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Preface

The goal of this book is to present recent results on general linear inequalities in discrete
and integral form with an emphasis on applications of higher order convexity. Namely, we
investigate inequalities containing the sums or integrals of the form i pi f (xi),
i, j pi j f (xi,y j),

∫
p(x) f (x)dx or similar for different classes of functions such as convex

functions of higher order, -convex functions of higher order, starshaped functions, func-
tions convex at a point etc. Using a concept of higher order convexity introduced by T.
Popoviciu seven decades ago, we give necessary and sufficient conditions for positivity of
the weighted averages of function values. From the obtained inequalities we construct new
linear functionals as the differences of their left-hand and right-hand sides, and study their
properties. Corresponding mean value theorems and nontrivial classes of exponentially
convex functions are given also.

The book is organized in six chapters.
The first chapter is devoted to results involving sequences. We obtain some identities

which are used as the main tool for derivation of general linear inequalities and estab-
lishment of conditions under which the sums i piai and i, j pi jai j are nonnegative. The
sequences under consideration are convex, convex of higher order, -convex of higher or-
der, starshaped of higher order, mean-convex and mean starshaped sequences. Mostly, we
are interested in results involving sequences of various kinds of higher order convexity.

In Chapter 2 we consider discrete convex and convex functions of higher order with
one variable. We give inequalities which involve the sum or integral and give identities and
inequalities for n-convex and − n-convex functions, starshaped and n-convex functions
at a point. New proofs and generalizations of some known inequalities are presented by
using the new tools. The next chapter is devoted to functions with two or more variables
which are convex of higher order.

The fourth chapter deals with another class of functions - functions with nondecreasing
increments. Again we develop a concept of higher order of the characteristic property. In
this case, it is the property ”to have nondecreasing increments”. By using the obtained
results we get Levinson type inequalities and generalizations of Burkill-Mirsky-Pečarić
result.

In the fifth chapter we investigate identities and corresponding inequalities involving
discrete and integral weighted averages of n-convex functions by using of some interpola-
tion formulae. Inequalities which are related to higher order convexity are usually called
Popoviciu type inequalities due to the Romanian mathematician Tiberie Popoviciu who
defined n-convex functions and gave first results of this type. We consider formulae based

v



on the extended Montgomery identity, the Fink identity, the Taylor formula, and on the
Lidstone, Hermite and Abel-Gontscharoff interpolation polynomials. Also, in each case
we make a corresponding identity which involves the appropriate Green function. Using
certain additional conditions we get that the sum  pi f (xi) (or, analogously, the integral∫

p(x) f (g(x))dx) is greater than a bound which depends only on the values of all higher
order derivatives of the function f at the boundary points a and b of the domain of f and the
values of some polynomials in points a,x1, . . . ,xm,b. From each of the considered identi-
ties we construct a linear functional and establish some of its properties. In particular, new
families of exponentially convex functions are generated.

In the first part of the sixth chapter we investigate three functionals: the discrete and
integral Čebyšev functionals and the Ky Fan functional. All of them involve a function
of two variable defined on a square [a,b]× [a,b], and we find identities which, in general,
have four parts. In the integral case, the first part of the formula is a sum of products where
one factor is a partial derivative of the function f in the point (a,a) and the second factor
depends on the weight. In the second and third parts of the formula partial derivatives of the
function f of all orders lower than the maximal one on the edges (x,a) and (a,x), x∈ [a,b],
appear, respectively, while the fourth part contains only the highest order partial derivative
of the function, i.e. the (N +1,M +1)-th partial derivative of the function f on the whole
square. The next step of investigation is to obtain an inequality for (N +1,M +1)-convex
functions and, after that, to prove some mean value theorems.

The main motif of investigation in the second part of the sixth chapter is the well-known
Montgomery identity for functions with one variable and its generalization for functions
with two variables. While the basic Montgomery identity involves only the first derivative
of the function under consideration, here we give an identity which involves function of
two variables and its partial derivatives of order less than or equal to N +M +2. The main
formula has a form which is described in the previous paragraph. We also give several
estimations based on applications of the Hölder inequality.

Authors
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Chapter1

General Linear Inequalities
for Sequences

In this chapter we prove several identities for sums  pkak,  pi jaib j involving finite for-
ward or backward differences of higher order. Using these identities we obtain necessary
and sufficient conditions under which the above-mentioned sums are nonnegative for dif-
ferent classes of sequences. We consider the classes of convex sequences of higher order,
-convex sequences of higher order, starshaped sequences, the class of p,q-convex se-
quences etc.

1.1 Convex Sequences of Higher Order

This section is devoted to an identity for the sum  pkak and to necessary and sufficient
conditions under which this sum is nonnegative for the class of convex sequences of higher
order. Let us define and discuss some basic concepts. For a real sequence a we usually
use notation (ai) or (ai)i=k when we want to stress that the first element is ak. Sometimes
under the word ”sequence” we mean n-tuple also, but it is always clear from the context.

The finite forward difference of a sequence a (or, simple, -difference) is defined as

1ai = ai := ai+1−ai,

1



2 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

while the difference of order m is defined as

mai := (m−1ai), m ∈ {2,3, . . .}.
Similarly, the finite backward difference (-difference) is defined as

1ai = ai := ai −ai+1,

and the -difference of order m as

mai := (m−1ai).

For m = 0 we put 0ai = ai, and 0ai = ai. It is easy to see that

mai =
m


k=0

(−1)m−k
(

m
k

)
ai+k.

We say that a sequence a is convex of order m or m-convex if

mai ≥ 0

holds for any i ∈ N. If m = 1, then a is nondecreasing, while if m = 2, then 2-convexity
becomes the classical convexity, i.e. the following holds

ai+2−2ai+1 +ai ≥ 0, i ∈ N.

We say that a sequence a is -convex of order m if

mai ≥ 0

holds for any i ∈ N.
Also, the following notation is frequently used: for some fixed real a and m ∈ N:

a(m) = a(a−1) · · ·(a−m+1), a(0) = 1.

In the following Lemma, proved in [61], we give an identity on which all the results
of this section are based. It can be observed as a generalization of the well-known Abel
identity for an n-tuple (a1, . . . ,an) with weights (p1, . . . , pn), [51, p.334], given by

n


i=1

piai = a1

n


i=1

pi +
n


i=2

(
n


k=i

pk

)
ai−1. (1.1)

The structure of the Abel identity can be described as following: the sum n
i=1 piai

is represented as a sum of two sums. In the first sum the difference of the order 0 of
element a1 occures, while in the second sum the differences of the order 1 for the elements
a1, . . . ,an−m occur. The Abel identity can be looked upon as a discrete analogue of the
formula for integration by parts. The new identity has a similar structure: the right-hand
side of it consists of two sums, in the first sum differences of order 0,1, . . . ,m− 1 of the
first element a1 appear, while in the second sum only the differences of order m occur but
for elements a1, . . . ,an−m.
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Lemma 1.1 Let m,n ∈ N, m < n. Let (p1, . . . , pn), (a1, . . . ,an) be real n-tuples. Then

n


i=1

piai =
m−1


k=0

n


i=1

pi(i−1)(k)
ka1

k!

+
n


k=m+1

(
n


i=k

pi(i− k+m−1)(m−1)

)
mak−m

(m−1)!
. (1.2)

Proof. We prove it by using mathematical induction on m. If m = 1, then we have

n


i=1

piai = a1

n


i=1

pi +
n


k=2

(
n


i=k

pi

)
ak−1,

which is, in fact, the Abel identity. Suppose that (1.2) is valid. Writting the Abel identity
for (n−m)-tuple (ma1,ma2, . . . ,man−m) with weights (Qm+1,Qm+2, . . . ,Qn), where

Qk =
n


i=k

(i− k+m−1)(m−1)pi

we get

n


k=m+1

Qkmak−m = ma1

n


j=m+1

Qj +
n


k=m+2

(
n


j=k

Qj

)
m+1ak−m−1.

The sum n
j=k Qj is equal to

n


j=k

Qj =
n


j=k

n


i= j

(i− j +m−1)(m−1)pi =
1
m

n


i=k

(i− k+m)(m)pi.

For k = m+1 we have

n


j=m+1

Qj =
1
m

n


j=m+1

( j−1)(m)p j =
1
m

n


j=1

( j−1)(m)p j,

where we use the fact that for j = 1, . . . ,m the number ( j−1)(m) is equal 0. So, we get

n


k=m+1

Qkmak−m

=
ma1

m

n


j=1

( j−1)(m)p j +
n


k=m+2

(
n


j=k

( j− k+m)(m)p j

)
m+1ak−m−1

m
. (1.3)

Let us write the right-hand side of identity (1.2) for m+1 instead of m:

m


k=0

n


i=1

pi(i−1)(k)
ka1

k!
+

n


k=m+2

(
n


i=k

pi(i− k+m)(m)

)
m+1ak−m−1

m!
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=

(
m−1


k=0

n


i=1

pi(i−1)(k)
ka1

k!
+

n


i=1

pi(i−1)(m)ma1

m!

)

+
1

(m−1)!

(
n


k=m+1

Qkmak−m −ma1
1
m

n


i=1

(i−1)(m)p1

)

=
m−1


k=0

n


i=1

pi(i−1)(k)
ka1

k!
+

n


k=m+1

(
n


i=k

pi(i− k+m−1)(m−1)

)
mak−m

(m−1)!

=
n


i=1

piai,

where we use (1.3) and the assumption of induction. So, by the principle of mathematical
induction, identity (1.2) holds. �

Remark 1.1 We use the above identity for m = n also. In that case the second sum
vanishes.

The following theorem about m-convex sequences is given in [61] by J. Pečarić (see also
[77, p. 253]):

Theorem 1.1 Let (p1, . . . , pn) be a real n-tuple and m ∈ N, m < n. The inequality

n


i=1

piai ≥ 0 (1.4)

holds for every m-convex n-tuple (ai) if and only if

n


i=1

(i−1)(k)pi = 0 (1.5)

holds for every k ∈ {0,1, . . . ,m−1} and

n


i=k

(i− k+m−1)(m−1)pi ≥ 0 (1.6)

holds for every k ∈ {m+1, . . . ,n}.
Proof. If equalities (1.5) and inequalities (1.6) are satisfied, then the first sum in identity

(1.2) is equal to 0, the second sum is nonnegative and the inequality n
i=1 piai ≥ 0 holds.

Conversely, let us suppose that n
i=1 piai ≥ 0 holds for any m-convex sequence (ai).

Since the sequence ai = (i−1)(k), i ∈ {1, . . . ,n} is m-convex for every k ∈ {0, . . . ,m−1},
we getn

i=1 pi(i−1)(k) ≥ 0. Convexity of the mentioned sequences are proved in Chapter 2
in detail. Similarly, since the sequence ai =−(i−1)(k), i∈ {1, . . . ,n} is m-convex for every
k ∈ {0, . . . ,m−1}, using (1.4) we get −n

i=1 pi(i−1)(k) ≥ 0. Hence, n
i=1 pi(i−1)(k) = 0.

Also the sequence

ai =

⎧⎨
⎩

0, i ∈ {1, . . . ,k−1},

(i− k+m−1)(m−1), i ∈ {k, . . . ,n},
(1.7)
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is m-convex for every k ∈ {m+1, . . . ,n}. Thus, by (1.4), we get (1.6). �

Remark 1.2 It is easy to see that condition (1.5) is equivalent to the following conditions:

n


i=1

(i−1)kpi = 0, k ∈ {0,1, . . . ,m−1} with 00 = 1 (1.8)

or
n


i=1

ik pi = 0, k ∈ {0,1, . . . ,m−1}. (1.9)

Also, it is instructive to observe that

(i−1)(k)

k!
=

(
i−1

k

)
,

(i− k+m−1)(m−1)

(m−1)!
=

(
i− k+m−1

m−1

)
.

In the first sum of (1.2) the numbers (i−1)(k) are equal 0 for i = 1, . . . ,k, so sometimes as
a range for i we use i from k+1 till n.

If an n-tuple (ai) is convex of several consecutive orders we have the following theorem
which is a consequence of Theorem 1.1. This result can be found in [71].

Theorem 1.2 Let (p1, . . . , pn) be a real n-tuple and m ∈ N, m < n, j ∈ {1, . . . ,m}. Then
inequality (1.4) holds for every n-tuple (a1, . . . ,an) that is convex of order j, j+1, . . . ,m if
and only if

n


i=1

(i−1)(k)pi = 0 (1.10)

holds for k ∈ {0,1, . . . , j−1},
n


i=1

(i−1)(k)pi ≥ 0 (1.11)

holds for k ∈ { j, j +1, . . . ,m−1} and

n


i=k

(i− k+m−1)(m−1)pi ≥ 0 (1.12)

holds for k ∈ {m+1, . . . ,n}.

Proof. If k ∈ {0,1, . . . , j− 1}, then the sequences ((i− 1)(k))i and (−(i− 1)(k))i are
convex of order j, j + 1, . . . ,m. So, for such k, n

i=1(i− 1)(k)pi = 0 holds. If k ∈ { j, j +
1, . . . ,m−1}, then the sequence ((i−1)(k))i is convex of order j, j+1, . . . ,m and n

i=1(i−
1)(k)pi ≥ 0 for such k.

Since the sequence (an) defined as in (1.7) is convex of order j, j +1, . . . ,m, so (1.12)
holds. This proves one implication of the theorem while the other follows from Lemma
1.1. �
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A sequence (ai) is called absolutely monotonic of order m if all the lower order differ-
ences of that sequence are nonnegative, i.e. if

kai ≥ 0 for k ∈ {1,2, . . . ,m}.

As a consequence of the previous Theorem 1.2 we get the following necessary and suffi-
cient conditions for positivity of sum  piai for an absolutely monotonic sequence of order
m. Namely, we obtain the following theorem.

Corollary 1.1 Let (p1, . . . , pn) be a real n-tuple and m ∈ N, m < n. Then inequality (1.4)
holds for every n-tuple (a1, . . . ,an) that is absolutely monotonic of order m if and only if

n


i=1

pi = 0,
n


i=1

(i−1)(k)pi ≥ 0

holds for k ∈ {1, . . . ,m−1}, and

n


i=k

(i− k+m−1)(m−1)pi ≥ 0 for k ∈ {m+1, . . . ,n}.

The following theorem describes how bounds for the sum  piai depend on bounds of
mak, (see [71]). In fact, using that result we can strengthen the initial inequality.

Theorem 1.3 Let m ∈ N, m < n and (a1, . . . ,an), (p1, . . . , pn) be real n-tuples such that

n


i=1

(i−1)(k)pi = 0 for k ∈ {0,1, . . . ,m−1} (1.13)

and
n


i=k

(i− k+m−1)(m−1)pi ≥ 0 for k ∈ {m+1, . . . ,n}. (1.14)

If
a ≤ mak ≤ A for k ∈ {1,2, . . . ,n−m}, (1.15)

then
a
m!

n


i=1

pii
(m) ≤

n


i=1

piai ≤ A
m!

n


i=1

pii
(m).

Proof. The sequences

bk = ak − a
m!

k(m) and ck =
A
m!

k(m) −ak

have the following properties

mbk = mak −a and mck = A−mak.
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By (1.15), we get that the sequences (bk) and (ck) are m-convex. Since (pk) satisfies
conditions (1.13) and (1.14), then using Theorem 1.1 we get that

n


i=1

pibi ≥ 0 and
n


i=1

pici ≥ 0

and desired inequalities hold. �

Remark 1.3 For a = −A condition (1.15) becomes |mak| ≤ A and then the statement of
the above theorem becomes ∣∣∣∣∣

n


i=1

piai

∣∣∣∣∣≤ A
m!

n


i=1

pii
(m).

Example 1.1 A nice application of Theorem 1.1 is a proof of the Nanson inequality. In
[52] E.J. Nanson proved the following inequality: If a real (2n+1)-tuple (a1, . . . ,a2n+1) is
convex, then

a1 +a3 + . . .+a2n+1

n+1
≥ a2 +a4 + . . .+a2n

n
. (1.16)

The original proof of the Nanson inequality (1.16) and some historical remarks are given
in [49, pp.202−203]. Here we give a proof of (1.16) based on Theorem 1.1.

Putting

N = 2n+1, p1 = p3 = . . . = p2n+1 =
1

n+1
, p2 = p4 = . . . = p2n = −1

n

we get

N


i=1

pi =
1

n+1
− 1

n
+ . . .+

1
n+1

− 1
n

+
1

n+1
= n

(
1

n+1
− 1

n

)
+

1
n+1

= 0,

N


i=1

(i−1)pi =
0

n+1
− 1

n
+

2
n+1

− 3
n

. . .+
2n−2
n+1

− 2n−1
n

+
2n

n+1

=
2+4+ . . .+2n

n+1
− 1+3+ . . .+2n−1

n
=

n(n+1)
n+1

− n2

n
= 0,

and for k ≥ 3

N


i=k

(i− k+1)pi = pk +2pk+1 +3pk+2 + . . .+(N− k+1)pN

=

⎧⎨
⎩

1
n+1 +

(− 2
n + 3

n+1

)
+

(− 4
n + 5

n+1

)
+ . . .

(−N−k
n + N−k+1

n+1

)
, k even(− 1

n + 2
n+1

)
+

(− 3
n + 4

n+1

)
+ . . .+

(−N−k
n + 3

N−k+1

)
, k odd
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=

⎧⎪⎪⎨
⎪⎪⎩

(
N−k

2 +1
)(

n− N−k
2

)
n(n+1)

≥ 0, k even

1
n(n+1)

N− k+1
2

(
n− N− k+1

2

)
≥ 0, k odd.

Applying Theorem 1.1 for m = 2 we get that N
i=1 piai ≥ 0, i.e.

a1

n+1
− a2

n
+

a3

n+1
− a4

n
+ . . .

a2n−1

n+1
− a2n

n
+

a2n+1

n+1
≥ 0

which is the desired inequality (1.16).
Let us use Theorem 1.3 to get an estimate for the difference of the left-hand and the

right-hand side of the Nanson inequality if the second differences are bounded. This result
is proved in [3] using different approach.

Let us suppose that for sequence (ai) the following holds

a ≤ 2ak ≤ A, k ∈ {1,2, . . .2n−1}
for some a,A ∈ R. Then

2n+1
6

a ≤ a1 +a3 + . . .+a2n+1

n+1
− a2 +a4 + . . .+a2n

n
≤ 2n+1

6
A. (1.17)

From the previous calculation we have that (1.13) holds for k = 0,1 and (1.14) holds for
k = 2. Let us calculate N

i=1 pii(2).

N


i=1

pii
(2) =

N


i=1

pii
2−

N


i=1

pii =
N


i=1

pii
2

=
1

n+1
(12 +32 + . . .+(2n+1)2)+

1
n
(22 +42 + . . .+(2n)2)

=
2n+1

3
.

From that result we get (1.17).

Example 1.2 Let us illustrate an application of Theorem 1.1 to another inequality due to
N. Ozeki. In [55], and also in [49, p.199], the following result is given: If an−1+an+1 ≥ 2an

for n = 2,3, . . . , then
An−1 +An+1 ≥ 2An, n = 2,3, . . . , (1.18)

where
An =

a1 + . . .+an

n
.

In other words, if a sequence (ai) is convex, then the sequence (Ai) of arithmetic means is
also convex.

Putting

p1 = p2 = . . . = pn−1 =
1

n−1
+

1
n+1

− 2
n
, pn =

1
n+1

− 2
n
, pn+1 =

1
n+1

,
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we get
n+1


i=1

pi = 0,
n+1


i=1

(i−1)pi = 0,
n+1


i=k

(i− k+1)pi ≥ 0.

Using Theorem 1.1 for m = 2 we get that n+1
i=1 piai ≥ 0, i.e.

a1

(
1

n−1
+

1
n+1

− 2
n

)
+ . . .+an−1

(
1

n−1
+

1
n+1

− 2
n

)

+an

(
1

n+1
− 2

n

)
+

1
n+1

an+1 ≥ 0,

a1 +a2 + . . .+an−1

n−1
+

a1 +a2 + . . .+an+1

n+1
−2

a1 +a2 + . . .+an

n
≥ 0

which is the desired inequality (1.18).

Example 1.3 If (ai) is convex, then for any n ≥ 1

a1 +a3 + . . .+a2n+1 ≥ a2 +a4 + . . .+a2n +
a1 +a3 + . . .+a2n+1

n+1
. (1.19)

This inequality for ai = a is due to Steinig ([3, 93]).
To prove this, we use Theorem 1.1 for m = 2. Putting

N = 2n+1, p1 = p3 = . . . = p2n+1 =
n

n+1
, p2 = p4 = . . . = p2n = −1

we get that property (1.13) holds for k = 0,1 and (1.14) holds for k = 2. So, by Theorem
1.1 inequality (1.19) holds. Furthermore, if (ai) satisfies (1.13) for k = 0,1, (1.14) for
k = 2 and if a ≤ 2ak ≤ A (k = 1, . . . ,2n−1), then

n(2n+1)
6

a ≤ a1−a2 +a3− . . .+a2n+1− a1 +a3 + . . .+a2n+1

n+1
≤ n(2n+1)

6
A.

Let us again consider a basic identity from Lemma 1.1, with slightly modified indexing
in the first sum:

n


i=1

piai =
m


k=1

n


i=1

pi(i−1)(k−1) k−1a1

(k−1)!

+
n


k=m+1

(
n


i=k

pi(i− k+m−1)(m−1)

)
mak−m

(m−1)!
.

Putting p1 = . . . = pn−1 = 0 and pn = 1 we obtain the following

an =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m


k=1

(n−1)(k−1) k−1a1

(k−1)!

+
n


k=m+1

(n− k+m−1)(m−1) mak−m

(m−1)!
, m < n,

n


k=1

(n−1)(k−1) k−1a1

(k−1)!
, m = n.
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The above-mentioned identity can be considered as the Taylor formula for sequences.
The following theorem was published in [62] and it gives results about preservation of

convexity of a sequence which is made from a sequence (ai).
Let (a0,a1,a2, . . .) be a real sequence and [pn,i], i = 0,1, . . . ,n; n = 0,1,2, . . . a lower

triangular matrix of real numbers, i.e.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p00 0 0 0 . . . 0 . . .
p10 p11 0 0 . . . 0 . . .
p20 p21 p22 0 . . . 0 . . .
...

...
...

pn0 pn1 pn2 pn3 . . . pnn 0 . . .
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let (n) be a sequence defined as

n =
n


k=0

pn,n−kak, n = 0,1,2, . . . (1.20)

Theorem 1.4 Let n be defined as in (1.20) and s ∈ N. Then the implication

man ≥ 0 ⇒ sn ≥ 0

is valid for every sequence (an) if and only if

sXn(k+1,k) = 0 for k ∈ {0,1, . . . ,m−1}; n ∈ {0,1,2, . . .}
and

sXn(m,k) ≥ 0 for k ∈ {m, . . . ,n+ s}; n ∈ {0,1,2, . . .}
where

Xn(m,k) =

⎧⎪⎨
⎪⎩

0 for n < k
n−k


j=0

(
n− k+m−1− j

m−1

)
pn, j for n ≥ k. (1.21)

Proof. Let us write the difference sn as a linear combination of the elements a j.
Using the notation:

qn( j) =
{

0 for n < j
pn,n− j for n ≥ j

we get the following

n = n+1−n =
n+1


j=0

pn+1,n+1− ja j −
n


j=0

pn,n− ja j

=
n


j=0

(pn+1,n+1− j − pn,n− j)a j + pn+1,0an+1
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=
n


j=0

qn( j)a j +qn(n+1)an+1 =
n+1


j=0

qn( j)a j,

2n = n+1−n =
n+2


j=0

qn+1( j)a j −
n+1


j=0

qn( j)a j

=
n+1


j=0

(qn+1( j)−qn( j))a j +qn+1(n+2)an+1

=
n+2


j=0

2qn( j)a j.

Similarly, we get

sn =
n+s


j=0

sqn( j)a j for every s (1.22)

and

sXn(m,k) =
n+s


i=k

(
i− k+m−1

m−1

)
sqn(i).

Writting identity (1.2) for n+ s+1-tuples (a0,a1, . . . ,an+s) and
(sqn(0),sqn(1), . . . ,sqn(n+ s)) and using the above results we get the identity

sn =
m−1


k=0

ka0 sXn(k+1,k)+
n+s


k=m

mak−m sXn(m,k). (1.23)

Hence, the statement follows from Theorem 1.1. �

Theorem 1.4 is a generalization of several previously published results. Firstly, in [56]
N. Ozeki obtained conditions on a matrix [pn,i] implying that for each convex sequence (an)
the sequence (n) is also convex, i.e. it is a particular case of Theorem 1.4 for m = s = 2.
One decade later a particular case of Theorem 1.4 for m = s was published in [34] and [41].

A result which is based on identity (1.23) is given as the following theorem, [62].

Theorem 1.5 Let (an) be a real sequence and let n be defined as in (1.20). If |man| ≤N
for n ∈ {0,1,2, . . .}, and

sXn(k+1,k) = 0 for k ∈ {0,1, . . . ,m−1}; n ∈ {0,1,2, . . .} (1.24)

where Xn(m,k) is given in (1.21), then

|sn| ≤ N
n+s


k=m

|sXn(m,k)|.

Proof. This is an immediate consequence of (1.23). �

The following theorem also gives a bounds for sn, (see [71]).
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Theorem 1.6 Let m ∈ N, m < n, (an) be a real sequence and let n be defined as in
(1.20). Let (pn,i) be reals such that

sXn(k+1,k) = 0 for k ∈ {0,1, . . . ,m−1}; n ∈ {0,1,2, . . .} (1.25)

and
sXn(m,k) ≥ 0 for k ∈ {m, . . . ,n+ s}; n ∈ {0,1,2, . . .}. (1.26)

If
a ≤ man ≤ A for n ∈ {0,1,2, . . .}, (1.27)

then
a
m!

sn ≤ sn ≤ A
m!

sn,

where n = n
k=0 pn,n−k k(m).

Proof. For the sequences

bn = an− a
m!

n(m) and cn =
A
m!

n(m)−an

we obtain the following:

mbn = man−a ≥ 0 and mcn = A−man ≥ 0.

Since [pn,i] satisfies conditions (1.25) and (1.26), using Theorem 1.4 for sequences (bn)
and (cn) we get that

sn− a
m!

sn ≥ 0 and
A
m!

sn −sn ≥ 0

and the desired inequalities hold. �

Remark 1.4 For a = −A condition (1.27) becomes |man| ≤ A and then the statement of
the above theorem becomes

|sn| ≤ A
m!

sn.

In [71] a general result which involves weighted arithmetic means is given.

Corollary 1.2 Let a sequence a = (an) satisfy

a ≤ man ≤ A for n = 0,1,2, . . .

and let the sequence (pn) be given by

pn = p0

(
U +n−1

n

)
, U =

p1

p0
, n > 0.
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where p0, p1 are arbitrary positive numbers. Then

a
m!

mAn(b) ≤ An(a) ≤ A
m!

mAn(b),

where b = (bn) with bn = n(m) and

An(a) =
p0a0 + p1a1 + . . .+ pnan

p0 + p1 + . . .+ pn
, n = 0,1,2, . . .

For a sequence which is convex of higher orders where these orders are consecutive
integers the following theorem, published in [71], holds.

Theorem 1.7 Let (an) be a real sequence, let n be defined as in (1.20) and j ∈{1,2, . . . ,m}.
The implication

kan ≥ 0, (k ∈ { j, j +1, . . . ,m}) ⇒ sn ≥ 0 (s ∈ N)

holds for every sequence (an) if and only if

sXn(k+1,k) = 0, k ∈ {0,1, . . . , j−1},
sXn(k+1,k) ≥ 0, k ∈ { j, j +1, . . . ,m−1},

sXn(m,k) ≥ 0, k ∈ {m, . . . ,n+ s},n ∈ N0.

Proof. The proof is similar to the proof of Theorem 1.2. �

1.2 -Convex Sequences of Higher Order

Firstly, in this section we give formula for the sum  piai involving -differences. This
result is given in [46] without proof. So, we give a detailed proof here.

Lemma 1.2 Let (p1, . . . , pn), (a1, . . . ,an) be real n-tuples, m ∈ N and m < n. Then

n


i=1

piai =
m−1


k=0

1
k!
kan−k

n−k


i=1

(n− i)(k)pi

+
1

(m−1)!

n−m


k=1

(
k


i=1

(k− i+m−1)(m−1)pi

)
mak. (1.28)

Proof. For m = 1 identity (1.28) becomes

n


i=1

piai = an

n


i=1

pi +
n−1


k=1

(
k


i=1

pi

)
ak, (1.29)
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which is the second Abel identity, [51, p.334]. Let us suppose that for some m identity
(1.28) holds. We will prove that it holds for m+1 also. Using notation involving binomial
coefficients the right-hand side of (1.28) for m+1 becomes

m


k=0

(
n−k


i=1

(
n− i

k

)
pi

)
kan−k +

n−m−1


k=1

(
k


i=1

(
k− i+m

m

)
pi

)
m+1ak

=
m


k=0

(
n−k


i=1

(
n− i

k

)
pi

)
kan−k +

n−m−1


k=1

Akm+1ak,

where Ak = k
i=1

(k−i+m
m

)
pi. Furthermore, it is equal to

m−1


k=0

(
n−k


i=1

(
n− i

k

)
pi

)
kan−k +

n−m


i=1

(
n− i
m

)
piman−m

+
n−m−1


k=1

Ak (mak −mak+1)

=
m−1


k=0

(
n−k


i=1

(
n− i

k

)
pi

)
kan−k +

n−m


i=1

(
n− i
m

)
piman−m

+A1ma1 +
n−m−1


k=2

(Ak −Ak−1)mak −An−m−1man−m. (1.30)

Since

A1 =
(

m
m

)
p1 =

(
m−1
m−1

)
p1,

n−m


i=1

(
n− i
m

)
pi −An−m−1

=
(

m
m

)
pn−m +

n−m−1


i=1

((
n− i
m

)
−

(
n− i−1

m

))
pi

=
(

m−1
m−1

)
pn−m +

n−m−1


i=1

(
n− i−1
m−1

)
pi =

n−m


i=1

(
n− i−1
m−1

)
pi

and

Ak −Ak−1 =
k


i=1

(
k− i+m−1

m−1

)
pi

we get that (1.30) is equal to

m−1


k=0

n−k


i=1

(
n− i

k

)
pikan−k +

n−m


k=1

k


i=1

(
k− i+m−1

m−1

)
pimak =

n


i=1

piai,

where in the last equality we use the assumption of mathematical induction. By the prin-
ciple of mathematical induction, identity (1.28) is valid. �
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Thus the following result is an analogue of Theorem 1.1 and it follows from identity
(1.28).

Theorem 1.8 Let (p1, . . . , pn) be a real n-tuple (n > m, m ∈ N). Then the inequality
n


i=1

piai ≥ 0 (1.31)

holds for every -convex n-tuple (ai) of order m if and only if

n−k


i=1

(n− i)(k)pi = 0 (1.32)

holds for k ∈ {0,1, . . . ,m−1} and

k


i=1

(k− i+m−1)(m−1)pi ≥ 0 (1.33)

holds for k ∈ {1, . . . ,n−m}.
Proof. If (1.32) and (1.33) are satisfied, then the first sum in identity (1.28) is equal to

0, the second sum is nonnegative and the inequality n
i=1 piai ≥ 0 holds.

Conversely, let us suppose that n
i=1 piai ≥ 0 holds for any -convex n-tuple of order

m. Since the sequence ai = (n− i)(k), i ∈ {1, . . . ,n} is -convex of order m for every k ∈
{0, . . . ,m−1}, we get n

i=1 pi(n− i)k ≥ 0. Similarly, since the sequence ai = −(n− i)(k),
i ∈ {1, . . . ,n} is -convex of order m for every k ∈ {0, . . . ,m− 1}, using (1.31) we get
−n

i=1 pi(n− i)(k) ≥ 0. Hence, n
i=1 pi(n− i)(k) = 0.

Also, since the sequence

ai =
{

(k− i+m−1)(m−1), i ∈ {1, . . . ,k},
0, i ∈ {k+1, . . . ,n}, (1.34)

is -convex of order m for every k ∈ {1, . . . ,n−m}, we have by (1.31) that (1.33) is valid.
�

If an n-tuple (ai) is -convex of several consecutive orders, then, as in the previous
section we have the following result, [71].

Theorem 1.9 Let (p1, . . . , pn) be a real n-tuple and m ∈ N, m < n. Then the inequal-
ity n

i=1 piai ≥ 0 holds for every n-tuple (a1, . . . ,an) that is -convex of orders j, j +
1, . . . ,m ( j ∈ {1, . . . ,m}) if and only if

n−k


i=1

(n− i)(k)pi = 0, k ∈ {0,1, . . . , j−1},

n−k


i=1

(n− i)(k)pi ≥ 0, k ∈ { j, j +1, . . . ,m−1},

and
k


i=1

(k− i+m−1)(m−1)pi ≥ 0, k ∈ {m+1, . . . ,n}.



16 1 GENERAL LINEAR INEQUALITIES FOR SEQUENCES

Proof. The proof is similar to the proof of Theorem 1.2. �

A sequence (ai) is called totally monotonic of order m if

kai ≥ 0 for k ∈ {1,2, . . . ,m}.
As a consequence of the previous Theorem 1.9 we get the following necessary and suffi-
cient conditions to positivity of the sum  piai for totally monotonic sequences of order m.
Namely, we obtain the following theorem.

Corollary 1.3 Let (p1, . . . , pn) be a real n-tuple and m ∈ N, m < n. Then inequality (1.4)
holds for every n-tuple (a1, . . . ,an) that is totally monotonic of order m if and only if

n


i=1

pi = 0,
n−k


i=1

(n− i)(k)pi ≥ 0

holds for k ∈ {1, . . . ,m−1}, and

n


i=1

(k− i+m−1)(m−1)pi ≥ 0 for k ∈ {1, . . . ,n−m}.

In the rest of this section we pay attention to results about preservation of convexity. In
a similar manner as in the first section we define a lower triangular matrix of real numbers
[pn,i], i = 0,1, . . . ,n;n = 0,1,2, . . . and a sequence (n) associated to the sequence (an)n=0
by

n =
n


k=0

pn,n−kak, n = 0,1,2, . . . (1.35)

Theorem 1.10 Let n be defined as in (1.35), m,s ∈ N. Then the implication

man ≥ 0 ⇒ sn ≥ 0

is valid for every sequence (an) if and only if

sYn(k+1,n− k) = 0 for k ∈ {0,1, . . . ,m−1}; n ∈ {0,1,2, . . .}
and

sYn(m,k) ≥ 0 for k ∈ {0, . . . ,n+ s−m}; n ∈ {0,1,2, . . .},
where

Yn(m,k) =

⎧⎪⎨
⎪⎩

0 for n < k
k


j=0

(
k− j +m−1

m−1

)
pn,n− j for n ≥ k.

Proof. We proceed as in the proof of Theorem 1.4. We prove that

sn =
n+s


j=0

sqn( j)a j
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and using the identity in (1.28) we obtain

s =
m−1


k=0

kan+s−ksYn(k+1,n− k)+
n+s−m


k=0

maksYn(m,k).

From this result the statement of the theorem follows directly. �

Finally, in the following theorem we get conditions on the numbers pn,i under which
the sequence (an) is -convex of several consecutive orders, [71].

Theorem 1.11 Let (an) be a real sequence, let n be defined as in (1.20) and j ∈
{1,2, . . . ,m}. The implication

kan ≥ 0, (k ∈ { j, j +1, . . . ,m}) ⇒ sn ≥ 0 (s ∈ N)

holds for every sequence (an) if and only if

sYn(k+1,n− k) = 0, k ∈ {0,1, . . . , j−1},
sYn(k+1,n− k)≥ 0, k ∈ { j, j +1, . . . ,m−1},

sYn(m,k) ≥ 0, k ∈ {0,1, . . . ,n+ s−m},n∈ N0.

Example 1.4 In this example we connect Lemmas 1.1 and 1.2 with results from [16].
The following identity is due to M.P. Drazin.

For any sequence (ai) and any y

n


i=0

(
n
i

)
yiai = (−1)n

n


k=0

(
n
k

)
(−1− y)kn−kak, n ≥ 0. (1.36)

By using this identity, Drazin proved the following inequalities:
(i) If (−1)n−kn−kak ≥ 0 (k ∈ {0, . . . ,n}) with at least one strict inequality, then

n


i=0

(
n
i

)
yiai > 0 for y > −1.

(ii) If n−kak ≥ 0 (k ∈ {0, . . . ,n}) with at least one strict inequality, then

n


i=0

(
n
i

)
yiai > 0 for y < −1.

We give a proof of the above results using the basic identities (1.2) and (1.28), [78].
Namely, putting n = m in (1.2) and (1.28) and starting numeration of sequences at 0, we
get the following identities:

n


i=0

piai =
n


k=0

( n


i=k

pii
(k)

)ka0

k!
(1.37)

n


i=0

piai =
n


k=0

( k


i=0

pi(n− i)(n−k)
)n−kak

(n− k)!
. (1.38)
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Setting pi =
(

n
i

)
yi in (1.38) we get

n


i=0

(
n
i

)
yiai = (−1)n

n


k=0

(−1)k

(
k


i=0

(
n− i
n− k

)(
n
i

)
yi

)
n−kak

= (−1)n
n


k=0

(
n
k

)
(−1− y)kn−kak,

which is (1.36). Similarly, setting pi =
(

n
i

)
yn−i in (1.37) we get

n


i=0

(
n
i

)
yn−iai =

n


k=0

(
n
k

)
(1+ y)n−kka0.

In [78] the authors gave result for sequences (ak) whose kth differences have alternating
signs. More precisely, the following theorem holds.

Theorem 1.12 Let (rk) be a given (n+1)-tuple, rk ∈ {0,1}.
(i) If (p0, p1, . . . , pn) is a real (n+1)-tuple such that

(−1)rk
n


i=k

pii
(k) ≥ 0 for 0 ≤ k ≤ n,

then n
k=0 pkak ≥ 0 for all (n+1)-tuples (a0, . . . ,an) such that (−1)rkka0 ≥ 0 for 0 ≤ k ≤

n.
(ii) If (p0, p1, . . . , pn) satisfies

(−1)rk+n−k
k


i=0

pi(n− i)(n−k) ≥ 0 for 0 ≤ k ≤ n,

then n
k=0 pkak ≥ 0 for all (n+1)-tuples (a0, . . . ,an) such that (−1)rkn−kak ≥ 0 for 0 ≤

k ≤ n.

Proof. (i) Identity (1.37) can be written as

n


k=0

pkak =
n


k=0

(
1
k!

n


i=k

pii
(k)

)
ka0 =

n


k=0

(
(−1)rk

1
k!

n


i=k

pii
(k)

)
(−1)rkka0.

Using assumptions of the theorem we get desired statement.
The proof of (ii) is based on (1.38) and it is similar to the previous one. �
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1.3 Starshaped Sequences

In this section we investigate necessary and sufficient conditions for general linear inequal-
ities for starshaped sequences of higher order.

The sequence a = (a0,a1,a2, . . .) is said to be starshaped of order m, m ≥ 2, (or m-

starshaped) if the sequence

(
an−a0

n

)
n

is (m−1)-convex.

The following lemma give us an identity on which further theorems are based, [70].

Lemma 1.3 For real sequences (a0,a1,a2, . . .), (p0, p1, p2, . . .) and 2 ≤ m < n the folow-
ing identity holds

n


i=0

piai = a0

n


i=0

pi +
m−1


k=1

kTk(a1)
n


i=k

(
i
k

)
pi

+
n


k=m

Tm(ak−m+1)
n


i=k

i

(
i− k+m−2

m−2

)
pi, (1.39)

where

Tk(a j) = k−1
(

a j −a0

j

)
.

Proof. Let us consider a new sequence (b1,b2, . . .) defined as

b j =
a j −a0

j
.

Then m−1b j = Tm(a j). Let us write the basic identity from Lemma 1.1 for m → m−1:

n


i=1

piai =
m−2


k=0

n


i=k+1

pi(i−1)(k)
ka1

k!

+
n


k=m

(
n


i=k

pi(i− k+m−2)(m−2)

)
m−1ak−m+1

(m−2)!
.

Putting in the above identity substitutions

pi → ipi, ai → bi,

we get the equation

n


i=1

ipibi =
m−2


k=0

n


i=k+1

ipi(i−1)(k)
Tk+1(a1)

k!

+
n


k=m

(
n


i=k

ipi(i− k+m−2)(m−2)

)
Tm(ak−m+1)

(m−2)!
.
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Changing index k in the first sum on the right-hand side (k+1 → k) we get that the right-
hand side has a form

m−1


k=1

n


i=k

ipi(i−1)(k−1) Tk(a1)
(k−1)!

+
n


k=m

(
n


i=k

ipi(i− k+m−2)(m−2)

)
Tm(ak−m+1)

(m−2)!

which is equal to the right-hand side of (1.39) after using
(i−1)(k−1)

(k−1)!
=

(
i−1
k−1

)
and

(i− k+m−2)(m−2)

(m−2)!
=

(
i− k+m−2

m−2

)
. Simple transformations of the left-hand side give:

n


i=1

ipibi =
n


i=1

ipi
ai−a0

i
=

n


i=1

piai −a0

n


i=1

pi

which finishes the proof. �

The consequences of identity (1.39) are the following theorems.

Theorem 1.13 Let (p0, p1, . . .) be a real sequence and 2 ≤ m < n. Then the inequality
n


i=0

piai ≥ 0 holds for every real sequence a starshaped of order m if and only if

n


i=0

pi = 0, (1.40)

n


i=k

(
i
k

)
pi = 0 for k = 1,2, . . . ,m−1, (1.41)

n


i=k

i

(
i− k+m−2

m−2

)
pi ≥ 0 for k = m, . . . ,n. (1.42)

Proof. If equalities (1.40), (1.41) and (1.42) are satisfied, then the first two sums in
identity (1.39) are equal to 0, the third sum is nonnegative for starshaped sequence of order

m and inequality
n


i=0

piai ≥ 0 holds.

Let us suppose that the inequality
n


i=0

piai ≥ 0 holds for any starshaped sequence of

order m. We consider sequences a1, a2, ak,3 and ak,4 defined as:

a1 = (1,1,1, . . .), a2 = −a1,

ak,3 = (0,1(k),2(k), . . . , i(k), . . .), ak,4 = −ak,3,

for k = 1,2, . . . ,m−1.
All these sequences are starshaped of order m, so we have the following inequalities

n


i=0

pi ≥ 0,
n


i=0

pi ≤ 0,
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n


i=0

pii
(k) ≥ 0,

n


i=0

pii
(k) ≤ 0

from which conditions (1.40) and (1.41) follow. Condition (1.42) follows from the fact
that the sequence

ai =
{

0, i ∈ {0, . . . ,k−1}
i(i− k+m−2)(m−2), i ∈ {k, . . . ,n}

is starshaped of order m for every k ∈ {m, . . . ,n}. �

Theorem 1.14 Let (p0, p1, . . .) be a real sequence and 2 ≤ m < n, 2 ≤ j ≤ m. Then the

inequality
n


i=0

piai ≥ 0 holds for every sequence a starshaped of orders j, j+1, . . . ,m if and

only if

n


i=0

pi = 0,

n


i=k

(
i
k

)
pi = 0 for k = 1,2, . . . , j−1,

n


i=k

(
i
k

)
pi ≥ 0 for k = j, j +1, . . . ,m−1 (1.43)

n


i=k

i

(
i− k+m−2

m−2

)
pi ≥ 0 for k = m, . . . ,n.

For j = m, (1.43) is not necessary.

1.4 Mean-convex and Mean-starshaped Sequences

In this section we consider mean-convex and mean-starshaped sequences. In general, we
say that a sequence a has a mean-property P if the sequence (An) has the property P, where

An =
a0 +a1 + . . .+an

n+1
. (1.44)

We give results about positivity of the sum piai for mean-convex and a mean-starshaped
sequences, [48], [92]. A real sequence (a0,a1, . . .) is called mean-convex if the sequence
(An) defined as in (1.44) is convex.

Theorem 1.15 Let (p0, p1, . . .) be a real sequence. The inequality

n


k=0

pkak ≥ 0
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holds for every mean-convex sequence a if and only if the following conditions

n


k=0

pk = 0 (1.45)

n


k=1

kpk = 0 (1.46)

n


j=k

(2 j− k+1)p j ≥ 0 for k = 2,3, . . . ,n, (1.47)

are fulfilled.

Proof. Let us suppose that n
k=0 pkak ≥ 0 holds. Since the sequences (c,c,c, . . .)

and (−c,−c,−c, . . .) are mean-convex, condition (1.45) is valid. Further, (0,1,2, . . .)
and (0,−1,−2, . . .) are also mean-convex, so condition (1.46) holds. Finally, condition
(1.47) follows from the fact that the sequence (a0,a1, . . .) where a0 = a1 = . . . = ak = 0,
a j = 2 j− k+1, j = k+1,k+2, . . ., is mean-convex.

The sufficiency of conditions (1.45), (1.46), and (1.47) is a consequence of the follow-
ing identity:

n


k=0

pkak = a0

n


k=0

pk +2A0

n


k=0

kpk +
n


k=2

(
n


j=k

p j(2 j− k+1)

)
2Ak−2.

�

The following result is given in [92] and it gives an answer to the question of neces-
sarity and sufficiency of pi if considered sequence is mean-starshaped. A real sequence
(a0,a1, . . .) is called mean-starshaped if the sequence (An) defined as in (1.44) is star-

shaped, i.e. if 
(

An(an)−a0

n

)
≥ 0 holds for n ≥ 2.

Theorem 1.16 Let (p0, p1, . . .) be a real sequence. Then for a fixed n ≥ 2 the inequality

n


k=0

pkak ≥ 0

holds for every mean-starshaped sequence (a0,a1, . . .) if and only if the following condi-
tions

n


k=0

pk = 0 (1.48)

n


k=1

kpk = 0 (1.49)

k(k−1)pk +
n


i=k

2ipi ≥ 0 for k = 2,3, . . . ,n (1.50)

are fulfilled.
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Proof. Let us suppose that n
k=0 pkak ≥ 0 holds. Like in the proof of the previous theo-

rem, since the sequences (c,c,c, . . .) and (−c,−c,−c, . . .) are mean-starshaped, condition
(1.48) is valid. Further, (0,1,2, . . .) and (0,−1,−2, . . .) are also mean-starshaped, so con-
dition (1.49) holds. Since the sequence (a0,a1, . . .), a0 = . . . = ak−1 = 0, ak = k(k + 1),
ak+1 = 2(k+1), ak+2 = 2(k+2), . . ., is mean-starshaped, then (1.50) holds.

The sufficiency of conditions (1.48), (1.49), and (1.50) is a consequence of the follow-
ing identity:

n


k=0

pkak = a0

n


k=0

pk +(a1−a0)
n


k=1

kpk

+
n


k=2

(
k(k−1)pk +

n


i=k

2ipi

)

(

An(an)−a0

n

)
.

�

The following theorem gives conditions under which the sequence n =n
k=0 pn,kak is

also mean-starshaped when a sequence (ak) is mean-starshaped, (see [92]).

Theorem 1.17 Let (a0,a1, . . .) be a mean-starshaped sequence and (0,1, . . .) be the
sequencen =n

k=0 pn,kak, where pn,k are reals. Then the sequence (n) is mean-starshaped
if and only if

n


k=0

wn,k = 0

n


k=1

kwn,k = 0

k(k+1)wn,k +
n


i=k+1

2iwn,i ≥ 0 for k = 2,3, . . . ,n,

where wn,k are defined as

wn,0 =
1

n(n+1)
(pn,0 + p0,0)− 2

n(n2−1)

n−1


j=1

p j,0,

wn,k =
1

n(n+1)
pn,k − 2

n(n2−1)

n−1


j=k

p j,k, k = 1,2, . . . ,n−1

wn,n =
1

n(n+1)
pn,n.
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1.5 p-monotone and p,q-convex Sequences

In this section we consider somewhat different generalization of convex sequences. Let
p �= 0 be a real number. We define the operator Lp by

Lp(ai) = ai+1− pai, i ∈ N.

For a sequence (ai), we say that it is p-monotone or that it belongs to the class Kp, if
the inequality Lp(ai) ≥ 0 holds for all i ∈ N, ([37]). It is obvious that for p = 1 we get
nondecreasing sequence. Let us obtain an identity for the sum n

i=1 wiai involving an
operator Lp. From Lp(ai) = ai+1− pai we get

Lp(ak−1) = ak − pak−1

pLp(ak−2) = pak−1− p2ak−2

p2Lp(ak−3) = p2ak−2− p3ak−3

...

pk−2Lp(a1) = pk−2a2− pk−1a1.

Summing all the above equalities we get

Lp(ak−1)+ pLp(ak−2)+ . . .+ pk−2Lp(a1) = ak − pk−1a1, k = 2, . . . ,n.

Multiplying the equality for ak with wk and writting them for k = 2, . . . ,n we get

w2Lp(a1) = w2a2−w2pa1

w3Lp(a2)+w3pLp(a1) = w3a3−w3p2a1

w4Lp(a3)+w4pLp(a2)+w4p2Lp(a1) = w4a4−w4p3a1

...

wnLp(an−1)+wnpLp(an−2)+ . . .+wnpn−2Lp(a1) = wnan−wnpn−1a1.

Summing the above equalities we get

Lp(a1)
n


j=2

wj p
j−2 + Lp(a2)

n


j=3

wj p
j−3 + . . .+Lp(an−2)

n


j=n−1

wj p
j−n+1

+ Lp(an−1)wn =
n


i=2

wiai −a1

n


j=2

wip
i−1,

n


k=2

(
n


j=k

wj p
j−k

)
Lp(ak−1) =

n


i=1

wiai −a1

n


j=1

wip
i−1,
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i.e. we get the following identity involving the operator Lp:

n


i=1

wiai = a1

n


i=1

pi−1wi +
n


k=2

(
n


i=k

pi−kwi

)
Lp(ak−1). (1.51)

Thus, from (1.51) we can easily obtain the following theorem, ([60]).

Theorem 1.18 Let w = (wi) be an arbitrary real sequence.
(i) The inequality

n


i=1

wiai ≥ 0 (1.52)

holds for every p-monotone sequence (ai) if and only if

n


i=1

pi−1wi = 0 (1.53)

and
n


i=k

pi−kwi ≥ 0, k ∈ {2, . . . ,n}. (1.54)

(ii) Inequality (1.52) holds for every p-monotone sequence (ai) such that a1 ≥ 0 if and
only if

n


i=1

pi−kwi ≥ 0, k ∈ {1, . . . ,n}.

Proof. If conditions (1.53) and (1.54) hold, then from identity (1.51) we get that the
sum wiai is nonnegative for any p-monotone sequence.

On the other hand, since the sequences (pi−1)i, (−pi−1)i and

ai =
{

0, i ∈ {1, . . . ,k−1},
pi−k, i ≥ k,

are p-monotone, using (1.52) we get conditions (1.53) and (1.54). �

Let us consider a triangular matrix of real numbers [pn,i] (i ∈ {1, . . . ,n}; n ∈ N) Define
the sequence (n) for a given (an) with

n =
n


i=1

pn,n+1−iai. (1.55)

The following preservation theorem is given in a slightly modified form in [60].

Theorem 1.19 Necessary and sufficient conditions such that the implication

(an) ∈ Kp ⇒ (n) ∈ Kq

holds for every sequence (an), where the sequence (n) is given by (1.55), are that for
every n we have

bn+1,1−qbn,1 = 0, bn+1,n+1 ≥ 0,
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bn+1,k −qbn,k ≥ 0 (k ∈ {2, . . . ,n}),

where bn,k =
n−k+1


i=1

pi−1pn,n−k−i+2.

Proof. We have

Lq(n) = n+1−qn =
n+1


j=1

pn+1,n+2− ja j −q
n


j=1

pn,n+1− ja j

n


j=1

(pn+1,n+2− j −qpn,n+1− j)a j + pn+1,1an+1 =
n+1


j=1

wja j,

where wj = pn+1,n+2− j − qpn,n+1− j for j = 1, . . . ,n and wn+1 = pn+1,1. Using Theo-

rem 1.18 we get that the inequality Lq(n) ≥ 0 holds if and only if
n+1


i=1

pi−1wi = 0 and

n+1


i=k

pi−kwi ≥ 0 for k = 2, . . . ,n+1. The first equality is transformed to

0 =
n+1


i=1

pi−1wi =
n


i=1

pi−1(pn+1,n+2−i−qpn,n+1−i)+ pnpn+1,1

=

(
n


i=1

pi−1pn+1,n+2−i + pnpn+1,1

)
−q

n


i=1

pi−1pn,n+1−i = bn+1,1−qbn,1.

The second condition splits to two cases: k ∈ {2, . . . ,n} and k = n+ 1. For k = n+ 1 we
get bn+1,n+1 ≥ 0 and for k ∈ {2, . . . ,n} we get that n+1

i=k pi−kwi ≥ 0 are equivalent with
bn+1,k −qbn,k ≥ 0. �

The following type of sequences can be consider as a twofold generalization. Firstly, it
is a generalization of the p-monotone sequences, and secondly, it is a generalization of the
classical convexity of sequence.

Let p,q be real numbers, (ai) be a real sequence and let us define an operator Lpq as
follows:

Lpq(ai) = Lp(Lq(ai)) = Lq(Lp(ai)) = ai+2− (p+q)ai+1 + pqai.

If Lpq(ai)≥ 0 for any i, then a sequence (ai) is called p,q-convex sequence. Obviously,
if p = q = 1, then a 1,1-convex sequence becomes a convex sequence in the classical sense.

Necessary and sufficient conditions for validation of (1.4) for all p,q-convex sequences
are given in [43].

Theorem 1.20 Let w = (wi) be an arbitrary real sequence. The inequality

n


i=1

wiai ≥ 0 (1.56)
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holds for every p,q-convex sequence (ai), p �= q, p,q �= 0, if and only if

n


i=1

pi−1wi = 0,
n


i=2

pi−1−qi−1

p−q
wi = 0 (1.57)

and
n


i=r

pi−r+1−qi−r+1

p−q
wi ≥ 0, r ∈ {3, . . . ,n}. (1.58)

If p = q, then conditions (1.57) and (1.58) become

n


i=1

pi−1wi = 0,
n


i=2

(i−1)pi−2wi = 0,

n


i=r

(i− r+1)pi−rwi ≥ 0, r ∈ {3, . . . ,n}.

Proof. Let us obtain an identity for wiai involving the operator Lpq. We start with an
identity which involves Lp:

n


i=1

wiai = a1

(
n


i=1

pi−1wi

)
+

n


k=2

WkLp(ak−1), (1.59)

whereWk =n
j=k p j−kwj. Using the same identity for the sumn

k=2Wkbk with the operator
Lq, where bk = Lp(ak−1) we get

n


k=2

Wkbk = b2

(
n


j=2

q j−2Wj

)
+

n


k=3

WkLq(bk−1), (1.60)

where Wk =
n


j=k

q j−kWj. Now, Lq(bk−1) = Lq(Lp(ak−2)) = Lpq(ak−2) and

Wk =
n


j=k

q j−kWj =
n


j=k

q j−k

(
n


r= j

pr− jwr

)
= wk +wk+1(p+q)

+wk+2(p2 + pq+q2)+ . . .+wn(pn−k +qpn−k−1 + . . .+qn−k)

=

⎧⎪⎨
⎪⎩

wk +wk+1
p2−q2

p−q
+ . . .+wn

pn−k+1−qn−k+1

p−q
, p �= q

wk +2pwk+1 +3p2wk+1 + . . .+(n− k+1)pn−kwn, p = q

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n


i=k

wi
pi−k+1−qi−k+1

p−q
, p �= q

n


i=k

(i− k+1)pi−kwi, p = q.

(1.61)
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In particular, for k = 2 we get

n


j=2

q j−2Wj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n


i=2

wi
pi−1−qi−1

p−q
, p �= q

n


i=2

(i−1)pi−2wi, p = q.

(1.62)

Putting (1.61) and (1.62) in (1.60) and combining with (1.59) we obtain that for p �= q

n


i=1

wiai = a1

(
n


i=1

pi−1wi

)
+Lp(a1)

n


i=2

wi
pi−1−qi−1

p−q

+
n


k=3

(
n


i=k

wi
pi−k+1−qi−k+1

p−q

)
Lpq(ak−2) (1.63)

and for p = q the following holds

n


i=1

wiai = a1

(
n


i=1

pi−1wi

)
+Lp(a1)

n


i=2

(i−1)pi−2wi

+
n


k=3

(
n


i=k

(i− k+1)pi−kwi

)
Lpp(ak−2). (1.64)

Let us suppose that p �= q. Now it is obvious that if (ai) is a p,q-convex sequence with
properties (1.57) and (1.58), then using identity (1.63) we get that wiai is nonnegative.

Conversely, let us suppose that wiai is nonnegative for every p,q-convex sequence.
Let us consider the sequence (ai) defined with

ai = −q
pi−qi

p−q
+

pi+1−qi+1

p−q
.

Since Lpq(ai) = 0, i.e. (ai) is p,q-convex, we have n
i=1 wiai ≥ 0, i.e. from identity

(1.63) we get pn
i=1 pi−1wi ≥ 0. Similarly, for a p,q-convex sequence (−ai) we obtain

−pn
i=1 pi−1wi ≥ 0. Together, we conclude n

i=1 pi−1wi = 0.
Furthermore, let us consider the sequence (ai) defined as

ai = −(p+q)
pi−qi

p−q
+

pi+1−qi+1

p−q
.

It is p,q-convex. Since the sequence (−ai) is also p,q-convex,we get that
n


i=2

pi−1−qi−1

p−q
wi =

0.
And finally, fix r ∈ {3, . . . ,n} and let us consider the sequence (ar

i ) defined as a1 = a2 =

. . . = ar−1 = 0, ai =
pi−r+1−qi−r+1

p−q
for i = r, . . . ,n. Since (ar

i ) is p,q-convex condition

(1.58) holds. �
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1.6 Multilinear Forms

In the previous sections we consider a positivity of the sum  piai for only one sequence
(ai). What happens if we consider a sum in which two sequences appear? Results of such
type are given in this section.

1.6.1 Results for - and -convex sequences

Bilinear sums were investigated by T. Popoviciu in [87] where monotone sequences (ai)
and (bi) have the same number of members. The case when monotone sequences (ai) and
(bi) have different numbers of elements was done by J. Pečarić in [57] and A. Kovačec in
[35]. A generalization of the above mentioned results with several monotone sequences is
given in [58]. As we know, a monotone sequence is in fact a 1-convex sequence, so we are
interested in results which involve two or more sequences of higher ordered convexity. In
the subsequent text we give a detailed proof of one of such results from [72]. Other related
results will be given without proof.

Theorem 1.21 Let xi j, ai, b j, (1 ≤ i ≤ N;1 ≤ j ≤ M), be real numbers, n,m ∈ N, n ≤
N,m ≤ M. The inequality

F(a,b) ≡
N


i=1

M


j=1

xi jaib j ≥ 0 (1.65)

holds for every n-convex sequence (ai) and m-convex sequence (b j) if and only if

N


r=1

M


s=1

(r−1)(i)(s−1)( j)xrs = 0 (1.66)

for i ∈ {0, . . . ,n−1}, j ∈ {0, . . . ,m−1},
N


r=1

M


s=1

(r−1)(i)(s− j +m−1)(m−1)xrs = 0

for i ∈ {0, . . . ,n−1}, j ∈ {m+1, . . . ,M},
N


r=1

M


s=1

(r− i+n−1)(n−1)(s−1)( j)xrs = 0

for i ∈ {n+1, . . . ,N}, j ∈ {0, . . . ,m−1},
N


r=1

M


s=1

(r− i+n−1)(n−1)(s− j +m−1)(m−1)xrs ≥ 0 (1.67)

for i ∈ {n+1, . . . ,N}, j ∈ {m+1, . . . ,M}.
Proof. The following identity has a crucial role in the proof:

N


i=1

M


j=1

xi jaib j =
n−1


i=0

m−1


j=0

ia1 jb1

(
N


r=1

M


s=1

(
r−1

i

)(
s−1

j

)
xrs

)
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+
n−1


i=0

M


j=m+1

ia1mb j−m

(
N


r=1

M


s= j

(
r−1

i

)(
s− j +m−1

m−1

)
xrs

)

+
N


i=n+1

m−1


j=0

nai−n jb1

(
N


r=i

M


s=1

(
r− i+n−1

n−1

)(
s−1

j

)
xrs

)

+
N


i=n+1

M


j=m+1

nai−nmb j−m

(
N


r=i

M


s= j

(
r− i+n−1

n−1

)(
s− j +m−1

m−1

)
xrs

)
.

We have
N


i=1

M


j=1

xi jaib j =
N


i=1

wiai,

where wi =
M


j=1

b jxi j. So using basic identity (1.2) we have

N


i=1

M


j=1

xi jaib j =
n−1


i=0

ia1

(
N


r=1

(
r−1

i

)
wr

)

+
N


i=n+1

nai−m

(
N


r=i

(
r− i+n−1

n−1

)
wr

)
.

Similarly, we have

N


r=1

(
r−1

i

)
wi =

N


r=1

(
r−1

i

) M


j=1

b jxr j =
M


j=1

b j

(
N


r=1

(
r−1

i

)
xr j

)

=
m−1


j=0

 jb1

(
M


s=1

(
s−1

j

)(
N


r=1

(
r−1

i

)
xrs

))

+
M


j=m+1

mb j−m

(
M


s= j

(
s− j +m−1

m−1

)(
N


r=1

(
r−1

i

)
xrs

))

=
m−1


j=0

 jb1

(
N


r=1

M


s=1

(
r−1

i

)(
s−1

j

)
xrs

)

+
M


j=m+1

mb j−m

(
N


r=1

M


s= j

(
r−1

i

)(
s− j +m−1

m−1

)
xrs

)
.

Using the same idea we have

N


r=i

(
r− i+n−1

n− i

)
wr =

N


r=i

(
r− i+n−1

n− i

) M


j=1

b jxr j

=
M


j=1

b j

(
N


r=i

(
r− i+n−1

n− i

)
xr j

)
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=
m−1


j=0

 jb1

(
M


s=1

(
s−1

j

)(
N


r=1

(
r− i+n−1

n− i

)
xrs

))

+
M


j=m+1

mb j−m

(
M


s= j

(
s− j +m−1

m−1

)(
N


r=1

(
r− i+n−1

n− i

)
xrs

))

=
m−1


j=0

 jb1

(
N


r=i

M


s=1

(
r− i+n−1

n− i

)(
s−1

j

)
xrs

)

+
M


j=m+1

mb j−m

(
N


r=i

M


s= j

(
r− i+n−1

n− i

)(
s− j +m−1

m−1

)
xrs

)
.

Using these two identities we obtain the desired identity. �

The identity from Theorem 1.21 has combinations of-differences of sequences (ai),(bi).
There exist identitites which involve combinations of -differences or -differences of the
sequence (ai) with -differences of the sequence (bi). We write them here without a de-
tailed proof.

Theorem 1.22 Let xi j, ai, b j, (1≤ i≤N;1 ≤ j ≤M), be real numbers, m,n∈ N, m≤M,
n ≤ N.

The following identities hold

N


i=1

M


j=1

xi jaib j =
n−1


i=0

m−1


j=0

iaN−i jbM− j

(
N


r=1

M


s=1

(
N− r

i

)(
M− s

j

)
xrs

)

+
n−1


i=0

M−m


j=1

iaN−imb j

(
N


r=1

j


s=1

(
N− r

i

)(
j− s+m−1

m−1

)
xrs

)

+
N−n


i=1

m−1


j=0

nai jbM− j

(
i


r=1

M


s=1

(
i− r+n−1

n−1

)(
M− s

j

)
xrs

)

+
N−n


i=1

M−m


j=1

naimb j

(
i


r=1

j


s=1

(
i− r+n−1

n−1

)(
j− s+m−1

m−1

)
xrs

)
,

and

N


i=1

M


j=1

xi jaib j =
n−1


i=0

m−1


j=0

ia1 jbM− j

(
N


r=1

M


s=1

(
r−1

i

)(
M− s

j

)
xrs

)

+
n−1


i=0

M−m


j=1

ia1mb j

(
N


r=1

j


s=1

(
r−1

i

)(
j− s+m−1

m−1

)
xrs

)

+
N


i=n+1

m−1


j=0

nai−n jbM− j

(
N


r=i

M


s=1

(
r− i+n−1

n−1

)(
M− s

j

)
xrs

)

+
N


i=n+1

M−m


j=1

nai−nmb j

(
N


r=i

j


s=1

(
r− i+n−1

n−1

)(
j− s+m−1

m−1

)
xrs

)
.
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A similar result, analogous to Theorem 1.65 based on the identities from the previous
theorem can be given, see [72].

It is interesting to estimate the sum F if the finite differences of the sequences (ai) and
(bi) are bounded. Firstly we get a result with lower bounds.

Corollary 1.4 Let xi j, ai, b j, (1 ≤ i ≤ N;1 ≤ j ≤ M), be real numbers satisfying condi-
tions (1.66)-(1.67) of Theorem 1.21 and let

nai ≥ , mb j ≥  , 1 ≤ i ≤ N−n, 1 ≤ j ≤ M−m.

Then
N


i=1

M


j=1

xi jaib j ≥ 
n!m!

N


i=1

M


j=1

(i−1)n( j−1)mxi j.

Proof. Under the assumptions of Corollary, the identity from the proof of Theorem
1.21 becomes

N


i=1

M


j=1

xi jaib j =
N


i=n+1

M


j=m+1

xi jnai−nmb j−m×

×
(

N


r=i

M


s= j

(
r− i+n−1

n−1

)(
s− j +m−1

m−1

)
xrs

)

≥ 
N


i=1

M


j=1

(
N


r=i

M


s= j

(
r− i+n−1

n−1

)(
s− j +m−1

m−1

)
xrs

)

=

n!m!

N


i=1

M


j=1

(i−1)n( j−1)mxi j

since n(i−1)n = n! and m( j−1)m = m!. �

Using the same method we obtain the following result, [72].

Corollary 1.5 Let xi j, ai, b j, (1 ≤ i ≤ N;1 ≤ j ≤ M), be real numbers satisfying condi-
tions (1.66)-(1.67) of Theorem 1.21 and let

nai ≤ R, mb j ≤ S, 1 ≤ i ≤ N−n, 1 ≤ j ≤ M−m. (1.68)

Then ∣∣∣∣∣
N


i=1

M


j=1

xi jaib j

∣∣∣∣∣ ≤ RS
n!m!

N


i=1

M


j=1

(i−1)n( j−1)mxi j.

Remark 1.5 Theorem 1.21 can be generalized. Namely, the statement is true if instead of
the two sequences (ai, . . . ,aN) and (b1, . . . ,bM) we involve a matrix [ai j], j = 1, . . . ,N, j =
1, . . . ,M and the product aib j is substituted with ai j. In that case, the phrase ”holds for
every n-convex sequence (ai) and m-convex sequence (b j)” is substituted by ”holds for
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every (n,m)-convex (ai j)”, where the sequence (ai j)i, j∈N is (n,m)-convex if n,mai j ≥ 0,
(i, j = 1,2, . . .) with notations

n,mai j = n
1(

m
2 ai j), 1ai j = ai+1, j −ai j,

2ai j = ai, j+1−ai j, 0
1ai j = 0

2ai j = ai j.

The particular case of Theorem 1.21 for n = m = 1, i.e. for monotone sequences (ai)
and (b j) deserves special attention. Let us repeat the statement of Theorem 1.21 for the
monotone sequences, [57].

Corollary 1.6 Let xi j, (i = 1, . . . ,n; j = 1, . . . ,m) be real numbers. For all sequences
(a1, . . . ,an) and (b1, . . . ,bm) monotone in the same sense the inequality

n


i=1

m


j=1

xi jaib j ≥ 0

holds if and only if

Xr,1 = 0 (r = 1, . . . ,n), X1,s = 0 (s = 2, . . . ,m),

Xr,s ≥ 0 (r = 2, . . . ,n;s = 2, . . . ,m),

where

Xr,s =
n


i=r

m


j=s

xi j.

In the subsequent text we show how this result leads to the discrete Čebyšev and Grüss
inequalities. Let a = (a1, . . . ,an), b = (b1, . . . ,bn) and p = (p1, . . . , pn) be given n-tuples,
p1, . . . , pn > 0. Let us define the Čebyšev difference D(a,b,p) as

D(a,b,p) =
n


i=1

pi

n


i=1

piaibi−
n


i=1

piai

n


i=1

pibi.

Let xi j, (i, j = 1, . . . ,n) be defined as

xi j = −pip j, (i �= j); xii = pi

(
n


k=1

pk − pi

)
.

It is easy to see that for these particular numbers xi j the following equalities and in-
equalities hold:

Xr,1 = 0 (r = 1, . . . ,n), X1,s = 0 (s = 2, . . . ,n),

Xr,s ≥ 0, r,s = 1,2, . . . ,n.

Using identity from the proof of Theorem 1.21 for m = n = 1 we get that for sequences
a and b the following holds:

D(a,b,p) =
n


i=1

n


j=1

xi jaib j =
n


r=2

n


s=2

Xrs(ar −ar−1)(bs −bs−1).
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Furthermore, since Xr,s ≥ 0, a and b are monotone in the same sense, then

D(a,b,p) ≥ 0,

i.e.
n


i=1

pi

n


i=1

piaibi ≥
n


i=1

piai

n


i=1

pibi

which is, in fact, the discrete Čebyšev inequality. More results about the Čebyšev inequal-
ity will be given in Chapter 6.

If a and b are monotone, then

|D(a,b,p)| = =

∣∣∣∣∣
n


r=2

n


s=2

Xrs(ar −ar−1)(bs −bs−1)

∣∣∣∣∣
≤ max

1≤r,s≤n
|Xrs||an−a1| |bn−b1|

= |an−a1| |bn−b1| max
1≤k≤n−1

k


i=1

pi

n


i=k+1

pi. (1.69)

Now we can state and prove the discrete Grüss inequality.

Proposition 1.1 Let a, b be given real n-tuples such that

a ≤ ai ≤ A, b ≤ bi ≤ B, (i = 1,2, . . . ,n).

Then
|D(a,b,1)| ≤ (A−a)(B−b)

[n
2

](
n−

[n
2

])
. (1.70)

Proof. Let a = (a1, . . . ,an) be the increasing rearrangement of a, and a = (a1, . . . ,an)
be the decreasing rearrangement of a and define b, b similarly. Then

n


i=1

aibi ≤
n


i=1

aibi ≤
n


i=1

aibi,

i.e.
D(a,b,1) ≤ D(a,b,1) ≤ D(a,b,1).

Using (1.69) on the pairs of the monotone sequences a and b and on a and b we get

|D(a,b,1)|, |D(a,b,1)| ≤ (A−a)(B−b) max
1≤k≤n−1

k


i=1

pi

n


i=k+1

pi

= (A−a)(B−b)
[n
2

](
n−

[n
2

])
,

from which inequality (1.70) follows. �

Let us mention that the above discrete Grüss inequality was proved in 1950 by M. Bier-
nacki, H. Pidek and C. Ryll-Nardzewski, [51, p.299].
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The following theorem is a multilinear generalization of Theorem 1.6, (see [58]). We
consider m monotone sequences, give an identity for the sum
n1


i1=1

. . .
nm


im=1

xi1...ima1i1 . . .amim and necessary and sufficient conditions for positivity of that

sum.

Theorem 1.23 Let xi1...im (ik = 1, . . . ,nk;k = 1, . . . ,m) be real numbers.
(i) The inequality

n1


i1=1

. . .
nm


im=1

xi1...ima1i1 . . .amim ≥ 0 (1.71)

holds for all nondecreasing sequences aj = (a j1, . . . ,a jn j ), ( j = 1, . . . ,m) if and only if

Xs1···sm ≥ 0 (s j = 2, . . . ,n j; j = 1, . . . ,m),

Xs1...sk−1,1,sk+1,...sm = 0

for s j = 1, . . . ,n j; j = 1, . . . ,k−1,k+1, . . . ,m; k = 1, . . . ,m, where

Xs1···sm =
n1


i1=s1

· · ·
nm


im=sm

xi1...im .

(ii) Inequality (1.71) holds for all nonnegative nondecreasing sequences aj, ( j =
1, . . . ,m) if and only if

Xs1···sm ≥ 0 (s j = 1, . . . ,n j; j = 1, . . . ,m).

Proof. The proof is based on the identity:

n1


i1=1

· · ·
nm


im=1

xi1...ima1i1 . . .amim = a11 . . .am1X1...1

+
m−1


k=1


(m

k)

{
ai1 . . .ak1

nk+1


sk+1=2

· · ·
nm


sm=2

X1...1,sk+1,...sm

m


j=k+1

(a j,s j −a j,s j−1)

}

+
n1


s1=2

· · ·
nm


sm=2

Xs1···sm
m


j=1

(a j,s j −a j,s j−1).

�

The above-mentioned article [58] contains some further results connected with lower
and upper bounds for this sum also.

1.6.2 Results for p-monotone, p,q-convex and
Starshaped Sequences

As like for convex sequence of higher order, similar results about necessary and suffi-
cient conditions for the numbers xi j such that inequality n

i=1
m
j=1 xi jaib j ≥ 0 holds for

p-monotone and p,q-convex sequences is stated in [60].
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Theorem 1.24 (i) Let (ai),(bi) be real sequences and xi j, (i∈{1,2, . . . ,n}, j∈{1,2, . . . ,m})
be real numbers. The inequality

n


i=1

m


j=1

xi jaib j ≥ 0

holds for every p-monotone sequence (ai) and for every q-monotone sequence (bi) if and
only if

X1,s = 0, Xr,1 = 0, s ∈ {1,2, . . . ,m},r ∈ {1,2, . . . ,n}, (1.72)

Xr,s ≥ 0, s ∈ {2, . . . ,m},r ∈ {2, . . . ,n}, (1.73)

where

Xr,s =
n


i=r

m


j=s

pi−rq j−sxi j.

(ii) The inequality
n


i=1

m


j=1

xi jaib j ≥ 0 holds for every p-monotone sequence (ai) and for

every q-monotone sequence (bi) such that a1 ≥ 0 and b1 ≥ 0 if and only if

Xr,s ≥ 0, s ∈ {1,2, . . . ,m},r ∈ {1,2, . . . ,n}.
Proof. Let us prove case (i). Let s j = n

i=1 xi jai. Then

n


i=1

m


j=1

xi jaib j =
m


j=1

s jb j = b1

m


j=1

q j−1s j +
m


i=2

(
m


j=s

q j−ss j

)
Lq(bs−1).

Let us write xi = m
j=s q

j−sxi j. Then

m


j=s

q j−ss j =
n


i=1

(
m


j=s

q j−sxi j

)
ai =

n


i=1

xiai

= a1

n


i=1

pi−1xi +
n


r=2

(
n


i=r

pi−rxi

)
Lp(ar−1)

= a1X1,s +
n


r=2

Xr,sLp(ar−1).

For s = 1 we have
m


j=1

q j−1s j = a1X1,1 +
n


r=2

Xr,1Lp(ar−1).

