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Preface

The most important inequality for convex functions is the Jensen’s inequality. Other in-
equalities such as inequalities for means, the Hölder’s and Minkowski’s inequalities etc.
can be obtained as particular cases of it, and it has many applications in different branches
of mathematics. There are countless papers dealing with generalizations, refinements, and
converse results of Jensen’s inequality.

To give refinements of Jensen’s inequality is an extensively investigated theme with
numerous methods, results and applications. This book is mainly devoted to cyclic refine-
ments (cyclic permutations are used to define the refining terms), and their applications in
information theory. It contains the most recent research results of this promising topic.

The first chapter has a preparatory character. In the second chapter the basic cyclic
refinements for the discrete and integral Jensen’s inequalities are given. Among the many
topics where Jensen’s inequality finds application, mention should be made of informa-
tion theory. Jensen’s inequality plays a crucial role to obtain inequalities for divergences
between probability distributions, which have been introduced to measure the difference
between them. A lot of different type of divergences exist, for example the f -divergence
(especially, Kullback-Leibler divergence, Hellinger distance and total variation distance),
Rényi divergence, Jensen-Shannon divergence, etc. These important notions and the
Zipf-Mandelbrot law (a special discrete probability distribution) are introduced in chapter
three. The power of results in chapter two is also demonstrated in chapter three by obtain-
ing refinements of inequalities for divergences. In chapter four cyclic refinements of Beck’s
inequality are given. This leads to some new refinements of the classical Hölder’s and
Minkowski’s inequalities. Chapter five deals with cyclic refinements of operator Jensen’s
inequalities for convex and operator convex functions. In the next six chapters (sixth to
eleventh) are devoted to extensions of cyclic refinements of Jensen’s inequality via Tay-
lor’s formula, Fink’s identity and Montgomery’s identity, and by Lidstone interpolating
polynomial, Abel-Gontscharoff interpolating polynomial and Hermite intepolating poly-
nomial, respectively. The applicability of all the obtained results is demonstrated by means
of information theory. In the last chapter, twelve, Levinson’s type generalization of cyclic
refinements of Jensen’s inequality is given with applications.
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Chapter1
Introduction and Preliminaries

The notion of convexity plays an important role in different branches of mathematics.

Definition 1.1 Let V be a real vector space.
(a) A subset C of V is called convex, if for any two points v1,v2 ∈C, the line segment

between them also lies in C, that is v1 +(1− )v2 ∈C for all  ∈ [0,1].
(b) A function f :C (⊂V )→ R is called convex, if its domainC is a convex set, and for

any two points v1,v2 ∈C, and all  ∈ [0,1], we have that

f (v1 +(1− )v2) ≤  f (v1)+ (1− ) f (v2) .

The most important inequality concerning convex functions is the Jensen’s inequality,
named after the Danish mathematician Johan Jensen. It was proven by Jensen in [49].
We emphasize the following two variants of Jensen’s inequality:

Theorem A. (discrete Jensen’s inequality, see [36]) Let C be a convex subset of a real
vector space V , and let f : C → R be a convex function. If p1, . . . , pn are nonnegative

numbers with
n

i=1

pi = 1, and v1, . . . ,vn ∈C, then

f

(
n


i=1

pivi

)
≤

n


i=1

pi f (vi) (1.1)

holds. Particularly, we have

f

(
1
n

n


i=1

vi

)
≤ 1

n

n


i=1

f (vi). (1.2)

1



2 1 INTRODUCTION AND PRELIMINARIES

Theorem B. (integral Jensen’s inequality, see [36]) Let g be an integrable function on a
probability space (X ,A ,) taking values in an interval I ⊂ R. Then

∫
X

gd lies in I. If f

is a convex function on I such that f ◦ g is integrable, then

f

⎛⎝∫
X

gd

⎞⎠≤
∫
X

f ◦ gd .

Various attempts have been made by many authors to refine either the discrete or the
integral Jensen’s inequality (see the book [36] and the references therein). A multitude of
applications underscores the importance of refinements of different Jensen’s inequalities.

The following result which provide the starting point for our discussion is from Brnetić
at al. [12].

Theorem 1.1 Suppose I is a real interval. If f : I → R is a convex function, then for all
t ∈ [0,1] we have

f

⎛⎜⎜⎝
n

i=1

xi

n

⎞⎟⎟⎠≤ 1
n

n


i=1

f ((1− t)xi + txi+1) ≤

n

i=1

f (xi)

n
,

where xi ∈ I (1 ≤ i ≤ n) and xn+1 = x1.

Recently, a lot of papers have been appeared dealing with generalizations of the pre-
vious theorem (see e.g. [13, 37]). The whole group of such results is now often known
by the collective title “cyclic refinements”. They find applications mainly in the theory of
means and in information theory.

The title of this book indicates clearly the content of it. A synthesis of recent progress
in the topic of cyclic refinements of different types of Jensen’s inequalities is presented
with the emphasis on their applications in information theory.

Let 2 ≤ k ≤ n, and let i ∈ {1, . . . ,n} and j ∈ {0, . . . ,k−1}. In further parts of this book
i+ j always means i+ j−n in case of i+ j > n.

While writing this book, S. I. Butt was supported by Higher Education Commission
Pakistan under NRPU project 5327 and 7906. L. Horváth was supported by Hungarian
National Foundations for Scientific Research Grant No. K101217 and Széchenyi 2020
under the EFOP-3.6.1-16-2016-00015. J. Pečarić is supported by the Ministry of Education
and Science of the Russian Federation (the Agreement number No. 02.a03.21.0008)



Chapter2
Cyclic Improvement of
Jensen’s Inequality

In this chapter we give cyclic refinements of Jensen’s inequality and their applications.

2.1 A refinement of Jensen’s inequality

We start with the special following Jensen’s inequality

f

(
n

i=1 xi

n

)
≤ n

i=1 f (xi)
n

.

Throughout this section we are going to use some of the following hypotheses:
(H1) Let I ⊂ R be an interval, x := (x1, ...,xn) ∈ In, and  := (1, ...,k) be a positive

k-tuple such thatk
i=1i = 1 for some k, 2 ≤ k ≤ n.

(H2) Let f : I → R be a convex function.
(H3) Let h, g : I → R be continuous and strictly monotone functions.

Theorem 2.1 Let (H1), (H2) be fulfilled. Then

f

(
n

i=1 xi

n

)
≤ 1

n

n


i=1

f

(k−1


j=0

 j+1xi+ j

)
≤ n

i=1 f (xi)
n

. (2.1)

3



4 2 CYCLIC IMPROVEMENT OF JENSEN’S INEQUALITY

Proof. First, since f is convex, by Jensen’s inequality we have

n


i=1

f

(k−1


j=0

 j+1xi+ j

)
≤

n


i=1

k−1


j=0

 j+1 f (xi+ j)

=
n


i=1

f (xi)
k


j=1

 j =
n


i=1

f (xi).

