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Preface

Inequalities and Zipf-Mandelbrot law is devoted to recent advances in variety of in-
equalities in Information theory especially for Zipf law and Zipf-Mandelbrot law. Since,
Zipf-Mandelbrot law has been applied in various scientific disciplines and different kind of
natural or social phenomena: from text mining, information retrieval, animal communica-
tion, to gene expression and many others, we hope that this book will be useful to different
scientific communities.

Subjects covered in this volume include: Zipf-Mandelbrot law and hybrid Zipf-Man-
delbrot law, Properties and its generalizations, Zipf-Mandelbrot entropy, Approximating
f -divergence via Hermite interpolation polynomials, Bounds for Inequalities for Entropy
of Zipf-Mandelbrot law, Inequalities for Shanon and Zipf-Mandelbrot entropies by us-
ing Jensen type inequalities, Combinatorial improvements of Zipf-Mandelbrot laws wia
interpolations, Cyclic improvements of Inequalitires for Entropy of Zipf-Mandelbrot law,
Inequalitires of the Jensen and Edmunson-Lah-Ribarič type for Zipf-Mandelbrot law, Sher-
man’s inequality with applications in information theory, Jensen-type inequalities for gen-
eralized f -divergence and Zipf-Mandelbrot law as well as some related results for Shanon
and Zipf-Mandelbrot entropies.

We wish to express our appreciation to the distinguished mathematicians who con-
tributed to this volume and all the researchers who contributed to this specific field of
research. Finally, it is our pleasure to acknowledge the fine cooperation and assistance
provided by the staff of “Element”,

Dilda Pečarić
Josip Pečarić

Editors
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inequalities via Montgomery identity . . . . . . . . . . . . . . . . . . . . 149
6.5 Generalization of refinement of Jensen’s, Rényi and Shannon type
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Chapter1
Zipf-Mandelbrot law,
properties and its
generalizations

Julije Jakšetić, Dilda Pečarić and Josip Pečarić

Abstract. Despite a wide spread applications of Zipf-Mandelbrot law, there is quite
small amount of results concerning analytical properties on distribution law. On
the first stage, we examine some monotonicity properties of the law, we derive the
whole variety of its lower and upper estimations. We then further refine our results
using some well-known inequalities such as Hölder and Lyapunov inequality.

On the second stage we consider the case when total mass of Zipf-Mandelbrot
law is spread all over positive integer, and then we come to Hurwitz −function.
As we show, it is very natural first to examine properties of Hurwitz −function
to derive properties of Zipf-Mandelbrot law. Using some well-known inequalities
such as Chebyshev’s and Lyapunov’s inequality we are able to deduce a whole
variety of theoretical characterizations that include, among others, log-convexity,
log-subadditivity, exponential convexity.

On the third stage, we generalize Zipf-Mandelbrot law using maximization of
Shannon entropy, as we get hybrid Zipf-Mandelbrot law. It is interesting that ex-
amination of its densities provides some new insights of Lerch’s transcendent.

1



2 1 ZIPF-MANDELBROT LAW, PROPERTIES AND ITS GENERALIZATIONS

1.1 Some classical inequalities
and Zipf-Mandelbrot law

1.1.1 Introduction

For N ∈ N, q ≥ 0, s > 0, k ∈ {1,2, . . . ,N}, Zipf-Mandelbrot probability mass function is
defined with

f (k,N,q,s) =
1/(k+q)s

HN,q,s
, (1.1)

where

HN,q,s =
N


i=1

1
(i+q)s , (1.2)

N ∈ N, q≥ 0, s > 0, k ∈ {1,2, . . . ,N} (see [6]).

Proposition 1.1 For s > t > 0

(N f (k,N,q,s))1/s ≤ (N f (k,N,q,t))1/t . (1.3)

Proof. In [7] it is proved, after 1
N f (k,N,q,s) is interpreted as power mean depending on s, that

s �→ N f (k,N,q,s) is a decreasing function. �

Denote m = k+q
N+q , M = k+q

1+q and observe m = min{xi : i = 1, . . . ,N}, M = max{xi : i =
1, . . . ,N}.
Further, for s, t > 0 let

 =
Ms−ms

Mt −mt

and

Bt,s =
(t

s

) 1
t
{

msMt −mtMs

(1− s/t)(Mt −mt)

} 1
s− 1

t

. (1.4)

Theorem 1.1 For probability mass function (1.39) we have following inequalities, for
0 < t < s

a)
N

s
t−1

Bs
t,s

( f (k,N,q,t))s/t ≤ f (k,N,q,s) ≤ N
s
t −1 ( f (k,N,q,t))s/t , (1.5)

b)
Mt −mt

f (k,N,q,s)
− Ms−ms

f (k,N,q,t)
≤ N
(
Mtms−Msmt) . (1.6)
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Proof.
a) It follows, for 0 < t < s,

(N f (k,N,q,s))1/s ≤ (N f (k,N,q,t))1/t ,

hence
f (k,N,q,s) ≤ N

s
t−1 ( f (k,N,q,t))s/t .

Now we prove left hand side inequality. First, observe here that m = min{xi : i = 1, . . . ,N},
M = max{xi : i = 1, . . . ,N}.
Using Beesack inequality (see [3], p. 334; [15], p. 110)

M[s]
N (x1,N)≤ Bt,sM

[t]
N (x1,N), 0 < t < s, (1.7)

where

Bt,s =
(t

s

) 1
t
{

msMt −mtMs

(1− s/t)(Mt −mt)

} 1
s− 1

t

.

It follows

f (k,N,q,s) ≥ N
s
t−1

Bs
t,s

( f (k,N,q,t))s/t .

b) From Goldman inequality (see [15], p. 109.), 0 < t < s,(
Mt −mt){M[s]

N (x1,N)}s− (Ms−ms){M[t]
N (x1,N)}t ≤Mtms−Msmt .

Hence, for 0 < t < s,

Mt −mt

f (k,N,q,s)
− Ms−ms

f (k,N,q,t)
≤ N
(
Mtms−Msmt) .

�

Remark 1.1 Another type of a lower bound for f (k,N,q,s) can be derived from another
Beesack inequality (see [3], p. 336; [15], p. 111):

M[s]
N (x1,N)≤Ct,s +M[t]

N (x1,N),

where

Ct,s =
{

msMt

Mt −mt +
s− t

t

(t
s

) s
s−t
} 1

s

,

concluding

f (k,N,q,s) ≥ 1
N
· 1(

Ct,s +[N f (k,N,q,t)]−
1
t

)s .
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1.1.2 Zipf law estimations

If we take q = 0 in probability mass function (1.39) we get Zipf law with probability mass
function

f (k,N,s) =
1

ksHN,s
(1.8)

where

HN,s =
N


i=1

1
is

. (1.9)

For s = 1 HN = HN,1 we get N−th harmonic number.
1◦ (case t = 1)

Using Proposition 1.2 for q = 0, t = 1 and s > 1 we have

(N f (k,N,s))
1
s ≤ N f (k,N,1)

i.e.

f (k,N,s) ≤ Ns−1

ksHs
N

. (1.10)

We can derive further bounds using well-known inequalities for harmonic numbers.
Using Schlömlich-Lemonnier inequalities (see [14], p. 118)

ln(N +1) < HN < 1+ ln(N +1) (1.11)

and (1.10) we get
f (k,N,s) < Ns−1k−s ln−s(N +1).

Also, using (see [14], p. 120)

r(1− (N +1)−1/r) < Hn < r(N1/r−1)+1 (1.12)

we have
f (k,N,s) < Ns−1(rk(1− (N +1)−1/r))−s.

Similarly, we have a list of inequalities with Euler constant  = limN→(HN − lnN) (see
[14], p. 120):

 + lnN + 1
2N − 1

8N2 < HN <  + lnN + 1
2N (1.13)

+ lnN + 1
2(N+1) < HN <  + lnN + 1

2(N−1) (1.14)

+ ln(N +1/2)+ 1
24(N+1)2 < HN <  + ln(N +1/2)+ 1

24N2 (1.15)

 + ln(N +1/2)+ 1
24(N+1/2)2 − 7

960N4 < HN (1.16)

< + ln(N +1/2)+ 1
24(N+1/2)2 − 7

960(N+1)4 .

Now, using (1.10) and left-hand side inequalities in (1.13)-(1.16) we get

f (k,N,s) < k−sNs−1
(
+ lnN + 1

2N − 1
8N2

)−s
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f (k,N,s) < k−sNs−1
(
 + lnN + 1

2(N+1)

)−s

f (k,N,s) < k−sNs−1
(
 + ln(N +1/2)+ 1

24(N+1)2

)−s

f (k,N,s) < k−sNs−1
(
 + ln(N +1/2)+ 1

24(N+1/2)2 − 7
960N4

)−s

Similarly, using Proposition 1.2 for q = 0, t = 1 and 0 < s < 1 we have

(N f (k,N,s))
1
s ≥ N f (k,N,1)

i.e.

f (k,N,s) ≥ Ns−1

ksHs
N

. (1.17)

and then using (1.13)-(1.16) we will get lower bounds

f (k,N,s) > k−sNs−1
(
 + lnN + 1

2N

)−s

f (k,N,s) > k−sNs−1
(
 + lnN + 1

2(N−1)

)−s

f (k,N,s) > k−sNs−1
(
 + ln(N +1/2)+ 1

24N2

)−s

f (k,N,s) > k−sNs−1
(
 + ln(N +1/2)+ 1

24(N+1/2)2 − 7
960(N+1)4

)−s

2◦ (case t = 2)
Using Proposition 1.2 for q = 0, t = 2 and s > 2 we have

(N f (k,N,s))
1
s ≤ N f (k,N,1) =

(
Nk−2HN,2

) 1
2

i.e.
f (k,N,s) ≤ N

s
2−1k−sH

− s
2

N,2 . (1.18)

Appling Proposition 1.2 for q = 0, t = 2 and 0 < s < 2 we get reversed inequality

f (k,N,s) ≥ N
s
2−1k−sH

− s
2

N,2 . (1.19)

Now we use the next estimations for HN,2 (see [14] p. 121–122; [16])

2

6
− N +1/2

N2 +N +d
< HN,2 <

2

6
− N +1/2

N2 +N +1/3
, d = 0.324555 (1.20)

and (see [14] p. 122)

HN,2 ≥ 8
5 − 1

N+ 2
3
, N ≥ 1 (1.21)

HN,2 ≥ 13
8 − 1

N+ 3
5
, N ≥ 1 (1.22)

HN,2 ≥ 13
8 − 1

N+ 2
3
, N ≥ 2 (1.23)
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HN,2 ≤ 10N−1
6N+3 , N ≥ 1 (1.24)

HN,2 < 2− 1
N , N ≥ 2. (1.25)

Hence, for s > 2

f (k,N,s) < N
s
2−1k−s(

2

6 − N+1/2
N2+N+d

)−
s
2 , N ≥ 1;

f (k,N,s) ≤ N
s
2−1k−s

(
8
5 − 1

N+ 2
3

)− s
2

, N ≥ 1;

f (k,N,s) ≤ N
s
2−1k−s

(
13
8 − 1

N+ 3
5

)− s
2

, N ≥ 1;

f (k,N,s) ≤ N
s
2−1k−s

(
13
8 − 1

N+ 2
3

)− s
2

, N ≥ 2,

and for 0 < s < 2

f (k,N,s) > N
s
2−1k−s(

2

6 − N+1/2
N2+N+1/3

)−
s
2 , N ≥ 1;

f (k,N,s) ≥ N
s
2−1k−s

(
10N−1
6N+3

)− s
2 , N ≥ 1;

f (k,N,s) ≤ N
s
2−1k−s

(
2− 1

N

)− s
2 , N ≥ 2.

1.1.3 Zipf law and Goldman inequality

From Goldman inequality we derived (1.6). For q = 0, 0 < t < s, (now m = k/N, M = k)

kt − ( k
N )t

f (k,N,s)
− ks− ( k

N )s

f (k,N,t)
≤ N

(
kt
(

k
N

)s

− ks
(

k
N

)t)
(1.26)

1◦ for s > t = 1 we have then

k− k
N

f (k,N,s)
− ks− ( k

N )s

f (k,N,1)
≤ N

(
k

(
k
N

)s

− ks k
N

)
i.e.

f (k,N,s) ≥ 1
ks ·

Ns−1(N−1)
N−Ns +(Ns−1)HN

. (1.27)

Using (1.13)-(1.16) we get the following sequence of lower bounds for f (k,N,s), s > 1,

f (k,N,s) > 1
ks · Ns−1(N−1)

N−Ns+(Ns−1)(+lnN+ 1
2N ) , N > 1;

f (k,N,s) > 1
ks · Ns−1(N−1)

N−Ns+(Ns−1)
(
+lnN+ 1

2(N−1)

) , N > 1;
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f (k,N,s) > 1
ks · Ns−1(N−1)

N−Ns+(Ns−1)
(
+ln(N+1/2)+ 1

24N2

) , N > 1;

f (k,N,s) > 1
ks · Ns−1(N−1)

N−Ns+(Ns−1)
(
+ln(N+1/2)+ 1

24(N+1/2)2
− 7

960(N+1)4

) . N > 1;

2◦ for 0 < t < s = 1 in (1.26)

f (k,N,t) ≤ 1
kt ·

Nt−1(N−1)
N−Nt +(Nt −1)HN

. (1.28)

Using (1.13)-(1.16) we get the following sequence of upper bounds for f (k,N,t), t < 1,

f (k,N,t) < 1
kt · Nt−1(N−1)

N−Nt+(Nt−1)
(
+lnN+ 1

2N− 1
8N2

) , N > 1;

f (k,N,t) < 1
kt · Ns−1(N−1)

N−Ns+(Ns−1)
(
+lnN+ 1

2(N+1)

) , N > 1;

f (k,N,t) < 1
kt · Nt−1(N−1)

N−Nt+(Nt−1)
(
+ln(N+1/2)+ 1

24(N+1)2

) , N > 1;

f (k,N,t) < 1
kt · Nt−1(N−1)

N−Nt+(Nt−1)
(
+ln(N+1/2)+ 1

24(N+1/2)2
− 7

960(N+1)4

) N > 1.

3◦ For s > t = 2 in (1.26)

k2− ( k
N )2

f (k,N,s)
− ks− ( k

N )s

f (k,N,2)
≤ N

(
k2
(

k
N

)s

− ks
(

k
N

)2
)

i.e.

f (k,N,s) ≥ 1
ks ·

Ns−2(N2−1)
N−Ns−1 +(Ns−1)HN,2

, N > 1. (1.29)

Combining (1.30) with (1.20), (1.24) and (1.25) we get the sequence of inequalities

f (k,N,s) > 1
ks · Ns−2(N2−1)

N−Ns−1+(Ns−1)
(
2
6 −

N+1/2
N2+N+1/3

) , N > 1;

f (k,N,s) ≥ 1
ks · Ns−2(N2−1)

N−Ns−1+(Ns−1)( 10N−1
6N+3 ) , N > 1;

f (k,N,s) ≥ 1
ks · Ns−2(N2−1)

N−Ns−1+(Ns−1)(2− 1
N ) , N > 2.

4◦ For t > s = 2 in (1.26)

kt − ( k
N )t

f (k,N,2)
− k2− ( k

N )2

f (k,N,t)
≤ N

(
kt
(

k
N

)2

− k2
(

k
N

)t
)
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i.e.

f (k,N,t) ≤ 1
kt ·

Nt−2(N2−1)
N−Nt−1 +(Nt −1)HN,2

, N > 1. (1.30)

Combining (1.30) with (1.20), (1.21), (1.22) and (1.23) we get the sequence of inequalities

f (k,N,t) < 1
kt · Nt−2(N2−1)

N−Nt−1+(Nt−1)
(
2
6 − N+1/2

N2+N+d

) , N > 1;

f (k,N,s) ≤ 1
kt · Nt−2(N2−1)

N−Nt−1+(Nt−1)
(

8
5− 1

N+ 2
3

) , N > 1;

f (k,N,t) ≤ 1
kt · Nt−2(Nt−1)

N−Nt−1+(Nt−1)

(
13
8 − 1

N+ 3
5

) , N > 1.

f (k,N,t) ≤ 1
kt · Nt−2(Nt−1)

N−Nt−1+(Nt−1)
(

13
8 − 1

N+ 2
3

) , N ≥ 2.

1.1.4 Further bounds via Lyapunov and Hölder inequality

Theorem 1.2 For probability mass function (1.39) we have the following inequality, for
0 < r < s < t

[N f (k,N,q,t)]−
1
t − [N f (k,N,q,r)]−

1
r

[N f (k,N,q,t)]−
1
t − [N f (k,N,q,s)]−

1
s

≤ s(t− r)
r(t− s)

. (1.31)

Proof. Using Lyapunov inequality (see [14], p. 34, [15] p. 117). For 0 < r < s < t(
1
N

N


i=1

(
k+q
i+q

)s
)t−r

≤
(

1
N

N


i=1

(
k+q
i+q

)r
)t−s(

1
N

N


i=1

(
k+q
i+q

)t
)s−r

(1.32)

We can rewrite this as

[N f (k,N,q,s)]−
1
s ≤
{
[N f (k,N,q,r)]−

1
r

} r
s

t−s
t−r
{

[N f (k,N,q,t)]−
1
t

} t
s

s−r
t−r

(1.33)

Applying A-G inequality on right-hand side of (1.59) we have

[N f (k,N,q,s)]−
1
s ≤ r

s
t− s
t− r

[N f (k,N,q,r)]−
1
r +

t
s
s− r
t− r

[N f (k,N,q, t)]−
1
t

which we can rewrite as

[N f (k,N,q,t)]−
1
t − [N f (k,N,q,r)]−

1
r

[N f (k,N,q,t)]−
1
t − [N f (k,N,q,s)]−

1
s

≤ s(t− r)
r(t− s)

.

�
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Theorem 1.3 For  > 1, let (, ) be a pair of Hölder conjugates. Then for r, s > 0 we
have

f (k,N,q,s+ r)≥ f (k,N,q,s)
1
 f (k,N,q,r )

1
 . (1.34)

Proof. Using Hölder inequality for sequences
{(

k+q
i+q

)r
: i = 1, . . . ,N

}
and{(

k+q
i+q

)s
: i = 1, . . . ,N

}
, we have

N


i=1

(
k+q
i+q

)r+s

≤
(

N


i=1

(
k+q
i+q

)r
)1/( N


i=1

(
k+q
i+q

)s
)1/

i.e.
( f (k,N,q,s+ r))−1 ≤ f (k,N,q,s)−

1
 f (k,N,q,r )−

1
 .

�

Let

m =

⎧⎪⎨⎪⎩
(

k+q
N+q

)s− r


, s > r(
k+q
1+q

)s− r


, s < r
(1.35)

and

M =

⎧⎪⎨⎪⎩
(

k+q
1+q

)s− r


, s > r(
k+q
N+q

)s− r


, s < r .

(1.36)

Theorem 1.4 For  > 1, let (, ) be a pair of Hölder conjugates. Then for r, s > 0 we
have

M−m
f (k,N,q,s)

+
mM −Mm

f (k,N,q,r )
≤ M −m

f (k,N,q,r+ s)
, (1.37)

where m and M are defined with (1.35) and (1.36) respectively.

Proof. Follows from a conversion of the Hölder inequality and a discreet version of the
linear functional in Theorem 4.14, [15], p. 114, applied for sequences{(

k+q
i+q

)r

: i = 1, . . . ,N

}
and

{(
k+q
i+q

)s

: i = 1, . . . ,N

}
.

�

Another type of conversion of the Hölder inequality is given in [15], Theorem 4.16, p.
115. Similarly, as in the proof of Theorem 1.4, using discreet version of a linear functional,
we get the next theorem.

Theorem 1.5 Under the same assumptions as in Theorem 1.4, the following result holds

f (k,N,q,r+ s) ≤ −
1
 −

1
 (M −m)

(M−m)
1
 (mM −Mm)

1


( f (k,N,q,s))
1
 ( f (k,N,q,r ))

1
 .

(1.38)
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1.2 Analytical properties of Zipf-Mandelbrot law and
Hurwitz −function

For N ∈ N, q ≥ 0, s > 0, k ∈ {1,2, . . . ,N}, we can rewrite Zipf-Mandelbrot law (proba-
bility mass function) in the following form

f (k,N,q,s) =
1/(k+q)s

 (N,s,q)
, (1.39)

where

 (N,s,q) =
N


i=1

1
(i+q)s , (1.40)

N ∈ N, q ≥ 0, s > 0, k ∈ {1,2, . . . ,N}. If total number of words N tends to infinity we
denote

f (k,q,s) =
1/(k+q)s

 (s,q)
, (1.41)

where

 (s,q) =



i=1

1
(i+q)s (1.42)

we recognize as Hurwitz −function. This infinite case, when total mass is spread over
all set of positive integers, particularly, is studied in [11]. Note here, that we use more
suitable version of Hurwitz  function (see also [1]), since in the classical definition sum
starts from zero and q > 0. However, this fact does not alter our conclusions about Hurwitz
−function.

The are also quite different interpretation of Zipf-Mandelbrot law. As it is pointed
out in [13] (see also [4], [18]), parameters in (1.39) can be interpreted in the following
way: N is the number of species present and the parameters q and s have an ecological
interpretation: q represents the diversity of the environment and s the predictability of the
ecosystem, i.e. the average probability of the appearance of a species.

1.2.1 Monotonicity properties

As starting point, we use the next proposition on inequalities for sums of positive order
([14, pp. 36] , [15, pp. 165]).

Proposition 1.2 If ai ≥ 0, i ∈N then for 0 < t < s(



i=1

as
i

) 1
s

≤
(




i=1

at
i

) 1
t

. (1.43)
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Theorem 1.6

i) The function s �→ [ (N,s,q)]1/s is decreasing i.e. for s > t > 0

[ (N,s,q)]1/s ≤ [ (N,t,q)]1/t .

ii) The function s �→ [ f (k,N,q,s)]1/s is increasing i.e. for s > t > 0

[ f (k,N,q,s)]1/s ≥ [( f (k,N,q,t)]1/t .

iii) The function s �→ [ (s,q)]1/s is decreasing i.e. for s > t > 0

[ (s,q)]1/s ≤ [ (t,q)]1/t .

iv) The function s �→ [ f (k,q,s)]1/s is increasing i.e. for s > t > 0

[ f (k,q,s)]1/s ≥ [( f (k,q,t)]1/t .

Proof.
i) We use the Proposition 1.2, for

ai =
{ 1

i+q , i = 1, . . . ,N;
0, i > N.

ii) Follows from i)-part and

1
f (k,N,q,s)

=
N


i=1

(
k+q
i+q

)s

= (k+q)s (N,s,q). (1.44)

iii) Use Proposition 1.2 for ai = 1
i+q , i ∈ N.

iv) Follows from iii)-part and

1
f (k,q,s)

= (k+q)s (s,q). (1.45)

�

Theorem 1.7 The function

s �→ (N f (k,N,q,s))1/s (1.46)

is decreasing i.e. for s > t > 0

(N f (k,N,q,s))1/s ≤ (N f (k,N,q,t))1/t . (1.47)
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Proof. From (1.44) it follows

1
N f (k,N,q,s)

=
1
N

N


i=1

(
k+q
i+q

)s

, (1.48)

i.e.

(N f (k,N,q,s))−1/s =

[
1
N

N


i=1

(
k+q
i+q

)s
]1/s

. (1.49)

Denote xi =
k+q
i+q , i = 1, . . . ,N. Then the right-hand side of (1.49) is the power mean

M[s]
N (x1,N) :=

[
1
N

N


i=1

xi
s

]1/s

.

Using well-known fact, that s �→M[s]
N (x1,N) is increasing function (see for example [14, 15])

we conclude that the function

s �→ (N f (k,N,q,s))1/s (1.50)

is decreasing. �

1.2.2 Log-convexity and exponential convexity

Let us recall well-known Lyapunov inequality, for sequences ([14, pp. 34], [15, pp. 117]).

Proposition 1.3 If ai ≥ 0, i ∈N, then for 0 < r < s < t(



i=1

as
i

)t−r

≤
(




i=1

ar
i

)t−s( 


i=1

at
i

)s−r

. (1.51)

If we set ai = 1
i+q , i ∈ N in (1.51) we get

Corollary 1.1 For 1 < r < s < t

 t−r(s,q)≤  t−s(r,q) s−r(t,q). (1.52)

In the next theorem we prove, log-concavity of s �→ f (k,N,q,s) and log-convexity of
s �→  (s,q).

Theorem 1.8 Let  ∈ (0,1).

i) For 0 < r < t,

 (N, r+(1− )t,q)≤  (N,r,q) 1− (N,t,q).
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ii) For 0 < r < t,

( f (k,N,q, r+(1− )t))−1 ≤ ( f (k,N,q,r))− ( f (k,N,q, t))−(1− ) .

iii) For 1 < r < t,
 ( r+(1− )t,q)≤  (r,q) 1− (t,q).

iv) For 1 < r < t,

( f (k,q, r+(1− )t))−1 ≤ ( f (k,q,r))− ( f (k,q,t))−(1− ) .

Proof.
i) For 0 < r < t and  ∈ (0,1) we set

ai =
{ 1

i+q , i = 1, . . . ,N;
0, i > N.

and s =  r+(1− )t in (1.51):(
N


i=1

(
1

i+q

) r+(1− )t
)t−r

≤
(

N


i=1

(
1

i+q

)r
) (t−r)( N


i=1

(
1

i+q

)t
)(1− )(t−r)

.

ii) Follows from (1.44) and i)-part.
iii) We set ai = 1

i+q and s =  r+(1− )t in (1.51).
iv) Follows from iii)-part and (1.45). �

We can conclude even more since this result can be extended to exponential convexity
[5].

Definition 1.1 A function h : I→ R is exponentially convex on an interval I ⊆ R if it is
continuous and

n


i, j=1

i jh

(
xi + x j

2

)
≥ 0

for all n ∈ N and all choices i ∈ R, xi ∈ I, i = 1, . . . ,n.

Theorem 1.9 The function s �→  (s,q) is exponentially convex function on (1,).

Proof. For a given n ∈N let m ∈R, sm ∈ (1,) (m = 1, . . . ,n) we have

n


l,m=1

lm
(

sl + sm

2
,q

)
=

n


l,m=1
lm



i=1

1

(i+q)
sl+sm

2

(1.53)

=


i=1

n


l,m=1
lm

1

(i+q)
sl+sm

2

(1.54)

=


i=1

(
n


m=1

1

(i+q)
sm
2

)2

≥ 0. (1.55)

Since the function s �→  (s,q) is continuous function on (1,), we conclude its exponential
convexity on (1,). �

Using (1.45) we have also the next corollary.
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Corollary 1.2 The function s �→ ( f (k,q,s))−1 is exponentially convex function on (1,).

Proof. This is consequence of (1.45) and the fact that exponential convexity is closed under
finite multiplication of exponentially convex functions. �

Corollary 1.3 The matrices
[(
 ( sl+sm

2 ,q)
)]n

l,m=1 and
[(

f (k,q, sl+sm
2 )
)−1
]n
l,m=1

are posi-

tive semi definite for all n ∈ N, s1, . . . ,sn in (1,).

We can also deduce exponential convexity from diversity point of view, notion mentioned
in the introduction.

Theorem 1.10 For any s > 0, N ∈ N, the function

q �→  (N,s,q)

is exponentially convex on (0,).

Proof. For k = 1, . . . ,N, using the Laplace transform,

1
(k+q)s =

∫
0

e−(k+q)t ts−1

(s)
dt

and the fact

n


i, j=1

i j exp

[
−
(

k+
qi +q j

2

)
t

]
= e−kt

(
n


i=1

i exp
(
−qi

2
t
))2

≥ 0,

we conclude exponential convexity of the function q �→ 1
(k+q)s on (0,). Now q �→  (N,s,q)

is exponentially convex on (0,) as a finite sum of exponentially convex functions. �

Theorem 1.11 For any s > 1, the function

q �→  (s,q)

is exponentially convex on (0,).

Proof. Using Mellin transformation

 (s,q) =
1

(s)

∫ 

0

ts−1e−(q+1)t

1− e−t dt

and
n


i, j=1

i j exp

(
−
(

qi +q j

2
+1

)
t

)
=

(
n


i=1

i exp

(
−qi +1

2
t

))2

≥ 0,

we conclude exponential convexity of q �→  (s,q) on (0,). �
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Corollary 1.4 For s > 1, the matrix
[

(
s,( ql+qm

2 )
)]n

l,m=1 is positive semi definite for all
n ∈ N, q1, . . . ,qn ∈ (0,).

Corollary 1.5 For any s > 1, the function

q �→  (s,q)

is log-convex on (0,).

1.2.3 Log subadditivity

Let us recall Chebyshev’s inequality (see [14, pp. 27], [15, pp. 197]).

Theorem 1.12 Let (a1, . . . ,aN) and (b1, . . . ,bN) be two N−tuples of real numbers such
that

(ai−a j)(bi−b j)≥ 0, f or i, j = 1, . . . ,N,

and (w1, . . . ,wN) be a positive n−tuple. Then(
N


i=1

wi

)(
N


i=1

wiaibi

)
≥
(

n


i=1

wiai

)(
N


i=1

wibi

)
. (1.56)

Theorem 1.13 The function s �→ N f (k,N,q,s) is log subadditive, i.e. for s,r > 0

N f (k,N,q,s+ r)≤ [N f (k,N,q,s)] [N f (k,N,q,r)] . (1.57)

Proof. We apply Chebyshev’s inequality (1.79) for

ai =
(

k+q
i+q

)s

, bi =
(

k+q
i+q

)r

, wi =
1
N

; i = 1, . . . ,N.

Hence we get

1
N

N


i=1

(
k+q
i+q

)s+r

≥
(

1
N

N


i=1

(
k+q
i+q

)s
)(

1
N

N


i=1

(
k+q
i+q

)r
)

⇒ 1
N f (k,N,q,s+ r)

≥ 1
N f (k,N,q,s)

1
N f (k,N,q,r)

,

concluding (1.81). �

Theorem 1.14 The function u �→ [ f (k,N,q,u−1)
]−u

is log-convex.

Proof. Using Lyapunov inequality in Proposition 1.3, for 0 < r < s < t(
N


i=1

(
k+q
i+q

)s
)t−r

≤
(

N


i=1

(
k+q
i+q

)r
)t−s( N


i=1

(
k+q
i+q

)t
)s−r

. (1.58)
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Using (1.49) we rewrite this as

[ f (k,N,q,s)]−
1
s ≤
{
[ f (k,N,q,r)]−

1
r

} r
s

t−s
t−r
{

[ f (k,N,q,t)]−
1
t

} t
s

s−r
t−r

(1.59)

Now we substitute t = 1/x, r = 1/y,  = t
s

s−r
t−r in (1.59), and since 1−  = r

s
t−s
t−r , s =

[x+(1− )y]−1 , we have[
f (k,N,q, [x+(1− )y]−1)

]−[ x+(1− )y]≤
{[

f (k,N,q,x−1)
]−x
} {[

f (k,N,q,y−1)
]−y
}1−

,

concluding log-convexity of the function u �→ [ f (k,N,q,u−1)
]−u

. �

1.2.4 Gini means and further monotonicity

For positive n−tuple (a1, . . . ,an), , ∈ R, Gini means are defined with

G(, ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝ n


i=1
ai

n


i=1
ai

⎞⎠ 1
−

,  
=  ;

exp

(
n

i=1

ai lnai/
n

i=1

ai

)
,  =  .

(1.60)

It is known then see [15, pp. 119],

G(1,1)≤ G(2,2), (1.61)

for 1 ≤ 2, 1 ≤ 2, 1 
=  , 2 
= 2.
If we choose ai =

k+q
i+q in (1.60) we will get Zip-Mandelbrot means:

Z(, ) =

⎧⎪⎨⎪⎩
(

f (k,N,q, )
f (k,N,q,)

) 1
−

,  
=  ;

[(k+q) (N,s,)]
(k+q)HN,q,
 f (k,N,q,) exp

(
− (k+q)

 f (k,N,q,)E(k,N,q,)
)

,  =  .

(1.62)
where

E(k,N,q,) =−
N


k=1

f (k,N,q,) ln f (k,N,q,)

denotes Shannon entropy of the law (1.39) (for related results see also [9]).
Using (1.86) we can now formulate the next theorem.

Theorem 1.15 For 0 < 1 ≤ 2, 0 < 1 ≤ 2, 1 
=  , 2 
= 2;

Z(1,1)≤ Z(2,2). (1.63)
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The expectation of the Zipf-Mandelbrot law is

N


k=1

k f (k,N,q,s) =
1

 (N,s,q)

N


k=1

k+q−q
(k+q)s =

 (N,s−1,q)
 (N,s,q)

−q.

This is a decreasing function over s, as the next theorem shows.

Theorem 1.16 The function

s �→  (N,s−1,q)
 (N,s,q)

is decreasing on R+.

Proof. We set ai = 1
i+q , i = 1, . . . ,N and  = s−1,  = s in (1.60).

According (1.86), for 0 < s < t, we have(
 (N,s−1,q)
 (N,s,q)

)−1

≤
(
 (N,t−1,q)
 (N,t,q)

)−1

.

�

Of course, result can be extended to Hurwitz −function.

Corollary 1.6 The function

s �→  (s−1,q)
 (s,q)

is decreasing on R+.

Remark 1.2 General remark in this section is that parameters ,  in (1.85) could be
any real numbers, so Theorems 1.27 and 1.16 are also valid on R

2 and R, respectively.

1.3 Hybrid Zipf-Mandelbrot law

There is a unified approach, maximization of Shannon entropy, that naturally follows the
path of generalization from Zipf’s to hybrid Zipf’s law. Extending this idea, in this section,
we make transition from Zipf-Mandelbrot to hybrid Zipf-Mandelbrot law. It is interesting
that examination of its densities provides some new insights of Lerch’s transcendent (see
[8]).

1.3.1 Shannon entropy and Zipf-Mandelbrot law

Here we extend use the maximum entropy approach in [17] to Zipf’s law in order to deduce
Zipf-Mandelbrot law, i.e. we maximize

S =−
i∈I

pi ln pi (1.64)

subject to some constraints. Trivial constraint is of course 
i∈I

pi = 1.
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Theorem 1.17 Let I = {1, . . . ,N} or I = N. For a given q ≥ 0 and  ≥ 0, a proba-
bility distribution, concentrated on I, that maximizes Shannon entropy under additional
constraint


k∈I

pk ln(k+q) =  (1.65)

is Zipf-Mandelbrot law.

Proof. If I = {1, . . . ,N}, in a very standard procedure, we set two Lagrange multipliers 
and s and consider expression

Ŝ =−
N


k=1

pk ln pk−
(

N


k=1

pk−1

)
− s

(
N


k=1

pk ln(k+q)− 

)
.

Just for convenience we can, of course, replace  ←→ ln −1, and now conider

Ŝ =−
N


k=1

pk ln pk− (ln −1)

(
N


k=1

pk−1

)
− s

(
N


k=1

pk ln(k+q)− 

)

instead.
From Ŝpk = 0, k = 1, . . . ,N we deduce

pk =
1

 (k+q)s ,

and combining this with
N


k=1
pk = 1, we have

 =
N


k=1

1
(k+q)s ,

where s > 0, concluding

pk =
1/(k+q)s

 (N,s,q)
, k = 1, . . . ,N.

The case I = N is treated in a similar manner with the restriction s > 1 :

pk =
1/(k+q)s

 (s,q)
, k ∈ N.

�

Remark 1.3

(i) If X is the random variable with values at I and probability law (pi, i ∈ I), then 
from (1.65) is in fact expectation of the random variable ln(X + q), which depends
on X .
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(ii) Observe here that for Zipf-Mandelbrot law (1.39) Shannon entropy (1.64) can be
bounded from above (see [12]):

S =−



k=1

f (k,q,s) ln f (k,q,s) ≤−



k=1

f (k,q,s) lnqk, (1.66)

where (qk : k ∈ N) is any sequence of positive numbers such that



k=1
qk = 1.

1.3.2 Hybrid Zipf-Mandelbrot law

The same technique of maximum entropy we apply with one additional constraint. The
derived probability law we will call hybrid Zipf-Mandelbrot law.

Theorem 1.18 Let I = {1, . . . ,N} or I = N. For a given q≥ 0,  ≥ 0 and  ≥ 0, a prob-
ability distribution, concentrated on I, that maximizes Shannon entropy under additional
constraints


k∈I

pk ln(k+q) =  , 
k∈I

kpk = 

is hybrid Zipf-Mandelbrot law:

pk =
wk

(k+q)s∗(s,q,w)
, k ∈ I,

where

∗I (s,q,w) =
k∈I

wk

(k+q)s .

Proof. We consider first I = {1, . . . ,N} and then we maximize

Ŝ =−
N


k=1

pk ln pk+ lnw

(
N


k=1

kpk− 

)
−(ln−1)

(
N


k=1

pk−1

)
−s

(
N


k=1

pk ln(k+q)− 

)
.

Ŝpk = 0, k = 1, . . . ,N gives us

−ln pk + kln w− ln  − sln(k+q) = 0,

i.e.

pk =
wk

 (k+q)s .

Using
N


k=1
pk = 1, we get  =

N


k=1

wk

(k+q)s and we recognize this as the partial sum of Lerch’s

transcendent

∗N(s,q,w) =
N


k=1

wk

(k+q)s ,
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with w≥ 0,s > 0.
In the infinite case I = N we have restrictions either w < 1,s > 0 or w = 1,s > 1 and

 =



k=1

wk

(k+q)s

we recognize as Lerch’s transcendent that we will denote with ∗(s,q,w). �

∴

Let us denote

fh(w,N,k,q,s) =
wk

(k+q)s∗N(s,q,w)
, k = 1, . . . ,N (1.67)

and

fh(w,k,q,s) =
wk

(k+q)s∗(s,q,w)
, (1.68)

hybrid Zipf-Mandelbrot law on finite and infinite state space, respectively.

Remark 1.4 Some remarks are needed.

(i) Observe that constraint with the  is in fact the expectation of the law.

(ii) There is a slight difference between Lerch’s transcendent defined in [2] p. 27 and
with our understanding of Lerch’s transcendent: we don’t have 0th summand.

(iii) We omitted the full bordered Hessian discussion in proofs of Theorems 1.17 and
1.18 as mere standard procedure.

(iv) Observe, further, that for hybrid Zipf-Mandelbrot law (1.68) Shannon entropy (1.64)
can be bounded from above (see [12]):

S =−



k=1

fh(k,q,s) ln fh(k,q,s)≤−



k=1

fh(k,q,s) lnqk, (1.69)

where (qk : k ∈ N) is any sequence of positive numbers such that



k=1
qk = 1.
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1.3.3 Properties of the hybrid Zipf-Mandelbrot law

Now we examine analytical properties of the Lerch’s transcendent and the hybrid Zipf-
Mandelbrot law.

Theorem 1.19 The functions

s �→
(

w−wN+1

wk−wk+1 fh(w,N,k,q,s)
)1/s

(1.70)

and

s �→
(

w
wk−wk+1 fh(w,k,q,s)

)1/s

(1.71)

are decreasing on (0,).

Proof. From (1.67) it follows

1
fh(w,N,k,q,s)

=
1
wk

N


i=1

wi
(

k+q
i+q

)s

i.e. (
wk−wk+1

(w−wN+1)h(w,N,k,q,s)

)1/s

=

(
1

w−wN+1

1−w

N


i=1

wi
(

k+q
i+q

)s
)1/s

. (1.72)

The right-hand side of (1.72) is power mean, which is increasing function on parameter s.
�

Now we recall well-known Lyapunov inequality, for isotonic functionals (for details
see [15, pp. 117] ): for 0 < r < s < t

A(gs)t−r ≤ A(gr)t−sA(gt)s−r. (1.73)

Theorem 1.20

i) For N ∈ N, w > 0, q≥ 0, 0 < r < s < t,

[∗N(s,q,w)]t−r ≤ [∗N(s,q,w)]t−s [∗N(s,q,w)]s−r .

ii) For 0 < w < 1, q≥ 0, 1 < r < s < t,

[∗(s,q,w)]t−r ≤ [∗(s,q,w)]t−s [∗(s,q,w)]s−r .

Proof. i) We apply (1.73) to the linear functional

A(g) =
N


k=1

wkg(k)
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and replace g(k) = 1
k+q .

ii) Similarly, if we define

A(g) =



k=1

wkg(k)

then the result follows from (1.73), if we choose g(k) = 1
k+q . �

We can now conclude log-convexity of Lerch’s transcendent and log-concavity of hy-
brid Zipf-Mandelbrot law.

Corollary 1.7 Let  ∈ (0,1).

i) For 0 < r < t, N ∈ N, w > 0, q≥ 0, 0 < r < s < t,

∗N( r+(1− )t,q,w)≤ [∗N(r,q,w)] [∗N(t,q,w)]1− .

ii) For 1 < r < t, 0 < w < 1, q≥ 0

∗( r+(1− )t,q,w)≤ [∗(r,q,w)] [∗(t,q,w)]1− .

iii) For N ∈ N, w > 0, q≥ 0, 0 < r < s < t,

( fh(w,N,k,q, r+(1− )t))−1 ≤ ( fh(w,N,k,q,r))− ( fh(w,N,k,q, t))−(1− ) .

iv) For 0 < w < 1, q≥ 0, 1 < r < s < t,

( fh(w,k,q, r+(1− )t))−1 ≤ ( fh(w,k,q,r))− ( fh(w,k,q,t))−(1− ) .

Proof. i) and ii) follow from Theorem 6.89. iii) and iv) follow from (1.67) and (1.68)
respectively. �

The results in the previous corollary can be extended further to exponential convexity.

Definition 1.2 A function h : I→ R is exponentially convex on an open interval I ⊆ R if
it is continuous and

n


i, j=1

i jh

(
xi + x j

2

)
≥ 0

for all n ∈ N and all choices i ∈R, xi ∈ I, i = 1, . . . ,n.

Theorem 1.21 The function s �→∗(s,q,w) is exponentially convex function on (1,).

Proof. For a given n ∈ N let m ∈ R, sm ∈ (1,) (m = 1, . . . ,n) we have

n


l,m=1

lm∗(
sl + sm

2
,q,w) =

n


l,m=1
lm



i=1

wi

(i+q)
sl+sm

2

(1.74)

=


i=1

wi
n


l,m=1

lm

(i+q)
sl+sm

2

(1.75)
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=


i=1

wi

(
n


m=1

m

(i+q)
sm
2

)2

≥ 0. (1.76)

Since the function s �→∗(s,q,w) is continuous function on (1,), we conclude its expo-
nential convexity on (1,). �

Using (1.68) we have also the next corollary.

Corollary 1.8 The function s �→ ( fh(w,k,q,s))−1 is exponentially convex function on
(1,).

Corollary 1.9 The matrices
[(
∗( sl+sm

2 ,q,w)
)]n

l,m=1 and
[(

fh(w,k,q sl+sm
2 )
)−1
]n
l,m=1

are

positive semidefinite for all n ∈ N, s1, . . . ,sn in (1,).

We can deduce exponential convexity for the second parameter in generalized polylog-
arithm function. First, we will prove theorem on integral representation of generalized
polylogarithm function as a variant of Mellin transformation for Hurwitz  function.

Lemma 1.1 For 0 < w < 1, q≥ 0

∗(s,q,w) =
w
(s)

∫ 

0

us−1e−(q+1)u

1−we−u du. (1.77)

Proof. In Gamma function integral we change variable, x = (n+q)u,

(s) =
∫ 

0
e−xxs−1dx = (k+q)s

∫ 

0
e−(k+q)uus−1du,

hence,

⇒ (k+q)−s(s) =
∫ 

0
e−kue−quus−1du. (1.78)

By multiplying both sides of (1.78) with wk , summing over k ∈N, and using Beppo-Levi’s
theorem on the right side, we have

∗(s,q,w)(s) =
∫ 

0




k=1

wke−kue−quus−1du

= w
∫ 

0

us−1e−(q+1)u

1−we−u du.

�

Theorem 1.22 The function q �→∗(s,q,w) is exponentially convex function on (0,).

Proof. For a given n ∈N, m ∈ R, qm ∈ (0,) (m = 1, . . . ,n), we have, using (1.77) and

n


i, j=1

i j exp

(
−
(

qi +q j

2
+1

)
t

)
=

(
n


i=1

i exp

(
−qi +1

2
t

))2

≥ 0,



24 1 ZIPF-MANDELBROT LAW, PROPERTIES AND ITS GENERALIZATIONS

concluding
n


i, j=1

i j∗(s,
qi +q j

2
,w)≥ 0.

�

Corollary 1.10 For s > 1, the matrix
[
∗(s, qi+q j

2 ,w)
]n
i, j=1

is positive semi definite for

all n ∈N, q1, . . . ,qn in (0,).

Corollary 1.11 For any s > 1, the function

q �→∗(s,q,w)

is log-convex on (0,).

Theorem 1.23 The function w �→ ∗(s,q,w)
w is exponentially convex on (0,1).

Proof. From 1
w =
∫ 
0 e−wtdt we have

1
1−we−u =

∫ 

0
et+we−utdt.

If we now rewrite (1.77)

∗(s,q,w)
w

=
1

(s)

∫ 

0
us−1e−(q+1)u

∫ 

0
et+we−utdtdu,

and use Fubini with

n


i, j=1

i je
t+

wi+wj
2 e−ut = et

(
n


i=1

e
wie
−ut
2

)2

≥ 0,

our proof is done. �

Corollary 1.12 For any  > 1 the function w �→ ∗(s,q,w)
w is exponentially convex on

(0,1).

Proof. This follows from the fact that, for  > 0, x �→ x− is exponentially convex on
(0,1) and that product of exponentially convex function (on the same domain) is again
exponentially convex (for details see [5]). �

Let us recall Chebyshev’s inequality (see [15, pp. 197]).

Theorem 1.24 Let (a1, . . . ,aN) and (b1, . . . ,bN) be two N-tuples of real numbers such
that

(ai−a j)(bi−b j)≥ 0, f or i, j = 1, . . . ,N,

and (w1, . . . ,wN) be a positive n−tuple. Then(
N


i=1

wi

)(
N


i=1

wiaibi

)
≥
(

N


i=1

wiai

)(
N


i=1

wibi

)
. (1.79)
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Remark 1.5 The previous theorem can be extended to infinite sequences if we impose
some obvious convergence(




i=1

wi

)(



i=1

wiaibi

)
≥
(




i=1

wiai

)(



i=1

wibi

)
. (1.80)

Let us introduce mean version of Lerch’s transcendent

∗(s,q,w) =
1−w

w
∗(s,q,w).

Theorem 1.25 The mean version of Lerch’s transcendent is log-subadditive, i.e. for
s,r > 0

∗(s+ r,q,w)≤∗(s,q,w)∗(r,q,w). (1.81)

Proof. We apply Chebyshev’s inequality (1.80) for

ai =
(

k+q
i+q

)s

, bi =
(

k+q
i+q

)r

, wi = wi; i ∈ N

i.e. w
1−w

∗(s+ r,q,w)≤∗(s,q,w)∗(r,q,w).

�

Remark 1.6 A similar version of the previous theorem can be proved for cut Lerch’s
transcendent∗N(s,q,w).

1.3.4 Hybrid means

For a fixed pi ≥ 0, ai ≥ 0, i = 1 . . . ,N let us define linear functional on C[a,b] with

A( f ) =
n


i=1

pi f (ai),

where a≤minai ≤maxai ≤ b. Then, the next theorem is valid.

Theorem 1.26 For a continuous function g : [a,b]→R+, the function t �→ A(gt) is expo-
nentially convex on (0,) and for positive 1,2,1,2; 1 ≤2, 1≤ 2, 1 
= 1, 2 
=
2, (

A(g1)
A(g2)

) 1
1−1 ≤

(
A(g2)
A(g2)

) 1
2−2

. (1.82)

Proof. For a fixed n ∈ N, ui ∈ R, ti > 0, i = 1, . . . ,n, we define an auxiliary function

(x) =
n


i, j=1

uiu jx
ti+t j

2 .
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Since (x) =
(

n

i=1

uix
ti
2

)2

≥ 0, we have A((g))≥ 0, i.e.

n


i, j=1

uiu jA

(
g

ti+t j
2

)
≥ 0

concluding exponential convexity of the function t �→ A(gt). Since exponential convexity
implies log-convexity (see [5]), (1.82) follows from [15] pp. 7. �

Remark 1.7 For fixed t > 0, let m = min
x∈[a,b]

gt(x), M = max
x∈[a,b]

gt(x). Then, from A(gt −
m)≥ 0 and A(M−gt)≥ 0 it follows

mA(1)≤ A(gt)≤MA(1).

By the mean value theorem it follows that exists  ∈ [a,b] such that

gt( ) =
A(gt)
A(1)

.

Also, for fixed ,  ∈ (0,), 
=  , following the very standard technique, we can also
prove that there exists  ∈ [a,b] such that

g− () =
A(g)
A(g )

. (1.83)

Now, if g() ∈ [a,b], then the expression(
A(g)
A(g )

) 1
−

. (1.84)

stands for the mean and, as (1.82) shows, these means have monotonicity property.

For fixed, k ∈ N, q ≥ 0, let us take pi = wi, ai = k+q
i+q , i = 1, . . . ,N, g = id. Using

Remark (1.7) and (1.67), we can define hybrid means

H(, ) =

⎧⎪⎨⎪⎩
(

fh(w,N,k,q, )
fh(w,N,k,q,)

) 1
−

,  
=  ;

exp

(
−

d
d fh(w,N,k,q,)
fh(w,N,k,q,)

)
,  =  .

(1.85)

Theorem 1.27 For 0 < 1 ≤ 2, 0 < 1 ≤ 2, 1 
= 1, 2 
= 2;

H(1,1)≤ H(2,2). (1.86)
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[15] J. Pečarić, F. Proshan, Y. L. Tong, Convex functions partial ordering and statistical
appli- cations mathematics in Science and Engineering, Vol. 187., Academic Press,
1992.
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Chapter2
On Zipf-Mandelbrot entropy

Muhammad Adil Khan, Dilda Pečarić, Josip Pečarić, and Zaid Mohammad Al-Sahwi

Abstract. In this paper we present several results for Shannon entropy. By using these
results we give inequalities for Zipf-Mandelbrot entropy. We also discuss the results of
Shannon entropy for different parametric Zipf-Mandelbrot laws. At the end we give ex-
ample which shows that some of the results for Shannon entropy can not be applied for
Zipf-Mandelbrot entropy.

2.1 Introduction

Zipf law is one of the necessary law in information science and is very frequently utilized
in linguistics[2, 3, 20, 4, 5]. George Zipf [1] observed in the study of human language that
the size of the k-th biggest occurrence of the event is inversely proportional to it’s rank to
according to

f (k) =
c
ks , (2.1)

where c is a normalizing constant for the corpus, f (k) is the number of occurrences of the
k-th ranked and s > 0 is close to unite.

2000 Mathematics Subject Classification. 26D15, 94A17, 94A15.
Key words and phrases. Shannon entropy, Zipf-Mandelbrot entropy, convex function, Jensen’s inequality.
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If n ∈ {1,2, . . .}, s > 0 and k ∈ {1,2, . . . ,n}, then Zipf’s law (probability mass function ) is
defined by: f (k,n,s) = 1/ks

Hn,s
, where Hn,s is the n-th generalized Harmonic number [7].

The more general model introduced Benoit Mandelbrot [[8] pp. 503–512], by utilizing
arguments on the fractal structure lexical trees: g(i) = c

(i+h)r , when h = 0, we obtain Zipf’s
law.

If n∈N, r > 0, h≥ 0 and i ∈ {1,2, . . . ,n}, then Zipf-Mandelbrot law (probability mass
function) is defined by

G(i,n,h,r) =
1

(i+h)r.Hn,h,r
.

The formula for Zipf-Mandelbrot entropy is given by

Z(H,h,r) =
r

Hn,h,r

n


i=1

log(i+h)
(i+h)r + logHn,h,r, (2.2)

where Hn,h,r = n
i=1

1
(i+h)r .

There are many applications of Zipf-Mandelbrot law which can be found in ecolog-
ical field studies [29], and also applicable in information sciences [28]. Recently, Zipf-
Mandelbrot law, Zipf-Mandelbrot entropy have been applied to various types of distances
and f -divergences, for example Kullback-Leibler divergence, Bhattacharyya distance (via
coefficient), Hellinger distance, x2-divergence, Csiszâr divergence, etc, [11, 12].

2.2 Preliminary results on Shannon inequality

In this section we give some basic inequalities for Shannon entropy from [17].
A fundamental result related to the notion of the Shannon entropy is the inequality

n


i=1

pi log

(
1
pi

)
≤

n


i=1

pi log

(
1
qi

)
, (2.3)

which holds for all positive real numbers pi, qi with

n


i=1

pi =
n


i=1

qi = 1.

Throughout this chapter “log” denotes the logarithmic function taken to a fixed base b > 1.
Equality holds in (2.3) if and only if pi = qi for all i. For details see [[15], pp. 635–650].
The following theorem [[16], pp. 278–279] extend (2.3) and we can call it Shannon’s
inequality.

Theorem 2.1 Let I be a finite or countable set of integers and {pi, i ∈ I} a set of positive
real numbers such that i∈I pi = 1. If {qi, i ∈ I} is a set of nonnegative real numbers with



2.2 PRELIMINARY RESULTS ON SHANNON INEQUALITY 31

i∈I qi =  > 0, then


i∈I

pi log

(
1
pi

)
≤

i∈I
pi log

(
1
qi

)
+ log, (2.4)

with equality if and only if qi =  pi for all i ∈ I.

Theorem 2.2 Let I be a finite or countable set of integers and {pi, i ∈ I} and {qi, i ∈ I}
sets of positive numbers such thati∈I pi = 1 and  :=i∈I qi <. If Sq =i∈I pi log

(
1
qi

)
is a finite, then Sp = i∈I pi log

(
1
pi

)
is also finite and

0 < Sp ≤ Sq + log.

If in addition i∈I p2
i /qi < , then we have

0 ≤ Sq−Sp + log

≤ log

[


i∈I

pi
2

qi

]

≤ 1
lnb

[


i∈I

pi
2

qi
−1

]
. (2.5)

with equality throughout if and only if qi =  pi for all i ∈ I.

Theorem 2.3 Let assumptions of Theorem 2.2 be satisfied and let

0 < m≤ pi/qi ≤M for all i ∈ I.

Then we have

0≤ Sq−Sp + log ≤ log
(M +m)2

4Mm
≤ 1

4lnb
.
(M−m)2

Mm
. (2.6)

Also, if M/m≤() for some  > 0, then

0≤ Sq−Sp + log ≤ .

Theorem 2.4 Under the assumptions of Theorem 2.3 we have

0 ≤ Sq−Sp + log

≤ log

[
(
√

M−√m)2 +1

]
≤ 

lnb
(
√

M−√m)2. (2.7)
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First we consider a discrete valued random variable X with finite range {xi}ri . Assume
that pi = P{X = xi}> 0 for i = 1, · · · ,r. The b−entropy of X is defined by

Hb(X) =
r


i=1

pi log

(
1
pi

)
,b > 1.

Let L(p,q) = 
i∈I

pi log
(

pi
qi

)
be represent the discrimination, Kulbackack-Leibler distance

or relative entropy between the probability distribution p = {pi}i∈I and q = {q}i∈I . Also,
let H(p) = S be the entropy and d(p,q) = 

i∈I
|pi− qi| be the variational distance between

probability distributions p and q.

Theorem 2.5 With the above notations

L(p,q)+H(p)≥−log

[
1− 1

2
d(p,q)

]
≥ 1

2lnb
d(p,q).

(2.8)

The following bounds on the entropy function give a further improvement of Theorem 2.1.

Theorem 2.6 (a) : Suppose X is a discrete valued random variable with finite range, we
have

0≤ logr−Hb(X)≤ log

[
r

r


k=1

p2
k

]

≤ 1
lnb

[
r


k=1

p2
k−1

]
.

(2.9)

Equality holds throughout if and only if pi = 1
r for i = 1,2, · · · ,r.

(b) : If  = maxi,k
pi
pk

, then

0≤ logr−Hb(X)≤ log

[
1
4

(√
 +

1√
)2
]

≤ 1
4lnb

(√
− 1√

)2

.

(2.10)

If  < () for  > 0, then
0≤ logr−Hb(X)≤ . (2.11)

In the following theorem [x] denotes the largest integer less than or equal to x.

Theorem 2.7 With X as above, define M = maxi pi and m = mini pi, then

0≤ logb r−Hb(X)≤ logb

{[
r2

4

]
(M−m)2 +1

}
≤ (M−m)2

lnb

[
r2

4

]
. (2.12)
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If

max
1≤i≤ j≤r

|pi− p j| ≤
√√√√b −1[

r2
4

] , (2.13)

then (2.10) holds.

Theorem 2.8 Let X be a discrete valued random variable with finite range {xi}ri=1 and
probability distribution pk = P{X = xk} > 0 for 1 ≤ k ≤ r and set  = maxi,k

pi
pk

. Let 

be a permutation of (1,2, · · · ,r) such that
(
p (k)
)r
1

is monotone. Define Pk =
k

i=1

p (i) and

M = max
1≤k≤r

Pk(1−Pk). Then

0≤ logr−Hb(X)≤ log

[
M

(√
− 1√

)2

+1

]
≤ M

lnb

(√
− 1√

)2

. (2.14)

If  ≤M() for some  > 0, then

0 < logr−Hb(X)≤ . (2.15)

In the case when X is a discrete random variable with countable range {xi}i≥r and
probability distribution pi = P{X = xi} > 0 (

i=1 pi = 1). The b-entropy of X is defined
by

Hb(X) =



i=1

pi log

(
1
pi

)
,b > 1. (2.16)

Consider

 =



i=1

ipi (2.17)

Theorem 2.9 Let X be a discrete valued random variable countable range {xi}i≥1 and
probability distribution pi = P{X = xi} > 0 (

i=1 pi = 1) such that  < . Then the
entropy Hb(X) defined by (7.48) is finite and

0 < Hb(X)≤ log


(−1)−1 .

If in addition 
i=1[ i/(−1)i−1]p2

i < , then

0 ≤ log


(−1)−1 −Hb(X)

≤ log

[



i=1

 i

(−1)i−1 p2
i

]

≤ 1
lnb

[



i=1

 i

(−1)i−1 p2
i −1

]
, (2.18)

with equalities throughout if and only if pi = (−1)i−1/ i for all i ∈ N.
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Theorem 2.10 (i) Under the assumptions of Theorem 2.9. If

0 < L≤  i

(−1)i−1 pi ≤U for all i ∈ N,

then

0 ≤ logK−Hb(X)

≤ log
(U +L)2

4LU

≤ 1
4lnb

(U−L)2

LU
. (2.19)

Also, if U/L≤() for some  > 0, then

0≤ logK−Hb(X)≤ .

(ii) Further, we have

0 ≤ logK−Hb(X)

≤ log
[
(
√

U−
√

L)2 +1
]

≤ 1
lnb

(
√

U−
√

L)2. (2.20)

Theorem 2.11 Let X be a discrete valued random variable with finite range R = {xi, i≥
I} and probability distribution pi = P{X = xi}> 0 (i∈I pi = 1),  an arbitrary real num-
ber. And let that A := i∈I b

− f (xi) and E[ f (x)] := i∈I pi f (xi) are finite. If 
i∈I

p2
i b

 f (xi) <

. Then

0 ≤ E[ f (x)]−Hb(X)+ logA

≤ log

[
A

i∈I
p2

i b
 f (xi)

]

≤ 1
lnb

[
A

i∈I
p2

i b
 f (xi)−1

]
, (2.21)

with equalities throughout if and only if pi = A−1b− f (xi) for all i ∈ I. Furthermore, if
there are constants L,U > 0 such that L≤ pib f (xi) ≤U for all i ∈ I, then

0 ≤ E[ f (x)]−Hb(X)+ logA

≤ log
(U +L)2

4LU

≤ 1
4lnb

(U −L)2

LU
. (2.22)
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Also, if U/L≤(x) for some  > 0,

0≤ E[ f (x)]−Hb(X)+ log≤ .

Further, we have

0 ≤ E[ f (x)]−Hb(X)+ logA

≤ log
[
A(
√

U−√L)2 +1
]

≤ A
lnb

(
√

U−
√

L)2. (2.23)

Remark 2.1 In [17], there are serval results presented for Shannon entropy involving
 = sup

n∈N
an, where

an =

(
p−1

n




k=n+1

pk

)
, pk > 0,




k=1

pk = 1. (2.24)

But we will show those results are not valid for Zipf-Mandelbrot law.

2.3 Inequalities for Zipf-Mandelbrot entropy

In this section we give applications of results presented in Section 2 for Zipf-Mandelbrot
entropy.

Theorem 2.12 Let n ∈ {1,2,3, . . .}, q≥ 0, s > 0, qi > 0, i = 1,2, . . . ,n with n
i=1 qi = 1,

then

Z(H,q,s)≤
n


i=1

log
(

1
qi

)
(i+q)sHn,q,s

, (2.25)

Proof. Replacing pi by 1
(i+q)sHn,q,s

, i = 1,2, . . . ,n, we have

−
n


i=1

pi log pi = −
n


i=1

1
(i+q)sHn,q,s

log
1

(i+q)sHn,q,s

=
n


i=1

log[((i+q)sHn,q,s]
(i+q)sHn,q,s

=
n


i=1

s log(i+q)
(i+q)sHn,q,s

+
n


i=1

logHn,q,s

(i+q)sHn,q,s

=
s

Hn,q,s

n


i=1

log(i+q)
(i+q)s +

logHn,q,s

Hn,q,s

n


i=1

1
(i+q)s .
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Then
n


i=1

pi log

(
1
pi

)
= Z(H,q,s),

where Hn,q,s =
n

i=1

1
(i+q)s .

Therefore, for pi = 1
(i+q)sHn,q,s

, in (2.3) we obtain (2.25). �

Theorem 2.13 Let n ∈ {1,2,3, . . .}, q≥ 0, s > 0, qi > 0, i = 1,2, . . . ,n with n
i=1 qi =  ,

then

Z(H,q,s)≤
n


i=1

log
(

1
qi

)
(i+q)sHn,q,s

+ log, (2.26)

Equality holds in (2.26) if and only if qi = 
(i+q)sHn,q,s

for all i = 1,2, . . . ,n.

Proof. Accordingly to the proof of Theorem 2.12, using (2.4) for pi = 1
(i+q)sHn,q,s

,
i = 1,2, . . . ,n, we get (2.26). �

Theorem 2.14 Let n ∈ {1,2,3, . . .}, q≥ 0, s > 0, qi > 0, i = 1,2, . . . ,n with n
i=1 qi =  ,

then

0 ≤
n


i=1

log
(

1
qi

)
(i+q)sHn,q,s

+ log−Z(H,q,s)

≤ log

[


n


i=1

1

qi ((i+q)sHn,q,s)
2

]

≤ 1
lnb

[


n


i=1

1

qi ((i+q)sHn,q,s)
2 −1

]
, (2.27)

with equality throughout if and only if qi = 
(i+q)sHn,q,s

for all i = 1,2, . . . ,n.

Proof. By taking pi = 1
(i+q)sHn,q,s

in (2.5), i = 1,2, . . . ,n, we obtain we obtain the required
result. �

Theorem 2.15 Let n ∈ {1,2,3, . . .}, q≥ 0, s > 0, qi > 0, i = 1,2, . . . ,n with n
i=1 qi = 

and let

0 < m≤ 1
qi ((i+q)sHn,q,s)

≤M for all i = 1,2, . . . ,n.

Then we have

0≤
n


i=1

log
(

1
qi

)
(i+q)sHn,q,s

+ log−Z(H,q,s)≤ log
(M +m)2

4Mm
≤ 1

4lnb
.
(M−m)2

Mm
. (2.28)
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Also, if M/m≤() for some  > 0, then

0≤
n


i=1

log
(

1
qi

)
(i+q)sHn,q,s

+ log−Z(H,q,s)≤ .

Proof. By taking pi = 1
(i+q)sHn,q,s

in (2.6), i = 1,2, . . . ,n, we get Theorem 2.15. �

Theorem 2.16 Let n ∈ {1,2,3, . . .}, q≥ 0, s > 0, i = 1,2, . . . ,n with n
i=1 qi =  and let

0 < m≤ 1
qi ((i+q)sHn,q,s)

≤M for all i = 1,2, . . . ,n.

0 ≤
n


i=1

log
(

1
qi

)
(i+q)sHn,q,s

+ log−Z(H,q,s)

≤ log

[
(
√

M−√m)2 +1

]
≤ 

lnb
(
√

M−√m)2. (2.29)

Proof. By taking pi = 1
(i+q)sHn,q,s

in (2.7), i = 1,2, . . . ,n, we get (2.29). �

Theorem 2.17 Let n ∈ {1,2,3, . . .}, q≥ 0, s > 0, qi > 0, i = 1,2, . . . ,n with n
i=1 qi =  ,

then we have

n


i=1

log[qi((i+q)sHn,q,s)]
(i+q)sHn,q,s

−Z(H,q,s)≤ log

[
1− 1

2

n


i=1

∣∣∣∣∣1−qi[(i+q)sHn,q,s]
(i+q)sHn,q,s

∣∣∣∣∣
]

≤ −1
2lnb

n


i=1

∣∣∣∣∣1−qi[(i+q)sHn,q,s]
(i+q)sHn,q,s

∣∣∣∣∣.
(2.30)

OR
n


i=1

logqi

(i+q)sHn,q,s
≤ log

[
1− 1

2

n


i=1

∣∣∣∣∣1−qi[(i+q)sHn,q,s]
(i+q)sHn,q,s

∣∣∣∣∣
]

≤ −1
2lnb

n


i=1

∣∣∣∣∣1−qi[(i+q)sHn,q,s]
(i+q)sHn,q,s

∣∣∣∣∣.
(2.31)

Proof. By taking pi = 1
(i+q)sHn,q,s

in (2.8), i = 1,2, . . . ,n, we get Theorem 2.17. �
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Theorem 2.18 Let n ∈ {1,2,3, . . .}, q≥ 0, s > 0, i = 1,2, . . . ,n, then we have

0≤ logn−Z(H,q,s)≤ log

[
n

n


i=1

1
[(i+q)sHn,q,s]2

]

≤ 1
lnb

[
n


i=1

1
[(i+q)sHn,q,s]2

−1

]
.

(2.32)

Equality holds throughout if and only if 1
(i+q)sHn,q,s

= 1
n for i = 1,2, · · · ,n.

If  = max
i,k

(k+q)sHn,q,s
(i+q)sHn,q,s

, then

0≤ logn−Z(H,q,s)≤ log

[
1
4

(√
 +

1√
)2
]

≤ 1
4lnb

(√
− 1√

)2

.

(2.33)

If  < () for  > 0, then

0≤ logn−Z(H,q,s)≤ . (2.34)

Proof. By taking pi = 1
(i+q)sHn,q,s

in (2.9) and (2.10), i = 1,2, . . . ,n, we get Theorem 2.18.
�

In the following theorem [x] denotes the largest integer less than or equal to x.

Theorem 2.19 Let n ∈ {1,2,3, . . .}, q≥ 0, s > 0, i = 1,2, . . . ,n, M = max
i

1
(i+q)sHn,q,s

and

m = min
i

1
(i+q)sHn,q,s

, then

0≤ logn−Z(H,q,s)≤ log

{[
n2

4

]
(M−m)2 +1

}
≤ (M−m)2

lnb

[
n2

4

]
. (2.35)

Theorem 2.20 Let n ∈ {1,2,3, . . .}, q ≥ 0, s > 0, i = 1,2, . . . ,n,  = max
i,k

(k+q)sHn,q,s
(i+q)sHn,q,s

.

Define M = max
1≤k≤n

k

i=1

1
(i+q)sHn,q,s

(
1−

k

i=1

1
(i+q)sHn,q,s

)
. Then

0≤ logn−Z(H,q,s)≤ log

[
M

(√
− 1√

)2

+1

]
≤ M

lnb

(√
− 1√

)2

. (2.36)

If  ≤M() for some  > 0, then

0 < logn−Z(H,q,s)≤ . (2.37)
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Theorem 2.21 Let n∈ {1,2,3, . . .}, q≥ 0, s > 0, i = 1,2, . . . , and  :=
i=1

i
(i+q)sHn,q,s

<

. Then Z(H,q,s) is finite and

0 < Z(H,q,s)≤ log


(−1)−1 .

If in addition


i=1

 i/(−1)i−1

[(i+q)sHn,q,s]2
< , then

0 ≤ log


(−1)−1 −Z(H,q,s)

≤ log

[



i=1

 i

[(i+q)sHn,q,s]2(−1)i−1

]

≤ 1
lnb

[



i=1

 i

[(i+q)sHn,q,s]2(−1)i−1 −1

]
, (2.38)

with equalities throughout if and only if 1
(i+q)sHn,q,s

= (−1)i−1/ i for all i ∈ N.

Theorem 2.22 (i) Under the assumptions of Theorem 2.21. If

0 < L≤  i

(i+q)sHn,q,s(−1)i−1 ≤U for all i ∈ N,

then

0 ≤ logK−Z(H,q,s)

≤ log
(U +L)2

4LU

≤ 1
4lnb

(U −L)2

LU
. (2.39)

Also, if U/L≤() for some  > 0, then

0≤ logK−Z(H,q,s)≤ .

(ii) Further, we have

0 ≤ logK−Z(H,q,s)

≤ log
[
(
√

U−
√

L)2 +1
]

≤ 1
lnb

(
√

U−
√

L)2. (2.40)

Theorem 2.23 Let n ∈ {1,2,3, . . .}, q ≥ 0, s > 0, i = 1,2, . . . ,n,  an arbitrary real

number. If
n

i=1

b f (xi)

((i+q)sHn,q,s)2
< . Then

0 ≤ 
n


i=1

f (x)
(i+q)sHn,q,s

−Z(H,q,s)+ log

(
n


i=1

b− f (xi)

)
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≤ log

[
n


i=1

b− f (xi)
n


i=1

b f (xi)

((i+q)sHn,q,s)2

]

≤ 1
lnb

[
n


i=1

b− f (xi)
n


i=1

b f (xi)

((i+q)sHn,q,s)2 −1

]
, (2.41)

with equalities throughout if and only if 1
(i+q)sHn,q,s

= b− f (xi)

n
i=1 b− f (xi)

for all i = 1,2, . . . ,n.

Furthermore, if there are constants L,U > 0 such that L≤ b f (xi)

(i+q)sHn,q,s
≤U for all i ∈ I, then

0 ≤ 
n


i=1

f (x)
(i+q)sHn,q,s

−Z(H,q,s)+ log

(
n


i=1

b− f (xi)

)

≤ log
(U +L)2

4LU

≤ 1
4lnb

(U−L)2

LU
. (2.42)

Also, if U/L≤(x) for some  > 0,

0≤ 
n


i=1

f (x)
(i+q)sHn,q,s

−Z(H,q,s)+ log

(
n


i=1

b− f (xi)

)
≤ .

Further, we have

0 ≤ 
n


i=1

f (x)
(i+q)sHn,q,s

−Z(H,q,s)+ log

(
n


i=1

b− f (xi)

)

≤ log

[
n


i=1

b− f (xi)
(√

U−
√

L
)2

+1

]

≤ n
i=1 b− f (xi)

lnb

(√
U−
√

L
)2

. (2.43)

In the following theorems, we use two Zipf-Mandelbrot laws for different parameters.

Theorem 2.24 Let n ∈ {1,2,3, . . .}, t1,t2 ≥ 0, s1,s2 > 0, then

Z(H,t1,s1)≤
n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

, (2.44)

Proof. Let pi = 1
(i+t1)s1Hn,t1,s1

and qi = 1
(i+t2)s2Hn,t2,s2

, i = 1,2, . . . ,n. Then, using the proof

of Theorem 2.12, we get

n


i=1

pi log

(
1
pi

)
=

n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t1)s1Hn,t1,s1

= Z(H, t1,s1)
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n


i=1

pi log

(
1
qi

)
=

n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

Therefore, using (2.3) for pi = 1
(i+t1)s1Hn,t1,s1

and qi = 1
(i+t2)s2Hn,t2 ,s2

, i = 1,2, . . . ,n, we obtain

required result. �

Theorem 2.25 Let n ∈ {1,2,3, . . .}, t1,t2 ≥ 0, s1,s2 > 0, then

0 ≤
n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

−Z(H,t1,s1)

≤ log

[


i∈I

(i+ t2)s2Hn,t2,s2

((i+ t1)s1Hn,t1,s1)2

]

≤ 1
lnb

[


i∈I

(i+ t2)s2Hn,t2,s2

((i+ t1)s1Hn,t1,s1)2 −1

]
. (2.45)

Proof. Taking pi = 1
(i+t1)s1Hn,t1,s1

and qi = 1
(i+t2)s2 Hn,t2,s2

, in (2.5), i = 1,2, . . . ,n, we obtain

(2.45). �

Theorem 2.26 Let n ∈ {1,2,3, . . .}, t1,t2 ≥ 0, s1,s2 > 0, then

0 < m≤ (i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
≤M for all i = 1,2, . . . ,n.

Then we have

0≤
n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

−Z(H,t1,s1)≤ log
(M +m)2

4Mm
≤ 1

4lnb
.
(M−m)2

Mm
. (2.46)

Also, if M/m≤() for some  > 0, then

0≤
n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

−Z(H,t1,s1)≤ .

Theorem 2.27 Let n ∈ {1,2,3, . . .}, t1,t2 ≥ 0, s1,s2 > 0, then

0 < m≤ (i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
≤M for all i = 1,2, . . . ,n.

0 ≤
n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

−Z(H,t1,s1)

≤ log

[
(
√

M−√m)2 +1

]
≤ 

lnb
(
√

M−√m)2. (2.47)
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Theorem 2.28 Let n ∈ {1,2,3, . . .}, t1,t2 ≥ 0, s1,s2 > 0, then

n


i=1

log
(

(i+t2)s2 Hn,t2,s2
(i+t1)s1 Hn,t1,s1

)
(i+ t1)s1Hn,t1,s1

−Z(H,t1,s1)≤ log

[
1− 1

2

n


i=1

∣∣∣∣∣ (i+ t2)s2Hn,t2,s2− (i+ t1)s1Hn,t1,s1

((i+ t2)s2Hn,t2,s2)((i+ t1)s1Hn,t1,s1)

∣∣∣∣∣
]

≤ −1
2lnb

n


i=1

∣∣∣∣∣ (i+ t2)s2Hn,t2,s2− (i+ t1)s1Hn,t1,s1

((i+ t2)s2Hn,t2,s2)((i+ t1)s1Hn,t1,s1)

∣∣∣∣∣.
(2.48)

OR

n


i=1

log
(

1
(i+t2)s2 Hn,t2,s2

)
(i+ t1)s1Hn,t1,s1

≤ log

[
1− 1

2

n


i=1

∣∣∣∣∣ (i+ t2)s2Hn,t2,s2 − (i+ t1)s1Hn,t1,s1

((i+ t2)s2Hn,t2,s2)((i+ t1)s1Hn,t1,s1)

∣∣∣∣∣
]

≤ −1
2lnb

n


i=1

∣∣∣∣∣ (i+ t2)s2Hn,t2,s2− (i+ t1)s1Hn,t1,s1

((i+ t2)s2Hn,t2,s2)((i+ t1)s1Hn,t1,s1)

∣∣∣∣∣. (2.49)

Example 2.1 Let

an = (n+q)s



i=n+1

1
(i+q)s and  = sup

n∈N
an (2.50)

Since for i > n we have q
n > q

i ⇒ (1+ q
n )s > (1+ q

i )
s⇒ ( n+q

n )s > ( i+q
i )s⇒ ( n+q

i+q )s > ( n
i )

s.
Therefore

an = (n+q)s



i=n+1

1
(i+q)s > ns




i=n+1

1
is

(2.51)

Now for n = 2k we have

a2k > (2k)s
[ 1
(2k +1)s

+ · · ·+ 1
(2k+1)s

+
1

(2k+1 +1)s
+ · · ·+ 1

(2k+2)s
+ . . .
]

≥ (2k)s
[ 2k

(2k+1)s +
2k+1

(2k+2)s + . . .
]

=
2k

2s−2
.

If k→  then 2k

2s−2 → . Therefore  = .

Remark 2.2 It is obvious that the sequence an in Example 2.1 is the related sequence of
an in (2.24) for Zipf Mandelbrot law. But from Example 2.1 it is clear that we can not
apply results of Shannon entropy involving  for Zipf Mandelbrot law.
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[11] N. Lovričević, D. Pečarić, J. Pečarić, Zipf-Mandelbrot law, f -divergences and the
Jensen-type interpolating inequalities, J. Inequal. Appl. 36, (2018).
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Chapter3
Approximating f -divergence
via Hermite interpolating
polynomial

Dilda Pečarić, Josip Pečarić and Ana Vukelić

Abstract. In this paper we introduce a new functional based on the f -divergence
functional, and then we obtain some estimates for two special cases. We use the
Cauchy’s error representation of Hermite interpolating polynomial and the results
concerning to the Hermite-Hadamard inequalities are presented. Zipf-Mandelbrot
law is used to illustrate the results.

3.1 Introduction

We follow here notations and terminology about Hermite interpolating polynomial from
[1, p. 62]:

Let − < a < b < , and a ≤ a1 < a2 < .. . < ar ≤ b, (r ≥ 2) be given. For f ∈
Cn[a,b] a unique polynomial PH(t) of degree (n−1), exists, fulfilling one of the following

2000 Mathematics Subject Classification. Primary 26D15, Secondary 94A17.
Key words and phrases. Hermite interpolating polynomial, Hermite-Hadamard inequality, Csiszár f -divergence,
Kullback-Leibler divergence, Shannon entropy, Zipf-Mandelbrot law.
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conditions:
Hermite conditions

P(i)
H (a j) = f (i)(a j); 0≤ i≤ k j, 1≤ j ≤ r,

r


j=1

k j + r = n,

in particular:
Simple Hermite or Osculatory conditions
(n = 2m, r = m, k j = 1 for all j)

PO(a j) = f (a j), P′O(a j) = f ′(a j), 1≤ j ≤ m,

Lagrange conditions (r = n, k j = 0 for all j)

PL(a j) = f (a j), 1≤ j ≤ n,

Type (m,n−m) conditions (r = 2, 1≤ m≤ n−1, k1 = m−1, k2 = n−m−1)

P(i)
mn(a) = f (i)(a), 0≤ i≤ m−1,

P(i)
mn(b) = f (i)(b), 0≤ i≤ n−m−1,

Two-point Taylor conditions (n = 2m, r = 2, k1 = k2 = m−1)

P(i)
2T (a) = f (i)(a), P(i)

2T (b) = f (i)(b), 0≤ i≤ m−1.

Divergences between probability distributions have introduced to measure the differ-
ence between them. A lot of different type of divergences exist. The following notion was
introduced by Csiszár in [3] and [4]:

Definition 3.1 Let f : (0,)→ (0,) be a convex function, and let p := (p1, . . . , ps) and
q := (q1, . . . ,qs) be positive probability distributions. The f -divergence functional is

I f (p,q) :=
s


i=1

qi f

(
pi

qi

)
.

It is possible to use nonnegative probability distributions in the f -divergence functional,
by define

f (0) := lim
t→0+

f (t); 0 f

(
0
0

)
:= 0; 0 f

(a
0

)
:= lim

t→0+
t f
(a

t

)
, a > 0.

Based on the previous definition we introduce a new functional:

Definition 3.2 Let J ⊂ (0,) be an interval, and let f : J → R be a function. Let
p := (p1, . . . , ps) ∈ (0,)s, and q := (q1, . . . ,qs) ∈ (0,)s such that

pi

qi
∈ J, i = 1, . . . ,s.

Then let

Ĩ f (p,q) :=
s


i=1

qi f

(
pi

qi

)
.
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We mention two special cases of the previous functional.
The first case corresponds to the entropy of a discrete probability distribution ( f :=

ln, p := e = (1, . . . ,1)):

Definition 3.3 The Shannon entropy of a positive probability distributions p := (p1, . . . , ps)
is defined by

H(p) :=−
s


i=1,

pi ln pi.

The second case corresponds to the relative entropy or Kullback-Leibler divergence be-
tween two probability distribution ( f := id ln):

Definition 3.4 The Kullback-Leibler between the positive probability distributions
p := (p1, . . . , ps) and q := (q1, . . . ,qs) is defined by

D(p||q) :=
s


i=1

pi ln

(
pi

qi

)
.

In this paper we obtain some estimations of above functionals by using the Cauchy’s
error representation of Hermite interpolating polynomial. As a special case, Hermite-
Hadamard type inequalities, will be considered. By using Zipf-Manedelbrot law we will
give the applications of these results.

For some results related to f -divergence see the papers [2] and [6].

3.2 Cauchy’s error representation
and inequalities for f -divergence

In [1, p. 71] the following theorem is proved:

Theorem 3.1 Let F(t) ∈ Cn−1([a,b]) and suppose that F (n)(t) exists at each point of
(a,b). Then

F(t)−
r


j=1

k j


i=0

Hi j(t)F (i)(a j) =
1
n!
(t)F (n)( ), (3.1)

where  ∈ (a,b) and Hi j are fundamental polynomials of the Hermite basis defined by

Hi j(t) =
1
i!

(t)
(t−a j)k j+1−i

k j−i


k=0

1
k j!

[
(t−a j)k j+1

(t)

](k)
t=a j

(t−a j)k, (3.2)

where

(t) =
r


j=1

(t−a j)k j+1. (3.3)
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Now, using Theorem 3.1 for Ĩln(p,q) and D(p||q) we get the following corollaries:

Corollary 3.1 Let n is even, and Hi j are defined on [a,b]⊆ (0,) by (3.2), such that k j is
odd for all j = 1, . . . ,r. Let p := (p1, . . . , ps) ∈ (0,)s, and q := (q1, . . . ,qs) ∈ (0,)s such
that

pi

qi
∈ [a,b], i = 1, . . . ,s.

Then we have

Ĩln(p,q)−
r


j=1

[
lna jĨH0 j (p,q)+

k j


i=1

(−1)i−1(i−1)!
ai

j
ĨHi j (p,q)

]
≤ 0 (3.4)

and

D(p||q)−
r


j=1

[
a j lna jĨH0 j (p,q)+ (lna j +1)ĨH1 j(p,q)

+
k j


i=2

(−1)i−2(i−2)!
ai−1

j
ĨHi j (p,q)

]
≥ 0. (3.5)

For n odd the inequalities are reversed.

