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Preface

The role of convex sets, convex function and their generalizations get rapid develop-
ment due to its enormous use in applied mathematics specially in non-linear programming,
optimization theory and hedging strategies.

Due to the advancement in applied mathematics there was necessity to extend the no-
tion of convexity. Recently several extensions have been made for the concept of convexity
among which few are pseudo convex , quasi convex, invex function , ¢-convex function,
s-convex function , h-convex function, half convex and exponentially convex functions.
The definition of convexity have deep relations with the theory of inequalities because the
definition of convex function is itself an inequality and many important inequalities fol-
lows from convexity.

Usually the payoff function of the various options (for example, European and Ameri-
can options) in mathematical finance is convex and this property leads to the corresponding
value function to be convex with respect to the underlying stock price. Traders and prac-
titioners dealing with real-world financial markets use the value function to construct an
optimal hedging process of the options. When the value function is unknown, they use the
above property to construct uniform approximations to the unknown optimal hedging pro-
cess. In this construction one has to pass some weighted integrals involving weak partial
derivative of the value function.

The regularity theory for solutions of certain parabolic partial differential equations is
a well developed topic, but when it comes to subsolutions and supersolutions a lot remains
to be done. Subsolutions are often auxiliary tools as in the celebrated Perron method. They
appear as solutions to obstacle problems and variational inequalities. Weak subsolutions
and weak supersolutions are not assumed to be differentiable in any sense- part of the the-
ory is to prove that they have Sobolev derivatives. The Sobolev regularity of the weak
subsolution in case of the Laplace operator is well-known classical result. The existence
of the Sobolev derivatives enables one to establish the reverse Poincare inequality (or Cac-
cioppoli type inequality) for the weak subsolutions and supersolutions of various elliptic
and parabolic equations. The reverse Poincare type inequalities represent an important tool
in the study of qualitative properties of solution of elliptic as well as parabolic partial dif-
ferential equations. The natural generalization of univariate convex functions is the case
of several variables are subharmonic functions that share many convenient attributes of the
former functions.



The book is organized as follows:

In the first chapter we overview results from convex analysis that we need in the next
four chapters of the book.

In the second chapter we develop the inequalities for convex functions, 4-convex func-
tion and 6-convex function. The important part of the chapter is to approximate arbitrary
convexity or generalized convexity by the smooth functions, using classical mollification
technique. We close this chapter with weighted energy estimates for (2,2)—convex func-
tions.

In the third chapter we first prove reversed Poincaré inequality for the difference of vec-

[j+1,n]

tors that belong to the class x[ | [a,b], then we prove that an arbitrary convex vector has
L

weak derivative. Using mollification, we give energy estimate for two arbitrary 4—convex

vectors that belongs to YF:]I | [a,D].
41

In the fourth chapter we give weighted energy estimate for a difference of subharmonic
function over smooth domain. We prove existence of Sobolev gradient and its square inte-
grability with respect to the weight function on the ball. Then we give, weighted estimate
for the smooth subsolution of the heat and telegraph equation, and the approximation of
weak subsolutions by smooth ones. The weighted reverse Poincaré type inequalities are
obtained in case of: subharmonic functions, wave equation, elliptic subsolutions, parabolic
subsolutions and bounded smooth domains.

In the fifth chapter, we deal with higher order partial differential equations such as
n—dimensional beam equation and fourth order Laplace equation with » variables.

vi
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Chapter

Basic results on convexity

1.1 Different types of convexity

In this section we give definitions and some properties of various types of convexity that
are used in this book. Most of these material can be found in [53].

Definition 1.1 Lez I be an interval in R. A function f : I — R is called convex if

JAx+(1=A)y) SAf(x)+ (1 =2A)f(y), (LD

for every x,y € I and every A € [0,1]. If the inequality (1.1) is reversed, then f i said to be
concave.

Definition 1.2 Ler f a real function defined on [a,b]. The n—th divided difference of f at
mutually different knots xo,x1,%2,...,X, € [a,b] is defined recursively by

[xi]f:f<xi) i:0717"'7n7

and

[.X] 3 X2y e 7xn]f* [X(),X] IR 7xn71]f

Xp — X0 '
Definition 1.3 Let n € Ny. A function f : [a,b] — R is said to be n—convex on [a,b] if
and only if for every choice of n+ 1 distinct knots xo,x1,%2,...,%, € [a,b]

[)C(),xl, P ,xk]f =

[x0,x1, .-, ] f > 0. (1.2)

If the inequality in (1.2) is reversed, the function f is said to be n—concave on [a,b].
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Remark 1.1 Particulary, O—convex functions are nonnegative functions, 1—convex func-
tions are nondecreasing functions, 2—convex functions are convex functions.

Theorem 1.1 If f") exists, then f is n—convex if and only if f™ > 0.

Theorem 1.2 If f") is n—convex on [a,b], forn > 2, then f*) exists and is (n— k) —convex
forl1 <k<n-2.

Definition 1.4 Let I} = [a,b], I, = [c,d]. The (n,m)—divided difference of a function
f I} x I — R at mutually different knots xy,x1,...,X, € [ and yo,y1,...,ym € J is defined
by

X0, X1y -+
= X0 X150 5 gy
|:y07y17 7ym:| f [0 1 n]([yo Y1 ym]f)

- [yO»YI» 7yH1]([x07x17 --’xn]f)

-3¥3 - %”ﬂ

i=0j= Ow xl

where,
n m

o) =[]ex—x); o) =]6-y))-

=0 =0

Definition 1.5 A function f : I} x I, — R is said to be (n,m)—convex or convex of order
(n,m) if at mutually different knots xo,x1,...,x, € I and yo,y1,...,ym € J

X0sXLyeees
>0.
|:y07y17 7ym:|f

Theorem 1.3 If the partial derivative f ny e of f exists, then f is (n,m)-convex if and
(n+4-m)

only if fynym > 0.
Definition 1.6 Let I be an interval in R. The n-dimensional vector F : 1 — R"
F(x) = (), L), fax) (1.3)
is called convex if
fiGx+(1=2)y) <Afi(x) + (L= A)f(y)
foralli=1,2,....n, A €[0,1] and all x,y € I.

Definition 1.7 The n-dimensional vector F : I — R" is called smooth convex if

d2
d—zf,(x) >0, foralli=1,2,....n
X
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The vector addition and scalar multiplication is defined in the usual way:
if
F(X) = (fl ()C),fz(x), ce 7fn(x))
and
G(x) = (g1(x),82(x),---,8n(x)),

then the vector addition is defined as
P+ 60 = ()% 010 L0 +a(0) ) 200

and scalar multiplication as

oF (x) = (afl <x>,af2<x>,...,afn<x>).

The vector composition is defined as follows

FoG(x) = F(G()) = <f1 <g1<x>>,fz<gz<x>>,...,fn<gn<x>>).

Definition 1.8 The vector F is said to be increasing vector if f; are increasing functions
foralli=1,2,...,n.
The vector F is said to be decreasing vector if f; are decreasing functions for all i =
1,2,...,n.
j+1,n . . . .
Let x[[lﬁ_] : [a,b] be the class of vectors having convex function on its first j components
o)
.. . . 1,/
and remaining n — j components are concave on the interval [a,b] and let x[[ / | [a,b] be
j+1ln
the class of vectors having concave functions on its first j components and remaining are
. . . . j+1,n 1,j!
convex on the interval [a, b]. It is obvious that if F' € x[[ﬁl ][a,b] then —F(x) € X[[ / | [a,b].
1,j j+ln

The proofs of two following propositions can be found in [51] and [53].
Proposition 1.1 For convex vectors, we have
(i) Adding two convex vectors, we obtain also a convex vector.
(ii) Multiplying a convex vector by a positive scalar is also a convex vector.

(iii) If F : I — R is a convex vector and G : R — R is increasing vector then GoF is also
convex vector.

Proposition 1.2 Let F ,G x[[ljf]""] [a,b] then
J

[j+1.n]

ﬁ)F+Ge%” [a,D].
2

(ii) For any positive scalar o
aF € x[[ljf]""] [a,b].
J
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[j+1,n]

(iii) Let F € x[l ,] [a,b], and G is the vector such that f; are increasing function,
Ni

i=1,...,j, and f; are decreasing functions for alli= j+1,...,n. Then

GoF ¢ X[““"” [a,b].

1j]

1.2 Convexity of a mollification

In this book we rely heavily on mollification technique. This is just tool that will allow us
to build smooth approximations to given functions.

Definition 1.9 The function n € C*(R),
L
n(x): CeXp(X271>, XSI,
0, x> 1,

where C is a constant such that [ 1(x)dx = 1, is called standard mollifier.
R

The graph of this function is shown below.

A
-1 1 ;
For each € > 0, let
X
met) =0 (5).

and
I ={x el dist(x,dI) > €} .

Definition 1.10 Ler I be an open interval in R. For a locally integrable function f : 1 — R
its mollification is

fe(@) = (e f)(x), x €L,

fe) = [ e—yme)ay = [ FOInete—)dy, x€ .

Proof of the next theorem can be found in [14].



1.2 PREFACE

Theorem 1.4

(i

) fe €C7(I).

(ii) fe — fae ase—0.
)
)

(iii) If f € C(I), then fz — f uniformly on compact subsets of I.
(iv) If1<p<ecoand f € L) (I), then fe — f in L} (I).
Theorem 1.5 [f function f is convex, then its mollification f; is also convex.

Proof. Forxj, x; € I, A €0,1], we have

fe G (1= A)x /f (A1 + (1= 2 =) e (9)dy
= / £ =)+ (1= 2) (2= ) M)y
/ [ f =)+ (1= A)f = V)] me (3)dy

_//lfxl ey dy+/1— )£ (2 = ¥) e (y)dy






Chapter

The weighted energy
inequalities for convex
functions

2.1 The weighted square integral inequalities
for the first derivative of the function
of a real variable

We consider the pair of twice continuously differential functions f and g defined on the
closed bounded interval [a,b]. We assume that the function g is convex and the following
requirement is satisfied:

If"(x)| <g"(x), a<x<b. @.1)

Let us introduce a family of nonnegative twice continuously differentiable weight functions
H : [a,b] — R which satisfy the following conditions

H(a)=H(b)=0, H'(a)=H'(b)=0. (2.2)

Theorem 2.1 Let f, g : [a,b] — R be two twice continuously differentiable functions
which satisfy the requirement (2.1) and let H : [a,b] — R be arbitrary nonnegative weight

7



8 2 THE WEIGHTED ENERGY INEQUALITIES FOR CONVEX FUNCTIONS

function such that condition (2.2) is fulfilled. Then the following inequality is valid

b
a<t<b

Proof. Using the integration by parts

/b( E/b x)H" (x)dx — /f " (x)H (x)dx
<3 /b ' (x)dx+ / FWILF" W) H

PR (dx+ sup |f(r |/|f” )H ()

a<t<b

a<t<b

(repeated int. by parts) =

a<t<b
a

[ rwrnwas | [(22) 4 Com rsco] o

b
/
/b PR @dx+ sup |£0) / (H (x)dx
/

PR Wdx+ sup [£(0)] [ gH" (v

(2.3)

(2.4)



2.1 THE WEIGHTED SQUARE INTEGRAL INEQUALITIES FOR... 9

Corollary 2.1 Under the same conditions as in the Theorem 2.1, the following bound is
valid

b

1
J ) Har < 171- (3151, + el ) 1"l @s)

where 1 < p < oo, and p and q are conjugate exponents.
Proof. We apply Holder inequality to the right-hand side of estimate (2.3).

Remark 2.1 Ler us notice that dominance (2.1) is equivalent to the existence of decom-
position of the function f as the difference of two twice continuously differentiable convex

functions, fi and f>, such that, f(x) = fi(x) — f2(x), a <x <band g(x) = fi(x) + fo(x).
Indeed, | f" (x)| < g"(x) is equivalent —g" (x) < f"(x) < g"(x), that is,

f1x)+8"(x) =0, g'(x)—f"(x) > 0.

The latter means that the functions

A = 5@ 80, H0 =50~ 10)

are convex functions such that
f@)=f0) - fx),  gkx)=filx)+f2(x). (2.6)

Conversely, if fi and f> are two twice continuously differentiable convex such that (2.6) is
valid, then it is obvious that we have dominance (2.1).

This remark suggests to write inequality (2.5) in a different form:

b
1
[ = pPH@ < 1A - Alle | 510 £,

a

+ i+ Ll H (|4, 2.7)
where 1 < p <o

Corollary 2.2 Let fi and f, be twice continuously differentiable convex functions defined
on a closed bounded interval [a,b] and let the weight function H be equal to

H(x) = (x—a)*(b—x)*, a<x<b.
Then the following estimate holds
b

[ e < 15— -2 15+
= 2805 plldb—a) 29

9



10 2 THE WEIGHTED ENERGY INEQUALITIES FOR CONVEX FUNCTIONS

Proof. We have
H"(x) = 12x*> — 12(a + b)x + 2(a*+ 4ab + b?),

and then,

/|H" 2(b—a) /|6u 6u+1|duf4\/_(b a)’.

Finally, taking into account the latter expression in estimate (2.7), we come to the desired
inequality (2.8). O

Remark 2.2 Comparing the result stated in Corollary 2.2 with Theorem 2.1 from K.
Shashiashvili and M. Shashiashvili [50], we come to the conclusion that the constant factor

33

is twice less than the constant factor obtained in the latter paper.

2.1.1 The weighted square integral estimates for the
difference of derivatives of two convex functions

Now we consider two arbitrary bounded convex functions f and g on an infinite interval
[0,0). Tt is well known that they are continuous and have finite left and right hand deriva-
tives f'(x—), f'(x+) and g'(x—), g'(x+) inside the open interval (0,e0). We will assume
that there exists a positive number A such that if x > A, we have

[fa=)l<C gl <C 2.9)

where C is a certain positive constant.
Let us assume also that the difference of the functions f and g is bounded on the infinite
interval [0, o0):

sup|f(x) —g(x)| < ee. (2.10)

x>0

Introduce now the family of nonnegative twice continuously differentiable weight func-
tions H (x) defined on the open interval (0,c), which satisfy the following conditions:

lim H(x)=0, limH(x)=0, lim H'(x)=0, limH'(x)=0, (2.11)

x—0+ X—o0 x—0+ X—o0
and
[+ g@DIH"()ldx < . (2.12)
0

Theorem 2.2 For arbitrary bounded convex functions f and g defined on [0,0) satisfy-
ing conditions (2.9) and (2.10) and for any nonnegative twice continuously differentiable
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weight function H, 0 < x < oo, which satisfy conditions (2.11) and (2.12), the following
energy estimate is valid:

=3

[ ) = ) P < S sup 09~ (0] [(1709] + e DIA" (). 213
J K

0

Proof. We will prove the theorem in two stages. In the first stage, we verify the validity of
the statement for twice continuously differentiable convex functions satisfying conditions
(2.9) and (2.10), and on second stage we approximate arbitrary convex functions satisfying
the same conditions by smooth ones inside the interval (0,o0) in an appropriate manner.
Afterwards we will pass with a limit in the previously established estimate.

Let the function F be defined as

Fx)=f(x)—g(x) ~ 0<x<e.

Then F is twice continuously differentiable inside the infinite interval (0,ec) and at point
zero, it has finite limit F(0+).

Consider the following integral on a finite interval [J,b] and use in it the integration by
parts formula (here § and b are arbitrary strictly positive numbers),

b b
| / F/(x)(FH) (x)dx = F'(x)F (x)H () ‘I; / F"(x)(F (x)H (x))dx
S 1) ,
=F(b)F'(b)H(b) — F(8)F'(5)H(S) / F"(x)F (x)H (x)dx
’ (2.14)
The absolute value of the last integral
b b
[Fr@FHEE < swp [F)| [ 1500 - ¢ H(x)ax
5 S<x<b
b
< swp F@| [(F10+' @HWE  @15)
5<x<b

since f(x) >0, g"(x)>0,for 0<x < oo.
Transforming the integral on the right-hand side of inequality (2.15),

b b
[0+ g @ H = (7 @)+ L DHE)|, ~ [(70)+ £ () H (e
9 S
b b b
= (M@ OHW| |~ (@) +g@DH W+ [(76)+ )" (e
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If we substitute the above expression in inequality (2.15), we obtain the estimate
b

/F”(x)F(x)H(x)dx

5

< sup |F(x)|{|f/(b)+g/(b)|H(b)
5<x<b

+ 1f'(8) +&'(8)H(8) + | £(b) + g (b)||H'(b)]

b
+ [+ el wlas .
[

Thus, from equality (2.14), we come to the following bound:

b
[ FWERY Wa < IFOF )+ FO)F 3)/H(E)
S

+ sup IF(X)I{If'(b)+g’(b)lH(b)+ .f'(8) +¢'(8)[H(5)

5<x<b
b

U0+ eIH O+ [ 170+ Wlax ). 216
S

On the other hand, since

b
F'(x)(FH)' (x)dx — %Fz(b)H’(b)| + %FZ(S)H/((S)dx—i— % / F2(x)H" (x)dx (2.17)

[

Using inequality (2.16) in the expression (2.17), we arrive to the estimate

b
[P )PS0 H 0)] + 5 F ()| (8)] + [F(5)F () H1b)
1)
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<x<

13

b
+F(8)|F'(8)H(8)+ sup IF(X)I-{%/(If(X)|+|g(X)|(IH)”(X)IdX)
9 b 5

+1f'(0) + &' (D) |H (b) +|f'(8) + ¢'(8)|H(8)
+£(b) +8(B)[|H (D) +1£(8) + 8(8)H'(5) }

(2.18)

It is well known that any convex function is locally absolutely continuous (see, e.g., [59]

Proposition 17 of Chapter 5) that is,

flxa) = fx1) Z/f/(u—)du, 0<x; <xp <oo.

(2.19)

As the lefthand derivative f’(x—) of the convex function f is nondecreasing function, we

have

=) <fu=)<fllx—), if 0<xi<u<x<eoo.

Therefore, from (2.19), we find that

=)0 —x1) < fx) = fxr) < f (=) (2 —x1),

where 0 < x] < xp < oo,
Taking x; = x, xp = 2x, we get

f(x=)x < f(2x) — f(x) forx>0.

On the other hand, letting x; \ 0 in inequality (2.20), we have
fx2) = £(0+) < f(x2—)x2,
that is,
fx) = f(0+) < f'(x—)x, x>0,
Ultimately, we obtain the two-sided inequality
F@) = f(0+) < f/(x—)x < f(2x) = f(x) forx >0,

which gives (also for the function g)

li "(x=)=0 d 1 '(x=)=0.
Jg xf6o) =0 and - lig ')

By equality (2.19) and using condition (2.9), we obtain the bound
@) < |f(A) <C(b—A) <[f(A)[+Cb A<D

But since

(2.20)

2.21)
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Therefore we can write, if A < b

o) < rwa oo e) < (Lol e
and similarly, if A < b
|g(b)H/(b)| < ('gEA—A)' +C)b|H/(b)| forA <b. (2.23)

Using condition (2.11) and bounds (2.22) and (2.23), we get

Tim F2(b)[H'(b)| < sup [F(x)[Tim (|f(b) + g (b)) (|H'(D)]) = 0,

b—eo 0<x<eo

since
E(If(b) +g(b))(IH'(B)]) = 0.
Moreover, from conditions (2.9) and (2.11), we find

Jim F2(8)|H'(8)] = (f(0+) — (0+)))* Jim |H'(8)| =0,

T F(0)F(b=)|H(b) < sup [F([Tm (/' (b-)] + ¢ (b)) (1H (b))

0<x<eo
<2C sup |F(x)|limH(b) =0, (2.24)
0<x<eo b—eo

Jim (| (6=)]+1g' (b=)D(|H()]) < 2Clim H (b) =0,

ﬁm& +g(8)||H'(8)| = |(f(0+) +g(o+))|ﬁ|y(5)| —o.

Using the mean value theorem, we have

H?) _H©) _5H(O+) =H'(vg), where0 < vs <,

therefore from condition (2.11), we deduce

H
lim —— =0. 2.25
SLI(I)IJr o) ( )

Using the limit relations above and (2.21), we find

T [F(§)F/(5-)H(S) < sup [F(0)]) Tim |£'(6-) ~/(5-)IH(6)

0<x<oo
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H(S H(S
< s [P T (18701700 415031 ) =0, 220
0<x<eoo
and similarly
Tm [f(6—) +5/(6-)|H(8) =0. (2.27)
5—0+

Now, in inequality (2.18), we pass with limit when b — e and § — 0 . Obviously, the
left-hand side of the inequality increases and the right-hand side is bounded, when b — oo,
0 — 0, therefore the left-hand side also converges to finite limit, so we come to the required
estimate (2.13).

Next we move to the second stage of the proof. Consider two arbitrary convex functions
f and g defined on [0,), satisfying conditions (2.9) and (2.10). We have to construct
the sequences of twice continuously differentiable (in the open interval (0,e)) convex
functions f,, and g, approximating, respectively, the functions f and g inside the interval
[0,°0) in an appropriate manner. To construct such sequences, we will use the following
smoothing function:

]

p(x) = Cexp[xxiz]; 0<x<2,
0; otherwise,

where the factor C is chosen to satisfy the equality
p(x)dx=1.
Define for x € [0,00), n € N

1) = [ mp(ntx =) fO)a.
0

g0lx) = [ mp(nlx—y))g(r)dy. (2.28)
0

For arbitrary fixed § > 0 consider the restriction of functions f, and g, on the interval [§, D]
and letn > 4/§. Then nx > 4 for x € [3,b].
After we perform in (2.28) the change of variable z = n(x —y), then we find

Tu(x /p X*— dZ,
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Since the function p is equal to zero outside the interval (0,2), we can write

2
fi0) = [p@r (x-2) d
0
2
&)= [P (x-)dz (2.29)
0

ifxe[8,b],n>4/6.

From definition (2.28), it is obvious that the functions f, and g, are infinitely differentiable,
while their convexity follows from the expressions (2.29).

Now we show the uniform convergence of the sequence of functions f, to the function f
on the interval [0, ] (similarly, the uniform convergence of g, to g). For this purpose, we
use the uniform continuity of the function f on the interval [%,b]. For fixed € > 0 there

exists 3 > 0 such that we have
. < 1)
[f)—flx)| <e iflx—x| <8, x,xne€ {E,b}

Take n > max{%,%}. Then for 0 <z <2andx € [8,b], we get

§min{ }, X —
z

‘f( *Z> ff(x)’ <e fornzmax{%,%}

0
> —.
-2

S~
S &

)| O

Hence

and consequently

0 =5 = | [ @) (7 (x- ) o)) < & 2.30)
0
for € [8,0] ananmax{%,%}. (2.31)

Next we need to differentiate (2.29). For this purpose, we will use the following in-
equality ( [18], page 114) concerning convex function f(x) and its left-derivative f”(x—)

flx2) = flx)

§f/(x27), 0<x; <X <oo.
X2 — X1

fa—) <

Now, if we subsitute
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where 0 < h < %, we have

(- 2n) - ) LRI (-2 )

forxe[3,6],0<2<2,0<h<$, andn>%.
It is well known that the left derivative of the convex function is nondecreasing and, since,

we can write

This shows that the family of functions

PR o ¥ )

is uniformly bounded by the constant D = | f'(b—)|+|f'(§ )| if x € [§,b], 0<z<2,0<
h< %, and n > (%)
Using expression (2.29), we can write

) = Folx =) :/Zp(z)f(x—ﬁ—f(x—%—h)

h
0

Taking limit as /4 tends to zero and using dominated convergence theorem, we obtain the

formula
2
" () = / _<_
n(X) = b/p(z)f ((x , ))dz (2.32)
forx € [5,b] andn > %.

Using (2.32) let us show that for fixed x € |8, b], the sequence f;(x) converges to the left-
derivative f’(x—).

We have
- i) = [ pio (F((-2-))-re)a e

where n > 5. Choose arbitrary € > 0. Since the left-derivative f'(x—) is left continuous,
we can find N(¢) such that (for 0 < z <2):

f<<x§>> f’(X)‘ <e ifn>Ne).
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Then we have

2

)= flx—) = /p(z)edz =€ if xe[5,b], n> max{%,N(s)} ,
0
that is,
,}ij};lofr/l(x):f/(xf)v X e [5717]
Similarly,
lim g),(x) = ¢'(x—)if x € [8,b]. (2.34)

n—oo

Now we apply (2.18) estimate for the function F,(x) = f;,(x) — gx(x) on [8,5],

b
JE@ P < SR OH )]+ 3F)|H (6)]+ E(p)E () Hb)
5

+ |FZ(8)|F,(8)|H(8)+ sup |Fu(x)|
5<x<b

b
% {5 [ 1A+l () 0ld) + L1 (0) + 8, () H (D)
S

+ [fu(8) + gn(8)H'(8)}. (2.35)

Forx € [0,b], 0<z<2andn> 4 we have

A8 ) oo

Multiplying this inequality by p(z) and integrating by z over (0,2) using (2.32), we have

and then

L@ 1 (6-)]+

Similarly, for the functions g, (x), we have

g ()| < [g'(b=)| +
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()
ifx€[8,b]andn > 3.

Hence the sequence of the functions F, is uniformly bounded on the interval [§,5] for
n> %. Thus we can apply the bounded convergence theorem in the left-hand side of
inequality (2.35). Letting » to infinity, we will have

From the latter bounds, we obtain

(B < [f' (=) +18'(b=)| +

b
[P )P < SPO)H G)]+ 3 G)H (3)] + [F@)F (b-)]Hb)
9

+ |F(8)|F'(8-)|H(8) +
b
3
HIflle= < {3 /(If(X)I +18()[(1H)" (x)|dx) + |f'(b—) + &' (b—)|H (b)
5

+ [f(8-)+8'(6-)|H(8) +1f(b) + & (b)||H'(b)]

+ |f(8)+g(8)H'(8)}. (2.36)
The left-hand side of inequality (2.36) obviously increases when b — o0 and § — 0 and the
right-hand side is bounded by the assumption (2.12) and the limit relations (2.24)-(2.27).

Therefore passing onto limit » — oo and § — 0 in inequality (2.36), we arrive to the desired
estimate (2.13). U
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2.2 Weighted integral inequality for the second
derivative of 4-convex function

2.2.1 The case of smooth 4-convex functions and
mollification of an arbitrary 4-convex function
Theorem 2.3 Let f; € C4(I), i=1,2, be the two convex and also 4—convex functions,

and let h: I — R be the non-negative concave, weight, function having the following prop-
erties

h(x)=h'(x) =h"(x) =h"(x) =0, x € II.

Then the following energy estimate is valid

X*)Cz
[ 1500 = st P awax< [ |LEZDOE s - g (5094 500 | 1
1

1

(2.37)
Proof Let f(x) = f2(x) — fi(x).
Then
J (@ ntds /v<nv<mwws
I I
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:/f(x)f( X)dx— 2/f PO () dx-+ %/
1

< Il ./ |f )+ 2117 [ 177604 )

3 [P wax (2.38)
1
Since
90| = 10 - A < A0+ A0 = AP @ + A0
and
=A@ =AW AW+ AW =AW+ 2.

Also 1" (x) < 0o |h”"(x)] = —h"(x). Hence, (2.38) is less or equal to

£l [ (o) + AW Ihdx =21l [ () + i) On x

1 1

l\.)l'—*

ol

Further, applying integration by parts four times on the first and twice on the second inte-
gral, we get

11~ /( 20+ AGDA Wdx =2l [ () + A dx+ 3 [ P wax
1

1

-/ (LI AOIE s e (5 0+ o) | 9 )

Remark 2.3 If we take supremum in (2.37), we will obtain

/ 100~ WP < |31~ A=+ 12 All- (- + 1) [ [0 0]

1

Now we take the mollification of arbitrary 4-convex function. Let f: 1 — R be ar-
bitrary 4—convex function that is also 2—convex function. Then by the property of the
differentiability of the 4—convex function f is twice continuously differentiable.

We take function, mollifier, 6; € C*(R) that has support on interval I, = (—¢€, €)

Cexpr—, x<e
() = {0 e x> €,

where C is a constant such that
/ O¢ (x)dx = 1.
R
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Now using O, as a kernel, we define the € —approximation of f on I as

:/f(x—y)eg(y)dyz/f(y)es(X—)’)dY-
R R

Since 6; € C*(R), so fe € C*(R).
If f is a continuous, then f; converges uniformly to f in any compact subset K C I, as
e—0.
Also convexity of f implies the convexity of f¢, as is showed in Theorem 1.5.
Even more simply, in this case, convexity of f; follows from

7 / 7= )0c(2)dy 0.

Quite similarly, if f is 4—convex, then f; is also 4—convex.

2.2.2 The case of an arbitrary 4-convex function

Now we will prove that the second derivative of continous 4-convex function are square
integrable with respect to weight function.

Theorem 2.4 Let f: I — R be convex and 4—convex function and let the weight function
h:1— R asin Theorem 2.3. Then the followinng hold

/ !f"(x)!zh(x)dx < oo

Proof. Let I, C I, k € N be an increasing sequence of subintervals such that Ug> 1l = 1.
Now we apply the inequality (2.37) for increasing sequence of intervals I C I such that
Ui>11x = I and for the functions fi(x) =0, f2(x) = fiu(x), h = hy, where f,, and hy, are
the approximations of f and & on I,,,, respectively.

First, for all k, [ > 1.

2
[ 1@ )z < 3 Ul / 0 a
Ik y1

Taking limit m — oo
| 2 3 2
J 17 P b < S 1, [ 0]
I 1

Since Iy C Ii;, so writing left hand integral on the smaller interval [, we get

J 1P a3 17134, [Pt

I
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If we let! — oo 3
2
/ |f//(x)| h(x)dx < E |f(x)|124°°(1) / ‘h(4)
I l

Left hand side is increasing and bounded, so it has finite limit
/ |f”(x)|2h(x)dx < oo
)i
O

Corollary 2.3 Let f1, f> be both convex and 4-convex functions on [a,b]. Let the weight
function h satisfies the conditions of Theorem 2.3. Then we have

1
[ 150 - P < (J1= Al + L=l A+ Lalir) ) 169

Proof. The proof follows from Theorem 2.4, using mollification technique, and Remark
2.3.
O

2.3 The weighted energy estimates for the
third derivative of 6-convex function

2.3.1 The case of smooth 6-convex functions and
molification of an arbitrary 6-convex function

Let & : [a,b] — R be the weight function which is non-negative and twice continuously
differentiable and satisfying

h(a) =h(b) =0, K (a) = ' (b) =0. (2.39)

The proof of the following four lemmas can be found in the paper of Hussain, Pecari¢, and
Shashiashvili [32].