On the other hand, since f is convex, by Jensen’s inequality, we have

1
n

n


i=1

f

(k−1


j=0

 j+1xi+ j

)
≥ f

(n
i=1

k−1
j=0 j+1xi+ j

n

)

= f

(
n

i=1 xik
j=1 j

n

)
= f

(
n

i=1 xi

n

)
.

�

Theorem 2.1 is a generalization of Theorem 4 in [12].

2.1.1 Cyclic mixed symmetric means

Assume (H1) for the positive n-tuple x. We define the power means of order r ∈ R as
follows:

Mr(xi, ...,xi+k−1;1, ...,k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
k−1

j=0

 j+1xr
i+ j

) 1
r

; r �= 0,

k−1

j=0

x
 j+1
i+ j ; r = 0,

and cyclic mixed symmetric means corresponding to (2.1) are

Mr,s(x, ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
n

n

i=1

Ms
r (xi, ...,xi+k−1;1, ...,k)

) 1
s

; s �= 0,(
n

i=1

Mr(xi, ...,xi+k−1;1, ...,k)
) 1

n

; s = 0.

(2.2)

The standard power means of order r ∈ R for the positive n-tuple x, are

Mr(x1, ...,xn) = Mr(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
n

n

i=1

xr
i

) 1
r

; r �= 0,(
n

i=1

xi

) 1
n

; r = 0.

The bounds for cyclic mixed symmetric means are power means, as given in the fol-
lowing result.
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Corollary 2.1 Assume (H1) for the positive n-tuple x. Let r,s ∈ R such that r ≤ s. Then

Mr(x) ≤ Ms,r(x, ) ≤ Ms(x). (2.3)

Proof. Assume r, s �= 0. To obtain (2.3), we apply Theorem 2.1, either for the function
f (x) = x

s
r (x > 0) and the n-tuples (xr

1, . . . ,x
r
n) in (2.1) and then raising the power 1

s , or
f (x) = x

r
s (x > 0) and (xs

1, . . . ,x
s
n) and raising the power 1

r .
When r = 0 or s = 0, we get the required results by taking limit. �

Special cases of Corollary 2.1 can be found in [11] (see Theorem 4 with Corollaries
4.1–4.4). Namely, the result of this theorem is an inequality (2.3) for r = 0, s = 1, n = 3
and k = 3.
Assume (H1) and (H3). Then we define the generalized means with respect to (2.1) as
follows:

Mg,h(x, ) := g−1

(
1
n

n


i=1

(g ◦ h−1)(
k−1


j=0

 j+1h(xi+ j))

)
.

Let q : I → R be a continuous and strictly monotone function then the cyclic quasi-
arithmetic means are given by

Mq(x) := q−1

(
1
n

n


i=1

q(xi)

)
.

The relation among the generalized means and cyclic quasi-arithmetic means is given in
the next corollary.

Corollary 2.2 Assume (H1) and (H3). Then

Mh(x) ≤ Mg,h(x, ) ≤ Mg(x) (2.4)

if either g◦ h−1 is convex and g is strictly increasing or g◦ h−1 is concave and g is strictly
decreasing.

Proof. First, we can apply Theorem 2.1 to the function g ◦ h−1 and the n-tuples
(h(x1), . . . ,h(xn)), then we can apply g−1 to the inequality coming from (2.1). This gives
(2.4). �

For instance, if we put g(x) = x and h(x) = lnx in Corollary 2.2 we obtain

M0(x1, ...,xn) ≤ 1
n

n


i=1

M0(xi, ...,xi+k−1;1, ...,k) ≤ M1(x1, ...,xn).

which is a special case of Corollary 2.1 as well.

Remark 2.1 Under the conditions (H1), we define

1( f ) = 1(x, , f ) :=
1
n

n


i=1

f (xi)− 1
n

n


i=1

f (
k−1


j=0

 j+1xi+ j),
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2( f ) = 2(x, , f ) :=
1
n

n


i=1

f (
k−1


j=0

 j+1xi+ j)− f

(
1
n

n


i=1

xi

)
,

where f : I → R is a function and 2 ≤ k ≤ n. The functionals f → i( f ) are linear, i = 1,2,
and Theorem 2.1 implies that

i( f ) ≥ 0, i = 1,2

if f : I → R is a convex function.

2.1.2 m-Exponential convexity

For log-convexity, exponential convexity and m-exponential convexity of the functionals
obtained from the interpolations of the discrete Jensen’s inequality, we refer [36] and ref-
erences therein.

We apply the method given in [83], to prove the m-exponential convexity and exponen-
tial convexity of the functionals f → i( f ) for i = 1,2, together with the Lagrange type
and Cauchy type mean value theorems.

Definition 2.1 (see [83]) A function g : I → R is called m-exponentially convex in the
Jensen sense if

m


i, j=1

aia jg

(
xi + x j

2

)
≥ 0

holds for every ai ∈ R and every xi ∈ I, i = 1,2, ...,m.
A function g : I → R is m-exponentially convex if it is m-exponentially convex in the

Jensen sense and continuous on I.

Note that 1-exponentially convex functions in the Jensen sense are in fact the nonnegative
functions. Also, m-exponentially convex functions in the Jensen sense are n-exponentially
convex in the Jensen sense for every n ∈ N, n ≤ m.

Proposition 2.1 If g : I →R is an m-exponentially convex function, then for every xi ∈ I,

i = 1,2, ...,m and for all n∈N, n≤m the matrix
[
g
(

xi+x j
2

)]n

i, j=1
is a positive semi-definite

matrix. Particularly,

det

[
g

(
xi + x j

2

)]n

i, j=1
≥ 0

for all n ∈ N, n = 1,2, ...,m.

Definition 2.2 A function g : I → R is exponentially convex in the Jensen sense, if it is
m-exponentially convex in the Jensen sense for all m ∈ N.

A function g : I → R is exponentially convex if it is exponentially convex in the Jensen
sense and continuous.
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Remark 2.2 It is easy to see that a positive function g : I → R is log-convex in the Jensen
sense if and only if it is 2-exponentially convex in the Jensen sense, that is

a2
1g(x)+2a1a2g

(
x+ y

2

)
+a2

2g(y) ≥ 0

holds for every a1,a2 ∈ R and x,y ∈ I.
Similarly, if g is 2-exponentially convex, then g is log-convex. On the other hand, if g

is log-convex and continuous, then g is 2-exponentially convex.

In sequel, we need the well known notion of “Divided difference”.

Definition 2.3 The second order divided difference of a function g : I → R at mutually
different points y0,y1,y2 ∈ I is defined recursively by

[yi;g] = g(yi), i = 0,1,2

[yi,yi+1;g] =
g(yi+1)−g(yi)

yi+1− yi
, i = 0,1

[y0,y1,y2;g] =
[y1,y2;g]− [y0,y1;g]

y2− y0
. (2.5)

Remark 2.3 The value [y0,y1,y2;g] is independent of the order of the points y0,y1, and
y2. By taking limits this definition may be extended to include the cases in which any two
or all three points coincide as follows: for all y0, y1, y2 ∈ I such that y2 �= y0

lim
y1→y0

[y0,y1,y2;g] = [y0,y0,y2;g] =
g(y2)−g(y0)−g

′
(y0)(y2 − y0)

(y2− y0)
2

provided that g′ exists, and furthermore, taking the limits yi → y0, i = 1,2 in (2.5), we get

[y0,y0,y0;g] = lim
yi→y0

[y0,y1,y2;g] =
g
′′
(y0)
2

for i = 1,2

provided that g
′′

exist on I.

