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Zagreb, Croatia

Anamarija Perušić Pribanić
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Preface

Since its invention in 1918, Steffensen’s inequality is generalized in numerous directions
under various settings. This book collects its most recent advances in generalizations. Un-
der the vast diversities, in this book, Steffensen’s inequality is connected with the following
notions: convex functions, higher order convexity, exponential convexity, h−convex func-
tions, interpolating polynomials, measure theoretic aspects, weighted Bellman-Steffensen
type inequalities, Gauss type inequalities , Hölder type inequalities. . .
The book is organized as follows:

In the first chapter we consider the original version of Steffensen’s inequality, its full
characterization under relaxed assumptions, and then we overview tools and already known
results that will serve for further generalizations in the later chapters.

In the second chapter, the original version of Steffensen’s and reversed Steffensen’s
inequality is characterized in a measure theory settings (finite positive measures). In these
settings, Bellman Lp generalization of the inequality is proved and further improvement of
an extension of Bellman-Steffensen type of inequalities. Hölder inequality is also general-
ized in these settings, using modified Steffensen inequality.

In the third chapter results of Mercer, Pečarić and Wu-Srivastava are generalized, in
terms of measure theory, as fixed bounds for function g are relaxed to functions. In this
chaper we also cover Cerone’s and Pachpatte’s results and their generalizations.

In the fourth chapter we consider Steffensen inequality for convex and 3-convex func-
tions. This chapter also covers Gauss-type and Gauss-Steffenesen type inequalities.

In the fifth chapter we consider weighted Steffensen inequality for n-convex functions
using Taylor’s formula, Euler-type identities, Montgomery’s identity, Fink’s identity, Lid-
stone polynomial and two-point Abel-Gontscharoff polynomials.
In every chapter of the book, after proving inequalities, appropriate linear functionals are
constructed and corresponding Cauchy type means and exponentially convex functions are
constructed.
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1.5 Čebyšev functional bounds . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Interpolating polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.1 Lidstone interpolating polynomials . . . . . . . . . . . . . . . . 18
1.6.2 Hermite interpolating polynomials . . . . . . . . . . . . . . . . . 19
1.6.3 The two-point Abel-Gontscharoff interpolating polynomials . . . 21

2 Weighted Steffensen’s inequality 23
2.1 Steffensen’s inequality for positive measures . . . . . . . . . . . . . . . . 23
2.2 Some measure theoretic aspects of Steffensen’s and

reversed Steffensen’s inequality . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Exponential convexity induced by Steffensen’s inequality

and positive measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Bellman-Steffensen type inequalities . . . . . . . . . . . . . . . . . . . . 47
2.5 Further improvement of an extension of Hölder-type inequality . . . . . . 49
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Chapter1

Basic results and definitions

1.1 Steffensen’s inequality

Since its appearance in 1918 Steffensen’s inequality has been a subject of investigation
by many mathematicians. The book [82] is devoted to generalizations and refinements of
Steffensen’s inequality and its connection to other inequalities, such as Gauss’, Jensen-
Steffensen’s, Hölder’s and Iyengar’s inequality.

In this section we recall some important generalizations and refinements of Steffensen’s
inequality.

The original version from [85] has the following form.

Theorem 1.1 Suppose that f and g are integrable functions defined on (a,b), f is non-
increasing and for each t ∈ (a,b) 0 ≤ g ≤ 1. Then

∫ b

b−
f (t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt, (1.1)

where

 =
∫ b

a
g(t)dt. (1.2)

1



2 1 BASIC RESULTS AND DEFINITIONS

Proof. The proof of the second inequality in (1.1) goes as follows.∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt =

∫ a+

a
[1−g(t)] f (t)dt−

∫ b

a+
f (t)g(t)dt

≥ f (a+ )
∫ a+

a
[1−g(t)]dt−

∫ b

a+
f (t)g(t)dt

= f (a+ )
[
 −

∫ a+

a
g(t)dt

]
−
∫ b

a+
f (t)g(t)dt

= f (a+ )
∫ b

a+
g(t)dt−

∫ b

a+
f (t)g(t)dt

=
∫ b

a+
g(t)[ f (a+ )− f (t)]dt ≥ 0.

The first inequality in (1.1) is proved in a similar way, but it also follows from the second
one. One merely sets G(t) = 1− g(t) and  =

∫ b
a G(t)dt. Since 0 ≤ g(t) ≤ 1 on (a,b)

implies 0 ≤ G(t) ≤ 1 on (a,b) and b−a =  +. Using the second inequality in (1.1) we
obtain ∫ b

a
f (t)G(t)dt ≤

∫ a+

a
f (t)dt,∫ b

a
f (t)[1−g(t)]dt ≤

∫ b−

a
f (t)dt,∫ b

a
f (t)dt−

∫ b−

a
f (t)dt ≤

∫ b

a
f (t)g(t)dt.

Hence, ∫ b

b−
f (t)dt ≤

∫ b

a
f (t)g(t)dt,

which is the first inequality in (1.1). �

Mitrinović stated in [48] (see also [82, p. 15]) that inequalities in (1.1) follow from the
identities

∫ a+

a
f (t)dt −

b∫
a

f (t)g(t)dt

=
∫ a+

a
[ f (t)− f (a+ )][1−g(t)]dt+

∫ b

a+
[ f (a+ )− f (t)]g(t)dt (1.3)

and

∫ b

a
f (t)g(t)dt−

b∫
b−

f (t)dt

=
∫ b−

a
[ f (t)− f (b− )]g(t)dt +

∫ b

b−
[ f (b− )− f (t)][1−g(t)]dt. (1.4)
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Applying Steffensen’s inequality to appropriate functions, in [45] Masjed-Jamei, Qi
and Srivastava obtained the following Steffensen type inequalities:

Theorem 1.2 If f and g are integrable functions such that f is nonincreasing and

− 
b−a

(
1− 1

q

)
≤ g(x) ≤ 1− 

b−a

(
1− 1

q

)
(1.5)

on (a,b), where q �= 0 and

 = q
∫ b

a
g(x)dx,

then∫ b

b−
f (x)dx− 

b−a

(
1− 1

q

)∫ b

a
f (x)dx ≤

∫ b

a
f (x)g(x)dx

≤
∫ a+

a
f (x)dx− 

b−a

(
1− 1

q

)∫ b

a
f (x)dx.

(1.6)

The inequalities (1.6) are reversed for f nondecreasing.

Identities (1.3) and (1.4) are starting points for researching the conditions of Stef-
fensen’s inequality and eventually changing them. Milovanović and Pečarić in their paper
[47], using integration by parts in identities (1.3) and (1.4), obtained weaker conditions
on the function g. Vasić and Pečarić in paper [87] showed that this weaker conditions are
necessary and sufficient. Hence, we have the following theorem.

Theorem 1.3 Let f and g be integrable functions on [a,b] and let  =
∫ b
a g(t)dt.

(a) The second inequality in (1.1) holds for every nonincreasing function f if and only
if ∫ x

a
g(t)dt ≤ x−a and

∫ b

x
g(t)dt ≥ 0, for every x ∈ [a,b]. (1.7)

(b) The first inequality in (1.1) holds for every nonincreasing function f if and only if∫ b

x
g(t)dt ≤ b− x and

∫ x

a
g(t)dt ≥ 0, for every x ∈ [a,b]. (1.8)

Using identities (1.3) and (1.4) and integration by parts, Pečarić in [55] also proved
conditions for inverse inequalities in (1.1).

Theorem 1.4 Let f : I → R, g : [a,b] → R ([a,b] ⊆ I where I is an interval in R) be
integrable functions, and a+ ∈ I where  is given by (1.2). Then∫ a+

a
f (t)dt ≤

∫ b

a
f (t)g(t)dt
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holds for every nonincreasing function f if and only if∫ x

a
g(t)dt ≥ x−a, for x ∈ [a,a+ ] and

∫ b

x
g(t)dt ≤ 0, for x ∈ (a+ ,b],

and 0 ≤  ≤ b−a;
or ∫ x

a
g(t)dt ≥ x−a, for x ∈ [a,b],

and  > b−a;
or ∫ b

x
g(t)dt ≤ 0, for x ∈ [a,b]

and  < 0.

Theorem 1.5 Let f : I → R, g : [a,b] → R ([a,b] ⊆ I where I is an interval in R) be
integrable functions, and b− ∈ I where  is given by (1.2). Then∫ b

b−
f (t)dt ≥

∫ b

a
f (t)g(t)dt

holds for every nonincreasing function f if and only if∫ x

a
g(t)dt ≤ 0, for x ∈ [a,b− ] and

∫ b

x
g(t)dt ≥ b− x, for x ∈ (b− ,b],

and 0 ≤  ≤ b−a;
or ∫ b

x
g(t)dt ≥ b− x, for x ∈ [a,b],

and  > b−a;
or ∫ x

a
g(t)dt ≤ 0, for x ∈ [a,b]

and  < 0.

In 1982 Pečarić proved the following generalization of Steffensen’s inequality (see
[56]).

Theorem 1.6 Let h be a positive integrable function on [a,b] and f be an integrable
function such that f/h is nondecreasing on [a,b]. If g is a real-valued integrable function
such that 0 ≤ g ≤ 1, then ∫ b

a
f (t)g(t)dt ≥

∫ a+

a
f (t)dt (1.9)

holds, where  is the solution of the equation∫ a+

a
h(t)dt =

∫ b

a
h(t)g(t)dt. (1.10)

If f/h is a nonincreasing function, then the reverse inequality in (1.9) holds.
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Theorem 1.7 Let the conditions of Theorem 1.6 be fulfilled. Then∫ b

a
f (t)g(t)dt ≤

∫ b

b−
f (t)dt,

where  is the solution of the equation∫ b

b−
h(t)dt =

∫ b

a
h(t)g(t)dt. (1.11)

For h(x) = 1 we have Steffensen’s inequality.
In [46] Mercer proved the following generalization of Steffensen’s inequality.

Theorem 1.8 Let f ,g and h be integrable functions on (a,b) with f nonincreasing and
0 ≤ g ≤ h. Then ∫ b

b−
f (t)h(t)dt ≤

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt, (1.12)

where  is given by ∫ a+

a
h(t)dt =

∫ b

a
g(t)dt. (1.13)

Wu and Srivastava in [93] and Liu in [44] noted that the generalization due to Mercer
is incorrect as stated. They have proved that it is true if we add the condition:∫ b

b−
h(t)dt =

∫ b

a
g(t)dt. (1.14)

As proven by Pečarić, Perušić and Smoljak in [61], a corrected version of Mercer’s
result follows from Theorems 1.6 and 1.7, and is stated as following.

Theorem 1.9 Let h be a positive integrable function on [a,b] and f ,g be integrable func-
tions on [a,b] such that f is nonincreasing on [a,b] and 0 ≤ g ≤ h.

a) Then ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt,

where  is given by (1.13).

b) Then ∫ b

b−
f (t)h(t)dt ≤

∫ b

a
f (t)g(t)dt,

where  is given by (1.14).

In [46] Mercer also gave the following theorem.
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Theorem 1.10 Let f ,g,h and k be integrable functions on (a,b) with k > 0, f/k nonin-
creasing and 0 ≤ g ≤ h. Then

∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt,

where  is given by ∫ a+

a
h(t)k(t)dt =

∫ b

a
g(t)k(t)dt. (1.15)

As showed in [82, p. 57] Theorem 1.10 is equivalent to Theorem 1.6.
Next, we recall a corrected and refined version of Mercer’s result given by Wu and

Srivastava in [93].

Theorem 1.11 Let f ,g and h be integrable functions on [a,b] with f nonincreasing and
let 0 ≤ g ≤ h. Then the following integral inequalities hold true

∫ b

b−
f (t)h(t)dt ≤

∫ b

b−
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])dt

≤
∫ b

a
f (t)g(t)dt ≤

∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt

≤
∫ a+

a
f (t)h(t)dt,

where  satisfies ∫ a+

a
h(t)dt =

∫ b

a
g(t)dt =

∫ b

b−
h(t)dt. (1.16)

Motivated by refinement of Steffensen’s inequality given in [93], Pečarić, Perušić and
Smoljak [61] obtained the following refined version of results given in Theorems 1.6 and
1.7.

Corollary 1.1 Let h be a positive integrable function on [a,b] and f ,g be integrable func-
tions on [a,b] such that f/h is nonincreasing and 0 ≤ g ≤ 1. Then

∫ b

a
f (t)g(t)dt ≤

∫ a+

a

(
f (t)−

[
f (t)
h(t)

− f (a+ )
h(a+ )

]
h(t)[1−g(t)]

)
dt

≤
∫ a+

a
f (t)dt,

(1.17)

where  is given by (1.10).
If f/h is a nondecreasing function, then the reverse inequality in (1.17) holds.
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Corollary 1.2 Let h be a positive integrable function on [a,b] and f ,g be integrable func-
tions on [a,b] such that f/h is nonincreasing and 0 ≤ g ≤ 1. Then∫ b

b−
f (t)dt ≤

∫ b

b−

(
f (t)−

[
f (t)
h(t)

− f (b− )
h(b− )

]
h(t)[1−g(t)]

)
dt

≤
∫ b

a
f (t)g(t)dt

(1.18)

where  is given by (1.11).
If f/h is a nondecreasing function, then the reverse inequality in (1.18) holds.

Furthermore, in [93] Wu and Srivastava proved a new sharpened and generalized ver-
sion of inequality (1.12). In [61] authors separated this result into two theorems to obtain
weaker conditions on  .

Theorem 1.12 Let f ,g,h and  be integrable functions on [a,b] with f nonincreasing
and let 0 ≤ (t) ≤ g(t) ≤ h(t)−(t), t ∈ [a,b]. Then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt−

∫ b

a
| f (t)− f (a+ )|(t)dt

where  is given by (1.13).

Theorem 1.13 Let f ,g,h and  be integrable functions on [a,b] with f nonincreasing
and let 0 ≤ (t) ≤ g(t) ≤ h(t)−(t), t ∈ [a,b]. Then∫ b

b−
f (t)h(t)dt +

∫ b

a
| f (t)− f (b− )|(t)dt ≤

∫ b

a
f (t)g(t)dt

where  is given by (1.14).

The following theorem is Cerone’s generalization of Steffensen’s inequality given in
[15]. This generalization allows bounds that involve any two subintervals instead of re-
stricting them to include the end points.

Theorem 1.14 Let f ,g : [a,b] → R be integrable functions on [a,b] and let f be nonin-
creasing. Further, let 0 ≤ g ≤ 1 and

 =
∫ b

a
g(t)dt = di− ci,

where [ci,di] ⊆ [a,b] for i = 1,2 and d1 ≤ d2. Then∫ d2

c2

f (t)dt − r(c2,d2) ≤
∫ b

a
f (t)g(t)dt ≤

∫ d1

c1

f (t)dt +R(c1,d1)

holds, where

r(c2,d2) =
∫ b

d2

( f (c2)− f (t))g(t)dt ≥ 0

and

R(c1,d1) =
∫ c1

a
( f (t)− f (d1))g(t)dt ≥ 0.
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In 1959 Bellman gave an Lp generalization of Steffensen’s inequality (see [11]). As
noted by many mathematicians Bellman’s result is incorrect as stated. A comprehensive
survey of corrected versions and generalizations of Bellman’s result can be found in [82].
In the following theorem we recall generalization of Bellman’s result obtained by Pachpatte
in [53].

Theorem 1.15 Let f ,g,h be real-valued integrable functions defined on [0,1] such that
f (t) ≥ 0, h(t) ≥ 0, t ∈ [0,1], f/h is nonincreasing on [0,1] and 0 ≤ g ≤ A, where A is a
real positive constant. If p ≥ 1, then(∫ 1

0
g(t) f (t)dt

)p

≤ Ap
∫ 

0
f p(t)dt, (1.19)

where  is the solution of the equation∫ 

0
hp(t)dt =

1
Ap

(∫ 1

0
hp(t)g(t)dt

)(∫ 1

0
g(t)dt

)p−1

.

In [24] Gauss mentioned the following inequality:

Theorem 1.16 If f is a nonnegative nonincreasing function and k > 0, then∫ 

k
f (x)dx ≤ 4

9k2

∫ 

0
x2 f (x)dx. (1.20)

In [59] Pečarić proved the following result.

Theorem 1.17 Let G : [a,b] → R be an increasing function and let f : I → R be a non-
increasing function (I is an interval from R such that a,b,G(a),G(b) ∈ I). If G(x) ≥ x
then ∫ G(b)

G(a)
f (x)dx ≤

∫ b

a
f (x)G′(x)dx. (1.21)

If G(x) ≤ x, the reverse inequality in (1.21) is valid.
If f is a nondecreasing function and G(x) ≥ x then the inequality (1.21) is reversed.

Inequality (1.21) is usually called Gauss-Steffensen’s inequality. As pointed out in
[82] Gauss-Steffensen’s inequality includes as special cases three famous inequalities:
Volkov’s, Steffensen’s and Ostrowski’s inequality.

In [9] Alzer gave a lower bound for Gauss’ inequality (1.20). In fact, he proved the
following theorem.

Theorem 1.18 Let g : [a,b] → R be increasing, convex and differentiable, and let
f : I → R be nonincreasing function. Then∫ b

a
f (s(x))g′(x)dx ≤

∫ g(b)

g(a)
f (x)dx ≤

∫ b

a
f (t(x))g′(x)dx, (1.22)

where

s(x) =
g(b)−g(a)

b−a
(x−a)+g(a), (1.23)
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and
t(x) = g′(x0)(x− x0)+g(x0), x0 ∈ [a,b]. (1.24)

(I is an interval containing a,b,g(a),g(b),t(a) and t(b).)
If either g is concave or f is nondecreasing, then the reversed inequalities hold.

Remark 1.1 If we consider only the left-hand side inequality in (1.22), interval I should
only contain a,b,g(a) and g(b). When considering the right-hand side inequality in (1.22),
interval I should also contain t(a) and t(b).

1.2 Convex functions

In this section we give definitions and some properties of convex functions. Convex func-
tions are very important in the theory of inequalities. The third chapter of the classical
book of Hardy, Littlewood and Pólya [27] is devoted to the theory of convex functions (see
also [52]).

Definition 1.1 Let I be an interval in R. A function f : I → R is called convex if

f (x+(1− )y)≤  f (x)+ (1− ) f (y) (1.25)

for all points x,y ∈ I and all  ∈ [0,1]. It is called strictly convex if the inequality (1.25)
holds strictly whenever x and y are distinct points and  ∈ (0,1).

If the inequality in (1.25) is reversed, then f is said to be concave. It is called strictly
concave if the reversed inequality (1.25) holds strictly whenever x and y are distinct points
and  ∈ (0,1).

If f is both convex and concave, f is said to be affine.

Remark 1.2 (a) For x,y ∈ I, p,q ≥ 0, p+q > 0, (1.25) is equivalent to

f

(
px+qy
p+q

)
≤ p f (x)+q f (y)

p+q
.

(b) The simple geometrical interpretation of (1.25) is that the graph of f lies below its
chords.

(c) If x1,x2,x3 are three points in I such that x1 < x2 < x3, then (1.25) is equivalent to∣∣∣∣∣∣
x1 f (x1) 1
x2 f (x2) 1
x3 f (x3) 1

∣∣∣∣∣∣= (x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) ≥ 0

which is equivalent to

f (x2) ≤ x2 − x3

x1 − x3
f (x1)+

x1− x2

x1− x3
f (x3),
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or, more symmetrically and without the condition of monotonicity on x1,x2,x3

f (x1)
(x1 − x2)(x1− x3)

+
f (x2)

(x2− x3)(x2 − x1)
+

f (x3)
(x3 − x1)(x3 − x2)

≥ 0.

Proposition 1.1 If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2,
then the following inequality is valid

f (x2)− f (x1)
x2− x1

≤ f (y2)− f (y1)
y2− y1

.

If the function f is concave, the inequality is reversed.

Definition 1.2 Let I be an interval in R. A function f : I → R is called convex in the
Jensen sense, or J-convex on I (midconvex, midpoint convex) if for all points x,y ∈ I the
inequality

f

(
x+ y

2

)
≤ f (x)+ f (y)

2
(1.26)

holds. A J-convex function is said to be strictly J-convex if for all pairs of points (x,y),x �=
y, strict inequality holds in (1.26).

In the context of continuity the following criteria of equivalence of (1.25) and (1.26) is
valid.

Theorem 1.19 Let f : I → R be a continuous function. Then f is a convex function if
and only if f is a J-convex function.

Definition 1.3 Let I be an interval in R. A function f : I → R is called Wright convex
function if for each x ≤ y, z ≥ 0, x,y+ z ∈ I, the inequality

f (x+ z)− f (x) ≤ f (y+ z)− f (y)

holds.

Next, we want do define convex functions of higher order, but first we need to define
divided differences.

Definition 1.4 Let f be a function defined on [a,b]. The n-th order divided difference of
f at distinct points x0,x1, . . . ,xn in [a,b] is defined recursively by

[x j; f ] = f (x j), j = 0, . . . ,n

and

[x0,x1, . . . ,xn; f ] =
[x1, . . . ,xn; f ]− [x0, . . . ,xn−1; f ]

xn − x0
. (1.27)



1.2 CONVEX FUNCTIONS 11

Remark 1.3 The value [x0,x1, . . . ,xn; f ] is independent of the order of the points x0, . . . ,xn.
Previous definition can be extended to include the case in which some or all of the points
coincide by assuming that x0 ≤ ·· · ≤ xk and letting

[x, . . . ,x︸ ︷︷ ︸
j+1 times

; f ] =
f ( j)(x)

j!
,

provided that f ( j)(x) exists. Note that (1.27) is equivalent to

[x0, . . . ,xn; f ] =
n


k=0

f (xk)
 ′(xk)

, where  ′(xk) =
n


j=0
j �=k

(xk − x j).

Definition 1.5 Let n ∈ N. Function f : [a,b] → R is said to be n-convex on [a,b] if and
only if for every choice of n+1 distinct points x0,x1, . . . ,xn in [a,b]

[x0,x1, . . . ,xn; f ] ≥ 0. (1.28)

If the inequality in (1.28) is reversed, function f is said to be n-concave on [a,b] . If the
inequality is strict, f is said to be strictly n−convex (n−concave) function.

Remark 1.4 Specially, 0−convex function is nonnegative function, 1−convex function
is nondecreasing function, 2-convex function is convex function.

Theorem 1.20 If f (n) exists, then f is n−convex if and only if f (n) ≥ 0.

Definition 1.6 A positive function f is said to be logarithmically convex on an interval
I ⊆ R if log f is a convex function on I, or equivalently if for all x,y ∈ I and all  ∈ [0,1]

f (x+(1−)y)≤ f  (x) f 1−(y). (1.29)

For such function f , we shortly say f is log-convex.
It is said to be log-concave if the inequality in (1.29) is reversed.

Definition 1.7 A positive function f is said to be log-convex in the Jensen sense if for
each x,y ∈ I

f 2
(

x+ y
2

)
≤ f (x) f (y)

holds, i.e. if log f is convex in the Jensen sense.

As a consequence of results from Remark 1.2 (c) and Proposition 1.1 we get the fol-
lowing inequality for log-convex function:

[ f (b)]c−a ≤ [ f (a)]c−b [ f (c)]b−a. (1.30)
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Corollary 1.3 For a log-convex function f on interval I and p,q,r,s ∈ I such that
p ≤ r, q ≤ s, p �= q, r �= s, it holds

(
f (p)
f (q)

) 1
p−q

≤
(

f (r)
f (s)

) 1
r−s

. (1.31)

Inequality (1.31) is known as Galvani’s theorem for log-convex functions f : I → R.
At the end of this introductory section we overview one subclass of convex functions,

so-called s−convex functions (see [14]).

Definition 1.8 Let s be a real number, s ∈ (0,1]. A function f : [0,) → [0,) is said to
be s−convex if

f (x+(1−)y) ≤ s f (x)+ (1−)s f (y). (1.32)

for all x,y ∈ [0,) and  ∈ [0,1]

This class of function is recently even further refined (for details see [88]).

Definition 1.9 Let J be an open interval and h : J → R non-negative function, h �≡ 0. We
say that f : I → R is an h−convex function if f is non-negative and for all x,y ∈ I and
 ∈ (0,1) we have

f (x+(1−)y)≤ h() f (x)+h(1−) f (y). (1.33)

1.3 Exponentially convex functions

In this section we introduce definition of exponential convexity as given by Bernstein in
[12] (see also [7], [50], [51]). In this section I is an open interval in R.

Definition 1.10 A function h : I → R is said to be exponentially convex on I if it is
continuous and

n


i, j=1

i jh(xi + x j) ≥ 0

holds for every n ∈ N and all sequences (n)n∈N and (xn)n∈N of real numbers, such that
xi + x j ∈ I, 1 ≤ i, j ≤ n.
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The following Proposition follows directly from the previous Definition.

Proposition 1.2 For function h : I → R the following statements are equivalent:

(i) h is exponentially convex

(ii) h is continuous and
n


i, j=1

i jh

(
xi + x j

2

)
≥ 0, (1.34)

for all n ∈ N, all sequences (n)n∈N of real numbers, and all sequences (xn)n∈N
in I.

Note that for n = 1, it follows from (1.34) that exponentially convex function is non-
negative.

Directly from a definition of positive semi-definite matrix and inequality (1.34) we get
the following result.

Corollary 1.4 If h is exponentially convex on I, then the matrix[
h

(
xi + x j

2

)]n
i, j=1

is a positive semi-definite matrix. Specially,

det

[
h

(
xi + x j

2

)]n

i, j=1
≥ 0, (1.35)

for every n ∈ N and every choice xi ∈ I, i = 1, . . . ,n.

Remark 1.5 Note that for n = 2 from (1.35) we obtain

h(x1)h(x2)−h2
(

x1 + x2

2

)
≥ 0.

Hence, exponentially convex function is log-convex in the Jensen sense, and, being con-
tinuous, it is also log-convex function.

We continue with the definition of n-exponentially convex function.

Definition 1.11 A function h : I → R is n-exponentially convex in the Jensen sense on I
if

n


i, j=1

i jh

(
xi + x j

2

)
≥ 0

holds for all choices of i ∈ R and xi ∈ I, i = 1, . . . ,n.

A function h : I → R is n-exponentially convex on I if it is n-exponentially convex in
the Jensen sense and continuous on I.
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Remark 1.6 It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are nonnegative functions.

Also, n-exponentially convex functions in the Jensen sense are k-exponentially convex
in the Jensen sense for every k ≤ n, k ∈ N.

A function h : I →R is exponentially convex in the Jensen sense on I if it is n−exponentially
convex in the Jensen sense for all n ∈ N.

One of the most important properties of exponentially convex functions is their integral
representation.

Theorem 1.21 The function  : I → R is exponentially convex on I if and only if

(x) =
∫

−
etxd(t), x ∈ I

for some non-decreasing function  : R → R.

Proof. See [7, p. 211]. �

Remark 1.7 A function  : I → R is log-convex in the Jensen sense, i.e.


(

x+ y
2

)2

≤ (x)(y), for all x,y ∈ I, (1.36)

if and only if

2(x)+2
(

x+ y
2

)
+ 2(y) ≥ 0

holds for every , ∈ R and x,y ∈ I, i.e., if and only if  is 2-exponentially convex in the
Jensen sense. By induction from (1.36) we have


(

1
2k x+

(
1− 1

2k

)
y

)
≤ (x)

1
2k (y)1− 1

2k .

Therefore, if  is continuous and (x) = 0 for some x ∈ I, then from the last inequality
and nonnegativity of  (see Remark 1.6) we get

(y) = lim
k→


(

1
2k x+

(
1− 1

2k

)
y

)
= 0 for all y ∈ I.

Hence, 2-exponentially convex function is either identically equal to zero or it is strictly
positive and log-convex.
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1.4 Functions convex at point c

In this section we introduce definition of a class of functions that extends the class of
convex functions as given by Pečarić and Smoljak in [75]

Definition 1.12 Let f : [a,b] → R be a function and c ∈ (a,b). We say that f belongs
to class M c

1 [a,b] ( f belongs to class M c
2 [a,b]) if there exists a constant A such that the

function F(x) = f (x)−Ax is nonincreasing (nondecreasing) on [a,c] and nondecreasing
(nonincreasing) on [c,b].

If f ∈ M c
1 [a,b] or f ∈ M c

2 [a,b] and f ′(c) exists, then f ′(c) = A.
Let us show this for f ∈ M c

1 [a,b]. Since F is nonincreasing on [a,c] and nondecreasing on
[c,b] for any distinct points x1,x2 ∈ [a,c] and y1,y2 ∈ [c,b] we have

[x1,x2;F ] = [x1,x2; f ]−A ≤ 0 ≤ [y1,y2; f ]−A = [y1,y2;F ].

Therefore, since f ′−(c) and f ′+(c) exist, letting x1 = y1 = c, x2 ↗ c and y2 ↘ c we get

f ′−(c) ≤ A ≤ f ′+(c). (1.37)

Remark 1.8 We mention here that Florea and Păltănea recently introduced (see [21]) the
following more general definition of the convexity of a function f : [a,b] → R at a point
c ∈ (a,b):

f (c)+ f (x+ y− c)≤ f (x)+ f (y),

for all x,y ∈ [a,b] such that x ≤ c ≤ y. This property is denoted by f ∈ Convc([a,b]).
We can easily state that M c

1 [a,b] ⊂ Convc([a,b]), but the two classes of punctual convex
functions are not equal. For example, consider the function

f (x) =

{
|x|, x ∈ [−1,1];
2−|x|, x ∈ [−2,2]\ [−1,1].

We have f ∈ Conv0([−2,2]) (see Example 2 in [21]). On the other hand, clearly
f /∈ M 0

1 [−2,2].

In the following lemma and theorem we give a connection between the class of func-
tions M c

1 [a,b] and the class of convex functions which was obtained in [75].

Lemma 1.1 If f : [a,b] → R is convex (concave), then f ∈ M c
1 [a,b] ( f ∈ M c

2 [a,b]) for
every c ∈ (a,b).

Proof. If f is convex, then f ′− and f ′+ exist (see [71]). Hence, for every x1,x2 ∈ [a,c] and
y1,y2 ∈ [c,b] it holds

f (x2)− f (x1)
x2− x1

≤ f ′−(c) ≤ f ′+(c) ≤ f (y2)− f (y1)
y2− y1

.
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Therefore, for every A ∈ [ f ′−(c), f ′+(c)] the function F(x) = f (x)−Ax satisfies

F(x2)−F(x1)
x2− x1

≤ 0 ≤ F(y2)−F(y1)
y2− y1

,

so F is nonincreasing on [a,c] and nondecreasing on [c,b]. �

Theorem 1.22 If f ∈M c
1 [a,b] ( f ∈M c

2 [a,b]) for every c ∈ (a,b), then f is convex (con-
cave).

Proof. We will give the proof for f ∈ M c
1 [a,b]. First, let us recall the characterization of

convexity given in [71]: the function g is convex if and only if the function

(x,y) → [x,y;g] =
g(x)−g(y)

x− y

is nondecreasing in both variables.
For every c ∈ (a,b) there exists constant Ac such that the function Fc(x) = f (x)−Acx

is nonincreasing on [a,c] and nondecreasing on [c,b]. So for every x1 �= x2 ≤ c ≤ y1 �= y2

we have

Fc(x2)−Fc(x1)
x2 − x1

=
f (x2)− f (x1)

x2− x1
−Ac ≤ 0 ≤ f (y2)− f (y1)

y2− y1
−Ac =

Fc(y2)−Fc(y1)
y2− y1

.

Particularly, for u < v < w we have

f (v)− f (u)
v−u

≤ Av ≤ f (w)− f (v)
w− v

. (1.38)

Now, let x1,x2,y ∈ [a,b] be arbitrary. If y < x1 < x2, applying (1.38) we get

f (x1)− f (y)
x1− y

≤ Ax1 ≤
f (x2)− f (x1)

x2− x1
=

f (x2)− f (y)
x2− x1

− f (x1)− f (y)
x2− x1

.

By multiplying the above inequality with x2−x1
x2−y > 0 and simplifying we get

f (x1)− f (y)
x1− y

≤ f (x2)− f (y)
x2− y

.

Similarly for the cases x1 < y < x2 and x1 < x2 < y. So we can conclude that the function
(x,y) → [x,y; f ] is nondecreasing in variable x. By symmetry, the same thing holds for
variable y, so the proof is completed. �

Taking into account Lemma 1.1 and Theorem 1.22, we can describe the property from
the Definition 1.12 as “convexity at point c”. Therefore, function f is convex on [a,b] if
and only if it is convex at every c ∈ (a,b).
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1.5 Čebyšev functional bounds

In this section we give definition of the Čebyšev functional and some results which we will
use in the book.

The Čebyšev functional is defined by

T ( f ,h) =
1

b−a

∫ b

a
f (t)h(t)dt− 1

b−a

∫ b

a
f (t)dt · 1

b−a

∫ b

a
h(t)dt

where f ,h : [a,b] → R are two Lebesgue integrable functions.

In 1882, Čebyšev proved that

|T ( f ,h)| ≤ 1
12

∥∥ f ′
∥∥


∥∥h′∥∥ (b−a)2 ,

provided that f ′,h′ exists and are continuous on [a,b] and ‖ f ′‖ = supt∈[a,b] | f ′ (t)|. It
also holds if f ,h : [a,b]→ R are absolutely continuous and f ′,g′ ∈ L [a,b] while ‖ f ′‖ =
supt∈[a,b] | f ′ (t)| .

In 1935, Grüss in his paper [26] proved the following inequality∣∣∣∣ 1
b−a

∫ b

a
f (t)h(t)dt − 1

b−a

∫ b

a
f (t)dt · 1

b−a

∫ b

a
h(t)dt

∣∣∣∣≤ 1
4

(M−m)(N−n) ,

having that f and h are two integrable functions on [a,b] satisfying the condition

m ≤ f (t) ≤ M, n ≤ h(t) ≤ N for all t ∈ [a,b]

The constant 1/4 is the best possible.

When considering the above Grüss inequality, we observe that on the left hand side of
the estimate is the Čebyšev functional, while the right side is of Grüss-type.
There exist lot of estimations for the Čebyšev functionalT . Recently, Cerone and Dragomir
in [16] proved the following theorems:

Theorem 1.23 Let f ,h : [a,b] → R be two absolutely continuous functions on [a,b] with
(·−a)(b−·)[ f ′]2, (·−a)(b−·)[h′]2 ∈ L1[a,b]. Then we have the inequality

|T ( f ,h)| ≤ 1√
2
[T ( f , f )]

1
2

1√
b−a

(∫ b

a
(x−a)(b− x)[h′(x)]2dx

) 1
2

. (1.39)

The constant 1√
2

in (1.39) is the best possible.
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Theorem 1.24 Assume that h : [a,b] → R is monotonic nondecreasing on [a,b] and f :
[a,b] → R is absolutely continuous with f ′ ∈ L[a,b]. Then we have the inequality

|T ( f ,h)| ≤ 1
2(b−a)

‖ f ′‖
∫ b

a
(x−a)(b− x)dh(x). (1.40)

The constant 1
2 in (1.40) is the best possible.

1.6 Interpolating polynomials

In this section definitions and some properties of Lidstone, Hermite and two-point Abel-
Gontscharoff interpolating polynomials are given, following the terminology from [2].

1.6.1 Lidstone interpolating polynomials

The Lidstone polynomial was introduced independently by Lidstone [42] in 1929 and
Poritsky [83] in 1932 as a generalization of the Taylor series that approximates a given
function in the neighborhood of two points instead of one.

In [92] Widder proved the following fundamental lemma:

Lemma 1.2 If f ∈C(2n)[0,1], then

f (t) =
n−1


k=0

[
f (2k)(0)k(1− t)+ f (2k)(1)k(t)

]
+
∫ 1

0
Gn(t,s) f (2n)(s)ds, (1.41)

where Gn is Green’s function defined by

G1(t,s) = G(t,s) =
{

(t−1)s, if s < t,
(s−1)t, if t ≤ s,

(1.42)

Gn(t,s) =
∫ 1

0
G1(t, p)Gn−1(p,s)dp, n ≥ 2 (1.43)

and n is the unique polynomial (Lidstone polynomial) of degree 2n+1, n ∈ N, defined on
an interval [0,1] by

0(t) = t,

′′
n(t) = n−1(t),

n(0) = n(1), n ≥ 1.

The Lidstone polynomial n(t) can be expressed in the terms of Gn(t,s) as

n(t) =
∫ 1

0
Gn(t,s)sds n ≥ 1.

The following lemma is given in [2].
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Lemma 1.3 The following holds

Gn(t,s) =

⎧⎪⎪⎨⎪⎪⎩
−

n−1


k=0
k(t)

(1−s)2n−2k−1

(2n−2k−1)! , t < s,

−
n−1


k=0
k(1− t) s2n−2k−1

(2n−2k−1)! , s ≤ t.
(1.44)

1.6.2 Hermite interpolating polynomials

Let −< a ≤ a1 < a2 < ... < ar ≤ b <, (r ≥ 2) be given. For f ∈Cn[a,b] there exists a
unique polynomial PH of degree n−1, called the Hermite interpolating polynomial of the
function f , satisfying the following Hermite conditions:

P(i)
H (a j) = f (i)(a j), 0 ≤ i ≤ k j, 1 ≤ j ≤ r,

r


j=1

k j + r = n.

The Hermite conditions include the following particular cases:

Simple Hermite or Osculatory conditions (n = 2m, r = m, k j = 1 for all j)

PO(a j) = f (a j), P′
O(a j) = f ′(a j), 1 ≤ j ≤ m,

Lagrange conditions (r = n, k j = 0 for all j)

PL(a j) = f (a j), 1 ≤ j ≤ n,

Type (m,n−m) conditions (r = 2, a1 = a, a2 = b, 1 ≤ m ≤ n − 1, k1 = m − 1,
k2 = n−m−1)

P(i)
mn(a) = f (i)(a), 0 ≤ i ≤ m−1,

P(i)
mn(b) = f (i)(b), 0 ≤ i ≤ n−m−1,

One-point Taylor conditions (r = 1,k1 = n−1)

P(i)
T (a) = f (i)(a), 0 ≤ i ≤ n−1,

Two-point Taylor conditions (n = 2m, r = 2, a1 = a, a2 = b, k1 = k2 = m−1)

P(i)
2T (a) = f (i)(a), P(i)

2T (b) = f (i)(b), 0 ≤ i ≤ m−1.

The associated error |eH(t)| can be represented in the terms of the Green function
GH,n(t,s) for the multipoint boundary value problem

z(n)(t) = 0, z(i)(a j) = 0, 0 ≤ i ≤ k j, 1 ≤ j ≤ r,

that is, the following result given in [2] holds:
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Theorem 1.25 Let f ∈Cn[a,b], and let PH be its Hermite interpolating polynomial. Then

f (t) = PH(t)+ eH(t)

=
r


j=1

k j


i=0

Hi j(t) f (i)(a j)+
∫ b

a
GH,n(t,s) f (n)(s)ds, (1.45)

where Hi j are fundamental polynomials of the Hermite basis defined by

Hi j(t) =
1
i!

(t)
(t−a j)k j+1−i

k j−i


k=0

1
k!

dk

dtk

(
(t−a j)
(t)

k j+1
)∣∣∣

t=a j
(t−a j)k, (1.46)

where

(t) =
r


j=1

(t−a j)k j+1, (1.47)

and GH,n is Green’s function for the Hemite interpolation given by

GH,n(t,s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�


j=1

k j


i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t), s ≤ t,

−
r


j=�+1

k j


i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t), s ≥ t

(1.48)

for all a� ≤ s ≤ a�+1, � = 0,1, . . . ,r (a0 = a, ar+1 = b).

Remark 1.9 In the particular case, for type (m,n − m) conditions: r = 2, a1 = a,
a2 = b, 1 ≤ m ≤ n−1, k1 = m−1, k2 = n−m−1 we have

f (x) =
m−1


i=0

i(x) f (i)(a)+
n−m−1


i=0

i(x) f (i)(b)+
∫ b

a
Gm,n(x,s) f (n)(s)ds,

where

i(x) =
1
i!

(x−a)i
(

x−b
a−b

)n−m m−1−i


k=0

(
n−m+ k−1

k

)(
x−a
b−a

)k

, (1.49)

i(x) =
1
i!

(x−b)i
(

x−a
b−a

)m n−m−1−i


k=0

(
m+ k−1

k

)(
x−b
a−b

)k

, (1.50)

and Green’s function Gm,n is of the form

Gm,n(x,s) =

⎧⎨⎩
m−1
j=0

[
m−1− j

p=0

(n−m+p−1
p

)(
x−a
b−a

)p] (x−a) j(a−s)n− j−1

j!(n− j−1)!

(
b−x
b−a

)n−m
, s ≤ x,

−n−m−1
i=0

[
n−m−1−i

q=0

(m+q−1
q

)(
b−x
b−a

)q] (x−b)i(b−s)n−i−1

i!(n−i−1)!

(
x−a
b−a

)m
, s ≥ x.

(1.51)
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In the following lemma the positivity of Green’s function given by (1.48) is described
(see Beesack [10] and Levin [41] for more information).

Lemma 1.4 The Green’s function GH,n(t,s) has the following properties:

(i)
GH,n(t,s)
(t)

> 0, a1 ≤ t ≤ ar, a1 < s < ar;

(ii) GH,n(t,s) ≤ 1
(n−1)!(b−a)

|(t)|;

(iii)

b∫
a

GH,n(t,s)ds =
(t)
n!

.

1.6.3 The two-point Abel-Gontscharoff interpolating
polynomials

The two-point Abel-Gontscharoff interpolation problem is a particular case of Abel-Gont-
scharoff interpolation problem introduced in 1935 by Whittaker [90] and subsequently by
Gontscharoff [25] and Davis [17]. In [2] this interpolation problem is also reffered to as
the two-point right focal interpolation problem. Let f ∈Cn[a,b] (n ≥ 2) and let PAG2 be its
two-point Abel-Gontscharoff interpolating polynomial then

f (t) = PAG2(t)+ eAG2(t) (1.52)

where PAG2 is the polynomial of the degree n−1 defined by

PAG2(t) =



i=0

(t−a1)i

i!
f (i)(a1)

+
n−−2


j=0

[
j


i=0

(t−a1)+1+i(a1−a2) j−i

( +1+ i)!( j− i)!

]
f (+1+ j)(a2).

The associated error can be expressed by

eAG2(t) =
∫ b

a
gAG2(t,s) f (n)(s)ds. (1.53)

The corresponding Green function gAG2(t,s) from (1.53) is defined by

gAG2(t,s) =
1

(n−1)!

⎧⎪⎪⎨⎪⎪⎩


i=0

(n−1
i

)
(t−a1)i(a1− s)n−i−1, a ≤ s ≤ t,

−
n−1


i=+1

(n−1
i

)
(t −a1)i(a1− s)n−i−1, t ≤ s ≤ b.
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The polynomial PAG2 satisfies the following conditions called the two-point right focal
conditions (see [2, p. 172]):

P(i)
AG2(a1) = f (i)(a1), 0 ≤ i ≤ ,

P(i)
AG2(a2) = f (i)(a2),  +1 ≤ i ≤ n−1, a ≤ a1 < a2 ≤ b.

These conditions are a particular case of the general Abel-Gontscharoff interpolation con-
ditions

P(i)
AG(ai+1) = f (i)(ai+1), 0 ≤ i ≤ n−1, a ≤ a1 ≤ a2 ≤ ·· · ≤ an ≤ b.



Chapter2

Weighted Steffensen’s
inequality

2.1 Steffensen’s inequality for positive measures

This section is devoted to Steffensen’s inequality for positive finite measures on Borel
−algebra defined on segment [a,b] denoted by B([a,b]). Results given in this section
were obtained by Jakšetić and Pečarić in [31]. Generalizations of Steffensen’s inequality
in a measure theory settings were also considered in the papers [19], [22], [23] and book
[82].

In the following theorems we give Steffensen’s inequality for positive measures.

Theorem 2.1 Let  be a finite, positive measure on B([a,b]) and let f and g be mea-
surable functions such that f is nonincreasing and 0 ≤ g ≤ 1. If there exists  ∈ R+ such
that

((b− ,b]) =
∫

[a,b]
g(t)d(t), (2.1)

then ∫
(b− ,b]

f (t)d(t) ≤
∫

[a,b]
f (t)g(t)d(t). (2.2)

23
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Proof. ∫
[a,b]

f (t)g(t)d(t)−
∫
(b− ,b]

f (t)d(t)

=
∫

[a,b− ]
f (t)g(t)d(t)−

∫
(b− ,b]

f (t)(1−g(t))d(t)

≥
∫

[a,b− ]
f (t)g(t)d(t)− f (b− )

∫
(b− ,b]

(1−g(t))d(t) (2.3)

=
∫

[a,b− ]
f (t)g(t)d(t)− f (b− )

∫
[a,b− ]

g(t)d(t) (2.4)

=
∫

[a,b− ]
( f (t)− f (b− ))g(t)d(t)≥ 0.

�

Theorem 2.2 Let  be a finite, positive measure on B([a,b]) and let f and g be measur-
able functions such that f is nonincreasing and nonnegative and 0 ≤ g ≤ 1. If there exists
 ∈ R+ that satisfies

((b,b− ])≤
∫

[a,b]
g(t)d(t), (2.5)

then (2.2) holds.

Proof. We re-adjust the proof of Theorem 2.1 in the following way:
the condition (2.5) together with f (b− ) > 0 ensures us the transition from the line (2.3)
to (2.4). �

Theorem 2.3 Let  be a finite, positive measure on B([a,b]) and let f and g be mea-
surable functions such that f is nonincreasing and 0 ≤ g ≤ 1. If there exists  ∈ R+ such
that

([a,a+ ]) =
∫

[a,b]
g(t)d(t), (2.6)

then ∫
[a,a+ ]

f (t)d(t) ≥
∫

[a,b]
f (t)g(t)d(t). (2.7)

Proof. ∫
[a,a+ ]

f (t)d(t)−
∫
[a,b]

f (t)g(t)d(t)

=
∫

[a,a+ ]
f (t)(1−g(t))d(t)−

∫
(a+ ,b]

f (t)g(t)d(t)

≥ f (a+ )
∫
[a,a+ ]

(1−g(t))d(t)−
∫
(a+ ,b]

f (t)g(t)d(t)

= f (a+ )
∫
(a+ ,b]

g(t)d(t)−
∫
(a+ ,b]

f (t)g(t)d(t)

=
∫

(a+ ,b]
( f (a+ )− f (t))g(t)d(t)≥ 0.

�
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Theorem 2.4 Let  be a finite, positive measure on B([a,b]) and let f and g be measur-
able functions such that f is nonincreasing and nonnegative and 0 ≤ g ≤ 1. If there exists
 ∈ R+ such that

([a,a+ ])≥
∫

[a,b]
g(t)d(t), (2.8)

then (2.7) holds.

Proof. Similar to the proof of Theorem 2.2. �

Remark 2.1 For the sake of applications we observe here that if f is an increasing non-
negative function and if (2.8) is valid, then (2.7) is reversed. We have the same conclusion
if f (a) = 0 and f is an increasing function.

If we consider the Lebesgue measure in the conditions (2.1) and (2.6), we obtain the
standard constant  in Steffensen’s inequality given by (1.2).

If  �  and h = d
d , the condition (2.5) becomes∫

(b− ,b]
h(t)d(t) ≤

∫
[a,b]

h(t)g(t)d(t),

while the condition (2.8) becomes∫
[a,a+ ]

h(t)d(t) ≥
∫

[a,b]
h(t)g(t)d(t).

Clearly, both conditions have the same form as Steffensen’s inequality altough the mono-
tonicity request on the function h is dropped.

The following families of functions will be useful in constructing exponentially convex
functions.

Lemma 2.1 For p ∈ R let p : (0,) → R be defined by

p(x) =

{
xp

p , p �= 0;

logx, p = 0.

Then x → p(x) is increasing on R for each p ∈ R and p → p(x) is exponentially convex
on (0,), for each x ∈ (0,).

Proof. First part: follows from d
dx (p(x)) = xp−1 > 0 on (0,), for each p ∈ R.

Second part: p → xp

p = ep logx · 1
p . Since p → ep logx and p → 1

p are exponentially convex
functions (see [30]), according to the above comment, the conclusion follows. �

Lemma 2.2 For p ∈ R let p : R → [0,) be defined by

p(x) =

{
epx

p , p �= 0;

x, p = 0.

Then x → p(x) is increasing on R for each p ∈ R, and p → p(x) is exponentially convex
on (0,), for each x ∈ R.
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Proof. First part: follows from d
dx (p(x)) = epx > 0 on R, for each p ∈ R.

Second part: follows from the fact epx

p = epx · 1
p . �

Using the characterization of a convexity by the monotonicity of the first order divided
differences it follows (see [71, p. 4]):

Theorem 2.5 Let I ⊆ R be an open interval. Let f : I → (0,) be log-convex, differen-
tiable function on I and M : I× I → (0,) be defined by

M(x,y) =

⎧⎪⎨⎪⎩
(

f (x)
f (y)

) 1
x−y

, x �= y;

exp
(

f ′(x)
f (x)

)
, x = y.

If x1,x2,y1,y2 ∈ I such that x1 ≤ x2, y1 ≤ y2 then

M(x1,y1) ≤ M(x2,y2).

To obtain some applications of the results concerning Steffensen’s inequality for posi-
tive measures let us observe the following linear functionals from Theorems 2.1 and 2.3:

L1( f ) =
∫

(b− ,b]
f (t)d(t)−

∫
[a,b]

f (t)g(t)d(t) (2.9)

and
L2( f ) =

∫
[a,b]

f (t)g(t)d(t)−
∫
[a,a+ ]

f (t)d(t). (2.10)

Theorem 2.6 Let f → Li( f ), i = 1,2, be linear functionals defined by (2.9) and (2.10)
and let Fi : (0,) → R, i = 1,2, be defined by

Fi(p) = Li(p)

where p is defined in Lemma 2.1. Then the following statements hold for every i = 1,2.

(i) The function Fi is continuous on R.

(ii) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[
Fi

(
p j + pk

2

)]n
j,k=1

is positive semidefinite. Particularly,

det

[
Fi

(
p j + pk

2

)]n

j,k=1
≥ 0.

(iii) The function Fi is exponentially convex on R.

(iv) The function Fi is log-convex on R.
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(v) If p,q,r ∈ R are such that p < q < r, then

Fi(q)r−p ≤ Fi(p)r−qFi(r)q−p. (2.11)

Proof. (i) Continuity of the function p → Fi(p) is obvious for p ∈ R\ {0}. For p = 0 it is
directly checked using the Heine characterization.
(ii) Let n ∈ N, pi ∈ R (i = 1, . . . ,n) be arbitrary and define an auxiliary function  :
(0,) → R by

(x) =
n


j,k=1

 jk p j+pk
2

(x).

Now

 ′(x) =

(
n


j=1

 jx
p j−1

2

)2

≥ 0

implies that  is a nondecreasing function on (0,) and then

Li() ≥ 0, i = 1,2.

This means that the matrix [
Fi

(
pi + p j

2

)]n

j,k=1

is positive semi-definite.
(iii), (iv), (v) are simple consequences of (i) and (ii). �

By using similar arguments we obtain the following theorem.

Theorem 2.7 Theorem 2.6 is still valid for p given in Lemma 2.2.

We now use the mean value theorems to produce Cauchy means.

Theorem 2.8 Let f → Li( f ), i = 1,2 be linear functionals defined by (2.9) and (2.10)
and  ∈C1[a,b]. Then there exist i ∈ [a,b], i = 1,2 such that

Li() =  ′(i)Li(id),

where id(x) = x.

Proof. Since  ∈ C1[a,b] there exist m = min
x∈[a,b]

 ′(x) and M = max
x∈[a,b]

 ′(x). Denote

h1(x) = Mx−(x) and h2(x) = (x)−mx. Then

h′1(x) = M− ′(x) ≥ 0

h′2(x) =  ′(x)−m≥ 0

which means that Li(h1), Li(h2) ≥ 0, i = 1,2 i.e.

mLi(id) ≤ Li() ≤ MLi(id).
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If Li(id) = 0, the proof is complete. If Li(id) > 0, then

m ≤ Li()
Li(id)

≤ M

and the existence of i ∈ [a,b] follows. �

Using the standard Cauchy type mean value theorem we obtain the following corollary.

Corollary 2.1 Let f → Li( f ), i = 1,2 be linear functionals defined by (2.9) and (2.10)
and 1, 2 ∈C1[a,b] such that  ′

2(x) does not vanish for any value of x ∈ [a,b], then there
exist i ∈ [a,b], i = 1,2 such that

 ′
1(i)

 ′
2(i)

=
Li(1)
Li(2)

, (2.12)

provided that the denominator on right side is non-zero.

If the inverse of  ′
1/ ′

2 exists then various kinds of means can be defined by (2.12).
That is

i =
(
 ′

1

 ′
2

)−1(Li(1)
Li(2)

)
, i = 1,2. (2.13)

Particularly, if we substitute1(x) = p(x), 2(x) = q(x) in (2.13) and use the continuous
extension, the following expressions are obtained (i = 1,2):

Mi(p,q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li(p)
Li(q)

) 1
p−q

, p �= q;

exp
(
− 1

p + Li(0p)
Li(p)

)
, p = q �= 0;

exp
(

Li(2
0 )

2Li(0)

)
, p = q = 0.

By Theorem 2.5, if p,q,u,v ∈ R such that p ≤ u, q ≤ v then,

Mi(p,q) ≤ Mi(u,v).

Similarly, if we substitute 1(x) = p(x), 2(x) = q(x) in (2.13) and use the contin-
uous extension, the following expressions are obtained (i = 1,2):

Mi(p,q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li(p)
Li(q)

) 1
p−q

, p �= q;

exp
(
− 1

p + Li(0p)
Li(p)

)
, p = q �= 0;

exp
(

Li(2
0 )

2Li(0)

)
, p = q = 0.

Again, using Theorem 2.5, if p,q,u,v ∈ R such that p ≤ u, q ≤ v then,

Mi(p,q) ≤ Mi(u,v).
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In [31] Jakšetić and Pečarić further refined obtained results by dropping some of the
analytical properties of the families of functions from Lemmas 2.1 and 2.2. Therefore they
defined

C = {p : p : [a,b] → R, p ∈ J},
a family of functions from C([a,b]) such that p → [x0,x1;p] is log-convex in the Jensen
sense on J for every choice of two distinct points x0,x1 ∈ [a,b].

Theorem 2.9 Let f → Li( f ), i = 1,2 be linear functionals defined by (2.9) and (2.10)
and let Gi : J → R, be defined by

Gi(p) = Li(p)

where p ∈ C . Then the following statements hold, for every i = 1,2.

(i) Gi is log-convex in the Jensen sense on J.

(ii) If Gi is continuous on J, then it is log-convex on J and for p,q,r ∈ J such that
p < q < r, we have

Gi(q)r−p ≤ Gi(p)r−qGi(r)q−p.

(iii) If Gi is positive and differentiable on J, then for every p,q,u,v ∈ J such that
p ≤ u, q ≤ v, we have

M̃i(p,q) ≤ M̃i(u,v) (2.14)

where M̃i(p,q) is defined by

M̃i(p,q) =

⎧⎪⎨⎪⎩
(

Gi(p)
Gi(q)

) 1
p−q

, p �= q;

exp

(
d
dp (Gi(p))

Gi(p)

)
, p = q.

(2.15)

Proof. (i) We prove our claim for the case i = 1, the second case is treated similarly.
Choose any two distinct points x0,x1 ∈ [a,b], any 1, 2 ∈ R and any p, q ∈ J. Define an
auxiliary function  : [a,b] → R by

(x) =  2
1p(x)+212 p+q

2
(x)+  2

2q(x), (2.16)

where p, p+q
2

and q are from the class C1. Then

[x0,x1; ] = 2
1 [x0,x1;p]+212[x0,x1; p+q

2
]

+  2
2 [x0,x1, x2;q] ≥ 0

by the definition of C and the characterization of log-convexity. This implies that  is a
nondecreasing function on [a,b]. Hence L1() ≥ 0 which is equivalent to

 2
1 G1(p)+212G1

(
p+q

2

)
+  2

2 G1(q) ≥ 0.
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This proves that G1 is log-convex in the Jensen sense on J.
(ii) Since Gi is continuous on J, then it is log-convex.
(iii) This is a simple consequence of Theorem 2.5. �

Let us continue by introducing the following family of functions. Let

D = {p : p : [a,b] → R, p ∈ J},

be a family of functions from C([a,b]) such that p → [x0,x1;p] is exponentially convex
on J for every choice of two distinct points x0,x1 ∈ [a,b].

Theorem 2.10 Let f → Li( f ), i = 1,2 be linear functionals defined by (2.9) and (2.10)
and let Hi : J → R, be defined by

Hi(p) = Li(p) (2.17)

where p ∈ D . Then the following statements hold for every i = 1,2.

(i) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[
Hi

(
pk + pm

2

)]n

k,m=1

is positive semidefinite. Particularly,

det

[
Hi

(
pk + pm

2

)]n
k,m=1

≥ 0.

(ii) If the function Hi is continuous on J, then Hi is exponentially convex on J.

(iii) If Hi is positive and differentiable on J, then for every p,q,u,v ∈ J such that
p ≤ u, q ≤ v, we have

M̂i(p,q) ≤ M̂i(u,v)

where M̂i(p,q) is defined by

M̂i(p,q) =

⎧⎪⎨⎪⎩
(

Hi(p)
Hi(q)

) 1
p−q

, p �= q;

exp

(
d
dp (Hi(p))

Hi(p)

)
, p = q.