Lemma 2.1 For smooth convex function f : I — R and non-negative weight function h :
I — R, which satisfies (2.39), we have

X 2
Jrwrnas< [ |55 40 9w

1 1
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Lemma 2.2 For smooth concave function f :1 — R and non-negative weight function
h: 1 — R, which satisfies (2.39), we have

/ (f' (%)) h(x)dx < / [@| f||Lm] 1" (x)|dx.
1 1

Lemma 2.3 Let f: 1 — R be a convex and 4—convex and let h : I — R be the non negative
smooth weight function as defined in (2.39) and satisfying the condition

W'(x)<0Vxelandh'(x)=h'(x)=h""(x)=0 Vxeal.
Then the following estimate holds
2
[ [ (Y5 s )
1 1

Lemma 2.4 Ler f : 1 — R be a concave and 4—concave and let h : I — R be the non
negative smooth weight function as defined in (2.39) and satisfying the conditions h"(x) <
0, x€land W (x) =h'(x) =h"(x) =0, x€& dl Then the following estimate holds

[ ennear< [ (L5541 ()1

we will start by the following theorem:

Theorem 2.5 Let f, F € C%[a,b] and F is a convex, 4—convex and 6—convex function
such that the condition

®(x),  x€(ab) (2.40)

are fulfilled. Let h: I — R be a non negative 2—concave, 4—convex weight function satis-

Jying
M x) >0 if xel
H'(x) <0 if xel (2.41)
h(x) =W (x)=h'(x)=1"(x) =¥ (x) =h®(x) =0, xecal.

Then the following energy estimate is valid:

/(f/”(x))zh(x)dx < / (%(f(x))er §||f|L°°F(x)) W) ()] dx.
1

1
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Proof. We apply integration by parts on

1= [ (") hdx = [ 17" ()

1 1

/(f”’(x))zh(x)dx - ./fH(X)f(é‘) (x)h(x)dx — /f”(x)fm(x)h/(x)dx. (2.42)
1 1 1

We proceed with integration by parts on the first integral of (2.42)
1= [ £ wneds+ [ 1@ 0r @dx— [ 0f" 0n ()
1 1 1

Now we consider the second and the third integral on the right side of the latter expression
(2.41), we get

—/f(x)f( X)dx— /f N (x)dx — /f dx
/ PP N / £ (O ()

Proceeding in the similar way and using condition (2.41) and the definition of weight
function, we obtain

—/f(x)f( dx+/f XN (x)dx
2/ ( K ) Hi(x)dx - / <f’(X)>2h(4>(x)dx

<l / SO W)+ £ / PO (W

2/ ( "( ) W' (x)dx — / (f’(X))zh(‘”(x)dx (2.43)

Using the integration by parts formula six and four times respectively on the first and
second integral of (2.43) respectively, we have

1<I\flle- / FORO) (<) + 1= / £ (x)dx

2

2/ ( ' ) H' (x)dx — / (f/(X)) 1™ (x)dx. (2.44)

1
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Now we use Lemma (2.3), by replacing & with 4", and apply it on

/ ( f”(x)) zh”(x)dx.

1

We get

2
ST - e () [ 249

1

Now by taking the last integral of (2.43) and using the Lemma 2.3 by replacing A with #(4),
we get

2
JTES s s (|0 s (2.46)

1

Inserting (2.45) and (2.46) in (2.44), and also using condition (2.40), we obtain

/ (f"/( ))zh( )dx < [Hfle /F ——sup|f I/F
61~ / Flx /< >] oy
/(W*g”ﬂw)h@u).

1

_|_

IN

O

The get the following weighted energy inequality for the smooth 6—convex function f
can be obtained simply by taking F = f in the previous estimation, where f € C° [a,b] and
f and h satisfies the conditions of the last theorem.

X 2
[irrwraas< [ (2543 o) )1y
I 1

The next result describes the energy estimate for the difference of two 6-convex functions.

Corollary 2.4 Let fi, f> € C%[a,b] be the functions which are convex, 4—convex and
6—convex. Let h: I — R be the weight function satisfying the conditions of the Theorem
2.5. Then the following energy estimate is valid

5 5
/|f/// (x) Ph(x)dx < (Zlfz—f1|§m+§|f2—f1|um

><(|f1|Lw+||f2|Lw))|h<6><x>|u. 0.47)
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Proof. Take f = f> — f1 and F = f; + f> in Theorem 2.5 to get

/// 111 5 5
/ 0= WPawax < [ |F1A60 - AW+ 31~ Al

1

x (|f2|Lm+|f1||Lm)]h<6><x>dx.

We conclude the section with the following remark.

Remark 2.4 Let f, f> and h be the same as in the last theorem. Then using the Hélder
inequality, we have

/ ') = A" @ P0dx < | F i [ (0

1 1 _
Where F—i—;—lcmd

Flw) = #30= All (A 0+ 7).

2.3.2 The case of an arbitrary 6-convex function

In this section we can use the mollification technique to prove previous results for arbitrary
convex, 4—convex and 6-convex function.

We use the mollification of arbitrary 6-convex function in [a,b].
Let f be an arbitrary convex, 4-convex and 6—convex function. Then by Theorem 1.2
f € C3[a,b]. Let 6, € C*(R) be mollifier,

0c (x) = { Cewp (Jﬁ)’ x<e,

0 x> E,

where C is a constant such that
/ O¢ (x)dx=1.
R

Now using O, as a kernal, we define the convolution of f and 6, as

:/f(x—y)eg(y)dyz/f()’)ee(x_)’)dy
R

Since 6, € C*(R), we have also f € C”(R).
If f is continous, then f; converges uniformly to f in any compact subset K C I,

sup| fe (x) = f(x)]

xek

e—0
_—

0.
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For m € N, let f,,, denotes € = %— mollification of f. Then, specially,

m—oo

sup | fu(x) — f(x)] —— 0.
xekK

Since f is convex, 4-convex and 6—convex function, we can, similar to Theorem 1.5, show
that its mollification f; (specially f;,) has the same properties.

Theorem 2.6 Let f be convex, 4-convex and 6-convex function on an interval 1. Let hy
be such that
(x>0, B(x)<0, xel

and

W) =) =B () = () =) () =0, xeal,
where lim hy(x) = h(x). Then the following hold:

k—soo
/ |fm(x)|2h(x)dx < oo,
1

Proof. Writing the inequality (2.47) for the intervals [.; C I and for the functions f; =0
and f, = f,;, where f,, is the approximation of f, we get

15
| / 20 e (x)dx < 7 WnlZ=s, ) % / ’hfﬁ,(x)’dx (2.48)
1

Iyt

Taking limit m — oo in (4.40), we have

1 mete dx<—|\f||Lm,M/’hk+, )| .

l/a8]

Since Iy C Ii;, writing left hand integral for smaller interval I;, we get
/ 0P e () < 2171y, / ) .

If now let [ — oo, we get
1@ < 21 |Lm/\h o).
it

Since left hand side is increasing, for k € N, and bounded, by dominated convergence, we
have finally

| / £ () h(x)dx < oo.
1
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Theorem 2.7 Let f; i = 1,2 be two convex, 4-convex and 6-convex functions over the
interval I. Then the following holds

/// /// 5
[P <318 AR+ 3 1= Al

(1l 1Al )| [ [1900]ax, a9
1

where h is non-negative weight function satisfied the conditions in (2.39)

Proof. For 6-convex functions f;, i = 1,2, consider the smooth approximations f,,;, i =
1,2.

For the interval Iy, there exist an integer my.; such that f,, ;(x) converges uniformly to
fi(x) i=1,2. and also f,,;(x) is smooth for m > my.,.

Now writing the inequality (2.47) for the function f,, 1 and f,, > over interval I;;, we get

5
[ 1)~ As O s < vt Uz o -

Lw)] . (2.50)

5
43 Wzl Wl

where ¢y = [
/N
Now taking limit m — oo we obtain,

1) (x) ‘ dx.

5 5
/|f2”/(x) 7( |h dxgck+l|:1|f2_f1|%""(Ik+1)+§|f2_f1|L°°(Ik+l)

x <|f1 e + 1l )} . @s1)

Now writing left hand side integral for the smaller interval [ C I;y; and taking limit as
[ — oo, we obtain

111 111 5
[ 180w e <e. |31 Alk
Iy

5
+§|f2—f1|m1)<|f1|Lw(1)+|f2||Lm(1))]- 2.52)

Since we have

/|f,”’ x)dx <o, i=1,2,

Taking limit as k — oo we obtain the required result. o
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2.4 The weighted energy estimates for
the (2,2)-convex function

The natural generalization of convex functions are sub-harmonic function and similarly the
generalization of 4-convex function is the sub-solution of the fourth order Laplace equation
ie,
o*tu  d*u *u -
ot + o +'"+8x§1‘ >

The definition of divided and finite differences can be used in the definition for convex
functions of several variables. This type of definition was firstly introduced by Popoviciu
in [57].

0.

Theorem 2.8 Let f: 1) x I, — R be (2,2)—convex such that f(x0,y0) >0, fyy(x0,¥0) >

0, and fe(x0,y0) > 0 for every (xo,y0) € I X .
Let h: I x I — R be a non-negative weight function such that

h(x0,y0) = hx(x0,¥0) = hy(x0,Y0) = hxx(X0,¥0) = hyy(x0,¥0) = hay(x0,¥0) = 0, (2.53)
for every (xo,y0) € (I x ).
Then the following holds

1
/ (fxy)zthdy < / <3|f||wa+ Efz) hyxyydxdy. (2.54)

Iy xI L xh
Proof. First,
1= [ o)hasay= [ folfohldsay

Iy xI Iy xI

and then using integration by parts formula with respect to y, we have

= [ flfohydxdy=— [ fifoyhaxay— [ fifohdrdy

Iy <D Iy xIp I <L
1 ~
=— / fefepyhdxdy — 3 / [(fx)z]yhydxdy.
I xh I %h

Using integration by parts on first integral with respect to x, we have
1
/ f (fxyyh> dxdy - E / (fxz)yhydxdy
Iy <l . Iy xIp

" 1
= / [ foyhydxdy + / f fogyhdxdy — 5 / [(fx)z]yhydxdy. (2.55)

I} xh I <1 I} xh
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Taking first integral of (2.55) and using integrating by parts formula with respect to y, we
have

/ (fhx)fxyydx‘iy =— / Sy [fhx]ydx‘iy = / Sy fyhxdxdy — / Sy fhyydxdy

I} xh I} xh I} xh I} <
== / Syfoyhydxdy — / ffohydxdy
Iy xI L .><]2
1
=5 / [f7 ) chxdxdy — / f fohxydxdy (2.56)
Iy xI I xh

Using (2.56) in (2.55), we get

/ (foy)*hdxdy = f% / ((fy)?)xhxdxdy — / f foyhaydxdy

L xh Iy xI I xh

i
+ / ffopyhdrdy =3 / (f:)?)yhydady. (2.57)

I xh Iy xI
Now we take the first integral of above and apply integration by parts formula,
1 1 1
=5 [ (Phasdy = 5 [ (hPhudsdy =3 [ flphldxay. @58
L xI L xI I xI

Integrating by parts with respect to y, we have

3 [ (Pdnday

1 1
3 / Flfyhxydxdy = ) / FUfyyhax + fyhaxy|dxdy

L xh Iy xI I} xI
1 1
=3 / fhhdady = 5 / 2]y hoydixdy
I xh Iy xI
1 1
=3 / Fhyhodxdy + 7 / FPhyyydxdy. (2.59)
I xh Iy xI

Now if we take the 4th integral of (2.57) we get similarly the result as in (2.59)

1

1 1
) (fxz)yhydxdy =-3 / Sfhohyydxdy + 1 / fzhxxyydxdy. (2.60)

I < L <L Iy xI
Now using (2.59) and (2.60) in (2.57), we obtain
1 1
/ () Phxdy = 5 / Fhihedrdy + / Fhgsyydxdy — / Fhohsydxdy

I} xh I} xh I} xh I} <

1 1
+ / f frooyyhdxdy — 3 / f frchyydxdy + 1 / P hyyydxdy.

I < I} xh I} xh
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Therefore

1 1
(fo)?hdxdy < = [ |fllfilhadxdy+~ [ fPheyydxdy
2 4

I} xh I} xh I} xh

+ / |f 1| foy [ Pxydoxdy + / |F1| froxyy [ xdy

Iy xI I xh

1 1
+§ / |f||fxx|hvdedy+Z / fzhxxyydxdy

I} xh ]1><]2

1
< Wl [ Phesdy 5 [ Fhogydsay

I} xh ]1><]2

+ £l /fhxxydedy+|‘f||Lw /fhxxyydxa'y

Iy xI L xI

1 1
#5100 [ hodsdy+5 [ Phoydsdy

L xh Iy xI
1
= / (3’||.IC|L°"fWL Efz) Pocxyydoxdy.
Iy xI

O

The next result will give the similar inequality for the difference of (2,2)—convex
functions.

Corollary 2.5 Ler fi: I, x L, — R, i = 1,2, be (2,2)—convex functions and let

821, 82 82
a—szp(xo)’ )=0 7a€(x07y )=0 - g (x0,50) > 0,

for every (xo,y0) € I} X Ip. If b : I} x I, — R is non-negative weight function that satisfies
(2.53), then the following energy estimate is valid

PRV
[ (- owihasay< [ (31— silie it )+ LD v

I} xh I <



Chapter

The weighted energy
estimates for the vector
valued functions

3.1 The weighted reverse Poincaré-type eEstimate
for the difference of two convex vector functions

In order to understand the use of inequalities in optimization and uniform approximations,
we refer [11] and [4]. Usually payoff function of the various options (for example, Euro-
pean and American options) in mathematical finance is convex and this property leads the
corresponding value function to be convex with respect to the underlying stock price (see
for detail El Karoui et al. [36] and Hobson [28]). Traders and practitioners dealing with
real-world financial markets use value function to construct optimal hedging process of the
options. When the value function is unknown, they use the above property to construct
uniform approximations the unknown optimal hedging process. In this construction one
has to pass some weighted integrals involve weak partial derivative of the value function.
For this purpose, K. Shashiashvili and M. Shashiashvili [50] introduced a very particular
weighted integral inequality for the derivative of bounded from below convex functions
with a very particular weight function, with this they opened a new direction in the field
of weighted inequalities. Hussain et al. [32, 33] extended this work to a variety of con-
vex functions and subsequently applied to the hedging problems of financial mathematics.

33
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Saleem et al. [61] studied the weighted reverse Poincaré type inequalities for the difference
of two weak sub-solutions.

3.1.1 The reverse Poincaré inequalities for smooth vectors
and approximation of arbitrary convex vectors
by smooth ones

Let 4 : [a,b] — R be the weight function which is non-negative and twice continuously
differentiable and satisfying

h(a) =h(b) =0, h/(a) = h/(b) =0. 3.1
We state the following result of Hussain, Pecari¢, and Shashiashvili (see [32]).

Lemma 3.1 Ler f : 1 — R and g: I — R be a smooth convex functions, and h: 1 — R, a
non-negative weight function, which satisfies (3.1). Then

[0 -giear < [ [(Z2750) s supiro) oo
1

xel
I
< ()00 | .

The latter result gives the following estimate for n-dimensional convex vectors.

Lemma 3.2 Let F: 1 — R" and G : I — R" are two n—dimensional convex vectors on
interval I and h : [ — R is smooth non-negative weight function satisfying (3.1). Then the
following energy estimate is valid

JIF e -G si/[f’ B g g

1

x (filx)+ gi(x))] |1 (x)|dx. (3.2)

If f:1— R and g:I— R are concave functions on interval I then — f( and —g become
convex. Hence, we get the following result.

Corollary 3.1 Let f:1 — R and g : I — R be any two smooth concave functions on
interval I and h : I — R be a non-negative weight function as satisfies (3.1). Then the
following estimate does hold

[ o —gwneaes [ [(POTED) gl (o) +o0) o

Taking supremum on both sides of (3.2), we find
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Corollary 3.2 Let F : I — R" and G : I — R" be two smooth convex vectors and non-
negative weight function h : I — R which satisfies (3.1). Then the following estimation is
valid

[ 170 =G s < 3|31 sl +160) 80
I =

< (Ul + - [ o 63)

1

For concave n-dimensional vectors we have the following estimate.

Corollary 3.3 Let F : I — R" and G : I — R" are n-dimensional concave vectors on |
and the non-negative weight function h : [ — R satisfies (3.1) then

/|F gi/[f’ = LG

x ﬁ(x)+g,-(x))] |1 (x)|dx. (3.4)

The next theorem gives the reversed Poincaré inequality for the difference of vectors that

belong to X e [a,D]

Theorem 3.1 Let F: 1 — R" and G : I — R" belongs to x v [a,b] and h: I — R be a
nonnegative weight function satisfying (4.28). Then the followmg inequality is valid

firo-

J
+ [Z sup | £i(x) = ()| [/i(x) +i(x)]
- i Sup‘fi gi( )|
i=j+1x€el
X [ x)+ gi(x :|/|h// )|dx. (3.5)

Proof. Firstly
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+ HZH/(f, )2 h(x)dx.

Using Lemma 2.1 in the first sum on the right side of the latter expression, we obtain

2 (X)) — &i(X 2
[t neax < [ g sapli) - o)
1

1

< [ (50 -0 )

(3.6)
1
and Corollary 3.1 in the second sum, we get
2 2
fi(x) — &i(x)
[ (50 -gi)) nowar < [ [HOEL upl ) - )
T 7 xel
< [ (569- ) | W ias 6)
1
Combining the inequality (3.6) and (3.7) we have the required inequality (3.5) O
Corollary 3.4 Tuaking supremum of (3.5), we obtain the following inequality
/ ! o |1 2
[1F'e) -6 < 3 |5 1h-sili-
’ i=1
n
[2 R ()
/ I (x)|dx. (3.8)
1

Corollary 3.5 Let F : [a,b] — R" and G : [a,b] — R" be two twice continuously diffier-
entiable n-dimensional convex vectors, and weight function h : [a,b] — R

h(x)

= (x—a)(b—x)*, a<x<bh.
Then we have the estimate

, 4 n
[1F0-6' 0 hwar < 281 1s- i + 1 sl
7 i=1

x (||fi||Lm+||gi||Lm)] < (b—a)’. (3.9)



3.1 THE WEIGHTED REVERSE POINCARE-TYPE EESTIMATE FOR... 37

Proof. Note
4
Jiwelac=42 0o
1
and then using the latter value in (3.5), we obtain the desired estimate. O
We define the vector convolution for F(x) € x[[ljf]l’n] [a,b] in the following way: Assume
W
that
F(X) = (fl ()C),fz(x), ce 7fn(x))
is an n-dimensional vector and € = (g, &,...,&) € R".
By é— 0 we mean max{¢,€i,...,€&} — 0. Now, we define
0c (x) = (0, (x), 0, (x), - -, O, (x))
where
6, () =  “ePREg T bl <
0 it |x| > &,
i=1,2,...,n, where ¢; are the constants such that

)

/Ggi(x)dx: 1, i=12,...n

Now we define the convolution of F' and O, as

Fe(x) = F % 0g(x) = (fi % Ogy, fo % Oy, ooy fr % Og,)
where f; x Og, is defined as

for= [ =)0 )y
R

The vector F; is called mollification of the vector F.
If f; is continuous then f¢; converges uniformly to f; on any compact subset
KClie.

supl fe, () — filx)| S22 0

xek

which implies that
n
—0
—FP =¥ |fe — fiF =
i=1

uniformly on K.
1n
Now it easy to see, with similar reasoning, that F € xﬁ ][a,b].
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3.1.2 Existence of weak derivative and reverse Poincaré type
inequality for arbitrary convex vectors

Through out this section we use I = I(xg, ;) where radius ry is defined as

k+1
Ve = —<rI.
k+2
It is trivial that Iy C [y ; and U I, = 1.
k=1
We come to the following result.

Theorem 3.2 Let F : I — R" be an arbitrary convex vector. Then it possesses weak
derivative F' in the interval I = I(xo,r) and satisfies

/ IF' ()2 h(x)dx < o,
1

where h is the weight function satisfying (3.1)

Proof. Let us consider F¢, the mollification of the vector F.
Since F is continuous on interval /, we have

e—0
sup |fe.i(x) = fi(x)| —0,
x€ly,
for any closed interval [ C I.
Ife = %, m € N, the the above convergence can be written as

sup| fon,i(x) — fi(x)| =0.

X€Iy,

Since Iy C I for p,m € N, we write inequality (3.3) for the vectors F), and F,

. n 1 n
J 1E )~ B s < 3 3109 sl + 3 [pa) = i)

Iyt

(sl sl ) [0l 10
1

If we denote )
st = [ I (0)ldx
1

and
Cir = min Ay (x)],
xel

then we have

=R , , n 1 n
Ck+l/|Fp(x) _Fm(x)|2dx <k Y, §||fp,i(x) — funi |7+ et 2 || i (%) = fni (%] =
A i=1 i=1



3.1 THE WEIGHTED REVERSE POINCARE-TYPE EESTIMATE FOR...

Since

we have

. /
A 1 -5
I

X <||f,,,,-(x)||Lw + [ foni ()] )

pr’i_fnl7iHL7; . - 07 m,p — oo,
+

’ dx = lim

mpﬂwz/ pl

fml ))

x=0.

39

@3.11)

By the completeness of the space Le.(I;), there exist an n-dimensional measurable vector

such that

8k = (ng 18kt 7gk‘n)

Tim, 21/ fil

gkz ))2dx:0'

Let us extend gy, trivially outside the Interval I; by 0, and define

It is obvious that g(x)
We claim that

is the weak derivative of

g(x) = lim supgp;(x).

= gi(x) on interval Ij.

g(x) = (e1(x),82(x),- .., ga(x))

F(x) = (fi(x), (), fu(x)).-

To show this it is enough to prove that g; is the weak partial derivative of f;, for all i =

1,2,....n

To do this, let us take ¢ € C5'(I). Then supp¢ C I for some k.

Hence

Since

and

which implies

_ / ()9’ (x)dx

[ fni () = fi(%)];, =0
i = 8ill gy =0
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Thus, g; is the weak derivative of f; fori =1,2,...,n
Again, writing the inequality (3.3) for F = F;,, and G = 0, we have

Ll } [ 1w

Ly
Hence, we have

J Vet s < 3 (15l +3

Tit1

b n
[ 1P s < e 3 15
i=1

Iyt

1 2
+ =\ fml .
i

Taking limit as m — oo, we get

2
/ |F'(x)|” hpyrdx < crp ||f|\i‘;z

D+t

Since I C I, therefore

J1F/ ) uadx < cxsa |1FIE
Ik

In the latter integral, letting [ — o we find
/ [P/ hdx < e |IF 72 <

Since above integral is bounded for each k, so we have

L/!F%xﬂzh(@dx<:w.
1

Theorem 3.3 Let F : 1 — R" and G : I — R" be two arbitrary convex vectors that belongs
[i.7]

1

¢ %[jﬂ.n ’

[a,b] and let h : I — R be the nonnegative weight function satisfying (3.1) on
interval I, then the following estimate holds

ﬂVW*WW%MWSi
1 =

2
1fi = &illz-+ 1Ifi

| =

*giHLw

X (H.ﬁHmﬂ\giHLm)/lh”(X)ldX- (3.12)
1
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Proof.  For arbitrary convex vectors F' and G which are continuous, we take smooth
approximations Fy,; and G,,; m,i € N. Then, there exists integer my; such that F,,; is
smooth over the interval ;4 and F, ;(x) converges uniformly to F for m > my;.

Let us write the inequality (3.3) for the functions F,, | and F,, > on the interval I;;; as

) 1 n
J 19 = s Pl < [ 33 s~ gl
. i=1

Dt Tit1

n
+ 2 ”fm,i _gm,i|
i=1

=

x (|fm,i| 1o+ gl )} W/ ()ldx.

Taking limit m — oo, we get

[ 170~ G P ertax < [ 5505~ el
- =1

Ik y1 Ik y1

n
+ D fi—gill=

i=1

x <|.ﬁ|Lm+|gi|Lm)]|h”<x>|dx.
As I} C I, taking limit / — oo, we obtain
/ ’ 2 1 2
[P0 =GP mmax < [|33 15l
i 7 i=1
n
+ S Ifi— il
i=1

x (|.ﬁ|Lm+||g,»|Lw)]|h"<x>|dx
Using Theorem 3.2, we get

/ |F'(x) = G (x)* h(x)dx < .

By letting k — oo, we have complete proof of the theorem. O
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3.2 Weighted energy estimates for second
derivative of 4-convex vector

Similarly as in Section 2.1, the n-dimensional vector

F(x) = (fi(x), 2(x), e fu (%)) (3.13)
is called smooth 4—convex vector if
a* ,
Ef,-(x)zo, i=1,2,...,n. (3.14)

Let Y’j+ ][a,b] be the class of vectors having 4-convex function on its first j compo-

.. . . 1.j
nents and remammg components are 4-concave functions at interval [a,b] and Y’{ / | [a,b]
j+ln
be the class of vectors having 4-concave functions on its first j components and remaining

are 4-convex at the interval [a, b]. It is trivial that if F € Y]H . [a,b] then —F € Y " o [a,D].

Let & be the weight function which is non-negative 2- concave function in C*[a, b] satisfy
h(a) = h(b) =0, (a) = h'(b) =0, h"(a) = K"(b) =0, K""(a) = " (b) =0, (3.15)
fora<x<b.
We will start by the following theorem
Corollary 3.6 Let F:1 — R" and G : I — R" be the two smooth convex and 4—convex

vectors. Let h: 1 — R be the smooth non negative weight function which satisfies (3.15).
Then the following energy estimate is valid

JIGCRCCIRETES / (8D i i) - i)

7 xel
xm@+MMVWmm. (3.16)

Proof. On

M:

/ IF"(x) - G"(x)*h

1

Il
_

2
/ (ﬁ - )h(x)dx,

we apply Lemma 3.1. O
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Remark 3.1 Tuking the supremum of (3.16), we obtain

[ 1770 - 6" Pacar < 3|31 sl + 15 gl

Vi i=1
< (Ilh- + i) [ .
Remark 3.2 If F and G are 4-concave vectors, then using Lemma 3.1, we have

[1F"e=c"f ot < 3 | (8D 4 up o))
1 2

xel

x (fi(x) Jrgi(x))}h(‘l) (x)dx. (3.18)

Theorem 3.4 LetF: 1 —R" and G : 1 — R" be the two vectors that belongs to Yﬁf; g [a,b]
5.

and to x b [a,b], respectively. Let h: I — R be the nonnegative weight function satisfying
(3.15). Then the following inequality is valid

2 & (i) —gilx
[IF" -6 ncar < [ |3 ()~ 80" ) - 60 50 + )]
y 7 Li=1 i=1x€l

n

- 5 sl gi<x>|><[i<x>+gi<x>]}h<4><x>dx. (3.19)

i=j+1 Xl

Proof. We have

n 2
/ F"(x) — G () Ph(x)dx = / ( () — g (x ) hDdx  (3.20)
=17

1

. j]/< 7(x) — gl (x ) Hdx+ Y /( —gl(x ))zh(x)dx. (3.21)

i i=j+1y

Using Lemma 3.1 on the first integral, we obtain

2

[ (st negan < [ 3 VL0 —up ) o)

1 1
X (f,- (x) — g,-(x)) ] A% (x)dx. (3.22)
Similarly using the Corollary 3.1 on the second integral, we have the following inequality

(3.19)
[ (=) s < [ U9 g

el
7 X
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X (f,-(x) — g,-(x)) ] A% (x)dx, (3.23)

If we combine inequalities (3.22) and (3.23), we get the required inequality (3.19). O

3.2.1 The case of an arbitrary 4-convex vector

We will use the I for the interval I(xg, %), Xo is the center and radius ry is defined as

where
k+ 1

L L

Itis trivial that [ C [y and U Ly =1
k=1

Theorem 3.5 Let F : I — R” be a continuous 4—convex vector and let h : I — R be the
nonnegative weight function satisfying (3.15). Then

/|F” X)dx < eo.

Proof. Let F,, be the n%—molliﬁcation of F. If we write the inequality (3.17) for F = F,
and G = 0 and for intervals [;,; C I, we have

[ 5 |hk+,dx<22[|fml|L ]S b

Tit1 D+t

If we denote
Chal = / 'h,((i)l(x)‘dx,

Iyt

we have

3
J 1B s < 25 3 Ul

Tit1

Applying limit as m — oo, we have

3
JIF 0P oy < 2% 2 1403

Iyt

+l

Since I C [k+l SO

2 3c
J 1P P hsn)as < 252
Ik
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In the above integral make / — oo, we have
3¢
/|F" X)dx < 22 F ()2 <
O

Theorem 3.6 Let F': 1 — R" and G : 1 — R" be the two arbitrary 4—convex vectors that
belongs to Y ] [a,D] and also belongs to X[“Ji ][a,b]. Then the following inequality is
n Jj+1,n]

[j+1
valid

L
./|F”(x)—G”(x)|2h(x)dx < 21 [5 Ifi = &ill 7= + 11£i — gill =
7 =

< Ul +lelo) | [ W90 @20
1

Proof.  For arbitrary continuous 4—convex vectors F' and G respectively, take smooth
approximation F,, and G,,. There exist integer my_; such that F;, and G,, is smooth over
the interval /;; and F;,, and G,, converges uniformly to F' and G respectively for m > my.;.
Let us write the inequality (3.17) for the functions F,, and G,, on the interval I;;

2 51 >
J B9~ G P < 3|5 s —mallz + =l
i=1 +

Tit1

X (IIfm,iIIL;;HJrIIgm,iIIL )] /|hk+, )|dx. (3.25)

l/a8]

Applying limit m — oo, we get

b n 1
JIF"0 = 6" @ hesadx < 3 |Slfi—aillt +1fi—sill
i=1 2 Tkt Tkt

l/a8]
< (Il + ey )] o] 326

Tiet1

Writing the left integral for smaller interval I C [ and taking limit as [ — o, we obtain
1 2
/ P - 6" WP aas < |30- el -+ 1A= el (6L
kvt 1 1

+ ;)] / 9 (o). (3.27)

Since, by the last theorem, we have

| / |F"(x) — G (x)|? h(x)dx < oo,
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then using dominated convergence theorem, after we take the limit, k — oo, we obtain
desired result (3.24).
O



Chapter 4

The weighted energy
inequalities for subsolution of
2nd order partial differential
equations

4.1 Reverse Poincaré-type inequalities for the
difference of superharmonic functions

Throughout this chapter we assume that domain D, D C R" is bounded set having smooth
boundary.
A function u is said to be smooth super-harmonic if u € C?(B), and

Au(x) <0, x€D. 4.1

A bounded measurable function u defined on ball B is said to be weak super-harmonic if
for all non negative function ¢ € C%(B) the following holds

/u(x)Ad) (x)dx <0. 4.2)

B

47
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We will consider the arbitrary smooth weight function satisfying the following:

h(x)>0 ifxeD

dh(x .
= 29 012, n xeap. (4.3)
ox;
We will also take particular form of weight function 4 for the ball B(xy, r)
h(x) = (= |x—xo [*)*. 4.4
We will find
oh
(x) =4, =) (P = |x—x ), i=12,...,n. 4.5)
ax,’
. . . . dh(x)
It is clear by definition of weight function % that i(x) = E 0,i=1,2 n, for x on
Xi

the boundary of the ball B(xg, 7).

4.1.1 The case of smooth superharmonic functions and
mollification of weak superharmonic functions

Our starting point will be the following theorem.

Theorem 4.1 Let u;,i = 1,2, be two smooth superharmonic functions over domain D C
R™ and h is the weight function defined in (4.3). Then the following holds

[ Teradus(x) ~ gradus (0)Ph(x)ax < G | A 1y (4.6)

where p and q are conjugates and

ulx) = %(uz(X) — w1 (0)P = [Luz =y [l (2 (%) + w1 ().

