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Preface

The famous Hilbert inequality asserts that

f(x)g(y) 4
— = dxdy < —|| f
/Ri y Xay >~ sinz . HpHquv

where f € L (R ), g € LY(R ) are non-negative functions, and p, g are mutually conjugate
parameters, that is, % + é =1, p > 1. The corresponding discrete version states that

T

@ W dmbn
22 < lalpll5]lq
m=1n=1 + 7

m+n — sinZ
P

where @ = (am),,.N € [” and b = (b,), .y € 17 are non-negative sequences. The constant
S :ﬁ appearing on the right-hand sides of both inequalities is the best possible. This dis-
crelt)e version of the Hilbert inequality was initially studied by D. Hilbert at the end of the
nineteenth century, hence, in his honor these inequalities are referred to as the integral and
the discrete Hilbert inequalities.

After discovering, the Hilbert inequality was extensively studied by numerous mathe-
maticians. A rich variety of generalizations included inequalities with more general ker-
nels, weight functions and integration domains, extension to a multidimensional case, as
well as refinements of the initial Hilbert inequality. The established inequalities are usually
referred to as the Hilbert-type inequalities. In addition, Hardy, Littlewood and Pélya no-
ticed in their monograph Inequalities (see [47]) that every Hilbert-type inequality possesses
the equivalent Hardy-Hilbert-type form, closely connected to a famous Hardy inequality.
For a detailed review of the starting development of the Hilbert inequality the reader is
referred to monograph [47].

Nowadays, more than a century after discovering the Hilbert inequality, this topic is
still of interest to numerous authors. In 2012, Krni¢, Pecari¢, Peri¢ and Vukovi¢ published
a monograph Recent Advances in Hilbert-type inequalities (see [63]) which was collec-
tion of decennial research of authors and their collaborators. That monograph provides a
unified treatment of Hilbert-type inequalities, with integrals taken over o —finite measure
space, and with general kernel and weight functions. In addition, several new methods for
improving Hilbert-type inequalities were also presented in [63].

The present book Further Development of Hilber-type Inequalities may be regarded
as a continuation of Recent Advances in Hilbert-type inequalities. Namely, this book is




a result of five-year research of authors in Hilbert-type inequalities. The book is based
on some twenty significant papers published in the course of the last five years. Roughly
speaking, we give some new generalizations, interpretations, refinements and applications
of Hilbert-type inequalities. The book is divided into nine chapters.

An introductory part of this book is Chapter 1 in which we give definitions and basic
results necessary for establishing the results that will follow. Namely, for the reader’s con-
venience we present Hilbert-type inequalities with conjugate and non-conjugate exponents
in most general forms. Most of these results have been taken from already mentioned book
[63], which will be the starting point in establishing Hilbert-type inequalities in succeeding
chapters.

In Chapter 2 we deal with some particular classes of Hilbert-type inequalities. First,
we derive more accurate version of the discrete Hilbert-type inequality by means of the
Hermite-Hadamard inequality. Then, we establish some particular multidimensional ver-
sions of the Hilbert inequality in both integral and discrete case. Finally, we give a unified
treatment of half-discrete Hilbert-type inequalities. Such inequalities include both integral
and sum. All results are given in two equivalent forms. Finally, we establish a condition
under which the constants appearing on the right-hand sides of these inequalities are the
best possible.

In Chapter 3 we derive Hilbert-type inequalities on time scales. After recalling essen-
tials about time scales, we establish the corresponding results.

In Chapter 4 we present a new method for improving Hilbert-type inequalities, based on
an improved form of the Young inequality, known from the literature. We obtain refined
and reversed relations in a general multidimensional case. As an application, we also
establish improved versions of the classical Hilbert and Hardy inequalities.

In Chapter 5 we establish several new Hilbert-type inequalities with a homogeneous
kernel, involving arithmetic, geometric, and harmonic mean operators in integral, discrete
and half-discrete case. A particular emphasis is placed on the problem of the best possible
constants. Namely, it is interesting that the constants appearing on the right-hand sides
of the established inequalities are also the best possible. Finally, some multidimensional
extensions are also studied.

Several classes of Hilbert-type inequalities involving certain differential operators are
studied in Chapter 6. We show that the constants appearing in derived inequalities are the
best possible. Finally, the corresponding multidimensional extensions are also given.

Chapter 7 is dedicated to an operator interpretation of the Hilbert inequality. We give a
general form of the Hilbert inequality for positive invertible operators on a Hilbert space.
Special emphasis is placed on inequalities with a homogeneous kernel. In some general
cases the best possible constants are also derived. Finally, some more accurate Hilbert-type
inequalities are established by means of the Hermite-Hadamard inequality.

In Chapter 8 we study a more accurate class of the Hilbert inequality closely connected
to the Carlson inequality. The established inequalities are given in both discrete and inte-
gral forms, and they include the best possible constants on their right-hand sides.

The main objective of Chapter 9 is a study of some generalizations of Hilbert-Pachpatte-
type inequalities closely connected to the Hilbert inequality. A special emphasis is placed
on inequalities with homogeneous kernels. Finally, we obtain a class of inequalities in-
volving fractional derivatives.

vi



Throughout the monograph, presented results are discussed and compared with previ-
ously known from the literature. Furthermore, at the end of a section or a chapter we cite
the corresponding references for presented results. We also give some relevant references
closely related to presented topics.

Since this book integrates the whole variety of results that were previously published
by several authors in numerous papers, it was almost impossible, despite our great effort,
to quite unify the terminology and the notation in the book. Nevertheless, starting from the
introductory chapter, but also in each particular chapter, most of the used terminology is
defined and explained for the reader’s convenience. It is done, of course, on the assumption
that the reader is familiar with the basis in real and in functional analysis.

Authors
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Chapter

Definitions and Basic Results

1.1 Hilbert-type Inequalities with Conjugate
Exponents

Let % + é =1, p > 1. The Hilbert inequality asserts that

o R vy < el (L

holds for all non-negative measurable functions f € L”(R+) and g € LY(R). After its dis-
covery at the beginning of the 20th century, the Hilbert inequality was studied by numerous
authors, who improved and generalized it in many different directions. This inequality is
still of interest to numerous authors. The applications in diverse fields of mathematics
have certainly contributed to its importance. For a comprehensive inspection of the initial
development of the Hilbert inequality, the reader is referred to a classical monograph [47],
while some recent results are collected in monograph [63].

In this book we refer to the following multidimensional extension of inequality (1.1)
established by Krni¢ et al. (see [63], [99]).

Theorem 1.1 Suppose (Q;,Z;, u;) are o-finite measure spaces, Y p =1, pi>1, and
Q=R Q= R, fi:Q — R, i,j=1,2,...,n are non-negative measurable
functions. [fH;l,j:1 (Z’ij (xj) = 1, then the following inequalities hold and are equivalent

/S2 Hﬁxldu <HH¢>uw,ﬁHp, (1.2)



2 1 DEFINITIONS AND BASIC RESULTS

and
1 n—1 P r
o\ o o 00 T2 ) o)
nn“n n D (1.3)
n—1
< [119iwifillp:,
i=1
where 5 = Y- 1; Q=119 Q = ?:l,jiigj’ X = (X1,X0,...,%), du(x) =

H?:l dnul(xl) d:“’( ) H] lﬁétd‘uj(‘xj) and

wi(x;) = [/ H o )1 " (1.4)

J=Lj#
The above notation will be used throughout the whole monograph. In addition, || - ||, stands

for the usual norm in L"(Q), that is || f]|, = [[o |f(x)|"du (x)]'l , r> 1. Inequalities follow-
ing from (1.2) are usually referred to as the Hilbert-type inequalities since (1.1) is a particu-
lar case of (1.2). Further, inequalities related to (1.3) are usually called Hardy-Hilbert-type
inequalities since (1.3) implies the classical Hardy inequality, which will be discussed later.
Inequalities (1.2) and (1.3) are closely connected in the sense that one implies the other,
hence they are sometimes both referred to as the Hilbert-type inequalities, for brevity.
Peri¢ and Vukovi¢ [77], developed a unified treatment of the Hilbert and Hardy-Hilbert
type inequalities with general homogeneous kernel. Further, regarding the notations from
Theorem 1.1, we assume that Q; =R, equipped with the non-negative Lebesgue measures
dui(x;) =dx;, i=1,2,...,n. In addition, we have Q = R’ and dx = dxdx;...dx,.
Recall that the function K : R”, — R is said to be homogeneous of degree —s, s > 0, if
K(rx) =t*K(x) for all # > 0. Furthermore, for a = (ai,as,...,a,) € R, we define

S n
:/R»zflK(ﬁ’) [T «/du, i=12,...n (1.5)
M J=Lj#i
where & = (u1,...,u; 1, 1,ui1,... 1), du=du, ...du;_1du;yq .. .du,, and provided that

the above integral converges.
Utilizing Theorem 1.1 one obtains the following equivalent inequalities with general ho-
mogeneous kernel of degree —s:

/" Hf, ) dx<Hkl/p’ (i) [ I P gy (1.6)
= i=1

and

1
P

P
n—1
(n—1—s)—Poty,
/R ) )P ( /R ,:,K(x)i]:[l f,»(x,-)d%x> dx,

< . kl/Pi A (= (n—1=s)/pitoy
—H (i i)HHxi fill s
i=1 i=1

(1.7)



1.1 HILBERT-TYPE INEQUALITIES WITH CONJUGATE EXPONENTS 3

where A;;, i,j = 1,2,...,n, are real parameters such that A;jj=0for j=1,2,..

o =¥ Aij, Aif(All,A,g, SGAm),i=1,2,...n, andk() i=1,2,...,n,is deﬁned
by (1.5).

To obtain a case of the inequalities with the best possible constants it is natural to impose
the following conditions on parameters A;; :

ijji:.anfp,’(Oli*Aii), j%l‘, i,je{l,z,...,n}. (1.8)

In that case the constant factors from inequalities (1.6) and (1.7) are simplified to the fol-
lowing form:

L =k (A), (1.9)
where A = (Zl,gz,...,gn) and
Ai=piAy; for i#1 and A; = pyAn. (1.10)

Further, by using (1.8) and (1.9), the inequalities (1.6) and (1.7) with the parameters A;;,
satisfying the relation (1.8) become

o KT T tw)ax < L TT I 7 Al (111)
+ i=1 i=1

and

n—1 P
/R+ ~1=prn) ( /Rn | (X)Hﬁ(ﬂ)d"x) dx,

1

(1.12)
n—1 ~
* —Ai—1/pi
<L [Tl 7 il
i=1

Theorem 1.2 ([63]) Ler K : R, — R be a non-negative measurable homogeneous fun-
ction of degree —s, such that for every i =2,3,...,n,

K(1,t2,...\ti,...,tn) <CK(L,t2,...,0,...,t,), =1 <1; <1, (1.13)

where C is a positive constant. Let the parameters Xi, i=1,...,n, be defined by (1.10)
and 0 < € < minj<j<,{pi erigi}. If the parameters A;;j satisfy the conditions Y} A;j =0
for j=1,2,...,n,and (1.8), then the constant L* is the best possible in inequalities (1.11)
and (1.12).

The following result based on Theorem 1.1 can be seen in [88]. Let K : R, — R and
Ajj,i,j=1,2,...,n, be as in Theorem 1.2. If u; : (a;,b;) — (0,%0),i = 1,...,n are strictly
increasing differentiable functions such that u;(a;) = 0 and u;(b;) = e, then the following
inequalities hold and are equivalent

b| ‘b,l n
/ / Ky (1), un (1)) [ L (6)dr - -l
ay Jdn i=1
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Pi

<LTT| [ ) ) g7 e (1.14)

Jdpn

P
bn by n— 1 n-1
/ (un(tn))(l —P)(—1- PnAn [/ / l/l] t] n(tn))Hfl(tl)dtl dtn]‘| d[n
a, Ap—1 i=1

1
- . o
<L’ H [ / i)~ (1) AT (ti)dti] : (1.15)
where the constants L = k(gz, ... ,Zn) and L are the best possible in inequalities (1.14)
and (1.15).

Since the case n = 2 of inequalities (1.2) and (1.3) will be of special interest to us, we
state it as a separate result. The proof follows directly using substitutions p; = p, p» = q,
@11 = @ and ¢, = y. Observe that from ¢;1¢,; = 1 and @¢12¢2, = 1 we have ¢; =1/
and ¢1p = 1/ (for more details see e.g. [66]).

Theorem 1.3 Ler L +1 =1, p > 1, and let Q be a measure space with positive c-finite
measures U and Uy. Let K : Q x Q — R and @,y : Q — R be non-negative measurable
functions. If the functions F and G are defined by

) = [ Ky 0)dm0). 6°0)= [ Ko Wdm. (116

then for all non-negative measurable functions f and g on Q the inequalities

| | K fe)dum (dua) < IoF 1] wGell (117)

and

p
L6000 [ Kt )] duet)
<lloFfII5 (1.18)
hold and are equivalent.
If 0 < p < 1, then the reverse inequalities in (1.17) and (1.18) are valid, as well as the
inequality
q
[ Fwe 1| [ Kee)slam)| diats)
< Gl (1.19)

Remark 1.1 The equality in the previous theorem is possible if and only if it holds in the
Holder inequality, that is, if
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where C is a positive constant. In that case we have
fx)=Cip7(x) and g(y)=Cy "(y) ae. onQ, (1.20)

for some constants C; and C,, which is possible if and only if

/ F(x)o~9(x)du (x) <o and / GOV P () dua(y) < o. (1.21)
Q Q

Otherwise, the inequalities in Theorem 1.3 are strict.

For homogeneous function K (x,y) we define k(c) (see also definition (1.5)) as
k(o) = / K(1,u)u%du, (1.22)
Jo

provided that the above integral converges.

In the following theorem the integrals are taken over an arbitrary interval of non-negative
real numbers, i.e. (a,b) CR4, 0 < a < b < oo, and the weight functions are chosen to be
power functions.

Theorem 1.4 Ler % + cl/ =1, p>1, andlet K : (a,b) x (a,b) — R be a non-negative
homogeneous function of degree —s, s > 0, strictly decreasing in both variables. If A| and
A, are real parameters such that A, € (=2, é), Ay € (%, ;7), then for all non-negative

q
measurable functions f,g : (a,b) — R the inequalities

1

/ab /abK (x,3).f (x)g(v)dxdy
b

< U (k(pAz) — @i (PALX))X]HP(AIAZ)JW(XMX} ’

q

b
XU (k(ZSqu)(02(2Squ,y))y'”‘I(A”')gq(y)dy] (1.23)
and

b
/ (k(2—5—qA1) — 22— s —qAy,y)) Py D= Dirldimaz)
P

X [ /a "k (x,3)f (X)dX} dy

b
< / (k(pA2) — @1 (pAa,x))x' = TPAI=A2) 67 () dx (1.24)

hold and are equivalent, where

a\ 7% 1 N
¢1(a,x) = (-) / K(1,u)u=%du+ (—) / K(u,l)u“'*"‘*zdu,
X 0 b Jo
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a st+o—1 y -0
P (a,y) = (—) / K(u, 1)u* ™ 2du+ (—) / K(1,u)u"%du.
y 0 b 0

If0<p <1, b=-co and K(x,y) is strictly decreasing in x and strictly increasing in y,
then the reverse inequalities in (1.23) and (1.24) are valid for every Ay € (1,122) and

q’ q
A € (%, %) as well as the inequality
oo oo q
| (k(pa) = g1z, ) Ottt [ / K(x,y>g<y>dy] dx
a a
< / (k(2—5—gA1) — 2(2— s — gA1,y))y' T4 Mg (y)dy.
a

Moreover, if 0 < p < 1, a=0, and K(x,y) is strictly increasing in x and strictly decreasing

in y, then the reverse inequalities in (1.23) and (1.24) hold for every A| € ((11, lq‘) and

Ay e ( p) as well as the inequality

b B b q
/0 (k(pA2) — @1 (pAa,x)) ' Oxla- D= DtalAa—an) [ /0 K(x,y)g(y)dy] dx

b
S/O (k(2—s— A1) — (2 — s — gA1,y) )y 9N Mg (y)dqy.

Setting a = 0, b = o in the previous theorem, one obtains the corresponding inequalities
for an arbitrary non-negative homogeneous function of degree —s.

Corollary 1.1 Let % + é =1, p>1,andlet K:RL xR; — R be a non-negative ho-
mogeneous functlon of degree —s, s > 0. If Ay and A, are real parameters such that
A€ (T —) Ay € (] =3 » ). then for all non-negative measurable functions f,g : Ry — R
the mequalmes

/ / (x,3)f(x)g(y)dxdy
L 1
<L { / mx“‘*"(“”‘z)f”(x)dx} ' { / myl”"“””g"(y)dy] BENGEL)
and
o p
/ yP=Ds=N+p(4i=42) [ /0 K(X»y)f(X)dX] dy

<[P / X1 THPAA) () g (1.26)
0

hold and are equivalent, where L = ko (pAz)ké (2—s5s—qA)).
If 0 < p <1, then the reverse inequalities in (1.25) and (1.26) are valid for every A €
(L Sy and A; € ( 11,), as well as the inequality

q’ q
oo oo q
/ (a1 =1)+q(dr—A) [ / K(w)g(y)dy} I
0 0
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<1 /0 YIS H=A) g 3y, (1.27)

Inequalities (1.25) and (1.26), as well as their reverse inequalities are equivalent. More-
over, equality in the above relations holds if and only if f =0 or g=0a.e. on R..

Considering inequalities in Corollary 1.1 with parameters A; and A, fulfilling condition
pA2+qA1L=2—5, (1.28)

the constant L reduces to L = k(pA;). It has been shown that such constant is the best
possible in the corresponding inequalities.

The following result contains a generalized discrete Hilbert-type inequalities in both
equivalent forms. Krni€ et al. (see [65]) considered the weight functions involving real di-
fferentiable functions. By H(r), r > 0, is denoted the set of all non-negative differentiable
functions u : Ry — R satisfying the following conditions:

(i) uis strictly increasing on R and there exists xo € R such that u(xo) = 1,
(i) limy_eou(x) = oo, [Z,(% is decreasing on R, .

Theorem 1.5 Let % + % =1, p>1, and let s > 0. Further, suppose that A| €
(max{%,O}, é),Az € (max{%,O}, %), u€ H(qA,) andv € H(pAy). IfK : Ry xRy —
R is a non-negative homogeneous function of degree —s, strictly decreasing in each argu-
ment, then the inequalities

o oo

Zl Z] K(u(m)v‘)(n))ambn

[u(mnlS+P<A1A2>[u'<m>11f’af;]

x [2 [v(n)]lS‘+"<A2Al>[v’<n>1Isz] (1.29)
and

2 [v(n)](sfl)(pfl)w(ArAz)v/(n)

n=1

<10 3, )P v (130

m=1

hold for all non-negative sequences (am)meN, <b”)n€N’ where

L= kP (pA2)ke (2 — s — gAy). (131)

Moreover, inequalities (1.29) and (1.30) are equivalent.
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If the parameters A and A satisfy (1.28), that is, pA; + gA; = 2 — s, then the constant L
from Theorem 1.5 becomes

L* = k(pA,). (1.32)

Moreover, it has been shown that the constant L* is the best possible in the following
inequalities

-

2 2 K(u(m),v(n))amb, <L* [i [u(m)]flﬂ’qA' [u/(m)]lpaﬁll '

m=1n=1 m=1
X
n

- p
YK (u(m),V(n))am]

m=1

<L) S )] ()] P (134

m=1

1

[ﬂ@]”whwmn'%ﬂqasm

Mg

1

and

=3

2 [V(n)](pfl)(lquAz)vl(n)

n=1

1.2 Hilbert-type Inequalities with Non-conjugate
Exponents

First, we introduce n-dimensional extension of conjugate exponents. Leti = 1,2,...n and
let p;, p}, qi, A satisfy

pi>1, +—,:1,
i P
|
2_217
= Di
=1 ’1 - 1 (1.35)
A= 2—, and —=A-——, i=1,...,n,
n—15p; qi i
1
—>0, i=1,...,n
qi
It follows from these conditions that
1 |
—+(1-A)=—, i=1,...,n, (1.36)

qi Pi
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and

M=
|Dd

N

+(1-21)=1. (1.37)

1 4t

Observe that for A = 1 the above parameters reduce to the conjugate case, that is, Y,
land p;=g¢q;,i=1,2,...,n.

The following extension from [27] may also be regarded as a non-conjugate version of
Theorem 1.1.
Let Q; be a measure space with o-finite measure y;, i = 1,2, ...,n. Further, suppose that
K:Q —Rand ¢; : Q—R,i,j=1,...,n, are non-negative measurable functions such
that [T} ;— ¢i; (xj) = 1. If the functions w;, i = 1,2,...,n, are defined by

1
Pi

. n 4
;(x;) = [/Qil((x) H 5." (x;)df'(x) (1.38)
' J=Lj#
then for all non-negative measurable functions f; : Q — R, i =1,2,...,n, the inequalities
2 n n
RS s ESTIORS § (B (1.39)
i=1 i=1

and

1

‘ 1 n_l - Pn o
-/Qn (ﬁ /Q”K(X),»l:[lﬁ(xi)d“ (x)) du(x,)

Oun@Wn) (Xn (1.40)

n—1

< [T llducwifill i
i=1
hold and are equivalent.

Remark 1.2 Equality in the previous inequalities is possible if and only if it holds in
Holder’s inequality. It means that the functions

n

K(X)(P,’ipi (x,-) H iz'i (Xj)wipiiqi (x,-)f,-p" (x,-), = 1,2, (N
J=Lj#

and [T, (@i w; f;)Pi (x;) are proportional (see also [27]). Hence, we obtain that the equality
in mentioned inequalities can be achieved only if the functions f; and the kernel K are
P
defined by fl'(x,') = Ci(l)ii(xi)ti?iwi(xi)(li“qi and K(X) = CH?:] (L),'qi(x,'), i=1,2,...n,
where C and C; are arbitrary constants. It is possible only if the functions
Zqi
019" ()
Il i 0779 ()
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are adequate constants, and

q;

Tiq
[ oo ()i <o, i=1.2....n.
Otherwise, the inequalities (1.39) and (1.40) are strict.

Now, suppose that the kernel K : R, — R is homogeneous of degree —s, s > 0. Taking
into account the notation from Theorem 1.1, we assume that Q; = R, equipped with
the non-negative Lebesgue measures du;(x;) = dx;, i = 1,2,...,n. In addition, we have

Q=N and dx =dx;dx; ...dx,. If the parameters A;; appearing in functions ¢;;(x;) = x?ij

satisfy relations ¥ A;j =0, j = 1,...,n, then the condition [T} ;_; ¢;; (xj) = 11is fulfilled.
Setting the power weight functions in the inequalities (1.39) and (1.40), one obtains the
following equivalent inequalities

2 n . . <
Jeor K I Litx)a

i=1

n 1 n
< Tk (@A) TT Ik et (141)
i=1 i=1

and
/ l/p;
n

n—1 P
/ xn(]7/11711)("7173)717)1&" / . K> (x) Hfi(xi)dxl cdXy_ dx,
R, RY i=1

n 1 n—1
< TTA (@) TT %" % A (1.42)
i=1 i=1

where o = 27:] Aija thi = (ql’Ail N aCIiAin) and kl() is defined by (15)

To conclude this section, we restate conditions in (1.35) for the case whenn = 2. Let p
and ¢ be real parameters, such that

p>1g>1, —+->1, (1.43)

SR
S

and let p’ and ¢’ respectively be their conjugate exponents, that is, ;7 + [% =1land é + % =
1. Further, define
1 1
A=—=+ - (1.44)
q
and note that 0 < A < 1 for all p and g as in (1.43). Especially, A = 1 holds if and only if
g = p', that is, only when p and ¢ are mutually conjugate. Otherwise, we have 0 < A < 1.

The two-dimensional version of inequalities (1.39) and (1.40) can be found in [36].
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Theorem 1.6 Let p, g, and A be real parameters as in (1.43) and (1.44), and let Q| and
Q, be measure spaces with positive G-finite measures Uy and Uy respectively. Let K be a
non-negative measurable function on Q) X Ly, ¢ a measurable, a.e. positive function on
Q1, and y a measurable, a.e. positive function on Q,. If the functions F on Q1 and G on
Q) are defined by

F)=| [ K@y () du) " xeq, (1.45)

and
1

GO) = | | K)o () dp (x) "ye, (1.46)

then for all non-negative measurable functions f on Q1 and g on Q; the inequalities

L[ K e fet) dun (i) < IoF £, IwGel, (147
Q, /o,

and
1
7

{ [ Jworio K*<x,y>f<x>du1<x>rduz<y>}q <llgFsly (148
Q Q

hold and are equivalent.

Applying Theorem 1.6 to non-negative homogeneous functions K : Q C R, xRy — R
with a negative degree of homogeneity, one obtains the following result. In this way The-
orem 1.4 from previous section can be extended to the case of non-conjugate exponents.

Theorem 1.7 Let p, g, and A be as in (1.43) and (1.44), and let K : (a,b) X (a,b) — R

be a non-negative homogeneous function of degree —s, s > 0, strictly decreasing in both
arguments. Further, suppose that Ay and A, are real parameters such that A € (%, ﬁ),
Ay € (%, %) If the functions @ and @, are defined as in the statement of Theorem 1.4,
then for all non-negative measurable functions f and g on (a,b) the inequalities

b b 5
/a /a K* (x,y)f(x)g(v)dxdy
S |:/b (k(qlAQ) — @1 (q/A27x)) 5 x‘f,(lS)+p(AlA2)fP(x)dx:| ?

a
1

q

b
x [/ (k(2—s—p'A1) — (2 —s— p'A1,y)) 7 y;(]SHq(AzAl)g"(y)dy]

(1.49)

and
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q _d
/ /

b /
l/ T (0 A — (2 —s— plALLY))

x ( / "k (1) f(x)dx) q/dy] !

b . _ p
S |:/ (k(q/Az) 7(pl(q/A27x)) 5x5(175)+l’(.41 AZ)fp(x)dx ); (150)

hold and are equivalent. The function k() is defined by (1.22).

Setting a =0, b = o in Theorem 1.7, one obtains the corresponding equivalent Hilbert-type
and Hardy-Hilbert-type inequalities.

Corollary 1.2 Assume that p, g, and A are as in (1.43) and (1.44), and K : R, xR, — R
is a non-negative homogeneous function of degree —s, s > 0. Then the inequalities

/ow /Ow K*(x,y) £ (x)g(y)dxdy

1
< [/0 xzf?(ls)+p(A1A2)fp(x)dx]1 [/0 y;’,(ls)Jrq(AzAl)gq(y)dy} ! (1.51)

and

1

o g '(Ay— “ ! !
[/0 Yo @ AZ)(/O K’l(x,y)f(x)dx) dy}

1
< [/ x;r(lsHP(AlAz)fﬂ(x)dx} ! (1.52)
0

hold for all parameters Ay € (]1;5, ﬁ), Ay € (1;,5, %), and for all non-negative measur-

1 1
able functions [ and g on Ry, where L' = k¢ (q'A)k? (2 — s — p'Ay). Moreover; these
inequalities are equivalent.

1.3 Hardy-type Inequalities

In 1925, Hardy stated and proved in [47] the following integral inequality:

/0°° (%/Oxf(t)dt>pdx < <%>p/0wf”(x)dx, (1.53)
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which holds for p > 1 and for all non-negative functions f : R, — R, provided that 0 <
171l (R, ) < oo This is the original form of the Hardy integral inequality.
Its discrete version asserts that

oo 1 & p p P o »
- . , 1.54

where p > 1 and a = (a,), y is a non-negative sequence such that 0 < [la[|;p < eo. Tt
should be noticed here that the constant (%)p is the best possible in both inequalities.

The Hardy inequality plays an important role in various fields of mathematics, espe-
cially in functional and spectral analysis, where one investigates properties of the Hardy
operator, like continuity and compactness, and also its behavior in more general func-
tion spaces. For comprehensive accounts on Hardy inequality including history, different
proofs, refinements and diverse applications, we refer to a recent monograph [68] and ref-
erences therein.

Observe that the Hardy inequality includes arithmetic mean in integral and discrete
case. We shall also be occupied with the corresponding inequalities including a geometric
mean. The integral version of such inequality is known as the Knopp inequality, i.e.

/Owexp (% /Oxlogf(t)dt> dx < e/owf(x)dx, (1.55)

while its discrete version is known as the Carleman inequality:

1
oo n n oo
> (Hak> <eY a. (1.56)
n=1 \k=1 n=1

Both Knopp and Carleman inequalities include the best possible constant e on their right-
hand sides (for more details, see [74]).

In 2005, Yang [100], derived the corresponding inequalities equipped with a general-
ized harmonic mean. Namely, integral version asserts that

o0 X 'l 1
/o (F‘fr(t)dt) dx < (147r) r/ f(x) (1.57)

holds for r > 0, while its discrete analogue holds for 0 < r < 1:
1

i( k >r<(1+r)%ian. (1.58)

n=1 Zk 1 k n=1

Moreover, Yang also proved that inequalities (1.57) and (1.58) include the best possible
constant (14 r)%. In accordance to [100], inequalities (1.57) and (1.58) will be named
respectively as integral and discrete Hardy-Carleman inequality.

For the reader’s convenience, we define integral arithmetic, geometric and harmonic
mean operators 7,4, 7 : L’ (R.) — LP(R4) by

= %/()xf(t)dt
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@0 = e 1 [loesar)

X
(&) = w7
Jo f1(0)ar
Obviously, the above operators are well-defined since the Hardy inequality, the Knopp
inequality and the integral Hardy-Carleman inequality may respectively be rewritten as

1%
deHLP(Rg < p—1 HfHUJ(R”» (1.59)
1
||ngLP(R+) < ep|‘f||Lp(R+)a (1.60)
1
1 e,y < (143 ) I, (161)

Moreover, since the above inequalities include the best possible constants on their right-
hand sides, we are able to compute norms of the corresponding integral operators. Namely,

I ]
Jllpr (R
.|| = sup — L)
f#0 ||fHLP(R+)

)

1
it follows that ||| = L5, and similarly |9 = e7, ||| = 1 + %
Discrete versions of means operators «7,%,.7 : L’ (R.) — LP(R,.), i.e. the operators

A, G, 1P — [P, are defined by

— - ZZ:1 Ay
(Ma)n = n )
(?a)n = Hak y
k=1
— n
(Ha), = PRI
=14y :

With this notation, the discrete Hardy inequality, the Carleman inequality and the discrete
Hardy-Carleman inequality respectively read

Iallr < L allw, (1.62)
p—1
— 1
|Zallir < er|alw, (1.63)
— 1
| alliw < <1+;) llall. (1.64)

Clearly, due to the best possible constants, above inequalities provide norms of the corre-
R — 1 R
sponding operators, that is, ||« = -5, [|4]| = e?, and ||| = 1 + %
In 1928, Hardy [48], proved the first weighted modification of the Hardy integral in-
equality, namely the inequality

/ TP (o f(x)P dx < ( P >,, /0 PP () dx, (1.65)

Jo r—1
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valid with p > 1, r > 1,0 < [;°xP~"fP(x)dx < oo, where the constant (=) is the best
possible. The dual Hardy inequality, accompanied with the dual integration operator or
the dual arithmetic mean operator

0= [,

asserts that

oo )4 oo
/ xPTT (e f(x)P dx < <L) / XP7FP (x)dx, (1.66)
Jo 1—-r) Jo

holds for p > 1 and r < 1, provided that 0 < [;°x”~" fP (x)dx < eo.
In 2011, CiZmesija et al. investigated in the paper [35] general Hardy-type inequalities
in the non-conjugate setting for n = 2. As a consequence, they obtained the inequality

[t ] < @A) sl (167

This inequality coincides with the earlier Opic’s estimate (see [69]). Clearly, for A = 1, we
obtain the Hardy inequality (1.53) in the original form.
In 1984, Cochran and Lee [34], obtained the following inequality

/ T lexp [% / "o log f(t)dt} dx < eV/* / Tl f(x)dx, (1.68)
0 X7 Jo JO

with the best constant e?/%, where o,y € R, 0t > 0, and [;°x¥~! f(x)dx < oo. Inequality
(1.68) is known in the literature as the Levin-Cochran-Lee inequality and it includes the
weighted geometric mean operator ¢, defined by

(Yo f)(x) =exp L% /OX;U‘*I 10gf(;)dt} . (1.69)

Clearly, if y = 1, the above inequality may be rewritten as |Zxf||, < €'/%P||f||,, p > 1,
which means that the norm of operator %, : L? (R..) — LP(RR ) is equal to '/®. It should
be noticed here that for ¢ = y = 1, inequality (1.68) reduces to the well-known Knopp
inequality.

In order to define the weighted harmonic mean operator, we first cite the following
inequality from [37]: Let a,b,r,s € R,a < b,r < s,r,s # 0, and f be a non-negative mea-
surable function. Then,

1

{(blia)y/ab(x—a)yl [(xla)“ /:(t—a)alfr(t)dt} :dx}g

< {ﬁ/ﬂb(x—a)“' [(xla)y /ax(t—a)ylfs(t)dtrdx} . (1.70)

where o,y € R. The above inequality is crucial in establishing the mixed means inequality
(for more details see [37]).
The following generalization of inequality (1.57) has been established in [5].
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Theorem 1.8 Let oy, and r > 0 be real numbers such that .+ yr > 0 and f be a non-
negative measurable function. If [;°x'~1 f(x)dx < o, then

Ll — % L7y
I {fgfalf’(t)dt} dr<(o+yn)? [0y 7D

where the constant (o, + yr)% is the best possible.

Proof. Setting a =0,s =1, and r = —r, inequality (1.70) reduces to

~1—

b o ; b a—14yr -
YT o[ (P2
/Ox [fé‘talfr(t)dt] drsb M (foxﬂlf(t)dt)’dx} : (1.72)

Further, since [§ 7~ f(r)dt < fé’t”’lf(t)dt, 0 < x < b, the right-hand side of (1.72) does
not exceed

pE+Y </bxa1”rdX)r (/bx“f(x)dX> — (a+yr)r /bxyflf(X)dX-
0 70 7

Therefore we have

b et ' -
| dx<(« v B d
/0 X |:f(')xt06]fr<t)dt:| X_( +'}/}’) /0 X f(x) X,

so (1.71) follows by letting b to infinity.
In order to prove that (1.71) includes the best possible constant, we suppose that there
exists a positive L, smaller than (o + yr) : , such that the inequality

“ 1 x* ’ “ -t
/0 )Cy {W} dXSL/O XY f(x)dx

holds for all non-negative functions f : Ry — R, provided [;”x"~! f(x)dx < 0. Consider-
ing the function

~ XV 0<x<1
foo={3 "IsTE"

where € > 0 is sufficiently small number, we have

1
| o T | L
/ X! xx— deL/ K ldx = =,
0 Jyret-rle=nqr 0 €
1

The above relation yields (o — re + yr)% <L, and for e — 07, it follows that (ot +yr) 7 <L.
This contradicts with L < (o + yr)%, which means that (a + yr)% is the best possible
constant in (1.71). O
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Motivated by Theorem 1.8, we define the weighted harmonic mean operator 777, by
x(X
T e 0de

If y = 1, the inequality (1.71) may be rewritten as || f|, < (a+1/p)|fllp. p > 1.
so Theorem 1.8 implies that the norm of operator 7, : LP(R.) — LP(R,) is equal to

a+1/p.

(Haf)(x) (1.73)






Chapter

Some Classes of Hilbert-type
Inequalities

2.1 More Accurate Discrete Hilbert-type
Inequalities

A general form of Hilbert-type inequality with non-homogeneous kernel (Subsection 2.1.1)
is established in [55]. On the other hand, nowadays, a particular attention is paid to de-
veloping various methods for improving the existing Hilbert-type inequalities. It turns out
that the Hermite-Hadamard inequality is a quite useful tool for improving discrete Hilbert-
type inequalities. Therefore, in Section 2.1.2, we establish a more accurate form of a
Hilbert-type inequality based on the application of the Hermite-Hadamard inequality (see
also [55]). For some related results, the reader can also consult the following papers: [49],
[90] and [91].

In 2006, Yang [98], obtained the following discrete version of the Hilbert-type inequal-
ity: Let % + é =1, p > 1, and let u(¢) be strictly increasing differentiable function on the

interval (ng — 1,0), ng € N, such that lim,_,,, —j u(¢) = 0 and lim; ... u(t) = . If the func-

19
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tions [u(t)]s%-zu’(t), r=p,q,s >2—r,are decreasing on (ng — 1, ), then the inequality

= =

by,
2 & (T ulmuln))

n=ngym=n

1
oo 2(2—g)—1 2 S 2(2—5)—1
cp(pes gy | 5 1o A B ) A
o LS, W sy W ()]
holds for all non-negative real sequences (a,)n>n, and (b,),>n,, provided that the sums on

the right-hand side converge and are not equal to zero. Here, B(-,-) denotes the usual Beta
function defined by B(a,b) = [y 1 ' (1—1)?~'dt,a > 0,b > 0.

2.1.1 Extension to the Non-conjugate Case

Our intention here is to establish a more general Hilbert inequality that covers the inequal-
ity (2.1) with a non-homogeneous kernel. In addition, the results that follow, refer to the
case of non-conjugate exponents (see Section 1.2).

In order to formulate and prove the corresponding extension, we first give some basic
definitions. For a non-negative measurable function /2 : Ry — R, we define

k(n) = /0 " h(ey e, 2.2)

If nothing else is explicitly stated, we assume that the integral k(1) converges for consid-
ered values of 1.

Besides, we consider the weight functions involving real differentiable functions. We
denote by H(a), a > 1, the set of all non-negative differentiable functions u : R4 — R such
that u is strictly increasing on (@ — 1,e0) and lim;_,,— u(¢) = 0, lim; o u(#) = oo.

Theorem 2.1 Let p,q,p',q', and A be as in (1.43) and (1.44), and let u € H(my),
v € H(ng), mo, np € N. If h : Ry — R is a non-negative measurable function and
Ay, Ay are real parameters such that the functions h(u(x)v(y))u' (x)[u(x)] 741 and
R(u(x)v(y))V (0) V()] 742 are decreasing on (mg—1,0) and (ng — 1,0 for any fixed
vy € Ry and x € Ry respectively, then the inequality

i i B (u(m)v(n))amb,

m=mg n=n

SL[ > [u<m>]”<’“*"”f’[u/(m)]”’ar’iz] 2.3)
x i[vm)r’“l“”f{v’(n)]"”ﬁ] ,

1
7

1
where L = kv (p'A1)ke (q'Az), holds for all non-negative sequences (am)m>m, and

(bn)nZn(y
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Proof. Rewrite inequality (1.47) from Section 1.2 for the counting measures y; and L
1
on N, the functions K (x,y) = h(u(x)v(y)), (@ ou)(x) = [u(x)]*1 [’ (x)] ¥ and (yov)(y) =
1

)42V (y)] ¢, and the sequences (dm)m>m, and (by)y>n,- Clearly, the substitutions are
well-defined, since u and v are injective functions. Then,

i i B (u(m)v(n))ambn

m=mg n=ny

=< [ i [u(m)]”Al[u'(X)]l”(Fou)”(m)af.’ll (2.4)

X [i [V(n)]"AZ[V'(y)]I"(GOV)"(n)bZ] ;

n=ny

where

(Fou)(m)= | i h{u(m)y(m)) () [v(n)] 2] 7

n=ny

1

(Gov)(n) = i h(u(m)v(n))u/(m)[u(m)]*P’Al] v,

m=my

Taking into account that the function h(u(x)v(y))[v(y)]442V/(y) is decreasing on (ng —
1,00) for any fixed x € R, we have

/ = hu(m)v(y))
Fou)?(m) < / ———2 220 (y)dy,
(Fowf(m) < [ 2 SV 0)ay
since the sum on the left-hand side of this inequality represents the lower Darboux sum for
the integral on the right-hand side. Now, passing to a new variable ¢ = u(m)v(y), we have

[ D )y = fumo 4 [ ey,
no—1 JO

[v(y))a42
that is,
(Fou)? (m) < [u(m)]?27 " k(q'As). (2.5)
With the same arguments as above, it follows that
(Gov)”,(n) < ./mrl Wu'(x)dx < [v(n)]”/Arlk(p/Al), (2.6)
so relations (2.4), (2.5) and (2.6) yield (2.3). O

Remark 2.1 Considering inequality (2.3) with the function /() = (1 +¢)* and the pa-
rameters A} = A = f—ﬁg,, s>2—Amin{p’,q'}, the constant L appearing on the right-hand
side of (2.3) may lge expressed in terms of the usual Beta function, i.e. L =

A (s+Ap'=2 s+Aq -2 . . . _ _
B (%, AZ’ ) Moreover, in the conjugate case, that is, when A = 1, p’ = ¢, and

q' = p, inequality (2.3) reduces to the relation (2.1) from [98].
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2.1.2 Applying the Hermite-Hadamard Inequality

While proving Theorem 2.1, we were establishing the integral bounds for the correspond-
ing integral sums. Such sums were recognized as the lower Darboux sums for the corre-
sponding integrals. This fact required monotonic decrease of the function that defines the
integral sum.

In contrast to the previous section, we deal here with a slightly different method for
estimating a sum with an integral, based on the well-known Hermite-Hadamard inequality.
Clearly, this requires some extra assumptions regarding convexity, but as a consequence,
we obtain an improvement of inequality (2.3).

Recall that f : [a,b] — R is a convex function if

flox+ (1 =2)y) <tf(x)+(1=1)f(y),

for all x,y € [a,b] and 7 € [0, 1]. The Hermite-Hadamard inequality asserts that

f<a+b>< 1 /abf(t)d,gw 2.7)

2 “b—a 2 ’

where f : [a,b] — R is a convex function. In the sequel, we are going to adjust the left
inequality in (2.7), to obtain a more precise estimates for integral sums.
Now, in order to present our main result, we define the integral

rn

k(oc;rl,rz) 2/ h(l)liadl, 0<r <r<eco, (2.8)
|

where the arguments «, 7 and r, are such that (2.8) converges. In addition, if r; =0

and r, = oo, then the integral k(cr;0,00) will be denoted by k(ct), for short, as in previous

section.

Theorem 2.2 Let p,q,p',q', and A be as in (1.43) and (1.44), and let u € H(my),
v € H(ng), mo, np € N. If h : Ry — R is a non-negative measurable function and
Ay, Ay are real parameters such that the functions h(u(x)v(y))[u(x)] P14/ (x) and
R(u(x)v(y)) [v(y)] 942V () are convex on [mg — L,00) and [ng — % ,0) for any fixed y € R
and x € Ry respectively, then the inequality

i i B (u(m)v(n))ambn

m=nmig n=n
1
r

< [ 3 )" ()] PR (o Ao (m) (g — %),w)aﬁ] 2.9)

m=nig

n=ny

x [ 3 ()7 [ ()] Ok (Ao — %>v<n>,oo>bz]

holds for all non-negative sequences (am)m>m, and (bp)p>n,-
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Proof.  Since the function i (u(x)v(y))[v(y)]~442v/(y) is convex on [ny — L e0) for any
fixed x € R, applying the Hermite-Hadamard inequality, i.e. the left inequality in (2.7),
to unit intervals [n — %,n + %], yields the following inequalities:

M) () _ 7+ ha(m)v(s)
s Sl Lo

2

V(y)dy, n=no,no+1,...

Now, summing these inequalities we have

(Fou)? (m) = i h(u([fj)l():)(]zl)/z:’(n) < /n; h(u(m)V(yz)) /

n=ny

while the change of variable r = u(m)v(y) and definition (2.8) yield

/mfl H )y - [M(m)]‘/Arl/m ()T

[v(y)]a42 u(m)v(ng—1)
= [u(m))742 " k(g Assu(m)v(ng — 1), o0).

Clearly, the previous two relations yield the estimate
(F o) (m) < [u(m)) 72~ k(g Ansu(m)v(ng — }).=).

With the same arguments as above and utilizing the convexity of the function
R(u(x)v(y))[u(x)] 77414/ (x) on [my — %,e0), for any fixed y € R, we also have

(Gov)? (n) < ()P~ k(p'Ariu(mo — )v(n), =),

where the function (G ov)(n) is defined in the proof of Theorem 2.1. Now, the inequality
(2.9) follows by virtue of the relation (2.4). O

Remark 2.2 According to the obvious estimates
k(q'Aysu(m)v(ng — 1),00) <k (q'A2) and k(p'Ar;u(mg— $)v(n),) <k(p'Ay),

m > mg,n > ng,m,n € N, it follows that the right-hand side of inequality (2.9) does not
exceed the right-hand side of (2.3) (see Theorem 2.1). In such a way we obtain the inter-
polating sequence of inequalities, that is, inequality (2.9) is an improvement of (2.3).

The following application of Theorem 2.2 refers to the kernel & : Ry — R, defined by
h(t) = (141)%, s > 0. In this case, the weight functions appearing in (2.9) may be ex-
pressed in terms of the incomplete Beta function. Recall that the incomplete Beta function
is defined by

B,(a,b)z/ (=0 dr, ayb > 0. (2.10)
0

If r =1, the incomplete Beta function coincides with the usual Beta function and obviously,
B, (a,b) <B(a,b),a,b>0,0<r<1.
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Corollary 2.1 Let p,q,p’.q, and A be as in (1.43) and (1.44), and let o, B € [1,2],
s> 0. IfA| and Ay are real parameters such that max{2(1 — %),1 —5)}<p'Ay <1and

max{2(1—1),1—s)} < ¢'As < 1, then the inequality

=

i D amby

m ln:l 1+m05nﬂ
1
~La-d N AtAyA)tp—1pd !
<o VBT Zmap( 1+42=A)+p—1pd y (s+q'Ar— 1,1 —q'Ar)al,
m=1 2B e
1
> q
X [2 nﬁ‘l(AlﬁLAZ*A-)ﬁLCI 1BP (S+p/A1_171_p/A1)b:[l‘| (211)
n=1 20‘+nﬁ

holds for all non-negative sequences (am),, . and (bn), .N-

Proof.  In order to apply Theorem 2.2, We first show that a class of functions f(x) =
(14 x%yB)y=sxe=a=1 o> 1 a>2(1— L), is convex on R forany fixedy € R,. By a
straightforward computatlon, it follows that

f"(x) :azs(s+ l)yzﬁ(l +xayﬁ)7s72xa(37“>73
+ as[3 — (3 — 2a)]yP (1 +x%yP) =7 1x*(2-a)=3
a1 —a) = 11 =)~ 2](1+2%y#) 5500,

which means that f is convex on R, since s > 0 and a(2a —3) —3 = [((2 —a) — 2] +
[a(l—a)—1].