Proof. We apply Theorem 3.1 with J := [a,b],F := ln for first inequality and F := id ln for
second inequality. Since k j is odd for all j = 1, . . . ,r, then using (3.3), we get that(t)≥ 0.
By using (3.1) for n even, (3.4) and (3.5) obviously hold. �

Remark 3.1 If we put that n = 2m, r = m and k j = 1 for all j we get Hermite interpolating
polynomial with simple Hermite or Osculatory conditions and then

Ĩln(p,q)−
m


j=1

[
lna jĨH0 j (p,q)+

1
a j

ĨH1 j (p,q)
]
≤ 0

and

D(p||q)−
m


j=1

[
a j lna jĨH0 j (p,q)+ (lna j +1)ĨH1 j(p,q)

]
≥ 0.

Corollary 3.2 Let n is even, and Hi j are defined on [a,b]⊆ (0,) by (3.2), such that a1 =
a and k j is odd for all j = 2, . . . ,r. Let p := (p1, . . . , ps) ∈ (0,)s, and q := (q1, . . . ,qs) ∈
(0,)s such that

pi

qi
∈ [a,b], i = 1, . . . ,s.

Then we have

Ĩln(p,q)− lnaĨH01(p,q)−
k1


i=1

(−1)i−1(i−1)!
ai ĨHi1(p,q)
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−
r


j=2

[
lna jĨH0 j (p,q)+

k j


i=1

(−1)i−1(i−1)!
ai

j
ĨHi j (p,q)

]
≤ 0 (3.6)

and

D(p||q)−a lnaĨH01(p,q)− (lna+1)ĨH11(p,q)

−
k1


i=2

(−1)i−2(i−2)!
ai−1 ĨHi1(p,q)−

r


j=2

[
a j lna jĨH0 j (p,q)

+ (lna j +1)ĨH1 j(p,q)+
k j


i=2

(−1)i−2(i−2)!
ai−1

j
ĨHi j (p,q)

]
≥ 0. (3.7)

For n odd the inequalities are reversed.

Proof. Now (t) = (t− a)k1+1r
j=2(t− a j)k j+1. Since k j is odd for all j = 2, . . . ,r, we

get that (t)≥ 0. So, by using (3.1) for n even, (3.6) and (3.7) obviously hold. �

Corollary 3.3 Let n is even, and Hi j are defined on [a,b] ⊆ (0,) by (3.2), such that
ar = b. Let p := (p1, . . . , ps) ∈ (0,)s, and q := (q1, . . . ,qs) ∈ (0,)s such that

pi

qi
∈ [a,b], i = 1, . . . ,s.

Then
(a) If k j is odd for all j = 1, . . . ,r, we have

Ĩln(p,q)−
r−1


j=1

[
lna jĨH0 j (p,q)+

k j


i=1

(−1)i−1(i−1)!
ai

j
ĨHi j (p,q)

]

− lnbĨH0r(p,q)−
kr


i=1

(−1)i−1(i−1)!
bi ĨHir(p,q)≤ 0 (3.8)

and

D(p||q)−
r−1


j=1

[
a j lna jĨH0 j (p,q)+ (lna j +1)ĨH1 j(p,q)+

k j


i=2

(−1)i−2(i−2)!
ai−1

j
ĨHi j (p,q)

]

− b lnbĨH0r(p,q)− (lnb+1)ĨH1r(p,q)−
kr


i=2

(−1)i−2(i−2)!
bi−1 ĨHir(p,q)≥ 0. (3.9)

(b) If k j is odd for all j = 1, . . . ,r−1 and kr is even, we have the reversed inequalities.
For n odd the inequalities are reversed.

Proof. Now (t) = (t−b)kr+1r−1
j=1(t−a j)k j+1.

(a) Since k j is odd for all j = 1, . . . ,r, we get that (t)≥ 0.
(b) Since k j is odd for all j = 1, . . . ,r−1 and kr is even, we get that (t)≤ 0.
So, by using (3.1) for n even, (3.8) and (3.9) obviously hold. �
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Corollary 3.4 Let n is even, and Hi j are defined on [a,b] ⊆ (0,) by (3.2), such that
a1 = a and ar = b. Let p := (p1, . . . , ps) ∈ (0,)s, and q := (q1, . . . ,qs) ∈ (0,)s such that

pi

qi
∈ [a,b], i = 1, . . . ,s.

Then
(a) If k j is odd for all j = 2, . . . ,r, we have

Ĩln(p,q)− lnaĨH01(p,q)−
k1


i=1

(−1)i−1(i−1)!
ai ĨHi1(p,q)

−
r−1


j=2

[
lna jĨH0 j (p,q)+

k j


i=1

(−1)i−1(i−1)!
ai

j
ĨHi j (p,q)

]

− lnbĨH0r(p,q)−
kr


i=1

(−1)i−1(i−1)!
bi ĨHir(p,q)≤ 0 (3.10)

and

D(p||q)−a lnaĨH01(p,q)− (lna+1)ĨH11(p,q)−
k1


i=2

(−1)i−2(i−2)!
ai−1 ĨHi1(p,q)

−
r−1


j=2

[
a j lna jĨH0 j (p,q)+ (lna j +1)ĨH1 j(p,q)+

k j


i=2

(−1)i−2(i−2)!
ai−1

j
ĨHi j (p,q)

]

− b lnbĨH0r(p,q)− (lnb+1)ĨH1r(p,q)−
kr


i=2

(−1)i−2(i−2)!
bi−2 ĨHir(p,q) ≥ 0. (3.11)

(b) If k j is odd for all j = 2, . . . ,r−1 and kr is even, we have the reversed inequalities.
For n odd the inequalities are reversed.

Proof. Now (t) = (t−a)k1+1(t−b)kr+1r−1
j=2(t−a j)k j+1.

(a) Since k j is odd for all j = 2, . . . ,r, we get that (t)≥ 0.
(b) Since k j is odd for all j = 2, . . . ,r−1 and kr is even, we get that (t)≤ 0.
So, by using (3.1) for n even, (3.10) and (3.11) obviously hold. �

Remark 3.2 If we put r = 2, 1 ≤ m ≤ n− 1, k1 = m− 1, k2 = n−m− 1 and k2 is even
then we get Hermite interpolating polynomial with (m,n−m) type conditions and then

Ĩln(p,q)− lnaĨH01(p,q)−
m−1


i=1

(−1)i−1(i−1)!
ai ĨHi1(p,q)

− lnbĨH02(p,q)−
n−m−1


i=1

(−1)i−1(i−1)!
bi ĨHi2(p,q) ≤ 0

and

D(p||q)−a lnaĨH01(p,q)− (lna+1)ĨH11(p,q)−
m−1


i=2

(−1)i−2(i−2)!
ai−1 ĨHi1(p,q)
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− b lnbĨH02(p,q)− (lnb+1)ĨH12(p,q)−
n−m−1


i=2

(−1)i−2(i−2)!
bi−1 ĨHi2(p,q) ≥ 0.

For k2 odd, the above inequalities are reversed.
If we put n = 2m, r = 2, k1 = k2 = m−1 and m is even then we get Hermite interpo-

lating polynomial with two-point Taylor conditions and then

Ĩln(p,q)− lnaĨH01(p,q)−
m−1


i=1

(−1)i−1(i−1)!
ai ĨHi1(p,q)

− lnbĨH02(p,q)−
m−1


i=1

(−1)i−1(i−1)!
bi ĨHi2(p,q)≤ 0

and

D(p||q)−a lnaĨH01(p,q)− (lna+1)ĨH11(p,q)−
m−1


i=2

(−1)i−2(i−2)!
ai−1 ĨHi1(p,q)

− lnbĨH02(p,q)− (lnb+1)ĨH12(p,q)−
m−1


i=2

(−1)i−2(i−2)!
bi−1 ĨHi2(p,q) ≥ 0.

For m odd, the above inequalities are reversed.

Remark 3.3 By using p := e = (1, . . . ,1) in Corollaries 3.1-3.4, Ĩln(p,q) = H(q) and
Ĩ f (p,q) = Ĩ f (e,q) we get inequalities for Shannon entropy.

Also, we can notice that −Ĩln(p,q) = Ĩ− ln(p,q) = D(q||p).

3.3 Hermite-Hadamard type inequalities

As a consequences of our results given in Section 2, here we give the Hermite-Hadamard
type inequalities for Csiszár f -divergence and Shannon entropy.

Let Hi j and H̄i j are defined on [a,b] by

Hi j(t) =
1
i!

(t)
(t−a j)k j+1−i

k j−i


k=0

1
k j!

[
(t−a j)k j+1

(t)

](k)
t=a j

(t−a j)k, (3.12)

and

H̄i j(t) =
1
i!

̄(t)
(t−b j)l j+1−i

l j−i


k=0

1
l j!

[
(t−b j)l j+1

̄(t)

](k)
t=b j

(t−b j)k, (3.13)

where

(t) =
r


j=1

(t−a j)k j+1, ̄(t) =
r̄


j=1

(t−b j)l j+1 (3.14)
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for a≤ a1 < a2 < .. . < ar ≤ b, a≤ b1 < b2 < .. . < br̄ ≤ b,(r, r̄ ≥ 2) and
r

j=1 k j + r = r̄
j=1 l j + r̄ = n.

Theorem 3.2 Let a1 = a, br̄ = b, k1 = 0 and k j = 1 for all j = 2, . . . ,r, l j = 1 for all
j = 1, . . . , r̄−1 and lr̄ = 0. Then, we have

lnaĨH01(p,q)+
r


j=2

[
lna jĨH0 j (p,q)+

1
a j

ĨH1 j (p,q)
]

≤ Ĩln(p,q) (3.15)

≤
r̄−1


j=1

[
lnb jĨH̄0 j

(p,q)+
1
b j

ĨH̄1 j
(p,q)

]
+ lnbĨH̄0r

(p,q)

and

r̄−1


j=1

[
b j lnb jĨH̄0 j

(p,q)+ (lnb j +1)ĨH̄1 j
(p,q)

]
+b lnbĨH̄0r

(p,q)

≤ D(p||q) (3.16)

≤ a lnaĨH01(p,q)+
r


j=2

[
a j lna jĨH0 j (p,q)+ (lna j +1)ĨH1 j(p,q)

]
,

where

H01(t) =
P2

r−1(t)
P2

r−1(a)
,

H0 j(t) =
(t−a)P2

r−1(t)

(t−a j)2
[
P′r−1(a j)

]2 (a j−a)

(
1− P′r−1(a j)+ (a j−a)P′′r−1(a j)

(a j−a)P′r−1(a j)
(t−a j)

)
,

H1 j(t) =
(t−a)P2

r−1(t)

(t−a j)(a j−a)
[
P′r−1(a j)

]2 ,

H̄0 j(t) =
(b− t)P̄2

r−1(t)

(t−b j)2
[
P̄′r−1(b j)

]2 (b−b j)

(
1+

P̄′r−1(b j)− (b−b j)P̄′′r−1(b j)
(b−b j)P̄′r−1(b j)

(t−b j)
)

,

H̄1 j(t) =
(b− t)P̄2

r−1(t)

(t−b j)(b−b j)
[
P̄′r−1(b j)

]2 ,

H̄0r(t) =
P̄2

r−1(t)
P̄2

r−1(b)
,

and

Pr−1(t) =
r


j=2

(t−a j), P̄r−1(t) =
r−1


j=1

(t−b j)

for a < a2 < .. . < ar ≤ b, a≤ b1 < b2 < .. . < br−1 < b,(r ≥ 2).
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Proof. We use Corollary 3.2 and Corollary 3.3(b) for n = 2r−1 and then calculate

H01(t) =
(t−a)P2

r−1(t)
(t−a)

·
[

(t−a)
(t−a)P2

r−1(t)

]
t=a

=
P2

r−1(t)
P2

r−1(a)
,

H0 j(t) =
(t−a)P2

r−1(t)
(t−a j)2

⎧⎨⎩
[

(t−a j)2

(t−a)P2
r−1(t)

]
t=a j

+

[
(t−a j)2

(t−a)P2
r−1(t)

]′
t=a j

(t−a j)

⎫⎬⎭
=

(t−a)P2
r−1(t)

(t−a j)2
[
P′r−1(a j)

]2 (a j−a)

(
1− P′r−1(a j)+ (a j−a)P′′r−1(a j)

(a j−a)P′r−1(a j)
(t−a j)

)
and

H1 j(t) =
(t−a)P2

r−1(t)
(t−a j)

[
(t−a j)2

(t−a)P2
r−1(t)

]
t=a j

=
(t−a)P2

r−1(t)

(t−a j)(a j−a)
[
P′r−1(a j)

]2 .

Coefficients H̄0 j, H̄1 j and H̄0r we get similarly. �

Theorem 3.3 Let Hi j and H̄i j are defined on [a,b] by (3.12) and (3.13) respectively. Then,
if b1 = a, br̄ = b, k j = 1 for all j = 1, . . . ,r, l j = 1 for all j = 2, . . . , r̄−1 and l1 = lr̄ = 0,
we have

lnaĨH̄01
(p,q)+

r̄−1


j=2

[
lnb jĨH̄0 j

(p,q)+
1
b j

ĨH̄1 j
(p,q)

]
+ lnbĨH̄0r

(p,q)

≤ Ĩln(p,q) ≤
r


j=1

[
lna jĨH0 j (p,q)+

1
a j

ĨH1 j (p,q)
]

(3.17)

and
r


j=1

[
a j lna jĨH0 j (p,q)+ (lna j +1)ĨH1 j(p,q)

]
≤ D(p||q) (3.18)

≤ a lnaĨH̄01
(p,q)+

r̄−1


j=2

[
b j lnb jĨH̄0 j

(p,q)+ (lnb j +1)ĨH̄1 j
(p,q)

]
+b lnbĨH̄0r

(p,q),

where

H0 j(t) =
P2

r (t)
(t−a j)2 [P′r(a j)]2

(
1− P′′r (a j)

P′r(a j)
(t−a j)

)
,

H1 j(t) =
P2

r (t)

(t−a j) [P′r(a j)]2
,

H̄01(t) =
(b− t)P̄2

r−1(t)
(b−a)P̄2

r−1(a)
,
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H̄0 j(t) =
(t−a)(b− t)P̄2

r−1(t)

(b j−a)(b−b j)(t−b j)2
[
P̄′r−1(b j)

]2
×
(

1+
(2b j−a−b)P̄′r−1(b j)− (b−b j)(b j−a)P̄′′r−1(b j)

(b−b j)(b j−a)P̄′r−1(b j)
(t−b j)

)
,

H̄1 j(t) =
(t−a)(b− t)P̄2

r−1(t)

(t−b j)(b j−a)(b−b j)
[
P̄′r−1(b j)

]2 ,

H̄0(r+1)(t) =
(t−a)P̄2

r−1(t)
(b−a)P̄2

r−1(b)

and

Pr(t) =
r


j=1

(t−a j), P̄r−1(t) =
r


j=2

(t−b j)

for a≤ a1 < a2 < .. . < ar ≤ b, a < b2 < .. . < br < b,(r ≥ 2).

Proof. We use Corollary 3.1 and Corollary 3.4(b) for n = 2r and then calculate

H0 j =
P2

r (t)
(t−a j)2

{[
(t−a j)2

P2
r (t)

]
t=a j

+
[
(t−a j)2

P2
r (t)

]′
t=a j

(t−a j)

}

=
P2

r (t)

(t−a j)2 [P′r(a j)]
2

(
1− P′′r (a j)

P′r(a j)
(t−a j)

)
,

H1 j(t) =
P2

r (t)
t−a j

[
(t−a j)2

P2
r (t)

]
t=a j

=
P2

r (t)

(t−a j) [P′r(a j)]
2 ,

H̄01(t) =
(t−a)(t−b)P̄2

r−1(t)
t−a

[
t−a

(t−a)(t−b)P̄2
r−1(t)

]
t=a

=
(b− t)P̄2

r−1(t)
(b−a)P̄2

r−1(a)
,

H̄0 j(t) =
(t−a)(t−b)P̄2

r−1(t)
(t−b j)2

×
⎧⎨⎩
[

(t−b j)2

(t−a)(t−b)P̄2
r−1(t)

]
t=b j

+

[
(t−b j)2

(t−a)(t−b)P̄2
r−1(t)

]′
t=b j

(t−b j)

⎫⎬⎭
=

(t−a)(b− t)P̄2
r−1(t)

(b j−a)(b−b j)(t−b j)2
[
P̄′r−1(b j)

]2
×
(

1+
(2b j−a−b)P̄′r−1(b j)− (b−b j)(b j−a)P̄′′r−1(b j)

(b−b j)(b j−a)P̄′r−1(b j)
(t−b j)

)
,



3.3 HERMITE-HADAMARD TYPE INEQUALITIES 55

H̄1 j(t) =
(t−a)(t−b)P̄2

r−1(t)
(t−b j)

[
(t−b j)2

(t−a)(t−b)P̄2
r−1(t)

]
t=b j

=
(t−a)(b− t)P̄2

r−1(t)

(t−b j)(b j−a)(b−b j)
[
P̄′r−1(b j)

]2 .

Coefficient H̄0(r+1) we get similarly as coefficient H̄01(t). �

Corollary 3.5 If n = 2m and m is odd, we have

lnaĨH̄01
(p,q)+

m−1


i=1

(−1)i−1(i−1)!
ai ĨH̄i1

(p,q)

+ lnbĨH̄02
(p,q)+

m−1


i=1

(−1)i−1(i−1)!
bi ĨH̄i2

(p,q)

≤ Ĩln(p,q) ≤
m


j=1

[
lna jĨH0 j (p,q)+

1
a j

ĨH1 j (p,q)
]

(3.19)

and
m


j=1

[
a j lna jĨH0 j (p,q)+ (lna j +1)ĨH1 j(p,q)

]
≤ D(p||q) (3.20)

≤ a lnaĨH̄01
(p,q)+ (lna+1)ĨH̄11

(p,q)+
m−1


i=2

(−1)i−2(i−2)!
ai−1 ĨH̄i1

(p,q)

+b lnbĨH̄02
(p,q)+ (lnb+1)ĨH̄12

(p,q)+
m−1


i=1

(−1)i−2(i−2)!
bi−2 ĨH̄i2

(p,q),

where H0 j and H1 j as in Theorem 3.3 with r = m,

H̄i1(t) =
(t−a)i(t−b)m

i!

m−1−i


k=0

(−1)k(m+ k−1)!

[(m−1)!]2 (a−b)m+k
(t−a)k,

and

H̄i2(t) =
(t−a)m(t−b)i

i!

m−1−i


k=0

(−1)k(m+ k−1)!

[(m−1)!]2 (b−a)m+k
(t−b)k.

If m even, the inequalities are reversed.

Proof. We use Remark 3.1 and 3.2 and then calculate

H̄i1(t) =
1
i!

(t−a)m(t−b)m

(t−a)m−i

m−1−i


k=0

1
(m−1)!

[
(t−a)m

(t−a)m(t−b)m

](k)
t=a

(t−a)k

=
(t−a)i(t−b)m

i!

m−1−i


k=0

(−1)k(m+ k−1)!

[(m−1)!]2 (a−b)m+k
(t−a)k.

Coefficient H̄i2(t) we get similarly. �
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Remark 3.4 Similarly as in Remark 3.3 we get inequalities of Hermite-Hadamard type
related for Shannon entropy.

3.4 Inequalities by using the Zipf-Mandelbrot law

Definition 3.5 Zipf-Mandelbrot law is a discrete probability distribution depends on three
parameters N ∈ {1,2, . . .}, q ∈ [0,) and s > 0, and it is defined by

f (i;N,q,s) :=
1

(i+q)sHN,q,s
, i = 1, . . . ,N,

where

HN,q,s :=
N


k=1

1
(k+q)s .

If q = 0, then Zipf-Mandelbrot law becomes Zipf’s law.

Zipf’s law is one of the basic laws in information science and bibliometrics. Zipf’s law
is concerning the frequency of words in the text. We count the number of times each word
appears in the text. Words are ranked (r) according to the frequency of occurrence ( f ).
The product of these two numbers is a constant: r · f = c.

Apart from the use of this law in bibliometrics and information science, Zipf’s law is
frequently used in linguistics (see [5], p. 167). In economics and econometrics, this distri-
bution is known as Pareto’s law which analyze the distribution of the wealthiest members
of the community (see [5], p. 125). These two laws are the same in the mathematical sense,
they are only applied in a different context (see [7], p. 294).

The same type of distribution that we have in Zipf’s and Pareto’s law can be also
found in other scientific disciplines, such as: physics, biology, earth and planetary sciences,
computer science, demography and the social sciences. For example, the same type of
distribution, which we also call the Power law, we can analyze the number of hits on web
sites, the magnitude of earthquakes, diameter of moon craters, intensity of solar flares,
intensity of wars, population of cities, and others (see [11]).

More general model introduced Benoit Mandelbrot (see [9]), by using arguments on
the fractal structure of lexical trees.

The are also quite different interpretation of Zipf-Mandelbrot law in ecology, as it is
pointed out in [10] (see also [8] and [12]).

We illustrate our results by using Zipf-Mandelbrot law.

Remark 3.5 Let q be the Zipf-Mandelbrot law as in Definition 3.5. By applying Theorem
3.2, we have:

lna
N


i=1

f (i;N,q,s)H01

(
1

f (i;N,q,s)

)
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+
r


j=2

N


i=1

f (i;N,q,s)
[
lna jH0 j

(
1

f (i;N,q,s)

)
+

1
a j

H1 j

(
1

f (i;N,q,s)

)]

≤ −
N


i=1

f (i;N,q,s) ln f (i;N,q,s)

≤
r̄−1


j=1

N


i=1

f (i;N,q,s)
[
lnb jH̄0 j

(
1

f (i;N,q,s)

)
+

1
b j

H̄1 j

(
1

f (i;N,q,s)

)]

+ lnb
N


i=1

f (i;N,q,s)H̄0r

(
1

f (i;N,q,s)

)
.

Let p1 and p2 be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .}, q1,q2 ∈
[0,) and s1,s2 > 0, respectively. By applying Theorem 3.2, we have:

r̄−1


j=1

N


i=1

f (i;N,q2,s2)
[
b j lnb jH̄0 j

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)
+(lnb j +1)H̄1 j

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)]
+b lnb

N


i=1

f (i;N,q2,s2)H̄0r

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)
≤

N


i=1

f (i;N,q1,s1) ln
(

f (i;N,q1,s1)
f (i;N,q2,s2)

)
≤ a lna

N


i=1

f (i;N,q2,s2)H01

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)

+
r


j=2

N


i=1

f (i;N,q2,s2)
[
a j lna jH0 j

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)
+(lna j +1)H1 j

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)]
.

Remark 3.6 Let q be the Zipf-Mandelbrot law as in Definition 3.5. By applying Theorem
3.3, we have:

lna
N


i=1

f (i;N,q,s)H̄01

(
1

f (i;N,q,s)

)
+

r̄−1


j=2

N


i=1

f (i;N,q,s)
[
lnb jH̄0 j

(
1

f (i;N,q,s)

)
+

1
b j

H̄1 j

(
1

f (i;N,q,s)

)]
+ lnb

N


i=1

f (i;N,q,s)H̄0r

(
1

f (i;N,q,s)

)
≤ −

N


i=1

f (i;N,q,s) ln f (i;N,q,s)

≤
r


j=1

N


i=1

f (i;N,q,s)
[
lna jH0 j

(
1

f (i;N,q,s)

)
+

1
a j

H1 j

(
1

f (i;N,q,s)

)]
.

Let p1 and p2 be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .}, q1,q2 ∈
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[0,) and s1,s2 > 0, respectively. By applying Theorem 3.3, we have:

r


j=1

N


i=1

f (i;N,q2,s2)
[
a j lna jH0 j

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)
+(lna j +1)H1 j

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)]
≤

N


i=1

f (i;N,q1,s1) ln
(

f (i;N,q1,s1)
f (i;N,q2,s2)

)
≤ a lna

N


i=1

f (i;N,q2,s2)H̄01

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)
+

r̄−1


j=2

N


i=1

f (i;N,q2,s2)
[
b j lnb jH̄0 j

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)
+(lnb j +1)H̄1 j

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)]
+b lnb

N


i=1

f (i;N,q2,s2)H̄0r

(
f (i;N,q1,s1)
f (i;N,q2,s2)

)
.
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Chapter4
Zipf-Mandelbrot law and
superadditivity of the Jensen
functional

Neda Lovričević, Dilda Pečarić and Josip Pečarić

Abstract. Superadditivity property of the discrete Jensen functional is brought in
relation to the Csiszár divergence functional. Its monotonicity property and specific
bounds are observed consequently in the same context. Some of the well known
f− divergences, e.g. the Kullback-Leibler divergence, the Hellinger distance, the
Bhattacharyya coefficient, the 2− divergence and the total variation distance are
analyzed in a similar way. All obtained inequalities are eventually interpreted in
the environment of the Zipf and the Zipf-Mandelbrot law.
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4.1 Introduction and preliminaries

Superadditivity property of the discrete Jensen functional

J ( f ,x,p) :=
n


i=1

pi f (xi)−Pn f

(
1
Pn

n


i=1

pixi

)
(4.1)

was established in [4] as:

J ( f ,x,p+q)≥ J ( f ,x,p)+ J ( f ,x,q) , (4.2)

where f is a convex function on an interval I ⊂ R, x = (x1, . . . ,xn) ∈ In, n ≥ 2, p and
q are nonnegative n-tuples, Pn = n

i=1 pi, Qn = n
i=1 qi, i = 1, . . . ,n. Superadditivity was

accompanied therein by monotonicity property of the same functional, as its consequent
result. Namely, if p and q are such that p≥ q, (i.e. pi ≥ qi, i = 1, . . . ,n) then

J ( f ,x,p) ≥ J ( f ,x,q)≥ 0 (4.3)

or

n


i=1

pi f (xi)−Pn f

(
1
Pn

n


i=1

pixi

)

≥
n


i=1

qi f (xi)−Qn f

(
1
Qn

n


i=1

qixi

)
≥ 0. (4.4)

In the monograph [19, p. 717] J. E. Pečarić investigated monotonicity property of the
discrete Jensen functional from a different point of view and proved it by using Jensen’s
inequality and its reverse. Superadditivity property that was thoroughly analyzed in [4]
served later as the basis for a more generalized approach e.g. in [7], [8], [9] with the
results suitably summarized in the monograph [10].
On the other hand, we observe f− divergences which measure the distance between two
probability distributions using Csiszár’s approach [1, 2]. The Csiszár divergence functional
is defined by

Df (r,s) =
n


i=1

si f

(
ri

si

)
, (4.5)

where r = (r1, . . . ,rn) and s = (s1, . . . ,sn) are positive real n−tuples and f : 〈0,)→ R is
a convex function.
Csiszár divergence functional (4.5) may also be defined for nonnegative real n−tuples r
and s with undefined expressions interpreted as

f (0) := lim
t→0+

f (t); 0 f

(
0
0

)
:= 0; 0 f

(a
0

)
:= lim

t→0+
t f
(a

t

)
, a > 0,
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or even in a more general setting where f : I→ R, I ⊆ R. Still, in all of the results in the
sequel we focus on positive real n−tuples r and s in definition (4.5).
Furthermore, Csiszár divergence functional (4.5) can be interpreted for special choices of
the kernel function f . Thus in the case of positive probability distributions r and s, that is
ri, si ∈ 〈0,1], for i = 1, . . . ,n with n

i=1 ri = n
i=1 si = 1 it assumes special forms which we

recognize as some well known divergences.

The Kullback-Leibler divergence (see [6], [11], [20]) for positive probability distribu-
tions r = (r1, . . . ,rn) and s = (s1, . . . ,sn) is defined by

KL(r,s) :=
n


i=1

ri log
ri

si
. (4.6)

In the sequel we analyze results for the logarithm function for different positive bases and
distinguish the cases for the bases greater and less than 1.

The Hellinger distance between positive probability distributions r = (r1, . . . ,rn) and
s = (s1, . . . ,sn) is defined by

h(r,s) :=
1√
2

√
n


i=1

(
√

ri−√si)
2. (4.7)

The Hellinger distance is a metric and is often used in its squared form, i.e. as h2(r,s) :=
1
2

n


i=1

(
√

ri−√si)
2 .

The Bhattacharyya coefficient is an approximate measure of the amount of overlapping
between two positive probability distributions and as such can be used to determine their
relative closeness. It is defined as

B(r,s) :=
n


i=1

√
risi. (4.8)

Furthermore, the 2 (chi-square) divergence is defined as

2(r,s) :=
n


i=1

(ri− si)
2

si
(4.9)

and the total variation distance or statistical distance is given by

V (r,s) :=
n


i=1

|ri− si|. (4.10)

One can find an overview of f− divergences e.g. in [3].

f− divergences are observed via the Jensen functional and its listed properties as well
as the Zipf-Mandelbrot law and its specified form known as the Zipf law.
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Philologist George Kingsley Zipf (1902–1950) studied statistical occurrences in different
languages and concluded that, if words of a language were sorted in the order of decreasing
frequencies of usage, a word’s frequency was inversely proportional to its rank or sequence
number in the list [18]. Thus the most frequent word will occur approximately twice as
often as the second most frequent word, three times as often as the third most frequent
word etc. It was one of the first academic studies of word frequency and was originally
prescribed only for linguistics. It was only later that many other disciplines took credit of
it: the Pareto law in economy reveals another aspect of it and the “Zipfian distribution” is
present in other fields as well: information science, bibliometrics, social sciences etc.
Benoit Mandelbrot (1924–2010) generalized the Zipf law in 1966 [16, 17] and gave its
improvement for the count of the low-rank words [13]. It is also used in information sci-
ences for the purpose of indexing [5, 22], in ecological field studies [21] and has its role
in art when determining the esthetics criteria in music [15]. The Zipf-Mandelbrot law is a
discrete probability distribution and is defined by the following probability mass function:

f (i;N,v,w) =
1

(i+w)vHN,v,w
, i = 1, . . . ,N, (4.11)

where

HN,v,w =
N


k=1

1
(k+w)v (4.12)

is a generalization of a harmonic number and N ∈ {1,2, . . .}, v > 0 and w ∈ [0,) are
parameters.
For finite N and for w = 0 the Zipf-Mandelbrot law is simply called the Zipf law. (In
particular, if we observe the infinite N and w = 0 we actually have the Zeta distribution.)
According to the expressions above, the probability mass function referring to the Zipf law
is

f (i;N,v) =
1

iv ·HN,v
, where HN,v =

N


k=1

1
kv , (4.13)

that is, out of population of N elements the frequency of elements of rank i is f (i;N,v) ,
where v is the value of the exponent that characterizes the distribution.

The general main inequalities are obtained for Csiszár divergence functional (4.5) via
(4.2) and (4.4) in Section 4.2 as well as for the derived special divergences. These yield
further working out in the light of the Zipf-Mandelbrot law and the Zipf law, in Section
4.3. Furthermore, results that are presented here generalize for the most part the results
previously obtained in [11] and in [14], which is accentuated wherever they occur.
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4.2 f− divergences and superadditivity
of the Jensen functional

Csiszár divergence functional (4.5) and superadditivity property (4.2) of the discrete Jensen
functional (4.1) are integrated in the following theorem.

Theorem 4.1 Let f : 〈0,〉 → R be a convex function and r = (r1, . . . ,rn) and s =
(s1, . . . ,sn) be positive real n−tuples such that Rn = n

i=1 ri, Sn = n
i=1 si. Suppose v =

(v1, . . . ,vn) is a positive real n−tuple such that Vn = n
i=1 vi. Then

n


i=1

(si + vi) f

(
ri

si

)
− (Sn +Vn) f

(
1

Sn +Vn

n


i=1

(si + vi)
ri

si

)

≥ Df (r,s)−Sn f

(
Rn

Sn

)
+

n


i=1

vi f

(
ri

si

)
−Vn f

(
1
Vn

n


i=1

vi
ri

si

)
. (4.14)

If f is a concave function, then reverse inequality holds in (4.14).

Proof. Inequality (4.14) follows from inequality (4.2) via definition (4.1) if xi is replaced

by
ri

si
and pi replaced by si, where Df (r,s) is the Csiszár functional defined by (4.5).

Inequality changes its sign in case of concavity of the function f as a consequence of the
Jensen inequality implicitly included. �

Superadditivity of regarding Jensen functional (4.1) yields its monotonicity which re-
flects on Csiszár functional (4.5) in the following way.

Corollary 4.1 Let f : 〈0,〉 → R be a convex function and r = (r1, . . . ,rn) and s =
(s1, . . . ,sn) be positive real n−tuples such that Rn = n

i=1 ri, Sn = n
i=1 si. Suppose t =

(t1, . . . ,tn) and u = (u1, . . . ,un) are positive real n−tuples such that Tn = n
i=1 ti and Un =

n
i=1 ui. If si ≥ ui, for i = 1, . . . ,n then

Df (r,s) ≥ Sn f

(
Rn

Sn

)
+

n


i=1

ui f

(
ri

si

)
−Un f

(
1
Un

n


i=1

ui
ri

si

)
. (4.15)

If si ≤ ti, for i = 1, . . . ,n then

Df (r,s)≤ Sn f

(
Rn

Sn

)
+

n


i=1

ti f

(
ri

si

)
−Tn f

(
1
Tn

n


i=1

ti
ri

si

)
. (4.16)

If f is a concave function, then reverse inequalities hold in (4.15) and (4.16).
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Proof. Inequality (4.15) is obtained from superadditivity (4.2) or (4.14) as we write:

n


i=1

si f

(
ri

si

)
−Sn f

(
Rn

Sn

)
≥

n


i=1

(si−ui) f

(
ri

si

)

− (Sn−Un) f

(
1

Sn−Un

n


i=1

(si−ui)
ri

si

)

+
n


i=1

ui f

(
ri

si

)
−Un f

(
1
Un

n


i=1

ui
ri

si

)
, (4.17)

wherefrom we get inequality that corresponds to (4.15):

n


i=1

si f

(
ri

si

)
−Sn f

(
Rn

Sn

)
≥

n


i=1

ui f

(
ri

si

)
−Un f

(
1
Un

n


i=1

ui
ri

si

)
, (4.18)

since
n


i=1

(si−ui) f

(
ri

si

)
− (Sn−Un) f

(
1

Sn−Un

n


i=1

(si−ui)
ri

si

)
≥ 0 in the observed case

of si ≥ ui, i = 1, . . . ,n. On the other side,

n


i=1

si f

(
ri

si

)
−Sn f

(
Rn

Sn

)
≥

n


i=1

(si− ti) f

(
ri

si

)

− (Sn−Tn) f

(
1

Sn−Tn

n


i=1

(si− ti)
ri

si

)

+
n


i=1

ti f

(
ri

si

)
−Tn f

(
1
Tn

n


i=1

ti
ri

si

)
, (4.19)

wherefrom we get inequality that corresponds to (4.16):

n


i=1

si f

(
ri

si

)
−Sn f

(
Rn

Sn

)
≤

n


i=1

ti f

(
ri

si

)
−Tn f

(
1
Tn

n


i=1

ti
ri

si

)
, (4.20)

since
n


i=1

(si− ti) f

(
ri

si

)
− (Sn−Tn) f

(
1

Sn−Tn

n


i=1

(si− ti)
ri

si

)
≤ 0 in the observed case of

si ≤ ti, i = 1, . . .n. �

Corollary 4.1 was established as the main result in [14] when it was deduced directly
from monotonicity property (4.4) similarly as it had been done with the Jensen functional
in [19].

Remark 4.1 Inequalities (4.15) and (4.16) are a generalization of specific bounds for
Csiszár functional (4.5) that were previously obtained in [11]. Namely, by means of simul-
taneous inserting the constant n−tuples u and t into inequalities (4.15) and (4.16), where



4.2 f− DIVERGENCES AND SUPERADDITIVITY OF THE JENSEN FUNCTIONAL 67

ui = min
i=1,...,n

{si} and ti = max
i=1,...,n

{si}, we get the following bounds as in [11]:

Sn f

(
Rn

Sn

)
+ max

i=1,...,n
{si}
(

n


i=1

f

(
ri

si

)
−n f

(
1
n

n


i=1

ri

si

))
≥ Df (r,s)

≥ Sn f

(
Rn

Sn

)
+ min

i=1,...,n
{si}
(

n


i=1

f

(
ri

si

)
−n f

(
1
n

n


i=1

ri

si

))
. (4.21)

In the following theorem we establish a similar relation between Csiszár divergence
functional (4.5) and superadditivity property (4.2) of discrete Jensen functional (4.1).

Theorem 4.2 Let f : 〈0,〉 → R be such that t �→ t f (t) is a convex function. Assume
r = (r1, . . . ,rn) and s = (s1, . . . ,sn) to be positive real n−tuples such that Rn = n

i=1 ri,
Sn = n

i=1 si. Suppose v = (v1, . . . ,vn) is a positive real n−tuple such that Vn = n
i=1 vi.

Then

n


i=1

(si + vi)
ri

si
f

(
ri

si

)
−
(

n


i=1

(si + vi)
ri

si

)
f

(
1

Sn +Vn

n


i=1

(si + vi)
ri

si

)

≥ Did· f (r,s)−Rn f

(
Rn

Sn

)
+

n


i=1

vi
ri

si
f

(
ri

si

)
−
(

n


i=1

vi
ri

si

)
f

(
1
Vn

n


i=1

vi
ri

si

)
. (4.22)

where Did· f (r,s) :=
n


i=1

ri f

(
ri

si

)
.

If t �→ t f (t) is a concave function, then reverse inequality holds in (4.22).

Proof. Inequality (4.22) follows from inequality (4.2) via definition (4.1) for convex func-

tion t �→ t f (t) if xi is replaced by
ri

si
and pi replaced by si. Functional Did· f (r,s) is deduced

from Csiszár functional (4.5), also for convex function t �→ t f (t). Inequality reverses in
case of concavity of the function t �→ t f (t) as a consequence of the Jensen inequality im-
plicitly included. �

Similarly as the previous one, Corollary 4.2 was also established as the main result in
[14] where it was deduced directly from monotonicity property (4.4).

Corollary 4.2 Let f : 〈0,〉 → R be such that t �→ t f (t) is a convex function. Assume
r = (r1, . . . ,rn) and s = (s1, . . . ,sn) to be positive real n−tuples such that Rn = n

i=1 ri,
Sn = n

i=1 si. Suppose t = (t1, . . . ,tn) and u = (u1, . . . ,un) are positive real n−tuples such
that Tn = n

i=1 ti and Un = n
i=1 ui. If si ≥ ui, for i = 1, . . . ,n then

Did· f (r,s)≥ Rn f

(
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)
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
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ri

si
f

(
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si

)
−
(
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
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si

)
f

(
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si

)
. (4.23)

Did· f (r,s)≤ Rn f

(
Rn
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)
+

n


i=1
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ri

si
f

(
ri

si

)
−
(

n


i=1

ti
ri

si

)
f

(
1
Tn

n


i=1

ti
ri

si

)
. (4.24)

If t �→ t f (t) is a concave function, then reverse inequalities hold in (4.23) and (4.24).
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Proof. Follows the same lines as in Corollary 4.1 when we introduce the result from
Theorem 4.2 regarding functional Did· f (r,s). �

Remark 4.2 Inequalities (4.23) and (4.24) are a generalization of specific bounds for
the functional Did· f (r,s) that were previously obtained in [11]. Namely, by means of
simultaneous inserting the constant n−tuples u and t into inequalities (4.23) and (4.24),
where ui = min

i=1,...,n
{si} and ti = max

i=1,...,n
{si}, we get the following bounds as in [11]:

Rn f

(
Rn
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)
+ max

i=1,...,n
{si}
(
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
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ri

si
f

(
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)
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(
1
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
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ri

si

))
≥ Did· f (r,s)

≥ Rn f

(
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)
+ min
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{si}
(
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
i=1

ri

si
f

(
ri

si

)
−

n


i=1
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si
f

(
1
n

n


i=1

ri

si

))
. (4.25)

Corollary 4.2 allows a specific implementation for Kullback-Leibler divergence (4.6).

Corollary 4.3 Let r, s and v be as in Theorem 4.2. If the logarithm base is greater than
1, then

n


i=1

(si + vi)
ri

si
log

ri

si
−
(

n


i=1

(si + vi)
ri

si

)
log

(
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Sn +Vn

n


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(si + vi)
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si

)

≥
n


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ri log
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si
−Rn log
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+

n


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log
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−
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
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si

)
log

(
1
Vn
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
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si

)
.

(4.26)

If the logarithm base is less than 1, then the inequality sign is reversed.

Proof. Follows from Theorem 4.2 for function t �→ t logt which is convex when the loga-
rithm base is greater than 1 and is concave when the logarithm base is less than 1. �

The following corollary leans on (4.26), but the result was also established in [14]
directly from (4.4).

Corollary 4.4 Let r and s be positive probability distributions, i.e. ri, si ∈ 〈0,1],n
i=1 ri =

n
i=1 si = 1 and t and u are as in Corollary 4.2. If si ≥ ui, for i = 1, . . . ,n then

KL(r,s)≥
n


i=1
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ri

si
log

ri

si
−
(
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
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si

)
log

(
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si

)
, (4.27)

where the logarithm base is greater than 1.
If si ≤ ti, for i = 1, . . . ,n then

KL(r,s)≤
n


i=1
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ri

si
log

ri

si
−
(

n


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ri

si

)
log

(
1
Tn

n


i=1
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ri

si

)
, (4.28)

where the logarithm base is greater than 1.
If the logarithm base is less than 1, then reverse inequalities hold in (4.27) and (4.28).
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Proof. Taking into account the assumptions on r and s, functional
n


i=1

ri log
ri

si
from Corol-

lary 4.3 stands now for Kullback-Leibler divergence (4.6). The proof starts with Corollary
4.3 and follows the lines of the proof of Corollary 4.2 (or Corollary 4.1 given here in de-
tail) for function t �→ log t which is convex when the logarithm base is greater than 1 and
is concave when the base is less than 1. �

Remark 4.3 Inequalities (4.27) and (4.28) generalize specific bounds for the Kullback-
Leibler divergence which were previously obtained in [11]. Namely, by means of simul-
taneous inserting the constant n−tuples u and t into inequalities (4.27) and (4.28), where
ui = min

i=1,...,n
{si} and ti = max

i=1,...,n
{si}, we get the following bounds as presented in [11]:
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, (4.29)

where the logarithm base is greater than 1. If the logarithm base is less than 1, then the
inequality signs are reversed.

We proceed with similar results related to other previously introduced divergences:
Hellinger distance (4.7), Bhattacharyya coefficient (4.8), chi-square distance (4.9) and total
variation distance (4.10).

Corollary 4.5 Let r, s and v be as in Theorem 4.1. Then

1
2
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
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(√
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)2
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. (4.30)

Proof. Follows from Theorem 4.1 for convex function t �→ 1
2

(√
t−1
)2

. �

The following corollary concerning the Hellinger distance h2(r,s) can also be com-
pared with the corresponding result in [14] where it was obtained only by means of mono-
tonicity property (4.4).

Corollary 4.6 Let r and s be positive probability distributions, i.e. ri, si ∈ 〈0,1],n
i=1 ri =

n
i=1 si = 1 and t and u are as in Corollary 4.1. If si ≥ ui, for i = 1, . . . ,n then

h2(r,s)≥ Sn
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(√
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. (4.31)
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If si ≤ ti, for i = 1, . . . ,n then

h2(r,s)≤ Sn

2

(√
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−1
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+
1
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
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(√
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(√
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)2

. (4.32)

Proof. Since r and s are positive probability distributions, we observe the Hellinger dis-

tance h2(r,s) defined by (4.7) as a specific role of
1
2

n


i=1

(
√

ri−√si)
2 in (4.30). Mak-

ing use of (4.30) the proof follows the lines as in Corollary 4.1, for convex function
t �→ 1

2

(√
t−1
)2

. �

Remark 4.4 Inequalities (4.31) and (4.32) generalize by means of the constant n− tuples
u and t, ui = min

i=1,...,n
{si}, ti = max

i=1,...,n
{si} specific bounds for the Hellinger distance which

were previously obtained in [11]:
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⎞⎠ . (4.33)

Corollary 4.7 Let r, s and v be as in Theorem 4.1. Then
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. (4.34)

Proof. Follows from Theorem 4.1 for convex function t �→ −√t. �

Monotonicity property for Bhattacharyya coefficient (4.8) is deduced from superaddi-
tivity property (4.34) as follows, although it was formerly deduced in [14] with the help of
(4.4).

Corollary 4.8 Let r and s be positive probability distributions, i.e. ri, si ∈ 〈0,1],n
i=1 ri =

n
i=1 si = 1 and t and u are as in Corollary 4.1. If si ≥ ui, for i = 1, . . . ,n then
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. (4.35)

If si ≤ ti, for i = 1, . . . ,n then

B(r,s)≤−Sn
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√
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. (4.36)
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Proof. With positive probability distributions r and s involved, we actually deal with the

Bhattacharyya coefficient B(r,s) defined by (4.8), when observing functional −
n


i=1

√
risi.

The proof is carried out by (4.34) analogously as in Corollary 4.1, for convex function
t �→ −√t. �

Remark 4.5 If we make use of constant n−tuples u and t with ui = min
i=1,...,n

{si} and

ti = max
i=1,...,n

{si} and insert them into inequalities (4.35) and (4.36), we get :

1− min
i=1,...,n

{si}
(

n

√
1
n

n


i=1

ri

si
−

n


i=1

√
ri

si

)
≥ B(r,s)

≥ 1− max
i=1,...,n

{si}
(

n

√
1
n

n


i=1

ri

si
−

n


i=1

√
ri

si

)
, (4.37)

that is, bounds from [11] which are a special case in this more general setting.

Corollary 4.9 Let r, s and v be as in Theorem 4.1. Then
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
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Proof. Follows from Theorem 4.1 for convex function t �→ (t−1)2. �

The following corollary on chi-square divergence (4.9) leans on (4.38), but the result
was also established in [14] from (4.4).

Corollary 4.10 Let r and s be positive probability distributions, i.e. ri, si ∈ 〈0,1],n
i=1 ri =

n
i=1 si = 1 and t and u are as in Corollary 4.1. If si ≥ ui, for i = 1, . . . ,n then
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. (4.39)

If si ≤ ti, for i = 1, . . . ,n then
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. (4.40)

Proof. When we observe functional
n


i=1

(ri− si)
2

si
in (4.38) under the additional assump-

tions on r and s, then inequalities (4.39) and (4.40) concern the chi-square divergence
2(r,s) defined by (4.9). The proof is carried out by (4.38) analogously as in Corollary
4.1, for convex function t �→ (t−1)2. �
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Remark 4.6 Inequalities (4.39) and (4.40) generalize specific bounds for the chi-square
divergence which had been previously obtained in [11]. Namely, by means of simultaneous
inserting the constant n−tuples u and t into inequalities (4.39) and (4.40), where ui =
min

i=1,...,n
{si} and ti = max

i=1,...,n
{si}, we get the following bounds as presented in [11]:
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Corollary 4.11 Let r, s and v be as in Theorem 4.1. Then

n


i=1

(si + vi)
∣∣∣∣ ri

si
−1

∣∣∣∣− (Sn +Vn)

∣∣∣∣∣ 1
Sn +Vn

n


i=1

(si + vi)
ri

si
−1

∣∣∣∣∣
≥

n


i=1
|ri− si|−Sn

∣∣∣∣Rn

Sn
−1

∣∣∣∣+ n


i=1

vi

∣∣∣∣ ri

si
−1

∣∣∣∣−Vn

∣∣∣∣∣ 1
Vn

n


i=1

vi
ri

si
−1

∣∣∣∣∣ (4.42)

Proof. Follows from Theorem 4.1 for convex function t �→ |t−1|. �

The following corollary concerns the total variation distance V (r,s) and can also be
compared with the corresponding result in [14] where it was obtained only by means of
monotonicity property (4.4).

Corollary 4.12 Let r and s be positive probability distributions, i.e. ri, si ∈ 〈0,1],n
i=1 ri =

n
i=1 si = 1 and t and u are as in Corollary 4.1. If si ≥ ui, for i = 1, . . . ,n then
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If si ≤ ti, for i = 1, . . . ,n then
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Proof. When r and s are observed as positive probability distributions, then functional
n

i=1 |ri− si| is the total variation distance V (r,s) defined by (4.10). The proof follows the
lines of the proof of Corollary 4.1, after relation (4.42), for convex function t �→ |t−1|. �

Remark 4.7 Inequalities (4.43) and (4.44) generalize by means of the constant n− tuples
u and t, ui = min

i=1,...,n
{si}, ti = max

i=1,...,n
{si} specific bounds for the total variation distance
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which were previously obtained in [11]:
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4.3 Zipf-Mandelbrot law in f− divergences

If we define si as (4.11), that is as the Zipf-Mandelbrot law probability mass functions
f (i;N,v,w), for i = 1, . . . ,N, we can use a new environment to observe the previously
obtained results. When observedwith the Zipf-MandelbrotN−tuple s included, the Csiszár
functional Df (r,s) defined by (4.5) becomes

Df (i,N,v2,w2,r) =
N


i=1

1
(i+w2)

v2 HN,v2,w2

f (ri (i+w2)
v2 HN,v2,w2) , (4.46)

where f : 〈0,〉 →R and N ∈N, v2,w2 > 0 are parameters.
Csiszár functional (4.5) assumes the following form when r and s are both defined as Zipf-
Mandelbrot law N−tuples:

Df (i,N,v1,v2,w1,w2) =
N


i=1

1
(i+w2)v2HN,v2,w2

f

(
(i+w2)
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(i+w1)
v1 HN,v1,w1

)
, (4.47)

where f : 〈0,〉 →R and N ∈N, v1,v2,w1,w2 > 0 are parameters.

Finally, both N−tuples r and s may be defined via the Zipf law (4.13) where w1=w2=0
and thus Csiszár functional (4.5) assumes the form:

Df (i,N,v1,v2) =
N


i=1

1
iv2HN,v2

f

(
iv2−v1

HN,v2

HN,v1

)
. (4.48)

Remark 4.8 For all three types of the Csiszár functional defined via the Zipf and the Zipf-
Mandelbrot laws, superadditivity (4.2) provides new types of results related to Theorem 4.1
and Theorem 4.2. All results on monotonicity presented in sequel were deduced previously
in [14] from (4.4) and are now deduced from superadditivity, which is a more general
aspect.

In the first case, that is for the Csiszár functional Df (i,N,v2,w2,r) given as in (4.46)
we transform Theorem 4.1 and Theorem 4.2 in the following way.
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Corollary 4.13 Let f : 〈0,〉 →R be a convex function, v2, w2 > 0 and r = (r1, . . . ,rN),
v = (v1, . . . ,vN) be positive real N−tuples such that RN = N

i=1 ri, VN = N
i=1 vi. Then
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If f is a concave function, then reverse inequality holds in (4.49).
Suppose t �→ t f (t) is a convex function. Then

N


i=1

(
1

(i+w2)v2HN,v2,w2

+ vi

)
ri(i+w2)v2HN,v2,w2 f (ri(i+w2)v2HN,v2,w2)

−
N


i=1

(
1

(i+w2)v2HN,v2,w2

+ vi

)
ri(i+w2)v2HN,v2,w2 ·

· f

(
1

1+VN

N


i=1

(
1

(i+w2)v2HN,v2,w2

+ vi

)
ri(i+w2)v2HN,v2,w2

)

≥ Did· f (i,N,v2,w2,r)−RN f (RN)+
N


i=1

viri(i+w2)v2HN,v2,w2 f (ri(i+w2)v2HN,v2,w2)

−
(

N


i=1

viri(i+w2)v2HN,v2,w2

)
f

(
1

VN

N


i=1

viri(i+w2)v2HN,v2,w2

)
, (4.50)

where Did· f (i,N,v2,w2,r) :=
N


i=1

ri f ((i+w2)v2HN,v2,w2) .

If t �→ t f (t) is a concave function, then reverse inequality holds in (4.50).

Proof. Inequality (4.49) leans on the proof of Theorem 4.1 wherein we insert for si the

expression
1

(i+w2)v2HN,v2,w2
by definition (4.11) of the Zipf-Mandelbrot law and SN = 1 .

Inequality (4.50) follows analogously after the proof of Theorem 4.2. Inequalities change
their signs in the case of concavity of functions f or t �→ t f (t) as a consequence of the
Jensen inequality implicitly included. �

Monotonicity property of Jensen functional (4.1) reflects on Df (i,N,v2,w2,r) and
Did· f (i,N,v2,w2,r) as follows.



4.3 ZIPF-MANDELBROT LAW IN f− DIVERGENCES 75

Corollary 4.14 Let f , v2,w2 and r be as in Corollary 4.13. Suppose t = (t1, . . . ,tN) and
u = (u1, . . . ,uN) are positive real N−tuples such that TN = N

i=1 ti and UN = N
i=1 ui. If

1
(i+w2)v2HN,v2,w2

≥ ui, for i = 1, . . . ,N then

Df (i,N,v2,w2,r) ≥ f (RN)+
N


i=1

ui f (ri(i+w2)v2HN,v2,w2)

− UN f

(
1

UN

N


i=1

uiri(i+w2)v2HN,v2,w2

)
. (4.51)

If
1

(i+w2)v2HN,v2,w2

≤ ti, for i = 1, . . . ,N then

Df (i,N,v2,w2,r) ≤ f (RN)+
N


i=1

ti f (ri(i+w2)v2HN,v2,w2)

− TN f

(
1
TN

N


i=1

tiri(i+w2)v2HN,v2,w2

)
. (4.52)

If f is a concave function, then reverse inequalities hold in (4.51) and (4.52).

Suppose t �→ t f (t) is a convex function.

If
1

(i+w2)v2HN,v2,w2

≥ ui, for i = 1, . . . ,N then

Did· f (i,N,v2,w2,r)≥ RN f (RN)+
N


i=1

uiri(i+w2)v2HN,v2,w2 f (ri(i+w2)v2HN,v2,w2)

−
(

N


i=1

uiri(i+w2)v2HN,v2,w2

)
f

(
1

UN

N


i=1

uiri(i+w2)v2HN,v2,w2

)
, (4.53)

If
1

(i+w2)v2HN,v2,w2

≤ ti, for i = 1, . . . ,N then

Did· f (i,N,v2,w2,r)≤ RN f (RN)+
N


i=1

tiri(i+w2)v2HN,v2,w2 f (ri(i+w2)v2HN,v2,w2)

−
(

N


i=1

tiri(i+w2)v2HN,v2,w2

)
f

(
1
TN

N


i=1

tiri(i+w2)v2HN,v2,w2

)
. (4.54)

If t �→ t f (t) is a concave function, then reverse inequalities hold in (4.53) and (4.54).

Proof. Follows from Corollary 4.13 or is carried out as for Corollary 4.1 and Corollary
4.2. �
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Remark 4.9 If we put ui = min
i=1,...,N

{
1

(i+w2)v2HN,v2,w2

}
=

1
(N +w2)v2HN,v2,w2

and ti =

max
i=1,...,N

{
1

(i+w2)v2HN,v2,w2

}
=

1
(1+w2)v2HN,v2,w2

simultaneously into inequalities (4.51)

and (4.52) we get the following bounds as a special case of Corollary 4.14. These were
obtained earlier in [11]:

f (RN)+
1

(1+w2)v2HN,v2,w2

1 ≥ Df (i,N,v2,w2,r)

≥ f (RN)+
1

(N +w2)v2HN,v2,w2

1, (4.55)

where 1 =
N


i=1

f (ri (i+w2)
v2 HN,v2,w2)−N f

(
1
N

N


i=1

ri (i+w2)
v2 HN,v2,w2

)
.

If we repeat the similar procedure with inequalities (4.53) and (4.54), we get the analogous
bounds for Did· f (i,N,v2,w2,r), previously obtained in [11], as well:

RN f (RN)+
1

(1+w2)v2HN,v2,w2

̃1 ≥ Did· f (i,N,v2,w2,r)

≥ RN f (RN)+
1

(N +w2)v2HN,v2,w2

̃1, (4.56)

where

̃1 =
N


i=1

ri (i+w2)
v2 HN,v2,w2 f (ri (i+w2)

v2 HN,v2,w2)

−
(

N


i=1

ri (i+w2)
v2 HN,v2,w2

)
f

(
1
N

N


i=1

ri (i+w2)
v2 HN,v2,w2

)
. (4.57)

In the second case, that is for the Csiszár functional Df (i,N,v1,v2,w1,w2) as in (4.47),
we transform Theorem 4.1 and Theorem 4.2 as follows.

Corollary 4.15 Let f : 〈0,〉 → R be a convex function and v1,v2, w1,w2 > 0. Let v =
(v1, . . . ,vN) be a positive real N−tuple such that VN = N

i=1 vi. Then

N


i=1

(
1

(i+w2)v2HN,v2,w2

+ vi

)
f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

− (1+VN
)

f

(
1

1+VN

N


i=1

(
1

(i+w2)v2HN,v2,w2

+ vi

)
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

≥ Df (i,N,v1,v2,w1,w2)− f (1)+
N


i=1

vi f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

− VN f

(
1

VN

N


i=1

vi
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
. (4.58)
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If f is a concave function, then reverse inequality holds in (4.58).
Suppose t �→ t f (t) is a convex function. Then

N


i=1

(
1

(i+w2)v2HN,v2,w2

+ vi

)
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

−
(

N


i=1

(
1

(i+w2)v2HN,v2,w2

+ vi

)
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

· f

(
1

1+VN

N


i=1

(
1

(i+w2)v2HN,v2,w2

+ vi

)
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
≥ Did· f (i,N,v1,v2,w1,w2)− f (1)

+
N


i=1

vi
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

−
(

N


i=1

vi
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
f

(
1

VN

N


i=1

vi
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
, (4.59)

where Did· f (i,N,v1,v2,w1,w2) :=
N


i=1

1
(i+w1)v1HN,v1,w1

f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
.

If t �→ t f (t) is a concave function, then reverse inequality holds in (4.59).

Proof. Inequality (4.58) leans on the proof of Theorem 4.1 wherein we insert for ri and

si expressions
1

(i+w1)v1HN,v1,w1

and
1

(i+w2)v2HN,v2,w2

by definition (4.11) of the Zipf-

Mandelbrot law and RN = SN = 1 . Inequality (4.59) follows analogously after the proof
of Theorem 4.2. Inequalities change their signs in the case of concavity of functions f or
t �→ t f (t) as a consequence of the Jensen inequality implicitly included. �

Monotonicity property of Jensen functional (4.1) reflects on Df (i,N,v1,v2,w1,w2) and
Did· f (i,N,v1,v2,w1,w2) as follows.

Corollary 4.16 Let f , v1,v2,w1 and w2 be as in Corollary 4.15. Suppose t = (t1, . . . ,tN)
and u = (u1, . . . ,uN) are positive real N−tuples such that TN = N

i=1 ti and UN = N
i=1 ui.

If
1

(i+w2)v2HN,v2,w2

≥ ui, for i = 1, . . . ,N then

Df (i,N,v1,v2,w1,w2)≥ f (1)+
N


i=1

ui f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

−UN f

(
1

UN

N


i=1

ui
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
. (4.60)
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If
1

(i+w2)v2HN,v2,w2

≤ ti, for i = 1, . . . ,N then

Df (i,N,v1,v2,w1,w2)≤ f (1)+
N


i=1

ti f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

−TN f

(
1
TN

N


i=1

ti
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
. (4.61)

If f is a concave function, then reverse inequalities hold in (4.60) and (4.61).

Suppose t �→ t f (t) is a convex function. If
1

(i+w2)v2HN,v2,w2

≥ ui, for i = 1, . . . ,N then

Did· f (i,N,v1,v2,w1,w2)≥ f (1)+
N


i=1

ui
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

−
(

N


i=1

ui
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
f

(
1

UN

N


i=1

ui
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
, (4.62)

where Did· f (i,N,v1,v2,w1,w2) :=
N


i=1

1
(i+w1)v1HN,v1,w1

f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
.

If
1

(i+w2)v2HN,v2,w2

≤ ti, for i = 1, . . . ,N then

Did· f (i,N,v1,v2,w1,w2)≤ f (1)+
N


i=1

ti
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

f

(
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)

−
(

N


i=1

ti
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
f

(
1
TN

N


i=1

ti
(i+w2)v2HN,v2,w2

(i+w1)v1HN,v1,w1

)
. (4.63)

If t �→ t f (t) is a concave function, then reverse inequalities hold in (4.62) and (4.63).

Proof. Follows from Corollary 4.15 or is carried out as for Corollary 4.1 and Corollary
4.2. �

Remark 4.10 For ui = min
i=1,...,N

{
1

(i+w2)v2HN,v2,w2

}
=

1
(N +w2)v2HN,v2,w2

and

ti = max
i=1,...,N

{
1

(i+w2)v2HN,v2,w2

}
=

1
(1+w2)v2HN,v2,w2

inequalities (4.60) and (4.61) as-

sume the form of the bounds that were obtained earlier in [11] :

f (1)+
1

(1+w2)v2HN,v2,w2

2 ≥ Df (i,N,v1,v2,w1,w2)

≥ f (1)+
1

(N +w2)v2HN,v2,w2

2, (4.64)
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where 2 =
N


i=1

f

(
(i+w2)

v2 HN,v2,w2

(i+w1)
v1 HN,v1,w1

)
−N f

(
1
N

N


i=1

(i+w2)
v2 HN,v2,w2

(i+w1)
v1 HN,v1,w1

)
.

If we repeat the similar procedure with inequalities (4.62) and (4.63), we get the analogous
bounds for Did· f (i,N,v1,v2,w1,w2), as in [11]:

f (1)+
1

(1+w2)v2HN,v2,w2

̃2 ≥ Did· f (i,N,v1,v2,w1,w2)

≥ f (1)+
1

(N +w2)v2HN,v2,w2

̃2, (4.65)

where

̃2 =
N


i=1

(i+w2)
v2 HN,v2,w2

(i+w1)
v1 HN,v1,w1

f

(
(i+w2)

v2 HN,v2,w2

(i+w1)
v1 HN,v1,w1

)

−
(

N


i=1

(i+w2)
v2 HN,v2,w2

(i+w1)
v1 HN,v1,w1

)
f

(
1
N

N


i=1

(i+w2)
v2 HN,v2,w2

(i+w1)
v1 HN,v1,w1

)
. (4.66)

Finally, when the Csiszár functional Df (i,N,v1,v2) is defined as in (4.48), that is by
means of the Zipf law N−tuples, Theorem 4.1 and Theorem 4.2 assume the following
forms.

Corollary 4.17 Let f : 〈0,〉 → R be a convex function and v1,v2 > 0. Suppose v =
(v1, . . . ,vN) be a positive real N−tuple such that VN = N

i=1 vi. Then

N


i=1

(
1

iv2HN,v2

+ vi

)
f

(
iv2−v1

HN,v2

HN,v1

)

− (1+VN
)

f

(
1

1+VN

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

)

≥ Df (i,N,v1,v2)− f (1)+
N


i=1

vi f

(
iv2−v1

HN,v2

HN,v1

)

− VN f

(
1

VN

N


i=1

vii
v2−v1

HN,v2

HN,v1

)
. (4.67)

If f is a concave function, then reverse inequality holds in (4.67).
Suppose t �→ t f (t) is a convex function. Then

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

f

(
iv2−v1

HN,v2

HN,v1

)

−
(

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

)
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· f

(
1

1+VN

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

)
≥ Did· f (i,N,v1,v2)− f (1)

+
N


i=1

vii
v2−v1

HN,v2

HN,v1

f

(
iv2−v1

HN,v2

HN,v1

)

−
(

N


i=1

vii
v2−v1

HN,v2

HN,v1

)
f

(
1

VN

N


i=1

vii
v2−v1

HN,v2

HN,v1

)
, (4.68)

where Did· f (i,N,v1,v2) :=
N


i=1

1
iv1HN,v1

f

(
iv2−v1

HN,v2

HN,v1

)
.

If t �→ t f (t) is a concave function, then reverse inequality holds in (4.68).

Proof. Inequality (4.67) leans on the proof of Theorem 4.1 wherein we insert for ri and si

expressions
1

iv1HN,v1

and
1

iv2HN,v2

by definition (4.13) of the Zipf law and RN = SN = 1 .

Inequality (4.68) follows analogously after the proof of Theorem 4.2. Inequalities change
their signs in the case of concavity of functions f or t �→ t f (t) as a consequence of the
Jensen inequality implicitly included. �

Monotonicity property of Df (i,N,v1,v2) and Did· f (i,N,v1,v2) is presented in the se-
quel.

Corollary 4.18 Let f , v1 and v2 be as in Corollary 4.17. Suppose t = (t1, . . . ,tN) and
u = (u1, . . . ,uN) are positive real N−tuples such that TN = N

i=1 ti and UN = N
i=1 ui. If

1
iv2HN,v2

≥ ui, for i = 1, . . . ,N then

Df (i,N,v1,v2)≥ f (1)+
N


i=1

ui f

(
iv2−v1

HN,v2

HN,v1

)
−UN f

(
1

UN

N


i=1

uii
v2−v1

HN,v2

HN,v1

)
. (4.69)

If
1

iv2HN,v2

≤ ti, for i = 1, . . . ,N then

Df (i,N,v1,v2)≤ f (1)+
N


i=1

ti f

(
iv2−v1

HN,v2

HN,v1

)
−TN f

(
1
TN

N


i=1

tii
v2−v1

HN,v2

HN,v1

)
. (4.70)

If f is a concave function, then reverse inequalities hold in (4.69) and (4.70).

Suppose t �→ t f (t) is a convex function.

If
1

iv2HN,v2

≥ ui, for i = 1, . . . ,N then

Did· f (i,N,v1,v2)≥ f (1)+
N


i=1

uii
v2−v1

HN,v2

HN,v1

f

(
iv2−v1

HN,v2

HN,v1

)
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−
(

N


i=1

uii
v2−v1

HN,v2

HN,v1

)
f

(
1

UN

N


i=1

uii
v2−v1

HN,v2

HN,v1

)
, (4.71)

If
1

iv2HN,v2

≤ ti, for i = 1, . . . ,N then

Did· f (i,N,v1,v2)≤ f (1)+
N


i=1

tii
v2−v1

HN,v2

HN,v1

f

(
iv2−v1

HN,v2

HN,v1

)

−
(

N


i=1

tii
v2−v1

HN,v2

HN,v1

)
f

(
1
TN

N


i=1

tii
v2−v1

HN,v2

HN,v1

)
, (4.72)

If t �→ t f (t) is a concave function, then reverse inequalities hold in (4.71) and (4.72).

Proof. Inequalities (4.69), (4.70), (4.71) and (4.72) can be deduced from Corollary 4.17
or from Corollary 4.1 and Corollary 4.2 by analogous steps therein, if we observe the
probability mass functions ri and si as Zipf laws defined by (4.13). �

Remark 4.11 For ui = min
i=1,...,N

{
1

iv2HN,v2

}
=

1
Nv2HN,v2

and ti = max
i=1,...,N

{
1

iv2HN,v2

}
=

1
HN,v2

inequalities (4.69) and (4.70) assume the form of the bounds that were obtained

earlier in [11] :

f (1)+
1

HN,v2

3 ≥ Df (i,N,v1,v2)≥ f (1)+
1

Nv2HN,v2

3, (4.73)

where 3 =
N


i=1

f

(
iv2−v1

HN,v2

HN,v1

)
−N f

(
1
N

N


i=1

iv2−v1
HN,v2

HN,v1

)
.

If we repeat the similar procedure with inequalities (4.71) and (4.72), we get the analogous
bounds for Did· f (i,N,v1,v2):

f (1)+
1

HN,v2

̃3 ≥ Did· f (i,N,v1,v2)≥ f (1)+
1

Nv2HN,v2

̃3, (4.74)

where

̃3 =
N


i=1

iv2−v1
HN,v2

HN,v1

f

(
iv2−v1

HN,v2

HN,v1

)

−
(

N


i=1

iv2−v1
HN,v2

HN,v1

)
f

(
1
N

N


i=1

iv2−v1
HN,v2

HN,v1

)
. (4.75)
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In the sequel we present analogous results with the special choices on kernel function
f . Although it is possible to deduce results concerning observed f−divergences for all
three types of the Csiszár functional, that is for (4.46), (4.47) and (4.48), accompanied re-
sults for (4.48) will suffice in each implementation.

We start with Kullback-Leibler divergence (4.6) and superadditivity applied to both Zipf
law N−tuples, i.e. those with w1 = w2 = 0.

Corollary 4.19 Let v = (v1, . . . ,vN) be a positive real N−tuple such that VN = N
i=1 vi

and let v1,v2 > 0. If the logarithm base is greater than 1, then

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

log

(
iv2−v1

HN,v2

HN,v1

)

−
(

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

)

· log

(
1

1+VN

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

)
≥ KL(i,N,v1,v2)

+
N


i=1

vii
v2−v1

HN,v2

HN,v1

log

(
iv2−v1

HN,v2

HN,v1

)

−
(

N


i=1

vii
v2−v1

HN,v2

HN,v1

)
log

(
1

VN

N


i=1

vii
v2−v1

HN,v2

HN,v1

)
. (4.76)

If the logarithm base is less than 1, then the inequality sign is reverse.

Proof. Follows from (4.68) when observing function t �→ logt and its convexity (concavity)
which depends on the logarithm base greater than 1 (less than 1.) �

Monotonicity can now be deduced directly from (4.76) and is given in the following
corollary.

Corollary 4.20 Suppose t = (t1, . . . ,tN) and u = (u1, . . . ,uN) are positive real N−tuples
such that TN = N

i=1 ti and UN = N
i=1 ui and let v1,v2 > 0.

If
1

iv2HN,v2

≥ ui, for i = 1, . . . ,N then

KL(i,N,v1,v2)≥
N


i=1

uii
v2−v1

HN,v2

HN,v1

log

(
iv2−v1

HN,v2

HN,v1

)

−
(

N


i=1

uii
v2−v1

HN,v2

HN,v1

)
log

(
1

UN

N


i=1

uii
v2−v1

HN,v2

HN,v1

)
, (4.77)
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where the logarithm base is greater than 1.

If
1

iv2HN,v2

≤ ti, for i = 1, . . . ,N then

KL(i,N,v1,v2)≤
N


i=1

tii
v2−v1

HN,v2

HN,v1

log

(
iv2−v1

HN,v2

HN,v1

)

−
(

N


i=1

tii
v2−v1

HN,v2

HN,v1

)
log

(
1
TN

N


i=1

uii
v2−v1

HN,v2

HN,v1

)
, (4.78)

where the logarithm base is greater than 1.
If the logarithm base is less than 1, then reverse inequalities hold in (4.77) and (4.78).

Remark 4.12 If ui = min
i=1,...,N

{
1

iv2HN,v2

}
=

1
Nv2HN,v2

and ti = max
i=1,...,N

{
1

iv2HN,v2

}
=

1
HN,v2

in inequalities (4.77) and (4.78), then the following bounds for the Kullback-Leibler diver-
gence hold, as a special case of Corollary 4.20:

1
HN,v2

KL ≥ KL(i,N,v1,v2)≥ 1
Nv2HN,v2

KL, (4.79)

where

KL =
N


i=1

iv2−v1
HN,v2

HN,v1

log

(
iv2−v1

HN,v2

HN,v1

)

−
(

N


i=1

iv2−v1
HN,v2

HN,v1

)
log

(
1
N

N


i=1

iv2−v1
HN,v2

HN,v1

)
. (4.80)

Bounds (4.79) were obtained earlier in [11], due to a less general approach.

What follows are similar and concise results for the Hellinger distance, the Bhat-
tacharyya coefficient, the chi-square divergence and the total variation distance.

Corollary 4.21 Let v = (v1, . . . ,vN) be a positive real N−tuple such that VN = N
i=1 vi

and let v1,v2 > 0. Then

1
2

N


i=1

(
1

iv2HN,v2

+ vi

)(√
iv2−v1

HN,v2

HN,v1

−1

)2

− 1+VN

2

(√
1

1+VN

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

−1

)2

≥ h2(i,N,v1,v2)+
1
2

N


i=1

vi

(√
iv2−v1

HN,v2

HN,v1

−1

)2
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− VN

2

(√
1

VN

N


i=1

viiv2−v1
HN,v2

HN,v1

−1

)2

, (4.81)

(
1+VN

)√ 1

1+VN

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

−
N


i=1

(
1

iv2HN,v2

+ vi

)√
iv2−v1

HN,v2

HN,v1

≥ B(i,N,v1,v2)+1−
N


i=1

vi

√
iv2−v1

HN,v2

HN,v1

+ VN

√
1

VN

N


i=1

viiv2−v1
HN,v2

HN,v1

, (4.82)

N


i=1

(
1

iv2HN,v2

+ vi

)(
iv2−v1

HN,v2

HN,v1

−1

)2

− (1+VN)

(
1

1+VN

N


i=1

(
1

iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

−1

)2

≥ 2(i,N,v1,v2)+
N


i=1

vi

(
iv2−v1

HN,v2

HN,v1

−1

)2

− VN

(
1

VN

N


i=1

vii
v2−v1

HN,v2

HN,v1

−1

)2

, (4.83)

N


i=1

(
1

iv2HN,v2

+ vi

)∣∣∣∣iv2−v1
HN,v2

HN,v1

−1

∣∣∣∣
− (1+VN)

(
1

1+VN

N


i=1

∣∣∣∣ 1
iv2HN,v2

+ vi

)
iv2−v1

HN,v2

HN,v1

−1

∣∣∣∣∣
≥ V (i,N,v1,v2)+

N


i=1

vi

∣∣∣∣iv2−v1
HN,v2

HN,v1

−1

∣∣∣∣
− VN

∣∣∣∣∣ 1

VN

N


i=1

vii
v2−v1

HN,v2

HN,v1

−1

∣∣∣∣∣ . (4.84)

Proof. Inequalities (4.81)-(4.84) follow from inequality (4.67) by inserting convex func-

tions: t �→ 1
2

(√
t−1
)2

for (4.81), t �→−√t for (4.82), t �→ (t−1)2 for (4.83) and t �→ |t−1|
for (4.84). �

Again, superadditivity yields monotonicity which was independently given in [14] in a
less general approach.
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Corollary 4.22 Let t and u be as in Corollary 4.18 and let v1,v2 > 0.

If
1

iv2HN,v2

≥ ui, for i = 1, . . . ,N then

h2(i,N,v1,v2)≥ 1
2

N


i=1

ui

(√
iv2−v1

HN,v2

HN,v1

−1

)2

−UN

2

(√
1

UN

N


i=1

uiiv2−v1
HN,v2

HN,v1

−1

)2

, (4.85)

B(i,N,v1,v2)≥−1−
N


i=1

ui

√
iv2−v1

HN,v2

HN,v1

+UN

√
1

UN

N


i=1

uiiv2−v1
HN,v2

HN,v1

, (4.86)

2(i,N,v1,v2)≥
N


i=1

ui

(
iv2−v1

HN,v2

HN,v1

−1

)2

−UN

(
1

UN

N


i=1

uii
v2−v1

HN,v2

HN,v1

−1

)2

, (4.87)

V (i,N,v1,v2)≥
N


i=1

ui

∣∣∣∣iv2−v1
HN,v2

HN,v1

−1

∣∣∣∣−UN

∣∣∣∣∣ 1
UN

N


i=1

uii
v2−v1

HN,v2

HN,v1

−1

∣∣∣∣∣ . (4.88)

If
1

iv2HN,v2

≤ ti, for i = 1, . . . ,N then

h2(i,N,v1,v2)≤ 1
2

N


i=1

ti

(√
iv2−v1

HN,v2

HN,v1

−1

)2

−TN

2

(√
1
TN

N


i=1

tiiv2−v1
HN,v2

HN,v1

−1

)2

, (4.89)

B(i,N,v1,v2)≤−1−
N


i=1

ti

√
iv2−v1

HN,v2

HN,v1

+TN

√
1
TN

N


i=1

tiiv2−v1
HN,v2

HN,v1

, (4.90)

2(i,N,v1,v2)≤
N


i=1

ti

(
iv2−v1

HN,v2

HN,v1

−1

)2

−TN

(
1
TN

N


i=1

tii
v2−v1

HN,v2

HN,v1

−1

)2

, (4.91)

V (i,N,v1,v2)≤
N


i=1

ti

∣∣∣∣iv2−v1
HN,v2

HN,v1

−1

∣∣∣∣−TN

∣∣∣∣∣ 1
TN

N


i=1

tii
v2−v1

HN,v2

HN,v1

−1

∣∣∣∣∣ . (4.92)
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Remark 4.13 If ui = min
i=1,...,N

{
1

iv2HN,v2

}
=

1
Nv2HN,v2

in inequalities (4.85)-(4.88) and

ti = max
i=1,...,N

{
1

iv2HN,v2

}
=

1
HN,v2

in inequalities (4.89)-(4.92), then the following bounds

for the divergences hold, as special cases of Corollary 4.22.
Thus we have for Hellinger distance (4.7):

1
2HN,v2

h ≥ h2(i,N,v1,v2)≥ 1
2Nv2HN,v2

h, (4.93)

where

h =
N


i=1

(√
iv2−v1

HN,v2

HN,v1

−1

)2

−N

(√
1
N

N


i=1

iv2−v1
HN,v2

HN,v1

−1

)2

; (4.94)

for Bhattacharyya coefficient (4.8):

1− 1
Nv2HN,v2

B ≥ B(i,N,v1,v2)≥ 1− 1
HN,v2

B, (4.95)

where

B = N

√
1
N

N


i=1

iv2−v1
HN,v2

HN,v1

−
N


i=1

√
iv2−v1

HN,v2

HN,v1

; (4.96)

for chi-square divergence (4.9):

1
HN,v2

chi ≥ 2(i,N,v1,v2)≥ 1
Nv2HN,v2

chi, (4.97)

where

chi =
N


i=1

(
iv2−v1

HN,v2

HN,v1

−1

)2

−N

(
1
N

N


i=1

iv2−v1
HN,v2

HN,v1

−1

)2

(4.98)

and for total variation distance (4.10):

1
HN,v2

V ≥V (i,N,v1,v2)≥ 1
Nv2HN,v2

V , (4.99)

where

V =
N


i=1

∣∣∣∣iv2−v1
HN,v2

HN,v1

−1

∣∣∣∣−N

∣∣∣∣∣ 1N N


i=1

iv2−v1
HN,v2

HN,v1

−1

∣∣∣∣∣ . (4.100)

Bounds (4.93), (4.95), (4.97) and (4.99) were also obtained earlier in [11], due to a less
general approach.
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[8] M. Krnić, N. Lovričević, J. Pečarić, On McShane’s functional’s properties and its
applications, Period. Math. Hungar., Vol. 66 (2), (2013), 159–180.
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Abstract. Shannon and Zipf-Mandelbrot entropies have many applications in many
applied sciences for example in Information Theory, Biology and Economics etc.
In this paper we consider several Jensen type discrete as well as integral inequal-
ities and obtain different bounds for Shannon and Zipf-Mandelbrot entropies. We
also focus to investigate bounds for Csiszar divergence as well as hybrid Zipf-
mandelbrot entropies.
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5.1 Introduction

Several functionals have been proposed in the literature as measures of information and
each definition enjoys certain axiomatic and/or heuristic properties. A convenient way to
differentiate among the various measures of information is to classify them in three cate-
gories: parametric, non-parametric and entropy-type measures of information. Parametric
measures of information measure the amount of information supplied by the data about
an unknown parameter  and are functions of  . In this case the best known measure
is Fisher’s measure of information [13]. Non-parametric measures express the amount of
information supplied by the data for discriminating in favor of a distribution 1 against
another 2 or measure the distance or affinity between 1 and 2. The best known measure
of this type is the Kullback-Leibler measure[16]. Measures of entropy express the amount
of information contained in a distribution, that is, the amount of uncertainty concerning
the outcome of an experiment. The classical measures of this type are Shannon’s [17] and
Renyi’s [29]. In this paper our focus will be on Shanon’s entropy and Zipf-Mandelbrot
entropy.

The concept of Shannon’s entropy [17] is the central role of information theory some-
times referred as measure of uncertainty. The entropy of a random variable is defined in
terms of its probability distribution and can be shown to be a good measure of randomness
or uncertainty. Shannon entropy allows to estimate the average minimum number of bits
needed to encode a string of symbols based on the alphabet size and the frequency of the
symbols. The formula for Shannon entropy is given by

S(p) =
n


i=1

pi log
1
pi

(5.1)

where pi′s are positive real numbers with n
i=1 pi = 1.

Zipf’s law is one of the fundamental law in information science and it is very often used
in linguistics. George Zipf’s in 1932 found that we can count how many times each word
appears in the text. So if we rank (r) word according to the frequency of word occurrence
( f ), then the product of these two numbers is a constant (C) : C = r. f .

Apart from the use of this law in information science and linguistics, Zipf’s law is used
in city populations, solar flare intensity, website traffic, earth quack magnitude and the size
of moon craters etc. This distribution in economics is known as Pareto’s law which analyze
the distribution of the wealthiest members of the community [12, p. 125]. These two laws
are the same in the mathematical sense, but they are applied in a different context [20, p.
294].

Benoit Mandelbrot in 1966 [18] gave a generalization of Zipf’s law, known as Zipf-
Mandelbrot law. Which gave improvement in account for the low-rank words in corpus
where k < 100 [26]: f (k) = c

(k+q)s , when we put q = 0; we get Zipf’s law. Applications
of Zipf-Mandelbrot law can be found in linguistics [26, 27], information sciences [28] and
also mostly applicable in ecological field studies [29]. The formula for Zipf-Mandelbrot
entropy is given by
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Z(H,q,s) =
s

Hn,q,s

n


k=1

log(k+q)
(k+q)s + logHn,q,s, (5.2)

where n ∈ {1,2,3, ...}, q ≥ 0, s > 0, k ∈ {1,2, ...,n}, Hn,q,s = n
i=1

1
(i+q)s and the Zipf-

Mandelbrot law(probability mass function) is given by:

f (k,n,q,s) =
1/(k+q)s

Hn,q,s
. (5.3)

Different scientific disciplines have different interpretation of the law. At this point, we
will give interpretation from ecology [27]: parameters in (5.1) can be interpreted in the
following way: n is the number of species present and the parameters, q represents the
diversity of the environment and s the predictability of the ecosystem, i.e. the average
probability of the appearance of species.