Proof. Let us denote u(x) = uy(x) — uj(x). Then

s (32 w32 (3

D
A.7)

Consider the first integral on right hand side

Z(%)zh(x)dle) 5—:1 (%h(x)) dx.
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Using integration by parts and the fact that weight function vanishes on the boundary of
the domain, we get

N = — ) Dl nd— [ () 220
J x| J 8 J Jx; 0dx

- a2u 9 (x) Ih(x)
_ 7/u(x) S fED T g

D

Again using integration by parts formula on second integral of and also definition of weight
function, we obtain

D/(;—;ﬁ)zh(x)dx: —Zu(x)g—i?h(x)dx—i—%b/uz(x)az;;(%x)dx

Solving all integrals of in the similar way, (4.7) becomes

/ |gradu(x)|?h(x)dx — % W2 () AR (x)dx — /u(x)Au(x)h(x)dx

W2 (x) AR (x)dx+ sup | u( |/|Au ) [ h(x)

xeD

It is clear that | Au(x) |<| Aup(x) | + | Auy(x) |, and since u; and u, are subharmonic, we
have | Aup (x) |= —Aua (), | Auy(x) |= —Auy (x).
Now

/|gradu(x)|2h(x)dx < %/uz(x)Ah(x)dx

D

— sup | u(x |/ (u2(x) + 1 (x)))h(x)dx.

xeD

Using Green-Gauss theorem and the definition of weight function, we have

/ |gradu(x)?h(x)dx < % / W2 (x) AR (x)dx — sup | u(x) | / (u2(x) + 11 (x))AR(x)dx (4.8)
D D D

xeD

Tu?(x
Sb/ { 2( )_ | u(x) ||z= (ua(x) +u1(x))] Ah(x)dx.

Hence,

2 (et
[leradu(Ph(xdx < [ 1552 fullie (ua(x) +ur(x) | [Ah(x) dx.
D D

Finally using Holder inequality we get the required result. O
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Remark 4.1 Using the definition of modulus on (4.8) we obtain the following inequality:

1
[leradu()Ph(odx < 3l = o)+ w2 =1 =0
D

< 2 o) + Il ) [ | 80)
D

Writing the above remark for arbitrary ball B, B = B(xo,r) C R", we get
Remark 4.2

1
[leradu(Ph(odx < 3 = egay + llw = o
B

%112 e + L i) [ 1800) [ . @.9)
B

Now we approximate the weak superharmonic function u by the smooth ones. For this we
will again use the mollification technique.
Define

1 1
n(x) = cexp (i) s 1< (4.10)
0, |x|>1

where x € R”, and ¢ > 0 is constant such that
/ JN(x)dx=1.

Let us define the mollification of bounded measurable function u(x) on ball B

e (x) =/n (’ﬂ) u(y)dy. @.11)

£
B

If we denote ne(x—y) =1 ()%) , then it is clear that

0? 0?

a—x%ng(xfy)zg—yizng(xfy),i:1,2,...,n. (4.12)
Using (4.12) in (4.11), we have
Autel) = [ u(r)Ame(x = y)dy, (.13)
B

where A, and A, are the Laplace operator with respect to x and y respectively. Also define
the balls By in the following way
Bk = B()C(), rk)

where r, = /]zi—%r.

The following theorem states that the functions u, are smooth superharmonic functions on
By for sufficiently small €.
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Theorem 4.2 Let u be the weak superharmonic function on ball B = B(xg,r). Then for
any k € N there exist € > 0 such that for each €, 0 < € < &, each function ug(x) is smooth
superharmonic on ball By, that is

Aug(x) <0 if x € By. (4.14)

Proof. Take & = . By definition it is trivial that u(x), & > 0 is infinitely differen-

;
2(k+2)
tiable w.r.t x. Now we will see that for arbitrary x € By, the function 1, (x — y) has compact
support on B as a function of y.

Take the ball By in the following way

Take y € ék, then

1
> €
2(k+2)
Hence we have ng(x —y) = 0. Therefore the non negative function 1 (x — y) has a compact
support in B as a function of y. So by the definition of weak super harmonic function u(x),
we have

ly—x[>

/M(Y)Ayns(x_Y) <0
B
From (4.12) we get Aug(x) <0, if x € By and € < &. o

4.1.2 Existence of Sobolev gradient
Let us introduce the weight function /4, corresponding to the balls By
h(x) = (ri— | x—x0 |*)%, x €By, ke N. (4.15)

The following theorem will show, the existence of the weak derivative, and square integra-
bility with respect to weight function 4.

Theorem 4.3 Let u be a continuous weak superharmonic function, then it has weak par-

tial derivatives a"()_(), i=1,2,...,ninthe ball B(xy,r) and they are square integrable with
9x; . .
respect to the weight function h, i.e.

/ lgradu(x)|*h(x)dx < oo. (4.16)
B(x07r>

Proof. If u is continuous in the ball B then on any compact set K, K C B, we have the
uniform convergence(see, for example, Evans [14])

sup | e (x) — u(x) | <%
xeK

0,
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where u; is the mollification of weak super harmonic function u.
Taking € = --, m = 1,2,---, the latter convergence take the form

sup | (x) — u(x) [ == 0.
xek

Since by definition it is clear that B; C B (compactly embedded), we have from Theorem
2.3, for any k € N, that there exists m; € N, such that u,, is smooth subharmonic in the ball
By for every m > my.
Now writing the inequality (4.9) for the ball By ; and for the functions

wr(x) = (%), ua(x) = up(x), m,p = mpy,

we get
2 1 2
lgradup (x) — gradum(x) Phica ()dx < 5 [l up —wn |Fos,,,

Bjti

+ lup =t o) (Ul tp llz=(8e40)

i i) [ 18R dx @)
By

Let us denote
Okl = / | Al | dx, @ ineank Biy1(x).
By

Since, By C B4, from (5.110), we have

66/ |graduy(x) — gradum(x) |dx < (4.18)

1
< st (5 1t B+ 1= iy 1t )+ )

Since
| Up —Um ||m 0,

from (4.18), we get

. dup(x)  Jum(x) 2 B
m,lglamooz/( 8x, 8x,~ ) dx=0

The space L2 (By) is complete, so there exist family of measurable functions vy ; € L? (Br), i €N

such that
I duy, :
lim 2/ ( ax; —Vk,i(x)) dx=0.
By

n—0 7
i=1
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Let us define v ;(x) in the the following way

~ i(x), XEBy,
() = {pr e (4.19)
and then we define

vi(x) = limsup v ;(x),

k—o0

i=1,2,...,n.
By definition it is clear that

vi(x) = vii(x) x € By.

Thus the functions v; are locally square integrable on the ball B.
We claim that v;, i = 1,2,...,n, is Sobolov weak derivatives of function u. To prove this,
take an arbitrary

¢ € C5(B).
Then supp(¢) C By, for some k € N, and
Bum (9¢m
dx = — | wy——dx,
o0x; (x) /u " Ox;
By By

for any m > m(k).
Hence, after we pass with limit m — <o, we have

d
/vi(x)d)(x)dx: —/u(x)a—fidx
This shows v;, i =1,2,...,nis i—th partial derivative of u.

Again writing the inequality (4.9) for the ball By, C B and for u; = 0 ,us = u,,, we get

3 "
[ Teradun(x) P huaadx < 5 lum e, [ 8ha(x) ] dx.

By Bkt
Passing with limit as m — oo, we get
3
[ eradu(o) P huca()dx < 3 1w g,y [ [ Ab(0)] dx.
By Bt
Since By + 1 C B, taking left hand integral on the smaller ball, we have
3
[ Veradu() P hn(x)ax < 3 lulBege,,) [ | Ahca(x) | dx.
By By
Now, we let [ — oo,

3
/ | gradu(x) P h(x)dx < 3 || u o) / | Ah(x) | dx < oo.
By B
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The left hand side is increasing and bounded, then by dominated convergence theorem,
3
/ | gradu(x) P h(x)x < 3 || u oo / | Ah(x) | dx < oo,
B B
O

Theorem 4.4 Let u;, i = 1,2 be two continuous weak superharmonic functions on the
ball B = B(xy,r), then the following energy estimate holds

1
/| graduy (x) — gradu; (x) |* h(x)dx < [5 || o — uy ||%w(3)
B

+ [ wa —ur ) (lwr Nl a)
e ) [ | 8hG) [dx. @20
B
where h is the weight function defined in (4.4).
Proof.  Let uy;, i = 1,2, be two the mollifications of weak super-harmonic functions
ui, i=1, 2.
Then we have that for a ball By, there exist integer m;.; such that each function u,, ;,i =

1,2 is smooth superharmonic function on the ball By; if m > my;.
Also we have the following convergence

m—oo

| i —ui || —— 0, i=1,2.

Now we apply the inequality (2.4) for the functions uy, | and u,, » on the ball Bx;. We have
/ | gradum»(x) — gradugy, 1 (x) 1 i (x)dx < 4.21)

1
< o5 1 ttma = tem1 175, ) (2 =t Ny )ttt sy ) + 1t sy ))-
2 (Bit1)

(4.22)
Passing to the limit as m — oo, we obtain
/ | graduy(x) — gradug (x) |* hyy(x)dx
By
1 2
< Orls uz —un L g,y +(l w2 —ur llie)
 (lur ey + 12 ) (4.23)

Since By, C By, so writing the left hand side for the smaller ball and passing to the limit
| — oo, the above becomes

1
/ | gradu, (x) — gradu; (x) [> h(x)dx < cm[z || 2 — 1y ||im(3) (4.24)
By
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+ Jua —ur ) (N ur zam) + 11 w2 l|.8)]-

By the Theorem 4.3, we have
/ | gradu;(x) | h(x)dx < oo, i =1, 2.
B

Passing to the limit as k — oo, we obtain the required result. O

For a continuous function in a closed ball B, Wilson and Zwick [70] described best con-
tinuous subharmonic approximation. He found that the best subharmonic approximation
of a continuous function f is just the greatest subharmonic minorant of the function. But
in case of superharmonic approximation it will be smallest super-harmonic majorant. The
details are given below.

In the problem when the analytic unknown exact solution must be super harmonic in
the ball B, it makes interest find numerical approximation & that are super harmonic them-
selves. One expects that they will be better approximations to the unknown solution u(x)
than the ones somehow constructed through the uniform approximation u;,.

Suppose uy, is the uniform approximation to the unknown superharmonic function u in
B. Then —u will be the subharmonic function and —uj, will approximate of —u.

—vp(x) = sup{—g(x)| — g(x) is subharmonic and — g(x) < —uy(x)}
—vp(x) = sup{—g(x)| — g(x) is subharmonic and g(x) > u;(x)}
vu(x) = inf{g(x)|g(x) is superharmonic in B and g(x) > uy,(x)}
Denote
6 = [lu—unl -
Then

) ()] < 5= —8 < ul) () < 5.
Thus vy (x) > up(x), and then vy(x)+ 06 > up(x) + 8 > u(x), concluding
vp(x) —u(x) > -8 (4.25)
Similarly,
vp(x) —u(x) <o (4.26)

From (4.25) and (4.26)
v = tllpe < =]

Both v;, and u are superharmonic in B, and we also assume that they are continuous and
bounded. By the use of inequality (1.4), we obtain the following important estimate

1
[ 1erad va(x) — gradu(x) P hx)dx < 5 = w1
B(x()vr)
+ (I un =l Bx.r) (8 (B

o) [ 18R [dx. @2)
B(xo,r)
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4.2 Reverse Poincaré-type Inequalities for the
difference of superharmonic functions

In this section we develop the reverse Poincaré type estimate for the weak subsolution
of heat equation. For this first we develop it for smooth ones and then using standard
mollification technique for weak subsolution.

The heat equation is

Au—u, =0 (4.28)

where A is the classical Laplace operator. The heat equation appear in study of Brownian
motion as well as the evolution in time of density for some quantity.

The physical interpretation and the derivation of the fundamental solution of heat equation
is very well explained see e.g [14]

The fundamental solution of equation (4.28) is the function

re 4, R, > 0;
¥t =4 wml® T E 0
0, zeR" <0

(4.29)

For heat equation strong maximum principle is given as:
Assume that v € C1(S) N C(S) solves the heat equation in S. Then

(i) maxv = maxv
S as
(ii) Further if there exists a point (zo,7p) € S such that

v(z0,t0) = max v(z,r)
(z,r)€S

then v is constant in Sy, .

Remark 4.3 The strong maximum principle tells us that at any interior point if v attains
its maximum then at all earlier times v will be a constant.

Proof. We define for particular z € R", € R and r > 0.

1
_ +1 .
E(z,t) = {(z,t) eR"™ : s<t, and y(z—y,t—s)> F}

This is called heat with center (z,#) of the top. The above region lies in space time whose
boundary is level set of ¥(z —y, —s).
Suppose there exist a point (zo,%) € Sy with

v(z0,t0) =M = max v(z,t).
(zt)€ST
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Now for sufficiently small r > 0, E(zo,%;r) C S7. Now by mean value property we have

20 —
M =v(z0,t0) = 4n/ / | )ldyds<M
ZU tor
Since
— / / |Z0_y| d dS
r" tofs
Zo,lol

if v is identically equal to M within E (xo,fy;7) then above equality holds for a line segment
L € St joining (z0,%) to some other point (yg, o) in S7, with sy < 7o
Consider

ro :=min{s > so | v(z,t) =M, (z,t) €L, s <t <tp}.

Due to the continuity of v it will surely attain its minimum.

If 7o > so. Then v(x ry) =M, (x0,70) € LNS7, so v=M, on E(xo,rp;r). We obtain a
contradiction because E(zo, ro;r) contains LN {ry — o <t < ry} for some small ¢ > 0, so
ro=spand v=M on L.

For a fixed z € S in time 0 < ¢ < #, there are exit points {z0,zj,. ..,z = z} such that con-
secutive line segment connecting z; i = 1,2,...,mliein S.

For times #y > 1] >t > --- > 1, =1, the line segments in R""! connecting (zi—1,ti—1) tO
(Zi,ti) lie in S7.

According to previous v = M on each such segment and so v(z,¢) = M. O

4.3 The energy estimates for smooth subsolution
and approximation of weak subsolution

Let us define the parabolic cylinder S(7, ),
S(r,s) = B(z0,7) x (5,T — ),
where 0 <5 < g and (0,7) is the basic time interval. For simplicity we denote
S =B(z9,r) x (0,T).

We organize the section in the the following way. Firstly we will develop the estimate
for the smooth subsolution of the heat equation and also we will approximate the weak
subsolution by smooth ones. Secondly, we will prove that the continuous weak subsolu-
tion possesses first order weak partial derivative and, finally, we will develop the reverse
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Poincaré inequality for weak subsolutions.
Throughout this section we use the particular weight function

w(z,t) = [r* — (z—z20)°]*(t — T)°. (4.30)

It is obvious w(z,7) = av:;(:,’l) =
i

¥

1 =0, z€ds.

Theorem 4.5 Let v; € C>'S(r,s), i = 1,2 be a two arbitrary smooth subsolutions of
(4.28). Let w be the smooth weight function defined with (4.30). Then following estimate
is valid

/|grad(vz(z,t)) — grad (v (z,1))[* w(z,t)dxdt < (4.31)
K
— 1/, —
<supv(a)| [ (va(aut) +va(at) Kwizat)dadt + 5 [v3(2.t) Bowiz,r)dzdr.
S S
(4.32)

Proof. Take v =v, —vy. Then

S/|grad(v(z,t))|2w(z,t)dzdt = / [(;—;)2+ (;—Z‘;>2+...+ (;;)2] w(z,t)dzdt
<§—) (Z,t)dzdtJrS/<§—;2)2W(z,t)dzdt+...
dv
970

( ) w(z,t)dzdt. (4.33)

I
L—

+

J

Using integration by parts

v \? dv [, dv
S/(a—m) w(z,t)dzdt —.S FP. {(a—m)w(z,t)} dzdt

d [ dv
= —./v(z,t)a—Z] (a—x]w(z,t)) dzdt

N

v dv 0
=— — + = dzd
/v(z,t) (8Z% w(z,t) 97 ale(z,t)> zat

S
9%y du d
= dzdt — dzd
S/(u)azl Wz t)dzdr S/( 1) o o)
82v 2 0
= !v(z t)az w(z,t)dzdt — 2/8 - (z,1)) a—le(z,t)dzdt.
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Using again integration by parts on the second term in the last line we get

02 32
/ (z,0) = d w(z,t)dzdt + = / 2,1) = w(z,1)dzdt
J 0z}

Making similar calculations on all other integral of (4.33), we obtain the following

*v *v
— 2 -
1= / lgrad (v(z,2))|" w(z,t)dzdt= S/ v(z,t) = oz w(z,t)dzdt — S/ v(z,t) == 0z w(z,t)dzdt —
2 2
_ /v(z,t)g " w(z,t)dzdt + = / Z,t) 9 w(z,t)dzdt
22 ox?

1

92
Es/ zt w(z,t)dzdt+. . +2/ (z,1) a2 w(z,t)dzdt
%y 9% 82v
- /V(Z,t) (8_z2+8_z2+ 3 2) w(z,t)dzdt
5 1 2
1 2 2 2
+§/S\;2(Z,I) <(9_Z%+§_Z%+ +;2) (Z t)dZdt

2%y 9%y %y dv  dv
_—/V(Z,l) (a_z%—’—a_zz—’——’—a_zg_g—’— 8[) (Z f)dZdl

1 [, > 92 82
= ,t t)dzdt
+5 Sv(z)(az%—i—a%—i— 72 w(z,t)dz
~ d
:—/v(z,t) [Av—i—a—‘;} w(z,t)dzdt—i—z /vz(z,t) Aw(z,t)dzdt
J .
8
_ / v(z,t) B w(z, )dzdt — / (2.1)SF Wiz 1)dads
s s
1
+ 5/ (z,t) Aw(z,t)dzdt
s
= / (2,1) Av w(z,1)dzdt — / z,t)dzdt
s
1
+ E/ (z,1) Aw(z,t)dzdt.
s
Using integration by parts on the middle term in the last line
- 17, a 1
I=— /v(z,t) Avw(z,t)dzdr + E/V (z,t) d dt + 5/ (z,t) Aw(z,t)dzdt
s s
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%(z,1) <A+ 4 >w(z,t)dzdt

s
/ (2,1 szt)dzdt
s

l\)l'—‘

v(z,t) Av w(z,t)dzdt +

l\)l'd

v(z,t) Av w(z,1)dzdt +

H
o;\ o;\

where
g<‘9_zv+'9_zv+ +9_2V@)
\9z 9z T o0z or
and
R 2%y 9%y 82\1 v
N 72 9z 82 ot

Now taking the modulus value and the fact that w(z,7) > 0 we get

- 1 —
1< sup|v(z,t)|/'Av(z,t)‘ w(z,t)dzdtJrE/vz(z,t) A*w(z,t)dzdt,

and, further, using v(z,7) = v2(z,¢) — v (z,¢) we have

I <sup|v(z,1)| /(‘sz(z,t)’ + ‘Zvl(z,t)D w(z,t)dzdt + = / w(z,t)dzdt
s

By using Gauss-Green theorem we get the inequality (4.31). O

Remark 4.4 Rewriting the inequality (4.31) and using Holder inequality on (4.31) we
obtain

/|grad(vz(z,t)) —grad(v1(z,t))|2w(z,t)dzdt <19l -

‘Ew(z,t)Hm (4.34)

where
(va—w)?

¥(z,t) = [[va —vill = (v2 —v1) + 3

Remark 4.5 If we apply L™ norm on (4.31) we obtain the following

/ |grad (va(z,0)) — grad (vi (2, 6)) P w(z, 1) dzdi

1 —~
< [Iva=wilhe (bl + )+ oz =il | [ [Swondzar. - 439
N

A bounded measurable function v(z,#) defined in the cylinder S = B(zg,r) x (0,T) is called
the weak subsolution of heat equation

Av(z,1) =0
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in the cylinder S if for every non-negative function ¢(z,z) € Cg’l (S) the following holds

T
//v(z,t)E(Z)(z,t)dzdl > 0.
0 B

Now we will approximate weak sub-solution of heat equation by the smooth ones. We will
do it with the help of mollification.
Define

C 1 1;
M) =1{ =P (MH)’ bl < (4.36)
0, |Y| > 1,

where y € R", n € N, and C is a positive constant that satisfies

[ my=1.
i

For the bounded measurable function v(z,¢) defined on the cylinder S, we define its molli-
fication

T
_ z— t—s
ve(z,t) =€ (n+t)//7711 <—y) m <—) v(y,s)
€ €
0 B
for arbitrary € > 0.
If we denote
_ z— r—s
Ne(z—yt—s)=¢ ("H)”"( 8y) ’71< € )

then it is trivial that
92 92
@ns(z—y»t —5) = Wﬂs(z—y,t—S)

0 0
EUE(Z*)’J*S) = 7%”6(17)@[7‘5‘)7
and from above we conclude that

EZ:”S(Z_YJ—S):E;;ns(Z—yvf—s)a (437)

where AV;, and A; are heat operators with argument (z,#) and its adjoint operator with
respect to argument (y,s) respectively.
Let us define the cylinder Sy in the following way

T T k+1
- — ) =8B 7
Sk S<rk7k+2> (ZO7rk)x(k+27k+2 >7
where k41
=——r keN.
Tk k+27’, €

The following theorem tells that the function v (x,#) is smooth subsolution of heat equation
in the cylinder Sy, for sufficiently small €.
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Theorem 4.6 Consider the weak subsolutionv(z,t) of (4.28) in the cylinder S = B(zo,r) X
(0,T) then for every k € N there exist € > 0, such that for every €, 0 < € < € each func-
tion ve(z,t) is the smooth parabolic subsolution in the cylinder Sy, that is Ave(z,t) > 0, if
(Z,t) € Sk.

Proof. Tt is obvious that for arbitrary €, v¢(z,) is infinitely continuously differentiable
function with respect to its argument in R"*!. Now we check that for arbitrary(z,7) € Sg
the N¢(z — y,¢ — z) has compact support in the cylinder as a function of (y, s).

Letusfix k=1,2,3,...,n

£ = min (2(k12)’ 2(1:L 2))

Define the cylinder 5;( in the following way

—~ 2 T 2
So= (2 23, « 2kE3,
2k +4 2k+2,2k+4

If (v,5) ¢ Sy then either y ¢ B(zo, X52r) or S ¢ (55, X5 T).
For the first case
v 2k+3  2k+2 1 .
- — r= r
Y 2%k+4 2%k+4 2(k+2) 7

and for second one

2 1
t—z|>|—————|T > ¢.
IF =2 <2k+4 2k+4> ¢

Hence, in both cases we have ng(z —y,r —s) = 0, so the non-negative smooth function
Ne(z — y,¢ — s) has compact support in cylinder S as a function of (y,s) if € < &. By the
definition of weak subsolution of heat equation we have

T

//V(yvs)gsnb‘(zfyvt7S)dyds Z 0
0 B

which proves the required result. |

4.4 The case of weak subsoution of wave equation

Now we prove that Sobolev gradient of weak subsolution of wave exit equation is also
weighted square integrable.
Now define the smooth weight function for corresponding cylinder

T k+1
wi(z,t) = (r} — |z — z0]*) (’ k+—2) <k+—2Tf>



4.4 THE CASE OF WEAK SUBSOUTION OF WAVE EQUATION 63

(z,1) € Sk, ke N.
2 _
Our smooth basic weight function w(z,?) is [(r2 — |z —z0))e(T - t)} , (z,1) €.

The next theorem shows us that the continuous weak subsolution posses first order weak
partial derivative and also it is square integrable with respect to weight function w(z,?).

Theorem 4.7 Letv(z,t) be the continuous weak subsolution of heat equation (4.28). Then
it has weak partial derivative g—; i=1,2,...,nand the following holds

/|grad(U(Z,t))IZW(z,t)dzdt < oo,
5

Proof.  Take v¢(z,1), the mollification of weak subsolution v(z,7) is continuous in the
cylinder S so by Evans [14] it is well known over any compact subset C C S we have the
convergence
sup [ve(z.) —v(z.1)| <= 0.
(zt)eC
1

If we will change € = ;-, m € N, the above convergence will become

sup v (z,1) —v(z,1)| === 0.
(zr)eC

As the cylinder S; are completely imbedded in the cylinder we have that for any k € N
there exist such my that each vy, (z,7) is smooth subsolution of heat equation in the cylinder
Sk if m Z ny.

Now rewrite the inequality (4.35) for the cylinder S; and for the functions

V1(Z,l) :Vm<Z,f), V2<Zat) :Vp(Z,t), m,p ka+l

/ |grad(vp(z,t)) fgrad(vm(z,t))| wir1(z,1)dzdr < [Hv,, - ”'"HL‘” (HV,JHLM + [Vl =)

Sk+1
1
+3l—ml?] |

A wiiy (z,1) ‘ dzdt

Skt
(4.38)
Let us denote
Oy = inf wyy
z,t)ESy
and
Ohy] = / 'Ewkﬂ (Z,l‘)‘ dzdt
Skt

If we restrict the left hand side of the integral over smaller cylinder Si, we obtain

Ol vy / |grad (vp(z,1)) — grad (vim(z,1)) |2dzdt (4.39)

Sk
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1
< st [ = vl (Dl + Iomls=) + 5 =

Since we have ||v,, — V'"HL“' (Sk+1) — 0, m, p — oo, letting the limit in the inequality (4.39)
we obtain

B Wp(zt)  Ivm(z0)\
Jim ; / < e s I (4.40)

Since L?(Sy) is complete space so the above sequence will converge, i.e. there exist a
collection of measurable functions uy ;(z,) € L*(Sk) such that

2
lim 2/(‘9"’” &) —uk,i(z,t)) dzdt =0, keN. (4.41)

m—oo ! azl

Let us extend the function uy ;(z,) outside Sy trivially by zero in this way

ui(z,t) = klim supuy(z,t), i=1,2,3,...,n. (4.42)

It is clear by definition that the function u; ;(z,¢), [ € N, have the same value on cylinder
Sy and therefore u;(z,t) = uy ;(z,#) a.e on cylinder S

Now we will check that u;(z,) is partial derivative of function v(z,7)

To prove this take arbitrary function ¢(z,#) which is infinitely differentiable and having
compact support in S. The support ¢(z,) is contained in S, for some k, so we have

t
QD) o )t = — / (e 222D gy (4.43)
aZi aZl
Sk Sk
for any m > my,.
But
Sup [y (2,1) = v(z,1)| === 0. (4.44)
(Z,I)GSk
and av’” converge to u;(z,¢) in L2(Sy).
So applymg limit m — oo, we obtain
d
/ui(z,t)d)(z,t)dzdt = —/v(z,t) (pa(x )d dt. (4.45)
1

Sk Sk

This shows that u;(z,) represents the weak partial derivative of the functions v(z,7).
Writing the equality v|(z,7) = 0 and v,(z,7) = vi(z,¢) = O for m > my; and the cylinder,
we have,

/ lgrad (Vim(z,0))|* viss (2,1 )dzdt < 300 ”"m(Z’t)”iw(SH,) .

Skt1
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If we let m — oo, we obtain the following
[ lerad (v(2,0) P wiss(zot)dds < 3, (@) s, -
Sk+1

Considering the left hand integral for the smaller cylinder Sy and letting the limit [ — oo,
we get,

/ |grad (v(z, 0) [P w(z, t)dzdt < 3Ca|[v(z,)|% (S) < oo, (4.46)
Sk

where

o

N

AN wiyi(z,1) ‘ dzdt.

The left hand side of (4.46) is bounded, with the respect to &, is bounded and increasing,
so the limit is finite by dominated convergence theorem. Hence,

[ lerad (v(2,0)P iz ) <
N

4.5 The weighted energy estimates for the
difference of weak subsolutions of wave
equation

The wave equation is simplified model for a vibrating string (n = 1), membrane (n = 2) or
elastic solid (n = 3). In these physical interpretations u(x, ) represents the displacement in
some direction of point x at time # > 0. The reverse Poincaré inequality will be helpful for
the study of qualitative properties of solution of wave equation.

Let B = B(xp,r) be the ball having center x( and radius r and Q(r,s) is the cylinder
defined as

O(r,s) = B(xo,r) x (s, T —s).

where 0 < s < L and (0,7) is the time interval. For consistency we denote Q = B(xo, 7) X
0,T).
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Let C22(Q(r,s)) be the space of twice continuous differentiable functions with respect
to x = (x1,x2,...,x,) and ¢, on the closure Q(r,s).
We consider the n-dimensional wave equation

%u

ar?

where A is the classical n-dimensional Laplace operator

L(u(x,t)) = Au(x,r) — =0, (4.47)

Au()cl‘)*a—qura—zuwL Jra—zu
Yo o3 T oxd

We define

du Jdu du
gl‘adu(x,t) = (a—x],a—xz,,a—xn) 5

and also the extended gradient as

adu(x,r) = (21 9w du ou
gradu(x,t) = ox on o 9t )

The function u(x,t) € C>2(Q(r,s)) is said to be smooth subsolution of wave equation if
L(u(x,1)) > 0. (4.48)
The function % (x,7) denotes the weight function
h(x,1) = [ — (x —x0)?)2(T —1)*. (4.49)

The bounded measurable function u(x,?) is said to be weak subsolution of (4.47) if for all
non-negative functions ¢ (x,7) € C22(Q(r,s)), we have

/u(x,t)L(d)(x,t))dxdt > 0. (4.50)
0
4.5.1 Approximation of weak subsolution

Now we approximate the weak subsolution u(x,7) of (4.47) using mollification technique.
Denote

ue(x,1) = 87(’”1)/11,1 (%) m <t7s> u(y,s)dyds, 4.51)
]

for arbitrary € > 0, where 7, is defined in (4.36).

Denote further ;
xX— —s
TIS(X—YJ—S):‘?%H])”"( gy)rh( € )



4.5 THE WEIGHTED ENERGY ESTIMATES FOR THE DIFFERENCE OF... 67

The following is obvious

02 02

ﬁn&‘(x_yat_s) = a_))znf(x_yat_s)a
and

02 0?

an(x—y,t—s) =52 Ne(x—y,t—35).

