2,...,n}.

Proof. Let us prove case (i). Let s; = ¥ x;ja;. Then

™M=
Ms

sy = S, =0 S 's,+z(zqw ) o).

i 1

1j

Let us write x; = 7:5 g’ 5x; ;. Then

m ) n m . 1l
INRTEDY (2 qj“Xij) ai = Y xidj
J=s ' '

I
8
M=
hBN
B
_|_
M=
P
IR
n«-
H\‘
~
h
15

n
= alxl,s + 2 Xr,st(arfl)-
r=2

For s = 1 we have
n

m
Yoa'si=aiXii+ Y, XLp(a, ).
j=1 r=2

Hence,

n m n m
3 N xijaibj = aibi X1 +b1 Y, Xp1Lp(ar—1) + a1 Y, XisLg(bs—1)
i=1j=1 =2 =2

+22erL ar—1)Ly(bs—1). (1.74)

r=2s=
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From this identity we conclude that if x;; satisfy assumptions (1.72) and (1.73), then
iy Xy xijaibj > 0.

Let us prove the second implication. Let us consider the p-monotone sequence («;)
defined as @; =0 for i = 1,2,...,r— 1, a; = p"" for i = r,...,n, and the g-monotone
sequences (b;)7_; = (q/~'); and (b;)"_; = (—¢’~')_,. For these sequences the in-

J=
equality > | 3" o1 Xijaib > 0 holds, so, the condition X,.; = 0 holds. Similarly, we get

X, s =0. Let us define the sequences (a;) and (b;):

i—r

a;i=0,i=12,....r—1, a=p"", i=r...,n,

bj=0, j=1,2,....s—1, bj=¢q'"", j=s,...,m.
These sequences are p-monotone and g-monotone respectively, so from

;’:lZ;f’zlxijaibj >0 we get X, ; > 0. |

Also, a similar result for bilinear form for p, g-convex functions is valid, [47]. The key
role plays identity (1.74).

Theorem 1.25 Let (a;), (b;) be real sequences andx;j, (i€ {1,2,...,n},je{1,2,...,m})
be real numbers. The inequality

n m

Zle]ab >0

i=1j=
holds for every p,t-convex sequence (a;) and q,r-convex sequence (b;) if and only if

X11=0, B{lz (r=2,...,n), B%,Szo (s=2,...,m),
B,y =0 (r=3,...n), By;=0 (s=3,...,m),
B,s>0 (r=3,...,n; s=3,...,m),

where
nom
er*zzplirqj lep r=1,...,n; s=1,....m,
i=rj=s
n o m z r+1 tl r+1
ZZCH T P
1 _ i=rj=
Br,l* n m
221—r+1 e, p=t
lrj
forr=2,...,n,

qus+1 _ rjfs+1

nom
I  ————xj.  a#r

i=1 j=s q—r

n m . .
SN G-s+1)p g x, q=r

i=1j=s




38 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

fors=2,...,m, and
nom i—r+l _ ii—r+1 Jj—s+1 _ j—s+1
P t q r
ZZ P : pr—— pFLGFT
Brs=1q """
DY (i—r+1)(j—s+1)p"¢  xyy, p=tg=r
i=rj=s
forr=2,....n,s=2,...,m.

Proof. Using identities (1.51) and (1.74) we get the following

n n
N X1Ly(ar—1) =By Lp(ar) + Y, Bl Ly(a,—2) (1.75)
r=2 r=3
an by—1) = Bi sLy(b1) +ZB” ar(bs—2) (1.76)
=
n m
2 Zxr,st(arfl)Lq (bsfl) = BZ,ZLp(al)Lq(bl) (L.77)

r=2s=2

bl ZBrZLpt Ar— 2)+L ai 232s qr br 2)

r=3
+ 2 2 Br,stl (ar72)Lqr(bs72)-
r=3s=3
By inserting (1.75), (1.76) and (1.77) in (1.74) we obtain
nom
2 Zx,,ab =Xy 1a1b1 +b1Ly(a1)BS | +ai1Ly(b1)B] 5 (1.78)

+B22Lp(ar)Ly(b1) + b 2 B} \Ly(a,2) +a 2 B} (Lgr(bs—2)
r=3 5s=3
m

q4(b1) ZBrZLpt ar—2)+Ly(a Zst gr(br—2)
r= ;
n m

+ 2 2 B sLpt (ar72)Lqr(bsf2)-
r=3s=3

It is the identity from which the statement of the theorem follows. O

Analogously, we can prove the following result which combines p,#-convex and g-
monotone sequences, [47].

Theorem 1.26 Let (a;), (b;) be real sequences and x;j, (i € {1,2,...,n},j€{1,2,...,m})
be real numbers. The inequality

n m

Zle]ab >0

i=1j=
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holds for every p,t-convex sequence (a;) and g-monotone sequence (b;) if and only if

R.1=0 (r=2,...n), Rysy=0 (s=2,...,m)
R.s>0 (r=3,...

Xi;=0, (s=1,....,m)
r

l}

s =2,...,m),

where X,.; ia defined in the previous theorem and

n om i—r+1 i—r+1
- p —1
DD FErE——E p#t
I o
Y M (i—r+1)p g xi, p=t
i=r j=s

forr=2,....n,s=1,...,m.

In [70] a bilinear form for a starshaped sequence is considered. Namely, the following
theorem is given:

Theorem 1.27 Let a;,b; and x;;, i =0,1,...N;j =0,1,...,M, be real numbers. Then
the inequality

ZZabjx,j>0
i=0j=0

holds for every sequence (a;) starshaped of order n and sequence (b;) starshaped of order
m if and only if

N M
2 2% =0

i=0 j=0
N M /. .
22())@]—0 22( )xij:O, r=1,....n—1l;s=1,....m—1,
i:rj:O r i=0 j=s

i r+n 2 —s+m 2
221 xij =0, 221 xij =0,
i=r j=0 i=0j=s

for r=n,...,N;s=m,....M,

22<>< >xij0,r1,...,’11;517“'7’”1’
i=r j=s

r+n )(])xij:(),r:n,---»N§S:1»---’m_1’
llj s s

(7
221( )( Jmsdme z)xij:O,r:1,...,n—1;s=m,...,M,
(7

i=r j=s
frJrnf >(]s+m2

22” m—2

i=rj=s

)xijzovrnv"'vN;sm""’M'
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Proof. The proof is based on the following identity:

ZZab]x,j =aghy Y, Zx,jJrnzlmzlmT (a1)Ty(by) g:g: <;> (i)xlj

i=0j=0 i=0j=0 r=1 s= i=r j=s
N
+ 2 2 Tn(arfiH»l)Tm(bsfanl) X
r=ns=m
i—r+n-2 j—s+m—2
()
i=rj=s
m—1 ] n—1 N M i
ran 3, ST Ty <S>xl~j+b0 Y @)Y Y (r)xu
i=0j=s r=1 i=r j=0
j 2
+a02Tm s—m+1 22](>< SJFH; >Xij
s=m i=rj=s m=
) .
+b02T Ar—nt1 221< r+n )(J)xij
r=n i=rj=s S
n—1 M ; 2
+Y Y rT(a)Tu(bsmi ZZJ()( S )xij
r=1s=m i=r j=s m—2
N m—1 _r+n 2 ]
+2 an(arfipkl bl 221< )(S)xlj7
r=n s=|1 =r j=s

where T, (a,) = A1 <M>. O
n



Chapter

General Linear Inequalities for
Functions of One Variable

2.1 Basic Results on Convexity of Higher Order

While the previous chapter was devoted to different classes of sequences, this chapter
brings results mostly about functions which are convex of higher order. The concept of
higher convexity was introduced by T. Popoviciu in the forties of the previous century,
[85]. We are interested in results connected with positivity of sum Y p; f(x;) or integral
J p(x)f(x)dx where f is a convex function of higher order. Such results which involve
higher order convex function and which solve the question of necessary and sufficient con-
ditions for positivity of the mentioned sum or integral are called Popoviciu type inequality.

Let f be a real-valued function defined on I = [a,b] C R. The n-th order divided
difference of f at distinct points xj,X;+1,...,Xi+, in I is defined recursively by:

xXjsfl = f(xj), i<j<i+n

o it X f] = Xy X 15 f]
[xla"'vxl+n9f] - Xisn — Xi .
It is easy to see that
o S (i)
[—xl7 ne 7x1+n9f] - kgo W/(-xi+k) 9

41
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i+n
where w(x) = [ J(x—x;).
j=i
In this book we use notation A" f(x;) for [x;,. .. ,Xi1n; f] also.
We say that f: I — R is a convex function of order n (or n-convex function or A-convex
function of order n) if for all choices of n + 1 distinct points x;,. .., xi+, € I inequality

[x,', e ,x,-+n;f] Z 0

holds. The function f is said to be V-convex of order » if for all choices of n+ 1 distinct
points X, ..., X+, inequality

V' f(x) = (~1)"A" f(x) > 0

holds.

If n =0, then a convex function f of order O is, in fact, a nonnegative function, 1-
convex function is nondecreasing function, while a class of 2-convex functions coincides
with a class of convex functions. It is well-known that if £(") exists, then f is n-convex
if and only if £} > 0. Furthermore, if f is an n-convex function on [a,b] for n > 2, then
the function f(k) exists and is (n — k)-convex for 1 <k <n-—2; fJ(rnfl) exists and is right
continuous and increasing in [a,b).

Let E = {x1,x,...,xy} C R. A function f : E — R is said to be a discrete n-convex
function if inequality

[—xiv' .. 7xi+n;f] Z 0

holds for all choices of n+ 1 distinct points x;, ..., xi+, € E. Similarly, a discrete V-convex
function of order »n is defined.
If {x},...,x,} C E, then there exist nonnegative constants Ay,..., Ay_z_; such that

SV TA; =1 and
N—k—1
[x/la'--vx;<+1;f]: 2 Ailxiy o Xipas £
i=1

We use also the following notation.

For n real numbers x;, i € {1,...,n} andm > 0:

(m+1)

(v — x1) = (ve—xi) (k= Xir1) - (= Xigm), (e —x) 0 =1

and
(e — ) VY = (o — ) (et — ) - (e — 1), (e —x) 10 =1

Example 2.1 Let r € N. The function ¢, : [a,b] — R defined as
er(x) =x

is n-convex for any n > r. If [a,b] C (0,0), then e, is n-convex of any order n. This
consideration can be expanded to general polynomials, i.e. a polynomial of degree r is
n-convex forn > r.
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Example 2.2 Let E = {x|,x2,...,xn} CR, x; <xp < ... <xy. Leti >n—1 be a fixed
number. A function f : E — R defined as:

h(x)— 07 X < Xi—g
(X7xi,n+])(X7xi,n+2)...(X7xi,1), X > Xi—|

is discrete n-convex.
To see this, it is enough to prove [xg,..., Xk ,: /] > 0 for any k < N —n. We consider
several cases. If k+n <i—1,then h(x;) =0forall j=k,...,k+nand [x,..., x4, 0] =0.
Ifk+n=i+r, 0<r<n,then

[xk7 e 7xk+n;h] = [xk+n7r7 ooy Xktns (x*xka»l) e (xkafl)] >0,

because the function g(x) = (x — xg_p+1)... (x — x¢_1) is a polynomial of the (r — 1)th
degree and, hence, it is n-convex.
Ifk+n=i+r,r>n,then

[xka"'v-xk+n;h] = [)Ck,-..,Xk+n;<x—Xi7n+1)--. (-x_xifl)] > 07

because the function g(x) = (x —xj—p41)... (x —x;—1) is a polynomial of the (n — 1)th
degree and, hence, it is n-convex.

Example 2.3 Let s € [a,b], n € N. The function wy(-,s) : [a,b] — R is defined as

wn(x,8) = (x— s)f’[] ,

@—ﬂ+={ 0, x<s

xX—s, X >s.

where

Particularly, for n = 1 we get

0, x<s
wi(x,s) = 1 x> s.

Function wy(+,s) is n-convex. If n = 1 it is obvious that w (x,s) is nondecreasing, i.e. it is
1-convex. For m > 2, let us consider the (n — 2)th derivative of wy,(-,s):

d"? B 0, x<s
dx”*zwn(x’s)i (n=1)!(x—s), x>s.

It is 2-convex, so wy(+,s) is n-convex.

One of the crucial results for studying general linear inequalities involving the higher
order convex functions is the following theorem due to T. Popoviciu, [77].

Theorem 2.1 Let x; € [a,b] and py € R, k=1,....N andn € N.
Then the inequality

N
Y pef(x) =0 2.1)
k=1
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holds for every convex function f of order n if and only if

N
N pixi =0, i€{0,....n—1}, (2.2)
k=1
N
pk(xk—s)’}:l >0, sé€la,b]. (2.3)
k=i

In further decades some generalizations of that results are done. Let us mention result
which involve linear operator A instead an operator of sum. In the next text we describe
a method based on a representation of convex function of higher order as a limit of the
sequence of functions which are equal to a sum of certain polynomial and a linear com-
bination of very particular functions, i.e. splines w,(-,x;). Let us describe some new
notations which are used in this section.

We consider operators A of the following form A : C([a, b]) — S(D), where S(D) is one
of the normed subspaces of the space of all real functions defined on D, and where the norm
of a function f € S(D) is denoted by || f||p. We say that A is continuous if lim,, || f, — f|| =0
implies lim, [|[Af, —Af]||p = 0 as well. Also, we write Af > 0if Af(¢) > 0 holds for every
t € D, where f is a given function in the space C([a,b]).

The family of the polynomials of degree at most k is denoted by Il;. The family of
continuous n-convex functions on [a,b] (i. e. right-continuous at a and left-continuous at
b) is denoted by K, ([a,b]). Monomials are denoted by e;, i. e. ¢;(x) = x' fori =0,1,2,...

T. Popoviciu proved the following representation of n-convex functions, [90].

Lemma 2.1 Let the function F,, be of the form

k
Fn<x) = 13,1,1()6) + 2 aiwn(xaxi)a 2.4)

i=1
where P,_1 €I1,_, o4, i=1,...,k, are real constants and a < x; < xp < --- < x < b.

(a) A necessary and sufficient condition for F, to be n-convex is that o; >0 (i=1,...,k).

(b) Every continuous n-convex function on |a,b] is the uniform limit of the sequence
of functions F, (n = 1,2,...) where the F,’s are of the form in (2.4) and o; > 0
(i=1,...,k) are real constants.

Using that representation of n-convex functions the following theorem was proved in
[38], see also [77].

Theorem 2.2 Let A : C([a,b]) — S(D) be a linear and continuous operator and n > 2.
Then, the inequality

Af>0 2.5)

holds for every function f € K, (|a, b)) if and only if the operator A satisfies:
Ae; =0 for i=0,1,...,n—1, (2.6)
Awy(-,5) >0 forevery s € [a,b]. 2.7

More related results can be found in monograph [77].
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2.2 Approach via Taylor’s Formula

In this section we focus our attention on two particular cases of a linear operator A and
reach necessary and sufficient conditions for the inequality Af > 0 by a different method.
That method is based on using of the Taylor expansion of a function f.

Let I be an interval in R and f : I — R be a function such that f"~1) is absolutely
continuouson I C R, a,b € I, a < b. Then for ¢,x € [a,b] the following formula holds

n—1 f(k) (C)
=X

s)"Lds. (2.8)

(x—c)

fx)
k=0

It is called the Taylor expansion of a function f around a point c.
The following theorem contains identities for the sum 2?’: 1 Pif(xi) and the integral

B p(x) £(g(x)) dx.

Theorem 2.3 (i) Let N,n € N and f : I — R be a function such that {1 is abso-
lutely continuous on I C R, a,b € I, a < b. Furthermore, let x; € |a,b] and p; € R for
i€{l,2,...,N}. Then

N n—1 (k)a N
;lpif(xi) =Y ! k'( )Zpi(xi_a)k

1 i n & n—
" (nfl)!./a 76) (;Pf<xi—s)+ ')ds (2.9)

and

bxl

<2g Xi) )m

(ii) Let p, g : [a,b] — R be integrable functions and let f satisfy assumptions from part
(i). Then

; pif(xi) = 2

+

B n=1¢(k)(q) B
[ p ftenar = S D [ peta) — 210

Ja k=0

b B
(njl)!/a f(n)(S)/a p(x)(g(x) — )" 'dxds,
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_1)n B
+ (ili)!/abf(n)(s)/a P(x)(S—g(x))ﬁ':ldxds.

Proof. (i) We get

/axf(")(s) (x—9)"" lds—/ £ (x—s)ds

for x € [a,b] and applying the Taylor formula (2.8) for ¢ = a we get

x—s)"ds. (2.11)

Putting in (2.11) x = x;, multiplying with p; and adding all identities for i = 1,...,N we
get (2.9).

The second statement in (i) is obtained by the Taylor formula for ¢ = b and using the
fact that for x € [a, D]

/f (r—s)"\ds = (— /f x)'=lds.

(i) Putting in (2.11) x = g(x), multiplying with p(x), integrating over [c, ] and using the
Fubini theorem we get (2.10). The second identity is obtained in a similar manner as the
second identity in (i). O

Remark 2.1 The above theorem is given in [31]. The identity (2.9) for a sum is also
given in [7].

Let us proceed with theorem which contains necessary and sufficient conditions that

inequalities Y, pxf(xx) > 0 and ff p(x)f(g(x))dx > 0 hold for every convex function
of order n. As we can see, the first part is, in fact, known Popoviciu’s result.

Theorem 2.4 (i) Let the assumptions of Theorem 2.3(i) be valid.
Then the inequality

N
Y, pif () =0 (2.12)
k=1
holds for every n-convex function f : [a,b] — R if and only if
N .
N pex =0, i€{0,...,n—1}, (2.13)
=1
N
Sol—s)T >0, selab]. (2.14)
k=i

(ii) Let the assumptions of Theorem 2.3(ii) hold. Then the inequality

[ pstatenar =0 215

Jo
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holds for all n-convex functions f : [a,b] — R if and only if

B
/p(x)gk(x)dxzo, forallke{0,1,...,n—1} (2.16)

B
/ p(x) (g(x) — s):lf] dx>0, foreveryscla,b]. (2.17)

Proof. (1) If (2.13) and (2.14) are valid, then from identity (2.9) we get that for any
n-convex function f inequality (2.12) holds.
Let us prove the opposite direction of equivalence. If inequality (2.12) holds for every

n-convex continuous function f on [a,b], then, since ¢;, —e;, i =0,...,n— 1 and wy(x,s),
s € [a,b], are n-convex functions, we get conditions (2.13) and (2.14).
(i1) The proof is similar to the previous proof and it is based on identity (2.10). O

Example 2.4 In this example we prove one remarkable inequality for convex function,
the well-known Hermite-Hadamard inequality. The statement is the following:
If f is an integrable convex function on [a, b], then

a b a
f( ;b)gbla/a f(x)dxﬁw- 2.18)

Proof. First we prove the right inequality. Let us define the linear operator A as:

fla+f®) 1 °
5 7b—a./a f(x)dx.

Easy calculation give us the following:

Af =

and for fixed s € [a, b]

0+ (b—ys) 1P b—s 1P
A(lx—s9)1+) = 5 _bfa/a (x—s)1dx= 5 _bfa/S (x —s)dx
b—s I (x—s)?, b—s b—s
— _ = 1-— >0.
> h—a 2 T2 b—a) =

By the above-mentioned theorem, we get that Af > O for any convex function continuous
on [a,b]. If f is not continuous, then since f is convex, we can define a continuous convex
function f such that: f(x) = f(x) for x € (a,b), f(a) = f(a+) < f(a), f(b) = f(b—) <
f(b) and Af > Af > 0. So, the right Hermite-Hadamard inequality holds for any convex
function on [a, D).

The proof of the left Hermite-Hadamard inequality is done in a similar manner.
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2.3 Discrete Convex Functions of Higher Order

In this section we focus our attention on inequality > p; f(x;) > 0 for real functions of one
variable, defined on an interval I or on a discrete set E. A result analogous to (1.2) for real
functions was proved by T. Popoviciu in [84] and it is stated as:

Lemma 2.2 Let pp € R for ke {1,...,N}. If f: 1 — R is a given real function and
Xk, k€ {1,...,N} be mutually distinct points from I, then the following identity holds

N n—1
Y pef) =, < Y e (o —xp) )Af(xl) (2.19)
=1

i=0 \k=i+1

+ 2 <2pk Xk — Xi— n+1)( )> Anf(xifn)(xi_xifn)-

i=n+1 \k=i

Proof. For n = 1 we get that the right-hand side of (2.19) is equal to

(i Pk) flxr)+ i <§ Pk) Af(xi1)(xi —xi-1)
p im

k=i

2_

= (2 Pk) fla)+ Zz (l(zpk> (f (xi) = fxi-1))

k=1

_ ( pk> fo) + (ipk> (Flxa) = Fen)) + (ipk> (Flxs) — Fx2)
k=1 k=2 k=3
N

+ (kz PN) (f(ev) — flxn-1) Zpkf (k).

Let us suppose that (2.19) holds for n. For the second step of mathematical induction we
have to prove that

N /N
D (2 Pr(xe— xin+1)(nl)> A" f(Xi—n) (Xi = Xi—n)

=

i=n+1 \k=i
N
= 2 (Pk(xk —xl)(">) A f(x1) (2.20)
k=n+1
N [N
+ ) (2 Pr(xx _xin)(n)> A (1) (% — Xip1).
i=n+2 \k=i
N
Using notation B; = Y, pi(xx — xi—n)"™ the second sum in the right-hand side is equal to
k=i

ZBAfxzn ZBAfxlnl)

i=n+2 i=n+2
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N N—1
= Y B'f(xiin) = Y, Biv1d"f(xizn)

i=n+2 i=n+1
N—1
= Y (Bi—Bi))AN"f(xion)+ pn(xy —xy—n) A" f(xy )
i=n+2
N
= Y Pl —x2) WA f(xy).
k=n+2

Using
N
Bi—Biv1 = Y pr(xk — Xi—ns1) " (i — Xi—n)
k=i
and the above identity we prove (2.20). By mathematical induction identity (2.19)
holds. ]

Necessary and sufficient conditions under which the inequality Y, p; f(x;) > 0 holds for
every discrete convex function of order n is given in the following theorem.

Theorem 2.5 Let E = {xj,...,xn} C R with x; < xy < --- < xy and let p; € R fork €
{1,...,N}. Then the inequality

N
> pif () >0 2.21)
k=1
holds for every discrete n-convex function f : E — R if and only if
N o
Y g —x)? =0, i€{0,....n—1}, (2.22)
k=i+1
N
Y el —xicas)™ >0, ie{n+1,.. N} (2.23)
k=i

Proof. If inequalities (2.22) and (2.23) are satisfied, then the first sum in identity (2.19)
is equal to 0, the second sum is nonnegative and hence inequality (2.21) holds.

Conversely, if for each convex functions of order n inequality (2.21) holds, then we
consider the functions &' (x) = x” and h?(x) = —x", 0 < r < n— 1. Since functions /' and
h? are convex functions of order n for 0 < r < n — 1, for them (2.21) holds and we have

N
2 pix =0.
k=1

From this equality we obtain (2.22). For eachi € {n+1,...,N}, the function

0, x <xi—1

h3(x> - { (x_xifiH»l) Tt (x—x,;1), X > Xi-g

is convex of order n and using these facts we obtain (2.23). o
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Example 2.5 This example is devoted to the Petrovi¢ inequality, [51, p. 11]. Tt states:
Let x1,...,xy € [0,d] such that Yixj € [0,a]. Then for any convex function f :
[0,a] — R the following inequality holds

m m

Y Fxj) < Y xj)+ (m—1)£(0). (2.24)
j=1

Jj=1

Proof. Without loss of generality we can assume that 0 < x; < x < ... < Xx,. Then
xm < XjL; x;. The sequence is (0,x1,x2,. .. Xy X7y x;), the sequence of weights is (m —

1,—1,—1,...,—1,1) and N = m+ 2. For n = 2 conditions (2.22) and (2.23) become
N
Y pe=0, (2.25)
k=1
N
Y pixi =0, (2.26)
k=1
N
N pe(xx —xi-1) >0, i=3,...,N. (2.27)
k=i

Since
(m—1)—1—-1—...—14+1=0
| —
m summands
and
m
(m—1)-0—x;—xp—...—xp+ ij =0

Jj=1

the first two conditions are satisfied. Let us prove that (2.27) is valid.

N
N Pk —xic1) = pilxi —xiz1) + ...+ pn(xv —xi—1)
k=i
m
= — (= Xi—1) — (i1 —Xi—1) — .. — (v —xim1) + | DX — X
=

m m
= 72Xj+ (m7i+ l)xi,1 + ij'fxifl
J=i =1
= Y xj+(m—i)xi_1 >0.
Using Theorem 2.5 we get inequality (2.24). Another proof of this inequality is given in
(77, p.154].

Example 2.6 Prove: if f : I — R is a convex, [ is an interval, then for any x,y,z € [

fO)+f)+f(2) x+y+z
S (M)
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SO ) e

The above inequality is due to T. Popoviciu, ([89]).
Proof. Inequality (2.28) is equivalent to the following

PO+ FO) + 1) +3f (”y”)

3

() () ()

Letz <y <x. Thenz<? erz <y< Hy < x and we have only two posibilities for orders:
y< “% ory> ’% Let us consider the first case, the proof of the second case is similar.

Without loss of generality we can assume thaty < xerz. Thenn =2, N =7 and the sequence
(x;) has a form:

Z<y+z< <x+y+z<x+z<x+y<x
2 VT3 2 2

and corresponding weights are: 1,—2,1,3,—2,—2,1 respectively. The first condition
(2.25) holds because 1 —2+ 143 —2—2+ 1 =0. Similarly, the second condition (2.26)
becomes:

+x=0.

kxk—z—2—+ +3 2

27: y+z x+y+z_2x+z_ xX+y
o P 2 3 2 2

Let us see that (2.27) holds for i = 3.

7

2 Pk (xk —xz) =
k=3 k

iPk(xkx2)<ZyT+z) 2 0.

M~

2
prlxe—x2) = Y, pr(xk —x2)
1 =1

Similarly, we prove (2.27) fori =4,5,6,7.

In the case when n =2, i.e. if f is convex, then J. Pecari¢ ([68]) showed that a property
of monotonicity of elements x1,x7,...,xy can be omitted. In fact, he proved the following
result.

Theorem 2.6 The inequality Zg:l prf (xx) > 0 holds for all N-tuples x = (x1,...,xy), p =
(p1,-.-,DN) € RN and all discrete convex functions f if and only if

N
pk=0 and Y pil—xi|>0 for ie€{l,...,N}. (2.29)
| k=1

M=

k

Namely, since

N N
N pilk —xil =2, pr(oe —xi)+

xkfx,

HMZ
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it is easy to see that (2.29) is equivalent to 25{\/:1 pr =0, 22’:1 pixr = 0 and 25{\/:1 i —
X))+ >0,i=1,...,N— 1 which is (2.22) and (2.23) for m = 2.

Now, let us state and prove an identity from [28] which involves V-differences of func-
tion f.

Lemma 2.3 Let py €R fork € {1,...,N}. If f : I — R is a given function and xi, k €
{1,...,N} are mutually distinct points from I, then the identity

N n—1 (N—i . )
o lw) = (2 pilan m“) V' (w-1) (2.30)

N—n i
+ (2 pk(xiJrnf] xk){n1}> Vn.f(xi)(xi+iz *xi)

holds.

Proof. Let us prove it by induction on n. For n = 1, we have

Y pif () = Zpkf xy) + 2 (il’k) (f (i) = f(xit1))
=1 i=1 \d=1

which is true.
Suppose that (2.30) is valid. Then

n N—i
> ( Pr(xn —Xk){i}> V' f(xn—i)

k=1
—1

+ 2 (2 ke (Xisn — X {"}> V() (King1 — Xi)
N—n

=A+ 2 pk(xN — xk){”}V"f(xN,,,)
k=1

+ B(—1)" " ([is1s o Xiens 13 f] — i Xiens f])

N—n
=A+ Y prlow —x0) IV Fav_n)

k=1
N—n—1
+ prlen—1 —x0) " (= 1) ey, 2w f]
k=1
N—n—-2 N—n—1
+ B<_1)n+l [-xi+17' .. 7-xi+n+1;f] - 2 B<_1)n+l [Xi, s 7xi+n;f]

i=1 i=2

—p1 (e —x) (D) xS
N—n

=A+ Y prlaw—1 —x) "IV fay—n) (ow — xnv—n)
k=1
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N—n—1 i
+ 2 i, - xi+n;f]<2Pk(xi+n—xk){"}

k=1

i—1

= pr(Xign—1 —xk){"}> 1 (s —x) PV F(x)
=1

N—n

=A+ Y prloy—1 —x) "IV F(xy_n) (v — xv-n)
k=1

i (2 k (Xino1 —x) ™ ]}>V"f(xl)(x,+,, x;)

1 —x1) IV () (g1 — 1)

Nen [ i N
=A+ Y (2 Pr(Xisn—1 — xk){nl}> V" F () (Xign — Xi) = Y, pif (),
k=1 k=1

where
A= 2 (1{2] Pr(oen —xx) '}> V' (xn—i),
and
i xl+n ) { b
Thus, identity (2.30) is proved. ) a

From identity (2.30) we can obtain the following result about necessary and sufficient
conditions that inequality Zgzl prf (xx) > 0 holds for every V-convex function of order m.

Theorem 2.7 Let E = {xy,...,xy} CR withx; <xp < --- < xy and let py € R for k €
{1,...,N}. Then the inequality

N
> pef(x) =0 (2.31)
k=1
holds for every discrete V-convex function f of order n if and only if

N—i _

S pelov —x) =0, i€{0,...,n—1}, (2.32)

k=1

i
3 pein1 —x) " >0, ie{l,...,N—n}. (2.33)

k=1
Proof. If inequalities (2.32) and (2.33) are satisfied, then the first sum in identity (2.30)
is equal to 0, the second sum is nonnegative and hence the inequality (2.31) holds.
Conversely, if for each V-convex functions of order n inequality (2.31) holds, then we
consider the functions 4! (x) = x" and 4 (x) = —x", 0 < r < n— 1. Functions 4! and /? are
V—convex functions of order n and for 0 < r <n—1, we have

N
Y pixi =0
k=1
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From this equality we obtain (2.32). For eachi € {1,...,N —n}, n > 1, the function

h3(x) _ (xi+1 7x)~...~(xi+n,1 7)(), X < Xjt1
0, X leur]

is V-convex of order n and using these facts we obtain (2.33). ]
The generalization of Theorem 1.2, i.e. a result for function which are convex of orders

j,j+1,...,nis given in [28].

Theorem 2.8 Let E = {x|,...,xy} CR withx; <xp < --- < xy and let py € R fork €
{1,...,N}.
(i) Inequality

N
> pif(xi) >0
=

holds for every discrete convex function f of order j,j+1,...,n, (j=0,1,2,...,n) if and
only if

N
> piti—x)® =0, k=01, (2.34)
i=k+1
N
> piti—x)® >0, k=j..n—1, (2.35)
i=k+1

N
ZPi(Xi*kanH)(nfl)ZO, k=n+1,...,N.
i—k

If j =0 (or j =n), condition (2.34) (or (2.35)) can be omitted.
(ii) Inequality

N
> pif(xi) >0
i=1

holds for every discrete V-convex function f of order j,j+1,...,n, (j =0,1,...,n) if and
only if

N—k
N pilev—x) ¥ =0, k=0,...,j-1, (2.36)
i=1
N—k
N piey—x)® >0, k=j,....n—1, (2.37)

i=1
k
2pi()€k+n7] _xl'){nil} > 07 k= l,...,N—n.
i=1

For j =0 (or j = n), condition (2.36) (or (2.37)) can be omitted.
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Remark 2.2 T. Popoviciu ([81],[85, p.35]) gave the following necessary and sufficient
conditions for the positivity of considered sum instead of conditions (2.22) and (2.23):

N
N paf =0 for ke{0,1,....n—1}

and

Zp,'(x,'fxrﬂ)(xifx,.+2)'~(x,'fxr+n,1) <0 for re{l,....N—n}.

2.4 Discrete Starshaped Functions of Higher Order

f)

A function f is called (discrete) n-starshaped or starshaped of order n if —— is (discrete)
X
(n— 1)-convex. Let us see how results from the previous sections are reflecting on star-
shaped functions of higher order.
fx)

Firstly, we state an identity involving divided differences of the function —=.
X

Lemma 2.4 Let pp cRforke{l,....N}. If f: 1 — Risafunctionand x;, k€ {1,... N}
are mutually distinct, non-zero points from I, then the following identity holds

N n—1
Zpkf )= <2Pka xe—x) " >> Ng(x1)

i=1 \k=i

+ 2 (2 Prxk(x xin+2)(n2)> Anilg(xifrﬂrl)(xi —Xi—nt1),

i=n

where g(x) = @

Proof. Putting in (2.19) m — m — 1, py — xxpx and f — g we get:

N n—2 N
Y pixig () = Y, < Y pexk xk_xl)()> A'g(x))

k=1 i=0 \k=i+1

N
+ 2 <2 P (x, xin+2)(n2)> A" g (X)) (X — Xi—pr1)

n

—1
2<2kak Xk — Xl)( >>Aig(x1)

i=1 \k=i
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N N
+ (2 PrX (X — xin+2)("2)> A" e (Ximnt ) (X — Xipy1)-

i=n \k=i

O

Theorem 2.9 Let E = {x|,...,xy} CR withx; <xp < ...<xy and let p;y €R fork €
{1,...,N}. Then the inequality

N
> pif(x) 20 (2.38)
k=1
holds for every discrete m-starshaped function f : E — R if and only if
N .
Zpkxk(xk—xl)(’fl)zo, ie{l,...,n—1}, (2.39)
k=i
N
Zpkxk(xk —x,-,nJrg)("*z) >0,i€{n,...,N}. (2.40)
k=i

Proof. Let us suppose that the sum 2?/:1 prf (xx) is nonnegative for every n-starshaped
function f. Let us consider functions /;(x) = x(x — x1)~1) and hy(x) = —x(x —x;)(=1).
Since th(x) and hzxﬁ are polynomials of degree i, h; and hy are n-starshaped for i €

{1,...,n— 1}. Hence (2.39) holds. For each i € {n,...,N} the function

0, x <X

h3<x) = {x(xxin+2)...(xxi1), X > X

is starshaped of order n and (2.40) is valid. o

Example 2.7 Let f : (0,a] — R be 3-starshaped. If x,y,z,x+y+z € (0,q], then

fx+y+z)—flx+y) = flx+z) = fy+2) +f(x) + f(y)+ f(z) > 0.

This inequality is given in [86] under assumptions that f(0) =0, f is continuous on [0, q]
and has the increasing second derivative. In [96] an increase of the second derivative was
substituted by assumption that f is convex of order 3. Here, we consider a 3-starshaped
function.

Proof. Firstly, we examine the following order of elements: x <y <x+y <z <
X+27z<y+z<x+y-+z Other orderings are proved similarly. We get N =7, n = 3,
sequence (xz) is (x,y,x +y,2,x+z,y+2z,x +y+z) and sequence of weights is (pi)r =
(1,1,—1,1,—1,—1,1). Let us prove that (2.39) and (2.40) are satisfied.

DM~

Pk =x+y—(x+y)+z—(x+2) = (v +2)+ x+y+2)=0.

k=1

7 7

7
N (v —x1) = Y prxe(ve—x1) = Y pexg
k=2 k=1 k=1
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=+ = (049 + 2 = (42 = (0 +2) P+ (Fy+2)° =0,
Further, we have to check (2.40) fori =3,4,...,7.

2 2
2 Pk (0 — x2) 2 P+ Y prxe = x(y —x) > 0.
k=3 k=1 k=1

7 7

Y prxi(xe —x3) =2xy >0, Y prxe(xe — x4) = 2xy > 0,
k=4 k=5

7
2 P (X —x5) = 2xy+x7> 0, 2 pixk(xr —xg) =x+y+2z>0.
k=6 k=7

2.5 Results for n-convex Functions with 2n Nodes

In this section we consider inequality ¥ f(x;) > ¥ f(v;) for n-convex function f which is
obviously a particular variant of a general linear inequality ¥, p;f(a;) > 0 where weights
pi are 1 or —1. The crucial moment in this consideration is that the numbers of nodes are
exactly twice than the order of convexity.

Firstly, results of such type are given in paper [7] by Z. Brady, but here we give a
variant from [23] in which an extra claim is appeared.

Theorem 2.10 Given real numbers x1,x3,...,x, € [a,b] and y1,y2,...,yn € |a,b] such
that

noo. noo.

Nl =Yy, j=12,...n—1, (2.41)
i=1 i=1

the following claims are equivalent:

(ii) max{x;:i=1,....,n} >max{y;:i=1,...,n};

i) (1T < (17 [T

(iv) Y f(x:) =Y f(yi) for all functions f : [a,b] — R provided F)

i=1 i=1
Proof. Use the Taylor expansion in the form

=1 () (4
5 )

=

(x—a) + / b(x—r)':l £ (@)dr,

1
(n—1)!
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which by using (2.41) gives

n n | b
) - ) p—— 0
izzlf(xl) izzlf(yl) = (n—l)!/a () (2)dt, (2.42)
where r,,(t) = ¥/, [(xi— )" = (v —1)"']. Obviously ra) = (b) =0, j=0,1,

.,n—2. Using Rolle’s theorem it follows that r,g Y has at least ( —1)- s1gn changes in

the sense that there is a sequence ay,ay, .. .a, in [a, b] such that r,, ( ) (aj+1) <0,
forj=1,...,.n—1.

On the other hand, suppose (w.l.o.g.) thatx; > x; > --- > x,, y1 > y2 > -+ >y, and
that z; > zp > --- > 22, is the sequence formed by the previous two sequences. In this case
m(t) = 2?21 wj(zj —1)"""!, where w; = +1 or —1 depending on w; belongs to x;’s or to

vi’s. Note that r,(,"fl) is a step function defined by wi, wi +wo,.ee., Wi +wo 4+ - +wp,,. It
is obvious that this sequence can change the sign in the worst case on every other interval,
so it can change the sign at most n — 1 times.

Finally, since it is clear that r,, has a constant sign, that in the case x; = max{z =12,

.,2n} it holds that r,,(¢) = (x; —¢)"~! for t € [z2,x1], so it follows that r,, > 0. This gives

that (if) implies (iv).

It follows from the proof thatif x; = max{z;: j=1,2,...,2n}, thenx, =min{z;: j=1,
2,...,2n} forneven and y, = min{z;: j =1,2 ...,Zn} for n odd.

It is obvious that (iv) implies (i) using f(x ) = x" and (i7) using f(x) = (x —max{x; : i =
1,2,...,n})""! (since in this case ¥, f (x;) = 0 and this implies 3", f (y;) = O which
gives max;x; > max, Vi)

Set By (x) =TT7- (x — x;), Qn(x) =TT/, (x —yi). Obviously
n n
Bu(x) = X (=1)/L;(x)X", Qulx) = X (= 1) Li(y)x",
j=0 j=0
where
Ij(X):Ij(X],...,xn): 2 x,'lu'x,-j, j:O,l,...,n, I()(X):l,
lSi1<i2<---ij§n

and analogously /;(y). I, polynomially depends on variables 7; = x\), j=1,...,n, where

noo
=Y, jeN.

i=1

Using identities (2.41), it follows I;(x) = I;(y), j=1,...,n — 1. We get

Po(x) — Qu(x) = (—1)" (I(x) — L,(y)) = (Hx, H y,> . (2.43)
On the other hand, since P,(x;) =0,i = 1,...,n, it follows

n

j+1 nfj .
2 ) (x)x; i=1,...,n,
j=1
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which by summation gives:

(1PN = (-1 )+ 3, (-1 ()

1 j=1

< —

-

J

Using analogous identity for v it follows

Y = Y yr=x
i=1 i=1
= (=1)""'n(l(x) = L(y)) = (-1)"*"! (Hx —Hyl>, (2.44)

from which the equivalence of (i) and (iii) is obvious. Using (2.43) and (2.44) we get

Pa(x) = Onl(x —[ZXZ%]

from which the equivalence of (i) and (ii) is obvious. ad

Theorem 2.11 Letxy,...,x, € [a,b], y1,...,yn € [a,b] be non-identical n-tuples such that
(2.41) holds and such that (a) or (b) or (c) in Theorem 2.10 holds. If f € C"([a,b]), then
there exists & € [a,b] such that

n n (n) n n
ZﬂmeM)L%Q<ZﬁZﬁ>

(n—1)!

= (- 1)"“f ) [H Hy,]. (2.45)

Proof. Set m = min,¢[q ) £ (x), M = max, (a,b] £ (x). Obviously

filx)= Mx” —f(x), folx)=rf(x)— %x”

n!

are n-convex functions. Applying Theorem 2.10 on f] and f, and rearranging, we get

%(iﬁ—iﬁ) 2100~ iﬂMs%(iw—iﬁ)

from which (2.45) obviously follows. The second identity in (2.45) is given in (2.44).
n

n
Notice that Zx;’ > 2 ¥} since the involved n-tuples are not identical. a
i=1 i=1

Similarly, Cauchy type mean-value theorem can be obtained, see [23].
Using the above theorem we can easily prove some non-trivial inequalities.
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Theorem 2.12 Inequality
ft) +f(0)+ f2van) < fh+n) +2f(Vian) (2.46)
holds if f is a 3-convex function. Reversed inequality holds if f is a 3-concave function.

Proof. Using
X|=t, Xp=t, Xx3=2/tiy,
Yi=t+h, Y2=+vhh, y3=+Hh

itis easy to verify xj +x2 +x3 =y +2y2, X} +x3 +x3 =y} +2y3 and y; = max {x1,X2,X3,y1,)2}-
So, the claim follows from Theorem 2.10. O

In (2.46) an improvement of AG inequality is hidden. Namely, plugging in (2.46)
f(x)=xP, p >0 we get

At1,0)P = G(t1,0)? > 2P (A 1) — Gt} 1)) >0,

1+
where A(l‘],l‘z) —_ + 2, G(l‘],l‘z) = /1.

Using the same arguing as in the proof of of Theorem 2.12 it follows that the inequality
X1 +x2 2 X1 +x3 2 X2 +x3 2
fl2 +3 | +f2(=—==]) +3|+f[2 +x7
2 2 2
X1 +Xx2 2 X1 +x3 2 Xy +x3 2
gf(x%+x§+x§)+2f<( 5 ) +< > ) +< 5 ) )

holds for 3-convex functions and the opposite inequality holds for 3-concave functions.

2.6 n-Convex Functions at a Point

This section is devoted to the class of functions which are n-convex at a point. The particu-
lar case of this class was introduced by I. Baloch, J. Pecari¢ and M. Praljak in the paper [4]
which contains some new results about the Levinson inequality. After this section, we will
return to that remarkable inequality and show how the below-mentioned general results
reflect to this particular inequality.

Definition 2.1 Let I be an interval in R, ¢ a point in the interior of [ and n € Ny. A
function f : 1 — R is said to be (n+ 1)-convex at point c if there exists a constant Ky such
that the function

F() = f() - 2L 47)

is n-concave on 1N (—oo,c] and n-convex on 1N [c,o0). We denote the family of (n+ 1)-
convex functions at point ¢ by %, | (I). A function f is said to be (n+1)-concave at point
¢ if the function — f is (n+ 1)-convex at point c.
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The class of 3-convex functions at a point was introduced in [4] while the class of n-
convex functions at a point was introduced in [76]. Let us prove several properties of these
classes, [4, 76].

Lemma 2.5 If f € ¢ (I) and ") exists, then f™) (c) = K.

Proof. Let us prove this for n = 2. Due to the concavity and convexity of F(x) =
flx)— %xz for every distinct points x1,x;,x3 € {(a,c] and y1,y2,y3 € [c,b) we have

Ky Ky
[xX1,%2,x3; F] = [x1,x2,%3; f] — - <0< 1y2,y3:f] — 5 = V1,y2,y3:F].

Therefore, if f”(c) and fY(c) exist, letting x; " ¢ and y; \, ¢, we get
f(e) <Kp < fi(o).

Therefore, if f () exists, then it is equal to K .

Itis known that: a function ¢ is n-convex (n-concave) if and only if (p(k) exists and (p(k)
is (n — k)-convex ((n — k)-concave) for 0 < k < n—2. From that property we can conclude
that the statement of Lemma holds for any n > 2. ]

Lemma 2.6 A function f belongs to %, |(I) for every c € (a,b), if and only if f is
(n+1)-convex.

Proof. Let us prove this lemma for n = 2. Let us assume that f is 3-convex. Then
f',f” and f exist and f” is convex. Hence, for every a;, 0 € (a,c| and B1,B; € [¢,b) it

holds
1108) = 1(@) _ iy < iy < LB B1)

o — 0 ’ B> — B

Therefore, for every A € [f”(c), £ (c)] the function F (x) = f(x) — 4 satisfies

F'(op) —F'(on) <0< F'(Ba) — F'(B1)
o —ay o B — B

)

so, F' is nonincreasing on (a, c| and nondecreasing on [c,b).

Let us asume that f € %, (I) for every ¢ € (a,b). It is enough to prove that f’
exists and is convex. For every ¢ € (a,b) there exists constant A, such that the function
F.(x) = f(x)— %xz is concave on (a,c] and convex on [c,b). Therefore F/_ and F/, exist
and F/_(x) > F/, (x) for x € (a,c) and F/_(x) < F/, (x) for x € (c,b). Since the function
X %xz is differentiable, f7 and f”, also exist. Letx € (a,b) be arbitrary and ¢; < x < c5.
We have f” (x) < f% (x) due to convexity of F;, and f’ (x) > f’ (x) due to convexity of F,,,
so f’ exists. Furthermore, due to convexity and concavity of F, we also have, for every

xi#Fx<c<yi#w»m

Felo) —Feta) _ felv) —felx) _,
Xy — x| Xy — x|
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S2) =), Fl2) —EOn)
S 2N ‘ Y2 =1
In particular, for z; < zp < z3
f'(z3) = f'(z2)

fl) =) o, FE) = fiz) (2.48)
2 —171 73— 22

IN

Now, let x1,x2,y € {a,b) be arbitrary. If y < x; < x,, applying (2.48) we get
o) = ') f0) = f) _ ) = f'0)  fla) = f'0)

S Axl S =
X1—y X2 — X1 X2 — X1 X2 — X1
By multiplying the above inequality with Al > 0 and rearranging we get
X2 =Yy
['&)—1'6) ) - 1'0)
Xy —y - X2 —y

We can treat the cases x; <y < x; and x; < x» <y similarly and conclude that the function
% !
(x,y) w is nondecreasing in x. By symmetry, the same thing holds for y which
means that £’ is convex.
By this, we finish the proof for the case n = 2. From the properties of n-convex func-

tions we can deduce that this property transfers to (n+ 1)-convex functions. O

Let us also mention that an n-convex function f, n > 2, on the closed interval [a, b] can
have discontinuities only at the edges, a and b, and only in a certain direction. More pre-
cisely, itholds (—1)"(f(a) — f(a)) <0and f_(b) < f(b). Consequently, f € %, ,([a,b])
can have discontinuities only at a, ¢ and b and their directions can be derived from the
aforementioned discontinuity properties of n-convex functions.

After this introduction about convexity at a point let us give necessary and sufficient
conditions for inequalities of type (2.49) to hold. The result can be derived directly from
Theorem 2.2, but we will derive it from Lemma 2.1 for an easier and more instructive
comparison to Theorem 2.14. The following text is based on material from paper [76].

Theorem 2.13 Let A : C([a,c]) — S(D) and B : C([c,b]) — S(D) be two linear and con-
tinuous operators, h : D — R and n > 2. Then, the inequalities

Ky
Af<=th<Bf (2.49)
n'

hold for every continuous f € ¢ ([a,b]) (and arbitrary constant Ky from Definition 2.1)
if and only if the operators A and B satisfy:

(a) Ae;=Be;=0fori=0,1,....n—1, and Ae, = Be, = h,

(b) Apn(-,d) <0 foreveryd € [a,c],

(¢) Bwy(-,d) >0 for every d € [c,b].
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Proof. Assume that (a)—(c) hold and let F = f — Kye,, /n! be as in Definition 2.1. Since F
is n-concave on the segment [a,c], by Lemma 2.1 it can be obtained as a uniform limit of
functions F,, of the form

m m
Fm(x):Pnfl(x)*zaiwn(xyxi):Pn 1 +2alpn -x-xl)
i=1 i=1

where P,y €11, 04 >0, a <x; < -+ <xp <cand B_1(x) = Pp_1(x) = 3" ai(x —
x;)"~!. Due to the assumptions,

m
AFy = AP, 1+ Y, 0iAp,(-,xi) <0
i=1
and
Ky
Af — —Ae,, =AF = lim AF,, <0.

m-—oo

Similarly, F restricted to [c, b] can be obtained as a uniform limit of the functions Gy, of the
form

k
Gv(y) = Qn—1(») + Y, Bwn (yi),
i=1
where 0,1 €I1,,_1, B; > 0and c < y; < -+ < y; < b and we conclude that
Kf _
Bf — —'Ben =BG = khm BG, > 0.
n. —00

On the other hand, suppose that (2.49) holds for every continuous f € .%7,",  ([a,b]).
Then property (@) holds since both e; and —e; for i =0,1,...,n— 1 belong to %, ([a,b])
with K., = K, = 0 and both ¢, and —e, belong to %, | ([a ([ b)) with K, =n!=—-K_,,.
Moreover, since p,(-,d) (resp. wy(-,d)) belongs to 7,5, | ([a,b]) for d € [a,c] (resp. d €
[c,b]) and Bp,(-,d) = BO =0 (resp. Awy(-,d) = A0 = 0), we conclude that property (b)
(resp. (c)) holds. O

Remark 2.3 Theorem 2.13 is an extension of Theorem 2.2. For a linear and continuous
operator B: C([c,b]) — S(D) let us define the linear operator A with A f = B(ep)[x0, X1, -, Xu]f,

where x;, i = 0,1,...,n, are some arbitrary distinct points in [a,c]. Notice that Ae; = 0 for
i=0,1,...,n— 1 and Ae, = Be,, so A satisfies assumption (a) from Theorem 2.13. More-
over, if B satisfies the same assumption, then BP,_; = 0 for every P,_; € I1,,—; and if,

additionally, B satisfies assumption (c), then using the representation of Lemma 2.1 for the
n-convex function e,,, we conclude that Be, > 0. Now, since p,(-,d) is an n-concave func-
tion, we conclude that Ap,(-,d) <0, i. e. A satisfies assumption () as well. In conclusion,
for the given A and B conditions (a)—(c) are equivalent to

(i) Be;j=0fori=0,1,...,n—1,

(if) Bwy(-,d) > 0 foreveryd € [c,b],
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i. e. the same conditions as for the linear operator A in Theorem 2.2. An arbitrary continu-
ous n-convex function f on [c,b] can be extended to a continuous function f € %#,¢ , ([a,b])
with Ky = 0 by defining f = g on [a,c], where g is an arbitrary n-concave function such
that g(c) = f(c). Then (2.49) yields Af <0 < Bf, which gives the “if” part of Theorem
2.2. The “only if” part is immediate since wy(+,d), ¢; and —e; fori =0,1,...,n— 1 are all
continuous n-convex functions.

As we can see from the proof of Theorem 2.13, the function F is approximated well
by functions F,, on [a,c] and by functions Gy on [c,b]. The polynomials B, and Q,,_ are
different, but if F' (and, hence, f as well) satisfies sufficiently strong regularity properties
at ¢, then these two polynomials can be chosen equal, i.e. one polynomial can be used in
approximation of F over the whole interval [a,b]. If this is the case, then we can obtain a
result similar to Theorem 2.13, but without the middle part in (2.49).