Now, we give the m-exponential convexity for the linear functionals i( f ) (i = 1,2).

Theorem 2.2 Assume I ⊂ R is an interval, and assume  = {t | t ∈ J} is a family of
functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;t ] (t ∈ J) is
m-exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ I. Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1.
Then t → i(t ) (t ∈ J) is an m-exponentially convex function in the Jensen sense on I
for each i = 1,2. If the function t → i(t) (t ∈ J) is continuous for i = 1,2, then it is
m-exponentially convex on I for i = 1,2.
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Proof. Fix i = 1,2.
Let tk, tl ∈ J, tkl := tk+tl

2 and bk,bl ∈ R for k, l = 1,2, ...,n, and define the function  on
I by

 :=
n


k,l=1

bkbltkl .

Since the function t → [y0,y1,y2;t ] (t ∈ J) is m-exponentially convex in the Jensen sense,
we have

[y0,y1,y2; ] =
n


k,l=1

bkbl[y0,y1,y2;tkl ] ≥ 0.

Hence  is a convex function on I. Therefore we have i() ≥ 0, which yields by the
linearity of i, that n


k,l=1

bkbli(tkl ) ≥ 0.

We conclude that the function t → i(t) (t ∈ J) is an m-exponentially convex function in
the Jensen sense on I.
If the function t → i(t) (t ∈ J) is continuous on I, then it is m-exponentially convex on
I by definition. �

As a consequence of the above theorem we can give the following corollaries.

Corollary 2.3 Assume I ⊂ R is an interval, and assume  = {t | t ∈ J} is a family of
functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;t ] (t ∈ J)
is exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ I. Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1. Then
t → i(t) (t ∈ J) is an exponentially convex function in the Jensen sense on I for i = 1,2.
If the function t → i(t) (t ∈ J) is continuous, then it is exponentially convex on I for
i = 1,2.

Corollary 2.4 Assume I ⊂ R is an interval, and assume  = {t : t ∈ J} is a family of
functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;t ] (t ∈ J) is
2-exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ I. Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1. Then
the following two statements hold for i = 1,2:

(i) If the function t →i(t) (t ∈ J) is positive and continuous, then it is 2-exponentially
convex on I, and thus log-convex.

(ii) If the function t →i(t) (t ∈ J) is positive and differentiable, then for every s,t,u,v∈
J, such that s ≤ u and t ≤ v, we have

us,t(i,) ≤ uu,v(i,) (2.6)

where

us,t(i,) :=

⎧⎪⎨⎪⎩
(
i(s)
i(t)

) 1
s−t

, s �= t,

exp

(
d
dsi(s)
i(s)

)
, s = t

(2.7)

for s,t ∈ .
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Proof. Fix i = 1,2.

(i) The proof follows by Remark 2.2 and Theorem 2.2.

(ii) From the definition of a convex function  on I, we have the following inequality
(see [82, page 2])

 (s) −  (t)
s − t

≤  (u) −  (v)
u − v

, (2.8)

∀s, t,u,v ∈ J such that s ≤ u, t ≤ v, s �= t, u �= v.
By (i), s→i(s), s∈ J is log-convex, and hence (2.8) shows with(s) = logi(s),
s ∈ J that

logi(s) − logi(t)
s− t

≤ logi(u)− logi(v)
u− v

(2.9)

for s ≤ u, t ≤ v, s �= t, u �= v, which is equivalent to (2.6). For s = t or u = v (2.6)
follows from (2.9) by taking limit.

�

Remark 2.4 Note that the results from Theorem 2.2, Corollary 2.3, Corollary 2.4 are
valid when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0, for a family of differen-
tiable functions t such that the function t → [y0,y1,y2;t ] is m-exponentially convex in the
Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense),
and moreover, they are are also valid when all three points coincide for a family of twice
differentiable functions with the same property. The proofs can be obtained by recalling
Remark 2.3 and suitable characterization of convexity.

The following result given in [35] is related to the first condition of Theorem 2.2.

Theorem 2.3 Assume I ⊂ R is an interval, and assume  = {t | t ∈ J} is a family of
twice differentiable functions defined on an interval I ⊂R such that the function t �→  ′′

t (x)
(t ∈ J) is exponentially convex for every fixed x ∈ I. Then the function t �→ [y0,y1,y2;t ]
(t ∈ J) is exponentially convex in the Jensen sense for any three points y0, y1, y2 ∈ I.

Remark 2.5 It comes from either the conditions of Theorem 2.3 or the proof of this
theorem that the functions t , t ∈ J are convex.

2.1.3 Mean value theorems

Now we formulate mean value theorems of Lagrange and Cauchy type for the linear func-
tionals i( f ) (i = 1,2) defined in Remark 2.1.

Theorem 2.4 Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1
and g ∈C2[a,b]. Then there exists  ∈ [a,b] such that

i (g) =
1
2
g′′ ( )i

(
x2) ; i = 1,2.
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Proof. Fix i = 1,2.
Since g ∈C2[a,b], there exist the real numbers m = min

x∈[a,b]
g′′(x) and M = max

x∈[a,b]
g′′(x).

It is easy to show that the functions 1 and 2 defined on [a,b] by

1(x) =
M
2

x2 −g(x) ,

and
2(x) = g(x)− m

2
x2,

are convex.
By applying the functional i to the functions 1 and 2, we have the properties of i that

i

(
M
2

x2−g(x)
)
≥ 0,

⇒ i (g) ≤ M
2
i
(
x2) , (2.10)

and
i

(
g(x)− m

2
x2
)

� 0

⇒ m
2
i
(
x2)≤ i (g) . (2.11)

From (2.10) and from (2.11), we get

m
2
i
(
x2)≤ i (g) ≤ M

2
i
(
x2) .

If i
(
x2
)

= 0, then nothing to prove. If i
(
x2
) �= 0, then

m ≤ 2i (g)
i (x2)

≤ M.

Hence we have

i (g) =
1
2
g′′ ( )i

(
x2) .

�

Theorem 2.5 Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1
and g,h ∈C2[a,b]. Then there exists  ∈ [a,b] such that

i (g)
i (h)

=
g′′ ( )
h′′ ( )

; i = 1,2,

provided that i (h) �= 0 (i = 1,2).
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Proof. Fix i = 1,2.
Define L ∈C2[a,b] by

L := c1g− c2h,

where
c1 : = i (h)

and
c2 : = i (g) .