Further generalization of Zipf-Mandelbrot entropy is Hybrid Zipf-Mandelbrot entropy
[15] which is given by

H(∗,q,s) :=
1

∗(s,q,w)

n


i=1

wi

(i+q)s log

(
(i+q)s

wi

)
+ log∗(s,q,w)

where ∗(s,q,w) = n
i=1

wi

(k+q)s and Hybrid Zipf-Mandelbrot law is given by

g(k,n,q,s) =
wk

∗(s,q,w)(k+q)s .

In [15] the authors used maximum entropy approach [31] and proved that maximum value
of the Shannon entropy under some constraints is Zipf-Mandelbrot law. That is, if I =
{1,2, ..,n} or I = N for a given q ≥ 0, a probability distribution that maximizes Shannon
entropy under constraints 

i∈I
pi = 1, 

i∈I
pi ln(i+q) =  is Zipf-Mandelbrot law. They also

used the same technique and derived hybrid Zipf-Mandelbrot law but with one additional
constraint. That is, if I = {1,2, ..,n} or I = N for a given q ≥ 0, a probability distribution
that maximizes Shannon entropy under constraints 

i∈I
pi = 1, 

i∈I
pi ln(i+q) =  , 

i∈I
ipi = 

is hybrid Zipf-Mandelbrot law.
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5.2 Discrete Jensen’s type inequalities

The following improvement of Jensen’s inequality has given in [30].

Theorem 5.1 Let  : [a,b]→R be a convex function, xi ∈ [a,b], pi > 0,
n

i=1

pi = Pn. Then

1
Pn

n


i=1

pi(xi) −  (x) ≥
∣∣∣∣∣ 1Pn

n


i=1

pi |(xi)−(x)|− |
′
+(x)|
Pn

n


i=1

pi |xi− x|
∣∣∣∣∣ . (5.4)

where, x = 1
Pn

n

i=1

pi xi.

The following improvement of Jensen’s inequality for monotone convex function has given
in [1].

Theorem 5.2 Let  : [a,b] → R be a monotone convex function, xi ∈ [a,b], pi > 0,
n

i=1 pi = 1. If xi ≥ x for i ∈ I ⊂ {1,2, ...,n}, then

n


i=1

pi(xi) − 

(
n


i=1

pi xi

)
≥
∣∣∣∣∣ n


i=1

pisgn(xi− x)
[
(xi)− xi ′+(x)

]
+
[
(x)− x ′+(x)

]
[1−2PI]

∣∣ , (5.5)

where, x = n
i=1 pi xi.

M. Matić and J. Pečarić in [21] proved general inequalities from which one can obtain
some companion inequalities to the Jensen inequality:

Theorem 5.3 Let  : I→ R be differentiable convex function defined on I. If xi ∈ I, i =
1,2, ..,n(n≥ 2) are arbitrary members and pi ≥ 0 (i = 1,2, ..,n) with Pn =n

i=1 pi > 0 and
let x = 1

Pn
n

i=1 pixi,y = 1
Pn
n

i=1 pi(xi). If c,d ∈ I are arbitrary chosen numbers, then we
have

(c)+ (x− c) ′(c)≤ y≤ (d)+
1
Pn

n


i=1

pi(xi−d) ′(xi). (5.6)

Also, when  is strictly convex, we have equality in the left inequality in (5.14) if and only
if xi = c holds for all indices i with pi > 0, while equality holds in the right inequality in
(5.14) if and only if xi = d holds for all indices i with pi > 0.

If we set c = d = x̄ in (5.14), then we can obtain Jensen’s inequality as well as companion
inequality to the Jensen inequality:

Theorem 5.4 ([22]) Let  : I→ R be differentiable convex function defined on I and let
xi, pi,Pn,x and y be stated as in Theorem 5.25. Then the inequalities

0≤ y−(x)≤ 1
Pn

n


i=1

pi ′(xi)(xi− x) (5.7)



5.2 DISCRETE JENSEN’S TYPE INEQUALITIES 93

hold.
In the case when  is strictly convex, we have equalities in (5.15) if and only if there is

some c ∈ I such that xi = c holds for all i with pi > 0.

Moreover, if n
i=1 pi ′(xi) 
= 0 and x = n

i=1 pixi ′(xi)
n

i=1 pi ′(xi)
∈ I, then by setting d = x, we get

Slater’s inequality:

Theorem 5.5 ([24]) Suppose that  : I→ R is convex function on I, for x1,x2, ..,xn ∈ I

and for p1, p2, .., pn ≥ 0 with Pn = n
i=1 pi > 0. Let n

i=1 pi ′+(xi) 
= 0,
n

i=1 pi ′+(xi)xi

n
i=1 pi ′+(xi)

∈ I,

then the following inequality holds:

1
Pn

n


i=1

pi(xi)≤ 
(
n

i=1 pi ′+(xi)xi

n
i=1 pi ′+(xi)

)
. (5.8)

The following refinement of (5.14) has been given in [21].

Theorem 5.6 Let  : I→R be strictly convex differentiable function defined on I and let

xi, pi,Pn,x and y be stated as in Theorem 5.25 and d = ( ′)−1

(
1
Pn
n

i=1 pi ′(xi)
)

, then the

following inequalities hold

y≤ (d)+
1
Pn

n


i=1

pi ′(xi)(xi−d)≤ (d)+
1
Pn

n


i=1

pi(xi−d) ′(xi). (5.9)

Remark 5.1 In [25] Dragomir has also proved Theorem 5.12 for the case d = x̄ and
Pn = 1.

The following improvement of the right side of the inequality (5.14) has been given in
[2].

Theorem 5.7 Let  : I → R be a convex function, xi ∈ I, pi ≥ 0 (i = 1, ..,n) such that
Pn = n

i=1 pi > 0 and ȳ := 1
Pn
n

i=1 pi(xi), then we have

(d)− ȳ− 1
Pn

n


i=1

pi ′+(xi)(d− xi)

≥
∣∣∣∣∣ 1Pn

n


i=1

pi

∣∣∣(d)−(xi)
∣∣∣− 1

Pn

n


i=1

pi

∣∣∣ ′+(xi)(d− xi)
∣∣∣∣∣∣∣∣ . (5.10)

As a consequence of the above theorem, the following improvement of Slater’s inequality
has been obtained:

Corollary 5.1 ([2]) Let  : I → R be a convex function, xi ∈ I, pi ≥ 0 (i = 1, ..,n)
such that Pn = n

i=1 pi > 0 and ȳ := 1
Pn
n

i=1 pi(xi). If n
i=1 pi ′+(xi) 
= 0 such that ¯̄x =

n
i=1 pi ′+(xi)xi

n
i=1 pi ′+(xi)

∈ I, then

( ¯̄x)− ȳ≥
∣∣∣∣∣ 1Pn

n


i=1

pi

∣∣∣( ¯̄x)−(xi)
∣∣∣− 1

Pn

n


i=1

pi

∣∣∣ ′+(xi)( ¯̄x− xi)
∣∣∣∣∣∣∣∣ . (5.11)
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As a another consequence of Theorem 5.13, the following improvement of the inequality
(5.15) has been obtained:

Corollary 5.2 ([2]) Let  : I→ R be a convex function, xi ∈ I, pi ≥ 0 (i = 1, ..,n) such
that Pn = n

i=1 pi > 0, ȳ := 1
Pn
n

i=1 pi(xi) and x̄ := 1
Pn
n

i=1 pixi, then we have

(x̄)− ȳ− 1
Pn

n


i=1

pi ′+(xi)(x̄− xi)

≥
∣∣∣∣∣ 1Pn

n


i=1

pi

∣∣∣(x̄)−(xi)
∣∣∣− 1

Pn

n


i=1

pi

∣∣∣ ′+(xi)(x̄− xi)
∣∣∣∣∣∣∣∣ . (5.12)

The following improvement of the left side of (5.14) is given in [3].

Theorem 5.8 Let  : I → R be a convex function, xi ∈ I, pi ≥ 0 (i = 1, ..,n) such that
n

i=1 pi = 1 and x̄ := n
i=1 pixi, then we have

n


i=1

pi(xi)− (c)− ′(c)(x̄− c)

≥
∣∣∣∣∣ n


i=1

pi

∣∣∣(xi)− (c)
∣∣∣ − n


i=1

pi

∣∣∣ ′ (c)(xi− c)
∣∣∣∣∣∣∣∣ . (5.13)

5.3 Integral Jensen’s type inequalities

Let (,A,) be a measure space and w :→R be measurable function with w(x) > 0 for
x ∈. We consider Lw() := { f :→R such that

∫
w fd < }.

Throughout this section w, f and g are defined as:

w =
∫


wd ,g =
1
w

∫


w( f )d , f =
1
w

∫


w fd ,

where  is a function such that the domain of  is equal to the range of f .
Now we recall some results while these results are given in [21, 22, 24, 2, 3] for w(x) =

1, x ∈.
M. Matić and J. Pečarić in [21] proved the following integral Jensen’s type inequalities

from which one can obtain some companion inequalities to the Jensen inequality:

Theorem 5.9 Let (,A,) be a measure space with 0 < () < and let  : (a,b)→R

be differentiable convex function defined on interval (a,b). If w : → R
+, f : → (a,b)

are such that f ,( f ), ′( f ) and  ′( f ) f are in Lw(), then for any d ∈ (a,b) one has

(c)+ ( f − c) ′(c)≤ g≤ (d)+
1
w

∫


w( f −d) ′( f )d . (5.14)
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The following converse of Jensen’s inequality is the the integral analogue of Theorem 2.1
given in [22], which can also be directly obtain from (5.14).

Theorem 5.10 Let all the assumptions of Theorem 5.9 are satisfied. Then the following
inequalities hold

0≤ g−( f )≤ 1
w

∫


w ′( f )( f − f )d . (5.15)

The following Slater’s inequality has been given in [24].

Theorem 5.11 Let (,A,) be a measure space with 0 < () < and let  : (a,b)→
R be a convex function defined on the interval (a,b). If w :→R

+, f :→ (a,b) are such

that ( f ), ′+( f ) and  ′+( f ) f are all in Lw() and
∫
w ′+( f )d 
= 0,

∫
w ′+( f ) f d∫
w ′+( f )d ∈ (a,b).

Then the following inequality holds.

1
w

∫


w( f )d ≤ 
(∫

wf ′+( f )d∫
w ′+( f )d

)
. (5.16)

Remark 5.2 Let  , f and f be stated as in Theorem 5.25,
∫
w ′( f )d 
= 0 and let f =∫

w ′( f ) f d∫
w ′( f )d ∈ (a,b). If we put d = f in (5.14) we immediately obtain Slater’s inequality

(5.36). On the other hand, if we put d = f in (5.14) we immediately obtain (5.15).

The following refinement of (5.15) is also valid (see [21]).

Theorem 5.12 Let (,A,) be a measure space with 0 < () < and let  : (a,b)→
R be a differentiable, strictly convex function on interval (a,b). If w : → R

+, f : →
(a,b) are such that f ,( f ), ′( f ) and  ′( f ) f are all in Lw(). Then there is exactly one
d ∈ (a,b) such that  ′(d) = 1

w

∫
w ′( f )d and

g≤ (d)+
1
w

∫


w ′( f )( f −d)d , (5.17)

0≤ g−( f )≤ (d)+
1
w

∫


w ′( f )( f −d)d−( f )

≤ 1
w

∫


w ′( f )( f − f )d . (5.18)

The following improvement of the right side of the inequality (5.14) has been given in [2].

Theorem 5.13 Let (,A,) be a measure space with 0 < () <  and  : (a,b)→R

be a convex function. If w :→R
+, f :→ (a,b) are such that ( f ), ′+( f ) and  ′+( f ) f

are in Lw(), then for any d ∈ (a,b) we have

(d)− ḡ− 1
w

∫


w ′+( f )(d− f )d

≥
∣∣∣∣ 1w
∫


w
∣∣(d)−( f )

∣∣d− 1
w

∫


w
∣∣ ′+( f )( f −d)

∣∣d∣∣∣∣ . (5.19)
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As a consequence of the above theorem, the following improvement of Slater’s inequality
has been obtained:

Corollary 5.3 ([2]) Let all the assumptions of Theorem 5.13 hold. Then

( ¯̄f )− 1
w

∫


w( f )d ≥
∣∣∣∣ 1w
∫


w
∣∣( ¯̄f )−( f )

∣∣d− 1
w

∫


w
∣∣ ′+( f )( f − ¯̄f )

∣∣d∣∣∣∣ (5.20)

holds, whenever
∫
w ′+( f )d 
= 0 and ¯̄f =

∫
w ′+( f ) f d∫
w ′+( f )d ∈ (a,b).

As a another consequence of Theorem 5.13, the following improvement of the inequal-
ity (5.15) has been obtained:

Corollary 5.4 ([2]) Let all the assumptions of Theorem 5.13 are satisfied. Then

( f̄ )− ḡ− 1
w

∫


w ′+( f )( f̄ − f )d

≥
∣∣∣∣ 1w
∫


w
∣∣( f̄ )−( f )

∣∣d− 1
w

∫


w
∣∣ ′+( f )( f − f̄ )

∣∣d . (5.21)

The following improvement of the left side of (5.14) is given in [3].

Theorem 5.14 Let all the assumptions of Theorem 5.13 are satisfied. Then for any c ∈
(a,b) we have

ḡ−(c)− ′+(c)( f̄ − c)

≥
∣∣∣∣ 1w
∫


∣∣w( f )−(c)
∣∣d− | ′+(c)|

w

∫


w
∣∣ f − c

∣∣d∣∣∣∣ . (5.22)

5.4 Bounds for Shannon entropy

In the following theorem we present bound for Shannon entropy by using refinement of
Jensen’s inequality for convex functions.

Theorem 5.15 ([4]) Let pi and qi (i = 1,2, ...,n) be positive real numbers withn
i=1 pi =

1 and n
i=1 qi =  , then

−S(p)−
n


i=1

pi logqi + log ≥
∣∣∣∣∣ n


i=1

pi

∣∣∣∣log− log
qi

pi

∣∣∣∣− 1


n


i=1

pi

∣∣∣qi

pi
−
∣∣∣∣∣∣∣∣ . (5.23)

Proof. Let (x) = − logx and xi = qi
pi

, as pi,qi > 0 and n
i=1 qi =  , then from (5.5) we

get (5.23). �

The following corollary is the special case of Theorem 5.15.
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Corollary 5.5 ([4]) Let pi (i = 1,2, ...,n) be positive real numbers withn
i=1 pi = 1, then

−S(p)+ logn≥
∣∣∣∣∣ n


i=1

pi |logn+ log pi|− 1
n

n


i=1

pi

∣∣∣ 1
pi
−n
∣∣∣∣∣∣∣∣ . (5.24)

Proof. By taking qi = 1, i = 1,2, ..,n, in (5.23), we get (5.24). �

In the following theorem we obtain another bound for Shannon entropy by using re-
finement of Jensen’s inequality for convex functions.

Theorem 5.16 ([4]) Let pi and qi (i = 1,2, ...,n) be positive real numbers withn
i=1 pi =

1 and n
i=1 qi =  , then

−S(p)−
n


i=1

pi logqi + log

≥
∣∣∣∣∣ n


i=1

qi

∣∣∣∣ pi

qi
log

pi

qi
− 1


log
1


∣∣∣∣−|1− log|
n


i=1

qi

∣∣∣∣ pi

qi
− 1


∣∣∣∣
∣∣∣∣∣ . (5.25)

Proof. Using inequality (5.5) for (x) = x logx and then replacing pi by qi and xi by pi
qi

we
get

1


n


i=1

pi log
pi

qi
− 1


log
1


≥
∣∣∣∣∣ 1 n


i=1

qi

∣∣∣∣ pi

qi
log

pi

qi
− 1


log
1


∣∣∣∣− 1

|1+ log

1

|

n


i=1

qi

∣∣∣∣ pi

qi
− 1


∣∣∣∣
∣∣∣∣∣ . (5.26)

Now using Logarithmic rules and definition of Shannon entropy we get (5.25). �

The following corollary is the special case of the above Theorem.

Corollary 5.6 ([4]) Let pi (i = 1,2, ...,n) be positive real numbers withn
i=1 pi = 1, then

−S(p)+ logn≥
∣∣∣∣∣ n


i=1

∣∣∣∣pi log pi +
1
n

logn

∣∣∣∣−|1− logn|
n


i=1

∣∣∣∣pi− 1
n

∣∣∣∣
∣∣∣∣∣ . (5.27)

Proof. By taking qi = 1, i = 1,2, ..,n, in (5.25) we get (5.27). �

In the following theorem we obtain bound for Shannon entropy by using refinement of
Jensen’s inequality for monotone convex functions.

Theorem 5.17 ([4]) Let pi and qi (i = 1,2, ...,n) be positive real numbers withn
i=1 pi =

1 and n
i=1 qi =  . If I = {i ∈ {1,2, ..,n} : pi

qi
≥ }, then

−S(p)−
n


i=1

pi logqi+ log ≥
∣∣∣∣∣ n


i=1

pisgn

(
qi

pi
−
)[

qi

 pi
− log

qi

pi

]
+[1− log] [1−2PI]

∣∣∣∣∣ .
(5.28)
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Proof. Let  =− logx and xi =
qi
pi

and qi > 0, n
i=1 qi =  , then from (5.5) we have

n


i=1

pi log
pi

qi
+ log ≥

∣∣∣∣∣ n


i=1

pisgn

(
qi

pi
−
)[

qi

 pi
− log

qi

pi

]
+[1− log] [1−2PI]

∣∣∣∣∣ .
(5.29)

Now using Logarithmic rules and definition of Shannon entropy we get (5.28) �

The following corollary is the special case of the above Theorem.

Corollary 5.7 ([4]) Let pi (i = 1,2, ...,n) be positive real numbers withn
i=1 pi = 1, then

−S(p)+ logn≥
∣∣∣∣∣ n


i=1

pisgn

(
1
pi
−n

)[
1

npi
+ log pi

]
+[1− logn] [1−2PI]

∣∣∣∣∣ . (5.30)

Proof. By taking qi = 1, i = 1,2, ..,n, in (5.28), we get (5.58). �

5.5 Results for Csiszar divergence

In this section we give some basic results for Csiszar divergence and present applications
of the results given in Section 1 for Csiszar divergence.

Given a convex function f : R+→R+, the f−divergence functional

I (p,q) :=
n


i=1

qi
(

pi

qi

)
, (5.31)

where p = (p1, ..., pn), q = (q1, ...,qn) are positive sequences, was introduced by Csiszár
in [7], as a generalized measure of information, a distance function on the set of probability
distributions P

n. As in [7], we interpret undefined expressions by

(0) = lim
t→0+

f (t), 0
(

0
0

)
= 0,

0
(a

0

)
= lim

q→0+
q
(

a
q

)
, a lim

q→

(t)
t

, a > 0.

The following results were essentially given by Csiszár and Körner [8]:

(i) If  is convex, then I (p,q) is jointly convex in p and q;

(ii) For every p,q ∈R
n
+, we have

I (p,q)≥
n


j=1

q j

(
n

j=1 p j

n
j=1 q j

)
. (5.32)
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If  is strictly convex, equality holds in (5.32) if and only if

p1

q1
=

p2

q2
= ... =

pn

qn
.

If  is normalized, i.e., (1) = 0, then for every p,q ∈ R
n
+ with n

i=1 pi = n
i=1 qi,

we have the inequality

I (p,q)≥ 0. (5.33)

In particular, if p,q ∈ P
n, then (5.33) holds. This is the well-known positivity property

of the  -divergence.
In [3] the authors gave application of Theorem 5.9 for Csiszar divegence for the func-

tions defined on the linear space. Here we mention that result for the function defined on
an interval which is in fact application of Theorem 5.9.

Theorem 5.18 Let  : R+→ R be a convex function, p = (p1, ..., pn),q = (q1, ...,qn) be
two positive real n-tuples and let Pn = n

i=1 pi and Qn =n
i=1 qi. If c,d ∈R+ are arbitrary

chosen numbers, then the following inequalities hold

(c)+
(

Pn

Qn
− c

)
 ′(c)≤ 1

Qn
I (p,q)≤ (d)+

1
Qn

n


i=1

pi ′
(

pi

qi

)
− d

Qn
I ′(p,q).(5.34)

Remark 5.3 In [3] the authors gave Theorem 5.18 for the case Pn = Qn = 1.

The following application of Theorem 5.25 for Csiszar divegence has been given in [23].
This result can also be obtained by using (5.18) for c = d = Pn

Qn
.

Theorem 5.19 Let  : R+→ R be a convex function, p = (p1, ..., pn),q = (q1, ...,qn) be
two positive real n-tuples and let Pn = n

i=1 pi and Qn =n
i=1 qi. Then

0≤ I (p,q)−Qn
(

Pn

Qn

)
≤ 1

Qn
I ′

(
p2

q
,p
)
− Pn

Qn
I ′ (p,q) , (5.35)

where p2

q = ( p2
1

q1
, ...,

p2
n

qn
).

In the following result is the application of Theorem 5.5 for Csiszar divegence.

Theorem 5.20 Let  : R+→ R be a convex function, p = (p1, ..., pn),q = (q1, ...,qn) be

two positive real n-tuples and let Qn = n
i=1 qi,

n
i=1 pi ′+( pi

qi
)

n
i=1 qi ′+( pi

qi
)
∈ R+ and n

i=1 qi ′+( pi
qi

) 
= 0.

Then

1
Qn

I (p,q)≤ 

(
n

i=1 pi ′+( pi
qi

)

n
i=1 qi ′+( pi

qi
)

)
. (5.36)

In the following theorem we give application of Theorem 5.12 for Csiszar divegence.
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Theorem 5.21 Let  : R+→R be strictly convex and differentiable function, p=(p1, ..., pn),
q = (q1, ...,qn) be two positive real n-tuples and let Qn =n

i=1 qi and

d = ( ′)−1

(
1

Qn
I ′(p,q)

)
. Then for any d ∈R+ we have

1
Qn

I (p,q)≤ (d)+
1
Qn

n


i=1

qi ′(
pi

qi
)
(

pi

qi
−d

)
≤ (d)+

1
Qn

n


i=1

qi

(
pi

qi
−d

)
 ′(

pi

qi
). (5.37)

In the following theorem we give application of Theorem 5.13 for Csiszar divegence.

Theorem 5.22 Let  : R+ → R be convex function, p = (p1, ..., pn),q = (q1, ...,qn) be
two positive real n-tuples and let Qn = n

i=1 qi, then we have

(d)− 1
Qn

I (p,q)− 1
Qn

n


i=1

qi ′+(
pi

qi
)
(

d− pi

qi

)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣(d)−(
pi

qi
)
∣∣∣− 1

Qn

n


i=1

qi

∣∣∣ ′+(
pi

qi
)(d− pi

qi
)
∣∣∣∣∣∣∣∣ . (5.38)

The following result is a consequence of Theorem 5.22 which is in fact application of
Corollary 5.1.

Corollary 5.8 Let  : R+→ R be a convex function, p = (p1, ..., pn),q = (q1, ...,qn) be

two positive real n-tuples and let Qn =n
i=1 qi, ¯̄x :=

n
i=1 pi ′+( pi

qi
)

n
i=1 qi ′+( pi

qi
)
∈R+ andn

i=1 qi ′+( pi
qi

) 
=
0. Then

( ¯̄x)− 1
Qn

I (p,q)≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣( ¯̄x)−(
pi

qi
)
∣∣∣− 1

Qn

n


i=1

qi

∣∣∣ ′+(
pi

qi
)( ¯̄x− pi

qi
)
∣∣∣∣∣∣∣∣ . (5.39)

Another consequence of Theorem 5.22 which is in fact application of Corollary 5.2.

Corollary 5.9 Let  : R+→ R be a convex function, p = (p1, ..., pn),q = (q1, ...,qn) be
two positive real n-tuples and let Qn = n

i=1 qi, then we have


(

Pn

Qn

)
− 1

Qn
I (p,q)− 1

Qn

n


i=1

qi ′+(
pi

qi
)
(

Pn

Qn
− pi

qi

)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣ ( Pn

Qn

)
−(

pi

qi
)
∣∣∣− 1

Qn

n


i=1

qi

∣∣∣ ′+(
pi

qi
)
(

Pn

Qn
− pi

qi

)∣∣∣∣∣∣∣∣ . (5.40)

The following result can be obtained by using Theorem 5.8.
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Theorem 5.23 Let  : R+ → R be differentiable convex function, p = (p1, ..., pn),
q = (q1, ...,qn) be two positive real n-tuples and let Pn = n

i=1 pi and Qn = n
i=1 qi. If

c ∈ [0,] then we have

1
Qn

I (p,q)− (c)−
(

Pn

Qn
− c

)
 ′(c)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣ ( pi

qi

)
− (c)

∣∣∣ − | ′ (c) |
Qn

n


i=1

qi

∣∣∣ pi

qi
− c
∣∣∣∣∣∣∣∣ . (5.41)

Remark 5.4 In [3] the authors gave Theorem 5.23 for probability distributions p and q.

Now we start to give integral version of the above results:
Let (,A,) be a measure space and p : → R be measurable function. We consider

S := {q : → R
+ such that q :=

∫
 qd < }. Let  : [0,)→ R be a convex function.

In 1963, I. Csiszar [8] introduced the concept of  -divergence as follows.

Definition 5.1 Let p,q ∈ S, then the  -divergence functional is defined by

C (p,q) :=
∫


q(t)
(

p(t)
q(t)

)
d . (5.42)

Now we start to give application of Theorem 5.9 for Csiszar divergence.

Theorem 5.24 Let  : (0,)→ R be a differentiable convex function and p,q ∈ S with
p :=

∫
 p(t)d ,q :=

∫
 q(t)d , then for any c,d ∈ (0,) we have

(c)+
(

p
q
− c

)
 ′(c)≤ 1

q
C (p,q)≤ (d)+

1
q

∫


p(t) ′
(

p(t)
q(t)

)
d− d

q
C ′(p,q).

(5.43)

Proof. Using Theorem 5.9 for w→ q and f → p
q , we obtain (5.43). �

The following result is the application of Theorem 5.25.

Corollary 5.10 Let all the assumptions of Theorem 5.24 are satisfied. Then the following
inequalities hold

0≤C (p,q)−q
(

p
q

)
≤C (

p2

q
, p)− p

q
C (p,q). (5.44)

Proof. Putting c = d = p
q in (5.43) we obtain (5.44). �

The following result is the application of Theorem 5.11 for Csiszar divegence.

Theorem 5.25 Let  : (0,)→R be a convex function and p,q ∈ S with q :=
∫
 q(t)d

and let
∫
 q(t) ′+

( p(t)
q(t)

)
d 
= 0 and

∫
 p(t) ′+

(
p(t)
q(t)

)
d∫

 q(t) ′+
(

p(t)
q(t)

)
d
∈ R+. Then

1
q
C (p,q)≤ 

⎛⎝∫ p(t) ′+
( p(t)

q(t)

)
d∫

 q(t) ′+
( p(t)

q(t)

)
d

⎞⎠ . (5.45)
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The following theorem is the application of Theorem 5.12.

Theorem 5.26 Let  : (0,)→ R be strictly convex and differentiable function, and
p,q ∈ S with q :=

∫
 q(t)d . Then there is exactly one d ∈ (0,) such that  ′(d) =

1
qC ′(p,q) and for any d ∈ (0,) we have

1
q
C (p,q)≤ (d)+

1
q

∫


q(t) ′
(

p(t)
q(t)

)(
p(t)
q(t)
−d

)
d

≤ (d)+
1
q

∫


q(t) ′
(

p(t)
q(t)
−d

)
 ′
(

p(t)
q(t)

)
. (5.46)

The following theorem is the application of Theorem 5.13 for Csiszar divergence.

Theorem 5.27 Let  : (0,)→R be a convex function and p,q∈ S with p :=
∫
 p(t)d ,

q :=
∫
 q(t)d , then for any d ∈ (0,) we have

(d)− 1
q
C (p,q)− 1

q

∫


q(t) ′
(

p(t)
q(t)

)(
d− p(t)

q(t)

)
d

≥
∣∣∣∣1q
∫


q(t)
∣∣(d)−

(
p(t)
q(t)

)∣∣d
−1

q

∫


q(t)
∣∣ ′+( p(t)

q(t)

)(
p(t)
q(t)
−d

)∣∣d∣∣∣∣ . (5.47)

The following result is a consequence of Theorem 5.27 which is in fact application of
Corollary 5.3.

Corollary 5.11 Let  : (0,)→R be a convex function and p,q ∈ S with q :=
∫
 q(t)d

and let
∫
 q(t) ′+

( p(t)
q(t)

)
d 
= 0 and d :=

∫
 p(t) ′+

(
p(t)
q(t)

)
d∫

 q(t) ′+
(

p(t)
q(t)

)
d
∈ R+. Then

( ¯̄d)− 1
q
C (p,q)≥

∣∣∣1
q

∫


q(t)
∣∣( ¯̄d)−

(
p(t)
q(t)

)∣∣d
−1

q

∫


q(t)
∣∣ ′+( p(t)

q(t)

)(
p(t)
q(t)
− ¯̄d

)∣∣d∣∣∣. (5.48)

Another consequence of Theorem 5.27 which is in fact application of Corollary 5.4.

Corollary 5.12 Let all the assumptions of Theorem 5.9 are satisfied. Then the following
inequalities hold

(
p
q
)− 1

q
C (p,q)− 1

q

∫


q(t) ′+

(
p(t)
q(t)

)(
p
q
− p(t)

q(t)

)
d

≥
∣∣∣∣1q
∫


q(t)
∣∣ ( p

q

)
−
(

p(t)
q(t)

)∣∣d
−1

q

∫


q(t)
∣∣ ′+( p(t)

q(t)

)(
p(t)
q(t)
− p

q

)∣∣d .

∣∣∣∣ (5.49)
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The following result can be obtained by using Theorem 5.14.

Theorem 5.28 Let  : (0,)→R be a convex function and p,q∈ S with p :=
∫
 p(t)d ,

q :=
∫
 q(t)d , then for any c ∈ (0,), we have

1
q
C (p,q)−(c)− ′+(c)

(
p
q
− c

)
≥
∣∣∣∣1q
∫


∣∣q(t)
(

p(t)
q(t)

)
−(c)

∣∣d− | ′+(c)|
q

∫


q(t)
∣∣∣ p(t)
q(t)
− c
∣∣∣d∣∣∣∣ . (5.50)

5.6 Bounds for Zipf-Mandelbrot entropy

In the following theorem we use Zipf-Mandelbrot law and deduce bounds for Zipf-Mandelbrot
entropy.

Theorem 5.29 ([4]) Let n∈ {1,2,3, ...}, q≥ 0, s > 0, qi > 0, i = 1,2, ..,n with n
i=1 qi =

 , then

−Z(H,q,s)−
n


i=1

logqi

(i+q)sHn,q,s
+ log ≥

∣∣∣∣∣ n


i=1

1
(i+q)sHn,q,s

∣∣log− log(qi(i+q)sHn,q,s)
∣∣

− 1


n


i=1

1
(i+q)sHn,q,s

∣∣∣qi(i+q)sHn,q,s−
∣∣∣∣∣∣∣∣ . (5.51)

Proof. Let pi = 1
(i+q)sHn,q,s

, i = 1,2, ...,n, then

n


i=1

pi log pi =
n


i=1

1
(i+q)sHn,q,s

log
1

(i+q)sHn,q,s

= −
n


i=1

1
(i+q)sHn,q,s

log((i+q)sHn,q,s)

= −
n


i=1

s
(i+q)sHn,q,s

log(i+q)−
n


i=1

logHn,q,s

(i+q)sHn,q,s

= − s
(i+q)sHn,q,s

n


i=1

log(i+q)
(i+q)s −

logHn,q,s

Hn,q,s

n


i=1

1
(i+q)s =−Z(H,q,s).

As Hn,q,s =
n

i=1

1
(i+q)s , therefore

n

i=1

1
(i+q)sHn,q,s

= 1. Hence using (5.23) for pi = 1
(i+q)sHn,q,s

,

i = 1,2, ..,n, we obtain (5.51). �

The following corollary is the special case of above theorem.
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Corollary 5.13 ([4]) Let n ∈ {1,2,3, ...}, q≥ 0, s > 0, then

−Z(H,q,s)+ logn≥
∣∣∣∣∣ n


i=1

1
(i+q)sHn,q,s

∣∣logn− log((i+q)sHn,q,s)
∣∣

−1
n

n


i=1

1
(i+q)sHn,q,s

∣∣∣(i+q)sHn,q,s−n
∣∣∣∣∣∣∣∣ . (5.52)

Proof. By taking qi = 1, i = 1,2, ..,n, in (5.51), we get (5.52). �

In the following theorem we use two Zipf-Mandelbrot laws for different parameters
and deduce bound for Zipf-Mandelbrot entropy.

Theorem 5.30 ([4]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then

−Z(H, t1,s1)+
n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t1)s1Hn,t1,s1

≥
∣∣∣∣∣ n


i=1

1
(i+ t1)s1Hn,t1,s1

∣∣∣∣log
(i+ t1)s1Hn,t1,s1

(i+ t2)s2Hn,t2,s2

∣∣∣∣
−

n


i=1

1
(i+ t1)s1Hn,t1,s1

∣∣∣ (i+ t1)s1Hn,t1,s1

(i+ t2)s2Hn,t2,s2
−1
∣∣∣∣∣∣∣∣ . (5.53)

Proof. Let pi = 1
(i+t1)s1 Hn,t1,s1

and qi = 1
(i+t2)s2 Hn,t2,s2

, i = 1,2, ...,n, then as in the proof of

Theorem 5.29 we have
n


i=1

pi log pi =
n


i=1

1
(i+ t1)s1Hn,t1,s1

log
1

(i+ t1)s1Hn,t1,s1
=−Z(H, t1,s1).

n


i=1

pi logqi =
n


i=1

1
(i+ t1)s1Hn,t1,s1

log
1

(i+ t2)s2Hn,t2,s2
=−

n


i=1

log((i+ t2)s1Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

.

Also
n


i=1

qi =
n


i=1

1
(i+ t2)s2Hn,t2,s2

=  = 1 and
n


i=1

1
(i+ t2)s2Hn,t2,s2

= 1.

Therefore using (5.23) for pi = 1
(i+q)sHn,q,s

and qi = 1
(i+t2)s2 Hn,t2,s2

, i = 1,2, ..,n, we obtain

(5.53). �

Theorem 5.31 ([4]) Let n∈ {1,2,3, ...}, q > 0, s > 0, qi > 0, i = 1,2, ..,n with n
i=1 qi =

 , then

−Z(H,q,s) −
n


i=1

logqi

(i+q)sHn,q,s
+ log

≥
∣∣∣∣∣ n


i=1

qi

∣∣∣∣ 1
qi(i+q)sHn,q,s

log(qi(i+q)sHn,q,s)+
1


log
1


∣∣∣∣
− |1− log|

n


i=1

qi

∣∣∣∣ 1
qi(i+q)sHn,q,s

− 1


∣∣∣∣
∣∣∣∣∣ . (5.54)
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Proof. As in the proof of Theorem 5.29, using (5.25) for pi = 1
(i+q)sHn,q,s

, i = 1,2, ..,n, we
get (5.54). �

Corollary 5.14 ([4]) Let n ∈ {1,2,3, ...}, q > 0, s > 0, then

−Z(H,q,s)+ logn

≥
∣∣∣∣∣ n


i=1

∣∣∣∣ 1
(i+q)sHn,q,s

log((i+q)sHn,q,s)+
1
n

log
1
n

∣∣∣∣
− |1− logn|

n


i=1

∣∣∣∣ 1
(i+q)sHn,q,s

− 1


∣∣∣∣
∣∣∣∣∣ . (5.55)

Proof. By taking qi = 1, i = 1,2, ..,n, in (5.54), we get (5.55). �

Theorem 5.32 ([4]) Let n ∈ {1,2,3, ...}, t1, t2 ≥ 0 and s1,s2 > 0, then

−Z(H,t1,s1) +
n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t1)s1Hn,t1,s1

≥
∣∣∣∣∣ n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣∣ (i+ t1)s1Hn,t1,s1

(i+ t2)s2Hn,t2,s2
log

(i+ t1)s1Hn,t1,s1

(i+ t2)s2Hn,t2,s2

∣∣∣∣
−

n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣ (i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
−1
∣∣∣∣∣∣∣∣ . (5.56)

Proof. As in the proof of Theorem 5.30, using (5.25) for pi = 1
(i+t1)s1 Hn,t1,s1

and qi =
1

(i+t2)s2 Hn,t2,s2
, i = 1,2, ..,n, we get (5.56). �

Theorem 5.33 ([4]) Let n∈ {1,2,3, ...}, q > 0, s > 0, qi > 0, i = 1,2, ..,n with n
i=1 qi =

 . If I = {i ∈ {1,2, ..,n} : 1
qi(i+q)sHn,q,s

≥ }, then

−Z(H,q,s)−
n


i=1

logqi

(i+q)sHn,q,s
+ log

≥
∣∣∣∣∣ n


i=1

1
(i+q)sHn,q,s

sgn(qi(i+q)sHn,q,s−)
[
qi(i+q)sHn,q,s


− logqi(i+q)sHn,q,s

]

+[1− log]

[
1−2

i∈I

1
(i+q)sHn,q,s

]∣∣∣∣∣ . (5.57)

Proof. Using (5.28) for pi = 1
(i+q)sHn,q,s

, we get (5.57). �
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Corollary 5.15 ([4]) Let n ∈ {1,2,3, ...}, q > 0, s > 0, k ∈ {1,2, ...,n}, then

−Z(H,q,s)+ logn

≥
∣∣∣∣∣ n


i=1

1
(i+q)sHn,q,s

sgn((i+q)sHn,q,s−n)
[
(i+q)sHn,q,s

n
− log(i+q)sHn,q,s

]

+[1− logn]

[
1−2

k


i=1

1
(i+q)sHn,q,s

]∣∣∣∣∣ . (5.58)

Proof. Since 1
(i+q)sHn,q,s

is decreasing sequence over i = 1,2, ..,n. Therefore there exists

k ∈ {1,2, ..,n} such that 1
(i+q)sHn,q,s

≥ n for all i ∈ {1,2, ..,k}. Now By taking qi = 1,
i = 1,2, ..,n, in (5.57), we get (5.58). �

Theorem 5.34 ([4]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0 and s1,s2 > 0. If I = {i ∈ {1,2, ..,n} :
(i+t2)s2Hn,t2,s2
(i+t1)s1Hn,t1,s1

≥ 1}, then

−Z(H, t1,s1)+
n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t1)s1Hn,t1,s1

≥
∣∣∣∣∣∣

n


i=1

sgn
(

(i+t1)s1 Hn,t1,s1
(i+t2)s2 Hn,t2,s2

−1
)

(i+ t1)s1Hn,t1,s1

[
(i+ t1)s1Hn,t1,s1

(i+ t2)s2Hn,t2,s2
− log

(
(i+ t1)s1Hn,t1,s1

(i+ t2)s2Hn,t2,s2

)]

+

[
1−2

i∈I

1
(i+ t1)s1Hn,t1,s1

]∣∣∣∣∣ . (5.59)

Proof. Using (5.28) for pi = 1
(i+t1)s1 Hn,t1,s1

and qi = 1
(i+t2)s2Hn,t2 ,s2

, we get (5.59). �

We start to give first general inequalities for Zipf-Mandelbrot entropy which contain
two arbitrary positive real numbers.

Theorem 5.35 ([5]) Let n ∈ {1,2,3, ...}, q≥ 0, s, pi > 0, i = 1,2, ..,n with n
i=1 pi = Pn,

then for any c,d ∈R+, we have

logc+(Pn−c)
1
c
≥

n


i=1

log pi

(i+q)sHn,q,s
+Z(H,q,s)≥ logd+1−d

n


i=1

1
pi(i+q)2sH2

n,q,s
. (5.60)

Proof. Using (x) =− logx in (5.34) we obtain

−Qn logc− (Pn− cQn)
1
c
≤

n


i=1

qi log

(
qi

pi

)
≤−Qn logd−Qn +d

n


i=1

q2
i

pi
. (5.61)

Let qi = 1
(i+q)sHn,q,s

, i = 1,2, ...,n, then Qn = n
i=1 qi = 1 and

n


i=1

qi logqi =
n


i=1

1
(i+q)sHn,q,s

log
1

(i+q)sHn,q,s
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= −
n


i=1

1
(i+q)sHn,q,s

log((i+q)sHn,q,s)

= −
n


i=1

s
(i+q)sHn,q,s

log(i+q)−
n


i=1

logHn,q,s

(i+q)sHn,q,s

= − s
(i+q)sHn,q,s

n


i=1

log(i+q)
(i+q)s −

logHn,q,s

Hn,q,s

n


i=1

1
(i+q)s =−Z(H,q,s)

and

n


i=1

qi log pi =
n


i=1

log pi

(i+q)sHn,q,s

Therefore (5.61) implies that

− logc− (Pn− c)
1
c
≤−

n


i=1

log pi

(i+q)sHn,q,s
−Z(H,q,s)

≤− logd−1+d
n


i=1

1
pi(i+q)2sH2

n,q,s
, (5.62)

which is equivalent to (5.60). �

The following corollaries are consequences of the above theorem.

Corollary 5.16 ([5]) Let n∈ {1,2,3, ...}, q≥ 0, s, pi > 0, i = 1,2, ..,n with n
i=1 pi = Pn,

then

0≥
n


i=1

log pi

(i+q)sHn,q,s
+Z(H,q,s)− logPn ≥ 1−Pn

n


i=1

1
pi(i+q)2sH2

n,q,s
. (5.63)

Proof. Take c = d = Pn in (5.60), we get (5.63). �

The following consequence of Theorem 5.50 is in fact the application of Slater’s in-
equality.

Corollary 5.17 ([5]) Let n ∈ {1,2,3, ...}, q≥ 0, s, pi > 0, i = 1,2, ..,n, then

n


i=1

log pi

(i+q)sHn,q,s
+Z(H,q,s)≥ log

⎛⎝ 1

n
i=1

1
pi(i+q)2sH2

n,q,s

⎞⎠ . (5.64)

Proof. By setting d = 1
n

i=1
1

pi(i+q)2sH2
n,q,s

in the right inequality of (5.60), we get (5.64). �

In the following theorem we give general inequalities for Zipf-Mandelbrot entropies
corresponding to different parameters.
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Theorem 5.36 ([5]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then for any c,d ∈R+, we
have

logc+(1− c)
1
c
≥ Z(H,t2,s2)−

n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t2)s2Hn,t2,s2

≥ logd +1−d
n


i=1

(i+ t1)s1Hn,t1,s1

((i+ t2)s2Hn,t2,s2)2 . (5.65)

Proof. Let pi = 1
(i+t1)s1Hn,t1,s1

and qi = 1
(i+t2)s2 Hn,t2,s2

, i = 1,2, ...,n, then

n


i=1

qi logqi =
n


i=1

1
(i+ t2)s2Hn,t2,s2

log
1

(i+ t2)s2Hn,t2,s2
=−Z(H, t2,s2),

n


i=1

qi log pi =
n


i=1

1
(i+ t2)s2Hn,t2,s2

log
1

(i+ t1)s1Hn,t1,s1
=−

n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t2)s2Hn,t2,s2

.

Also Qn =
n


i=1

qi =
n


i=1

1
(i+ t2)s2Hn,t2,s2

= 1 and Pn =
n


i=1

1
(i+ t1)s1Hn,t1,s1

= 1

Therefore using (5.61) for pi = 1
(i+q)sHn,q,s

and qi = 1
(i+t2)s2Hn,t2,s2

, i = 1,2, ..,n, we obtain

(5.65). �

The following corollaries are the consequence of Theorem 5.50.

Corollary 5.18 ([5]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then

0≥ Z(H, t2,s2)−
n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t2)s2Hn,t2,s2

≥ 1−
n


i=1

(i+ t1)s1Hn,t1,s1

((i+ t2)s2Hn,t2,s2)2 . (5.66)

Proof. Take c = d = 1 in (5.65), we get (5.66). �

The following corollary is the application of Theorem 5.50 is in fact the application of
Slater’s inequality for Zipf-Mandelbrot entropies corresponding to different parameters.

Corollary 5.19 ([5]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then

n


i=1

log((i+ t1)s2Hn,t1,s1)
(i+ t2)s2Hn,t2,s2

−Z(H,t2,s2)≤ log

(
n


i=1

(i+ t1)s1Hn,t1,s1

((i+ t2)s2Hn,t2,s2)2

)
. (5.67)

Proof. Take d = 1

n
i=1

(i+t1)s1 Hn,t1,s1
((i+t2)s2 Hn,t2,s2 )2

in the right inequality of (5.65), we get (5.103). �

The following result for Zipf-Mandelbrot entropy has been obtained by using the right
inequality in (5.37).
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Theorem 5.37 ([5]) Let n ∈ {1,2,3, ...}, q ≥ 0, s, pi > 0, i = 1,2, ..,n, then for any d ∈
R+ we have

n


i=1

log pi

(i+q)sHn,q,s
+Z(H,q,s)≥ log

⎛⎝ 1

n
i=1

1
pi(i+q)2sH2

n,q,s

⎞⎠
≥ logd +1−d

n


i=1

1
pi(i+q)2sH2

n,q,s
. (5.68)

Proof. By setting (x) =− logx in (5.37) we have

−1
Qn

n


i=1

qi log
pi

qi
≤− log

Qn

n
i=1

q2
i

pi

≤− logd− 1
Qn

n


i=1

q2
i

pi

(
pi

qi
−d

)
. (5.69)

Now putting qi = 1
(i+q)sHn,q,s

, i = 1,2, ...,n, in (5.105) we deduce

−
n


i=1

log pi

(i+q)sHn,q,s
−Z(H,q,s)≤− log

⎛⎝ 1

n
i=1

1
pi(i+q)2sH2

n,q,s

⎞⎠
≤− logd−1+d

n


i=1

1
pi(i+q)2sH2

n,q,s
.

which is equivalent to (5.104). �

In the following theorem we have presented result for two Zipf-Mandelbrot entropies
corresponding to different parameters.

Theorem 5.38 ([5]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then for any d ∈ R+, we
have

n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t2)s2Hn,t2,s2

−Z(H,t2,s2)≤ log
n


i=1

((i+ t2)s2Hn,t2,s2)
2

(i+ t1)s1Hn,t1,s1

≤− logd−1+
d(i+ t1)s1Hn,t1,s1

((i+ t2)s2Hn,t2,s2)2 . (5.70)

Proof. As in the proof of Theorem 5.37, putting pi = 1
(i+t1)s1 Hn,t1,s1

and qi = 1
(i+t2)s2 Hn,t2,s2

,

i = 1,2, ...,n, in (5.105), we get (5.106). �

The following application of the inequality (5.38) for Zipf-Mandelbrot entropy holds.

Theorem 5.39 ([5]) Let n ∈ {1,2,3, ...}, q ≥ 0, s, pi > 0, i = 1,2, ..,n, then for any d ∈
R+, we have

− logd +
n


i=1

log pi

(i+q)sHn,q,s
+Z(H,q,s)+

n


i=1

1
pi(i+q)2sH2

n,q,s
(d− pi(i+q)sHn,q,s)



110 5 INEQUALITIES FOR SHANNON AND ZIPF-MANDELBROT ENTROPIES...

≥
∣∣∣∣∣ n


i=1

1
(i+q)sHn,q,s

∣∣∣ logd− log pi(i+q)sHn,q,s

∣∣∣
−

n


i=1

1
(i+q)sHn,q,s

∣∣∣ d
pi(i+q)sHn,q,s

−1
∣∣∣∣∣∣∣∣ . (5.71)

Proof. By using (5.38) for (x) =− logx, we have

− logd +
n


i=1

qi log
pi

qi
+

1
Qn

n


i=1

q2
i

pi

(
d− pi

qi

)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣ logd− log
pi

qi

∣∣∣− 1
Qn

n


i=1

qi

∣∣∣ qi

pi
(d− pi

qi
)
∣∣∣∣∣∣∣∣ . (5.72)

Now putting qi = 1
(i+q)sHn,q,s

, i = 1,2, ...,n, in (5.72) we obtain (5.71). �

The following consequence of the above theorem is in fact the refinement of inequality
(5.64).

Corollary 5.20 ([5]) Let n ∈ {1,2,3, ...}, q≥ 0, s, pi > 0, i = 1,2, ..,n and
x̃ := 1

n
i=1

1
pi(i+q)2sH2

n,q,s

. Then

− log x̃+
n


i=1

log pi

(i+q)sHn,q,s
+Z(H,q,s)

≥
∣∣∣∣∣ n


i=1

1
(i+q)sHn,q,s

∣∣∣ log x̃− log pi(i+q)sHn,q,s

∣∣∣
−

n


i=1

1
(i+q)sHn,q,s

∣∣∣ x̃
pi(i+q)sHn,q,s

−1
∣∣∣∣∣∣∣∣ . (5.73)

Proof. By setting d = x̃ in (5.71) we get (5.73). �

Corollary 5.21 ([5]) Let n ∈ {1,2,3, ...}, q≥ 0, s, pi > 0, i = 1,2, ..,n, then we have

− logPn +
n


i=1

log pi

(i+q)sHn,q,s
+Z(H,q,s)+

n


i=1

1
pi(i+q)2sH2

n,q,s
(Pn− pi(i+q)sHn,q,s)

≥
∣∣∣∣∣ n


i=1

1
(i+q)sHn,q,s

∣∣∣ logPn− log pi(i+q)sHn,q,s

∣∣∣
−

n


i=1

1
(i+q)sHn,q,s

∣∣∣ Pn

pi(i+q)sHn,q,s
−1
∣∣∣∣∣∣∣∣ . (5.74)

Proof. By setting d = Pn in (5.71) we get (5.74). �

In the following theorem we have given refinement of the right inequality in (5.65).
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Theorem 5.40 ([5]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then for any d ∈ R+, we
have

− logd +Z(H,t2,s2)−
n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t2)s2Hn,t2,s2

+
n


i=1

d(i+ t1)s1Hn,t1,s1

((i+ t2)s2Hn,t2,s2)2 −1

≥
∣∣∣∣∣ n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣ logd− log
(i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1

∣∣∣
−

n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣d(i+ t1)s1Hn,t1,s1

(i+ t2)s2Hn,t2,s2
−1
∣∣∣∣∣∣∣∣ . (5.75)

Proof. Putting pi = 1
(i+t1)s1Hn,t1,s1

and qi = 1
(i+t2)s2 Hn,t2,s2

, i = 1,2, ...,n, in (5.72), we obtain

(5.75). �

The following consequence of the above theorem is in fact refinement of Slater’s in-
equality for Zipf-Mandelbrot entropies corresponding to different parameters.

Corollary 5.22 ([5]) Let n∈ {1,2,3, ...}, t1, t2≥ 0, s1,s2 > 0 and x̃ = 1

n
i=1

(i+t1)s1 Hn,t1,s1
((i+t2)s2 Hn,t2,s2 )2

,

then

− log x̃+Z(H,t2,s2)−
n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t2)s2Hn,t2,s2

≥
∣∣∣∣∣ n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣ log x̃− log
(i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1

∣∣∣
−

n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣ x̃(i+ t1)s1Hn,t1,s1

(i+ t2)s2Hn,t2,s2
−1
∣∣∣∣∣∣∣∣ . (5.76)

Proof. By setting d = 1

n
i=1

(i+t1)s1 Hn,t1,s1
((i+t2)s2 Hn,t2,s2 )2

in (5.75), we obtain (5.76). �

The following theorem is the application of Theorem 5.23 for Zipf-Mandelbrot entropy.

Theorem 5.41 ([5]) Let n ∈ {1,2,3, ...}, q ≥ 0, s, pi > 0, i = 1,2, ..,n, then for any c ∈
R+, we have

−
n


i=1

log pi

(i+q)sHn,q,s
−Z(H,q,s)+ logc+(Pn− c)

1
c

≥
∣∣∣∣∣ n


i=1

1
(i+q)sHn,q,s

∣∣∣ log(pi(i+q)sHn,q,s)− logc
∣∣∣

− 1
c

n


i=1

1
(i+q)sHn,q,s

∣∣∣pi(i+q)sHn,q,s− c
∣∣∣∣∣∣∣∣ . (5.77)
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Proof. Using (5.41) for (x) = − logx and then putting qi = 1
(i+q)sHn,q,s

, i = 1,2, ...,n, we
obtain (5.112). �

Remark 5.5 If we set c = Pn in (5.112) then we obtain the inequality (14) as obtained in
[4].

Another application of Theorem 5.23 for Zipf-Mandelbrot entropies corresponding to dif-
ferent parameters has been given below.

Theorem 5.42 ([5]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then for any c ∈ R+, we
have

n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t2)s2Hn,t2,s2

−Z(H,t2,s2)+ logc+(1− c)
1
c

≥
∣∣∣∣∣ n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣ log
(i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
− logc

∣∣∣
− 1

c

n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣ (i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
− c
∣∣∣∣∣∣∣∣ . (5.78)

Proof. Using (5.41) for (x) =− logx, we obtain

−1
Qn

n


i=1

qi log
pi

qi
+ logc+

(
Pn

Qn
− c

)
1
c

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣ log
pi

qi
− logc

∣∣∣ − 1
cQn

n


i=1

qi

∣∣∣ pi

qi
− c
∣∣∣∣∣∣∣∣ . (5.79)

Now submitting pi by 1
(i+t1)s1 Hn,t1,s1

and qi by 1
(i+t2)s2 Hn,t2,s2

, i = 1,2, ...,n, in (5.79) we

deduce (5.112). �

Remark 5.6 If we set c = 1 in (5.78) then we obtain the inequality (16) as obtained in
[4].

In the rest of results we have obtained related results by using another convex functions.

Theorem 5.43 ([5]) Let n ∈ {1,2,3, ...}, q≥ 0, s,qi > 0, i = 1,2, ..,n with n
i=1 qi = Qn,

then for any c ∈R+, we have

Qnc logc+(1− cQn)(1+ logc)≤−
n


i=1

logqi

(i+q)sHn,q,s
−Z(H,q,s). (5.80)

Proof. Using (x) = x logx in the first inequality of (5.34) we obtain

Qnc logc+(Pn− cQn)(1+ logc)≤
n


i=1

pi log

(
pi

qi

)
. (5.81)
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Let pi = 1
(i+q)sHn,q,s

, i = 1,2, ...,n, then Pn = 1 and proceeding as in the proof of Theorem
5.50, we have

n


i=1

pi log pi =−Z(H,q,s).

Therefore (5.85) implies that

Qnc logc+(1− cQn)(1+ logc)≤−
n


i=1

logqi

(i+q)sHn,q,s
−Z(H,q,s). (5.82)

�

Corollary 5.23 ([5]) Let n∈ {1,2,3, ...}, q≥ 0, s,qi > 0, i = 1,2, ..,n with n
i=1 qi = Qn,

then for any c ∈ R+, we have

log
1
Qn
≤−

n


i=1

logqi

(i+q)sHn,q,s
−Z(H,q,s). (5.83)

Proof. By substituting c = 1
Qn

in (5.57), we get (5.83). �

Theorem 5.44 ([5]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then for any c ∈ R+, we
have

c logc+(1− c)(1+ logc)≤
n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

−Z(H, t1,s1) (5.84)

Proof. Using (x) = x logx in the first inequality of (5.34) we obtain

Qnc logc+(Pn− cQn) (1+ logc)≤
n


i=1

pi log

(
pi

qi

)
. (5.85)

Using (5.85) for pi = 1
(i+t1)s1Hn,t1,s1

and qi = 1
(i+t2)s2 Hn,t2,s2

, i = 1,2, ...,n, we obtain

n


i=1

pi log pi =−Z(H,t1,s1),
n


i=1

pi logqi =−
n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

.

Therefore (5.85) implies that

c logc+(1− c)(1+ logc)≤
n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

−Z(H,t1,s1).

This completes the proof. �

Corollary 5.24 ([5]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then we have

Z(H,t1,s1)≤
n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

(5.86)
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Proof. By taking c = 1 in (5.84) we get (5.86). �

Theorem 5.45 ([5]) Let n ∈ {1,2,3, ...}, q≥ 0, s, pi > 0, i = 1,2, ..,n with n
i=1 pi = Pn,

then for any d ∈R+, we have

d logd +Pn−d(1+
n


i=1

log pi

(i+q)sHn,q,s
+Z(H,q,s))

≥
∣∣∣∣∣ n


i=1

1
(i+q)sHn,q,s

∣∣∣d logd− pi(i+q)sHn,q,s log pi(i+q)sHn,q,s

∣∣∣
−

n


i=1

(i+q)sHn,q,s

∣∣∣(1+ log pi(i+q)sHn,q,s)(d− pi(i+q)sHn,q,s)
∣∣∣∣∣∣∣∣ . (5.87)

Proof. Using (x) = x logx in the inequality (5.38), then we obtain

d logd− 1
Qn

n


i=1

pi log
pi

qi
− 1

Qn

n


i=1

qi

(
1+ log

pi

qi

)(
d− pi

qi

)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣d logd− pi

qi
log

pi

qi

∣∣∣− 1
Qn

n


i=1

qi

∣∣∣(1+ log
pi

qi
)(d− pi

qi
)
∣∣∣∣∣∣∣∣ . (5.88)

which is equivalent to

d logd +
Pn

Qn
−d(1+

n


i=1

qi log
pi

qi
)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣d logd− pi

qi
log

pi

qi

∣∣∣− 1
Qn

n


i=1

qi

∣∣∣(1+ log
pi

qi
)(d− pi

qi
)
∣∣∣∣∣∣∣∣ . (5.89)

Putting qi = 1
(i+q)sHn,q,s

, i = 1,2, ...,n, in (5.89), we get (5.87). �

Theorem 5.46 ([5]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, s1,s2 > 0, then for any d ∈ R+, we
have

d logd +1−d(1−
n


i=1

log((i+ t1)s1Hn,t1,s1)
(i+ t2)s2Hn,t2,s2

+Z(H,t2,s2))

≥
∣∣∣∣∣ n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣d logd− (i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
log

(i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1

∣∣∣
−

n


i=1

1
(i+ t1)s1Hn,t2,s2

∣∣∣(1+ log
(i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
)(d− (i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
)
∣∣∣∣∣∣∣∣ . (5.90)

Proof. Using (5.85) for pi = 1
(i+t1)s1 Hn,t1,s1

and qi = 1
(i+t2)s2Hn,t2,s2

, i = 1,2, ...,n, we obtain

(5.90). �
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Theorem 5.47 ([5]) Let n ∈ {1,2,3, ...}, q≥ 0, s,qi > 0, i = 1,2, ..,n with n
i=1 qi = Qn,

then for any c ∈ R+, we have

−Z(H,q,s)−
n


i=1

logqi

(i+q)sHn,q,s
−Qnc logc− (1− cQn)(1+ logc)

≥
∣∣∣∣∣ n


i=1

qi

∣∣∣ log(qi(i+q)sHn,q,s)
qi(i+q)sHn,q,s

+ c logc
∣∣∣

− |1+ logc|
n


i=1

qi

∣∣∣ 1
qi(i+q)sHn,q,s

− c
∣∣∣∣∣∣∣∣ . (5.91)

Proof. Using inequality (5.41) for (x) = x logx we obtain

1
Qn

n


i=1

pi log
pi

qi
− c logc−

(
Pn

Qn
− c

)
(1+ logc)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣ pi

qi
log

pi

qi
− c logc

∣∣∣ − |1+ logc|
Qn

n


i=1

qi

∣∣∣ pi

qi
− c
∣∣∣∣∣∣∣∣ . (5.92)

Now putting pi = 1
(i+q)sHn,q,s

, i = 1,2, ...,n, in (5.92), we get (5.87). �

Remark 5.7 If we set c = 1
Qn

in (5.87) we deduce the inequality (17) as obtained in [4].

Theorem 5.48 ([5]) Let n ∈ {1,2,3, ...}, q≥ 0, s,qi > 0, i = 1,2, ..,n with n
i=1 qi = Qn,

then for any c ∈ R+, we have

n


i=1

log((i+ t2)s2Hn,t2,s2)
(i+ t1)s1Hn,t1,s1

−Z(H,t1,s1)− c logc− (1− c)(1+ logc)

≥
∣∣∣∣∣ n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣ (i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
log

(i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
− c logc

∣∣∣
− |1+ logc|

n


i=1

1
(i+ t2)s2Hn,t2,s2

∣∣∣(i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1
− c
∣∣∣∣∣∣∣∣ . (5.93)

Proof. Using (5.92) for pi = 1
(i+t1)s1Hn,t1,s1

and qi = 1
(i+t2)s2 Hn,t2,s2

, i = 1,2, ...,n, we get

(5.93). �

Remark 5.8 If we set c = 1 in (5.93) we deduce the inequality (19) as obtained in [4].

Now we give applications of the above some results in Linguistics.
Gelbukh and Sidorov in [14] observed the difference between the coefficients s1 and s2

in Zipf’s law for the English and Russian languages. They processed 39 literature texts for
each language, chosen randomly from different genres, with the requirement that the size
be greater than 10,000 running words each. They calculated coefficients for each of the
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mentioned texts and as the result they obtained the average s1 = 0.973863 for the English
language and s2 = 0.892869 for the Russian language.

In the following result we give application of inequalities (5.61) for the English lan-
guage.

Application 5.1 [[5]] Let n ∈ {1,2,3, ...}, pi > 0, i = 1,2, ..,n with n
i=1 pi = Pn, then

for any c,d ∈R+, we have

logc+(Pn− c)
1
c
≥

n


i=1

log pi

i0.973863Hn,0,0.973863
+Z(H,0,0.973863)

≥ logd +1−d
n


i=1

1

i1.947726piH2
n,0,0.973863

. (5.94)

Similarly we can give application for Russian language.
Now we give application of the result related two parameters: s1 = 0.973863 for the

English language and s2 = 0.892869 for the Russian language, which is in fact application
of the inequalities in (5.65).

Application 5.2 [[5]] Let n ∈ {1,2,3, ...}, then for any c,d ∈ R+, we have

logc+(1− c)
1
c
≥ Z(H,0,0.892869)−

n


i=1

log(i0.973863Hn,0,0.973863)
i0.892869Hn,0,0.892869

≥ logd +1−d
n


i=1

i0.973863Hn,0,0.973863

i0.892869Hn,0,0.892869)2 . (5.95)

Remark 5.9 By the similar way we can give applications of other related results.

5.7 Results for hybrid Zipf-Mandelbrot entropy

We start to give first general inequalities for Hybrid Zipf-Mandelbrot entropy which con-
tain two arbitrary positive real numbers.

Theorem 5.49 ([6]) Let n ∈ {1,2,3, ...}, q≥ 0, w,s, pi > 0, i = 1,2, ..,n with n
i=1 pi =

Pn, then for any c,d ∈ R+, we have

logc+(Pn− c)
1
c
≥

n


i=1

wi log pi

(i+q)s∗(s,q,w)
+H(∗,q,s)

≥ logd +1−d
n


i=1

w2i

pi(i+q)2s∗2(s,q,w)
, (5.96)
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Proof. Taking discrete measure, p→ pi, q→ qi and then taking (x) = − logx in (5.43)
we obtain

−Qn logc− (Pn− cQn)
1
c
≤

n


i=1

qi log

(
qi

pi

)
≤−Qn logd−Qn +d

n


i=1

q2
i

pi
. (5.97)

Let qi = wi

(i+q)s∗(s,q,w) , i = 1,2, ...,n, then Qn = n
i=1 qi = 1 and

n


i=1

qi logqi =
n


i=1

wi

(i+q)s∗(s,q,w)
log

wi

(i+q)s∗(s,q,w)

=
n


i=1

wi

(i+q)s∗(s,q,w)

(
log

wi

(i+q)s + log
1

∗(s,q,w)

)
=

n


i=1

wi

(i+q)s∗(s,q,w)
log

wi

(i+q)s −
log∗(s,q,w)
∗(s,q,w)

n


i=1

wi

(i+q)s =−H(∗,q,s)

and
n


i=1

qi log pi =
n


i=1

wi log pi

(i+q)s∗(s,q,w)

Therefore (5.97) implies that

− logc− (Pn− c)
1
c
≤−

n


i=1

wi log pi

(i+q)s∗(s,q,w)
−H(∗,q,s)

≤− logd−1+d
n


i=1

w2i

pi(i+q)2s∗2(s,q,w)
, (5.98)

which is equivalent to (5.96). �

The following corollaries are consequences of the above theorem.

Corollary 5.25 ([6]) Let n ∈ {1,2,3, ...}, q≥ 0, w,s, pi > 0, i = 1,2, ..,n with n
i=1 pi =

Pn, then we have

0≥
n


i=1

wi log pi

(i+q)s∗(s,q,w)
+H(∗,q,s)− logPn

≥ 1−Pn

n


i=1

w2i

pi(i+q)2s∗2(s,q,w)
. (5.99)

Proof. Taking c = d = Pn in (5.117), we get (5.99). �

The following consequence of Theorem 5.50 is in fact the application of Slater’s in-
equality.

Corollary 5.26 ([6]) Let n ∈ {1,2,3, ...}, q≥ 0, w,s, pi > 0, i = 1,2, ..,n, then

n


i=1

wi log pi

(i+q)s∗(s,q,w)
+H(∗,q,s)≥ log

1

n
i=1

w2i

pi(i+q)2s∗2(s,q,w)

. (5.100)
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Proof. By setting d = 1

n
i=1

w2i

pi(i+q)2s∗2(s,q,w)

in the right inequality of (5.117), we get (5.100).

�

In the following theorem we give general inequalities for hybrid Zipf-Mandelbrot en-
tropies corresponding to different parameters.

Theorem 5.50 ([6]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, w1,w2,s1,s2 > 0, then for any c,d ∈
R+, we have

logc+(1− c)
1
c
≥ H(∗,t2,s2)+

n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)
log

wi
1

(i+ t1)s1∗(t1,s1,w1)

≥ logd +1−d
n


i=1

w2i
2 (i+ t1)s1∗(t1,s1,w1)

wi
1((i+ t2)s2∗(t2,s2,w2))2

. (5.101)

Proof. Let pi = wi
1

(i+t1)s1∗(t1,s1,w1)
and qi =

wi
2

(i+t2)s2∗(t2,s2,w2)
, i = 1,2, ...,n, then

n


i=1

qi logqi =
n


i=1

1
(i+ t2)s2∗(t2,s2,w2)

log
1

(i+ t2)s2∗(t2,s2,w2)
=−H(∗,t2,s2),

n


i=1

qi log pi =
n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)
log

wi
1

(i+ t1)s1∗(t1,s1,w1)

Also Qn =
n


i=1

qi =
n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)
= 1 and Pn =

n


i=1

wi
1

(i+ t1)s1∗(t1,s1,w1)
= 1

Therefore using (5.97) for pi = wi
1

(i+t1)s1∗(t1,s1,w1)
and qi = wi

2
(i+t2)s2∗(t2,s2,w2)

, i = 1,2, ..,n,

we obtain (5.101). �

The following corollaries are the consequence of Theorem 5.50.

Corollary 5.27 ([6]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, w1,w2,s1,s2 > 0, then

0 ≥ H(∗,t2,s2)+
n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)
log

wi
1

(i+ t1)s1∗(t1,s1,w1)

≥ 1−
n


i=1

w2i
2 (i+ t1)s1∗(t1,s1,w1)

wi
1((i+ t2)s2∗(t2,s2,w2))2

. (5.102)

Proof. Take c = d = 1 in (5.101), we get (5.102). �

The following corollary is the application of Theorem 5.50 which is in fact the applica-
tion of Slater’s inequality for hybrid Zipf-Mandelbrot entropies corresponding to different
parameters.
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Corollary 5.28 ([6]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, w1,w2,s1,s2 > 0, then

n


i=1

wi
2 log
(

(i+t1)s1∗(t1,s1,w1)
wi

1

)
(i+ t2)s2∗(t2,s2,w2)

−H(∗,t2,s2)

≤ log

(
n


i=1

w2i
2 (i+ t1)s1∗(t1,s1,w1)

wi
1((i+ t2)s2∗(t2,s2,w2))2

)
. (5.103)

Proof. Take d = 1

n
i=1

w2i
2 (i+t1)s1∗(t1,s1,w1)

wi
1((i+t2)s2∗(t2,s2 ,w2))2

in the right inequality of (5.101), we get (5.103).

�

The following result for hybrid Zipf-Mandelbrot entropy has been obtained by using
the right inequality in (5.46).

Theorem 5.51 ([6]) Let n ∈ {1,2,3, ...}, q ≥ 0, w,s, pi > 0, i = 1,2, ..,n, then for any
d ∈ R+ we have

n


i=1

wi log pi

(i+q)s∗(s,q,w)
+H(∗,q,s)≥ log

⎛⎝ 1

n
i=1

w2i

pi(i+q)2s∗2(s,q,w)

⎞⎠
≥ logd +1−d

n


i=1

w2i

pi(i+q)2s∗2(s,q,w)
. (5.104)

Proof. Taking discrete measure, p→ pi, q→ qi and then taking (x) = − logx in (5.43)
we obtain

−1
Qn

n


i=1

qi log
pi

qi
≤− log

Qn

n
i=1

q2
i

pi

≤− logd− 1
Qn

n


i=1

q2
i

pi

(
pi

qi
−d

)
. (5.105)

Now putting qi = wi

(i+q)s∗(s,q,w) , i = 1,2, ...,n, in (5.105) we deduce

−
n


i=1

wi log pi

(i+q)s∗(s,q,w)
−H(∗,q,s)≤− log

⎛⎝ 1

n
i=1

w2i

pi(i+q)2s∗2(s,q,w)

⎞⎠
≤− logd−1+d

n


i=1

w2i

pi(i+q)2s∗2(s,q,w)
,

which is equivalent to (5.104). �

In the following theorem we have presented result for two hybrid Zipf-Mandelbrot
entropies corresponding to different parameters.
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Theorem 5.52 ([6]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, w1,w2,s1,s2 > 0, then for any d ∈
R+, we have

n


i=1

wi
2 log
(

(i+t1)s1∗(t1,s1,w1)
wi

1

)
(i+ t2)s2∗(t2,s2,w2)

−H(∗,t2,s2)≤ log
n


i=1

((i+ t2)s2∗(t2,s2,w2))2

(i+ t1)s1Hn,t1,s1

≤− logd−1+
dw2i

2 (i+ t1)s1Hn,t1,s1

wi
1((i+ t2)s2Hn,t2,s2)2

. (5.106)

Proof. As in the proof of Theorem 5.51, putting pi =
wi

1
(i+t1)s1∗(t1,s1,w1)

and

qi = wi
2

(i+t2)s2∗(t2,s2,w2) , i = 1,2, ...,n, in (5.105), we get (5.106). �

The following application of the inequality (5.47) for hybrid Zipf-Mandelbrot entropy
holds.

Theorem 5.53 ([6]) Let n ∈ {1,2,3, ...}, q ≥ 0, w,s, pi > 0, i = 1,2, ..,n, then for any
d ∈R+, we have

− logd +
n


i=1

wi log pi

(i+q)s∗(s,q,w)
+H(∗,t,s)−1+d

n


i=1

w2i

pi(i+q)2s∗2(s,q,w)

≥
∣∣∣∣∣ n


i=1

wi

(i+q)s∗(s,q,w)

∣∣∣ logd− log
pi(i+q)s∗(s,q,w)

wi

∣∣∣
−

n


i=1

wi

(i+q)s∗(s,q,w)

∣∣∣ dwi

pi(i+q)s∗(s,q,w)
−1
∣∣∣∣∣∣∣∣ . (5.107)

Proof. Taking discrete measure, p→ pi, q→ qi and then taking (x) = − logx in (5.47)
we obtain

− logd +
n


i=1

qi log
pi

qi
+

1
Qn

n


i=1

q2
i

pi

(
d− pi

qi

)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣ logd− log
pi

qi

∣∣∣− 1
Qn

n


i=1

qi

∣∣∣ qi

pi
(d− pi

qi
)
∣∣∣∣∣∣∣∣ . (5.108)

Now putting qi = wi

(i+q)s∗(s,q,w) , i = 1,2, ...,n, in (5.108) we obtain (5.107). �

The following consequence of the above theorem is in fact the refinement of inequality
(5.100).

Corollary 5.29 ([6]) Let n ∈ {1,2,3, ...}, q≥ 0, w,s, pi > 0, i = 1,2, ..,n and
x̃ := 1

n
i=1

w2i

pi(i+q)2s∗2(s,q,w)

. Then

− log x̃+
n


i=1

wi log pi

(i+q)s∗(s,q,w)
+H(∗,t,s)
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≥
∣∣∣∣∣ n


i=1

wi

(i+q)s∗(s,q,w)

∣∣∣ log x̃− log
pi(i+q)s∗(s,q,w)

wi

∣∣∣
−

n


i=1

wi

(i+q)s∗(s,q,w)

∣∣∣ x̃wi

pi(i+q)s∗(s,q,w)
−1
∣∣∣∣∣∣∣∣ . (5.109)

Proof. By setting d = x̃ in (5.107) we get (5.109). �

In the following theorem we have given refinement of the right inequality in (5.101).

Theorem 5.54 ([6]) Let n ∈ {1,2,3, ...}, w1,w2,t1,t2 ≥ 0, s1,s2 > 0, then for any d ∈
R+, we have

H(∗, t2,s2)+
n


i=1

wi
2 log

wi
1

(i+t1)s1∗(t1,s1,w1)

(i+ t2)s2∗(t2,s2,w2)
− logd−1+d

n


i=1

w2i
2 (i+ t1)s1∗(t1,s1,w1)

wi
1((i+ t2)s2∗(t2,s2,w2))2

≥
∣∣∣∣∣ n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)

∣∣∣ logd− log
wi

1(i+ t2)s2∗(t2,s2,w2)
wi

2(i+ t1)s1∗(t1,s1,w1)

∣∣∣
−

n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)

∣∣∣dwi
1(i+ t2)s2∗(t2,s2,w2)

wi
2(i+ t1)s1∗(t1,s1,w1)

−1
∣∣∣∣∣∣∣∣ . (5.110)

Proof. Putting pi = wi
1

(i+t1)s1∗(t1,s1,w1)
and qi = wi

2
(i+t2)s2∗(t2,s2,w2)

, i = 1,2, ...,n, in (5.108),
we obtain (5.110). �

The following consequence of the above theorem is in fact refinement of Slater’s in-
equality for Zipf-Mandelbrot entropies corresponding to different parameters.

Corollary 5.30 ([6]) Let n∈{1,2,3, ...}, t1,t2≥ 0, s1,s2 > 0 and x̃ := 1

n
i=1

wi
2(i+t1)s1 Hn,t1,s1

wi
1((i+t2)∗(t2,s2 ,w2))2

,

then

− log x̃+Z(H,t2,s2)+
n


i=1

wi
2 log

wi
1

(i+t1)s1∗(t1,s1,w1)

(i+ t2)s2∗(t2,s2,w2)

≥
∣∣∣∣∣ n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)

∣∣∣ log x̃− log
wi

1(i+ t2)s2∗(t2,s2,w2)
wi

2(i+ t1)s1∗(t1,s1,w1)

∣∣∣
−

n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)

∣∣∣ x̃wi
1(i+ t2)s2∗(t2,s2,w2)

wi
2(i+ t1)s1∗(t1,s1,w1)

−1
∣∣∣∣∣∣∣∣ . (5.111)

Proof. By setting d = 1

n
i=1

wi
2(i+t1)s1 Hn,t1,s1

wi
1((i+t2)s2∗(t2,s2,w2))2

in (5.110), we obtain (5.111). �

The following theorem is the application of Theorem 5.28 for hybrid Zipf-Mandelbrot
entropy.
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Theorem 5.55 ([6]) Let n ∈ {1,2,3, ...}, q ≥ 0, w,s, pi > 0, i = 1,2, ..,n, then for any
c ∈R+, we have

−
n


i=1

wi log pi

(i+q)s∗(s,q,w)
−H(∗,t,s)+ logc+(Pn− c)

1
c

≥
∣∣∣∣∣ n


i=1

wi

(i+q)s∗(s,q,w)

∣∣∣ log
( pi(i+q)s∗(s,q,w)

wi

)
− logc

∣∣∣
− 1

c

n


i=1

wi

(i+q)s∗(s,q,w)

∣∣∣ pi(i+q)s∗(s,q,w)
wi − c

∣∣∣∣∣∣∣∣ . (5.112)

Proof. Taking discrete measure, p→ pi, q→ qi and then taking (x) = − logx in (5.50)
we get

− 1
Qn

n


i=1

qi log

(
pi

qi

)
+ logc+

(
Pn

Qn
− c

)
1
c

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣ log

(
pi

qi

)
− logc

∣∣∣ − 1
cQn

n


i=1

qi

∣∣∣ pi

qi
− c
∣∣∣∣∣∣∣∣ . (5.113)

Now putting qi = wi

(i+q)s∗(s,q,w) , i = 1,2, ...,n, in (5.113) we obtain (5.112). �

Another application of Theorem 5.28 for Zipf-Mandelbrot entropies corresponding to
different parameters has been given below.

Theorem 5.56 ([6]) Let n∈ {1,2,3, ...}, t1,t2≥ 0, w1,w2,s1,s2 > 0, then for any c∈R+,
we have

logc+(1− c)
1
c
−H(∗,t2,s2)+

n


i=1

wi
2 log

wi
1

(i+t1)s1∗(t1,s1,w1)

(i+ t2)s2∗(t2,s2,w2)

≥
∣∣∣∣∣ n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)

∣∣∣ log
wi

1(i+ t2)s2∗(t2,s2,w2)
wi

2(i+ t1)s1∗(t1,s1,w1)
− logc

∣∣∣
− 1

c

n


i=1

wi
2

(i+ t2)s2∗(t2,s2,w2)

∣∣∣wi
1(i+ t2)s2∗(t2,s2,w2)

wi
2(i+ t1)s1∗(t1,s1,w1)

− c
∣∣∣∣∣∣∣∣ . (5.114)

Proof. Substitute pi =
wi

1
(i+t1)s1∗(t1,s1,w1)

and qi =
wi

2
(i+t2)s2∗(t2,s2,w2)

, i = 1,2, ...,n, in (5.113)
we deduce (5.114). �

In the rest of results we have obtained related results by using another convex functions.

Theorem 5.57 ([6]) Let n ∈ {1,2,3, ...}, q ≥ 0, w,s,qi > 0, i = 1,2, ..,n with n
i=1 qi =

Qn, then for any c ∈ R+, we have

Qnc logc+(1− cQn)(1+ logc)≤−
n


i=1

wi logqi

(i+q)s∗(s,q,w)
−H(∗, t2,s2). (5.115)
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Proof. Taking discrete measure, p→ pi, q→ qi and then using (x) = x logx in the first
inequality of (5.43) we obtain

Qnc logc+(Pn− cQn) (1+ logc)≤
n


i=1

pi log

(
pi

qi

)
. (5.116)

Let pi = wi

(i+q)s∗(s,q,w) , i = 1,2, ...,n, then Pn = 1 and proceeding as in the proof of Theorem
5.50, we have

n


i=1

pi log pi =−H(∗,t2,s2).

Therefore (5.116) implies that

Qnc logc+(1− cQn)(1+ logc)≤−
n


i=1

wi logqi

(i+q)s∗(s,q,w)
−H(∗,t2,s2). (5.117)

�

Corollary 5.31 ([6]) Let n ∈ {1,2,3, ...}, q ≥ 0, w,s,qi > 0, i = 1,2, ..,n with n
i=1 qi =

Qn, then we have

log
1
Qn
≤−

n


i=1

wi logqi

(i+q)s∗(s,q,w)
−H(∗,t2,s2). (5.118)

Proof. By setting c = 1
Qn

in (5.115) we obtain (5.118). �

Theorem 5.58 ([6]) Let n∈{1,2,3, ...}, t1, t2≥ 0, w1,w2,s1,s2 > 0, then for any c∈R+,
we have

c logc+(1− c)(1+ logc)≤
n


i=1

wi
1 log( (i+t2)s2∗(t2,s2,w2)

wi
2

)

(i+ t1)s1∗(t1,s1,w1)
−H(∗,t2,s2). (5.119)

Proof. If pi = wi
1

(i+t1)s1∗(t1,s1,w1)
and qi =

wi
2

(i+t2)s2∗(t2,s2,w2)
, i = 1,2, ...,n, then

n


i=1

pi log pi =−H(∗,t2,s2),
n


i=1

pi logqi =
n


i=1

wi
1 log( wi

2
(i+t2)s2∗(t2,s2,w2)

)

(i+ t1)s1∗(t1,s1,w1)
.

Therefore (5.116) implies that

c logc+(1− c)(1+ logc)≤
n


i=1

wi
1 log( (i+t2)s2∗(t2,s2,w2)

wi
2

)

(i+ t1)s1∗(t1,s1,w1)
−H(∗,t2,s2).