Proof. (i) We prove our claim for the case i = 1, the second case is treated similarly. Let
n ∈ N, p1, . . . pn ∈ R be arbitrary and define an auxiliary function  : [a,b] → R by

(x) =
n


k,m=1

km pk+pm
2

(x).
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Then

[x0,x1; ] =
n


k,m=1

km[x0,x1; pk+pm
2

] ≥ 0

by the definition of D and exponential convexity. This implies that  is a nondecreasing
function on [a,b] and then L1() ≥ 0 which is equivalent to

n


k,m=1

i jH1

(
pk + pm

2

)
≥ 0.

(ii) Follows from (i).
(iii) This is a simple consequence of Theorem 2.5. �

Families of exponentially convex functions similar to families given in Lemmas 2.1
and 2.2 can be easily constructed because of an application of Theorem 1.21.

Example 2.1 Consider a family of functions hp : (0,) → (0,), p > 0, defined by

hp(x) =

{
− p−x

log p , p �= 1;

x, p = 1.

Since p → d
dx (hp(x)) = p−x is the Laplace transform of a nonnegative function (see [84]

p. 210), it is exponentially convex according to Theorem 1.21.
Obviously x → hp(x) are nondecreasing functions for every p > 0. It is easy to prove

that the function p → [x0,x1;hp] is also exponentially convex for arbitrary positive x0,x1

(see also [30]). Using Theorem 2.10 it follows that for linear functionals f → Li( f ),
i = 1,2 defined by (2.9) and (2.10) we have that p → Li(hp) are exponentially convex (it
is easy to verify that they are continuous), for i = 1,2.
Further using Theorem 2.10 we conclude that

Ri(p,q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li(hp)
Li(hq)

) 1
p−q

, p �= q;

exp(−Li(h1·hp)
pLi(hp)

− 1
p log p), p = q �= 1;

exp(− Li(h2
1)

2Li(h1)
), p = q �= 1;

satisfies
Ri(p,q) ≤ Ri(u,v).

for p,q,u,v ∈ R such that p ≤ u, q ≤ v.

From Example 2.1 and Theorem 2.10 it is clear that in [31] the authors have presented
a new way how to generate exponentially convex functions, aside from Laplace transform
and Theorem 1.21.
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2.2 Some measure theoretic aspects of Steffensen’s
and reversed Steffensen’s inequality

We begin this section with necessary and sufficient conditions for Steffensen’s and reversed
Steffensen’s inequality obtained by Jakšetić, Pečarić and Smoljak Kalamir in [34].

Theorem 2.11 Let  be a finite, positive measure on B([a,b]), let g : [a,b] → R be a
−integrable function.

(a) Let  be a positive constant such that ([a,a+ ]) =
∫
[a,b] g(t)d(t). The inequality

∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
f (t)d(t) (2.18)

holds for every nonincreasing, right-continuous function f : [a,b]→ R if and only if∫
[a,x)

g(t)d(t) ≤ ([a,x)) and
∫

[x,b]
g(t)d(t)≥ 0, for every x ∈ [a,b].

(2.19)

(b) Let  be a positive constant such that ((b− ,b]) =
∫
[a,b] g(t)d(t). The inequality

∫
(b− ,b]

f (t)d(t) ≤
∫

[a,b]
f (t)g(t)d(t)

holds for every nonincreasing, right-continuous function f : [a,b]→ R if and only if∫
[x,b]

g(t)d(t)≤ ([x,b]) and
∫

[a,x)
g(t)d(t) ≥ 0, for every x ∈ [a,b].

Proof.
(a) For the sufficiency part we use the identity∫

[a,a+ ]
f (t)d(t)−

∫
[a,b]

f (t)g(t)d(t)

=
∫

[a,a+ ]
[ f (t)− f (a+ )][1−g(t)]d(t)+

∫
(a+ ,b]

[ f (a+ )− f (t)]g(t)d(t) (2.20)

similar to (1.3). We define a new measure  on −algebra B((a,b]) such that, on an
algebra of finite disjoint unions of half open intervals, we set ((c,d]) = f (c)− f (d), for
a < c < d ≤ b, and then we pass to B((a,b]) in a unique way (for details see, for example,
[13, p. 21] ).
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Now, using Fubini, we have∫
[a,a+ ]

[ f (t)− f (a+ )][1−g(t)]d(t)

=
∫

[a,a+ ]

[∫
(t,a+ ]

d(x)
]
[1−g(t)]d(t) =

∫
(a,a+ ]

[∫
[a,x)

(1−g(t))d(t)
]
d(x).

Similarly, ∫
(a+ ,b]

[ f (a+ )− f (t)]g(t)(t) =
∫

(a+ ,b]

[∫
[x,b]

g(t)d(t)
]
d(x).

This means that (2.20) is in fact∫
[a,a+ ]

f (t)d(t)−
∫
[a,b]

f (t)g(t)d(t)

=
∫

(a,a+ ]

[∫
[a,x)

(1−g(t))d(t)
]
d(x)+

∫
(a+ ,b]

[∫
[x,b]

g(t)d(t)
]
d(x), (2.21)

concluding (2.18) under the assumptions (2.19).
The previous conditions are also necessary. In fact, if x is any element of [a,b], then let

f be the function defined by

f (t) =

{
1, t < x;

0, t ≥ x.

Using the inequality (2.7) from Theorem 2.3 we obtain

∫
[a,x)

g(t)d(t) =
∫

[a,b]
f (t)g(t)d(t) ≤

∫
[a,a+ ]

f (t)d(t)

=

{
([a,x)), x ∈ [a,a+ ];
([a,a+ ]), x ∈ (a+ ,b].

(2.22)

If x ∈ (a+ ,b] then ([a,x)) ≥ ([a,a+ ]), from (2.22), we have∫
[a,x)

g(t)d(t) ≤ ([a,x)), for every x ∈ [a,b].

Also, if x ∈ (a+ ,b], from (2.22) we have∫
[a,x) g(t)d(t)≤ ([a,a+ ]) =

∫
[a,b] g(t)d(t), concluding∫

[x,b]
g(t)d(t) ≥ 0, for every x ∈ (a+ ,b].

Finally, if x ∈ [a,a+ ], then∫
[x,b]

g(t)d(t) =
∫

[a,b]
g(t)d(t)−

∫
[a,x)

g(t)d(t)

≥ ([a,a+ ])− ([a,x)) = ([x,a+ ])≥ 0,
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concluding ∫
[x,b]

g(t)d(t)≥ 0, for every x ∈ [a,b].

(b) The proof of this part is similar to the proof of the (a)-part so we omit the details. �

In the following theorems we give necessary and sufficient conditions for reversed
Steffensen’s inequality.

Theorem 2.12 Let  be a finite, positive measure on B(I), g : [a,b] → R ([a,b] ⊆ I, I
is an interval in R) be a −integrable function, and a+ ∈ I where

([a,a+ ]) =
∫

[a,b]
g(t)d(t), (2.23)

for  ≥ 0, and

−([a+ ,a]) =
∫

[a,b]
g(t)d(t),

for  < 0.
Then, for  ≥ 0, ∫

[a,a+ ]
f (t)d(t) ≤

∫
[a,b]

f (t)g(t)d(t); (2.24)

and for  < 0,

−
∫

[a+ ,a]
f (t)d(t) ≤

∫
[a,b]

f (t)g(t)d(t); (2.25)

for every nonincreasing, right continuous function f : I → R if and only if either∫
[a,x)

g(t)d(t) ≥ ([a,x)), for x ∈ [a,a+ ] and
∫

[x,b]
g(t)d(t)≤ 0, for x ∈ (a+ ,b],

(2.26)
where 0 ≤  ≤ b−a;
or ∫

[a,x)
g(t)d(t) ≥ ([a,x)), for x ∈ [a,b], (2.27)

where  > b−a;
or ∫

[x,b]
g(t)d(t)≤ 0, for x ∈ [a,b], (2.28)

where  < 0.

Proof. Necessity part. Putting

f (t) =

{
1, t < x;

0, t ≥ x
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in (2.24) we get (2.26), (2.27) and (2.28) for choices  ∈ [0,b− a],  ∈ (b− a,+), and
 ∈ (−,0), respectively.
Sufficiency part. Let  ∈ [0,b−a]. Then from (2.21) we have∫

[a,a+ ]
f (t)d(t)−

∫
[a,b]

f (t)g(t)d(t)

=
∫

(a,a+ ]

[∫
[a,x)

(1−g(t))d(t)
]
d(x)+

∫
(a+ ,b]

[∫
[x,b]

g(t)d(t)
]
d(x) ≤ 0,

where  is a measure defined on B((a,b]), with ((c,d]) = f (c)− f (d), for c < d, c,d ∈ I.
If  ∈ (b−a,+) then∫

[a,a+ ]
f (t)d(t)−

∫
[a,b]

f (t)g(t)d(t)

=
∫

[a,b]
f (t)(1−g(t))d(t)+

∫
(b,a+ ]

f (t)d(t)

=
∫

[a,b]
( f (t)− f (b))(1−g(t))d(t)+

∫
(b,a+ ]

( f (t)− f (b))d(t)

=
∫

[a,b]

∫
[a,x)

(1−g(t))d(t)d(x)−
∫
(b,a+ ]

∫
[x,a+ ]

d(t)d(x)

=
∫

[a,b]

(
([a,x))−

∫
[a,x)

g(t)d(t)
)

d(x)−
∫
(b,a+ ]

([x,a+ ])d(x)≤ 0.

If  ∈ (−,0) then

−
∫
[a+ ,a]

f (t)d(t)−
∫

[a,b]
f (t)g(t)d(t)

=
∫

[a,b]
( f (a)− f (t))g(t)d(t)+

∫
[a+ ,a]

( f (a)− f (t))d(t)

=
∫

[a,b]

∫
[x,b]

g(t)d(t)d(x)−
∫
[a+ ,a]

([a+ ,x])d(x)≤ 0.
�

Theorem 2.13 Let  be a finite, positive measure on B(I), g : [a,b] → R ([a,b] ⊆ I, I is
an interval in R) be a −integrable function, and b− ∈ I where

((b− ,b]) =
∫

[a,b]
g(t)d(t),

for  ≥ 0, and

−([b,b− )) =
∫

[a,b]
g(t)d(t),

for  < 0.
Then, for  ≥ 0 ∫

(b− ,b]
f (t)d(t) ≥

∫
[a,b]

f (t)g(t)d(t); (2.29)
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and for  < 0,

−
∫

[b,b− )
f (t)d(t) ≥

∫
[a,b]

f (t)g(t)d(t); (2.30)

for every nonincreasing, right continuous function f : I → R if and only if either∫
[a,x)

g(t)d(t) ≤ 0, for x ∈ [a,b− ] and
∫

[x,b]
g(t)d(t) ≥ ([x,b]), for x ∈ (b− ,b],

where 0 ≤  ≤ b−a;
or ∫

[x,b]
g(t)d(t) ≥ ([x,b]), for x ∈ [a,b]

where  > b−a;
or ∫

[a,x)
g(t)d(t)≤ 0, for x ∈ [a,b]

where  < 0.

Proof. Similar to the proof of Theorem 2.12. �

Theorem 2.14 Let  be a finite, positive measure on B(I), g : [a,b]→R be a −integrable
function for which there exists c ∈ [a,b] such that g(x) ≥ 1 for x ∈ [a,c] and g(x) ≤ 0 for
x∈ (c,b]. Then (2.24) (resp. (2.25)) for  ≥ 0 (resp.  < 0) is valid for every nonincreasing
function f : I → R provided that [a,b]⊆ I and a+ ∈ I.

Proof. Let  ∈ [0,b−a]. Suppose that c ≤ a+ . Then it is obvious that∫
[a,x)

g(t)d(t) ≥ ([a,x)), for x ∈ [a,c]

and ∫
[x,b]

g(t)d(t) ≤ 0, for x ∈ (a+ ,b].

Suppose that for some x0 ∈ (c,a +  ] we have
∫
[a,x0) g(t)d(t) < ([a,x0)). Since∫

[x0,b] g(t)d(t)≤ 0, it follows ([a,a+ ]) =
∫
[a,b] g(t)d(t) < ([a,x0)), hence a+ <

x0, what is, evidently, a contradiction. Analogously, in the case c > a +  we can also
prove that (2.26) holds.
Let  ∈ (b−a,). Then

∫
[a,x) g(t)d(t) ≥ ([a,x)) for x ∈ [a,c]. For x ∈ (c,b] we have

∫
[a,x)

g(t)d(t) =
∫

[a,b]
g(t)d(t)−

∫
[x,b]

g(t)d(t)

≥
∫

[a,b]
g(t)d(t) = ([a,a+ ])≥ ([a,x)),

and the condition (2.27) is fulfilled.
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If  ∈ (−,0) then if x ∈ [a,c]∫
[x,b]

g(t)d(t) =
∫

[a,b]

g(t)d(t)−
∫

[a,x)

g(t)d(t) = −([a+ ,a])− ([a,x))≤ 0;

if x ∈ (c,b] then
∫
[x,b] g(t)d(t) ≤ 0 so (2.28) is again valid. �

Similar to Theorem 2.14 we can prove the next theorem.

Theorem 2.15 Let  be a finite, positive measure on B(I), g : [a,b]→R be a −integrable
function for which there exists c ∈ [a,b] such that g(x) ≤ 0 for x ∈ [a,c] and g(x) ≥ 1 for
x∈ (c,b]. Then (2.29) (resp. (2.30)) for  ≥ 0 (resp.  < 0) is valid for every nonincreasing
function f : I → R provided that [a,b] ⊆ I and b− ∈ I.

It is obvious that the choice of a measure  in the previous results covers some known
results: the Lebesgue measure gives us the classic Steffensen inequality, the counting mea-
sure gives us Jensen-Steffensen’s inequality (even with relaxed conditions, see [29]), and
the Lebesgue-Stieltjes measure gives us results for Steffensen’s inequality from [43].

2.3 Exponential convexity induced by Steffensen’s
inequality and positive measures

In this section we give generalizations of results from [49] obtained by Jakšetić, Pečarić
and Smoljak Kalamir in [37].

Theorem 2.16 Let  be a finite, positive measure on B([a,b]), f : [a,b] → R a nonin-
creasing, right-continuous function . Then∫

[a,b] f (t)G(t)d(t)∫
[a,b] G(t)d(t)

≤
∫
[a,a+ ] f (t)d(t)

([a,a+ ])
(2.31)

if and only if G : [a,b] → R is a −integrable function and  is a positive constant such
that ∫

[a,x) G(t)d(t)∫
[a,b] G(t)d(t)

≤ ([a,x))
([a,a+ ])

and
∫

[x,b]
G(t)d(t) ≥ 0, (2.32)

for every x ∈ [a,b], assuming
∫
[a,b] G(t)d(t) > 0.

For an increasing, right-continuous function f : [a,b]→R the inequality (2.31) is reversed.

Proof. Sufficiency. Let us define the function

g(t) =
G(t)([a,a+ ])∫

[a,b] G(t)d(t)
.
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Since the conditions ([a,a+ ]) =
∫
[a,b] g(t)d(t) and (2.19) are fulfilled we can apply

(2.18) and (2.31) is valid.
Necessity. If we put the function

f (t) =

{
1, t < x;

0, t ≥ x,

for a ≤ x ≤ a+ in (2.31) we get (2.32). �

In the following theorem we use the following property of sub-linearity of a class of
convex functions.

Lemma 2.3 If  : [0,) → R is a convex function such that (0) = 0 then for any
0 ≤ a ≤ 1

(ax) ≤ a(x), for any x ∈ [0,).

Proof. (ax) = (ax+(1−a) ·0)≤ a(x)+ (1−a)(0) = a(x). �

The following theorem gives us a connection between Jensen’s and Steffensen’s in-
equality and it generalizes Theorem 2.16.

Theorem 2.17 Let  be a finite, positive measure on B([a,b]). Let f be a nonnegative
nonincreasing function on [a,b], and let  be an increasing convex function on [0,) with
(0) = 0. If G is a nonnegative nondecreasing function on [a,b] such that there exists a
nonnegative function g1, defined by the equation∫

[a,b]
g1(t)

(
G(t)
g1(t)

)
d(t) ≤ ([a,b]) (2.33)

and
∫
[a,b] g1(t)d(t) ≤ 1, then the following inequality is valid:



(∫
[a,b] f (t)G(t)d(t)∫

[a,b] G(t)d(t)

)
≤
∫
[a,a+ ]( f (t))d(t)

([a,a+ ])
, (2.34)

where ([a,a+ ]) = 
(∫

[a,b] G(t)d(t)
)

.

Proof. From Jensen’s inequality



(∫
[a,b] f (t)G(t)d(t)∫

[a,b] G(t)d(t)

)
≤
∫
[a,b]( f (t))G(t)d(t)∫

[a,b] G(t)d(t)
, (2.35)

and since  ◦ f is nonincreasing, we only have to check the conditions in (2.32). Since G
is nonnegative, it is obvious that

∫
[x,b] G(t)d(t) ≥ 0, so we only have to show


(∫

[a,b]
G(t)d(t)

)∫
[a,x)

G(t)d(t) ≤ ([a,x))
∫

[a,b]
G(t)d(t). (2.36)
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We calculate, using sub-linearity and Jensen’s inequality


(∫

[a,b]
G(t)d(t)

)
= 

(∫
[a,b]

g1(t)d(t)

∫
[a,b] G(t)d(t)∫
[a,b] g1(t)d(t)

)

≤
∫

[a,b]
g1(t)d(t)

⎛⎝∫[a,b] g1(t)
G(t)
g1(t)

d(t)∫
[a,b] g1(t)d(t)

⎞⎠
≤
∫

[a,b]
g1(t)

(
G(t)
g1(t)

)
d(t) ≤ ([a,b]). (2.37)

Since G is a nondecreasing function,∫
[a,x) G(t)d(t)

([a,x))
≤
∫
[a,b] G(t)d(t)

([a,b])

i.e.

([a,b])
∫

[a,x)
G(t)d(t) ≤ ([a,x))

∫
[a,b]

G(t)d(t),

so along with (2.37) we proved (2.36) and the theorem is proved. �

The condition (2.33) is a version of a more general condition that is given in [43].
Now let us give some applications of the previous results. Using (2.31), under the

assumptions of Theorem 2.16, we can produce the linear functional

M( f ) =

∫
[a,b] f (t)G(t)d(t)∫

[a,b] G(t)d(t)
−
∫
[a,a+ ] f (t)d(t)

([a,a+ ])
(2.38)

which is nonnegative on the class of increasing, right-continuous functions f : [a,b] → R.

Theorem 2.18 Let f → M( f ) be the linear functional defined by (2.38) and let
 : R → R be defined by

(p) = M(p)

where p is defined in Lemma 2.2. Then the following statements hold.

(i) The function  is continuous on R.

(ii) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[

(

p j + pk

2

)]n

j,k=1

is positive semidefinite. Particularly,

det

[

(

p j + pk

2

)]n

j,k=1
≥ 0.
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(iii) The function  is exponentially convex on R.

(iv) The function  is log-convex on R.

(v) If p,q,r ∈ R are such that p < q < r, then

(q)r−p ≤(p)r−q(r)q−p.

Proof. Similar to the proof of Theorem 2.6. �

The following theorem is just a stepping stone for the future theorems and it is a slight
variant of the preceding theorem.
Firstly consider the family {p : p ∈ (0,)} of functions defined on [0,) by

p(x) =
xp

p
. (2.39)

Similar as in Lemmas 2.1 and 2.2 we conclude that x → p(x) is increasing on [0,) for
each p ∈ R and p → p(x) is exponentially convex on (0,) for each x ∈ [0,).
Secondly, from Remark 2.1 we form the linear functional

N( f ) =
∫

[a,b]
f (t)g(t)d(t)−

∫
[a,a+ ]

f (t)d(t), (2.40)

which is nonnegative, acting on an increasing functions f : [a,b] → R with property
f (a) = 0.

Theorem 2.19 Let
f → N( f ) be the linear functional defined by (2.40) and let F : (0,) → R be defined
by

F(p) = N(p)

where p is defined by (2.39). Then the following statements hold.

(i) The function F is continuous on (0,).

(ii) If n ∈ N and p1, . . . , pn ∈ (0,) are arbitrary, then the matrix[
F

(
p j + pk

2

)]n
j,k=1

is positive semidefinite. Particularly,

det

[
F

(
p j + pk

2

)]n

j,k=1
≥ 0.

(iii) The function F is exponentially convex on (0,).

(iv) The function F is log-convex on (0,).
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(v) If p,q,r ∈ (0,) are such that p < q < r, then

F(q)r−p ≤ F(p)r−qF(r)q−p.

Proof. (i) The continuity of the function p → F(p) is obvious.
(ii) Let n ∈ N, pi ∈ (0,) (i = 1, . . . ,n) be arbitrary and define an auxiliary function  :
[0,) → R by

(x) =
n


j,k=1

 jk p j+pk
2

(x).

Now

′(x) =

(
n


j=1

 jx
p j−1

2

)2

≥ 0

implies that  is increasing on [0,) and nonnegative since (0) = 0. Then N() ≥ 0
and we conclude that [

F

(
p j + pk

2

)]n

j,k=1

is a positive semi-definite matrix.
(iii), (iv), (v) are simple consequences of (i) and (ii). �

Observe here that the above proof is futile for the family of functions given in Lemma
2.2 since p(0) is not defined for p ≤ 0.

We now use the mean value theorems to produce Cauchy means.

Theorem 2.20 Let f →N( f ) be the linear functional defined by (2.40) and  ∈C1[a,b]
such that (a) = 0. Then there exists  ∈ [a,b] such that

N() =  ′( )N(id),

where id(x) = x.

Proof. Similar to the proof of Theorem 2.8. �

Using the standard Cauchy type mean value theorem we obtain the following corollary.

Corollary 2.2 Let f →N( f ) be the linear functional defined by (2.40), 1, 2 ∈C1[a,b]
such that 1(a) = 2(a) = 0, then there exists  ∈ [a,b], such that

 ′
1( )

 ′
2( )

=
N(1)
N(2)

, (2.41)

provided that the denominator on right side is non-zero.

If the inverse of  ′
1/ ′

2 exists then various kinds of means can be defined by (2.41).
That is

 =
(
 ′

1

 ′
2

)−1(N(1)
N(2)

)
. (2.42)
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Particularly, if we substitute1(x) = p(x), 2(x) = q(x) in (2.42) and use the continuous
extension, the following expressions are obtained:

M(p,q) =

⎧⎪⎨⎪⎩
(

N(p)
N(q)

) 1
p−q

, p �= q;

exp
(
− 1

p + N(0p)
N(p)

)
, p = q,

where 0(x) = logx and p,q ∈ (0,). By Theorem 2.5, if p,q,u,v ∈ (0,) such that
p ≤ u, q ≤ v then,

M(p,q) ≤ M(u,v).

Now we make a step further using (2.34), under the assumptions of Theorem 2.17, we
can produce the linear functional

L() =

∫
[a,a+ ]( f (t))d(t)

([a,a+ ])
−

(∫
[a,b] f (t)G(t)d(t)∫

[a,b] G(t)d(t)

)
(2.43)

which is nonnegative on the class of increasing convex functions on [0,) with property
(0) = 0.

Theorem 2.21 Let f → L( f ) be the linear functional defined by (2.43) and let
H : (1,) → R be defined by

H(p) = L(p)

where p is defined in Lemma 2.1. Then the following statements hold.

(i) The function H is continuous on (1,).

(ii) If n ∈ N and p1, . . . , pn ∈ (1,) are arbitrary, then the matrix[
H

(
p j + pk

2

)]n
j,k=1

is positive semidefinite. Particularly,

det

[
H

(
p j + pk

2

)]n

j,k=1
≥ 0.

(iii) The function H is exponentially convex on (1,).

(iv) The function H is log-convex on (1,).

(v) If p,q,r ∈ (1,) are such that p < q < r, then

H(q)r−p ≤ H(p)r−qH(r)q−p.
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Proof. (i) The continuity of the function p → H(p) is obvious.
(ii) Let n ∈ N, pi ∈ (1,) (i = 1, . . . ,n) be arbitrary and define an auxiliary function
 : [0,) → R by

(x) =
n


j,k=1

 jk p j+pk
2

(x). (2.44)

Now

 ′(0) =
n


j,k=1

 jk ′
p j+pk

2

(0) = 0. (2.45)

Further

 ′′(x) =

(
n


j=1

 jx
p j−2

2

)2

≥ 0. (2.46)

(2.45) and (2.46) together with (0) = 0 imply that  is a convex increasing function and
then

L() ≥ 0.

This means that the matrix [
H

(
p j + pk

2

)]n
j,k=1

is positive semi-definite.
(iii), (iv), (v) are simple consequences of (i) and (ii). �

Proof. [Alternative proof.] The monotonicity of the function  defined by (2.44) can be
proved directly:

 ′(x) =
n


j,k=1

 jk ′
p j+pk

2

(x)

and since p →  ′
p(x), according to Lemma 2.1, is exponentially convex on (1,), we

conclude  ′(x) ≥ 0. The rest is as in the previous proof. �

Theorem 2.22 Let f → L( f ) be the linear functional defined by (2.43) and  ∈C2[0,a]
such that (0) =  ′(0) = 0. Then there exists  ∈ [0,a] such that

L() =  ′′( )L(e2),

where e2(x) = x2

2 .

Proof. Since  ∈ C2[0,a] there exist m = min
x∈[0,a]

 ′′(x) and M = max
x∈[0,a]

 ′′(x). Denote

h1(x) = M x2

2 −(x) and h2(x) =(x)−mx2

2 . Then h1(0) = h′1(0) = 0, h2(0) = h′2(0) = 0.
This, together with

h′′1(x) = M− ′′(x) ≥ 0

h′′2(x) =  ′′(x)−m≥ 0

implies that h1 and h2 are an increasing convex functions.
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Then L(h1), L(h2) ≥ 0 i.e.

mL(e2) ≤ L() ≤ ML(e2).

If L(e2) = 0, the proof is complete. If L(e2) > 0, then

m ≤ L()
L(e2)

≤ M

and the existence of  ∈ [0,a] now follows. �

Similar to Corollary 2.2 we also obtain the following corollary.

Corollary 2.3 Let f → L( f ) be the linear functional defined by (2.43) and
1, 2 ∈ C2[0,a] such that 1(0) = 2(0) =  ′

1(0) =  ′
2(0) = 0 and such that  ′′

2 (x)
does not vanish for any value of x ∈ [0,a], then there exists  ∈ [0,a] such that

 ′′
1 ( )

 ′′
2 ( )

=
L(1)
L(2)

, (2.47)

provided that the denominator on right side is non-zero.

If the inverse of  ′′
1 / ′′

2 exists then various kinds of means can be defined by (2.12).
That is

 =
(
 ′′

1

 ′′
2

)−1(L(1)
L(2)

)
. (2.48)

Particularly, if we substitute1(x) = p(x), 2(x) = q(x) in (2.48) and use the continuous
extension, the following expressions are obtained:

N(p,q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

L(p)
L(q)

) 1
p−q

, p �= q;

exp
(

3−2p
(p−1)(p−2) + L(0p)

L(p)

)
, p = q �= 2;

exp(− 3
2 − Li(02)

Li(2)
), p = q = 2,

where 0(x) = logx and p,q ∈ (1,). By Theorem 2.5, if p,q,u,v ∈ (1,) such that
p ≤ u, q ≤ v then,

N(p,q) ≤ N(u,v).

We can generalize the above construction. For n ≥ 2, fixed, let us define

Cn = {p : p ∈ J},
a family of functions from C([0,a]) such that p(0) =  ′

p(0) = 0, and p →  ′′
p(x) is

n-exponentially convex in the Jensen sense on J for every x ∈ [0,a].

Theorem 2.23 Let f →L( f ) be the linear functional defined by (2.43) and let S : J →R,
be defined by

S(p) = L(p)

where p ∈ Cn. Then the following statements hold.
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(i) S is n-exponentially convex in the Jensen sense on J.

(ii) If S is continuous on J, then it is n−exponentially convex on J and for p,q,r ∈ J such
that p < q < r, we have

S(q)r−p ≤ S(p)r−qS(r)q−p.

(iii) If S is positive and differentiable on J, then for every p,q,u,v ∈ J such that
p ≤ u, q ≤ v, we have

M̃(p,q) ≤ M̃(u,v) (2.49)

where M̃(p,q) is defined by

M̃(p,q) =

⎧⎪⎨⎪⎩
(

S(p)
S(q)

) 1
p−q

, p �= q;

exp

(
d
dp (S(p))

S(p)

)
, p = q.

(2.50)

Proof. (i) Choose any n points 1, . . . ,n ∈ R, any p1, . . . , pn ∈ J. Define an auxiliary
function  : [0,a] → R by

(x) =
n


k,m=1

km pk+pm
2

(x). (2.51)

Then (0) = ′(0) = 0 and

′′(x) =
n


k,m=1

km ′′
pk+pm

2
(x) ≥ 0

by the definition of Cn. Hence,  is an increasing convex function and then L() ≥ 0
which is equivalent to

n


k,m=1

kmS

(
pk + pm

2

)
≥ 0.

(ii) Since S is continuous on J, then it is n−exponentially convex.
(iii) This is a simple consequence of Theorem 2.5. �

We can further refine the obtained results by dropping some of the analytical properties
of the families of functions and using just divided differences.

Let us introduce the following family of functions:

D = {p : p ∈ J},

a family of functions from C([0,a]) such that p(0) = 0, p → [x,y;p] is exponentially
convex on J for every choice of two distinct points x,y ∈ [0,a], and p → [x0,x1,x2;p] is
exponentially convex on J for every choice of three distinct points x0,x1,x2 ∈ [0,a].
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Theorem 2.24 Let f →L( f ) be the linear functional defined by (2.43) and let H : J →R

be defined by
H(p) = L(p) (2.52)

where p ∈ D . Then the following statements hold.

(i) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[
H

(
pk + pm

2

)]n
k,m=1

is positive semidefinite. Particularly,

det

[
H

(
pk + pm

2

)]n

k,m=1
≥ 0.

(ii) If the function H is continuous on J, then H is exponentially convex on J.

(iii) If H is positive and differentiable on J, then for every p,q,u,v ∈ J such that
p ≤ u, q ≤ v, we have

M̂(p,q) ≤ M̂(u,v)

where M̂(p,q) is defined by

M̂(p,q) =

⎧⎪⎨⎪⎩
(

H(p)
H(q)

) 1
p−q

, p �= q;

exp

(
d
dp (H(p))

H(p)

)
, p = q.

Proof. (i) Let n ∈ N, p1, . . . pn ∈ R be arbitrary and define an auxiliary function
 : [0,a] → R by

(x) =
n


k,m=1

km pk+pm
2

(x).

Then

[x,y;] =
n


k,m=1

km[x,y; pk+pm
2

] ≥ 0

by the definition of D and exponential convexity. This implies that  is a nondecreasing
function on [0,a]. Similarly, [x0,x1,x2;] ≥ 0, for every choice of three distinct points
x0,x1,x2 ∈ [0,a]. This implies that  is a nondecreasing, convex function on [0,a] such
that (0) = 0. Hence L() ≥ 0, which is equivalent to

n


k,m=1

kmH

(
pk + pm

2

)
≥ 0.

(ii) Follows from (i).
(iii) This is a simple consequence of Theorem 2.5. �
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2.4 Bellman-Steffensen type inequalities

In [11] Bellman introduced an Lp generalization of Steffensen’s inequality. Since it was
incorrect as stated it has been a subject of investigation by many mathematicians giving
corrected versions and generalizations of Bellman’s result. In [57] Pečarić showed that
with very simple modifications of conditions Bellman’s generalization is true. Using some
substitutions in his corrected version Pečarić also proved some modification of Steffensen’s
inequality (see [58]) for which Mitrinović and Pečarić gave necessary and sufficient con-
ditions (see [49]). In this section we give some generalizations of Bellman-Steffensen type
inequalities for positive measures obtained by Jakšetić, Pečarić and Smoljak Kalamir in
[38].

Theorem 2.25 Let  be a finite, positive measure on B([a,b]), f , h be −integrable
functions on [a,b] such that h is positive and f nonincreasing and right-continuous. Then∫

[a,b] f (t)G(t)d(t)∫
[a,b] G(t)d(t)

≤
∫
[a,a+ ] f (t)h(t)d(t)∫

[a,a+ ] h(t)d(t)
(2.53)

if and only if G : [a,b]→ R is −integrable and  is a positive constant such that∫
[a,x) G(t)d(t)∫
[a,b] G(t)d(t)

≤
∫
[a,x) h(t)d(t)∫

[a,a+ ] h(t)d(t)
and

∫
[x,b]

G(t)d(t) ≥ 0, (2.54)

for every x ∈ [a,b], assuming
∫
[a,b] G(t)d(t) > 0.

For a nondecreasing, right-continuous function f : [a,b] → R the inequality (2.53) is re-
versed.

Proof. Sufficiency. Let us define the function

g(t) =
G(t)

∫
[a,a+ ] h(t)d(t)∫

[a,b] G(t)d(t)
.

Since
∫
[a,b] g(t)d(t) =

∫
[a,a+ ] h(t)d(t) and (3.84) are fulfilled we can apply (3.83) and

(2.53) is valid.
Necessity. If we put the function

f (t) =

{
1, t < x;

0, t ≥ x,

for a ≤ x ≤ a+ in the inequality (2.53) we obtain the conditions in (2.54). �
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Theorem 2.26 Let  be a finite, positive measure on B([a,b]). Let f and h be nonnega-
tive nonincreasing functions on [a,b], and let  be an increasing convex function on [0,)
with (0) = 0. If G is a nonnegative nondecreasing function on [a,b] such that there exists
a nonnegative function g1, defined by the equation∫

[a,b]
g1(t)

(
G(t)
g1(t)

)
d(t) ≤

∫
[a,b]

h(t)d(t)

and
∫
[a,b] g1(t)d(t) ≤ 1, then the following inequality is valid:



(∫
[a,b] f (t)G(t)d(t)∫

[a,b] G(t)d(t)

)
≤
∫
[a,a+ ]( f (t))h(t)d(t)∫

[a,a+ ] h(t)d(t)
,

where
∫
[a,a+ ] h(t)d(t) = 

(∫
[a,b] G(t)d(t)

)
.

Proof. Using Jensen’s inequality we have



(∫
[a,b] f (t)G(t)d(t)∫

[a,b] G(t)d(t)

)
≤
∫
[a,b]( f (t))G(t)d(t)∫

[a,b] G(t)d(t)
,

and since  ◦ f is nonincreasing, we only have to check conditions in (2.54). Since G is
nonnegative, obviously

∫
[x,b] G(t)d(t) ≥ 0. So we only have to show


(∫

[a,b]
G(t)d(t)

)∫
[a,x)

G(t)d(t) ≤
∫

[a,x)
h(t)d(t)

∫
[a,b]

G(t)d(t). (2.55)

Using sub-linearity from Lemma 2.3 and Jensen’s inequality we have


(∫

[a,b]
G(t)d(t)

)
= 

(∫
[a,b]

g1(t)d(t)

∫
[a,b] G(t)d(t)∫
[a,b] g1(t)d(t)

)

≤
∫

[a,b]
g1(t)d(t)

⎛⎝∫[a,b] g1(t)
G(t)
g1(t)

d(t)∫
[a,b] g1(t)d(t)

⎞⎠
≤
∫

[a,b]
g1(t)

(
G(t)
g1(t)

)
d(t) ≤

∫
[a,b]

h(t)d(t). (2.56)

Since G is a nonnegative nondecreasing function and h is a nonnegative nonincreasing
function, we see that for each x ∈ [a,b]∫

[a,x) G(t)d(t)∫
[a,x) h(t)d(t)

≤
∫
[a,b] G(t)d(t)∫
[a,b] h(t)d(t)

i.e. ∫
[a,b]

h(t)d(t)
∫

[a,x)
G(t)d(t) ≤

∫
[a,x)

h(t)d(t)
∫

[a,b]
G(t)d(t),

so along with (2.56) we proved (2.55). Hence, the proof is completed. �
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In Theorems 2.25 and 2.26 we proved similar results to the ones obtained by Liu in
[43] but we only need  to be finite and positive instead of finite continuous and strictly
increasing as in [43].

Taking h ≡ 1 in Theorems 2.25 and 2.26 we obtain results given in [37].

2.5 Further improvement of an extension
of Hölder-type inequality

In [54] Pearce and Pečarić proved an extension of Hölder’s inequality using the following
generalization of Steffensen’s inequality.

Theorem 2.27 (i) Suppose that f and g are integrable functions on [a,b], f is nonin-
creasing and  > 0. If a positive function g satisfies the condition


∫ x

a
g(t)dt ≤ (x−a)

∫ b

a
g(t)dt (2.57)

for every x ∈ [a,b], then ∫ b
a f (t)g(t)dt∫ b

a g(t)dt
≤ −1

∫ a+

a
f (t)dt, (2.58)

while if a positive function g satisfies


∫ b

x
g(t)dt ≤ (b− x)

∫ b

a
g(t)dt (2.59)

for every x ∈ [a,b], then

−1
∫ b

b−
f (t)dt ≤

∫ b
a f (t)g(t)dt∫ b

a g(t)dt
. (2.60)

In either case equality holds if f is constant.

(ii) If f is nondecreasing, the reverse inequalities hold in (2.58) and (2.60).

In the following theorem we recall the aforementioned extension of Hölder’s inequality
from [54].

Theorem 2.28 Let f and g be two integrable and positive functions defined on [a,b] and
let M, K be real numbers satisfying a ≤ K < M ≤ b.

(i) Suppose that for every x ∈ [K,b] we have

1
x−K

∫ x

K
g(t)dt ≤ 1

M−K

∫ b

K
g(t)dt, (2.61)
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that p > 1, p−1 +q−1 = 1 and that f is nonincreasing. Then

∫ b

a
f (t)g(t)dt ≤

(∫ M

a
f p(t)dt

)1/p(∫ M

a
ĝq(t)dt

)1/q

, (2.62)

where

ĝ(t) =

{
g(t), a ≤ t < K

1
M−K

∫ b
K g(t)dt, K ≤ t ≤ M.

(2.63)

The inequality in (2.62) is reversed if p < 1 and f is a nondecreasing function. In
both cases, equality holds in (2.62) if

f p(t) = cĝq(t), a ≤ t ≤ M

(where c is constant) and

f (t) = f (K), t ∈ [K,b].

(ii) Suppose that for every x ∈ [a,M] we have

1
M− x

∫ M

x
g(t)dt ≤ 1

M−K

∫ M

a
g(t)dt, (2.64)

that p > 1, p−1 +q−1 = 1 and that f is nondecreasing. Then

∫ b

a
f (t)g(t)dt ≤

(∫ b

K
f p(t)dt

)1/p(∫ b

K
ĝq(t)dt

)1/q

, (2.65)

where

ĝ(t) =

{
1

M−K

∫M
a g(t)dt, K ≤ t ≤ M

g(t), M < t ≤ b.
(2.66)

The inequality in (2.65) is reversed if p < 1 and f is a nonincreasing function. In
both cases, equality holds in (2.65) if

f p(t) = cĝq(t), K ≤ t ≤ b

(where c is constant) and

f (t) = f (M), t ∈ [a,M].

In [73] Pečarić and Smoljak improved the above extension of Hölder’s inequality using
log-convexity.

By simple modification of Theorem 2.16 we have the following generalization of Stef-
fensen’s inequality for positive measures given in [39].
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Theorem 2.29 (i) Let  be a finite, positive measure on B([a,b]). Suppose that g is
a −integrable function on [a,b], f is nonincreasing, right-continuous function on
[a,b] and  is a positive constant. If a positive function g satisfies the condition

([a,a+ ])
∫
[a,x)

g(t)d(t) ≤ ([a,x))
∫

[a,b]
g(t)d(t) (2.67)

for every x ∈ [a,b], then∫
[a,b] f (t)g(t)d(t)∫

[a,b] g(t)d(t)
≤
∫
[a,a+ ] f (t)d(t)

([a,a+ ])
, (2.68)

while if a positive function g satisfies the condition

((b− ,b])
∫
[x,b]

g(t)d(t)≤ ([x,b])
∫

[a,b]
g(t)d(t) (2.69)

for every x ∈ [a,b], then∫
(b− ,b] f (t)d(t)

((b− ,b])
≤
∫
[a,b] f (t)g(t)d(t)∫

[a,b] g(t)d(t)
. (2.70)

In either case the equality holds if f is constant.

(ii) If f is a nondecreasing, right-continuous function, the reverse inequalities hold in
(2.68) and (2.70).

Using the above generalization of Steffensen’s inequality the following extension of
Hölder’s inequality for positive measures was obtained in [39].

Theorem 2.30 Let  be a finite, positive measure on B([a,b]). Let f and g be two
−integrable and positive functions defined on [a,b] and let M, K be real numbers satis-
fying a ≤ K < M ≤ b.

(i) Suppose that for every x ∈ [K,b] we have

1
([K,x))

∫
[K,x)

g(t)d(t) ≤ 1
([K,M])

∫
[K,b]

g(t)d(t), (2.71)

that p > 1, p−1 +q−1 = 1 and that f is a nonincreasing, right-continuous function.
Then∫

[a,b]
f (t)g(t)d(t) ≤

(∫
[a,M]

f p(t)d(t)
)1/p(∫

[a,M]
ĝq(t)d(t)

)1/q

, (2.72)

where

ĝ(t) =

{
g(t), a ≤ t < K

1
([K,M])

∫
[K,b] g(t)d(t), K ≤ t ≤ M.

(2.73)
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The inequality in (2.72) is reversed if p < 1 and f is a nondecreasing, right-continuous
function. In both cases, the equality holds in (2.72) if

f p(t) = cĝq(t), a ≤ t ≤ M

where c is a constant and f (t) = f (K), t ∈ [K,b].

(ii) Suppose that for every x ∈ [a,M] we have

1
([x,M])

∫
[x,M]

g(t)d(t) ≤ 1
((K,M])

∫
[a,M]

g(t)d(t), (2.74)

that p > 1, p−1 +q−1 = 1 and f is a nondecreasing, right-continuous function. Then

∫
[a,b]

f (t)g(t)d(t) ≤
(∫

(K,b]
f p(t)d(t)

)1/p(∫
(K,b]

ĝq(t)d(t)
)1/q

, (2.75)

where

ĝ(t) =

{
1

((K,M])
∫
[a,M] g(t)d(t), K ≤ t ≤ M

g(t), M < t ≤ b.
(2.76)

The inequality in (2.75) is reversed if p < 1 and f is a nonincreasing, right-continuous
function. In both cases, the equality holds in (2.75) if

f p(t) = cĝq(t), K ≤ t ≤ b

where c is a constant and f (t) = f (M), t ∈ [a,M].

Proof.

(i) Let  = M−K and replace a by K in Theorem 2.29 (i). Now, by (2.71) we have that
the condition (2.67) is satisfied. Hence, (2.68) holds, that is∫

[K,b]
f (t)g(t)d(t) ≤ 1

([K,M])

∫
[K,b]

g(t)d(t)
∫

[K,M]
f (t)d(t)

=
∫

[K,M]
f (t)ĝ(t)d(t).

So, ∫
[a,b]

f (t)g(t)d(t) =
∫

[a,K)
f (t)g(t)d(t)+

∫
[K,b]

f (t)g(t)d(t)

≤
∫

[a,K)
f (t)ĝ(t)d(t)+

∫
[K,M]

f (t)ĝ(t)d(t)

=
∫

[a,M]
f (t)ĝ(t)d(t).

Now using Hölder’s inequality, the inequality (2.72) follows.
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(ii) Let  = M−K and replace b by M in Theorem 2.29 (ii). Now, by (2.74) we have that
the condition (2.69) is satisfied. Since f is nondecreasing the reversed inequality in
(2.70) holds, that is∫

[a,M]
f (t)g(t)d(t) ≤ 1

((K,M])

∫
[a,M]

g(t)d(t)
∫

(K,M]
f (t)d(t)

=
∫

(K,M]
f (t)ĝ(t)d(t).

So ∫
[a,b]

f (t)g(t)d(t) =
∫

[a,M]
f (t)g(t)d(t)+

∫
(M,b]

f (t)g(t)d(t)

≤
∫

(K,M]
f (t)ĝ(t)d(t)+

∫
(M,b]

f (t)ĝ(t)d(t)

=
∫

(K,b]
f (t)ĝ(t)d(t).

Now using Hölder’s inequality, the inequality (2.75) follows.

The other cases follow similarly, while the statement of equality follows from the condition
for the equality in Steffensen’s and Hölder’s inequalities. �

Corollary 2.4 (i) Suppose the assumptions of Theorem 2.30(i) are satisfied and fur-
ther g is nonincreasing. Then Theorem 2.30(i) is also valid if the condition (2.71) is
replaced by

g(K) ≤ 1
([K,M])

∫
[K,b]

g(t)d(t).

(ii) Suppose the assumptions of Theorem 2.30(ii) are satisfied and further g is nonde-
creasing. Then Theorem 2.30(ii) is also valid if the condition (2.74) is replaced by

g(M) ≤ 1
((K,M])

∫
[a,M]

g(t)d(t).

Proof. If g is nonincreasing, then

1
([K,x])

∫
[K,x)

g(t)d(t) ≤ g(K) ≤ 1
([K,M])

∫
[K,b]

g(t)d(t),

that is, (2.71) holds. Similarly, if g is nondecreasing, then

1
([x,M])

∫
[x,M]

g(t)d(t)≤ g(M) ≤ 1
((K,M])

∫
[a,M]

g(t)dt,

that is, (2.74) holds. �

We continue with some applications of previous results given in [39].
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Let p be defined as in Lemma 2.2. Under the assumptions of Theorem 2.30 (i) and
(ii), respectively, let us define the following linear functionals

N1(p ◦ f ) =
∫

[a,b]
p( f (t))g(t)d(t)−

∫
[a,M]

p( f (t))ĝ(t)d(t) (2.77)

and
N2(p ◦ f ) =

∫
(K,b]

p( f (t))ĝ(t)d(t)−
∫
[a,b]

p( f (t))g(t)d(t), (2.78)

which are positive on a class of nondecreasing, right-continuous functions f .
Also, we have that −N1(p ◦ f ) and −N2(p ◦ f ) are positive on a class of nonincreas-

ing, right-continuous functions f .

Theorem 2.31 Let i : R → R, i = 1,2, be defined by

i(p) = Ni(p ◦ f ),

where N1 and N2 are linear functionals defined by (2.77) and (2.78), p is defined in
Lemma 2.2 and f is a nondecreasing, right-continuous function. Then the following state-
ments hold for every i = 1,2.

(i) The function i is continuous on R.

(ii) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[
i

(
p j + pk

2

)]n

j,k=1

is positive semidefinite. Particularly,

det

[
i

(
p j + pk

2

)]n

j,k=1
≥ 0.

(iii) The function i is exponentially convex on R.

(iv) The function i is log-convex on R.

(v) If r,s, t ∈ R are such that r < s < t, then

i(s)t−r ≤i(r)t−si(t)s−r.

Proof. (i) Continuity of the function p → i(p), i = 1,2 is obvious for p ∈ R\ {0}. For
p = 0 it is directly checked using the Heine characterization.
(ii) First, let us prove this for i = 1. Let n ∈ N,  j, p j ∈ R,( j = 1, . . . ,n) be arbitrary and
define an auxiliary function  : (0,) → R by

(x) =
n


j,k=1

 jk p j+pk
2

(x).
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Since

′(x) =

(
n


j=1

 jx
p j−1

2

)2

≥ 0

we have that  is increasing on (0,).
By (2.71), the condition (2.67) is satisfied with  = M−K and a replaced by K. Hence,

by Theorem 2.29, the reverse inequality in (2.68) holds, so for a nondecreasing function
◦ f we obtain ∫

[K,b]
( f (t))g(t)d(t) ≥

∫
[K,M]

( f (t))ĝ(t)d(t)t.

By definition ∫
[a,K)

( f (t))g(t)d(t) =
∫

[a,K)
( f (t))ĝ(t)d(t),

so we obtain ∫
[a,b]

( f (t))g(t)d(t) ≥
∫

[a,M]
( f (t))ĝ(t)d(t),

that is, N1(◦ f ) ≥ 0. This is means that[
1

(
p j + pk

2

)]n

j,k=1

is a positive semi-definite matrix.
Similarly, we can prove this for i = 2.
(iii), (iv), (v) are simple consequences of (i) and (ii). �

Similarly as in Theorem 2.31 we obtain that for a nonincreasing, right-continuous func-
tion f statements of Theorem 2.31 hold for −i(p), i = 1,2.

Hence, the following inequality holds true

|i(s)|t−r ≤ |i(r)|t−s|i(t)|s−r, i = 1,2, (2.79)

for every choice r,s,t ∈ R such that r < s < t.
In the following theorems we obtain an improvement of Hölder-type inequality in mea-

sure theory settings.

Theorem 2.32 Let  be a finite, positive measure on B([a,b]). Let f and g be two
−integrable and positive functions defined on [a,b], let ĝ be defined by (2.73) and let M,
K be real numbers satisfying a ≤ K < M ≤ b. Suppose that for every x ∈ [K,b] we have
(2.71).

(i) Suppose that p > 1, p−1 + q−1 = 1, 1 < s < t and that f is a nonincreasing, right-
continuous function. Then(∫

[a,M]
f p(t)d(t)

)1/p(∫
[a,M]

ĝq(t)d(t)
)1/q

−
∫

[a,b]
f (t)g(t)d(t)

≥ [−1(s)]
t−1
t−s [−1(t)]

1−s
t−s .

(2.80)
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If p < 1 and f is a nondecreasing, right-continuous function, then∫
[a,b]

f (t)g(t)d(t)−
(∫

[a,M]
f p(t)d(t)

)1/p (∫
[a,M]

ĝq(t)d(t)
)1/q

≥ [1(s)]
t−1
t−s [1(t)]

1−s
t−s .

(2.81)

(ii) Suppose that p > 1, p−1 +q−1 = 1, r < s < 1 and that f is a nonincreasing, right-
continuous function. Then(∫

[a,M]
f p(t)d(t)

)1/p(∫
[a,M]

ĝq(t)d(t)
)1/q

−
∫

[a,b]
f (t)g(t)d(t)

≥ [−1(s)]
1−r
s−r [−1(r)]

s−1
s−r .

If p < 1 and f is a nondecreasing, right-continuous function, then∫
[a,b]

f (t)g(t)d(t)−
(∫

[a,M]
f p(t)d(t)

)1/p(∫
[a,M]

ĝq(t)d(t)
)1/q

≥ [1(s)]
1−r
s−r [1(r)]

s−1
s−r .

Proof.

(i) Taking substitution r → 1 in (2.79) (for i = 1) and then raising both sides of the
inequality (2.79) to the power 1

t−s we obtain

|1(1)| ≥ |1(s)| t−1
t−s |1(t)| 1−s

t−s .

For a nonincreasing function f , we have

|1(1)| = −1(1) =
∫

[a,M]
f (t)ĝ(t)d(t)−

∫
[a,b]

f (t)g(t)d(t) ≥ 0.

Now by Hölder’s inequality we have(∫
[a,M]

f p(t)d(t)
)1/p(∫

[a,M]
ĝq(t)d(t)

)1/q

−
∫
[a,b]

f (t)g(t)d(t)

≥
∫

[a,M]
f (t)ĝ(t)d(t)−

∫
[a,b]

f (t)g(t)d(t)

= −1(1) ≥ [−1(s)]
t−1
t−s [−1(t)]

1−s
t−s .

Hence, we obtain (2.80).

For a nondecreasing function f , we have

|1(1)| = 1(1) =
∫

[a,b]
f (t)g(t)d(t)−

∫
[a,M]

f (t)ĝ(t)d(t) ≥ 0.
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Now by Hölder’s inequality for p < 1 we have∫
[a,b]

f (t)g(t)d(t)−
(∫

[a,M]
f p(t)d(t)

)1/p(∫
[a,M]

ĝq(t)d(t)
)1/q

≥
∫

[a,b]
f (t)g(t)d(t)−

∫
[a,M]

f (t)ĝ(t)d(t)

= 1(1) ≥ [1(s)]
t−1
t−s [1(t)]

1−s
t−s .

Hence, we obtain (2.81).

(ii) Similar to the proof of (i), taking substitution t → 1.

�

Theorem 2.33 Let  be a finite, positive measure on B([a,b]). Let f and g be two
−integrable and positive functions defined on [a,b], let ĝ be defined by (2.76) and let M,
K be real numbers satisfying a ≤ K < M ≤ b. Suppose that for every x ∈ [a,M] we have
(2.74).

(i) Suppose that p > 1, p−1 +q−1 = 1, 1 < s < t and that f is a nondecreasing, right-
continuous function. Then(∫

(K,b]
f p(t)d(t)

)1/p(∫
(K,b]

ĝq(t)d(t)
)1/q

−
∫

[a,b]
f (t)g(t)d(t)

≥ [2(s)]
t−1
t−s [2(t)]

1−s
t−s .

If p < 1 and f is a nonincreasing, right-continuous function, then∫
[a,b]

f (t)g(t)d(t)−
(∫

(K,b]
f p(t)d(t)

)1/p(∫
(K,b]

ĝq(t)d(t)
)1/q

≥ [−2(s)]
t−1
t−s [−2(t)]

1−s
t−s .

(ii) Suppose that p > 1, p−1 +q−1 = 1, r < s < 1 and that f is a nondecreasing, right-
continuous function. Then(∫

(K,b]
f p(t)d(t)

)1/p(∫
(K,b]

ĝq(t)d(t)
)1/q

−
∫

[a,b]
f (t)g(t)d(t)

≥ [2(s)]
1−r
s−r [2(r)]

s−1
s−r .

If p < 1 and f is a nonincreasing, right-continuous function, then∫
[a,b]

f (t)g(t)d(t)−
(∫

(K,b]
f p(t)d(t)

)1/p(∫
(K,b]

ĝq(t)d(t)
)1/q

≥ [−2(s)]
1−r
s−r [−2(t)]

s−1
s−r .

Proof. Similar to the proof of Theorem 2.32. �
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We continue with the Lagrange-type mean value theorem.

Theorem 2.34 Let f be a nondecreasing, right-continuous function and let  ∈
C1[ f (a), f (b)]. Let Ni, i = 1,2, be linear functionals defined by (2.77) and (2.78). Then
there exist i ∈ [ f (a), f (b)], i = 1,2, such that

Ni( ◦ f ) =  ′(i)Ni(id◦ f ),

where id(x) = x.

Proof. Since  ∈C1[ f (a), f (b)] there exist

m = min
x∈[ f (a), f (b)]

 ′(x) and M = max
x∈[ f (a), f (b)]

 ′(x).

Denote h1(x) = Mx−(x) and h2(x) = (x)−mx. Then

h′1(x) = M− ′(x) ≥ 0

h′2(x) =  ′(x)−m ≥ 0

so h1 and h2 are nondecreasing on [ f (a), f (b)], which means that Ni(h1 ◦ f ) ≥ 0 and
Ni(h2 ◦ f ) ≥ 0 i.e.

mNi(id◦ f ) ≤ Ni( ◦ f ) ≤ MNi(id◦ f ).

If Ni(id◦ f ) = 0, the proof is complete. If Ni(id◦ f ) > 0, then

m ≤ Ni( ◦ f )
Ni(id◦ f )

≤ M

and the existence of i ∈ [ f (a), f (b)] follows. �

Corollary 2.5 Let f be a nondecreasing, right-continuous function and let 1,2 ∈
C1[ f (a), f (b)]. Then there exist i ∈ [ f (a), f (b)], such that

 ′
1( )

 ′
2( )

=
Ni(1 ◦ f )
Ni(2 ◦ f )

(2.82)

provided that the denominator on right sides is non-zero, where Ni, i = 1,2, are linear
functionals defined by (2.77) and (2.78).

If the inverse of  ′
1/

′
2 exists then various kinds of means can be defined by (2.82).

That is

i =
(
 ′

1

 ′
2

)−1(Ni(1 ◦ f )
Ni(2 ◦ f )

)
, i = 1,2. (2.83)

Particularly, if we substitute 1(x) = p(x), 2(x) = q(x), where p is defined in
Lemma 2.2, in (2.83) and use the continuous extension, the following expressions are
obtained (i = 1,2):

Mi(p,q) =

⎧⎪⎨⎪⎩
(

Ni(p◦ f )
Ni(q◦ f )

) 1
p−q

, p �= q;

exp
(

Ni(0·(p◦ f ))
Ni(p◦ f ) − 1

p

)
, p = q.
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By Theorem 2.5, if p,q,u,v ∈ (0,) such that p ≤ u, q ≤ v then,

Mi(p,q) ≤ Mi(u,v), i = 1,2.

Similar as in Section 2.1 we see that we can further refine obtained results by dropping
some of the analytical properties of a family of functions from Lemma 2.2. Proofs are
similar to the ones in Section 2.1 so we omit the details.

By
C = {p : p : [a,b] → R, p ∈ J}

let us define a family of functions from C([a,b]) such that p → [x0,x1;p] is log-convex in
the Jensen sense on J for every choice of two distinct points x0,x1 ∈ [a,b].

Theorem 2.35 Let Gi : J → R, be defined by

Gi(p) = Ni(p ◦ f ), i = 1,2,

where functionals Ni, i = 1,2 are defined by (2.77) and (2.78), p ∈ C and f is a nonde-
creasing right-continuous function. Then the following statements hold, for every i = 1,2.

(i) Gi is log-convex in the Jensen sense on J.

(ii) If Gi is continuous on J, then it is log-convex on J and for p,q,r ∈ J such that
p < q < r, we have

Gi(q)r−p ≤ Gi(p)r−qGi(r)q−p.

(iii) If Gi is positive and differentiable on J, then for every p,q,r ∈ J such that p ≤ u,
q ≤ v, we have

M̃i(p,q) ≤ M̃i(u,v) (2.84)

where M̃i(p,q) is defined by

M̃i(p,q) =

⎧⎪⎨⎪⎩
(

Gi(p)
Gi(q)

) 1
p−q

, p �= q;

exp

(
d
dp (Gi(p))

Gi(p)

)
, p = q.