Now using Theorem 2.4 for the function L, we have(
c1

g′′ ( )
2

− c2
h′′ ( )

2

)
i
(
x2)= 0. (2.12)

Since i (h) �= 0, Theorem 2.4 implies that i
(
x2
) �= 0, and therefore (2.12) gives

i (g)
i (h)

=
g′′ ( )
h′′ ( )

.
�

2.1.4 Applications to Cauchy means

In this section we apply the results of previous sections to generate new Cauchy means.
We mention that the functionalsi( f ), i = 1,2 defined in Remark 2.1 under the assumption
(H1), are linear on the vector space of real functions defined on the interval I ⊂ R, and
i( f ) ≥ 0 for every convex function on I.

Example 2.1 Let I = R and consider the class of convex functions

1 := {t : R → [0,[| t ∈ R},
where

t (x) :=
{ 1

t2
etx; t �= 0,

1
2x2; t = 0.

Then t �→  ′′
t (x) (t ∈ R) is exponentially convex for every fixed x ∈ R (see [47]), thus by

Theorem 2.3, the function t �→ [y0,y1,y2;t ], t ∈ R is exponentially convex in the Jensen
sense for every three mutually different points y0,y1,y2 ∈ R.

Now fix i = 1,2. By applying Corollary 2.3 with  = 1, we get the exponential
convexity of t �→ i(t) (t ∈ R) in the Jensen sense. This mapping is also differentiable,
therefore exponentially convex, and the expression in (2.7) has the form

us,t(i,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
i(s)
i(t)

) 1
s−t

; s �= t,

exp
(
i(id s)
i(s)

− 2
s

)
; s = t �= 0,

exp
(
i(id 0)
3i(0)

)
; s = t = 0,

where “id” means the identity function on R.
From (2.6) we have the monotonicity of the functions us,t(i,1) in both parameters s
and t.
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Suppose i(t) > 0 (t ∈ R), a := min{x1, ...,xn}, b := max{x1, ...,xn}, and let

Ms,t(i,1) := logus,t(i,1); s,t ∈ R.

Then from Theorem 2.5 we have

a ≤ Ms,t(i,1) ≤ b,

and thus Ms,t(i,1) (s,t ∈ R) are means. The monotonicity of these means is followed
by (2.6).

Example 2.2 Let I =]0,[ and consider the class of convex functions

2 = {t :]0,[→ R | t ∈ R},
where

t(x) :=

⎧⎨⎩
xt

t(t−1) ; t �= 0,1,

− logx; t = 0,
x logx; t = 1.

Then t �→  ′′
t (x) = xt−2 = e(t−2) logx (t ∈ R) is exponentially convex for every fixed x ∈

]0,[.
Now fix 1≤ i≤ 4. By similar arguments as given in Example 2.1 we get the exponential

convexity of t �→ i(t) (t ∈ R) in the Jensen sense. This mapping is differentiable too,
therefore exponentially convex. It is easy to calculate that (2.7) can be written as

us,t(x,p,i,2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
i(s)
i(t)

) 1
s−t

; s �= t,

exp
(

1−2s
s(s−1) − i(s0)

i(s)

)
; s = t �= 0,1,

exp
(
1− i(2

0 )
2i(0)

)
; s = t = 0,

exp
(
−1− i(01)

2i(1)

)
; s = t = 1.

Suppose i(t) > 0 (t ∈R), and let a := min{x1, ...,xn}, b := max{x1, ...,xn}. By Theorem
2.5, we can check that

a ≤ us,t(x,p,i,2) ≤ b; s, t ∈ R. (2.13)

The means us,t(x,p,i,2) (s,t ∈ R) are continuous, symmetric and monotone in both
parameters (by use of (2.6)).

Let s, t,r ∈ R such that r �= 0. By the substitutions s → s
r , t → t

r , (x1, . . . ,xn) →
(xr

1, . . . ,x
r
n) in (2.13), we get

ā ≤ us/r,t/r(x
r,p,i,2) ≤ b̄,

where ā := min{xr
1, . . . ,x

r
n} and b̄ := max{xr

1, . . . ,x
r
n}. Thus new means can be defined with

three parameters:

us,t,r(x, ,i,2) :=

{
(us/r,t/r(xr, ,i,2))

1
r ; r �= 0,

us,t(logx, ,i,1); r = 0,

where logx = (logx1, ..., logxn).
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The monotonicity of these three parameter means is followed by the monotonicity and
continuity of the two parameter means.

Example 2.3 Let I =]0,[, and consider the class of convex functions

3 = {t :]0,[→]0,[| t ∈]0,[},

where

t(x) :=

{
t−x

log2t
; t �= 1,

x2

2 ; t = 1.

t �→ ′′
t (x) (t ∈]0,[) is exponentially convex for every fixed x∈]0,[, being the restriction

of the Laplace transform of a nonnegative function (see [47] or [89] page 210).
Now fix 1 ≤ i ≤ 4. We can get the exponential convexity of t �→ i(t) (t ∈ R) as in

Example 2.1. For the class 3, (2.7) has the form

us,t(i,3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
i(s)
i(t)

) 1
s−t

; s �= t,

exp
(
− 2

slogs − i(ids)
si(s)

)
; s = t �= 1,

exp
(
−i(id1)

3i(1)

)
; s = t = 1.

The monotonicity of us,t(i,3) (s,t ∈]0,[) comes from (2.6).
Suppose i(t) > 0 (t ∈]0,[), and let a := min{x1, ...,xn}, b := max{x1, ...,xn}, and

define
Ms,t(i,3) := −L(s,t) logus,t(i,3), s,t ∈]0,[,

where L(s, t) is the well known logarithmic mean

L(s,t) :=
{ s−t

log s−logt ; s �= t,
t; s = t.

From Theorem 2.5 we have

a ≤ Ms,t(i,3) ≤ b, s,t ∈]0,[,

and therefore we get means.

Example 2.4 Let I =]0,[ and consider the class of convex functions

4 = {t :]0,[→]0,[| t ∈]0,[},

where

t(x) :=
e−x

√
t

t
.

t �→  ′′
t (x) = e−x

√
t , t ∈]0,[ is exponentially convex for every fixed x ∈]0,[, being the

restriction of the Laplace transform of a non-negative function (see [47] or [89] page 214).
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Now fix 1 ≤ i ≤ 4. As before t �→ i(t) (t ∈ R) is exponentially convex and differen-
tiable. For the class 4, (2.7) becomes

us,t(i,4) =

⎧⎪⎨⎪⎩
(
i(s)
i(t)

) 1
s−t

; s �= t,

exp
(
− 1

t − i(idt )
2
√

ti(t)

)
; s = t,

where id means the identity function on ]0,[. The monotonicity of us,t(i,4) (s,t ∈
]0,[) is followed by (2.6).

Suppose i(t) > 0 (t ∈]0,[), let a := min{x1, ...,xn}, b := max{x1, ...,xn}, and define

Ms,t(i,4) := −(
√

s+
√

t) logus,t(i,4), s,t ∈]0,[.

Then Theorem 2.5 yields that

a ≤ Ms,t(i,4) ≤ b,

thus we have new means.