The next lemma shows that it is enough to assume that F("~2) is continuous at ¢. Since
F is n-concave on [a, ] and n-convex on [c,b], F("~2) exists and is continuous on the open
intervals (a,c) and (c,b), so the additional requirement is that the same property holds at
point ¢ as well.

Lemma 2.7 Let n > 2 and let the function F,, i be of the form

m k
Fui(x) = Pioi(x) + Y, ipn(x,x:) + Y, Biwa(x,3)), (2.50)
i=1 =1

where Py €I1,_1, 0 (i=1,...,m)and B; (j =1,...,k) are real constants and a < x| <
< xp <c<yp <.y < Db

(a) A necessary and sufficient condition for F,, x to be n-concave on |a,c| and n-convex
onlc,blisthato; >0 (i=1,...,m)and B; >0(j=1,... k).

(b) Every function F € C([a,b]) NC""(a,b) that is n-concave on [a,c] and n-convex on
[c,b] is the uniform limit of a sequence of functions Fy, ; as m — oo and k — oo, where
the Fy, ;’s are of the form (2.50) with real constants 0; > 0 (i=1,...,m) and B; > 0
(j=1,....k).

Proof. The intuitive idea of the proof is simple - the goal is to construct a step function

that approximates FJ(rnfl) well enough so that, after integrating it n — 1 times, we get a
uniformly good approximation of F.

Firstly, due to the assumptions, Fﬁ"il) exists on (a,c), where it is nonincreasing, and
on (c,b), where it is nondecreasing. Furthermore, for every x,x’ € (a,c) and y,y" € (c,b) it
holds

¥
[ R war =P - o), @5

)7
/ PV dr = FrD(y) - FU(y), (2.52)
y
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Since F"=2) is continuous at ¢, the limits X — cin (2.51) and y’ — ¢ in (2.52) exist. The

limitlim, . F, (n— ( ) (resp limp  F; ( )) can be —eo, but then the integral (2.51) (resp.
(2.52)) with X’ = ¢ (resp. y = ¢) ex1sts and is finite as an improper integral. In conclusion,

y
/ FJ(rnfl)(t)dt =F"2(y) = F"2(x), foreveryx,y€ (a,b), (2.53)

with, potentially, improper integral(s) at c. Furthermore, due to the properties of F,’ (n=1)
mentioned above, it is easy to see that for arbitrary €, > 0 there exist a constant y and
points X < ¢ and § > ¢ sufficiently close to ¢ such that

y

where ¥ = mln{F n=1) (x),Fi"il) (¥)}. Let us now define the step function

Fj"’l)(t) - y‘ dt < g, (2.54)

m k
gn1(X) = v+ Y, ip1(x,x;) + 2 w1 (x,5), (2.55)
i=1 j=1
where
~ (n—1) (n—1)
0 =F “(x)—F7 V(xig1) 20, i=1,....m—1

The points x, ’S and v;’s will suitably be chosen later (so that g,_; will be a “good” approx-
imation of F ) Furthermore, let us define, recursively, forl =n—2,...,1,0:

alx) = /xgz+1<r>dr+F<” (c) (2.56)

=Pn7171(x)+ﬁ <2 o1 (x,x;) + Zﬁjwn 1(x yj))

Jj=1

(n—1)

Since g,—1 will be a “good” approximation of ;" ", by construction (2.56) the function

gi will be a “good” approximation of F(!), Notice, also, that gl(j) = g1+ and go is a function
of the form (2.50) with o;; = &;/n! and 3; = B,-/n!.

Let & > 0 be arbitrary and let us now choose the points y;,ys,... recursively by the
following algorithm: set y; = ¥, where ¥ is from (2.54). If y; is chosen, let

yier = inf A F" V() = F" V() > &) (2.57)
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. —1) . . . . .
Since FJ(r" Vi right-continuous and nonincreasing on (¢, b) we have

|F£’lil>(yj) — Fi"il)(y)| < g forally € [y;,yj+1), (2.58)
F' V) - F ) > 6. (2.59)

Due to (2.59), if lim; ~, FJ(r"*1> (¢) is finite, then the procedure (2.57) will stop after finitely
many steps at some y;_ and, in that case, set y; = b. Otherwise, if lim; ~, Fi"fl)(t) = oo,
then for sufficiently large k the point y; can be arbitrarily close to b.

If limp 4 Fi"fl)(t) is finite, then set x; = a. Otherwise, if limy 4 Fi"fl)(t) = oo, the
point x; will suitably be chosen later (and such to be sufficiently close to a). Let us now
choose the points x7,x3, ... recursively by the following rule: if x; is chosen, let

xip = inf {x:F" V() = F" V() > &) (2.60)

xj<x<c

Again, the following holds

IF D () — F" V()] < & for all x € [x,x141), (2.61)
FJ(rnil)(xi) — FJ(rnil)(xiH) Z &. (262)

Due to (2.62), after finitely many steps of the form (2.60) we will reach a point x,,_; such
that & from (2.54) satisfies FJ(rnfl)(xm,l) - Fj"il)(f) < &. Set x,, = & and stop. Notice
now that, due to (2.54), (2.58) and (2.61), for every x € [x],y;] one has

[ (0 - g0a0))

(n—1) !
FI 00— gor ()] de+

FU™2) (x) = gna(x)| =

Xm
<)
J X

Yk
+
Y1

U (0) = g (1) ar+

Finfl)(t) 7gn71(t)’ dt < & (xm—x1+yr—y1)+ € < &,

where the last inequality holds for arbitrary €3 > 0 when we choose €] and &, sufficiently
small. In a similar way, it can now be shown by induction that for every x € [x|,y;] and
i=n—3,n—4,...,1,0,

IFO (x) — gi(x)| = <eb—a)" 2 (2.63)

[ (P00 - gina0)) a

If x; = a and y; = b, then ||F — go|| < &3(b —a)"~? by (2.63) and this finishes the proof.

Otherwise, if lim; -, F +"71 (1) = o0 or limy 4, FJ(r"*1 (t), we will use some properties of

Taylor’s expansion and polynomials.

Let Py, 2 € I, > denote Taylor’s polynomial of F" at y of degree n—2,i.e. Pv(;f)n72<yk) =

F (yx) fori=0,1,...,n—2. Due to (2.53), the remainder in Taylor’s expansion can be
written in the integral form, i. e. for every x € (a,b) it holds

PO =Buao) oy [ e 2
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Let us also denote by ﬁn, 1 the polynomial

Pi(x) =Py, ()+me@0@*m)

n—1

"2 pl) 0 ,
472 ) T ) (e — )
We have
F(x)=Pry / (F D) = F D () e (2.64)
Yk

since fx( — )" 2dt = (n - 2)!(x —y)"" L It is easy to see that the mapping hy, (x) =

fyji (x—1)" Z(F(n 1>(z‘) - Finil)(yk))dt is monotone on [y, b] with iy, (yx) = 0. Since F

is continuous at b, the limit x — b in (2.64) exists and the integral

b y2(p) (n=1)
[ a2 F D) 2.65)
Yk

is finite. Moreover, since we can choose yj arbitrarily close to b, by the dominated conver-
gence theorem integral (2.65) can be arbitrarily small. Therefore, for arbitrary &4 > 0, we
can choose y, such that for every x € [y, b] it holds

F(x) — Py (x)| = ﬁ /yx(x —1y 2(F V(@) = F Y () de

G%ﬁl%”*V%ﬂ"Wn—ﬂ"WWWh

< &4.

By construction, for x € [y, b] we have go(x) = P,—1(x )+2, 1 Bi(x—y;)" 1 i.e. goon
the interval [y, b] is a polynomial in IT,_ . Furthermore, by construction go € C"~2)([a, b])

and gé"il)(yk) =gun1(w) = Fi"fn(yk). Therefore, for x € [y, b] it holds

B "22 20 (%)
i=0

(=3 + F" ) (=)™

From (2.63) we conclude |[F()(y,) — g(()i) (vi)| < &3(b —a)"~2~. Therefore, for every x €
[vk,b] we have

and
— _ n—2
|F (x) — go(x)| < |F(x) = P(x)| +|P(x) — g0(x)| < es+ &3(b—a)" > Y, ll, (2.66)
=0t

In the same way we can show that we can choose x; sufficiently close to a such that (2.66)
holds for every x € [a,x;]. Finally, for sufficiently small & and &, from (2.63) and (2.66)
we conclude that for arbitrary € > 0 we can construct g of the form (2.50) such that

|F(x) —go(x)| < €
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for every x € [a,b]. O

The following theorem gives necessary and sufficient conditions for inequality of type
Af < Bf to hold and it is based on Lemma 2.7.

Theorem 2.14 Let n > 2 and let A : C([a,c]) — S(D) and B : C([c,b]) — S(D) be two
linear and continuous operators. Then, the inequality

Af <Bf, (2.67)

holds for every continuous f € ¢ ([a,b]) NC"*((a,b)) if and only if the operators A
and B satisfy:

(@) Ae; =Be; fori=0,1,...,n,
(b) Apu(-,d) <0 for everyd € [a,c],
(@) Bwy(-,d) >0 for every d € [c,b].

Proof. Assume that (@)—(¢) hold and let f € £, | (la,b]) NC"%((a,b)) be continuous
with F = f — Kre, /n! as in Definition 2.1. By Lemma 2.7, the function F' given by (2.47)
can be obtained as a uniform limit of functions of the form (2.50) with ¢; > 0 and ;i > 0.

Assumption (@) yields AP, = BP,_;. Moreover, since Aw,(-,y;) =A0 =0 for y; € [c,b]
and Bp,(-,x;) = B0 =0 for x; € [a,c|, we have

m
AF,; = AP,_1+ Y, 0iApy(-.x;) <AP,_| = BP,_,
i=1
k
< BP,_i+ 2 ﬁiBWn('ayj) = BFm,k-
=

By taking limits we conclude AF < BF, so

Ky Ky
Af =AF + FAC‘H S BF + ?Ben = Bf

On the other hand, assume (2.67) holds for every continuous function f € .%,¢  ([a,b]) N
C"*((a,b)). Since both ¢; and —e; fori =0,...,n— 1 belong to 7,5, | ([a,b]) NC"*((a,b)),
we conclude that both Ae; < Be; and A(—e;) < B(—e¢;), so (@) holds. Furthermore, py, (-, x;),
wa(+,y;) € C"2((a,b)) and analogously as in the proof of Theorem 2.13 we conclude that

both (b) and (&) hold. a

Remark 2.4 Condition (a) is stronger than condition (&), which is reflected in inequali-
ties (2.49) being stronger than inequality (2.67) with the middle term squeezed in between
in (2.49). On the other hand, Theorems 2.13 and 2.14 represent separate results since it is
possible to construct linear operators A and B that satisfy conditions (@)—(¢) and such that
there exists an i, 0 < i < n—2, such that Ae; = Be; # 0.
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For example, letn =3,b=—a>0,c=0, x; € [a,0] ( = 1,...,m), y; = —x; and let
the operators A and B be given by

Af =Y pif(x),  Bf=Ypif(i).
i=1 i=1

Notice that

m m m
Aeg = Bey = Zpi, Ae; = —Be| = Zpixi, Aey = Bey = Zpix%.
i=1 i=1 i=1
If p;’s are such that Ae; = 0, then (&) holds. Furthermore, if p;’s and x;’s are such that the
condition

m

Y pi(xi—d)- <0  foreveryd € [a,0]

i=1
holds, then also (5) and (&) hold. For example, all this holds for m = 2, p; = 1, x; = —3,
p2 = —3 and x, = —1. Therefore, the linear operators

Af =f(=3)=3f(-1)
Bf =f(3)=37(1)

satisfy (a)—(¢), but Aeg = Beg = —2 # 0. Thus, Af < Bf for every continuous f €
2" ([a,b]), but there exists such an f such that (2.49) doesn’t hold. For example, the
constant function f(x) = u, where 0 # u € R, satisfies Ky = f”(0) = 0, so the middle term
in (2.49) is zero, while Af = Bf = —2u #0.

Similar results hold for n = 1 as well, but with minor technical modifications. Firstly,
the functions p, and w, for n = 1 are not continuous, so we need to require that the linear
operators A and B are defined on a larger class of functions that contains them. More
importantly, we also loose the “only if” parts of Theorems 2.13 and 2.14. Secondly, the
representation in Lemma 2.7 assumes that F € C"~2((a, b)), an assumption that is mute for
n = 1 and can, actually, be ignored. Therefore, for simplicity of presentation, we state the
result for n = 1 in a separate theorem. As for notation, let C[a, b] denote a linear space of
functions such that C([a,b]) C C([a,b]) and w/(-,d) € Cla,b] for d € [a,b] (for example,
Cla,b)={f+X", aiwi(-,x;) : f € C([a,b]),0; € R,x; € [a,b]}).

Theorem 2.15 Let A : Cla,c] — S(D) and B : Cc,b] — S(D) be two linear and continu-
ous operators. If

(i) Aeg = Bey and Ae; = Bey,
(ii) Api(-,d) <O0foreveryd € [a,c],
(iii) Bwi(-,d) >0 foreveryd € (c,b],
then for every continuous f € 5 ([a,b]) the following inequality holds
Af < Bf. (2.68)
If, additionally,
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(iv) Aey = Beyp =0,
then for every constant Ky from Definition 2.1 the following inequalities hold
Af S KfAel - KfB€1 S Bf.

Proof. The function F = f — Kye; is continuous and it is nonincreasing on [a,c| and
nondecreasing on [c,b]. Since a continuous function on a closed interval is uniformly
continuous, for arbitrary € > 0 there exist pointsa < x| <1 < ... <xp <c<y; <... <
v < b such that the step function

m k
g(x) =F(c)+ ; aip1 (X, x;) + ;ijl (x,;)

satisfies
F <e
Jmax |F(x) —g(x)| <&,
where
Oy =F(xy)—F(c) >0,
o =F(xi—1)—F(x;)) >0, i=m—1m—2,...,2,
Br =F(1)—F(c) =0,
Bj :F(yj) F(yj 1)20, j:2,3,...,k.
The rest of the proof follows the same lines as the proof of Theorem 2.14. ]

Remark 2.5 We, indeed, do not have the “only if” part in Theorem 2.15. For example, if
A and B are the linear operators

Af=0 and Bf=f_(d)— f(d)for some fixedd € (c,b),

then Af = Bf = 0 for every continuous f (so (2.68) holds), but Bw;(-,d) = —1 <0 (i. e.
(iii) of Theorem 2.15 doesn’t hold).

Remark 2.6 If (i)—(iii) of Theorem 2.15 hold and Aw (,%) = 0 for some a < ¥ < ¢ and
Bpi(+,7) =0 for some ¢ < § < b, then (iv) of Theorem 2.15 holds also. Indeed, for every
d we have wy (-,d) + pi(-,d) = eg, so

0>Ap1( ) AEQ—BEQ—BW]( )>0.

2.6.1 Levinson Type Inequality as an Application
Historical overwiev about the Levinson inequality

For the first time, an inequality which is later called the Levinson inequality appeared in
paper [39] in the following form:
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Theorem 2.16 If f: (0,c) — R satisfies f"" > 0 and p;,x;,y;, i =1,2,...,n, are such that
n

pi>0, Y pi=10<x<cand
i=1

Xi+y1=x2+y2=...=x,+y, =2c, (2.69)
then the inequality

sz f(xi) i)<2p, Fo) —f) (2.70)

holds, where x = S pixi and y= Y1 piyi denote the weighted arithmetic means.

If a = %, p1=...=pp=1and f(x) = logx, then the Levinson inequality (2.70)
becomes the famous Ky-Fan inequality
Gn _4n
G, ~ A
1 " 1/n " 1/n
whereA,,_—Zxk,A/ 2(1—xk), Go=|[]x and G, = | [T(1 —x0)
=1 =1 k=1 k=1

The assumptions on the differentiability of f can be weakened by working with the
divided differences. Namely, T. Popoviciu [88] showed that in Theorem 2.16 it is enough
to assume that f is 3-convex. P. Bullen [9] gave another proof of Popoviciu’s result, as
well as a converse of the Levinson inequaliy rescaled to a general interval [a,b]. Bullen’s
result is the following:

Theorem 2.17 (a) If f : [a,b] — R is 3-convex and p;,x;,yi, i = 1,2,...,n, are such that
pi>0, Y pi=1 a<x,y; <b, (2.69) holds for some c € [a,b], and

max{xy,...,x,} <min{yi,...,y.}, (2.71)

then (2.70) holds.

(b) If for a continuous function f inequality (2.70) holds for all n, all ¢ € |a,b), all 2n
distinct points satisfying (2.69) and (2.71) and all weights p; > 0 such that Y| pi = 1,
then f is 3-convex.

In [59] J. Pecarié proved that one can weaken assumption (2.71) substituting it with the
following condition:
DiXi + Pn—it1Xn—i+1
Di~+ Pn—it+1

xi+xn7i+1§267 SC7 i:1727"'7n

In [63], J. Pecari¢ showed that in Theorem 2.16 instead of variables with sum equal to
2c¢, we can use variables with constant difference.

Theorem 2.18 If f : [a,b] — R is 3-convex and p;,x;,y;, i = 1,2,...,n, are such that
pi >0, a<xjy; <b, and

VI—X|=Yr—Xo=... =Y, — X, >0,
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then . . . .
Y pif(x) Y pixi Y. pif (i) > pivi
=1 = <= = 2.72)
Y pi > pi Y pi > pi
i=1 i=1 i=1 i=1
holds.

Proof. We use mathematical induction by n. Let n = 2. Firstly, let us prove that for
3-convex function f

[z0,21,225 f] > [23,24, 255 f]

holds for zg > z3, z1 > 74, 22 > z5. Namely, we have the following

(20 — 23)[205 21522, 235 f] = [20, 21,225 f] — [21,22, 235 )
(z1 —z4)[21,22,23, 245 f] = [21, 22,23 ] — [22, 23, 245 f]
(22 —25)[22, 23, 245255 f) = [22, 23,245 f] — [23, 24,255 f]-

From 3-convexity we get

[0,21,22; f] > 21,202,233 f] > (22,23, 245 f] > [23,24, 255 f],

ie.
[20,21,22: f] > [23,24,25: f]. (2.73)
Putting in (2.73)
_ _ _ py1+pay . _ __ p1x1+ pax
0=V,02=YHU="""""",B=X,B5=X,u4=""""""
pP1+p2 p1+p2

the denominator of [z9,z1,22; f] is equal to (y; —y,)?, while the denominator of [z3, 24,75 f]
is equal to (x; —x2)?, i.e. the denominators are the same and the rest of that inequality is,
in fact, inequality (2.72) for n = 2.

Let us suppose that (2.72) holds for n < m — 1. Putting

1 m—1

Zpixia X2 = Xm,  P1— Bu-1, P2 Dm,
mel i=1

X1 —

1 m—1
N pivis Y2 = Im

m—1 j—1

yi—

in (2.72) for n = 2 and using the assumption of induction for n = m — 1 we obtain

m

m
2 Piyi 2 DPiXi
i=1

i=1
f B f P
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< Pim { m—1f ( P ,2 Ply> (Pm 12 pﬂ) + P (f (ym) _f(x'"))}
ZPl l xl))’

where P, = Y| pi. So, the inequality (2.72) holds for any n > 2 by the principle of
mathematical induction. O

Some other generalizations of the Levinson inequality will be given in the following
chapter.

Levinson type inequality for 3-convex function at a point

In the previous text we described the history of the Levinson inequality. Here it is continued
by further investigation. At 2010 A.McD. Mercer ([45]) made a significant improvement
by replacing the condition of symetric distribution of points x;’s and y;’s around ¢ by the
weaker one that the variances of two sets of points are equal. Namely, he proved the
following result.

Theorem 2.19 If f : [a,b] — R satisfies f" > 0 and p;,xi,yi, i = 1,2,...,n are such that
pi>0, 3 pi=1a<x,y; <b,

max{xy,...,x,} <min{yj,...,y,}
and
n 2 n
Y pilxi—x)* = pi(yi
i=1 i=1
then

Zplf xl )E) Zptf YI _)7

=
where x = 2?:1 PiXi, y_: Zi:1 PiYi-

A. Witkowski extended this result to probabilistic settings, [102], while I. Baloch,
J. Pecari¢ and M. Praljak in [4] showed that under the equal-variances assumption the
Levinson inequality holds for a larger class of functions, namely for the 3-convex func-
tions at a point. A probabilistic version of Levinson’s inequality under the equal-variances
assumption for the class of 3-convex functions at a point was proved by J. Pecari¢, M. Pral-
jak and A. Witkowski [76]. Itis a consequence of Theorem 2.13. Also, other consequences
of the above-proved results from paper [76] are given.

Corollary 2.1 Ler X,Y : Q — [a,c] be two random variables such that Var[X] = Var[Y] =
C. Then, for every continuous f € 5 ([a,b]) the inequalities

E[f(X)] - f(E[X]) < %C <E[f(Y)] - f(E[Y])

hold.
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Proof. Apply Theorem 2.13 to the linear operators

Af =E[f(X)] - f(E[X]),

Bf =E[f(Y)] - f(E[Y]).
Since continuous functions on a segment are bounded, by the dominated convergence the-
orem the linear operators A and B are continuous. Condition (@) holds since Aey = Bey =
E[l]—1=0,Ae; = E[X] —E[X] =0=E[Y] —E[Y] = Bf, Ae; = Var[X] and Be, = Var[Y].
Furthermore, the functions w; (-, d) (resp. pa2(-,d)) ford € [a,c] (resp. d € [c,b]) are convex
(resp. concave), so (b) (resp. (c)) hold due to Jensen’s inequality. a

We can get a generalization of the probabilistic Levinson type inequality from Corol-
lary 2.1 without the middle term as a corollary of Theorem 2.14.

Corollary 2.2 Let A : [a,c] — Rand u : [c,b] — R be two functions of bounded variation
such that

c b
X3, :/a xdA(x) € [a,c] and xy :/c xdu(x) € [c,b].

Then, the inequality

c b
| 0dae - 1@ < [ e du - 1)
holds for every continuous f € 5 ([a,b]) if and only if A and u satisfy:
c b c b
(i)/ dA(x) :/ du(x) and/ P dA(x)—x3 :/ ¥ du(x) —)Ei,

c

(ii) /d(xfd)dl(x) < (x; —d)_ = min{x; —d,0} for every d € [a,c],
(iii) /db(x—d)d,u(x) > (xy —d)+ = max{x, —d,0} for every d € [c,b].

Proof. Apply Theorem 2.14 to the linear operators A and B given by

Af= [ 0ar - £,)

B = [ W dut) 1),

By the same argument as in the proof of Corollary 2.1, the operators A and B are continu-
ous. Conditions (@)—(¢) for these particular operators correspond to conditions (i)— (iii).
|

Since the functions A and u in Corollary 2.3 do not need to generate probability mea-
sures, that corollary is, indeed, a generalization of Corollary 2.1. For example, if A and
u satisfy the Jensen-Steffensen conditions (i. e. A(a) < A(x) < A(c) for every x € [a,c]
and A(a) < A(c); u(c) < u(x) < u(b) for every x € [c,b] and u(c) < u(b)), then the
Jensen-type inequality still holds for convex functions (see, e. g., [77]). Hence, the convex
functions wy(-,d) and —p»(+,d) satisfy the inequalities in (ii) and (iii) of Corollary 2.3.

The following is another corollary of Theorem 2.14.
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Corollary 2.3 Let A : [a,c] — Rand u : [c,b] — R be two functions of bounded variation
andn > 2. Then, the inequality

[ rware < [ swaut

holds for every continuous f € ¢, |(la,b]) NC"2((a,b)) if and only if A and p satisfy:
c . b .
(i)/ x'dA(x) :/ x'du(x), foreveryi=0,1,...,n,
a c

(ii) /d(x—d)'“l dA(x) <0 for every d € |a,c],
(iii) /db(x—d)"fld,u(x) > 0 for every d € [c,b].

Proof. Apply Theorem 2.14 to the linear operators A and B given by
C
Ar = [ rwan),
a

57 = [ ) aucs)

By the same argument as in the proof of Corollary 2.1, the operators A and B are continu-
ous. Conditions (@)—(¢) for these particular operators correspond to conditions (i)— (iii).
O

The following corollary is the discrete version of Corollary 2.3.

Corollary 2.4 LetneN,n>2, anda<x; < <xp <c <y < - <y <b. Then,
the inequality

m k
N pif(xi) <Y qif(vj)
i=1 j=1
holds for every continuous f € . |(la,b])) NC"*((a,b)) if and only if the sequences p
and q satisfy:
(i) 2;1:1pjx; = 21;11 qjy;for everyi=0,1,...,n,
(i) X, pi(xi —d)""' <0 foreveryd € [a,c],
(iii) $5_yq(yj—d)" >0 foreveryd € [c,b].

Proof. Apply Theorem 2.14 to the linear operators

m k
Af=Ypif(x)  and  Bf =Y q;if(y)) (2.74)
i=1 J=1
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Remark 2.7 Popoviciu studied necessary and sufficient conditions on points x; and weights
pi for the inequality ¥ | p,f(xn) > 0 to be valid for every n-convex function f (see
[77],[85]). In light of Remark 2.3, Corollary 2.4 is an extension of Popoviciu’s results.

The version of Corollary 2.4 for n = 1 can be obtained as a corollary of Theorem 2.15.

Corollary 2.5 Let a <x; < -+ <xp <c <y < - <y < b, x, = 3" piXi, Yqg =
Y5_1a)y; be such that:

(i) ;p = )Tq’
(i) Zlm:llpi <O0foreverym;=1,....m—1,and ¥I" | pi =0,
(iif) ZIJ‘.:kl qj >0 foreveryky =2,....k and 2];':1 qj=0.
Then, the inequality

k

N pif(xi) < Kpxp=Kpyg < Y, qif (v)) (2.75)
i=1 =1

holds for every continuous f € #([a,b)).

Proof. Follows by applying Theorem 2.15 to the linear operators A and B given by
(2.74). Notice that Aw,(-,d) =0 for d € (x;y,c) and Bp;(-,d) =0 for d € (c,y;), so, by
Remark 2.6, Aep = X/ pi = 0 and Bey = le‘-:l q; = 0 are implied by the other assump-
tions. O

A simple example when p;’s and ¢;’s satisfy assumptions (ii) and (iii) of Corollary 2.5
is when m = 2m’ and k = 2k’ are even and p; = (—1)/, ¢; = (—1)/. Furthermore, if x;’s
and y;’s are such that x, = Zl’»";l (xXoi —X2i1) = 2’;/:1 (v2j = ¥2j-1) = Yg» then (i) holds as
well and inequality (2.75) states

m' 4

D (i) = fai1)) < Kpxp = Kpyg < Y, (F(v27) = f(v27-1)) -

=1 j=1



Chapter

General Linear Inequalities for
Multivariate Functions

This chapter is based on recent results given in [28] and [30] by A.R. Khan, J. Pecari¢ and
S. VaroSanec.

Firstly we give results for a function with two variables. This approach is chosen just
because in the case of two variable reader can easily pointed out a method. The same
method is used also in more general case for functions with several variables, but in that
general case complicated notations and calculations are fogging up mathematical ideas.

Let f be a real-valued function defined on I x J, I = [a,b], J = [c,d]. Then the (n,m)th
divided difference of a function f at distinct points x;, ..., Xj4+n € I, ¥}, ..., j4m € J is defined
by

A(n,m)f(xi’yj) = [xf’ o Xitns [yj’ "'7yj+m;f]]'

Sometimes, notation A}, f(x;,y;) is used in literature for the (n,m)th divided difference
of a function f. A function f : I x J — R is said to be convex of order (n,m) or (n,m)-
convex if inequality

A f(xisy7) =0

holds for all distinct points X;,...,Xi1n €1, ¥j,...;¥jrm € J.

n—+m

EPy exists, then f is (n,m)-convex if and
Xtay

It is known that if the partial derivative
n+m
oy >0.
axnaym —
Similarly, we can extend the above-mentioned definition of divided difference up to
order (my,...,my,) as follows: Let f be a function of n variables defined on I X ... X I, =

only if

77
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[a1,b1] X ... X [ay,b,] where [a;,b;] CR fori=1,2,...,n. Then the (my,...,m,)th divided
difference of the function f at distinct points xj; ... s Xj(ij4m;) € Ij,for j=1,... ,nisgiven
as
A(m] ,....,mn)f(xlil g axnin) =
(X155 X (g my )3 X2+ -5 X2 (g 4mg) 3 [+ 3 P -+ s X (i) 3.1 <]

We say that f: I} X ... x I, — R is a convex function of order (my,...,my) (or (my,...,my,)-
convex function) if

holds, where Xjijs oo Xji4m;) € Ljs forj=1,...,n.
8”11+---+”1n
If all partial derivatives T g (denoted by fi, ... m,)) exist, then fis (my,...,my)-
X, ... dxy e

convex if and only if f,,, . m,) = 0.
Similarly as in the case of one variable, we can talk about discrete (n,m)-convex func-
tion or a discrete (my,...,my)-convex function if a domain of a function is not a product

of intervals but a product of discrete sets of real numbers.

3.1 Discrete Results for Functions of Two Variables

Let us now consider a real-valued function of two variables defined on 7 x J, I,J are seg-
ments in R. Firstly, we obtain an identity for ¥ %*, pij f(xi,y;) which involves divided
differences of f and then, in the next theorem, we consider necessary and sufficient condi-
tions that inequality

M=
Mz

pijf(xi,y;) >0

1j=1

holds for every discrete convex function of order (n,m), m,n € N.

Theorem 3.1 Let xy,...,xy be mutually distinct numbers from I = [a,b] and yy,...,ym
be mutually distinct numbers from J = [c,d] and let f be a real-valued functions on I x J.
Let pij, (i=1,...,N, j=1,...,M), be real numbers.

Then the following identity holds:

N M
> X piif (6i,y)) 3.1)

m—1ln—1 N M

=33 Y Y pela—x)0r—y1) PN 1)

k=0 t=0 s=t+1r=k+1

m—1 N N M

+2 2 2 2 pxr(xs_xt711+1)(n71)())r_y1)(k>X

k=0 t=n+1s=t r=k+1
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XA(n k)f(xlfna))l)(x _xlfn)
n-1 N M

+ 2 2 2 ZPSI X5 —X1) (yr_))kfm+l)(m7])x

k=m+11=0 s=t+1r=k
><A(t,m)f(xl 7yk7m)(yk 7yk7m)

M N N M
DD (2Zps"(xs_xf*’H»l)(nil)(yr_yk7m+l)(mil))><

k=m-+1t=n+1 s=t r=k
XA ) f K=, Ye—m) (% = Xt—n) (V& — Yk—m)-

Proof. We have

M=
ME

N
l]f(-xhy] 2(2‘]1 >7

1 i=1

i=1j

where p;j = gj and G; : y — f(x;,y). Using (2.19) on the inner sum we have

)AkG( 1)
Jj=k+1

M
2 (2 ‘Jj ykm+1)(m1)> A"Gi(Yi—m) Vk = Yi—m)
+1

( ( )’1)(k)>AkGi(y1)>
1 jk+l

pl}f xn)’j
1 i=1 k=0

M=
Mz
Mz
Nk
—
M=
§

U
lMZ T

§

3,

+

|
—_

M=

- ( wiF(xi)> + ) (2 ViH(xi)>
k=0 \i=1 k=m+1 \i=1

M M

where

wi = 2 qi(Yj—yl)(k) = 2 Pij(Yj_YI)(k>a F(x;) = A*Gi(y1),

=kl j=k+1
& 1
Vi= 2 Qj(yj _kamfl)(n17 )(Yk _kam)v H(xi) = AmG(ykfm)-

Applying again (2.19) on the inner sums we obtain

2 Zplj xh)’] =

i=1j=

> ( 3 il >A’F(x1)

k=0 r=0 \i=r+1

N
(2 N a4 (v — Ye-m1 )= (y — ykm)> AmG(ykm)>
m+1 \i=1 \j=k

79
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m—1 N N
+ 2 2 (2wi<xi _xrn+1)(nl)> A"F (xr—p) (X — Xr—n)
k=0 r=n+1 \i=
M N

+222v,, )OANH (x))

k=m+11t=0i=t+1
M

+ 2 2 2"1 Xi — Xg— n+1( I)AnH(xtfn)(xt*xtfn)

k=m+1t=n+1i=t

m—1ln—1 N M
= 2 2 2 ( 2 Pij(Yj—M)(k)) (xi_xl)(r)A(r,k)f(xlvyl)

k=0 r=0i=r+1 \j=k+1

m—1 N N M
+2 X 2( )y pij())j_)’l)(k)> (% — Xrni1) D x

k=0 r=n+1li=r \ j=k+1

XA f (6r—ny Y1) (%r = Xr—n)
M n-1 N M
+ 3NN Y pi 0= ke ) ™Y 5k = i) (i — 1) x
k=m+11=0i=t+1 j=

k
XA m) (X1, Yi-m)

M N N M
+ 3 Y SN i = kw1 "D k= i) X
k n+ Jj=k
X

=m+1t=n+li=t j=

(.Xi — Xt—n+1 )(nil)A(n’m)f(xtfnvykfm) (xt - xtfn)~

If we substitute in the first and in the second sums » — ¢, and in all sums change i — s,
Jj — r, we get the identity (3.1). O

If in Theorem 3.1 we simply put f(x;,y;) = f(xi)g(y;), where f and g are real-valued
functions on I and J, respectively, then we get the following consequence of the previously
mentioned theorem.

Corollary 3.1 Ler f: I — R and g : J — R be two functions and let p;j € R for i €
{1,...,N}and je{l,..., M}. Let x;, i € {1,...,N} be mutually distinct points from I and
vj» J €{1,...,M} be mutually distinct points from J. Then the following identity holds

M=
M=

_— =

pijf(xi)g(y;)

Il
—_
~.

Il

3
|
—_

I
N/
M=

1

Por(xs —x1) A £ (1) (yr — y1) W AR g (v1)
1

T
- o
~

i

7
t
M= L

psr(xs — Xt—n+1 )(nil)An.f(xtfn)(xt *xtfn) X

T
o
2
i
=
+
-
i
I
]
1}

+
M= L
M=

r=k+1

M

n—1
X(yr_yl) Ak YI + 2 2 2 ZPSI _xl

k=m+11t=0 s=t+1r=k
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XAtf(xl)(YI — Vi m+1)(n171)Amg(ykfnz)(y1c — Yk—m)
N N M

+ 2 2 Zzpsr Xs — Xp— n+1) A"f(xl n)(x x,,,,)x

k=m+1t=n+1s=t r=k
X (yr _kaerl)(mil)Amg(ykfm)(yk — Yk—m)-
Theorem 3.2 Let p;j, (i=1,...,N, j=1,...,M) be real numbers, E = {x1,x2,...,xy} C

R, F={y1,y2,.. ., ym} CR withx; <x3 < ...<xn, y1 <y2 < ...<ymandn <N,m <M.
Inequality

M
2 ljf xlayj 0

\\Mz

holds for every discrete convex function f : E X F — R of order (n,m) if and only if

N M — _
3 peln—x) 0 —y)® =0, f—(()),-.....,m 1

s=1+1r=k+1 =0,..om—1
N M
(nfl) - (k):() k:O,,m*I
SEzltr:kJrlpv B "+l) (yr y]) ’ t=n+1,- 7N
N M
- k=m+1,....M
1) ) 5
; 2:: y 7yk7m+1)(m ) = 0, t=0,...,n—1
3 (-) (n-1) k=m+l,..M
zzpsrocs_xtfn{»l) (yr_ykferl) >0, t=n+1 N.

s=t r=k [

Remark 3.1 A version of Theorem 3.2 forx; — i, y; — j, f(xi,y;) — aibj where (a;) is
an n-convex sequence and (b;) is an m-convex sequence is given in [72].

A version of Theorem 3.2 for x; — i, y; — j, f(xi,y;) = ai; and m = n = 1 was consid-
ered in [67].

3.2 P-convex functions

A class of P-convex functions of order k£ was introduced by J. Pecari¢ in [69]. Here we
give some theorems from that paper.

Definition 3.1 Let f be a real-valued function defined on 1 x J, I and J are intervals. We
say that f is P-convex of order k if

[x07"'7xi;[y07~"7yk7i;f]]207 i:0717"'7k7

is valid for all different choices (x j);:o from I and different choices (y j)]]‘-;f) fromJ, ie. f
is convex of order (i,k—1i) foralli=0,1,... k.
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If I and J are not intervals but discrete sets Iy, Jy, then we are talking about a discrete
P-convex function. A P-convex function of order k is not necessarily continuous. If the
kth partial derivatives of a function f exist, then f is a P-convex function of order k if and
only if these partial derivatives are nonnegative.

If the (k — 1)th partial derivatives of a function f exist, then f is a P-convex function
of order k iff these partial derivatives are nondecreasing in each argument.

If f is a P-convex of order k, then the function g defined by g(t) = f (a1t + by, axt +b3),
ay,ay > 0, is k-convex.

A very interesting P-convex function is f(x,y) = xy, x,y € R.

Theorem 3.3 Let p;,x; € Iy,y; €Jn, i = 1,...,n, be real numbers such that x; < ... < x,
v1 <...¥n. The inequality

Zpif(xia))i) >0 (3.2)

holds for every discrete P-convex function f on Iy x Jy if and only if

2 pi=0 (3.3)
i=1
n n
Y pixi=0, > piyi=0 (3.4)
i=1 i=1
n
Y pi(xi —xi_1) >0, Zpl Yi—y1) >0, k=3,...,n. (3.5)
i=k

Proof. Using the Abel identity we obtain corresponding identity for
1 pif (xi,yi) from which the statement of theorem follows.

Y pif (xinyi) = f(x1,y1)PL4Y, P <f(xk»)’k) — [ a)’kfl) = f(x1,y1)P1
i=1 k=2

+i Pk{(Xk = X 1) X155 f (6, Vi) ] + Ok = k1) k=1, 985 f (o1 ,y)]}
=

= fen,y0) P+ Posxas (6 y2)] Y, Pl — xe-1)
k=2

+ 2 <2P —Xi-1 ) {[xkfhxk;f(x?)’k)] - [xkfz,qu;f(X,ykq)]}
+1,y2; f(x1,) ZPk Vi Vi—1 +2 (213 —Yi-1 ) X

X {(b’kfl Vi f (—1,9)] — [yk727ykfl§f(xk727y)})}»

n

N pif (xi,yi) = 1,0 P+ [xn,x2; £(x,y2)] Y, pilxi —x1)
i=1 i=1
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n

+ly1y2s f(x1,0)] Y pilyi — y1)

i=1
+2 (2% Xi— X1 ) {(xk*xkfz)[xkfzaxkfl;kuf(xa)’k)]

+(yk_kal)[xk72axk71§[kal»Yk§f]]}
+2 (2171 Vi~ Vi1 ) ((Yk_kaz)[ykfzv)ﬁcfl»Yk§f(xkfla)’)]

(X1 = Xk—2) [Vk—25 Yk—15 [Xk—1 7xk72§f“) ; (3.6)

where P, = Y, p;. Sufficiency of conditions given in (3.3), (3.4) and (3.5) follows from
the identity (3.6).

Since functions fi =1, fo = —1, f3(x,y) =x, fa = —f3, fs(x,y) =y, fo = —fs are
P-convex, conditions (3.3) and (3.4) are valid. The inequality (3.5) follows from (3.2) by

setting for fixed k, (k =3,...,n), f(x,y) = (x —x¢—1)+ or f(x,y) = (Vy — Yk_1)+- o

3.3 Discrete Results for Functions of n Variables

For our main theorems of this section we define some notations to be used as follows.
Letfor r € {0,...,n}, j€{l,...,n},"C.(ij,m;) be the set of all n-tuples in which on

the kth place we put my or i and r places are filled with constants from the set {m,...,my,}
while on the rest n — r places we put variables from the set {7, ...,i, }. For example:
nC (l],m]) {(ml,iz,...,in),(i],mz,...,in),...,(i],iz,...,in,hmn)},
"Cy(ijmj) = {(mi,mo,i3,...,0), (m1,i2,m3,14,...,0n),. ..,
(ml,iz,...,infl,mn),(il,l’l’IQ,m3,i4,...,i,,),
.,(i],mz,i3,...,in,],mn),...,(i],iz,...,i,,,z,mnfl,mn)}.

Note that the number of elements of the class "C,(i;,m;) are equal to the binomial coeffi-

cient (’;) We introduce A involving variables i1, ..., i, and constants my, . .., m, as follows.
For (i1,...,iy) € Cy(ij,m;), we define

my—1 my—1 N; Ny .

i
Alin,osin) = X X D 0 X Piye anxJkﬁXﬂ)(’)X
in=0  §1=0 kj=ij+1  ky=in+1 j=1
X Ay i) L (X112 X01),

For (i1,...,ir—1,ms,li41,...,in) € "Ci(ij,m}), we have

A(il,...7i17]7mt7l‘l+]7...,in)
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m =1 Ny omp_—1 mp—1 N1

ZZZZ 5NN I 5

ir41=0 iy=m;+1 i,_1=0 i1=0 ky=i;+1 k1=t 1+1k=i;

Nt+1 Nu n )
i
2 pkl"'kn( H (xjkj —le) J ) X
kip1=ipr1+1 kp=in+1 j=Lj#t

my—1
(et — (i —my1) ™ Oty — Xy (i) X
XAy iyt seesin) L UL s X 1) U X (g ) s X1 1) 1 -+ 1 Xl ) -

In general, for (iy,... 05— 1,Mg,ls 1, b—1,Ms,i41,- .., 0n) € "Cr(ij,m;), we have

A(ilv--'7iS717m57iY+17"' itflvmlvit+17"'7in)

my—=1  m =1 N omy_— mep =1 Ny ms_1— my—1
in=0 i 1=0 iy=m;+1 i, 1—0 YJrl—o ir=ms+1 iz_1=0 i1=0
Ny 541 Ni—1 Niy1

ooy oy Y Y o3y

ky=ij+1 ke =ig+lk=iskg=isr1+1 k=i 1+1k=i k=i +1

Ny n
i m;—1
2 Dy -k H (xjkj_le)(]) H(x,k Xj(ij— m,+1))( =1 x
kn=in+1 j=1,j¢S, JESK
XXy = 2= ) VN oy My i1 i)
f(xl] y o X (s— 1)1 Xs(ig—myg) s X (s+1) 1o -+ 5 X(e—1) 1y Xt (i —my ) s X (e 1) 15+ - - 7xnl)

where S, is a set of all r indices s, ... ¢ of used constants my, ..., m;.
Finally, for (my,...,my,) € "C,(ij,m;), we have

Ny N N Nu

K(ml,...,mn):’ ooy oy -y

in=my+1 iy=m+1k)=i; kn=in

Pk, ...knA(mh ,m,l)f<x1(kl —my)s 7xn(kn7m,,)) X
X H ( Xjkj = Xj(i;— mj+1))(mjfl)(xjij 7xj(ij*mj)))

The following theorem gives an identity for sum ¥ -, py, ..k, f (X1x, - - - s Xnk, ) involving n
variables.

Theorem 3.4 Let f: I x --- X I, — R be a function. Let py, 1, € R and let xjk; € 1j be
distinct real numbers for k; € {1,...,N;}, j € {l,...,n}, where I; = [a;,bj] C R. Then,
we have

Ni Ny n _
N D Pt f Ktk Xk = D, D A(p1,---pn)- 3.7
k=1 k=1 r=0(p1,.c,pn) €"Cr(if,mj)

Proof. We start with considering

Ny Nu N Np—1

Do D Phykn S Xtk s Xak) = D e D) [ 2 Qk o (o)

k=1 k=1 k=1 ky_1=1 k=1
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where Q,(cl’l) = Pk,.--k, and Fx(nk,, )(xnkn) = f(x1k;s- - - > Xnk, ) Where Q,(cl’1> represents that this

function only depends on &, and independent of other n — 1 variables. Similarly, F; x(]k ) rep-
resents that this is only function of variable x,;, and independent of other n — 1 variables.

So using Theorem 2.2 we get,

N Nn
2 2 pkl“‘knf<x]kl7""xnkn)
k=1 k=1

Ny Np—1 My —

=y ¥ {z( 5 0 Gty — 1) P )

k=1 kp—1=1 " in=0 "kp=in+1
N Ny

> ZQ"']’] (ak, — "(irz*m;z+l))(n1"71)>><

in=mp+1kn=iy

1
><A(m,,) x(,,k" ) (xn(i,,fm,,) ) (x"in — Xn(in—my) )]

- 2 2 2 |: 2 ( 2 Dy -k x”kn xnl)(n)> X
kp—2=1in=0 "ky_1=1 "ky=ip+1
XA(ln) f(xlkl y o X (n—1)k,_11%nl ):|

n 2 Nn

Np—1
+ 2 2 2 [ 2 ( 2 pkl -kn xnk" n(in7n1n+1))(m,,71) %

k=1 ky_p=lipy=my+Tk,_1=1 "ky,=iy
X (Xni, —xn(irmn))>A(mn)f(x1k1 so X (n—1)ky_ ’xn(irm,,))}

Np—2 my—1 Np—1

SRS I TS

k|7l kn 2—1 Ip= =0 k,, |—

RN ]

k=1 kn—o=1ip=mu+1 "k, =1
where
Nn

i
= 2 pkl---k,,(xnk,,*xnl)("),
kn=in+1

o)

n

Nn
—1
Qk" 1 2 Pl -k (xnk,l _xn(i,,fm,,jtl))(mn )(xnin _xn(i,,fm,,))v

kn:in
2.1
F x(<nff>k,,,1 =11k 1) = i) S Xk s -+ X (1= 1)t X1 )5
(22)

X(n—1)k,_ (x(nfl)k,l,l) = A(m,,)f(xlkl s X =1k, 7xn(i,,7m,,))'

Note that, this time we assume Qk ) to be only dependent on k,_;, whereas F, (n I))k »

is considered to be a function of variable x(, 1

., as far as an;l is concerned, it only

depends on k,_; and F( I))k » is a function of one variable x(, 1y, ,
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So, again applying Theorem 2.2, we have

Ny Ny
2 2 pkl---knf(x1k17~~~7xnk,,)

kI:l kn=1

’lZmn* my_1—1 Ny—1 )
2 ) 20[ )y > Qk,, ,( (n—1)k *x(nfl)l)(’"*')x

k=1 kp—2=1in=0" iy1=0 ky_1=i, 1 +1

(2.1
X A(infl)Fx(nfl)kn71 (x(nf 1) 1 )

Np—1 Ny—1
+ 2 2 an 1< (n—1)k _x(’lfl)(inq7m,,,|+1))(m"7'71)><

In—1=Mp_1+1ky_1=iy_1

(2,1)
XA(i - )Fx(”*l) 1 (x(nfl)(in—l7mn—l))(x(n*])(in7|) _x(nfl)(i,,,|7mn7|))}

my_| 1 anl

ey S YR

ki=1  ky_o=lin=my+1 " iy 1=0 ky_1=i,_1+1

(infl)A . (232)

(2.2)
Qk,,,| (X(nfl)k _ 7}((”,1)1) (in—1) X(n—1)k,_ (x(n—l)l)

Np—1

+ 2 2 an 1< (n—1)k _x(’lfl)(inq7m,,,|+1))(m"7'71)><

i"*|:mn*|+lkn 1=ip—1

(22)
XAm, —I)Fx(n—l)kn ' (x(nfl)(i,,,l—m,,,,))(x(,,fl)(infl) _x("*l)(inq*mnq))}

Ny—3 my—1my_1—=1 Ny_2

2 2 2 Zi 2 2 anl( (n—1)k _x(nfl)l)(i"")

ki=1k,_3=1i,=0 i,_1=0k,_r=1k,_1=i,_1+1

<80, P e G|+ B XXX

Np—1

|: 2 2 an |( (n—1)k,— 17x(nfl)(in,lfm,l,l+1))(m”*lil) X

kn—o=1kn—1=in—1

2.1

Xm0 Fxiy e,y K1) =) K1) ) *X<n—1><in4—mn,l>)]
N Np—3 Ny my_1—1 Ny—» Ny

SEDIEED YD VD YN B YD)
k= kn_z=lip=mu+1 i, _1=0 "k, o=1k,_1=ip_1+1

22 i 22
Q](c"*l) (x(nil)k"’l o x(nil)l)( I)A(infl)FX((n—l))kn—l (x(nfl)l)]

Ny Np—3 Nn Np1
R DI
k1:1 kn—3=lin=mp+1iy_j=my_1+1

Np—1

[ 2 Y O iy = F )i o o)

kn—o=1kp—1=iyn—1
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(2.2)

XA e, K1) =) =) 1)~ XK= 1) (i1 1))

n3mn 1my_1—1 Ny Np—1 Ni

SR 0 JH0 S0 D D

k=1 ky—3=11=0 ip—1=0 ky_2=1ky—1=ip—1+1kn=in+1
i iy
X (X, *xnl)(")(x(nq)kn,l *x(nfm)(” V) x

XA(Z,, EAVACT. x(n72)kn 23X (n—1)1>Xn1)

n3mnl

ST S S SH SH S SR

k=1 ky—3=1 in=0 ip_y=my_1+1ky2=1ky_1=ip—1 kn=in+1

X (Xnk, _xﬂl)(m(x(n—l)knfl _x(1171>(i)171*m)171+1>)(mn7171> X

X (X(n=1)(i_1) = X(=1)(ip_1—my_1)) X
XA(m,, Vi) L Ly s+ 5 X =2y 2 X (1= 1) (i =) s Xn1)
n 3 Ny My -1 Nn 2 n 1 Ny

5 S S I YD S Y Y

k=1 ky_3=1in=mu~+1 i,_1=0 k,_r=1k, =i, 1+1kn=ipn

X (xnk,l_ xn(i,,fm,,+1))(mn71)(xnin_ xn(i,,fmn))<x(n71)k,,,1_ x(nfl)l)(i’kl> X
XA(l,, L) F ks -5 X2k, zvx(nfl)laxn(infmn))
Ny—3 Nu Np—1

55T D SN YD S D

k=1 kn—3=1in=mp+Liy_y=my_1+1ky 2=1ky_1=ip_1 kn=in

X (Xt _xn(i,fm,ﬁl))(m’rl)(x(nfl)k,,,l _x(nfl)(i,,q7m,,,|+l))(m"7|71) X

XAy ) X0k 5 X (=20 29X (1—1) (i1 = 1)> X (i) ) X
X (i = (i —m) ) Xn=1) 1) = X (1= 1) (i1 —mp1))-

Continuing in the similar fashion we finally get identity (3.7). O
Theorem 3.5 Let E; = {)le,sz,...,xj']vj} CR xj1 <xp<...< XjN; for j=1,....n

Let p, .k, € R be real numbers for k; € {1,...,N;} andlet mj < Nj, j € {1,...,n}. Then
the inequality

Nl Nn
y - Zpkl o f (X1 s+ 5%k, ) > 0 (3.8)
ki=1 kn=1

holds for every discrete convex function f : Ey X --- X E, — R of order (my,...,my) if and
only if

N Nn n
2 pkl---k,,H(xjk le)( ) —0 (3.9)
ky=i1+1 kn=in+1 Jj=1
i1€{0,....m —1}, ..., i, €40,....,m, — 1},
N N
Do Y Phk ik 7x1(i17m1+1))(m171) X

ky=ip+1 kn=in+1
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n .
< [T, —xj) =0, (3.10)
j=2
hne{m+1,....M}ied{0,...omy—1}, ..., i, €40,...,m, — 1},

Ny Ny Ny

Yo XY Pk X

i1=m;+1 ip—1=my_1+1ky=ip

n—1
XH Xjt; = X1) ) (Gt = X)) ™ =0, 3.11)
i 6{0,..., 171},...,1,,,1 E{O,...,m,,,l71},i,1€{mn+1,...,Nn},
M N
2 Phy-ky H Xjk; — (l]7m]+l))(mj71) >0, (3.12)
ky=ij+1 kn=in+1 j=1
i G{m1+l,..., ]}, ceey ZnE{mn+1,...,1\7n}.