Hence, the assumptions of Theorem 2.2 are fulfilled, and we utilize inequality (2.9)
with functions h(z) = (14-1)~%, u(x) = x%, and v(y) = y#, o, B € [1,2]. From the definition
of the incomplete Beta function and passing to the new variable r = ﬁ — 1, we have

o tfq/AZ ﬁi
.m% _ o 2P +m® g4 'Ar—2 —4'A
k(q’Az,";—ﬁ,W> */ﬂ —(l—i—t)sdti/o WP (L —u) 92 du
B

2

=B 5 (s+qAr—1,1—4'Ar),

Zﬁ +m®

and the proof is completed. O

Remark 2.3 Setting « = = 1 in (2.11), we obtain the corresponding inequality from
[59]. Moreover,if A; = A, = ﬁ, s>2—Amin{p’,q'}, the arguments of the incomplete

Beta functions appearing in (2.11) become S+i£: 2 and HM, 2 as in Remark 2.1.
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2.2 Multidimensional Version of the Hilbert-type
Inequality

2.2.1 Integral Case

In this section we shall be concerned with a recent version of the Hilbert-type inequality
on certain weighted Lebesgue spaces, derived in paper [97]. In order to state the corre-
sponding result, it is necessary to introduce some definitions.

Let || - | LR denotes the norm of non-negative measurable function f : R} — R,

with respect to non-negative measurable weight function p : R, — R, that is,

T

g ey = | fe PO ] 2.12)

In the above relation, Lj, (R”.) denotes the weighted measure space, that is,

n
+

Lh(RL) = {f 1 RY = R | fllp e < =} (2.13)

Further, let & : Ri — R be a non-negative, measurable homogeneous function of de-
gree —s, s >0, and let @, : R’ — R, ¥4 : R} — R be the power weight functions defined
by

Da(x) = [xlo" M and Wa(y) = [ylgPee ", (2.14)

where m,n € N, Aj,A; € R, p and g are conjugate exponents i.e. l/p+1/g=1, p > 1.
Here |- |, denotes ac—norm of the vector r = (1,f,...,t,) € R, that is,

RI=

|t = (1] +15° +---+17)*, a>0. (2.15)

In addition, let C4 denotes the constant defined by

1
_ " %) ™ (L) Iz
o l“’”lf(ﬁ)] ﬁnlrﬁ(%> es(pAz+1=n) (2.16)

where ¢;(n) = [y ks(1,2)t "dt and I'(+) is the usual Gamma function defined by I'(a) =
Jot e dt, a > 0.

Considering the above described setting and the real parameters A; and A satisfying
relation gA| + pA> = m+n—s, Yang et al. [97], obtained the following two equivalent
inequalities

==

Jre S s (s ) F080)axds < Tl el ey 217D
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1
/ |y gPoAHp(s=m)=n / ke (e [yl ) £ (x)dx pdy "< Callflle s (218)
Jee PP Ry = A g Ry

provided that there exist > 0 such that ¢s(1) converges for all n belonging to interval
[pA2 +1—n—38,pA;+ 1 —n]. Moreover, the authors also showed that the constant C is
the best possible in both inequalities (2.17) and (2.18).

Our intention in this subsection is to extend the above two inequalities to the multidi-
mensional case. More precisely, our result will include a general homogeneous kernel of
the form Kg(|x1|g,,- .., |xlg,), Bi >0,i=1,...,n.

Conventions 2.1 Throughout this subsection we suppose that all the functions are non-
negative and measurable, so that all integrals converge. In addition, |S"7] | denotes the
area of the unit sphere in R", with respect to o.—norm (2.15), that is

nn (L
8" o = Oilrlir(é)) (2.19)
Further, in light of defininition (1.5) (see Section 1.1) we define the integral c(y1,.. ., Yn—1)
by
c(yl,...,yn,l):/RTIK(l,tl...,tn,l)t}/'---tfflldtl---dtn,l, (2.20)
provided that ¢ (Y1, ..., Yn—1) < o for
YiseoosYu—1>—1 and Y4+ 1+n<s+1. (2.21)

Moreover; in order to establish the corresponding multidimensional setting, we introduce
real parameters A;j, i, j = 1,...,n, satisfying

n
Y A;j=0, i=1.2,...n, (2.22)
i=1

and also define

o = ZAij’ i:1,2,...,n. (223)

In the above setting, the power weight functions @; : leﬁ — R, defined by

N iki—stpioy
=1,j#i
=Li# , (2.24)

i

i) = |xilg
fulfill conditions as in the statement of Theorem 1.1.

The main objective of this subsection is to extend inequalities (2.17) and (2.18) by virtue
of Theorem 1.1. Namely, in the sequel we consider measure spaces ; = le;', ki € N,
equipped with the Lebesgue measures, a non-negative homogeneous function K of degree
—s, s > 0, and the functions ¢;; of the form ¢;;(x;) = |xj|2"_j. AijeR i,j=1,...,n
Since the weight functions are expressed by the norms, we sflall deal with the so-called
n-dimensional spherical coordinates. The following integral formula will be utilized in
deriving our generalizations.
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Lemma2.1 Ifa >0 neNandt = (t1,12,...,1,) € R, then the relation

|Snfl|a -,
/m<p(|r|a)dtldt2...dtn: = /R+(p(u)u" du, (2.25)

holds for all non-negative measurable functions ¢ : Ry — R.

Proof. We start with the following integral formula

1% RT (L) 1 "
/ 0 (' |“) dydy ...dty = J/ o ()~ du,
\t\a<R0 0

Y eitn> R_OC OC"F(%)

where R > 0. The proof of the previous formula can be found in [43]. Now, considering
@(Ru'/*) instead of ¢ (u), the previous formula becomes

ROVL)
Ly, ettt = S5, o Rty

that is

() (o
)/ o)V Ldy,

/mad o (|t|a)dndty ...dt, = 70:"*%‘(5 A

1] seitn>0

after using the substitution v = Ru!/%. Finally, by letting R — oo and by virtue of the
formula for the area of the unit sphere (2.19), we obtain (2.25), as claimed. O

Now, the application of Theorem 1.1 in the above described setting yields the following
result.

Theorem 2.3 Let n,ki,....k, € N, n >2, and Bi,...,B, € Ry. Further, suppose Kg :
R — R is a non-negative measurable homogeneous function of degree —s, s > 0, and let
Aij, i,j=1,...,n,and o, i = 1,...,n, be real parameters fulfilling conditions (2.22) and
(2.23). If fi : Ri" — R, fi #0,i=1,...,n, are non-negative measurable functions, then
the inequalities

n n
K i(xi)dxy...d M | 2.26
/]lerl /IRJX, ﬁ(|xl|ﬁ17 7|xn|ﬁ,l):i|;[lﬁ(xl) X1 Xp < E”fz”LZi(Ri,)y ( )
and

1—P)(S" " kj—s)—Pay,
/ |xn|/3( j=1"%]
lef n
P

n—1
x /Rkl"'/Rk“,, Kﬂ(|x1|ﬁ1»---’|xn|ﬁ,,)Hfi(xi)dx1---dan dxy
+ + i=1

n—1
<MP A b ks 2.27
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where

n |Sk*1| 0
M= [sz1+P1A12,~~~,k2*1+P1A1n]"1 (2.28)

i=1

1

n P2

XC[S 2 kjlpz(OQAzz),/Q1+p2A23,...,kn1+p2A2n]
J=Lj#2

1
.c{kz—lernA,,z,...,k — 1+ Pyt Zk 11— pulon A,m)}””,
1/P=3"1/pi, piAi; > —kj, i # j, pi(0i —Ai) < s— i1 jzikj, hold and are equiva-
lent.

Proof. We use Theorem 1.1 equipped with the kernel
K()Cl, cee »xn) = Kﬂ("xl'ﬁl" (] |x"|ﬁn)

and the weight functions ¢;;(x;) = |x; |2;j, where ¥ A;; =0 forevery j =1,...,n. Obvi-
ously, it suffices to calculate the functions w;(x;), i = 1,...,n defined in Theorem 1.1. By
utilizing formula (2.25), we find that

n
_ APYAL g
wl(xl)—/ka /R’i" Kﬁ(|x1|,31,...,|xn|ﬁn)j];[2|x,|ﬁj dxy---dx,

n |Skjil|[3j

-5 —1+piAy;
:jzl_[2 2kj /RrrlKﬁ(|x1|ﬁ|vt27 yIn Hf Tdty - - - dt,.

In addition, taking into account the homogeneity of function Kg and the substitutions u; =
ti/|x1lg,, i=2,...,n, we have

n |Skjfllﬁj B
(D](x]) = I 7\/]:&”,1 |x1|l3£§Kﬁ(17u27"'7un)
j=2
X H |x1]p, u; ]+p1A11|x1|ledu2...dun
n S5, "k
= = B; |x1|51Zj:zkfﬁpl(al*A”)C(kz—1+p1A12,...,kn—1+p1A1n).
=2

Similarly, yet another application of Lemma 2.1 and the homogeneity of the function Kp
yields the relation

n
= 22]
w2<x2)_/Rk+l /ng A%?Kﬁ(|x1|ﬁl,...,|xn|ﬁn) T[T iy andys - dx,

J=1j#2
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l’i[ |Skj71|ﬁ, olg, 5

= 'Kg (1 i,
ol 29 /R"ll ol non’ ’t1)

kj—1+4+prAy;
x H t;/ Tdtdts . . . dt,.
J=1j#2

Now, in order to express the previous formula in terms of the integral formula (2.20), we
use the following change of variables

~1 1 ,
= |x2|ﬁ2u2 , i = |XQ|52L£2 uj, l:3,...,}’l7
so that
a(ll,t3,...,tn) |)C2| u
8(u2,u3,...,un) b 2
Here, M denotes the Jacobian of the transformation. Therefore, we have
o 1SN g s kestpa(eaa
- I i1 jzakj—stpa(tn—An)
(1)2()C2)— H 72] |x2|ﬁzj J
j=1j#2
s—1-3" 1.i42 j —p2(0n—An)
/I&n 1 1 yU25 - U ) i
kj—1+prAsj
J J
xHuj duy...du,
j=3
ki—1
- ﬁ IS |l3,- | iy jpki—stpa(n—Ay)
= —
iz 2V i

n
xc(s— Y kj—1—pa(cr—Ap),ks— 14 prArs,....kn— 1+ prAsy).
j=1,j#2

Clearly, the same procedure can be drawn in order to express w;(x;), i = 3,...,n, in terms
of the integral formula (2.20):

AV R
wi(x)={ ]I ok; bl

=t

xc(ky =14 pidip, ... ki1 — 1+ pidii_1,
n

D kj— 1= pi(0—Ai) kist — 1+ pilijits o kn — L+ pidkin).
J=Lj#i

This gives inequalities (2.26) and (2.27). The proof is now completed. O

Further, our attention will be focused on determining the conditions under which the
constants on the right-hand sides of inequalities (2.26) and (2.27) are the best possible. For
that sake, it is natural to impose the following conditions on the parameters A;; :

n

kit+piAji=s— Y ki—pi(i—Ay), j#i, i,je{1,2,...,n}. (2.29)
J=Lj#i
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In that case, the constant M from Theorem 2.3 reduces to the form

n |Sk171| _ Pi _ _
M*:q [ 2/(!- b C<k2_1+A27"'7kn_1+An), (230)
i=
with the abbreviations
Ai=piAn for i#1 and A, = ppAn. (2.31)

Moreover, if the parameters A;; fulfill conditions as in (2.29), the inequalities (2.26) and
(2.27) from Theorem 2.3 respectively read

n
/k / K (%1l alp,) [T i) s - dx, < M* H||f,|| w232
SRy R Y £ (RY)

and

/ bl g, (1) Hn=pade)
Ry P
P

n—1
/Rk. .../RkH Ka(x11py- - bulg,) [T fixi)dns .. dx 1 | dxy
+ + i=1

n—1

m* il pi ok 2.
<MY Ty gy (2.33)

where M* is defined by (2.30) and
@i (x;) = || 5" AL =1, (2.34)

The following result yields the best possible constants in the inequalities (2.32) and (2.33).

Theorem 2.4 If the parameters A;j, i,j = 1,...,n, fulfill conditions (2.22) and (2.29),
then the constants M* and (M*)? are the best possible in the inequalities (2.32) and (2.33).

Proof.  Suppose that the constant factor M*, given by (2.30), is not the best possible
in inequality (2.32). This means that there exists a positive constant M; < M*, such that
(2.32) still holds when replacing M* with M.

Further, consider the real-valued functions ﬁg : R/f;' — R, defined by the formulas

0, |x4&.< 1 )
ﬁ&‘( ) ~7£_ ) l:17"'7n7
|x1|ﬁ, Piy |xilg > 1

where 0 < € < minj<;<,{piki + p,'g,'}. Our next step is to substitute these functions in
inequality (2.32) including the smaller constant M. By using the n-dimensional spherical
coordinates, the right-hand side of the inequality (2.32) becomes

. —ki—€ 1 |Sk ]|ﬁ R
M]H / |x,~|ﬁ,’ dx; —M]H - / et
i |xilp; =1 ! 1
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n
i=1

€

31

|Sk"71 |ﬂi
2ki

(2.35)

1
>pi

Further, let I; denotes the left-hand side of the inequality (2.32) multiplied by ¢, for the
above choice of functions f; .. By applying the n-dimensional spherical coordinates and

the substitutions u; =1#;/t,, i # 1, we find that

I

n |Ski*l|ﬁ. SO oo
£H< > /lt] € /L..
i=1
-
< [ 1w
i=2

:s/ / Kg(xilg,s - s
\xl ‘ﬁl >1 \xn\ﬁ_El ﬁ ﬁl

Sk 1 ki— 1+X,'7£_
€ (' |ﬁ’>/ / Kg(t1,....1, H Pide .. .dt,
i=1

1+A,—

n Xﬁ;__
|xn|ﬁ)l)H|xi|ﬁi ldXI..,dxn
i=1

'/‘L Kﬁ(l,uz,...,un)

' ”’duz dun>dt1.

Now, it is easy to establish the following lower bound for I, that is,

Sk71 n 71+Al
I >H<| |ﬁl> /R” K (L, ) [Ty p’duz...dun
i=2

. |Skiil|ﬁi Ix
_gg ok /1 h zzlj(fl)dfla (2.36)

= =

where for j =2,...,n, I;(t;) is defined by
N k1A
Ij(l‘]): Kﬁ(l,uz,...,un)Hui I’duz .duy,
J i=2

Dj={(uz,...,un);0 <uj < %,O < u; <eoo,l # j}. Without losing generality, it is enough

to estimate the integral I»(#). In fact, setting oz > 0 such that k, +Ar > ¢ /p2+ a, since
—uSloguy — 0 (upy — 0T), there exists L > 0 such that —u§ logu, < L (us € (0, 1]) On
the other hand, it follows easily that the parameters 7, = k» — 1 +A, — (¢/p2+ ) and

Yi=kist — L+ Ay — (/pis1), i =2,...,
virtue of the Fubini theorem, we have

OS/ trllz(tl)dtl
1
:/ t17]
1
1 n
= Kg(1,up,...,u
/R’:zfo plliz:..un) |

1
/’Fz/tl Kg(1,ua, ... uy
R Jo

ki—1+
u.
E :

n — 1, satisfy conditions as in (2.21). Then, by

—14A— l’z
duy...du, | dt

G-t ras
i /1 7t | duy . .. du,



32 2 SOME CLASSES OF HILBERT-TYPE INEQUALITIES

: 1
= /RH/ Kg(1,uz, ... uy Hu ”’ (—logus)du, . ..du,
JRY " Jo

! ko —14Ay— (£ o) 1 ki—14+A;— &
SL/ ’172/ Kﬂ(l,uz,...,un)uz P2 H”i ”dl/tz du,,
Ry "Jo i=3

ko —1+A A £
SL/R”" Kﬁ(l,uz,...,u,,)u; > Hu “dug .duy,
+

~ ) = € ~ )
:L'C(k2—1+A2—(—+OC),k3—1+A3——,...,kn—1+An——) < oo,
2

p P2 Pn

Hence, considering (2.36), we obtain

ki—1
L. >H ('S |ﬁl> c(kz— 44— k=14 A,— i) “o(1).  (237)
P2 Pn

Finally, taking into account the relations (2.35) and (2.37), we have that M* < M| when
& — 0%, which is an obvious contradiction. It follows that the constant M* is the best

possible in (2.32).
In addition, since the equivalence preserves the best possible constant, the proof is
completed. O

Remark 2.4 1t should be noticed here that our Theorems 2.3 and 2.4 extend the cor-
responding result from [97] (see inequalities (2.17) and (2.18)). More precisely, setting
Bir=a, B, =B, p1r =p, p2 =q, ki =m and k; = n, we obtain the mentioned Yang’s
result.

Now, we consider the application of our general result, i.e. Theorem 2.3, to a particular
homogeneous kernel, defined by

1
Ki(x1,...,xp) = ———, s > 0.
1( 1 n) (.X]+...+Xn)‘s

Utilizing the integral formula derived in [82], we have

Hn ll Bi—
c(Bi—1,....B ,171):/,17 #dtl...dt 1
! R (1+30 ) !

_ TG-S BT T
rG)

(2.38)
Now, in the above described setting, as an immediate consequence of Theorem 2.3, we
obtain the following result.

Corollary 2.2 Suppose the parameters P, p;, A;j, i,j = 1,...,n, are defined as in the
statement of Theorem 1.1. If the parameters A;j, i,j = 1,...,n, fulfill the conditions as in
(2.29), then the inequalities

' I, fi(xi) -
dxy...dxg <Ly [TIAI o ok s 2.39
./RQ /RT iy gy < F LM (39
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and
(—kn—pnAn
s bl
T
/ / l lfl xl) dx
]Rkl Rkn 1 |xl|ﬁ,) n
1
<L Al i ks 2.40
S
where L1 = ﬁ - % bi [(A;+ ki), hold for all non-negative measurable func-
tions fi, i =1,...,n, and are equivalent. Moreover; the constant L, is the best possible in

both inequalities (2.39) and (2.40).

2.2.2 Discrete Case

In this subsection we refer to the recent paper [51], where Huang obtained multidimen-
sional discrete Hilbert-type inequality equipped with conjugate parameters. His result is
contained in the following theorem.

Theorem 2.5 Suppose that n € N\ {1}, p;, ri > 1,i=1,....n, ¥ 111 =y 1% 1,
qnflf— $>0,0<a<2,f>—1 samax{5, }<m1n1<l<,,{r,} am >0 (m; eN),
so that

=3

0< Y (mi+p)y" 7" 1(a£§2)pi<oo (i=1,...,n).

mi=1

Then the following two inequalities hold and are equivalent:

s - Z Ham,

my=1 my= 1 l 1ml+ﬁ)

e (2) (Smeart )

m,—:l

oo sa = oo Hn a 4qn qn
n+ ! —1 ~ ¥
Llnzl(m P (mnz I rmZﬂ (X (mi+B)® ]‘) ]

e (2) (S o )

m,-:l

The constant & ( ) T (ri) is the best possible.
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The main purpose of the present improvement is to generalize Theorem 2.5 in a view
of Theorem 1.1. More precisely, in the sequel we deduce the discrete forms of inequalities
(1.2) and (1.3) containing the homogeneous kernel. Morever, much attention is given to the
investigation of the best possible constants in obtained inequalities, which can be attained
in some general settings. As an application, we also consider some particular settings of
our general results which reduce to some recent results known from the literature.

In order to obtain the constants involved in the inequalities, we use the function
¢(Yi,---,Yn—1), parameters A;j and o; defined in Conventions 2.1. We consider the dis-
crete weight functions involving real differentiable functions. More precisely, we have the
following definition.

Definition 2.1 Ler r € R. We denote by H(r) the set of all non-negative differentiable
functions u : (0,00) — R satisfying the following conditions.

(i) u is strictly increasing on (0,00) and there exists xo € (0,0) such that u(xp) = 1.

(ii) lim u(x) = oo, [u(x)]"t/(x) is decreasing on (0,o0).

X—o0

Now, taking into account the above definition and notations as in Conventions 2.1, we
have the following general result.

Theorem 2.6 Let py,...,p, be conjugate parameters such that p; > 1, i=1,....,n, and
let 5= 20 ! 1 . Let K : (0,00)" — R be non-negative homogeneous function of degree —s,
s > O strlctly decreasmg in each variable, and let A;j, i,j=1,...,n,and o, i =1,...,n
be real parameters satisfying (2.22) and (2.23). Ifag,ll? >0 (m; € N) and u; € H(piA;j),
i,j=1,...,n,i%# j, then we have the following equivalent inequalities

=3 =3

. 2 K(ui(my),... u,(my) Ham, (2.41)

mp=1 mp=1

<LH(2 L] S T ) (af,i?)”’)”,

m;j=1

l i [Mn (mn )] (I=P)(n—1—s)—Pat,

mp=1

where

L=c(piAiz,...,p1A1n) " -c(s—n—pa(0a —An), prAds, ..., prAs,) 72
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35
: C(pnAn27 e apnAn,nflas

andp,-A,-j > 71, l'#j, p,»(A,»,-foc,») >n—s—1

= Py — A)) 1, (2.43)

Proof. Rewrite the inequality (1.2) from Section 1.1 for the counting measure on N
(9 01j)(mj) = [ m) [ ud(m )] /P # i,

(0 w) (m) = [ws (mi)} i i (mi)) /P,
and the sequences (a,(,iz), i=1,...,
ui, i=1,. injecti

n. Obviously, these substitutions are well defined, since
n are injective functions. Thus, in the above setting, we get

2 2 K(uy(my),... u,(my Ha’giz
mp=1 my=1

(2.44)
i=1
L.
< H ( 3l )Py )| P4 s 0 ) (my) (afé?)”’) g
m;i=1
where

(wjou;)(m;) =

m,

7\M3

i i i K(l/l](m]),...

><< ﬁ [Mj(mj)]”"A""u}(mj))
iy

Our next task is to estimate the functions (w; o u;)(m;), i = 1,...,n. Since the kernel K is
strictly decreasing in each variable and u; € H(piAij), i # j, we conclude that the functions
wjouj,i=1 n, are strictly decreasing. Hence, we have

(1 our)(my) < /(0 )nilK(Ml(ml),Mz(xz) st (%2)
X H (uj(x;)]PrA iy (xj)) dxz ... dxy, (2.45)
since the left-hand side of this inequality is obviously the lower Darboux sum for the

integral on the right-hand side of inequality. Further, by using the substitution #; = u;(x;)
i=2,...,n, from (2.45) we get

(wloul)(ml)g/

n
A
(000 IK(M](ml),tz,...,tn)Hl‘;l 1jdl‘z. dt,,
o) j=2

whence, in view of the homogeneity of the kernel K and the obvious change of variables
we have

(vom)m) < [l (m) K (1t (o

n
A .
tafur(my)) [V dty .. .,
=2



36 2 SOME CLASSES OF HILBERT-TYPE INEQUALITIES

= [ug (my)]" PO AR (p 1ALy, piAL).
By using the same arguments as for the function w; o u;, we also get
n
(wp0up)(my) < / IK(tl,ug(MQ),t3,...,tn) 11 thAzfdtldg...dtn. (2.46)
7O J=Li#2

Now, let J denotes the right-hand side of the inequality (2.46). It is easy to see that the
transformation of variables

1 Vi .
= MZ(mZ) Ty = MZ(mZ) Ty l= 37"'7”7
1% 1%
yields
(11,13, ...t
( 1,13, ) il) _ [uz(mz)]"*lvg",
8(V2,V3,...,vn)
where O143,0tn) is the Jacobian of the transformation.
9(2,V3,.,Vn)

Further, by using the homogeneity of the kernel K and the change of variables intro-
duced above, we have

n
_s Ay
J:/ nilt] SK(I,uz(mz)/t],tj;/tl...,l‘n/l‘l) H t;jz zjdl‘ldl‘j;...dtn
(0:) =1j#2
- / ()] VK (1,va, i) [ () 22422
(0,00)"~

—p2(0a—A) prAs A n—1, —n
XV, Va2 v [y (mo) " vy Mdvadvs L dy,

n
= [uz(mz)]"*lprz(az*Azz) S p2(0n—Az) HVI'JZAZjdVQ...an
. (O‘w)n—l 2 i3 J

= [uz(my)]" PR AR (s — n — py(0n — Ana), p2A23, ..., P2AZ).-
Hence, inequality (2.46) and the equality established above imply that
(Froup)(my) < [uz(ma)]"~ ' 512002 A%) k(s — n— ps (0 — Ana), p2Ans, ..., p2Azn).
In a similar manner we obtain
(Fro5)(m) <l mp)'~ 1= piei=)
X k(piAia,...,piAii-1,8 —n— pi(0i — Ai), pifAiis1;-- -, PifAin)s

for i =3,...,n. This completes the proof of inequality (2.41).
The proof of the inequality (2.42) follows from the inequality (1.3), by using the same
estimates as in the first part of the proof. O

The next problem we are dealing with in this section, is to determine the conditions
under which the constant L, defined by (2.43), is the best possible in inequalities (2.41) and
(2.42). Considering Theorem 2.5, we see that the appropriate constant does not include any
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exponent. Bearing in mind that fact, we shall find the conditions under which the constant
L reduces to the form without any exponents.

In order to obtain the constant without exponents, we impose the following conditions
on the parameters A;; (see also Section 1.1):

ijji:S*n*pi(ai*Aii)y i,j: 1,2,...,}1, l#] (247)

If the parameters A;; fulfill the set of conditions as in (2.47), then the constant L from
Theorem 2.6 reduces to the form

L =k(As,...,Ap), (2.48)
where we used the abbreviations

Zl:ijjl’ l’]:172,,n,l#] (249)

Taking into account the set of conditions (2.47), it is easy to see that the parameters A;
satisfy the relation
n ~
Y Ai=s—n. (2.50)
i=1

Furthermore, by using (2.22) and (2.49), we have the following relationship between the
parameters A; and A;, i =1,2,...,n:

Ajj = —Ali—Agi— - —Aii— A1 — - — Ani
A A A A A
pPr D2 Pi-1  DPi+1 Pn
~ (1
— A (— - 1) . 2.51)
Di

Now, taking into account the relations (2.48), (2.49), and (2.51), the inequalities (2.41)
and (2.42) with the parameters A;;, i, j = 1,2,...,n, satisfying the set of conditions (2.47),
become

3 Y K (m), . un(ma)) [T b (2.52)
my=1 i=1

<] ( S, asom)] P o)) (aﬁi?)p) :

i=1 \im;j=1

and
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where the constant L* is defined by (2.48).
Now we prove that the constant L* is the best possible in both inequalities (2.52) and
(2.53). That is the content of the following theorem.

Theorem 2.7 Ifthe parameters A;j, i, j=1,...,n, satisfy the conditions (2.22) and (2.47),
then the constant L* is the best possible in both inequalities (2.52) and (2.53).

Proof. It is enough to show that the constant L* is the best possible in inequality (2.52),
since (2.52) and (2.53) are equivalent. For that sake, we consider the real sequences

i £ ~
5%3 = [ui(mi)]A’ 7iul(m;), where € > 0 is sufficiently small number. Since u; € H(A;),
i =1,...,n, we may assume that u; is strictly increasing on (0,e) and that there exists

Xo € (0,°0) such that u;(xp) = 1.
Therefore, by considering integral sums, we have

oo

s = [Tt < 3 )] )

o

= 3 fuilmi)) A G om) 7 ()

mi=1

<o)+ [ ol () = 0i(1) +

where the function 9; is defined by 9;(x) = [u;(x)] "' ~¢4/(x). In other words, the following
relation is valid:

o

m; i)} 1P g o) (@) = é +o(1), i=1,...n. (2.54)

Now, let us suppose that there exists a positive constant M, smaller than L*, such that the
inequality (2.52) is still valid, if we replace L* by M. Hence, if we insert relations (2.54)
in the inequality (2.52), with the constant M instead of L*, we get

=y - 2 (u1 (my) () Haml M+o(1)) (2.55)
my=1 =1

Now, let us estimate the left-hand side of inequality (2.52). Namely, by inserting the above
defined sequences (&f,?.)m_ . in the left-hand side of inequality (2.52), we easily get the

i

inequality

1> /lm[ul x1)] o (/ / (w1 () U (Xn))

X H Ai- idluy(x2)] .. d[un(xn)]>d[u1(x1)]. (2.56)
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Further, let J denotes the right-hand side of the inequality (2.56). By using the substitution

f; = i) 2,...,n, we find that
up(x)

J:/‘wlft )¢ /m /w K(l,tp,....t
], (141 (x1)] [.1/14&)61) J1/uy(xy) (L,x )

n -
A— £
x [ vide...dn,

d[uy(x1)]-

Now, considering the obtained expression for J, we easily get inequality

Jz./l'm[m(xl)]”[ JRE) | Can dt,,]d[m(m]

n

— [ ) X pn)dln (), @57

=

where for j =2,...,n, I;j(u;) is defined by
M] / K 1,1,.. l‘n)Hl‘,’ - p dt,...dt,,

and D; = {(12,13,...,1,);0 < 1; < o (x) 0 <ty < ook # j}.

Without losing generality, it is enough to estimate the integral I>(x;). Obviously, since
1 -1 — 1 (r, — 07), there exists the constant C > 0 such that 1 —#5 < C (1, € (0,1]).
Now, by using the well-known Fubini’s theorem, it follows that

0< 8/]m[ln(x1)]717£[2(ul)d[”1(x1)]

o . g 1/uy (x1)
g/ (1))~ / / K(L,ia. . st)
1 Je)2Jo

noA—£
XH’i l’ldtz...dt,,]d[m(m)]
i=2

1 noA-L L
8/(o7m)nsz K(l,tz,...,tn)lj[ti Pi (/ztl 1= sdn)dtz .dt,

'l A-L (1
£ K(1,t,..., t, G (1—5) )dry...dt
/<0,w>"*2 /0 (L2 H ( 2)) ot
| &
SC/ /Kl,t,...,t t.' Pidty ... dt,
(0212 Jo ( 2 n)gl 2 n

noA-E
gc/(o ) IK(I,tz,...,t,,)Hti Pidt, .. .dt,
o)1 i=2
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~ ¢ ~ ¢
= C~k<A2—,...,An—> < oo,
P2 Pn

Further, considering the above derived relation and inequality (2.57), we have that

-1 ~
T>—k (Az—i ..,A,,—i)—o(l). (2.58)
€ P2 DPn

Finally, by comparing relations (2.55) and (2.58), we conclude that L* < M when ¢ — 0T,
which is an obvious contradiction. Hence, it follows that the constant L* is the best possible
in (2.52). Clearly, the constant L* is also the best possible in the inequality (2.53) since the
equivalence preserves the best possible constant. The proof is now completed. O

Here, we shall be concerned with the homogeneous function

1
Kl(xl,...,xn) = m, s> 0.

Note that the kernel K is symmetric, strictly decreasing in each variable, and

n—1 ﬁl
k(ﬁlflw"vﬁnflfl):/( 1_L#dl"'dtnf]

( +2l lt‘)
C T(s—X BT T(B)
1r(s) 1 , (2.59)

where we used the integral formula derived in [82]. Now, in the above described setting,
as an immediate consequence of Theorems 2.6 and 2.7, we get the following result.

Corollary 2.3 Suppose the parameters P, p;, Ajj, i,j = 1,...,n, and the functions u; :
(0,0) = R, i=1,...,n, are defined as in statement of Theorem 2.6. If the parameters Ajj,
i,j=1,...,n, fulfill the set of conditions as in (2.47), then the inequalities

C oo Hl 1“52
2 X S wm)y

my=1 m1:1 l LU

< L1H ( 3 fuimi)) P (i) P (aﬁ,i?)pi> i (2.60)

=1 \im;j=1

and

[ tnaporcns

mp=1
oo n P
2 2 H 1am,
my,_1=1 mp= 1 ’))

n—1 o ~ A\ Pi
<L H ( 3 [us(mi)) PNl ()] (%&3)”) 7 2.60)

=
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T, D(A+1)

where L = RO hold for all non-negative real sequences (a%?) N and are equiv-

m;e

alent. Moreover, the constant Ly is the best possible in both inequalities (2.60) and (2.61).

Remark 2.5 Note that inequalities (2.60) and (2.61) contain the parameters A;,
i=1,2,...,n, since the parameters A;;, i,j = 1,2,...,n fulfill the set of conditions as
in (2.47).

The following remark describes the connection between our Corollary 2.3 and Theorem
2.5 in detail.

Remark 2.6 It is obvious that our Corollary 2.3 is the generalization of Theorem 2.5
(see also [51]). Namely if we substitute the power functions u;(x;) = (x; + )% and the
parameters A; = i’_ —1,i=1,...,n, in Corollary 2.3 we get the inequalities from Theorem

2.5 with the best possible constant % (S) T (%) .

We conclude this section with one more consequence of Corollary 2.3, known from the
literature.

Remark 2.7 Let

_ 1 _
Aiizwandf\u:u, Li=1,2,...n %], (2.62)
p; piPj
where p;, i = 1,2,...,n, are conjugate exponents. These parameters are symmetric and
z L s)(pi—1 Los—n n—s 21
Say=Say =Dy $ Sho (1% ) <0
i=1 j=1 p; j=1,j#i PiPj pi j=1Pij

Moreover, the above defined parameters satisfy the set of conditions as in (2.47), so the
resulting relations will include the best possible constants.

Now, for the above choice of parameters A;; defined by (2.62), and the functions
u;(x;) = x;, the inequalities (2.60) and (2.61) respectively read

( 3 w1 (a)”> " (2.63)

=3

w

n (1)
H 1 m,

o ( n m s - LZH
my=1  mp=1 =1""" i=1 \imj=1

and

n—1 oo i i Pi
<L, Ul ( 3 o (af,i?)p> , (2.64)
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where L, = ﬁ n,r (”’t}#) Note that the condition s < min; <;<,{p;} must be satis-
fied, so that the function u; belongs to the set H (p;A;;), i, j =1,2,...,n (see the statement of
Theorem 2.6). Moreover, since we consider the Gamma function with positive argument,
inequalities (2.63) and (2.64) hold under condition n — min; <;<,{p;} < s < min;<;<,{pi}.
Finally, let us mention that our inequality (2.63) is a discrete variant of the appropriate
integral result established in [82].

Remark 2.8 The multidimensional integral Hilbert-type inequalities are proved in [64]
(Subsection 2.2.1), while the multidimensional discrete Hilbert-type inequalities are ob-
tained in [58] (Subsection 2.2.2). Related results can found in [52], [93] and [101].

2.3 A Unified Treatment of Half-discrete
Hilbert-type Inequalities

In this section we deal with the so-called half-discrete Hilbert-type inequalities, including
both integral and sum. Recently, He and Yang [23], obtained the following result: Let
%-i—cll =1, p>1, and let a, B, A;, A, be real parameters such that A; + A, = a — f3,
—B < A1 < a,and A; < 1 — . Then the inequalities

2 / min {x n} o )dx:./omf(x) i minﬂ{x,n}andx

max®{x,n} n}

n=1

<C {/O p(1=A)— fp( )d ] [i nlI(l/lz)lag‘| q7 (2.65)

oo - - B p

pAr—1 1min {x’n} d < CP/ p(1=21)—1 ¢gp 2.66
ngl ! [ 0 maxa{xvn}f(x) * 0 f ( ) ( ‘ )

and
/wqulfl ima dx<Cq2nq1 —A)— (2.67)

0 = max®{x,n} i '

hold for any non-negative measurable function f : Ry — R and a non- negative sequence
a=(ay),- provided that 0 < [i7xP(1=4)=1 7 (x )dx<°oand0<2 A=) =148 < oo,
Moreover, these inequalities are equivalent, and C = o=t /11 Cr, and C1 are the best

constants in the corresponding inequalities.

Observe that the kernel K(x,y) = r’:;iaz)y %L , appearing in the above inequalities, is a

homogeneous function. The main objective of the paper [57] was to provide a unified
treatment of half-discrete Hilbert-type inequalities with a general homogeneous kernel.
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The corresponding results will be presented throughout this section. For some related half-
discrete Hilbert-type inequalities, concerning some particular classes of kernels and weight
functions, the reader is referred to the following references: [50], [81], [89], [94] and [95].

Now, the first step is to reformulate Theorem 1.6 (see Section 1.2) for a half-discrete
case. Namely, rewriting inequalities (1.47) and (1.48) for a Lebesgue measure t; = dx on
R, and a counting measure u on N, we have

) oo . B = _ )
nzj:lan/o K (X,n)f(x) dx*/‘o f(x) (IIZIK (x7n)an> dx

<0F fllp ., WGal

(2.68)

and

o o~ 17
[2}@ G /O Kz(x,n)f(x)dx) ] <|OF fll (R, ) (2.69)

where p, g, and A are real parameters as in (1.43) and (1.44). Clearly, in this form y =
(Wn),eN» @ = (an),cN are non-negative sequences,

, X S R+, (270)

Gn= [/wK(x,n)q;ﬂ'(x)dxr . neN, 2.71)
0

and we assume the convergence of integrals and series appearing in (2.68) and (2.69). Note
also that the equality sign in (2.68) holds due to the Fubini theorem. In addition, relations
(2.68) and (2.69) will be referred to as the general half-discrete Hilbert-type and Hardy-
Hilbert-type inequalities, respectively. Moreover, interchanging the roles of parameters p
and g, as well as making use of (1.48) with a counting measure (; on N and a Lebesgue
measure Uy = dx on R, we obtain yet another half-discrete Hardy-Hilbert-type inequality:

C1y

P Iz

) # 3 A xX,n)a X allq
/0 ((‘PF)(x)nz:]K (x:m) "> dx|  <|wGa|u. (2.72)

Of course, inequality (2.72) is equivalent to relations (2.68) and (2.69).

Now, our further step is to derive the corresponding inequalities for a homogeneous
kernel with a negative degree of homogeneity. In order to establish the main result for the
case of a homogeneous kernel, we give the following lemma:

Lemma 2.2 [fK : Ry x Ry — R is a non-negative homogeneous function of degree —s,
s >0, then

/ K(x,0)t %t =x'""%k(a), x€R,, (2.73)
JO
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and .
/ K(x,n)x %“dx=n'"""%(2—-s—0a), neN, (2.74)
0

where the function k(-) is defined by (1.22).

Proof. Making use of the homogeneity of K and the change of variables r = ux, we obtain
(2.73). Similarly, utilizing x = nu and u = <, we have (2.74). O

Now, exploiting inequalities (2.68), (2.69), and (2.72) in the context of a homogeneous
kernel, we have:

Theorem 2.8 Let p, g, and A be real parameters as in (1.43) and (1.44), and let K :
R+ xRy — R be a non-negative measurable homogeneous function of degree —s, s > 0.
If A1 and A, are real parameters such that the function K (x,y)y’q,A2 is decreasing on R
for any fixed x € R, then the inequalities

Zan/ K*(x,n)f dxf/ow f(x) (iK’l(x,n)an> dx

L (2.75)

SLV”X P (1=9)+p(d1—A2) ] [i FAGETICES Al)agr’
0 =1

1
/

[in% s—1)+q'(A1—Az) (/m[(/l(x,n)f(x)dx)q‘| '
=1 0

1 (2.76)
S| [Tt e
Jo
and
, 1
P (s 1) p (Ay—A — ! i
/ xy(sf )+p' (A2—Ar) (2 K’l(x,n)an> dx
0 e

! 2.77)

1
- q
<L lz nﬁ?(ls)ﬂl(/izz‘\l)aZ] 7

n=1
hold for any non-negative measurable function f : Ry — R and a non-negative sequence
1 1
a= (an),cN, where L=k (q'A2)k? (2 —s—p'Ay).
Proof. Rewrite inequality (2.68) for the function ¢ (x) = x*! and the sequence v, = n2.
Further, making use of (2.70) and (2.71), it follows that

3 K(x,n)nq’AZ] . xER,, (2.78)
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and
L
/

G, = [ / K(x,n)x P4 dx} " neN. (2.79)
JO

In addition, since the function K (x,y)y’q,/‘2 is decreasing on R for any fixed x € R, we
have

F(x) < {/Om K(x,t)t‘/AZdt] v ,

since the sum on the left-hand side of this inequality represents the lower Darboux sum for
the integral on the right-hand side. Now, Lemma 2.2 provides relations

€
7

1
F(x) <xd 2% (g/ay) (2.80)

and

k7 (2—s—p'Ay). 2.81)

Finally, utilizing (2.68), (2.80), and (2.81), we get the inequality (2.75). Similarly, inequal-
ities (2.76) and (2.77) follow from (2.69) and (2.72) respectively, by virtue of relations
(2.80) and (2.81). O

The main problem in connection with Theorem 2.8 is whether or not L is the best pos-
sible constant in inequalities (2.75), (2.76), and (2.77) for some choices of parameters A
and A;. Unfortunately, there is still no evidence that L is the best constant in the corre-
sponding inequalities. This problem seems to be very hard in the non-conjugate case and
remains still open. Luckily, we can solve the mentioned problem for some choices of A
and A; in the conjugate case.

2.3.1 The Conjugate Case and the Best Constants

We start with the conjugate version of Theorem 2.8, that is, when ¢’ = p, p’ =gand A = 1.

Corollary 2.4 Ler i+ é =1,p>1,andlet K : Ry xRy — R be a non-negative measur-
able homogeneous function of degree —s, s > 0. If A| and A, are real parameters such that
the function K (x,y)y~PA? is decreasing on R for any fixed x € R, then the inequalities

nglan/() K(x,n)f(x)dx = /0 f(x) (,,21 K(x,n)an> dx

. (2.82)
p

Mg

3

< [/wxlerp(AlAz)fP(x)dx] ’ l
0

plostalA2—Ar) az]

n=1
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- - Rk
L(s=1)+p(A1-A7)
Lzln </0 K(x,n)f(x)dx> ]

[/mxlwp(/h/%z)fp(x)dx} ! ,
Jo

(2.83)

il

<

and

1
N - a 7y
3 (s=D+q(A2—-A1)
p K(x,n)a, | d
l/o X (,,El (x,n)a ) x]

S Z [2 nlsﬁLq(AZAl)aZ‘|

n=1

(2.84)

hold for any non-negative measurable function f : Ry — R and a non-negative sequence
a= (an), N, where

L=kr (pA2)kd(2—s—qA,). (2.85)

Now, our intention is to determine conditions under which the constant L =
k117 (pAz)ké (2—s5—gA)) is the best possible in inequalities (2.82), (2.83) and (2.84). Ob-
serve that the constants appearing in (2.65) contain no exponents dependent on p and gq.
Guided by that fact we are going to simplify the constant L. Similarly to the previous
sections we impose the condition

PA»+qA1 =2 —5, (2.86)
since in this case relation k(pA,) = k(2 — s — gA1) holds. Moreover, L reduces to
L* = k(pA,), (2.87)
so that inequalities (2.82), (2.83) and (2.84) read respectively as follows:

a
Zoo,

oo

K(x,n)f(x)dx:/om Fx) (f:IK(x,n)an) dx

, 1 (2.88)

_— 1r. -

< / xHMAlfP(x)dx] ! lz o 1+PaAs all
L/0 n=1 ]
1
= oo p|r
3 nlp-1(1-pata) ( / K () £(x) dx)

[n=1 0 _ (2.89)
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a 74
K(x,n)an> dx]

In the sequel, we show that L* is the best constant in (2.88), (2.89), and (2.90), provided
that pA; +qA; =2 —s. In order to prove our assertions, we first provide the following
auxiliary result.

and

Mg

[/“’x(ql)(lpqm) (
0

< L* [2 n1+qu2azl

n=1

Il
—

n

(2.90)

Q=

Lemma 2.3 Ler the function K and parameters p, q, s, Ay, Ay fulfill conditions as in
Corollary 2.4 and let pAy +qA1 =2 —5, pAy < 1. For 0 < e < pq(% —Az), define the

function f: R, — R and the sequence (67,1)HEN by

Flx)=x" "5 At o) (X);  an = n Py

respectively, where y is the characteristic function of a set A. If sup,c(o ) K (L,1) < oo,

then
8/()mf(x) (ill((x,n)?ln> dx

(2.91)
€ su K(1,t
Zk(pAz—i—f)— Preo,1) K(1,7) 7
4q (1—pA2+%) (l—pAz—s)
where k(-) is defined by (1.22).
Proof. Let I denote the left-hand side of relation (2.91). Then, it follows that
Y A RS —pAa—5 | —qA1—%
Igfs/ ZK(x,n)n q]x rdx
bl (2.92)

> s/ [/ K(x,y)y”Azgdy] XM,
J1 J1

since the function K(x,y)yf”Arg is decreasing on R for any fixed x € R and for 0 <

e< pq(;? — Az). Now, exploiting the change of variables y = xt, the homogeneity of the
function K, and the condition pA; + gA; = 2 — s, the right-hand side of (2.92) can be
transformed in the following way:

e / xlf( /l K(l,t)r""23d1) dx. (2.93)
J1

Further, since the function K(1,7) is bounded on (0, 1), denoting & = sup,¢ g 1) K(1,1), it
follows that

had £ had £ % €
/ K(1,0)t P adr > / K(l,t)t”’Az’ﬁdtfa/ P2 gy
L 0 0
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€ (04 _ €
k(pA2+_>7£x phty x>,
q) 1-pA,—E

and consequently,

e/ x17E {/. K(l,r)t”“?dt}dx
1 ¥

(2.94)
k(o) o
€ €
q (1—pA2+E) (l—pAQ—E)
Finally, making use of (2.92), (2.93), and (2.94), we obtain inequality (2.91). O

The following theorem asserts that L* is the best constant in (2.88), (2.89), and (2.90),
assuming some weak conditions on the kernel.