2.2 Cyclic refinements of the discrete and integral
form of Jensen’s inequality with applications

In this section we introduce new refinements both the discrete and the classical Jensen’s
inequality. First, we extend Theorem 2.1: the weighted version is given in real vector
spaces. By using this result, we obtain new refinements of the classical Jensen’s inequality.
m-exponential convexity of some functionals coming from the new refinements are inves-
tigated. To apply our results we define some new mixed symmetric means, generalized
means, and Caucy-means, and study their properties.

2.2.1 Cyclic refinements of the discrete and classical
Jensen’s inequalities

We say that the numbers p1, . . . , pn represent a (positive) discrete probability distribution

if (pi > 0) pi ≥ 0 (1 ≤ i ≤ n) and
n

i=1

pi = 1.

To refine the discrete Jensen’s inequality, we need the following hypotheses:
(H1) Let 2 ≤ k ≤ n be integers, and let p1, . . . , pn and 1, . . . ,k represent positive

probability distributions.
(H2) Let C be a convex subset of a real vector space V , and f : C → R be a convex

function.
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Theorem 2.6 Assume (H1) and (H2). If v1, . . . ,vn ∈C, then

f

(
n


i=1

pivi

)
≤Cdis = Cdis ( f ,v,p, ) (2.14)

:=
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jvi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤
n


i=1

pi f (vi)

where i+ j means i+ j−n in case of i+ j > n.

Proof. By the discrete Jensen’s inequality

Cdis ≤
n


i=1

(
k−1


j=0

 j+1pi+ j f (vi+ j)

)
=

(
n


i=1

pi f (vi)

)(
k


j=1

 j

)
=

n


i=1

pi f (vi) .

The left hand side inequality can be proved similarly. Since

n


i=1

(
k−1


j=0

 j+1pi+ j

)
= 1,

the discrete Jensen’s inequality implies that

Cdis ≥ f

(
n


i=1

(
k−1


j=0

 j+1pi+ jvi+ j

))
= f

(
n


i=1

pivi

)
.

The proof is complete. �

The previous result can be considered as the weighted form of Theorem 2.1.
To refine the classical Jensen’s inequality, we first introduce some hypotheses and no-

tations.
(H3) Let (X ,B,) be a probability space.
Let l ≥ 2 be a fixed integer. The  -algebra in Xl generated by the projection mappings

prm : Xl → X (m = 1, . . . , l)
prm (x1, . . . ,xl) := xm

is denoted by Bl .  l means the product measure on Bl : this measure is uniquely ( is
 -finite) specified by

 l (B1× . . .×Bl) :=  (B1) . . . (Bl) , Bm ∈ B, m = 1, . . . , l.

(H4) Let g be a -integrable function on X taking values in an interval I ⊂ R.
(H5) Let f be a convex function on I such that f ◦ g is -integrable on X .
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Under the conditions (H1) and (H3-H5) we define

Cint = Cint ( f ,g, ,p, )

:=
n


i=1

(
k−1


j=0

 j+1pi+ j

)∫
Xn

f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠dn (x1, . . . ,xn) , (2.15)

and for t ∈ [0,1]

Cpar (t) = Cpar (t, f ,g, ,p, ) :=
n


i=1

(
k−1


j=0

 j+1pi+ j

)

·
∫
Xn

f

⎛⎜⎜⎜⎝t

k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

+(1− t)
∫
X

gd

⎞⎟⎟⎟⎠dn (x1, . . . ,xn) , (2.16)

where i+ j means i+ j−n in case of i+ j > n.

Remark 2.6 It follows from Lemma 2.1 (b) in [40] that the integrals in (2.15) and (2.16)
exist and finite.

First, the essential properties of the function Cpar are given.

Theorem 2.7 Assume (H1) and (H3-H5). Then
(a) Cpar is convex and increasing.
(b)

Cpar (0) = f

⎛⎝∫
X

gd

⎞⎠ , Cpar (1) = Cint .

(c) Cpar is continuous on [0,1[.
(d) If f is continuous, then Cpar is continuous on [0,1].

Proof. (a) Convexity is invariant under affine maps, the integral is monotonic, and the sum
of convex functions is also convex: these imply that Cpar is convex on [0,1].

By the classical Jensen’s inequality

Cpar (t) ≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)

· f

⎛⎜⎜⎜⎝
∫
Xn

⎛⎜⎜⎜⎝t

k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

+(1− t)
∫
X

gd

⎞⎟⎟⎟⎠dn (x1, . . . ,xn)

⎞⎟⎟⎟⎠
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=
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎝t
∫
X

gd+(1− t)
∫
X

gd

⎞⎠
=

n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎝∫
X

gd

⎞⎠= f

⎛⎝∫
X

gd

⎞⎠= Cpar (0) , t ∈ [0,1] .

Suppose 0 ≤ t1 < t2 ≤ 1. The convexity of Cpar, and Cpar (t) ≥ Cpar (0) (t ∈ [0,1])
imply that

Cpar (t2)−Cpar (t1)
t2− t1

≥ Cpar (t2)−Cpar (0)
t2

≥ 0,

and thus

Cpar (t2) ≥Cpar (t1) .

(b) These are obvious.
(c) It follows from (a).

(d) We have only to show that Cpar is continuous at 1. To this end, it is enough to check
that the functions

t →
(

k−1


j=0

 j+1pi+ j

)∫
Xn

f

⎛⎜⎜⎜⎝t

k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

+(1− t)
∫
X

gd

⎞⎠dn (x1, . . . ,xn) ,

t ∈ [0,1] , i = 1, . . . ,n

are all continuous at 1. To prove this, fix i from {1, . . . ,n}, and let (tn) be a sequence from
[0,1] which converges to 1.

Since f is continuous

tn → f

⎛⎜⎜⎜⎝tn

k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

+(1− tn)
∫
X

gd

⎞⎟⎟⎟⎠

n→→ f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠ , (x1, . . . ,xn) ∈ Xn. (2.17)
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It comes from the discrete Jensen’s inequality that

f

⎛⎜⎜⎜⎝t

k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

+(1− t)
∫
X

gd

⎞⎟⎟⎟⎠

≤ t f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠+(1− t) f

⎛⎝∫
X

gd

⎞⎠

≤ max

⎛⎜⎜⎜⎝ f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠ , f

⎛⎝∫
X

gd

⎞⎠
⎞⎟⎟⎟⎠ (2.18)

for all t ∈ [0,1] and (x1, . . . ,xn) ∈ Xn.
Choose a fixed interior point a of I. Since f is convex

f (t) ≥ f (a)+ f ′+ (a)(z−a), z ∈ I,

where f ′+ (a) means the right-hand derivative of f at a. It follows from this that

f

⎛⎜⎜⎜⎝t

k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

+(1− t)
∫
X

gd

⎞⎟⎟⎟⎠

≥ f (a)+ f ′+ (a)

⎛⎜⎜⎜⎝t

k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

+(1− t)
∫
X

gd−a

⎞⎟⎟⎟⎠

≥ f (a)−a f ′+ (a)+min

⎛⎜⎜⎜⎝ f ′+ (a)

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

−a

⎞⎟⎟⎟⎠ , f ′+ (a)
∫
X

gd

⎞⎟⎟⎟⎠
(2.19)

for all t ∈ [0,1] and (x1, . . . ,xn) ∈ Xn.
The functions in (2.18) and (2.19) do not depend on t, and n-integrable, and therefore

Lebesgue’s dominated convergence theorem and (2.17) imply that

Cpar (tn) →Cpar (1) .