Proof. 1f (3.9), (3.10),...,(3.11) hold then all these sums are zero in (3.7) and the re-
quired inequality (3.8) holds by using (3.12). Conversely, let (3.8) holds for every convex
function f of order (my,...,my,). Let us consider the following functions

n

P Gakgseoosxm,) = [0, =) and £ = -1,
j=1
fori; €{0,...,m —1}, ..., i, €{0,...,m, — 1}. Since these functions are convex of order
(my,...,my), so by (3.8) the inequalities

N)l
2 Zpkl kn xlkl,...,xnkn)ZO for kE{l,Z}
k=1 k=1
hold and we get required equality (3.9). In the same way if we consider the following
functions fori; € {m; +1,...,Ni}, i, €{0,....my—1}, ..., i, €{0,...,m, — 1}

.f3 ('xlkl ye e 7xnk,,)
n

(xlk. —)61(1'17m1+1))(mh1> H(xjkj —le)(ij)’ X1(i—1) < X1k
j=2
0, X1(ij—1) = Xlky s
and fr=—y
such that A, ,...,mn)fk > 0 for k € {3,4}, then we get the required equality (3.10).

Similarly, if we consider in (3.8) the following functions fori; € {0,...,m;—1}, ..., i,—| €

{0,...;my_1 =1}, in € {m,+1,....N,}

.fS ('xlkl ye e 7xnk,,)
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n—1
my—1 i
(xnkn 7xn(i,,7mn+1))( n=1) H(xjkj 7le)( J)a Xn(ip—1) < Xnk,
J=1
0, Xn(in—1) = Xnk,

and fo=- f5

such that A,
SO on.

The last inequality (3.12) is followed by considering the following function in (3.8) for
hne{m+1,...,N}, .. ip€{m+1,...,Ny}

mj—1
H Xjk; — zjfmj+1))( ! )a X1(ii—=1) < Xlkpse 3 Xn(ip—1) < Xnky»

0 otherwise.

)

3.4 Results for Integral of Function of Two Variables

In this section we pay attention to functions defined on a product of intervals. In [67]

J. Pecari¢ gave the following identity for a function f with continuous partial derivatives
af of 2f

0x° dy’ dxdy”

Theorem 3.6 Let P, f : [a,b] X [a,b] — R be integrable functions, if f has the continuous
partial derivatives [ o), fo,1) and f(1 1yon [a,b] x [a,b] then

b b .

/a /a P(XJ)f(XaY)dXdy = f(aaa)Pl (a,a)‘i‘/a P1 (_x’a)f“’o) (x7a)dx
b b b

+/a Pl(a’y)f(()J)(“’y)dny/a /a Pr(x,y) fa.n) (v, y)dxdy

where

b b
Py = [ [ Psndas,
x Jy

aof of ?f _Pf
f(lo) EM »f01 a_yadf(ll axay m

Generalization of the previous identity for functions with higher partial derivatives is
o . . . . o wmyp
given in [28]. Throughout this section a notation for a partial derivative jx,,—avf,, 1S flnm)-
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Theorem 3.7 Let P, f : I X J — R be integrable functions, I = [a,b), J = [c,d], and f has
the continuous partial derivatives f; jy on1xJ fori=0,1,...n+1land j=0,1,...m+1,
then we have

b pd
./a /L P(x,y)f(x,y)dydx (3.13)
nom b pd e a)i (f—c)
- 22/ / P(S,t)f(i,j)(a,c)( - ) m )]dtds

1
i—0j=0/a Je L J:

+ i./ab./xb/ch(S,f)f(n+1,j)(x,C) (s;'x)” (t%c)jdtdsdx
+1§%)/ / / (8,8) flimr1)(a y)(s a) (t;y) didsdy

+ / / // (s,2) nHmH)(xy)(s_ x)" (1= ) ~——dtdsdydx.

Proof. Let G(y) = f(x,y), i.e. we consider a function f(x,y) as a function of variable
y. Then a function G can be represented as

fxy) = GO) = ﬁ ()Y ‘.,C)j +f G’"*‘(r)%d
.m / Joms1)(x,1) t) dt,

where we use the facts that G/)(c) = fo,j)(x,c) and G (1) = Fome1) (7).
Multiply the above formula with P(x,y) and integrate it over [c,d] by variable y. Then
we have

I
\g
=
G
~.
X

d n d —c)/
[ Penstiy = 3 foatwe) [ Pen S5 B4

[ P o ar ) s

Let us represent the functions x — f(o j)(x,¢) and x + f(g 41)(x,¢) using Taylor expan-
sions:

(x—s)"
n!

C) = Zf(i,j)(a a) +/xf(n+1,j)<sac) ds,

f(0m+1 2fzm+1 a t) ( S) ds.

+/ fn+1m+1 (S t)

Putting these two formulae in (3.14) we get

/c dP(x»y)f (x,y)dy
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= i (ifﬁ,j)(avc)@Jr /‘xf(m,j)(s’C) (x;,s)nds> x
=0 \i=o ! Ja !
d 7Cj d n X—a i
< [ Pen =Ly [ ( [ P (_}%f(i,mm(a,t)( =
+ /:f(nJrl,erl)(s t) (x ) ds ) ( _!t)n dl) dy
m n j
= Z (Zf(i,j)(a c ) 7 —) —dy
+2</ fn+1] SC ) ) !C)]dy

+/ /P” <2flm+1 (@) g )>( !)ndtdy
+ / / V ( / P(X»y)ﬁnﬂ,mﬂ)(s,t)<x;!s)nds) v ;!’)mdtdy.

Now, we integrate over [a,b] by variable x and get:

//ny f(x,y)dydx

[ ai d 7Cj
LB Broeots) [rmntala

a1

b | m "X x— )" d —Cj

! _,go </ Sl (5 n! : ds)/c Pl J! ) dy] “
b | pd n ) o

+ | _/c /Cyp(xvy) (;%)f(i,m+l)(a,t)( i ) ) (ym't) dl‘dy‘| dx

bl pd vy [ rx L .
+ p /C/C) (/a P(X7Y)f(n+1,m+1)(s,t)(xn!s) ds) (ym!t) dtdy] dx.

In the first summand we change the order of summation, use the linearity of the integral

and get
(-a) r—c)
2 2/ / x y (i,7) ) il deydx

i=0j=0

The second summand is rewriten as
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/ab »n210 (/ax [d P(x’y)(y_%lc)jf(nﬂ,j) (s,0) (x ;!s)" dyds)] dx
= .
]20/ // (2 f n+1;)(sc)(x i <yj )d dsdx

,20/ / / P ) (y;—!c)jdydxds,

n!
where in the last equation we use the Fubini theorem for the variables s and x. Let us point
out, that firstly, the variable x is changed from a to b while the variable s is changed from
a to x. After changing the order of integration we have that variable s is changed from a to

b while the variable x is changed from s to b.
Similarly, the third summand is rewriten as:

./ab l/cd/cyp()@)’) (li)f(i,nwr])(a,t) (x;a)’) (y;ﬂt)mdtdy] dx

n b rd —a) (v—p)m
2/ / /yp(xv)’)f(i,mﬂ)(avt)(l.i,)udtdydx
i=0 :

0/// (), zm+1>(af)( a) = t) Y dydrdx

0/// (), zm+1>(af)< )(y_)dddt

where we use the Fubini theorem twice, firstly for changing ¢ and y, and then for ¢ and x.
The fourth summand is rewriten as:

/” { /”’ [ ( RS T— (’“nf)"ds> (ymf)md’”’y} &

////ny n+1m+1)( )(xis) (y;?t)mdsdtdydx

////ny fint1mi1) (851 )(x ,) (y;?) dydxdtds,

where we use the Fubini theorem several times. Firstly, we change ¢ and y, then y and s,
then s and ¢, then s and x, then 7 and x.
Using all these results we get

/ab /dP(X’y)f(x’Y)dydx

n

(x—a) (y—c)’
= 12%)]2 / / x y (i,j) ) . deydx

i!
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+j§:0///ny n+1j)(SC)(x s (y] )ddds

n!

0///ny flim+1y(ast )( l!)(y;) dydxdt
+////ny n+1m+1)(5t)( it i )dydxdtds

It is, in fact, the statement of Theorem 3.7 when we change the names of variables on
the right side: x <= s,y <> ¢. O

Using result of the previous theorem we obtain necessary and sufficient conditions that
inequality fab de P(x,y)f(x,y)dydx > 0 holds for every (n+ 1,m+ 1)-convex two-variables
function.

Theorem 3.8 The inequality

b prd
[ [ Pesftendvar =0 (3.15)

holds for every function whose continuous partial derivative | 41y > 0 on [a,b] x [c,d]
if and only if

b pd ) (f— )
/ P B 0 im0 i =0m  (3.16)
a C

i! J!
b pd ) (r— )
/ P(s,t)(sTx)(tj—'c)]dtdsO, j=0,.,mx € [a,b] (3.17)
b pd _ _
/ / P(s,t)(si—')(t my) dtds=0, i=0,...n;y € [c,d] (3.18)
// (t;y) dtds >0, x€lab];ye [c,d]. (3.19)

Proof. If (3.16), (3.17) and (3.18) hold then the first three sums are zero in (3.13) and
the required inequality (3.15) holds by using (3.19).
Conversely, if we consider in (3.15) the following functions

W (s,1) =

for 0 <i<mand 0 < j < m such that f((k> (s,¢) >0, k = 1,2; then we get the re-
n+1,m+1)

quired equality (3.16). In the same way if we consider in (3.15) the following functions for

0<j<m, x€lablandt € [c,d]
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such that an ) (s,¢) >0, k = 3,4, then we get the required equality (3.17). Similarly,
if we consider in (3.15) the following functions for 0 <i <n, y € [c,d] and s € [a, D]
s—a) (1—y)"
f(S)(Sat): ( i' ( I’I’l' ’ y<t ) f(é)sz(S)
0, y=>t
such that an m1) (s,¢) >0, k=15,6, then we get the required equality (3.18). The last in-
equality (3.19) is followed by considering the following function in (3.15) for x € [a,b], y €
[c,d]
(s—0)" (1 =y)"
flan)=3 “ar o YSramdye
0, x>sory>t.

3.5 Results for Integral of Function of n Variables

As we done in previous sections, for the present section we also introduce some notations
to simplify the statement of our main theorems as follows. Results of this section are based
on paper [30].

For variables iy,...,i, and constants m; + 1,...,m, + 1 we define A in the following
way:

where p(xi,...,x,) = p(x) and

Aliy,. .o i lvmkvlk+17 Jin) =

mzl mkzl M1 /bk /‘bl /bk 1 /‘bk /‘bk+l /bn
i1=0 =0 % -1 JXg Sy

ik—1 0‘k+l 0 l;
(v — x)™ (vj —a;)"
.|

!
mel

n

xf(il7---7ik—1amk+]7ik+17---7in) dyn - dy\dx;.

Similarly, we can define A for any n-tuple from "C,(i;,m;) (where "C,(i;,m;) was intro-
duced in the start of previous section) for some j € {1,...,n} and finally we define

by n by by
A(ml yeeeyIy) / / / ) X
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=1 mj!
Now we are ready to state main theorems of this section.

Theorem 3.9 Let p,f : 1) X --- x I, — R be integrable functions, I; = [a;,b;],i = 1,...n,
and let f € COM+Lommt) (1) 5 ... x L), Then the identity

bl n
/ V(X1 Xn)dxy -+ - dxy

n

=Y > Ap1,---,pn) (3.20)

r=0 (pl a----,Pn)E"Cr(ij,ijr])
holds.
Proof. We consider the Taylor expansion:

ny X, —a in
f(-xl?"'axn) = 2 f(O,...,O,i,l)<x17"'7xnflvan)<nl.7'n)

in=0 n:

Xn X, — mpy
+/ f(o,...,o,m,l+1)(x1,---,an,yn)%dyn-
an my:
Multiply the above formula with p(x) and integrate it over [a,,b,] by variable x,,. Then
we have

b}l
/a PO S (et )l

n

ny, by, (xn _ an)

= Zf 0u0ig) (X1 Xnt,0) [ p(X) ==t d, (3.21)
in= An n-
bn n X, — my
+/ / 0,...,0,m,,+1)(x17---axnfla))n)“miy'n)dyn)dxn-
n!

Let us use the following Taylor expansions:

J(0,.0,i) (X155 X1, @n)

Mmp—1 (-xnfl _ anil)infl
2 f 0in_1,in) (xlv---axnfbanflaan).—'
in—1 =0 In—1-
Xn—1 (xn7] 7yn71)m)171
+ S0, 0y +1,i) (K15 s X2, Yn—1,@n) ———————dYn—1,
Aap—1 my—1:

J(0,0mp+ 1) (XT3 -+ s Xn—1,Yn)
My—1

(xnfl _anfl)infl
E, f(O,...,O,i,,,hm,lJrl)(xl7---»xanaanfl»yn) Y
. 1 ,]!
i,—1=0 n
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Xn—1
=+ f(O,...,O,m,,,1+1,m,,+1)(xl sy Xn—25Yn—1 7yﬂ) X
Ap—1
(xnfl - ynfl)mn*1
X —'dyn,] .
mp—1:

Put these two formulae in (3.21) and integrate over [a,_,b,—_1] by variable x,_;. Then,
we have

/ )f(xl yeen 7xn)dxndxn71
ap—1 Jdn

n— l m’l Mp—1 (.X _1—a 71)1';1—1
7/ Zf 04— 1,in) (xlv-”vxanvanf]yan)%

|
=0i,_1=0 In—1:

b (x —ay)n
x| px) ==
!

dxn} dx,

n—1 m’l Xp—1
+/ J(0r 0+ 1) (XT5 -+ 5 X025 Yn—1,@n) X
a,
’

n—1

_ mMy—1 by — in
deﬁ—l/ p(X)den dxn,1
an

my_1! in!

ny—1

n—1 bn
+/ / / 2 f 7071',1717m,l+])(xl»---axanaanfl»yn) X

% (xnfl _anfl)ln*1 (xn _Yn)mn
! my!

L

X / f(O,...,O,m,l,l+1,mn+1)(xl yer 9 Xn—2,Yn—1 7yn) X
Aap—1

dyndxni| dx,_1

% (xnfl 7)’r171)m"7l (xn *yn)m"
my—1! my!

dynfldyndxn} dx,_1.

In the first summand we change the order of summation, use linearity of integral and get

mn m,, 1 by
/ P X 00y 1z,,)(xlv---axn72aanfl»an) X
Oln 17 ap—1

X( 17071)"1()@1 an)

Ml

' dx,dx,_1.
in—1! In:

The second summand is rewritten as

bp—1 Mn Xn—1
/ |: 2 / f(07_,_707mn,|+l’i,l)(xl7---7xn727yn7]7an) X
a, a

n—1 “i,=0" -1
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— My b _ in
% (xnfl )’nfl) Ay n p(X) ()Cn : an) dxn} dx, |
My —1: ! an ln!
= Pt /X" b p(x) (X0 — an)in (Xn—1 = Yn—1)"™! v
ap—1 l =0“Y4n—1 Ydn ln' mnfl!

Xf(O,...,O,mn,l+1,i,,)<x1a cee 7x1172ayn71aan)dxnd))nfl}dxnfl

n—1 Xn—1 bn
/ / p X)f( ,O,m,,,|+1,in)(xl7'"7xn*27yn*l7an) X
ay
in=

% (xn - an)ln (x,171 _ynfl)m'H

dxudy, 1dx,

in! my_1!
M bp—1 bp—1 by
= 2/ / PX)f10,...0m, 1 +1in) X1+ -5 Xn—2,Vn—1,an) X
in=0 ap—1 Yn—1 Jan

% (xn - an) " (xnfl *ynfl)m'HI
in! I’I’ln,ﬂ

dxndxnfldynfl

where in the last equation we used the Fubini theorem for variables y,_; and x,,_;. Let us

point out that firstly, the variable x,,_ is changed from a,_| to b,,_; while the variable y,_;

is changed from a,,_| to x,,_;. After changing the order of integration we have that variable

VYn—1 1s changed from a,_; to b, while the variable x,,_; is changed from y,_; to b,_;.
Similarly, the third summand is rewritten as:

n—1 bn Mp—1
/ / / 2 f 7O,in7|,mn+l)<x17"'7x11727an717yn) X
Ap—1

in—1=

% (xnfl _anfl)infl (xn _yn)m"
l',,,1! mn!

n—1 by X
/ / / p<x)f(0,...,0,in,1,mn+1)('xl7-"7xn723a11717yn) X
1—1=07dn—1 Jdn Jan

( —1 —dp— 1)" ! (xn*yn)m"
I—1! my!

n—1 by by
/ / p(x)f(o,...,o,i,l,l,m,,+1)(xla---»xanaanfl»yn) X
ap—1 “Jdn JYn

dyndxni| dx, 1

dyndx,dx,_,

in—1=0"
(xnfl 7an7])i"*1 (xn 7yn)m"
infl' !

bn n—1 by
/ / / P X f ,O,i,l,l,n1,,+1)<x1a---7x1172aanfl»yn) X
0 ap—1

Yn

X

dxpdy,dx,_1

In—1=

(xnfl 7an7])i"*1 (xn 7yn)m"
in,ﬂ I’I’l,,!

X

dxpdx,_1dyy,

where we use the Fubini theorem twice, firstly for changing y, and x,, and then for y, and
Xp—1-
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The fourth summand is rewritten as

by—1 bn Xn Xn—1
/ / / / PX)f(0,...00m 1+ Lmg+1) (X153 X0-2,Yn—1,Yn) X
an—1 anp Jap Jap—|

(xnfl _ynfl)mnfl (xn _Yn)mn

x dyn—1dyndxpdx,
my_1! my!
by—1 by by b
:/ / / / p(x)f(oa---voamn—lJr]7mn+l)(xla'--7x11727yn717yn) X
An—1 an Yn—1 Yn
X1 — V1)1 (x, — my,
x ( a2 ]) ( . Yn) dxpdxy—1dyndyn—1,

my_1! my!

where we use the Fubini theorem several times. Firstly, we change y, and x,, then x, and
Vn—1, theny,_; and y,, then y,_; and x,,_1, then y, and x,,_;. Using all these results we get

n—1
/ )f(xl yeen 7xn)dxndxn71
ay

n m,, 1 bn
/ / ,o,i,,,.,in)(xl yees axn72aanfl»an) X
ap—1

Oln 1=

% (xnfl - anfl)l'H1 (xn - an)in

! in!

dxpdx,_1

—1 by
/ / p(x)f(O,...,O,mn,1+1,i,,)(xla---»xan»ynflaan) X
Aap—1

Yn—1 an
— My—1 _ in
Xn—1 )" X; a
><( n Yn ') ( n : ‘n) dxndrn_1dyn_1
my—1- In:
m” 1 bn n—1
/ / / )f(O,...,O,i,l,l,m,,+1)(xl yoe e 7xn72yan717)’n) X
An
_ in—1 oy
Xpn—1 —Aau—1)™" X,
X( - ! ) ( L yn) dxndxnfldyn

in 1' '

bp—1 bn by 1 bp—1
Xf(O,...,O,m,,,|+l,mn+l)(-xl yer s Xn—2,Yn—1,¥Yn

% (Xp = yn)™

my!

My —1

) (xnfl _Ynfl) B

m,,,ll

X
dxpdx,_1dyndy, 1.

Now, use the Taylor expansion again and integrate over [a,_»,b,_»] by variable x,_,. If
we proceed in the similar fashion as we done before, then we finally get:

bn—2 bp—1 by
/ / p(x).f(xl yee 7xn)dxndxn7]dxn72
ap—2 Jap—1 Jan
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my My m,, 2 n—2 n—1
-y ¥ / / p (x) x
0y a a

in=0i,_1= n—2 n—1 Y dn
X.f(o,...,o,i,,,z,i,,,l,i,l) (X1se e Xn—3,ap—2,ap—1,an) X

% (xn72 - a1172)i"72 (xnfl - anfl)in*1 (xn - an)i"

dxpdx,_1dx,_>

in—2! in—1! In:
My Ml n—2 n—2 bp—1 by
S0 R A A
in=0i,_1=0"%-2 “Yn-2 Aan—1 An

X F10,00 0y a4 Lin 14 Li) X1+ +5X0—3, Yn—2,@n—1,an) X

% (xn72 *)’n72)m"72 (xnfl - anfl)i’kl (xn - an)i"
my 2! in—1! in!

m” mn 2 n—1 by
A A A RCE
l"*Oll 2=0"4n—1 ap—2 JYn—1 Jdn

Xf(O,...,O,in,z,m,l 1+1,in) (-xla <o Xn—3,ap—-2,Yn—1 7an) X

% (xn72 ap— 2) n=2 (xnfl *ynf])m"*1 (xn *an)i"

ipo! my,_1! in!

m" n 2 bn—l b?l
Jdp—2 ap—1 YYn—2 JYVn-1 a

n

dxpdx,_1dx,_ody,_>

dxndxnfldxn72dynfl

><f(O,...,O,m,,,erl,m,,,|+l,in)(xl o3 Xn—3,Yn—2,Yn—1 7an) X

% (xan _yn72)m"72 (xnfl _ynfl)m"*l (xn - an)i"
m,,,zl ny, 1 ! in!

X

Xdxpdxy—1dx, 2dy,—1dy,—2

Mp—1 - Mp—2 bn n—2 n

+ ) Y / / / p(x) x
in_1=0i,_,=0"4n an—1 “Yn

XfO R0y S Y |7m,l+])(-x1 yroe 7xn737a11727an717yn) X

% ( —2 —dp— 2) n-2 (xnfl - anfl)i’kl (xn *yn)mn
in—2! in—1! my!

dxpdx,_1dx,_2dyn

mn 1

bn n—2 by
N A L
ap—2 Yn—2 dp—1 Yn

xf(O,...,O,m",z{»l,in,l,m,,+1) (xl yer s Xn—35Yn—2,0n—1 7)711) X

% (xan - Yn72)m"72 (xnfl - anfl)ln*1 (xn - yn)m"
I’I’ln,2! in,1 ! mn!
X dxpdxy—1dx,—2dyndy,—>

M2 n—1 n n—2 n—1 by
WA A S SR
Aan—1 Yn

xf(o,...,o,i,,,z,mn,lJr],m,rH)(xl yer s XAn—3,n—2,Yn—1 7yil) X

X
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% ( -2 —dp— 2) n=2 (xnfl *ynfl)m"*1 (xn *)’n)mn
in—2! my_1! my,!
Xdxpdx,—1dx,—2dy,dy,—

/112/)11/11/112/)11
an—1 Yn—1 Yn

f(O,....,O,m,,,erl,m,,,|+l,mn+l)(xl yer s Xn—35Yn—2,Yn—1 7yn) X

G2 =30 2™ (1 = )™ (=)™
Mmy—o! my—1! my!

X

X
Xdxpdx,—1dx,_2dy,dy,_1dy, .

Then we use the Taylor expansion again and integrate the result over interval [a,_3,b,_3]
by variable x,,_3. If we continue this process, we get required identity. O

Corollary 3.2 Let the assumptions of Theorem 3.9 be valid and let p = 1. Then the
following identity holds

by by
/ fX], <y n)dxn"'dxl

mp n ij+1
- 2 2 H (l|,...7i,l)(al7"'7ail)
i1=0 in= '
my My bl bl m|+1
+ / X
1220 lnz ai I’I’l1+
(bj —a;)i*!
X - ; i ,az,...,d d
,1:[2 G+ 1) Jom 41,y V1, @2 n)dy
At
N m21 m,il /‘bn (bn —Yn)m”H rﬁ (bj—aj)ier]
=0 i otoda (et Do (1!
X fliy oo amn+1) (@15 -+ 5 @1,V )dYn
+- 1+
bl by n b _yj mj+l
+/ /an i mj+1) f(m1+1 ..... m,,+1)(y17---ayn)d))n"'dyl

Remark 3.2 For n = 2 in the above corollary we get Theorem 6.16 in the book [15] by
simply putting x =a and y = c.
Theorem 3.10 Let the assumptions of Theorem 3.9 be valid. Then the inequality

bl bn
A(f) :/ o [ X))o -y >0 (3.22)
ay a

Jdpn

holds for every (m;+1,...,m, + 1)-convexfuncti0n fonly x---x1I,if and only if

bl bn )
/ / L dyy - edyy =0, (3.23)

l].
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i1 €{0,1,....m}, ..., in €{0,1,....my},

bl b _ mp n RN ij
/ / Y1 xl) H () : 'al) dy,---dy, =0, (3.24)

=2 Lj:

h € {0,1,...,m2},...,in S {0,1,...,m,1},vxl S [al,bl],

by bp—1 n—l F—d; ij — X, )"
L [ o) [T ™ =0, G2s)
a Xn ; j* ne

n—1 j:]
i1 € {0,1,...,m1},...,in,1 S {0,1,...,mn,1},xn S [an,bn],

bl bn n
/ s [T2 =2 4y, -y >0, (3.26)
j=1

x| € [al,bl],...,xn € [an,bn).

Proof. If (3.23), (3.24),...,(3.25) hold, then all these sums are zero in (3.20) and the
required inequality (3.22) holds by using (3.26).
Conversely, if we consider in (3.22) the following functions

n R Y4
g](ylv"'ayn):H(yj.itaj)] and gzz_gl
j=1 lj:
fori; € {0,1,....m1}, ..., i, €{0,1,...,my} suchthatg( >0, ke{l,2},
then we get the required equality (3.23).
In the same way, if we consider in (3.22) the following functions fori; € {0, 1,...,m, },
Lip € {O, 1,...,mn},VX1 S [al,b1]

myp+1,.. 7mn+])

1 —x)™ 4 (v —a;)d
3 _ | 0 y X1 <Y1, d 4_ 3
8 ()’Ia---»Yn)— mip. j=2 Lj- an g =—g
0, X1 > y1,

such that g( >0, ke {3,4}, then we get the required equality (3.24). Sim-

my+1,...,mp+1) =
ilarly, if we consider in (3.22) the following functions for iy € {0, 1,...,m1},..., i,—1 €

{07 17~~~7mn71}7vxn S [anvbn]
nl:[] () =) (yn—x0)™
gs()’l,---a)’n): j=1 l]' mn!

0, Xn 2 Yn,

I xn<Yna and g6:7g

such that gk ( >0

on.

ity 205 K€ {5,6}, then we get the required equality (3.25) and so
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The last inequality (3.26) is followed by considering the following function in (3.22)
for any x1 € [ay,b1], ..., Xy € [an, by,

ﬁ (vj—x;)"
7 _ ,|
g(YI»---a)’n)— j=1 mj:

0, otherwise.

) x1<y17"'7xn<yn7

3.6 Mean Value Theorems and Exponential
Convexity

It is a well known fact that many results of classical real analysis are a consequence of the
mean value theorem. Lagrange’s and Cauchy’s mean value theorems are among the most
important theorems of differential calculus. Here we state some generalized mean value
theorems of Lagrange and of Cauchy-type. These results are given in [30].

Theorem 3.11 Ler A : CUm+bmt) ([ 5 ... x ) — R be the linear functional defined
in (3.22). Let p : I; x --- x I, — R be an integrable function and f € C/"+1mn+1) (J; x

.5, i =ai,bi],i=1,...n, such that the conditions (3.23),(3.24), ..., (3.25), ..., (3.26)
of Theorem 3.10 are satisfied. Then there exists (&,...,&,) € I} X -+ X I, such that

A(f) = f(n11+l,...,m,l+l)(él PR én)A(fO) (3.27)

n 'f11'+1

where fo(xi,...,x.) =[]

xJ
j=1 (I’I’lj-i- 1)'

Proof. Since f,, 41....m,+1) 1S continuous on /; X - - - X I, s0 it attains its maximum and
minimum values on I} X -+ X I,. Let L =min f(, 11, m,+1) and U = max fi,, 11, m,11)-
Then the function G = U fy — f satisfies

G(m|+l,....,mn+1)(xl yeee ,Xn) =U-— f(m|+l,...,m,l+l)(xl yeee ,Xn) > 07

ie., Gisan (m;+1,...,m,+ 1)-convex function. Hence A(G) > 0 by Theorem 3.10 and
we conclude that

A(f) SUA(fo).

Similarly, we have
LA(fo) < A(f).

Combining the two inequalities we get

LA(fo) < A(f) SUA(fo)-
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A
If A(fo) =0, then A(f) = 0 and the statement obviously holds. If A(fy) # 0, then AU
0

[L,U] and hence, there exists (&;,...,&,) € I x --- x I, such that

A
% = f(n11+1,...,m,,+1)(§1’ e én)

which gives us (3.27).
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€

O

Theorem 3.12 Ler all the assumptions of Theorem 3.11 be valid. Then there exists

(élvnwén) € Iy x --- x I, such that

A(f) _ f(ml+1,...,m,l+1)(§l7-~-,é;l)
A(g) g(m1+1,...,m,,+1)(élv~~~7&11)

provided that the denominator of the left-hand side is nonzero.

h=Ag)f —A(f)g-
Using Theorem 3.11 there exists (&i,...,&,) such that

0= A(h) = h(fﬂ|+l,...,mn+1)(§1 IERER] gn)A(fO)

or
[A(g)f(mﬁl,...,mn{»l)(éla .. -»én) _A(f)g(m1+1,...,m,,+1)(éla .. -vén) A(fO) =

which gives us required result.

0

O

Corollary 3.3 Let all the assumptions of Theorem 3.12 be satisfied with m = my; = my =

... =my. Then there exists (&y,...,&,) € Iy X -+ x I, such that

(& &)1 = (d+1)q - (qd —n+D]"A((x1 - -x,)7H)
" [(g+1)g--(q—n+D)]"A((x---x,)7+1)

for —ee < q#q' <teoandq,q ¢{-1,0,1,....n—1}.

Proof. If we put
Fxryee ) = (xp - X )T

and )
glxr, v, xy) = (x1 - -x,,)q+l

in Theorem 3.12, then we get the required result.

O

Bernstein [9] and Widder [98] independently introduced an important sub-class of con-
vex functions, which is called class of exponentially convex functions on a given open

interval and studied some properties of this newly defined class.

LetJ C R be an open interval. Here we give some definitions and properties related to

exponential convexity. For further reading we refer to [9], [22].
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Definition 3.2 [9] A function y : J — R is exponentially convex on J if it is continuous
and

Y &&iw(xi+x;) >0
ig=1

Vn € N and all choices &,E; € R; i,j=1,...,n such that x;+x; € J; 1 <i,j<n.

Example 3.1 [22] For constant ¢ > 0 and k € R, x — ce®* is an example of exponentially
convex function.

The following proposition and two corollaries are given in [22].
Proposition 3.1 Ler v : J — R, the following propositions are equivalent:
(i) y is exponentially convex on J.

Xi + Xj

n
(ii) y is continuous and Y, &&;y ( ) >0, forall &, & € R and every x;,x;j €

ij=1
J;1<ij<n

Corollary 3.4 If vy is an exponentially convex function on J, then the matrix

Xi + X;j "
(™2
i,j=1

is a positive semi-definite matrix. Particularly

. . n
det [w <x—’ ;x’)] >0,
ij=1

VvhneN,x,x;€J;i,j=1,...,n

Corollary 3.5 If v : J — (0,%0) is an exponentially convex function, then y is a log-
convex function, i.e. for every x,y € J and every A € [0, 1], we have

w(Ax+ (1=A)y) <yt )y ().

Let [ = [a,b] CRy and Q = {@") : I" — R : 1 € R} be a family of functions defined
as:

(x] .. ._xn)t
t{0,...
0 - -mp (FOm
® (X1,. 7xn) = t n
L[ m )" per oM
Clearly (p((;z+1 ....m+1)<x1’ ey Xn) = () = elt—m=1)log(x1-xn) for (X1,...,x,) €I"
s0 @) is an (m+1,...,m+ 1)-convex function and
t— (p((2+1 """ m+1)<x1’ ...,Xy) is an exponentially convex function on R. From Corollary

3.5 we know that every positive function which is exponentially convex is log-convex. So,
we state our next theorem.
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and let the conditions (3.23),(3.24),(3.25),(3.26) of Theorem 3.10 for function p be sat-
isfied and @) be a function defined above. Then the following statements hold:

(a) The function t — A(@") is continuous on R.
(b) The functiont — A(@") is exponentially convex on R.

(¢) If the function t — A(@)) is positive on R, then t — A(@")) is log-convex on R.
Moreover; the following Lyapunov inequality holds for r < s <t

(A < (M) (Al (328)

(d) The matrix [A((p( > is positive-semidefinite. Particularly,

i,j=1

det [A((p([i;tj DI

foreacht; € Randm e N forie {1,...,m}.

(e) If the function t — A(@")) is differentiable on R. Then for every s,t,u,v € R such
that s <u andt <v, we have

Pss (A, Q) < (A, Q), (3.29)
where 1
Alp)\ ™
(A(<P<’>)  SH
Hss (A, Q) = (3.30)
’ d Al ol)
exXp 7KA((I) ) s=t
Alp®) )7 '

Proof. (a) For fixed n € NU {0}, using the L'Hopital rule n-times and applying limit, we
get

limA(p®) = Tim S I PO o) oy -y
120 0 ((t—1)-(—m)]
Jid -+ S P(X)Tog" (x1 -3 )dxy - dxy

(—1)’"n!(m!>n

= A(9').
In the similar fashion we can get

limA(9") = A(eW), ke{l,...,m}.

t—k

So we conclude that the function # — A((p(t)) is continuous on R.
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(b) Let us define the function

k 1+;
w = 2 uiuj(p(T),
ij=1
where t;,u; € R, i € {1,... k}. Since the function ¢ — (p((:'z+l )
vex, we have

is exponentially con-

k it
I N
Ot 1,mi1) = D, Uil j Qi mr1) = s
ij=1
which implies that @ is an (m+ 1,...,m+ 1)-convex function on I" and therefore we have

fi+ i
A(®) > 0. Hence Zﬁj:l uiujA((p(TL>) > 0 and we conclude that the functionz — A(¢p®"))
is exponentially convex on R.
(c) Itis a direct consequence of (b) by using Corollary 3.5. As the function 7 — A(p*))
is log-convex, i.e. log(A(@("))) is convex, so we have

log(A(¢™))" " < log(A(¢"))"™* +log(A(e))) ",

which gives us (3.28).
(d) This is a consequence of Corollary 3.4.
(e) For any convex function ¢ the inequality

9(s) —0(1) _ o) —¢(v)

s —1 - u—v

(3.31)

holds for s,z,u,v €I C Rsuchthat s <u,r <v,s#t,uv,[77,p.2]. Since by (c), A(¢"))
is log-convex, so set ¢ (x) = log(A(@™)) in (3.31) we have

log(A(g")) —log(A(@®)) < log(A(p"))) —log(A(9™))

(3.32)
s—t u—v

for s <u,t <v,s#t,u#v, which is equivalent to (3.29). The cases for s = and / or
u = v are easily followed from (3.32) by taking respective limits. O



Chapter

Functions with
Nondecreasing Increments

This chapter is devoted to recent results about functions with nondecreasing increments
of higher order. In the first section we list definitions and basic properties of functions
with nondecreasing increments, in the second section we give results for functions with
nondecresing increments of higher order, while the third section contains new results about
the Levinson inequality which connect that inequality with functions with nondecreasing
increments of the third order.

4.1 Inequalities for Functions with Nondecreasing
Increments

Let R* denote the k-dimensional vector lattice of points X = (xy,...,x),x; real for i =
1,...,k, with the partial ordering x = (x1,...,x¢) < (y1,...,yx) =y if and only if x; < y;
fori=1,...,k. Fora,b € R, a<b, aset {x¢e RFra<x< b} is called an interval [a,b].
We also use a simbol I for an interval in R¥.

By X(#) = (Xi(2),...,Xk(t)) we denote a mapping of an interval from R into an interval
I C R*. If all components X;, i = 1,...,k, satisfy any property we say that X has this
property. Further, by [;XdH we, mean the vector ([, X\dH,..., [;XidH). Also [;HdX
= ([;HdX,, ..., [;HdXy).

107
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Definition 4.1 A real valued function f on an interval I C R¥ will be said to have non-
decreasing increments if

fla+h)—f(a) < f(b+h)— f(b) (4.1)
wheneveracI, b+hel, 0<heRf a<b.

This class of functions was introduced by Brunk in [8] where some basic properties are
also given.

For example, a function with nondecreasing increments is not necessarily continuous.
If the first partial derivatives of a function f : I — R exist, then f has nondecreasing incre-
ments if and only if each of these partial derivatives is nondecreasing in each arguments,
in other words, if and only if the gradient V f is nonnegative on 1.

If the second partial derivatives of a function f : I — R exist, then f has nondecreasing
increments if and only if each of these partial derivatives is nonnegative. If a function f
with nondecreasing increments is continuous for b <x <a-+b, where 0 < a € Rk, then
the function @ : [0,1] — R defined by ¢(¢) = f(ra+Db) is convex.

More corresponding results about functions with nondecreasing increments are col-
lected in [51, pp. 351-362]. We are interested in the following theorem in which the main
inequality is similar to general linear inequalities which are investigated in the first two
chapters.

Theorem 4.1 ([8]) Let I denote an interval in R¥, let X : [a,b) — 1 be a nondecreasing

continuous map and let H be a function of bounded variation and continuous from the left
on la,b) with H(a) = 0. Then

[, X)) =0 (42)
a,b
for every continuous function f : 1 — R with nondecreasing increments if and only if
H(b) =0, (4.3)
H(u)dX(u) = 0, (4.4)
[a.b)
and
/[ H@AX(0) 20 for [ar) o) “5)
at

where [HdX = ([HdX,,..., [ HdXy) and the symbol [a,t} refer to either of the intervals
[a,t] or [a,t).

Proof. Let us prove a necessity, i.e. let inequality (4.2) holds for every continuous
function f : I — R with nondecreasing increments. Putting in (4.2) f=1and f=—1 we

get (4.3). Putting in (4.2)

f(X):Xj, f(X):*X], j:1727"'7k
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respectively, where x = (x1,...,x;), we get

Xi(t)dH(t) =0, j=1,2,... .k,
[a,)

ie. / H(t)dX(t) =0, which is (4.4). Inequality (4.5) follows from (4.2) after integration
Ja,b)

by parts for fixed j(j = 1,2,...,k) and fixed ¢ € [a,b), f(x) = (Xj(tT) —xj)+ or f(x) =
(Xj(7) = xj)+

Let us suppose that (4.3), (4.4) and (4.5) hold. Since f may be approximated uniformly
on I by functions with continuous nonnegative second partial derivatives, we may assume
that the second partials f{; ;) exist and are continuous and nonnegative. Then, using (4.3)
and (4.4) we get

fX@)dH (1) =— [ H(6)Vf(X(t)) dX(2)

[a,b) [a,b)

Since (4.5) holds each term in the last sum is nonnegative, so inequality (4.2) is verified. O

A majorization theorem is valid also for functions with nondecreasing increments. Be-
fore its proof we state and prove a helpful lemma from [65]. We use the following notation:

AZif:AZif(xl,...,xk) = X Ry xk) — F( Xy X,
N f = A (A f ) )

Lemma 4.1 Let H be a continuous real function depending on t and uy, ... ,uy, defined
fort € la,b], u; € aj,b;], fori =1,2,... k such that

NASH <0, i€{l,....r},  AASH>0, i€ {r+l,... K},
AZEAZHZO, ije{l,....;ryorije{r+1,... .k}
AAH <0, (ie{l,...,r}andje{r+1,...,k})
or (iE{r+1,...,k}andjE{l,...,r})
hold for all u;,h; > 0,t,p >0, t+ p € [a,D], ui+ h; € [a;,b;] fori=1,... k.
Let fi, g : [a,b] — [ai,bi], (i=1,...,k) be real continuous functions, nonincreasing for

i =1,...,r and nondecreasing for i =r+1,...k, and let G : [a,b] — R be a function of
bounded variation.
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Let us define a function F : [0,1] — R as

F(2) = /;H(t;/lgl(f) + I =2)f1(0), -, Agi(t) + (1 = A) fi(1))d G (z).

(a) If
" ()G () < /xgi(t)dG(t) (a<x<bic{l,...r}),
CF0dG0 < (80w (@<r<biclrl k) @6
xb xb
10460 = [ s0d6) (i€ (1,0,

then F is nondecreasing on [0, 1]. Particularly,
b b
[ HE A, A0 < [ HEsn@), 0G0, @)
(b) If H is a nondecreasing function on variables uy, ... ,uy, and if, instead of (4.6),

/axf,-(t)dG(t) < /axg,-(t)dG(t) (@<x<bic{l,..r),

b b
/ F)dG() < / gi(0)dG(t) (a<x<bic{r+l,...k}) 4.8)

hold, then F is also nondecreasing and (4.7) is valid too.

Proof. The function H may be approximated uniformly by polynomials which satisfy

the conditions

90’H 9°H
<0, ied{l,... >0, i 1,... .k
alal/tl'— 716{7 ,V}, ataui_ ,l€{r+ , ,},
J*H
auiaujZO» ije{l,....rtorije{r+1,... k}
0*H
<O7 ( 17"'7 d ] 1,,/{)
G =0 (1€ (L and et L)

or (ie{r+1,...,k}and je{l,...,r}).

So, there is no loss in generality in assuming that the second partial derivatives exist
Putting u; (1) = Agi(¢) + (1 — 1) fi(¢) we get

. u NN
P =3 [ 2tatn - o) HE Gt g



4.1 INEQUALITIES FOR FUNCTIONS WITH NONDECREASING INCREMENTS 111

—Z/Agl — filt) a +2//1gl — fi?) I:(t)

i=r+1 !

- 2 /ab ( | 2 —ﬁ(r))dG<f>) a (§_H)
L ([-an)o(22)

i=r+1
Since

* 2 e o O

Jj=r+1

(M _PH & PH Sy & PH
ot \ ot | 9tdu; ,lauau, ot

d (0H
forie{l,...,rtand — | — | >0forie {r+1,...,k} we get
Jt \ ot
F'(A)>0
and F is nondecreasing. Since 0 < 1 we get F(0) < F(1), so, (4.7) holds. O

Now, we can prove the Majorization theorem for a function with nondecreasing incre-
ments, [65].

Theorem 4.2 Let X and Y be two mappings of a real interval [a,b] into an interval 1,
continuous and nondecreasing, and let G : [a,b] — R be a function of bounded variation.

(a) If

b b
/ X(#)dG(r) < / Y(¢)dG(t), foreach wu € (a,b),

/XdG /YdG

then for every continuous function f : 1 — R with nondecreasing increments we have

b b
| rxwyac) = [ sxaaco. 410

(4.9)

./u‘bf(X(t))dG(t) < ./u‘bf(Y(t))dG(t), foreach wu€ (a,b), 4.11)

then (4.10) holds for every continuous nondecreasing function f : 1 — R with nondecreas-
ing increments.

Proof. Putting in Lemma 4.1:

H(t;ul,...,uk):f(ul,...,uk)
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we get statements of Theorem. O

Let the function G be nondecreasing. Then (4.10) holds for every continuous function
f with nondecreasing increments if and only if (4.9) holds; analogously (4.10) holds for
every continuous nondecreasing function f with nondecreasing increments on / if and only
if (4.11) holds.

In a special case we get not only the Jensen-Steffensen inequality but also its reverse
inequality.

Theorem 4.3 Let X : [a,b] — I be a nondecreasing continuous map and let G be a func-
tion of bounded variation on [a,b].

(a) If
Gla) <G(x) < Gb), Gla) < G(b) @.12)
and if f 11— R is a continuous function with nondecreasing increments, then
b b
; (fa )i(r)do'(r)) < Lf(X(0) d6(e) 13
Ja dG(2) Ja dG(2)

() If f”f;, e ) e, and if for each x € (a,b) we have either G(x) < G(a) or G(x) >
G(b) then the reverse inequality in (4.13) holds.

(¢) If for a continuous function f : 1 — R inequality (4.13) holds for every nondecreas-
ing X and for every function of bounded variation G which satisfies (4.12), then f is a
function with nondecreasing increments.

Proof. (c) Puttinga <t; <ty <t3 <b,X(t;) =A,X(t2) =B, X(13) =B+H,0<H €
RY), Git)=0(a<t<t,h<t<t3)and G(t) =1 (t; <t <1y, 13 <t < b), then inequality
(4.13) reduces to f(A+H) < f(A) — f(B) + f(B+ H). Therefore, f is a function with
nondecreasing increments.

(a) and (b) Using substitutions

X(t
X(1) — M Y(1) — X()
J4 dG(1)
into Theorem 4.2 we have that (4.13) is valid if
b b b b
/ X;(1)dG(1) / G (1) < / X;(1)dG(1) / G (1) (4.14)
a X X a
holds for any x € [a,b], j = 1,... k. Also, we have that the reverse inequality in the above

inequality holds, then the reverse inequality in (4.13) holds too. It is worth to mention that
(4.14) is proved using integration by parts. Namely we have

/xb(dG /dG /b 1dG(t /dG
7/)( 1)dG(t (/dG +/dG)
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- ([xwac+ [ xwac0)) [ ac)

— / "X, (114G (0) / " aG(r) - / bdG(t)/; "X, (1)dG (1)
= (6(0) - 6(x) [ (G0~ Gla)r()

+ (60~ 6@) [ (60) - G)ar) 2o
O

From the previous results we can simply obtain analogous discrete results. Here,
we shall consider only a special case of a corresponding generalization of the Jensen-
Steffensen inequality with nonnegative weights.

Theorem 4.4 Let f : 1 — R be a continuous function with nondecreasing increments and

let (Xy,...,Xn) be a monotonic sequence with elements from L
(a) If w; (i € {1,...,n}) are nonnegative numbers, then
1 & 1 &
— Xi | < — f (X 4.15
f WniZZIWl i > WniZZ]Wlf( 1) ( )

where W; = 2{:1 w; # 0.
(b) If wi, (i € {1,...,n}) satisfy

wi >0, w;<0 (ie{2,...,n}), W,>0,

and Ap(X;w) = WL" Y wiX; € L then the reverse inequality in (4.15) holds.

Now, let us describe monotonicity in means which we use in upcoming results, [66].

Definition 4.2 A finite sequence (Xy,...,Xn) € I" is said to be nondecreasing in means
with respect to weights W = (w1, ...,wy) € R, if the inequalities

X; <A (Xow) < - <AL(Xow) (4.16)
hold, where

1 J
Aj(X;W)ZWZW,'Xi, szzwi.
Ji=1 i=1
If the inequalities in (4.16) holds in reverse order, then the sequence (Xy,...,Xn) is said
to be nonincreasing in means.

The following theorems gives us Jensen type and reverse Jensen type inequalities for
functions with nondecreasing increments when the finite sequence of k-tuples (Xj,...,Xy)
is monotone in means, [66].
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Theorem 4.5 Let f and w be defined as in Theorem 4.4(a) and let the sequence (Ar(X; W) )k

be monotonic. Then
1 & 1 &
— X | < — (X)), 4.17
f WniZ:lWl i > WniZ:IWlf( 1) ( )

If the assumptions of Theorem 4.4(b) are satisfied and the sequence (Ay(X;w)) is mono-
tonic, then the reverse inequality in (4.17) holds.

The proof of this theorem is based on the property of subadditivity of index set function
F defined as follows:

F(J) ij< Y wiX >2w,~f(Xi), (4.18)

JieJ icJ

where J is a finite nonempty subset of N, Xj's are sequences with elements from I and

W; = ZW“ A]XW _Zwl i

ieJ Jies

The above-mentioned property of subadditivity is proved in the following theorem,
[66].

Theorem 4.6 Ler f : 1 — R be a continuous function with nondecreasing increments, let

J and K be finite nonempty sets of positive integers such that JNK = 0, w = (w;)icjuk is a

real sequence with Wyug >0, and X; €1, i € JUK, A;(X;w),Ax(X;w),Ajuk (X;w) € L
(a) Let Wy > 0 and Wx > 0. If

AjXsw) <Ag(Xsw) or Aj(Xow) > Ag(Xsw), (4.19)
ie. if
AjXow) <Ajuk(Xsw)  or Ap(Xsw) > Ak (Xsw), (4.20)
then
F(JUK) < F(J)+F(K). .21

(b) If Wy > 0 and Wi < 0, and (4.19) (i.e. (4.20) holds, then the inequality in (4.21) holds

in reverse order.
Proof. Putting in (4.15) forn =2
Xi = A(Xsw), wi =W, Xo —Ag(Xsw), wy — W,

we get
WiukF (Ajuk (Xsw)) < Wi f(A7(Xsw)) + Wi f(Ak (Xsw)),

i.e. (4.21) holds if (4.19) is valid. Since

Ak (Xsw) —A;(Xsw) = K (A[((X;W)—AJ(X;W))

JUK
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we have that the conditions (4.19) and (4.20) are equivalent. O

The following results give refinements of Theorem 4.4 and therefore these results are
generalizations of some refinements of the CebySev inequality as well as the corresponding
results of H. Burkill and L. Mirsky, see Example 4.1.

Corollary 4.1 If the conditions of Theorem 4.4(a) are fulfilled, then
F(ly) SF(Iio1) < < F(L) <0 (;=A{1,....j}). (4.22)

If the conditions of Theorem 4.4(b) are valid, then the reverse inequalities in (4.22) are
valid.

Proof. Let us suppose that the conditions of Theorem 4.4(a) are fulfilled. Let us define
J=1,_1and K = {n}. Since F(K) = 0, from (4.21) we get

F(I,) = F(JUK) <F(J)+F(K)=F(J) = F(I,_1).
O

Proof of Theorem 4.5. Let f and w be defined as in Theorem 4.4(a). By the Corollary
4.1 we get

F(ly) < F(I,—1)

1 & n n—1 n—1
W f <W ZWiXi> 2 wif(Xi) < W 1f< . Zwl .) = wif(Xi)
ni=1 i=1 Wa— i=1
n n—1
W, f (WL Zwixi> an(Xn) + ‘/anlf < 2 Wi 1) .
ni=1 i

W1 i=
Following in a similar manner we get

1 n
W f (Wn 1121 WiXi>

< an(Xn) + (Wnlf(an) + Wn72f (W

| /\

IN

n—2
2 W,’Xi
-2 =1

and the statement is established. O

< <Y wfX

i=1

Example 4.1 Let f : [0,o0)¥ — R be defined as

f(xl,...,xk):x] et X

2

Since >0 forall i,j € {1,...,k} the function f is a function with nondecreasing

XiOXj
increments.
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Let us define

Xj = (xj1,xj2,.. -, Xjk), j=1,...,n.

If sequences (x;1);,(x;2)j,-.-,(xjr); are nondecreasing (nonincreasing), then X; < X, <
. <Xh Xy > X5 > ... > X, and by Theorem 4.4, if w; > 0, the following holds

nj—

1 n 1 n
— D wiX; | < — ) wif(Xj
f W, ~ RS B w 2:1 lf( 1)

which becomes
1 n n 1 &
W ZWijl Zijkl SWZW]'Xﬂij...Xjk,
no\j=1 j=1 nj—1

i.e. we get the classical CebySev inequality for k sequences monotonic in the same sense.
But, using the result of Theorem 4.5 we get that the same inequality holds if the finite
sequence of k-tuples (Xj,...,Xy) is monotone in means. This result was obtained by
H. Burkill and L. Mirsky in [10].