(2.85)

By
D = {p : p : [a,b]→ R, p ∈ J},

let us define a family of functions from C([a,b]) such that p → [x0,x1;p] is exponentially
convex on J for every choice of two distinct points x0,x1 ∈ [a,b].

Theorem 2.36 Let Hi : J → R, be defined by

Hi(p) = Ni(p ◦ f ), i = 1,2,

where functionals Ni, i = 1,2 are defined by (2.77) and (2.78), p ∈ D and f is a nonde-
creasing right-continuous function. Then the following statements hold for every i = 1,2.
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(i) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[
Hi

(
pk + pm

2

)]n

k,m=1

is positive semidefinite. Particularly,

det

[
Hi

(
pk + pm

2

)]n
k,m=1

≥ 0.

(ii) If the function Hi is continuous on J, then Hi is exponentially convex on J.

(iii) If Hi is positive and differentiable on J, then for every p,q,r ∈ J such that p ≤ u,
q ≤ v, we have

M̂i(p,q) ≤ M̂i(u,v)

where M̂i(p,q) is defined by

M̂i(p,q) =

⎧⎪⎨⎪⎩
(

Hi(p)
Hi(q)

) 1
p−q

, p �= q;

exp

(
d
dp (Hi(p))

Hi(p)

)
, p = q.



Chapter3

Weighted Pečarić, Mercer
and Wu-Srivastava results

3.1 Measure theoretic generalization of Pečarić,
Mercer and Wu-Srivastava results

In 2000 Mercer gave a generalization of Steffensen’s inequality and he noted that his gener-
alization contains various already known generalizations, one of which is a generalization
given by Pečarić in 1982. It was noted by Wu and Srivastava in 2007 that Mercer’s re-
sult is incorrect as stated and they have not only corrected it but also gave a refinement of
Steffensen’s inequality and a sharpened version of Mercer’s result. Furthermore, in 1979
Milovanović and Pečarić gave weaker conditions on the function g in Steffensen’s inequal-
ity and Mercer obtained weaker conditions for his generalizations. In [61] Pečarić, Perušić
and Smoljak related generalizations of Steffensen’s inequality given by Pečarić, Mercer
and Wu-Srivastava. Moreover, using Wu-Srivastava refinements of Steffensen’s inequality
they obtained refined versions of Pečarić and Mercer’s results and gave this results with
weaker conditions. The aim of this section is to give a measure theoretic generalizations of
previously mentioned generalizations of Steffensen’s inequality. Results presented in this
section were obtained by Jakšetić, Pečarić and Smoljak Kalamir in [35].

Firstly we give measure theoretic version of Theorems 1.6 and 1.7.

61
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Theorem 3.1 Let  be a positive finite measure on B([a,b]), let f ,g and h be measurable
functions on [a,b] such that h is positive, f/h is nonincreasing and 0 ≤ g ≤ 1.

(a) If there exists  ∈ R+ such that∫
[a,a+ ]

h(t)d(t) =
∫

[a,b]
h(t)g(t)d(t), (3.1)

then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
f (t)d(t). (3.2)

(b) If there exists  ∈ R+ such that∫
(b− ,b]

h(t)d(t) =
∫

[a,b]
h(t)g(t)d(t), (3.3)

then ∫
(b− ,b]

f (t)d(t) ≤
∫

[a,b]
f (t)g(t)d(t). (3.4)

Proof. Let us prove the (a)-part. Transformation of the difference between the right-hand
side and the left-hand side of inequality (3.2) gives∫

[a,a+ ]
f (t)d(t)−

∫
[a,b]

f (t)g(t)d(t)

=
∫

[a,a+ ]
(1−g(t)) f (t)d(t)−

∫
(a+ ,b]

f (t)g(t)d(t)

≥ f (a+ )
h(a+ )

∫
[a,a+ ]

h(t)(1−g(t))d(t)−
∫
(a+ ,b]

f (t)g(t)d(t)

=
f (a+ )
h(a+ )

(∫
[a,b]

h(t)g(t)d(t)−
∫
[a,a+ ]

h(t)g(t)d(t)
)
−
∫

(a+ ,b]
f (t)g(t)d(t)

=
∫

(a+ ,b]
g(t)h(t)

(
f (a+ )
h(a+ )

− f (t)
h(t)

)
d(t) ≥ 0,

where we use (3.1).
Proof of the (b)-part is similar so we omit the details. �

Theorem 3.2 Let  be a positive finite measure on B([a,b]), let f ,g and h be measur-
able functions on [a,b] such that h is positive, f is nonnegative, 0 ≤ g ≤ 1 and f/h is
nonincreasing.

(a) If there exists  ∈ R+ such that∫
[a,a+ ]

h(t)d(t) ≥
∫

[a,b]
h(t)g(t)d(t), (3.5)

then (3.2) holds.
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(b) If there exists  ∈ R+ such that∫
(b− ,b]

h(t)d(t) ≤
∫

[a,b]
h(t)g(t)d(t),

then (3.4) holds.

Proof. From the conditions of theorem we have that f/h is nonnegative. Hence, condition
(3.5) together with f (a+ )/h(a+ )≥ 0 enables us to re-adjust the proof of Theorem 3.1
(a) to prove the (a)-part. Similarly we obtain the (b)-part. �

Taking h ≡ 1 in Theorems 3.1 and 3.2 we have Steffensen’s inequality for positive
measures given in Section 2.1.

Using approach from [61] in the following theorems we obtain corrected version of
Mercer’s generalization in measure theory settings.

Theorem 3.3 Let  be a positive finite measure on B([a,b]), let f ,g and h be measurable
functions on [a,b] such that h is positive, f is nonincreasing and 0 ≤ g ≤ h.

(a) If there exists  ∈ R+ such that∫
[a,a+ ]

h(t)d(t) =
∫

[a,b]
g(t)d(t), (3.6)

then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
f (t)h(t)d(t). (3.7)

(b) If there exists  ∈ R+ such that∫
(b− ,b]

h(t)d(t) =
∫

[a,b]
g(t)d(t), (3.8)

then ∫
(b− ,b]

f (t)h(t)d(t) ≤
∫

[a,b]
f (t)g(t)d(t). (3.9)

Proof. Putting substitutions g → g/h and f → f h in Theorem 3.1 we obtain statements of
this theorem. �

Theorem 3.4 Let  be a positive finite measure on B([a,b]), let f ,g and h be mea-
surable functions on [a,b] such that h is positive, 0 ≤ g ≤ h, and f is nonnegative and
nonincreasing.

(a) If there exists  ∈ R+ such that∫
[a,a+ ]

h(t)d(t) ≥
∫

[a,b]
g(t)d(t), (3.10)

then (3.7) holds.
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(b) If there exists  ∈ R+ such that∫
(b− ,b]

h(t)d(t)≤
∫

[a,b]
g(t)d(t), (3.11)

then (3.9) holds.

Proof. Putting substitutions g → g/h and f → f h in Theorem 3.2 we obtain statements of
this theorem. �

In the following theorem we obtain generalization of Theorem 1.10 in measure theory
settings.

Theorem 3.5 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be measur-
able functions on [a,b] such that k is positive, 0 ≤ g ≤ h and f/k is nonincreasing.

(a) If there exists  ∈ R+ such that∫
[a,a+ ]

h(t)k(t)d(t) =
∫

[a,b]
g(t)k(t)d(t), (3.12)

then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
f (t)h(t)d(t). (3.13)

(b) If there exists  ∈ R+ such that∫
(b− ,b]

h(t)k(t)d(t) =
∫

[a,b]
g(t)k(t)d(t), (3.14)

then ∫
(b− ,b]

f (t)h(t)d(t) ≤
∫

[a,b]
f (t)g(t)d(t). (3.15)

Proof. Take h → kh, g → g/h and f → f h in Theorem 3.1. �

Theorem 3.6 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be mea-
surable functions on [a,b] such that k is positive, f is nonnegative, 0 ≤ g ≤ h and f/k is
nonincreasing.

(a) If there exists  ∈ R+ such that∫
[a,a+ ]

h(t)k(t)d(t) ≥
∫

[a,b]
g(t)k(t)d(t), (3.16)

then (3.13) holds.

(b) If there exists  ∈ R+ such that∫
(b− ,b]

h(t)k(t)d(t) ≤
∫

[a,b]
g(t)k(t)d(t), (3.17)

then (3.15) holds.

Proof. Take h → kh, g → g/h and f → f h in Theorem 3.2. �
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Taking k ≡ 1 in Theorems 3.5 and 3.6 we obtain results given in Theorems 3.3 and 3.4.
Motivated by corrected and refined version of Mercer’s results given in Theorem 1.11

we obtain the following results for positive measure.

Theorem 3.7 Let  be a positive finite measure on B([a,b]), let f ,g and h be measurable
functions on [a,b] such that 0 ≤ g ≤ h and f is nonincreasing.

(a) If there exists  ∈ R+ such that∫
[a,a+ ]

h(t)d(t) =
∫

[a,b]
g(t)d(t),

then∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])d(t)

≤
∫

[a,a+ ]
f (t)h(t)d(t).

(3.18)

(b) If there exists  ∈ R+ such that∫
(b− ,b]

h(t)d(t) =
∫

[a,b]
g(t)d(t),

then∫
(b− ,b]

f (t)h(t)d(t) ≤
∫

(b− ,b]
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])d(t)

≤
∫

[a,b]
f (t)g(t)d(t).

(3.19)

Proof. The proof is based on the following identities:∫
[a,b]

f (t)g(t)d(t) =
∫

[a,a+ ]
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])d(t)

+
∫
(a+ ,b]

[ f (t)− f (a+ )]g(t)d(t)
(3.20)

and∫
[a,b]

f (t)g(t)d(t) =
∫

(b− ,b]
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])d(t)

+
∫

[a,b− ]
[ f (t)− f (b− )]g(t)d(t).

(3.21)
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Let us prove the first one. Transformation of the right-hand side of identity (3.20) gives the
following∫

[a,a+ ]
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])d(t)

+
∫

(a+ ,b]
[ f (t)− f (a+ )]g(t)d(t) =

∫
(a+ ,b]

f (t)g(t)d(t)

+
∫

[a,a+ ]
[ f (t)g(t)+ f (a+ )(h(t)−g(t))]d(t)− f (a+ )

∫
(a+ ,b]

g(t)d(t)

=
∫

[a,b]
f (t)g(t)d(t)+ f (a+ )

[∫
[a,a+ ]

(h(t)−g(t))d(t)−
∫
(a+ ,b]

g(t)d(t)
]

=
∫

[a,b]
f (t)g(t)d(t)+ f (a+ )

[∫
[a,a+ ]

h(t)d(t)−
∫
[a,b]

g(t)d(t)
]

=
∫

[a,b]
f (t)g(t)d(t)

where in the last equality we use a definition of  i.e.∫
[a,a+ ]

h(t)d(t) =
∫

[a,b]
g(t)d(t).

The second identity can be proved in a similar manner.
Since f is nonincreasing on [a,b] we have f (t) ≥ f (a +  ) for all t ∈ [a,a+ ] and

f (t) ≤ f (a+ ) for all t ∈ [a+ ,b]. Then∫
(a+ ,b]

[ f (t)− f (a+ )]g(t)d(t)≤ 0

and ∫
[a,a+ ]

[ f (t)− f (a+ )][h(t)−g(t)]d(t)≥ 0.

Using (3.20) and above inequalities we obtain∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])d(t)

≤
∫

[a,a+ ]
f (t)h(t)d(t).

Similarly, we obtain (3.19) using identity (3.21). �

Theorem 3.8 Let  be a positive finite measure on B([a,b]), let f ,g and h be measurable
functions on [a,b] such that 0 ≤ g ≤ h and f is nonnegative and nonincreasing.

(a) If there exists  ∈ R+ such that∫
[a,a+ ]

h(t)d(t) ≥
∫

[a,b]
g(t)d(t),

then (3.18) holds.
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(b) If there exists  ∈ R+ such that∫
(b− ,b]

h(t)d(t) ≤
∫

[a,b]
g(t)d(t),

then (3.19) holds.

Proof. Re-adjusting proof of Theorem 3.7 we have that the proof is based on the following
inequalities:∫

[a,b]
f (t)g(t)d(t) ≤

∫
[a,a+ ]

( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])d(t)

+
∫
(a+ ,b]

[ f (t)− f (a+ )]g(t)d(t)

and ∫
[a,b]

f (t)g(t)d(t) ≥
∫

(b− ,b]
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])d(t)

+
∫

[a,b− ]
[ f (t)− f (b− )]g(t)d(t).

�

In the following theorems we obtain a refined version of results given in Theorems 3.5
and 3.6.

Theorem 3.9 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be measur-
able functions on [a,b] such that 0 ≤ g ≤ h and f/k is nonincreasing.

(a) If there exists  ∈ R+ such that (3.12) holds, then∫
[a,b]

f (t)g(t)d(t)

≤
∫

[a,a+ ]

(
f (t)h(t)−

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]

)
d(t)

≤
∫

[a,a+ ]
f (t)h(t)d(t).

(3.22)

(b) If there exists  ∈ R+ such that (3.14) holds, then∫
(b− ,b]

f (t)h(t)d(t)

≤
∫

(b− ,b]

(
f (t)h(t)−

[
f (t)
k(t)

− f (b− )
k(b− )

]
k(t)[h(t)−g(t)]

)
d(t)

≤
∫

[a,b]
f (t)g(t)d(t).

(3.23)

Proof. Take h → kh, g → kg and f → f/k in Theorem 3.7. �
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Theorem 3.10 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be mea-
surable functions on [a,b] such that f is nonnegative, 0 ≤ g ≤ h and f/k is nonincreasing.

(a) If there exists  ∈ R+ such that (3.16) holds, then (3.22) holds.

(b) If there exists  ∈ R+ such that (3.17) holds, then (3.23) holds.

In the following theorem we extend Theorems 1.12 and 1.13 to Borel  -algebra.

Theorem 3.11 Let  be a positive finite measure on B([a,b]), let f ,g,h and  be mea-
surable functions on [a,b] such that 0 ≤  ≤ g ≤ h− and f is nonincreasing.

(a) If there exists  ∈ R+ such that (3.6) holds, then∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
f (t)h(t)d(t)−

∫
[a,b]

| f (t)− f (a+ )|(t)d(t).

(3.24)

(b) If there exists  ∈ R+ such that (3.8) holds, then∫
(b− ,b]

f (t)h(t)d(t)+
∫
[a,b]

| f (t)− f (b− )|(t)d(t) ≤
∫

[a,b]
f (t)g(t)d(t).

(3.25)

Proof. Since f is nonincreasing on [a,b] we have f (t) ≥ f (a+ ) for all t ∈ [a,a+ ] and
f (t) ≤ f (a+ ) for all t ∈ [a+ ,b]. Now using identity (3.20) we get∫

[a,a+ ]
f (t)h(t)d(t)−

∫
[a,b]

f (t)g(t)d(t)

=
∫

[a,a+ ]
[ f (t)− f (a+ )][h(t)−g(t)]d(t)−

∫
(a+ ,b]

[ f (t)− f (a+ )]g(t)d(t)

≥
∫

[a,a+ ]
| f (t)− f (a+ )|(t)d(t)+

∫
(a+ ,b]

| f (a+ )− f (t)|(t)d(t)

=
∫

[a,b]
| f (t)− f (a+ )|(t)d(t)

and the proof of the first statement is established.
The second statement can be proved in a similar manner using identity (3.21). �

Theorem 3.12 Let  be a positive finite measure on B([a,b]), let f ,g,h and  be mea-
surable functions on [a,b] such that 0 ≤  ≤ g ≤ h− and f is nonnegative and nonin-
creasing.

(a) If there exists  ∈ R+ such that (3.10) holds, then (3.24) holds.

(b) If there exists  ∈ R+ such that (3.11) holds, then (3.25) holds.

In the following theorems we obtain sharpening of results given in Theorems 3.5 and
3.6.
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Theorem 3.13 Let  be a positive finite measure on B([a,b]), let f ,g,h,k and  be
measurable functions on [a,b] such that k is positive, 0 ≤  ≤ g ≤ h− and f/k is
nonincreasing.

(a) If there exists  ∈ R+ such that (3.12) holds, then∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
f (t)h(t)d(t)

−
∫

[a,b]

∣∣∣∣( f (t)
k(t)

− f (a+ )
k(a+ )

)∣∣∣∣k(t)(t)d(t).
(3.26)

(b) If there exists  ∈ R+ such that (3.14) holds, then∫
(b− ,b]

f (t)h(t)d(t)+
∫
[a,b]

∣∣∣∣( f (t)
k(t)

− f (b− )
k(b− )

)∣∣∣∣k(t)(t)d(t)

≤
∫

[a,b]
f (t)g(t)d(t).

(3.27)

Proof. Take g → kg, f → f/k, h → kh and  → k in Theorem 3.11. �

Theorem 3.14 Let  be a positive finite measure on B([a,b]), let f ,g,h,k and  be
measurable functions on [a,b] such that k is positive, 0 ≤  ≤ g ≤ h− , f is nonnegative
and f/k is nonincreasing.

(a) If there exists  ∈ R+ such that (3.16) holds, then (3.26) holds.

(b) If there exists  ∈ R+ such that (3.17) holds, then (3.27) holds.

Proof. Take g → kg, f → f/k, h → kh and  → k in Theorem 3.12. �

3.1.1 Weaker conditions

Motivated by weaker conditions given in Theorem 1.3 in the following theorems we obtain
weaker conditions for some generalizations and refinements given in the previous results.

The following theorem gives weaker conditions for Theorem 3.5 and more general
version of analog theorem from [43].

Theorem 3.15 Let  be a positive finite measure on B([a,b]), let g,h and k be −integrable
functions on [a,b] such that k is positive and h is nonnegative.

(a) Let  be a positive constant such that
∫
[a,a+ ]h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t).

The inequality ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
f (t)h(t)d(t) (3.28)
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holds for every nonincreasing, right-continuous function f/k : [a,b]→ R if and only
if ∫

[a,x)
k(t)g(t)d(t) ≤

∫
[a,x)

k(t)h(t)d(t) and
∫

[x,b]
k(t)g(t)d(t) ≥ 0, (3.29)

for every x ∈ [a,b].

(b) Let  be a positive constant such that
∫
(b− ,b] h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t).

The inequality ∫
(b− ,b]

f (t)h(t)d(t) ≤
∫

[a,b]
f (t)g(t)d(t) (3.30)

holds for every nonincreasing, right-continuous function f/k : [a,b]→ R if and only
if ∫

[x,b]
k(t)g(t)d(t) ≤

∫
[x,b]

k(t)h(t)d(t) and
∫

[a,x)
k(t)g(t)d(t) ≥ 0,

for every x ∈ [a,b].

Proof.
(a) For the sufficiency part we use the identity∫

[a,a+ ]
f (t)h(t)d(t)−

∫
[a,b]

f (t)g(t)d(t)

=
∫

[a,a+ ]

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]d(t)

+
∫

(a+ ,b]

[
f (a+ )
k(a+ )

− f (t)
k(t)

]
k(t)g(t)d(t). (3.31)

We define a new measure  on −algebra B((a,b]) such that, on an algebra of finite
disjoint unions of half open intervals, we set

((c,d]) =
f (c)
k(c)

− f (d)
k(d)

, for a < c < d ≤ b,

and then we pass to B((a,b]) in a unique way (for details see, for example, [13, p. 21] ).
Now, using Fubini, we have∫

[a,a+ ]

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]d(t)

=
∫

[a,a+ ]

[∫
(t,a+ ]

d(x)
]
k(t)[h(t)−g(t)]d(t)

=
∫

(a,a+ ]

[∫
[a,x)

k(t)[h(t)−g(t)]d(t)
]
d(x). (3.32)
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Similarly,∫
(a+ ,b]

[
f (a+ )
k(a+ )

− f (t)
k(t)

]
k(t)g(t)(t) =

∫
(a+ ,b]

[∫
[x,b]

k(t)g(t)d(t)
]
d(x). (3.33)

Now using (3.32) and (3.33) we have that (3.31) is in fact∫
[a,a+ ]

f (t)h(t)d(t)−
∫
[a,b]

f (t)g(t)d(t)

=
∫

(a,a+ ]

[∫
[a,x)

k(t)(h(t)−g(t))d(t)
]
d(x)+

∫
(a+ ,b]

[∫
[x,b]

k(t)g(t)d(t)
]
d(x),

concluding (3.28) under assumptions (3.29).
The previous conditions are also necessary. In fact, if x is any element of [a,b], then let

f be the function defined by

f (t) =

{
k(t), t < x;

0, t ≥ x.

We have that f/k is a nonincreasing function. Using inequality (3.28) we obtain

∫
[a,x)

k(t)g(t)d(t) =
∫

[a,b]
f (t)g(t)d(t) ≤

∫
[a,a+ ]

f (t)h(t)d(t)

=

{∫
[a,x) k(t)h(t)d(t), x ∈ [a,a+ ];∫
[a,a+ ]k(t)h(t)d(t), x ∈ (a+ ,b].

(3.34)

If x ∈ (a+ ,b] then
∫
[a,x) k(t)h(t)d(t) ≥ ∫[a,a+ ] k(t)h(t)d(t), so from (3.34), we have∫

[a,x)
k(t)g(t)d(t) ≤

∫
[a,x)

k(t)h(t)d(t), for every x ∈ [a,b].

Also, if x ∈ (a +  ,b], from (3.34) and definition of  we have
∫
[a,x) k(t)g(t)d(t) ≤∫

[a,a+ ] k(t)h(t)d(t) =
∫
[a,b] k(t)g(t)d(t), concluding∫

[x,b]
k(t)g(t)d(t) ≥ 0, for every x ∈ (a+ ,b].

Finally, if x ∈ [a,a+ ], then∫
[x,b]

k(t)g(t)d(t) =
∫

[a,b]
k(t)g(t)d(t)−

∫
[a,x)

k(t)g(t)d(t)

≥
∫

[a,a+ ]
k(t)h(t)d(t)−

∫
[a,x)

k(t)h(t)d(t) =
∫

[x,a+ ]
k(t)h(t)d(t) ≥ 0,

concluding ∫
[x,b]

k(t)g(t)d(t) ≥ 0, for every x ∈ [a,b].

(b) The proof of this part is similar to the proof of (a)-part so we omit the details. �

Taking h ≡ 1 in Theorem 3.15 we obtain weaker conditions for Theorem 3.1.
In the following theorem we give weaker conditions for Theorem 3.9.
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Theorem 3.16 Let  be a positive finite measure on B([a,b]), let g,h and k be −integ-
rable functions on [a,b] such that k is positive and h is nonnegative.

(a) Let  be a positive constant such that
∫
[a,a+ ] h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t). If

conditions (3.29) hold for every x ∈ [a,b], then (3.22) holds for every nonincreasing,
right-continuous function f/k : [a,b] → R.

(b) Let  be a positive constant such that
∫
(b− ,b] h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t). If

conditions (3.30) hold for every x ∈ [a,b], then (3.23) holds for every nonincreasing,
right-continuous function f/k : [a,b] → R.

Proof. Let us prove (a)-part. Using identity (3.31) and a measure  on −algebra
B((a,b]) as in the proof of Theorem 3.15 we have∫

[a,a+ ]
f (t)h(t)d(t)−

∫
[a,b]

f (t)g(t)d(t)

−
∫

[a,a+ ]

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]d(t)

=
∫

(a+ ,b]

[
f (a+ )
k(a+ )

− f (t)
k(t)

]
k(t)g(t)d(t) =

∫
(a+ ,b]

[∫
[x,b]

k(t)g(t)d(t)
]
d(x).

From here we conclude that the left-hand side inequality in (3.22) holds when conditions
(3.29) hold.

Further, we have∫
[a,a+ ]

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]d(t)

=
∫

(a,a+ ]

[∫
[a,x)

k(t)[h(t)−g(t)]d(t)
]
d(x) ≥ 0

if the first condition in (3.29) is satisfied. Hence, the right-hand side inequality in (3.22)
holds.

Proof of (b)-part is similar so we omit the details. �

Theorem 3.17 Let  be a positive finite measure on B([a,b]), let g,h and k be −integrable
functions on [a,b] such that k is positive, h is nonnegative and f/k is nonincreasing, right-
continuous function.

(a) Let  be a positive constant such that
∫
[a,a+ ] h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t). If∫

[x,b]
k(t)g(t)d(t) ≥ 0, for x ∈ (a+ ,b],

then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+ ]
f (t)h(t)d(t)

−
∫
[a,a+ ]

[
f (t)
k(t)

− f (a+ )
k(a+ )

]
k(t)[h(t)−g(t)]d(t).
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If we additionally have∫
[a,x)

k(t)g(t)d(t) ≤
∫

[a,x)
k(t)h(t)d(t), for x ∈ [a,a+ ],

then (3.22) holds.

(b) Let  be a positive constant such that
∫
(b− ,b] h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t). If∫

[a,x)
k(t)g(t)d(t) ≥ 0, for x ∈ [a,b− ],

then ∫
(b− ,b]

f (t)h(t)d(t)−
∫

(b− ,b]

[
f (t)
k(t)

− f (b− )
k(b− )

]
k(t)[h(t)−g(t)]d(t)

≤
∫

[a,b]
f (t)g(t)d(t).

If we additionally have∫
[x,b]

k(t)g(t)d(t) ≤
∫

[x,b]
k(t)h(t)d(t), for x ∈ (b− ,b],

then (3.23) holds.

Proof. Similar to the proof of Theorem 3.16. �

3.2 On some bounds for the parameter 
in Steffensen’s inequality

Results given in this section were obtained by Pečarić and Smoljak Kalamir in [79].
In the following theorems we obtain weaker condition for the parameter  in general-

izations of Steffensen’s inequality given in Theorems 1.2 and 1.3.

Theorem 3.18 Let h be a positive integrable function on [a,b] and f be a nonnegative
integrable function such that f/h is nonincreasing on [a,b]. Let g be an integrable function
on [a,b] with 0 ≤ g ≤ 1. Then ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt (3.35)

holds, where  is given by ∫ a+

a
h(t)dt ≥

∫ b

a
h(t)g(t)dt. (3.36)

If f/h is nondecreasing, then the reverse inequality in (3.35) holds, where  is given by
(3.36) with the reverse inequality.
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Proof. Since f/h is nonincreasing transformation of the difference between the right-hand
side and the left-hand side of inequality (3.35) gives∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt =

∫ a+

a
(1−g(t)) f (t)dt−

∫ b

a+
f (t)g(t)dt

≥ f (a+ )
h(a+ )

∫ a+

a
h(t)(1−g(t))dt−

∫ b

a+
f (t)g(t)dt

≥ f (a+ )
h(a+ )

(∫ b

a
h(t)g(t)dt−

∫ a+

a
h(t)g(t)dt

)
−
∫ b

a+
f (t)g(t)dt

=
∫ b

a+
g(t)h(t)

(
f (a+ )
h(a+ )

− f (t)
h(t)

)
dt ≥ 0,

where we use (3.36) and nonnegativity of function f . �

Theorem 3.19 Let h be a positive integrable function on [a,b] and f be a nonnegative
integrable function such that f/h is nonincreasing on [a,b]. Let g be an integrable function
on [a,b] with 0 ≤ g ≤ 1. Then ∫ b

a
f (t)g(t)dt ≥

∫ b

b−
f (t)dt (3.37)

holds, where  is given by ∫ b

b−
h(t)dt ≤

∫ b

a
h(t)g(t)dt. (3.38)

If f/h is nondecreasing, then the reverse inequality in (3.37) holds, where  is given by
(3.38) with the reverse inequality.

Proof. Similar to the proof of Theorem 2.1. �

Taking h≡ 1 in Theorems 3.18 and 3.19 we obtain the following weaker conditions for
the parameter  in Steffensen’s inequality.

Corollary 3.1 Let f be a nonnegative nonincreasing function on [a,b] and g be an inte-
grable function on [a,b] with 0 ≤ g ≤ 1. Then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt (3.39)

holds, where

 ≥
∫ b

a
g(t)dt. (3.40)

If f is nondecreasing, then the reverse inequality in (3.39) holds, where  is given by (3.40)
with the reverse inequality.

Corollary 3.2 Let f be a nonnegative nonincreasing function on [a,b] and g be an inte-
grable function on [a,b] with 0 ≤ g ≤ 1. Then∫ b

a
f (t)g(t)dt ≥

∫ b

b−
f (t)dt (3.41)
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holds, where

 ≤
∫ b

a
g(t)dt. (3.42)

If f is nondecreasing, then the reverse inequality in (3.41) holds, where  is given by (3.42)
with the reverse inequality.

In order to obtain Bellman-type inequality we need the following generalization of
result given in Theorem 3.18.

Theorem 3.20 Let h be a positive integrable function on [a,b] and f be a nonnegative
integrable function such that f/h is nonincreasing on [a,b]. Let g be an integrable function
on [a,b] with 0 ≤ g ≤ 1. If p ≥ 1 then∫ b

a
f p(t)g(t)dt ≤

∫ a+

a
f p(t)dt (3.43)

holds, where  is given by ∫ a+

a
hp(t)dt ≥

∫ b

a
hp(t)g(t)dt. (3.44)

If f/h is nondecreasing, then the reverse inequality in (3.43) holds, where  is given by
(3.44) with the reverse inequality.

Proof. Since f/h is nonincreasing, we have that f p/hp is nonincreasing. Hence, we can
apply Theorem 3.18 to the function f p/hp. �

Similarly, we have the following generalization of result given in Theorem 3.19.

Theorem 3.21 Let h be a positive integrable function on [a,b] and f be a nonnegative
integrable function such that f/h is nonincreasing on [a,b]. Let g be an integrable function
on [a,b] with 0 ≤ g ≤ 1. If p ≥ 1 then∫ b

a
f p(t)g(t)dt ≥

∫ b

b−
f p(t)dt (3.45)

holds, where  is given by ∫ b

b−
hp(t)dt ≥

∫ b

a
hp(t)g(t)dt. (3.46)

If f/h is nondecreasing, then the reverse inequality in (3.45) holds, where  is given by
(3.46) with the reverse inequality.

Proof. Applying Theorem 3.19 to the function f p/hp. �

We continue with the following Bellman-type inequality which allows us to obtain
better estimation for the parameter  in Pachpatte’s result given in Theorem 1.15.
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Theorem 3.22 Let h be a positive integrable function on [a,b] and f be a nonnegative
integrable function such that f/h is nonincreasing on [a,b]. Let g be an integrable function
on [a,b] with 0 ≤ g ≤ 1. If p ≥ 1 then

1
(b−a)p−1

(∫ b

a
f (t)g(t)dt

)p

≤
∫ a+

a
f p(t)dt (3.47)

holds, where  is given by (3.44).

Proof. Using the Jensen inequality for convex function (x) = xp (p ≥ 1), we have(∫ b

a
f (t)g(t)dt

)p

≤
(∫ b

a
g(t)dt

)p−1∫ b

a
f p(t)g(t)dt. (3.48)

Since 0 ≤ g ≤ 1 we have(∫ b

a
g(t)dt

)p−1∫ b

a
f p(t)g(t)dt ≤ (b−a)p−1

∫ b

a
f p(t)g(t)dt. (3.49)

Combining (3.48) and (3.49), and using (3.43) we obtain

1
(b−a)p−1

(∫ b

a
f (t)g(t)dt

)p

≤
∫ b

a
f p(t)g(t)dt ≤

∫ a+

a
f p(t)dt.

�

Taking [a,b] = [0,1] in Theorem 3.22 we obtain the following corollary.

Corollary 3.3 Let h be a positive integrable function on [0,1] and f be a nonnegative
integrable function such that f/h is nonincreasing on [0,1]. Let g be an integrable function
on [0,1] with 0 ≤ g ≤ 1. If p ≥ 1 then(∫ 1

0
f (t)g(t)dt

)p

≤
∫ 

0
f p(t)dt (3.50)

holds, where  is given by ∫ 

0
hp(t)dt ≥

∫ 1

0
hp(t)g(t)dt. (3.51)

Taking A = 1 in Theorem 1.15 we obtain the following corollary.

Corollary 3.4 Let f ,g,h be real-valued integrable functions defined on [0,1] such that
f (t) ≥ 0, h(t) ≥ 0, t ∈ [0,1], f/h is nonincreasing on [0,1] and 0 ≤ g(t) ≤ 1, t ∈ [0,1]. If
p ≥ 1, then (3.50) holds, where  is the solution of the equation∫ 

0
hp(t)dt =

(∫ 1

0
hp(t)g(t)dt

)(∫ 1

0
g(t)dt

)p−1

.

Since 0 ≤ g ≤ 1 from (3.51) we have the following∫ 

0
hp(t)dt ≥

∫ 1

0
hp(t)g(t)dt ≥

(∫ 1

0
g(t)dt

)p−1∫ 1

0
hp(t)g(t)dt. (3.52)

Hence, the estimation for  in Corollary 3.3 is better then the one in Pachpatte’s result for
the case A = 1 given in Corollary 3.4.
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3.2.1 Weaker conditions

In the following theorem we obtain weaker conditions for the parameter  in the corrected
version of Mercer’s results which follows from Theorems 3.18 and 3.19.

Theorem 3.23 Let h be a positive integrable function on [a,b] and f be a nonnegative
nonincreasing function on [a,b]. Let g be an integrable function on [a,b] with 0 ≤ g ≤ h.

a) Then ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt

holds, where  is given by ∫ a+

a
h(t)dt ≥

∫ b

a
g(t)dt.

b) Then ∫ b

b−
f (t)h(t)dt ≤

∫ b

a
f (t)g(t)dt,

where  is given by ∫ b

b−
h(t)dt ≤

∫ b

a
g(t)dt.

Proof. Using substitutions g → g/h and f → f h in Theorems 3.18 and 3.19 we obtain the
statements of this theorem. �

In the following theorem we relax condition (1.15) for the Mercer’s result (Theo-
rem 1.10) and the corresponding condition for result equivalent to Theorem 1.7.

Theorem 3.24 Let k be a positive integrable function on [a,b] and f be a nonnegative
integrable function such that f/k is nonincreasing on [a,b]. Let g,h be integrable functions
on [a,b] with 0 ≤ g ≤ h.

a) Then ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt

holds, where  is given by∫ a+

a
h(t)k(t)dt ≥

∫ b

a
g(t)k(t)dt.

b) Then ∫ b

b−
f (t)h(t)dt ≤

∫ b

a
f (t)g(t)dt,

where  is given by ∫ b

b−
h(t)k(t)dt ≤

∫ b

a
g(t)k(t)dt.
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Proof. Using substitutions h → kh, g → g/h and f → f h in Theorems 3.18 and 3.19 we
obtain the statements of this theorem. �

In the following theorem we relax condition (1.16) by separating the above result into
two parts and assuming nonnegativity of the function f .

Theorem 3.25 Let h be a positive integrable function on [a,b] and f be a nonnegative
nonincreasing function on [a,b]. Let g be an integrable function on [a,b] with 0 ≤ g ≤ h.

a) Then ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt

≤
∫ a+

a
f (t)h(t)dt

holds, where  is given by ∫ a+

a
h(t)dt ≥

∫ b

a
g(t)dt.

b) Then ∫ b

b−
f (t)h(t)dt ≤

∫ b

b−
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])dt

≤
∫ b

a
f (t)g(t)dt

holds, where  is given by ∫ b

b−
h(t)dt ≤

∫ b

a
g(t)dt.

Proof. The proof is based on inequalities (3.20) and (3.21). Let us prove the first one.
Transformation of the right-hand side of (3.20) gives the following∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt +

∫ b

a+
[ f (t)− f (a+ )]g(t)dt

=
∫ a+

a
f (t)g(t)dt + f (a+ )

∫ a+

a
(h(t)−g(t))dt +

∫ b

a+
f (t)g(t)dt− f (a+ )

∫ b

a+
g(t)dt

=
∫ b

a
f (t)g(t)dt + f (a+ )

[∫ a+

a
(h(t)−g(t))dt−

∫ b

a+
g(t)dt

]
=
∫ b

a
f (t)g(t)dt + f (a+ )

[∫ a+

a
h(t)dt−

∫ b

a
g(t)dt

]
≥
∫ b

a
f (t)g(t)dt + f (a+ )

[∫ b

a
g(t)dt−

∫ b

a
g(t)dt

]
=
∫ b

a
f (t)g(t)dt
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where in the inequality we use nonnegativity of f and a definition of  , i.e.
∫ a+
a h(t)dt ≥∫ b

a g(t)dt.
Inequality (3.21) can be proved in a similar manner.
Since f is nonincreasing on [a,b] we get f (t) ≥ f (a +  ) for all t ∈ [a,a +  ] and

f (t) ≤ f (a+ ) for all t ∈ [a+ ,b]. Then∫ b

a+
[ f (t)− f (a+ )]g(t)dt ≤ 0

and ∫ a+

a
[ f (t)− f (a+ )][h(t)−g(t)]dt ≥ 0.

Using (3.20) and above inequalities we obtain∫ b

a
f (t)g(t)dt ≤

∫ a+

a
( f (t)h(t)− [ f (t)− f (a+ )][h(t)−g(t)])dt

≤
∫ a+

a
f (t)h(t)dt.

Similarly, we obtain∫ b

a
f (t)g(t)dt ≥

∫ b

b−
( f (t)h(t)− [ f (t)− f (b− )][h(t)−g(t)])dt

≥
∫ b

b−
f (t)h(t)dt.

�

If we additionally assume that f is nonnegative in Theorems 1.12 and 1.13 we obtain
the following weaker conditions for the parameter  .

Theorem 3.26 Let f ,g,h and be integrable functions on [a,b] with f nonnegative non-
increasing and let 0 ≤  ≤ g ≤ h− .

a) Then ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)h(t)dt−

∫ b

a
| f (t)− f (a+ )|(t)dt

holds, where  is given by ∫ a+

a
h(t)dt ≥

∫ b

a
g(t)dt.

b) Then ∫ b

b−
f (t)h(t)dt +

∫ b

a
| f (t)− f (b− )|(t)dt ≤

∫ b

a
f (t)g(t)dt,

where  is given by ∫ b

b−
h(t)dt ≤

∫ b

a
g(t)dt.
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Proof. Since f is nonincreasing on [a,b] we get f (t) ≥ f (a +  ) for all t ∈ [a,a +  ]
and f (t) ≤ f (a+ ) for all t ∈ [a+ ,b]. Hence, using inequality (3.20) and the fact that
0 ≤  ≤ g ≤ h− we get

∫ a+

a
f (t)h(t)dt−

∫ b

a
f (t)g(t)dt

≥
∫ a+

a
[ f (t)− f (a+ )][h(t)−g(t)]dt−

∫ b

a+
[ f (t)− f (a+ )]g(t)dt

=
∫ a+

a
| f (t)− f (a+ )|[h(t)−g(t)]dt+

∫ b

a+
| f (t)− f (a+ )|g(t)dt

≥
∫ a+

a
| f (t)− f (a+ )|(t)dt +

∫ b

a+
| f (a+ )− f (t)|(t)dt

=
∫ b

a
| f (t)− f (a+ )|(t)dt

and the proof is established. �

3.3 Extension of Cerone’s generalizations
of Steffensen’s inequality

Results given in this section were obtained by Jakšetić, Pečarić and Smoljak Kalamir in
[36].

We begin with an extension of Cerone’s result given in Theorem 1.14 to positive finite
measures.

Theorem 3.27 Let  be a positive finite measure on B([a,b]), let f be nonincreasing
and g be measurable function on [a,b] such that 0 ≤ g ≤ 1. Let [c,d] ⊆ [a,b] and

([c,d]) =
∫

[a,b]
g(t)d(t). (3.53)

Then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[c,d]
f (t)d(t)+R(c,d) (3.54)

holds, where

R(c,d) =
∫

[a,c)
( f (t)− f (d))g(t)d(t) ≥ 0.
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Proof. Let us consider a corresponding difference:∫
[c,d]

f (t)d(t)+R(c,d)−
∫
[a,b]

f (t)g(t)d(t)

=
∫

[c,d]
f (t)d(t)+

∫
[a,c)

( f (t)− f (d))g(t)d(t)−
∫
[a,b]

f (t)g(t)d(t)

=
∫

[c,d]
f (t)d(t)−

∫
[c,b]

f (t)g(t)d(t)− f (d)
∫

[a,b]
g(t)d(t)+ f (d)

∫
[c,b]

g(t)d(t)

=
∫

[c,d]
f (t)d(t)−

∫
[c,b]

f (t)g(t)d(t)− f (d)
∫

[c,d]
d(t)+ f (d)

∫
[c,b]

g(t)d(t)

=
∫

[c,d]
( f (t)− f (d))(1−g(t))d(t)+

∫
(d,b]

( f (d)− f (t))g(t)d(t)

(3.55)

where we used (3.53).
Since 0 ≤ g ≤ 1, f is nonincreasing and  is positive, terms under the integral sign are

nonnegative, hence the first sum in this chain is nonnegative, i.e.∫
[c,d]

f (t)d(t)+R(c,d) ≥
∫

[a,b]
f (t)g(t)d(t).

�

Theorem 3.28 Let  be a positive finite measure on B([a,b]), let f be nonincreasing
and g be measurable function on [a,b] such that 0 ≤ g ≤ 1. Let [c,d] ⊆ [a,b] and

((c,d]) =
∫

[a,b]
g(t)d(t). (3.56)

Then ∫
(c,d]

f (t)d(t)− r(c,d) ≤
∫

[a,b]
f (t)g(t)d(t) (3.57)

holds, where

r(c,d) =
∫

(d,b]
( f (c)− f (t))g(t)d(t) ≥ 0.

Proof. Similar to the proof of Theorem 3.27 we obtain the corresponding difference∫
[a,b]

f (t)g(t)d(t)−
∫
(c,d]

f (t)d(t)+ r(c,d)

=
∫

(c,d]
( f (c)− f (t))(1−g(t))d(t)+

∫
[a,c]

( f (t)− f (c))g(t)d(t) ≥ 0.

�

Motivated by Pachpatte’s result from [53] under the additional assumption on the func-
tion f we can replace conditions (3.53) and (3.56) by weaker conditions given in the fol-
lowing theorems.
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Theorem 3.29 Let  be a positive finite measure on B([a,b]), let f be nonincreasing and
nonnegative, and g be measurable function on [a,b] such that 0 ≤ g ≤ 1. Let [c,d] ⊆ [a,b]
and

([c,d]) ≥
∫

[a,b]
g(t)d(t). (3.58)

Then (3.54) holds.

Proof. Since f (d) ≥ 0 using (3.58) in (3.55) we obtain the claim of this theorem. �

Theorem 3.30 Let  be a positive finite measure on B([a,b]), let f be nonincreasing and
nonnegative, and g be measurable function on [a,b] such that 0 ≤ g ≤ 1. Let [c,d] ⊆ [a,b]
and

((c,d]) ≤
∫

[a,b]
g(t)d(t).

Then (3.57) holds.

Proof. Similar to the proof of Theorem 3.29. �

Taking c = a and d = a+ in Theorems 3.27 and 3.29 or taking c = b− and d = b
in Theorems 3.28 and 3.30 we obtain results given in Section 2.1. Further, if we take c = a,
d = a+ and consider the Lebesgue measure in Theorem 3.27 or take c = b− , d = b
and consider the Lebesgue measure in Theorem 3.28 we obtain Cerone’s result given in
Theorem 1.14.

In the sequel we need the following lemmas to generalize the above results for the
function f/k.

Lemma 3.1 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be measur-
able functions on [a,b] such that k is positive. Further, let [c,d] ⊆ [a,b] with∫
[c,d] h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t). Then the following identity holds:∫

[c,d]
f (t)h(t)d(t)−

∫
[a,b]

f (t)g(t)d(t) =
∫

[a,c)

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)d(t)

+
∫
[c,d]

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]d(t)+

∫
(d,b]

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)d(t).

(3.59)

Proof. We have∫
[c,d]

f (t)h(t)d(t)−
∫
[a,b]

f (t)g(t)d(t) =
∫

[c,d]

f (t)
k(t)

k(t)[h(t)−g(t)]d(t)

−
∫

[a,c)

f (t)
k(t)

g(t)k(t)d(t)−
∫
(d,b]

f (t)
k(t)

g(t)k(t)d(t)

=
∫

[a,c)

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)d(t)+

∫
(d,b]

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)d(t)

+
∫

[c,d]

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]d(t)+

f (d)
k(d)

[∫
[c,d]

k(t)h(t)d(t)

−
∫

[a,c)
g(t)k(t)dt−

∫
[c,d]

k(t)g(t)d(t)−
∫
(d,b]

g(t)k(t)d(t)
]
.

(3.60)
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Since ∫
[c,d]

k(t)h(t)d(t) =
∫

[a,b]
k(t)g(t)d(t),

we have∫
[c,d]

k(t)h(t)d(t)−
∫
[a,c)

g(t)k(t)d(t)−
∫
[c,d]

k(t)g(t)d(t)−
∫
(d,b]

g(t)k(t)d(t) = 0.

Hence, (3.59) follows from (3.60). �

Lemma 3.2 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be measur-
able functions on [a,b] such that k is positive. Further, let [c,d] ⊆ [a,b] with∫
(c,d] h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t). Then the following identity holds:

∫
[a,b]

f (t)g(t)d(t)−
∫
(c,d]

f (t)h(t)d(t) =
∫

[a,c]

(
f (t)
k(t)

− f (c)
k(c)

)
g(t)k(t)d(t)

+
∫
(c,d]

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]d(t)+

∫
(d,b]

(
f (t)
k(t)

− f (c)
k(c)

)
g(t)k(t)d(t).

(3.61)

Proof. Similar to the proof of Lemma 3.1. �

Theorem 3.31 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be mea-
surable functions on [a,b] such that k is positive, 0 ≤ g ≤ h and f/k is nonincreasing.
Further, let [c,d] ⊆ [a,b] with∫

[c,d]
h(t)k(t)dt =

∫
[a,b]

g(t)k(t)dt. (3.62)

Then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[c,d]
f (t)h(t)d(t)+R(c,d) (3.63)

holds, where

R(c,d) =
∫

[a,c)

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)d(t) ≥ 0. (3.64)

Proof. Since f/k is nonincreasing, k and  are positive and 0 ≤ g ≤ h we have

∫
[c,d]

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]d(t)≥ 0, (3.65)

∫
(d,b]

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)d(t) ≥ 0 (3.66)
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and R(c,d) ≥ 0. Now, from (3.59), (3.65) and (3.66) we have∫
[c,d]

f (t)h(t)d(t)−
∫
[a,b]

f (t)g(t)d(t)+
∫
[a,c)

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)d(t)

=
∫

[c,d]

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]d(t)+

∫
(d,b]

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)d(t) ≥ 0.

(3.67)

Hence, (3.63) holds. �

Theorem 3.32 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be mea-
surable functions on [a,b] such that k is positive, 0 ≤ g ≤ h and f/k is nonincreasing.
Further, let [c,d] ⊆ [a,b] with∫

(c,d]
h(t)k(t)d(t) =

∫
[a,b]

g(t)k(t)d(t). (3.68)

Then ∫
(c,d]

f (t)h(t)d(t)− r(c,d) ≤
∫

[a,b]
f (t)g(t)d(t) (3.69)

holds, where

r(c,d) =
∫

(d,b]

(
f (c)
k(c)

− f (t)
k(t)

)
g(t)k(t)d(t) ≥ 0. (3.70)

Proof. Since f/k is nonincreasing, k and  are positive and 0 ≤ g ≤ h we have∫
[a,c]

(
f (t)
k(t)

− f (c)
k(c)

)
k(t)g(t)d(t) ≥ 0, (3.71)

∫
(c,d]

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]d(t)≥ 0 (3.72)

and r(c,d) ≥ 0. Now, from (3.61), (3.71) and (3.72) we have∫
[a,b]

f (t)g(t)d(t)−
∫
(c,d]

f (t)h(t)d(t)+
∫
(d,b]

(
f (c)
k(c)

− f (t)
k(t)

)
g(t)k(t)d(t)

=
∫

[a,c]

(
f (t)
k(t)

− f (c)
k(c)

)
g(t)k(t)d(t)+

∫
(c,d]

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]d(t)≥ 0.

(3.73)

Hence, (3.69) holds. �

If we additionally assume that the function f is nonnegative, conditions (3.62) and
(3.68) can be replaced by weaker conditions∫

[c,d]
h(t)k(t)dt ≥

∫
[a,b]

g(t)k(t)dt and
∫

(c,d]
h(t)k(t)d(t) ≤

∫
[a,b]

g(t)k(t)d(t).
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If we take c = a, d = a+ and consider the Lebesgue measure in Theorem 3.31 we ob-
tain Mercer’s generalization of the right-hand Steffensen’s inequality (see Theorem 1.10).
If we take c = b− , d = b and consider the Lebesgue measure in Theorem 3.32 we obtain
a similar generalization of the left-hand Steffensen’s inequality which is obtained in [61]
from a generalization given by Pečarić in [56].

For h ≡ 1 and k ≡ 1 Theorems 3.31 and 3.32 reduce to Theorems 3.27 and 3.28.
Inequalities (3.63) and (3.69) can be refined using similar reasoning as in [61] and [93].

These refinements are given in the following theorems.

Theorem 3.33 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be mea-
surable functions on [a,b] such that k is positive, 0 ≤ g ≤ h and f/k is nonincreasing.
Further, let [c,d] ⊆ [a,b] with

∫
[c,d] h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t). Then∫

[a,b]
f (t)g(t)d(t)

≤
∫

[c,d]
f (t)h(t)d(t)−

∫
[c,d]

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]d(t)+R(c,d)

≤
∫

[c,d]
f (t)h(t)d(t)+R(c,d)

holds, where R(c,d) is defined by (3.64).

Proof. Similar to the proof of Theorem 3.31. �

Theorem 3.34 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be mea-
surable functions on [a,b] such that k is positive, 0 ≤ g ≤ h and f/k is nonincreasing.
Further, let [c,d] ⊆ [a,b] with

∫
(c,d] h(t)k(t)d(t) =

∫
[a,b] g(t)k(t)d(t). Then∫

(c,d]
f (t)h(t)d(t)− r(c,d)

≤
∫

(c,d]
f (t)h(t)d(t)+

∫
(c,d]

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]d(t)− r(c,d)

≤
∫

[a,b]
f (t)g(t)d(t)

holds, where r(c,d) is defined by (3.70).

Proof. Similar to the proof of Theorem 3.32. �

If we take c = a, d = a+ and consider the Lebesgue measure in Theorem 3.33, or
c = b− , d = b and consider the Lebesgue measure in Theorem 3.34, we obtain gener-
alizations of Wu and Srivastava refinement of Steffensen’s inequality given in [61]. Addi-
tionally taking k ≡ 1 we obtain Wu and Srivastava refinement given in Theorem 1.11.

Furthermore, from Theorems 3.33 and 3.34 (taking h ≡ 1 and k ≡ 1) we can obtain a
refinement of Theorems 3.27 and 3.28.
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3.3.1 Weaker conditions

Here we give results obtained by replacing conditions on the function g in previous results
with weaker conditions as in Theorem 1.3.

Theorem 3.35 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be
-integrable functions on [a,b] such that k is positive, h is nonnegative and f/k is nonin-
creasing and right-continuous. Further, let [c,d] ⊆ [a,b] with

∫
[c,d] h(t)k(t)d(t)

=
∫
[a,b] g(t)k(t)d(t). If∫

[c,x)
k(t)g(t)d(t) ≤

∫
[c,x)

k(t)h(t)d(t), c ≤ x ≤ d (3.74)

and ∫
[x,b]

k(t)g(t)d(t) ≥ 0, d < x ≤ b, (3.75)

then∫
[a,b]

f (t)g(t)d(t) ≤
∫

[c,d]
f (t)h(t)d(t)+

∫
[a,c)

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)d(t). (3.76)

Proof. We use identity (3.67) and define a new measure  on  -algebra B((a,b]) such
that, on an algebra of finite disjoint unions of half open intervals, we set

((x,y]) =
f (x)
k(x)

− f (y)
k(y)

, for a < x < y ≤ b,

and then we pass to B((a,b]) in a unique way (for details see [13, p. 21]). Hence, using
Fubini, we have∫

[c,d]
f (t)h(t)d(t)−

∫
[a,b]

f (t)g(t)d(t)+
∫
[a,c)

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)d(t)

=
∫

[c,d]

(∫
(t,d]

d(x)
)

k(t)[h(t)−g(t)]d(t)+
∫
(d,b]

(∫
(d,t]

d(x)
)

g(t)k(t)d(t)

=
∫

[c,d]

(∫
[c,x)

k(t)[h(t)−g(t)]d(t)
)

d(x)+
∫
(d,b]

(∫
[x,b]

g(t)k(t)d(t)
)

d(x).

So we have (3.76) when (3.74) and (3.75) hold. �

Theorem 3.36 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be
-integrable functions on [a,b] such that k is positive, h is nonnegative and f/k is non-
increasing and right-continuous. Further, let [c,d] ⊆ [a,b] with

∫
(c,d] h(t)k(t)d(t) =∫

[a,b] g(t)k(t)d(t). If∫
[x,d]

k(t)g(t)d(t) ≤
∫

[x,d]
k(t)h(t)d(t), c < x ≤ d (3.77)
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and ∫
[a,x)

k(t)g(t)d(t) ≥ 0, a ≤ x ≤ c, (3.78)

then∫
(c,d]

f (t)h(t)d(t)−
∫
(d,b]

(
f (c)
k(c)

− f (t)
k(t)

)
g(t)k(t)d(t) ≤

∫
[a,b]

f (t)g(t)d(t). (3.79)

Proof. Defining a new measure  as in the proof of Theorem 3.35 and using identity (3.73)
and Fubini we obtain∫

[a,b]
f (t)g(t)d(t)−

∫
(c,d]

f (t)h(t)d(t)+
∫
(d,b]

(
f (c)
k(c)

− f (t)
k(t)

)
g(t)k(t)d(t)

=
∫

[a,c]

(∫
[a,x)

g(t)k(t)d(t)
)

d(x)+
∫
(c,d]

(∫
[x,d]

k(t)[h(t)−g(t)]d(t)
)

d(x).

So we have (3.79) when (3.77) and (3.78) hold. �

Taking k ≡ 1 and h≡ 1 in Theorems 3.35 and 3.36 we obtain weaker conditions for the
function g in an extension of Cerone’s result obtained in Theorems 3.27 and 3.28.

Theorem 3.37 Let  be a positive finite measure on B([a,b]), let f and g be -integrable
functions on [a,b] such that f is nonincreasing and right-continuous. Further, let [c,d] ⊆
[a,b] with ([c,d]) =

∫
[a,b] g(t)d(t). If

∫
[c,x)

g(t)d(t)≤ ([c,x)), c≤ x≤ d and
∫

[x,b]
g(t)d(t)≥ 0, d < x≤ b, (3.80)

then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[c,d]
f (t)d(t)+

∫
[a,c)

( f (t)− f (d))g(t)d(t).

Theorem 3.38 Let  be a positive finite measure on B([a,b]), let f and g be -integrable
functions on [a,b] such that f is nonincreasing and right-continuous. Further, let [c,d] ⊆
[a,b] with ((c,d]) =

∫
[a,b] g(t)d(t). If

∫
[x,d]

g(t)d(t)≤ ([x,d]), c < x≤ d and
∫

[a,x)
g(t)d(t)≥ 0, a≤ x≤ c, (3.81)

then ∫
(c,d]

f (t)d(t)−
∫

(d,b]
( f (c)− f (t))g(t)d(t)≤

∫
[a,b]

f (t)g(t)d(t).
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If we take c = a and d = a+ conditions (3.80) become∫
[a,x)

g(t)d(t) ≤ ([a,x)), a ≤ x ≤ a+ and
∫

[x,b]
g(t)d(t) ≥ 0, a+ < x ≤ b.

For a+ < x ≤ b we have∫
[a,x)

g(t)d(t) =
∫

[a,b]
g(t)d(t)−

∫
[x,b]

g(t)d(t) = ([a,a+ ])−
∫
[x,b]

g(t)d(t)

≤ ([a,a+ ])≤ ([a,x)).

Also, for a ≤ x ≤ a+ we have∫
[x,b]

g(t)d(t) =
∫

[a,b]
g(t)d(t)−

∫
[a,x)

g(t)d(t) = ([a,a+ ])−
∫
[a,x)

g(t)d(t)

≥ ([a,a+ ])− ([a,x)) = ([x,a+ ])≥ 0.

Hence, for c = a and d = a+ conditions (3.80) are equivalent to∫
[a,x)

g(t)d(t) ≤ ([a,x)) and
∫

[x,b]
g(t)d(t)≥ 0, for every x ∈ [a,b].

Similarly, if we take c = b− and d = b conditions (3.81) are equivalent to∫
[x,b]

g(t)d(t) ≤ ([x,b]) and
∫

[a,x)
g(t)d(t) ≥ 0, ∀x ∈ [a,b].

Therefore, if we take c = a and d = a+ in Theorem 3.37, or c = b− and d = b in
Theorem 3.38 we obtain sufficient conditions from Section 2.2.

In the following theorems we obtain weaker conditions for refinements given in Theo-
rems 3.33 and 3.34.

Theorem 3.39 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be
-integrable functions on [a,b] such that k is positive, h is nonnegative and f/k is nonin-
creasing and right-continuous. Further, let [c,d] ⊆ [a,b] with

∫
[c,d] h(t)k(t)d(t)

=
∫
[a,b] g(t)k(t)d(t). If (3.74) and (3.75) hold, then

∫
[a,b]

f (t)g(t)d(t) ≤
∫

[c,d]
f (t)h(t)d(t)+

∫
[a,c)

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)d(t)

−
∫
[c,d]

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]d(t)

≤
∫

[c,d]
f (t)h(t)d(t)+

∫
[a,c)

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)d(t).