Then, we check the following

Lx,tnﬁ(xiyatis) :Ly,snli(xiyvtis)a

Lene(x—y,t—s) = LyNe(x =yt —5) (4.52)
where Ly, and Lj ; are operators using arguments (x,7) and (y,s), respectively.
From (4.52), we have
Lysue(x,t) = /u(y,s)L’;sng(x —y,t —s) dyds for arbitrary € > 0. (4.53)
Q
Also, define the cylinder Oy

T T—1 k+1
= — =B S el
Qk Q<rk7k+2) (xo’rk)x<k+2’k+2)’
where k41
= k .
r, k+2r, eN

Now u(x,7) is infinitely differentiable with respect to its arguments on R

4.5.2 Reverse Poincaré type estimate for weak subsolution of
wave equation

We start with the following theorem

Theorem 4.8 [f u;(x,t) and ux(x,t) are the smooth subsolutions of the wave equation
(4.47) and let h(x,t) be the weight function defined by (4.49). Then the following energy
estimate is valid

/ {E(u(x,t))]h(x,t)dxdtg / (sup|u(x,t)|(u2+u1)+%(u(x,t))z)L(h(x,t))dxdt,
9]

where

2
E(u(x,1)) = |gradu(x,t)[> — (%) ,

and
u(x,t) = up(x,1) —uy (x,1).
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Proof. Take

./<|gradu(x,t)|2 <%)2>h(x,t)dxdtQ/|gradu(x,t)|2h(x,t)dxdtQ/ <%>2h(x,t)dxdt

Q
du\’ du '\’ ou \? ou\?
<<8_x1) +<8_)62) +...+(8xn) >h()ﬁl‘)dxdl‘(!<§> h(x,t)dxdt
2

du \? du
<B_xl) h(x’t)dth+Q/<3_)cz) h(x,t)dxdt+ ...

ou\? ou\?
< (M) h(x,t)dxdt — Q/ <E) h(x,t)dxdt. (4.54)

Applying integration by parts on

Q/(%)zh(x,;)dxdtzé/<§—;‘l) ((;9:1 h(x t))dxdt

_ Q/u(x,t) (%f) h(x,t)dxdté/u(x,t) (aa—;‘l) <aix1h(x,t)) dxdt

:7/u(x,t) (%) h(x,t)dxdt—%/ (W) (%h@,r}) dxdi.  (4.55)
0 0

Again using integration by parts on second integral of (4.55), we have

—Z( )(322) h(x,1)dxdt + = / azg%’t)dxdt.

Similarly solving the other integrals of (4.54), we get

ou \ 2 azu 2%u 2%u

S]]

41 2(x,1) a_2+a_2+ +—2 h(x,t)dxdt
2Q w oxt  dx3 T ox2 HE)ax
%u 17, 9%h(x,t)
+ Q/u(x,t) (W) h(x,t)dxdt—zé/u (x,1) o dxdt

’u  d*u ’u  9*u
= .Q/u(x,t)<ﬁ+ﬁ+...+a—x%W)h(x,t)dxdt
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1/, 2 92 %> 9?
+ EQ/u (x,t)(a—x%—f—a—x%—i—...—i—a—x’zl—m) h(x,t)dxdt

2

u(x, )<Au(x 1) — gt;l>h(x,t)dxdt

E
/ ( 1) Phlx )>d dr. (4.56)
9]

1
2 01?2

Now using (4.47), we have

/ ou zh(x t)dxdt = —
0 axl ’ o

/ (e, ) L(u(x,1)Vh(x, 1)t

o
+ %/(u(x,t))zL(h(x,t))dxdt.

o

g/sup|u(x,z)||L< (e, )| |h(x, )| dxdlt + = / (e, [L(h(x,0)) dxdr. (457)
0] o]

Since L;(u(x,t)) >0, i=1,2 andalso |L(u(x,t))| = |[L(uz) — L(uy)| < |L(uz) |+ |L(u1)| =
L(uz) +L(u1) so (4.57) becomes

/ l|g1radu(x,t)|2 - (%)2] h(x,t)dxdt

Q
1
§/sup|u(x,t)|(L(u2)+L(u1)) x,t)dxdt + E/ ,0))dxdt
Q
< /sup|u(x,t)|L(u2—|—u1) x,1)dxdt + / ,1))dxdt.
0 0

Using Gauss-Green theorem, we get

/sup|u(x,t)| (uz + ) L(h(x,1))dxdt + %/uz(x,t)L(h(x,t))dxdt
Q Q

1
< (Q/sup|u(x,t)| (u2+u1)+§u2(x,t))L(h(x,t))dxdt.
O

Theorem 4.9 Letu;(x,t) and uy(x,t) be the two smooth subsolutions of (4.47) and h(x,t)
be the weight function defined by (4.49). Suppose furhter that ‘9 “’ >0, 1=1,2. Then the
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following estimate holds

/'g};lu(x,t)'zh(x,t)dxdt < /(|u(x,t)|(u1 +u2)+%u2(x,t))
0 9]

Proof.

P 2 B ﬂ
Q/‘g d (,t)‘ h(x,1)d dtQ/<< -

_ (%)2>h(x,t)dxdt+2Q/ <%>2h(x,t)dxdt.

Now using (4.57) on first integral and integration by parts formula on second integral, we
have

—/u(x,t)L(u(x,t))h(x,t)dxdt—|— %./uz(x,t)L(h(x,t))dxdt
Q

0
*z/u(xvt)g_jgh(xﬁ)dthJr/uz(x,t)Wd dt

2

- / e, 1)L (1, 1) ), ) ol — 2 / u(x,t)%h(x,t)dxdt

9]

1 92(h( 1)

E/ xt (h(xt) dxdt+/ xtTddt

0
< Ju(x, )] / VL (e, 1) | B (x, 1) ") he, )t
0]

92h(x,1))

2/ x,0)L(h(x,t)) dxdt+/ X,t) 2 dxdt. (4.58)

Since
|L(u(x,1))| = [L(uz(x,2)) — L1 (x,2))| < [L(u2)| + |L(u1)| = L(ur) + L(uz)
L(ui(x,t)) >0, i=1,2,and ‘Zg" > 0, we have

o _
2|

82u2 82u1

012 012

82u2
ot?

82u1
ot?

<

)
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Then inequality (4.58) becomes

2M 2M
)| (0ar) 4 £an) et +2 e )| (5502 4 S8 )
0 0
+ % Q/ W2 (e, 1)L (x, 1)) et + Q/ uz(x,t)wmcdt.

Since L is self adjoint operator, so by using Gauss-Green theorem, we obtain further se-
quence of inequalities

2 X
lu(x, )| / (1 + )L (B, 1) + 2 ()| / (w1 + ug)%dxdt
o o]

+% / W2 (e, 1)L (x, ) et + Q/ uz(x,t)wdm.

Q
2h(x
< |u(x,t)|/(u1 +up) <L(h(x,z‘))+2a g(tz’t)>dxdt
0

2h(x
+ %/uZ(x,t) (L(h(x,t))+2%) dxdt
0

1 2
< / <|u(x,t)| (ur +uz) + Euz(x,t)) (L(h(x,t)) + 2%) dxdt. (4.59)
0
O
Remark 4.6 Tuking supremum norm in (4.59), we obtain the following,
— 2
/ ’ grad (12 (x,1) — uy (x,t))' h(x,t)dxdt < (4.60)

Q

1 0%h(x,t
< [t (e ol ) + 5 o = | f ) +22585 e
9]

With same arguments as in Theorem 4.6, we can now prove the next theorem.

Theorem 4.10 Consider the weak subsolution u(x,t) of wave equation in the cylinder
0,0 =Bx(0,T), then for any k € N there exists € > 0 such that for any €, 0 < € < &,
each function ug(x,t) is the smooth subsolution of wave equation in the cylinder Qy, that
is

Lug(x,t) >0, (x,7) € Q. 4.61)

Also, using the same technique as in Theorem 4.7, we can prove the next theorem.
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Theorem 4.11 Any continuous weak subsolution u(x,t) of wave equation has weak par-
tial derivatives %}fl” i=1,...,n, and % also exist in the cylinder Q, Q = B(xo,R) X

(0,T), and they are square integrable with respect to the weight function h(x,t), i.e

/ Jeraduter

Q

2
’ h(x,t)dxdt < eo. (4.62)
Theorem 4.12 Consider two arbitrary continuous weak subsolutions of wave equation
ui(x,1),i = 1,2, in the cylinder Q, Q = B(x,R) x (0,T). Then the following weighted
reverse poincare type inequality holds for the difference uy(x,t) —uy(x,t) of two weak
subsolutions

— — 2
/ ‘graduz(x,t)fgradul(x,t) h(x,t)dxdt < (4.63)

1 0%h(x,t
(1= g O+ )+ 5 o= gy ) f [ + 27555 v,
0

Proof.  Consider mollifications uy, ;(x,7), i = 1,2 of the continuous weak subsolutions
ui(x,t),i = 1,2. We already know that for a cylinder Qy; there exists integer my,; such
that each function uy, ;(x,r),i = 1,2 is the smooth subsolution of wave equation in the
cylinder Q. if m > myy.

We have the following uniform convergence

m-—oo

||L£m7l' —Mi||L0<>(Qk+l) —_— 0, i= 1,2

Let us apply the inequality (4.60) to the functions u, 1 (x,7) and u,, >(x,) and the cylinder
QOp+1- We have

— — 2
/ 'gradumg(x,t)fgradumJ(x,t)’ By (x, 1) doxdt < (4.64)
Ok+1
: [""m’z""lvl”vwgk” (letm 1l (g ) + ltmll =g, ) + 5 luma = (1)
/ ‘ (s (x,0)) +2 52( ) dxdt.
Ok+1
Passing to the limit as m — oo in the latter inequality, we get
— — 2
/ ’graduz(x,t)fgradul(x,t)’ hicss (x, 1) doxdt < (4.65)

Okt1

1 2
< w2 =il =g, (flus 2=(onry + N2l = (gresry ) + 3 lluz — wr[| 7= (k1)

h t
/‘ (hess (1)) 29 ket (%)

o2 dxdt.
Okvi
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Restricting the integral on the left-hand side of (4.65) over the cylinder Q; and then passing
to the limit as [ — oo, we obtain
. N 2
/ ’ gradus (x,1) — graduy (x,1)| h(x,1)dxd (4.66)
O
1 ) 9%h(x,t)
< [|M2 — 1| =) (lutll = () + U2l =) + 2 |z —uy ||L°°(Q):| / ‘L(h(xaf)) +2—7 7 |dxdt.
Ok

By Theorem 4.11, we have

— 2
/ Jeradu(,0)| b r)dnds < oo, 1= 1,2, (4.67)
0
passing now to the limit in the inequality (4.66) as k — oo, we obtain desired result. O

4.6 The weighted energy estimates for the
difference of weak subsolutions
of telegraph equation

Let B = B(xo, r) be the ball having center xy and radius r. Let Q(r,s) is the cylinder defined
as

0O(r,s) = B(xo,7) X (5,7 —s).

C(Q(r, s)) be the space of continuous functions on Q and C>2(Q(r,s)) be the space of
twice continuous differentiable functions with respect to argument x = (x1,x2,...,x,) and
¢ on the closure (Q(r,s)). Let us suppose the n-dimensional telegraph equation

’u  du
L(u(x,1)) = Au(x,t) — Fr i 0. (4.68)
The function u(x,7) € C>2(Q(r,s)) is said to be smooth sub-solution of telegraph equa-
tion if
L(u(x,1)) > 0.
The bounded measurable function u(x, ) is said to be weak sub-solution of (4.68) if for all
non-negative functions ¢ (x,z) € C*?(Q(r,s)), we have the following

/Q w(e,)VL(O (x, 1) )dxdrt > 0.
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Theorem 4.13 Let u;(x,t) and uy(x,t) are the smooth subsolution of telegraph equation
(4.68). Let h(x,t) be the our weight function having compact support. Then the following
energy estimate is valid.

/ VE (u(x,1)) | B (Cx, £)dxdt < sup u(x, )] / {uz(x,t)Jru](x,t)wL%(u(x,t))z]L*(h(x,t))dxdt
9] 9]

where u = uy — uy and

2 du 2
Eu(x,t) = |gradu(x,r)|” — (E)

Proof.

/Q [|grad(u(x,t))|2<%>2]h(x,t)dxdti§nll /Q ( g)zl)zh(x,t)dxdt /Q <%>2h(x,t)dxdt.

Using integration by parts formula and the fact that /(x,7) vanishes on the boundary, we
have

/Q((;Q—JZ)zh(x,t)dxdt:/Q(;—;)[(;—;l)h(x,t)}dxdt
_ —/Qu(x,t)ai)q((;—;l)h(x,t))dxdt
_ —/Qu(x,t)(g—i?)h(x,t)dxdt—./Qu(x,t)(g—:]) (aixlh(x,z))dxdt

_ /Qu(x,t)<3—i?>h(x,t)dxdt%/Q<%x’lt))2) (ailh(x t)>dxdt. (4.69)

Applying integration by parts on second integral of (4.69) we get

_ /Q ul, )(gz‘) () dxdi + = / %dxdt.

ou
0x2
1 ) (92 2 (92
JFE Qu (XJ)[(a_)%+a_)%+"'+a_x%)h(x7t)]dth

*u 1 5 9%h(x,t)
+/Qu(x,t)(w)h(x,t)dxdt—E/Qu (x,1) P dxdt

./Qu(x,t){Au(x,t) (9;2} (x,1)dxdt + = / (x,1) {Ah(xt) aZZg,t) dnds
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*u  Jdu Ju
=— ./Qu(x,t) [Au(x,t) o2 % + E] h(x,t)dxdt

L[, 9%h(x,t)
+5/Qu (x,1) [Ah(x,t)— o dxdt.

Using (4.68), we get further

u d%h(x
— ./Qu(x,t) [L(u(x,t))—i—&a—t} h(x,t)dxdt—l—%/Quz(x,t) [Ah(x,t)— ggz’t) dxdt

—/u(x,t)L(u(x,t))h(x,t)dxdt—/u(x,t)@h(x,t)dxdt
0 Q

ot

1 [ 9%h(x,1)]

+ 5./Q u?(x,1) _Ah(x,t)f o2 _dxdt (4.70)
2

- / u(x,t)L(u(x,t))h(x,t)dxdtf% / Wh(x,t)dxdt

o 9]

1 [ 9%h(x,1)]
+ El/Quz(x,t) _Ah(x,t)—T_ dxdr. 4.71)

Again, using integration by parts on middle integral we have

1 oh
_ /Q (e, 1)L (u(e,0) (1) + /Q (e, 1) S dxdi

ot
1 5 9%h(x,t)
+ E/Qu (x,1) [Ah(x,t)— o dxdt

1
= - /Qu(x,t)L(u(x,t))h(x,t)dxdt+E/Quz(x,t) {Ah(x,t)

2
T

1 *
. /Q u(x,t)L(u(x,t))h(x,t)dxdt—|—E./Q W2 (e, 1)L ((x, 1))t
< /Q sup|u(x,t)||L(u(x,t))||h(x,t)|dxdt+%/Q W2 (1) |L* (h(x,1)) | dxdr, (4.72)

where L* is self-adjoint operator of L.
Since Lu > 0 and also |L(u(x,t))| = |L(u2) — L(uy)| < |L(u2)| + |L(u1)], (5.75) becomes

/Q[|gradu(x,t)|2 (%)z]h(x,t)dxdt < /qup|u(x,t)| (L(u2)+L(u1))h(x,t)dxdt
+ %/Quz(x,t)L*(h(x,t))dxdt.

< /sup|u(x,t)|L(u2+u1)h(x,t)dxdt
Q
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1
+ 5 / W2 (e, )L* (h(x, 1)) dxdi. 4.73)
9]
Using Green-Gauss theorem, the right hand side of (4.73) is equal to
1
/ sup u(x,1)] (1> + )L (h(x,))dds + / W2 (e, 1)L (h(x, 1) )doxd.
9] 9]

< sup|u(x,t)|/Q {(u2+u1)+ %(uz(x,t))]L*(h(x,t))dxdt.

O

Theorem 4.14 Let u(x,t) and ux(x,t) be the two smooth subsolutions of (4.68) and
let h(x,t) be the weight function, h(x,t) = [r* — (x — x0)?]t>(T —t)%. Also suppose that
% >0, i =1,2. Then the following estimate holds,

— 2 2
./Q‘gradu(x,t)’ h(x,t)dxdr < |u(x,t)|/Q(u1+u2)+ [Lh(x,t)—i—ZgTﬂ dxdt

2

+ E/Qu (x,1) [L h(x,t)—l—ZW} dxdt, (4.74)

where u = uy — uj.

Proof.

/Q'g?eﬁu(x,t)‘zh(x,t)dxdtf/ Kﬁ)i(%)i%
—/ (5—) (x t)dxdt+/
+/ (jxn) (x t)dxdt+/

Using integration by parts formula and the fact that /(x,7) vanishes on the boundary
we calculate

LY (2 (oo

:_/u(x,t)ai)q((%)h(x,t))dxdt

By TC) o35 oo

B 5
2 1)

= —/Qu(x,t)(g %)h(x 1)dxdt + 2/ 8% dxdt.

- )2+ (%) 2] h(x,t)dxdt.

) (x,8)dxdt + ..

) (x,1)dxdt. (4.75)




4.6 THE WEIGHTED ENERGY INEQUALITIES FOR SUBSOLUTION OF...

Similarly, solving the other integrals of (4.75), we get

/Q]g?aﬁu(x,t)fh(

x,t)dxdt

(92

2%u

ff(t)a—z"+—+ + 22
Qu % oxr  ox3 T 0xl o

1

82

02 02

2
.Qu (xt)[(az—i—az—i— +8xn)h

/Qu( )(31) (o, 1)t + /

\ | —

o

S

S — o — S—

82

u(x,t) {Au(x,t) +

%/QMZ()C,I) [Ah(x,t)

u(x,z) {Au(x,t) -

Ah(x,t)+

u? (x,1)

Ah(x,t) +

u(x,t)Lu(x,t)h(x,t)dxdt — 2/ u(x,z) (89

u(x,t) %h(x,t)dxdt

%/Quz(x,t) [Ah(x,t)

2

du?

0 h(x,t)dxdt

+ 5/ u? (x,1) [Ah(x,t)

- /Q u(x,t)Lu(x,t)h(x,t)dxdt — 2/ u(x,z) ((99 5 h(x,t)dxdt

2
2 Z
u(x,t)K&x%—i—az—i— +an+

d
02

Pu 7
012

u(x,t) {Lu(x,t) +2

82
+

82
92

2

”} h(x,1)dxdt

9%h(x,1)
ot?

Jasa.

du
FrAr T
9%h(x,1)]

orr |
’u  Ju
o
0%h(x,t

or?

+2

dxdt

ot
)

dxdt

9*h(x,1)
ot?

Jaa

9*h(x,1)
ot?

Jaa

ox2 ' o2

77

t)dxdt

(x,t)} dxdt

(9 h(x,t)
or?

dxdt

5 } h(x,t)dxdt

2

W) h(x,t)] dxdt

ou

E ] h(x,t)dxdt

+ —] h(x,t)dxdt

2,

5 h(x,t)dxdt

2

- /Q u(x,t)Lu(x,t)h(x,t)dxdt — 2/ u(x,z) ((99 5 h(x,t)dxdt

2
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1 zah(.x,t)
+ 2/Qu o dxd
9%h(x,1)

1 ) [
+ E/M (x0) | k) + 5 }d s

= - / u(x,t)Lu(x,t)h(x, t)dxdt—2/ X,1) (8922 h(x,t)dxdt

[ 9*h(x,t) | Ih(x,1)
2/ (x,1) _Ah(x,t)Jr Pe + > ]dxdt

< Ju(x,1)] /Q \Lu(x,1)|h(x,1) h(x,1)dxdt

1 5 0%h(x,t)  Oh(x,t)
+ 5 /Q u (x,t)[Ah(x,t)—i— e S g @76)

Since

L (u(x, )| = |L(uz(x,2)) = Ly (x,2))| < |L(u2)| + |L(u1)| = L1 ) + L(u2),

2.,
L(ui(x,1)) > 0, aat’;l >0,i=1,2
we have
(9_214 o 82u2 _ 82u1 82142 + 82141
02| |92 92 | T 92 o2
Now we further estimate (4.76) by
— 2 9%h(x,t)
/ Jeradu(e, )| h(xn)dxdr < u(x)| / (1 + 12) LA (x, 1 )dxdt +2 u(x, 1) / (1 -+ 1) 5 dvan
0 0 0
L, oh Phix,t)  Oh(x1)
+ E/Qu (x,t)E[Ah(x,t)—i— P + . dxdt
2
< |u(x,t)|/(u1+u2)Lh(x,t)dxdt+2|u(x,t)|/(u1+u2)%dxdt
0
Ly, Phx,t) oh  9*h(x.1)
+ E/Qu (x.1) [Ah(x,t)—T—i—E-i- 0 avar
( t)|/( +uz) + |Lh( r)+28—2h d dt+l/ 2(x,1) | L*h( r)+2ﬁ dxdt
u(x, Qu1 uy X, 52 | 9% > Qu X, X, 5,2 | dxdt-
O

In the sequel, we again use the mollification of bounded, measurable function u(x,?)
on the cylinder P :

T

ue(et) =&~ [ [, (2 (S utrs)dyas, @77

0 B
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for arbitrary € > 0.
Let us denote

Ne(x—y,t—s) = 8’(”“)11,1()%)111 (t;s)

then following will be trivial
0? 0?
W n&‘(-x_yat_s) = a_yz n&‘(-x_yat_s)a

i i
and
92 92
wng(x—y,t—s) =52 Ne(x—y,t—35).

eyt —) = 2yt —)
i X — —5) = — X — —5).
at Tls Vs aS Tls Y
From the equations, we can easily deduce
Lx,ms(x*y,t *S) = Ly,sns(x*)%t*s) = L;me(xfy,t *5)

where operators Ly, and Ly act on arguments (x,7) and (y,s), respectively.
From the above (4.77) becomes

T
Lx,lus(xat)://u(yvs)L;,snS(x_yvt_s) dyds
0 B

Also define the cylinders Py

T T-1
Pk:P rk,m):B(xo,rk X H—Z,rk
e = ﬁ—ér, keN.

It is obvious, by construction, that u(x,?) is infinitely differentiable with respect to its ar-
guments on R"*!

With same arguments as in Theorem 4.6, we can now prove the next theorem.

Theorem 4.15 Consider the weak subsolution u(x,t) of telegraph equation in the cylin-
der Q =B x (0,T). Then for any k € N there exists € > 0 such that for every €, 0 < € < &
each function ug(x,t) is the smooth subsolution of telegraph equation in the cylinder Oy,
that is

Lug(x,t) >0, (x,1) € Ox.

With same arguments as in Theorem 4.7, we can now prove the next theorem.

Theorem 4.16 Any continuous weak subsolution u(x,t) of telegraph equation has weak
partial derivatives %, i=1,...,ninthe cylinder 0,0 = B(xo,R) x (0,T), % also exist

and they are square integrable with respect to the weight function h(x,t), i.e.

/ ‘gfraau(x,t)
0

’2 h(x,t)dxdt < oo. (4.78)
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With same arguments as in Theorem 4.12, we can now prove the next theorem.

Theorem 4.17 Consider two arbitrary continuous weak subsolution of telegraph equa-
tion ui(x,t),i = 1,2 in the cylinder Q,Q = B(x,R) x (0,T). Then the following weighted
reverse poincare type inequality holds for the difference up(x,t) — uy(x,t) of two weak sub-
solutions.
N N 2
/ ‘graduz(x,t) — gradu (x,t)‘ h(x,t)dxdt <
0

9%h 1
[H”Z —u ||L°°(Q) (Il HL""(Q) + H”2||L°°(Q))/ [Lh(x,t) +2W] dadt + ) lJuz —us H%""(Q)
0

<

Q

0%h(x,1)

dxdt.

4.7 The weighted reverse Poincareé type
inequalities for elliptic subsolution

The reverse Poincaré (or the Caccioppoli) inequality represents an important tool in the
study of qualitative properties of solutions of elliptic as well as parabolic partial differential
equations (see, e.g. Giaquinta [24], Heinonen, Kilpelainen, Martio [29] , Peri¢, Zubrini¢
[54], Lieberman [44]).

Consider the second order uniformly elliptic partial differential operator Lu acting on
real valued smooth functions u defined in an n-dimensional ball B = B(x¢,R). The function
u is called the classical sub-solution of the partial differential equation Lu(x) = 0 in B, if u
is twice continuously differentiable and satisfy the differential inequality

Lu(x) >0 inB. (4.79)

The classical Caccioppoli inequality bounds the subsolution’s gradient norm
|| gradu(x) || 2(g) by the norm || u(x) ||L2(§> of the subsolution itself, where B = B(xg,2R).
Littman [46] gave a very fruitful generalization of the notion of the classical subsolution
to the case of functions which need to be only locally integrable without any regularity
requirements.

According to Littman [46] the locally integrable function u defined in the ball B is called
a weak L—sub-solution if for all nonnegative functions v, which are twice continuously
differentiable with compact support in B, the following inequality is valid

/‘u(x)L*v(x) dx >0, (4.80)
B
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where L*v(x) denotes the adjoint operator to Lv(x).

For the elliptic differential operator Lu(x) with smooth coefficients and for arbitrary contin-
uous weak L—subsolution u Littman [46] proves the fundamental approximation theorem,
which states that there exist a sequence of smooth classical subsolutions u,,, m € N, in the
ball B, such that on each compact subset K C B we have the uniform convergence

m—soo

sup |up (x) — u (x)] 0. (4.81)

xek

Based on the latter approximation theorem of Littman we establish in the definition (4.80)
of the weak L—subsolution which requires no a priori regularity in fact leads to the ex-
istence and the integrability of the Sobolev gradient gradu(x) of the continuous weak
L—subsolution u(x).

This remarkable fact enabled us to establish a new type weighted reverse Poincaré inequal-
ity for a difference of two continuous weak L—subsolutions. We should note here that the
difference of two L—subsolutions is neither L—subsolution, nor L—supersolution in gen-
eral, and therefore this type of inequality can not be reduced to the classical one.

4.7.1 Subsolutions that are close in the uniform norm are
close in the Sobolev norm as well

Consider two arbitrary finite convex functions f and ¢ on a closed interval [a,b]. The
following energy inequality was established by K. Shashiashvili and M. Shashiashvili in
[62, Theorem 2.1]

b
[ @027 ()~ =)

<5V3 sup 100 - 0l)] sup [7()+ (|6 —a)

x€(a,b) xe(a,b)
4 2
5w 1) -0l ) -0 @82)
x€(a,b)

This kind of estimate with weight functions on an infinite interval [0,0) was subsequently
applied to hedging problems of mathematical finance in S. Hussain and M. Shashiashvili
[21] (see also S. Hussain, J. Pecari¢ and M. Shashiashvili [32]). The natural generalization
of univariate convex functions to the case of several variables are subharmonic functions
that share many convenient attributes of the former functions. An extensive study of the
properties of subharmonic functions was carried out by L. Hormander in his well-known
book [19, Chapter 3].

A locally integrable function u in the ball B is said to be a weak A-subsolution of the
Laplace equation
Au(x) =0 in the ball B



82 4 THE WEIGHTED ENERGY INEQUALITIES FOR SUBSOLUTION OF...

/u(x)Av(x) dx>0 (4.83)
B

for all nonnegative v, such that v € C3(B) (i.e. Au > 0 in the sense of the distribution the-
ory). Theorem 3.2.11 in [19] states the equivalence between the notion of a subharmonic
function and the notion of a weak A-subsolution.

Consider a sequence of subharmonic functions u,,, m € N,, on the ball B, which con-
verges to a subharmonic function u in L}, (B). Theorem 3.2.13 in L. Hérmander [19] as-
serts that weak partial derivatives ab’a'"(x) ,i=1,...,n tend to a( %) ,n,in L (B)
for an exponent p with 1 < p < 7.

Proposition 3.4.19 in [19] considers a sequence of bounded nonpositive subharmonic func-
tions u,;, in the ball B, such that um| B = 0 and supAu,, is contained in a fixed compact set
K C B. Itis proved there that if

um<x) l M()C) when m — oo,

then weak partial derivatives % converge to ag)(( D = 1,...,n,in L*(B).

It seems reasonable to ask whether the mapping u(x) — gradu(x) possesses some Holder
continuity property when restricted to the class of subharmonic functions defined on the
ball B. W. Littman [46] gave a very fruitful generalization of the notion of a subharmonic
function to the case of general type (with variable coefficients) second order linear elliptic
partial differential operators.

According to Littman [46], the locally integrable function u defined in the ball B is called a
generalized subharmonic function if for all nonnegative functions v € Cg (B) the following
inequality holds

/u(x)L*v(x) dx>0 (4.84)
B

(i.e. Lu(x) > 0 in the sense of the distribution theory), where L*v(x) is the adjoint operator
to Lv(x),

S 9%u 9”u(x) Bu(x)
X)= ajj(x) =——=+ ) bi(x +c(x)u(x),
) i;::l (%) 9xi0x; ; ox; (x)u()
Liu(x)= 2”: ajj(x )82 ulx )Jer* Julx )Jrc*(x)u(x) e
Pyt Y ox;idx; = Ox; ’
where 3
* az;
b; 2
= hin 2 £ 20
(4.86)
72 ix + 2 Bzaij(x)
i—1 8x,~ ij=1 8x,~8xj
with a;j(x) = aji(x), i,j = 1,...,n. It is assumed that the operator L is uniformly elliptic,
ie.
Y a0y = abf, xe B, yeR", (4.87)

i,j=1
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where o > 0 is the elliptic constant and the coefficients satisfy the smoothness conditions
aij(x) S CZH/(F), b,'(x) S C]H/(E),

_ (4.88)
c(x)eCY(B), i,j=1,...,n,

with a Holder exponent y, 0 < y < 1.

Note that for the sake of simplicity we use the term a weak L-subsolution instead of the
term Littman’s generalized subharmonic function.

In this section we establish an estimate for a difference of two continuous weak L-
subsolutions in an n-dimensional ball B, which is analogous to the one-dimensional esti-
mate (2.37).

4.7.2 Preliminary material and the formulation of
the basic result
Consider the twice continuously differentiable functions u and 7 in the ball B = B(x,R).

We start with the well-known Green’s identity (see e.g. A. Friedman [18, chapter 6, sec-
tion 4])

h(x)Lu(x) — u(x)L*h(x) =

3 - |3 (090 %52 a0 5 o) 25 ) aputancn |

i=1 j=1
(4.89)

Suppose now that u € C>(B), h € C*(B) and integrate the identity (4.89) using the
Gauss-Ostrogradski divergence theorem. We get

./.Lu(x)h(x)dxz ./‘u(x)L*h(x)der
B B

| S (neoas 0 249 o (o) 28
%1 Lz](hmm S ulvja(s)
—u(x)h(x) aaal;xix)) ni(x) + bi(x)u(x)h(x)n;(x) | do, (4.90)

where n(x) = (n;(x))i=1,..» is the outward pointing unit normal vector at x € dB, and do
is an (n — 1)-dimensional surface measure of the ball B.
We say that i, h € C(B), is a weight function if

h(x) >0 inaball Band h(x)|,, =0.

Let us consider a weight function 2 € C?(B). Then from the equality (4.90) we get the
Green’s second formula

/ Lu(x)h(x) dx = / w(x)L*h(x) dx — / u(x)(gradh(x), ra(x)) do,  (4.91)
B

B JdB
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where
gradh(x) (ag)(;))i:l """ s Yal0) = (Yai (%)) =y o
where . N
Yai(x) = Y, aji(x)nj(x), i=1,....n
=
We have
(@) = 3 a(@mon;(0) > aln(x)P = >0

by the uniform ellipticity condition (4.87).
Hence for x € 0B

(gradh(x),7,(x)) =lim h(x) — h(x —ty,(x))

<0.
t10 t

Let us write the operator Lu(x) in the variational form

L0 du(x 4 du
L) = 3 2 (a0 52) = i

i,j=1

%) + c(x)u(x)

and introduce the bilinear form a(u,v) on the product space C'(B) x C'(B)

a(u,v) = / [i aij(x) 8555) 3;5();) + nlb}k (x) 8;)(::) v(x) — c(x)u(x)v(x) | dx.