This completes the proof. �
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Corollary 5.32 ([6]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, w1,w2,s1,s2 > 0, then we have

H(∗,t2,s2)≤
n


i=1

wi
1 log( (i+t2)s2∗(t2,s2,w2)

wi
2

)

(i+ t1)s1∗(t1,s1,w1)
. (5.120)

Proof. By taking c = 1 in (5.119), we get (5.120). �

Theorem 5.59 ([6]) Let n ∈ {1,2,3, ...}, q≥ 0, w,s, pi > 0, i = 1,2, ..,n with n
i=1 pi =

Pn, then for any d ∈ R+, we have

d logd +Pn−d(1+
n


i=1

wi log pi

(i+q)s∗(s,q,w)
+H(∗,t,s))

≥
∣∣∣∣∣ n


i=1

wi

(i+q)s∗(s,q,w)

∣∣∣d logd− pi(i+q)s∗(s,q,w)
wi log

(
pi(i+q)s∗(s,q,w)

wi

)∣∣∣
−

n


i=1

(i+q)sHn,q,s

∣∣∣(1+ log

(
pi(i+q)s∗(s,q,w)

wi

))(
d− pi(i+q)s∗(s,q,w)

wi

)∣∣∣∣∣∣∣∣ .
(5.121)

Proof. Taking discrete measure, p→ pi, q→ qi and then using (x) = x logx in the in-
equality (5.47), then we obtain

d logd− 1
Qn

n


i=1

pi log
pi

qi
− 1

Qn

n


i=1

qi

(
1+ log

pi

qi

)(
d− pi

qi

)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣d logd− pi

qi
log

pi

qi

∣∣∣− 1
Qn

n


i=1

qi

∣∣∣(1+ log
pi

qi
)(d− pi

qi
)
∣∣∣∣∣∣∣∣ . (5.122)

which is equivalent to

d logd +
Pn

Qn
−d(1+

n


i=1

qi log
pi

qi
)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣d logd− pi

qi
log

pi

qi

∣∣∣− 1
Qn

n


i=1

qi

∣∣∣(1+ log
pi

qi
)(d− pi

qi
)
∣∣∣∣∣∣∣∣ . (5.123)

Putting qi = wi

(i+q)s∗(s,q,w) , i = 1,2, ...,n, in (5.123), we get (5.121). �
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Theorem 5.60 ([6]) Let n ∈ {1,2,3, ...}, t1,t2 ≥ 0, w1,w2,s1,s2 > 0, then for any d ∈
R+, we have

d logd +1−d(1−
n


i=1

wi
2 log
(

wi
1(i+t2)s2∗(t2,s2,w2)

wi
2(i+t1)s1∗(t1,s1,w1)

)
(i+ t2)s2∗(t2,s2,w2)

+H(∗,t,s)))

≥

∣∣∣∣∣∣∣
n


i=1

wi
2

∣∣∣d logd− wi
1(i+t2)s2∗(t2,s2,w2)

wi
2(i+t1)s1∗(t1,s1,w1)

log
wi

1(i+t2)s2∗(t2,s2,w2)
wi

2(i+t1)s1∗(t1,s1,w1)

∣∣∣
(i+ t2)s2∗(t2,s2,w2)

−
n


i=1

wi
1

∣∣∣(1+ log
wi

1(i+t2)s2∗(t2,s2,w2)
wi

2(i+t1)s1∗(t1,s1,w1)

)(
d− wi

1(i+t2)s2∗(t2,s2,w2)
wi

2(i+t1)s1∗(t1,s1,w1)

)∣∣∣
(i+ t1)s1∗(t1,s1,w1)

∣∣∣∣∣∣∣ . (5.124)

Proof. Using (5.123) for pi = wi
1

(i+t1)s1∗(t1,s1,w1)
and qi = wi

2
(i+t2)s2∗(t2,s2,w2)

, i = 1,2, ...,n,
we obtain (5.124). �

Theorem 5.61 ([6]) Let n ∈ {1,2,3, ...}, q ≥ 0, w,s,qi > 0, i = 1,2, ..,n with n
i=1 qi =

Qn, then for any c ∈R+, we have

−H(∗,t,s)−
n


i=1

wi logqi

(i+q)s∗(s,q,w)
−Qnc logc− (1− cQn)(1+ logc)

≥
∣∣∣∣∣∣

n


i=1

qi

∣∣∣wi log
(

wi

qi(i+q)s∗(s,q,w)

)
qi(i+q)s∗(s,q,w)

− c logc
∣∣∣

− |1+ logc|
n


i=1

qi

∣∣∣ wi

qi(i+q)s∗(s,q,w)
− c
∣∣∣∣∣∣∣∣ . (5.125)

Proof. Taking discrete measure, p→ pi, q→ qi and then using inequality (5.50) for (x) =
x logx, we obtain

1
Qn

n


i=1

pi log
pi

qi
− c logc−

(
Pn

Qn
− c

)
(1+ logc)

≥
∣∣∣∣∣ 1
Qn

n


i=1

qi

∣∣∣ pi

qi
log

pi

qi
− c logc

∣∣∣ − |1+ logc|
Qn

n


i=1

qi

∣∣∣ pi

qi
− c
∣∣∣∣∣∣∣∣ . (5.126)

Now putting pi = wi

(i+q)s∗(s,q,w) , i = 1,2, ...,n, in (5.126), we get (5.125). �
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Theorem 5.62 ([6]) Let n∈{1,2,3, ...}, q≥ 0, w1,w2,s,qi > 0, i = 1,2, ..,n withn
i=1 qi =

Qn, then for any c ∈ R+, we have

n


i=1

wi
1 log
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(i+t2)s2∗(t2,s2,w2)
wi

2

)
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−H(∗,t1,s1)− c logc− (1− c)(1+ logc)

≥
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n
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2

∣∣∣wi
1(i+t2)s2∗(t2,s2,w2)

wi
2(i+t1)s1∗(t1,s1,w1)

log
(

wi
1(i+t2)s2∗(t2,s2,w2)
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2(i+t1)s1∗(t1,s1,w1)

)
− c logc
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(i+ t2)s2∗(t2,s2,w2)

− |1+ logc|
n


i=1

wi
2

∣∣∣wi
1(i+t2)s2∗(t2,s2,w2)

wi
2(i+t1)s1∗(t1,s1,w1)

− c
∣∣∣

(i+ t2)s2∗(t2,s2,w2)

∣∣∣∣∣∣∣ . (5.127)

Proof. Using (5.126) for pi = wi
1

(i+t1)s1∗(t1,s1,w1)
and qi = wi

2
(i+t2)s2∗(t2,s2,w2)

, i = 1,2, ...,n,
we get (5.127). �
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Abstract. Jensens inequality is important to obtain inequalities for divergence be-
tween probability distributions. By applying a refinement of Jensen inequality [17]
and introducing a new functional based on f -divergence functional, we obtain some
estimates for the new functionals, the f -divergence and Rényi divergence. Some
inequalities for Rényi and Shannon estimates are constructed. Zipf-Mandelbrot law
is used to illustrate the results and generalize the refinement of Jensens inequality
and new inequalities of Rényi and Shannon entropies for m-convex function using
Montgomery identity, Lidstone polynomial, Taylor polynomial and Hermite inter-
polating polynomial.
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6.1 Introduction

The most commonly used words, the largest cities of countries income of billionare can be
described in term of Zipf’s law. The f -divergence which means that distance between two
probability distribution by making an average value, which is weighted by a specified func-
tion. As f -divergence, there are other probabilities distributions like Csiszar f -divergence
[19, 20], some special case of which are Kullback-Leibler-divergenceuse to find the appro-
priate distance between the probability distribution (see [23, 24]). The notion of distance
is stronger than divergence because it give the properties of symmetry and triangle in-
equalities. Probability theory has application in many fields and the divergence between
probability distribution have many application in these fields.

Many natural phenomena’s like distribution of wealth and income in a society, dis-
tribution of face book likes, distribution of football goals follows power law distribution
(Zipf’s Law). Like above phenomena’s, distribution of city sizes also follow Power Law
distribution. Auerbach [5] first time gave the idea that the distribution of city size can
be well approximated with the help of Pareto distribution (Power Law distribution). This
idea was well refined by many researchers but Zipf [13] worked significantly in this field.
The distribution of city sizes is investigated by many scholars of the urban economics, like
Rosen and Resnick [30] , Black and Henderson [7], Ioannides and Overman [18], Soo [31],
Anderson and Ge [4] and Bosker et al. [8]. Zipf’s law states that: “The rank of cities with
a certain number of inhabitants varies proportional to the city sizes with some negative
exponent, say that is close to unit”. In other words, Zipf’s Law states that the product of
city sizes and their ranks appear roughly constant. This indicates that the population of
the second largest city is one half of the population of the largest city and the third largest
city equal to the one third of the population of the largest city and the population of n-th
city is 1

n of the largest city population. This rule is called rank, size rule and also named
as Zipf’s Law. Hence Zip’s Law not only shows that the city size distribution follows the
Pareto distribution, but also show that the estimated value of the shape parameter is equal
to unity.

In [21] L. Horváth et al. introduced some new functionals based on the f -divergence
functionals, and obtained some estimates for the new functionals. They obtained f -di-
vergence and Rényi divergence by applying a cyclic refinement of Jensen’s inequality.
They also construct some new inequalities for Rényi and Shannon entropies and used Zipf-
Madelbrot law to illustrate the results.

Higher order convex function was introduced by T. Popoviciu (see [28, p. 15]). The
inequalities involving higher order convex functions are used by physicists in higher di-
mensions problems. S. I. Butt et al. in their work stated that many of the results are not
true for higher order convex functions which are true for convex functions, which convince
us to study the results involving higher order convexity (see [10]). In [28, p. 16], the fol-
lowing criteria is given to check the m-convexity of the function.
If f (m) exists, then f is m-convex if and only if f (m) ≥ 0.
In recent years many researchers have generalized the inequalities for m-convex func-
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tions; like S. I. Butt et al. generalized the Popoviciu inequality for m-convex function
using Taylor’s formula, Lidstone polynomial, montgomery identity, Fink’s identity, Abel-
Gonstcharoff interpolation and Hermite interpolating polynomial (see [9, 10, 11, 12, 13]).

Since many years Jensen’s inequality has of great interest. The researchers have given
the refinement of Jensen’s inequality by defining some new functions (see [16, 17] ). Like
many researchers L. Horváth and J. Pečarić in ([14, 17], see also [15, p. 26]), gave a
refinement of Jensen’s inequality for convex function. They defined some essential notions
to prove the refinement given as follows:
Let X be a set, and:
P(X) := Power set of X ,
|X |:= Number of elements of X ,
N:= Set of natural numbers with 0.
Consider q≥ 1 and r ≥ 2 be fixed integers. Define the functions

Fr,s : {1, . . . ,q}r→ {1, . . . ,q}r−1 1≤ s≤ r,

Fr : {1, . . . ,q}r→ P
({1, . . . ,q}r−1) ,

and
Tr : P({1, . . . ,q}r)→ P

({1, . . . ,q}r−1) ,
by

Fr,s(i1, . . . , ir) := (i1, i2, . . . , is−1, is+1, . . . , ir) 1≤ s≤ r,

Fr(i1, . . . , ir) :=
r⋃

s=1

{Fr,s(i1, . . . , ir)},

and

Tr(I) =

{
 , I =  ;⋃
(i1,...,ir)∈I

Fr(i1, . . . , ir), I 
=  .

Next let the function

r,i : {1, . . . ,q}r→N 1≤ i≤ q

defined by

r,i(i1, . . . , ir) is the number of occurences of i in the sequence (i1, . . . , ir).

For each I ∈ P({1, . . . ,q}r) let

I,i := 
(i1,...,ir)∈I

r,i(i1, . . . , ir) 1≤ i≤ q.

(H1) Let n,m be fixed positive integers such that n ≥ 1, m ≥ 2 and let Im be a subset of
{1, . . . ,n}m such that

Im,i ≥ 1 1≤ i≤ n.
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Introduce the sets Il ⊂ {1, . . . ,n}l(m−1≥ l ≥ 1) inductively by

Il−1 := Tl(Il) m≥ l ≥ 2.

Obviously the sets I1 = {1, . . . ,n}, by (H1) and this insures that I1 ,i = 1(1≤ i≤ n). From
(H1) we have Il ,i ≥ 1(m−1≥ l ≥ 1,1≤ i≤ n).
For m≥ l ≥ 2, and for any ( j1, . . . , jl−1) ∈ Il−1, let

HIl ( j1, . . . , jl−1) := {((i1, . . . , il),k)×{1, . . . , l}|Fl,k(i1, . . . , il) = ( j1, . . . , jl−1)}.
With the help of these sets they define the functions Im,l : Il → N(m≥ l ≥ 1) inductively
by

Im ,m(i1, . . . , im) := 1 (i1, . . . , im) ∈ Im;

Im ,l−1( j1, . . . , jl−1) := 
((i1,...,il),k)∈HIl

( j1,..., jl−1)
Im,l(i1, . . . , il).

They define some special expressions for 1≤ l ≤ m, as follows

Am,l = Am,l(Im,x1, . . . ,xn, p1, . . . , pn; f ) :=
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

pi j

Im,i j

)
f

⎛⎜⎜⎜⎝
l

j=1

pi j
Im,i j

xi j

l

j=1

pi j
Im,i j

⎞⎟⎟⎟⎠
and prove the following theorem.

Theorem 6.1 Assume (H1), and let f : I → R be a convex function where I ⊂ R is an

interval. If x1, . . . ,xn ∈ I and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1, then

f

(
n


s=1

psxs

)
≤Am,m ≤Am,m−1 ≤ . . .≤Am,2 ≤Am,1 =

n


s=1

ps f (xs) . (6.1)

We define the following functionals by taking the differences of refinement of Jensen’s
inequality given in (6.1).

1( f ) = Am,r− f

(
n


s=1

psxs

)
, r = 1, . . . ,m, (6.2)

2( f ) = Am,r−Am,k, 1≤ r < k≤ m. (6.3)

Under the assumptions of Theorem 6.1, we have

i( f )≥ 0, i = 1,2. (6.4)

Inequalities (6.4) are reversed if f is concave on I.
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6.1.1 Inequalities for Csiszár divergence

In [19, 20] Csiszár introduced the following notion.

Definition 6.1 Let f : R+→R
+ be a convex function, let r=(r1, . . . ,rn) and q=(q1, . . . ,qn)

be positive probability distributions. Then f -divergence functional is defined by

If (r,q) :=
n


i=1

qi f

(
ri

qi

)
. (6.5)

And he stated that by defining

f (0) := lim
x→0+

f (x); 0 f

(
0
0

)
:= 0; 0 f

(a
0

)
:= lim

x→0+
x f
(a

0

)
, a > 0, (6.6)

we can also use the nonnegative probability distributions as well.

In [21], L. Horv́ath, et al gave the following functional on the based of previous definition.

Definition 6.2 Let I ⊂R be an interval and let f : I→R be a function, let r = (r1, . . . ,rn)
∈ R

n and q = (q1, . . . ,qn) ∈ (0,)n such that

rs

qs
∈ I, s = 1, . . . ,n.

Then they define the sum as Î f (r,q) as

Î f (r,q) :=
n


s=1

qs f

(
rs

qs

)
. (6.7)

We apply Theorem 6.1 to Î f (r,q)

Theorem 6.2 Assume (H1), let I ⊂ R be an interval and let r = (r1, . . . ,rn) and
q = (q1, . . . ,qn) are in (0,)n such that

rs

qs
∈ I, s = 1, . . . ,n.

(i) If f : I→R is convex function, then

Î f (r,q) =
n


s=1

qs f

(
rs

qs

)
≥ . . .≥ (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)
f

⎛⎜⎜⎜⎝l
j=1

ri j
Im,i j

l

j=1

qi j
Im,i j

⎞⎟⎟⎟⎠≥ . . .≥ f

(
n

s=1 rs

n
s=1 qs

) n


s=1

qs. (6.8)
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If f is concave function, then inequality signs in (6.8) are reversed.
(ii) If f : I→ R is a function such that x→ x f (x)(x ∈ I) is convex, then(

n


s=1

rs

)
f

(
n


s=1

rs

n
s=1 qs

)
≤ . . .≤ (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im ,i j

)⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ f

⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠≤ . . .≤
n


s=1

rs f

(
rs

qS

)
=Îid f (r,q) . (6.9)

Proof. (i) Consider ps = qs
n

s=1 qs
and xs = rs

qs
in Theorem 6.1, we have

f

(
n


s=1

qs

n
s=1 qs

rs

qs

)
≤ . . .≤ (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

⎛⎝ l


j=1

qi j

n
s=1 qs

Im,i j

⎞⎠ f

⎛⎜⎜⎜⎜⎝
l

j=1

qi j
n

i=1 qi
Im,i j

ri j
qi j

l

j=1

qi j
n

i=1 qi
Im,i j

⎞⎟⎟⎟⎟⎠≤ . . .≤
n


s=1

qs

n
i=1 qs

f

(
rs

qs

)
. (6.10)

And taking the sum n
s=1 qi we have (6.8).

(ii) Using f := id f (where “id” is the identity function) in Theorem 6.1, we have

n


s=1

psxs f

(
n


s=1

psxs

)
≤ . . .≤ (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

pi j

Im,i j

)⎛⎜⎜⎜⎝
l

j=1

pi j
Im,i j

xi j

l

j=1

pi j
Im,i j

⎞⎟⎟⎟⎠ f

⎛⎜⎜⎜⎝
l

j=1

pi j
Im,i j

xi j

l

j=1

pi j
Im,i j

⎞⎟⎟⎟⎠≤ . . .≤
n


s=1

psxs f (xs). (6.11)

Now on using ps = qs
n

s=1 qs
and xs = rs

qs
, s = 1, . . . ,n, we get

n


s=1

qs

n
s=1 qs

rs

qs
f

(
n


s=1

qs

n
s=1 qs

rs

qs

)
≤ . . .≤ (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

⎛⎝ l


j=1

qi j

n
s=1 qs

Im,i j

⎞⎠
⎛⎜⎜⎜⎝l

j=1

qi j
n

s=1 qs

Im,i j

ri j
qi j

l
j=1

qi j
n

s=1 qs

Im,i j

⎞⎟⎟⎟⎠ f

⎛⎜⎜⎜⎝l
j=1

qi j
n

s=1 qs

Im,i j

ri j
qi j

l
j=1

qi j
n

s=1 qs

Im,i j

⎞⎟⎟⎟⎠
≤ . . .≤

n


s=1

qs

n
s=1 qs

rs

qs
f

(
rs

qS

)
. (6.12)

On taking sum n
s=1 qs on both sides, we get (6.9). �
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6.1.2 Inequalities for Shannon Entropy

Definition 6.3 (SEE [21]) The Shannon entropy of positive probability distribution
r = (r1, . . . ,rn) is defined by

H(r) :=−
n


s=1

rs log(rs). (6.13)

Corollary 6.1 Assume (H1).
(i) If q = (q1, . . . ,qn) ∈ (0,)n, and the base of log is greater than 1, then

−
n


s=1

qs log(qs)≤ . . .≤− (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)(
l


j=1

qi j

Im,i j

)
log

(
l


j=1

qi j

Im,i j

)
≤ . . .≤ log

(
n

n
s=1 qs

) n


s=1

qs. (6.14)

If the base of log is between 0 and 1, then inequality signs in (6.14) are reversed.
(ii) If q = (q1, . . . ,qn) is a positive probability distribution and the base of log is greater
than 1, then we have the estimates for the Shannon entropy of q

H(q)≤ . . .≤− (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)(
l


j=1

qi j

Im ,i j

)
log

(
l


j=1

qi j

Im,i j

)
≤ . . .≤ log(n). (6.15)

Proof. (i) Using f := log and r = (1, . . . ,1) in Theorem 6.2 (i), we get (6.14).
(ii) It is the special case of (i). �

Definition 6.4 (SEE [21]) The Kullback-Leibler divergence between the positive proba-
bility distribution r = (r1, . . . ,rn) and q = (q1, . . . ,qn) is defined by

D(r,q) :=
n


s=1

ri log

(
ri

qi

)
. (6.16)

Corollary 6.2 Assume (H1).
(i) Let r = (r1, . . . ,rn)∈ (0,)n and q := (q1, . . . ,qn)∈ (0,)n. If the base of log is greater
than 1, then

n


s=1

rs log

(
n


s=1

rs

n
s=1 qs

)
≤ . . .≤ (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ log

⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠≤ . . .≤
n


s=1

rs log

(
rs

qs

)
. (6.17)
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(ii) If r and q are positive probability distributions, and the base of log is greater than 1,
then we have

D(r,q)≥ . . .≥ (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ log

⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠≥ . . .≥ 0. (6.18)

If the base of log is between 0 and 1, then inequality signs in (6.18) are reversed.

Proof. (i) On taking f := log in Theorem 6.2 (ii), we get (6.17).
(ii) It is a special case of (i). �

6.1.3 Inequalities for Rényi Divergence and Entropy

The Rényi divergence and entropy come from [29].

Definition 6.5 Let r := (r1, . . . ,rn) and q := (q1, . . . ,qn) be positive probability distribu-
tion, and let  ≥ 0,  
= 1.
(a) The Rényi divergence of order  is defined by

D (r,q) :=
1

 −1
log

(
n


i=1

qi

(
ri

qi

))
. (6.19)

(b) The Rényi entropy of order  of r is defined by

H (r) :=
1

1− log

(
n


i=1

ri

)
. (6.20)

The Rényi divergence and the Rényi entropy can also be extended to non-negative prob-
ability distributions. If  → 1 in (6.19), we have the Kullback-Leibler divergence, and if
 → 1 in (6.20), then we have the Shannon entropy. In the next two results, inequalities
can be found for the Rényi divergence.

Theorem 6.3 Assume (H1), let r = (r1, . . . ,rn) and q = (q1, . . . ,qn) are probability dis-
tributions.
(i) If 0≤  ≤  such that  , 
= 1, and the base of log is greater than 1, then

D (r,q)≤ . . .≤

1
−1

log

⎛⎜⎜⎜⎜⎜⎝
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎠
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≤ . . .≤ D(r,q). (6.21)

The reverse inequalities hold if the base of log is between 0 and 1.
(ii) If 1 <  and the base of log is greater than 1, then

D1(r,q) = D(r,q) =
n


s=1

rs log

(
rs

qs

)

≤ . . .≤ 1
−1

log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im ,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)

exp

⎛⎜⎜⎜⎝
(−1)

l

j=1

ri j
Im,i j

log

(
ri j
qi j

)
l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠≤ . . .≤ D(r,q), (6.22)

where the base of exp is same as the base of log, and the reverse inequalities hold if the
base of log is between 0 and 1.
(iii) If 0≤  < 1, and the base of log is greater than 1, then

D (r,q)≤ . . .≤

1
 −1

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
≤ . . .≤ D1(r,q). (6.23)

Proof. By applying Theorem 6.1 with I = (0,), f : (0,)→ R, f (t) := t
−1
−1

ps := rs, xs :=
(

rs

qs

)−1

, s = 1, . . . ,n,

we have(
n


s=1

qs

(
rs

qs

)) −1
−1

=

(
n


s=1

rs

(
rs

qs

)−1
) −1

−1

≤ . . .≤ (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
−1
−1

≤ . . .≤
n


s=1

rs

((
rs

qs

)−1
) −1

−1

, (6.24)
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if either 0≤  < 1 <  or 1 <  ≤  , and the reverse inequality in (6.24) holds if 0≤  ≤
 < 1. By raising to power 1

−1 , we have from all

(
n


s=1

qs

(
rs

qs

)) 1
−1

≤ . . .≤

⎛⎜⎜⎜⎜⎜⎝
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎠

1
−1

≤ . . .≤
⎛⎝ n


s=1

rs

((
rs

qs

)−1
) −1

−1

⎞⎠
1

−1

=

(
n


s=1

qs

(
rs

qs

)) 1
−1

. (6.25)

Since log is increasing if the base of log is greater than 1, it now follows (6.21). If the
base of log is between 0 and 1, then log is decreasing and therefore inequality in (6.21) are
reversed. If  = 1 and  = 1, we have (ii) and (iii) respectively by taking limit. �

Theorem 6.4 Assume (H1), let r = (r1, . . . ,rn) and q = (q1, . . . ,qn) are probability dis-
tributions. If either 0≤  < 1 and the base of log is greater than 1, or 1 <  and the base
of log is between 0 and 1, then

1

n
s=1 qs

(
rs
qs

) n


s=1

qs

(
rs

qs

)
log

(
rs

qs

)
≤ . . .≤

1

( −1)n
s=1 qs

(
rs
qs

) (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im ,l(i1, . . . , il)

⎛⎝ l


j=1

ri j

Im ,i j

(
ri j

qi j

)−1
⎞⎠ log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠≤ . . .≤ D (r,q)≤ . . .≤

1
 −1

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im ,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)
log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
≤ . . .≤ D1(r,q). (6.26)

The inequalities in (6.26) are reversed if either 0≤  < 1 and the base of log is between 0
and 1, or 1 <  and the base of log is greater than 1.
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Proof. We prove only the case when 0≤  < 1 and the base of log is greater than 1 and the
other cases can be proved similarly. Since 1

−1 < 0 and the function log is concave then

choose I = (0,), f := log, ps = rs, xs :=
(

rs
qs

)−1
in Theorem 6.1, we have

D (r,q) =
1

 −1
log

(
n


s=1

qs

(
rs

qs

))
=

1
 −1

log

(
n


s=1

rs

(
rs

qs

)−1
)

≤ . . .≤ 1
 −1

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)
log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠
≤ . . .≤ 1

 −1

n


s=1

rs log

((
rs

qs

)−1
)

=
n


s=1

rs log

(
rs

qs

)
= D1(r,q) (6.27)

and this give the upper bound for D (r,q).
Since the base of log is greater than 1, the function x �→ x f (x) (x > 0) is convex therefore

1
1− < 0 and Theorem 6.1 gives

D (r,q) =
1

 −1
log

(
n


s=1

qs

(
rs

qs

))

=
1

 −1

(
n

s=1 qs

(
rs
qs

))
(

n


s=1

qs

(
rs

qs

))
log

(
n


s=1

qs

(
rs

qs

))

≥ . . .≥ 1

 −1

(
n

s=1 qs

(
rs
qs

)) (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
⎛⎜⎜⎜⎜⎝

l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠ log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠=

1

 −1

(
n

s=1 qs

(
rs
qs

)) (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im ,l(i1, . . . , il)

⎛⎝ l


j=1

ri j

Im,i j

(
ri j

qi j

)−1
⎞⎠ log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠



140 6 COMBINATORIAL IMPROVEMENTS OF ZIPF-MANDELBROT LAWS...

≥ . . .≥ 1
 −1

n


s=1

rs

(
rs

qs

)−1

log

(
rs

qs

)−1 1

n
s=1 rs

(
rs
qs

)−1

=
1

n
s=1 qs

(
rs
qs

) n


s=1

qs

(
rs

qs

)
log

(
rs

qs

)
(6.28)

which give the lower bound of D (r,q). �

By using the previous results, some inequalities are Rényi entropy are obtained. Let
1
n = ( 1

n , . . . , 1
n) be a discrete probability distribution.

Corollary 6.3 Assume (H1) and let p = (p1, . . . , pn) and q = (q1, . . . ,qn) are positive
probability distributions.
(i) If 0≤  ≤  ,  , 
= 1, and the base of log is greater than 1, then

H (p)≥ . . .≥ 1
−1

log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

×
(

l


j=1

ri j

Im ,i j

)⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎠≥ . . .≥ H(r). (6.29)

The reverse inequalities holds in (6.29) if the base of log is between 0 and 1.
(ii) If 1 <  and base of log is greater than 1, then

H(r) =−
n


s=1

log(pi)≥ . . .≥ log(n)+
1

1− 
log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
exp

⎛⎜⎜⎜⎝
(−1)

l

j=1

ri j
Im,i j

log
(
nri j

)
l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠≥ . . .≥ H(r), (6.30)

where the base of exp is same as the base of log. The inequalities in (6.30) are reversed if
the base of log is between 0 and 1.
(iii) If 0≤  < 1, and the base of log is greater than 1, then

H (r)≥ . . .≥ 1
1−

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
log

⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
≥ . . .≥ H(r). (6.31)

The inequalities in (6.31) are reversed if the base of log is between 0 and 1.
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Proof. (i) Suppose q = 1
n then from (6.19), we have

D (r,q) =
1

 −1
log

(
n


s=1

n−1rs

)
= log(n)+

1
 −1

log

(
n


s=1

rs

)
, (6.32)

therefore we have

H (r) = log(n)−D (r,
1
n

). (6.33)

Now using Theorem 6.3 (i) and (6.33), we get

H (r) = log(n)−D

(
r,

1
n

)
≥ . . .≥ log(n)− 1

−1

log

⎛⎜⎜⎜⎜⎜⎝n−1 (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)×
(

l


j=1

ri j

Im ,i j

)⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎠
≥ . . .≥ log(n)−D(r,q) = H(r), (6.34)

(ii) and (iii) can be proved similarly. �

Corollary 6.4 Assume (H1) and let r = (r1, . . . ,rn) and q = (q1, . . . ,qn) are positive prob-
ability distributions.
If either 0 ≤  < 1 and the base of log is greater than 1, or 1 <  and the base of log is
between 0 and 1, then

− 1

n
s=1 rs

n


s=1

rs log(rs)≥ . . .≥ 1

( −1)n
s=1 rs

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j
Im,i j

)
log

⎛⎜⎜⎜⎝n−1

l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠≥ . . .≥ H (r)

≥ . . .≥ 1
1−

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
log

⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
≥ . . .≥ H(r). (6.35)

The inequalities in (6.35) are reversed if either 0≤  < 1 and the base of log is between 0
and 1, or 1 <  and the base of log is greater than 1.

Proof. The proof is similar to the Corollary 6.3 by using Theorem 6.4. �
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6.2 Inequalities by Using Zipf-Mandelbrot Law

The Zipf-Mandelbrot law is defined as follows (see [26]).

Definition 6.6 Zipf-Mandelbrot law is a discrete probability distribution depending on
three parameters N ∈ {1,2, . . . ,},q ∈ [0,) and t > 0, and is defined by

f (s;N,q,t) :=
1

(s+q)tHN,q,t
, s = 1, . . . ,N, (6.36)

where

HN,q,t =
N


k=1

1
(k+q)t

. (6.37)

For q = 0, the Zipf-Mandelbrot law becomes Zipf’s law.

Conclusion 6.1 Assume (H1), let r be a Zipf-Mandelbrot law, by Corollary 6.3 (iii), we
get. If 0≤  < 1, and the base of log is greater than 1, then

H (r)=
1

1− log

(
1

H
N,q,t

n


s=1

1

(s+q) s

)
≥ . . .≥ 1

1−
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

1
Im ,i j(i j +q)HN.q,t

)
log

⎛⎜⎜⎜⎝ 1

H−1
N,q,t

l

j=1

1
Im,i j (i j−q)s

l

j=1

1
Im,i j (i j−q)s

⎞⎟⎟⎟⎠
≥ . . .≥ t

HN,q,t

N


s=1

log(s+q)
(s+q)t

+ log(HN,q,t ) = H(r). (6.38)

The inequalities in (6.38) are reversed if the base of log is between 0 and 1.

Conclusion 6.2 Assume (H1), let r1 and r2 be the Zipf-Mandelbort law with parameters
N ∈ {1,2, . . .}, q1,q2 ∈ [0,) and s1,s2 > 0, respectively, then from Corollary 6.2 (ii), we
have If the base of log is greater than 1, then

D̄(r1,r2) =
n


s=1

1
(s+q1)t1HN,q1,t1

log

(
(s+q2)t2HN,q2,t2

(s+q1)t1HN,q2,t1

)

≥ . . .≥ (m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

⎛⎝ l


j=1

1
(i j+q2)t2HN,q2 ,t2

Im,i j

⎞⎠
⎛⎜⎜⎜⎝l

j=1

1
(i j+q1)t1HN,q1,t1

Im,i j

l
j=1

1
(i j+q2)t2HN,q2,t2

Im,i j

⎞⎟⎟⎟⎠
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log

⎛⎜⎜⎜⎝l
j=1

1
(i j+q1)t1HN,q1,t1

Im,i j

l
j=1

1
(i j+q2)t2HN,q2,t2

Im,i j

⎞⎟⎟⎟⎠≥ . . .≥ 0. (6.39)

The inequalities in (6.39) are reversed if base of log is between 0 and 1.

Under the assumption of Theorem 6.2 (i), define the functionals as follows.

3( f ) = A
[1]
m,r− f

(
n

s=1 rs

n
s=1 qs

) n


s=1

qs, r = 1, . . . ,m, (6.40)

4( f ) = A
[1]
m,r−A

[1]
m,k, 1≤ r < k ≤ m. (6.41)

where

A
[1]
m,l =

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im ,i j

)
f

⎛⎜⎜⎜⎝l
j=1

ri j
Im,i j

l

j=1

qi j
Im,i j

⎞⎟⎟⎟⎠ .

Under the assumption of Theorem 6.2 (ii), define the functional.

5( f ) = A
[2]
m,r−

(
n


s=1

rs

)
f

(
n

s=1 rs

n
s=1 qs

)
, r = 1, . . . ,m, (6.42)

6( f ) = A
[2]
m,r−A

[2]
m,k, 1≤ r < k≤ m. (6.43)

where

A
[2]
m,r =

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ f

⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ .

Under the assumption of Corollary 6.1 (i), define the following functional.

7( f ) = A[3]
m,r +

n


i=1

qi log(qi), r = 1, . . . ,n (6.44)

8( f ) = A[3]
m,r−A[3]

m,k, 1≤ r < k≤ m. (6.45)

where

A[3]
m,r =

−(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)
log

(
l


j=1

qi j

Im ,i j

)
.



144 6 COMBINATORIAL IMPROVEMENTS OF ZIPF-MANDELBROT LAWS...

Under the assumption of Corollary 6.1 (ii), define the following functionals.

9( f ) = A[4]
m,r−H(q), r = 1, . . . ,m (6.46)

10( f ) = A[4]
m,r−A[4]

m,k, 1≤ r < k ≤ m. (6.47)

where

A[4]
m,r =

−(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)
log

(
l


j=1

qi j

Im,i j

)
.

Under the assumption of Corollary 6.2 (i), let us define the functionals.

11( f ) = A[5]
m,r−

n


s=1

rs log

(
n


s=1

log
rn

n
s=1 qs

)
, r = 1, . . . ,m (6.48)

12( f ) = A[5]
m,r−A[5]

m,k, 1≤ r < k ≤ m. (6.49)

where

A[5]
m,r=
−(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

qi j

Im,i j

)⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ log

⎛⎜⎝l
j=1

ri j
Im,i j

l
j=1

qi j
Im,i j

⎞⎟⎠ .

Under the assumption of Theorem 6.3 (i), consider the following functionals.

13( f ) = A[6]
m,r−D (r,q), r = 1, . . . ,m (6.50)

14( f ) = A[6]
m,r−A[6]

m,k, 1≤ r < k ≤ m. (6.51)

where

A[6]
m,r =

1
−1

log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im ,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)
⎛⎜⎜⎜⎝
l

j=1
ri j

Im,i j

(
ri j
qi j

)−1

l
j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎠ .

Under the assumption of Theorem 6.3 (ii), consider the following functionals

15( f ) = A[7]
m,r−D1(r,q), r = 1, . . . ,m (6.52)

16( f ) = A[7]
m,r−A[7]

m,k, 1≤ r < k≤ m. (6.53)
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where

A[7]
m,r =

1
−1

log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)

exp

⎛⎜⎜⎝ (−1)l
j=1

ri j
Im,i j

log

(
ri j
qi j

)
l

j=1
ri j

Im,i j

⎞⎟⎟⎠
⎞⎟⎟⎠ .

Under the assumption of Theorem 6.3 (iii), consider the following functionals

17( f ) = A[8]
m,r−D (r,q), r = 1, . . . ,m (6.54)

18( f ) = A[8]
m,r−A[8]

m,k, 1≤ r < k≤ m. (6.55)

where

A[8]
m,r=

1
 −1

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
log

⎛⎜⎜⎜⎝
l

j=1
ri j

Im,i j

(
ri j
qi j

)−1

l
j=1

ri j
Im,i j

⎞⎟⎟⎟⎠ .

Under the assumption of Theorem 6.4 consider the following functionals

19( f ) = A[9]
m,r− 1

n
s=1 qs

(
rs
qs

) n


s=1

qs

(
rs

qs

)
log

(
rs

qs

)
, r = 1, . . . ,m (6.56)

20( f ) = A[9]
m,r−A[9]

m,k, 1≤ r < k≤ m. (6.57)

21( f ) = D (r,q)−A[9]
m,r, r = 1, . . . ,m (6.58)

22( f ) = A[10]
m,r −A[10]

m,r , 1≤ r < k ≤ m. (6.59)

23( f ) = A[10]
m,r −A[9]

m,r, 1≤ r < k ≤ m. (6.60)

24( f ) = A[10]
m,r −D (r,q), r = 1, . . . ,m (6.61)

25( f ) = D1(r,q)−A[9]
m,r, r = 1, . . . ,m (6.62)

26( f ) = D1(r,q)−A[10]
m,r , r = 1, . . . ,m (6.63)

27( f ) = D1(r,q)−D (r,q) (6.64)

where

A[9]
m,r =

1

( −1)n
s=1 qs

(
rs
qs


) (m−1)!

(l−1)! 
(i1,...,il)∈Il

Im,l(i1, . . . , il)

⎛⎝ l


j=1

ri j

Im ,i j

(
ri j

qi j

)−1
⎞⎠
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log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠ , (6.65)

A[10]
m,r =

1
 −1

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
log

⎛⎜⎜⎜⎜⎝
l

j=1

ri j
Im,i j

(
ri j
qi j

)−1

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎟⎠ .

Under the assumption of Corollary 6.3 (i), consider the following functionals.

28( f ) = H (p)−A[11]
m,r , r = 1, . . . ,m (6.66)

29( f ) = A[11]
m,r −A[11]

m,k , 1≤ r < k≤ m. (6.67)

30( f ) = H (p)−H(r) (6.68)

31( f ) = A[11]
m,r −H(r), r = 1, . . . ,m (6.69)

where

A[11]
m,r =

1
−1

log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)
⎛⎜⎜⎜⎜⎝
l

j=1
ri j

Im,i j

(
ri j

Im,i j

)
l

j=1
ri j

Im,i j

⎞⎟⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Under the assumption of Corollary 6.3 (ii), consider the following functionals

32( f ) = H(r)−A[12]
m,r , r = 1, . . . ,m (6.70)

33( f ) = A[12]
m,r −A[12]

m,k , 1≤ r < k≤ m. (6.71)

34( f ) = H(r)−H(r) (6.72)

35( f ) = A[12]
m,r −H(r), r = 1, . . . ,m (6.73)

where

A[12]
m,r = log(n)+

1
1− 

log

(
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)

exp

⎛⎜⎜⎜⎝
(−1)

l

j=1

ri j
Im,i j

log
(
nri j

)
l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .
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Under the assumption of Corollary 6.3 (iii), consider the following functionals.

36( f ) = H (r)−A[13]
m,r , r = 1, . . . ,m (6.74)

37( f ) = A[13]
m,r −A[13]

m,k , 1≤ r < k ≤ m. (6.75)

38( f ) = H (r)−H(r) (6.76)

39( f ) = A[13]
m,r −H(r), r = 1, . . . ,m (6.77)

where

A[13]
m,r =

1
1−

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im ,i j

)
log

⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠ .

Under the assumption of Corollary 6.4, defined the following functionals.

40 = − 1

n
s=1 rs

n


s=1

rs log(rs)−A[14]
m,r r = 1, . . . ,m (6.78)

41 = A[14]
m,k −A[14]

m,r , 1≤ r < k ≤ m. (6.79)

42 = A[14]
m,r −H (r), r = 1, . . . ,m (6.80)

43 = H (r)−A[15]
m,r , r = 1, . . . ,m (6.81)

44 = H (r)−H(r) (6.82)

45 = A[15]
m,k −A[15]

m,r , 1≤ r < k ≤ m. (6.83)

46 = A[15]
m,r −H(r), r = 1, . . . ,m (6.84)

where

A[14]
m,r =

1

(−1)n
s=1 rs

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j
Im,i j

)
log

⎛⎜⎜⎜⎝n−1

l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠

A[15]
m,r =

1
1−

(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

ri j

Im,i j

)
log

⎛⎜⎜⎜⎝
l

j=1

ri j
Im,i j

l

j=1

ri j
Im,i j

⎞⎟⎟⎟⎠ .
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6.3 Generalization of refinement of Jensen’s,
Rényi and Shannon type inequalities
via Green Function

In [6], the green function G : [1,2]× [1,2]→R is defined as

G(u,v) =

{
(u−2)(v−1)

2−1
, 1 ≤ v≤ u;

(v−2)(u−1)
2−1

, u≤ v≤ 2.
(6.85)

The function G is convex with respect to v and due to symmetry also convex with respect
to u. One can also note that G is continuous function. In [32] it is given that any function
f : [1,2]→ R, such that f ∈C2 ([1,2]) can be written as

f (u) =
2−u
2−1

f (1)+
u−1

2−1
f (2)+

∫ 2

1

G(u,v) f ′′(v)dv. (6.86)

Theorem 6.5 Assume (H1), let f : [1,2]→ R be a function where [1,2]⊂ R be an

interval. If x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi =

1, then the following statements are equivalent.
(i) For every continuous convex function f : [1,2]→ R

f

(
n


s=1

psxs

)
≤Am,m ≤Am,m−1 ≤ . . .≤Am,2 ≤Am,1 =

n


s=1

ps f (xs) . (6.87)

(ii) For all v ∈ [1,2]

G

(
n


i=1

pixi,v

)
≤ Gm,m(Im,x,p,v,G)≤ Gm,m−1(Im,x,p,v,G)

≤ . . .≤ Gm,2(Im,x,p,v,G)≤ Gm,1(Im,x,p,v,G) =
n


i=1

piG(xi,v) (6.88)

where

Gm,l(Im,x,p,v,G) =
(m−1)!
(l−1)! 

(i1,...,il)∈Il

Im,l(i1, . . . , il)

(
l


j=1

pi j

Im,i j

)
G

⎛⎜⎜⎜⎝
l

j=1

pi j
Im,i j

xi j

l

j=1

pi j
Im,i j

,v

⎞⎟⎟⎟⎠ .

Proof. First we see that (i) implies that (ii). Let (i) is valid. As the function G(·,v)(v ∈
[1,2]) is continuous and convex, so (6.87) holds for the function G(·,v), which is the
required reslut.
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To prove (ii) implies (i), suppose the function f : [1,2]→ R, such that f is convex
and f ∈C2[1,2], and for 1≤ r < k ≤ m consider the difference

Am,r−Am,k =
(m−1)!
(r−1)! 

(i1,...,ir)∈Ir

Im ,l(i1, . . . , ir)

(
r


j=1

pi j

Im ,i j

)
f

⎛⎜⎜⎝
r

j=1

pi j
Im,i j

xi j

r

j=1

pi j
Im,i j

⎞⎟⎟⎠

− (m−1)!
(k−1)! 

(i1,...,ik)∈Ik

Im ,l(i1, . . . , ik)

(
k


j=1

pi j

Im ,i j

)
f

⎛⎜⎜⎜⎝
k

j=1

pi j
Im,i j

xi j

k

j=1

pi j
Im,i j

⎞⎟⎟⎟⎠ .

Now using the identity (6.86) for the function f on right side of above equation, and after
simple calculation we have

Am,r−Am,k =
∫ 2

1

(
Gm,r(Im,x,p,v,G)−Gm,l(Im,x,p,v,G)

)
f ′′(v)dv.

As f is convex so f ′′ ≥ 0, since (6.88) is valid so the integrand in the integral of is non-
negative. So the non negativity of the integral give (6.87). �

Remark 6.1 Assume (H1), let f : [1,2]→ R be a function where [1,2] ⊂ R be an

interval. If x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1.

(i) If for all v ∈ [1,2] the inequality (6.88) holds, then

i( f ) ≥ 0 i = 1, . . . ,46.

(ii) If for all v ∈ [1,2] the reverse inequality holds in (6.88), then

i( f ) ≤ 0 i = 1, . . . ,46.

6.4 Generalization of refinement of Jensen’s,
Rényi and Shannon type inequalities
via Montgomery identity

The Montgomery identity via Taylor’s formula is given in [2] and [3].

Theorem 6.6 Let m ∈ N, f : I→ R be such that f (m−1) is absolutely continuous, I ⊂ R

be an open interval 1,2 ∈ I, 1 < 2. Then the following identity holds

(x) =
1

2−1

∫ 2

1

(u)du +
m−2


k=0

(k+1)(1)(x−1)k+2

k!(k+2)(2−1)
−

m−2


k=0

(k+1)(2)(x−2)k+2

k!(k+2)(2−1)
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+
1

(m−1)!

∫ 2

1

Rm(x,u)(m)(u)du (6.89)

where

Rm(x,u) =

{
− (x−u)m

m(2−1)
+ x−1

2−1
(x−u)m−1, 1 ≤ u≤ x;

− (x−u)m

m(2−1)
+ x−2

2−1
(x−u)m−1, x≤ u≤ 2.

(6.90)

Theorem 6.7 Let m ∈ N, f : I→ R be such that f (m−1) is absolutely continuous, I ⊂ R

be an interval, 1,2 ∈ I, 1 < 2. Then the following identity holds

(x) =
1

2−1

∫ 2

1

(u)du +
m−2


k=0

(k+1)(x)
(1− x)k+2− (2− x)k+2

(k+2)!(2−1)

+
1

(m−1)!

∫ 2

1

R̂(x,u)(m)(u)du (6.91)

where

R̂(x,u) =

{
− 1

m(2−1)
(1−u), 1 ≤ u≤ x;

− 1
m(2−1)

(2−u), x≤ u≤ 2.
(6.92)

In case m = 1, the sum m−2
k=0 . . . is empty, so (6.89) and (6.91) reduce to well-known

Montgomery identity (see [27])

f (x) =
1

2−1

∫ 2

1

f (t)dt +
1

2−1

∫ 2

1

p(x,u) f ′(u)du,

where p(x,u) is the Peano kernel, defined by

p(x,u) =

{
u−1
2−1

, 1 ≤ u≤ x;
u−2
2−1

, x≤ u≤ 2.

We construct the identity for the (6.3) with the help of generalizedMontgomery identity
(6.89).

Theorem 6.8 Assume (H1), let f : [1,2]→ R be a function where [1,2]⊂ R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1, and Rm(x,u) be the same as defined in (6.90), then the following identity holds.

i( f ) =
1

2−1

m−2


k=0

(
1

k!(k+2)

)(
f (k+1)(1)i((x−1)k+1)− f (k+1)(2)

×i((x−2)k+1)
) 1

(m−1)!

∫ 2

1

i(Rm(x,u)) f (m)(u)du, , i = 1, . . . ,46. (6.93)

Proof. Using (6.89) in (6.2), (6.3) and (6.40)-(6.84), we get the result. �
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Theorem 6.9 Assume (H1), let f : [1,2]→ R be a function where [1,2]⊂ R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1, and Rm(x,u) be the same as defined in (6.90). Let for m≥ 2

i(Rm(x,u))≥ 0 for all u ∈ [1,2] i = 1, . . . ,46.

If f is m-convex such that f (m−1) is absolutely continuous, then

i( f ) ≥ 1
2−1

m−2


k=0

(
1

k!(k+2)

)(
f (k+1)(1)i((x−1)k+1)

− f (k+1)(2)i(x−2)k+1
)

i = 1, . . . ,46. (6.94)

Proof. As f (m−1) is absolutely continuous on [1,2], therefore f (m) exists almost every-
where. As f is m-convex, so f (m)(u) ≥ 0 for all u ∈ [1,2](see [28, p.16]). Hence using
Theorem 6.8, we get (6.94). �

Theorem 6.10 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1, let f : [1,2]→R be a convex function.

(i) If m≥ 2 is even, then (6.94) holds.
(ii) Let the (6.94) is valid. If the function

 (x) =
1

2−1

m−2


l=0

(
f (l+1)(1)(x−1)l+2− f (l+1)(2)(x−2)l+2

l!(l +2)

)
is convex, then the right hand side of (6.94) is non-negative and

i( f ) ≥ 0 i = 1, . . . ,46.

Proof. (i) The function Rm(·,v) is convex (see [12]). Hence for even integer m≥ 2

i(Rm(u,v))≥ 0,

therefore from Theorem 6.9, we have (6.94).
(ii) By using the linearity of i( f ) we can write the right hand side of (6.94) in the form
i( ). As  is supposed to be convex therefore the right hand side of (6.94) is non-
negative, so i( f ) ≥ 0. �

Theorem 6.11 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1, and R̂m(x,u) be the same as defined in (6.92), then the following identity holds.

i( f ) =
1

2−1

m−2


k=0

(
1

k!(k+2)

)(
i( f (k+1)(x)(1−x)k+1)−i( f (k+1)(x)(2−x)k+1

)
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+
1

(m−1)!

∫ 2

1

i(R̂m(x,u)) f (m)(u)du i = 1, . . . ,46. (6.95)

Proof. Using (6.91) in (6.2), (6.3) and (6.40)-(6.63), we get the identity (6.95). �

Theorem 6.12 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1, and Rm(x,u) be the same as define in (6.92). Let for m≥ 2

i(R̂m(x,u))≥ 0 for all u ∈ [1,2], i = 1, . . . ,46.

If f is m-convex such that f (m−1) is absolutely continuous, then

i( f )≥ 1
2−1

m−2


k=0

(
1

k!(k+2)

)(
i( f (k+1)(x)(1−x)k+1)−i( f (k+1)(x)(2−x)k+1

)
,

i = 1, . . . ,46. (6.96)

Proof. As f (m−1) is absolutely continuous on [1,2], therefore f (m) exists almost every-
where. As f is m-convex, so f (m)(u)≥ 0 for all u ∈ [1,2](see [28, p.16]). Hence using
Theorem 6.11, we get (6.96). �

Remark 6.2 We can get the similar result as given in Theorem 6.10.

Remark 6.3 We can give related mean value theorems, also construct the new families
of m-exponentialy convex functions and Cauchy means related to the functionals i, i =
1, . . . ,43 as given in [9].

6.5 Generalization of refinement of Jensen’s,
Rényi and Shannon type inequalities
via Lidstone Polynomial

We generalize the refinement of Jensen’s inequality for higher order convex function using
Lidstone interpolating polynomial. In [32] Widder give the following result.

Lemma 6.1 If g ∈C([0,1]), then

g(u) =
m−1


l=0

[
g(2l)(0)Fl(1−u)+g(2l)(0)Fl(t)

]
+
∫ 1

0
Gm(u,s)g(2m)(s)ds

where Fl is a polynomial of degree 2l +1 defined by the relation

F0(u) = u, F′′m(u) = Fm−1(u), Fm(0) = Fm(1) = 0, m≥ 1, (6.97)
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and

G1(u,s) = G(u,s) =
{

(u−1)s, 1 ≤ s≤ u≤ 2;
(s−1)u, 1 ≤ u≤ s≤ 2,

is a homogeneous Green’s function of the differential operator d2

d2s
on [0,1], and with the

successive iterates of G(u,s)

Gm(u,s) =
∫ 1

0
G1(u, p)Gm−1(p,s)dp, m≥ 2.

The Lidstone polynomial can be expressed in terms of Gm(u,s) as

Fm(u) =
∫ 1

0
Gm(u,s)sds.

Lindstone series representation of g ∈C2m[1,2] is given by

g(u) =
m−1


l=0

(2−1)2lg(2l)(1)Fl

(
2−u
2−1

)
+

m−1


l=0

(2−1)2lg(2l)(2)Fl

(
u−1

2−1

)
+(2−1)2l−1

∫ 2

1

Gm

(
u−1

2−1
,

t−1

2−1

)
g(2l)(t)dt. (6.98)

We construct some new identities the with the help of generalized Lidstone polynomial
(6.98).

Theorem 6.13 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval such that f ∈ C2m[1,2] for m ≥ 1. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn

are positive real numbers such that
n

i=1

pi = 1, and Fm(t) be the same as define in (6.97),

then

i( f ) =
m−1


k=1

(2−1)2k f (2k)(1)i

(
Fl

(
2− x
2−1

))
+

m−1


k=1

(2−1)2k f (2k)(2)i

(
Fl

(
x−1

2−1

))
+(2−1)2k−1

∫ 2

1

i

(
Gm

(
x−1

2−1
,

t−1

2−1

))
f (2m)(t)dt,

i = 1,2, . . . ,46. (6.99)

Proof. Using (6.98) in place of f in i( f ), i = 1,2, . . . ,46, we get (6.99). �

Theorem 6.14 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval such that f ∈ C2m[1,2] for m ≥ 1. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn
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are positive real numbers such that
n

i=1

pi = 1, and Fm(t) be the same as define in (6.97),

let for m≥ 1

i

(
Gm

(
x−1

2−1
,

t−1

2−1

))
≥ 0, for all t ∈ [1,2]. (6.100)

If f is 2m-convex function the we have

i( f ) ≥
m−1


k=1

(2−1)2k f (2k)(1)i

(
Fl

(
2− x
2−1

))
+

m−1


k=1

(2−1)2k f (2k)(2)i

(
Fl

(
x−1

2−1

))
,

i = 1,2, . . . ,46.(6.101)

Proof. Since f is 2m-convex therefore f (2m) ≥ 0 for all x ∈ [1,2], then by using (6.100)
in (6.99) we get the required result. �

Theorem 6.15 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1, also suppose that f : [1,2]→ R is 2m-convex then the following results are

valid.
(i) If m is odd integer, then for every 2m-convex function (6.101) holds. (ii) Suppose (6.101)
holds, if the function

 (u) =
m−1


l=0

(2−1)2lg(2l)(1)Fl

(
2−u
2−1

)
+

m−1


l=0

(2−1)2lg(2l)(2)Fl

(
u−1

2−1

)
is convex, then the right hand side of (6.101) is non-negative and we have

i( f )≥ 0, i = 1,2, . . . ,46. (6.102)

Proof. (i) Note that G1(u,s) ≤ 0 for 1 ≤ u,s,≤ 1 and also note that Gm(u,s) ≤ 0 for odd
integer m and Gm(u,s) ≥ 0 for even integer m. As G1 is convex function and Gm−1 is
positive for odd integer m, therefore

d2

d2u
(Gm(u,s)) =

∫ 1

0

d2

d2u
G1(u, p)Gm−1(p,s)dp ≥ 0, m≥ 2.

This shows that Gm is convex in the first variable u if m is convex. Similarly Gm is concave
in the first variable if m is even. Hence if m is odd then

i

(
Gm

(
x−1

2−1
,

t−1

2−1

))
≥ 0,

therefore (6.102) is valid.
(ii) By using the linearity of i( f ) we can write the right hand side of (6.101) in the
form i( ). As  is supposed to be convex therefore the right hand side of (6.101) is
non-negative, so i( f )≥ 0. �
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6.6 Generalization of refinement of Jensen’s,
Rényi and Shannon type inequalities
via Taylor Polynomial

In [9], the following functions are consider to generalized the Popoviciu’s inequality, de-
fined as

(u− v)+ =
{

(u− v), v≤ u;
0, v > u.

The well known Taylor formula is as follows.
Let m be a positive integer and f : [1,2]→ R be such that f (m−1) is absolutely continu-
ous, then for all u ∈ [1,2] the Taylor’s formula at point c ∈ [1,2] is

f (u) = Tm−1( f ;c;u)+Rm−1( f ;c;u),

where

Tm−1( f ;c;u) =
m−1


l=0

f (l)(c)
l!

(u− c)l,

and the remainder is given by

Rm−1( f ;c;u) =
1

(m−1)!

∫ u

c
f (m)(t)(u− t)m−1dt.

The Taylor’s formula at point 1 and 2 is given by:

f (u) =
m−1


l=0

f (l)(1)
l!

(u−1)l +
1

(m−1)!

∫ 2

1

f (m)(t)
(
(u− t)m−1

+
)
dt. (6.103)

f (u) =
m−1


l=0

(−1)l f (l)(2)
l!

(2−u)l +
(−1)m−1

(m−1)!

∫ 2

1

f (m)(t)
(
(t−u)m−1

+
)
dt.(6.104)

Theorem 6.16 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1. Then we have the following identities:

(i)

i( f ) =
m−1


l=2

f (l)(1)
l!

i

(
(u−1)l

)
+

1
(m−1)!

∫ 2

1

f (m)(t)i
(
(u− t)m−1

+
)
dt,

i = 1, . . . ,46. (6.105)
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(ii)

i( f ) =
m−1


l=2

(−1)l f (l)(2)
l!

i

(
(2−u)l

)
+

(−1)m−1

(m−1)!

∫ 2

1

f (m)(t)i
(
(t−u)m−1

+
)
dt,

i = 1, . . . ,46. (6.106)

Proof. Using (6.103) and (6.104) in (6.3), we get the required result. �

Theorem 6.17 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1. Let f is m-convex function such that f (m−1) is absolutely continuous. Then we

have the following results:
(i) If

i
(
(u− t)m−1

+
)≥ 0, t ∈ [1,2], i = 1, . . . ,46.

then

i( f (u))≥
m−1


l=2

f (l)(1)
l!

i

(
(u−1)l

)
. (6.107)

(ii) If

(−1)m−1i
(
(t−u)m−1

+
)≤ 0 t ∈ [1,2], i = 1, . . . ,46.

then

i( f (u)) ≥
m−1


l=2

(−1)l f (l)(2)
l!

i

(
(2−u)l

)
, i = 1, . . . ,46. (6.108)

Proof. Since f (m−1) is absolutely continuous on [1,2], f (m) exists almost everywhere.
As f is m-convex therefore f (m)(u)≥ 0 for all u ∈ [1,2]. Hence using Theorem 6.16 we
obtain (6.107) and (6.108). �

Theorem 6.18 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1. Then the following results are valid.

(i) If f is m-convex, then (6.107) holds. Also if f (l)(1) ≥ 0 for l = 2, . . . ,m−1, then
the right hand side of (6.107) will be non-negative.
(ii) If m is even and f is m-convex, then (6.108) holds. Also if f (l)(1)≤ 0 for l = 2, . . . ,m−
1 and f (l) ≥ 0 for l = 3, . . . ,m−1, then right hand side of (6.108) will be non-negative.
(iii)If m is odd and f is m-convex function then (6.108) is valid. Also if f (l)(2) ≥ 0 for
l = 2, . . . ,m−1 and f (l)(2)≤ 0 for l = 2, . . . ,m−2, then right hand side of (6.108) will
be non positive.
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6.7 Generalization of refinement of Jensen’s,
Rényi and Shannon type inequalities
via Hermite Interpolating Polynomial

In [1], the Hermite interpolating polynomial is given as follows.
Let 1,2 ∈ R with 1 < 2, and 1 = c1 < c2 < .. . < cl = 2(l ≥ 2) be the points. For

f ∈C2m[1,2] a unique polynomial  (i)
H (s) of degree (m−1) exist and satisfying any of

the following conditions:
Hermite Conditions

 (i)
H (c j) = f (i)(c j); 0≤ i≤ k j, 1≤ j ≤ l,

l


j=1

k j + l = m.

It is noted that Hermite conditions include the following particular cases.
Lagrange Conditions (l = m, k j = 0 for all i)

L(c j) = f (c j), 1≤ j ≤ m.

Type (q,m−q) Conditions(l = 2, 1≤ q≤m−1, k1 = q−1, k2 = m−q−1)

 (i)
(q,m)(1) = f (i)(1), 0≤ i≤ q−1

 (i)
(q,m)(2) = f (i)(2), 0≤ i≤ m−q−1.

Two Point Taylor Conditions (m = 2q, l = 2, k1 = k2 = q−1)

 (i)
2T (1) = f (i)(1), f (i)

2T (2) = f (i)(2). 0≤ i≤ q−1

In [1], the following result is given.

Theorem 6.19 Let −< 1 < 2 < and 1 < c1 < c2 < .. . < cl ≤ 2 (l ≥ 2) are the
given points and f ∈Cm([1,2]). Then we have

f (u) = H(u)+RH( f ,u), (6.109)

where H(u) is the Hermite interpolation polynomial that is

H(u) =
l


j=1

k j


i=0

Hij (u) f (i)(c j);
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the Hi j are the fundamental polynomials of the Hermite basis given as

Hij (u) =
1
i!

(u)
(u− c j)k j+1−i

k j−i


k=0

1
k!

dk

duk

(
(u− c j)k j+1

(u)

)∣∣∣∣∣
u=c j

(u− c j)k, (6.110)

with

(u) = l
j=1(u− c j)k j+1,

and the remainder is given by

RH( f ,u) =
∫ 2

1

GH,m(u,s) f (m)(s)ds,

where GH,m(u,s) is defined by

GH,m(u,s) =

⎧⎨⎩l
j=1

k j
i=0

(c j−s)m−i−1

(m−i−1)! Hij (u), s≤ u;

−l
j=r+1

k j
i=0

(c j−s)m−i−1

(m−i−1)! Hij (u), s≥ u.
, (6.111)

for all cr ≤ s≤ cr+1; r = 0,1, . . . , l, with c0 = 1 and cl+1 = 2.

Remark 6.4 In particular cases, for Lagrange condition from Theorem 6.19, we have

f (u) = L(u)+RL( f ,u),

where L(u) is the Lagrange interpolating polynomial that is

L(u) =
m


j=1

m


k=1,k 
= j

(
u− ck

c j− ck

)
f (c j),

and the remainder RL( f ,u) is given by

RL( f ,u) =
∫ 2

1

GL(u,s) f (m)(s)ds,

with

GL(u,s) =
1

(m−1)!

⎧⎪⎪⎨⎪⎪⎩
r

j=1(c j− s)m−1
m


k=1,k 
= j

(
u−ck
c j−ck

)
, s≤ u;

−m
j=r+1(c j− s)m−1

m


k=1,k 
= j

(
u−ck
c j−ck

)
, s≥ u.

, (6.112)

cr ≤ s≤ cr+1 r = 1,2, . . . ,m−1, with c1 = 1 and cm = 2,

for type (q,m−q) condition, from Theorem 6.19, we have

f (u) = (q,m)(u)+Rq,m( f ,u),
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where (q,m)(u) is (q,m−q) interpolating that is

(q,m)(u) =
q−1


i=0

i(u) f (i)(1)+
m−q−1


i=0

i(u) f (i)(2),

with

i(u) =
1
i!

(u−1)i
(

u−1

1−2

)m−q q−1−i


k=0

(
m−q+ k−1

k

)(
u−1

2−1

)k

(6.113)

and

i(u) =
1
i!

(u−1)i
(

u−1

2−1

)q m−q−1−i


k=0

(
q+ k−1

k

)(
u−2

2−1

)k

, (6.114)

and the remainder R(q,m)( f ,u) is defined as

R(q,m)( f ,u) =
∫ 2

1

Gq,m(u,s) f (m)(s)ds,

with

G(q,m)(u,s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q−1
j=0

[
q−1− j

p=0

(m−q+p−1
p

)( u−1
2−1

)p]
× (u−1) j(1−s)m− j−1

j!(m− j−1)!

(
2−u
2−1

)m−q
, 1 ≤ s≤ u≤ 2;

−m−q−1
j=0

[
m−q− j−1
=0

(q+−1

)( 2−u

2−1

)]
× (u−2) j(2−s)m− j−1

j!(m− j−1)!

(
u−1
2−1

)q
, 1 ≤ u≤ s≤ 2.

(6.115)

From type Two-point Taylor condition from Theorem 6.19, we have

f (u) = 2T (u)+R2T ( f ,u),

where

2T (u) =
q−1


i=0

q−1−i


k=0

(
q+ k−1

k

)[
(u−1)i

i!

(
u−2

1−2

)q( u−1

2−1

)k

f (i)(1)

− (u−2)i

i!

(
u−1

2−1

)q( u−1

1−2

)k

f (i)(2)

]
and the remainder R2T ( f ,u) is given by

R2T ( f ,u) =
∫ 2

1

G2T (u,s) f (m)(s)ds

with

G2T (u,s) =

{ (−1)q

(2q−1)! p
m(u,s)q−1

j=0

(q−1+ j
j

)
(u− s)q−1− j j(u,s), 1 ≤ s≤ u≤ 2;

(−1)q

(2q−1)!
m(u,s)q−1

j=0

(q−1+ j
j

)
(s−u)q−1− j p j(u,s), 1 ≤ u≤ s≤ 2.

(6.116)
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where p(u,s) = (s−1)(2−u)
2−1

,  (u,s) = p(u,s) for all u,s ∈ [1,2].
In [6] and [25] the positivity of Green’s functions is given as follows.

Lemma 6.2 For the Green function GH,m(u,s) as defined in (6.111), the following results
holds. (i)

GH,m(u,s)
(u)

> 0 c1 ≤ u≤ cl, c1 ≤ s≤ cl.

(ii)

GH,m(u,s)≤ 1
(m−1)!(2−1)

|(u)| .

(iii) ∫ 2

1

GH,m(u,s)ds =
(u)
m!

.

Theorem 6.20 Assume (H1), let f : [1,2]→ R be a function where [1,2] ⊂ R be
an interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such

that
n

i=1

pi = 1. Also let 1 = c1 < c2 < .. . < cl = 2 (l ≥ 2) be the points and f ∈
Cm([1,2]). Moreover Hi j be the fundamental polynomials of Hermite basis and GH,m

be the green function as defined by (6.110) and (6.111) respectively. Then we have the
following identity.

i( f (u)) =
l


j=1

k j


i=0

f (i)(c j)i(Hij (u))+
∫ 2

1

i (GH,m(u,s)) f (m)(s)ds, i = 1, . . . ,46.(6.117)

Proof. Using (6.109) and (6.3) and by the linearity of i( f ) we get the result. �

Theorem 6.21 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1. Also let 1 = c1 < c2≤ . . . < cl =2 (l ≥ 2) be the points and f ∈Cm([1,2]).

Moreover Hi j be the fundamental polynomials of Hermite basis and GH,m be the green
function as defined by (6.110) and (6.111) respectively. Assume f be m-convex function
and

i (GH,m(u,s))≥ 0 for all s ∈ [1,2], i = 1, . . . ,46.,

then

i( f (u))≥
l


j=1

k j


i=0

f (i)(c j)i(Hij (u)), i = 1, . . . ,46.
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Proof. Since f is m-convex therefore f (m)(u)≥ 0 for all u ∈ [1,2]. Hence on applying
the Theorem 6.20 we get the result. �

Remark 6.5 If (6.118) is reversed then (6.118) is reversed under the assumption of The-
orem 6.21.

By using Lagrange conditions we have the following results.

Corollary 6.5 Let all the assumption of Theorem 6.20 holds. Let GL be a green function
as defined in (6.112). Also f be m-convex function and

i (GL(u,s))≥ 0 for all s ∈ [1,2], i = 1, . . . ,46.,

then

i( f (u))≥
m


j=1

f (i)(c j)i

(
m


k=1,k 
= j

(
u− c j

c j− ck

))
, i = 1,2, . . . ,46.

On using the type (q,m−q) conditions we have the following result.

Corollary 6.6 Let all the assumption of Theorem 6.20 holds, G(q,m) be a green function
as defined in (6.115) and i and i as defined in (6.113) and (6.114) respectively. Also let
f be m-convex function and

i
(
G(q,m)(u,s)

)≥ 0 for all s ∈ [1,2], i = 1, . . . ,46.,

then

i( f (u))≥
q−1


i=0

f (i)(1)i(i(u))+
m−q−1


i=0

f (i) (2)i(i(u)), i = 1, . . . ,46.

By using Two-point Taylor condition we can give the following result.

Corollary 6.7 Let all the assumption of Theorem 6.20 holds, G2T be a green function as
defined in (6.116). Also let f be m-convex function and

i (G2T (u,s))≥ 0 for all s ∈ [1,2], i = 1, . . . ,46.,

then

i( f (u)) ≥
q−1


i=0

q−1−i


k=0

(
q+ k−1

k

)[
f (i)(1)i

(
(u−1)i

i!

(
u−2

1−2

)q( u−1

2−1

)k
)

+ f (i)(2)i

(
(u−2)i

i!

(
u−1

2−1

)q( u−2

1−2

)k
)]

, i = 1, . . . ,46.
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Theorem 6.22 Let all the assumption of Theorem (6.20) holds, f : [1,2]→ R be m-
convex function.
(i) If k j is odd for each j = 2, . . . , l then (6.118) holds.
(ii) Let (6.118) be satisfied and the function

F(u) =
l


j=1

k j


i=1

f (i)(c j)Hij (u)

is convex. Then the right hand side of (6.118) is non-negative and we have

i( f (u)) ≥ 0, i = 1, . . . ,46.

Proof. (i) Since k j is odd for all j = 2, . . . , l so we have (u)≥ 0, we have GH,m−2(u,s)≥
0, so GH,m is convex, therefore i (GH,m(u,s))≥ 0, using Theorem 6.21, we get (6.118).
(ii) Similar to the proof of Theorem 6.10. �

Theorem 6.23 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1. Also let 1 = c1 < c2 < .. . < cl =2 (l ≥ 2) be the points and f ∈Cm([1,2]).

Furthermore Hij , GH,m and G be as defined in (6.110), (6.111) and (6.85) respectively.
Then we have

i ( f (u)) =
∫ 2

1

i (G(u,t))
l


j=1

k j


i=0

f (i+2) (c j)Hij (t)dt

+
∫ 2

1

∫ 2

1

i (G(u,t))GH,m−2(t,s) f (m)(s)dsdt, i = 1,2, . . . ,46. (6.118)

Proof. Using (6.86) and (6.3) and following the linearity of i(.), we have

i( f (u)) =
∫ 2

1

i (G(u,t)) f ′′(t)dt. (6.119)

By Theorem 6.19, f ′′(t) can be expressed as

f ′′(t) =
l


j=1

k j


i=0

Hij (t) f (i+2)(c j)+
∫ 2

1

GH,m−2(t,s) f (m)(s)ds. (6.120)

Using (6.120) in (6.119), we get (6.118). �

Theorem 6.24 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1. Also let 1 = c1 < c2 < .. . < cl =2 (l ≥ 2) be the points and f ∈Cm([1,2]).
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Furthermore Hij , GH,m and G be as defined in (6.110), (6.111) and (6.85) respectively. Let
f : [1,2]→R be m-convex function and∫ 2

1

i(G(u,t))GH,m−2(t,s)dt ≥ 0 t ∈ [1,2], i = 1,2, . . . ,46. (6.121)

Then

i( f (u)) ≥
∫ 2

1

i (G(u,t))
l


j=1

k j


i=0

f (i+2)(c j)Hij (u)du, i = 1,2, . . . ,46. (6.122)

Proof. Since the function f is m-convex therefore f (m)(u)≥ 0 for all u ∈ [1,2]. Hence
on applying Theorem 6.23 we obtain (6.122). �

Theorem 6.25 Assume (H1), let f : [1,2]→R be a function where [1,2]⊂R be an
interval. Also let x1, . . . ,xn ∈ [1,2] and p1, . . . , pn are positive real numbers such that
n

i=1

pi = 1. Also let 1 = c1 < c2 < .. . < cl =2 (l ≥ 2) be the points and f ∈Cm([1,2]).

Let f : [1,2]→R be m-convex function then the following holds.
(i) If k j is odd for each j = 2, . . . , l then (6.122) holds.
(ii) Let the inequality (6.122) be satisfied

F(.) =
l


j=1

k j


i=0

f (i+2)(c j)Hij (.) (6.123)

is non-negative. Then i( f (u)) ≥ 0, i = 1, 2, . . . , 46.

Proof. (i) Since G(u,t) is convex and weight are positive, so i (G(u, t)) ≥ 0. Also as
k j is odd for all j = 2, . . . , l, therefore (t) ≥ 0 and by using Lemma 6.2 (i), we have
GH,m−2(u,s)≥ 0 so (6.121) holds. Now using the Theorem 6.24 we have (6.122).
(ii) Using (6.123) in (6.122), we get i( f (u))≥ 0. �

For the particular case of Hermite conditions, we can give the following corollaries to
above Theorem 6.25. By using type (q,m−q) conditions we give the following results.

Corollary 6.8 Let i,i be as defined in (6.113) and (6.114) respectively. Let f : [1,2]→
R be m-convex function.
(i) If m−q is even, then the inequality

2( f (u))≥
∫ 2

1

2 (G(u,t))

(
q−1


i=0

i(t) f (i+2)(1)+
m−q−1


i=0

i(t) f (i+2)(2)

)
dt,

i = 1,2, . . . ,46 (6.124)

holds.
(ii) Let the inequality (6.124) be satisfied

F(·) =
q−1


i=0

i(·) f (i+2)(1)+
m−q−1


i=0

i(·) f (i+2)(2)

is non-negative. Then i( f (u)) ≥ 0, i = 1, 2, . . . , 46.
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On using two points Taylor conditions we can give the following results.

Corollary 6.9 Let f : [1,2]→R be m-convex function.
(i) If m is even, then

i( f (u)) ≥
∫ 2

1

i(G(u,t))
q−1


i=0

q−i−1


k=0

(
q+ k−1

k

)
[

(t−1)i

i!

(
t−2

1−2

)q( t−1

2−1

)k

f (i+2)(1)

+
(t−2)i

i!

(
t−1

2−1

)q( t−2

1−2

)k

f (i+2)(2)

]
dt, i = 1,2, . . . ,46.

(ii) Let the inequality (6.125) be satisfied and

F(t) =
q−1


i=0

q−i−1


k=0

(
q+ k−1

k

)[
(t−1)i

i!

(
t−2

1−2

)q( t−1

2−1

)k

f (i+2)(1)

+
(t−2)i

i!

(
t−1

2−1

)q( t−2

1−2

)k

f (i+2)(2)

]

is non-negative. Then i( f (u)) ≥ 0, i = 1, 2, . . . , 46.
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Abstract. The Jensen’s inequality plays a crucial role to obtain inequalities for di-
vergences between probability distributions. In this chapter, we introduce a new
functional, based on the f -divergence functional, and then we obtain some esti-
mates for the new functional, the f -divergence and the Rényi divergence by apply-
ing a cyclic refinement of the Jensen’s inequality. Some inequalities for Rényi and
Shannon entropies are obtained too. Zipf-Mandelbrot law is used to illustrate the
results.
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7.1 Introduction

Divergences between probability distributions have been introduced to measure the dif-
ference between them. A lot of different type of divergences exist, for example the f -
divergence (especially, Kullback–Leibler divergence, Hellinger distance and total variation
distance), Rényi divergence, Jensen–Shannon divergence, etc. (see [45] and [51]). There
are a lot of papers dealing with inequalities for divergences and entropies, see e.g. [44] and
[50] and the references therein. The Jensen’s inequality plays a crucial role some of these
inequalities.
First we give some recent results on integral and discrete Jensens inequalites. We need the
following hypotheses:

(H1) Let 2 ≤ k ≤ n be integers, and let p1, . . . , pn and 1, . . . ,k represent positive
probability distributions.

(H2) Let C be a convex subset of a real vector space V , and f : C→ R be a convex
function.

(H3) Let (X ,B,) be a probability space.
Let l ≥ 2 be a fixed integer. The  -algebra in Xl generated by the projection mappings

prm : Xl → X (m = 1, . . . , l)
prm (x1, . . . ,xl) := xm

is denoted by Bl .  l means the product measure on Bl : this measure is uniquely ( is
 -finite) specified by

 l (B1× . . .×Bl) :=  (B1) . . . (Bl) , Bm ∈B, m = 1, . . . , l.

(H4) Let g be a -integrable function on X taking values in an interval I ⊂ R.
(H5) Let f be a convex function on I such that f ◦ g is -integrable on X .
Under the conditions (H1) and (H3-H5) we define

Cint = Cint ( f ,g, ,p, )

:=
n


i=1

(
k−1


j=0

 j+1pi+ j

)∫
Xn

f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠dn (x1, . . . ,xn) , (7.1)

and for t ∈ [0,1]

Cpar (t) = Cpar (t, f ,g, ,p, ) :=
n


i=1

(
k−1


j=0

 j+1pi+ j

)

·
∫
Xn

f

⎛⎜⎜⎜⎝t

k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

+(1− t)
∫
X

gd

⎞⎟⎟⎟⎠dn (x1, . . . ,xn) , (7.2)
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where i+ j means i+ j−n in case of i+ j > n.
Now we state cyclic renements of the discrete and integral form of Jensens inequality

introduced in [20] (see also [36]):

Theorem 7.1 Assume (H1) and (H2). If v1, . . . ,vn ∈C, then

f

(
n


i=1

pivi

)
≤Cdis = Cdis ( f ,v,p, ) (7.3)

:=
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jvi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ n


i=1

pi f (vi)

where i+ j means i+ j−n in case of i+ j > n.

Theorem 7.2 Assume (H1) and (H3-H5). Then

f

⎛⎝∫
X

gd

⎞⎠≤Cpar (t)≤Cint ≤
∫
X

f ◦ gd , t ∈ [0,1] .

To give applications in information theory, we introduce some denitions. The following
notion was introduced by Csiszár in [2] and [37].

Definition 7.1 Let f : ]0,[→ ]0,[ be a convex function, and let p := (p1, . . . , pn) and
q := (q1, . . . ,qn) be positive probability distributions. The f -divergence functional is

I f (p,q) :=
n


i=1

qi f

(
pi

qi

)
.

It is possible to use nonnegative probability distributions in the f -divergence func-
tional, by defining

f (0) := lim
t→0+

f (t) ; 0 f

(
0
0

)
:= 0; 0 f

(a
0

)
:= lim

t→0+
t f
(a

t

)
, a > 0.

Based on the previous denition, the following new functional was introduced in [9].

Definition 7.2 Let J ⊂ R be an interval, and let f : J → R be a function. Let p :=
(p1, . . . , pn) ∈ R

n, and q := (q1, . . . ,qn) ∈ ]0,[n such that

pi

qi
∈ J, i = 1, . . . ,n. (7.4)

Then let

Î f (p,q) :=
n


i=1

qi f

(
pi

qi

)
.
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As a special case, Shannon entropy and the measures related to it are frequently applied in
fields like population genetics, molecular ecology, information theory, dynamical systems
and statistical physics(see [21, 22].

Definition 7.3 The Shannon entropy of a positive probability distribution p := (p1, . . . , pn)
is defined by

H (p) :=−
n


i=1

pi log(pi) .

One of the most famous distance functions used in information theory [27, 30], mathe-
matical statistics [28, 31, 29] and signal processing [23, 26] is Kullback-Leibler distance.
The Kullback-Leibler distance [13, 25] between the positive probability distributions
p = (p1, . . . , pn) and q = (q1, . . . ,qn) is defined by

Definition 7.4 The Kullback-Leibler divergence between the positive probability distri-
butions p := (p1, . . . , pn) and q := (q1, . . . ,qn) is defined by

D(p‖q) :=
n


i=1

pi log

(
pi

qi

)
.

We shall use the so called Zipf-Mandelbrot law.

Definition 7.5 Zipf-Mandelbrot law is a discrete probability distribution depends on three
parameters N ∈ {1,2, . . .}, q ∈ [0,[ and s > 0, and it is defined by

f (i;N,q,s) :=
1

(i+q)s HN,q,s
, i = 1, . . . ,N,

where

HN,q,s :=
N


k=1

1
(k+q)s

.

If q = 0, then Zipf–Mandelbrot law becomes Zipf’s law.

Zipf’s law is one of the basic laws in information science and bibliometrics. Zipf’s law
is concerning the frequency of words in the text. We count the number of times each word
appears in the text. Words are ranked (r) according to the frequency of occurrence ( f ).
The product of these two numbers is a constant: r · f = c.

Apart from the use of this law in bibliometrics and information science, Zipf’s law
is frequently used in linguistics (see [39], p. 167). In economics and econometrics, this
distribution is known as Pareto’s law which analyze the distribution of the wealthiest mem-
bers of the community (see [39], p. 125). These two laws are the same in the mathematical
sense, they are only applied in a different context (see [42], p. 294).

The same type of distribution that we have in Zipf’s and Pareto’s law can be also
found in other scientific disciplines, such as: physics, biology, earth and planetary sciences,
computer science, demography and the social sciences. For example, the same type of
distribution, which we also call the Power law, we can analyze the number of hits on web
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sites, the magnitude of earthquakes, diameter of moon craters, intensity of solar flares,
intensity of wars, population of cities, and others (see [48]).

More general model introduced Benoit Mandelbrot (see [46]), by using arguments on
the fractal structure of lexical trees.

The are also quite different interpretation of Zipf-Mandelbrot law in ecology, as it is
pointed out in [47] (see also [43] and [52]).

7.2 Estimations of f - and Rényi divergences

In this section we obtain some estimates for the new functional, the f -divergence func-
tional, the Sannon entropy and the Rényi divergence by applying cyclic renement results
for the Jensens inequality. Finally, some concrete cases are considered, by using Zipf-
Mandelbrot law.

It is generally common to take log with base of 2 in the introduced notions, but in our
investigations this is not essential.

7.2.1 Inequalities for Csiszár divergence and Shannon entropy

In the first result we apply Theorem 7.1 to Î f (p,q).

Theorem 7.3 Let 2≤ k≤ n be integers, and let  := (1, . . . ,k) be a positive probability
distribution. Let J⊂R be an interval, let p := (p1, . . . , pn)∈R

n, and let q := (q1, . . . ,qn)∈
]0,[n such that

pi

qi
∈ J, i = 1, . . . ,n.

(a) If f : J→ R is a convex function, then

Î f (p,q) =
n


i=1

qi f

(
pi

qi

)

≥
n


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ f

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

qi. (7.5)

If f is a concave function, then inequality signs in (7.5) are reversed.
(b) If f : J→ R is a function such that x→ x f (x) (x ∈ J) is convex, then

ÎidJ f (p,q) =
n


i=1

pi f

(
pi

qi

)



172 7 IMPROVEMENTS OF THE INEQUALITIES FOR THE f -DIVERGENCE...

≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ f

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

pi. (7.6)

If x→ x f (x) (x ∈ J) is a concave function, then inequality signs in (7.6) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) By applying Theorem 7.1 with C := J, f := f ,

pi :=
qi
n


i=1

qi

, vi :=
pi

qi
, i = 1, . . . ,n

we have
n


i=1

qi f

(
pi

qi

)
=

(
n


i=1

qi

)
·

n


i=1

qi
n


i=1

qi

f

(
pi

qi

)

≥
(

n


i=1

qi

)
·

n


i=1

⎛⎜⎜⎜⎝k−1


j=0

 j+1
qi+ j
n


i=1

qi

⎞⎟⎟⎟⎠ f

⎛⎜⎜⎜⎜⎜⎜⎜⎝

k−1

j=0

 j+1
qi+ j
n


i=1

qi

pi+ j
qi+ j

k−1

j=0

 j+1
qi+ j
n


i=1

qi

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
n


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠

≥ f

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

qi.

(b) We can prove similarly to (a), by using f := idJ f .
The proof is complete. �

Remark 7.1 (a) Csiszár and Körner classical inequality for the f -divergence functional
is generalized and refined in (7.5).

(b) Other type of refinements are applied to the f -divergence functional in [40], [41]
and [35].

(c) For example, the functions x→ x logb (x) (x > 0, b > 1) and x→ xarctan(x) (x ∈ R)
are convex.
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We mention two special cases of the previous result.
The first case corresponds to the entropy of a discrete probability distribution.

Corollary 7.1 Let 2≤ k≤ n be integers, and let  := (1, . . . ,k) be a positive probability
distribution.

(a) If q := (q1, . . . ,qn) ∈ ]0,[n, and the base of log is greater than 1, then

−
n


i=1

qi log(qi)

≤−
n


i=1

(
k−1


j=0

 j+1qi+ j

)
log

(
k−1


j=0

 j+1qi+ j

)
≤ log

⎛⎜⎜⎜⎝ n
n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

qi. (7.7)

If the base of log is between 0 and 1, then inequality signs in (7.7) are reversed.
(b) If q := (q1, . . . ,qn) is a positive probability distribution and the base of log is greater

than 1, then we have estimates for the Shannon entropy of q

H (q)≤−
n


i=1

(
k−1


j=0

 j+1qi+ j

)
log

(
k−1


j=0

 j+1qi+ j

)
≤ log(n) .