Hence,

n


i=1

m


j=1

xi jaib j = a1b1X1,1 +b1

n


r=2

Xr,1Lp(ar−1)+a1

m


s=2

X1,sLq(bs−1)

+
n


r=2

m


s=2

Xr,sLp(ar−1)Lq(bs−1). (1.74)
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From this identity we conclude that if xi j satisfy assumptions (1.72) and (1.73), then
n

i=1
m
j=1 xi jaib j ≥ 0.

Let us prove the second implication. Let us consider the p-monotone sequence (ai)
defined as ai = 0 for i = 1,2, . . . ,r − 1, ai = pi−r for i = r, . . . ,n, and the q-monotone
sequences (b j)m

j=1 = (q j−1)m
j=1 and (b j)m

j=1 = (−q j−1)m
j=1. For these sequences the in-

equality n
i=1

m
j=1 xi jaib j ≥ 0 holds, so, the condition Xr,1 = 0 holds. Similarly, we get

X1,s = 0. Let us define the sequences (ai) and (b j):

ai = 0, i = 1,2, . . . ,r−1, ai = pi−r, i = r, . . . ,n,

b j = 0, j = 1,2, . . . ,s−1, b j = q j−s, j = s, . . . ,m.

These sequences are p-monotone and q-monotone respectively, so from
n

i=1
m
j=1 xi jaib j ≥ 0 we get Xr,s ≥ 0. �

Also, a similar result for bilinear form for p,q-convex functions is valid, [47]. The key
role plays identity (1.74).

Theorem 1.25 Let (ai),(bi) be real sequences and xi j, (i∈{1,2, . . . ,n}, j∈{1,2, . . . ,m})
be real numbers. The inequality

n


i=1

m


j=1

xi jaib j ≥ 0

holds for every p,t-convex sequence (ai) and q,r-convex sequence (bi) if and only if

X1,1 = 0, B1
r,1 = 0 (r = 2, . . . ,n), B2

1,s = 0 (s = 2, . . . ,m),
Br,2 = 0 (r = 3, . . .n), B2,s = 0 (s = 3, . . . ,m),
Br,s ≥ 0 (r = 3, . . . ,n; s = 3, . . . ,m),

where

Xr,s =
n


i=r

m


j=s

pi−rq j−sxi j, r = 1, . . . ,n; s = 1, . . . ,m,

B1
r,1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n


i=r

m


j=1

q j−1 pi−r+1− ti−r+1

p− t
xi j, p �= t

n


i=r

m


j=1

(i− r+1)pi−rq j−1xi j, p = t

for r = 2, . . . ,n,

B2
1,s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n


i=1

m


j=s

pi−1 q j−s+1− r j−s+1

q− r
xi j, q �= r

n


i=1

m


j=s

( j− s+1)pi−1q j−sxi j, q = r
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for s = 2, . . . ,m, and

Br,s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n


i=r

m


j=s

pi−r+1− ti−r+1

p− t
· q

j−s+1− r j−s+1

q− r
xi j, p �= t,q �= r

n


i=r

m


j=s

(i− r+1)( j− s+1)pi−rq j−sxi j, p = t,q=r

for r = 2, . . . ,n, s = 2, . . . ,m.

Proof. Using identities (1.51) and (1.74) we get the following

n


r=2

Xr,1Lp(ar−1) = B1
2,1Lp(a1)+

n


r=3

B1
r,1Lpt(ar−2) (1.75)

m


s=2

X1,sLq(bs−1) = B2
1,2Lq(b1)+

m


s=3

B2
1,sLqr(bs−2) (1.76)

n


r=2

m


s=2

Xr,sLp(ar−1)Lq(bs−1) = B2,2Lp(a1)Lq(b1) (1.77)

+Lq(b1)
n


r=3

Br,2Lpt(ar−2)+Lp(a1)
m


s=3

B2,sLqr(br−2)

+
n


r=3

m


s=3

Br,sLpt(ar−2)Lqr(bs−2).

By inserting (1.75), (1.76) and (1.77) in (1.74) we obtain

n


i=1

m


j=1

xi jaib j = X1,1a1b1 +b1Lp(a1)B1
2,1 +a1Lq(b1)B2

1,2 (1.78)

+B2,2Lp(a1)Lq(b1)+b1

n


r=3

B1
r,1Lpt(ar−2)+a1

m


s=3

B2
1,sLqr(bs−2)

+Lq(b1)
n


r=3

Br,2Lpt(ar−2)+Lp(a1)
m


s=3

B2,sLqr(br−2)

+
n


r=3

m


s=3

Br,sLpt(ar−2)Lqr(bs−2).

It is the identity from which the statement of the theorem follows. �

Analogously, we can prove the following result which combines p,t-convex and q-
monotone sequences, [47].

Theorem 1.26 Let (ai),(bi) be real sequences and xi j, (i∈{1,2, . . . ,n}, j∈{1,2, . . . ,m})
be real numbers. The inequality

n


i=1

m


j=1

xi jaib j ≥ 0



1.6 MULTILINEAR FORMS 39

holds for every p,t-convex sequence (ai) and q-monotone sequence (bi) if and only if

X1,s = 0, (s = 1, . . . ,m)
Rr,1 = 0 (r = 2, . . .n), R2,s = 0 (s = 2, . . . ,m)
Rr,s ≥ 0 (r = 3, . . . ,n; s = 2, . . . ,m),

where Xr,s ia defined in the previous theorem and

Rr,s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n


i=r

m


j=s

q j−s pi−r+1− ti−r+1

p− t
xi j, p �= t

n


i=r

m


j=s

(i− r+1)pi−rq j−sxi j, p = t

for r = 2, . . . ,n, s = 1, . . . ,m.

In [70] a bilinear form for a starshaped sequence is considered. Namely, the following
theorem is given:

Theorem 1.27 Let ai,b j and xi j, i = 0,1, . . .N; j = 0,1, . . . ,M, be real numbers. Then
the inequality

N


i=0

M


j=0

aib jxi j ≥ 0

holds for every sequence (ai) starshaped of order n and sequence (bi) starshaped of order
m if and only if

N


i=0

M


j=0

xi j = 0,

N


i=r

M


j=0

(
i
r

)
xi j = 0,

N


i=0

M


j=s

(
j
s

)
xi j = 0, r = 1, . . . ,n−1;s = 1, . . . ,m−1,

N


i=r

M


j=0

i

(
i− r+n−2

n−2

)
xi j = 0,

N


i=0

M


j=s

j

(
j− s+m−2

m−2

)
xi j = 0,

for r = n, . . . ,N;s = m, . . . ,M,
N


i=r

M


j=s

(
i
r

)(
j
s

)
xi j = 0,r = 1, . . . ,n−1;s = 1, . . . ,m−1,

N


i=r

M


j=s

i

(
i− r+n−2

n−2

)(
j
s

)
xi j = 0,r = n, . . . ,N;s = 1, . . . ,m−1,

N


i=r

M


j=s

j

(
i
r

)(
j− s+m−2

m−2

)
xi j = 0,r = 1, . . . ,n−1;s = m, . . . ,M,

N


i=r

M


j=s

i j

(
i− r+n−2

n−2

)(
j− s+m−2

m−2

)
xi j ≥ 0,r = n, . . . ,N;s = m, . . . ,M.
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Proof. The proof is based on the following identity:

N


i=0

M


j=0

aib jxi j = a0b0

N


i=0

M


j=0

xi j +
n−1


r=1

m−1


s=1

rsTr(a1)Ts(b1)
N


i=r

M


j=s

(
i
r

)(
j
s

)
xi j

+
N


r=n

M


s=m

Tn(ar−n+1)Tm(bs−m+1)×

×
N


i=r

M


j=s

i j

(
i− r+n−2

n−2

)(
j− s+m−2

m−2

)
xi j

+a0

m−1


s=1

sTs(b1)
N


i=0

M


j=s

(
j
s

)
xi j +b0

n−1


r=1

rTr(a1)
N


i=r

M


j=0

(
i
r

)
xi j

+a0

M


s=m

Tm(bs−m+1)
N


i=r

M


j=s

j

(
i
r

)(
j− s+m−2

m−2

)
xi j

+b0

N


r=n

Tn(ar−n+1)
N


i=r

M


j=s

i

(
i− r+n−2

n−2

)(
j
s

)
xi j

+
n−1


r=1

M


s=m

rTr(a1)Tm(bs−m+1)
N


i=r

M


j=s

j

(
i
r

)(
j− s+m−2

m−2

)
xi j

+
N


r=n

m−1


s=1

sTr(ar−n+1)Ts(b1)
N


i=r

M


j=s

i

(
i− r+n−2

n−2

)(
j
s

)
xi j,

where Tm(an) = m−1
(

an−a0

n

)
. �



Chapter2
General Linear Inequalities for
Functions of One Variable

2.1 Basic Results on Convexity of Higher Order

While the previous chapter was devoted to different classes of sequences, this chapter
brings results mostly about functions which are convex of higher order. The concept of
higher convexity was introduced by T. Popoviciu in the forties of the previous century,
[85]. We are interested in results connected with positivity of sum  pk f (xk) or integral∫

p(x) f (x)dx where f is a convex function of higher order. Such results which involve
higher order convex function and which solve the question of necessary and sufficient con-
ditions for positivity of the mentioned sum or integral are called Popoviciu type inequality.

Let f be a real-valued function defined on I = [a,b] ⊂ R. The n-th order divided
difference of f at distinct points xi,xi+1, . . . ,xi+n in I is defined recursively by:

[x j; f ] = f (x j), i ≤ j ≤ i+n

[xi, . . . ,xi+n; f ] =
[xi+1, . . . ,xi+n; f ]− [xi, . . . ,xi+n−1; f ]

xi+n− xi
.

It is easy to see that

[xi, . . . ,xi+n; f ] =
n


k=0

f (xi+k)
w′(xi+k)

,

41
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where w(x) =
i+n


j=i

(x− x j).

In this book we use notation n f (xi) for [xi, . . . ,xi+n; f ] also.
We say that f : I →R is a convex function of order n (or n-convex function or -convex

function of order n) if for all choices of n+1 distinct points xi, . . . ,xi+n ∈ I inequality

[xi, . . . ,xi+n; f ] ≥ 0

holds. The function f is said to be -convex of order n if for all choices of n+1 distinct
points xi, . . . ,xi+n inequality

n f (xi) = (−1)nn f (xi) ≥ 0

holds.
If n = 0, then a convex function f of order 0 is, in fact, a nonnegative function, 1-

convex function is nondecreasing function, while a class of 2-convex functions coincides
with a class of convex functions. It is well-known that if f (n) exists, then f is n-convex
if and only if f (n) ≥ 0. Furthermore, if f is an n-convex function on [a,b] for n ≥ 2, then

the function f (k) exists and is (n− k)-convex for 1 ≤ k ≤ n− 2; f (n−1)
+ exists and is right

continuous and increasing in [a,b〉.
Let E = {x1,x2, . . . ,xN} ⊂ R. A function f : E → R is said to be a discrete n-convex

function if inequality
[xi, . . . ,xi+n; f ] ≥ 0

holds for all choices of n+1 distinct points xi, . . . ,xi+n ∈ E . Similarly, a discrete -convex
function of order n is defined.

If {x′1, . . . ,x′k+1} ⊂ E , then there exist nonnegative constants A1, . . ., AN−k−1 such that

N−k−1
i=1 Ai = 1 and

[x′1, . . . ,x
′
k+1; f ] =

N−k−1


i=1

Ai[xi, . . . ,xi+k; f ].

We use also the following notation.
For n real numbers xi, i ∈ {1, . . . ,n} and m ≥ 0:

(xk − xi)(m+1) = (xk − xi)(xk − xi+1) · · · (xk − xi+m), (xk − xi)(0) = 1

and
(xk − xi){m+1} = (xk − xi)(xk−1 − xi) · · · (xk−m − xi), (xk − xi){0} = 1.

Example 2.1 Let r ∈ N. The function er : [a,b]→ R defined as

er(x) = xr

is n-convex for any n ≥ r. If [a,b] ⊂ 〈0,〉, then er is n-convex of any order n. This
consideration can be expanded to general polynomials, i.e. a polynomial of degree r is
n-convex for n ≥ r.
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Example 2.2 Let E = {x1,x2, . . . ,xN} ⊂ R, x1 < x2 < .. . < xN . Let i > n−1 be a fixed
number. A function f : E → R defined as:

h(x) =
{

0, x ≤ xi−1

(x− xi−n+1)(x− xi−n+2) . . . (x− xi−1), x > xi−1

is discrete n-convex.
To see this, it is enough to prove [xk, . . . ,xk+n;h] ≥ 0 for any k ≤ N − n. We consider

several cases. If k+n≤ i−1, then h(x j) = 0 for all j = k, . . . ,k+n and [xk, . . . ,xk+n;h] = 0.
If k+n = i+ r, 0 ≤ r ≤ n, then

[xk, . . . ,xk+n;h] = [xk+n−r, . . . ,xk+n;(x− xk−r+1) . . . (x− xk−1)] ≥ 0,

because the function g(x) = (x− xk−r+1) . . . (x− xk−1) is a polynomial of the (r − 1)th
degree and, hence, it is n-convex.

If k+n = i+ r, r > n, then

[xk, . . . ,xk+n;h] = [xk, . . . ,xk+n;(x− xi−n+1) . . . (x− xi−1)] ≥ 0,

because the function g(x) = (x− xi−n+1) . . . (x− xi−1) is a polynomial of the (n− 1)th
degree and, hence, it is n-convex.

Example 2.3 Let s ∈ [a,b], n ∈ N. The function wn(·,s) : [a,b]→ R is defined as

wn(x,s) = (x− s)n−1
+ ,

where

(x− s)+ =
{

0, x < s
x− s, x ≥ s.

Particularly, for n = 1 we get

w1(x,s) =
{

0, x < s
1, x ≥ s.

Function wn(·,s) is n-convex. If n = 1 it is obvious that w1(x,s) is nondecreasing, i.e. it is
1-convex. For m ≥ 2, let us consider the (n−2)th derivative of wn(·,s):

dn−2

dxn−2 wn(x,s) =
{

0, x < s
(n−1)!(x− s), x ≥ s.

It is 2-convex, so wn(·,s) is n-convex.

One of the crucial results for studying general linear inequalities involving the higher
order convex functions is the following theorem due to T. Popoviciu, [77].

Theorem 2.1 Let xk ∈ [a,b] and pk ∈ R, k = 1, . . . ,N and n ∈ N.
Then the inequality

N


k=1

pk f (xk) ≥ 0 (2.1)
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holds for every convex function f of order n if and only if

N


k=1

pkx
i
k = 0, i ∈ {0, . . . ,n−1}, (2.2)

N


k=i

pk(xk − s)n−1
+ ≥ 0, s ∈ [a,b]. (2.3)

In further decades some generalizations of that results are done. Let us mention result
which involve linear operator A instead an operator of sum. In the next text we describe
a method based on a representation of convex function of higher order as a limit of the
sequence of functions which are equal to a sum of certain polynomial and a linear com-
bination of very particular functions, i.e. splines wn(·,x j). Let us describe some new
notations which are used in this section.

We consider operators A of the following form A :C([a,b])→ S(D), where S(D) is one
of the normed subspaces of the space of all real functions defined on D, and where the norm
of a function f ∈ S(D) is denoted by ‖ f‖D. We say that A is continuous if limn ‖ fn− f‖= 0
implies limn ‖A fn−A f‖D = 0 as well. Also, we write A f ≥ 0 if A f (t) ≥ 0 holds for every
t ∈ D, where f is a given function in the space C([a,b]).

The family of the polynomials of degree at most k is denoted by k. The family of
continuous n-convex functions on [a,b] (i. e. right-continuous at a and left-continuous at
b) is denoted by Kn([a,b]). Monomials are denoted by ei, i. e. ei(x) = xi for i = 0,1,2, . . .

T. Popoviciu proved the following representation of n-convex functions, [90].

Lemma 2.1 Let the function Fn be of the form

Fn(x) = Pn−1(x)+
k


i=1

iwn(x,xi), (2.4)

where Pn−1 ∈n−1, i, i = 1, . . . ,k, are real constants and a ≤ x1 < x2 < · · · < xk ≤ b.

(a) A necessary and sufficient condition for Fn to be n-convex is thati ≥ 0 (i = 1, . . . ,k).

(b) Every continuous n-convex function on [a,b] is the uniform limit of the sequence
of functions Fn (n = 1,2, . . .) where the Fn’s are of the form in (2.4) and i ≥ 0
(i = 1, . . . ,k) are real constants.

Using that representation of n-convex functions the following theorem was proved in
[38], see also [77].

Theorem 2.2 Let A : C([a,b]) → S(D) be a linear and continuous operator and n ≥ 2.
Then, the inequality

A f ≥ 0 (2.5)

holds for every function f ∈ Kn([a,b]) if and only if the operator A satisfies:

Aei = 0 for i = 0,1, . . . ,n−1, (2.6)

Awn(·,s) ≥ 0 for every s ∈ [a,b]. (2.7)

More related results can be found in monograph [77].
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2.2 Approach via Taylor’s Formula

In this section we focus our attention on two particular cases of a linear operator A and
reach necessary and sufficient conditions for the inequality A f ≥ 0 by a different method.
That method is based on using of the Taylor expansion of a function f .

Let I be an interval in R and f : I → R be a function such that f (n−1) is absolutely
continuous on I ⊆ R, a,b ∈ I, a < b. Then for c,x ∈ [a,b] the following formula holds

f (x) =
n−1


k=0

f (k)(c)
k!

(x− c)k +
1

(n−1)!

∫ x

c
f (n)(s)(x− s)n−1ds. (2.8)

It is called the Taylor expansion of a function f around a point c.
The following theorem contains identities for the sum N

i=1 pi f (xi) and the integral∫ 
 p(x) f (g(x))dx.

Theorem 2.3 (i) Let N,n ∈ N and f : I → R be a function such that f (n−1) is abso-
lutely continuous on I ⊂ R, a,b ∈ I, a < b. Furthermore, let xi ∈ [a,b] and pi ∈ R for
i ∈ {1,2, . . . ,N}. Then

N


i=1

pi f (xi) =
n−1


k=0

f (k)(a)
k!

N


i=1

pi(xi −a)k

+
1

(n−1)!

∫ b

a
f (n)(s)

(
N


i=1

pi(xi − s)n−1
+

)
ds (2.9)

and

N


i=1

pi f (xi) =
n−1


k=0

(−1)k f (k)(b)
k!

N


i=1

pi(b− xi)k

+
(−1)n

(n−1)!

∫ b

a
f (n)(s)

(
N


i=1

pi(s− xi)n−1
+

)
ds.

(ii) Let p,g : [a,b]→ R be integrable functions and let f satisfy assumptions from part
(i). Then

∫ 


p(x) f (g(x))dx =

n−1


k=0

f (k)(a)
k!

∫ 


p(x)(g(x)−a)kdx (2.10)

+
1

(n−1)!

∫ b

a
f (n)(s)

∫ 


p(x)(g(x)− s)n−1

+ dxds,

∫ 


p(x) f (g(x))dx =

n−1


k=0

(−1)k f (k)(b)
k!

∫ 


p(x)(b−g(x))kdx
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+
(−1)n

(n−1)!

∫ b

a
f (n)(s)

∫ 


p(x)(s−g(x))n−1

+ dxds.

Proof. (i) We get∫ x

a
f (n)(s)(x− s)n−1ds =

∫ b

a
f (n)(s)(x− s)n−1

+ ds

for x ∈ [a,b] and applying the Taylor formula (2.8) for c = a we get

f (x) =
n−1


k=0

f (k)(a)
k!

(x−a)k +
1

(n−1)!

∫ b

a
f (n)(s)(x− s)n−1

+ ds. (2.11)

Putting in (2.11) x = xi, multiplying with pi and adding all identities for i = 1, . . . ,N we
get (2.9).

The second statement in (i) is obtained by the Taylor formula for c = b and using the
fact that for x ∈ [a,b]∫ x

b
f (n)(s)(x− s)n−1ds = (−1)n

∫ b

a
f (n)(s)(s− x)n−1

+ ds.

(ii) Putting in (2.11) x = g(x), multiplying with p(x), integrating over [, ] and using the
Fubini theorem we get (2.10). The second identity is obtained in a similar manner as the
second identity in (i). �

Remark 2.1 The above theorem is given in [31]. The identity (2.9) for a sum is also
given in [7].

Let us proceed with theorem which contains necessary and sufficient conditions that
inequalities N

k=1 pk f (xk) ≥ 0 and
∫ 
 p(x) f (g(x))dx ≥ 0 hold for every convex function

of order n. As we can see, the first part is, in fact, known Popoviciu’s result.

Theorem 2.4 (i) Let the assumptions of Theorem 2.3(i) be valid.
Then the inequality

N


k=1

pk f (xk) ≥ 0 (2.12)

holds for every n-convex function f : [a,b] → R if and only if

N


k=1

pkx
i
k = 0, i ∈ {0, . . . ,n−1}, (2.13)

N


k=i

pk(xk − s)n−1
+ ≥ 0, s ∈ [a,b]. (2.14)

(ii) Let the assumptions of Theorem 2.3(ii) hold. Then the inequality∫ 


p(x) f (g(x))dx ≥ 0 (2.15)
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holds for all n-convex functions f : [a,b] → R if and only if

∫ 


p(x)gk(x)dx = 0, for all k ∈ {0,1, . . . ,n−1} (2.16)

∫ 


p(x)(g(x)− s)n−1

+ dx ≥ 0, for every s ∈ [a,b]. (2.17)

Proof. (i) If (2.13) and (2.14) are valid, then from identity (2.9) we get that for any
n-convex function f inequality (2.12) holds.

Let us prove the opposite direction of equivalence. If inequality (2.12) holds for every
n-convex continuous function f on [a,b], then, since ei, −ei, i = 0, . . . ,n−1 and wn(x,s),
s ∈ [a,b], are n-convex functions, we get conditions (2.13) and (2.14).

(ii) The proof is similar to the previous proof and it is based on identity (2.10). �

Example 2.4 In this example we prove one remarkable inequality for convex function,
the well-known Hermite-Hadamard inequality. The statement is the following:

If f is an integrable convex function on [a,b], then

f

(
a+b

2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
. (2.18)

Proof. First we prove the right inequality. Let us define the linear operator A as:

A f =
f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (x)dx.

Easy calculation give us the following:

Ae0 =
1+1

2
− 1

b−a

∫ b

a
dx = 0,

Ae1 =
a+b

2
− 1

b−a

∫ b

a
xdx =

a+b
2

− 1
b−a

x2

2
|ba = 0

and for fixed s ∈ [a,b]

A((x− s)+) =
0+(b− s)

2
− 1

b−a

∫ b

a
(x− s)+dx =

b− s
2

− 1
b−a

∫ b

s
(x− s)dx

=
b− s

2
− 1

b−a
(x− s)2

2
|bs =

b− s
2

(
1− b− s

b−a

)
≥ 0.

By the above-mentioned theorem, we get that A f ≥ 0 for any convex function continuous
on [a,b]. If f is not continuous, then since f is convex, we can define a continuous convex
function f̃ such that: f̃ (x) = f (x) for x ∈ 〈a,b〉, f̃ (a) = f (a+) ≤ f (a), f̃ (b) = f (b−) ≤
f (b) and A f ≥ A f̃ ≥ 0. So, the right Hermite-Hadamard inequality holds for any convex
function on [a,b].

The proof of the left Hermite-Hadamard inequality is done in a similar manner.
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2.3 Discrete Convex Functions of Higher Order

In this section we focus our attention on inequality  pi f (xi) ≥ 0 for real functions of one
variable, defined on an interval I or on a discrete set E . A result analogous to (1.2) for real
functions was proved by T. Popoviciu in [84] and it is stated as:

Lemma 2.2 Let pk ∈ R for k ∈ {1, . . . ,N}. If f : I → R is a given real function and
xk, k ∈ {1, . . . ,N} be mutually distinct points from I, then the following identity holds

N


k=1

pk f (xk) =
n−1


i=0

(
N


k=i+1

pk(xk − x1)(i)
)
i f (x1) (2.19)

+
N


i=n+1

(
N


k=i

pk(xk − xi−n+1)(n−1)

)
n f (xi−n)(xi − xi−n).

Proof. For n = 1 we get that the right-hand side of (2.19) is equal to(
N


k=1

pk

)
f (x1)+

N


i=2

(
N


k=i

pk

)
 f (xi−1)(xi − xi−1)

=

(
N


k=1

pk

)
f (x1)+

N


i=2

(
N


k=i

pk

)
( f (xi)− f (xi−1))

=

(
N


k=1

pk

)
f (x1)+

(
N


k=2

pk

)
( f (x2)− f (x1))+

(
N


k=3

pk

)
( f (x3)− f (x2))

+ . . .+

(
N


k=N

pN

)
( f (xN)− f (xN−1)) =

N


k=1

pk f (xk).

Let us suppose that (2.19) holds for n. For the second step of mathematical induction we
have to prove that

N


i=n+1

(
N


k=i

pk(xk − xi−n+1)(n−1)

)
n f (xi−n)(xi − xi−n)

=
N


k=n+1

(
pk(xk − x1)(n)

)
n f (x1) (2.20)

+
N


i=n+2

(
N


k=i

pk(xk − xi−n)(n)

)
n+1 f (xi−n−1)(xi − xi−n−1).

Using notation Bi =
N


k=i

pk(xk − xi−n)(n) the second sum in the right-hand side is equal to

N


i=n+2

Bin f (xi−n)−
N


i=n+2

Bin f (xi−n−1)
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=
N


i=n+2

Bin f (xi−n)−
N−1


i=n+1

Bi+1n f (xi−n)

=
N−1


i=n+2

(Bi −Bi+1)n f (xi−n)+ pN(xN − xN−n)(n)n f (xN−n)

−
N


k=n+2

pk(xk − x2)(n)n f (x1).

Using

Bi −Bi+1 =
N


k=i

pk(xk − xi−n+1)(n)(xi − xi−n)

and the above identity we prove (2.20). By mathematical induction identity (2.19)
holds. �

Necessary and sufficient conditions under which the inequality pk f (xk)≥ 0 holds for
every discrete convex function of order n is given in the following theorem.

Theorem 2.5 Let E = {x1, . . . ,xN} ⊂ R with x1 < x2 < · · · < xN and let pk ∈ R for k ∈
{1, . . . ,N}. Then the inequality

N


k=1

pk f (xk) ≥ 0 (2.21)

holds for every discrete n-convex function f : E → R if and only if

N


k=i+1

pk(xk − x1)(i) = 0, i ∈ {0, . . . ,n−1}, (2.22)

N


k=i

pk(xk − xi−n+1)(n−1) ≥ 0, i ∈ {n+1, . . . ,N}. (2.23)

Proof. If inequalities (2.22) and (2.23) are satisfied, then the first sum in identity (2.19)
is equal to 0, the second sum is nonnegative and hence inequality (2.21) holds.

Conversely, if for each convex functions of order n inequality (2.21) holds, then we
consider the functions h1(x) = xr and h2(x) = −xr, 0 ≤ r ≤ n−1. Since functions h1 and
h2 are convex functions of order n for 0 ≤ r ≤ n−1, for them (2.21) holds and we have

N


k=1

pkx
r
k = 0.

From this equality we obtain (2.22). For each i ∈ {n+1, . . . ,N}, the function

h3(x) =
{

0, x ≤ xi−1

(x− xi−n+1) · . . . · (x− xi−1), x > xi−1

is convex of order n and using these facts we obtain (2.23). �
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Example 2.5 This example is devoted to the Petrović inequality, [51, p. 11]. It states:
Let x1, . . . ,xm ∈ [0,a] such that m

j=1 x j ∈ [0,a]. Then for any convex function f :
[0,a] → R the following inequality holds

m


j=1

f (x j) ≤ f (
m


j=1

x j)+ (m−1) f (0). (2.24)

Proof. Without loss of generality we can assume that 0 < x1 < x2 < .. . < xm. Then
xm < m

j=1 x j. The sequence is (0,x1,x2, . . . ,xm,m
j=1 x j), the sequence of weights is (m−

1,−1,−1, . . . ,−1,1) and N = m+2. For n = 2 conditions (2.22) and (2.23) become

N


k=1

pk = 0, (2.25)

N


k=1

pkxk = 0, (2.26)

N


k=i

pk(xk − xi−1) ≥ 0, i = 3, . . . ,N. (2.27)

Since
(m−1)−1−1− . . .−1︸ ︷︷ ︸

m summands

+1 = 0

and

(m−1) ·0− x1− x2− . . .− xm +
m


j=1

x j = 0

the first two conditions are satisfied. Let us prove that (2.27) is valid.

N


k=i

pk(xk − xi−1) = pi(xi − xi−1)+ . . .+ pN(xN − xi−1)

= −(xi− xi−1)− (xi+1− xi−1)− . . .− (xN − xi−1)+

(
m


j=1

x j − xi−1

)

= −
m


j=i

x j +(m− i+1)xi−1+

(
m


j=1

x j − xi−1

)

=
m


j=i+1

x j +(m− i)xi−1 ≥ 0.

Using Theorem 2.5 we get inequality (2.24). Another proof of this inequality is given in
[77, p.154].

Example 2.6 Prove: if f : I → R is a convex, I is an interval, then for any x,y,z ∈ I

f (x)+ f (y)+ f (z)
3

+ f

(
x+ y+ z

3

)
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≥ 2
3

(
f

(
x+ y

2

)
+ f

(
z+ y

2

)
+ f

(
x+ z

2

))
. (2.28)

The above inequality is due to T. Popoviciu, ([89]).
Proof. Inequality (2.28) is equivalent to the following

f (x)+ f (y)+ f (z)+3 f

(
x+ y+ z

3

)

≥ 2 f

(
x+ y

2

)
+2 f

(
z+ y

2

)
+2 f

(
x+ z

2

)
.

Let z < y < x. Then z < y+z
2 < y < x+y

2 < x and we have only two posibilities for orders:
y ≤ x+z

2 or y > x+z
2 . Let us consider the first case, the proof of the second case is similar.

Without loss of generality we can assume that y < x+z
2 . Then n = 2, N = 7 and the sequence

(xi) has a form:

z <
y+ z

2
< y <

x+ y+ z
3

<
x+ z

2
<

x+ y
2

< x

and corresponding weights are: 1,−2,1,3,−2,−2,1 respectively. The first condition
(2.25) holds because 1−2+1+3−2−2+1= 0. Similarly, the second condition (2.26)
becomes:

7


k=1

pkxk = z−2
y+ z

2
+ y+3

x+ y+ z
3

−2
x+ z

2
−2

x+ y
2

+ x = 0.

Let us see that (2.27) holds for i = 3.

7


k=3

pk(xk − x2) =
7


k=1

pk(xk − x2)−
2


k=1

pk(xk − x2)

= −
2


k=1

pk(xk − x2) = −
(

z− y+ z
2

)
≥ 0.

Similarly, we prove (2.27) for i = 4,5,6,7.

In the case when n = 2, i.e. if f is convex, then J. Pečarić ([68]) showed that a property
of monotonicity of elements x1,x2, . . . ,xN can be omitted. In fact, he proved the following
result.

Theorem 2.6 The inequalityN
k=1 pk f (xk)≥ 0 holds for all N-tuples x= (x1, . . . ,xN), p=

(p1, . . . , pN) ∈ R
N and all discrete convex functions f if and only if

N


k=1

pk = 0 and
N


k=1

pk|xk − xi| ≥ 0 for i ∈ {1, . . . ,N}. (2.29)

Namely, since
N


k=1

pk|xk − xi| = 2
N


k=1

pk(xk − xi)+−
N


k=1

pk(xk − xi)



52 2 GENERAL LINEAR INEQUALITIES FOR FUNCTIONS OF ONE VARIABLE

it is easy to see that (2.29) is equivalent to N
k=1 pk = 0, N

k=1 pkxk = 0 and N
k=1 pk(xk −

xi)+ ≥ 0, i = 1, . . . ,N−1 which is (2.22) and (2.23) for m = 2.
Now, let us state and prove an identity from [28] which involves-differences of func-

tion f .

Lemma 2.3 Let pk ∈ R for k ∈ {1, . . . ,N}. If f : I → R is a given function and xk, k ∈
{1, . . . ,N} are mutually distinct points from I, then the identity

N


k=1

pk f (xk) =
n−1


i=0

(
N−i


k=1

pk(xN − xk){i}
)
i f (xN−i) (2.30)

+
N−n


i=1

(
i


k=1

pk(xi+n−1− xk){n−1}
)
n f (xi)(xi+n− xi)

holds.

Proof. Let us prove it by induction on n. For n = 1, we have

N


k=1

pk f (xk) =
N


k=1

pk f (xN)+
N−1


i=1

(
i


k=1

pk

)
( f (xi)− f (xi+1))

which is true.
Suppose that (2.30) is valid. Then

n


i=0

(
N−i


k=1

pk(xN − xk){i}
)
i f (xN−i)

+
N−n−1


i=1

(
i


k=1

pk(xi+n− xk){n}
)
n+1 f (xi)(xi+n+1− xi)

= A+
N−n


k=1

pk(xN − xk){n}n f (xN−n)

+
N−n−1


i=1

B(−1)n+1 ([xi+1, . . . ,xi+n+1; f ]− [xi, . . . ,xi+n; f ])

= A+
N−n


k=1

pk(xN − xk){n}n f (xN−n)

+
N−n−1


k=1

pk(xN−1 − xk){n}(−1)n+1[xN−n, . . . ,xN ; f ]

+
N−n−2


i=1

B(−1)n+1[xi+1, . . . ,xi+n+1; f ]−
N−n−1


i=2

B(−1)n+1[xi, . . . ,xi+n; f ]

−p1(xn+1− x1){n}(−1)n+1[x1, . . . ,xn+1; f ]

= A+
N−n


k=1

pk(xN−1 − xk){n−1}n f (xN−n)(xN − xN−n)
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+
N−n−1


i=2

(−1)n[xi, . . . ,xi+n; f ]

(
i


k=1

pk(xi+n− xk){n}

−
i−1


k=1

pk(xi+n−1− xk){n}
)

+ p1(xn+1− x1){n}n f (x1)

= A+
N−n


k=1

pk(xN−1 − xk){n−1}n f (xN−n)(xN − xN−n)

+
N−n−1


i=2

(
i


k=1

pk(xi+n−1− xk){n−1}
)
n f (xi)(xi+n− xi)

+p1(xn − x1){n−1}n f (x1)(xn+1− x1)

= A+
N−n


i=1

(
i


k=1

pk(xi+n−1− xk){n−1}
)
n f (xi)(xi+n− xi) =

N


k=1

pk f (xk),

where

A =
n−1


i=0

(
N−i


k=1

pk(xN − xk){i}
)
i f (xN−i),

and

B =
i


k=1

pk(xi+n− xk){n}.

Thus, identity (2.30) is proved. �

From identity (2.30) we can obtain the following result about necessary and sufficient
conditions that inequality N

k=1 pk f (xk) ≥ 0 holds for every -convex function of order m.

Theorem 2.7 Let E = {x1, . . . ,xN} ⊂ R with x1 < x2 < · · · < xN and let pk ∈ R for k ∈
{1, . . . ,N}. Then the inequality

N


k=1

pk f (xk) ≥ 0 (2.31)

holds for every discrete -convex function f of order n if and only if

N−i


k=1

pk(xN − xk){i} = 0, i ∈ {0, . . . ,n−1}, (2.32)

i


k=1

pk(xi+n−1− xk){n−1} ≥ 0, i ∈ {1, . . . ,N−n}. (2.33)

Proof. If inequalities (2.32) and (2.33) are satisfied, then the first sum in identity (2.30)
is equal to 0, the second sum is nonnegative and hence the inequality (2.31) holds.

Conversely, if for each -convex functions of order n inequality (2.31) holds, then we
consider the functions h1(x) = xr and h2(x) = −xr, 0 ≤ r ≤ n−1. Functions h1 and h2 are
−convex functions of order n and for 0 ≤ r ≤ n−1, we have

N


k=1

pkx
r
k = 0.
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From this equality we obtain (2.32). For each i ∈ {1, . . . ,N−n}, n > 1, the function

h3(x) =
{

(xi+1− x) · . . . · (xi+n−1− x), x < xi+1

0, x ≥ xi+1

is -convex of order n and using these facts we obtain (2.33). �

The generalization of Theorem 1.2, i.e. a result for function which are convex of orders
j, j +1, . . . ,n is given in [28].

Theorem 2.8 Let E = {x1, . . . ,xN} ⊂ R with x1 < x2 < · · · < xN and let pk ∈ R for k ∈
{1, . . . ,N}.

(i) Inequality
N


i=1

pi f (xi) ≥ 0

holds for every discrete convex function f of order j, j +1, . . . ,n, ( j = 0,1,2, . . . ,n) if and
only if

N


i=k+1

pi(xi − x1)(k) = 0, k = 0, ..., j−1, (2.34)

N


i=k+1

pi(xi − x1)(k) ≥ 0, k = j, ...,n−1, (2.35)

N


i=k

pi(xi − xk−n+1)(n−1) ≥ 0, k = n+1, . . . ,N.

If j = 0 (or j = n), condition (2.34) (or (2.35)) can be omitted.
(ii) Inequality

N


i=1

pi f (xi) ≥ 0

holds for every discrete -convex function f of order j, j +1, . . . ,n, ( j = 0,1, . . . ,n) if and
only if

N−k


i=1

pi(xN − xi){k} = 0, k = 0, . . . , j−1, (2.36)

N−k


i=1

pi(xN − xi){k} ≥ 0, k = j, . . . ,n−1, (2.37)

k


i=1

pi(xk+n−1− xi){n−1} ≥ 0, k = 1, . . . ,N−n.

For j = 0 (or j = n), condition (2.36) (or (2.37)) can be omitted.
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Remark 2.2 T. Popoviciu ([81], [85, p.35]) gave the following necessary and sufficient
conditions for the positivity of considered sum instead of conditions (2.22) and (2.23):

N


i=1

pix
k
i = 0 for k ∈ {0,1, . . . ,n−1}

and

r


i=1

pi(xi − xr+1)(xi − xr+2) · · · (xi − xr+n−1) ≤ 0 for r ∈ {1, . . . ,N−n}.

2.4 Discrete Starshaped Functions of Higher Order

A function f is called (discrete) n-starshaped or starshaped of order n if
f (x)
x

is (discrete)

(n− 1)-convex. Let us see how results from the previous sections are reflecting on star-
shaped functions of higher order.

Firstly, we state an identity involving divided differences of the function
f (x)
x

.

Lemma 2.4 Let pk ∈R for k∈ {1, . . . ,N}. If f : I →R is a function and xk, k∈{1, . . . ,N}
are mutually distinct, non-zero points from I, then the following identity holds

N


k=1

pk f (xk) =
n−1


i=1

(
N


k=i

pkxk(xk − x1)(i−1)

)
ig(x1)

+
N


i=n

(
N


k=i

pkxk(xk − xi−n+2)(n−2)

)
n−1g(xi−n+1)(xi − xi−n+1),

where g(x) =
f (x)
x

.

Proof. Putting in (2.19) m → m−1, pk → xkpk and f → g we get:

N


k=1

pkxkg(xk) =
n−2


i=0

(
N


k=i+1

pkxk(xk − x1)(i)
)
ig(x1)

+
N


i=n

(
N


k=i

pkxk(xk − xi−n+2)(n−2)

)
n−1g(xi−n+1)(xi − xi−n+1)

=
n−1


i=1

(
N


k=i

pkxk(xk − x1)(i−1)

)
ig(x1)
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+
N


i=n

(
N


k=i

pkxk(xk − xi−n+2)(n−2)

)
n−1g(xi−n+1)(xi − xi−n+1).

�

Theorem 2.9 Let E = {x1, . . . ,xN} ⊂ R with x1 < x2 < .. . < xN and let pk ∈ R for k ∈
{1, . . . ,N}. Then the inequality

N


k=1

pk f (xk) ≥ 0 (2.38)

holds for every discrete m-starshaped function f : E → R if and only if

N


k=i

pkxk(xk − x1)(i−1) = 0, i ∈ {1, . . . ,n−1}, (2.39)

N


k=i

pkxk(xk − xi−n+2)(n−2) ≥ 0, i ∈ {n, . . . ,N}. (2.40)

Proof. Let us suppose that the sum N
i=1 pk f (xk) is nonnegative for every n-starshaped

function f . Let us consider functions h1(x) = x(x− x1)(i−1) and h2(x) = −x(x− x1)(i−1).

Since h1(x)
x and h2(x)

x are polynomials of degree i, h1 and h2 are n-starshaped for i ∈
{1, . . . ,n−1}. Hence (2.39) holds. For each i ∈ {n, . . . ,N} the function

h3(x) =
{

0, x ≤ xi−1

x(x− xi−n+2) . . . (x− xi−1), x > xi−1

is starshaped of order n and (2.40) is valid. �

Example 2.7 Let f : 〈0,a] → R be 3-starshaped. If x,y,z,x+ y+ z ∈ 〈0,a], then

f (x+ y+ z)− f (x+ y)− f (x+ z)− f (y+ z)+ f (x)+ f (y)+ f (z)≥ 0.

This inequality is given in [86] under assumptions that f (0) = 0, f is continuous on [0,a]
and has the increasing second derivative. In [96] an increase of the second derivative was
substituted by assumption that f is convex of order 3. Here, we consider a 3-starshaped
function.

Proof. Firstly, we examine the following order of elements: x < y < x + y < z <
x + z < y + z < x + y + z. Other orderings are proved similarly. We get N = 7, n = 3,
sequence (xk)k is (x,y,x + y,z,x + z,y + z,x + y + z) and sequence of weights is (pk)k =
(1,1,−1,1,−1,−1,1). Let us prove that (2.39) and (2.40) are satisfied.

7


k=1

pkxk = x+ y− (x+ y)+ z− (x+ z)− (y+ z)+(x+ y+ z)= 0.

7


k=2

pkxk(xk − x1) =
7


k=1

pkxk(xk − x1) =
7


k=1

pkx
2
k
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= x2 + y2− (x+ y)2 + z2− (x+ z)2− (y+ z)2 +(x+ y+ z)2 = 0.

Further, we have to check (2.40) for i = 3,4, . . . ,7.

7


k=3

pkxk(xk − x2) = −
2


k=1

pkx
2
k + x2

2


k=1

pkxk = x(y− x) ≥ 0.

7


k=4

pkxk(xk − x3) = 2xy ≥ 0,
7


k=5

pkxk(xk − x4) = 2xy ≥ 0,

7


k=6

pkxk(xk − x5) = 2xy+ xz≥ 0,
7


k=7

pkxk(xk − x6) = x+ y+ z > 0.

2.5 Results for n-convex Functions with 2n Nodes

In this section we consider inequality  f (xi) ≥  f (yi) for n-convex function f which is
obviously a particular variant of a general linear inequality  pi f (ai) ≥ 0 where weights
pi are 1 or −1. The crucial moment in this consideration is that the numbers of nodes are
exactly twice than the order of convexity.

Firstly, results of such type are given in paper [7] by Z. Brady, but here we give a
variant from [23] in which an extra claim is appeared.

Theorem 2.10 Given real numbers x1,x2, . . . ,xn ∈ [a,b] and y1,y2, . . . ,yn ∈ [a,b] such
that

n


i=1

x j
i =

n


i=1

y j
i , j = 1,2, . . . ,n−1, (2.41)

the following claims are equivalent:

(i)
n


i=1

xn
i ≥

n


i=1

yn
i ;

(ii) max{xi : i = 1, . . . ,n} ≥ max{yi : i = 1, . . . ,n};

(iii) (−1)n
n


i=1

xi ≤ (−1)n
n


i=1

yi;

(iv)
n


i=1

f (xi) ≥
n


i=1

f (yi) for all functions f : [a,b] → R provided f (n) ≥ 0.

Proof. Use the Taylor expansion in the form

f (x) =
n−1


j=1

f ( j)(a)
j!

(x−a) j +
1

(n−1)!

∫ b

a
(x− t)n−1

+ f (n)(t)dt,
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which by using (2.41) gives

n


i=1

f (xi)−
n


i=1

f (yi) =
1

(n−1)!

∫ b

a
rn(t) f (n)(t)dt, (2.42)

where rn(t) = n
i=1

[
(xi − t)n−1

+ − (yi− t)n−1
+

]
. Obviously r( j)

n (a) = r( j)
n (b) = 0, j = 0,1,

. . . ,n−2. Using Rolle’s theorem it follows that r(n−1)
n has at least (n−1)-sign changes in

the sense that there is a sequence a1,a2, . . .an in [a,b] such that r(n−1)
n (a j)r

(n−1)
n (a j+1) < 0,

for j = 1, . . . ,n−1.
On the other hand, suppose (w.l.o.g.) that x1 ≥ x2 ≥ ·· · ≥ xn, y1 ≥ y2 ≥ ·· · ≥ yn and

that z1 ≥ z2 ≥ ·· · ≥ z2n is the sequence formed by the previous two sequences. In this case
rn(t) = 2n

j=1 wj(z j − t)n−1
+ , where wj = +1 or −1 depending on wj belongs to xi’s or to

yi’s. Note that r(n−1)
n is a step function defined by w1, w1 +w2,...., w1 +w2 + · · ·+w2n. It

is obvious that this sequence can change the sign in the worst case on every other interval,
so it can change the sign at most n−1 times.

Finally, since it is clear that rn has a constant sign, that in the case x1 = max{z j : j = 1,2,
. . . ,2n} it holds that rn(t) = (x1− t)n−1 for t ∈ [z2,x1], so it follows that rn ≥ 0. This gives
that (ii) implies (iv).

It follows from the proof that if x1 =max{z j : j = 1,2, . . . ,2n}, then xn = min{z j : j = 1,
2, . . . ,2n} for n even and yn = min{z j : j = 1,2, . . . ,2n} for n odd.

It is obvious that (iv) implies (i) using f (x) = xn and (ii) using f (x) = (x−max{xi : i =
1,2, . . . ,n})n−1

+ (since in this case n
i=1 f (xi) = 0 and this implies n

i=1 f (yi) = 0 which
gives maxi xi ≥ maxi yi).

Set Pn(x) = n
i=1 (x− xi), Qn(x) = n

i=1 (x− yi). Obviously

Pn(x) =
n


j=0

(−1) jI j(x)xn− j, Qn(x) =
n


j=0

(−1) jI j(y)xn− j,

where

I j(x) = I j (x1, . . . ,xn) = 
1≤i1<i2<···i j≤n

xi1 · · ·xi j , j = 0,1, . . . ,n, I0(x) = 1,

and analogously I j(y). In polynomially depends on variables t j = x( j), j = 1, . . . ,n, where

x( j) =
n


i=1

x j
i , j ∈ N.

Using identities (2.41), it follows I j(x) = I j(y), j = 1, . . . ,n−1. We get

Pn(x)−Qn(x) = (−1)n (In(x)− In(y)) = (−1)n

(
n


i=1

xi −
n


i=1

yi

)
. (2.43)

On the other hand, since Pn(xi) = 0, i = 1, . . . ,n, it follows

xn
i =

n


j=1

(−1) j+1I j(x)xn− j
i , i = 1, . . . ,n,
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which by summation gives:

x(n) =
n


j=1

(−1) j+1I j(x)x(n− j) = (−1)n+1nIn(x)+
n−1


j=1

(−1) j+1I j(x)x(n− j).

Using analogous identity for y(n), it follows

n


i=1

xn
i −

n


i=1

yn
i = x(n)−y(n)

= (−1)n+1n(In(x)− In(y)) = (−1)n+1n

(
n


i=1

xi−
n


i=1

yi

)
, (2.44)

from which the equivalence of (i) and (iii) is obvious. Using (2.43) and (2.44) we get

Pn(x)−Qn(x) = −1
n

[
n


i=1

xn
i −

n


i=1

yn
i

]

from which the equivalence of (i) and (ii) is obvious. �

Theorem 2.11 Let x1, . . . ,xn ∈ [a,b], y1, . . . ,yn ∈ [a,b] be non-identical n-tuples such that
(2.41) holds and such that (a) or (b) or (c) in Theorem 2.10 holds. If f ∈Cn([a,b]), then
there exists  ∈ [a,b] such that

n


i=1

f (xi)−
n


i=1

f (yi) =
f (n)( )

n!

(
n


i=1

xn
i −

n


i=1

yn
i

)

= (−1)n+1 f (n)( )
(n−1)!

[
n


i=1

xi −
n


i=1

yi

]
. (2.45)

Proof. Set m = minx∈[a,b] f (n)(x), M = maxx∈[a,b] f (n)(x). Obviously

f1(x) =
M
n!

xn − f (x), f2(x) = f (x)− m
n!

xn

are n-convex functions. Applying Theorem 2.10 on f1 and f2 and rearranging, we get

m
n!

(
n


i=1

xn
i −

n


i=1

yn
i

)
≤

n


i=1

f (xi)−
n


i=1

f (yi) ≤ M
n!

(
n


i=1

xn
i −

n


i=1

yn
i

)
,

from which (2.45) obviously follows. The second identity in (2.45) is given in (2.44).

Notice that
n


i=1

xn
i >

n


i=1

yn
i since the involved n-tuples are not identical. �

Similarly, Cauchy type mean-value theorem can be obtained, see [23].
Using the above theorem we can easily prove some non-trivial inequalities.
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Theorem 2.12 Inequality

f (t1)+ f (t2)+ f (2
√

t1t2) ≤ f (t1 + t2)+2 f (
√

t1t2) (2.46)

holds if f is a 3-convex function. Reversed inequality holds if f is a 3-concave function.

Proof. Using
x1 = t1, x2 = t2, x3 = 2

√
t1t2,

y1 = t1 + t2, y2 =
√

t1t2, y3 =
√

t1t2

it is easy to verify x1+x2+x3 = y1+2y2, x2
1+x2

2+x2
3 = y2

1+2y2
2 and y1 = max{x1,x2,x3,y1,y2}.

So, the claim follows from Theorem 2.10. �

In (2.46) an improvement of AG inequality is hidden. Namely, plugging in (2.46)
f (x) = xp, p > 0 we get

A(t1,t2)p −G(t1,t2)p ≥ 21−p(A(t p
1 ,t p

2 )−G(t p
1 ,t p

2 )
)≥ 0,

where A(t1, t2) =
t1 + t2

2
, G(t1,t2) =

√
t1t2.

Using the same arguing as in the proof of of Theorem 2.12 it follows that the inequality

f

(
2

(
x1 + x2

2

)2

+ x2
3

)
+ f

(
2

(
x1 + x3

2

)2

+ x2
2

)
+ f

(
2

(
x2 + x3

2

)2

+ x2
1

)

≤ f
(
x2
1 + x2

2 + x2
3

)
+2 f

((
x1 + x2

2

)2

+
(

x1 + x3

2

)2

+
(

x2 + x3

2

)2
)

holds for 3-convex functions and the opposite inequality holds for 3-concave functions.

2.6 n-Convex Functions at a Point

This section is devoted to the class of functions which are n-convex at a point. The particu-
lar case of this class was introduced by I. Baloch, J. Pečarić and M. Praljak in the paper [4]
which contains some new results about the Levinson inequality. After this section, we will
return to that remarkable inequality and show how the below-mentioned general results
reflect to this particular inequality.

Definition 2.1 Let I be an interval in R, c a point in the interior of I and n ∈ N0. A
function f : I → R is said to be (n+1)-convex at point c if there exists a constant Kf such
that the function

F(x) = f (x)− Kf

n!
xn (2.47)

is n-concave on I ∩ (−,c] and n-convex on I ∩ [c,). We denote the family of (n + 1)-
convex functions at point c by K c

n+1(I). A function f is said to be (n+1)-concave at point
c if the function − f is (n+1)-convex at point c.
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The class of 3-convex functions at a point was introduced in [4] while the class of n-
convex functions at a point was introduced in [76]. Let us prove several properties of these
classes, [4, 76].

Lemma 2.5 If f ∈ K c
n+1(I) and f (n) exists, then f (n)(c) = Kf .

Proof. Let us prove this for n = 2. Due to the concavity and convexity of F(x) =
f (x)− Kf

2 x2 for every distinct points x1,x2,x3 ∈ 〈a,c] and y1,y2,y3 ∈ [c,b〉 we have

[x1,x2,x3;F ] = [x1,x2,x3; f ]− Kf

2
≤ 0 ≤ [y1,y2,y3; f ]− Kf

2
= [y1,y2,y3;F ].

Therefore, if f ′′−(c) and f ′′+(c) exist, letting x j ↗ c and y j ↘ c, we get

f ′′−(c) ≤ Kf ≤ f ′′+(c).

Therefore, if f
′′
(c) exists, then it is equal to Kf .

It is known that: a function  is n-convex (n-concave) if and only if (k) exists and (k)

is (n−k)-convex ((n−k)-concave) for 0 ≤ k ≤ n−2. From that property we can conclude
that the statement of Lemma holds for any n ≥ 2. �

Lemma 2.6 A function f belongs to K c
n+1(I) for every c ∈ 〈a,b〉, if and only if f is

(n+1)-convex.

Proof. Let us prove this lemma for n = 2. Let us assume that f is 3-convex. Then
f ′, f ′′− and f ′′+ exist and f ′ is convex. Hence, for every 1,2 ∈ 〈a,c] and 1,2 ∈ [c,b〉 it
holds

f ′(2)− f ′(1)
2 −1

≤ f ′′−(c) ≤ f ′′+(c) ≤ f ′(2)− f ′(1)
2−1

.

Therefore, for every A ∈ [ f ′′−(c), f ′′+(c)] the function F(x) = f (x)− A
2 x2 satisfies

F ′(2)−F ′(1)
2 −1

≤ 0 ≤ F ′(2)−F ′(1)
2−1

,

so, F ′ is nonincreasing on 〈a,c] and nondecreasing on [c,b〉.
Let us asume that f ∈ K c

n+1(I) for every c ∈ 〈a,b〉. It is enough to prove that f ′
exists and is convex. For every c ∈ 〈a,b〉 there exists constant Ac such that the function
Fc(x) = f (x)− Ac

2 x2 is concave on 〈a,c] and convex on [c,b〉. Therefore F ′
c− and F ′

c+ exist
and F ′

c−(x) ≥ F ′
c+(x) for x ∈ 〈a,c〉 and F ′

c−(x) ≤ F ′
c+(x) for x ∈ 〈c,b〉. Since the function

x �→ Ac
2 x2 is differentiable, f ′− and f ′+ also exist. Let x ∈ 〈a,b〉 be arbitrary and c1 < x < c2.

We have f ′−(x) ≤ f ′+(x) due to convexity of Fc1 and f ′−(x)≥ f ′+(x) due to convexity of Fc2 ,
so f ′ exists. Furthermore, due to convexity and concavity of Fc we also have, for every
x1 �= x2 ≤ c ≤ y1 �= y2

F ′
c(x2)−F ′

c(x1)
x2− x1

=
f ′c(x2)− f ′c(x1)

x2− x1
−Ac ≤ 0
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≤ f ′c(y2)− f ′c(y1)
y2− y1

−Ac =
F ′

c(y2)−F ′
c(y1)

y2− y1
.

In particular, for z1 < z2 < z3

f ′(z2)− f ′(z1)
z2− z1

≤ Az2 ≤
f ′(z3)− f ′(z2)

z3 − z2
. (2.48)

Now, let x1,x2,y ∈ 〈a,b〉 be arbitrary. If y < x1 < x2, applying (2.48) we get

f ′(x1)− f ′(y)
x1 − y

≤ Ax1 ≤
f ′(x2)− f ′(x1)

x2− x1
=

f ′(x2)− f ′(y)
x2− x1

− f ′(x1)− f ′(y)
x2− x1

.

By multiplying the above inequality with
x2− x1

x2− y
> 0 and rearranging we get

f ′(x1)− f ′(y)
x1− y

≤ f ′(x2)− f ′(y)
x2− y

.

We can treat the cases x1 < y < x2 and x1 < x2 < y similarly and conclude that the function

(x,y) �→ f ′(x)− f ′(y)
x−y is nondecreasing in x. By symmetry, the same thing holds for y which

means that f ′ is convex.
By this, we finish the proof for the case n = 2. From the properties of n-convex func-

tions we can deduce that this property transfers to (n+1)-convex functions. �

Let us also mention that an n-convex function f , n ≥ 2, on the closed interval [a,b] can
have discontinuities only at the edges, a and b, and only in a certain direction. More pre-
cisely, it holds (−1)n( f+(a)− f (a))≤ 0 and f−(b)≤ f (b). Consequently, f ∈K c

n+1([a,b])
can have discontinuities only at a, c and b and their directions can be derived from the
aforementioned discontinuity properties of n-convex functions.

After this introduction about convexity at a point let us give necessary and sufficient
conditions for inequalities of type (2.49) to hold. The result can be derived directly from
Theorem 2.2, but we will derive it from Lemma 2.1 for an easier and more instructive
comparison to Theorem 2.14. The following text is based on material from paper [76].

Theorem 2.13 Let A : C([a,c]) → S(D) and B : C([c,b]) → S(D) be two linear and con-
tinuous operators, h : D → R and n ≥ 2. Then, the inequalities

A f ≤ Kf

n!
h ≤ B f (2.49)

hold for every continuous f ∈K c
n+1([a,b]) (and arbitrary constant Kf from Definition 2.1)

if and only if the operators A and B satisfy:

(a) Aei = Bei = 0 for i = 0,1, . . . ,n−1, and Aen = Ben = h,

(b) An(·,d) ≤ 0 for every d ∈ [a,c],

(c) Bwn(·,d) ≥ 0 for every d ∈ [c,b].
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Proof. Assume that (a)−(c) hold and let F = f −Kf en/n! be as in Definition 2.1. Since F
is n-concave on the segment [a,c], by Lemma 2.1 it can be obtained as a uniform limit of
functions Fm of the form

Fm(x) = Pn−1(x)−
m


i=1

iwn(x,xi) = P̃n−1(x)+
m


i=1

in(x,xi),

where Pn−1 ∈ n−1, i ≥ 0, a ≤ x1 < · · · < xm ≤ c and P̃n−1(x) = Pn−1(x)−m
i=1i(x−

xi)n−1. Due to the assumptions,

AFm = AP̃n−1 +
m


i=1

iAn(·,xi) ≤ 0

and

A f − Kf

n!
Aen = AF = lim

m→
AFm ≤ 0.

Similarly, F restricted to [c,b] can be obtained as a uniform limit of the functions Gk of the
form

Gk(y) = Qn−1(y)+
k


i=1

iwn(y,yi),

where Qn−1 ∈n−1, i ≥ 0 and c ≤ y1 < · · · < yk ≤ b and we conclude that

B f − Kf

n!
Ben = BG = lim

k→
BGk ≥ 0.

On the other hand, suppose that (2.49) holds for every continuous f ∈ K c
n+1([a,b]).

Then property (a) holds since both ei and −ei for i = 0,1, . . . ,n−1 belong to K c
n+1([a,b])

with Kei = K−ei = 0 and both en and −en belong to K c
n+1([a,b]) with Ken = n! = −K−en .

Moreover, since n(·,d) (resp. wn(·,d)) belongs to K c
n+1([a,b]) for d ∈ [a,c] (resp. d ∈

[c,b]) and Bn(·,d) = B0 = 0 (resp. Awn(·,d) = A0 = 0), we conclude that property (b)
(resp. (c)) holds. �

Remark 2.3 Theorem 2.13 is an extension of Theorem 2.2. For a linear and continuous
operatorB :C([c,b])→ S(D) let us define the linear operatorA with A f = B(en)[x0,x1, . . . ,xn] f ,
where xi, i = 0,1, . . . ,n, are some arbitrary distinct points in [a,c]. Notice that Aei = 0 for
i = 0,1, . . . ,n−1 and Aen = Ben, so A satisfies assumption (a) from Theorem 2.13. More-
over, if B satisfies the same assumption, then BPn−1 = 0 for every Pn−1 ∈ n−1 and if,
additionally, B satisfies assumption (c), then using the representation of Lemma 2.1 for the
n-convex function en, we conclude that Ben ≥ 0. Now, since n(·,d) is an n-concave func-
tion, we conclude that An(·,d)≤ 0, i. e. A satisfies assumption (b) as well. In conclusion,
for the given A and B conditions (a)−(c) are equivalent to

(i) Bei = 0 for i = 0,1, . . . ,n−1,

(ii) Bwn(·,d) ≥ 0 for every d ∈ [c,b],
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i. e. the same conditions as for the linear operator A in Theorem 2.2. An arbitrary continu-
ous n-convex function f on [c,b] can be extended to a continuous function f ∈K c

n+1([a,b])
with Kf = 0 by defining f = g on [a,c], where g is an arbitrary n-concave function such
that g(c) = f (c). Then (2.49) yields A f ≤ 0 ≤ B f , which gives the “if” part of Theorem
2.2. The “only if” part is immediate since wn(·,d), ei and −ei for i = 0,1, . . . ,n−1 are all
continuous n-convex functions.

As we can see from the proof of Theorem 2.13, the function F is approximated well
by functions Fm on [a,c] and by functions Gk on [c,b]. The polynomials P̃n−1 and Qn−1 are
different, but if F (and, hence, f as well) satisfies sufficiently strong regularity properties
at c, then these two polynomials can be chosen equal, i.e. one polynomial can be used in
approximation of F over the whole interval [a,b]. If this is the case, then we can obtain a
result similar to Theorem 2.13, but without the middle part in (2.49).

The next lemma shows that it is enough to assume that F (n−2) is continuous at c. Since
F is n-concave on [a,c] and n-convex on [c,b], F(n−2) exists and is continuous on the open
intervals (a,c) and (c,b), so the additional requirement is that the same property holds at
point c as well.

Lemma 2.7 Let n ≥ 2 and let the function Fm,k be of the form

Fm,k(x) = Pn−1(x)+
m


i=1

in(x,xi)+
k


j=1

 jwn(x,y j), (2.50)

where Pn−1 ∈n−1, i (i = 1, . . . ,m) and  j ( j = 1, . . . ,k) are real constants and a ≤ x1 <
· · · < xm < c < y1 < · · ·yk ≤ b.

(a) A necessary and sufficient condition for Fm,k to be n-concave on [a,c] and n-convex
on [c,b] is that i ≥ 0 (i = 1, . . . ,m) and  j ≥ 0 ( j = 1, . . . ,k).

(b) Every function F ∈C([a,b])∩Cn−2(a,b) that is n-concave on [a,c] and n-convex on
[c,b] is the uniform limit of a sequence of functions Fm,k as m→ and k→, where
the Fm,k’s are of the form (2.50) with real constants i ≥ 0 (i = 1, . . . ,m) and  j ≥ 0
( j = 1, . . . ,k).

Proof. The intuitive idea of the proof is simple - the goal is to construct a step function

that approximates F(n−1)
+ well enough so that, after integrating it n− 1 times, we get a

uniformly good approximation of F .

Firstly, due to the assumptions, F (n−1)
+ exists on (a,c), where it is nonincreasing, and

on (c,b), where it is nondecreasing. Furthermore, for every x,x′ ∈ (a,c) and y,y′ ∈ (c,b) it
holds

∫ x′

x
F (n−1)

+ (t)dt = F (n−2)(x′)−F(n−2)(x), (2.51)∫ y

y′
F (n−1)

+ (t)dt = F (n−2)(y)−F(n−2)(y′). (2.52)
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Since F (n−2) is continuous at c, the limits x′ → c in (2.51) and y′ → c in (2.52) exist. The
limit limt↗c F (n−1)

+ (t) (resp. limt↘c F(n−1)
+ (t)) can be−, but then the integral (2.51) (resp.

(2.52)) with x′ = c (resp. y′ = c) exists and is finite as an improper integral. In conclusion,∫ y

x
F(n−1)

+ (t)dt = F (n−2)(y)−F(n−2)(x), for every x,y ∈ (a,b), (2.53)

with, potentially, improper integral(s) at c. Furthermore, due to the properties of F(n−1)
+

mentioned above, it is easy to see that for arbitrary 1 > 0 there exist a constant  and
points x̃ < c and ỹ > c sufficiently close to c such that

∫ ỹ

x̃

∣∣∣F (n−1)
+ (t)− 

∣∣∣ dt < 1, (2.54)

where  = min{F(n−1)
+ (x̃),F (n−1)

+ (ỹ)}. Let us now define the step function

gn−1(x) =  +
m


i=1

̃i1(x,xi)+
k


j=1

̃ jw1(x,y j), (2.55)

where

̃i = F (n−1)
+ (xi)−F(n−1)

+ (xi+1) ≥ 0, i = 1, . . . ,m−1

̃m = F (n−1)
+ (xm)−  ≥ 0

̃1 = F (n−1)
+ (y1)−  ≥ 0

̃ j = F (n−1)
+ (y j)−F(n−1)

+ (y j−1) ≥ 0, j = 2, . . . ,k.

The points xi’s and y j’s will suitably be chosen later (so that gn−1 will be a “good” approx-

imation of F (n−1)
+ ). Furthermore, let us define, recursively, for l = n−2, . . . ,1,0:

gl(x) =
∫ x

c
gl+1(t)dt +F(l)(c) (2.56)

= Pn−1−l(x)+
1

(n− l)!

(
m


i=1

̃in−l(x,xi)+
k


j=1

̃ jwn−l(x,y j)

)
.

Since gn−1 will be a “good” approximation of F (n−1)
+ , by construction (2.56) the function

gl will be a “good” approximation of F(l). Notice, also, that g( j)
l = gl+ j and g0 is a function

of the form (2.50) with i = ̃i/n! and i = ̃i/n!.
Let 2 > 0 be arbitrary and let us now choose the points y1,y2, . . . recursively by the

following algorithm: set y1 = ỹ, where ỹ is from (2.54). If y j is chosen, let

y j+1 = inf
yi<y<b

{y : F(n−1)
+ (y)−F(n−1)

+ (y j) ≥ 2}. (2.57)
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Since F(n−1)
+ is right-continuous and nonincreasing on (c,b) we have

|F (n−1)
+ (y j)−F(n−1)

+ (y)| ≤ 2 for all y ∈ [y j,y j+1), (2.58)

F (n−1)
+ (y j+1)−F(n−1)

+ (y j) ≥ 2. (2.59)

Due to (2.59), if limt↗b F (n−1)
+ (t) is finite, then the procedure (2.57) will stop after finitely

many steps at some yk−1 and, in that case, set yk = b. Otherwise, if limt↗b F (n−1)
+ (t) = ,

then for sufficiently large k the point yk can be arbitrarily close to b.

If limt↘a F(n−1)
+ (t) is finite, then set x1 = a. Otherwise, if limt↘a F(n−1)

+ (t) = , the
point x1 will suitably be chosen later (and such to be sufficiently close to a). Let us now
choose the points x2,x3, . . . recursively by the following rule: if xi is chosen, let

xi+1 = inf
xi<x<c

{x : F (n−1)
+ (xi)−F(n−1)

+ (x) ≥ 2}. (2.60)

Again, the following holds

|F (n−1)
+ (xi)−F(n−1)

+ (x)| ≤ 2 for all x ∈ [xi,xi+1), (2.61)

F (n−1)
+ (xi)−F(n−1)

+ (xi+1) ≥ 2. (2.62)

Due to (2.62), after finitely many steps of the form (2.60) we will reach a point xm−1 such

that x̃ from (2.54) satisfies F(n−1)
+ (xm−1)−F (n−1)

+ (x̃) ≤ 2. Set xm = x̃ and stop. Notice
now that, due to (2.54) , (2.58) and (2.61), for every x ∈ [x1,yk] one has

|F(n−2) (x)−gn−2(x)| =
∣∣∣∣∫ x

c

(
F (n−1)

+ (t)−gn−1(t)
)

dt

∣∣∣∣
≤

∫ xm

x1

∣∣∣F (n−1)
+ (t)−gn−1(t)

∣∣∣ dt +
∫ y1

xm

∣∣∣F(n−1)
+ (t)−gn−1(t)

∣∣∣ dt +

+
∫ yk

y1

∣∣∣F (n−1)
+ (t)−gn−1(t)

∣∣∣ dt ≤ 2(xm − x1 + yk − y1)+ 1 ≤ 3,

where the last inequality holds for arbitrary 3 > 0 when we choose 1 and 2 sufficiently
small. In a similar way, it can now be shown by induction that for every x ∈ [x1,yk] and
i = n−3,n−4, . . .,1,0,

|F(i)(x)−gi(x)| =
∣∣∣∣∫ x

c

(
F(i+1)(t)−gi+1(t)

)
dt

∣∣∣∣≤ 3(b−a)n−2−i. (2.63)

If x1 = a and yk = b, then ‖F − g0‖ ≤ 3(b− a)n−2 by (2.63) and this finishes the proof.

Otherwise, if limt↗b F (n−1)
+ (t) =  or limt↘a F(n−1)

+ (t), we will use some properties of
Taylor’s expansion and polynomials.

Let Pyk,n−2 ∈n−2 denote Taylor’s polynomial of F at yk of degree n−2, i. e. P(i)
yk,n−2(yk)=

F (i)(yk) for i = 0,1, . . . ,n− 2. Due to (2.53), the remainder in Taylor’s expansion can be
written in the integral form, i. e. for every x ∈ (a,b) it holds

F(x) = Pyk,n−2(x)+
1

(n−2)!

∫ x

yk

(x− t)n−2F (n−1)
+ (t)dt.
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Let us also denote by P̄n−1 the polynomial

P̄n−1(x) = Pyk,n−2(x)+F(n−2)
+ (yk)(x− yk)n−1

=
n−2


i=0

F(i)(yk)
i!

(x− yk)
i +F(n−2)

+ (yk)(x− yk)n−1.

We have

F(x) = P̄n−1(x)+
1

(n−2)!

∫ x

yk

(x− t)n−2(F (n−1)
+ (t)−F(n−1)

+ (yk))dt (2.64)

since
∫ x
yk

(x− t)n−2 dt = (n− 2)!(x− yk)n−1. It is easy to see that the mapping hyk(x) =∫ x
yk

(x− t)n−2(F (n−1)
+ (t)−F(n−1)

+ (yk))dt is monotone on [yk,b] with hyk(yk) = 0. Since F
is continuous at b, the limit x → b in (2.64) exists and the integral∫ b

yk

(x− t)n−2(F (n−1)
+ (t)−F(n−1)

+ (yk))dt (2.65)

is finite. Moreover, since we can choose yk arbitrarily close to b, by the dominated conver-
gence theorem integral (2.65) can be arbitrarily small. Therefore, for arbitrary 4 > 0, we
can choose yk such that for every x ∈ [yk,b] it holds

|F(x)− P̄n−1(x)| =
∣∣∣∣ 1
(n−2)!

∫ x

yk

(x− t)n−2(F (n−1)
+ (t)−F(n−1)

+ (yk))dt

∣∣∣∣
≤

∣∣∣∣ 1
(n−2)!

∫ b

yk

(b− t)n−2(F(n−1)
+ (t)−F(n−1)

+ (yk))dt

∣∣∣∣ < 4.

By construction, for x∈ [yk,b] we have g0(x)= Pn−1(x)+k
j=1 j(x−y j)n−1, i. e. g0 on

the interval [yk,b] is a polynomial inn−1. Furthermore, by construction g0 ∈C(n−2)([a,b])
and g(n−1)

0 (yk) = gn−1(yk) = F (n−1)
+ (yk). Therefore, for x ∈ [yk,b] it holds

g0(x) =
n−2


i=0

g(i)
0 (yk)

i!
(x− yk)

i +F(n−1)
+ (yk)(x− yk)n−1.

From (2.63) we conclude |F(i)(yk)− g(i)
0 (yk)| ≤ 3(b− a)n−2−i. Therefore, for every x ∈

[yk,b] we have

|P̄(x)−g0(x)| ≤ 3(b−a)n−2
n−2


i=0

1
i!

and

|F(x)−g0(x)| ≤ |F(x)− P̄(x)|+ |P̄(x)−g0(x)| ≤ 4 + 3(b−a)n−2
n−2


i=0

1
i!

. (2.66)

In the same way we can show that we can choose x1 sufficiently close to a such that (2.66)
holds for every x ∈ [a,x1]. Finally, for sufficiently small 3 and 4, from (2.63) and (2.66)
we conclude that for arbitrary  > 0 we can construct g0 of the form (2.50) such that

|F(x)−g0(x)| ≤ 
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for every x ∈ [a,b]. �

The following theorem gives necessary and sufficient conditions for inequality of type
A f ≤ B f to hold and it is based on Lemma 2.7.

Theorem 2.14 Let n ≥ 2 and let A : C([a,c]) → S(D) and B : C([c,b]) → S(D) be two
linear and continuous operators. Then, the inequality

A f ≤ B f , (2.67)

holds for every continuous f ∈ K c
n+1([a,b])∩Cn−2((a,b)) if and only if the operators A

and B satisfy:

(ã) Aei = Bei for i = 0,1, . . . ,n,

(b̃) An(·,d) ≤ 0 for every d ∈ [a,c],

(c̃) Bwn(·,d) ≥ 0 for every d ∈ [c,b].

Proof. Assume that (ã)−(c̃) hold and let f ∈K c
n+1([a,b])∩Cn−2((a,b)) be continuous

with F = f −Kf en/n! as in Definition 2.1. By Lemma 2.7, the function F given by (2.47)
can be obtained as a uniform limit of functions of the form (2.50) with i ≥ 0 and  j ≥ 0.
Assumption (ã) yields APn−1 = BPn−1. Moreover, since Awn(·,y j) = A0 = 0 for y j ∈ [c,b]
and Bn(·,xi) = B0 = 0 for xi ∈ [a,c], we have

AFm,k = APn−1 +
m


i=1

iAn(·,xi) ≤ APn−1 = BPn−1

≤ BPn−1 +
k


j=1

iBwn(·,y j) = BFm,k.

By taking limits we conclude AF ≤ BF , so

A f = AF +
Kf

n!
Aen ≤ BF +

Kf

n!
Ben = B f .

On the other hand, assume (2.67) holds for every continuous function f ∈K c
n+1([a,b])∩

Cn−2((a,b)). Since both ei and−ei for i = 0, . . . ,n−1 belong to K c
n+1([a,b])∩Cn−2((a,b)),

we conclude that both Aei ≤ Bei and A(−ei)≤ B(−ei), so (ã) holds. Furthermore, n(·,xi),
wn(·,y j) ∈Cn−2((a,b)) and analogously as in the proof of Theorem 2.13 we conclude that
both (b̃) and (c̃) hold. �

Remark 2.4 Condition (a) is stronger than condition (ã), which is reflected in inequali-
ties (2.49) being stronger than inequality (2.67) with the middle term squeezed in between
in (2.49). On the other hand, Theorems 2.13 and 2.14 represent separate results since it is
possible to construct linear operators A and B that satisfy conditions (ã)−(c̃) and such that
there exists an i, 0 ≤ i ≤ n−2, such that Aei = Bei �= 0.
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For example, let n = 3, b = −a > 0, c = 0, xi ∈ [a,0] (i = 1, . . . ,m), yi = −xi and let
the operators A and B be given by

A f =
m


i=1

pi f (xi), B f =
m


i=1

pi f (yi).

Notice that

Ae0 = Be0 =
m


i=1

pi, Ae1 = −Be1 =
m


i=1

pixi, Ae2 = Be2 =
m


i=1

pix
2
i .