(3.82)
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Proof. Using identity (3.59), defining a new measure  as in the proof of Theorem 3.35
and using Fubini we have

∫
[c,d]

f (t)h(t)d(t)−
∫
[a,b]

f (t)g(t)d(t)+
∫
[a,c)

(
f (t)
k(t)

− f (d)
k(d)

)
g(t)k(t)d(t)

−
∫
[c,d]

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]d(t) =

∫
(d,b]

(
f (d)
k(d)

− f (t)
k(t)

)
g(t)k(t)d(t)

=
∫

(d,b]

(∫
(d,t]

d(x)
)

g(t)k(t)d(t) =
∫

(d,b]

(∫
[x,b]

g(t)k(t)d(t)
)

d(x) ≥ 0

when ∫
[x,b]

g(t)k(t)d(t) ≥ 0, d < x ≤ b.

Furthermore,

∫
[c,d]

(
f (t)
k(t)

− f (d)
k(d)

)
k(t)[h(t)−g(t)]d(t)

=
∫

[c,d]

(∫
[c,x)

k(t)[h(t)−g(t)]d(t)
)

d(x) ≥ 0

when ∫
[c,x)

k(t)g(t)d(t) ≤
∫

[c,x)
k(t)h(t)d(t), c ≤ x ≤ d.

Hence (3.82) holds when (3.74) and (3.75) hold. �

Theorem 3.40 Let  be a positive finite measure on B([a,b]), let f ,g,h and k be -
integrable functions on [a,b] such that k is positive, h is nonnegative and f/k is non-
increasing and right-continuous. Further, let [c,d] ⊆ [a,b] with

∫
(c,d] h(t)k(t)d(t) =∫

[a,b] g(t)k(t)d(t). If (3.77) and (3.78) hold, then

∫
(c,d]

f (t)h(t)d(t)−
∫
(d,b]

(
f (c)
k(c)

− f (t)
k(t)

)
g(t)k(t)d(t) ≤

∫
(c,d]

f (t)h(t)d(t)

−
∫

(d,b]

(
f (c)
k(c)

− f (t)
k(t)

)
g(t)k(t)d(t)+

∫
(c,d]

(
f (c)
k(c)

− f (t)
k(t)

)
k(t)[h(t)−g(t)]d(t)

≤
∫

[a,b]
f (t)g(t)d(t).

Proof. Similar to the proof of Theorem 3.39 using identity (3.61). �
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3.4 Weighted Bellman-Steffensen type inequalities

In this section we give more general results than the results given in the Section 2.4, which
are related to the function f/k. Results given in this section were obtained by Jakšetić,
Pečarić and Smoljak Kalamir in [38].

Firstly, let us give a corollary obtained from Theorem 3.15 by taking k ≡ 1.

Corollary 3.5 Let  be a positive finite measure on B([a,b]), let g and h be −integrable
functions on [a,b] such that h is nonnegative. Let  be a positive constant such that∫
[a,a+ ]h(t)d(t) =

∫
[a,b] g(t)d(t). The inequality∫

[a,b]
f (t)g(t)d(t) ≤

∫
[a,a+ ]

f (t)h(t)d(t) (3.83)

holds for every nonincreasing, right-continuous function f : [a,b] → R if and only if∫
[a,x)

g(t)d(t) ≤
∫

[a,x)
h(t)d(t) and

∫
[x,b]

g(t)d(t) ≥ 0, (3.84)

for every x ∈ [a,b].
Theorem 3.41 Let  be a finite, positive measure on B([a,b]), f ,h and k be −integrable
functions on [a,b] such that h is nonnegative, k is positive and f/k is nonincreasing, right-
continuous. Then ∫

[a,b] f (t)G(t)d(t)∫
[a,b] k(t)G(t)d(t)

≤
∫
[a,a+ ] f (t)h(t)d(t)∫
[a,a+ ] k(t)h(t)d(t)

(3.85)

if and only if G : [a,b] → R is a −integrable function and  is a positive constant such
that ∫

[a,x) k(t)G(t)d(t)∫
[a,b] k(t)G(t)d(t)

≤
∫
[a,x) k(t)h(t)d(t)∫

[a,a+ ] k(t)h(t)d(t)
and

∫
[x,b]

k(t)G(t)d(t) ≥ 0, (3.86)

for every x ∈ [a,b], assuming
∫
[a,b] k(t)G(t)d(t) > 0.

For a nondecreasing, right-continuous function f/k the inequality (3.85) is reversed.

Proof. Sufficiency. Let us define the function

g(t) =
G(t)

∫
[a,a+ ] k(t)h(t)d(t)∫

[a,b] k(t)G(t)d(t)
.

Since
∫
[a,b] k(t)g(t)d(t) =

∫
[a,a+ ] k(t)h(t)d(t) and the conditions (3.29) are fulfilled we

can apply (3.28), and (3.85) is valid.
Necessity. If we put the function

f (t) =

{
k(t), t < x;

0, t ≥ x,

for a ≤ x ≤ a+ in the inequality (3.85) we get the conditions (3.86). �
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Theorem 3.42 Let  be a finite, positive measure on B([a,b]). Let h and f/k be non-
negative nonincreasing functions on [a,b] such that k is positive, and let  be an increasing
convex function on [0,) with (0) = 0. If G is a nonnegative nondecreasing function on
[a,b] such that there exists a nonnegative function g1 defined by the equation∫

[a,b]
g1(t)

(
k(t)G(t)

g1(t)

)
d(t) ≤

∫
[a,b]

k(t)h(t)d(t)

and
∫
[a,b] g1(t)d(t) ≤ 1, then the following inequality is valid:



(∫
[a,b] f (t)G(t)d(t)∫
[a,b] k(t)G(t)d(t)

)
≤
∫
[a,a+ ]

(
f (t)
k(t)

)
k(t)h(t)d(t)∫

[a,a+ ] k(t)h(t)d(t)
, (3.87)

where
∫
[a,a+ ] k(t)h(t)d(t) = 

(∫
[a,b] k(t)G(t)d(t)

)
.

Proof. Using Jensen’s inequality we have



(∫
[a,b] f (t)G(t)d(t)∫
[a,b] k(t)G(t)d(t)

)
= 

⎛⎝∫[a,b]
f (t)
k(t) k(t)G(t)d(t)∫

[a,b] k(t)G(t)d(t)

⎞⎠
≤
∫
[a,b]

(
f (t)
k(t)

)
k(t)G(t)d(t)∫

[a,b] k(t)G(t)d(t)
.

From (3.85) for f → ( ◦ ( f/k)) · k, since  ◦ ( f/k) is nonincreasing, we have∫
[a,b]

(
f (t)
k(t)

)
k(t)G(t)d(t)∫

[a,b] k(t)G(t)d(t)
≤
∫
[a,a+ ]

(
f (t)
k(t)

)
k(t)h(t)d(t)∫

[a,a+ ] k(t)h(t)d(t)

if conditions in (3.86) are satisfied. Obviously,
∫
[x,b] k(t)G(t)d(t) ≥ 0 since k and  are

positive and G is nonnegative. Hence, we have to show


(∫

[a,b]
k(t)G(t)d(t)

)∫
[a,x)

k(t)G(t)d(t)

≤
∫

[a,b]
k(t)G(t)d(t)

∫
[a,x)

k(t)h(t)d(t).
(3.88)

Using sub-linearity from Lemma 2.3 and Jensen’s inequality we have


(∫

[a,b]
k(t)G(t)d(t)

)
= 

(∫
[a,b]

g1(t)d(t)

∫
[a,b] k(t)G(t)d(t)∫

[a,b] g1(t)d(t)

)

≤
∫

[a,b]
g1(t)d(t)

⎛⎝∫[a,b] g1(t)
k(t)G(t)
g1(t)

d(t)∫
[a,b] g1(t)d(t)

⎞⎠
≤
∫

[a,b]
g1(t)

(
k(t)G(t)

g1(t)

)
d(t) ≤

∫
[a,b]

k(t)h(t)d(t). (3.89)
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Since G is nonnegative nondecreasing, h is nonnegative nonincreasing and k is positive,
we have ∫

[a,x) k(t)G(t)d(t)∫
[a,x) k(t)h(t)d(t)

≤
∫
[a,b] k(t)G(t)d(t)∫
[a,b] k(t)h(t)d(t)

i.e. ∫
[a,b]

k(t)h(t)d(t)
∫

[a,x)
k(t)G(t)d(t) ≤

∫
[a,x)

k(t)h(t)d(t)
∫

[a,b]
k(t)G(t)d(t).

So, along with (3.89) we have proved (3.88). Hence the theorem is proved. �

We continue with some applications given in [38].
Firstly, let us give an example and lemma which will be useful in our applications.

Example 3.1

(i) f (x) = ex is exponentially convex on R, for any  ∈ R.

(ii) g(x) = x− is exponentially convex on (0,), for any  > 0.

Lemma 3.3 Let k be a positive function and p ∈ R. Let p : (0,) → R be defined by

p(x) =

{
xp

p k(x), p �= 0;

k(x) logx, p = 0.
(3.90)

Then x → (p/k)(x) is increasing on (0,) for each p ∈ R and p → (p/k)(x) is expo-
nentially convex on (0,) for each x ∈ (0,).

Proof. The first part follows from d
dx

(
p(x)
k(x)

)
= xp−1 > 0 on (0,) for each p ∈ R. The

second part follows from p → xp

p = ep logx · 1
p . Since p → ep logx and p → 1

p are exponen-
tially convex according to Example 3.1 and according to the above comment, conclusion
follows. �

Lemma 3.4 For p ∈ R let p : [0,) → R be defined by

p(x) =
xp

p(p−1)
, p > 1. (3.91)

Then x → p(x) is convex on [0,) for each p > 1 and p → p(x) and p →  ′
p(x) are

exponentially convex on (1,) for each x ∈ [0,).

Using (3.85), under the assumptions of Theorem 3.41, we can define a linear functional
L by

L( f ) =

∫
[a,b] f (t)G(t)d(t)∫
[a,b] k(t)G(t)d(t)

−
∫
[a,a+ ] f (t)h(t)d(t)∫
[a,a+ ] k(t)h(t)d(t)

. (3.92)

We have that the functionalL is nonnegative on the class of nondecreasing, right-continuous
functions f/k : [a,b]→ R.
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Theorem 3.43 Let f →L( f ) be the linear functional defined by (3.92) and let : R→R

be defined by
(p) = L(p)

where p is defined by (3.90). Then the following statements hold:

(i) The function  is continuous on R.

(ii) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[

(

p j + pk

2

)]n

j,k=1

is positive semidefinite. Particularly,

det

[

(

p j + pk

2

)]n

j,k=1
≥ 0.

(iii) The function  is exponentially convex on R.

(iv) The function  is log-convex on R.

(v) If p,q,r ∈ R are such that p < q < r, then

(q)r−p ≤(p)r−q(r)q−p.

Proof. (i) Continuity of the function p →(p) is obvious for p ∈ R\ {0}. For p = 0 it is
directly checked using Heine characterization.
(ii) Let n ∈ N, pi ∈ R, i = 1, . . . ,n be arbitrary. Let us define an auxiliary function
 : (0,) → R by

(x) =
n


j,k=1

 jk p j+pk
2

(x).

Now (
(x)
k(x)

)′
=

n


j,k=1

 jkx
p j+pk

2 −1 =

(
n


j=1

 jx
p j−1

2

)2

≥ 0

implies that /k is nondecreasing on (0,), so L() ≥ 0. This means that[

(

p j + pk

2

)]n

j,k=1

is a positive semi-definite matrix.
(iii), (iv), (v) are simple consequences of (i) and (ii). �

Let k be a positive function and let {p/k : p ∈ (0,)} be the family of functions
defined on [0,) with

p(x) =
xp

p
k(x). (3.93)
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Similar as in Lemma 2.2 we conclude that x → (p/k)(x) is increasing on [0,) for each
p ∈ R and p → (p/k)(x) is exponentially convex on (0,) for each x ∈ [0,).

Let us define a linear functional M by

M( f ) =
∫

[a,b]
f (t)g(t)d(t)−

∫
[a,a+ ]

f (t)h(t)d(t). (3.94)

Under the assumptions of Remark 1.6 we have that the linear functional M is nonnegative
acting on nondecreasing functions f/k : [a,b] → R with the property ( f/k)(a) = 0.

Theorem 3.44 Let f → M( f ) be the linear functional defined by (3.94) and let
F : (0,) → R be defined by

F(p) = M(p)
where p is defined by (3.93). Then the following statements hold:

(i) The function F is continuous on (0,).

(ii) If n ∈ N and p1, . . . , pn ∈ (0,) are arbitrary, then the matrix[
F

(
p j + pk

2

)]n
j,k=1

is positive semidefinite. Particularly,

det

[
F

(
p j + pk

2

)]n

j,k=1
≥ 0.

(iii) The function F is exponentially convex on (0,).

(iv) The function F is log-convex on (0,).

(v) If p,q,r ∈ (0,) are such that p < q < r, then

F(q)r−p ≤ F(p)r−qF(r)q−p.

Proof. (i) Continuity of the function p → F(p) is obvious.
(ii) Let n ∈ N, pi ∈ (0,), i = 1, . . . ,n be arbitrary. Let us define an auxiliary function
 : [0,) → R by

(x) =
n


j,k=1

 jk p j+pk
2

(x).

Now (
(x)
k(x)

)′
=

(
n


j=1

 jx
p j−1

2

)2

≥ 0

implies that /k is nondecreasing on [0,) and nonnegative since (/k)(0) = 0. Hence,
M() ≥ 0 and we conclude that [

F

(
p j + pk

2

)]n

j,k=1

is a positive semi-definite matrix.
(iii), (iv), (v) are simple consequences of (i) and (ii). �
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Theorem 3.45 Let f → M( f ) be the linear functional defined by (3.94), let k be a
positive function on [a,b] and /k ∈ C1[a,b] such that (/k)(a) = 0. Then there exists
 ∈ [a,b] such that

M() =
(
( )
k( )

)′
M(e1),

where e1(x) = (x−a)k(x).

Proof. Since /k ∈C1[a,b] there exist

m = min
x∈[a,b]

 ′(x)k(x)−(x)k′(x)
k2(x)

and M = max
x∈[a,b]

 ′(x)k(x)−(x)k′(x)
k2(x)

.

Denote

h1(x) = M(x−a)k(x)−(x) and h2(x) = (x)−m(x−a)k(x).

Then (h1/k)(a) = (h2/k)(a) = 0 and(
h1(x)
k(x)

)′
= M−  ′(x)k(x)−(x)k′(x)

k2(x)
≥ 0(

h2(x)
k(x)

)′
=

 ′(x)k(x)−(x)k′(x)
k2(x)

−m ≥ 0

so h1/k and h2/k are nondecreasing, nonnegative functions on [a,b], which means that
M(h1), M(h2) ≥ 0 i.e.

mM(e1) ≤ M() ≤ MM(e1).

If M(e1) = 0, the proof is complete. If M(e1) > 0, then

m ≤ M()
M(e1)

≤ M

and the existence of  ∈ [a,b] follows. �

Using the standard Cauchy type mean value theorem we obtain the following corollary.

Corollary 3.6 Let f → M( f ) be linear functional defined by (3.94), let k be a positive
function on [a,b] and 1/k, 2/k ∈ C1[a,b] such that (1/k)(a) = (2/k)(a) = 0, then
there exists  ∈ [a,b], such that (

1( )
k( )

)′
(
2( )
k( )

)′ =
M(1)
M(2)

, (3.95)

provided that the denominator on the right side is non-zero.
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If the inverse of (1/k)′/(2/k)′ exists then various kinds of means can be defined by
(3.95). That is

 =

((1
k

)′(2
k

)′
)−1(

M(1)
M(2)

)
. (3.96)

Particularly, if we substitute1(x) = p(x), 2(x) = q(x) in (3.96) and use the continuous
extension, the following expressions are obtained.

M(p,q) =

⎧⎪⎨⎪⎩
(

M(p)
M(q)

) 1
p−q

, p �= q;

exp
(

M(0p)
M(p)

− 1
p

)
, p = q,

where 0(x) = logx and p,q ∈ (0,). By Theorem 2.5, if p,q,u,v ∈ (0,) such that
p ≤ u, q ≤ v then,

M(p,q) ≤ M(u,v).

Using (3.87), under the assumptions of Theorem 3.42, we can define a linear functional
N by

N() =

∫
[a,a+ ]

(
f (t)
k(t)

)
k(t)h(t)d(t)∫

[a,a+ ]k(t)h(t)d(t)
−

(∫
[a,b] f (t)G(t)d(t)∫
[a,b] k(t)G(t)d(t)

)
. (3.97)

We have that the linear functional N is nonnegative on the class of increasing convex
functions  on [0,) with the property (0) = 0.

Theorem 3.46 Let f → N( f ) be the linear functional defined by (3.97) and let
H : (1,) → R be defined by

H(p) = N(p)

where p is defined by (3.91). Then the following statements hold:

(i) The function H is continuous on (1,).

(ii) If n ∈ N and p1, . . . , pn ∈ (1,) are arbitrary, then the matrix[
H

(
p j + pk

2

)]n
j,k=1

is positive semidefinite. Particularly,

det

[
H

(
p j + pk

2

)]n

j,k=1
≥ 0.

(iii) The function H is exponentially convex on (1,).

(iv) The function H is log-convex on (1,).
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(v) If p,q,r ∈ (1,) are such that p < q < r, then

H(q)r−p ≤ H(p)r−qH(r)q−p.

Proof. Similar to the proof of Theorem 2.18. �

Similar to Corollary 3.6 we also have the following corollary.

Corollary 3.7 Let f → N( f ) be the linear functional defined by (3.97) and 1, 2 ∈
C2[0,a] such that1(0) =2(0) = ′

1(0)= ′
2(0)= 0 and such that ′′

2 (x) does not vanish
for any value of x ∈ [0,a], then there exists  ∈ [0,a] such that

 ′′
1 ( )

 ′′
2 ( )

=
N(1)
N(2)

, (3.98)

provided that the denominator on the right side is non-zero.

If the inverse of  ′′
1 / ′′

2 exists then various kinds of means can be defined by (3.98).
That is

 =
(
 ′′

1

 ′′
2

)−1(
N(1)
N(2)

)
. (3.99)

Particularly, if we substitute 1(x) = p(x), 2(x) = q(x) in (3.99) and use continuous
extension, the following expressions are obtained:

N(p,q) =

⎧⎪⎨⎪⎩
(

N(p)
N(q)

) 1
p−q

, p �= q;

exp
(

N(0p)
N(p)

+ 3−2p
(p−1)(p−2)

)
, p = q,

where 0(x) = logx and p,q ∈ (1,). By Theorem 2.5, if p,q,u,v ∈ (1,) such that
p ≤ u, q ≤ v then,

N(p,q) ≤ N(u,v).

We can generalize the above construction. For a fixed n ≥ 2, let us define

Cn = {p : p ∈ J},

a family of functions from C([0,a]) such that p(0) =  ′
p(0) = 0, and p →  ′′

p(x) is
n-exponentially convex in the Jensen sense on J for every x ∈ [0,a].

Theorem 3.47 Let f →N( f ) be the linear functional defined by (3.97) and let S : J →R,
be defined by

S(p) = N(p)

where p ∈ Cn. Then the following statements hold:

(i) S is n-exponentially convex in the Jensen sense on J.
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(ii) If S is continuous on J, then it is n−exponentially convex on J and for p,q,r ∈ J such
that p < q < r, we have

S(q)r−p ≤ S(p)r−qS(r)q−p.

(iii) If S is positive and differentiable on J, then for every p,q,u,v ∈ J such that
p ≤ u, q ≤ v, we have

M̃(p,q) ≤ M̃(u,v)
where M̃(p,q) is defined by

M̃(p,q) =

⎧⎪⎨⎪⎩
(

S(p)
S(q)

) 1
p−q

, p �= q;

exp

(
d
dp (S(p))

S(p)

)
, p = q.

Proof. Similar to the proof of Theorem 2.23. �

Using divided differences we can further refine obtained results. Let

D = {p : p ∈ J},
be a family of functions from C([0,a]) such that p(0) = 0, p → [x,y;p] is exponentially
convex on J for every choice of two distinct points x,y ∈ [0,a], and p → [x0,x1,x2;p] is
exponentially convex on J for every choice of three distinct points x0,x1,x2 ∈ [0,a].

Theorem 3.48 Let f →N( f ) be the linear functional defined by (3.97) and let H : J →R

be defined by
H(p) = N(p)

where p ∈ D . Then the following statements hold:

(i) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[
H

(
pk + pm

2

)]n
k,m=1

is positive semidefinite. Particularly,

det

[
H

(
pk + pm

2

)]n

k,m=1
≥ 0.

(ii) If the function H is continuous on J, then H is exponentially convex on J.

(iii) If H is positive and differentiable on J, then for every p,q,u,v ∈ J such that
p ≤ u, q ≤ v, we have

M̂(p,q) ≤ M̂(u,v)

where M̂(p,q) is defined by

M̂(p,q) =

⎧⎪⎨⎪⎩
(

H(p)
H(q)

) 1
p−q

, p �= q;

exp

(
d
dp (H(p))

H(p)

)
, p = q.

Proof. Similar to the proof of Theorem 2.24. �



Chapter4
Steffensen type inequalities
involving convex and
3-convex functions

4.1 Weighted Steffensen type inequalities

Results given in this section were obtained by Pečarić and Smoljak in [81].
Let us begin by giving definition of class M c

1 [a,b] for function f/h which is similar to
Definition 1.12.

Definition 4.1 Let h : [a,b] → R be a positive function, f : [a,b] → R be a function
and c ∈ (a,b). We say that f/h belongs to the class M c

1 [a,b] ( f/h belongs to the class

M c
2 [a,b]) if there exists a constant A such that the function F(x)

h(x) = f (x)
h(x) −Ax is nonincreas-

ing (nondecreasing) on [a,c] and nondecreasing (nonincreasing) on [c,b].

As noted in Section 1.4 we can describe the property from Definition 4.1 as “convexity
at point c”. In the following theorem we give connection between the class of functions
M c

1 [a,b] and the class of convex functions.

Theorem 4.1 The function f/h is convex (concave) on [a,b] if and only if f/h∈M c
1 [a,b]

( f/h ∈ M c
2 [a,b]) for every c ∈ (a,b).

99
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Applying measure theoretic generalizations of Steffensen’s inequality given in Theo-
rem 3.1 to a class of functions that are convex at point c we obtain the following results.

Theorem 4.2 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g and h be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ 1. Let
1,2 ∈ R+ be such that∫

[a,a+1]
h(t)d(t) =

∫
[a,c]

h(t)g(t)d(t) (4.1)

and ∫
(b−2,b]

h(t)d(t) =
∫

[c,b]
h(t)g(t)d(t). (4.2)

If f/h ∈ M c
1 [a,b] and∫

[a,b]
th(t)g(t)d(t) =

∫
[a,a+1]

th(t)d(t)+
∫
(b−2,b]

th(t)d(t), (4.3)

then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+1]
f (t)d(t)+

∫
(b−2,b]

f (t)d(t). (4.4)

If f/h ∈ M c
2 [a,b] and (4.3) holds, the inequality in (4.4) is reversed.

Proof. Let us prove this for f/h ∈ M c
1 [a,b]. Let F(x) = f (x)− Axh(x), where A is

the constant from Definition 4.1. Since F/h : [a,c] → R is nonincreasing, inequality (3.2)
implies

0 ≤
∫

[a,a+1]
F(t)d(t)−

∫
[a,c]

F(t)g(t)d(t)

=
∫

[a,a+1]
f (t)d(t)−

∫
[a,c]

f (t)g(t)d(t)

−A

(∫
[a,a+1]

th(t)d(t)−
∫
[a,c]

th(t)g(t)d(t)
)

.

(4.5)

Similarly, F/h : [c,b] → R is nondecreasing, so inequality (3.4) implies

0 ≤
∫

(b−2,b]
F(t)d(t)−

∫
[c,b]

F(t)g(t)d(t)

=
∫

(b−2,b]
f (t)d(t)−

∫
[c,b]

f (t)g(t)d(t)

−A

(∫
(b−2,b]

th(t)d(t)−
∫
[c,b]

th(t)g(t)d(t)
)

.

(4.6)

Adding up (4.5) and (4.6) we obtain∫
[a,a+1]

f (t)d(t)+
∫

(b−2,b]
f (t)d(t)−

∫
[a,b]

f (t)g(t)d(t)

≥ A

(∫
[a,a+1]

th(t)d(t)+
∫
(b−2,b]

th(t)d(t)−
∫
[a,b]

th(t)g(t)d(t)
)

= 0

which completes the proof.
Proof for f/h ∈ M c

2 [a,b] is similar so we omit the details. �
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Remark 4.1 It is obvious from the proof that for f/h ∈ M c
1 [a,b] inequality (4.4) holds if

equality (4.3) is replaced by the weaker condition

A

(∫
[a,a+1]

th(t)d(t)+
∫
(b−2,b]

th(t)d(t)−
∫
[a,b]

th(t)g(t)d(t)
)
≥ 0, (4.7)

where A is the constant from Definition 4.1.
Moreover, condition (4.7) can be further weakened if the function f/h is monotonic.
First, let us show that for f/h ∈ M c

1 [a,b] we have

( f/h)′−(c) ≤ A ≤ ( f/h)′+(c). (4.8)

Since F/h is nonincreasing on [a,c] and nondecreasing on [c,b] for every distinct points
x1,x2 ∈ [a,c] and y1,y2 ∈ [c,b] we have

[x1,x2;F/h] = [x1,x2; f/h]−A ≤ 0 ≤ [y1,y2; f/h]−A = [y1,y2;F/h].

Therefore, if ( f/h)′−(c) and ( f/h)′+(c) exist, letting xi ↗ c and yi ↘ c, i = 1,2 we get
(4.8). Similarly, for f/h ∈ M c

2 [a,b] we have (4.8) with the reverse inequality.
Hence if we additionally assume that f/h ∈M c

1 [a,b] is nondecreasing, condition (4.7)
can be further weakened to∫

[a,b]
th(t)g(t)d(t)≤

∫
[a,a+1]

th(t)d(t)+
∫
(b−2,b]

th(t)d(t). (4.9)

Further, if f/h ∈ M c
1 [a,b] is nonincreasing, condition (4.7) can be further weakened to

(4.9) with the reverse inequality.

Theorem 4.3 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g and h be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ 1. Let
1,2 ∈ R+ be such that∫

(c−1,c]
h(t)d(t) =

∫
[a,c]

h(t)g(t)d(t) (4.10)

and ∫
[c,c+2]

h(t)d(t) =
∫

[c,b]
h(t)g(t)d(t). (4.11)

If f/h ∈ M c
1 [a,b] and∫

[a,b]
th(t)g(t)d(t) =

∫
(c−1,c+2]

th(t)d(t), (4.12)

then ∫
[a,b]

f (t)g(t)d(t) ≥
∫

(c−1,c+2]
f (t)d(t). (4.13)

If f/h ∈ M c
2 [a,b] and (4.12) holds, the inequality in (4.13) is reversed.
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Proof. Let f/h ∈ M c
1 [a,b] and let F(x) = f (x)−Axh(x), where A is the constant from

Definition 4.1. Since F/h : [a,c] → R is nonincreasing, inequality (3.4) implies

0 ≤
∫

[a,c]
f (t)g(t)d(t)−

∫
(c−1,c]

f (t)d(t)

−A

(∫
[a,c]

th(t)g(t)d(t)−
∫
(c−1,c]

th(t)d(t)
)

.

(4.14)

Similarly, F/h : [c,b] → R is nondecreasing, so inequality (3.2) implies

0 ≤
∫

[c,b]
f (t)g(t)d(t)−

∫
[c,c+2]

f (t)d(t)

−A

(∫
[c,b]

th(t)g(t)d(t)−
∫
[c,c+2]

th(t)d(t)
)

.

(4.15)

Adding up (4.14) and (4.15) we obtain∫
[a,b]

f (t)g(t)d(t)−
∫
(c−1,c+2]

f (t)d(t)

≥ A

(∫
[a,b]

th(t)g(t)d(t)−
∫
(c−1,c+2]

th(t)d(t)
)

= 0

which completes the proof for f/h ∈ M c
1 [a,b]. Similarly for f/h ∈ M c

2 [a,b]. �

Remark 4.2 Similarly as in Remark 4.1, it is obvious from the proof that for f/h ∈
M c

1 [a,b] inequality (4.13) holds if equality (4.12) is replaced by the weaker condition

A

(∫
[a,b]

th(t)g(t)d(t)−
∫
(c−1,c+2]

th(t)d(t)
)
≥ 0, (4.16)

where A is the constant from Definition 4.1.
If we additionally assume that f/h ∈ M c

1 [a,b] is nondecreasing, condition (4.16) can
be further weakened to∫

[a,b]
th(t)g(t)d(t)≥

∫
(c−1,c+2]

th(t)d(t). (4.17)

Further, if f/h ∈ M c
1 [a,b] is nonincreasing, condition (4.16) can be further weakened to

(4.17) with the reverse inequality.

As a consequence of Theorems 4.2 and 4.3 we obtain the following weighted Stef-
fensen type inequalities that involve convex functions.

Corollary 4.1 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g and h be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ 1. Let
1,2 ∈ R+ be such that (4.1) and (4.2) hold. If f/h : [a,b]→ R is convex and (4.3) holds,
then the inequality (4.4) holds.
If f/h : [a,b] → R is concave, the inequality in (4.4) is reversed.
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Proof. Since f/h is convex, we have that f/h ∈ M c
1 [a,b] for every c ∈ (a,b). Hence, we

can apply Theorem 4.2. �

Corollary 4.2 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g and h be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ 1. Let
1,2 ∈ R+ be such that (4.10) and (4.11) hold. If f/h : [a,b] → R is convex and (4.12)
holds, then the inequality (4.13) holds.
If f/h : [a,b] → R is concave, the inequality in (4.13) is reversed.

Proof. Similar to the proof of Corollary 4.1 applying Theorem 4.3. �

Motivated by Theorem 3.15 we obtain the following weaker conditions for weighted
Steffensen type inequalities for convex functions at a point.

Theorem 4.4 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let g and
h be −integrable functions on [a,b] such that h is positive and∫

[a,x)
h(t)g(t)d(t) ≤

∫
[a,x)

h(t)d(t) and
∫

[x,c]
h(t)g(t)d(t)≥ 0,

for every x ∈ [a,c] and∫
[x,b]

h(t)g(t)d(t)≤
∫

[x,b]
h(t)d(t) and

∫
[c,x)

h(t)g(t)d(t)≥ 0,

for every x ∈ [c,b].
Let f/h be a right-continuous function on [a,b] and let 1,2 ∈ R+ be such that (4.1)

and (4.2) hold. If f/h ∈ M c
1 [a,b] and (4.3) holds, the inequality (4.4) holds. If f/h ∈

M c
2 [a,b] and (4.3) holds, the inequality in (4.4) is reversed.

Proof. Similar to the proof of Theorem 4.2 using weaker conditions from Theorem 3.15.
�

Theorem 4.5 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let g and
h be −integrable functions on [a,b] such that h is positive and∫

[x,c]
h(t)g(t)d(t)≤

∫
[x,c]

h(t)d(t) and
∫

[a,x)
h(t)g(t)d(t)≥ 0,

for every x ∈ [a,c] and∫
[c,x)

h(t)g(t)d(t)≤
∫

[c,x)
h(t)d(t) and

∫
[x,b]

h(t)g(t)d(t) ≥ 0,

for every x ∈ [c,b].
Let f/h be a right-continuous function on [a,b] and let 1,2 ∈ R+ be such that (4.10)

and (4.11) hold. If f/h ∈ M c
1 [a,b] and (4.12) holds, the inequality (4.13) holds. If f/h ∈

M c
2 [a,b] and (4.12) holds, the inequality in (4.13) is reversed.

Proof. Similar to the proof of Theorem 4.3 using weaker conditions from Theorem 3.15.
�
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Condition (4.3) (resp. (4.12)) in Corollary 4.3 and Theorem 4.4 (resp. Corollary 4.4
and Theorem 4.5) can be replaced by weaker conditions given in Remark 4.1 (resp. Re-
mark 4.2).

Similar as in Corollaries 4.3 and 4.4 we have that Theorems 4.4 and 4.5 still hold if
f/h is a convex function.

4.1.1 Further generalizations of weighted Steffensen type
inequalities

Making substitutions g → g/h and f → f h in Theorems 4.2 and 4.3 we obtain the following
weighted Steffensen type inequalities for convex functions at a point related to corrected
version of Mercer’s result given in Theorem 1.9.

Theorem 4.6 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g and h be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ h. Let
1,2 ∈ R+ be such that

∫
[a,a+1] h(t)d(t) =

∫
[a,c] g(t)d(t) and

∫
(b−2,b] h(t)d(t) =∫

[c,b] g(t)d(t). If f ∈ M c
1 [a,b] and

∫
[a,b]

tg(t)d(t) =
∫

[a,a+1]
th(t)d(t)+

∫
(b−2,b]

th(t)d(t), (4.18)

then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+1]
f (t)h(t)d(t)+

∫
(b−2,b]

f (t)h(t)d(t). (4.19)

If f ∈ M c
2 [a,b] and (4.18) holds, the inequality in (4.19) is reversed.

Theorem 4.7 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g and h be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ h. Let
1,2 ∈ R+ be such that

∫
(c−1,c] h(t)d(t) =

∫
[a,c] g(t)d(t) and

∫
[c,c+2] h(t)d(t) =∫

[c,b] g(t)d(t). If f ∈ M c
1 [a,b] and

∫
[a,b]

tg(t)d(t) =
∫

(c−1,c+2]
th(t)d(t), (4.20)

then ∫
[a,b]

f (t)g(t)d(t) ≥
∫

(c−1,c+2]
f (t)h(t)d(t). (4.21)

If f ∈ M c
2 [a,b] and (4.20) holds, the inequality in (4.21) is reversed.

Using substitutions h → kh, g → g/k and f → f k in Theorems 4.2 and 4.3 we obtain
related Steffensen type inequalities given in the following theorems.
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Theorem 4.8 Let  be a positive finite measure on B([a,b]) and let c∈ (a,b). Let f ,g,h
and k be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ k. Let 1,2 ∈
R+ be such that

∫
[a,a+1] k(t)h(t)d(t) =

∫
[a,c] h(t)g(t)d(t) and

∫
(b−2,b] k(t)h(t)d(t) =∫

[c,b] h(t)g(t)d(t). If f/h ∈ M c
1 [a,b] and∫

[a,b]
th(t)g(t)d(t) =

∫
[a,a+1]

tk(t)h(t)d(t)+
∫
(b−2,b]

tk(t)h(t)d(t), (4.22)

then ∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+1]
f (t)k(t)d(t)+

∫
(b−2,b]

f (t)k(t)d(t). (4.23)

If f/h ∈ M c
2 [a,b] and (4.22) holds, the inequality in (4.23) is reversed.

Theorem 4.9 Let  be a positive finite measure on B([a,b]) and let c∈ (a,b). Let f ,g,h
and k be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ k. Let 1,2 ∈
R+ be such that

∫
(c−1,c] k(t)h(t)d(t) =

∫
[a,c] h(t)g(t)d(t) and

∫
[c,c+2] k(t)h(t)d(t) =∫

[c,b] h(t)g(t)d(t). If f/h ∈ M c
1 [a,b] and∫

[a,b]
th(t)g(t)d(t) =

∫
(c−1,c+2]

tk(t)h(t)d(t), (4.24)

then ∫
[a,b]

f (t)g(t)d(t) ≥
∫

(c−1,c+2]
f (t)k(t)d(t). (4.25)

If f/h ∈ M c
2 [a,b] and (4.24) holds, the inequality in (4.25) is reversed.

The following theorems give refined versions of results given in Theorems 4.2 and 4.3.

Theorem 4.10 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g and h be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ 1. Let
1,2 ∈ R+ be such that (4.1) and (4.2) hold. If f/h ∈ M c

1 [a,b] and∫
[a,b]

th(t)g(t)d(t) =
∫

[a,a+1]
(th(t)− [t−a−1]h(t)[1−g(t)])d(t)

+
∫

(b−2,b]
(th(t)− [t−b+2]h(t)[1−g(t)])d(t),

(4.26)

then∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+1]

(
f (t)−

[
f (t)
h(t)

− f (a+1)
h(a+1)

]
h(t)[1−g(t)]

)
d(t)

+
∫
(b−2,b]

(
f (t)−

[
f (t)
h(t)

− f (b−2)
h(b−2)

]
h(t)[1−g(t)]

)
d(t).

(4.27)

If f/h ∈ M c
2 [a,b] and (4.26) holds, the inequality in (4.27) is reversed.

Proof. Similar to the proof of Theorem 4.2 applying Theorem 3.11(a) for F/h : [a,c]→ R

nonincreasing and Theorem 3.11(b) for F/h : [c,b] → R nondecreasing. �
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Theorem 4.11 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g and h be measurable functions on [a,b] such that h is positive and 0 ≤ g ≤ 1. Let
1,2 ∈ R+ be such that (4.10) and (4.11) hold. If f/h ∈ M c

1 [a,b] and∫
[a,b]

th(t)g(t)d(t) =
∫

(c−1,c]
(th(t)− [t− c+1]h(t)[1−g(t)])d(t)

+
∫
[c,c+2]

(th(t)− [t− c−2]h(t)[1−g(t)])d(t),
(4.28)

then∫
[a,b]

f (t)g(t)d(t) ≥
∫

(c−1,c]

(
f (t)−

[
f (t)
h(t)

− f (c−1)
h(c−1)

]
h(t)[1−g(t)]

)
d(t)

+
∫

[c,c+2]

(
f (t)−

[
f (t)
h(t)

− f (c+2)
h(c+2)

]
h(t)[1−g(t)]

)
d(t).

(4.29)

If f/h ∈ M c
2 [a,b] and (4.28) holds, the inequality in (4.29) is reversed.

Proof. Similar to the proof of Theorem 4.3 applying Theorem 3.11(b) for F/h : [a,c]→ R

nonincreasing and Theorem 3.11(a) for F/h : [c,b] → R nondecreasing. �

Motivated by sharpened and generalized version of Theorem 3.1 obtained by Jakšetić,
Pečarić and Smoljak in [35] we obtain the following results.

Theorem 4.12 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g,h and  be measurable functions on [a,b] such that h is positive and 0 ≤  ≤ g ≤
1− . Let 1,2 ∈ R+ be such that (4.1) and (4.2) hold. If f/h ∈ M c

1 [a,b] and∫
[a,b]

th(t)g(t)d(t) =
∫

[a,a+1]
th(t)d(t)−

∫
[a,c]

|t−a−1|h(t)(t)d(t)

+
∫
(b−2,b]

th(t)d(t)+
∫
[c,b]

|t−b+2|h(t)(t)d(t),
(4.30)

then∫
[a,b]

f (t)g(t)d(t) ≤
∫

[a,a+1]
f (t)d(t)−

∫
[a,c]

∣∣∣∣ f (t)h(t)
− f (a+1)

h(a+1)

∣∣∣∣h(t)(t)d(t)

+
∫
(b−2,b]

f (t)d(t)+
∫
[c,b]

∣∣∣∣ f (t)h(t)
− f (b−2)

h(b−2)

∣∣∣∣h(t)(t)d(t).

(4.31)

If f/h ∈ M c
2 [a,b] and (4.30) holds, the inequality in (4.31) is reversed.

Proof. We use the following inequalities, which hold for f/h nonincreasing, proved in
[35] (see also Theorem 3.13):∫

[a,b]
f (t)g(t)d(t) ≤

∫
[a,a+ ]

f (t)d(t)−
∫

[a,b]

∣∣∣∣ f (t)h(t)
− f (a+ )

h(a+ )

∣∣∣∣h(t)(t)d(t) (4.32)

and∫
(b− ,b]

f (t)d(t)+
∫

[a,b]

∣∣∣∣ f (t)h(t)
− f (b− )

h(b− )

∣∣∣∣h(t)(t)d(t)≤
∫

[a,b]
f (t)g(t)d(t). (4.33)
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For f/h nondecreasing inequalities in (4.32) and (4.33) are reversed.
The proof is similar to that of Theorem 4.2 applying (4.32) for F/h : [a,c]→R nonincreas-
ing and (4.33) for F/h : [c,b] → R nondecreasing, where F(x) = f (x)−Axh(x). �

Theorem 4.13 Let  be a positive finite measure on B([a,b]) and let c ∈ (a,b). Let
f ,g,h and  be measurable functions on [a,b] such that h is positive and 0 ≤  ≤ g ≤
1− . Let 1,2 ∈ R+ be such that (4.10) and (4.11) hold. If f/h ∈ M c

1 [a,b] and∫
[a,b]

th(t)g(t)d(t) =
∫

(c−1,c+2]
th(t)d(t)−

∫
[a,c]

|t− c+1|h(t)(t)d(t)

+
∫
[c,b]

|t − c−2|h(t)(t)d(t),
(4.34)

then∫
[a,b]

f (t)g(t)d(t) ≥
∫

(c−1,c+2]
f (t)d(t)+

∫
[a,c]

∣∣∣∣ f (t)h(t)
− f (c−1)

h(c−1)

∣∣∣∣h(t)(t)d(t)

−
∫
[c,b]

∣∣∣∣ f (t)h(t)
− f (c+2)

h(c+2)

∣∣∣∣h(t)(t)d(t).

(4.35)

If f/h ∈ M c
2 [a,b] and (4.34) holds, the inequality in (4.35) is reversed.

Proof. Similar to the proof of Theorem 4.12. �

Steffensen type inequalities obtained in this subsection also hold if the function f/h is
convex (resp. concave).

4.2 Generalized Steffensen type inequalities

In this section we give results obtained in [76]. Applying generalizations of Steffensen’s
inequality given in Section 1.1 to functions that are convex at point c we obtain the follow-
ing results.

Theorem 4.14 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g : [a,b]→ R be an integrable function such that
0 ≤ g ≤ 1. Let 1 be the solution of the equation∫ a+1

a
h(t)dt =

∫ c

a
h(t)g(t)dt (4.36)

and 2 be the solution of the equation∫ b

b−2

h(t)dt =
∫ b

c
h(t)g(t)dt. (4.37)
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If f/h ∈ M c
1 [a,b] and∫ b

a
th(t)g(t)dt =

∫ a+1

a
th(t)dt +

∫ b

b−2

th(t)dt, (4.38)

then ∫ b

a
f (t)g(t)dt ≤

∫ a+1

a
f (t)dt +

∫ b

b−2

f (t)dt. (4.39)

If f/h ∈ M c
2 [a,b] and (4.38) holds, the inequality in (4.39) is reversed.

Proof. Similar to the proof of Theorem 4.2 taking d(t) = dt. �

Remark 4.3 From the proof we deduce that condition (4.38) can be weakened. So, for
f/h ∈ M c

1 [a,b] inequality (4.39) still holds if (4.38) is replaced by the weaker condition

A

(∫ a+1

a
th(t)dt +

∫ b

b−2

th(t)dt−
∫ b

a
th(t)g(t)dt

)
≥ 0, (4.40)

where A is the constant from Definition 4.1. For f/h ∈ M c
2 [a,b] the reverse inequality in

(4.39) holds if (4.38) is replaced by (4.40) with the reverse inequality.
Moreover, condition (4.40) can be further weakened if the function f/h is monotonic.

Hence, if the function f/h∈M c
1 [a,b] is nondecreasing or f/h∈M c

2 [a,b] is nonincreasing,
from (4.40) we obtain that (4.38) can be weakened to∫ b

a
th(t)g(t)dt ≤

∫ a+1

a
th(t)dt +

∫ b

b−2

th(t)dt. (4.41)

Further, if f/h∈M c
1 [a,b] is nonincreasing or f/h∈M c

2 [a,b] is nondecreasing, (4.38) can
be weakened to (4.41) with the reverse inequality.

Theorem 4.15 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g : [a,b]→ R be an integrable function such that
0 ≤ g ≤ 1. Let 1 be the solution of the equation∫ c

c−1

h(t)dt =
∫ c

a
h(t)g(t)dt (4.42)

and 2 be the solution of the equation∫ c+2

c
h(t)dt =

∫ b

c
h(t)g(t)dt. (4.43)

If f/h ∈ M c
1 [a,b] and ∫ b

a
th(t)g(t)dt =

∫ c+2

c−1

th(t)dt, (4.44)

then ∫ b

a
f (t)g(t)dt ≥

∫ c+2

c−1

f (t)dt. (4.45)

If f/h ∈ M c
2 [a,b] and (4.44) holds, the inequality in (4.45) is reversed.

Proof. Similar to the proof of Theorem 4.3 taking d(t) = dt. �
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Remark 4.4 For f/h ∈ M c
1 [a,b] inequality (4.45) still holds if condition (4.44) is re-

placed by the weaker condition

A

(∫ b

a
th(t)g(t)dt−

∫ c+2

c−1

th(t)dt

)
≥ 0, (4.46)

where A is the constant from Definition 4.1. Also, for f/h∈M c
2 [a,b] the reverse inequality

in (4.45) holds if (4.44) is replaced by (4.46) with the reverse inequality.
Additionally, condition (4.46) can be further weakened if the function f/h is mono-

tonic. Similar as in Remark 4.3, if the function f/h ∈ M c
1 [a,b] is nondecreasing or

f/h ∈ M c
2 [a,b] is nonincreasing, from (4.46) we obtain that (4.44) can be weakened to∫ b

a
th(t)g(t)dt ≥

∫ c+2

c−1

th(t)dt. (4.47)

Further, if f/h∈M c
1 [a,b] is nonincreasing or f/h∈M c

2 [a,b] is nondecreasing, (4.44) can
be weakened to (4.47) with the reverse inequality.

As a consequence of Theorems 4.14 and 4.15 we obtain generalized Steffensen type
inequalities that involve convex functions.

Corollary 4.3 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g : [a,b] → R be an integrable function such
that 0 ≤ g ≤ 1. Let 1 be the solution of the equation (4.36) and 2 be the solution of the
equation (4.37). If f/h : [a,b] → R is convex and (4.38) holds, then the inequality (4.39)
holds.
If f/h : [a,b] → R is concave, the inequality in (4.39) is reversed.

Proof. Since f/h is convex, from Theorem 4.1, we have that f/h ∈ M c
1 [a,b] for every

c ∈ (a,b). Hence, we can apply Theorem 4.14. �

Corollary 4.4 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g : [a,b] → R be an integrable function such
that 0 ≤ g ≤ 1. Let 1 be the solution of the equation (4.42) and 2 be the solution of the
equation (4.43). If f/h : [a,b] → R is convex and (4.44) holds, then the inequality (4.45)
holds.
If f/h : [a,b] → R is concave, the inequality in (4.45) is reversed.

Proof. Similar to the proof of Corollary 4.3 applying Theorem 4.15. �

Similar as in Remarks 4.3 and 4.4 we obtain that conditions (4.38) and (4.44) in Corol-
laries 4.3 and 4.4 can be weakened if, additionally, the function f/h is monotonic.

For h ≡ 1 in Theorems 4.14 and 4.15 and Corollaries 4.3 and 4.4 we obtain the results
given in [75].

In Theorem 1.9 Pečarić, Perušić and Smoljak gave a corrected version of Mercer’s
result which follows from Theorems 1.6 and 1.7. In the following theorems we obtain
generalizations of these results for functions from the class M c

1 [a,b].
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Theorem 4.16 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g : [a,b]→ R be an integrable function such that
0 ≤ g ≤ h. Let 1 be the solution of the equation

∫ a+1
a h(t)dt =

∫ c
a g(t)dt and 2 be the

solution of the equation
∫ b
b−2

h(t)dt =
∫ b
c g(t)dt. If f ∈ M c

1 [a,b] and

∫ b

a
tg(t)dt =

∫ a+1

a
th(t)dt +

∫ b

b−2

th(t)dt, (4.48)

then ∫ b

a
f (t)g(t)dt ≤

∫ a+1

a
f (t)h(t)dt +

∫ b

b−2

f (t)h(t)dt. (4.49)

If f ∈ M c
2 [a,b] and (4.48) holds, the inequality in (4.49) is reversed.

Proof. Take g → g/h and f → f h in Theorem 4.14. �

Theorem 4.17 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g : [a,b]→ R be an integrable function such that
0 ≤ g ≤ h. Let 1 be the solution of the equation

∫ c
c−1

h(t)dt =
∫ c
a g(t)dt and 2 be the

solution of the equation
∫ c+2
c h(t)dt =

∫ b
c g(t)dt. If f ∈ M c

1 [a,b] and∫ b

a
tg(t)dt =

∫ c+2

c−1

th(t)dt, (4.50)

then ∫ b

a
f (t)g(t)dt ≥

∫ c+2

c−1

f (t)h(t)dt. (4.51)

If f ∈ M c
2 [a,b] and (4.50) holds, the inequality in (4.51) is reversed.

Proof. Take g → g/h and f → f h in Theorem 4.15. �

In [61, Theorem 2.6] Pečarić, Perušić and Smoljak showed that Mercer’s generalization
[46, Theorem 3] is equivalent to Theorem 1.6. Further, in [61, Theorem 2.7] they obtained
analogue theorem equivalent to Theorem 1.7. Motivated by mentioned generalizations in
the following theorems we obtain generalizations for functions from class M c

1 [a,b].

Theorem 4.18 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g,k : [a,b]→ R be integrable functions such that
0 ≤ g ≤ k. Let 1 be the solution of the equation∫ a+1

a
k(t)h(t)dt =

∫ c

a
h(t)g(t)dt

and 2 be the solution of the equation∫ b

b−2

k(t)h(t)dt =
∫ b

c
h(t)g(t)dt.
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If f/h ∈ M c
1 [a,b] and∫ b

a
th(t)g(t)dt =

∫ a+1

a
tk(t)h(t)dt +

∫ b

b−2

tk(t)h(t)dt, (4.52)

then ∫ b

a
f (t)g(t)dt ≤

∫ a+1

a
f (t)k(t)dt +

∫ b

b−2

f (t)k(t)dt. (4.53)

If f/h ∈ M c
2 [a,b] and (4.52) holds, the inequality in (4.53) is reversed.

Proof. Take h → kh, g → g/k and f → f k in Theorem 4.14. �

Theorem 4.19 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g,k : [a,b]→ R be integrable functions such that
0 ≤ g ≤ k. Let 1 be the solution of the equation∫ c

c−1

k(t)h(t)dt =
∫ c

a
h(t)g(t)dt

and 2 be the solution of the equation∫ c+2

c
k(t)h(t)dt =

∫ b

c
h(t)g(t)dt.

If f/h ∈ M c
1 [a,b] and ∫ b

a
th(t)g(t)dt =

∫ c+2

c−1

tk(t)h(t)dt, (4.54)

then ∫ b

a
f (t)g(t)dt ≥

∫ c+2

c−1

f (t)k(t)dt. (4.55)

If f/h ∈ M c
2 [a,b] and (4.54) holds, the inequality in (4.55) is reversed.

Proof. Take h → kh, g → g/k and f → f k in Theorem 4.15. �

Remark 4.5 Taking k≡ 1 in Theorems 4.18 and 4.19 we obtain Theorems 4.14 and 4.15,
respectively.

In the following theorems we obtain refined version of results given in Theorems 4.14
and 4.15.

Theorem 4.20 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g : [a,b] → R be an integrable function such
that 0 ≤ g ≤ 1. Let 1 be the solution of the equation (4.36) and 2 be the solution of the
equation (4.37). If f/h ∈ M c

1 [a,b] and∫ b

a
th(t)g(t)dt =

∫ a+1

a
(th(t)− [t−a−1]h(t)[1−g(t)])dt

+
∫ b

b−2

(th(t)− [t−b+2]h(t)[1−g(t)])dt,
(4.56)
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then ∫ b

a
f (t)g(t)dt ≤

∫ a+1

a

(
f (t)−

[
f (t)
h(t)

− f (a+1)
h(a+1)

]
h(t)[1−g(t)]

)
dt

+
∫ b

b−2

(
f (t)−

[
f (t)
h(t)

− f (b−2)
h(b−2)

]
h(t)[1−g(t)]

)
dt.

(4.57)

If f/h ∈ M c
2 [a,b] and (4.56) holds, the inequality in (4.57) is reversed.

Proof. Similar to the proof of Theorem 4.14 applying Corollary 1.1 for F/h : [a,c] → R

nonincreasing and Corollary 1.2 for F/h : [c,b] → R nondecreasing. �

Theorem 4.21 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c ∈ (a,b). Let g : [a,b] → R be an integrable function such
that 0 ≤ g ≤ 1. Let 1 be the solution of the equation (4.42) and 2 be the solution of the
equation (4.43). If f/h ∈ M c

1 [a,b] and∫ b

a
th(t)g(t)dt =

∫ c

c−1

(th(t)− [t− c+1]h(t)[1−g(t)])dt

+
∫ c+2

c
(th(t)− [t− c−2]h(t)[1−g(t)])dt,

(4.58)

then ∫ b

a
f (t)g(t)dt ≥

∫ c

c−1

(
f (t)−

[
f (t)
h(t)

− f (c−1)
h(c−1)

]
h(t)[1−g(t)]

)
dt

+
∫ c+2

c

(
f (t)−

[
f (t)
h(t)

− f (c+2)
h(c+2)

]
h(t)[1−g(t)]

)
dt.

(4.59)

If f/h ∈ M c
2 [a,b] and (4.58) holds, the inequality in (4.59) is reversed.

Proof. Similar to the proof of Theorem 4.15 applying Corollary 1.2 for F/h : [a,c] → R

nonincreasing and Corollary 1.1 for F/h : [c,b] → R nondecreasing. �

Motivated by sharpened and generalized versions of Theorems 1.6 and 1.7 obtained
by Pečarić, Perušić and Smoljak in [61, Corollaries 2.4 and 2.5] we obtain the following
results.

Theorem 4.22 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c∈ (a,b). Let g, : [a,b]→R be integrable functions such that
0 ≤  ≤ g ≤ 1− . Let 1 be the solution of the equation (4.36) and 2 be the solution of
the equation (4.37). If f/h ∈ M c

1 [a,b] and∫ b

a
th(t)g(t)dt =

∫ a+1

a
th(t)dt−

∫ c

a
|t−a−1|h(t)(t)dt

+
∫ b

b−2

th(t)dt +
∫ b

c
|t−b+2|h(t)(t)dt,

(4.60)
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then ∫ b

a
f (t)g(t)dt ≤

∫ a+1

a
f (t)dt −

∫ c

a

∣∣∣∣ f (t)h(t)
− f (a+1)

h(a+1)

∣∣∣∣h(t)(t)dt

+
∫ b

b−2

f (t)dt +
∫ b

c

∣∣∣∣ f (t)h(t)
− f (b−2)

h(b−2)

∣∣∣∣h(t)(t)dt.

(4.61)

If f/h ∈ M c
2 [a,b] and (4.60) holds, the inequality in (4.61) is reversed.

Proof. Similar to the proof of Theorem 4.14 applying [61, Corollary 2.3] for F/h : [a,c]
→ R nonincreasing and [61, Corollary 2.4] for F/h : [c,b] → R nondecreasing. �

Theorem 4.23 Let h : [a,b] → R be a positive integrable function, f : [a,b] → R be an
integrable function and let c∈ (a,b). Let g, : [a,b]→ R be integrable functions such that
0 ≤  ≤ g ≤ 1− . Let 1 be the solution of the equation (4.42) and 2 be the solution of
the equation (4.43). If f/h ∈ M c

1 [a,b] and∫ b

a
th(t)g(t)dt =

∫ c+2

c−1

th(t)dt−
∫ c

a
|t− c+1|h(t)(t)dt

+
∫ b

c
|t − c−2|h(t)(t)dt,

(4.62)

then ∫ b

a
f (t)g(t)dt ≥

∫ c+2

c−1

f (t)dt +
∫ c

a

∣∣∣∣ f (t)h(t)
− f (c−1)

h(c−1)

∣∣∣∣h(t)(t)dt

−
∫ b

c

∣∣∣∣ f (t)h(t)
− f (c+2)

h(c+2)

∣∣∣∣h(t)(t)dt.

(4.63)

If f/h ∈ M c
2 [a,b] and (4.62) holds, the inequality in (4.63) is reversed.

Proof. Similar to the proof of Theorem 4.15 applying [61, Corollary 2.4] for F/h : [a,c]
→ R nonincreasing and [61, Corollary 2.3] for F/h : [c,b] → R nondecreasing. �

Remark 4.6 Generalized Steffensen type inequalities obtained in Theorems 4.18-4.23
also hold if the function f/h is convex (concave). This follows from Theorem 4.1, i.e. if
f/h is a convex function then f/h ∈ M c

1 [a,b] for every c ∈ (a,b).

Similar as in Remarks 4.3 and 4.4 we obtain that conditions (4.48), (4.50), (4.52),
(4.54), (4.56), (4.58), (4.60), (4.62) can be weakened, but here we omit the details.
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4.3 New Steffensen type inequalities

Motivated by weaker conditions given in Theorem 1.3 in the following theorem we obtain
weaker conditions on the function g for Steffensen type inequalities obtained by Masjed-
Jamei, Qi and Srivastava given in Theorem 1.2. Results presented in this section were
obtained by Pečarić and Smoljak Kalamir in [77].

Theorem 4.24 Let g be an integrable function on [a,b] with  = q
∫ b
a g(t)dt ∈ [0,b−a],

where q �= 0.

a) The second inequality in (1.6) holds for every nonincreasing function f on [a,b] if
and only if∫ x

a
g(t)dt ≤ (x−a)

[
1− 

b−a

(
1− 1

q

)]
and

∫ b

x
g(t)dt ≥−(b− x)

b−a

(
1− 1

q

)
,

for every x ∈ [a,b].

b) The first inequality in (1.6) holds for every nonincreasing function f on [a,b] if and
only if∫ b

x
g(t)dt ≤ (b− x)

[
1− 

b−a

(
1− 1

q

)]
and

∫ x

a
g(t)dt ≥−(x−a)

b−a

(
1− 1

q

)
,

for every x ∈ [a,b].