If the base of log is between 0 and 1, then inequality signs in (7.7) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) It follows from Theorem 7.3 (a), by using f := log and p := (1, . . . ,1).
(b) It is a special case of (a). �

The second case corresponds to the relative entropy or Kullback-Leibler divergence
between two probability distributions.

Corollary 7.2 Let 2≤ k≤ n be integers, and let  := (1, . . . ,k) be a positive probability
distribution.

(a) Let p := (p1, . . . , pn) ∈ ]0,[n and q := (q1, . . . ,qn) ∈ ]0,[n. If the base of log is
greater than 1, then

n


i=1

pi log

(
pi

qi

)
(7.8)

≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ log

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

pi. (7.9)

If the base of log is between 0 and 1, then inequality signs in (7.9) are reversed.
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(b) If p and q are positive probability distributions, and the base of log is greater than
1, then we have

D(p‖q)≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ 0. (7.10)

If the base of log is between 0 and 1, then inequality signs in (7.10) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) We can apply Theorem 7.3 (b) to the function f := log.
(b) It is a special case of (a). �

Remark 7.2 We can apply Theorem 7.3 to have similar inequalities for other distances
between two probability distributions.

7.2.2 Inequalities for Rényi divergence and entropy

The Rényi divergence and entropy come from [49].

Definition 7.6 Let p := (p1, . . . , pn) and q := (q1, . . . ,qn) be positive probability distri-
butions, and let  ≥ 0,  
= 1.

(a) The Rényi divergence of order  is defined by

D(p,q) :=
1

−1
log

(
n


i=1

qi

(
pi

qi

))
. (7.11)

(b) The Rényi entropy of order  of p is defined by

H (p) :=
1

1− log

(
n


i=1

pi

)
. (7.12)

The Rényi divergence and the Rényi entropy can also be extended to nonnegative prob-
ability distributions.

If  → 1 in (7.11), we have the Kullback-Leibler divergence, and if  → 1 in (7.12),
then we have the Shannon entropy.

In the next two results inequalities can be found for the Rényi divergence.

Theorem 7.4 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k), p := (p1, . . . , pn) and
q := (q1, . . . ,qn) be positive probability distributions.

(a) If 0≤  ≤  ,  ,  
= 1, and the base of log is greater than 1, then

D(p,q)≤ 1
 −1

log

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1
⎞⎟⎟⎟⎟⎠ (7.13)
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≤ D (p,q)

The reverse inequalities hold if the base of log is between 0 and 1.
(b) If 1 <  , and the base of log is greater than 1, then

D1(p,q) = D(p‖q) =
n


i=1

pi log

(
pi

qi

)

≤ 1
 −1

log

⎛⎜⎜⎜⎝ n


i=1

(
k−1


j=0

 j+1pi+ j

)
exp

⎛⎜⎜⎜⎝
( −1)

k−1

j=0

 j+1pi+ j log
(

pi+ j
qi+ j

)
k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

≤ D (p,q),

where the base of exp is the same as the base of log.
The reverse inequalities hold if the base of log is between 0 and 1.
(c) If 0≤  < 1, and the base of log is greater than 1, then

D(p,q)

≤ 1
−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ D1(p,q)

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) By applying Theorem 7.1 with C := ]0,[, f : ]0,[→ R, f (t) := t
−1
−1 ,

vi :=
(

pi

qi

)−1

, i = 1, . . . ,n,

we have (
n


i=1

qi

(
pi

qi

)) −1
−1

=

(
n


i=1

pi

(
pi

qi

)−1
) −1

−1

≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1

≤
n


i=1

pi

(
pi

qi

)−1

(7.14)

if either 0 ≤  < 1 <  or 1 <  ≤  , and the reverse inequalities hold in (7.61) if 0 ≤
 ≤  < 1. By raising the power 1

−1 , we have from all these cases that(
n


i=1

qi

(
pi

qi

)) 1
−1
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≤

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1
⎞⎟⎟⎟⎟⎠

1
−1

≤
(

n


i=1

pi

(
pi

qi

)−1
) 1

−1

=

(
n


i=1

qi

(
pi

qi

)) 1
−1

.

Since log is increasing if the base of log is greater than 1, it now follows (7.13).
If the base of log is between 0 and 1, then log is decreasing, and therefore inequality

signs in (7.13) are reversed.
(b) and (c) When  = 1 or  = 1, we have the result by taking limit.
The proof is complete. �

Theorem 7.5 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k), p := (p1, . . . , pn) and
q := (q1, . . . ,qn) be positive probability distributions.

If either 0≤  < 1 and the base of log is greater than 1, or 1 <  and the base of log
is between 0 and 1, then

1
n


i=1

qi

(
pi
qi

) n


i=1

pi

(
pi

qi

)−1

log

(
pi

qi

)
≤ 1

(−1)
n


i=1

pi

(
pi
qi

)−1
×

×
n


i=1

(
k−1


j=0

 j+1pi+ j

(
pi+ j

qi+ j

)−1
)

log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ D(p,q) (7.15)

≤ 1
−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ D1(p,q)

If either 0 ≤  < 1 and the base of log is between 0 and 1, or 1 <  and the base of
log is greater than 1, then the reverse inequalities holds.

In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. We prove only the case when 0 ≤  < 1 and the base of log is greater than 1, the
other cases can be proved similarly.

Since 1
−1 < 0 and the function log is concave, we have from Theorem 7.1 by choosing

C := ]0,[, f := log,

vi :=
(

pi

qi

)−1

, i = 1, . . . ,n,
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that

D(p,q) =
1

−1
log

(
n


i=1

pi

(
pi

qi

)−1
)

≤ 1
−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≤ 1

−1

n


i=1

pi log

((
pi

qi

)−1
)

=
n


i=1

pi log

(
pi

qi

)
= D1(p,q)

and this gives the desired upper bound for D(p,q).
Since the base of log is greater than 1, the function x→ x log(x) (x > 0) is convex, and

therefore 1
1− < 0 and Theorem 7.1 imply that

D(p,q) :=
1

−1
log

(
n


i=1

pi

(
pi

qi

)−1
)

=
1

(−1)
n


i=1

pi

(
pi
qi

)−1

(
n


i=1

pi

(
pi

qi

)−1
)

log

(
n


i=1

pi

(
pi

qi

)−1
)

≥ 1

(−1)
n


i=1

pi

(
pi
qi

)−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
×

×

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠ log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠

1

(−1)
n


i=1

pi

(
pi
qi

)−1

n


i=1

(
k−1


j=0

 j+1pi+ j

(
pi+ j

qi+ j

)−1
)

log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≥ 1

(−1)
n


i=1

pi

(
pi
qi

)−1

n


i=1

pi

(
pi

qi

)−1

log

((
pi

qi

)−1
)

=
1

n


i=1

pi

(
pi
qi

)−1

n


i=1

pi

(
pi

qi

)−1

log

(
pi

qi

)
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which gives the desired lower bound for D(p,q).
The proof is complete. �

Now, by using the previous theorems, some inequalities of Rényi entropy are obtained.
Denote 1

n :=
( 1

n , . . . , 1
n

)
be the discrete uniform distribution.

Corollary 7.3 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k) and p := (p1, . . . , pn)
be positive probability distributions.

(a) If 0≤  ≤  ,  ,  
= 1, and the base of log is greater than 1, then

H (p)≥ 1
1− log

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1
⎞⎟⎟⎟⎟⎠≥ H (p) .

The reverse inequalities hold if the base of log is between 0 and 1.
(b) If 1 <  , and the base of log is greater than 1, then

H (p) =−
n


i=1

pi log(pi)≥ log(n)

+
1

1− log

⎛⎜⎜⎜⎝ n


i=1

(
k−1


j=0

 j+1pi+ j

)
exp

⎛⎜⎜⎜⎝
( −1)

k−1

j=0

 j+1pi+ j log(npi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

≥ H (p) ,

where the base of exp is the same as the base of log.
The reverse inequalities hold if the base of log is between 0 and 1.
(c) If 0≤  < 1, and the base of log is greater than 1, then

H (p)≥ 1
1−

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥ H (p)

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. If q = 1
n , then

D(p,
1
n

) =
1

−1
log

(
n


i=1

n−1pi

)
= log(n)+

1
−1

log

(
n


i=1

pi

)
,
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and therefore

H (p) = log(n)−D(p,
1
n

). (7.16)

(a) It follows from Theorem 7.4 and (7.16) that

H (p) = log(n)−D(p,
1
n

)

≥ log(n)− 1
 −1

log

⎛⎜⎜⎜⎜⎝n−1
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1
⎞⎟⎟⎟⎟⎠

≥ log(n)−D (p,
1
n

) = H (p) .

(b) and (c) can be proved similarly.
The proof is complete. �

Corollary 7.4 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k) and p := (p1, . . . , pn)
be positive probability distributions.

If either 0 ≤  < 1 and the base of log is greater than 1, or 1 <  and the base of log
is between 0 and 1, then

− 1
n


i=1

pi

n


i=1

pi log(pi)≥ log(n)− 1

(−1)
n


i=1

pi

×

×
n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝n−1

k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥ H (p)

≥ 1
1−

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥ H (p)

If either 0 ≤  < 1 and the base of log is between 0 and 1, or 1 <  and the base of
log is greater than 1, then the reverse inequalities holds.

In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. We can prove as Corollary 7.3, by using Theorem 7.5. �

We illustrate our results by using Zipf–Mandelbrot law.



180 7 IMPROVEMENTS OF THE INEQUALITIES FOR THE f -DIVERGENCE...

7.2.3 Inequalities by using the Zipf-Mandelbrot law

We illustrate the previous results by using Zipf-Mandelbrot law.

Corollary 7.5 Let p be the Zipf-Mandelbrot law as in Definition 10.1, let 2 ≤ k ≤ N be
integers, and let  := (1, . . . ,k) be a probability distribution. By applying Corollary 7.3
(c), we have:

If 0≤  < 1, and the base of log is greater than 1, then

H (p) =
1

1− log

(
1

H
N,q,s

N


i=1

1

(i+q)s

)

≥ 1
1−

n


i=1

(
k−1


j=0

 j+1

(i+ j +q)s HN,q,s

)
log

⎛⎜⎜⎜⎝ 1

H−1
N,q,s

k−1

j=0

 j+1

(i+ j+q)s

k−1

j=0

 j+1
(i+q)s

⎞⎟⎟⎟⎠
≥ s

HN,q,s

N


i=1

log(i+q)
(i+q)s

+ log(HN,q,s) = H (p)

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Corollary 7.6 Let p1 and p2 be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .},
q1, q2 ∈ [0,[ and s1, s2 > 0, respectively, let 2 ≤ k ≤ N be integers, and let  :=
(1, . . . ,k) be a probability distribution. By applying Corollary 7.2 (b), we have:

If the base of log is greater than 1, then

D(p1‖p2) =
N


i=1

1
(i+q1)

s1 HN,q1,s1
log

(
(i+q2)

s2 HN,q2,s2

(i+q1)
s1 HN,q1,s1

)

≥
N


i=1

(
k−1


j=0

 j+1
1

(i+ j +q1)
s1 HN,q1,s1

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+q1)
s1 HN,q1 ,s1

k−1

j=0

 j+1
1

(i+ j+q2)
s2 HN,q2 ,s2

⎞⎟⎟⎟⎠≥ 0. (7.17)

If the base of log is between 0 and 1, then inequality signs in (7.17) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.
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7.3 Cyclic improvemnts of inequalities for entropy
of Zipf-Mandelbrot law via Hermite interpolating
polynomial

In order to give our main results, we consider the following hypotheses for next sections.
(M1) Let I ⊂ R be an interval, x := (x1, . . . ,xn) ∈ In and let p1, . . . , pn and 1, . . . ,k rep-
resent positive probability distributions for 2≤ k ≤ n.

(M2) Let f : I→R be a convex function.

Remark 7.3 Under the conditions (M1), we define

J1( f ) = J1(x,p, ; f ) :=
n


i=1

pi f (xi)−Cdis ( f ,x,p, )

J2( f ) = J1(x,p, ; f ) := Cdis ( f ,x,p, )− f

(
n


i=1

pixi

)
where f : I→R is a function. The functionals f → Ju( f ) are linear, u = 1,2, and Theorem
7.1 imply that

Ju( f )≥ 0, u = 1,2

if f : I→ R is a convex function.
Assume (H1) and (H3-H5). Then we have the following additional linear functionals

J3( f ) = J3( f ,g, ,p, ) :=
∫
X

f ◦ gd−Cint ( f ,g, ,p, )≥ 0,

J4( f ) = J4(t, f ,g, ,p, ) :=
∫
X

f ◦ gd−Cpar (t, f ,g, ,p, )≥ 0; t ∈ [0,1] ,

J5( f ) = J5(t, f ,g, ,p, ) := Cint ( f ,g, ,p, )−Cpar (t, f ,g, ,p, )≥ 0; t ∈ [0,1] ,

J6( f ) = J6(t, f ,g, ,p, ) := Cpar (t, f ,g, ,p, )− f

⎛⎝∫
X

gd

⎞⎠≥ 0; t ∈ [0,1] .

For v = 1, . . . ,5, consider the Green functions Gv : [1,2]× [1,2]→ R defined as

G1(z,r) =

{
(2−z)(1−r)

2−1
, 1 ≤ r ≤ z;

(2−r)(1−z)
2−1

, z≤ r ≤ 2.
(7.18)

G2(z,r) =
{
1− r, 1 ≤ r ≤ z,
1− z, z≤ r ≤ 2.

(7.19)



182 7 IMPROVEMENTS OF THE INEQUALITIES FOR THE f -DIVERGENCE...

G3(z,r) =
{

z−2, 1 ≤ r ≤ z,
r−2, z≤ r ≤ 2.

(7.20)

G4(z,r) =
{

z−1, 1 ≤ r ≤ z,
r−1, z≤ r ≤ 2.

(7.21)

G5(z,r) =
{
2− r, 1 ≤ r ≤ z,
2− z, z≤ r ≤ 2,

(7.22)

All these functions are convex and continuous w.r.t both z and r (see [33]).

Remark 7.4 The Green’s function G1(·, ·) is called Lagrange Green’s function (see [34]).
The new Green functions Gv(·, ·), (v = 2,3,4,5), introduced by Pečarić et al. in [33].

For I = [1,2], consider the following assumptions .

(A1) For the linear functionals Ju(·) (u = 1,2), assume that

k−1

j=0

 j+1 pi+ jzi+ j

k−1


v=0
 j+1 pi+ j

∈ [1,2] for

i = 1, . . .m.

(A2) For the linear functionals Ju(·) (u = 3, . . . ,6), assume that

k−1

j=0

 j+1 pi+ j f(zi+ j)
k−1

j=0

v+1 pi+ j

∈ [1,2]

for i = 1, . . .m.

7.3.1 Extensions of cyclic refinements of Jensen’s inequality
via Hermite interpolating polynomial

The proof of the results of this section are given in [16]. We start this section by
considering the discrete as well as continuous version of cyclic refinements of Jensen’s in-
equality and construct the generalized new identities having real weights utilizing Hermite
interpolating polynomial.

Theorem 7.6 Let m,k ∈ N, p1, . . . , pm and 1, . . . ,k be real tuples for 2 ≤ k ≤ m, such

that
k−1

j=0

 j+1pi+ j 
= 0 for i = 1, . . .m with
m

i=1

pi = 1 and
k

j=1

 j = 1. Also let z∈ [1,2]⊂R

and z ∈ [1,2]m. Assume f ∈ Cn[1,2] and consider interval with points − < 1 =
b1 < b2 · · · < bt = 2 < , (t ≥ 2) such that f (1) = f (2), f ′(1) = 0 = f ′(2) and
Gv, (v = 1, . . . ,5) be the Green functions defined in (10.4)–(7.22), respectively. Then for
u = 1, . . . ,6 along with assumptions (A1) and (A2), we have the following generalized
identities:

(a)

Ju( f (z)) =
t


=1

s


=0

f ()(b )Ju

(
H(z)

)
+

2∫
1

Ju

(
GH,n(z,r)

)
f (n)(r)dr. (7.23)
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(b)

Ju( f (z)) =
2∫
1

Ju

(
Gv(z,r)

) t


=1

s


=0

f (+2)(b)H(r)dr

+
2∫
1

2∫
1

Ju

(
Gv(z,r)

)
GH,n−2(r, )) f (n)( )ddr (7.24)

where H are Hermite basis and GH,n(z,r) be the Hermite Green function (see
[32]).

Now we obtain extensions and improvements of discrete and integral cyclic Jensen type
linear functionals, with real weights.

Theorem 7.7 Consider f be n-convex function along with the suppositions of Theorem
7.6. Then we conclude the following results:

(a) If for all u = 1, . . . ,6,

Ju

(
GH,n(z,r)

)
≥ 0, r ∈ [1,2] (7.25)

holds, then we have

Ju( f (z)) ≥
t


=1

s


=0

f ()(b)Ju

(
H(z)

)
(7.26)

for u = 1, . . . ,6.

(b) If for all u = 1, . . . ,6 and v = 1, . . . ,5

Ju

(
Gv(z,r)

)
≥ 0, r ∈ [1,2] (7.27)

holds, provided that s is odd for each  = 2,3,4, · · · ,t, then

Ju( f (z)) ≥
2∫
1

Ju

(
Gv(z,r)

) t


=1

s


=0

f (+2)(b)H(r)dr. (7.28)

for u = 1, . . . ,6.

(c) If (7.27) holds for all u = 1, . . . ,6 and v = 1, . . . ,5 , provided that s is odd for
each  = 2,3,4, · · · ,t− 1 and st is even then (7.28) holds in reverse direction for
u = 1, . . . ,6.

We will finish the present section by the following generalizations of cyclic refinements of
Jensen inequalities:
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Theorem 7.8 If the assumptions of Theorem 7.6 be fulfilled with additional conditions

that p1, . . . , pm and 1, . . . ,k be non negative tuples for 2≤ k≤m, such that
m

i=1

pi = 1 and

k

j=1

 j = 1. Then for  : [1,2]→ R being n-convex function, we conclude the following

results:

(a) If (7.26) is valid along with the function

(z) :=
t


=1

s


=0

H(z) f ()(b). (7.29)

to be convex, the right side of (7.26) is non negative, means

Ju()≥ 0, u = 1, . . . ,6. (7.30)

(b) If s to be odd for each  = 2,3,4, · · · ,t, (7.28) holds. Further

t


=1

s


=0

H(r) f (+2)(b)≥ 0. (7.31)

the right side of (7.28) is non negative, particularly (7.30) is establish for all u =
1, . . . ,6 and v = 1, . . . ,5..

(c) Inequality (7.28) holds reversely if s is odd for each  = 2,3,4, · · · ,t−1 and st is
even. Moreover, let (7.31) holds in reverse direction then reverse of (7.30) holds for
all u = 1, . . . ,6 and v = 1, . . . ,5.

7.3.2 Cyclic improvements of inequalities for entropy
of Zipf-Mandelbrot law via Hermite polynomial

Remark 7.5 Now as a consequences of Theorem 7.7 we consider the discrete extensions
of cyclic refinements of Jensen’s inequalities for (u = 1), from (7.26) with respect to n-
convex function f in the explicit form:

m


i=1

pi f (zi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jzi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥
(

t


=1

s


=0

f ()(b)

)
×⎛⎜⎜⎜⎝ m


i=1

piH (zi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jzi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ , (7.32)
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where H are Hermite basis.

Theorem 7.9 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions.
Let p := (p1, . . . , pm) ∈ R

m, and q := (q1, . . . ,qm) ∈ (0,)m such that

pi

qi
∈ [1,2], i = 1, . . . ,m.

Also let f ∈ Cn[1,2] and consider interval with points − < 1 = b1 < b2 · · · < bt =
2 < , (t ≥ 2) such that f is n-convex function. Then the following inequalities hold:

Î f (p,q)≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠+

(
t


=1

s


=0

f ()(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.33)

Proof. Replacing pi with qi and zi with pi
qi

for (i = 1, . . . ,m) in (7.32) , we get (7.33). �

We now explore two exceptional cases of the previous result.
One corresponds to the entropy of a discrete probability distribution.

Corollary 7.7 Let m,k ∈ N (2≤ k ≤ m), 1, . . . ,k be positive probability distributions.

(a) If q := (q1, . . . ,qm) ∈ (0,)m and (n = even), then

m


i=1

qi lnqi ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)
+(

t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
1
qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.34)

(b) If q := (q1, . . . ,qm) is a positive probability distribution and (n = even), then we get
the bounds for the Shannon entropy of q.
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H(q)≤−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)
−(

t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
1
qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.35)

If (n = odd), then (7.34) and (7.35) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx and p := (1,1, . . . ,1) in Theorem 7.9, we get the required re-
sults.

(b) It is a specific case of (a).

�

The second case corresponds to the relative entropy or Kullback–Leibler divergence
between two probability distributions.

Corollary 7.8 Let m,k ∈N (2≤ k ≤ m), 1, . . . ,k be positive probability distributions.

(a) If q := (q1, . . . ,qm),p := (p1, . . . , pm) ∈ (0,)m and (n = even), then

m


i=1

qi ln

(
qi

pi

)
≥

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.36)

(b) If If q := (q1, . . . ,qm),p := (p1, . . . , pm) are positive probability distributions and
(n = even), then we have

D(q ‖ p)≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠+
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(
t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

qiH

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (7.37)

If (n = odd), then (7.36) and (7.37) hold in reverse directions.

Proof.

(a) Using f (x) :=− lnx in Theorem 7.9, we get the desired results.

(b) It is particular case of (a).

�

Let m ∈ {1,2, . . .}, t ≥ 0, s > 0, then Zipf-Mandelbrot entropy can be given as:

Z(H,t,s) =
s

Hm,t,s

m


i=1

ln(i+ t)
(i+ t)s + ln(Hm,t,s). (7.38)

Consider

qi = f (i;m,t,s) =
1

((i+ t)sHm,t,s)
. (7.39)

Now we state our results involving entropy introduced by Mandelbrot Law:

Theorem 7.10 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions
and q be as defined in (7.39) by Zipf-Mandelbrot law with parameters m∈ {1,2, . . .}, c≥ 0,
d > 0. For (n = even), the following holds

H(q) = Z(H,c,d)

≤−
m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm,c,d)

)
ln

(
1

Hm,c,d

k−1


j=0

 j+1

((i+ j + t)s)

)
−(

t


=1

s


=0

(−1) ( −1)!
(b)

)(
m


i=1

1
((i+ c)dHm,c,d)

H

(
((i+ c)dHm,c,d)

))
+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm,c,d)

)
H

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1

((i+ j+c)dHm,c,d)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(7.40)

If (n = odd), then (7.40) holds in reverse direction.
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Proof. Substituting this qi = 1
((i+c)dHm,c,d) in Corollary 7.7(b), we get the desired result.

Since it is interesting to see that
m

i=1

qi = 1. Moreover using above qi in Shannon entropy

(7.3), we get Mandelbrot entropy(7.38). �

Corollary 7.9 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions
and for c1,c2 ∈ [0,), d1,d2 > 0, let Hm,c1,d1 = 1

(i+c1)d1
and Hm,c2,d2 = 1

(i+c2)d2
. Now using

qi =
1

(i+ c1)
d1Hm,c1,d1

and pi =
1

(i+ c2)
d2Hm,c2,d2

in Corollary 7.8(b), with (n = even),

then the following holds

D(q ‖ p) =
m


i=1

1

(i+ c1)
d1Hm,c1,d1

ln

(
(i+ c2)

d2Hm,c2,d2

(i+ c1)
d1Hm,c1,d1

)

≥
m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)
d1Hm,c1,d1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+c1)
d1Hm,c1 ,d1

k−1

j=0

 j+1
1

(i+ j+c2)
d2Hm,c2 ,d2

⎞⎟⎟⎟⎠
+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)(
m


i=1

1
((i+ c1)d1Hm,c1,d1)

H

(
((i+ c2)d

2Hm,c2,d2)
((i+ c1)dHm,c1,d1)

))

−
(

t


=1

s


=0

(−1) ( −1)!
(b)

)
×⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)
d1Hm,c1,d1

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+c1)
d1Hm,c1 ,d1

k−1

j=0

 j+1
1

(i+ j+c2)
d2Hm,c2 ,d2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ (7.41)

If (n = odd), then (7.41) holds in reverse direction.

Remark 7.6 It is interesting to note that, in the similar passion we are able to construct
different estimations of f -divergences along with their applications to Shannon and Man-
delbrot entropies using the other inequalities for n-convex functions constructed in Theo-
rem 7.7 for discrete case of cyclic refinements of Jensen inequality.

Remark 7.7 We left for reader interest to construct upper bounds for Shannon, Relative
and Mandelbrot entropies by considering Type( ,n−)C and Two-point TC instead of
HC in the above results.
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7.4 A refinement and an exact equality condition for
the basic inequality of f -divergences

Measures of dissimilarity between probability measures play important role in probability
theory, especially in information theory and in mathematical statistics. Many divergence
measures for this purpose have been introduced and studied (see for example Vajda [14]).
Among them f -divergences were introduced by Csiszár [2] and [37] and independently
by Ali and Silvey [1]. Remarkable divergences can be found among f -divergences, such
as the information divergence, the Pearson or 2-divergence, the Hellinger distance and
total variational distance. There are a lot of papers dealing with f -divergence inequalities
(see Dragomir [39], Dembo, Cover, and Thomas [4] and Sason and Verdú [50]). These
inequalities are very useful and applicable in information theory.

One of the basic inequalities is (see Liese and Vajda [45])

Df (P,Q)≥ f (1) .

In this section we give a refinement and a precise equality condition for this inequality.
Some applications for discrete distributions, for the Shannon entropy, and some examples
are given.

7.4.1 Construction of the equality conditions and related
results of classical integral Jensen’s inequality

The classical Jensen’s inequality is well known (see [7]).

Theorem 7.11 Let g be an integrable function on a probability space (Y,B,) taking

values in an interval I ⊂ R. Then
∫
Y

gd lies in I. If f is a convex function on I such that

f ◦ g is -integrable, then

f

⎛⎝∫
Y

gd

⎞⎠≤ ∫
Y

f ◦ gd. (7.42)

The following approach to give a necessary and sufficient condition for equality in this
inequality may be new. First, we introduce the next definition.

Definition 7.7 Let (Y,B,) be a probability space, and let g be a real measurable func-
tion defined almost everywhere on Y . We denote by essint (g) the smallest interval in R

for which
 (g ∈ essint (g)) = 1.
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Remark 7.8 (a) Obviously, the endpoints of essint (g) are the essential infimum
(essinf (g)) and the essential supremum of g, and either of them belong to essint (g)
exactly if g takes this value with positive probability.

(b) It is easy to see that either essint (g) =

⎧⎨⎩
∫
Y

gd

⎫⎬⎭ (in this case g is constant -a.e.)

or
∫
Y

gd is an inner point of essint (g).

(c) The interval essinf (g) is connected with the essential range of g, but not the same
set (for example, the essential range of g is always closed, and not an interval in general).

Lemma 7.1 Assume the conditions of Theorem 7.11 are satisfied. Equality holds in (7.42)
if and only if f is affine on essint (g).

Proof. It is easy to see that the condition is sufficient for equality in (7.42).
Conversely, if essint (g) contains only one point, then it is trivial, so we can assume

that m :=
∫
Y

gd is an inner point of essint (g). Let

l : R→ R, l (t) = f ′+ (m)(t−m)+ f (m) .

If f is not affine on essint (g), then by the convexity of f , there is a point t1 ∈essint (g)
such that f (t1) > l (t1). Suppose t1 > m (the case t1 < m can be handled similarly).
Since f is convex, f (t) ≥ l (t) (t ∈ I) and f (t) > l (t) (t ∈ I, t ≥ t1). It follows by us-
ing  (g > t1) > 0, that ∫

Y

f ◦ gd =
∫

(g<t1)

f ◦ gd+
∫

(g≥t1)

f ◦ gd

≥
∫

(g<t1)

l ◦ gd+
∫

(g≥t1)

f ◦ gd >

∫
Y

l ◦ gd = f (m) ,

which is a contradiction.
The proof is complete. �

The next refinement of the Jensen’s inequality can be found in Horváth [8].

Theorem 7.12 Let I ⊂ R be an interval, and let f : I → R be a convex function. Let
(Y,B,) be a probability space, and let g : Y → I be a -integrable function such that

f ◦g is also -integrable. Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1.

Then
(a)

f

⎛⎝∫
Y

gd

⎞⎠≤ ∫
Yn

f

(
n


i=1

ig(xi)

)
dn (x1, . . . ,xn)≤

∫
Y

f ◦ gd.
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(b) ∫
Yn+1

f

(
1

n+1

n+1


i=1

g(xi)

)
dn+1 (x1, . . . ,xn+1)

≤
∫
Yn

f

(
1
n

n


i=1

g(xi)

)
dn (x1, . . . ,xn)≤

∫
Yn

f

(
n


i=1

ig(xi)

)
dn (x1, . . . ,xn) .

By analyzing the proof of the previous result, it can be seen that the hypothesis “ f ◦ g
is -integrable” can be weaken.

Theorem 7.13 Let I ⊂ R be an interval, and let f : I → R be a convex function. Let
(Y,B,) be a probability space, and let g : Y → I be a -integrable function such that the

integral
∫
Y

f ◦gd exists in ]−,]. Suppose that 1, . . . ,n are nonnegative numbers with

n


i=1

i = 1. Then the assertions of Theorem 7.12 remain true.

We assume throughout that the probability measures P and Q are defined on a fixed
measurable space (X ,A ). It is also assumed that P and Q are absolutely continuous with
respect to a  -finite measure  on A . The densities (or Radon-Nikodym derivatives) of P
and Q with respect to  are denoted by p and q, respectively. These densities are -almost
everywhere uniquely determined.

Let
F := { f : ]0,[→ R | f is convex} ,

and define for every f ∈ F the function

f ∗ : ]0,[→ R, f ∗ (t) := t f

(
1
t

)
.

If f ∈ F , then either f is monotonic or there exists a point t0 ∈ ]0,[ such that f is
decreasing on ]0,t0[. This implies that the limit

lim
t→0+

f (t)

exists in ]−,], and
f (0) := lim

t→0+
f (t)

extends f into a convex function on [0,[. The extended function is continuous and has
finite left and right derivatives at each point of ]0,[.

It is well known that for every f ∈ F the function f ∗ also belongs to F , and therefore

f ∗ (0) := lim
t→0+

f ∗ (t) = lim
u→

f (u)
u

.

We need the following simple property of functions belonging to F .



192 7 IMPROVEMENTS OF THE INEQUALITIES FOR THE f -DIVERGENCE...

Lemma 7.2 If f ∈ F, then f ∗ (0) ≥ f ′+ (1). This inequality becomes an equality if and
only if

f (t) = f ′+ (1)(t−1)+ f (1) , t ≥ 1. (7.43)

Proof. Since f is convex,

f (t)≥ f ′+ (1)(t−1)+ f (1) , t ≥ 1,

and therefore

f ∗ (0) = lim
t→

f (t)
t
≥ f ′+ (1) .

If (7.43) is satisfied, then obviously f ∗ (0) = f ′+ (1).
If there exists t1 > 1 such that f ′+ (t1) > f ′+ (1), then by the convexity of f ,

f (t)≥ f ′+ (t1) (t− t1)+ f (t1) , t ≥ t1,

and hence f ∗ (0) > f ′+ (1). It follows that f ∗ (0) = f ′+ (1) implies

f ′+ (t) = f ′+ (1) , t ≥ t1,

and this gives (7.43) (see [43] 1.6.2 Corollary 2).
The proof is complete. �

The next result prepares the notion of f -divergence of probability measures.

Lemma 7.3 For every f ∈ F the integral∫
(q>0)

q() f

(
p()
q()

)
d ()

exists and it belongs to the interval ]−,].

Proof. Since f is convex,

f (t)≥ f ′+ (1)(t−1)+ f (1) , t ≥ 0.

This implies that for all  ∈ (q > 0)

q() f

(
p()
q()

)
≥ h() := f ′+ (1)(p()−q())+ f (1)q() . (7.44)

Elementary considerations show that the function h is -integrable over (q > 0), and
this gives the result by (7.44).

The proof is complete. �

Now we introduce the notion of f -divergence.
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Definition 7.8 For every f ∈ F we define the f -divergence of P and Q by

Df (P,Q) :=
∫
X

q() f

(
p()
q()

)
d () ,

where the following conventions are used

0 f
( x

0

)
:= x f ∗ (0) if x > 0, 0 f

(
0
0

)
= 0 f ∗ (0) := 0. (7.45)

Remark 7.9 (a) For every f ∈ F the perspective f̂ : ]0,[× ]0,[→R of f is defined by

f̂ (x,y) := y f

(
x
y

)
.

Then (see [49]) f̂ is also a convex function. Vajda [14] proved that (7.45) is the unique rule
leading to convex and lower semicontinuous extension of f̂ to the set{

(x,y) ∈R
2 | x,y≥ 0

}
.

(b) Since f ∗ (0) ∈ ]−,], Lemma 7.3 shows that Df (P,Q) exists in ]−,] and

Df (P,Q) =
∫

(q>0)

f

(
p()
q()

)
dQ()+ f ∗ (0)P(q = 0) . (7.46)

It follows that if P is absolutely continuous with respect to Q, then

Df (P,Q) =
∫

(q>0)

f

(
p()
q()

)
dQ() .

Various divergences in information theory and statistics are special cases of the f -
divergence. We illustrate this by some examples.

(a) By choosing f : ]0,[→ R, f (t) = t ln(t) in (7.46), the information divergence is
obtained

I (P,Q) =
∫

(q>0)

p() ln

(
p()
q()

)
d ()+P(q = 0) . (7.47)

(b) By choosing f : ]0,[→R, f (t) = (t−1)2 in (7.46), the Pearson or 2-divergence
is obtained

2 (P,Q) =
∫

(q>0)

(p()−q())2

q()
d ()+P(q = 0) . (7.48)

(c) By choosing f : ]0,[→ R, f (t) =
(√

t−1
)2

in (7.46), the Hellinger distance is
obtained

H2 (P,Q) =
∫
X

(√
p()−

√
q()

)2
d () . (7.49)



194 7 IMPROVEMENTS OF THE INEQUALITIES FOR THE f -DIVERGENCE...

(d) By choosing f : ]0,[→R, f (t) = |t−1| in (7.46), the total variational distance is
obtained

V (P,Q) =
∫
X

|p()−q()| () . (7.50)

We need the following lemma.

Lemma 7.4 Let t0 := P(q > 0).
(a) For every  > 0

Q

(
p
q

< t0 + , q > 0

)
> 0.

(b)

essinfQ

(
p
q

)
≤ t0

Proof. (a) Obviously,

Q

(
p
q

< t0 + , q > 0

)
= 1−Q

(
p
q
≥ t0 + , q > 0

)
.

The result follows from this, since

Q

(
p
q
≥ t0 + , q > 0

)
=
∫
X

q1( p
q≥t0+, q>0

)d ≤ ∫
(q>0)

1
t0 + 

pd

=
t0

t0 + 
< 1.

(b) It comes from (a).
The proof is complete. �

The following result contains a key property of f -divergences. We give a simple proof
which emphasizes the importance of the convexity of f , and give an exact equality condi-
tion.

Theorem 7.14 (a) For every f ∈ F

Df (P,Q)≥ f (1) . (7.51)

(b) Assume P(q = 0) = 0. Then equality holds in (7.51) if and only if f is affine on

essintQ
(

p
q

)
.

(c) Assume P(q = 0) > 0. Then equality holds in (7.51) if and only if f is affine on

essintQ
(

p
q

)
∪ [1,[.
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Proof. (a) If Df (P,Q) =, then (7.51) is obvious.
If Df (P,Q) ∈R, then the integral∫

(q>0)

f

(
p()
q()

)
dQ() (7.52)

is finite, and therefore either Q(p = 0) = 0 or Q(p = 0) > 0 and f (0) is finite. It follows
that Jensen’s inequality can be applied to this integral, and we have

Df (P,Q)≥ f

⎛⎜⎝ ∫
(q>0)

pd

⎞⎟⎠+ f ∗ (0)P(q = 0) (7.53)

= f (P(q > 0))+ f ∗ (0)P(q = 0) . (7.54)

Let t0 := P(q > 0). By using Lemma 7.2, t0 ∈ [0,1], and the convexity of f , it follows
from (7.54) that

Df (P,Q)≥ f (t0)+ f ′+ (1)(1− t0) (7.55)

≥ f (1)+ f ′+ (1)(t0−1)+ f ′+ (1)(1− t0) = f (1) . (7.56)

(b) If Df (P,Q) = f (1), then Df (P,Q) is finite.
Assume P(q = 0) = 0. Then by (7.53) and (7.54), Df (P,Q) = f (1) is satisfied if and

only if equality holds in the Jensen’s inequality. Lemma 7.1 shows that this happens exactly

if f is affine on essintQ
(

p
q

)
.

(c) Assume P(q = 0) > 0. Then (7.53), (7.54), (7.55) and (7.56) yield that there must
be equality in the Jensen’s inequality, f ∗ (0) = f ′+ (1), and

f (t0) = f (1)+ f ′+ (1)(t0−1) . (7.57)

By Lemma 7.1 and Lemma 7.2, the first two equality conditions are satisfied exactly if f

is affine on essintQ
(

p
q

)
∪ [1,[.

Now assume that f is affine on essintQ
(

p
q

)
∪ [1,[. In case of t0 > 0, Lemma 7.4 (b)

and the continuity of f at t0 show that (7.57) also holds. In case of t0 = 0, it is easy to see

that Q
(

p
q = 0

)
= 1, and hence 0 ∈essintQ

(
p
q

)
which implies (7.57) too.

The proof is complete. �

Remark 7.10 (a) Consider the subclass F1 ⊂ F such that f ∈ F1 satisfies f (1) = 0. In
this case inequality (7.51) has the usual form

Df (P,Q)≥ 0.

(b) The usual equality condition is the next (see [45]): if f is strictly convex at 1, then
Df (P,Q) = f (1) holds if and only if P = Q. Theorem 7.14 (b) and (c) give more precise
conditions.
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7.4.2 Refinements of basic inequality in f -divergences
and related results

Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1. Let

A n := A ⊗ . . .⊗A , with n factors,

and define the probability measures Qn and R on A n by

Qn := Q⊗ . . .⊗Q, with n factors,

and

R :=
n


i=1

iQ⊗ . . .⊗Q⊗
i

P̆⊗Q⊗ . . .⊗Q.

In case of i = 1
n (i = 1, . . . ,n) the probability measure R will be denoted by Rn.

These measures are absolutely continuous with respect to n on A n. The densities of
R and Qn with respect to n are

n⊗
i=1

q : Xn→R, (1, . . . ,n)→
n


i=1

q(i) ,

and

(1, . . . ,n)→
n


i=1

iq(1) . . .
i
p̆(i) . . .q(n) , (1, . . . ,n) ∈ Xn,

respectively.
It is easy to calculate that

R

(
n⊗

i=1

q = 0

)
= 1−R

(
n⊗

i=1

q > 0

)
= 1−R ((q > 0)n)

= 1−
n


i=1

iQ(q > 0)n−1 P(q > 0) = 1−P(q > 0) = P(q = 0) .

It follows that for every f ∈ F

Df (R ,Qn) =
∫

(q>0)n

f

⎛⎜⎜⎜⎝
n


i=1

iq(1) . . . p(i) . . .q(n)

n


i=1

q(i)

⎞⎟⎟⎟⎠dQn (1, . . . ,n)

+ f ∗ (0)R

(
n⊗

i=1

q = 0

)
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=
∫

(q>0)n

f

(
n


i=1

i
p(i)
q(i)

)
dQn (1, . . . ,n)+ f ∗ (0)P(q = 0) (7.58)

=
∫

(q>0)n

n


i=1

q(i) f

(
n


i=1

i
p(i)
q(i)

)
dn (1, . . . ,n)+ f ∗ (0)P(q = 0) .

By applying Theorem 7.12, we obtain some refinements of the basic inequality 7.51.

Theorem 7.15 Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1. If f ∈
F, then

(a)
Df (P,Q)≥ Df (R ,Qn)≥ Df (Rn,Q

n)≥ f (1) . (7.59)

(b)
Df (P,Q) = Df

(
R1,Q

1)
≥ . . .≥ Df (Rm,Qm)≥ Df

(
Rm+1,Q

m+1)≥ . . .≥ f (1) , m≥ 1.

Proof. (a) The third inequality in (7.59) comes from Theorem 7.14.
So it remains to prove the first two inequalities in (7.59). By (7.46) and (7.58), it is

enough to show that

∫
(q>0)

f

(
p()
q()

)
dQ()≥

∫
(q>0)n

f

(
n


i=1

i
p(i)
q(i)

)
dQn (1, . . . ,n) (7.60)

≥
∫

(q>0)n

f

(
1
n

n


i=1

p(i)
q(i)

)
dQn (1, . . . ,n) ,

which is an immediate consequence of Theorem 7.13.
(b) We can proceed similarly as in (a).
The proof is complete. �

By considering the special f -divergences (7.47-7.50), we have after each other
(a) the information divergence

I (R ,Qn) =P (q = 0)

+
∫

(q>0)n

n


i=1

⎛⎜⎝i p(i)
n


j=1
j 
=i

q( j)

⎞⎟⎠ ln

(
n


i=1

i
p(i)
q(i)

)
dn (1, . . . ,n) ,
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(b) the Pearson divergence
2 (R ,Qn) =

=
∫

(q>0)n

n


i=1

q(i)

(
n


i=1

i
p(i)−q(i)

q(i)

)2

dn (1, . . . ,n)+P(q = 0) ,

(c) the Hellinger distance

H2 (R ,Qn) =
∫

(q>0)n

n


i=1

q(i)

⎛⎝( n


i=1

i
p(i)
q(i)

)1/2

−1

⎞⎠2

dn (1, . . . ,n) ,

(d) the total variational distance

V (R ,Qn) =
∫

(q>0)n

n


i=1

q(i)

∣∣∣∣∣ n


i=1

i
p(i)−q(i)

q(i)

∣∣∣∣∣dn (1, . . . ,n) .

Now, we consider the special case, important in many applications, in which P and Q
are discrete distributions.

Denote T either the set {1, . . . ,k} with a fixed positive integer k, or the set {1,2, . . .}.
We say that P and Q are derived from the positive probability distributions p := (pi)i∈T and
q := (qi)i∈T , respectively, if pi, qi > 0 (i ∈ T ), and 

i∈T

pi = 
i∈T

qi = 1. In this case X = T ,

A is the power set of T , and  is the counting measure on A .

Corollary 7.10 Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1. Sup-

pose also that P and Q are derived from the positive probability distributions (pi)i∈T and
(qi)i∈T , respectively. If f ∈ F, then

(a)

Df (P,Q) = 
i∈T

qi f

(
pi

qi

)
≥ 

(i1,...,in)∈Tn

n


j=1

qi j f

(
n


j=1

 j
pi j

qi j

)

≥ 
(i1,...,in)∈Tn

n


j=1

qi j f

(
1
n

n


j=1

pi j

qi j

)
≥ f (1) .

(b)

Df (P,Q)≥ . . .≥ 
(i1,...,in)∈Tn

n


j=1

qi j f

(
1
n

n


j=1

pi j

qi j

)

≥ 
(i1,...,in+1)∈Tn+1

n+1


j=1

qi j f

(
1

n+1

n+1


j=1

pi j

qi j

)
≥ . . .≥ f (1) , n≥ 1.
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Proof. This comes from Theorem 7.15 immediately. �

Finally, we give an example to illustrate the previous result. We consider only Corollary
7.10 (a).

Example 7.1 (a) By choosing f : ]0,[→R, f (x) =− ln(x) and pi = 1
k (i = 1, . . . ,k) in

the previous corollary (in this case T = {1, . . . ,k}), we have

Df (P,Q) =−
k


i=1

qi ln

(
1

kqi

)
= ln(k)+

k


i=1

qi ln(qi)

≥− 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
1
k

n


j=1

 j

qi j

)
= ln(k)− 

(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

 j

qi j

)

≥− 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
1
kn

n


j=1

1
qi j

)

= ln(kn)− 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

1
qi j

)
≥ 0.

It can be obtained from this some refinements of the classical upper estimation for the
Shannon entropy

H (Q) :=−
k


i=1

qi ln(qi)≤ 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

 j

qi j

)

≤− ln(n)+ 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

1
qi j

)
≤ ln(k) .

(b) If f : ]0,[→R, f (x) = x ln(x) in the previous corollary, then we have the follow-
ing estimations for the information or Kullback–Leibler divergence:

I (P,Q) =
n


i=1

pi ln

(
pi

qi

)
≥ 

(i1,...,in)∈Tn

⎛⎜⎝ n


j=1

 j pi j

n


l=1
l 
= j

qil

⎞⎟⎠ ln

(
n


j=1

 j
pi j

qi j

)

≥ 1
n 

(i1,...,in)∈Tn

⎛⎜⎝ n


j=1

pi j

n


l=1
l 
= j

qil

⎞⎟⎠ ln

(
1
n

n


j=1

pi j

qi j

)
≥ 0. (7.61)

(c) The Zipf-Mandelbrot law (see Mandelbrot [46] and Zipf [15]) is a discrete proba-
bility distribution depends on three parameters N ∈ {1,2, . . .}, q ∈ [0,[ and s > 0, and it
is defined by

f (i;N,q,s) :=
1

(i+q)s HN,q,s
, i = 1, . . . ,N,
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where

HN,q,s :=
N


k=1

1
(k+q)s

.

Let P and Q be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .}, q1, q2 ∈ [0,[
and s1, s2 > 0, respectively, and let 2 ≤ k ≤ N be an integer. It follows from the first part
of (7.61) with T = {1, . . . ,N} that

I (P,Q) =
N


i=1

1
(i+q1)

s1 HN,q1,s1
log

(
(i+q2)

s2 HN,q2,s2

(i+q1)
s1 HN,q1,s1

)

≥ 
(i1,...,iN)∈Tn

⎛⎜⎝ n


j=1

 j
1

(i j +q1)
s1 HN,q1,s1

n


l=1
l 
= j

1
(il +q2)

s2 HN,q2,s2

⎞⎟⎠
× ln

(
n


j=1

 j
(i j +q2)

s2 HN,q2,s2

(i j +q1)
s1 HN,q1,s1

)
≥ 0.

This is another type of refinement for I (P,Q) than it is given in [9].
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Chapter8

Inequalities of the Jensen and
Edmundson-Lah-Ribarič type
for Zipf-Mandelbrot law

Rozarija Mikić, Dilda Pečarić, Josip Pečarić and Jurica Perić

Abstract. The Jensen inequality is one of the most important inequalities in modern math-
ematics since it implies the whole series of other classical inequalities, and one of the
most famous amongst them is the so called Edmundson-Lah-Ribarič inequality. In this
expository paper we start by presenting some estimates for the generalized f -divergence
functional via converses of the Jensen and Edmundson-Lah-Ribarič inequalities for con-
vex functions. We will show some Jensen and Edmundson-Lah-Ribarič type inequalities
for positive linear functionals without the assumption about the convexity of the involved
functions. Next, we will demonstrate some Jensen and Edmundson-Lah-Ribarič type in-
equalities for positive linear functionals and the class of 3-convex functions. Then, we
will show how several different representations of the left side in the Edmundson-Lah-
Ribarič inequality can be derived by using Hermite’s interpolating polynomial written in
terms of divided differences. Those representations are then utilized for obtaining differ-
ent Edmundson-Lah-Ribarič type inequalities for positive linear functionals and n-convex
functions. All of the mentioned general results were then used respectively to obtain the
appropriate inequalities which correspond to the generalized f -divergence functional. All
of the obtained results are applied to Zipf-Mandelbrot law and Zipf law in order to obtain
a variety of lower and an upper bounds for different parameters. Finally, using further
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generalization and improvement of Edmundson-Lah-Ribarič inequality we get some im-
provements of results from previous sections about generalized f -divergence functional
(and also for some special cases of the function f ) and Zipf-Mandelbrot law.

8.1 Introduction

Let us denote the set of all probability densities by P, i.e. p = (p1, . . . , pn) ∈ P if pi ∈
[0,1] for i = 1, . . . ,n and n

i=1 pi = 1. One of the numerous applications of Probability
Theory is finding an appropriate measure of distance (difference or divergence) between
two probability distributions.

Consequently, many different divergence measures have been introduced and exten-
sively studied, for example Kullback-Leibler divergence, Hellinger divergence, Renyi di-
vergence, Bhattacharyya divergence, harmonic divergence, Jeffreys divergence, triangular
divergence etc. All of the mentioned divergences are special cases of Csiszár f -divergence.

These measures of distance between two probability distributions have an important
application in a great number of fields such as: anthropology, genetics, economics and
political science, biology, approximation of probability distributions ([7], [22]), signal
processing ([18]) and pattern recognition ([2], [4]), analysis of contingency tables ([8]),
ecological studies, music etc.

A large number of papers has been written on the subject of inequalities for different
types of divergences. Since the functions that are used to define most of the divergences
are convex, Jensen’s inequality and its converses play an important role in the mentioned
inequalities.

Csiszár [8]-[9] introduced the f−divergence functional as

Df (p,q) =
n


i=1

qi f

(
pi

qi

)
, (8.1)

where f : [0,+〉 is a convex function, and it represent a “distance function” on the set of
probability distributions P.

Dragomir [11] gave the following upper bound for the Csiszár divergence functional

Df (p,q)≤ M−1
M−m

f (m)+
1−m
M−m

f (M), (8.2)

where f is a convex function on the interval [m,M], p = (p1, . . . , pn),q = (q1, . . . ,qn) ∈ P

and m≤ pi/qi ≤M for every i = 1, . . . ,n (then it easily follows that 1 ∈ [m,M]).
The Kullback-Leibler divergence, also called relative entropy or KL divergence

DKL(p,q) :=
n


i=1

pilog

(
pi

qi

)
is a measure of the non-symmetric difference between two probability distributions p and
q, but it is not a true metric because it does not obey the triangle inequality and in general
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DKL(p,q) 
= DKL(q,p). The Kullback-Leibler divergence was introduced by Kullback and
Leibler in [21], and it is a special case of the Csiszár divergence for f (t) = tlogt.

Let p = (p1, . . . , pn) and p = (q1, . . . ,qn) be probability distributions and let [m,M]⊂R

be an interval such that m≤ 1≤M and pi/qi ∈ [m,M] for every i = 1, . . . ,n. Apart from the
Kullback-Leibler divergence, some other well-known divergences that are special cases of
f -divergence for different choices of the function f are as follows.

� Hellinger divergence of the probability distributions p and q is defined as

DH(p,q) =
1
2

n


i=1

(
√

qi−√pi)2,

with the corresponding generating function f (t) = 1
2(1−√t)2, t > 0.

� Renyi divergence of the probability distributions p and q is defined as

D(p,q) =
n


i=1

q−1
i pi ,  ∈R,

� Harmonic divergence of the probability distributions p and q is defined as

DHa(p,q) =
n


i=1

2piqi

pi +qi
,

and the corresponding generating function f (t) = 2t
1+t .

� Jeffreys divergence of the probability distributions p and q is defined as

DJ(p,q) =
1
2

n


i=1

(qi− pi) log
qi

pi
,

with the corresponding generating function f (t) = (1− t) log 1
t , t > 0.

In order to use nonnegative probability distributions in the f -divergence functional,
Horvath et. al. in [15] defined

f (0) := lim
t→0+

f (t), 0 · f
(

0
0

)
:= 0, 0 · f

(a
0

)
:= lim

t→0+
t f
(a

t

)
and gave the following definition of a generalized f -divergence functional.

Definition 8.1 Let J ⊂ R be an interval, and let f : J → R be a function. Let P =
(p1, . . . , pn) be an n-tuple of real numbers and Q = (q1, . . . ,qn) be an n-tuple of nonnega-
tive real numbers such that pi/qi ∈ J for every i = 1, . . . ,n. Then let

D̂ f (p,q) :=
n


i=1

qi f

(
pi

qi

)
. (8.3)
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The aim of this chapter is to give some inequalities of the Jensen and Edmundson-Lah-
Ribarič type for generalized f -divergence functional, and then exploit them in obtaining
various bounds for the difference between famous Zipf-Mandelbrot laws with different
parameters. It is organised in the following manner: in Section 8.2 we will state some
general results for positive linear functionals concerning different inequalities of the Jensen
and Edmundson-Lah-Ribarič type that we will use in the proofs of our results; in Section
8.3 we give our results concerning the generalized f -divergence functional for different
classes of functions, not only the convex ones, and finally in Section 8.4 we derive diverse
bounds for the divergence of Zipf and Zipf-Mandelbrot law. Finally in Section 8.5 we give
some furher improvements of results for generalized f -diveregence and for diveregence of
Zipf-Mandelbrot law.

8.2 Preliminaries

Let E be a non-empty set and L a vector space of real functions f : E→R with the follow-
ing properties:

(L1): f ,g ∈ L⇒ (a f +bg) ∈ L for all a,b ∈R;

(L2): 1 ∈ L, that is, if f (t) = 1 for every t ∈ E , then f ∈ L.

(L3): if f ,g ∈ L, then min{ f ,g} ∈ L or max{ f ,g} ∈ L.

We say that A : L→ R is a positive linear functional if:

(A1): A(a f +bg) = aA( f )+bA(g) for f ,g ∈ L and a,b ∈ R;

(A2): f ∈ L, f (t)≥ 0 for every t ∈ E ⇒ A( f )≥ 0.

We say that a functional A is normalized if A(1) = 1.
Throughout this chapter, if a function is defined on an interval [m,M] without any

further emphasis we assume that the bounds of that interval are finite.
Jessen [17] gave the following generalization of Jensen’s inequality for convex func-

tions (see also [15, str.47]):

Theorem 8.1 ([17]) Let L be a vector space of real functions defined on an non-empty
set E that has properties (L1) and (L2), and let us assume that  is a continuous convex
function on an interval I ⊂R. If A is a normalized positive linear functional, then for every
f ∈ L such that ( f ) ∈ L we have A( f ) ∈ I and

(A( f )) ≤ A(( f )). (8.4)

Next result is a generalization of the Edmundson-Lah-Ribarič inequality for linear
functionals and it was proved by Beesack and Pečarić in [3] (see also [15, str.98]):
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Theorem 8.2 ([3]) Let  be a convex function on I = [m,M], let L be a vector space of
real functions defined on an non-empty set E that has properties (L1) and (L2), and let A
be a normalized positive linear functional. Then for every f ∈ L such that ( f ) ∈ L (so
m≤ f (t) ≤M for all t ∈ E), we have

A(( f )) ≤ M−A( f )
M−m

(m)+
A( f )−m
M−m

(M). (8.5)

Klaričić Bakula, Pečarić and Perić in [19] gave the following improvement of the in-
equality (11.3.1).

Theorem 8.3 ([19]) Let L be a vector space of real functions defined on an non-empty
set E that has properties (L1), (L2) and (L3) and let A be a normalized positive linear
functional on L. If  is a convex function on [m,M], then for every f ∈ L such that ( f ) ∈ L
we have A( f ) ∈ [m,M] and

A(( f )) ≤ M−A( f )
M−m

(m)+
A( f )−m
M−m

(M)−A( f̃ ) , (8.6)

where f̃ and  are defined in

f̃ =
1
2
1− 1

M−m

∣∣∣∣ f − m+M
2

1

∣∣∣∣ ,  = (m)+(M)−2
(m+M

2

)
. (8.7)

The subsequent two result provide us with bounds for the difference in the Jensen and
Edmundson-Lah-Ribarič inequalities respectively.

Theorem 8.4 ([20]) Let  be a continuous convex function on the interval I whose inte-
rior contains interval [m,M], let L be a vector space of real functions defined on a non-
empty set E such that it has properties (L1), (L2) and (L3). Let A be any normalized
positive linear functional on L. Then for every function f ∈ L such that ( f ) ∈ L and
which satisfies the bounds m≤ f (t)≤M for every t ∈ E we have

0≤ A(( f ))−(A( f ))

≤ (M−A( f ))(A( f )−m) sup
t∈〈m,M〉

 (t;m,M)−A( f̃ )

≤ (M−A( f ))(A( f )−m)
 ′−(M)− ′+(m)

M−m
−A( f̃ )

≤ 1
4
(M−m)( ′−(M)− ′+(m))−A( f̃ ) . (8.8)

We also have

0≤ A(( f ))−(A( f )) ≤ 1
4
(M−m)2 (A( f );m,M)−A( f̃ )

≤ 1
4
(M−m)( ′−(M)− ′+(m))−A( f̃ ) , (8.9)



210 8 INEQUALITIES OF THE JENSEN AND EDMUNDSON-LAH-RIBARIČ TYPE...

where f̃ and  are defined in (8.7),  (·;m,M) : 〈m,M〉 → R is defined by

 (t;m,M) =
1

M−m

((M)−(t)
M− t

− (t)−(m)
t−m

)
, (8.10)

and we assume that  ( f ;m,M) ∈ L. If  is concave on I, then the inequality signs are
reversed.

Theorem 8.5 ([20]) Let  be a continuous convex function on the interval I whose inte-
rior contains interval [m,M], let L be a vector space of real functions defined on a non-
empty set E such that it has properties (L1), (L2) and (L3). Let A be any normalized
positive linear functional on L. Then for every function f ∈ L such that ( f ) ∈ L and
which satisfies the bounds m≤ f (t) ≤M for every t ∈ E we have the following sequences
of inequalities

(i)

0≤ A( f )−m
M−m

(M)+
M−A( f )
M−m

(m)−A(( f ))−A( f̃ )

≤ A[(M− f )( f −m)] sup
t∈〈m,M〉

 (t;m,M)−A( f̃ )

≤ A[(M− f )( f −m)]
M−m

( ′−(M)− ′+(m))−A( f̃ )

≤ (M−A( f ))(A( f )−m)
M−m

( ′−(M)− ′+(m))−A( f̃ )

≤ 1
4
(M−m)( ′−(M)− ′+(m))−A( f̃ ) (8.11)

(ii)

0≤ A( f )−m
M−m

(M)+
M−A( f )
M−m

(m)−A(( f ))−A( f̃ )

≤ A[(M− f )( f −m)] sup
t∈〈m,M〉

 (t;m,M)−A( f̃ )

≤ (M−A( f ))(A( f )−m) sup
t∈〈m,M〉

 (t;m,M)−A( f̃ )

≤ (M−A( f ))(A( f )−m)
M−m

( ′−(M)− ′+(m))−A( f̃ )

≤ 1
4
(M−m)( ′−(M)− ′+(m))−A( f̃ ) (8.12)

(iii)

0≤ A( f )−m
M−m

(M)+
M−A( f )
M−m

(m)−A(( f ))−A( f̃ )

≤ 1
4
(M−m)2A( ( f ;m,M))−A( f̃ )

≤ 1
4
(M−m)( ′−(M)− ′+(m))−A( f̃ ) (8.13)
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where f̃ and  are defined in (8.7), and  (·;m,M) is defined in (8.10). If the function 
is concave, then the inequality signs are reversed.

The following results give us a class of inequalities of the Jensen and Edmundson-Lah-
Ribarič type which are valid for functions with bounded second order divided differences,
and are obtained in paper [26]. This was a significant improvement compared to the results
from above, because these hold for a much wider class of functions than the class of convex
functions.

Theorem 8.6 ([26]) Let  be a function on an interval of real numbers [m,M] such that
there exist , ∈ R such that  ≤ [m,t,M] ≤  holds for every t ∈ [m,M], that is, such
that its second order divided difference in m,t and M is bounded for every t ∈ [m,M]. Let L
satisfy conditions (L1) and (L2) on E and let A be any positive linear functional on L with
A(1) = 1. Then

A [(M1− f )( f −m1)]≤ M−A( f )
M−m

(m)+
A( f )−m
M−m

(M)−A(( f ))

≤ A [(M1− f )( f −m1)] (8.14)

holds for any f ∈ L such that  ◦ f ∈ L.

Remark 8.1 ([26]) There are two more cases that need to be considered.

• If 0≤  < < , then the function  is convex, so we have that

0≤A [(M1− f )( f −m1)]
M−A( f )
M−m

(m)+
A( f )−m
M−m

(M)−A(( f ))

≤A [(M1− f )( f −m1)] (8.15)

≤(M−A( f ))(A( f )−m)≤ 
4

(M−m)2

holds for any f ∈ L such that  ◦ f ∈ L.

• If −<  < ≤ 0, then the function  is concave, so we have that

≤ 
4
(M−m)2 ≤ (M−A( f ))(A( f )−m)

≤A [(M1− f )( f −m1)] (8.16)

≤M−A( f )
M−m

(m)+
A( f )−m
M−m

(M)−A(( f ))

≤A [(M1− f )( f −m1)]≤ 0

holds for any f ∈ L such that  ◦ f ∈ L.

Theorem 8.7 ([26]) Let  be a function on an interval of real numbers [m,M] such that
there exist , ∈ R such that  ≤ [m,t,M] ≤  holds for every t ∈ [m,M], that is, such
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that its second order divided difference in m,t and M is bounded for every t ∈ [m,M]. Let L
satisfy conditions (L1) and (L2) on E and let A be any positive linear functional on L with
A(1) = 1. Then

(M−A( f ))(A( f )−m)−A [(M1− f )( f −m1)] (8.17)

≤A(( f ))−(A( f ))≤ (M−A( f ))(A( f )−m)− A [(M1− f )( f −m1)]

holds for any f ∈ L such that  ◦ f ∈ L.

The results that follow represent different classes of inequalities of the Jensen and
Edmundson-Lah-Ribarič type that hold for n-convex functions, so first we need to recall
some definitions and properties.

Definition of the n-convex function is characterized by nth-order divided difference.
The nth-order divided difference of a function f : [a,b]→ R at mutually distinct points
t0,t1, . . . ,tn ∈ [a,b] is defined recursively by

[ti] f = f (ti), i = 0, . . . ,n,

[t0, . . . ,tn] f =
[t1, . . . ,tn] f − [t0, . . . ,tn−1] f

tn− t0
.

The value [t0, ...,tn] f is independent of the order of the points t0, ...,tn. Definition of divided
differences can be extended to include the cases in which some or all the points coincide
(see e.g. [1], [15]):

f [a, . . . ,a︸ ︷︷ ︸
n times

] =
1

(n−1)!
f (n−1)(a), n ∈ N.

Regarding third order divided differences, in the case in which some or all the points
coincide they are defined in the following way.

• If the function f is differentiable on [a,b] and t,t0,t1 ∈ [a,b] are mutually different
points, then

[t,t,t0,t1] f =
f ′(t)

(t− t0)(t− t1)
+

f (t)(t0 + t1−2t)
(t− t0)2(t− t1)2

+
f (t0)

(t0− t)2(t0− t1)
+

f (t1)
(t1− t)2(t1− t0)

. (8.18)

• If the function f is differentiable on [a,b] and t,t0 ∈ [a,b] are mutually different
points, then

[t, t, t0,t0] f =
1

(t0− t)3

[
(t0− t)( f ′(t0)+ f ′(t))+2( f (t)− f (t0))

]
. (8.19)

• If the function f is twice differentiable on [a,b] and t, t0 ∈ [a,b] are mutually different
points, then

[t,t,t,t0] f =
1

(t0− t)3

[
f (t0)−

2


k=0

f (k)(t)
k!

(t0− t)k

]
. (8.20)
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• If the function f is three times differentiable on [a,b] and t ∈ [a,b], then

[t,t,t,t] f =
f ′′′(t)
3!

. (8.21)

A function f : [m,M]→ R is said to be n-convex (n ≥ 0) if and only if for all choices
of (n+1) distinct points t0,t1, . . . ,tn ∈ [m,M], we have [t0, ...,tn] f ≥ 0.

We can extend the definition of 3-convex functions by including the cases in which
some or all of the points coincide. This is given in the following theorem which can be
easily proven by using the mean value theorem for divided differences (see e.g. [16]).

Theorem 8.8 Let a function f be defined on an interval I ⊆ R. The following equiva-
lences hold.

(i) If f ∈ C (I), then f is 3-convex if and only if [t,t,t0,t1] f ≥ 0 for all mutually different
points t,t0,t1 ∈ I.

(ii) If f ∈ C (I), then f is 3-convex if and only if [t,t,t0,t0] f ≥ 0 for all mutually different
points t,t0 ∈ I.

(iii) If f ∈ C 2(I), then f is 3-convex if and only if [t,t,t,t0] f ≥ 0 for all mutually different
points t,t0 ∈ I.

(iv) If f ∈ C 3(I), then f is 3-convex if and only if [t,t,t,t] f ≥ 0 for every t ∈ I.

The first result of this type is a reversed Edmundson-Lah-Ribarič inequality for 3-
convex functions.

Theorem 8.9 ([24]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(1) = 1. Let  be a 3-convex function on an
interval of real numbers I whose interior contains the interval [m,M]. Then

A [(M1− f )( f −m1)]
M−m

(
(M)−(m)

M−m
− ′+(m)

)
≤M−A( f )

M−m
(m)+

A( f )−m
M−m

(M)−A(( f )) (8.22)

≤A [(M1− f )( f −m1)]
M−m

(
 ′−(M)− (M)−(m)

M−m

)
holds for any f ∈ L such that  ◦ f ∈ L and m≤ f (t) ≤M for t ∈ E . If the function− is
3-convex, then the inequalities are reversed.

Next result is a Jensen-type inequality for 3-convex functions.

Theorem 8.10 ([24]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and
let A be any positive linear functional on L with A(1) = 1. Let  be a 3-convex function on
an interval of real numbers I whose interior contains the interval [m,M]. Then

(M−A( f ))(A( f )−m)
M−m

(
(M)−(m)

M−m
− ′+(m)

)
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− A [(M1− f )( f −m1)]
M−m

(
 ′−(M)− (M)−(m)

M−m

)
(8.23)

≤A(( f ))−(A( f ))≤ (M−A( f ))(A( f )−m)
M−m

(
 ′−(M)− (M)−(m)

M−m

)
− A [(M1− f )( f −m1)]

M−m

(
(M)−(m)

M−m
− ′+(m)

)
holds for any f ∈ L such that  ◦ f ∈ L and m≤ f (t) ≤M for t ∈ E . If the function − is
3-convex, then the inequalities are reversed.

A different Edmundson-Lah-Ribarič type inequalities for 3-convex functions are given
in the following theorems.

Theorem 8.11 ([27]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and
let A be any positive linear functional on L with A(1) = 1. Let  be a 3-convex function
defined on an interval of real numbers I whose interior contains the interval [m,M] and
differentiable on 〈m,M〉. Then

(A( f )−m)
[
(M)−(m)

M−m
−  ′+(m)

2

]
− 1

2
A[( f −m1) ′( f )]

≤M−A( f )
M−m

(m)+
A( f )−m
M−m

(M)−A(( f )) (8.24)

≤1
2
A[(M1− f ) ′( f )]− (M−A( f ))

[
(M)−(m)

M−m
−  ′−(M)

2

]
holds for any f ∈ L such that  ◦ f ∈ L and m≤ f (t) ≤M for t ∈ E. If the function − is
3-convex, then the inequalities are reversed.

Theorem 8.12 ([27]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and
let A be any positive linear functional on L with A(1) = 1. Let  be a 3-convex function
defined on an interval of real numbers I whose interior contains the interval [m,M] and
differentiable on 〈m,M〉. Then

(M−A( f ))
[
 ′−(M)− (M)−(m)

M−m

]
−  ′′−(M)

2
A[(M1− f )2]

≤M−A( f )
M−m

(m)+
A( f )−m
M−m

(M)−A(( f )) (8.25)

≤(A( f )−m)
[
(M)−(m)

M−m
− ′+(m)

]
−  ′′+(m)

2
A[( f −m1)2]

holds for any f ∈ L such that  ◦ f ∈ L and m≤ f (t) ≤M for t ∈ E. If the function − is
3-convex, then the inequalities are reversed.

Since all of the results below are obtained by using Hermite’s interpolating polynomi-
als in terms of divided differences, let us introduce the following notations. For a given
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function f : [m,M]→ R denote:

LR( f ,g,m,M,A) = A( f (g))− M−A(g)
M−m

f (m)− A(g)−m
M−m

f (M) (8.26)

and

Rv(t) =(t−m)v(t−M)n−v f [t;m, . . . ,m︸ ︷︷ ︸
v times

;M,M, . . . ,M︸ ︷︷ ︸
(n−v) times

]. (8.27)

Theorem 8.13 ([28]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(1) = 1. Let f ∈ C n([m,M]), and let g ∈ L
be any function such that f ◦ g ∈ L. If the function f is n-convex and if n and v≥ 3 are of
different parity, then

LR( f ,g,m,M,A)≤ (A(g)−m)( f [m,m]− f [m,M])+
v−1


k=2

f (k)(m)
k!

A
[
(g−m1)k

]
+

n−v


k=1

f [m, . . . ,m︸ ︷︷ ︸
v times

;M, . . . ,M︸ ︷︷ ︸
k times

]A
[
(g−m1)v(g−M1)k−1

]
. (8.28)

Inequality (8.28) also holds when the function f is n-concave and n and v are of equal
parity. In case when the function f is n-convex and n and v are of equal parity, or when the
function f is n-concave and n and v are of different parity, the inequality sign in (8.28) is
reversed.

Theorem 8.14 ([28]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(1) = 1. Let f ∈ C n([m,M]), and let g ∈ L
be any function such that f ◦ g ∈ L. If the function f is n-convex and if v≥ 3 is odd, then

LR( f ,g,m,M,A)≤ (M−A(g))( f [m,M]− f [M,M])+
v−1


k=2

f (k)(M)
k!

A[(g−M1)k]

+
n−v


k=1

f [M, . . . ,M︸ ︷︷ ︸
v times

;m, . . . ,m︸ ︷︷ ︸
k times

]A[(g−M1)v(g−m1)k−1] (8.29)

Inequality (8.29) also holds when the function f is n-concave and v is even. In case when
the function f is n-convex and v is even, or when the function f is n-concave and v is odd,
the inequality sign in (8.29) is reversed.

Theorem 8.15 ([28]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(1) = 1. Let f ∈ C n([m,M]), and let g ∈ L
be any function such that f ◦ g ∈ L. If the function f is n-convex and if n is odd, then

n−1


k=2

f [m;M, . . . ,M︸ ︷︷ ︸
k times

]A
[
(g−m1)(g−M1)k−1

]
≤ LR( f ,g,m,M,A) (8.30)
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≤ f [m,m;b]A[(g−m1)(g−M1)]+
n−2


k=2

f [m,m;M, . . . ,M︸ ︷︷ ︸
k times

]A
[
(g−m1)2(g−M1)k−1

]
.

Inequalities (8.30) also hold when the function f is n-concave and n is even. In case when
the function f is n-convex and n is even, or when the function f is n-concave and n is odd,
the inequality signs in (8.30) are reversed.

Theorem 8.16 ([28]) Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(1) = 1. Let f ∈ C n([m,M]), and let g ∈ L
be any function such that f ◦ g ∈ L. If the function f is n-convex, then

f [M,M;m]A[(g−M1)(g−m1)]+
n−2


k=2

f [M,M;m, . . . ,m︸ ︷︷ ︸
k times

]A[(g−M1)2(g−m1)k−1]

≤LR( f ,g,m,M,A) ≤
n−1


k=1

f [M;m, . . . ,m︸ ︷︷ ︸
k times

]A[(g−M1)(g−m1)k−1]. (8.31)

If the function f is n-concave, the inequality signs in (8.31) are reversed.

8.3 Inequalities for generalized f -divergence

Our first result in this section is an improved version of Dragomir’s result (8.2) for the
generalized f -divergence functional, and it provides us an upper bound for the mentioned
functional.

Theorem 8.17 ([25]) Let [m,M] ⊂ R be an interval, let f : [m,M]→ R be a function
and let  f be defined in (8.7). Let p = (p1, . . . , pn) be an n-tuple of real numbers and
q = (q1, . . . ,qn) be an n-tuple of nonnegative real numbers such that pi/qi ∈ [m,M] for
every i = 1, . . . ,n. If the function f is convex, we have

D̂ f (p,q)≤ MQn−Pn

M−m
f (m)+

Pn−mQn

M−m
f (M)

−
(Qn

2
− 1

M−m

n


i=1

∣∣∣pi− m+M
2

qi

∣∣∣) f , (8.32)

where Pn =n
i=1 pi and Qn = n

i=1 qi. If the function f is concave, then the inequality sign
is reversed.

Proof. Let f : [m,M] → R be a convex function. For an n-tuple of real numbers x =
(x1, . . . ,xn), an n-tuple of positive numbers p = (p1, . . . , pn) and a normalized positive
linear functional A(x) = 1

Pn
n

i=1 pixi, from Theorem 8.3 we have

1
Pn

n


i=1

pi f (xi)≤ M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)
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− 1
Pn

n


i=1

pi

(
1
2
− 1

M−m

∣∣∣∣xi− m+M
2

∣∣∣∣) f , (8.33)

where x̄ = 1
Pn
n

i=1 pixi. Since q = (q1, . . . ,qn) are nonnegative real numbers, we can put

pi = qi and xi =
pi

qi

in (8.33) and get

1
Qn

n


i=1

qi f

(
pi

qi

)
≤

M− 1
Qn

n
i=1 qi

pi
qi

M−m
f (m)+

1
Qn

n
i=1 qi

pi
qi
−m

M−m
f (M)

− 1
Qn

(
Qn

2
− 1

M−m

n


i=1

qi

∣∣∣∣ pi

qi
− m+M

2

∣∣∣∣
)
 f ,

and after multiplying by Qn we get (8.32). �

Remark 8.2 From m≤ pi/qi ≤M it easily follows that (see [19])

−M−m
2

qi ≤ pi− m+M
2

qi ≤ M−m
2

qi, i.e.

∣∣∣∣pi− m+M
2

qi

∣∣∣∣≤ M−m
2

qi

which together with  f ≥ 0 for a convex function f gives us(Qn

2
− 1

M−m

n


i=1

∣∣∣pi− m+M
2

qi

∣∣∣) f ≥ 0.

Remark 8.3 If in the previous theorem we take p and q to be probability distributions, we
directly get an improvement of Dragomir’s result for the Csiszár f -divergence functional:

Df (p,q)≤ M−1
M−m

f (m)+
1−m
M−m

f (M)

−
(1

2
− 1

M−m

n


i=1

∣∣∣pi− m+M
2

qi

∣∣∣) f .

Next result is a special case of Theorem 8.17, and provides us with bounds for the
Kullback-leibler divergence of two probability distributions.

Corollary 8.1 ([25]) Let [m,M]⊂R be an interval and let us assume that the base of the
logarithm is greater than 1.

• Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be n-tuples of nonnegative real numbers
such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then

n


i=1

pilog

(
pi

qi

)
≤ Qn

Mm
M−m

log
(m

M

)
+

Pn

M−m
log

(
MM

mm

)
(8.34)

−
(Qn

2
− 1

M−m

n


i=1

∣∣∣pi− m+M
2

qi

∣∣∣)(mlog
2m

m+M
+Mlog

2M
m+M

)
.
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• Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) ∈ P be probability distributions such that
m≤ pi/qi ≤M holds for every i = 1, . . . ,n. Then

DKL(p,q)≤ Mm
M−m

log
(m

M

)
+

1
M−m

log

(
MM

mm

)
(8.35)

−
(1

2
− 1

M−m

n


i=1

∣∣∣pi− m+M
2

qi

∣∣∣)(mlog
2m

m+M
+Mlog

2M
m+M

)
.

If the base of the logarithm is less than 1, the inequality sign in the inequalities above is
reversed.

Proof. Let p=(p1, . . . , pn) and q= (q1, . . . ,qn) be an n-tuples of nonnegative real numbers.
Since the function t �→ tlogt is convex when the base of the logarithm is greater than 1, the
inequality (8.34) follows from Theorem 8.17, inequality (8.17), by setting f (t) = tlogt.

Inequality (8.35) is a special case of the inequality (8.34) for probability distributions
p and q. �

Next result is obtained by utilizing Theorem 8.4, and it also gives us bounds for the gen-
eralized f -divergence functional. Concurrently, it represents an improvement of bounds for
f -divergence functional obtained by Dragomir in the paper [11].

Theorem 8.18 ([25]) Let I ⊂ R be an interval such that its interior contains the interval
[m,M], let f : I → R be a continuous function and let  f be defined in (8.7). Let p =
(p1, . . . , pn) be an n-tuple of real numbers and q = (q1, . . . ,qn) be an n-tuple of nonnegative
real numbers such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Let  f be defined in (8.10). If
the function f is convex, then

0≤ D̂ f (p,q)−Qn f

(
Pn

Qn

)
≤ Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
 f (t;m,M)

−
(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)
 f (8.36)

≤ Qn

M−m

(
M− Pn

Qn

)(
Pn

Qn
−m

)(
f ′−(M)− f ′+(m)

)
−
(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)
 f

≤ Qn

4
(M−m)( f ′−(M)− f ′+(m))−

(
Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)
 f .

If the function f is concave, the inequality signs are reversed.



8.3 INEQUALITIES FOR GENERALIZED f -DIVERGENCE 219

Proof. Let f : [m,M]→ R be a convex function. Let x = (x1, . . . ,xn) be an n-tuple of
real numbers and let p = (p1, . . . , pn) be an n-tuple of positive numbers. Then A(x) =
1
Pn
n

i=1 pixi is a normalized positive linear functional, so from Theorem 8.4, inequality
(8.8), we have

0≤
n


i=1

pi f (xi)− f

(
n


i=1

pixi

)

≤ (M− x̄)(x̄−m) sup
t∈〈m,M〉

 f (t;m,M)−
(

1
2
− 1

M−m

n


i=1

pi

∣∣∣∣xi− m+M
2

∣∣∣∣
)
 f

≤ (M− x̄)(x̄−m)
M−m

( f ′−(M)− f ′+(m))−
(

1
2
− 1

M−m

n


i=1

pi

∣∣∣∣xi− m+M
2

∣∣∣∣
)
 f

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))−

(
1
2
− 1

M−m

n


i=1

pi

∣∣∣∣xi− m+M
2

∣∣∣∣
)
 f , (8.37)

Since q = (q1, . . . ,qn) are nonnegative real numbers, we can put

pi =
qi

n
i=1 qi

=
qi

Qn
and xi =

pi

qi

in (8.37) and get

0≤
n


i=1

qi

n
i=1 qi

f

(
pi

qi

)
− f

(
n


i=1

qi

n
i=1 qi

pi

qi

)

≤
(

M−
n


i=1

qi

n
i=1 qi

pi

qi

)(
n


i=1

qi

n
i=1 qi

pi

qi
−m

)
sup

t∈〈m,M〉
 f (t;m,M)

−
(

1
2
− 1

M−m

n


i=1

qi

n
i=1 qi

∣∣∣∣ pi

qi
− m+M

2

∣∣∣∣
)
 f

≤ f ′−(M)− f ′+(m)
M−m

(
M−

n


i=1

qi

n
i=1 qi

pi

qi

)(
n


i=1

qi

n
i=1 qi

pi

qi
−m

)

−
(

1
2
− 1

M−m

n


i=1

qi

n
i=1 qi

∣∣∣∣ pi

qi
− m+M

2

∣∣∣∣
)
 f

≤ 1
4
(M−m)( f ′−(M)− f ′+(m))−

(
1
2
− 1

M−m

n


i=1

qi

n
i=1 qi

∣∣∣∣ pi

qi
− m+M

2

∣∣∣∣
)
 f ,

and after multiplying by Qn we get (8.36). �

The result that follows is a special cases of Theorem 8.18. It gives us different bounds
of those that we have already obtained for the Kullback-Leibler divergence of two proba-
bility distributions.
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Corollary 8.2 ([25]) Let [m,M]⊂R be an interval and let us assume that the base of the
logarithm is greater than 1.

• Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be n-tuples of nonnegative real numbers
such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then

0≤
n


i=1

pilog
pi

qi
−Pnlog

(
Pn

Qn

)
≤Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
id·log(t;m,M)

−
(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤ Qn

M−m

(
M− Pn

Qn

)(
Pn

Qn
−m

)
log

M
m

(8.38)

−
(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤ Qn

4
(M−m)log

M
m

−
(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
.

• Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) ∈ P be probability distributions such that
m≤ pi/qi ≤M holds for every i = 1, . . . ,n. Then

0≤ DKL(p,q)
≤ (M−1)(1−m) sup

t∈〈m,M〉
id·log(t;m,M)

−
(

1
2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤ 1

M−m
(M−1)(1−m)log

M
m

(8.39)

−
(

1
2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤ 1

4
(M−m)log

M
m

−
(

1
2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
.

If the base of the logarithm is less than 1, the inequality sign in the inequalities above is
reversed.
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Proof. Let p =(p1, . . . , pn) and q =(q1, . . . ,qn) be an n-tuples of nonnegative real numbers.
Function t �→ tlogt is convex, so inequality (8.38) follows from Theorem 8.18, inequality
(8.36), by setting f (t) = tlogt.

Inequality (8.39) is a special case of the inequality (8.38) for probability distributions
p and q. �

Remark 8.4 If in Theorem 8.18, inequality (8.36), we set f (t) = −logt with the base
greater than 1, we get the following:

• for n-tuples of nonnegative real numbers p = (p1, . . . , pn) and q = (q1, . . . ,qn) such
that pi/qi ∈ [m,M] for every i = 1, . . . ,n we have

0≤
n


i=1

qilog

(
qi

pi

)
+Qnlog

(
Pn

Qn

)
≤ Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
−log(t;m,M)

−
(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM
(8.40)

≤ Qn

Mm

(
M− Pn

Qn

)(
Pn

Qn
−m

)
−
(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ Qn(M−m)2

4Mm
−
(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM
.

• for probability distributions p = (p1, . . . , pn) and q = (q1, . . . ,qn) ∈ P such that m≤
pi/qi ≤M holds for every i = 1, . . . ,n we have

0≤ DKL(q,p)
≤ (M−1)(1−m) sup

t∈〈m,M〉
−log(t;m,M)

−
(

1
2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM
(8.41)

≤ 1
Mm

(M−1)(1−m)

−
(

1
2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ (M−m)2

4Mm
−
(

1
2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM
.
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If the base of the logarithm is less than 1, the inequality sign in the inequalities above is
reversed.

By following the same steps as in the proof of Theorem 8.18, but starting from Theorem
8.5, we get lower and upper bounds for the difference in the results from Theorem 8.17,
and consequently in Dragomir’s result (8.2).