Theorem 2.9 Let the function K and parameters p, q, s, Ay, A, fulfill conditions of Corol-
lary 2.4 and let pA> +qAy =2 — s, pAy < L. If sup,(o ) K(1,2) <o, then L* is the best
possible constant in (2.88), (2.89), and (2.90).

Proof. Due to the equivalence, it suffices to show that L* is the best constant in inequality
(2.88). In order to prove our assertion, suppose that there exists a positive constant L'
smaller than L*, such that inequality

2 an/ (x,n)f(x)dx = / F(x) (g K(x,n)an> dx

< {/ 71+qu1fp( ) ]_ lz - paAr a"] ’
- 0 n:1

holds for all non-negative measurable functions f : Ry — R and non-negative sequences
a = (an),. - Now, considering the above inequality with the function f and the sequence
(an), <N defined in the statement of Lemma 2.3, it follows that

/ow f(X) (ril((x,n)ﬁn) dx <L [/lwxlgdx] ’

ftlf;

1
= q
D nlf] . (2.95)

n=1

Moreover, since the function A(t) is decreasing on R, we obtain the following
estimate for the sequence appearing on the right-hand side of (2.95):

- , - el
=1+ Y < 1+/ 1 = : (2.96)
n=1 n=2

Hence, making use of (2.95) and (2.96) yields the inequality

/ <2Kxn )dx<L(1+s)f'z. 2.97)
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Finally, utilizing relation (2.91), it follows that

Q=

k(pA2+§ <L'(1+e),

) B € sup;c(o.1) K(1,1)
7

lpr2+%) (lprzf§>

which implies that L* = k(pA;) < L, after letting € — 0T This contradiction shows that
L* is the best constant in (2.88). O

Remark 2.9 It should be noticed here that the integral version of Theorem 2.9 was proved
in [77], while the corresponding discrete analogue can be found in [65].

2.3.2 Some Examples and Applications

In this subsection we deal with some particular choices of homogeneous kernels and real
parameters A1,A;. In such a way we shall obtain Hilbert-type inequalities with the best
constants expressed in terms of some well-known special functions.

Example 2.1 Our first example refers to a homogeneous kernel K; : Ry x Ry — R de-
fined by Ky (x,y) = (x+y)~%, s > 0. Moreover, assume that A\ and A, are real param-
eters such that 0 < pA; < 1, gA| < 1, and pAy + qA| = 2 — 5. In this case, the function
Ky (x,y)y~P42 is decreasing on R ;. for any fixed x € Ry, and Ky (1,¢) = (1+1)~* is bounded
on (0,1) as well, so that the assumptions from Theorem 2.9 are fulfilled. Hence, in this set-
ting we obtain inequalities (2.88), (2.89), and (2.90) with the best constant expressed in
terms of a usual Beta function:

u—PA2

L = k(pAs) = /O (=B Pz ps 1) = B~ pha,1 —gAy).

In particular, if Ay = Ay = %, where 2 — min{p,q} < s <2, the above constant reduces
to B(%H, %), that is, to B(%, ‘ll) = sifﬁ, when s = 1. In this case we have a half-
discrete version of the basic Hilbert inequality (1.1):

oo

Zan/o ffidﬁ/o f(x)(zx‘f:n>dxg E @, lale. 298
n=1

= sin &
n=1 )4

Example 2.2 The constant appearing in our second example is expressed in terms of a
Gaussian hypergeometric function. Recall that the Gaussian hypergeometric function is a
formal power series, but we are interested here in its integral representation (see [1] and

[46]):

F(a,B;y:z) = Lﬁ/o.ltﬁl(l —t)y’ﬁ’l(l —zt)"%dt,y>p >0,]z| < 1.

Here T denote the usual Gamma function, i.e. T'(a) = [5°t*"te~'dt, a > 0.
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In order to obtain the corresponding constant, let K, : Ry x R — R be defined by
K(x,y) = (x+y+max{x,y})~% s >0, and let 0 < pAy < 1, gA; < 1, and pA, +qA| =
2 —s. In this case the function K (x,y)y P42 is decreasing on Ry for any fixed x € R,
and Ky(1,t) = (2+1¢)* is bounded on (0,1), so Theorem 2.9 provides the corresponding
inequalities with the best possible constant

—S

lprQ

27s 1
F(s1-gAn2—gAi—3) +

1
F(,l— Api2 — A;——),
1— A § pAa2 pA2—5

that is, with the constant

g/ 1 1 1\ p.o/1 1 1
L= —F(l,—;1+—;——) + 2P (114 -5,
2 q qg 2 2 )4 p 2

when s = 1 and A} = Ay = —. In this case inequalities (2.88), (2.89), and (2.90) reduce
respectively to

\“ “ f(x) _ “ c dn n
,Z‘la"/o x+n+max{x,n}dx_/o f(x)<2x+n+max{x,n}>d

n=1

< L3l el

© (W L
[2 (/0 x—l—n—f—max{x,n}dx) 1 SLZHfHU’(RH’

n=1

[ e 73
/ D ) a < Ly al|w.
0o \ &~ x+n+max{x,n} -

n=1

and

Example 2.3 In order to complete the previous discussion, consider the kernel K3(x,y) =

inf . ; .
:nn;iagﬁ, o > B >0, from the begining of this section, and parameters Ay,A; such that

pAry+gA; =2 —a+f and max{l — o, f } < pAs < B+ 1. Since

—ay,B—pAy <x
K 7pA2 — X y ) y —
3(x,2)y {xﬁya,m’ V> x

is decreasing function on R for any fixed x € R, and K3(1,t) = B, B >0, is bounded
on (0,1), Theorem 2.9 provides the inequalities with the best constant

/ min {1 t} gy

max®{1,r} t}

1 1
— B—pAz —0=pAa g, _
=/t dt+/ t dt = + .
/o | B—pAr+1 ' atpAr—1

Moreover, with parameters A| = % and A, = %, where A1+ Ay, = a— B and max{o —
1,—B} < A1 < o, we obtain inequalities (2.65), (2.66), and (2.67) (see also [23]).
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Another interesting feature in connection with the best constants appears when con-
sidering certain operator expressions closely connected to Hardy-Hilbert-type inequalities
(2.89) and (2.90). In order to simplify our discussion, we deal here with inequality (2.89)
forA; = % (then, Ay = %), and with (2.90) for A, = # (then, A| = %). In this
context, inequalities (2.89) and (2.90) reduce respectively to

1
e < k(142 =5) 1 e, (2.99)

and
Da <k —1 a 2.100
H 2 |‘LLI(R+) > ( )H qu» (2. )

where 2] : LP(R;) — 17 and % : 19 — L9(R,) are linear operators
A, S]/ K(x,n)f(x)dx, n € N,

and

=

(La) (x) = x! Y K(x,n)an, x> 0.
n=1
Due to inequalities (2.99) and (2.100), the operators A and % are well-defined and they
are bounded, as well. Moreover, since k(l + - — s) and k( ) are the best constants in
(2.99) and (2.100), we are able to determine norms of £ and ‘,2”2 Namely, exploiting this

fact, it follows that
11| —supiuglfl'” —k(l-i—l—s)
A ®,) g

and

|2 1
|2l = sup — B < ().
a#0 ”a”l‘l q

2.3.3 Refined Half-discrete Hilbert-type Inequalities

While proving half-discrete Hilbert-type inequalities, we were establishing integral bounds
for the corresponding discrete sums. Such sums were recognized as the lower Darboux
sums for the corresponding integrals. This fact required monotonic decrease of the function
that defines the integral sum.

Similarly to the Subsection 2.1.2, we deal here with a slightly different approach in
estimating a sum with an integral, based on the Hermite-Hadamard inequality. Of course,
this requires some extra assumptions concerning convexity, but as a consequence, we shall
obtain improvements of the corresponding half-discrete Hilbert-type inequalities in Theo-
rem 2.8.

Theorem 2.10 Let p, g, and A be real parameters as in (1.43) and (1.44), and let K :
R+ xRy — R be a non-negative measurable homogeneous function of degree —s, s > 0.
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If A1 and A; are real parameters such that the function K ()c,y)y"/Az is convex on R for
any fixed x € Ry, then the inequalities

2 an/ K* (x,n) f(x)dx = /w f(x) (;31[{’1 (x,n)an> dx

1 © pi_g N
<KV (2—p'A;—s) [/ xf;(l s)+p(Ay Az)kf (q/A2§2]_xa°°)fp(x)dx:| ! (2.101)
0

1

oo q
4 (1—s5)+q(Ay—A

% an,/ q(Ar— 1)aZ

n=1

)

1

!

r&

- o ar
[2 ZAARAE (/0 Kl(x,n)f(x)dx) ]
~ (2.102)
1 * D (]_g »
<KV (2— pAl—s) [/ x”,(l )+p(Al Az)k (q'A2,2 ’ )f”(x)dx}l,
0
and
- y - I v
/0 TP AT (a1 )(2]K’l(x,n)an> dx
"= (2.103)

n=1

, v
<KV (2—p'A;—s) lzn",(l —s)+q(Axr— Al)az

hold for any non-negative measurable function f : Ry — R and a non-negative sequence
a= (a”)neN'

Proof. We prove (2.101) only. To show this, we follow the same procedure as in the
proof of Theorem 2.8, except that we provide a more precise estimate for the function
F(x) defined by (2.78) (see Theorem 2.8).

More precisely, since the function K (x, y)y"’/A2 is convex on interval R for any fixed
x € Ry, applying the Hermite-Hadamard inequality, i.e. the left inequality in (2.7), to
intervals [n — %,n + %], yields the following inequalities:

K(x,n) - /"*% K<x’t)dt
n

nd'Aa -1 14'42

neN.

Now, summing these inequalities we have

In addition, making use of the homogeneity of the kernel K, it follows that

/ K1)~y = —s-d%2 / K(1u)u 1™ du

1
2
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k(A ),

and consequently,
1l—9) A, L
Fx) <xd " T%7 (Ag; ok 00). (2.104)
Finally, utilizing (2.68), (2.81), and (2.104), we obtain (2.101). O

Remark 2.10 According to an obvious estimate k(q'A»; 5-,) < k(¢'A2), which holds
for all x € R, it follows that the right-hand side of inequality (2.101) does not exceed
the right-hand side of (2.75) (see Theorem 2.8). In such a way we get the interpolating
sequence of inequalities, that is, inequality (2.101) refines (2.75). In the same way in-
equalities (2.102) and (2.103) represent improvements of (2.76) and (2.77), respectively.
Therefore, the convexity assumptions in Theorem 2.10 yield a better result than the mono-
tonicity assumptions of the kernel in Theorem 2.8.

Remark 2.11 Observe that in Theorem 2.10, it suffices to require the convexity of func-
tions K (x,y)y~942 on the interval [%,oo) , for any fixed x € R...

The following application of Theorem 2.10 refers to the homogeneous kernel K : R x
R.: — R, defined by K(x,y) = (x+y) %, s > 0. In such a way, we shall obtain the weight
function expressed in terms of the incomplete Beta function. Recall that the incomplete
Beta function (see Section 2.1) is defined by (2.10).

For r =1 the incomplete Beta function coincides with the usual Beta function and
obviously, B, (a,b) < B(a,b), a,b >0, 0 < r < 1. Due to the simplicity, we provide this
consequence in Hilbert-type form only.

Corollary 2.5 Let p, g, and A satisfy (1.43) and (1.44), and let s > 0. If A| and A,
are real parameters such that p'A; € (1 —s,1) and ¢'A; € (max{1 —s,0},1), then the
inequality

2 / x+n /:f@)(iﬁ)dx

n=1
1

BY (s+p'Aj —1,1-p'A))

1
. . 5 (2.105)
/ (1—5)+p(A; Az)qu (s+q'A2 1,1 —q/Az) fp(x)dx]

|: 2x+1
1
S 4 (1-5)tq(Ar—A) 4|
—5)+q(Ax—Ay q
2 ay,

holds for any non-negative measurable function f : R, — R and a non-negative sequence
a=(an),.N-

Proof. In order to apply Theorem 2.10, we first show that a class of functions fy(y) =
(x+y)~Sy~* is convex on R for any fixed x € Ry and @ > 0. By a straightforward
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computation, it follows that

) = (s+a)(s+a+1)y2+2a(s+a+1)y+a(a+1)
1) = Y 2(1+y)si2 )

which means that f; is convex on R, since s > 0 and a > 0. In addition, since f} (y) =
x@S72f(2), it follows that f; is convex on Ry for any fixed x € R

Since the assumptions of Theorem 2.10 are fulfilled, we are able to apply inequality
(2.101) in the case of homogeneous kernel K(x,y) = (x+y)*. From the definition of the
incomplete Beta function and passing to the new variable t = % — 1, we have

e tiq,Az ‘% ! !
k(q’Az;zL,w) :/ —dt = / u”"Arz(l —u)f"AZdu
" JL (141) Jo

:B% (S+q/A271,17q/A2),

while the definition of the usual Beta function yields

oo tS+IJ,A1 -2

—dt=B ‘A —1,1—p'A)).
(EnE (s+p'A1—1,1-p'Ay)

k(2—p'A; —s) :/0

Now, the result follows from (2.101).
Note also that the intervals defining the parameters A; and A, are established due to
the domain of the incomplete Beta function and the convexity of a class of functions f,. O

Remark 2.12 Considering the parameters A} = A, = pl—q and the kernel of degree —1 in
the conjugate case, relation (2.105) provides the following interpolating set of inequalities

- = fx) Y < dn
n}::lan A de7/0 f(x)<2x+n>dx

n=1
1
< (L) | [ B (5.5)@ax| a
> P'q o % 9P 14
T
< @”.f”m(ﬂ%””a”l%

- 11 11y _p(l 1\ _ = . .
since Bz)% (;1, F) < B(E’E) —B(p, q) =z Observe that the above set of inequalities

refines the half-discrete inequality (2.98).

Although we provided a unified treatment of half-discrete Hilbert-type inequalities with
a homogeneous kernel, the described method regarding convexity can also be applied to
non-homogeneous kernels. The following example refers to a homogeneous kernel K :
Ry xRy — R, K(x,y) = (L +xy)~%, s > 0, studied in [98].
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Corollary 2.6 Let p, g, and A satisfy (1.43) and (1.44), and let s > 0. If A| and A,
are real parameters such that p'A; € (1 —s,1) and ¢'A; € (max{1 —s,0},1), then the
inequality

2 / 1+xn / (i e )dx

n:l

B (s+p'A1—1,1-p'Ay)

1
oo P 1
x [/O P AL T (s+q’A21,1q’A2)fP(x)dxr

x+2

holds for any non-negative measurable function f : R, — R and a non-negative sequence
a= (a”)nEN'

(2.106)

Proof.  Similarly to the proof of Theorem 2.8, we start by exploiting inequality (2.68)
with the function ¢ (x) = x*1 and the sequence y,, = n2. Further, making use of (2.70) and
(2.71), it follows that

1

w 7
F(x)= [2(1+xn)an/‘2] , xeRy,

n=1

and
1
7

G, = [/ (I+xn)"x ”Aldx} , neN.
Jo
From the definition of the usual Beta function, we have
/ (1 —i—xn)fs)c*p,A1 dx = np,Alle(s—i—Alp/— 1,1-Ap),
0

ie.
1 1
Gy=n""VBYB(s+Ap' —1,1—A1p'), neN. (2.107)

Now, in order to find the appropriate estimate for the function F(x), we first show that a
class of functions g,(y) = (1 +xy)~*y~“ is convex on R, for any fixed x € R, and for
a,s > 0. Namely, since g,(y) = x“f(xy), where f;, x € R, is a convex class of functions
defined in the proof of Corollary 2.5, it follows that g”(y) = x**2f(xy), so that g, is
convex on Ry forany x € R;.

Now, applying the Hermite-Hadamard inequality to intervals [n — %,n + %] yields

! n+l !
(1+xn)7“'n7"A2§/ 2(1qut)f“'z‘quzdl‘, neN,

1
Jn—s5
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that is

=

Y (1 +xn)7sn7q,A2 < /| (1 +xt)7sfq,A2dt,

n=1 2

after summing these inequalities. Moreover, from the definition of the incomplete Beta
function, it follows that

2
* _ AL x+2 TAL ;
/1 (14 xt) St~ 942dr =x142 1/ w2 (1 )~ 2 gy
L Jo

2

:quArlB% (s+q'Ar—1,1—gAy),
and consequently,
14
F(x) <X 7B% (s+q'Ar—1,1—gAs) x€R,. (2.108)
sl
Finally, the result follows from (2.68), (2.107) and (2.108). O

Remark 2.13 All the results from this section are established in paper [57].



Chapter

Hilbert-type Inequalities on
Time Scales

3.1 On Time Scales

Let us recall essentials about time scales. A time scale T is an arbitrary nonempty closed
subset of the real numbers R. Let a,b € T. The interval [a,b] in time scale T is defined by
[a,b] :={tr € T:a <t < b}. We define the forward jump operator o by o (¢) :=inf{s € T :
s> t}, and the graininess u of the time scale T by u(¢) := o(¢) —¢. A point ¢ € T is said to
be right-dense, right-scattered, if o(¢) = ¢, o(r) > 1, respectively. We define f° := foo.
For a function f : T — R the delta derivative is defined by

fA(l) = lim fG(S)—f(l‘).

s—t1,0(s)#t O'(S) —1

Here are some basic formulas involving delta derivatives: f° = f+uf®, (fg)* = f2¢ +
fogh = g% + fgt, (f/e)" = (fPg— fg")/(gg®), where f, g are delta differentiable
and gg© # 0 in the last formula. A function f : T — R is called rd-continuous provided
it is continuous at all right-dense points in T and its left-sided limits exist (finite) at all
left-dense points in T. The classes of real rd-continuous functions on an interval I will
be denoted by C,y(I,R). For a, b € T and a delta differentiable function f, the Cauchy
integral is defined by f;fA (t)At = f(b) — f(a). For the concept of the Riemann delta in-
tegral and the Lebesgue delta integral, see [25]. Note that the definition of the Riemann
delta integrability is similar to the classical one of a real variable, and that the Lebesgue

57
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delta integral is the Lebesgue integral associated with the so-called Lebesgue delta mea-
sure. Every rd-continuous function is Riemann delta integrable, and every Riemann delta
integrable function is Lebesgue delta integrable. Throughout, for convenience, when we
speak about a delta integrability, we mean the integrability in some of the above senses.
The integration by parts formula is given by:

b b
/a (WA = [l v(0)] — / AW (1A, 3.1)

The chain rule formula (see [26], Theorem 1.90) that we will use in this chapter reads

W = ([ e+ 0= mr-an) ), 62

where y > 1 and u : T — R is delta differentiable function. For more details about time
scales the reader is referred to [25], [26] and references therein.

3.2 Hilbert-type Inequalities

The results we present here are based on the mentioned results of Krni¢ and Pecari¢ ob-
tained in [66]. First step is to reformulate the inequalities (1.17) and (1.18) for time scales.
Namely, rewriting inequalities (1.17) and (1.18) for Lebesgue delta measures Ax, Ay and
time scale interval [a, b], we have

/ / (x, ) f(x)g(y)AxAy (3.3)

<| [ owrwr <x>Ax} ([ vorcomon]’
[ rowro)| [Kuena) vs [orwrmrman 0o

where p > 1, K : [a,b] X [a,b] = R, f,g,0,¥ : [a,b] — R are delta measurable, non-
negative functions and

_ [P K(xy) _ [P K(xy)
F(x)—./a oAy and GO = / oA (3.5)

and

In what follows, without further explanation, we assume that all integrals exist on the
respective domains of their definitions. By applying the inequalities (3.3) and (3.4) we
obtain the following result.
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Theorem 3.1 Let T be a time scale witha € T. Let A > 2, ;7 + é =1withp > 1, and
define

R 1 1 el
A= [ o(y)<<x+o<y>>*<x+y>+<x+y>ﬂ<x+o<y>>>”’ € la).

Then the following inequality

[l |

< ([ ot l(mw) )’ (3.6

“ 1 q
X o ————A a(y)A
([ vooir (s A0 o)
holds for all non-negative and delta measurable functions f,g : T — R.

Proof. Rewrite the inequality (3.3) for the functions K (x,y) = (x +y) 4, A > 2, ¢(x) =
[xo(x)]"/4, w(y) = [yo(y)]'/?, x,y € [a, o). Further, making use of (3.5), it follows that

F(x)=G(x) = /: y0'1( ] (x—l—ly)l Ay, X € [a,). (3.7)

Using the integration by parts formula (3.1) on the term F (x) with

A 1 R 1
= d -
o) S ®) yo(y)’
we have ,
F) =7 = [t () 0, G8)
where
W)= s and () =
g y o(y)
Applying the chain rule (3.2) we obtain
1
oS = ([ e (1 i an) ) 69)
0

where
1

(x+y)(x+ao(y)

Taking into account (3.9) and an obvious inequality

W(y) = — (3.10)

(@a+b)f >a' +b", a,b>0,y>1,
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we have

1 B A—1
x/[ h_ 1 h} dh
o |x+o(y) x+y

1 A—1 _ A—1
> z/ L) N <l_h) i
o |\x+o() x+y

and consequently,

| 1 1 1
F(x) <utvf7 - < + > A
=i [ 5 (Fremp * wmr) Trereen® .
1 .
Finally, using (3.3) and (3.11) we obtain (3.6). O

The Hardy-Hilbert type inequality is proved in the following theorem.

Theorem 3.2 Let T be a time scale witha € T. Let A > 2, % + % = 1 with p> 1, and let
A be defined as in the statement of Theorem 3.1. Then the inequality

[ sty ) o]

< ./;[xO'(x)]pfl (m —A(x)) S (x)Ax

holds for all non-negative and delta measurable functions f : T — R.

(3.12)

Proof. The proof follows directly from the inequalities (3.4) and (3.11). Namely, if p > 1,
then we have

1 =r
[W —A(Y)} <G'7P(y),

where G(y) is defined by (3.7). Now, the inequality (3.12) follows easily from (3.4). O

Remark 3.1 For T =R, we have o(y) =y, y € R, and the term A(x) defined in Theorem
3.1 takes form

oo dy
Ax:2/ _ X € la,),acR,.
w=2f a.), a€ R

For example, if a =1, A > 2, then, applying the inequality (3.6) we obtain the following
result

/l“’/l“’ %dxdy < (/leZ(Pl) <(x+11))t 2F(1+).,1+).;2+l;x)) fp(x)dx) b
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- 1 !
20D [ —— 2F (14, 14 A;24A; — > q d)
X(ly <(y+1),1 (144, 14452445 —y) | g2 (v)dy |

where F (o, 3;Y;z) stands for the Gaussian hypergeometric function defined by

P(asBivia) = s [ #7007 (=) y > B0 < 1,

Remark 3.2 Similarly, for T =N, a € N, we obtain

& 1 1

3 G N7
Z s+1 ( (n+s+1)*(n+s) * (n+s)}‘(n+s+1)> "
and the inequalities (3.6) and (3.12) become

i i f(m)g(n)

Z atm)
< (Zptone 01! (s = A ) ) )

and

PPy (ﬁ sw) [ o]
< S into+1) (m/\(m))f”(m)-

Now, our further step is to derive corresponding inequalities for the kernel K(x,y) =
(1+xy)~*, A >0, and the weight functions @9 (x) = y”(x) = x\/0(x) + o(x)\/x.
Acting as in the proof of Theorem 3.1, we can establish the following result.

Theorem 3.3 Let T be a time scale with a € T. Let A > 0, % + é =1 withp > 1, and
define

. 1 1
-l NCD <<1+m<y>>ﬂ<1+xy> ! <1+xy>ﬂ(1+m<y>>> A xe ).

Then the inequality

// 1+xy Axhy
< ([ Vot oy (e -aw) ra) " Gy
< ([[ov/omr+ob ﬂql(mw))gq@mf

holds for all non-negative and delta measurable functions f,g : T — R.
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In what follows, instead of formula (3.2) we use the chain rule (see [26], Theorem 1.87):

(fog)™(t) = f'(g(c))g™(r), for some c € [t,0(1)], (3.14)

where g : R — R is continuous, g : T — R is delta differentiable and f : R — R is contin-
uously differentiable function.

Theorem 3.4 Let T be a time scale with a € T. Let A > 0, %Jr é =1withp>1, and
define

1
_/l/ (x+of ))A+2(x+a(y))Ay’ X € [a,).

Then the inequalities

AxA
/ / x+y Y

< ([ oty 1(% +A(X)>f”(x)AX>% (3.15)

ala+x)

< ([Trouir (im0 i)

[ 55 (awiwA “(y’) a [/ (ﬁ?ﬂ A"r”

< [Totr ! (s AW ) s

hold for all non-negative and delta measurable functions f,g: T — R.

and

(3.16)

Proof. We prove (3.15) only. To show this, we follow the same procedure as in the proof
of Theorem 3.1 except that we provide a new estimate for the functions F(x) and G(x)
defined by (3.7).

More precisely, from the inequality (3.8) we get

_ 1 oA 1 -
R = i, @0 g xe o), 317
where u(y) = 1/(x+y). Using (3.10) and (3.14) we have
()" = : forsome ¢ € [,0()

(x+ ) (x+y)(x+0(y))

and therefore

A
A A

u < .
WO S G o)
Finally, making use of (3.3), (3.17) and (3.18) we obtain (3.15). O

(3.18)
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Remark 3.3 Hilbert-type inequalities presented in this chapter are taken from [79]. How-
ever, similar Hilbert-type and Hardy-type inequalities can also be derived for homogeneous
kernels of arbitrary degree of homogeneity. For more details about similar results, the
reader is referred to [14], [24] and [40].






Chapter

A Class of Hilbert-type
Inequalities Obtained via the
Improved Young Inequality

4.1 Preliminaries

Nowadays, considerable attention is focused on establishing methods for improving Hil-
bert-type inequalities. The main objective of this chapter is to present improved versions
of Hilbert-type inequalities (1.2) and (1.3), based on the improved form of the well-known
Young inequality
n n xl?i
[MTxi<Y =, 4.1
i=1 i=1 Pi
where x; > 0, p; > 1, and Y, i = 1. The results that follow are established in [53]. We
first give refined and reversed Hlllbert—type relations in a general multidimensional case. As
an application, we give improved versions of the classical Hilbert and Hardy inequalities.
The starting point in our research is the following improvement of the Young inequality
(4.1) established in [61]: If ¥, 1% =Lpi>1x;>0,i=1,2,...,n, then

n n
m M

Pi Pi
H?:l xi” < H;I:I Xi < H?:l xin (4 2)
1 vn Di — Pi — 1yn Di :
7 Zie1 X 7:1{;—_ i1 X

1

65
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where m = min; <;<, p; and M = max<;<p p;. The first inequality in (4.2) provides the re-
verse, while the second yields the refinement of the Young inequality. This improved form
of the Young inequality relies on the improved version of the Jensen inequality obtained in
[61] (see also [41]). .

Considering the second inequality in (4.2) with H/‘{—\l\p, instead of x;,i=1,2,...,n, where
fi € LPi(Q), and integrating over Q, it follows that

[ T1A@due) <G, fovo ) TR . @3
i=1 i=1

where

' |§6 fipi(x) ‘| H?:lfi" (x) d,u(x). 4.4)

G(fisfarensfi) = | :
& pil fillp: n A

JQ
i J
=LA

It should be noticed here that the inequality (4.3) provides the refinement of the Holder
inequality. Namely, by the arithmetic-geometric mean inequality we have

Pi

Pi
7:1fi" (x) < =1 ||fiH151i
— )

n fipi(x)_ n
=L £
and consequently,
L
i Il
G(fi,far- fu) < ) (4.5)

Now, combining (4.3) and (4.5) yields [o [T\, fi(x)du(x) < TT; || fill ;> i-e. the Holder
inequality.

In the same way, the first inequality in (4.2) yields the reverse of the Holder inequality,
that is,

[ TTAWdu ) = ntH (i foree o ) TN @6
=1 i=1

where

n
m

H(fl,fz,...,fn):/

Q

. 5 du(x). 4.7)

ZE | g 7 |

i=1 | £ |Pi

I1/illp;

The improved Holder-type inequalities (4.3) and (4.6) were established in paper [61], in

a more general setting with positive isotonic linear functionals. We will utilize them in
obtaining improved versions of Hilbert-type inequalities presented in Section 1.1.

l n () ] A ()
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4.2 Improved Hilbert-type Inequalities

In this section we give a class of Hilbert-type inequalities based on more precise Holder-
type inequalities stated in the previous section. First we give a refinement of the inequality
(1.2) which relies on the refined Holder inequality (4.3).

Theorem 4.1 Let Y p =1, pi > 1, let (Q;,%;, ;) be o-finite measure spaces, and
let K:Q—=R, ¢;;:Q =R, f;:Q2 =R, i,j=1,2,...,n, be non-negative measurable
functions. If 17 ;_ i (xj) = 1 and the functions F; : Q — R are defined by

F(x) = Kn () fi) [[650)). i=1.2.....n,
j=1

then

1-2

Jy Koot < w6t ro [ Thownsil #,
i=1

where M = max <<, pi, ; is defined by (1.4), ¢;;w;f; € L”' (Qi), i=1,2,....,n,and G is
defined by (4.4).

Proof. Rewriting the left-hand side of inequality (4.8) and utilizing the improved Holder
inequality (4.3) we have

[ KT At

: i=1

= /gﬁ (Kl/pi(x)fi(xi) ﬁ (Z)ij(Xj))d[.L(x)
i=1 ol

:Aﬁﬂwww

SH%G Fl;FZ; F, H”FHp,

In addition, since ¢;w;f; € LPi(Q;), it follows that F; € LPi(Q), i = 1,2,...,n. In other
words, we have
1

¢5%x»du<xﬂ ’

n

1Eillp = | | K()(Qiifi)" (xi)
) /9 j:gﬁ

= ./Qi(dmﬁ)”"(xi) (/QK ,11&1(7) (xj)d ' (x ))dui(xz-)l 4.9)

::/<%@m wwmmﬂ“

= ||¢llwlﬁ||pl7 i=1,2,...,n,




68 4 A CLASS OF HILBERT-TYPE INEQUALITIES...

which completes the proof. ]

Remark 4.1 The inequality (4.8) provides the improvement of inequality (1.2), due to
relation (4.5). More precisely, utilizing (4.5) and (4.9), it follows that

n n bi
G(F1,F,....F) <n M []llowwifil -
i=1

This means that the right-hand side of the inequality (4.8) is not greater than the right-hand
side of (1.2), that is, not greater than [T, ||¢i; fi]| p;-

Now, as a consequence of Theorem 4.1 we also obtain the refinement of the Hardy-
Hilbert-type inequality (1.3).

Theorem 4.2 Suppose that the assumptions as in Theorem 4.1 are fulfilled. Then,

I (7(%,1@1,1)@”) L Hﬁ xR ))Pdu(m p

Sn’i/l_lG(FlvFZa- Fo_1,F HH(puwllePz y

o

(4.10)

_ # x n—1 P=1 n
Fy(x) = W (/ Hﬁ xi)d Q" (x )) ,Ul“’""("’)'

Proof. 1t follows from Theorem 4.1, by substituting the function

B el P—1
fn(xn) = ((pnnwn) P(xn) (/Q" K(X) il}fi(xi)d‘u (X)>

in inequality (4.8). In that case, (4.8) reduces to

| n—1 pi

MHHFIIp, i

L
1 <nWG(F,F,.. "

i -1 - P . .
where I = [o (m Jor K(X)TTZ, ﬁ(x,-)du"(x)) du(xy,). Finally, rearranging we
obtain (4.10). O

Remark 4.2 It should be noticed here that the inequality (4.10) is more accurate than

~ 1
(1.3). In order to show this, note that ||F,||,, = I?», where I is as in the proof of Theorem
4.2. Therefore we have

~ o in7] pi
G(F\,Fy,....Fy) <n D [T guesifill
i=1
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and the relation (4.10) implies the inequality

1

1oL 1l
v M H |giii fill pi

E

which provides (1.3) after dividing by 1.

In the same way as in theorems 4.1 and 4.2, we can also derive reverses of inequalities
(1.2) and (1.3). These reverses rely on the reverse Holder inequality (4.6). The following
theorem is established in the same way as theorems 4.1 and 4.2, except that we use relation
(4.6) instead of (4.3).

Theorem 4.3 Suppose that the assumptions as in Theorems 4.1 and 4.2 are fulfilled.
Then,

n " n |_Pi
/Q Kx)[]fi(x)du(x) > nnH(F,Fs,....E) [ l19i0ifillp "
i=1 i=1

and

=
+
=

P
¢nnwn xn) ./52 Hfl Yi d‘u )> d‘u(x’l)

Z % Fl Fz, n 17 HH‘PuwlﬁHm ’

where m = min|<;<, p; and H is defined by (4.7).

4.3 Applications

Now, our intention is to apply results from the previous section to obtain the improvements
of the classical Hilbert and Hardy inequalities. Here we deal with real measure spaces Q; =
R, accompanied with the non-negative Lebesgue measures d;(x;) = dx;, i = 1,2,...,n
In this particular setting we have Q = R", Q= R’ffl, dx = dx;dx;...dx,, and d"x =
dX1 ...dxi,ldxiﬂ ...dxn, 1= 1,2,...,}1

4.3.1 Connection with the classical Hilbert inequality
We first give an improved form of the inequality (1.1) in a multidimensional case. In
order to do this, we consider the kernel Ky : R, — R defined by KO( ) =L lx,)f’l,

A >0, and the power weight functions ¢;;(x;) = xA where A;j = 2= i # j, and A;; =
(n /1)(2171*1)

i

n—A <m,m=min<;<,pi, i,j = 1,2,...,n. These power welght functions
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fulfill condition H}’le ¢ij(xj) =1 as in theorems 4.1, 4.2, and 4.3. In addition, by means
of the formula

1, ai—1
/ Ty wi™ Py — im1 I'(ai)
Rn 1 1 + zn 1 )2;}:1“!' F(Zil:] ai) ’

where T'(a) = [ t“ 'exp(—t)dt, a > 0, is the usual Gamma function (see, e.g. [1]), we
have

1 & —n+ nAop
:—A H ( p]) X; bi , x>0,

) P n— lll )
(Piiwifiﬁi-:ﬁ '}:1F( ZJPJ)H "l i=1,2,...,n. There-

fore, in this case Theorem 4.1 takes the following form:

and consequently,

Corollary 4.1 Ler ¥} | i_ =1L pi>1 fi:Ry =R, i=1,2,...,n are non-negative
measurable functions, and let A > n —m, where m = minj<j<, p;i. If the functions F; :
R — R are defined by

n (n— )L)(Zp, 1) " An
= (3 ) gty T T 7= 12,
Jj=1 J=Lj#i
then
/ i= lfl xzd <I’lMA17MGF HHxn; fH 4.11)
Rn Zn 1xl 15 7 || pi 7 .
A—ndtp; n—1-A4
where A = 1“(/1) § I 7;; p’), M = max|<i<,pi, x; " fi € LPI(Ry), i=1,2,....n,
and G is defined by (4.4).

Remark 4 3 Since the functions F;, defined in Corollary 4.1, fulfill relation ||F;||,, =
n—A—

A llx; 7 ﬁ|| it follows by (4.5) that

—1—

Pi
G(F17F27" ) 7[{/1_1 %H i ﬁHlIJ\{

The above relation implies that the right-hand side of the inequality (4.11) is not greater
n—1-14

than ATT, ||x; ™ fillp;» which provides the right-hand side of the corresponding Hilbert-
type inequality derived in [99].

In the same way, as a consequence of Theorem 4.2, we obtain the Hardy-Hilbert form
of the inequality (4.11).
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Corollary 4.2 Suppose that the assumptions as in Corollary 4.1 are fulfilled. Then,

P
/ (n—A—1) / . g fl xt)dn dx,

n—1 n—1—

< %AFF%GF F Pi . 17%
~n ( 1,182, n 17 n HHX lePi ’

1 1
Ptm

(4.12)

where 1 =2 p—and
A P—1 _ _
_A —1 (=A)(pn=1) ;1 A=r
IE-'(X)_ ( ;’1:lxl') pn H?:l fi(xi)jnx X i 1 xp’”’]l
T o (P-D=A-1) | Jpr-! (31 x,)/l n J
A Xn + i=1"" j=1

Taking into account remarks 4.2 and 4.3, the relation (4.12) provides an improvement
of the corresponding Hardy-Hilbert-type inequality from [99].

Remark 4.4 Note that the kernel Ko (x) = (3, x,')fl, A >0, appearing in corollaries 4.1
and 4.2 is a homogeneous function of degree —A. The same conclusion, as in corollaries
4.1 and 4.2, can be drawn for an arbitrary homogeneous function of degree —A, A >
0. More precisely, let K : R, — R be a homogeneous function of degree —A, such that
k(’l - LA ") < oo, where the function k(-) is defined by (1.5) (see Section 1.1). Now,
if the kernel Ko is replaced by the kernel K, we obtam the same inequalities as (4.11) and

(4.12), except that the constant A is replaced by k(- FEREREE ’lp’l”).

Remark 4.5 Consideringrelations (4.11) and (4.12) with m = min; <;<,, p; instead of M =
max<;<, pi provides inequalities with reversed sign of inequality, due to Theorem 4.3.

In order to end our discussion regarding the Hilbert inequality, we give the two-dimen-
sional version of Corollary 4.1, that is, when n =2 and A = 1. With a more suitable notation

N =X %=y pr=pp2=4fi=f fr=g wehave A=T()0(3) = Glr. Fix.y) =

1 1 1
fx)(x+y)~ P()—‘)M F>(x,y) = g(y)(x+y) 7(%)P4, so in this case relation (4.11) reduces
to

1-2
foo POty < () M ommnly Bl F @)
R: +y sin

where M = max{p,q}. In addition, since ||Fy|} = Tz ZfI5 and ||B||d = Tz L |lglla, it

o ) (f, ), where

follows that G(Fy,F>) = (=2

SO

P £0) (1)
/ pufup ) ol ()7 f dxdy
R> x+y 17 ()_c)ﬁ ’
i\
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Therefore, the relation (4.13) can also be rewritten in the following form:

1-£ 1—4
fre T sy < syt 15 H . @.14)

Remark 4.6 We give a trivial example which shows that the relation (4.14) yields a better
fx)el)

estimate for the integral fRz o

dxdy, than the original Hilbert inequality (1.1). To see
this, put /= x(0,1) and g = exp(— 5) X(1,)» Where  stands for a characteristic function of
the corresponding interval. Then, ||f]|, =1, ||g]l; = exp(é), and fg = 0, so the inequality

(1.1) reduces to 0 < ¢

s exp( ). On the other hand, in this case we have y(f,g) =0, so
P

the inequality (4.14) reduces to a trivial equality, providing a more accurate estimate than

(1.1).

4.3.2 A few examples with the classical Hardy inequality

Now we deal with another famous classical inequality closely connected to the Hilbert
inequality, i.e. the Hardy inequality. The Hardy inequality (1.53) can be rewritten in the

following form:
t s 4.
JR - pfl f P (

where p > 1 and f € LP(R,.). For comprehensive accounts on Hardy inequality including
history, different proofs, refinements and diverse applications, the reader is referred to
monographs [47] and [68].

As we have mentioned, the inequality (1.3) is usually referred to as the Hardy-Hilbert-

type inequality since it is a multiple generalization of (4.15). To see this, let us consider
1

(13) withn = 2, ¢1] (X]) = xl 11’2 ¢2] (X]) = xl p1p2 (P]z(Xz) *xz p1p2 (Pzz(xZ) *xzplpz and

the Hardy kernel K(x;,x;) = x_z X7 (x1,%2), where y stands for the characteristic function
1 1

of T {(x1 x2) € R%; x1 < x2}. Then, it follows that o; (x) = pé’lxl P72 and @y (xp) =

p2 X, “n , 50 (1.3) reduces to (4.15), after using a more suitable notation x; =7, x; = x,

p1=p; andfl =

Clearly, our Theorem 4.2 provides a refinement of the Hardy inequality. In fact, uti-
lizing the fact that the Hardy kernel K (x;,x;) = xiz xr(x1,%2) is a homogeneous function
of degree —1, we can apply Corollary 4.2 and Remark 4.4. Since n =2 and A = 1, the
constant k(-) in Remark 4.4 becomes k(_p%) = p», after a straightforward computation.
Therefore, with x; =¢, x; = x, p1 = p, p» = ¢, and f; = f, we obtain more strengthened
version of the Hardy inequality (4.15), that is, we have

U& G /Oxf (t)dt> pdx}

o

==

1 2
< ah T G(RLB)||flH (4.16)
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where M = max{p,q},

1 1+q

Fi(x,y) = xriy 70 f(x)xr (x,y),
_ _p? y p—1
Fo(xy) =q ix pay 5 (/o f (t)d’> xr(x,y),

and G is defined by (4.4).

Remark 4.7 Our inequality (4.16) is an improvement of the classical Hardy inequality,

1 ~ 1— 1
due to Remark 4.2. More precisely, since ||Fi||, = g7 || f||, and ||F> ||, = q_qeﬂ, where
J=Jr, (L[5 f(e)dt)" dx, we have

4

~ 1 Lo~ &1 2
G(F1,B) <4 W |R|J IRl =4 hg™s s pF,

which implies that the right-hand side of inequality (4.16) is not greater than gl 11l p-
This yields the Hardy inequality (4.15).

Our last example refers to the so called dual Hardy inequality. The corresponding

result can not be derlved directly from Corollary 4.2, but employing Theorem 4.2 with
17 < L1 < -4

n=2, ¢11(x1) =X ¢21 (xl) = x] s ¢12(X2) = x2 s ¢22(X2) =X, 7 , and the dual
Hardy kernel K (xl,xg) =5 L vs(x1,x2), where x stands for the characteristic function of
1 Lz 1 1+l
S = {(x1,x2) €RZ; x1 > xp}, it follows that ; (x) = pI'x{" and wy(x2) = p{*x, ey
Consequently, with x; =¢, xo = x, p1 = p, p2 = ¢, and f; = f, relation (4.10) becomes

1

P %JFM Uope
[/R (/ d;) dx] <4 p " GRL B X T, @17)

where

|
Fl(x7y): Zy qu( )XS(X7Y)7
~ _p 177 1 *° p-l
Fy(x,y)=p ax rtym (/ f(t)df> xs(x,)-
Jy
i ~ Lp 1
Similarly to the previous example, we have ||Fi ||, = p? ||xf||, and || i2||, = prJE, where

. - Jia
J= fR+ ([ f(2)dr)" dx, and consequently, G(Fy,F) < 4’%p27pjﬁ lIxfl|)". Therefore,
the right-hand side of (4.17) is not greater than pJ " |lxf|| p» which in turn yields the dual

Hardy inequality
1
p
t)ydt | dx| <plxfl,-
o ([ roa) @] <plart,
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Remark 4.8 Multidimensional refinements of Hilbert-type inequalities via the improved
Young inequality, presented in this chapter, are derived in [53] by Krni¢ and Vukovi€.
Some related refinements of Hilbert-type inequalities based on the improved Jensen in-
equality are present in recent monograph [54]. For some other refinements the reader can
also consult the following papers: [28], [31], [33] and [104].



Chapter

Hilbert-type Inequalities
Involving Some Means
Operators

In this chapter, we provide several Hilbert-type inequalities with a homogeneous kernel,
involving arithmetic, geometric and harmonic mean operators in two-dimensional, half-
discrete and multidimensional cases.

5.1 Two-dimensional Inequalities

In this section we deal with two-dimensional Hilbert-type inequalities, in both integral and
discrete case, involving arithmetic, geometric, and harmonic operators.

In 2010, based on the Hardy integral inequality, Das and Sahoo [38], obtained the
following pair of Hilbert-type inequalities involving the arithmetic mean operator <7 :
LP(R.) — LP(Ry) defined by (&7 f)(x) = %fé‘f(t)dt (see Section 1.3, Chapter 1).

Theorem 5.1 If v, u, s are positive real parameters such that s = v + U, then the in-
equalities

// Sy D )0y < paBO I e I8,y D

75
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and

y— 1

1 P o1
[/0 ! (/0 (;ﬂ)s(%f)(X)dX> dy] < flpm, 62

hold for all non-negative functions f,g : Ry — R such that 0 < Hf”U’(Rg <eoand 0 <

||g||L,,(R+) < oo, In addition, the constants pgB(v, ) and gB(v, ) are the best possible in
the corresponding inequalities.

It should be noticed here that some particular cases of inequality (5.1) were studied
in [86], few years earlier. Furthermore, with the assumption s > 2, Das and Sahoo also
proved a discrete version of Theorem 5.1.

Theorem 5.2 Let v, u > 0 and s > 2 be real parameters such that s = v + u. Then the
inequalities

3 3 B (Fa (@b < paB(v. )l [ 53

and
q

o oo v—1 P
Lzlnl’ul (2 (ZM)S(Ea)m) 1 < qB(v,u)lal» (5.4)

m=1

hold for all non-negative sequences a = (am),,.N and b = (b,), . satisfying 0 < ||al|;» <
oo and 0 < ||b||ja < eo. In addition, the constants pgB(v,u) and gB(v,W) are the best
possible in the corresponding inequalities.

In the previous theorem .7 stands for a discrete version of operator <7 (see Section 1.3,
Chapter 1). Observe also that the paper [39] provides the corresponding result for the
kernel m, with the best possible constant.