B i,j=1 i=

In the sequel we will need the Green’s first formula (see e.g. C. Baiocchi and A. Capelo
[3, Chapter 18])

/Lu dx+/ ) (gradu(x),v4(x)) do (4.92)

for u € C*(B) and v € C'(B).

Consider now the linear space S of locally integrable functions u in the ball B, which
have weak (Sobolev) derivatives ag_? ,i=1,...,n

Define the weight functions

h(B) =h(B;x) =R*Pdist (x,0B), p>1,

— 4.93
h(x) = R* — |x — xo|%. (499

Introduce a subspace H' (B,Z(ﬁ )) of the space S consisting of functions u € S for which
the following integral is finite

/ m+2/

B

(Bex) dr = ]2 (4.94)

HY(B:h(B))"
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One can easily check that H'(B;h(f)) is a complete linear space. We call it the
weighted Sobolev space. The following inclusion is obvious

H'(B) CH'(B;h(B)) C H. .(B), (4.95)

where H'(B) and H} .

local Sobolev spaces.
Note that (4.95) asserts that if two bounded continuous weak L-subsolutions in a ball

B are close in the uniform norm, then they remain close in the weighted Sobolev norm as

well.

(B) are respectively the first order Sobolev and the corresponding

4.7.3 Auxiliary propositions and the proof of the basic result

Consider a weight function 2 € C?(B) and two arbitrary smooth L-subsolutions u; € C*(B)
in the ball B = B(xo,7), r > 0, i.e.

Lui(x) >0 forall xe B, i=1,2. (4.96)

Proposition 4.1 Suppose that the uniform ellipticity condition (4.87) is satisfied and the
coefficients of the differential operator Lu(x) are smooth, i.e.

a;;€C*(B), bicC'(B), ceC(B), i,j=1,...,n. (4.97)
If uy and uy are smooth L-subsolutions satisfying the inequality (4.96) then the following

energy inequality is valid

g 2 1
/ Joradun (v)—graduuy ()| () dx< — / (1L R@I+He() ) ) dx - @.98)
B B

x (2210 ) (o) + 2 o) + =1 B ]

Proof. Denote u(x) = uy(x) — u;(x), x € B. Taking u? instead of u in the Green’s second
formula (4.91), we have

/ L (x)h(x) dx = / W2 (¥) L h(x) dx — / W2 (x) (grad h(x), ya(x)) do.
B B 0B

It is easy to see then

Lu?(x) =2 i aij(x) 9;}(()6) % + 2u(x) Lu(x) — c(x)u* (x).
i J

2./‘ ’21 aij(x) 8;}(::) ‘i;‘_}ij)h(x)dx-l-2B/u(x)Lu(x)h(x)dx
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:/(L*h(x)+c(x)h(x))u2(x)dx—/uz(x) (gradh(x),v.(x)) do.  (4.99)
B JB

From (4.99) we get

Za/ Jradu(o)h(x) dx < 2sup u(x) / |Lu(x) | (x) dx
B B
+supid() / (1A3) |+ ) ) ) e+ S;;f(x)aé (gradh(x), 1) | dor. (4.100)

Taking u(x) = 1 in the equality (4.99),

/ (gradh(x), va(x)) do = / (L*h(x) — c(x)h(x)) dx. (4.101)
B

JB

Since
(gradh(x),ya (x)) <0 (4.102)

from the relation (4.100) we derive the estimate

o / Jzradu()*h(x) d < sup u(x) / |Lu(x)|(x) dx

2 *
+ supu (x)B/(|L h(x)|+|c(x)|h(x)) dx. (4.103)

Futher, |Lu(x)| = |Luy(x) — Luy (x)| < L(u1 (x) + u2(x)), hence
/|Lu(x)|h(x) dx < /L(ul(x) 12 (x)) () dx.

From the Green’s second formula (4.91) we can write

/L(ul(x)+u2(x))h(x)dx = /(ul(x)—l—uz(x))L*h(x)dx
+ / (11 (x) + 12(x)) (grad h(x), —a(x)) do. (4.104)
JB

Using (4.99)-(4.102) we know that
(gradh(x), —va(x)) >0,
/ (gradh(x), —va(x)) do = / (—L*h(x)+c(x)h(x)) dx, (4.105)
JB B
therefore

/ L) (x)dx < 250p o (3) + ()| / (1) + le@lh()) dx. (4.106)
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Using estimates (4.103) and (4.106) we obtain the desired inequality (4.98). O

In order to extend the inequality (4.98) to the general case of weak L-subsolutions we
need to approximate an arbitrary continuous weak L-subsolution by a sequence of smooth
L-subsolutions. It turns out that in case of the variable coefficients of the differential op-
erator Lu(x) this is not a trivial task (since the standard mollification arguments work only
for the case with constant coefficients). The technique of approximation for this kind of
problem was developed by W. Littman in [46] and we make essential use of it.

For an arbitrary continuous weak L-subsolution # W. Littman constructed a monotonic
nonincreasing sequence u,,, m € N of functions in the ball B, such that on each compact
subset K C B

Uum € C*P(K), Luy(x) >0, xeKk,
lim | u,(x) = u(x), x€K

m—oo

(4.107)

for m sufficiently large (that depends on K).
Here we consider only the continuous weak L-subsolutions u in the ball B. By Dini’s
classical theorem the latter convergence is uniform
m—oo

sup [um (x) — u(x)| === 0.
xek

Let us consider the balls By = B(xo,7%), rx =R HLI , k € N, which are compactly imbedded
in the original ball B = B(x(,R).
We also introduce the smooth weight functions

he(x) = r,%f |xfxo|2, XEB, keN,

_ (4.108)
heo(x) = R* — |x —x0|%, x€B.

Now we will show that any continuous weak L-subsolution u(x) in the ball B has all
first order weak (Sobolev) derivatives

du(x)
j=1,...,n.
axi ) l ) 7n
Theorem 4.18 Suppose that the conditions (4.87) — (4.88) are satisfied. Then any con-
tinuous weak L-subsolution u has weak partial derivatives 85)(:.‘) ,i=1,...,n, in the ball
B = B(x,R).

Proof.  Let us consider the sequence u,, approximating the function u. If we write the
inequality (4.98) for
Uy =Um, U =1u

and for the ball By, 1, then we get

/ | grad e, (x) — gradu; (x) |2hk+1 (x)dx

Bt 1
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Cik+1
< 7+ 2/t — ]l 1=, ) ([l =y, ) + Nettl =, 1)) + ||Mm—ul||iw(3k+l)}»
(4.109)
where
= / (|L*hk(x)| + |c(x)|hk(x)) dx. (4.110)
By
Note that for x € By, the following estimate is valid:
R2
M1 (x) > ————. 4.111

Therefore if we restrict the integral on the left-hand side of (4.109) over the ball By, then
we have

R2 2
R d ~ orad d 4.112
(k+1)(k+2)3/1gra i (x) — graduy (x)| " dx @112
k
Ck+1
< ; {zllum—Ml||L°°(Bk+1)(H”mHL""(BHl)+H”l||L"°(3k+|))+||”m_”l||i°°(3k+l)]

Since the sequence u,, converges to u in the norm L™ (B ), we can write
||L£m - MZHL""(B;{H) — O, I’I’l,l — o0,

Passing to the limit in the inequality (4.112) as m,l — oo, we obtain

. x dup(x)  Jug(x)\2
m],}zloo 1213/ ( ax,’ B 8x,~ ) dx=0. (4.1 13)
13

By the completeness of the space L*(By,), there exists a family of measurable functions
gei(x),i=1,...,n,k=1,2,..., such that g; ;(x) € L*(By),i=1,...,n, and

L a’/¢m<x) 2
lim —— —gri(x)) dx=0, k=1,2,.... (4.114)
5 /()

Let us extend the functions g ; trivially outside By as follows

gri(x) for xe& By,
gk,i(x) =
0 for x € B\ By,
and define the functions g;, i = 1,...,n, on the ball B by

gi(x) =limsupgy;(x), i=1,...,n. (4.115)

koo

It is obvious that the functions gi;;, [ = 0,1,2,..., agree on the ball B; and therefore

gi(x) = gki(x) (a.e.) on a ball By. (4.116)
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Thus the functions g;, i = 1,...,n, are locally square integrable on the ball B.

Let us check that g;, i = 1,...,n, represent the weak partial derivatives of the function
u. Take any continuously differentiable function ¢ with compact support in B (i.e. ¢ €
Cl(B)). Then supp ¢ C By for some k. We have

o=~ [ ) %

By By

But u,, converges uniformly to # on By, and % converges to g; in L?(By). Hence, passing
. . . . 1
to the limit as m — o= we obtain the equality

0
/gi(x)(p(x)dx: —/u(x) g(x) dx, (4.117)
M
By By l
which means that g;, i = 1,...,n, are indeed the weak partial derivatives of the function u.

O

Theorem 4.19 Assume the conditions (4.87) — (4.88) are satisfied. Then any continu-
ous bounded weak L-subsolution u in the ball B belongs to the weighted Sobolev space

H(B;h(B)), B > 1.

Proof. 'We write the inequality (4.98) for the functions u;(x) = 0 and u»(x) = u,(x) and
the ball By, where the sequence u,,(x) converges to u(x). We obtain

2 Ck+l 2
[ eradn@) Phesa ) dx < L3

By

Next, passing to the limit as m — oo, we get

2 Chk+1 2
[ leraduo)Phisaydy < S 3y,

Byt

Restricting the integral on the left-hand side of this inequality over the ball B;, and making
the integer [ tend to infinity, we obtain

/|gradu(x)|2hw(x)dx§ %3|\u|\{m(3) < . (4.118)
By

Since the left-hand side of (4.118) is increasing with respect to k and bounded, using dom-
inate convergence we have

3Ceo
[ leraduoPe(x)dx < = ul2 )
B

But

dist B
heo(x) = R — |x — x0|? > R (%) > R BdistP (x,0B),
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for B > 1. Hence, we get the energy estimate

~ 3Ce
/|gradu(x)|2h(ﬁ;x)dx < o HMHIZF(B) <o

o= [ (1L hel)| 1) ()

B

where

O

Theorem 4.20 (THE WEIGHTED REVERSE POINCARE INEQUALITY) Assume that the con-
ditions (4.87) — (4.88) are satisfied. Consider two weak L-subsolutions u;, i = 1,2, in the
ball B, such that

u; € C(B)NL”(B), i=1,2. 4.119)

Then the functions u; belong to the weighted Sobolev space H' (B,ﬁ(ﬁ)) B > 1, and the
following reverse Poincaré type inequality holds for the difference uy — u; of two weak
L-subsolutions

g(a+x pwzmmm(wmm P %w@—mmw}

where

c— / (IR0 + () ) ) d
B

and o > 0 is the constant of the uniform ellipticity.

Proof. We consider the sequences of smooth L-subsolutions u,;, i = 1,2, m =1,2,..,
converging on the balls By.; uniformly to weak L-subsolutions u;, i = 1,2. By the assump-
tion of the theorem the functions u;, i = 1,2, are continuous and bounded on the ball B,
i.e.

u; € C(B)NL”(B), i=1,2.

Let us apply the inequality (4.98) to the functions u,, | and u,,> and the balls By,
k,l € N. We have

2
/ |grad it » (x) — graduy, 1 (x)|“hy (x) dx

= (Bi+1) +Hum:l||L°°(Bk+l))

< 2 25) =t )1, (1
oz =t [, 4.121)

Passing to the limit as m — < in this inequality, by Proposition 4.18 we get

/ |gradu, (x) — gradu; (x) |2hk+1 (x)dx

Bj+i
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Crt1
o

< Sy — o (2l )+ o) + 2 = 1 )

(4.122)

Restricting the integral on the left-hand side of (4.122) over the ball By and then passing to
the limit as [ — oo, we obtain

/ |gradu, (x) — gradu (x) |2hw(x) dx
By

Coo
<< [2”'42 — utlz=) (2l (5) + [t |2 () ) + [ — 11 wa(s)} : (4.123)

where we have used the assumption on the boundedness of u;, i = 1,2, on the ball B.

By the energy estimates (4.7.3) and (4.7.3) we get that u;, i = 1,2, belong to the
weighted Sobolev spaces H' (B;h..) and H' (B;h(B)), B > 1.

Passing to the limit in the inequality (4.123), as k — oo, we obtain

/ |gradu, (x) — gradu (x) |2hw(x) dx
B

Coo
<5 [2||M2 — 1| =8y (12l 2=y + [ || =()) + |2 — w1 wa(s)} , (4.124)

from which taking into account the inequality (4.7.3) the desired estimate (4.120) follows.
O

It can be easily calculated that Ak(x) = —2n and therefore the constant c in (4.120) is
equal to
¢ =2nA(B). (4.125)

Wilson and Zwick [70] studied the problem of best approximation in the norm of L= (B)
of a given function f by subharmonic functions. For a continuous function in B they
characterized best continuous subharmonic approximations. It turned out that the best
subharmonic approximation of a continuous function f is just the greatest subharmonic
minorant of f adjusted by a constant.

In problems for which it is known a priori that the analytically unknown continuous
exact solution # must be subharmonic in the ball B it makes sense to seek for numerical
approximations vy, (k is some small parameter) that are subharmonic themselves. One
expects that they will better imitate the unknown solution « than the somehow constructed
continuous uniform approximation uy,.

Suppose we are given some continuous uniform approximation u;, to the unknown
subharmonic function « in the ball B. The nice idea of Wilson and Zwick [70] consists in
replacing uy, by its greatest subharmonic minorant v;, defined by

v (x) = sup {g(x) : g(x) is subharmonic in B and g(x) < uh(x)}. (4.126)
If we denote & = ||luj — ul|;=(p), then we obtain

up(x) — 06 <u(x), u(x)—0 <uy(x).
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Hence
vi(x) =8 <up(x) — 8 <u(x)

and as the subharmonic function u(x) —  is the minorant of u,(x), we have
u(x) — 0 <wp(x).

Hence we get
v — ull =) < [lun — ull=(5)- (4.127)

So, both functions v, and u are subharmonic in B (and we assume they are bounded and
continuous), so that we can apply the energy inequality (4.124) and obtain the following
important estimate

|| gradv;, — gradMHiz(B;;(ﬁ» <2nA(B) [4||Mh — ul| =y lul| = () + 3|un — M||%w(3)} :
(4.128)
Thus, the subharmonic approximation v, indeed better imitates the unknown exact
solution u than the initial uniform approximation uy,.

4.8 The weighted reverse Poincaré inequality for
bounded smooth domains

We generalize the estimates from the previous section established for a ball B, B C R”,
to the case of arbitrary bounded smooth domains D, D C R", such that D € C>*7,0 <y < 1.

The additional assumption on the operator L, see (4.85), which will be assumed through-
out this section is the following

L'l=c*(x)<0 xeD. (4.129)

Let us consider the Dirichlet problem

{L*h(x)l, x€D (4.130)

h(x)=0, onx€dD
Consider a sequence Dy, k= 1,2, ... of subdomains of D, such that D; € C>*7 and
Dy C Dysy C Dysy C D, D:ktlek. (4.131)

Aside of (4.130), let us consider the Dirichlet problem for each subdomain Dy, k € N,

{ L*hy(x) = —1 in Dy (4.132)

he(x) =0 on dDy.
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From the Theorem 6.14 on the global regularity in Gilbarg and Trudinger [23, Chapter 6]
we have that the Dirichlet problems (4.130) and (4.132) have the unique solutions /4 and
hy, respectively, which are smooth up to the boundary, i.e.

he C>1(D)
{ hy € C>*Y(D). (4.133)
By the Hopf’s maximum principle we obtain
h(x) >0, x€ D,
{ hi(x) >0, x € Dy. (4.134)

Hence / and h; can be considered as the smooth weight functions in the corresponding
domains.
Further we claim that

lim A (x) = h(x), x € D. (4.135)

k—o00
In order to prove the claim let us define
& = sup h(x), keN. (4.136)
)CG(?D](
Since Dy C Dy and D = k[lek, then for any y > 0 there is a number k(y) such for

k > 4k(y) the boundaries of D; lie in the y—neighbourhood of dD.
As h is uniformly continuous in D and h(x) = 0 for x € dD, we get that & — 0 as k — .
From the definition of & it follows that

L*(h(x) — hi(x) — &) = —c"(x)g >0, x€ Dy (4.137)

and
h(x) 7hk(x) — & = h(x) —& <0, xe dDy.

By the maximum principle we have
h(x) —hg(x) — & <0, x € Dy,
hence
h(x) — hi(x) < & in Dy,

and similarly
hi(x) — h(x) < &, x € Dy.

Altogether,
[ (x) = h(x)| < &, x € Dy,

which gives
lim Ay (x) = h(x), x € D.

k—soo
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4.8.1 The energy inequality for the smooth L-subsolutions
Our objective in this section is to establish the reverse Poincaré type inequality for smooth

subsolutions in the smooth domains A, A C D.

Consider arbitrary two smooth L-subsolutions u;, i = 1,2, in the domain A, that is,
ui(x) € C*(A) and
Luij(x) >0, x€A, i=1,2. (4.138)

Proposition 4.2 Let A be a smooth subdomain of D and let hy be a smooth weight func-
tion in the domain A with ha(x) > 0, x € A, and hy(x) = 0, x € dA. Suppose that the
uniform ellipticity condition (4.87) is satisfied and the coefficients of the differential oper-
ator L are smooth, i.e.

aij(x) EC*(A), bi(x)€C'(A), c(x)€C(), i,j=1,...,n. (4.139)

Then the following energy inequality is valid

/’graduz(x)—gradul(x)‘zhA( Ydx< — /(|L*hA( |+|c(x)|hA(x)> dx

A A
(2l =t =y (e =y 2 =)+ 201 [ | 4:140)
for the difference uy — uy of smooth L-subsolutions u;, i = 1,2, in A.

Proof. Let us denote u(x) = up(x) —u; (x) If we take y = grad u(x) in (4.87), multiply by
ha(x), and then integrate over the domain A, we have

x) d
/ |gradu(x))[2ha (x)dx < ,,21 / aXI g)(cj)hA(x)dx. (4.141)
We start with the equality
N 9%u(x) S du(x)
A/ v(x) Lu(x)dx = A/ [,»,,21 ) G + R b G + (ol
(4.142)
where v is an arbitrary smooth function in the domain 4, i.e. v € C?(A).
If we take v(x) = u(x)ha(x) in (4.142), we have
/‘u(x)hA(x)Lu(x)dx
A
n 82 n 0
= /(2 ai, j(x)u(x)ha(x) au} ») + ) bi(x)u(x)ha(x) ;(x) +¢f )uz(x)hA(x)> dx
4 \ij=1 XiXj i Xi
x B d%u(x) z ' du(x) 2
7”’2:1 A/ i W) F e 3 A/ bi(x)u(x)a () 55 e+ A/ ()1 (x)ha (x)dx.

(4.143)
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Using integration by parts formula in multidimensional domain A (see [14, Appendix C])
in the first and second integral of the latter expression, and then using the fact that hy+
vanishes on the boundary, we have

du(x)

[ L z/aau >m»aww

A ljl

_;n:l/ dx+/

A
e a( a,j hA )) du(x)
— UE:IA/ u(x) 7, dx
RN Ju(x) du(x)
uzlA/alj s 8x, ox; o,

12/8 dx+/

1

The above implies that

$ [aiomm 22,

1}1

zn: / 9(bifx).-ha(x)) (bi(x)'}'lA (x)) u?(x)dx + /c(x)u2 (x)ha(x)dx. (4.144)
A

Using again integration by parts formula on second integral of right hand side of (4.144),
we get

S fatoin 2220,

ij—= 1 8xi ax]'

/ ()hA( LM dx+ 2 /Wj))uz(x)dx

A
1 9(aij(x)ha(x)) hA @) 5 1K [Ibix)ha(x))
2”2184 u?(xX)nido 2[]/‘/78)@' u”(x)dx

_ 1 o 92 (ai(0)ha(x))
+A/c(x)1,¢2(x)hA(x)dx f/u(x)hA(x)Lu(x)dqu EA/ [ijzl T&xl

b S
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-3 2t +c<x>hA(X>} gax—3 3 [ AU 2o

ij= laA

/ () u? (x)hy (x)dx. (4.145)
A
By the definition of adjoint operator, the equality (4.145) becomes

S Ju(x) Ju(x)
2 /al’j hA 8x,~ axj' dx

Lj=1y

_ / () ha () L) dx + % / (LR (x) + (x)ha () ) (x)dlx
A

NI»~>

2”: “w—hA())uZ(x)n,-da. (4.146)
=194 i

Now we transform the surface integral in (4.146)

$ a(aij<;)>c@<x>>u2(x)mdd

=154 l
2 /aalj ndo'+ 2 /al] uz(x)n,dO'. (4.147)
=194 =154

The first integral vanishes in (4.147) due to the definition of weight function A4, hence we
get

L oh
Y /aij(x)ﬂuz(ﬂnido < sup ’( /I 2 ajj(x llda (4.148)
i,jilaA axi XE0A ij=1 Xi

Let us consider the vector

Ya() = (i () iy

where

Yai(x Zaﬂ , i=1,...,n. (4.149)

By the definition of directional derivative we have

Ohs(x) & dha(x)
8%1 72 a)Ci ym(X)
i=1
hence from (4.149) we get
ahA(x)_ = - Ohy(x) .
. _i,j}:%alj(ﬂ ox, nj. (4.150)
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Now consider

(ya(x),n(x)) = 'ilaij(x)ni(x)nj(x) > oc|n(x)|2 =o>0.
L, ]j=

Also if x € dA, we have

(gradhA(x), Ya (x)) = lim ha(x) —ha(x —17a(x))

<0.
10 t

Using (4.141) and (4.151) in (4.148) we have

oc/|gradu(x)|2h,4(x)dx§s2p|u(x)|/|Lu(x)|hA(x)dx
A A

XEA

+ysupi(s) [ (L Ra0)]+ elolha(o) d
A

1
+ 5 sup uz(x)/|(gradhA(x),ya(x))|d0'.
XEJA A

Taking u(x) = 1 in (4.146),we get

/ (gradia(x), va(x)) do = / (L ha(x) — c(x)ha(x)) dx.
9A A
Also we know from (4.152) that for any x € dA

(gradha(x), va(x)) <0.

Hence from the inequality (4.153) we derive the estimate
o / |grad () [2ha (x) dx < sup [u(x)| / |Lua(x) | (x) lx
4 xeA 4

+ supi?(x) / <|L*hA )]+ [e(x) | (x)) dx.
A

XEA

Now we bound the integral [ |Lu(x)|h4 (x) dx from above.
A

We have

|Lu(x)| = |Luz (x) — Luy (x)| < L(u1 (x) + u2(x)),

hence

/|Lu(x)|hA (x)dx < /L(ul () + 2 (x) ) B (x) dix.
A A
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(4.151)

(4.152)

(4.153)

(4.154)

(4.155)

(4.156)

(4.157)

(4.158)
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From Green’s formula we can write

/L(ul(x) + up(x)) ha(x)dx = / (11 (x) + up(x) ) L*ha (x)dx

A

A
+/(u1(x)+u2(x)) (gradhy (x),—Ya(x))do.  (4.159)
dA

By (4.154) and (4.155) we know that
(gradhu (x),—7a(x)) >0,

/(gradhA (x), *Ya(x)) do :/( — L hp(x)+c(x)ha (x)) dx, (4.160)
9A A

therefore

1) na () < 250p () 10| | (17800 lea () . a161)
A A

From the estimates (4.156) and (4.161) we obtain the desired result (4.140). O

4.8.2 The existence and integrability of first order weak
partial derivatives for continuous weak L-subsolutions
and the weighted reverse Poincaré inequality

In order to extend the inequality (4.140) to the general case of weak L—subsolutions, we
need the same technique of W. Littman [46] which was used in the previous section for
approximating an arbitrary weak L—subsolution by a sequence of smooth L—subsolutions.

For an arbitrary continuous weak L—subsolution u, there exists a monotonic nonin-
creasing sequence un,, m € N, of functions in the domain D such that on each compact
subset K C D for sufficiently large m € N (which depends on K) we have

U € C*TV(K), Lty (x) >0, x €K, tp(x) \, u(x), x € K. (4.162)

Here we consider only the continuous weak L—subsolutions « in the domain D. By Dini’s
theorem the above convergence is uniform

sup |um (x) — u (x)| 0.
xekK

Now we will show that any continuous weak L—subsolution « in the domain D has all first

order weak derivatives ag)(cfv), i=1,2,...,n.
1

Theorem 4.21 Let the assumption (4.129) and the uniform ellipticity condition (4.87) are
satisfied. Suppose also that the coefficients of operator L are smooth as in (4.88). Then
any continuous weak L-subsolution u possesses the first order weak partial derivatives

as@,i =1,...,n, in the domain D.
Xi
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Proof. Consider the sequence u,, that satisfies (4.162) approximating the weak L-subsolution
u, and the weight function /.| which is the solution of the Dirichlet problem (4.130). Let
us write the inequality (4.140) for the functions u; = u,,, u» = u; and the domain Dy .
Then we get

/ | gradu,, (x) — gradu; (x) {zth (x)dx

Dyyy
Ck+1
< 7+ [2||“m - ”l”L“‘(DkH) (H“m”L“‘(DkH) + Hul”L“‘(DH.)) + [|um — ul”%“‘(DkH) )
(4.163)
where
Chpl = / (1 n |c(x)|hk+1(x)> dx. (4.164)
Dyyy
Denote
dk+1 = Hﬂ" th(x). (4165)

x€Dy

It is clear that di; > 0.
If we restrict the integral on the left hand side of (4.163) over the domain Dy, then we have

dk+1/|gradum(x)—gradul(x)|2dx (4166)
Dy
Cl+1
< 2l = tll oy ) (Nt )+ 1))+ s = 01,

Since the sequence of the functions u,, converges to u in the norm L (Dy. 1), we can write
([t — ul”L“‘(DH,) — 0 if m,l — oo,

Passing to the limit in the inequality (4.166) as m,l — oo, we obtain

lim i/(a”m(x) 7M>2dx:0. (4.167)
1

m,l—oo = 8x,~ 8x,~
=1p,

By the completeness of the space L?(Dy), there exists a family of measurable functions
gei(x),i=1,...,n,k=1,2,..., such that g; ;(x) € L*(Dy), i =1,...,n, and

lim i/(a”m(x) —gk,,-(x))zdxzo, k=1.2,.... (4.168)

Bxi
Let us extend the functions g ; trivially outside of the domain Dy, as follows

gri(x) for xé& Dy,
8ri(x) =
0 for x € D\ Dy
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and define the functions g;, i = 1,...,n, on the domain D by
gilx) = liinsupgk’,-(x), i=1,...,n (4.169)
It is obvious that the functions gi;;, [ = 0,1,2,..., agree on the domain Dy and therefore
gi(x) = gri(x) (a.e.) on a domain Dy. (4.170)
Thus the functions g;, i = 1,...,n, are locally square integrable in domain D.
Let us check that g;, i = 1,...,n, represent the weak partial derivatives of the function

u. Take any continuously differentiable function ¢ with compact support in D (i.e. ¢ €
C(D)). Then supp ¢ C Dy for some k, and we have

2 p(a) = [ o) 5

Dy Dy

But u,, converges uniformly to u on Dy, and %’;‘:‘ converges to g; in L?(Dy). Hence, passing

to the limit, as m — oo, we obtain the equality

0
/g,-(x)(p(x)dx: 7/u(x) g(x) dx, 4.171)
X
which means that g;, i = 1,...,n, are indeed the first order weak partial derivatives of the
function u. O

Let us introduce the weighted Sobolev space H'(D;h) with the help of the weight
function &, which is the unique solution of Dirichlet problem (4.130). The space H' (D;h)
consists of the functions u for which the following integral is finite

2 . du(x)\? _ 2
/u (x)dx+lle/< 5 ) hx) dx = [l 4.172)

D

Theorem 4.22 Suppose that the assumption (4.129) and the uniform ellipticity condition
(4.87) are satisfied. Assume also that the coefficients of the operator L are smooth as in
(4.88). Let h be the unique smooth solution of the Dirichlet problem (4.130). Then any
continuous bounded weak L-subsolution u in the domain D belongs to the weighted Sobolev
space H'(D;h).

Proof. Consider the sequence of the functons u,, with (4.162) properties, which approxi-
mates the function u. If we write the inequality (4.140) for the functions

up(x) =0, ur(x) = wup(x),

and the domain Dy, we get

2 Ck+1 2
/ Jeradnn () P (1) dx < S 3 B - 4.173)

Dty
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Next passing to the limit as m — oo, we get

2 Ci+l 2
/ Jeradu(@)Phisr () dx < S 3l 4.174)

Dyt

Restricting the integral on the left hand side of (4.174) over the domain Dy, and letting the
integer [ go to infinity, we obtain

C
/|gradu(x)|2h(x) ax < 3l ) < (4.175)
Dy

where we have taken into account the limit relation (4.135).
Since the left hand side of (4.175) is increasing with respect to k and bounded, it has finite
limit so that

3
/ Jeradu(@) Ph(x) dx < = ulF - (4.176)
D
where
c= /(|1 + |c(x)|h(x)) dx. 4.177)
D
O

Theorem 4.23 Let the assumption (4.129) and the uniform ellipticity condition (4.87)
are satisfied. Suppose also that the coefficients of the operator L are smooth in the domain
D as in (4.88). Let h be the unique smooth solution of the Dirichlet problem (4.130).
Consider two weak L—subsolutions u;,i = 1,2, in the domain D, such that

ui € C(D)NLT(D), i=1,2. (4.178)

Then the following reverse Poincaré inequality holds for the difference uy —u; of two weak
L—subsolutions u;, i=1,2,

c
2= 1] 1y < (< +measD)
X [ZHMer =0y (11 | =)y 2| 1= + |12 = w7 3y |, (4.179)
where
c=/(1 +|c(x)|h(x))dx (4.180)
D
and o0 > 0 is the constant of the uniform ellipticity.
Proof. Consider the sequences of smooth L-subsolutions u,,;, i = 1,2, m € N, converging

on the domains Dy; uniformly to weak L-subsolutions u;, i = 1,2. By the assumptions of
the theorem, the functions u;, i = 1,2, are continuous and bounded in the domain D. Let us
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apply the inequality (4.140) for the functions u,, | and u,, > over the domain Dy, k,I € N.
We get

/ |erad i, (x) — gradi, 1 (x) | I (x) dx (4.181)

< (2 2=ttt |y oy (N2 gyt 120 ) 2 =t [ |-

Passing to the limit as m — = in (4.181), we obtain
/ |gradu, (x) — gradu (x) |2hk+, (x)dx

Cr+l
< 7[2\\142*141HL&(DM)(\\M2||L°°(Dk+l>+\\M1||L°°(Dk+,>)+||M2*M1Hiw(nk+,) , (4.182)

where we also used the assumption that u;,i = 1,2 are bounded on the domain D.
Now let us restrict the integral on the left hand side of (4.182) over the domain D; and then
let [ tends to infinity,

/ |graduy (x) — gradu, (x)fzh(x) dx
Dy

&
=5 {2\\@ — 1| =) (1u2l] =) + a1 | =y ) + 2 — w1 ||i°°(D)} : (4.183)

From Theorem4.3 we know that the following energy integrals are finite

/|gradui(x)|2h(x)dx<°°, i=1,2. (4.184)
D

Hence passing to limit as kK — oo in the inequality (4.183) we come to the desired result. O

4.9 The weighted reverse Poincaré type inequality
for parabolic subsolutions

Our goal in this section is to establish the reverse Poincaré inequality for the second order
uniformly parabolic partial differential operator in the cylindrical domain.
4.9.1 Mollification of the weak parabolic subsolutions

Let us consider a linear second order parabolic partial differential operator with constant
coefficients in a cylinder Q, Q = B(xo,R) x (0,T),

- u(x,t) & Jdu(x,t) du(x,1)
Lu(x,t)—i’]}::laum—i—i:zlb, o + cu(x,t) — Frang (4.185)
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where a;; = aj;, i,j=1,...,n, and its adjoint operator

i u(x,t) &, dulx,t) du(x,t)
ij—izzlb, o, +cu(x,1) + Fr (4.186)

It is assumed that the operator Lu is uniformly parabolic, that is

n
> aipyiyj = aly’, yeR" (4.187)
ij=1

with the constant of parabolicity o > 0.
A bounded measurable function u(x,r) defined in the cylinder
0O = B(xo,R) x (0,T) is said to be a weak parabolic subsolution of the equation

Lv(x,t) =0 in the cylinder Q (4.188)

if for all nonnegative v(x,?), belonging to the space Cg 5 (Q) the following inequality holds

T
//u(x,t)L*v(x,t) dxdt > 0. (4.189)
0 B

It is a remarkable fact that this definition of the weak parabolic subsolution, which requires
no a priori regularity, leads to the existence and the integrability of the weak (Sobolev)
gradient of a continuous weak subsolution u(x,#). This enables us to establish a new type
of energy inequality for the difference of two arbitrary continuous weak parabolic sub-
solutions which is the main objective of this paper. We shall need to approximate weak
subsolutions of the equation (4.188) by smooth ones and for this the classical approxima-
tion techniques (see, for example, Gilbarg, Trudinger [23, Chapter 7]) will be used.