If pi’s are such that Ae1 = 0, then (ã) holds. Furthermore, if pi’s and xi’s are such that the
condition

m


i=1

pi(xi −d)− ≤ 0 for every d ∈ [a,0]

holds, then also (b̃) and (c̃) hold. For example, all this holds for m = 2, p1 = 1, x1 = −3,
p2 = −3 and x2 = −1. Therefore, the linear operators

A f = f (−3)−3 f (−1)
B f = f (3)−3 f (1)

satisfy (ã)−(c̃), but Ae0 = Be0 = −2 �= 0. Thus, A f ≤ B f for every continuous f ∈
¯K n,c
1 ([a,b]), but there exists such an f such that (2.49) doesn’t hold. For example, the

constant function f (x) = u, where 0 �= u ∈ R, satisfies Kf = f ′′(0) = 0, so the middle term
in (2.49) is zero, while A f = B f = −2u �= 0.

Similar results hold for n = 1 as well, but with minor technical modifications. Firstly,
the functions n and wn for n = 1 are not continuous, so we need to require that the linear
operators A and B are defined on a larger class of functions that contains them. More
importantly, we also loose the ”only if” parts of Theorems 2.13 and 2.14. Secondly, the
representation in Lemma 2.7 assumes that F ∈Cn−2((a,b)), an assumption that is mute for
n = 1 and can, actually, be ignored. Therefore, for simplicity of presentation, we state the
result for n = 1 in a separate theorem. As for notation, let C̄[a,b] denote a linear space of
functions such that C([a,b]) ⊂ C̄([a,b]) and w1(·,d) ∈ C̄[a,b] for d ∈ [a,b] (for example,
C̄[a,b] = { f +m

i=1iw1(·,xi) : f ∈C([a,b]),i ∈ R,xi ∈ [a,b]}).
Theorem 2.15 Let A : C̄[a,c] → S(D) and B : C̄[c,b] → S(D) be two linear and continu-
ous operators. If

(i) Ae0 = Be0 and Ae1 = Be1,

(ii) A1(·,d) ≤ 0 for every d ∈ [a,c],

(iii) Bw1(·,d) ≥ 0 for every d ∈ (c,b],

then for every continuous f ∈ K c
2 ([a,b]) the following inequality holds

A f ≤ B f . (2.68)

If, additionally,
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(iv) Ae0 = Be0 = 0,

then for every constant Kf from Definition 2.1 the following inequalities hold

A f ≤ Kf Ae1 = Kf Be1 ≤ B f .

Proof. The function F = f −Kf e1 is continuous and it is nonincreasing on [a,c] and
nondecreasing on [c,b]. Since a continuous function on a closed interval is uniformly
continuous, for arbitrary  > 0 there exist points a ≤ x1 < x2 < .. . < xm ≤ c < y1 < .. . <
yk ≤ b such that the step function

g(x) = F(c)+
m


i=1

i1(x,xi)+
k


j=1

 jw1(x,y j)

satisfies
max

a≤x≤b
|F(x)−g(x)| ≤ ,

where

m = F(xm)−F(c) ≥ 0,

i = F(xi−1)−F(xi) ≥ 0, i = m−1,m−2, . . .,2,

1 = F(y1)−F(c) ≥ 0,

 j = F(y j)−F(y j−1) ≥ 0, j = 2,3, . . . ,k.

The rest of the proof follows the same lines as the proof of Theorem 2.14. �

Remark 2.5 We, indeed, do not have the “only if” part in Theorem 2.15. For example, if
A and B are the linear operators

A f = 0 and B f = f−(d)− f (d) for some fixed d ∈ (c,b),

then A f = B f = 0 for every continuous f (so (2.68) holds), but Bw1(·,d) = −1 < 0 (i. e.
(iii) of Theorem 2.15 doesn’t hold).

Remark 2.6 If (i)−(iii) of Theorem 2.15 hold and Aw1(·, x̃) = 0 for some a < x̃ < c and
B1(·, ỹ) = 0 for some c < ỹ < b, then (iv) of Theorem 2.15 holds also. Indeed, for every
d we have w1(·,d)+1(·,d) = e0, so

0 ≥ A1(·, x̃) = Ae0 = Be0 = Bw1(·, ỹ) ≥ 0.

2.6.1 Levinson Type Inequality as an Application

Historical overwiev about the Levinson inequality

For the first time, an inequality which is later called the Levinson inequality appeared in
paper [39] in the following form:
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Theorem 2.16 If f : 〈0,c〉→R satisfies f ′′′ ≥ 0 and pi,xi,yi, i = 1,2, . . . ,n, are such that

pi > 0,
n


i=1

pi = 1, 0 ≤ xi ≤ c and

x1 + y1 = x2 + y2 = . . . = xn + yn = 2c, (2.69)

then the inequality
n


i=1

pi f (xi)− f (x̄) ≤
n


i=1

pi f (yi)− f (ȳ) (2.70)

holds, where x̄ = n
i=1 pixi and ȳ = n

i=1 piyi denote the weighted arithmetic means.

If a = 1
2 , p1 = . . . = pn = 1 and f (x) = logx, then the Levinson inequality (2.70)

becomes the famous Ky-Fan inequality

Gn

G′
n
≤ An

A′
n
,

where An =
1
n

n


k=1

xk, A′
n =

1
n

n


k=1

(1− xk), Gn =

(
n


k=1

xk

)1/n

and G′
n =

(
n


k=1

(1− xk)

)1/n

.

The assumptions on the differentiability of f can be weakened by working with the
divided differences. Namely, T. Popoviciu [88] showed that in Theorem 2.16 it is enough
to assume that f is 3-convex. P. Bullen [9] gave another proof of Popoviciu’s result, as
well as a converse of the Levinson inequaliy rescaled to a general interval [a,b]. Bullen’s
result is the following:

Theorem 2.17 (a) If f : [a,b] → R is 3-convex and pi,xi,yi, i = 1,2, . . . ,n, are such that
pi > 0, n

i=1 pi = 1, a ≤ xi,yi ≤ b, (2.69) holds for some c ∈ [a,b], and

max{x1, . . . ,xn} ≤ min{y1, . . . ,yn}, (2.71)

then (2.70) holds.
(b) If for a continuous function f inequality (2.70) holds for all n, all c ∈ [a,b], all 2n

distinct points satisfying (2.69) and (2.71) and all weights pi > 0 such that n
i=1 pi = 1,

then f is 3-convex.

In [59] J. Pečarić proved that one can weaken assumption (2.71) substituting it with the
following condition:

xi + xn−i+1 ≤ 2c,
pixi + pn−i+1xn−i+1

pi + pn−i+1
≤ c, i = 1,2, . . . ,n.

In [63], J. Pečarić showed that in Theorem 2.16 instead of variables with sum equal to
2c, we can use variables with constant difference.

Theorem 2.18 If f : [a,b] → R is 3-convex and pi,xi,yi, i = 1,2, . . . ,n, are such that
pi > 0, a ≤ xi,yi ≤ b, and

y1− x1 = y2− x2 = . . . = yn − xn > 0,
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then
n


i=1

pi f (xi)

n


i=1

pi

− f

⎛
⎜⎜⎜⎝

n


i=1

pixi

n


i=1

pi

⎞
⎟⎟⎟⎠≤

n


i=1

pi f (yi)

n


i=1

pi

− f

⎛
⎜⎜⎜⎝

n


i=1

piyi

n


i=1

pi

⎞
⎟⎟⎟⎠ (2.72)

holds.

Proof. We use mathematical induction by n. Let n = 2. Firstly, let us prove that for
3-convex function f

[z0,z1,z2; f ] ≥ [z3,z4,z5; f ]

holds for z0 > z3, z1 > z4, z2 > z5. Namely, we have the following

(z0 − z3)[z0,z1,z2,z3; f ] = [z0,z1,z2; f ]− [z1,z2,z3; f ]
(z1 − z4)[z1,z2,z3,z4; f ] = [z1,z2,z3; f ]− [z2,z3,z4; f ]
(z2 − z5)[z2,z3,z4,z5; f ] = [z2,z3,z4; f ]− [z3,z4,z5; f ].

From 3-convexity we get

[z0,z1,z2; f ] ≥ [z1,z2,z3; f ] ≥ [z2,z3,z4; f ] ≥ [z3,z4,z5; f ],

i.e.
[z0,z1,z2; f ] ≥ [z3,z4,z5; f ]. (2.73)

Putting in (2.73)

z0 = y1, z2 = y2, z1 =
p1y1 + p2y2

p1 + p2
, z3 = x1, z5 = x2, z4 =

p1x1 + p2x2

p1 + p2

the denominator of [z0,z1,z2; f ] is equal to (y1−y2)2, while the denominator of [z3,z4,z5; f ]
is equal to (x1 − x2)2, i.e. the denominators are the same and the rest of that inequality is,
in fact, inequality (2.72) for n = 2.

Let us suppose that (2.72) holds for n ≤ m−1. Putting

x1 → 1
Pm−1

m−1


i=1

pixi, x2 → xm, p1 → Pm−1, p2 → pm,

y1 → 1
Pm−1

m−1


i=1

piyi, y2 → ym

in (2.72) for n = 2 and using the assumption of induction for n = m−1 we obtain

f

⎛
⎜⎜⎜⎝

m


i=1

piyi

Pm

⎞
⎟⎟⎟⎠− f

⎛
⎜⎜⎜⎝

m


i=1

pixi

Pm

⎞
⎟⎟⎟⎠
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≤ 1
Pm

{
Pm−1 f

(
1

Pm−1

m−1


i=1

piyi

)
− f

(
1
Pm

m−1


i=1

pixi

)
+ pm( f (ym)− f (xm))

}

≤ 1
Pm

m


i=1

pi( f (yi)− f (xi)),

where Pm = m
i=1 pi. So, the inequality (2.72) holds for any n ≥ 2 by the principle of

mathematical induction. �

Some other generalizations of the Levinson inequality will be given in the following
chapter.

Levinson type inequality for 3-convex function at a point

In the previous text we described the history of the Levinson inequality. Here it is continued
by further investigation. At 2010 A.McD. Mercer ([45]) made a significant improvement
by replacing the condition of symetric distribution of points xi’s and yi’s around c by the
weaker one that the variances of two sets of points are equal. Namely, he proved the
following result.

Theorem 2.19 If f : [a,b] → R satisfies f ′′′ ≥ 0 and pi,xi,yi, i = 1,2, . . . ,n are such that
pi ≥ 0, n

i=1 pi = 1, a ≤ xi,yi ≤ b,

max{x1, . . . ,xn} ≤ min{y1, . . . ,yn}
and

n


i=1

pi(xi − x̄)2 =
n


i=1

pi(yi − ȳ)2,

then
n


i=1

pi f (xi)− f (x̄) =
n


i=1

pi f (yi)− f (ȳ),

where x̄ = n
i=1 pixi, ȳ = n

i=1 piyi.

A. Witkowski extended this result to probabilistic settings, [102], while I. Baloch,
J. Pečarić and M. Praljak in [4] showed that under the equal-variances assumption the
Levinson inequality holds for a larger class of functions, namely for the 3-convex func-
tions at a point. A probabilistic version of Levinson’s inequality under the equal-variances
assumption for the class of 3-convex functions at a point was proved by J. Pečarić, M. Pral-
jak and A. Witkowski [76]. It is a consequence of Theorem 2.13. Also, other consequences
of the above-proved results from paper [76] are given.

Corollary 2.1 Let X ,Y :→ [a,c] be two random variables such that Var[X ] = Var[Y ] =
C. Then, for every continuous f ∈ K c

3 ([a,b]) the inequalities

E[ f (X)]− f (E[X ])≤ Kf

2
C ≤ E[ f (Y )]− f (E[Y ])

hold.
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Proof. Apply Theorem 2.13 to the linear operators

A f = E[ f (X)]− f (E[X ]),
B f = E[ f (Y )]− f (E[Y ]).

Since continuous functions on a segment are bounded, by the dominated convergence the-
orem the linear operators A and B are continuous. Condition (a) holds since Ae0 = Be0 =
E[1]−1 = 0, Ae1 = E[X ]−E[X ] = 0 = E[Y ]−E[Y ] = B f , Ae2 = Var[X ] and Be2 = Var[Y ].
Furthermore, the functions w2(·,d) (resp. 2(·,d)) for d ∈ [a,c] (resp. d ∈ [c,b]) are convex
(resp. concave), so (b) (resp. (c)) hold due to Jensen’s inequality. �

We can get a generalization of the probabilistic Levinson type inequality from Corol-
lary 2.1 without the middle term as a corollary of Theorem 2.14.

Corollary 2.2 Let  : [a,c]→ R and  : [c,b]→R be two functions of bounded variation
such that

x̄ =
∫ c

a
xd (x) ∈ [a,c] and x̄ =

∫ b

c
xd(x) ∈ [c,b].

Then, the inequality ∫ c

a
f (x)d (x)− f (x̄ ) ≤

∫ b

c
f (x)d(x)− f (x̄)

holds for every continuous f ∈ K c
3 ([a,b]) if and only if  and  satisfy:

(i)
∫ c

a
d (x) =

∫ b

c
d(x) and

∫ c

a
x2 d (x)− x̄2

 =
∫ b

c
x2 d(x)− x̄2

 ,

(ii)
∫ d

a
(x−d)d (x)≤ (x̄ −d)− = min{x̄ −d,0} for every d ∈ [a,c],

(iii)
∫ b

d
(x−d)d(x)≥ (x̄ −d)+ = max{x̄ −d,0} for every d ∈ [c,b].

Proof. Apply Theorem 2.14 to the linear operators A and B given by

A f =
∫ c

a
f (x)d (x)− f (x̄ ),

B f =
∫ b

c
f (x)d(x)− f (x̄).

By the same argument as in the proof of Corollary 2.1, the operators A and B are continu-
ous. Conditions (ã)−(c̃) for these particular operators correspond to conditions (i)−(iii).
�

Since the functions  and  in Corollary 2.3 do not need to generate probability mea-
sures, that corollary is, indeed, a generalization of Corollary 2.1. For example, if  and
 satisfy the Jensen-Steffensen conditions (i. e.  (a) ≤  (x) ≤  (c) for every x ∈ [a,c]
and  (a) <  (c); (c) ≤ (x) ≤ (b) for every x ∈ [c,b] and (c) < (b)), then the
Jensen-type inequality still holds for convex functions (see, e. g., [77]). Hence, the convex
functions w2(·,d) and −2(·,d) satisfy the inequalities in (ii) and (iii) of Corollary 2.3.

The following is another corollary of Theorem 2.14.
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Corollary 2.3 Let  : [a,c]→R and  : [c,b]→R be two functions of bounded variation
and n ≥ 2. Then, the inequality

∫ c

a
f (x)d (x) ≤

∫ b

c
f (x)d(x)

holds for every continuous f ∈ K c
n+1([a,b])∩Cn−2((a,b)) if and only if  and  satisfy:

(i)
∫ c

a
xi d (x) =

∫ b

c
xi d(x), for every i = 0,1, . . . ,n,

(ii)
∫ d

a
(x−d)n−1 d (x) ≤ 0 for every d ∈ [a,c],

(iii)
∫ b

d
(x−d)n−1 d(x) ≥ 0 for every d ∈ [c,b].

Proof. Apply Theorem 2.14 to the linear operators A and B given by

A f =
∫ c

a
f (x)d (x),

B f =
∫ b

c
f (x)d(x).

By the same argument as in the proof of Corollary 2.1, the operators A and B are continu-
ous. Conditions (ã)−(c̃) for these particular operators correspond to conditions (i)−(iii).
�

The following corollary is the discrete version of Corollary 2.3.

Corollary 2.4 Let n ∈ N, n ≥ 2, and a ≤ x1 < · · · < xm ≤ c ≤ y1 < · · · < yk ≤ b. Then,
the inequality

m


i=1

pi f (xi) ≤
k


j=1

q j f (y j)

holds for every continuous f ∈ K c
n+1([a,b])∩Cn−2((a,b)) if and only if the sequences p

and q satisfy:

(i) m
j=1 p jxi

j = k
j=1 q jyi

j for every i = 0,1, . . . ,n,

(ii) m
i=1 pi(xi−d)n−1

− ≤ 0 for every d ∈ [a,c],

(iii) k
j=1 q j(y j −d)n−1

+ ≥ 0 for every d ∈ [c,b].

Proof. Apply Theorem 2.14 to the linear operators

A f =
m


i=1

pi f (xi) and B f =
k


j=1

q j f (y j). (2.74)

�



76 2 GENERAL LINEAR INEQUALITIES FOR FUNCTIONS OF ONE VARIABLE

Remark 2.7 Popoviciu studied necessary and sufficient conditions on points xi and weights
pi for the inequality m

i=1 pm f (xm) ≥ 0 to be valid for every n-convex function f (see
[77], [85]). In light of Remark 2.3, Corollary 2.4 is an extension of Popoviciu’s results.

The version of Corollary 2.4 for n = 1 can be obtained as a corollary of Theorem 2.15.

Corollary 2.5 Let a ≤ x1 ≤ ·· · < xm < c < y1 < · · · < yk ≤ b, x̄p = m
i=1 pixi, ȳq =

k
j=1 q jy j be such that:

(i) x̄p = ȳq,

(ii) m1
i=1 pi ≤ 0 for every m1 = 1, . . . ,m−1, and m

i=1 pi = 0,

(iii) k
j=k1

q j ≥ 0 for every k1 = 2, . . . ,k, and k
j=1 q j = 0.

Then, the inequality

m


i=1

pi f (xi) ≤ Kf x̄p = Kf ȳq ≤
k


j=1

q j f (y j) (2.75)

holds for every continuous f ∈ K c
2 ([a,b]).

Proof. Follows by applying Theorem 2.15 to the linear operators A and B given by
(2.74). Notice that Aw1(·,d) = 0 for d ∈ (xm,c) and B1(·,d) = 0 for d ∈ (c,y1), so, by
Remark 2.6, Ae0 = m

i=1 pi = 0 and Be0 = k
j=1 q j = 0 are implied by the other assump-

tions. �

A simple example when pi’s and q j’s satisfy assumptions (ii) and (iii) of Corollary 2.5
is when m = 2m′ and k = 2k′ are even and pi = (−1)i, q j = (−1) j. Furthermore, if xi’s

and y j’s are such that x̄p = m′
i=1 (x2i− x2i−1) = k′

j=1

(
y2 j − y2 j−1

)
= ȳq, then (i) holds as

well and inequality (2.75) states

m′


i=1

( f (x2i)− f (x2i−1)) ≤ Kf x̄p = Kf ȳq ≤
k′


j=1

(
f (y2 j)− f (y2 j−1)

)
.



Chapter3
General Linear Inequalities for
Multivariate Functions

This chapter is based on recent results given in [28] and [30] by A.R. Khan, J. Pečarić and
S. Varošanec.

Firstly we give results for a function with two variables. This approach is chosen just
because in the case of two variable reader can easily pointed out a method. The same
method is used also in more general case for functions with several variables, but in that
general case complicated notations and calculations are fogging up mathematical ideas.

Let f be a real-valued function defined on I× J, I = [a,b], J = [c,d]. Then the (n,m)th
divided difference of a function f at distinct points xi, ...,xi+n ∈ I, y j, ...,y j+m ∈ J is defined
by

(n,m) f (xi,y j) = [xi, ...,xi+n; [y j, ...,y j+m; f ]].

Sometimes, notation n
m f (xi,y j) is used in literature for the (n,m)th divided difference

of a function f . A function f : I × J → R is said to be convex of order (n,m) or (n,m)-
convex if inequality

(n,m) f (xi,y j) ≥ 0

holds for all distinct points xi, ...,xi+n ∈ I, y j, ...,y j+m ∈ J.

It is known that if the partial derivative
 n+m f
xnym exists, then f is (n,m)-convex if and

only if
 n+m f
xnym ≥ 0.

Similarly, we can extend the above-mentioned definition of divided difference up to
order (m1, . . . ,mn) as follows: Let f be a function of n variables defined on I1× . . .× In =

77
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[a1,b1]× . . .× [an,bn] where [ai,bi]⊂R for i = 1,2, . . . ,n. Then the (m1, . . . ,mn)th divided
difference of the function f at distinct points x ji j , . . . ,x j(i j+mj) ∈ I j, for j = 1, . . . ,n is given
as

(m1,...,mn) f (x1i1 , . . . ,xnin) =

[x1i1 , . . . ,x1(i1+m1); [x2i2 , . . . ,x2(i2+m2); [. . . ; [xnin , . . . ,xn(in+mn); f ] . . .]]].

We say that f : I1× . . .×In →R is a convex function of order (m1, . . . ,mn) (or (m1, . . . ,mn)-
convex function) if

(m1,...,mn) f (x1 j, . . . ,xn j) ≥ 0

holds, where x ji j , . . . ,x j(i j+mj) ∈ I j, for j = 1, . . . ,n.

If all partial derivatives
m1+...+mn f
xm1

1 . . .xmn
n

(denoted by f(m1,...,mn)) exist, then f is (m1, . . . ,mn)-

convex if and only if f(m1,...,mn) ≥ 0.
Similarly as in the case of one variable, we can talk about discrete (n,m)-convex func-

tion or a discrete (m1, . . . ,mn)-convex function if a domain of a function is not a product
of intervals but a product of discrete sets of real numbers.

3.1 Discrete Results for Functions of Two Variables

Let us now consider a real-valued function of two variables defined on I × J, I,J are seg-
ments in R. Firstly, we obtain an identity for N

i=1
M
j=1 pi j f (xi,y j) which involves divided

differences of f and then, in the next theorem, we consider necessary and sufficient condi-
tions that inequality

N


i=1

M


j=1

pi j f (xi,y j) ≥ 0

holds for every discrete convex function of order (n,m), m,n ∈ N.

Theorem 3.1 Let x1, . . . ,xN be mutually distinct numbers from I = [a,b] and y1, . . . ,yM

be mutually distinct numbers from J = [c,d] and let f be a real-valued functions on I× J.
Let pi j, (i = 1, . . . ,N, j = 1, . . . ,M), be real numbers.

Then the following identity holds:

N


i=1

M


j=1

pi j f (xi,y j) (3.1)

=
m−1


k=0

n−1


t=0

N


s=t+1

M


r=k+1

psr(xs− x1)(t)(yr − y1)(k)(t,k) f (x1,y1)

+
m−1


k=0

N


t=n+1

N


s=t

M


r=k+1

psr(xs − xt−n+1)(n−1)(yr − y1)(k) ×
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×(n,k) f (xt−n,y1)(xt − xt−n)

+
M


k=m+1

n−1


t=0

N


s=t+1

M


r=k

psr(xs− x1)(t)(yr − yk−m+1)(m−1)×

×(t,m) f (x1,yk−m)(yk − yk−m)

+
M


k=m+1

N


t=n+1

(
N


s=t

M


r=k

psr(xs− xt−n+1)(n−1)(yr − yk−m+1)(m−1))×

×(n,m) f (xt−n,yk−m)(xt − xt−n)(yk − yk−m).

Proof. We have
N


i=1

M


j=1

pi j f (xi,y j) =
N


i=1

(
M


j=1

q jGi(y j)

)
,

where pi j = q j and Gi : y �→ f (xi,y). Using (2.19) on the inner sum we have

N


i=1

M


j=1

pi j f (xi,y j) =
N


i=1

m−1


k=0

(
M


j=k+1

q j(y j − y1)(k)
)
kGi(y1)

+
N


i=1

M


k=m+1

(
M


j=k

q j(y j − yk−m+1)(m−1)

)
mGi(yk−m)(yk − yk−m)

=
m−1


k=0

(
N


i=1

(
M


j=k+1

q j(y j − y1)(k)
)
kGi(y1)

)

+
M


k=m+1

(
N


i=1

(
M


j=k

q j(y j − yk−m+1)(m−1)(yk − yk−m)

)
mG(yk−m)

)

=
m−1


k=0

(
N


i=1

wiF(xi)

)
+

M


k=m+1

(
N


i=1

viH(xi)

)

where

wi =
M


j=k+1

q j(y j − y1)(k) =
M


j=k+1

pi j(y j − y1)(k), F(xi) = kGi(y1),

vi =
M


j=k

q j(y j − yk−m−1)(m−1)(yk − yk−m), H(xi) = mG(yk−m).

Applying again (2.19) on the inner sums we obtain

N


i=1

M


j=1

pi j f (xi,y j) =

=
m−1


k=0

n−1


r=0

(
N


i=r+1

wi(xi − x1)(r)
)
rF(x1)
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+
m−1


k=0

N


r=n+1

(
N


i=r

wi(xi − xr−n+1)(n−1)

)
nF(xr−n)(xr − xr−n)

+
M


k=m+1

n−1


t=0

N


i=t+1

vi(xi − x1)(t)tH(x1)

+
M


k=m+1

N


t=n+1

N


i=t

vi(xi − xt−n+1)(n−1)nH(xt−n)(xt − xt−n)

=
m−1


k=0

n−1


r=0

N


i=r+1

(
M


j=k+1

pi j(y j − y1)(k)
)

(xi − x1)(r)(r,k) f (x1,y1)

+
m−1


k=0

N


r=n+1

N


i=r

(
M


j=k+1

pi j(y j − y1)(k)
)

(xi − xr−n+1)(n−1)×

×(n,k) f (xr−n,y1)(xr − xr−n)

+
M


k=m+1

n−1


t=0

N


i=t+1

M


j=k

pi j(y j − yk−m−1)(m−1)(yk − yk−m)(xi − x1)(t) ×

×(t,m) f (x1,yk−m)

+
M


k=m+1

N


t=n+1

N


i=t

M


j=k

pi j(y j − yk−m−1)(m−1)(yk − yk−m)×

×(xi − xt−n+1)(n−1)(n,m) f (xt−n,yk−m)(xt − xt−n).

If we substitute in the first and in the second sums r → t, and in all sums change i → s,
j → r, we get the identity (3.1). �

If in Theorem 3.1 we simply put f (xi,y j) = f (xi)g(y j), where f and g are real-valued
functions on I and J, respectively, then we get the following consequence of the previously
mentioned theorem.

Corollary 3.1 Let f : I → R and g : J → R be two functions and let pi j ∈ R for i ∈
{1, . . . ,N} and j ∈ {1, . . . ,M}. Let xi, i ∈ {1, . . . ,N} be mutually distinct points from I and
y j, j ∈ {1, . . . ,M} be mutually distinct points from J. Then the following identity holds

N


i=1

M


j=1

pi j f (xi)g(y j)

=
m−1


k=0

n−1


t=0

N


s=t+1

M


r=k+1

psr(xs − x1)(t)t f (x1)(yr − y1)(k)kg(y1)

+
m−1


k=0

N


t=n+1

N


s=t

M


r=k+1

psr(xs− xt−n+1)(n−1)n f (xt−n)(xt − xt−n)×

×(yr − y1)(k)kg(y1)+
M


k=m+1

n−1


t=0

N


s=t+1

M


r=k

psr(xs − x1)(t) ×
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×t f (x1)(yr − yk−m+1)(m−1)mg(yk−m)(yk − yk−m)

+
M


k=m+1

N


t=n+1

N


s=t

M


r=k

psr(xs − xt−n+1)(n−1)n f (xt−n)(xt − xt−n)×

×(yr − yk−m+1)(m−1)mg(yk−m)(yk − yk−m).

Theorem 3.2 Let pi j, (i = 1, . . . ,N, j = 1, . . . ,M) be real numbers, E = {x1,x2, . . . ,xN}⊂
R, F = {y1,y2, . . . ,yM}⊂R, with x1 < x2 < .. . < xN, y1 < y2 < .. . < yM and n < N,m < M.

Inequality
N


i=1

M


j=1

pi j f (xi,y j) ≥ 0

holds for every discrete convex function f : E ×F → R of order (n,m) if and only if

N


s=t+1

M


r=k+1

psr(xs − x1)(t)(yr − y1)(k) = 0,
k = 0, . . . ,m−1
t = 0, . . . ,n−1

N


s=t

M


r=k+1

psr(xs − xt−n+1)(n−1)(yr − y1)(k) = 0,
k = 0, . . . ,m−1
t = n+1, . . . ,N

N


s=t+1

M


r=k

psr(xs− x1)(t)(yr − yk−m+1)(m−1) = 0,
k = m+1, . . . ,M
t = 0, . . . ,n−1

N


s=t

M


r=k

psr(xs − xt−n+1)(n−1)(yr − yk−m+1)(m−1) ≥ 0,
k = m+1, . . . ,M
t = n+1, . . . ,N.

Remark 3.1 A version of Theorem 3.2 for xi → i, y j → j, f (xi,y j) → aib j where (ai) is
an n-convex sequence and (b j) is an m-convex sequence is given in [72].

A version of Theorem 3.2 for xi → i, y j → j, f (xi,y j) = ai j and m = n = 1 was consid-
ered in [67].

3.2 P-convex functions

A class of P-convex functions of order k was introduced by J. Pečarić in [69]. Here we
give some theorems from that paper.

Definition 3.1 Let f be a real-valued function defined on I× J, I and J are intervals. We
say that f is P-convex of order k if

[x0, . . . ,xi; [y0, . . . ,yk−i; f ]] ≥ 0, i = 0,1, . . . ,k,

is valid for all different choices (x j)i
j=0 from I and different choices (y j)k−i

j=0 from J, i.e. f
is convex of order (i,k− i) for all i = 0,1, . . . ,k.
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If I and J are not intervals but discrete sets IN ,JN , then we are talking about a discrete
P-convex function. A P-convex function of order k is not necessarily continuous. If the
kth partial derivatives of a function f exist, then f is a P-convex function of order k if and
only if these partial derivatives are nonnegative.

If the (k− 1)th partial derivatives of a function f exist, then f is a P-convex function
of order k iff these partial derivatives are nondecreasing in each argument.

If f is a P-convex of order k, then the function g defined by g(t) = f (a1t +b1,a2t +b2),
a1,a2 > 0, is k-convex.

A very interesting P-convex function is f (x,y) = xy, x,y ∈ R.

Theorem 3.3 Let pi,xi ∈ IN ,yi ∈ JN, i = 1, . . . ,n, be real numbers such that x1 ≤ . . .≤ xn,
y1 ≤ . . .yn. The inequality

n


i=1

pi f (xi,yi) ≥ 0 (3.2)

holds for every discrete P-convex function f on IN × JN if and only if

n


i=1

pi = 0 (3.3)

n


i=1

pixi = 0,
n


i=1

piyi = 0 (3.4)

n


i=k

pi(xi − xk−1) ≥ 0,
n


i=k

pi(yi − yk−1) ≥ 0, k = 3, . . . ,n. (3.5)

Proof. Using the Abel identity we obtain corresponding identity for
n

i=1 pi f (xi,yi) from which the statement of theorem follows.

n


i=1

pi f (xi,yi) = f (x1,y1)P1 +
n


k=2

Pk

(
f (xk,yk)− f (xk−1,yk−1

)
= f (x1,y1)P1

+
n


k=2

Pk

{
(xk − xk−1)[xk−1,xk; f (x,yk)]+ (yk − yk−1)[yk−1,yk; f (xk−1,y)]

}

= f (x1,y1)P1 +[x1,x2; f (x,y2)]
n


k=2

Pk(xk − xk−1)

+
n


k=3

(
n


i=k

Pi(xi − xi−1)

){
[xk−1,xk; f (x,yk)]− [xk−2,xk−1; f (x,yk−1)]

}

+[y1,y2; f (x1,y)]
n


k=2

Pk(yk,yk−1)+
n


k=3

(
n


i=k

Pi(yi − yi−1)

)
×

×
{
([yk−1,yk; f (xk−1,y)]− [yk−2,yk−1; f (xk−2,y)])

}
,

i.e.
n


i=1

pi f (xi,yi) = f (x1,y1)P1 +[x1,x2; f (x,y2)]
n


i=1

pi(xi − x1)
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+[y1,y2; f (x1,y)]
n


i=1

pi(yi − y1)

+
n


k=3

(
n


i=k

pi(xi− xk−1)

){
(xk − xk−2)[xk−2,xk−1,xk; f (x,yk)]

+(yk − yk−1)[xk−2,xk−1; [yk−1,yk; f ]]
}

+
n


k=3

(
n


i=k

pi(yi− yk−1)

)(
(yk − yk−2)[yk−2,yk−1,yk; f (xk−1,y)]

+(xk−1− xk−2)[yk−2,yk−1; [xk−1,xk−2; f ]]
)
, (3.6)

where Pk = n
i=k pi. Sufficiency of conditions given in (3.3), (3.4) and (3.5) follows from

the identity (3.6).
Since functions f1 = 1, f2 = −1, f3(x,y) = x, f4 = − f3, f5(x,y) = y, f6 = − f5 are

P-convex, conditions (3.3) and (3.4) are valid. The inequality (3.5) follows from (3.2) by
setting for fixed k, (k = 3, . . . ,n), f (x,y) = (x− xk−1)+ or f (x,y) = (y− yk−1)+. �

3.3 Discrete Results for Functions of n Variables

For our main theorems of this section we define some notations to be used as follows.
Let for r ∈ {0, . . . ,n}, j ∈ {1, . . . ,n}, nCr(i j,mj) be the set of all n-tuples in which on

the kth place we put mk or ik and r places are filled with constants from the set {m1, . . . ,mn}
while on the rest n− r places we put variables from the set {i1, . . . , in}. For example:

nC1(i j,mj) = {(m1, i2, . . . , in),(i1,m2, . . . , in), . . . ,(i1, i2, . . . , in−1,mn)},
nC2(i j,mj) = {(m1,m2, i3, . . . , in),(m1, i2,m3, i4, . . . , in), . . . ,

(m1, i2, . . . , in−1,mn),(i1,m2,m3, i4, . . . , in),
. . . ,(i1,m2, i3, . . . , in−1,mn), . . . ,(i1, i2, . . . , in−2,mn−1,mn)}.

Note that the number of elements of the class nCr(i j,mj) are equal to the binomial coeffi-
cient

(n
r

)
. We introduce  involving variables i1, . . . , in and constants m1, . . . ,mn as follows.

For (i1, . . . , in) ∈n C0(i j,mj), we define

(i1, . . . , in) =
mn−1


in=0

· · ·
m1−1


i1=0

N1


k1=i1+1

· · ·
Nn


kn=in+1

pk1···kn

n


j=1

(x jk j − x j1)(i j) ×

× (i1,...,in) f (x11, . . . ,xn1),

For (i1, . . . , it−1,mt , it+1, . . . , in) ∈ nC1(i j,mj), we have

(i1, . . . , it−1,mt , it+1, . . . , in)
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=
mn−1


in=0

· · ·
mt+1−1


it+1=0

Nt


it=mt+1

mt−1−1


it−1=0

· · ·
m1−1


i1=0

N1


k1=i1+1

· · ·
Nt−1


kt−1=it−1+1

Nt


kt=it

Nt+1


kt+1=it+1+1

· · ·
Nn


kn=in+1

pk1···kn

( n


j=1, j �=t

(x jk j − x j1)(i j)
)
×

(xtkt − xt(it−mt+1))
(mt−1)(xtit − xt(it−mt))×

×(i1,...,it−1,mt ,it+1,...,in) f (x11, . . . ,x(t−1)1,xt(it−mt),x(t+1)1, . . . ,xn1).

In general, for (i1, . . . , is−1,ms, is+1, . . . , it−1,mt , it+1, . . . , in) ∈ nCr(i j,mj), we have

(i1, . . . , is−1,ms, is+1, . . . , it−1,mt , it+1, . . . , in)

=
mn−1


in=0

· · ·
mt+1−1


it+1=0

Nt


it=mt+1

mt−1−1


it−1=0

. . .
ms+1−1


is+1=0

Ns


it=ms+1

ms−1−1


is−1=0

· · ·
m1−1


i1=0

N1


k1=i1+1

· · ·
Ns−1


ks−1=is−1+1

Ns


ks=is

Ns+1


ks+1=is+1+1

. . .
Nt−1


kt−1=it−1+1

Nt


kt=it

Nt+1


kt+1=it+1+1

· · ·

Nn


kn=in+1

pk1···kn

n


j=1, j/∈Sr

(x jk j − x j1)(i j) 
j∈Sr

(x jk j − x j(i j−mj+1))
(mj−1)×

×(x ji j − x j(i j−mj))(i1,...,is−1,ms,is+1,...,it−1,mt ,it+1,...,in)

f (x11, . . . ,x(s−1)1,xs(is−ms),x(s+1)1, . . . ,x(t−1)1,xt(it−mt),x(t+1)1, . . . ,xn1)

where Sr is a set of all r indices s, . . . ,t of used constants ms, . . . ,mt .
Finally, for (m1, . . . ,mn) ∈ nCn(i j,mj), we have

(m1, . . . ,mn) =
Nn


in=mn+1

· · ·
N1


i1=m1+1

N1


k1=i1

· · ·
Nn


kn=in

pk1···kn(m1,...,mn) f (x1(k1−m1), . . . ,xn(kn−mn))×

×
n


j=1

(
(x jk j − x j(i j−mj+1))

(mj−1)(x ji j − x j(i j−mj))
)

The following theorem gives an identity for sum · · · pk1···kn f (x1k1 , . . . ,xnkn) involving n
variables.

Theorem 3.4 Let f : I1 ×·· ·× In → R be a function. Let pk1...kn ∈ R and let x jk j ∈ I j be
distinct real numbers for k j ∈ {1, . . . ,Nj}, j ∈ {1, . . . ,n}, where I j = [a j,b j] ⊂ R. Then,
we have

N1


k1=1

· · ·
Nn


kn=1

pk1···kn f (x1k1 , . . . ,xnkn) =
n


r=0


(p1,...,pn)∈nCr(i j ,mj)

(p1, . . . , pn). (3.7)

Proof. We start with considering

N1


k1=1

· · ·
Nn


kn=1

pk1···kn f (x1k1 , . . . ,xnkn) =
N1


k1=1

· · ·
Nn−1


kn−1=1

[ Nn


kn=1

Q(1,1)
kn

F (1,1)
xnkn

(xnkn)
]
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where Q(1,1)
kn

= pk1···kn and F (1,1)
xnkn

(xnkn) = f (x1k1 , . . . ,xnkn) where Q(1,1)
kn

represents that this

function only depends on kn and independent of other n−1 variables. Similarly, F (1,1)
xnkn

rep-
resents that this is only function of variable xnkn and independent of other n−1 variables.
So using Theorem 2.2 we get,

N1


k1=1

· · ·
Nn


kn=1

pk1···kn f (x1k1 , . . . ,xnkn)

=
N1


k1=1

· · ·
Nn−1


kn−1=1

[mn−1


in=0

( Nn


kn=in+1

Q(1,1)
kn

(xnkn − xn1)(in)(in)F
(1,1)
xnkn

(xn1)

+
Nn


in=mn+1

Nn


kn=in

Q(1,1)
kn

(xnkn − xn(in−mn+1))
(mn−1)

)
×

×(mn)F
(1,1)
xnkn

(xn(in−mn))(xnin − xn(in−mn))
]

=
N1


k1=1

· · ·
Nn−2


kn−2=1

mn−1


in=0

[ Nn−1


kn−1=1

( Nn


kn=in+1

pk1···kn(xnkn − xn1)(in)
)
×

×(in) f (x1k1 , . . . ,x(n−1)kn−1
,xn1)

]
+

N1


k1=1

· · ·
Nn−2


kn−2=1

Nn


in=mn+1

[ Nn−1


kn−1=1

( Nn


kn=in

pk1···kn(xnkn − xn(in−mn+1))
(mn−1)×

×(xnin − xn(in−mn))
)
(mn) f (x1k1 , . . . ,x(n−1)kn−1

,xn(in−mn))
]

=
N1


k1=1

· · ·
Nn−2


kn−2=1

mn−1


in=0

[ Nn−1


kn−1=1

Q(2,1)
kn−1

F(2,1)
x(n−1)kn−1

]

+
N1


k1=1

· · ·
Nn−2


kn−2=1

Nn


in=mn+1

[ Nn−1


kn−1=1

Q(2,2)
kn−1

F (2,2)
xn−1kn−1

]
,

where

Q(2,1)
kn−1

=
Nn


kn=in+1

pk1···kn(xnkn − xn1)(in),

Q(2,2)
kn−1

=
Nn


kn=in

pk1···kn(xnkn − xn(in−mn+1))
(mn−1)(xnin − xn(in−mn)),

F (2,1)
x(n−1)kn−1

(x(n−1)kn−1
) = (in) f (x1k1 , . . . ,x(n−1)kn−1

,xn1),

F (2,2)
x(n−1)kn−1

(x(n−1)kn−1
) = (mn) f (x1k1 , . . . ,x(n−1)kn−1

,xn(in−mn)).

Note that, this time we assume Q(2,1)
kn−1

to be only dependent on kn−1, whereas F (2,1)
x(n−1)kn−1

is considered to be a function of variable x(n−1)kn−1
as far as Q(2,2)

kn−1
is concerned, it only

depends on kn−1 and F (2,2)
x(n−1)kn−1

is a function of one variable x(n−1)kn−1
.
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So, again applying Theorem 2.2, we have

N1


k1=1

· · ·
Nn


kn=1

pk1···kn f (x1k1 , . . . ,xnkn)

=
N1


k1=1

· · ·
Nn−2


kn−2=1

mn−1


in=0

[mn−1−1


in−1=0

Nn−1


kn−1=in−1+1

Q(2,1)
kn−1

(x(n−1)kn−1
− x(n−1)1)

(in−1)×

×(in−1)F
(2,1)
x(n−1)kn−1

(x(n−1)1)

+
Nn−1


in−1=mn−1+1

Nn−1


kn−1=in−1

Q(2,1)
kn−1

(x(n−1)kn−1
− x(n−1)(in−1−mn−1+1))

(mn−1−1)×

×(in−1)F
(2,1)
x(n−1)kn−1

(x(n−1)(in−1−mn−1))(x(n−1)(in−1) − x(n−1)(in−1−mn−1))
]

+
N1


k1=1

· · ·
Nn−2


kn−2=1

Nn


in=mn+1

[mn−1−1


in−1=0

Nn−1


kn−1=in−1+1

Q(2,2)
kn−1

(x(n−1)kn−1
− x(n−1)1)

(in−1)(in−1)F
(2,2)
x(n−1)kn−1

(x(n−1)1)

+
Nn−1


in−1=mn−1+1

Nn−1


kn−1=in−1

Q(2,2)
kn−1

(x(n−1)kn−1
− x(n−1)(in−1−mn−1+1))

(mn−1−1)×

×(mn−1)F
(2,2)
x(n−1)kn−1

(x(n−1)(in−1−mn−1))(x(n−1)(in−1)− x(n−1)(in−1−mn−1))
]

=
N1


k1=1

· · ·
Nn−3


kn−3=1

mn−1


in=0

mn−1−1


in−1=0

[ Nn−2


kn−2=1

Nn−1


kn−1=in−1+1

Q(2,1)
kn−1

(x(n−1)kn−1
− x(n−1)1)

(in−1)

×(in−1)F
(2,1)
x(n−1)kn−1

(x(n−1)1)
]
+

N1


k1=1

· · ·
Nn−3


kn−3=1

mn−1


in=0

Nn−1


in−1=mn−1+1[ Nn−2


kn−2=1

Nn−1


kn−1=in−1

Q(2,1)
kn−1

(x(n−1)kn−1
− x(n−1)(in−1−mn−1+1))

(mn−1−1)×

×(mn−1)F
(2,1)
x(n−1)kn−1

(x(n−1)(in−1−mn−1))(x(n−1)(in−1)− x(n−1)(in−1−mn−1))
]

+
N1


k1=1

· · ·
Nn−3


kn−3=1

Nn


in=mn+1

mn−1−1


in−1=0

[ Nn−2


kn−2=1

Nn−1


kn−1=in−1+1

Q(2,2)
kn−1

(x(n−1)kn−1
− x(n−1)1)

(in−1)(in−1)F
(2,2)
x(n−1)kn−1

(x(n−1)1)
]

+
N1


k1=1

· · ·
Nn−3


kn−3=1

Nn


in=mn+1

Nn−1


in−1=mn−1+1[ Nn−2


kn−2=1

Nn−1


kn−1=in−1

Q(2,2)
kn−1

(x(n−1)kn−1
− x(n−1)(in−1−mn−1+1))

(mn−1−1)×
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×(mn−1)F
(2,2)
x(n−1)kn−1

(x(n−1)(in−1−mn−1))(x(n−1)(in−1) − x(n−1)(in−1−mn−1))
]

=
N1


k1=1

· · ·
Nn−3


kn−3=1

mn−1


in=0

mn−1−1


in−1=0

Nn−2


kn−2=1

Nn−1


kn−1=in−1+1

Nn


kn=in+1

pk1···kn ×

×(xnkn − xn1)(in)(x(n−1)kn−1
− x(n−1)1)

(in−1)×
×(in−1,in) f (x1k1 , . . . ,x(n−2)kn−2

,x(n−1)1,xn1)

+
N1


k1=1

· · ·
Nn−3


kn−3=1

mn−1


in=0

Nn−1


in−1=mn−1+1

Nn−2


kn−2=1

Nn−1


kn−1=in−1

Nn


kn=in+1

pk1···kn ×

×(xnkn − xn1)(in)(x(n−1)kn−1
− x(n−1)(in−1−mn−1+1))

(mn−1−1)×
×(x(n−1)(in−1) − x(n−1)(in−1−mn−1))×
×(mn−1,in) f (x1k1 , . . . ,x(n−2)kn−2

,x(n−1)(in−1−mn−1),xn1)

+
N1


k1=1

· · ·
Nn−3


kn−3=1

Nn


in=mn+1

mn−1−1


in−1=0

Nn−2


kn−2=1

Nn−1


kn−1=in−1+1

Nn


kn=in

pk1···kn ×

×(xnkn− xn(in−mn+1))
(mn−1)(xnin− xn(in−mn))(x(n−1)kn−1

− x(n−1)1)
(in−1) ×

×(in−1,mn) f (x1k1 , . . . ,x(n−2)kn−2
,x(n−1)1,xn(in−mn))

+
N1


k1=1

· · ·
Nn−3


kn−3=1

Nn


in=mn+1

Nn−1


in−1=mn−1+1

Nn−2


kn−2=1

Nn−1


kn−1=in−1

Nn


kn=in

pk1···kn ×

×(xnkn − xn(in−mn+1))
(mn−1)(x(n−1)kn−1

− x(n−1)(in−1−mn−1+1))
(mn−1−1)×

×(mn−1,mn) f (x1k1 , . . . ,x(n−2)kn−2
,x(n−1)(in−1−mn−1),xn(in−mn))×

×(xnin − xn(in−mn))(x(n−1)(in−1)− x(n−1)(in−1−mn−1)).

Continuing in the similar fashion we finally get identity (3.7). �

Theorem 3.5 Let E j = {x j1,x j2, . . . ,x jNj} ⊂ R, x j1 < x j2 < .. . < x jNj for j = 1, . . . ,n.
Let pk1...kn ∈ R be real numbers for k j ∈ {1, . . . ,Nj} and let mj < Nj, j ∈ {1, . . . ,n}. Then
the inequality

N1


k1=1

· · ·
Nn


kn=1

pk1···kn f (x1k1 , . . . ,xnkn) ≥ 0 (3.8)

holds for every discrete convex function f : E1×·· ·×En → R of order (m1, . . . ,mn) if and
only if

N1


k1=i1+1

· · ·
Nn


kn=in+1

pk1···kn

n


j=1

(x jk j − x j1)(i j) = 0, (3.9)

i1 ∈ {0, . . . ,m1 −1}, . . . , in ∈ {0, . . . ,mn−1},
N1


k1=i1+1

· · ·
Nn


kn=in+1

pk1···kn(x1k1 − x1(i1−m1+1))
(m1−1)×
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×
n


j=2

(x jk j − x j1)(i j) = 0, (3.10)

i1 ∈ {m1 +1, . . . ,N1}, i2 ∈ {0, . . . ,m2 −1}, . . . , in ∈ {0, . . . ,mn−1},
...

N1


i1=m1+1

· · ·
Nn−1


in−1=mn−1+1

Nn


kn=in

pk1···kn ×

×
n−1


j=1

(x jk j − x j1)(i j)(xnkn − xn(in−mn+1))
(mn−1) = 0, (3.11)

i1 ∈ {0, . . . ,m1−1}, . . . , in−1 ∈ {0, . . . ,mn−1−1}, in ∈ {mn +1, . . . ,Nn},
...

N1


k1=i1+1

· · ·
Nn


kn=in+1

pk1···kn

n


j=1

(x jk j − x j(i j−mj+1))
(mj−1) ≥ 0, (3.12)

i1 ∈ {m1 +1, . . . ,N1}, . . . , in ∈ {mn +1, . . . ,Nn}.
Proof. If (3.9), (3.10), . . . ,(3.11) hold then all these sums are zero in (3.7) and the re-

quired inequality (3.8) holds by using (3.12). Conversely, let (3.8) holds for every convex
function f of order (m1, . . . ,mn). Let us consider the following functions

f 1(x1k1 , . . . ,xnkn) =
n


j=1

(x jk j − x j1)(i j) and f 2 = − f 1,

for i1 ∈ {0, . . . ,m1−1}, . . . , in ∈ {0, . . . ,mn−1}. Since these functions are convex of order
(m1, . . . ,mn), so by (3.8) the inequalities

N1


k1=1

· · ·
Nn


kn=1

pk1···kn f k(x1k1 , . . . ,xnkn) ≥ 0 for k ∈ {1,2}

hold and we get required equality (3.9). In the same way if we consider the following
functions for i1 ∈ {m1 +1, . . . ,N1}, i2 ∈ {0, . . . ,m2−1}, . . . , in ∈ {0, . . . ,mn −1}

f 3(x1k1 , . . . ,xnkn)

=

⎧⎪⎨
⎪⎩

(x1k1 − x1(i1−m1+1))
(m1−1)

n


j=2

(x jk j − x j1)(i j), x1(i1−1) < x1k1

0, x1(i1−1) ≥ x1k1 ,

and f 4 = − f 3

such that (m1,...,mn) f k ≥ 0 for k ∈ {3,4}, then we get the required equality (3.10).
Similarly, if we consider in (3.8) the following functions for i1 ∈{0, . . . ,m1−1}, . . . , in−1 ∈

{0, . . . ,mn−1−1}, in ∈ {mn +1, . . . ,Nn}
f 5(x1k1 , . . . ,xnkn)
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=

⎧⎪⎨
⎪⎩ (xnkn − xn(in−mn+1))

(mn−1)
n−1


j=1

(x jk j − x j1)(i j), xn(in−1) < xnkn

0, xn(in−1) ≥ xnkn

and f 6 = − f 5

such that (m1,...,mn) fk ≥ 0 for k ∈ {5,6}, then we get the required equality (3.11) and
so on.
The last inequality (3.12) is followed by considering the following function in (3.8) for
i1 ∈ {m1 +1, . . . ,N1}, . . . , in ∈ {mn +1, . . . ,Nn}

f 7(x1k1 , . . . ,xnkn)

=

⎧⎨
⎩

n


j=1

(x jk j − x j(i j−mj+1))
(mj−1), x1(i1−1) < x1k1 , . . . ,xn(in−1) < xnkn ,

0, otherwise.

�

3.4 Results for Integral of Function of Two Variables

In this section we pay attention to functions defined on a product of intervals. In [67]
J. Pečarić gave the following identity for a function f with continuous partial derivatives
 f
x ,  f

y ,  2 f
xy .

Theorem 3.6 Let P, f : [a,b]× [a,b]→ R be integrable functions, if f has the continuous
partial derivatives f(1,0), f(0,1) and f(1,1)on [a,b]× [a,b] then

∫ b

a

∫ b

a
P(x,y) f (x,y)dxdy = f (a,a)P1(a,a)+

∫ b

a
P1(x,a) f(1,0)(x,a)dx

+
∫ b

a
P1(a,y) f(0,1)(a,y)dy+

∫ b

a

∫ b

a
P1(x,y) f(1,1)(x,y)dxdy

where

P1(x,y) =
∫ b

x

∫ b

y
P(s,t)dtds,

f(1,0) =
 f
x

, f(0,1) =
 f
y

and f(1,1) =
 2 f
xy

=
 2 f
yx

.

Generalization of the previous identity for functions with higher partial derivatives is

given in [28]. Throughout this section a notation for a partial derivative  n+m f
xnym is f(n,m).
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Theorem 3.7 Let P, f : I× J → R be integrable functions, I = [a,b], J = [c,d], and f has
the continuous partial derivatives f(i, j) on I×J for i = 0,1, ...,n+1 and j = 0,1, ...,m+1,
then we have ∫ b

a

∫ d

c
P(x,y) f (x,y)dydx (3.13)

=
n


i=0

m


j=0

∫ b

a

∫ d

c
P(s,t) f(i, j)(a,c)

(s−a)i

i!
(t− c) j

j!
dt ds

+
m


j=0

∫ b

a

∫ b

x

∫ d

c
P(s,t) f(n+1, j)(x,c)

(s− x)n

n!
(t − c) j

j!
dt dsdx

+
n


i=0

∫ d

c

∫ b

a

∫ d

y
P(s,t) f(i,m+1)(a,y)

(s−a)i

i!
(t− y)m

m!
dt dsdy

+
∫ b

a

∫ d

c

∫ b

x

∫ d

y
P(s,t) f(n+1,m+1)(x,y)

(s− x)n

n!
(t− y)m

m!
dt dsdydx.

Proof. Let G(y) = f (x,y), i.e. we consider a function f (x,y) as a function of variable
y. Then a function G can be represented as

f (x,y) = G(y) =
m


j=0

G( j)(c)
(y− c) j

j!
+

∫ y

c
Gm+1(t)

(y− t)m

m!
dt

=
m


j=0

f(0, j)(x,c)
(y− c) j

j!
+

∫ y

c
f(0,m+1)(x,t)

(y− t)m

m!
dt,

where we use the facts that G( j)(c) = f(0, j)(x,c) and G(m+1)(t) = f(0,m+1)(x, t).
Multiply the above formula with P(x,y) and integrate it over [c,d] by variable y. Then

we have ∫ d

c
P(x,y) f (x,y)dy =

m


j=0

f(0, j)(x,c)
∫ d

c
P(x,y)

(y− c) j

j!
dy (3.14)

+
∫ d

c

(∫ y

c
P(x,y) f(0,m+1)(x,t)

(y− t)m

m!
dt

)
dy.

Let us represent the functions x �→ f(0, j)(x,c) and x �→ f(0,m+1)(x,t) using Taylor expan-
sions:

f(0, j)(x,c) =
n


i=0

f(i, j)(a,c)
(x−a)i

i!
+

∫ x

a
f(n+1, j)(s,c)

(x− s)n

n!
ds,

f(0,m+1)(x,t) =
n


i=0

f(i,m+1)(a,t)
(x−a)i

i!
+

∫ x

a
f(n+1,m+1)(s, t)

(x− s)n

n!
ds.

Putting these two formulae in (3.14) we get∫ d

c
P(x,y) f (x,y)dy
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=
m


j=0

(
n


i=0

f(i, j)(a,c)
(x−a)i

i!
+

∫ x

a
f(n+1, j)(s,c)

(x− s)n

n!
ds

)
×

×
∫ d

c
P(x,y)

(y− c) j

j!
dy+

∫ d

c

(∫ y

c
P(x,y)

(
n


i=0

f(i,m+1)(a, t)
(x−a)i

i!

+
∫ x

a
f(n+1,m+1)(s,t)

(x− s)n

n!
ds

)
(y− t)m

m!
dt

)
dy

=
m


j=0

(
n


i=0

f(i, j)(a,c)
(x−a)i

i!

)∫ d

c
P(x,y)

(y− c) j

j!
dy

+
m


j=0

(∫ x

a
f(n+1, j)(s,c)

(x− s)n

n!
ds

)∫ d

c
P(x,y)

(y− c) j

j!
dy

+
∫ d

c

∫ y

c
P(x,y)

(
n


i=0

f(i,m+1)(a,t)
(x−a)i

i!

)
(y− t)m

m!
dt dy

+
∫ d

c

∫ y

c

(∫ x

a
P(x,y) f(n+1,m+1)(s,t)

(x− s)n

n!
ds

)
(y− t)m

m!
dt dy.

Now, we integrate over [a,b] by variable x and get:

∫ b

a

∫ d

c
P(x,y) f (x,y)dydx

=
∫ b

a

[
m


j=0

(
n


i=0

f(i, j)(a,c)
(x−a)i

i!

)∫ d

c
P(x,y)

(y− c) j

j!
dy

]
dx

+
∫ b

a

[
m


j=0

(∫ x

a
f(n+1, j)(s,c)

(x− s)n

n!
ds

)∫ d

c
P(x,y)

(y− c) j

j!
dy

]
dx

+
∫ b

a

[∫ d

c

∫ y

c
P(x,y)

(
n


i=0

f(i,m+1)(a,t)
(x−a)i

i!

)
(y− t)m

m!
dt dy

]
dx

+
∫ b

a

[∫ d

c

∫ y

c

(∫ x

a
P(x,y) f(n+1,m+1)(s,t)

(x− s)n

n!
ds

)
(y− t)m

m!
dt dy

]
dx.

In the first summand we change the order of summation, use the linearity of the integral
and get

n


i=0

m


j=0

∫ b

a

∫ d

c
P(x,y) f(i, j)(a,c)

(x−a)i

i!
(y− c) j

j!
dydx.

The second summand is rewriten as

∫ b

a

[
m


j=0

(∫ x

a
f(n+1, j)(s,c)

(x− s)n

n!
ds

)∫ d

c
P(x,y)

(y− c) j

j!
dy

]
dx
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=
∫ b

a

[
m


j=0

(∫ x

a

∫ d

c
P(x,y)

(y− c) j

j!
f(n+1, j)(s,c)

(x− s)n

n!
dyds

)]
dx

=
m


j=0

∫ b

a

∫ x

a

∫ d

c
P(x,y) f(n+1, j)(s,c)

(x− s)n

n!
(y− c) j

j!
dydsdx

=
m


j=0

∫ b

a

∫ b

s

∫ d

c
P(x,y) f(n+1, j)(s,c)

(x− s)n

n!
(y− c) j

j!
dydxds,

where in the last equation we use the Fubini theorem for the variables s and x. Let us point
out, that firstly, the variable x is changed from a to b while the variable s is changed from
a to x. After changing the order of integration we have that variable s is changed from a to
b while the variable x is changed from s to b.

Similarly, the third summand is rewriten as:

∫ b

a

[∫ d

c

∫ y

c
P(x,y)

(
n


i=0

f(i,m+1)(a,t)
(x−a)i

i!

)
(y− t)m

m!
dt dy

]
dx

=
n


i=0

∫ b

a

∫ d

c

∫ y

c
P(x,y) f(i,m+1)(a,t)

(x−a)i

i!
(y− t)m

m!
dt dydx

=
n


i=0

∫ b

a

∫ d

c

∫ d

t
P(x,y) f(i,m+1)(a,t)

(x−a)i

i!
(y− t)m

m!
dydt dx

=
n


i=0

∫ d

c

∫ b

a

∫ d

t
P(x,y) f(i,m+1)(a,t)

(x−a)i

i!
(y− t)m

m!
dydxdt,

where we use the Fubini theorem twice, firstly for changing t and y, and then for t and x.
The fourth summand is rewriten as:

∫ b

a

[∫ d

c

∫ y

c

(∫ x

a
P(x,y) f(n+1,m+1)(s,t)

(x− s)n

n!
ds

)
(y− t)m

m!
dt dy

]
dx

=
∫ b

a

∫ d

c

∫ y

c

∫ x

a
P(x,y) f(n+1,m+1)(s,t)

(x− s)n

n!
(y− t)m

m!
dsdt dydx

=
∫ b

a

∫ d

c

∫ b

s

∫ d

t
P(x,y) f(n+1,m+1)(s,t)

(x− s)n

n!
(y− t)m

m!
dydxdt ds,

where we use the Fubini theorem several times. Firstly, we change t and y, then y and s,
then s and t, then s and x, then t and x.

Using all these results we get

∫ b

a

∫ d

c
P(x,y) f (x,y)dydx

=
n


i=0

m


j=0

∫ b

a

∫ d

c
P(x,y) f(i, j)(a,c)

(x−a)i

i!
(y− c) j

j!
dydx



3.4 RESULTS FOR INTEGRAL OF FUNCTION OF TWO VARIABLES 93

+
m


j=0

∫ b

a

∫ b

s

∫ d

c
P(x,y) f(n+1, j)(s,c)

(x− s)n

n!
(y− c) j

j!
dydxds

+
n


i=0

∫ d

c

∫ b

a

∫ d

t
P(x,y) f(i,m+1)(a,t)

(x−a)i

i!
(y− t)m

m!
dydxdt

+
∫ b

a

∫ d

c

∫ b

s

∫ d

t
P(x,y) f(n+1,m+1)(s,t)

(x− s)n

n!
(y− t)m

m!
dydxdt ds.

It is, in fact, the statement of Theorem 3.7 when we change the names of variables on
the right side: x ↔ s, y ↔ t. �

Using result of the previous theorem we obtain necessary and sufficient conditions that
inequality

∫ b
a

∫ d
c P(x,y) f (x,y)dydx≥ 0 holds for every (n+1,m+1)-convex two-variables

function.

Theorem 3.8 The inequality

∫ b

a

∫ d

c
P(x,y) f (x,y)dydx ≥ 0 (3.15)

holds for every function whose continuous partial derivative f(n+1,m+1) ≥ 0 on [a,b]× [c,d]
if and only if

∫ b

a

∫ d

c
P(s,t)

(s−a)i

i!
(t− c) j

j!
dt ds = 0, i = 0, ...,n; j = 0, ...,m (3.16)

∫ b

x

∫ d

c
P(s,t)

(s− x)n

n!
(t− c) j

j!
dt ds = 0, j = 0, ...,m; x ∈ [a,b] (3.17)

∫ b

a

∫ d

y
P(s,t)

(s−a)i

i!
(t − y)m

m!
dt ds = 0, i = 0, ...,n; y ∈ [c,d] (3.18)

∫ b

x

∫ d

y
P(s,t)

(s− x)n

n!
(t − y)m

m!
dt ds ≥ 0, x ∈ [a,b]; y ∈ [c,d]. (3.19)

Proof. If (3.16), (3.17) and (3.18) hold then the first three sums are zero in (3.13) and
the required inequality (3.15) holds by using (3.19).

Conversely, if we consider in (3.15) the following functions

f (1)(s,t) =
(s−a)i

i!
(t − c) j

j!
, f (2) = − f (1)

for 0 ≤ i ≤ n and 0 ≤ j ≤ m such that f (k)
(n+1,m+1)(s,t) ≥ 0, k = 1,2; then we get the re-

quired equality (3.16). In the same way if we consider in (3.15) the following functions for
0 ≤ j ≤ m, x ∈ [a,b] and t ∈ [c,d]

f (3)(s,t) =

⎧⎨
⎩

(s− x)n

n!
(t− c) j

j!
, x < s

0, x ≥ s
, f (4) = − f (3)
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such that f (k)
(n+1,m+1)(s,t) ≥ 0, k = 3,4, then we get the required equality (3.17). Similarly,

if we consider in (3.15) the following functions for 0 ≤ i ≤ n, y ∈ [c,d] and s ∈ [a,b]

f (5)(s,t) =

⎧⎨
⎩

(s−a)i

i!
(t− y)m

m!
, y < t

0, y ≥ t
, f (6) = − f (5)

such that f (k)
(n+1,m+1)(s,t)≥ 0, k = 5,6, then we get the required equality (3.18). The last in-

equality (3.19) is followed by considering the following function in (3.15) for x∈ [a,b], y∈
[c,d]

f (s,t) =

{ (s− x)n

n!
(t− y)m

m!
, x < s and y < t

0, x ≥ s or y ≥ t.
�

3.5 Results for Integral of Function of n Variables

As we done in previous sections, for the present section we also introduce some notations
to simplify the statement of our main theorems as follows. Results of this section are based
on paper [30].

For variables i1, . . . , in and constants m1 + 1, . . . ,mn + 1 we define ̃ in the following
way:

̃(i1, . . . , in) =
m1


i1=0

· · ·
mn


in=0

∫ b1

a1

· · ·
∫ bn

an

p(x) f(i1,...,in)(a1, . . . ,an)×

×
n


j=1

(y j −a j)i j

i j!
dyn · · ·dy1,

where p(x1, . . . ,xn) = p(x) and

̃(i1, . . . , ik−1,mk, ik+1, . . . , in) =
m1


i1=0

· · ·
mk−1


ik−1=0

mk+1


ik+1=0

· · ·
mn


in=0

∫ bk

ak

∫ b1

a1

· · ·
∫ bk−1

ak−1

∫ bk

xk

∫ bk+1

ak+1

· · ·
∫ bn

an

p(x)×

× f(i1,...,ik−1,mk+1,ik+1,...,in)
(yk − xk)mk

mk!

n


j=1, j �=k

(y j −a j)i j

i j!
dyn · · ·dy1dxk.

Similarly, we can define ̃ for any n-tuple from nCr(i j,mj) (where nCr(i j,mj) was intro-
duced in the start of previous section) for some j ∈ {1, . . . ,n} and finally we define

̃(m1, . . . ,mn) =
∫ b1

a1

· · ·
∫ bn

an

∫ b1

x1

· · ·
∫ bn

xn

p(x)×
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× f(m1+1,...,mn+1)(x1, . . . ,xn)
n


j=1

(y j − x j)mj

mj!
dyn · · ·dy1dxn · · ·dx1.

Now we are ready to state main theorems of this section.

Theorem 3.9 Let p, f : I1×·· ·× In → R be integrable functions, Ii = [ai,bi], i = 1, . . .n,
and let f ∈C(m1+1,...,mn+1)(I1×·· ·× In). Then the identity

∫ b1

a1

· · ·
∫ bn

an

p(x) f (x1, . . . ,xn)dxn · · ·dx1

=
n


r=0


(p1,...,pn)∈nCr(i j ,mj+1)

̃(p1, . . . , pn) (3.20)

holds.

Proof. We consider the Taylor expansion:

f (x1, . . . ,xn) =
mn


in=0

f(0,...,0,in)(x1, . . . ,xn−1,an)
(xn−an)in

in!

+
∫ xn

an

f(0,...,0,mn+1)(x1, . . . ,xn−1,yn)
(xn − yn)mn

mn!
dyn.

Multiply the above formula with p(x) and integrate it over [an,bn] by variable xn. Then
we have ∫ bn

an

p(x) f (x1, . . . ,xn)dxn

=
mn


in=0

f(0,...,0,in)(x1, . . . ,xn−1,an)
∫ bn

an

p(x)
(xn−an)in

in!
dxn (3.21)

+
∫ bn

an

(∫ xn

an

p(x) f(0,...,0,mn+1)(x1, . . . ,xn−1,yn)
(xn − yn)mn

mn!
dyn

)
dxn.

Let us use the following Taylor expansions:

f(0,...,0,in)(x1, . . . ,xn−1,an)

=
mn−1


in−1=0

f(0,...,0,in−1,in)(x1, . . . ,xn−2,an−1,an)
(xn−1−an−1)in−1

in−1!

+
∫ xn−1

an−1

f(0,...,0,mn−1+1,in)(x1, . . . ,xn−2,yn−1,an)
(xn−1− yn−1)mn−1

mn−1!
dyn−1,

f(0,...,0,mn+1)(x1, . . . ,xn−1,yn)

=
mn−1


in−1=0

f(0,...,0,in−1,mn+1)(x1, . . . ,xn−2,an−1,yn)
(xn−1−an−1)in−1

in−1!
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+
∫ xn−1

an−1

f(0,...,0,mn−1+1,mn+1)(x1, . . . ,xn−2,yn−1,yn)×

× (xn−1− yn−1)mn−1

mn−1!
dyn−1.

Put these two formulae in (3.21) and integrate over [an−1,bn−1] by variable xn−1. Then,
we have ∫ bn−1

an−1

∫ bn

an

p(x) f (x1, . . . ,xn)dxndxn−1

=
∫ bn−1

an−1

[ mn


in=0

mn−1


in−1=0

f(0,...,0,in−1,in)(x1, . . . ,xn−2,an−1,an)
(xn−1−an−1)in−1

in−1!

×
∫ bn

an

p(x)
(xn−an)in

in!
dxn

]
dxn−1

+
∫ bn−1

an−1

[ mn


in=0

∫ xn−1

an−1

f(0,...,0,mn−1+1,in)(x1, . . . ,xn−2,yn−1,an)×

× (xn−1− yn−1)mn−1

mn−1!
dyn−1

∫ bn

an

p(x)
(xn−an)in

in!
dxn

]
dxn−1

+
∫ bn−1

an−1

[ ∫ bn

an

∫ xn

an

p(x)
mn−1


in−1=0

f(0,...,0,in−1,mn+1)(x1, . . . ,xn−2,an−1,yn)×

× (xn−1−an−1)in−1

in−1!
(xn − yn)mn

mn!
dyndxn

]
dxn−1

+
∫ bn−1

an−1

[∫ bn

an

∫ xn

an

p(x)×

×
∫ xn−1

an−1

f(0,...,0,mn−1+1,mn+1)(x1, . . . ,xn−2,yn−1,yn)×

× (xn−1− yn−1)mn−1

mn−1!
(xn − yn)mn

mn!
dyn−1dyndxn

]
dxn−1.

In the first summand we change the order of summation, use linearity of integral and get

mn


in=0

mn−1


in−1=0

∫ bn−1

an−1

∫ bn

an

p(x) f(0,...,0,in−1,in)(x1, . . . ,xn−2,an−1,an)×

× (xn−1−an−1)in−1

in−1!
(xn−an)in

in!
dxndxn−1.

The second summand is rewritten as∫ bn−1

an−1

[ mn


in=0

∫ xn−1

an−1

f(0,...,0,mn−1+1,in)(x1, . . . ,xn−2,yn−1,an)×
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× (xn−1− yn−1)mn−1

mn−1!
dyn−1

∫ bn

an

p(x)
(xn−an)in

in!
dxn

]
dxn−1

=
∫ bn−1

an−1

[ mn


in=0

∫ xn−1

an−1

∫ bn

an

p(x)
(xn−an)in

in!
(xn−1− yn−1)mn−1

mn−1!
×

× f(0,...,0,mn−1+1,in)(x1, . . . ,xn−2,yn−1,an)dxndyn−1

]
dxn−1

=
mn


in=0

∫ bn−1

an−1

∫ xn−1

an−1

∫ bn

an

p(x) f(0,...,0,mn−1+1,in)(x1, . . . ,xn−2,yn−1,an)×

× (xn−an)in

in!
(xn−1− yn−1)mn−1

mn−1!
dxndyn−1dxn−1

=
mn


in=0

∫ bn−1

an−1

∫ bn−1

yn−1

∫ bn

an

p(x) f(0,...,0,mn−1+1,in)(x1, . . . ,xn−2,yn−1,an)×

× (xn−an)in

in!
(xn−1− yn−1)mn−1

mn−1!
dxndxn−1dyn−1

where in the last equation we used the Fubini theorem for variables yn−1 and xn−1. Let us
point out that firstly, the variable xn−1 is changed from an−1 to bn−1 while the variable yn−1

is changed from an−1 to xn−1. After changing the order of integration we have that variable
yn−1 is changed from an−1 to bn−1 while the variable xn−1 is changed from yn−1 to bn−1.

Similarly, the third summand is rewritten as:∫ bn−1

an−1

[∫ bn

an

∫ xn

an

p(x)
mn−1


in−1=0

f(0,...,0,in−1,mn+1)(x1, . . . ,xn−2,an−1,yn)×

× (xn−1−an−1)in−1

in−1!
(xn− yn)mn

mn!
dyndxn

]
dxn−1

=
mn−1


in−1=0

∫ bn−1

an−1

∫ bn

an

∫ xn

an

p(x) f(0,...,0,in−1,mn+1)(x1, . . . ,xn−2,an−1,yn)×

× (xn−1−an−1)in−1

in−1!
(xn − yn)mn

mn!
dyndxndxn−1

=
mn−1


in−1=0

∫ bn−1

an−1

∫ bn

an

∫ bn

yn

p(x) f(0,...,0,in−1,mn+1)(x1, . . . ,xn−2,an−1,yn)×

× (xn−1−an−1)in−1

in−1!
(xn − yn)mn

mn!
dxndyndxn−1

=
mn−1


in−1=0

∫ bn

an

∫ bn−1

an−1

∫ bn

yn

p(x) f(0,...,0,in−1,mn+1)(x1, . . . ,xn−2,an−1,yn)×

× (xn−1−an−1)in−1

in−1!
(xn − yn)mn

mn!
dxndxn−1dyn

where we use the Fubini theorem twice, firstly for changing yn and xn and then for yn and
xn−1.
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The fourth summand is rewritten as∫ bn−1

an−1

∫ bn

an

∫ xn

an

∫ xn−1

an−1

p(x) f(0,...,0,mn−1+1,mn+1)(x1, . . . ,xn−2,yn−1,yn)×

× (xn−1− yn−1)mn−1

mn−1!
(xn − yn)mn

mn!
dyn−1dyndxndxn−1

=
∫ bn−1

an−1

∫ bn

an

∫ bn−1

yn−1

∫ b

yn

p(x) f(0,...,0,mn−1+1,mn+1)(x1, . . . ,xn−2,yn−1,yn)×

× (xn−1− yn−1)mn−1

mn−1!
(xn − yn)mn

mn!
dxndxn−1dyndyn−1,

where we use the Fubini theorem several times. Firstly, we change yn and xn, then xn and
yn−1, then yn−1 and yn, then yn−1 and xn−1, then yn and xn−1. Using all these results we get

∫ bn−1

an−1

∫ bn

an

p(x) f (x1, . . . ,xn)dxndxn−1

=
mn


in=0

mn−1


in−1=0

∫ bn−1

an−1

∫ bn

an

p(x) f(0,...,0,in−1,in)(x1, . . . ,xn−2,an−1,an)×

× (xn−1−an−1)in−1

in−1!
(xn −an)in

in!
dxndxn−1

+
mn


in=0

∫ bn−1

an−1

∫ bn−1

yn−1

∫ bn

an

p(x) f(0,...,0,mn−1+1,in)(x1, . . . ,xn−2,yn−1,an)×

× (xn−1− yn−1)mn−1

mn−1!
(xn−an)in

in!
dxndxn−1dyn−1

+
mn−1


in−1=0

∫ bn

an

∫ bn−1

an−1

∫ bn

yn

p(x) f(0,...,0,in−1,mn+1)(x1, . . . ,xn−2,an−1,yn)×

× (xn−1−an−1)in−1

in−1!
(xn − yn)mn

mn!
dxndxn−1dyn

+
∫ bn−1

an−1

∫ bn

an

∫ bn−1

yn−1

∫ bn−1

yn−1

∫ bn

yn

p(x)×

× f(0,...,0,mn−1+1,mn+1)(x1, . . . ,xn−2,yn−1,yn)
(xn−1 − yn−1)mn−1

mn−1!
×

× (xn− yn)mn

mn!
dxndxn−1dyndyn−1.