Considering the kernels 1/(x+y)* and 1/max{x*,y*}, we see that they have homo-
geneity of degree —s in common. The purpose of this section is to derive an extension of
Theorems 5.1 and 5.2 to a general homogeneous case. Furthermore, we establish inequal-
ities related to it, which include other classical means (geometric and harmonic) in both
integral and discrete case.

It should be noticed here that Sulaiman (see [85, 87]), Du and Miao [42] investigated
some related results with a homogeneous kernel, without considering the problem of the
best constants.

5.1.1 Integral Inequalities
To present the main results we first establish the following two lemmas.

Lemma 5.1 Let p and g be conjugate parameters with p > 1, and let s, i, v > 0 such that
u+v=s IfK: Ri — R is a non-negative homogeneous function of degree —s, then

a)S(,u'vx):w-S(vvy):k(lfu)? (55)
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where .
s (W, x) :=/ K(x,y)y* " 'x"dy,
0

and .
@y (v,y) :=/ K (x,y)x" "'y dx.
JO

Proof. Setting u = %, we find
o) = [ KL du=Kk(1 - p).
Jo

and for y > 0 letting x = %, it follows that

oo -1 oo
— Y W'y _/ =l — k(1 —
ws(v,y)—/o K(u,y>y 71u2du—.0 K(L,u)ut " du=k(1—p),

uV

so (5.5) holds. O

Lemma 5.2 [fg > %,0<ﬁ <l,n> ﬁforxz 1, then

Bq—(1+(1/n)) Ba—(1+(1/n))
Bq —1)P . :

X >x q —1. (5.6)

Proof. Forx > 1, set

Bg—(1+(1/n))

Ba—(1+(1/n))
Ba — 1)ﬁ —X q +1.

F(x)=(x
Simple computations yield for x > 1

—(1+(1 (B=1)g—(1+(1/n)) 1+(1/m) B
F’(x)zwx S ((1_x Bq q)ﬁl_1)>0.
q

F is increasing function on (1,e°) and continuous on [1,e0). In particular, we have F(x)

>
F(1) =0, which gives the desired inequality. O

Now we give the first result of this section.

Theorem 5.3 Let ;7"'% =1 with p > é,q > %,O <o,B <1,andlet v, u, s be non-
negative real parameters such that @ + v = s. Further, suppose K : Ri — R is a non-
negative homogeneous function of degree —s. If 0 < [ K(l,u)u“iﬁ*ﬁdu < 00,0 <
I K(l,u)uvf%fadu < oo, then the inequalities

/: ./:K ("= (o )% () (2P (v)dxdy

o B
op Bq o
<tt-m(52) () I P lem, 6D
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and

[/Om (/Om Kls o) 34 7 (%f)“(x)dx)pdy] ;

<k (22 ) 1. 538)

ap—1

hold for all non-negative functions f,g : R, — R such that 0 < ||f‘xHL,, ) < oo and

R,)
B
0 < ||gP lo®.) < e In addition, constants k(1 — u)(a;‘fl) (Bﬁ—> and

o
k(1—p) ( ‘;fl) are the best possible.

o

Proof. By the Holder inequality and Lemma 5.1, we have

// (e, 0Ty T (o ) () (7 g)P (v)dxdy

u—

= [ RO 1) )T v () )y

{[ mK(w)y#1xV<wf>aP<x>dxdy}’l’

X {/Om/:K(x,y)xv1y“(»<27(g')ﬁq(y)dxdy}é

=k(1—p) {/:(%f)a”(x)dx}; {/:(%g)ﬁq(y)dy}q

Then by the Hardy inequality, (5.7) is valid.

. . .. o a p B
Supposing that there exists a positive constant C < k(1 — ) ( L ) (—q) , such

ap—1 Bg—1
. . . ap o ﬁq ﬁ .
that (5.7) is still valid when k(1 — u) (apfl) (W) is replaced by C and for
n > max { ﬁ, ﬁ} ,n €N, setting f(x),2(y) as follows:
~ 0, forxe (0,1)  _ 0, fory e (0,1)
f) =9 _wm ;8 =9 _1um :
x “er  forx€|[l,oo) y  Pa forye|l,oo)
we have B
w18 0w,y = C (5.9)
and
) {O, forx € (0,1)
x(A f)x) = ap—(1+(1/n)) ,
% ap 71),f0rx€[1,0<>)
D) {O, fory € (0,1)
(g (y) = 8 Bg=(1:+(1/n))
Faimm 0 P 1), fory € [Leo)
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Denote ¢(n) = (api(?f(]/n)))a (ﬁqi(f}f(]/n)))ﬁ. Then ¢(n) — (a;‘fl)a (%)ﬁ, as

n — oo and for x,y > 1, by Lemma 5.2, we have

~ ap=(1+(1/n)) Bg=(1+(1/m))
W) AP (y) = o(m)(x @ —D*y P —1)f
ap—(1+(1/n)) Bg—(1+(1/n)
om0 7 =Dy T =)
ap—(1+(1/n))  Bg—(1+(1/n)) ap—(1+(1/n)) Bg—(1+(1/n))
> o(n)(x~ P y d —x 7 —y  a
Then

Rl lhad _1 _1 ~
/o /o K(x,y)x""ay" " r (o )% (x)(/8)P (v)dxdy
>¢(")/ / K(x,y)(xvf"i”fly“ﬁq*xv e y’“‘*?”ﬁfxvféfay#*#l)dxﬂly
1 1

= (])(n)(ll 712713).

Taking u = )y_c and by the Fubini theorem, we obtain
I = /lm/mK(x,y)xvf%fly“ﬂ%f]dxdy
:/lwx </ K(x,y)y m= '"I v+%1dy>dx
/mxl;(// K(1,u)u"™ " du+/ (1Lu)ut™ i du)dx
x
/ K(1,u)u"™ i du+/ “idx K(l u)u =g~ gy

:n/ K(1,u)u"™ " du+/ (1,u)ut™ T du// x ' ndx
u

</K1u“"‘1 du+/K1u Pldu).
Again taking u = £, we have
L = /100/;QK(x,y)xv*"LP*ly“*ll’*ﬁdxdy
= /]w/OwK(x,y)xvf"Ll’*lyﬂfll’fﬁdxdyf/]wfolK(x,y)xvf%flyﬂféfﬁdxdy
< /fxilf(ﬁﬁﬂlp)dx/oml((l,u)u“ii*ﬁdu

J— 1 ~
- 1 1
ﬁ—a"‘rﬁ 0

- e 1 1
13:/ / K(x,y)x""a "%y dxdy
| 1

K(l,u)u“ié*ﬁdu < oo,

Similarly, we get
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1 oo

1 1
ai_ —_
P+"q 0

K(l,u)uqulfadu < oo,
Hence by (5.9), we have

/ o (n)K(1,u)u" "7 du+/ ¢(n )u“+$71du7@0(1)<0
Then, by Fatou lemma (see e.g. [84]), we have

0-n(55) () (@) () [

— [ tim oK1, u)u 7 du

] n—ee

+ llim o(n)K(1,u)u" Fardy — @0(1)
(O n—ee nﬂm
< lim (/m¢( VK (1, 10)u" 7 du
1111)71 7M
+/ o(n a2 0(1)><c.

B
Hence, the constant C = k(1 — u) (ap 1 ) <ﬁ§q1> is the best possible.
By the Holder inequality and Lemma 5.1, we get

— [ KT () )
[ ket pmrwad " { [ keepad

(1= {/OMK(x,Y)xvyM](%f)ap(X)dx}l/p

L) = [ Kl %y“*Wf)“(x)dx

ya)dx

IN

Hence, applying Lemma 5.1 again, we have

oy < k-t [T ([ Kt tay ) (@ e
= (=) [ () ()

Then by the Hardy inequality, (5.8) is valid.
o
Assuming that the constant k(1 — u) (a‘;fl) in (5.8) is not the best possible, then

o
there exists a positive constant K such that K < k(1 — ) ( a;‘f 1) and (5.8) still remains
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o
valid if k(1 — u) ( a‘;f 1) is replaced by K. Then, utilizing the Holder inequality, (5.8)

and the Hardy inequality, we obtain

J = /Ow (/:K(x,y)x"f,y#%(fo)a(x)dx) ()P ()dy
{AM(A”K@yhyéy“;Cﬂfw‘”>i”}up{Amwryﬁ%wdrym
- (Bq—l) {/ Fo( dx} {/Owgﬁq(x)dx}q

« B
which results that the constant k(1 — ) ( ap ) (ﬂ> in (5.7) is not the best possible.

IN

ap—1 Bg—1
o
This contradiction shows that the constant k(1 — ) (a‘;fl> in (5.8) is the best possible.
The theorem is proved. O

Now we obtain Hilbert-type inequalities with a homogeneous kernel, involving geo-
metric mean operators, in the different way as in the proof of the previous theorem. It is
established by virtue of the general Hilbert-type and Knopp inequalities. Note that these
operators and the corresponding inequalities are presented in Section 1.3 of Chapter 1.
Theorem 5.4 Let % + % =1, p> 1, andlet v, u, s be non-negative real parameters such

that s = v + W. Further, suppose K : Ri — R is a non-negative homogeneous function of
degree —s. Then the inequalities

/0” ./omK(X XTI (G ) () () (y)dxdy
<e-k(1= Wl f | I,

(5.10)

and
p 1
» 1
[/ yoil </ Ky~ 1 (91)(x )dx> dy] <erk(1-wflpr, 61D
hold for all non-negative functions f,g : R, — R such that 0 < Hf||Lp(R+) <ooand( <

||g||L,, ) <. In addition, constants e- k(1—u) and ell’k(l — W) are the best possible in
mequalmes (5.10) and (5.11).

Proof. The starting point in this proof is Hilbert-type inequality (1.25) with parameters
A =L " ,An p , and with functions f and g respectively replaced with x"~ (% x)

and y“ ’ (9g)(y), that is, the inequality
o e Lol
/0 /0 K(x,y)x""ay" "7 (4 £)(x)(4 ) (v)dxdy
<k(1_H)Hgf|‘LJJ(R+)HggHLq(RJr)'
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Now, by virtue of the Knopp inequality (1.60), it follows that |4 f1| , g , ) < ep 11l R,
1
and H%gHLq(R+) <ed ||g||L‘1(R+)’ which yields inequality (5.10).
In order to prove inequality (5.11), we consider Hardy-Hilbert-type inequality (1.26)

1
with parameters Aj = =Y, Ay = ]77“, and with function x*~ 4(%f)(x). This yields in-
equality

[ [ ( / mK(x,waé(gf)(x)dx)pdy} ki I,

which becomes (5.11) after applying the Knopp inequality (1.60) on its right-hand side.

Now, we prove that inequalities (5.10) and (5.11) involve the best possible constants
on their right-hand sides. First, suppose that there exists a positive constant C smaller than
e- k(1 — u) such that the inequality

| [ Ko i b @ @@ ey < Cf g Il g, 612

holds for all non-negative functions f,g : R, — R, provided that 0 < || ]| (R,) <°°and
0< |‘g|‘Lq(R+) < oo,
Considering the above inequality with functions f,g: R4 — R defined by

~ 1, O<x<1 N 1, O<y<l1
f(x)Z{ 1 el , g(y):{ 1 el ,

e rx x>l e dy 4 ,y=>1

where € > 0 is sufficiently small number, the right-hand side reduces to

~ - C 1
C||f||UJ(R+)Hg||Lq(R+) = E(SJF g) (5.13)
On the other hand, since
~ 1, O0<x<l1
9 = e e e
( f)(x) {el’xpx 1717x21

and



5.1 TWO-DIMENSIONAL INEQUALITIES 83

the Fubini theorem and the change of variables t = 1mply the following series of relations:
| ] K8 @) 0/(98) )day
- °°K<x,y>x”*%y“*% (47)(x) (#3) (y)dxdy
/ / XTI T S ddy
/ / _71y“7§71dxdy

*S‘/Ikltr“q dtdx

Y]

(5.14)

I
\

1 £
/ K(l,t)t“’ﬁ’]dﬂr/ x*‘f*'/l K(1,0)* " 'drdx
1 J1 J 5

€ 1 € e .
/ (l,t)t“’TldtJr/ K(l,t)t"’Tl/l x ¢ Ldxde
J1 1

t

</K1tt“q dt+/K1tt“+P dt)

Now, multiplying both sides of inequality (5.12) by ¢, relations (5.13) and (5.14) yield

inequality
o £ 1 € 1
/ K(l,t)t’“"ﬁ’]dtqt/ K(l,t)t”+ﬂldt<C<£+—).
J1 0 e

Finally, when € goes to 0, it follows that e - k(1 — u) < C, which is in contrast to our
hypothesis. Therefore, the constant e - k(1 — ), on the right-hand side of (5.10), is the best
possible.

M= M= M=

1 . . .. .
It remains to show that e? k(1 — ) is the best possible constant factor in inequality
(5.11). Similarly to above discussion, suppose that there exists a constant C’ smaller than

e%k(l — W) such that inequality
1
m * _1
[ ([ xeet@nma) o] <clitpm,

holds for all non-negative functions f : R; — R such that 0 < || f|| (R,) <o Then,
utilizing the Holder and the Knopp inequality, we have

/Ow /:K(xvY)xv*? B (G 1) () (@) (v)dxdy

= [ ([ ke @) @oma
<[ ([ kb)) sl

1
<Cled 110 R )18 LR )



84 5 HILBERT-TYPE INEQUALITIES INVOLVING SOME MEANS OPERATORS

1
which results that the constant e - k(1 — ) is not the best possible in (5.10), since C'ed <
11
k(1—p)ered =e-k(1— p). This contradiction completes the proof. O

Hence, inserting geometric operator ¢ in appropriate Hilbert-type inequalities, we also
obtain relations with the best possible constants. The same conclusion may be derived for
the integral harmonic operator 7.

Theorem 5.5 Let L —|— ~=1,p>1,andlet v, u, s be non-negative parameters such that

s = v+ u. Further, let K : R2 — R be a non-negative homogeneous function of degree —s.
Then the inequalities

/om /0” K )5 3" 70 (H£) (5) () (v)dxdy

| (5.15)
< (24 ) k1= 0l el

and

[ ([ st >dx)pdyf
- <1+Il)) k(1= Wl

hold for all non-negative functions f,g : R, — R such that 0 < Hf||Lp( ) <ooand( <

||g||L,, ) <. In addition, the constants (2—|— )k(l — ) and (14 L)k(1— ) are the

P
best posszble in the corresponding inequalities.

(5.16)

Proof. Similarly to the proof of Theorem 5.4, we consider inequality (1.25) with parame-

1
ters A} = q 5 Ay =5 K. and with functions x*~ (%”f) (x) and y* "7 (#g)(y) instead of
f and g, that is,

/Om./ONK@C’y)xL%)’“f%(t%ﬂf)(x)(«%ﬂg)(y)dxdy
< k(l 7M)H%f|‘LP(R+)H%gHLq(R”

Now, utilizing the integral Hardy-Carleman inequality (1.61), it follows that || f]|, , R,)

< (1 + %) |_|.7_CHLP(R+) e.md .”‘%ﬂg”Lq(Rgl < (1 + é) ||.g||Lq(R.+)’ which }.lields inequality .(5.15).
In addition, considering Hardy-Hilbert-type inequality (1.26) in the same setting as
above, it follows that

{/ yHe 1</ K(x x4 () (x )dx)pdyr <k(L= A fll R )

which becomes (5.16) after applying the integral Hardy-Carleman inequality on its right-
hand side.
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In order to prove that inequality (5.15) includes the best possible constant, we sup-
pose that there exists a positive constant M smaller than (2 + pl—q)k(l — W), such that the
inequality

1

| [ Ko e ne e tiasdy < M, lelag.,  G17

holds for all non-negative functions f,g : Ry — R, provided that 0 < || f]| g, < e and
0< HgHLq < 0.

C0n51der1ng functions f, g : R, — R defined by

> xz’ ,0<x<1 ~N TO y

0, x>1 ,

where € > 0 is sufficiently small number, the right-hand side of the above inequality be-
comes

~ _ M
M||f||UJ(R+)Hg||Lq(R+) = r’e (5.13)

In addition, since

~ Lip—g &1
(fff)(»c){ por e 0srsl
0, x>1

and
—1

- Lig—e T 0<y<l1
H = q Y ,
() () {07 o1

utilizing a suitable variable changes and the Fubini theorem, the left-hand side of inequality
(5.17) can be rewritten as

/om ./om’(@»”xv’%y“’%(%f)( ) (A7) (v)dxdy

1/l :
/ K(x,y)xv+%7ly“+%fldxdy
0 Jo

)

2—e+ a ;qg)Z) ./legldx/oll((l,t)twr%ldt
)
)

1/t e L i £_
(—/ K(1,0)" " 1dr+/ dex/ K(1,0)"tq 1dr>
€Jo 0 1
1t +E1 - cel o [T e
—/ K(1,1)t""a dt+/ K(1,1)" "4 dt/ X dx
€ Jo 1 JO
1—¢)? 1 £_ o _e_
= (2—£+< £) )(/ K(1,0)" "4 1a’t+/ K(1,0)t" " » ldt).
pPq J0 1
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Now, multiplying both sides of inequality (5.17) by &, the above relation and (5.18) yield
inequality

(178)2 1 u+£—1 o u—£-1
2—e+—-"— /K(l,t)t a dt+/ K(1,0)f" »~'dt | <M,
pq 0 1

which implies that (2+ ﬁ)k(l —u) < M, after letting € \, 0. This contradiction shows
that (2+ %)k(l — ) is the best possible constant in (5.15).

In order to show that (1 + i)k(l — W) is the best possible constant in (5.16), suppose
that there exists a constant M’ smaller than (1 + %)k(l — ) such that inequality

R
{/ NG 1(/ K(x,y)x %ﬂf)( )dx) dy} <M/Hf||u7(R+)

holds for all non-negative functions f : Ry — R, provided that 0 < [|f|| R , ) < . Then,
utilizing the Holder and the integral Hardy-Carleman inequality, we have

/om ./om’(“»y))cv’%y"’%(%f) (x0)(A g)(v)dxdy
- /o </(>w’“"vy)x”5y“% (F) (x)dx) (8)(y)dy

1
p P
<[ [ ([ ko iornwa) a 1rel.
<t (14 2) Wl Dol

which results that the constant (2 + ﬁ)k(l — W) is not the best possible in (5.15), since

M (1+ é) < (1+ %) (1+ %)k(l —u)=(2+ ﬁ)k(l — w). This contradiction completes
the proof. O

In Section 1.3 we have defined a class of operators representing arithmetic, geometric,
and harmonic mean in both integral and discrete case. Their norms were deduced as a
simple consequences of the corresponding inequalities. With the same reasoning, Hardy-
Hilbert-type inequalities established in this section, enable us to define another class of
integral operators and to determine their norms.

Remark 5.1 Regarding notations from Section 1.3, we define integral operators A, G,H :
LP(Ry) — LP(Ry) by

(ANG) = F [ K H f) ()
(GNO) =7 [ Ky 5@ h) ()
(H)0) = 7 [ Koy 5 () (s
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Due to inequalities (5.8) with o« = 1, (5.11), and (5.16), the above operators are well-
defined. Moreover, since the corresponding inequalities include the best possible constants,

it follows that [ A = gk(1 — ). |Gl = 7 k(1 — 1), and ||| = (1+ 1 )k(1 - ).

5.1.2 Discrete Inequalities

Ideas of proving are similar to integral case, except that we use the corresponding discrete
Hilbert-type inequalities and discrete versions of means operators.

Theorem 5.6 Suppose that %+ é =1, p>1 andv, U, s are real parameters such that

O<v,u<1lands=v+u. Further, let K : Ri — R be a non-negative homogeneous
function of degree —s, strictly decreasing in each argument. Then the inequalities

=

2 2 K(m,n)mvfén’k%(Ea)m(yb)n < pgk(1—p)||all;||b]|a (5.19)

m=1n=1

REP

hold for all non-negative sequences a = (am),,.N and b = (by), N satisfying 0 < ||a||;» <
oo and 0 < ||b||ja < e°. In addition, constants pgk(1 — u) and qgk(1 — w) are the best possible
in the corresponding inequalities.

and

1 —

I3k
K(m,n)m" 4 (,Q%a)m> 1 < gk(1—p)alw (5.20)

Mg

1

1 —
Proof. Considering discrete Hilbert-type inequality (1.33) with sequences m"™ 7 (<7 a),

1 —
n*" 7 (&7 b),, with u(m) = m,v(n) = n and with parameters A; = ]*TV, Ay = 177“, it follows
that

© [ S — _
Y N K(mn)ym" in"" v (A a)m(Ab)y < k(1 — )| al|iw|| b
m=1n=1
Now, double use of discrete Hardy inequality (1.62) yields (5.19).
In order to obtain (5.20), we consider discrete Hardy-Hilbert-type inequality (1.34) in
the same setting as in the proof of inequality (5.19). This yields inequality

li nPH] (i K(m,n)mvé(ya)m> ] <k(1—w)||al|w,

n=1 m=1

which together with inequality (1.62) yields (5.20).

Now, we prove that inequalities (5.19) and (5.20) include the best possible constants
on their right-hand sides. First, suppose that there exists a positive constant K smaller than
pgk(1 — w) such that relation

o oo

S S K(mn)m" 105 (@) (b)n < Klalp|b10 (5.21)

m=1n=1
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holds for all non-negative sequences a = (an),,.y and b = (by), .y such that 0 < |[a|[;p <

oo and 0 < ||b||; < eo. Let L and R respectively denote the left-hand side and the right-hand
side of inequality (5.21) equipped with the sequences

1 1
Gu={ M »m=N_ang p,=yn RSN (5.22)
0, otherwise 0, otherwise

where N € N is fixed. Then, the right-hand side of (5.21) may be bounded from above with
a natural logarithm function:

- -~ N o1
R=Kl||d]|ir||]|sa K(Z m) <1+ D )
m=1 m= 2 (523)

<K( +/ ) (1+1ogN).

Our next intention is to estimate the left-hand side of inequality (5.21) from below. More

1 1
precisely, considering ¥7' , k~ 7 as the upper Darboux sum for the function i(x) =x " » on
segment [1,m+ 1], we have

m 1 m+1 1 m 1 1
2/(75 >/ xiidx>/ X Pdx=q(ma —1),
= 1 1

and consequently,

Therefore, L may be estimated as follows:

N N
L>pg Y Y K(m,n)m"~1n#=1(1 fmfé)(l 7”7%).

m=1n=1
Moreover, since

1 11 1 1

1 1 1
(l—-m a)(l—n"?P)=1-m 4—n P4+m in ?P>1—m 4 —n 7,
the above relation implies inequality

—>22Kmn volu-l

m=1n=1

7221(,” vel=g u-l (5.24)

m=1n=1

—ZZKmn oLt

m=1n=
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Our next aim is to establish suitable estimates for double sums on the right-hand side of
inequality (5.24). The first double sum may be regarded as the upper Darboux sum for the
function K (x,y)x"~'y#~! defined on square [1,N + 1] x [1,N + 1], since this two-variable
function is strictly decreasing in each argument. Hence, utilizing suitable variable changes
and the Fubini theorem, we have

ZZKmn -1

m=1n=

Ndx %
— - ,u 1
=L 5 K(1,0)* (5.25)
N
:/ (/ dx) K(1,0)t" 1dt+/ (/ dx) K(1,0)" tar
JEN/L X X

! log?
—logN [ K(1,0)i* ' (1 dr
og /% (1,1) ( +10gN)

N log?
logN [ K(1,H)t* 11— dt.

The second sum on the right-hand side of (5.24) may be rewritten as

ZZKmn Sl 2K1nn“1+22Kmn - ‘;n‘“l,

m=1n= m=2n=

and both sums on the right-hand side of this relation may be regarded as the lower Darboux
sums for the corresponding functions. More precisely, we have

N

N o
2K(1,n)n“71</ K(l,t)t“*ldt</ K(1,0)"Ydr = k(1 — )
n=1 0 0

and
N N 1 N N 1
2 2 K(m,n)m" "”AH</ / K(x,y)x" ™ "yt ldxdy
- 1
/N dx
N d o
</ —xl/ K(1,0)t"Ydr
1 x1+§ 0

Na

Oty
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so that
N N 1 g
NN Kmn)m' ™ Tant Tt < [ 14— | k(1 —p). (5.26)
m=1n=1 Na
In a similar manner we also estimate the third sum on the right-hand side of relation (5.24):
N N L
NN K(mn)ym* a7
m=1n=1
N N N
=y K(m,1)m" ' + D ZK(m,n)mvfln’“l*E
m=1 m=1n=2
N | N N ' |
</ K, et dt+/ / K(x,y)x" =y rdxdy
0 o J1
o N g oo (5.27)
= [ K(1,0)" 'dt+/ YKL dr
Iy 1 yl+17 N
< k(l—u)+< - 1)lc(l—u)
N»r

Now, relations (5.21), (5.23), (5.24), (5.25), (5.26), and (5.27) yield inequality

K(1+1 1 log?
w>logN/1 K104 (1+ o8 >dt
N

Pq logN
+1o N/NK(l it (1 Jogt )
g ! ) logN (5.28)
P q
- <2+pq—1—,> k(1—w).
Np Na
Dividing inequality (5.28) by log N and letting N to infinity, it follows that
K
pPq

which contradicts with the assumption that K is smaller than pgk(1 — u). Therefore, the
constant pgk(1 — ) is the best possible in inequality (5.19).

It remains to prove that gk(1 — ) is the best possible constant in inequality (5.20). For
this reason, suppose that there exists a positive constant K’ smaller than gk(1 — ), such
that inequality

1

<K'all

oo oo L p
[Zlnpﬂl (2 K(m,n)mva(Jz{a)m>

m=1
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holds for all non-negative sequences a = (@n),,.N- provided that 0 < ||a||;» < . Then,
utilizing the Holder and the Hardy inequality, we have

1
akz
[2”"“ 1<2Km" i (a), ) ] 7 bllia < K’ pllallip||bllis,

which is impossible since K'p < pgk(1 — ) and pgk(1 — ) is the best possible constant
in (5.19). 0

Remark 5.2 Yang and Xie [96], derived a pair of Hilbert-type inequalities similar to those
in Theorem 5.6, which are closely connected to the so-called dual Hardy inequality (for
more details, see e.g. [48], [68], and [74]).

The following two theorems respectively represent discrete analogues of Theorems
5.4 and 5.5. The first one includes discrete geometric operator ¢, while the second one
includes harmonic operator J7.

Theorem 5.7 Let % + é =1, p>1, and let v, U, s be real parameters such that 0 <

v,u <1 and s = v+ u. Further, suppose K : Ri — R is a non-negative homogeneous
function of degree —s, strictly decreasing in each argument. Then the inequalities

oo oo

> 3 Knmym* a0 @a)n(@b) < e-k(1 - )alw|bl (5:29)

m=1n=1
and
s s 1 b ’l) 1
lz nPH-! (2 K(m,n)mvﬁ(?a)m> 1 <erk(l—p)|alw (5.30)
n=1 m=1
hold for all non-negative sequences a = (ap),,.y and b = (bn), N, 0 < [|allip <o, 0 <

1
1D|l7a < eo. In addition, constants e - k(1 — u) and e? k(1 — u) are the best possible in the
corresponding inequalities.

Proof.  Similarly to the proof of Theorem 5.6, we start with inequality (1.33) equipped
1 — 1 —

with sequences m"”~ 4 (Ga),,, n"~ 7 (9b),, with u(m) = m,v(n) = n, and with parameters

Ay =12¥, Ay = 18, which yields inequality

S S K(mnm 10" (Ga)n(@b) < k(1 — ) [Fali|[Fb] .

m=1n=1
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— 1
Moreover, by virtue of the Carleman inequality (1.63), it follows that ||“al|;» < e? ||a||;»

— 1
and ||9D||ja < e4||b||4, i.e. we get inequality (5.29).
In addition, a similar application of discrete inequality (1.34) yields relation

[znw l(zlxmn @), ) ] < k(1= )] aln

which together with Carleman inequality yields (5.30).

Our next intention is to show that derived inequalities include the best possible con-
stants on their right-hand sides. First, suppose that there exists a positive constant C smaller
than e- k(1 — u) such that inequality

N D T G —
Y N K(m,n)ym" an"" 2 (Ga)u(4b), < Cllal|w bl (5.31)
m=1n=1
holds for all non-negative sequences a = (an),,cy and b = (by),cN, 0 < [[allir < o0, 0 <

||b||sa < eo. Let L and R respectively denote the left-hand side and the right-hand side of
inequality (5.31) equipped with sequences

1 ~ 1
G = (V"*‘)'"*l)”,zgmgN , by = (("*,12"7'>",2§n§1v,
0, m>N 0

)

where N > 2 is fixed integer. Making use of the well-known estimate

1 m+1
<1+—) >e,
m

which holds for every positive integer m, it follows that

_ i AN
i =1+3 ()" S o

m=1 mlm

Moreover, since ¥V _, L may be regarded as the lower Darboux sum for the function /(x) =

| m=2 m
+ on segment [1,N], i.e.

DEES
— < / =logN,
m= 2m m= 2m

we have |
|a||zp<( +=+- logN) ,

and similarly

~ 1 1
llbllie < <1 + -+ —10gN>
e e
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The above discussion yields the following estimate for the right-hand side of inequality
(5.31):

- 11
R=Clldlw|bl < C (1 +-+ z1ogzv) . (5.32)

On the other hand, since

_ 1 _1
Ga),=4m ym=N and (@h), =" ©n=N ,
(Fa@m {0 otherwise (b)n 0, otherwise

)

the left-hand side of (5.31) in the above setting becomes

N N
L= ZK(m,n)mvflnufl.

m=1n=1

It should be noticed here that relation (5.25) (see Theorem 5.6) provides lower bound for
this double sum. Therefore, from (5.25), (5.31), and (5.32) it follows that

1 1 ! log?
Cl1+-+-logN )| >logN | K(1,))f* "1+ —= )dr
<+€+€0g )>0g /ﬁ (L.1) <+10gN)

N logt?
logN [ K(L)t* ' (11— ——)ar
From dividing the above inequality with log/N and letting N to infinity it follows that

c
—>k(1—
S 2 k1—p),
which is in contrast to C < e-k(1 — ). Therefore, the constant e - k(1 — u) is the best
possible in inequality (5.29).
1
To conclude the proof, we show that e? k(1 — ) is the best possible constant in in-

1
equality (5.30). Hence, suppose that there exists a positive constant C' < e? k(1 — ) such
that inequality

oo P

2 nl’#*l ( ZIK(I’H,I’I)I’H\HQ (%a)m> ] < C/HGH[P

n=1

holds for all non-negative sequences a = (@), provided that 0 < ||a||;» < co. Then,
making use of the Holder and the Carleman inequality, we have

1 1

NS K(mn)ym" " an" v (Ga)u(Gb),

> > 1 b % _
- znﬂﬂl(zmm,mwwa)m)] @l

m=1

1
<C'et|lalliw]|b]a-
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1
Clearly, obtained inequality is impossible since C'ed < e¢-k(1 — ) and e- k(1 — w) is the
best possible constant in (5.29). O

Theorem 5.8 Ler % + ‘ll =1, p>1, and let v, U, s be real parameters such that 0 <

v,u <1lands=v-+u. Further, let K : Ri — R be a non-negative homogeneous function
of degree —s, strictly decreasing in each argument. Then the inequalities

D R G — 1
3 ZK m,n)m” "5 (FPa)m (Fb), < <2+E> k1= wllalwlble (5.33)

m=1n=

and

1
Il
v—Ll — 1
Zn”“ ! ZK m,n)m’ 4 (), < <1+—) k(1 —p)|lall» (5.34)
n=1 m=1 p
hold for all non-negative sequences a = (am),,.Ny and b = (by), ., provided that 0 <
llal|;p < o0 and 0 <||b||ja < ee. In addition, constants (2+ ﬁ)k(l —u)and (1+ %)k(l —u)
are the best possible in the corresponding inequalities.

1 1 —
Proof.  Rewriting inequality (1.33) with sequences m" "4 (Ha)y,, n'" v (HDb),, with
u(m) = m,v(n) = n, and with parameters A; = =¥, A, = 17“ we get

2 ZK m,n)m én“*%(%a)m(%b)n < k(1 — ) ||7al|1p|| 72b))s,
m=1n=

so (5.33) follows by virtue of discrete Hardy-Carleman inequality (1.64).

1 —
Further, making use of inequality (1.34) with the sequence m"™ ¢ (J#a),,, and u(m) =
m,v(n) = n, and parameters A} = 1= A lp“ we have

oo o R r 1% v
[anl (2 K(m,n)mvr:(%a)m> 1 <k(1—w)|l#alm,

n=1 m=1

which together with the Hardy-Carleman inequality yields (5.34).
In order to prove that (5.33) includes the best possible constant, we suppose that there
exists a positive constant M < (2 + #)k(l — W) such that inequality

=

- 1 R
N > K(m,n)ym"int " (Ha), (), < M|al|ip||b|a (5.35)
m=1n=1
holds for all non-negative sequences a = (am),, .y and b = (b,), . provided that 0 <
||al|;» < oo and O < ||b|j;a < e=. Let L and R respectively denote the left-hand side and the

right-hand side of inequality (5.35) equipped with the sequences (a),,.y and ( ) neN
defined by (5.22) (see Theorem 5.6). Then, taking into account relation (5.23), we get

R = M||al|o||Bll1e < M(1+logN), (5.36)
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where N € N is a fixed positive integer.
Guided by ideas from previous proofs, we establish now the lower bound for the left-
hand side of inequality (5.35). Obviously, (5Za),, = (J€b), = 0 for m,n > N. Moreover,
1

1
considering Y;' | k7 as the lower Darboux sum for the function A(x) = x? on segment
[I,m+ 1], we have

m.o m+1 m+1 g p 141
Y kr </ xl’dx</ xrdx=——(m+1) 77,
1 0 p+1

and consequently,

1

_ 1 1 Y

(%&)m><1+—) m___p* (m ) "mTr, m<AN.
p (m+1)1+5 p m+1

Therefore, L may be estimated as

7 N N 1+1 1+
g () ()
2pg+1 - == m—+1 n+1
(5.37)
N N
= 2 ZK(mm)mv*lnMi](l — Q) (1 —y),
m=1n=1

where the sequences (@), 1y and (W), .y are defined by

1 m \1*F ; 1 n O\t
Om =1— ml and Y, =1— P .

In addition, since
1
m 2 m 5 m
— ) <|—— < —,
m+1 m+1 m+1

- <2m+1
mr1 P (m+1)%’

it follows that

ie.
1 2
— <Py < —,meN,
2m m

and similarly,

1 2
— <y, <—-,neN
2n n

Hence, we have

2 2
(1_(pm)(l_Wn)zl_(pm_ll/n+(pm‘l/n>1_(pm_l.‘/n>1_%__a

n
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so relation (5.37) implies inequality

pqL vl
K

m=1n=
-2 2 2 K(m,n)m" "t~ (5.38)
m=1n=1

fZZZKmn volpu=2,

m=1n=

In the sequel, we use estimate (5.25) for the first double sum on the right-hand side of
relation (5.38). Remark also that estimates (5.26) and (5.27) hold respectively for g = 1
and p =1, i.e. we have

N N
N Y K(mn)m' It < (2 — ]l\/) k(1—pu) (5.39)
m=1n=1
and
N N 1
S N K(m,n)m¥ a7 < (2 — N) k(1 — ). (5.40)
m=1n=1

Now, relations (5.25), (5.35), (5.36), (5.38), (5.39), and (5.40) yield inequality

logt 1\ 4k(1—
logN N logN

after dividing by log N. Moreover, when N goes to infinity, the above relation reduces to

pgM
2pg+1

Z k(l —‘Ll),

which is in contrast to our assumption that M is smaller than (2 + pl—q)k(l — u). Hence,
2+ ﬁ)k(l — ) is the best possible constant in inequality (5.33).
Finally, assuming that there exists a positive constant M’ < (1 + %)k(l — ) such that
inequality
1

oo oo 1 e
[anl (2]K(m,n)qu(<%ﬂa)m> ] <M'al|1»
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holds for all non-negative sequences a = (a),,.y» 0 < [lal|, < oo, it follows that

i i K(m,n)mvfén’k%(%a)m(%b)n

m=1n=1

Clearly, the above inequality is impossible since M’(l + cl/) < (2 + %)k(l —u) and (2 +

ﬁ)k(l — ) is the best possible constant in (5.33). O

To conclude this subsection, we discuss operator expressions arising from Hardy-
Hilbert-type inequalities involving discrete arithmetic, geometric, and harmonic mean op-
erators.

Remark 5.3 Similarly to Remark 5.1, we define discrete operators A, G,H : I” — I” by

Ra)y =n""7 Y, K(m,m)m" ™4 (Fa),
m=1

oo

(Ga)y=n""7 Y, K(mn)m*™ 1 (Fa),

m=1

1 & R
(Ha), =n""7 Y K(m,n)m"" 1 (A a)n.
m=1
Due to inequalities (5.20), (5.30), and (5.34), the above operators are well-defined. More-
over, since the corresponding inequalities include the best possible constants, it follows

_ _ 1 —
that [[A]| = gk(1 — ), [[G]| = e k(1 — u), and [H|| = (14 5 )k(1 — ).

5.1.3 Applications and Concluding Remarks

Our first example refers to the function K (x,y) = (x+y)~*, where s > 0. Obviously, this
function is homogeneous with degree —s, so in this case we have

K1) = [ () = Bu.s = 0) = B, ).

where B is the usual Beta function. Now, with this kernel, Theorem 5.6 reduces to the
main result from [38] (see Theorem 3.1.). Thus, our Theorem 5.6 may be regarded as an
extension to the case of a general homogeneous kernel.

Moreover, considering Theorems 5.3, 5.4, 5.5 with the kernel K(x,y) = (x+y)* and

1,1 o p_ 1 1\ _p(l 1y _ "'z p
parameters v = o M= 0= B =1, it follows thatk(a) = B(F’ 5) = SO we obtain

the following result.
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Corollary 5.1 If p,q > 1 are conjugate parameters, then the series of inequalities

[0 < 2

p

= [ (@) x)(Ge)) n
/ / x—dxdy < @Hf“Lp(RJr)||g||L‘I(R+)’

R gl

+

(1)) (H5)) !
I Hy dxdy<(z+pq) W@ el

and
1
~( GNE N TP
ASUA A d i 7 7
{/O (/0 X+y * y_ Sin%HfHU(RH
21 1
(@) NP erm
761 d < s i :
[/0 </0 xX+y * y_ sin % Hf”U(R+)
1
=[N N 1\ n
————dx ) dy| < |l4+—-)—5 7
{/0 (/0 X+Yy . y_ +p sin%Hf“L”(RH
hold for all non-negative functions f,g : R, — R such that 0 < Hf||U, ) <o and 0 <
”g”L‘I )y <o In addition, the above inequalities include the best posslble constants on

their rlght hand sides.

Remark 5.4 Since the kernel K(x,y) = (x+y)~* is strictly decreasing in each argument
and since parameters v = cl/ and u = % fulfill conditions as in the statements of Theorems
5.6, 5.7, and 5.8, Corollary 5.1 is also valid in discrete setting. Moreover, such discrete
versions with arithmetic mean operator were also discussed in [38].

Our next example deals with the homogeneous kernel K : Rﬁ — R given by K(x,y) =
max{x,y} %, s > 0. A straightforward computation shows that k(1 — u) = #, that is,

k(%) = pq. Therefore, an analogue of Corollary 5.1 in this setting reads:

Corollary 5.2 If p,q > 1 are conjugate parameters, then the series of inequalities

/ / max{x y})( )d xdy < pzquf”Lz7 Ry) llgll 4 R,
/ / max{x y})( )dxdy < epq|\f||Lp R,) ||g||m R,y
WA
[ L0 1y < opa+ )1z, Il

and

{/Ow </: %dxydy} : < flp®, )
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O aig)a] <o,

L %d}@} <2 .,

hold for all non-negative functions f,g : Ry — R such that 0 < || f < oo and 0 <
r(Ry)

181l aR ) < oo In addition, the above inequalities include the best possible constants on

their right-hand sides.

Remark 5.5 Similarly to Remark 5.4, Corollary 5.2 also holds in discrete case.

We conclude this subsection with the function K : Ri — R defined by K (x,y) = bgi%.

Evidently, it is homogeneous of degree — 1 and strictly decreasing in both arguments, k(1 —
u) converges for all u € (0,1), and we have

< logu ,_ = teM 2
k(1 — —“'d:/ dr =y "(1—p)= ,
(I—u) /0 U du= [ S v(s)+y'(1—p) S
where y(x) = M, x > 0, is the Digamma function and where we used the well-known

I'(x)
identity w(1 —x) = w(x) + mcotzx, x € (0, 1) (for details on y see [1]). Now, considering
Theorems 5.6, 5.7, and 5.8 equipped with this kernel and parameters v = é, u= %, we
obtain the following result in discrete form:

Corollary 5.3 If% + é =1, p > 1, then the series of inequalities

o w logh — = — n?
Y Y —=(Fa)u(Tb) < LL|allinb]1a,

m=ln=1M—1 2%
oo oo logm . o eTL’2

Y Y " (Ga)n(@b)n < —5zllaliw]bl,
m:ln:]m n sm- 2
P

no__ 1 n?
(Ha)m(HAb)n < |2+ g ) Sn? llallr 1&1]4,
P

and
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hold for all non-negative sequences a = (am)mEN and b = (b")neN’ provided that 0 <
llallir < o and O < ||b||ja < e=. Moreover, above inequalities include the best possible
constants on their right-hand sides.

It should be noticed here that Yang and Chen [92], investigated some particular gener-
alizations of Theorem 5.3. They proved the equality

ITio T2l = (I3 - |72 (5.41)

under some strong conditions for Hilbert-type integral operators 71,75 : LP(R.,¢) —
LP(R.,0). So, it is natural to ask how to extend their result. In particular, the follow-
ing two problems are naturally raised.

Open problem 1 Find a necessary and sufficient condition for the equality in (5.41).

Open problem 2 Under which conditions does the equality (5.41) holds for dis-
crete Hilbert-type operators Ty and T>?

5.2 Half-discrete Versions

Our goal in this section is to derive half-discrete Hilbert-type inequalities with arithmetic,
geometric and harmonic mean operators.

5.2.1 Half-discrete Inequalities in the Non-conjugate Case

The starting point for this direction is the set of half-discrete inequalities (2.75), (2.76),
and (2.77). Our first result is a half-discrete analogue of relations (5.7) and (5.8), extended
to the case of non-conjugate exponents.

Theorem 5.9 Let p, q, p', ¢, and A be as in (1.43) and (1.44), and let K : Ri —Rbea
non-negative measurable homogeneous function of degree —s,s > 0. If A| and A; are real
parameters such that the function K (x, y)y"fA2 is decreasing on R for any fixed x € R,
then the inequalities

N | _ _ © s—1 _
X7 MR Fa), [ K e T o ) ()
n=1 0

=3

= ./Omxx;i’lﬂLAzfm (A f)(x) <2 K (x,n)nyP’I+A1A2(Ea)n> dx

n=1

(5.42)

< Lp/q/Hf||Lp(R+) ”a”l‘l’
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L
d

li (nyP’IﬂLAlAz ./0 K (om0 (o f) () )‘/] (5.43)

n=1
< Lp/|‘f||Lp(R+)»

and

, 1

P v
B R Py 2 Slia-Ay —
/0 ( 2 K*(x n) (sza)n> dx (5.44)

n=1

< Lq||all,

L 1
where 0 < L =k (q'A2)k? (2 — s — p'Ay) < oo, hold for any non-negative measurable
function f : Ry — R and a non-negative sequence a = (an),, ., provided 0 < || f|| , g ) <
o and 0 < ||al|;g < oe.

Proof. The result is an easy consequence of half-discrete Hilbert-type inequalities (2.75),
(2. 76) and (2.77). Namely, if the function f and the sequence a, are respectively replaced
by x 7 HHA A (< f)(x) and n Al Az(da)n, then, applying the Hardy integral and dis-
crete inequalities to the right-hand side of (2.75) yields

M

w7 N (G / K @ 2N (o )

n=1

< L|\ssz||u,(R+)||~efaHm < Lp 41, lallis-
Due to the same reasoning as above, inequalities (5.43) and (5.44) follow from (2.76) and
(2.77), respectively, which completes the proof. O

The following two theorems are the corresponding analogues of Theorem 5.9, where
the arithmetic mean operator is replaced by geometric and harmonic mean operator, re-
spectively.

Theorem 5.10 Let p, q, p', ¢/, and A be as in (1.43) and (1.44), and let K : Ri —Rbea
non-negative measurable homogeneous function of degree —s,s > 0. If A| and A; are real
parameters such that the function K (x, y)y’qlA2 is decreasing on R for any fixed x € R,
then the inequalities

i nsp;’lmrAz(ga)n /ONK’X(x nx 7 o IO

_ / / L1ar-A, %f <2K/1 X, n / LA AZ(?G%) dx (5.45)

<L flly, lallo,
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i (nsp’l+A1A2/() K* (x, n)x 7 A'(%f)(x)dx)q/l !

n=1

1
< Ler HfH[y(R”v

(5.46)

and

, L

p P
o s=1 _ hnd s=1 Ay —
/ (x 7 T D K* (x,n)n 7’ A AZ(%a),,) dx
0

n=1

(5.47)

1
< Lea Haqu,

1 €1
where 0 < L = k7 (q’A2)k? (2 — s — p'A1) < e, hold for any non-negative measurable
function f : R — R and a non-negative sequence a = (ay) ., provided 0 < || f||,,» R,) <
o and 0 < ||al|;g < ee.

Proof.  We follow the same procedure as in the proof of the previous theorem, except
that we use the Knopp inequality (1.55) and the Carleman inequality (1.56) instead of the
integral and discrete Hardy inequality.