Proof. We apply Theorem 1.3 to the function

G(x) = g(x)+
q−1
b−a

∫ b

a
g(t)dt, x ∈ [a,b]

with
∫ b
a G(x)dx =  . �

Note that for q = 1 Theorem 4.24 reduces to Theorem 1.3.
In the following theorems we obtain new Steffensen type inequalities for class of func-

tions that are convex at point c.

Theorem 4.25 Let g : [a,b] → R be an integrable function. For given c ∈ (a,b) and
q �= 0, denote 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt. Assume

− 1

c−a

(
1− 1

q

)
≤ g(x) ≤ 1− 1

c−a

(
1− 1

q

)
, for x ∈ (a,c), (4.64)

− 2

b− c

(
1− 1

q

)
≤ g(x) ≤ 1− 2

b− c

(
1− 1

q

)
, for x ∈ (c,b), (4.65)

and ∫ b

a
tg(t)dt = a1 +b2 +

2
1 −2

2

2
−
(

1− 1
q

)
1(a+ c)+2(c+b)

2
. (4.66)



4.3 NEW STEFFENSEN TYPE INEQUALITIES 115

If f ∈ M c
1 [a,b] then∫ b

a
f (t)g(t)dt ≤

∫ a+1

a
f (t)dt − 1

c−a

(
1− 1

q

)∫ c

a
f (t)dt

+
∫ b

b−2

f (t)dt − 2

b− c

(
1− 1

q

)∫ b

c
f (t)dt.

(4.67)

If f ∈ M c
2 [a,b] then the inequality in (4.67) is reversed.

Proof. We give the proof for f ∈ M c
1 [a,b], the proof for f ∈ M c

2 [a,b] is similar so we
omit the details. Let A be the constant from Definition 1.12 and let us consider the function
F : [a,b] → R, F(x) = f (x)−Ax. Since F is nonincreasing on [a,c] we can apply the
second inequality in (1.6) to functions F and g. So we have∫ c

a
F(t)g(t)dt ≤

∫ a+1

a
F(t)dt− 1

c−a

(
1− 1

q

)∫ c

a
F(t)dt.

Hence, we obtain

0 ≤
∫ a+1

a
F(t)dt− 1

c−a

(
1− 1

q

)∫ c

a
F(t)dt−

∫ c

a
F(t)g(t)dt

=
∫ a+1

a
f (t)dt − 1

c−a

(
1− 1

q

)∫ c

a
f (t)dt −

∫ c

a
f (t)g(t)dt

−A

(
a1 +

2
1

2
− 1(a+ c)

2

(
1− 1

q

)
−
∫ c

a
tg(t)dt

)
.

(4.68)

Further, since F is nondecreasing on [c,b] the first inequality in (1.6) applied to the func-
tions F and g is reversed. So we have∫ b

c
F(t)g(t)dt ≤

∫ b

b−2

F(t)dt− 2

b− c

(
1− 1

q

)∫ b

c
F(t)dt.

Hence, we obtain

0 ≤
∫ b

b−2

f (t)dt − 2

b− c

(
1− 1

q

)∫ b

c
f (t)dt −

∫ b

c
f (t)g(t)dt

−A

(
b2− 2

2

2
− 2(c+b)

2

(
1− 1

q

)
−
∫ b

c
tg(t)dt

)
.

(4.69)

Now combining (4.68) and (4.69) we obtain∫ a+1

a
f (t)dt− 1

c−a

(
1− 1

q

)∫ c

a
f (t)dt +

∫ b

b−2

f (t)dt

− 2

b− c

(
1− 1

q

)∫ b

c
f (t)dt −

∫ b

a
f (t)g(t)dt

≥ A

(
a1 +b2 +

2
1 −2

2

2
−
(

1− 1
q

)
1(a+ c)+2(c+b)

2
−
∫ b

a
tg(t)dt

)
.

Now, from (4.66), we conclude that (4.67) holds. �
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Remark 4.7 From the proof we see that the condition (4.66) in Theorem 4.25 can be
replaced by the weaker condition

A

(
a1 +b2 +

2
1 −2

2

2
−
(

1− 1
q

)
1(a+ c)+2(c+b)

2
−
∫ b

a
tg(t)dt

)
≥ 0 (4.70)

for f ∈ M c
1 [a,b], where A is the constant from Definition 1.12. Further, for f ∈ M c

2 [a,b]
the condition (4.66) can be replaced by (4.70) with the reverse inequality.

Additionaly, the condition (4.66) can be further weakened if the function f is mono-
tonic. For example, if f ∈ M c

1 [a,b] is nondecreasing, then clearly A ≥ 0. So, from from
(4.70) we obtain that (4.66) can be weakened to∫ b

a
tg(t)dt ≤ a1 +b2 +

2
1 −2

2

2
−
(

1− 1
q

)
1(a+ c)+2(c+b)

2
. (4.71)

Further, if f ∈ M c
1 [a,b] is nonincreasing or f ∈ M c

2 [a,b] is nondecreasing, (4.66) can be
weakened to (4.71) with the reverse inequality.

Theorem 4.26 Let g : [a,b] → R be an integrable function. For given c ∈ (a,b) and
q �= 0, denote 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt. Assume (4.64) and (4.65) hold and∫ b

a
tg(t)dt = c(1 +2)+

2
2 −2

1

2
− 2(c+b)+1(a+ c)

2

(
1− 1

q

)
. (4.72)

If f ∈ M c
1 [a,b] then∫ b

a
f (t)g(t)dt ≥

∫ c+2

c−1

f (t)dt −
(

1

c−a

∫ c

a
f (t)dt +

2

b− c

∫ b

c
f (t)dt

)(
1− 1

q

)
. (4.73)

If f ∈ M c
2 [a,b] then the inequality in (4.73) is reversed.

Proof. We give the proof for f ∈M c
1 [a,b]. Let A be the constant from Definition 1.12 and

let us consider the function F : [a,b] → R, F(x) = f (x)−Ax. Since F is nonincreasing on
[a,c] we can apply the first inequality in (1.6) to the functions F and g. So we have

0 ≤
∫ c

a
f (t)g(t)dt−

∫ c

c−1

f (t)dt +
1

c−a

(
1− 1

q

)∫ c

a
f (t)dt

−A

(∫ c

a
tg(t)dt− c1 +

2
1

2
+
1(a+ c)

2

(
1− 1

q

))
.

(4.74)

Further, since F is nondecreasing on [c,b] the second inequality in (1.6) applied to the
functions F and g is reversed. So we have

0 ≤
∫ b

c
f (t)g(t)dt−

∫ c+2

c
f (t)dt +

2

b− c

(
1− 1

q

)∫ b

c
f (t)dt

−A

(∫ b

c
tg(t)dt− c2− 2

2

2
+
2(c+b)

2

(
1− 1

q

))
.

(4.75)
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Now from (4.74) and (4.75) we obtain∫ b

a
f (t)g(t)dt −

∫ c+2

c−1

f (t)dt +
(

1

c−a

∫ c

a
f (t)dt +

2

b− c

∫ b

c
f (t)dt

)(
1− 1

q

)
≥ A

(∫ b

a
tg(t)dt− c(1 +2)+

2
1 −2

2

2
+
1(a+ c)+2(c+b)

2

(
1− 1

q

))
.

Now, from (4.72), we conclude that (4.73) holds.
Proof for f ∈ M c

2 [a,b] is similar so we omit the details. �

Remark 4.8 Similarly as in Remark 4.7, the condition (4.72) in Theorem 4.26 can be
replaced by the weaker condition

A

(∫ b

a
tg(t)dt− c(1 +2)+

2
1 −2

2

2
+
1(a+ c)+2(c+b)

2

(
1− 1

q

))
≥ 0 (4.76)

for f ∈ M c
1 [a,b] and by (4.76) with the reverse inequality for f ∈ M c

2 [a,b].
Additionaly, it can be further weakened if the function f is monotonic. For a nonde-

creasing function f ∈ M c
1 [a,b] or nonincreasing function f ∈ M c

2 [a,b], from (4.76) we
obtain that (4.72) can be weakened to∫ b

a
tg(t)dt ≥ c(1 +2)+

2
2 −2

1

2
− 2(c+b)+1(a+ c)

2

(
1− 1

q

)
. (4.77)

Further, if f ∈ M c
1 [a,b] is nonincreasing or f ∈ M c

2 [a,b] is nondecreasing, (4.72) can be
weakened to (4.77) with the reverse inequality.

As a consequence of Theorems 4.25 and 4.26 we obtain the following new Steffensen
type inequalities that involve convex functions.

Corollary 4.5 Let g : [a,b]→ R be an integrable function. For given c ∈ (a,b) and q �= 0
denote 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt. Assume (4.64), (4.65) and (4.66) hold. If

f : [a,b]→ R is convex function, then (4.67) holds.
If f : [a,b] → R is concave function, the inequality in (4.67) is reversed.

Proof. Since f is convex from Lemma 1.1 we have that f ∈ M c
1 [a,b], for every c ∈ (a,b).

Hence we can apply Theorem 4.25. �

Corollary 4.6 Let g : [a,b]→ R be an integrable function. For given c ∈ (a,b) and q �= 0
denote 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt. Assume (4.64), (4.65) and (4.72) hold. If

f : [a,b]→ R is convex function, then (4.73) holds.
If f : [a,b] → R is concave function, the inequality in (4.73) is reversed.

Proof. Similar to the proof of Corollary 4.5. �

Motivated by weaker conditions obtained in Theorem 4.24 in the following theorems
we give weaker conditions for previously obtained Steffensen type inequalities involving
the class M c

1 [a,b].
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Theorem 4.27 Let g : [a,b]→R be an integrable function. Consider c∈ (a,b) and q �= 0.
Assume 1 = q

∫ c
a g(t)dt ∈ [0,c−a] and 2 = q

∫ b
c g(t)dt ∈ [0,b−c], such that (4.66) holds.

Then (4.67) holds for all f ∈ M c
1 [a,b] if and only if∫ x

a
g(t)dt ≤ (x−a)

[
1− 1

c−a

(
1− 1

q

)]
and

∫ c

x
g(t)dt ≥−1(c− x)

c−a

(
1− 1

q

)
,

(4.78)
for every x ∈ [a,c] and∫ b

x
g(t)dt ≤ (b− x)

[
1− 2

b− c

(
1− 1

q

)]
and

∫ x

c
g(t)dt ≥−2(x− c)

b− c

(
1− 1

q

)
,

(4.79)
for every x ∈ [c,b].
Further, the reverse inequality in (4.67) holds for all f ∈M c

2 [a,b] if and only if (4.78) and
(4.79) hold.

Proof. Similar to the proof of Theorem 4.25 using weaker conditions obtained in Theo-
rem 4.24. �

Theorem 4.28 Let g : [a,b]→R be an integrable function. Consider c∈ (a,b) and q �= 0.
Assume 1 = q

∫ c
a g(t)dt ∈ [0,c−a] and 2 = q

∫ b
c g(t)dt ∈ [0,b−c], such that (4.72) holds.

Then (4.73) holds for all f ∈ M c
1 [a,b] if and only if∫ c

x
g(t)dt ≤ (c− x)

[
1− 1

c−a

(
1− 1

q

)]
and

∫ x

a
g(t)dt ≥−1(x−a)

c−a

(
1− 1

q

)
,

(4.80)
for every x ∈ [a,c] and∫ x

c
g(t)dt ≤ (x− c)

[
1− 2

b− c

(
1− 1

q

)]
and

∫ b

x
g(t)dt ≥−2(b− x)

b− c

(
1− 1

q

)
,

(4.81)
for every x ∈ [c,b].
Further, the reverse inequality in (4.73) holds for all f ∈M c

2 [a,b] if and only if (4.80) and
(4.81) hold.

Proof. Similar to the proof of Theorem 4.27. �

Further, as a consequence of Theorems 4.27 and 4.28 we obtain the following Stef-
fensen type inequalities that involve convex functions.

Corollary 4.7 Let g : [a,b]→ R be an integrable function. Consider c ∈ (a,b) and q �= 0.
Assume 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt, such that (4.66) holds. Then (4.67) holds for

all convex functions f : [a,b]→R if and only if (4.78) and (4.79) hold. Further, the reverse
inequality in (4.67) holds for all concave functions f : [a,b] → R if and only if (4.78) and
(4.79) hold.

Proof. Similar to the proof of Corollary 4.5. �
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Corollary 4.8 Let g : [a,b]→R be an integrable function. Consider c ∈ (a,b) and q �= 0.
Assume 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt, such that (4.72) holds. Then (4.73) holds for

all convex functions f : [a,b]→R if and only if (4.80) and (4.81) hold. Further, the reverse
inequality in (4.73) holds for all concave functions f : [a,b] → R if and only if (4.80) and
(4.81) hold.

Proof. Similar to the proof of Corollary 4.5. �

4.4 Gauss-Steffensen type inequalities

In this section we present some new Gauss-Steffensen type inequalities which involve
convex functions which were motivated by Gauss-Steffensen’s inequality given in The-
orem 1.17. These results were obtained in [78].

In the following theorem we obtain Gauss-Steffensen type inequality for class of func-
tions that are “convex at point c”.

Theorem 4.29 Let G : [a,b] → R be an increasing function such that G(x) ≥ x and let
c ∈ (a,b). If f ∈ M c

1 (I) and∫ c

a
G(t)dt−

∫ b

c
G(t)dt = 2cG(c)−aG(a)−bG(b)+

G2(b)+G2(a)−2G2(c)
2

, (4.82)

then ∫ c

a
f (t)G′(t)dt−

∫ b

c
f (t)G′(t)dt ≥

∫ G(c)

G(a)
f (t)dt −

∫ G(b)

G(c)
f (t)dt (4.83)

holds.
If f ∈ M c

2 (I) and (4.82) holds, the inequality in (4.83) is reversed.

Proof. Let A be the constant from Definition 1.12 and let f ∈ M c
1 (I). We have c ∈ (a,b)

⊆ I◦. Let us consider the function F : I → R, F(x) = f (x)−Ax. Since F is nonincreasing
on I∩ (−,c] we can apply inequality (1.21) to the function F , so∫ G(c)

G(a)
F(t)dt ≤

∫ c

a
F(t)G′(t)dt.

Hence, we obtain

0 ≤
∫ c

a
F(t)G′(t)dt−

∫ G(c)

G(a)
F(t)dt

=
∫ c

a
f (t)G′(t)dt−

∫ G(c)

G(a)
f (t)dt −A

(
cG(c)−aG(a)−

∫ c

a
G(t)dt− G2(c)−G2(a)

2

)
.

(4.84)

Further, the function F is nondecreasing on I∩ [c,) so we can apply the reverse inequality
(1.21), so we have ∫ b

c
F(t)G′(t)dt ≤

∫ G(b)

G(c)
F(t)dt.
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Hence, we obtain

0 ≤
∫ G(b)

G(c)
F(t)dt−

∫ b

c
F(t)G′(t)dt

=
∫ G(b)

G(c)
f (t)dt−

∫ b

c
f (t)G′(t)dt−A

(
G2(b)−G2(c)

2
−bG(b)+ cG(c)+

∫ b

c
G(t)dt

)
.

(4.85)

Now combining (4.84) and (4.85) we obtain∫ c

a
f (t)G′(t)dt−

∫ G(c)

G(a)
f (t)dt −

∫ b

c
f (t)G′(t)dt +

∫ G(b)

G(c)
f (t)dt

≥ A

(
2cG(c)−aG(a)−bG(b)−

∫ c

a
G(t)dt +

∫ b

c
G(t)dt +

G2(a)+G2(b)−2G2(c)
2

)
.

Now, from (4.82), we conclude that (4.83) holds.
Proof for f ∈ M c

2 (I) is similar so we omit the details. �

As a consequence of previous theorem we obtain the following Gauss-Steffensen type
inequality for class of convex functions.

Corollary 4.9 Let G : [a,b] → R be an increasing function such that G(x) ≥ x and let
c ∈ (a,b). If f : I →R is convex and (4.82) holds then (4.83) holds. If f : I → R is concave
and (4.82) holds, the inequality in (4.83) is reversed.

Proof. Since the function f is convex, from Lemma 1.1, we have that f ∈M c
1 (I) for every

c ∈ (a,b) ⊆ I◦. Hence, we can apply Theorem 4.29. �

If the function G in Theorem 4.29 and Corollary 4.9 is such that G(x) ≤ x, then the
reverse inequality in (4.83) holds.

Remark 4.9 Condition (4.82) can be weakened. From the proof of Theorem 4.29 we
have that for f ∈ M c

1 (I) condition (4.82) can be replaced by the weaker condition

A

(
2cG(c)−aG(a)−bG(b)−

∫ c

a
G(t)dt +

∫ b

c
G(t)dt +

G2(a)+G2(b)−2G2(c)
2

)
≥ 0,

(4.86)
where A is the constant from Definition 1.12. Also, for f ∈ M c

2 (I) condition (4.82) can be
replaced by condition (4.86) with the reverse inequality.

Furthermore, condition (4.82) can be further weakened if the function f is monotonic.
Since (1.37) holds, if f ∈ M c

1 (I) is nondecreasing or f ∈ M c
2 (I) is nonincreasing, from

(4.86) we obtain that (4.82) can be weakened to∫ c

a
G(t)dt−

∫ b

c
G(t)dt ≤ 2cG(c)−aG(a)−bG(b)+

G2(a)+G2(b)−2G2(c)
2

. (4.87)

Also, if f ∈ M c
1 (I) is nonincreasing or f ∈ M c

2 (I) is nondecreasing, (4.82) can be weak-
ened to (4.87) with the reverse inequality.
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4.5 Gauss-type inequalities

Motivated by Alzer’s lower bound for Gauss’ inequality given in Theorem 1.18 this section
is devoted to Gauss-type inequalities for convex functions obtained by Pečarić and Smoljak
Kalamir in [80].

In the following theorems we obtain Gauss type inequalities for the class of functions
that are convex at point c.

Theorem 4.30 Let c ∈ (a,b) and let g : [a,b] → R be increasing, convex and differen-
tiable such that g(c) = c. Assume

s1(x) =
g(b)−g(c)

b− c
(x− c)+g(c), (4.88)

t1(x) = g′(x0)(x− x0)+g(x0), x0 ∈ [a,c] (4.89)

and ∫ c

a
t1(x)g′(x)dx+

∫ b

c
s1(x)g′(x)dx =

g2(b)−g2(a)
2

. (4.90)

If f ∈ M c
1 (I), then∫ c

a
f (t1(x))g′(x)dx+

∫ b

c
f (s1(x))g′(x)dx ≥

∫ g(b)

g(a)
f (x)dx. (4.91)

If f ∈ M c
2 (I), then the inequality in (4.91) is reversed.

(I is an interval containing a,b,g(a),g(b),t1(a) and t1(c).)

Proof. From g(c) = c and other conditions of theorem it follows that g(a),t1(a),t1(c) ≤ c
and g(b)≥ c, where g(a)≤ c, t1(a)≤ c and g(b)≥ c follow from the fact that the function
g is increasing, and t1(c) ≤ c follows from the convexity of the function g. Since interval
I contains a,b,g(a),g(b),t1(a) and t1(c), these conditions imply g(a),g(c),t1(a),t1(c) ∈
I∩ (−,c] and g(c),g(b) ∈ I∩ [c,).

Let f ∈ M c
1 (I). Let A be the constant from Definition 1.12 and let us consider the

function F : I → R, F(x) = f (x) − Ax. Since F is nonincreasing on I ∩ (−,c] and
g(a),g(c), t1(a),t1(c) ∈ I∩ (−,c], we can apply the right-hand side of inequality (1.22)
to the function F , so ∫ g(c)

g(a)
F(x)dx ≤

∫ c

a
F(t1(x))g′(x)dx.

Hence, we obtain

0 ≤
∫ c

a
F(t1(x))g′(x)dx−

∫ g(c)

g(a)
F(x)dx =

=
∫ c

a
f (t1(x))g′(x)dx−

∫ g(c)

g(a)
f (x)dx−A

(∫ c

a
t1(x)g′(x)dx− g2(c)−g2(a)

2

)
.

(4.92)
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Further, since F is nondecreasing on I∩ [c,) and g(c),g(b)∈ I∩ [c,), the left-hand side
of inequality (1.22) applied to the function F is reversed. So we have∫ b

c
F(s1(x))g′(x)dx ≥

∫ g(b)

g(c)
F(x)dx.

Hence, we obtain

0 ≤
∫ b

c
F(s1(x))g′(x)dx−

∫ g(b)

g(c)
F(x)dx =

=
∫ b

c
f (s1(x))g′(x)dx−

∫ g(b)

g(c)
f (x)dx−A

(∫ b

c
s1(x)g′(x)dx− g2(b)−g2(c)

2

)
.

(4.93)

Now combining (4.92) and (4.93) we obtain∫ c

a
f (t1(x))g′(x)dx+

∫ b

c
f (s1(x))g′(x)dx−

∫ g(b)

g(a)
f (x)dx

≥ A

(∫ c

a
t1(x)g′(x)dx+

∫ b

c
s1(x)g′(x)dx− g2(b)−g2(a)

2

)
.

Hence, from (4.90) we conclude that (4.91) holds.
Proof for f ∈ M c

2 (I) is similar, so we omit the details. �

An example of a function g : [a,b] → R satisfying conditions of Theorem 4.30 is the
function

g(x) =
x2

c
,

where 0 ≤ a < c < b.

Theorem 4.31 Let c ∈ (a,b) and let g : [a,b] → R be increasing, convex and differen-
tiable such that g(c) = c. Assume

s2(x) =
g(c)−g(a)

c−a
(x−a)+g(a), (4.94)

t2(x) = g′(x0)(x− x0)+g(x0), x0 ∈ [c,b], (4.95)

and ∫ c

a
s2(x)g′(x)dx+

∫ b

c
t2(x)g′(x)dx =

g2(b)−g2(a)
2

. (4.96)

If f ∈ M c
1 (I), then∫ c

a
f (s2(x))g′(x)dx+

∫ b

c
f (t2(x))g′(x)dx ≤

∫ g(b)

g(a)
f (x)dx. (4.97)

If f ∈ M c
2 (I), then the inequality in (4.97) is reversed.

(I is an interval containing a,b,g(a),g(b),t2(c) and t2(b).)
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Proof. Similar to the proof of Theorem 4.30, it follows that g(a) ≤ c and g(b),t2(c),
t2(b) ≥ c. Since interval I contains a,b,g(a),g(b),t2(c) and t2(b), these conditions imply
g(a),g(c) ∈ I∩ (−,c] and g(c),g(b),t2(c),t2(b) ∈ I∩ [c,).

Let f ∈ M c
1 (I). Let A be the constant from Definition 1.12 and let us consider the

function F : I → R, F(x) = f (x) − Ax. Since F is nonincreasing on I ∩ (−,c] and
g(a),g(c)∈ I∩(−,c], we can apply the left-hand side of inequality (1.22) to the function
F . So we obtain

0 ≤
∫ g(c)

g(a)
f (x)dx−

∫ c

a
f (s2(x))g′(x)dx−A

(
g2(c)−g2(a)

2
−
∫ c

a
s2(x)g′(x)dx

)
. (4.98)

Further, since F is nondecreasing on I ∩ [c,) and g(c),g(b), t2(c), t2(b) ∈ I ∩ [c,), the
right-hand side of inequality (1.22) applied to the function F is reversed. So we have

0 ≤
∫ g(b)

g(c)
f (x)dx−

∫ b

c
f (t2(x))g′(x)dx−A

(
g2(b)−g2(c)

2
−
∫ b

c
t2(x)g′(x)dx

)
. (4.99)

Now combining (4.98) and (4.99) we obtain

∫ g(b)

g(a)
f (x)dx−

∫ c

a
f (s2(x))g′(x)dx−

∫ b

c
f (t2(x))g′(x)dx ≥

≥ A

(
g2(b)−g2(a)

2
−
∫ c

a
s2(x)g′(x)dx−

∫ b

c
t2(x)g′(x)dx

)
.

Hence, from (4.96) we conclude that (4.97) holds.
Proof for f ∈ M c

2 (I) is similar, so we omit the details. �

As a consequence of Theorems 4.30 and 4.31, we obtain Gauss type inequalities that
involve convex functions.

Corollary 4.10 Let c ∈ (a,b) and let g : [a,b] → R be increasing, convex and differen-
tiable such that g(c) = c. Assume (4.88), (4.89) and (4.90) hold and I is an interval as in
Theorem 4.30. If f : I → R is convex, then (4.91) holds. If f : I → R is concave, then the
inequality in (4.91) is reversed.

Proof. Since the function f is convex, from Lemma 1.1 we have f ∈ M c
1 (I) for every

c ∈ (a,b) ⊆ I◦. Hence, we can apply Theorem 4.30. �

Corollary 4.11 Let c ∈ (a,b) and let g : [a,b] → R be increasing, convex and differen-
tiable such that g(c) = c. Assume (4.94), (4.95) and (4.96) hold and I is an interval as in
Theorem 4.31. If f : I → R is convex, then (4.97) holds. If f : I → R is concave, then the
inequality in (4.97) is reversed.

Proof. Similar to the proof of Corollary 4.10. �
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Remark 4.10 Conditions (4.90) and (4.96) can be relaxed. For f ∈ M c
1 (I) condition

(4.90) can be replaced by the weaker condition

A

(∫ c

a
t1(x)g′(x)dx+

∫ b

c
s1(x)g′(x)dx− g2(b)−g2(a)

2

)
≥ 0, (4.100)

and condition (4.96) can be replaced by the weaker condition

A

(
g2(b)−g2(a)

2
−
∫ c

a
s2(x)g′(x)dx−

∫ b

c
t2(x)g′(x)dx

)
≥ 0, (4.101)

where A is the constant from Definition 1.12. Also, for f ∈ M c
2 (I) condition (4.90) (resp.

(4.96)) can be replaced by condition (4.100) (resp. (4.101)) with the reverse inequality.
Additionaly, conditions (4.90) and (4.96) can be further weakened if the function f is

monotonic. Since (1.37) holds, if f ∈ M c
1 (I) is nondecreasing or f ∈ M c

2 (I) is nonin-
creasing, from (4.100) we obtain that (4.90) can be weakened to∫ c

a
t1(x)g′(x)dx+

∫ b

c
s1(x)g′(x)dx ≥ g2(b)−g2(a)

2
, (4.102)

and that (4.96) can be weakened to

g2(b)−g2(a)
2

≥
∫ c

a
s2(x)g′(x)dx+

∫ b

c
t2(x)g′(x)dx. (4.103)

Also, if f ∈ M c
1 (I) is nonincreasing or f ∈ M c

2 (I) is nondecreasing, (4.90) (resp. (4.96))
can be weakened to (4.102) (resp. (4.103)) with the reverse inequality.

4.6 Steffensen’s inequality for 3-convex functions

According Definition 1.4, a function f : I → R is 3-convex if for pairwise distinct points
x0, x1, x2, x3 ∈ I :

[x0, x1, x2, x3; f ] ≥ 0.

A 3rd order divided difference of f at points x0, x1, x2, x3 ∈ I can be expressed in the
following forms
(1) If x0, x1, x2, x3 ∈ I such that xi �= x j, i �= j, i, j = 0,1,2,3 then

[x0, x1, x2, x3; f ] =
3


i=0

f (xi)
q′(xi)

; q(x) =
3


i=0

(x− xi)

(2) If f is differentiable on I and x, x0, x1 ∈ I such that x �= x0 �= x1 �= x then

[x, x, x0, x1; f ] = f ′(x)
(x−x0)(x−x1)

+ f (x)(x0+x1−2x)
(x−x0)2(x−x1)2

+ f (x0)
(x−x0)2(x0−x1)

+ f (x1)
(x−x1)2(x1−x0)
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(3) If f is differentiable on I and x, x0 ∈ I such that x �= x0 then

[x, x, x0, x0; f ] =
(x0 − x)( f ′(x0)+ f ′(x))+2( f (x)− f (x0))

(x− x0)3

(4) If f is twice differentiable on I and x, x0 ∈ I such that x �= x0 then

[x, x, x, x0; f ] =
1

(x0− x)3

[
f (x0)−

2


i=0

f (i)(x)
i!

(x0 − x)i

]
.

(5) If f is three times differentiable on I and x ∈ I then

[x, x, x, x; f ] =
f ′′′(x)

3!
.

We can extend the definition of 3-convex function by including the cases in which some
or all of the points coincide. This is given in the following theorem which can be easily
proven by using the mean value theorem for divided differences (see for example [28]).

Theorem 4.32 Let f be defined on interval I in R. The following equivalences hold.

(i) If f ∈C(I) then f is 3-convex if and only if [x, x, x0, x1; f ] ≥ 0 for every x �= x0 �=
x1 �= x in I.

(ii) If f ∈C1(I) then f is 3-convex if and only if [x, x, x0, x0; f ]≥0 for every x �=x0 in I.

(iii) If f ∈C2(I) then f is 3-convex if and only if [x, x, x, x0; f ] ≥ 0 for every x �= x0 in I.

(iv) If f ∈C3(I) then f is 3-convex if and only if [x, x, x, x; f ] ≥ 0 for every x ∈ I.

The following families of functions will be useful in constructing exponentially convex
functions.

Lemma 4.1 For p ∈ R let p : (0,) → R be defined with

p(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xp

p(p−1)(p−2), p �= 0,1,2;
1
2 logx, p = 0;

−x logx, p = 1;
1
2x2 logx, p = 2.

(4.104)

Then p is 3-convex on R for each p ∈ R.

Proof. Follows from d3

dx3 (p(x)) = xp−3 > 0 on (0,), for each p ∈ R. �

Lemma 4.2 For p ∈ R let p : R → [0,) be defined with

p(x) =

{
epx

p3 , p �= 0;
x3

6 , p = 0.
(4.105)

Then p is 3-convex on R for each p ∈ R.

Proof. Follows from d3

dx3 (p(x)) = epx on R, for each p ∈ R. �
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Remark 4.11 It is convenient here to note here that, for fixed x, p → p(x) and p →p(x)
are exponentially convex on (2,) and (0,) respectively. For details see [30].

Theorem 4.33 Let f : [a,b] → R be a 3-convex function and let g : [a,b] → R be an

integrable function, such that  =
b∫
a

g(t)dt, and such that (1.7) is valid.

Then ⎛⎝ b∫
a

xg(x)dx−a − 
2

2
⎞⎠ f ′

⎛⎝ b∫
a

x2g(x)dx−a2− 2a− 
3

3

2
b∫
a

xg(x)dx−2a− 2

⎞⎠
≤
∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt ≤

≤ f ′(b)− f ′(a)
2(b−a)

b∫
a

x2g(x)dx+ b f ′(a)−a f ′(b)
b−a

b∫
a

xg(x)dx

+ f ′(b)− f ′(a)
b−a

(
a2
2

− 
6

3
)

+ f ′(a)
b−a

(
ab+(b−a)


2

)
(4.106)

Proof. We use the following identity (proof of identity can be found in [71] p. 183.), as a
basic tool in our proof.
Assume F : [a,b] → R is integrable function. Then∫ b

a
F(t)g(t)dt−

∫ a+

a
F(t)dt =

∫ b

a
G1(x)F ′(x)dx, (4.107)

where

G1(x) =

{∫ x
a (1−g(t))dt, x ∈ [a,a+ ],∫ b
x g(t)dt, x ∈ [a+ ,b];

(4.108)

We observe here that assumption (1.7) ensures us that G1(x)≥ 0, for x∈ [a,b], in fact these
two conditions are equivalent (see for instance [71], p. 184).
Now, since f is 3-convex, f ′ is convex, using integral Jensen’s inequality we have∫ b

a
G1(x) f ′(x)dx ≥

∫ b

a
G1(x)dx f ′

(∫ b
a xG1(x)dx∫ b
a G1(x)dx

)
. (4.109)

Applying identity (4.107) for functions F(x) = x and F(x) = x
2

2 we get∫ b

a
G1(x)dx =

b∫
a

xg(x)dx−
a+∫
a

xdx

and ∫ b

a
xG1(x)dx =

b∫
a

x2

2
g(x)dx−

a+∫
a

x
2

2
dx

respectively. Applying (4.107) once again, for choice F(x) = f (x), we get left hand side
of (4.106).
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We now prove second inequality in (4.106) using discrete version of Jensen’s inequal-
ity. Namely, ∫ b

a
G1(x) f ′(x)dx =

∫ b

a
G1(x) f ′

(
b− x
b−a

·a+
x−a
b−a

·b
)

dx

≤ f ′(a)
b−a

∫ b

a
G1(x)(b− x)dx+

f ′(b)
b−a

∫ b

a
G1(x)(x−a)dx.

For two summands in the last inequality we apply identity (4.107) for functions

F(x) = − (b−x)
2

2
and F(x) = (x−a)

2

2
, respectively, concluding

∫ b

a
G1(x) f ′(x)dx ≤ f ′(a)

b−a

⎛⎝ b∫
a

− (b− x)
2

2

g(x)dx+
a+∫
a

(b− x)
2

2

dx

⎞⎠
+

f ′(b)
b−a

⎛⎝ b∫
a

(x−a)
2

2

g(x)dx−
a+∫
a

(x−a)
2

2

dx

⎞⎠ .

After rearrangement and grouping expressions we get right hand side of (4.106). �

Remark 4.12 From the proof of Theorem 4.33 we see that assumptions on the function g
can be relaxed for the first inequality in (4.106). It is enough to have

0 ≤
∫ x

a
G1(t)dt ≤

∫ b

a
G1(t)dt, x ∈ [a,b] (4.110)

and then use integral version of Jensen-Steffensen inequality to conclude (4.109). Here∫ x

a
G1(t)dt =

{
(x−a)

2

2
+
∫ x
a (t− x)g(t)dt, x ∈ [a,a+ ],

 (x−a)− 
2

2
+
∫ x
a (t− x)g(t)dt, x ∈ [a+ ,b].

(4.111)

Theorem 4.34 Let f : [a,b] → R be a 3-convex function and let g : [a,b] → R be an

integrable function, such that  =
b∫
a

g(t)dt, and such that (1.8) is valid.

Then ⎛⎝ b∫
a

xg(x)dx+b − 
2

2
⎞⎠ f ′

⎛⎝ b∫
a

x2g(x)dx−b2+ 2b− 
3

3

2
b∫
a

xg(x)dx+2b− 2

⎞⎠
≤
∫ b

b−
f (t)dt −

∫ b

a
f (t)g(t)dt ≤

f ′(b)− f ′(a)
2(b−a)

b∫
a

x2g(x)dx+ b f ′(a)−a f ′(b)
b−a

b∫
a

xg(x)dx+

f ′(b)− f ′(a)
b−a

(
a2
2

− 
6

3
)

+ f ′(a)
b−a

(
ab+(b−a)


2

)
.

(4.112)
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Proof. Similar to proof of Theorem 4.33: instead of identity (4.107) we use∫ b

b−
F(t)dt −

∫ b

a
F(t)g(t)dt =

∫ b

a
G2(x)F ′(x)dx, (4.113)

where
G2(x) =

{∫ x
a g(t)dt, x ∈ [a,b− ],∫ b
x (1−g(t))dt, x ∈ [b− ,b];

(4.114)

Now assumption (1.8) ensures us that G2(x) ≥ 0, for x ∈ [a,b], in fact these two conditions
are equivalent (see for instance [71], p. 184). The rest of the proof is similar to the proof
of Theorem 4.33, so is omitted. �

Remark 4.13 Similar to Remark 4.12 we see that assumptions on the function g can be
relaxed for the first inequality in (4.112). It is enough to have

0 ≤
∫ x

a
G2(t)dt ≤

∫ b

a
G2(t)dt, x ∈ [a,b] (4.115)

where ∫ x

a
G2(t)dt =

{∫ x
a (x− t)g(t)dt, x ∈ [a,b− ],∫ x
a (x− t)g(t)dt− (x−b+ )

2

2
, x ∈ [b− ,b].

(4.116)

In the next two theorems we get similar results to Alomari (see [8]).

Theorem 4.35 Let f ,g : [a,b] ⊂ R+ → R be integrable such that (1.7) is valid and that
| f ′| is s−convex on [a,b]. Then∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

∣∣∣∣≤ | f ′(a)|
(b−a)s+1

⎛⎝ b∫
a

− (b−x)
s+1

s+1

g(x)dx+
(b−a− )s+2

(s+1)(s+2)
− (b−a)s+2

(s+1)(s+2)

⎞⎠
+

| f ′(b)|
(b−a)s+1

⎛⎝ b∫
a

(x−a)
s+1

s+1

g(x)dx−  s+2

(s+1)(s+2)

⎞⎠ .

(4.117)

Proof. Using triangle inequality and the same logic as in proof of the second part of
Theorem 4.33. �

Theorem 4.36 Let f ,g : [a,b] ⊂ R+ → R be integrable such that (1.7) is valid and that
| f ′| is s−convex on [a,b]. Then∣∣∣∣∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt

∣∣∣∣≤ | f ′(a)|
(b−a)s+1

⎛⎝ b∫
a

(b− x)
s+1

s+1

g(x)dx−  s+2

(s+1)(s+2)

⎞⎠
+

| f ′(b)|
(b−a)s+1

⎛⎝ (b−a)s+2

(s+1)(s+2)
− (b−a− )s+2

(s+1)(s+2)
−

b∫
a

(x−a)
s+1

s+1

g(x)dx

⎞⎠ .

(4.118)

Proof. Using triangle inequality and the proof of the second part of Theorem 4.34. �
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Identities (4.107) and (4.113) enables us to extend previous two theorems to h−convex
functions introduced in Definition 1.9.

Theorem 4.37 Let f ,g : [a,b] → R be integrable such that (1.7) is valid and that | f ′| is
h−convex on [a,b], where h : J → R for some open interval J ⊇ (0,1). Then∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt

∣∣∣∣≤ | f ′(a)|
⎛⎝ b∫

a

H

(
b− x
b−a

)
g(x)dx−

∫ a+

a
H

(
b− x
b−a

)
dx

⎞⎠
+ | f ′(b)|

⎛⎝ b∫
a

H

(
x−a
b−a

)
g(x)dx−

∫ a+

a
H

(
b− x
b−a

)
dx

⎞⎠ ,

(4.119)

where the function H is antiderivative of h i.e. H ′ = h.

Theorem 4.38 Let f ,g : [a,b] → R be integrable such that (1.7) is valid and that | f ′| is
h−convex on [a,b], where h : J → R for some open interval J ⊇ (0,1). Then∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

∣∣∣∣≤ | f ′(a)|
⎛⎝∫ b

b−
H

(
b− x
b−a

)
dx−

b∫
a

H

(
b− x
b−a

)
g(x)dx

⎞⎠
+ | f ′(b)|

(∫ b

b−
H

(
x−a
b−a

)
dx−

∫ b

a
H

(
x−a
b−a

)
g(x)dx

)
,

(4.120)

where the function H is antiderivative of h i.e. H ′ = h.

Now we define linear functionals that will generate exponential convexity. First, using
Theorem 4.33, we get two functionals

L1( f ) =
∫ b

a
f (t)g(t)dt −

∫ a+

a
f (t)dt (4.121)

−
⎛⎝ b∫

a

xg(x)dx−a − 
2

2
⎞⎠ f ′

⎛⎝ b∫
a

x2g(x)dx−a2− 2a− 
3

3

2
b∫
a

xg(x)dx−2a− 2

⎞⎠
and

L2( f ) = f ′(b)− f ′(a)
2(b−a)

b∫
a

x2g(x)dx+ b f ′(a)−a f ′(b)
b−a

b∫
a

xg(x)dx

+ f ′(b)− f ′(a)
b−a

(
a2
2

− 
6

3
)

+ f ′(a)
b−a

(
ab+(b−a)


2

)
+
∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt.

(4.122)
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Also, from Theorem 4.34 we get, additionally, two more linear functionals:

L3( f ) =
∫ b

b−
f (t)dt−

∫ b

a
f (t)g(t)dt (4.123)

−
⎛⎝ b∫

a

xg(x)dx+b − 
2

2
⎞⎠ f ′

⎛⎝ b∫
a

x2g(x)dx−b2+ 2b− 
3

3

2
b∫
a

xg(x)dx+2b− 2

⎞⎠
and

L4( f ) = f ′(b)− f ′(a)
2(b−a)

b∫
a

x2g(x)dx+ b f ′(a)−a f ′(b)
b−a

b∫
a

xg(x)dx

+ f ′(b)− f ′(a)
b−a

(
a2
2

− 
6

3
)

+ f ′(a)
b−a

(
ab+(b−a)


2

)
−
∫ b

b−
f (t)dt +

∫ b

a
f (t)g(t)dt.

(4.124)

Functionals (4.121)-(4.124) are defined on the real vector space of integrable functions
on [a,b]. From Theorems 4.33 and 4.34 we see that these functionals are nonnegative on
the convex cone of 3-convex functions.

Theorem 4.39 Let f → Li( f ), i = 1,2,3,4 be linear functionals defined with (4.121)-
(4.124) and let Fi : R → R, i = 1,2,3,4 be defined with

Fi(p) = Li(p) (4.125)

where p is defined in Lemma 2.1. Then the following hold for every i = 1,2,3,4.

(i) The function Fi is continuous on R.

(ii) If n ∈ N and p1, . . . , pn ∈ R are arbitrary, then the matrix[
Fi

(
p j + pk

2

)]n
j,k=1

is positive semidefinite. Particularly,

det

[
Fi

(
p j + pk

2

)]n

j,k=1
≥ 0.

(iii) The function Fi is exponentially convex on R.

(iv) The function Fi is log-convex on R.

(v) If p,q,r ∈ R such that p < q < r, then

Fi(q)r−p ≤ Fi(p)r−qFi(r)q−p. (4.126)
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Proof. (i) Continuity of the function p → Fi(p) is obvious for p ∈ R \ {0,1,2}. For
p = 0,1,2 it is directly checked using Heine characterization.
(ii) Let n∈N, pi ∈R (i = 1, . . . ,n) be arbitrary and define auxiliary function : (0,)→R

by

(x) =
n


j,k=1

 jk p j+pk
2

(x). (4.127)

Now

 ′′′(x) =

(
n


j=1

 jx
p j−3

2

)2

≥ 0

implies that  is 3-convex function on (0,) and then

Li() ≥ 0, i = 1,2,3,4. (4.128)

This means that the matrix [
Fi

(
pi + p j

2

)]n

j,k=1

is positive semi-definite.
(iii), (iv), (v) are simple consequences of (i), (ii). �

With similar arguments we deduce the next theorem.

Theorem 4.40 Theorem 4.39 is still valid for p given in Lemma 4.2.

We now use mean value theorems to produce Cauchy means.

Theorem 4.41 Let f → Li( f ), i = 1,2,3,4 be linear functionals defined with (4.121)-
(4.124) and  ∈C3[a,b]. Then there exists i ∈ [a,b], i = 1,2,3,4, such that

Li() =
 ′′′(i)

6
Li(0), (4.129)

where 0(x) = x3.

Proof. Since psi ∈ C3[a,b] there exist m = minx∈[a,b] ′′′(x) and M = maxx∈[a,b] ′′′(x).
Denote h1(x) = Mx3

6 −(x) and h2(x) = (x)− mx3

6 . Then

h′′′1 (x) = M− ′′′(x) ≥ 0

h′′′1 (x) =  ′′′(x)−m≥ 0

which means that Li(h1), Li(h2) ≥ 0, i = 1,2,3,4, i.e.

m
6

Li(0) ≤ Li() ≤ M
6

Li(0). (4.130)

If Li(0) = 0, the proof is complete. If Li(0) > 0, then

m ≤ 6Li()
Li(0)

≤ M

and the existence of i ∈ [a,b] follows. �
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Using, standard, Cauchy type mean value theorem we get the next corollary.

Corollary 4.12 Let f → Li( f ), i = 1,2,3,4 be linear functionals defined with (4.121)-
(4.124) and 1, 2 ∈C3[a,b] such that  ′′′

2 (x) does not vanish for any value of x ∈ [a,b],
then there exists  ∈ [a,b] such that

 ′′′
1 (i)

 ′′′
2 (i)

=
Li(1)
Li(2)

, (4.131)

provided that denominator on right side is non-zero.

Remark 4.14 If the inverse of
 ′′′

1
 ′′′

2
exists then various kinds of means can be defined by

(4.131). That is

i =
(
 ′′′

1

 ′′′
2

)−1(Li(1)
Li(2)

)
, i = 1,2,3,4. (4.132)

Particularly, if we substitute 1(x) = p(x), 2(x) = q(x) in (4.132) and use continuous
extension, the following expressions are obtained (i = 1,2,3,4).

Mi(p,q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Li(p)
Li(q)

) 1
p−q

, p �= q;

exp
(
− 3p2−6p+2

p(p−1)(p−2) + 2Li(p0)
Li(p)

)
, p = q �= 0,1,2;

exp( 3
2 + Li(2

0 )
Li(0)

), p = q = 0;

exp(Li(01)
Li(1)

), p = q = 1;

exp(− 3
2 − Li(02)

Li(2)
), p = q = 2.

(4.133)

By Theorem 2.5, if p,q,u,v ∈ R such that p ≤ u, q ≤ v then,

Mi(p,q) ≤ Mi(u,v). (4.134)

Remark 4.15 Similarly, if we substitute 1(x) = p(x), 2(x) = q(x) in (4.132) and
use continuous extension, the following expressions are obtained (i = 1,2,3,4).

Mi(p,q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li(p)
Li(q)

) 1
p−q

, p �= q;

exp
(
− 3

p + Li(id·p)
Li(p)

)
, p = q �= 0;

exp(Li(id·0)
4Li(0)

), p = q = 0.

(4.135)

Again, using Theorem 2.5, if p,q,u,v ∈ R such that p ≤ u, q ≤ v then,

Mi(p,q) ≤ Mi(u,v). (4.136)
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Obtained results we can now further refine by dropping some of analytical properties
of families of functions from Lemmas 4.1 and 4.105. Using Theorem 4.32 we therefore
define the following classes

• C1 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C([a,b]) such that
p → [x0, x1, x2, x3;p] is log-convex in the Jensen sense on J for every choice of
four distinct points x0,x1,x2,x3 ∈ [a,b].

• C2 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C1([a,b]) such that
p → [x0, x0, x1, x2;p] is log-convex in the Jensen sense on J for every choice of
three distinct points x0,x1,x2 ∈ [a,b].

• C3 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C1([a,b]) such that
p → [x0, x0, x1, x1;p] is log-convex in the Jensen sense on J for every choice of
two distinct points x0,x1 ∈ [a,b].

• C4 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C2([a,b]) such that
p → [x0, x0, x0, x1;p] is log-convex in the Jensen sense on J for every choice of
two distinct points x0,x1 ∈ [a,b].

• C5 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C3([a,b]) such that
p → [x0, x0, x0, x0;p] is log-convex in the Jensen sense on J for every choice
x0 ∈ [a,b].

Theorem 4.42 Let f → Li( f ), i = 1,2,3,4 be linear functionals defined with (4.121)-
(4.124) and let Fi, j : J → R, be defined with

Fi, j(p) = Li(p) (4.137)

where p ∈Cj, j = 1,2,3,4,5. Then the following hold, for every for every i = 1,2,3,4,
j = 1,2,3,4,5.

(i) Fi, j is log-convex in the Jensen sense on J.

(ii) If Fi, j is continuous on J, then it is log-convex on J and for p,q,r ∈ J such that
p < q < r, we have

Fi, j(q)r−p ≤ Fi, j(p)r−qFi, j(r)q−p. (4.138)

(iii) If Fi, j is positive and differentiable on J, then for every p,q,r ∈ J such that
p ≤ u, q ≤ v, we have

Mi, j(p,q) ≤ Mi(u,v) (4.139)

where Mi, j(p,q) is defined with

Mi, j(p,q) =

⎧⎪⎨⎪⎩
(

Fi, j(p)
Fi, j(q)

) 1
p−q

, p �= q;

exp

(
d
dp(Fi, j(p))

Fi, j(p)

)
, p = q.

(4.140)
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Proof. (i) We prove our claim for the case i = 1, j = 1, other cases are treated similarly.
Choose any four distinct points x0,x1,x2,x3 ∈ [a,b], any 1, 2 ∈ R and any p, q ∈ J.
Define auxiliary function  : [a,b]→ R by

(x) =  2
1p(x)+212 p+q

2
(x)+  2

2q(x), (4.141)

where p, p+q
2

and q are from class C1. Then

[x0, x1, x2, x3; ] = 2
1 [x0, x1, x2, x3;p]+212[x0, x1, x2, x3; p+q

2
]

+  2
2 [x0, x1, x2, x3;q] ≥ 0

by definition of C1 and characterization of log-convexity. This implies that h is 3-convex
function on [a,b]. Hence L1() ≥ 0 which is equivalent to

 2
1 F1,1(p)+212F1,1

(
p+q

2

)
+  2

2 F1,1(q) ≥ 0.

This proves that F1,1 is log-convex in the Jensen sense on J.
(ii) Since F1,1 is continuous on J, then it is log-convex.
(iii) This is a simple consequence of Theorem 2.5. �

Let us introduce the following families of functions which will be used in the next
theorem.

• D1 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C([a,b]) such that
p → [x0, x1, x2, x3;p] is exponentially convex on J for every choice of four distinct
points x0,x1,x2,x3 ∈ [a,b].

• D2 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C1([a,b]) such
that p → [x0, x0, x1, x2;p] is exponentially convex on J for every choice of three
distinct points x0,x1,x2 ∈ [a,b].

• D3 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C1([a,b]) such that
p → [x0, x0, x1, x1;p] is exponentially convex on J for every choice of two distinct
points x0,x1 ∈ [a,b].

• D4 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C2([a,b]) such that
p → [x0, x0, x0, x1;p] is exponentially convex on J for every choice of two distinct
points x0,x1 ∈ [a,b].

• D5 = {p : p : [a,b] → R, p ∈ J}, a family of functions from C3([a,b]) such that
p → [x0, x0, x0, x0;p] is exponentially convex on J for every choice x0 ∈ [a,b].

Theorem 4.43 Let f → Li( f ), i = 1,2,3,4 be linear functionals defined with (4.121)–
(4.124) and let Fi, j : J → R, be defined with

Fi, j(p) = Li(p) (4.142)

where p ∈ Dj, j = 1,2,3,4,5. Then the following hold for every for every i = 1,2,3,4,
j = 1,2,3,4,5.
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(i) If n ∈ N and p1, . . . , pn ∈ J are arbitrary, then the matrix[
Fi, j

(
pk + pm

2

)]n

k,m=1

is positive semidefinite. Particularly,

det

[
Fi, j

(
pk + pm

2

)]n
k,m=1

≥ 0.

(ii) If the function Fi, j is continuous on J, then Fi, j is exponentially convex on J.

(iii) If Fi, j is positive and differentiable on J, then for every p,q,r ∈ J such that p ≤
u, q ≤ v, we have

Mi, j(p,q) ≤ Mi(u,v) (4.143)

where Mi, j(p,q) is defined with

Mi, j(p,q) =

⎧⎪⎪⎨⎪⎪⎩
(

Fi, j(p)
Fi, j(q)

) 1
p−q

, p �= q;

exp

(
d
dp(Fi, j(p))

Fi, j(p)

)
, p = q.

(4.144)

Proof. (i) We prove our claim for the case i = 1, j = 1, other cases are treated similarly.
Let n ∈ N, p1, . . . pn ∈ J be arbitrary and define auxiliary function  : [a,b] → R by

(x) =
n


k,m=1

km pk+pm
2

(x). (4.145)

Then
[x0, x1, x2, x3; ] =

n


k,m=1

km[x0, x1, x2, x3; pk+pm
2

] ≥ 0

by definition of D1 and exponential convexity. This implies that h is 3-convex function on
[a,b] and then L1() ≥ 0 which is equivalent to

n


k,m=1

i jF1,1

(
pk + pm

2

)
≥ 0.

(ii) Follows from (i).
(iii) This is a simple consequence of Theorem 2.5. �

Families of exponentially convex functions similar to families Lemmas 2.1 and 2.1 can
be easily constructed because of application of Theorem 1.21 :

Example 4.1 Consider a family of functions hp : (0,) → (0,), p > 0, defined with

hp(x) =

{
− p−x

log3 p
, p �= 1;

x3

6 , p = 1.
(4.146)

Since p → d3

dx3 (hp(x)) = p−x > 0is the Laplace transform of a non-negative function (see
[84] p. 210), it is exponentially convex according Theorem 1.21. Obviously hp are 3-convex
functions for every p > 0. It is easy to prove that the function p → [x0,x1,x2,x3;hp] is also



136 4 STEFFENSEN TYPE INEQUALITIES INVOLVING CONVEX...

exponentially convex for arbitrary positive x0,x1,x2,x3 (see also [30]). Using Theorem
4.43 it follows that for linear functionals f → Li( f ), i = 1,2,3,4 defined with (4.121)-
(4.124) we have that p → Li(hp) is exponentially convex (it is easy to verify that it is
continuous), for i = 1,2,3,4.
Using further Theorem 4.43 we conclude that

Ri(p,q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li(hp)
Li(hq)

) 1
p−q

, p �= q;

exp
(
− 3

p log p −
Li(id·hp)
pLi(hp)

)
, p = q �= 1;

exp(−Li(id·h1)
4Li(h1)

), p = q = 1;

(4.147)

satisfies
Ri(p,q) ≤ Ri(u,v). (4.148)

for p,q,u,v ∈ R such that p ≤ u, q ≤ v.

Remark 4.16 From Example 4.1 and Theorem 4.40 it clear that we presented a new
way how to generate exponentially convex functions, aside from Laplace transform and
Theorem 1.21.

Remark 4.17 Notion of exponential convexity can be even further refined. For details see
[60].

4.7 Applications to Stolarsky type means

In this section we generate n−exponentially and exponentially convex functions from func-
tionals associated with Steffensen, Gauss and Gauss-Steffensen type inequalities involving
convex functions given in Sections 4.2 - 4.5. We use generated exponentially convex func-
tions to construct new Stolarsky type means. This results were obtained in [76], [77], [78]
and [80].

Results related to convex function f/h

By using generalizations of Steffensen type inequalities given by (4.39), (4.45), (4.53),
(4.55), (4.57) and (4.59) we can define the following linear functionals:

L1( f ) =
∫ a+1

a
f (t)dt +

∫ b

b−2

f (t)dt−
∫ b

a
f (t)g(t)dt, (4.149)

L2( f ) =
∫ b

a
f (t)g(t)dt −

∫ c+2

c−1

f (t)dt, (4.150)

L3( f ) =
∫ a+1

a
f (t)k(t)dt +

∫ b

b−2

f (t)k(t)dt −
∫ b

a
f (t)g(t)dt, (4.151)
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L4( f ) =
∫ b

a
f (t)g(t)dt −

∫ c+2

c−1

f (t)k(t)dt, (4.152)

L5( f ) =
∫ a+1

a

(
f (t)−

[
f (t)
h(t)

− f (a+1)
h(a+1)

]
h(t)[1−g(t)]

)
dt

+
∫ b

b−2

(
f (t)−

[
f (t)
h(t)

− f (b−2)
h(b−2)

]
h(t)[1−g(t)]

)
dt−

∫ b

a
f (t)g(t)dt,

(4.153)

and

L6( f ) =
∫ b

a
f (t)g(t)dt−

∫ c

c−1

(
f (t)−

[
f (t)
h(t)

− f (c−1)
h(c−1)

]
h(t)[1−g(t)]

)
dt

−
∫ c+2

c

(
f (t)−

[
f (t)
h(t)

− f (c+2)
h(c+2)

]
h(t)[1−g(t)]

)
dt.

(4.154)

Under the assumptions of Theorems 4.14, 4.15, 4.18, 4.19, 4.20 and 4.21 we have that
Li( f ) ≥ 0, i = 1, . . . ,6 for f/h ∈ M c

1 [a,b]. Further, Corollaries 4.3, 4.4 and Remark 4.6
assure that Li( f ) ≥ 0, i = 1, . . . ,6 for any convex function f/h.

Let us begin by giving a Lagrange type mean value theorem for the functional L1.

Theorem 4.44 Let h : [a,b] → R be a positive integrable function and let c ∈ (a,b). Let
g : [a,b]→R be an integrable function such that 0≤ g≤ 1. Let 1 be the solution of (4.36)
and 2 be the solution of (4.37). Let f : [a,b] → R be such that f/h ∈ C2[a,b]. If (4.38)
holds, then there exists  ∈ [a,b] such that

L1( f ) =
1
2

(
f ( )
h( )

)′′ [∫ b

a
t2h(t)g(t)dt−

∫ a+1

a
t2h(t)dt−

∫ b

b−2

t2h(t)dt

]
. (4.155)

where L1 is defined by (4.149).

Proof. Since f/h ∈C2[a,b] there exist

m = min
x∈[a,b]

(
f (x)
h(x)

)′′
and M = max

x∈[a,b]

(
f (x)
h(x)

)′′
.

Let

1(x) = f (x)− m
2

x2h(x) and 2(x) =
M
2

x2h(x)− f (x).

Functions1/h and 2/h are convex since i/h≥ 0, i = 1,2. Hence, L1(i)≥ 0, i = 1,2
and we obtain

m
2

L1( f̃ ) ≤ L1( f ) ≤ M
2

L1( f̃ ) (4.156)

where f̃ (x) = x2h(x). Since f̃ /h is convex we have L1( f̃ ) ≥ 0.
If L1( f̃ ) = 0, then (4.156) implies L1( f ) = 0 and (4.155) holds for every  ∈ [a,b].