Define
1
cexp| ——— ), if |z| <1,
p(|z|271> 2
0 if |z] > 1,

pn(z) = (4.190)

)

where z = (z1,...,2n) € R",n € N, ¢ > 0isaconstant with [ p,(z)dz=1.
Rn
Let us consider the mollification of the bounded measurable function u(x,) defined in the
cylinder Q
T

—(n x— t—s
wun(x,t) = h <+‘>//pn(7y)p1(7)u(y,s) dyds (4.191)
0 B

for arbitrary 2 > 0. If we denote

et (2 ()
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then it is easy to see that the following equalities are valid

J 0
(9_xl~ph<x_y’t_s) = —8—yiph(x—y,t—s),
0? 92
B P =) = gy =i =),

’ (x =yt =) ’ (x =yt =)
= pp(x—=y,t—5)=—=ppx—y,t —s).
ot Pn Y Js Pn Y

From the latter equalities we easily get

Lx,lph(-x_yat_s):L;,sph(x_yvt_s)v (4192)

where Ly, and Lj ; means taking differential operators with respect to arguments (x,t) and
(v,s), respectively. Taking into account the relation (4.192) and the definition (4.191) we
come to the interesting equality

T
Ly up(x,t) // u(y,s)Ly on(x —y,t —5) dyds, (4.193)
0 B

for arbitrary 4 > 0. Let us define the cylinders

T T k+1
- —B T 4.194
where k41
=——7R, k
Ik 2 eN.

The following theorem states that the functions uy,(x,7) are smooth parabolic subsolutions
in the cylinder Qy, for sufficiently small A.

Theorem 4.24 Consider the weak parabolic subsolution u(x,t) in the cylinder Q = B(xg,R)

% (0,T). Then for any k € N there exists h > 0, such that if0 < h < h, each function uy(x,1)
is the smooth parabolic subsolution in the cylinder Qy, that is

Lug(x,t) >0, if (x,1) € Oy. (4.195)

Proof. Denote for fixed k € N

E:min( (R r ) (4.196)

2(k+2) 2(k+2)

It is well-known that for arbitrary > 0 the function uy(x, ) is infinitely differentiable with
respect to its arguments in R"*1. Let us check that for arbitrary (x,t) € Oy the function
pn(x —y,t —s) has a compact support in the cylinder Q as a function of (y,s).

Consider the cylinder Qk defined as follows

-~

Qk:B(xo,2k+3R>><( T 2k+3T).

—— =T 4.197
2k+4 2k+4’2k+4 (4.197)
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If (y,s) & Qg then either y & B(xo, SR) or s € (57,305 T). In the first case

2k+3  2k+2 1
ly— x| ( + Jr) = R > h,

2Qk+4 2k+4 2(k+2)

while in the second case

2 1
r— < " \rsnh
| S|>(2k+4 2k+4> -

Hence in both cases we have pj(x —y,7 — s) = 0. Therefore, the nonnegative smooth func-
tion p(x —y,7 —s) has a compact support in Q as a function of (y,s), if & < h and by the
definition of the weak parabolic subsolution u(x,7) we have

T
/ / S)Ly sPn(x —y,t —s) dyds > 0. (4.198)
0 B

From (4.193) we get Luy (x,1) > 0 if (x,r) € Qg and h < h. O

4.9.2 The case of smooth parabolic subsolutions

We start with the classical Green’s identity (see Friedman [18, Chapter 6, Section 4])

x,t) Lu(x,t) —u(x,t) L*h(x,t) = SEAIR X a~~au(x’t)—ux a~~ah(x’t)
b)) ) i) = 3 5[ 33 (e P50ty 520
+b,~u(x,t)h(x,t)] — % (u(x,1)h(x,1)), (4.199)

where h(x,t), u(x,t) belong to C>'(Q(r,s)) for some cylinder Q(r,s). In this chapter we
shall consider a particular smooth weight function %(x, ) of the following type

h(x,t) = (* =[x —x0[*) (t —s)(T —s—1), x€B(xo,r), s<t<T —s. (4.200)
We have

{h(x,t) >0, if (x,1)€Q(ns), (4.201)

h(x,t)=0, if xedB orte{s;T —s}.
This section is devoted to the proof of the following

Proposition 4.3 Consider two arbitrary smooth parabolic subsolutions u;(x,t), i = 1,2
in the cylinder Q(r,s), i.e. uj(x,t) € C>'(Q(r,s)), i = 1,2, and

Lui(x,t) >0 if (x,t) € Q(rs), i=1,2. (4.202)

Let us assume that the uniform parabolicity condition (4.187) is satisfied. Then the follow-
ing energy inequality is valid

2 1
/ ‘gradug(x,t) —graduy (x,1)| h(x,t) dxdt < = / (!L*h(x,t)| + |c|h(x,t)> dxdt
O(rs) O(rs)
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x |21l = w1l =y (01 ll=(try + 2l =0ty ) + Ntz = 12 gy |
(4.203)

Proof. Consider arbitrary smooth function u(x,t) € C*!(Q(r,s)) and let us integrate the
identity (4.199) with respect to x over the ball B(xy, r) for fixed 7, s <t < T —s. Then, by
the Gauss—Ostrogradski divergence theorem we get

/Lu(x,t)h(x,t)dx: /u(x,t)L*h(x,t)dx
B B

du(x,1)

+é£i’§l:1 [}2’1:1 (h(X,l)dij 7, —u(x,1)a;; %;t))ni(x)

eriu(x,t)h(x,t)ni(x)] do — / % (u(x,2)h(x,1)) dx, (4.204)
B

where n(x) = (n;(x));=1,.., is the outward pointing unit normal vector at x € dB, and do is
an (n— 1)-dimensional surface measure of the ball B(xp, r). Denote v, (x) = (Vai(X))i=1,...n,
where

Vi (x Zaj,n] , i=1,...,n

We have by the uniform parabolicity condition (4.187)

(Va(x),n(x)) = Za,jn, x) > aln(x)]* = a > 0.
i,j=1

Therefore for arbitrary x € dB we have

(gradh(x,1), va(x)) = im h(x,t) — h();— SVa(X),1)

<0. (4.205)

Let us write (4.204) in a convenient form taking into account that on the boundary dB the
weight function A (x, ) is vanishing, then we obtain

/Lu X, 0)h(x,t)dx = /u(x,t)L*h(x,t)dxf/u(x,t) (gradh(x,1), v4(x)) do

JdB

(u(x,t)h(x,t)) dx, (4.206)

|
T e
N

where s <t < T — s. Integrating (4.206), with respect to z, over the time interval (s, 7 — )
we get

/ Lu(x,t)h(x,t) dxdt = / u(x,t) L*h(x,t) dxdt
O(rs) o(rs)
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\

-
_ / / u(x,1) (gradh(x,1), va(x)) dodt — / [, 0)h(x,1)]

S OB B

T—s

s

and since fi(x,s) = h(x,T — s) = 0, we come to the Green’s second formula
T—s
/ Lu(x,1)Yh(x,1) dxdi— / w(x, 1) L h(x, 1) dxdi— / / u(e,1) (gradh(x,1), va(x)) dodr.
o(rs) 0(rs) s 0B

Take u(x,7) = 1 in the latter formula, then we get the equality

//(gradh(x,t),va(x)) dodi = / (L*h(x,) — ch(x,1)]) dxd.

s 0B 0(rs)

Now taking u?(x,?) instead of u(x,?) in the Green’s second formula, we have

/ Lu® (x,1)h(x,1) dxdt = / u? (x,1) L*h(x,1) dxdt

O(rs) 0(rs)
T—s

— / / u* (x,1) (gradh(x,1), va(x)) dodt. (4.207)

s dB
It is easy to calculate

du(x,t) du(x,r)

x?
8x,~ axj'

n
Lu?(x,1) =2 2 aij + 2u(x, 1) Lu(x,1) — cu®(x,1). (4.208)
ij=1

Hence, from (4.207) we obtain the following inequality

201 / |gradu(x,t)[*h(x,t) dxdt

Q(r.s)
< 2[ullz=(0(rs)) / |Lu(x,1) h(x, 1) dxdi + (|6 1= (g ) / (!L*h(xvf)|+|c|h(x7f)> dxdt
0irs) 0irs)
T—s
1 =) / / ‘(gradh(x,t),va(x))‘dO'dt. (4.209)
s 9B

From (4.205) we know that for x € dB
(gradh(x,t),fva(x)) >0,

therefore, from (4.9.2) we obtain

T—s
//‘(gradh(x,t),va(x))'dO'dt: / (= L*h(x,) +ch(x,0)) dxdr.  (4.210)
s JB O(r,s)
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From the relations (4.209) and (4.210) we derive the estimate

o / |aradu(x,)*h(x,1) dxdt < [ul]=(0(rs)) / \Lu(x,1)|h(x,1) dxd
0(rs) 0(rs)
sy [ ([ HG0] + el ) dxd.
0(rs)
4.211)

Up to now u(x,?) was arbitrary function from the space C>!(Q(r,s)), from now on we shall
take

u(x,t) = ua(x,t) —uy (x,1), (4.212)
where u;(x,t), i = 1,2 are smooth parabolic subsolutions.
If so, from
|Lu(x,1)| = |Luz (x,1) — Luy (x,1)| < L(uy (x,1) + ua(x,1)), (4.213)
we conclude
/ \Lu(x,1)|h(x,1) dxdi < / Ly (6,0) + s (x,0) ) (x, 1) dxdlr. (4.214)
o(rs) Q(.r,s)

We can write from the Green’s second formula

/ L(uy (x,0) + uz(x,1)) h(x,1) dxdt < |[uy + ua| =) / |L*h(x,1)| dxdt

O(rs) Q(rs)
i+l [ ([EBG0]+ lelaGr) ) dxds
o(rs)
< 2Mluy +ul = 0(rs)) / (|L*h(x,t)| + |c|h(x,t)) dxdt. (4.215)
Q(rs)
From the estimates (4.211) and (4.215) we obtain the desired inequality (4.203). O

4.9.3 The existence and the integrability of the Sobolev
gradient

Again, we consider cylinders Oy, k € N

T T k+1
—0(r, ——) = B(x, (_— ) 4216
o Q(rk k+2) (x0,7x) % 12k (4.216)
where r; = ﬁ—é R. Let us introduce corresponding smooth weight functions
T k+1
hilet) = (7 =l —xoP) (1= =5 ) (o T—1) 4217
k(x7 ) (rk |)C .X()| ) k+2 k+2 ) ( )
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(x,t) € Ok, k €N. Also, we introduce the basic smooth weight function x(x,#) for a cylin-
der Q = B(xo,R) x (0,T)

h(x,t) = (R* — |x—xo|*) t (T —1), (x,1) € Q. (4.218)

Now we will show that any continuous weak parabolic subsolution u(x,#) in the cylinder
0 possesses all first order weak (Sobolev) derivatives

du(x,t)

Li=1
ax,’

NN

Moreover, the gradient of the function u(x,7) turns out to be square integrable with respect
to the weight function A(x,?).

Theorem 4.25 Suppose that the condition (4.187) is. Then any continuous weak parabolic

subsolution u(x,t) has weak partial derivatives ‘9'3(;_”) ,i=1,...,n, in the cylinder Q =

B(x0,R) x (0,T), and they are square integrable with respect to the weight function h(x,r),
ie.

/|gradu(x,t)|2h(x,t) dxdt < oo. (4.219)
0

Proof. Consider the mollification uy,(x,7) defined by 4.191 of the weak parabolic subsolu-
tion u(x,7). If the function u(x, ) is continuous in the cylinder Q, then it is well-known fact
(see Evans [14, Appendix C]) that on any compact subset K, K C Q we have the uniform

convergence

sup |up(x,1) — u(x,1)] 229,

(xr)eK
Denote by up,(x,7) the mollification uy,(x,z) for h = nll , m € N. Then the latter uniform
convergence takes the following form
m—soo

sup [um(x,1) — u(x,r)| = 0. (4.220)
(x1)EK

Since the cylinders Oy are compactly imbedded in the original cylinder O, we get from
Theorem 4.24 that for any k € N there exists m(k) € N, such that each function u,(x,7)
is the smooth parabolic subsolution in the cylinder Qy for any m > m(k). Consider the
cylinder Qy; for some k and /. If we write the inequality (4.203) for

M]()C,[):Mm(x,t), uz(x,t):up(x,t), mapzm(k+l)
and for the cylinder Qy;, then we get
2 1
/ ‘gradup(x,t)fgradum(x,t)’ Ry (x,1) dxdtga / (|L*hk+l (x,t){+|c|hk+l(x,t)) dxdt
Ok+1 Ok+1

20ty = i@y (1l @1c) + Mo @10y ) + 1t =m0,
(4.221)
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Denote
Ch+l = / (!L*hk+l(x7f)|+|C|hk+l(x7f)> dxdt
Ok11

and

Ek+l = inf th(x,t) >0, k,l=1,2,....
(1) €0k

Hence, if we restrict the integral on the left-hand side of (4.221) over the cylinder Oy, then
we get

2
Ek+l/‘gradup(x,t)—gradum(x,t)‘ dxdt
Ok

1
< ket |2y = enlli=(ge, ) (Il 0y + lpllm(0s ) + it =m0,

(4.222)
We have from (4.220) that
lup — timl|1=(0,.,) — 0 if m,p— co.
Passing to the limit in the inequality (4.222), as m, p — oo, we obtain
dup(x,t)  Jum(x,1)\?
li £ o dxdt = 0. 4223
m IIJIEoo 2 / < ox; ox; * ( )

By the completeness of the space L?(Qy), there exists a family of measurable functions
vii(x,) € L*(Qk), i =1,...,n, such that

n 2
lim 2/ W —vk,i(x,r)) dxdt =0, ke N. (4.224)

i
Let us extend the functions v ;(x,7) outside Qy trivially by 0 and then define the functions
vi(x,t), i =1,...,n, on the original cylinder Q by

vi(x,t) =limsupvg;(x,1), i=1,...,n. (4.225)

k—soo

It is obvious that the functions iy ;(x,), [ € N agree on the cylinder Oy and therefore

vi(x,1) = vii(x,1) (a.e. dxxdt) ona cylinder Q. (4.226)
Thus the functions v;(x,7), i = 1,...,n, are locally square integrable on the cylinder Q.
Let us check that v;(x,7), i = 1,...,n, represent the weak (Sobolev) partial derivatives of

the function u(x,7). Take arbitrary infinitely differentiable function ¢(x,7) with compact
support in Q (i.e. @(x,t) € C5(Q)). Then sup ¢ (x,z) C Oy for some k. We have

At (x,1)

ox o
Ok Ok

x,t) dxdt = f/um(x,t) w dxdt
Xi
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for any m > m(k). But up,(x,) converges uniformly to u(x,#) on Oy, and a“’g—ij”) converges

to v;(x,1) in L*>(Qy). Hence, passing to the limit as m — o we obtain the following equality

d t
/ Vi, 1) (x,1) dodt = — / u(x,1) ‘pa(x’ ) dxar, 4.227)
x~
Ok Ok l
which means that v;(x,#),i=1,...,n, are indeed the weak partial derivatives of the function

u(x,t). We write again the inequality (4.203), this time for the functions u; (x,#) = 0 and
uy(x,1) = upy(x,1) for m > m(k+1) and the cylinder Q. ;. We have

' 2 Cl+1 2
/ Jeradun (6,) Phic (1) ddt < L3 e (4.228)
Ok+1

Passing to the limit as m — o in the latter inequality, we get

2 Cr+1 2
/ Jeradu(r,0) iy () dvde < 53l )

Ok+1

Let us restrict the integral on the left-hand side of this inequality over the cylinder Qy and
afterwards make the integer / tend to infinity, then we obtain

/|gradu(x,t)|2h(x,t) dxdt < %” 3ulZag) < oo, (4.229)
Ok
where
cm:/(|L*h(x,t)|+|c|h(x,t)) dxdt. (4.230)
0

Since the left-hand side of (4.229) is increasing with respect to k and bounded, it has the
finite limit, so that

[ leraduten) Phe) dva < % () () < = 4231
0

Next we formulate the main result of this chapter.

Remark 4.7 The inequality (5.109) gives us possibility of estimating the weighted L*-
distance between the gradients of two continuous weak parabolic subsolutions in terms of
the uniform distance between subsolutions themself.

Theorem 4.26 (THE WEIGHTED REVERSE POINCARE INEQUALITY) Assume that the
uniform parabolicity condition (4.187) is satisfied. Consider two arbitrary continuous
weak parabolic subsolutions u;(x,t), i = 1,2, in the cylinder Q, Q = B(xo,R) x (0,T).
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Then the following weighted reverse Poincaré type inequality holds for the difference
up (x,t) — uy(x,t) of two weak subsolutions
2 1
/‘gradug(x,t)—gradul(x,t)‘ h(x,t) dxdt < a/ (!L*h(x,t)| + |c|h(x,t)> dxdt x
0 0

% 212 — 1l (0) (1 1) + Il (0) + 1 = =g |- 4232)

Proof. Consider mollifications u,, ;(x,7), i = 1,2, of the continuous weak parabolic sub-
solutions u;(x,7), i = 1,2. We already know that for a cylinder Oy, there exists integer
my4; such that each function u,,”'(x,t), i = 1,2, is the smooth parabolic subsolution in the
cylinder Qy; if m > my,;. We have also the following uniform convergence

m-—oo

||um’,'7u,' >—>0, i=1,2.

| |L°° (Ok1

Let us apply the inequality (4.203) to the functions u,, 1 (x,7) and u,,»(x,7) and the
cylinder Qy;. We have

2
/ ‘gradumg (x,1) — graduy, | (x,t)' It (x,1) dxdt
Ok+1

Cr+1
< o {2|\um,z —tm1ll1=(0,) ([letm,1 =0 ) H”m,ZHL""(QHl)) + [[ttm,2 — tm,1 HIZJ"’(QH,) .

(4.233)
Passing to the limit as m — <o in the latter inequality we get
/ 'graduz(x,t) — gradu (x,t)'zth (x,1) dxdt
Op41
< % [ZHM — ]| z=(geep) (11 (@) + N2l =(0en)) + 12 = Iy ) |-
(4.234)

Restricting the integral on the left-hand side of (4.234) over the cylinder Oy and then pass-
ing to the limit as [ — oo, we obtain

/’graduz(x,t) — gradu; (x,t)’zh(x,t) dxdt
Ok
< % {2||M2 —ui]|=(g) (11| 1=(0) + 112l =) + llu2 — w1 [|Z=g) |-
(4.235)
By Theorem 4.25 we have
/ |eradu;(x,1)[*h(x, 1) dxdr < o0, i=1,2. (4.236)
o

Passing now to the limit in the inequality (4.235) as kK — oo we obtain the desired estimate
(4.232). ]



Chapter S

The weighted energy
inequalities for subsolution
of higher order partial
differential equations

5.1 The weighted square integral inequalities
for smooth and weak subsolution
of fourth order Laplace equation

The fourth order Laplace equation with n variables is given as

4 4 4
3—;;—1—3—;;—#...—}—3—);:0 (5.1)
Let us denote ) 54 54 54
A = 8_x‘1‘ + 8_)6‘2‘ +...+ a_xﬁ
It can also be easily prove that A* is self-adjoint operator i.e.
At = A

113
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Now (5.1) becomes as

Au=0. (5.2)
The function u € C*(B) is called subsolution of fourth order Laplace equation if

Au>0. (5.3)
The function u € C*(B) is called suppersolution of forth order Laplace equation if

Atu<0. (5.4)

The second order Laplace equation represent a large number of practical problem, is a
particular case of second order elliptic equation. Let L denote the second order elliptic
differential operator having the form, either

Lu=— Z (aij(x)ux;),., + Enlbi(x)ux,- +e(xu (5.5)
ij=1 i=1
or
Lu=— %, (aij(x)uxy;) + Y, bi(x)uy, + c(x)u. (5.6)

ij=1 i=1

where (5.5) and (5.6) are the divergence and non divergence forms respectively. The dif-
ferential operator L is uniformly elliptic if there exist constant 6 > 0 so that

n

2 aij(x)&i&; >0 |§|2, forae xeU

=1

and all £ € R" i.e. uniform ellipticity means that the symmetric matrix A(x) is positive
definite and the smallest eigenvalue is more or equal to 0. The energy estimates for the
weak subsolution of uniformly elliptic operator are derived in [63]. So it is also interesting
to derived weighted energy estimates for the weak subsolution of fourth order Laplace
equation.

The bounded measurable function u is called weak subsolution if u satisfy

/ uh**y (x)dx >0 (5.7)
B

Throughout the chapter we will use the following notations

du— (20 v v
gradu= 0x; 0xo 7 9%y

20 92 2
gradzu:(gu d*u Bu)

I i
ox7 0x3 ax2
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5.1.1 The weighted energy estimates for the smooth
subsolution for the fourth order Laplace equation

115

Theorem 5.1 Let u € C*(B) be the n-dimension smooth subsolution of the fourth order
Laplace equation that satisfies g—i’z‘ >0 j=1,2,...,n. Then, we have the following esti-
J

mates
2 n 4
/!grad2u|2 h(x)dx < / (u_(x) - sup|u|u) D J hE‘x) dx (5.8)
2 xeD j=1 axj
B B
where h is the non-negative weight function which satisfies
dh(x)  9°h(x) 9%h(x)
= = = < .
h(x) e o2 0, and o2 0, forxe€ dD. (5.9)
Proof. Take
9%u 9%\’ 9%\’
/|grad u| h(x D/[(a)ﬁ) +<8_x%) +"'+(8x,21) ]h(x)dx
u\’
/(axl) dx+/(ax2> dx+"'+D/(9x%> h(x)dx (5.10)
where D C R”. Let us denote
d%u
I/(a_x%) dx+/(ax2> x)dx—+ .. +/ (9x2> dx (5.11)
D
and )
2%u )
I = / (a—x%> h(x)dx, i=1,...n.
D
On the integral
u\’ " 0%u ((9%u
I = — = [ =2 (=2
1 D/(gx%) h(x)dx b/ o (Bx% h(x)) dx
we apply the definition of weight function and integration by parts
ou [ d [d%u du du " Ju 9%u dh(x)
[1 = —D a—x1 |:a—x1 (a—x%h(x))} dx— —D a—ma—x%h(x)dx— ax1 8)(; ax1 dx

Again, we us integration by parts on the first integral on the right side

[ d [du " Ju 9%u dh(x)
Il —D/M |:a—x1 (a—x?h(-x))] dx_ ax1 ax1 ax1 dx
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" 83u dh(x) [ du d%u dh(x)
— — 12
/uaxlh ax} X1 8x1 axl x| (5.12)
We use integration by parts on the middle integral of (5.12)
83u oh(x) ul 0 dh(x)
“oxT ox, == G_ﬁ{a_xl (” dxi )}dx
" du 9%u dh(x) ' 82 9°h(x)
= — dx. 1
Bxl 8x dxi * axl ox? * (5.13)
If we use (5.13) in (5.12)
*u Bzu 9%h( du 9%u dh(x
I = — — x—2 .14
! / ”ax;‘h(x)dx "9 8x1 / o1 9 axl .19
D
Now we calculate the integral
du 9%u dh(x) 9 [ ou\?| on(x)
J 5w a7 o dxlf [a_l (32 | e
. 2 2 2n
:_/(ﬂ) Bh(x)dx:_/ du (8u8 ())d
. X1 ox? J 9x; \ ox, ox?
D D
0 [ du 9*h(x)
—/u [(9_ (8x1 ox? )]dx
D
© 9%u 9h(x) du 9>h(x)
_/MT% ax% dx+ ax1 ax1 dx
D
[ 0%ud?h(x) du*(x) 33h(x)
B ua_x% ox? dx+§ oxy 8x?
D
" 0%u d*h(x a4h
= . 1
Du8x1 Bx] 2/ Bx] (515
Now we have
9%u 9h(x L[, . d*(x)
I = axl x)dx —2/ 8x1 8x1 ED/M (x) 8x‘1‘ . (5.16)
Using similar calculation for I, ..., 1I,, we have
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= 9%u 9*h( B4hx
:El x)dx *2/ 2/

2 8x
9% g 9%y Bzh() 1/, L 0*h(x)
2 -
/ 294 x)dx ./'”'232 o ”zb/”()jzl FER
z L 0%u 9%h(x) 1[5, & d*h(x)
S d +2 d +_/ d
iggM jz * iggw' 2 8x 8x . 2D " (x)jgl 8x‘} .
2 0%u 9*h(x 17/, d*h(x)
= X)dx—2 — dx.
spla | 3 Tniie2pla [ T80 a3 oo 3 T
(5.17)
Since
i 8_2u >0 and azh(x) <0 1,2 n
: j, axi —_— axi —_ b .] - b b b
n n aZuaZh ) 1 ) n 84/’1()()
Igjsclelg|u|/2—é} x)dx — 2§1€15| | 2 R 2 8x erED/u ()c)jz1 Bx‘} dx,
(5.18)

B [R5

and then

xeD

n 4 4 n 4
I <suplu |/ 2 aa};(f)dfoSup|u|/u2 J h(x)der%/uz(x) D J h(x)dx
D D D
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Now we will prove similler inequality for the difference of two smooth subsolutions
for the fourth order Laplace equation.

Theorem 5.2 Let u; € C4(B), i =1,2, be the smooth subsolutions of (5.3) over the ball
B = D C R". Then we have the following energy estimate for the difference

[ lerad? (a(x) —w (61 h(aja

s (x) — uy (x))? & 9*h(x
g/(Msupuuz(x)m(x»u X)+ux )2‘9;(;1 dx (5.19)

% xeD j=

where h is the non-negative smooth weight function with compact support i.e.
j=12,....n

Proof. Letu = uy —u;. Denote

I:/|grad2u|2h(x)dx

2,0\ 2 2,0\ 2 2,0\ 2
:/(%) h(x)dx—l—/(%) h(x)dx—f—...—i—/(%) h(x)dx,  (5.20)
D 1 D 2 D "
2 2
I,/(%) h(x)dx,i=1,...,n
X2

D L

and

Now(4.196) becomes

I=L+5L+...+1, (5.21)

9%u\? 9%u [ 9u
I] = / (a—x%) h(x)dx = a—x% (axl h( )) dx,
D D

and then using integration by parts and the definition of weight function, we get

du [ 0 (d%u du d*u du 9%u dh(x)
i=— | — — E—— -
=) {axl (ax%h(x))]dx ) o A | e aw ax

Observe

Using integration by parts on first integral

B d (du du 9%u dh(x)
h D/u [(9_)61 <8xl hix ))} dx = 8x1 8x% oxy dx
/ o*u 83u dh(x )d du 9%u dh(x)

ua—x?h(x)dx—i— 8x? o X — ax1 8x% x,

dx. (5.22)
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Now using integration by parts on the middle integral of (5.22)

JPudhx) o {a ( In(x )ﬂdx

ax? 8x1 Bx% 8x1 8x1
du 9%u dh(x) ' 82 9%h(x)
— — 2
8x1 ax dx) dx axl ox? 5.23)
Now using (5.23) in (5.22) we get
o*u 82 9%h(x du d%u dh(x
l 7/u8_)c‘11h(x)dX7 8x1 ox? d 72/8)61 ox? 8x1 (5:24)
D D
9*u 82u 9%h(x) 9 [ ou\?| onx)
1 — — — | =— 2
= axlh( Xdx— [un g g Z [axl <8x1) o O
Now take the mtegral
/ 9 (om 9_ __ [ 9u (9udhx) ,
Bxl Bxl Bxl (9 B X1 Bxl 8x§ *
D D
d ([ du I*h( " du d*h(x)
_/u{a_xl(am ox? )} / )c1 d +/u9_xl ox3 dx
D D D
82u 9%h(x) ou*(x) 9° h(x) 7 92 9%h(x) L[, 0%
"2 e +z ox on ) "o ox deD/ W) g
(5.26)

Now, if we put (5.26) in (5.23) we get

: 0%u 9*h(x Ll
I = xX)dx—2 -
' axl / o2 Bx] 3

With a similar calculation for I, ..., I,, we finally have

u 2*u 0%u 9*h(x B4hx
121( ”ﬂh(x)dx’z/ o ax 2/ )

Jj=

n n 2 2 . 4
§/||2 dx+2/|| 07ud hix )dx—I—l/uz(x)zah(x)dx
= ~ Ox 2 8x 2. = oxt
D D J J
L 0t 0%u 9*h(x) L[, d*h(x)
< T h(x)dx+2 ou axt s [ d
ey ,éa; sl [ |3 55 S5 a3 [ 3, T
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Now using u = uy — u; we obtain

/D |gfad2 [ua(x) —up(x)] |2h(x)dx
1l u ( ))
<su | (12 (x) — w1 (x))| ok hix)dx
i -min |3 205
L 92 (u(x) — uy (x)) 02h(x)
+2igg|(u2(x)—u1(x))|/Djzl axi axi dx
1 n 841’1()()
JrE/D(uz(x)u](x))sz:l de
n (9414 (941/! X
<)Sclelg|u2 71/!1 21/;< 2( )+ a;; )>h(x)dx
82u2(x) 9*ui(x) \ 9%h(x)
_2§2DP|M2()_MI(X)|]§:1'/D< 8x§ E ) 0x2 dx
n 4
2 [ ) ) 3, ) g 2%
2 j=1 8xj
D

5 0*h(x)
[ dx i=12
/Du(x);:] ale. X i
and 5 ©
L h(x
dx = | w dx i=1,2
X /D u;(x) ;::1 axj. X i

the above (5.29) becomes

/B |zrad® [uy (x) — uy (x)] > h(x)dx
— 2 n 4
</ [M —suplia(x) — 1 (9)] () Jrul(x))] 3 a;;? dx.
O
Remark 5.1 Taking the supremum norm on above inequality we obtained
/B |grad? (uy (x) — uy (x)) > A(x)dx < (5.30)

5 ) = i + o) =l (o) + a0l )| [ a*hiwga.
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5.1.2 The weighted energy estimates for the weak
subsolution using smooth ones for the
fourth order Laplace equation

The continuous function u is said to be weak subsolution of (5.3) if
/uA4u/(x) dx >0, for y € C*(B). (5.31)
B

Now we will approximate the weak subsolution of (5.2) by the smooth ones. For this we
again use mollification technique.