More pre01sely, considering (2.75) with the function x q 2 Al(

4 f)(x) and the se-

Al—A
quence n e *(4a),, instead of f and a,, it follows that

in%mrm(?a)n/ K*(x.n)x e M@ 1) (x)ax

n=1 0

7/ /+A2 —Aj gf <2K)L X, n /+A1 A2(?g)ﬂ> dx

< L%l @al < L7 41|l lalls = L1 £l lallis

and the proof is completed. ]

Theorem 5.11 Let p, q, p', ¢', and A be as in (1.43) and (1.44), and let K : R% — R be a
non-negative measurable homogeneous function of degree —s,s > 0. If A| and A, are real
parameters such that the function K (x, y)y"’/AZ is decreasing on R for any fixed x € Ry,
then the inequalities

ST G, [ K TN ) s

n=1

51
:/ x7+A27A1(¢%”f (2 K* (x,n)n’ A Az(%a),;) dx (5.48)
0

<L(3=2+ ) Wy, el
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1

lil (H%AIAZ./O K (en)x 7 N () (0)d )ﬂ;

1
L(14+2) I,
1

i v
°° s=1 — s s=1 Ay ——
/ (x 7 T ZK)L(x,n)n 7t Az(%a)n> dx
0

(5.49)

and

n=1

1
L(1+—> lalla,
q

1 L
where 0 < L = k7 (q'A)k? (2 — s — p'A1) < e, hold for any non-negative measurable
function f : R — R and a non-negative sequence a = (a),, .y, provided 0 < || f||,,» R,) <
o and 0 < ||al|;g < ee.

(5.50)

Proof.  Similarly to the previous two proofs, we utilize half-discrete inequalities (2.75),
(2.76), and (2.77), and inequalities (1.57) and (1.58)

Namely, considering (2.75) with the function x 7 A (A f)(x) and the sequence

W7 HAL- (%ﬂa)n, instead of f and a,, it follows that

i n%mrm(%a)n/ K* (x,n)x @ o T F) (0

n=1 0

7/ /+A2 —Ay %f <2K)L X, n /+A1 2(%61)”> dx
_ 1 1
< U Sl Pl <2 (1) (142 51, el

1
—2(3-2+ ) Wl ol

5.2.2 Reduction to Conjugate Case and the Best Constants

Now, our intention is to determine conditions under which the constants appearing in the
established half-discrete inequalities from the previous subsection are the best possible. As
we have already discussed, there is still no evidence that these constants are the best pos-
sible in the non-conjugate case. This problem seems to be very hard in the non-conjugate
case and remains still open. Luckily, we can solve the mentioned problem for some partic-
ular settings in the conjugate case.

Therefore, here we consider conjugate parameters p and g. In this case p’ = ¢, ¢’ = p,
and A = 1.
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Observe that the constants appearing in (5.7) and (5.8) contain no exponents. Guided
by that fact, we are going to simplify the part of the constant regarding a homogeneous
kernel. Hence, it is natural to impose the condition

PA2+qA1 =2 =5, (5.51)
since in this case relation k(pA;) = k(2 —s— gA;) holds. In this case, L reduces to L* =

k(pAz).
1—pgA s—1
Now, if the condition (5.51) is fulfilled, then, n’ THA—Ar n 7 2, xop AL
1—pgA
X P - , so that inequalities (5.42), (5.43), and (5.44), in the conjugate case, reduce to

oo

1- quZ 1-pgA|
/ K(x,n)x 7 (& f)(x)dx

7/00 1pqu (i lquz (%a)n> dx (552)

<L pg|fllppw,y lallia,

1-pgAy [ 1-pgA| plr
(” ‘ /0 K(x,n)x 7 1(%f)(X)dx)] <L g fllpmw, ) (5.53)

and

0 1—pgA i 1—pgAy ___ 4 q
l/ ( T X K ’q“(da») dx] <Lplafu. 559
0

In the same setting, inequalities (5.45), (5.46) and (5.47) read respectively

N l 1—pgA
3 7 @a), / K(emx 7 (Gf)(x)dx

_/oo - qu, ( 1- quz (ga)n> dx (5.55)

< el fllypm, lall,

ﬁMs

1
P

1—pgA 0 —pgA P 1
(” - K(rn)x 7 1(%‘)(}6)‘“)1 <rer|flpm, G360

and

1

o 1-pgA| &2 l—pgAy __ g q 1
/ x 7 Y K@xnn ¢ (Ga), | dx| <L'e|als, (5.57)
0
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while inequalities (5.48), (5.49) and (5.50) become

1-pgA;

i 1— quz J— /‘ K x n) ‘ (%f) (x)dx
— ./Omx% (c%ﬂf) (x) (i K(x,n)n 171;qu <%Cl)n> dx (5.58)

< (24 ) Wy, el

L

-pa oo —pgA pr
(n‘ P kG 1(%f)(x)dx) ] <L*(1+%)||f|\Lp(R+), (5.59)

1
1- 0 1—-pgAr 7 q
V ( qulZKxn ’q“(;fa)n> dx] <L (14 1)l (5.60)
0 q

In the rest of this subsection we show that the constants appearing on the right-hand
sides of inequalities (5.52)—(5.60) are the best possible. The corresponding proofs are the
substance of the following three theorems.

Theorem 5.12 Ler p,q > 1 be conjugate exponents and K : Ri — R be a non-negative
measurable homogeneous function of degree —s,s > 0. If Ay and A, are real parameters
such that the condition (5.51) is fulfilled and the function K (x,y)y P22 is decreasing on R ;.
for any fixed x € R, then the constants L* pq,L*q, and L* p are the best possible in (5.52),
(5.53), and (5.54), respectively.

Proof. In order to prove that inequality (5.52) includes the best constant on its right-hand
side, we suppose that there exists a positive constant Cy, smaller than L* pg, such that the
relation

i — quz / K(x,n)x = I;’qAI (o f)(x)dx
_/ 1qu1 1)) (ill((x,n)nlp‘im (Ea)n> dx (5.61)

<Gl lals

holds for all non-negative f : Ry — R and a = (ay),,., provided 0 < Hf||U, ) <eoand
0< lalls < o=._

Let L and R respectively denote the left-hand side and the right-hand side of (5.61)
equipped with

1
fa)=4% PASKEN g G={m HhnsN (5.62)
’ 0, otherwise 0, otherwise
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where N € N, N > 2, is fixed. Then, the right-hand side of (5.61) may be bounded from
above with a natural logarithm function as follows:

~ ~ » N p
R=CulTly e =G| [

(5.63)
1
1 N g
<C(logN)? 1+/ X dx | <Ci(l1+logN).
Ji
Our next task is to estimate the left-hand side of inequality (5.61) from below. More

1 1
precisely, considering ¥, k™ ¢ as the upper Darboux sum for the function i(x) =x" 7 on
the segment 1,7+ 1], we have

1 n+l no1 1
Yk ‘1>/ x qu>/ X ddx=p(nr —1),
1 1

k=1
and consequently,

1
1 1

— r—1 1 1
(e a), > M:pn i(1-n"7), n<N.
n
In addition,
1 1
/f /t rdt=qx »(1—x 1), 1<x<N,
hence, L may be estimated as follows:
~ N N 1
L> pq/ N K(x,n)x i PA2(1 —x"4)(1—n"7)dx.
J1 =

1 1 R D .
Moreover, since (1—x ¢)(1—n"7)>1—x 4 —n" »,the above relation implies inequality

/ ZKxnx A1y ~PA2 gy
. / 2 K(x,n)x 1= a2y (5.64)
/ ZKxnqu'npzl’dx

Our next intention is to establish suitable estimates for the integrals on the right-hand side
of (5.64). In the first integral, utilizing suitable variable changes and the Fubini theorem,
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we have
/ ZKx n)x —aA1PA2 gy
N+1
> / / K(x,y)x 941y~ PA2dydx
/ / ( X941 pAzdydx

f/N dx/NK 1) Py (5.65)
_/ (/NdX) (1,0t PAZdt+/ (/ %) K(1,0)r PA2qr

_ logt
=logN K 1,0 P2 (14— )dar

N logt
logN [ K(1,0) P2 (1 - —— |ar
+logh [ K(1,1) ( 1ogN> |

since the function K (x,y)y P42 is decreasing on R for any fixed x € R,. Similarly, for
the remaining two integrals on the right-hand side of (5.64) we have:

/ZKxn —4A g, ”Azdx<// (e, )1 ‘fy P2 dydx

_/N dx Y K(1,6)t PA2qy

(5.66)
N d
/ a / K(1,0) P24y
( i.) K(pA2)
Na
and
N N 1 N N 1
/ ZK(x,n)xf"Alnfp 2717dx</ / K (x,y)x~ #1y P27 dydx
L p=1
N 7.
_/ da / K(1,0) P 5
(5.67)

N dx o AL
</ —1/ K(1,0)t P2 vy
1 x1+1—, 0

)4 1
=|\p—— k| pAry+—).
NP P
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Now, taking into account (5.61), (5.63), (5.64), (5.65), (5.66), and (5.67), we have the
following inequality

Ci(1+1logN log?
M lgN/Klt —pAz 1+Og dt
rq logN

_ logt
+1og1v/1 K(1,1)1~PA <llogN>dt (5.68)

.4 o, P 1
(q N%1>k(pAz) (p N%>k<pAz+p).

Finally, dividing both sides of (5.68) with logN, and letting N to infinity, it follows that

C
—L > k(pAs) = L,
prq

which contradicts with the assumption that C; is smaller than L* pg. Thus, L* pq is the best
constant in inequality (5.52).

Now, we prove that L*q is the best constant in inequality (5.53). For this reason, sup-
pose that there exists a positive constant C| smaller than L*g such that inequality

1
i 1=pgAy [ 1=pgA ple ,

> (0 [ K T @@ ) | <Gl g,
n=1 :

holds for all non-negative functions f : Ry — R, provided 0 < || f]| (R, <o Then,
utilizing the Holder inequality and the discrete Hardy inequality, we have

zr

- quz — 1-pgA|

/ONK(x,n)x P (A f)(x)dx
2( [k e ) @),

L

[i (5 [ K™ )00 ] | all

n=1

(5.69)

IN

<Cplfllypm, lallin

which is impossible since Cj p < L*pq and L* pq is the best constant in (5.52).
Finally, with the assumption that there exists a positive constant C{ < L*p such that the

inequality
1
oo 1-pgA| =, I-pgAy ___ 1 ! 1
/ x P ZK(x7n)n 7 (Aa), | dx| <Ci|alms
0

n=1
holds for all non-negative sequences a = (an), > 0 < ||@l[;a < oo, we obtain (in the same

way as in (5.69)) that inequality (5.52) holds with the constant C{g, smaller than L*pq.
This contradiction completes the proof. O
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Theorem 5.13 Under the same assumptions as in Theorem 5.12, the constants L'e,
1 1
L¥e?r, and L*e4 are the best possible in (5.55), (5.56), and (5.57), respectively.

Proof. We follow the same procedure as in the proof of Theorem 5.12, that is, we assume
that the inequality

1-pgA4

i lquz / K(x,n)x 7 (9f)(x)dx
B / oo (i » n1 ooy (ga),,> W (5.70)

<Gl o, lallis

holds with a positive constant C,, smaller than L*e. Let Land R respectively denote the
left-hand side and the right-hand side of inequality (5.70) equipped with

1, 0<x<1 1, 1 n=1

~ 1 1 1

f)=q e r 1SxSN @ = (("ji,?"*l)", 2<n<N
x 7, x>N 0 N

where N > e is a fixed integer. Making use of the estimate (1 + ,ll)n+1 >e,n €N, it follows

that
N—1 n+1 N_1
~q n 1 1 1
=1 — =<1+ -.
Il Jrngl (n+1) n +en§]n
Moreover, considering Zn 2 + as the lower Darboux sum for the function i(x) = % on the

segment [1,N], it follows that
1 X1
2 <2< [ & <o,
~n “n

that is,
1

- 1 1 q
@l < { 1+=+—logN
e e
In addition, since
1 1
7l (14 togn+ L) < (141 Liog)”
1l R,y = TologN+ o ) < {1+ 2+ -log )
we obtain the following estimate for the right-hand side of (5.70):

~ ~ " 1 1
R=CollFl g Il < C (1 T z1ogzv) | 5.71)
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On the other hand, since

1

, 0<x<1 .

x r, 1<x<N and (?Ez)n{g q’an_ ,
_2 2 _ otherwise
X px(l+NlogN N)7 >N )

(@) (x) =

T T =

e

the left-hand side of (5.70) is greater than [} YN, K (x,n)x~%1n~P42dx. It should be no-
ticed here that relation (5.65) (see Theorem 5.12) provides lower bound for this double
sum. Therefore, utilizing (5.65), (5.70), and (5.71), it follows that

1 1 1 logt?
G (1+=+—-logN ) >logN [ K(1,0)r P21+ —_)dr
2<+e+eog )>og /% (1,r) (+logN)

N logt
1 N/ K(1,0) P22 (11— —— |dar
g [ k(10 (1- 1250

Dividing the above inequality by log N and letting N to infinity, it follows that

9 > L*
e
which is in contrast to C, < L*e. Therefore, the constant L*e is the best possible in inequal-
ity (5.55).
1
To conclude the proof, we show that L*e is the best possible in (5.56). Hence, suppose

1 . .
that there exists a positive constant C; < L*e? such that inequality

1
P

<Gllfll g, -

[i (n% /Om K (x, m)es (1-P041) <gf)(x)dx) )

n=1

holds for all non-negative measurable functions f : Ry — R. Then, utilizing the Holder
and the Carleman inequality, we have

1-pgA|

i 2 (Fa) /Kxn) PG (x)dx
ni (5 [ x5 @) @,

li G% /0 TR (gf)(x)dx)p :

1Zallza

IN

n=1

1
< Chet | fll . Il

1
which is impossible since Che? < L*e and L*e is the best possible constant in (5.55). In

1 .
the same way we show that L*e ¢ is the best constant in (5.57). O
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Theorem 5.14 Under the same assumptions as in Theorem 5.12, the constants L* (2 +
o7)s L (1+5), and L*(1 4 1) are the best possible in (5.58), (5.59), and (5.60), respec-
tively.

Proof. We first show that L* (2 + #) is the best constant in (5.58), as in the previous two
theorems. Hence, suppose that the inequality

1-pgA;

i I 7a) /"Kx@ P (Af) (x)dx

B /oo 1- qu1 ()(x <2Kx n a- z;qu (%a)n> dx (5.72)

<Gllfll g, lalle

holds with a positive constant C3, smaller than L* (2 + ﬁ) .LetLand R respectively denote

the left-hand side and the right-hand side of (5.72) equipped with the function f: Ry —R
and the sequence (a,) 1< defined by (5.62) (see Theorem 5.12). Then, taking into account
relation (5.63), it follows that

R =G|\ fll o, Il < C3(1+1ogN), (5.73)

where N € N, N > 2, is a fixed positive integer.
Guided by the ideas from previous two proofs, we establish now the lower bound for
the left-hand side of inequality (5.72). Obviously, (J2f)(x) = (#a), = 0, for x,n > N.

1 . 1
Moreover, considering Y7 _, k¢ as the lower Darboux sum for the function A(x) = x¢ on
segment [1,n+ 1], we have

L n+1 1 n+1 1 q 1+
Y ki </ xfldx</ xidx= (n+1)
- 1 Jo q+1

and consequently,

1+1
— 1 1 _1
(%an>(1+—) nl 1:q—i— ( " ) qn 7, n<N.
9/ (n+1)""a q

On the other hand, since

p+1 by p+1 _
o1 > X
P r —1 p

= (

it follows that

pqL n \'o
/ ZKxnx Aty —pAr [ dx
2pq+1 n+1

/ ZKxnx Wip=Ph2(1 — @,)dx,

(5.74)
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where the sequence (¢,), .1 is defined by

n O\t
=1- .
on=1-(2;)

.. . 2 n
In addition, since (;15)” < (n+1) i< it follows that —L; < @, < 21

ie.

+1 ’ (n+1)2 ’
1 2
— <y <-—-,neN.
2n n
Hence, utilizing (5.74), we have
L
Pq >/ 2 K (x,n)x 9N PA2 gy
2pg+1
(5.75)

—2/ ZKxnx A1 —PA2 gy

In the sequel, we use estimate (5.65) for the first double sum on the right-hand side of
(5.75). Moreover, similarly to (5.67), we have

1
/ ZKx n)x A pPA gy < (1_N) k(pAy +1), (5.76)

so that relations (5.65), (5.72), (5.73), (5.75), and (5.76) yield inequality
rq 1
CGll+——
2pg+1 3< JrlogN)
logt?
K, (1,011 dt
/ L) ( "o ogN )

, logt 1\ k(pAs +1
+/ Ko (11— 2 ) ar— (1~ kpaa +1)
1 logN N logN

after dividing by log N. Clearly, letting N to infinity, the above relation reduces to

P49Cs >
2pg+1

)

which is in contrast to our assumption that C3 is smaller than L* (2 + %) Hence, L*(2+
%) is the best constant in inequality (5.58).

In order to conclude the proof, we only show that L* (1 + ;7) is the best constant in
(5.59). Namely, assuming that there exist a positive constant 0 < C; < L* (1 + %) such that
inequality

L

0 l-pgAy [ 1-pgA| Py
lz (”q/o K(x,n)x » (fff)(x)dx)] <Gl flpr,)
n=1
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holds for all non-negative measurable functions f : Ry — R, then by virtue of the Holder
and the Hardy-Carleman inequality, we have

1- quZ 1-pgA|

(Ha) /Kxn r(Hf)(x)dx

n=1

i( [k e 0 ) GF ),

e 1— qu2 1—pgAq 14 % PR
[2 [ K wf)(x)dx)] Zal

< (1 + 5) 11l lalla,

which is impossible since C} (1 + é) <L (2 + ﬁ) and L* (2 + ﬁ) is the best constant in
(5.58). O

Remark 5.6 Considering inequalities (5.52)—(5.60) with a homogeneous kernel of de-
gree —(v+ ), v,u > 0, such that the function K(x,y)y*~! is decreasing on R, for any
fixed x € R, and with parameters A| = I’T", Ay = 1;“ , we obtain half-discrete versions
of Hilbert-type inequalities derived in the previous section. For example, a half-discrete

version of inequality (5.7) reads

2 n P ,,/OMK(x,n)xvfé(,fo)(x)dx

n=

- /O T (o ) (x) ( i] K(x,n)n""7 (%),1) dx
<K= Wpal flpz, lalli,

where k(1 — ) pq is the best possible constant.

Remark 5.7 A typical example of a homogeneous kernel with a negative degree is the
function K : Ry x Ry — R, defined by K(x,y) = (x+y)~*, s > 0. In this case, the parts of
the constants in (5.52)—(5.60), with respect to a homogeneous kernel, may be expressed in
terms of the Beta function since

k(n) = / (14+0)t "dt=B(l—n,s+n—1), l—s<n <1
0
Another interesting example of a homogeneous kernel with a negative degree is the func-
tion K (x,y) = max{x,y} %, s > 0. In this case,

2 s
= [ max{1,:} 5t "dt = ,l—s<n<l1.
Jy maxtn T—mGTn—1)
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5.2.3 On Half-discrete Operators Arising from
Hardy-Hilbert Type Inequalities

As an application, we shall take a closer look to inequalities (5.53), (5.54), (5.56), (5.57),
(5.59), and (5.60).

By virtue of the half-discrete Hardy-Hilbert type inequalities from the previous subsec-
tion, we establish here the corresponding half-discrete operators between Lebesgue spaces
LP(R.) and [?, and vice versa. In addition, since the above mentioned inequalities include
the best constants on their right-hand sides, we shall be able to determine their norms.

First, with the assumptions of Theorem 5.12, we introduce a pair of arithmetic half-
discrete Hilbert-type operators Ay : LP(Ry) — [P and A, : 19 — LY(R.), by

T | /0 Ko (o £) () dx,

oo

1—pgA; I-pgAy ___

(Aza)(x) =x » ;K(x,n)n  (Aa).

Clearly, Ay and A, are well-defined, due to inequalities (5.53) and (5.54). Moreover, in-
equalities (5.53) and (5.54) may be rewritten as [|Aq f{li <L*q[|f]l (R, ) and [[Azall 4R,
< L*p||al|;a. Due to the best constants established in Theorem 5.12, we can calculate the
norms of A and A,, that is, we have |A;|| = L*q and ||A,|| = L*p.

Similarly, utilizing Theorem 5.13, that is, by virtue of relations (5.56) and (5.57), we
define a pair of geometric half-discrete Hilbert-type operators Gq : L”(R.) — I? and G, :
19— L1(Ry), by

(1) =n T [ Koy P (@) W,

—p o 1— _
(Gaa)) =x 7 Y K(xmn 0 (Fa),.

n=1

With this notation, inequalities (5.56) and (5.57) read ||Gyf||;» < L*eFIHfHM(R+> and
1Gaallyy g, < L7t [lals. that is, it follows that Gy = L% and [|Gyf| = L*e4, due

to the best constants L*ell’ and L*eé.

It remains to define the corresponding pair of harmonic half-discrete Hilbert-type oper-
ators arising from relations (5.59) and (5.60). More precisely, the operators Hy : L? (R ) —
1P and Hy : 17 — L(R ), defined by

(Hyf)y =n 0 /0 TRy T () (),

1-pgA) l-pgAy
(Hpa)(x) =x" 7 Y K(x,n)n" @ (Ha),,

n=1

are meaningful since ||Hy f]|;p < L* (1+ %) £l ) and [Hzall g, ) < L* (1+ %) lla||sa-
Finally, due to Theorem 5.14, the constants L* (1 + %) and L* (1 + %) are the best possible
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in the corresponding inequalities, which means that | Hy || = L* (1 + %) and |[Hp | = L*(1+

)

Similarly to Open problem 2, we may propose the following open problem.

Open problem 3 Find conditions so that the equality (5.41) holds for the corre-
sponding half-discrete Hilbert-type operators Ty and T5.

5.3 Extension to a Multidimensional Case

The main goal of this section is to present extensions of Theorems 5.3, 5.4, and 5.5 to a
multidimensional case. Such results are consequences of multidimensional Hilbert-type
inequalities.

Theorem 5.15 Suppose p;,pi,qi, i = 1,2,...,n, and A are as in (1.35), and A;j, i,j =
1,2,...,n, are the real parameters satisfying ¥;'; A;; = 0. Further, let o; = 2’}:1A,~j, i=
1,2,...,n, and let v;, u; be real parameters satisfying o + v; + [% < qu—_’" <o+ Vvi+ W.
If K : R, — R is a non-negative measurable homogeneous function of degree —s, s > 0,
and f;: Ry — R, i=1,2,...,n, are non-negative measurable functions, then

Lo KT (o i (e
VI i=1

n qiki oA . . (n—1— .
C;(pquAjv)H||ﬁpiq,-<a,-+v,-+u,->+p,-(nfH)Hi||pl(al+vl+uz)+pl(n 1—s)/qi+1 5.77)

i=1 pPi ’
and
n—1 Ph 1/p,
/ xn(lflp;l)(nflfs)*l’ﬁocn / . K?L (X) Hxlyﬂr#i (,!fo,')“i (xi)dA”x dx,
Ry RY i=1
n-l iMi
< Cfl,l (p,q,A, \a) H ||fl piqi(o‘i‘*’\’i#’ﬂl‘f)ipi(n—If‘y)+qi ||£l:(ai+vl'+lli)+pi(nfl73)/ql-+17 (5.78)
i=1 i
where
(P, q,A,v)
_ Hk1/q, n T pigi(ei +vi) + piln—1—5)+q; O+ Vi+(n—1-s)/q;

i:1 piqi(0G+ Vi) + pi(n—1—5)
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Cfl*l (p7 q7A7 V)

n ) n—1 oy ) (11— '
:Hkll/(h(qlAl)H qul(al-l—vl)-l-pl(n s)—|—ql
i=1 piqi(ci+ Vi) + pi(n—1—1s)

®it+Vit(n—1-s)/q;

)

Ai = (A, A, Ain), ki(qiAy) <o, i=1,2,....n

Proof. The result follows easily from relations (1.41) and (1.42) for the appropriate choice
of non-negative measurable functions f;,i =1,2,...,n

Namely, if the functions f; : Ry — R, i = 1,2,...,n, are respectively replaced with
X/ (o f;) (x;), then the terms on the right-hand side of inequality (1.41) become

" f = AT g s )

OCfFVl

_ / p’“’[nqmlur H} (Q{ﬁ)mﬂi (xi)dxi
R+

= Jo AP @ ) = 1t (1) G 579

where ¢’ = p;u; and

qi(oi+vi)+n—1—s
qildi '

Moreover, considering the two-dimensional setting with non-conjugate exponents, the ex-

pression [x!=* (7 f3) (x:) || 4 represents the left-hand side of the Hardy-type inequality

(1.67), that is, we have inequality

A=

(5.80)

=2 (e ) @)1 < (') 109 (5.81)

with abbreviated
Diqili

 pigi(04+ Vit ) + piln—1—5) + g

and
Piqili

pigi(c; +vi)+piln—1—5)+ qi
In other words, the right-hand side of inequality (5.81) reads

p=-

pigi(0G+ Vi) + pi(n—1—15)+q; pi(ei+vi)+pi(n—1-s)/qi

piqi(¢i + Vi) +pi(n—1—5)

qibii 2 op vt 1) 2 (1T — ) 1ot s
X | ’fl)iqi(ot,-JrViJrlli)JrPi("*1*5)+lli | Zi (e4+Vit+pi)+p; (n—1 5)/‘/1+I’t. (5.82)

Hence, relations (5.79), (5.81) and (5.82) yield the series of inequalities

7]7 . .
e gy

Pigi(0+ Vi) + pin — 1 —5) 4 g;| VI

piqi(0+ Vi) + piln—1—3s)
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X ||f1’i‘1i(‘xi+"i+l:§iipi("*'*“)*‘Ii | Z’j(a"w#“i”pi(nilﬂv)/qﬁl, i=1,2,...,n,
so the inequality (5.77) follows immediately from (1.41).

Obviously the same reasoning is used to establish inequality (5.78) from (1.42), which

completes the proof. O

The next result refers to the weighted geometric mean operator ¢, defined by (1.69).

Theorem 5.16 Suppose p;,pi,qi, i = 1,2,...,n, and A are as in (1.35), and A;j, i,j =
1,2,...,n, are real parameters satisfying ¥, Aij = 0. Further, let o; = Z?ZIAU, i =
1,2,...,n, and let v, W, and o > 0 be real parameters. If K : R’} — R is a non-negative
measurable homogeneous function of degree —s, s >0, and fi : Ry — R, i=1,2,...,n,

non-negative measurable functions, then

no ) gty

n
[ KT @) G)ax < p.a A [T s 589
JIRG i=1 i=1
and
1171 p}l 1/p;l
/ xn(lfflﬂn)("*l*S‘)*Pnan / . K* (x) HxiVi (Do) (xi)ci"x dx,,
R, R+ i=1
nol ) gy
Skfﬁl(l)’q’A’v)HHxi “ ﬁ#lHPi’
i=1
(5.84)
where

l B ! n i n )
ko (P, A,v) = eal A EL TR % (g,A,),
i=1
—1

L _ 1 _h—s n ) n .
K1 (0, 0,A,v) = oF [F179 1 S Tt g .
i=1

Ai = (A, A, .. Ain), and ki(qiAj) < oo, i=1,2,...,n.

Proof.  The result is an immediate consequence of general Hilbert-type inequalities
(1.41) and (1.42) equipped with the functions x," (9, f;)" (x;) instead of f; : Ry — R,
i=1,2,...,n, and the Levin-Cochran-Lee inequality (1.68). Namely, applying (1.68) to
the right-hand sides of (1.41) and (1.42) yields

(n—l—x)jLaH‘vi

OV 1 \n=sy oyy— - .
Hxl(n—l—s)/flﬂramW, (%ﬁ)“"(xz')l\pi < e“[ ai +0G+V; /l+l] Hxi qi f}ul”p[?

which completes the proof. O

The following pair of Hilbert-type inequalities deals with the weighted harmonic mean
operator .7, defined by (1.73).
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Theorem 5.17 Suppose p;,pi,qi, i = 1,2,...,n, and A are as in (1.35), and A;j, i,j =
1,2,...,n, are real parameters such that Y| A;; = 0. Further, let 0; = 27:]Aij, i=
1,2,...,n, and let o, v; and u; > 0 be real parameters such that o + L (1 —A+o+ v+

= 7 ‘) > 0. If K : R — R is a non-negative measurable homogeneous function of degree
—s5,5>0, and f; : R+ — R, i=1,2,...,n, non-negative measurable functions, then

n (n=1-s) 1 —s)

Jre KT G s < o A v [Tl

+0oi+v;
Fp (585

and

1/py

w1 Ph
[y iA1= =rhen / KR [T (Aafi) () |,
R, R !

i=1

(n— 1

) 4oty

n—1
<hh_1(p, A, v,k Hllx i (5.86)

1 n—s\1*
—(1—1+O€5+V,'+ ):| )
i qi

n—1 1

_ 14
7l(p,q,A,\),p.) = Hkil/q"(ini)H |:OZ+E <1 )«+Oli+Vi+nq's)] y

i=1 i=1

where

n

l;sz(P»qvA» Hk]/ql QI 1 |:OC+
i=1

=

Ai = (Ai1,Ap, ... Ain), ki(giAi) <o, andi=1,2,...,n

Proof. We follow the same procedure as in the proof of the previous theorem, except that
we use inequality (1.71) instead of the Levin-Cochran-Lee inequality.

More precisely, considering (1.41) and (1.42) with the functions x;" (S, f;)" (x;), i =
1,2,...,n, it follows that

n—1-s)/qi+o+v;
[ VA G £V () |

Wi (n—1-s) 1 s)
n—s +0o4+Vi .
(1—)L+Oti+vi+ )} (B T pis

qi

< {oc+—
Mi

and the proof is completed. O

Our next step is to determine conditions under which the constants ¢ (p,q,A,v),

C‘;f] (pquAvv), kfI(P»Q»A»V)» szl(pquAvv)’ lrsz(paqua v, P’), and lzfl(pquAvVvP') are
the best possible in the corresponding inequalities. This happens in the case of conjugate
exponents.

5.3.1 Reduction to the Conjugate Case and the Best Constants

In order to obtain the best possible constants in inequalities (5.77), (5.78), (5.83), (5.84),
(5.85), and (5.86), we consider here their conjugate forms. Namely, if p; > 1,i=1,2,...,n,
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is the set of conjugate exponents, then inequalities (5.77) and (5.78) with v; = (s+ 1 —
n)/qi— o, i =1,2,... ,n become respectively

n s+l—n _ n
Joo KOOTTw " () )ax < e Aw TR0 (587)
Y i=1

i=1

—1 s+l-n . p;l
[/ x, (7P (1=1=5) =P, 0 (/ 1 Hx e (o fi)l (xi)d%x> dxn]
R+ Rn

l/p;

< B (p,A,w) Hl\ﬁ“’llp,, (5.88)
where p
1/pi( L ( Pilli ) ’
7A k b
n(PoA ) H (pih ll_[l piti—1
1(p,A,w) Hkl/p’ (piA Hl< Pilk )Mi.
7 piti—1

Similarly, the conjugate forms of mequalltles (5.83), (5.84), (5.85) and (5.86) read respec-
tively

v L T an
/R” T (G f) (1)dx < (9 A,V H||x Pl (589
+ ':1

L i=

. n—1 p;1 l/p;1
/ xn(lf.ﬁ;l)(nfl—s)*l’;zan / - K(X) H th (g fl) (xl)dn dx,,
R . R i=1

n—1 (n—1-s)

+o4+Vv;

<kn lp’A v HHX " fi'uillpiv (5'90)
i=1
and
n v (n—1— y)+al+vl .
/Rn K [T (Hafi) (x)dx < T (p,A, v, an E fillps 591
+ i=1

1/p,

n—1 P
/R+ —pp)(n—1=5)—photy (/Ran(x)szw (A fi)H (xi)d x) dxn]

i=1

—1 (n—1-=s)

<nlp7 E"H”x h

+04+Vvi Ui
1 i (5.92)

where

z;(p,A,\)) = é[ ST vi Hkl/pl pl 1)



120 5 HILBERT-TYPE INEQUALITIES INVOLVING SOME MEANS OPERATORS

n—1

- 1] oy _n—=s
kf,,l(p,A,v) _ ea[ stn—0p— TR+ YT 1"!} Hkl/pl (piAi),
i=

/pz L o h=s H
l (A, Hk (piA; H O“"’u' o+ Vi+ » )
1

i

—1 1 _ Hi
(p,ALY Hkl/”’ (piA H {ocqtﬁ (oc,»Jrv,-Jrnp.s)} :

i=1 t 4

In the sequel we determine the conditions under which the inequalities (5.87), (5.88),
(5.89), (5.90), (5.91), and (5.92) include the best possible constants on their right-hand
sides. To do this, we establish some more specific conditions about the convergence of the
integral k; (a), a = (ay,ay,...,ay), defined by (1.5). More precisely, we assume that

n
ki(a) <eoforay,...,a, > —1,2@,’ <s—n+1l,neN,n>2. (5.93)
i=2
By the similar reasoning as in the previous chapters, the best possible constants can be
obtained if their parts regarding homogeneous kernel contain no exponents. For that sake,

assume that
ki(p1A1) = ka(p2Az) = -+ = kn(pnAn). (5.94)
Utilizing the change of variables u; = 1/ty,u3 = t3/ta,uq = t4/ts,...,uy = t,/tr, which

provides the Jacobian of the transformation

‘B(ul,m,...,un)
8(t2,t3,...,tn)

we have

n
(oA = [, K@ [T
+ j=3

=ki(p1A11,s —n—pa(0n —Ax), prAss, ..., prA).

According to (5.94), we have pjAjp =s—n— pz(OCz —Azz), P1A13 = p2A23, ..., p1ALn =
P2Az,. In a similar manner we express k;(p;A;), i = 3,...,n, in terms of k(). In such a
way we see that (5.94) is fulfilled if

ijjl':S—n—pi(ai—Aii),i,j: 1,2,...,1’!, 175] (595)

The above set of conditions also implies that p;A;x = p;A jx, when k # i, j. Hence, we use
abbreviations Avl = ppAp1 and ;\v,' =p1Ay;, i # 1. Since ¥ | A;; = 0, one easily obtains that
piAji= Avj(l — pj). Moreover, Z?:VK:' = s —n (see also [88]).

Now, if the set of conditions (5.95) is fulfilled, then, with the above abbreviations,
inequalities (5.87) and (5.88) become respectively

/R” T (o ) ()aix < s (. Ao p) H||ﬁ ™ (5.96)
+ i=1
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. o 1/p),
. , o g
./R+xn(”n’1>(1+”"f‘n) (./Rn 1 H U (A )M (i) X) dxy
, . n—1
< g (P, A ) [TIA N s (5.97)
i=1

i \pili — 1
n—1 Hi
< Pilki
JA = ki (A s
A = @) (2

and K = (Avl,gz, ces ,Avn).
In the same way, inequalities (5.89), (5.90), (5.91) and (5.92) read respectively

Y
/,, Hx (Guf)H (xi)dx < mi: p,AvHH e (5.98)

i= i=1

. _ . Ph 1/p,
/R+ xn([’n*l)“*l’n"‘n) (/R'jr ! Hxvl g ﬁ ( l) ) dxn‘|

~ n—1 V,'lefA,' .
<m,_ (pAY [Tl "™ (5.99)
i=1
and
. n v i.*gi )
[ KOOTT! (Haf (x)ax < 77, A, umx e (5.100)
v i=1
- nl Pn 1/,
/ xn(Prrl)(lernAn) /,HK(X)Hx;/i(%ﬁ)m(xi)tinx dx,
R, R i=1
n—1 Vi— 1 A
< AW [T 7 e (5.101)
i=1
where
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m_ (p,A, v, 1) = ki(A H[a+ul( —Zi)]m.

i=1

Finally, we show that the constants nﬁf,(p,zz,p\.), nﬁflfl(p,g,p.) ms (p,A,v),

m_ (p,A,v), T,(p, A, v, ), and 7 _ (p, A, v, ) are the best possible in the correspond-
ing inequalities.

Theorem 5.18 Let u;p; > 1,i=1,2,...,n, and let the parameters Zi, i=2,...,n, fulfill

conditions as in (5.93). Then, the constant iit},(p, K, W) is the best possible in the inequality
(5.96).

Proof. Suppose to the contrary that there exists a positive constant C,, 0<C,, <75 (p, 11, w),
such that inequality

/ . pr’ (A f)M (xi)dx < C,1H||f“’|\p,, (5.102)
holds for non-negative measurable functions f; : R, — R,i=1,... n. Let us set
. X2 X3 Xn
KN(X) = mm(N,K(X)) X X(N*I,N)’l*l (x—], x—], ceey x_l) . (5103)

Considering this inequality with the function

e=1

fl(xl) = ,”II,ZX(Q7])(XL'), i=1,...,n,

where € is a positive sufficiently small number, its right-hand side becomes

- 7 . : e—1 i G
G I =G I ( [ 5 1an) " =S
i=1 i=1

On the other hand, since

~ 1

0<x <1, (szf,-) w) =—| " Fdr
i
I X el

= — tuiri dt
Xi Jo
bomipi—1+€’
the left-hand side of (5.102), can be estimated as
/Rn pr’ (%ﬁ) (x;)dx (5.104)

i=1
e

n M n 3
Hipi / Aty
> _ Ky(x x. dx
1'1_[1(%'191'1+8) (0.1] M )-11 l

1
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n . Ui el : A€
) [ oo
i—1 \MiDi J0 J(0x]"! i=2

—1+¢

zlf[l(L)M[/olﬁ'(/Rw Hu g )dxl

wipi—1+¢€

el [ % ST AJ’*%A
[ Z/DKN(U)Huj dlu ) dx | .
0 i=2/ Wi =2

LetD; = {(u2,...,un) : ui > —,u; >0, j # i}. Then we have

n L,+X[ ~\ Hi
/ KT (7)) (5.105)
R P
n 125 . n AL £
Uipi 1/ Al Aty 5
> e — K, u Uu. Id u
_H<Mipi—1+5> e JRY! w )i:2 '

1 . no o, . n A~j+% .
—/ x; 2/ KN(ﬁ)Huj ‘da|dx|.
70 i—2/D; =2

J

Without loss of generality, it suffices to find the appropriate estimate for the integral

Ajtt
o, Kn(@) T}, uj] " d"w: We plan to find a constant My independent of & > 0 such
that

/ Hu ”fd1u<MN
2

for all 0 < € < 1. It should be noticed that M depends on N.
By virtue of the Fubini theorem, we have

P S A
/ X / Ky( )Huj ‘d'a | dx;
0 JD, =2
1 o0 nooAi+LE
1 Al Thrj oA
=/ x Ky ( u. du|dx.
./0 ! (/Riz /l/xl ( )g / ) :

<1 (uz € [1,00)). By enlarging the domain of integration, we

(5.106)

Observe u, 'loguy < e™!
obtain

nooAptE
. dx, (5.107)

iy At A+l N
— - Ky(a")u Huj 7 (uy "ogua)d'u
J(Leo) x IRy j=3
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Aptl+£ n o Aj+E
S/ - 2KN(“1)”2 sz”J ‘d'u
A2+1+ d Ajt i o
/ n—1 Huj jd u< bt
R" =

where for the last inequality we have used the fact that Ky is given by (5.103). Hence, we

have
ﬁ < Uipi >“i
i1 \Mipi—1+¢€

Obviously, if € — 07, then

n Wipi M ) n o
Gz mm A =TT (22 ) [ k@) TT
1'1:[1 pipi—1) JRL jzllléi !

/ K(a'") |n| uXier%aﬂuO(l)] <C
Rn—l i n-
+

i=2

for all N = 1,2,..., which contradicts to our assumption 0 < C, < 7, (p,g,p\.). Hence,
5 (p, A, ) is the best possible. a

Theorem 5.19 Let wip; > 1, i = 1,2,....n, and let parameters A;, i = 2,...,n, fulfill
conditions as in (5.93). Then, the constant i, _ (p,A, ) is the best possible in (5.97).

Proof.  Suppose, on the contrary, that there exist a positive constant C, 1, 0 <G, 1 <
1, (p,A, ) such that the inequality (5.97) holds for all non-negative measurable func-
tions f; : Ry — R, when replacing /) (p,g,p.) with G, ;.

In that case, the left-hand side of inequality (5.96), denoted here with L, can be rewrit-
ten in the following form:

1. n 1 1 A
L:/R (xrann/R"l T  fo) () >(dfn)“'1 (%) -
+ +

i=1

Now, the application of the Holder’s inequality with conjugate exponents p,, and p/, yields
inequality
L <L )" |l pus (5.108)

where L' denotes the left-hand side of inequality (5.97).
Furthermore, L' < C,_ [T'=! ", || fi*| p;» while the Hardy inequality yields inequality

Mn
n p “ 1
1 5 < (S22} U
nHn

Hence, the relation (5.108) yields inequality

L<Cy (i) " f[ T (5.100)
Pnln -1 i
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Finally, taking into account our assumption 0 < C,,_; < 71y _, (p,K, W), we have

Hn Hn
Pnln - " Pnln - ~
0<Cpy (-2 ) < (pAw) [ =25 ) — s (p, AL w).
n 1<pnun1> n—1(P M(pnunl) (P A1)

Hence, inequality (5.109) contradicts with the fact that ﬁ’tfl(p,g,p.) is the best possible
constant in inequality (5.96). B

Therefore, the assumption that 7iz) | (p,A, ) is not the best possible was false. The
proof is now completed. |

Theorem 5.20 Let o0 >0, A; < v; < % +A;, Q= 1,2,...,n, and let the parameters A,

i=2,...,n, fulfill conditions as in (5.93). Then, the constant m;(p, 11, v) is the best possible
in the inequality (5.98).

Proof.  Suppose that there exists a positive constant C,,, 0 < C,, < mfl(p,g,v), such that
inequality

i——Ai
/R" Hx (Goufi)H (x;)dx < CnH ||x A, (5.110)
+ i=1 =
holds for all non-negative measurable functions f; : R, — R. Considering this inequality
with the functions
i 1, B O0<x <1,
fib (xi) = AV e

e pitix MM x>,

where ¢ is sufficiently small number, its right-hand side becomes
. 7
CnHH o e = Gt (—%)11. (5.111)
€ i i —Ai)
On the other hand, since

0, ) ) 0<xi <1,
(gle;'g)(xi) = 1 ;i"’i Ai—Vi e £ +- 1 ( 1 +A_ﬂL, £ )
>1

Hipi Op; Hipic

e Miri o 'xi Hi Hll’zel‘ll’a x

the left-hand side of (5.110), denoted here by L, can be estimated as

v,
L:/Rn T T (“afE) (xi)dx
+ i=1
n o . € € 1 L, Ay €
1 A= .—+,—<—.+—;L*.—>
> 671+5(nfs+2}l:1v,-)/ K(X)Hxil p,ema <&\ pi o pio dx
[1,e0)" i—=1

> o1t (st vi) g

i )
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i £
where I = [j; . K(X) T2, x; "l dx. Obviously, the integral I can be rewritten as

oo n ~
I:/ X E / K(ﬁl)Hu?iig/p"a“u dxy,
1 J[1fxy o)t i=2

providing the inequality
I>/ )c1
1
/ 2 / el ax,
1 ST, Ae/pi 1
> - /R K(@ )H d'u

/ / u A ﬁ/p’dl dxy,

where I; = {(u,u3,...,u,);0 <u; <1/x1,u; >0,j#i},1/p=(1/p1,...,1/pn).
Without loss of generality, it suffices to find the appropriate estimate for the integral

/Rn ! U Wil “] dx;
':2

(5.112)

Jp, K(0 )H?, AP g, Tn fact, setting o > 0 such that Ay + 1 > &/p, + @, since
—uloguy; — 0 (uz — 07), there exists M > 0 such that —uzloguy <M (uz € (0,1]).
On the other hand, it follows easily that the parameters a; = A2 —(¢/p2+ ) and a; =

Av, —¢&/pi, i=73,...,nsatisfy conditions as in (5.93). Then, by virtue of the Fubini theorem,
we have

0</ *7 / K(8") [ d dx,

oo 1/x1 n ~
—1 A1 Aj—¢/pj 21
= X K(a U du|dx
/1 ! /R’fz ./0 (@) 1% 1 !

j=2
1 nooxo 1/uy
Al Aj—¢/pj —1 1
:/R"’Z/O K(t )Huj’ ! (/1 X dx1>d u
— /R” 2/ Hu /p’ —logus)d'u
b +

1 no-
Aly Ar— Aj—¢g/pj %
SM/ "*2/0 K(8")uy? (&/p2ta) | |uj’ Pigta

+ j=3

(5.113)

Ar—(e n Ai—e/p; »
SM/ o K(ﬁl)MZZ*(b/m*‘a) Hujj Piita
R+ j=3

=M -ky(Ay— (¢/pa+ ), A3 — €/p3,... . Ay —€/pn) <
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Hence, taking into account (5.112), we obtain

L> 871+é(n75+2§l:1w) (ékl (g— gl/p) - 0(1)) .

Moreover, the relation (5.111) implies that

1
n Pi _
S (1 . 7> etz (L (R-ep) o).

€i\¢ pi(vi-A)
that is,

1

a1l (l _ %) TS b (s v) (s (A=e1/p) —e0(1)).

=1\ ¢ pi(vi—A)

Obviously, if € — 0T, then C,, > ny, (p,g, v), which contradicts with our assumption 0 <
Cy <m;(p,A,v). Hence, ms,(p, A, v) is the best possible in (5.98). O

Theorem 5.21 Ler o0 > 0, g,' <vy; < [% Jrg,', i=1,2,...,n, and let parameters X,», i=

2,...,n, fulfill conditions as in (5.93). Then, the constant m;_, (p,g, v) is the best possible
in (5.99).
Proof. Assume that there exists a positive constant C,_1, smaller than m_, (p, K, v), such
that the inequality (5.99) holds when replacing m _,(p,A,v) by C,—.