Otherwise, multiplying (4.156) by 2/L1( f̃ ) we obtain

m ≤ 2L1( f )
L1( f̃ )

≤ M,

so continuinity of ( f/h)′′ ensures the existence of  ∈ [a,b] satisfying (4.155). �
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We continue with a Cauchy type mean value theorem for the functional L1.

Theorem 4.45 Let h : [a,b] → R be a positive integrable function and let c ∈ (a,b). Let
g : [a,b]→R be an integrable function such that 0≤ g≤ 1. Let 1 be the solution of (4.36)
and 2 be the solution of (4.37). Let the functions f and F be such that f/h,F/h∈C2[a,b].
If (4.38) holds and L1(F) �= 0, then there exists  ∈ [a,b] such that

L1( f )
L1(F)

=
( f/h)′′( )
(F/h)′′( )

where L1 is defined by (4.149).

Proof. Define (x) = L1(F) f (x)−L1( f )F(x). Due to linearity of L1 we have L1() = 0.
Now by Theorem 4.44 there exist  ,1 ∈ [a,b] such that

0 = L1() = 1
2

(
( )
h( )

)′′
L1( f̃ )

0 �= L1(F) = 1
2

(
F(1)
h(1)

)′′
L1( f̃ )

where f̃ (x) = x2h(x). Therefore, L1( f̃ ) �= 0 and

0 =
(
( )
h( )

)′′
= L1(F)

(
f ( )
h( )

)′′
−L1( f )

(
F( )
h( )

)′′
,

which gives the claim of the theorem. �

As in Theorems 4.44 and 4.45 we can obtain the Lagrange and the Cauchy type mean
value theorems for the functionals Li, i = 2, . . . ,6. Hence, we obtain that there exist
i ∈ [a,b], i = 1, . . . ,6 such that

Li( f )
Li(F)

=
( f/h)′′(i)
(F/h)′′(i)

, i = 1, . . .6.

We continue with results related to exponential convexity.

Theorem 4.46 Let= { fp/h : I →R | p∈ J} be a family of functions such that for every
mutually different points x0,x1,x2 ∈ I the mapping p → [x0,x1,x2; fp/h] is n−exponentially
convex in the Jensen sense on J. Let Li, i = 1, . . . ,6 be linear functionals defined by (4.149)-
(4.154). Then the mapping p → Li( fp) is n−exponentially convex in the Jensen sense on
J.
If the mapping p → Li( fp) is continuous on J, then it is n−exponentially convex on J.

Proof. For  j ∈ R and p j ∈ J, j = 1, . . . ,n, we define the function

(x) =
n


j,k=1

 jk f p j+pk
2

(x).

Since the mapping p → [x0,x1,x2; fp/h] is n-exponentially convex in the Jensen sense we
have [

x0,x1,x2;

h

]
=

n


j,k=1

 jk

[
x0,x1,x2;

f p j+pk
2

h

]
≥ 0.



4.7 APPLICATIONS TO STOLARSKY TYPE MEANS 139

So /h is a convex function and

0 ≤ Li() =
n


j,k=1

 jkLi

(
f p j+pk

2

)
, i = 1, . . . ,6.

Therefore, the mapping p → Li( fp) is n-exponentially convex on J in the Jensen sense.
If the mapping p → Li( fp) is also continuous on J, then p → Li( fp) is n-exponentially

convex by definition. �

If the assumptions of Theorem 4.46 hold for all n ∈ N, then we have the following
corollary.

Corollary 4.13 Let= { fp/h : I →R | p∈ J} be a family of functions such that for every
mutually different points x0,x1,x2 ∈ I the mapping p → [x0,x1,x2; fp/h] is exponentially
convex in the Jensen sense on J. Let Li, i = 1, . . . ,6 be linear functionals defined by (4.149)-
(4.154). Then the mapping p → Li( fp) is exponentially convex in the Jensen sense on J.
If the mapping p → Li( fp) is continuous on J, then it is exponentially convex on J.

The following corollary enables us to obtain applications to Stolarsky type means.

Corollary 4.14 Let= { fp/h : I →R | p∈ J} be a family of functions such that for every
mutually different points x0,x1,x2 ∈ I the mapping p → [x0,x1,x2; fp/h] is 2-exponentially
convex in the Jensen sense on J. Let Li, i = 1, . . . ,6 be linear functionals defined by (4.149)-
(4.154). Then the following statements hold:

(i) If the mapping p → Li( fp) is continuous on J, then for r,s, t ∈ J, such that r < s < t,
we have

[Li( fs)]t−r ≤ [Li( fr)]
t−s [Li( ft)]

s−r , i = 1, . . . ,6. (4.157)

(ii) If the mapping p → Li( fp) is positive and differentiable on J, then for every p,q,
u,v ∈ J such that p ≤ u and q ≤ v we have

p,q(Li,) ≤ u,v(Li,), (4.158)

where

p,q(Li,) =

⎧⎪⎨⎪⎩
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q,

exp

(
d
dp Li( fp)
Li( fp)

)
, p = q.

(4.159)

Proof.

(i) By Theorem 4.46 the mapping p → Li( fp) is 2-exponentially convex. Hence, by
Remark 1.7, this mapping is either identically equal to zero, in which case inequality
(4.157) holds trivially with zeros on both sides, or it is strictly positive and log-
convex. Therefore, for r,s,t ∈ J such that r < s < t Remark 1.2(c) gives

(t− s) logLi( fr)+ (r− t) logLi( fs)+ (s− r) logLi( ft ) ≥ 0,

which is equivalent to inequality (4.157).
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(ii) By (i) we have that the mapping p → Li( fp) is log-convex on J, that is, the func-
tion p → logLi( fp) is convex on J. Applying Proposition 1.1 with p ≤ u, q ≤ v,
p �= q, u �= v, we obtain

logLi( fp)− logLi( fq)
p−q

≤ logLi( fu)− logLi( fv)
u− v

,

that is
p,q(Li,) ≤ u,v(Li,).

The limit cases p = q and u = v are obtained by taking the limits p → q and u → v.

�

Results stated in Theorem 4.46 and Corollaries 4.13 and 4.14 still hold when some or
all of the points x0,x1,x2 ∈ I coincide. The proofs are obtained by recalling Remark 1.3
and a suitable characterization of convexity.

In [86] Stolarsky obtained a two variable homogenous mean. For positive numbers a,b
and real numbers r,s Stolarsky means are defined by

Er,s(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
s(br−ar)
r(bs−as)

) 1
r−s

, rs(r− s) �= 0;

exp
(
− 1

r + ar loga−br logb
ar−br

) 1
ar−br

, s = r �= 0;(
br−ar

r(logb−loga)

) 1
r
, s = 0,r �= 0;√

ab, r = s = 0

for a �= b and Er,s(a,a) = a. Stolarsky means have been the subject of intensive research by
many mathematicians. Since they play an important role in the application of inequalities
in various branches of mathematics we apply our results to obtain new Stolarsky type
means.

Here we give a family of functions for which we use Corollaries 4.15 and 4.16 to
construct exponentially convex functions and new Stolarsky type means.

Let h be a positive integrable function and

 = { fp/h : R → (0,) | p ∈ R}

be a family of functions where fp is defined by

fp(x) =

{
1
p2 epxh(x), p �= 0,
1
2x2h(x), p = 0.

We have d2

dx2
fp(x)
h(x) = epx > 0, so fp/h is convex on R for every p∈R and p → d2

dx2
fp(x)
h(x) is ex-

ponentially convex by definition. Using analogous arguing as in the proof of Theorem 4.46
we have that p → [t0,t1,t2; fp/h] is exponentially convex (and so exponentially convex in
the Jensen sense). We see that the family  satisfies the assumptions of Corollary 4.13, so
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mappings p → Li( fp) are exponentially convex in the Jensen sense. It is easy to verify that
this mappings are continuous, so they are exponentially convex.

For this family of functions p,q(Li,), i = 1, . . . ,6 from (4.159) becomes

p,q(Li,) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q,

exp
(

Li(id · fp)
Li( fp)

− 2
p

)
, p = q �= 0,

exp
(

Li(id · f0)
3Li( f0)

)
, p = q = 0.

Explicitly for p,q(L1,) we have:

∗ for p �= q

p,q(L1,) =

(
q2

p2

∫ b
a epth(t)g(t)dt− ∫ a+1

a epth(t)dt− ∫ b
b−2

epth(t)dt∫ b
a eqth(t)g(t)dt− ∫ a+1

a eqth(t)dt− ∫ b
b−2

eqth(t)dt

) 1
p−q

∗ for p = q �= 0

p,p(L1,) = exp

(∫ b
a tepth(t)g(t)dt− ∫ a+1

a tepth(t)dt− ∫ b
b−2

tepth(t)dt∫ b
a epth(t)g(t)dt− ∫ a+1

a epth(t)dt− ∫ b
b−2

epth(t)dt
− 2

p

)

∗ for p = q = 0

0,0(L1,) = exp

(
1
3

∫ b
a t3h(t)g(t)dt− ∫ a+1

a t3h(t)dt− ∫ b
b−2

t3h(t)dt∫ b
a t2h(t)g(t)dt− ∫ a+1

a t2h(t)dt− ∫ b
a−2

t2h(t)dt

)
.

Theorem 4.45 applied on functions fp/h, fq/h ∈  implies that

Mp,q(L1,) = logp,q(L1,)

satisfies a ≤ Mp,q(L1,) ≤ b. Hence Mp,q is a monotonic mean by (4.158).

Results related to convex function f

Let us define the following linear functionals

L1( f ) =
∫ a+1

a
f (t)dt − 1

c−a

(
1− 1

q

)∫ c

a
f (t)dt +

∫ b

b−2

f (t)dt

− 2

b− c

(
1− 1

q

)∫ b

c
f (t)dt−

∫ b

a
f (t)g(t)dt

(4.160)

and

L2( f ) =
∫ b

a
f (t)g(t)dt−

∫ c+2

c−1

f (t)dt

+
(

1

c−a

∫ c

a
f (t)dt +

2

b− c

∫ b

c
f (t)dt

)(
1− 1

q

)
.

(4.161)
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Under the assumptions of Theorems 4.25 - 4.28 we have that Li( f ) ≥ 0, i = 1,2 for
f ∈ M c

1 [a,b]. Further, under the assumptions of Corollaries 4.5 - 4.8 we have that
Li( f ) ≥ 0, i = 1,2 for any convex function f . In the following theorems we give Lagrange
type mean value theorems.

Theorem 4.47 Let g : [a,b] → R be an integrable function. For given c ∈ (a,b) and
q �= 0, denote 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt. Assume (4.64), (4.65) and (4.66) hold.

Then for any f ∈C2[a,b] there exists  ∈ [a,b] such that

L1( f ) =
f ′′( )

2

[
a21 +a2

1 +b22−b2
2 +

3
1 +3

2

3

−
(
1

a2 +ac+ c2

3
+2

b2 + cb+ c2

3

)(
1− 1

q

)
−
∫ b

a
t2g(t)dt

]
,

(4.162)

where L1 is defined by (4.160).

Proof. Since f ∈C2[a,b] there exist

m = min
x∈[a,b]

f ′′(x) and M = max
x∈[a,b]

f ′′(x).

The functions

1(x) = f (x)− m
2

x2 and 2(x) =
M
2

x2 − f (x)

are convex since′′
i (x)≥ 0, i = 1,2. Using Corollary 4.5 we have that L1(i)≥ 0, i = 1,2,

so
m
2

L1(x2) ≤ L1( f ) ≤ M
2

L1(x2), (4.163)

where

L1(x2) = a21 +a2
1 +b22−b2

2 +
3

1 +3
2

3

−
(
1

a2 +ac+ c2

3
+2

b2 + cb+ c2

3

)(
1− 1

q

)
−
∫ b

a
t2g(t)dt.

Since x2 is convex, by Corollary 4.5 we have that L1(x2) ≥ 0.
If L1(x2) = 0, then (4.163) implies L1( f ) = 0 and (4.162) holds for every  ∈ [a,b].

Otherwise, dividing (4.163) by L1(x2)/2 > 0 we get

m ≤ 2L1( f )
L1(x2)

≤ M,

so continuinity of f ′′ ensures existence of  ∈ [a,b] satisfying (4.162). �
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Theorem 4.48 Let g : [a,b] → R be an integrable function. For given c ∈ (a,b) and
q �= 0, denote 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt. Assume (4.64), (4.65) and (4.72) hold.

Then for any f ∈C2[a,b] there exists  ∈ [a,b] such that

L2( f ) =
f ′′( )

2

[∫ b

a
t2g(t)dt− c2(1 +2)− c(2

2 −2
1 )− 3

1 +3
2

3

+
(
1

c2 +ac+a2

3
+2

b2 +bc+ c2

3

)(
1− 1

q

)]
,

where L2 is defined by (4.161).

Proof. Similar to the proof of Theorem 4.47. �

We continue with the Cauchy type mean value theorems related to functionals Li,
i = 1,2.

Theorem 4.49 Let g : [a,b] → R be an integrable function. For given c ∈ (a,b) and
q �= 0, denote 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt. Assume (4.64), (4.65) and (4.66) hold.

Then for any f ,h ∈C2[a,b] such that h′′(x) �= 0, for every x ∈ [a,b], there exists  ∈ [a,b]
such that

L1( f )
L1(h)

=
f ′′( )
h′′( )

holds, where L1 is defined by (4.160).

Proof. We define  ∈C2[a,b] by (x) = L1(h) f (x)−L1( f )h(x). Due to linearity of L1

we have L1() = 0. By Theorem 4.47 there exist  , ∈ [a,b] such that

0 = L1() = ′′( )
2 L1(x2)

0 �= L1(h) = h′′()
2 L1(x2).

Therefore, L1(x2) �= 0 and 0 = ′′( ) = L1(h) f ′′( )−L1( f )h′′( ), which proves the the-
orem. �

Theorem 4.50 Let g : [a,b] → R be an integrable function. For given c ∈ (a,b) and
q �= 0, denote 1 = q

∫ c
a g(t)dt and 2 = q

∫ b
c g(t)dt. Assume (4.64), (4.65) and (4.72) hold.

Then for any f ,h ∈C2[a,b] such that h′′(x) �= 0, for every x ∈ [a,b], there exists  ∈ [a,b]
such that

L2( f )
L2(h)

=
f ′′( )
h′′( )

holds, where L2 is defined by (4.161).

Proof. Similar to the proof of Theorem 4.49. �

Conditions (4.64), (4.65), (4.66) and (4.72) in Theorems 4.47 – 4.50 can be replaced
by weaker conditions obtained in Section 4.3.

Similar as in Theorem 4.46 we have the following result.
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Theorem 4.51 Let  = { fp : I → R | p ∈ J} be a family of functions such that for every
mutually different points x0,x1,x2 ∈ I the mapping p → [x0,x1,x2; fp] is n−exponentially
convex in the Jensen sense on J. Let Li, i = 1,2 be linear functionals defined by (4.160)
and (4.161). Then the mapping p → Li( fp) is n−exponentially convex in the Jensen sense
on J.
If the mapping p → Li( fp) is continuous on J, then it is n−exponentially convex on J.

If the assumptions of Theorem 4.51 hold for all n ∈ N, the following corollary is valid.

Corollary 4.15 Let  = { fp : I → R | p ∈ J} be a family of functions such that for every
mutually different points x0,x1,x2 ∈ I the mapping p → [x0,x1,x2; fp] is exponentially con-
vex in the Jensen sense on J. Let Li, i = 1,2 be linear functionals defined by (4.160) and
(4.161). Then the mapping p → Li( fp) is exponentially convex in the Jensen sense on J.
If the mapping p → Li( fp) is continuous on J, then it is exponentially convex on J.

We continue with the result needed for the application to Stolarsky type means.

Corollary 4.16 Let  = { fp : I → R | p ∈ J} be a family of functions such that for every
mutually different points x0,x1,x2 ∈ I the mapping p → [x0,x1,x2; fp] is 2-exponentially
convex in the Jensen sense on J. Let Li, i = 1,2 be linear functionals defined by (4.160)
and (4.161). Then the following statements hold:

(i) If the mapping p → Li( fp) is continuous on J, then for r,s,t ∈ J, such that r < s < t,
we have

[Li( fs)]t−r ≤ [Li( fr)]t−s [Li( ft)]s−r , i = 1,2.

(ii) If the mapping p → Li( fp) is strictly positive and differentiable on J, then for every
p,s,u,v ∈ J such that p ≤ u and s ≤ v we have

p,s(Li,) ≤ u,v(Li,), (4.164)

where

p,s(Li,) =

⎧⎪⎨⎪⎩
(

Li( fp)
Li( fs)

) 1
p−s

, p �= s;

exp

(
d
dp Li( fp)
Li( fp)

)
, p = s.

(4.165)

Proof. Similar to the proof of Corollary 4.14. �

In the following examples we give some families of functions for which we use Corol-
laries 4.15 and 4.16 to construct new Stolarsky type means.

Example 4.2 Let
1 = { fp : I ⊂ (0,) → R | p ∈ R}

be a family of functions defined by

fp(x) =

⎧⎨⎩
xp

p(p−1) , p �= 0,1;

− logx, p = 0;
x logx, p = 1.

(4.166)
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We have that fp is a convex function on R
+ since d2

dx2 fp(x) = xp−2 > 0 for x > 0. Fur-

thermore, p → d2

dx2 fp(x) is exponentially convex by definition. Similar as in proof of Theo-
rem 4.46 we conclude that p → [x0,x1,x2; fp] is exponentially convex (and so exponentially
convex in the Jensen sense). Using Corollary 4.15 we obtain that p → Li( fp), i = 1,2 is
exponentially convex in the Jensen sense. It is easy to verify that this mapping is continu-
ous, so it is exponentially convex. Hence, for this family of functions, from Corollary 4.16
we have that p,s(Li,1), i = 1,2 is given by

p,s(Li,1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
Li( fp)
Li( fs)

) 1
p−s

, p �= s;

exp
(−Li( fp f0)

Li( fp)
− 2p−1

p(p−1)

)
, p = s �= 0,1;

exp
(−Li( f 2

0 )
2Li( f0)

+1
)

, p = s = 0;

exp
(−Li( f0 f1)

2Li( f1)
−1
)

, p = s = 1.

Explicitly, for p �= s we have

p,s(L1,1) =⎛⎝ s(s−1)
p(p−1)

·
(a+1)p+1−ap+1

p+1 − 1
c−a

(
1− 1

q

)
cp+1−ap+1

p+1 + bp+1−(b−2)p+1

p+1 − ∫ b
a t pg(t)dt

(a+1)s+1−as+1

s+1 − 1
c−a

(
1− 1

q

)
cs+1−as+1

s+1 + bs+1−(b−2)s+1

s+1 − ∫ b
a tsg(t)dt

⎞⎠
1

p−s

.

The limiting cases are:

∗ for p = s �= 0,1

p,p(L1,1) = exp

(
1−

∫ b
a t p logtg(t)dt

2 −
∫ b
a tsg(t)dt

− 2p−1
p(p−1)

)

where

1 =
(a+1)p+1 log(a+1)−ap+1 loga

p+1
− (a+1)p+1−ap+1

(p+1)2

− 1

c−a

(
1− 1

q

)(
cp+1 logc−ap+1 loga

p+1
− cp+1−ap+1

(p+1)2

)
+

bp+1 logb− (b−2)p+1 log(b−2)
p+1

− bp+1− (b−2)p+1

(p+1)2

− 2

b− c

(
1− 1

q

)(
bp+1 logb− cp+1 logc

p+1
− bp+1− cp+1

(p+1)2

)
,

2 =
(a+1)s+1 −as+1

s+1
− 1

c−a

(
1− 1

q

)
cs+1−as+1

s+1
+

bs+1− (b−2)s+1

s+1
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∗ for p = s = 0

0,0(L1,1) = exp

(
1
2
· 1−

∫ b
a log2 tg(t)dt

2−
∫ b
a logtg(t)dt

+1

)
where

1 = (a+1) log2(a+1)−a log2 a−2(a+1) log(a+1)+2a loga+21

− 1

c−a

(
1− 1

q

)(
c log2 c−a log2 a−2c logc+2a loga+2c−2a

)
+b log2 b− (b−2) log2(b−2)−2b logb+2(b−2) log(b−2)+22

− 2

b− c

(
1− 1

q

)(
b log2 b− c log2 c−2b logb+2c logc+2b−2c

)
and

2 = (a+1) log(a+1)−a loga−1− 1

c−a

(
1− 1

q

)
(c logc−a loga− c+a)

+b logb− (b−2) log(b−2)−2− 2

b− c

(
1− 1

q

)
(b logb− c logc−b+ c)

∗ for p = s = 1

1,1(L1,1) = exp

(
1
2
· 1 −

∫ b
a t log2 tg(t)dt

2−
∫ b
a t logtg(t)dt

−1

)
where

1 =
(a+1)2

2
(log2(a+1)− log(a+1))− a2

2
(log2 a− loga)+

b2

2
(log2 b− logb)

− (b−2)2

2
(log2(b−2)− log(b−2))+

a1 +b2

2
+
2

1 −2
2

4

− 1

c−a

(
1− 1

q

)(
c2

2
(log2 c− logc)− a2

2
(log2 a− loga)+

c2 −a2

4

)
− 2

b− c

(
1− 1

q

)(
b2

2
(log2 b− logb)− c2

2
(log2 c− logc)+

b2− c2

4

)
and

2 =
(a+1)2

2
log(a+1)− a2

2
loga+

b2

2
logb− (b−2)2

2
log(b−2)

− a1 +b2

2
− 1−2

2

4
− 1

c−a

(
1− 1

q

)(
c2

2
logc− a2

2
loga− c2 −a2

4

)
− 2

b− c

(
1− 1

q

)(
b2

2
logb− c2

2
logc− b2− c2

4

)
.
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Applying Theorems 4.49 and 4.50 on functions fp, fs ∈ 1 and functionals Li, i = 1,2 we
conclude that there exist i ∈ [a,b] such that

 p−s
i =

Li( fp)
Li( fs)

, i = 1,2.

Since the function  →  p−s is invertible for p �= s we have

a ≤
(

Li( fp)
Li( fs)

) 1
p−s

≤ b

which together with the fact that p,s(Li,1) is continuous, symetric and monotonic shows
that p,s(Li,1), i = 1,2 are means.

Example 4.3 Let
2 = {kp : R → (0,) | p ∈ R}

be a family of functions defined by

kp(x) =

{
epx

p2 , p �= 0;
x2

2 , p = 0.

Similar as in Example 4.2 we conclude that p → Li(kp), i = 1,2 are exponentially convex.
For this family of functions, from Corollary 4.16 we have

p,s(Li,2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li(kp)
Li(ks)

) 1
p−s

, p �= s;

exp
(

Li(id ·kp)
Li(kp)

− 2
p

)
, p = s �= 0;

exp
(

1
3

Li(id ·k0)
Li(k0)

)
, p = s = 0.

Applying Theorems 4.49 and 4.50 on functions kp,ks ∈ 2 and functionals Li, i = 1,2 it
follows that Mp,s(Li,2) = logp,s(Li,2) satisfy a ≤ Mp,s(Li,2) ≤ b. So Mp,s(Li,2),
i = 1,2 are monotonic means by (4.164).

Example 4.4 Let
3 = {p : (0,) → (0,) | p ∈ (0,)}

be a family of functions defined by

p(x) =

{
p−x

log2 p
, p �= 1;

x2

2 , p = 1.

Similar as in Example 4.2 we conclude that p → Li(p), i = 1,2 are exponentially convex.
For this family of functions, from Corollary 4.16 we have

p,s(Li,3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li(p)
Li(s)

) 1
p−s

, p �= s;

exp
(
− Li(id ·p)

pLi(p)
− 2

p log p

)
, p = s �= 1;

exp
(
− Li(id ·1)

3Li(1)

)
, p = s = 1.
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Applying Theorems 4.49 and 4.50 on functions p,s ∈ 3 and functionals Li, i = 1,2
it follows that Mp,s(Li,3) = −L(p,s) logp,s(Li,3) satisfy a ≤ Mp,s(Li,3) ≤ b, where
L(p,s) is logarithmic mean defined by L(p,s) = p−s

log p−logs . So Mp,s(Li,3), i = 1,2 are
means and by (4.164) they are monotonic.

Example 4.5 Let

4 = {p : (0,) → (0,) | p ∈ (0,)}
be a family of functions defined by

p(x) =
e−x

√
p

p
.

Similar as in Example 4.2 we conclude that p → Li(p), i = 1,2 are exponentially convex.
For this family of functions, from Corollary 4.16 we have

p,s(Li,4) =

⎧⎪⎨⎪⎩
(

Li(p)
Li(s)

) 1
p−s

, p �= s;

exp
(

−1
2
√

p
Li(id ·p)
Li(p)

− 1
p

)
, p = s.

Applying Theorems 4.49 and 4.50 on functions p,s ∈ 4 and functionals L1, L2 it
follows that Mp,s(Li,4) = −(

√
p +

√
s) logp,s(Li,4) satisfy a ≤ Mp,s(Li,4) ≤ b. So

Mp,s(Li,4), i = 1,2 are monotonic means by (4.164).

Using Gauss type and Gauss-Steffensen type inequalities obtained in Sections 4.4 and
4.5 we can define the following linear functionals:

L1( f ) =
∫ c

a
f (t1(x))g′(x)dx+

∫ b

c
f (s1(x))g′(x)dx−

∫ g(b)

g(a)
f (x)dx, (4.167)

L2( f ) =
∫ g(b)

g(a)
f (x)dx−

∫ c

a
f (s2(x))g′(x)dx−

∫ b

c
f (t2(x))g′(x)dx, (4.168)

and

L3( f ) =
∫ c

a
f (t)G′(t)dt−

∫ b

c
f (t)G′(t)dt−

∫ G(c)

G(a)
f (t)dt +

∫ G(b)

G(c)
f (t)dt. (4.169)

Remark 4.18 Under assumptions of Theorems 4.30, 4.31 and 4.29 we have that
Li( f ) ≥ 0, i = 1,2,3 for f ∈ M c

1 (I). Further, under assumptions of Corollaries 4.10, 4.11
and 4.9 we have that Li( f ) ≥ 0, i = 1,2,3 for any convex function f .

We continue with the Lagrange type mean value theorems. Proofs are similar to the
proof of Theorem 4.47 so we omit the details.
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Theorem 4.52 Let c ∈ (a,b) and let g : [a,b] → R be increasing, convex and differen-
tiable such that g(c) = c. Assume (4.88), (4.89) and (4.90) hold and I is an interval as in
Theorem 4.30. Then for any f ∈C2(I) there exists  ∈ I such that

L1( f ) =
f ′′( )

2

[∫ c

a
t21 (x)g′(x)dx+

∫ b

c
s2
1(x)g

′(x)dx− g3(b)−g3(a)
3

]
, (4.170)

where L1 is defined by (4.167).

Theorem 4.53 Let c ∈ (a,b) and let g : [a,b] → R be increasing, convex and differen-
tiable such that g(c) = c. Assume (4.94), (4.95) and (4.96) hold and I is an interval as in
Theorem 4.31, Then for any f ∈C2(I) there exists  ∈ I such that

L2( f ) =
f ′′( )

2

[
g3(b)−g3(a)

3
−
∫ c

a
s2(x)g′(x)dx−

∫ b

c
t2(x)g′(x)dx

]
, (4.171)

where L2 is defined by (4.168).

Theorem 4.54 Let G : [a,b] → R be an increasing function such that G(x) ≥ x and let
c ∈ (a,b). Assume that (4.82) holds. Then for any f ∈C2(I) there exists  ∈ I such that

L3( f ) =
f ′′( )

2

[∫ c

a
x2G′(x)dx−

∫ b

c
x2G′(x)dx+

G3(b)+G3(a)−2G3(c)
3

]
, (4.172)

where L3 is defined by (4.169).

We continue with the Cauchy type mean value theorems related to functionals
Li, i = 1,2,3. Proofs are similar to the proof of Theorem 4.49.

Theorem 4.55 Let c ∈ (a,b) and let g : [a,b] → R be increasing, convex and differen-
tiable such that g(c) = c. Assume (4.88), (4.89) and (4.90) hold and I is an interval as in
Theorem 4.30. Then for any f ,h ∈C2(I) such that h′′(x) �= 0 for every x ∈ I, there exists
 ∈ I such that

L1( f )
L1(h)

=
f ′′( )
h′′( )

(4.173)

holds, where L1 is defined by (4.167).

Theorem 4.56 Let c ∈ (a,b) and let g : [a,b] → R be increasing, convex and differen-
tiable such that g(c) = c. Assume (4.94), (4.95) and (4.96) hold and I is an interval as in
Theorem 4.31. Then for any f ,h ∈C2(I) such that h′′(x) �= 0 for every x ∈ I, there exists
 ∈ I such that

L2( f )
L2(h)

=
f ′′( )
h′′( )

, (4.174)

holds, where L2 is defined by (4.150).
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Theorem 4.57 Let G : [a,b] → R be an increasing function such that G(x) ≥ x and let
c ∈ (a,b). Assume that (4.82) holds. Then for any f ,h ∈ C2(I) such that h′′(x) �= 0 for
every x ∈ I, there exists  ∈ I such that

L3( f )
L3(h)

=
f ′′( )
h′′( )

holds, where L3 is defined by (4.169).

Conditions (4.90) and (4.96) in Theorems 4.52, 4.53, 4.55 and 4.56 can be replaced by
weaker conditions given in Remark 4.10.

In the following theorem we show n−exponential convexity of functionals L1 and L2.
Proof is similar to the proof of Theorem 4.46. In the sequel, J, K denote intervals in R.

Theorem 4.58 Let = { fp : J → R | p ∈ K} be a family of functions such that for every
mutually different points x0,x1,x2 ∈ J the mapping p → [x0,x1,x2; fp] is n−exponentially
convex in the Jensen sense on K. Let Li, i = 1,2,3 be linear functionals defined by (4.167),
(4.168) and (4.169). Then the mapping p → Li( fp) is n−exponentially convex in the Jensen
sense on K.
If the mapping p → Li( fp) is continuous on K, then it is n−exponentially convex on K.

If the assumptions of Theorem 4.58 hold for all n ∈ N, then we have the following
corollary.

Corollary 4.17 Let  = { fp : J → R | p ∈ K} be a family of functions such that for ev-
ery mutually different points x0,x1,x2 ∈ J the mapping p → [x0,x1,x2; fp] is exponentially
convex in the Jensen sense on K. Let Li, i = 1,2,3 be linear functionals defined by (4.167),
(4.168) and (4.169). Then the mapping p → Li( fp) is exponentially convex in the Jensen
sense on K.
If the mapping p → Li( fp) is continuous on K, then it is exponentially convex on K.

We continue with the result which is useful for the application to Stolarsky type means.
Proof is similar to the proof of Corollary 4.14.

Corollary 4.18 Let = { fp : J → R | p ∈ K} be a family of functions such that for every
mutually different points x0,x1,x2 ∈ J the mapping p → [x0,x1,x2; fp] is 2-exponentially
convex in the Jensen sense on K. Let Li, i = 1,2,3 be linear functionals defined by (4.167),
(4.168) and (4.169). Then the following statements hold:

(i) If the mapping p → Li( fp) is continuous on K, then for r,s,t ∈K, such that r < s < t,
we have

[Li( fs)]t−r ≤ [Li( fr)]t−s [Li( ft)]s−r , i = 1,2,3. (4.175)

(ii) If the mapping p → Li( fp) is strictly positive and differentiable on K, then for every
p,q,u,v ∈ K such that p ≤ u and q ≤ v we have

p,q(Li,) ≤ u,v(Li,), (4.176)
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where

p,q(Li,) =

⎧⎪⎨⎪⎩
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q,

exp

(
d
dp Li( fp)
Li( fp)

)
, p = q.

(4.177)

Results from Theorem 4.58, Corollaries 4.17 and 4.18 still hold when two of the points
x0,x1,x2 ∈ J coincide, say x1 = x0, for a family of differentiable functions fp such that the
function p → [x0,x1,x2; fp] is n−exponentially convex in the Jensen sense (exponentially
convex in the Jensen sense, log-convex in the Jensen sense), and furthermore, they still hold
when all three points coincide for a family of twice differentiable functions with the same
property. The proofs are obtained by recalling Remark 1.3 and suitable characterization of
convexity.

We continue with some families of functions  = { fp : J → R | p ∈ R} for which we
use Corollaries 4.17 and 4.18 to construct exponentially convex functions and Stolarsky
type means related to Gauss type and Gauss-Steffensen tpye inequalities.

Example 4.6 Let
1 = { fp : R → [0,)| p ∈ R},

be a family of functions defined by

fp(x) =

{
epx

p2 , p �= 0;
x2

2 , p = 0.

Similar as in Example 4.3 for this family of functions, from Corollary 4.18 we have that
p,q(Li,1), i = 1,2,3 are given by

p,q(Li,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q;

exp
(

Li(id · fp)
Li( fp)

− 2
p

)
, p = q �= 0;

exp
(

1
3

Li(id · f0)
Li( f0)

)
, p = q = 0.

Explicitly, for p,q(L1,1) we have the following:

∗ for p �= q, p,q �= 0:

p,q(L1,1) =

⎛⎝ q2

p2

∫ c
a ept1(x)g′(x)dx+

∫ b
c eps1(x)g′(x)dx− epg(b)−epg(a)

p∫ c
a eqt1(x)g′(x)dx+

∫ b
c eqs1(x)g′(x)dx− eqg(b)−eqg(a)

q

⎞⎠ 1
p−q

∗ for p �= q, q = 0 (or p = 0):

p,0(L1,1) =

⎛⎝ 2
p2

∫ c
a ept1(x)g′(x)dx+

∫ b
c eps1(x)g′(x)dx− epg(b)−epg(a)

p∫ c
a t21(x)g′(x)dx+

∫ b
c s2

1(x)g′(x)dx− g3(b)−g3(a)
3

⎞⎠ 1
p

= 0,p(L1,1)
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∗ for p = q �= 0:

p,p(L1,1) = exp

(
A−B

C
− 2

p

)
,

where

A =
∫ c

a
ept1(x)t1(x)g′(x)dx+

∫ b

c
eps1(x)s1(x)g′(x)dx,

B =
1
p

(
g(b)epg(b)−g(a)epg(a)− epg(b)− epg(a)

p

)
,

C =
∫ c

a
ept1(x)g′(x)dx+

∫ b

c
eps1(x)g′(x)dx− epg(b)− epg(a)

p
.

∗ for p = q = 0:

0,0(L1,1) = exp

(
1
3

∫ c
a t31(x)g′(x)dx+

∫ b
c s3

1(x)g
′(x)dx− g4(b)−g4(a)

4∫ c
a t21(x)g′(x)dx+

∫ b
c s2

1(x)g′(x)dx− g3(b)−g3(a)
3

)
.

For p,q(L3,1) we have the following:

∗ for p �= q, p,q �= 0:

p,q(L3,1) =

⎛⎝q2

p2

∫ c
a epxG′(x)dx− ∫ b

c epxG′(x)dx+ epG(b)+epG(a)−2epG(c)

p∫ c
a eqxG′(x)dx− ∫ b

c eqxG′(x)dx+ eqG(b)+eqG(a)−2eqG(c)

q

⎞⎠ 1
p−q

∗ for p �= q, q = 0 (or p = 0):

p,0(L3,1) =

⎛⎝ 2
p2

∫ c
a epxG′(x)dx− ∫ b

c epxG′(x)dx+ epG(b)+epG(a)−2epG(c)

p∫ c
a x2G′(x)dx− ∫ b

c x2G′(x)dx+ G3(a)+G3(b)−2G3(c)
3

⎞⎠ 1
p

= 0,p(L,1)

∗ for p = q �= 0:

p,p(L3,1) = exp

(∫ c
a xepxG′(x)dx− ∫ b

c xepxG′(x)dx+∫ c
a epxG′(x)dx− ∫ b

c epxG′(x)dx+
− 2

p

)
where

 =
epG(b)(pG(b)−1)+ epG(a)(pG(a)−1)−2epG(c)(pG(c)−1)

p2 ,

 =
epG(b) + epG(a)−2epG(c)

p
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∗ for p = q = 0:

0,0(L3,1) = exp

(
1
3

∫ c
a x3G′(x)dx− ∫ b

c x3G′(x)dx+ G4(b)+G4(a)−2G4(c)
4∫ c

a x2G′(x)dx− ∫ b
c x2G′(x)dx+ G3(b)+G3(a)−2G3(c)

3

)
.

Applying Theorems 4.55, 4.56 and 4.57 on functions fp, fq ∈ 1 and functionals Li,
i = 1,2,3, we obtain that for i = 1,2,3

Mp,q(Li,1) = logp,q(Li,1),

satisfy min I ≤ Mp,q(Li,1) ≤ max I. So Mp,q(Li,1), i = 1,2 are monotonic means by
(4.176).

Example 4.7 Let
2 = {hp : (0,) → R | p ∈ R},

be a family of functions defined by

hp(x) =

⎧⎨⎩
xp

p(p−1) , p �= 0,1;

− logx, p = 0;
x logx, p = 1.

(4.178)

Similar as in Example 4.2, for this family of functions, from Corollary 4.18 we have that
p,q(Li,2), i = 1,2,3 are given by

p,q(Li,2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
Li(hp)
Li(hq)

) 1
p−q

, p �= q;

exp
(−Li(hph0)

Li(hp)
− 2p−1

p(p−1)

)
, p = q �= 0,1;

exp
(−Li(h2

0)
2Li(h0)

+1
)

, p = q = 0;

exp
(−Li(h0h1)

2Li(h1)
−1
)

, p = q = 1.

Applying Theorems 4.55, 4.56 and 4.57 on functions hp,hq ∈ 2 and functionals
Li, i = 1,2,3, we conclude that there exist i ∈ I such that

 p−q
i =

Li(hp)
Li(hq)

, i = 1,2,3.

Since the function  →  p−q is invertible, for p �= q we have

min I ≤
(

Li(hp)
Li(hq)

) 1
p−q

≤ max I,

which together with the fact that p,q(Li,2), i = 1,2,3 are continuous, symmetric and
monotonic (by (4.176)) shows that p,q(Li,2), i = 1,2,3 are means.
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Example 4.8 Let
3 = {p : (0,) → (0,) | p ∈ (0,)},

be a family of functions defined by

p(x) =

{
p−x

log2 p
, p �= 1;

x2

2 , p = 1.

Similar as in Example 4.4, for this family of functions, from Corollary 4.18 we have

p,q(Li,3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li(p)
Li(q)

) 1
p−q

, p �= q;

exp
(
− Li(id ·p)

pLi(p)
− 2

p log p

)
, p = q �= 1;

exp
(
− Li(id ·1)

3Li(1)

)
, p = q = 1.

Applying Theorems 4.55, 4.56 and 4.57 on functions p,q ∈ 3 and functionals Li,
i = 1,2,3, we obtain that

Mp,q(Li,3) = −L(p,q) logp,q(Li,3),

satisfy min I ≤ Mp,q(Li,3) ≤ max I, where L(p,q) is logarithmic mean defined by
L(p,q) = p−q

log p−logq . So Mp,q(Li,3), i = 1,2,3 are means and by (4.158) they are mono-
tonic.

Example 4.9 Let
4 = {p : (0,) → (0,) | p ∈ (0,)},

be a family of functions defined by

p(x) =
e−x

√
p

p
.

Similar as in Example 4.5, for this family of functions, from Corollary 4.18 we have

p,q(Li,4) =

⎧⎪⎨⎪⎩
(

Li(p)
Li(q)

) 1
p−q

, p �= q;

exp
(

−1
2
√

p
Li(id ·p)
Li(p)

− 1
p

)
, p = q.

Applying Theorems 4.55, 4.56 and 4.57 on functions p,q ∈ 4 and functionals Li,
i = 1,2,3, we obtain

Mp,q(Li,4) = −(
√

p+
√

q) logp,q(Li,4),

satisfy min I ≤ Mp,q(Li,4) ≤ max I. So Mp,q(Li,4), i = 1,2,3 are monotonic means by
(4.176).



Chapter5

Weighted Steffensen
inequality for n-convex
functions

5.1 Generalizations via Taylor’s formula

In [32], the authors show that Taylor’s formula is natural choice to connect higher order
convexity with Steffensen’s type inequality. In this section, using different approach we
give some new generalizations of Steffensen’s inequality via Taylor’s formula. First, we
start with the proof of some identities related to generalizations of Steffensen’s inequal-
ity. Results given in this section were obtained by Pečarić, Perušić Pribanić and Smoljak
Kalamir in [64].

Theorem 5.1 Let f : [a,b] → R be such that f (n−1) is absolutely continuous for some
n≥ 2 and let g : [a,b]→R be an integrable function such that 0≤ g≤ 1. Let  =

∫ b
a g(t)dt

and let the function G1 be defined by

G1(x) =

{∫ x
a (1−g(t))dt, x ∈ [a,a+ ],∫ b
x g(t)dt, x ∈ [a+ ,b].

(5.1)

155
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Then ∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt +

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx

= − 1
(n−2)!

∫ b

a

(∫ b

t
G1(x)(x− t)n−2dx

)
f (n)(t)dt

(5.2)

and ∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt +

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G1(x)(x−b)idx

=
1

(n−2)!

∫ b

a

(∫ t

a
G1(x)(x− t)n−2dx

)
f (n)(t)dt.

(5.3)

Proof. Applying Taylor’s formula

f (x) =
n−1


i=0

f (i)(a)
i!

(x−a)i +
1

(n−1)!

∫ x

a
f (n)(t)(x− t)n−1dt.

to the function f ′ and replacing n with n−1 (n ≥ 2) we have

f ′(x) =
n−2


i=0

f (i+1)(a)
i!

(x−a)i +
x∫

a

f (n)(t)
(x− t)n−2

(n−2)!
dt. (5.4)

Applying integration by parts to the identity (4.107) and then using the definition of the
function G1, we obtain∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt

= −
∫ a+

a

(∫ x

a
(1−g(t)dt

)
d f (x)−

∫ b

a+

(∫ b

x
g(t)dt

)
d f (x)

= −
∫ b

a
G1(x) f ′(x)dx.

Hence, using (5.4) we obtain

∫ b

a
G1(x) f ′(x)dx =

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx

+
1

(n−2)!

∫ b

a
G1(x)

(∫ x

a
(x− t)n−2 f (n)(t)dt

)
dx.

(5.5)

After applying Fubini’s theorem on the last term in (5.5) we obtain (5.2).
Similarly, applying Taylor’s formula at the point b to the function f ′ we obtain (5.3). �



5.1 GENERALIZATIONS VIA TAYLOR’S FORMULA 157

Theorem 5.2 Let f : [a,b] → R be such that f (n−1) is absolutely continuous for some
n≥ 2 and let g : [a,b]→R be an integrable function such that 0≤ g≤ 1. Let  =

∫ b
a g(t)dt

and let the function G2 be defined by

G2(x) =

{∫ x
a g(t)dt, x ∈ [a,b− ],∫ b
x (1−g(t))dt, x ∈ [b− ,b].

(5.6)

Then ∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt +

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G2(x)(x−a)idx

= − 1
(n−2)!

∫ b

a

(∫ b

t
G2(x)(x− t)n−2dx

)
f (n)(t)dt

(5.7)

and ∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt +

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G2(x)(x−b)idx

=
1

(n−2)!

∫ b

a

(∫ t

a
G2(x)(x− t)n−2dx

)
f (n)(t)dt.

(5.8)

Proof. Similar to the proof of Theorem 5.1 applying integration by parts to the identity
(1.4) and then using the identity (5.4). �

In the following theorems, generalizations of Steffensen’s inequality for n-convex func-
tions are given.

Theorem 5.3 Let f : [a,b] → R be such that f (n−1) is absolutely continuous for some
n≥ 2 and let g : [a,b]→R be an integrable function such that 0≤ g≤ 1. Let  =

∫ b
a g(t)dt

and let the function G1 be defined by (5.1).

(i) If f is n-convex, then

∫ b

a
f (t)g(t)dt ≥

∫ a+

a
f (t)dt +

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx. (5.9)

(ii) If f is n-convex and ∫ t

a
G1(x)(x− t)n−2dx ≤ 0, t ∈ [a,b], (5.10)

then ∫ b

a
f (t)g(t)dt ≥

∫ a+

a
f (t)dt +

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G1(x)(x−b)idx. (5.11)
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Proof. If the function f is n-convex, without loss of generality we can assume that f is
n-times differentiable and f (n) ≥ 0 see [71, p. 16 and p. 293]. Since 0≤ g≤ 1, the function
G1 is nonnegative and for every n ≥ 2 we have∫ b

t
G1(x)(x− t)n−2dx ≥ 0, t ∈ [a,b].

Hence, we can apply Theorem 5.1 to obtain (5.9) and (5.11) respectively. �

Theorem 5.4 Let f : [a,b] → R be such that f (n−1) is absolutely continuous for some
n≥ 2 and let g : [a,b]→R be an integrable function such that 0≤ g≤ 1. Let  =

∫ b
a g(t)dt

and let the function G2 be defined by (5.6).

(i) If f is n-convex, then

∫ b

a
f (t)g(t)dt ≤

∫ b

b−
f (t)dt −

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G2(x)(x−a)idx. (5.12)

(ii) If f is n-convex and ∫ t

a
G2(x)(x− t)n−2dx ≤ 0, t ∈ [a,b], (5.13)

then ∫ b

a
f (t)g(t)dt ≤

∫ b

b−
f (t)dt −

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G2(x)(x−b)idx. (5.14)

Proof. Similar as in the proof of Theorem 5.3, we can apply Theorem 5.2 to obtain (5.12)
and (5.14). Again, since 0 ≤ g ≤ 1, the function G2 is nonnegative and for every n ≥ 2 we
have ∫ b

t
G2(x)(x− t)n−2dx ≥ 0, t ∈ [a,b].

�

Taking n = 2 in Theorems 5.3 and 5.4, in the next corollaries the special cases for
convex functions are given.

Corollary 5.1 Let f : [a,b]→R be such that f ′ is absolutely continuous, let g : [a,b]→R

be an integrable function such that 0 ≤ g ≤ 1 and let  =
∫ b
a g(t)dt.

(i) If f is convex, then

∫ b

a
f (t)g(t)dt ≥

∫ a+

a
f (t)dt + f ′(a)

(∫ b

a
tg(t)dt−a−  2

2

)
.
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(ii) If f is convex and ∫ t

a
(t − x)g(x)dx≥ (t −a)2

2
, t ∈ [a,a+ ],

∫ t

a
(t− x)g(x)dx ≥  2

2
+ (t−a− ), t ∈ [a+ ,b],

then ∫ b

a
f (t)g(t)dt ≥

∫ a+

a
f (t)dt + f ′(b)

(∫ b

a
tg(t)dt−a−  2

2

)
.

Corollary 5.2 Let f : [a,b]→R be such that f ′ is absolutely continuous, let g : [a,b]→R

be an integrable function such that 0 ≤ g ≤ 1 and let  =
∫ b
a g(t)dt.

(i) If f is convex, then∫ b

a
f (t)g(t)dt ≤

∫ b

b−
f (t)dt − f ′(a)

(
b −  2

2
−
∫ b

a
tg(t)dt

)
.

(ii) If f is convex and ∫ t

a
(t− x)g(x)dx ≤ 0, t ∈ [a,b− ],

∫ b

a
(b− x)g(x)dx≤ (b− t)2− 2

2
+ (t−b+ ), t ∈ [b− ,b],

then ∫ b

a
f (t)g(t)dt ≤

∫ b

b−
f (t)dt − f ′(b)

(
b −  2

2
−
∫ b

a
tg(t)dt

)
.

In the sequel we use Theorems 1.23 and 1.24 to obtain some new bounds for integrals
on the left hand side in the perturbed version of the previously obtained identities.

Firstly, let us denote

i(t) =
∫ b

t
Gi(x)(x− t)n−2dx, i = 1,2 (5.15)

and

i(t) =
∫ t

a
Gi(x)(x− t)n−2dx, i = 1,2. (5.16)

We have that Čebyšev functionals T (i,i) and T (i,i), i = 1,2 are given by:

T (1,1) =
1

(n−1)2(b−a)

[∫ b

a
2(t)dt− 2

n

∫ a+

a
(a+ − t)n(t)dt +

 2n+1

(2n+1)n2

]
− 1

(b−a)2(n−1)2n2

(∫ b

a
g(x)(x−a)ndx−  n+1

n+1

)2

,
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T (2,2) =
1

(n−1)2(b−a)

[
(b−a)2n+1− (b−−a)2n+1

(2n+1)n2 +
∫ b

a
2(t)dt

−2
n

(
1
n

∫ b−

a
(b− t)n(b− − t)ndt +

∫ b

a
(b− t)n(t)dt −

∫ b−

a
(b− − t)n(t)dt

)]
− 1

(b−a)2(n−1)2n2

(
(b− −a)n+1− (b−a)n+1

n+1
+
∫ b

a
g(x)(x−a)ndx

)2

,

where (t) =
∫ b
t g(x)(x− t)n−1dx,

T (1,1) =
1

(n−1)2(b−a)

[
(a+ −b)2n+1− (a−b)2n+1

(2n+1)n2 +
∫ b

a
2(t)dt

−2
n

(
1
n

∫ b

a+
(a− t)n(a+ − t)ndt +

∫ b

a
(a− t)n(t)dt −

∫ b

a+
(a+ − t)n(t)dt

)]
− 1

(b−a)2(n−1)2n2

(
(a+ −b)n+1− (a−b)n+1

n+1
+
∫ b

a
g(x)(x−b)ndx

)2

and

T (2,2) =
1

(n−1)2(b−a)

[∫ b

a
2(t)dt− 2

n

∫ b

b−
(b− − t)n(t)dt +

 2n+1

(2n+1)n2

]
− 1

(b−a)2(n−1)2n2

(∫ b

a
g(x)(x−b)ndx+

(− )n+1

n+1

)2

,

where (t) =
∫ t
a g(x)(x− t)n−1dx.

Theorem 5.5 Let f : [a,b] → R be such that f (n) is absolutely continuous function for
some n≥ 2 with (·−a)(b−·)[ f (n+1)]2 ∈ L[a,b] and let g be an integrable function on [a,b]
such that 0 ≤ g ≤ 1. Let  =

∫ b
a g(t)dt and let the functions G1, 1 and 1 be defined by

(5.1), (5.15) and (5.16).

(i) Then

∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt +

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx

+
f (n−1)(b)− f (n−1)(a)

(b−a)(n−2)!

∫ b

a
1(t)dt = H1

n ( f ;a,b)

(5.17)

where the remainder H1
n ( f ;a,b) satisfies the estimation

∣∣H1
n ( f ;a,b)

∣∣≤ √
b−a√

2(n−2)!
[T (1,1)]

1
2

∣∣∣∣∫ b

a
(t −a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .

(5.18)



5.1 GENERALIZATIONS VIA TAYLOR’S FORMULA 161

(ii) Then ∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt +

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G1(x)(x−b)idx

− f (n−1)(b)− f (n−1)(a)
(b−a)(n−2)!

∫ b

a
1(t)dt = H2

n ( f ;a,b)

(5.19)

where the remainder H2
n ( f ;a,b) satisfies the estimation

∣∣H2
n ( f ;a,b)

∣∣≤ √
b−a√

2(n−2)!
[T (1,1)]

1
2

∣∣∣∣∫ b

a
(t −a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .

Proof.

(i) If we apply Theorem 1.23 for f →1 and h → f (n) we obtain∣∣∣∣ 1
b−a

∫ b

a
1(t) f (n)(t)dt− 1

b−a

∫ b

a
1(t)dt · 1

b−a

∫ b

a
f (n)(t)dt

∣∣∣∣
≤ 1√

2
[T (1,1)]

1
2

1√
b−a

∣∣∣∣∫ b

a
(t−a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .

(5.20)

Therefore we have

1
(b−a)(n−2)!

∫ b

a
1(t)dt · 1

b−a

∫ b

a
f (n)(t)dt

=
f (n−1)(b)− f (n−1)(a)

(b−a)(n−2)!

∫ b

a
1(t)dt.

Now if we add that to the both sides of the identity (5.2) and use inequality (5.20)
we obtain representation (5.17) and bound (5.18).

(ii) Similar to the first part.

�

Theorem 5.6 Let f : [a,b] → R be such that f (n) is absolutely continuous function for
some n≥ 2 with (·−a)(b−·)[ f (n+1)]2 ∈ L[a,b] and let g be an integrable function on [a,b]
such that 0 ≤ g ≤ 1. Let  =

∫ b
a g(t)dt and let the functions G2, 2 and 2 be defined by

(5.6), (5.15) and (5.16).

(i) Then ∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt +

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G2(x)(x−a)idx

+
f (n−1)(b)− f (n−1)(a)

(b−a)(n−2)!

∫ b

a
2(t)dt = H3

n ( f ;a,b)

(5.21)
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where the remainder H3
n ( f ;a,b) satisfies the estimation

∣∣H3
n ( f ;a,b)

∣∣≤ √
b−a√

2(n−2)!
[T (2,2)]

1
2

∣∣∣∣∫ b

a
(t −a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .

(ii) Then ∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt +

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G2(x)(x−b)idx

− f (n−1)(b)− f (n−1)(a)
(b−a)(n−2)!

∫ b

a
2(t)dt = H4

n ( f ;a,b)

(5.22)

where the remainder H4
n ( f ;a,b) satisfies the estimation

∣∣H4
n ( f ;a,b)

∣∣≤ √
b−a√

2(n−2)!
[T (2,2)]

1
2

∣∣∣∣∫ b

a
(t−a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .

Proof. Similar to the proof of Theorem 5.5 �

Taking n = 2 in Theorems 5.5 and 5.6 we obtain the following corollaries.

Corollary 5.3 Let f : [a,b] → R be such that f ′′ is absolutely continuous function with
(·− a)(b− ·)[ f ′′′]2 ∈ L[a,b], let g be an integrable function on [a,b] such that 0 ≤ g ≤ 1
and let  =

∫ b
a g(t)dt.

(i) Then ∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt + f ′(a)

(∫ b

a
tg(t)dt−a−  2

2

)
+

f ′(b)− f ′(a)
2(b−a)

(∫ b

a
g(t)(t−a)2dt−  3

3

)
= H1

2 ( f ;a,b),

where the remainder H1
2 ( f ;a,b) satisfies the estimation

∣∣H1
2 ( f ;a,b)

∣∣≤ √
b−a√

2
[T (1,1)]

1
2

∣∣∣∣∫ b

a
(t−a)(b− t)[ f ′′′(t)]2dt

∣∣∣∣ 12
and

T (1,1) =
1

b−a

[∫ b

a

(∫ b

t
g(x)(x− t)dx

)2

dt +
 5

20

−
∫ a+

a
(a+ − t)2

(∫ b

t
g(x)(x− t)dx

)
dt

]
− 1

4(b−a)2

(∫ b

a
g(x)(x−a)2dx−  3

3

)2

.
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(ii) Then∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt + f ′(b)

(∫ b

a
tg(t)dt−a−  2

2

)
− f ′(b)− f ′(a)

2(b−a)

(
(b−a)3− (b−a− )3

3
−
∫ b

a
g(t)(b− t)2dt

)
= H2

2 ( f ;a,b),

where the remainder H2
2 ( f ;a,b) satisfies the estimation

∣∣H2
2 ( f ;a,b)

∣∣≤ √
b−a√

2
[T (1,1)]

1
2

∣∣∣∣∫ b

a
(t−a)(b− t)[ f ′′′(t)]2dt

∣∣∣∣ 12
and

T (1,1) =
1

b−a

[
(a+ −b)5− (a−b)5

20
−
(

1
2

∫ b

a+
(a− t)2(a+ − t)2dt

+
∫ b

a
(a− t)2

(∫ t

a
g(x)(x− t)dx

)
dt

−
∫ b

a+
(a+ − t)2

(∫ t

a
g(x)(x− t)dx

)
dt

)
+
∫ b

a

(∫ t

a
g(x)(x− t)dx

)2

dt

]

− 1
4(b−a)2

(
(a+ −b)3− (a−b)3

3
+
∫ b

a
g(x)(x−b)2dx

)2

.

Corollary 5.4 Let f : [a,b] → R be such that f ′′ is absolutely continuous function with
(·− a)(b− ·)[ f ′′′]2 ∈ L[a,b], let g be an integrable function on [a,b] such that 0 ≤ g ≤ 1
and let  =

∫ b
a g(t)dt.

(i) Then∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt + f ′(a)

(
b −  2

2
−
∫ b

a
tg(t)dt

)
+

f ′(b)− f ′(a)
2(b−a)

(
(b−a)3

3
− (b−a− )3

3
− 1

2

∫ b

a
g(x)(x−a)2

)
= H3

2 ( f ;a,b),

where the remainder H3
2 ( f ;a,b) satisfies the estimation

∣∣H3
2 ( f ;a,b)

∣∣≤ √
b−a√

2
[T (2,2)]

1
2

∣∣∣∣∫ b

a
(t −a)(b− t)[ f ′′′(t)]2dt

∣∣∣∣ 12 .

and
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T (2,2) =
1

b−a

[
(b−a)5− (b−−a)5

20
−
(

1
2

∫ b−

a
(b− t)2(b− − t)2dt

+
∫ b

a
(b− t)2

(∫ b

t
g(x)(x− t)dx

)
dt

−
∫ b−

a
(b− − t)2

(∫ b

t
g(x)(x− t)dx

)
dt

)
+
∫ b

a

(∫ b

t
g(x)(x− t)dx

)2

dt

]

− 1
4(b−a)2

(
(b− −a)3− (b−a)3

3
+
∫ b

a
g(x)(x−a)2dx

)2

.