For
n(x) = {Coexp(le.g Mi;' ! (5.32)
and C > 0 is such that
/‘ M) dx = 1. (5.33)
We define
ug(x) = " /Bn (?) u(y)dy (5.34)
Let us denote,
Ne(x—y) = " n (?) (5.35)

It is easy to see that

847]6()5_)’) _ 847]6()5_)’) =12
ax? ay? ) ) )y

n. (5.36)

Hence,
A ue(x) = p™" /B uy AY Me(x—y) dy. (5.37)

where A? and A;‘ are the fourth order Laplace operator with respect to x and y respectively.

Let the ball B, = B(xo,ri) with r = £ r (ke N.

Theorem 5.3 Letu be the continuous weak, convex, subsolution of (5.2) over ball B(x, ).
Then for any k € N there exists € > 0 such that for every €, 0 < € < &, each function ug(x)
is smooth convex over the ball By and also

A*ug(x) >0 if x€B;.
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Proof. For fixed k € N, let

Y

"=kt

(5.38)
It is trivially by the definition of u, is infinitely differentiable and also u, is smooth convex
for each of its arguments.

Now we check that for arbitrary x € By, Ne(x —y) has compact support in the ball D.

Let us take another ball By, in the following way

N 2k+3
Bk 7B(X0,m}’) (539)
If y ¢ By, then
2k+3  2k+2 1
_ — = A
by x|>’2k+4 2k+4‘ 2kt ¢ (540)
= Ne(x—y)=0, (5.41)
80 Ne(x — y) has compact support.
By the definition of weak subsolution and also using (5.41), we have
[ ) Al me(x =) dy 0. (5.42)
O

Theorem 5.4 Let u be the continuous weak, convex, subsolution of (5.2) and also u.
Then it posses the following weak partial derivatives %, i=1,...,noverthe ball B.

Proof.  For the existence of first derivative 5 i = 1,2,...,n one can see [46]. Let us

suppose the mollification u, (x) defined in (5.34) for the weak subsolution of fourth order
Laplace equation u.

For the continuous function u, the ball B, it is well-known fact that on compact set K C B
we have the following uniform-convergence

| e—0

sup |ug (x) — u(x) 0.

xeK

Let us denote u,, for ug, € = %, m € N so above becomes

sup |ty (x) — u(x)] 2= 0. (5.43)

xeK

The balls By, k € N are compactly contained in the original ball B.
From the Theorem 5.3, we know that for any & € N, there exists m; € N such that u,, is



5.1 THE WEIGHTED SQUARE INTEGRAL INEQUALITIES FOR SMOOTH AND...

smooth subsolution of (5.2)
Take the ball By ; and write the inequality (5.30) for u; = u,, and up = u,,

/ !gradzup — gradzum |2hk+1dx
JBiyi

1 .
< [} sl il i) [ ol
I Bit

Let us denote
4 ~ .
Oty :/B |A*hiy|dx, & =inf hyyy, X € By,
k+1

Then
66/ |grad2up — gradzum|2 dx
Biyi
1
S e % e P ) P
Writing the left hand side integral for the smaller ball By, we have
éc/ |grad2up — gradzum|2 dx
By
1
< a5 =+ ity =l -+ )|

From (5.43), we have

HupfumHLm —0 as m,p— o0

- 2%u 2%u
fim / p_ ) dx=0.
m,p—eo 1:21 By ( ox? ox? *

so (5.46) becomes

123

(5.44)

(5.45)

(5.46)

The completeness of L?(By) ensure the convergence of above sequence. So there exist a

class of measurable functions v ;(x) € L*(By) such that

121/ <a () — vii(x ))zdx .0, ke N.

We extend vy ; trivially outside the ball By by 0.
Let us denote
vi(x) = lim sup vg;, i=1,2,.
k—eo yeD

It can be checked easily that v;(x) = vy ;(x) a.e. on the ball By.

Next we claim that v; represent the weak second order partial derivative ‘; 5 of u.
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Take y an arbitrary function having compact support in B. Then suppose supp v C By
from some k € N.
We have

W

%u,, 0’y
72 y(x) = -B/ U 3—)@2 dx

for the integers m > my.
But we have the following convergence

[t — ull =,y = 0,

and 5
d —soo
H P | ey,
ox; 12(By)
Using this, we have
(92
/v,'(x) y(x) dx = /u lg
0x;
By By
This shows thatv;, i=1,...,n are the weak partial derivative of u. Rewriting the inequality

(5.30) for the functions u;(x) = 0 and uy(x) = u,(x) for m > my; over the ball By, we
get

2 3
[ leradun(0 piss() < S et lnl s, -
By

Taking limit m — oo, the above becomes

3 2
/ |grad U (X pk+l( ) < ECkJrl ||“||L°°(Bk+,)~

Byt

Now restricting the left hand side on the smaller ball B, we have

b 3
/|grad2um(x)| Prri(x) < Gk ||”Hi°°(3k+,)
By

Now taking limit as m — o, we obtain

/|grad2u| h(x cm il ) < .

The left hand side of above increases as k increases and is also bounded. Using dominated
convergence theorem

/|grad u| cw|| HL"" < oo,
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Now we prove the inequality for the weak subsolution of forth order Laplace equation.

Theorem 5.5 Let u be the continuous weak subsolution of (5.2), that satisfies

u )
WZO, J:1,2,...,n
J
Then the following is valid
/ |grad?u; (x) — grad®u; (x) |2h(x)dx < (5.47)
B

5 10 = 009 gy 1) = 0 09 (1 0+ ) | [ %000,
B

where h is the weight function satisfying (5.9).

Proof. We take mollification u,,;, i = 1,2, of the continuous weak subsolution u;, for
i = 1,2 respectively.

Since for the ball By, exists an integer my, such that each function u,, ;, fori = 1,2 is the
smooth subsolution in the ball By, if m > my;. Also we have the following convergence

m-—oo

n7m0, i=1, 2.

letmi = ui||L°°(Bk+1) '

Now writing the inequalities for the functions u,,; , i=1,2, on the cylinder B;; , we get

/ |gradup > — gradup, 1| Ay (x)dx (5.48)
B

1 2
< o4 [5 lttm =t = + 2 =ty (Nt )+ N2l ) ] -

Taking limit as m — oo, the inequality (5.48) becomes

2
/ |grad?us (x) — grad®uy (x) | gy (x)dx

Bt
1 2
< G 5Huzfulﬂm(gwﬁ||M2*M1HL°°(BH,)(HMlHLw(BM)Jr||M2HL°°(BH,)) -

Again writing the above inequality, the left hand side for the smaller ball By and taking
limit [ — oo, we get, we finally obtain

/ | gradu (x) — gradzul(x)|2hk+l(x)dx (5.49)
By

1
< | 5 e gy + el (i + o) |
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5.2 The weighted energy estimate for the smooth
subsolution of n-dimensional beam equation

The fourth order beam equation with n variables is

4 4 4
% u(x,t) n % u(x,t) - % u(x,t) N du(x,t)

=0 5.50
ot o o a0 ©-20)
where x = (x1,X2,...,Xn).
Let us denote
o* o* ¢ 9
=—+—+ ..t =—+—=. 5.51
P S I S

Then (5.50) becomes
Lu(x,t) =0.

Let us denote cylinder Q = B x (0,T), where B = B(xo, 7). The function u(x,t) € C*(Q) is
called subsolution of fourth order beam equation if

Lu(x,t) >0

The function u(x,t) € C*(Q) is called supersolution of fourth order beam equation if
Lu(x,t) <0

The bounded measurable function u(x,7) is called weak subsolution of beam equation if it
satisfies

T
//u(x,t)L*(Z)(x,t)dxdt >0. (5.52)
0 B

Theorem 5.6 Let u(x,t) € C*(Q) be n+ 1 dimension smooth subsolution of fourth order
beam equation

4 4 4
d%u(x,t) n d*u(x,t) - d*u(x,t) n du(x,t)

o ad T T od o

which satisfies %u(x,t) >0,;=0,1,....,n.
J
Then the following estimate holds

T
/ / |gradu(x, t)|* h(x, )dxdr < (5.53)
0 B
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T
(M(X,l‘))z < a4h(x7t) ah(xvt)
//[Tsup|u(x,t)|u(x,t)] (21 Wt )dxdt,

0 B

where h(x,t) is non negative concave smooth weight function with compact support.

Proof. Denote

T
//|grad2 (x,0)] A, 1)dxdt =
0 B

/T/ [(%u(x,t))2+ et (;—;u(x,t)>2] h(x,t)dxdt,
0 B

and

T o2 2
Ij//<ﬁu(x,t)> h(x,t)dxdt, j=1,...,n
op N0

We calculate

we use the definition of weight function and integration by parts

d .92
//Bxl axl[axl u(x,1)h(x,t)]dxdr

r 9 3
_ 7./ / e, 1) Lo, 1), 1) dxdt

T
9 P2 9
O/B/a—)qu(x,t)Wu(x,t)a—)qh(x,t)]dxdt.

Again, using integration by parts on first integral

/ / ) ax1 (e, h(x, )] doxdi
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4 J
/ (9)61 x t) axl h( 7t)]dXdl‘
B

94
/” x,t) = u(x,t)h(x,t)dxdt
A Bx]

3

9 9
B/ u(X,t)a—x?u(X,t)g—xlh(x,t)dxdt

4 P
/a_xl u(x,t) 35— o h(x,t)dxdr.

0 82 P
- B/a—mu(x,t)ﬁu(x,t)a—mh(x,;)dxd,

T
02 92
_b/B/u(x,t)Wu(x,t)ﬁh(x’,)dxdt_

1 1

Now

0

T

//u )fl h(x,t)dxdt
0 B X

T

azh dxd

_//u Bx] 8x% (x,1)dxdt
0 B



5.2 THE WEIGHTED ENERGY INEQUALITIES FOR SUBSOLUTION OF...

T 2
O/B/ [a% (aixlu(x,t)> ] a%h(x,t)dxdt.

Further, we evaluate
N 2 5
// [a—m <8—.X:1M(X,t)) ‘|8—Mh(x,t)dxdt
0 B
rrd F P
—_ 7//8—)61u(x,t) <(9__xlu(x7t)8_x%h(x,t)) dxdt
0 B
d d 0?
—_ !M()C,[) |:a__x1 <8—x1u(x,t)a—x%h(x,t)>} dxdt
02 0?
— —=h dxd
B/u(x,t)axzu(x,t) o (x,1)dxdt

2 93

: d d
B/ u(x,z) a—mu(x,t) a—x%u(x,t) a—x?h(x,t)dxdt

2 (92
= /u(x,t)—u(x,t)—zh(x,t)dxdt
J X ox7

T
1 ) , 03
+§/B/a—x1(u(x,t)) ——h(x,t)dxdt

, oxy
T
d? 0?
—//u(x,t)a—ﬁu(x,t)a—x%h(x,t)dxdt

1 I; 9"
—E//(u(x,t))2 ﬁh(x,t)dxdt.
0B

X

Now we have

T
I O/B/u(x,t)a4u(x’t)h(x,t)dxdt

Bx‘]‘
2

—2?/ ( t)a—z( t)a—h( t)dxdt
bBux, ax%ux, 8x% X,t)dx

r 4

—I—%//(u(x,t))z %h(x,t)dxdt
0 B

129

(5.54)

(5.55)
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Similarly calculating the values of I, ..., 1I,, we have

n 8414 X,
I :/B/u(x,t)z 8; t)h(x,t)dxdt

i=1 9% i=1 9%

T
n 82 n 82
-2 //u(x,t) D Wu(x,t) D ﬁh(x,t)dxdt
0B

5 n 84
g [ [ len)? S St
0 B

T
ZO/B/u(x,t) 2 8—xi2u(x,t) 2 8—12h(x,t)dxdt

i=1 i i=1 i

T
n 82 n 82
-2 u(x,1) Y, =u(x,1) Y, == h(x,t)dxdt

L ootu(x,t) 0 0
(2 ot + E“(XJ) — Eu(x’t)> h(x,t)dxdt

(5.56)
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7% /T B/ (%u(x,,y) h(x,t)dxdt

0
T

—2.//u(x,t)z Wu(x,t)Zﬁh(x,t)dxdt
0 B - -

T
NS}

X

r n 4
+%//(u(x,t))22 a4h(x,t)dxdt.
0 B

131

(5.57)

Integrating second term with respect to variable ¢ and applying the definition of weight

function

B i=1

T
1 2 0
+§/B/u(x,t) Eh(x,t)dxdt

Lootu(x,t) 0

h(x,t)dxdt

B
‘ 0d
2
/B/u(x,t) —ath(x,t)dxdt

n

02
2 8—xi2h(.x,l)

i=1

dxdt

4

T
+%//(u(x,t))22%h(x,t)dxdt
0 B

i=1 9%;

T
n 8414 X, 0
1= O//u(x,t) (2 ai? 1) + Eu(x,t)) h(x,t)dxdt
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h(x,t)dxdt

< J

T
1
Jril/./u(x,t)zath(x,t)dxdt
0 B
T
n n 82
+2sup |u(x,t) // 2 28 sh(x,1)| dxdt
i=1 i=19%;
0 B

T
n 84
+%././(u(x,t))zz = h(x1)dxdr.
0 B

Using the conditions

n (94 ( ) 0
— >
2o + atu(x,t) >0,
n 82 n 82
Y o) 20, ¥ h(xr) <O,

we have in fact

T
Lootu(x,t) 0
< —
I < supu(x,1) |O/Z [zl o +8tu(x t)| h(x,t)dxdt

+

| =

T
0d
22
//u(x,t) Er (x,1)dxdt
0 B

T
n 92 n a
~2supluter)| [ [ 3 2uw),
0 B

25 Zh(x,t)dxdt
i=1 i i

T
NS}
=

T
(—uxt h(x,t)dxdt + %// h(x,t)dxdt
0 B

/ i i >
—2sup |u(x,t |// 2u(x,t) = h(x,t)dxdt
0 B J i i=1 ox;

_|_
St~
T

(5.58)
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T
%// (x,1)) h(x t)dxdt
0 B
r L 9*h(x,t
< sup |u(x,t) |//uxt)Z:1 ai;’ )dxdt
0 B
r Ih(x,1) ]
_ ) 1 2
//”( 1) 9 dxdt+2//u(x,t) 3 h(x,t)dxdt
0B 0B

T T

Bh(x,t) 1 , 0
//u % dxdt—i—z//u(x,t) Eh(x,t)dxdt
0 B 0B

0
T unn)? (& 9 Ih(x,1)
gO/B/T (2 () + )dxdt

r n 4
— suplu(x,1) |//u (x,1) (2 J Ziﬁ’t) ahg;’t)>dxdt, (5.59)
0 B

i=1 i

and our the proof is done. O

Theorem 5.7 Let u;(x,t) € C4(Q),i = 1,2, be the smooth, convex subsolution of beam
equation

4 4 4
2%u(x,t) n 2%u(x,t) - 2%u(x,t) n du(x,1)

od T od Tt oa a0

over the cylinder Q C R" and h(x,t) is non negative concave smooth weight function with
compact support.. Then the following energy estimate for the difference of the functions is
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valid

|grad2 (uz(x,t) —up(x,t)) |2h(x,t)dxdt

N T —
M= o—0 = —

2
/ l(u(xT’t))—sup|u<x,r>|<uz<x»t>+m<x»f>>

84

4
10

h(x,1)+ %h(x,t)) dxdt.

[

Proof. Letu(x,t) = up(x,t) — uj(x,), and denote

T
://|grad2u(x,t)|2h(x,t)dxdt
0B

and

T (92 2
I; //<ﬁu(x,t)) h(x,t)dxdt, j=1,...,n
05 N1

We calculate

T 2
I ://a—u(x,t)—u(x,t)h(x,t)dxdt
0 B

d o (0°
= — B/a—x]l/t(x,l‘)a—x] (8—)(:%1,{()(?,1‘)]1()(7,1‘)) dxdt

/i ( t)a—3 (x,2)h(x,1)dxdt
Bax1ux, aX?ux, X,t)dx

T
0 02 0
_.O/IB/a—mu(x,t)a—ﬁu(x,t)a—mh(x,t)dxd;_

Again, using integration by parts on the first integral

J .
// u(x,z) I [8x1 u(x,1)h(x,t)|dxdt

T
0J 0J
O//a—x] Bx] u(x, t)axl h(x,t)|dxdt

B

(5.60)

(5.61)

(5.62)
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T
//uxt u(x,t)h(x,t)dxdt
0 B

T
0
+O/Zu(x,t)ﬁu(x,t)8x1h(x,;)dxdt

" d 02 d
0//a—)qu(x,t)ﬁu(x,t)a—mh(x,t)]dxdt.

Now, integrating the middle integral of of above equation

/T/ ( t)i (1) =2, 1)t
] u(x, ax3l/t X, ax] X, X

T

\

0

9 P2 9
B/ G ) 5 ) 5

T
- (92 82
—./ / u(x,t)a—x%u(x,t)a—x%h(x,t)dxdt.
0 B

Now,

1 1

0

T

[

T

02 02

_//u(x,t)ﬁu(x,t)ﬁh(x’,)dxd,

0 B

T 5 5 7,
_O/B/ [a_m (a—x]lfi(xaf)) ] a—x]h(x,t)dxdt.

/8—% u(x,t [8)(1 u(x, t)( (x, t)ail h(x, t))}dxdt

135

(5.63)

(5.64)

(5.65)
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Now, we evaluate integral

5 2
[ e
2

T
— !!a—mu(x7t) <8_.X:1M(X,t)a—x%h(x7[)) dxdt

02 92
:. B/u(x’t)3_x%u<x7t)(9_x%h<x’t)dx‘h

2 3

T

[

/ 9
+/./u(x,t)a—)qu(x,t)Tﬁu(x,t)a—x?h(x,t)dxdt

0 B

T

[

9* 2
:. IB/M(xat)g_)(:%lxl(x»t)a—x%h(x,t)dxdt

T
1 0 ) 93
+§/_B/a_x]<”<xvt)) a—x?h(X,t)dxdt

|
St~ .

0? d?
/u(x,t)ﬁu(x,t)ﬁh(x,t)dxdt
: 1 1

T
84
_%//(MOCJ))Z Wh(x,t)dxd;_
0 B

X

Finally, we have

T 82 82
_20/,B/u(x’t)g_x%u(x’t)8_)(3%h<x7t)dxdt

T
o4
+%././(u<x7t))2 Wh(x,l‘)dxdt_
0 B

X

(5.66)

(5.67)

(5.68)

(5.69)
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Similarly, calculating the values of I», ..., 1,, we finally obtain

i=1 i

I =Y (./T‘./‘u(x,t)%h(x,t)dxdt
0 B

7 b
_2.0/B/u(x’t)ﬁu(XJ)ﬁh(x’t)dxa't

T n 4u X
I ://u(x,t) (_218 ai47t)+a () — - u(x t)) h(x,1)dxdr
0 B = !
L n (92 n 92
ZO/B/u(x,t);:l (Q—Xizu(x,z‘)lz:1 a—x%h(x t)dxdt

T
—.//u(x,t)aug;’t)h(x,t)dxdt
0 B

l

r n 82 n 2
—2//u(x,t)2 92 2 2 h(x,t)dxdt

. X2

0 B =1

137

(5.70)
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r n 4u X
_ //u(x,t) (2 J ai%"t) + %m,n) h(x,t)dxdt

L e
// Mh(x,t)dxdt
B

0

7 i (92 n 92
—2//u(x,t) —u(x,t) Y —5h(x,t)dxdt

- “~ Jx? “ ox?

T
o 9%u(x 9
= / /u(x,t) (2 ai 1) + Eu(x,t)) h(x,1)dxdt

N

T
I= / /u(x,t) (2 04 (uz(x,;)x;lul(x,t)) n J (uz(x,t)atul(x,t))> et )i

0 B
T
+l//(u(x & ih(x t)dmfz//”(x H > u(x t)i a—2h(x t)dxdt
2_ . ’ al ’ ’ ~ 8)(?12 5 ~ ax% ,
0 B )
1 : n 4
2
+§b/b/(u(x,t)) D x;;h(%t)dxdt

— /T/u(x’t) (’21 Quy(x,1) ’21 9%uy (x,1) n d(ua(x,1)) a(uz(x,t))> ot )dndi
0 B / j
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T
1 a n 82 92
+§O/B/( (1)) 5 xtdxdth// DI ,t);ax%h(x,t)dxdt
1 T n 84
L 2
+2.//(u(x,t)) 3 gt
0B
T
B L0ty (x,t) & Pun(xt) 9 (ua(x,t)) 9 (ur(x,1))
O//M(x,t) (121 P 7,»:21 o L T h(x,1)dxdt
-l-l /( (xt)) xtdxdt—Z// X,1) )zn: o —— h(x,t)dxdt
2 B ’ i=1 axtz ’

r 0%y (x uy (x
=//u(x,t) (28 82)54’” +a( i;t’t))>h(x,t)dxdt
0 B =

—//u(x,t) (i J L;)E:J) + 8(ula(;’t))> h(x,t)dxdt
0 B

() | 9 ()
Lod

h(x,t)dxdt

Lo0Yu(x,t) 9 (ug(x,1))
) R T

h(x,t)dxdt
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140
+1/T/ O)dxdi +2 Ju t/T/naz 13 2|
- .x Xi ux —= X X
2 & ox? Sox
0 B 0B
T
Jrl // (x,1) 22 h(x,t)dxdt
2 4 ox}
0 B
r ol ot | 9l
< sup|u(x,t)|// > u2 (uza(tx, ) h(x,1)dxdt
0 B Ii=1
[t | amn)
+sup |u(x,z |// ul > ulatx’ h(x,t)dxdt
0 B

i=1

(92
2

10x;

u(x,t dxdt

2
) [ gt

™M=

T T
1
5// (x,1)) 2 h(x,t)dxdt 4 2 sup |u(x,t) //
0B 0 B

(5.71)

and
n 2 n 2

Now

dx?

i=1 i

i 9? (uz(x,t)—ul(x»f))‘

n 2

2 %ul(x,t)

2

2

i i=1 i

(92 n 2
—=ur(x,t)+ —=uy(x,t
xiz 2(7) 2821(7)’

i=1 9%

—ua(x,1)| +

and then,

//Igradz(uz(x,t)—ul(x,t))|2h(x,t)dxdt

T
Lo0tuy(x,t) 9 (ua(x,1))
< sup|u(x,z |0/B/ (,21 o + Fr h(x,t)dxdt
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i=1 Xi

T
n 92 n 92 n 92
725up|u(x,t)|// (2 ﬁuz(x,t)JrZﬁu](x,t)) 2 axzh(x t)dxdt
0B \T = !

T
//|grad (uz(x,t) —up(x,t)) |hxtdxdt
0B
[ [ [0 (e
< sup |u(x,t |//2 h(x,t)dxdt + sup |u(x,t) |// (uga(x, ))h(x t)dxdt
0B =t 0B
A n 84 T 0 t
+sup |u(x,z |// u1 h(x,t)dxdt + sup |u(x,t) |// (ul;tx’ ))h(x t)dxdt
0 B =1 0 B
l/T/ 1)) ,1)dxdt — 2 sup |u( t|]/i82 (t)nazh( 1) dxdt
+3 u(x, h(x,1)dx. up |u(x 2 8x12u2 X, 250 x,1)dx
0 B 0B
A n 2 n 2 A n 4
—2sup|u(x,t |/B/lzl aax ,:1 aax +%O/B/(M(X7t))2,2 ;x?h(x,t)dxdt.

In the integral

/T/En: (x t)dxdt (5.72)
0B =1

we apply integration by parts four times and use definition of weight function

T
L 9%h(x,1)
0/ Z up(x,1) Y P dxdt. (5.73)

Similarly

ddt

.O/T..B/W (x,2)dxdt = //uz
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and
T n 82 n 2 4
//ZW (x,2 2—2 (x,t)dxdt = //uzxt h(x,t)dxdt.
0 B i=1 i
Finally,
T
/ / |zrad? (uy(x,8) — uy (x,0)) | A(x,1)dxdr
0B

r 4
< —sup|u(x,1) |//u2xt (9 hix, I)Jra(h(x’t)) dxdt
J & oxt ot

A n a4h
sup|uxt|//u1xt< (4) )>ddt
ox*
0 B

1

9h(x,
ot
lT n 84
+§/B/ u(x,1)) (284()”4— hxt)

i=1

’ u(x 2 4
:b/B/l< (;)) _sup|u(x,t)|(uz(x,t)-i—m(x,t))] <2§4 (x, t)—l—%h(x,;)) dxdt.

i=1

O

Theorem 5.8 Every continuous weak solution u(x,t) of beam equation has weak partial
2
derivative % i=1,2,...,nin the clynder Q C R" and also they are weighted square

i

integrable i.e
/ |grad2u(x,t)|2h(x,t)dxdt < oo,
Q

where h(x,t) is non-negative weight function having compact support.

Proof. Take mollification u, (x,) of weak solution u(x,t) of beam equation.
It is proved in Evan’s [14], that on every compact sub-cylinder Q;, k € N, for continuous
function u(x,7) we have the following convergence
sup  |um(x,1) —u(x,t)| == 0.
(v) €0k

By the definition of clynder Qy, it is clear that Q; are completely embedded in the Q. By
previous theorem for any k € N, there exist m(k) € N such that each function u,,(x,?) is
smooth solution of the beam equation in Qy for m > m(k).
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Now we write the inequality (5.74) for u,(x,7) and up(x,t) instead of u; (x,7) and u»(x,),
respectively, on the clynder Q.

/ / |grad2(up(x,t))fgradz(um(x,t))|2hk+l(x,t)dxdt

Ok+1

<l =l (Wl -+l )//umﬂxuwm

Or+1
||up umHLm //|Lhk+lxt)|dxdt
Okt

Let us denote

Ck+l:/ / |Lhits (x,7)| dxdt,

Okt1

5k+l:/ / |Lhiys (x,7)| dxdt,

Ok+1

Cerr = inf Ay g(x,1) > 0.
k+1 (6120, k+l( )

Now we observe

Cens / / |zrad (1 (x, 1)) — grad (um (x,1) | ey (x,7)dx (5.74)
Ok+1

1. 2
<cus (o=l ) (s, +lonli, )+ 575t =il

From (5.74), we have

H”P_”mHL‘(”ka — 0 asm,p— oo

Letting m, p — oo, we obtain

, 8u,,xt Cdum(x)\
e )

Since L?(Qy) is complete, above sequence will converge. So there exist a class of functions
vii(x,r) € L>(Qy), i=1,ldots,n such that Vi is measurable and satisfying

n 2
2/ (ka‘i(x,to dxdt =20, keN.
O 8xl~ '

Now we trivially extended vy ; (x,7)for the whole Q by zero outside of Qy.
Denote

vi(x,t) = klim sup vi(x,1),i=1,2,....n
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It is clear that v;(x,7) = vg;(x,1), a.e, on the Qr. Thus v;(x,T), i =1,2,...,n are locally
integrable on the ball O, and they represents the weak partial derivatives of u(x,7) with
respect to x;, i = 1,2,...,n respectively.

To see this take ¢ € Ci’(Q), then suppose supp ¢ C O, for some k € N.

/8um(x,t)¢(%f)dxdl = —/um<xvt)i¢<x’t)d)“h’

8x,~ ax,'
Ok Ok
for any m > m(k).
Since
m—soo
l[tm —ullg, ——0,
and
aum m—oo
-V I 07
axi 12
O

so above becomes
¢
/vi(x,t)(])(x,t)dxdt = f/u(x,t)a—(x,t)dxdt,
M
Ok Ok l

concluding that v;are weak partial derivative of u.
Similarly, we have

1 ~
/ |gradiu (x,1)[* by (x, ) dxdt < ||z a1+ 5 lmll  Crrr-
0 k+1 k+1
k+1

Letting limit m — oo, we have

1_
[ leradute.t) P s ) < Nl (e + 53e)

Ok+1

Since Qi C Oy,

1
/|gradu(x,t)|2th(x,t)dxdt < ||MH%"Q°k (crst + ECkJrl)-
Ok

If we let [ — oo, we obtain

1.
/ Jeradu(e,0) P hx,)dxds < ulfy (ot 52) < on
k

2
Okt1
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Since above integer is bonded from every k € N, we have

/ |gradu(x, 1) P h(x,1)dx < oo.
0

Theorem 5.9 Let u(x,t) be the convex, continious weak subsolution of beam equation.
Then the following is valid

/ | graduy (x,1) — gradus (x) [> h(x, t)dx <
0
1
5 =g+ e =1 o) (1 i) + o @) [ 1 4Gxr) |,
9

where h(x,t) is the weight function defined in (5.8).

Proof. We take u,i(x,1),i = 1,2, the mollification of weak subharmonic functions
ui(x,t), i=1,2.

By the definition of mollification, we know that for a cylinder Qy.;, there exist integer
my; such that each function u,, ;,7 = 1,2 is smooth subharmonic function on the ball Oy,
if m > M.

Also we have the following convergence

m—oo

| i —ui || —— 0, i=1,2.

Now we write the inequality (2.4) for the functions u,, | (x,7) and uy, »(x,t) for the cylinder
Qk+1. We have

/ | eradim2(x,1) — gradum(x,t) [* hep(x, Odxdt
Ok11
1
< ol5 [ tma = tm1 (7o) Ul tm2 = tm1 (o)
X (It o) + I m2 (o)) (5.75)
Passing to the limit m — oo, we obtain
/ | gradus(x,7) — gradui(x,1) |2 s (x, O)dxdt
Okt

1
< Ofk+z[§ (| u2 —uy ||ix,(Qk+,) +(ll w2 =y ||L°°(Qk+l))

Xl ey + 2 lleiges))- (5.76)
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Since O C QO+, so writing the left hand side for the smaller ball and passing to the limit
| — oo, the above becomes
' 1
/ | gradun(x,) — gradus (x,0) P ho(, 0% < el [z =0 [ g (5.77)
O
+ ([l uz —ur || o0) (w1 o) + 1 w2 [ (0))-

By the Theorem 5.8, we have
/ | gradu;(x,1) > h(x,1)dxdt < oo, i=1, 2.
9]

Passing to the limit as k — oo, we obtain the required result. O

5.3 The weighted energy estimates for the smooth
and weak sub-solutions of forth order partial
differential equations

In this chapter we will develop the weighted energy estimates for the smooth and weak
subsolution for the fourth order partial differential equation
o*u n o*u T Htu
0x30y?  0x3dy; T 0xZoy?