4.2 Functions with Nondecreasing Increments
of Order n

The aim of the present section is to give generalization of Theorem 4.1. It is based on paper
[29] due to A. Khan, J. PecCari¢ and S. VaroSanec. Let us introduce some further notations.
Let us write Ay, f(x) = f(x+hy) — f(x) and inductively,

My by Ay (%) = Ay (Any B, (X)) for n>2,

where x,Xx+hy +---+h, € I, hy € R¥ fori € {1,...,n}. Using this notation with n = 2,
h =hy, s =h,, b=a+s, condition (4.1) becomes

Ahl Ahzf(a) Z 0
Let us extend Definition 4.1 to the following.
Definition 4.3 f:1— R is said to be a function with nondecreasing increments of order
nif
Ahl c ~Ahnf(x) Z 0

holds whenever x,x+hy+---+h, € L 0<h; e R fori e {1,...,n}.
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Every solution f of the Cauchy equation f(xy +x2) = f(x1) + f(x2) is a function with
nondecreasing increments of order n with null increments.
. . . n . . .
If the nth partial derivatives f;, ...;,(X) = ﬁ f(x) exist, they are nonnegative. If f is
a continuous function with nondecreasing increments of order n, it may be approximated
uniformly on I by polynomials having nonnegative nth partial derivatives. To see this,
we set, for convenience, I = [0,1] where 1 = (1,...,1). It is known that the Bernstein
polynomials
2 g‘: 7 ll i ﬁ nj\ i (1 )nj*ij
ey, — x! (1 —x;
=0 )y \ij) !
1 = Jj=
converge uniformly to f onIasn; — co,... ,ny — oo, if f is continuous. Furthermore, if f is
a function with nondecreasing increments of order n, these polynomials have nonnegative
nth partial derivatives, as may be shown by repeated application of the formula (see [8] and

[29]) 1
d n n n n_l X B 7l
Eio(i) (1—x)" ‘—nZ( ) (@iy1 —a;)x' (1 =x)" =i

Let pi,..., pr be positive integers such that p; +---+ p, = w. Let (i} ---i"), be a set
of all permutations with repetitions whose elements are from the multiset

S={il, . 01,00,y D2y by ey by 0 <vor <y i1y 0r € {1,000 k.
——— ——— ——
p1—times pp—times pr—times
w!
There are ————— elements in the class (i -+ if"),,.
pi!p2!---py!

ForO<p  <py<---<pp, pi+--+p-=w,let (p;-p,)c be a set whose elements
are described in the following way. We say that permutation ji - -- j,, belongs to the set
(p1---pr)c if and only if there exist iy,ia,...,i, € {1,...,k}, ij <iy < --- < i, and per-
( o(p1) -G(pr))

mutation o of the multiset {p; --- p,} such that j; --- j,, € o
classes (p1--- pr)c is denoted with CX.

For illustration, we describe the above notation on one example. Let k =5 and w = 4.
Classes (p;--- pr)c are the following: (1,1,1,1)¢, (1,1,2)¢, (1,3)c, (2,2)¢ and (4).. Let
us describe the elements of the set (1, 1,2).. There are three different permutations of the
multiset {1,1,2}. These are

112 112 112
(112)- (121) (311)

So, (9PV i)y Care (iy,in,i3,03) po (1,25 12,83) ps (11,1, 2, 13) p» Where iy < iy < i3 and
i1,i2,13 € {1,2,3,4,5}. If, forexample, (iy,i2,13,i3)p = (2,3,5,5) ,, then it contains all per-
mutations with repetitions of elements 2,3,5,5,i.e. (2,3,5,5), = {2355,2535,2533,...,5532}
and it has ;Lf = 12 elements.

In the following text, H € BV [a,b] with H(a) = 0 and iy,...,i, €{1,...,k}. Let K’
be a function such that

p- Family of all

ll -In

Kl’: ll Xmn( ) n Z 2

ll ln
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wd  Kh0) = [ CH(v) dX, (v).

Further, we write

jes
and [T(e)x) =1,
where S is a multiset with elements from {1,...,k}. Clearly
d{[I)®} = - _ZSde(X)H(S\ {hH )
JE
and dK., () = K5 (0dX, (0).

Now, the following result holds.

Lemma 4.2 Let w be a fixed positive integer. Then

/alH({il,...,iW}) (x)dH (x)

=% S 3 [T i)\ G, D WK 0

Ly lim
= 1]2 =1 Jm = 1

J2 F jum # Jk
k<m

holds for eachm € {1,...,w}.

Proof. We prove it using induction on m. For m = 1, using integration by parts, we have
[T ish @ ab ) = = [ A a ([T} )
!
a/mwz X, (9 [T (s \ D) ()

= 3 [T} i D @, ().

J1=1

Let us suppose that the statement holds for m — 1 and let us apply integration by parts on
the right-hand side of the formula.

/’H({il,...,iw}) (x) dH (x)
2 2 H({ll, S\ ijys ey }) ()KL (x)

1 L1 Yim—1
1= Jm 1 =

Jm—17 Jk
k<m—1
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w w t |
o m—
Z 2 1( 1)/a Kijl---ijmfl (x) x
- .]mfl =
Jm—1 7 Jk
k<m-—1

d(H({ilv"'7iW}\{ij17""ijm—1}) (x))
S 0K wx

J ]'mfl =1
jmfl #]k
k<m—1
X(_l) 2 dX l]m( H({il""7iW}\{ij|""7ijm})(x)
Jm=1
Jm # Jk
k<m
N 1
= 33 [T\ G i D @RS (X0
Ji=1 jm = 1
Jm # Jk
k<m
w
SR VY ) ([N A TR A )
j1:1 ]nl — 1
Jm # Jk
k<m
O
Especially for m = w, we have
ot w
[Tih i@ =3 % [k @
sa n=1 -1
W
Jw # Jk
k<w
w w
2 111 i w(t):pl!"'pr! 2 Kiv;---ijw(t) (4.23)
ai=l Jw=1 "jl""'jwe(illjl“‘ilr)r)p
Jw 7 Jk
k<w

where {ijl,...,ijw,}:{il,...,il,...,ir,...,ir}, i <ipg <o <lpy Q1,025 ... irE{l,...,k},
~—— ~——

p1—times pr—times

Pl++Pr:W
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Example 4.2 1f w=3, iy =i, =1, i3 =2, then

. 3 3 3
[TIehwarw =¥ Y X K0
a n=tjp=1 j3=1
RFEN BFEILR
= 2111 (K} + Ky +K3))).

O
Furthermore, if we suppose
/xh WdH@W) =0 for ji,... js €{1,... .k}, s€{0,...,w},
then
b . .
PSR b>=/ [T i) (9 ()
=2(=1) /le - X (%)X, (b) - X, (b)dH (x) = 0. (4.24)

Now, we state our main theorems of this section:

Theorem 4.7 Let X : [a,b] — 1 be a continuous function and let H € BV [a,b] with H(a) =
H(b) = 0. Further, assume that f has continuous (n — 1)th partial derivatives for n > 2. If

/Xll : )dH( ) 0
foriy,...;ime€{l,... .k}, me{l,...,n—1}, then
b n—1 1
[ r&eann =1yt Y e R
‘ (prepr)eeCh_ O )y (propr)e

/fll (/ [T iy )(x)dH(x)). (4.25)

P1 ttmes Pr ttmes

Proof. The proof follows from induction on n. Let n = 2,
b kb
[ rxann=-3 [ rxoH@ax)
a =174

=3 [ rexonaxto -3 [*sxena( [ nane)

k b r
:_;/a fi(X(t))d(./a H(X)d(Xi(x)_Xi(t)))
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k b ot
:21/ fi(X(t))d(./a H(x)d(xi(t)_xi(x)))

If we have [*X;, (u)---X;, (u)dH (u) = O foriy,... in € {1,....k},me{l,...,n—2} and
if we suppose that (4.25) holds for (n — 1), then

/bf(X(t)) dH (1
a .
)y / Fonpr (X(0))

VA Y
(p1-pr)e ECII:IZ] pr (P| . pr) (I’l"'l’r)c.

xd (/ [T i} )(x)dH(x))
S C IR S A OIE
i)

...
1! !
(I’l"'Pr)ceC,I;,Z p pr (171

2
wptopd % K20
ij|“‘ijn,2€(ifl“‘itp'r)p

=ty > dfpr o (X(1)) X
(Pl"‘Pr)CEC£72 (ill’l ...ifr)p a ! "
x K'2, (1)
e(it il

iy i i),

eSS S g X0

. . a g
(p1--pr)c€Ck_y (P1-ifT), ip—1=1

xdX;, (1) ( > K 2(’))

Ly tin—2

=ty | / for.
(sllusg)CGCﬁ,{iilmi' C(sy ‘g
Sit+tsg=n—1
X D K\ (0dX, (1)

S1 S,
by E(Hl ""gg)p
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=y % % ek 3, 0)

(s1-5g)e€Ch_y (i) i v fne

SRS D N R

S5 S
(s1°+8g)c Ecn 1(11 "lgg)p

t
(s [ TH i) )
by (4.23) and (4.24). Hence we have (4.25). 0

Theorem 4.8 Ler X : [a,b] — 1 be a nondecreasing continuous map and let H € BV |a, ]
with H(a) = 0. Then

/ " F X)) dH (@) >0 (4.26)

holds for every continuous function f with nondecreasing increments of order n on Lif and
only if

H(b) = 0, 4.27)
/ - Xi, (1)dH (1) = 0, (4.28)

forip,..;ime{l,...;k},me{l,....n— 1} and
1 [ T i 1) ) dH () 2 0 (4.29)

foreacht € la,b], iy,...,i,—1 €{1,...,k}.

Proof. Necessity: The validity of (4.26) for constant functions f' = 1 and f?> = —1 im-
plies (4.27). From (4.26) for f3(x) = x;, ---x;, and f*(x) = —x;, -+ x;,, for iy,...,is €
{1,...,k}, se{l,....,n— 1}, we have (4.28).

Inequality (4.29) is obtained from (4.26) on setting, for fixed ¢ € [a,b] and fixed
iy yin—1 €{1,...,k},

() =[x, =X, ()] [xi,_, — X, ()]~ where c¢_ =min{c,0}, c€R.

Sufficiency: Since f may be approximated uniformly on I by functions with continuous
and nonnegative nth partial derivatives, we may assume that the nth partials f;, . ;, exist
and are continuous and nonnegative. By Theorem 4.7 and (4.28), we have

[ rxay an)
1 Lorp

=" X Pl 2 Z/a T ipri, X(0)) %
(P1Pr)e Cﬁl r( fr)) (Pl“‘Pr)cl”:l

xdX;, (t /H {il'--iPr}) (x)dH (x).

y (4.29), each term in the sum is nonnegative so that (4.26) is verified. O
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4.3 Arithmetic Integral Mean

It is known that if f : [0,a] — R, a > 0, is a nonnegative and nondecreasing function, then
the function F, defined as

is also a nondecreasing function on [0,a]. Let us observe that F is an arithmetic integral
mean of a function f on an interval [0, a|. This result was generalized in [36] by considering
a real-valued function f for which A} f(x) > 0 holds for any & > 0, where A}l is defined as
follows:

AR f(x) = [ (), W00 = A7 F et h) = A ().

Here, we extend the above-mentioned result to functions with nondecreasing increments
of higher order ([29]).

Theorem 4.9 Let the function f : [a,b] — R be continuous and with nondecreasing in-
crements of order n. Then the function F, defined as

F(x) = (ﬁ())l [ rwa,

i=1

is a function with nondecreasing increments of order n on [a,b], where uw = (uy,... ,u;)
and du =du; - - - duy.

Proof. Letx >a = (ay,...,a;). Then

F(x):/Olm/olf(ast(xfa))ds,

where we used the substitutions u; = a; + s;(x; — a;), i € {1,...,k}, 0 <s; < I, where
a+s(x—a)=(a;+s1(x1 —ay),...,ar+sp(x; — a;)) and ds = ds; - - - dsg. Now, we have

-1 1
Ah1~~~AhnF(X) = Ah1~~~Ahn/0 /0 f(a+S(X*a))dS

| 1
= [ [ By by flact s(x—a))ds > 0
0 0

because if f(x) is a function with nondecreasing increments of order n, then the function
f(a+s(x—a)) is also a function with nondecreasing increments of order n. O
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4.4 Functions with Nondecreasing Increments
of Order 3

4.41 Levinson Type Inequality for Functions with
Nondecreasing Increments of the Third Order

In this subsection we give two generalizations of the Levinson inequality based on results
about functions with nondecreasing increments of the third order, [29].

Theorem 4.10 Let H : [a,b] — R be a function of bounded variation such that (4.12)
holds and let X : [a,b] — [0,d], (d > 0) be a nondecreasing continuous map. If f is a
continuous function with nondecreasing increments of order three on J = [0,2d], then

JP (X)) dH (1) ; <f;’X<r>dH<r>>

I dH () I dH (1)
Jia f(2d =X (1)) dH 1) J4(2d—X(1))dH (1)
< ~f :
I7 dH (1) ' I dH (1)

Proof. If f is a function with nondecreasing increments of order three on J, then the
following inequality holds

AnyAnyAny f(X) >0 for X,x+h;+hy+h3€J, 0<hyhyh;eRE,
ie.,
An,An, (f(x+h3) — f(x)) > 0. (4.30)
If x € I and h3 = 2d — 2x, we have

Ah1Ahz (f(de X) 7f(X)) >0,

i.e., the function x — f(2d — x) — f(x) is a function with nondecreasing increments of
order two, i.e. it is a function with nondecreasing increments. Now, using Theorem 4.3,
we obtain Theorem 4.10. O

Theorem 4.11 Let Let H : [a,b] — R be a function of bounded variation such that (4.12)
holds and let f be a continuous function with nondecreasing increments of order three on
[c,d] CRK Ler0 <a<d—c. IfX:[a,b] — [¢,d —a] is a nondecreasing continuous map,
then

J2f(X() dH(r) ; J2X(r)dH (1)
S aH (1) L aH ()

_ Jd (@t X()dH () / Jo (a+X(0)dH (1)
- J aH (1) ' J dH (o) '
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Proof. Using (4.30) for h3 = a = constant € R¥, we have that x — f(a+x) — f(x) is a
function with nondecreasing increments, so from Theorem 4.3, we obtain Theorem 4.11.
O

Remark 4.1 For k = 1, Theorem 4.11 gives us a result from [63].

Corollary 4.2 (a) Let X satisfy the assumptions of Theorem 4.10. Then the inequalities

0< ( [ an ) / @ﬁ [ x0an

o k
< (/de(r)) abil_[l(ZdiXi(t))dH(t)il_[l/tzb(ZdiXi(t))dH(;)

hold.
(b) If X satisfies the assumptions of Theorem 4.11, then the inequalities

0§<./de> /ai 1) dH (t H/

< ([ an )/a,H“‘” aH (1) - H/ab<ai+xi<r>>dH<r>

i=1
hold, where all components of X are nonnegative.

Proof. The function f(x) = xj---x; is a function with nondecreasing increments of
orders two and three for 0 < x € R, So, using Theorems 4.3, 4.10 and 4.11, we obtain
Corollary 4.2. O

4.4.2 Generalizations of Burkill-Mirsky-Pecari¢’s Result

In the current subsection, we consider a sequence of k-tuples (Xy, ..., Xy) which is mono-
tone in means, [29].

Theorem 4.12 Let (Xy,...,Xa) €[0,d]", (d > 0) be nondecreasing or nonincreasing in
means with respect to positive weights w; for i € {1,...,n}. If f is a continuous function
with nondecreasing increments of order three on J = [0,2d], then the inequality

W, 2 ( W 2 )

holds.
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Proof. By following the proof of Theorem 4.10, we obtain Theorem 4.12 by simply
replacing “Theorem 4.3” by “Theorem 4.5”. O

Theorem 4.13 Let (Xq,...,Xn) € [e,d—a]", (0 < a < d—c) be nondecreasing or nonin-
creasing in means with respect to positive weights w; fori € {1,...,n}. If f is a continuous
function with nondecreasing increments of order three on J = [¢,d], then

< —iwif(a—i—Xi)—f(WL iwi(a—i—Xi)) .

n =1

Proof. By following the proof of Theorem 4.11, we obtain Theorem 4.13 by simply
replacing “Theorem 4.3” by “Theorem 4.5”. m]

Corollary 4.3 (a) Let X satisfy the assumptions of Theorem 4.12. Then the inequalities

n k k n
0< W,{ﬁl wa (Hx,'j> — H <2wixij>
j=1 i=1

=1 =1

< ‘/V,ffl iwf (ﬁ 2d — Xij ) ﬁ (iwi(zdj_xij)>

j=1 Jj=1 \i=1

hold.
(b) If X satisfies the assumptions of Theorem 4.13. Then the inequalities

n k k n
0< W:il ZW{c (r[]x,'j> — H (ZWﬁC,’j)
j= i=1

i=1 j=1

SW’ffl iwf (ﬁ(aj—l—xu ) H (iwl aj—l—xlj))

i=1 j=1

=~

hold, where all components of X are nonnegative.

Proof. We again consider the function f(x) = x; - - -x; which is a function with nonde-
creasing increments of orders two and three for x > 0. So, using Theorems 4.5, 4.12 and
4.13, we obtain Corollary 4.3. O



Chapter

Linear Inequalities via
Interpolation Polynomials

Let us recall some basic inequalities which are proved in the previous chapters and which
are the framework of this book. They are known under the name “’the Popoviciu inequali-
ties” since they follow from the Popoviciu’s work on n-convex functions and general linear
inequalities in the forties of the twentieth century ([81, 82, 83, 85]).

Theorem 5.1 Let n > 2. The inequality
m
Y pif(xi) >0 (5.1)
i=1

holds for all n-convex functions f : [a,b] — R if and only if the m-tuples x € [a,b]", p € R"™
satisfy

m

N pik =0, forallk=0,1,....n—1, (5.2)
i=1

m
Zpi(xi—t)'ffl >0, foreveryt€ [a,b]. (5.3)
i=1

The integral analogue is given in the next theorem.

Theorem 5.2 Letn>2, p:a,f] = Rand g : o, ] — [a,b]. Then, the inequality

[ peostatoyax=0 64

Jo

127
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holds for all n-convex functions f : [a,b] — R if and only if
p k
/ p(x)g(x)*dx=0, forallk=0,1,....n—1, (5.5)
o

B
/ p(x) (g(x) — l‘):lf1 dx >0, foreveryt € [a,b]. (5.6)

Remark 5.1 As we discussed in Proposition 2.6 from Chapter 2, if n = 2, then conditions
(5.2) and (5.3), i.e.

m m
Y pi=0, Y pixk =0
k=1 k=1
and
m
Zpk(xkfx,)+>0, i=1,....m—1
k=1
can be replaced by

m m
Zpk:O and Zpk|xkfx,-|20 for i=1,...,m,
k=1 k=1

and vice versa.

As it is shown in Chapter 2, these results can be reached using the Taylor formula.
Following that idea we use other interpolation formulae and identities to obtain Popoviciu
type inequalities.

5.1 Inequalities via Extension of the Montgomery
Identity

In this section we use extension of the Montgomery identity to obtain inequalities of type
(5.1) and (5.4) for n-convex functions. The mentioned extension of the Montgomery iden-
tity via Taylor’s formula was obtained in paper [2] and we give it in the following text.

Theorem 5.3 Lern e N, f: 1 — R be such that f~Y) is absolutely continuous, I C R
an open interval, a,b € I, a < b. Then the following identity holds

n—2 f(k+1) (a) (xia)k+2

! /bf(t)dr+2

b—a S k(kt2) b-a

B n—2 f(k+l) (b) (x_b)k+2 N 1
Sk (k+2) b—a (n—1

fx) =

I /b T, (x,s)f("> (s)ds, 5.7
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where

T, (x,s) = (5.8)
(x — S)n x=b )nfl

_ <b.
nb—a) b—a ’ AR

+

In case n = 1 the sum ZZ;(Z) --+ is empty, so identity (5.7) reduces to the well-known
Montgomery identity

10 =5 [ [P s)as

where P (x,s) is the Peano kernel, defined by

sS—da

b—a’ a<s<ux,
—a
P(x,s) = ‘b oy
x<s<b.
b_a7 —

In fact, the previous theorem is a particular case of a more general extension of the
Montgomery identity which is proved in the following text. The proof can be find in [2].

Let us suppose w : [a,b] — [0,°) is some probability density function, i.e. an integrable
function satisfying ffw(t)dt =1and W(t) = [l w(x)dx for t € [a,b], W(t) =0 fort < a
and W(t) =1 fort > b. Let us by P,, denote the weighted Peano kernel

_ W), a<t<x,
Pw(x’t)_{W(t)l, x<t<b.

Theorem 5.4 Letn € Non> 2, f: 1 — R be such that f("fl) is absolutely continuous,
I C R an open interval, a,b € I, a < b, w: [a,b] — [0,0) be a probability density function.
Then the following identity holds

fla) = / (o) (0 +k§)z% / “w(s) (- @t (s —a) ) as
- :Z%/xbww (=B = (5= b)) ds
=) T (5,5) 1 (5)ds, 59
where
. [ v s W@ e a<s<x
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Proof. If we apply the Taylor formula for f”(¢) and replace n with n — 1 we have

n—2 k+1
0 =3 LD ap [ g

k=0

kl _
:2+ tb/f =sf

k=

b
By putting these two formulae in the weighted Montgomery identity f(x) = / w(t)f(t)dt+
a

b
/ Py (x,t)f'(¢)dt, we obtain
a

) = [ v
i nizf(kH)(a) /)C( )kW dt_i_nZZM/b(t_b)k(W(t)—l)dt
k=0 -

Lo 5 .
Jon([rotee

Now, we have

/:(f—a)kW(t)d /x(t—a)" (/l (s )ds) di

= / (/ (t—a) kdt) ds
= k+1/ k+1 (Sia)k+l)dsv
./xba_b)k(W(f)—l)dt = i / x bkt (S—b)k+]>ds.

Also, we obtain

o </f o= 2ds>dt [ <.[CW(t)(’S)"2dt>ds

/ W) (t — )" 2dr = / ’ < / 'w(u)du) (t — syt
_ / ( / ) zdt) du+ / ( /u X(ts)"zdt) du

with
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-1 _ _ -1
—/ du+/ (u—s) du
nfl n—1

By similar calculation we get

_/ )—1) (/f t—s"zds)d
=AfW®<AO—W@W—Q"%0M

and
s _ -l s -1
[ a-wye—syza=we -ty [
’ n—1 X n—1
Now, the reminder in the weighted Taylor formula becomes
# /‘bf(n)(s) /.SW(M)(u—s)"*ldu ds
(n—1)!
/f _snlds+ _1/f —S"lds

O

In the particular case when w(t) = 7, 7 € [a, ], then identity (5.9) reduces to (5.7).
Now we recall the definition of the Green function G which we use in some of our
results. The function G : [a,b] X [a,b] is defined by

w fora<s<t
b—a - =7
G(t,s) = 5.10
R T . 10
b—a - =7

The function G is convex and continuous with respect to both s and ¢.
For any function f : [a,b] — R, f € C?[a,b], it can be easily shown by using integration
by parts that the following is valid

— — b
f0) = T2 p @)+ =21 0)+ [ Glws)s (s, (5.11)

where the function G is defined as above in (5.10) (see also [98]).

5.1.1 Inequalities Obtained by the Montgomery Identity

In this section we give identities for ¥/ | p;f (x;) and ff p(x)f(g(x))dx using the extension
of the Montgomery identity, then obtain Popoviciu type inequalities and describe some
consequences of it. These results are published in [26].
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Theorem 5.5 Suppose all the assumptions from Theorem 5.3 hold and let T, be given
by (5.8). Furthermore, let m € N, x; € [a,b] and p; € R for i € {1,2,....,m} be such that
Y pi=0.Then

n—2 1

o _ 1 (k+1) a)+2
;pl.f()ﬁ)* b—a[%k'(k—f—z sz Xi

SR flies) B+
B kz::ok! k2 ZP’ e

+ (nl / <2pl W (xiys ) (")(s)ds. (5.12)

Proof. Putting in the extension of the Montgomery identity (5.7) x;, i = 1,...m, multi-
plying with p; and summing all the identities we obtain

m b m
N pif (xi) = bia/ f(6)dey p;
= Ja

i=1

m n 2f k+1)( ) (xi_a)k+2 nfzf(kJr]) (b) (xi—b)k”
rar (gb Kl(k+2) b-a S K(k+2) b-a

i-1
+ m;pl/a Ty (xi,5) £ (5) ds.

By simplifying this expressions we obtain (5.12). O
We may state its integral version as follows.
Theorem 5.6 Ler g: [, B] — [a,b] and p : [, B] — R be integrable functions such that

ff p(x)dx=0. Let n € N, I C R be an open interval, a,b € I, a < b, T, be given by (5.8)
and f : I — R be such that f"~) is absolutely continuous. Then

B n—2
./ap(x)f(g(x))dx = bia [2 o (k+2 flkD) /p )2 dx

B
= omﬂkﬂ) () /ap (x) (g(x) —b)k“dx}

(n—1)! / (/px )dX) F" (s)ds. (5.13)

Proof. Putting in the extension of the Montgomery identity (5.7) x = g(x), multiplying
with p(x), integrating over [ct, 8], and using some transformations and the Fubini theorem
we get the required identity. O

M7
|
(38}

+

Now we state inequalities derived from the obtained identities.
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Theorem 5.7 Let all the assumptions of Theorem 5.5 hold with the additional condition
Zp, (xi,8) >0, foralls€ [a,b]. (5.14)

Then, for every n-convex function f : I — R the following inequality holds

i Flx) > 1 "22 1 FletD) 2 Q)+
[:]pl Xi) =2 h—ua kzok!(k+2 Pl i
= | lierD) by
_ - 5.15
kgok!(ku Zp, N (5.15)

Ifthe inequality in (5.14) is reversed, then (5.15) holds with the reversed sign of inequality.

Proof. The function f is n-convex, so without lossing the generality we can assume
that f is n-times differentiable and f*) > 0. Using this fact and (5.14) in (5.12) we easily
arrive at our required result. O

Now we state an important consequence.
Theorem 5.8 Suppose all the assumptions from Theorem 5.5 hold. Additionally, let j €

N, 2 <j<nandlet x = (x1,...,x%n) € [a,D]", p= (p1,...,pm) € R satisfy (5.2) and
(5.3) with n replaced by j. If f is n-convex and n — j is even, then

m 1 n—2 1 m s
pif (x) 2 (@) ¥ pi(xi—a)f
lgl b-a k:,zzzk!(k"'z) le
n—2 m
1 k+1 k42
f=j—2 mf( : >(b)i:21p,- (i =b) (5.16)

Proof. Let s € [a, b] be fixed. Notice that

(b—a)T(x,s) = Ly(x) + (b—a)(x —s)"" !, (5.17)

where
(x—9)"

Ly(x) = ———+ (x=b)(x—s)"".
Using the Pochhammer symbol (y); = y(y—1)---(y —k+ 1) we have

L) = == D197+ (3 6= 0)n - 1)

()t
= (=1l [ D)+ = )-B). (518)
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Therefore, (5.17) and (5.18) for s < x < b yield

%Tn(X,S) = ﬁlﬂ(ﬁ)(x) + (I’L— 1)j(x_s)n—j71
) %(Xﬂ)nﬁ;l (G=Dx=s)+(n—))x—a)]=0, (5.19)

while for a < x < s we have

1 L g = (1 1)

dx/ b—a
- %(“”FH [(G=D(s=x)+@m=7)b-x]>0.  (520)

.. d’ . . . o
From (5.17) it is clear that x — ET" (x,s) is continuous for j < n—2. Hence, if j <n—2
X

and n— j is even, from (5.19) and (5.20) we can conclude that the function x — T,,(x, s) is j-

convex. Moreover, the conclusion extends to the case j = n, i. e. the mapping x — T,,(x,s)
n—2

is n-convex, since the mapping x — T, (x,s) is 2-convex.

n—2
Now, by Theorem 5.1, we see that assumption (5.14) is satisfied, so inequality (5.15)
holds. Moreover, due to assumption (5.2), 3", p;P(x;) = 0 for every polynomial P of
degree < j— 1, so the first j — 2 terms in the inner sum in (5.15) vanish, i. e., the right-
hand side of (5.15) under the assumptions of this theorem is equal to the right-hand side of

(5.16). 0

Corollary 5.1 Suppose all the assumptions from Theorem 5.5 hold. Additionally, let j €
N, 2<j<nletx=(x1,...,xm) € [a,b]"™, p=(p1,...,pm) € R™ satisfy (5.2) and (5.3)
with n replaced by j and denote

1 n_2 1

H(x) = P 2 k_' (k+2)f(k+l) (a) (xia)kJrZ
k=j-—2""
n—2 1
B 1) () (— V2| 521
kz,z-,zk!(kﬁ)f (b) (x=b) (5.21)

IfH is j-convex on [a,b] and n — j is even, then
m
Y pif(xi) > 0.
i=1

Proof. Applying Theorem 5.1 we conclude that the right-hand side of (5.16) is non-
negative for the j-convex function H. O

Remark 5.2 For example, since the functions x — (x —a)**? and x +— (— 1)~/ (x — b)k*2
are j-convex on [a,b], the function H given by (5.21) is j-convex if f**1)(a) > 0 and
(—D)F+H1=T fkED (p) > 0 fork € {j—2,....n— 2}
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In the remainder of the section we state integral versions of the previous results, the
proofs of which are analogous to the discrete case.

Theorem 5.9 Let all the assumptions of Theorem 5.6 hold with the additional condition

/ p(x ),s)dx>0, forallsé€ [a,b]. (5.22)

Then, for every n-convex function f : I — R the following inequality holds

B n=2 B
[P (e = — [z r (,f /@ [P (s) =) ax

k=0

n—2 B
_ 2 mf(kﬂ) (b) /ap (x) (g(x) b)k+2dx‘| . (5.23)

k=0 """

Theorem 5.10 Suppose all the assumptions from Theorem 5.6 hold. Additionally, let
jeN2<j<nandletp:|o,f] — Randg:|a,B] — [a,b] satisfy (5.5) with n replaced
by j. If f is n-convex and n — j is even, then

B n—2
[p@steanar > [2 T / P(x)(g(x) —a) Pdx

k=j—2

n—2 .
flktD) k+2
dx| .
2 k'(k—|—2 / P (glx) =b) x]

Corollary 5.2 Let j,n, f,p and g be as in Theorem 5.10 and let H be given by (5.21). If
H is j-convex and n — j is even, then

[ peostatopas=o

Jo

5.1.2 Inequalities for n-convex Functions at a Point

In Chapter 2 we gave the definition and some results about n-convex functions at a point.
Here we improve those results using results from the previous subsection. These results
can be found in [26].

Let Tn[a’c] and T,,[C’b} denote the equivalent of (5.8) on these intervals, i. e.,

n
X—S X—a _
i R T A ELEE

11 (x,5) = (5.24)
(x—s5)" x-—c

n—1
_ <
nie—a) c—a(x ) x<s<ec,
(xis)n_’_xic( )n 1 < o<
nb—c) b—c o c=9=5
T (x,5) = (5.25)
_x=) x;b(x—s) L x<s<b



136 5 LINEAR INEQUALITIES VIA INTERPOLATION POLYNOMIALS

Letx € [a,c]", p €R™,y € [¢,b]' and q € R and denote

¥ NS (k+1) et2
Al(f) = l;pif(xi)_cia [/cz()k'(k+2 D) ZPz l_a

n—2
1 k) k+2
-y - 5.26
2;m@42 zp“ ) (5.26)

< e 1 'g 1 flk) o)t
Bl(f) - lzzlqlf(yl)ib_c [2 k'(k‘i‘z qu Yi—

=0
"22 1 flk) 2 " by (5.27)
k) i ' '

Notice that, using the newly introduced functionals A and B, identity (5.12) applied to the
intervals [a, c] and [c,b] can be written as

Aﬂﬁ==m,1 /‘<2pz“6xh >ﬂ>@hm, (5.28)
Bi(f) = (njl / (2% an] (vi,s >f (s) ds. (5.29)

Theorem 5.11 Lerx € [a,c]™, p € R™, y € [c,b]' and q € R! be such that

Zp, e x,, )>0, foreverys€la,c], (5.30)

Zq, i y,, >0, foreverys € |c,b], (5.31)

/(i I (xi,s )f ds*/ (2% (vi,s )f“”(s)ds, (5.32)

where T, T)" A\ and By are given by (5.24), (5.25), (5.26) and (5.27) respectively.
If f : [a,b] — Ris (n+ 1)-convex at point c, then

A1(f) < Bi(f). (5.33)

If the inequalities in (5.30) and (5.31) are reversed, then (5.33) holds with the reversed
sign of inequality.
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Proof. Let F = f — e,, be as in the definition of a function n-convex at a point, i. e.,
the function F is n-concave on [@,c] and n-convex on [c,b]. Applying Theorem 5.7 to F on
the interval [a, c] we have

K
02A1(F)=A1(f)—;A1(€n) (534)
and applying Theorem 5.7 to F on the interval [c,b] we have

OSBI(F):Bl(f)_gBI(en)- (5.35)

Identities (5.28) and (5.29) applied to the function e, yield

Al(en) = (nfl / (21’1 xu )ds
Bl(en) = (njl / (2511 n YH )ds-

Therefore, assumption (5.32) is equivalent to A (¢, ) = Bi (e, ). Now, from (5.34) and (5.35)
we obtain the stated inequality. ]
Remark 5.3 In the proof of Theorem 5.11 we have, actually, shown that

K

Al(f) < EAl(en) = 531(&1) < B (f)-

In fact, inequality (5.33) still holds if we replace assumption (5.32) with the weaker as-
sumption that K (B (e,) —Aj(eyn)) > 0.

Corollary 5.3 Let ji,j2,n €N, < ji,jo <n,let f:|a,b] — R be (n+ 1)-convex at point

¢, let m-tuples x € [a,c]™ and p € R™ satisfy (5.2) and (5.3) with n replaced by j, let
I-tuples'y € [c,b]! and q € R! satisfy

!
Zqiyfzo forallk=0,1,...,jo—1
qu L—sz '>0 foreveryt € [y(1),¥(1-n11)]

and let (5.32) hold. If n — j, and n— j, are even, then

AL(f) <Bi(f).

Proof. See the proof of Theorem 5.8. O
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5.1.3 Bounds for Remainders and Functionals

By using the aforementioned results we get bounds for the remainders appearing in the
identities obtained in this section, [26]. Let f,h : [a,b] — R be two Lebesgue integrable
functions. We consider the CebySev functional as follows:

fi) = — /f dx—( w/f dx) (bla./jt(x)dx). (5.36)

As usual the symbol L, [a,b] (1 < p < o) denotes the space of p-power integrable func-
tions on the interval [a,b] equipped with the norm

A |f<t>|pdf)"’ e

and L., [a, b] denotes the space of essentially bounded functions on [a, b] with the norm

£l = ess sup [ (1)].

t€a,b]

The following results can be found in [11].

Theorem 5.12 Let f : [a,b] — R be a Lebesgue integrable function and h : [a,b] — R
be an absolutely continuous function with (- —a)(b — -)[')* € Lla,b]. Then we have the
inequality

10l < 5 (7] [ - -0WwEa) . 63
The constant % in (5.37) is the best possible.

Theorem 5.13 Let h: [a,b] — R be a monotonic nondecreasing function and let f :
[a,b] — R be an absolutely continuous function such that f' € Le|a,b]. Then we have
the inequality

T 5l e | =)o aito). (5.38)
The constant % in (5.38) is the best possible.

For m-tuples p = (p1,---,Pm)> X = (X1,...,Xn) With x; € [@,D], p; e R (i =1,...,m)
such that Y, p; = 0 and the function 7, defined as in (5.8), denote

Zp, (xi,s), fors € (a,b]. (5.39)
Similarly for functions g : [o, 8] — [a,b] and p : [or, B] — R such that fa p(x)dx =
0, denote
B
= / p(x)T,(g(x),s)dx, forsé€ [a,b]. (5.40)
a

Now, we are ready to state the main results of this section.
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Theorem 5.14 Letn € N, f : [a,b] — R be such that ) is an absolutely continuous
function with (- —a)(b—-)[f"* V]2 € L{a,b], x; € [a,b] and p; € R (i € {1,...,m}) such
that Y" o pi = 0 and let the functions T,, T and & be defined in (5.8), (5.36) and (5.39)
respectively. Then the remainder R} (f;a,b) given by the following identity

o RS (k+1) o2
;pif(xi)b—alzk'(k—ﬂ) . Zp’ e

k=0 "
n—2 m
— k 1) e K2
Zk! k+2 o (b)l;p,(x, b) ]
(n=1)(p) _ £(n—1) b
+1 (n(bl))!(ia)(a)/ 81(s)ds + R, (f:a.b) (5.41)

satisfies the estimation

u 1/2
R0 < ot (U508 [ @ e sl sFas)

Proof. By identity (5.12) we have
-2
ip’f(x') _ 1 nz 1 k+l Zp k+2
Y b—a kzok!(k+2) A

=
& flkt) by
B 2 4 k! k+2 2 ]

=1

:(n—l /<2p, (xi, s ).(n>(5)d5

- s [ 6 s

- m/ f(n)(s)ds/ 81(s)ds +RL(f;a,b)

(n—1) (n—

where

Ry(fiab) = 1 fl) (/ 8i(s)f" ds——/ A / ()ds).

If we apply Theorem 5.12 for f — &; and h — ), then we obtain

=Rl "an/& ) (5 [ 7o)

1/2
< (@00 [ - ae-slrt ) Fas)
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from where desired estimation follows. O

Here we state the integral version of the previous theorem.

Theorem 5.15 Lern € N, f : [a,b] — R be such that f") is an absolutely continuous
function with (- —a)(b—-)[f"TV]? € Lla,b], let g : [, B] — [a,b] and p : [, B] — R
be functions such that ff p(x)dx = 0 and let the functions T,, T and A, be defined in
(5.8), (5.36) and (5.40) respectively. Then the remainder R2(f;a,b) given by the following
identity

p n=2 p
[P ststar = — [2 i@ [pW e -af

k=0

[\S]

n—

B
- S s/ [ <g<x>b>k“dx]

[0

,\O

)= )

S b
(- 1)!(b—a) / Ar(s)ds+ R (f3a,b) (5.42)

T

_|_

satisfies the estimation

b—a 1/2

1 b
R(frab) < —— (Z527(0a) [ (- a)b-s)[f" V() ds
-1\ 2 .
By using Theorem 5.13 we obtain the following Griiss type inequality.
Theorem 5.16 Lern € N, f : [a,b] — R be such that f") is an absolutely continuous
function with f"+V) >0 on [a,b), x; € [a,b] and p; ER (i € {1,...,m}) such that Y1 p; =

0. Also, let the functions T and 8; be defined in (5.36) and (5.39) respectively. Then in
representation (5.41) the remainder R.(f;a,b) satisfies the following estimation

8l |52 [0+ )]
_ [ £ (p) — =2 (a)” . (5.43)

b—a

Ry (f;a,b)| <

Proof. If we apply Theorem 5.13 for f — & and h — £, then we obtain

’bla/abéms)f(")(s)ds—(bl—a/ 8i(s )(b a/f )

< s 19 [ 6= a9 )as.

Since

/ab(s—a)(b—s)f("ﬂ)(s)ds = /ab(Zs—a—b)f(")(s)ds
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= (b=a) [f" V) + V@] =2 [f D) - @] 544

by using identities (5.41) and (5.44) we deduce (5.43). O

Next we give the integral version of the above theorem.

Theorem 5.17 Lern € N, f : [a,b] — R be such that f") is an absolutely continuous
function with f"*Y >0 on [a,b], let g : [a,B] — [a,b] and p : [ot, B] — R be functions
such that f£ p(x)dx = 0. Also, let the functions T and Ay be defined in (5.36) and (5.40)
respectively. Then in representation (5.42) the remainder R2(f;a,b) satisfies the following
estimation

il | 25 [0+ 1)

IR (f;a,b)| < F
= [£02) - (@) |

Now we state some Ostrowski-type inequalities related to the obtained identities.

Theorem 5.18 Let all the assumptions of Theorem 5.5 hold. Furthermore, let (q,r) be a
pair of conjugate exponents, that is 1 < q,r < oo, é + % =1. Let f(”> € L, [a,b] for some
n €N, n> 1. Then we have

ISR (k+1) )+
Fl) = 3=, L%k!(ﬂz ZP

2 k_|_2 k+1 sz e k+2]

(5.45)

1 m
< |Ifm _ .
- (I’L—l)'”f HCI ;plnz(xz, )

r

The constant on the right-hand side of (5.45) is sharp for 1 < q < oo and the best possible
forq=1.

Proof. Let us denote

Zpl n xl7

Now, by using identity (5.12) and applying Holder’s inequality we obtain

i=1 i=1

m 1 n—2 1 m
. N (k+1) Ay K2
D pif (xi) h—a LZO X (k+2)f a) Y pilxi—a)™

1

n—2
_me A 2"’ i m} < IF gl Al (5.46)
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1/r
For the proof of the sharpness of the constant (fab |)L(s)|rds) , let us find a function f

for which the equality in (5.46) is obtained.
For 1 < g < oo take f to be such that

F(s) = sgn A(s) - |A(s) 470

For g = oo, take f such that
£ (s) = sgn A(s).
Finally, for g = 1, we prove that

s)ds

< max |A(s |/ (s (5.47)

s€la,b]

is the best possible inequality.

Function T}, (x,-) for n = 1 has a jump of —1 at point x. But, for n > 2 it is continuous,
and thus A (s) is continuous. Suppose that |A (s)| attains its maximum at sy € [a,b]. First
we consider the case A (sg) > 0. For € small enough we define f(s) by

0, a<s<s0,
fe(s) = L (s—s0)", 50 <s<so+E,
WLMQ*WW47 So+€<s<bh.
We have
so+€ 1 1 so+E
- / A(s)~ds| = = / A(s)ds.
) 3 €. 50

Now, from inequality (5.47) we have

1 so+€ 1 so+€
—/ ).(s)dsgﬂ.(so)—/ ds = A(s0).
€ S0 £ . S0
Since
. 1 S0+S)L d _)L
tim L[ A s = 2(x0),

the statement follows.
In the case A (s9) < 0, we define f¢(s) by

1 —
m(sfsof&‘)" L a<s<sg,
fe(s) =< —L(s—so—e)", s0 <5< s0+E,
0, so+e<s<b
and the rest of the proof is the same as above. O

Now we give the integral case of the above theorem.
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Theorem 5.19 Let all the assumptions of Theorem 5.6 hold. Furthermore, let (q,r) be a
pair of conjugate exponents, that is 1 < q,r < oo, é + Il =1. Let f(”> € L, [a,b] for some
neN, n> 1. Then we have

[ p (e

bialnzzk!(mz o / p() (g(x) —a) 2 dx
kzo k+2 kH)(”)/aﬁP(X)(g(X)—b)"“dxl

S T e , (5.48)

The constant on the right-hand side of (5.48) is sharp for 1 < q < e and the best possible
forqg=1.

5.1.4 Results Obtained by the Green Function and
the Montgomery Identity

In this section we give several identities and inequalities based on application of the exten-
sion of the Montgomery identity involving the Green function. These results can be find in
paper [27].

Theorem 5.20 Letn € N, n >3, f : I — R be a function such that f"~V) is absolutely
continuous, I C R an open interval, a,b € I, a < b. Let X = (x1,...,Xn) € [a,b]", p =
(Pl oo ,Pm) eRrR™ Sdfisﬁ/

Ypi=0, Y pxi=0 (5.49)
i=1 i=1
and let G be given by (5.10). Then
m / b m
Zpif(xt = f(b#/ zpl xla
n 1 b m (k) _ k=1 _ r(k) _ K)k—1
[ S it e e,

i= b—a
1 b n b m ~
+W/a f )(t) </a izlpiG(xi,s)ﬂlg(s,t)ds> dt, (5.50)
where
n—2
bia[(s(ni)z) +(s—a)(s—1) 3], a<t<s<b,
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and G is as defined in (5.10). Moreover; the following identity holds

Zpl xl = /zpl xla
a j=

nl b m (k) _ N\k—1 _ p(k) _ k-1
= /zp, YA T
—a

1 . b m
i 3)!/af() (/ ZP’ (i, )T 2<”)d3>d% (5.51)

where T, is as defined in (5.3).

b

Proof. Using (5.11) in ¥ | pif(x;), and condition (5.49) we get

b m

Zpl f(xi) /Zp, (x;,8)f" (s)ds. (5.52)

1=

Differentiating (5.7) twice with respect to s, we get

W (@)(s—a)' = fBb) (s —b)*!
b—a

1 - f/(a)*f/(b) o k
1 b
- (n)
IR T / Toa(s,) ) (1), (5.53)
Now using (5.53) in (5.52) we get

m a b m
Zpif(xi) = /a sz (xi,s)

- a1 P b

/azpl (xis) b—a ds
_3 / sz (xi,5) < / Tnz(s,t)f(")(t)dt)ds

and then using Fubini’s theorem in the last term we get (5.50).
Also, by using formula (5.7) on the function f”, replacing n by n—2 (n > 3) and
rearranging the indices we get

v @) e k=2 fP@)s—a) = )5 =)
fis) = — — +§3(k_1)! —
+ ﬁ/jﬂzz(s,t)f(")(t)dt. (5.54)

Similarly, using (5.54) in (5.52) and applying Fubini’s Theorem, we get (5.51). O
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Theorem 5.21 Let all the assumptions of Theorem 5.20 hold with additional condition
/ Zp, (xi,8)Ty—2(s,t)ds >0, Yt€la,b] (5.55)
Ja i=

where G is defined in (5.10) and T, is defined in Theorem 5.20. Then for every n-convex
function [ : I — R the following inequality holds

21’1 f(xi) Zf(l)) i: /a Zpl (xi,5) (5.56)
+2 ﬁ/biplG(x” )f(k)(a)(sf“)kfll)*f(k)(b)(sfb)"*lds_
—p \K—1): —a

Proof. Since the function f is n-convex we have f(") > 0. Using this fact and (5.55) in
(5.50) we easily arrive at our required result. O

Theorem 5.22 Let all the assumptions of Theorem 5.20 hold with additional condition
b m
/ Zp, (1,5 Tp_a(s,0)ds >0, V1€ [a,b], (5.57)
a
where G is defined in (5.10) and T, is defined in Theorem 5.3. If f is n-convex then

3 pite) ERAUSSEAC / 5 pGlan) (558)

a

m (k)a s— a1 — £0) (p) (s — pYk-1
A2 'S ot gL >bi£ (B)s=b) "

Proof. Since the function f is n-convex we have f () > 0. Using this fact and (5.57) in
(5.51) we easily arrive at our required result. O

Now we state one important consequences.

Theorem 5.23 Let all the assumptions from Theorem 5.20 hold with

m
Y pi=0, Y pilxi—x| >0, forke{l,....m}. (5.59)

i=1 i=1
If f is n-convex and n is even, then inequalities (5.56) and (5.58) hold.

Proof. Since the Green function G(s,7) is convex with respect to ¢ for every s € [a, D]
and x = (x1,...,%,) and p = (p1,..., pm) satisfy conditions from Remark 5.1 we have

Zp, (xi,5) >0 for s€ [a,b]. (5.60)
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Also note that for even n T,,_»(s,t) > 0 and 7,,_»(s,z) > 0. Therefore, combining this fact
with (5.60) we get inequalities (5.55) and (5.57). As f is n-convex, so results follows from
Theorems 5.21 and 5.22. O

The integral version of our main results may be stated as follows. Since the proofs are
of similar nature, we omit the details.

Theorem 5.24 Letn e N, n >3, f: 1 — R be a function such that f"~Y) is absolutely
continuous, I C R an open interval, a,b € I, a < b. Furthermore, let g : [a,B] — [a,b] and

p: o, B] — R satisfy ff p(x)dx =0 and fol? p(x)g(x)dx =0, and let G, T, and T, be given
by (5.10), (5.8) and in Theorem 5.20. Then the following two identities hold:

/p dxf //p ),s)dxds

—1)! /b(/ d)a f(k)(a)(s—a)kfl_f(k)(b)(s_b)kilds

b—a

+m/af<n>(t) (/ (/a p(x)G(g(x),s)dx)T 2 (s, t)ds)d
/p dx* b //P ),s)dxds

1 ®) (@) (s — a)—1 — R (p)(s — p)k—1
+2kf/(/ d}af @G—at = fOB)s— bt

b—a

+m/a f<n>(,)</ </ plx )dx> (s, t)ds)dt.

Theorem 5.25 Let all the assumptions of Theorem 5.24 hold with additional condition

and

// ),5) Tua(s,t)dxds >0, Vi€ [a,b], (5.61)

where G is defined in (5.10) and T, is defined in Theorem 5.20. If f is n-convex, then
B
[ peostsenas = ZOZLO [ 17 ) (a0 5) s (562
n—1 k
2
(k) _ )1 _ k) _ p)k—1
y /a” (/ﬁp<x) G(g(x)’s)dx) SN (s —a)™ — fOB)s—b) =

Jo b—a

Theorem 5.26 Ler all the assumptions of Theorem 5.24 hold with additional condition

/a /a p(x)G(g(x),8) T—2(s,t)dxds > 0, V1€ [a,b]. (5.63)
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If f is n-convex, then

B

/(xp(X)f(g(X))dx> 1) = // ),s)dxds (5.64)
- )
kz —in~

[ ([ p0 6.0 ) TS IO D

Jo b—a
Theorem 5.27 Let all the assumptions from Theorem 5.24 hold with the additional as-
sumption that g : [, B] — [a,b] and p : [, B] — R satisfy
.ﬁ %
/ p(x)g"(x)dx = 0 forallk=0,1,....n—1,
JO

[ p)(e) — 1) x> 0 for every 1€ [ab).

If f is n-convex and n is even, then inequalities (5.62) and (5.64) hold.

5.1.5 Bounds for the Remainders

Theorems in this section are devoted to estimations of the remainders which occur in cer-
tain representations of the sum Y | p;f(x;) and the integral |, O’? p(x)f(g(x))dx. Namely,
we give some Griiss and Ostrowski type inequalities, [27].

Under the assumptions of Theorems 5.20 and 5.24 respectively, we define the following
functions

1 = /bip,»c(xi,s)fn,z(s,t)ds, 1 € [a,b] (5.65)
/azpz (xi,$)Ty—2(s,2)ds, 1 € [a,b] (5.66)
// ),8) Tua(s,t)dxds, 1 € [a,D] (5.67)

0= [ [ r@oe@. T dxds, relabl 668

Theorem 5.28 Lernc N, n>3, f: [a,b] — R be such that f") is an absolutely contin-
uous function with (- —a)(b—-)[f"+tV]? € L[a,b] and let x € [a,b]" and p € R™ satisfy
Sm . pi=0and 3T | pix; = 0. Then the remainders R} (f;a,b) and R2(f;a,b) given by the
following identities

m a b m
2 pif(xi) = / Zpt xu
i=1 a

i=
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(k)a s—a)k1 = £(0) (p) (s — p)k-1
v /zp, SR ALt i LDy
f<" 1>(b) T
BT ) / Qu(s)ds +Ry(f1a,0) (5.69)

and
2 pif(xi)— f / Zpt xta
i=1 a

n 1 m ) _ —1 _ (k) _ -
= /”zp, L@ a)k;j(b)(s D

f“””(b) —f<
+ (n73)!(bfa)

/ Qs (s)ds+ R%(f:a,b) (5.70)

satisfy estimations

—a b
Rified)| < o (5T @) [ (- a9 Pas)

fork=1,2.