(ii) Then ∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt + f ′(b)

(
b −  2

2
−
∫ b

a
tg(t)dt

)
− f ′(b)− f ′(a)

2(b−a)

(∫ b

a
g(t)(b− t)2dt−  3

3

)
= H4

2 ( f ;a,b),

where the remainder H4
2 ( f ;a,b) satisfies the estimation∣∣H4

2 ( f ;a,b)
∣∣≤ √

b−a√
2

[T (2,2)]
1
2

∣∣∣∣∫ b

a
(t −a)(b− t)[ f ′′′(t)]2dt

∣∣∣∣ 12 .

and

T (2,2) =
1

b−a

[∫ b

a

(∫ t

a
g(x)(x− t)dx

)2

dt +
 5

20

−
∫ b

b−
(b− − t)2

(∫ t

a
g(x)(x− t)dx

)
dt

]
− 1

4(b−a)2

(∫ b

a
g(x)(x−b)2dx−  3

3

)2

.

Using Theorem 1.24 we obtain the following Grüss type inequalities for the Čebyšev
functional.

Theorem 5.7 Let f : [a,b]→R be such that f (n) (n≥ 2) is absolutely continuous function
and f (n+1) ≥ 0 on [a,b]. Let the functionsi andi, i = 1,2 be defined by (5.15) and (5.16)
.

(i) Then we have the representation (5.17) and the remainder H1
n ( f ;a,b) satisfies the

bound∣∣H1
n ( f ;a,b)

∣∣
≤ 1

(n−2)!
‖′

1‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

(5.23)
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(ii) Then we have the representation (5.19) and the remainder H2
n ( f ;a,b) satisfies the

bound∣∣H2
n ( f ;a,b)

∣∣≤ 1
(n−2)!

‖′
1‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

(iii) Then we have the representation (5.21) and the remainder H3
n ( f ;a,b) satisfies the

bound∣∣H3
n ( f ;a,b)

∣∣≤ 1
(n−2)!

‖′
2‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

(iv) Then we have the representation (5.22) and the remainder H4
n ( f ;a,b) satisfies the

bound∣∣H4
n ( f ;a,b)

∣∣≤ 1
(n−2)!

‖′
2‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

Proof.
(i) Applying Theorem 1.24 for f →1 and h → f (n) we obtain∣∣∣∣ 1

b−a

∫ b

a
1(t) f (n)(t)dt− 1

b−a

∫ b

a
1(t)dt · 1

b−a

∫ b

a
f (n)(t)dt

∣∣∣∣
≤ 1

2(b−a)
‖′

1‖
∫ b

a
(t −a)(b− t) f (n+1)(t)dt.

(5.24)

Since ∫ b

a
(t−a)(b− t) f (n+1)(t)dt =

∫ b

a
[2t− (a+b)] f (n)(t)dt

= (b−a)
[
f (n−1)(b)+ f (n−1)(a)

]
−2
(

f (n−2)(b)− f (n−2)(a)
)

,

using the representation (5.2) and the inequality (5.24) we deduce (5.23). Similarly,

we can prove the other parts. �

Taking n = 2 in the previous theorem we obtain the corollary:

Corollary 5.5 Let f : [a,b] → R be such that f ′′ is absolutely continuous function and
f ′′′ ≥ 0 on [a,b]. Let g be an integrable function such that 0 ≤ g ≤ 1,  =

∫ b
a g(t)dt and let

the functions Gi, i = 1,2 be defined by (5.1) and (5.6).

(i) Then we have∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt + f ′(a)

(∫ b

a
tg(t)dt−a−  2

2

)
+

f ′(b)− f ′(a)
b−a

∫ b

a
(x−a)G1(x)dx = H1

2 ( f ;a,b)
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and the remainder H1
2 ( f ;a,b) satisfies the bound

∣∣H1
2 ( f ;a,b)

∣∣≤ ‖′
1‖
{

f ′(b)+ f ′(a)
2

− f (b)− f (a)
b−a

}
where

′
1(t) = −

∫ t

a
(1−g(x))dx.

(ii) Then we have∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt + f ′(b)

(∫ b

a
tg(t)dt−a−  2

2

)
− f ′(b)− f ′(a)

b−a

∫ b

a
(b− x)G1(x)dx = H2

2 ( f ;a,b)

and the remainder H2
2 ( f ;a,b) satisfies the bound

∣∣H2
2 ( f ;a,b)

∣∣≤ ‖′
1‖
{

f ′(b)+ f ′(a)
2

− f (b)− f (a)
b−a

}
where

′
1(t) =

∫ b

t
g(x)dx.

(iii) Then we have∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt + f ′(a)

(
b −  2

2
−
∫ b

a
tg(t)dt

)
+

f ′(b)− f ′(a)
b−a

∫ b

a
(x−a)G2(x)dxdt = H3

2 ( f ;a,b)

and the remainder H3
2 ( f ;a,b) satisfies the bound

∣∣H3
2 ( f ;a,b)

∣∣≤ ‖′
2‖
{

f ′(b)+ f ′(a)
2

− f (b)− f (a)
b−a

}
where

′
2(t) = −

∫ t

a
g(x)dx.

(iv) Then we have∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt + f ′(b)

(
b −  2

2
−
∫ b

a
tg(t)dt

)
− f ′(b)− f ′(a)

b−a

∫ b

a
(b− x)G2(x)dx = H4

2 ( f ;a,b)
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and the remainder H4
2 ( f ;a,b) satisfies the bound∣∣H4

2 ( f ;a,b)
∣∣≤ ‖′

2‖
{

f ′(b)+ f ′(a)
2

− f (b)− f (a)
b−a

}
where

′
2(t) =

∫ b

t
(1−g(x))dx.

Using identities from Theorems 5.1 and 5.2, the Ostrowski type inequalities are ob-
tained.

Theorem 5.8 Suppose that all assumptions of Theorem 5.1 hold. Assume (p,q) is a pair
of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let f (n) ∈ Lp [a,b] for some
n ≥ 2. Then we have:

(i) ∣∣∣∣∣
∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt +

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx

∣∣∣∣∣
≤ 1

(n−2)!

∥∥∥ f (n)
∥∥∥

p

∥∥∥∥∫ b

t
G1(x)(x− t)n−2dx

∥∥∥∥
q

(5.25)

The constant on the right-hand side of (5.25) is sharp for 1 < p ≤  and the best
possible for p = 1.

(ii) ∣∣∣∣∣
∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt +

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G1(x)(x−b)idx

∣∣∣∣∣
≤ 1

(n−2)!

∥∥∥ f (n)
∥∥∥

p

∥∥∥∥∫ t

a
G1(x)(x− t)n−2dx

∥∥∥∥
q
.

(5.26)

The constant on the right-hand side of (5.26) is sharp for 1 < p ≤  and the best
possible for p = 1.

Proof.

(i) Let us denote

C(t) =
1

(n−2)!

∫ b

t
G1(x)(x− t)n−2dx.

Since 0 ≤ g ≤ 1, the function G1 is nonnegative and for every n ≥ 2 we have
C(t) ≥ 0, ∀t ∈ [a,b]. Using the identity (5.2) and applying Hölder’s inequality we
obtain ∣∣∣∣∣

∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt +

n−2


i=0

f (i+1)(a)

i!

∫ b

a
G1(x)(x−a)idx

∣∣∣∣∣
=
∣∣∣∣−∫ b

a
C(t) f (n)(t)dt

∣∣∣∣≤ ∥∥∥ f (n)
∥∥∥

p
‖C(t)‖q .
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For the proof of the sharpness we will find a function f for which the equality in
(5.25) is obtained.
For 1 < p <  take f to be such that

f (n)(t) = sgnC(t) |C(t)| 1
p−1 .

For p =  take f (n)(t) = sgnC(t).
For p = 1 we prove that∣∣∣∣∫ b

a
C(t) f (n)(t)dt

∣∣∣∣≤ max
t∈[a,b]

|C(t)|
(∫ b

a

∣∣∣ f (n)(t)
∣∣∣dt

)
(5.27)

is the best possible inequality. Suppose that |C(t)| attains its maximum at t0 ∈ [a,b]
and we have C(t0) > 0. For  small enough we define f (t) by

f (t) =

⎧⎪⎨⎪⎩
0, a ≤ t ≤ t0,
1
 n!(t − t0)n, t0 ≤ t ≤ t0 + ,
1
n!(t − t0)n−1, t0 +  ≤ t ≤ b.

Then for  small enough∣∣∣∣∫ b

a
C(t) f (n)(t)dt

∣∣∣∣= ∣∣∣∣∫ t0+

t0
C(t)

1

dt

∣∣∣∣= 1


∫ t0+

t0
C(t)dt.

Now from the inequality (5.27) we have

1


∫ t0+

t0
C(t)dt ≤C(t0)

∫ t0+

t0

1

dt =C(t0).

Since,

lim
→0

1


∫ t0+

t0
C(t)dt = C(t0)

the statement follows.

(ii) Here, we denote C(t) = 1
(n−2)!

∫ t
a G1(x)(x− t)n−2dx. Thus we have one more case

when |C(t)| attains its maximum at t0 ∈ [a,b] and C(t0) < 0. In the case C(t0) < 0,
we define f (t) by

f(t) =

⎧⎪⎨⎪⎩
1
n!(t− t0− )n−1, , a ≤ t ≤ t0,

− 1
n!(t − t0− )n, t0 ≤ t ≤ t0 + ,

0, t0 +  ≤ t ≤ b.

The rest of the proof is the same as above.

�
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Theorem 5.9 Suppose that all assumptions of Theorem 5.2 hold. Assume (p,q) is a pair
of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let f (n) ∈ Lp [a,b] for some
n ≥ 2. Then we have:

(i) ∣∣∣∣∣
∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt +

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G2(x)(x−a)idx

∣∣∣∣∣
≤ 1

(n−2)!

∥∥∥ f (n)
∥∥∥

p

∥∥∥∥∫ b

t
G2(x)(x− t)n−2dx

∥∥∥∥
q
.

(5.28)

The constant on the right-hand side of (5.28) is sharp for 1 < p ≤  and the best
possible for p = 1.

(ii) ∣∣∣∣∣
∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt +

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G2(x)(x−b)idx

∣∣∣∣∣
≤ 1

(n−2)!

∥∥∥ f (n)
∥∥∥

p

∥∥∥∥∫ t

a
G2(x)(x− t)n−2dx

∥∥∥∥
q
.

(5.29)

The constant on the right-hand side of (5.29) is sharp for 1 < p ≤  and the best possible
for p = 1.

Proof. Similar to the proof of Theorem 5.8. �

Taking n = 2 in the previous theorems we obtain the following corollaries.

Corollary 5.6 Let f : [a,b]→R be such that f ′ is absolutely continuous, let g : [a,b]→R

be an integrable function such that 0 ≤ g ≤ 1, and let  =
∫ b
a g(t)dt. Assume (p,q) is a

pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let f ′′ ∈ Lp[a,b]. Then
we have:

(i) ∣∣∣∣∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt + f ′(a)

(∫ b

a
tg(t)dt−a−  2

2

)∣∣∣∣
≤ ∥∥ f ′′

∥∥
p

(∫ a+

a

∣∣∣∣t ∫ t

a
g(x)dx+

∫ b

t
xg(x)dx−a−  2

2
− (t−a)2

2

∣∣∣∣q dt

+
∫ b

a+

∣∣∣∣∫ b

t
xg(x)dx− t

∫ b

t
g(x)dx

∣∣∣∣q dt

) 1
q

.

(5.30)

The constant on the right-hand side of (5.30) is sharp for 1 < p ≤  and the best
possible for p = 1.
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(ii) ∣∣∣∣∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt + f ′(b)

(∫ b

a
tg(t)dt−a−  2

2

)∣∣∣∣
≤ ∥∥ f ′′

∥∥
p

(∫ a+

a

∣∣∣∣ (t−a)2

2
−
∫ t

a
(t− x)g(x)dx

∣∣∣∣q dt

+
∫ b

a+

∣∣∣∣ 2

2
+ (t−a− )−

∫ t

a
(t− x)g(x)dx

∣∣∣∣q dt

) 1
q

.

(5.31)

The constant on the right-hand side of (5.31) is sharp for 1 < p ≤  and the best
possible for p = 1.

Corollary 5.7 Let f : [a,b]→R be such that f ′ is absolutely continuous, let g : [a,b]→R

be an integrable function such that 0 ≤ g ≤ 1, and let  =
∫ b
a g(t)dt. Assume (p,q) is a

pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let f ′′ ∈ Lp[a,b]. Then
we have:

(i) ∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt + f ′(a)

(
b −  2

2
−
∫ b

a
tg(t)dt

)∣∣∣∣
≤ ∥∥ f ′′

∥∥
p

(∫ b−

a

∣∣∣∣b −  2

2
− t
∫ t

a
g(x)dx−

∫ b

t
xg(x)dx

∣∣∣∣q dt

+
∫ b

b−

∣∣∣∣ (b− t)2

2
−
∫ b

t
(x− t)g(x)dx

∣∣∣∣q dt

) 1
q

.

(5.32)

The constant on the right-hand side of (5.32) is sharp for 1 < p ≤  and the best
possible for p = 1.

(ii) ∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt + f ′(b)

(
b −  2

2
−
∫ b

a
tg(t)dt

)∣∣∣∣
≤ ∥∥ f ′′

∥∥
p

(∫ b−

a

∣∣∣∣∫ t

a
(t− x)g(x)dx

∣∣∣∣q dt

+
∫ b

b−

∣∣∣∣∫ b

a
(b− x)g(x)dx− (b− t)2− 2

2
− (t−b+ )

∣∣∣∣q dt

) 1
q

.

(5.33)

The constant on the right-hand side of (5.33) is sharp for 1 < p ≤  and the best
possible for p = 1.
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5.2 Generalizations via Montgomery’s identitiy

In [3], the authors obtain the following extension of Montgomery identity using Taylor’s
formula:

Theorem 5.10 Let f : I → R be suct that f (n−1) is absolutely continuous for some n≥ 2,
I ⊂ R an open interval, a,b ∈ I, a < b. Then the following identity holds

f (x) =
1

b−a

∫ b

a
f (t)dt−

n−2


i=0

f (i+1) (x)
(b− x)i+2 − (a− x)i+2

(i+2)!(b−a)

+
1

(n−1)!

∫ b

a
Tn (x,s) f (n) (s)ds

(5.34)

where

Tn(x,s) =

{ −1
n(b−a) (a− s)n , a ≤ s ≤ x;
−1

n(b−a) (b− s)n , x < s ≤ b.

Remark 5.1 The last identity holds also for n = 1. In this special case, we assume
that n−2

i=0 · · · is an empty sum. Thus (5.34) reduces to well known Montgomery identity
(e.g. [4])

f (x) =
1

b−a

∫ b

a
f (t)dt +

∫ b

a
T1(x,s) f ′(s)ds

where the Peano kernel is

T1(x,s) =
{ s−a

b−a , a ≤ s ≤ x;
s−b
b−a , x < s ≤ b.

We begin this section with some new identities related to Steffensen’s inequality. Us-
ing these new identities, Steffensen’s inequality for n-convex functions is generalized and
further, some new Ostrowski type inequalities are obtained. Some generalizations of Stef-
fensen’s inequality via weighted Montgomery’s identitiy are given in [5]. Results from this
section are published in [6].

Theorem 5.11 Let f : I → R be suct that f (n−1) is absolutely continuous for some n≥ 2,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the function G1

be defined by

G1(x) =

{∫ x
a (1−g(t))p(t)dt, x ∈ [a,a+ ],∫ b
x g(t)p(t)dt, x ∈ [a+ ,b].

(5.35)
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Then ∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt

+
∫ b

a
G1(x)

(
f (b)− f (a)

b−a
−

n−3


i=0

f (i+2)(x)
(b− x)i+2 − (a− x)i+2

(i+2)!(b−a)

)
dx

= − 1
(n−2)!

∫ b

a

(∫ b

a
G1(x)Tn−1(x,s)dx

)
f (n)(s)ds.

(5.36)

Proof. Using identity∫
[a,a+ ]

f (t)d(t)−
∫

[a,b]
f (t)g(t)d(t)

=
∫

[a,a+ ]
f (t)(1−g(t))d(t)−

∫
(a+ ,b]

f (t)g(t)d(t)
(5.37)

for d(t) = p(t)dt and integration by parts we have∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt

=
∫ a+

a
[ f (t)− f (a+ )][1−g(t)]p(t)dt+

∫ b

a+
[ f (a+ )− f (t)]g(t)p(t)dt

= −
∫ a+

a

[∫ x

a
(1−g(t))p(t)dt

]
d f (x)−

∫ b

a+

[∫ b

x
g(t)p(t)dt

]
d f (x)

= −
∫ b

a
G1(x)d f (x) = −

∫ b

a
G1(x) f ′(x)dx.

Applying identity (5.34) to f ′ and replacing n with n−1 we have

f ′(x) =
f (b)− f (a)

b−a
−

n−3


i=0

f (i+1) (x)
(b− x)i+2− (a− x)i+2

(i+2)!(b−a)

+
1

(n−2)!

∫ b

a
Tn−1(x,s) f (n)(s)ds.

(5.38)

Now we obtain∫ b

a
G1(x) f ′(x)dx =

∫ b

a
G1(x)

(
f (b)− f (a)

b−a

−
n−3


i=0

f (i+2)(x)
(b− x)i+2− (a− x)i+2

(i+2)!(b−a)

)
dx

+
1

(n−2)!

∫ b

a
G1(x)

(∫ b

a
Tn−1(x,s) f (n)(s)ds

)
dx.

(5.39)

After applying Fubini’s theorem on the last term in (5.39) we obtain ( 5.36. �
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Theorem 5.12 Let f : I → R be suct that f (n−1) is absolutely continuous for some n≥ 2,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the function G2 be

defined by

G2(x) =

{∫ x
a g(t)p(t)dt, x ∈ [a,b− ],∫ b
x (1−g(t))p(t)dt, x ∈ [b− ,b].

(5.40)

Then ∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt

+
∫ b

a
G2(x)

(
f (b)− f (a)

b−a
−

n−3


i=0

f (i+2)(x)
(b− x)i+2− (a− x)i+2

(i+2)!(b−a)

)
dx

= − 1
(n−2)!

∫ b

a

(∫ b

a
G2(x)Tn−1(x,s)dx

)
f (n)(s)ds.

(5.41)

Proof. Similarly as in the proof of Theorem 5.11, we use the identity∫
[a,b]

f (t)g(t)d(t)−
∫

(b− ,b]
f (t)d(t)

=
∫

[a,b− ]
f (t)g(t)d(t)−

∫
(b− ,b]

f (t)(1−g(t))d(t).
(5.42)

for d(t) = p(t)dt. �

Further, using the above obtained identites we give generalization of Steffensen’s in-
equality for n-convex functions.

Theorem 5.13 Let f : I → R be suct that f (n−1) is absolutely continuous for some n≥ 2,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the function G1

be defined by (5.35). If f is n-convex and∫ b

a
G1(x)Tn−1(x,s)dx ≥ 0, s ∈ [a,b], (5.43)

then ∫ b

a
f (t)g(t)p(t)dt ≥

∫ a+

a
f (t)p(t)dt

+
∫ b

a
G1(x)

(
f (b)− f (a)

b−a
−

n−3


i=0

f (i+2)(x)
(b− x)i+2− (a− x)i+2

(i+2)!(b−a)

)
dx.

(5.44)

Proof. If the function f is n-convex, without loss of generality we can assume that f
is n-times differentiable and f (n) ≥ 0 see [71, p. 16 and p. 293]. Hence we can apply
Theorem 5.11 to obtain (5.44. �
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Theorem 5.14 Let f : I → R be suct that f (n−1) is absolutely continuous for some n ≥ 2,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the function G2 be

defined by (5.40). If f is n-convex and

∫ b

a
G2(x)Tn−1(x,s)dx ≥ 0, s ∈ [a,b], (5.45)

then

∫ b

a
f (t)g(t)p(t)dt ≤

∫ b

b−
f (t)p(t)dt

−
∫ b

a
G2(x)

(
f (b)− f (a)

b−a
−

n−3


i=0

f (i+2)(x)
(b− x)i+2− (a− x)i+2

(i+2)!(b−a)

)
dx.

(5.46)

Proof. Similar to the proof of Theorem 5.13. �

Remark 5.2 If the integrals in (5.43) and (5.45) are nonpositive, then the reverse in-
equalities in (5.44) and (5.46) hold. Note that, in this case for some odd n ≥ 3, functions
Gi, i = 1,2 are nonnegative so integrals in (5.43) and (5.45) are nonpositive. Hence, in-
equalities (5.44) and (5.46) are reversed.

In sequel we give Ostrowski type inequalities for previous results. The proofs are
analogous to the proof of Theorem 5.8.

Theorem 5.15 Suppose that all assumptions of Theorem 5.11 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p + 1/q = 1 and
f (n) ∈ Lp [a,b] for some n ≥ 2. Then we have

∣∣∣∣∫ a+

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt

+
∫ b

a
G1(x)

(
f (b)− f (a)

b−a
−

n−3


i=0

f (i+2)(x)
(b− x)i+2− (a− x)i+2

(i+2)!(b−a)

)
dx

∣∣∣∣∣
≤ 1

(n−2)!

∥∥∥ f (n)
∥∥∥

p

∥∥∥∥∫ b

a
G1(x)Tn−1(x, ·)dx

∥∥∥∥
q
.

(5.47)

The constant on the right-hand side of (5.47) is sharp for 1 < p ≤ and the best possible
for p = 1.
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Theorem 5.16 Suppose that all assumptions of Theorem 5.12 hold. Assume also (p,q)
is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+ 1/q = 1. Let f (n) ∈ Lp [a,b]
for some n ≥ 2. Then we have∣∣∣∣∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt

+
∫ b

a
G2(x)

(
f (b)− f (a)

b−a
−

n−3


i=0

f (i+2)(x)
(b− x)i+2− (a− x)i+2

(i+2)!(b−a)

)
dx

∣∣∣∣∣
≤ 1

(n−2)!

∥∥∥ f (n)
∥∥∥

p

∥∥∥∥∫ b

a
G2(x)Tn−1(x, ·)dx

∥∥∥∥
q
.

(5.48)

The constant on the right-hand side of (5.48) is sharp for 1 < p ≤  and the best possible
for p = 1.

We conclude this section with some new bounds for the identities, using the Čebyšev
and Grüss type inequalities.

By i(s) we will denote

i(s) =
∫ b

a
Gi(x)Tn−1(x,s)dx, i = 1,2. (5.49)

Using Theorems 1.23 and 1.24 we obtain the following results.

Theorem 5.17 Let f : I → R be suct that f (n) is absolutely continuous for some
n ≥ 2, I ⊂ R an open interval, a,b ∈ I, a < b and (· − a)(b− ·)[ f (n+1)]2 ∈ L1[a,b]. Let
g, p : [a,b] → R be integrable functions such that p is positive and 0 ≤ g ≤ 1. Let∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the functions G1 and 1 be defined by (5.35) and

(5.49). Then∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt

+
∫ b

a
G1(x)

(
f (b)− f (a)

b−a
−

n−3


i=0

f (i+2)(x)
(b− x)i+2− (a− x)i+2

(i+2)!(b−a)

)
dx

+
f (n−1)(b)− f (n−1)(a)

(b−a)(n−2)!

∫ b

a
1(s)ds = S1

n( f ;a,b),

(5.50)

where the remainder S1
n( f ;a,b) satisfies the estimation

∣∣S1
n( f ;a,b)

∣∣≤ √
b−a√

2(n−2)!
[T (1,1)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

. (5.51)

Proof. Similar to the proof of Theorem 5.5. �
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Theorem 5.18 Let f : I → R be suct that f (n) is absolutely continuous for some
n ≥ 2, I ⊂ R an open interval, a,b ∈ I, a < b and (· − a)(b− ·)[ f (n+1)]2 ∈ L1[a,b]. Let
g, p : [a,b] → R be integrable functions such that p is positive and 0 ≤ g ≤ 1. Let∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the functions G2 and 2 be defined by (5.40) and

(5.49). Then∫ b

a
f (t)g(t)p(t)dt −

∫ b

b−
f (t)p(t)dt

+
∫ b

a
G2(x)

(
f (b)− f (a)

b−a
−

n−3


i=0

f (i+2)(x)
(b− x)i+2 − (a− x)i+2

(i+2)!(b−a)

)
dx

+
f (n−1)(b)− f (n−1)(a)

(b−a)(n−2)!

∫ b

a
2(s)ds = S2

n( f ;a,b),

(5.52)

where the remainder S2
n( f ;a,b) satisfies the estimation

∣∣S2
n( f ;a,b)

∣∣≤ √
b−a√

2(n−2)!
[T (2,2)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

.

Proof. Similar to the proof of Theorem 5.5. �

Theorem 5.19 Let f : I → R be suct that f (n) is absolutely continuous for some n ≥ 2
and f (n+1) ≥ 0 on [a,b]. Let functions i, i = 1,2 be defined by (5.49).

(a) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Then we have representation (5.50) and the re-

mainder S1
n( f ;a,b) satisfies the bound∣∣S1

n( f ;a,b)
∣∣

≤ b−a
(n−2)!

‖′
1‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

(b) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Then we have representation (5.52) and the remain-

der S2
n( f ;a,b) satisfies the bound∣∣S2

n( f ;a,b)
∣∣

≤ b−a
(n−2)!

‖′
2‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

Proof. Similar to the proof of Theorem 5.7. �
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5.3 Generalizations via some Euler-type identities

Let f : [a,b] → R be such that f (n−1) is continuous function of bounded variation on [a,b]
for some n ≥ 1 and for every x ∈ [a,b] . In the paper [18] the following two identities have
been proved:

f (x) =
1

b−a

∫ b

a
f (t)dt +Tn(x)+R1

n(x) (5.53)

and

f (x) =
1

b−a

∫ b

a
f (t)dt +Tn−1(x)+R2

n(x), (5.54)

where T0(x) = 0, and for 1 ≤ m ≤ n

Tm(x) =
m


k=1

(b−a)k−1

k!
Bk

(
x−a
b−a

)[
f (k−1)(b)− f (k−1)(a)

]
,

R1
n(x) = − (b−a)n−1

n!

∫
[a,b]

B∗
n

(
x− t
b−a

)
d f (n−1)(t),

R2
n(x) = − (b−a)n−1

n!

∫
[a,b]

[
B∗

n

(
x− t
b−a

)
−Bn

(
x−a
b−a

)]
d f (n−1)(t).

Here, Bk(x), k ≥ 0 are the Bernoulli polynomials, Bk, k ≥ 0 are the Bernoulli numbers
and B∗

k(x), k ≥ 0 are periodic functions of period one, related to the Bernoulli polynomials
as

B∗
k(x) = Bk(x), 0 ≤ x < 1

and
B∗

k(x+1) = B∗
k(x), x ∈ R.

Let us recall some properties of the Bernoulli polynomials. The first three Bernoulli
polynomials are

B0(x) = 1, B1(x) = x− 1
2
, B2(x) = x2− x+

1
6
,

and
B′

n(x) = nBn−1(x), n ∈ N.

B∗
0(x) is a constant equal to 1, while B∗

1(x) is a discontinuous function with a jump of
−1 at each integer. For k ≥ 2, B∗

k(x) is a continuous function.
For more details on Bernoulli polynomials and Bernoulli numbers we refer the reader

to [1, 40]. The expresions (5.53) and (5.54) are extensions of the Euler integral formula
(see [40]).
After brief introduction we give, generalizations of Steffensen’s inequality for n-convex
functions using the identities (5.53) and (5.54), which are the main results of this section.
The results in this section are given in [63].
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Theorem 5.20 Let f : [a,b] → R be such that f (n−1) is continuous function of bounded
variation on [a,b] for some n ≥ 2 and let g : [a,b]→ R be an integrable function such that
0 ≤ g ≤ 1. Let  =

∫ b
a g(t)dt and let the function G1 be defined by (5.1).

(a) Then

∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt

+
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

=
(b−a)n−2

(n−1)!

∫ b

a

(∫ b

a
G1(x)B∗

n−1

(
x− t
b−a

)
dx

)
f (n)(t)dt.

(5.55)

(b) Then

∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt

+
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

=
(b−a)n−2

(n−1)!

∫ b

a

(∫ b

a
G1(x)

[
B∗

n−1

(
x− t
b−a

)
−Bn−1

(
x−a
b−a

)]
dx

)
f (n)(t)dt.

(5.56)

Proof. (a) Similar to the proof of Theorem 5.1 using the identity (5.53) on the function
f ′.
(b) Similar to the proof of Theorem 5.1 using the identity (5.54) on the function f ′. �

We continue with the results related to the identity given by (1.4).

Theorem 5.21 Let f : [a,b] → R be such that f (n−1) is continuous function of bounded
variation on [a,b] for some n ≥ 2 and let g : [a,b]→ R be an integrable function such that
0 ≤ g ≤ 1. Let  =

∫ b
a g(t)dt and let the function G2 be defined by (5.6).

(a) Then

∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt

+
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

=
(b−a)n−2

(n−1)!

∫ b

a

(∫ b

a
G2(x)B∗

n−1

(
x− t
b−a

)
dx

)
f (n)(t)dt.

(5.57)
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(b) Then∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

+
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

=
(b−a)n−2

(n−1)!

∫ b

a

(∫ b

a
G2(x)

[
B∗

n−1

(
x− t
b−a

)
−Bn−1

(
x−a
b−a

)]
dx

)
f (n)(t)dt.

(5.58)

Proof. (a) Similar to the proof of Theorem 5.1 applying integration by parts on the identity
(1.4) and then using the identity (5.53) on the function f ′. The proof of part (b) is similar
to the first part, we use identity (5.54) on the function f ′. �

Now we give the generalizations of Steffensen’s inequality for n-convex functions.

Theorem 5.22 Let f : [a,b] → R be such that f (n−1) is continuous function of bounded
variation on [a,b] for some n ≥ 2 and let g : [a,b]→ R be an integrable function such that
0 ≤ g ≤ 1. Let  =

∫ b
a g(t)dt and let the function G1 be defined by (5.1).

(i) If f is n-convex and∫ b

a
G1(x)B∗

n−1

(
x− t
b−a

)
dx ≥ 0, t ∈ [a,b], (5.59)

then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt

+
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)].

(5.60)

(ii) If f is n-convex and∫ b

a
G1(x)

[
B∗

n−1

(
x− t
b−a

)
−Bn−1

(
x−a
b−a

)]
dx ≥ 0, t ∈ [a,b], (5.61)

then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt

+
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)].

(5.62)

Proof. If the function f is n-convex, without loss of generality we can assume that f
is n-times differentiable and f (n) ≥ 0 see [71, p. 16 and p. 293]. Hence. we can apply
Theorem 5.20 to obtain (5.60) and (5.62). �
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Theorem 5.23 Let f : [a,b] → R be such that f (n−1) is continuous function of bounded
variation on [a,b] for some n ≥ 2 and let g : [a,b]→ R be an integrable function such that
0 ≤ g ≤ 1. Let  =

∫ b
a g(t)dt and let the function G2 be defined by (5.6).

(i) If f is n-convex and∫ b

a
G2(x)B∗

n−1

(
x− t
b−a

)
dx ≥ 0, t ∈ [a,b], (5.63)

then∫ b

a
f (t)g(t)dt ≥

∫ b

b−
f (t)dt

−
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)].

(5.64)

(ii) If f is n-convex and∫ b

a
G2(x)

[
B∗

n−1

(
x− t
b−a

)
−Bn−1

(
x−a
b−a

)]
dx ≥ 0, t ∈ [a,b], (5.65)

then∫ b

a
f (t)g(t)dt ≥

∫ b

b−
f (t)dt

−
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)].

(5.66)

Proof. Similar to the proof of Theorem 5.22, applying Theorem 5.21. �

We continue with Ostrowski type inequalities related to the results given in Theo-
rems 5.20 and 5.21.

Theorem 5.24 Suppose that all assumptions of Theorem 5.20 hold. Assume (p,q) is a

pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let
∣∣∣ f (n)

∣∣∣p : [a,b] → R

be an R-integrable function for some n ≥ 2.

(a) Then we have∣∣∣∣∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt

+
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

∣∣∣∣∣
≤ (b−a)n−2

(n−1)!

∥∥∥ f (n)
∥∥∥

p

(∫ b

a

∣∣∣∣∫ b

a
G1(x)B∗

n−1

(
x− t
b−a

)
dx

∣∣∣∣q dt

) 1
q

.

(5.67)

The constant on the right-hand side of (5.67) is sharp for 1 < p ≤  and the best
possible for p = 1.
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(b) Then we have∣∣∣∣∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt

+
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

∣∣∣∣∣
≤ (b−a)n−2

(n−1)!

∥∥∥ f (n)
∥∥∥

p

(∫ b

a

∣∣∣∣∫ b

a
G1(x)

[
B∗

n−1

(
x− t
b−a

)
−Bn−1

(
x−a
b−a

)]
dx

∣∣∣∣q dt

) 1
q

.

(5.68)

The constant on the right-hand side of (5.68) is sharp for 1 < p ≤  and the best
possible for p = 1.

Proof. Similar to the proof of the Theorem 5.8 using identities obtained in Theorem 5.20.
�

Theorem 5.25 Suppose that all assumptions of Theorem 5.21 hold. Assume (p,q) is a

pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let
∣∣∣ f (n)

∣∣∣p : [a,b] → R

be an R-integrable function for some n ≥ 2.

(a) Then we have∣∣∣∣∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt

+
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

∣∣∣∣∣
≤ (b−a)n−2

(n−1)!

∥∥∥ f (n)
∥∥∥

p

(∫ b

a

∣∣∣∣∫ b

a
G2(x)B∗

n−1

(
x− t
b−a

)
dx

∣∣∣∣q dt

) 1
q

.

(5.69)

The constant on the right-hand side of (5.69) is sharp for 1 < p ≤  and the best
possible for p = 1.

(b) ∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

+
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

∣∣∣∣∣
≤ (b−a)n−2

(n−1)!

∥∥∥ f (n)
∥∥∥

p

(∫ b

a

∣∣∣∣∫ b

a
G2(x)

[
B∗

n−1

(
x− t
b−a

)
−Bn−1

(
x−a
b−a

)]
dx

∣∣∣∣q dt

) 1
q

.

(5.70)

The constant on the right-hand side of (5.70) is sharp for 1 < p ≤  and the best
possible for p = 1.
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At the end of this section we give some new bounds for integrals on the left hand side
in perturbed versions of identities obtained in Theorems 5.20 and 5.21.

Let us denote

H1(t) =
∫ b

a
G1(x)B∗

n−1

(
x− t
b−a

)
dx. (5.71)

and

1(t) =
∫ b

a
G1(x)

[
B∗

n−1

(
x− t
b−a

)
−Bn−1

(
x−a
b−a

)]
dx. (5.72)

Using Theorems 1.23 and 1.24 the following bounds are obtained.

Theorem 5.26 Let f : [a,b] → R be such that f (n) is absolutely continuous function for
some n ≥ 2 with (· − a)(b− ·)[ f (n+1)]2 ∈ L[a,b] and let g be an integrable function on
[a,b]. Let  =

∫ b
a g(t)dt and let the functions G1, H1 and1 be defined by (5.1), (5.71) and

(5.72), respectively.

(a) Then ∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt

+
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

− (b−a)n−3[ f (n−1)(b)− f (n−1)(a)]
(n−1)!

∫ b

a
H1(t)dt = S1

n( f ;a,b)

(5.73)

where the remainder S1
n( f ;a,b) satisfies the estimation

∣∣S1
n( f ;a,b)

∣∣≤ (b−a)n− 3
2√

2(n−1)!
[T (H1,H1)]

1
2

∣∣∣∣∫ b

a
(t−a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 . (5.74)

(b) Then ∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt

+
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

− (b−a)n−3[ f (n−1)(b)− f (n−1)(a)]
(n−1)!

∫ b

a
1(t)dt = S2

n( f ;a,b)

(5.75)

where the remainder S2
n( f ;a,b) satisfies the estimation

∣∣S2
n( f ;a,b)

∣∣≤ (b−a)n− 3
2√

2(n−1)!
[T (1,1)]

1
2

∣∣∣∣∫ b

a
(t−a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .
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Proof. Similar to the proof od Theorem 5.5.
Applying Theorem 1.23 for f → H1 and h → f (n) we obtain∣∣∣∣ 1

b−a

∫ b

a
H1(t) f (n)(t)dt− 1

b−a

∫ b

a
H1(t)dt · 1

b−a

∫ b

a
f (n)(t)dt

∣∣∣∣
≤ 1√

2
[T (H1,H1)]

1
2

1√
b−a

∣∣∣∣∫ b

a
(t−a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .

(5.76)

Hence, if we subtract

(b−a)n−1

(n−1)!
· 1
b−a

∫ b

a
H1(t)dt · 1

b−a

∫ b

a
f (n)(t)dt

=
(b−a)n−3

(n−1)!
[ f (n−1)(b)− f (n−1)(a)]

∫ b

a
H1(t)dt

from both side of the identity (5.55) and use the inequality (5.76) we obtain the representa-
tion (5.73). The second statement can be proved in a similar manner using identity (5.56).
�

We continue with the results related to the identities (5.57) and (5.58). Let us denote

H2(t) =
∫ b

a
G2(x)B∗

n−1

(
x− t
b−a

)
dx (5.77)

and

2(t) =
∫ b

a
G2(x)

[
B∗

n−1

(
x− t
b−a

)
−Bn−1

(
x−a
b−a

)]
dx. (5.78)

Theorem 5.27 Let f : [a,b] → R be such that f (n) is absolutely continuous function for
some n≥ 2 with (·−a)(b−·)[ f (n+1)]2 ∈ L[a,b] and let g be an integrable function on [a,b].
Let  =

∫ b
a g(t)dt and let the functions G2, H2 and2 be defined by (5.6), (5.77) and (5.78)

respectively. Then

(i) ∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

+
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

− (b−a)n−3[ f (n−1)(b)− f (n−1)(a)]
(n−1)!

∫ b

a
H2(t)dt = S3

n( f ;a,b)

(5.79)

where the remainder S3
n( f ;a,b) satisfies the estimation

∣∣S3
n( f ;a,b)

∣∣≤ (b−a)n− 3
2√

2(n−1)!
[T (H2,H2)]

1
2

∣∣∣∣∫ b

a
(t−a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .
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(ii) ∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt

+
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

− (b−a)n−3[ f (n−1)(b)− f (n−1)(a)]
(n−1)!

∫ b

a
2(t)dt = S4

n( f ;a,b)

(5.80)

where the remainder S4
n( f ;a,b) satisfies the estimation

∣∣S4
n( f ;a,b)

∣∣≤ (b−a)n− 3
2√

2(n−1)!
[T (2,2)]

1
2

∣∣∣∣∫ b

a
(t−a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .

Proof. Similar to the proof of Theorem 5.26. �

The following Grüss type inequalities also hold.

Theorem 5.28 Let f : [a,b]→ R be such that f (n) (n ≥ 2) is absolutely continuous func-
tion and f (n+1) ≥ 0 on [a,b]. Let H1, H2, 1 and 2 be defined by (5.71), (5.77), (5.72)
and (5.78), respectively. Then we have the representations (5.73) (5.75), (5.79) and (5.80)
where the remainders Si

n( f ;a,b), i = 1,2,3,4 satisfy the bounds

∣∣S1
n( f ;a,b)

∣∣≤ (b−a)n−1

(n−1)!
‖H ′

1‖
{

f (n−1)(b)+ f (n−1)(a)
2

−
[
a,b; f (n−2)

]}
.

∣∣S2
n( f ;a,b)

∣∣≤ (b−a)n−1

(n−1)!
‖′

1‖
{

f (n−1)(b)+ f (n−1)(a)
2

−
[
a,b; f (n−2)

]}
,

∣∣S3
n( f ;a,b)

∣∣≤ (b−a)n−1

(n−1)!
‖H ′

2‖
{

f (n−1)(b)+ f (n−1)(a)
2

−
[
a,b; f (n−2)

]}
and

∣∣S4
n( f ;a,b)

∣∣≤ (b−a)n−1

(n−1)!
‖′

2‖
{

f (n−1)(b)+ f (n−1)(a)
2

−
[
a,b; f (n−2)

]}
.

Proof. Similar to the of Theorem 5.7. �
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5.4 Generalizations via Fink’s identitiy

In the paper [20] A. M. Fink obtained the following identity

1
n

(
f (x)+

n−1


k=1

Fk(x)

)
− 1

b−a

∫ b

a
f (t)dt (5.81)

=
1

n!(b−a)

∫ b

a
(x− t)n−1k(t,x) f (n)(t)dt,

where

Fk(x) =
n− k
k!

f (k−1)(a)(x−a)k − f (k−1)(b)(x−b)k

b−a
,

k(t,x) =
{

t −a, a ≤ t ≤ x ≤ b,
t −b, a ≤ x < t ≤ b.

In the authors [68] give some generalizations of Steffensen’s inequality using an ex-
tension of weighted Montgomery identity via Fink’s identity. In this section we use the
identity given by (5.81) to obtain generalization of Steffensen’s inequality for n-convex
functions using different reasoning from the one used in [68]. These results are given in
[69].

First we obtain some new identities related to Steffensen’s inequality.
Here, by Tk(x) we will denote

Tk(x) =
n−1− k

k!
f (k)(a)(x−a)k− f (k)(b)(x−b)k

b−a
.

Theorem 5.29 Let f : [a,b] → R be such that f (n−1) is absolutely continuous for some
n ≥ 2 and let g, p be integrable functions on [a,b] such that p is positive and 0 ≤ g ≤ 1 on
[a,b]. Let

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the function G1 be defined by (5.35) Then∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt−

n−2


k=0

∫ b

a
Tk(x)G1(x)dx

= − 1
(b−a)(n−2)!

∫ b

a

(∫ b

a
G1(x)(x− t)n−2k(t,x)dx

)
f (n)(t)dt.

(5.82)

Proof. Similar to the proof of Theorem 5.11 using identity (5.37) for d(t) = p(t)dt. �

Theorem 5.30 Let f : [a,b] → R be such that f (n−1) is absolutely continuous for some
n ≥ 2 and let g, p be integrable functions on [a,b] such that p is positive and 0 ≤ g ≤ 1 on
[a,b]. Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the function G2 be defined by (5.40) Then∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt−

n−2


k=0

∫ b

a
Tk(x)G2(x)dx

= − 1
(b−a)(n−2)!

∫ b

a

(∫ b

a
G2(x)(x− t)n−2k(t,x)dx

)
f (n)(t)dt.

(5.83)
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Proof. Similar to the proof of Theorem 5.11 using identity (5.42) for d(t) = p(t)dt. �

Using above theorems we obtain the following generalizations of Steffensen’s inequal-
ity for n-convex functions.

Theorem 5.31 Let f : [a,b] → R be such that f (n−1) is absolutely continuous for some
n ≥ 2 and let g, p be integrable functions on [a,b] such that p is positive and 0 ≤ g ≤ 1 on
[a,b]. Let

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the function G1 be defined by (5.35). If f is

n-convex and ∫ b

a
G1(x)(x− t)n−2k(t,x)dx ≤ 0, t ∈ [a,b], (5.84)

then ∫ b

a
f (t)g(t)p(t)dt ≤

∫ a+

a
f (t)p(t)dt−

n−2


k=0

∫ b

a
Tk(x)G1(x)dx. (5.85)

Proof. If the function f is n-convex, without loss of generality we can assume that
f is n-times differentiable and f (n) ≥ 0 see [71, p. 16 and p. 293]. Now we can apply
Theorem 5.29 to obtain (5.85). �

Theorem 5.32 Let f : [a,b] → R be such that f (n−1) is absolutely continuous for some
n ≥ 2 and let g, p be integrable functions on [a,b] such that u is positive and 0 ≤ g ≤ 1 on
[a,b]. Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the function G2 be defined by (5.40).

If f is n-convex and∫ b

a
G2(x)(x− t)n−2k(t,x)dx ≤ 0, t ∈ [a,b], (5.86)

then ∫ b

a
f (t)g(t)p(t)dt ≥

∫ b

b−
f (t)p(t)dt +

n−2


k=0

∫ b

a
Tk(x)G2(x)dx. (5.87)

Proof. Similar to the proof of Theorem 5.31. �

Taking p ≡ 1 and n = 2 in Theorems 5.31 and 5.32 we obtain following corollary.

Corollary 5.8 Let f : [a,b] → R be such that f ′ is absolutely continuous. Let g be an
integrable function on [a,b] with 0 ≤ g ≤ 1 and let  =

∫ b
a g(t)dt.

(i) If f is convex and

t(b−a)
∫ t

a
g(x)dx+(t−b)

∫ t

a
xg(x)dx+(t−a)

∫ b

t
xg(x)dx

≤ (t −a)
(
 2

2
+a

)
+

(b−a)(t−a)2

2
, t ∈ [a,a+ ],

−t(b−a)
∫ b

t
g(x)dx+(t−b)

∫ t

a
xg(x)dx+(t−a)

∫ b

t
xg(x)dx

≤ (t −b)
(
 2

2
+a

)
, t ∈ [a+ ,b],

then∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt − (n−1)

f (a)− f (b)
b−a

(∫ b

a
tg(t)dt−a−  2

2

)
.
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(ii) If f is convex and

−t(b−a)
∫ t

a
g(x)dx+(b− t)

∫ t

a
xg(x)dx+(a− t)

∫ b

t
xg(x)dx

≤ (t−a)
(
 2

2
−b

)
, t ∈ [a,b− ],

t(b−a)
∫ b

t
g(x)dx+(b− t)

∫ t

a
xg(x)dx+(a− t)

∫ b

t
xg(x)dx

≤ (t −b)
(
 2

2
−b

)
− (b−a)(t−b)2

2
, t ∈ [b− ,b],

then∫ b

a
f (t)g(t)dt ≥

∫ b

b−
f (t)dt +(n−1)

f (a)− f (b)
b−a

(
b −  2

2
−
∫ b

a
tg(t)dt

)
.

Now we give the Ostrowski type inequalities for previous results.

Theorem 5.33 Suppose that all assumptions of Theorem 5.29 hold. Assume (p,q) is a

pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let
∣∣∣ f (n)

∣∣∣p : [a,b] → R

be an R-integrable function for some n ≥ 2. Then we have∣∣∣∣∣
∫ a+

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt−

n−2


k=0

∫ b

a
Tk(x)G1(x)dx

∣∣∣∣∣
≤ 1

(b−a)(n−2)!

∥∥∥ f (n)
∥∥∥

p

(∫ b

a

∣∣∣∣∫ b

a
G1(x)(x− t)n−2k(t,x)dx

∣∣∣∣q dt

) 1
q

.

(5.88)

The constant on the right-hand side of (5.88) is sharp for 1 < p ≤  and the best possible
for p = 1.

Proof. Let’s denote

C(t) =
−1

(b−a)(n−2)!

∫ b

a
G1(x)(x− t)n−2k(t,x)dx.

By taking the modulus on (5.82) and applying Hölder’s inequality we obtain∣∣∣∣∣
∫ a+

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt−

n−2


k=0

∫ b

a
Tk(x)G1(x)dx

∣∣∣∣∣
=
∣∣∣∣∫ b

a
C(t) f (n)(t)dt

∣∣∣∣≤ ∥∥∥ f (n)
∥∥∥

p

(∫ b

a
|C(t)|q dt

) 1
q

.

The proof of the sharpness of the constant
(∫ b

a |C(t)|q dt
) 1

q
is similar to the proof of the

sharpness in Theorem 5.8. �
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Theorem 5.34 Suppose that all assumptions of Theorem 5.30 hold. Assume (p,q) is a

pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let
∣∣∣ f (n)

∣∣∣p : [a,b] → R

be an R-integrable function for some n ≥ 2. Then we have∣∣∣∣∣
∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt−

n−2


k=0

∫ b

a
Tk(x)G2(x)dx

∣∣∣∣∣
≤ 1

(b−a)(n−2)!

∥∥∥ f (n)
∥∥∥

p

(∫ b

a

∣∣∣∣∫ b

a
G2(x)(x− t)n−2k(t,x)dx

∣∣∣∣q dt

) 1
q

.

(5.89)

The constant on the right-hand side of (5.89) is sharp for 1 < p ≤ and the best possible
for p = 1.

Proof. Similar to the proof of Theorem 5.33. �

In the sequel we provide some new bounds for the integrals on the left hand side in the
perturbed version of identities (5.82) and (5.83).

We use the following notation:

i(t) =
∫ b

a
Gi(x)(x− t)n−2k(t,x)dx, i = 1,2. (5.90)

Theorem 5.35 Let f : [a,b] → R be such that f (n) is absolutely continuous function for
some n≥ 2 with (·−a)(b−·)[ f (n+1)]2 ∈ L[a,b] and let g, p be integrable functions on [a,b]
such that p is positive and 0 ≤ g ≤ 1 on [a,b]. Let

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the

functions G1 and 1 be defined by (5.35) and (5.90). Then∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt −

n−2


k=0

∫ b

a
Tk(x)G1(x)dx

+
f (n−1)(b)− f (n−1)(a)

(b−a)2(n−2)!

∫ b

a
1(t)dt = S1

p,n( f ;a,b),

(5.91)

where the remainder S1
p,n( f ;a,b) satisfies the estimation

∣∣S1
p,n( f ;a,b)

∣∣≤ 1√
2(n−2)!

[T (1,1)]
1
2

1√
b−a

∣∣∣∣∫ b

a
(t−a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .

Proof. Similar to the proof of Theorem 5.5. �

Theorem 5.36 Let f : [a,b] → R be such that f (n) is absolutely continuous function for
some n≥ 2 with (·−a)(b−·)[ f (n+1)]2 ∈ L[a,b] and let g, p be integrable functions on [a,b]
such that p is positive and 0 ≤ g ≤ 1 on [a,b]. Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the

functions G2 and 2 be defined by (5.40) and (5.90). Then∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt −

n−2


k=0

∫ b

a
Tk(x)G2(x)dx

+
f (n−1)(b)− f (n−1)(a)

(b−a)2(n−2)!

∫ b

a
2(t)dt = S2

p,n( f ;a,b),

(5.92)
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where the remainder S2
p,n( f ;a,b) satisfies the estimation

∣∣S2
p,n( f ;a,b)

∣∣≤ 1√
2(n−2)!

[T (2,2)]
1
2

1√
b−a

∣∣∣∣∫ b

a
(t−a)(b− t)[ f (n+1)(t)]2dt

∣∣∣∣ 12 .

Proof. Similar to the proof of Theorem 5.5. �

The following Grüss type inequalities hold.

Theorem 5.37 Let f : [a,b]→ R be such that f (n) (n ≥ 2) is absolutely continuous func-
tion and f (n+1) ≥ 0 on [a,b]. Let the functions i, i = 1,2 be defined by (5.90).

(a) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt.

Then we have the representation (5.91) and the remainder S1
p,n( f ;a,b) satisfies the

bound∣∣S1
p,n( f ;a,b)

∣∣≤ 1
(n−2)!

‖′
1‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

(b) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt.

Then we have the representation (5.92) and the remainder S2
p,n( f ;a,b) satisfies the

bound∣∣S2
p,n( f ;a,b)

∣∣≤ 1
(n−2)!

‖′
2‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

Proof. Similar to the proof of Theorem 5.7. �

Corollary 5.9 Let f : [a,b] → R be such that f ′′ is absolutely continuous function and
f ′′′ ≥ 0 on [a,b]. Let  =

∫ b
a g(t)dt.

(i) Then we have∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt− (n−1)

f (a)− f (b)
b−a

(∫ b

a
xg(x)dx−  2

2
−a

)
+

f ′(b)− f ′(a)
(b−a)2

∫ b

a
1(t)dt = S1

1,2( f ;a,b)

and the remainder S1
1,2( f ;a,b) satisfies the bound∣∣S1

1,2( f ;a,b)
∣∣≤ ‖′

1‖
{

f ′(b)+ f ′(a)
2

− f (b)− f (a)
b−a

}
where

′
1(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ b
a xg(x)dx+(b−a)

∫ t
a g(x)dx

−(t−a)(b−a)−  2

2 −a, t ∈ [a,a+ ];

∫ b
a xg(x)dx− (b−a)

∫ b
t g(x)dx−  2

2 −a, t ∈ [a+ ,b].
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(ii) Then we have∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt− (n−1)

f (a)− f (b)
b−a

(
b −  2

2
−
∫ b

a
xg(x)dx

)
+

f ′(b)− f ′(a)
(b−a)2

∫ b

a
2(t)dt = S2

1,2( f ;a,b)

and the remainder S2
1,2( f ;a,b) satisfies the bound

∣∣S2
1,2( f ;a,b)

∣∣≤ ‖′
2‖
{

f ′(b)+ f ′(a)
2

− f (b)− f (a)
b−a

}
where

′
2(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b −  2

2 − ∫ b
a xg(x)dx− (b−a)

∫ t
a g(x)dx t ∈ [a,b− ];

b −  2

2 − (b−a)(b− t)− ∫b
a xg(x)dx

+(b−a)
∫ b
t g(x)dx, t ∈ [b− ,b].

Proof. Apply Theorem 5.37 with p ≡ 1 and n = 2. �

5.5 Generalizations via Lidstone polynomial

In this section we give new generalizations of Steffensen’s inequality via Lidstone polyno-
mials. Results given in this section were obtained by Pečarić, Perušić Pribanić and Vukelić
in [70]. In [65], using different approach and ideas, the authors introduced and proved
some generalizations of Steffensen’s inequality via Lidstone polynomials.

First we give the proofs of identities related to generalization of Steffensen’s ineguality
using Lidstone’s interpolating polynomial.

Theorem 5.38 Let f : I →R be such that f (2n−1) is absolutely continuous for some n≥ 1,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the function G1

be defined by (5.35). Then∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt

+
n−1


k=0

(b−a)2k−1
∫ b

a
G1(x)

[
f (2k) (b)

′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
dx

= −(b−a)2n−1
∫ b

a

(∫ b

a
G1(x)

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
dx

)
f (2n)(s)ds.

(5.93)
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Proof. Using identity (5.37) for d(t) = p(t)dt and integration by parts we have∫ a+

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt = −

∫ b

a
G1(x) f ′(x)dx.

By Lemma 1.2 every function f ∈C(2n)([a,b]) can be represented as

f (x) =
n−1


k=0

(b−a)2k
[

f (2k)(a)k

(
b− x
b−a

)
+ f (2k)(b)k

(
x−a
b−a

)]
+(b−a)2n−1

∫ b

a
Gn

(
x−a
b−a

,
s−a
b−a

)
f (2n)(s)ds.

(5.94)

Its derivative is

f ′(x) =
n−1


k=0

(b−a)2k−1
[

f (2k) (b)
′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
+(b−a)2n−1

∫ b

a

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
f (2n)(s)ds

(5.95)

where

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

n−1


k=0

′
k

(
x−a
b−a

)
(b− s)2n−2k−1

(b−a)2n−2k (2n−2k−1)!
, x < s,

n−1


k=0

′
k

(
b− x
b−a

)
(s−a)2n−2k−1

(b−a)2n−2k (2n−2k−1)!
, s ≤ x.

Now we have∫ b

a
G1(x) f ′(x)dx

=
n−1


k=0

(b−a)2k−1
∫ b

a
G1(x)

[
f (2k) (b)

′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
dx

+(b−a)2n−1
∫ b

a
G1(x)

(∫ b

a

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
f (2n)(s)ds

)
dx.

(5.96)

After applying Fubini’s theorem on the last term in (5.96) we obtain (5.93). �

Theorem 5.39 Let f : I →R be such that f (2n−1) is absolutely continuous for some n≥ 1,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the function G2 be

defined by (5.40). Then∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt

+
n−1


k=0

(b−a)2k−1
∫ b

a
G2(x)

[
f (2k) (b)

′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
dx

= −(b−a)2n−1
∫ b

a

(∫ b

a
G2(x)

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
dx

)
f (2n)(s)ds

(5.97)
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Proof. Similar to the proof of Theorem 5.38 using identity (5.42). �

Theorem 5.40 Let f : I → R be such that f (2n) is absolutely continuous for some n ≥ 1,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the function G1

be defined by (5.35). Then∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt

+
n−1


k=0

(b−a)2k
∫ b

a
G1(x)

[
f (2k+1) (a)k

(
b− x
b−a

)
+ f (2k+1) (b)k

(
x−a
b−a

)]
dx

= −(b−a)2n−1
∫ b

a

(∫ b

a
G1(x)Gn

(
x−a
b−a

,
s−a
b−a

)
dx

)
f (2n+1)(s)ds.

(5.98)

Proof. Similar to the proof of Theorem 5.38 using the identity (5.94) on the function f ′.
�

Theorem 5.41 Let f : I → R be such that f (2n) is absolutely continuous for some n ≥ 1,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the function G2 be

defined by (5.40). Then∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt

+
n−1


k=0

(b−a)2k
∫ b

a
G2(x)

[
f (2k+1) (a)k

(
b− x
b−a

)
+ f (2k+1) (b)k

(
x−a
b−a

)]
dx

= −(b−a)2n−1
∫ b

a

(∫ b

a
G2(x)Gn

(
x−a
b−a

,
s−a
b−a

)
dx

)
f (2n+1)(s)ds.

(5.99)

Proof. Similar to the proof of Theorem 5.39 using (5.94) on the function f ′. �

Now we give generalizations of Steffensen’s inequality for (2n)-convex and
(2n+1)-convex functions.

Theorem 5.42 Let f : I →R be such that f (2n−1) is absolutely continuous for some n≥ 1,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let the functions G1,G2 be defined by (5.35) and (5.40)
respectively.

(i) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. If f is (2n)-convex function and∫ b

a
G1(x)

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
dx ≥ 0 (5.100)
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then∫ b

a
f (t)g(t)p(t)dt ≥

∫ a+

a
f (t)p(t)dt

+
n−1


k=0

(b−a)2k−1
∫ b

a
G1(x)

[
f (2k) (b)

′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
dx.