Now, use the Taylor expansion again and integrate over [an−2,bn−2] by variable xn−2. If
we proceed in the similar fashion as we done before, then we finally get:

∫ bn−2

an−2

∫ bn−1

an−1

∫ bn

an

p(x) f (x1, . . . ,xn)dxndxn−1dxn−2
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=
mn


in=0

mn−1


in−1=0

mn−2


in−2=0

∫ bn−2

an−2

∫ bn−1

an−1

∫ bn

an

p(x)×

× f(0,...,0,in−2,in−1,in)(x1, . . . ,xn−3,an−2,an−1,an)×

× (xn−2−an−2)in−2

in−2!
(xn−1−an−1)in−1

in−1!
(xn −an)in

in!
dxndxn−1dxn−2

+
mn


in=0

mn−1


in−1=0

∫ bn−2

an−2

∫ bn−2

yn−2

∫ bn−1

an−1

∫ bn

an

p(x)×

× f(0,...,0,mn−2+1,in−1+1,in)(x1, . . . ,xn−3,yn−2,an−1,an)×

× (xn−2− yn−2)mn−2

mn−2!
(xn−1−an−1)in−1

in−1!
(xn−an)in

in!
dxndxn−1dxn−2dyn−2

+
mn


in=0

mn−2


in−2=0

∫ bn−1

an−1

∫ bn−2

an−2

∫ bn−1

yn−1

∫ bn

an

p(x)×

× f(0,...,0,in−2,mn−1+1,in)(x1, . . . ,xn−3,an−2,yn−1,an)×

× (xn−2−an−2)in−2

in−2!
(xn−1− yn−1)mn−1

mn−1!
(xn−an)in

in!
dxndxn−1dxn−2dyn−1

+
mn


in=0

∫ bn−2

an−2

∫ bn−1

an−1

∫ bn−2

yn−2

∫ bn−1

yn−1

∫ bn

an

p(x)×

× f(0,...,0,mn−2+1,mn−1+1,in)(x1, . . . ,xn−3,yn−2,yn−1,an)×

× (xn−2− yn−2)mn−2

mn−2!
(xn−1− yn−1)mn−1

mn−1!
(xn−an)in

in!
×

×dxndxn−1dxn−2dyn−1dyn−2

+
mn−1


in−1=0

mn−2


in−2=0

∫ bn

an

∫ bn−2

an−2

∫ bn−1

an−1

∫ bn

yn

p(x)×

× f(0,...,0,in−2,in−1,mn+1)(x1, . . . ,xn−3,an−2,an−1,yn)×

× (xn−2−an−2)in−2

in−2!
(xn−1−an−1)in−1

in−1!
(xn − yn)mn

mn!
dxndxn−1dxn−2dyn

+
mn−1


in−1=0

∫ bn−2

an−2

∫ bn

an

∫ bn−2

yn−2

∫ bn−1

an−1

∫ bn

yn

p(x)×

× f(0,...,0,mn−2+1,in−1,mn+1)(x1, . . . ,xn−3,yn−2,an−1,yn)×

× (xn−2− yn−2)mn−2

mn−2!
(xn−1−an−1)in−1

in−1!
(xn− yn)mn

mn!
×

×dxndxn−1dxn−2dyndyn−2

+
mn−2


in−2=0

∫ bn−1

an−1

∫ bn

an

∫ bn−2

an−2

∫ bn−1

yn−1

∫ bn

yn

p(x)×

× f(0,...,0,in−2,mn−1+1,mn+1)(x1, . . . ,xn−3,an−2,yn−1,yn)×
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× (xn−2−an−2)in−2

in−2!
(xn−1− yn−1)mn−1

mn−1!
(xn − yn)mn

mn!
×

×dxndxn−1dxn−2dyndyn−1

+
∫ bn−2

an−2

∫ bn−1

an−1

∫ bn

an

∫ bn−2

yn−2

∫ bn−1

yn−1

∫ bn

yn

p(x)×
× f(0,...,0,mn−2+1,mn−1+1,mn+1)(x1, . . . ,xn−3,yn−2,yn−1,yn)×

× (xn−2− yn−2)mn−2

mn−2!
(xn−1− yn−1)mn−1

mn−1!
(xn− yn)mn

mn!
×

×dxndxn−1dxn−2dyndyn−1dyn−2.

Then we use the Taylor expansion again and integrate the result over interval [an−3,bn−3]
by variable xn−3. If we continue this process, we get required identity. �

Corollary 3.2 Let the assumptions of Theorem 3.9 be valid and let p ≡ 1. Then the
following identity holds∫ b1

a1

· · ·
∫ bn

an

f (x1, . . . ,xn)dxn · · ·dx1

=
m1


i1=0

· · ·
mn


in=0

n


j=1

(b j −a j)i j+1

(ii +1)!
f(i1,...,in)(a1, . . . ,an)

+
m2


i2=0

· · ·
mn


in=0

∫ b1

a1

(b1− y1)m1+1

(m1 +1)!
×

×
n


j=2

(b j −a j)i j+1

(i j +1)!
f(m1+1,i2,...,in)(y1,a2, . . . ,an)dy1

+ · · ·+
+

m1


i1=0

· · ·
mn−1


in−1=0

∫ bn

an

(bn− yn)mn+1

(mn +1)!

n−1


j=1

(b j −a j)i j+1

(i j +1)!
×

× f(i1,...,in−1,mn+1)(a1, . . . ,an−1,yn)dyn

+ · · ·+
+

∫ b1

a1

· · ·
∫ bn

an

n


j=1

(b j − y j)mj+1

(mj +1)!
f(m1+1,...,mn+1)(y1, . . . ,yn)dyn · · ·dy1.

Remark 3.2 For n = 2 in the above corollary we get Theorem 6.16 in the book [15] by
simply putting x = a and y = c.

Theorem 3.10 Let the assumptions of Theorem 3.9 be valid. Then the inequality

( f ) =
∫ b1

a1

· · ·
∫ bn

an

p(x) f (x1, . . . ,xn)dxn · · ·dx1 ≥ 0 (3.22)

holds for every (m1 +1, . . . ,mn +1)-convex function f on I1×·· ·× In if and only if∫ b1

a1

· · ·
∫ bn

an

p(y)
n


j=1

(y j −a j)i j

i j!
dyn · · ·dy1 = 0, (3.23)
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i1 ∈ {0,1, . . . ,m1}, . . . , in ∈ {0,1, . . . ,mn},∫ b1

x1

· · ·
∫ bn

an

p(y)
(y1− x1)m1

m1!

n


j=2

(y j −a j)i j

i j!
dyn · · ·dy1 = 0, (3.24)

i2 ∈ {0,1, . . . ,m2}, . . . , in ∈ {0,1, . . . ,mn},∀x1 ∈ [a1,b1],

...∫ b1

a1

· · ·
∫ bn−1

an−1

∫ bn

xn

p(y)
n−1


j=1

(y j −a j)i j

i j!
(yn− xn)mn

mn!
dyn · · ·dy1 = 0, (3.25)

i1 ∈ {0,1, . . . ,m1}, . . . , in−1 ∈ {0,1, . . . ,mn−1},xn ∈ [an,bn],

...∫ b1

x1

· · ·
∫ bn

xn

p(y)
n


j=1

(y j − x j)mj

mj!
dyn · · ·dy1 ≥ 0, (3.26)

x1 ∈ [a1,b1], . . . ,xn ∈ [an,bn].

Proof. If (3.23), (3.24), . . . ,(3.25) hold, then all these sums are zero in (3.20) and the
required inequality (3.22) holds by using (3.26).

Conversely, if we consider in (3.22) the following functions

g1(y1, . . . ,yn) =
n


j=1

(y j −a j)i j

i j!
and g2 = −g1

for i1 ∈ {0,1, . . . ,m1}, . . . , in ∈ {0,1, . . . ,mn} such that gk
(m1+1,...,mn+1) ≥ 0, k ∈ {1,2},

then we get the required equality (3.23).
In the same way, if we consider in (3.22) the following functions for i2 ∈ {0,1, . . . ,m2},

. . . , in ∈ {0,1, . . . ,mn},∀x1 ∈ [a1,b1]

g3(y1, . . . ,yn) =

⎧⎪⎨
⎪⎩

(y1− x1)m1

m1!

n


j=2

(y j −a j)i j

i j!
, x1 < y1,

0, x1 ≥ y1,

and g4 = −g3

such that gk
(m1+1,...,mn+1) ≥ 0, k ∈ {3,4}, then we get the required equality (3.24). Sim-

ilarly, if we consider in (3.22) the following functions for i1 ∈ {0,1, . . . ,m1}, . . . , in−1 ∈
{0,1, . . . ,mn−1},∀xn ∈ [an,bn]

g5(y1, . . . ,yn) =

⎧⎪⎨
⎪⎩

n−1


j=1

(y j −a j)i j

i j!
(yn− xn)mn

mn!
, xn < yn,

0, xn ≥ yn,

and g6 = −g5

such that gk
(m1+1,...,mn+1) ≥ 0, k ∈ {5,6}, then we get the required equality (3.25) and so

on.
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The last inequality (3.26) is followed by considering the following function in (3.22)
for any x1 ∈ [a1,b1], . . . , xn ∈ [an,bn],

g7(y1, . . . ,yn) =

⎧⎨
⎩

n


j=1

(y j − x j)mj

mj!
, x1 < y1, . . . ,xn < yn,

0, otherwise.

�

3.6 Mean Value Theorems and Exponential
Convexity

It is a well known fact that many results of classical real analysis are a consequence of the
mean value theorem. Lagrange’s and Cauchy’s mean value theorems are among the most
important theorems of differential calculus. Here we state some generalized mean value
theorems of Lagrange and of Cauchy-type. These results are given in [30].

Theorem 3.11 Let  :C(m1+1,...,mn+1)(I1×·· ·× In) → R be the linear functional defined
in (3.22). Let p : I1 ×·· ·× In → R be an integrable function and f ∈C(m1+1,...,mn+1)(I1 ×
. . . In), Ii = [ai,bi], i = 1, . . .n, such that the conditions (3.23),(3.24), . . ., (3.25), . . ., (3.26)
of Theorem 3.10 are satisfied. Then there exists (1, . . . ,n) ∈ I1×·· ·× In such that

( f ) = f(m1+1,...,mn+1)(1, . . . ,n)( f0) (3.27)

where f0(x1, . . . ,xn) =
n


j=1

x
mj+1
j

(mj +1)!
.

Proof. Since f(m1+1,...,mn+1) is continuous on I1×·· ·× In, so it attains its maximum and
minimum values on I1×·· ·× In. Let L = min f(m1+1,...,mn+1) and U = max f(m1+1,...,mn+1).
Then the function G = U f0− f satisfies

G(m1+1,...,mn+1)(x1, . . . ,xn) = U − f(m1+1,...,mn+1)(x1, . . . ,xn) ≥ 0,

i.e., G is an (m1 +1, . . . ,mn +1)-convex function. Hence (G) ≥ 0 by Theorem 3.10 and
we conclude that

( f ) ≤U( f0).

Similarly, we have
L( f0) ≤ ( f ).

Combining the two inequalities we get

L( f0) ≤ ( f ) ≤U( f0).
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If ( f0) = 0, then ( f ) = 0 and the statement obviously holds. If( f0) �= 0, then
( f )
( f0)

∈
[L,U ] and hence, there exists (1, . . . ,n) ∈ I1×·· ·× In such that

( f )
( f0)

= f(m1+1,...,mn+1)(1, . . . ,n)

which gives us (3.27). �

Theorem 3.12 Let all the assumptions of Theorem 3.11 be valid. Then there exists
(1, . . . ,n) ∈ I1×·· ·× In such that

( f )
(g)

=
f(m1+1,...,mn+1)(1, . . . ,n)
g(m1+1,...,mn+1)(1, . . . ,n)

provided that the denominator of the left-hand side is nonzero.

Proof. Let h ∈C(m1+1,...,mn+1)(I1×·· ·× In) be defined as

h = (g) f −( f )g.

Using Theorem 3.11 there exists (1, . . . ,n) such that

0 = (h) = h(m1+1,...,mn+1)(1, . . . ,n)( f0)

or [
(g) f(m1+1,...,mn+1)(1, . . . ,n)−( f )g(m1+1,...,mn+1)(1, . . . ,n)

]
( f0) = 0

which gives us required result. �

Corollary 3.3 Let all the assumptions of Theorem 3.12 be satisfied with m = m1 = m2 =
. . . = mn. Then there exists (1, . . . ,n) ∈ I1×·· ·× In such that

(1 · · ·n)
q−q′ =

[(q′ +1)q′ · · ·(q′ −n+1)]n((x1 · · ·xn)q+1)
[(q+1)q · · ·(q−n+1)]n((x1 · · ·xn)q′+1)

for −< q �= q′ < + and q,q′ �∈ {−1,0,1, . . . ,n−1}.
Proof. If we put

f (x1, . . . ,xn) = (x1 · · ·xn)q+1

and
g(x1, . . . ,xn) = (x1 · · ·xn)q′+1

in Theorem 3.12, then we get the required result. �

Bernstein [9] and Widder [98] independently introduced an important sub-class of con-
vex functions, which is called class of exponentially convex functions on a given open
interval and studied some properties of this newly defined class.

Let J ⊂ R be an open interval. Here we give some definitions and properties related to
exponential convexity. For further reading we refer to [9], [22].
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Definition 3.2 [9] A function  : J → R is exponentially convex on J if it is continuous
and

n


i, j=1

i j (xi + x j) ≥ 0

∀n ∈ N and all choices i, j ∈ R; i, j = 1, . . . ,n such that xi + x j ∈ J; 1 ≤ i, j ≤ n.

Example 3.1 [22] For constant c≥ 0 and k ∈ R, x �→ cekx is an example of exponentially
convex function.

The following proposition and two corollaries are given in [22].

Proposition 3.1 Let  : J → R, the following propositions are equivalent:

(i)  is exponentially convex on J.

(ii)  is continuous and
n


i, j=1

i j
(

xi + x j

2

)
≥ 0, for all i, j ∈ R and every xi,x j ∈

J; 1 ≤ i, j ≤ n.

Corollary 3.4 If  is an exponentially convex function on J, then the matrix[


(
xi + x j

2

)]n

i, j=1

is a positive semi-definite matrix. Particularly

det

[


(
xi + x j

2

)]n

i, j=1
≥ 0,

∀n ∈ N, xi,x j ∈ J; i, j = 1, . . . ,n.

Corollary 3.5 If  : J → 〈0,〉 is an exponentially convex function, then  is a log-
convex function, i.e. for every x,y ∈ J and every  ∈ [0,1], we have

(x+(1− )y)≤  (x)1− (y).

Let I = [a,b] ⊂ R+ and  = {(t) : In → R : t ∈ R} be a family of functions defined
as:

(t)(x1, . . . ,xn) =

⎧⎪⎪⎨
⎪⎪⎩

(x1 · · ·xn)t

[t(t−1) · · ·(t−m)]n
, t �∈ {0, . . . ,m}

(x1 · · ·xn)t logn(x1 · · ·xn)
(−1)m−t n![t!(m− t)!]n

, t ∈ {0, . . . ,m}.

Clearly (t)
(m+1,...,m+1)(x1, . . . ,xn) = (x1 · · ·xn)t−m−1 = e(t−m−1) log(x1···xn) for (x1, . . . ,xn)∈ In

so (t) is an (m+1, . . . ,m+1)-convex function and

t �→ (t)
(m+1,...,m+1)(x1, . . . ,xn) is an exponentially convex function on R. From Corollary

3.5 we know that every positive function which is exponentially convex is log-convex. So,
we state our next theorem.
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Theorem 3.13 Let  : C(m+1,...,m+1)(In) → R be a linear functional as defined in (3.22)
and let the conditions (3.23),(3.24),(3.25),(3.26) of Theorem 3.10 for function p be sat-
isfied and (t) be a function defined above. Then the following statements hold:

(a) The function t �→ ((t)) is continuous on R.

(b) The function t �→ ((t)) is exponentially convex on R.

(c) If the function t �→ ((t)) is positive on R, then t �→ ((t)) is log-convex on R.
Moreover, the following Lyapunov inequality holds for r < s < t

(((s)))t−r ≤ (((r)))t−s(((t)))s−r. (3.28)

(d) The matrix
[
((

ti+t j
2 ))

]m

i, j=1
is positive-semidefinite. Particularly,

det
[
((

ti+t j
2 ))

]m

i, j=1
≥ 0

for each ti ∈ R and m ∈ N for i ∈ {1, . . . ,m}.
(e) If the function t �→ ((t)) is differentiable on R. Then for every s,t,u,v ∈ R such

that s ≤ u and t ≤ v, we have

s,t(,) ≤ u,v(,), (3.29)

where

s,t(,) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
((s))
((t))

) 1
s−t

, s �= t

exp

(
d
ds((s))
((s))

)
, s = t.

(3.30)

Proof. (a) For fixed n ∈ N∪{0}, using the L’Hôpital rule n-times and applying limit, we
get

lim
t→0

((t)) = lim
t→0

∫ b
a · · ·∫ b

a p(x)(x1 · · ·xn)t dxn · · ·dx1

[t(t−1) · · ·(t−m)]n

=
∫ b
a · · ·∫ b

a p(x) logn(x1 · · ·xn)dxn · · ·dx1

(−1)mn!
(
m!

)n

= ((0)).

In the similar fashion we can get

lim
t→k

((t)) = ((k)), k ∈ {1, . . . ,m}.

So we conclude that the function t �→ ((t)) is continuous on R.
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(b) Let us define the function

 =
k


i, j=1

uiu j(
ti+t j

2 ),

where ti,ui ∈ R, i ∈ {1, . . . ,k}. Since the function t �→ (t)
(m+1,...,m+1) is exponentially con-

vex, we have

(m+1,...,m+1) =
k


i, j=1

uiu j
(

ti+t j
2 )

(m+1,...,m+1) ≥ 0,

which implies that  is an (m+1, . . . ,m+1)-convex function on In and therefore we have

()≥ 0. Hence k
i, j=1 uiu j((

ti+t j
2 ))≥ 0 and we conclude that the function t �→((t))

is exponentially convex on R.
(c) It is a direct consequence of (b) by using Corollary 3.5. As the function t �→((t))

is log-convex, i.e. log(((t))) is convex, so we have

log(((s)))t−r ≤ log(((r)))t−s + log(((t)))s−r,

which gives us (3.28).
(d) This is a consequence of Corollary 3.4.
(e) For any convex function  the inequality

(s) − (t)
s − t

≤ (u) − (v)
u − v

(3.31)

holds for s, t,u,v∈ I ⊂R such that s≤ u, t ≤ v, s �= t, u �= v, [77, p.2]. Since by (c), ((t))
is log-convex, so set (x) = log(((x))) in (3.31) we have

log(((s))) − log(((t)))
s− t

≤ log(((u))) − log(((v)))
u− v

(3.32)

for s ≤ u, t ≤ v, s �= t, u �= v, which is equivalent to (3.29). The cases for s = t and / or
u = v are easily followed from (3.32) by taking respective limits. �



Chapter4
Functions with
Nondecreasing Increments

This chapter is devoted to recent results about functions with nondecreasing increments
of higher order. In the first section we list definitions and basic properties of functions
with nondecreasing increments, in the second section we give results for functions with
nondecresing increments of higher order, while the third section contains new results about
the Levinson inequality which connect that inequality with functions with nondecreasing
increments of the third order.

4.1 Inequalities for Functions with Nondecreasing
Increments

Let R
k denote the k-dimensional vector lattice of points x = (x1, . . . ,xk),xi real for i =

1, . . . ,k, with the partial ordering x = (x1, . . . ,xk) ≤ (y1, . . . ,yk) = y if and only if xi ≤ yi

for i = 1, . . . ,k. For a,b ∈ R
k, a≤ b, a set {x∈ R

k : a ≤ x ≤ b} is called an interval [a,b].
We also use a simbol I for an interval in R

k.
By X(t) = (X1(t), . . . ,Xk(t)) we denote a mapping of an interval from R into an interval

I ⊂ R
k. If all components Xi, i = 1, . . . ,k, satisfy any property we say that X has this

property. Further, by
∫
J XdH we, mean the vector (

∫
J X1dH, . . . ,

∫
J XkdH). Also

∫
J HdX

= (
∫
J HdX1, . . . ,

∫
J HdXk).

107
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Definition 4.1 A real valued function f on an interval I ⊂ R
k will be said to have non-

decreasing increments if

f (a+h)− f (a)≤ f (b+h)− f (b) (4.1)

whenever a ∈ I, b+h ∈ I, 0 ≤ h ∈ R
k, a ≤ b.

This class of functions was introduced by Brunk in [8] where some basic properties are
also given.

For example, a function with nondecreasing increments is not necessarily continuous.
If the first partial derivatives of a function f : I → R exist, then f has nondecreasing incre-
ments if and only if each of these partial derivatives is nondecreasing in each arguments,
in other words, if and only if the gradient  f is nonnegative on I.

If the second partial derivatives of a function f : I → R exist, then f has nondecreasing
increments if and only if each of these partial derivatives is nonnegative. If a function f
with nondecreasing increments is continuous for b ≤ x ≤ a+b, where 0 ≤ a ∈ R

k, then
the function  : [0,1] → R defined by (t) = f (ta+b) is convex.

More corresponding results about functions with nondecreasing increments are col-
lected in [51, pp. 351-362]. We are interested in the following theorem in which the main
inequality is similar to general linear inequalities which are investigated in the first two
chapters.

Theorem 4.1 ([8]) Let I denote an interval in R
k, let X : [a,b〉 → I be a nondecreasing

continuous map and let H be a function of bounded variation and continuous from the left
on [a,b〉 with H(a) = 0. Then ∫

[a,b〉
f (X(t)) dH(t) ≥ 0 (4.2)

for every continuous function f : I → R with nondecreasing increments if and only if

H(b) = 0, (4.3)∫
[a,b)

H(u)dX(u) = 0, (4.4)

and ∫
[a,t}

H(u)dX(u) ≥ 0 for [a,t} ⊂ [a,b〉, (4.5)

where
∫

H dX = (
∫

H dX1, . . . ,
∫

H dXk) and the symbol [a,t} refer to either of the intervals
[a,t] or [a, t〉.

Proof. Let us prove a necessity, i.e. let inequality (4.2) holds for every continuous
function f : I → R with nondecreasing increments. Putting in (4.2) f ≡ 1 and f ≡ −1 we
get (4.3). Putting in (4.2)

f (x) = x j, f (x) = −x j, j = 1,2, . . . ,k
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respectively, where x = (x1, . . . ,xk), we get∫
[a,b〉

Xj(t)dH(t) = 0, j = 1,2, . . . ,k,

i.e.
∫

[a,b)
H(t)dX(t)= 0, which is (4.4). Inequality (4.5) follows from (4.2) after integration

by parts for fixed j( j = 1,2, . . . ,k) and fixed t ∈ [a,b〉, f (x) = (Xj(t+)− x j)+ or f (x) =
(Xj(t−)− x j)+.

Let us suppose that (4.3), (4.4) and (4.5) hold. Since f may be approximated uniformly
on I by functions with continuous nonnegative second partial derivatives, we may assume
that the second partials f(i, j) exist and are continuous and nonnegative. Then, using (4.3)
and (4.4) we get∫

[a,b〉
f (X(t)) dH(t) = −

∫
[a,b〉

H(t) f (X(t)) dX(t)

= −
k


j=1

∫
[a,b〉

H(t) f j (X(t)) dXj(t)

=
k


j=1

k


i=1

∫
[a,b〉

fi j (X(t)) dXi(t)
∫

[0,t〉
H(u)dXj(u).

Since (4.5) holds each term in the last sum is nonnegative, so inequality (4.2) is verified. �

A majorization theorem is valid also for functions with nondecreasing increments. Be-
fore its proof we state and prove a helpful lemma from [65]. We use the following notation:

xi
hi

f = xi
hi

f (x1, . . . ,xk) := f (x1, . . . ,xi +hi, . . . ,xk)− f (x1, . . . ,xi, . . . ,xk),

xi
hi
x j

h j
f := xi

hi

(
x j

h j
f (x1, . . . ,xk)

)
.

Lemma 4.1 Let H be a continuous real function depending on t and u1, . . . ,uk, defined
for t ∈ [a,b], ui ∈ [ai,bi], for i = 1,2, . . . ,k such that

t
p

ui
hi
H ≤ 0, i ∈ {1, . . . ,r}, t

p
ui
hi
H ≥ 0, i ∈ {r+1, . . . ,k},

ui
hi
u j

h j
H ≥ 0, i, j ∈ {1, . . . ,r} or i, j ∈ {r+1, . . . ,k}

ui
hi
u j

h j
H ≤ 0,

(
i ∈ {1, . . . ,r} and j ∈ {r+1, . . . ,k}

)
or

(
i ∈ {r+1, . . . ,k} and j ∈ {1, . . . ,r}

)
hold for all ui,hi ≥ 0,t, p ≥ 0, t + p ∈ [a,b], ui +hi ∈ [ai,bi] for i = 1, . . . ,k.

Let fi,gi : [a,b]→ [ai,bi], (i = 1, . . . ,k) be real continuous functions, nonincreasing for
i = 1, . . . ,r and nondecreasing for i = r + 1, . . .k, and let G : [a,b] → R be a function of
bounded variation.
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Let us define a function F : [0,1] → R as

F( ) =
∫ b

a
H(t;g1(t)+ (1− ) f1(t), . . . ,gk(t)+ (1− ) fk(t))dG(t).

(a) If ∫ x

a
fi(t)dG(t) ≤

∫ x

a
gi(t)dG(t) (a ≤ x ≤ b, i ∈ {1, . . . ,r}),∫ b

x
fi(t)dG(t) ≤

∫ b

x
gi(t)dG(t) (a ≤ x ≤ b, i ∈ {r+1, . . . ,k}), (4.6)∫ b

a
fi(t)dG(t) =

∫ b

a
gi(t)dG(t) (i ∈ {1, . . . ,k}),

then F is nondecreasing on [0,1]. Particularly,

∫ b

a
H(t; f1(t), . . . , fk(t))dG(t) ≤

∫ b

a
H(t;g1(t), . . . ,gk(t))dG(t). (4.7)

(b) If H is a nondecreasing function on variables u1, . . . ,uk, and if, instead of (4.6),∫ x

a
fi(t)dG(t) ≤

∫ x

a
gi(t)dG(t) (a ≤ x ≤ b, i ∈ {1, . . . ,r}),∫ b

x
fi(t)dG(t) ≤

∫ b

x
gi(t)dG(t) (a ≤ x ≤ b, i ∈ {r+1, . . . ,k}) (4.8)

hold, then F is also nondecreasing and (4.7) is valid too.

Proof. The function H may be approximated uniformly by polynomials which satisfy
the conditions

 2H
 tui

≤ 0, i ∈ {1, . . . ,r},  2H
 tui

≥ 0, i ∈ {r+1, . . . ,k},

 2H
uiu j

≥ 0, i, j ∈ {1, . . . ,r} or i, j ∈ {r+1, . . . ,k}

 2H
uiu j

≤ 0,
(
i ∈ {1, . . . ,r} and j ∈ {r+1, . . . ,k}

)
or

(
i ∈ {r+1, . . . ,k} and j ∈ {1, . . . ,r}

)
.

So, there is no loss in generality in assuming that the second partial derivatives exist.
Putting ui(t) = gi(t)+ (1− ) fi(t) we get

F ′( ) =
k


i=1

∫ b

a
 (gi(t)− fi(t))

H(t;u1(t), . . . ,uk(t))
ui

dG(t)
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=
r


i=1

∫ b

a
 (gi(t)− fi(t))

H
ui

dG(t)+
k


i=r+1

∫ b

a
 (gi(t)− fi(t))

H
ui

dG(t)

= −
r


i=1

∫ b

a

(∫ x

a
 (gi(t)− fi(t))dG(t)

)
d

(
H
ui

)

+
k


i=r+1

∫ b

a

(∫ b

x
 (gi(t)− fi(t))dG(t)

)
d

(
H
ui

)
.

Since

 t

(
H
 t

)
=

 2H
 tui

+
r


j=1

 2H
uiu j

· u j

 t
+

k


j=r+1

 2H
uiu j

· u j

 t
≤ 0

for i ∈ {1, . . . ,r} and

 t

(
H
 t

)
≥ 0 for i ∈ {r+1, . . . ,k} we get

F ′( ) ≥ 0

and F is nondecreasing. Since 0 < 1 we get F(0) ≤ F(1), so, (4.7) holds. �

Now, we can prove the Majorization theorem for a function with nondecreasing incre-
ments, [65].

Theorem 4.2 Let X and Y be two mappings of a real interval [a,b] into an interval I,
continuous and nondecreasing, and let G : [a,b] → R be a function of bounded variation.

(a) If

∫ b

u
X(t)dG(t) ≤

∫ b

u
Y(t)dG(t), for each u ∈ (a,b),∫ b

a
X(t)dG(t) =

∫ b

a
Y(t)dG(t),

(4.9)

then for every continuous function f : I → R with nondecreasing increments we have

∫ b

a
f (X(t))dG(t) =

∫ b

a
f (Y(t))dG(t). (4.10)

(b) If

∫ b

u
f (X(t))dG(t) ≤

∫ b

u
f (Y(t))dG(t), for each u ∈ (a,b), (4.11)

then (4.10) holds for every continuous nondecreasing function f : I → R with nondecreas-
ing increments.

Proof. Putting in Lemma 4.1:

H(t;u1, . . . ,uk) = f (u1, . . . ,uk)
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we get statements of Theorem. �

Let the function G be nondecreasing. Then (4.10) holds for every continuous function
f with nondecreasing increments if and only if (4.9) holds; analogously (4.10) holds for
every continuous nondecreasing function f with nondecreasing increments on I if and only
if (4.11) holds.

In a special case we get not only the Jensen-Steffensen inequality but also its reverse
inequality.

Theorem 4.3 Let X : [a,b] → I be a nondecreasing continuous map and let G be a func-
tion of bounded variation on [a,b].

(a) If
G(a) ≤ G(x) ≤ G(b), G(a) < G(b) (4.12)

and if f : I → R is a continuous function with nondecreasing increments, then

f

(∫ b
a X(t)dG(t)∫ b

a dG(t)

)
≤

∫ b
a f (X(t)) dG(t)∫ b

a dG(t)
. (4.13)

(b) If
∫ b
a X(t)dG(t)∫ b

a dG(t)
∈ I, and if for each x ∈ (a,b) we have either G(x) ≤ G(a) or G(x) ≥

G(b) then the reverse inequality in (4.13) holds.

(c) If for a continuous function f : I→R inequality (4.13) holds for every nondecreas-
ing X and for every function of bounded variation G which satisfies (4.12), then f is a
function with nondecreasing increments.

Proof. (c) Putting a ≤ t1 < t2 < t3 ≤ b, X(t1) = A, X(t2) = B, X(t3) = B+H, 0 ≤ H ∈
R

k), G(t) = 0 (a≤ t ≤ t1,t2 < t ≤ t3) and G(t) = 1 (t1 < t ≤ t2, t3 < t ≤ b), then inequality
(4.13) reduces to f (A +H) ≤ f (A)− f (B) + f (B + H). Therefore, f is a function with
nondecreasing increments.

(a) and (b) Using substitutions

X(t) →
∫ b
a X(t)dG(t)∫ b

a dG(t)
, Y(t) → X(t)

into Theorem 4.2 we have that (4.13) is valid if∫ b

a
Xj(t)dG(t)

∫ b

x
dG(t) ≤

∫ b

x
Xj(t)dG(t)

∫ b

a
dG(t) (4.14)

holds for any x ∈ [a,b], j = 1, . . . ,k. Also, we have that the reverse inequality in the above
inequality holds, then the reverse inequality in (4.13) holds too. It is worth to mention that
(4.14) is proved using integration by parts. Namely we have∫ b

x
Xj(t)dG(t)

∫ b

a
dG(t)−

∫ b

a
Xj(t)dG(t)

∫ b

x
dG(t)

=
∫ b

x
Xj(t)dG(t)

(∫ x

a
dG(t)+

∫ b

x
dG(t)

)
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−
(∫ x

a
Xj(t)dG(t)+

∫ b

x
Xj(t)dG(t)

)∫ b

x
dG(t)

=
∫ b

x
Xj(t)dG(t)

∫ x

a
dG(t)−

∫ b

x
dG(t)

∫ x

a
Xj(t)dG(t)

= (G(b)−G(x))
∫ x

a
(G(t)−G(a))d f (t)

+ (G(x)−G(a))
∫ b

x
(G(b)−G(t))d f (t) ≥ 0.

�

From the previous results we can simply obtain analogous discrete results. Here,
we shall consider only a special case of a corresponding generalization of the Jensen-
Steffensen inequality with nonnegative weights.

Theorem 4.4 Let f : I→ R be a continuous function with nondecreasing increments and
let (X1, . . . ,Xn) be a monotonic sequence with elements from I.

(a) If wi (i ∈ {1, . . . ,n}) are nonnegative numbers, then

f

(
1

Wn

n


i=1

wiXi

)
≤ 1

Wn

n


i=1

wi f (Xi) (4.15)

where Wj =  j
i=1 wi �= 0.

(b) If wi, (i ∈ {1, . . . ,n}) satisfy

w1 > 0, wi ≤ 0 (i ∈ {2, . . . ,n}), Wn > 0,

and An(X;w) = 1
Wn

n
i=1 wiXi ∈ I, then the reverse inequality in (4.15) holds.

Now, let us describe monotonicity in means which we use in upcoming results, [66].

Definition 4.2 A finite sequence (X1, . . . ,Xn) ∈ In is said to be nondecreasing in means
with respect to weights w = (w1, . . . ,wn) ∈ R

n
+ if the inequalities

X1 ≤ A2(X;w) ≤ ·· · ≤ An(X;w) (4.16)

hold, where

A j(X;w) =
1

Wj

j


i=1

wiXi, Wj =
j


i=1

wi.

If the inequalities in (4.16) holds in reverse order, then the sequence (X1, . . . ,Xn) is said
to be nonincreasing in means.

The following theorems gives us Jensen type and reverse Jensen type inequalities for
functions with nondecreasing increments when the finite sequence of k-tuples (X1, . . . ,Xn)
is monotone in means, [66].
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Theorem 4.5 Let f and w be defined as in Theorem 4.4(a) and let the sequence (Ak(X;w))k

be monotonic. Then

f

(
1

Wn

n


i=1

wiXi

)
≤ 1

Wn

n


i=1

wi f (Xi). (4.17)

If the assumptions of Theorem 4.4(b) are satisfied and the sequence (Ak(X;w)) is mono-
tonic, then the reverse inequality in (4.17) holds.

The proof of this theorem is based on the property of subadditivity of index set function
F defined as follows:

F(J) = WJ f

(
1

WJ

i∈J

wiXi

)
−

i∈J
wi f (Xi), (4.18)

where J is a finite nonempty subset of N, Xi
′s are sequences with elements from I and

Wj =
i∈J

wi, AJ(X;w) =
1

WJ

i∈J

wiXi.

The above-mentioned property of subadditivity is proved in the following theorem,
[66].

Theorem 4.6 Let f : I → R be a continuous function with nondecreasing increments, let
J and K be finite nonempty sets of positive integers such that J∩K = /0, w = (wi)i∈J∪K is a
real sequence with WJ∪K > 0, and Xi ∈ I, i ∈ J∪K, AJ(X;w),AK(X;w),AJ∪K(X;w) ∈ I.

(a) Let WJ > 0 and WK > 0. If

AJ(X;w) ≤ AK(X;w) or AJ(X;w) ≥ AK(X;w), (4.19)

i.e. if
AJ(X;w) ≤ AJ∪K(X;w) or AJ(X;w) ≥ AJ∪K(X;w), (4.20)

then
F(J∪K) ≤ F(J)+F(K). (4.21)

(b) If WJ > 0 and WK < 0, and (4.19) (i.e. (4.20) holds, then the inequality in (4.21) holds
in reverse order.

Proof. Putting in (4.15) for n = 2

X1 → AJ(X;w), w1 →WJ, X2 → AK(X;w), w2 →WK ,

we get
WJ∪KF(AJ∪K(X;w)) ≤WJ f (AJ(X;w))+WK f (AK(X;w)),

i.e. (4.21) holds if (4.19) is valid. Since

AJ∪K(X;w)−AJ(X;w) =
WK

WJ∪K

(
AK(X;w)−AJ(X;w)

)
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we have that the conditions (4.19) and (4.20) are equivalent. �

The following results give refinements of Theorem 4.4 and therefore these results are
generalizations of some refinements of the Čebyšev inequality as well as the corresponding
results of H. Burkill and L. Mirsky, see Example 4.1.

Corollary 4.1 If the conditions of Theorem 4.4(a) are fulfilled, then

F(In) ≤ F(In−1) ≤ ·· · ≤ F(I2) ≤ 0 (I j = {1, . . . , j}). (4.22)

If the conditions of Theorem 4.4(b) are valid, then the reverse inequalities in (4.22) are
valid.

Proof. Let us suppose that the conditions of Theorem 4.4(a) are fulfilled. Let us define
J = In−1 and K = {n}. Since F(K) = 0, from (4.21) we get

F(In) = F(J∪K) ≤ F(J)+F(K) = F(J) = F(In−1).

�

Proof of Theorem 4.5. Let f and w be defined as in Theorem 4.4(a). By the Corollary
4.1 we get

F(In) ≤ F(In−1)

Wn f

(
1

Wn

n


i=1

wiXi

)
−

n


i=1

wi f (Xi) ≤ Wn−1 f

(
1

Wn−1

n−1


i=1

wiXi

)
−

n−1


i=1

wi f (Xi)

Wn f

(
1

Wn

n


i=1

wiXi

)
≤ wn f (Xn)+Wn−1 f

(
1

Wn−1

n−1


i=1

wiXi

)
.

Following in a similar manner we get

Wn f

(
1

Wn

n


i=1

wiXi

)

≤ wn f (Xn)+

(
wn−1 f (Xn−1)+Wn−2 f

(
1

Wn−2

n−2


i=1

wiXi

))

≤ . . . ≤
n


i=1

wi f (Xi)

and the statement is established. �

Example 4.1 Let f : [0,〉k → R be defined as

f (x1, . . . ,xk) = x1 · . . . · xk.

Since
 2 f

xix j
≥ 0 for all i, j ∈ {1, . . . ,k} the function f is a function with nondecreasing

increments.
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Let us define

Xj = (x j1,x j2, . . . ,x jk), j = 1, . . . ,n.

If sequences (x j1) j,(x j2) j, . . . ,(x jk) j are nondecreasing (nonincreasing), then X1 ≤ X2 ≤
. . . ≤ Xn (X1 ≥ X2 ≥ . . . ≥ Xn and by Theorem 4.4, if wi ≥ 0, the following holds

f

(
1

Wn

n


i=1

wiXi

)
≤ 1

Wn

n


i=1

wi f (Xi)

which becomes

1
Wk

n

(
n


j=1

wjx j1

)
. . .

(
n


j=1

wjxk1

)
≤ 1

Wn

n


j=1

wjx j1x j2 . . .x jk,

i.e. we get the classical Čebyšev inequality for k sequences monotonic in the same sense.
But, using the result of Theorem 4.5 we get that the same inequality holds if the finite
sequence of k-tuples (X1, . . . ,Xn) is monotone in means. This result was obtained by
H. Burkill and L. Mirsky in [10].

4.2 Functions with Nondecreasing Increments
of Order n

The aim of the present section is to give generalization of Theorem 4.1. It is based on paper
[29] due to A. Khan, J. Pečarić and S. Varošanec. Let us introduce some further notations.

Let us write h1 f (x) = f (x+h1)− f (x) and inductively,

h1h2 · · ·hn f (x) = h1(h2 · · ·hn f (x)) for n ≥ 2,

where x,x+h1 + · · ·+hn ∈ I, hi ∈ R
k
∗ for i ∈ {1, . . . ,n}. Using this notation with n = 2,

h = h1, s = h2, b = a+ s, condition (4.1) becomes

h1h2 f (a) ≥ 0.

Let us extend Definition 4.1 to the following.

Definition 4.3 f : I → R is said to be a function with nondecreasing increments of order
n if

h1 · · ·hn f (x) ≥ 0

holds whenever x,x+h1 + · · ·+hn ∈ I, 0 ≤ hi ∈ R
k for i ∈ {1, . . . ,n}.
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Every solution f of the Cauchy equation f (x1 + x2) = f (x1) + f (x2) is a function with
nondecreasing increments of order n with null increments.

If the nth partial derivatives fi1···in(x)=  n

xi1 ···xin
f (x) exist, they are nonnegative. If f is

a continuous function with nondecreasing increments of order n, it may be approximated
uniformly on I by polynomials having nonnegative nth partial derivatives. To see this,
we set, for convenience, I = [0,1] where 1 = (1, . . . ,1). It is known that the Bernstein
polynomials

n1


i1=0

· · ·
nk


ik=0

f

(
i1
n1

, . . . ,
ik
nk

) k


j=1

(
n j

i j

)
x
i j
j (1− x j)n j−i j

converge uniformly to f on I as n1 →, . . . ,nk →, if f is continuous. Furthermore, if f is
a function with nondecreasing increments of order n, these polynomials have nonnegative
nth partial derivatives, as may be shown by repeated application of the formula (see [8] and
[29])

d
dx

n


i=0

(
n
i

)
aix

i(1− x)n−i = n
n−1


i=0

(
n−1

i

)
(ai+1−ai)xi(1− x)n−1−i.

Let p1, . . . , pr be positive integers such that p1 + · · ·+ pr = w. Let (ip1
1 · · · ipr

r )p be a set
of all permutations with repetitions whose elements are from the multiset

S = {i1, . . . , i1︸ ︷︷ ︸
p1−times

, i2, . . . , i2︸ ︷︷ ︸
p2−times

, . . . , ir, . . . , ir︸ ︷︷ ︸
pr−times

}, i1 < · · · < ir, i1, . . . , ir ∈ {1, . . . ,k}.

There are
w!

p1!p2! · · · pr!
elements in the class (ip1

1 · · · ipr
r )p.

For 0 < p1 ≤ p2 ≤ ·· · ≤ pr, p1 + · · ·+ pr = w, let (p1 · · · pr)c be a set whose elements
are described in the following way. We say that permutation j1 · · · jw belongs to the set
(p1 · · · pr)c if and only if there exist i1, i2, . . . , ir ∈ {1, . . . ,k}, i1 < i2 < · · · < ir and per-

mutation  of the multiset {p1 · · · pr} such that j1 · · · jw ∈ (i(p1)
1 · · · i(pr)

r )p. Family of all
classes (p1 · · · pr)c is denoted with Ck

w.
For illustration, we describe the above notation on one example. Let k = 5 and w = 4.

Classes (p1 · · · pr)c are the following: (1,1,1,1)c, (1,1,2)c, (1,3)c, (2,2)c and (4)c. Let
us describe the elements of the set (1,1,2)c. There are three different permutations of the
multiset {1,1,2}. These are(

1 1 2
1 1 2

)
,

(
1 1 2
1 2 1

)
,

(
1 1 2
2 1 1

)
.

So, (i(p1)
1 · · · i(pr)

r )p are (i1, i2, i3, i3)p, (i1, i2, i2, i3)p, (i1, i1, i2, i3)p, where i1 < i2 < i3 and
i1, i2, i3 ∈{1,2,3,4,5}. If, for example, (i1, i2, i3, i3)p = (2,3,5,5)p, then it contains all per-
mutations with repetitions of elements 2,3,5,5, i.e. (2,3,5,5)p = {2355,2535,2533, . . .,5532}
and it has 4!

2! = 12 elements.
In the following text, H ∈ BV [a,b] with H(a) = 0 and i1, . . . , in ∈{1, . . . ,k}. Let Kn

i1···in
be a function such that

Kn
i1···in(t) =

∫ t

a
Kn−1

i1···in−1
(xn)dXin(xn), n ≥ 2
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and K1
i1(t) =

∫ t

a
H(x1)dXi1(x1).

Further, we write

(S)(x) = 
j∈S

(Xj(t)−Xj(x)),

and ()(x) = 1,

where S is a multiset with elements from {1, . . . ,k}. Clearly

d
{
(S)(x)

}
= −

j∈S

dXj(x)(S \ { j})(x)

and dKn
i1···in(t) = Kn−1

i1···in−1
(t)dXin(t).

Now, the following result holds.

Lemma 4.2 Let w be a fixed positive integer. Then∫ t

a
({i1, . . . , iw})(x)dH(x)

=
w


j1=1

w


j2 = 1
j2 �= j1

· · ·
w


jm = 1
jm �= jk
k < m

∫ t

a
({i1, . . . , iw} \ {i j1 , . . . , i jm})(x)dKm

i j1 ···i jm(x)

holds for each m ∈ {1, . . . ,w}.
Proof. We prove it using induction on m. For m = 1, using integration by parts, we have∫ t

a
({i1, . . . , iw})(x)dH(x) = −

∫ t

a
H(x)d

(
({i1, . . . , iw})(x)

)
=

∫ t

a
H(x)

w


j1=1

dXj1(x)({i1, . . . , im} \ {i j1})(x)

=
w


j1=1

∫ t

a
({i1, . . . , iw} \ {i j1})(x)dK1

i j1
(x).

Let us suppose that the statement holds for m− 1 and let us apply integration by parts on
the right-hand side of the formula.∫ t

a
({i1, . . . , iw})(x)dH(x)

=
w


j1=1

· · ·
w


jm−1 = 1
jm−1 �= jk
k < m−1

∫ t

a


({i1, . . . , iw} \ {i j1 , . . . , i jm−1}
)
(x)dKm−1

i j1 ···i jm−1
(x)
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=
w


j1=1

· · ·
w


jm−1 = 1
jm−1 �= jk
k < m−1

(−1)
∫ t

a
Km−1

i j1 ···i jm−1
(x)×

×d
(


({i1, . . . , iw} \ {i j1 , . . . , i jm−1}
)
(x)

)
=

w


j1=1

· · ·
w


jm−1 = 1
jm−1 �= jk
k < m−1

(−1)
∫ t

a
Km−1

i j1 ···i jm−1
(x)×

×(−1)
w


jm = 1
jm �= jk
k < m

dXijm (x) ({i1, . . . , iw} \ {i j1, . . . , i jm})(x)

=
w


j1=1

· · ·
w


jm = 1
jm �= jk
k < m

∫ t

a
({i1, . . . , iw} \ {i j1, . . . , i jm})(x)Km−1

i j1 ···i jm−1
(x)dXi jm(x)

=
w


j1=1

· · ·
w


jm = 1
jm �= jk
k < m

∫ t

a
({i1, . . . , iw} \ {i j1 , . . . , i jm})(x)dKm

i j1 ...i jm
(x).

�

Especially for m = w, we have

∫ t

a
({i1, . . . , iw})(x)dH(x) =

w


j1=1

· · ·
w


jw = 1
jw �= jk
k < w

∫ t

a
dKw

i j1 ···i jw (x)

=
w


j1=1

· · ·
w


jw = 1
jw �= jk
k < w

Kw
ij1 ···i jw (t) = p1! · · · pr! 

i j1 ···i jw∈(i
p1
1 ···ipr

r )p

Kw
i j1 ···i jw (t) (4.23)

where {i j1 , . . . , i jw}= {i1, . . . , i1︸ ︷︷ ︸
p1−times

, . . . , ir, . . . , ir︸ ︷︷ ︸
pr−times

}, i1 < i2 < · · ·< ir, i1, i2, . . ., ir ∈ {1, . . . ,k},

p1 + · · ·+ pr = w.
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Example 4.2 If w = 3, i1 = i2 = 1, i3 = 2, then

∫ t

a
({1,1,2})(x)dH(x) =

3


j1=1

3


j2 = 1
j2 �= j1

3


j3 = 1

j3 �= j1, j2

K3
i j1 i j2 i j3

(t)

= 2! 1! (K3
112 +K3

121 +K3
211).

�

Furthermore, if we suppose∫ b

a
Xj1(u) · · ·Xjs(u)dH(u) = 0 for j1, . . . , js ∈ {1, . . . ,k}, s ∈ {0, . . . ,w},

then

p1! · · · pr!Kw
ij1 ···i jw (b) =

∫ b

a
({i1, . . . , iw})(x)dH(x)

=(−1)s
∫ b

a
Xj1(x) · · ·Xjs(x)Xjs+1(b) · · ·Xjw(b)dH(x) = 0. (4.24)

Now, we state our main theorems of this section:

Theorem 4.7 Let X : [a,b]→ I be a continuous function and let H ∈BV [a,b] with H(a)=
H(b) = 0. Further, assume that f has continuous (n−1)th partial derivatives for n≥ 2. If∫ b

a
Xi1(u) · · ·Xim(u)dH(u) = 0

for i1, . . . , im ∈ {1, . . . ,k}, m ∈ {1, . . . ,n−1}, then∫ b

a
f (X(t)) dH(t) = (−1)n−1 

(p1···pr)c∈Ck
n−1

1
p1! · · · pr!


(ip1

1 ···ipr
r )p⊂(p1···pr)c

×

×
∫ b

a
fi1 · · · i1︸ ︷︷ ︸

p1−times

···ir · · · ir︸ ︷︷ ︸
pr−times

(X(t))d
(∫ t

a


({ip1
1 , . . . , ipr

r })(x)dH(x)
)

. (4.25)

Proof. The proof follows from induction on n. Let n = 2,

∫ b

a
f (X(t)) dH(t) = −

k


i=1

∫ b

a
fi(X(t))H(t)dXi(t)

= −
k


i=1

∫ b

a
fi (X(t)) dK1

i (t) = −
k


i=1

∫ b

a
fi (X(t)) d

(∫ t

a
H(x)dXi(x)

)

= −
k


i=1

∫ b

a
fi (X(t)) d

(∫ t

a
H(x)d(Xi(x)−Xi(t))

)
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=
k


i=1

∫ b

a
fi (X(t)) d

(∫ t

a
H(x)d(Xi(t)−Xi(x))

)

= −
k


i=1

∫ b

a
fi (X(t)) d

(∫ t

a
(Xi(t)−Xi(x))dH(x)

)

= −
k


i=1

∫ b

a
fi (X(t)) d

(∫ t

a
({i})(x)dH(x)

)
.

If we have
∫ b
a Xi1(u) · · ·Xim(u)dH(u) = 0 for i1, . . . , im ∈ {1, . . . ,k}, m ∈ {1, . . . ,n−2} and

if we suppose that (4.25) holds for (n−1), then

∫ b

a
f (X(t)) dH(t)

= (−1)n−2 
(p1···pr)c∈Ck

n−2

1
p1! · · · pr!


(ip1

1 ···ipr
r )p⊂(p1···pr)c

∫ b

a
fip1

1 ···ipr
r

(X(t))×

×d

(∫ t

a


({ip1
1 , . . . , ipr

r })(x)dH(x)
)

= (−1)n−2 
(p1···pr)c∈Ck

n−2

1
p1! · · · pr!


(ip1

1 ···ipr
r )p

∫ b

a
fip1

1 ···ipr
r

(X(t))×

×d

⎛
⎝p1! · · · pr! 

i j1 ···i jn−2
∈(ip1

1 ···ipr
r )p

Kn−2
i j1 ···i jn−2

(t)

⎞
⎠

= (−1)n−1 
(p1···pr)c∈Ck

n−2


(ip1

1 ···ipr
r )p

∫ b

a
d fip1

1 ···ipr
r

(X(t))×

× 
i j1 ···i jn−2∈(i

p1
1 ···ipr

r )p

Kn−2
i j1 ···i jn−2

(t)

= (−1)n−1 
(p1···pr)c∈Ck

n−2


(ip1

1 ···ipr
r )p

∫ b

a

k


in−1=1

fip1
1 ···ipr

r in−1
(X(t))×

×dXin−1(t)

⎛
⎝ 

i j1 ···i jn−2

Kn−2
i j1 ···i jn−2

(t)

⎞
⎠

= (−1)n−1 
(s1 · · · sg)c ∈Ck

n−1
s1 + · · ·+ sg = n−1


(i

s1
1 ···isgg )p⊂(s1···sg)c

∫ b

a
fis11 ···isgg (X(t))×

× 
l1···ln−1∈(is11 ···isgg )p

Kn−2
l1···ln−2

(t)dXln−1(t)
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= (−1)n−1 
(s1···sg)c∈Ck

n−1


(is11 ···isgg )p

∫ b

a
fis11 ···isgg (X(t))d

(


l1···ln−1

Kn−1
l1···ln−1

(t)
)

= (−1)n−1 
(s1···sg)c∈Ck

n−1


(is11 ···isgg )p

∫ b

a
fis11 ···isgg (X(t))×

×d

(
1

s1! · · · sg!

∫ t

a


({is11 · · · isgg })(x)dH(x)
)

by (4.23) and (4.24). Hence we have (4.25). �

Theorem 4.8 Let X : [a,b]→ I be a nondecreasing continuous map and let H ∈ BV [a,b]
with H(a) = 0. Then ∫ b

a
f (X(t)) dH(t) ≥ 0 (4.26)

holds for every continuous function f with nondecreasing increments of order n on I if and
only if

H(b) = 0, (4.27)

∫ b

a
Xi1(t) · · ·Xim(t)dH(t) = 0, (4.28)

for i1, . . . , im ∈ {1, . . . ,k}, m ∈ {1, . . . ,n−1} and

(−1)n
∫ t

a
({i1, . . . , in−1})(u)dH(u)≥ 0 (4.29)

for each t ∈ [a,b], i1, . . . , in−1 ∈ {1, . . . ,k}.
Proof. Necessity: The validity of (4.26) for constant functions f 1 ≡ 1 and f 2 ≡ −1 im-
plies (4.27). From (4.26) for f 3(x) = xi1 · · ·xis and f 4(x) = −xi1 · · ·xis , for i1, . . . , is ∈
{1, . . . ,k}, s ∈ {1, . . . ,n−1}, we have (4.28).

Inequality (4.29) is obtained from (4.26) on setting, for fixed t ∈ [a,b] and fixed
i1, . . . , in−1 ∈ {1, . . . ,k},

f 5(x) = −[xi1 −Xi1(t)]− · · · [xin−1 −Xin−1(t)]− where c− = min{c,0}, c ∈ R.

Sufficiency: Since f may be approximated uniformly on I by functions with continuous
and nonnegative nth partial derivatives, we may assume that the nth partials fi1,...,in exist
and are continuous and nonnegative. By Theorem 4.7 and (4.28), we have∫ b

a
f (X(t)) dH(t)

= (−1)n 
(p1···pr)c∈Ck

n−1

1
p1! · · · pr!


(ip1

1 ···ipr
r )p⊂(p1···pr)c

k


in=1

∫ b

a
fip1

1 ···ipr
r in

(X(t))×

×dXin(t)
∫ t

a


({ip1
1 · · · ipr

r })(x)dH(x).

By (4.29), each term in the sum is nonnegative so that (4.26) is verified. �
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4.3 Arithmetic Integral Mean

It is known that if f : [0,a] → R, a > 0, is a nonnegative and nondecreasing function, then
the function F , defined as

F(x) =
1
x

∫ x

0
f (t)dt

is also a nondecreasing function on [0,a]. Let us observe that F is an arithmetic integral
mean of a function f on an interval [0,a]. This result was generalized in [36] by considering
a real-valued function f for which n

h f (x) ≥ 0 holds for any h > 0, where n
h is defined as

follows:
0

h f (x) = f (x), n
h f (x) = n−1

h f (x+h)−n−1
h f (x).

Here, we extend the above-mentioned result to functions with nondecreasing increments
of higher order ([29]).

Theorem 4.9 Let the function f : [a,b] → R be continuous and with nondecreasing in-
crements of order n. Then the function F, defined as

F(x) =

(
k


i=1

(xi −ai)

)−1∫ x1

a1

· · ·
∫ xk

ak

f (u)du,

is a function with nondecreasing increments of order n on [a,b], where u = (u1, . . . ,uk)
and du = du1 · · ·duk.

Proof. Let x > a = (a1, . . . ,ak). Then

F(x) =
∫ 1

0
· · ·

∫ 1

0
f (a+ s(x−a))ds,

where we used the substitutions ui = ai + si(xi − ai), i ∈ {1, . . . ,k}, 0 ≤ si ≤ 1, where
a+ s(x−a) = (a1 + s1(x1 −a1), . . . ,ak + sk(xi−ak)) and ds = ds1 · · ·dsk. Now, we have

h1 · · ·hnF(x) = h1 · · ·hn

∫ 1

0
· · ·

∫ 1

0
f (a+ s(x−a))ds

=
∫ 1

0
· · ·

∫ 1

0
h1 · · ·hn f (a+ s(x−a))ds≥ 0

because if f (x) is a function with nondecreasing increments of order n, then the function
f (a+ s(x−a)) is also a function with nondecreasing increments of order n. �
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4.4 Functions with Nondecreasing Increments
of Order 3

4.4.1 Levinson Type Inequality for Functions with
Nondecreasing Increments of the Third Order

In this subsection we give two generalizations of the Levinson inequality based on results
about functions with nondecreasing increments of the third order, [29].

Theorem 4.10 Let H : [a,b] → R be a function of bounded variation such that (4.12)
holds and let X : [a,b] → [0,d], (d > 0) be a nondecreasing continuous map. If f is a
continuous function with nondecreasing increments of order three on J = [0,2d], then∫ b

a f (X(t)) dH(t)∫ b
a dH(t)

− f

(∫ b
a X(t)dH(t)∫ b

a dH(t)

)

≤
∫ b
a f (2d−X(t)) dH(t)∫ b

a dH(t)
− f

(∫ b
a (2d−X(t))dH(t)∫ b

a dH(t)

)
.

Proof. If f is a function with nondecreasing increments of order three on J, then the
following inequality holds

h1h2h3 f (x) ≥ 0 for x,x+h1 +h2 +h3 ∈ J, 0 ≤ h1,h2,h3 ∈ R
k,

i.e.,
h1h2 ( f (x+h3)− f (x)) ≥ 0. (4.30)

If x ∈ I and h3 = 2d−2x, we have

h1h2 ( f (2d−x)− f (x))≥ 0,

i.e., the function x �→ f (2d− x)− f (x) is a function with nondecreasing increments of
order two, i.e. it is a function with nondecreasing increments. Now, using Theorem 4.3,
we obtain Theorem 4.10. �

Theorem 4.11 Let Let H : [a,b]→R be a function of bounded variation such that (4.12)
holds and let f be a continuous function with nondecreasing increments of order three on
[c,d] ⊂ R

k. Let 0 < a < d− c. If X : [a,b]→ [c,d−a] is a nondecreasing continuous map,
then ∫ b

a f (X(t)) dH(t)∫ b
a dH(t)

− f

(∫ b
a X(t)dH(t)∫ b

a dH(t)

)

≤
∫ b
a f (a+X(t)) dH(t)∫ b

a dH(t)
− f

(∫ b
a (a+X(t))dH(t)∫ b

a dH(t)

)
.
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Proof. Using (4.30) for h3 = a = constant∈ R
k, we have that x �→ f (a+x)− f (x) is a

function with nondecreasing increments, so from Theorem 4.3, we obtain Theorem 4.11.
�

Remark 4.1 For k = 1, Theorem 4.11 gives us a result from [63].

Corollary 4.2 (a) Let X satisfy the assumptions of Theorem 4.10. Then the inequalities

0 ≤
(∫ b

a
dH(t)

)k−1 ∫ b

a

k


i=1

Xi(t)dH(t)−
k


i=1

∫ b

a
Xi(t)dH(t)

≤
(∫ b

a
dH(t)

)k−1∫ b

a

k


i=1

(2di−Xi(t))dH(t)−
k


i=1

∫ b

a
(2di−Xi(t))dH(t)

hold.
(b) If X satisfies the assumptions of Theorem 4.11, then the inequalities

0 ≤
(∫ b

a
dH(t)

)k−1 ∫ b

a

k


i=1

Xi(t)dH(t)−
k


i=1

∫ b

a
Xi(t)dH(t)

≤
(∫ b

a
dH(t)

)k−1 ∫ b

a

k


i=1

(ai +Xi(t)) dH(t)−
k


i=1

∫ b

a
(ai +Xi(t)) dH(t)

hold, where all components of X are nonnegative.

Proof. The function f (x) = x1 · · ·xk is a function with nondecreasing increments of
orders two and three for 0 ≤ x ∈ R

k. So, using Theorems 4.3, 4.10 and 4.11, we obtain
Corollary 4.2. �

4.4.2 Generalizations of Burkill-Mirsky-Pečarić’s Result

In the current subsection, we consider a sequence of k-tuples (X1, . . . ,Xn) which is mono-
tone in means, [29].

Theorem 4.12 Let (X1, . . . ,Xn) ∈ [0,d]n, (d > 0) be nondecreasing or nonincreasing in
means with respect to positive weights wi for i ∈ {1, . . . ,n}. If f is a continuous function
with nondecreasing increments of order three on J = [0,2d], then the inequality

1
Wn

n


i=1

wi f (Xi)− f

(
1

Wn

n


i=1

wiXi

)

≤ 1
Wn

n


i=1

wi f (2d−Xi)− f

(
1

Wn

n


i=1

wi (2d−Xi)

)

holds.
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Proof. By following the proof of Theorem 4.10, we obtain Theorem 4.12 by simply
replacing “Theorem 4.3” by “Theorem 4.5”. �

Theorem 4.13 Let (X1, . . . ,Xn)∈ [c,d−a]n, (0 < a < d−c) be nondecreasing or nonin-
creasing in means with respect to positive weights wi for i ∈ {1, . . . ,n}. If f is a continuous
function with nondecreasing increments of order three on J = [c,d], then

1
Wn

n


i=1

wi f (Xi)− f

(
1

Wn

n


i=1

wiXi

)

≤ 1
Wn

n


i=1

wi f (a+Xi)− f

(
1

Wn

n


i=1

wi (a+Xi)

)
.

Proof. By following the proof of Theorem 4.11, we obtain Theorem 4.13 by simply
replacing “Theorem 4.3” by “Theorem 4.5”. �

Corollary 4.3 (a) Let X satisfy the assumptions of Theorem 4.12. Then the inequalities

0 ≤Wk−1
n

n


i=1

wk
i

(
k


j=1

xi j

)
−

k


j=1

(
n


i=1

wixi j

)

≤Wk−1
n

n


i=1

wk
i

(
k


j=1

(2d j − xi j)

)
−

k


j=1

(
n


i=1

wi (2d j − xi j)

)

hold.
(b) If X satisfies the assumptions of Theorem 4.13. Then the inequalities

0 ≤Wk−1
n

n


i=1

wk
i

(
k


j=1

xi j

)
−

k


j=1

(
n


i=1

wixi j

)

≤Wk−1
n

n


i=1

wk
i

(
k


j=1

(a j + xi j)

)
−

k


j=1

(
n


i=1

wi(a j + xi j)

)

hold, where all components of X are nonnegative.

Proof. We again consider the function f (x) = x1 · · ·xk which is a function with nonde-
creasing increments of orders two and three for x ≥ 0. So, using Theorems 4.5, 4.12 and
4.13, we obtain Corollary 4.3. �



Chapter5
Linear Inequalities via
Interpolation Polynomials

Let us recall some basic inequalities which are proved in the previous chapters and which
are the framework of this book. They are known under the name ”the Popoviciu inequali-
ties” since they follow from the Popoviciu’s work on n-convex functions and general linear
inequalities in the forties of the twentieth century ([81, 82, 83, 85]).

Theorem 5.1 Let n ≥ 2. The inequality

m


i=1

pi f (xi) ≥ 0 (5.1)

holds for all n-convex functions f : [a,b]→R if and only if the m-tuples x∈ [a,b]m, p∈ R
m

satisfy
m


i=1

pix
k
i = 0, for all k = 0,1, . . . ,n−1, (5.2)

m


i=1

pi(xi− t)n−1
+ ≥ 0, for every t ∈ [a,b]. (5.3)

The integral analogue is given in the next theorem.

Theorem 5.2 Let n ≥ 2, p : [, ] → R and g : [, ] → [a,b]. Then, the inequality

∫ 


p(x) f (g(x))dx ≥ 0 (5.4)

127
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holds for all n-convex functions f : [a,b] → R if and only if

∫ 


p(x)g(x)k dx = 0, for all k = 0,1, . . . ,n−1, (5.5)

∫ 


p(x)(g(x)− t)n−1

+ dx ≥ 0, for every t ∈ [a,b]. (5.6)

Remark 5.1 As we discussed in Proposition 2.6 from Chapter 2, if n = 2, then conditions
(5.2) and (5.3), i.e.

m


k=1

pk = 0,
m


k=1

pkxk = 0

and
m


k=1

pk(xk − xi)+ ≥ 0, i = 1, . . . ,m−1

can be replaced by

m


k=1

pk = 0 and
m


k=1

pk|xk − xi| ≥ 0 for i = 1, . . . ,m,

and vice versa.

As it is shown in Chapter 2, these results can be reached using the Taylor formula.
Following that idea we use other interpolation formulae and identities to obtain Popoviciu
type inequalities.

5.1 Inequalities via Extension of the Montgomery
Identity

In this section we use extension of the Montgomery identity to obtain inequalities of type
(5.1) and (5.4) for n-convex functions. The mentioned extension of the Montgomery iden-
tity via Taylor’s formula was obtained in paper [2] and we give it in the following text.

Theorem 5.3 Let n ∈ N, f : I → R be such that f (n−1) is absolutely continuous, I ⊂ R

an open interval, a,b ∈ I, a < b. Then the following identity holds

f (x) =
1

b−a

∫ b

a
f (t)dt +

n−2


k=0

f (k+1) (a)
k!(k+2)

(x−a)k+2

b−a

−
n−2


k=0

f (k+1) (b)
k!(k+2)

(x−b)k+2

b−a
+

1
(n−1)!

∫ b

a
Tn (x,s) f (n) (s)ds, (5.7)
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where

Tn (x,s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (x− s)n

n(b−a)
+

x−a
b−a

(x− s)n−1 , a ≤ s ≤ x,

− (x− s)n

n(b−a)
+

x−b
b−a

(x− s)n−1 , x < s ≤ b.

(5.8)

In case n = 1 the sum n−2
k=0 · · · is empty, so identity (5.7) reduces to the well-known

Montgomery identity

f (x) =
1

b−a

∫ b

a
f (t)dt +

∫ b

a
P(x,s) f ′ (s)ds,

where P(x,s) is the Peano kernel, defined by

P(x,s) =

⎧⎪⎨
⎪⎩

s−a
b−a

, a ≤ s ≤ x,

s−b
b−a

, x < s ≤ b.

In fact, the previous theorem is a particular case of a more general extension of the
Montgomery identity which is proved in the following text. The proof can be find in [2].

Let us suppose w : [a,b]→ [0,〉 is some probability density function, i.e. an integrable
function satisfying

∫ b
a w(t)dt = 1 and W (t) =

∫ t
a w(x)dx for t ∈ [a,b], W (t) = 0 for t < a

and W (t) = 1 for t > b. Let us by Pw denote the weighted Peano kernel

Pw(x,t) =
{

W (t), a ≤ t ≤ x,
W (t)−1, x < t ≤ b.

Theorem 5.4 Let n ∈ N,n ≥ 2, f : I → R be such that f (n−1) is absolutely continuous,
I ⊂ R an open interval, a,b ∈ I, a < b, w : [a,b]→ [0,〉 be a probability density function.
Then the following identity holds

f (x) =
∫ b

a
w(t) f (t)dt +

n−2


k=0

f (k+1)(a)
(k+1)!

∫ x

a
w(s)

(
(x−a)k+1− (s−a)k+1

)
ds

−
n−2


k=0

f (k+1)(b)
(k+1)!

∫ b

x
w(s)

(
(x−b)k+1− (s−b)k+1

)
ds

+
1

(n−1)!

∫ b

a
Tw,n(x,s) f (n)(s)ds, (5.9)

where

Tw,n(x,s) =

⎧⎪⎨
⎪⎩

∫ s

x
w(u)(u− s)n−1du+W(x)(x− s)n−1, a ≤ s ≤ x,∫ s

x
w(u)(u− s)n−1du+(W(x)−1)(x− s)n−1, x < s ≤ b.
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Proof. If we apply the Taylor formula for f ′(t) and replace n with n−1 we have

f ′(t) =
n−2


k=0

f (k+1)(a)
k!

(t−a)k +
∫ t

a
f (n)(s)

(t − s)n−2

(n−2)!
ds

=
n−2


k=0

f (k+1)(b)
k!

(t−b)k −
∫ b

t
f (n)(s)

(t − s)n−2

(n−2)!
ds.

By putting these two formulae in the weighted Montgomery identity f (x)=
∫ b

a
w(t) f (t)dt+∫ b

a
Pw(x, t) f ′(t)dt, we obtain

f (t) =
∫ b

a
w(t) f (t)dt

+
n−2


k=0

f (k+1)(a)
k!

∫ x

a
(t−a)kW (t)dt +

n−2


k=0

f (k+1)(b)
k!

∫ b

x
(t −b)k(W (t)−1)dt

+
∫ x

a
W (t)

(∫ t

a
f (n)(s)

(t − s)n−2

(n−2)!
ds

)
dt

−
∫ b

x
(W (t)−1)

(∫ b

t
f (n)(s)

(t − s)n−2

(n−2)!
ds

)
dt.

Now, we have

∫ x

a
(t−a)kW (t)dt =

∫ x

a
(t−a)k

(∫ t

a
w(s)ds

)
dt

=
∫ x

a
w(s)

(∫ x

s
(t −a)kdt

)
ds

=
1

k+1

∫ x

a
w(s)

(
(x−a)k+1− (s−a)k+1

)
ds,∫ b

x
(t−b)k(W (t)−1)dt =

1
k+1

∫ b

x
w(s)

(
(x−b)k+1− (s−b)k+1

)
ds.

Also, we obtain

∫ x

a
W (t)

(∫ t

a
f (n)(s)(t − s)n−2ds

)
dt =

∫ x

a
f (n)(s)

(∫ x

s
W (t)(t− s)n−2dt

)
ds

with ∫ x

s
W (t)(t − s)n−2dt =

∫ x

s

(∫ t

a
w(u)du

)
(t− s)n−2dt

=
∫ s

a
w(u)

(∫ x

s
(t − s)n−2dt

)
du+

∫ x

s
w(u)

(∫ x

u
(t − s)n−2dt

)
du
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=
∫ s

a
w(u)

(x− s)n−1

n−1
du+

∫ x

s
w(u)

(x− s)n−1− (u− s)n−1

n−1
du

=
(x− s)n−1

n−1
W (x)−

∫ x

s
w(u)

(u− s)n−1

n−1
du.

By similar calculation we get

−
∫ b

x
(W (t)−1)

(∫ b

t
f (n)(s)(t − s)n−2ds

)
dt

=
∫ b

x
f (n)(s)

(∫ s

x
(1−W(t))(t − s)n−2dt

)
ds

and ∫ s

x
(1−W(t))(t − s)n−2dt = (W (x)−1)

(x− s)n−1

n−1
+

∫ s

x
w(u)

(u− s)n−1

n−1
du.

Now, the reminder in the weighted Taylor formula becomes

1
(n−1)!

[∫ b

a
f (n)(s)

(∫ s

x
w(u)(u− s)n−1du

)
ds

+W (x)
∫ x

a
f (n)(s)(x− s)n−1ds+(W(x)−1)

∫ b

x
f (n)(s)(x− s)n−1ds

]
.

�

In the particular case when w(t) = 1
b−a , t ∈ [a,b], then identity (5.9) reduces to (5.7).

Now we recall the definition of the Green function G which we use in some of our
results. The function G : [a,b]× [a,b] is defined by

G(t,s) =

⎧⎪⎨
⎪⎩

(t−b)(s−a)
b−a

for a ≤ s ≤ t,

(s−b)(t−a)
b−a

for t ≤ s ≤ b.
(5.10)

The function G is convex and continuous with respect to both s and t.
For any function f : [a,b]→R, f ∈C2[a,b], it can be easily shown by using integration

by parts that the following is valid

f (x) =
b− x
b−a

f (a)+
x−a
b−a

f (b)+
∫ b

a
G(x,s) f ′′(s)ds, (5.11)

where the function G is defined as above in (5.10) (see also [98]).

5.1.1 Inequalities Obtained by the Montgomery Identity

In this section we give identities form
i=1 pi f (xi) and

∫ 
 p(x) f (g(x))dx using the extension

of the Montgomery identity, then obtain Popoviciu type inequalities and describe some
consequences of it. These results are published in [26].
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Theorem 5.5 Suppose all the assumptions from Theorem 5.3 hold and let Tn be given
by (5.8). Furthermore, let m ∈ N, xi ∈ [a,b] and pi ∈ R for i ∈ {1,2, . . . ,m} be such that
m

i=1 pi = 0. Then

m


i=1

pi f (xi) =
1

b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
m


i=1

pi (xi −a)k+2

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
m


i=1

pi (xi −b)k+2

]

+
1

(n−1)!

∫ b

a

(
m


i=1

piTn (xi,s)

)
f (n) (s) ds. (5.12)

Proof. Putting in the extension of the Montgomery identity (5.7) xi, i = 1, . . .m, multi-
plying with pi and summing all the identities we obtain

m


i=1

pi f (xi) =
1

b−a

∫ b

a
f (t)dt

m


i=1

pi

+
m


i=1

pi

(
n−2


k=0

f (k+1) (a)
k!(k+2)

(xi −a)k+2

b−a
−

n−2


k=0

f (k+1) (b)
k!(k+2)

(xi −b)k+2

b−a

)

+
1

(n−1)!

m


i=1

pi

∫ b

a
Tn (xi,s) f (n) (s)ds.

By simplifying this expressions we obtain (5.12). �

We may state its integral version as follows.

Theorem 5.6 Let g : [, ] → [a,b] and p : [, ] → R be integrable functions such that∫ 
 p(x)dx = 0. Let n ∈ N, I ⊂ R be an open interval, a,b ∈ I, a < b, Tn be given by (5.8)

and f : I → R be such that f (n−1) is absolutely continuous. Then

∫ 


p(x) f (g(x))dx =

1
b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
∫ 


p(x) (g(x)−a)k+2 dx

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
∫ 


p(x) (g(x)−b)k+2 dx

]

+
1

(n−1)!

∫ b

a

(∫ 


p(x)Tn (g(x),s)dx

)
f (n) (s)ds. (5.13)

Proof. Putting in the extension of the Montgomery identity (5.7) x = g(x), multiplying
with p(x), integrating over [, ], and using some transformations and the Fubini theorem
we get the required identity. �

Now we state inequalities derived from the obtained identities.
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Theorem 5.7 Let all the assumptions of Theorem 5.5 hold with the additional condition

m


i=1

piTn(xi,s) ≥ 0, for all s ∈ [a,b]. (5.14)

Then, for every n-convex function f : I → R the following inequality holds

m


i=1

pi f (xi) ≥ 1
b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
m


i=1

pi (xi −a)k+2

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
m


i=1

pi (xi−b)k+2

]
. (5.15)

If the inequality in (5.14) is reversed, then (5.15) holds with the reversed sign of inequality.

Proof. The function f is n-convex, so without lossing the generality we can assume
that f is n-times differentiable and f (n) ≥ 0. Using this fact and (5.14) in (5.12) we easily
arrive at our required result. �

Now we state an important consequence.