Proof. We will prove the claim for k = 1, while the proof for k = 2 is analogous.
Proposition 5.12 with f — Q; and h — f) yields

’b a/ (S dt<b a/ @l dt) (b— /f )‘

1/2
_if(—mszl,szl [e-ae-oiepa) 571)

By identity (5.50) from Theorem 5.20

ipiﬂxo—%/a 5 )

i=

X @ —af O
k:2 K= 1)1 /Zp, (xi,$) ds

b—a
:m/ Qi ()£ (1)t

and, since
1 b f("*l)(b) _ f(nfl)(a) b
(n*3)!./a l(l)f (l)df (n73)!(b—a) 1, 1(l)dt—|— n(f,a’b)’
the bound for the remainder R\ (f;a,b) follows from (5.71). O

By using Theorem 5.13 we obtain the following Griiss type inequality.
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Theorem 5.29 Letn €N, n >3, f: [a,b] — R be such that f") is an absolutely con-
tinuous function with fU"*1) >0 and let x € [a,b]" and p € R™ satisfy ¥, pi = 0 and
Y | pixi = 0. Then remainders R.,(f;a,b),i = 1,2, from representations (5.69) and (5.70)
satisfy

Rifia0) < gl {752 [V @)+
=2 - 12|}

Now we state some Ostrowski-type inequalities related to the generalized linear in-
equalities. The proofs of the below-mentioned two theorems are done in a similar manner
as the proof of Theorem 5.18.

Theorem 5.30 LetneN,n>3,1<q,r <o, é—i—% =1, fe Lyla,b) andletx € [a,b)"
and p € R" satisfy ¥i" | pi=0and Y| pix; = 0. Then

ﬁlpif(xt) - w ./a‘b imlpiG(xiaS)dS
_2 L $ potos P@ls—af - -,
< Ol [ iilpi(;(xi,s)nz(s,r)ds
and r
ﬁlpif(xt) - w ./a‘b imlpiG(xiaS)dS
_2 o2 § ity L= s

1
<~ _qfn)

The constant on the right-hand side of the above inequalities is sharp for 1 < q < o and
the best possible for g = 1.

b m
[ 3 piGls)Ta(s.0ds
Ja iz

r

The integral analogous of stated results are as follow. Since the proofs are of similar
nature we omit the details.

Theorem 5.31 Lerne N, n>3, f: [a,b] — R be such that ) is an absolutely continu-
ous function with (- — a)(b—)[f"+tV)? € Lja,b] and let g : (o, B] — [a,b] and p : [ot, B] —
R satisfy ff p(x)dx =0 and ff p(x)g(x)dx = 0. Then the remainders R (f;a,b), k = 3,4,
given by the following identities

[ p sy = TO=TCL T 1 0 G, ) axas
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+: [ ([ et «

@) —a)k*' — O B) s~ )

b—a ds
{f(nfl)(b) _ f(nfl)(a)} , 3
+ (n—3)!(b—a) /aQ3(s)ds+Rn(f;a,b), (5.72)
and
g f'(b) ~ f'(a)
[ p sty =TI 17 0 Gig(0) 5y dvas

[0 (B) -~ frD(a) }

* (n—3).(b )

/ Qu(s)ds + R (fra,b), (5.73)

have a bound

4 1/2
R0 = o (U5 U@ [ - -6 as)

By using Theorem 5.13 we obtain the following Griiss type inequality.

Theorem 5.32 Lern e N, n >3, f: [a,b] — R be such that f") is an absolutely con-
tinuous function with f"+Y >0 and let g : o, ] — [a,b] and p : [, B] — R satisfy
ff p(x)dx =0 and ff p(x)g(x)dx = 0. Then the remainders R, (f;a,b), i = 3,4 from rep-
resentations (5.72) and (5.73) satisfy

|R,(f:a.b)|

1 b
< gyl {

The Ostrowski-type inequalities related to the generalized integral linear inequalities
are given below.

S+ @ e - ) |

Theorem 5.33 Let n € N, n>31<qr<o<>l =1, " € Lyja,b] and let g :
[a,B] — [a,b] and p : [, B] — R satisfy fa p(x)dx =0 and fa p(x)g(x)dx = 0. Then
B f/
/a p(x) f(g(x))dx — / / s)dxds
n—1 k
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/ (/ P )dx) fOa)(s— a)kf; : .C):(k) (b)(s —b)*! .

LA™ llgI sl

dxf b //p ),s)dxds
L / ([ i)

Xf“@ﬂ@—aV*“—ﬂmwﬂs—bV”
b—a

= (n—3)!

and

1
ds| <

~ (n—3)!

The constant on the right-hand side of the above inequalities is sharp for 1 < q < o and
the best possible for g = 1.

17 14

5.1.6 Mean Value Theorems and Exponential Convexity

In this section we prove some properties of linear functionals associated with the inequal-
ities obtained in earlier sections. Under the assumptions of Theorem 5.7 using (5.15),
Theorem 5.9 using (5.23), Theorem 5.21 using (5.56), Theorem 5.22 using (5.58), Theo-
rem 5.25 using (5.62) and Theorem 5.26 using (5.64) we define the following functionals
respectively:

R I ISR fliet) a)+?
(f) - izzlplf(xl) b a L{Z()]d (k+2 zpl Xi —
}172 1
- k:zom fE Zp, Xi— "*2], (5.74)

B
Ma(f) = [ (e

n—2 B
- bia [2 i (,:H)f(k“)(a)/a P () (g(x) —a)dx
55 1 (k+1) k+2
- k%mf ) [ p) a0 dx]’ (575)

b m

wo(9) = S i) - LO=LE [ s
i=1 a

o /bi (5
- VrREEY) piG(xi,s) X
k=2 (k_l)! a j=1

S — a)kf,l, :‘Z(k) N2 576
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ZZPif(xi) b f /QZPL (xi,5)

n 1 m
k 2 P
- /ZPiG(xi»S)X
=1

y f(k) (a) (S — Cl)k71 - f(k) (b) (S — b)k71 ds7 (577)

wsth) = [ p@ faeyae-LO=TO [* / 1 (5) Glg().5) s

_ kziﬁ/b (/aﬁp(x)G(g(x),s)dx) x

(k) _ )1 flk) AV
SN PO

As(f) = /ﬁp<x>f<g<x>>dx— 1) - / / ),5)dxds

o

_ kzi%/b (/aﬁp(x)G(g(x),s)dx) x

SN TSRO (579

Remark 5.4 In the following text until the end of this section we use an agreement that
if k is a fixed number from the set {1,2,3,4,5,6}, then assumptions of Theorem 5.7, The-
orem 5.9, Theorem 5.21, Theorem 5.22, Theorem 5.25, Theorem 5.26 hold respectively.

Now we give mean value theorems for Ay, k € {1,...,6}.

Theorem 5.34 Let k € {1,...,6} and let Ay : C"([a,b]) — R be a linear functional as
defined in (5.74),...,(5.79) under the agreement described in Remark 5.4, respectively.
Then for f € C"(|a,b)) there exists & € |a,b] such that

Ae(f) = U (E) A fo), (5.80)

n

where fo(x) = x_'
n!

Proof. Fix k € {1,...,6}. Since f") is continuous on [a,b], we have L < ") (x) <M

for x € [a,b] where L = min,c, s U (x) and M = MaX (g ) £ (x).
Therefore the function

Fx) = M2~ 00 = Mfo() ~ /)

satisfies

FI(x) = M — £ (x) > 0,
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i.e. F is n-convex function. Hence Ag(F) > 0 and we conclude that

Ai(f) S MA(fo)-

Similarly, we have
LAk (fo) < Ae(f)-

Combining the two inequalities we get

LA (fo) < Ax(f) < MA(fo)-

If Ax(fo) =0, then Ag(f) = 0 and statement (5.80) obviously holds. If Ag(fp) # 0, then

Ar(f) . Ax(f) .

€ |L,M]|. Hence there exists & € |a,b]| such that = £ , 1.e. the state-
Ar(fo) L. M) S € lat] Ar(fo) F&)
ment of the theorem is proved. O

Theorem 5.35 Let k € {1,...,6} and let Ay : C"([a,b]) — R be a linear functional as
defined in (5.74),...,(5.79) under the agreement described in Remark 5.4, respectively.
Then for f,h € C"([a, b)) exists & € [a,b] such that

M) _ (&)

Ar(h) KM (&)

assuming that both denominators are non-zero.
Proof. Fix k€ {1,...,6}. For f,h € C"([a,b]) define ® € C"([a,b]) as
© = A()f — A(f)h.
Using Theorem 5.34 there exists & such that
) = 0" (&) A(fo)-

Obviously, Ag(®) =0 and @™ (&) = A(h) f™) (&) — Ae(f)R" (&)- Since Ax(h) # 0 by
Theorem 5.34 we conclude that Ag(fy) # 0. So

Ax(

e

Ae(h) F™ (&) — AR (&) =0

which gives us the required result. |

. (n) .
Remark 5.5 If the inverse of {l(—z) exists, then from the above mean value theorems we
can give generalized means

-
&(f()) (A"(f)>, ke{l,...6). (5.81)

h(") Ak(h)

A number of important inequalities arises from the logarithmic convexity of some func-
tions. In the following definitions [ is an interval in R.
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Definition 5.1 A function f : 1 — (0,0) is called log-convex in J-sense if the inequality

(252 < s )

holds for each x1,x; € I.

A function log-convex in the J-sense is log-convex if it is continuous as well.

Some results about exponentially convex functions are already given in Section 3.6.
Here we wide that concept to n-exponentially convex functions. J. Pecari¢ and J. Peri¢ in
[73] introduced the notion of n-exponentially convex functions which is in fact a gener-
alization of the concept of exponentially convex functions. In the present subsection, we
discuss the concept of n-exponential convexity by describing related definitions and some
important results with some remarks from [73].

Definition 5.2 A function f : I — R is n-exponentially convex in the J-sense if the in-
equality

n i+t
2 uiujf( IJZF ]) >0
ij=1

holds for eacht; € I andu; € R, i € {1,...,n}.

Definition 5.3 A function f : I — R is n-exponentially convex if it is n-exponentially
convex in the J-sense and continuous on 1.

Remark 5.6 We can see from the definition that 1-exponentially convex functions in the
J-sense are in fact nonnegative functions. Also, n-exponentially convex functions in the
J-sense are k-exponentially convex in the J-sense for every k € N such that k < n.

Definition 5.4 A function f : I — R is exponentially convex in the J-sense, if it is n-
exponentially convex in the J-sense for each n € N.

Remark 5.7 A function f : I — R is exponentially convex if it is n-exponentially convex
in the J-sense and continuous on /.

Here we state without proof a proposition from [73].

Proposition 5.1 If function f : I — R is n-exponentially convex in the J-sense, then the

matrix m
tit+t;
(5]
ij=1

is positive-semidefinite. Particularly

t. . m
(5]
ij=1

foreachm e NNm <nandt; €1 fori € {1,...,m}.
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Remark 5.8 A function f : I — (0,c0) is log-convex in the J-sense if and only if the

inequality

Hh+un
2

holds for each ¢;,t, € I and u,u, € R. It follows that a positive function is log-convex
in the J-sense if and only if it is 2-exponentially convex in the J-sense. Also, using basic
convexity theory it follows that a positive function is log-convex if and only if it is 2-
exponentially convex.

AGY, +2M1u2f< ) +u3f(1) >0

Here, we get our results concerning the n-exponential convexity and exponential con-
vexity for our functionals A, k € {1,...,6}. Throughout the section [ is an interval in
R.

Theorem 5.36 Let Dy = {f; :t € I} be a class of functions such that the function t —
(20,21, - -, 2n3 f1] is n-exponentially convex in the J-sense on I for any n+ 1 mutually distinct
POINIS 20,21, ,2n € |a,b]. Let Ay for k € {1,...,6} be the linear functionals as defined
in (5.74),...,(5.79) under the agreement described in Remark 5.4, respectively. Then the
following statements are valid:

(a) The functiont — Ar(f;) is n-exponentially convex function in the J-sense on I.

(b) If the function t — Ag(f;) is continuous on I, then the function t — Ag(f;) is n-
exponentially convex on 1.

Proof.
(a) Fix k € {1,...,6}. Let us define the function w fors; € I, u; € R, i € {1,...,n} as
follows
n
w = 2 Ltiujftl-+tj,
ij=1 2
Since the function t — [z9,21, ... ,2n; f;] is n-exponentially convex in the J-sense, we
have
n
(20,215 s 205 0] = 2 Uil j[20,215 -+ Zns ;] > 0
2

ij=1
which implies that ® is n-convex function on I and therefore A;(w) > 0. Hence
n
2 M[Mj/\k(fti+tj) >0.
ij=1 2

We conclude that the function 7 — A (f;) is an n-exponentially convex function on
I in the J-sense.

(b) This part easily follows from the definition of n-exponentially convex functions.

As a consequence of the above theorem we give the following corollaries.
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Corollary 5.4 Let D, = {f; : t € I} be a class of functions such that the function t —
(20,21, -+, 2u3 f1] is exponentially convex in the J-sense on I for any n+ 1 mutually distinct
points 20,21, ,zn € |a,b]. Let Ay for k € {1,...,6} be the linear functionals as defined
in (5.74),...,(5.79) under the agreement described in Remark 5.4, respectively. Then the
following statements are valid:

(a) The functiont — Ag(f;) is exponentially convex in the J-sense on I.
(b) If the function t — N (f;) is continuous on I, then the function t — Ai(f;) is expo-

nentially convex on I.

m
(¢) The matrix [Ak ( fus )} is positive-semidefinite. Particularly,
2 =1

m
det |:Ak (fti+tj ):| >0
2/ 1ij=1

foreachm € N andt; € I wherei € {1,...,m}.

Proof. Proof follows directly from Theorem 5.36 by using the definition of exponential
convexity and Corollary 3.4. ]

Corollary 5.5 Ler D3 = {f; : t € I} be a class of functions such that the function t —
(20,21, - - 203 fi] is 2-exponentially convex in the J-sense on I for any n+ 1 mutually distinct
points 20,21, ,zn € |a,b]. Let Ay for k € {1,...,6} be the linear functionals as defined
in (5.74),...,(5.79) under the agreement described in Remark 5.4, respectively. Then the
following statements are valid:

(@) If the function t — Ai(f;) is continuous on 1, then it is 2-exponentially convex on
L. If the function t — Ap(f;) is additionally positive, then it is also log-convex on I.
Moreover, the following Lyapunov’s inequality holds for r < s <t,r,s,t €1

(A" < M) A ()] (5.82)

(b) Ifthe functiont — Ai(f;) is positive and differentiable on I, then for every st ,u,v € I
such that s < u andt < v, we have

Wt (Ak7D3) < .uu,v(Aka3)7 (583)
where U, is defined as

(Ak(fs)>“ st

Hss (Ak, D3) = 4 (5.84)
exp [ BME) )
Ak(fS)

for fs, fi € D3.
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Proof. (a) It follows directly form Theorem 5.36 and Remark 5.8. As the function
t — Ag(f;) is log-convex, i.e., log Ag(f;) is convex we have

loglA(fi)]' " < log[Ax(£)]* +log[Aw(f)]" ", ke {L.....6)

which gives us (5.82).
(b) For a convex function f, the inequality

1) = 1) _ ) = £0) 555
s—1 u—v

holds for all s,¢,u,v € I CR suchthats <u,t <v,s#t,uv.

Since A(f;) is log-convex, setting f(z) = log A(f;) in (5.85) we have

s—t u—v
fors <u,t <v,s#t,u v, which is equivalent to (5.83). The cases for s =¢ and/oru =v
are easily derived from (5.86) by taking respective limits. O

Remark 5.9 The results from Theorem 5.36 and Corollaries 5.4 and 5.5 still hold when
any two (all) points zo,zi,...,2: € [a,b] coincide for a family of differentiable (n-times
differentiable) functions f; such that the function ¢ — [z0,z1,...,2x; ;] i n-exponentially
convex, exponentially convex and 2-expoenetially convex in the J-sense respectively.

Now, we give two important remarks and one useful corollary from [22], which we
will use in some examples in the next section.

Remark 5.10 We say that i (Ag, Q) defined with (5.84) is a mean if
a S M‘Y,I(Akvg) S b

fors,t € land k € {1,...,6}, where Q = {f; : t €I} is a family of functions and [a,b] C
Dom(f;). O

Theorem 5.36 give us the following corollary.
Corollary 5.6 Let a,b € R and Ay for k € {1,...,6} be the linear functionals as defined
in (5.74),...,(5.79). Let Q = {f, : t € I} be a family of functions in C*([a,b)). If

1

A
dx?
< < b,
a< 77, (&) <
dx?
for & € la,bl, s,t €1, then U, (A, Q) is a mean fork € {1,...,6}.

Remark 5.11 In some examples, we will get means of this type:
1
de:Y s—1
dx?
= =¢, E€lab], sH#t.
77, (&) =&, celabl, s#
dx?
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5.1.7 Examples with Applications

In this section, we use various classes of functions Q = {f; : r € I'}, where [ is an interval
in R, to construct different examples of exponentially convex functions and Stolarsky-type
means. Let us consider some examples.

Example 5.1 Let F; = {y; : R — [0,00) : t € R} be a family of functions defined by
1x

ll/t (x) _ tn

n!

Since fT""‘Vf (x) = €™ > 0, the function y;(x) is n-convex on R for every 7 € R and t —
j—;l v, (x) is exponentially convex by definition. Using analogous arguing as in the proof of
Theorems 5.36, we have that # — (20,21, . ..,2; V%] is exponentially convex (and so expo-
nentially convex in the J-sense). Using Corollary 5.4 we conclude that # — Ax(y5), k €
{1,...,6} are exponentially convex in the J-sense. It is easy to see that these mappings are
continuous, so they are exponentially convex.

Assume that # — Ag(y;) > 0 for k € {1,...,6}. By inserting functions y; and s in
(5.81), we obtain the following means: for k € {1,...,6}

1 A (W
___bg(_ﬂy_>, st

s—1 Ar(y
Ay (id - n
m&',t(Ak7Fl): %—E, s=t#0,
s
Aelid - wo) , R
(n+1)Ae(wo)

where id stands for the identity function on R. Here M, (Ag, F1) = log(ts (Ax, F1)),
ke {l,...,6} are in fact means.

d i\ s
We observe here that j’xl:l/, (log&) = & isamean for & € [a,b] where a,b € R
dx"
Example 5.2 Let F; = {¢; : (0,00) — R : ¢ € R} be a family of functions defined as
t(t—l)--ivr(t—n—l—l)’ t¢{0,...,n—1},
%) = (x)/logx

Sy T iy A

. . . 2 . .

Since ¢ (x) is an n-convex function for x € (0,e) and 7 — j7(p, (x) is exponentially
convex, so by the same arguments given in the previous example we conclude that Ag (¢ ), k €
{1,...,6} are exponentially convex.
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We assume that Ax (@) > 0 for k € {1,...,6}. For this family of n-convex functions
we obtain the following means: fork € {1,...,6},J={0,1,...,n—1}

(2o,

A n—1
My (Ao ) =4 exp [ (—1) 1o — 1) 22L200) +2k ) s=1¢J,
1
k—

A 3 n—1
Y k(<Po<P )

exp [ (—1)"(n 200(05) (bt

+

Here M, (A, F2) = Us (Ax, F2), k € {1,...,6} are in fact means.

Remark 5.12 Further, in this choice of family F,, we have

d"og\

% (&) =&, Eclab], s£1, wherea,b € (0,c0).

dx"

So, using Remark 5.11 we have an important conclusion that (A, F») is in fact a mean
fork e {1,...,6}.

Example 5.3 Let F3 = {0, : (0,00) — (0,00) : 1 € (0,°0) } be a family of functions defined
by

/2
The function ¢ — ;T);Bf (x) = e Vi s exponentially convex for x > 0, being the Laplace
transform of a nonnegative function [22]. So, by the same argument as in Example 5.1 we
conclude that Ax(6;), k € {1,...,6} are exponentially convex.

We assume that Ax(60,) > 0 fork € {1,...,6}. For this family of functions we have the
following possible cases of s, (A, F3): fork € {1,...,6}

1

(@) #

ex _ Ak(ldes) _i —
P\T2 a0, 2s) °TF

By (5.81), M (A, F3) = — (/s + 1) log s (A, F3), k € {1,...,6} defines a class of
means.

ms,l(Aka:‘?) =

Example 5.4 Let Fy = {¢ : (0,00) — (0,00) : 7 € (0,20) } be a family of functions defined
by

X
1. n.’ t#lv
& (x) = loxn t
=, r=1.
n
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Since C;“—;¢l (x) =t7F = e¥1°2" > ( for x > 0, by the same argument as in Example 5.1 we
conclude that 7 — Ag(¢r), k € {1,...,6} are exponentially convex.

We assume that A (¢;) > 0 for k € {1,...,6}. For this family of functions we have the
following possible cases of s, (Ag, Fy): fork € {1,...,6}

L

Ak((l’S))’”
(Ak«m ’ A
_ Aeid-¢5)  n B
M (A, Fa) exp ( AL (0y) slogs>’ s=t#1,
o[ — 1 Ak(id-(f)l)) L
e"( n+) Ay ) T

By (5.81), My, (A, Fa) = —L(s,1)log ts s, (Ax, Fs), ke {1,...,6} defines aclass of means,
where L(s,?) is the logarithmic mean defined as:

—t
Si? S#t7
L(s,t) =< logs—logt
s, s=t.

(5.87)

Monotonicity of p (A, Fj) follow form (5.83) for j € {1,2,3,4} k€ {1,...,6}.

5.2 Linear Inequalities via the Taylor formula

While in the previous section we use an extension of the Montgomery identity to make
new identities for the sum Y | p; f(x;) and the integral f(f p(x)f(g(x))dx, in this section
the Taylor formula has a crucial role in our attempts to get new identities for the above-
mentioned sum and integral. The results of this section are given in [31].

5.2.1 Inequalities via the Taylor Formula

Our first result is an identity which is a basic tool for our subsequent investigation. In fact
this identity is given in Chapter 2 but here we repeat it because it is a base for further results
in this section.

Theorem 5.37 Let n,m € N and f : 1 — R be a function such that f"=Y) is absolutely
continuous on I C R, a,b € I, a < b. Furthermore, let x; € |a,b] and p; € R for i €
{1,2,...,m}. Then

m n—1 (k)a m
S = 3 L9 S pi—a)
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/f (21?1 Xi — )ds (5.88)

and

m

m n—1 (k)
le’if(xt = 2(—1)kf k,(b) 2 pi(b—x)k

. 1(2,91 )

Theorem 5.38 Let g : [, ] — [a,b] and p : [a,B] — R be integrable functions. Let
neNand f:1— R be such that {1 is absolutely continuous on1 C R, a,b € I, a < b.

Then

We may state its integral version as follows.

B =1 ¢K) (q) (B
[ @) gt = gf o / P (a0 -~ s
() / (x) (g(x) — )" " dxds,
B n—1 (k) B
[ @ enax = S0 0 6 g
a k=0 . a
—1)* b B
[ [0 a0y anas

Now we state inequalities derived from the obtained identities. In the rest of the section

we use the following notation:

Q" (m,x,p,s) Zpl xi— )", (5.89)

Qi (m,x,p,s) : sz —x)" (5.90)
n—1 m

Al m,x,p, f) - Zplf x;) 2 2 (5.91)
k=0 i=1

[a,b] < ol kf ( ) i k
A (m,x,p, f) =Y, pif (k) — 3 (—1) - 3 pilb—x). (5.92)
i=1 k=0 Coi=l

Theorem 5.39 Let n,m € N, x; € [a,b], I is an interval, [a,b] C I and p; € R for i €

{1,2,...,m}.
@) 1f
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@) "mxps)>0, forallse ab]
then for every n-convex function f : I — R such that f ("=1) is absolutely continuous on I
the following inequality holds

Al x p,f) > 0. (5.93)

Ifin (Uy) reversed sign of inequality holds, then inequality (5.93) is also reversed.
(i) If
(Ur) Q[za’b] (m,x,p,s) >0, forallsé€la,b],
then for every n-convex function f : 1 — R such that f""=Y) is absolutely continuous on I
the following inequality holds

AL om x p. f) > 0. (5.94)

If in (Uy) reversed sign of inequality holds, then inequality (5.94) is also reversed.

If the condition ” f is n-convex” is replaced by ” f is n-concave”, then under the same
assumptions about Q[la’b] and Q[za’b], inequalities (5.93) and (5.94) hold in the reversed
direction.

Proof. We prove (i). Let Q[la’b] (m,x,p,s) >0 for all s € [a,b] and let f be n-convex.

Then, £ >0 and
b m
/ F(s) (21?:’()@ —S)1'> ds > 0.
@ i=1

By Theorem 5.37

b m
A mxp.) = o= [ 1) (;pim —s>1‘> ds 0

and we get (5.93). Other cases are proved in a similar manner. O
Now we state an important consequence.
Theorem 5.40 Letn €N, n>2, [a,b] CI CRand f: 1 — R be a function such that

F=Y is absolutely continuous. Additionally, let j € N be fixed, 2 < j <nandlet (xi,...,Xy) €
(@, ™, (p1,...,pm) € R™ satisfy

N pxk =0 for k=0,1,...,j—1, (5.95)
i=1
Y pilxi —s)J;l >0, fors € [a,b]. (5.96)
i=1
If f is n-convex, then

m n—1 (k) a)

N pif (xi) =, S (a) Y pi (xi —a) (5.97)

i=1 '

|
k=j k! i=1
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with agreement that for j = n, we put ZZ;} =0.
Furthermore, if n — j is even, then

|
k=j k5

m n—1 (k) m
S s )= S )OS (5.98)
i=1

while if n — j is odd, then the reversed inequality in (5.98) holds.

Proof. Let s € [a,b] be fixed. Notice that for j = n we just get Theorem 5.1. For
j<n—2we get

d_j<x_s)nfl _ (Vl—1)(11—2)---(n—j)(x_s)”*j*1’ s<x<b,
dxJ + 0, P

and

1y x)n1_{(”—1)(”—2)"'(”—1)(S—x)"j]»aﬁxfsv

dx’ 0, s<x<b,

The functions x — ddej (x—s) ' and x> (—1)/ jjj (s —x)"! are nonnegative. Hence the
functions x +— (x — )" and x — (—1)/(s —x)""! are j-convex.

_ a3 1 —14"73
If j=n—1, then we consider the functions x — 75— (x— s)i andx— (—1)" = (s—

x)"~!. They are 2-convex, so x — (x—s)"" ' and x — (—1)"! (s —x)""" are (n— 1)-convex.
Hence if 2 < j < n— 1, functions x +— (x —s)"" " and x — (—1)/(s —x)""! are j-convex.

Using Theorem 5.1 for j-convex functions x + (x — )"~ and x ~— (—1)/(s —x)""!,
we get that

m

N piti—s) >0 (5.99)

i=1

and
m

(=1 pi(s—x)""" >0.

i=1
Multiplying the last inequality with (—1)"/ (it is positive for even n — j) we get
m
—1)"Y pi(s—x)1" >0. (5.100)
Inequalities (5.99) and (5.100) mean that assumptions of Theorem 5.39 (i) and (ii) are sat-
isfied, hence inequalities (5.93) and (5.94) hold respectively. Moreover, due to assumption
(5.95), X, piP(x;) = 0 for every polynomial P of degree < j — 1, so the first j terms in
the inner sum in (5.91) and (5.92) vanish, i.e. we get inequalities (5.97) and (5.98). O

Theorem 5.41 Letn € Nyn > 3. Let j € {2,3,...,n— 1} be a fixed number and let m-
tuples X = (x1,..., %) € [a,b]™, p=(p1,--.,pm) € R" satisfy

m
N pxt =0, forallke{0,1,....j—1} (5.101)
i=1
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m i1
Y pi(xi—s)\ >0,  foreverys e [a,b]. (5.102)
i=1
Ifla,b] CI CRand f: I — R is n-convex such that F=1 is absolutely continuous with

at least one of the following two properties

(i) ’il A (a) (x—a)*7 >0 forall x € [a,b]
k= J)!

2 (=
n—1 f(k) (b) )
) D (—l)kﬁm(b —x)¥7 >0 for all x € [a,b] with even n — j, then the
k=j — )
inequality
m
Y pif(xi) >0 (5.103)
i=1
holds.

Proof. Let us suppose that f satisfies property (i). Define H by

5 M)
H(x)fk:j 0 (x—a)t
Then o
) (5 :'F " (a) —a)
1O = 3 Gl

and H)(x) > 0, x € [a,b]. Hence H is j-convex. Using Theorem 5.1 for the j-convex
function H we obtain

m
Zp,-H(x,-) Z 0.
i=1

That conclusion and the previous theorem give

m n—1 f(k) (a) m . m
Zpif(xi) > o Zpi(xt —a)' = ZPtH(xi) >0
i=1 k=0 : i=1 i=1

which is the desired inequality (5.103). If f satisfies property (ii), then we consider the
n—1 &) (p

function H(x) = Y (-1 ) % (b—x)* and proceed in a similar manner. a
k=j :

Remark 5.13 Let us consider the case: j =n — 1. Then for an n-convex f under the
assumptions "~V (a) >0, (5.101) and (5.102) we get 3", pif(x;) > 0. In comparison
with Theorem 5.1, we see that one condition is added and (5.2), (5.3) are valid not for n,
but for n — 1. So, this result is an improvement of one direction given in Theorem 5.1.

In the rest of the section we state integral versions of the previous results, the proofs of
which are analogous to the discrete case.
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Theorem 5.42 Let g: [, B] — [a,b] and p : [a, B] — R be integrable functions and let
f:I—R, [a,b] CI, be such that F=1 is absolutely continuous.

If
0. _ [P (n-1)
(Us) Q" ([, B, g p:5) :/mp(x)(g(x)—s)+ dx >0, for all s €

[a, D], then for every n-convex function f the folllowing inequality holds

B
ALY (0 Blgp.f) = [ (0 S(s0)dx

n=1 ¢() (4) (B
- ! k,( ) / p(x)(g(x) —a)'dx >0, (5.104)
k=0 : a

Ifin (Us) reversed sign of inequality holds, then inequality (5.104) is also reversed.
If

B
) (e Blgps) = (1) [ p0)(s—g@) ) dx >0, forall s €
o
[a, D], then for every n-convex function f the following inequality holds
0] P
AL (@ Blgp )= [ P00 fsl0)dx

n—1 f(k) b)
B YA

P k
/ p(x)(b—g(x))"dx > 0. (5.105)
k=0 Jo

If in (Uy) reversed sign of inequality holds, then inequality (5.105) is also reversed.

If the condition " f is n-convex” is replaced by ” f is n-concave”, then under the same
[a,b] [a,b]

assumptions about Q3" and Q, ", inequalities (5.104) and (5.105) hold in the reversed
direction.
Theorem 5.43 Suppose all the assumptions from Theorem 5.38 hold. Additionally, let
jeN,2<j<nandletp:|o,f] = Randg: [ct,B] — [a,b] satisfy
B
/ p(x)g(x)*dx=0, forallke{0,1,...,j—1}

J o
B .
p(x)(g(x)—s)\ " dx>0, foreverys¢cla,b].
J o

If f is n-convex, then

B n=l ¢(k) () rB
[ p@ sewac=S O 10 g0 at a
a k:j . a

If, in addition n — j is even, then

- (®)
[ ressnas= S D Mo -gmtac G0m
o =) : o

while if n — j is odd, then the reversed sign of inequality holds in (5.106)
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5.2.2 Inequalities via the Green Function

In this section we obtain other identities and the corresponding linear inequality using the
Green function defined by (5.10) and applying again the Taylor formula. The next theorem
contains two identities in which the sum Y | p;f(x;) is expressed as a relation involving
the n-th derivative of the function f and the values of first n — 3 derivatives of f only in
points a or b. The whole subsection is based on results given in [31].

Theorem 5.44 Letnc N, n>3, and f : 1 — R, [a,b] C I, be a function such that f"~1)
is absolutely continuous. Furthermore, let m €N, x; € [a,b] and p; € R fori€ {1,2,...,m}

be such that
m m
Zpi:(), Zpixi:().
i=1 i=1

Then

m k+2 b m
Y pif(x) = / N piG(xi,1)(t —a)*dt
i=1 a

i=1

1 n n—
+W/f (/ 21’1 (xi,1) (1 =) 3dt>ds (5.107)

and

n—3

k+2
Zpl Xi *2 kf /sz (xi,7) 7t)kdt
a4 =

/f (/a 2, iG(xit f—S)”dt)ds. (5.108)

Proof. Using integration by parts the following is valid

1) = 1= 1@ + 3= )+ [ Gl

Putting in the above equality x = x;, multiplying with p;, adding all equalities for i =
1,...,m and using conditions that 37" ; p; =0, ¥ | pix; = 0 we get

m b m
Y pif(xi) = / (2 piG(xiJ)> f'(t)dt.
i=1 a \i=l

Differentiating the Taylor formula twice we get

b ARSI

fx) = o

(x—c)f + / £ )" 3ds. (5.109)

k=0
Putting in (5.109) ¢ = a and ¢ = b respectively we get

m n—=3 r(k+2) a
N pif(n) = w/b (21?1 (ot ) (1 —a)dr
i=1

k=0 . a
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—3 //f )t —s)" (sz (xi.t )dsdt

and
m -3 (k+2)( ) b '
Zpif(xi) = 2 7/ Zpl (xi,1) —b)'dt
i=1 k=0
=3 / / £ )t 3<2p, (xi,t )dsdt.
Using the Fubini theorem we obtain identities (5.107) and (5.108). O

Theorem 5.45 Letn,m €N, n >3, x=(x1,...,%y) € [a,b]" andp = (p1,...,pm) E R
be such that

m m
Y pi=0, Y pix;=0. (5.110)
i=1 i=1
(@) If
b m
(Us) Q[S (m,x,p,s) / ZpiG(xi,t)(t —5)"3dt >0 for all s € [a,b),
=1

then for every n-convex function f : 1 — R such that f(”’l) is absolutely continuous on
I C [a,b] the following inequality holds

AL mx,p, f) =

m n— 3fk+2 b m .
Zpif(xi) / Zp, (x;,8)(t — a)*dt > 0. (5.111)
i=1 a

= i=

Ifin (Us) reversed sign of inequality holds, then inequality (5.111) is also reversed.
(ii) If
(Us) Q[ﬁab (m,x,p,s) / Zp, (xi,0)(t —5)"3dt < 0 for all s € [a,b),
a j=

then for every n-convex function f : 1 — R such that f"=Y) is absolutely continuous on
I C [a, D] the following inequality holds

AL om,x,p, f) =

n—3 kfk+ b m ‘
Zp, fx) > (—1) /Zp, (x;,t)(b—1t)*dt > 0. (5.112)

k=0

If in (Us) reversed sign of inequality holds, then inequality (5.112) is also reversed.
(iii) If the condition " f is n-convex” is replaced by " f is n-concave”, then under the
same assumptions about Q[a P and Qéa’b], inequalities (5.111) and (5.112) hold in the

reversed direction.
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Proof. If f is n-convex, without lossing of generality we can assume that f is n-times
differentiable and f () > 0. Using this fact and the identities from Theorem 5.44 we get
the required results. O

If we add a new condition on X, then in the previous statements we can remove as-
sumptions about s and Qg. More precisely, we have the following result.

Theorem 5.46 Letn e N, n>3, and f : 1 — R, [a,b] C I, be a function such that f(”’l)
is absolutely continuous. Furthermore, letm €N, x; € [a,bl and p; € R fori € {1,2,...,m}
be such that

m m
N pi=0, Y pilxi—x| >0fork=1,2,....m. (5.113)
i=1 i=1

If f is n-convex, then (5.111) holds. If n is even, then (5.112) is valid, while if n is odd,
then a reversed sign in inequality (5.112) holds.

If f is n-concave, then reversed (5.111) holds. If n is even, then reversed (5.112), while
if n is odd, then inequality (5.112) holds.

Proof. Since

m

m m
Y pilxi — x| =2 pilxi —x1)+ — Y, pilxi —xx),
i=1 =1

i=1

condition (5.113) is equivalent to
m m m
Y pi=0, X pixi=0, Y pilxi—x)4 >0
i=1 i=1 i=1

fork € {1,...,m— 1} which means that m-tuples x, p satisfy assumptions of Theorem 5.1.
Since G is convex with respect to the first variable, using Theorem 5.1 we conclude that

m
Y piG(xi,t) >0 fort € [a,b].
i=1
Note that (f —s)"~3 > 0 for ¢ € [s,b] so we get Q[S“’b] (m,x,p,s) > 0. By Theorem 5.45 (i),

we have that A[Sa’b] (m,x,p, f) > 0. Other parts are proved in a similar manner. a

The integral versions of the previous three theorems may also be stated. Since the
proofs of these results are similar, we omit the details.

Theorem 5.47 Let g: (o, B] — [a,b], p: [a, B] — R be integrable functions such that

B B
/Ocp(x)dx:O,/(xp(x)g(x)dxzo. (5.114)

Letn>3and f:1— R, [a,b] C I, be afunction such that f(”’l) is absolutely continuous.
Then we get the following identities

B
[ ) fg)ax

o
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:szm /(/ px dX) (t—a)dr (5.115)
s e ([ (/ﬁp<x>c(g(x),,)dx) o) s,

B
| plosts)ax
ZZZ(I)k il /</ plx dx) (b— 1)kt (5.116)

_ﬁ / £ (s) ( / (/a p(x)G(g(x),t)dx) (t—s)"3dt)ds.

Theorem 5.48 Ler g, p,n satisfy assumptions of Theorem 5.47 hold.
(i) If

(U7) Q[a b]([oc Bl,g,p,s) : / </ p(x dx) (t —s)"3dt > 0 for all

s € [a,b], then for every n-convex function f : 1 — R, [a, b] C I, such that ") is absolutely
continuous, the following inequality holds

B
ALY (e Bl gop ) = / p(@) f(g(x)) d

n—3 f k+2 < ) ‘
- plx f)dx ) (t —a)kdr > 0. (5.117)
P A

If in (Uy) reversed sign of inequality holds, then inequality (5.117) is also reversed.
(i) If
(Us) @[, B).g.p.s -7/ (/ px dx) (t—s)"3dt <0 foralls €

[a, D], then for every n-convex function f : I — R, [a,b] C 1, such that f"=Y) is absolutely
continuous, the following inequality holds

AL (B8, p. f / p(x
ff(,l) £ /(/p )(bt)kdtzo. (5.118)

k=0

If in (Ug) reversed sign of inequality holds, then inequality (5.118) is also reversed.
(iii) If the condition " f is n-convex” is replaced by " f is n-concave”, then under the

same assumptions about Q[;l’b] and Q%a’b], inequalities (5.117) and (5.118) hold in the
reversed direction.

Theorem 5.49 Let all the assumptions of Theorem 5.47 hold. Additionally, let

B
/ p(x)(g(x) —1)+dx >0 forallt € [a,b).

Jo
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If f is n-convex, then (5.117) holds. If n is even, then (5.118), while if n is odd, then a
reversed sign in inequality (5.118) holds.

If f is n-concave, then reversed (5.117) holds. If n is even, then reversed (5.118), while
if n is odd, then inequality (5.118) holds.

5.2.3 Inequalities for n-convex Functions at a Point

In this section we give related results for the class of n-convex functions at a point which
is introduced in [76] and described in Chapter 2. First we state our main theorem of this
section for the discrete case, [31].

Theorem 5.50 Letc € (a,b), X € [a,c]", y € [c,b],, pE R™, q € R and f : [a,b] — R be
a function such that f=) is absolutely continuous.

(i) Fork=1,21et AL (.-, ) and QU1 -, - 5) be defined as in (5.89) — —(5.92) and
satisfy the following conditions:

Q,[(“’C] (m,x,p,s) > 0, foreverysé€|a,c], (5.119)
Q“1y,q,5)> 0, foreverys e [c,b], (5.120)

and .
A,[(a’c] (m,x,p,en) :A,[(C’ ](l,y,q,en). (5.121)

If f is (n+ 1)-convex at point c, then

A mx,p, f) <A1y, q, 1) (5.122)

If inequalities in (5.119) and (5.120) are reversed, then (5.122) holds with the reversed
sign of inequality.

(ii) For k =5,6 let A,[('"](-, o f) and Q,[('"](-, -,+,8) be defined as in Theorem 5.45 and
let assumption (5.110) hold. For k =5, if (5.119), (5.120) and (5.121) are valid, then for
an (n+ 1)-convex function f at point ¢, (n > 3), inequality (5.122) holds. For k = 6, if
(5.121) holds and reversed (5.119), (5.120) are valid, then inequality (5.122) holds.

Proof. (i) Let k € {1,2} and (5.119), (5.120), (5.121) hold. Since f is (n+ 1)-convex
at point c there exists a constant K such that the function F = f — —en is n-concave on
n.
[a,c] and n-convex on [c, D).

Applying Theorem 5.39 to F on the interval [a,c]| and on the interval [c,b] we have

A/[cmc](m,x,P,F) <0 A/[?b](lay’q’F)'

Using the definition of F we obtain that

K K
AL mxp,f) = A moxpen) <ALy, g, ) = DA Ly, qe0)

a,.c C K C a,c
A/[(7 ](m»X»p»f) SA/[( 7b](layaqaf) - E |:A/[( ’b](l»yquen) _A/[(7 ](mvxvpven)i| .
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Since equality (5.121) is valid we get

ALY mxp.f) <ALy q.f).
]

A closer look at the proof of Theorem 5.50 give us that similar result holds if instead
equality (5.121) we consider the positivity of the difference

K (Al[;b] (l’y’q’e") 7Al[ca’0] (m»X7P;6’n)) > 0.

Corollary 5.7 Let ji,j2,n €N, 2 < jj,jo» <nandlet f: [a,b] — R be (n+ 1)-convex at
point c. Let m-tuples x € [a,c|™ and p € R™ satisfy

Y pii =0, forallke{0,1,....ji—1}

Y pilxi fs)Q” >0, foreverysc¢€la,c|.
i=1

Let I-tuples y € [c,b]' and q € R satisfy

[
Nant=0, forallke{0,1,....j—1}
i=1

l .
S ailvi—s)2 7 >0, foreverys e [c,b]

i=1
and let identity (5.121) holds.
Then

A, x,p, f) <A 1y q, 1)

and if n — ji,n — jp are even, then

A5 mx.p.f) <ALy, q.f).

Proof. Since f is (n+ 1)-convex at point ¢ there exists a constant K such that function
F = f — —ey is n-concave on [a,c| and n-convex on [c,b]. The number j; and m-tuples
n

X,p satisfy.the assumptions of Theorem 5.40 and for concave F on [a,c] we get
Aga’c] (m,x,p,F) <0.

Also, the number j, and [-tuples y,q satisfy the assumptions of Theorem 5.40 and for

convex F on [c,b] we get

A1y, q,F) > 0.
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So we have :
A m,x,p,F) <A1y, q.F)

which is equivalent to

K K
A mx,p,f) = A moxpien) <ALy, g, ) - S Ly, g e)

and using condition (5.121) we get the desired inequality. The second statement is proved
in a similar manner. ]

The integral analogous of previous theorem may be stated as:

Theorem 5.51 Lera<f,y<6,a<c<b, g:[o,f] = [a,c], p:[c,f] =R, h:[y,8] —
[c,b], q: [y,8] — R be integrable. Let f : I — R, [a,b] C I, be a function such that 1)
is absolutely continuous.

(i) For k = 3,4 let AI[{'"](', v+ f) and Q][c'"](, -,+,8) be defined as in Theorem 5.42 and
satisfy the following conditions:

QI[(“’C]([a,ﬁ],g,p,s) >0, foreverysé€l|a,c], (5.123)
QN([y,8),h,q,5) > 0,  foreverys € [c,b], (5.124)
AL (0B g.p.en) = A [1.8) kg (3125

If f is (n+ 1)-convex at point c, then
AL (e Bl,g.p. 1) < AL 11,61, (3.126)

If the inequalities in (5.123) and 5.124 are reversed, then the reversed sign in (5.126)
holds.

(ii) For k ="1,8 let A][c'"](~, o f) and Q][c'"](, -,+,8) be defined as in Theorem 5.47 and
let assumption (5.114) holds. For k =7, if (5.123), (5.124) and (5.125) are valid, then
Sfor an (n+ 1)-convex function f at point ¢, (n > 3), inequality (5.126) holds. For k =8, if
(5.125) holds and reversed (5.123), (5.124) are valid, then inequality (5.126) holds.

Corollary 5.8 Let ji,j2,n €N, 2<ji,jo<nlet f:1 =R, [a,b] CI, be (n+1)-convex
at point ¢, let integrable p : [0, f] — R and g : [0, B] — |a,c] satisfy (5.5) with n replaced
by ji, letq:[y,0] — Randh:[y,8] — [c,b] satisfy

5
/ g(x)hf(x) =0, forallk e {0,1,...,j»—1}
Y

3 .
/ q(x)(h(x)— s)ffldx >0, foreverys € |[c,b]
¥
and let (5.125) holds. Then

AL (e B .9, 1) < AL (1,8) g £).

If n— ji and n — j, are even, then

AL (o, Blog, s f) < Ay, 81,09, 1)
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5.2.4 Bounds for the Remainders and Functionals

Here we give several estimations connected with the functionals A,[{'"} (-, f), ke{l,...,8}.

We use the well-known Holder inequality and a bound for the CebySev functional T(f,h)
which is defined by (5.36). This bound is given in the following proposition in which the
pre-Griiss inequality is given.

Proposition 5.2 ([42]) Let f,h : [a,b] — R be integrable such that fh € L(a,b). If
y <h(x) <T for x € |a,b],

then

T(f,m)| < 5(C=1)VT (1)

N =

Now by using the aforementioned result, we are going to obtain formula forA ( v f)
and estimations of remainders which appear in this formula. For the sake of brev1ty, in

present and next two sections we use the notations A(f) = A,[c" (e, f) and Q (1) =

Q,[c](, -+, 1) fork € {1,2,...,8}. Now, we are ready to state the main results of this sec-
tion.

Theorem 5.52 (i) Let k € {1,2,3,4}. Let f : 1 — R, [a,b] C I, be such that f*~) is an
absolutely continuous function and

y<f"(x)<T forxela,b.
Then in the representation

)= 1

A(f) = CEDIE

/Q Vs -+ RE(fra,b), (5.127)

the remainder RX(f;a,b) satisfies the estimation

b—a

R (f; < ——— (T =)VT(Q, ). 12
| n(f’a’b)| = 2(1/17 1)|( Y) ( k> k) (5.128)
(ii) Let k € {5,6,7,8}. Let us assume that condition (5.110) holds if k = 5,6, or
condition (5.114) holds if k =7,8.
If the assumptions of (i) hold with n > 3, then (5.127) and (5.128) hold with (n—3)!

instead of (n — 1)! in the denominator of Ay (f) and in the bound for R,

Proof. Fix k € {1,2,3,4}. Using the definition of A; and results from the previous
subsection we have

b
A(f) = ﬁ/a £ () (s5)ds

b b
= m/ﬂ .f(")(s)dS/a Qk(s)dsJFRﬁ(f;a,b)
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)@
(n—1)(b—a)

RE(f:a,b) = (/f ds——/f / <s)ds)-

Applying Proposition 5.2 for f — Q; and h — f"), we obtain

/bgk<s)dS+R§<f;a7b)7

where

RE(f3a.b)| = |T (4, f™)] < (T =)V T (. ).

b—a
2(n—1)!
The proof for k € {5,6,7,8} is done in a similar manner. a

Using the same method as in the previous theorem and other type of bounds for the
CebySsev functional, for example, the bounds given in Theorems 5.12 and 5.13, we are able
to give other estimations for the remainder. Now we state some Ostrowski-type inequalities
related to the generalized linear inequalities.

Theorem 5.53 (i) Let k € {1,2,3,4}. Let (q,r) be a pair of conjugate exponents, ie.,
1<q,r<os, %—i—% = 1. Let f") € Lq[a,b]for some n > 2. Then

AN < —7 ) AP 1%l (5.129)

(n—

The constant on the right-hand side of (5.129) is sharp for 1 < q < oo and the best
possible for g = 1.

(ii) Let k € {5,6,7,8}. Let us assume that condition (5.110) holds if k = 5,6, or
condition (5.114) holds if k =7,8.

If assumptions of (i) hold with n > 3, then the statement holds with (n — 3)! instead of
(n—1)!in the denominator of the bound for Ay.

Proof. Fix k € {1,2,3,4}. From the definition of A; and results from the second
section, applying the Holder inequality we get

= | [ 7 e <1,

1/r
Letus denote the quotient 7 —; ) -Qy. by Ay For the proof of the sharpness of ( /. ab [Ak (t)|rdt> ,

let us find a function f for which the equality in (5.129) is obtained.
For 1 < g < oo take f to be such that

F (1) = sgn Ag(t) - [ ()@,
For g = oo, take f such that
f(n) (t) =sgn )vk(t).

The fact that (5.129) is the best possible for g = 1 can be proved as in Theorem 5.18. The
proof for k € {5,6,7,8} is done in a similar manner. O
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5.2.5 Mean Value Theorems and Exponential Convexity

In this section we give several mean-value theorems and apply a general method for ob-
taining new exponentially convex functions related to the functionals Ay deﬁned in previ-
ous sections. As we said in the previous section we use notation A;(f) := A ( v f)s
ke {1,...,8}. Since theorems in this section contain results for k = 1,...,8, we use this
agreement throughout this section: if k € {1,2,3,4},thenn € N; if k € {5,6}, thenn >3
and (5.110) holds; if k € {7,8}, then n > 3 and (5.114) holds.

Theorem 5.54 Letk € {1,...,8} and let us consider Ay as a functional on C"([a,b)). If
(Uyx) holds, then for [ € C"([a,b)) exists & € [a,b] such that
Af) = (&) A fo),
where fo(x) = fl—’?
Proof. The proof is similar as the proof of Theorem 5.34. O

From Theorem 5.54 we can conclude some refinements of the basic inequalities A (f) >
0. We write it in detail for k = 1. Let image of £") be an interval [L,M] C [0,c0), where
f €C([a,b]). Then from A (f) > LA (fp) > 0 we get

m m
Zpif X;) x,-fa)k
i=1 :1
m n—1 n—k m
pix? n\ a
+L 2’—,‘2(,() , S pilxi—a)
-1 =0 i3
— m
Z Z i(xi —a)t

1

which is a refinement of A1 (f) > 0.

Theorem 5.55 Ler k € {1,...,8}. Let f,h € C"([a,b]). If (Uy) holds, then there exists
& € la,b] such that

AdS) _ (&)
Ac) ~ KO (&)

assuming that both denominators are non-zero.

Proof. The proof is similar as the proof of Theorem 5.35. O

Remark 5.14 If the inverse of {l((:; exists, then for k € {1,...,8} from the above mean
value theorem we can define a generalized mean

N A
ék(m) (AZ(h))' (5.130)
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Here, we get new results concerning n-exponential convexity and exponential convex-
ity for the functionals Ay, k € {1,...,8}.

Theorem 5.56 Let Dy = {f; :t € I} be a class of functions such that the function t —
(20,21, --y2u3 fi] is r-exponentially convex in the J-sense on I for any mutually distinct
points 20,21, --,2n € [a,b], n > 2. Letk € {1,...,8}.

If condition (Uy) holds, then the following statements are valid:

(a) The functiont — Ar(f;) is r-exponentially convex function in the J-sense on I.

(b) If the function t — Ay(f;) is continuous on I, then the function t — Ay(f;) is r-
exponentially convex on 1.

If the phrase r-exponentially convex” is replaced with ”exponentially convex”, then state-
ments also hold.