Theorem 8.19 ([25]) Let I ⊂ R be an interval such that its interior contains the interval
[m,M], let f : I → R be a continuous function and let  f be defined in (8.7). Let p =
(p1, . . . , pn) be an n-tuple of real numbers and q = (q1, . . . ,qn) be an n-tuple of nonnegative
real numbers such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Let  f be defined in (8.10). If
the function f is convex, then we have(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)
 f

≤MQn−Pn

M−m
f (m)+

Pn−mQn

M−m
f (M)− D̂ f (P,Q)

≤ sup
t∈〈m,M〉

 f (t;m,M)
n


i=1

(
M− pi

qi

)(
pi

qi
−m

)
≤Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
 f (t;m,M)

≤Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
f ′−(M)− f ′+(m)

M−m

≤Qn

4
(M−m)( f ′−(M)− f ′+(m)). (8.42)

If the function f is concave, the inequality signs are reversed.

We can utilize Theorem 8.19 to obtain lower and upper bounds for the difference in the
results from Corollary 8.1, as well as for the reversed Kullback-Leibler divergence.

Corollary 8.3 ([25]) Let [m,M]⊂R be an interval and let us assume that the base of the
logarithm is greater than 1.

• Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be n-tuples of nonnegative real numbers
such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤Qn

Mm
M−m

log
(m

M

)
+

Pn

M−m
log

(
MM

mm

)
−

n


i=1

pilog

(
pi

qi

)
≤ sup

t∈〈m,M〉
id·log(t;m,M)

n


i=1

(
M− pi

qi

)(
pi

qi
−m

)
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≤Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
id·log(t;m,M) (8.43)

≤ Qn

M−m

(
M− Pn

Qn

)(
Pn

Qn
−m

)
log

(
M
m

)
≤ Qn

4
(M−m)log

(
M
m

)
.

• Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) ∈ P be probability distributions such that
m≤ pi/qi ≤M holds for every i = 1, . . . ,n. Then(

1
2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)(

mlog
2m

m+M
+Mlog

2M
m+M

)
≤ Mm

M−m
log
(m

M

)
+

1
M−m

log

(
MM

mm

)
−DKL(p,q)

≤ sup
t∈〈m,M〉

id·log(t;m,M)
n


i=1

(
M− pi

qi

)(
pi

qi
−m

)
≤(M−1)(1−m) sup

t∈〈m,M〉
id·log(t;m,M) (8.44)

≤ 1
M−m

(M−1)(1−m)log

(
M
m

)
≤ 1

4
(M−m)log

(
M
m

)
.

If the base of the logarithm is less than 1, the inequality sign in the inequalities above is
reversed.

Remark 8.5 As in Remark 8.4, we can set f (t) = −logt with the base greater than 1
in Theorem 8.19, inequality (8.42), and obtain the following inequalities for the reversed
Kullback-Leibler divergence:

• for n-tuples of nonnegative real numbers p = (p1, . . . , pn) and q = (q1, . . . ,qn) such
that pi/qi ∈ [m,M] for every i = 1, . . . ,n we have(

Qn

2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ Qn

M−m
log

(
Mm

mM

)
+

Pn

M−m
log
(m

M

)
−

n


i=1

qilog

(
qi

pi

)
≤ sup

t∈〈m,M〉
log(t;m,M)

n


i=1

(
M− pi

qi

)(
pi

qi
−m

)
≤Qn

(
M− Pn

Qn

)(
Pn

Qn
−m

)
sup

t∈〈m,M〉
log(t;m,M)

≤− Qn

Mm

(
M− Pn

Qn

)(
Pn

Qn
−m

)
≤− Qn

4Mm
(M−m)2. (8.45)
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• for probability distributions p = (p1, . . . , pn) and q = (q1, . . . ,qn) ∈ P such that m≤
pi/qi ≤M holds for every i = 1, . . . ,n we have(

1
2
− 1

M−m

n


i=1

∣∣∣∣pi− m+M
2

qi

∣∣∣∣
)

log
(m+M)2

4mM

≤ 1
M−m

log

(
Mm−1

mM−1

)
−DKL(q,p)

≤ sup
t∈〈m,M〉

log(t;m,M)
n


i=1

(
M− pi

qi

)(
pi

qi
−m

)
≤(M−1)(1−m) sup

t∈〈m,M〉
log(t;m,M)

≤− 1
Mm

(M−1)(1−m)≤− 1
4Mm

(M−m)2. (8.46)

If the base of the logarithm is less than 1, the inequality sign in the inequalities above is
reversed.

Unlike previous results, the following results do not require convexity in the classical
sense of the function f . We start with an Edmundson-Lah-Ribarič type inequality for the
generalized f -divergence functional D̃ f (p,q), where the function f has bounded second
order divided differences. This is a significant progress in relation to the previous results,
since the class of functions with bounded second order divided differences is much greater
then the class of convex functions.

Theorem 8.20 ([26]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M and let
f : [m,M] → R be a function with  ≤ [m,t,M] f ≤ . Let p = (p1, . . . , pn) and p =
(q1, . . . ,qn) be probability distributions such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then
we have


n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ M−1

M−m
f (m)+

1−m
M−m

f (M)− D̃ f (p,q)

≤ 
n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
. (8.47)

Proof. The function f has bounded second order divided difference with bounds  and ,
so when we set linear functional A from (8.14) to be a discrete sum, we get


n


i=1

pi(M− xi)(xi−m)≤ M− x̄
M−m

(m)+
x̄−m
M−m

(M)−
n


i=1

pi(xi)

≤ 
n


i=1

pi(M− xi)(xi−m), (8.48)

where x = (x1, . . . ,xn) is an n-tuple of real numbers from [m,M], p = (p1, . . . , pn) is an
n-tuple of nonnegative real numbers such that n

i=1 pi = 1, and x̄ = n
i=1 pixi. Now, in the
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relation (8.48) we can put

 = f , pi = qi and xi =
pi

qi
,

and after calculating

x̄ =
n


i=1

qi
pi

qi
=

n


i=1

pi = 1

we get (8.47). �

By following the same idea as in the proof of the previous theorem, but starting with
the relation (8.17) from Theorem 8.7, we get the following result, which is a Jensen type
inequality for the generalized f -divergence functional D̃ f (p,q).

Theorem 8.21 Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤M and let f : [m,M]→
R be a function with  ≤ [m,t,M] f ≤ . Let p = (p1, . . . , pn) and p = (q1, . . . ,qn) be
probability distributions such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then we have

(M−1)(1−m)−
n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
(8.49)

≤D̃ f (p,q)− f (1)≤ (M−1)(1−m)− 
n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
.

Remark 8.6 If the function f : [m,M]→ R is additionally convex, then from (8.15), by
following the same idea as in the proof of Theorem 8.20, we get Edmundson-Lah-Ribarič
type inequality for the Csiszár f -divergence functional:

0≤
n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤M−1

M−m
f (m)+

1−m
M−m

f (M)−Df (p,q)

≤
n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
(8.50)

≤(M−1)(1−m)≤ 
4

(M−m)2.

Jensen type inequality for Csiszár divergence functional is a special case of Theorem 8.21
for a convex function.

The generating function of the Kullback-Leibler divergence f (t) = tlogt is convex,
and its second order divided difference [m,t,M] f is a continuous and decreasing function,
which means that it attains its maximal and minimal value in the points m and M respec-
tively.

We calculate the bounds for the second order divided difference of the function
f (t) = tlogt:

 = [m,m,M]id · log =
1

M−m

(
MlogM−mlogm

M−m
− [(id · log)(m)]′+

)
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Figure 8.1: Graphs of the Function −[m,t,M]id◦ log
for different Choices of the Points m and M.

=
1

M−m

(
1

M−m
log

MM

mm − logm−1

)
 = [m,M,M]id · log

1
M−m

(
[(id · log)(m)]′− −

MlogM−mlogm
M−m

)
=

1
M−m

(
logM +1− 1

M−m
log

MM

mm

)
.

Now, as a special case of Theorem 8.20 and Theorem 8.21 for f (t) = tlogt, taking into
account convexity of the function f , we have obtained Jensen and Edmundson-Lah-Ribarič
type inequalities for Kullback-Leibler divergence DKL(p,q).

Corollary 8.4 ([26]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let p =
(p1, . . . , pn) and p = (q1, . . . ,qn) be probability distributions such that pi/qi ∈ [m,M] for
every i = 1, . . . ,n. Then we have

0≤ 1
M−m

(
logM +1− 1

M−m
log

MM

mm

) n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ mM

M−m
log

m
M

+
1

M−m
log

MM

mm −DKL(p,q) (8.51)

≤ 1
M−m

(
1

M−m
log

MM

mm − logm−1

) n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ 1

M−m

(
1

M−m
log

MM

mm − logm−1

)
(M−1)(1−m)

≤1
4

(
log

MM

mm − (logm+1)(M−m)
)

.

Corollary 8.5 ([26]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let p =
(p1, . . . , pn) and p = (q1, . . . ,qn) be probability distributions such that pi/qi ∈ [m,M] for
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every i = 1, . . . ,n. Then we have

0≤DKL(p,q)≤ 1
M−m

[(
1

M−m
log

MM

mm − logm−1

)
(M−1)(1−m)

−
(

logM +1− 1
M−m

log
MM

mm

) n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
. (8.52)

The function f (t) = −logt is also convex, and its second order divided difference
[m, t,M] f is a continuous and decreasing function, which means that it attains its maxi-
mal and minimal value in the points m and M respectively.

2.5 5 7.5 10 12.5 15 17.5 20

2.5

5

7.5

10

12.5

15

m : 0.3 M : 9
m : 0.1 M : 15
m : 0.9 M : 1.5

Figure 8.2: Graphs of the function −[m,t,M]log
for different choices of the points m and M.

We calculate the bounds for the second order divided difference of the function f (t) =
−logt:

 =−[m,m,M]log =
1

M−m

(−logM + logm
M−m

− (−log)′+(m)
)

=
1

M−m

(
1

M−m
log

m
M

+
1
m

)
 =−[m,M,M]log =

1
M−m

(
(−log)′−(M)− −logM + logm

M−m

)
=− 1

M−m

(
1
M

+
1

M−m
log

m
M

)
.

As a special case of Theorem 8.20 and Theorem 8.21 for f (t) = −logt, taking into
account convexity of the function f , we get Jensen and Edmundson-Lah-Ribarič type in-
equalities for the reversed Kullback-Leibler divergence DKL(q,p).

Corollary 8.6 ([26]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let p =
(p1, . . . , pn) and p = (q1, . . . ,qn) be probability distributions such that pi/qi ∈ [m,M] for
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every i = 1, . . . ,n. Then we have

0≤− 1
M−m

(
1
M

+
1

M−m
log

m
M

) n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ 1

M−m
log

Mm

mM +
1

M−m
log

m
M
−DKL(q,p) (8.53)

≤ 1
M−m

(
1

M−m
log

m
M

+
1
m

) n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)
≤ 1

M−m

(
1

M−m
log

m
M

+
1
m

)
(M−1)(1−m)

≤1
4

(
log

m
M

+
M
m
−1

)
.

Corollary 8.7 ([26]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let p =
(p1, . . . , pn) and p = (q1, . . . ,qn) be probability distributions such that pi/qi ∈ [m,M] for
every i = 1, . . . ,n. Then we have

0≤DKL(q,p)≤ 1
M−m

[(
1

M−m
log

m
M

+
1
m

)
(M−1)(1−m)

+
(

1
M

+
1

M−m
log

m
M

) n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)]
. (8.54)

Following results are applications of Theorem 8.9 and Theorem 8.10, and they provide
us with an Edmundson-Lah-Ribarič type and Jensen type inequality respectively for the
generalized f -divergence functional for 3-convex function.

Theorem 8.22 ([24]) Let [m,M]⊂R be an interval such that m≤ 1≤M and let f : [m,M]→
R be a 3-convex function. Let p = (p1, . . . , pn) and p = (q1, . . . ,qn) be probability distri-
butions such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then we have

1
M−m

n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f (M)− f (m)

M−m
− f ′+(m)

)
≤M−1

M−m
f (m)+

1−m
M−m

f (M)− D̃ f (p,q) (8.55)

≤ 1
M−m

n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f ′−(M)− f (M)− f (m)

M−m

)
Proof. Let x = (x1, . . . ,xn) such that xi ∈ [m,M] for i = 1, . . . ,n. For a 3-convex function
 , in the relation (8.22) we can replace

f ←→ x, and A(x) =
n


i=1

pixi.
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In that way we get

n
i=1 pi(M− xi)(xi−m)

M−m

(
(M)−(m)

M−m
− ′+(m)

)
≤M− x̄

M−m
(m)+

x̄−m
M−m

(M)−
n


i=1

pi(xi)

≤
n
i=1 pi(M− xi)(xi−m)

M−m

(
 ′−(M)− (M)−(m)

M−m

)
,

where x̄ = n
i=1 pixi. Since the function f is 3-convex, in the previous relation we can set

 = f , pi = qi and xi =
pi

qi
,

and after calculating

x̄ =
n


i=1

qi
pi

qi
=

n


i=1

pi = 1

we get (8.55). �

Theorem 8.23 ([24]) Let [m,M]⊂R be an interval such that m≤ 1≤M and let f : [m,M]→
R be a 3-convex function. Let p = (p1, . . . , pn) and p = (q1, . . . ,qn) be probability distri-
butions such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then we have

(M−1)(1−m)
M−m

(
f (M)− f (m)

M−m
− f ′+(m)

)
− 1

M−m

n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f ′−(M)− f (M)− f (m)

M−m

)
(8.56)

≤D̃ f (p,q)− f (1)≤ (M−1)(1−m)
M−m

(
f ′−(M)− f (M)− f (m)

M−m

)
− 1

M−m

n


i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f (M)− f (m)

M−m
− f ′+(m)

)
.

Proof. As in the proof of the previous theorem, let x = (x1, . . . ,xn) such that xi ∈ [m,M]
for i = 1, . . . ,n. For a 3-convex function  , in the relation (8.23) we can replace

f ←→ x, and A(x) =
n


i=1

pixi

and obtain the following discrete sequence of inequalities:

(M− x̄)(x̄−m)
M−m

(
(M)−(m)

M−m
− ′+(m)

)
− n

i=1 pi(M− xi)(xi−m)
M−m

(
 ′−(M)− (M)−(m)

M−m

)
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≤
n


i=1

pi(xi)−(x̄)≤ (M− x̄)(x̄−m)
M−m

(
 ′−(M)− (M)−(m)

M−m

)
− n

i=1 pi(M− xi)(xi−m)
M−m

(
(M)−(m)

M−m
− ′+(m)

)
.

The function f is 3-convex, so in the previous relation we can set

 = f , pi = qi and xi =
pi

qi
,

and after calculating

x̄ =
n


i=1

qi
pi

qi
=

n


i=1

pi = 1

we get (8.56). �

Next two results are obtained as an application of Theorem 8.11 and Theorem 8.12
respectively, and they give us different Edmundson-Lah-Ribarič type inequalities for the
generalized f -divergence functional.

Theorem 8.24 ([27]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let f be a
3-convex function on the interval I whose interior contains [m,M] and differentiable on
〈m,M〉. Let p = (p1, . . . , pn) and p = (q1, . . . ,qn) be probability distributions such that
pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then we have

(1−m)
[

f (M)− f (m)
M−m

− f ′+(m)
2

]
− 1

2

n


i=1

(pi−mqi) f ′
(

pi

qi

)
≤M−1

M−m
f (m)+

1−m
M−m

f (M)− D̃ f (p,q) (8.57)

≤1
2

n


i=1

(Mqi− pi) f ′
(

pi

qi

)
− (M−1)

[
f (M)− f (m)

M−m
− f ′−(M)

2

]
.

Proof. Let x = (x1, . . . ,xn) such that xi ∈ [m,M] for i = 1, . . . ,n. Let  be a 3-convex
function on the interval I whose interior contains [m,M] and differentiable on 〈m,M〉. In
the relation (8.24) we can replace

f ←→ x, and A(x) =
n


i=1

pixi.

In that way we get

(x̄−m)
[
(M)−(m)

M−m
−  ′+(m)

2

]
− 1

2

n


i=1

pi(xi−m) ′(xi)

≤ M− x̄
M−m

(m)+
x̄−m
M−m

(M)−
n


i=1

pi(xi)

≤1
2

n


i=1

pi(M− xi) ′(xi)− (M− x̄)
[
(M)−(m)

M−m
−  ′−(M)

2

]
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where x̄ =n
i=1 pixi. Since the function f satisfies the same assumtions as  , in the previous

relation we can set
 = f , pi = qi and xi =

pi

qi
,

and after calculating

x̄ =
n


i=1

qi
pi

qi
=

n


i=1

pi = 1

we get (8.57). �

By utilizing Theorem8.12 in the analogousway as above, we get a different Edmundson-
Lah-Ribarič type inequality for the generalized f -divergence functional, and it is given in
the following theorem.

Theorem 8.25 ([27]) Let [m,M] ⊂ R be an interval such that m ≤ 1 ≤ M. Let f be a
3-convex function on the interval I whose interior contains [m,M] and differentiable on
〈m,M〉. Let p = (p1, . . . , pn) and p = (q1, . . . ,qn) be probability distributions such that
pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then we have

(M−1)
[

f ′−(M)− f (M)− f (m)
M−m

]
− f ′′−(M)

2

n


i=1

(Mqi− pi)2

qi

≤M−1
M−m

f (m)+
1−m
M−m

f (M)− D̃ f (p,q) (8.58)

≤(1−m)
[

f (M)− f (m)
M−m

− f ′+(m)
]
− f ′′+(m)

2

n


i=1

(pi−mqi)2

qi
.

Remark 8.7 Let p = (p1, . . . , pn) and p = (q1, . . . ,qn) be probability distributions and let
[m,M]⊂ R be an interval such that m≤ 1≤M and pi/qi ∈ [m,M] for every i = 1, . . . ,n.

� Kullback-Leibler divergence of the probability distributions p and q is defined as

DKL(p,q) =
n


i=1

qi log
qi

pi
,

and the corresponding generating function f (t) = t logt,t > 0. We can calculate
f ′′′(t) = − 1

t2
< 0, so the function − f (t) = −t logt is 3-convex. It is obvious that

for the Kullback-Leibler divergence the inequalities (8.55), (8.56), (8.57) and (8.58)
hold with reversed signs of inequality, with

f ′+(m) = logm+1, f ′−(M) = logM +1

and

f ′′+(m) =
1
m

, f ′′−(M) =
1
M

.

� Hellinger divergence of the probability distributions p and q is defined as

DH(p,q) =
1
2

n


i=1

(
√

qi−√pi)2,
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with the corresponding generating function f (t) = 1
2 (1−√t)2,t > 0. We see that

f ′′′(t) = − 3
8 t
− 5

2 < 0, so the function − f (t) = − 1
2(1−√t)2 is 3-convex. For the

Hellinger divergence the inequalities (8.55), (8.56), (8.57) and (8.58) hold with re-
versed signs of inequality, with

f ′+(m) =− 1
2
√

m
+

1
2
, f ′−(M) =− 1

2
√

M
+

1
2

and

f ′′+(m) =
1

4
√

m3
, f ′′−(M) =

1

4
√

M3
.

� Renyi divergence of the probability distributions p and q is defined as

D(p,q) =
n


i=1

q−1
i pi ,  ∈ R,

and the corresponding generating function is f (t) = t ,t > 0. We calculate that
f ′′′(t) = ( − 1)( − 2)t−3, which is 3-convex for 0 ≤  ≤ 1 and  ≥ 2, and
− f (t) =−t is 3-convex for  ≤ 0 and 1 <  < 2. We have

f ′+(m) = m−1, f ′−(M) = M−1,

f ′′+(m) = ( −1)m−2 and f ′′−(M) = ( −1)M−2.

As regards the Renyi divergence, the inequalities (8.55), (8.56), (8.57) and (8.58)
hold for 0≤  ≤ 1 and  ≥ 2, and if  ≤ 0 or 1 <  < 2 the signs of inequality are
reversed.

� Harmonic divergence of the probability distributions p and q is defined as

DHa(p,q) =
n


i=1

2piqi

pi +qi
,

and the corresponding generating function f (t) = 2t
1+t . We can calculate f ′′′(t) =

12
(1+t)4 > 0, so the function f is 3-convex. It is obvious that for the harmonic diver-

gence the inequalities (8.55), (8.56), (8.57) and (8.58) hold with

f ′+(m) =
2

(1+m)2 , f ′−(M) =
2

(1+M)2

and

f ′′+(m) =− 4
(1+m)3 , f ′′−(M) =− 4

(1+M)3 .

� Jeffreys divergence of the probability distributions p and q is defined as

DJ(p,q) =
1
2

n


i=1

(qi− pi) log
qi

pi
,
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with the corresponding generating function f (t) = (1− t) log 1
t ,t > 0. We see that

f ′′′(t) = − 1
t2
− 2

t3
< 0, so the function − f (t) = (1− t) logt is 3-convex, and we

instantly get that for the Jeffreys divergence the inequalities (8.55), (8.56), (8.57)
and (8.58) hold with reversed signs of inequality, with

f ′+(m) = logm− 1
m

+1, f ′−(M) = logM− 1
M

+1

and

f ′′+(m) =
1
m

+
1
m2 , f ′′−(M) =

1
M

+
1

M2 .

The results that follow are a generalization of the previous results which hold for the
class of n-convex functions. Until the end of this section, when mentioning the interval
[m,M], we assume that [m,M]⊆ R+.

We can utilize Theorem 8.13 to get an Edmundson-Lah-Ribarič type inequality for the
above defined generalized f -divergence functional.

Theorem 8.26 Let [m,M] ⊂ R be an interval such that m≤ 1≤M. Let f ∈ C n([m,M])
and let p = (p1, . . . , pr) and p = (q1, . . . ,qr) be probability distributions such that pi/qi ∈
[m,M] for every i = 1, . . . ,r. If the function f is n-convex and if n and 3≤ v≤ n−1 are of
different parity, then

M−1
M−m

f (m)+
1−m
M−m

f (M)− D̃ f (p,q) (8.59)

≤(1−m)( f [m,m]− f [m,M])+
v−1


k=2

f (k)(m)
k!

r


i=1

(pi−mqi)k

qk−1
i

+
n−v


k=1

f [m, . . . ,m︸ ︷︷ ︸
v times

;M, . . . ,M︸ ︷︷ ︸
k times

]
r


i=1

(pi−mqi)v(pi−mqi)k−1

qv+k−2
i

. (8.60)

Inequality (8.60) also holds when the function f is n-concave and n and v are of equal
parity. In case when the function f is n-convex and n and v are of equal parity, or when
the function f is n-concave and n and v are of different parity, the inequality sign in (8.60)
is reversed.

Proof. Let x = (x1, . . . ,xr) be such that xi ∈ [m,M] for i = 1, . . . ,r. In the relation (8.28)
we can replace

g←→ x, and A(x) =
r


i=1

pixi.

In that way we get

M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)−
r


i=1

pi f (xi)

≤(x̄−m)( f [m,m]− f [m,M])+
v−1


k=2

f (k)(m)
k!

r


i=1

pi(xi−m)k
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+
n−v


k=1

f [m, . . . ,m︸ ︷︷ ︸
v times

;M, . . . ,M︸ ︷︷ ︸
k times

]
r


i=1

pi(xi−m)v(xi−b)k−1,

where x̄ = n
i=1 pixi. In the previous relation we can set

pi = qi and xi =
pi

qi
,

and after calculating

x̄ =
n


i=1

qi
pi

qi
=

n


i=1

pi = 1

we get (8.60). �

By utilizing Theorem 8.14 in the analogous way as above, we get an Edmundson-Lah-
Ribarič type inequality for the generalized f -divergence functional (8.3) which does not
depend on parity of n, and it is given in the following theorem.

Theorem 8.27 Let [m,M] ⊂ R be an interval such that m≤ 1 ≤M. Let f ∈ C n([m,M])
and let p = (p1, . . . , pr) and p = (q1, . . . ,qr) be probability distributions such that pi/qi ∈
[m,M] for every i = 1, . . . ,r. If the function f is n-convex and if 3≤ v≤ n−1 is odd, then

M−1
M−m

f (m)+
1−m
M−m

f (M)− D̃ f (p,q)

≤(M−1)( f [m,M]− f [M,M])+
v−1


k=2

f (k)(M)
k!

r


i=1

(pi−Mqi)k

qk−1
i

+
n−v


k=1

f [M, . . . ,M︸ ︷︷ ︸
v times

;m, . . . ,m︸ ︷︷ ︸
k times

]
r


i=1

(pi−Mqi)v(pi−mqi)k−1

qv+k−2
i

(8.61)

Inequality (8.61) also holds when the function f is n-concave and v is even. In case when
the function f is n-convex and v is even, or when the function f is n-concave and v is odd,
the inequality sign in (8.61) is reversed.

Another generalization of the Edmundson-Lah-Ribarič inequality, which provides us
with a lower and an upper bound for the generalized f -divergence functional, is given in
the following theorem.

Theorem 8.28 Let [m,M] ⊂ R be an interval such that m≤ 1 ≤M. Let f ∈ C n([m,M])
and let p = (p1, . . . , pr) and p = (q1, . . . ,qr) be probability distributions such that pi/qi ∈
[m,M] for every i = 1, . . . ,r. If the function f is n-convex and if n is odd, then we have

n−1


k=2

f [m;M,M, . . . ,M︸ ︷︷ ︸
k times

]
r


i=1

(pi−mqi)(pi−Mqi)k−1

qk−1
i

≤ M−1
M−m

f (m)+
1−m
M−m

f (M)−D̃ f (p,q)

≤ f [m,m;M]
r


i=1

(pi−mqi)(pi−Mqi)
qi

+
n−2


k=2

f [m,m;M, . . . ,M︸ ︷︷ ︸
k times

]
r


i=1

(pi−mqi)2(pi−Mqi)k−1

qk
i

.

(8.62)
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Inequalities (8.62) also hold when the function f is n-concave and n is even. In case when
the function f is n-convex and n is even, or when the function f is n-concave and n is odd,
the inequality signs in (8.62) are reversed.

Proof. We start with inequalities (8.30) from Theorem 8.15, and follow the steps from the
proof of Theorem 8.26. �

By utilizing Theorem 8.16 in an analogue way, we can get similar bounds for the
generalized f -divergence functional that hold for all n ∈ N, not only the odd ones.

Theorem 8.29 Let [m,M] ⊂ R be an interval such that m≤ 1≤M. Let f ∈ C n([m,M])
and let p = (p1, . . . , pr) and p = (q1, . . . ,qr) be probability distributions such that pi/qi ∈
[m,M] for every i = 1, . . . ,r. If the function f is n-convex, then we have

f [M,M;m]
r


i=1

(pi−mqi)(pi−Mqi)
qi

+
n−2


k=2

f [M,M;m,m, . . . ,m︸ ︷︷ ︸
k times

]
r


i=1

(pi−mqi)k−1(pi−Mqi)2

qk
i

≤M−1
M−m

f (m)+
1−m
M−m

f (M)−D̃ f (p,q)≤
n−1


k=2

f [M;m, . . . ,m︸ ︷︷ ︸
k times

]
r


i=1

(pi−mqi)k−1(pi−Mqi)
qk−1

i

.

(8.63)

If the function f is n-concave, the inequality signs in (8.63) are reversed.

Remark 8.8 Let p = (p1, . . . , pr) and p = (q1, . . . ,qr) be probability distributions.

� Kullback-Leibler divergence of the probability distributions p and q is defined as

DKL(p,q) =
r


i=1

qi log
qi

pi
,

and the corresponding generating function is f (t) = t logt, t > 0. We can calculate

f (n)(t) = (−1)n(n−2)!t−(n−1).

It is clear that this function is (2n−1)-concave and (2n)-convex for any n ∈ N.

� Hellinger divergence of the probability distributions p and q is defined as

DH(p,q) =
1
2

n


i=1

(
√

qi−√pi)2,

and the corresponding generating function is f (t) = 1
2 (1−√t)2, t > 0. We see that

f (n)(t) = (−1)n (2n−3)!!
2n t−

2n−1
2 ,

so function f is (2n−1)-concave and (2n)-convex for any n ∈ N.
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� Harmonic divergence of the probability distributions p and q is defined as

DHa(p,q) =
n


i=1

2piqi

pi +qi
,

and the corresponding generating function is f (t) = 2t
1+t . We can calculate

f (n)(t) = 2(−1)n+1n!(1+ t)−(n+1).

Two cases need to be considered:

∗ if t <−1, then the function f is n-convex for every n ∈N;

∗ if t > −1, then the function f is (2n)-concave and (2n− 1)-convex for any
n ∈ N.

� Jeffreys divergence of the probability distributions p and q is defined as

DJ(p,q) =
1
2

n


i=1

(qi− pi) log
qi

pi
,

and the corresponding generating function is f (t) = (1− t) log 1
t ,t > 0. After calcu-

lating, we see that

f (n)(t) = (−1)n+1t−n(n−1)!(1+nt).

Obviously, this function is (2n−1)-convex and (2n)-concave for any n ∈ N.

It is clear that all of the results from this section can be applied to the special types of
divergences mentioned in this example.

8.4 Applications to Zipf-Mandelbrot law

Zipf-Mandelbrot law is a discrete probability distribution with parameters N ∈ N, q,s ∈ R

such that q≥ 0 and s > 0, possible values {1,2, . . . ,N} and probability mass function

f (i;N,q,s) =
1/(i+q)s

HN,q,s
, where HN,q,s =

N


i=1

1
(i+q)s .

It is used in various scientific fields: linguistics [29], information sciences [12, 34],
ecological field studies [30] and music [23]. Benoit Mandelbrot in 1966 gave improvement
of Zipf law for the count of the low-rank words. Various scientific fields use this law for
different purposes, for example information sciences use it for indexing [12, 34], ecological
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field studies in predictability of ecosystem [30], in music is used to determine aesthetically
pleasing music [23].

Let p and q be Zipf-Mandelbrot laws with parameters N ∈ N, q1,q2 ≥ 0 and s1,s2 > 0
respectively. We can use Corollary 8.2 and Corollary 8.3 in a similar way as described
above in order to obtain inequalities for the Kullback-Leibler divergence. Let us denote

HN,q1,s1 = H1, HN,q2,s2 = H2

mp,q : = min

{
pi

qi

}
=

H2

H1
min

{
(i+q2)s2

(i+q1)s1

}
Mp,q : = max

{
pi

qi

}
=

H2

H1
max

{
(i+q2)s2

(i+q1)s1

}
(8.64)

Corollary 8.8 ([25]) Let p and q be Zipf-Mandelbrot laws with parameters N ∈N, q1,q2≥
0 and s1,s2 > 0 respectively. If the base of the logarithm is greater than one, we have

0≤ DKL(p,q)
≤ (Mp,q−1)(1−mp,q) sup

t∈〈mp,q,Mp,q〉
id·log(t;mp,q,MP,Q)−p,q

≤ 1
Mp,q−mp,q

(Mp,q−1)(1−mp,q) log
Mp,q

mp,q
−p,q (8.65)

≤ 1
4
(Mp,q−mp,q)log

Mp,q

mp,q
−p,q

and

p,q ≤ Mp,qmp,q

Mp,q−mp,q
log

(
mp,q

Mp,q

)
+

1
Mp,q−mp,q

log

(
M

Mp,q
p,q

m
mp,q
p,q

)
−DKL(p,q)

≤(Mp,q−1)(1−mp,q) sup
t∈〈mp,q,Mp,q〉

id·log(t;mp,q,Mp,q) (8.66)

≤ 1
Mp,q−mp,q

(Mp,q−1)(1−mp,q) log

(
Mp,q

mp,q

)
≤ 1

4
(Mp,q−mp,q)log

(
Mp,q

mp,q

)
,

where DKL(p,q) is the Kullback-Leibler divergence of distributions p and q, mp,q and Mp,q
are defined in (8.64), and

p,q =

(
1
2
− 1

Mp,q−mp,q

N


i=1

∣∣∣∣ 1
H1(i+q1)s1

− mp,q +Mp,q

2
· 1
H2(i+q2)s2

∣∣∣∣
)

×
(

mp,qlog
2mp,q

mp,q +Mp,q
+Mp,qlog

2Mp,q

mp,q +Mp,q

)
Remark 8.9 If we utilize Remark 8.4 and Remark 8.5 in the same way as described
above, we can obtain companion inequalities for the reversed Kullback-Leibler divergence
DKL(q,p) of these distributions.
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For finite N and q = 0 the Zipf-Mandelbrot law becomes Zipf’s law. I is one of the
basic laws in information science and bibliometrics, but it is also often used in linguistics.
George Zipf’s in 1932 found that we can count how many times each word appears in the
text. So if we ranked (r) word according to the frequency of word occurrence ( f ), the prod-
uct of these two numbers is a constant C = r ∗ f . Same law in mathematical sense is also
used in other scientific disciplines, but name of the law can be different, since regularities
in different scientific fields are discovered independently from each other. In economics
same law or regularity are called Pareto’s law which analyze and predicts the distribution
of the wealthiest members of the community [10]. The same type of distribution that we
have in Zipf’s and Pareto’s law, also known as the Power law, can be found in wide variety
of scientific disciplines, such as: physics, biology, earth and planetary sciences, computer
science, demography and the social sciences [31] and many others. At this point of time we
will not explain usage and their importance of this law in each scientific field, but we will
retain on frequency of the word usage. Since, words are one of basic properties in human
communication system. That frequency of used word and human communication system
can be explained with plain mathematical formula is extremely interesting and useful in
analysis of language and their usage. Since this law is be applicable in indexing and text
mining, it is quite useful in today’s world in which we use Internet to retrive most of the
information that we need.

Probability mass function of Zipf’s law is:

f (k;N,s) =
1/ks

HN,s
, where HN,s =

N


i=1

1
is

.

Since Zipf’s law is a special case of the Zipf-Mandelbrot law, all of the results from
above hold for q = 0.

Gelbukh and Sidorov in [13] observed the difference between the coefficients s1 and
s2 in Zipf’s law for the russian and english language. They processed 39 literature texts
for each language, chosen randomly from different genres, with the requirement that the
size be greater than 10,000 running words each. They calculated coefficients for each of
the mentioned texts and as the result they obtained the average of s1 = 0,892869 for the
russian language, and s2 = 0,973863 for the english language.

If we take q1 = q2 = 0, we can use the results from the above regarding the Kullback-
Leibler divergence of two Zipf-Mandelbrot distributions in order to give estimates for the
Kullback-Leibler divergence of the distributions associated to the russian and english lan-
guage. For those experimental values of s1 and s2 we have

mN = min

{
pi

qi

}
=

HN,s2

HN,s1
min

{
is2

is1

}
=

HN,s2

HN,s1
min
{
is2−s1

}
=

HN,s2

HN,s1

and

MN = max

{
pi

qi

}
=

HN,s2

HN,s1
max

{
is2

is1

}
=

HN,s2

HN,s1
max
{
is2−s1

}
=

HN,s2

HN,s1
N0,080994.

Hence the following bounds for the mentioned divergence, arising from Corollary 8.8
and depending only on the parameter N, hold.
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0≤ DKL(p,q)
≤ (MN−1)(1−mN) sup

t∈〈mN ,MN 〉
id·log(t;mN ,MN)−N

≤ 0,080994
MN−mN

(MN−1)(1−mN) logN−N

≤ 0,020249(MN−mN)logN−N

We also have

N ≤0,080994N0,080994

N0,080994−1

(
1− HN;0,973863

HN;0,892869

)
logN + log

(
HN;0,973863

HN;0,892869

)
−DKL(p,q)

≤(MN−1)(1−mN) sup
t∈〈mN ,MN 〉

id·log(t;mN ,MN)

≤0,080994
MN −mN

(MN−1)(1−mN) logN ≤ 0,020249(MN−mN)logN,

where

N =

(
1
2
− 1

HN;0,973863(N0,080994−1)

N


i=1

∣∣∣∣ 1
i0,892869 −

N0,080994 +1
2i0,973863

∣∣∣∣
)

×
(

log
2

N0,080994 +1
+N0,080994log

2N0,080994

N0,080994 +1

)
HN;0,973863

HN;0,892869

By calculating the above results for the Kullback-Leibler divergence of the distributions
associated to the russian (p) and english (q) language for different values of the parameter
N, we obtained the following bounds:

• from the first series of inequalities:

N 5000 10000 50000 100000
DKL(p,q)≤ 0,0862934 0,100855 0,138862 0,157016

• from the second series of inequalities:

N 5000 10000 50000 100000
DKL(p,q)≤ 0,00106 0,001274 0,0018269 0,002091

The base of the logarithm used in our calculations is 2.
Again, p and q are Zipf-Mandelbrot laws with parameters N ∈N, q1,q2≥ 0 and s1,s2 >

0 respectively, and let mp,q and Mp,q be defined in (8.64).
Next result is a special case of Corollary 8.4 and Corollary 8.5, and it gives us Edmund-

son-Lah-Ribarič and Jensen type inequalities for the Kullback-Leibler divergence of two
Zipf-Mandelbrot laws. In contrast to previous results, function f is not necessarily convex
in the classical sense.
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Corollary 8.9 ([26]) Let p and q be Zipf-Mandelbrot laws with parametersN ∈N, q1,q2≥
0 and s1,s2 > 0 respectively. Then we have

0≤ 1
Mp,q−mp,q

(
logMp,q +1− 1

Mp,q−mp,q
log

M
Mp,q
p,q

m
mp,q
p,q

)
×

N


i=1

1
(i+q2)s2H2

(
Mp,q− H2

H1

(i+q2)s2

(i+q1)s1

)(
H2

H1

(i+q2)s2

(i+q1)s1
−mp,q

)

≤ mp,qMp,q

Mp,q−mp,q
log

mp,q

Mp,q
+

1
Mp,q−mp,q

log
M

Mp,q
p,q

m
mp,q
p,q
−DKL(p,q)

≤ 1
Mp,q−mp,q

(
1

Mp,q−mp,q
log

M
Mp,q
p,q

m
mp,q
p,q
− logmp,q−1

)
×

N


i=1

1
(i+q2)s2H2

(
Mp,q− H2

H1

(i+q2)s2

(i+q1)s1

)(
H2

H1

(i+q2)s2

(i+q1)s1
−mp,q

)

≤ 1
Mp,q−mp,q

(
1

Mp,q−mp,q
log

M
Mp,q
p,q

m
mp,q
p,q
− logmp,q−1

)
(Mp,q−1)(1−mp,q)

≤1
4

(
log

M
Mp,q
p,q

m
mp,q
p,q
− (logmp,q +1)(Mp,q−mp,q)

)

and

0≤DKL(p,q)≤ 1
Mp,q−mp,q

[(
1

Mp,q−mp,q
log

M
Mp,q
p,q

m
mp,q
p,q
− logm−1

)
(Mp,q−1)(1−mp,q)

−
(

logMp,q +1− 1
Mp,q−mp,q

log
M

Mp,q
p,q

m
mp,q
p,q

)
×

N


i=1

1
(i+q2)s2H2

(
Mp,q− H2

H1

(i+q2)s2

(i+q1)s1

)(
H2

H1

(i+q2)s2

(i+q1)s1
−mp,q

)]
.

Remark 8.10 From Corollary 8.6 and Corollary 8.7 we can obtain the same type of in-
equalities, but for the reversed Kullback-Leibler divergence DKL(q,p) of the Zipf-Mandel-
brot distributions p and q.

Since Zipf’s law is a special case of the Zipf-Mandelbrot law, two previous results hold
for Zipf’s law with q = 0.

Again, if we take q1 = q2 = 0, we can use the results from the above regarding the
Kullback-Leibler divergence of two Zipf-Mandelbrot distributions in order to give esti-
mates for the Kullback-Leibler divergence of the distributions associated to the russian and
english language. As said before, for those experimental values of s1 and s2 we have

mN = min

{
pi

qi

}
=

HN,s2

HN,s1
min

{
is2

is1

}
=

HN,s2

HN,s1
min
{
is2−s1

}
=

HN,s2

HN,s1
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and

MN = max

{
pi

qi

}
=

HN,s2

HN,s1
max

{
is2

is1

}
=

HN,s2

HN,s1
max
{
is2−s1

}
=

HN,s2

HN,s1
N0,080994.

Hence the following bounds for the mentioned divergence, depending only on the pa-
rameter N, hold.

0≤ 1
MN −mN

(
logMN +1− 1

MN−mN
log

MMN
N

mmN
N

)
×

N


i=1

HN,0,973863

i0,973863H2
N,0,892869

(
N0,080994− i0,080994)(i0,080994−1

)
≤ mNMN

MN −mN
log

mN

MN
+

1
MN−mN

log
MMN

N

mmN
N
−DKL(p,q)

≤ 1
MN −mN

(
1

MN −mN
log

MMN
N

mmN
N
− logmN−1

)
×

N


i=1

HN,0,973863

i0,973863H2
N,0,892869

(
N0,080994− i0,080994)(i0,080994−1

)
≤ 1

MN −mN

(
1

MN −mN
log

MMN
N

mmN
N
− logmN−1

)
(MN−1)(1−mN)

≤1
4

(
log

MMN
N

mmN
N
− (logmN +1)(MN−mN)

)

0≤DKL(p,q)≤ 1
MN −mN

[(
1

MN−mN
log

MMN
N

mmN
N
− logmN−1

)
(MN−1)(1−mN)

−
(

logM +1− 1
M−m

log
MM

mm

)
×

N


i=1

HN,0,973863

i0,973863H2
N,0,892869

(
N0,080994− i0,080994)(i0,080994−1

)]
.

By calculating the above results for the Kullback-Leibler divergence of the distributions
associated to the russian (p) and english (q) language for different values of the parameter
N, we obtained the following bounds:

• from the first series of inequalities:

N 5000 10000 50000 100000
DKL(p,q)≤ 1.19101 1.16826 1.12176 1.10408
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• from the second series of inequalities:

N 5000 10000 50000 100000
DKL(p,q)≤ 0.170194 0.189118 0.236439 0.258335

The base of the logarithm used in our calculations is 2.
The result that follows is a special case of Theorem 8.22, and it gives us Edmundson-

Lah-Ribarič type inequality for the generalized f -divergence of the Zipf-Mandelbrot law.

Corollary 8.10 ([24]) Let p and q be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let mp,q and Mp,q be defined in (8.64). Let
f : [mp,q,Mp,q]→R be a 3-convex function. Then we have

1
Mp,q−mp,q

(
f (Mp,q)− f (mp,q)

Mp,q−mp,q
− f ′+(mp,q)

)
×

n


i=1

1
(i+q2)s2H2

(
Mp,q− (i+q2)s2H2

(i+q1)s1H1

)(
(i+q2)s2H2

(i+q1)s1H1
−mp,q

)
≤ Mp,q−1

Mp,q−mp,q
f (mp,q)+

1−mp,q

Mp,q−mp,q
f (Mp,q)− D̃ f (p,q) (8.67)

≤ 1
Mp,q−mp,q

(
f ′−(Mp,q)− f (Mp,q)− f (mp,q)

Mp,q−mp,q

)
×

n


i=1

1
(i+q2)s2H2

(
Mp,q− (i+q2)s2H2

(i+q1)s1H1

)(
(i+q2)s2H2

(i+q1)s1H1
−mp,q

)
.

Next result follows directly from Theorem 8.23, and it represents a Jensen type inequal-
ity for the generalized f -divergence of the Zipf-Mandelbrot law without the assumption on
the convexity of the function f in the classical sense.

Corollary 8.11 ([24]) Let p and q be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let mp,q and Mp,q be defined in (8.64). Let
f : [mp,q,Mp,q]→R be a 3-convex function. Then we have

(Mp,q−1)(1−mp,q)
Mp,q−mp,q

(
f (Mp,q)− f (mp,q)

Mp,q−mp,q
− f ′+(mp,q)

)
− 1

Mp,q−mp,q

(
f ′−(Mp,q)− f (Mp,q)− f (mp,q)

Mp,q−mp,q

)
×

n


i=1

1
(i+q2)s2H2

(
Mp,q− (i+q2)s2H2

(i+q1)s1H1

)(
(i+q2)s2H2

(i+q1)s1H1
−mp,q

)
≤D̃ f (p,q)− f (1) (8.68)

≤(Mp,q−1)(1−mp,q)
Mp,q−mp,q

(
f ′−(Mp,q)− f (Mp,q)− f (mp,q)

Mp,q−mp,q

)
− 1

Mp,q−mp,q

(
f (Mp,q)− f (mp,q)

Mp,q−mp,q
− f ′+(mp,q)

)
×
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n


i=1

1
(i+q2)s2H2

(
Mp,q− (i+q2)s2H2

(i+q1)s1H1

)(
(i+q2)s2H2

(i+q1)s1H1
−mp,q

)
.

Remark 8.11 Corollary 8.10 and Corollary 8.11 can easily be applied to Kullback-Leibler
divergence, Hellinger divergence, Renyi divergence, harmonic divergence or Jeffreys di-
vergence considering Remark 8.7.

The following result is a special case of Theorem 8.24, and it gives us Edmundson-
Lah-Ribarič type inequality for the generalized f -divergence of the Zipf-Mandelbrot law.

Corollary 8.12 ([27]) Let p and q be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let mp,q and Mp,q be defined in (8.64). Let
f : [mp,q,Mp,q]→R be a 3-convex function. Then we have

(1−mp,q)
[

f (Mp,q)− f (mp,q)
Mp,q−mp,q

− f ′+(mp,q)
2

]
− 1

2

n


i=1

(
1

(i+q1)s1H1
− mp,q

(i+q2)s2H2

)
f ′
(

H2

H1

(i+q2)s2

(i+q1)s1

)
≤ Mp,q−1

Mp,q−mp,q
f (mp,q)+

1−mp,q

Mp,q−mp,q
f (Mp,q)− D̃ f (p,q) (8.69)

≤1
2

n


i=1

(
Mp,q

(i+q2)s2H2
− 1

(i+q1)s1H1

)
f ′
(

H2

H1

(i+q2)s2

(i+q1)s1

)
− (Mp,q−1)

[
f (Mp,q)− f (mp,q)

Mp,q−mp,q
− f ′−(Mp,q)

2

]
.

Next result follows directly from Theorem 8.12, and it gives us another Edmundson-
Lah-Ribarič type inequality for the generalized f -divergence of the Zipf-Mandelbrot law.

Corollary 8.13 ([27]) Let p and q be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let mp,q and Mp,q be defined in (8.64). Let
f : [mp,q,Mp,q]→R be a 3-convex function. Then we have

(Mp,q−1)
[

f ′−(Mp,q)− f (Mp,q)− f (mp,q)
Mp,q−mp,q

]
− f ′′−(Mp,q)

2

n


i=1

(i+q2)s2H2

(
Mp,q

(i+q2)s2H2
− 1

(i+q1)s1H1

)2

≤ Mp,q−1
Mp,q−mp,q

f (mp,q)+
1−mp,q

Mp,q−mp,q
f (Mp,q)− D̃ f (p,q) (8.70)

≤(1−mp,q)
[

f (Mp,q)− f (mp,q)
Mp,q−mp,q

− f ′+(mp,q)
]

− f ′′+(mp,q)
2

n


i=1

(i+q2)s2HN,q2,s2

(
1

(i+q1)s1H1
− mp,q

(i+q2)s2H2

)2

.
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Remark 8.12 Again, by taking into consideration Remark 8.7 one can see that Corol-
lary 8.12 and Corollary 8.13 can easily be applied to any of the following divergences:
Kullback-Leibler divergence, Hellinger divergence, Renyi divergence, harmonic diver-
gence or Jeffreys divergence.

The following results are special cases of Theorems 8.26, 8.27, 8.28 and 8.29 respec-
tively, and they gives us Edmundson-Lah-Ribarič type inequality for the generalized f -
divergence of the Zipf-Mandelbrot law.

Corollary 8.14 ([28]) Let p and q be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let H1, H2, mp,q and Mp,q be defined in (8.64).
Let Let f ∈ C n([mp,q,Mp,q]) be a n-convex function. If n and 3≤ v≤ n−1 are of different
parity, then

Mp,q−1
Mp,q−mp,q

f (mp,q)+
1−mp,q

Mp,q−mp,q
f (Mp,q)− D̃ f (p,q)

≤(1−mp,q)
(
f ′(mp,q)− f [mp,q,Mp,q]

)
+

v−1


k=2

f (k)(mp,q)
H2k!

r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−mp,q

)k

(i+q2)s2

+
n−v


k=1

f [mp,q, . . . ,mp,q︸ ︷︷ ︸
v times

;Mp,q, . . . ,Mp,q︸ ︷︷ ︸
k times

]
r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−mp,q

)m(H2(i+q2)s2
H1(i+q1)s1

−Mp,q

)k−1

H2(i+q2)s2
.

This inequality also holds when the function f is n-concave and n and v are of equal parity.
In case when the function f is n-convex and n and v are of equal parity, or when the function
f is n-concave and n and v are of different parity, the inequality sign is reversed.

Corollary 8.15 ([28]) Let p and q be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let H1, H2, mp,q and Mp,q be defined in (8.64).
Let Let f ∈ C n([mp,q,Mp,q]) be a n-convex function. If the function f is n-convex and if
3≤ v≤ n−1 are of different parity, then

Mp,q−1
Mp,q−mp,q

f (mp,q)+
1−mp,q

Mp,q−mp,q
f (Mp,q)− D̃ f (p,q)

≤(Mp,q−1)
(
f [mp,q,Mp,q]− f ′(Mp,q)

)
+

v−1


k=2

f (k)(Mp,q)
H2k!

r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−bp,q

)k

(i+q2)s2

+
n−v


k=1

f [Mp,q, . . . ,Mp,q︸ ︷︷ ︸
v times

;mp,q, . . . ,mp,q︸ ︷︷ ︸
k times

]
r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−Mp,q

)v(H2(i+q2)s2
H1(i+q1)s1

−mp,q

)k−1

H2(i+q2)s2
.

The inequality above also holds when the function f is n-concave and v is even. In case
when the function f is n-convex and v is even, or when the function f is n-concave and v
is odd, the inequality sign is reversed.
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Corollary 8.16 ([28]) Let p and q be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let H1, H2, mp,q and Mp,q be defined in (8.64).
Let Let f ∈ C n([mp,q,Mp,q]) be a n-convex function. If the function f is n-convex and if n
is odd, then we have

n−1


k=2

f [mp,q;Mp,q, . . . ,Mp,q︸ ︷︷ ︸
k times

]
r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−mp,q

)(
H2(i+q2)s2
H1(i+q1)s1

−Mp,q

)k−1

H2(i+q2)s2

≤ Mp,q−1
Mp,q−mp,q

f (mp,q)+
1−mp,q

Mp,q−mp,q
f (Mp,q)− D̃ f (p,q)

≤ f [mp,q,mp,q;Mp,q]
r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−mp,q

)(
H2(i+q2)s2
H1(i+q1)s1

−Mp,q

)
H2(i+q2)s2

+
n−2


k=2

f [mp,q,mp,q;Mp,q, . . . ,Mp,q︸ ︷︷ ︸
k times

]
r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−mp,q

)2(H2(i+q2)s2
H1(i+q1)s1

−Mp,q

)k−1

H2(i+q2)s2
.

These inequalities also hold when the function f is n-concave and n is even. In case when
the function f is n-convex and n is even, or when the function f is n-concave and n is odd,
the inequality signs are reversed.

Corollary 8.17 ([28]) Let p and q be Zipf-Mandelbrot laws with parameters N ∈ N,
q1,q2 ≥ 0 and s1,s2 > 0 respectively, and let H1, H2, mp,q and Mp,q be defined in (8.64).
Let Let f ∈ C n([mp,q,Mp,q]) be a n-convex function. If the function f is n-convex, then we
have

f [Mp,q,Mp,q;mp,q]
r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−mp,q

)(
H2(i+q2)s2
H1(i+q1)s1

−Mp,q

)
H2(i+q2)s2

+
n−2


k=2

f [Mp,q,Mp,q;mp,q, . . . ,mp,q︸ ︷︷ ︸
k times

]
r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−mp,q

)k−1(H2(i+q2)s2
H1(i+q1)s1

−Mp,q

)2

H2(i+q2)s2

≤ Mp,q−1
Mp,q−mp,q

f (mp,q)+
1−mp,q

Mp,q−mp,q
f (Mp,q)− D̃ f (p,q)

≤
n−1


k=2

f [Mp,q;mp,q, . . . ,mp,q︸ ︷︷ ︸
k times

]
r


i=1

(
H2(i+q2)s2
H1(i+q1)s1

−mp,q

)k−1(H2(i+q2)s2
H1(i+q1)s1

−Mp,q

)
H2(i+q2)s2

.

If the function f is n-concave, the inequality signs are reversed.

Remark 8.13 By taking into consideration Remark 8.8 one can see that general results
from this section can easily be applied to any of the following divergences: Kullback-
Leibler divergence, Hellinger divergence, harmonic divergence or Jeffreys divergence.
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8.5 Further generalization of Edmunson-Lah-Ribarič
inequality for Zipf-Mandelbrot law

Throughout this section without further noticing when using [m,M] we assume that
−< m < M < .

Let rn(v) be defined recursively by

r0(v) = min{v,1− v}
rn(v) = min{2rn−1(v),1−2rn−1(v)}

for 0≤ v≤ 1. It has been shown in [5] that

rn(v) =
{

2nv− k+1 , k−1
2n ≤ v≤ 2k−1

2n+1 ,

k−2nv , 2k−1
2n+1 < v≤ k

2n ,

for k = 1,2, . . . ,2n.
It has been shown (see [5]) that if N is a nonnegative integer and f is convex on [0,1],

then

(1− v) f (0)+ v f (1)≥ f (v)+
N−1


n=0

rn(v)
2n


k=1

 f (n,k)( k−1
2n , k

2n )(v) (8.71)

where

 f (n,k) = f

(
k−1
2n

)
+ f

(
k
2n

)
−2 f

(
2k−1
2n+1

)
,

and  represents the characteristic function of the corresponding interval. If N = 0 then
sum is zero, that is we have convexity.

In the paper [6] previous relation is extended to hold for an arbitrary interval. Following
result is given.

Lemma 8.1 Let N be a nonnegative integer and let f be convex on [a,b]. Then

(1− v) f (a)+ v f (b)≥ f ((1− v)a+ vb)+
N−1


n=0

rn(v)
2n


k=1

 f (a,b,n,k)( k−1
2n , k

2n )(v) (8.72)

where

 f (a,b,n,k) = f (
(2n− k+1)a+(k−1)b

2n )+ f (
(2n− k)a+ kb

2n )

− 2 f (
(2n+1−2k+1)a+(2k−1)b

2n+1 ),

and  represents the characteristic function of the corresponding interval.

Next theorem is main result in paper [32], and it is an improvement of Theorem 8.3.
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Theorem 8.30 Let L satisfy L1, L2, L3 on a nonempty set E and let A be a positive
normalized linear functional. If f is a convex function on [m,M] then for all g ∈ L such
that f (g) ∈ L we have A(g) ∈ [m,M] and

M−A(g)
M−m

f (m)+
A(g)−m
M−m

f (M) ≥ A( f (g))

+
N−1


n=0

2n


k=1

 f (m,M,n,k)A
((

rn · ( k−1
2n , k

2n )

)( g−m
M−m

))
(8.73)

where

 f (m,M,n,k) = f

(
(2n− k+1)m+(k−1)M

2n

)
+ f

(
(2n− k)m+ kM

2n

)
− 2 f

((
2n+1−2k+1

)
m+(2k−1)M

2n+1

)
,

and  represents the characteristic function of the corresponding interval.

Remark 8.14 If we write equation (8.73) in the following form

M−A(g)
M−m

f (m)+
A(g)−m
M−m

f (M) ≥ A( f (g))

+  f (m,M,0,1) ·A
(

r0

(
g−m
M−m

)
· ( 0

20 , 1
20 )

(
g−m
M−m

))
+

N−1


n=1

2n


k=1

 f (m,M,n,k)A
((

rn · ( k−1
2n , k

2n )

)( g−m
M−m

))
and notice

 f (m,M,0,1) = f (m)+ f (M)−2 f
(

m+M
2

)
r0
( g−m

M−m

)
= 1

2 −
|g−m+M

2 |
M−m

( 0
20 , 1

20

) ( g−m
M−m

)
= (0,1)

( g−m
M−m

)
= 1

we have that Theorem 8.30 is an improvement of Theorem 8.3.

Corollary 8.18 Let p be a nonnegative l-tuple with Pl = l
i=1 pi 
= 0 and x ∈ [m,M]l . If

f : [m,M]→R is a convex function then

1
Pl

l


i=1

pi f (xi) (8.74)

≤ M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)

− 1
Pl

N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)pi

[(
rn · ( k−1

2n , k
2n )

)( xi−m
M−m

)]
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=
M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)

− 1
Pl

N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)pi

[(
2n xi−m

M−m
− k+1

)
· ( k−1

2n , 2k−1
2n+1

)( xi−m
M−m

)
+
(

k−2n xi−m
M−m

)
( 2k−1

2n+1 , k
2n

)( xi−m
M−m

)]

where x̄ = 1
Pl
l

i=1 pixi.

Proof. If we consider E = [m,M] ,L = R
[m,M],g = idE , A( f ) = 1

Pl
l

i=1 pi f (xi) in Theorem
8.30, then inequality (8.73) becomes (8.74) . �

Using previous result we get some improvements of some results from Section 8.3.
First we give an improvement of Theorem 8.17.

Theorem 8.31 Let [m,M] ⊂ R be an interval and let f : [m,M]→ R be a function. Let
p = (p1, ..., pl) be an l-tuple of real numbers and q = (q1, ...,ql) be an l-tuple of nonnega-
tive real numbers such that pi/qi ∈ [m,M] for every i = 1, . . . , l. If the function f is convex,
we have

D̂ f (p,q)≤ MQl−Pl

M−m
f (m)+

Pl−mQl

M−m
f (M)

−
N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)qi

[(
rn · ( k−1

2n , k
2n )

)( pi
qi
−m

M−m

)]

=
MQl−Pl

M−m
f (m)+

Pl−mQl

M−m
f (M)

−
N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]

where Pl = l
i=1 pi and Ql = l

i=1 qi. If the function f is concave, then the inequality sign
is reversed.

Proof. Let f : [m,M] → R be a convex function. For an l-tuple of real numbers x =
(x1, ...,xl) and an l-tuple of nonnegative numbers p = (p1, ..., pl) from Corollary 8.18 we
have
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1
Pl

l


i=1

pi f (xi)

≤ M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)

− 1
Pl

N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)pi

[(
rn · ( k−1

2n , k
2n )

)( xi−m
M−m

)]
=

M− x̄
M−m

f (m)+
x̄−m
M−m

f (M)

− 1
Pl

N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)pi

[(
2n xi−m

M−m
− k+1

)
· ( k−1

2n , 2k−1
2n+1

)( xi−m
M−m

)
+
(

k−2n xi−m
M−m

)
( 2k−1

2n+1 , k
2n

)( xi−m
M−m

)]
where x̄ = 1

Pl
l

i=1 pixi. Since q = (q1, ...,ql) are nonnegative real numbers, we can put

pi = qi and xi =
pi

qi

in previous inequality and get

1
Ql

l


i=1

qi f

(
pi

qi

)
≤

M− 1
Ql
l

i=1 qi
pi
qi

M−m
f (m)+

1
Ql
l

i=1 qi
pi
qi
−m

M−m
f (M)

− 1
Ql

N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)qi

[
rn

( pi
qi
−m

M−m

)
· ( k−1

2n , k
2n )

( pi
qi
−m

M−m

)]

=
M− 1

Ql
l

i=1 qi
pi
qi

M−m
f (m)+

1
Ql
l

i=1 qi
pi
qi
−m

M−m
f (M)

− 1
Ql

N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]

and after multiplying by Ql we get the result. �

Remark 8.15 Analogously as in Remark 8.14 we see that previous result is improvement
Theorem 8.17.
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Remark 8.16 If in the previous theorem we take p and q to be probability distributions,
we directly get following result for the Csiszár f -divergence functional, which is an im-
provement of Remark 8.2.

Df (p,q)≤ M−1
M−m

f (m)+
1−m
M−m

f (M)

−
N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)qi

[
rn

( pi
qi
−m

M−m

)
· ( k−1

2n , k
2n )

( pi
qi
−m

M−m

)]

=
M−1
M−m

f (m)+
1−m
M−m

f (M)

−
N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]

Next result provides us with improvement of the bounds for the Kullback-Leibler di-
vergence of two probability distributions, that is result from Corollary 8.1.

Corollary 8.19 Let [m,M] ⊂ R be an interval and let us assume that the base of the
logarithm is greater than 1.

• Let p = (p1, ..., pn) and q = (q1, ...,ql) be l-tuples of nonnegative real numbers such
that pi

qi
∈ [m,M] for every i = 1, . . . , l. Then

l


i=1

pilog

(
pi

qi

)
≤ Ql

Mm
M−m

log
(m

M

)
+

Pl

M−m
log

(
MM

mm

)

−
N−1


n=0

2n


k=1

l


i=1

log(m,M,n,k)qi

[(
rn · ( k−1

2n , k
2n )

)( pi
qi
−m

M−m

)]

= Ql
Mm

M−m
log
(m

M

)
+

Pl

M−m
log

(
MM

mm

)
−

N−1


n=0

2n


k=1

l


i=1

log(m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]
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• Let p = (p1, ..., pn) and q = (q1, ...,qn) ∈ P be probability distributions such that
m≤ pi/qi ≤M holds for every i = 1, ...,n. Then

DKL(p,q)≤ Mm
M−m

log
(m

M

)
+

1
M−m

log

(
MM

mm

)
−

N−1


n=0

2n


k=1

l


i=1

log(m,M,n,k)qi

[
rn

( pi
qi
−m

M−m

)
· ( k−1

2n , k
2n )

( pi
qi
−m

M−m

)]

=
Mm

M−m
log
(m

M

)
+

1
M−m

log

(
MM

mm

)
−

N−1


n=0

2n


k=1

l


i=1

log(m,M,n,k)
1

M−m
·

·
[
(2n(pi−mqi)−qi(M−m)(k−1)) · ( k−1

2n , 2k−1
2n+1

)
( pi

qi
−m

M−m

)

+ (qi(M−m)k−2n(pi−mqi))( 2k−1
2n+1 , k

2n

)
( pi

qi
−m

M−m

)]

If the base of the logarithm is less than 1, the inequality sign in the inequalities above is
reversed.

Proof. Let p = (p1, ..., pn) and q = (q1, ...,qn) be an n-tuples of nonnegative real numbers.
Since the function t �→ tlogt is convex when the base of the logarithm is greater than 1, first
inequality follows from Theorem 8.31 by setting f (t) = tlogt.

Second inequality is a special case of the first inequality for probability distributions p
and q. �

Remark 8.17 Analogously as in Remark 8.14 we see that previous result is improvement
Corollary 8.1.

Last results in this section will be about Zipf-Mandelbrot law.
We will denote in this section parameters in Zipf-Mandelbrot law as l,t1,s1 because of

the previous results.
If we define q as a Zipf-Mandelbrot law l-tuple, we have

qi =
1

(i+ t2)s2Hl,s2,t2
, i = 1, . . . , l

where

Hl,s2,t2 =
l


i=1

1
(k+ t2)s2

and Csiszar functional becomes

D̂ f (p, i, l,s2,t2) =
l


i=1

1
(i+ t2)s2Hl,s2,t2

f
(
pi(i+ t2)s2Hl,s2,t2

)
,
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where f : I → R, I ⊆ R, and the parameters l ∈ N,s2 > 0,t2 ≥ 0 are such that pi(i +
t2)s2Hl,s2,t2 ∈ I, i = 1, . . . , l.

If p and q are both defined as Zipf-Mandelbrot law l-tuples, then Csiszar functional
becomes

D̂ f (i, l,s1,s2,t1,t2) =
l


i=1

1
(i+ t2)s2Hl,s2,t2

f

(
(i+ t2)s2Hl,s2,t2

(i+ t1)s1Hl,s1,t1

)
,

where f : I → R, I ⊆ R, and the parameters l ∈ N,s1,s2 > 0,t1, t2 ≥ 0 are such that
(i+t2)s2Hl,s2,t2
(i+t1)s1Hl,s1,t1

∈ I, i = 1, . . . , l.

Since the minimal value for qi is min{qi}= 1
(l+t2)s2Hl,s2,t2

, then from Theorem 8.31 we

have following result.

Corollary 8.20 Let p = (p1, . . . ,pl) be an l-tuple of real numbers with Pl =l
i=1 pi. Sup-

pose I ⊆ R is an interval, l ∈ N and s2 > 0,t2 ≥ 0 are such that pi(i+ t2)s2Hl,s2,t2 ∈ I, i =
1, . . . , l. If f : I→ R is a convex function, then

D̂ f (p, i, l,s2, t2)≤ M−Pl

M−m
f (m)+

Pl−m
M−m

f (M)

−
N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)
1

(l + t2)s2Hl,s2,t2

[(
rn · ( k−1

2n , k
2n )

)( pi(i+ t2)s2HM,s2,t2 −m
M−m

)]

≤ M−Pl

M−m
f (m)+

Pl−m
M−m

f (M)−
N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)
1

M−m[
(2n(pi−mmin{qi})−min{qi}(M−m)(k−1)) · ( k−1

2n , 2k−1
2n+1

)( pi(i+t2)s2HM,s2,t2−m
M−m

)
+ (min{qi}(M−m)k−2n(pi−mmin{qi}))( 2k−1

2n+1 , k
2n

)( pi(i+ t2)s2HM,s2,t2 −m
M−m

)]
Proof. Follows easily from Theorem 8.31. �

Now let’s denote

Hl,s1,t1 = H1,Hl,s2,t2 = H2,

mp,q := min

{
pi

qi

}
=

H2

H1
min

{
(i+q2)s2

(i+q1)s1

}
.

Corollary 8.21 Let I ⊆ R be an interval and suppose N ∈ N,s1,s2 > 0,q1,q2 ≥ 0 are

such that
(i+t2)s2 Hl,s2,t2
(i+t1)s1 Hl,s1,t1

∈ I, i = 1, . . . , l.

If f : I→R is a convex function, then

D̂ f (i, l,s1,s2, t1,t2)≤ M−1
M−m

f (m)+
1−m
M−m

f (M)

−
N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)
1

(l + t2)s2Hl,s2,t2

⎡⎢⎣(rn · ( k−1
2n , k

2n )

)⎛⎜⎝
(i+t2)s2Hl,s2 ,t2
(i+t1)s1Hl,s1 ,t1

−m

M−m

⎞⎟⎠
⎤⎥⎦
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≤ M−1
M−m

f (m)+
1−m
M−m

f (M)−
N−1


n=0

2n


k=1

l


i=1

 f (m,M,n,k)
1

(l + t2)s2Hl,s2,t2
·

·

⎡⎢⎣(2n
(

mp,q−m
M−m

)
− k+1

)
· ( k−1

2n , 2k−1
2n+1

)
⎛⎜⎝

(i+t2)s2 Hl,s2,t2
(i+t1)s1 Hl,s1,t1

−m

M−m

⎞⎟⎠
+
(

k−2n
(

mp,q−m
M−m

))
( 2k−1

2n+1 , k
2n

)
⎛⎜⎝

(i+t2)s2Hl,s2 ,t2
(i+t1)s1Hl,s1 ,t1

−m

M−m

⎞⎟⎠
⎤⎥⎦ .

Proof. Follows easily from Theorem 8.31. �

We denote Kullback-Leibler divergence for p and q both defined as Zipf-Mandelbrot
law l-tuples as DKL(i, l,s1,s2,t1,t2).

Corollary 8.22 Let l ∈ N and s1,s2 > 0,t1, t2 ≥ 0.
If the logarithm base is greater than 1, then

DKL(p,q)≤ Mm
M−m

log
(m

M

)
+

1
M−m

log

(
MM

mm

)

−
N−1


n=0

2n


k=1

l


i=1

log(m,M,n,k)
1

(l + t2)s2Hl,s2,t2

⎡⎢⎣(rn · ( k−1
2n , k

2n )

)⎛⎜⎝
(i+t2)s2 Hl,s2,t2
(i+t1)s1 Hl,s1,t1

−m

M−m

⎞⎟⎠
⎤⎥⎦

≤ Mm
M−m

log
(m

M

)
+

1
M−m

log

(
MM

mm

)
−

N−1


n=0

2n


k=1

l


i=1

log(m,M,n,k)
1

(l + t2)s2Hl,s2,t2
·

·

⎡⎢⎣(2n
(

mp,q−m
M−m

)
− k+1

)
· ( k−1

2n , 2k−1
2n+1

)
⎛⎜⎝

(i+t2)s2 Hl,s2,t2
(i+t1)s1 Hl,s1,t1

−m

M−m

⎞⎟⎠
+
(

k−2n
(

mp,q−m

M−m

))
( 2k−1

2n+1 , k
2n

)
⎛⎜⎝

(i+t2)s2Hl,s2 ,t2
(i+t1)s1Hl,s1 ,t1

−m

M−m

⎞⎟⎠
⎤⎥⎦ .

If the base of the logarithm is less than 1, the inequality sign in the inequalities above is
reversed.

Proof. Follows easily from Corollary 8.19. �
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Ribarič type for 3-convex functions with applications, J. Math. Inequal., 12 (3),
(2018), 677–692.
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Chapter9
On Sherman’s inequality with
applications in information
theory

Ana Barbir, Slavica Ivelić Bradanović, Dilda Pečarić and Josip Pečarić

Abstract. In this paper we proved a converse to Sherman’s inequality. Using the concept of
f -divergence we obtained a converse to the Csiszár-Körner inequality and some inequali-
ties for the well-known entropies. We also established a new lower and upper bounds for
Sherman’s inequality as well as for f -divergence functional using some basic convexity
facts. As special cases and corollaries of obtained bounds we establishe lower and upper
bounds for Shannon’s entropy and relative entropy also known as the Kullback-Leibler
divergence. We also introduced a new entropy by applying the Zipf-Mandelbrot law and
derived some related inequalities.

9.1 Introduction and preliminaries

In the space R
n, in which the order is not defined, the term majorization is introduced to

compare and detect potential links between vectors.
For two vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn) from R

n, we say that x majorizes

257
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y or y is majorized by x and write
y≺ x

if
k


i=1

y[i] ≤
k


i=1

x[i], k = 1, . . . ,m−1, (9.1)

and
m


i=1

yi =
m


i=1

xi.

Here
x[1] ≥ x[2] ≥ . . .≥ x[m], y[1] ≥ y[2] ≥ . . .≥ y[m],

are their ordered components.
Note that (9.1) is equivalent to

m


i=m−k+1

y(i) ≤
m


i=m−k+1

x(i), k = 1, . . . .,m−1,

where
x(1) ≤ x(2) ≤ . . .≤ x(m), y(1) ≤ y(2) ≤ . . .≤ y(m)

This definition defines relation which is reflexive and transitive but it is not antisym-
metric (see [23]). Hence, it is a preordering not a partial ordering on R

n. It it important to
remember that two vectors may not have any majorization relationship, meaning that there
are vectors that can not be compared in the sense of the given definition. Let’s assume for
example x = (0.6,0.6,0.2) and y = (0.5,0.4,0.1) vectors for which no y≺ x or x≺ y are
valid.

Issai Schur ([30], [31]) first systematically studied functions that preserve the order
of majorization and called them convex functions. Such functions are now called Schur
convex functions and convex functions are often referred to convex functions in the sense
of Jensen. Each function that is convex and symmetric is also Schur-convex. The opposite
implication is not valid. However, all Schur convex functions are symmetric. The con-
cept of majorization, together with the concept of Schur convexity, provides an important
characterization of convex functions and is a powerful and useful mathematical tool that
has wide application in many applied sciences. Many key ideas related to the concept of
majorization are presented in the monograph [2]. However, this monograph attracted only
a relatively small number of researchers in terms of problems related to the concept of ma-
jorization. The publication of monograph [23] contributes a great interest in the potential
application of the concept of majorization and Schur convexity in various scientific areas.
It provides a systematic overview of past results from the field of mathematical inequalities
with a special emphasis on majorization for the first time, and has been complemented by
many new results. One of the important results from the mentioned monographs is the
known majorization theorem that gives the relationship between one-dimensional convex
functions and n-dimensional Schur convex functions. Majorization theorem can also be
expressed in the form of the inequality

n


i=1

f (yi)≤
n


i=1

f (xi), (9.2)
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which is valid for every function f : [, ]→ R, continuous and convex on some interval
[, ]⊂ R, where vectors x,y ∈ [, ]n are such that y≺ x.

A natural problem of interest is extension of notation from n-tuples (vectors) to n×m
matrices A = (ai j) ∈Mnm(R). In order that, we introduce the notion of row stochastic and
double stochastic matrices.

A matrix A = (ai j)∈Mnm(R) is called column stochastic if all of its entries are greater
or equal to zero, i.e. ai j ≥ 0 for i = 1, . . . ,n, j = 1, . . . ,m and the sum of the entries in each

column is equal to 1, i.e.
n

i=1

ai j = 1 for j = 1, . . . ,m.

A square matrix A = (ai j) ∈Mm(R) is called double stochastic if both A and its trans-
pose AT = (a ji) are row stochastic. In other words, A = (ai j) ∈Mm(R) is called double
stochastic if all of its entries are greater or equal to zero, i.e. ai j ≥ 0 for i, j = 1, . . . ,m,

and the sum of the entries in each column and each row is equal to 1, i.e.
m

i=1

ai j = 1 for

j = 1, . . . ,m and
m

j=1

ai j = 1 for i = 1, . . . ,m.

It is well known that for x,y ∈ R
m is valid

y≺ x if and only if y = xA

for some double stochastic matrix A ∈Mm(R).
S. Sherman [33], considering the weighting concept of majorisation between vec-

tors x = (x1, . . . ,xn) ∈ [, ]n and y = (y1, . . . ,ym) ∈ [, ]m, with nonegative weights
a = (a1, . . . ,an) ∈ [0,)n, and b = (b1, . . . ,bm) ∈ [0,)m, taking into account the relation

y = xS and a = bSᵀ, (9.3)

where S = (si j) ∈Mnm(R) is some column stochastic matrix and Sᵀ a transpose matrix of
S, proved that more general inequality

m


j=1

b j f (y j)≤
n


i=1

ai f (xi) (9.4)

is valid for every function f : [, ]→ R convex on some interval [, ]⊂ R.
Note that (9.3) can be written as

y = xS, (y j =
n


i=1

xisi j, j = 1, . . . ,m), (9.5)

a = bSᵀ, (ai =
m


j=1

b jsi j, i = 1, . . . ,n).

Inequality (9.1) follows from Sherman’s inequality (9.4) as a simple consequence. More-
over, Sherman’s inequality (9.4) reduces to Jensen’s inequality

f

(
n


i=1

aixi

)
≤

n


i=1

ai f (xi), (9.6)
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where x = (x1, . . . ,xn) is any n-tuple in [, ]n and a = (a1, . . . ,an) ∈ [0,)n such that
n

i=1 ai = 1. It is obviously true, by choosing m = 1 and setting b = [1].
On the other hand, Sherman’s inequality (9.4) is an easy consequence of Jensen’s in-

equality (9.6), i.e. under the assumptions (9.3) we have

m


j=1

b j f (y j) =
m


j=1

b j f

(
n


i=1

xisi j

)

�
m


j=1

b j

n


i=1

si j f (xi)

=
n


i=1

(
m


j=1

b jsi j

)
f (xi) =

n


i=1

ai f (xi).

Considering the difference between the right and left side of Jensen’s inequality (9.6),
we define the normalized Jensen functional for a convex function as follows

Jn( f ,x,a) =
n


i=1

ai f (xi)− f

(
n


i=1

aixi

)
≥ 0.

Dragomir [34] obtained the lower and upper bound for the normalized Jensen func-
tional stated in the next theorem.

Theorem 9.1 Let [, ] ⊂ R, x = (x1, . . . ,xn) ∈ [, ]n and a = (p1, . . . ,an) ∈ [0,)n

with n
i=1 ai = 1. Then for every convex function f : [, ]→R, the inequality

0 � min
1�i�n

{ai}S f (x) � Jn( f ,x,a) � max
1�i�n

{ai}S f (x) (9.7)

holds, where S f (x) is defined by

S f (x) =
n


i=1

f (xi)−n f

(
1
n

n


i=1

xi

)
. (9.8)

We close this introduction with one more inequality closely connected to Jensen’s in-
equality (9.6) known as the Lah-Ribarič inequality

n


i=1

ai f (xi)≤  − x̄
 − f ()+

x̄−
 − f ( ) (9.9)

which holds for every function f : [, ]→R convex on [, ]⊂R, where x = (x1, . . . ,xn)∈
[, ]n, a = (a1, . . . ,an) ∈ [0,)n with n

i=1 ai = 1 and x̄ = n
i=1aixi (see [21], [28]).

The contents of this chapter corresponds for the most part to the contents of the papers
[11] and [14].
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9.2 The concept of Csiszár f -divergence functional

Csiszár [5] introduced the concept of f -divergence functional

Cf (q,p) =
n


i=1

pi f

(
qi

pi

)
(9.10)

for a convex function f : (0,)→ R and p = (p1, . . . , pn) ∈ (0,)n, q = (q1, . . . ,qn) ∈
(0,)n.

It is possible to use non-negative n-tuples p and q in the f -divergence functional, by
defining

f (0) = lim
t→0+

f (t), 0 f

(
0
0

)
= 0, 0 f

( c
0

)
= lim

→0+
f
( c


)
= c lim

t→

f (t)
t

, c > 0.

We will limit our consideration to positive cases of p and q.
The generalized Csiszár f -divergence for a convex function f : (0,)→ R is defined

by

Cf (q,p;r) =
n


i=1

ripi f

(
qi

pi

)
, (9.11)

with weights r1, . . . ,rn ≥ 0.

Remark 9.1 Notice that Cf (q,p;e) = Cf (q,p) for e = (1, . . . ,1) ∈ R
n.

The classical inequality for f -divergence functional, known as the Csiszár-Körner in-
equality, has the form

n


i=1

pi f

⎛⎜⎜⎝
n

i=1

qi

n

i=1

pi

⎞⎟⎟⎠� Cf (q,p) (9.12)

and holds for every function f : (0,)→R convex on (0,). Specially, if f is normalized,
i.e. f (1) = 0 and n

i=1pi = n
i=1qi, then

0≤Cf (q,p). (9.13)

In particular, if p and q are two positive probability distribution, i.e. p = (p1, . . . , pn) ∈
(0,)n and q = (q1, . . . ,qn) ∈ (0,)n with n

i=1pi =n
i=1qi = 1, then the inequality (9.13)

holds for every convex and normalized function f : (0,)→ R. These results are easy
consequences of Jensen’s inequality (9.6).

We may consider Csiszár’s f -divergence functional as generalized measure of infor-
mation on the set of probability distribution. It is not metric. However, it satisfies the
triangle inequality but it is not symmetric. The general aspect of the Csiszár f -divergence
functional (9.10) can be interpreted as a series of well-known entropies, divergencies and
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distances for suitable choices of the kernel f . Entropies quantify the diversity, uncertainty
and randomness of a system. The idea has been widely employed in different scientic
fields among which we point out mathematical statistics and specially information theory
(see [4], [7], [17], [18], [19], [20], [29], [32]). Information theory is a mathematical theory
of learning with deep connections with topics as diverse as artificial intelligence, statistical
physics, and biological evolution.

In the examples below, for suitable choices of the kernel f , we obtain some of the best
known distance functions.

Example 9.1 As a special case from the Csiszáre f -divergence, choosing the convex
mapping f (t) = ln 1

t =− lnt, t > 0, we get the Shannon entropy defined by

H(p) =
n


i=1

pi ln

(
1
pi

)
=−Cf (e,p). (9.14)

This a statistical concept of entropy is introduced by Shannon [32] in the theory of com-
munication and transmission of information as a measure of information.
We also consider the concept of weighted Shannon’s entropy defined by

H(p;r) =
n


i=1

ri pi ln

(
1
pi

)
=−Cf (e,p;r), (9.15)

introduced by Belis and Guiacsu, motivated by various communication and transmission
problems, taking into account probabilities and some qualitative characteristic of events.
If we ignore weights ri, i = 1, . . . ,n, then (9.15) reduces to (9.14), i.e. H(p;e) = H(p) for
e = (1, . . . ,1) ∈R

n.

Remark 9.2 It’s well known, when p = (p1, . . . , pn) is a positive probability distribution
for some discrete random variable X , i.e. pi > 0, i = 1, . . . ,n, withn

i=1pi = 1, the weighted
entropy satisfied estimate

0 � H(p;r) �
n


i=1

ri pi ln

n

i=1

ri

n

i=1

ripi

(see [24]). In particular, the minimum H(p;r) = 0 is reached for a constant random vari-
able, i.e. when pi = 1, for some i. The opposite extreme, the maximal H(p;r) is reached
for a uniform distribution, i.e. when pi = 1

n for all i = 1, . . . ,n. In that case we have

0 � H(p;r) � 1
n

n


i=1

ri lnn.

Specially, ignoring weights ri, i = 1, . . . ,n, i.e. setting r = e = (1, . . . ,1), the previous
inequality reduces to

0 � H(p) � lnn.

Shannon’s entropy quantifies the unevenness in the probability distribution p.
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Example 9.2 For the convex function f (t) = t lnt, t > 0, we have

Cf (q,p) =
n


i=1

pi
qi

pi
ln

(
qi

pi

)
=

n


i=1

qi ln

(
qi

pi

)
= D(q,p)

and

Cf (q,p;r) =
n


i=1

ri pi
qi

pi
ln

(
qi

pi

)
=

n


i=1

riqi ln

(
qi

pi

)
= D(q,p;r). (9.16)

We get the Kullback-Leibler divergence or relative entropy as a slight modification of the
previous formula for Shannon’s entropy (see [19]).
Note that D(q,p;e) = D(q,p) for e = (1, . . . ,1) ∈ R

n.

Remark 9.3 Specially, when q and p are two positive probability distributions over the
same variable, the Kullback-Leibler divergence is a measure of the difference between
them. In statistics, it arises as the expected logarithm of difference between the probability
q of data in the original distribution with the approximating distribution p. It satisfies the
following estimates

D(q,p)≥ 0

with equality iff q = p.

Example 9.3 Consider now the Hellinger distance

h(p,q) =
1√
2

√
n


i=1

(
√

pi−√qi)2,

where p,q ∈(0,)n. This distance is metric and is often used in its squared form

h2(p,q) =
1
2

n


i=1

(
√

pi−√qi)2.

We also define the weighted Hellinger distance, with weights r = (r1, . . . ,rn) ∈ [0,), in
squared form

h2(p,q;r) =
1
2

n


i=1

ri(
√

pi−√qi)2.