The left-hand side of inequality (5.98), denoted here by L, can be rewritten in the
following form:

n—1

: )L+AN" . . . ~ Vn— ,L *Xn
L= /]R (xfz" /Rn—l K(x) Hlel (Yo i)™ (x,»)d"x) Xy (Gouf)™" (xn)dxy.-
JIR JIRG

i=1

Now, applying the Holder inequality with conjugate exponents p, and p), to the above
expression yields inequality

Vn*%*ANn
L<Llxya ™ " (Gaf)™ |l pns (5.114)

where L’ denotes the left-hand side of (5.99).

\%
Moreover, L' < C,_; Hfl;]] [lx;

i— LA
"t £, while the Levin-Cochran-Lee inequality
(1.68) yields

L

Vn —Xn

L. -L_Z
o 7 o) e < T

Therefore relation (5.114) yields the inequality

VaAn Vi*%*;{i .
L<Cypie & -J[lIx; " f (5.115)
i=1
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Finally, taking into account our assumption 0 < C,_; <mj_, (p,K, W), we have

Vn—Ay Vn—An

0<Cpre @ <m | (p,A,we

=m}(p, A, ).

Hence, relation (5.115) contradicts with the fact that nz, (p,g, w) is the best possible con-

stant in inequality (5.98). Thus, the assumption that m}_,(p,A,w) is not the best possible
is false. The proof is now completed. O

Theorem 5.22 Let o, v;, and u; > 0 be real parameters such that o + i(w —Zi) >0,

i=1,2,...,n, and let parameters X,», i=2,...,n, fulfill conditions as in (5.93). Then, the
constant i (p,A v, &) is the best possible in (5.100).

Proof. We follow the same procedure as in the proof of Theorem 5.20, that is, we suppose
that the inequality

g o , nvim LA
foo KT af ax <G Tl " A (5:116)
JING i=1

i=1

holds with a positive constant C,,, smaller than mfl(p,fi, v, ). Considering this inequality
with the functions

Ai—vi e

)y =< " M 0<x <1,
0, x> 1,

where ¢ is sufficiently small number, its right-hand side reduces to

C"H”x Vi— 1) ft Ml”l’t . (5117)
Moreover, since
~ Ai—vi
3 o YicAi e T 0<qx <1
(Hafi)(xi) = ;i wpi | Xi ) Xi = 1,
0, xi>1,

the left-hand side of (5.116), denoted here by L, reads

Lo KOOTT ()" (i

i=1

p(e)-1,

L

where

n

e)=]1

i=1

n

vi—A; e " At £
o+ —- and I:/ Kx)[]x "ax
Wi Wipi 0,1] i=1
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Obviously, the integral I can be rewritten as

-1 . no o~
_ e—1 K ﬁl .AiJrs/PidA]u d ,
./0 1 [./(0,1/):1]'11 ( )g”l X1

1

providing the estimate

1
2/ XE 1 / B K(ﬁl)
o ! R
[ ey
j:2

1 Aite/pi 71
> — ‘d'ua
— £ /‘Ri 1 HM

/[/E

where E; = {(ua,u3,...,un);1/x1 <wj <oo,uj >0,j# i}, l/pN: (1/p1,---,1/pn).
Clearly, it suffices to estimate the integral [, K (@) 1T, u?j el iy, Namely, choos-

n ~
Hu/lf\i+5/PidAlu‘| dx,
(5.118)

Aj+e/pj 7
WP dy,
J:2

ing a > 0 such that Ay 1> —&/p2 — o, since —u, “log % — 0 (uy — o), there exists
M > 0 such that —u, “log u]_z <M (uy € [1,0)). Further, the parameters a, =A,+ (e/p2+

o) and a; :Zi +¢/pi, i=3,...,n, fulfill conditions as in (5.93). Then, similarly to (5.113),
we have

/lel/ K(ﬁl)ﬁugfrg/pjciludx
o ' JR, J !

Jj=2
SM'k1<gz+(5/172"‘05)7;3+5/P3»---agn+5/l7n) < oo,

and utilizing (5.118), it follows that
1 ~
LZ(P(s)-(glq (A+£1/p>—0(1)). (5.119)

Finally, taking into account (5.117) and (5.119), we have that mfl(p,g,v,p.) < C, when

€ — 0™, which is an obvious contradiction. This means that the constant 77z}, (p, A, v, ) is
the best possible in (5.100). O

Theorem 5.23 Let o, v;, and u; > 0 be real parameters such that o + i(vi —Xi) >0,

i=1,2,...,n, and let parameters X,», i=2,...,n, fulfill conditions as in (5.93). Then, the
constant m,_ | (p,A, v, W) is the best possible in (5.101).
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Proof.  Suppose, on the contrary, that there exists a positive constant C, 1, 0 < C, | <
m,_,(p,A,v, ), such that the inequality (5.101) holds with the constant C,_; instead of

mfl—] (vav V, P-)
Now, rewriting the left-hand side of inequality (5.100) in the form

)L+,Zn n—l . . ~ Vn*%*/zn
/ N / LK) [T (Hafi)™ s ) o ()™ (),
R+ 'R+ i=1
and applying the Holder inequality with conjugate exponents p, and p/,, we have
/ v"7 an 7;&" I“"l
L < L|xy (Hof)" || pns (5.120)
where L and L' respectively denote thNe left-hand sides of inequalities (5.100) and (5.101).

Vie A
In addition, ' < G, T/ [lx; ™" £l ;> while (1.71) yields the inequality

Lo
Vn*pTl*An \Z —An

~ Hn .~
h—o-—A
||xn (%fn)u’l Hpn S (a + u ) : H‘xn" " ”f#" ||Pn'
n

Hence, relation (5.120) provides the inequality

Vo — Ay o Vi 1% A; Hi
L<Cyy | a+ ” S I 7R a1 (5.121)
i=1

n

Finally, with our assumption 0 < G, < m,_, (p,g, w), we have

v 7;{ Hn " v 71’& Uy "
Cot <a+ " ) <m¢;1<p,A,v,w<a+ " ) — 70 (p, A, v,10).

n n

Therefore, inequality (5.121) contradicts with the fact that n_ifl(p,g, v, W) is the best possi-
ble constant in (5.100). The proof is now completed. O

5.3.2 Some Examples and Remarks

Now, we derive here several new Hilbert-type inequalities with arithmetic, geometric and
harmonic mean operators and with some particular homogeneous kernels. In this subsec-
tion we deal with the case of conjugate exponents and the inequalities that follow include
the best possible constants on their right-hand sides.

First Example

Our first example refers to the kernel K; : R, — R, defined by

1
<, s> 0.

Kl (X) = (zp:lxi)
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Clearly, K is a homogeneous function of degree —s, and the constant k; (K), appearing in
inequalities (5.96), (5.97), (5.98), (5.99), (5.100), and (5.101), can be expressed in terms
of the usual Gamma function I'. Namely, utilizing the formula

" 1 171
/R” 1 s u d"u = iz1 (@)

(1 ui)zizlai - TELia@)
which holds for a; > 0,i=1,2,...n, it follows that

~ n ~
ki(A) = [Ir(+4:), i=1.2,..n,

Wt*]

provided that ;\v,' >—1,i=1,2,...,n, and Z;’:lg,- = s —n. In addition, considering the
parameters A; =ri — L, =1, vi=r; — l/p;, i=1,2,...,n,wherer; >0and Y r; =s,
inequalities (5.96), (5.97), (5.98), (5.99) (5.100), and (5.101) reduce respectively to

ri— H n
S I CICZAIO e e ) § (P
i=1"" i=1

i=1
’ 1/p
- n—1 r— Pn /Pn
X, 1Pn~ / x; ,527 X dx,
/R+ ! Ri' ( 7 1 %)’ ,1:[ 5l l) "

nl/n

n—1
HF ) TTIA N
i=1

1 o

. 1 n r,-fplg '
feo e T et s < S TR OO T,

i=1 =1
/ I/PZ
n

, i 1 n—1 r171L P
mPp— [ . ’ g X d
/R+ Xn /R:l:l (2?:] xi)s ];!: ‘xl ( (Xﬁ) (‘xl) Xn

1

el/(apn n

F(S) H Ti H”lePn

ri— p i= r !
/Rnﬁ IR (e oy (0
i=1 1

i=1 i=1
an
1/p)

n—1 ri— Pn
rn[ln . X: Pi % i) X dA”X dx
Jo (/R oy [l 7 ) () ;

n—1 F .
H(oc+ )“l' ri) Hnﬁnp,

Clearly, the constants appearing on their right-hand sides are the best possible.
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Second Example
Another example of a homogeneous kernel with degree —s, is the function

1
K(x)=————, s>0.
2(%) max{xj,..., x5}’
In order to derive analogues of the inequalities from the previous example, we utilize the
integral formula

/ H:l ! ?1 a?nu: s
JRT max{1,x},...,x5_,} i (T+a)’

where a; > —1 and Y| a; = s — n. Hence, with this kernel and parameters g,' =r—1,
w=1vi=r— l/pg, i=1,2,....n, where r; > 0 and Y, r; = s, inequalities (5.96),
(5.97), (5.98), (5.99), (5.100), and (5.101) become respectively

ri—

1 Pz np
&gagai—?ﬂx Mﬁ%denlrmmw

/ 1/p)
n—1 ri—4 n

P
' ' 1
rl1p)17] e — p
/]R+xn (./R’;l max{x},...,x; }Hx (f) (xi)d" ) i

n /1 n—1

ginﬂnmm

Pnizi Ti i
1 n rifi
Jor s [T ) i< 2o [Tl
. . rﬁ_/ o 1/py
/& e ( /R” 1mnx (Gafi) (xi)d" ) dx,
J(apl)
T, iHHlelp,,
[ e GO jﬁmuﬂu<41“ﬁyﬂrmﬁm,
and
1y

n—1 ri— i, . Pn
rnl’n Pi % i dn d
/R+ /R” ! max{x17 }Hx afi) (x)d"™x n
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K n oc—i—l/p~”’1
I1 [T
i=1

<
OC+1/pni:1 ri

where the constants appearing on their right-hand sides are the best possible.
Finally, we propose the following open problem.

Open problem 4 Find conditions so that the discrete versions of multidimensional
inequalities from Section 5.3 (with best constants) hold.

Remark 5.8 The Hilbert-type inequalities involving some mean operators in this chap-
ter, as well as their consequences, are established by authors of this monograph and their
collaborators in papers [5], [8], [9], [10], [12], [22], and [60]. For related results and
some other forms of Hilbert-type inequalities involving some mean operators, the reader is
referred to [11], [13], [20], [38], [39], [42], [71], [75], [85], [86], [87], [92], and [96].






Chapter

Hilbert-type Inequalities
Involving Differential
Operators

In this chapter, we derive several integral, half-discrete and multidimensional Hilbert in-
equalities with a differential operator, and a general homogeneous kernel. Moreover, we
show that the constants appearing on the right-hand sides of these inequalities are the best
possible.

Recently, Azar [17, 18], obtained two new forms of half-discrete and integral Hilbert-
type inequalities including a differential operator. In order to state these results and sum-
marize our further discussion, we start by giving some notation. We denote by ', n >0, a
differential operator defined by 27! f(x) = f")(x), where £ stands for the n-th derivative
of a function f: Ry — R. In addition, throughout this chapter, A’} denotes the set of non-
negative measurable functions f : R — R such that £ exists a.e. on R, f(" (x) >0,
ae.onR,,and f¥(0)=0,k=0,1,2,...,n—1.

Now, the above mentioned form of the Hilbert inequality obtained in [18] reads as

follows: Let p and ¢ be non-negative mutually conjugate parameters, p > 1, let s >
(& —n) (% —
nmax{p,q}, and let A = W, where I' is a usual Gamma function. Then the

135
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inequality
| (6.1)

/O°° /O°° %dxdy
<A [./O.wxp(nﬂ)sl (@if(x))pdx} g {/Oqu(n+1)s1 (27 (3))  dy a

holds for all f,g € A", provided that the integrals on its right-hand side converge. In
addition, the constant A is the best possible in (6.1). The above inequality may be regarded
as a generalization of a classical Hilbert inequality since forn =0, p =g =2,and s =1,
we obtain the non-weighted inequality with the previously known sharp constant A = 7.
Now, a differential form of the half-discrete Hilbert inequality derived in [17] can be
stated as follows: Let p and g be non-negative conjugate parameters, i.e. % + cl/ =1,p>1,
T(5—mI(3)

let pm < s < g, where m is a fixed non-negative integer, and let C = — ) - where I"
is a usual Gamma function. Then the inequality
[ 103 s
Jo = (x+n)
1 (6.2)
q

<C {/wal’(mﬂ)sl (@ff(x))!’dx] ’ [i nqs1a4

n=1

holds for all f € A”}, f # 0, and for all non-negative sequences a = (a,),, - @ # 0, pro-
vided that the integral and the series on the right-hand side converge. Moreover, the con-
stant C is the best possible in (6.2). Similarly, the above inequality is an extension of a
classical half-discrete Hilbert inequality.

6.1 Integral Forms

In this section, we present the extension of inequality (6.1) for the case of an arbitrary ho-
mogeneous kernel. The corresponding inequalities will be given in both equivalent forms,
as (1.25) and (1.26).

In contrast to the proof of inequality (6.1) (see [18]), the following inequalities will
be carried out by virtue of the weighted Hardy inequality. Moreover, we shall also derive
appropriate complementary relations, based on the application of the dual weighted Hardy
inequality.

It is interesting that the constants appearing in our extended inequalities are also ex-
pressed in terms of the Gamma function. Therefore, it is necessary to introduce the concept
of rising and falling factorial powers.
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The rising factorial power X", where n is a non-negative integer, also known as a
Pochhammer symbol, is defined by
K =x(x+1)(x+2)---(x+n—1),
while the falling factorial power x% is given by
HM=x(x—1)(x—=2)---(x—n+1).

The rising and falling factorial powers may be expressed in terms of the Gamma function,
ie.

I'(x+n) 0 Cx+1)
o M Yo

It should be noticed here that the above relations hold for complex arguments of the
Gamma function which are not negative integers (for more details, see e.g. [1] or [46]).

With this notation, we are able to state and prove our main result in this section which
is an extension of inequality (6.1).

xﬁ:

Theorem 6.1 Let % + ‘ll =1, p> 1, andlet of, 0 be real parameters such that o) ,0; €
(n—1,s—1) and o + &f = s—2, where n is a fixed non-negative integer and s > n. If
K : Ri — R is a non-negative measurable homogeneous function of degree —s, then the
inequalities

/ / K(x,y)f(x)g(y)dxdy

Lo 1 (6.3)
<u[ [Tt sy [ [ (@1a) ]

and

1

oo o P 1%
{ /O y“’l)(”"“z’( | K(x,y)f(X)dX> dy]

f (6.4)
<m{/ xP=e)= (g f(x ))pdx} !
0
hold for all non-negative functions f,g € A'. In addition, the constants

I(af—n+1 S—n+1 o (o —n+1 . .
M = ki(—05) (rl(anH;rEZg;) ) and m = kl(—az)% are the best possible in

the corresponding inequalities.

Proof. Obviously, if n = 0 inequalities (6.3) and (6.4) become respectively (1.25) and
(1.26). Now, our first step is to rewrite the right-hand side of inequality (1.25) with —gA| =
oy ,—pAs = ¢4 in a form that is more suitable for the application of the Hardy inequality
(1.65). Namely, since

A (9£)W) = [ F(0d = )~ £0) = 1),
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we have that

(o) | [ ] [y dy}

— k(o) [ / wX”(”"‘“”(%(%f)(X))”dX] ’ 6.5)

< | [y (g )]

Moreover, due to the weighted Hardy inequality, it follows that

: /:xpWf*“)(szf(%f)(x))mx]% < { PR ))f’dxr

1

and

[y et (2,000 ))qdy]l<—[/ A (500 |

In addition, applying the weighted Hardy inequality to the right-hand sides of the last two
inequalities n — 1 times, yields relations

1
D

[/mxp(nai‘+1)(d<@+f)(x))pdx}l < 1*n {/mxp(n of)— (@"f(x))”dx} ’ (6.6)
0 o™ Lo

1

and

[y @,y < ] AT o] 6

Finally, since o = % and o4 = % the inequality (6.3) holds due to
(1.25), (6.5), (6.6), and (6.7). In the same way the inequality (6.4) holds by virtue of (1.26)
and (6.6).

The next step is to prove that the constants M and m, appearing on the right-hand sides
of the inequalities (6.3) and (6.4), are the best possible. For this reason, suppose that there

exists a positive constant C smaller than M such that the inequality
1 (6.8)

//ny g(y)dxdy
el [ syt [ sy

holds for all non-negative functions f, g : Ry — R fulfilling conditions as in the statement
of the Theorem.
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Considering the above inequality with functions f,g: R4 — R defined by

0, O0<x<l1

fla)y={ Tlreij- ")xar—,% >1
r(1+ai-5) =

0, O<y<1

g0)=q M) e oy

F(1+a§7§)

where € > 0 is a sufficiently small number, the Fubini theorem and the change of variables
¢ = ¥ imply that

//ny g(y)dxdy
=o(e //K “hy*® qudy

—(p(s)/ x 6 1/1 K(1,0)t%  adtdx

1 %

(6.9)
€

p(e) [ ;£ ! -2 [T e
:T/ K(1,6)t* th+<p(£)/ K(1,)t* qﬁ x ¢ ldxdt
1 0 1

e * £ 1 * £
= @ (/ K(l,t)t“Z’EdtJr/ K(l,t)ta2+Pdt),
1 0

r<l+a17;7n)r(l+a§‘7§f )
I‘(1+af7§)l‘(1+a§ f{)

_ (0(5) “ oL © el ! os—=
=——= [ K{,0)t"? ddt+¢(e) | x  K(L)e™ adrdx
1 1 1

. On the other hand, since the n-th derivative of

where ¢(€) =

e £y .
the function x* "7 is equal to » " it follows that

r(1+a,—;—n)
~ 0, O0<x<1 - 0, O<y<1
Qif(x): {Xocl*f—,n7 x> 1 ) @ig(Y): {yocf%n7 y> 1 )
and the right-hand side of (6.8) reduces to
o i C
Cc [/ xP1=aq)= (@ﬂ dx] {/ Nl (78 ))qdy} == (6.10)
0

Now, multiplying both sides of relation (6.8) by &, and taking into account relations (6.9)
and (6.10), we have that

had %€ 1 % €
€) (/ K(l,t)t"‘ﬂdt+/ K(l,r)t“ﬁﬁdt) <C.
1 JO
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Finally, as € — 0, it follows that M < C, which is in contrast to our hypothesis. Therefore,
the constant M is the best possible in (6.3).

It remains to show that m is the best constant in (6.4). Similarly to above discussion,
suppose that there exists a positive constant ¢ smaller than m such that inequality

{/Omy(pl)(uqoé) (/(il((x,y)f(x)dx)zgdy} ’
<ol [Twtair (22 ) as|

holds for all non-negative functions f : R4 — R as in the statement of Theorem. Then,
utilizing the Holder inequality and relation (6.7), we have

/ / (x,3)f(x)g(y)dxdy

- [y”‘?f' /0 K(x,y>f<x>dx][y"“?lg(y)]dy

[/ yp-i+aes) (/:K(X»y)f(X)dX) dy} [/ yae! ()dy}

c% [/:xp<" D=1 f(x dx} {/ ! H(Zigly ))qdyr,

which results that the constant M is not the best possible in (6.3), since

I'(og—n+1) I'(og—n+1)
Cc m
[(og+1) [(og+1)

With this contradiction, the proof is completed. O

Remark 6.1 Since for n = 0 inequalities (6.3) and (6.4) reduce respectively to (1.25)
and (1.26), Theorem 6.1 may be regarded as an extension of relations (1.25) and (1.26).
However, if n > 1, the relations (6.3) and (6.4) are less precise than (1.25) and (1.26), since
the right-hand sides of (1.25) and (1.26) interpolate between the left-hand side and the
right-hand side of inequalities (6.3) and (6.4).

Observe that the Theorem 6.1 covers the case when the degree of homogeneity of the
kernel, i.e. —s is less than —n, for a fixed non-negative integer n. Our next intention is to
derive the corresponding relations that cover the case 0 < s < 1. Such result is in some
way complementary to Theorem 6.1 and it may be derived by virtue of the weighted dual
Hardy inequality (1.66).

In order to state the next result, we define a differential operator Z by

PZLf(0) = (1) " (),
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where n is a non-negative integer. Moreover, the following theorem holds for all non-
negative functions f : R, — R such that the n-th derivative f*) exists a.e. on R, , f(x) >
0,a.e. on R, and lim, ... f*)(x) =0 for k =0,1,2,...,n— 1. This set of functions will
be denoted by A’}..

Theorem 6.2 Let % + cl/ =1, p>1, andlet af, o5 be real parameters such that o, o €

—1,s—1) and of + 05 = s —2, where 0 < s < 1. I K : RZ — R is a non-negative
( 1 2 + 8
homogeneous function of degree —s, then the inequalities

/ / K(x,y)f(x)g(y)dxdy

| /Rgﬂ" 1 (rs)as]” [ [ 215000

1 (6.11)
q

and

[ / yp1(I+a0s) ( /0 K (X»y)f(X)dX)pdy];)

. (6.12)
<m’ [/0 P (0 f(x ))pdx] ’

hold for all non-negative functions f,g € N, where n is a fixed non-negative integer. In
addition, the constants M* = kl(—@)w and m* = ki (—a3) r(—o)

I‘(nfai‘)F(nfoc;) I‘(nfoci*) » ap-
pearing in (6.11) and (6.12), are the best possible.

Proof. We follow the lines as in the proof of Theorem 6.1, this time accompanied with the
dual Hardy inequality (1.66). In this setting, the right-hand side of inequality (1.25) with
—qA| = o, —pAs = 05 may be rewritten as

ki (—05) [/Omx PUFP (x) } [/ yasly dy]

[ e s .13

k(o) |

1

< [ | °°yq<q“f+'><~ef*<@ig><y>>qdy] "

since

X (D f) (x /f 1)di = f(x).

Moreover, by applying the dual Hardy inequality to the expressions on right-hand side of
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relation (6.13) n times, it follows that

0

[/wxp(”"‘“”(M(%.f)(X))”dX} :

1 (6.14)
1 oo P
p(n—o)— n p
< CaT [/0 x Y28 f(x)) dx]
and
- . J
[ /0 y‘f<‘f“z“><szf*<@ig><y>>wy]
(6.15)

L e <>>‘fdy]

Now, since (—af)" = FF(F a'; and (—o3)" = rr((n az)) the inequality (6.11) holds due to
|

(1.25), (6.13), (6.14), and (6.15). In addition, inequality (6.12) holds by virtue of (1.26)
and (6.14).

In order to show that M* is the best constant in (6.11), we suppose that there exists a
positive constant C* smaller than M* such that the inequality

/ / K(x,y)f(x)g(y)dxdy

<c wap<" =1 ( P f(x dx} [/ Y= (g (y))  dy

holds for all non-negative functions f,g € A’}..

Similarly to the proof of Theorem 6.1, we consider the above inequality with the ap-
propriate choice of functions f and g. It is easy to see that the functions f*,g* : Ry — R,
defined by

1 (6.16)

0, O0<x<l1
=9 rleits) wos o

r(n—oc,*+§) U=

0, O<y<l1
g =9 fCad) we o

r(n-a3+%)

€ > 0, belong to A’t. With regard to functions f*,g*, the left-hand side of (6.16) may be

rewritten as
| [ ke F @z taxay

* °° %€ 1 %, €
‘pT("s)(/ K(l,t)t“fadr+/ K(l,t)r"‘2+5dt),
1 0

(6.17)
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F( o +P>F(7O‘;+§)

l"(nftxl +p>l“(n7(x§+§

where @*(¢€) =

(6.9).
x_E
On the other hand, since the n-th derivative of the function x*1 ™7 is equal to

r(n-aj+5) o

). Clearly, this follows immediately from relation

(1" 20 457" it follows that
r(-ei+5)
= 0 0<x<1 0 0<y<l1
n g _ ) "~ . R
@if (x) = {Xocl*f—,n7 r>1 s @ig (y) = {ya§§n7 y> 1 s
which means that the right-hand side of inequality (6.16) reads
" e (n—at ] n . q = c*
<1k xed (gif "] el 748 ) dy| =—. (6.18)

Consequently, comparing (6.16), (6.17), and (6.18), it follows that

had %€ 1 % €
€) (/ K(l,t)t"‘ﬂdt+/ K(l,r)t“ﬁﬁdt) <C*.
1 JO

Therefore, as € — 0, it follows that M* < C*, which contradicts with our assumption. This
means that the constant M* is the best possible in (6.11).

To conclude the proof, we suppose that, contrary to our claim, there exists a constant
0 < ¢* < m"* such that the inequality

{/ y” D(1+q03) (/ K(x,y)f dx> dy];<c*{/wx”(" )= (Q"f( ))pdx ’
0

holds for all non-negative functions f € A’L, as in the statement of Theorem. In addition,
employing the Holder inequality as well as relation (6.15), we have

/ / (x,y)f(x)g(y)dxdy
/ [ qaﬁl/ K(x,y)f ]'[yqa%“g(y)]dy

[ 1+qa2)(/0°°,((xy)f< ) ] [/ y 4 lgl dy]
L (=)

<c W [/Omxp(" )= (gif ] [/ ¥ 918( ))qdyr

. . . (-0 (-0 .
Now, according to our assumption, it follows that ¢* (o <m* ( az*) = M*, which
(n—a5) I(n-a3)
means that M* is not the best constant in (6.11). This is a clear contradiction of our as-

sumption and the proof is completed. O
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Remark 6.2 It should be noticed here that Theorem 6.2 may also be regarded as an ex-
tension of inequalities (1.25) and (1.26). Similarly to Remark 6.1, the relations (6.11) and
(6.12), for n > 1, are less precise than (1.25) and (1.26), since the right-hand sides of (1.25)
and (1.26) interpolate between the left-hand side and the right-hand side of inequalities
(6.11) and (6.12).

6.1.1 Applications

In this subsection, we discuss our main results with regard to some particular choices of
kernels and parameters o and o

First example

Our first example refers to the homogeneous kernel K (x,y) = (x+y) ™%, s > 0, with a
degree of homogeneity —s, and in this case the constant k; (— ¢t} ), appearing in inequalities
(6.3), (6.4), (6.11), and (6.12) is expressed in terms of the Beta function. More precisely,
we have

by (—a) :/0 (140) "B dr = B(1 + 05— 1 — o) = B(og + 1,04 + 1),

since of + o5 = s — 2. Moreover, employing the well-known relationship between the
rr(zc)r(y ). the constants M and m
x+y)

appearing in (6.3) and (6.4) (denoted here by M| and m, respectively) reduce to

Beta and the Gamma function, i.e. the formula B(x,y) =

T(of—n+ 1T (g —n+1)

M= ()
(g —n+1)I' (05 +1)
e r'(s) ’

where af,05 € (n—1,5—1) and s > n. Now, considering the parameters o] = % —1
and o = 2 — 1, where s > nmax{p,q}, the above constants reduce respectively to A =

r@,nr)(;(é,,,) nd r(%;@;(i)

equivalent form asserts that

. The constant A provides inequality (6.1), while its

[ ([ ) o]l <ol [ imrira] o

holds for all non-negative functions f € A’}

On the other hand, the constants M* and m™ appearing in dual inequalities (6.11) and
(6.12) (denoted here by M| and m], respectively) accompanied with the kernel K (x,y) =
(x+y)~*, become

2
b1 1
M; = :
' sin(ogm)sin(eg ) T(s)D(n— o)D(n — o)
(g +1
mj = id (@3 +1) of,o5 €(—1,5—1),0<s<1,

sin(ajm) D(s)D(n— o)’
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after applying the Euler reflection formula I'(x)I'(1 —x) = Z=—. In addition, with param-

eters off = 5 — L and o = 7 — 1, and this time with condition s < min{p,q}, Theorem 6.2
yields dual forms of inequalities (6.1) and (6.19).

Corollary 6.1 Ler %Jr é =1, p>1, andlet s < min{p,q}. Then the inequalities

/:/:%dxdy

1 1 (620
P oo q
< A* |:/R xl’(iH»l)fsfl (@if(x))pdx] /0 yq(iH»l)fsfl (@ig(y))qdy}
" L
and
- G IPAUN L ’
ps—s—1 / A dx> d }p <a / KD =s=1 (gpn g de] r (6.21)
[/0 y < b Gty y s (21 f(x)
hold for all non-negative functions f,g € N, where n is a non-negative integer. More-
* __ 2 1 * I
over, the constants A™ = sin(ﬂgsin(%) ’ TSI+ 1= 3T 1-2) and a* = sinzr%) ’ F(s)l"(nilf%)

appearing in (6.20) and (6.21) are the best possible.

Second example
For the function K : RZ — R given by K (x,y) = max{x,y}*, s > 0, we have

S
o5+ (s —og 1)

ki(—og) :/meax{l,t}’sto‘f = (

S
=—————  of,05 €(—1,s—1),
ey el
since o + 05 =5 — 2.
This time, the constants M and m on the right-hand sides of (6.3) and (6.4) (denoted
here by M, and m;, respectively) read

T(ef —n+ 1) (o5 —n+1)
I(o+2)T (05 +2)

s I'(of —n+1)

o+l T(of+2)

M2:S

my = , a0y €(n—1,5—1),5s>n,

since I'(x+ 1) = xI'(x). In this setting, dual inequalities (6.11) and (6.12) include the
constants

M= s - (o) (—0g)

> (g + (g +1) T(n—of)T(n—cg)

* s F(_O‘r) * *

= . , ap,op €(—1,s—1),0<s<1.
" A Thoa) D% Ehsm)0<s
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Third example

To conclude this section, we also consider the kernel K : Ri — R given by K(x,y) =
Q%}fg—y. Evidently, it is homogeneous of degree —1, k;(—05) converges for all o} €
(—1,0) and

. < logt n?
ki(—05) = / 2845 gy — ——
o t—1 sin®

(for more details, see [1] and [46]). Since Theorem 6.1 refers to homogeneous kernels with
s > n, it can not be applied to the above kernel for the case when n > 1. On the other hand,
the corresponding dual result follows directly from Theorem 6.2:

Corollary 6.2 Let %—i— cl/ =1, p>1, and let af, 0 € (—1,0) be real parameters such
that off + of = —1. Then the inequalities

/ / ) logy_logy F(x)g(y)dxdy

Lo 1 (6.22)
<M§ [/R xp(n ay)— (Qn f( ))de:| |:/O yq(n o5)— (@n ( )) dy:|
and
oo . Py
{/ y )(1+q05) (/ wf(x)dx) dy}
R (6.23)

<m3 [/0< i (21 0) ]

hold for all non-negative functions f,g € N, where n is a non-negative integer. In ad-

dition, the constants M5 = — f3 fra )1l“(n ] and m} = fz . r(za)
: -

pe are the

-, * * H * *
sin" oy T'(n— 5 sin” oy I“(nfocl)

best possible.

6.2 Associated Half-discrete Forms

In this section we first give an extension of inequality (6.2) to the case of non-conjugate
exponents and a general homogeneous kernel.

6.2.1 Half-discrete Inequalities in the Non-conjugate Case

Having in mind relations (2.75) and (2.76), our results will be given in two equivalent
forms.
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Theorem 6.3 Let p, g, p', ¢/, and A be as in (1.43) and (1.44), and let K : R%. — R be a
non-negative measurable homogeneous function of degree —s,s > 0. If A| and A; are real
parameters such that the function K(x,y)y~ 742 g decreasing on R for any fixed x € Ry
and B := (s —1)+Ay—A — -~ p > m—= 1, where m is a fixed non-negative integer, then

the mequa?mes
Zan/ K*(x,n)f dx*/ f(x)(ZKl(x,n)an> dx
0 n=1

DB=m+1) [ [* )t (om ’
_ L'W[ /0 P m=p) I(QJ(X))P[JX] (6.24)

1
" [in%u ) ta(ar- A”ai’l] ’

and

li B0+ (4r-a) </ K xn)f(x)dx>q/r

TB—m+1)[ /= 5
o e

(6.25)

1 €1
where 0 < L := qul (q'A2)k{ (2—s5— p'Ay) < oo, hold for a non-negative function f € A"
and a non-negative sequence a = (ay), cN» Provided that the integral and series on their
right-hand sides converge to positive numbers.

Proof. Clearly, if m = 0, inequalities (6.24) and (6.25) coincide with (2.75) and (2.76)
respectively. Otherwise, rewrite the right-hand side of (2.75) in a form that is more suitable
for the application of the Hardy inequality. Namely, since

(Do f)(x / F(0)dt = £(x) - £(0) = f(x),

we have that
1 1
{/ x5(15)+P(A1A2)fp(x)dx:| " {/ x””ﬁl(y{(@Jrf)(x))pdx] g ) (6.26)
0 0

Moreover, due to the weighted Hardy inequality (1.65), it follows that

[/:X“’“W(%f)(x))wx} i % [ /0 " 1B, flx ))pdx] ;

Now, by applying the Hardy inequality to the right-hand side of the last inequality m — 1
times, we get the relation

{ / wxp,pﬁ,l(%(% f)(x))”dx]% < ﬁl—m [ /0 " gpm—p)-1 (27 f(x))” dx] 1_1’. (6.27)

0
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Finally, the inequality (6.24) holds due to (2.75), (6.26), and (6.27). In the same way the
inequality (6.25) follows by virtue of (2.76) and (6.27) which completes the proof. O

The previous theorem is derived by virtue of the Hardy inequality and covers the case
when 3 > m — 1, where m is a fixed non-negative integer. Our next result is in some way
complementary to Theorem 6.3 since it covers the case when 3 < 0.

Theorem 6.4 Let p, q, p', ¢, and A be as in (1.43) and (1.44), and let K : R%r —Rbea

non-negative measurable homogeneous function of degree —s,s > 0. Further, let A} and A;

be real parameters such that the function K (x,y)y~ 942 is decreasing on R for any fixed
1 1

XERyand fi=L(s—1)+A—A1 =L <0 IfO<Li=k{ (¢AkK] 2—5—p'Ar) <o
then the inequalities

S _[" v
nglan/o K (x,n)f(x)dxf/o f(x) (nle (x,n)an> dx

L (6.28)

M - (m=B)=1 (gm P ll’ — ;‘,’7(1*8)+q(A27A,)
<L | [T @2y e | B y

and

(6.29)

hold for any non-negative function f € A’} and a non-negative sequence a = (ay), cN» Pro-
vided that the integral and series on their right-hand sides converge to positive numbers.

Proof. We follow the same procedure as in the proof of Theorem 6.3, this time accompa-
nied with the dual Hardy inequality (1.66). We have

[ /0 wxle’(lS)er(A'AZ)f”(x)dx]p — [ / T (g pPdx|| (630)

0

5l (7)) = [ 7= 1)

Moreover, utilizing the dual Hardy inequality m times, it follows that

[ @anerad :
, (6.31)

[T @ ppad”

(—B)"
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Now, the relations (2.75), (6.30), and (6.31) entail the desired inequality (6.28). Similarly,
the inequality (6.29) follows by virtue of (2.76) and (6.31). O

Remark 6.3 It should be noticed here that Theorem 6.3 and Theorem 6.4 coincide in the
case of m = 0. Therefore, presented results may be regarded as the differential extensions
of inequalities (2.75) and (2.76).

6.2.2 Reduction to Conjugate Case and the Best Constants

Now, our goal is to determine conditions under which the constants appearing on the right-
hand sides of inequalities (6.24), (6.25), (6.28), and (6.29) are the best possible.

Therefore, in this subsection we deal with non-negative conjugate exponents p, g, that
is, with parameters p and ¢ such that ;7+ é =1, p> 1. In this case p' =¢q, ¢ = p, and
A=1

It should be noticed here that the constant appearing in the inequality (6.2) does not
contain any exponent. Keeping in mind this fact, we are going to simplify the constants
appearing in (6.24), (6.25), (6.28), and (6.29) so that they do not contain exponents. There-
fore, we set

PAr+qA; =2 —35, (6.32)

since in this case relation ki (pA;) = k(2 — s — gA;) holds. With this assumption, the
constant L appearing in Theorem 6.3 and Theorem 6.4 reduces to L* = k; (pA3).

Thus, if the condition (6.32) is fulfilled, the conjugate forms of inequalities (6.24) and
(6.25) become respectively

’lea,,/o K(x,n)f(x)dx:/o F(x) (};K(x,n)an> dx

1 (6.33)
: 1
% Fﬁ* +1 = pm—p)- m TS q
< g | [ @y [2 ]
and
oo A p ll)
lzn(pl)(lquz) (/ K(x,n)f(x)dx> ]
“ 0 (6.34)

I'p—m *© P
<L*.7(I@(B+l+)1) [ [ (.@ff(x))pdx] :

where § = —gA;. In the same setting, inequalities (6.28) and (6.29) read respectively

’;anfo K(x,n)f(x)dx:/o f(x) (,,2'1 K(x,n)an> dx

L (6.35)
q

*M wx (m=B)=1 (gym ¢y x]l) mn*l A2
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and

li p(P—D(1=pgAz) (/w K(x,n)f(x)dx> ”] !

n=1 70 1 (6.36)
where f = —qA;.

Remark 6.4 Let K(x,y) = (x+y)™, s >0, and A; = 2%, Ay = T2 In this case the
constant L* appearing in inequalities (6.33), (6.34), (6.35), and (6.36) becomes L* = k; (1 —
£) =B(% é) Then, utilizing the relationship between the Beta and the Gamma function,

q P’
- T(3—m)I($
(rﬁ( ﬁz;r)l) G FTS)) ("), that is, the relation (6.33) becomes the inequality
(6.2) from the beginning of this chapter, with a weaker condition pm < s. Thus, the dual

— r(s
form of (6.2) includes the constant which reduces to L* - r(rf ﬂfiﬂ) = s r(s)r(n(qi)l—i Ik
P P

r
we have L* -

after applying the Euler reflection formula.

Now, our aim is to show that the constants appearing in (6.33), (6.34), (6.35), and
(6.36) are the best possible. The corresponding proofs are the substance of the following
two theorems.

Theorem 6.5 Let p,q > 1 be conjugate parameters and K : Ri — R be a non-negative
measurable homogeneous function of degree —s,s > 0. Further, let Ay and A, be real
parameters fulfilling condition (6.32) and B = —gA; € (m—1,s— 1), s > m, where mis a
fixed non-negative integer. If the function K(x,y)y P42 is decreasing on R for any fixed

x € Ry, then the constant L* - % is the best possible in (6.33) and (6.34).

Proof. In order to prove that the inequality (6.33) includes the best constant on its right-

hand side, suppose that there exists a positive constant C;, smaller than L* - %, such

that the relation

’;an ./0 K(x,n)f(x)dxz/o fx) (;;1 K(x,n)an> dx

A (6.37)

q

<a| [Tt (@) e

2 n*1+quzaZ

n=1

holds for any non-negative function f € A”! and a non-negative sequence a = (a,,)neN,
provided that the integral and series on its right-hand side converge.

Now, let L and R respectively denote the left-hand side and the right-hand side of (6.37)
accompanied with

_ _F(l—l—ﬁ—%—m). b
R hrary

PA2*§
b)




6.2 ASSOCIATED HALF-DISCRETE FORMS 151

where € > 0 is a sufficiently small number. Here, ) stands for a characteristic func-

tion of the corresponding set. Since the m-th derivative of the function s equal
r(1+p-=%¢ £
to Mxﬁ “» 7™ it follows that
F(l+ﬁ7§7m>
PLF) =07 1)),

Thus, the left-hand side of (6.37) may be bounded from above as follows:

e Ve T8

R=C {/ xlgdx} Zn 1-¢

1 —
n=l (6.38)

On the other hand, utilizing the Fubini theorem and the suitable change of variables, it
follows that

- / b-5 <2Kxn —pAr- q)dx
><p(«€)/1 XM (/1 K(x,y)y”Aszdy) dx

:<p(g)/ x*‘f*'/1 K(Lo)t " G drdx
1 Iy
1 £
(p(gg / K(L,0) P2 Gdr+ (e )/ x*“"*l/1 K(1,0) P ddrdx
1
_ ) / K1) P adr + (e /Klt P qﬁ x € L dxdt
1

€ 1
_ 9 (/ K(l,t)t’pAz’édtJr/ K(l,t)t”Aﬁf)dt),
1 JO

&

(6.39)

since the function K (x,y)y 742 is decreasing on R for any fixed x € R, . Here, ¢ stands
r<1+ﬂ, % 7m>

r(1+ﬁ—f—)) ’
Now, relations (6.37), (6.38), and (6.39) entail the inequality

for the function ¢(€) =

S

</ K(1,0) P4~ th+/K1t pA2+1’dt)<C1(£+1)

Therefore, by Fatou lemma, as ¢ — 0, it follows that L* - DB —m+1) < Cy, which is in

(B+1)
contrast to our assumption. Hence, L* - % is the best constant in (6.33).
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It remains to show that L* - % is the best constant in (6.34). Similarly to above

discussion, suppose that there exists a positive constant c; smaller than L* - % such

that

(6.40)

—l4pgAy

-y {n”cf’” /O T K(x,n) f(x)dx] )

1 1
S p(P—1)(1=pgAz) </wK(x,n)f(x)dx) p] 1 li n1+qu2aZ‘| !
) 0

n=1

IA
=
Il

1 1
oo D g q
< ¢y [/ xP(m=P)-1 (@ff(x))pdx] ' [2 n1+”"A2a4 ,
0

n=1

which results that L* - % is not the best possible constant in (6.33). With this con-
tradiction, the proof is completed. O

Theorem 6.6 Ler p,q > 1 be conjugate parameters and K : Ri — R be a non-negative
measurable homogeneous function of degree —s, 0 < s < 1. Further, let A| and A, be
real parameters fulfilling condition (6.32) and B = —qgA, € (—1,—1). If the function

K (x,y)y~PA2 is decreasing on R for any fixed x € R, then L* - I‘(I;([;@n) is the best con-

stant in (6.35) and (6.36).

Proof.  We follow the lines of the proof of Theorem 6.5, that is, we assume that the
inequality

=3

}Z%a/o K(x,n)f(x)dx = /0 f(x) ( IK(x,n)an> dx

(6.41)

Q=

<G [ /0 " ypm=B)=1 ( ;"f(x))"dx] ’

2 n- 1+qu2a:/l‘|

n=1

holds with a positive constant C, smaller than L* - F(rf(/;@n) . Now, let L and R respectively
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denote the left-hand side and the right-hand side of inequality (6.41) accompanied with

B r (— B+ E) . ¢
F) = —A——L2PF () and @ =n P
)
P
where € > 0 is a sufficiently small number. Then, taking into account (6.39), we have
~ * o0 £ 1 €
L> (pT(g) (/ K(l,t)prr?dt—l—/ K(l,t)tpA2+17dt) ; (6.42)
1 Jo
(o)
where ¢*(g) = ~—24.
¢ ( ) F(nzfﬁJr%)

_E
On the other hand, since the m-th derivative of the function P s equal to

r'(m—B+5 3 = £
(_1)'"75("1 ﬁﬁ E”)) xP=57™ it follows that PTf(x) = Kb * X(1,00)(%), and so

1
~ 1)4
R<Cz(887+>q_

Now, comparing (6.41), (6.42), and (6.43), it follows that

w*(s)(/‘ K(1,0) "%~ th+/ (1,0)t ”Aﬁpdt) <Cy(e+1)7,
J1

(6.43)

QI»—

and consequently, L* - % < G, after letting € — 0. This means that the constant

L*- (F(B@n) is the best possible in (6.35).

To conclude the proof, we suppose that, contrary to our claim, there exists a constant
O0<cr <L T ([;3) 3 such that the inequality

5 o ([ stmoar) | <] [om ot amriara

holds for all non-negative functions f € A’!, as in the statement of theorem. Finally, em-
ploying the Holder inequality, we obtain

[n% /0m K(x,n)f(x)dx] . [n%an]

(g fovom)] 5]
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which is impossible since L* - r(rfﬁflg is the best constant in (6.35). With this contradic-

tion, the proof is completed. |

6.3 Multidimensional Cases

Now we give the multidimensional extension of inequalities (6.3) and (6.4) in the case of
non-conjugate parameters.

Theorem 6.7 Suppose pi, pi, qi, i =1,2,...,n, and A are as in (1.35), and A;j, i,j =
1,2,....n, are real parameters satisfying ¥ Aij = 0. Further, let oy = ¥_| A;j, and
let s > O be real parameter such that ‘q” +A—o; >m;, m; € NU{0}, i =1,2,.

IfK: R" — R is a non-negative measurable homogeneous function of degree —s, and
ﬁEA i—1,2, .,n, then

n n
oo KO fie)ax < o q AT "5 aip, o (6
+ i=1 i=1
and
‘ - o 1/p}
/ )Cn(li)tp”) (n7]75>7l7nan / n—1 K/l (X) H ﬁ(xl')d,\nx d'x"
: R+ R+ i=1
n—
<G (p.q.A H [l et g (6.45)
l
where

n I“(S;—Z_"Jr).fa,-fm,-)

S(p,q,A Hkl/"’ (@iA :
1:1 F(s;—i" +)L—oc,~)
l/q n—1 F(‘;i"—f—)t—oci—mi)
Cn 1 p q7 Hk QI i ll_I]: I‘(ﬂ+l 7ai) )
qi

Ai=(Ai1, A, .. Agy), x\" IO g e PR ), and ki(qiAg) <o, i=1,2,...,n

Proof. First suppose that m; € N, i =1,2,...,n. In order to prove (6.44) we will rewrite
the right-hand side of inequality (1.41) in a form that is more suitable for the application
of the Hardy inequality. Namely, since

A (9£)W) = [ £ = )~ £0) = 1),
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we have that
/i 18 gt
Hki (CIiAi)HHxi fi”m
i=1 i=1

=TTx (@A) T % et (D ) (6.46)
i=1 i=1

Now, due to the weighted Hardy inequality (1.65), it follows that
1) gt 1 ) gt
IS (D i)y < e T 2 il
T +A— o;—1
i=1,2,...,n. Moreover, applying the Hardy inequality to the right-hand side of the above
inequality m; — 1 times, yields relation

" o (D )

1 ) it )
< _— ”xl(n 1—s)/qi+0i+m; @Tflllpl (6.47)
(f;—_" Ty 1)—
. . _ m (5 a-o) . .
Finally, taking into account that (u +A— ozi) =——12 ~ _ theinequality (6.44)
qi F(%+)Lfoc,-fm,-)

holds due to (1.41), (6.46), and (6.47). It remains to consider the case when m; = 0 for some
i€{1,2,...,n}. Inthat case the relation (6.47) reduces to a trivial equality, so (6.44) holds.