The proof is complete. �
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We illustrate by a concrete example that Cpar is not continuous at 1 in general.

Example 2.5 Let k = n = 2, and p1 = p2 = 1 = 2 = 1
2 . We consider the measure space(

[0,1] ,B, 1
21/2 + 1

21
)
, where B is the  -algebra of Borel subsets of [0,1], and 1/2 and

1 are the Dirac measures at 1/2 and 1, respectively. Denote  = 1
21/2 + 1

21. Define the
functions f , g : [0,1] → R by

g(x) = x, f (x) =
{

x, if 0 ≤ x < 1
2, if x = 1

.

In this case for every t ∈ [0,1]

Cpar (t) =
1
2

∫
[0,1]2

f

⎛⎜⎝t
x1 + x2

2
+(1− t)

∫
[0,1]

xd

⎞⎟⎠d2 (x1,x2)

=
1
2

∫
[0,1]2

f

(
t
x1 + x2

2
+(1− t)

3
4

)
d2 (x1,x2)

=
1
2

(
1
4

f

(
1
2
t +(1− t)

3
4

)
+

2
4

f

(
3
4

)
+

1
4

f

(
t +(1− t)

3
4

))
.

It can be seen from this that

lim
t→1

Cpar (t) =
1
2

(
1
4
· 1
2

+
2
4
· 3
4

+
1
4

)
=

3
8
,

while

Cpar (1) =
1
2

(
1
4
· 1
2

+
2
4
· 3
4

+
1
4
·2
)

=
1
2
.

Now our second main result is the next:

Theorem 2.8 Assume (H1) and (H3-H5). Then

f

⎛⎝∫
X

gd

⎞⎠≤Cpar (t) ≤Cint ≤
∫
X

f ◦ gd , t ∈ [0,1] .

Proof. It follows from Theorem 2.7 that

f

⎛⎝∫
X

gd

⎞⎠≤Cpar (t) ≤Cint , t ∈ [0,1] .
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The discrete Jensen’s inequality yields

Cint =
n


i=1

(
k−1


j=0

 j+1pi+ j

)∫
Xn

f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jg(xi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠dn (x1, . . . ,xn)

≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)∫
Xn

k−1

j=0

 j+1pi+ j f (g(xi+ j))

k−1

j=0

 j+1pi+ j

dn (x1, . . . ,xn)

=
∫
Xn

n


i=1

(
k−1


j=0

 j+1pi+ j f (g(xi+ j))

)
dn (x1, . . . ,xn)

=
∫
Xn

n


i=1

pi f (g(xi))dn (x1, . . . ,xn) =
∫
X

f ◦ gd .

The proof is complete. �

2.2.2 Applications to mixed symmetric means

Consider the following hypotheses for this section.
(M1) Let I ⊂ R be an interval, x := (x1, ...,xn) ∈ In and let p1, . . . , pn and 1, . . . ,k repre-
sent positive probability distributions for 2 ≤ k ≤ n.
(M2) Let f : I → R be a convex function.
(M3) Let  ,  : I → R be continuous and strictly monotone functions.

Assume (M1). Then we define the power means of order r ∈ R as follows:

Mr(xi+k−1
i ; pi+k−1

i ; k
1 ) = Mr(xi, ...,xi+k−1; pi, ..., pi+k−1;1, ...,k)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝
k−1

j=0

 j+1 pi+ jx
r
i+ j

k−1

j=0

 j+1 pi+ j

⎞⎟⎠
1
r

; r �= 0,

(
k−1

j=0

x
 j+1 pi+ j
i+ j

) 1
k−1


j=0
 j+1 pi+ j

; r = 0,

(2.20)

and weighted cyclic mixed symmetric means corresponding to Cdis are

Mr,s(x,p, )=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
n

i=1

(
k−1

j=0

 j+1pi+ j

)
Ms

r (x
i+k−1
i ; pi+k−1

i ; k
1 )

) 1
s

; s �= 0,

n

i=1

(Mr(xi+k−1
i ; pi+k−1

i ; k
1 ))

k−1

j=0

 j+1 pi+ j

; s = 0,

where i+ j means i+ j−n in case of i+ j > n.
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The standard power means of order r ∈ R for the positive n-tuple x and probability
distributions p1, . . . , pn, are

Mr(x,p) = Mr(x1, ...,xn; p1, ..., pn) :=

⎧⎪⎪⎨⎪⎪⎩
(

n

i=1

pixr
i

) 1
r

; r �= 0,(
n

i=1

xi
pi

)
; r = 0.

The bounds for weighted cyclic mixed symmetric means are power means, as given in the
following result.

Corollary 2.5 Assume (M1) and r,s ∈ R such that r ≤ s. Then

Mr(x,p) ≤ Ms,r(x,p, ) ≤ Ms(x,p). (2.21)

Proof. Apply Theorem 2.6. �

Assume (M1) and (M3). Then we define the cyclic generalized means with respect to Cdis

as follows:

M ,(x,p, ) := −1

⎛⎜⎜⎜⎝ n


i=1

(
k−1


j=0

 j+1pi+ j

)
 ◦−1

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j(xi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

where i+ j means i+ j−n in case of i+ j > n.
Let q : I → R be a continuous and strictly monotone function then the standard quasi-

arithmetic means of x1, . . . ,xn for probability distribution p1, . . . , pn are given by

Mq(x,p) = Mq(x1, . . . ,xn; p1, . . . , pn) := q−1

(
n


i=1

piq(xi)

)
.

The relation among the cyclic generalized means and quasi-arithmetic means is given in
the next corollary.

Corollary 2.6 Assume (M1) and (M3). Then

M(x,p) ≤ M ,(x,p, ) ≤ M (x,p) (2.22)

if either  ◦−1 is convex and  is strictly increasing or  ◦−1 is concave and  is
strictly decreasing.

Proof. We apply Theorem 2.6. �

The unweighted versions of Corollaries 2.5 and 2.6 are given in [13].



22 2 CYCLIC IMPROVEMENT OF JENSEN’S INEQUALITY

Let (X ,A ,) be a measure space with 0 <  (X) < , r ∈ R, and u : X →R be a pos-
itive measurable function such that ur is -integrable, if r �= 0, and log◦u is -integrable,
if r = 0. Then the integral power means of order r are defined by (see [36]):

M̃r (u,) :=

⎧⎪⎪⎨⎪⎪⎩
(

1
(X)

∫
X

(u(x))rd (x)
) 1

r

, r �= 0,

exp

(
1

(X)
∫
X

log(u(x))d (x)
)

, r = 0.

(2.23)

(H̃6) Let (X ,A ,) be a probability space, and u : X → R be a measurable function.
Suppose probability distribution (p1, ..., pn).