We know that Hellinger disctance is actually the Csiszáre f -divergence for the convex
mapping f (t) = 1

2

(
1−√t

)2
.

Example 9.4 For the convex function f (t) =−√t and p,q ∈(0,)n, we get

Cf (p,q) =
n


i=1

pi

(
−
√

qi

pi

)
=−

n


i=1

√
piqi =−B(p,q),

known as the Bhattacharyya distance.
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Example 9.5 For suitable choices of a convex function f we define:
2-divergence, for f (t) = (1− t)2,t > 0, we have

Cf (p,q) =
n


i=1

pi

(
1− qi

pi

)2

=
n


i=1

(pi−qi)2

pi
= 2(p,q);

the total variation distance, for f (t) = |1− t|,t > 0, we have

Cf (p,q) =
n


i=1

pi

∣∣∣∣1− qi

pi

∣∣∣∣= n


i=1
|pi−qi|= V (p,q);

the triangular discrimination, for f (t) = (1−t)2
t+1 ,t > 0, we have

Cf (p,q) =
n


i=1

pi

(
1− qi

pi

)2

qi
pi

+1
=

n


i=1

(pi−qi)2

pi +qi
= (p,q).

We also introduce their weighted versions, with weights ri ≥ 0, i = 1, . . . ,n:

2(p,q;r) =
n


i=1

ri
(pi−qi)2

pi
,

V (p,q;r) =
n


i=1

ri|pi−qi|,

(p,q;r) =
n


i=1

ri
(pi−qi)2

pi +qi
.

9.3 The Zipf-Mandelbrot entropy

The Zipf-Mandelbrot law is a discrete probability distribution depending on parameters
n ∈ N, q≥ 0 and s > 0 with probability mass function defined with

f (k,n,q,s) =
1

(k+q)sHn,q,s
, k = 1,2, . . . ,n,

where

Hn,q,s =
n


i=1

1
(i+q)s . (9.17)

It is also known as the Pareto-Zipf law, a power-law distribution on ranked data, defined by
Mandelbrot [13] as generalization of a simpler distribution called Zipf’s law [36]. Many
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naturally phenomena, as earthquake magnitudes, city sizes, incomes, word frequencies
and etc., are distributed according to this distribution. It implies that small occurrences are
extremely common, whereas large instances are extremely rare. The Zipf-Mandelbrot has
wide applications in many branches of science, as well as linguistics, information sciences
, ecological field studies and etc (see for example [8], [25], [26], [35]).

Using the given Zipf-Mandelbrot law we define new entropy by

Z(H,q,s) =
s

Hn,q,s

n


k=1

ln(k+q)
(k+q)s + lnHn,q,s. (9.18)

We also consider the weighted Zipf-Mandelbrot entropy defined by

Z(H,q,s,R) =
s

Hn,q,s,R

n


k=1

Rk
ln(k+q)
(k+q)s + lnHn,q,s,R (9.19)

with nonnegative weights Ri, i = 1, . . . ,n and

Hn,q,s,R =
n


i=1

Ri

(i+q)s . (9.20)

Specially, when ri j are entries of some matrix R ∈Mnm(R+), we use notation

Hn,q,s,r j =
n


i=1

ri j

(i+q)s . (9.21)

9.4 Converse to Sherman’s Inequality

We start this section with results including a converse to Sherman’s inequality (9.4).

Theorem 9.2 Let f : [, ]→R be a convex function on [, ]⊂R. Let x =(x1, . . . ,xn)∈
[, ]n, y = (y1, . . . ,ym)∈ [, ]m, a = (a1, . . . ,an)∈ [0,)n and b = (b1, . . . ,bm)∈ [0,)m

be such that (9.3) holds for some column stochastic matrix S = (si j) ∈Mnm(R). Then

m


j=1

b j f (y j)≤
n


i=1

ai f (xi)≤
m


j=1

b j
f ()( − y j)+ f ( )(y j−)

 − . (9.22)

Proof. Under the assumptions, Sherman’s inequality (9.4) holds. Further, from (9.9),
setting pi = si j, for i = 1, . . . ,n, we have

m


j=1

b j f (y j)≤
n


i=1

ai f (xi)
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=
n


i=1

(
m


j=1

b jsi j

)
f (xi)

=
m


j=1

b j

(
n


i=1

si j f (xi)

)

≤
m


j=1

b j

⎛⎜⎜⎝ −
n

i=1

xisi j

 − f ()+

n

i=1

xisi j−
 − f ( )

⎞⎟⎟⎠ ,

what we need to prove. �

In sequel, we use notation 〈·, ·〉 for the standard inner product in R
n. We also denote

with Mnm(R+) the space of n×m matrices with nonnegative entries.
Applying Theorem 9.2 we compare two generalized Csiszár f -divergences.

Theorem 9.3 Let f : [, ]→R be a convex function on [, ]⊂ (0,). Let p ∈ (0,)n,
q ∈ (0,)n, be such that qi

pi
∈ [, ], i = 1, . . . ,n. Further, let p̃ ∈ (0,)m, q̃ ∈ (0,)m,

c ∈ [0,)n and d ∈ [0,)m be such that

p̃ = pR, q̃ = qR and c = dRᵀ (9.23)

for some matrix R = (ri j) ∈Mnm(R+). Then

Cf (p̃, q̃;d)≤Cf (p,q;c) ≤
m


j=1

d j〈p,r j〉
f ()
(
 − 〈q,r j〉

〈p,r j〉
)

+ f ( )
( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.24)

Proof. According to (9.11) the inequality (9.24) can be written in the form

m


j=1

d j p̃ j f

(
q̃ j

p̃ j

)
≤

n


i=1

cipi f

(
qi

pi

)

≤
m


j=1

d j〈p,r j〉
f ()
(
 − 〈q,r j〉

〈p,r j〉
)

+ f ( )
( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.25)

We denote r j = (r1 j, . . . ,rn j), ri j ≥ 0 for i = 1, . . . ,n, j = 1, . . . ,m. From (9.23) it follows
that p̃ j = 〈p,r j〉=n

i=1 piri j and q̃ j = 〈q,r j〉=n
i=1 qiri j for j = 1, . . . ,m. Moreover, ci =

m
j=1 d jri j for i = 1, . . . ,n (see (9.23)) and after multiplying with pi and taking ai = cipi,

b j = d j〈p,r j〉 we get

ai =
m


j=1

b j
piri j

〈p,r j〉 , (9.26)

for i = 1, . . . ,n, j = 1, . . . ,m. The following equality holds

〈q,r j〉
〈p,r j〉 =

p1r1 j

n
i=1 piri j

q1

p1
+ . . .+

pnrn j

n
i=1 piri j

qn

pn
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for j = 1, . . . ,m. Hence, the following identity is valid

[〈q,r1〉
〈p,r1〉 , . . . ,

〈q,rm〉
〈p,rm〉

]
=
[

q1

p1
, . . . ,

qn

pn

]⎡⎢⎣
p1r11
〈p,r1〉 . . . p1r1m

〈p,rm〉
...

. . .
...

pnrn1
〈p,r1〉 . . . pnrnm

〈p,rm〉

⎤⎥⎦ . (9.27)

The n×m matrix S = (si j), si j = piri j
〈p,r j〉 is column stochastic and with x = (x1, . . . ,xn),

y = (y1, . . . ,yn), xi = qi
pi

and y j =
〈q,r j〉
〈p,r j〉 , i = 1, . . . ,n, j = 1, . . . ,m, satisfies condition y = xS

(see (11.3.1)). Also, for a = (a1, . . . ,an) and b = (b1, . . . ,bm), a = bSᵀ (see (9.26)) is
satisfied, so we can apply Theorem 9.2 and obtain

m


j=1

b j f

(
〈q,r j〉〈
p,r j
〉)=

m


j=1

d j〈p,r j〉 f
(
〈q,r j〉〈
p,r j
〉)≤ n


i=1

cipi f

(
qi

pi

)

≤
m

j=1 d j〈p,r j〉
(
 − 〈q,r j〉
〈p,r j〉

)
 − f ()+

m
j=1 d j〈p,r j〉

(
〈q,r j〉
〈p,r j〉 −

)
 − f ( ).

which is equivalent to (9.24). �

Corollary 9.1 Let f : [, ]→R be a convex function on [, ]⊂ (0,). Let p∈ (0,)n,
q ∈ (0,)n, be such that qi

pi
∈ [, ], i = 1, . . . ,n. Further, let p̃ ∈ (0,)m and q̃ ∈ (0,)m

be such that
p̃ = pR and q̃ = qR (9.28)

for some matrix R = (ri j) ∈Mnm(R+). Further, let R = (R1, . . . ,Rn), where Ri =m
j=1 ri j,

i = 1, . . . ,n is the i-th row sum of R. Then

Cf (p̃, q̃)≤Cf (p,q;R) ≤
m


j=1

〈p,r j〉
f ()
(
 − 〈q,r j〉

〈p,r j〉
)

+ f ( )
( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.29)

In particular, if the matrix R is row stochastic, then

Cf (p̃, q̃)≤Cf (p,q) ≤
m


j=1

〈p,r j〉
f ()
(
 − 〈q,r j〉

〈p,r j〉
)

+ f ( )
( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.30)

Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 9.3, we calculate ci =m
j=1 ri j =

Ri for i = 1, . . . ,n. Therefore inequality (9.24) becomes (9.29).
If additionally the matrix R is row stohastic, then R = (1, . . . ,1) ∈ R

n and (9.29) reduces
to (9.30). �

As a special case of the previous result we obtain a converse to the Csiszár-Körner
inequality (9.12).
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Corollary 9.2 Let f : [, ]→R be a convex function on [, ]⊂ (0,). Let p∈ (0,)n,
q ∈ (0,)n, r ∈ [0,)n be such that qi

pi
∈ [, ], i = 1, . . . ,n, with Pn = n

i=1pi and Qn =
n

i=1qi. Then

〈p,r〉 f
( 〈q,r〉
〈p,r〉

)
≤Cf (p,q;r) ≤ 〈p,r〉

f ()
(
 − 〈q,r〉

〈p,r〉
)

+ f ( )
( 〈q,r〉
〈p,r〉 −

)
 − . (9.31)

In particular, if r = e, then

n


i=1

pi f

⎛⎜⎜⎝
n

i=1

qi

n

i=1

pi

⎞⎟⎟⎠≤Cf (p,q) ≤
n


i=1

pi

f ()

⎛⎜⎜⎝ −
n

i=1

qi

n

i=1

pi

⎞⎟⎟⎠+ f ( )

⎛⎜⎜⎝
n

i=1

qi

n

i=1

pi

−

⎞⎟⎟⎠
 − . (9.32)

Proof. Taking m = 1 in Corollary 9.1 and r1 =(r1, . . . ,rn), we obtain Ri = ri for i = 1, . . . ,n,
and (9.29) becomes (9.31). Further, for r = e = (1, . . . ,1), the inequality (9.31) reduces to
(9.32). �

9.5 Converses including some entropies and
divergences

Using the concept of f -divergence we derive some inequalities for the well-known diver-
gences.

Corollary 9.3 Let [, ] ⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Further, let p̃ ∈ (0,)m, q̃ ∈ (0,)m, c ∈ [0,)n and d ∈ [0,)m be such that
(9.23) holds for some matrix R = (ri j) ∈Mnm(R+). Then

D(p̃, q̃;d)≤ D(p,q;c) ≤
m


j=1

d j〈p,r j〉
ln
(

1

)(

 − 〈q,r j〉
〈p,r j〉
)

+ ln
(

1


)( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.33)

Proof. If we take in Theorem 9.3 function f to be f (t) = ln
( 1

t

)
, which is convex on [, ],

then (9.33) follows from (9.24). �

Corollary 9.4 Let [, ] ⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Let p̃ ∈ (0,)m and q̃ ∈ (0,)m be such that (9.28) holds for some matrix
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R = (ri j) ∈Mnm(R+). Further, let R = (R1, . . . ,Rn), where Ri = m
j=1 ri j, i = 1, . . . ,n is

the i-th row sum of R. Then

D(p̃, q̃)≤ D(p,q;R) ≤
m


j=1
〈p,r j〉

ln
(

1

)(

 − 〈q,r j〉
〈p,r j〉
)

+ ln
(

1


)( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.34)

In particular, if the matrix R is row stochastic, then

D(p̃, q̃)≤D(p,q) ≤
m


j=1
〈p,r j〉

ln
(

1

)(

 − 〈q,r j〉
〈p,r j〉
)

+ ln
(

1


)( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.35)

Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 9.3 we obtain ci =m
j=1 ri j = Ri

for i = 1, . . . ,n. Therefore inequality (9.24) becomes (9.34).
If additionally R is row stohastic, then R = (1, . . . ,1) ∈ R

n and (9.29) becomes (9.35). �

Corollary 9.5 Let [, ]⊂ (0,). Let p∈ [, ]n, p̃∈ [, ]m, c∈ [0,)n and d∈ [0,)m

be such that
p̃ = pR and c = dRᵀ

for some column stochastic matrix R = (ri j) ∈Mnm(R+). Then

H(p̃;d)≥ H(p;c)≥
m


j=1

d j〈p,r j〉
ln()

(
 − 1

〈p,r j〉
)

+ ln( )
(

1
〈p,r j〉 −

)
 − . (9.36)

Proof. We take in Theorem 9.3 a function f to be f (t) = ln 1
t which is convex on [, ] and

q = e = (1, . . . ,1)∈R
m. Then, since R is column stochastic,we also have q̃ = (〈q,r1〉, . . . ,〈q,rm〉)=

(〈e,r1〉, . . . ,〈e,rm〉) = (1, . . . ,1).Then (9.36) follows from (9.24). �

Corollary 9.6 Let [, ]⊂ (0,). Let p ∈ [, ]n and p̃ ∈ [, ]m be such that

p̃ = pR (9.37)

for some column stochastic matrix R = (ri j) ∈Mnm(R+). Further, let R = (R1, . . . ,Rn),
where Ri = m

j=1 ri j, i = 1, . . . ,n is the i-th row sum of R. Then

H(p̃)≥ H(p;R)≥
m


j=1
〈p,r j〉

ln()
(
 − 1

〈p,r j〉
)

+ ln( )
(

1
〈p,r j〉 −

)
 − . (9.38)

In particular, if the matrix R is double stochastic, then

H(p̃)≥ H(p)≥
m


j=1

〈p,r j〉
ln()

(
 − 1

〈p,r j〉
)

+ ln( )
(

1
〈p,r j〉 −

)
 − . (9.39)
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Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 9.3 we obtain ci =m
j=1 ri j = Ri

for i = 1, . . . ,n. Therefore inequality (9.24) becomes (9.38).
If additionally the matrix R is row stohastic, then R = (1, . . . ,1) ∈ R

n and (9.29) becomes
(9.39). �

Corollary 9.7 Let [, ] ⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Further, let p̃ ∈ (0,)m, q̃ ∈ (0,)m, c ∈ [0,)n and d ∈ [0,)m be such that
(9.23) holds for some matrix R = (ri j) ∈Mnm(R+). Then

h2(p̃, q̃;d)≤ h2(p,q;c)

≤
m


j=1

d j〈p,r j〉
(1−√)2

(
 − 〈q,r j〉

〈p,r j〉
)

+(1−√ )2
( 〈q,r j〉
〈p,r j〉 −

)
2( −)

. (9.40)

Proof. If we take in Theorem 9.3 function f to be f (t) = 1
2

(
1−√t

)2
which is convex on

[, ], equation (9.40) follows from (9.24). �

Corollary 9.8 Let [, ] ⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Let p̃ ∈ (0,)m and q̃ ∈ (0,)m be such that (9.28) holds for some matrix
R = (ri j) ∈Mnm(R+). Further, let R = (R1, . . . ,Rn), where Ri = m

j=1 ri j, i = 1, . . . ,n is
the i-th row sum of R. Then

h2(p̃, q̃)≤ h2(p,q;R) ≤
m


j=1
〈p,r j〉

(1−√)2
(
 − 〈q,r j〉

〈p,r j〉
)

+(1−√ )2
( 〈q,r j〉
〈p,r j〉 −

)
2( −)

.

(9.41)
In particular, if the matrix R is row stochastic, then

h2(p̃, q̃)≤ h2(p,q) ≤
m


j=1
〈p,r j〉

(1−√)2
(
 − 〈q,r j〉

〈p,r j〉
)

+(1−√ )2
( 〈q,r j〉
〈p,r j〉 −

)
2( −)

.

(9.42)

Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 9.3 we obtain ci =m
j=1 ri j = Ri

for i = 1, . . . ,n. Therefore inequality (9.24) becomes (9.34).
If additionally the matrix R is row stohastic, then R = (1, . . . ,1) ∈ R

n and (9.29) becomes
(9.35). �

Corollary 9.9 Let [, ] ⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Further, let p̃ ∈ (0,)m, q̃ ∈ (0,)m, c ∈ [0,)n and d ∈ [0,)m be such that
(9.23) holds for some matrix R = (ri j) ∈Mnm(R+). Then

B(p̃, q̃;d)≥ B(p,q;c) ≥
m


j=1

d j〈p,r j〉
√

(
 − 〈q,r j〉

〈p,r j〉
)

+
√

( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.43)
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Proof. If we take in Theorem 9.3 function f to be f (t) =−√t, which is convex on [, ],
equation (9.43) follows from (9.24). �

Corollary 9.10 Let [, ]⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Let p̃ ∈ (0,)m and q̃ ∈ (0,)m be such that (9.28) holds for some matrix
R = (ri j) ∈Mnm(R+). Further, let R = (R1, . . . ,Rn), where Ri = m

j=1 ri j, i = 1, . . . ,n is
the i-th row sum of R. Then

B(p̃, q̃)≥ B(p,q;R)≥
m


j=1

〈p,r j〉
√

(
 − 〈q,r j〉

〈p,r j〉
)

+
√

( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.44)

In particular, if the matrix R is row stochastic, then

B(p̃, q̃)≥ B(p,q)≥
m


j=1

〈p,r j〉
√

(
 − 〈q,r j〉

〈p,r j〉
)

+
√

( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.45)

Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 9.3 we obtain ci =m
j=1 ri j = Ri

for i = 1, . . . ,n. Therefore inequality (9.24) becomes (9.44).
If additionally R is row stohastic, then R = (1, . . . ,1) ∈ R

n and (9.29) becomes (9.45). �

Corollary 9.11 Let [, ]⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Further, let p̃ ∈ (0,)m, q̃ ∈ (0,)m, c ∈ [0,)n and d ∈ [0,)m be such that
(9.23) holds for some matrix R = (ri j) ∈Mnm(R+). Then

2(p̃, q̃;d)≤ 2(p,q;c)

≤
m


j=1

d j〈p,r j〉
(1−)2

(
 − 〈q,r j〉

〈p,r j〉
)

+(1− )2
( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.46)

Proof. If we take in Theorem 9.3 function f to be f (t) = (1− t)2 which is convex on
[, ], equation (9.46) follows from (9.24). �

Corollary 9.12 Let [, ]⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Let p̃ ∈ (0,)m and q̃ ∈ (0,)m be such that (9.28) holds for some matrix
R = (ri j) ∈Mnm(R+). Further, let R = (R1, . . . ,Rn), where Ri = m

j=1 ri j, i = 1, . . . ,n is
the i-th row sum of R. Then

2(p̃, q̃)≤ 2(p,q;R) ≤
m


j=1
〈p,r j〉

(1−)2
(
 − 〈q,r j〉

〈p,r j〉
)

+(1− )2
( 〈q,r j〉
〈p,r j〉 −

)
 − .

(9.47)
In particular, if the matrix R is row stochastic, then

2(p̃, q̃)≤ 2(p,q)≤
m


j=1

〈p,r j〉
(1−)2

(
 − 〈q,r j〉

〈p,r j〉
)

+(1− )2
( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.48)
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Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 9.3 we obtain ci =m
j=1 ri j = Ri

for i = 1, . . . ,n. Therefore inequality (9.24) becomes (9.47).
If additionally R is row stohastic, then R = (1, . . . ,1) ∈ R

n and (9.29) becomes (9.48). �

Corollary 9.13 Let [, ]⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Further, let p̃ ∈ (0,)m, q̃ ∈ (0,)m, c ∈ [0,)n and d ∈ [0,)m be such that
(9.23) holds for some matrix R = (ri j) ∈Mnm(R+). Then

V (p̃, q̃;d)≤V (p,q;c)

≤
m


j=1

d j〈p,r j〉
|1−|

(
 − 〈q,r j〉

〈p,r j〉
)

+ |1− |
(〈q,r j〉
〈p,r j〉 −

)
 − . (9.49)

Proof. If we take in Theorem 9.3 function f to be f (t) = |1− t| which is convex on [, ],
equation (9.49) follows from (9.24). �

Corollary 9.14 Let [, ]⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Let p̃ ∈ (0,)m and q̃ ∈ (0,)m be such that (9.28) holds for some matrix
R = (ri j) ∈Mnm(R+). Further, let R = (R1, . . . ,Rn), where Ri = m

j=1 ri j, i = 1, . . . ,n is
the i-th row sum of R. Then

V (p̃, q̃)≤V (p,q;R) ≤
m


j=1
〈p,r j〉

|1−|
(
 − 〈q,r j〉

〈p,r j〉
)

+ |1− |
( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.50)

In particular, if the matrix R is row stochastic, then

V (p̃, q̃)≤V (p,q) ≤
m


j=1

〈p,r j〉
|1−|

(
 − 〈q,r j〉

〈p,r j〉
)

+ |1− |
(〈q,r j〉
〈p,r j〉 −

)
 − . (9.51)

Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 9.3 we obtain ci =m
j=1 ri j = Ri

for i = 1, . . . ,n. Therefore inequality (9.24) becomes (9.50).
If additionally R is row stohastic, then R = (1, . . . ,1) ∈ R

n and (9.29) becomes (9.51). �

Corollary 9.15 Let [, ]⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Further, let p̃ ∈ (0,)m, q̃ ∈ (0,)m, c ∈ [0,)n and d ∈ [0,)m be such that
(9.23) holds for some matrix R = (ri j) ∈Mnm(R+). Then

(p̃, q̃;d)≤ (p,q;c) ≤
m


j=1

d j〈p,r j〉
(1−)2
+1

(
 − 〈q,r j〉

〈p,r j〉
)

+ (1− )2
+1

( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.52)

Proof. If we take in Theorem 9.3 function f to be f (t) = (1−t)2
t+1 which is convex on [, ],

equation (9.52) follows from (9.24). �
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Corollary 9.16 Let [, ]⊂ (0,). Let p ∈ (0,)n, q ∈ (0,)n, be such that qi
pi
∈ [, ],

i = 1, . . . ,n. Let p̃ ∈ (0,)m and q̃ ∈ (0,)m be such that (9.28) holds for some matrix
R = (ri j) ∈Mnm(R+). Further, let R = (R1, . . . ,Rn), where Ri = m

j=1 ri j, i = 1, . . . ,n is
the i-th row sum of R. Then

(p̃, q̃)≤ (p,q;R)≤
m


j=1

〈p,r j〉
(1−)2
+1

(
 − 〈q,r j〉

〈p,r j〉
)

+ (1− )2

+1

( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.53)

In particular, if the matrix R is row stochastic, then

(p̃, q̃)≤ (p,q)≤
m


j=1

〈p,r j〉
(1−)2
+1

(
 − 〈q,r j〉

〈p,r j〉
)

+ (1− )2
+1

( 〈q,r j〉
〈p,r j〉 −

)
 − . (9.54)

Proof. By taking d = (d1, . . . ,dm) = (1, . . . ,1) in Theorem 9.3 we obtain ci =m
j=1 ri j = Ri

for i = 1, . . . ,n. Therefore inequality (9.24) becomes (9.53).
If additionally R is row stohastic, then R = (1, . . . ,1) ∈ R

n and (9.29) becomes (9.54). �

9.6 Converses including Zipf-Mandelbrot entropy

Here we give some inequalities including the Zipf-Mandelbrot entropies (9.18) and (9.19).

Theorem 9.4 Let n ∈ N, q ≥ 0 and s > 0. Let R = (ri j) ∈Mnm(R+) be some column
stochastic matrix, R = (R1, . . . ,Rn), where Ri = m

j=1 ri j, i = 1, . . . ,n is the i-th row sum of
R. Then

m


j=1

Hn,q,s,r j

Hn,q,s,R
ln

(
Hn,q,s,R

Hn,q,s,r j

)
≥ Z(H,q,s,R) (9.55)

≥
m


j=1

Hn,q,s,r j

Hn,q,s,R

ln()
(
 − Hn,q,s,R

Hn,q,s,r j

)
+ ln( )

(
Hn,q,s,R
Hn,q,s,r j

−
)

 − ,

provided that all terms are well defined.
In particular, if the matrix R is double stochastic, then

m


j=1

Hn,q,s,r j

Hn,q,s
ln

(
Hn,q,s

Hn,q,s,r j

)
≥ Z(H,q,s) (9.56)

≥
m


j=1

Hn,q,s,r j

Hn,q,s

ln()
(
 − Hn,q,s

Hn,q,s,r j

)
+ ln( )

(
Hn,q,s

Hn,q,s,r j
−
)

 − .
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Proof. Since Hn,q,s,R = n
i=1

Ri
(i+q)s , it is obvious that

n


i=1

Ri

(i+q)sHn,q,s,R
= Hn,q,s,R · 1

Hn,q,s,R
= 1.

If we substitute pi with 1
(i+q)sHn,q,s,R

, i = 1,2, . . . ,n, then

H(p;R) =−
n


i=1

Ripi ln pi =−
n


i=1

Ri

(i+q)sHn,q,s,R
ln

1
(i+q)sHn,q,s,R

=
n


i=1

Ri

(i+q)sHn,q,s,R
ln
(
(i+q)sHn,q,s,R

)
=

n


i=1

Ri ln(i+q)s

(i+q)sHn,q,s,R
+

n


i=1

Ri lnHn,q,s,R

(i+q)sHn,q,s,R

=
s

Hn,q,s,R

n


i=1

Ri ln(i+q)
(i+q)s +

lnHn,q,s,R

Hn,q,s,R

n


i=1

Ri

(i+q)s

=
s

Hn,q,s,R

n


i=1

Ri ln(i+q)
(i+q)s + lnHn,q,s,R

= Z(H,q,s,R).

From p̃ = pR, it follows

p̃ j = 〈p,r j〉=
n


i=1

piri j =
n


i=1

ri j

(i+q)sHn,q,s,R
=

Hn,q,s,r j

Hn,q,s,R
,

so we have

H(p̃) =−
m


j=1

p̃ j ln p̃ j =−
m


j=1

Hn,q,s,r j

Hn,q,s,R
ln

(
Hn,q,s,r j

Hn,q,s,R

)
=

m


j=1

Hn,q,s,r j

Hn,q,s,R
ln

(
Hn,q,s,R

Hn,q,s,r j

)
.

Now applying (9.38) we get the required result.
Specially, if R is also row stochastic, then R = (1, . . . ,1) ∈R

n. Further, we have Hn,q,s,R =
Hn,q,s and Z(H,q,s,R) = Z(H,q,s), so the inequality (9.55) reduces to (9.56). �
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9.7 Bounds for Sherman’s difference

Considering the difference between the right and left side of Sherman’s inequality (9.4) we
may Sherman’s inequality write in the form

0≤
n


i=1

ai f (xi)−
m


j=1

b j f (y j) . (9.57)

Here we present new lower and upper bounds for Sherman’s difference n
i=1ai f (xi)−

m
j=1b j f (y j).

Theorem 9.5 Let [, ] ⊂ R, x = (x1, . . . ,xn) ∈ [, ]n, y = (y1, . . . ,ym) ∈ [, ]m, a =
(a1, . . . ,an) ∈ [0,)n and b = (b1, . . . ,bm) ∈ [0,)m be such that

y = xS and a = bST (9.58)

holds for some column stochastic matrix S = (si j) ∈Mnm(R). Then for every convex func-
tion f : [, ]→ R, the inequality

0 � min
1�i�n

{ai}S f (x) �
n


i=1

ai f (xi)−
m


j=1

b j f (y j) � max
1�i�n

{ai}S f (x) (9.59)

holds, where S f (x) is defined by (9.8).

Proof. Under assumptions (9.58), i.e. y j =
n

i=1

xisi j, j = 1, . . . ,m and ai =
m

j=1

b jsi j, i =

1, . . . ,n, we have

n


i=1

ai f (xi)−
m


j=1

b j f (y j) =
m


j=1

b j

n


i=1

si j f (xi)−
m


j=1

b j f

(
n


i=1

xisi j

)

=
m


j=1

b j

(
n


i=1

si j f (xi)− f

(
n


i=1

xisi j

))
. (9.60)

Applying Theorem 1 to (9.60) we get

0 �
m


j=1

b j min
1�i�n

{si j}S f (x) �
n


i=1

ai f (xi)−
m


j=1

b j f (y j) �
m


j=1

b j max
1�i�n

{si j}S f (x),

where S f (x) is defined by (9.8). Moreover, we have

0 � min
1�i�n

{ai}S f (x) �
n


i=1

ai f (xi)−
m


j=1

b j f (y j) � max
1�i�n

{ai}S f (x),

what we need to prove. �
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Remark 9.4 The previous theorem presents generalizations of Theorem 9.1. Choosing
m = 1 and setting b = [1], the inequality (9.59) reduces to the form (9.7).

Theorem 9.6 Let f : [0,)→ R be a convex function on [0,). Let p = (p1, . . . , pn) ∈
(0,)n, q = (q1, . . . ,qn) ∈ (0,)n, b = (b1, . . . ,bm) ∈ [0,)m and R = (ri j) ∈Mnm(R+).
Let us define

〈
p,r j
〉

=
n


i=1

piri j > 0,
〈
q,r j
〉

=
n


i=1

qiri j, j = 1, . . . ,m,

ai =
m


j=1

b j
piri j〈
p,r j
〉 , i = 1, . . . ,n,

S f (q,p) =
n


i=1

f

(
qi

pi

)
−n f

(
1
n

n


i=1

qi

pi

)
≥ 0. (9.61)

Then

0 � min
1�i�n

{ai}S f (q,p) �
n


i=1

ai f

(
qi

pi

)
−

m


j=1

b j f

(〈
q,r j
〉〈

p,r j
〉)� max

1�i�n
{ai}S f (q,p). (9.62)

Proof. Let us consider x = (x1, . . . ,xn) and y = (y1, . . . ,ym), such that xi = qi
pi

, i = 1, . . . ,n

and y j = 〈q,r j〉
〈p,r j〉 , j = 1, . . . ,m.

The following equality holds:

〈
q,r j
〉〈

p,r j
〉 =

n


i=1

qiri j

n


i=1

piri j

=
p1r1 j
n


i=1

piri j

q1

p1
+ . . .+

pnrn j
n


i=1

piri j

qn

pn
, j = 1, . . . ,m.

Moreover, the following identity

( 〈q,r1〉
〈p,r1〉 , . . . ,

〈q,rm〉
〈p,rm〉

)
=
(

q1

p1
, . . . ,

qn

pn

)
·

⎛⎜⎝
p1r11
〈p,r1〉 · · ·

p1r1m
〈p,rm〉

...
. . .

...
pnrn1
〈p,r1〉 · · ·

pnrnm
〈p,rm〉

⎞⎟⎠
is valid for some column stochastic matrix S = (si j) ∈Mnm(R), with si j = piri j

〈p,r j〉 , i =

1, . . . ,n, j = 1, . . . ,m. Therefore, y = xS holds.

Further, by definition ai =
m

j=1

b j
piri j
〈p,r j〉 , i = 1, . . . ,n, i.e. a = bST . Therefore, the assump-

tions of Theorem 9.5 are fulfill. Now applying (9.59) we get the required result. �
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9.8 Bounds for Csiszár f -divergence functional

The followig results give new bounds for f -divergence functionals (9.10) and (9.11).

Corollary 9.17 Let f : [0,)→R be a convex function on [0,). Let p = (p1, . . . , pn) ∈
(0,)n, q = (q1, . . . ,qn) ∈ (0,)n, R = (ri j) ∈Mnm(R+) and R̃ = (R1, . . . ,Rn), with Ri =
m


j=1

ri j. LetCf (q,p),Cf (q,p;R̃),
〈
p,r j
〉
,
〈
q,r j
〉

and S f (q,p) be defined as in (9.10), (9.11)

and (9.61), respectively. Then

0 � min
1�i�n

{piRi}S f (q,p) (9.63)

� Cf (q,p;R̃)−
m


j=1

〈
p,r j
〉

f

(〈
q,r j
〉〈

p,r j
〉)� max

1�i�n
{piRi}S f (q,p).

If in addition R is row stochastic, then

0 � min
1�i�n

{pi}S f (q,p) (9.64)

� Cf (q,p)−
m


j=1

〈
p,r j
〉

f

(〈
q,r j
〉〈

p,r j
〉)� max

1�i�n
{pi}S f (q,p).

Proof. Applying (9.62) with substitution b j with
〈
p,r j
〉

for j = 1, . . . ,m, from which it
follows

ai =
m


j=1

b j
piri j〈
p,r j
〉 = pi

m


j=1

ri j = piRi, i = 1, . . . ,n,

we get

0 � min
1�i�n

{piRi}S f (q,p) �
n


i=1

piRi f

(
qi

pi

)
−

m


j=1

〈
p,r j
〉

f

(〈
q,r j
〉〈

p,r j
〉) (9.65)

� max
1�i�n

{piRi}S f (q,p)

which is equivalent to (9.63).
If in addition the matrix R is row stochastic, i.e. Ri = m

j=1ri j = 1 for all i = 1, . . . ,n, then
(9.65) becomes

0 � min
1�i�n

{pi}S f (q,p) �
n


i=1

pi f

(
qi

pi

)
−

m


j=1

〈
p,r j
〉

f

(〈
q,r j
〉〈

p,r j
〉)� max

1�i�n
{pi}S f (q,p)

which is equivalent to (9.64). �

Specially, for m = 1, the previous results reduces to the next corollary.
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Corollary 9.18 Let f : [0,)→ R be a convex function on [0,). Let p = (p1, . . . , pn) ∈
(0,)n, q = (q1, . . . ,qn) ∈ (0,)n and r = (r1, . . . ,rn) ∈ [0,)n. Let us define

〈p,r〉=
n


i=1

piri > 0, 〈q,r〉=
n


i=1

qiri.

Let Cf (q,p), Cf (q,p;r) and S f (q,p) be define by (9.10), (9.11) and (9.61), respectively.
Then

0 � min
1�i�n

{piri}S f (q,p) (9.66)

� Cf (q,p;r)−〈p,r〉 f
( 〈q,r〉
〈p,r〉

)
� max

1�i�n
{piri}S f (q,p).

If in addition r = e = (1, . . . ,1), then

0 � min
1�i�n

{pi}S f (q,p) (9.67)

� Cf (q,p)−
n


i=1

pi f

⎛⎜⎜⎜⎝
n


i=1

qi

n


i=1

pi

⎞⎟⎟⎟⎠� max
1�i�n

{pi}S f (q,p).

Remark 9.5 (i) Note that the Csizar-Korner inequality (9.12) is generalized and refined
in (9.66) and (9.67). Further, the inequality (9.66) is equivalent to

〈p,r〉 f
( 〈q,r〉
〈p,r〉

)
� min

1�i�n
{piri}S f (q,p)+ 〈p,r〉 f

( 〈q,r〉
〈p,r〉

)
� Cf (q,p;r)

� max
1�i�n

{piri}S f (q,p)+ 〈p,r〉 f
( 〈q,r〉
〈p,r〉

)
and the inequality (9.67) to

Pn f

(
Qn

Pn

)
� min

1�i�n
{pi}S f (q,p)+Pn f

(
Qn

Pn

)
� Cf (q,p)

� max
1�i�n

{pi}S f (q,p)+Pn f

(
Qn

Pn

)
,

where Pn = n
i=1pi and Qn = n

i=1qi. Specially, if f is normalized, i.e. f (1) = 0 and
n

i=1pi = n
i=1qi, we get the lower and upper bounds for Csiszár f -divergence in the form

0 � min
1�i�n

{pi}S f (q,p) � Cf (q,p) � max
1�i�n

{pi}S f (q,p). (9.68)
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(ii) Taking p = e = (1,1, . . . ,1), from (9.66) we obtain the bounds for Jensen’s functional
in the form

0≤ min
1�i�n

{ri}
[

n


i=1

f (qi)−n f

(
1
n

n


i=1

qi

)]
�

n


i=1

ri f (qi)−Rn f

(
1
Rn

n


i=1

qiri

)
(9.69)

� max
1�i�n

{ri}
[

n


i=1

f (qi)−n f

(
1
n

n


i=1

qi

)]
,

where Rn =
n


i=1

ri > 0.

(iii) Further, let us denote Qn =n
i=1qi > 0. If we substitute ri with qi

Qn
and qi with pi

qi
, then

from (9.69) we get

min
1�i�n

{qi}
[

n


i=1

f

(
pi

qi

)
−n f

(
1
n

n


i=1

pi

qi

)]
�

n


i=1

qi f

(
pi

qi

)
−QnRn f

(
1

RnQn

n


i=1

pi

)
(9.70)

� max
1�i�n

{qi}
[

n


i=1

f

(
pi

qi

)
−n f

(
1
n

n


i=1

pi

qi

)]
.

9.9 Bounds for some entropies and divergences

Applying results from the previous section, we estimate some new bounds for some well
known entropies. In the following results we use notation 〈·, ·〉 for the standard inner
product.

Theorem 9.7 Let p be positive probability distributions, q = (q1, . . . ,qn) ∈ (0,)n and
r = (r1, . . . ,rn) ∈ [0,)n. Then

n


i=1

ripi ln
1
qi

+ 〈p,r〉 ln
( 〈q,r〉
〈p,r〉

)
− max

1�i�n
{piri}S̃(q,p) (9.71)

� H(p;r)

�
n


i=1

ri pi ln
1
qi

+ 〈p,r〉 ln
( 〈q,r〉
〈p,r〉

)
− min

1�i�n
{piri}S̃(q,p)

�
n


i=1

ri pi ln
1
qi

+ 〈p,r〉 ln
( 〈q,r〉
〈p,r〉

)
,

where

S̃(q,p) =−
n


i=1

ln

(
qi

pi

)
+n ln

(
1
n

n


i=1

qi

pi

)
≥ 0.
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If in addition r = e = (1, . . . ,1) and n
i=1qi =  , then

n


i=1

pi ln
1
qi

+ ln − max
1�i�n

{pi}S̃(q,p) � H(p) (9.72)

�
n


i=1

pi ln
1
qi

+ ln − min
1�i�n

{pi}S̃(q,p)

�
n


i=1

pi ln
1
qi

+ ln ,

Proof. Applying (9.66) to the convex function f (t) =− ln t, we get

0 � min
1�i�n

{piri}S̃(q,p) (9.73)

�
n


i=1

ri pi ln
1
qi
−H(p;r)+ 〈p,r〉 ln

( 〈q,r〉
〈p,r〉

)
� max

1�i�n
{piri}S̃(q,p).

where S̃(q,p) =−
n


i=1

ln
(

qi
pi

)
+n ln

(
1
n

n


i=1

qi
pi

)
≥ 0, which is equivalent to (9.71).

Further, choosing r = e = (1, . . . ,1) and setting n
i=1qi =  , we have

〈p,r〉= 〈p,e〉=
n


i=1

pi = 1, 〈q,r〉= 〈q,e〉=
n


i=1

qi =  ,

i.e. (9.73) reduces to

0 � min
1�i�n

{pi}S̃(q,p) �
n


i=1

pi ln
1
qi
−H(p)− ln � max

1�i�n
{pi}S̃(q,p),

which is equivalent to (9.72). �

Corollary 9.19 Let p be a positive probability distributions and r = (r1, . . . ,rn) ∈ [0,)n

with Rn = n
i=1ri. Then

〈p,r〉 ln
(

Rn

〈p,r〉
)
− max

1�i�n
{piri}S̃(e,p) � H(p;r) (9.74)

� 〈p,r〉 ln
(

Rn

〈p,r〉
)
− min

1�i�n
{piri}S̃(e,p)

� 〈p,r〉 ln
(

Rn

〈p,r〉
)

,

where

S̃(e,p) =
n


i=1

ln pi−n lnn≥ 0.
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If in addition r = e = (1, . . . ,1), then

lnn− max
1�i�n

{pi}S̃(e,p) � H(p) (9.75)

� lnn− min
1�i�n

{pi}S̃(e,p)

� lnn,

Proof. Setting q = e = (1, . . . ,1), the inequality (9.71) reduces to (9.74). If in addition
r = e = (1, . . . ,1), then (9.74) becomes (9.75). �

Theorem 9.8 Let p and q be two positive probability distributions and r = (r1, . . . ,rn) ∈
[0,)n. Then

〈q,r〉 ln
( 〈q,r〉
〈p,r〉

)
� 〈q,r〉 ln

( 〈q,r〉
〈p,r〉

)
+ min

1�i�n
{piri}S̄(q,p) (9.76)

� D(q,p;r)

� 〈q,r〉 ln
( 〈q,r〉
〈p,r〉

)
+ max

1�i�n
{piri}S̄(q,p),

where

S̄(q,p) =
n


i=1

qi

pi
ln

(
qi

pi

)
−

n


i=1

qi

pi
ln

(
1
n

n


i=1

qi

pi

)
≥ 0.

If in addition r = e = (1, . . . ,1), then

0 � min
1�i�n

{pi}S̄(q,p) � D(q,p) � max
1�i�n

{pi}S̄(q,p). (9.77)

Proof. Applying (9.66) to the convex function f (t) = t ln t, t > 0, we get

0 � min
1�i�n

{piri}S̄(q,p)

� D(q,p;r)−〈q,r〉 ln
( 〈q,r〉
〈p,r〉

)
� max

1�i�n
{piri}S̄(q,p),

where S̄(q,p) =
n


i=1

qi
pi

ln
(

qi
pi

)
−

n


i=1

qi
pi

ln

(
1
n

n


i=1

qi
pi

)
≥ 0, which is equivalent to (9.76).

Further, choosing r = e = (1, . . . ,1) we have

〈p,r〉= 〈p,e〉=
n


i=1

pi = 1, 〈q,r〉= 〈q,e〉=
n


i=1

qi = 1,

i.e. (9.76) reduces to (9.77). �
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9.10 Bounds for the Zipf-Mandelbrot entropy

Using the Zipf-Mandelbrot law we derive some results that include the Zipf-Mandelbrot
entropies.

Theorem 9.9 Let n ∈ N, q ≥ 0, s > 0, r = (r1, . . . ,rn) ∈ [0,)n and q = (q1, . . . ,qn) ∈
(0,)n. Let Hn,q,s, Z(H,q,s), Hn,q,s,r and Z(H,q,s,r) be defined by (9.17)-(9.19), respec-
tively. Then

n


i=1

ri

(i+q)sHn,q,s,r
ln

1
qi

+
n


i=1

ri

(i+q)sHn,q,s,r
ln

⎛⎜⎜⎜⎝
n


i=1

riqi

n


i=1

ri
(i+q)sHn,q,s,r

⎞⎟⎟⎟⎠ (9.78)

− max
1�i�n

{
ri

(i+q)sHn,p,s,r

}
S̄(n,q,s,q,r)

� Z(H,q,s,r)

�
n


i=1

ri

(i+q)sHn,q,s,r
ln

1
qi

+
n


i=1

ri

(i+q)sHn,q,s,r
ln

⎛⎜⎜⎜⎝
n


i=1

riqi

n


i=1

ri
(i+q)sHn,q,s,r

⎞⎟⎟⎟⎠
− min

1�i�n

{
ri

(i+q)sHn,p,s,r

}
S̄(n,q,s,q,r)

�
n


i=1

ri

(i+q)sHn,q,s,r
ln

1
qi

+
n


i=1

ri

(i+q)sHn,q,s,r
ln

⎛⎜⎜⎜⎝
n


i=1

riqi

n


i=1

ri
(i+q)sHn,q,s,r

⎞⎟⎟⎟⎠ ,

where

S̄(n,q,s,q,r) = n ln

(
1
n

n


i=1

qi

(i+q)sHn,q,s,r

)
−

n


i=1

ln

(
qi

(i+q)sHn,q,s,r

)
≥ 0.

If in addition r = e = (1, . . . ,1) and n
i=1qi =  , then

n


i=1

1
(i+q)sHn,p,s

ln
1
qi

+ ln − max
1�i�n

{
1

(i+q)sHn,p,s

}
S̄(n,q,s,q) (9.79)

� Z(H,q,s)

�
n


i=1

1
(i+q)sHn,p,s

ln
1
qi

+ ln − min
1�i�n

{
1

(i+q)sHn,p,s

}
S̄(n,q,s,q)



9.10 BOUNDS FOR THE ZIPF-MANDELBROT ENTROPY 283

�
n


i=1

1
(i+q)sHn,p,s

ln
1
qi

+ ln ,

where

S̄(n,q,s,q) = n ln

(
1
n

n


i=1

qi

(i+q)sHn,q,s

)
−

n


i=1

ln

(
qi

(i+q)sHn,q,s

)
≥ 0.

Proof. Since Hn,q,s,r = n
i=1

ri
(i+q)s , it is obvious that

n


i=1

ri

(i+q)sHn,q,s,r
= 1.

If we substitute pi with 1
(i+q)sHn,q,s,r

, i = 1,2, . . . ,n, then

H(p;r) =−
n


i=1

ripi ln pi

becomes

−
n


i=1

ri

(i+q)sHn,q,s,r
ln

1
(i+q)sHn,q,s,r

=
n


i=1

ri

(i+q)sHn,q,s,r
ln(i+q)sHn,q,s,r

=
n


i=1

ri ln(i+q)s + ri lnHn,q,s,r

(i+q)sHn,q,s,r
=

n


i=1

ri ln(i+q)s

(i+q)sHn,q,s,r
+

n


i=1

ri lnHn,q,s,r

(i+q)sHn,q,s,r

=
s

Hn,q,s,r

n


i=1

ri ln(i+q)
(i+q)s +

lnHn,q,s,r

Hn,q,s,r

n


i=1

ri

(i+q)s =
s

Hn,q,s,r

n


i=1

ri ln(i+q)
(i+q)s + lnHn,q,s,r

= Z(H,q,s,r).

Now applying (9.71) we get required result.
Specially, if we choose q = e = (1, . . . ,1), then (9.78) reduces to (9.79). �

Corollary 9.20 Let n∈N, q≥ 0, s > 0 and r = (r1, . . . ,rn)∈ [0,)n with Rn =n
i=1ri. Let

Hn,q,s, Z(H,q,s), Hn,q,s,r and Z(H,q,s,r) be defined by (9.17)-(9.19), respectively. Then

n


i=1

ri

(i+q)sHn,q,s,r
ln

⎛⎜⎜⎜⎝ Rn
n


i=1

ri
(i+q)sHn,q,s,r

⎞⎟⎟⎟⎠− max
1�i�n

{
ri

(i+q)sHn,p,s,r

}
S̄(n,q,s,r) (9.80)

� Z(H,q,s,r)
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�
n


i=1

ri

(i+q)sHn,q,s,r
ln

⎛⎜⎜⎜⎝ Rn
n


i=1

ri
(i+q)sHn,q,s,r

⎞⎟⎟⎟⎠− min
1�i�n

{
ri

(i+q)sHn,p,s,r

}
S̄(n,q,s,r)

�
n


i=1

ri

(i+q)sHn,q,s,r
ln

⎛⎜⎜⎜⎝ Rn
n


i=1

ri
(i+q)sHn,q,s,r

⎞⎟⎟⎟⎠ ,

where

S̄(n,q,s,r) = n ln

(
1
n

n


i=1

1
(i+q)sHn,q,s,r

)
−

n


i=1

ln

(
1

(i+q)sHn,q,s,r

)
≥ 0.

If in addition r = e = (1, . . . ,1), then

lnn− max
1�i�n

{
1

(i+q)sHn,p,s

}
S̄(n,q,s) � Z(H,q,s) (9.81)

� lnn− min
1�i�n

{
1

(i+q)sHn,p,s

}
S̄(n,q,s) � lnn,

where

S̄(n,q,s) = n ln

(
1
n

n


i=1

1
(i+q)sHn,q,s

)
−

n


i=1

ln

(
1

(i+q)sHn,q,s

)
≥ 0.

Proof. Taking q = e = (1, . . . ,1) in (9.78) we get (9.80). Specially, if we choose r = e =
(1, . . . ,1), then (9.80) reduces to (9.81).ds. �
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Inequality with applications, submitted
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Chapter10
Jensen-type inequalities for
generalized f -divergences
and Zipf-Mandelbrot law

Dilda Pečarić, Josip Pečarić, Dora Pokaz and Mirna Rodić

Abstract. Here we present different inequalities of Jensen-type for generalized
f -divergences such as generalized Csiszár f -divergence, generalized Kullbach-
Leibler, Hellinger, Rényi and 2 divergence, as well as for the generalized Shannon
entropy. The applications on the Zipf-Mandelbrot law, which is one specific kind
of probability distributions, are also presented.

10.1 Introduction

For a function f : R+→R and two positive probability distributions p = (p1, . . . , pn)∈R
n
+,

q = (q1, . . . ,qn) ∈ R
n
+, I. Csiszár in [6] introduced the f -divergence functional by

Cf (q,p) =
n


i=1

pi f

(
qi

pi

)
. (10.1)

I. Csiszár studied (10.1) under assumption that function f is convex. Independently, Mo-
rimoto [18] and Ali and Silvey [1] also introduced and studied these divergences. Still,

287
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(10.1) is widely known as Csiszár f -divergence. These divergences are well known in
probability theory, in information theory, in statistical physics, economics, biology, etc. In
probability theory, an f -divergence is a function Df (P ‖ Q) that measures the difference
between two probability distributions P and Q. Intuitively, the divergence is an average,
weighted by the function f , of the odds ratio given by P and Q. There are lots of articles
on that subject, both recent and older such as [4], [5], [10], [11], [12], [15] and [16].

In one part of our work, we are following the idea of Y. J. Cho, M. Matić, and J. Pečarić
[3], but in discrete case and additionally generalized. In that way we get Jensen’s type
inequalities for Lipschitzian functions in terms of generalized Csiszár’s functional (see
[19]). We recall that a real-valued function f : R→ R is called Lipschitz continuous if
there exists a positive real constant L such that, for all x1,x2 ∈ R

| f (x1)− f (x2)| ≤ L|x1− x2|
holds. Shortly, we call those functions L-Lipschitzian or just Lipschitzian. We also go
through some of the most frequent types of f -divergences. Namely, we state Jensen’s
type inequality for Lipschitzian functions involving the Kullbach-Leibler divergence, the
Hellinger divergence, the Rényi divergence and 2-divergence, all generalized.

As the Jensen inequality is important in obtaining inequalities for divergences between
probability distributions, there are many papers dealing with inequalities for divergences
and entropies (see for example [11], [17] or [20]). By means of one Jensen-type inequality
which is characterized via several different Green functions, we will here also derive some
new inequalities for divergences (see [21]).

At the end of our results, we will also give the applications on the Zipf-Mandelbrot
law, as one specific kind of probability distributions. The results given here are presented
in [19] and [21].

10.2 Preliminary results

The discrete Jensen inequality states that



(
1
Un

n


i=1

uixi

)
≤ 1

Un

n


i=1

ui(xi) (10.2)

holds for a convex function  : I → R, I ⊆ R, an n-tuple x = (x1, . . . ,xn) (n ≥ 2) and
nonnegative n-tuple u = (u1, . . . ,un), such that Un = n

i=1 ui > 0. In order to simplify the
notation here we shall use the common notation: Un = n

i=1 ui and x = 1
Un
n

i=1 uixi.
In [22] and [23] we have the generalization of that result. Namely, there is also allowed

that ui are negative with their sum different from 0, but we have a supplementary demand
on ui,xi using the Green functions Gk : [, ]× [, ]→ R, (k = 0,1,2,3,4) defined by

G0(t,s) =

{ (t− )(s−)
− for  ≤ s≤ t,

(s− )(t−)
− for t ≤ s≤  .

(10.3)
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G1(t,s) =

{
− s, for  ≤ s≤ t,

− t, for t ≤ s≤  .
(10.4)

G2(t,s) =

{
t− , for  ≤ s≤ t,

s− , for t ≤ s≤  .
(10.5)

G3(t,s) =

{
t−, for  ≤ s≤ t,

s−, for t ≤ s≤  .
(10.6)

G4(t,s) =

{
 − s, for  ≤ s≤ t,

 − t, for t ≤ s≤  .
(10.7)

The following result holds true:

Theorem 10.1 Let xi ∈ [a,b] ⊆ [, ], ui ∈ R (i = 1, . . . ,n), be such that Un 
= 0 and
x∈ [, ], and let  : [, ]→R,  ∈C2 ([, ]). Let the functions Gk : [, ]× [, ]→R

(k = 0,1,2,3,4) be as defined in (10.3)-(10.7). Furthermore, let p,q ∈R, 1≤ p,q≤, be
such that 1

p + 1
q = 1. Then ∣∣∣∣∣ 1

Un

n


i=1

ui(xi)−(x)

∣∣∣∣∣≤ Q ·∥∥ ′′∥∥p (10.8)

holds, where

Q =

⎧⎪⎨⎪⎩
[∫ 



∣∣∣ 1
Un
n

i=1 uiGk(xi,s)−Gk(x,s)
∣∣∣q ds
] 1

q
for q 
= ;

sups∈[ , ]

{∣∣∣ 1
Un
n

i=1 uiGk(xi,s)−Gk(x,s)
∣∣∣} for q = .

(10.9)

Proof. Using the functions Gk (k = 0,1,2,3,4), every function  : [, ] → R,  ∈
C2([, ]), can be represented as

(x) =
 − x
 − ()+

x−
 − ( )+

∫ 


G0(x,s) ′′(s)ds (10.10)

(x) = ()+ (x−) ′( )+
∫ 


G1(x,s) ′′(s)ds, (10.11)

(x) = ( )+ (x− ) ′()+
∫ 


G2(x,s) ′′(s)ds, (10.12)

(x) = ( )− ( −) ′( )+ (x−) ′()+
∫ 


G3(x,s) ′′(s)ds, (10.13)

(x) = ()+ ( −) ′()− ( − x) ′( )+
∫ 


G4(x,s) ′′(s)ds, (10.14)
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which can be easily shown by integrating by parts. It is also easy to show by some calcu-
lation that for every such function  and for any k ∈ {0,1,2,3,4} it holds:

1
Un

n


i=1

ui(xi)−(x) =
∫ 



(
1
Un

n


i=1

uiGk(xi,s)−Gk(x,s)

)
 ′′(s)ds. (10.15)

Using the triangle inequality for integrals and then applying the Hölder inequality, we get
the following:∣∣∣∣∣ 1

Un

n


i=1

ui(xi)−(x)

∣∣∣∣∣=
∣∣∣∣∣
∫ 



(
1
Un

n


i=1

uiGk(xi,s)−Gk(x,s)

)
 ′′(s)ds

∣∣∣∣∣
≤
∫ 



∣∣∣∣∣
(

1
Un

n


i=1

uiGk(xi,s)−Gk(x,s)

)
 ′′(s)

∣∣∣∣∣ds

≤
(∫ 



∣∣∣∣∣ 1
Un

n


i=1

uiGk(xi,s)−Gk(x,s)

∣∣∣∣∣
q

ds

) 1
q

·
(∫ 



∣∣ ′′(s)∣∣p ds

) 1
p

,

and we get the result given in our theorem. �

10.3 Jensen’s type inequalities for the generalized
Csiszár f -divergence

The definition of the Csiszár f -divergence functional given in (10.1) can be further general-
ized using weights. For a function f : R+→R and p,q,r ∈R

n
+, we define the generalized

Csiszár f -divergence by

Cf (q,p;r) =
n


i=1

ripi f

(
qi

pi

)
. (10.16)

In order to simplify our results, we introduce the following notations

Pr =
n


i=1

ripi, (10.17)

Qr =
1
Pr

n


i=1

riqi. (10.18)

Our first result of this section is the following Jensen’s type inequality for Lipschitzian
function based on the idea of Y. J. Cho et al. [3].
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Theorem 10.2 Suppose pi,qi,ri (i ∈ N) are positive real numbers. If f : R+ → R is an
L-Lipschitzian function, then∣∣∣∣ 1Pr

Cf (q,p;r)− f
(
Qr

)∣∣∣∣≤ L
Pr

n


i=1

ri pi

∣∣∣∣ qi

pi
−Qr

∣∣∣∣ (10.19)

holds, where Cf (q,p;r), Pr and Qr are defined by (10.16), (10.17) and (10.18) respectively.

Proof. The inequality (10.19) follows by elementary techniques∣∣∣∣∣ 1Pr

n


i=1

ri pi f

(
qi

pi

)
− f

(
1
Pr

n


i=1

riqi

)∣∣∣∣∣= 1
Pr

∣∣∣∣∣ n


i=1

ripi

[
f

(
qi

pi

)
− f (Qr)

]∣∣∣∣∣
≤ 1

Pr

n


i=1

ri pi

∣∣∣∣ f ( qi

pi

)
− f (Qr)

∣∣∣∣≤ L
Pr

n


i=1

ripi

∣∣∣∣ qi

pi
−Qr

∣∣∣∣
�

The following inequality for bounded sequence (q1, . . . ,qn) is also based on [3] .

Theorem 10.3 Let f : R+→R be an L-Lipschitzian function, let pi,ri (i∈N) be positive
real numbers such that Cf ,Pr and Qr are defined by (10.16), (10.17) and (10.18). If there
exist m,M ∈ R such that mpi ≤ qi ≤Mpi (i ∈ N), then

∣∣∣∣M−Qr

M−m
f (m)+

Qr−m
M−m

f (M)− 1
Pr

Cf (q,p;r)
∣∣∣∣

≤ 2L
Pr(M−m)

n


i=1

ri pi

(
M− qi

pi

)(
qi

pi
−m

)
. (10.20)

holds.

Proof. Starting from the left-hand side of (10.20), we get∣∣∣∣∣M−Qr

M−m
f (m)+

Qr−m
M−m

f (M)− 1
Pr

n


i=1

ripi f

(
qi

pi

)∣∣∣∣∣
=

1
Pr

∣∣∣∣∣ n


i=1

ripi

[
M− qi

pi

M−m
f (m)+

qi
pi
−m

M−m
f (M)− f

(
qi

pi

)]∣∣∣∣∣
≤ 1

Pr

n


i=1

ri pi

∣∣∣∣∣M−
qi
pi

M−m
f (m)+

qi
pi
−m

M−m
f (M)− f

(
qi

pi

)∣∣∣∣∣
=

1
Pr

n


i=1

ri pi

∣∣∣∣∣M−
qi
pi

M−m

(
f (m)− f

(
qi

pi

))
+

qi
pi
−m

M−m

(
f (M)− f

(
qi

pi

))∣∣∣∣∣
≤ 1

Pr

n


i=1

ri pi

[
M− qi

pi

M−m

∣∣∣∣ f (m)− f

(
qi

pi

)∣∣∣∣+ qi
pi
−m

M−m

∣∣∣∣ f (M)− f

(
qi

pi

)∣∣∣∣
]
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≤ 2L
Pr(M−m)

n


i=1

ri pi

(
M− qi

pi

)(
qi

pi
−m

)
using the properties of the absolute value function. �

For the following result, we apply Theorem 10.1 on Cf (q,p;r).

Theorem 10.4 Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as defined
in (10.3)-(10.7). Let p,q,r ∈ R

n
+ be such that

qi

pi
∈ [a,b]⊆ [, ] for i = 1, . . . ,n; and that Qr ∈ [, ],

where Qr is as defined in (10.18). Furthermore, let p,q ∈ R, 1 ≤ p,q ≤ , be such that
1
p + 1

q = 1.

(a) If f : [, ]→R, f ∈C2 ([, ]), then∣∣∣∣ 1Pr
Cf (q,p;r)− f

(
Qr

)∣∣∣∣≤ Q ·∥∥ f ′′
∥∥

p (10.21)

holds, where Pr and Cf (q,p;r) are as defined in (10.17) and (10.16) respectively,

and

Q =

⎧⎪⎨⎪⎩
[∫ 



∣∣∣ 1
Pr
n

i=1 ripiGk

(
qi
pi

,s
)
−Gk

(
Qr,s
)∣∣∣q ds

] 1
q
, for q 
= ;

sups∈[ , ]

{∣∣∣ 1
Pr
n

i=1 ri piGk

(
qi
pi

,s
)
−Gk

(
Qr,s
)∣∣∣} , for q = .

(10.22)

(b) If id · f : [, ]→R, id · f ∈C2 ([, ]), then∣∣∣∣ 1Pr
Cid· f (q,p;r)−Qr · f

(
n

i=1 qi

n
i=1 pi

)∣∣∣∣≤ Q ·∥∥(id · f )′′∥∥p (10.23)

holds, where id is the identity function, Cid· f (q,p;r) =
n


i=1

riqi f
(

qi
pi

)
and Q is as

defined in (10.22).

Proof.

(a) The result follows directly from Theorem 10.1 by substitution  := f ,

ui :=
ripi
n


i=1

ripi

, xi :=
qi

pi
, i = 1, . . . ,n.

(b) The result follows from (a) by substitution f := id · f .
�
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10.4 Inequalities for different types of generalized
f−divergences

Now, we will consider some of the most important examples of f -divergences.
The Kullback-Leibler divergence (see [13], [14]) for p,q ∈ R

n
+ is defined by

KL(q,p) =
n


i=1

qi log

(
qi

pi

)
.

It is easy to see that the Kullback-Leibler divergence is in fact the Csiszár f -divergence,
where f (t) = t logt,t > 0. We can generalize this f -divergence, and we define the gener-
alized Kullback-Leibler divergence by

KL(q,p;r) =
n


i=1

riqi log
qi

pi
, (10.24)

where r ∈ R
n
+.

Proposition 10.1 Let p,q,r ∈R
n
+, Pr, Qr and KL(q,p;r) are defined by (10.17), (10.18)

and (10.24). If there exist m,M ∈ R+ such that mpi ≤ qi ≤Mpi, i ∈ N, then inequalities∣∣∣∣∣KL(q,p;r)−
n


i=n

riqi log
n

i=n riqi

Pr

∣∣∣∣∣
≤ max{| logm+1|, | logM +1|}

n


i=n

ri pi

∣∣∣∣qi

pi
−Qr

∣∣∣∣ (10.25)

and ∣∣∣∣M−Qr

M−m
m logm+

Qr−m
M−m

M logM− 1
Pr

KL(q,p;r)
∣∣∣∣ (10.26)

≤max{| logm+1|, | logM +1|} 2
Pr(M−m)

n


i=1

ri pi

(
M− qi

pi

)(
qi

pi
−m

)
hold.

Proof. The inequalities (10.25) and (10.26) are derived from (10.19) and (10.20) for f (t) =

t logt, t > 0. In this caseCf (q,p;r) =
n


i=1

ri pi
qi

pi
log

qi

pi
= KL(q,p;r) and L = sup

t∈[m,M]
| log t +

1|, since f
′
(t) = logt +1 is bounded on [m,M]. �

Proposition 10.2 Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as de-
fined in (10.3)-(10.7). Let p,q,r ∈R

n
+ be such that

qi

pi
∈ [a,b]⊆ [, ] for i = 1, . . . ,n; and that Qr ∈ [, ],
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where Qr is as defined in (10.18). Furthermore, let p,q ∈ R, 1 ≤ p,q ≤ , be such that
1
p + 1

q = 1.
Then ∣∣∣∣ 1Pr

KL(q,p;r)−Qr · log

(
n

i=1 qi

n
i=1 pi

)∣∣∣∣≤ Q ·∥∥(id · log)′′
∥∥

p (10.27)

holds, where Pr is as defined in (10.17), id is the identity function and Q is as defined in
(10.22).

Proof. The result follows from Theorem 10.4 (b) by substitution f := log (i.e. from The-
orem 10.4 (a) by substitution f (t) := t logt, t > 0). �

For p,q ∈R
n
+, the Hellinger divergence (as given in [9])

He(q,p) =
n


i=1

(
√

qi−√pi)2,

is the Csiszár f -divergence for f (t) = (1−√t)2, t > 0. As before, we also generalize this
divergence for r ∈ R

n
+ with

He(q,p;r) =
n


i=1

ri(
√

qi−√pi)2. (10.28)

We have the following estimations.

Proposition 10.3 Let p,q,r ∈ R
n
+, Pr,Qr and He(q,p;r) be defined by (10.17), (10.18)

and (10.28). If there exist m,M ∈ R+ such that mpi ≤ qi ≤Mpi, i ∈ N, then inequalities∣∣∣∣∣∣He(q,p;r)−
(
√

Pr−
√

n


i=n

riqi

)2
∣∣∣∣∣∣

≤ max

{
|m−√m|

m
,
|M−√M|

M

}
n


i=n

ri pi

∣∣∣∣ qi

pi
−Qr

∣∣∣∣ (10.29)

and ∣∣∣∣M−Qr

M−m
(1−√m)2 +

Qr−m
M−m

(1−√M)2− 1
Pr

He(q,p;r)
∣∣∣∣ (10.30)

≤ 2
Pr(M−m)

max

{
|m−√m|

m
,
|M−√M|

M

}
n


i=1

ripi

(
M− qi

pi

)(
qi

pi
−m

)
hold.

Proof. For f (t) = (1−√t)2,t > 0, we have

Cf (q,p;r) =
n


i=1

ri pi

(
1−
√

qi

pi

)2

=
n


i=1

ri(
√

pi−√qi)2 = He(q,p;r),
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and

L = sup
t∈[m,M]

∣∣∣∣1− 1√
t

∣∣∣∣= max

{∣∣∣∣1− 1√
m

∣∣∣∣ , ∣∣∣∣1− 1√
M

∣∣∣∣}

= max

{
|m−√m|

m
,
|M−√M|

M

}
.

So, inequalities (10.29) and (10.30) follow from (10.19) and (10.20). �

Proposition 10.4 Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as de-
fined in (10.3)-(10.7). Let p,q,r ∈R

n
+ be such that

qi

pi
∈ [a,b]⊆ [, ] for i = 1, . . . ,n; and that Qr ∈ [, ],

where Qr is as defined in (10.18). Furthermore, let p,q ∈ R, 1 ≤ p,q ≤ , be such that
1
p + 1

q = 1.
Then ∣∣∣∣∣ 1Pr

He(q,p;r)−
(

1−
√

Qr

)2
∣∣∣∣∣≤ Q ·∥∥ f ′′

∥∥
p (10.31)

holds, where Pr is as defined in (10.17), f (t) = (1−√t)2 , t > 0, and Q is as defined in
(10.22).

Proof. The result follows from Theorem 10.4 (a) by substitution f (t) = (1−√t)2, t > 0.
�

The -order entropy known as the Rényi divergence ([24]) is defined by

Re(q,p) =
n


i=1

p1−
i qi , for p,q ∈ R

n
+,  ∈ 〈1,+〉. (10.32)

We generalize (10.32) by

Re(q,p;r) =
n


i=1

ri p
1−
i qi , r ∈ R

n
+. (10.33)

For this generalized entropy we have the following results.

Proposition 10.5 Let p,q,r ∈R
n
+, Pr, Qr and Re (q,p;r) be defined by (10.17), (10.18)

and (10.33) . If there exist m,M ∈ R+ such that mpi ≤ qi ≤Mpi, i ∈N, then inequalities∣∣∣∣∣Re(q,p;r)−P1−
r

(
n


i=1

riqi

) ∣∣∣∣∣≤ M−1
n


i=1

ri pi

∣∣∣∣qi

pi
−Qr

∣∣∣∣ (10.34)

and ∣∣∣∣M−Qr

M−m
m +

Qr−m
M−m

M − 1
Pr

Re(q,p;r)
∣∣∣∣ (10.35)
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≤ 2M−1

Pr(M−m)

n


i=1

ripi

(
M− qi

pi

)(
qi

pi
−m

)
hold.

Proof. For f (t) = t , t > 0, > 1, we have

Cf (q,p;r) =
n


i=1

ripi

(
qi

pi

)
=

n


i=1

ri p
1−
i qi = Re(q,p;r),

and
L = sup

t∈[m,M]

∣∣t−1
∣∣=  sup

t∈[m,M]

∣∣t−1
∣∣= M−1,

so we obtain (10.34) and (10.35) from (10.19) and (10.20). �

Proposition 10.6 Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as de-
fined in (10.3)-(10.7). Let p,q,r ∈ R

n
+ be such that

qi

pi
∈ [a,b]⊆ [, ] for i = 1, . . . ,n; and that Qr ∈ [, ],

where Qr is as defined in (10.18). Furthermore, let p,q ∈ R, 1 ≤ p,q ≤ , be such that
1
p + 1

q = 1.
Then ∣∣∣∣ 1Pr

Re (q,p;r)−Q

r

∣∣∣∣≤ Q ·∥∥ f ′′
∥∥

p (10.36)

holds, where Pr is as defined in (10.17), f (t) = t (t > 0,  > 1), and Q is as defined in
(10.22).

Proof. The result follows from Theorem 10.4 (a) for f (t) = t (t > 0,  > 1). �

Our next interesting result concerns with the 2-divergence defined by

D2(q,p) =
n


i=1

(qi− pi)2

pi
, for p,q ∈ R

n
+.

For the generalized 2-divergence

D2(q,p;r) =
n


i=1

ri
(qi− pi)2

pi
, r ∈R

n
+ (10.37)

we have the following results.

Proposition 10.7 Let p,q,r ∈R
n
+, Pr, Qr and D2(q,p;r) be defined by (10.17), (10.18)

and (10.37). If there exist m,M ∈ R such that mpi ≤ qi ≤Mpi, i ∈ N, then inequalities∣∣∣∣∣∣D2(q,p;r)− 1
Pr

(
n


i=1

riqi−Pr

)2
∣∣∣∣∣∣≤ 2max{|m−1|, |M−1|}

n


i=1

ri pi

∣∣∣∣ qi

pi
−Qr

∣∣∣∣ (10.38)
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and ∣∣∣∣M−Qr

M−m
(m−1)2 +

Qr−m
M−m

(M−1)2− 1
Pr

D2(q,p;r)
∣∣∣∣ (10.39)

≤ 4
Pr(M−m)

max{|m−1|, |M−1|}
n


i=1

ri pi

(
M− qi

pi

)(
qi

pi
−m

)
hold.

Proof. For f (t) = (t−1)2, t > 0, we have

Cf (q,p;r) =
n


i=1

ri pi

(
qi

pi
−1

)2

=
n


i=1

ri
(qi− pi)2

pi
= D2(q,p;r).

Since f
′
(t) = 2(t−1), we have

L = 2 sup
t∈[m,M]

|t−1|= 2max{|m−1|, |M−1|} .

Inequalities (10.38) and (10.39) follow from (10.19) and (10.20). �

Proposition 10.8 Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as de-
fined in (10.3)-(10.7). Let p,q,r ∈R

n
+ be such that

qi

pi
∈ [a,b]⊆ [, ] for i = 1, . . . ,n; and that Qr ∈ [, ],

where Qr is as defined in (10.18). Furthermore, let p,q ∈ R, 1 ≤ p,q ≤ , be such that
1
p + 1

q = 1.
Then ∣∣∣∣ 1Pr

D2 (q,p;r)− (Qr−1)2

∣∣∣∣≤ Q ·∥∥ f ′′
∥∥

p (10.40)

holds, where Pr is as defined in (10.17), f (t) = (t − 1)2, t > 0, and Q is as defined in
(10.22).

Proof. The result follows from Theorem 10.4 (a) by substitution f (t) = (t−1)2, t > 0. �

The Shannon entropy ([11]) of a positive probability distribution p = (p1, . . . , pn) is
defined by

H(p) =−
n


i=1

pi log(pi). (10.41)

It is easy to see that (10.41) is a special case of (10.1) for q = (1, . . . ,1) ∈R
n
+ and function

f (t) = logt,t > 0. We can also generalize Shannon entropy with weights r∈R
n
+ as follows

H(p;r) =−
n


i=1

ripi log(pi). (10.42)
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Proposition 10.9 Let p,r ∈R
n
+ and Pr and H(p;r) be defined by (10.17) and (10.42). If

there exist m,M ∈ R such that m≤ 1
pi
≤M, i ∈ N, then inequalities

∣∣H(p;r)−Pr log(Qr)
∣∣≤ 1

m

n


i=1

ri pi

∣∣∣∣ 1pi
−Qr

∣∣∣∣ (10.43)

and ∣∣∣∣M−Qr

M−m
f (m)+

Qr−m
M−m

f (M)− 1
Pr

H(p;r)
∣∣∣∣ (10.44)

≤ 2
m(M−m)Pr

n


i=1

ripi

(
M− 1

pi

)(
1
pi
−m

)

hold, where Qr =
1
Pr

n


i=1

ri.

Proof. For f (t) = logt,t > 0 and q = (1, . . . ,1), we have

Cf (1,p;r) =
n


i=1

ripi log

(
1
pi

)
=−

n


i=1

ri pi log(pi) = H(p;r).

Since f
′
(t) =

1
t
, the Lipschitz constant in this case is

L = sup
t∈[m,M]

∣∣∣∣1t
∣∣∣∣= max

{∣∣∣∣ 1m
∣∣∣∣ , ∣∣∣∣ 1M

∣∣∣∣}= max

{
1
m

,
1
M

}
=

1
m

.

Inequalities (10.43) and (10.44) are following from (10.19) and (10.20). �

Proposition 10.10 Let the functions Gk : [, ]× [, ] → R (k = 0,1,2,3,4) be as
defined in (10.3)-(10.7). Let p,r ∈ R

n
+ be such that

1
pi
∈ [a,b]⊆ [, ] for i = 1, . . . ,n; and that

1
Pr

n


i=1

ri ∈ [, ]

where Pr is as defined in (10.17). Furthermore, let p,q ∈ R, 1 ≤ p,q ≤ , be such that
1
p + 1

q = 1.
Then ∣∣∣∣∣ 1Pr

H (p;r)− log

(
1
Pr

n


i=1

ri

)∣∣∣∣∣≤ Q ·∥∥log′′
∥∥

p (10.45)

holds, where Q is as defined in (10.22).

Proof. The result follows from Theorem10.4 (a) by substitution f := log and q = (1, . . . ,1).
�
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10.5 The mappings of H and F

In this section, we study discrete general case of the mappings called H and F introduced
in [7] and [8]. For a given function f : I ⊂ R→ R and for a,b ∈ I, a < b, S. S. Dragomir
considered the following two mappings H,F : [0,1]→R defined by

H(t) =
1

b−a

∫ b

a
f

(
tx+(1− t)

a+b
2

)
dx

and

F(t) =
1

(b−a)2

∫ b

a

∫ b

a
f (tx+(1− t)y)dxdy

for all t ∈ [0,1]. Under assumption of convexity of f , mappings H and F have been tested
on convexity on [0,1], monotonicity and other properties. On this lead, Cho et al. in [3]
also studied generalized functions of this type.

In this section, we consider f to be Lipschitzian function and dealing with discrete
generalization, so our next results come naturally. We prove some of the properties of the
functions F and H, such as Lipschitz property.

Theorem 10.5 Let p,r ∈ R
n
+ and q ∈ R

n and f : R→ R be an L-Lipschitzian function.
For a mapping H : [0,1]→R defined by

H( ) =
1
Pr

n


i=1

piri f

(


qi

pi
+(1− )Qr

)
(10.46)

we have the following:

(i) the mapping H is L1-Lipschitzian on [0,1], where

L1 =
L
Pr

n


i=1

piri

(
qi

pi
−Qr

)
(10.47)

(ii) the inequalities ∣∣∣∣∣H( )− 1
Pr

n


i=1

ripi f

(
qi

pi

)∣∣∣∣∣≤ (1− )L1, (10.48)

∣∣∣∣∣ f
(

1
Pr

n


i=1

riqi

)
−H( )

∣∣∣∣∣≤ L1 (10.49)

and ∣∣∣∣∣H( )− 
Pr

n


i=1

ripi f

(
qi

pi

)
− (1− ) f (Qr)

∣∣∣∣∣≤ 2 (1− )L1 (10.50)

hold, for all  ∈ [0,1].



300 10 JENSEN-TYPE INEQUALITIES FOR GENERALIZED f -DIVERGENCES...

Proof. For 1,2 ∈ [0,1], we calculate

|H(2)−H(1)|

=
1
Pr

∣∣∣∣∣ n


i=1

piri

[
f

(
2

qi

pi
+(1−2)Qr

)
− f

(
1

qi

pi
+(1−1)Qr

)]∣∣∣∣∣
≤ 1

Pr

n


i=1

piri

∣∣∣∣ f (2
qi

pi
+(1−2)Qr

)
− f

(
1

qi

pi
+(1−1)Qr

)∣∣∣∣
≤ L

Pr

n


i=1

piri

∣∣∣∣2
qi

pi
+(1−2)Qr−1

qi

pi
− (1−1)Qr

∣∣∣∣
=

L|2−1|
Pr

n


i=1

piri

∣∣∣∣ qi

pi
−Qr

∣∣∣∣
and get |H(2)−H(1)| ≤ L1|2−1|, for L1 defined by (10.47). For 1 = 1 and 2 =  ,
left hand side in (10.48) is equal to |H( )−H(1)|. Since we already proved H is L1-
Lipschitzian function, inequality (10.48) holds. Analogously, (10.49) follows for 1 = 
and 2 = 0. Finally, inequality (10.50) follows from (10.48) and (10.49),∣∣∣∣∣H( )− 

Pr

n


i=1

ripi f

(
qi

pi

)
− (1− ) f (Qr)

∣∣∣∣∣≤
≤
∣∣∣∣∣H( )− 

Pr

n


i=1

ripi f

(
qi

pi

)∣∣∣∣∣+
∣∣∣∣∣−(1− ) f

(
1
Pr

n


i=1

riqi

)
+(1− )H( )

∣∣∣∣∣
≤ 2 (1− )L1.

�

Theorem 10.6 Let p,r ∈ R
n
+, q ∈ R

n and f : R→ R be a L-Lipschitzian function. For a
mapping F : [0,1]→ R defined by

F( ) =
1
P2

r

n


i=1

n


j=1

piri p jr j f

(


qi

pi
+(1− )

q j

p j

)
(10.51)

we have the following:

(i) the mapping F is symmetric, i.e. F( ) = F(1− ), ∈ [0,1]

(ii) the mapping F is L2-Lipschitzian on [0,1], where

L2 =
L
P2

r

n


i=1

n


j=1

piri p jr j

∣∣∣∣ qi

pi
− q j

p j

∣∣∣∣ (10.52)

(iii) the inequalities∣∣∣∣∣F( )− 1
P2

r

n


i=1

n


j=1

piri p jr j f

[
1
2

(
qi

pi
+

q j

p j

)]∣∣∣∣∣≤ L2

2
|2 −1| (10.53)
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and ∣∣∣∣∣F( )− 1
Pr

n


i=1

piri f

(
qi

pi

)∣∣∣∣∣≤ L2 min{ ,1−} (10.54)

hold for all  ∈ [0,1].

Proof. The first property follows immediately from the definition (10.51). For proving the
next property, let 1,2 ∈ [0,1]. Then we have

|F(2)−F(1)|

=
1
P2

r

∣∣∣∣∣ n


i=1

n


j=1

piri p jr j

[
f

(
2

qi

pi
+(1−2)

q j

p j

)
− f

(
1

qi

pi
+(1−1)

q j

p j

)]∣∣∣∣∣
≤ 1

P2
r

n


i=1

n


j=1

pirii p jr j

∣∣∣∣ f (2
qi

pi
+(1−2)

q j

p j

)
− f

(
1

qi

pi
+(1−1)

q j

p j

)∣∣∣∣
≤ L|2−1|

P2
r

n


i=1

n


j=1

piri p jr j

∣∣∣∣ qi

pi
− q j

p j

∣∣∣∣
= L2|2−1|.

Inequality (10.53) follows from Lipschitzian property of F for 1 =
1
2

and 2 =  . So,

we have |F( )−F(
1
2
)| ≤ L2| − 1

2
|= L2

2
| −1|. Analogously, (10.54) follows for 1 =

1,2 =  and 1 = 1,2 = 1− . Namely, by combining

|F( )−F(1)|=
∣∣∣∣∣F( )− 1

Pr

n


i=1

piri f

(
qi

pi

)∣∣∣∣∣≤ | −1|= 1−

and
|F(1− )−F(1)|= |F( )−F(1)| ≤ |1− −1|= 

we get (10.54). �

The next result offers us the relation between the mappings F and H, defined by (10.46)
and (10.51).

Theorem 10.7 For mappings F : [0,1]→ R and H : [0,1]→ R defined by (10.51) and
(10.46), inequality

|F( )−H( )| ≤ (1− )L1 (10.55)

holds for all  ∈ [0,1], where L1 is defined by (10.47).

Proof. The inequality (10.55) holds as follows:

|F( )−H( )|=

=

∣∣∣∣∣ 1
P2

r

n


i=1

n


j=1

piri p jr j f

(


qi

pi
+(1− )

q j

p j

)
− 1

Pr

n


i=1

piri f

(


qi

pi
+(1− )Qr

)∣∣∣∣∣
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=
1
P2

r

∣∣∣∣∣ n


i=1

n


j=1

piri p jr j

[
f

(


qi

pi
+(1− )

q j

p j

)
− f

(


qi

pi
+(1− )Qr

)]∣∣∣∣∣
≤ 1

P2
r

n


i=1

n


j=1

piri p jr j

∣∣∣∣ f ( qi

pi
+(1− )

q j

p j

)
− f

(


qi

pi
+(1− )Qr

)∣∣∣∣
≤ L

P2
r

n


i=1

n


j=1

piri p jr j

∣∣∣∣ qi

pi
+(1− )

q j

p j
− qi

pi
− (1− )Qr

∣∣∣∣
=

L(1− )
Pr

n


i=1

piri

∣∣∣∣ qi

pi
−Qr

∣∣∣∣= (1− )L1.

�

10.6 Applications to Zipf-Mandelbrot law

Definition 10.1 [11] Zipf-Mandelbrot law is a discrete probability distribution, depends
on three parameters N ∈ {1,2, . . .}, t ∈ [0,〉 and v > 0, and it is defined by

 (i;N,t,v) :=
1

(i+ t)v HN,t,v
, i = 1, . . . ,N,

where

HN,t,v :=
N


j=1

1
( j + t)v

.

When t = 0, then Zipf–Mandelbrot law becomes Zipf’s law.