In the same way the inequality (6.45) holds by virtue of (1.42) and (6.47). The proof is
completed. O

The Theorem 6.7 may be regarded as an extension of (1.41) and (1.42) since for m; =
my = ... =m, = 0 it reduces to relations (1.41) and (1.42).

The previous theorem holds when the corresponding parameters fulfill the set of con-
ditions S;—i”—i—)t —o;>mp,i=12,...,n If % +A—0;<1,i=1,2,...,n, we can also
derive a pair of inequalities which are in some way dual to inequalities (6.44) and (6.45).
Namely, this result relies on the dual Hardy inequality (1.66).

Theorem 6.8 Suppose p;, pl, qi, i =1,2,...,n, and A are as in (1.35), and let A;j, i, j =
1,2,...,n, be real parameters satisfying Y ; A;; = 0. Further, let o; = 2?:1141'/', and let
s > 0 be real parameter such that S;J+A —op<1,i=12,....n. fK:R| —Risa

non-negative measurable homogeneous function of degree —s and f; € A’}, m; € NU{0},
i=1,2,...,n,then

n n
/R,l K* () [ fil)dx < ES(p.q, A) [ " =Vt g ), (6.48)
+ i=1 i=1
and

1/py

. n—1 Ph
/ x, (L7 APR) (1= 1=8) =i / - K* (x) Hﬁ(xi)cfnx dxy
: R+ R+ i=1
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E_i(p,q,A an" Lot g g (6.49)

where

F(q, —A+o;+ )
i= 1I‘< ).+Oc,+m,+1>

p q, Hkl/flt

7Y—A+Oti+1>

r("—
n 1 p q,A Hk]/ql CIt i H &

i= 11"(" § )L—I—Oti-i-l”l’t,'-i-1>7

Ai = (AilaAi27 e 7Ain), x§n7]7S)/qi+ai+mi@f:iﬁ € LPi(R+), and kl(qlAl) < bt l = 1727 s

Proof. The proof is similar to the proof of the previous theorem, except that we use the
dual Hardy inequality (1.66) this time. In this regard, the right-hand side of (1.41) can be
rewritten as

1 1 i L n—1—s i i

[Tk (@A) T " Al

—Hk”"’ (giA HHx” G (D ), (6.50)
since

AN D)) = [ 7= f),

Now, by applying the dual Hardy inequality to the expressions on the right-hand side of
(6.50) m; times (when m; € N), it follows that

= LA (D )

1 (6.51)

. Hx(nflfs)/flﬂraﬂrmi g,

< Il
) i pPi»
(%2 —Atair1)

. . . mi F(%%Jmﬁmﬁl) ) )

i =1,2,...,n. Further, since (u —A 4o+ 1) = —~—7—— ~ the inequality
qi P —A+ai+]

(6.48) holds due to (1.41), (6.50), and (6.51). In the same way, inequality (6.49) holds by

virtue of (1.42) and (6.51). The trivial case when m; = 0 for some i € {1,2,...,n} is treated

in the same way as in Theorem 6.7. O

It should be noticed here that if m| =my = ... =m, = 0, inequalities (6.48) and (6.49)
reduce to (1.41) and (1.42) respectively.

Our next step is to determine conditions under which the constants C3(p,q,A),
C_,(p,q,A), E;(p,q,A), and E;_,(p,q,A) appearing in Theorems 6.7 and 6.8 are the
best possible. This happens in the case of conjugate parameters.
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6.3.1 Inequalities with Conjugate Parameters.
The Best Possible Constants

In order to obtain the best possible constants in inequalities (6.44), (6.45), (6.48), and
(6.49), in this subsection we deal with their conjugate forms. Namely, if p; > 1, i =

1,2,...,n, is the set of conjugate parameters, then inequalities (6.44) and (6.45) become
respectively
n s & (n—1-s)/pi+oi+m
o —1=s)/pitoitm; om;
S KOO Ae)ax <Thp. A "y, 6.52)
+ i=1 i=1
and
/ 1/p
/ , - A\ /Pn
/ O / K& [ A)dx | d,
R+ R+ i=1
n—1
<G A) [ I e f (6.53)
i=1
where
. n I° ( —m; + 1)
S pa Hkl/pl Pt il )
i:l r — o+ )

nflr "—oci—mi—i-l)

':l (S "706,’4‘1)

In the same way, the conjugate forms of inequalities (6.48) and (6.49) read

1/pi
Co lpv Hk/p pz

Jo KOO TLs0ax < Exo A T g (69
R+ i=1
and
1—5)—p, (= P " o
~P)(n=1=5)=Pi0n K(x (xi)d"x | dx
Joo " Jpr KT :
n—1
<E,(p.A) [T " st g, (6.55)

i=1
with the constants
TS Oti)

r(
Hkl/pl Pz i H !

i= 11—‘(%4—0{[—1—1’}’”)’
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E_ Hkl/pl (piA; H F("—f“'—i—ai)

i= 1I‘(—+a,+m>.

Now, our goal is to determine the conditions under which the inequalities (6.52), (6.53),
(6.54), and (6.55) include the best possible constants on their right-hand sides. If the set of
conditions (5.95) is fulfilled, then, with abbreviations as in Subsection 5.3.1, inequalities
(6.52) and (6.53) become respectively

" neoomi—t oA
Jor KOO TTAG)dx < LA [T 1" 7 Al (6.56)
+ i=1 i
and
o 1/p,
/R+ xn(pn*])(l‘f’PnAn (/Rn ' H fl -xl X) dxn
—LA
1 (DA Hllx DN il (6.57)
where

LeA) = k@A) P{dm1)

i~ F(‘KiJrl)
o . 1F(/§i—m,~+1)
L, (p,A) = kl(A)il_[lW

In the same regard, the inequalities (6.54) and (6.55) read respectively

— A
o KOO dax < w50 AT 122, (6.58)
+ i=1
and
‘p; 1/[’;1
/R+ 1+P71An (/Rn ' H fl -xl X) dxn
= —Ai
<M _,(p,A HHx 7k i1 P (6.59)

with the corresponding constants

Mi(p.A) = kdl‘)ﬁ%,
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_ n—1 1
L (pA) = k(A ] )

i=1 F A +mz)

Now, we show that the constants L (p, A), L, (p,A), M5(p,A), and M;_, (p,A) ap-
pearing on the right-hand sides of the above inequalities are the best possible.

Theorem 6.9 Ler m; € NU {0}, Av >mi—1,i=1,2,...,n, and let the parameters X,»,
i=2,...,n, fulfill conditions as in (5.93). Then, the constants L}, (p,A ) and L, _,(p A) are
the best posstble in the inequalities (6.56) and (6.57) respectively.

Proof. Suppose that the constant Lfl(p,g) is not the best possible in (6.56). Then, there
exists a positive constant Cy,, smaller than L (p,A), such that the inequality (6.56) is still
valid if we replace L (p,A) by C,. Now, consider the functions

07 0<xl~<1

filx) = I‘(1+A,7p 7m~> At

F(1+A 7—) i »Xi 2 1 ,

i s

where € > 0 is a sufficiently small number. Since the m;-th derivative of the functionx; "

F(1+X,-7£> Xl'fl%fnli )
— P/ _x P it follows that

i 1t
1s equal to r<l+Ar,7 ml) i
e 0, 0<xi <1
PUFi) = it om Q=1
X; ! , Xi > 1
so in this setting the right-hand side of (6.56) reduces to
n mi,L_,Xi L~
CnH I, "2 fillp,
i=1
1
pi
=C, H [/R _@m,fl(xl)) idxl,:| (6.60)
+

e’
On the other hand, the left-hand side of (6.56), can be rewritten as

/’l Hﬁxzdxlﬁr(l+A~_m)
R i=1 (1+Ai_E)

Ai-E
where I = [i; .0 K(x) [T x; " dx. From the inequalities (5.112) and (5.113), we obtain

n F(l—l—gi—&—m[)

/R’i K(X)Hﬁ(xi)dxz (ékl (K—sl/p) —0(1)) 1} r(l+&—i> ;

i=1
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where 1/p = (1/p1,...,1/ps). Moreover, the relation (6.60) implies that

Cy > (/q (Xf 81/p> - 60(1)) f[l Fgl(TiA ri )") :
i - £

Obviously, letting € — 07, it follows that C, > Lfl(p,g), which contradicts with our as-
sumption 0 < C,, < Lfl(p,A) Hence, L} (p,A) is the best possible in (6.56).

It remains to show that L;fl(p,A) is the best possible constant in (6.57). Assume
that there exists a positive constant C,,_1, smaller than L) _, (p,K), such that the inequality

(6.57) holds when L; l(p,A) is replaced by C,_;. Then, utilizing the Holder inequality
and the inequality (6.47), we have

Jpr KO T Lt

i=1
1+PnAn _ 14pnAn
[ § VT o A I8
h +

B /& P

Ph 1/py
/}R+ (Ph— l)(lJanAn (/}R” . Hfl xl X) dxn‘| (6.61)
~ I/Pn
X [/ x;lf”"A"f,{’" (xn)dxn}
. R+

F(A mn+1 mi— )I m:
<Goa—— =[]l " g il
n I_‘(An+1) I]J + JUIp

Finally, taking into account our assumption 0 < C,,_; < L} _, (p,g), we have

(A, —my+1)
(A, +1)

S ~ T(Ay—my+1)

0 < C;171 Ln71<p7A) I‘(Av + 1)
n

=L (p, K)
Therefore, relation (6.61) contradicts with the fact that L (p,K) is the best possible con-

stant in inequality (6.56). Thus, the assumption that L) l(p,A) is not the best possible is
false. ]

Theorem 6.10 Let m; € NU {0}, A;<0,i=1,2,....n, and let the parameters A, i=
2,...,n, fulfill conditions as in (5.93). Then, the constants M, (p,A) and M, _,(p,A) are
the best possible in (6.58) and (6.59) respectively.

Proof. We follow the same procedure as in the proof of Theorem 6.9, that is, we suppose
that the inequality

L L mi*% n
[ KO TTAax <G T " 22 il (6.62)
VIR i=1 i=1
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holds with a positive constant C;;, smaller than M, (p,g). Now, we consider this inequality

O0<x<1

with the functions
Jd=1,...,n,

0,
fit)=q CAeg) Aeg
F(*A,‘+m,’+ 1%)

where ¢ is sufficiently small number. Then, similarly as in the proof of Theorem 6.9, we

have the following lower bound for the left-hand side of (6.62)

fee KT (e
r(-ai+ 1)

z(ékl(xsl/p) )1‘[ e i s

(6.63)

~

since the m;-th derivative of the function x P equal to

On the other hand,
(T ) A
Toeg)
0, O0<x <1
Jd=1,...

—m;
, it follows that

m; px 2
PV (xi) = Aj— = —m;
x, x>

1

so the right-hand side of (6.62) reduces to
C*
2. (6.64)

% & mifpl m; 74
G H [l x; 9 i llp =
i=1

Consequently, comparing (6.62), (6.63), and (6.64), it follows that
n I (—Xi + &)

=z (kl (K—gl/D) —80(1)> ,1;! F(—gi—i—mi—i— %>

Therefore, as € — 0, it follows that M, (p,g) < C;;, which contradicts with our assumption

This means that the constant M;i(p,;) is the best possible in (6.58)
To conclude the proof, we suppose that, contrary to our claim, there exists a constant

% _1(p,A) such that the inequality
/ 1/p),

P
/ )Cn(p;z*])(ler’lA" ([l‘%n 1 H fl -xl X) dxil
+

0<C,_ | <M

m,

||Pl

N n—1 mi,pii
S Cnfl H ||xi
i=1
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holds. Then, utilizing the Holder inequality and the inequality (6.51), we have

/ n Hﬁ xl
1+pnAn n—1 _ 1+pnAn
— / pn / . K(X) Hfl(-xl)dmx . [xn pn fn (xn)]dxn
R+ R i=1
_ n—1 .7751 1/.”;1
/ Xn (Pn=1)(1+putn) / n—1 K(X) H fl (xi)dmx dxn
Ry R i=1
" ~ 1/[7,,
X |:/ x; 1 7PnAnfr€7n (xn)dxn:|
R+

1
mi—
S C* top; m,f
n— 1F( An+ n il:| ” l||Pz

<

Now, according to our assumption, it follows that

F(A'*Avn) <M

~ T(-A,)
F(*An+mn) nfl(p’A)

el D(—A, +my)

=M, (p,A),

which means that Mfl(p,g) is not the best constant in (6.58). This is a clear contradiction
of our assumption and the proof is completed. O

6.3.2 Applications and Concluding Remarks

In order to conclude this chapter, we consider the inequalities (6.56), (6.57), (6.58), and
(6.59) in some particular settings. The resulting inequalities will include the best possible
constants on their right-hand sides.

Taking the standard examples of homogeneous kernels from Subsection 5.3.2, we get
the following particular inequalities. With the kernel K; (x) =

(Z” [ ,s > 0, inequalities
(6.56), (6.57), (6.58), and (6.59) reduce respectively to -
1 miiéi‘;{i m;
/R” Z" ) Hﬁ x;)d HF mi+1)l—{|\xi DY fill pi»
i=1 =

P 1/,

/ (h=1)(1+padin) / ! ﬁ (x;)d" nd
Xp b e s i(xi)d"x X
R Ry S "

T(1+A,) "~ T 7 Mg
gﬁnm_mmmxi G il
i=1

i=1

12 B(1+A;, g
O O T RS [
R (X1 xi) F )im1 I( —A; + m;)

i=1 i=1
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and

1/
nel p;l / Pn
[7,, 1+PnAn / f d
Xn i xt I"x Xn
/IR+ Rn 1 Zn 1 -xl H

i=1
(14 A,) "= B(1+ A, —A;)

n— mi— 1
< 1 pi m,
<t N (AR

i=1 F(_Ai +m;) i

Another interesting example of a homogeneous kernel with degree —s, is the function

1
KX =——— 5>
2(%) max{x},...,x5} N

Then the inequalities (6.56), (6.57), (6.58), and (6.59) reduce to

foe iy Tltwan <o A D P gy
R max{x‘i, } i=1 A +2 i=1

/ l/p;1

n— 1 p}l
1) (1+pan
/R+ (Ph=1)(1+pAn) (/R” 1 max{xl gl Hfl x;) x) dxy

n—1 F( —m;+ 1

s -
— 1 HII "D il

B (1 +An) i=1 F(A +2 i=1
‘ - F(igl) mi— 1} m
< 3 Xi — i ,
/R” max{xl’ }Hfl i H (AT (—As ) ll:[” D fill i
and
p; 1/[’;1
Ph— l)(]+Pl1An - d
/R+x (/R" ! max{xﬁ7 x5} Hf’ xi)d ) *n
n IX i ANi .
gl ) HH D fils

(1+A =1 ( 1+A F( —A; +m;) =1
where the constants appearing on their right-hand sides are the best possible.

Remark 6.5 The Hilbert-type inequalities involving differential operators in this chapter,
as well as their consequences, are taken from [3], [4], [7] and [9].






Chapter

Hilbert-type Inequalities for
Hilbert Space Operators

Discrete version of the Hilbert inequality (1.1) asserts that

sm(p) [2“ 1 l Lib?rv (7.1)

where (a;),.n € 17, (bj)jeN € 11, and p, g are conjugate exponents, p > 1. We know that

HMS

PPy

the constant 77/sin (%) is the best possible in the sense that it can not be replaced with a
smaller constant so that (7.1) still holds for all (a;),.y € I” and (b;) .y € 1.

In the recent time a considerable attention is dedicated to inequalities for bounded self-
adjoint operators on a Hilbert space (see e.g. [44]). Let 2 be a Hilbert space and let
B,(2) be the semi-space of all bounded linear self-adjoint operators on 7. Further, let
BT () and BT (), respectively, denote the sets of all positive and positive invertible
operators in B,(.77’). The weighted operator geometric mean ,, for v € [0,1] and A,B €
BT+ () is defined by

L, 1 1y 1
AﬁvB:AZ(A 2BA 2) A2, (7.2)
Clearly, if A and B commute then A ff, B = A=VBY, that is, formula (7.2) reduces to the

classical definition of the geometric mean.
Mond et al. [76], derived an operator version of the Holder inequality

Y APty Bl < ZB?] : (7.3)
i=1 i

n

ZA

i=1

lp ﬁl/q

165
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where p, g are conjugate exponents, A;, B; € BTt (), i,j=1,2,...,n, and the sign of in-
equality is taken with respect to an operator order. Obviously, in commuting case, relation
(7.3) reduces to the classical Holder inequality.

The geometric mean is the special case of a more general concept, these are operator
means. The theory of operator means for positive linear operators on a Hilbert space,
in connection with Lowner’s theory for operator monotone functions, was established by
Kubo and Ando [67].

A binary operation (A,B) € BT () x BT (H) — AcB € B+ () in the cone of
positive operators on a Hilbert space .7 is called a connection if the following conditions
are satisfied:

(C1) monotonicity: A <Cand B <D imply AcB <CoD,

(C2) upper continuity: A, | Aand B, | Bimply A,6B, | AcB,

(C3) transformer inequality: T*(AoB)T < (T*AT)o(T*BT) forevery T.
An operator mean is a connection with normalized condition

(C4) normalized condition: 1,010 =1 ,p.

In condition (C2) symbol | denotes the convergence in the strong operator topology, while
1, in (C4) denotes the identity operator on a Hilbert space.

Connections posses numerous significant properties, one of them is the so called joint
concavity. More precisely, if Aj,A,B,By € BT () and 0 < A < 1, then

(AA1+(1—=A)By) o (AAs+ (1 —A)By) > A(A10A2) + (1 —A)(B10B,).

The Holder operator inequality (7.3), derived in [76], is established with a help of the above
joint concavity property (see also paper [62]). In fact, inequality (7.3) holds for every
connection, but in our further discussion we shall also use some additional characteristics
of geometric mean.

The main tool in obtaining the Hilbert-type inequalities is the Holder inequality. Hence,
the main objective of this chapter is to establish the Hilbert inequality for Hilbert space
operators, with the help of the Holder operator inequality (7.3).

7.1 The Hilbert Operator Inequality

By virtue of the Holder operator inequality, in this section we establish the operator form
of the Hilbert inequality for Hilbert space operators. Our results will be given in a more
general form. More precisely, we estimate double sum 2 ¥ K(i,j) Af’ﬁl/qB‘; involv-
ing operators in BT (#) and a non-negative measurable kernel K that satisfies some
additional properties.
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Theorem 7.1 Let1/p+1/q=1,p>1,andletmn € N. IfK : Ry xRy — R is a non-
negative measurable function strictly decreasing in each argument, and @,y : Ry — R are
non-negative measurable strictly increasing functions, then the inequality

n

> Y K(i, j)A 4B

i=1j=1
S ([ won || 3, ([ v

holds for all positive invertible operators Ay, ...,Am,By,...,B, € BT ().

(7.4)

Proof. Considering definition (7.2) of geometric mean, we immediately obtain the follow-
ing property
11
(sX)81/q(tY) =srtaXty Y, s5,0>0, (71.5)

where X,Y € B+ (7).
Therefore the left-hand side of inequality (7.4) can be rewritten in the form

S\ 3K Gl B = 33 KG "’“.')Afm/qB‘f
i=1j= i=1j= (p(l) !
_ay > ] {K(i,wm q]
-2 21{ e Ty )

that is, the Holder operator inequality (7.3) yields inequality

J
<[$ 38y, [§ 5 U,

i=1j=1 II/”(J i=1j
— < S K(Z’J) i ! c - K(la.]) . q
R lzl Z w”(ﬂ) " )Afl e |le (21 94(i) ) Vi )Bf] -0

Since the kernel K : Ry x Ry — R is strictly decreasing in each argument, and ¢,y :
R — R are increasing, the functions K (i,7)y 7 ( Yand K(z,7)o 9(t),i=1,2,...,m, j =
1,2,...,narestrictly decreasingon R .. Hence, ¥;_; K(i, /)y~ 7 (j) and T K(i, )~ 9(i)
are the lower Darboux sums for the corresponding integrals, that is,

nKG ) K WKGG) K@)
j;wo) S/o 0™ Lo S/o or()

i=1,2,...,m, j=1,2,...,n. Therefore, due to monotonicity property (C1) of geometric
mean we see that the right-hand side of inequality (7.6) is not greater than

5080 o] [$, ([ 2) ]
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and the proof is completed. ]

Clearly, inequality (7.4) provides a unified treatment to the Hilbert-type inequalities for
operators in BT (7). Recall that the unified approach to Hilbert-type inequalities in the
real case was developed in the paper [66].

In the sequel we are concerned with homogeneous kernels K with negative degree of
homogeneity, and the power weight functions ¢ and y. Now, in order to present our result
referring to homogeneous kernels, we define the integral

r

k(ayri,r) = / K(1,0)t=%dt, 0<r| <ry<eo, (7.7)
Jr

where the arguments a, r; and r, are assumed to be such that the integral converge (see

also Section 2.1). In addition, if | = 0 and r, = oo, then the integral k(a;0, ) will simply
be denoted by k(a), k(a) = [; K(1,t)r~dr.

Theorem 7.2 Let1/p+1/q=1,p>1,a,f >0, andletmneN. IfK : Ry xR, —Ris
a non-negative measurable homogeneous function of degree —s, s > 0, strictly decreasing
in each argument, then inequality

2 K(i Ti1/61

1j=1

Ms

i

ik(ﬁp'o Q')l-lfsjt(afﬁ)pAlp
b ) 1
i=1

ﬁ1/q [2 k(2—ag—s; ni;,oo)j1*~‘+(ﬁ*a)43? (7.8)
=1

holds for all positive invertible operators Ay, ..., Ap,By,...,B, € BT ().

Proof.  The proof follows immediately from Theorem 7.1, i.e. from inequality (7.4)
equipped with homogeneous kernel K of degree —s, s > 0, and the power weight functions
@) =1% y(t) =1P, o, > 0. Namely, using the homogeneity of kernel K and regarding
definition (7.7) we have

" K1) — jl=s—=Bp .0 n .
/O,ﬁ—pdf*l k(Bp:0,%), i=1.2,....n,

and

mK(ta]) -1 o .
/0 o dt =j 7 7%k(2—aq— ,m,oo), j=12,....m

which yields (7.8). O

Remark 7.1 Suppose K : R. x R. — R is homogeneous function of degree —s, s > 0
and o, 8 > 0 are such that k(p) < e and k(2 — ag — s5) < e=. Then, taking into account
definition (7.7) and definition of function k(-), we have

k(Bp:0,5) <k(Bp), and k(2—og—s3;,%) <k(2—ag—s).
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Therefore, taking into account monotonicity property (C1) for connections and property
(7.5), we conclude that the right-hand side of inequality (7.8) is not greater than

[k(ﬁp) i ilfH(a*ﬁ)pAlP

i=1

ﬁl/q[ 2 Olq*S 2]1 s+(B qu‘|

j=1

— kP (Bp)ki (2 — ag —s)

m

1 —s+(a—p pAP‘| ﬁl/q [’2111 qu]

i=1 j=1

In other words, inequality (7.8) implies inequality

n
ZKIJA ﬁl/q f
1j=1

i aa-o[§e ] [3,

i=1

WM§

M:

zﬂ—

1—s+(f— q
] ( >‘1le, (7.9)

j
provided that k(Bp) < eeand k(2 — ag —s) <

As in the real case, it is possible to extend relation (7.9) for the infinite series, under
certain assumptions on convergence. The following infinite variant of (7.9) is established
with respect to the strong operator topology. Recall, the sequence (A;), 1y in B,(H)
converges strongly to A € B;,() if A,x converges to Ax for all x € 7#. Moreover, a
double sum ¥° | 7| A;j, where A;; € B (), means the limit of the sequence

2 Aij, ke N,
ijeN
i+ j<k+1

provided that (Sy) N converges with respect to strong operator topology.

Theorem 7.3 Let 1/p+1/g=1, p> 1, let K : Ry x Ry — R be a non-negative mea-
surable homogeneous function of degree —s, s > 0, strictly decreasing in each argument,
and let o, B > 0 be such that k(Bp) < oo and k(2 — oug —s) < eo. Further, suppose A;,Bj €
BTH(A), i,j €N, are such that the series Y-, jlos+(e ﬁ)”Ap and 37 - sH(B-a )‘IB;’»
converge strongly. Then, series ¥;” X7 K (i, ])A‘:J f1 /qle also converges strongly, yield-
ing the inequality

Mg
M

K(i, j)A?H1 /4B
1

gkll’(ﬁp)k%(Z*OCQ*S) lz 1—s+(o—p pAn] t1/q lzjl —s+(B qB‘/] (7.10)
i=1

Proof. Since A;,B; € BT (), i,j € N, the strong operator convergence implies that
Y, it eBrAl € B () and 37, TP MB‘; € BT (), so that the geo-
metric mean on the right-hand side of 1nequa11ty (7.10) is well-defined.



170 7 HILBERT-TYPE INEQUALITIES FOR HILBERT SPACE OPERATORS

Moreover, due to positivity of operators A;, Bj, i, j € N, the following two inequalities
are obviously valid for each m,n € N:

M=

-17s+(afﬂ)pAlp < 2 ilfer(afﬁ)pAl['?
=1

jlfs+(/37(x)qB;{ < 2j175+(ﬁ7a)q331».
=1

M=

~.
I

Further, taking into account the monotonicity principle (C1) for operator geometric mean
and the above two inequalities, relation (7.9) yields inequality

NgE
M=

1

Lj

< k» (Bp)ki(2— g — ) lz% —sHa- ﬁ”A”] B1/q [2 jlost (B MB?], (7.11)
j=1

i=1

which hold for every m,n € N.
Now, consider the monotone increasing sequence of positive operators

Y, K(i,)Alt,B], keN.

ijeN

i+j<k+1
Since the right-hand side of inequality (7.11) is a bounded operator, there exist a constant
d > 0 such that [S;| < d for all k € N. This means that the sequence (S;),.y is norm
bounded, which yields its convergence with respect to strong operator topology (see e.g.
[83]). Hence, regarding the limit of the sequence (Sy) el as the sum of the corresponding
double series, we have

HMg

2 (i, ))AY ﬁl/qB —llmSk,

so (7.11) yields inequality (7.10) and the proof is completed. O

Taking into account considerations as in the proof of Theorem 7.3, the inequality (7.4)
is also meaningful for infinite series. More precisely, assuming the convergence of the
integrals and strong convergence of the series on the right-hand side of (7.4), the inequality
(7.4) also holds for m = oo and n = oo,

A typical example of a homogeneous kernel K : Ry x Ry — R fulfilling conditions as
in Theorem 7.3 is K(x,y) = (x+y) %, s > 0. In that case the constant on the right-hand
side of inequality (7.10) is expressed in terms of the Beta function.

Corollary 7.1 Let p and q be conjugate exponents with p > 1, let s > 0, and let o, 3 be
real parameters such that aq,Pp € (max {1 —s 0} 1). IfAi,B; € BT (), i,j €N, are
such that the series ¥ i —st(o— ﬁ)pAp and ¥ jlostB- )qB? converge strongly, then
the series



7.2 THE BEST POSSIBLE CONSTANTS 171

also converges strongly, and

oo AP oo
2 2 ﬁl/‘l Citl/gm g <l le s+ (o [JAf7 ﬁl/q 2 jlfst(ﬂfa)qB? , (712)
i=1j=1 l+] j=1

where | = BY/P(s+Bp—1,1—Bp)B4(s+ag—1,1— aq).

Inequality (7.12) and its consequences will be dealt with in the sequel. In such a way
we are going to derive operator form of the Hilbert double series theorem (7.1).

7.2 The Best Possible Constants

In this section our attention will be focused on determining the conditions under which the
constant factor k'/?(Bp)k'/4(2 — g — s) is the best possible in inequality (7.10). Similarly
to previous chapters we consider o and 3 such that

aq+PBp=2-—s, (7.13)

so that inequality (7.10) takes form

HMg

i K(i, j)Alt) /4B < k(Bp) [ZZan 'A”] 1/ lijﬁl’qlBj.}. (7.14)

i=1 j=1
In the sequel, we are going to show that constant k(f3p) is the best possible in inequality
(7.14).

Remark 7.2 Let K be the kernel satisfying conditions as in the statement of Theorem 7.3.
Observe that the homogeneity of degree —s implies the following sequence of identities:

oo 1 oo
k(a) :/ K(—,l) uﬂ*adu:/ K (u, 1) 2du,
0 u 0

while from the strict decrease of the kernel in each argument we obtain that K is strictly
positive on Ry x R. In particular, for @ > 1, monotonicity of K in the second argument
and the fact that K(1,1) > 0 yield

oo 1 1
:/ K(l,u)lf“duZ/ K(l,u)zf“duzl((l,l)/ u ‘du = oo.
0 0 0

Analogous result holds also fora < 1 —s, since

oo 1 1
k(a) = / K (u, D) 2du > / K (u, Dt 2du > K(1, 1)/ w2y = oo,
Jo 0 0
Therefore, the interval (1 —s,1) covers all arguments a for which k(@) may converge. In
order to establish the best possible constant factor in (7.14), the integral k() will assumed
to converge on this interval.
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Theorem 7.4 Let 1/p+1/g=1, p> 1, and let K : Ry Xx R — R be a non-negative
measurable homogeneous function of degree —s, s > 0, strictly decreasing in each argu-
ment such that k(a) < e fora € (1 —s,1). IfK(1,t) is bounded on (0,1) and o, 8 are such
that oq, Bp € (max {1 —s,0},1) and g+ PBp =2 — s, then the constant k(B p) is the best
possible in inequality (7.14).

Proof.  Suppose the constant k(f8p) is not the best possible in inequality (7.14). This
means that there exist a constant k', 0 < k' < k(fp), so that the inequality

HMX

i K(i,j A”ﬁl/qu <K [Zla”" IA”] $1/4 lz jPra- 1Bq] (7.15)

holds for all operators A;,B; € B (), i, j € N, such that the series 37 %4~ 'A? and
Y5, jPre=1BY converge strongly.

Consider the operators Ki = i~®a~¢/P[,, and Bj = j*ﬁl’*‘?/qlff, i,j €N, where 0 <
€ < q— B pgq. In this setting the series on the right-hand side of inequality (7.15) converge
strongly, i.e.

ZiaqulAlE _ 2 jﬁl"l*IE‘jI, = <2i1£> Ly,
i=1 Jj=1 =1

so that the right-hand side of inequality (7.15) becomes k’ (Z?’:l i’l’g) 1,». Moreover,
since Y7 i 717 < 14 [t~ 17%dt = 1+ 1/¢, we have that the right-hand side of inequality
(7.15) is not greater than
k/
[k’ + ;} Ly, (7.16)

of course, with respect to operator order.
On the other hand, since the right-hand side of inequality (7.15) is a bounded operator
for operators A;, B}, i, j € N, as above, the series of operators

K(i, j)Alt /4B

DMs
M

1

Lj

converges strongly, as well. Moreover, since X{’ﬁl/ql?;’. = j~q—¢/pj—Pr-e/ay , i i€ N,
we have

HMX

2 APty 4B [2 > K(i,j)i“qﬁjﬁ”ﬂ Ly
j=1 i=1j=1

—ag—E —Bp—£ . . .
Now, since the function K (x,y)x “/" »ry Br=3 is strictly decreasing in both arguments x
and y, we have

Mg
YT

KA b5 > [ [ g by
J1 1

/ x17¢ (/ K(l,t)tﬁpgdt) dx.
J1 1/x

i 1

Lj
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Further, since K(1,7) is bounded on (0, 1), there exist a constant ¢ > 0 such that K(1,7) <c,
€ (0,1), hence
oo e e x c Bp+i-1
/ K(1,1)t Br th2k(Bp+—>—c/ tPr th:k(ﬁer—)—mig,
1/x q 0 q/ 1-Bp—3
wherefrom we obtain inequality

c

1—ﬁp——> (I—Bp+ )

Mx

1j=1

S 3 K(i )i P ék(ﬁmg) T

Therefore, the left-hand side of inequality (7.15), equipped with the above operators Zi,
Bj,1,j € N, is not less than

ék(ﬁp*‘g) B (1_ﬁp__>c(1_ﬁp+ )

Finally, considering (7.15), (7.16) and (7.17) we conclude that

L. (7.17)

1 € c , K
Ek(ﬁ”E)* (1-p—2) (1-pp+2) =

that is,
€
k(ﬁp—i-a) <K+e0(1), 0<e<q—PBpq.

Now, by letting € — 0 we have k(Bp) < k’, which contradicts with our assumption 0 <
k' < k(Bp). The proof is now completed. a

Considering inequality (7.14) equipped with the kernel K(x,y) = (x+y)~*, s > 0, the
corresponding constant is expressed in terms of the Beta function, i.e. k(Bp) = B(s+ Bp —
1a - ﬁp)

As an example of parameters ¢ and f3 fulfilling condition (7.13), we consider o« = § =
£ where 2 — min{p,q} < s < 2. In this setting, inequality (7.14) yields the following
consequence.

Corollary 7.2 Let 1/p+1/g=1, p > 1, and let 2 — min{p q} <s<2 IfA,Bjc
BIH(), 1,j €N, are such that the series Y= i' AP and py qu converge strongly,

then the series ¥;2 Y7 K(i, j)A] ﬁl/qBj also converges strongly and

M

oo oo AP
lﬁJlr/j) SB(S+§)) 2 st+q— 2) [211 SAIJ‘| 4, 1/ lzjl qu] (7.18)

i=1j=1

is the best possible in inequality (7.18).

s+p— -2
Moreover, constant B (%, H#)
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Remark 7.3 If s = 1 then the constant in inequality (7.18) reduces to the form B(1/¢,1/p)
= 1 /sin ( ) providing the operator version of the Hilbert double series theorem (7.1):

;; ii+jjl sm( ) lZAhl/q Li]Bﬂ'

7.3 An Improvement of the Hilbert Operator
Inequality via the Hermite-Hadamard Inequality

As in the real case, we can also investigate some improvements of the Hilbert operator
inequality. In this section, we are going to derive a general improvement of the Hilbert
operator inequality, based on the Hermite-Hadamard inequality (2.7) (see Section 2.1). In
the following theorem we are going to adjust the Hermite-Hadamard inequality in order to
derive an improvement of Theorem 7.1. Of course, this requires some additional assump-
tions concerning convexity, but as a consequence, we shall obtain a better result than in
Theorem 7.1.

Theorem 7.5 Let1/p+1/qg=1, p>1, andletm,n €N. Supposethat K : Ry xRy — R,
o,y : Ry — R are non-negative measurable functions fulfilling the following conditions:

(i) functions K(i,t)w=P(t), i=1,2,...,m, are convex on interval [%,n + %],
(ii) functions K(t,j)@~4(t), j=1,2,...,n, are convex on interval [%,m—i— %]

Then the inequality

> K (i, A B (7.19)

1j=1
n m+2
S (1 v

mo(o s K(ir)
2 /1 E, dt (»0 Ap ﬁl/q
holds for all positive invertible operators Ay, ..., Ay, By,...,B, € BT ().

Ms

i=

Proof.  We use the same procedure as in proof of Theorem 7.1, except that we use more
accurate estimates for sums ¥7_; K(i, /)y~ 7(j) and X" | K(i, /)¢~ 4(i). Namely, since the
functions K(i,#)y P (¢), i = 1,2,...,m, are convex on interval [%,n + %], application of
Hermite-Hadamard inequality on intervals [ j— %, j+ %} yields the series of inequalities

] ity K(it
o S/ ’ (l7 )dt7 J: 1727"'7n7
wr(j) — -4 wr(@)
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that is,
4 ) mth kit
2 g/ PR o
= boowr()
In the same way we have
m. g m+1 K
3 (l,J)S/ * K ])dt, Jj=1.2,....n,
o) )y e)
so the result follows from (7.6) and monotonicity property (C1) of geometric mean. O

Remark 7.4 Suppose functions K, @,y simultaneously satisfy conditions as in Theo-
rems 7.1 and 7.5, so that both inequalities (7.4) and (7.19) hold. Since the functions
K(i,t)y P(t) and K(t,7) @ 9(¢), i=1,2,...,m, j=1,2,...,n are strictly decreasing we

have
ntl : n m+ m ;
/ ZK(l’t)dtg/ K(i,t 4 and / th] S/ K(I,J)dt7
Cown ™S et : OO

hence, regarding the monotonicity property (C1) of geometric mean, we conclude that the
right-hand side of inequality (7.19) is not greater than (7.4). In other words, inequality
(7.19) is an improvement of (7.4).

Of course, assuming the convergence of integrals and strong convergence of the series
on the right-hand side of (7.19), the inequality (7.19) is also meaningful for m = oo and
n=oo,

Now we turn back to the case of homogeneous kernels and power weight functions. In
such a way we are going to establish improvements of corresponding results from Sections
7.1 and 7.2.

Corollary 7.3 Ler 1/p+1/q=1, p> 1, let K : R x Ry — R be a non-negative mea-
surable homogeneous function of degree —s, s > 0, such that the functions K(1, t)t’ﬁ P and
K(t,1)t=% are convex on Ry, and let o, 3 > 0 be real parameters such that k(Bp) < oo
and k(2 — oug — s) < oo. Then the inequality

Mg
I

K(i, ))Al41/4B] (7.20)
1

Lj

< iil"‘”“’m”k(ﬁp;%, o) AY
i=1

81/ lzl Bk (2 0g-,0,2) BY
J

holds for all A;,B; BTH(), i,j € N, such that the series P jl=stle ﬁ)PAlP and
5 jlostB-a )qB;? converge strongly.
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Proof. Since k(Bp; %,°) < k(Bp) and k(2 — g — 5:0,2j) < k(2 — ciq — ), we have that
the series on the right-hand side of inequality (7.20) converge strongly. Now, due to the
homogeneity of kernel K we have

/ K(i,)t Prar = i~ Fr(Bp; £ o),

2

[, Ky = k(2 ~ 0 - 5:0,2))
2

that is, result follows from (7.19). O

In the previous two sections we have considered the homogeneous kernel K(x,y) =
(x+y)~*, s > 0. This kernel is also suitable for application of Corollary 7.3. Namely,
considering the second derivative of function f(¢) = (1 +17) %t “, where a > 0, we have

(s+a)(s+a+D)t*+2a(s+a+1)t+ala+1)
19T 2(1 1)512 ’

f() =

that is, f”(r) > 0 fort € R since @ > 0 and s > 0. Thus, due to the symmetry, the above
kernel K (x,y) = (x+y)~* fulfills convexity conditions as in Corollary 7.3. Moreover, when
applying Corollary 7.3 to this kernel, the weight functions will be expressed in terms of
the incomplete Beta function (see Section 2.1)

.
Br(a,b):/o N1 =0 tde, a,b>0.

Recall that for » = 1 the incomplete Beta function coincides with the usual Beta function
and obviously, B, (a,b) < B(a,b), a,b>0,0<r< 1.

Corollary 7.4 Let p and q be conjugate exponents with p > 1, let s > 0, and let o, 3 be
real parameters such that aq,Pp € (max {1 —s,0},1). Then the inequality

oo oo Alpﬁl/qB;l
e )y
< 1—s+(a—P)p ) L p
< |J§:11 Bz,'zﬁ(wﬁp 1,1 ﬁp)Al
< d—s+(B—
ﬁl/q Lz:l] s+(B a)qB;L(S+aql,laq)B?] (7.21)

holds for all A;,B; € B¥ (), i,j € N, such that the series ¥, i' @ PIPAY and
27:1 jlostB ’O‘)qB‘; converge strongly.

We conclude this chapter with a consequence of the previous corollary, regarding the

same parameters & and 3 as in Corollary 7.2. Namely, considering ot = f§ = %, where
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2 —min{p,q} < s < 2, Corollaries 7.2 and 7.4 yield the following interpolating series of
inequalities:

< 1—s [ s+tp=2 s+q—2 )4 < 1—s s+ q=2 s+p=2\pq

< [21’ Bzﬁi.( P a )Af]ﬁl/" LZIJ Bz%( 7 )Bf']

+p—2 s+q—2 \ - < -

<a(=5253) [0, |3 ).
i=1 j=1

In other words, inequality (7.21) refines previously deduced inequality (7.18).

Remark 7.5 The method and the results presented in this chapter were developed in paper
[56].






Chapter

A Relation Between
Hilbert-type and Carlson-type
Inequalities

First, let us recall some Carlson-type inequalities. In 1935, Carlson [30], proved the fol-
lowing curious inequality: If a;,as, ... are real numbers, not all zero, then

w \2 o \?/w 3
B @) w

where 7 is the best possible constant. In 1937, Gabriel [45], proved a more general version
of the Carlson inequality. In his work, Gabriel used a method similar to Carlson’s original
proof. However, he mentioned that Hardy’s method could also be used. If p > 1, a, > 0
and 0 < 6 < p—1, then

(50) < i (o(5am))

1 1
oo 7/ P
x> nP=1=0gp D nP 100 | (8.2)
n=1 n=1
2

=1 . .
and the constant o) T (B (ﬁ, 2,7%2)) is the best possible. For more details about

the Carlson-type inequalities the reader is referred to [70].

179
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In 2012, Azar [21], gave a new discrete inequality with conjugate parameters p and g,
p > 1, which is a relation between the Hilbert inequality and the Carlson inequality, as

2 1 1
o — o p [ o 7
2 Om.n <C 2 I’I’lilJr'mlAlaﬁ1 2 n*1+P‘lA2bill
m=1n=1 n=1 n=1
) PA2 ¢ no2 qA|
m,n m,n
X{ZZ an} {ZZ b} .83

m=1n—=1 4mPn

where a,,,b,, 0, > 0, Ay € (0, é) JAp € (0, %) ,PA2 +qA| = 1, and the constant C=
B(pAy.1-pAy)

(PA2)P*2 (gA1) ™1

The main objective of this chapter is to generalize the inequality (8.3) related to the
inequality (8.2) with the best constant factor. First we derive general discrete and integral
forms of inequality (8.3) with conjugate exponents in two-dimensional, and later on, in
multidimensional integral case. It should be noticed here that we assume the convergence
of series and integrals appearing in this chapter.

is the best possible.

8.1 Generalizations on &%

Our result will be based on general Hilbert-type inequalities (1.33) and (1.14). We consider
here the set of functions H(r) (see Section 1.1, before Theorem 1.5) satisfying an extra
condition u((mg—1)+) = 0. We denote by H,, (r) a subset of H(r) fulfilling this condition.

If we let u(x) — ou(x),v(x) — Bv(x), K(u(m),v(n)) = (u(m)+v(n))=*/" and u; (x) —
(), u2(y) — BY().s — & (e, B> 0). K(u(x).v(y)) = (ulx)+v(y) /", n=2in (133)
and (1.14), we have

1

>y ,<L{ ) [u<m>11+'“ﬂ*l[u'<m>]1ﬂaz}

m=mgy n=ny (Om(m) + BV(I’L)) ; m=my
1

% { i [v(m)) 1 "AZ[V’(H)]“’bZ}q, (8.4)

n=ng

and

1

b pd fx)gy) 5 b TP [ (V1P £P () »
I (06<P(M)+Bw(n))5ddy<L{/a [ (0]~ " ()7 >d}

1

q

X{./j[“'(y)]quz[w/(y)]‘ng(y)dy} . (8.5)
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B(1—pAy.1—gA 1-$ 1-5 _
where L = W,Al € (max{T,O}, é),Ag € (max{T,O}, %) and pAy+qgA| =
23,

8.1.1 A Discrete Inequality

The first result is a generalization of the inequality (8.3) involving some additional param-
eters and functions.

Theorem 8.1 Lerp > 1, lJrl =1,r>1 %Jr% =1 and mo,ng € N. Suppose that A| €

( , )Age(max{ : 0} ),PA2+qA1 =2—3 >0, u € Hyy(qA1) and v €
H,, (pAs). If (am) (by) and (O'm,n) are posttive sequences, then

o = " > B e ®
( > X o) <C{ )y W1(m)a51} { > Wz(n)bZ}
m=mgq n=n( m=my n=ng

r(1—gAy) r(1-pAy)

g M(m)O',Z n ! S V(I’L)O',Z n '
X — —F ; (8.6)
{m%m ngo (am bn) s mg;m ngt;() (ambn) s

where wy(x) = [u(x)] 7P (x)] 7P wo (x) = [v(x)] P2 (x)]1 9. In addition, the

— s[B(1—pAs,1-gA1)]§
constant C = e LAy i the best possible.

r(1-qAy) (1=pAy) ™

Proof. Let o, B > 0. Utilizing the Holder inequality and then, applying (8.4), we have

Iy y (anbn) ) ((au<m>+ﬁv<n>>1 )}
{22 ((om<m>+ﬁv< ) ESHEG

{mzmo nzzng( u(m) + B(n)) '_Y } {mzmo "2110 (ambn) O-m-,”}
_ [B(lmzfjvﬁlm%)]s { i Wl(m)afn}m { i Wz(n)bz}q&

o m=my n=ny

IN

fa 3 F U S zv(” )}

m=mq n=ny ) m=mgy n=ny (anb
) 7
:[B(l—pAz,l—qA])]E bq
m= m() n= n()
r(1—pAy) r(1—gAy)

a s m n

X — 7
(B > 2 2 ( mE;zU nE;zo (ambn)

m=mgyn=ng am n

S~

RI™
\/
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NOW setS = Zm m Zn no ’Z(mlar)"‘g’,
r(1—pAy) r(qgA1—1)
tion h(r) =t = S§+1~ 3 T. Since
r(1 prz)St'<1*?A2) 2, (1—¢qA)T
K (1—pA))S )’

— il o v(n)o-;gz,n o .
T = Zm:mo Zn:no )& = B and consider the func-

W (t) =

it follows that / attains its minimum at 7 = 8:‘;/212))2. Thus, letting oo = (1 — gA;)T and
B = (1 — pAy)S, we obtain (8.6).