Under the conditions (H1) and (H3-H4), we define the following cyclic mixed means
corresponding to Cpar (t) for the class of positive -integrable functions g for which gs (if
s �= 0) and log◦g (if s = 0) are also -integrable.

Mr,s (t, f ,g, ,p, ) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎝ n

i=1

(
k−1

j=0

 j+1pi+ j

)
· ∫
Xn

⎛⎜⎝t

k−1

j=0

 j+1 pi+ j(g(xi+ j))
s

k−1

j=0

 j+1 pi+ j

+(1−t)
∫
X

gsd

⎞⎟⎠
r
s

dn (x1, . . . ,xn)

⎞⎟⎟⎠
1
r

; r,s �= 0,

⎛⎜⎜⎜⎝n


i=1

(
k−1

j=0

 j+1pi+ j

)
· ∫
Xn

⎛⎜⎜⎜⎝exp

⎛⎜⎜⎜⎝log

(
k−1

j=0

(
g
(
xi+ j

)) j+1 pi+ j

) t
k−1


j=0
 j+1 pi+ j

+(1−t)
∫
X

log(g(x))d(x)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

r

dn (x1, . . . ,xn)

⎞⎟⎟⎟⎠
1
r

; r �= 0,

exp

⎛⎜⎜⎜⎝ 1
s

n


i=1

(
k−1

j=0

 j+1pi+ j

)
· ∫
Xn

log

⎛⎜⎜⎜⎝ t

k−1

j=0

 j+1pi+ j(g(xi+ j))
s

k−1

j=0

 j+1 pi+ j

+(1−t)
∫
X

gsd

⎞⎟⎟⎟⎠dn (x1, . . . ,xn)

⎞⎟⎟⎟⎠ ; s �= 0,

exp

⎛⎜⎜⎜⎝n

i=1

(
k−1

j=0

 j+1pi+ j

)
· ∫
Xn

⎛⎜⎜⎜⎝ log

(
k−1

j=0

(
g
(
xi+ j

)) j+1 pi+ j

) t
k−1


j=0
 j+1 pi+ j

+(1−t)
∫
X

log(g(x))d(x)

⎞⎟⎟⎟⎠dn (x1, . . . ,xn)

⎞⎟⎟⎟⎠ ; s = 0.

where i+ j means i+ j−n in case of i+ j > n.
The cyclic mixed symmetric means corresponding to Cint are Mr,s (0, f ,g, ,p, ).

Corollary 2.7 Assume (M1), (H3) and (H4). Let r,s ∈ R such that r ≤ s and suppose that
gs, gr are -integrable functions for r,s �= 0 and log◦g is -integrable function if either
r = 0 or s = 0. Then

M̃r(x,p) ≤ Mr,s (t, f ,g, ,p, ) ≤ Mr,s (0, f ,g, ,p, ) ≤ M̃s(x,p). (2.24)

Proof. Apply Theorem 2.8. �
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Assume (H1), (H3-H4) and (M3). Then we define the following quasi-arithmetic means
with respect to Cpar for -integrable functions  ◦ g and  ◦ g.

M , (t, f ,g, ,p, ) :=

−1

⎛⎜⎜⎜⎜⎝
n

i=1

(
k−1

j=0

 j+1pi+ j

) ∫
Xn
 ◦−1

⎛⎜⎜⎜⎜⎝
t

k−1

j=0

 j+1 pi+ j◦g(xi+ j)
k−1

j=0

 j+1 pi+ j

+(1− t)
∫
X
 ◦ gd

⎞⎟⎟⎟⎟⎠dn (x1, . . . ,xn)

⎞⎟⎟⎟⎟⎠ ,

and standard quasi-arithmetic means are

M̃ (g,) := −1

⎛⎝∫
X

 ◦ gd

⎞⎠ .

The quasi- arithmetic mean related to Cint are M̃, (0, f ,g, ,p, ).

Corollary 2.8 Assume (H1), (H3-H4) and (M3). Suppose  ◦ g and ◦ g are -integrable
functions. If either  ◦−1 is convex and  is increasing, or  ◦−1 is concave and  is
decreasing, then

M̃ (g,) ≤ M̃ , (t, f ,g, ,p, ) ≤ M̃ , (0, f ,g, ,p, ) ≤ M̃ (g,) ,

while if either  ◦−1 is convex and  is decreasing, or  ◦−1 is concave and  is
increasing, then

M̃ (g,) ≤ M̃, (t, f ,g, ,p, ) ≤ M̃, (0, f ,g, ,p, ) ≤ M̃ (g,) .

Proof. Apply Theorem 2.8. �

Remark 2.7 Under the conditions (M1), we define

J1( f ) = J1(x,p, , f ) :=
n


i=1

pi f (vi)−Cdis ( f ,x,p, )

J2( f ) = J2(x,p, , f ) := Cdis ( f ,x,p, )− f

(
n


i=1

pivi

)
where f : I → R is a function. The functionals f → Ji( f ) are linear, i = 1,2, and Theorem
2.6 imply that

Ji( f ) ≥ 0, i = 1,2

if f : I → R is a convex function.
Assume (H1) and (H3-H5). Then we have the following more linear functionals

J3( f ) = J3( f ,g, ,p, ) :=
∫
X

f ◦ gd−Cint ( f ,g, ,p, ) ≥ 0,

J4( f ) = J4(t, f ,g, ,p, ) :=
∫
X

f ◦ gd−Cpar (t, f ,g, ,p, ) ≥ 0; t ∈ [0,1] ,
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J5( f ) = J5(t, f ,g, ,p, ) := Cint ( f ,g, ,p, )−Cpar (t, f ,g, ,p, ) ≥ 0; t ∈ [0,1] ,

J6( f ) = J6(t, f ,g, ,p, ) := Cpar (t, f ,g, ,p, )− f

⎛⎝∫
X

gd

⎞⎠≥ 0; t ∈ [0,1] ,

J7( f ) = J6( f ,g) :=
∫
X

f ◦ gd− f

⎛⎝∫
X

gd

⎞⎠ .

The log-convexity, exponential convexity and m-exponential convexity and related results
for J7( f ) can be found in [36].

2.2.3 m-exponential convexity, mean value theorems
and Cauchy means

We apply the method given in [83], to prove the m-exponential convexity and exponential
convexity of the functionals f → Ji( f ) for i = 1, ...,6, together with the Lagrange type and
Cauchy type mean value theorems. The same method is used for Theorem 2.1. Hence the
extension of Theorem 2.2 is as follows.

Theorem 2.9 Assume I ⊂ R is an interval, and assume  = {t | t ∈ J} is a family of
functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;t ] (t ∈ J) is
m-exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ I. Let Ji( f ) (i = 1, ...,6) be the linear functionals constructed in Remark 2.7.
Then t → Ji(t) (t ∈ J) is an m-exponentially convex function in the Jensen sense on I for
each i = 1, ...,6. If the function t → Ji(t) (t ∈ J) is continuous for i = 1, ...,6, then it is
m-exponentially convex on I for i = 1, ...,6.

Proof. The proof is same as of 2.2. �

Similarly, the extensions for Corollary 2.3 and Corollary 2.4 are as follows.