Now, we can apply our results for distributions on the Zipf-Mandelbrot law, as a sort
of discrete probability distribution.

Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1, t2 ≥ 0 and v1,
v2 > 0, respectively. It is

pi =  (i;N,t1,v1) :=
1

(i+ t1)
v1 HN,t1,v1

, i = 1, . . . ,N, (10.56)

and

qi =  (i;N,t2,v2) :=
1

(i+ t2)
v2 HN,t2 ,v2

, i = 1, . . . ,N, (10.57)

where

HN,tk ,vk :=
N


j=1

1
( j + tk)

vk
, k = 1,2. (10.58)
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Then the generalized Csiszár divergence for such p,q, and for r ∈ R
n
+ is given by

Cf (q,p;r) =
1

HN,t1,v1

N


i=1

ri

(i+ t1)v1
f

(
(i+ t1)v1HN,t1,v1

(i+ t2)v2HN,t2,v2

)
. (10.59)

Using (10.56) and (10.57), we have the following expressions for (10.17) and (10.18)

Pr =
N


i=1

ri

(i+ t1)v1HN,t1,v1

=
1

HN,t1,v1

N


i=1

ri

(i+ t1)v1
, (10.60)

Qr =
N

i=1
ri

(i+t2)v2HN,t2,v2

N
i=1

ri
(i+t1)v1HN,t1,v1

=
HN,t1,v1

HN,t2,v2

· 
N
i=1

ri
(i+t2)v2

N
i=1

ri
(i+t1)v1

. (10.61)

For m and M from Theorem 10.3 we have

m =
(1+ t1)v1HN,t1,v1

(N + t2)v2HN,t2,v2

and

M =
(N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2,v2

.

Thus we have the following results.

Corollary 10.1 Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+. If Cf (q,p;r),Pr and Qr are defined by

(10.59), (10.60) and (10.61), respectively, we have

∣∣Cf (q,p;r)−Pr f (Qr)
∣∣≤ L

HN,t2,v2

N


i=1

ri

(i+ t1)v1

∣∣∣∣∣ (i+ t1)v1

(i+ t2)v2
− N

i=1
ri

(i+t2)v2

N
i=1

ri
(i+t1)v1

∣∣∣∣∣ ,
and ∣∣∣∣∣ N


i=1

ri

(i+ t1)v1

[(
(N + t1)v1

(1+ t2)v2
− N

i=1
ri

(i+t2)v2

N
i=1

ri
(i+t1)v1

)
f

(
(1+ t1)v1HN,t1,v1

(N + t2)v2HN,t2,v2

)
(10.62)

+

(
N

i=1
ri

(i+t2)v2

N
i=1

ri
(i+t1)v1

− (1+ t1)v1

(N + t2)v2

)
f

(
(N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2,v2

)]

−
(

(N + t1)v1

(1+ t2)v2
− (1+ t1)v1

(N + t2)v2

)
Cf (q,p;r)

∣∣∣∣
≤ 2L

HN,t1,v1

HN,t2,v2

N


i=1

ri

(i+ t1)v1

(
(N + t1)v1

(1+ t2)v2
− (i+ t1)v1

(i+ t2)v2

)(
(i+ t1)v1

(i+ t2)v2
− (1+ t1)v1

(N + t2)v2

)
.

Proof. Inequality (10.62) can be obtained from∣∣∣∣∣
[(

(N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2 ,v2

− HN,t1,v1

HN,t2,v2

N
i=1

ri
(i+t2)v2

N
i=1

ri
(i+t1)v1

)
f

(
(1+ t1)v1HN,t1,v1

(N + t2)v2HN,t2 ,v2

)
+
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(
HN,t1,v1

HN,t2,v2

N
i=1

ri
(i+t2)v2

N
i=1

ri
(i+t1)v1

− (1+ t1)v1HN,t1,v1

(N + t2)v2HN,t2 ,v2

)
f

(
(N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2,v2

)]
×

N


i=1

ri

(i+ t1)v1HN,t1,v1

−
(

(N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2,v2

− (1+ t1)v1HN,t1,v1

(N + t2)v2HN,t2,v2

)
Cf (q,p;r)

∣∣∣∣∣
≤ 2L

N


i=1

ri

(i+ t1)v1HN,t1,v1

(
(N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2,v2

− (i+ t1)v1HN,t1,v1

(i+ t2)v2HN,t2,v2

)
×(

(i+ t1)v1HN,t1,v1

(i+ t2)v2HN,t2,v2

− (1+ t1)v1HN,t1,v1

(N + t2)v2HN,t2,v2

)
.

�

Corollary 10.2 Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as defined
in (10.3)-(10.7). Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b]⊆ [, ] for i = 1, . . . ,N,

and that Qr ∈ [, ], where Qr is as defined in (10.61).

Furthermore, let p,q ∈R, 1≤ p,q≤ , be such that 1
p + 1

q = 1.

(a) If f : [, ]→R, f ∈C2 ([, ]), then∣∣∣∣ 1Pr
Cf (q,p;r)− f

(
Qr

)∣∣∣∣≤ Q ·∥∥ f ′′
∥∥

p

holds, and

(b) if id · f : [, ]→ R, id · f ∈C2 ([, ]), then∣∣∣∣ 1Pr
Cid· f (q,p;r)−Qr · f

(
N

i=1 qi

N
i=1 pi

)∣∣∣∣≤ Q ·∥∥(id · f )′′∥∥p

holds, where id is the identity function, Q, pi, qi, Pr, Cf (q,p;r) are as defined in
(10.22), (10.56), (10.57), (10.60), (10.59) respectively.

If p,q are two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1, t2 ≥ 0 and v1,
v2 > 0, respectively, and r ∈R

n
+, for the generalized Kullbach-Leibler divergence we have

the following representation:

KL(q,p;r) =
1

HN,t2,v2

N


i=1

ri

(i+ t2)v2
log

(
(i+ t1)v1HN,t1,v1

(i+ t2)v2HN,t2,v2

)
. (10.63)

The following results hold.
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Corollary 10.3 Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+. If KL(q,p;r) is defined by (10.63), then

inequalities ∣∣∣∣∣HN,t2,v2KL(q,p;r)−
N


i=1

ri

(i+ t2)v2

(
log

HN,t1,v1

HN,t2,v2

+ log
N


i=1

ri

(i+ t2)v2
−

− log
N


i=1

ri

(i+ t1)v1

)∣∣∣∣∣≤
≤ max

{∣∣∣∣log
HN,t1,v1

HN,t2,v2

+ s1 log(1+ t1)− v2 log(N + t2)+1

∣∣∣∣ ,∣∣∣∣log
HN,t1,v1

HN,t2,v2

+ v1 log(N + t1)− v2 log(1+ t2)+1

∣∣∣∣}×
×

N


i=1

ri

(i+ t1)v1

∣∣∣∣∣ (i+ t1)v1

(i+ t2)v2
− N

i=1
ri

(i+t2)v2

N
i=1

ri
(i+t1)v1

∣∣∣∣∣ ,
and ∣∣∣∣∣ (1+ t1)v1

(N + t2)v2

(
(N + t1)v1

(1+ t2)v2

N


i=1

ri

(i+ t1)v1
−

N


i=1

ri

(i+ t2)v2

)

+
(N + t1)v1

(1+ t2)v2

(
N


i=1

ri

(i+ t2)v2
− (1+ t1)v1

(N + t2)v2

N


i=1

ri

(i+ t1)v1

)

− HN,t2,v2

(
(N + t1)v1

(1+ t2)v2
− (1+ t1)v1

(N + t2)v2

)
KL(q,p;r)

∣∣∣∣
≤ 2max

{∣∣∣∣log
HN,t1,v1

HN,t2,v2

+ v1 log(1+ t1)− v2 log(N + t2)+1

∣∣∣∣ ,∣∣∣∣log
HN,t1,v1

HN,t2,v2

+ v1 log(N + t1)− v2 log(1+ t2)+1

∣∣∣∣}×
×

N


i=1

ri

(i+ t1)v1

(
(N + t1)v1

(1+ t2)v2
− (i+ t1)v1

(i+ t2)v2

)(
(i+ t1)v1

(i+ t2)v2
− (1+ t1)v1

(N + t2)v2

)
hold.

Corollary 10.4 Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as defined
in (10.3)-(10.7). Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b]⊆ [, ] for i = 1, . . . ,N,

and that Qr ∈ [, ], where Qr is as defined in (10.61).

Furthermore, let p,q ∈ R, 1≤ p,q≤ , be such that 1
p + 1

q = 1.
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Then ∣∣∣∣ 1Pr
KL(q,p;r)−Qr · log

(
n

i=1 qi

n
i=1 pi

)∣∣∣∣≤ Q ·∥∥(id · log)′′
∥∥

p

holds, where id is the identity function, Q, pi, qi, Pr, KL(q,p;r) are as defined in (10.22),
(10.56), (10.57), (10.60), (10.63) respectively.

For p,q two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1, t2 ≥ 0 and v1,
v2 > 0, respectively, and r ∈ R

n
+, the generalized Hellinger divergence has the following

representation:

He(q,p;r) =
1

HN,t1,v1HN,t2,v2

N


i=1

ri

(√
(i+ t1)v1HN,t1 ,v1 −

√
(i+ t2)v2HN,t2,v2

)2
(i+ t1)v1(i+ t2)v2

. (10.64)

The following results hold true.

Corollary 10.5 Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+. If He(q,p;r) is defined by (10.64), then

inequalities∣∣∣∣∣∣He(q,p;r)−
(√

N


i=1

ri

(i+ t1)v1HN,t1,v1

−
√

N


i=1

ri

(i+ t2)v2HN,t2,v2

)2
∣∣∣∣∣∣

≤ max

{∣∣∣∣∣1−
√

(N + t2)v2HN,t2,v2

(1+ t1)v1HN,t1,v1

∣∣∣∣∣ ,
∣∣∣∣∣1−
√

(1+ t2)v2HN,t2,v2

(N + t1)v1HN,t1,v1

∣∣∣∣∣
}
×

×
N


i=1

ri

(i+ t1)v1HN,t2,v2

∣∣∣∣∣(i+ t1)v1

(i+ t2)v2
− N

i=1
ri

(i+t2)v2

N
i=1

ri
(i+t1)v1

∣∣∣∣∣ ,
and ∣∣∣∣∣∣

⎡⎣((N + t1)v1

(1+ t2)v2

N


i=1

ri

(i+ t1)v1
−

N


i=1

ri

(i+ t2)v2

)(
1−
√

(1+ t1)v1HN,t1 ,v1

(N + t2)v2HN,t2,v2

)2

+

(
N


i=1

ri

(i+ t2)v2
− (1+ t1)v1

(N + t2)v2

N


i=1

ri

(i+ t1)v1

)(
1−
√

(N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2 ,v2

)2
⎤⎦

− HN,t1,v1

(
(N + t1)v1

(1+ t2)v2
− (1+ t1)v1

(N + t2)v2

)
He(q,p;r)

∣∣∣∣
≤ 2

HN,t1,v1

HN,t2,v2

max

{∣∣∣∣∣1−
√

(N + t2)v2HN,t2,v2

(1+ t1)v1HN,t1,v1

∣∣∣∣∣ ,
∣∣∣∣∣1−
√

(1+ t2)v2HN,t2,v2

(N + t1)v1HN,t1,v1

∣∣∣∣∣
}
×

×
N


i=1

ri

(i+ t1)v1

(
(N + t1)v1

(1+ t2)v2
− (i+ t1)v1

(i+ t2)v2

)(
(i+ t1)v1

(i+ t2)v2
− (1+ t1)v1

(N + t2)v2

)
hold.
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Corollary 10.6 Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as defined
in (10.3)-(10.7). Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b]⊆ [, ] for i = 1, . . . ,N,

and that Qr ∈ [, ], where Qr is as defined in (10.61).

Furthermore, let p,q ∈ R, 1≤ p,q≤ , be such that 1
p + 1

q = 1.
Then ∣∣∣∣∣ 1Pr

He(q,p;r)−
(

1−
√

Qr

)2
∣∣∣∣∣≤ Q ·∥∥ f ′′

∥∥
p

holds, where Q, pi, qi, Pr, He(q,p;r) are as defined in (10.22), (10.56), (10.57), (10.60),
(10.64) respectively, and f (t) = (1−√t)2, t > 0.

For p,q two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1, t2 ≥ 0 and v1,
v2 > 0, respectively, and r ∈ R

n
+, the generalized Rényi divergence has the following rep-

resentation:

Re(q,p;r) =
H−1

N,t1,v1

H
N,t2,v2

N


i=1

ri
(i+ t1)(−1)v1

(i+ t2)v2
. (10.65)

The following results hold.

Corollary 10.7 Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+. If Re(q,p;r) is defined by (10.65), then

inequalities ∣∣∣∣∣∣H

N,t2,v2

H−1
N,t1,v1

Re(q,p;r)−
(

N


i=1

ri

(i+ t1)v1

)1−( N


i=1

ri

(i+ t2)v2

)
∣∣∣∣∣∣

≤ 
(N + t1)(−1)v1

(1+ t2)(−1)v2

N


i=1

ri

(i+ t1)v1

∣∣∣∣∣(i+ t1)v1

(i+ t2)v2
− N

i=1
ri

(i+t2)v2

N
i=1

ri
(i+t1)v1

∣∣∣∣∣ ,
and ∣∣∣∣∣ (1+ t1)v1

(N + t2)v2

(
(N + t1)v1

(1+ t2)v2

N


i=1

ri

(i+ t1)v1
−

N


i=1

ri

(i+ t2)v2

)

+
(N + t1)v1

(1+ t2)v2

(
N


i=1

ri

(i+ t2)v2
− (1+ t1)v1

(N + t2)v2

N


i=1

ri

(i+ t1)v1

)

− H
N,t2,v2

H−1
N,t1,v1

(
(N + t1)v1

(1+ t2)v2
− (1+ t1)v1

(N + t2)v2

)
Re(q,p;r)

∣∣∣∣∣
≤ 2

(N + t1)(−1)v1

(1+ t2)(−1)v2

N


i=1

ri

(i+ t1)v1

(
(N + t1)v1

(1+ t2)v2
− (i+ t1)v1

(i+ t2)v2

)
×
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×
(

(i+ t1)v1

(i+ t2)v2
− (1+ t1)v1

(N + t2)v2

)
hold.

Corollary 10.8 Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as defined
in (10.3)-(10.7). Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b]⊆ [, ] for i = 1, . . . ,N,

and that Qr ∈ [, ], where Qr is as defined in (10.61).

Furthermore, let p,q ∈R, 1≤ p,q≤ , be such that 1
p + 1

q = 1.
Then ∣∣∣∣ 1Pr

Re (q,p;r)−Q

r

∣∣∣∣≤ Q ·∥∥ f ′′
∥∥

p

holds, where Q, pi, qi, Pr, Re(q,p;r) are as defined in (10.22), (10.56), (10.57), (10.60),
(10.65) respectively, and f (t) = t , (t > 0, > 1).

For p,q two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1, t2 ≥ 0 and v1,
v2 > 0, respectively, and r ∈ R

n
+, the generalized 2−divergence has the following repre-

sentation:

D2(q,p;r) = HN,t1,v1 ·
N


i=1

ri(i+ t1)v1

(
1

(i+ t2)v2HN,t2,v2

− 1
(i+ t1)v1HN,t1,v1

)2

. (10.66)

We have the following results.

Corollary 10.9 Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+. If D2(q,p;r) is defined by (10.66), then

inequalities∣∣∣∣∣∣D2(q,p;r)− HN,t1,v1

N
i=1

ri
(i+t1)v1

(
N


i=1

ri

(i+ t2)v2HN,t2,v2

−
N


i=1

ri

(i+ t1)v1HN,t1,v1

)2
∣∣∣∣∣∣

≤ 2
HN,t2,v2

max

{∣∣∣∣ (1+ t1)v1HN,t1,v1

(N + t2)v2HN,t2,v2

−1

∣∣∣∣ , ∣∣∣∣ (N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2,v2

−1

∣∣∣∣}×
×

N


i=1

ri

(i+ t1)v1

∣∣∣∣∣ (i+ t1)v1

(i+ t2)v2
−
N

i=1
ri

(i+t2)v2

N
i=1

ri
(i+t1)v1

∣∣∣∣∣
and ∣∣∣∣∣ N


i=1

ri

(i+ t1)v1

[(
(N + t1)v1

(1+ t2)v2
− N

i=1
ri

(i+t2)v2

N
i=1

ri
(i+t1)v1

)(
(1+ t1)v1HN,t1,v1

(N + t2)v2HN,t2 ,v2

−1

)2
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+

(
N

i=1
ri

(i+t2)v2

N
i=1

ri
(i+t1)v1

− (1+ t1)v1

(N + t2)v2

)(
(N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2,v2

−1

)2
]

− D2(q,p;r)HN,t1 ,v1

(
(N + t1)v1

(1+ t2)v2
− (1+ t1)v1

(N + t2)v2

)∣∣∣∣
≤ 4

(
HN,t1,v1

HN,t2,v2

)2

max

{∣∣∣∣ (1+ t1)v1HN,t1,v1

(N + t2)v2HN,t2,v2

−1

∣∣∣∣ , ∣∣∣∣ (N + t1)v1HN,t1,v1

(1+ t2)v2HN,t2,v2

−1

∣∣∣∣}×
×

N


i=1

ri

(i+ t1)v1

(
(N + t1)v1

(1+ t2)v2
− (i+ t1)v1

(i+ t2)v2

)(
(i+ t1)v1

(i+ t2)v2
− (1+ t1)v1

(N + t2)v2

)
hold.

Corollary 10.10 Let the functions Gk : [, ]× [, ]→R (k = 0,1,2,3,4) be as defined
in (10.3)-(10.7). Let p,q be two Zipf-Mandelbrot laws with parameters N ∈ {1,2, . . .}, t1,
t2 ≥ 0 and v1,v2 > 0, respectively, and r ∈ R

n
+ such that

qi

pi
:=

(i+ t1)
v1 HN,t1,v1

(i+ t2)
v2 HN,t2,v2

∈ [a,b]⊆ [, ] for i = 1, . . . ,N,

and that Qr ∈ [, ], where Qr is as defined in (10.61).

Furthermore, let p,q ∈ R, 1≤ p,q≤ , be such that 1
p + 1

q = 1.
Then ∣∣∣∣ 1Pr

D2 (q,p;r)− (Qr−1)2

∣∣∣∣≤ Q ·∥∥ f ′′
∥∥

p

holds, where Q, pi, qi, Pr, D2(q,p;r) are as defined in (10.22), (10.56), (10.57), (10.60),

(10.66) respectively, and f (t) = (t−1)2,(t > 0) .

If p is the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .}, t1 ≥ 0 and v1 > 0, and
r ∈ R

n
+, then the generalized Shannon entropy H(p;r) has the following representation:

H(p;r) =
1

HN,t1,v1

N


i=1

ri

(i+ t1)v1
log [(i+ t1)v1HN,t1,v1 ] . (10.67)

We have the following results.

Corollary 10.11 Let p be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .}, t1≥ 0
and v1 > 0, and r ∈ R

n
+. If H(p;r) is defined by (10.67), then inequalities∣∣∣∣∣HN,t1,v1H(p;r)−

N


i=1

ri

(1+ t1)v1
log

(
HN,t1,v1

N
i=1 ri

N
i=1

ri
(1+t1)v1

)∣∣∣∣∣
≤ 1

(1+ t1)v1

N


i=1

ri

(1+ t1)v1

∣∣∣∣∣(1+ t1)v1 − N
i=1 ri

N
i=1

ri
(1+t1)v1

∣∣∣∣∣
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and ∣∣∣∣∣
[
(N + t1)v1 − N

i=1 ri

N
i=1

ri
(i+t1)v1

]
f ((1+ t1)v1HN,t1,v1)+

[
n

i=1 ri

n
i=1

ri
(i+t1)v1

− (1+ t1)v1

]
×

× f ((N + t1)v1HN,t1 ,v1)−
HN,t1,v1

N
i=1

ri
(i+t1)v1

[(N + t1)v1 − (1+ t1)v1 ]H(p;r)

∣∣∣∣∣
≤ 2

(1+ t1)v1 N
i=1

ri
(i+t1)v1

×

×
N


i=1

ri

(i+ t1)v1
[(N + t1)v1 − (i+ t1)v1 ] [(i+ t1)v1 − (1+ t1)v1 ]

hold.

Corollary 10.12 Let p be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .}, t1≥ 0
and v1 > 0, and r ∈ R

n
+ such that

1
pi

:= (i+ t1)
v1 HN,t1,v1 ∈ [a,b]⊆ [, ] for i = 1, . . . ,N,

and that
1
Pr

n


i=1

ri ∈ [, ], where Pr is as defined in (10.60).

Let the functions Gk : [, ]× [, ]→ R (k = 0,1,2,3,4) be as defined in (10.3)-(10.7).
Furthermore, let p,q ∈R, 1≤ p,q≤ , be such that 1

p + 1
q = 1.

Then ∣∣∣∣∣ 1Pr
H (p;r)− log

(
1
Pr

n


i=1

ri

)∣∣∣∣∣≤ Q ·∥∥log′′
∥∥

p (10.68)

holds, where Q, pi, qi, H(p;r) are as defined in (10.22), (10.56), (10.57), (10.67) respec-
tively.
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Chapter11
On Shannon and
Zipf-Mandelbrot entropies and
related results

Sadia Khalid, Dilda Pečarić and Josip Pečarić

Abstract. We present some interesting results related to the bounds of Shannon
and Zipf-Mandelbrot entropies. Further, we define linear functionals as the non-
negative differences of the obtained inequalities and present mean value theorems.
We also discuss the properties of the functionals, such as n-exponential and log-
arithmic convexity. Finally, we present examples of the family of functions for
which the results can be applied.

11.1 Introduction and Preliminaries

Definition 11.1 The Shannon entropy of a positive probability distribution p = (p1, . . . , pn)
is defined by S (p) := n

k=1 pk log
(

1
pk

)
.

An important result related to the bounds of the Shannon entropy is given in [4].

313
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Theorem 11.1 Let pk > 0 (1≤ k ≤ n) be a probability distribution with Shannon entropy
S (p) and Pk = k

i=1 pi (1≤ k ≤ n). Then

S (p)+
n


k=2

((k−1)pk−Pk−1) (logk− log(k−1))

≤
n


k=2

F (k−1) pk

≤ S (p)+
n


k=2

((k−1)pk−Pk−1) (logPk− logPk−1) , (11.1)

where
F (x) = (x+1)log(x+1)− x logx(x > 0) . (11.2)

Equalities hold in (11.1) if pk = 1
n (1≤ k≤ n) .

S. Khalid, J. Pečarić and M. Praljak presented the following generalization of Throrem
11.1 in [6, Theorems 2.1 and 2.3].

Theorem 11.2 Let ak > 0 and pk > 0 (1≤ k≤ n) be real numbers such that Pk =k
i=1 pi

(1≤ k ≤ n). Let g : [a,b]→ R be a differentiable function such that g(x+h)− g(x) is
convex for all x,x+h ∈ [a,b], where h≥ 0.

(i) If Pk−1, Pk,
k−1

i=1 piai
ak

, k
i=1 piai

ak
∈ [a,b] for all k ∈ {2, . . . ,n}, then for any s ∈ R, we

have

n


k=2

as
k (g(Pk)−g(Pk−1))+

n


k=2

as−1
k

(
k−1


i=1

piai−Pk−1ak

)(
g′(Pk)−g′(Pk−1)

)
≤

n


k=2

as
k

(
g

(
k

i=1 piai

ak

)
−g

(
k−1

i=1 piai

ak

))

≤
n


k=2

as
k (g(Pk)−g(Pk−1))

+
n


k=2

as−1
k

(
k−1


i=1

piai−Pk−1ak

)(
g′
(
k

i=1 piai

ak

)
−g′
(
k−1

i=1 piai

ak

))
. (11.3)

(ii) If p1a1, Pk−1ak, Pkak, k−1
i=1 piai, k

i=1 piai ∈ [a,b] for all k ∈ {2, . . . ,n}, then we have

g(p1a1)+
n


k=2

(g(Pkak)−g(Pk−1ak))

+
n


k=2

(
k−1


i=1

piai−Pk−1ak

)(
g′(Pkak)−g′ (Pk−1ak)

)
≤ g

(
n


i=1

piai

)



11.1 INTRODUCTION AND PRELIMINARIES 315

≤ g(p1a1)+
n


k=2

(g(Pkak)−g(Pk−1ak))

+
n


k=2

(
k−1


i=1

piai−Pk−1ak

)(
g′
(

k


i=1

piai

)
−g′
(

k−1


i=1

piai

))
. (11.4)

If g(x+h)− g(x) is concave for all x, x + h ∈ [a,b] such that h ≥ 0, then the reversed
inequalities hold in (11.3) and (11.4).

Divided difference of a function is defined as follows (see [15, p. 14]):

Definition 11.2 The nth-order divided difference of a function f : [a,b]→ R at mutually
distinct points x0, . . . ,xn ∈ [a,b] is defined recursively by

[xi; f ] = f (xi) , i ∈ {0, . . . ,n},
[x0, . . . ,xn; f ] =

[x1, . . . ,xn; f ]− [x0, . . . ,xn−1; f ]
xn− x0

·

The value [x0, . . . ,xn; f ] is independent of the order of the points x0, . . . ,xn.

n-convex functions can be characterized by the nth-order divided difference (see [15, p.
15]).

Definition 11.3 A function f : [a,b]→R is said to be n-convex (n≥ 0) if and only if for
all choices of (n+1) distinct points x0, . . . ,xn ∈ [a,b], the nth-order divided difference of
f satisfies [x0, . . . ,xn; f ]≥ 0.

Remark 11.1 Note that 0-convex functions are non-negative functions, 1-convex func-
tions are increasing functions and 2-convex functions are simply the convex functions.

The following interesting result related to the 3-convexity of the function g, is also pre-
sented in [6, Corollaries 2.2 and 2.4].

Corollary 11.1 Let ak > 0 and pk > 0 (1≤ k ≤ n) be real numbers such that Pk =k
i=1 pi

(1≤ k ≤ n) and let g : [a,b]→R be a differentiable function.

(i) Let Pk−1, Pk,
k−1

i=1 piai
ak

, k
i=1 piai

ak
∈ [a,b] for all k ∈ {2, . . . ,n}. If g is 3-convex, then

(11.3) holds for any s ∈ R.

(ii) Let p1a1, Pk−1ak, Pkak, k−1
i=1 piai, k

i=1 piai ∈ [a,b] for all k ∈ {2, . . . ,n}. If g is
3-convex, then (11.4) holds.

If g is 3-concave, then the reversed inequalities hold in (11.3) and (11.4).

A sequence {ak}k∈N of real numbers which is non-increasing in weighted mean (see [6])
can be defined as follows:
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Definition 11.4 A sequence {ak}k∈N ⊂ R is non-increasing in weighted mean if

1
Pn

n


k=1

pkak ≥ 1
Pn+1

n+1


k=1

pkak, n ∈ N, (11.5)

where ak and pk (k ∈N) are real numbers such that pi > 0 (1≤ i≤ k) with Pk := k
i=1 pi

(k ∈ N).

If the reversed inequality holds in (11.5), then the sequence {ak}k∈N ⊂ R is called non-
decreasing in weighted mean.
In a similar way, we can define when a finite sequence {ak}nk=1 ⊂ R is non-increasing or
non-decreasing in weighted mean.

In [1] G. Bennett proved the weighted version of an inequality presented by Hardy-
Littlewood-Pólya (see [2, Theorem 134]) for power functions f (x) = xs: if ak (1≤ k ≤ n)
are non-negative and non-increasing and pk ≥ 0 for all k∈ {1, . . . ,n} such that Pk =k

i=1 pi

(1≤ k ≤ n), then for any real number s > 1, the inequality(
n


k=1

pkak

)s

≥
n


k=1

Ps
k

(
as

k−as
k+1

)
= (p1a1)

s +
n


k=2

as
k

(
Ps

k −Ps
k−1

)
(11.6)

holds. If 0 < s < 1, then the reversed inequality holds in (11.6) (see [1]).

S. Khalid, J. Pečarić and M. Praljak presented the following generalization of inequality
(11.6) in [6, Theorem 3].

Theorem 11.3 Let ak and pk (1≤ k ≤ n) be real numbers such that ak ≥ 0 and pk > 0.
Let p1a1, n

k=1 pkak, Pkak, Pk−1ak ∈ [a,b] for all k ∈ {2, . . . ,n} and let f : [a,b]→ R be a
Wright-convex function.

(i) If the sequence {ak}nk=1 is non-increasing in weighted mean, then

f

(
n


k=1

pkak

)
≥ f (p1a1)+

n


k=2

[ f (Pkak)− f (Pk−1ak)] . (11.7)

(ii) If the sequence {ak}nk=1 is non-decreasing in weighted mean, then

f

(
n


k=1

pkak

)
≤ f (p1a1)+

n


k=2

[ f (Pkak)− f (Pk−1ak)] . (11.8)

If f is Wright-concave, then the reversed inequalities hold in (11.7) and (11.8).

Definition 11.5 Zipf-Mandelbrot law is a discrete probability distribution depending on
three parameters n ∈ N, r ≥ 0 and t > 0, and is defined as

f (i;n,r,t) =
1

(i+ r)tHn,r,t
, i ∈ {1, . . . ,n},
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where f is known as the probability mass function and

Hn,r,t :=
n


k=1

1
(k+ r)t

(11.9)

is the generalized harmonic number.

If we take pk = 1
(k+r)tHn,r,t

(1 ≤ k ≤ n, r ≥ 0, t > 0 and Hn,r,t is the same as defined in

Definition 11.5) in S (p), then simple calculations reveal that

n


k=1

1

(k+ r)t Hn,r,t
log
(
(k+ r)t Hn,r,t

)
=

t
Hn,r,t

n


k=1

log(k+ r)
(k+ r)t

+ log(Hn,r,t)

:= Z (r,t,Hn,r,t) ,

where Z (r, t,Hn,r,t) is known as Zipf-Mandelbrot entropy.

The results related to Shannon entropy and Zipf-Mandelbrot law are topic of great
interest see for example [3], [10] and [11]. Zipf-Mandelbrot law is revisited in the context
of linguistics in [13] (see also [12]).

In the first section of this chapter we present some interesting results related to the
bounds of Zipf-Mandelbrot entropy and the 3-convexity of the function. In the second sec-
tion, we present some interesting results related to the bounds of Shannon entropy by using
non-increasing (non-decreasing) sequence of real numbers and by applying Theorem 11.3.
Further, we also present some results related to the bounds of Zipf-Mandelbrot entropy. In
both the sections, we define linear functionals as the non-negative differences of the ob-
tained inequalities and we present mean value theorems for the linear functionals. We also
discuss the n-exponential convexity and the log-convexity of the functions associated with
the linear functionals.

11.2 On Zipf-Mandelbrot entropy and 3-convex
functions

The results presented in this section are given in [7]. This section is organized as follows: in
Section 11.2.1, we present some interesting results related to Zipf-Mandelbrot entropy. In
Section 11.2.2, we define linear functionals as the non-negative differences of the obtained
inequalities and present mean value theorems for the linear functionals. In Section 11.2.3,
we present the properties of functionals, such as n-exponential and logarithmic convexity.
Finally, we give an example of the family of functions for which the results can be applied.
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11.2.1 Inequalities related to Zipf-Mandelbrot entropy

The aim of this section is to present some interesting results related to Zipf-Mandelbrot
entropy.
Now first we define the cumulative distribution function as follows:

Ck,n,r,t :=
Hk,r,t

Hn,r,t
, (11.10)

where k ∈ {1, . . . ,n}, n∈N, r≥ 0, t > 0 and Hn,r,t is the same as defined in Definition 11.5.
The first result of this section states that:

Theorem 11.4 Let Z (r,t,Hn,r,t) be the Zipf-Mandelbrot entropy and F and Ck,n,r,t be the
same as defined in (11.2) and (11.10) respectively. Then

Z (r, t,Hn,r,t)+
n


k=2

(
k−1

(k+ r)tHn,r,t
−Ck−1,n,r,t

)
log

(
k

k−1

)
≤ 1

Hn,r,t

n


k=2

F (k−1)
(k+ r)t

≤ Z (r,t,Hn,r,t)+
n


k=2

(
k−1

(k+ r)tHn,r,t
−Ck−1,n,r,t

)
log

(
Hk,r,t

Hk−1,r,t

)
.

Proof. Take pk = 1
(k+r)tHn,r,t

(1≤ k ≤ n, r ≥ 0, t > 0) in (11.1), the result is immediate. �

The second main result of this section states that:

Theorem 11.5 Let ak > 0 be real numbers and Hn,r,t and Ck,n,r,t be the same as defined
in (11.9) and (11.10) respectively. Let g : [a,b]→ R be a differentiable function such that
g(x+h)−g(x) is convex for all x,x+h ∈ [a,b], where h≥ 0.

(i) LetCk−1,n,r,t , Ck,n,r,t ,
1

akHn,r,t
k−1

i=1
ai

(i+r)t ,
1

akHn,r,t
k

i=1
ai

(i+r)t ∈ [a,b] for all k∈{2, . . . ,n}.
Then for any s ∈R, we have

n


k=2

as
k

(
g
(
Ck,n,r,t

)−g
(
Ck−1,n,r,t

))
+

n


k=2

as−1
k

(
1

Hn,r,t

k−1


i=1

ai

(i+ r)t
−akCk−1,n,r,t

)(
g′
(
Ck,n,r,t

)−g′
(
Ck−1,n,r,t

))
≤

n


k=2

as
k

(
g

(
1

akHn,r,t

k


i=1

ai

(i+ r)t

)
−g

(
1

akHn,r,t

k−1


i=1

ai

(i+ r)t

))

≤
n


k=2

as
k

(
g
(
Ck,n,r,t

)−g
(
Ck−1,n,r,t

))
+

n


k=2

as−1
k

(
1

Hn,r,t

k−1


i=1

ai

(i+ r)t
−akCk−1,n,r,t

)
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×
(

g′
(

1
akHn,r,t

k


i=1

ai

(i+ r)t

)
−g′
(

1
akHn,r,t

k−1


i=1

ai

(i+ r)t

))
. (11.11)

(ii) Let a1
(1+r)tHn,r,t

, akCk−1,n,r,t , akCk,n,r,t ,
1

Hn,r,t
k−1

i=1
ai

(i+r)t ,
1

Hn,r,t
k

i=1
ai

(i+r)t ∈ [a,b] for all

k ∈ {2, . . . ,n}. Then

g

(
a1

(1+ r)tHn,r,t

)
+

n


k=2

(
g
(
akCk,n,r,t

)−g
(
akCk−1,n,r,t

))
+

n


k=2

(
1

Hn,r,t

k−1


i=1

ai

(i+ r)t
−akCk−1,n,r,t

)(
g′
(
akCk,n,r,t

)−g′
(
akCk−1,n,r,t

))
≤ g

(
1

Hn,r,t

n


i=1

ai

(i+ r)t

)

≤ g

(
a1

(1+ r)tHn,r,t

)
+

n


k=2

(
g
(
akCk,n,r,t

)−g
(
akCk−1,n,r,t

))
+

n


k=2

(
1

Hn,r,t

k−1


i=1

ai

(i+ r)t
−akCk−1,n,r,t

)

×
(

g′
(

1
Hn,r,t

k


i=1

ai

(i+ r)t

)
−g′
(

1
Hn,r,t

k−1


i=1

ai

(i+ r)t

))
. (11.12)

If g(x+h)− g(x) is concave for all x, x + h ∈ [a,b] such that h ≥ 0, then the reversed
inequalities hold in (11.11) and (11.12).

Proof.

(i) By taking pi = 1
(i+r)tHn,r,t

in (11.3), the result is immediate.

(ii) The idea of the proof is the same as discussed in (i).

�

Corollary 11.2 Let ak > 0 be real numbers, Hn,r,t and Ck,n,r,t be the same as defined in
(11.9) and (11.10) respectively and let g : [a,b]→ R be a differentiable function.

(i) Let the condition of Theorem 11.5 (i) holds. If g is 3-convex, then (11.11) holds for
any s ∈ R.

(ii) Let the condition of Theorem 11.5 (ii) holds. If g is 3-convex, then (11.12) holds.

If g is 3-concave, then the reversed inequalities hold in (11.11) and (11.12).
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11.2.2 Linear functionals and mean value theorems

Consider the inequalities (11.11) and (11.12) and define linear functionalsi (i = 1-6) by
the non-negative differences of the inequalities (11.11) and (11.12) as follows:

1 (g) =
n


k=2

as
k

(
g

(
1

akHn,r,t

k


i=1

ai

(i+ r)t

)
−g

(
1

akHn,r,t

k−1


i=1

ai

(i+ r)t

))

−
n


k=2

as
k

(
g
(
Ck,n,r,t

)−g
(
Ck−1,n,r,t

))
−

n


k=2

as−1
k Dk

(
g′
(
Ck,n,r,t

)−g′
(
Ck−1,n,r,t

))
, (11.13)

2 (g) =
n


k=2

as−1
k

(
1

Hn,r,t

k−1


i=1

ai

(i+ r)t
−akCk−1,n,r,t

)

×
(

g′
(

1
akHn,r,t

k


i=1

ai

(i+ r)t

)
−g′
(

1
akHn,r,t

k−1


i=1

ai

(i+ r)t

))

−
n


k=2

as−1
k Dk

(
g′
(
Ck,n,r,t

)−g′
(
Ck−1,n,r,t

))
, (11.14)

3 (g) =
n


k=2

as
k

(
g
(
Ck,n,r,t

)−g
(
Ck−1,n,r,t

))
−

n


k=2

as
k

(
g

(
1

akHn,r,t

k


i=1

ai

(i+ r)t

)
−g

(
1

akHn,r,t

k−1


i=1

ai

(i+ r)t

))

+
n


k=2

as−1
k Dk

(
g′
(

1
akHn,r,t

k


i=1

ai

(i+ r)t

)
−g′
(

1
akHn,r,t

k−1


i=1

ai

(i+ r)t

))
,

(11.15)

4 (g) = g

(
1

Hn,r,t

n


i=1

ai

(i+ r)t

)
−g

(
a1

(1+ r)tHn,r,t

)
−

n


k=2

(
g
(
akCk,n,r,t

)−g
(
akCk−1,n,r,t

))
−

n


k=2

Dk
(
g′
(
akCk,n,r,t

)−g′
(
akCk−1,n,r,t

))
, (11.16)

5 (g) =
n


k=2

(
1

Hn,r,t

k−1


i=1

ai

(i+ r)t
−akCk−1,n,r,t

)

×
(

g′
(

1
Hn,r,t

k


i=1

ai

(i+ r)t

)
−g′
(

1
Hn,r,t

k−1


i=1

ai

(i+ r)t

))

−
n


k=2

Dk
(
g′
(
akCk,n,r,t

)−g′
(
akCk−1,n,r,t

))
(11.17)
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and

6 (g) = g

(
a1

(1+ r)tHn,r,t

)
−g

(
1

Hn,r,t

n


i=1

ai

(i+ r)t

)

+
n


k=2

(
g
(
akCk,n,r,t

)−g
(
akCk−1,n,r,t

))
+

n


k=2

Dk

(
g′
(

1
Hn,r,t

k


i=1

ai

(i+ r)t

)
−g′
(

1
Hn,r,t

k−1


i=1

ai

(i+ r)t

))
, (11.18)

where Dk = 1
Hn,r,t

k−1
i=1

ai
(i+r)t

−akCk−1,n,r,t .

If g : [a,b]→ R is differentiable and 3-convex, then Corollary 11.2 implies that

i (g)≥ 0, i ∈ {1, . . . ,6}.
Now we give mean value theorems for the functionalsi (i = 1-6) as defined in (11.13)-(11.18).
These theorems enable us to define various classes of means that can be expressed in terms
of linear functionals.

Theorem 11.6 Let g : [a,b]→R be such that g∈C3 ([a,b]) and leti (i = 1-6) be linear
functionals as defined in (11.13)-(11.18). Then there exists i ∈ [a,b] such that

i (g) =
g′′′ (i)

6
i (g0) , i ∈ {1, . . . ,6},

where g0 (x) = x3.

Proof. The proof is analogous to the proof of Theorem 2.7 in [6]. �

The following theorem is a new analogue of the classical Cauchy mean value theorem,
related to the functionals i (i = 1-6) and it can be proven by following the proof of
Theorem 2.8 in [6].

Theorem 11.7 Let g,h : [a,b]→ R be such that g,h ∈C3 ([a,b]) and let i (i = 1-6) be
linear functionals as defined in (11.13)-(11.18). Then there exists i ∈ [a,b] such that

i (g)
i (h)

=
g′′′ (i)
h′′′ (i)

, i ∈ {1, . . . ,6}, (11.19)

provided that the denominators are non-zero.

Remark 11.2 (i) By taking g(x) = xs and h(x) = xq in (11.19), where s,q ∈ R \
{0,1,2} are such that s 
= q, we have

 s−q
i =

q(q−1)(q−2)i (xs)
s(s−1)(s−2)i (xq)

, i ∈ {1, . . . ,6}.

(ii) If the inverse of the function g′′′/h′′′ exists, then (11.19) implies that

i =
(

g′′′

h′′′

)−1(i(g)
i(h)

)
, i ∈ {1, . . . ,6}.
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11.2.3 n-exponential convexity and log-convexity

In this section first we will present some important definitions which will be useful further.
In the sequel, let I be an open interval in R.

The next four definitions are given in [14].

Definition 11.6 A function f : I→R is n-exponentially convex in the Jensen sense if

n


i, j=1

i j f

(
xi + x j

2

)
≥ 0

holds for every i ∈ R and xi ∈ I (1≤ i≤ n).

Definition 11.7 A function f : I → R is n-exponentially convex if it is n-exponentially
convex in the Jensen sense and continuous on I.

Definition 11.8 A function f : I→ R is exponentially convex in the Jensen sense if it is
n-exponentially convex in the Jensen sense for all n ∈ N.

Definition 11.9 A function f : I→R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous.

A log-convex function is defined as follows (see [15, p. 7]):

Definition 11.10 A function f : I → (0,) is said to be log-convex or multiplicatively
convex if log f is convex. Equivalently, f is log-convex if for all x,y∈ I and for all  ∈ [0,1],
the inequality

f (x+(1− )y)≤ f  (x) f (1− ) (y)

holds. If the inequality reverses, then f is said to be log-concave.

Next we study the n-exponential convexity and log-convexity of the functions associated
with the linear functionalsi (i = 1-6) as defined in (11.13)-(11.18).

Theorem 11.8 Let  = { fs : s ∈ I ⊆ R} be a family of differentiable functions defined
on [a,b] such that the function s �→ [z0,z1,z2,z3; fs] is n-exponentially convex in the Jensen
sense on I for every four mutually distinct points z0,z1,z2,z3 ∈ [a,b]. Let i (i = 1-6) be
the linear functionals as defined in (11.13)-(11.18). Then the following statements hold:

(i) The function s �→ i ( fs) is n-exponentially convex in the Jensen sense on I and

the matrix

[
i

(
f s j+sk

2

)]m
j,k=1

is positive semi-definite for all m ∈ N, m ≤ n and

s1, . . . ,sm ∈ I. Particularly,

det

[
i

(
f s j+sk

2

)]m
j,k=1
≥ 0, ∀ m ∈ N, m≤ n.

(ii) If the function s �→i ( fs) is continuous on I, then it is n-exponentially convex on I.
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Proof. The proof is analogous to the proof of Theorem 3.11 in [6]. �

The following corollary is an immediate consequence of Theorem 11.8.

Corollary 11.3 Let  = { fs : s ∈ I ⊆ R} be a family of differentiable functions defined
on [a,b] such that the function s �→ [z0,z1,z2,z3; fs] is exponentially convex in the Jensen
sense on I for every four mutually distinct points z0,z1,z2,z3 ∈ [a,b]. Let i (i = 1-6) be
the linear functionals as defined in (11.13)-(11.18). Then the following statements hold:

(i) The function s �→i ( fs) is exponentially convex in the Jensen sense on I and the ma-

trix

[
i

(
f s j+sk

2

)]m
j,k=1

is positive semi-definite for all m∈N, m≤ n and s1, . . . ,sm ∈
I. Particularly,

det

[
i

(
f s j+sk

2

)]m
j,k=1
≥ 0, ∀ m ∈ N, m≤ n.

(ii) If the function s �→i ( fs) is continuous on I, then it is exponentially convex on I.

Corollary 11.4 Let  = { fs : s ∈ I ⊆ R} be a family of differentiable functions defined
on [a,b] such that the function s �→ [z0,z1,z2,z3; fs] is 2-exponentially convex in the Jensen
sense on I for every four mutually distinct points z0,z1,z2,z3 ∈ [a,b]. Leti (i = 1-6) be the
linear functionals as defined in (11.13)-(11.18). Further, assume that i ( fs) (i = 1-6) is
strictly positive for fs ∈ . Then the following statements hold:

(i) If the function s �→ i ( fs) is continuous on I, then it is 2-exponentially convex on I
and so it is log-convex on I and for r̃,s, t̃ ∈ I such that r̃ < s < t̃ , we have

[i ( fs)]t̃
−r̃ ≤ [i ( fr̃)]t̃

−s [i ( ft̃ )]
s−r̃

, i ∈ {1, . . . ,6}, (11.20)

known as Lyapunov’s inequality. If r̃ < t̃ < s or s < r̃ < t̃ , then the reversed inequal-
ities hold in (11.20).

(ii) If the function s �→i ( fs) is differentiable on I, then for every s,q,u,v ∈ I such that
s≤ u and q≤ v, we have

s,q (i,)≤ u,v (i,) , i ∈ {1, . . . ,6}, (11.21)

where

s,q (i,) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
i ( fs)
i ( fq)

) 1
s−q

, s 
= q,

exp

(
d
dsi ( fs)
i ( fs)

)
, s = q

(11.22)

for fs, fq ∈ .

Proof. The proof is analogous to the proof of the Corollary 3.13 in [6]. �
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Remark 11.3 Note that the results from Theorem 11.8, Corollary 11.3 and Corollary
11.4 still hold when two of the points z0,z1,z2,z3 ∈ [a,b] coincide, say z1 = z0, for a family
of differentiable functions fs such that the function s �→ [z0,z0,z2,z3; fs] is n-exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense on I), when three of the points z0,z1,z2,z3 ∈ [a,b] coincide, say z2 = z1 = z0,
for a family of differentiable functions fs such that the function s �→ [z0,z0,z0,z3; fs] is
n-exponentially convex in the Jensen sense, when three of the points z0,z1,z2,z3 ∈ [a,b]
coincide again, say z2 = z1 = z0, for a family of twice differentiable functions fs such that
the function s �→ [z0,z0,z0,z3; fs] is n-exponentially convex in the Jensen sense and fur-
thermore, they still hold when all four points coincide for a family of thrice differentiable
functions with the same property.

There are several families of functions which fulfil the conditions of Theorem 11.8, Corol-
laries 11.3 and 11.4, and Remark 11.3 and so the results of these theorem and corollaries
can be applied for them. Here we present an example for such a family of functions and
for more examples see [6] and [9].

Example 11.1 Consider the family of functions

̃= { fs : (0,)→ R : s ∈R}

defined by

fs (x) =

⎧⎪⎪⎨⎪⎪⎩
xs

s(s−1)(s−2) , s /∈ {0,1,2},
1
2 logx, s = 0,
−x logx, s = 1,
1
2x2 logx, s = 2.

Here d3

dx3 fs (x) = xs−3 = e(s−3) lnx > 0, which shows that fs is 3-convex for x > 0 and

s �→ d3

dx3 fs (x) is exponentially convex by definition.

In order to prove that s �→ [z0,z1,z2,z3; fs] is exponentially convex, it is enough to show
that

n
j,k=1  jk

[
z0,z1,z2,z3; f s j+sk

2

]
=
[
z0,z1,z2,z3;n

j,k=1  jk f s j+sk
2

]
≥ 0, (11.23)

for all n ∈ N,  j,s j ∈ R, j ∈ {1, . . . ,n}. By Definition 11.3, inequality (11.23) will hold if

(x) :=n
j,k=1  jk f s j+sk

2
(x) is 3-convex. Since s �→ d3

dx3 fs (x) is exponentially convex, that

is
n


j,k=1

 jk f
′′′
s j+sk

2

≥ 0, ∀ n ∈ N,  j,s j ∈R, j ∈ {1, . . . ,n},

which implies that  is 3-convex, inequality (11.23) is immediate. Now as
s �→ [z0,z1,z2,z3; fs] is exponentially convex, s �→ [z0,z1,z2,z3; fs] is exponentially convex
in the Jensen sense and by using Corollary 11.3, we have s �→ i ( fs) (i = 1-6) is expo-
nentially convex in the Jensen sense. Since these mappings are continuous, s �→ i ( fs)
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(i = 1-6) is exponentially convex.

If r̃,s, t̃ ∈R are such that r̃ < s < t̃, then from (11.20) we have

i ( fs)≤ [i ( fr̃)]
t̃−s
t̃−r̃ [i ( ft̃)]

s−r̃
t̃−r̃ , i ∈ {1, . . . ,6}. (11.24)

If r̃ < t̃ < s or s < r̃ < t̃, then the reversed inequality holds in (11.24).

Particularly, for i = 1 and r̃,s, t̃ ∈ R\ {0,1,2} such that r̃ < s < t̃, we have

1
s(s−1)(s−2)

n


k=2

(
1

Hs
n,r,t

((
k


i=1

ai

(i+ r)t

)s

−
(

k−1


i=1

ai

(i+ r)t

)s)
+as

k

(
Cs

k−1,n,r,t−Cs
k,n,r,t

)
+ sas−1

k Dk

(
Cs−1

k−1,n,r,t −Cs−1
k,n,r,t

))
≤
⎡⎣ 1

r̃ (r̃−1)(r̃−2)

n


k=2

⎛⎝ 1

H
r̃
n,r,t

⎛⎝( k


i=1

ai

(i+ r)t

)r̃

−
(

k−1


i=1

ai

(i+ r)t

)r̃
⎞⎠

+ar̃
k

(
Cr̃

k−1,n,r,t−Cr̃
k,n,r,t

)
+ r̃ar̃−1

k Dk

(
Cr̃−1

k−1,n,r,t −Cr̃−1
k,n,r,t

))] t̃−s
t̃−r̃

×
⎡⎣ 1

t̃ (t̃−1)(t̃−2)

n


k=2

⎛⎝ 1

Ht̃
n,r,t

⎛⎝( k


i=1

ai

(i+ r)t

)t̃

−
(

k−1


i=1

ai

(i+ r)t

)t̃
⎞⎠

+at̃
k

(
Ct̃

k−1,n,r,t−Ct̃
k,n,r,t

)
+ t̃at̃−1

k Dk

(
Ct̃−1

k−1,n,r,t−Ct̃−1
k,n,r,t

))] s−r̃
t̃−r̃

, s /∈ {0,1,2}.

In this case, s,q (i,) (i = 1-6) defined in (11.22) becomes

s,q
(
i, ̃

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i( fs)
i( fq)

) 1
s−q

, s 
= q,

exp
(

2i( fs f0)
i( fs)

− 3s2−6s+2
s(s−1)(s−2)

)
, s = q /∈ {0,1,2},

exp
(
i( f 2

0 )
i( f0)

+ 3
2

)
, s = q = 0,

exp
(
i( f0 f1)
i( f1)

)
, s = q = 1,

exp
(
i( f0 f2)
i( f2)

− 3
2

)
, s = q = 2.

In particular for i = 1, we have

1 ( fs) =
1

s(s−1)(s−2)

n


k=2

(
1

Hs
n,r,t

((
k


i=1

ai

(i+ r)t

)s

−
(

k−1


i=1

ai

(i+ r)t

)s)
+as

k

(
Cs

k−1,n,r,t −Cs
k,n,r,t + sa−1

k Dk

(
Cs−1

k−1,n,r,t−Cs−1
k,n,r,t

)))
,s /∈ {0,1,2},

1 ( f0) =
1
2

n


k=2

as
k

(
log

(
Ck−1,n,r,t k

i=1
ai

(i+r)t

Ck,n,r,t k−1
i=1

ai
(i+r)t

)
+

Dk

ak (k+ r)t Ck−1,n,r,tCk,n,r,tHn,r,t

)
,
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1 ( f1) =
1

Hn,r,t

n


k=2

as−1
k

(
k−1


i=1

ai

(i+ r)t
log

(
1

akHn,r,t

k−1


i=1

ai

(i+ r)t

)

−
k


i=1

ai

(i+ r)t
log

(
1

akHn,r,t

k


i=1

ai

(i+ r)t

))

+
n


k=2

as
k

(
Ck,n,r,t logCk,n,r,t −Ck−1,n,r,t logCk−1,n,r,t

)
+

n


k=2

as−1
k Dk log

(
Ck,n,r,t

Ck−1,n,r,t

)
,

21 ( f2) =
1

H2
n,r,t

n


k=2

as−2
k

⎛⎝( k


i=1

ai

(i+ r)t

)2

log

(
1

akHn,r,t

k


i=1

ai

(i+ r)t

)

−
(

k−1


i=1

ai

(i+ r)t

)2

log

(
1

akHn,r,t

k−1


i=1

ai

(i+ r)t

)⎞⎠
+

n


k=2

as
k

(
C2

k−1,n,r,t log
(
Ck−1,n,r,t

)−C2
k,n,r,t log

(
Ck,n,r,t

))
−

n


k=2

as−1
k Dk

(
1

(k+ r)t Hn,r,t
+2Ck,n,r,t log

(
Ck,n,r,t

)
−2Ck−1,n,r,t log

(
Ck−1,n,r,t

))
,

41
(
f0

2) =
n


k=2

as
k

(
log2

(
1

akHn,r,t

k


i=1

ai

(i+ r)t

)
− log2

(
1

akHn,r,t

k−1


i=1

ai

(i+ r)t

))

+
n


k=2

as
k

(
log2 (Ck−1,n,r,t

)− log2 (Ck,n,r,t
))

−2
n


k=2

as−1
k Dk

(
log
(
Ck,n,r,t

)
Ck,n,r,t

− log
(
Ck−1,n,r,t

)
Ck−1,n,r,t

)
,

21 ( fs f0) =
1

s(s−1)(s−2)Hs
n,r,t

n


k=2

((
k


i=1

ai

(i+ r)t

)s

log

(
1

akHn,r,t

k


i=1

ai

(i+ r)t

)

−
(

k−1


i=1

ai

(i+ r)t

)s

log

(
1

akHn,r,t

k−1


i=1

ai

(i+ r)t

))

+
1

s(s−1)(s−2)

n


k=2

as
k

((
Cs

k−1,n,r,t log
(
Ck−1,n,r,t

)−Cs
k,n,r,t log

(
Ck,n,r,t

))
+a−1

k Dk

(
Cs−1

k−1,n,r,t

(
1+ s log

(
Ck−1,n,r,t

))−Cs−1
k,n,r,t

(
1+ s log

(
Ck,n,r,t

))))
,

s /∈ {0,1,2},
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21 ( f0 f1) =
1

Hn,r,t

n


k=2

as−1
k

(
k−1


i=1

ai

(i+ r)t
log2

(
1

akHn,r,t

k−1


i=1

ai

(i+ r)t

)

−
k


i=1

ai

(i+ r)t
log2

(
1

akHn,r,t

k


i=1

ai

(i+ r)t

))

+
n


k=2

as
k

(
Ck,n,r,t log2 (Ck,n,r,t

)−Ck−1,n,r,t log2 (Ck−1,n,r,t
))

+
n


k=2

as−1
k Dk

((
2+ log

(
Ck,n,r,t

))
log
(
Ck,n,r,t

)
−(2+ log

(
Ck−1,n,r,t

))
log
(
Ck−1,n,r,t

))
and

41 ( f0 f2) =
1

H2
n,r,t

n


k=2

as−2
k

⎛⎝( k


i=1

ai

(i+ r)t

)2

log2

(
1

akHn,r,t

k


i=1

ai

(i+ r)t

)

−
(

k−1


i=1

ai

(i+ r)t

)2

log2

(
1

akHn,r,t

k−1


i=1

ai

(i+ r)t

)⎞⎠
+

n


k=2

as
k

(
C2

k−1,n,r,t log2 (Ck−1,n,r,t
)−C2

k,n,r,t log2 (Ck,n,r,t
))

+2
n


k=2

as−1
k Dk

(
Ck−1,n,r,t

(
1+ log

(
Ck−1,n,r,t

))
log
(
Ck−1,n,r,t

)
−Ck,n,r,t

(
1+ log

(
Ck,n,r,t

))
log
(
Ck,n,r,t

))
.

If i (i = 1-6) is positive, then Theorem 11.7 applied for g = fs ∈ ̃ and h = fq ∈ ̃ yields
that there exists i ∈ [a,b] such that

 s−q
i =

i ( fs)
i ( fq)

, i ∈ {1, . . . ,6}.

Since the function i �→  s−q
i (i = 1-6) is invertible for s 
= q, we have

min{a,b} ≤
(
i( fs)
i ( fq)

) 1
s−q

≤max{a,b}, i ∈ {1, . . . ,6},

which together with the fact that s,q(i, ̃) (i = 1-6) is continuous, symmetric and mo-
notonous (by (11.21)) shows that s,q

(
i, ̃

)
(i = 1-6) is a mean.
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11.3 Shannon and Zipf-Mandelbrot entropies and
related results

The results presented in this section are given in [8]. This section is organized as follows:
in Section 11.3.1 and 11.3.2, we present some interesting results related to Shannon and
Zipf-Mandelbrot entropies respectively. In Section 11.3.3, we define linear functionals as
the non-negative differences of the obtained inequalities and present mean value theorems
for the linear functionals. In Section 11.3.4, we present the properties of the functionals,
such as n-exponential and logarithmic convexity. Finally, we give an example of the family
of functions for which the results can be applied.

Remark 11.4 log denotes the logarithmic function and throughout this section we con-
sider the base b of logarithm is greater than 1.

11.3.1 Inequalities related to Shannon entropy

In our first main result, we will use the following lemma:

Lemma 11.1 (i) If pi ∈R such that pi > 0 (1≤ i≤ n) and if the sequence {ai}ni=1⊂R

is non-increasing, then it is non-increasing in weighted mean.

(ii) If pi ∈ R such that pi > 0 (1≤ i≤ n) and if the sequence {ai}ni=1 ⊂ R is non-
decreasing, then it is non-decreasing in weighted mean.

Proof.

(i) Simple calculations reveal that

1
Pk

k


i=1

piai− 1
Pk+1

k+1


i=1

piai =
pk+1

PkPk+1

(
k


i=1

piai−Pkak+1

)
.

As a1 ≥ . . .≥ an and pi > 0, i ∈ {1, . . . ,n}, we have

p1a1 ≥ p1ak+1,

...

pkak ≥ pkak+1.

On adding the above inequalities we have k
i=1 piai−Pkak+1 ≥ 0, which combined

together with pk+1
PkPk+1

> 0 yields that 1
Pk
k

i=1 piai ≥ 1
Pk+1

k+1
i=1 piai.

(ii) The proof is analogous to the proof of (i).

�

Our first main result states that:
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Theorem 11.9 Let pk ∈R such that pk > 0 (1≤ k ≤ n) and let f : [a,b]→R be a Wright-
convex function.

(a) Let 0 < pk < 1 (1≤ k ≤ n) and let S (p), p1 log
(

1
p1

)
, Pk log

(
1
pk

)
, Pk−1 log

(
1
pk

)
∈ [a,b] for all k ∈ {2, . . . ,n}.

(i) If the sequence {pk}nk=1 is non-increasing, then

f (S (p))≤ f

(
p1 log

(
1
p1

))
+

n


k=2

[
f

(
Pk log

(
1
pk

))
− f

(
Pk−1 log

(
1
pk

))]
.(11.25)

(ii) If the sequence {pk}nk=1 is non-decreasing, then

f (S (p))≥ f

(
p1 log

(
1
p1

))
+

n


k=2

[
f

(
Pk log

(
1
pk

))
− f

(
Pk−1 log

(
1
pk

))]
.(11.26)

(b) Let pk ≥ 1 (1≤ k ≤ n) and let −S (p), p1 log p1, Pk log pk, Pk−1 log pk ∈ [a,b] for all
k ∈ {2, . . . ,n}.

(i) If the sequence {pk}nk=1 is non-increasing, then

f (−S (p))≥ f (p1 log p1)+
n


k=2

[ f (Pk log pk)− f (Pk−1 log pk)] . (11.27)

(ii) If the sequence {pk}nk=1 is non-decreasing, then

f (−S (p))≤ f (p1 log p1)+
n


k=2

[ f (Pk log pk)− f (Pk−1 log pk)] . (11.28)

If f is Wright-concave, then the reversed inequalities hold in (11.25) - (11.28).

Proof.

(a) (i) As p1≥ p2≥ . . .≥ pn and b > 1, the sequence
{

log
(

1
pk

)}n

k=1
is non-decreasing.

By Lemma 11.1 (ii), the sequence
{

log
(

1
pk

)}n

k=1
is non-decreasing in weighted

mean and hence by using Theorem 11.3(ii) for ak = log
(

1
pk

)
such that 0 <

pk < 1 (1≤ k ≤ n), the result is immediate.

(ii) The idea of the proof is the same as discussed in (i).
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(b) (i) As p1 ≥ p2 ≥ . . . ≥ pn and b > 1, the sequence {log pk}nk=1 is non-increasing.
By Lemma 11.1 (i), the sequence {log pk}nk=1 is non-increasing in weighted
mean and hence by taking ak = log pk with pk ≥ 1 (1≤ k ≤ n) in Theorem
11.3(i), the result is immediate.

(ii) The idea of the proof is the same as discussed in (i).

�

Since the class of convex (concave) functions is properly contained in the class of
Wright-convex (Wright-concave) functions, the following corollary is immediate:

Corollary 11.5 Let pk ∈R such that pk > 0 (1≤ k≤ n) and let f : [a,b]→R be a convex
function.

(a) Let all the conditions of Theorem 11.9(a) hold.

(i) If the sequence {pk}nk=1 is non-increasing, then (11.25) holds.

(ii) If the sequence {pk}nk=1 is non-decreasing, then (11.26) holds.

(b) Let all the conditions of Theorem 11.9(b) hold.

(i) If the sequence {pk}nk=1 is non-increasing, then (11.27) holds.

(ii) If the sequence {pk}nk=1 is non-decreasing, then (11.28) holds.

If f is concave, then the reversed inequalities hold in (11.25) - (11.28).

An application of Corollary 11.5 is given as follows:

Corollary 11.6 Let f (x) = xs, where x ∈ (0,) and s ∈ R. Let pk ∈ R such that pk > 0
(1≤ k ≤ n).

(a) Let 0 < pk < 1 (1≤ k≤ n) and let s < 0 or s > 1.

(i) If the sequence {pk}nk=1 is non-increasing, then

(S (p))s ≤
(

p1 log

(
1
p1

))s

+
n


k=2

(
log

(
1
pk

))s (
Ps

k −Ps
k−1

)
. (11.29)

(ii) If the sequence {pk}nk=1 is non-decreasing, then

(S (p))s ≥
(

p1 log

(
1
p1

))s

+
n


k=2

(
log

(
1
pk

))s (
Ps

k −Ps
k−1

)
. (11.30)

(b) Let pk ≥ 1 (1≤ k≤ n) and let s < 0 or s > 1.

(i) If the sequence {pk}nk=1 is non-increasing, then

(−S (p))s ≥ (p1 log p1)
s +

n


k=2

(log pk)
s (Ps

k −Ps
k−1

)
. (11.31)
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(ii) If the sequence {pk}nk=1 is non-decreasing, then

(−S (p))s ≤ (p1 log p1)
s +

n


k=2

(log pk)
s (Ps

k −Ps
k−1

)
. (11.32)

If 0 < s < 1, then the reversed inequalities hold in (11.29) - (11.32).

11.3.2 Inequalities related to Zipf-Mandelbrot entropy

The aim of this section is to present some interesting results by using Zipf-Mandelbrot
entropy.

The first main result of this section states that:

Theorem 11.10 Let Z (r,t,Hn,r,t) be the Zipf-Mandelbrot entropy, Ck,n,r,t be the cumula-
tive distribution function and f : [a,b]→R be a Wright-convex function.

(i) Let 0 < 1
(k+r)tHn,r,t

< 1.

If Z (r,t,Hn,r,t), log
(
(1+ r)t Hn,r,t

) 1
(1+r)t Hn,r,t , log

(
(k+ r)t Hn,r,t

)Ck,n,r,t ,

log
(
(k+ r)t Hn,r,t

)Ck−1,n,r,t ∈ [a,b] for all k ∈ {2, . . . ,n}, then

f (Z (r,t,Hn,r,t)) ≤ f

(
log
(
(1+ r)t Hn,r,t

) 1
(1+r)tHn,r,t

)
+

n


k=2

f
(
log
(
(k+ r)t Hn,r,t

)Ck,n,r,t
)

−
n


k=2

f
(
log
(
(k+ r)t Hn,r,t

)Ck−1,n,r,t
)

. (11.33)

(ii) Let (k+ r)t Hn,r,t ≤ 1.

If −Z (r,t,Hn,r,t), log
(
(1+ r)t Hn,r,t

) −1
(1+r)tHn,r,t , log

(
(k+ r)t Hn,r,t

)−Ck,n,r,t ,

log
(
(k+ r)t Hn,r,t

)−Ck−1,n,r,t ∈ [a,b] for all k ∈ {2, . . . ,n}, then

f (−Z (r,t,Hn,r,t)) ≥ f

(
log
(
(1+ r)t Hn,r,t

) −1
(1+r)tHn,r,t

)
+

n


k=2

f
(
log
(
(k+ r)t Hn,r,t

)−Ck,n,r,t
)

−
n


k=2

f
(
log
(
(k+ r)t Hn,r,t

)−Ck−1,n,r,t
)

. (11.34)

If f is Wright-concave, then the reversed inequalities hold in (11.33) and (11.34).

Proof. It is easy to see that the sequence
{

pk = 1
(k+r)tHn,r,t

}n

k=1
is non-increasing over

k ∈ {1, . . . ,n}.
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(i) Take pk = 1
(k+r)tHn,r,t

in Theorem 11.9(a)(i), the result is immediate.

(ii) The idea of the proof is the same as discussed in (i) but here we apply Theorem
11.9(b)(i) instead of Theorem 11.9(a)(i).

�

Corollary 11.7 Let Z (r,t,Hn,r,t) be the Zipf-Mandelbrot entropy,Ck,n,r,t be the cumulative
distribution function and f : [a,b]→ R be a convex function.

(i) If all the conditions of Theorem 11.10(i) hold, then we have (11.33).

(ii) If all the conditions of Theorem 11.10(ii) hold, then we have (11.34).

If f is concave, then the reversed inequalities hold in (11.33) and (11.34).

11.3.3 Linear functionals and mean value theorems

Consider the inequalities (11.25), (11.27) and (11.33) and define linear functionals as
follows:

1 ( f ) = − f (S (p))+ f

(
p1 log

(
1
p1

))
+

n


k=2

[
f

(
Pk log

(
1
pk

))
− f

(
Pk−1 log

(
1
pk

))]
, (11.35)

2 ( f ) = f (−S (p))− f (p1 log p1)−
n


k=2

[ f (Pk log pk)− f (Pk−1 log pk)] (11.36)

and

3 ( f ) = − f (Z (r,t,Hn,r,t))+ f

(
log
(
(1+ r)t Hn,r,t

) 1
(1+r)tHn,r,t

)
+

n


k=2

[
f
(
log
(
(k+ r)t Hn,r,t

)Ck,n,r,t
)
− f
(
log
(
(k+ r)t Hn,r,t

)Ck−1,n,r,t
)]

.

(11.37)

If f is a convex function defined on [a,b] and if the sequence {pk}nk=1 ⊂ R is non-
increasing, then Corollary 11.5(a)(i) and Corollary 11.5(b)(i) imply that 1 ( f ) ≥ 0 and
2 ( f )≥ 0 respectively. Moreover, if Z (r,t,Hn,r,t) is the Zipf-Mandelbrot entropy,Ck,n,r,t is
the cumulative distribution function and if f : [a,b]→ R is a convex function, then Corol-
lary 11.7(i) implies that 3 ( f )≥ 0.

Now we present mean value theorems for the functional i (i = 1-3). Lagrange-type
mean value theorem related to i (i = 1-3) states that :
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Theorem 11.11 Let f : [a,b]→ R be such that f ∈C2 ([a,b]) and let 1, 2 and 3 be
the linear functionals as defined in (11.35), (11.36) and (11.37) respectively. Then there
exists 1,2,3 ∈ [a,b] such that

i ( f ) =
f ′′ (i)

2
i ( f0) , i ∈ {1,2,3},

where f0 (x) = x2.

Proof. The proof is analogous to the proof of Theorem 2.7 given in [5] (see also Theorem
2.2 in [14]). �

The following theorem is a new analogue of the classical Cauchy mean value theorem,
related to i (i = 1-3).

Theorem 11.12 Let f ,g : [a,b]→ R be such that f ,g ∈ C2 ([a,b]) and let 1, 2 and
3 be the linear functionals as defined in (11.35), (11.36) and (11.37) respectively. Then
there exist 1,2,3 ∈ [a,b] such that

i ( f )
i (g)

=
f ′′ (i)
g′′ (i)

, i ∈ {1,2,3}, (11.38)

provided that the denominators are non-zero.

Proof. The proof is analogous to the proof of Theorem 2.8 given in [5] (see also Theorem
2.4 in [14]). �

Remark 11.5 (i) By taking f (x) = xs and g(x) = xq in (11.38), where s,q∈R\{0,1}
are such that s 
= q, we have

 s−q
i =

q(q−1)i (xs)
s(s−1)i (xq)

, i ∈ {1,2,3}.

(ii) If the inverse of the function f ′′/g′′ exists, then (11.38) implies that

i =
(

f ′′

g′′

)−1(i ( f )
i (g)

)
, i ∈ {1,2,3}.

11.3.4 n-exponential convexity and log-convexity

Let I be an open interval in R.
Now we study the n-exponential convexity and log-convexity of the functions associ-

ated with the linear functionals i (i = 1-3) as defined in (11.35)-(11.37).

Theorem 11.13 Let  = { fs : s ∈ I ⊆ R} be a family of functions defined on [a,b] such
that the function s �→ [z0,z1,z2; fs] is n-exponentially convex in the Jensen sense on I for ev-
ery three mutually distinct points z0,z1,z2 ∈ [a,b]. Leti (i = 1-3) be the linear functionals
as defined in (11.35)-(11.37). Then the following statements hold:
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(i) The function s �→ i ( fs) is n-exponentially convex in the Jensen sense on I and

the matrix

[
i

(
f s j+sk

2

)]m
j,k=1

is positive semi-definite for all m ∈ N, m ≤ n and

s1, . . . ,sm ∈ I. Particularly,

det

[
i

(
f s j+sk

2

)]m
j,k=1
≥ 0, ∀ m ∈ N, m≤ n.

(ii) If the function s �→i ( fs) is continuous on I, then it is n-exponentially convex on I.

Proof. The idea of the proof is the same as that of the proof of Theorem 9 in [6]. �

The following corollary is an immediate consequence of Theorem 11.13.

Corollary 11.8 Let  = { fs : s ∈ I ⊆ R} be a family of functions defined on [a,b] such
that the function s �→ [z0,z1,z2; fs] is exponentially convex in the Jensen sense on I for every
three mutually distinct points z0,z1,z2 ∈ [a,b]. Let i (i = 1-3) be the linear functionals as
defined in (11.35)-(11.37). Then the following statements hold:

(i) The function s �→i ( fs) is exponentially convex in the Jensen sense on I and the ma-

trix

[
i

(
f s j+sk

2

)]m
j,k=1

is positive semi-definite for all m∈N, m≤ n and s1, . . . ,sm ∈
I. Particularly,

det

[
i

(
f s j+sk

2

)]m
j,k=1
≥ 0, ∀ m ∈ N, m≤ n.

(ii) If the function s �→i ( fs) is continuous on I, then it is exponentially convex on I.

Corollary 11.9 Let  = { fs : s ∈ I ⊆ R} be a family of functions defined on [a,b] such
that the function s �→ [z0,z1,z2; fs] is 2-exponentially convex in the Jensen sense on I for
every three mutually distinct points z0,z1,z2 ∈ [a,b]. Let i (i = 1-3) be the linear func-
tionals as defined in (11.35)-(11.37). Further, assume that i ( fs) (i = 1-3) is strictly
positive for fs ∈. Then the following statements hold:

(i) If the function s �→ i ( fs) is continuous on I, then it is 2-exponentially convex on I
and so it is log-convex on I and for r̃,s, t̃ ∈ I such that r̃ < s < t̃ , we have

[i ( fs)]t̃
−r̃ ≤ [i ( fr̃)]t̃

−s [i ( ft̃ )]
s−r̃

, i ∈ {1,2,3}, (11.39)

known as Lyapunov’s inequality. If r̃ < t̃ < s or s < r̃ < t̃ , then the reversed inequal-
ities hold in (11.39).

(ii) If the function s �→i ( fs) is differentiable on I, then for every s,q,u,v ∈ I such that
s≤ u and q≤ v, we have

s,q (i,)≤ u,v (i,) , i ∈ {1,2,3}, (11.40)



11.3 SHANNON AND ZIPF-MANDELBROT ENTROPIES 335

where

s,q (i,) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
i ( fs)
i ( fq)

) 1
s−q

, s 
= q,

exp

(
d
dsi ( fs)
i ( fs)

)
, s = q

(11.41)

for fs, fq ∈.

Proof. The idea of the proof is the same as that of the proof of Corollary 5 given in [6]. �

Remark 11.6 Note that the results from Theorem 11.13, Corollary 11.8 and Corollary
11.9 still hold when two of the points z0,z1,z2 ∈ [a,b] coincide, say z1 = z0, for a family
of differentiable functions fs such that the function s �→ [z0,z1,z2; fs] is n-exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense on I); and furthermore, they still hold when all three points coincide for a
family of twice differentiable functions with the same property.

There are several families of functions which fulfil the conditions of Theorem 11.13, Corol-
laries 11.8 and 11.9, and Remark 11.6 and so the results of these theorem and corollaries
can be applied for them. Here we present an example for such a family of functions and
for more examples see [9].

Example 11.2 Consider the family of functions

̃ = { fs : (0,)→ R : s ∈R}
defined by

fs (x) =

⎧⎨⎩
xs

s(s−1) , s /∈ {0,1},
− logx, s = 0,
x logx, s = 1.

Here d2

dx2 fs (x) = xs−2 = e(s−2) logx > 0, which shows that fs is convex for x > 0 and

s �→ d2

dx2 fs (x) is exponentially convex by definition.
In order to prove that the function s �→ [z0,z1,z2; fs] is exponentially convex, it is

enough to show that

n
j,k=1  jk

[
z0,z1,z2; f s j+sk

2

]
=
[
z0,z1,z2;n

j,k=1  jk f s j+sk
2

]
≥ 0, (11.42)

for all n ∈ N,  j,s j ∈ R, j ∈ {1, . . . ,n}. By Definition 11.3, inequality (11.42) will hold if

(x) := n
j,k=1  jk f s j+sk

2
(x) is convex. Since s �→ d2

dx2 fs (x) is exponentially convex, that

is
n


j,k=1

 jk f
′′
s j+sk

2

≥ 0, ∀ n ∈N,  j,s j ∈ R, j ∈ {1, . . . ,n},

which shows the convexity of , inequality (11.42) is immediate. Now as the function
s �→ [z0,z1,z2; fs] is exponentially convex, s �→ [z0,z1,z2; fs] is exponentially convex in the
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Jensen sense and by using Corollary 11.8, we have s �→ i ( fs) (i = 1-3) is exponentially
convex in the Jensen sense. Since these mappings are continuous, s �→i ( fs) (i = 1-3) is
exponentially convex.

If r̃,s, t̃ ∈ R are such that r̃ < s < t̃, then from (11.39) we have

i ( fs)≤ [i ( fr̃)]
t̃−s
t̃−r̃ [i ( ft̃)]

s−r̃
t̃−r̃ , i ∈ {1,2,3}. (11.43)

If r̃ < t̃ < s or s < r̃ < t̃, then the reversed inequality holds in (11.43).

Particularly, for i ∈ {1,2,3} and r̃,s, t̃ ∈ R\ {0,1} such that r̃ < s < t̃, we have

−Ss (p)+
(

p1 log
(

1
p1

))s
+n

k=2

(
log
(

1
pk

))s (
Ps

k −Ps
k−1

)
s(s−1)

≤

⎡⎢⎣−Sr̃ (p)+
(
p1 log

(
1
p1

))r̃
+n

k=2

(
log
(

1
pk

))r̃ (
Pr̃

k −Pr̃
k−1

)
r̃ (r̃−1)

⎤⎥⎦
t̃−s
t̃−r̃

×

⎡⎢⎣−St̃ (p)+
(

p1 log
(

1
p1

))t̃
+n

k=2

(
log
(

1
pk

))t̃ (
Pt̃

k−Pt̃
k−1

)
t̃ (t̃−1)

⎤⎥⎦
s−r̃
t̃−r̃

,

(−S (p))s− (p1 log p1)
s−n

k=2 (log pk)
s (Ps

k −Ps
k−1

)
s(s−1)

≤
[

(−S (p))r̃− (p1 log p1)
r̃−n

k=2 (log pk)
r̃ (Pr̃

k −Pr̃
k−1

)
r̃ (r̃−1)

] t̃−s
t̃−r̃

×
[

(−S (p))t̃ − (p1 log p1)
t̃ −n

k=2 (log pk)
t̃ (Pt̃

k−Pt̃
k−1

)
t̃ (t̃−1)

] s−r̃
t̃−r̃

and

1
s(s−1)

[
−Zs (r,t,Hn,r,t)+

(
log
(
(1+ r)t Hn,r,t

) 1
(1+r)tHn,r,t

)s

+
n


k=2

[(
log
(
(k+ r)t Hn,r,t

)Ck,n,r,t
)s−
(
log
(
(k+ r)t Hn,r,t

)Ck−1,n,r,t
)s]]

≤
(

1
r̃ (r̃−1)

) t̃−s
t̃−r̃

[
−Zr̃ (r,t,Hn,r,t)+

(
log
(
(1+ r)t Hn,r,t

) 1
(1+r)tHn,r,t

)r̃

+
n


k=2

[(
log
(
(k+ r)t Hn,r,t

)Ck,n,r,t
)r̃

−
(

log
(
(k+ r)t Hn,r,t

)Ck−1,n,r,t
)r̃
]] t̃−s

t̃−r̃
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×
(

1
t̃ (t̃−1)

) s−r̃
t̃−r̃

[
−Zt̃ (r,t,Hn,r,t)+

(
log
(
(1+ r)t Hn,r,t

) 1
(1+r)tHn,r,t

)t̃

+
n


k=2

[(
log
(
(k+ r)t Hn,r,t

)Ck,n,r,t
)t̃

−
(

log
(
(k+ r)t Hn,r,t

)Ck−1,n,r,t
)t̃
]] s−r̃

t̃−r̃

.

In this case, s,q (i,) (i = 1-3) defined in (11.41) becomes

s,q
(
i,̃

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
i( fs)
i( fq)

) 1
s−q

, s 
= q,

exp
(

1−2s
s(s−1) − i( f0 fs)

i( fs)

)
, s = q /∈ {0,1},

exp
(
1− i( f 2

0 )
2i( f0)

)
, s = q = 0,

exp
(
−1− i( f0 f1)

2i( f1)

)
, s = q = 1.

In particular for i = 1, we have

1 ( fs) =
1

s(s−1)

(
−Ss (p)+ ps

1 logs
(

1
p1

)
+

n


k=2

logs
(

1
pk

)(
Ps

k −Ps
k−1

))
, s /∈ {0,1},

1 ( f0) = log

⎛⎝ S (p)

p1 log
(

1
p1

)
⎞⎠+

n


k=2

log

(
Pk−1

Pk

)
,

1 ( f1) = log

⎛⎜⎜⎝
(

p1 log
(

1
p1

))p1 log
(

1
p1

)

(S (p))S(p)

⎞⎟⎟⎠+
n


k=2

log

⎛⎜⎜⎝
(
Pk log

(
1
pk

))Pk log
(

1
pk

)
(
Pk−1 log

(
1
pk

))Pk−1 log
(

1
pk

)
⎞⎟⎟⎠ ,

1
(
f 2
0

)
=

n


k=2

[
log2
(

Pk log

(
1
pk

))
− log2

(
Pk−1 log

(
1
pk

))]
+ log2

(
p1 log

(
1
p1

))
− log2 (S (p)) ,

1 ( f0 f1) = S (p) log2 (S (p))− p1 log

(
1
p1

)
log2
(

p1 log

(
1
p1

))
−

n


k=2

log

(
1
pk

)[
Pk log2

(
Pk log

(
1
pk

))
−Pk−1 log2

(
Pk−1 log

(
1
pk

))]
and

1 ( f0 fs) =
1

s(s−1)

⎛⎜⎜⎝log

⎛⎜⎜⎝ (S (p))(S(p))s(
p1 log

(
1
p1

))ps
1 logs

(
1
p1

)
⎞⎟⎟⎠

+
n


k=2

log

⎛⎜⎜⎝
(
Pk−1 log

(
1
pk

))Ps
k−1 logs

(
1
pk

)
(
Pk log

(
1
pk

))(Ps
k logs

(
1
pk

))s
⎞⎟⎟⎠
⎞⎟⎟⎠ , s /∈ {0,1}.
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If i (i = 1-3) is positive, then Theorem 11.12 applied for f = fs ∈ ̃ and g = fq ∈ ̃
yields that there exists i ∈ [a,b] such that

 s−q
i =

i ( fs)
i ( fq)

, i ∈ {1,2,3}.

Since the function i �→  s−q
i is invertible for s 
= q, we have

a≤
(
i ( fs)
i ( fq)

) 1
s−q

≤ b, i ∈ {1,2,3},

which together with the fact that s,q
(
i,̃

)
(i = 1-3) is continuous, symmetric and mo-

notonous (by (11.40)), shows that s,q
(
i,̃

)
is a mean.

Bibliography

[1] G. Bennett, Lower bounds for matrices, Linear Algebra Appl. 82(1986), 81–98.
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[8] S. Khalid, D. Pečarić, J. Pečarić, On Shannon and Zipf-Mandelbrot entropies and
related results, J. Inequal. Appl. (2019), (accepted).
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