Theorem 5.8 Suppose all the assumptions from Theorem 5.5 hold. Additionally, let j ∈
N, 2 ≤ j ≤ n and let x = (x1, . . . ,xm) ∈ [a,b]m, p = (p1, . . . , pm) ∈ R

m satisfy (5.2) and
(5.3) with n replaced by j. If f is n-convex and n− j is even, then

m


i=1

pi f (xi) ≥ 1
b−a

[
n−2


k= j−2

1
k!(k+2)

f (k+1) (a)
m


i=1

pi (xi−a)k+2

−
n−2


k= j−2

1
k!(k+2)

f (k+1) (b)
m


i=1

pi (xi −b)k+2

]
. (5.16)

Proof. Let s ∈ [a,b] be fixed. Notice that

(b−a)Tn(x,s) = Ln(x)+ (b−a)(x− s)n−1
+ , (5.17)

where

Ln(x) = − (x− s)n

n
+(x−b)(x− s)n−1.

Using the Pochhammer symbol (y)k = y(y−1) · · ·(y− k+1) we have

L( j)
n (x) = −(n−1) j−1(x− s)n− j +

(
j
0

)
(x−b)(n−1) j(x− s)n− j−1

+
(

j
1

)
(n−1) j−1(x− s)n− j

= (n−1) j−1(x− s)n− j−1 [( j−1)(x− s)+ (n− j)(x−b)]. (5.18)



134 5 LINEAR INEQUALITIES VIA INTERPOLATION POLYNOMIALS

Therefore, (5.17) and (5.18) for s < x ≤ b yield

d j

dx j Tn(x,s) =
1

b−a
L( j)

n (x)+ (n−1) j(x− s)n− j−1

=
(n−1) j−1

b−a
(x− s)n− j−1 [( j−1)(x− s)+ (n− j)(x−a)]≥ 0, (5.19)

while for a ≤ x < s we have

(−1)n− j d j

dx j Tn(x,s) = (−1)n− j 1
b−a

L( j)
n (x)

=
(n−1) j−1

b−a
(s− x)n− j−1 [( j−1)(s− x)+ (n− j)(b− x)]≥ 0. (5.20)

From (5.17) it is clear that x �→ d j

dx j Tn(x,s) is continuous for j ≤ n−2. Hence, if j ≤ n−2

and n− j is even, from (5.19) and (5.20) we can conclude that the function x �→ Tn(x,s) is j-
convex. Moreover, the conclusion extends to the case j = n, i. e. the mapping x �→ Tn(x,s)

is n-convex, since the mapping x �→ dn−2

dxn−2 Tn(x,s) is 2-convex.

Now, by Theorem 5.1, we see that assumption (5.14) is satisfied, so inequality (5.15)
holds. Moreover, due to assumption (5.2), m

i=1 piP(xi) = 0 for every polynomial P of
degree ≤ j− 1, so the first j− 2 terms in the inner sum in (5.15) vanish, i. e., the right-
hand side of (5.15) under the assumptions of this theorem is equal to the right-hand side of
(5.16). �

Corollary 5.1 Suppose all the assumptions from Theorem 5.5 hold. Additionally, let j ∈
N, 2 ≤ j ≤ n, let x = (x1, . . . ,xm) ∈ [a,b]m, p = (p1, . . . , pm) ∈ R

m satisfy (5.2) and (5.3)
with n replaced by j and denote

H(x) :=
1

b−a

[
n−2


k= j−2

1
k!(k+2)

f (k+1) (a)(x−a)k+2

−
n−2


k= j−2

1
k!(k+2)

f (k+1) (b)(x−b)k+2

]
. (5.21)

If H is j-convex on [a,b] and n− j is even, then

m


i=1

pi f (xi) ≥ 0.

Proof. Applying Theorem 5.1 we conclude that the right-hand side of (5.16) is non-
negative for the j-convex function H. �

Remark 5.2 For example, since the functions x �→ (x−a)k+2 and x �→ (−1)k− j(x−b)k+2

are j-convex on [a,b], the function H given by (5.21) is j-convex if f (k+1)(a) ≥ 0 and
(−1)k+1− j f (k+1)(b) ≥ 0 for k ∈ { j−2, . . . ,n−2}.
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In the remainder of the section we state integral versions of the previous results, the
proofs of which are analogous to the discrete case.

Theorem 5.9 Let all the assumptions of Theorem 5.6 hold with the additional condition∫ 


p(x)Tn (g(x),s) dx ≥ 0, for all s ∈ [a,b]. (5.22)

Then, for every n-convex function f : I → R the following inequality holds∫ 


p(x) f (g(x))dx ≥ 1

b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
∫ 


p(x) (g(x)−a)k+2 dx

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
∫ 


p(x) (g(x)−b)k+2 dx

]
. (5.23)

Theorem 5.10 Suppose all the assumptions from Theorem 5.6 hold. Additionally, let
j ∈ N, 2 ≤ j ≤ n and let p : [, ] → R and g : [, ] → [a,b] satisfy (5.5) with n replaced
by j. If f is n-convex and n− j is even, then∫ 


p(x) f (g(x))dx ≥ 1

b−a

[
n−2


k= j−2

1
k!(k+2)

f (k+1) (a)
∫ 


p(x)(g(x)−a)k+2 dx

−
n−2


k= j−2

1
k!(k+2)

f (k+1) (b)
∫ 


p(x)(g(x)−b)k+2 dx

]
.

Corollary 5.2 Let j,n, f , p and g be as in Theorem 5.10 and let H be given by (5.21). If
H is j-convex and n− j is even, then∫ 


p(x) f (g(x))dx ≥ 0.

5.1.2 Inequalities for n-convex Functions at a Point

In Chapter 2 we gave the definition and some results about n-convex functions at a point.
Here we improve those results using results from the previous subsection. These results
can be found in [26].

Let T [a,c]
n and T [c,b]

n denote the equivalent of (5.8) on these intervals, i. e.,

T [a,c]
n (x,s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (x− s)n

n(c−a)
+

x−a
c−a

(x− s)n−1 , a ≤ s ≤ x,

− (x− s)n

n(c−a)
+

x− c
c−a

(x− s)n−1 , x < s ≤ c,

(5.24)

T [c,b]
n (x,s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (x− s)n

n(b− c)
+

x− c
b− c

(x− s)n−1 , c ≤ s ≤ x,

− (x− s)n

n(b− c)
+

x−b
b− c

(x− s)n−1 , x < s ≤ b.

(5.25)
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Let x ∈ [a,c]m, p ∈ R
m, y ∈ [c,b]l and q ∈ R

l and denote

A1( f ) =
m


i=1

pi f (xi)− 1
c−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
m


i=1

pi (xi−a)k+2

−
n−2


k=0

1
k!(k+2)

f (k+1) (c)
m


i=1

pi (xi− c)k+2

]
, (5.26)

B1( f ) =
l


i=1

qi f (yi)− 1
b− c

[
n−2


k=0

1
k!(k+2)

f (k+1) (c)
l


i=1

qi (yi − c)k+2

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
l


i=1

qi (yi −b)k+2

]
. (5.27)

Notice that, using the newly introduced functionals A and B, identity (5.12) applied to the
intervals [a,c] and [c,b] can be written as

A1( f ) =
1

(n−1)!

∫ c

a

(
m


i=1

piT
[a,c]
n (xi,s)

)
f (n) (s) ds, (5.28)

B1( f ) =
1

(n−1)!

∫ b

c

(
l


i=1

qiT
[c,b]
n (yi,s)

)
f (n) (s) ds. (5.29)

Theorem 5.11 Let x ∈ [a,c]m, p ∈ R
m, y ∈ [c,b]l and q ∈ R

l be such that

m


i=1

piT
[a,c]
n (xi,s) ≥ 0, for every s ∈ [a,c], (5.30)

l


i=1

qiT
[c,b]
n (yi,s) ≥ 0, for every s ∈ [c,b], (5.31)

∫ c

a

(
m


i=1

piT
[a,c]
n (xi,s)

)
f (n) (s) ds =

∫ b

c

(
l


i=1

qiT
[c,b]
n (yi,s)

)
f (n) (s) ds, (5.32)

where T [a,c]
n , T [c,b]

n , A1 and B1 are given by (5.24), (5.25), (5.26) and (5.27) respectively.
If f : [a,b] → R is (n+1)-convex at point c, then

A1( f ) ≤ B1( f ). (5.33)

If the inequalities in (5.30) and (5.31) are reversed, then (5.33) holds with the reversed
sign of inequality.
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Proof. Let F = f − K
n!en be as in the definition of a function n-convex at a point, i. e.,

the function F is n-concave on [a,c] and n-convex on [c,b]. Applying Theorem 5.7 to F on
the interval [a,c] we have

0 ≥ A1(F) = A1( f )− K
n!

A1(en) (5.34)

and applying Theorem 5.7 to F on the interval [c,b] we have

0 ≤ B1(F) = B1( f )− K
n!

B1(en). (5.35)

Identities (5.28) and (5.29) applied to the function en yield

A1(en) =
1

(n−1)!

∫ c

a

(
m


i=1

piT
[a,c]
n (xi,s)

)
ds,

B1(en) =
1

(n−1)!

∫ b

c

(
l


i=1

qiT
[c,b]
n (yi,s)

)
ds.

Therefore, assumption (5.32) is equivalent to A1(en)= B1(en). Now, from (5.34) and (5.35)
we obtain the stated inequality. �

Remark 5.3 In the proof of Theorem 5.11 we have, actually, shown that

A1( f ) ≤ K
n!

A1(en) =
K
n!

B1(en) ≤ B1( f ).

In fact, inequality (5.33) still holds if we replace assumption (5.32) with the weaker as-
sumption that K (B1(en)−A1(en)) ≥ 0.

Corollary 5.3 Let j1, j2,n ∈ N, ≤ j1, j2 ≤ n, let f : [a,b] → R be (n+1)-convex at point
c, let m-tuples x ∈ [a,c]m and p ∈ R

m satisfy (5.2) and (5.3) with n replaced by j1, let
l-tuples y ∈ [c,b]l and q ∈ R

l satisfy⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l


i=1

qiy
k
i = 0 for all k = 0,1, . . . , j2 −1

l


i=1

qi(yi − t) j2−1
+ ≥ 0 for every t ∈ [y(1),y(l−n+1)]

and let (5.32) hold. If n− j1 and n− j2 are even, then

A1( f ) ≤ B1( f ).

Proof. See the proof of Theorem 5.8. �
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5.1.3 Bounds for Remainders and Functionals

By using the aforementioned results we get bounds for the remainders appearing in the
identities obtained in this section, [26]. Let f ,h : [a,b] → R be two Lebesgue integrable
functions. We consider the Čebyšev functional as follows:

T ( f ,h) =
1

b−a

∫ b

a
f (x)h(x)dx−

(
1

b−a

∫ b

a
f (x)dx

)(
1

b−a

∫ b

a
h(x)dx

)
. (5.36)

As usual the symbol Lp [a,b] (1 ≤ p < ) denotes the space of p-power integrable func-
tions on the interval [a,b] equipped with the norm

‖ f‖p =
(∫ b

a
| f (t)|p dt

) 1
p

< 

and L [a,b] denotes the space of essentially bounded functions on [a,b] with the norm

‖ f‖ = ess sup
t∈[a,b]

| f (t)| .

The following results can be found in [11].

Theorem 5.12 Let f : [a,b] → R be a Lebesgue integrable function and h : [a,b] → R

be an absolutely continuous function with (· − a)(b− ·)[h′]2 ∈ L[a,b]. Then we have the
inequality

|T ( f ,h)| ≤ 1√
2

(
1

b−a
|T ( f , f )|

∫ b

a
(x−a)(b− x)[h′(x)]2 dx

) 1
2

. (5.37)

The constant 1√
2

in (5.37) is the best possible.

Theorem 5.13 Let h : [a,b] → R be a monotonic nondecreasing function and let f :
[a,b] → R be an absolutely continuous function such that f ′ ∈ L[a,b]. Then we have
the inequality

|T ( f ,h)| ≤ 1
2(b−a)

‖ f ′‖
∫ b

a
(x−a)(b− x)dh(x). (5.38)

The constant 1
2 in (5.38) is the best possible.

For m-tuples p = (p1, . . . , pm), x = (x1, . . . ,xm) with xi ∈ [a,b], pi ∈ R (i = 1, . . . ,m)
such that m

i=0 pi = 0 and the function Tn defined as in (5.8), denote

1(s) =
m


i=1

piTn(xi,s), for s ∈ 〈a,b]. (5.39)

Similarly for functions g : [, ]→ [a,b] and p : [, ]→ R such that
∫ 
 p(x)dx =

0, denote

1(s) =
∫ 


p(x)Tn (g(x),s) dx, for s ∈ [a,b]. (5.40)

Now, we are ready to state the main results of this section.
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Theorem 5.14 Let n ∈ N, f : [a,b] → R be such that f (n) is an absolutely continuous
function with (·− a)(b− ·)[ f (n+1)]2 ∈ L[a,b], xi ∈ [a,b] and pi ∈ R (i ∈ {1, . . . ,m}) such
that m

i=0 pi = 0 and let the functions Tn, T and 1 be defined in (5.8), (5.36) and (5.39)
respectively. Then the remainder R1

n( f ;a,b) given by the following identity

m


i=1

pi f (xi) =
1

b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
m


i=1

pi (xi −a)k+2

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
m


i=1

pi (xi−b)k+2

]

+
f (n−1)(b)− f (n−1)(a)

(n−1)!(b−a)

∫ b

a
1(s)ds+R1

n( f ;a,b) (5.41)

satisfies the estimation

|R1
n( f ;a,b)| ≤ 1

(n−1)!

(
b−a

2
T (1,1)

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

)1/2

.

Proof. By identity (5.12) we have

m


i=1

pi f (xi) − 1
b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
m


i=1

pi (xi −a)k+2

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
m


i=1

pi (xi −b)k+2

]

=
1

(n−1)!

∫ b

a

(
m


i=1

piTn(xi,s)

)
f (n)(s)ds

=
1

(n−1)!

∫ b

a
1(s) f (n)(s)ds

=
1

(n−1)!(b−a)

∫ b

a
f (n)(s)ds

∫ b

a
1(s)ds+R1

n( f ;a,b)

=
f (n−1)(b)− f (n−1)(a)

(n−1)!(b−a)

∫ b

a
1(s)ds+R1

n( f ;a,b),

where

R1
n( f ;a,b) =

1
(n−1)!

(∫ b

a
1(s) f (n)(s)ds− 1

b−a

∫ b

a
f (n)(s)ds

∫ b

a
1(s)ds

)
.

If we apply Theorem 5.12 for f → 1 and h → f (n), then we obtain∣∣∣∣ 1
b−a

∫ b

a
1(s) f (n)(s)ds−

(
1

b−a

∫ b

a
1(s)ds

)(
1

b−a

∫ b

a
f (n)(s)ds

)∣∣∣∣
≤ 1√

2

(
1

b−a
T (1,1)

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

)1/2
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from where desired estimation follows. �

Here we state the integral version of the previous theorem.

Theorem 5.15 Let n ∈ N, f : [a,b] → R be such that f (n) is an absolutely continuous
function with (· − a)(b− ·)[ f (n+1)]2 ∈ L[a,b], let g : [, ] → [a,b] and p : [, ] → R

be functions such that
∫ 
 p(x)dx = 0 and let the functions Tn, T and 1 be defined in

(5.8), (5.36) and (5.40) respectively. Then the remainder R2
n( f ;a,b) given by the following

identity

∫ 


p(x) f (g(x))dx =

1
b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
∫ 


p(x) (g(x)−a)k+2 dx

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
∫ 


p(x) (g(x)−b)k+2 dx

]

+

[
f (n−1)(b)− f (n−1)(a)

]
(n−1)!(b−a)

∫ b

a
1(s)ds+R2

n( f ;a,b) (5.42)

satisfies the estimation

|R2
n( f ;a,b)| ≤ 1

(n−1)!

(
b−a

2
T (1,1)

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

)1/2

.

By using Theorem 5.13 we obtain the following Grüss type inequality.

Theorem 5.16 Let n ∈ N, f : [a,b] → R be such that f (n) is an absolutely continuous
function with f (n+1) ≥ 0 on [a,b], xi ∈ [a,b] and pi ∈R (i∈ {1, . . . ,m}) such thatm

i=0 pi =
0. Also, let the functions T and 1 be defined in (5.36) and (5.39) respectively. Then in
representation (5.41) the remainder R1

n( f ;a,b) satisfies the following estimation

|R1
n( f ;a,b)| ≤ 1

(n−1)!
‖ ′

1‖
[
b−a

2

[
f (n−1)(b)+ f (n−1)(a)

]
−

[
f (n−2)(b)− f (n−2)(a)

]]
. (5.43)

Proof. If we apply Theorem 5.13 for f →  and h → f (n), then we obtain∣∣∣∣ 1
b−a

∫ b

a
1(s) f (n)(s)ds−

(
1

b−a

∫ b

a
1(s)ds

)(
1

b−a

∫ b

a
f (n)(s)ds

)∣∣∣∣
≤ 1

2(b−a)
‖ ′‖

∫ b

a
(s−a)(b− s) f (n+1)(s)ds.

Since ∫ b

a
(s−a)(b− s) f (n+1)(s)ds =

∫ b

a
(2s−a−b) f (n)(s)ds
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= (b−a)
[
f (n−1)(b)+ f (n−1)(a)

]
−2

[
f (n−2)(b)− f (n−2)(a)

]
, (5.44)

by using identities (5.41) and (5.44) we deduce (5.43). �

Next we give the integral version of the above theorem.

Theorem 5.17 Let n ∈ N, f : [a,b] → R be such that f (n) is an absolutely continuous
function with f (n+1) ≥ 0 on [a,b], let g : [, ] → [a,b] and p : [, ] → R be functions
such that

∫ 
 p(x)dx = 0. Also, let the functions T and 1 be defined in (5.36) and (5.40)

respectively. Then in representation (5.42) the remainder R2
n( f ;a,b) satisfies the following

estimation

|R2
n( f ;a,b)| ≤ 1

(n−1)!
‖′

1‖
[
b−a

2

[
f (n−1)(b)+ f (n−1)(a)

]
−

[
f (n−2)(b)− f (n−2)(a)

]]
.

Now we state some Ostrowski-type inequalities related to the obtained identities.

Theorem 5.18 Let all the assumptions of Theorem 5.5 hold. Furthermore, let (q,r) be a
pair of conjugate exponents, that is 1 ≤ q,r ≤ , 1

q + 1
r = 1. Let f (n) ∈ Lq [a,b] for some

n ∈ N, n > 1. Then we have∣∣∣∣∣
m


i=1

pi f (xi) − 1
b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
m


i=1

pi (xi−a)k+2

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
m


i=1

pi (xi−b)k+2

]∣∣∣∣∣
≤ 1

(n−1)!
‖ f (n)‖q

∥∥∥∥∥
m


i=1

piTn (xi, ·)
∥∥∥∥∥

r

. (5.45)

The constant on the right-hand side of (5.45) is sharp for 1 < q ≤  and the best possible
for q = 1.

Proof. Let us denote

 (s) =
1

(n−1)!

m


i=1

piTn (xi,s) .

Now, by using identity (5.12) and applying Hölder’s inequality we obtain∣∣∣∣∣
m


i=1

pi f (xi)− 1
b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
m


i=1

pi (xi −a)k+2

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
m


i=1

pi (xi−b)k+2

]∣∣∣∣∣≤ ‖ f (n)‖q‖‖r. (5.46)
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For the proof of the sharpness of the constant
(∫ b

a | (s)|r ds
)1/r

, let us find a function f

for which the equality in (5.46) is obtained.
For 1 < q <  take f to be such that

f (n)(s) = sgn  (s) · | (s)|1/(q−1).

For q = , take f such that
f (n)(s) = sgn  (s).

Finally, for q = 1, we prove that∣∣∣∣∫ b

a
 (s) f (n)(s)ds

∣∣∣∣ ≤ max
s∈[a,b]

| (s)|
∫ b

a
f (n)(s)ds (5.47)

is the best possible inequality.
Function Tn (x, ·) for n = 1 has a jump of −1 at point x. But, for n ≥ 2 it is continuous,

and thus  (s) is continuous. Suppose that | (s)| attains its maximum at s0 ∈ [a,b]. First
we consider the case  (s0) > 0. For  small enough we define f(s) by

f(s) =

⎧⎪⎪⎨
⎪⎪⎩

0, a ≤ s ≤ s0,

1
n! (s− s0)n, s0 ≤ s ≤ s0 + ,
1

(n−1)!(s− s0)n−1, s0 +  ≤ s ≤ b.

We have ∣∣∣∣∫ b

a
 (s) f (n)

 (s)ds

∣∣∣∣ =
∣∣∣∣∫ s0+

s0
 (s)

1

ds

∣∣∣∣ =
1


∫ s0+

s0
 (s)ds.

Now, from inequality (5.47) we have

1


∫ s0+

s0
 (s)ds ≤  (s0)

1


∫ s0+

s0
ds =  (s0).

Since

lim
→0

1


∫ s0+

s0
 (s)ds =  (s0),

the statement follows.
In the case  (s0) < 0, we define f(s) by

f (s) =

⎧⎪⎪⎨
⎪⎪⎩

1
(n−1)!(s− s0− )n−1, a ≤ s ≤ s0,

− 1
n!(s− s0− )n, s0 ≤ s ≤ s0 + ,

0, s0 +  ≤ s ≤ b

and the rest of the proof is the same as above. �

Now we give the integral case of the above theorem.
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Theorem 5.19 Let all the assumptions of Theorem 5.6 hold. Furthermore, let (q,r) be a
pair of conjugate exponents, that is 1 ≤ q,r ≤ , 1

q + 1
r = 1. Let f (n) ∈ Lq [a,b] for some

n ∈ N, n > 1. Then we have∣∣∣∣∫ 


p(x) f (g(x))dx

− 1
b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
∫ 


p(x) (g(x)−a)k+2 dx

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
∫ 


p(x) (g(x)−b)k+2 dx

]∣∣∣∣∣
≤ 1

(n−1)!
‖ f (n)‖q

∥∥∥∥∫ 


p(x)Tn (g(x),s)dx

∥∥∥∥
r
. (5.48)

The constant on the right-hand side of (5.48) is sharp for 1 < q ≤  and the best possible
for q = 1.

5.1.4 Results Obtained by the Green Function and
the Montgomery Identity

In this section we give several identities and inequalities based on application of the exten-
sion of the Montgomery identity involving the Green function. These results can be find in
paper [27].

Theorem 5.20 Let n ∈ N, n ≥ 3, f : I → R be a function such that f (n−1) is absolutely
continuous, I ⊂ R an open interval, a,b ∈ I, a < b. Let x = (x1, . . . ,xm) ∈ [a,b]m, p =
(p1, . . . , pm) ∈ R

m satisfy
m


i=1

pi = 0,
m


i=1

pixi = 0 (5.49)

and let G be given by (5.10). Then
m


i=1

pi f (xi) =
f ′(a)− f ′(b)

b−a

∫ b

a

m


i=1

piG(xi,s)ds

+
n−1


k=2

k
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

+
1

(n−3)!

∫ b

a
f (n)(t)

(∫ b

a

m


i=1

piG(xi,s)T̃n−2(s,t)ds

)
dt, (5.50)

where

T̃n−2 (s,t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
b−a

[
(s− t)n−2

(n−2)
+ (s−a)(s− t)n−3

]
, a ≤ t ≤ s ≤ b,

1
b−a

[
(s− t)n−2

(n−2)
+ (s−b)(s− t)n−3

]
, a ≤ s < t ≤ b.
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and G is as defined in (5.10). Moreover, the following identity holds

m


i=1

pi f (xi) =
f ′(b)− f ′(a)

b−a

∫ b

a

m


i=1

piG(xi,s)ds

+
n−1


k=3

k−2
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

+
1

(n−3)!

∫ b

a
f (n)(t)

(∫ b

a

m


i=1

piG(xi,s)Tn−2(s,t)ds

)
dt, (5.51)

where Tn is as defined in (5.8).

Proof. Using (5.11) in m
i=1 pi f (xi), and condition (5.49) we get

m


i=1

pi f (xi) =
∫ b

a

m


i=1

piG(xi,s) f ′′(s)ds. (5.52)

Differentiating (5.7) twice with respect to s, we get

f ′′(s) =
f ′(a)− f ′(b)

b−a
+

n−1


k=2

k
(k−1)!

f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a

+
1

(n−3)!

∫ b

a
T̃n−2(s,t) f (n)(t)dt. (5.53)

Now using (5.53) in (5.52) we get

m


i=1

pi f (xi) =
f ′(a)− f ′(b)

b−a

∫ b

a

m


i=1

piG(xi,s)ds

+
n−1


k=2

k
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

+
1

(n−3)!

∫ b

a

m


i=1

piG(xi,s)
(∫ b

a
T̃n−2(s,t) f (n)(t)dt

)
ds

and then using Fubini’s theorem in the last term we get (5.50).
Also, by using formula (5.7) on the function f ′′, replacing n by n− 2 (n ≥ 3) and

rearranging the indices we get

f ′′(s) =
f ′(a)− f ′(b)

b−a
+

n−1


k=3

k−2
(k−1)!

f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a

+
1

(n−3)!

∫ b

a
Tn−2(s,t) f (n)(t)dt. (5.54)

Similarly, using (5.54) in (5.52) and applying Fubini’s Theorem, we get (5.51). �
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Theorem 5.21 Let all the assumptions of Theorem 5.20 hold with additional condition

∫ b

a

m


i=1

piG(xi,s)T̃n−2(s,t)ds ≥ 0, ∀ t ∈ [a,b] (5.55)

where G is defined in (5.10) and T̃n is defined in Theorem 5.20. Then for every n-convex
function f : I → R the following inequality holds

m


i=1

pi f (xi) ≥ f ′(a)− f ′(b)
b−a

∫ b

a

m


i=1

piG(xi,s)ds (5.56)

+
n−1


k=2

k
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds.

Proof. Since the function f is n-convex we have f (n) ≥ 0. Using this fact and (5.55) in
(5.50) we easily arrive at our required result. �

Theorem 5.22 Let all the assumptions of Theorem 5.20 hold with additional condition

∫ b

a

m


i=1

piG(xi,s)Tn−2(s,t)ds ≥ 0, ∀ t ∈ [a,b], (5.57)

where G is defined in (5.10) and Tn is defined in Theorem 5.3. If f is n-convex then

m


i=1

pi f (xi) ≥ f ′(b)− f ′(a)
b−a

∫ b

a

m


i=1

piG(xi,s)ds (5.58)

+
n−1


k=3

k−2
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds.

Proof. Since the function f is n-convex we have f (n) ≥ 0. Using this fact and (5.57) in
(5.51) we easily arrive at our required result. �

Now we state one important consequences.

Theorem 5.23 Let all the assumptions from Theorem 5.20 hold with

m


i=1

pi = 0,
m


i=1

pi|xi− xk| ≥ 0, for k ∈ {1, . . . ,m}. (5.59)

If f is n-convex and n is even, then inequalities (5.56) and (5.58) hold.

Proof. Since the Green function G(s,t) is convex with respect to t for every s ∈ [a,b]
and x = (x1, . . . ,xm) and p = (p1, . . . , pm) satisfy conditions from Remark 5.1 we have

m


i=1

piG(xi,s) ≥ 0 for s ∈ [a,b]. (5.60)
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Also note that for even n T̃n−2(s,t) ≥ 0 and Tn−2(s,t) ≥ 0. Therefore, combining this fact
with (5.60) we get inequalities (5.55) and (5.57). As f is n-convex, so results follows from
Theorems 5.21 and 5.22. �

The integral version of our main results may be stated as follows. Since the proofs are
of similar nature, we omit the details.

Theorem 5.24 Let n ∈ N, n ≥ 3, f : I → R be a function such that f (n−1) is absolutely
continuous, I ⊂R an open interval, a,b ∈ I, a < b. Furthermore, let g : [, ] → [a,b] and
p : [, ] → R satisfy

∫ 
 p(x)dx = 0 and

∫ 
 p(x)g(x)dx = 0, and let G, Tn and T̃n be given

by (5.10), (5.8) and in Theorem 5.20. Then the following two identities hold:∫ 


p(x) f (g(x))dx =

f ′(a)− f ′(b)
b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds

+
n−1


k=2

k
(k−1)!

∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

+
1

(n−3)!

∫ b

a
f (n)(t)

(∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
T̃n−2(s, t)ds

)
dt

and ∫ 


p(x) f (g(x))dx =

f ′(b)− f ′(a)
b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds

+
n−1


k=3

k−2
(k−1)!

∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

+
1

(n−3)!

∫ b

a
f (n)(t)

(∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
Tn−2(s,t)ds

)
dt.

Theorem 5.25 Let all the assumptions of Theorem 5.24 hold with additional condition∫ b

a

∫ 


p(x)G(g(x),s) T̃n−2(s,t)dxds ≥ 0, ∀ t ∈ [a,b], (5.61)

where G is defined in (5.10) and T̃n is defined in Theorem 5.20. If f is n-convex, then∫ 


p(x) f (g(x))dx ≥ f ′(a)− f ′(b)

b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds (5.62)

+
n−1


k=2

k
(k−1)!

×

×
∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds.

Theorem 5.26 Let all the assumptions of Theorem 5.24 hold with additional condition∫ b

a

∫ 


p(x)G(g(x),s)Tn−2(s,t)dxds ≥ 0, ∀ t ∈ [a,b]. (5.63)
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If f is n-convex, then

∫ 


p(x) f (g(x))dx ≥ f ′(b)− f ′(a)

b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds (5.64)

+
n−1


k=3

k−2
(k−1)!

×
∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

Theorem 5.27 Let all the assumptions from Theorem 5.24 hold with the additional as-
sumption that g : [, ] → [a,b] and p : [, ] → R satisfy

∫ 


p(x)gk(x)dx = 0 for all k = 0,1, . . . ,n−1,∫ 


p(x)(g(x)− t)n−1

+ dx ≥ 0 for every t ∈ [a,b].

If f is n-convex and n is even, then inequalities (5.62) and (5.64) hold.

5.1.5 Bounds for the Remainders

Theorems in this section are devoted to estimations of the remainders which occur in cer-
tain representations of the sum m

i=1 pi f (xi) and the integral
∫ 
 p(x) f (g(x))dx. Namely,

we give some Grüss and Ostrowski type inequalities, [27].
Under the assumptions of Theorems 5.20 and 5.24 respectively, we define the following

functions

1(t) =
∫ b

a

m


i=1

piG(xi,s)T̃n−2(s,t)ds, t ∈ [a,b] (5.65)

2(t) =
∫ b

a

m


i=1

piG(xi,s)Tn−2(s,t)ds, t ∈ [a,b] (5.66)

3(t) =
∫ b

a

∫ 


p(x)G(g(x),s) T̃n−2(s,t)dxds, t ∈ [a,b] (5.67)

4(t) =
∫ b

a

∫ 


p(x)G(g(x),s)Tn−2(s,t)dxds, t ∈ [a,b]. (5.68)

Theorem 5.28 Let n ∈ N, n ≥ 3, f : [a,b]→ R be such that f (n) is an absolutely contin-
uous function with (·− a)(b− ·)[ f (n+1)]2 ∈ L[a,b] and let x ∈ [a,b]m and p ∈ R

m satisfy
m

i=1 pi = 0 andm
i=1 pixi = 0. Then the remainders R1

n( f ;a,b) and R2
n( f ;a,b) given by the

following identities

m


i=1

pi f (xi) =
f ′(a)− f ′(b)

b−a

∫ b

a

m


i=1

piG(xi,s)ds
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+
n−1


k=2

k
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

+
f (n−1)(b)− f (n−1)(a)

(n−3)!(b−a)

∫ b

a
1(s)ds+R1

n( f ;a,b) (5.69)

and
m


i=1

pi f (xi) =
f ′(b)− f ′(a)

b−a

∫ b

a

m


i=1

piG(xi,s)ds

+
n−1


k=3

k−2
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

+
f (n−1)(b)− f (n−1)(a)

(n−3)!(b−a)

∫ b

a
2(s)ds+R2

n( f ;a,b) (5.70)

satisfy estimations

|Rk
n( f ;a,b)| ≤ 1

(n−3)!

(
b−a

2
T (k,k)

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

)1/2

,

for k = 1,2.

Proof. We will prove the claim for k = 1, while the proof for k = 2 is analogous.
Proposition 5.12 with f →1 and h → f (n) yields∣∣∣∣ 1

b−a

∫ b

a
1(t) f (n)(t)dt −

(
1

b−a

∫ b

a
1(t)dt

)(
1

b−a

∫ b

a
f (n)(t)dt

)∣∣∣∣
≤ 1√

2

(
1

b−a
|T (1,1)|

∫ b

a
(t −a)(b− t)[ f (n+1)(t)]2dt

)1/2

. (5.71)

By identity (5.50) from Theorem 5.20

m


i=1

pi f (xi)− f ′(a)− f ′(b)
b−a

∫ b

a

m


i=1

piG(xi,s)ds

−
n−1


k=2

k
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

=
1

(n−3)!

∫ b

a
1(t) f (n)(t)dt

and, since

1
(n−3)!

∫ b

a
1(t) f (n)(t)dt =

f (n−1)(b)− f (n−1)(a)
(n−3)!(b−a)

∫ b

a
1(t)dt +R1

n( f ;a,b),

the bound for the remainder R1
n( f ;a,b) follows from (5.71). �

By using Theorem 5.13 we obtain the following Grüss type inequality.
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Theorem 5.29 Let n ∈ N, n ≥ 3, f : [a,b] → R be such that f (n) is an absolutely con-
tinuous function with f (n+1) ≥ 0 and let x ∈ [a,b]m and p ∈ R

m satisfy m
i=1 pi = 0 and

m
i=1 pixi = 0. Then remainders Ri

n( f ;a,b), i = 1,2, from representations (5.69) and (5.70)
satisfy

|Ri
n( f ;a,b)| ≤ 1

(n−3)!
‖′

i‖
{

b−a
2

[
f (n−1)(b)+ f (n−1)(a)

]
−

[
f (n−2)(b)− f (n−2)(a)

]}
.

Now we state some Ostrowski-type inequalities related to the generalized linear in-
equalities. The proofs of the below-mentioned two theorems are done in a similar manner
as the proof of Theorem 5.18.

Theorem 5.30 Let n∈N, n≥ 3, 1≤ q,r≤, 1
q + 1

r = 1, f (n) ∈ Lq[a,b] and let x∈ [a,b]m

and p ∈ R
m satisfy m

i=1 pi = 0 and m
i=1 pixi = 0. Then∣∣∣∣∣

m


i=1

pi f (xi) − f ′(a)− f ′(b)
b−a

∫ b

a

m


i=1

piG(xi,s)ds

−
n−1


k=2

k
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

∣∣∣∣∣
≤ 1

(n−3)!
‖ f (n)‖q

∥∥∥∥∥
∫ b

a

m


i=1

piG(xi,s)T̃n−2(s,t)ds

∥∥∥∥∥
r

and ∣∣∣∣∣
m


i=1

pi f (xi) − f ′(b)− f ′(a)
b−a

∫ b

a

m


i=1

piG(xi,s)ds

−
n−1


k=3

k−2
(k−1)!

∫ b

a

m


i=1

piG(xi,s)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

∣∣∣∣∣
≤ 1

(n−3)!
‖ f (n)‖q

∥∥∥∥∥
∫ b

a

m


i=1

piG(xi,s)Tn−2(s,t)ds

∥∥∥∥∥
r

.

The constant on the right-hand side of the above inequalities is sharp for 1 < q ≤  and
the best possible for q = 1.

The integral analogous of stated results are as follow. Since the proofs are of similar
nature we omit the details.

Theorem 5.31 Let n∈ N, n≥ 3, f : [a,b]→R be such that f (n) is an absolutely continu-
ous function with (·−a)(b−·)[ f (n+1)]2 ∈ L[a,b] and let g : [, ]→ [a,b] and p : [, ]→
R satisfy

∫ 
 p(x)dx = 0 and

∫ 
 p(x)g(x)dx = 0. Then the remainders Rk

n( f ;a,b), k = 3,4,
given by the following identities∫ 


p(x) f (g(x))dx =

f ′(a)− f ′(b)
b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds
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+
n−1


k=2

k
(k−1)!

∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
×

× f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

+

[
f (n−1)(b)− f (n−1)(a)

]
(n−3)!(b−a)

∫ b

a
3(s)ds+R3

n( f ;a,b), (5.72)

and ∫ 


p(x) f (g(x))dx =

f ′(b)− f ′(a)
b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds

+
n−1


k=3

k−2
(k−1)!

∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
×

× f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

+

[
f (n−1)(b)− f (n−1)(a)

]
(n−3)!(b−a)

∫ b

a
4(s)ds+R4

n( f ;a,b), (5.73)

have a bound

|Rk
n( f ;a,b)| ≤ 1

(n−3)!

(
b−a

2
T (k,k)

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

)1/2

.

By using Theorem 5.13 we obtain the following Grüss type inequality.

Theorem 5.32 Let n ∈ N, n ≥ 3, f : [a,b] → R be such that f (n) is an absolutely con-
tinuous function with f (n+1) ≥ 0 and let g : [, ] → [a,b] and p : [, ] → R satisfy∫ 
 p(x)dx = 0 and

∫ 
 p(x)g(x)dx = 0. Then the remainders Ri

n( f ;a,b), i = 3,4 from rep-
resentations (5.72) and (5.73) satisfy

|Ri
n( f ;a,b)|

≤ 1
(n−3)!

‖′
i‖

{
b−a

2

[
f (n−1)(b)+ f (n−1)(a)

]
−
[
f (n−2)(b)− f (n−2)(a)

]}
.

The Ostrowski-type inequalities related to the generalized integral linear inequalities
are given below.

Theorem 5.33 Let n ∈ N, n ≥ 3, 1 ≤ q,r ≤ , 1
q + 1

r = 1, f (n) ∈ Lq[a,b] and let g :

[, ] → [a,b] and p : [, ] → R satisfy
∫ 
 p(x)dx = 0 and

∫ 
 p(x)g(x)dx = 0. Then∣∣∣∣∫ 


p(x) f (g(x))dx − f ′(a)− f ′(b)

b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds

−
n−1


k=2

k
(k−1)!

×
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×
∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

≤ 1
(n−3)!

‖ f (n)‖q‖3‖r

and ∣∣∣∣∫ 


p(x) f (g(x))dx − f ′(b)− f ′(a)

b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds

−
n−1


k=3

k−2
(k−1)!

∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
×

× f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds

∣∣∣∣∣≤ 1
(n−3)!

‖ f (n)‖q‖4‖r.

The constant on the right-hand side of the above inequalities is sharp for 1 < q ≤  and
the best possible for q = 1.

5.1.6 Mean Value Theorems and Exponential Convexity

In this section we prove some properties of linear functionals associated with the inequal-
ities obtained in earlier sections. Under the assumptions of Theorem 5.7 using (5.15),
Theorem 5.9 using (5.23), Theorem 5.21 using (5.56), Theorem 5.22 using (5.58), Theo-
rem 5.25 using (5.62) and Theorem 5.26 using (5.64) we define the following functionals
respectively:

1( f ) =
m


i=1

pi f (xi)− 1
b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
m


i=1

pi (xi −a)k+2

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
m


i=1

pi (xi−b)k+2

]
, (5.74)

2( f ) =
∫ 


p(x) f (g(x))dx

− 1
b−a

[
n−2


k=0

1
k!(k+2)

f (k+1) (a)
∫ 


p(x) (g(x)−a)k+2 dx

−
n−2


k=0

1
k!(k+2)

f (k+1) (b)
∫ 


p(x)(g(x)−b)k+2 dx

]
, (5.75)

3( f ) =
m


i=1

pi f (xi)− f ′(a)− f ′(b)
b−a

∫ b

a

m


i=1

piG(xi,s)ds

−
n−1


k=2

k
(k−1)!

∫ b

a

m


i=1

piG(xi,s)×

× f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds, (5.76)
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4( f ) =
m


i=1

pi f (xi)− f ′(b)− f ′(a)
b−a

∫ b

a

m


i=1

piG(xi,s)ds

−
n−1


k=3

k−2
(k−1)!

∫ b

a

m


i=1

piG(xi,s)×

× f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds, (5.77)

5( f ) =
∫ 


p(x) f (g(x))dx− f ′(a)− f ′(b)

b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds

−
n−1


k=2

k
(k−1)!

∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
×

× f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds, (5.78)

6( f ) =
∫ 


p(x) f (g(x))dx− f ′(b)− f ′(a)

b−a

∫ b

a

∫ 


p(x)G(g(x),s)dxds

−
n−1


k=3

k−2
(k−1)!

∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
×

× f (k)(a)(s−a)k−1− f (k)(b)(s−b)k−1

b−a
ds. (5.79)

Remark 5.4 In the following text until the end of this section we use an agreement that
if k is a fixed number from the set {1,2,3,4,5,6}, then assumptions of Theorem 5.7, The-
orem 5.9, Theorem 5.21, Theorem 5.22, Theorem 5.25, Theorem 5.26 hold respectively.

Now we give mean value theorems for k, k ∈ {1, . . . ,6}.

Theorem 5.34 Let k ∈ {1, . . . ,6} and let k : Cn([a,b]) → R be a linear functional as
defined in (5.74), . . . ,(5.79) under the agreement described in Remark 5.4, respectively.
Then for f ∈Cn([a,b]) there exists k ∈ [a,b] such that

k( f ) = f (n)(k)k( f0), (5.80)

where f0(x) =
xn

n!
.

Proof. Fix k ∈ {1, . . . ,6}. Since f (n) is continuous on [a,b], we have L ≤ f (n)(x) ≤ M
for x ∈ [a,b] where L = minx∈[a,b] f (n)(x) and M = maxx∈[a,b] f (n)(x).

Therefore the function

F(x) = M
xn

n!
− f (x) = M f0(x)− f (x)

satisfies
F (n)(x) = M− f (n)(x) ≥ 0,
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i.e. F is n-convex function. Hence k(F) ≥ 0 and we conclude that

k( f ) ≤ Mk( f0).

Similarly, we have
Lk( f0) ≤ k( f ).

Combining the two inequalities we get

Lk( f0) ≤ k( f ) ≤ Mk( f0).

If k( f0) = 0, then k( f ) = 0 and statement (5.80) obviously holds. If k( f0) �= 0, then
k( f )
k( f0)

∈ [L,M]. Hence there exists k ∈ [a,b] such that
k( f )
k( f0)

= f (n)(k), i.e. the state-

ment of the theorem is proved. �

Theorem 5.35 Let k ∈ {1, . . . ,6} and let k : Cn([a,b]) → R be a linear functional as
defined in (5.74), . . . ,(5.79) under the agreement described in Remark 5.4, respectively.
Then for f ,h ∈Cn([a,b]) exists k ∈ [a,b] such that

k( f )
k(h)

=
f (n)(k)
h(n)(k)

assuming that both denominators are non-zero.

Proof. Fix k ∈ {1, . . . ,6}. For f ,h ∈Cn([a,b]) define  ∈Cn([a,b]) as

 = k(h) f −k( f )h.

Using Theorem 5.34 there exists k such that

k() = (n)(k)k( f0).

Obviously, k() = 0 and (n)(k) = k(h) f (n)(k)−k( f )h(n)(k). Since k(h) �= 0 by
Theorem 5.34 we conclude that k( f0) �= 0. So

k(h) f (n)(k)−k( f )h(n)(k) = 0

which gives us the required result. �

Remark 5.5 If the inverse of f (n)

h(n) exists, then from the above mean value theorems we
can give generalized means

k =

(
f (n)

h(n)

)−1(
k( f )
k(h)

)
, k ∈ {1, . . . ,6}. (5.81)

A number of important inequalities arises from the logarithmic convexity of some func-
tions. In the following definitions I is an interval in R.
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Definition 5.1 A function f : I → 〈0,〉 is called log-convex in J-sense if the inequality

f 2
(

x1 + x2

2

)
≤ f (x1) f (x2)

holds for each x1,x2 ∈ I.

A function log-convex in the J-sense is log-convex if it is continuous as well.
Some results about exponentially convex functions are already given in Section 3.6.

Here we wide that concept to n-exponentially convex functions. J. Pečarić and J. Perić in
[73] introduced the notion of n-exponentially convex functions which is in fact a gener-
alization of the concept of exponentially convex functions. In the present subsection, we
discuss the concept of n-exponential convexity by describing related definitions and some
important results with some remarks from [73].

Definition 5.2 A function f : I → R is n-exponentially convex in the J-sense if the in-
equality

n


i, j=1

uiu j f

(
ti + t j

2

)
≥ 0

holds for each ti ∈ I and ui ∈ R, i ∈ {1, . . . ,n}.

Definition 5.3 A function f : I → R is n-exponentially convex if it is n-exponentially
convex in the J-sense and continuous on I.

Remark 5.6 We can see from the definition that 1-exponentially convex functions in the
J-sense are in fact nonnegative functions. Also, n-exponentially convex functions in the
J-sense are k-exponentially convex in the J-sense for every k ∈ N such that k ≤ n.

Definition 5.4 A function f : I → R is exponentially convex in the J-sense, if it is n-
exponentially convex in the J-sense for each n ∈ N.

Remark 5.7 A function f : I → R is exponentially convex if it is n-exponentially convex
in the J-sense and continuous on I.

Here we state without proof a proposition from [73].

Proposition 5.1 If function f : I → R is n-exponentially convex in the J-sense, then the
matrix [

f

(
ti + t j

2

)]m

i, j=1

is positive-semidefinite. Particularly

det

[
f

(
ti + t j

2

)]m

i, j=1
≥ 0

for each m ∈ N,m ≤ n and ti ∈ I for i ∈ {1, . . . ,m}.
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Remark 5.8 A function f : I → (0,) is log-convex in the J-sense if and only if the
inequality

u2
1 f (t1)+2u1u2 f

(
t1 + t2

2

)
+u2

2 f (t2) ≥ 0

holds for each t1,t2 ∈ I and u1,u2 ∈ R. It follows that a positive function is log-convex
in the J-sense if and only if it is 2-exponentially convex in the J-sense. Also, using basic
convexity theory it follows that a positive function is log-convex if and only if it is 2-
exponentially convex.

Here, we get our results concerning the n-exponential convexity and exponential con-
vexity for our functionals k, k ∈ {1, . . . ,6}. Throughout the section I is an interval in
R.

Theorem 5.36 Let D1 = { ft : t ∈ I} be a class of functions such that the function t �→
[z0,z1, . . . ,zn; ft ] is n-exponentially convex in the J-sense on I for any n+1 mutually distinct
points z0,z1, . . . ,zn ∈ [a,b]. Let k for k ∈ {1, . . . ,6} be the linear functionals as defined
in (5.74), . . . ,(5.79) under the agreement described in Remark 5.4, respectively. Then the
following statements are valid:

(a) The function t �→ k( ft) is n-exponentially convex function in the J-sense on I.

(b) If the function t �→ k( ft ) is continuous on I, then the function t �→ k( ft) is n-
exponentially convex on I.

Proof.

(a) Fix k ∈ {1, . . . ,6}. Let us define the function  for ti ∈ I, ui ∈ R, i ∈ {1, . . . ,n} as
follows

 =
n


i, j=1

uiu j f ti+t j
2

,

Since the function t �→ [z0,z1, . . . ,zn; ft ] is n-exponentially convex in the J-sense, we
have

[z0,z1, . . . ,zn; ] =
n


i, j=1

uiu j[z0,z1, . . . ,zn; f ti+t j
2

] ≥ 0

which implies that  is n-convex function on I and therefore k() ≥ 0. Hence

n


i, j=1

uiu jk( f ti+t j
2

) ≥ 0.

We conclude that the function t �→ k( ft) is an n-exponentially convex function on
I in the J-sense.

(b) This part easily follows from the definition of n-exponentially convex functions.

�

As a consequence of the above theorem we give the following corollaries.
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Corollary 5.4 Let D2 = { ft : t ∈ I} be a class of functions such that the function t �→
[z0,z1, . . . ,zn; ft ] is exponentially convex in the J-sense on I for any n+1 mutually distinct
points z0,z1, . . . ,zn ∈ [a,b]. Let k for k ∈ {1, . . . ,6} be the linear functionals as defined
in (5.74), . . . ,(5.79) under the agreement described in Remark 5.4, respectively. Then the
following statements are valid:

(a) The function t �→ k( ft ) is exponentially convex in the J-sense on I.

(b) If the function t �→ k( ft ) is continuous on I, then the function t �→ k( ft) is expo-
nentially convex on I.

(c) The matrix

[
k

(
f ti+t j

2

)]m

i, j=1
is positive-semidefinite. Particularly,

det

[
k

(
f ti+t j

2

)]m

i, j=1
≥ 0

for each m ∈ N and ti ∈ I where i ∈ {1, . . . ,m}.
Proof. Proof follows directly from Theorem 5.36 by using the definition of exponential

convexity and Corollary 3.4. �

Corollary 5.5 Let D3 = { ft : t ∈ I} be a class of functions such that the function t �→
[z0,z1, . . . ,zn; ft ] is 2-exponentially convex in the J-sense on I for any n+1 mutually distinct
points z0,z1, . . . ,zn ∈ [a,b]. Let k for k ∈ {1, . . . ,6} be the linear functionals as defined
in (5.74), . . . ,(5.79) under the agreement described in Remark 5.4, respectively. Then the
following statements are valid:

(a) If the function t �→ k( ft ) is continuous on I, then it is 2-exponentially convex on
I. If the function t �→ k( ft ) is additionally positive, then it is also log-convex on I.
Moreover, the following Lyapunov’s inequality holds for r < s < t, r, s, t ∈ I

[k( fs)]t−r ≤ [k( fr)]t−s [k( ft )]s−r. (5.82)

(b) If the function t �→k( ft ) is positive and differentiable on I, then for every s,t,u,v∈ I
such that s ≤ u and t ≤ v, we have

s,t(k,D3) ≤ u,v(k,D3), (5.83)

where s,t is defined as

s,t(k,D3) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
k( fs)
k( ft )

) 1
s−t

, s �= t,

exp

(
d
dsk( fs)
k( fs)

)
, s = t

(5.84)

for fs, ft ∈ D3.
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Proof. (a) It follows directly form Theorem 5.36 and Remark 5.8. As the function
t �→ k( ft ) is log-convex, i.e., logk( ft) is convex we have

log[k( fs)]t−r ≤ log[k( fr)]t−s + log[k( ft )]s−r, k ∈ {1, . . . ,6}
which gives us (5.82).

(b) For a convex function f , the inequality

f (s) − f (t)
s − t

≤ f (u) − f (v)
u − v

(5.85)

holds for all s,t,u,v ∈ I ⊂ R such that s ≤ u, t ≤ v, s �= t, u �= v.
Since ( ft ) is log-convex, setting f (t) = log( ft) in (5.85) we have

logk( fs) − logk( ft)
s− t

≤ logk( fu)− logk( fv)
u− v

(5.86)

for s≤ u, t ≤ v, s �= t, u �= v, which is equivalent to (5.83). The cases for s = t and/or u = v
are easily derived from (5.86) by taking respective limits. �

Remark 5.9 The results from Theorem 5.36 and Corollaries 5.4 and 5.5 still hold when
any two (all) points z0,z1, . . . ,zn ∈ [a,b] coincide for a family of differentiable (n-times
differentiable) functions ft such that the function t �→ [z0,z1, . . . ,zn; ft ] is n-exponentially
convex, exponentially convex and 2-expoenetially convex in the J-sense respectively.

Now, we give two important remarks and one useful corollary from [22], which we
will use in some examples in the next section.

Remark 5.10 We say that s,t(k,) defined with (5.84) is a mean if

a ≤ s,t(k,) ≤ b

for s, t ∈ I and k ∈ {1, . . . ,6}, where  = { ft : t ∈ I} is a family of functions and [a,b] ⊆
Dom( ft). �

Theorem 5.36 give us the following corollary.

Corollary 5.6 Let a,b ∈ R and k for k ∈ {1, . . . ,6} be the linear functionals as defined
in (5.74), . . . ,(5.79). Let = { ft : t ∈ I} be a family of functions in C2([a,b]). If

a ≤

⎛
⎜⎜⎝

d2 fs
dx2

d2 ft
dx2

⎞
⎟⎟⎠

1
s−t

( ) ≤ b,

for  ∈ [a,b], s,t ∈ I, then s,t(k,) is a mean for k ∈ {1, . . . ,6}.
Remark 5.11 In some examples, we will get means of this type:⎛

⎜⎜⎝
d2 fs
dx2

d2 ft
dx2

⎞
⎟⎟⎠

1
s−t

( ) =  ,  ∈ [a,b], s �= t.
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5.1.7 Examples with Applications

In this section, we use various classes of functions  = { ft : t ∈ I}, where I is an interval
in R, to construct different examples of exponentially convex functions and Stolarsky-type
means. Let us consider some examples.

Example 5.1 Let F1 = {t : R → [0,〉 : t ∈ R} be a family of functions defined by

t(x) =

⎧⎪⎨
⎪⎩

etx

tn
, t �= 0,

xn

n!
, t = 0.

Since dn

dxnt(x) = etx > 0, the function t(x) is n-convex on R for every t ∈ R and t →
dn

dxnt(x) is exponentially convex by definition. Using analogous arguing as in the proof of
Theorems 5.36, we have that t �→ [z0,z1, . . . ,zn;t ] is exponentially convex (and so expo-
nentially convex in the J-sense). Using Corollary 5.4 we conclude that t �→ k(t), k ∈
{1, . . . ,6} are exponentially convex in the J-sense. It is easy to see that these mappings are
continuous, so they are exponentially convex.

Assume that t �→ k(t) > 0 for k ∈ {1, . . . ,6}. By inserting functions t and s in
(5.81), we obtain the following means: for k ∈ {1, . . . ,6}

Ms,t(k,F1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
s− t

log

(
k(s)
k(t)

)
, s �= t,

k(id ·s)
k(s)

− n
s
, s = t �= 0,

k(id ·0)
(n+1)k(0)

, s = t = 0,

where id stands for the identity function on R. Here Ms,t(k,F1) = log(s,t(k,F1)),
k ∈ {1, . . . ,6} are in fact means.

We observe here that

⎛
⎜⎝

dns

dxn

dnt

dxn

⎞
⎟⎠

1
s−t

(log ) =  is a mean for  ∈ [a,b] where a,b∈R+.

Example 5.2 Let F2 = {t : 〈0,〉 → R : t ∈ R} be a family of functions defined as

t(x) =

⎧⎪⎪⎨
⎪⎪⎩

xt

t(t−1) · · ·(t−n+1)
, t �∈ {0, . . . ,n−1},

(x) j logx
(−1)n−1− j j!(n−1− j)!

, t = j ∈ {0, . . . ,n−1}.

Since t(x) is an n-convex function for x ∈ (0,) and t �→ d2

dx2t(x) is exponentially
convex, so by the same arguments given in the previous example we conclude thatk(t), k∈
{1, . . . ,6} are exponentially convex.
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We assume that k(t) > 0 for k ∈ {1, . . . ,6}. For this family of n-convex functions
we obtain the following means: for k ∈ {1, . . . ,6}, J = {0,1, . . . ,n−1}

Ms,t(k,F2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
k(s)
k(t)

) 1
s−t

, s �= t,

exp

(
(−1)n−1(n−1)!

k(0s)
k(s)

+
n−1


k=0

1
k− t

)
, s = t �∈ J,

exp

(
(−1)n−1(n−1)!

k(0s)
2k(s)

+
n−1


k=0,k �=t

1
k− t

)
, s = t ∈ J.

Here Ms,t(k,F2) = s,t(k,F2), k ∈ {1, . . . ,6} are in fact means.

Remark 5.12 Further, in this choice of family F2, we have⎛
⎜⎝

dns

dxn

dnt

dxn

⎞
⎟⎠

1
s−t

( ) =  ,  ∈ [a,b], s �= t, where a,b ∈ 〈0,〉.

So, using Remark 5.11 we have an important conclusion that s,t(k,F2) is in fact a mean
for k ∈ {1, . . . ,6}.
Example 5.3 Let F3 = {t : 〈0,〉→ 〈0,〉 : t ∈ 〈0,〉} be a family of functions defined
by

t(x) =
e−x

√
t

tn/2
.

The function t �→ dn

dxn t(x) = e−x
√

t is exponentially convex for x > 0, being the Laplace
transform of a nonnegative function [22]. So, by the same argument as in Example 5.1 we
conclude that k(t ), k ∈ {1, . . . ,6} are exponentially convex.

We assume that k(t ) > 0 for k ∈ {1, . . . ,6}. For this family of functions we have the
following possible cases of s,t(k,F3): for k ∈ {1, . . . ,6}

Ms,t(k,F3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
k(s)
k(t)

) 1
s−t

, s �= t,

exp

(
− k(id ·s)

2
√

s k(s)
− n

2s

)
, s = t.

By (5.81), Ms,t(k,F3) = −(
√

s +
√

t) logs,t(k,F3), k ∈ {1, . . . ,6} defines a class of
means.

Example 5.4 Let F4 = {t : (0,)→ (0,) : t ∈ (0,)} be a family of functions defined
by

t(x) =

⎧⎪⎨
⎪⎩

t−x

logn t
, t �= 1,

xn

n
, t = 1.
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Since dn

dxn t(x) = t−x = e−x logt > 0 for x > 0, by the same argument as in Example 5.1 we
conclude that t �→ k(t), k ∈ {1, . . . ,6} are exponentially convex.

We assume that k(t) > 0 for k ∈ {1, . . . ,6}. For this family of functions we have the
following possible cases of s,t(k,F4): for k ∈ {1, . . . ,6}

Ms,t(k,F4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
k(s)
k(t)

) 1
s−t

, s �= t,

exp

(
−k(id ·s)

sk(s)
− n

s logs

)
, s = t �= 1,

exp

(
− 1

(n+1)
k(id ·1)
k(1)

)
, s = t = 1.

By (5.81), Ms,t(k,F4)=−L(s,t) logs,t ,(k,F4), k∈{1, . . . ,6} defines a class of means,
where L(s, t) is the logarithmic mean defined as:

L(s,t) =

⎧⎨
⎩

s− t
logs− logt

, s �= t,

s, s = t.
(5.87)

Monotonicity of s,t(k,Fj) follow form (5.83) for j ∈ {1,2,3,4} k ∈ {1, . . . ,6}.

5.2 Linear Inequalities via the Taylor formula

While in the previous section we use an extension of the Montgomery identity to make
new identities for the sum m

i=1 pi f (xi) and the integral
∫ 
 p(x) f (g(x))dx, in this section

the Taylor formula has a crucial role in our attempts to get new identities for the above-
mentioned sum and integral. The results of this section are given in [31].

5.2.1 Inequalities via the Taylor Formula

Our first result is an identity which is a basic tool for our subsequent investigation. In fact
this identity is given in Chapter 2 but here we repeat it because it is a base for further results
in this section.

Theorem 5.37 Let n,m ∈ N and f : I → R be a function such that f (n−1) is absolutely
continuous on I ⊂ R, a,b ∈ I, a < b. Furthermore, let xi ∈ [a,b] and pi ∈ R for i ∈
{1,2, . . . ,m}. Then

m


i=1

pi f (xi) =
n−1


k=0

f (k)(a)
k!

m


i=1

pi(xi −a)k
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+
1

(n−1)!

∫ b

a
f (n)(s)

(
m


i=1

pi(xi − s)n−1
+

)
ds (5.88)

and

m


i=1

pi f (xi) =
n−1


k=0

(−1)k f (k)(b)
k!

m


i=1

pi(b− xi)k

+
(−1)n

(n−1)!

∫ b

a
f (n)(s)

(
m


i=1

pi(s− xi)n−1
+

)
ds.

We may state its integral version as follows.

Theorem 5.38 Let g : [, ] → [a,b] and p : [, ] → R be integrable functions. Let
n ∈ N and f : I → R be such that f (n−1) is absolutely continuous on I ⊂ R, a,b ∈ I, a < b.
Then ∫ 


p(x) f (g(x))dx =

n−1


k=0

f (k) (a)
k!

∫ 


p(x)(g(x)−a)kdx

+
1

(n−1)!

∫ b

a
f (n)(s)

∫ 


p(x)(g(x)− s)n−1

+ dxds,

∫ 


p(x) f (g(x))dx =

n−1


k=0

(−1)k f (k) (b)
k!

∫ 


p(x)(b−g(x))kdx

+
(−1)n

(n−1)!

∫ b

a
f (n)(s)

∫ 


p(x)(s−g(x))n−1

+ dxds.

Now we state inequalities derived from the obtained identities. In the rest of the section
we use the following notation:

[a,b]
1 (m,x,p,s) :=

m


i=1

pi (xi− s)n−1
+ , (5.89)

[a,b]
2 (m,x,p,s) := (−1)n

m


i=1

pi (s− xi)
n−1
+ , (5.90)

A[a,b]
1 (m,x,p, f ) :=

m


i=1

pi f (xi)−
n−1


k=0

f (k)(a)
k!

m


i=1

pi(xi −a)k, (5.91)

A[a,b]
2 (m,x,p, f ) :=

m


i=1

pi f (xi)−
n−1


k=0

(−1)k f (k) (b)
k!

m


i=1

pi(b− xi)k. (5.92)

Theorem 5.39 Let n,m ∈ N, xi ∈ [a,b] , I is an interval, [a,b] ⊂ I and pi ∈ R for i ∈
{1,2, . . . ,m}.

(i) If
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(U1) [a,b]
1 (m,x,p,s) ≥ 0, for all s ∈ [a,b],

then for every n-convex function f : I → R such that f (n−1) is absolutely continuous on I
the following inequality holds

A[a,b]
1 (m,x,p, f ) ≥ 0. (5.93)

If in (U1) reversed sign of inequality holds, then inequality (5.93) is also reversed.
(ii) If

(U2) [a,b]
2 (m,x,p,s) ≥ 0, for all s ∈ [a,b],

then for every n-convex function f : I → R such that f (n−1) is absolutely continuous on I
the following inequality holds

A[a,b]
2 (m,x,p, f ) ≥ 0. (5.94)

If in (U2) reversed sign of inequality holds, then inequality (5.94) is also reversed.
If the condition ” f is n-convex” is replaced by ” f is n-concave”, then under the same

assumptions about [a,b]
1 and [a,b]

2 , inequalities (5.93) and (5.94) hold in the reversed
direction.

Proof. We prove (i). Let [a,b]
1 (m,x,p,s) ≥ 0 for all s ∈ [a,b] and let f be n-convex.

Then, f (n) ≥ 0 and ∫ b

a
f (n)(s)

(
m


i=1

pi(xi − s)n−1
+

)
ds ≥ 0.

By Theorem 5.37

A[a,b]
1 (m,x,p, f ) =

1
(n−1)!

∫ b

a
f (n)(s)

(
m


i=1

pi(xi − s)n−1
+

)
ds ≥ 0

and we get (5.93). Other cases are proved in a similar manner. �

Now we state an important consequence.

Theorem 5.40 Let n ∈ N, n ≥ 2, [a,b] ⊂ I ⊆ R and f : I → R be a function such that
f (n−1) is absolutely continuous. Additionally, let j ∈N be fixed, 2≤ j≤ n and let (x1, . . . ,xm)∈
[a,b]m, (p1, . . . , pm) ∈ R

m satisfy

m


i=1

pix
k
i = 0 for k = 0,1, . . . , j−1, (5.95)

m


i=1

pi(xi − s) j−1
+ ≥ 0, for s ∈ [a,b]. (5.96)

If f is n-convex, then

m


i=1

pi f (xi) ≥
n−1


k= j

f (k) (a)
k!

m


i=1

pi (xi−a)k (5.97)
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with agreement that for j = n, we put n−1
k= j = 0.

Furthermore, if n− j is even, then

m


i=1

pi f (xi) ≥
n−1


k= j

(−1)k f (k) (b)
k!

m


i=1

pi (b− xi)k (5.98)

while if n− j is odd, then the reversed inequality in (5.98) holds.

Proof. Let s ∈ [a,b] be fixed. Notice that for j = n we just get Theorem 5.1. For
j ≤ n−2 we get

d j

dx j (x− s)n−1
+ =

{
(n−1)(n−2) · · ·(n− j)(x− s)n− j−1, s ≤ x ≤ b,

0, a ≤ x < s,

and

(−1) j d j

dx j (s− x)n−1
+ =

{
(n−1)(n−2) · · ·(n− j)(s− x)n− j−1, a ≤ x ≤ s,

0, s < x ≤ b,

The functions x �→ d j

dx j (x− s)n−1
+ and x �→ (−1) j d j

dx j (s− x)n−1
+ are nonnegative. Hence the

functions x �→ (x− s)n−1
+ and x �→ (−1) j(s− x)n−1

+ are j-convex.

If j = n−1, then we consider the functions x �→ dn−3

dxn−3 (x−s)n−1
+ and x �→ (−1)n−1 dn−3

dxn−3 (s−
x)n−1

+ . They are 2-convex, so x �→ (x−s)n−1
+ and x �→ (−1)n−1(s−x)n−1

+ are (n−1)-convex.
Hence if 2 ≤ j ≤ n−1, functions x �→ (x− s)n−1

+ and x �→ (−1) j(s− x)n−1
+ are j-convex.

Using Theorem 5.1 for j-convex functions x �→ (x− s)n−1
+ and x �→ (−1) j(s− x)n−1

+ ,
we get that

m


i=1

pi (xi − s)n−1
+ ≥ 0 (5.99)

and

(−1) j
m


i=1

pi (s− xi)
n−1
+ ≥ 0.

Multiplying the last inequality with (−1)n− j (it is positive for even n− j) we get

(−1)n
m


i=1

pi (s− xi)n−1
+ ≥ 0. (5.100)

Inequalities (5.99) and (5.100) mean that assumptions of Theorem 5.39 (i) and (ii) are sat-
isfied, hence inequalities (5.93) and (5.94) hold respectively. Moreover, due to assumption
(5.95), m

i=1 piP(xi) = 0 for every polynomial P of degree ≤ j− 1, so the first j terms in
the inner sum in (5.91) and (5.92) vanish, i.e. we get inequalities (5.97) and (5.98). �

Theorem 5.41 Let n ∈ N,n ≥ 3. Let j ∈ {2,3, . . . ,n− 1} be a fixed number and let m-
tuples x = (x1, . . . ,xm) ∈ [a,b]m, p = (p1, . . . , pm) ∈ R

m satisfy

m


i=1

pix
k
i = 0, for all k ∈ {0,1, . . . , j−1} (5.101)
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m


i=1

pi(xi − s) j−1
+ ≥ 0, for every s ∈ [a,b]. (5.102)

If [a,b] ⊂ I ⊆ R and f : I → R is n-convex such that f (n−1) is absolutely continuous with
at least one of the following two properties

(i)
n−1


k= j

f (k)(a)
(k− j)!

(x−a)k− j ≥ 0 for all x ∈ [a,b]

(ii)
n−1


k= j

(−1)k− j f (k)(b)
(k− j)!

(b− x)k− j ≥ 0 for all x ∈ [a,b] with even n− j, then the

inequality
m


i=1

pi f (xi) ≥ 0 (5.103)

holds.

Proof. Let us suppose that f satisfies property (i). Define H by

H(x) =
n−1


k= j

f (k)(a)
k!

(x−a)k.

Then

H( j)(x) =
n−1


k= j

f (k)(a)
(k− j)!

(x−a)k− j

and H( j)(x) ≥ 0, x ∈ [a,b]. Hence H is j-convex. Using Theorem 5.1 for the j-convex
function H we obtain

m


i=1

piH(xi) ≥ 0.

That conclusion and the previous theorem give

m


i=1

pi f (xi) ≥
n−1


k=0

f (k)(a)
k!

m


i=1

pi(xi −a)k =
m


i=1

piH(xi) ≥ 0

which is the desired inequality (5.103). If f satisfies property (ii), then we consider the

function H(x) =
n−1


k= j

(−1)k f (k)(b)
k!

(b− x)k and proceed in a similar manner. �

Remark 5.13 Let us consider the case: j = n− 1. Then for an n-convex f under the
assumptions f (n−1)(a) ≥ 0, (5.101) and (5.102) we get m

i=1 pi f (xi) ≥ 0. In comparison
with Theorem 5.1, we see that one condition is added and (5.2), (5.3) are valid not for n,
but for n−1. So, this result is an improvement of one direction given in Theorem 5.1.

In the rest of the section we state integral versions of the previous results, the proofs of
which are analogous to the discrete case.
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Theorem 5.42 Let g : [, ] → [a,b] and p : [, ] → R be integrable functions and let
f : I → R, [a,b] ⊂ I, be such that f (n−1) is absolutely continuous.

If

(U3) [a,b]
3 ([, ],g, p,s) :=

∫ 


p(x)(g(x)− s)(n−1)

+ dx ≥ 0, for all s ∈
[a,b], then for every n-convex function f the following inequality holds

A[a,b]
3 ([, ],g, p, f ) :=

∫ 


p(x) f (g(x))dx

−
n−1


k=0

f (k) (a)
k!

∫ 


p(x)(g(x)−a)kdx ≥ 0, (5.104)

If in (U3) reversed sign of inequality holds, then inequality (5.104) is also reversed.
If

(U4) [a,b]
4 ([, ],g, p,s) := (−1)n

∫ 


p(x)(s−g(x))(n−1)

+ dx ≥ 0, for all s ∈
[a,b], then for every n-convex function f the following inequality holds

A[a,b]
4 ([, ],g, p, f ) :=

∫ 


p(x) f (g(x))dx

−
n−1


k=0

(−1)k f (k) (b)
k!

∫ 


p(x)(b−g(x))kdx ≥ 0. (5.105)

If in (U4) reversed sign of inequality holds, then inequality (5.105) is also reversed.
If the condition ” f is n-convex” is replaced by ” f is n-concave”, then under the same

assumptions about [a,b]
3 and [a,b]

4 , inequalities (5.104) and (5.105) hold in the reversed
direction.

Theorem 5.43 Suppose all the assumptions from Theorem 5.38 hold. Additionally, let
j ∈ N, 2 ≤ j ≤ n and let p : [, ] → R and g : [, ] → [a,b] satisfy∫ 


p(x)g(x)k dx = 0, for all k ∈ {0,1, . . . , j−1}

∫ 


p(x)(g(x)− s) j−1

+ dx ≥ 0, for every s ∈ [a,b].

If f is n-convex, then∫ 


p(x) f (g(x))dx ≥

n−1


k= j

f (k) (a)
k!

∫ 


p(x) (g(x)−a)k+ dx.

If, in addition n− j is even, then∫ 


p(x) f (g(x))dx ≥

n−1


k= j

(−1)k f (k) (b)
k!

∫ 


p(x)(b−g(x))k+ dx (5.106)

while if n− j is odd, then the reversed sign of inequality holds in (5.106)



166 5 LINEAR INEQUALITIES VIA INTERPOLATION POLYNOMIALS

5.2.2 Inequalities via the Green Function

In this section we obtain other identities and the corresponding linear inequality using the
Green function defined by (5.10) and applying again the Taylor formula. The next theorem
contains two identities in which the sum m

i=1 pi f (xi) is expressed as a relation involving
the n-th derivative of the function f and the values of first n− 3 derivatives of f only in
points a or b. The whole subsection is based on results given in [31].

Theorem 5.44 Let n ∈ N, n ≥ 3, and f : I → R, [a,b] ⊂ I, be a function such that f (n−1)

is absolutely continuous. Furthermore, let m∈N, xi ∈ [a,b] and pi ∈R for i∈ {1,2, . . . ,m}
be such that

m


i=1

pi = 0,
m


i=1

pixi = 0.

Then

m


i=1

pi f (xi) =
n−3


k=0

f (k+2)(a)
k!

∫ b

a

m


i=1

piG(xi, t)(t −a)kdt

+
1

(n−3)!

∫ b

a
f (n)(s)

(∫ b

s

m


i=1

piG(xi,t)(t − s)n−3dt

)
ds (5.107)

and

m


i=1

pi f (xi) =
n−3


k=0

(−1)k f (k+2)(b)
k!

∫ b

a

m


i=1

piG(xi,t)(b− t)kdt

− 1
(n−3)!

∫ b

a
f (n)(s)

(∫ s

a

m


i=1

piG(xi,t)(t − s)n−3dt

)
ds. (5.108)

Proof. Using integration by parts the following is valid

f (x) =
b− x
b−a

f (a)+
x−a
b−a

f (b)+
∫ b

a
G(x,t) f ′′(t)dt.

Putting in the above equality x = xi, multiplying with pi, adding all equalities for i =
1, . . . ,m and using conditions that m

i=1 pi = 0, m
i=1 pixi = 0 we get

m


i=1

pi f (xi) =
∫ b

a

(
m


i=1

piG(xi,t)

)
f ′′(t)dt.

Differentiating the Taylor formula twice we get

f ′′(x) =
n−3


k=0

f (k+2)(c)
k!

(x− c)k +
1

(n−3)!

∫ x

c
f (n)(s)(x− s)n−3ds. (5.109)

Putting in (5.109) c = a and c = b respectively we get

m


i=1

pi f (xi) =
n−3


k=0

f (k+2)(a)
k!

∫ b

a

(
m


i=1

piG(xi,t)

)
(t−a)kdt
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+
1

(n−3)!

∫ b

a

∫ t

a
f (n)(s)(t − s)n−3

(
m


i=1

piG(xi, t)

)
dsdt

and

m


i=1

pi f (xi) =
n−3


k=0

f (k+2)(b)
k!

∫ b

a

(
m


i=1

piG(xi,t)

)
(t−b)kdt

+
1

(n−3)!

∫ b

a

∫ t

b
f (n)(s)(t − s)n−3

(
m


i=1

piG(xi, t)

)
dsdt.

Using the Fubini theorem we obtain identities (5.107) and (5.108). �

Theorem 5.45 Let n,m ∈ N, n ≥ 3, x = (x1, . . . ,xm) ∈ [a,b]m and p = (p1, . . . , pm) ∈ R
m

be such that
m


i=1

pi = 0,
m


i=1

pixi = 0. (5.110)

(i) If

(U5) [a,b]
5 (m,x,p,s) :=

∫ b

s

m


i=1

piG(xi, t)(t − s)n−3dt ≥ 0 for all s ∈ [a,b],

then for every n-convex function f : I → R such that f (n−1) is absolutely continuous on
I ⊆ [a,b] the following inequality holds

A[a,b]
5 (m,x,p, f ) :=

m


i=1

pi f (xi)−
n−3


k=0

f (k+2)(a)
k!

∫ b

a

m


i=1

piG(xi,t)(t −a)kdt ≥ 0. (5.111)

If in (U5) reversed sign of inequality holds, then inequality (5.111) is also reversed.
(ii) If

(U6) [a,b]
6 (m,x,p,s) :=

∫ s

a

m


i=1

piG(xi,t)(t − s)n−3dt ≤ 0 for all s ∈ [a,b],

then for every n-convex function f : I → R such that f (n−1) is absolutely continuous on
I ⊆ [a,b] the following inequality holds

A[a,b]
6 (m,x,p, f ) :=

m


i=1

pi f (xi)−
n−3


k=0

(−1)k f (k+2)(b)
k!