Now, in order to prove that C is the best constant, suppose that € > 0 is sufficiently
small, G, = [u(m)]"™ 51/ (m),by = ()] "2~V (n)(m > mo,n > ng), and Gy, =

%. Then, considering the integral sums, we have
(u(m)+v(n))r

= [ W) afuo)

elu(mo)]*

A
M
=
g
(s>}
x\
B

= X u(m)] P (m)) P a,

m=niq

< fulmo)) ™44 )+ | o)™l

€[u(mo)] ’

and so Syr_,, [u(m)] =P (m)|\ P ah, = 7 +O(1). Similarly,

€ [u(mo

3, ()] ) = o+ 0().

rt ev(no)]®

In addition, substituting the above defined sequences am,Zn, and Em,n in the left-hand side
of (8.6), we obtain the inequality

22

m=mgy n=ng ( +V( ))%

g ([T o ) .
>/mo[<>1 (/ ) 107 ()dy | il (x)a
—pAr—£

:. (/m 1+t )u(x)dx

_ _& V(no) A77
- =y P w72
T / 7&1;7/ R Lt | i () dx
o (L+1)r 0 (141)
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v(ng)

1 € & e i u(t)  —pAr_E
>———B|1l—qgAj——,1 —pA,—— —/ u(x lsu/x/ P2 drdx
o ( =S q) [t |
1 £ &
-~ B 1—qA1——,1—pA2——)
€[u(mo)]* ( q q
! [v(no)]' "4

(1—PA2——)(1—pA2+ ) [u(mo)]lpr2+%
_¥B(l— A1——.1—pA _g)_oa)
_£[u(m0)]£ qa1 qv pA2 7 .

In the same way, we have

2 2 mn _ 2 [M(m)]lith%u/(m) 2 [v(nz]p 274V (n)

m=mqy n=ng (ambn) m=niq n=ny (” m)+v(n )S

o0 oo —PA2—
= Z o on |
_ Lkelm)lo) [ e e
T T eu(mo)* (“’A”q L1=pd q)
Lbelum)f o) (e e
T T eu(mo)* (2 it pl—pd q)

1+ efu(mo)0(1) (1-gAi+5)
efulmo) s

&
B(lqA1+—,1pA2—>,
q q

and similarly,

O-rfnz 1+8[V(n0)]60(]).r(l—pA2+%)
mE;zU nE;lo (ambn) e[v(ng)]e P

__ If the constant C in (8.6) is not the best possible, then there exists a positive constant
C(with C < C), such that (8.6) is still valid when we replace C by C. In particular, utilizing
the derived inequalities, we have

(e (o= -pi=g) -ow)

r r

€ S
B(l—pA2+—,1—qA1——>.
p p
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r(1—=pAsy)

1+8[v(n0)]50(1) r(lpr2+£) ¢ . L
x{ e[v(ng)]¢ . - P B<1pA2+;,1qA] ;>

8.7)
Multiplying inequality (8.7) by €” and then, letting € — 07, it follows that

S[B(1 — pAy, 1 — gAy)]’ -c
r(1 q ) r(l-pAy) — 77
r(1—gA) ™ (1—phAy)~

which contradicts with the fact that C < C. Hence, the constant C in (8.6) is the best
possible. This completes the proof. O

C:

: : : — ambn L N 0 u(m)apby —
Considering Theorem 8.1 with 6, = O )+v(n))% 2 S = Yonmmg Zn=ng wmamy L =

o o mbn mbn
o Somerio Mﬁ and S+ T = T ot m, we obtain the following
consequence:

Corollary 8.1 Suppose the parameters p,q,r,s,A1,Az, and the functions u,v : R, — R
are defined as in the statement of Theorem 8.1. If (an) and (by) are positive sequences,
then,

1
oo oo

¥ (b <c1{ ) m(m)af;} {iwm)bz} R, B9)

m:mgn:no( ( )+V( ))E

m=my n=ny
where
r(l—gAy) r(1-pAj)
S s T s
(1*4/*1) (PPAz)
B S+T ’

wi(x) = [u()] P ()], wa(x) = ()] PR ()]

In addition, the constant Cy = () " .B(1 — pAs, 1 — gA)) is the best possible.

In particular, (I) for A, B, ct, B > 0, setting u(x) = Ax®,v(x) = BxP ,mg = ny = 1, we
have the inequality
1 1
s w A
= (Am® +Bnﬁ v o 2(n

where the constant

c (s)f B(1 —pAz,1—qA))
1=\ : ’
r/ o Al-ghiBl-phagi B
is the best possible and w (m) = mP(#ah1 =)=y, () = pa(BrA2=B+1)=1,
(ID) If o, B > 0, putting u(x) = oclogx,v(x) = Blogx,mg = ny = 2, we have

1

o oo

1 1
amby ;
5 w w bq 'Rrv
mzZnZQ (oclogm—i—ﬁlogn)? {mZZ ] } {2 . }
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where

co—(® » B(l1—pAs,1—qAy)
1_(?> o gleMBlopA

is the best constant and wy (m) = (logm)~'*P¥1mP~1 w)(n) = (logn)~1+rPi2pa—1,
(III) For o, > 0, set u(x) = oclogx,v(x) = Bx,my =2,n9 = 1. Then,

1 1
i i ambn < Cl i wi (m)a.ﬁ ! i Wz(l’l)bq ! R%
m=2n=1 (alogm—i—ﬁn)% m=2 " n=1 " 7

cio (8 7 B(l1—pAy,1—qA))
1*(?>' ol-aAiBl-pAs

where

is the best constant and w1 (m) = (logm) =1 FP¥A1mP=1 ) (n) = =1 HPaA2,
Theorem 8.2 Inequality (8.8) refines inequality (8.4).

Proof. Utilizing the Young inequality, we have

rli=gdy) ri=pin)
S s T s
R — (1*%) (I*PA)
S+T
r(l—gA1)  _ S8 + r(l=pAy) _ T
< s 1—qgA, s 1—pA, :K
- S+T s
Now, the inequality (8.4) follows from (8.8), which completes the proof. ]
. _ k
Setting u(x) = v(x) =x%,a = m >0,am=mr k=ap(l1—qgA))—1—p,b,=

I
ni,l = aq(l — pAy) —1 —q and Oy, = cpen in Theorem 8.1, we obtain the following
Gabriel-type inequality:

Corollary 8.2 Suppose the parameters p,q,r,s,Ay, and Ay, are defined as in the state-
ment of Theorem 8.1. If (¢, is a positive sequence, then

1 1

oo r 2
<2cm> <C*{2m W’c } {Zmﬁc’} ,
m=1 m=1 m=1

where the constant C* = \/6 . (%) » is the best possible.

8.1.2 An Associated Integral Form
Theorem 8.3 Let p > 1,% +$ =1, and r > 1,% +% = 1. Suppose that A, €

( J5) Az € ( =£,0}, 1), pAs+ A1 =2— £ >0, ¢(x) and y(y) are dif-
ferentiable strictly increasing functions on (a,b) (—ee < a <b <o) and (¢,d) (—=<c¢ <
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d < ) respectively, such that @(a+) = w(c+) =0and o(b—) = y(d—) =oo. If f(x),8(y)
and G(x,y) are positive functions on (a,b),(c,d) and (a,b) x (c,d) respectively, then the
following inequality holds:

( / ’ / dG(x,y)dxdy) r L
<C{/ } { g(y )dy} " (8.9)

r(1-pAy)
{//“’G Ik } L )
Here, wy (x) = [¢(x)] =179 [ ()] =P, wa (v) = [w(v)] P92 y/ (y)]'~9 and the constant

s[B(1 — pAs, 1 —gAy)]s
r(l—qAy) r(l—pAy)

r(1—qA) S (1= pay) ™

C=

is the best possible.

Proof.  Using the Holder inequality, the Hilbert-type inequality (8.5) and following the
lines as in the proof of Theorem 8.1, we have that (8.9) holds. Now, to prove the part with
the best constant, suppose that € > 0 is sufficiently small, and let

~ . [0, if x€ (a,a1) (a1 =@~ (1))

o= { (P05 ¢/ (x), i x€ [a1,) ’

. { 0, L ifyelea) @=u(1)
WO 25y (), i € [en,d) ’

and G(x,y) = g Then we have
( )7

{/ bM(X)f”(x)dx}I% {/ "wz<y>§‘f<y>dy}* -(3)

/b /d G(x,y)dxdy
—/ / Xg)(] ) -dxdy

o —pAr—3
7/ “le 'x)/ Hdudx
o (14u)r
b uipAzié b 1/¢(x) uipAzié
—/ —l-e /x)/ Sdudx—/ [(p(x)]”*g(p/(x)/ ~dudx
0 (L+u)r a 0 (1+u)r



8.1 GENERALIZATIONS ON R%
b 1/o(x) e
B (1 gt S pay f) o [
q q a 0

e € 1
B 1qA1+—,1pA2—)
( q q) (1=pAr—£)(1-pAr+%)

€ )
B(lqA1+—,1pA2—) —o(1).
q q

| = o™= ™|

On the other hand, we have

/ / (p x)G (x dxdy:/ “le '(x)/ ufgdudx
(@) Jifots) (1+u)
o —PAI—E
</ —le /(x)/ Y dudx
0 u

€
B2 —qAi+5,1—pAy— )
q q

™ | = m|>—

N

and similarly,

)G (x 1r7(1—=pAr+%)
/ / W 5 xdy <2 s ’

€

187

r(l—qA;+£)
7qB<1qu+£71PA2§)7
q q

€ €
B(lpAer—,lqA]—).
P P

Assuming that the constant C in (8.9) is not the best possible, then there exists a positive
constant C < C, such that (8.9) is still valid when we replace C by C.In particular, utilizing

the above inequalities, we have

1 € € T /1\§
“B(1-qA—Z,1-pA,—= ) —0(1 -
(8 ( T TR 61) o )) <C(€>

X{1+(90(1).r(1qf\1+ Dy

r(1—gAy)
5

&
<1qA1+ lpAz—)
€ s q

r(1—=pAj)
s

£ £
B(l—pAz—i——,l—qu——)
p p

y {1+50(1) r(1—pAr+%)
€ s

Now, multiplying inequality (8.10) by €” and then, letting € — 07, it follows that

s[B(1— pAz,1—gAy)]s
r(1—qA)) r(1-pAy)

r(1—qA)~ = (1—pAy)~

<C,

C=

which is in contrast to C < C. The proof is now complete.

(8.10)
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M, then, setting
(o(x)+w)r

S= / / ); i -dxdy, T = / / (o z er(xu);g(,)() )) dxdy,

we easily obtain that S+ 7 = [ [¢ %dxdy, and the Theorem 8.3 yields the fol-
PE)+y ()T

Similarly to the discrete case, if G(x,y) =

lowing consequence:

Corollary 8.3 Suppose the parameters p,q,r,s,A1,Az, and the functions @,y : Ry — R
are defined as in the statement of Theorem 8.3. If f(x) and g(x) are positive functions on
(0,0), then

/ / o(x) )izgu?g] NE sdxdy < C {/abw1(X)fp(X)dx}]% {/chZ(y)gq(y)dy}é ‘R",

where
r(1—gAy) r(1—pAj)
s s

(L T

1—gA 1—pA

R— qAaq pA2 ’
S+T

wi(x) = [ ()]~ P g ()] 7P wa (v) = [y ()]~ P2y ()]
In addition, the constant Cy = (£)" - B(1 — pAs, 1 — gAy) is the best possible.

It should be noticed here that the inequality (8.11) is more accurate than the inequality
(8.5).

Theorem 8.4 Inequality (8.11) refines inequality (8.5).

Proof. The proof follows the lines of the proof of Theorem 8.2. O

If o(x) = y(x) = x%,0 < o < min{%‘ml, %} f(x) = g(x) = e and G(x,y) =
®(x)w(y), the Theorem 8.3 yields the following integral Gabriel-type inequality:

Corollary 8.4 Suppose the parameters p,q,r,s,Ay, and Ay, are defined as in the state-
ment of Theorem 8.3. If (x) is a positive function on (0,e), then

(/:w(x)dx)r<c*{/:x X (o ()]fdx};{/:e":[ ()]rdx};,

where u = p + Ocp(qu —1), v=g+oq(pA; — 1), and the constant C* = \/E(é)

> (%) 7 (%) W is the best possible.

=5
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8.2 Multidimensional Integral Inequality

The starting point in this section is a multidimensional inequality (1.14) rewritten in a more
suitable form. Namely, replacing u; by ogu;, o; > 0, and putting A; = A; — 1, A4; > 0, i =
1,2, o, s =M+ A4+ A=A, K (1), ot (x0) = (1 (1) + -+ + 0 (x0)) 2,
inequality (1.14) reads

by by X
/ /a [Tz, filx) dxy -+ dxy

(Zn 1 Ouj (x,))

I AT &£ bi . Pi
< LTS w2 g 7 a2
F(A) i=1 oci" i=1 a4
Theorem 8.5 Lerne N\ {1},A >0, A, >0, p; > 1,i=1,2,...,n. Assume in addition
n n 1 1 1
$amazt Loy Ll o
i=1 ro=pi sor
Further, suppose u; : (a;,b;) — (0,00) (i = 1,...,n) are strictly increasing differentiable

functions such that uj(a;i+) = 0, and u;(bj—) = oo. If the non-negative measurable functions

fit(ai,bi) — (0,0),i=1,...,nand F : TI}_ (ai,b;) — R, satisfy
bi _
0< / i)} P02~ [l ()] P P () < o0, i =1, m,
a;

and

by by uj(x;) . .
O</ / ———————F"(x1,...,xp)dxy - dxy, <eo, j=1,...,n,
n lftxl )‘

then

by bn
/ FX], ) n)dX]"'dxn

€
5

, n : % n b; L , . Pi
At lﬁiﬂm—)] H{/ e ()P0 [ ) "’.ﬁ”’@f)d’”}

A
-1 A ] =

e

by n
xH / / 0 (8.13)
Ly filxi))®

1
where the constant A+ [m =17 is the best possible.
1
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In order to prove Theorem 8.5, we need the following two fundamental lemmas.

Lemma 8.1 [fke N,/ e NU{O}, A >0 (i=1,....,k+ 1) and 355! A; = A, then

ety P
e / 1+zk 0 Hld’ =g =5 TIT e, (8.14)

Proof. Setting u =

—L— we have
I z{‘ St

——t —dt---dt,
/ / +§‘," 1t, YA+ .

-1

MM, S -
- M au)dn---ds
/ / (1 + 35 ) At /0 (1t a1 fo - dix

_r(xl) (A=A +1) e,
T(A+1) / / 1+35 ¢ Awdz"'dtk'

Hence repeating the above process, we get

/ / e o =l gy eedly = )'I;{:;l H (8.15)

1+2k1h A+l -

Moreover, by virtue of a well-known property of Gamma function I'(A + 1) = AT'(A) for
A > 0, one has

1 -1 )LkJr] +jk+l
/ / /1+ldt1 "dlk:mn A,«i»] HF(X,)

=0 i=1

Lemma 8.2 IfA,A,...., A, Th,.... T, >0, and ¥} | A; = A, then

. 1 n
al,Tg}1>0{szlal } AH( )

1= 1

A

Proof. Applying the weighted arithmetic-geometric mean inequality, we obtain

1 LAir o
_ s ]
a?tr/s 206] - a?tr/s 2 s ?LrT/
=1 =1 s
Q
1 nooo.t A
J s
= n )Lr/sH er]
i J
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Air

_ST ﬁ)
r,Hl(/lj '

O
Proof of Theorem 8.5. Set
by n u; x
Tj= / / 5 (%) ]/)LF(xl,...,xn)dx1~~~dxn.
an l-fl xl
Leto; >0, i=1,...,n. Applying the Holder inequality to the product
1
1 n r
X))’ (zjzlajuj(xj)>
F(xi,...,x;) = (I i) T - T—F (X1, %) |
(2?:1 a]uj(xj)> " (Hi:] ﬁ(xl)) §
we have
bl by
/ F (X1, X0)dxy -+ - dxy
1
bl by l f x)
—1Ji\Ai
/ / 7 dn (8.16)
1“1”1(%))
1
by by Y oiuj(x;) ’
{/ / j 17 ]LFr(xl,...,xn)dxl~~~dxn}
(T filxi) *
Moreover, by virtue of (8.12), we have
bl by
/ FX], xn)dxl"'dxn
1 1
i) |~ bi 1Ay . pis
—H ( ) I1 / [ () 1P 40t ()PP (o
[(4) i it W
1
”" uj(x;)) '
J\*M r
7,_17 (X],...,xn)dX]“'dxn} 8.17
{ an (T filx)* (617
1
Rl (=) =11 1 ¢ \{1=pi Pi =
i e H{ [ ) e
=1 i=1 i

1
r

{ 5]
11
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Now, we optimize {W 2} 1oyT; } by adjusting ¢y, ..., a,. From Lemma 8.2 we
i=1"

1
Aj r Aj

J r J
.. . Ti\ % 1 T\ 5
conclude that the minimum value of expression {/l H;le ()T]) } =A7 H;zzl ( L ) 5
J J
oty 7-‘I — _ ol 1 — /l]' ] — ]
is attained when T E R Therefore, if we put o; = 72 foreachi=1,...,nin
n J

(8.17), we get (8.13).

1
s

. 1 MNE .
The next step is to prove that the constant A 7 {ﬁ o F)Ei’)] , appearing on the

right-hand side of the inequality (8.13) is the best possible. Define a; = ulfl(l). For 0 <

£ 1, we set
~ 0, if x € (a;,a)
ﬁ(x) = Ai—E£—-1 . ~l l )
[; ()] P uli(x), if x € [a;,b;)

i
and N
F(xi,....%) = L’(X’)A
(X ui(xi))
Define
D; = {(t1,...,ta1) € (0,00)" 13258, < 1}.

Then, we have

L
Pis

p,l Ai)— [M;(xi)]lpiﬁpi(xi)dxi}

n bl 1717 1 _sl
H{/N ui(x;)] ¢ /(x,)dx,} = (—) .
i—1 €

Via the transforms

(X1 ey xn) = (V1o o) = (w1 (1), un (X))
and
(Vla"'avn) = (tlv- .. »tn) = (Vlvnv- .. 7vnflvnavn7)7
together with
Yo=Y
- = 17 )Ll' = )Lv
i=1 Pi i=1
we have

bl bn ~
/ F(xl, <y Xn)dxy - dxy
aj

_ /b' b I A,

X1 - ..dxn
l lul(xl))
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B /bl b I [ui(xi)]kiiﬁilu;(xi)dxl - dxy,
(2:11 ui(x))*

—£
_/ / [T 1V Sl vy eedyy,
1 znlvl

71
_/ e / / N Adl---arrn,l dty.
VI (143071 )

Taking into account overlapping of integration domains, we obtain

bl by ~
/ F(x1,...,xp)dxy - dxy
ap a

n

_/ 71 —€ / / Hl 1 l l /ldt]"'dtnfl dtn
2’1

n 1 n— 1 Ai= p
_/ e / iz 4 dl---dtn,l dty
. D +2n1
-1
/ / L 1 l Adl"'dtnfl
(1+3- 1t1
nl nl
i=1 1
d ceedty_y | dty.
/ /D 1+2nl 151 In—1 I

193

(8.18)

Without loss of generality, it suffices to find the appropriate estimate for the integral

-l
/ = 1 l dl"'dtnfl-
]D)I l 1tl

Al>£(i—1).
P1

By the relation (8.14) with [ = 0, we have

We choose € > 0 so that

-1
/ Hl L l dl"'dtnfl
Dl +2n l

1 /l -1
n 1— ,*
S/ n / / = Adz"'dlnq dt
. 1+2n l
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-
i P
< My /s dty---dt,_ | dn
- /1 Jate(=—1)

r1
l 2 tl

1)17 M

- (/11—%>F(;—/11+8(%—1)>HF( pz)

due to Lemma 8.1. Hence, we have

nl

l]l
d cedty,—q | dt
/ /]D)l 1+zn 1 3 n—1 n

1

MO (-—M+6<——1>>HF(A")

As a consequence, from (8.18) we obtain

bl bn~
/ / (X1, -+ vy Xn)dxy - dxy

Ai—&—1
IT= g
/ / L 1 l )Ldl---dtnfl—O(l).

tltl

Now, from Lemma 8.1 we have

bl b)l~
/ F(x1,...,Xp)dxy - dxy
ap ap
/ / i, ldyudt,,,lfO(l) (8.19)
0 +2111
1 Lr(x +s—i)ﬁr(x~—i)_o(1)
e T(A) \™ pn)ir U pi
1 1 & €
>—.—TIr /1,»—>01,
cr (e ) o

since p, > 1. On the other hand, taking into account the related definitions, we obtain

al >

n bl n ~
/ / uj(x)) ———————F"(x1,..., X, )dx| - dxy
lft xl)) '

) I bl )
_Jl_ll{'/“l /“n (T uilx:))* dx dn} ;

a3




195

8.2 MULTIDIMENSIONAL INTEGRAL INEQUALITY

and employing (8.14) with A = 2,1 = 1, it follows that

A
bl bn '
/ / (%)) ,_F'(xl,...,xn)dxl---dx,,
(s i)
4
Ai— = s
n i1l "
X100y (Min(t1, 02, t0)tj) i
:H / / 1+& 2 sdry---dt,
J=1 (lJrZ;’lt,-)
i#]
. e
AU R
< il ~dty--dti_ydtisy ... dt
e LY Jo Jo J J
7= 1+t
i#j
A
1 s
1\7 & ( e\ TAj+e—) n €
=(— Aite ) ! C(A——
(81) j]{ ! Pj F(A') ,1;! ' Pi
i#]
1 4
1 Fon < e 1 n s
() T (e ) e (e £)
<£A) j1{ ! Pj F()L),':1 l Di
1 1 1
(&) W10ee )} (mnfir (e )
== +¢€ — +e——
€A =1 ’ j [(4) i1 l pi
1
Now, assuming that the constant l% [ﬁ 7:1 r;il)} ~in (8.13) is not the best pos-
' 1

T %] " such that (8.13) is still

. . - 1
sible, there exists a positive constant C < A~ {

o=

(%)

]

by C. In particular, utilizing the derived

valid when we replace At [ﬁ =17

inequalities, we have
1 1 £ €
—— I (A —-—— ] —-0(1
e (e ) o

1 1
~/1\7/1\5 [.2
€A € j=1 Dj
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Multiplying the above inequality by € and then, letting € — 0T, we obtain

1 1 n F()Ll) ~
AT | === <C,
lrmlnl Yz
which contradicts to the fact that C < A+ [ﬁ . r/&)} y Hence, the constant

1
Ar [ﬁ ;’:1 F)Ei’)] ~in (8.13) is the best possible. This completes the proof of Theo-

rem 8.5.

If Fxp,...,x,) = %, then
iy i (Xi

b muj(x) [T fi(x:)
T, = / / s 1” X;)) L dxy - dxy,.

Therefore Theorem 8.5 yields the following consequence:
Corollary 8.5 Under the same assumptions as in Theorem 8.5, inequality

/bl by Hl 1 fl(-xl
Aan

)
dxy---dx,
7
i ui(xi))

L 1
-

1 S n b; - 2
— Ai u; (x; pi(1=4;)—1 l/l; X; 1—p; ipl x;)dx;
< lm)HF( >] H{/ i) ()] £ ()l }

71

n s 5
X j]:[l <ET]> , (8.20)

holds and the constant appearing on its right-hand side is the best possible.

It should be noticed here that the inequality (8.20) is more accurate than the inequality
(8.12).

Theorem 8.6 Inequality (8.20) refines inequality (8.12).

Proof. 1tis not hard to see that

/bl by Hl ]ﬁ< ) dxl.“dx
ne
Jdp

l 1 Ui (xl))
Thus, using the weighted arithmetic-geometric mean inequality, we obtain

?Ljr

n s - n )L 7 s by by Hn: ﬁ(xi)
—T~) <y L. (—T> :/ — =LY 0y - dx.
Hl<l ! 21 s o\ ) e e (S )t
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The inequality (8.12) then follows from the preceding inequality (8.20). This completes
the proof. O

Let

Setting u;(x) = x%, fi(x) =e ¥, i=1,...,n, and F(xy,...,x,) = h(x1) - h(x,), Theorem
8.5 yields the following Carlson-type inequality:

Corollary 8.6 Suppose that the assumptions as in Theorem 8.5 are fulfilled and let h be
a positive function on (0,0). Then the inequality

(o)< s ([ i)

holds, where the constant

s(__1 ﬁpﬁ"*”r(xi)(r(piapimﬁ “
i=1

r o (n;l)r F(A’) A,I)L’

is the best possible.

Finally, we propose the following open problem.

Open problem 5 Find conditions so that the discrete versions of multidimensional
inequalities from this section (with the best constants) hold.

Remark 8.1 The inequalities presented in this chapter, as well as their consequences, are
taken from [2] and [6]. For related results, the reader is referred to [19] and [21].






Chapter

On Some
Hilbert-Pachpatte-type
Inequalities

In this chapter we deal with a particular class of Hilbert-Pachpatte-type inequalities closely
connected to Hilbert-type inequalities.

For example, some ten years ago, Pecari¢ et al. [80], established the following pair of
Hilbert-Pachpatte-type inequalities: Let %—f— cl/ =1Lp>1l,andletK: Ry xRy =R, ¢,y :
R4 — R be non-negative functions. If f,g : R, — R are absolutely continuous functions

such that f(0) = g(0) =0, and F(x) = ["K(x,y)w~P(y)dy, G(y) = [§ K(x,y)@~(x)dx,

then the following inequalities hold:

/ / K(x,y)|f(x)]g(y )Idxdy
gxP~1 4 pya~!

| [ Kenlrlemldeianh)

Iy [/ /W 0| (z |”drdx] [/ /w" )|‘1d5dy} 9.1)

/Gl ”( [/ Kl ldeeh)]
/ / (7)|Pddx. 9.2)

199
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IN
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For some applications of relations (9.1) and (9.2), as well as for some related results, the
reader is referred to [63], [80], and references therein.

In this chapter we study a class of Hilbert-Pachpatte-type inequalities related to (9.1)
and (9.2). More precisely, we give Hilbert-Pachpatte-type inequalities in more accurate
forms, established by virtue of some recent refinements of arithmetic-geometric mean in-
equality. In addition, we also present weighted versions of such inequalities including
fractional derivatives.

9.1 More Accurate Hilbert-Pachpatte-type
Inequalities

In order to state and prove the corresponding inequalities we need some lemmas.
Lemma 9.1 For f € C"[a,b], n € N, the Taylor series of function f is given by

1 . n—1 r(k) (a)

f(x)zm/:(x—f)"lf(")(t)dt—i—kEO o (x—a)k. (9.3)

Define the subspace Cl[a,b] of C"[a, D] as
Cl'la,b) ={f €C"[a,b]: f¥(a)=0,k=0,1,....n—1}.

Obviously, if f € C"[a,b], then the right-hand side of (9.3) can be rewritten as

flx) = ﬁ/j(X—f)nﬂf(")(t)dt. (9.4)

Krnié et al. in [61] proved the following refinements and converses of the Young inequality
in quotient and difference form. In order to state the corresponding results, denote x =

(x1,x2,... 7xn)» pP= (plvaa"' 7pn)7 Prl = 2?:] Pis

Ap(x) = M’ Gu(x) = (ﬁ)ﬁ) " ,

n

and

1
1 yn SRS
M, (x,p) = (Pn ’1p’f‘> 770
( ;’:lei)”", r=0
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Lemma 9.2 (SEE [61]) Let x = (x1,x2,...,x,) and p = (p1,p2,-..,Pn) be positive
n—tuples such that ¥} % =1, and

_ 1 1 1
xP = (1 x02an), pl = (E’p_z”ﬁ)

Then
(i)

An(xp) ilminliién{;_i} - M](Xp,pfl) - A,,(Xp) "maxlgign{ﬁ}

Ga(xP) = My(xPp~1) = [ Gi(xP) )
and
(ii)

1
n min {—} [An(xP) — G, (xP)] < M, (xp,pfl) —Mo(xp,pfl)
1<i<n | pi

< n max {i} [A,(XP) — Gy (xP)].

1<i<n | pi

We first give improved form of the Hilbert-Pachpatte type inequality with a general kernel.

Theorem 9.1 Let ;7 +$ =1withp,q>1,and0<a<b <o IfK:[a,b] X [a,b] — Ris
non-negative function, ¢(x), w(y) are non-negative functions on [a,b] and f,g € Cl{a,b],
then the following inequalities hold

[ R,
((xa)‘W’“)+(ya)W)

L / /beylf ||g<);>| s ©5)

< AM=m[( — )12 m n—l (/ / (x)F(X)|f(n)(l‘)|pdtdx)p

([ [ o= wmculen oy )
/ Gy (/ K(x,y) (/ t)p("l)|f(”)(t)|pdt>;dx>pdy

<[ /X<x—r>P<"”><pP<x>F<x>|f<"><r>|Pdrdx, ©6)

where m = min{%, ‘ll}, M= max{%, ‘ll}, and F (x) and G(y) are defined as in (1.16).

and
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Proof. By using (9.4) and Holder’s inequality, we have

|f(x)] = ﬁ /ax(xft)"*lf(") (t)dt
- ﬁ/ﬂ“””"lﬂ") (1)| - 1dr
< ﬁ (/ax(x_t)p(nl)v(n) (t)|”dt) ’ (/axl"dt>g
— %_Ci); (/ax(x—t)l’("‘)|f(")(t)|pdt) ;’ ©7)
and similarly
lg()] < ((1__?)1; ( / y(yt)q("”lg(")(t)lth) " 9.8)

Now, from (9.7) and (9.8) we get

10| € - 6 —a)?

X (/x(x_t)l’(nl)v(n) (,)|pd,) ’ (9.9)
([ o= )

Applying Lemma 9.2(i) (see also [61]), we have

gM=m (epyayM=m < (xp @ 2M=m) >0,y >0, (9.10)
where %+ g =1withp>1,andm = min{%, %} M= max{%, }l}. From (9.9) and (9.10)
we observe that

AT 8] < Wb

o
(et pmamm ) e ato-a?

1 X B " % y e " %
< g ([ e ora) " ([T teopa)
and therefore
M- /a” /a” Kl(x,y)lf(X)Ilg(yl)l o
((x—a)WJr(y—a)m)

b
//nyljijIg( N inay ©.11)
(x—a)i(y )1’

dxdy
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<t [ wen ([ e-orora) :

1

< ([ 6= Vlgyear) " asay

1 1

7 = ([ e oran) ao)= ([ o-ntgnopar)’

and (1.17), we have

Applying the substitutions

/ / K(x, )1 (1)1 (y)dxdy 9.12)

( / @ (x )dX) ( /a ' wq(y)G(y)g‘f(y)dy) '

1

= (/ab /ax(x—t)P(n—1)<pP(x)F(x)|f(n) (l)lpdtdx) »

X (/ab/ay(y—f)q(nl)wq(y)GO’)|g(n)(f)|thdy) g

By using (9.11) and (9.12) we obtain (9.5). The second inequality (9.6) follows by applying
(1.18). o

Now we can apply our main result to non-negative homogeneous functions. To do this,
we need the following lemma.

Lemma9.3 IfA >0, 1-A<a<landK:R,; xR, — R is a non-negative homoge-
neous function of degree — A, then

/MK(x,y) <)—C> dy :xlflk(oc), (9.13)
0 y

and

./:K(x,y) (ﬁ)adx:ylflk(zfxfa), 9.14)

Proof. We use the substitution y = ux. The proof follows easily from homogeneity of the
function K (x,y). a

Corollary 9.1 Let ;7 + é =1,with p,g > 1. If K : Ry x Ry — R is a non-negative and
homogeneous function of degree —A, A >0, and f,g € C}[0,°], then

// xylf()llg(y)limdxdy_wm// K)o

| 2(M
( m) 4 yP(M*m) >

(9.15)
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S4M m 1 </ /pr| —Ay+n—1)+1— ?L|f ()|pdtdx>
I’L—
1
</ [ s g aanay )

and
X 5 P
o P
[y ([ ([ el wra) dx> dy
SLP/ /xp(A|7A2+n71)+17/1|f(n)(t)|pdtdx’ (9.16)
o Jo

where Ay € (T)L 61/) Ay € (%,%), L:k(pAz)ll)k(2—/l —qu)é, and M,m are defined
as in Theorem 9.1

Proof. Let F(x), G(y) be the functions defined by (1.16). Setting ¢(x) = x4 and y(y) =
y42 in (9.5), using the fact that (x —7)?*~1) < x?("=1) for x > 0, ¢ € [0,x], and applying
Lemma 9.3, we get

/(‘)w/*ox(x7[)P(n*1)(pp(x)F(x)|f(n) (t)|pdtdx
[ *© PA2
S/O /0 P (Ar—Axtn—1) (/0 K(x,y) (;) dy) |f(n)(l‘)|pdtdx

—k(paa) [ [ a0 ) Paras, 9.17)
0 Jo
and similarly
| [ o=t wa)60) s 0)fraray 9.18)
y
K22 —ga) [ [y AR o) 1) adray
0o Jo
From (9.5), (9.17) and (9.18), we get (9.15). O
log%

We proceed with some special homogeneous functions. First, by putting K (x,y) =
Corollary 9.1, we get the following result.

Corollary 9.2 Ler ;7 + é =1, with p,q > 1. Let M,m, f, g be defined as in Corollary 9.1.

Then,
oo log £|f(x)| [s()]
L 1 20
—x) (xq(Mm) -|—yP(Mm))

< log If IIg()I o1
< i | [ e ag)
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< g ([ [y <>|Pdrdx)
(/ [ g )"

and

oo oo ¥ X l’ i
/ yp(AlfAZ) (/ & (/ (x_t)p(il1)|f(n)(t)|17dt)l dx> dy
0 0 y—Xx 0
SL’I’/O /o P A==l 0 (1) Pdrd,

where A € (0, L ), A2 € (0, ) and

ESJ[S)

2
Ly = 7 (sinpAymt) "7 (singA; )~

Similarly, for the homogeneous function of degree —A, A > 0, K(x,y) = (max{x,y})~*,

A= Azf 2 with A > 2 —min{p,q}, we have:
Corollary 9.3 Ler L >3 L'— 1, with p,q > 1. Let M,m, f, g be defined as in Corollary 9.1.
Then,
/ / (max{x,y})*|f(x)| gy |
(M—m)
<xq(M m) +yp(M m))
@lleWl o 1 1
d P)d(va
4M m/ / (max{x,y})* (x7)d(y7)
S 4M m }’l*l (/ / xpn L+ A|f ()|pdtdx)
1
(/ [ v g aray )
and

1o\P
[ y<ﬂ1><“>< [ maxteon <xr>"<"1>|f<"><r>|f’dr>”dx> dy
§L§/O /(;xp(nil)ﬂiﬂf(n)(l‘)|‘ndtdx,

where Ly = k(%) and k(o) = W.

The following multidimensional inequality follows by virtue of the general Hilbert-
type inequality (1.2) (see Section 1.1).
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Theorem 9.2 Let n,l € N, [ >2, 3!, % =1, pi> 1, and let 0 =T1_, ;1) i =

2,...1. If K : [a,b]' — R is a non-negative function, 0ij(xj), i,j =1,...,1, are non-
negative functions on |a,b), such that Hf,j:l 0ij(xj) =1, and f; € Clla,b], i =1,...,1,
then

l (s
/ K<x1""’xl)nz’:1 |fl<xl)| dxy ...dx
(a.b)

b 1 I[(M—m)
R

1 / K(xi,....x)TT, |fi(xi)|dxl - dxy
N

1

i , i
< [0 D Hl ( / GRS <r>|Pldrdxi) ,
' 1
where m = minlgigl{%}, M= maxlgig{%}, and Fi(x;), i =1,...,1 is defined by (1.4).
Obviously, Theorem 9.2 is a generalization of Theorem 9.1.

Remark 9.1 Applying Lemma 9.2 (ii) it follows that

xP v 1 2
LN I >0, vy>0 9.19
xy_( 2 Mm),x_,y_, 9.19)
where 4 2 =1 with p > 1, and m = min{4, 7}, M = max{, -}. Now, taking into
account (9.19) and following the lines as in the proof of Theorem 9.1, we have
[ / K@y
1

[(x— a4+(y a)l]—m)
//beylf IIg()ldxdy

)%

“ -2 (/ / o7 (0)F (x)| (t)l”dtdx) ’
X (/a /ay(yt)q(nl)wq(y)G(y)|g(n)(t)|thdy) 57

where F(x) and G(y) are defined by (1.16) (see Section 1.1).
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9.2 The Fractional Derivatives and Applications
to Hilbert-Pachpatte Type Inequalities

First, we introduce some facts about fractional derivatives (for more details, see [29]). Let
[a,b], —eo < a < b < oo, be a finite interval on real axis R. By Ly[a,b], 1 < p < e, we denote
the space of all Lebesgue measurable functions f for which | f7| is Lebesgue integrable on
[a,b]. For f € Li[a,b] the left-sided and the right-sided Riemann-Liouville integral of f of
order o are defined by

J%f(x) = ﬁfox(x—t)“’lf(t)dt, x>a,

b
J,‘j‘,f(x):ﬁ/x (t—x)*"'f(t)dt, x<b.

For f: [a,b] — R the left-sided Riemann-Liouville derivative of f of order o is defined by

a a" g 1 d" * n—o—1
D) = S 0) = Foy ot , (0T (0

Our result with the Riemann-Liouville fractional derivative is based on the following result.
By AC™[a,b] we denote the space of all functions g € C"[a,b] with g~ € ACla,b],
where AC[a, b] is the space of all absolutely continuous functions on [a,b]. For o > 0, [o(]
denotes the integral part of c.

Lemma 9.4 (SEE [15]) Let B > o >0,m=[B]+1,n=[ct]+ 1. The composition identity

DS = gy [0 =0 Dl p0n, x€ o)

L(B—a) o

is valid if one of the following conditions holds:
(i) fedltifab)) ={f:f =l 0.0 €Liab]}.
(i) J"7P £ € AC™[a,b] and DP* f(a) =0 fork=1,...,m
(iii) DP7'f € AC[a,b), DET*f € Cla,b] and DPT* f(a) = 0 fork=1,....m

(iv) f € AC"[a,b], DY f, D% f € Li[a,b], B — o ¢ N, DP X f(a) =0 fork=1,....m
and DS f(a) = Ofork—l,...,

(v) fEAC"[a,b],DP, £, D% f € Li[a,b], B—a=1€N,DP*f(a)=0fork=1,...,1.
(vi) f€AC"[a,b], a+f,D f€Lila,bl],and f®(a)=0fork=0,...,m—2.

(vii) f € AC"a,b], DE+ , D% f € Lila,b], B ¢ N and Dﬁ f is bounded in a neighbor-
hood of m = a.
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By using Lemma 9.2 (see also Remark 9.1) and Lemma 9.4 we obtain the following
result including the fractional derivative.

Theorem 9.3 Let o, BB, f, g be defined as in Lemma 9.4. IfK : [a,b]* — R is non-negative
function, @(x), w(y) are non-negative functions on [a,b], then the following inequality

holds
K(x,y)|Dg f(x)| [Dg 8(y)|
/ / —'a 1 zdy
[(x—a) q+(yfa)1’]fM7m>

//bey|D (x ||Da+g< )ldxdy

Ji(y—a)

1 X Y i} 1
ST@?EW<AZXXIWﬂ ”W@meﬁwmmwo

(// ﬁ“”wm<nm#mwm)ﬂ

where m,M,F (x),G(y) are defined as in Theorem 9.1.

Proof. The proof is similar to the proof of Theorem 9.1. O

Let v>0,n=[v],and Vv=v—n,0<V < 1. Let [a,b] C R and xo,x € [a,b] such
that x > xo, where x is fixed. For f € Cla, D] the generalized Riemann-Liouville fractional
integral of f of order v is given by

(S )x) =

Further, define the subspace Cy [a,b] of C"[a, b] as

ﬁ/x(xft)v’lf(t)dt, X € [x0,b].

X0

Cyyla,b] = {f € C"[a,b] : J" o f™) € C'xo,b]}.
For f € Cy, [a, b] the generalized Canavati v—fractional derivative of f over [xo,b] is given
by
Dy f =D 5 f",
where D = d/dx. Notice that

f ) = s [ 60

1—V) Jx

v f(n) (l‘) dt
exists for f € Cy [a,b].
To obtain the result with generalized Canavati v—fractional derivative of f we need the

following lemma.

Lemma 9.5 (SEE [29]) Let f € CY [a,b], v > 0and f1) (x0) =0,i=0,1,....n—1,n=
[V]. Then
_ * _\v-1l/nv
16 = 7 L =005 )0

forall x € [a,b] with x > x.



9.2 THE FRACTIONAL DERIVATIVES AND APPLICATIONS TO... 209

Theorem 9.4 Let v > 0 andxg, o € [a,b]. Let K : [a,b]> — R be a non-negative function,
and @(x), y(y) be non-negative functions on [a,b]. If f € Cy [a,b] and g € Cy[a,b] are
such that £ (xg) = g (y9) =0,i=0,1,...,n—1,n=[V], then

b rb K(x, X
I IO
(66755 4 )7

’ Kl )l lg)
— = dxdy (9.20)
4M / / (x—x0)7 (y—y0)7

< gy G0 Ve R 02 N Pt

x (/ / :<y—r)"“*”wq<y>c<y>|<Dmg>< >|qd,dy) "

and

b 1 p
[ 6w v (f:m,y) (s e =0)r=DiDy, ) Pt ) dx> dy
< Jg [y = 0)P NP () F ()| (DY, £) (1) |Pdrdx, ©:21)
where m = min{%, é}, M= max{%, é}, and F (x) and G(y) are defined by (1.16).

Proof. To prove the inequalities (9.20) and (9.21) we follow the same procedure as in the
proof of Theorem 9.1, except that we use Lemma 9.5 instead of Lemma 9.1. ]

In a similar manner as in the previous section, utilizing the inequality (1.2), we obtain
a generalization of Theorem 9.4.

Theorem 9.5 Letv>0anda,-:]_[j lj#lp],wherez *1wzthp,>1 i=1,...,1
Suppose that K(xy,...,x1), ¢ij, i,j =1,...,1, are deﬁned as in Theorem 9.2. Iff,

C%la,b] (x(()i) €la,b)), i=1,...,1, are such thatfi(j)(xg)) =0,j=0,1,....n—1,n=1v],
thgn
l (s
/ K('xl""?xl)ni:] |ﬁ(xl)| dx1...dx1
(a,b)! (0 1 [(M—m)
(s G )afwm)

1 / K(x1,...,x) 1|fz(xl)|dxl...dx1
= (M=m) [ Hl 1 (i — (i))a’

1

1 s ; RN
< dammrr L ([ [0 ef amte 0% poraras) "

where m = minlgigl{%}, M= maxlgigl{[%}, and Fi(x;), i = 1,...,1 is defined by (1.4)
(see Section 1.1).
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For o > 0, f € AC"[a,b], where n = [ar] + 1 if o ¢ Ny and n = o if o € Ny, the Caputo
fractional derivative of f of order o “Dy, f (left-sided) and “Dj;_f (right-sided) are defined
by

Dy, f(x) =Dg,

n—1

0-3 £ G a>k],
n—1 (k
-3 dm >k],

where DY, Dj denote the left-hand sided and the right-hand sided Riemann-Liouville
derivatives.
Recently, Andri€ et al. [16], proved the following result.

DY f(x)=Df_|f

Theorem 9.6 Letv >y >0,n=[v]+1,m=[y]+ 1 and f € ACla,b], k =nif v ¢ Ny
and k=n—1if v € Ny. Let D) f, D!, f € L'[a,b]. Suppose that one of the following
conditions holds:

(a) v,y ¢ Ngand f)(a)=0fori=m,...,n—1.

(b) veN, y¢ Ngand fO(a)=0fori=m,...,n—2.
(c) VN, yeNgand f)(a)=0fori=m—1,....n—1.
(d) veN,yeNgand fO(a)=0fori=m—1,...,n—2.

Then

DI f(x) = —— | [ a=0r 1Dy s

L(v—y) Ja
Applying Lemma 9.2 (i) and Theorem 9.6 (see also [16]), we obtain the following result.

Theorem 9.7 Let v,v, f,g be defined as in Theorem 9.6. IfK : [a,b]*> — R is non-negative
Sunction, @(x), w(y) are non-negative functions on [a,b], then

Dy f ()] Di 8 ()]
/ / .\ 2(M—m) dxdy
( xX— a)‘iW m + (y a)m)

//myr FODL 80 4,

(x—x0)4(y—yo)?
1

< g ([ a0 e F @D s aras )

X (/a /ay(y—t)q(vyl)wq(y)GO’)|CDZ+g(t)|thdy) q

where m, M, F(x),G(y) are defined as in Theorem 9.1.

—4Mm
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Remark 9.2 The general Hilbert-Pachpatte-type inequalities in this chapter are taken
from [78]. For related results and some other forms of Hilbert-Pachpatte-type inequali-
ties, the reader is reffered to [32], [102] and [103].
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