Proof. (a)  Fix k € {1,2}. Let us define the function w for #,; € I, ujuj € R,
i,j€{l,...,r} as follows

r

= 2 u,-ujfz,-+xj,
i,j=1 2
Since the function t — [z9,21,-.,2s; 1] is r-exponentially convex in the J-sense, we have

p
[Zo,zl,. .. ,Zn;a)] = 2 Ltiuj[ZO,Zl,. .. ,Zn;fm] Z 0
i,j=1 2
which implies that  is n-convex function on I and using Theorem 5.39 we get Ax (@) > 0.
Hence
-
2 wittjAr(fizy) > 0.
i,j=1 2

We conclude that the function 7 — Ag(f;) is an r-exponentially convex function on / in the
J-sense. Other cases are proved in a similar manner.

(b)  This part easily follows from the definition of n-exponentially convex functions.
O

Remark 5.15 The condition ”D; = {f; : t € I} be a class of functions such that the func-
tion ¢ +— [z0,21,...,2n: /7] is r-exponentially convex” can be replaced with "Dy = {f; :
t € I} be a class of n-time differentiable functions such that the function ¢ — fl(") is r-
exponentially convex”.

As a consequence of the above theorem we give the following theorem which connects
Ay with log-convexity.

Theorem 5.57 Let D, = {f; : ¢ € I} be a class of functions such that the function t —
(20,21, .- 2us fi] is 2-exponentially convex in the J-sense on I for any mutually distinct
points 20,21, - --,2n € [a,b], n > 2. Letk € {1,...,8}.

If condition (Uy) holds, then the following statements are valid:
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(@) If the function t — A(f;) is positive and continuous, then it is log-convex on I.
Moreover; the following Lyapunov type inequality holds for r < s <t,r,s,t €1

(A < JART ™ [A ()" (5.131)

(b) Ifthe functiont — Ay (f;) is positive and differentiable on I, then for every s,t,u,v € I
such that s < u andt < v, we have

Ui (A, D2) < Uy v (Ax, D2) (5.132)
where U, is defined as

(Ak(fs)> o s£1
A ) )
Hs. (Ax, Da) = "(df’ ) (5.133)
exp (LAI( (fs)> s=t
Ak(fs) ?
for fs, f; € D».
Furthermore, if r,ry,...,1;,r+7r1,...,r+r,r+r+...4+1 €1, then
Ak(fr)nilAk(frJrrlJr...Jrr;) 2 Ak(fr+r1) T 'Ak(.fr+r1)- (5.134)

Particularly, if O € I, then we get the CebySev type inequality
A" Ak(fry i) = Ak(fr) - Anlf)-

Proof. (a) Applying Theorem 5.56 for r = 2 we get that t — A,(f;) is 2-exponentially
convex in the J-sense i.e. for any t1,t, € I, uj,up € R

WA (fiy) + 2u1u2Ak(ft1¥) +u3A(fi,) > 0.

If we consider the left-hand side as a nonnegative quadratic polynomial, then its discrimi-
nant is nonpositive, i.e.

[A(fusn)” = Akl fiy) - Axlf,) < 0.

This means that r — A (f;) is log-convex in J-sense. From continuity we conclude that

. . . . .. 1
t+— Ag(f;) is log-convex. Using the Jensen inequality for convex combination s = t—r—i—
—r

s—r
—1 we get
t—r
r—s s—r
logAx(fs) < :logAk(f,) + :logAk(f,)

log[Ax(fs)]"™" < log[Ax(f:)]* + log[A(f1)]"",
which gives (5.131).
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(b) For a convex function ¢, the inequality

o(s) —o(t) _ o) — o(v)

s—1 - u—v

holds for all s,z,u,v € I suchthats < u,t <v,s £, u#v.

Since by (a), Ax(f:) is log-convex, so setting ¢ (t) = logA.(f;) in (5.135) we have

logAx(fy) —logAx(fi) _ logAx(fu) —logAx(f))

s—t u—v

)

fors <u,t <v,s#t, u+#v, which is equivalent to (5.132) i.e. to

(4" <)

The cases for s =7 and / or u = v are obtained by taking respective limits.

Puttingin (5.137)t=v=r,s=r+r +...+r,u=r+r we get

Ak(fr) - Ak(fr)

(M) T A(fren)
Ar(fr) Ar(fr)
Multiplying all inequalities for i = 1,2, ..., we get (5.134).

Let us consider some examples:

(5.135)

(5.136)

(5.137)

Example 5.5 Let F| = {y;, : [a,b] CR — [0,) : t € R} be a family of functions defined

by

1X
e_a t# 07
tn

v (x) = "
X
—, t=0.
n!

Since % v (x) = €™, the function ¢ — dd—;, ¥ (x) is exponentially convex. Using Theorem

5.56, we have that 7 — A (yy), k € {1,...,8} are exponentially convex.

Assume that 7 — Ag(y;) > 0 for k € {1,...,8}. By introducing functions y; and v in

(5.130), we obtain the following means:

1 og (Ak(ws))’ st

§s—1 Ar(yr)
. Ay id -y n
mS,I(A/mFl): %;, s=t#0,

Ax(id - )
(n+1)Ax(wo)’
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where id stands for the identity function on [a,b] C R
In particular, for k = 1 we have

n—1 Skesa m

m
I

1 i=1 =0 % =
M, (A1, Fy) = Ttlog 7 m n—1 tkota m -
Zpietx, -y T Zpi(xi —a)
i=1 k=0 7" =l

fors #t;s,t #0,

"l(kk]—i—as sa m

Zplxt -2 ZPt

k=0

mvs(AlaFl) n— lskem m s
Zpi 2 | ZPz l—a
i=1
for s # 0; and
m n+1 nfl k+1 m
n+1) " k
le, 2 Tk ) 2 pilxi—a)
9:nO,O(AlaFl): l -

><

m n—1 anfk ' '
(n+1) szn—*ZWZPzz a)

Here My, (Ag, F1) = log (s (Ax, F1)), k € {1,...,8} are in fact means.

A"y \ 7
dx"
d"y;
dx"

Remark 5.16 We observe here that (log&) = & is a mean for & € [a,b]

where a,b € R,

Example 5.6 Letn € N, F5 = {¢@, : [0,0) — R :¢ € R,z > n} be a family of functions
defined as y

c(t—n+1)

@)=

Since 1 — dd—;l(p, (x) = ¥’ = elI=m102¥ i5 exponentially convex, by Theorem 5.56 we
conclude that 7 — Ag(¢r), k € {1,...,8} are exponentially convex.

We assume that Ag(¢y) > 0 for k € {1,...,8}. For this family of functions we obtain
the following means:

(Ge)™ st

w1, oy A @oes) (Sl =
exp<(1) (n—1)! Ar(@s) +k20ks>7 o

ms,t (A/ﬂFZ) =
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In particular, for k = 1 we have

m
Y pix}

tt—1)---t—n+1) 5
s(s=1)---(s—n+1) &
pix;

EDt.s’,t(14l 7F2) =

m
2 p,-x,'s Ingi a1
M, 5(A1,F2) = exp l:1m + 2 k
2 pixi® k=0
i=1

For other examples see paper [22].

5.3 Linear Inequalities and Lidstone Interpolation
Polynomials

Here we pay attention to inequalities of type (5.1) and (5.4) for n-convex functions by
making use of the Lidstone interpolation. This section is based on the paper [91]. The
Lidstone series is a generalization of the Taylor series and it approximates a given function
in the neighborhood of two points (instead of one). For f € C(*)([0,1]) there exists a
unique polynomial P, of degree 2n — 1 such that

P0)=f20), PP =f(1), 0<i<n—1.
The polynomial P, can be expressed with the Lidstone polynomials. The Lidstone polyno-
mials A, are polynomials of degree 2n + 1 defined by the relations

)
A1) = Ay (1), (5.138)

Some explicit expressions of the Lidstone polynomials are (see [1])

n 2 < (_1)k+1 .
An(t) = (=1) a2l gt sinkt,
1 6t2n+l t2n71
Ap(t) = = -
n(t) 6 (2n+1)! (2n—1)!
n—2 2(22k+3 _ 1) t2n72k73

= B -
& (2k+a) Y en—2k—3)r
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22n+l 1—|—l
Ay(t) = =———B —
a(t) I 2n+1< > ),

where Boy4 is the (2k +4)-th Bernoulli number and By, (1+ ) is the Bernoulli poly-
nomial. The error term ey () = f(¢) — P.(¢) of the interpolation can be expressed in the
integral form using the Green function. Widder [99] proved the following lemma.

Lemma 5.1 [f f € C?")([0,1]), then

f(t) = P(t) +ec(r) (5.139)
=5 [0 =0 SO0+ [0,
where
Gi(t,s) = Glt,s) = { 52:11)); :; (5.140)

. , . . 2 .
is the homogeneous Green function of the differential operator 57 on [0, 1], and with the
successive iterates of G(t,s)

1
Gn(t,s) :/ Gi(t,u)Gy_1(u,s)du, n>2. (5.141)
0
The Lidstone polynomial can be expressed in terms of G,(z,s) as
1
= / G,(t,s)sds. (5.142)
Jo

For more on the Lidstone polynomials and interpolation see [1].

Theorem 5.58 Letn €N, f: [a,b] — R be 2n-convex and let x € [a,b]™ and p € R™ be
m-tuples such that

m PRp— J—
Y piGy (u,s “)zo, for every s € [a,b], (5.143)
= b—a' b—a

where Gy, is the Green function given by (5.141). Then

—a

£(2k) Xi—a
snrom (32|

If the inequality in (5.143) is reversed, then (5.144) holds with the reversed sign of in-
equality.

2 pif(xi) > 22 b—a)* [pfz"( ) k(i_x") (5.144)
i=1 i=1k=0
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Proof. Let us first assume f € C*")([a,b]) . By Lemma 5.1 we have

n—1

fx) = Y (b—a)* [f@k)(a)/\k(i x) + /20 () k@_m

k=0

b
_\2n—1 X—a s—a (2n) 14
+ (b—a) /a Gy (—ba,ba)f (s)ds. (5.145)

Applying (5.145) at x;, multiplying the obtained identity by p; and adding up we get
< S 12| 20 b—xi
Y pif(x) = 22 —a)™ | pif M (@) A -
i=1 i=1k=0

. £(2k) Yi—a
= nron(3=0))]

pm _
(b—a)"~ 1/21% ( ,Za)f(zn)(S)ds. (5.146)

a

Assumption (5.143) and ") > 0 yield the stated inequality. The inequality for general
f follows since every 2n-convex function can be obtained, by making use of Bernstein
polynomials, as a uniform limit of 2n-convex functions with a continuous 2n-th derivative
(see [77)). O

Corollary 5.9 Ler j,n € N, 1 < j<n, let f: [a,b] — R be 2n-convex and let m-tuples

X € [a,b]™ and p € R™ satisfy (5.2) an (5.3) with n replaced by 2j. If n — j is even, then
m n—1

S ) F (e a2k | F20 b—x;
Sprt) = 3 50— ran (55

+pif P () A (2_2)] L G147

while the reversed inequality holds if n — j is odd.

Proof. From (5.140) and (5.141) by induction one can conclude that (—1)"G, > 0. Fur-
thermore, from (5.141) one can get 5—;Gn(t,s) = G, (t,s) and, hence, by induction

gt—zzliGn (t,8) = Gu—i(t,s) for 0 < i <n— 1. Therefore, the functionz — G,(t,s) is 2 j-convex
if n — j is even and 2 j-concave if n — j is odd for 0 < j < n — 1, while the statement for
J = n follows since t — G| (z,s) is convex.

By Theorem 5.1, assumption (5.143) in Theorem 5.58 is satisfied, so (5.144) holds.
Moreover, due to assumption (5.2), 3, p;P(x;) = 0 for every polynomial P of degree
< 2j—1 and since Ay is a polynomial of degree 2k + 1, the first j 4 1 terms in the inner
sum in (5.144) vanish, i. e., the right-hand side of (5.144) under the assumptions of this

corollary is equal to the right-hand side of (5.147). O

When j =nin (5.147), the notation means that the inner sum is void, i. e. ZZ;I[ -e=0.
In particular, inequality (5.147) with j = n is inequality 37" | p;f(x;) > 0.
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Corollary 5.10 Ler jn € N, 1 < j<wn, let f:[a,b] — R be 2n-convex, let m-tuples
X € [a,b]" and p € R™ satisfy (5.2) and (5.3) with n replaced by 2j and denote

n—1

H(x) =Y (b—a* {f@k’ (a)Ax (b ’“) + P (b)Ax (Z_Z)] : (5.148)

fany’ b—a

Ifn— jis even and H is 2 j-convex, then

Zpif(xi) Z 07

i=1
while the reversed inequality holds if n — j is odd and H is 2 j-concave.

Proof. Applying Theorem 5.1 we conclude that the right-hand side of (5.147) is nonnega-
tive for 2 j-convex H and nonpositive for 2 j-concave H. O

Remark 5.17 Dueto (5.139) we have A,(CZI) = Ay_; and, furthermore, (—1)"A,, > 0 due to
(5.142). Therefore, if the function f satisfies (—1)*~/ f(%%) (a) >0 and (—1)¥/fX (p) >0

for j <k <n— 1, then the function H given by (5.148) is 2 j-convex, while if (—1)¥~/ f(%X) (q) <
0and (— 1) 7£8(b) <0 for j <k <n— 1, then H is 2 j-concave.

As already mentioned before, the inequality in Corollaries 5.9 and 5.10 with j =n is
the same as the inequality in Theorem 5.1. Of course, in the proof of Corollary 5.9 we have
used Theorem 5.1 to prove that assumption (5.143) holds, so, due to circularity, we didn’t
obtain another proof of the Popoviciu result. But, it is possible, as we will show in the next
lemma, to prove directly that conditions (5.2) and (5.3) imply (5.143), i. e. it is possible
to prove Corollary 5.9 independently of Theorem 5.1 and, thus, provide a new proof of the
Popoviciu result for even n.

Lemma 5.2 Letn > 2 and let m-tuples x € [a,b]" and p € R™ satisfy

m
N paxk =0, forallk=0,1,....2n—1 (5.149)
i=1
m
Zpi(xi —t)i"i1 >0, foreveryt€ [a,b]. (5.150)
i=1

Then (5.143) holds.

Proof. Let s € [a,b] be fixed and y = (s —a) /(b — a). We will show, by induction, that
G, is of the form

Gn(x,y) = Pyan—1(x) + T (x—y)2t, (5.151)

(2n—1
where P; 5,1 is a polynomial of degree 2n— 1. Hence, similarly as in the proof of Corollary
5.9, from (5.149) we can conclude that

m

Xi—da
z P -0
ﬁJPle 1<b ) ,

—da
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while (5.150) yields

i pi (xi—a s—a\*"! 1 i (xi— 5)2"1> 0
- = i(xi—s .
Zon—1)\b—a b-a), (@n-1)(b—ap 1&lTVr =

Therefore, it is enough to show that (5.151) holds. From (5.140) we have

Gi(x,y) =xy —min(x,y) =x(y — 1) + (x = y)+,
s0 (5.151) holds for n = 1. Now, assume that (5.151) holds. Then (5.141) yields

Gui1(x,y) = Jo (x(w—1)+ (x—u)5) (Ps,2n—1<u) + ey (u —y)iwl> du
=+ +111,

where

1
I :x/ (u —1)Gyn(u,y)du = x - constant
0

1
II :/0 (x—u) 4P op—1(u)du

1 ! n—

Integration by parts yields
X
I = / (x—u)Psop—1(u)du
0
u U=x X u ~
= =) [ Pama@dz] o+ [ [ Pai@)dz = P (o)
0 u=0 Jo Jo

where Ps,2n+l is a polynomial of degree 2n + 1. Notice that

I+11= Ps,2n71

is a polynomial of degree 2n + 1 in the variable x. Clearly /7] = 0 for x <y, while for x >y

I = ﬁéx(xfu)(ufy)z”*ldu

S (—u)u—y)| + L /x(u — )" du= ¥(x—y)2"+1

(2}1)' u=y (2}1)' Jy (21’[ + 1)' '
Therefore, 111 = (x —y)%"™' /(2n+1)!, so (5.151) holds for n+ 1 as well, which finishes
the proof. O

Lemma 5.2 together with Theorem 5.58 gives the “if”” part of Theorem 5.1. On the
other hand, the “only if” part is straightforward: since the functions ey (x) = x* are both 2n-
convex and 2n-concave for k € {0,1,...,2n — 1}, inequality (5.1) yields that Y | p;ex(x;)
is both > 0 and < 0, so (5.149) holds. Similarly, the function wa,(x) = (x — )% is
2n-convex and inequality (5.1) applied to wy,, yields (5.150).

In the remainder of this section we will give integral versions of the results. The proofs
are analogous to the discrete case and we will omit them.
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Theorem 5.59 Letn €N, f:[a,b] — R be 2n-convex and let the functions p : o, f] — R
and g : [a, B] — [a,b] be such that

.ﬁ _ _
/ p(x)G, (g(x) a3 a) dx >0, foreverys € [a,b], (5.152)

Ja b—a 'b—a

where G, is the Green function given by (5.141). Then

[} roastsenas = [ oS 0 [ (%5 52)
+f(2k>(b)/\k (g(bx)i_aa)} dx. (5.153)

If the inequality in (5.152) is reversed, then (5.153) holds with the reversed sign of
inequality.

Corollary 5.11 Let jjneN, 1 < j<n, let f : [a,b] — R be 2n-convex and let the func-
tions p : (o, B] — Rand g : [a,B] — |a,b] satisfy (5.5) with n replaced by 2j. If n— j is
even, then

[ pstet)ax > ./fp<x>:2;<b—a>2k son (557
o () [ an

while the reversed inequality holds if n — j is odd.

Corollary 5.12 Let j.n, f,p and g be as in Corollary 5.11 and let H be given by (5.148).
Ifn— jis even and H is 2 j-convex, then

[ postanax=o,

Jo

while the reversed inequality holds if n — j is odd and H is 2 j-concave.

Lemma 5.3 Lern > 2 and let the functions p : (o, f] — R and g : [, B] — [a, b] satisfy

B
/ p(x)g(x)¥dx=0, forallk=0,1,...2n—1

/ﬁ p(x) (g(x) —1)" " dx >0, foreveryt € [a,b].

[0

Then (5.152) holds.
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5.3.1 Inequalities for n-convex Functions at a Point

In this section we will give related results for the class of n-convex functions at a point
introduced in Chapter 2.

Let e; denote the monomials e;(x) = xX,ie Ny. For the rest of this section, A and B will
denote the linear functionals obtained as the difference of the left and right-hand sides of
inequality (5.144) applied to the intervals [a,c] and [c, b], respectively, i. e., for x € [a,c]™,
pER" yc[c,b) and q € R' let

= $ st - £ Se-a [mriam (22)

+pif %9 () Ak (i_;‘)] , (5.154)
[ n—1 b y
S~ 3, 86 g (52
i=1k=0 -
+Qif(2k)(b)/\k (2‘_5)] . (5.155)

Notice that, using the newly introduced functionals A and B, identity (5.146) applied
to the intervals [a, ¢] and [c, b] can be written as

A(f) = (c—a)™" 1/ Zp,Gn (x’ a,u>f(2”)(s)ds, (5.156)

= c—a’'c—a
b L - _
B(f) = (b— 2"*‘/ Gy (25 228 £ (5) ds, 5.157
= 0=c [T, (=552 fwas sy
Theorem 5.60 Lerx € [a,c|™, p € R, y € [c,b]' and q € R! be such that
Zp,Gn<xl avs—a >0, foreverys € la,c], (5.158)
= c—a'c—a
! yi—c¢ s—c¢
Zinn(—,—>20, Sforevery s € [c,b], (5.159)
bt b—c' b—c

b—c\ 1t b d yi—c S—c
= Gy | =—— d 5.160
(c—a) /C;ql n(b—c’b—c) > ( )

1

where G, is the Green function given by (5.141), and let A and B be the linear functionals
given by (5.154) and (5.155). If f : [a,b] — R is (2n+ 1)-convex at point c, then

A(f) <B(f). (5.161)
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If the inequalities in (5.158) and (5.159) are reversed, then (5.161) holds with the reversed
sign of inequality.

Proof. Let F = f — (212 e>, be as in definition i. e., the function F is 2n-concave on
[a,c] and 2n-convex on [c,b]. Applying Theorem 5.58 to F on the interval [a,c] we have

K
MA(egn) (5162)

and applying Theorem 5.58 to F on the interval [c,b] we have

0> A(F) = A(f)

K
Wg(ez,,). (5.163)

Identities (5.156) and (5.157) applied to the function ey, yield

Alean) = (2n)!(c — a)>™™ '/ Zpl ( s_“) ds,

0<B(F)=B(f)—

c—a ¢c—a

Ble) = Gntp - [ qu (— — )ds

Therefore, assumption (5.160) is equivalent to A(ez,) = B(ea,). Now, from (5.162) and
(5.163) we obtain the stated inequality. m]

In the proof of Theorem 5.60 we have, actually, shown that

K p(en) < B().

K
A(f) < MA(ezn) = )l

In fact, inequality (5.161) still holds if we replace assumption (5.160) with the weaker
assumption that K (B(es,) — A(ez,)) > 0.

Corollary 5.13 Let ji,jo,n €N, 1 < j1,jo <n, let f:]a,b] — R be (2n+ 1)-convex at

point ¢, let m-tuples x € [a,c]” and p € R"™ satisfy (5.2) and (5.3) with n replaced by 2,
let I-tuples'y € [c,b]' and q € R! satisfy

!
Zqiy;‘:O, forallk=0,1,...,2j,—1
i=1

Zqz'(yz'—t)ijrl >0, foreveryt € [yuy,Yi—n+1)]
and let (5.160) holds. If n— j; and n— j, are even, then
A(f) < B(f),

while the reversed inequality holds if n — j| and n — j, are odd.

Proof. Similar to the proof of Corollary 5.9. O
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5.3.2 Bounds for the Remainders and Functionals

For m-tuples p = (p1,...,pm) € R, x = (x1,...,Xm) € [a,b]" and the function G, given
be (5.141), denote

a s—a
f . .164
Zpl "(b a'b— a)’ Orse[a7b] (5 64)
Similarly, for functions g : [@, B] — [a,b] and p : [a, B] — R denote
A(S)_/ﬁ (x)G glx)—a s—a dx, fors € |a,b] (5.165)
" Jo P\ T b—a ’ T ’

Theorem 5.61 Lern €N, f: [a,b] — R be such that f*") is an absolutely continuous
function with (- —a)(b — ) [f*"*tV)? € Lla,b] and let G,, T and § be given by (5.141),
(5.36) and (5.164) respectively. Then the remiander R} (f;a,b) given in

+pif @ (b)A ()Z_z)} (5.166)

+ (b= 2 (fE D (p) - 1 () / 8(s)ds+ Ry (f;a,b)
satisfies the estimation

—a an% b %
Ritrian)| < “=0— (16.0) [ 6ol ok

Proof. If we apply Theorem 5.12 for f — & and h — f(*"), then we obtain

i s (2, [[sois) (2, [ 1 ea)

1 ! b n—+ %
Sﬁ(baT(‘S"S)/a“‘“)(b—S)[f(z 1><s)]2ds) S Gaen

From (5.146) and (5.166) we obtain

b
a)2nfl/ 5(S)f(2n) ds

= (b—a)?"2 (f(z”")(b)ff(z” ) / 8(s)ds+ R (f:a,b),

where the estimate (5.233) follows from (5.167). O

The following integral version of the previous theorem is proven analogously.
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Theorem 5.62 Letn € N, f: [a,b] — R be such that f*") is an absolutely continuous
function with (- —a)(b—)[f?"*tV)? € Lla,b] and let G,, T and A be given by (5.141),

(5.36) and (5.165) respectively. Then the remainder R2(f;a,b) from representation

/ p(x (5.168)

/apuzlaa o [f<2k>< (52 o (5

k=j

o= a2 (5 000) @) [ A ds + R fa ),

satisfies the estimation

]
Ritrian) < = (10.) [ - @)oo oRas)

By using Theorem 5.13 we obtain the following Griiss type inequality.

2

Theorem 5.63 Lern € N, f: [a,b] — R be such that f*") is an absolutely continuous
function with f@"+Y) > 0 and let 8 be given by (5.164). Then we have the representation

(5.166) and the remainder R} (f;a,b) satisfies the bound

|R,11(f;a,b)| < (b,a)ZnHS,HOo [-f(2111>(b);.f(2’11)(a)
(2n—2) _ (2n-2)
S )~ f m)]' 5169)
b—a

Proof. If we apply Theorem 5.13 for f — & and h — f(2") we obtain

’bia_/ab&s)f(z”’(s)ds (bia/bcs(s)ds) <bia/abf(2")(s)ds>‘

|6 ” / s—a o (2n+1)( )dS

Since

b b
/(s—a)(b—s)f(2"+1)(s)ds:/ (25 —a—Db)f*(s)ds (5.170)

a

= (b=a) [£2 @)+ £ (@) | -2 [ 2D (p) - f0 D ()],

using identities (5.146) and (5.170) we deduce (5.169).

Again, we only state the integral version of the previous result.
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Theorem 5.64 Letn e N, f: [a,b] — R be such that f*") is an absolutely continuous
Sfunction with f (2n+1) > 0 and let A be given by (5.165). Then we have the representation
(5.168) and the remainder R2(f;a,b) satisfies the bound

f(2n71)(b) +f(2n71)(a)
2

f(2n72) (b) _ f(2n72) (d)
b—a

R(f1a,0)] < (b—a)™|A]..

5.4 Linear Inequalities and Hermite Interpolation
Polynomials

In this section we derive inequalities of type (5.1) and (5.4) for n-convex functions by
making use of the Hermite interpolation. These results are contained in paper [75]. Let
—o<a<a; <ay<---<a, <b<oo, r>2. The Hermite interpolation of a function
f € C"a,b] is of the form

F(x) = Pa(x) + e (x)

where Py is the unique polynomial of degree n — 1, called the Hermite interpolating poly-
nomial of f, satisfying

P(aj) = fD(aj), 0<i<kj1<j<r Ski+r=n.
j=1

The associated error e (x) can be represented in terms of the Green function Gy , (x, 5)
for the multipoint boundary value problem

z(")(x) =0, z(i)(aj) =0, 0<i<k;, 1<j<n
that is, the following result holds (see [1]):
Theorem 5.65 Let f € C"[a,b], and let Py be its Hermite interpolating polynomial. Then

fx) = Pu(x) +en(x)

r kj b
= X S HW0F @)+ [ Gualxs) ) ds (5.171)

j=1i=0

where H;; are the fundamental polynomials of the Hermite basis defined by

RS LC N oo WA C ) N
i) = G o yred Qe e | O S CR )
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where
.

w(x) = [J(x—a)kt! (5.173)

1 kj (ajfs)"ﬂ;l

;%m}lﬁ(x)? Ky S X,
Gt n(o5) = Jﬁ: kj( yn=i=1 (5.174)
aj—s
B —~—H;; N
j:lzﬂgf) (n—i—1)! i (x), 5> x

foralla; <s<a,1=0,1,...,r(ap=a,a,+1 =b).

The following are some special cases of the Hermite interpolation of functions:

(i) (m,n—m) conditions: r=2,a; =a,a, =b, 1 <m<n—1,kj=m—1and kp, =
n—m— 1. In this case

m—1 n—m—1

10 =3 0@+ 3w OB)+ [ Gualos) ),
i=0 Ja

i=0
where
1 (x—Db nemm =iy mk—1\ yx—ank
w=ge-a(G=5) X)) e
1 crx—a\m" TS Gk — 1 fx— bk
nl(x)_ﬁ(x_b)(bfa) ko( k )(ab>’ (5.176)

and the Green function Gy, , is of the form

m—1 m—1—j n—m+p—1 e anp
s (6]
x*ajafsnijil b —x\n—m
Gun(x,s) = : J'(L(])l)' (bfa> ) SSX,
mn\Ayd) — n—m—1 -n—m—1—i m+q—1 b—x\4
"2 | qgo ( 5 >(mﬂ
x—Db)i(b—s)i"1  x—g\m
2 i!t()i(—bi—i)! (b—a>’ § 2 X.

(ii) Taylor’s two-point condition: m € N,n =2m,r=2,a; =a,ay =band ky = kp =
m — 1. In this case
k

=B (R G G e

i=0 k=0
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+ DY (D 0] 4 [ G52 )

i! b—a a—>b
where the Green function Gor , is of the form
Garm(x,s)
m—1
. m+k—1 ] —
e e S (T o s <
— k=0
- (2m—1)! m—1 k—1
(2m—1) (xs) Y (m+k >(Sx)m1kpk(xvs)7 x<s,
k=0
(s—a)(b—x)

where p(x,s) = b—a) and g(x,s) = p(s,x).

The following lemma yields the sign of the Green function (5.174) on certain intervals
(see Lemma 2.3.3, page 75, in [1]).

Lemma 5.4 The Green function Gy, given by (5.174) and w given by (5.173) satisfy

GH p(x,s)

>0, forai<x<ar a <s<ar.
w(x)

Integration by parts easily yields that for any function f € C?[a, b the following holds

_b—x

1) = —

fla)+ z :Z F(b)+ / ? G5 (5)ds, (5.177)

where the function G : [a,b] X [a,b] — R is the Green function of the boundary value
problem
Z'(x) =0, z(a) =2(h) =0

and is given by

(x=b)(s—a) fora < s < x

G(x,s) = b—a (5.178)
(s=b)(x—a) forx < s < b
b—a ’ - =7

The function G is continuous, symmetric and convex with respect to both variables x
and s.

5.4.1 Inequalities Obtained via Hermite Interpolating
Polynomials

We will start this section with several identities.

Theorem 5.66 Let —~<a<a; <ay<---<a,<b<oo r>2, Z;:lkj—i—r:n, fe
C"[a,b], x € [a,b]", p € R and let H;j and Gy ,, be given by (5.172) and (5.174). Then

rkjm

i pef) =X 3 piij(a) £ (a))
k=1

j=1i=0k=1
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b m
Y, PkGrn (xe,5)f " (s) ds. (5.179)
a k=1

Proof. By applying identity (5.171) at x, multiplying it by p; and summing up we obtained
the required identity. m|

The integral version of the previous theorem is the following:

Theorem 5.67 Let —~<a<a; <ap <--<a,<b<oo r>2 2;:1kj+”:ny fe
C"a,b), g: [a,B] — [a,b], p: o, B] — R and let H;j and Gp ,, be given by (5.172) and
(5.174). Then

[ pistarac= 3% 106w [ o

j=1i=0

+./a </a P(x)GH,n(g(x),s)dx> £ (s)ds.

Theorem 5.68 Let —~<a<a; <ar < - <a,<b <o, r>2, 2;:1kj+":n*2,
fe€C"a,b], x € a,b]", peR" and let H;j and Gy 3 be given by (5.172) and (5.174).
Then

N pef(x) = /) 2 ZPkX/mL aiaf 2
=1 =1 =

b m
+ 22]“” /a ZPkG Xi,8)Hij(s)ds

j=1i=0

b m
+// Zkaxk, VGrin_2(s,0)f" (1) dt ds. (5.180)

Proof. Applying identity (5.177) at x;, multiplying it by p; and summing up we obtain

m b) — m b B by o
3 sty = LGOS LGOS,
b m
> 2iG(xi,5) " (s) ds. (5.181)
a k=1

By Theorem 5.65, f”'(s) can be expressed as

r kj . b
= X S Hi6 @)+ [ Gunals.0)f et (5.182)
j=1i=0 g
Inserting (5.182) in (5.181) we get (5.180). O

We also state the integral version of the previous theorem.
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Theorem 5.69 Let — o< a<a;<ar <--<a, <b<eoo, r>2, 2;:1kj+r:n—2,
feCa,bl, g:|o,B] = [a,b], p:la,B] — R and let Hij and Gy 3 be given by (5.172)
and (5.174). Then

B — f(la B a)—a B
[ ptostaar = LI 7 gy BAZAIE) 700 4

+ i gf(’*z)(aj) /ab (/aﬁ p(x)G(g(x),s)dx) Hij(s)ds

j=1i=0
oy b( [ p96(s(21.9) dx) Grina(5.0) S (1) de ds.

Next we will use the identities proven above to derive inequalities.

Theorem 5.70 Let —~<a<a1<ary < --<a, <b<oo, r>2 2;:1kj+”:nx X €
[a,b]", p € R"™ and let H;; and Gy ,, be given by (5.172) and (5.174). If f : [a,b] — Ris

n-convex and
m

2 PiGH u(xk,8) >0 foralls € [a,b)], (5.183)
k=1
then .
m r J n .
Y oif () = X DY, piHij(a) £ (a)). (5.184)
k=1 j=1i=0k=1

If the inequality in (5.183) is reversed, then the inequality in (5.184) is reversed also.

Proof. 1f (5.183) holds, then the second term on the right-hand side (5.179) is nonneg-
ative. O

Theorem 5.71 Let —~<a<a;<ay < - <a, <b<oo,r>2, 2;:1kj+”:nx X €
[a,b]", p:[ct,B] — Rand let Hij and Gu ,, be given by (5.172) and (5.174). If f : [a,b] —
R is n-convex and

/ﬁp(x)GH,n (g(x),8)dx>0 forallsé€[a,b], (5.185)
then
p Y p
[ p@re)an= 33 10 [ pw;)ax (5.186)
Jo Jj=1i=0 o

If the inequality in (5.185) is reversed, then the inequality in (5.186) is reversed also.

Theorem 5.72 [et —~<a=a1<ar<---<a,=b <o, r>2, Zgzlkj—i-r:n—Z,xE
[a,b]", p € R™ and let H;j and Gy > be given by (5.172) and (5.174). Let f : [a,b] = R

be n-convex and
m

Y pkG(xe,s) >0 forall s € [a,b], (5.187)
k=1
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and consider the inequality

(b

M=

e L

i pif (o) >
=1

k=1

r kj
+ 33 (g / Zkaxk, i(s)ds. (5.188)
i=1i=0 a

(i) Ifkjfor j=2,...,rare odd, then (5.188) holds.
(ii) Ifkjfor j=2,...,r—1 are odd and k, is even, then the reverse of (5.188) holds.

Proof. (i) Assume first that f € C"[a,b]. Due to the assumptions w given by (5.173)
satisfies w(x) > O for all x and, hence, by Lemma 5.4, Gy ,—2(s,¢) > 0 for all 5,7 € [a,b].
Therefore, the last term on the right-hand side of (5.180) is nonnegative, so inequality
(5.188) holds. The inequality for general f follows since every n-convex function can
be obtained, by making use of the Bernstein polynomials, as a uniform limit of n-convex
functions with a continuous n-th derivative (see [77]).

(if) Under these assumptions w(x) < 0, so Gg ,—2(s,) < 0. The rest of the proof is the
same as in (7). O

Theorem 5.73 Let —~<a=a1<ar <--<da,=b <o, r>2, Z;Zij—l—r:n—Z,
g:a,B] =R, p:la,B] — Randlet Hjj be given by (5.172). Let f : [a,b] — R be n-convex
and

B
/ p(x)G(g(x),s)dx >0 foralls € [a,b],

o

and consider the inequality

— f(a) [B a)—a B
/ p(x ))dx > 7@; A )/a p(x)g(x)deribf( ;_af(b)/a p(x)dx

+ 2 Zf (#2)(a;) /b (/jp(X)G(g(x),s)dx) Hij(s)ds. (5.189)

j=li=
(i) Ifkjfor j=2,...,rare odd, then (5.189) holds.
(it) Ifkjfor j=2,...,r—1 are odd and k, is even, then the reverse of (5.189) holds.

In the case of the (m,n — m) conditions we have the following corollary.

Corollary 5.14 Ler t; and n; be given by (5.175) and (5.176) and let x € [a,b]" and p €
R™ be such that (5.187) holds. Let f : [a,b] — R be n-convex and consider the inequality

ip )2 110 >kzpm+bf @)~ Epk
1

m 1—
2 G (x5 ) Si(s) £+ +Zn FU+2)( )ds. (5.190)

i=0
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(i) If n—11is even, then (5.190) holds.
(ii) Ifn—1is odd, then the reverse of (5.190) holds.
In the case of Taylor’s two point conditions we have the following corollary.

Corollary 5.15 Ler x € [a,b]™ and p € R" be such that (5.187) holds. Let f : [a,b] — R

be n-convex and consider the inequality

kilpkf(xk) > Jw 3 M ipk

il a—b —a
G G o]

(i) Iflis even, then (5.191) holds.

(if) Iflis odd, then the reverse of (5.191) holds.
Theorem 5.74 Let —~<a=a1 <ar <---<a,=b <o, r>2, 2;:1kj+r:n72, let
X € [a,b]" and p € R™ satisfy

m
pk:07 Zpk|xkfx,-|ZOforiE{l,...,m}
1 k=1

M=

k

and let H;j and Gy > be given by (5.172) and (5.174). Let f : [a,b] — R be n-convex
and consider the inequality

PR 3 ¥ s /Zpkcxk, (s ds (5.192)

j=1i=0

and the function

F(x) = }jl (i+2) /st i (5.193)

(i) Ifkj for j=2,...,r are odd, then (5.192) holds. Furthermore, if the function F is
convex, then inequality Y} | pif(xr) > 0 holds.

(ii) Ifkj for j=2,...,r—1 are odd and k, is even, then the reverse of (5.192) holds.
Furthermore, if the function F is concave, then inequality Y7 | pif(xx) < 0 holds.

Proof. The function G(x,s) is convex in the first variable, so assumption (5.187) is
satisfied by Remark 5.1. Now, the claims of the theorem follow from Theorem 5.72. g
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Theorem 5.75 Let —o<a=a; <ay < - <da,=b <o, 1r>2, Zyzlkj—f—r:n—Z, let
g:la,B] = Randp:[o,B] — Rsatisfy (5.5) and (5.6). Let H;ij and Gy 2 be given by
(5.172) and (5.174). Let f : [a,b] — R be n-convex and consider the inequality

ii () /(/ plx )dx)H,»j(s)ds (5.194)

and the function F given by (5.193).
(i) Ifkj for j=2,...,r are odd, then (5.194) holds. Furthermore, if the function F is
B
convex, then inequality / p(x)f(g(x))dx > 0 holds.
o

(it) If kj for j =2,...,r — 1 are odd and k, is even, then the reverse of (5.194) holds.

B

Furthermore, if the function F is concave, then inequality / p(x)f(g(x)dx <0
o

holds.

5.4.2 Bounds for the Remainders and Functionals

For m-tuples p = (p1,...,pm) € R, x = (xy,...,%n) € [a,b]™ and the functions G and
Gy, given by (5.178) and (5.174) denote

m
2 PG n(xi,t), fort € [a,b). (5.195)
/ Zka X, 8)GH n—2(s,t)ds, fort € [a,b]. (5.196)
a —
Theorem5.76 Let —o<a<a <ay<--<a <b<oo, r>2let f:lab] — R be

such that ) is an absolutely continuous functlon with (- —a)(b—)[f"*D]? € L[a,b),
X € [a,b]", p € R™ and let H;j, §; and 8, be given by (5.172), (5.195) and (5.196).
(i) If ¥i_ kj+r=n, then

m rokiom .
Y pifla) =X ZpkHij(xk)f(l) (aj)
k=1

j=1i=0k=1

(n—1) _ f(n—1 b
+4 (b;—ﬁ /Ql(s)dHRi(f;a,b), (5.197)

where the remainder R} (f;a,b) satisfies the estimation

1

Ririan) < (25470000 (- eRs) L a9
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(i) If o1 kj+r=n—2, then

ipkf(xk) = w il’kxﬁ M ipk
k=1

k=1 a —l b
ro ko 5 b m
+ X > )(aj)/ Y pkG(xk,5)Hij(s)ds
j=1i=0 a =
(1) () _ fln-1)(g) b
+4 (;—ﬁ (a)/ 02(s)ds+R;(f;a,b),  (5.199)

where the remainder R2(f;a,b) satisfies the estimation

1
2

IR%(f;a,b)| < (?T(Bz’92)/:’(3_61)(19—s)[f(n+l)(s)]2ds)

Proof. (i) Applying Theorem 5.12 with f — 6; and h — f(") we get

/abel(s)f(")(s)dsfblTa/abel(s)dS/abf(n)(s)ds

1
2

< (”2—“T<el,el> / b(sa)(bs)[f<"“><s>12ds) - (5.200)

From identities (5.179) and (5.197) we obtain

(n—1) _ £(n—1) a
/bel(s)f(")(s)ds:f (b)=f ()./abel(s)ds—i—R,ﬂ(f;a,b),

a b—a
where the estimate (5.198) follows from (5.200).
(ii) Analogous as in (i). a
By using Theorem 5.13 we obtain the following Griiss type inequality.

Theorem 5.77 Let —o<a<a; <ay<---<a, <b<eo, r>2 letx, p, Hij, 8, 6, and
n be as in Theorem 5.76 and let f : [a,b] — R be such that £ is an absolutely continuous

function with 1) > 0. Then the remainders Ri(f;a,b), i = 1,2, from representations
(5.197) and (5.199) satisfy the bounds

b—a
2

IR (f3.0)| < e;nw[ (7D ®) + 10 (@)) @2 () + £ (@)

Proof. This results easily follows by proceeding as in the proof of Theorem 5.16. O

‘We can construct linear functionals by taking differences of the left and right-hand sides
of the inequalities from Theorems 5.70, 5.71, 5.72 and 5.73. By using similar methods
as in [26, 31] (or in the first section of this chapter) we can prove mean value results
for these functionals, as well as construct new families of exponentially convex functions
and Cauchy-type means. Then, by using some known properties of exponentially convex
functions, we can derive new inequalities and prove monotonicity of the obtained Cauchy-
type means analogously as in [26, 31].
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5.5 Linear Inequalities and the Fink Identity

Let us recall the Fink identity on which we base further results. The following theorem is
proved by A. M. Fink in [18].

Proposition 5.3 Lera,b € R, f:[a,b] — R, n> 1 and ") is absolutely continuous
on la,b]. Then

flx) = b—al. f(t)ar (5.201)
w ok £ (@) (r—a)f = 5D () (x = )
- - K b—a
1 b n— a n
e ), o e wa,
where
[a,b] — t—a, aSthSb,
¢ (t’x){l—b, a<x<t<b. (5.202)

We follow with identities for Y7 | pif(x;) and |, f p(x)f(g(x))dx constructed by using
the Fink identity and the Green function. Also we consider inequalities for n-convex func-
tions which are based on these identities.

5.5.1 Inequalities via the Fink Identity

Theorem 5.78 Lern e Nand f : [a,b] — R be such that "~V is absolutely continuous.
Let x; € [a,b), p; € R (i € {1,...,m}) be reals such that ¥, p; = 0 and let kK1*") be the
function as defined in (5.202). Then we have

L pif (x) (5.203)
i=1
n—1 n—k m ”
= =" | kD) ek p(k—1) ok
_k; i a) (f (b);pl (xi —b)* — f*V (a) ;p, (xi —a) )
1 b

ammio=a . ) (il pi(x;— )" klet] (t,x,)) dt.

Proof. By using the Fink identity (5.201) for x = x;, multiplying it with p; and taking
the sum over i from 1 to m, we have

m n b m
Yt =50 [ roaXe
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moon—l, g oe(k=1) x; — k_ r(k=1) (4 xi—ak
LYY kfE(b) (xi=b)” = f* 7 (a) (i —a)

&k b—a

2P (1) (= 1) R (3 i
+ Z:lpt (n—l) (b a) .

After some rearrangement we get our required result. O

The following theorem is the integral version of Theorem 5.78.

Theorem 5.79 Letn € Nand f : [a,b] — R be such that "~V is absolutely continuous
on [a,b] and let k1P) (t,x) be the same as defined in (5.202). Let g : [ot, ] — [a,b] and
p:la, B] — R be integrable functions such that ff p(x)dx = 0. Then we have

B n—1 n—k

; P(x)f(g(x))dx:]; Th—a)

X <f<k1> (b) /ﬁp(x) (g(x) —b)dx— % (a) ./ﬁp(x) (8(x) —a)kdX)

_|_
\
&,’

p(x) (g (x)—1)" " klad] (r,g(x))dx> dt.

nfl

Proof. Putting x — g(x) in (5.201), multiplying it by p(x) and integrating with respect
on x, we get an identity from which after using the Fubini theorem, we obtain the desired
identity. O

Let us now introduce some notations which will be used in rest of the paper:

A mxpit) = ¥ piei— 1) K (1), (5.204)
i=1
a p n— a
AN (e Bleps) = [P -0 K (g )dx (5209)

ab o n—k
B[1 ]mxp,f sz Xi) Zm

x (f“‘” )3 pi =0 — D (@) il a)") 7 (5.206)
i i=1

n—1 n—=k

[a.b] = b X X X — YR
B lap )= [ P e()dr— 3 s

X ( %0 (b) / ! p(x) (g (x) —b)*dx — 5=V (a) / ﬁp (x) (8 (x) — a)"dx)-

o Jo
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Theorem 5.80 Let all the assumptions of Theorem 5.78 be satisfied and let
M mx,p,1) >0, forall 1 €a,b]. (5.207)

If f is n-convex, then we have

B (m,x,p, f) > 0. (5.208)

If opposite inequality holds in (5.207), then (5.208) holds in the reverse direction.

Proof. Since f"~1) is absolutely continuous on [a,b], £ exists almost everywhere.
As f is n-convex, by definition of n-convex functions we have ") (x) > 0 for all x € [a,b].
Now by using f) > 0 and (5.207) in (5.203), we have (5.208). O

A consequence of the previous theorem is the following:

Theorem 5.81 Suppose all the assumptions from Theorem 5.78 hold. Additionally, let
JeN, 2<j<nandletx= (x1,...,xn) € [a,b]", p= (P1,...,Pm) € R" satisfy (5.2) and
(5.3) with n replaced by j. If f is n-convex and n — j is even, then

mn n—1 n—k m

k=j —a
— %D (a) (il’i (xi—a)k>> : (5.209)

Proof. Lett € [a,b] be fixed. For j <n—2 we get

d’ .
E(}C—I)W1 =(n—1)(n—=2)-(n—j)(x—1)" /L (5.210)
Therefore, (5.210) fora <t < x < b yields

d’

(tfa)w(xft)"*l >0, (5.211)
while for a < x <t < b we have
i d’/ o
(1)) Ly 20, (5212)
X
It is clear that x — ddej(x— 1)~ 'kl*Pl(r,x) is continuous for j < n—2. Hence, if j <

n—2 and n— j is even, from (5.211) and (5.212) we can conclude that the function
x— (x— t)”’lk[“*"] (¢,x) is j-convex. Moreover, the conclusion extends to the case j = n,
i. e. the mapping x — (x — )"~ 'kl%?!(z,x) is n-convex, since the mapping x dd;%(
1) kl@) (¢, x) is 2-convex.

Using Theorem 5.1 for j-convex function x — (x — )"~ 'kl“?l(z, x) with assumptions
(5.2) and (5.3) where n is replaced with j, we get X7 | pi(x; — t)”’lk[“*b] (,x) > 0. It means

X —
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that (5.207) is satisfied and by Theorem 5.80 inequality (5.208) holds. Moreover, due to
assumption (5.2), X7, piP(x;) = 0 for every polynomial P of degree < j — 1, so the first
j — 2 terms in the inner sum in (5.206) vanish, i.e. we get inequality (5.209). O

When j =n in (5.209), the notation means that the inner sum is void, i. e. 2;’;1 - =0.
In particular, inequality (5.209) with j = n is inequality (5.1).

Corollary 5.16 Let all the assumptions of Theorem 5.78 be satisfied and let the function
f:[a,b] — R be n-convex for even n. Let m-tuples x = (x1,...,Xn), P=(P1,---,pm) ER™
satisfy the conditions

m
Zpk:O, Zpk|xk—x,~|ZOforiE{l,...,m}.
k=1 k=1

Then (5.208) holds.
Furthermore, if f*~V) (a) <0 and (—1)kf* 1) (b) >0, for k € {2,3,...,n— 1}, then

ipif (x;) > 0. (5.213)
i=1

Proof. Inequality (5.208) holds by Theorem 5.81 applied for j = 2.

Moreover, the functions x — (x — a) and x — (—1)¥ (x— b)* are convex, so Remark
5.1 yields

il’i (xi—a)* >0, (5.214)
and "
(—D*Y pi(xi—b)* > 0. (5.215)

Therefore, if f*~ 1 (a) <0 and (—1)¥f* 1) (b) > 0, then (5.214) and (5.215) together
with (5.206) yield inequality (5.213). O

Corollary 5.17 Suppose all the assumptions from Theorem 5.78 hold and let the function
f 1 ]a,b] — R be n-convex. Additionally, let j € N,2 < j <n, let X = (x1,...,%n) € [a,b]",
p=(pi1,---,pm) € R" satisfy (5.2) and (5.3) with n replaced by j and denote

n—1 n—k

_N Tk k- Nk k=1 Y
H(x) = kz a2 (P @) (=) = (@) (- a)). (5.216)
IfH is j-convex on [a,b] and n — j is even, then
Y pif(xi) >0
=1

Proof. Applying Theorem 5.1 we conclude that Y | p;H (x;) > 0, so the right-hand side of
inequality (5.209) is nonnegative and we get desired result. O
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Remark 5.18 For example, since the functions x — (x — a) k and x — (— )k I(x— b)k
are j-convex on [a,b], the function H given by (5.216) is j-convex if f*~1)(a) < 0 and
(=1 f=1(p) > 0 fork € {j,...,n—1}.

As we already mentioned, the inequality in Theorem 5.81 and Corollary 5.17 with j =n
is the same as inequality (5.1) from Popoviciu’s Proposition 5.1. Of course, in the proof
of Theorem 5.81 we have used Proposition 5.1 to prove that assumption (5.207) holds, so,
due to circularity, we didn’t obtain another proof of Popoviciu’s result. But, it is possible,
as we will show in the next lemma, to prove directly that conditions (5.2) and (5.3) imply
(5.207), 1. e. it is possible to prove Theorem 5.81 with j = n independently of Proposition
5.1 and, thus, provide a new proof of Popoviciu’s result.

Lemma 5.5 Let n > 2 and let m-tuples x € [a,b]™ and p € R" satisfy (5.2) and (5.3).
Then (5.207) holds.

Proof. Lett € [a,b] be fixed. Notice that

anb (m,x,p,1) Zp,(p, (xi),

where ¢y is the function

o (x)=(x—0)" K (1 x) =t —b)(x— )"+ (b— a)( —1)n,

As in the proof of Theorem 5.81 we conclude that (5.2) implies - " piP(x;) = 0 for every
polynomial P of degree < n— 1. In particular, for P(x) = (x — t)" we have Y7 | pi(xi —
t)"~! = 0. Therefore,

m
Zpi(l’z(xl = b a 21’1 l_t n ! >0,
i=1
where the last inequalities holds due to (5.3). Since the previous inequality holds for every

t € la,b], we conclude that (5.207) holds. ]

Lemma 5.5 together with Theorem 5.80 gives the “if”” part of Popoviciu’s Proposition
5.1. On the other hand, the “only if” part is straightforward: since the functions e;(x) =
x/ are both n-convex and n-concave for j = 0,1,...,n — 1, inequality (5.1) yields that
> piex(x;) is both > 0 and < 0, so (5.2) holds. Similarly, the function x — (x — t)’j:l is
n-convex and applying inequality (5.1) yields (5.3).

In the remainder of the section we will state integral versions of the previous results,
the proofs of which are analogous to the discrete case.

Theorem 5.82 Let all the assumptions of Theorem 5.79 be satisfied and
M (0, B),gopot) >0, forall t € [a,b]. (5.217)
If f is n-convex, then we have

B ([0, B).8.p.f) 2 0. (5.218)
If opposite inequality holds in (5.217), then (5.218) holds in the reverse direction.
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Proof. The idea of the proof is the same as that of Theorem 5.80. O

A result analogous to Corollary 5.16 can be stated for integrals.