∫ b

a

m


i=1

piG(xi,t)(b− t)kdt ≥ 0. (5.112)

If in (U6) reversed sign of inequality holds, then inequality (5.112) is also reversed.
(iii) If the condition ” f is n-convex” is replaced by ” f is n-concave”, then under the

same assumptions about [a,b]
5 and [a,b]

6 , inequalities (5.111) and (5.112) hold in the
reversed direction.
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Proof. If f is n-convex, without lossing of generality we can assume that f is n-times
differentiable and f (n) ≥ 0. Using this fact and the identities from Theorem 5.44 we get
the required results. �

If we add a new condition on x, then in the previous statements we can remove as-
sumptions about 5 and 6. More precisely, we have the following result.

Theorem 5.46 Let n ∈ N, n ≥ 3, and f : I → R, [a,b] ⊂ I, be a function such that f (n−1)

is absolutely continuous. Furthermore, let m∈N, xi ∈ [a,b] and pi ∈R for i∈ {1,2, . . . ,m}
be such that

m


i=1

pi = 0,
m


i=1

pi|xi− xk| ≥ 0 for k = 1,2, . . . ,m. (5.113)

If f is n-convex, then (5.111) holds. If n is even, then (5.112) is valid, while if n is odd,
then a reversed sign in inequality (5.112) holds.

If f is n-concave, then reversed (5.111) holds. If n is even, then reversed (5.112), while
if n is odd, then inequality (5.112) holds.

Proof. Since

m


i=1

pi|xi − xk| = 2
m


i=1

pi(xi − xk)+ −
m


i=1

pi(xi − xk),

condition (5.113) is equivalent to

m


i=1

pi = 0,
m


i=1

pixi = 0,
m


i=1

pi(xi− xk)+ ≥ 0

for k ∈ {1, . . . ,m−1} which means that m-tuples x, p satisfy assumptions of Theorem 5.1.
Since G is convex with respect to the first variable, using Theorem 5.1 we conclude that

m


i=1

piG(xi,t) ≥ 0 for t ∈ [a,b].

Note that (t − s)n−3 ≥ 0 for t ∈ [s,b] so we get [a,b]
5 (m,x,p,s) ≥ 0. By Theorem 5.45 (i),

we have that A[a,b]
5 (m,x,p, f ) ≥ 0. Other parts are proved in a similar manner. �

The integral versions of the previous three theorems may also be stated. Since the
proofs of these results are similar, we omit the details.

Theorem 5.47 Let g : [, ] → [a,b], p : [, ] → R be integrable functions such that∫ 


p(x)dx = 0,

∫ 


p(x)g(x)dx = 0. (5.114)

Let n ≥ 3 and f : I → R, [a,b]⊂ I, be a function such that f (n−1) is absolutely continuous.
Then we get the following identities∫ 


p(x) f (g(x))dx
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=
n−3


k=0

f (k+2) (a)
k!

∫ b

a

(∫ 


p(x)G(g(x),t)dx

)
(t−a)k dt (5.115)

+
1

(n−3)!

∫ b

a
f (n)(s)

(∫ b

s

(∫ 


p(x)G(g(x),t)dx

)
(t− s)n−3 dt

)
ds,

∫ 


p(x) f (g(x))dx

=
n−3


k=0

(−1)k f (k+2)(b)
k!

∫ b

a

(∫ 


p(x)G(g(x),t)dx

)
(b− t)kdt (5.116)

− 1
(n−3)!

∫ b

a
f (n)(s)

(∫ s

a

(∫ 


p(x)G(g(x),t)dx

)
(t− s)n−3dt

)
ds.

Theorem 5.48 Let g, p,n satisfy assumptions of Theorem 5.47 hold.
(i) If

(U7) [a,b]
7 ([, ],g, p,s) :=

∫ b

s

(∫ 


p(x)G(g(x),t)dx

)
(t − s)n−3dt ≥ 0 for all

s∈ [a,b], then for every n-convex function f : I →R, [a,b]⊂ I, such that f (n−1) is absolutely
continuous, the following inequality holds

A[a,b]
7 ([, ],g, p, f ) :=

∫ 


p(x) f (g(x))dx

−
n−3


k=0

f (k+2)(a)
k!

∫ b

a

(∫ 


p(x)G(g(x),t)dx

)
(t−a)k dt ≥ 0. (5.117)

If in (U7) reversed sign of inequality holds, then inequality (5.117) is also reversed.
(ii) If

(U8) [a,b]
8 ([, ],g, p,s) :=

∫ s

a

(∫ 


p(x)G(g(x),t)dx

)
(t− s)n−3dt ≤ 0 for all s ∈

[a,b], then for every n-convex function f : I → R, [a,b] ⊂ I, such that f (n−1) is absolutely
continuous, the following inequality holds

A[a,b]
8 ([, ],g, p, f )) :=

∫ 


p(x) f (g(x))dx

−
n−3


k=0

(−1)k f (k+2)(b)
k!

∫ b

a

(∫ 


p(x)G(g(x),t)dx

)
(b− t)kdt ≥ 0. (5.118)

If in (U8) reversed sign of inequality holds, then inequality (5.118) is also reversed.
(iii) If the condition ” f is n-convex” is replaced by ” f is n-concave”, then under the

same assumptions about [a,b]
7 and [a,b]

8 , inequalities (5.117) and (5.118) hold in the
reversed direction.

Theorem 5.49 Let all the assumptions of Theorem 5.47 hold. Additionally, let∫ 


p(x)(g(x)− t)+dx ≥ 0 for all t ∈ [a,b].
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If f is n-convex, then (5.117) holds. If n is even, then (5.118), while if n is odd, then a
reversed sign in inequality (5.118) holds.

If f is n-concave, then reversed (5.117) holds. If n is even, then reversed (5.118), while
if n is odd, then inequality (5.118) holds.

5.2.3 Inequalities for n-convex Functions at a Point

In this section we give related results for the class of n-convex functions at a point which
is introduced in [76] and described in Chapter 2. First we state our main theorem of this
section for the discrete case, [31].

Theorem 5.50 Let c ∈ 〈a,b〉, x ∈ [a,c]m, y ∈ [c,b]l , p ∈ R
m, q ∈ R

l and f : [a,b]→ R be
a function such that f (n−1) is absolutely continuous.

(i) For k = 1,2 let A[·,·]
k (·, ·, ·, f ) and[·,·]

k (·, ·, ·,s) be defined as in (5.89)−−(5.92) and
satisfy the following conditions:

[a,c]
k (m,x,p,s) ≥ 0, for every s ∈ [a,c], (5.119)

[c,b]
k (l,y,q,s) ≥ 0, for every s ∈ [c,b], (5.120)

and
A[a,c]

k (m,x,p,en) = A[c,b]
k (l,y,q,en). (5.121)

If f is (n+1)-convex at point c, then

A[a,c]
k (m,x,p, f ) ≤ A[c,b]

k (l,y,q, f ). (5.122)

If inequalities in (5.119) and (5.120) are reversed, then (5.122) holds with the reversed
sign of inequality.

(ii) For k = 5,6 let A[·,·]
k (·, ·, ·, f ) and [·,·]

k (·, ·, ·,s) be defined as in Theorem 5.45 and
let assumption (5.110) hold. For k = 5, if (5.119), (5.120) and (5.121) are valid, then for
an (n + 1)-convex function f at point c, (n ≥ 3), inequality (5.122) holds. For k = 6, if
(5.121) holds and reversed (5.119), (5.120) are valid, then inequality (5.122) holds.

Proof. (i) Let k ∈ {1,2} and (5.119), (5.120), (5.121) hold. Since f is (n+1)-convex

at point c there exists a constant K such that the function F = f − K
n!

en is n-concave on

[a,c] and n-convex on [c,b].
Applying Theorem 5.39 to F on the interval [a,c] and on the interval [c,b] we have

A[a,c]
k (m,x,p,F) ≤ 0 ≤ A[c,b]

k (l,y,q,F).

Using the definition of F we obtain that

A[a,c]
k (m,x,p, f )− K

n!
A[a,c]

k (m,x,p,en) ≤ A[c,b]
k (l,y,q, f )− K

n!
A[c,b]

k (l,y,q,en)

A[a,c]
k (m,x,p, f ) ≤ A[c,b]

k (l,y,q, f )− K
n!

[
A[c,b]

k (l,y,q,en)−A[a,c]
k (m,x,p,en)

]
.
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Since equality (5.121) is valid we get

A[a,c]
k (m,x,p, f ) ≤ A[c,b]

k (l,y,q, f ).

�

A closer look at the proof of Theorem 5.50 give us that similar result holds if instead
equality (5.121) we consider the positivity of the difference

K
(
A[c,b]

k (l,y,q,en)−A[a,c]
k (m,x,p,en)

)
≥ 0.

Corollary 5.7 Let j1, j2,n ∈ N, 2 ≤ j1, j2 ≤ n and let f : [a,b]→ R be (n+1)-convex at
point c. Let m-tuples x ∈ [a,c]m and p ∈ R

m satisfy

l


i=1

pix
k
i = 0, for all k ∈ {0,1, . . . , j1 −1}

l


i=1

pi(xi − s) j1−1
+ ≥ 0, for every s ∈ [a,c].

Let l-tuples y ∈ [c,b]l and q ∈ R
l satisfy

l


i=1

qiy
k
i = 0, for all k ∈ {0,1, . . . , j2 −1}

l


i=1

qi(yi − s) j2−1
+ ≥ 0, for every s ∈ [c,b]

and let identity (5.121) holds.
Then

A[a,c]
1 (m,x,p, f ) ≤ A[c,b]

1 (l,y,q, f )

and if n− j1,n− j2 are even, then

A[a,c]
2 (m,x,p, f ) ≤ A[c,b]

2 (l,y,q, f ).

Proof. Since f is (n + 1)-convex at point c there exists a constant K such that function

F = f − K
n!

en is n-concave on [a,c] and n-convex on [c,b]. The number j1 and m-tuples

x,p satisfy the assumptions of Theorem 5.40 and for concave F on [a,c] we get

A[a,c]
1 (m,x,p,F) ≤ 0.

Also, the number j2 and l-tuples y,q satisfy the assumptions of Theorem 5.40 and for
convex F on [c,b] we get

A[c,b]
1 (l,y,q,F) ≥ 0.
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So we have
A[a,c]

1 (m,x,p,F) ≤ A[c,b]
1 (l,y,q,F)

which is equivalent to

A[a,c]
1 (m,x,p, f )− K

n!
A[a,c]

1 (m,x,p,en) ≤ A[c,b]
1 (l,y,q, f )− K

n!
A[c,b]

1 (l,y,q,en)

and using condition (5.121) we get the desired inequality. The second statement is proved
in a similar manner. �

The integral analogous of previous theorem may be stated as:

Theorem 5.51 Let  ≤  , ≤  , a < c < b, g : [, ]→ [a,c], p : [, ]→R, h : [, ]→
[c,b], q : [, ] → R be integrable. Let f : I → R, [a,b] ⊂ I, be a function such that f (n−1)

is absolutely continuous.

(i) For k = 3,4 let A[·,·]
k (·, ·, ·, f ) and [·,·]

k (·, ·, ·,s) be defined as in Theorem 5.42 and
satisfy the following conditions:

[a,c]
k ([, ],g, p,s) ≥ 0, for every s ∈ [a,c], (5.123)

[c,b]
k ([, ],h,q,s) ≥ 0, for every s ∈ [c,b], (5.124)

A[a,c]
k ([, ],g, p,en) = A[c,b]

k ([, ],h,q,en). (5.125)

If f is (n+1)-convex at point c, then

A[a,c]
k ([, ],g, p, f ) ≤ A[c,b]

k ([, ],h,q, f ). (5.126)

If the inequalities in (5.123) and 5.124 are reversed, then the reversed sign in (5.126)
holds.

(ii) For k = 7,8 let A[·,·]
k (·, ·, ·, f ) and [·,·]

k (·, ·, ·,s) be defined as in Theorem 5.47 and
let assumption (5.114) holds. For k = 7, if (5.123), (5.124) and (5.125) are valid, then
for an (n+1)-convex function f at point c, (n ≥ 3), inequality (5.126) holds. For k = 8, if
(5.125) holds and reversed (5.123), (5.124) are valid, then inequality (5.126) holds.

Corollary 5.8 Let j1, j2,n ∈ N, 2 ≤ j1, j2 ≤ n, let f : I → R, [a,b] ⊂ I, be (n+1)-convex
at point c, let integrable p : [, ] → R and g : [, ] → [a,c] satisfy (5.5) with n replaced
by j1, let q : [, ] → R and h : [, ] → [c,b] satisfy∫ 


q(x)hk(x) = 0, for all k ∈ {0,1, . . . , j2 −1}

∫ 


q(x)(h(x)− s) j2−1

+ dx ≥ 0, for every s ∈ [c,b]

and let (5.125) holds. Then

A[a,c]
3 ([, ],g, p, f ) ≤ A[c,b]

3 ([, ],h,q, f ).

If n− j1 and n− j2 are even, then

A[a,c]
4 ([, ],g, p, f ) ≤ A[c,b]

4 ([, ],h,q, f ).
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5.2.4 Bounds for the Remainders and Functionals

Here we give several estimations connectedwith the functionalsA[·,·]
k (·, ·, ·, f ), k∈{1, . . . ,8}.

We use the well-known Hölder inequality and a bound for the Čebyšev functional T ( f ,h)
which is defined by (5.36). This bound is given in the following proposition in which the
pre-Grüss inequality is given.

Proposition 5.2 ([42]) Let f ,h : [a,b] → R be integrable such that f h ∈ L(a,b). If

 ≤ h(x) ≤  for x ∈ [a,b],

then

|T ( f ,h)| ≤ 1
2
(− )

√
T ( f , f ).

Now by using the aforementioned result, we are going to obtain formula for A[·,·]
k (·, ·, ·, f )

and estimations of remainders which appear in this formula. For the sake of brevity, in

present and next two sections we use the notations Ak( f ) = A[·,·]
k (·, ·, ·, f ) and k(t) =

[·,·]
k (·, ·, ·, t) for k ∈ {1,2, . . . ,8}. Now, we are ready to state the main results of this sec-

tion.

Theorem 5.52 (i) Let k ∈ {1,2,3,4}. Let f : I → R, [a,b] ⊂ I, be such that f (n−1) is an
absolutely continuous function and

 ≤ f (n)(x) ≤  for x ∈ [a,b].

Then in the representation

Ak( f ) =

[
f n−1(b)− f n−1(a)

]
(n−1)!(b−a)

∫ b

a
k(s)ds+Rk

n( f ;a,b), (5.127)

the remainder Rk
n( f ;a,b) satisfies the estimation

|Rk
n( f ;a,b)| ≤ b−a

2(n−1)!
(− )

√
T (k,k). (5.128)

(ii) Let k ∈ {5,6,7,8}. Let us assume that condition (5.110) holds if k = 5,6, or
condition (5.114) holds if k = 7,8.

If the assumptions of (i) hold with n ≥ 3, then (5.127) and (5.128) hold with (n−3)!
instead of (n−1)! in the denominator of Ak( f ) and in the bound for Rk

n.

Proof. Fix k ∈ {1,2,3,4}. Using the definition of Ak and results from the previous
subsection we have

Ak( f ) =
1

(n−1)!

∫ b

a
f (n)(s)k(s)ds

=
1

(n−1)!(b−a)

∫ b

a
f (n)(s)ds

∫ b

a
k(s)ds+Rk

n( f ;a,b)
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=
f n−1(b)− f n−1(a)
(n−1)!(b−a)

∫ b

a
k(s)ds+Rk

n( f ;a,b),

where

Rk
n( f ;a,b) =

1
(n−1)!

(∫ b

a
f (n)(s)k(s)ds− 1

b−a

∫ b

a
f (n)(s)ds

∫ b

a
k(s)ds

)
.

Applying Proposition 5.2 for f →k and h → f (n), we obtain

|Rk
n( f ;a,b)| = |T (k, f (n)| ≤ b−a

2(n−1)!
(− )

√
T (k,k).

The proof for k ∈ {5,6,7,8} is done in a similar manner. �

Using the same method as in the previous theorem and other type of bounds for the
Čebyšev functional, for example, the bounds given in Theorems 5.12 and 5.13, we are able
to give other estimations for the remainder. Now we state some Ostrowski-type inequalities
related to the generalized linear inequalities.

Theorem 5.53 (i) Let k ∈ {1,2,3,4}. Let (q,r) be a pair of conjugate exponents, i.e.,
1 ≤ q,r ≤ , 1

q + 1
r = 1. Let f (n) ∈ Lq[a,b] for some n ≥ 2. Then

|Ak( f )| ≤ 1
(n−1)!

‖ f (n)‖q‖k‖r . (5.129)

The constant on the right-hand side of (5.129) is sharp for 1 < q ≤  and the best
possible for q = 1.

(ii) Let k ∈ {5,6,7,8}. Let us assume that condition (5.110) holds if k = 5,6, or
condition (5.114) holds if k = 7,8.

If assumptions of (i) hold with n ≥ 3, then the statement holds with (n−3)! instead of
(n−1)! in the denominator of the bound for Ak.

Proof. Fix k ∈ {1,2,3,4}. From the definition of Ak and results from the second
section, applying the Hölder inequality we get

|Ak( f )| =
∣∣∣∣ 1
(n−1)!

∫ b

a
f (n)(s)k(s)ds

∣∣∣∣ ≤ ‖ f (n)‖q ‖k‖r .

Let us denote the quotient 1
(n−1)!k by k. For the proof of the sharpness of

(∫ b
a |k(t)|r dt

)1/r
,

let us find a function f for which the equality in (5.129) is obtained.
For 1 < q <  take f to be such that

f (n)(t) = sgn k(t) · |k(t)|1/(q−1).

For q = , take f such that
f (n)(t) = sgn k(t).

The fact that (5.129) is the best possible for q = 1 can be proved as in Theorem 5.18. The
proof for k ∈ {5,6,7,8} is done in a similar manner. �
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5.2.5 Mean Value Theorems and Exponential Convexity

In this section we give several mean-value theorems and apply a general method for ob-
taining new exponentially convex functions related to the functionals Ak defined in previ-

ous sections. As we said in the previous section we use notation Ak( f ) := A[·,·]
k (·, ·, ·, f ),

k ∈ {1, . . . ,8}. Since theorems in this section contain results for k = 1, . . . ,8, we use this
agreement throughout this section: if k ∈ {1,2,3,4}, then n ∈ N; if k ∈ {5,6}, then n ≥ 3
and (5.110) holds; if k ∈ {7,8}, then n ≥ 3 and (5.114) holds.

Theorem 5.54 Let k ∈ {1, . . . ,8} and let us consider Ak as a functional on Cn([a,b]). If
(Uk) holds, then for f ∈Cn([a,b]) exists k ∈ [a,b] such that

Ak( f ) = f (n)(k)Ak( f0),

where f0(x) = xn

n! .

Proof. The proof is similar as the proof of Theorem 5.34. �

From Theorem 5.54 we can conclude some refinements of the basic inequalitiesAk( f )≥
0. We write it in detail for k = 1. Let image of f (n) be an interval [L,M] ⊆ [0,〉, where
f ∈Cn([a,b]). Then from A1( f ) ≥ LA1( f0) ≥ 0 we get

m


i=1

pi f (xi) ≥
n−1


k=0

f (k)(a)
k!

m


i=1

pi(xi−a)k

+L

(
m


i=1

pixn
i

n!
−

n−1


k=0

(
n
k

)
an−k

n!

m


i=1

pi(xi−a)k

)

≥
n−1


k=0

f (k)(a)
k!

m


i=1

pi(xi−a)k

which is a refinement of A1( f ) ≥ 0.

Theorem 5.55 Let k ∈ {1, . . . ,8}. Let f ,h ∈ Cn([a,b]). If (Uk) holds, then there exists
k ∈ [a,b] such that

Ak( f )
Ak(h)

=
f (n)(k)
h(n)(k)

assuming that both denominators are non-zero.

Proof. The proof is similar as the proof of Theorem 5.35. �

Remark 5.14 If the inverse of f (n)

h(n) exists, then for k ∈ {1, . . . ,8} from the above mean
value theorem we can define a generalized mean

k =

(
f (n)

h(n)

)−1(
Ak( f )
Ak(h)

)
. (5.130)
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Here, we get new results concerning n-exponential convexity and exponential convex-
ity for the functionals Ak, k ∈ {1, . . . ,8}.
Theorem 5.56 Let D1 = { ft : t ∈ I} be a class of functions such that the function t �→
[z0,z1, . . . ,zn; ft ] is r-exponentially convex in the J-sense on I for any mutually distinct
points z0,z1, . . . ,zn ∈ [a,b], n ≥ 2. Let k ∈ {1, . . . ,8}.

If condition (Uk) holds, then the following statements are valid:

(a) The function t �→ Ak( ft ) is r-exponentially convex function in the J-sense on I.

(b) If the function t �→ Ak( ft) is continuous on I, then the function t �→ Ak( ft ) is r-
exponentially convex on I.

If the phrase ”r-exponentially convex” is replaced with ”exponentially convex”, then state-
ments also hold.

Proof. (a) Fix k ∈ {1,2}. Let us define the function  for ti,t j ∈ I, uiu j ∈ R,
i, j ∈ {1, . . . ,r} as follows

 =
r


i, j=1

uiu j f ti+t j
2

,

Since the function t �→ [z0,z1, . . . ,zn; ft ] is r-exponentially convex in the J-sense, we have

[z0,z1, . . . ,zn; ] =
r


i, j=1

uiu j[z0,z1, . . . ,zn; f ti+t j
2

] ≥ 0

which implies that  is n-convex function on I and using Theorem 5.39 we get Ak()≥ 0.
Hence

r


i, j=1

uiu jAk( f ti+t j
2

) ≥ 0.

We conclude that the function t �→ Ak( ft ) is an r-exponentially convex function on I in the
J-sense. Other cases are proved in a similar manner.

(b) This part easily follows from the definition of n-exponentially convex functions.
�

Remark 5.15 The condition ”D1 = { ft : t ∈ I} be a class of functions such that the func-
tion t �→ [z0,z1, . . . ,zn; ft ] is r-exponentially convex” can be replaced with ”D1 = { ft :

t ∈ I} be a class of n-time differentiable functions such that the function t �→ f (n)
t is r-

exponentially convex”.

As a consequence of the above theorem we give the following theorem which connects
Ak with log-convexity.

Theorem 5.57 Let D2 = { ft : t ∈ I} be a class of functions such that the function t �→
[z0,z1, . . . ,zn; ft ] is 2-exponentially convex in the J-sense on I for any mutually distinct
points z0,z1, . . . ,zn ∈ [a,b], n ≥ 2. Let k ∈ {1, . . . ,8}.

If condition (Uk) holds, then the following statements are valid:
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(a) If the function t �→ Ak( ft ) is positive and continuous, then it is log-convex on I.
Moreover, the following Lyapunov type inequality holds for r < s < t, r, s, t ∈ I

[Ak( fs)]t−r ≤ [Ak( fr)]t−s [Ak( ft )]s−r. (5.131)

(b) If the function t �→Ak( ft) is positive and differentiable on I, then for every s,t,u,v∈ I
such that s ≤ u and t ≤ v, we have

s,t(Ak,D2) ≤ u,v(Ak,D2) (5.132)

where s,t is defined as

s,t(Ak,D2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Ak( fs)
Ak( ft )

) 1
s−t

, s �= t,

exp
( d

dsAk( fs)
Ak( fs)

)
, s = t

(5.133)

for fs, ft ∈ D2.

Furthermore, if r,r1, . . . ,rl ,r+ r1, . . . ,r+ rl ,r+ r1 + . . .+ rl ∈ I, then

Ak( fr)n−1Ak( fr+r1+...+rl ) ≥ Ak( fr+r1) · . . . ·Ak( fr+rl ). (5.134)

Particularly, if 0 ∈ I, then we get the Čebyšev type inequality

Ak( f0)n−1Ak( fr1+...+rl ) ≥ Ak( fr1) · . . . ·Ak( frl ).

Proof. (a) Applying Theorem 5.56 for r = 2 we get that t �→ Ak( ft ) is 2-exponentially
convex in the J-sense i.e. for any t1,t2 ∈ I, u1,u2 ∈ R

u2
1Ak( ft1 )+2u1u2Ak( f t1+t2

2
)+u2

2Ak( ft2 ) ≥ 0.

If we consider the left-hand side as a nonnegative quadratic polynomial, then its discrimi-
nant is nonpositive, i.e.

[Ak( f t1+t2
2

)]2 −Ak( ft1 ) ·Ak( ft2 ) ≤ 0.

This means that t �→ Ak( ft ) is log-convex in J-sense. From continuity we conclude that

t �→ Ak( ft ) is log-convex. Using the Jensen inequality for convex combination s =
t− s
t− r

r+
s− r
t− r

t we get

logAk( fs) ≤ t− s
t− r

logAk( fr)+
s− r
t− r

logAk( ft)

log[Ak( fs)]t−r ≤ log[Ak( fr)]t−s + log[Ak( ft )]s−r,

which gives (5.131).
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(b) For a convex function  , the inequality

(s) − (t)
s − t

≤ (u) − (v)
u − v

(5.135)

holds for all s, t,u,v ∈ I such that s ≤ u, t ≤ v, s �= t, u �= v.
Since by (a), Ak( ft ) is log-convex, so setting (t) = logAk( ft) in (5.135) we have

logAk( fs) − logAk( ft)
s− t

≤ logAk( fu)− logAk( fv)
u− v

, (5.136)

for s ≤ u, t ≤ v, s �= t, u �= v, which is equivalent to (5.132) i.e. to

(
Ak( fs)
Ak( ft )

) 1
s−t

≤
(

Ak( fu)
Ak( fv)

) 1
u−v

. (5.137)

The cases for s = t and / or u = v are obtained by taking respective limits.
Putting in (5.137) t = v = r, s = r+ r1 + . . .+ rl , u = r+ ri we get

(
Ak( fr+r1+...+rl )

Ak( fr)

) 1
r1+...+rl ≤

(
Ak( fr+ri)
Ak( fr)

) 1
ri

(
Ak( fr+r1+...+rl )

Ak( fr)

) ri
r1+...+rl ≤ Ak( fr+ri)

Ak( fr)
.

Multiplying all inequalities for i = 1,2, . . . , l we get (5.134). �

Let us consider some examples:

Example 5.5 Let F̃1 = {t : [a,b]⊂ R → [0,〉 : t ∈ R} be a family of functions defined
by

t(x) =

⎧⎪⎪⎨
⎪⎪⎩

etx

tn
, t �= 0,

xn

n!
, t = 0.

Since dn

dxnt(x) = etx, the function t �→ dn

dxnt(x) is exponentially convex. Using Theorem
5.56, we have that t �→ Ak(t), k ∈ {1, . . . ,8} are exponentially convex.

Assume that t �→ Ak(t) > 0 for k ∈ {1, . . . ,8}. By introducing functions t and s in
(5.130), we obtain the following means:

Ms,t(Ak, F̃1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
s− t

log

(
Ak(s)
Ak(t)

)
, s �= t,

Ak(id ·s)
Ak(s)

− n
s
, s = t �= 0,

Ak(id ·0)
(n+1)Ak(0)

, s = t = 0.
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where id stands for the identity function on [a,b] ⊂ R.
In particular, for k = 1 we have

Ms,t(A1, F̃1) =
1

s− t
log

⎛
⎜⎜⎜⎜⎝

tn

sn

m


i=1

pi e
sxi −

n−1


k=0

skesa

k!

m


i=1

pi(xi −a)k

m


i=1

pi e
txi −

n−1


k=0

tketa

k!

m


i=1

pi(xi −a)k

⎞
⎟⎟⎟⎟⎠ ,

for s �= t;s, t �= 0,

Ms,s(A1, F̃1) =

m


i=1

pi xi e
sxi −

n−1


k=0

(ksk−1 +ask)esa

k!

m


i=1

pi(xi −a)k

m


i=1

pi e
sxi −

n−1


k=0

skesa

k!

m


i=1

pi(xi −a)k

− n
s
,

for s �= 0; and

M0,0(A1, F̃1) =

m


i=1

pi
xn+1
i

n!
−

n−1


k=0

(n+1)an−k+1

(n− k+1)!k!

m


i=1

pi(xi −a)k

(n+1)

(
m


i=1

pi
xn
i

n!
−

n−1


k=0

an−k

(n− k)!k!

m


i=1

pi(xi −a)k

) .

Here Ms,t(Ak, F̃1) = log(s,t(Ak, F̃1)), k ∈ {1, . . . ,8} are in fact means.

Remark 5.16 We observe here that

⎛
⎜⎝

dns

dxn

dnt

dxn

⎞
⎟⎠

1
s−t

(log ) =  is a mean for  ∈ [a,b]

where a,b ∈ R+.

Example 5.6 Let n ∈ N, F̃2 = {t : [0,〉 → R : t ∈ R,t > n} be a family of functions
defined as

t(x) =
xt

t(t−1) · . . . · (t−n+1)
.

Since t �→ dn

dxnt(x) = xt−n = e(t−n) logx is exponentially convex, by Theorem 5.56 we
conclude that t �→ Ak(t), k ∈ {1, . . . ,8} are exponentially convex.

We assume that Ak(t) > 0 for k ∈ {1, . . . ,8}. For this family of functions we obtain
the following means:

Ms,t(Ak, F̃2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Ak(s)
Ak(t)

) 1
s−t

, s �= t,

exp

(
(−1)n−1(n−1)!

Ak(0s)
Ak(s)

+
n−1


k=0

1
k− s

)
, s = t.
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In particular, for k = 1 we have

Ms,t(A1, F̃2) =

⎛
⎜⎜⎜⎝ t(t−1) · · ·(t−n+1)

s(s−1) · · ·(s−n+1)

m


i=1

pix
s
i

m


i=1

pix
t
i

⎞
⎟⎟⎟⎠

1
s−t

, s �= t

Ms,s(A1, F̃2) = exp

⎛
⎜⎜⎜⎝

m


i=1

pixi
s logxi

m


i=1

pi xi
s

+
n−1


k=0

1
k− s

⎞
⎟⎟⎟⎠ .

For other examples see paper [22].

5.3 Linear Inequalities and Lidstone Interpolation
Polynomials

Here we pay attention to inequalities of type (5.1) and (5.4) for n-convex functions by
making use of the Lidstone interpolation. This section is based on the paper [91]. The
Lidstone series is a generalization of the Taylor series and it approximates a given function
in the neighborhood of two points (instead of one). For f ∈ C(2n)([0,1]) there exists a
unique polynomial PL of degree 2n−1 such that

P(2i)
L (0) = f (2i)(0), P(2i)

L (1) = f (2i)(1), 0 ≤ i ≤ n−1.

The polynomial PL can be expressed with the Lidstone polynomials. The Lidstone polyno-
mials n are polynomials of degree 2n+1 defined by the relations

0(t) = t,

′′
n(t) = n−1(t), (5.138)

n(0) = n(1) = 0,n ≥ 1.

Some explicit expressions of the Lidstone polynomials are (see [1])

n(t) = (−1)n 2
2n+1




k=1

(−1)k+1

k2n+1 sinkt,

n(t) =
1
6

[
6t2n+1

(2n+1)!
− t2n−1

(2n−1)!

]

−
n−2


k=0

2(22k+3−1)
(2k+4)!

B2k+4
t2n−2k−3

(2n−2k−3)!
,
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n(t) =
22n+1

(2n+1)!
B2n+1

(
1+ t

2

)
,

where B2k+4 is the (2k + 4)-th Bernoulli number and B2n+1
(

1+t
2

)
is the Bernoulli poly-

nomial. The error term eL(t) = f (t)−PL(t) of the interpolation can be expressed in the
integral form using the Green function. Widder [99] proved the following lemma.

Lemma 5.1 If f ∈C(2n)([0,1]), then

f (t) = PL(t)+ eL(t) (5.139)

=
n−1


k=0

[
f (2k)(0)k(1− t)+ f (2k)(1)k(t)

]
+
∫ 1

0
Gn(t,s) f (2n)(s)ds,

where

G1(t,s) = G(t,s) =
{

(t−1)s, s ≤ t,
(s−1)t, t ≤ s.

(5.140)

is the homogeneous Green function of the differential operator d2

ds2
on [0,1], and with the

successive iterates of G(t,s)

Gn(t,s) =
∫ 1

0
G1(t,u)Gn−1(u,s)du, n ≥ 2. (5.141)

The Lidstone polynomial can be expressed in terms of Gn(t,s) as

n(t) =
∫ 1

0
Gn(t,s)sds. (5.142)

For more on the Lidstone polynomials and interpolation see [1].

Theorem 5.58 Let n ∈ N, f : [a,b] → R be 2n-convex and let x ∈ [a,b]m and p ∈ R
m be

m-tuples such that

m


i=1

piGn

(
xi−a
b−a

,
s−a
b−a

)
≥ 0, for every s ∈ [a,b], (5.143)

where Gn is the Green function given by (5.141). Then

m


i=1

pi f (xi) ≥
m


i=1

n−1


k=0

(b−a)2k
[
pi f

(2k)(a)k

(
b− xi

b−a

)
(5.144)

+ pi f
(2k)(b)k

(
xi −a
b−a

)]
.

If the inequality in (5.143) is reversed, then (5.144) holds with the reversed sign of in-
equality.
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Proof. Let us first assume f ∈C(2n)([a,b]) . By Lemma 5.1 we have

f (x) =
n−1


k=0

(b−a)2k
[

f (2k)(a)k

(
b− x
b−a

)
+ f (2k)(b)k

(
x−a
b−a

)]

+ (b−a)2n−1
∫ b

a
Gn

(
x−a
b−a

,
s−a
b−a

)
f (2n)(s)ds. (5.145)

Applying (5.145) at xi, multiplying the obtained identity by pi and adding up we get

m


i=1

pi f (xi) =
m


i=1

n−1


k=0

(b−a)2k
[
pi f

(2k)(a)k

(
b− xi

b−a

)

+ pi f
(2k)(b)k

(
xi −a
b−a

)]

+ (b−a)2n−1
∫ b

a

m


i=1

piGn

(
xi −a
b−a

,
s−a
b−a

)
f (2n)(s)ds. (5.146)

Assumption (5.143) and f (2n) ≥ 0 yield the stated inequality. The inequality for general
f follows since every 2n-convex function can be obtained, by making use of Bernstein
polynomials, as a uniform limit of 2n-convex functions with a continuous 2n-th derivative
(see [77]). �

Corollary 5.9 Let j,n ∈ N, 1 ≤ j ≤ n, let f : [a,b] → R be 2n-convex and let m-tuples
x ∈ [a,b]m and p ∈ R

m satisfy (5.2) and (5.3) with n replaced by 2 j. If n− j is even, then

m


i=1

pi f (xi) ≥
m


i=1

n−1


k= j

(b−a)2k
[
pi f

(2k)(a)k

(
b− xi

b−a

)

+ pi f
(2k)(b)k

(
xi −a
b−a

)]
, (5.147)

while the reversed inequality holds if n− j is odd.

Proof. From (5.140) and (5.141) by induction one can conclude that (−1)nGn ≥ 0. Fur-

thermore, from (5.141) one can get  2

 t2
Gn(t,s) = Gn−1(t,s) and, hence, by induction

 2i

 t2i Gn(t,s) = Gn−i(t,s) for 0≤ i≤ n−1. Therefore, the function t �→Gn(t,s) is 2 j-convex
if n− j is even and 2 j-concave if n− j is odd for 0 ≤ j ≤ n− 1, while the statement for
j = n follows since t �→ G1(t,s) is convex.

By Theorem 5.1, assumption (5.143) in Theorem 5.58 is satisfied, so (5.144) holds.
Moreover, due to assumption (5.2), m

i=1 piP(xi) = 0 for every polynomial P of degree
≤ 2 j− 1 and since k is a polynomial of degree 2k + 1, the first j + 1 terms in the inner
sum in (5.144) vanish, i. e., the right-hand side of (5.144) under the assumptions of this
corollary is equal to the right-hand side of (5.147). �

When j = n in (5.147), the notation means that the inner sum is void, i. e. n−1
k=n · · ·= 0.

In particular, inequality (5.147) with j = n is inequality m
i=1 pi f (xi) ≥ 0.
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Corollary 5.10 Let j,n ∈ N, 1 ≤ j ≤ n, let f : [a,b] → R be 2n-convex, let m-tuples
x ∈ [a,b]m and p ∈ R

m satisfy (5.2) and (5.3) with n replaced by 2 j and denote

H(x) =
n−1


k= j

(b−a)2k
[

f (2k)(a)k

(
b− x
b−a

)
+ f (2k)(b)k

(
x−a
b−a

)]
. (5.148)

If n− j is even and H is 2 j-convex, then

m


i=1

pi f (xi) ≥ 0,

while the reversed inequality holds if n− j is odd and H is 2 j-concave.

Proof. Applying Theorem 5.1 we conclude that the right-hand side of (5.147) is nonnega-
tive for 2 j-convex H and nonpositive for 2 j-concave H. �

Remark 5.17 Due to (5.139) we have(2l)
k =k−l and, furthermore, (−1)nn ≥ 0 due to

(5.142). Therefore, if the function f satisfies (−1)k− j f (2k)(a)≥ 0 and (−1)k− j f (2k)(b)≥ 0
for j≤ k≤ n−1, then the functionH given by (5.148) is 2 j-convex,while if (−1)k− j f (2k)(a)≤
0 and (−1)k− j f (2k)(b) ≤ 0 for j ≤ k ≤ n−1, then H is 2 j-concave.

As already mentioned before, the inequality in Corollaries 5.9 and 5.10 with j = n is
the same as the inequality in Theorem 5.1. Of course, in the proof of Corollary 5.9 we have
used Theorem 5.1 to prove that assumption (5.143) holds, so, due to circularity, we didn’t
obtain another proof of the Popoviciu result. But, it is possible, as we will show in the next
lemma, to prove directly that conditions (5.2) and (5.3) imply (5.143), i. e. it is possible
to prove Corollary 5.9 independently of Theorem 5.1 and, thus, provide a new proof of the
Popoviciu result for even n.

Lemma 5.2 Let n ≥ 2 and let m-tuples x ∈ [a,b]m and p ∈ R
m satisfy

m


i=1

pix
k
i = 0, for all k = 0,1, . . . ,2n−1 (5.149)

m


i=1

pi(xi − t)2n−1
+ ≥ 0, for every t ∈ [a,b]. (5.150)

Then (5.143) holds.

Proof. Let s ∈ [a,b] be fixed and y = (s−a)/(b−a). We will show, by induction, that
Gn is of the form

Gn(x,y) = Ps,2n−1(x)+
1

(2n−1)!
(x− y)2n−1

+ , (5.151)

where Ps,2n−1 is a polynomial of degree 2n−1. Hence, similarly as in the proof of Corollary
5.9, from (5.149) we can conclude that

m


i=1

piPs,2n−1

(
xi−a
b−a

)
= 0,
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while (5.150) yields

m


i=1

pi

(2n−1)!

(
xi−a
b−a

− s−a
b−a

)2n−1

+
=

1
(2n−1)!(b−a)2n−1

m


i=1

pi(xi− s)2n−1
+ ≥ 0.

Therefore, it is enough to show that (5.151) holds. From (5.140) we have

G1(x,y) = xy−min(x,y) = x(y−1)+ (x− y)+,

so (5.151) holds for n = 1. Now, assume that (5.151) holds. Then (5.141) yields

Gn+1(x,y) =
∫ 1
0 (x(u−1)+ (x−u)+)

(
Ps,2n−1(u)+ 1

(2n−1)!(u− y)2n−1
+

)
du

= I + II + III,

where

I = x
∫ 1

0
(u−1)Gn(u,y)du = x · constant

II =
∫ 1

0
(x−u)+Ps,2n−1(u)du

III =
1

(2n−1)!

∫ 1

0
(x−u)+(u− y)2n−1

+ du.

Integration by parts yields

II =
∫ x

0
(x−u)Ps,2n−1(u)du

= (x−u)
∫ u

0
Ps,2n−1(z)dz

∣∣∣u=x

u=0
+

∫ x

0

∫ u

0
Ps,2n−1(z)dz = P̃s,2n+1(x),

where P̃s,2n+1 is a polynomial of degree 2n+1. Notice that

I + II = Ps,2n−1

is a polynomial of degree 2n+1 in the variable x. Clearly III = 0 for x≤ y, while for x > y

III =
1

(2n−1)!

∫ x

y
(x−u)(u− y)2n−1du

=
1

(2n)!
(x−u)(u− y)

∣∣∣u=x

u=y
+

1
(2n)!

∫ x

y
(u− y)2n du =

1
(2n+1)!

(x− y)2n+1.

Therefore, III = (x− y)2n+1
+ /(2n+ 1)!, so (5.151) holds for n+ 1 as well, which finishes

the proof. �

Lemma 5.2 together with Theorem 5.58 gives the “if” part of Theorem 5.1. On the
other hand, the “only if” part is straightforward: since the functions ek(x) = xk are both 2n-
convex and 2n-concave for k ∈ {0,1, . . . ,2n−1}, inequality (5.1) yields that m

i=1 piek(xi)
is both ≥ 0 and ≤ 0, so (5.149) holds. Similarly, the function w2n(x) = (x− t)2n−1

+ is
2n-convex and inequality (5.1) applied to w2n yields (5.150).

In the remainder of this section we will give integral versions of the results. The proofs
are analogous to the discrete case and we will omit them.
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Theorem 5.59 Let n∈N, f : [a,b]→R be 2n-convex and let the functions p : [, ]→R

and g : [, ] → [a,b] be such that

∫ 


p(x)Gn

(
g(x)−a
b−a

,
s−a
b−a

)
dx ≥ 0, for every s ∈ [a,b], (5.152)

where Gn is the Green function given by (5.141). Then

∫ 


p(x) f (g(x))dx ≥

∫ 


p(x)

n−1


k=0

(b−a)2k
[

f (2k)(a)k

(
b−g(x)
b−a

)

+ f (2k)(b)k

(
g(x)−a
b−a

)]
dx. (5.153)

If the inequality in (5.152) is reversed, then (5.153) holds with the reversed sign of
inequality.

Corollary 5.11 Let j,n ∈ N, 1 ≤ j ≤ n, let f : [a,b] → R be 2n-convex and let the func-
tions p : [, ] → R and g : [, ] → [a,b] satisfy (5.5) with n replaced by 2 j. If n− j is
even, then

∫ 


p(x) f (g(x))dx ≥

∫ 


p(x)

n−1


k= j

(b−a)2k
[

f (2k)(a)k

(
b−g(x)
b−a

)

+ f (2k)(b)k

(
g(x)−a
b−a

)]
dx,

while the reversed inequality holds if n− j is odd.

Corollary 5.12 Let j,n, f , p and g be as in Corollary 5.11 and let H be given by (5.148).
If n− j is even and H is 2 j-convex, then

∫ 


p(x) f (g(x))dx ≥ 0,

while the reversed inequality holds if n− j is odd and H is 2 j-concave.

Lemma 5.3 Let n ≥ 2 and let the functions p : [, ] → R and g : [, ] → [a,b] satisfy

∫ 


p(x)g(x)k dx = 0, for all k = 0,1, . . . ,2n−1

∫ 


p(x)(g(x)− t)2n−1

+ dx ≥ 0, for every t ∈ [a,b].

Then (5.152) holds.
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5.3.1 Inequalities for n-convex Functions at a Point

In this section we will give related results for the class of n-convex functions at a point
introduced in Chapter 2.

Let ei denote the monomials ei(x) = xi, i ∈ N0. For the rest of this section, A and B will
denote the linear functionals obtained as the difference of the left and right-hand sides of
inequality (5.144) applied to the intervals [a,c] and [c,b], respectively, i. e., for x ∈ [a,c]m,
p ∈ R

m, y ∈ [c,b]l and q ∈ R
l let

A( f ) =
m


i=1

pi f (xi)−
m


i=1

n−1


k=0

(c−a)2k
[
pi f

(2k)(a)k

(
c− xi

c−a

)

+pi f
(2k)(c)k

(
xi −a
c−a

)]
, (5.154)

B( f ) =
l


i=1

qi f (yi)−
l


i=1

n−1


k=0

(b− c)2k
[
qi f

(2k)(c)k

(
b− yi

b− c

)

+qi f
(2k)(b)k

(
yi − c
b− c

)]
. (5.155)

Notice that, using the newly introduced functionals A and B, identity (5.146) applied
to the intervals [a,c] and [c,b] can be written as

A( f ) = (c−a)2n−1
∫ c

a

m


i=1

piGn

(
xi−a
c−a

,
s−a
c−a

)
f (2n)(s)ds, (5.156)

B( f ) = (b− c)2n−1
∫ b

c

l


i=1

qiGn

(
yi− c
b− c

,
s− c
b− c

)
f (2n)(s)ds. (5.157)

Theorem 5.60 Let x ∈ [a,c]m, p ∈ R
m, y ∈ [c,b]l and q ∈ R

l be such that

m


i=1

piGn

(
xi−a
c−a

,
s−a
c−a

)
≥ 0, for every s ∈ [a,c], (5.158)

l


i=1

qiGn

(
yi − c
b− c

,
s− c
b− c

)
≥ 0, for every s ∈ [c,b], (5.159)

∫ c

a

m


i=1

piGn

(
xi−a
c−a

,
s−a
c−a

)
ds

=
(

b− c
c−a

)2n−1∫ b

c

l


i=1

qiGn

(
yi− c
b− c

,
s− c
b− c

)
ds, (5.160)

where Gn is the Green function given by (5.141), and let A and B be the linear functionals
given by (5.154) and (5.155). If f : [a,b]→ R is (2n+1)-convex at point c, then

A( f ) ≤ B( f ). (5.161)
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If the inequalities in (5.158) and (5.159) are reversed, then (5.161) holds with the reversed
sign of inequality.

Proof. Let F = f − K
(2n)!e2n be as in definition i. e., the function F is 2n-concave on

[a,c] and 2n-convex on [c,b]. Applying Theorem 5.58 to F on the interval [a,c] we have

0 ≥ A(F) = A( f )− K
(2n)!

A(e2n) (5.162)

and applying Theorem 5.58 to F on the interval [c,b] we have

0 ≤ B(F) = B( f )− K
(2n)!

B(e2n). (5.163)

Identities (5.156) and (5.157) applied to the function e2n yield

A(e2n) = (2n)!(c−a)2n−1
∫ c

a

m


i=1

piGn

(
xi −a
c−a

,
s−a
c−a

)
ds,

B(e2n) = (2n)!(b− c)2n−1
∫ b

c

l


i=1

qiGn

(
yi − c
b− c

,
s− c
b− c

)
ds.

Therefore, assumption (5.160) is equivalent to A(e2n) = B(e2n). Now, from (5.162) and
(5.163) we obtain the stated inequality. �

In the proof of Theorem 5.60 we have, actually, shown that

A( f ) ≤ K
(2n)!

A(e2n) =
K

(2n)!
B(e2n) ≤ B( f ).

In fact, inequality (5.161) still holds if we replace assumption (5.160) with the weaker
assumption that K (B(e2n)−A(e2n)) ≥ 0.

Corollary 5.13 Let j1, j2,n ∈ N, 1 ≤ j1, j2 ≤ n, let f : [a,b] → R be (2n+ 1)-convex at
point c, let m-tuples x ∈ [a,c]m and p ∈ R

m satisfy (5.2) and (5.3) with n replaced by 2 j1,
let l-tuples y ∈ [c,b]l and q ∈ R

l satisfy

l


i=1

qiy
k
i = 0, for all k = 0,1, . . . ,2 j2 −1

l


i=1

qi(yi − t)2 j2−1
+ ≥ 0, for every t ∈ [y(1),y(l−n+1)]

and let (5.160) holds. If n− j1 and n− j2 are even, then

A( f ) ≤ B( f ),

while the reversed inequality holds if n− j1 and n− j2 are odd.

Proof. Similar to the proof of Corollary 5.9. �
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5.3.2 Bounds for the Remainders and Functionals

For m-tuples p = (p1, . . . , pm) ∈ R
m, x = (x1, . . . ,xm) ∈ [a,b]m and the function Gn given

be (5.141), denote

 (s) =
m


i=1

piGn

(
xi −a
b−a

,
s−a
b−a

)
, for s ∈ [a,b]. (5.164)

Similarly, for functions g : [, ] → [a,b] and p : [, ] → R denote

(s) =
∫ 


p(x)Gn

(
g(x)−a
b−a

,
s−a
b−a

)
dx, for s ∈ [a,b]. (5.165)

Theorem 5.61 Let n ∈ N, f : [a,b] → R be such that f (2n) is an absolutely continuous
function with (· − a)(b− ·)[ f (2n+1)]2 ∈ L[a,b] and let Gn, T and  be given by (5.141),
(5.36) and (5.164) respectively. Then the remiander R1

n( f ;a,b) given in

m


i=1

pi f (xi) =
m


i=1

n−1


k=0

(b−a)2k
[
pi f

(2k)(a)k

(
b− xi

b−a

)

+pi f
(2k)(b)k

(
xi −a
b−a

)]
(5.166)

+ (b−a)2n−2
(

f (2n−1)(b)− f (2n−1)(a)
)∫ b

a
 (s)ds+R1

n( f ;a,b)

satisfies the estimation

|R1
n( f ;a,b)| ≤ (b−a)2n− 1

2√
2

(
T ( , )

∫ b

a
(s−a)(b− s)[ f (2n+1)(s)]2 ds

) 1
2

.

Proof. If we apply Theorem 5.12 for f →  and h → f (2n), then we obtain∣∣∣∣ 1
b−a

∫ b

a
 (s) f (2n)(s)ds−

(
1

b−a

∫ b

a
 (s)ds

)(
1

b−a

∫ b

a
f (2n)(s)ds

)∣∣∣∣
≤ 1√

2

(
1

b−a
T ( , )

∫ b

a
(s−a)(b− s)[ f (2n+1)(s)]2 ds

) 1
2

. (5.167)

From (5.146) and (5.166) we obtain

(b−a)2n−1
∫ b

a
 (s) f (2n)(s)ds

= (b−a)2n−2
(

f (2n−1)(b)− f (2n−1)(a)
)∫ b

a
 (s)ds+R1

n( f ;a,b),

where the estimate (5.233) follows from (5.167). �

The following integral version of the previous theorem is proven analogously.
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Theorem 5.62 Let n ∈ N, f : [a,b] → R be such that f (2n) is an absolutely continuous
function with (· − a)(b− ·)[ f (2n+1)]2 ∈ L[a,b] and let Gn, T and  be given by (5.141),
(5.36) and (5.165) respectively. Then the remainder R2

n( f ;a,b) from representation

∫ 


p(x) f (g(x))dx = (5.168)

∫ 


p(x)

n−1


k= j

(b−a)2k
[

f (2k)(a)k

(
b−g(x)
b−a

)
+ f (2k)(b)k

(
g(x)−a
b−a

)]
dx

+(b−a)2n−2
(

f (2n−1)(b)− f (2n−1)(a)
)∫ b

a
(s)ds+R2

n( f ;a,b),

satisfies the estimation

|R2
n( f ;a,b)| ≤ (b−a)2n− 1

2√
2

(
T (,)

∫ b

a
(s−a)(b− s)[ f (2n+1)(s)]2 ds

) 1
2

.

By using Theorem 5.13 we obtain the following Grüss type inequality.

Theorem 5.63 Let n ∈ N, f : [a,b] → R be such that f (2n) is an absolutely continuous
function with f (2n+1) ≥ 0 and let  be given by (5.164). Then we have the representation
(5.166) and the remainder R1

n( f ;a,b) satisfies the bound

|R1
n( f ;a,b)| ≤ (b−a)2n‖ ′‖

[
f (2n−1)(b)+ f (2n−1)(a)

2

− f (2n−2)(b)− f (2n−2)(a)
b−a

]
. (5.169)

Proof. If we apply Theorem 5.13 for f →  and h → f (2n) we obtain∣∣∣∣ 1
b−a

∫ b

a
 (s) f (2n)(s)ds−

(
1

b−a

∫ b

a
 (s)ds

)(
1

b−a

∫ b

a
f (2n)(s)ds

)∣∣∣∣
≤ 1

2(b−a)
‖ ′‖

∫ b

a
(s−a)(b− s) f (2n+1)(s)ds.

Since ∫ b

a
(s−a)(b− s) f (2n+1)(s)ds =

∫ b

a
(2s−a−b) f (2n)(s)ds (5.170)

= (b−a)
[
f (2n−1)(b)+ f (2n−1)(a)

]
−2

[
f (2n−2)(b)− f (n−2)(a)

]
,

using identities (5.146) and (5.170) we deduce (5.169). �

Again, we only state the integral version of the previous result.



190 5 LINEAR INEQUALITIES VIA INTERPOLATION POLYNOMIALS

Theorem 5.64 Let n ∈ N, f : [a,b] → R be such that f (2n) is an absolutely continuous
function with f (2n+1) ≥ 0 and let  be given by (5.165). Then we have the representation
(5.168) and the remainder R2

n( f ;a,b) satisfies the bound

|R2
n( f ;a,b)| ≤ (b−a)2n‖′‖

[
f (2n−1)(b)+ f (2n−1)(a)

2

− f (2n−2)(b)− f (2n−2)(a)
b−a

]
.

5.4 Linear Inequalities and Hermite Interpolation
Polynomials

In this section we derive inequalities of type (5.1) and (5.4) for n-convex functions by
making use of the Hermite interpolation. These results are contained in paper [75]. Let
− < a ≤ a1 < a2 < · · · < ar ≤ b < , r ≥ 2. The Hermite interpolation of a function
f ∈Cn[a,b] is of the form

f (x) = PH(x)+ eH(x)

where PH is the unique polynomial of degree n−1, called the Hermite interpolating poly-
nomial of f , satisfying

P(i)
H (a j) = f (i)(a j), 0 ≤ i ≤ k j, 1 ≤ j ≤ r,

r


j=1

k j + r = n.

The associated error eH(x) can be represented in terms of the Green function GH,n(x,s)
for the multipoint boundary value problem

z(n)(x) = 0, z(i)(a j) = 0, 0 ≤ i ≤ k j, 1 ≤ j ≤ r,

that is, the following result holds (see [1]):

Theorem 5.65 Let f ∈Cn[a,b], and let PH be its Hermite interpolating polynomial. Then

f (x) = PH(x)+ eH(x)

=
r


j=1

k j


i=0

Hi j(x) f (i)(a j)+
b∫

a

GH,n(x,s) f (n)(s)ds, (5.171)

where Hi j are the fundamental polynomials of the Hermite basis defined by

Hi j(x) =
1
i!

w(x)

(x−a j)
k j+1−i

k j−i


k=0

1
k!

dk

dxk

( (x−a j)
k j+1

w(x)

)∣∣∣
x=a j

(x−a j)k, (5.172)
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where

w(x) =
r


j=1

(x−a j)k j+1 (5.173)

and GH,n is the Green function defined by

GH,n(x,s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l


j=1

k j


i=0

(a j − s)n−i−1

(n− i−1)!
Hi j(x), s ≤ x,

−
r


j=l+1

k j


i=0

(a j − s)n−i−1

(n− i−1)!
Hi j(x), s ≥ x

(5.174)

for all al ≤ s ≤ al+1, l = 0,1, . . . ,r (a0 = a,ar+1 = b).

The following are some special cases of the Hermite interpolation of functions:
(i) (m,n−m) conditions: r = 2, a1 = a, a2 = b, 1 ≤ m ≤ n− 1, k1 = m− 1 and k2 =

n−m−1. In this case

f (x) =
m−1


i=0

i(x) f (i)(a)+
n−m−1


i=0

i(x) f (i)(b)+
∫ b

a
Gm,n(x,s) f (n)(s)ds,

where

i(x) =
1
i!

(x−a)i
( x−b

a−b

)n−m m−1−i


k=0

(
n−m+ k−1

k

)( x−a
b−a

)k
, (5.175)

i(x) =
1
i!

(x−b)i
( x−a

b−a

)m n−m−1−i


k=0

(
m+ k−1

k

)( x−b
a−b

)k

, (5.176)

and the Green function Gm,n is of the form

Gm,n(x,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1


j=0

[m−1− j


p=0

(
n−m+ p−1

p

)( x−a
b−a

)p]
× (x−a) j(a− s)n− j−1

j!(n− j−1)!

(b− x
b−a

)n−m
, s ≤ x,

−
n−m−1


i=0

[n−m−1−i


q=0

(
m+q−1

q

)(b− x
b−a

)q]
× (x−b)i(b− s)n−i−1

i!(n− i−1)!

( x−a
b−a

)m
, s ≥ x.

(ii) Taylor’s two-point condition: m ∈ N, n = 2m, r = 2, a1 = a, a2 = b and k1 = k2 =
m−1. In this case

f (x) =
m−1


i=0

m−i−1


k=0

(
m+ k−1

k

)[ (x−a)i

i!

( x−b
a−b

)m( x−a
b−a

)k
f (i)(a)
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+
(x−b)i

i!

( x−a
b−a

)m( x−b
a−b

)k

f (i)(b)
]
+

∫ b

a
G2T,m(x,s) f (2m)(s)ds,

where the Green function G2T,m is of the form

G2T,m(x,s)

=
(−1)m

(2m−1)!

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pm(x,s)
m−1


k=0

(
m+ k−1

k

)
(x− s)m−1−kqk(x,s), s ≤ x,

qm(x,s)
m−1


k=0

(
m+ k−1

k

)
(s− x)m−1−k pk(x,s), x ≤ s,

where p(x,s) =
(s−a)(b− x)

(b−a)
and q(x,s) = p(s,x).

The following lemma yields the sign of the Green function (5.174) on certain intervals
(see Lemma 2.3.3, page 75, in [1]).

Lemma 5.4 The Green function GH,n given by (5.174) and w given by (5.173) satisfy

GH,n(x,s)
w(x)

> 0, for a1 ≤ x ≤ ar, a1 < s < ar.

Integration by parts easily yields that for any function f ∈C2[a,b] the following holds

f (x) =
b− x
b−a

f (a)+
x−a
b−a

f (b)+
∫ b

a
G(x,s) f ′′(s)ds, (5.177)

where the function G : [a,b]× [a,b] → R is the Green function of the boundary value
problem

z′′(x) = 0, z(a) = z(b) = 0

and is given by

G(x,s) =

⎧⎪⎪⎨
⎪⎪⎩

(x−b)(s−a)
b−a

, for a ≤ s ≤ x,

(s−b)(x−a)
b−a

, for x ≤ s ≤ b.

(5.178)

The function G is continuous, symmetric and convex with respect to both variables x
and s.

5.4.1 Inequalities Obtained via Hermite Interpolating
Polynomials

We will start this section with several identities.

Theorem 5.66 Let − < a ≤ a1 < a2 < · · · < ar ≤ b < , r ≥ 2, r
j=1 k j + r = n, f ∈

Cn[a,b], x ∈ [a,b]m, p ∈ R
m and let Hi j and GH,n be given by (5.172) and (5.174). Then

m


k=1

pk f (xk) =
r


j=1

k j


i=0

m


k=1

pkHi j(xk) f (i)(a j)
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+
∫ b

a

m


k=1

pkGH,n(xk,s) f (n)(s)ds. (5.179)

Proof. By applying identity (5.171) at xk, multiplying it by pk and summing up we obtained
the required identity. �

The integral version of the previous theorem is the following:

Theorem 5.67 Let − < a ≤ a1 < a2 < · · · < ar ≤ b < , r ≥ 2, r
j=1 k j + r = n, f ∈

Cn[a,b], g : [, ] → [a,b], p : [, ] → R and let Hi j and GH,n be given by (5.172) and
(5.174). Then

∫ 


p(x) f (g(x))dx =

r


j=1

k j


i=0

f (i)(a j)
∫ 


p(x)Hi j(x)dx

+
∫ b

a

(∫ 


p(x)GH,n(g(x),s)dx

)
f (n)(s)ds.

Theorem 5.68 Let − < a ≤ a1 < a2 < · · · < ar ≤ b < , r ≥ 2, r
j=1 k j + r = n− 2,

f ∈Cn[a,b], x ∈ [a,b]m, p ∈ R
m and let Hi j and GH,n−2 be given by (5.172) and (5.174).

Then

m


k=1

pk f (xk) =
f (b)− f (a)

b−a

m


k=1

pkxk +
b f (a)−a f (b)

b−a

m


k=1

pk

+
r


j=1

k j


i=0

f (i+2)(a j)
∫ b

a

m


k=1

pkG(xk,s)Hi j(s)ds

+
∫ b

a

∫ b

a

m


k=1

pkG(xk,s)GH,n−2(s,t) f (n)(t)dt ds. (5.180)

Proof. Applying identity (5.177) at xk, multiplying it by pk and summing up we obtain

m


k=1

pk f (xk) =
f (b)− f (a)

b−a

m


k=1

pkxk +
b f (a)−a f (b)

b−a

m


k=1

pk

+
∫ b

a

m


k=1

pkG(xk,s) f ′′(s)ds. (5.181)

By Theorem 5.65, f ′′(s) can be expressed as

f ′′(s) =
r


j=1

k j


i=0

Hi j(s) f (i+2)(a j)+
b∫

a

GH,n−2(s, t) f (n)(t)dt. (5.182)

Inserting (5.182) in (5.181) we get (5.180). �

We also state the integral version of the previous theorem.
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Theorem 5.69 Let − < a ≤ a1 < a2 < · · · < ar ≤ b < , r ≥ 2, r
j=1 k j + r = n− 2,

f ∈Cn[a,b], g : [, ] → [a,b], p : [, ] → R and let Hi j and GH,n−2 be given by (5.172)
and (5.174). Then

∫ 


p(x) f (g(x))dx =

f (b)− f (a)
b−a

∫ 


p(x)g(x)dx+

b f (a)−a f (b)
b−a

∫ 


p(x)dx

+
r


j=1

k j


i=0

f (i+2)(a j)
∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
Hi j(s)ds

+
∫ b

a

∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
GH,n−2(s,t) f (n)(t)dt ds.

Next we will use the identities proven above to derive inequalities.

Theorem 5.70 Let − < a ≤ a1 < a2 < · · · < ar ≤ b < , r ≥ 2, r
j=1 k j + r = n, x ∈

[a,b]m, p ∈ R
m and let Hi j and GH,n be given by (5.172) and (5.174). If f : [a,b] → R is

n-convex and
m


k=1

pkGH,n(xk,s) ≥ 0 for all s ∈ [a,b], (5.183)

then
m


k=1

pk f (xk) ≥
r


j=1

k j


i=0

m


k=1

pkHi j(xk) f (i)(a j). (5.184)

If the inequality in (5.183) is reversed, then the inequality in (5.184) is reversed also.

Proof. If (5.183) holds, then the second term on the right-hand side (5.179) is nonneg-
ative. �

Theorem 5.71 Let − < a ≤ a1 < a2 < · · · < ar ≤ b < , r ≥ 2, r
j=1 k j + r = n, x ∈

[a,b]m, p : [, ]→ R and let Hi j and GH,n be given by (5.172) and (5.174). If f : [a,b]→
R is n-convex and ∫ 


p(x)GH,n(g(x),s)dx ≥ 0 for all s ∈ [a,b], (5.185)

then ∫ 


p(x) f (g(x))dx ≥

r


j=1

k j


i=0

f (i)(a j)
∫ 


p(x)Hi j(x)dx. (5.186)

If the inequality in (5.185) is reversed, then the inequality in (5.186) is reversed also.

Theorem 5.72 Let −< a = a1 < a2 < · · ·< ar = b <, r ≥ 2, r
j=1 k j +r = n−2, x∈

[a,b]m, p ∈ R
m and let Hi j and GH,n−2 be given by (5.172) and (5.174). Let f : [a,b]→ R

be n-convex and
m


k=1

pkG(xk,s) ≥ 0 for all s ∈ [a,b], (5.187)
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and consider the inequality

m


k=1

pk f (xk) ≥ f (b)− f (a)
b−a

m


k=1

pkxk +
b f (a)−a f (b)

b−a

m


k=1

pk

+
r


j=1

k j


i=0

f (i+2)(a j)
∫ b

a

m


k=1

pkG(xk,s)Hi j(s)ds. (5.188)

(i) If k j for j = 2, . . . ,r are odd, then (5.188) holds.

(ii) If k j for j = 2, . . . ,r−1 are odd and kr is even, then the reverse of (5.188) holds.

Proof. (i) Assume first that f ∈ Cn[a,b]. Due to the assumptions w given by (5.173)
satisfies w(x) ≥ 0 for all x and, hence, by Lemma 5.4, GH,n−2(s, t) ≥ 0 for all s,t ∈ [a,b].
Therefore, the last term on the right-hand side of (5.180) is nonnegative, so inequality
(5.188) holds. The inequality for general f follows since every n-convex function can
be obtained, by making use of the Bernstein polynomials, as a uniform limit of n-convex
functions with a continuous n-th derivative (see [77]).
(ii) Under these assumptions w(x) ≤ 0, so GH,n−2(s,t) ≤ 0. The rest of the proof is the
same as in (i). �

Theorem 5.73 Let − < a = a1 < a2 < · · · < ar = b < , r ≥ 2, r
j=1 k j + r = n− 2,

g : [, ]→R, p : [, ]→R and let Hi j be given by (5.172). Let f : [a,b]→R be n-convex
and ∫ 


p(x)G(g(x),s)dx ≥ 0 for all s ∈ [a,b],

and consider the inequality∫ 


p(x) f (g(x))dx ≥ f (b)− f (a)

b−a

∫ 


p(x)g(x)dx+

b f (a)−a f (b)
b−a

∫ 


p(x)dx

+
r


j=1

k j


i=0

f (i+2)(a j)
∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
Hi j(s)ds. (5.189)

(i) If k j for j = 2, . . . ,r are odd, then (5.189) holds.

(ii) If k j for j = 2, . . . ,r−1 are odd and kr is even, then the reverse of (5.189) holds.

In the case of the (m,n−m) conditions we have the following corollary.

Corollary 5.14 Let i and i be given by (5.175) and (5.176) and let x ∈ [a,b]m and p ∈
R

m be such that (5.187) holds. Let f : [a,b] → R be n-convex and consider the inequality

m


k=1

pk f (xk) ≥ f (b)− f (a)
b−a

m


k=1

pkxk +
b f (a)−a f (b)

b−a

m


k=1

pk

+
∫ b

a

(
m


k=1

pkG(xk,s)

)(
l−1


i=0

i(s) f (i+2)(a)+
n−l−1


i=0

i(s) f (i+2)(b)

)
ds. (5.190)
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(i) If n− l is even, then (5.190) holds.

(ii) If n− l is odd, then the reverse of (5.190) holds.

In the case of Taylor’s two point conditions we have the following corollary.

Corollary 5.15 Let x ∈ [a,b]m and p ∈ R
m be such that (5.187) holds. Let f : [a,b]→ R

be n-convex and consider the inequality

m


k=1

pk f (xk) ≥ f (b)− f (a)
b−a

m


k=1

pkxk +
b f (a)−a f (b)

b−a

m


k=1

pk

+
∫ b

a

(
m


k=1

pkG(xk,s)

)(
l−1


i=0

l−i−1


k=0

(
l + k−1

k

)

×
[(s−a)i

i!

( s−b
a−b

)l( s−a
b−a

)k
f (i+2)(a)

+
(s−b)i

i!

( s−a
b−a

)l( s−b
a−b

)k

f (i+2)(b)
])

ds. (5.191)

(i) If l is even, then (5.191) holds.

(ii) If l is odd, then the reverse of (5.191) holds.

Theorem 5.74 Let −< a = a1 < a2 < · · · < ar = b <, r ≥ 2, r
j=1 k j + r = n−2, let

x ∈ [a,b]m and p ∈ R
m satisfy

m


k=1

pk = 0,
m


k=1

pk|xk − xi| ≥ 0 for i ∈ {1, . . . ,m}

and let Hi j and GH,n−2 be given by (5.172) and (5.174). Let f : [a,b] → R be n-convex
and consider the inequality

m


k=1

pk f (xk) ≥
r


j=1

k j


i=0

f (i+2)(a j)
∫ b

a

m


k=1

pkG(xk,s)Hi j(s)ds (5.192)

and the function

F(x) =
r


j=1

k j


i=0

f (i+2)(a j)
∫ b

a
G(x,s)Hi j(s)ds. (5.193)

(i) If k j for j = 2, . . . ,r are odd, then (5.192) holds. Furthermore, if the function F is
convex, then inequality m

k=1 pk f (xk) ≥ 0 holds.

(ii) If k j for j = 2, . . . ,r− 1 are odd and kr is even, then the reverse of (5.192) holds.
Furthermore, if the function F is concave, then inequality m

k=1 pk f (xk) ≤ 0 holds.

Proof. The function G(x,s) is convex in the first variable, so assumption (5.187) is
satisfied by Remark 5.1. Now, the claims of the theorem follow from Theorem 5.72. �
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Theorem 5.75 Let −< a = a1 < a2 < · · · < ar = b <, r ≥ 2, r
j=1 k j + r = n−2, let

g : [, ] → R and p : [, ] → R satisfy (5.5) and (5.6). Let Hi j and GH,n−2 be given by
(5.172) and (5.174). Let f : [a,b] → R be n-convex and consider the inequality

∫ 


p(x) f (x)dx

≥
r


j=1

k j


i=0

f (i+2)(a j)
∫ b

a

(∫ 


p(x)G(g(x),s)dx

)
Hi j(s)ds (5.194)

and the function F given by (5.193).

(i) If k j for j = 2, . . . ,r are odd, then (5.194) holds. Furthermore, if the function F is

convex, then inequality
∫ 


p(x) f (g(x))dx ≥ 0 holds.

(ii) If k j for j = 2, . . . ,r− 1 are odd and kr is even, then the reverse of (5.194) holds.

Furthermore, if the function F is concave, then inequality
∫ 


p(x) f (g(x))dx ≤ 0

holds.

5.4.2 Bounds for the Remainders and Functionals

For m-tuples p = (p1, . . . , pm) ∈ R
m, x = (x1, . . . ,xm) ∈ [a,b]m and the functions G and

GH,n given by (5.178) and (5.174) denote

1(t) =
m


k=1

pkGH,n(xk,t), for t ∈ [a,b]. (5.195)

2(t) =
∫ b

a

m


k=1

pkG(xk,s)GH,n−2(s,t)ds, for t ∈ [a,b]. (5.196)

Theorem 5.76 Let − < a ≤ a1 < a2 < · · · < ar ≤ b < , r ≥ 2, let f : [a,b] → R be
such that f (n) is an absolutely continuous function with (· − a)(b− ·)[ f (n+1)]2 ∈ L[a,b],
x ∈ [a,b]m, p ∈ R

m and let Hi j, 1 and 2 be given by (5.172), (5.195) and (5.196).
(i) If r

j=1 k j + r = n, then

m


k=1

pk f (xk) =
r


j=1

k j


i=0

m


k=1

pkHi j(xk) f (i)(a j)

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
1(s)ds+R1

n( f ;a,b), (5.197)

where the remainder R1
n( f ;a,b) satisfies the estimation

|R1
n( f ;a,b)| ≤

(
b−a

2
T (1,1)

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2 ds

) 1
2

. (5.198)
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(ii) If r
j=1 k j + r = n−2, then

m


k=1

pk f (xk) =
f (b)− f (a)

b−a

m


k=1

pkxk +
b f (a)−a f (b)

b−a

m


k=1

pk

+
r


j=1

k j


i=0

f (i+2)(a j)
∫ b

a

m


k=1

pkG(xk,s)Hi j(s)ds

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
2(s)ds+R2

n( f ;a,b), (5.199)

where the remainder R2
n( f ;a,b) satisfies the estimation

|R2
n( f ;a,b)| ≤

(
b−a

2
T (2,2)

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2 ds

) 1
2

.

Proof. (i) Applying Theorem 5.12 with f → 1 and h → f (n) we get∣∣∣∣∫ b

a
1(s) f (n)(s)ds− 1

b−a

∫ b

a
1(s)ds

∫ b

a
f (n)(s)ds

∣∣∣∣
≤

(
b−a

2
T (1,1)

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2 ds

) 1
2

. (5.200)

From identities (5.179) and (5.197) we obtain∫ b

a
1(s) f (n)(s)ds =

f (n−1)(b)− f (n−1)(a)
b−a

∫ b

a
1(s)ds+R1

n( f ;a,b),

where the estimate (5.198) follows from (5.200).
(ii) Analogous as in (i). �

By using Theorem 5.13 we obtain the following Grüss type inequality.

Theorem 5.77 Let −< a ≤ a1 < a2 < · · · < ar ≤ b <, r ≥ 2, let x, p, Hi j, 1, 2 and
n be as in Theorem 5.76 and let f : [a,b]→ R be such that f (n) is an absolutely continuous
function with f (n+1) ≥ 0. Then the remainders Ri

n( f ;a,b), i = 1,2, from representations
(5.197) and (5.199) satisfy the bounds

|Ri
n( f ;a,b)| ≤ ‖ ′

i ‖
[
b−a

2

(
f (n−1)(b)+ f (n−1)(a)

)
−f (2n−2)(b)+ f (2n−2)(a)

]
.

Proof. This results easily follows by proceeding as in the proof of Theorem 5.16. �

We can construct linear functionals by taking differences of the left and right-hand sides
of the inequalities from Theorems 5.70, 5.71, 5.72 and 5.73. By using similar methods
as in [26, 31] (or in the first section of this chapter) we can prove mean value results
for these functionals, as well as construct new families of exponentially convex functions
and Cauchy-type means. Then, by using some known properties of exponentially convex
functions, we can derive new inequalities and prove monotonicity of the obtained Cauchy-
type means analogously as in [26, 31].
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5.5 Linear Inequalities and the Fink Identity

Let us recall the Fink identity on which we base further results. The following theorem is
proved by A. M. Fink in [18].

Proposition 5.3 Let a,b ∈ R, f : [a,b] → R, n ≥ 1 and f (n−1) is absolutely continuous
on [a,b]. Then

f (x) =
n

b−a

∫ b

a
f (t)dt (5.201)

−
n−1


k=1

n− k
k!

(
f (k−1) (a)(x−a)k − f (k−1) (b)(x−b)k

b−a

)

+
1

(n−1)!(b−a)

∫ b

a
(x− t)n−1 k[a,b] (t,x) f (n) (t)dt,

where

k[a,b] (t,x) =
{

t−a, a ≤ t ≤ x ≤ b,
t−b, a ≤ x < t ≤ b.

(5.202)

We follow with identities for n
i=1 pi f (xi) and

∫ b
a p(x) f (g(x))dx constructed by using

the Fink identity and the Green function. Also we consider inequalities for n-convex func-
tions which are based on these identities.

5.5.1 Inequalities via the Fink Identity

Theorem 5.78 Let n ∈ N and f : [a,b]→ R be such that f (n−1) is absolutely continuous.
Let xi ∈ [a,b], pi ∈ R (i ∈ {1, . . . ,m}) be reals such that m

i=0 pi = 0 and let k[a,b] be the
function as defined in (5.202). Then we have

m


i=1

pi f (xi) (5.203)

=
n−1


k=1

n− k
k!(b−a)

(
f (k−1) (b)

m


i=1

pi (xi −b)k − f (k−1) (a)
m


i=1

pi (xi−a)k
)

+
1

(n−1)!(b−a)

∫ b

a
f (n) (t)

(
m


i=1

pi (xi − t)n−1 k[a,b] (t,xi)

)
dt.