(5.101)
(ii) Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. If f is (2n)-convex function and∫ b

a
G2(x)

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
dx ≥ 0 (5.102)

then∫ b

a
f (t)g(t)p(t)dt ≤

∫ b

b−
f (t)p(t)dt

−
n−1


k=0

(b−a)2k−1
∫ b

a
G2(x)

[
f (2k) (b)

′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
dx.

(5.103)

The reversed inequalities in (5.100) and (5.102) implies the reversed inequalities in (5.101)
and (5.103) respectively.

Proof. If the function f is (2n)-convex, without loss of generality we can assume that
f is 2n−times differentiable and f (2n) ≥ 0 see [71, p. 16 and p. 293]. Now we can apply
Theorem 5.38 and Theorem 5.39 to obtain (5.101) and (5.103) respectively. �

Theorem 5.43 Let f : I → R be such that f (2n) is absolutely continuous for some n > 1,
I ⊂ R an open interval, a,b ∈ I, a < b. Let g, p : [a,b] → R be integrable functions such
that p is positive and 0 ≤ g ≤ 1. Let the functions G1,G2 be defined by (5.35) and (5.40)
respectively.

(i) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. If n is even, then for (2n+1)-convex function f we

have∫ b

a
f (t)g(t)p(t)dt ≥

∫ a+

a
f (t)p(t)dt

+
n−1


k=0

(b−a)2k
∫ b

a
G1(x)

[
f (2k+1) (a)k

(
b− x
b−a

)
+ f (2k+1) (b)k

(
x−a
b−a

)]
dx

(5.104)

(ii) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. If n is even, then for (2n + 1)−convex function f

we have∫ b

a
f (t)g(t)p(t)dt ≤

∫ b

b−
f (t)p(t)dt

−
n−1


k=0

(b−a)2k
∫ b

a
G2(x)

[
f (2k+1) (a)k

(
b−x
b−a

)
+ f (2k+1) (b)k

(
x−a
b−a

)]
dx.

(5.105)

If n is odd, then the reversed inequalities in (5.104) and (5.105) hold.
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Proof. Since 0 ≤ g ≤ 1 from definition of Gi, i = 1,2 it follows that functions Gi, i = 1,2

are nonnegative. Since n is even from (1.43), it follows that Gn

(
x−a
b−a

,
x−a
b−a

)
≥ 0. Also,

if the function f is (2n+ 1)-convex, without loss of generality we can assume that f is
(2n + 1)−times differentiable and f (2n+1) ≥ 0 see [71, p. 16 and p. 293]. Now we can
apply Theorem 5.40 and Theorem 5.41 to obtain (5.104) and (5.105) respectively. �

As in the previous sections, we give the Ostrowski type inequalities related to general-
izations of Steffensen’s inequality. Using the same approch as in Theorem 5.8 it is easy to
see that the following theorem holds.

Theorem 5.44 Suppose that all assumptions of Theorem 5.38 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p + 1/q = 1 and
f (2n) ∈ Lp [a,b]. Then we have∣∣∣∣∫ a+

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt

+
n−1


k=0

(b−a)2k−1
∫ b

a
G1(x)

[
f (2k) (b)

′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
dx

∣∣∣∣∣
≤ (b−a)2n−1

∥∥∥ f (2n)
∥∥∥

p

∥∥∥∥∫ b

a
G1(x)

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
dx

∥∥∥∥
q
.

(5.106)

The constant on the right-hand side of (5.106) is sharp for 1 < p≤ and the best possible
for p = 1.

Theorem 5.45 Suppose that all assumptions of Theorem 5.39 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p + 1/q = 1 and
f (2n) ∈ Lp [a,b]. Then we have∣∣∣∣∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt

+
n−1


k=0

(b−a)2k−1
∫ b

a
G2(x)

[
f (2k) (b)

′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
dx

∣∣∣∣∣
≤ (b−a)2n−1

∥∥∥ f (2n)
∥∥∥

p

∥∥∥∥∫ b

a
G2(x)

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
dx

∥∥∥∥
q
.

(5.107)

The constant on the right-hand side of (5.107) is sharp for 1 < p≤ and the best possible
for p = 1.

Theorem 5.46 Suppose that all assumptions of Theorem 5.40 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p + 1/q = 1 and
f (2n+1) ∈ Lp [a,b]. Then we have
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a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt

+
n−1


k=0

(b−a)2k
∫ b

a
G1(x)

[
f (2k+1) (a)k

(
b− x
b−a

)
+ f (2k+1) (b)k

(
x−a
b−a

)]
dx

∣∣∣∣∣
≤ (b−a)2n−1

∥∥∥ f (2n+1)
∥∥∥

p

∥∥∥∥∫ b

a
G1(x)Gn

(
x−a
b−a

,
s−a
b−a

)
dx

∥∥∥∥
q
.

(5.108)

The constant on the right-hand side of (5.108) is sharp for 1 < p≤ and the best possible
for p = 1.

Theorem 5.47 Suppose that all assumptions of Theorem 5.41 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p + 1/q = 1 and f (2n+1)

∈ Lp [a,b]. Then we have∣∣∣∣∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt

+
n−1


k=0

(b−a)2k
∫ b

a
G2(x)

[
f (2k+1) (a)k

(
b− x
b−a

)
+ f (2k+1) (b)k

(
x−a
b−a

)]
dx

∣∣∣∣∣
≤ (b−a)2n−1

∥∥∥ f (2n+1)
∥∥∥

p

∥∥∥∥∫ b

a
G2(x)Gn

(
x−a
b−a

,
s−a
b−a

)
dx

∥∥∥∥
q
.

(5.109)

The constant on the right-hand side of (5.109) is sharp for 1 < p≤ and the best possible
for p = 1.

In this section by i(s) and i(s) we will denote

i(s) =
∫ b

a
Gi(x)

dGn

dx

(
x−a
b−a

,
s−a
b−a

)
dx, i = 1,2 (5.110)

and

i(s) =
∫ b

a
Gi(x)Gn

(
x−a
b−a

,
s−a
b−a

)
dx, i = 1,2. (5.111)

Similarly as in previous sections, using Theorems 1.23 and 1.24 it is easy to see that
the following theorems hold.

Theorem 5.48 Let f : [a,b]→ R be such that f ∈C2n([a,b]) and (·−a)(b−·)[ f (2n+1)]2

∈ L1[a,b]. Let g, p : [a,b]→R be integrable functions such that p is positive and 0≤ g≤ 1.
Let the functions G1, G2 and i be defined by (5.35),(5.40) and (5.110), respectively.
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(a) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Then∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt

+
n−1


k=0

(b−a)2k−1
∫ b

a
G1(x)

[
f (2k) (b)

′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
dx

+(b−a)2n−2
(

f (2n−1)(b)− f (2n−1)(a)
)∫ b

a
1(s)ds = S1

n( f ;a,b),

(5.112)

where the remainder S1
n( f ;a,b) satisfies the estimation∣∣S1

n( f ;a,b)
∣∣≤ (b−a)2n

√
2

[T (1,1)]
1
2 × 1√

b−a

(∫ b

a
(s−a)(b−s)[ f (2n+1)(s)]2ds

) 1
2

.

(b) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Then∫ b

a
f (t)g(t)p(t)dt −

∫ b

b−
f (t)p(t)dt

+
n−1


k=0

(b−a)2k−1
∫ b

a
G2(x)

[
f (2k) (b)

′
k

(
x−a
b−a

)
− f (2k) (a)

′
k

(
b− x
b−a

)]
dx

+(b−a)2n−2
(

f (2n−1)(b)− f (2n−1)(a)
)∫ b

a
2(s)ds = S2

n( f ;a,b),

(5.113)

where the remainder S2
n( f ;a,b) satisfies the estimation∣∣S2

n( f ;a,b)
∣∣≤ (b−a)2n

√
2

[T (2,2)]
1
2 × 1√

b−a

(∫ b

a
(s−a)(b−s)[ f (2n+1)(s)]2ds

) 1
2

.

Theorem 5.49 Let f : [a,b]→R be such that f ∈C2n+1([a,b]) and (·−a)(b−·)[ f (2n+2)]2

∈ L1[a,b]. Let g, p : [a,b]→R be integrable functions such that p is positive and 0≤ g≤ 1.
Let the functions G1, G2 and i be defined by (5.35), (5.40) and (5.111).

(a) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Then∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt

+
n−1


k=0

(b−a)2k
∫ b

a
G1(x)

[
f (2k+1) (a)k

(
b− x
b−a

)
+ f (2k+1) (b)k

(
x−a
b−a

)]
dx

+(b−a)2n−2
(

f (2n)(b)− f (2n)(a)
)∫ b

a
1(s)ds = S3

n( f ;a,b),

(5.114)

where the remainder S3
n( f ;a,b) satisfies the estimation∣∣S3

n( f ;a,b)
∣∣≤ (b−a)2n

√
2

[T (1,1)]
1
2 × 1√

b−a

(∫ b

a
(s−a)(b−s)[ f (2n+2)(s)]2ds

) 1
2

.
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(b) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Then∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt

+
n−1


k=0

(b−a)2k
∫ b

a
G2(x)

[
f (2k+1) (a)k

(
b− x
b−a

)
+ f (2k+1) (b)k

(
x−a
b−a

)]
dx

+(b−a)2n−2
(

f (2n)(b)− f (2n)(a)
)∫ b

a
2(s)ds = S4

n( f ;a,b),

(5.115)

where the remainder S4
n( f ;a,b) satisfies the estimation

∣∣S4
n( f ;a,b)

∣∣≤ (b−a)2n
√

2
[T (2,2)]

1
2 × 1√

b−a

(∫ b

a
(s−a)(b−s)[ f (2n+2)(s)]2ds

) 1
2

.

Theorem 5.50 Let f : [a,b] → R be such that f ∈ C2n([a,b]) and f (2n+1) ≥ 0 on [a,b].
Let functions i, i = 1,2 be defined by (5.110).

(a) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Then we have representation (5.112) and the re-

mainder S1
n( f ;a,b) satisfies the bound∣∣S1

n( f ;a,b)
∣∣≤ (b−a)2n‖′

1‖
{

f (2n−1)(b)+ f (2n−1)(a)
2

−
[
a,b; f (2n−2)

]}
.

(b) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Then we have representation (5.113) and the re-

mainder S2
n( f ;a,b) satisfies the bound∣∣S2

n( f ;a,b)
∣∣≤ (b−a)2n‖′

2‖
{

f (2n−1)(b)+ f (2n−1)(a)
2

−
[
a,b; f (2n−2)

]}
.

Theorem 5.51 Let f : [a,b]→ R be such that f ∈C2n+1([a,b]) and f (2n+2) ≥ 0 on [a,b].
Let functions i, i = 1,2 be defined by (5.111).

(a) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Then we have representation (5.114) and the re-

mainder S3
n( f ;a,b) satisfies the bound∣∣S3

n( f ;a,b)
∣∣≤ (b−a)2n‖′

1‖
{

f (2n)(b)+ f (2n)(a)
2

−
[
a,b; f (2n−1)

]}
.

(b) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Then we have representation (5.115) and the re-

mainder S4
n( f ;a,b) satisfies the bound∣∣S4

n( f ;a,b)
∣∣≤ (b−a)2n‖′

2‖
{

f (2n)(b)+ f (2n)(a)
2

−
[
a,b; f (2n−1)

]}
.
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5.6 Generalizations via Hermite polynomial

We begin this section with representations of Steffensen’s inequality that are obtained by
using Hermite interpolating polynomials. Results given in this section were shown in
[66]. For further reading on some different generalizations of Steffensen’s inequality using
Hermite expansions with integral remainder we refer the reader to [33].

Theorem 5.52 Let − < a ≤ a1 < a2 ... < ar ≤ b < , (r ≥ 2) be given points and
f ∈Cn [a,b]. Let g, p : [a,b] → R be integrable functions such that p is positive, 0 ≤ g ≤ 1
and

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Let the function G1 be defined by (5.35). Then

∫ a+

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt +

r


j=1

k j


i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx

= −
∫ b

a

(∫ b

a
G1(x)GH,n−1(x,s)dx

)
f (n)(s)ds

(5.116)

where Hi j are defined on [a,b] by (1.46) and GH,n−1 is Green’s function defined by (1.48).

Proof. Similar to the proof of Theorem 5.11 using identity (1.45) on the function f
′
. �

Theorem 5.53 Let − < a ≤ a1 < a2 ... < ar ≤ b < , (r ≥ 2) be given points and
f ∈Cn [a,b]. Let g, p : [a,b] → R be integrable functions such that p is positive, 0 ≤ g ≤ 1
and

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Let the function G2 be defined by (5.40). Then

∫ b

a
f (t)g(t)p(t)dt −

∫ b

b−
f (t)p(t)dt +

r


j=1

k j


i=0

f (i+1)(a j)
∫ b

a
G2(x)Hi j(x)dx

= −
∫ b

a

(∫ b

a
G2(x)GH,n−1(x,s)dx

)
f (n)(s)ds

(5.117)

where Hi j are defined on [a,b] by (1.46) and GH,n−1 is Green’s function defined by (1.48).

Proof. Similar to the proof of the previous theorem using identity (5.42). �

In the following theorems we give generalizations of Steffensen’s inequality for
n-convex functions.

Theorem 5.54 Let − < a ≤ a1 < a2 ... < ar ≤ b < , (r ≥ 2) be given points and
f ∈Cn [a,b]. Let g, p : [a,b] → R be integrable functions such that p is positive, 0 ≤ g ≤ 1
and

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Let the function G1 be defined by (5.35). If f is n-convex

and ∫ b

a
G1(x)GH,n−1(x,s)dx ≥ 0, s ∈ [a,b], (5.118)
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then∫ b

a
f (t)g(t)p(t)dt ≥

∫ a+

a
f (t)p(t)dt +

r


j=1

k j


i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx, (5.119)

where Hi j are defined on [a,b] by (1.46) and GH,n−1 is Green’s function defined by (1.48).
If the reverse inequality in (5.118) holds, then the reverse inequality in (5.119) holds.

Proof. If the function f is n-convex, without loss of generality we can assume that f
is n-times differentiable and f (n) ≥ 0 see [71, p. 16 and p. 293]. Hence we can apply
Theorem 5.52 to obtain (5.119). �

Theorem 5.55 Let − < a ≤ a1 < a2 ... < ar ≤ b < , (r ≥ 2) be given points and
f ∈Cn [a,b]. Let g, p : [a,b] → R be integrable functions such that p is positive, 0 ≤ g ≤ 1
and

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Let the function G2 be defined by (5.40). If f is n-convex

and ∫ b

a
G2(x)GH,n−1(x,s)dx ≥ 0, s ∈ [a,b], (5.120)

then∫ b

a
f (t)g(t)p(t)dt ≤

∫ b

b−
f (t)p(t)dt −

r


j=1

k j


i=0

f (i+1)(a j)
∫ b

a
G2(x)Hi j(x)dx, (5.121)

where Hi j are defined on [a,b] by (1.46) and GH,n−1 is Green’s function defined by (1.48).
If the reverse inequality in (5.120) holds, then the reverse inequality in (5.121) holds.

Proof. Analogous to the proof of Theorem 5.54. �

Remark 5.3 Note that functions Gi, i = 1,2 defined by (5.35) and (5.40) are nonnegative.
If all k1, . . . ,kr are odd then (x) = r

j=1(x− a j)k j+1 ≥ 0 and according to (i)-part of
Lemma 1.4 GH,n (x,s) ≥ 0. Therefore, in Theorems 5.54 and 5.55 it is enough to assume
that the function f is n-convex. For the case when only one k j is even and others are odd
we have (x) =r

j=1(x−a j)k j+1 ≤ 0 and by Lemma 1.4, GH,n (x,s)≤ 0. Hence, integrals
in (5.118) and (5.120) are nonpositive and the reverse inequalities in (5.119) and (5.121)
hold.

By using (m,n−m) type conditions we obtain following representations of Steffensen’s
inequality.

Corollary 5.10 Let−< a < b < be given points and f ∈Cn [a,b]. Let g, p : [a,b]→R

be integrable functions such that p is positive, 0 ≤ g ≤ 1 and
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt.

Let the function G1 be defined by (5.35) and i, i be defined by (1.49) and (1.50), respec-
tively. Then∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt +

m−1


i=0

f (i+1)(a)
∫ b

a
G1(x)i(x)dx

+
n−m−2


i=0

f (i+1)(b)
∫ b

a
G1(x)i(x)dx = −

∫ b

a

(∫ b

a
G1(x)Gm,n−1(x,s)dx

)
f (n)(s)ds,

where Gm,n−1 is Green’s function defined by (1.51).
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Corollary 5.11 Let−< a < b < be given points and f ∈Cn [a,b]. Let g, p : [a,b]→R

be integrable functions such that p is positive, 0 ≤ g ≤ 1 and
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt.

Let the function G2 be defined by (5.40) and i, i be defined by (1.49) and (1.50), respec-
tively. Then∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt +

m−1


i=0

f (i+1)(a)
∫ b

a
G2(x)i(x)dx

+
n−m−2


i=0

f (i+1)(b)
∫ b

a
G2(x)i(x)dx = −

∫ b

a

(∫ b

a
G2(x)Gm,n−1(x,s)dx

)
f (n)(s)ds,

where Gm,n−1 is Green’s function defined by (1.51).

Further, using (m,n−m) type conditions the following generalizations of Steffensen’s
inequality are obtained.

Corollary 5.12 Let−< a < b < be given points and f ∈Cn [a,b]. Let g, p : [a,b]→R

be integrable functions such that p is positive, 0 ≤ g ≤ 1 and
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt.

Let the function G1 be defined by (5.35) and i, i be defined by (1.49) and (1.50), respec-
tively. If f is n-convex and∫ b

a
G1(x)Gm,n−1(x,s)dx ≥ 0, s ∈ [a,b],

then ∫ b

a
f (t)g(t)p(t)dt ≥

∫ a+

a
f (t)p(t)dt +

m−1


i=0

f (i+1)(a)
∫ b

a
G1(x)i(x)dx

+
n−m−2


i=0

f (i+1)(b)
∫ b

a
G1(x)i(x)dx,

where Gm,n−1 is Green’s function defined by (1.51).

Corollary 5.13 Let−< a < b < be given points and f ∈Cn [a,b]. Let g, p : [a,b]→R

be integrable functions such that p is positive, 0 ≤ g ≤ 1 and
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt.

Let the function G2 be defined by (5.40) and i, i be defined by (1.49) and (1.50), respec-
tively. If f is n-convex and∫ b

a
G2(x)Gm,n−1(x,s)dx ≥ 0, s ∈ [a,b],

then ∫ b

a
f (t)g(t)p(t)dt ≤

∫ b

b−
f (t)p(t)dt −

m−1


i=0

f (i+1)(a)
∫ b

a
G2(x)i(x)dx

−
n−m−2


i=0

f (i+1)(b)
∫ b

a
G2(x)i(x)dx,

where Gm,n−1 is Green’s function defined by (1.51).
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The Ostrowski-type inequalities related to previously obtained generalizations are given.

Theorem 5.56 Suppose that all assumptions of Theorem 5.52 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+ 1/q = 1 and f (n) ∈
Lp [a,b] for some n ≥ 2. Then we have∣∣∣∣∫ a+

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt +

r


j=1

k j


i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx

∣∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

∥∥∥∥∫ b

a
G1(x)GH,n−1(x, ·)dx

∥∥∥∥
q
.

(5.122)

The constant on the right-hand side of (5.122) is sharp for 1 < p≤ and the best possible
for p = 1.

Proof. Similar to the proof of the Theorem 5.8. �

Theorem 5.57 Suppose that all assumptions of Theorem 5.53 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+ 1/q = 1. Let f (n) ∈
Lp [a,b] for some n ≥ 2. Then we have∣∣∣∣∫ b

a
f (t)g(t)p(t)dt −

∫ b

b−
f (t)p(t)dt +

r


j=1

k j


i=0

f (i+1)(a j)
∫ b

a
G2(x)Hi j(x)dx

∣∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

∥∥∥∥∫ b

a
G2(x)GH,n−1(x, ·)dx

∥∥∥∥
q
.

(5.123)

The constant on the right-hand side of (5.123) is sharp for 1 < p≤ and the best possible
for p = 1.

Proof. Similar to the proof of Theorem 5.8. �

By using (m,n−m) type conditions we obtain the following results.

Corollary 5.14 Suppose that all assumptions of Corollary 5.10 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+ 1/q = 1 and f (n) ∈
Lp [a,b] for some n ≥ 2. Then we have∣∣∣∣∣

∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt +

m−1


i=0

f (i+1)(a)
∫ b

a
G1(x)i(x)dx

+
n−m−2


i=0

f (i+1)(b)
∫ b

a
G1(x)i(x)dx

∣∣∣∣∣≤ ∥∥∥ f (n)
∥∥∥

p

∥∥∥∥∫ b

a
G1(x)Gm,n−1(x, ·)dx

∥∥∥∥
q
.

(5.124)

The constant on the right-hand side of (5.124) is sharp for 1 < p ≤  and the best
possible for p = 1.



202 5 WEIGHTED STEFFENSEN INEQUALITY FOR n-CONVEX FUNCTIONS

Corollary 5.15 Suppose that all assumptions of Corollary 5.11 hold. Assume also that
(p,q) is a pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+ 1/q = 1 and f (n) ∈
Lp [a,b] for some n ≥ 2. Then we have∣∣∣∣∣

∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt +

m−1


i=0

f (i+1)(a)
∫ b

a
G2(x)i(x)dx

+
n−m−2


i=0

f (i+1)(b)
∫ b

a
G2(x)i(x)dx

∣∣∣∣∣≤ ∥∥∥ f (n)
∥∥∥

p

∥∥∥∥∫ b

a
G2(x)Gm,n−1(x, ·)dx

∥∥∥∥
q
.

(5.125)

The constant on the right-hand side of (5.125) is sharp for 1 < p ≤  and the best
possible for p = 1.

In the sequel, similarly as in previous sections, we give some new bounds for integrals
on the left hand side in the perturbed versions of representations obtained in Theorems 5.52
and 5.53.

Let us denote

i(s) =
∫ b

a
Gi(x)GH,n−1(x,s)dx, i = 1,2 (5.126)

i(s) =
∫ b

a
Gi(x)Gm,n−1(x,s)dx, i = 1,2, (5.127)

for Gi defined by (5.35) and (5.40) and GH,n−1, Gm,n−1 defined by (1.48) and (1.51),
respectively.

Using Theorem 1.23 we obtain the following results.
Proofs are similar to the proof of Theorem 5.5 so we omit them here.

Theorem 5.58 Let − < a ≤ a1 < a2 ... < ar ≤ b < , (r ≥ 2) be given points, f ∈
Cn+1 [a,b] and (·−a)(b−·)[ f (n+1)]2 ∈ L1[a,b]. Let g, p : [a,b]→R be integrable functions
such that p is positive, 0≤ g≤ 1 and

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Let G1 and1 be defined

by (5.35) and (5.126), respectively. Then

∫ a+

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt +

r


j=1

k j


i=0

f (i+1)(a j)
∫ b

a
G1(x)Hi j(x)dx

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
1(s)ds = S1

n( f ;a,b),

(5.128)

where the remainder S1
n( f ;a,b) satisfies the estimation

∣∣S1
n( f ;a,b)

∣∣≤ √
b−a√

2
[T (1,1)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

.
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Theorem 5.59 Let − < a ≤ a1 < a2 ... < ar ≤ b < , (r ≥ 2) be given points, f ∈
Cn+1 [a,b] and (·−a)(b−·)[ f (n+1)]2 ∈ L1[a,b]. Let g, p : [a,b]→R be integrable functions
such that p is positive, 0≤ g≤ 1 and

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Let G2 and2 be defined

by (5.40) and (5.126), respectively.
Then∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt +

r


j=1

k j


i=0

f (i+1)(a j)
∫ b

a
G2(x)Hi j(x)dx

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
2(s)ds = S2

n( f ;a,b),

(5.129)

where the remainder S2
n( f ;a,b) satisfies the estimation

∣∣S2
n( f ;a,b)

∣∣≤ √
b−a√

2
[T (2,2)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

.

Using Theorem 1.24 we obtain the following Grüss type inequalities.

Theorem 5.60 Let − < a ≤ a1 < a2 ... < ar ≤ b < , (r ≥ 2) be given points, f ∈
Cn+1 [a,b] and f (n+1) ≥ 0 on [a,b]. Let functions i, i = 1,2 be defined by (5.126).

(a) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Then the representation (5.128) holds and the re-

mainder S1
n( f ;a,b) satisfies the bound∣∣S1

n( f ;a,b)
∣∣≤ (b−a)‖′

1‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

(b) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Then the representation (5.129) holds and the re-

mainder S2
n( f ;a,b) satisfies the bound∣∣S2

n( f ;a,b)
∣∣≤ (b−a)‖′

2‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

Proof. Similar to the proof of Theorem 5.7. �

Similarly, using the (m,n−m) conditions we obtain the following results.

Corollary 5.16 Let −< a < b <  be given points, f ∈Cn+1 [a,b] and
(·−a)(b−·)[ f (n+1)]2 ∈ L1[a,b]. Let g, p : [a,b]→ R be integrable functions such that p is
positive, 0 ≤ g ≤ 1 and

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Let G1, 1, i and i be defined by

(5.35), (5.127),(1.49) and (1.50) respectively. Then∫ a+

a
f (t)p(t)dt−

∫ b

a
f (t)g(t)p(t)dt +

m−1


i=0

f (i+1)(a)
∫ b

a
G1(x)i(x)dx

+
n−m−2


i=0

f (i+1)(b)
∫ b

a
G1(x)i(x)dx+

f (n−1)(b)− f (n−1)(a)
b−a

∫ b

a
1(s)ds

= S3
n( f ;a,b),

(5.130)



204 5 WEIGHTED STEFFENSEN INEQUALITY FOR n-CONVEX FUNCTIONS

where the remainder S3
n( f ;a,b) satisfies the estimation

∣∣S3
n( f ;a,b)

∣∣≤ √
b−a√

2
[T (1,1)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

.

Corollary 5.17 Let −< a < b <  be given points, f ∈Cn+1 [a,b] and
(·− a)(b− ·)[ f (n+1)]2 ∈ L1[a,b]. Let g, p : [a,b] → R be integrable functions such that p
is positive, 0 ≤ g ≤ 1 and

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Let G2, 2, i and i be defined by

(5.40), (5.127),(1.49) and (1.50) respectively. Then

∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt +

m−1


i=0

f (i+1)(a)
∫ b

a
G2(x)i(x)dx

+
n−m−2


i=0

f (i+1)(b)
∫ b

a
G2(x)i(x)dx+

f (n−1)(b)− f (n−1)(a)
b−a

∫ b

a
2(s)ds

= S4
n( f ;a,b),

(5.131)

where the remainder S4
n( f ;a,b) satisfies the estimation

∣∣S4
n( f ;a,b)

∣∣≤ √
b−a√

2
[T (2,2)]

1
2

(∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

) 1
2

.

Corollary 5.18 Let − < a < b <  be given points, f ∈Cn+1 [a,b] and f (n+1) ≥ 0 on
[a,b]. Let functions i, i = 1,2 be defined by (5.127).

(a) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Then the representation (5.130) holds and the re-

mainder S3
n( f ;a,b) satisfies the bound∣∣S3

n( f ;a,b)
∣∣

≤ (b−a)‖′
1‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

(b) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Then the representation (5.131) holds and the re-

mainder S4
n( f ;a,b) satisfies the bound∣∣S4

n( f ;a,b)
∣∣

≤ (b−a)‖′
2‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.



5.7 GENERALIZATIONS VIA TWO-POINT ABEL-GONTSCHAROFF POLYNOMIAL 205

5.7 Generalizations via two-point Abel-Gontscharoff
polynomial

Some generalizations of Steffensen’s inequality via Abel-Gontscharoff polynomial using
the difference of integrals on two intervals were obtained in [62]. Using different approach
from the one used in [62], the authors obtained following results, given in [67].

First, by using two-point Abel-Gontscharoff polynomial some identities for Steffensen’s
difference were obtained.

Theorem 5.61 Let f ∈Cn[a,b] for n ≥ 3 and let g, p : [a,b] → R be integrable functions
such that p is positive and 0 ≤ g ≤ 1. Let

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the function

G1 be defined by (5.35). Then

∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt +




i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx

+
n−−3


j=0

f (+ j+2)(a+ )

[
j


i=0

(− ) j−i

( +1+ i)!( j− i)!

(∫ b

a
(x−a)+1+iG1(x)dx

)]

= −
∫ b

a

(∫ b

a
G1(x)gAG2(x,s)dx

)
f (n)(s)ds.

(5.132)

Proof. Similar to the proof of Theorem 5.11 using identity (1.52) on the function f
′
. �

Theorem 5.62 Let f ∈Cn[a,b] for n ≥ 3 and let g, p : [a,b] → R be integrable functions
such that p is positive and 0 ≤ g ≤ 1. Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the function

G2 be defined by (5.40). Then

∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt +




i=0

f (i+1)(b− )
i!

∫ b

a
G2(x)(x−b+ )idx

+
n−−3


j=0

f (+ j+2)(b)

(
j


i=0

(− ) j−i

( +1+ i)!( j− i)!

(∫ b

a
(x−b+ )+1+iG2(x)dx

))

= −
∫ b

a

(∫ b

a
G2(x)gAG2(x,s)dx

)
f (n)(s)ds.

(5.133)

Proof. Similar to the proof of Theorem 5.61 using identity (5.42) for d(t) = p(t)dt. �

Now, from these identities the generalizations of Steffensen’s inequality for n-convex
functions are obtained.



206 5 WEIGHTED STEFFENSEN INEQUALITY FOR n-CONVEX FUNCTIONS

Theorem 5.63 Let f ∈Cn[a,b] for n ≥ 3 and let g, p : [a,b]→ R be integrable functions
such that p is positive and 0 ≤ g ≤ 1. Let

∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let the function

G1 be defined by (5.35). If f is n-convex and∫ b

a
G1(x)gAG2(x,s)dx ≤ 0, s ∈ [a,b], (5.134)

then∫ b

a
f (t)g(t)p(t)dt ≤

∫ a+

a
f (t)p(t)dt +




i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx

+
n−−3


j=0

f (+ j+2)(a+ )

[
j


i=0

(− ) j−i

( +1+ i)!( j− i)!

(∫ b

a
(x−a)+1+iG1(x)dx

)]
.

(5.135)

Proof. If the function f is n-convex, without loss of generality we can assume that
f is n-times differentiable and f (n) ≥ 0 see [71, p. 16 and p. 293]. Now we can apply
Theorem 5.61 to obtain (5.135). �

Theorem 5.64 Let f ∈Cn[a,b] for n ≥ 3 and let g, p : [a,b]→ R be integrable functions
such that p is positive and 0 ≤ g ≤ 1. Let

∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let the function

G2 be defined by (5.40). If f is n-convex and∫ b

a
G2(x)gAG2(x,s)dx ≤ 0, s ∈ [a,b], (5.136)

then∫ b

a
f (t)g(t)p(t)dt ≥

∫ b

b−
f (t)p(t)dt−




i=0

f (i+1)(b− )
i!

∫ b

a
G2(x)(x−b+ )idx

−
n−−3


j=0

f (+ j+2)(b)

(
j


i=0

(− ) j−i

( +1+ i)!( j− i)!

(∫ b

a
(x−b+ )+1+iG2(x)dx

))
(5.137)

Proof. Similar to the proof of Theorem 5.63. �

Remark 5.4 If the integrals in (5.134) and (5.136) are nonnegative, then the reverse in-
equalities in (5.135) and (5.137) hold.

Taking p ≡ 1 and n = 3 in previous theorems we obtain the following corollary.

Corollary 5.19 Let f ∈C3[a,b] and let g : [a,b]→ R be an integrable function such that
0 ≤ g ≤ 1. Let  =

∫ b
a g(t)dt.
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(i) If f is 3-convex and

−1
3

∫ s

a
x3g(x)dx+s

∫ s

a
x2g(x)dx+s2

∫ b

s
xg(x)dx+(a2−2as)

∫ b

a
xg(x)dx+

s3

3

∫ s

a
g(x)dx

≤ (s−a)4

12
− (s−a)2

2

(
a−  2

2

)
, s ∈ [a,a+ ],

−1
3

∫ s

a
x3g(x)dx+s

∫ s

a
x2g(x)dx+s2

∫ b

s
xg(x)dx+(a2−2as)

∫ b

a
xg(x)dx−s3

3

∫ b

s
g(x)dx

≤
(

2a3

3
− sa2

)
 +

(s−a) 3

3
−  4

12
, s ∈ [a+ ,b],

then ∫ b

a
f (t)g(t)dt ≤

∫ a+

a
f (t)dt + f ′(a)

(∫ b

a
xg(x)dx−a −  2

2

)
+

f ′′(a+ )
2

(∫ b

a
g(x)(x−a)2dx−  3

3

)
.

(ii) If f is 3-convex and

1
3

∫ s

a
x3g(x)dx− s

∫ s

a
x2g(x)dx− ((b− )2−2s(b− ))

∫ b

a
xg(x)dx

− s2
∫ b

s
xg(x)dx− s3

3

∫ s

a
g(x)dx ≤ (b− − s)2

2

(
 2

2
−b

)
, s ∈ [a,b− ],

1
3

∫ s

a
x3g(x)dx− s

∫ s

a
x2g(x)dx− [(b− )2−2s(b− )

]∫ b

a
xg(x)dx

− s2
∫ b

s
xg(x)dx+

s3

3

∫ b

s
g(x)dx ≤− (s−b+ )4

12

− (s−b+ )3
2

[

3

+
2
3
(b− s)

]
− (b− )2

[
2
3
(b− )− s)

]
, s ∈ [b− ,b],

then ∫ b

a
f (t)g(t)dt ≥

∫ b

b−
f (t)dt + f ′(b− )

(
 2

2
−b +

∫ b

a
xg(x)dx

)
− f ′′(b)

2

(
 3

3
−
∫ b

a
g(x)(x−b+ )2dx

)
.

Now we give Ostrowski type inequalities for the identities associated with generalized
inequalities. Using identities (5.132), (5.133) respectively, we obtain the following results.
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Theorem 5.65 Suppose that all assumptions of Theorem 5.61 hold. Assume (p,q) is a

pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let
∣∣∣ f (n)

∣∣∣p : [a,b] → R

be an R-integrable function for some n ≥ 3. Then we have∣∣∣∣∣
∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt +




i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx

+
n−−3


j=0

f (+ j+2)(a+ )

[
j


i=0

(− ) j−i

( +1+ i)!( j− i)!

(∫ b

a
(x−a)+1+iG1(x)dx

)]∣∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

(∫ b

a

∣∣∣∣∫ b

a
G1(x)gAG2(x,s)dx

∣∣∣∣q ds

) 1
q

.

(5.138)

The constant on the right-hand side of (5.138) is sharp for 1 < p≤ and the best possible
for p = 1.

Proof. Proof of theorem can be done using the same approach as given in Theorem 5.8. �

Theorem 5.66 Suppose that all assumptions of Theorem 5.12 hold. Assume (p,q) is a

pair of conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+1/q = 1. Let
∣∣∣ f (n)

∣∣∣p : [a,b] → R

be an R-integrable function for some n ≥ 3. Then we have∣∣∣∣∣
∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt +




i=0

f (i+1)(b− )
i!

∫ b

a
G2(x)(x−b+ )idx

+
n−−3


j=0

f (+ j+2)(b)

(
j


i=0

(− ) j−i

( +1+ i)!( j− i)!

(∫ b

a
(x−b+ )+1+iG2(x)dx

))∣∣∣∣∣
≤
∥∥∥ f (n)

∥∥∥
p

(∫ b

a

∣∣∣∣∫ b

a
G2(x)gAG2(x,s)dx

∣∣∣∣q ds

) 1
q

.

(5.139)

The constant on the right-hand side of (5.139) is sharp for 1 < p≤ and the best possible
for p = 1.

Proof. Similar to the proof of Theorem 5.8. �

Taking p≡ 1 and n = 3 in Theorems 5.65 and 5.66 we obtain the following corollaries.

Corollary 5.20 Let f : [a,b] → R be such that f ∈ C3[a,b], let g : [a,b] → R be an in-
tegrable function such that 0 ≤ g ≤ 1 and let  =

∫ b
a g(t)dt. Assume (p,q) is a pair of

conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+ 1/q = 1. Let | f ′′′|p : [a,b] → R be an
R-integrable function. Then for 1 < p ≤  we have
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∣∣∣∣∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt + f ′(a)

(∫ b

a
xg(x)dx−a −  2

2

)
+

f ′′(a+ )
2

(∫ b

a
g(x)(x−a)2dx−  3

3

)∣∣∣∣≤ ∥∥ f ′′′
∥∥

p

(∫ a+

a

∣∣∣∣−1
3

∫ s

a
x3g(x)dx

+s
∫ s

a
x2g(x)dx+ s2

∫ b

s
xg(x)dx+(a2−2as)

∫ b

a
xg(x)dx+

s3

3

∫ s

a
g(x)dx

− (s−a)4

12
+

(s−a)2

2

(
a−  2

2

)∣∣∣∣q ds+
∫ b

a+

∣∣∣∣−1
3

∫ s

a
x3g(x)dx

+s
∫ s

a
x2g(x)dx+ s2

∫ b

s
xg(x)dx+(a2−2as)

∫ b

a
xg(x)dx

− s3

3

∫ b

s
g(x)dx−

(
2a3

3
− sa2

)
 − (s−a) 3

3
+
 4

12

∣∣∣∣q ds

) 1
q

.

(5.140)

and the constant on the right-hand side of (5.140) is sharp, while for p = 1 we have∣∣∣∣∫ a+

a
f (t)dt −

∫ b

a
f (t)g(t)dt + f ′(a)

(∫ b

a
xg(x)dx−a −  2

2

)
+

f ′′(a+ )
2

(∫ b

a
g(x)(x−a)2dx−  3

3

)∣∣∣∣≤ ∥∥ f ′′′
∥∥

1 max{M1,M2}
(5.141)

where

M1 = max
s∈[a,a+ ]

{
−1

3

∫ s

a
x3g(x)dx+ s

∫ s

a
x2g(x)dx+ s2

∫ b

s
xg(x)dx

+(a2−2as)
∫ b

a
xg(x)dx+

s3

3

∫ s

a
g(x)dx−(s−a)4

12
+

(s−a)2

2

(
a− 2

2

)}
,

M2 = max
s∈[a+ ,b]

{
−1

3

∫ s

a
x3g(x)dx+ s

∫ s

a
x2g(x)dx+ s2

∫ b

s
xg(x)dx

+(a2−2as)
∫ b

a
xg(x)dx−s3

3

∫ b

s
g(x)dx−

(
2a3

3
−sa2

)
−(s−a) 3

3
+
 4

12

}
.

and the constant on the right-hand side of (5.141) is the best possible.

Corollary 5.21 Let f : [a,b] → R be such that f ∈ C3[a,b], let g : [a,b] → R be an in-
tegrable function such that 0 ≤ g ≤ 1 and let  =

∫ b
a g(t)dt. Assume (p,q) is a pair of

conjugate exponents, that is 1 ≤ p,q ≤ , 1/p+ 1/q = 1. Let | f ′′′|p : [a,b] → R be an
R-integrable function. Then for 1 < p ≤  we have
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∣∣∣∣∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt − f ′(b− )

(
 2

2
−b +

∫ b

a
xg(x)dx

)
+

f ′′(b)
2

(
 3

3
−
∫ b

a
g(x)(x−b+ )2dx

)∣∣∣∣≤ ∥∥ f ′′′
∥∥

p

(∫ b−

a

∣∣∣∣13
∫ s

a
x3g(x)dx

−s
∫ s

a
x2g(x)dx− [(b− )2−2s(b− )

]∫ b

a
xg(x)dx− s2

∫ b

s
xg(x)dx

− s3

3

∫ s

a
g(x)dx− (b− − s)2

2

(
 2

2
−b

)∣∣∣∣q ds+
∫ b

b−

∣∣∣∣13
∫ s

a
x3g(x)dx

−s
∫ s

a
x2g(x)dx− [(b− )2−2s(b− )

]∫ s

a
xg(x)dx− s2

∫ b

s
xg(x)dx

+
s3

3

∫ b

s
g(x)dx+

(s−b+ )4

12
+

(s−b+ )3
2

[

3

+
2
3
(b− s)

]
+

2
3
 (b− )3− s (b− )2

∣∣∣∣q ds

)
.

(5.142)

and the constant on the right-hand side of (5.142) is sharp, while for p = 1 we have

∣∣∣∣∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt− f ′(b− )

(
 2

2
−b +

∫ b

a
xg(x)dx

)
+

f ′′(b)
2

(
 3

3
−
∫ b

a
g(x)(x−b+ )2dx

)∣∣∣∣≤ ∥∥ f ′′′
∥∥

1 max{M1,M2}
(5.143)

where

M1 = max
s∈[a,b− ]

{
1
3

∫ s

a
x3g(x)dx− s

∫ s

a
x2g(x)dx− [(b− )2−2s(b− )

]∫ b

a
xg(x)dx

−s2
∫ b

s
xg(x)dx− s3

3

∫ s

a
g(x)dx− (b− − s)2

2

(
 2

2
−b

)}
,

M2 = max
s∈[b− ,b]

{
1
3

∫ s

a
x3g(x)dx− s

∫ s

a
x2g(x)dx

−[(b− )2−2s(b− )
]∫ s

a
xg(x)dx− s2

∫ b

s
xg(x)dx+

s3

3

∫ b

s
g(x)dx

+
(s−b+ )4

12
+

(s−b+ )3
2

[

3

+
2
3
(b− s)

]
+

2
3
 (b− )3− s (b− )2

}
.

and the constant on the right-hand side of (5.143) is the best possible.
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In this section by i(s) we will denote

i(s) =
∫ b

a
Gi(x)gAG2(x,s)dx, i = 1,2. (5.144)

We continue by giving the bounds for identities related to obtained generalizations of
Steffensen’s inequality using some Čebyšev and Grüss type inequalities.

Theorem 5.67 Let f ∈Cn+1[a,b] for some n ≥ 3 with (·− a)(b− ·)[ f (n+1)]2 ∈ L1[a,b].
Let g, p : [a,b] → R be integrable functions such that p is positive and 0 ≤ g ≤ 1. Let∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt and let functions G1 and 1 be defined by (5.35) and (5.144).

Then

∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt +




i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx

+
n−−3


j=0

f (+ j+2)(a+ )

[
j


i=0

(− ) j−i

( +1+ i)!( j− i)!

(∫ b

a
(x−a)+1+iG1(x)dx

)]

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
1(s)ds = S1

n( f ;a,b),

(5.145)

where the remainder S1
n( f ;a,b) satisfies the estimation

∣∣S1
n( f ;a,b)

∣∣≤ √
b−a√

2
[T (1,1)]

1
2

∣∣∣∣∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

∣∣∣∣ 12 . (5.146)

Proof. Analogous to the proof of Theorem 5.5. After applying Theorem 1.23 for f → 1

and h → f (n) we obtain∣∣∣∣ 1
b−a

∫ b

a
1(s) f (n)(s)ds− 1

b−a

∫ b

a
1(s)ds · 1

b−a

∫ b

a
f (n)(s)ds

∣∣∣∣
≤ 1√

2
[T (1,1)]

1
2

1√
b−a

∣∣∣∣∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2dt

∣∣∣∣ 12 .

(5.147)

Now if we add

1
b−a

∫ b

a
1(s)ds

∫ b

a
f (n)(s)ds =

f (n−1)(b)− f (n−1)(a)
b−a

∫ b

a
1(s)ds

to both sides of identity (5.132) and use inequality (5.147) we obtain representation (5.145)
and bound (5.146). �

Similarly, using the identity (5.133) we obtain the following result:
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Theorem 5.68 Let f ∈ Cn+1[a,b] for some n ≥ 3 with (·− a)(b− ·)[ f (n+1)]2 ∈ L1[a,b].
Let g, p : [a,b] → R be integrable functions such that p is positive and 0 ≤ g ≤ 1. Let∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt and let functions G2 and 2 be defined by (5.40) and (5.144).

Then∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt +




i=0

f (i+1)(b− )
i!

∫ b

a
G2(x)(x−b+ )idx

+
n−−3


j=0

f (+ j+2)(b)

(
j


i=0

(− ) j−i

( +1+ i)!( j− i)!

(∫ b

a
(x−b+ )+1+iG2(x)dx

))

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
2(s)ds = S2

n( f ;a,b),

(5.148)

where the remainder S2
n( f ;a,b) satisfies the estimation

∣∣S2
n( f ;a,b)

∣∣≤ √
b−a√

2
[T (2,2)]

1
2

∣∣∣∣∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2ds

∣∣∣∣ 12 .

Proof. Analogous to the previous theorem. �

Using the representation (5.132) and Theorem 1.24 we obtain the following Grüss-type
inequalities.

Theorem 5.69 Let f ∈Cn+1[a,b] for some n ≥ 3 and f (n+1) ≥ 0 on [a,b]. Let functions
i, i = 1,2 be defined by (5.144).

(a) Let
∫ a+
a p(t)dt =

∫ b
a g(t)p(t)dt. Then we have representation (5.145) and the re-

mainder S1
n( f ;a,b) satisfies the bound∣∣S1

n( f ;a,b)
∣∣

≤ (b−a)‖′
1‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.

(b) Let
∫ b
b− p(t)dt =

∫ b
a g(t)p(t)dt. Then we have representation (5.148) and the re-

mainder S2
n( f ;a,b) satisfies the bound∣∣S2

n( f ;a,b)
∣∣

≤ (b−a)‖′
2‖
{

f (n−1)(b)+ f (n−1)(a)
2

− f (n−2)(b)− f (n−2)(a)
b−a

}
.
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5.8 k-exponential convexity of generalizations
of Steffensen’s inequality

In this section we generate k−exponentially and exponentially convex functions from func-
tionals associated with generalizations of Steffensen’s inequality for n-convex functions.
This generalizations are given in Sections 5.1, 5.3 and 5.4.

Motivated by inequalities (5.9), (5.11), (5.12) and (5.14), under the assumptions of
Theorems 5.3 and 5.4 we define the following linear functionals:

L1( f ) =
∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt −

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G1(x)(x−a)idx, (5.149)

L2( f ) =
∫ b

a
f (t)g(t)dt−

∫ a+

a
f (t)dt −

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G1(x)(x−b)idx, (5.150)

L3( f ) =
∫ b

b−
f (t)dt−

∫ b

a
f (t)g(t)dt−

n−2


i=0

f (i+1)(a)
i!

∫ b

a
G2(x)(x−a)idx, (5.151)

L4( f ) =
∫ b

b−
f (t)dt−

∫ b

a
f (t)g(t)dt−

n−2


i=0

f (i+1)(b)
i!

∫ b

a
G2(x)(x−b)idx. (5.152)

Under the assumptions of Theorems 5.3 and 5.4 we have that Li( f ) ≥ 0, i = 1, . . . ,4
for all n-convex functions f .

First we will state and prove mean value theorems related to defined functionals. These
results were obtained by Pečarić, Perušić Pribanić and Smoljak Kalamir in [64].

Theorem 5.70 Let f : [a,b] → R be such that f ∈ Cn[a,b]. If the inequalities in (5.10)
(i = 2) and (5.13) (i = 4) hold, then there exist i ∈ [a,b] such that

Li( f ) = f (n)(i)Li(), i = 1, . . . ,4

where (x) = xn

n! and Li, i = 1, . . . ,4 are defined by (5.149) – (5.152).

Proof. Since f ∈Cn[a,b] there exist m = min
x∈[a,b]

f (n)(x) and M = max
x∈[a,b]

f (n)(x). For a given

function f ∈Cn[a,b] we define the functions F1,F2 : [a,b]→R with F1(x) = M(x)− f (x)
and F2(x) = f (x)−m(x). Then

F (n)
1 (x) = M− f (n)(x) ≥ 0
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F (n)
2 (x) = f (n)(x)−m≥ 0

which means that Li(F1),Li(F2) ≥ 0, i = 1, . . . ,4 i.e.

m ·Li() ≤ Li( f ) ≤ M ·Li().

If Li() = 0, the proof is complete. If Li() > 0, then

m ≤ Li( f )
Li()

≤ M, i = 1, . . . ,4

and existence of i ∈ [a,b], i = 1, . . . ,4 now follows. �

Theorem 5.71 Let f , f̂ : [a,b] → R be such that f , f̂ ∈ Cn[a,b] and f̂ (n) �= 0. If the
inequalities in (5.10) (i = 2) and (5.13) (i = 4) hold, then there exist i ∈ [a,b] such that

Li( f )
Li( f̂ )

=
f (n)(i)
f̂ (n)(i)

, i = 1, . . . ,4 (5.153)

where Li, i = 1, . . . ,4 are defined by (5.149) – (5.152).

Proof. We define functions i(x) = f (x)Li( f̂ )− f̂ (x)Li( f ), i = 1, . . . ,4. According to
Theorem 5.70 there exist i ∈ [a,b] such that

Li(i) =  (n)
i (i)Li(), i = 1, . . . ,4.

Since Li(i) = 0 it follows that f (n)(i)Li( f̂ )− f̂ (n)(i)Li( f ) = 0. �

If the inverse of f (n)/ f̂ (n) exists then the various types of means can be defined by
(5.153). That is

i =

(
f (n)

f̂ (n)

)−1(
Li( f )
Li( f̂ )

)
, i = 1, . . . ,4.

Now, by using the same idea as in [30] and [60] we generate k−exponentially and
exponentially convex functions applying above defined functionals.

Theorem 5.72 Let = { fp : p ∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R such that the function p → [x0, . . . ,xn; fp] is k−exponentially
convex in the Jensen sense on J for every (n+ 1) mutually different points x0, . . . ,xn ∈ I.
Let Li, i = 1, . . . ,4 be linear functionals defined by (5.149)− (5.152). Then p → Li( fp) is
k−exponentially convex function in the Jensen sense on J.
If the function p → Li( fp) is continuous on J, then it is k−exponentially convex on J.

Proof. For  j ∈ R and p j ∈ J, j = 1, . . . ,k, we define the function

h(x) =
k


j,l=1

 jl f p j+pl
2

(x).
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Using the assumption that the function p → [x0, . . . ,xn; fp] is k-exponentially convex in the
Jensen sense, we have

[x0, . . . ,xn;h] =
k


j,l=1

 jl [x0, . . . ,xn; f p j+pl
2

] ≥ 0,

which in turn implies that h is n-convex function on J, so Li(h) ≥ 0, i = 1, . . . ,4. Hence

k


j,l=1

 jlLi

(
f p j+pl

2

)
≥ 0.

We conclude that the function p → Li( fp) is k-exponentially convex on J in the Jensen
sense.

If the function p → Li( fp) is also continuous on J, then p → Li( fp) is k-exponentially
convex by definition. �

The following corollaries follow directly from above theorem.

Corollary 5.22 Let = { fp : p∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function p → [x0, . . . ,xn; fp] is exponentially
convex in the Jensen sense on J for every (n+ 1) mutually different points x0, . . . ,xn ∈ I.
Let Li, i = 1, . . . ,4, be linear functionals defined by (5.149) - (5.152). Then p → Li( fp) is
an exponentially convex function in the Jensen sense on J. If the function p → Li( fp) is
continuous on J, then it is exponentially convex on J.

Corollary 5.23 Let = { fp : p∈ J}, where J is an interval in R, be a family of functions
defined on an interval I in R, such that the function p → [x0, . . . ,xn; fp] is 2-exponentially
convex in the Jensen sense on J for every (n+ 1) mutually different points x0, . . . ,xn ∈ I.
Let Li, i = 1, . . . ,4 be linear functionals defined by (5.149) - (5.152). Then the following
statements hold:

(i) If the function p → Li( fp) is continuous on J, then it is 2-exponentially convex func-
tion on J. If p → Li( fp) is additionally strictly positive, then it is also log-convex on
J. Furthermore, the following inequality holds true:

[Li( fs)]t−r ≤ [Li( fr)]t−s [Li( ft )]s−r , i = 1, . . . ,4

for every choice r,s,t ∈ J, such that r < s < t.

(ii) If the function p → Li( fp) is strictly positive and differentiable on J, then for every
p,q,u,v ∈ J, such that p ≤ u and q ≤ v, we have

p,q(Li,) ≤ u,v(Li,), (5.154)

where

p,q(Li,) =

⎧⎪⎨⎪⎩
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q,

exp

(
d
dp Li( fp)
Li( fp)

)
, p = q,

(5.155)

for fp, fq ∈ .
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Proof.

(i) This is an immediate consequence of Theorem 5.72 and Remark 1.7.

(ii) Since p → Li( fp) is positive and continuous, by (i) we have that p → Li( fp) is log-
convex on J, that is, the function p → logLi( fp) is convex on J. Hence we get

logLi( fp)− logLi( fq)
p−q

≤ logLi( fu)− logLi( fv)
u− v

, (5.156)

for p ≤ u,q ≤ v, p �= q,u �= v. So, we conclude that

p,q(Li,) ≤ u,v(Li,).

Cases p = q and u = v follow from (5.156) as limit cases.

�

In the sequel we give some families of functions for which we use Corollaries 5.22 and
5.23 to construct exponentially convex functions and Stolarsky type means.

Example 5.1 Let us consider a family of functions

1 = { fp : R → R : p ∈ R}
defined by

fp(x) =

{
epx

pn , p �= 0,
xn

n! , p = 0.

Since dn fp
dxn (x) = epx > 0, the function fp is n-convex on R for every p∈R and p → dn fp

dxn (x)
is exponentially convex by definition. Using analogous arguing as in the proof of The-
orem 5.72 we also have that p → [x0, . . . ,xn; fp] is exponentially convex (and so expo-
nentially convex in the Jensen sense). Now, using Corollary 5.22 we conclude that p →
Li( fp), i = 1, . . . ,4, are exponentially convex in the Jensen sense. It is easy to verify that
this mappings are continuous (although the mapping p → fp is not continuous for p = 0),
so they are exponentially convex. For this family of functions, p,q(Li,1), i = 1, . . . ,4,
from (5.155), becomes

p,q(Li,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Li( fp)
Li( fq)

) 1
p−q

, p �= q,

exp
(

Li(id· fp)
Li( fp)

− n
p

)
, p = q �= 0,

exp
(

1
n+1

Li(id· f0)
Li( f0)

)
, p = q = 0,

where id is the identity function. By Corollary 5.23 p,q(Li,1), i = 1, . . . ,4 are monotonic
functions in parameters p and q.

Since (
dn fp
dxn

dn fq
dxn

) 1
p−q

(logx) = x,
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using Theorem 5.71 it follows that:

Mp,q(Li,1) = logp,q(Li,1), i = 1, . . . ,4

satisfy
a ≤ Mp,q(Li,1) ≤ b, i = 1, . . . ,4.

So, Mp,q(Li,1), i = 1, . . . ,4 are monotonic means.

Example 5.2 Let us consider a family of functions

2 = {gp : (0,) → R : p ∈ R}

defined by

gp(x) =

{ xp

p(p−1)···(p−n+1) , p /∈ {0,1, . . . ,n−1},
x j logx

(−1)n−1− j j!(n−1− j)! , p = j ∈ {0,1, . . . ,n−1}.

Since dngp
dxn (x) = xp−n > 0, the function gp is n-convex for x > 0 and p → dngp

dxn (x) is ex-
ponentially convex by definition. Arguing as in Example 5.1 we get that the mappings
p → Li(gp), i = 1, . . . ,4 are exponentially convex. Hence, for this family of functions
p,q(Li,2), i = 1, . . . ,4, from (5.155), is equal to

p,q(Li,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Li(gp)
Li(gq)

) 1
p−q

, p �= q,

exp

(
(−1)n−1(n−1)! Li(g0gp)

Li(gp)
+

n−1


k=0

1
k−p

)
, p = q /∈ {0,1, . . . ,n−1},

exp

⎛⎝(−1)n−1(n−1)! Li(g0gp)
2Li(gp)

+
n−1


k=0
k �=p

1
k−p

⎞⎠ , p = q ∈ {0,1, . . . ,n−1}.

Again, using Theorem 5.71 we conclude that

a ≤
(

Li(gp)
Li(gq)

) 1
p−q

≤ b, i = 1, . . . ,4.

So, p,q(Li,2), i = 1, . . . ,4 are means and by (5.154) they are monotonic.

Similarly, we can generate k−exponentially and exponentially convex functions from
functionals related to generalized Steffensen’s inequality given in Sections 5.3 and 5.4.
Motivated by inequalities (5.60), (5.62), (5.64) and (5.66) we can define the following
functionals:

A1( f ) =
∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt

+
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]
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A2( f ) =
∫ a+

a
f (t)dt−

∫ b

a
f (t)g(t)dt

+
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G1(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

A3( f ) =
∫ b

a
f (t)g(t)dt−

∫ b

b−
f (t)dt

+
n


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)]

A4( f ) =
∫ b

a
f (t)g(t)dt −

∫ b

b−
f (t)dt

+
n−1


k=1

(b−a)k−2

(k−1)!

(∫ b

a
G2(x)Bk−1

(
x−a
b−a

)
dx

)
[ f (k−1)(b)− f (k−1)(a)].

Motivated by inequalities (5.85),(5.87) and under the assumptions of Theorems 5.31 and
5.32, respectively, we can define functionals:

L1( f ) =
∫ a+

a
f (t)p(t)dt −

∫ b

a
f (t)g(t)p(t)dt−

n−2


k=0

∫ b

a
Tk(x)G1(x)dx,

L2( f ) =
∫ b

a
f (t)g(t)p(t)dt−

∫ b

b−
f (t)p(t)dt−

n−2


k=0

∫ b

a
Tk(x)G2(x)dx.

Furthermore, we can generate means from defined functionals. For more details we
refer the reader to [63, 69].
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[33] J. Jakšetić, J. Pečarić, A. Perušić, Generalization of Steffensen’s inequality by Her-
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