Theorem 5.83 Suppose all the assumptions from Theorem 5.79 hold. Additionally, let
jeN2<j<nandletp:la,f] —Randg:|a,B] — [a,b] satisfy (5.5) with n replaced
by j. If f is n-convex and n — j is even, then

B
| p @) f(s)ax

1 ! k 1) k+2
> d
_b—alz / / plx - *

k=j

[0

N =k e g [P x_akxl
@ [ e —atas).

Corollary 5.18 Let j,n, f,p and g be as in Theorem 5.83 and let H be given by (5.216).
If H is j-convex, n — j is even and f is n-convex, then

/p ))dx > 0.

5.5.2 Inequalities via the Fink Identity and the Green Function

In this section we will obtain another identity and the corresponding linear inequality by
using the Green function (5.10) and applying again the Fink identity.

Theorem 5.84 Ler n € N, n >3, and f : [a,b] — R be such that f"~Y) is absolutely
continuous. Let x;,y; € |a,b], pi € R for i € {1,...,m} be such that ¥, p; = 0 and
> pixi =0 and let k@b pe as defined in (5.202). If G is the Green function, then

11 n—3 k—2
;pif(xi)*zz,(bia/ (Zp, (s ) (5.219)

(£ @) (5= 0) = 4 (@) (s —a)t ) s + %

b b m
x/f( (/ Zpl (xi,s) (s — )" Klebl (1, s)ds)dt

i=

Proof. Putting x = x; in (5.11), multiplying it with p;, adding all the identities and
using the properties >/* | p; = 0 and Y7 | pix; = 0, we get

ipif(xi)* / (2191 (xi,8 ) "(s)ds. (5.220)
i=1
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Applying the Fink identity with f — f” and n — n — 2, it is easy to see that
PR i s ICNS kel G 1L
& K b—a
1
_l’_

b
m/a (=) KL (1) £ (1)t
and by using (5.221) in (5.220), we have

i ()

—k=2 f%D (b) (s = b) — f*H (@) (s —a)
><k§0 1 - ds

(5.221)

'ME

1

L

(n-3 b a/bip’ Gli) </b(sf>"3k[“’”(t,s)f“”(t)dt)ds

Now by interchanging the integral and summation in the second term and by applying
Fubini’s theorem in the last term, we have (5.219)

O
The following theorem is the integral version of Theorem 5.84

Theorem 5.85 Let n € N, n >3, and let f : [a,b] — R be such that f"~) is absolutely
continuous on [a,b), let p : [a,B] — R and g : [a, B] — [a,b] be integrable functions such
that ff p(x)dx =0 and ff (x)g(x)dx = 0. Let k*?! be as defined in (5.202). If G is the
Green function, then

’ "3 _k—
/ap(x)f(g(X))dxzzk'(k 5

kOT_a)/ab </aﬁp(X)G(g(x)’s)dx>

(5D () (5= ) = 0 (@)

s—a)k>ds+ :
<[ (/ (/ P

(n=3)1(b—a)
)dx> (s— )" 3 klebl (1, 5) ds) dr.
Proof. Since proof is similar to the proof of the previous theorem we omit the details. O
Again we introduce some notations here which will be used in rest of the section
///3[“ o (m,x,p,1)

/ Zp, (xi5) (s — )" kP (1, 5) d

: (5.222)
A (e g pr) = /a(/fp<x>6<g<x>,s>dx)<s—r>"3k[ (129)d

B (m,x,p, f) =

b m
= Zpif(xi) Sk Z/a

Zpl (xi,5)
& k' (b—a)

i=
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. (f‘k“) (b)(s=0) £ (@) (s~ @) ) ds

B (e, Bl.g.p. f / plx ))dx

ZZ' bk a2/ (/ PG )dx)
x (FE ) (s =) = 1D (@) (s - )t ) ds.
The following theorem is our second main result of this section:
Theorem 5.86 Let all the assumptions of Theorem 5.84 be satisfied and let
M mx,pt) >0 forall t€ a,b]. (5.223)
If f is n-convex, then we have
B (m,x,p, f) > 0. (5.224)
If opposite inequality holds in (5.223), then (5.224) holds in the reverse direction.

Proof. The proof is done in a similar manner as in Theorem 5.80. O

Corollary 5.19 Let all the assumptions of Theorem 5.84 be satisfied. In addition, let n
be even and

Zp, Xi—xi)+ >0 for ke{l,....m}.
If the function f : [a,b] — R is n-convex, then inequality (5.224) is satisfied, i.e.

b m

ipif (xi) 2 k 2/ sz (xi,s) (5.225)
i=1 0
(f< ’()( )k*f(kﬂ)(a)(sfa)k)ds.

Furthermore, if f**1) (a) <0 and (—1)¥f%+1) (b) > 0 fork=0,1,...,n—3, then 31| pif (x;) >

0.

Proof. Since x — G(x,s) is a convex function, applying Theorem 5.1 we get

ZPZ (xi,5) > 0. (5.226)

The assumptions of the corollary for even n imply
(s—1)" 3kt (s 5) > 0

for all 5,7 € [a,b]. Therefore,
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t m
/Zp, (xi,8) (s —1)" 2K (1, 5)ds > 0 (5.227)

and applying Theorem 5.86 when f is n-convex gives inequality (5.225).
Moreover, if f*1) (a) <0and (—1)*f*+1 (b) > 0, then

FEI®) (s =) = f5 (@) (s —a) 2 0, (5.228)

so from inequalities (5.225), (5.226) and (5.228) we obtain Y | p;f(x;) > 0. ]

An integral version of our second main result states that:
Theorem 5.87 Let all the assumptions of Theorem 5.85 be satisfied and let
M [0, B8, pit) >0 forallt € [a,b]. (5.229)
If f is n-convex, then we have
By ([0..Bl.,p.£) = 0 (5.230)
If opposite inequality holds in (5.229), then (5.230) holds in the reverse direction.
Proof. The idea of the proof is the same as that of the proof of Theorem 5.80. O

Corollary 5.20 Let all the assumptions of Theorem 5.85 be satisfied. In addition, let n
be even and

/ p(x)(g(x)— t):lfl dx>0, foreveryt € [a,b].

If the function f : [a,b] — R is n-convex, then

B "In—k—2 b/ P
[ rwrema=S 8 ([ 0660 0a)
x (f<’<+‘) (b) (s — b)F — £+ (g) (s — a)k> ds. (5.231)

Furthermore if f**V (a) <0 and (—1)*f**+V) (b) > 0 for k=0,...,n— 3, then the right-
hand side of (5.231) is nonnegative.

Proof. The proof is analogous to the proof of Corollary 5.19 but instead of Theorem
5.86, we apply Theorem 5.87. O
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5.5.3 Bounds for the Remainders and Functionals

In the present section we give several estimations related to the functionals B ( v f)s
for k € {1,2,3,4}. For the sake of brevity, in the present and the next sectlon we use the
notation By (f) := B,[('"](-,-,-,f) and (1) := ///k["'](-,-,-,t) for k € {1,2,3,4}. By using
the well-known Hoélder inequality and bound for the (v?ebyéev functional T'(f,h) given in
Proposition 5.2 we are going to obtain a formula for By and estimate the remainder which
occurs in this formula.

Theorem 5.88 Letn € N and let f : [a,b] — R be such that f""*~) is an absolutely con-
tinuous function and

y<fPx)<T for xé€la,b).

(i) Let k € {1,2} and let 37" | pi = 0 (for k= 1) or fa p(x)dx =0 (for k =2). Then the
remainder R\ (f;a,b) given by the following identity

D) — - 1>< )| .
BU) = = //// Vi + R (f:a,b), (5.232)

satisfies the estimation

b—a
Ry(f:a.0)| < g5 (C= VT (M- l). (5.233)

(ii) Let k € {3,4} and n > 3. Let the assumptions stated in Theorem 5.84 for p and x (for
k =3) and in Theorem 5.85 for p and g (for k = 4) hold. Then (5.232) and (5.233) hold
with (n— 3)! instead of (n — 1)! in the denominator of By(f) and in the bound of RX.

Proof. Fix k € {1,2}. Using the definition of By and result from the previous subsection
we have

By(f) = (nfl% /‘bf(n)(l)-//k(f)dt

:( b e /f )dt/ab///k(t)dhLRﬁ(f;a,b)

(n ) )(a
— [f (n—(l))!(.bf a( }///zk )dt + RX(f:a,b),

where

b b b
RE(fra,b) = mg 70 0) (1)t — ! - / 70 (5)ds / ///k(t)dt>.

If we apply Proposition 5.2 for f — .#; and h — f"), then we obtain

b—a

R (fra,b)| = |T(%k7 )I_ﬁ(Fw) T( My, AM).

1
(n—1)!
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The proof for k € {3,4} is done in a similar manner. O

Using the same method as we used in the previous theorem and other type of bounds
for the Cebysev functional given in Theorems 5.12 and 5.13 we are able to give another
estimation for the remainder. The following theorem gives us some Ostrowski-type in-
equalities.

Theorem 5.89 Let f") € L, [a,b] for some n € N and let (q,r) be a pair of conjugate
exponents, that is, 1 < q,r < oo, cl/—’— I=1.

(i) Letk € {1,2} and let Y} | pi =0 (for k = 1)0rf£p(x)dx=0(fork=2). Then

1
IBi(f)] < m”f(")ﬂqﬂ///k”r- (5.234)

The constant on the right-hand side of (5.234) is sharp for 1 < q < eo and the best possible
forqg=1.

(ii) Let k € {3,4} and n > 3. For k = 3 we assume that x and p satisfy the assumptions of
Theorem 5.84 and for k = 4 we assume that p and g satisfy the assumptions of Theorem
5.85. Then the statement holds with (n — 3)! instead of (n — 1)! in the denominator of the
bound for By.

Proof. The proof is similar to the proof of Theorem 5.18. O

5.5.4 Mean Value Theorems

In this subsection we consider mean value theorems involving By. Throughout the section
we use the agreement that if k € {1,2}, then n € N; if k € {3,4}, then n > 3. Furthermore,
for k = 1 we assume that ¥}" | p; = 0, for k =2 we assume that ff p(x)dx =0, for k=3
we assume that x and p satisfy the assumptions of Theorem 5.84 and for k = 4 we assume
that x and p satisfy the assumptions of Theorem 5.85.

Theorem 5.90 Ler k € {1,2,3,4} and let us consider By as a functional on C"([a,b)).
If the corresponding conditions from the set {(5.204),(5.90),(5.222), (5.229)} related to
the fixed k hold, then there exists & € [a,b] such that

Bi(f) = f"(E)Bi(fo),

n

X
where fo(x) = i
Proof. The proof is similar to the proof of Theorem 5.34. O

Applying Theorem 5.90 on function @ = By (h) f — Br(f)h, we get the following result.

Theorem 5.91 Let k € {1,2,3,4} and let us consider By as a functional on C"([a,b)).
If the corresponding conditions from the set {(5.204),(5.90),(5.222), (5.229)} related to
the fixed k hold, then there exists & € [a,b] such that

Bi(f) _ f"(&)

Bi(h) — h") (&)
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assuming that both the denominators are non-zero.

Remark 5.19 If the inverse of {z(" exists, then from the above mean value theorems we
can give generalized means

-1
fo By(f)
= . 5.235
S (h(n) Bi(h) (5233)
Using the same method as in the subsection 5.1.6, we can construct new families of

exponentially convex functions and Cauchy type means. Also, using the idea described in
the subsection 5.1.2 we can obtain results for n-convex functions at point.

5.6 Linear Inequalities and the Abel-Gontscharoff
Interpolation Polynomial

The Abel-Gontscharoff interpolation problem in the real case was introduced in 1935 by
Whittaker [100] and subsequently by Gontscharoff [20] and Davis [12].

Let us recall results from [1] for representation of a function f via the Abel-Gontscharoff
interpolating polynomial for two points with integral remainder.

Theorem 5.92 Letnke N, n>2,0<k<n-—1land f € C"([a,b]). Then
f(t) = 0n-1(f,1) +R(f,1), (5.236)

where Q,_1 is the Abel-Gontscharoff interpolating polynomial for two-points of degree
n—1,ie.

k
On1(f.1) 2
j=0
k—
>

Jj=0

=~

n—

_|_

2 kL a— )
(i (l k+)1+l)(( b))' >f(k+l+j)(b)

i=0
and the remainder is given by
R = [ Galt.s)f ),
Ja
where Gy(t,s) is the Green function given by
Ek: (nj 1) (t—a)(a—s)"""1, a<s<t

1 .
Gy(t,s) = =0
(n—1)! nl /p

2 (

(5.237)

i=k+1
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Further, for a < s, < b the following inequalities hold

i
(_1),14{71% >0, 0<i<k (5.238)
Il
(_1)%1%207 ktl<i<n—1. (5.239)

5.6.1 Inequalities Obtained via the Abel-Gontscharoff
Interpolating Polynomials

We start this section with identities for the sum Y, p, f(x,) and the integral [ p(¢)f(x(z))dt
using the Abel-Gontscharoff interpolating polynomial for two points. These results are
given in paper [33].

Theorem 5.93 Let nk € N, n>2, 0<k<n-—1, and let x = (x1,...,%n) € [a,D]",
P=(pi1,...,pm) € R™ be m-tuples. Let f € C"([a,b]) and Gy, be the Green function defined
as in (5.237). Then

m b m
> prf () = 601(f)+ / (Z p+Gn (xr,s)> £ (s)ds, (5.240)
r=1 a r=1
where
k f(i) (a) m .
0(f) = X—— Xrv—a) (5.241)
i=0 : r=1

n—k-2 j m ) 1\ a j—i
i 2 2 <2pr(xra)k+1+z> Eki)l +(ll)’(1_) )'f(kﬂﬂ)(b)

Proof. Putting t = x, in (5.236), multiplying it with p,, r = 1,2,...,m, and adding all
the identities we get (5.240). O

Similarly, we get an integral version of the above theorem.

Theorem 5.94 LetnkeN,n>2,0<k<n—1,andx:|a,B]— [a,b], p:|a,B] =R
be continuous functions. Let f € C"([a,b]) and G, be the Green function defined as in
(5.237). Then

/ plt ))dt = 6,(f) + / ( / ()G, (x(1),5)d )f<>(s)ds, (5.242)

where

p(t) (x(1) —a)'dt (5.243)

g\
f<S

R L

=

0
—k—
+ 2

j=0 i=0 (

p N (L by L
/ ) (x(1) —a)k“*’dt) Eki)l Jr(il))!(j)i)!f(k“ﬂ) (b).
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If x and p satisfy additional conditions, then we get a generalization of a Popoviciu
type inequality for n-convex functions, i.e. we give a lower bound for the sum ¥, p, f(x,)
which depends only on the nodes xi,...,x,, the weights py,..., p, and values of higher
derivatives of a function f at points a and b.

Theorem 5.95 LetnkeN,n>2,0<k<n—1,x=(x1,...,xn) andp = (p1,..-,Pm)
be m-tuples such that x, € [a,b] and p, € R (r € {1,...,m}) and let G, be the Green
function defined as in (5.237).

Ifforall s € [a,b]

m
N prGu (xr,5) >0, (5.244)

r=1
then for every n-convex function f : [a,b] — R,

m

2 prf () Z 6 (6), (5.245)
r=1
where 0 (f) is given in (5.241).

If the reverse inequality in (5.244) holds, then also the reverse inequality in (5.245)
holds.

Proof. Since the function f is n-convex, therefore without loss of generality we can
assume that f is n-times differentiable and f")(x) > 0, for all x € [a,b]. Hence we apply
Theorem 5.93 to get (5.245). |

Integral version of the above theorem is stated as:

Theorem 5.96 LetnkeN,n>20<k<n-—1,andx:|a,B]— [a,b], p:|a,p] =R
be continuous functions and let G,, be the Green function defined as in (5.237).
Ifforall s € [a,b]

B
/ p(t)Gu(x(2),s)dt >0, (5.246)

then for every n-convex function f : [a,b] — R

B
[ plo) £ x(0)dr = 001), (5.247)
where 0,(f) is defined in (5.243).

If the reverse inequality in (5.246) holds, then also the reverse inequality in (5.247)
holds.

In some cases the assumption " | p,G, (x,,s) > 0, s € [a,b] can be replaced with
more simpler condition in which we recognize assumptions from Popoviciu’s theorem
about positivity of sum ¥, p, f(x,) for a convex function f. Namely we have the following
statement.
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Theorem 5.97 Letnke N, n>2, 1<k<n-—1, x€ [a,b]" p € R" be m-tuples such
that

m m

Zpr:()v Zpr|xr*xs|207 fors:l,Z,...,m

r=1 r=1

and let Gy, be the Green function defined as in (5.237).

(i) If k is odd and n is even or k is even and n is odd, then for every n-convex function
f:la,b) = R, it holds

2 prf (xr) = 0u(f), (5.248)
r=1
where 0 (f) is given in (5.241).
Moreover, if fO(a) >0 fori=2,...,k and (—1)7" f 140 (p) > 0 for i € {0,..., j}

and j € {0,...,n—k—2}, then Zp,f(xr) > 0.
r=1
(ii) If k and n are both even or odd, then for every n-convex function f : [a,b] — R, the
reverse inequality in (5.248) holds.
Moreover, if fO(a) <0 fori=0,....k and (—1)7= f&+1+0)(p) <0 for i € {0,...,j}
m

and j € {0,...,n—k—2}, then Zp,f(xr) <0.

r=1

Proof. (i) Let us consider properties (5.238) and (5.239) for i = 2. If k is odd and n is

2 2
"*2‘96”7;2”) > 0 from (5.239), i.c. aL(;” >0, ie.

Gy, is convex. For k > 1, from (5.238) we get the same inequality. If k is even and 7 is odd,
then k£ > 2 and from (5.238) we get that G,, is convex in the first variable. By Remark 5.1,
applied on the function G, we get

even, then for k = 1 we get (—1)

m
2 prGn (xrvs) >0,
r=1

i.e. the assumptions of Theorem 5.95 are fullfilled and inequality (5.248) holds. If further
assumptions on f()(a) and f*+1+/)(b) are valid, then the right-hand side of (5.248) is
nonnegative.

The case (ii) is proved in a similar manner. a

An integral analogue of the previous theorem is the following theorem.
Theorem 5.98 Letnke N, n>2, 1<k<n—1x:[a,B]— [a,blandp:[a,f] = R

be continuous functions satisfying

[ =0 [ ps=o.

and

[ o) -9, 20 jorse lad]

[0
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and let Gy, be the Green function defined as in (5.237).
(i) If k is odd and n is even or k is even and n is odd, then for every n-convex function

f:la,b] = R, then
[ p0 )= 0307). (5249

o
Moreover, if fU(a) >0 fori=0,...,k and (—1)/= f&+10)(p) > 0 for i € {0,..., j}
and j €{0,...,n—k—2}, then [P p(t)f (x(z))dt > 0.
(i) If k and n are both even or odd, then for every n-convex function f : [a,b] — R,
then the reverse inequality holds in (5.249).
Moreover, if f(a) <0 fori=0,...,k and (—1)/~ f&+1+0)(p) <0 fori € {0,...,j}
and j €{0,...,n—k—2}, then [P p(t)f (x(z))dt <0.

5.6.2 Results Obtained by the Green Function

In this subsection we obtain results using the Green function G, (5.10), together with the
Abel-Gontscharoff polynomials.

We begin the subsection with some identities related to generalizations of a Popoviciu
type inequality.

Theorem 5.99 LetnkeN,n>4,0<k<n-—1, f€C"a,f] and x € [a,b]", p € R™.
Also let G and G, be defined by (5.10) and (5.237) respectively. Then

m b b m
Yo =o)++[ | (2 plcm,s)) Gooalsyt) /) (0)deds,
=1 Ja Ja =1

where 05(f) is defined as

ko p(i+2) b M .

yy @ / " S, Gx,s) (5 - a) ds (5.250)
- b Ja 121
n—k—4

(=17 (b—a) " ) () b kil
=0 i=0 k+1+01G—i) ;PIG(M,S) (s—a)""ds.

Proof. The proof is similar to the proof of Theorem 5.84 using representation which
follows from Theorem 5.92:

' (i+2) i ! (s — )kHH(a b) (k+3+)
@)+ Y 2 GRS f 3 (p)

Jj=0 i=0

iy
3
[
~—
I
M~
—
12
[
Q
\_/

i=0

+ / Gy a5, 0) 1 (D).
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Theorem 5.100 Let n,keN, n>4, 0<k<n-—1, f € C"[a,b], and let x : [0, f] —
[a,b], p: o, B] — R be continuous functions and G, G, be defined by (5.10) and (5.237)
respectively. Then

/p 7))dT = O4(f +/ / / p(1)G(x(1),5)Gp_a(s,0) f" (t)dTdt ds,
where
— f(a) B a
) = LD [P ety LD O 17
k fl+2) ;
s—a)'dtds 5.251
D L [ pw6tet). 6 ayae (5251
R e U (R M AR )
! ;0 RS ES TR T

. ./f ./j P()G(x(7),5) (s —a) ™ drds.

Theorem 5.101 Lern,keN,n>4,0<k<n-—1,p e R" x € [a,b]". Also let G and
G, be defined by (5.10) and (5.237) respectively.
If f : [a,b] — R is n-convex, and

/b (i PZG(xl,S)> Gu2(s,t)ds >0, t € la,b], (5.252)
a \/=1
then
Y pif(x) > 63(f). (5.253)
=1

If the reverse inequality in (5.252) holds, then also the reverse inequality in (5.253)
holds.

Proof. Tt follows from n-convexity of a function f and from Theorem 5.99. O

As from (5.238) we have (—1)""%73G,_»(s,¢) > 0, therefore for the case when n is
even and k is odd or n is odd and k is even, it is enough to assume that ¥ | p;G(x;,s) >
0,s € [, B], instead of the assumption (5.252) in Theorem 5.101. Similarly we can discuss
for the reverse inequality in (5.253).

Integral version of the above theorem can be stated as:

Theorem 5.102 Lernke N, n>4, 0<k<n—1, x:[c,B] — [a,]], p:[a,B] = R
be continuous functions and G, G, be defined by (5.10) and (5.237) respectively. If f :
[a,b] — R is n-convex, and

b P
/b/ p(1)G(x(7),8)Gp—2(s,t)dTds > 0, (5.254)
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then

/ p(0)f(x(1))dT > 04(F). (5.255)

If the reverse inequality in (5.254) holds, then also the reverse inequality in (5.255)
holds.

As from (5.238) we have (—1)""¥3G,_»(s,t) > 0, therefore for the case when n is
even and k is odd or 7 is odd and k is even, it is enough to assume that [ p(7)G(x(7),s)dt >
0,s € [, B], instead of the assumption (5.254) in Theorem 5.100. Similarly we can discuss
for the reverse inequality in (5.255).

If we deal with the assumptions from Remark 5.1, which are equivalent to the Popovi-
ciu’s conditions for positivity of the sum involving convex function f, then for some com-
binations of n and k we get a result for a n-convex function f. More precisely, we get the
following theorem.

Theorem 5.103 Lern,k e N, n>4,0<k <n—1. Let G be defined by (5.10) and let
f:]a,b] — R be n-convex. Let x € [a,b]™ and p € R satisfy

m m

Zpr:O, 2pr|xr_xs|Zovforszlaza"'am

r=1 r=1

(i) If nis even and k is odd or n is odd and k is even, then
l+2

ipzf(xz) /Zplle, )(s—a)'ds
=1 a

n—k—4 j )it (b—a) ™ fkE3ED) (p)

+ 2 2 S ETTEn]

X / ZplG(xl,s) (s—a) " ds. (5.256)

=1

Moreover if fi2)(a) > 0 fori=0,...,k and (— 1)/~ f&+3+)(b) > 0 fori € {0,..., j}
and j €{0,....n—k—4}, then 3" | pif (x;) > 0.

(ii) If n and k both are even or both are odd, then the reverse inequality holds in
(5.256).

Moreover lff (+2)(a) <0fori=0,...,kand (—1)/" f&3+)(p) <0 fori € {0,...,j}
and j €{0,...,n—k—4}, then 3" lp;f(x1)<0

Proof. (i) By using (5.238) we have (—1)"*73G,_5(s,t) > 0, a < 5,t < b, therefore
if n is even and k is odd or n is odd and k is even then G,,_»(s,#) > 0. Since G is convex
and G,_, is nonnegative, inequality (5.252) holds. Hence by Theorem 5.101 inequality
(5.256) holds. By using the other conditions the nonnegativity of the right-hand side of
(5.256) is obvious.

Similarly we prove (ii). a

The integral version of Theorem 5.103 can be stated as:
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Theorem 5.104 LetnkeN,n>4,0<k<n—1,x:[a,B]— [a,blandp:|a,f] = R
be any continuous functions. Also let G be defined by (5.10). Let f : [a,b] — R a n-convex
and

5 5
/ p(1)d7 >0, / p(1)(x(T) — )5 dT > 0 for 1 € [a,b], (5.257)

(i) If n is even and k is odd or n is odd and k is even, then

B ko p(i+2) a b B .
[ psnar > ¥ / [ G5~ ayaras
o i=0 .
n—k—4 j i b a)] lf(k+3+j)(b)

* 2 2 k+1+l)( Bl

/ / ),8) (s —a)" ' drds. (5.258)

Moreover if £+ (a) > 0 fori=0,... . kand (—1)/~ f* 3+ (p) > 0 fori € {0,..., j} and
j€{0,...,n—k—4}, then the right-hand side of (5.258) is nonnegative, that is integral
version of (5.1) holds.

(ii) If n and k both are even or both are odd, then reverse inequality holds in (5.258).

Moreover if {2 (a) <0 fori=0,... . kand (—1)~ f*k3+)(b) <0 fori e {0,...,j}
and j €{0,...,n—k—4}, then the right-hand side of the reverse inequality in (5.258) is
nonpositive, that is the reverse inequality in the integral version of (5.1) holds.

Using the same method as in the first section of this Chapter, we can state mean value
theorems and results connected with exponentially convexity.






Chapter

Cebysev-Popoviciu Type
Inequalities

6.1 Generalized Cebysev and Ky Fan Identities and
Inequalities

One of the classical, well-known inequalities is the CebySev inequality. For more about
this inequality, its history, variants and generalizations we refer to the books [51], [77]
and paper [44]. Here we recall only few facts about it and then we proceed to our main
aim: to give a Popoviciu type inequality for the difference which arises from the Cebysev
inequality.

The discrete CebySev inequality is given as follows ([77, p. 197]).

Theorem 6.1 Let a and b be two real N-tuples monotonic in the same sense and p be a
nonnegative N-tuple. Then the inequality

N N N N

Y pi Y, piaibi— Y, pia; Y, pibi >0 6.1)

i=1 =1 i=1 j=1
holds. If a and b are monotonic in the opposite sense, then the reverse of the inequality in
(6.1) holds. In both cases equality in (6.1) holds if and only if either ay = ay = ... = ay
0)"b1 :bzi...:bN.

219
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The integral Cebysev inequality is given as follows ([77, p. 197]).

Theorem 6.2 Let f,g: [a,b] — R and p : [a,b] — [0,°0) be integrable functions. If f and
g are monotonic in the same direction, then
b

[ v [ s> [ pw s [ pgois 62

provided that the integrals exist. If f and g are monotonic in opposite direction, then the
reverse of inequality (6.2) is valid. In both cases, equality holds if and only if eighter f or
g is constant almost everywhere.

A.M. Ostrowski [54] gave the following result related to Cebysev’s inequality:

Theorem 6.3 Let f.g € C(l)(l) be two monotonic functions and let p : [ — R, be an
integrable function. Then there exist &, ) € I such that

T(fvgap):f/<§)g/<n)T<x_a’x_a’p)’ (63)

where

T80 = [ pWas [ prswax— [ porias [ pisoar. 64

A term T(f,g,p) defined by (6.4) is called the éebyshev difference or the Ceby§ev
functional. For other generalizations of Theorem 6.3, [64] can be seen. In [67], J. Pecari¢
gave the following generalization of Theorem 6.3 by using the functional

b rb b rb
C(f»p)=./a /a p(x,y)f(y,y)dydx—/a /a plx,y)f(x,y)dydx, (6.5)

where p and f are integrable functions. It is clear that for the particular case when f(x,y) =

f(x)g(y) and p(x,y) = p(x)p(y), then C(f, p) collapses to T (f, g, p). In fact, Theorems 6.4
and 6.7 from [67] are devoted to the functions with continuous second partial derivatives,

while in Theorem 6.5 from the same article we find a result for sequences involving the
second ordered differences.
Theorem 6.4 Let p : I — R be an integrable function such that
X(x,x) =X (x,x) Vxel
and let either

X(x,y) >0, a<y<x<b, X(xy)>0, a<x<y<b

or its reverse inequalities be valid, where
b ry _ x b
X(x,y) = / / p(s,t)dtds and X(x,y) = / / p(s,t)dtds.
X a a y
If f € C*(I?), then there exists (&,1) € I? such that

(92
C(fr) = fun(&mC((x—a)(y—a),p), where fii1)(x,y) = Bxgy'
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Proof. Using notation

a(x) = _/ax (/ayp(X,l)dl‘) (L) + H0ny) — f(x,))dy,
/ </ plx.1)d ) (i 03) + f2(ny) — folx,))dy

/pxy (%,y) = f(x,y))dy = a(x) +B(x), where fli% and  fo =

af
So. we obiain

C(f,p) = / ’ () + / " Bx)dx
o ab (/ ( [ rte >dr) (fi(y )+f2(y»Y)—f2(x,y))dy) dx
s ([ ([ ) 00+ (a000) — ety ) ax
--f ( / b ( [ ptnar) (e >+fz<y,y>fz<x,y>)dx> dy

+ ./ab </ay (l/ybp(X,t)dt) (AL,y)+ (LOhy) fz(x7y))dx) dy
b b
:—a<X () /yXxy (1,1) dx)dy

b

_ Y __
+ /a (X(y,y)f1(y,y)+/a X (x,3) f(1.1) (s y)dX) dy.
So,
b b b
fo)= [ [ xen e yasdy s [0 X endy 66
If we put
X(xy)=X(xy), (x<y) and X(xy)=X(xy) (x>y)

we have

b rb
p) =/a /a X (x,9) f1,1) (x,y)dxdy,

and using the mean value theorem for double integrals there exist £, € I such that

b ~
C(f,p) = fuy(Em) / X (x,y)dxdy.
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If instead of f we put the function (x,y) — (x —a)(y — a), then

Cl—a)ly—a),p) = [ Rex )y

and combining the last two equalities we get the statement of the theorem. O

Let us consider a discrete analogue of the difference C(f, p). If a;j, pij, (i, j = 2,...,N),
are reals, then we define Ca(a, p) as following

N N N
Z Pijaji— Y, Y, Pijdij;

i=1j=1

HMz

The following theorem gives us necessary and sufficient conditions under which Cy (a, p)
is nonnegative. In short, it is Popoviciu type inequality for Ca(a, p).

Theorem 6.5 The inequality
Cala,p) 20 (6.7)

holds for each real numbers a;j for i,j € {1,...,N} such that A ajj > 0 fori,j €
{1,...,N—=1} ifand only if

Xj+1,j=Yj,j+1, jed{l,....N—1}
and

0, ie{j+1,....,n} for je{l,....N—1} (6.8)
0, ie{l,...j—1} for je{2,...N} (6.9)

hold. If A"Va;; <0 fori,j € {1,...,N — 1}, then the reverse inequality in (6.7) is valid,
where

>
2

lj —Zzprs and le = 2 ZPrs

r=is=1 r=1s=j

Proof. The following identity holds

N—1 N
Cala,p) = ) (Xj+1,jAlajj+ > XijA(l’l)ail,j>

j=1 i=j+2

— j7
2 ( Xjjr1haj o+ Y Xi, ]+1A( )aij> .

i=1

Since Xj4+1,; =X j+1 forall j we get

N-1 N N—1j-1
CA(avp) = 2 2 XijA(l a;— ]j+ 2 2X;1+1A a,j.
j=li=j+2 j=li=

Using other assumptions of Theorem we get inequality Ca(a, p) > 0.
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Takea,s=—1ifi<r<Nand1<s<j,anda,=0ifeither | <r<i—lorj+1<s<
N. Then one can verify that AlDg. >0for1 <rs<N-—1,so inequality Ca(a,p) >0
holds for this sequence (a,). But this inequality reduces to 0 < X;; proving inequality
(6.8). Considering the sequence (a,s) defined by a,, = —1if 1 <r<iand j < s <N, and
ars = 0 otherwise, inequality Ca(a, p) > 0 reduces to (6.9). To show remaining conditions
we choose two sequences (ays), (bys) such that for 1 < j <N —1,

Ca(a,p) = Xj1j—Xj js1,

Ca(b,p) =X js1—Xjr1j-
For the first of these, (a,s) must satisfies
N N N j N
2 zprs(ass _ars) = 2 Zprs - 2 2 Prs;
r=1s=1 r=j+1s=1 r=1s=j+1
and this requires that
1 ifj+1<r<N,1<s<j

ass—ars=4 —1 if1<r<jj+1<s<N (6.10)
0 otherwise .

For arbitrary choice of ay, (1 <5 < N), if one defines a, by (6.10), then ALY g, >0 for
1 <rs<N-—1. Hence we obtain X; | ; > X; ;i for 1 < j<N—1. A similar analysis
using arbitrary by, and

brs=1( by—1 if 1 <r<j,j+1<s<N
bss otherwise ,
also gives A(l’l)brs >0forl<rs<N-—landX; ;< )_(j7j+1 forl<j<N-—1. O
In 1952, Fan [17] proposed as a problem the following result (see also [44]):

Theorem 6.6 Ler (x,y) — w(x,y) be a nonnegative Lebesgue integrable function over
the square {(x,y) :a <x<b and a <y <b}. Suppose that B is a positive constant
such that f: w(x,y)dy < B for almost all x € [a,b)] and also f:w(x,y)dx < B for almost all
y € [a,b]. If two finite-valued functions f and g are both nonnegative and nonincreasing on
[a, D], then the following inequality holds

b rb b
| [ wensestiasay < [ fgwds 6.11)

For a generalization of Fan’s result, Pecari¢ in [67] considered the following expression
for integrable functions f, p and ¢,

K(f,p,q) =/abq(X)f(X»X)dx—/ab/abp(w)f(x,y)dxdy (6.12)

and gave the following result.
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Theorem 6.7 Let p: 1> — Rand q: 1 — R be two integrable functions such that P(x,a) =
O(x), P(a,y) = Q(y), P(x,y) < Q(max{x,y}), Vx,y€l,

where  Q(x) :/qu(t)dt and P(x,y) /xb/ybp(s,t)dtds.

If f: I = R has the continuous partial derivatives f, f» and J1,1), then there exists
(&.n) e 12 such that

K(fvpvq) = f(l,l)(é?”)K((xia)(yia)vp#])'
Proof. The following identities hold:

b b b
| asexar = fa.ao@+ [ ownixidx+ [ 0Wp e,

y
// 11 xydydx—// 11 (x,y)dxdy
/ Y y)dy — / y)fa(a,y)dy,

and

[ [ 0w navar = [ oonnax- /a"Q<x>f1<x,a>dx,

2
where fi, f2 and f; 1) are partial derivatives of f,i.e. fi = ax , ph= and fan = ;Xafy .
Using the above- mentloned identities and the following

b rb b
| [ penswy) av dy=flaap@a)+ [ Pea)siads

b b rb
+ [ Paypteyas [ [ Pefun sy,
b b
whereP(x,y):/ / p(s,t)dtds we get
x Jy

K(f,p.q) = f(a,a)(Q(a)— P(a,a))+ / P(x,a) i (x,a)dx
+ / P(a,y))f2(a,y)dx

[ / (Q(max(x,)) = P(x.y)) 1.1 ()

i.e. in our case

K(f,p,q) / / (max(x,y)) — P(x,y)) f(1,1)(x,y)dxdy
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= fun / / (max(x,y)) — P(x,y))dxdy
= f(1,1) mK(( —a),p,q).
O

Under the assumptions of Theorem 6.7, we introduce the following notations for sim-
plification of statements of the upcoming theorems:

//pst x)' (¢ ]'y)jdtds, (6.13)

//p (S]y) drds, (6.14)

(s —x)! (s —a)l

0 (x) = / a(s) "

ds, (6.15)

il
b b AN (oM
rey = [ / p(s,w(s LI s
M
/ / B G My') dids, (6.16)
= (s=x)" (s—y)¥
R(x.y) = /,,wx{x,y}‘f@Ts 2 s
\M
/ / , T My') dtds, (6.17)

(xfa)NJrl(yfa)MH
(N+1)!{(M+1)!

In the following text an absolutely continuity of a function # means an absolutely con-
tinuity in the sense of Charathéodory described in [94].

If u: D — R is absolutely continuous in the sense of Carathéodory, then for every
(x,y) € D it admits the integral representation

folx,y) = (6.18)

X 'y X y
u(x,y):u(a,c)—i—/ u(m)(s,c)ds—i—/ u(071)(a,t)dt+/ / (i (s,t)deds, (6.19)

where the partial derivatives in (6.19) exist almost everywhere.

Let f,p: 1> - R and g : I — R be three functions such that p,q are integrable and
J(v.m) exists and is absolutely continuous (in the sense of Carathéodory). The values C
and K are defined as follows:

C(f.p) = C(fop) zzf,,aa[ (a.a) = P)(aa)]

i=0j=0

— 2/ five,)(x,a) [ﬁ(N’j)(x,a)—P(N’j)(x,a)} dx
j=0”a
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N b (i .
=3 [ i@ [P @) - P @) dy, (6.20)
=074
where C is defined in (6.5).
. M N N -
K(f,P»Q) = K(faP,CI) - 2 2f(lj)<a Cl) [Q(W)(a) _P(l’”(aaa)}
j=0i=0

M b . :
_ 2/ foverp (xa) {Q(N-,J)(x),p(N-,J)(xﬂ)} dx
j=0a
N b ' '
= 3 [ (@0 [@490) - P @] (621)
where K is defined in (6.12).

6.1.1 Generalized Discrete éebyéev’s Identity and Inequality

In this section we consider the difference Ca(f, p) defined as follows:

N N N
Ca( 2 ljf Xi,Yi) 22 ljf xl»)’j
i=1 i=1j=1

HMZ

Our aim is to obtain a Popoviciu type inequality connected with this difference. We will get
an identity for C5(f, p) which involves higher ordered differences A, 4 and then we con-
sider necessary conditions for positivity of Ca(f, p) when f is an (n,m)-convex function.
The following results are given in [24].

Theorem 6.8 Let (x;,y;) € I for i,j € {1,...,N} be mutually distinct points and let
f: > — R be a function and p;j € R fori,j € {1,...,N}. Then,

CA(fvp)
m—1n—1
=) ZAtk x1,y1)l 2 Zpsr x5 —x1) (yy —y) P
k=0 1= s=max{t,k}+1r=1
- 2 2 psr s_xl )<Yr_y1)(k)‘|
s=t+1r=k+1
m—1 N
+ 2 2 A(n,k)f(xtfiu)’l)(xt *xtfn) X
k=0 t=n+1

N N
X [ 2 Zpsr(xs_xt7n+1)(n7])(ys_y1)(k)

s=max{t,k+1}r=1

s=t r=k+1

*2 2 pvr s xtn+l)(n])(yry1)(k)]
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N n—-1
+ 2 2A(l,m)f(xlvykfm)(yk7yk7m)X

k=m+11t=0

N N
X 2 2 psr(xs — X1 )(t) ()’s - ykfm+1)(m71)

s=max{t+1,k} r=1

N N
= Y Y porly—x) D (= yhy )Y

s=t+1r=k

N N
=+ 2 2 A(n,n1)f(xt7nvyk7n1)(xt *xtfn)(yk 7yk7m) X
k=m+1t=n+1

Y u 1 1
X 2 2 psr(xs _xt7n+1)(n7 )(YS — Yk—m+1 )<mi )

s=max{t k} r=1

N N
=20 > Porlots =X )" =y )Y

s=t r=k
holds, where a®) = a(a—1)...(a—k+1) and a®) = 1.
Proof. We start the proof by considering the expression
N N
N piif(xi,yi)
i=1j=1

where p;; is defined as

We get

M=
Mz

N N
pijf (xi,yi) = 22 pijif (xi,yi)

Il

_
~.

Il

—_

n—1

A(t,k)f(xlvyl) 2 Zpsr Xy —X1) y *y1)(k)

I
g

k=0 r=0 s=max{t+1k+1} r=
m—1 N
+ 2 A(n,k)f(xtfnvyl)(xt —Xt—n) X
k=0 t=n+1
N

X 2 ZPW Xs xtfnJrl)(nil)(ysfyl)(k)

s=max{t k+1} r=

n—
+ 2 2 A(l,m)f(xlvykfm)(yk _ykfm) X
k=m+11t=0

X 2 ZPvr (s —x1) (35 — Yooy r) "

s=max{t+1,k} r=1

227

(6.22)
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N N
+ 2 2 A(n,m)f(xtfmykfm)(xt = X¢—n) (Vk = Yi—m) X
k=m+1t=n+1

2, 2, _ (n—1) _ (m—1)
X 2 Zpsr(xs xt7n+1) (ys yk7m+l) .

s=max{t,k}r=1

N N N N
So, we get our required result by putting the expressions . Y p;;f(x;,yi) and ¥, Y pijf(xi,y;)
i=1j=1 i=1j=1

N N N N
in Ca(f,p) 2 2 ljf Xi, i) 2 2 ljf xl7yj o
i=1j=1

i=1 j=1

If we put x; =i, y; = j and f(x;,y;) = f(i, ) = a;j in Theorem 6.8, then we get the
following corollary.

Corollary 6.1 Let p;j, ai; € R fori,j e {1,...,N}. Then, the following identity holds

N
2 Dijaii — 2 2 pijdij

1j=1 i=1j=

Mz

:nimiA(”‘)an [ g: é":psrctl) (sk1>

s=max{t k}+1r=1

N N m—1 N
s—1\ /r—1
- X Zpsr<t)< )JFZ ZAnk,nX
s=t+1r=k+1 k=0 t=n+1
N N
s—t+n—1\/s—1
LB B
s=max{t k+1} r=1
N N N n—1
s—t+n—1
S0 G | (R | D Vi
s=t r=k+1 n-— k=m+11t=0

N N s—1\/(s—k+m—1
SIS L ) [y
s=max{t+1,k} r=1

NN s—l) (r—k—l—m—l)]
- Psr
szgrlrgk ( ! m—1

N N

+ 3 Y A" ag um)

k=m+1t=n+1

22

s=max{t k} r=1

NN s—t+n—1\[(r—k+m—1
722psr R
=5 n—1 m—1
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where AR g; j represents finite difference of order (t,k) of the sequence (a;j).
Remark 6.1 If we put n = m = 1 in Corollary 6.1, then we get Theorem 3 of [54].

Before we state our next theorem, under the assumptions of Theorem 6.8 we introduce
some notations as follows:

m—1n—1

Ca(f,p) =Calfip) = D, D Apsgfxiyn) x

k=0 t=0

N N
X [ 2 Zpsr(xs7x1)(t>(ys7yl)(k)

s=max{t+1,k+1} r=1

N N
o 2 2 psr(xsfxl)(t) (yry])(k)]

s=t+1r=k+1

m—1 N

B 2 2 A(n,k)f(xtfnvyl)(xt —x,,,,) X

k=0 t=n+1

N N | "
X > o Y el —xma) " =)W

s=max{t,k+1} r=1

N N
- 2 2 psr(xs *xlfnJrl)(nil) (yr 7yl)(k)

s=t r=k+1
N

n—1
— 2 Ay 1 Ykem) ke — Yiem) X

k=m+11t=0

N N
X 2 2 psr(xs — X1 )(t) ()’s *)’k—n1+1)(n171>

s=max{t+1k} r=1

N N
-y ¥ psr(xsxl)“)(yrykmﬂ)(m”], (6.23)

s=t+1r=k

N N
RA(t,k) = l 2 2 Psr(Xs *xtfnJrl)(nil)(ys 7yk7m+1)(m71)

s=max{t,k} r=1

N N
- 2 2 Psr (xs — Xt—n+1 )(nfl) (yr - yk7n1+1)(n171) . (6.24)

s=t r=k

Theorem 6.9 let p;j € R fori,j € {1,...,N} and let (x;) and (y;) for i,j € {1,...,N}
be two real sequences that are monotonic in the same sense. We also assume that f is an
(n,m)-convex function. If

Ra(t,k) >0, te{n+1,...,N}, ke{m+1,....N},
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then
CA(f7p) Z 07

where Cy and Ry are defined in (6.23) and (6.24) respectively.

Proof. The result follows easily by using identity (6.22). O

Remark 6.2 If we put x; =i, y; = j and f(x;,y;) = f(i,j) = a;j in Theorem 6.9 for
n=m= 1, then we get Theorem 3 of paper [67] and hence in this theorem for a;; = f(a;, b)
we get Corollary 2 of paper [67].

Theorem 6.10 Let p;; € Rand let (x;,y;) € I? be the distinct points, where i, j € {1,...,N}.
If f,g : I> — R are two functions such that the inequalities

RA(t,k) >0, te{n+1,....N}, ke{m+1,...,N} (6.25)

and
LAy 8(%i,¥) < Aumy f(Xi,95) < UA(ym)8 (X ¥ 1) (6.26)

hold, then the following inequalities are valid

LCA(g,p) < Ca(f,p) <UCa(g,p), (6.27)

where Ry is defined in (6.24) and L and U are some real constants.

Proof. Let Fi(xi,y;) = f(xi,y;) — Lg(xi,y;) and Fa(xi,y;) = Ug(xi,y;) — f(xi,y;). Then
Ay F1(xi,y5) > 0 and Ay, ) F2(xi,y;) > 0. So, from Theorem 6.9 we easily obtain The-
orem 6.10. O

Remark 6.3 If the reverse inequalities hold in (6.25) and (6.26), then the inequalities
in (6.27) still hold. Moreover, if the reverse inequality holds in (6.25), then the reverse
inequalities in (6.27) are valid.

Remark 6.4 If we putx; =1, yi=]J and f(xi,yj) = f(l,]) = djj and g(i,j) = bl’j in the

previous theorem then we get Theorem 4 of paper [67].

6.1.2 Generalized Integral Cebysev’s Identity and Inequality

This subsection has the same structure as the previous one, only here we consider integrals
instead of sums. Also, it is based on paper [24].

Theorem 6.11 Let p, f : I> — R be two functions such that p is integrable, Svr1.my and
J(vm+1) exist and are absolutely continuous. Then, we have

ctr.m = [ [ pensenvar [ [ plensoyavas
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= 2 Zf,j a,a [ )(a a)— P(i’j)(a,a)}

i=0j=0
+ 2/ fv+1,)) (x,a) [F(N’j) (x,a) —pW ”(x a)} dx
j=0e
< [ M) :
+ 2/ Jimr1(a,y) {P T asy) - P(’M’(a,y)} dy
i=0”/a
b b
+/ / f(N+1,M+1)(x7y)R(x7y)dydx7

where P, Pis)) and R are defined in (6.14), (6.13) and (6.16) respectively.

Proof. To prove this identity, first we find an expression for

/ab / bp(x,y)f (x,x)dydx

231

as follows. First we expand f(x,x) in the Taylor expansion of two variables and multiply

it with p(x,y) and integrate it over I? by variables x and y to get

,/‘b /bP(an)f(x,x)dydx
LB Errent5) [ 5ta]
+'“ (/ el sa)< Nf)Nds) /abp(x,y) <x;!a)jdy] dx

b X xiai Y — M
+ /a/ap(xv)’) (Zf(i,MJrl)(avt)( i )>( Mt!) dtdy] dx

a

LU (L ettt o ]

In the first summand, we change the order of summation, use linearity of integral to

obtain

N M b b T
iz()j'z()/a /a p(xa)’)f(i,j)(a,a)( g )(J%!)dydx,

By using Fubini’s theorem, the second summand is rewritten as:

LB (L ot a) [ rant=a] a
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M b px b AN (v N
]2:0./“/a/ap(x,)’)f(NH,j)(S,a)(x ) (xj!a) dydsdx

N!

M b b b YWV (x—a)/
:2/ / / p(x,y)f(N+17j)(s,a)( N') ( ,' ) dydxds,
j=0 a s a . J:
Similarly, the third summand is rewritten as:
b b rx N X—a i Y1 M
/ [/ / p(x,y) <2f(i,M+1)(a,t)( i )>( M') dtdy] dx
a |Ja Ja i—0 ! |
Shobox x—a) (x—t)M
=3 [ [ [ peon) oy S5 drayas
i=0va Ja . ! !
( ) (x—n)
pxy) fimsy(a,t) ———dydxdt,
2 [ [ [ et i
Finally, the fourth summand is rewritten as:
b b rx X X—s§ N X—1 M
/ [/ / (/ P(x,y)f(N+1,M+1)(s,t)( N') ds)( M') dtdy] dx
M
—//// P, f N+1M+1)(Sl)( N') <M) dsdtdydx
(x—s)¥ (x—0)"
*/ / /max{”}/ PO, y) finei ) (s:1) N oy dvdxdtds.

Now, we add up all these results to get

/b /bP(X’y)f(x’x)dydx
58 [ [renntealt S

b AN N
%/a /S /a P(x,Y)f(NH,j)(s,a)(XN!S) (x j!a) dydxds

N b b b B
:2/ / /P(x,y)f(i,MH)(a»l)(x A a)' (x Mt) dydxdt
i—0/a Ja Ji |
b b rb b N w
:/a /a ./m{”}/a p(x,y)f<N+1,M+1>(S,t)<xN!s) <xM,) dydxdt ds,

when we change the names of variables on the right-hand side x < s, y <> ¢, then we

have,
b b
/a /a p(x,y)f(x,x)dydx
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)z+}
dtds

722//,9” ,jaa)(sl'J

i= 0]
s—x)V (s—a)/
s—a) (s—y)M
+l§%)///pst 1M+1 )( !)(My) dtdsdy

(=" (s—»)¥
+/ / /max{xy}/pSt fivir ) (%3) == di dsdydx,

by using defined notations we finally obtain

// p(x,y) xxdydx—ZZf”aa (aa)

i=0j=0

—=(N.,j —(iM
£y [ foverptea® )+ Y [ Fusren @57 @)y
j=0"4 =074

b rb b b (S*)C)N (Sfy)M
—_— dtdsdyd
[ e [ [ e SRS drasavas,

where P( 7 is defined in (6.13).
b
Using the above expression for / / p(x,y)f(x,x)dydx and Theorem 3.7 in
Ja a

— /a ’ /a ’ p(x,y)f(x,x)dydx — /a ' /a bp(x,y)f(x,y)dydx,

we get the required identity. O

If in Theorem 6.11 we put f(x,y) = f(x)g(y) and p(x,y) = p(x)p(y), then we may
state the following corollary.

Corollary 6.2 Let p,f,g:1— R be three functions such that p is integrable and fyy and
8(m) exist and are absolutely continuous. Then, we have

T(f.8:p) =T(Pn(f),Pu(8),p) +T(RN (), Pr(8),p) + T (By(f);Rm(8),p)

+/ x)dx x
Soviny @)=Y g 0 (s —y)¥
X/a /a /n;ax{x v} N! M! p(S)deydx
b
- / Ry () (x)p(x) dx / Ru(g) (x)p(x) dx (6.28)
E hD () (x—a (N+1) () (5 — sV
where Pi(h)(x) = h()l# Ri(h)(x) = /a %d& k e N for a func-

i=0
tion h and T is defined in (6.4).
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Corollary 6.3 Let the assumptions of Theorem 6.11 be valid. Then for s,t > 1 such that
1/s+ 1/t =1, we have

. b b . 1/s b b 1/t
!C(f,p)|§(/a /a | v ()| dde) (/a /a IR(x,y)Itdde) (6.29)

where C and R are defined in (6.20) and (6.16) respectively.