Proof. By using the Fink identity (5.201) for x = xi, multiplying it with pi and taking
the sum over i from 1 to m, we have

m


i=1

pi f (xi) =
n

b−a

∫ b

a
f (t)dt

m


i=0

pi
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+
m


i=1

pi

n−1


k=1

n− k
k!

f (k−1) (b)(xi −b)k − f (k−1) (a)(xi −a)k

b−a

+
m


i=1

pi

∫ b
a f (n) (t)(xi − t)n−1 k[a,b] (t,xi)dt

(n−1)!(b−a)
.

After some rearrangement we get our required result. �

The following theorem is the integral version of Theorem 5.78.

Theorem 5.79 Let n ∈ N and f : [a,b] → R be such that f (n−1) is absolutely continuous
on [a,b] and let k[a,b] (t,x) be the same as defined in (5.202). Let g : [, ] → [a,b] and
p : [, ] → R be integrable functions such that

∫ 
 p(x)dx = 0. Then we have

∫ 


p(x) f (g(x))dx =

n−1


k=1

n− k
k!(b−a)

×
(

f (k−1) (b)
∫ 


p(x) (g(x)−b)k dx− f (k−1) (a)

∫ 


p(x)(g(x)−a)k dx

)

+
1

(n−1)!(b−a)

∫ b

a
f (n) (t)

( ∫ 
 p(x)(g(x)− t)n−1 k[a,b] (t,g(x))dx

)
dt.

Proof. Putting x → g(x) in (5.201), multiplying it by p(x) and integrating with respect
on x, we get an identity from which after using the Fubini theorem, we obtain the desired
identity. �

Let us now introduce some notations which will be used in rest of the paper:

M
[a,b]
1 (m,x,p,t) =

m


i=1

pi (xi − t)n−1 k[a,b] (t,xi) , (5.204)

M
[a,b]
2 ([, ],g, p,t) =

∫ 


p(x) (g(x)− t)n−1 k[a,b] (t,g(x))dx, (5.205)

B[a,b]
1 (m,x,p, f ) =

m


i=1

pi f (xi)−
n−1


k=1

n− k
k!(b−a)

×
(

f (k−1) (b)
m


i=1

pi (xi−b)k − f (k−1) (a)
m


i=1

pi (xi −a)k
)

, (5.206)

B[a,b]
2 ([, ],g, p, f ) =

∫ 


p(x) f (g(x))dx−

n−1


k=1

n− k
k!(b−a)

×
(

f (k−1) (b)
∫ 


p(x) (g(x)−b)k dx− f (k−1) (a)

∫ 


p(x) (g(x)−a)k dx

)
.



5.5 LINEAR INEQUALITIES AND THE FINK IDENTITY 201

Theorem 5.80 Let all the assumptions of Theorem 5.78 be satisfied and let

M
[a,b]
1 (m,x,p,t) ≥ 0, for all t ∈ [a,b]. (5.207)

If f is n-convex, then we have

B[a,b]
1 (m,x,p, f ) ≥ 0. (5.208)

If opposite inequality holds in (5.207), then (5.208) holds in the reverse direction.

Proof. Since f (n−1) is absolutely continuous on [a,b], f (n) exists almost everywhere.
As f is n-convex, by definition of n-convex functions we have f (n) (x)≥ 0 for all x ∈ [a,b].
Now by using f (n) ≥ 0 and (5.207) in (5.203), we have (5.208). �

A consequence of the previous theorem is the following:

Theorem 5.81 Suppose all the assumptions from Theorem 5.78 hold. Additionally, let
j ∈ N, 2≤ j ≤ n and let x = (x1, . . . ,xm) ∈ [a,b]m, p = (p1, . . . , pm) ∈ R

m satisfy (5.2) and
(5.3) with n replaced by j. If f is n-convex and n− j is even, then

m


i=1

pi f (xi) ≥
n−1


k= j

n− k
k!(b−a)

(
f (k−1) (b)

(
m


i=1

pi (xi −b)k
)

− f (k−1) (a)

(
m


i=1

pi (xi−a)k
))

. (5.209)

Proof. Let t ∈ [a,b] be fixed. For j ≤ n−2 we get

d j

dx j (x− t)n−1 = (n−1)(n−2) · · ·(n− j)(x− t)n− j−1. (5.210)

Therefore, (5.210) for a ≤ t ≤ x ≤ b yields

(t−a)
d j

dx j (x− t)n−1 ≥ 0, (5.211)

while for a ≤ x < t ≤ b we have

(−1)n− j(t −b)
d j

dx j (x− t)n−1 ≥ 0. (5.212)

It is clear that x �→ d j

dx j (x− t)n−1k[a,b](t,x) is continuous for j ≤ n− 2. Hence, if j ≤
n− 2 and n − j is even, from (5.211) and (5.212) we can conclude that the function
x �→ (x− t)n−1k[a,b](t,x) is j-convex. Moreover, the conclusion extends to the case j = n,

i. e. the mapping x �→ (x− t)n−1k[a,b](t,x) is n-convex, since the mapping x �→ dn−2

dxn−2 (x−
t)n−1k[a,b](t,x) is 2-convex.

Using Theorem 5.1 for j-convex function x �→ (x− t)n−1k[a,b](t,x) with assumptions
(5.2) and (5.3) where n is replaced with j, we get m

i=1 pi(xi− t)n−1k[a,b](t,x)≥ 0. It means
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that (5.207) is satisfied and by Theorem 5.80 inequality (5.208) holds. Moreover, due to
assumption (5.2), m

i=1 piP(xi) = 0 for every polynomial P of degree ≤ j− 1, so the first
j−2 terms in the inner sum in (5.206) vanish, i.e. we get inequality (5.209). �

When j = n in (5.209), the notation means that the inner sum is void, i. e. n−1
k=n · · ·= 0.

In particular, inequality (5.209) with j = n is inequality (5.1).

Corollary 5.16 Let all the assumptions of Theorem 5.78 be satisfied and let the function
f : [a,b]→ R be n-convex for even n. Let m-tuples x = (x1, . . . ,xm), p = (p1, . . . , pm) ∈ R

m

satisfy the conditions

m


k=1

pk = 0,
m


k=1

pk|xk − xi| ≥ 0 for i ∈ {1, . . . ,m}.

Then (5.208) holds.
Furthermore, if f (k−1) (a) ≤ 0 and (−1)k f (k−1) (b) ≥ 0, for k ∈ {2,3, . . . ,n−1}, then

m


i=1

pi f (xi) ≥ 0. (5.213)

Proof. Inequality (5.208) holds by Theorem 5.81 applied for j = 2.

Moreover, the functions x �→ (x−a)k and x �→ (−1)k (x−b)k are convex, so Remark
5.1 yields

m


i=1

pi (xi −a)k ≥ 0, (5.214)

and

(−1)k
m


i=1

pi (xi −b)k ≥ 0. (5.215)

Therefore, if f (k−1) (a) ≤ 0 and (−1)k f (k−1) (b) ≥ 0, then (5.214) and (5.215) together
with (5.206) yield inequality (5.213). �

Corollary 5.17 Suppose all the assumptions from Theorem 5.78 hold and let the function
f : [a,b]→ R be n-convex. Additionally, let j ∈ N, 2 ≤ j ≤ n, let x = (x1, . . . ,xm) ∈ [a,b]m,
p = (p1, . . . , pm) ∈ R

m satisfy (5.2) and (5.3) with n replaced by j and denote

H(x) =
n−1


k= j

n− k
k!(b−a)

(
f (k−1) (b)(x−b)k − f (k−1) (a)(x−a)k

)
. (5.216)

If H is j-convex on [a,b] and n− j is even, then

m


i=1

pi f (xi) ≥ 0.

Proof. Applying Theorem 5.1 we conclude that m
i=1 piH(xi)≥ 0, so the right-hand side of

inequality (5.209) is nonnegative and we get desired result. �
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Remark 5.18 For example, since the functions x �→ (x− a)k and x �→ (−1)k− j(x− b)k

are j-convex on [a,b], the function H given by (5.216) is j-convex if f (k−1)(a) ≤ 0 and
(−1)k−1− j f (k−1)(b) ≥ 0 for k ∈ { j, . . . ,n−1}.

As we already mentioned, the inequality in Theorem 5.81 and Corollary 5.17 with j = n
is the same as inequality (5.1) from Popoviciu’s Proposition 5.1. Of course, in the proof
of Theorem 5.81 we have used Proposition 5.1 to prove that assumption (5.207) holds, so,
due to circularity, we didn’t obtain another proof of Popoviciu’s result. But, it is possible,
as we will show in the next lemma, to prove directly that conditions (5.2) and (5.3) imply
(5.207), i. e. it is possible to prove Theorem 5.81 with j = n independently of Proposition
5.1 and, thus, provide a new proof of Popoviciu’s result.

Lemma 5.5 Let n ≥ 2 and let m-tuples x ∈ [a,b]m and p ∈ R
m satisfy (5.2) and (5.3).

Then (5.207) holds.

Proof. Let t ∈ [a,b] be fixed. Notice that

[a,b]
1 (m,x,p,t) =

m


i=1

pit(xi),

where t is the function

t(x) = (x− t)n−1k[a,b](t,x) = (t−b)(x− t)n−1 +(b−a)(x− t)n−1
+ .

As in the proof of Theorem 5.81 we conclude that (5.2) implies m
i=1 piP(xi) = 0 for every

polynomial P of degree ≤ n−1. In particular, for P(x) = (x− t)n−1 we have m
i=1 pi(xi −

t)n−1 = 0. Therefore,

m


i=1

pit(xi) = (b−a)
m


i=1

pi(xi − t)n−1
+ ≥ 0,

where the last inequalities holds due to (5.3). Since the previous inequality holds for every
t ∈ [a,b], we conclude that (5.207) holds. �

Lemma 5.5 together with Theorem 5.80 gives the “if” part of Popoviciu’s Proposition
5.1. On the other hand, the “only if” part is straightforward: since the functions e j(x) =
x j are both n-convex and n-concave for j = 0,1, . . . ,n− 1, inequality (5.1) yields that
m

i=1 piek(xi) is both ≥ 0 and ≤ 0, so (5.2) holds. Similarly, the function x �→ (x− t)n−1
+ is

n-convex and applying inequality (5.1) yields (5.3).

In the remainder of the section we will state integral versions of the previous results,
the proofs of which are analogous to the discrete case.

Theorem 5.82 Let all the assumptions of Theorem 5.79 be satisfied and

M
[a,b]
2 ([, ],g, p,t) ≥ 0, for all t ∈ [a,b]. (5.217)

If f is n-convex, then we have

B[a,b]
2 ([, ],g, p, f ) ≥ 0. (5.218)

If opposite inequality holds in (5.217), then (5.218) holds in the reverse direction.
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Proof. The idea of the proof is the same as that of Theorem 5.80. �

A result analogous to Corollary 5.16 can be stated for integrals.

Theorem 5.83 Suppose all the assumptions from Theorem 5.79 hold. Additionally, let
j ∈ N, 2 ≤ j ≤ n and let p : [, ] → R and g : [, ] → [a,b] satisfy (5.5) with n replaced
by j. If f is n-convex and n− j is even, then

∫ 


p(x) f (g(x))dx

≥ 1
b−a

[
n−1


k= j

n− k
k!

f (k−1) (b)
∫ 


p(x) (g(x)−b)k+2 dx

−
n−1


k= j

n− k
k!

f (k−1) (a)
∫ 


p(x)(g(x)−a)k dx

]
.

Corollary 5.18 Let j,n, f , p and g be as in Theorem 5.83 and let H be given by (5.216).
If H is j-convex, n− j is even and f is n-convex, then

∫ 


p(x) f (g(x))dx ≥ 0.

5.5.2 Inequalities via the Fink Identity and the Green Function

In this section we will obtain another identity and the corresponding linear inequality by
using the Green function (5.10) and applying again the Fink identity.

Theorem 5.84 Let n ∈ N, n ≥ 3, and f : [a,b] → R be such that f (n−1) is absolutely
continuous. Let xi,yi ∈ [a,b], pi ∈ R for i ∈ {1, . . . ,m} be such that m

i=1 pi = 0 and
m

i=1 pixi = 0 and let k[a,b] be as defined in (5.202). If G is the Green function, then

m


i=1

pi f (xi) =
n−3


k=0

n− k−2
k!(b−a)

∫ b

a

(
m


i=1

piG(xi,s)

)
(5.219)

×
(

f (k+1) (b)(s−b)k − f (k+1) (a)(s−a)k
)

ds+
1

(n−3)!(b−a)

×
∫ b

a
f (n) (t)

(∫ b

a

m


i=1

piG(xi,s) (s− t)n−3 k[a,b] (t,s)ds

)
dt.

Proof. Putting x = xi in (5.11), multiplying it with pi, adding all the identities and
using the properties m

i=1 pi = 0 and m
i=1 pixi = 0, we get

m


i=1

pi f (xi) =
∫ b

a

(
m


i=1

piG(xi,s)

)
f ′′ (s)ds. (5.220)
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Applying the Fink identity with f → f ′′ and n → n−2, it is easy to see that

f ′′ (x) =
n−3


k=0

n− k−2
k!

f (k+1) (b)(x−b)k − f (k+1) (a)(x−a)k

b−a

+
1

(n−3)!(b−a)

∫ b

a
(x− t)n−3 k[a,b] (t,x) f (n) (t)dt, (5.221)

and by using (5.221) in (5.220), we have

m


i=1

pi f (xi) =
∫ b

a

(
m


i=1

piG(xi,s)

)

×
n−3


k=0

n− k−2
k!

f (k+1) (b)(s−b)k − f (k+1) (a)(s−a)k

b−a
ds

+
1

(n−3)!(b−a)

∫ b

a

m


i=1

piG(xi,s)
(∫ b

a
(s− t)n−3 k[a,b] (t,s) f (n) (t)dt

)
ds.

Now by interchanging the integral and summation in the second term and by applying
Fubini’s theorem in the last term, we have (5.219). �

The following theorem is the integral version of Theorem 5.84.

Theorem 5.85 Let n ∈ N, n ≥ 3, and let f : [a,b] → R be such that f (n−1) is absolutely
continuous on [a,b], let p : [, ] → R and g : [, ] → [a,b] be integrable functions such
that

∫ 
 p(x)dx = 0 and

∫ 
 p(x)g(x)dx = 0. Let k[a,b] be as defined in (5.202). If G is the

Green function, then

∫ 


p(x) f (g(x))dx =

n−3


k=0

n− k−2
k!(b−a)

∫ b

a

(∫ 


p(x)G(g(x) ,s)dx

)
(

f (k+1) (b)(s−b)k − f (k+1) (a)(s−a)k
)

ds+
1

(n−3)!(b−a)

×
∫ b

a
f (n) (t)

(∫ b

a

(∫ 


p(x)G(g(x) ,s)dx

)
(s− t)n−3 k[a,b] (t,s)ds

)
dt.

Proof. Since proof is similar to the proof of the previous theorem we omit the details. �

Again we introduce some notations here which will be used in rest of the section:

M
[a,b]
3 (m,x,p,t) =

∫ b

a

m


i=1

piG(xi,s) (s− t)n−3 k[a,b] (t,s)ds, (5.222)

M
[a,b]
4 ([, ],g, p,t) =

∫ b

a

(∫ 


p(x)G(g(x) ,s)dx

)
(s− t)n−3 k[a,b] (t,s)ds.

B[a,b]
3 (m,x,p, f ) =

m


i=1

pi f (xi)−
n−3


k=0

n− k−2
k!(b−a)

∫ b

a

m


i=1

piG(xi,s)
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×
(

f (k+1) (b)(s−b)k − f (k+1) (a)(s−a)k
)

ds

B[a,b]
4 ([, ],g, p, f ) =

∫ 


p(x) f (g(x))dx

−
n−3


k=0

n− k−2
k!(b−a)

∫ b

a

(∫ 


p(x)G(g(x) ,s)dx

)

×
(

f (k+1) (b)(s−b)k − f (k+1) (a)(s−a)k
)

ds.

The following theorem is our second main result of this section:

Theorem 5.86 Let all the assumptions of Theorem 5.84 be satisfied and let

M
[a,b]
3 (m,x,p,t) ≥ 0 for all t ∈ [a,b]. (5.223)

If f is n-convex, then we have

B[a,b]
3 (m,x,p, f ) ≥ 0. (5.224)

If opposite inequality holds in (5.223), then (5.224) holds in the reverse direction.

Proof. The proof is done in a similar manner as in Theorem 5.80. �

Corollary 5.19 Let all the assumptions of Theorem 5.84 be satisfied. In addition, let n
be even and

m


i=1

pi(xi − xk)+ ≥ 0 for k ∈ {1, . . . ,m}.

If the function f : [a,b]→ R is n-convex, then inequality (5.224) is satisfied, i.e.

m


i=1

pi f (xi) ≥
n−3


k=0

n− k−2
k!(b−a)

∫ b

a

m


i=1

piG(xi,s) (5.225)

×
(

f (k+1) (b)(s−b)k − f (k+1) (a)(s−a)k
)

ds.

Furthermore, if f (k+1) (a)≤ 0 and (−1)k f (k+1) (b)≥ 0 for k = 0,1, . . . ,n−3, thenm
i=1 pi f (xi)≥

0.

Proof. Since x �→ G(x,s) is a convex function, applying Theorem 5.1 we get

m


i=1

piG(xi,s) ≥ 0. (5.226)

The assumptions of the corollary for even n imply

(s− t)n−3k[a,b](t,s) ≥ 0

for all s, t ∈ [a,b]. Therefore,
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∫ t

a

m


i=1

piG(xi,s) (s− t)n−3 k[a,b] (t,s)ds ≥ 0 (5.227)

and applying Theorem 5.86 when f is n-convex gives inequality (5.225).
Moreover, if f (k+1) (a) ≤ 0 and (−1)k f (k+1) (b) ≥ 0, then

f (k+1) (b)(s−b)k − f (k+1) (a)(s−a)k ≥ 0, (5.228)

so from inequalities (5.225), (5.226) and (5.228) we obtain m
i=1 pi f (xi) ≥ 0. �

An integral version of our second main result states that:

Theorem 5.87 Let all the assumptions of Theorem 5.85 be satisfied and let

M
[a,b]
4 ([, ],g, p,t) ≥ 0 for all t ∈ [a,b]. (5.229)

If f is n-convex, then we have

B[a,b]
4 ([, ],g, p, f ) ≥ 0. (5.230)

If opposite inequality holds in (5.229), then (5.230) holds in the reverse direction.

Proof. The idea of the proof is the same as that of the proof of Theorem 5.80. �

Corollary 5.20 Let all the assumptions of Theorem 5.85 be satisfied. In addition, let n
be even and ∫ 


p(x)(g(x)− t)n−1

+ dx ≥ 0, for every t ∈ [a,b].

If the function f : [a,b] → R is n-convex, then

∫ 


p(x) f (g(x))dx ≥

n−3


k=0

n− k−2
k!(b−a)

∫ b

a

(∫ 


p(x)G(g(x) ,s)dx

)

×
(

f (k+1) (b)(s−b)k − f (k+1) (a)(s−a)k
)

ds. (5.231)

Furthermore if f (k+1) (a) ≤ 0 and (−1)k f (k+1) (b) ≥ 0 for k = 0, . . . ,n−3, then the right-
hand side of (5.231) is nonnegative.

Proof. The proof is analogous to the proof of Corollary 5.19 but instead of Theorem
5.86, we apply Theorem 5.87. �
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5.5.3 Bounds for the Remainders and Functionals

In the present section we give several estimations related to the functionals B[·,·]
k (·, ·, ·, f ),

for k ∈ {1,2,3,4}. For the sake of brevity, in the present and the next section we use the

notation Bk( f ) := B[·,·]
k (·, ·, ·, f ) and Mk(t) := M

[·,·]
k (·, ·, ·,t) for k ∈ {1,2,3,4}. By using

the well-known Hölder inequality and bound for the Čebyšev functional T ( f ,h) given in
Proposition 5.2 we are going to obtain a formula for Bk and estimate the remainder which
occurs in this formula.

Theorem 5.88 Let n ∈ N and let f : [a,b] → R be such that f (n−1) is an absolutely con-
tinuous function and

 ≤ f (n)(x) ≤  for x ∈ [a,b].

(i) Let k ∈ {1,2} and let m
i=1 pi = 0 (for k = 1) or

∫ 
 p(x)dx = 0 (for k = 2). Then the

remainder Rk
n( f ;a,b) given by the following identity

Bk( f ) =

[
f (n−1)(b)− f (n−1)(a)

]
(n−1)!(b−a)2

∫ b

a
Mk(t)dt +Rk

n( f ;a,b), (5.232)

satisfies the estimation

|Rk
n( f ;a,b)| ≤ b−a

2(n−1)!
(− )

√
T (Mk,Mk). (5.233)

(ii) Let k ∈ {3,4} and n ≥ 3. Let the assumptions stated in Theorem 5.84 for p and x (for
k = 3) and in Theorem 5.85 for p and g (for k = 4) hold. Then (5.232) and (5.233) hold
with (n−3)! instead of (n−1)! in the denominator of Bk( f ) and in the bound of Rk

n.

Proof. Fix k∈ {1,2}. Using the definition of Bk and result from the previous subsection
we have

Bk( f ) =
1

(n−1)!(b−a)

∫ b

a
f (n)(t)Mk(t)dt

=
1

(n−1)!(b−a)2

∫ b

a
f (n)(t)dt

∫ b

a
Mk(t)dt +Rk

n( f ;a,b)

=

[
f (n−1)(b)− f (n−1)(a)

]
(n−1)!(b−a)2

∫ b

a
Mk(t)dt +Rk

n( f ;a,b),

where

Rk
n( f ;a,b) =

1
(n−1)!(b−a)

(∫ b

a
f (n)(t)Mk(t)dt− 1

b−a

∫ b

a
f (n)(s)ds

∫ b

a
Mk(t)dt

)
.

If we apply Proposition 5.2 for f → Mk and h → f (n), then we obtain

|Rk
n( f ;a,b)| = 1

(n−1)!
|T (Mk, f (n))| ≤ b−a

2(n−1)!
(− )

√
T (Mk,Mk).



5.5 LINEAR INEQUALITIES AND THE FINK IDENTITY 209

The proof for k ∈ {3,4} is done in a similar manner. �

Using the same method as we used in the previous theorem and other type of bounds
for the Čebyšev functional given in Theorems 5.12 and 5.13 we are able to give another
estimation for the remainder. The following theorem gives us some Ostrowski-type in-
equalities.

Theorem 5.89 Let f (n) ∈ Lq [a,b] for some n ∈ N and let (q,r) be a pair of conjugate
exponents, that is, 1 ≤ q,r ≤ , 1

q + 1
r = 1.

(i) Let k ∈ {1,2} and let m
i=1 pi = 0 (for k = 1) or

∫ 
 p(x)dx = 0 (for k = 2). Then

|Bk( f )| ≤ 1
(n−1)!

‖ f (n)‖q‖Mk‖r. (5.234)

The constant on the right-hand side of (5.234) is sharp for 1 < q≤ and the best possible
for q = 1.
(ii) Let k ∈ {3,4} and n ≥ 3. For k = 3 we assume that x and p satisfy the assumptions of
Theorem 5.84 and for k = 4 we assume that p and g satisfy the assumptions of Theorem
5.85. Then the statement holds with (n−3)! instead of (n−1)! in the denominator of the
bound for Bk.

Proof. The proof is similar to the proof of Theorem 5.18. �

5.5.4 Mean Value Theorems

In this subsection we consider mean value theorems involving Bk. Throughout the section
we use the agreement that if k ∈ {1,2}, then n ∈ N; if k ∈ {3,4}, then n ≥ 3. Furthermore,
for k = 1 we assume that m

i=1 pi = 0, for k = 2 we assume that
∫ 
 p(x)dx = 0, for k = 3

we assume that x and p satisfy the assumptions of Theorem 5.84 and for k = 4 we assume
that x and p satisfy the assumptions of Theorem 5.85.

Theorem 5.90 Let k ∈ {1,2,3,4} and let us consider Bk as a functional on Cn([a,b]).
If the corresponding conditions from the set {(5.204),(5.90),(5.222), (5.229)} related to
the fixed k hold, then there exists k ∈ [a,b] such that

Bk( f ) = f (n)(k)Bk( f0),

where f0(x) =
xn

n!
.

Proof. The proof is similar to the proof of Theorem 5.34. �

Applying Theorem 5.90 on function = Bk(h) f −Bk( f )h, we get the following result.

Theorem 5.91 Let k ∈ {1,2,3,4} and let us consider Bk as a functional on Cn([a,b]).
If the corresponding conditions from the set {(5.204),(5.90),(5.222), (5.229)} related to
the fixed k hold, then there exists k ∈ [a,b] such that

Bk( f )
Bk(h)

=
f (n)(k)
h(n)(k)
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assuming that both the denominators are non-zero.

Remark 5.19 If the inverse of f (n)

h(n) exists, then from the above mean value theorems we
can give generalized means

k =

(
f (n)

h(n)

)−1(
Bk( f )
Bk(h)

)
. (5.235)

Using the same method as in the subsection 5.1.6, we can construct new families of
exponentially convex functions and Cauchy type means. Also, using the idea described in
the subsection 5.1.2 we can obtain results for n-convex functions at point.

5.6 Linear Inequalities and the Abel-Gontscharoff
Interpolation Polynomial

The Abel-Gontscharoff interpolation problem in the real case was introduced in 1935 by
Whittaker [100] and subsequently by Gontscharoff [20] and Davis [12].

Let us recall results from [1] for representation of a function f via the Abel-Gontscharoff
interpolating polynomial for two points with integral remainder.

Theorem 5.92 Let n,k ∈ N, n ≥ 2, 0 ≤ k ≤ n−1 and f ∈Cn([a,b]). Then

f (t) = Qn−1 ( f ,t)+R( f ,t) , (5.236)

where Qn−1 is the Abel-Gontscharoff interpolating polynomial for two-points of degree
n−1, i.e.

Qn−1 ( f ,t) =
k


i=0

(t−a)i

i!
f (i)(a)

+
n−k−2


j=0

(
j


i=0

(t−a)k+1+i (a−b) j−i

(k+1+ i)!( j− i)!

)
f (k+1+ j)(b)

and the remainder is given by

R( f ,t) =
∫ b

a
Gn(t,s) f (n)(s)ds,

where Gn(t,s) is the Green function given by

Gn(t,s) =
1

(n−1)!

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k


i=0

(
n−1

i

)
(t−a)i(a− s)n−i−1, a ≤ s ≤ t

−
n−1


i=k+1

(
n−1

i

)
(t−a)i(a− s)n−i−1, t ≤ s ≤ b.

(5.237)
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Further, for a ≤ s,t ≤ b the following inequalities hold

(−1)n−k−1  iGn(t,s)
 ti

≥ 0, 0 ≤ i ≤ k, (5.238)

(−1)n−i  iGn(t,s)
 ti

≥ 0, k+1 ≤ i ≤ n−1. (5.239)

5.6.1 Inequalities Obtained via the Abel-Gontscharoff
Interpolating Polynomials

We start this section with identities for the sum  pr f (xr) and the integral
∫

p(t) f (x(t))dt
using the Abel-Gontscharoff interpolating polynomial for two points. These results are
given in paper [33].

Theorem 5.93 Let n,k ∈ N, n ≥ 2, 0 ≤ k ≤ n− 1, and let x = (x1, . . . ,xm) ∈ [a,b]m,
p = (p1, . . . , pm)∈R

m be m-tuples. Let f ∈Cn([a,b]) and Gn be the Green function defined
as in (5.237). Then

m


r=1

pr f (xr) = 1( f )+
∫ b

a

(
m


r=1

prGn (xr,s)

)
f (n)(s)ds, (5.240)

where

1( f ) =
k


i=0

f (i)(a)
i!

m


r=1

pr (xr −a)i (5.241)

+
n−k−2


j=0

j


i=0

(
m


r=1

pr(xr −a)k+1+i

)
(−1) j−i (b−a) j−i

(k+1+ i)!( j− i)!
f (k+1+ j)(b).

Proof. Putting t = xr in (5.236), multiplying it with pr, r = 1,2, . . . ,m, and adding all
the identities we get (5.240). �

Similarly, we get an integral version of the above theorem.

Theorem 5.94 Let n,k ∈ N, n ≥ 2, 0 ≤ k ≤ n−1, and x : [, ] → [a,b], p : [, ] → R

be continuous functions. Let f ∈ Cn([a,b]) and Gn be the Green function defined as in
(5.237). Then∫ 


p(t) f (x(t))dt = 2( f )+

∫ b

a

(∫ 


p(t)Gn (x(t),s)dt

)
f (n)(s)ds, (5.242)

where

2( f ) =
k


i=0

f (i)(a)
i!

∫ 


p(t)(x(t)−a)i dt (5.243)

+
n−k−2


j=0

j


i=0

(∫ 


p(t)(x(t)−a)k+1+i dt

)
(−1) j−i (b−a) j−i

(k+1+ i)!( j− i)!
f (k+1+ j)(b).
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If x and p satisfy additional conditions, then we get a generalization of a Popoviciu
type inequality for n-convex functions, i.e. we give a lower bound for the sum  pr f (xr)
which depends only on the nodes x1, . . . ,xm, the weights p1, . . . , pm and values of higher
derivatives of a function f at points a and b.

Theorem 5.95 Let n,k ∈ N, n ≥ 2, 0 ≤ k ≤ n−1, x = (x1, . . . ,xm) and p = (p1, . . . , pm)
be m-tuples such that xr ∈ [a,b] and pr ∈ R (r ∈ {1, . . . ,m}) and let Gn be the Green
function defined as in (5.237).

If for all s ∈ [a,b]
m


r=1

prGn (xr,s) ≥ 0, (5.244)

then for every n-convex function f : [a,b] → R,

m


r=1

pr f (xr) ≥ 1( f ), (5.245)

where 1( f ) is given in (5.241).
If the reverse inequality in (5.244) holds, then also the reverse inequality in (5.245)

holds.

Proof. Since the function f is n-convex, therefore without loss of generality we can
assume that f is n-times differentiable and f (n)(x) ≥ 0, for all x ∈ [a,b]. Hence we apply
Theorem 5.93 to get (5.245). �

Integral version of the above theorem is stated as:

Theorem 5.96 Let n,k ∈ N, n ≥ 2, 0 ≤ k ≤ n−1, and x : [, ] → [a,b], p : [, ] → R

be continuous functions and let Gn be the Green function defined as in (5.237).
If for all s ∈ [a,b] ∫ 


p(t)Gn (x(t),s)dt ≥ 0, (5.246)

then for every n-convex function f : [a,b] → R

∫ 


p(t) f (x(t))dt ≥ 2( f ), (5.247)

where 2( f ) is defined in (5.243).
If the reverse inequality in (5.246) holds, then also the reverse inequality in (5.247)

holds.

In some cases the assumption m
r=1 prGn (xr,s) ≥ 0, s ∈ [a,b] can be replaced with

more simpler condition in which we recognize assumptions from Popoviciu’s theorem
about positivity of sum  pr f (xr) for a convex function f . Namely we have the following
statement.
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Theorem 5.97 Let n,k ∈ N, n ≥ 2, 1 ≤ k ≤ n− 1, x ∈ [a,b]m p ∈ R
m be m-tuples such

that
m


r=1

pr = 0,
m


r=1

pr|xr − xs| ≥ 0, for s = 1,2, . . . ,m

and let Gn be the Green function defined as in (5.237).

(i) If k is odd and n is even or k is even and n is odd, then for every n-convex function
f : [a,b]→ R, it holds

m


r=1

pr f (xr) ≥ 1( f ), (5.248)

where 1( f ) is given in (5.241).
Moreover, if f (i)(a) ≥ 0 for i = 2, . . . ,k and (−1) j−i f (k+1+ j)(b) ≥ 0 for i ∈ {0, . . . , j}

and j ∈ {0, . . . ,n− k−2}, then
m


r=1

pr f (xr) ≥ 0.

(ii) If k and n are both even or odd, then for every n-convex function f : [a,b]→ R, the
reverse inequality in (5.248) holds.

Moreover, if f (i)(a) ≤ 0 for i = 0, . . . ,k and (−1) j−i f (k+1+ j)(b) ≤ 0 for i ∈ {0, . . . , j}
and j ∈ {0, . . . ,n− k−2}, then

m


r=1

pr f (xr) ≤ 0.

Proof. (i) Let us consider properties (5.238) and (5.239) for i = 2. If k is odd and n is

even, then for k = 1 we get (−1)n−2  2Gn(t,s)
 t2

≥ 0 from (5.239), i.e.
 2Gn(t,s)

 t2
≥ 0, i.e.

Gn is convex. For k > 1, from (5.238) we get the same inequality. If k is even and n is odd,
then k ≥ 2 and from (5.238) we get that Gn is convex in the first variable. By Remark 5.1,
applied on the function Gn we get

m


r=1

prGn (xr,s) ≥ 0,

i.e. the assumptions of Theorem 5.95 are fullfilled and inequality (5.248) holds. If further
assumptions on f (i)(a) and f (k+1+ j)(b) are valid, then the right-hand side of (5.248) is
nonnegative.

The case (ii) is proved in a similar manner. �

An integral analogue of the previous theorem is the following theorem.

Theorem 5.98 Let n,k ∈ N, n ≥ 2, 1 ≤ k ≤ n−1, x : [, ] → [a,b] and p : [, ] → R

be continuous functions satisfying

∫ 


p(t) = 0,

∫ 


p(t)x(t) = 0,

and ∫ 


p(t)(x(t)− s)+ ≥ 0 for s ∈ [a,b],
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and let Gn be the Green function defined as in (5.237).
(i) If k is odd and n is even or k is even and n is odd, then for every n-convex function

f : [a,b] → R, then ∫ 


p(t) f (x(t))dt ≥ 2( f ). (5.249)

Moreover, if f (i)(a) ≥ 0 for i = 0, . . . ,k and (−1) j−i f (k+1+ j)(b) ≥ 0 for i ∈ {0, . . . , j}
and j ∈ {0, . . . ,n− k−2}, then

∫ 
 p(t) f (x(t))dt ≥ 0.

(ii) If k and n are both even or odd, then for every n-convex function f : [a,b] → R,
then the reverse inequality holds in (5.249).

Moreover, if f (i)(a) ≤ 0 for i = 0, . . . ,k and (−1) j−i f (k+1+ j)(b) ≤ 0 for i ∈ {0, . . . , j}
and j ∈ {0, . . . ,n− k−2}, then

∫ 
 p(t) f (x(t))dt ≤ 0.

5.6.2 Results Obtained by the Green Function

In this subsection we obtain results using the Green function G, (5.10), together with the
Abel-Gontscharoff polynomials.

We begin the subsection with some identities related to generalizations of a Popoviciu
type inequality.

Theorem 5.99 Let n,k ∈ N, n ≥ 4, 0 ≤ k ≤ n−1, f ∈Cn[, ] and x ∈ [a,b]m, p ∈ R
m.

Also let G and Gn be defined by (5.10) and (5.237) respectively. Then

m


l=1

pl f (xl) = 3( f )++
∫ b

a

∫ b

a

(
m


l=1

plG(xl,s)

)
Gn−2(s,t) f (n)(t)dtds,

where 3( f ) is defined as

3( f ) =
f (b)− f (a)

b−a

m


l=1

plxl +
b f (a)−a f (b)

b−a

m


l=1

pl

+
k


i=0

f (i+2)(a)
i!

∫ b

a

m


l=1

plG(xl,s)(s−a)i ds (5.250)

+
n−k−4


j=0

j


i=0

(−1) j−i (b−a) j−i f (k+3+ j)(b)
(k+1+ i)!( j− i)!

∫ b

a

m


l=1

plG(xl ,s)(s−a)k+1+i ds.

Proof. The proof is similar to the proof of Theorem 5.84 using representation which
follows from Theorem 5.92:

f ′′(s) =
k


i=0

(s−a)i

i!
f (i+2)(a)+

n−k−4


j=0

j


i=0

(s−a)k+1+i (a−b) j−i

(k+1+ i)!( j− i)!
f (k+3+ j)(b)

+
∫ b

a
Gn−2(s,) f (n)()d.

�
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Theorem 5.100 Let n,k ∈ N, n ≥ 4, 0 ≤ k ≤ n− 1, f ∈ Cn[a,b], and let x : [, ] →
[a,b], p : [, ] → R be continuous functions and G, Gn be defined by (5.10) and (5.237)
respectively. Then∫ 


p() f (x())d = 4( f )+

∫ b

a

∫ b

a

∫ 


p()G(x(),s)Gn−2(s, t) f (n)(t)d dt ds,

where

4( f ) =
f (b)− f (a)

b−a

∫ 


p()x()d +

b f (a)−a f (b)
b−a

∫ 


p()d

+
k


i=0

f (i+2)(a)
i!

∫ b

a

∫ 


p()G(x(),s)(s−a)idds (5.251)

+
n−k−4


j=0

j


i=0

(−1) j−i (b−a) j−i f (k+3+ j)(b)
(k+1+ i)!( j− i)!

×

×
∫ b

a

∫ 


p()G(x(),s)(s−a)k+1+i d ds.

Theorem 5.101 Let n,k ∈ N, n ≥ 4, 0 ≤ k ≤ n− 1, p ∈ R
m, x ∈ [a,b]m. Also let G and

Gn be defined by (5.10) and (5.237) respectively.
If f : [a,b]→ R is n-convex, and

∫ b

a

(
m


l=1

plG(xl ,s)

)
Gn−2(s,t)ds ≥ 0, t ∈ [a,b], (5.252)

then

m


l=1

pl f (xl) ≥ 3( f ). (5.253)

If the reverse inequality in (5.252) holds, then also the reverse inequality in (5.253)
holds.

Proof. It follows from n-convexity of a function f and from Theorem 5.99. �

As from (5.238) we have (−1)n−k−3Gn−2(s,t) ≥ 0, therefore for the case when n is
even and k is odd or n is odd and k is even, it is enough to assume that m

l=1 plG(xl ,s) ≥
0,s∈ [, ], instead of the assumption (5.252) in Theorem 5.101. Similarly we can discuss
for the reverse inequality in (5.253).

Integral version of the above theorem can be stated as:

Theorem 5.102 Let n,k ∈ N, n ≥ 4, 0 ≤ k ≤ n− 1, x : [, ] → [a,b], p : [, ] → R

be continuous functions and G, Gn be defined by (5.10) and (5.237) respectively. If f :
[a,b] → R is n-convex, and

∫ b

a

∫ 


p()G(x(),s)Gn−2(s,t)d ds ≥ 0, (5.254)
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then ∫ 


p() f (x())d ≥ 4( f ). (5.255)

If the reverse inequality in (5.254) holds, then also the reverse inequality in (5.255)
holds.

As from (5.238) we have (−1)n−k−3Gn−2(s,t) ≥ 0, therefore for the case when n is
even and k is odd or n is odd and k is even, it is enough to assume that

∫ b
a p()G(x(),s)d ≥

0,s∈ [, ], instead of the assumption (5.254) in Theorem 5.100. Similarly we can discuss
for the reverse inequality in (5.255).

If we deal with the assumptions from Remark 5.1, which are equivalent to the Popovi-
ciu’s conditions for positivity of the sum involving convex function f , then for some com-
binations of n and k we get a result for a n-convex function f . More precisely, we get the
following theorem.

Theorem 5.103 Let n,k ∈ N, n ≥ 4, 0 ≤ k ≤ n− 1. Let G be defined by (5.10) and let
f : [a,b] → R be n-convex. Let x ∈ [a,b]m and p ∈ R satisfy

m


r=1

pr = 0,
m


r=1

pr|xr − xs| ≥ 0, for s = 1,2, . . . ,m.

(i) If n is even and k is odd or n is odd and k is even, then

m


l=1

pl f (xl) ≥
k


i=0

f (i+2)(a)
i!

∫ b

a

m


l=1

plG(xl,s)(s−a)i ds

+
n−k−4


j=0

j


i=0

(−1) j−i (b−a) j−i f (k+3+ j)(b)
(k+1+ i)!( j− i)!

×
∫ b

a

m


l=1

plG(xl ,s)(s−a)k+1+i ds. (5.256)

Moreover if f (i+2)(a)≥ 0 for i = 0, . . . ,k and (−1) j−i f (k+3+ j)(b)≥ 0 for i ∈ {0, . . . , j}
and j ∈ {0, . . . ,n− k−4}, then m

l=1 pl f (xl) ≥ 0.

(ii) If n and k both are even or both are odd, then the reverse inequality holds in
(5.256).

Moreover if f (i+2)(a)≤ 0 for i = 0, . . . ,k and (−1) j−i f (k+3+ j)(b)≤ 0 for i ∈ {0, . . . , j}
and j ∈ {0, . . . ,n− k−4}, then m

l=1 pl f (xl) ≤ 0.

Proof. (i) By using (5.238) we have (−1)n−k−3Gn−2(s,t) ≥ 0, a ≤ s,t ≤ b, therefore
if n is even and k is odd or n is odd and k is even then Gn−2(s,t) ≥ 0. Since G is convex
and Gn−2 is nonnegative, inequality (5.252) holds. Hence by Theorem 5.101 inequality
(5.256) holds. By using the other conditions the nonnegativity of the right-hand side of
(5.256) is obvious.

Similarly we prove (ii). �

The integral version of Theorem 5.103 can be stated as:
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Theorem 5.104 Let n,k ∈ N, n ≥ 4, 0 ≤ k ≤ n−1, x : [, ] → [a,b] and p : [, ] → R

be any continuous functions. Also let G be defined by (5.10). Let f : [a,b] → R a n-convex
and ∫ 


p()d ≥ 0,

∫ 


p()(x()− t)+ d ≥ 0 for t ∈ [a,b], (5.257)

(i) If n is even and k is odd or n is odd and k is even, then

∫ 


p() f (x())d ≥

k


i=0

f (i+2)(a)
i!

∫ b

a

∫ 


p()G(x(),s)(s−a)id ds

+
n−k−4


j=0

j


i=0

(−1) j−i (b−a) j−i f (k+3+ j)(b)
(k+1+ i)!( j− i)!

×
∫ b

a

∫ 


p()G(x(),s)(s−a)k+1+i d ds. (5.258)

Moreover if f (i+2)(a)≥ 0 for i = 0, . . . ,k and (−1) j−i f (k+3+ j)(b)≥ 0 for i∈ {0, . . . , j} and
j ∈ {0, . . . ,n− k− 4}, then the right-hand side of (5.258) is nonnegative, that is integral
version of (5.1) holds.

(ii) If n and k both are even or both are odd, then reverse inequality holds in (5.258).
Moreover if f (i+2)(a)≤ 0 for i = 0, . . . ,k and (−1) j−i f (k+3+ j)(b)≤ 0 for i∈ {0, . . . , j}

and j ∈ {0, . . . ,n− k−4}, then the right-hand side of the reverse inequality in (5.258) is
nonpositive, that is the reverse inequality in the integral version of (5.1) holds.

Using the same method as in the first section of this Chapter, we can state mean value
theorems and results connected with exponentially convexity.





Chapter6
Čebyšev-Popoviciu Type
Inequalities

6.1 Generalized Čebyšev and Ky Fan Identities and
Inequalities

One of the classical, well-known inequalities is the Čebyšev inequality. For more about
this inequality, its history, variants and generalizations we refer to the books [51], [77]
and paper [44]. Here we recall only few facts about it and then we proceed to our main
aim: to give a Popoviciu type inequality for the difference which arises from the Čebyšev
inequality.

The discrete Čebyšev inequality is given as follows ([77, p. 197]).

Theorem 6.1 Let a and b be two real N-tuples monotonic in the same sense and p be a
nonnegative N-tuple. Then the inequality

N


i=1

pi

N


i=1

piaibi−
N


i=1

piai

N


j=1

pibi ≥ 0 (6.1)

holds. If a and b are monotonic in the opposite sense, then the reverse of the inequality in
(6.1) holds. In both cases equality in (6.1) holds if and only if either a1 = a2 = . . . = aN

or b1 = b2 = . . . = bN.

219
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The integral Čebyšev inequality is given as follows ([77, p. 197]).

Theorem 6.2 Let f ,g : [a,b]→R and p : [a,b]→ [0,〉 be integrable functions. If f and
g are monotonic in the same direction, then∫ b

a
p(x)dx

∫ b

a
p(x) f (x)g(x)dx ≥

∫ b

a
p(x) f (x)dx

∫ b

a
p(x)g(x)dx, (6.2)

provided that the integrals exist. If f and g are monotonic in opposite direction, then the
reverse of inequality (6.2) is valid. In both cases, equality holds if and only if eighter f or
g is constant almost everywhere.

A.M. Ostrowski [54] gave the following result related to Čebyšev’s inequality:

Theorem 6.3 Let f ,g ∈ C(1)(I) be two monotonic functions and let p : I → R+ be an
integrable function. Then there exist  ,  ∈ I such that

T ( f ,g, p) = f ′( )g′()T (x−a,x−a, p), (6.3)

where

T ( f ,g, p) =
∫ b

a
p(x)dx

∫ b

a
p(x) f (x)g(x)dx−

∫ b

a
p(x) f (x)dx

∫ b

a
p(x)g(x)dx. (6.4)

A term T ( f ,g, p) defined by (6.4) is called the Čebyshev difference or the Čebyšev
functional. For other generalizations of Theorem 6.3, [64] can be seen. In [67], J. Pečarić
gave the following generalization of Theorem 6.3 by using the functional

C( f , p) =
∫ b

a

∫ b

a
p(x,y) f (y,y)dydx−

∫ b

a

∫ b

a
p(x,y) f (x,y)dydx, (6.5)

where p and f are integrable functions. It is clear that for the particular case when f (x,y) =
f (x)g(y) and p(x,y) = p(x)p(y), thenC( f , p) collapses to T ( f ,g, p). In fact, Theorems 6.4
and 6.7 from [67] are devoted to the functions with continuous second partial derivatives,
while in Theorem 6.5 from the same article we find a result for sequences involving the
second ordered differences.

Theorem 6.4 Let p : I2 → R be an integrable function such that

X(x,x) = X(x,x) ∀x ∈ I

and let either

X(x,y) ≥ 0, a ≤ y ≤ x ≤ b, X(x,y) ≥ 0, a ≤ x ≤ y ≤ b

or its reverse inequalities be valid, where

X(x,y) =
∫ b

x

∫ y

a
p(s,t)dt ds and X(x,y) =

∫ x

a

∫ b

y
p(s,t)dt ds.

If f ∈C2(I2), then there exists ( ,) ∈ I2 such that

C( f , p) = f(1,1)( ,)C ((x−a)(y−a), p), where f(1,1)(x,y) =
 2 f
xy

.
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Proof. Using notation

(x) = −
∫ x

a

(∫ y

a
p(x,t)dt

)
( f1(y,y)+ f2(y,y)− f2(x,y))dy,

 (x) =
∫ b

x

(∫ b

y
p(x,t)dt

)
( f1(y,y)+ f2(y,y)− f2(x,y))dy

we get

∫ b

a
p(x,y)( f (y,y)− f (x,y))dy = (x)+ (x), where f1 =

 f
x

and f2 =
 f
y

.

So, we obtain

C( f , p) =
∫ b

a
(x)dx+

∫ b

a
 (x)dx

= −
∫ b

a

(∫ x

a

(∫ y

a
p(x,t)dt

)
( f1(y,y)+ f2(y,y)− f2(x,y))dy

)
dx

+
∫ b

a

(∫ b

x

(∫ b

y
p(x,t)dt

)
( f1(y,y)+ ( f2(y,y)− f2(x,y))dy

)
dx

= −
∫ b

a

(∫ b

y

(∫ y

a
p(x,t)dt

)
( f1(y,y)+ f2(y,y)− f2(x,y))dx

)
dy

+
∫ b

a

(∫ y

a

(∫ b

y
p(x,t)dt

)
( f1(y,y)+ ( f2(y,y)− f2(x,y))dx

)
dy

= −
∫ b

a

(
−X(y,y) f1(y,y)−

∫ b

y
X(x,y) f(1,1)(x,y)dx

)
dy

+
∫ b

a

(
X(y,y) f1(y,y)+

∫ y

a
X(x,y) f(1,1)(x,y)dx

)
dy.

So,

C( f , p) =
∫ b

a

∫ b

y
X(x,y) f(1,1)(x,y)dxdy+

∫ b

a

∫ y

a
X(x,y) f(1,1)(x,y)dxdy (6.6)

If we put

X̃(x,y) = X(x,y), (x ≤ y) and X̃(x,y) = X(x,y) (x ≥ y)

we have

C( f , p) =
∫ b

a

∫ b

a
X̃(x,y) f(1,1)(x,y)dxdy,

and using the mean value theorem for double integrals there exist  , ∈ I such that

C( f , p) = f(1,1)( ,)
∫ b

a
X̃(x,y)dxdy.
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If instead of f we put the function (x,y) �→ (x−a)(y−a), then

C((x−a)(y−a), p) =
∫ b

a
X̃(x,y)dxdy

and combining the last two equalities we get the statement of the theorem. �

Let us consider a discrete analogue of the differenceC( f , p). If ai j, pi j, (i, j = 2, . . . ,N),
are reals, then we define C(a, p) as following

C(a, p) =
N


i=1

N


j=1

pi ja j j −
N


i=1

N


j=1

pi jai j,

The following theorem gives us necessary and sufficient conditions under whichC(a, p)
is nonnegative. In short, it is Popoviciu type inequality for C(a, p).

Theorem 6.5 The inequality
C(a, p) ≥ 0 (6.7)

holds for each real numbers ai j for i, j ∈ {1, . . . ,N} such that (1,1) ai j ≥ 0 for i, j ∈
{1, . . . ,N−1} if and only if

Xj+1, j = X j, j+1, j ∈ {1, . . . ,N−1}
and

Xi j ≥ 0, i ∈ { j +1, . . . ,n} for j ∈ {1, . . . ,N−1} (6.8)

Xi j ≥ 0, i ∈ {1, . . . , j−1} for j ∈ {2, . . . ,N} (6.9)

hold. If (1,1)ai j ≤ 0 for i, j ∈ {1, . . . ,N −1}, then the reverse inequality in (6.7) is valid,
where

Xi j =
N


r=i

j


s=1

prs and Xi j =
i


r=1

N


s= j

prs.

Proof. The following identity holds

C(a, p) =
N−1


j=1

(
−Xj+1, j1a j j +

N


i= j+2

Xi j(1,1)ai−1, j

)

+
N−1


j=1

(
−X j, j+11a j, j+1 +

j−1


i=1

Xi, j+1(1,1)ai j

)
.

Since Xj+1, j = X j, j+1 for all j we get

C(a, p) =
N−1


j=1

N


i= j+2

Xi j(1,1)ai−1, j +
N−1


j=1

j−1


i=1

Xi, j+1(1,1)ai j.

Using other assumptions of Theorem we get inequality C(a, p) ≥ 0.
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Take ars =−1 if i≤ r≤N and 1≤ s≤ j, and ars = 0 if either 1≤ r≤ i−1 or j+1≤ s≤
N. Then one can verify that (1,1)ars ≥ 0 for 1 ≤ r,s ≤ N − 1, so inequality C(a, p) ≥ 0
holds for this sequence (ars). But this inequality reduces to 0 ≤ Xi j proving inequality
(6.8). Considering the sequence (ars) defined by ars = −1 if 1 ≤ r ≤ i and j ≤ s ≤ N, and
ars = 0 otherwise, inequality C(a, p) ≥ 0 reduces to (6.9). To show remaining conditions
we choose two sequences (ars), (brs) such that for 1 ≤ j ≤ N−1,

C(a, p) = Xj+1, j −X j, j+1,

C(b, p) = X j, j+1−Xj+1, j.

For the first of these, (ars) must satisfies

N


r=1

N


s=1

prs(ass−ars) =
N


r= j+1

j


s=1

prs−
j


r=1

N


s= j+1

prs,

and this requires that

ass−ars =

⎧⎨
⎩

1 if j +1 ≤ r ≤ N,1 ≤ s ≤ j
−1 if 1 ≤ r ≤ j, j +1 ≤ s ≤ N

0 otherwise .
(6.10)

For arbitrary choice of ass (1 ≤ s ≤ N), if one defines ars by (6.10), then (1,1)ars ≥ 0 for
1 ≤ r,s ≤ N − 1. Hence we obtain Xj+1, j ≥ X j, j+1 for 1 ≤ j ≤ N − 1. A similar analysis
using arbitrary bss and

brs =

⎧⎨
⎩

bss +1 if j +1 ≤ r ≤ N,1 ≤ s ≤ j
bss−1 if 1 ≤ r ≤ j, j +1 ≤ s ≤ N

bss otherwise ,

also gives (1,1)brs ≥ 0 for 1 ≤ r,s ≤ N−1 and Xj+1, j ≤ X j, j+1 for 1 ≤ j ≤ N−1. �

In 1952, Fan [17] proposed as a problem the following result (see also [44]):

Theorem 6.6 Let (x,y) �→ w(x,y) be a nonnegative Lebesgue integrable function over
the square {(x,y) : a ≤ x ≤ b and a ≤ y ≤ b}. Suppose that B is a positive constant
such that

∫ b
a w(x,y)dy ≤ B for almost all x ∈ [a,b] and also

∫ b
a w(x,y)dx ≤ B for almost all

y ∈ [a,b]. If two finite-valued functions f and g are both nonnegative and nonincreasing on
[a,b], then the following inequality holds∫ b

a

∫ b

a
w(x,y) f (x)g(y)dxdy ≤ B

∫ b

a
f (x)g(x)dx. (6.11)

For a generalization of Fan’s result, Pečarić in [67] considered the following expression
for integrable functions f , p and q,

K( f , p,q) =
∫ b

a
q(x) f (x,x)dx−

∫ b

a

∫ b

a
p(x,y) f (x,y)dxdy (6.12)

and gave the following result.
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Theorem 6.7 Let p : I2 →R and q : I →R be two integrable functions such that P(x,a) =
Q(x), P(a,y) = Q(y), P(x,y) ≤ Q(max{x,y}), ∀x, y ∈ I,

where Q(x) =
∫ b

x
q(t)dt and P(x,y) =

∫ b

x

∫ b

y
p(s, t)dt ds.

If f : I2 → R has the continuous partial derivatives f1, f2 and f(1,1), then there exists
( ,) ∈ I2 such that

K( f , p,q) = f(1,1)( ,)K ((x−a)(y−a), p,q).

Proof. The following identities hold:∫ b

a
q(x) f (x,x)dx = f (a,a)Q(a)+

∫ b

a
Q(x) f1(x,x)dx+

∫ b

a
Q(x) f2(x)(x,x)dx,

∫ b

a

∫ b

x
Q(y) f(1,1)(x,y)dydx =

∫ b

a

∫ y

a
Q(y) f(1,1)(x,y)dxdy

=
∫ b

a
Q(y) f2(y,y)dy−

∫ b

a
Q(y) f2(a,y)dy,

and ∫ b

a

∫ x

a
Q(x) f(1,1)(x,y)dydx =

∫ b

a
Q(x) f1(x,x)dx−

∫ b

a
Q(x) f1(x,a)dx,

where f1, f2 and f(1,1) are partial derivatives of f , i.e. f1 =  f
x , f2 =  f

y and f(1,1) =  2 f
xy .

Using the above-mentioned identities and the following∫ b

a

∫ b

a
p(x,y) f (x,y) dx dy = f (a,a)P(a,a)+

∫ b

a
P(x,a) f1(x,a)dx

+
∫ b

a
P(a,y) f2(a,y)dx+

∫ b

a

∫ b

a
P(x,y) f(1,1)(x,y)dxdy,

where P(x,y) =
∫ b

x

∫ b

y
p(s,t)dtds we get

K( f , p,q) = f (a,a)(Q(a)−P(a,a))+
∫ b

a
(Q(x)−P(x,a)) f1(x,a)dx

+
∫ b

a
(Q(y)−P(a,y)) f2(a,y)dx

+
∫ b

a

∫ b

a
(Q(max(x,y))−P(x,y)) f(1,1)(x,y)dxdy,

i.e. in our case

K( f , p,q) =
∫ b

a

∫ b

a
(Q(max(x,y))−P(x,y)) f(1,1)(x,y)dxdy
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= f(1,1)( ,)
∫ b

a

∫ b

a
(Q(max(x,y))−P(x,y))dxdy

= f(1,1)( ,)K((x−a)(y−a), p,q).

�

Under the assumptions of Theorem 6.7, we introduce the following notations for sim-
plification of statements of the upcoming theorems:

P(i, j)(x,y) =
∫ b

x

∫ b

y
p(s,t)

(s− x)i

i!
(t− y) j

j!
dtds, (6.13)

P
(i, j)(x,y) =

∫ b

x

∫ b

y
p(s,t)

(s− x)i

i!
(s− y) j

j!
dtds, (6.14)

Q(i, j)(x) =
∫ b

x
q(s)

(s− x)i

i!
(s−a) j

j!
ds, (6.15)

R(x,y) =
∫ b

max{x,y}

∫ b

a
p(s,t)

(s− x)N

N!
(s− y)M

M!
dt ds

−
∫ b

x

∫ b

y
p(s,t)

(s− x)N

N!
(t − y)M

M!
dt ds, (6.16)

R(x,y) =
∫ b

max{x,y}
q(s)

(s− x)N

N!
(s− y)M

M!
ds

−
∫ b

x

∫ b

y
p(s,t)

(s− x)N

N!
(t − y)M

M!
dt ds, (6.17)

f0(x,y) =
(x−a)N+1(y−a)M+1

(N +1)!(M +1)!
. (6.18)

In the following text an absolutely continuity of a function u means an absolutely con-
tinuity in the sense of Charathéodory described in [94].

If u : D → R is absolutely continuous in the sense of Carathéodory, then for every
(x,y) ∈ D it admits the integral representation

u(x,y) = u(a,c)+
∫ x

a
u(1,0)(s,c)ds+

∫ y

c
u(0,1)(a,t)dt +

∫ x

a

∫ y

c
u(1,1)(s,t)dtds, (6.19)

where the partial derivatives in (6.19) exist almost everywhere.
Let f , p : I2 → R and q : I → R be three functions such that p,q are integrable and

f(N,M) exists and is absolutely continuous (in the sense of Carathéodory). The values C
and K are defined as follows:

C( f , p) = C( f , p)−
N


i=0

M


j=0

f(i, j)(a,a)
[
P

(i, j)(a,a)−P(i, j)(a,a)
]

−
M


j=0

∫ b

a
f(N+1, j)(x,a)

[
P

(N, j)(x,a)−P(N, j)(x,a)
]
dx
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−
N


i=0

∫ b

a
f(i,M+1)(a,y)

[
P

(i,M)(a,y)−P(i,M)(a,y)
]
dy, (6.20)

where C is defined in (6.5).

K( f , p,q) = K( f , p,q)−
M


j=0

N


i=0

f(i, j)(a,a)
[
Q(i, j)(a)−P(i, j)(a,a)

]

−
M


j=0

∫ b

a
f(N+1, j)(x,a)

[
Q(N, j)(x)−P(N, j)(x,a)

]
dx

−
N


i=0

∫ b

a
f(i,M+1)(a,y)

[
Q(M,i)(y)−P(i,M)(a,y)

]
dy, (6.21)

where K is defined in (6.12).

6.1.1 Generalized Discrete Čebyšev’s Identity and Inequality

In this section we consider the difference C( f , p) defined as follows:

C( f , p) =
N


i=1

N


j=1

pi j f (xi,yi)−
N


i=1

N


j=1

pi j f (xi,y j).

Our aim is to obtain a Popoviciu type inequality connected with this difference. We will get
an identity for C( f , p) which involves higher ordered differences (t,k) and then we con-
sider necessary conditions for positivity of C( f , p) when f is an (n,m)-convex function.
The following results are given in [24].

Theorem 6.8 Let (xi,y j) ∈ I2 for i, j ∈ {1, . . . ,N} be mutually distinct points and let
f : I2 → R be a function and pi j ∈ R for i, j ∈ {1, . . . ,N}. Then,

C( f , p)

=
m−1


k=0

n−1


t=0

(t,k) f (x1,y1)

[
N


s=max{t,k}+1

N


r=1

psr(xs − x1)(t)(ys − y1)(k)

−
N


s=t+1

N


r=k+1

psr(xs − x1)(t)(yr − y1)(k)
]

+
m−1


k=0

N


t=n+1

(n,k) f (xt−n,y1)(xt − xt−n)×

×
[

N


s=max{t,k+1}

N


r=1

psr(xs− xt−n+1)(n−1)(ys − y1)(k)

−
N


s=t

N


r=k+1

psr(xs− xt−n+1)(n−1)(yr − y1)(k)
]
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+
N


k=m+1

n−1


t=0

(t,m) f (x1,yk−m)(yk − yk−m)×

×
[

N


s=max{t+1,k}

N


r=1

psr(xs − x1)(t)(ys− yk−m+1)(m−1)

−
N


s=t+1

N


r=k

psr(xs − x1)(t)(yr − yk−m+1)(m−1)

]

+
N


k=m+1

N


t=n+1

(n,m) f (xt−n,yk−m)(xt − xt−n)(yk − yk−m)×

×
[

N


s=max{t,k}

N


r=1

psr(xs − xt−n+1)(n−1)(ys − yk−m+1)(m−1)

−
N


s=t

N


r=k

psr(xs− xt−n+1)(n−1)(yr − yk−m+1)(m−1)

]
(6.22)

holds, where a(k) = a(a−1) . . .(a− k+1) and a(0) = 1.

Proof. We start the proof by considering the expression

N


i=1

N


j=1

p̃i j f (xi,yi)

where p̃i j is defined as

p̃i j =
{
N

r=1 pir , i = j,
0 , i �= j.

We get

N


i=1

N


j=1

p̃i j f (xi,yi) =
N


i=1

N


j=1

pi j f (xi,yi)

=
m−1


k=0

n−1


t=0

(t,k) f (x1,y1)
N


s=max{t+1,k+1}

N


r=1

psr(xs − x1)(t)(ys − y1)(k)

+
m−1


k=0

N


t=n+1

(n,k) f (xt−n,y1)(xt − xt−n)×

×
N


s=max{t,k+1}

N


r=1

psr(xs− xt−n+1)(n−1)(ys − y1)(k)

+
N


k=m+1

n−1


t=0

(t,m) f (x1,yk−m)(yk − yk−m)×

×
N


s=max{t+1,k}

N


r=1

psr(xs− x1)(t)(ys− yk−m+1)(m−1)
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+
N


k=m+1

N


t=n+1

(n,m) f (xt−n,yk−m)(xt − xt−n)(yk − yk−m)×

×
N


s=max{t,k}

N


r=1

psr(xs − xt−n+1)(n−1)(ys − yk−m+1)(m−1).

So, we get our required result by putting the expressions
N


i=1

N


j=1

pi j f (xi,yi) and
N


i=1

N


j=1

pi j f (xi,y j)

in C( f , p) =
N


i=1

N


j=1

pi j f (xi,yi)−
N


i=1

N


j=1

pi j f (xi,y j). �

If we put xi = i, y j = j and f (xi,y j) = f (i, j) = ai j in Theorem 6.8, then we get the
following corollary.

Corollary 6.1 Let pi j, ai j ∈ R for i, j ∈ {1, . . . ,N}. Then, the following identity holds

C(a, p) =
N


i=1

N


j=1

pi jaii−
N


i=1

N


j=1

pi jai j

=
m−1


k=0

n−1


t=0

(t,k)a11

[
N


s=max{t,k}+1

N


r=1

psr

(
s−1

t

)(
s−1

k

)

−
N


s=t+1

N


r=k+1

psr

(
s−1

t

)(
r−1

k

)]
+

m−1


k=0

N


t=n+1

(n,k)a(t−n)1×

×
[

N


s=max{t,k+1}

N


r=1

psr

(
s− t +n−1

n−1

)(
s−1

k

)

−
N


s=t

N


r=k+1

psr

(
s− t +n−1

n−1

)(
r−1

k

)]
+

N


k=m+1

n−1


t=0

(t,m)a1(k−m)×

×
[

N


s=max{t+1,k}

N


r=1

psr

(
s−1

t

)(
s− k+m−1

m−1

)

−
N


s=t+1

N


r=k

psr

(
s−1

t

)(
r− k+m−1

m−1

)]

+
N


k=m+1

N


t=n+1

(n,m)a(t−n)(k−m)

×
[

N


s=max{t,k}

N


r=1

psr

(
s− t +n−1

n−1

)(
s− k+m−1

m−1

)

−
N


s=t

N


r=k

psr

(
s− t +n−1

n−1

)(
r− k+m−1

m−1

)]
,
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where (t,k)ai j represents finite difference of order (t,k) of the sequence (ai j).

Remark 6.1 If we put n = m = 1 in Corollary 6.1, then we get Theorem 3 of [54].

Before we state our next theorem, under the assumptions of Theorem 6.8 we introduce
some notations as follows:

C( f , p) = C( f , p)−
m−1


k=0

n−1


t=0

(t,k) f (x1,y1)×

×
[

N


s=max{t+1,k+1}

N


r=1

psr(xs− x1)(t)(ys − y1)(k)

−
N


s=t+1

N


r=k+1

psr(xs− x1)(t)(yr − y1)(k)
]

−
m−1


k=0

N


t=n+1

(n,k) f (xt−n,y1)(xt − xt−n)×

×
[

N


s=max{t,k+1}

N


r=1

psr(xs − xt−n+1)(n−1)(ys− y1)(k)

−
N


s=t

N


r=k+1

psr(xs − xt−n+1)(n−1)(yr − y1)(k)
]

−
N


k=m+1

n−1


t=0

(t,m) f (x1,yk−m)(yk − yk−m)×

×
[

N


s=max{t+1,k}

N


r=1

psr(xs − x1)(t)(ys − yk−m+1)(m−1)

−
N


s=t+1

N


r=k

psr(xs − x1)(t)(yr − yk−m+1)(m−1)

]
, (6.23)

R(t,k) =

[
N


s=max{t,k}

N


r=1

psr(xs− xt−n+1)(n−1)(ys − yk−m+1)(m−1)

−
N


s=t

N


r=k

psr(xs− xt−n+1)(n−1)(yr − yk−m+1)(m−1)

]
. (6.24)

Theorem 6.9 let pi j ∈ R for i, j ∈ {1, . . . ,N} and let (xi) and (y j) for i, j ∈ {1, . . . ,N}
be two real sequences that are monotonic in the same sense. We also assume that f is an
(n,m)-convex function. If

R(t,k) ≥ 0, t ∈ {n+1, . . . ,N}, k ∈ {m+1, . . . ,N},
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then
C( f , p) ≥ 0,

where C and R are defined in (6.23) and (6.24) respectively.

Proof. The result follows easily by using identity (6.22). �

Remark 6.2 If we put xi = i, y j = j and f (xi,y j) = f (i, j) = ai j in Theorem 6.9 for
n = m = 1, then we get Theorem 3 of paper [67] and hence in this theorem for ai j = f (ai,b j)
we get Corollary 2 of paper [67].

Theorem 6.10 Let pi j ∈R and let (xi,y j)∈ I2 be the distinct points, where i, j ∈{1, . . . ,N}.
If f ,g : I2 → R are two functions such that the inequalities

R(t,k) ≥ 0, t ∈ {n+1, . . . ,N}, k ∈ {m+1, . . . ,N} (6.25)

and
L(n,m)g(xi,y j) ≤ (n,m) f (xi,y j) ≤U(n,m)g(xi,y j) (6.26)

hold, then the following inequalities are valid

LC(g, p) ≤C( f , p) ≤UC(g, p), (6.27)

where R is defined in (6.24) and L and U are some real constants.

Proof. Let F1(xi,y j) = f (xi,y j)− Lg(xi,y j) and F2(xi,y j) = Ug(xi,y j)− f (xi,y j). Then
(n,m)F1(xi,y j) ≥ 0 and (n,m)F2(xi,y j) ≥ 0. So, from Theorem 6.9 we easily obtain The-
orem 6.10. �

Remark 6.3 If the reverse inequalities hold in (6.25) and (6.26), then the inequalities
in (6.27) still hold. Moreover, if the reverse inequality holds in (6.25), then the reverse
inequalities in (6.27) are valid.

Remark 6.4 If we put xi = i, y j = j and f (xi,y j) = f (i, j) = ai j and g(i, j) = bi j in the
previous theorem then we get Theorem 4 of paper [67].

6.1.2 Generalized Integral Čebyšev’s Identity and Inequality

This subsection has the same structure as the previous one, only here we consider integrals
instead of sums. Also, it is based on paper [24].

Theorem 6.11 Let p, f : I2 → R be two functions such that p is integrable, f(N+1,M) and
f(N,M+1) exist and are absolutely continuous. Then, we have

C( f , p) =
∫ b

a

∫ b

a
p(x,y) f (x,x)dydx−

∫ b

a

∫ b

a
p(x,y) f (x,y)dydx
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=
N


i=0

M


j=0

f(i, j)(a,a)
[
P

(i, j)(a,a)−P(i, j)(a,a)
]

+
M


j=0

∫ b

a
f(N+1, j)(x,a)

[
P

(N, j)(x,a)−P(N, j)(x,a)
]
dx

+
N


i=0

∫ b

a
f(i,M+1)(a,y)

[
P

(i,M)(a,y)−P(i,M)(a,y)
]
dy

+
∫ b

a

∫ b

a
f(N+1,M+1)(x,y)R(x,y)dydx,

where P
(i, j)

, P(i, j) and R are defined in (6.14), (6.13) and (6.16) respectively.

Proof. To prove this identity, first we find an expression for∫ b

a

∫ b

a
p(x,y) f (x,x)dydx

as follows. First we expand f (x,x) in the Taylor expansion of two variables and multiply
it with p(x,y) and integrate it over I2 by variables x and y to get

∫ b

a

∫ b

a
p(x,y) f (x,x)dydx

=
∫ b

a

[
M


j=0

(
N


i=0

f(i, j)(a,a)
(x−a)i

i!

)∫ b

a
p(x,y)

(x−a) j

j!
dy

]
dx

+
∫ b

a

[
M


j=0

(∫ x

a
f(N+1, j)(s,a)

(x− s)N

N!
ds

)∫ b

a
p(x,y)

(x−a) j

j!
dy

]
dx

+
∫ b

a

[∫ b

a

∫ x

a
p(x,y)

(
N


i=0

f(i,M+1)(a,t)
(x−a)i

i!

)
(x− t)M

M!
dt dy

]
dx

+
∫ b

a

[∫ b

a

∫ x

a

(∫ x

a
p(x,y) f(N+1,M+1)(s,t)

(x− s)N

N!
ds

)
(x− t)M

M!
dt dy

]
dx

In the first summand, we change the order of summation, use linearity of integral to
obtain

N


i=0

M


j=0

∫ b

a

∫ b

a
p(x,y) f(i, j)(a,a)

(x−a)i

i!
(x−a) j

j!
dydx.

By using Fubini’s theorem, the second summand is rewritten as:

∫ b

a

[
M


j=0

(∫ x

a
f(N+1, j)(s,a)

(x− s)N

N!
ds

)∫ b

a
p(x,y)

(x−a) j

j!
dy

]
dx

=
∫ b

a

[
M


j=0

(∫ x

a

∫ b

a
p(x,y)

(x−a) j

j!
f(N+1, j)(s,a)

(x− s)N

N!
dyds

)]
dx



232 6 ČEBYŠEV-POPOVICIU TYPE INEQUALITIES

=
M


j=0

∫ b

a

∫ x

a

∫ b

a
p(x,y) f(N+1, j)(s,a)

(x− s)N

N!
(x−a) j

j!
dydsdx

=
M


j=0

∫ b

a

∫ b

s

∫ b

a
p(x,y) f(N+1, j)(s,a)

(x− s)N

N!
(x−a) j

j!
dydxds,

Similarly, the third summand is rewritten as:

∫ b

a

[∫ b

a

∫ x

a
p(x,y)

(
N


i=0

f(i,M+1)(a,t)
(x−a)i

i!

)
(x− t)M

M!
dt dy

]
dx

=
N


i=0

∫ b

a

∫ b

a

∫ x

a
p(x,y) f(i,M+1)(a,t)

(x−a)i

i!
(x− t)M

M!
dt dydx

=
N


i=0

∫ b

a

∫ b

a

∫ b

t
p(x,y) f(i,M+1)(a,t)

(x−a)i

i!
(x− t)M

M!
dydxdt,

Finally, the fourth summand is rewritten as:

∫ b

a

[∫ b

a

∫ x

a

(∫ x

a
p(x,y) f(N+1,M+1)(s,t)

(x− s)N

N!
ds

)
(x− t)M

M!
dt dy

]
dx

=
∫ b

a

∫ b

a

∫ x

a

∫ x

a
p(x,y) f(N+1,M+1)(s,t)

(x− s)N

N!
(x− t)M

M!
dsdt dydx

=
∫ b

a

∫ b

a

∫ b

max{s,t}

∫ b

a
p(x,y) f(N+1,M+1)(s, t)

(x− s)N

N!
(x− t)M

M!
dydxdt ds.

Now, we add up all these results to get

∫ b

a

∫ b

a
p(x,y) f (x,x)dydx

=
N


i=0

M


j=0

∫ b

a

∫ b

a
p(x,y) f(i, j)(a,a)

(x−a)i

i!
(x−a) j

j!
dydx

=
M


j=0

∫ b

a

∫ b

s

∫ b

a
p(x,y) f(N+1, j)(s,a)

(x− s)N

N!
(x−a) j

j!
dydxds

=
N


i=0

∫ b

a

∫ b

a

∫ b

t
p(x,y) f(i,M+1)(a,t)

(x−a)i

i!
(x− t)M

M!
dydxdt

=
∫ b

a

∫ b

a

∫ b

max{s,t}

∫ b

a
p(x,y) f(N+1,M+1)(s,t)

(x− s)N

N!
(x− t)M

M!
dydxdt ds,

when we change the names of variables on the right-hand side x ↔ s, y ↔ t, then we
have, ∫ b

a

∫ b

a
p(x,y) f (x,x)dydx
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=
N


i=0

M


j=0

∫ b

a

∫ b

a
p(s,t) f(i, j)(a,a)

(s−a)i+ j

i! j!
dt ds

+
M


j=0

∫ b

a

∫ b

x

∫ b

a
p(s,t) f(N+1, j)(x,a)

(s− x)N

N!
(s−a) j

j!
dt dsdx

+
N


i=0

∫ b

a

∫ b

a

∫ b

x
p(s,t) f(i,M+1)(a,y)

(s−a)i

i!
(s− y)M

M!
dt dsdy

+
∫ b

a

∫ b

a

∫ b

max{x,y}

∫ b

a
p(s,t) f(N+1,M+1)(x,y)

(s− x)N

N!
(s− y)M

M!
dt dsdydx,

by using defined notations we finally obtain∫ b

a

∫ b

a
p(x,y) f (x,x)dydx =

N


i=0

M


j=0

f(i, j)(a,a)P(i, j)(a,a)

+
M


j=0

∫ b

a
f(N+1, j)(x,a)P(N, j)(x,a)dx+

N


i=0

∫ b

a
f(i,M+1)(a,y)P(i,M)(a,y)dy

+
∫ b

a

∫ b

a
f(N+1,M+1)(x,y)

∫ b

max{x,y}

∫ b

a
p(s,t)

(s− x)N

N!
(s− y)M

M!
dt dsdydx,

where P
(i, j)

is defined in (6.13).