0. (5.78)

Also we calculate the estimates and some important differentiability properties of weak
sub-solution of (5.78).
Let us define a linear operator

o+ o+ o4

L= . 5.79
oy ooy axdon: G

Now (5.78) becomes
Lu(x,y) =0.

The smooth function v(x,y), x,y € R" is called smooth solution of (5.78) if

Lv(x,y) = 0.

And the function v(x,y) is called smooth sub-solution (super-solution) of (5.78) if

Lv(x,y) > (<)0. (5.80)
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The operator L is self-adjoint, i.e. L = L*.
The continuous function v(x,y) is called weak sub-solution of (5.78) if

/ v(x,y)L ¢ (x,y)dxdy = 0, (5.81)

for every ¢ (x,y) € C(B).
In the next section we developed the result for smooth sub-solution. And also we mollify
the weak sub-solution by smooth ones.In the last section we deal with weak sub-solution.

5.3.1 The weight energy inequality for smooth sub-solution and
approximation of weak sub-solution

Theorem 5.10 Let u(x,y) is the smooth sub-solution of

o*u o*u o*u
+ +... 4 =0, 5.82
oxjdy}  9x30y3 9Ix39y; (82
such that
Ugy; 20, i,j=1,...,n.
Then the following is valid:
//|gradxyu(x y)|*h(x,y)dxdy < // (3u X,y)sup|u| + (2 Y)) Lh(x, y)dxdy.
By By Bi By
Proof.

J= //|gradxyu| h(x,y)dxdy = 21// (ax 8y.>2 h(x,y)dxdy. (5.83)

B B
2
//(axlayl> xy)dXdya lzl,...,n

Now, using integration by parts with respect to y1,

2
0%u 0%u
// (8x18y1) (X7y)dXdy B/B 8x18y1 (8x18y1h(x’y)) dXdy
1 b2

_//ux. (ttx,y, P (X,Y) )y, dxdy

By By

_//MXIMXIYIYIh(‘x’y)d‘Xdy_ / /”Jﬂ”xm (x,y)hy, dxdy

Bi B, By By

Denote
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1
= _//Mxl uxl)’l)’lh(x?y)dXdy_ E//[(u)zq)]w hy, (x,y)dxdy. (5.84)

By By By By

Take the first integral of (5.84), and using formula of integration by parts, we get

_//”m ”mylyuh(x»)’)dx‘i)’://”[“Jﬂylyuh(x»)’)]xldXdy

Bi B> By By
://”[“mxmyuh()C»)’)+”x1y|yuhX1 (x,y)]dxdy
B By
://uuxlxlylylh(x,y)dxder//uuxlylylhxl (x,y)dxdy
By B By B,
://uuxlxlylylh(x,y)dxdy—i—//um,y, [uhy, (x,y)]dxdy. (5.85)
Bi B> By By

Using integration by parts formula with respect to y; on second integral of (5.85), we have

://uuxlxl)7l)7lh(x’y)dXdy_//MXIYI [uhy, (x,y)]y, dxdy

By B, By By
= / / Utk xyyyy, h(X, y)dxdy — / / gy, [ty o, (6, 9) + by, (x,3)]dxdy
By B, By By
://l/mxlxlylylh(x,y)dxa’yf//uyluxlylhx1 (x,y)dxdy
B By By B,
f//uuxlylhxlyldxdy
B B,
1
://uuxlx,ylylh(x,y)dxdy—E//[uil]x, hy, (x,y)dxdy
By By By By
f//uuxlylhxlyl (x,y)dxdy. (5.86)
By B,

In the second integral of (5.86) we use integration by parts with respect to x; and then
respect to yj

1 1
=5 [ [ty =3 [ [12 s, (x.v)dxay

By B By B
1
— E//uy1 () [tty, o, x, (x,)]dxdy
B By

1
- / / (0, ) [y, 1y, dxdly

By By
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1
_E//”<xvy)[uyl)’1hx1x1 +”Y|hx1x1)’1]

By By
1 1
_E//MMYI)’lhxlxl (xvy)_ E//uuy|hx|x|y|dXdy
B B B 82
2//““}’1)’1 X1X1 (X y dXdyi Ry _// Vi xlxlyldXdy (5.87)
By By B By

Take into account second integral of (5.87)

// Uy, xlhxld‘Xdy_ __//m"yly X1X] x ,y)dxdy + — //M hx.x.v.v.dxdy

By By By By
(5.88)
Now using (5.88) in (5.84), we get
1
Ji ://l/mxlxlylylh()c,y)dxdyf5//1/tuylylhxlx1 (x,y)dxdy
By By By By
1
+Z//u2hxlXIYIYI (xvy)dXdy*//““xlylhx1Y1dXdy
By By By By
1
://uuxlx,ylylh(x,y)dxdy—E//uuyly, Ty, x, dxdy
By B, By By
4//u Mgy, dxdy — //uuxly 1y dxdy — 2// Uy, ly by, dxdy. (5.89)
By By By By

On the fifth integral of (5.89), we apply integration by parts over y;

1 1
= / / [ufq]ylhyl (x,y)dxdy = 3 / / uﬁlhylyldxdy

B By B B
1
= E//uxl [Mxlhylyl]dXdy
By By
1
= —5//”[%1}‘)’1)71])“ dxdy
By By
1
72 //u[uxlxl hyyy, + the By, |dxdy
By By
1 1
= —E//Mummhymdxdy_ E//uuxlhxlylyldxdy
B B, 31 By

:——//uumm hy,y,dxdy — // a0 Py, dxdy

By By By By
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1 1
_E//uuxlxl hy,y, dXdY+Z//”zhmm)’lyldxa')’- (5.90)

B B, B B,
Using (5.90) in (5.84), we get

1
J1 = //Ltbtx]xlylylh(x,y)a’xdy—E//uuylylhxlx1 (x,y)dxdy

By By By By

1
+ 5//“2hX1X1y1y1 ()c,y)dxdyf//l/u/txlylhxlyl (x,y)dxdy

By B By B,

1
- 2//““X1X1hy1y1 (x,y)dxdy. (5.91)

B B,
Similarly, solving other integrals of (5.84), we get

I = {//““x,xty,yz (x,y)dxdy — = //““y;y, i (0, y)dxdy
i=1

By By

+ 5 / / U Ry (x,y)dxdy — / / Uty oy, (X, y)dxdy

By By By B,
1
- E//uuxixithYi (x,y)dxdy
By By
7/‘/ Zuxlxlylyl .X y d'Xd - _// Zuylyl XiX; x ¥ dxdy
Biby By By
n
+5 // thlxlylvz X,y d'Xdy // Zuxly XiVi x sV dxdy
B B, =I B B, =1
) / / ZMx,x, vivi (%, y)dxdy. (5.92)
By By

Taking the modulus of (5.92), we have

1< [ W1 i e s + 5 / / el 3t )l

By By

+ = // 2| thtxth}’I X,y |dXdy+//| || ZMXIYt||hXIYthdy

By B By By

2//|u||2ux,x,||hv,y x,y)|dxdy. (5.93)

By By

By using definition of L—operator, we have
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1< suplu| [ [ Lul Axy)ldxdy

B By
n
—sup|u|//|2uvly [|hxx; (x,9)|dxdy + = // x,y)|Lh(x,y)|dxdy (5.94)
B By
+smw|//"§hm%xynmmwa+—ﬁm|y//"Ey%nxynmmwmw
B\ B, By By

Since, uyx; > 0,1y,y;, > 0, tty,y; > 0 and by, > 0, hy,y, >0, hyy, >0,

1< suplul [ [ 1w xymw+—wM|//2%mxwmmuww@
By By
2
+ // L(h dxdy+sup|u|//2uxly X,9)hyy; (X, y)dxdy
By By By By
+ 2//2Mx,x, xy Vivi x)))dxa'y
B By
1
< suplul | [ LGy g sl 3 [ [0 (e )y
By By Bl By
+ 5 / / (x,y)L(h)dxdy + sup|u IZ / / (X, )iy (¥, ) dxdy
By B Bl By
+ —sup|u|2// u(X,y) Ry (X, y)dxdy
B| By
< sup|u|//L h(x,y)dxdy
By By
n
+ 25up|u|//u(x ¥) D, iy (X, ¥)dxdy + = // x,y)L(h)dxdy
B B i=l By B
< sup|u|//L h(x,y dxdy+2sup|u|//uL (x,y)]dxdy
B| B> By By
1
+ 5//u2(x,y)L[h(x,y)]dxdy. (5.95)

By B,

By using Gauss-Green Theorem

1
I<sup|u|// u(x,y)L[h(x,y ]dxdy+28up|u|// u(x,y)L[h( x,y)]dxdy—i—E//uz(x,y)L[h(

By By By By By By

x,y)]dxa
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< 3sup|u|//u(x,y)L[h(x,y)]dxdy—i—%//uz(x,y)L[h(x,y)]dxdy.

By By By By
Hence,
w2
//|gradxyu(x,y)|2h(x,y)dxdyS //[3sup|u|u(x,y)+7]Lh(x,y)dxdy. (5.97)
B By B By

O

The next result will give the similar inequality for the difference of smooth sub-solutions.

5.3.2 Existence of second order weak derivative and
energy inequality for weak sub-solution

The next result tells us that if two sub-solution are closed in L.-norm, then the gradyy is
also closed in weighted L?-norm.

Theorem 5.11 Let u;(x,y),i = 1,2 be two smooth sub-solutions of

o*u N o*u - *u _0
oxtdy?  dx3dy; T oxZdy:
such that
(ul)xl.yj >0, (Mz)x,-yj >0,i,j=1,...,n.
Then the following hold:

//|gradxyuz(x,y) fgradxyul(x,y)|2h(x,y)dxdy
By By

< [ [Bsuphiate.y) ~ (el wnte ) + e ) + DOy ) gogy

Proof. Let
M()C,y) = MZ(xvy) — U (xay)'
Then using (5.94) we have
1< supl| [ [ |Lul Axy)ldxdy

By By

1 2 1 r
t gsuplul [ 13wyl e)dxdy+ 5 [ [y Lite.y)ldxdy
B B, =! By By

(5.96)
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+ suplu / / St ) s+ suplal [ 13t 9 sl

By B,
< SuP|M2—M1|//|L(M2—M1)|h(x»Y)dXdy
By B,
_sup|u27u1|//2|u2 U]y Py, (X, ¥)dxdy
By B,
1
+ E//(uz—M1)2-|L[h(an)]|dXdy
B By
+ sup|u2—u1|//2|u2—u1|xly hyy,dxdy
By B, =1
_sup|u27u1|//2|u2 U]y, Py, (X, ¥)dxdy
By B,
Since,
|L(uz —ur)| < |L(u2)| + |L(u1)],
I< sup|u27u1|// uy) Dh(x,y)dxdy
By B,
_Sup|u2_u1|//2 Mz XiVi +(u1)xly]hxlvl(x y)d‘Xdy
B B, i=1
1
+3 //(Mz—ul)zL[h(x»y)]dXdy
By By
+ sup|u2*u1|//2 U2) sy + (1) xyy; [Py, (X, ) dxdy
B B,

_sup|u27u1|//2 u2) gy, + (1) iy s (2, y) dxy.
i=1

Bi By
By Gauss-Green theorem, we have

1< sup|u27u1|// up +uy)L(h)dxdy
By By

+ —sup|u2—u1|//2 U2 + 11) My dxdy
By By

(5.98)

(5.99)

1
+ 5//(u2—u1)2L[ (x,y)]dxdy + sup |uz — uy | //2 Uy + U1 )y dxdy

By By By By =1
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1 n
+ Esup|u2—u1|//Z(Ltz—i—ul)hxl.xiyiyidxdy.
By By =1

Hence,
_ 2
IS//<3sup|u2—u1|(u2+u1)+%) Lh(x,y)|dxdy.  (5.100)
B By

Taking the norm of(5.100), we get

// |gradxyus — gradyyu; [*h(x,y)dxdy < (5.101)
B B,
1 |
< |31l (i + ol )+ 5l =] [ [ ientelasas
B B,
O

5.3.3 Existence and integrability of weak partial derivatives and
weighted square inequalities for the difference of weak
subsolutions

Now we will approximate the weak subsolution by smooth subsolution.
1
cexp =1’ |Z| S 1
n Z) = |zl
nl {0, 2| > 1.
Now we use the mollification u,(x,y) of bounded, measurable subsolution u(x,y) in the
following way:

ug(x,y) = 8./1;1 /};2 N (x—1)Nn(y — )u(t,s)deds.

Let us denote

("+">Tln(x—l)nn(y—s)-

Ne(x—t,y—s)=¢"
From above, the following is trivial,
o* o*

——5Ne(x—1,y—s5)= mns

ax%aylz (x—t,y—ys).

This implies that

Lx,yns(x*tvyfs) = Lt,sns(x*%t*s) = Lt*,ms(xfy,t*S)-
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x,y) /B./ Nu(x —1)Nn(y — s)u(t,s)deds
:g"/Bl /Bzu(t S M — 1)y — )] deds

— e /B | /B (L e )y o).
This implies that
Ly yue(x,y) > 0. (5.102)
The following theorem tells about the existence of sequence of smooth sub-solutions.
Theorem 5.12 Let u(x,y) be the weak sub-solution of

2*u n 2*u - 2*u B
oxtdy?  dx3dy; T Ox2dy?

(5.103)

on B()Co,rl) ><B(y0,r2). R .
Then for any k € N there exists h > 0, such that for any h, 0 < h < h, each u,(x,y) is
smooth sub-solution of (5.103) over the ball B(xy,r1) x B(yo,72).

Proof. For fixed k € N, let

h=

(5.104)

2(k+
It is clear for arbitrary i > 0 the function up(x, ) is infinitely differentiable. Now we check
that for arbitrary x,y € By, pp(x —1),(y —s) has a compact support in the ball B(xq,r;) x

B(y()v }’2).
Take the ball in the following way:

o 2k+3 2k+3
=B —R| | XB Ry . 1
Ok 1 <x0’2k+4 1) (y0’2k+4 2) (5.105)

Let’s take an element s,7 ¢ Qy.
Then either,

2k+3
S¢31 (XQ,2k+4R >

2k+3
=R
2k+4 )

or
t ¢ B ()’07

In the first case:

U3 242
_ i e - R R >h.
I x|><2k+4 2k+4) T R
Also,
U3 2k42
‘- i g S Ry >h.
| y|><2k+4 2k+4) T 2kr2) 2T
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Hence in the both cases, we have

pn(x—y,t—s5)=0.

Therefore, non-negative weight function pj,(x — y,# — s) has compact support in Q as a
function of # and s. If & < h, by definition

/ / u(y,s)Ly spon(x — 1,y — s)dydx > 0. (5.106)
B, /By :

Otherwise we get form:
Luy(x,y) >0, (x,y) € Q.
O

Theorem 5.13 Any continuous weak sub-solution possesses the second order weak par-
tial derivatives

9%u(x,y)
gUNY) =12, 5.107
Ixidy; L] n ( )
for (x,y) € B,%H = By X B; where By, = B(xo, 1), Bi = B(yo,r1)-

Proof.  First, we write the inequality (5.101) for u,,(x,y) and u,(x,y) instead of u;(x,y)
and uy(x,y), respectively on BZ "

[ [ leradsy (up(x.9)) — grad (um(x,9)) [ e (e )y

By B
S H“P*”mHLw(BzH) <||MPHL°°(B£H)+”um'L“‘(BI%H)) //|Lhk+,(x,y)|dxdy
B B
1 2
+ 5 llup = teml|p sz / / |Lhyyi(x,y)| dxdy. (5.108)
By B
Denote

cir = [ [ 1Whesateey)l|dxdy, Gy = inf s (63) >0 KLEN. (5109

xX,y)€
B B, V)8

Now, from inequality (5.108)

| [ leradsy unx.y)) — radsy (om(x,9)) s () dady
By B

SCkH[H”p_”mHL“‘Z (HupHsz +HMmHL((732 ))]

B Bt ol
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1 2
4= —u, . 5.110
20k+lHup ul||L(B%+]) ( )
Since
H”P ”’"HL“’ —0 asm,p— oo, (5.111)
BEy)
we obtain
92 P ?
lim //( tp(x.) ”’”(x’y)> dxdy = 0. (5.112)
m,pﬂoo, =1 8x,y] 8x,-yj

By the completeness of the space L? (B% 1) there exists a sequence of measurable func-
tions v ;(x,y) € L? (Bl%H)v i,j=1,...,n, m € N, such that v,,; ; is measurable and
satisfying

2
2 //<a tin(x,) vm;,»,j(x,y)> dxdy "= 0, ueN. (5.113)

ij=1 a)Clyj

Let us define v; j(x,y) in the following way:

vi j(x,y) = limsup vy j(x,y), i, j=1,...,n. (5.114)
U—>00
Now we claim that v; ;(x,y), i,j = 1,...,n are Sobolev derivatives of functions u(x,y).
To prove this take ¢ (x,y) € C;(B), supp ¢ (x,y) C B,
Now
0%t (x y 02
// (x,y)dxdy = //um xX,y)=——(x,y)dxdy (5.115)
oxiyj oxiyj
By B, By B;
But u,,(x,y) converges uniformly to u(x,y) and a“’”i(y”) converges to v; j(x,y) in L*(BE,,).
Hence, if we let m — oo, we get desired result. o

Corollary 5.1 If u(x,y) is sub-solution on the ball then it is weighted square integrable
ie.

/ |erad wyu(x,y)|* 2(x,y)dxdy < oo, (5.116)

2
By

where h(x,y) is non-negative weight function having compact support.
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5.4 The weighted square integral inequalities for
smooth and weak subsolution of system
of partial differential inequalities

Let u(x), x € R" be a solution of the following system of partial differential inequalities

9%u au
x2+8x2+ Jr >0

ad
9%u + + +8u <0 (5.117)
8x§+1 ax ox2 —

where 1 < j<n, n>2.
The bounded measurable function u is weak solution of the system (5.117) if for every
¢ (x) € C%(B), the following holds

l{ u(x)Ar,; ¢ (x)dx >0

Ju(x)A 1,0 0(x)dx <0 (5.118)
B
where
22 02 92
Alj==5+=—5+...+ = 5.119
A T T (5.119)
and
92 02 92
Aitin= totoa (5.120)
e ge e, o2

It is trivial that A = Ay,;+A;1,, where Af,; and Aj;,, both operators are self adjoint
operators.
The gradu(x) is n-dimensional vector given by

du Jdu du
gradu(x) = (Bxl Toxy "8xn>

We also introduce

(5.121)

grad ju(x) = (g—fl,g—fz,...,%)
0 0 0
gradji i pu(x) = (3in1 , —alejrz"”7a>:]n)

where 1 < j <n.
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5.4.1 The reverse Poincaré inequalities for smooth
subsolution and approximation of weak subsolution
by smooth ones

The following two lemmas for superharmonic functions and subharmonic functions are
proved in [45].

Lemma 5.1 Consider two arbitrary smooth superharmonic functions u;,i = 1,2 over do-
main D, D C R" i.e. u; € C*(D) and Au;(x) <0, x€ D, i=1,2.
Then we have

M2 X
JteradutoPstontr < [ 52 a0 e G+ )] Awta,
D D

where w is the non-negative weight function that satisfies

=252

=0,i=1,...,n, x€aD. (5.122)

Lemma 5.2 Consider two arbitrary smooth subharmonic functions u;, i = 1,2 over do-
main D, D C R", i.e. u; € C2(D) and Au;j(x) <0, x € D, i = 1,2. Then the following
holds

. u2 X
[teraduo Pt < [ (#+ ) e (12() +u1<x>>) Aw(@)d.
D D

where w is the non-negative weight function that satisfies (5.122).

Theorem 5.14 Let u;, i = 1, 2, be the two smooth solutions of system (5.117) over the
domain D C R", having smooth boundary and let w be the arbitrary non-negative smooth
function on the domain D satisfying (5.122) then the following estimate holds

/Igraduz(x) — gradus (x)* w(x)dx < fJuz — ]| (| o+ 2] )
D

|~ 1
></’Aw(x)’dx—i—§||u2—u1||iw/|Aw(x)|dx. (5.123)
D D

where A is Laplace operator and A= AL —Aji i

Proof. Letu =u, —u;. Take

IZ [gradux) P w(x)dx = [ o ( §)+ (aa—l)++ ( j)] w(x)dx.
(Z( ) Sy +/(ax])2w(x>dx)
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- (D/(aj,il>2vv(x)dx+...+[)/(§;1

Using (5.121) in equation (5.124), we obtain the the following

)2w(x)dx) . (5.124)

/ lgradu(x)[* w(x)dx = / |grad ju(x)|*w(x)dx + /|gradj+1,nu(x)|2w(x)dx
D D D
Now using Lemma 5.2 on first integral and Lemma 5.1 on the second integral we obtain,
2 (u2 —u1)?
|gradu(x)|“w(x)dx < s + o — wy || = (uo +uy) | Ar jw(x)dx
D

D
u —u 2
+/ {%—|Lt2—M1||L°°(u2+M1):|Aj+1,nw<x)dx
D

u —u 2
</%(Al,jw(x)+Aj+1,nw(x))dx+

D

[ s =l - 00) (1 03) = 8100
D

U —u 2 ~
/ |gradu(x) Pw(x)dx < / %Aw(x)d;ﬂr / etz — 11| 1= (2 + 1) Aw (x)dx
D D D

where A = A —Ajyip.
Taking infinite norm on (5.125) we get the result (5.123).

Remark 5.2 The above theorem is also true for arbitrary ball B, B = B(xy,r) with center
xo and radius r

/ |graduy (x) — graduy (x)]* w(x)dx

B(xo,r)
< = gy il + ol )[Rt
B(xoar)
1
+§|\u2ful|\§m(3) / |Aw(x)| dx. (5.125)

B(xo,r)

From onward we will use B(xo,7) as a domain and the following particular weight function

w(x) = [rz - (xfxo)z]z.
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It is trivial that

a—j:(x) =wkx)=0, x€dB, i=1.2,...,n

Now we prove that for weak solution of system of inequality (5.117), we may approximate
it by system of smooth solutions, so we will use mollification technique, again.
Define

Cexprr—, |x|<1
= ‘x‘27l7 ’
?) { 0. x>,

where x € R”, and C > 0 such that
/ o(x)dx = 1.
Rn
Now we define mollifier of bounded measurable solution u(x) in the following way
_ ' xX—y
= [ o552 uta
B(xo.r)

Denote
Pn(x—y)=h"¢ (%) :

Tt is trivial that
02 02
—oh(x—y)=—=@x—y),i=1,....,n.
So
Ban(x) =1 [ uls)apn(x—y)dy,
B(xo,r)
where A, and A, are the Laplace operator with respect to x and y.

We will define the smaller balls By, k € N, in the form

k+1
By = B(xg,ry) where rk:k:::—zr, keN

and the corresponding weight functions are
2
wi(x) = [rg — (x—x0)%]".

The next theorem tells us that the function u;, defined above are smooth solutions of the
system of inequality (5.123) over the ball By, for sufficiently small /.
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Theorem 5.15 Let u be the weak solution of system ((5.117)) on the ball B, B= B(xo,r).
Then for any k € N, there exist 7> 0, such that forany h, 0 < h < h each uy, is smooth
solution of the system (5.117) over the ball By.

Proof. For fixed, k € N, let
;
2(k+2)
It is clear that for arbitrary & > 0 the function u(x) is infinitely differentiable.
Now we check that for arbitrary x € By, ¢;,(x —y) has compact support in the ball B(xo, 7).
Take the ball By in the following way

R 2%+3
Br=B(x0. =2,
k <x0’2k+4r)

71\:

If y ¢ By, then

2k+3  2k+2| _ r
2k+4  2k+4| 2(k+2)

Iy—XI>‘ >h = @p(x—y)=0.

Hence ¢, (x —y) has compact support in ball B as a function of y if h < 7 and by the
definition of weak solution u# we have

Juo)@)150ux-)ay >0,

B

[u6) @)1 nx )y <0,
B

which completes the proof. O

5.4.2 The existence and integrability of weak partial
derivative and weighted square inequalities for
the difference of weak subsolutions

The following theorem tells that continuous weak subsolution of system (5.117) possess
all first order weak partial derivatives and also they are square integrable.

Theorem 5.16 Every continuous weak solution u of system (5.117) has weak partial
derivative %, i=1,...,n, in the ball B(xg,r) C R" and also they are weighted square
integrable i.e.

/ |gradu(x)|" w(x)dx < oo,

where w is non-negative weight function having compact support.

Proof. The proof of the theorem can be made on similar lines, as proof of the Theorem
3.1 of [45], using inequality (5.125) instead of (3.5) of [45]. O
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Next theorem will give us reverse Poincaré type inequalities for weak subsolution of
system (5.117).

Theorem 5.17 For any two arbitrary continuous weak solutions u;, i = 1,2, for the sys-
tem (5.117) in the ball B(xo,r), the following is valid

/ |gradus (x) — graduy (x)|* w(x)dx <
B(x()vr)

~ 1
s = = (- + o) [ [Bwie) |t Sl =l [ 18w,
B(xo,r) B(xo,r)
(5.126)

where A is Laplace operator and A= AL —Aji1m

Proof.  For the continuous weak sub solutions u;, i = 1,2 for system (5.117) we take
smooth approximation u,,,; i = 1,2. For the ball By, there exist integer my; such that
Up,i 1s smooth in the ball By ;, m > my;, and u,,,; converges uniformly to u;, i = 1,2.u,,,;
and uy,,» on the ball By, .

[ lerad itz (9) = grad 1 (9 wiss (0
Bt

< Crtt o2 (%) = s ()] = 5) (IMm»z () =) + [t (X)Ilmm)

1 2
+§Ck+l ([t y2 (X) = tms1 (X)HL""(B) )

where
Gt = [ (B dx, e = [ [aw(a)]a

Applying limt m — oo, we get

/ |gradus (x) — graduy (x)|* wig (x)dx

<Gt ln) -l (el Wl )
+

1
5kt () —m ()l

2 )

Writing the left integral for the smaller ball By, C By, and taking limit as [ — oo, we obtain

/ |grad us (x) — grad u; (x)|* w(x)dx
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1 2
e |2 (x) = 1 () ) -
By the last theorem (3.1), we have

/|grad () Pw(x)dx < oo, i=1,2, (5.127)
B

and if we take limit, as k — oo, we obtain (5.126). O
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Definitions

(i) Convex function
A function f : I — R is said to be convex on /, if the following inequality hold:

flex+(1=t)y) <tf(x)+(1=1)f(y) Vx,yelt€[0,1]

(ii) ¢—convex function[15]
Let I be an interval in real line R and ¢ : R x R — R be a bifunction then a function
f 1 — Ris called ¢-convex, if

fAx+(1=2)y) < f) +AS(f(x): £ (1))
forall x;y € Iand A € [0,1].

(i) ¢— Quasiconvex function[15]

A function f is called ¢-quasiconvex, if (Ax+ (1 —=2A)y) <maxf(y), fy)+o(f(x),f(¥))
forallx,y e Iand A € [0, 1].

(iv) ¢—Affine function[15]
A function f is called ¢-affine if

fAx+(1=2)y)=f(y)+A0(f(x),f(¥))

for all x,y,A € R
Let I C R be the non-empty interior I°. Two sub-intervals of I specied by the point
¢ € I° will be denoted by: Ii>. = {x€I:x>c} andl,<. = {xcl:x<c}

(v) Right convex function[73]
i.e A function f : I — R is right convex if it is convex on Iy > ¢ for some point ¢ € [

(vi) Left convex function[73]
A function f : I — R is left convex if it is convex on I, < ¢ for some ¢ € 1
where
I, <c=xel:x<c
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(vii) Half convex function[73]
A function is half convex function if it is either right convex function or left convex
function

(viii) s-convex function[48]
A function f : [0,e0) — R is said to b s-convex in the second sense if the following
inequality holds

flx+ (1 —t)y<e'f(x)+ (1 —2)"f(y)

forall x,y € [0,00) ¢ € [0,1] and for some fixed s € (0, 1]
the class of s-convex function in the second sense is usually denoted by H_%

(ix) h-convex function[69]
Let f,h : J — R be a positive or non negative function. Then f is said to be h-convex
function or f € SX(h,I), if

flx+(1=1) <h@)f(x) +h(1=0)f()
Vx;y€landt € (0,1)

(x) Modified h-convex function[66]
Let f,h:J C R — R be a positive or non negative function. A function f: / CR —R
is said to be modified k-convex function if

flex+ (1 =1)y) <h(t)f(x) +h(1=1)f(y)
and Vx,y € Jandr € [0,1]

(xi) (a,1) convex function[67]
A function f: 1 C R — R is called an (c, 1 )-convex function if Vx,y € I, we have

flx+ (1 —=1)y) <t*f(x)+ (1 —1%)f(y)

(xii) Wright Convex Function[71]
A function f : D C R — R is said to be Wright-convex if

F(A=t)x+2y)+ fltx+ (1 —=1)y) < f(x) + f(¥)
Vx,y € D,t €10,1]

(xiii) m convex function[65]
For f:[0,b] — R and m € (0, 1], if

fx+m(1—1)y <tf(x)+m(1—1)f(y)

is valid for all x,y € [0,b] and ¢ € [0, 1], then we say that f(x) is an m-convex function
on [0,D].
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(xiv) (cr,m)—convex function[38]
Let the f: [0,b] — R is said to be (o, m) convex function, where (a,m) € [0,1], if
we have

flx+m(1—0)y <t*f(x) +m(1=1%)£()

is valid for all x,y € [0,b] and ¢ € [0, 1], then we say that f(x) is an (o, m)-convex
function on [0, b].
The class of all (¢, m)-convex functions on [0, b] for which £(0) < 0 is denoted by
K

(xv) (h,m) convex function[52]
Let J C R be an interval, (0,1) C J,h:J — R be a nonnegative function. We
say that f : [0,b] — R is an (h,m)-convex function, or say, f belongs to the class
SMX ((h,m),[0,b]), if f is nonnegative and, for all x,y € [0,b] and ¢ € [0, 1] and for
some m € (0; 1], we have

flex+m(1—1)y) < k(1) f(x) +mh(1=2)f(y)

(xvi) n-convex vector
The m-dimensional vector

F(‘x) = (fl (x)7f2<x)7 e 7fm(x))
is called smooth n-convex vector if
da" )
ﬁf,(x) >0Vi=1,2,...,m

and smooth n-convex vector if

n
dx

The vector F(x) is arbitrary n-convex provided

filx)>0Vi=1,2,....m

FOAx+ (=) S AFD @)+ (1 =2 ) Vi=1,2,...m
foreach A € [0, 1] and all x,y belongs to R.

(xvii) Geometrically convex function
Let [a1,b] is a subset of R. A mapping v from [a,b] to R is geometrically convex
if:
wp'a™") < lwp) lw(g)™
where, p,q belongs to [a;,by] and r € [0, 1].
(xviii) Starshaped funtion
If we set m = 0 in m-convex function then we obtain starshaped function on [0, 5],
We recall that if v be a mapping from [0,5;] to R is starshaped if

w(rp) < ry(p)
¥ r belongs to [0, 1] and p belongs to [0, 5]
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