Proof. We can get (6.29) by using Holder’s inequality for the integrals in Theorem 6.11. O

Theorem 6.12 Let the assumptions of Theorem 6.11 be valid. If the inequality
R(x,y) =0
holds for every (x,y) € I?, then there exists (€, M) € I? such that
C(f.p) = Jovsrmin(E:m)C(fo,p),
where R, fy and C are defined in (6.16), (6.18) and (6.20), respectively.
Proof. We have
p)= [ [ focerwon R v, (630

using the mean value theorem for double integrals we get

C(f.p) = fin+1m+41) én//nydydx

If we put f = fo in the above expression, then we obtain

Cforp) = C(forp) //'xy@w

and hence we get what we wanted. O

Remark 6.5 (a) For N =M = 0, Theorem 6.12 is equivalent to Theorem 6.4.

(b) If we take f(x,y) = f(x)g(y) and p(x,y) = p(x)p(y) in Theorem 6.12 with N =M =
0, then we get (6.3).

Theorem 6.13 Let the assumptions of Theorem 6.11 be valid and let gy pr+1) 7 0 on

7 where g € CNFLMHD) (12),

If the inequality
R(x,y) 20

holds for every (x,y) € I?, then there exists (£,1) € I? such that

Jovrimen(E,m)

C(g,p);
g(N+1,M+1)(§,71) (&.p)

C(f,p) =

where R and C are defined in (6.16) and (6.20) respectively.
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Proof. Using (6.30) and the integral mean value theorem we have

b fine1pn) (5,)
/ / gt (5 )R (x,y)dydx
a 8(N+1 M+1 Y)

_ fwimen (€

2 [ s s R s
(&.m) -

g(N+1,M+l( .n)

S(N+1,M+1

C(g;p)-

)
)
_ S ms
)

S
S

Remark 6.6 For N =M = 0, Theorem 6.13 becomes Theorem 2 of [67].

Theorem 6.14 Let p,f : I> — R be two functions such that p is integrable and f is
(N + 1,M + 1)-convex. If the inequality

R(x,y) 20
holds for every (x,y) € I, then the following inequality is valid

C(f.p) =20
where R and C are defined in (6.16) and (6.20) respectively.
Proof. If f is (N + 1,M + 1)-convex function it may be approximated uniformly on 12

by polynomials having nonnegative partial derivatives of order (N4 1,M + 1). It is known
that the Bernstein polynomials B defined as

) =3 3 (1) () stanbi - a0 - a) oy

i=0j=0

where a; = a + l— bj=a —|—]— converge uniformly to f on I? as n,m — oo provided
that f is contmuous Further if fis (N + 1,M + 1)-convex function these polynomials

have nonnegative partial derivatives of order (N + 1,M + 1), i.e. B’Z]\;ﬁr] w1y = 0 which

can be prove by induction by using the following formula:

oo v )
n—N—1m—M-—1 1 M1

’ 2 2 ( >< j )X

XA(NH’M“)-’” (ai,bj)(x—a) (b —x)" Ny —a) (b —y)" M

As (a;) and (b;) are increasing sequences and f is (N + 1,M + 1)-convex function, so we
have ANHLMH) £(q; b ;) > 0. Since R is continuous and B > 0 on I so by (6.20)

(N+1M+1)
we obtain
,m
C(B™,p / / BN+1M+1 (x,y) X
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b b AN (v M
X [/ / p(s,1) (x=5)" x=1) dtds
max{s.t} N! M!

/ / N' e ;/]);)Mdtds dydx > 0,
or we can write C(B™™, p) as
C(B"™ p / / B"A;'jrl M) (x,y)R(x,y)dydx. (6.31)
Now by letting n,m — oo through an appropriate sequence, the uniform convergence of
B?I’varL w1 10 fini1,m41) provides our desired result. O

Theorem 6.15 Let the assumptions of Theorem 6.14 be valid. Then there exists (§,1) €
I? such that

C(f,p) = R(&,M) (fivpn) (b:b) = vy (@,B) = fiwwny (b,@) + fin (@, @)
where R and C are defined in (6.16) and (6.20) respectively.

Proof. Since R is continuous and B( > 0 on I?, where B"" is Bernstien poly-

N+1,M+1) =
nomial, by the same arguments used in proof of Theorem 6.12, starting from (6.31), we
obtain

c(5.p)
_/ / () n]\;n+1M+1)(xvy)dydx
= R(Enm, Mm / / By 1 payr) (%) dydx
= R Tum) (Bl (0:0) = Bty (a,5) = Bty (b,@) + By (@.a) ).
The points Xy, m = (&xm, Nnm) have a limit point (€,1) in I? as n,m — oo, so letting n,m —

e through an appropriate sequence, the uniform convergence of B’Z;\;',’M) to f(n,m) provides
our desired result. o

Remark 6.7 For N = M = 0, Theorem 6.15 becomes Theorem 6 of [67].

6.1.3 Generalized Integral Ky Fan’s Identity and Inequality

Theorem 6.16 Let the assumptions of Theorem 6.11 be valid and let g : I — R be an
integrable function. Then the following identity holds

K(f.p.q) = 221‘” a,a [ (@) — P (a,a)

j=0i=0
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M b ) )

+ 2/ f(N+1,j)(xva) [Q(N,])(x),P(NJ)(x’a)} dx
j=07a
N b '

+ 3 [ (an [@400) - P @] dy

+/ / Jove1.m1) (6 Y)R(x,y) dydx,

where PU1), Q1) and R are defined in (6.13), (6.15) and (6.17) respectively.
Proof. The proof of this theorem is analogous to the proof of Theorem 6.11. We only
need the following substitution fabp(x,y)dy = g(x). O

The above and all results in this section is given in [24]. If in Theorem 6.16 we put

Fly) = f(x)g(y) and p(x.y) = %

i) f q(t)dt # 0, then we state the following corollary.

where ¢ is an integrable function such that

Corollary 6.4 Let the assumptions of Corollary 6.2 be valid for functions f,g and p and
let g : I — R be an integrable function such that f q(t)dt # 0. Then the identity

T(f.8:9) =T (Pn(f),Pu(g),q) +T(Rn(f),Pu(g):q) + T (Pn(f),Rm(g).q)

x) (s —x)V s— M
L f“v“)(N)f ) g“””(;jf D" )iy
b
- / RN(f) dx/ RM d
O(a)(x—a (N1 () (x — sV
holds, where Py(h)(x ):Zh()l# Ri(h)(x ):/a %d&kel\lﬁ)r

i=0
a function h and T is defined in (6.4).

Corollary 6.5 Let the assumptions of Theorem 6.16 be valid. Then for s,t > 1 such that
1/s+ 1/t =1, we have

|K(fp.q) |< (//|fN+1M+1 (xyldde)]/s (//|ny dde>l/t,

where R and K are defined in (6.17) and (6.21) respectively.
Theorem 6.17 Let the assumptions of Theorem 6.14 be valid for f, p. If the inequality
R(x,y) >0
holds for every (x,y) € I?, then there exists (E,m) € I? such that
K(f,0,9) = fvs1m41) (&K (fo,p:q)
where R, fy and K are defined in (6.17), (6.18) and (6.21) respectively.
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Theorem 6.18 Let the assumptions of Theorem 6.16 be valid. If the inequality
R(x,y) >0
holds for every (x,y) € I?, then there exists (E,m) € I? such that

Soverme(Em) —

K(f,p,q) = )K®n%

g(N+1,M+1)(§7 n
where R, fy and K are defined in (6.17), (6.18) and (6.21) respectively.

Theorem 6.19 Ler the assumptions of Theorem 6.14 be valid for functions p and f and
let g : I — R be an integrable function. If the inequality

R(x,y) >0
holds for every (x,y) € I?, then the following inequality holds

K(f,p,q) >0,

where R and K are defined in (6.17) and (6.21) respectively.

Proof. The proof is analogous to the proof of Theorem 6.14 so we omit the details. O

6.2 Montgomery ldentities for Higher Order
Differentiable Functions of Two Variables

Ostrowski type inequalities have many applications in the field of numerical integrations
and in probability theory. We can also obtain special means with the help of such in-
equalities. The celebrated éebyéev inequality is also a special case of the Ostrowski type
inequalities. As far as we are concerned with the Griiss-type inequalities, these inequali-
ties play a paramount role in numerical integrations and in other fields. In recent years a
rapid advancement in generalizations and improvements of these type of inequalities has
been observed. In present chapter we have also proposed certain generalizations of the
Montgomery identities and hence generalizations of Ostrowski and Griis type inequalities
by using higher order differentiable functions.

The results presented in this section are taken from [25].

Let us recall the weighted Montgomery identity which we already used in Chapter 5.

Theorem 6.20 Let f € C\V[a,b]. Then the identity

flx)= /abw(s)f(s)ds—i— /abpw(x,s)f/(s)ds,
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holds for weighted Peano kernel p,, defined as

(x,5) = W(s) , a<s<x,
PwiXsS) = W(s)—1, x<s<b,

where w: [a,b] — R. is such that [ w(s)ds =1 and

0 , s<a,
W(s)=q Jaw(&)dE , s€ab],
1 , §>Db.

For functions of two variables the following generalized identities were obtained by authors
in [5].

Theorem 6.21 Let f € C\"V([a,b] x [c,d]). Then identities
b prd b
(p-aja-a)fey) == [ [ flsndids+@=c) [ flsyas
d b rd
+o=a) [ fexndr+ [ [ psatun fn(s.0drds
and
b rd b prd
p-aja-aftey) = [ [ renddst [ [ awfiolsodras
b prd b rd
[ [rvnfonnads+ [ [ gt roun) s dias

hold, where p and q are the Peano kernals.

J. Pecari¢ and A. Vukeli¢ in [80] gave the following weighted Montgomery identities for
functions of two variables.

Theorem 6.22 Let p : [a,b] X [c,d] — R be an integrable function and P be defined as
b rd
Peey) = [ [ pEmana. (632)
JX y
Iffe C(l’l)([a,b] X [c,d]), then the following identity holds
b d b
Plao)fvy) = [ [ plsonfis.dids+ [ Plx.s) iy (s.)ds (633)

d. b rd
+ /P(yvt)f(o,l)(xat)dt_/ /P(N’M)(X,s,y,t)f(lvl)(s,t)dtds,

where

Plx,s) = /as/cdp(é»ﬂ)dndé , a<s<ux,

—P(s,c) , x<s<b,
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//péndndé c<t<y,

PUM (xy,1)
—P(a,1) . y<t<d,
S t
//P(é,n)dﬂdé, a<s<x, c<t<y,
a C
byt
P —//p(é,n)dndé, x<s<b, c¢<t<y,
P(X,S,y,l‘):

// (E,m)dndE, a<s<x, y<t<d,

P(s,1), x<s<b, y<rt<d.

Theorem 6.23 Let the assumptions of Theorem 6.22 be valid. Then the identity

P(a,c)f(x,y) = —./;b./c:dp(s,t)f(s,t)dtds—i—./;b./c:dp(s,t)f(s,y)dtds (6.34)

b rd b pd _
+ [ [ penswnadss [* [ Posyafisndrs,

holds, where P is as defined in Theorem 6.22.

Theorem 6.24 Let the assumptions of Theorem 6.22 be valid. Then the identity

w@m%ww:P@df/%@ﬁmmmﬁ

+/ (// (&,1)P (st)dtds)dg
+/c (/a /C p(s,n)ﬁ(y,t)fm,l)(s,t)dde)dﬂ

b rd
+ / / P(xvsvyvt)f(l,l)(Svt)dtdsa
a C
holds, where f’, P and P are defined in Theorem 6.22 and

P(x,s,y,t) = 2P(x,s)P(y,t) — P(a,c)ﬁ(x,s,y,l).

6.2.1 Montgomery ldentities for Double Weighted Integrals of
Higher Order Differentiable Functions

In the start of this section, we introduce some notations to reduce our lengthy expressions
as follows:

- b rd
P o = [ [ e EGL = mae sy

. b prd _
PO a0 =[] p(é,n)(nTy)dn e, (6.36)
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(i.0 )
P( / / (&,n) dndé, (6.37)
N M ( ) M (0 )
R(x,y;f) = *2 Zf( )(xy)P( 0)— (bd)( )’)*Zf( )(xy)P( 0)— (bd)(y)
i=1j=1 j=1
N .
= 2 Fe0 @G - (6.38)

i=1
For our next theorem we restate Theorem 3.7 using our notations as follows.

Theorem 6.25 Let p: [a,b] x [c,d] — R be an integrable function and let f € CNT1M+1) ([a,b] x
[c,d]). Then the following identity holds

// Py f xydydx—zzp' ~wa) (@) fijac)

i=0j=0

+ Z/Q P(%Yé{i(b,d) (x,0) v,y (x, ¢) dx
+2/ P y)f(i,M+1)<aay)dy

+/a /c P((:’]y’;lﬁ(b,d)(x,y)f(N+17M+l)(x,y)dydx.

Now we give generalizations of Theorems 6.22, 6.23 and 6.24 respectively as follows:

Theorem 6.26 Let the assumptions of Theorem 6.25 be valid. Then the identity
b rd
Pla,0)f(vy) = Ry )+ [ [ plsn)fls.dras

+20/ PN (x,5,y) Jivejy(s,y d5+2 >(x7y7t)f(i,M+l)(x7t)dt

- / / POV (5.3 8) o) (5,8 de dis, (6.39)

holds, where

N.i
P((a,é§L(S,d) (s,y), a<s<x,

PNI (x,s,y) = {

N
_P((s,c)jl(b,d)(sv)’), x<s<b,

(i, M)
. P (x t) c<t<y,
_P(a7t) (bd)(x 1), y<t<d,
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and
P((ZZCJ)W)( )(SJ), a<s<x , c<t<y,
(N.M)
—P (s,1), x<s<b c<t<y
- (5,0)— (b)) \S>1)s ; )
P nsr) = (N.M)
7P(a,t’)~>(s7d)(s 1), a<s<x , y<t<d,
N.M
P((st)l(bd)<s’t)v x<s<b , y<tr<d,
where P(( forz Jj € {N,M} is defined in (6.35), and P and R are as defined in (6.32)

and (6. 38) respectlvely

Proof. Using Theorem 6.25 for [a,x] x [c,y], we get

//pst stdtdS*//pst (s,0)dtds

- ZZP —(a.) I i.j) (%:3) JFZ /P((gy)jl(a,c)(S,y)f(NJrl,j) (s,y)ds
S0l e

i=0j=0

+2/ P (6, 0) fi g1y (x,2) dt

+/ / P (a.c) s’f(NH,MH)(S,t)dtds

- 20 2 |:P 71 x y) P(()?Z’ga(bd) (‘x7y) - P((:;;—P(bd) (x,y)
i=0 j=
+p((w; b )(x,y)} i)
(N.J) (N))
]20/ S y) P( )jﬂ(b,d) (Svy) - P(a,ygﬂ(b,d) (S,y)
+P((z;§L(b7d) (57)’)} S, (s,y)ds

N oryr _ '
(i,M) (i,M) (i,M)
7230/0 [P(xvl)ﬁ(bvd) (x’t) 7P(X7C)*>(b7d) (xvt) 7P( 1)—(b.d) (x t)

iM
+P((a c)) —(b,d )(x t)} Xfi,M+1)(X,l‘)dl‘
N.M N.M
+/ / S t) _P((s,c)l(b,d)(svt) _P(( ) )(bd)(s l)

+P(N1)M)(bd)(s t)]f(NHMH)( s,t)dtds.

Similarly for [x,b] x [c,y], we have

p(s,t)f(s,t)dtds = — p(s,t)f(s,t)dtds
xb Cy xb yc
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== 2 2 fl] XY [ bJ) —(b.d) (x,y) *P&gﬂ(b,d)(xv)’)}

le

N.j N,
- 2 / fve)) (5,) [P((s,y)jl(b,d) (s,5) — P(ng‘c)jl(b‘d) (S»)’)} ds
0 ; ;

Ny i i
+ X [ S ) [B o 0) =PI )] e
i=0v¢

by
[ e @0 [P gy 50 = P g )] s,

For [a,x] X [y,d], we obtain

// (s,2)f(s,t)dtds = — // (s,2)f(s,t)dtds

=—22f,1 () | o 03) = BloD) ) (529)]

i=0j=0

N,j N.j
+ Z/ﬂ Jve1j)(s:y) [P((s,)éfl(b7d)(s,Y) *P((ayg) (bd)( y)} ds

( M) (i,M)
_2/ sz+1 X,1) xt) (bd)(xt) P( - (bd)(xt)}dt

NM NM
+/a /y f(N+1,M+1)(S,f) [P(sgvt)j(b’d)(s,t)—P((a’t)l(bw(s,t)} dtds.

Finally for [x,b] x [y,d], we have

b pd
/X/yp( )f(stdtdS—ZZf” X )PED 0 ()

i=0j=0

M
N.j
+ Z/X f(N+l,j) (S»)’)P((S,y)jl(b’d) (s,y)ds

JFZ sz+l xt)P(( A;I) (bd)(x,t)dt
i=0"Y

b rd
+/ / f(N+1,M+1)(S7t)P(($;Mj>(b,d) (Svt)dt ds.
X Jy

Adding up the four expressions we get our required result.

Theorem 6.27 Let the assumptions of Theorem 6.25 be valid. Then the identity

< [P (n—y)
P(a,C)f(X»y)ZR(X»y;f)JerI/a /c p(sm)Tyﬁo,j)(s,y)dnds

243
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2 [
—|—/a /c p(s,t)f(s,y)dtds—i—/a /c p(s,0)f(x,t)drds

b rd _
+/ / P(N’M)(xvs7y7t)f(N+1,M+l)(S7t)dtds

f(,o(xt Ydrd& — //pst (s,t)dtds

(6.40)

holds, where PNM) s as in Theorem 6.26, P and R are defined in (6.32) and (6.38)

respectively.

Proof. First we find an expression for

b .
/ P(Nd) (xasay)f(N+1,j) (Svy) ds

by using integration by parts as follows:

/ PN (x8,9) fin1,5) (8,9) ds

_/ P a,0)—(s.d) sy)f(NH])(sy ds_/ P J (bd)(s y)f(N+1])(S y)ds

X

(( ,Cgl(xd) () fiwv, ) (6, +/ NC lj() )(S7Y)f(N,j) (s,y)ds
LB o o @)+ [ IS (53 fia (590 d

(x,0)—(b.d) Y (Nj) ,y) —(s,d)\ S YT (NS V) dsS

P(( )) (bd)(x )’)f( N,j) (x,y +/ P () )(57)’)f(N,j)(57)’)d5
—i—/ PNC ]’J $,9)f(v.j) (5,5)ds

=P () i) (63) + / S a9 i (5.9 ds,

continuing in similar fashion, we finally get
b .
/ P(N7J)(xasay)f(N+l,j)(Svy)ds
a
b pd Wi N — Xk
n-y E—x
= [ [ e m T2y Co ) ana
a Je AN =

b pd Y
_/a /L P(S’n)%f(o,j)(s,y)dnds.

Similarly

d .
/ P(l’M)(anat)f(i,MJrl)(x»t)dt

= [ (BN (3 e (5.3)ds + / PN o (53 ey (5.3) ds

(6.41)
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8 8 *xi M N\

=0

[ [ ren S fuwnagar (642)

If we put all these values in (6.39), then after some cancelation and some rearrangements
we get our required identity. O

Theorem 6.28 Ler f € CN+1L.2M+1) (g b] x [¢,d)). Then the identity
) b rd
Pla, o) (xy) = Pla.c)R(yi )+ Plac) [ [ plon)(s.ndrds

M '
+2/ P(N’”(x,s,y)R(s,y;f(NH’j))ds

+2 PlM (e )R(x, 15 fi 1) dt
i=07¢

+l§%)j§:()///PN] %,5,y)p(&,t )(é )f(N+1+u)(5’)d’d5d§

d b opd Y
+§%)2/ / / P(l’M)(xvyvt)p(san)%f(j,M+1+j)(S,f)dl‘dsdn
i=0j=07/c Ja Jc !

+// 222PN1 (x,5,y) P )(x»Y»t)f(N+l+i,M+l+j)(s»t)

i=0j=0
~ PO (x,5,9.0) fiv ey )| de ds, (6.43)
holds, where p, P, P(N’j>, PEM) gre PNM) qre as in Theorem 6.26.

Proof. Summing (6.41) for j € {0,...,M} and (6.42) for i € {0,...,N}, we get re-
spectively for each (x,y) € [a,b] X [c,d].

)

P(a,c)f(x,y) = R(x,y; f) +2/ / p(s,m) foj)(s,y)dnds

+ 2/ f’(N’j)(x,s,y)f(NH,j)(s,y)ds, (6.44)

and

N )
Py = Ry + Y [ [ pen S g
i=0”/a Je :

N od )
+ 3 [P ) foaain () . (6.45)
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By using formula (6.44) for partial derivatives f(; s, 1) fori € {0,...,N}, we obtain

P<aac)f(i,M+l)<x»t)
J

- [P (n—1)
=R(x,0: fipmse) + D, / / p(57H)T.f(i,M+1+j)(57t)dn ds
j:()- a c .
Moob
+2 P(N7J)(X,S,f)f(N+l+i7M+l+j)(S,f)ds. (646)
j=0"4
Similarly, by using formula (6.45) for partial derivatives fve1,)) for j=0,....M we have

P(a, C)f(N+1 j)(S y)

=R(s,y; fin+1,j) +2/ / (&,1) ) JiNt14i,j) (s:1) dtd&
+2/ piM) (S0 fiv1vipyir(s,t)dt. (6.47)
Substituting (6.46) and (6.47) into (6.39), we get
b rd
Pla,0)f(vy) = Rleyif)+ [ [ plo.nf(sydrds
LI LY
Pla.0) 20/ P (x,5,y) [R(say;f(N+l,j))
’ Jj= a
w3 [ pEn S fn s drae
i=0
+ 2/ Is(i’M)(Sv)’7t)f(N+1+i,M+l+j)(S»t)dt} ds
LS [ 50w
a2 P[RS
M b d Y
+ 2/ / P(s,ﬂ)L 7 ) fims14j)(s,1)dnds
+ 2/ PN (x,5,0) £ Vve1imeij)(sit)ds| di

*//I;(N’m(X,S,y,t)f(NJrl,MH)(W)dtd&

After some rearrangements and using Fubini’s Theorem we obtain our required result. O

Remark 6.8 For N = M = 0, Theorems 6.22, 6.23 and 6.24 become special cases of
Theorems 6.26, 6.27 and 6.28 respectively.
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Special Cases:
If p(s,t) = q(s)r(z) in identities (6.39), (6.40) and (6.43), then we get respectively the
following special cases:

FOY)Pap (@) Pe—a(r) = Q(x,; f) +/ / q(s)r(t) f(s,t)dt ds

M b )

+ 2 / Q(N’])(x7s7y)f(N+1,j)(S7y)ds
j=0a
N rd .

+2/ Q(I7M)(xvyvt)f(i,MJrl)(xat)dt

//QNM X, 8,9,8) fiv1,m41) (8,1) dt ds,

N .
+2Q2Lb(%x)/ r(t)f 10 (x,t)dt — //q Sf(s,t)dtds

+// sydtds—i—// f(x,t)dtds

[ Qs v (s,

FY) [Pa (@) Peea(r )]2 = Pup(q)Pe—a(r)Q(x,y; f)

M b
#3 [0M (x5 )Qs.y: v, ds
j=0’a

N rd
+3 / 0 (3. )Qw 13 fsari ) dr
+Pa~>b c~>d / / S l dtds

+22Qa~>b q,x //QN] X, 8,0)7(8) fin+14i.j)(s,2) dt ds

10]

+22QH4 ny / / 0UM (x,y,1) q(8) fimr14j)(s,2)dtds

i=0j=0

+// ZZZQN’ (x,5,y) QM (X7th)f(N+1+i,M+1+j)(Svt)

i=0j=0

~ O™ (x5, 3,0) fs ) (s.0)]| e s,

(E—x)

i!

where P, _;(q) = /abq(s)ds, Qillb(q,x) = /abCI(é) dé,
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01 o) = 0 (a.007 ().

00 ) = Pusla) 0 (1),
QEZ?C))H(b,d) (x) = Qt(zilb(%x) Pea(r),
N M ;
Q(xv)’§f) = *2 2f(i,j)(xJ)Q(C;,jc)H(bd)(xd’)

i=1j=1

M N

- Z.f(OJ)(xvy)Q( )ﬁ(bd)(y) Zf(z0)(X7Y)Q(a7c)ﬁ(b7d)(x)v
Jj=1 i=1

Q ZAL/’[))H(b[) ('x?t) 9 C < t < y’
Q(l M) (x’y’t) = (M> >
“Qlan)payBst) » y<t<d,
QE;V?)/IL(SI)(SJ) ) G§S<x, C<[<y7
_QE?];];Q(M)(S,I) ., x<s<b, c<t<y,

N.M
—o s, a<s<x, y<i<d,
N.M
QEs,i)l(b,d) (5,6) , x<s<b, y<rtr<d.
Particularly, if p = 1 in identities (6.39), (6.40) and (6.43) then the expressions will look

like
(b—x)* — (a—x)it!
(i+1)! ’

P y=b—a, QEij(x) —

N M(b—x)iH _ (afx)”l (d,y)jﬂ _ (cfy)jﬂ

O(x,y;f) = 2]:21 I G fiip ()
U (d=y)t! = (c=y)*!
— <b_a)j:l Y G Y Fo.) (%)
N (b )i+l _ (g — y)it!
- (dC),Ell( )<l+1()' ) f(i,O)(xvy)7
_(a—s)N+1 (d_y)jﬂ _(c—y)jJr]’ f<s<x
O™ (x,5.y) = (NJr}v)il '(+Jl+1)! 41 o
b—s)"" (d—y)/ " —(c—y) r<s<b,

O (N+1)! (j+1)! ’
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(C—I)M+l (b_x)i+l _ (a_x)iJrl

- . 9 CSISY»
sy _(d_t)M+l (b_x)l+l_(a_x)l+1 4
(M+1)! (+1)! Y=g
(a—s)NL (¢ —r)MH! << <<
NTDU My 450 F e esIEy
b— N+ (o — p)M+1
(b—s) (c—1) x<s<b , c<t<y,

(N+1)! (M+1)!’
(a 7S)N+1 (d,t)MJrl
(N+1)! (M+1)!
(b 7S)N+1 (d,t)MJrl
(N+1)! (M+1)!

a<ls<x , y<t<d,

x<s<b , y<t<d.

6.2.2 Ostrowski Inequalities for Double Weighted Integrals of
Higher Order Differentiable Functions

In [80], J. Pecari¢ and A. Vukeli¢ also have given some generalizations of Ostrowski’s
inequality by using identities (6.33) and (6.34). By using identities (6.39) and (6.40) we
can give generalized results of Ostrowski type for higher order differentiable functions of
two independent variables as follows:

Theorem 6.29 Ler f € CN*IM+1) ([a,b] x [c,d]). Then the inequality
1 b rd M R .
o) = s [ [ plsnfts.ndids| < Dy + 3 DO (xy)
P(a,c) Ja Je )

N _
+Y DO (x,y) + D(x,y), (6.48)
i=0

holds for each (x,y) € [a,b] X [c,d], where

D(x,y) = IR(x,y:f)l,

1

|P(a,c)|
1/4;

DO a) = i (2 [ 180 xswads) o1l

provided that fy 1 ;) € Lj, ), 1/pi+1/4;=1,

xc,d
1/ql
D(lv())(x?y) |P a. C (2/ |PlM x y» |qldt> ||flM+1 le’

provzdedthatf,MH € Ly ([a,b] x [c,d]), 1/pi+1/Gi =1,

_ d _ _ 1/q
N.M _
D(X,y) = |P(a,c)| (/a /c |P( : )(x,s,y,t)|"dtds) ||f(N+1,M+1)||I”

249
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provided that fy1 1) € Ly([a,b] x [c,d]), 1/p+1/q=1,
where p, P, p(N,j)’ PUM) and PNM) gre as in Theorem 6.26 whereas R is defined in (6.38).

Proof. Identity (6.39) can be rewritten as

b rd
flxy) — ﬁ/a /c p(s,t)f(s,t)dtds

! R(x,y; S bﬁ(Naj) d
m{ (x.y:f) +j20/a (xvsvy)f(N+1,j) (s,y)ds

N d _ .
# 3 [Py i () do
i=07¢

b opd _
*//P(N’m(xvsvyvf)f(NH,MH)(Svf)d’ds}-

Now, taking absolute value and applying the Hdolder inequality for double integrals, we
easily obtain our required inequality. O

Remark 6.9 For N = M = 0, Theorem 4 of [80] becomes special case of Theorem 6.29
and we also retrieve results of [14] by simply putting p = 1.

Theorem 6.30 Let f: [a,b] x [c,d] — R be a continuous function such that f € CNFIM+D (g b)
x(c,d)) and |f(ny1p+1)|? be an integrable function such that

b rd 1/q
Hf(NH,MH)Hq:: </a /c |f(N+1,M+1)(SJ)|thdS> <o

Then the inequality

b rd
/a/Cp(s,t)f(x,t)dtds—[R(x,y;f)

> [ [ (n—y)
+,21/a /C p<s’n)Tf(o,j)(S»y)dnds

i!

+ﬁll/ab/cdp(é,t) (s fx)if(,-,o)(x,t)dtdg
Jr/ab/Cdp(s,l‘)f(x,t)dl‘ds
+ /ab /Cd (s, t)f(s,y)dtds—P(a,c)f(x,y)]'

bopd —o 1/q
< ([ [P ssnlads) Uil

holds for each (x,y) € [a,b] X [c,d], where 1/q+1/q' = 1; ¢, > 1 and P, PNM) are as
in Theorem 6.26.
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Proof. Identity (6.40) may be rewritten as
b pd
[ [ ponsisndias— [Rexy:p)
a Jc

b rd b rd

[ [ psoseyardst [ [ psnsinaras
a C a C

v [ (n—y)/
Jrjzl/a /C p(s’n)Tf(o,j)(S,y)dnds

N . Y
+2/b /dp(é,f) (é ) f(,-,o)(x,t)dtd& —P(a,c)f(x,y)
i—1/a Je

i!
b pd _
= / / P(N,M)(xvsvyvt)f(N+1,M+l)(svt)dtds'

Now, taking absolute value and applying Holder’s inequality for double integrals, we easily
obtain our required inequality. O

Remark 6.10 For N =M =0, Theorem 5 of [80] becomes special case of Theorem 6.30
and we also retrieve results of [5] and [13] by simply putting p = 1.

6.2.3 Gruss’ Inequalities for Double Weighted Integrals of Higher
Order Differentiable Functions

In [80], J. Pecari¢ and A. Vukeli¢ gave new Griiss-type inequalities for double weighted
integrals by using identities (6.33) and (6.34). Now, we give more generalized results by
using higher order differentiable functions of two independent variables but in order to
simplify the details of the presentations we define the following notations.

ACD (x,y) = p(x.y)[fiij) (. )8(x¥) (6.49)
+ 80 ISP (),

b pd
Ay) = pley) [ [ plsn)lfG0ge) + els.0f rldids,  (6:50)
A~ - b
AN (x,y) = p(x,y)/a v, (5:9)8063) + 841, (5,9)F (3, 3)] %
X p(N’j>(x,s,y)ds, (6.51)
AUM (xy) = p(x,y) i
x PUM) (x y 1) dt, (6.52)
_ b pd
AN (x,y) = p(x,y)/ PN (x,5,y,1) % 6.53)

X [fivrrm) (5:0)8(x,y) + gv1m1)(5:2) f(x,y)] dt ds,
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B (x,y) = Ip(r.y)g ()| iy (xy)ll (6.54)
+ PG ey 1180 (62 o

max — X, X—a i+l max — —C +1
C(i’j)(x,y) _ ( {b<l+,1)' })+ ( {d(]j’—,i’)' })j+ > (6.55)
x /f/cdlp(é,n)wndé, (6.56)
max _C 1
co () = (o-a) M i’) DT [ ipemianaz, @57

max x,x—a})t!
C0) = (a0 MW [ mlanaz, 659)

N . b A ;
My = | |P<Nvf><x,s,y>|ds, (659)
~(s d ~(;
COMay) = [ 1P (o), (6:60)
b prd _
y) = / / PN (x,5,y,1)|dt ds, (6.61)

Fr,y) = R(x,y:f)+ / ’ / Z(S,t)f(s,y)dtder / ’ / (5.0 (v, )drds

B Lo

fio)(ot)did 6.62
*2// p(&n L f ey drae, (662)

f(o,)(s y)dnds

G(x,y) = R(x,y;g)—i—/ /p(s,t)g(s,y)dtds—l—/ab/;)(s,t)g(x,t)dtds

S L Lo
S [rents

where £, g € CNTIMH) ([q,b] x [¢,d]) and p, P, PN, PM) and PVM) are as in Theorem
6.26 whereas R is defined in (6.38).

Now, we present our main results of this section by using notations introduced earlier
in this section, which are as follows:

(0])<s y)dnds

8(i0)(x,1)dtdég, (6.63)

Theorem 6.31 Let p: [a,b] x [c,d] — R be an integrable function and let f, g € CN+1M+1) ([q, b]
x[c,d]). Then the inequality

)f(x,y)g(x,y)dydx
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(g [ [rensena) (i [ [penetyasas)

holds, where P is defined in (6.32).

Proof. From (6.39) for (x,y) € [a,b] X [c,d], we have
b rd
Pla.0)f(vy) = Ryif)+ [ [ p(on)flsin)ards
Mob
+ 2/ P(N’])(X,S,y)f(Nle,j)(S,y)ds
j=07a
N d
£ 3 [Py i () do
i=07¢
b opd _
[P s v o sot)drds, (6.64)
b rd
Pla,c)s(xy) = Rixyig)+ [ [ plsin)gls.ndrs
Mob
+ 2/ P(NJ)(xasay)g(NJrl,j)(svy)ds
j=0’a
N o d
+ 2/ P(l’M)(xvyvt)g(i,Mle)(x7t)dt
i=07¢
bopd _
= [P s g .0 deds.(6.65)
Now, if we multiply (6.64) by p(x,y)g(x,y) and (6.65) by p(x,y)f(x,y) and add them,

then we obtain

N M

+ AGM) (g, y) — ANM) (x y). (6.66)



254 6 CEBYSEV-PoPOVICIU TYPE INEQUALITIES

If we integrate (6.66) over [a,b] X [c,d] and divide both sides by 2P(a,c), then we get
b rd
/a /c p(x,y)f(x,y)8(x,y)dydx
L D)~ 3 A0
e, [ -5 203400

i=1j=
N o . _
- ZA(”O) (xX) +A(x,y) + AN (x,9) + A0M) (x, y) — ANM) (x y) | dydx.
i=1
It can be rewritten as

% / b / dP(W)f(x,y)g(x,y)dydx

( P(a,c) / / px,y)f(x,y dydx) (%/ab/jp(x,y)g(x,y)dydx)
N M M
_ ZA 0 (x) + AN (x,y) + AEM) (, y) — ANM) (x,y)} dydx. (6.67)

Using (6.49),...,(6.61), we have the following inequalities for all (x,y) € [a,b] X [c,d]

AED (x,y)| < B (x,y) C(’ ])(x )

AL (y)| < BOD(y) cOy(y),

AL ()| < B (x) C(i’o) (x),
AN (x, )| < BNHED (x,3) ENI) (),
AEM) (x y)| < BEMED (x,y) CEM) (x, ),

ANM) (x y)| < BVFLMED (x y) ¢V (x. y)

Taking absolute value on both sides in (6.67) and using all these inequalities in it, we get
our required result. O

Theorem 6.32 Let the assumptions of Theorem 6.31 be valid. Then the inequality

fx,y)g(x,y)dydx

P(a,c) Ja Je
- (% /ab/cdp(x,y)f(x»y)dydx) (%/ﬂb/jp(w)g(w)dydo

_m /ab /cdp(x’y)[g<x7y)F(x»y) + £(x,9)G(x.y)] dydx

1 b rd -
< Taaf L BV ) ) avas
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holds, where P is defined in (6.32).
Proof. From (6.40) for (x,y) € [a,b] X [c,d] we have
b rd
Pla.c)f(xy) = Fey) = [ [ plsa)fisdids
b rd _
+ / / PNM (x 5.3,8) fis 1y (5,0) dt ds, (6.68)
. b rd
Pla,c)g(xy) = Gley)~ [ [ pls.ng(s.ndrds
b rd _
+ / / pM) (X,8,0,)8(N+1,m+1) (8,1) dt ds. (6.69)

If we multiply (6.68) by p(x,y)g(x,y) and (6.69) by p(x,y)f(x,y) and add them, then we
get

2P(a,c)p(x,y) f(x,)g(x,y) = p(x,y)g(x,y)F(x,y) + p(x,y)f(x,y)G(x,y)
— Ax,y) +ANM (1 y). (6.70)

If we integrate (6.70) over [a,b] X [c,d] and divide both sides by 2P(a,c), then we get

/a b / dP(x,y)f (x,y)g(x,y) dydx

—sma L PP )+ )Gl dy

*ﬁ (/ab/cdp(x,y)f(x,y)dde) </ab/cdp(X,y)g(x,y)dydx)

1 b pd _
— AWVM) (x y) dydx. 6.71
+2P<a’c)/a /c (x,y) dydx (6.71)
Also we have _ _
A0 G, )| < B () COM ). (6.72)
From (6.71) and (6.72), we obtain our required inequality. O

Remark 6.11 For N = M = 0, Theorems 6 and 7 of [80] become special cases of The-
orems 6.31 and 6.32 respectively and we also retrieve results of [53] by simply putting
p=1. For N=M =0, we can also find similar results as given in [21].
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6.3 Inequalities for the Cebysev Functional
Involving Higher Order Derivatives

Suppose that u is normalized (signed) measure on the interval [0, 1] and that L' (u) is a
space of integrable functions with respect to the measure u. For f,g,fg € L'(u), the
Cebysev functional is defined by

1 1 1
T(rgm) = [ fedu— [ rau [ gan. 6.73)

Majority of problems involving the Cebysev functional are to give a lower bound or an
upper bound for T under various assumptions (Ceby3ev inequalities, Griiss inequality,
etc.)(see [51]). Usually the main step in obtaining such a type of estimation is to prove
an appropriate identity for 7 and one of the basic properties of the functional 7 is abun-
dance of identities (Korkine’s identity, Sonin’s identity etc.).

Our main goal is to give a general form of the identity which started with J. Pe€ari¢ in
[64], which in our notation can be formulated in the following form:

T(f,g:u)= /0] [Rl(x)/OxLl(t)g/(t)dt"'Ll(x) ./:Rl(f)g/(f)df} f'(x)dx (6.74)

where f” and g are integrable on [0, 1] and L; (x) = [5 du, Ry (x) = fxl du. The second step
was done by A. M. Fink in [19] where he showed that

T = [ /008 () (R W10 + LR (1)

- [ (R [ 0 R ) [ 010 ) ax
(6.75)

where f”, g" are integrable on [0, 1] and Ly (x) = [3 Ly (t)dr, Ry(x) = [} Ry (¢)dk.

The applications are mostly inspired by A. M. Fink’s expository paper [19]. We give
a unified approach to establishing upper bounds of the Ceby§ev functional of functions,
derivatives which belong to L” spaces. These results are given in [74].

6.3.1 The Main Identity

In the following we assume that u is the (signed) normalized measure on [0, 1]. We define
sequences (L, ), (R,) of functions on [0, 1] by:

Ll(x):/oxdu, Ln(x):./O‘an,l(x)dx, n>?2

1 1
Ri(x) = / d, Ru(x) = / Ru1(x)dx, n>2. (6.76)
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We also use the following kernels for n, m > 1:

Ry(x)Ly(1), 0<x<t

kpm(x,t) = {

Ly(X)Rp(1), x<t <1

Ry (X)L (1), 0<x<t
Kn,m(xvt =
—Ly(x)Rn (1), x <t <1

The following lemma contains the key technical identities.

Lemma 6.1 Suppose that f and g are differentiable functions on (0,1), such that f' and
g are integrable on [0,1]. The following identities hold:

[ [ bontsr ot

1 1 rl
== /O [Rile+] +L11Rm+1]fg 7/0 /O Kn,m+1 (x,t)f(x)g/(t)dtdx,

[ [ s ot

1 1 1
:/O [Rn+1Lm+Ln+1Rm]fg+/o /O K,,+1,m(x,t)f/(x)g(t)dtdx,

1 1
| [ Kumten) s s(o)dnax
0 JO
1 1 rl
:/ [Ran+1 *LanH]fg*/ / kn,m+l(x7t)f(x)g/(t)dtdx7
0 0 JO

1,1
| [ Kt p@g(nydras
1 1 rl )
= [ Reniln—LociRal fo+ [ [ krimn)s ()g(00drd.
Proof. Using integration by parts, we have

1 1
/ Kyt (x,1)g'(1)dt = — / (1) K1 (x,1). 6.77)
JO JO

Obviously 2L — k. (x. ) for £ # xand Ky s 1 (%, x+0) = Ky 1(x, 5 —0) = — Ly (x) Ry 1 (x)

—R,(x)Ly41 (x), so by decomposition of the second integral in (6.77) in the (absolutely)
continuous part and the singular (discrete) part, we obtain

1
/0 Kn,m+1 (x,t)g/(t)dt



258 6 CEBYSEV-PoPOVICIU TYPE INEQUALITIES

— [Ru(¥) Lyt (%) + Ly (x) Rt (x / ko (5,1)g (6.78)
The first identity now follows by multiplying (6.78) by f(x) and by integration.
The proofs of the second, third and fourth identity are analogous. O

Our main identity, which is a generalization of the Pecari¢ identity (6.74) and the Fink
identity (6.75), is contained in the following theorem.

Theorem 6.33 Let m and n be natural numbers. Let (m;,n;)), i=1,....m+n—1bea
sequence of pairs of natural numbers such that (m;) and (n;) are nondecreasing sequences,

my=n; =1, Mypn_1=m, Nyin_1 —nandml—l—ni:m,;l—i—n,;l—i— LLi=2,....m+n—1.
If f and g are functions such that g™ and f are integrable on [0,1], then
T(f,8:1)
m+n—2

1
= 2 ( 1)m,-+l/ [Rn,+1Lm,+|+( 1)nll+nanl+|Rm1+1:|g(mi)f(ni)

1)+ / / K (,2) "™ (1) £ (x)ditdlx, (6.79)

where ky p, = knm for m+n even and k,,7m = Ky for m+n odd.

Proof. The proof is by induction. For m 4+ n = 2 identity (6.79) is equal to T'(f,g; 1) =
fol fol ki 1(x,t)f (x)g'(t)dtdx and this is the Pecaric identity (6.74). For the induction step,
we consider two cases: m+n even, and m -+ n odd. Suppose that m + n is even. In this case
also, we consider two subcases: (My4m,lptm) = (m+ 1, n), and (Mpsm, nym) = (myn+1).
Suppose that (#,4m, fip+m) = (m+1,n). Assume that identity (6.79) holds for the sequence
((mj,n;)) with (M p—1,min—1) = (m,n). Then

T(f,g:1)

m+n—2 | 1
- 2 . 1)"”*/0 [Ruy Loy + (= l)mlJrnleHRmm]g(mi)f(ni)

1)+ / / K (2,2) 8™ (1) £ (x) i dlx

m+n—2
_ z:l (— l)m,+1/0 [Rili+1Lmi+1+( 1)m1+ﬂ1Lnl+1le+l:|g(rﬂi)f(ni)
=

|
(1) [ /0 [RuL 1 + LnRys1] g™ "
1 1 1
~ [ Kumr (g D 1) ()
m+n—1

1
_ 2 (71)mi+1/0 [Rili+1Lmi+1+( 1)m1+ﬂ1Lnl+1le+l:|g(rﬂi)f(ni)

1 rl
"2 [ [ K (g D0 £ (), (6:80)
0 J0 '
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where the second equality follows from the first identity in Lemma 6.1 and the last equality

follows from the properties of the sequence ((m;,n;)) (m+ n even number, My, 4,1 = m,
Myin =m+1).
The proofs of the remaining cases follow the analogous arguing. O

The reason for introducing the sequence ((m;,n;)) in Theorem 6.33 is that the i-th
member of the summation in (6.80) is determined by i-th member (derivates) and (i + 1)-
th member (expressions in square brackets) of the sequence ((m;,n;)).

The simplest (“‘diagonal”) case is given in the following corollary.

Corollary 6.6 Let n be a natural number: If f and g are functions such that ) and g
are integrable on [0,1], then

n—1

s .
T(f i) = 3 (D" [ RLii+ LR g7
i=1
o1 |
+(—1)mH! / / K (2,2) 8" (1) ™ (x)dtdx (6.81)
JO JO

Proof. Apply Theorem 6.33 using the sequence ((m;,n;))) defined by: my;—| =npi—1 =
iLi=1,...n,my=i+1,ny=i,i=1,...n—1. O

Notice that one can obtain identity (6.80) defined by one sequence from the identity
defined by some other sequence using identities (7, j natural numbers)

./0‘] [RiLj 1+ (=)™ LiL; ] VgV
—/0] [RivaLjr+ (1) L Ly ] fOgUH0
= 01 [RisiLj+ (—1) L L] £ g
+/01 [Ris1Ljp1+ (= 1) L Ly ] gD (6.82)
which can be easily established by integration by parts.

6.3.2 Applications

In this section we mostly follow the ideas given in [19] and [64]. For simplicity we give
applications in ”diagonal” case, i.e. where (6.81) holds. Set:

n—1 ) S o
= (1) T(f,g;u)_z(_l)l“/o RiLis1 +LiRi] f00 | . (683)
i=1 -

Notice that, according to Corollary 6.6, I, = fol [01 Ko (x,) £ (x)g ") (¢ )t dx.
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Theorem 6.34 Suppose that V) and gV are monotone in the same sense and con-
cave functions and L,,_1, R, > 0. Then

I <My [1070(1) = £ D) [¢7V(1) - g V()] (6.84)

where My, = max ¢/, 1] Rn(x)Ln+1(x)/x.

Proof. Notice that
1 1 1 X
(1) (1)) _ (0 (0
/0 /0 o (5,11 ()¢ (1)t = /0 Ro(x) [f x) /0 Lu(1)g™ (t)dr

L (t) f™ (t)dr] dx. (6.85)

The rest of the proofis as in [19, Th.12]. O
In the case of the Lebesgue measure du = dx
My = max R(x) Lyt (/5= 5, ——
= max R,(x X)/x=——"—.
" o) 4 nl(n+1)!

Notice that M; = 1/8 which is not the best possible estimation. We glve the following
proof for obtaining the best possible estimation in the case n = 1. If f® and g are
nonnegative and decreasing, then

I, = / 1 / 1 Fonn (5,1) ™ (1) ) ()t dx

= [} R0 [ 10 Ot + 1,070 0) [ R )] ax

X

< [g(”’”( g 1( / Ly (x)R, (x) £ (x)dx. (6.86)

Since ") is decreasing and Py, (x) = (n!)?L,(x)R,(x) = x*(1 — x)" is symmetric with
respect to x = 1/2, we have

1/2
/Pz,, dx<2 Po(x) £ (x)dx
172 1/2 L) T .
< [ Puar [ s = 5 s [0/ )]

Using (6.86) and (6.87),
I <M [0 (1) = ") [FrD(1/2) - £ V(o))

where M), = (2n O Notice that M| = 1/12 which gives the best possible estimation [19,
Th.13]. Tt is easy to see that M), < M,, forn =1,2,3 and M), > M,, for n > 4.
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Our second application is in estimating |I,| using Holder’s inequality. This can be
done in various ways.The Lebesgue measure du = dx is assumed, although analogous
estimations can be given for a general measure, but without explicit calculations. Set:

1/p
171, = (J6 L)
Theorem 6.35 The following inequalities hold:

1 1

< Gl e, pa= 1 1/p /g =1, (689)
1
1 1 M(npy+1)] 70
Il < [ R
(1) (ng+ 1)1 LT@2np1+2) P

P pq1 21, 1/ p+1/g=1,1/p1+1/q1 = 1. (6.89)

Proof. Using the (weighted) Holder inequality we have

) = ‘ /0 1 /O o0 (0) £ ()b ()t
(// ‘g ,,,,xtdtdx) (/ / ‘f” ,,,,xt)dtdx):[
_ (/01 ‘g(n) (,)‘p </01k,m x,r)dx) dt)
( /0 ' ’ £ (x)‘q ( /0 ] kn,n(x,t)dt> dx) %

Since max;c(q,1] fo knn(x,1)dx =max,c(o 1) fo knn(x,1)dt = e inequality (6.88) fol-
lows.
Using the Holder inequality and the integral Minkowski inequality we have:

|1ﬂ|‘/01g (/ £ (x nnxt)dx>dt
,,(/ (/ ]f nnxt)dx) dt)q
(/ ’f xt)dt)qu

/ ’ £ X" dx. (6.90)

<|p

<[,

- - n

(ml+ )

Inequality (6.89) follows by applying again Holder’s inequality, now with conjugate expo-
nents pi, qi. O
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We compare estimates (6.88) and (6.89) with some known estimates in the case n = 1.
Notice that (6.88) gives

L < (1/8)M1&'1p 1/ ll- (6.91)

This general (in the sense that p and g are arbitrary conjugate exponents) estimate is the
best possible one. To prove this, we prove that 1/8 is the best possible constant in (6.91)
in the case p = o, ¢ = 1. To do this take g(x) = x, x € [0,1] and f¢ (x) = [;} fe(t)dt, where
fe(t) = 1/(2¢) for t € (1/2—¢€,1/24¢€) and f¢(t) = O otherwise, 0 < € < 1/2. Tt is
easy to see that limg—o Iy = limg—o T (fe,g;dx) = 1/8, |g|ec = |fZ]1 = 1, which gives the
optimality of the estimate (6.91).

Two classes of the estimate (6.89) are of a special interest:

1

P 1 [I(g+1)]%
qlp,M|scmpnmnAfnmcmmM+1ﬁ[réz+$}, (6.92)

1

P 1 [(p+1)]P
mq,ungcxm|mpwwm<b@>@+lﬁ[ré§+g]. (6.93)

The following cases can be easily checked: p =1 (f and g are of bounded variation)
C;(1) = 1 /4, which is the best possible estimation (compare [19]); p = e (f and g are
Lipshitzian), Cj(ee) = 1/12, which is the best possible estimation ( [19]); p =2, C;(2) =
C>(2) = 1/+/90, which is remarkably close to the best possible constant 1/ (compare
[40]). Note that C5(1) = 1/6 and C (=) = 1/8.

As a final application of identity (6.81), we give a series expansion of T(f,g;dx).

S bt 1

Since in this case/o /0 ki (x,1)dxdt = D)
|| < F (n41)M" and |g"| < G (n+ 1)N", for some F,G,M,N > 0 and every natural
n, then

, it is obvious from (6.81), that if

b . 1 N
T(f.g:dx) = Y (—1)"! /0 [RiLi 11+ LiRiy1] £ g®. (6.94)
i=1 b

Using this and series expansions of hyperbolic functions, it is easy to see that
sinhv/MN ! >
VMN '

Analogously, if [ f")| < F M" and |g(")| < G N, for some F,G,M,N > 0 and every natural
number 7, then

WU£MMch(

zcosh\/MNf 1 1>

()] < PG (222
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