Using the above expression for
∫ b

a

∫ b

a
p(x,y) f (x,x)dydx and Theorem 3.7 in

C( f , p) =
∫ b

a

∫ b

a
p(x,y) f (x,x)dydx−

∫ b

a

∫ b

a
p(x,y) f (x,y)dydx,

we get the required identity. �

If in Theorem 6.11 we put f (x,y) = f (x)g(y) and p(x,y) = p(x)p(y), then we may
state the following corollary.

Corollary 6.2 Let p, f ,g : I →R be three functions such that p is integrable and f(N) and
g(M) exist and are absolutely continuous. Then, we have

T ( f ,g, p) = T (PN( f ),PM(g), p)+T(RN( f ),PM(g), p)+T(PN( f ),RM(g), p)

+
∫ b

a
p(x)dx×

×
∫ b

a

∫ b

a

∫ b

max{x,y}
f(N+1)(x)(s− x)N

N!

g(M+1)(y)(s− y)M

M!
p(s)dsdydx

−
∫ b

a
RN( f )(x)p(x)dx

∫ b

a
RM(g)(x)p(x)dx (6.28)

where Pk(h)(x) =
k


i=0

h(i)(a)(x−a)i

i!
, Rk(h)(x)=

∫ x

a

h(N+1)(s)(x− s)N

N!
ds, k∈N for a func-

tion h and T is defined in (6.4).
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Corollary 6.3 Let the assumptions of Theorem 6.11 be valid. Then for s,t > 1 such that
1/s+1/t = 1, we have

∣∣C( f , p)
∣∣ ≤ (∫ b

a

∫ b

a

∣∣ f(N+1,M+1)(x,y)
∣∣s dydx

)1/s (∫ b

a

∫ b

a
|R(x,y)|t dydx

)1/t

(6.29)

where C and R are defined in (6.20) and (6.16) respectively.

Proof. We can get (6.29) by using Hölder’s inequality for the integrals in Theorem 6.11. �

Theorem 6.12 Let the assumptions of Theorem 6.11 be valid. If the inequality

R(x,y) ≥ 0

holds for every (x, y) ∈ I2, then there exists ( , ) ∈ I2 such that

C( f , p) = f(N+1,M+1)( ,)C ( f0, p) ,

where R, f0 and C are defined in (6.16), (6.18) and (6.20), respectively.

Proof. We have

C( f , p) =
∫ b

a

∫ b

a
f(N+1,M+1)(x,y)R(x,y)dydx, (6.30)

using the mean value theorem for double integrals we get

C( f , p) = f(N+1,M+1)( ,)
∫ b

a

∫ b

a
R(x,y)dydx.

If we put f = f0 in the above expression, then we obtain

C ( f0, p) = C ( f0, p) =
∫ b

a

∫ b

a
R(x,y)dydx

and hence we get what we wanted. � �

Remark 6.5 (a) For N = M = 0, Theorem 6.12 is equivalent to Theorem 6.4.

(b) If we take f (x,y) = f (x)g(y) and p(x,y) = p(x)p(y) in Theorem 6.12 with N = M =
0, then we get (6.3).

Theorem 6.13 Let the assumptions of Theorem 6.11 be valid and let g(N+1,M+1) �= 0 on

I2 where g ∈C(N+1,M+1)(I2). If the inequality

R(x,y) ≥ 0

holds for every (x, y) ∈ I2, then there exists ( , ) ∈ I2 such that

C( f , p) =
f(N+1,M+1)( ,)
g(N+1,M+1)( ,)

C(g, p),

where R and C are defined in (6.16) and (6.20) respectively.
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Proof. Using (6.30) and the integral mean value theorem we have

C( f , p) =
∫ b

a

∫ b

a

f(N+1,M+1)(x,y)
g(N+1,M+1)(x,y)

g(N+1,M+1)(x,y)R(x,y)dydx

=
f(N+1,M+1)( ,)
g(N+1,M+1)( ,)

∫ b

a

∫ b

a
g(N+1,M+1)(x,y)R(x,y)dydx

=
f(N+1,M+1)( ,)
g(N+1,M+1)( ,)

C(g, p).

�

Remark 6.6 For N = M = 0, Theorem 6.13 becomes Theorem 2 of [67].

Theorem 6.14 Let p, f : I2 → R be two functions such that p is integrable and f is
(N +1,M +1)-convex. If the inequality

R(x,y) ≥ 0

holds for every (x, y) ∈ I2, then the following inequality is valid

C( f , p) ≥ 0,

where R and C are defined in (6.16) and (6.20) respectively.

Proof. If f is (N +1,M +1)-convex function it may be approximated uniformly on I2

by polynomials having nonnegative partial derivatives of order (N +1,M+1). It is known
that the Bernstein polynomials Bn,m defined as

Bn,m(x,y) =
n


i=0

m


j=0

(
n
i

)(
m
j

)
f (ai,b j)(x−a)i(b− x)n−i(y−a) j(b− y)m− j,

where ai = a+ i b−a
n , b j = a+ j b−a

m , converge uniformly to f on I2 as n,m →  provided
that f is continuous. Further, if f is (N + 1,M + 1)-convex function these polynomials
have nonnegative partial derivatives of order (N + 1,M + 1), i.e., Bn,m

(N+1,M+1) ≥ 0 which
can be prove by induction by using the following formula:

Bn,m
(N+1,M+1)(x,y) = (N +1)!(M +1)!

(
n

N +1

)(
m

M +1

)
×

×
n−N−1


i=0

m−M−1


j=0

(
n−N−1

i

)(
m−M−1

j

)
×

×(N+1,M+1) f (ai,b j)(x−a)i(b− x)n−N−1−i(y−a) j(b− y)m−M−1− j.

As (ai) and (b j) are increasing sequences and f is (N +1,M +1)-convex function, so we
have (N+1,M+1) f (ai,b j)≥ 0. Since R is continuous and Bn,m

(N+1,M+1) ≥ 0 on I2 so by (6.20)
we obtain

C(Bn,m, p) =
∫ b

a

∫ b

a
Bn,m

(N+1,M+1)(x,y)×
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×
[∫ b

max{s,t}

∫ b

a
p(s,t)

(x− s)N

N!
(x− t)M

M!
dt ds

−
∫ b

x

∫ b

y
p(s,t)

(s− x)N

N!
(t− y)M

M!
dt ds

]
dydx ≥ 0,

or we can write C(Bn,m, p) as

C(Bn,m, p) =
∫ b

a

∫ b

a
Bn,m

(N+1,M+1)(x,y)R(x,y)dydx. (6.31)

Now by letting n,m →  through an appropriate sequence, the uniform convergence of
Bn,m

(N+1,M+1) to f(N+1,M+1) provides our desired result. �

Theorem 6.15 Let the assumptions of Theorem 6.14 be valid. Then there exists ( ,) ∈
I2 such that

C( f , p) = R( ,)
(
f(N,M)(b,b)− f(N,M)(a,b)− f(N,M)(b,a)+ f(N,M)(a,a)

)
,

where R and C are defined in (6.16) and (6.20) respectively.

Proof. Since R is continuous and Bn,m
(N+1,M+1) ≥ 0 on I2, where Bn,m is Bernstien poly-

nomial, by the same arguments used in proof of Theorem 6.12, starting from (6.31), we
obtain

C(Bn,m, p)

=
∫ b

a

∫ b

a
R(x,y)Bn,m

(N+1,M+1)(x,y)dydx

= R(n,m,n,m)
∫ b

a

∫ b

a
Bn,m

(N+1,M+1)(x,y)dydx

= R(n,m,n,m)
(
Bn,m

(N,M)(b,b)−Bn,m
(N,M)(a,b)−Bn,m

(N,M)(b,a)+Bn,m
(N,M)(a,a)

)
.

The points xn,m = (n,m,n,m) have a limit point ( ,) in I2 as n,m→, so letting n,m→
 through an appropriate sequence, the uniform convergence of Bn,m

(N,M) to f(N,M) provides
our desired result. �

Remark 6.7 For N = M = 0, Theorem 6.15 becomes Theorem 6 of [67].

6.1.3 Generalized Integral Ky Fan’s Identity and Inequality

Theorem 6.16 Let the assumptions of Theorem 6.11 be valid and let q : I → R be an
integrable function. Then the following identity holds

K( f , p,q) =
M


j=0

N


i=0

f(i, j)(a,a)
[
Q(i, j)(a)−P(i, j)(a,a)

]
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+
M


j=0

∫ b

a
f(N+1, j)(x,a)

[
Q(N, j)(x)−P(N, j)(x,a)

]
dx

+
N


i=0

∫ b

a
f(i,M+1)(a,y)

[
Q(M,i)(y)−P(i,M)(a,y)

]
dy

+
∫ b

a

∫ b

a
f(N+1,M+1)(x,y)R(x,y)dydx,

where P(i, j), Q(i, j) and R are defined in (6.13), (6.15) and (6.17) respectively.

Proof. The proof of this theorem is analogous to the proof of Theorem 6.11. We only
need the following substitution

∫ b
a p(x,y)dy = q(x). �

The above and all results in this section is given in [24]. If in Theorem 6.16 we put

f (x,y) = f (x)g(y) and p(x,y) =
q(x)q(y)∫ b
a q(t)dt

where q is an integrable function such that∫ b
a q(t)dt �= 0, then we state the following corollary.

Corollary 6.4 Let the assumptions of Corollary 6.2 be valid for functions f ,g and p and
let q : I → R be an integrable function such that

∫ b
a q(t)dt �= 0. Then the identity

T ( f ,g,q) = T (PN( f ),PM(g),q)+T(RN( f ),PM(g),q)+T(PN( f ),RM(g),q)

+
∫ b

a

∫ b

a

∫ b

max{x,y}
f(N+1)(x)(s− x)N

N!

g(M+1)(y)(s− y)M

M!
q(s)dsdydx

−
∫ b

a
RN( f )(x)q(x)dx

∫ b

a
RM(g)(x)q(x)dx

holds, where Pk(h)(x) =
k


i=0

h(i)(a)(x−a)i

i!
, Rk(h)(x) =

∫ x

a

h(N+1)(s)(x− s)N

N!
ds, k ∈ N for

a function h and T is defined in (6.4).

Corollary 6.5 Let the assumptions of Theorem 6.16 be valid. Then for s,t > 1 such that
1/s+1/t = 1, we have

| K( f , p,q) |≤
(∫ b

a

∫ b

a
| f(N+1,M+1)(x,y)|s dydx

)1/s (∫ b

a

∫ b

a

∣∣R(x,y)
∣∣t dydx

)1/t

,

where R and K are defined in (6.17) and (6.21) respectively.

Theorem 6.17 Let the assumptions of Theorem 6.14 be valid for f , p. If the inequality

R(x,y) ≥ 0

holds for every (x,y) ∈ I2, then there exists ( ,) ∈ I2 such that

K( f , p,q) = f(N+1,M+1)( ,)K ( f0, p,q) ,

where R, f0 and K are defined in (6.17), (6.18) and (6.21) respectively.



238 6 ČEBYŠEV-POPOVICIU TYPE INEQUALITIES

Theorem 6.18 Let the assumptions of Theorem 6.16 be valid. If the inequality

R(x,y) ≥ 0

holds for every (x,y) ∈ I2, then there exists ( ,) ∈ I2 such that

K( f , p,q) =
f(N+1,M+1)( ,)
g(N+1,M+1)( ,)

K(g, p,q),

where R, f0 and K are defined in (6.17), (6.18) and (6.21) respectively.

Theorem 6.19 Let the assumptions of Theorem 6.14 be valid for functions p and f and
let q : I → R be an integrable function. If the inequality

R(x,y) ≥ 0

holds for every (x,y) ∈ I2, then the following inequality holds

K( f , p,q) ≥ 0,

where R and K are defined in (6.17) and (6.21) respectively.

Proof. The proof is analogous to the proof of Theorem 6.14 so we omit the details. �

6.2 Montgomery Identities for Higher Order
Differentiable Functions of Two Variables

Ostrowski type inequalities have many applications in the field of numerical integrations
and in probability theory. We can also obtain special means with the help of such in-
equalities. The celebrated Čebyšev inequality is also a special case of the Ostrowski type
inequalities. As far as we are concerned with the Grüss-type inequalities, these inequali-
ties play a paramount role in numerical integrations and in other fields. In recent years a
rapid advancement in generalizations and improvements of these type of inequalities has
been observed. In present chapter we have also proposed certain generalizations of the
Montgomery identities and hence generalizations of Ostrowski and Grüs type inequalities
by using higher order differentiable functions.

The results presented in this section are taken from [25].
Let us recall the weighted Montgomery identity which we already used in Chapter 5.

Theorem 6.20 Let f ∈C(1)[a,b]. Then the identity

f (x) =
∫ b

a
w(s) f (s)ds+

∫ b

a
pw(x,s) f ′(s)ds,
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holds for weighted Peano kernel pw defined as

pw(x,s) =
{

W (s) , a ≤ s ≤ x,
W (s)−1 , x < s ≤ b,

where w : [a,b] → R∗ is such that
∫ b
a w(s)ds = 1 and

W (s) =

⎧⎨
⎩

0 , s < a,∫ s
a w( )d , s ∈ [a,b],

1 , s > b.

For functions of two variables the following generalized identities were obtained by authors
in [5].

Theorem 6.21 Let f ∈C(1,1)([a,b]× [c,d]). Then identities

(b−a)(d− c) f (x,y) = −
∫ b

a

∫ d

c
f (s,t)dt ds+(d− c)

∫ b

a
f (s,y)ds

+(b−a)
∫ d

c
f (x,t)dt +

∫ b

a

∫ d

c
p(x,s)q(y,t) f(1,1)(s,t)dt ds,

and

(b−a)(d− c) f (x,y) =
∫ b

a

∫ d

c
f (s, t)dt ds+

∫ b

a

∫ d

c
q(x,s) f(1,0)(s,t)dt ds

+
∫ b

a

∫ d

c
r(y,t) f(0,1)(s,t)dt ds+

∫ b

a

∫ d

c
q(x,s) r(y,t) f(1,1)(s,t)dt ds,

hold, where p and q are the Peano kernals.

J. Pečarić and A. Vukelić in [80] gave the following weighted Montgomery identities for
functions of two variables.

Theorem 6.22 Let p : [a,b]× [c,d]→ R be an integrable function and P be defined as

P(x,y) =
∫ b

x

∫ d

y
p( ,)d d . (6.32)

If f ∈C(1,1)([a,b]× [c,d]), then the following identity holds

P(a,c) f (x,y) =
∫ b

a

∫ d

c
p(s,t) f (s,t)dtds+

∫ b

a
P̂(x,s) f(1,0)(s,y)ds (6.33)

+
∫ d

c
P̃(y,t) f(0,1)(x,t)dt−

∫ b

a

∫ d

c
P̄(N,M)(x,s,y,t) f(1,1)(s,t)dtds,

where

P̂(x,s) =

⎧⎨
⎩

∫ s

a

∫ d

c
p( ,)d d , a ≤ s ≤ x,

−P(s,c) , x < s ≤ b,
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P̃(i,M)(x,y,t) =

⎧⎨
⎩

∫ b

a

∫ t

c
p( ,)d d , c ≤ t ≤ y,

−P(a,t) , y < t ≤ d,

P̄(x,s,y,t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ s

a

∫ t

c
p( ,)dd , a ≤ s ≤ x, c ≤ t ≤ y,

−
∫ b

s

∫ t

c
p( ,)dd , x < s ≤ b, c ≤ t ≤ y,

−
∫ s

a

∫ d

t
p( ,)dd , a ≤ s ≤ x, y < t ≤ d,

P(s,t), x < s ≤ b, y < t ≤ d.

Theorem 6.23 Let the assumptions of Theorem 6.22 be valid. Then the identity

P(a,c) f (x,y) = −
∫ b

a

∫ d

c
p(s,t) f (s,t)dt ds+

∫ b

a

∫ d

c
p(s,t) f (s,y)dt ds (6.34)

+
∫ b

a

∫ d

c
p(s,t) f (x,t)dt ds+

∫ b

a

∫ d

c
P̄(x,s,y,t) f(1,1)(s,t)dt ds,

holds, where P̄ is as defined in Theorem 6.22.

Theorem 6.24 Let the assumptions of Theorem 6.22 be valid. Then the identity

[P(a,c)]2 f (x,y) = P(a,c)
∫ b

a

∫ d

c
p(s,t) f (s,t)dt ds

+
∫ b

a

(∫ b

a

∫ d

c
p( ,t)P̂(x,s) f(1,0)(s,t)dt ds

)
d

+
∫ d

c

(∫ b

a

∫ d

c
p(s,)P̃(y, t) f(0,1)(s,t)dt ds

)
d

+
∫ b

a

∫ d

c
P̌(x,s,y,t) f(1,1)(s,t)dt ds,

holds, where P̂, P̃ and P̄ are defined in Theorem 6.22 and

P̌(x,s,y,t) = 2P̂(x,s)P̃(y,t)−P(a,c)P̄(x,s,y,t).

6.2.1 Montgomery Identities for Double Weighted Integrals of
Higher Order Differentiable Functions

In the start of this section, we introduce some notations to reduce our lengthy expressions
as follows:

P(i, j)
(a,c)→(b,d)(x,y) =

∫ b

a

∫ d

c
p( ,)

( − x)i

i!
(− y) j

j!
d d , (6.35)

P(0, j)
(a,c)→(b,d)(y) =

∫ b

a

∫ d

c
p( ,)

(− y) j

j!
d d , (6.36)
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P(i,0)
(a,c)→(b,d)(x) =

∫ b

a

∫ d

c
p( ,)

( − x)i

i!
d d , (6.37)

R(x,y; f ) = −
N


i=1

M


j=1

f(i, j)(x,y)P
(i, j)
(a,c)→(b,d)(x,y)−

M


j=1

f(0, j)(x,y)P
(0, j)
(a,c)→(b,d)(y)

−
N


i=1

f(i,0)(x,y)P
(i,0)
(a,c)→(b,d)(x). (6.38)

For our next theorem we restate Theorem 3.7 using our notations as follows.

Theorem 6.25 Let p : [a,b]× [c,d]→R be an integrable function and let f ∈C(N+1,M+1)([a,b]×
[c,d]). Then the following identity holds

∫ b

a

∫ d

c
p(x,y) f (x,y)dydx =

N


i=0

M


j=0

P(i, j)
(a,c)→(b,d)(a,c) f(i, j)(a,c)

+
M


j=0

∫ b

a
P(N, j)

(x,c)→(b,d)(x,c) f(N+1, j)(x,c)dx

+
N


i=0

∫ d

c
P(i,M)

(a,y)→(b,d)(a,y) f(i,M+1)(a,y)dy

+
∫ b

a

∫ d

c
P(N,M)

(x,y)→(b,d)(x,y) f(N+1,M+1)(x,y)dydx.

Now we give generalizations of Theorems 6.22, 6.23 and 6.24 respectively as follows:

Theorem 6.26 Let the assumptions of Theorem 6.25 be valid. Then the identity

P(a,c) f (x,y) = R(x,y; f )+
∫ b

a

∫ d

c
p(s, t) f (s, t)dt ds

+
M


j=0

∫ b

a
P̂(N, j)(x,s,y) f(N+1, j)(s,y)ds+

N


i=0

∫ d

c
P̃(i,M)(x,y, t) f(i,M+1)(x, t)dt

−
∫ b

a

∫ d

c
P̄(N,M)(x,s,y,t) f(N+1,M+1)(s,t)dt ds, (6.39)

holds, where

P̂(N, j)(x,s,y) =

⎧⎨
⎩

P(N, j)
(a,c)→(s,d)(s,y), a ≤ s ≤ x,

−P(N, j)
(s,c)→(b,d)(s,y), x < s ≤ b,

P̃(i,M)(x,y,t) =

⎧⎨
⎩

P(i,M)
(a,c)→(b,t)(x, t), c ≤ t ≤ y,

−P(i,M)
(a,t)→(b,d)(x, t), y < t ≤ d,
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and

P̄(N,M)(x,s,y,t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(N,M)
(a,c)→(s,t)(s,t), a ≤ s ≤ x , c ≤ t ≤ y,

−P(N,M)
(s,c)→(b,t)(s,t), x < s ≤ b , c ≤ t ≤ y,

−P(N,M)
(a,t)→(s,d)(s,t), a ≤ s ≤ x , y < t ≤ d,

P(N,M)
(s,t)→(b,d)(s,t), x < s ≤ b , y < t ≤ d,

where P(i, j)
(.,.)→(.,.) for i, j ∈ {N,M} is defined in (6.35), and P and R are as defined in (6.32)

and (6.38) respectively.

Proof. Using Theorem 6.25 for [a,x]× [c,y], we get∫ x

a

∫ y

c
p(s,t) f (s,t)dt ds =

∫ a

x

∫ c

y
p(s,t) f (s, t)dt ds

=
N


i=0

M


j=0

P(i, j)
(x,y)→(a,c)(x,y) f(i, j)(x,y)+

M


j=0

∫ a

x
P(N, j)

(s,y)→(a,c)(s,y) f(N+1, j)(s,y)ds

+
N


i=0

∫ c

y
P(i,M)

(x,t)→(a,c)(x,t) f(i,M+1)(x,t)dt

+
∫ a

x

∫ c

y
P(N,M)

(s,t)→(a,c)(s,t) f(N+1,M+1)(s,t)dt ds

=
N


i=0

M


j=0

[
P(i, j)

(x,y)→(b,d)(x,y)−P(i, j)
(x,c)→(b,d)(x,y)−P(i, j)

(a,y)→(b,d)(x,y)

+P(i, j)
(a,c)→(b,d)(x,y)

]
f(i, j)(x,y)

−
M


j=0

∫ x

a

[
P(N, j)

(s,y)→(b,d)(s,y)−P(N, j)
(s,c)→(b,d)(s,y)−P(N, j)

(a,y)→(b,d)(s,y)

+P(N, j)
(a,c)→(b,d)(s,y)

]
f(N+1, j)(s,y)ds

−
N


i=0

∫ y

c

[
P(i,M)

(x,t)→(b,d)(x,t)−P(i,M)
(x,c)→(b,d)(x, t)−P(i,M)

(a,t)→(b,d)(x,t)

+P(i,M)
(a,c)→(b,d)(x,t)

]
× f(i,M+1)(x,t)dt

+
∫ x

a

∫ y

c

[
P(N,M)

(s,t)→(b,d)(s,t)−P(N,M)
(s,c)→(b,d)(s,t)−P(N,M)

(a,t)→(b,d)(s,t)

+P(N,M)
(a,c)→(b,d)(s,t)

]
f(N+1,M+1)(s,t)dt ds.

Similarly for [x,b]× [c,y], we have

∫ b

x

∫ y

c
p(s,t) f (s,t)dt ds = −

∫ b

x

∫ c

y
p(s,t) f (s,t)dt ds
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= −
N


i=0

M


j=0

f(i, j)(x,y)
[
P(i, j)

(x,y)→(b,d)(x,y)−P(i, j)
(x,c)→(b,d)(x,y)

]

−
M


j=0

∫ b

x
f(N+1, j)(s,y)

[
P(N, j)

(s,y)→(b,d)(s,y)−P(N, j)
(s,c)→(b,d)(s,y)

]
ds

+
N


i=0

∫ y

c
f(i,M+1)(x,t)

[
P(i,M)

(x,t)→(b,d)(x,t)−P(i,M)
(x,c)→(b,d)(x,t)

]
dt

+
∫ b

x

∫ y

c
f(N+1,M+1)(s,t)

[
P(N,M)

(s,t)→(b,d)(s,t)−P(N,M)
(s,c)→(b,d)(s, t)

]
dt ds.

For [a,x]× [y,d], we obtain

∫ x

a

∫ d

y
p(s,t) f (s,t)dt ds = −

∫ a

x

∫ d

y
p(s,t) f (s,t)dt ds

= −
N


i=0

M


j=0

f(i, j)(x,y)
[
P(i, j)

(x,y)→(b,d)(x,y)−P(i, j)
(a,y)→(b,d)(x,y)

]

+
M


j=0

∫ x

a
f(N+1, j)(s,y)

[
P(N, j)

(s,y)→(b,d)(s,y)−P(N, j)
(a,y)→(b,d)(s,y)

]
ds

−
N


i=0

∫ d

y
f(i,M+1)(x,t)

[
P(i,M)

(x,t)→(b,d)(x,t)−P(i,M)
(a,t)→(b,d)(x,t)

]
dt

+
∫ x

a

∫ d

y
f(N+1,M+1)(s,t)

[
P(N,M)

(s,t)→(b,d)(s,t)−P(N,M)
(a,t)→(b,d)(s,t)

]
dt ds.

Finally for [x,b]× [y,d], we have

∫ b

x

∫ d

y
p(s,t) f (s,t)dt ds =

N


i=0

M


j=0

f(i, j)(x,y)P
(i, j)
(x,y)→(b,d)(x,y)

+
M


j=0

∫ b

x
f(N+1, j)(s,y)P

(N, j)
(s,y)→(b,d)(s,y)ds

+
N


i=0

∫ d

y
f(i,M+1)(x,t)P

(i,M)
(x,t)→(b,d)(x, t)dt

+
∫ b

x

∫ d

y
f(N+1,M+1)(s,t)P

(N,M)
(s,t)→(b,d)(s,t)dt ds.

Adding up the four expressions we get our required result. �

Theorem 6.27 Let the assumptions of Theorem 6.25 be valid. Then the identity

P(a,c) f (x,y) = R(x,y; f )+
M


j=1

∫ b

a

∫ d

c
p(s,)

( − y) j

j!
f(0, j)(s,y)d ds
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+
N


i=1

∫ b

a

∫ d

c
p( ,t)

( − x)i

i!
f(i,0)(x,t)dt d −

∫ b

a

∫ d

c
p(s,t) f (s,t)dt ds

+
∫ b

a

∫ d

c
p(s,t) f (s,y)dt ds+

∫ b

a

∫ d

c
p(s,t) f (x,t)dt ds

+
∫ b

a

∫ d

c
P̄(N,M)(x,s,y,t) f(N+1,M+1)(s,t)dt ds (6.40)

holds, where P̄(N,M) is as in Theorem 6.26, P and R are defined in (6.32) and (6.38)
respectively.

Proof. First we find an expression for∫ b

a
P̂(N, j)(x,s,y) f(N+1, j)(s,y)ds

by using integration by parts as follows:∫ b

a
P̂(N, j)(x,s,y) f(N+1, j)(s,y)ds

=
∫ x

a
P(N, j)

(a,c)→(s,d)(s,y) f(N+1, j)(s,y)ds−
∫ b

x
P(N, j)

(s,c)→(b,d)(s,y) f(N+1, j)(s,y)ds

=
∫ x

a
P(N, j)

(a,c)→(s,d)(s,y) f(N+1, j)(s,y)ds+
∫ b

x
P(N, j)

(b,c)→(s,d)(s,y) f(N+1, j)(s,y)ds

= P(N, j)
(a,c)→(x,d)(x,y) f(N, j)(x,y)+

∫ x

a
P(N−1, j)

(a,c)→(s,d)(s,y) f(N, j)(s,y)ds

+P(N, j)
(x,c)→(b,d)(x,y) f(N, j)(x,y)+

∫ b

x
P(N−1, j)

(b,c)→(s,d)(s,y) f(N, j)(s,y)ds

= P(N, j)
(a,c)→(b,d)(x,y) f(N, j)(x,y)+

∫ x

a
P(N−1, j)

(a,c)→(s,d)(s,y) f(N, j)(s,y)ds

+
∫ b

x
P(N−1, j)

(b,c)→(s,d)(s,y) f(N, j)(s,y)ds

= P(N, j)
(a,c)→(b,d)(x,y) f(N, j)(x,y)+

∫ b

a
P(N−1, j)

(a,c)→(s,d)(s,y) f(N, j)(s,y)ds,

continuing in similar fashion, we finally get∫ b

a
P̂(N, j)(x,s,y) f(N+1, j)(s,y)ds

=
∫ b

a

∫ d

c
p( ,)

(− y) j

j!

[ N


k=0

( − x)k

k!
f(k, j)(x,y)

]
d d

−
∫ b

a

∫ d

c
p(s,)

( − y) j

j!
f(0, j)(s,y)d ds. (6.41)

Similarly ∫ d

c
P̃(i,M)(x,y,t) f(i,M+1)(x,t)dt
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=
∫ b

a

∫ d

c
p( ,)

( − x)i

i!

[ M


l=0

(− y)l

l!
f(i,l)(x,y)

]
d d

−
∫ b

a

∫ d

c
p( ,t)

( − x)i

i!
f(i,0)(x,t)d dt. (6.42)

If we put all these values in (6.39), then after some cancelation and some rearrangements
we get our required identity. �

Theorem 6.28 Let f ∈C(2N+1,2M+1)([a,b]× [c,d]). Then the identity

[P(a,c)]2 f (x,y) = P(a,c)R(x,y; f )+P(a,c)
∫ b

a

∫ d

c
p(s, t) f (s,t)dt ds

+
M


j=0

∫ b

a
P̂(N, j)(x,s,y)R(s,y; f(N+1, j))ds

+
N


i=0

∫ d

c
P̃(i,M)(x,y,t)R(x,t; f(i,M+1))dt

+
N


i=0

M


j=0

∫ b

a

∫ b

a

∫ d

c
P̂(N, j)(x,s,y)p( , t)

( − x)i

i!
f(N+1+i, j)(s,t)dt dsd

+
N


i=0

M


j=0

∫ d

c

∫ b

a

∫ d

c
P̃(i,M)(x,y,t)p(s,)

( − y) j

j!
f(i,M+1+ j)(s, t)dt dsd

+
∫ b

a

∫ d

c

[
2

N


i=0

M


j=0

P̂(N, j)(x,s,y)P̃(i,M)(x,y,t) f(N+1+i,M+1+ j)(s,t)

−P̄(N,M)(x,s,y,t) f(N+1,M+1)(s,t)
]
dt ds, (6.43)

holds, where p, P, P̂(N, j), P̃(i,M) are P̄(N,M) are as in Theorem 6.26.

Proof. Summing (6.41) for j ∈ {0, . . . ,M} and (6.42) for i ∈ {0, . . . ,N}, we get re-
spectively for each (x,y) ∈ [a,b]× [c,d].

P(a,c) f (x,y) = R(x,y; f )+
M


j=0

∫ b

a

∫ d

c
p(s,)

( − y) j

j!
f(0, j)(s,y)d ds

+
M


j=0

∫ b

a
P̂(N, j)(x,s,y) f(N+1, j)(s,y)ds, (6.44)

and

P(a,c) f (x,y) = R(x,y; f )+
N


i=0

∫ b

a

∫ d

c
p( ,t)

( − x)i

i!
f(i,0)(x,t)dt d

+
N


i=0

∫ d

c
P̃(i,M)(x,y, t) f(i,M+1)(x,t)dt. (6.45)



246 6 ČEBYŠEV-POPOVICIU TYPE INEQUALITIES

By using formula (6.44) for partial derivatives f(i,M+1) for i ∈ {0, . . . ,N}, we obtain

P(a,c) f(i,M+1)(x,t)

= R(x,t; f(i,M+1))+
M


j=0

∫ b

a

∫ d

c
p(s,)

(− t) j

j!
f(i,M+1+ j)(s,t)d ds

+
M


j=0

∫ b

a
P̂(N, j)(x,s,t) f(N+1+i,M+1+ j)(s, t)ds. (6.46)

Similarly, by using formula (6.45) for partial derivatives f(N+1, j) for j = 0, . . . ,M we have

P(a,c) f(N+1, j)(s,y)

= R(s,y; f(N+1, j))+
N


i=0

∫ b

a

∫ d

c
p( ,t)

( − s)i

i!
f(N+1+i, j)(s, t)dt d

+
N


i=0

∫ d

c
P̃(i,M)(s,y,t) f(N+1+i,M+1+ j)(s,t)dt. (6.47)

Substituting (6.46) and (6.47) into (6.39), we get

P(a,c) f (x,y) = R(x,y; f )+
∫ b

a

∫ d

c
p(s,t) f (s,t)dt ds

+
1

P(a,c)

M


j=0

∫ b

a
P̂(N, j)(x,s,y)

[
R(s,y; f(N+1, j))

+
N


i=0

∫ b

a

∫ d

c
p( ,t)

( − s)i

i!
f(N+1+i, j)(s,t)dt d

+
N


i=0

∫ d

c
P̃(i,M)(s,y,t) f(N+1+i,M+1+ j)(s,t)dt

]
ds

+
1

P(a,c)

N


i=0

∫ d

c
P̃(i,M)(x,y,t)

[
R(x,t; f(i,M+1))

+
M


j=0

∫ b

a

∫ d

c
p(s,)

( − t) j

j!
f(i,M+1+ j)(s, t)d ds

+
M


j=0

∫ b

a
P̂(N, j)(x,s,t) f(N+1+i,M+1+ j)(s,t)ds

]
dt

−
∫ b

a

∫ d

c
P̄(N,M)(x,s,y,t) f(N+1,M+1)(s,t)dt ds.

After some rearrangements and using Fubini’s Theorem we obtain our required result. �

Remark 6.8 For N = M = 0, Theorems 6.22, 6.23 and 6.24 become special cases of
Theorems 6.26, 6.27 and 6.28 respectively.
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Special Cases:
If p(s, t) = q(s)r(t) in identities (6.39), (6.40) and (6.43), then we get respectively the

following special cases:

f (x,y)Pa→b(q)Pc→d(r) = Q(x,y; f )+
∫ b

a

∫ d

c
q(s)r(t) f (s, t)dt ds

+
M


j=0

∫ b

a
Q̂(N, j)(x,s,y) f(N+1, j)(s,y)ds

+
N


i=0

∫ d

c
Q̃(i,M)(x,y,t) f(i,M+1)(x,t)dt

−
∫ b

a

∫ d

c
Q̄(N,M)(x,s,y,t) f(N+1,M+1)(s,t)dt ds,

f (x,y)Pa→b(q)Pc→d(r) = Q(x,y; f )+
M


j=1

∫ b

a
q(s) f(0, j)(s,y)dsQ( j)

c→d(r,y)

+
N


i=1

Q(i)
a→b(q,x)

∫ d

c
r(t) f(i,0)(x,t)dt−

∫ b

a

∫ d

c
q(s)r(t) f (s,t)dt ds

+
∫ b

a

∫ d

c
q(s)r(t) f (s,y)dt ds+

∫ b

a

∫ d

c
q(s)r(t) f (x,t)dt ds

−
∫ b

a

∫ d

c
Q̄(N,M)(x,s,y,t) f(N+1,M+1)(s,t)dt ds,

f (x,y)[Pa→b(q)Pc→d(r)]2 = Pa→b(q)Pc→d(r)Q(x,y; f )

+
M


j=0

∫ b

a
Q̂(N, j)(x,s,y)Q(s,y; f(N+1, j))ds

+
N


i=0

∫ d

c
Q̃(i,M)(x,y,t)Q(x,t; f(i,M+1))dt

+Pa→b(q)Pc→d(r)
∫ b

a

∫ d

c
q(s)r(t) f (s,t)dt ds

+
N


i=0

M


j=0

Q(i)
a→b(q,x)

∫ b

a

∫ d

c
Q̂(N, j)(x,s,y)r(t) f(N+1+i, j)(s,t)dt ds

+
N


i=0

M


j=0

Q( j)
c→d(r,y)

∫ b

a

∫ d

c
Q̃(i,M)(x,y,t)q(s) f(i,M+1+ j)(s,t)dt ds

+
∫ b

a

∫ d

c

[
2

N


i=0

M


j=0

Q̂(N, j)(x,s,y)Q̃(i,M)(x,y,t) f(N+1+i,M+1+ j)(s,t)

−Q̄(N,M)(x,s,y,t) f(N+1,M+1)(s,t)
]
dt ds,

where Pa→b(q) =
∫ b

a
q(s)ds, Q(i)

a→b(q,x) =
∫ b

a
q( )

( − x)i

i!
d ,
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Q(i, j)
(a,c)→(b,d)(x,y) = Q(i)

a→b(q,x)Q( j)
c→d(r,y),

Q(0, j)
(a,c)→(b,d)(y) = Pa→b(q) Q( j)

c→d(r,y),

Q(i,0)
(a,c)→(b,d)(x) = Q(i)

a→b(q,x) Pc→d(r),

Q(x,y; f ) = −
N


i=1

M


j=1

f(i, j)(x,y)Q
(i, j)
(a,c)→(b,d)(x,y)

−
M


j=1

f(0, j)(x,y)Q
(0, j)
(a,c)→(b,d)(y)−

N


i=1

f(i,0)(x,y)Q
(i,0)
(a,c)→(b,d)(x),

Q̂(N, j)(x,s,y) =

⎧⎨
⎩

Q(N, j)
(a,c)→(s,d)(s,y) , a ≤ s ≤ x,

−Q(N, j)
(s,c)→(b,d)(s,y) , x < s ≤ b,

Q̃(i,M)(x,y,t) =

⎧⎨
⎩

Q(i,M)
(a,c)→(b,t)(x, t) , c ≤ t ≤ y,

−Q(i,M)
(a,t)→(b,d)(x, t) , y < t ≤ d,

and Q̄(N,M)(x,s,y,t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(N,M)
(a,c)→(s,t)(s,t) , a ≤ s ≤ x, c ≤ t ≤ y,

−Q(N,M)
(s,c)→(b,t)(s,t) , x < s ≤ b, c ≤ t ≤ y,

−Q(N,M)
(a,t)→(s,d)(s,t) , a ≤ s ≤ x, y < t ≤ d,

Q(N,M)
(s,t)→(b,d)(s,t) , x < s ≤ b, y < t ≤ d.

Particularly, if p ≡ 1 in identities (6.39), (6.40) and (6.43) then the expressions will look
like

Pa→b = b−a, Q(i)
a→b(x) =

(b− x)i+1− (a− x)i+1

(i+1)!
,

Q(x,y; f ) = −
N


i=1

M


j=1

(b− x)i+1− (a− x)i+1

(i+1)!
(d− y) j+1− (c− y) j+1

( j +1)!
f(i, j)(x,y)

− (b−a)
M


j=1

(d− y) j+1− (c− y) j+1

( j +1)!
f(0, j)(x,y)

− (d− c)
N


i=1

(b− x)i+1− (a− x)i+1

(i+1)!
f(i,0)(x,y),

Q̂(N, j)(x,s,y) =

⎧⎪⎪⎨
⎪⎪⎩

− (a− s)N+1

(N +1)!
(d− y) j+1− (c− y) j+1

( j +1)!
, a ≤ s ≤ x,

− (b− s)N+1

(N +1)!
(d− y) j+1− (c− y) j+1

( j +1)!
, x < s ≤ b,
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Q̃(i,M)(x,y,t) =

⎧⎪⎪⎨
⎪⎪⎩

− (c− t)M+1

(M +1)!
(b− x)i+1− (a− x)i+1

(i+1)!
, c ≤ t ≤ y,

− (d− t)M+1

(M +1)!
(b− x)i+1− (a− x)i+1

(i+1)!
, y < t ≤ d,

and Q̄(N,M)(x,s,y,t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a− s)N+1

(N +1)!
(c− t)M+1

(M +1)!
, a ≤ s ≤ x , c ≤ t ≤ y,

(b− s)N+1

(N +1)!
(c− t)M+1

(M +1)!
, x < s ≤ b , c ≤ t ≤ y,

(a− s)N+1

(N +1)!
(d− t)M+1

(M +1)!
, a ≤ s ≤ x , y < t ≤ d,

(b− s)N+1

(N +1)!
(d− t)M+1

(M +1)!
, x < s ≤ b , y < t ≤ d.

6.2.2 Ostrowski Inequalities for Double Weighted Integrals of
Higher Order Differentiable Functions

In [80], J. Pečarić and A. Vukelić also have given some generalizations of Ostrowski’s
inequality by using identities (6.33) and (6.34). By using identities (6.39) and (6.40) we
can give generalized results of Ostrowski type for higher order differentiable functions of
two independent variables as follows:

Theorem 6.29 Let f ∈C(N+1,M+1)([a,b]× [c,d]). Then the inequality∣∣∣∣ f (x,y)− 1
P(a,c)

∫ b

a

∫ d

c
p(s,t) f (s,t)dt ds

∣∣∣∣≤ D(x,y)+
M


j=0

D̂(0, j)(x,y)

+
N


i=0

D̃(i,0)(x,y)+ D̄(x,y), (6.48)

holds for each (x,y) ∈ [a,b]× [c,d], where

D(x,y) =
1

|P(a,c)| |R(x,y; f )|,

D̂(0, j)(x,y) =
1

|P(a,c)|

(
M


j=0

∫ b

a
|P̂(N, j)(x,s,y)|q̂ j ds

)1/q̂ j

‖ f(N+1, j)‖ p̂ j ,

provided that f(N+1, j) ∈ Lp̂ j ([a,b]× [c,d]), 1/ p̂ j +1/q̂ j = 1,

D̃(i,0)(x,y) =
1

|P(a,c)|

(
N


i=0

∫ d

c
|P̃(i,M)(x,y,t)|q̃i dt

)1/q̃i

‖ f(i,M+1)‖ p̃i ,

provided that f(i,M+1) ∈ Lp̃i([a,b]× [c,d]), 1/ p̃i +1/q̃i = 1,

D̄(x,y) =
1

|P(a,c)|
(∫ b

a

∫ d

c
|P̄(N,M)(x,s,y,t)|q̄dt ds

)1/q̄

‖ f(N+1,M+1)‖ p̄,
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provided that f(N+1,M+1) ∈ Lp̄([a,b]× [c,d]), 1/ p̄+1/q̄ = 1,

where p, P, P̂(N, j), P̃(i,M) and P̄(N,M) are as in Theorem 6.26 whereas R is defined in (6.38).

Proof. Identity (6.39) can be rewritten as

f (x,y) − 1
P(a,c)

∫ b

a

∫ d

c
p(s,t) f (s,t)dt ds

=
1

P(a,c)

[
R(x,y; f )+

M


j=0

∫ b

a
P̂(N, j)(x,s,y) f(N+1, j)(s,y)ds

+
N


i=0

∫ d

c
P̃(i,M)(x,y,t) f(i,M+1)(x, t)dt

−
∫ b

a

∫ d

c
P̄(N,M)(x,s,y,t) f(N+1,M+1)(s, t)dt ds

]
.

Now, taking absolute value and applying the Hölder inequality for double integrals, we
easily obtain our required inequality. �

Remark 6.9 For N = M = 0, Theorem 4 of [80] becomes special case of Theorem 6.29
and we also retrieve results of [14] by simply putting p ≡ 1.

Theorem 6.30 Let f : [a,b]× [c,d]→R be a continuous function such that f ∈C(N+1,M+1)((a,b)
×(c,d)) and | f(N+1,M+1)|q be an integrable function such that

∥∥ f(N+1,M+1)
∥∥

q
:=

(∫ b

a

∫ d

c
| f(N+1,M+1)(s, t)|q dt ds

)1/q

< .

Then the inequality∣∣∣∫ b

a

∫ d

c
p(s,t) f (x,t)dt ds−

[
R(x,y; f )

+
M


j=1

∫ b

a

∫ d

c
p(s,)

( − y) j

j!
f(0, j)(s,y)d ds

+
N


i=1

∫ b

a

∫ d

c
p( ,t)

( − x)i

i!
f(i,0)(x,t)dt d

+
∫ b

a

∫ d

c
p(s,t) f (x,t)dt ds

+
∫ b

a

∫ d

c
p(s,t) f (s,y)dt ds−P(a,c) f (x,y)

]∣∣∣
≤

(∫ b

a

∫ d

c
|P̄(N,M)(x,s,y,t)|dt ds

)1/q

‖ f(N+1,M+1)‖q′ .

holds for each (x,y) ∈ [a,b]× [c,d], where 1/q+1/q′ = 1; q,q′ > 1 and P, P̄(N,M) are as
in Theorem 6.26.



6.2 MONTGOMERY IDENTITIES FOR HIGHER ORDER DIFFERENTIABLE FUNCTIONS... 251

Proof. Identity (6.40) may be rewritten as

∫ b

a

∫ d

c
p(s,t) f (s,t)dt ds−

[
R(x,y; f )

+
∫ b

a

∫ d

c
p(s,t) f (s,y)dt ds+

∫ b

a

∫ d

c
p(s,t) f (x,t)dt ds

+
M


j=1

∫ b

a

∫ d

c
p(s,)

(− y) j

j!
f(0, j)(s,y)d ds

+
N


i=1

∫ b

a

∫ d

c
p( ,t)

( − x)i

i!
f(i,0)(x, t)dt d −P(a,c) f (x,y)

]

=
∫ b

a

∫ d

c
P̄(N,M)(x,s,y,t) f(N+1,M+1)(s,t)dt ds.

Now, taking absolute value and applying Hölder’s inequality for double integrals, we easily
obtain our required inequality. �

Remark 6.10 For N = M = 0, Theorem 5 of [80] becomes special case of Theorem 6.30
and we also retrieve results of [5] and [13] by simply putting p ≡ 1.

6.2.3 Grüss’ Inequalities for Double Weighted Integrals of Higher
Order Differentiable Functions

In [80], J. Pečarić and A. Vukelić gave new Grüss-type inequalities for double weighted
integrals by using identities (6.33) and (6.34). Now, we give more generalized results by
using higher order differentiable functions of two independent variables but in order to
simplify the details of the presentations we define the following notations.

A(i, j)(x,y) = p(x,y)[ f(i, j)(x,y)g(x,y) (6.49)

+ g(i, j)(x,y) f (x,y)]P(i, j)
(a,c)→(b,d)(x,y),

A(x,y) = p(x,y)
∫ b

a

∫ d

c
p(s,t)[ f (s,t)g(x,y)+g(s, t) f (x,y)]dt ds, (6.50)

Â(N, j)(x,y) = p(x,y)
∫ b

a
[ f(N+1, j)(s,y)g(x,y)+g(N+1, j)(s,y) f (x,y)]×

× P̂(N, j)(x,s,y)ds, (6.51)

Ã(i,M)(x,y) = p(x,y)
∫ d

c
[ f(i,M+1)(x,t)g(x,y)+g(i,M+1)(x,t) f (x,y)]×

× P̃(i,M)(x,y,t)dt, (6.52)

Ā(N,M)(x,y) = p(x,y)
∫ b

a

∫ d

c
P̄(N,M)(x,s,y,t)× (6.53)

× [ f(N+1,M+1)(s,t)g(x,y)+g(N+1,M+1)(s, t) f (x,y)]dt ds,
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B(i, j)(x,y) = |p(x,y)g(x,y)| ‖ f(i, j)(x,y)‖ (6.54)

+ |p(x,y) f (x,y)| ‖g(i, j)(x,y)‖,

C(i, j)(x,y) =
(max{b− x,x−a})i+1

(i+1)!
(max{d− y,y− c}) j+1

( j +1)!
× (6.55)

×
∫ b

a

∫ d

c
|p( ,)|d d , (6.56)

C(0, j)(y) = (b−a)
(max{d− y,y− c}) j+1

( j +1)!

∫ b

a

∫ d

c
|p( ,)|d d , (6.57)

C(i,0)(x) = (d− c)
(max{b− x,x−a})i+1

(i+1)!

∫ b

a

∫ d

c
|p( ,)|d d , (6.58)

Ĉ(N, j)(x,y) =
∫ b

a
|P̂(N, j)(x,s,y)|ds, (6.59)

C̃(i,M)(x,y) =
∫ d

c
|P̃(i,M)(x,y,t)|dt, (6.60)

C̄(N,M)(x,y) =
∫ b

a

∫ d

c
|P̄(N,M)(x,s,y,t)|dt ds, (6.61)

F(x,y) = R(x,y; f )+
∫ b

a

∫ d

c
p(s,t) f (s,y)dtds+

∫ b

a

∫ d

c
p(s,t) f (x,t)dtds

+
M


j=1

∫ b

a

∫ d

c
p(s,)

( − y) j

j!
f(0, j)(s,y)d ds

+
N


i=1

∫ b

a

∫ d

c
p( ,t)

( − x)i

i!
f(i,0)(x,t)dt d , (6.62)

G(x,y) = R(x,y;g)+
∫ b

a

∫ d

c
p(s,t)g(s,y)dtds+

∫ b

a

∫ d

c
p(s, t)g(x,t)dtds

+
M


j=1

∫ b

a

∫ d

c
p(s,)

( − y) j

j!
g(0, j)(s,y)d ds

+
N


i=1

∫ b

a

∫ d

c
p( ,t)

( − x)i

i!
g(i,0)(x,t)dt d , (6.63)

where f ,g∈C(N+1,M+1)([a,b]× [c,d]) and p, P, P̂(N, j), P̃(i,M) and P̄(N,M) are as in Theorem
6.26 whereas R is defined in (6.38).

Now, we present our main results of this section by using notations introduced earlier
in this section, which are as follows:

Theorem 6.31 Let p : [a,b]× [c,d]→R be an integrable function and let f , g∈C(N+1,M+1)([a,b]
×[c,d]). Then the inequality∣∣∣∣ 1

P(a,c)

∫ b

a

∫ d

c
p(x,y) f (x,y)g(x,y)dydx
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−
(

1
P(a,c)

∫ b

a

∫ d

c
p(x,y) f (x,y)dydx

)(
1

P(a,c)

∫ b

a

∫ d

c
p(x,y)g(x,y)dydx

)∣∣∣∣

≤ 1
2[P(a,c)]2

∫ b

a

∫ d

c

[ N


i=1

M


j=1

B(i, j)(x,y)C(i, j)(x,y)

+
M


j=1

B(0, j)(y)C(0, j)(y)+
N


i=1

B(i,0)(x)C(i,0)(x)+B(N+1, j)(x,y)Ĉ(N, j)(x,y)

+B(i,M+1)(x,y)C̃(i,M)(x,y)+B(N+1,M+1)(x,y)C̄(N,M)(x,y)
]
dydx

holds, where P is defined in (6.32).

Proof. From (6.39) for (x,y) ∈ [a,b]× [c,d], we have

P(a,c) f (x,y) = R(x,y; f )+
∫ b

a

∫ d

c
p(s, t) f (s, t)dt ds

+
M


j=0

∫ b

a
P̂(N, j)(x,s,y) f(N+1, j)(s,y)ds

+
N


i=0

∫ d

c
P̃(i,M)(x,y,t) f(i,M+1)(x,t)dt

−
∫ b

a

∫ d

c
P̄(N,M)(x,s,y, t) f(N+1,M+1)(s, t)dt ds, (6.64)

P(a,c)g(x,y) = R(x,y;g)+
∫ b

a

∫ d

c
p(s,t)g(s,t)dt ds

+
M


j=0

∫ b

a
P̂(N, j)(x,s,y)g(N+1, j)(s,y)ds

+
N


i=0

∫ d

c
P̃(i,M)(x,y,t)g(i,M+1)(x, t)dt

−
∫ b

a

∫ d

c
P̄(N,M)(x,s,y, t)g(N+1,M+1)(s,t)dt ds. (6.65)

Now, if we multiply (6.64) by p(x,y)g(x,y) and (6.65) by p(x,y) f (x,y) and add them,
then we obtain

2P(a,c)p(x,y) f (x,y)g(x,y) = −
N


i=1

M


j=1

A(i, j)(x,y)−
M


j=1

A(0, j)(y)

−
N


i=1

A(i,0)(x)+A(x,y)+ Â(N, j)(x,y)

+ Ã(i,M)(x,y)− Ā(N,M)(x,y). (6.66)
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If we integrate (6.66) over [a,b]× [c,d] and divide both sides by 2P(a,c), then we get∫ b

a

∫ d

c
p(x,y) f (x,y)g(x,y)dydx

=
1

2P(a,c)

∫ b

a

∫ d

c

[
−

N


i=1

M


j=1

A(i, j)(x,y)−
M


j=1

A(0, j)(y)

−
N


i=1

A(i,0)(x)+A(x,y)+ Â(N, j)(x,y)+ Ã(i,M)(x,y)− Ā(N,M)(x,y)
]
dydx.

It can be rewritten as

1
P(a,c)

∫ b

a

∫ d

c
p(x,y) f (x,y)g(x,y)dydx

−
(

1
P(a,c)

∫ b

a

∫ d

c
p(x,y) f (x,y)dydx

)(
1

P(a,c)

∫ b

a

∫ d

c
p(x,y)g(x,y)dydx

)

=
1

2[P(a,c)]2

∫ b

a

∫ d

c

[
−

N


i=1

M


j=1

A(i, j)(x,y)−
M


j=1

A(0, j)(y)

−
N


i=1

A(i,0)(x)+ Â(N, j)(x,y)+ Ã(i,M)(x,y)− Ā(N,M)(x,y)
]
dydx. (6.67)

Using (6.49), . . . ,(6.61), we have the following inequalities for all (x,y) ∈ [a,b]× [c,d]

|A(i, j)(x,y)| ≤ B(i, j)(x,y) C(i, j)(x,y),

|A(0, j)(y)| ≤ B(0, j)(y) C(0, j)(y),

|A(i,0)(x)| ≤ B(i,0)(x) C(i,0)(x),

|Â(N, j)(x,y)| ≤ B(N+1, j)(x,y) Ĉ(N, j)(x,y),

|Ã(i,M)(x,y)| ≤ B(i,M+1)(x,y) C̃(i,M)(x,y),

|Ā(N,M)(x,y)| ≤ B(N+1,M+1)(x,y) C̄(N,M)(x,y).

Taking absolute value on both sides in (6.67) and using all these inequalities in it, we get
our required result. �

Theorem 6.32 Let the assumptions of Theorem 6.31 be valid. Then the inequality∣∣∣∣ 1
P(a,c)

∫ b

a

∫ d

c
p(x,y) f (x,y)g(x,y)dydx

+
(

1
P(a,c)

∫ b

a

∫ d

c
p(x,y) f (x,y)dydx

)(
1

P(a,c)

∫ b

a

∫ d

c
p(x,y)g(x,y)dydx

)

− 1
2[P(a,c)]2

∫ b

a

∫ d

c
p(x,y)[g(x,y)F(x,y)+ f (x,y)G(x,y)]dydx

∣∣∣∣
≤ 1

2[P(a,c)]2

∫ b

a

∫ d

c
B(N+1,M+1)(x,y) C̄(N,M)(x,y)dydx
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holds, where P is defined in (6.32).

Proof. From (6.40) for (x,y) ∈ [a,b]× [c,d] we have

P(a,c) f (x,y) = F(x,y)−
∫ b

a

∫ d

c
p(s, t) f (s,t)dt ds

+
∫ b

a

∫ d

c
P̄(N,M)(x,s,y, t) f(N+1,M+1)(s, t)dt ds, (6.68)

P(a,c)g(x,y) = G(x,y)−
∫ b

a

∫ d

c
p(s,t)g(s,t)dt ds

+
∫ b

a

∫ d

c
P̄(N,M)(x,s,y, t)g(N+1,M+1)(s,t)dt ds. (6.69)

If we multiply (6.68) by p(x,y)g(x,y) and (6.69) by p(x,y) f (x,y) and add them, then we
get

2P(a,c)p(x,y) f (x,y)g(x,y) = p(x,y)g(x,y)F(x,y)+ p(x,y) f (x,y)G(x,y)

− A(x,y)+ Ā(N,M)(x,y). (6.70)

If we integrate (6.70) over [a,b]× [c,d] and divide both sides by 2P(a,c), then we get

∫ b

a

∫ d

c
p(x,y) f (x,y)g(x,y)dydx

=
1

2P(a,c)

∫ b

a

∫ d

c
p(x,y)[g(x,y)F(x,y)+ f (x,y)G(x,y)]dydx

− 1
P(a,c)

(∫ b

a

∫ d

c
p(x,y) f (x,y)dydx

)(∫ b

a

∫ d

c
p(x,y)g(x,y)dydx

)

+
1

2P(a,c)

∫ b

a

∫ d

c
Ā(N,M)(x,y)dydx. (6.71)

Also we have
|Ā(N,M)(x,y)| ≤ B(N+1,M+1)(x,y) C̄(N,M)(x,y). (6.72)

From (6.71) and (6.72), we obtain our required inequality. �

Remark 6.11 For N = M = 0, Theorems 6 and 7 of [80] become special cases of The-
orems 6.31 and 6.32 respectively and we also retrieve results of [53] by simply putting
p ≡ 1. For N = M = 0, we can also find similar results as given in [21].



256 6 ČEBYŠEV-POPOVICIU TYPE INEQUALITIES

6.3 Inequalities for the Čebyšev Functional
Involving Higher Order Derivatives

Suppose that  is normalized (signed) measure on the interval [0,1] and that L1() is a
space of integrable functions with respect to the measure  . For f ,g, f g ∈ L1(), the
Čebyšev functional is defined by

T ( f ,g;) =
∫ 1

0
f g d−

∫ 1

0
f d

∫ 1

0
g d . (6.73)

Majority of problems involving the Čebyšev functional are to give a lower bound or an
upper bound for T under various assumptions (Čebyšev inequalities, Grüss inequality,
etc.)(see [51]). Usually the main step in obtaining such a type of estimation is to prove
an appropriate identity for T and one of the basic properties of the functional T is abun-
dance of identities (Korkine’s identity, Sonin’s identity etc.).

Our main goal is to give a general form of the identity which started with J. Pečarić in
[64], which in our notation can be formulated in the following form:

T ( f ,g;) =
∫ 1

0

[
R1(x)

∫ x

0
L1(t)g′(t)dt +L1(x)

∫ 1

x
R1(t)g′(t)dt

]
f ′(x)dx (6.74)

where f ′ and g′ are integrable on [0,1] and L1(x) =
∫ x
0 d , R1(x) =

∫ 1
x d . The second step

was done by A. M. Fink in [19] where he showed that

T ( f ,g;) =
∫ 1

0
f ′(x)g′(x)(R1(x)L2(x)+L1(x)R2(x))dx

−
∫ 1

0

(
R2(x) f ′′(x)

∫ x

0
g′′(t)L2(t)dt +R2(x)g′′(x)

∫ x

0
f ′′(t)L2(t)dt

)
dx

(6.75)

where f ′′, g′′ are integrable on [0,1] and L2(x) =
∫ x
0 L1(t)dt, R2(x) =

∫ 1
x R1(t)dt.

The applications are mostly inspired by A. M. Fink’s expository paper [19]. We give
a unified approach to establishing upper bounds of the Čebyšev functional of functions,
derivatives which belong to Lp spaces. These results are given in [74].

6.3.1 The Main Identity

In the following we assume that  is the (signed) normalized measure on [0,1]. We define
sequences (Ln), (Rn) of functions on [0,1] by:

L1(x) =
∫ x

0
d , Ln(x) =

∫ x

0
Ln−1(x)dx, n ≥ 2

R1(x) =
∫ 1

x
d , Rn(x) =

∫ 1

x
Rn−1(x)dx, n ≥ 2. (6.76)
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We also use the following kernels for n, m ≥ 1:

kn,m(x,t) =

{
Rn(x)Lm(t), 0 ≤ x ≤ t

Ln(x)Rm(t), x < t ≤ 1

Kn,m(x,t) =

{
Rn(x)Lm(t), 0 ≤ x ≤ t

−Ln(x)Rm(t), x < t ≤ 1

The following lemma contains the key technical identities.

Lemma 6.1 Suppose that f and g are differentiable functions on (0,1), such that f ′ and
g′ are integrable on [0,1]. The following identities hold:

∫ 1

0

∫ 1

0
kn,m(x,t) f (x)g(t)dtdx

=
∫ 1

0
[RnLm+1 +LnRm+1] f g−

∫ 1

0

∫ 1

0
Kn,m+1(x, t) f (x)g′(t)dtdx,

∫ 1

0

∫ 1

0
kn,m(x,t) f (x)g(t)dtdx

=
∫ 1

0
[Rn+1Lm +Ln+1Rm] f g+

∫ 1

0

∫ 1

0
Kn+1,m(x, t) f ′(x)g(t)dtdx,

∫ 1

0

∫ 1

0
Kn,m(x,t) f (x)g(t)dtdx

=
∫ 1

0
[RnLm+1 −LnRm+1] f g−

∫ 1

0

∫ 1

0
kn,m+1(x, t) f (x)g′(t)dtdx,

∫ 1

0

∫ 1

0
Kn,m(x,t) f (x)g(t)dtdx

=
∫ 1

0
[Rn+1Lm −Ln+1Rm] f g+

∫ 1

0

∫ 1

0
kn+1,m(x, t) f ′(x)g(t)dtdx.

Proof. Using integration by parts, we have∫ 1

0
Kn,m+1(x,t)g′(t)dt = −

∫ 1

0
g(t)dKn,m+1(x,t). (6.77)

Obviously
Kn,m+1

 t = kn,m(x,t) for t �= x and Kn,m+1(x,x+0)−Kn,m+1(x,x−0)=−Ln(x)Rm+1(x)
−Rn(x)Lm+1(x), so by decomposition of the second integral in (6.77) in the (absolutely)
continuous part and the singular (discrete) part, we obtain∫ 1

0
Kn,m+1(x,t)g′(t)dt
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= [Rn(x)Lm+1(x)+Ln(x)Rm+1(x)]g(x)−
∫ 1

0
kn,m(x, t)g(t)dt. (6.78)

The first identity now follows by multiplying (6.78) by f (x) and by integration.
The proofs of the second, third and fourth identity are analogous. �

Our main identity, which is a generalization of the Pečarić identity (6.74) and the Fink
identity (6.75), is contained in the following theorem.

Theorem 6.33 Let m and n be natural numbers. Let ((mi,ni)) , i = 1, . . . ,m+n−1 be a
sequence of pairs of natural numbers such that (mi) and (ni) are nondecreasing sequences,
m1 = n1 = 1, mm+n−1 = m, nm+n−1 = n and mi +ni = mi−1 +ni−1 +1, i = 2, . . . ,m+n−1.
If f and g are functions such that g(m) and f (n) are integrable on [0,1], then

T ( f ,g;)

=
m+n−2


i=1

(−1)mi+1
∫ 1

0

[
Rni+1Lmi+1 +(−1)mi+niLni+1Rmi+1

]
g(mi) f (ni)

+(−1)m+1
∫ 1

0

∫ 1

0
k̄n,m(x,t)g(m)(t) f (n)(x)dtdx, (6.79)

where k̄n,m = kn,m for m+n even and k̄n,m = Kn,m for m+n odd.

Proof. The proof is by induction. For m+n = 2 identity (6.79) is equal to T ( f ,g;) =∫ 1
0

∫ 1
0 k1,1(x, t) f ′(x)g′(t)dtdx and this is the Pečarić identity (6.74). For the induction step,

we consider two cases: m+n even, and m+n odd. Suppose that m+n is even. In this case
also, we consider two subcases: (mn+m,nn+m) = (m+1,n), and (mn+m,nn+m) = (m,n+1).
Suppose that (mn+m,nn+m) = (m+1,n). Assume that identity (6.79) holds for the sequence
((mi,ni)) with (mm+n−1,nm+n−1) = (m,n). Then

T ( f ,g;)

=
m+n−2


i=1

(−1)mi+1
∫ 1

0

[
Rni+1Lmi+1 +(−1)mi+niLni+1Rmi+1

]
g(mi) f (ni)

+(−1)m+1
∫ 1

0

∫ 1

0
kn,m(x,t)g(m)(t) f (n)(x)dtdx

=
m+n−2


i=1

(−1)mi+1
∫ 1

0

[
Rni+1Lmi+1 +(−1)mi+niLni+1Rmi+1

]
g(mi) f (ni)

+(−1)m+1
[∫ 1

0
[RnLm+1 +LnRm+1]g(m) f (n)

−
∫ 1

0

∫ 1

0
Kn,m+1(x,t)g(m+1)(t) f (n)(x)dtdx

]

=
m+n−1


i=1

(−1)mi+1
∫ 1

0

[
Rni+1Lmi+1 +(−1)mi+niLni+1Rmi+1

]
g(mi) f (ni)

+(−1)m+2
∫ 1

0

∫ 1

0
Kn,m+1(x,t)g(m+1)(t) f (n)(x)dtdx, (6.80)
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where the second equality follows from the first identity in Lemma 6.1 and the last equality
follows from the properties of the sequence ((mi,ni)) (m+ n even number, mm+n−1 = m,
mm+n = m+1).

The proofs of the remaining cases follow the analogous arguing. �

The reason for introducing the sequence ((mi,ni)) in Theorem 6.33 is that the i-th
member of the summation in (6.80) is determined by i-th member (derivates) and (i+1)-
th member (expressions in square brackets) of the sequence ((mi,ni)).

The simplest (“diagonal”) case is given in the following corollary.

Corollary 6.6 Let n be a natural number. If f and g are functions such that f (n) and g(n)

are integrable on [0,1], then

T ( f ,g;) =
n−1


i=1

(−1)i+1
∫ 1

0
[RiLi+1 +LiRi+1]g(i) f (i)

+(−1)n+1
∫ 1

0

∫ 1

0
kn,n(x,t)g(n)(t) f (n)(x)dtdx (6.81)

Proof. Apply Theorem 6.33 using the sequence ((mi,ni))) defined by: m2i−1 = n2i−1 =
i, i = 1, ...,n, m2i = i+1, n2i = i, i = 1, ...,n−1. �

Notice that one can obtain identity (6.80) defined by one sequence from the identity
defined by some other sequence using identities (i, j natural numbers)

∫ 1

0

[
RiL j+1 +(−1)i+ jLiL j+1

]
f (i)g( j)

−
∫ 1

0

[
Ri+1Lj+1 +(−1)i+ j+1Li+1Lj+1

]
f (i)g( j+1)

=
∫ 1

0

[
Ri+1Lj +(−1)i+ jLi+1Lj

]
f (i)g( j)

+
∫ 1

0

[
Ri+1Lj+1 +(−1)i+ j+1Li+1Lj+1

]
f (i+1)g( j) (6.82)

which can be easily established by integration by parts.

6.3.2 Applications

In this section we mostly follow the ideas given in [19] and [64]. For simplicity we give
applications in ”diagonal” case, i.e. where (6.81) holds. Set:

In = (−1)n−1

[
T ( f ,g;)−

n−1


i=1

(−1)i+1
∫ 1

0
[RiLi+1 +LiRi+1] f (i)g(i)

]
. (6.83)

Notice that, according to Corollary 6.6, In =
∫ 1
0

∫ 1
0 kn,n(x,t) f (n)(x)g(n)(t)dtdx.
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Theorem 6.34 Suppose that f (n−1) and g(n−1) are monotone in the same sense and con-
cave functions and Ln−1, Rn ≥ 0. Then

In ≤ Mn

[
f (n−1)(1)− f (n−1)(0)

][
g(n−1)(1)−g(n−1)(0)

]
(6.84)

where Mn = maxx∈[0,1] Rn(x)Ln+1(x)/x.

Proof. Notice that∫ 1

0

∫ 1

0
kn,n(x,t) f (n)(x)g(n)(t)dxdt =

∫ 1

0
Rn(x)

[
f (n)(x)

∫ x

0
Ln(t)g(n)(t)dt

+ g(n)(x)
∫ x

0
Ln(t) f (n)(t)dt

]
dx. (6.85)

The rest of the proof is as in [19, Th.12]. �

In the case of the Lebesgue measure d = dx

Mn = max
x∈[0,1]

Rn(x)Ln+1(x)/x =
1
4n

1
n!(n+1)!

.

Notice that M1 = 1/8 which is not the best possible estimation. We give the following
proof for obtaining the best possible estimation in the case n = 1. If f (n) and g(n) are
nonnegative and decreasing, then

In =
∫ 1

0

∫ 1

0
kn,n(x,t)g(n)(t) f (n)(x)dtdx

=
∫ 1

0

[
Rn(x) f (n)(x)

∫ x

0
Ln(t)g(n)(t)dt +Ln(x) f (n)(x)

∫ 1

x
Rn(t)g(n)(t)dt

]
dx

≤
[
g(n−1)(1)−g(n−1)(0)

]∫ 1

0
Ln(x)Rn(x) f (n)(x)dx. (6.86)

Since f (n) is decreasing and P2n(x) = (n!)2Ln(x)Rn(x) = xn(1− x)n is symmetric with
respect to x = 1/2, we have∫ 1

0
P2n(x) f (n)(x)dx ≤ 2

∫ 1/2

0
P2n(x) f (n)(x)dx

≤
∫ 1/2

0
P2n(x)dx

∫ 1/2

0
f (n)(x)dx =

1
2

(n!)2

(2n+1)!

[
f (n−1)(1/2)− f (n−1)(0)

]
.

(6.87)

Using (6.86) and (6.87),

In ≤ M′
n

[
g(n−1)(1)−g(n−1)(0)

][
f (n−1)(1/2)− f (n−1)(0)

]
,

where M′
n = 1

2(2n+1)! . Notice that M′
1 = 1/12 which gives the best possible estimation [19,

Th.13]. It is easy to see that M′
n < Mn for n = 1,2,3 and M′

n > Mn for n ≥ 4.
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Our second application is in estimating |In| using Hölder’s inequality. This can be
done in various ways.The Lebesgue measure d = dx is assumed, although analogous
estimations can be given for a general measure, but without explicit calculations. Set:

‖ f‖p =
(∫ 1

0 | f (x)|p
)1/p

.

Theorem 6.35 The following inequalities hold:

|In| ≤ 1
4n

1
n!(n+1)!

‖g(n)‖p‖ f (n)‖q, p,q ≥ 1, 1/p+1/q = 1, (6.88)

|In| ≤ 1
(n!)2

1

(nq+1)
1
q

[
2(np1 +1)
(2np1 +2)

] 1
p1 |g(n)|p| f (n)|q1 ,

p,q, p1,q1 ≥ 1, 1/p+1/q = 1,1/p1 +1/q1 = 1. (6.89)

Proof. Using the (weighted) Hölder inequality we have

|In| =
∣∣∣∣∫ 1

0

∫ 1

0
g(n)(t) f (n)(x)kn,n(x,t)dtdx

∣∣∣∣
≤

(∫ 1

0

∫ 1

0

∣∣∣g(n)(t)
∣∣∣p kn,n(x,t)dtdx

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣ f (n)(x)
∣∣∣q kn,n(x,t)dtdx

) 1
q

=
(∫ 1

0

∣∣∣g(n)(t)
∣∣∣p(∫ 1

0
kn,n(x,t)dx

)
dt

) 1
p

(∫ 1

0

∣∣∣ f (n)(x)
∣∣∣q(∫ 1

0
kn,n(x, t)dt

)
dx

) 1
q

.

Since maxt∈[0,1]
∫ 1
0 kn,n(x,t)dx = maxx∈[0,1]

∫ 1
0 kn,n(x,t)dt = 1

4nn!(n+1)! , inequality (6.88) fol-
lows.

Using the Hölder inequality and the integral Minkowski inequality we have:

|In| =
∣∣∣∣∫ 1

0
g(n)(t)

(∫ 1

0
f (n)(x)kn,n(x,t)dx

)
dt

∣∣∣∣
≤

∥∥∥g(n)
∥∥∥

p

(∫ 1

0

(∫ 1

0

∣∣∣ f (n)(x)
∣∣∣kn,n(x,t)dx

)q

dt

) 1
q

≤
∥∥∥g(n)

∥∥∥
p

∫ 1

0

(∫ 1

0

∣∣∣ f (n)(x)
∣∣∣q kq

n,n(x,t)dt

) 1
q

dx

=
1

(nq+1)
1
q (n!)2

∥∥∥g(n)
∥∥∥

p

∫ 1

0

∣∣∣ f (n)(x)
∣∣∣(1− x)nxn dx. (6.90)

Inequality (6.89) follows by applying again Hölder’s inequality, now with conjugate expo-
nents p1, q1. �
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We compare estimates (6.88) and (6.89) with some known estimates in the case n = 1.
Notice that (6.88) gives

|I1| ≤ (1/8)‖g′‖p‖ f ′‖q. (6.91)

This general (in the sense that p and q are arbitrary conjugate exponents) estimate is the
best possible one. To prove this, we prove that 1/8 is the best possible constant in (6.91)
in the case p =, q = 1. To do this take g(x) = x, x ∈ [0,1] and f (x) =

∫ x
0 f̃ (t)dt, where

f̃ (t) = 1/(2) for t ∈ (1/2− ,1/2 + ) and f̃ (t) = 0 otherwise, 0 <  < 1/2. It is
easy to see that lim→0 I1 = lim→0 T ( f ,g;dx) = 1/8, |g′| = | f ′ |1 = 1, which gives the
optimality of the estimate (6.91).

Two classes of the estimate (6.89) are of a special interest:

q1 = p, |I1| ≤C1(p) ‖g′‖p‖ f ′‖p, C1(p) =
1

(q+1)
1
q

[
2(q+1)
(2q+2)

] 1
q

, (6.92)

q1 = q, |I1| ≤C2(p) ‖g′‖p‖ f ′‖q, C2(p) =
1

(q+1)
1
q

[
2(p+1)
(2p+2)

] 1
p

. (6.93)

The following cases can be easily checked: p = 1 ( f and g are of bounded variation)
C1(1) = 1/4, which is the best possible estimation (compare [19]); p =  ( f and g are
Lipshitzian), C1() = 1/12, which is the best possible estimation ( [19]); p = 2, C1(2) =
C2(2) = 1/

√
90, which is remarkably close to the best possible constant 1/2 (compare

[40]). Note that C2(1) = 1/6 and C2() = 1/8.
As a final application of identity (6.81), we give a series expansion of T ( f ,g;dx).

Since in this case
∫ 1

0

∫ 1

0
kn,n(x,t)dxdt =

1
(n+1)(2n+1)!

, it is obvious from (6.81), that if

| f (n)| ≤ F (n+1)Mn and |g(n)| ≤ G (n+1)Nn, for some F,G,M,N > 0 and every natural
n, then

T ( f ,g;dx) =



i=1

(−1)i+1
∫ 1

0
[RiLi+1 +LiRi+1] f (i)g(i). (6.94)

Using this and series expansions of hyperbolic functions, it is easy to see that

|T ( f ,g;dx)| ≤ FG

(
sinh

√
MN√

MN
−1

)
.

Analogously, if | f (n)| ≤ F Mn and |g(n)| ≤G Nn, for some F,G,M,N > 0 and every natural
number n, then

|T ( f ,g;dx)| ≤ FG

(
2
cosh

√
MN −1√
MN

−1

)
.
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[57] J.E. Pečarić, On an inequality of T. Popoviciu I, Bul. Sti. Tehn. Inst. Politehn.
Timisoara 2, 24 (38) (1979), 9–15.
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[69] J.E. Pečarić, Some inequalities for generalized convex functions of several variables,
Period. Math. Hungar., 22 (2) (1991), 83–90.
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related Stolarsky type means, An. Univ. Craiova Ser. Mat. Inform., 39 (1) (2012),
65–75.

[74] J. Pečarić, I. Perić, Identities for the Chebyshev functional involving derivatives of
arbitrary order and applications, J. Math. Anal. Appl. 313 (2006), 475–483.
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