Corollary 2.9 Assume I ⊂ R is an interval, and assume  = {t | t ∈ J} is a family of
functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;t ] (t ∈ J)
is exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ I. Let Ji( f ) (i = 1, ...,6) be the linear functionals constructed in Remark 2.7.
Then t → Ji(t) (t ∈ J) is an exponentially convex function in the Jensen sense on I for
i = 1, ...,6. If the function t → Ji(t) (t ∈ J) is continuous, then it is exponentially convex
on I for i = 1, ...,6.

Corollary 2.10 Assume I ⊂ R is an interval, and assume  = {t : t ∈ J} is a family of
functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;t ] (t ∈ J) is
2-exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ I. Let Ji( f ) (i = 1, ...,6) be the linear functionals constructed in Remark 2.7.
Then the following two statements hold for i = 1, ...,6:
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(i) If the function t → Ji(t ) (t ∈ J) is positive and continuous, then it is 2-exponentially
convex on I, and thus log-convex.

(ii) If the function t → Ji(t) (t ∈ J) is positive and differentiable, then for every s,t,u,v∈
J, such that s ≤ u and t ≤ v, we have

us,t(Ji,) ≤ uu,v(Ji,) (2.25)

where

us,t(Ji,) :=

⎧⎪⎨⎪⎩
(

Ji(s)
Ji(t)

) 1
s−t

, s �= t,

exp

(
d
ds Ji(s)
Ji(s)

)
, s = t

(2.26)

for s,t ∈ .

The extensions of mean value theorems for the linear functionals Ji( f ) (i = 1, ...,6) are as
follows.

Theorem 2.10 Let Ji( f ) (i = 1, ...,6) be the linear functionals constructed in Remark 2.7
and g ∈C2[a,b]. Then there exists  ∈ [a,b] such that

Ji (g) =
1
2
g′′ ( )Ji

(
x2) ; i = 1, ...,6.

Proof. The proof is same as of Theorem 2.4. �

Theorem 2.11 Let Ji( f ) (i = 1, ...,6) be the linear functionals constructed in Remark 2.7
and g,h ∈C2[a,b]. Then there exists  ∈ [a,b] such that

Ji (g)
Ji (h)

=
g′′ ( )
h′′ ( )

; i = 1, ...,6,

provided that Ji (h) �= 0 (i = 1, ...,6).

Proof. The proof is same as of Theorem 2.5. �

By the application of Theorem 2.11, the Cauchy means constructed in Section 2.1.4
are generalized for two probability distributions p and  .

Example 2.6 Under the settings of Example 6.1 of [13], we apply Corollary 2.9 to get
the exponential convexity of t �→ Ji(t) (t ∈ R) and the monotone functions ws,t in (2.26)
become

ws,t(Ji,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

Ji(s)
Ji(t)

) 1
s−t

; s �= t,

exp
(

Ji(id s)
Ji(s)

− 2
s

)
; s = t �= 0,

exp
(

Ji(id 0)
3Ji(0)

)
; s = t = 0,
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for i = 1, ...,6.
Suppose Ji(t) > 0 (t ∈ R), a := min{x1, ...,xn}, b := max{x1, ...,xn}, and let

Ms,t(Ji,1) := logus,t(Ji,1); s,t ∈ R.

Then from Theorem 2.11 we have

a ≤ Ms,t(Ji,1) ≤ b,

and thus Ms,t(Ji,1) (s,t ∈ R) are means. The monotonicity of these means is followed
by (2.25).

Similarly, the Examples 2.1–2.4 can also be extended for Ji(t) (t ∈ R) (i = 1, ...,6).

2.3 Further Applications To Holder’s Inequality

We say that the numbers pi ≥ 0 (1 ≤ i ≤ n) and
n

i=1

pi = Pn.

Theorem 2.12 Let p > 1, 1
p + 1

q = 1 and wi,xi,yi, i =,1,2,3, ... be arbitrary sequences
of poistive real numbers . Then under the assumptions of Theorem 2.6 the following in-
equalities hold:(

n


i=1

wix
p
i

) 1
p
(

n


i=1

wiy
q
i

) 1
q

≥
n


i=1

(
k−1


j=0

 j+1wi+ jy
q
i+ j

) 1
q
(

k−1


j=0

 j+1wi+ jx
p
i+ j

) 1
p

≥
n


i=1

wixiyi. (2.27)

where i+ j means i+ j−n in case of i+ j > n.
If 0 < p < 1 then inequalities sign are reversed in (2.27).

Proof. Consider the family of functions f (x) = xs

s(s−1) s �= 0,1. Clearly f ′′(x) = xs−2 > 0
for all x > 0. Putting in weighted version of Theorem (2.14), we get

1
s(1− s)

(
1
Pn

n


i=1

pixi

)s

≥ 1
s(1− s)

1
Pn

n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
s

≥ 1
s(1− s)

1
Pn

n


i=1

pi (xs
i ) (2.28)
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Consider the substitutions s = 1
p , 1− s = 1

q , pi =
wiy

q
i

n


i=1
wiy

q
i

, xi = xp
i

yq
i

in (2.28), we get

OR

pq

⎛⎜⎜⎜⎜⎜⎜⎝
1

n

i=1

wiy
q
i

n

i=1

wiy
q
i

n


i=1

wiy
q
i

n

i=1

wiy
q
i

xp
i

yq
i

⎞⎟⎟⎟⎟⎟⎟⎠

1
p

≥ pq
1
1

n


i=1
wiy

q
i

n


i=1
wiy

q
i

n


i=1

⎛⎜⎜⎜⎝k−1


j=0

 j+1
wi+ jy

q
i+ j

n

i=1

k−1

j=0

 j+1wi+ jy
q
i+ j

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

k−1

j=0

 j+1
wi+ jy

q
i+ j

n


i=1

k−1

j=0

 j+1wi+ jy
q
i+ j

xp
i+ j

yq
i+ j

k−1

j=0

 j+1
wi+ jy

q
i+ j

n

i=1

k−1

j=0

 j+1wi+ jy
q
i+ j

⎞⎟⎟⎟⎟⎟⎠

1
p

≥ pq
1

n

i=1

wiy
q
i

n


i=1
wiy

q
i

n


i=1

wiy
q
i

n

i=1

wiy
q
i

(
xp
i

yq
i

) 1
p

(2.29)

Since
n

i=1

k−1

j=0

 j+1wi+ jy
q
i+ j =

n

i=1

wiy
q
i

n

i=1

i =
n

i=1

wiy
q
i , we get

pq

(
n


i=1

wix
p
i

) 1
p
(

n


i=1

wiy
q
i

)−1
p

≥ pq
1

n

i=1

wiy
q
i

n


i=1

(
k−1


j=0

 j+1wi+ jy
q
i+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1wi+ jx
p
i+ j

k−1

j=0

 j+1wi+ jy
q
i+ j

⎞⎟⎟⎟⎠
1
p

≥ pq
n


i=1

wixiyi

(
n


i=1

wiy
q
i

)−1
p

(2.30)

After simplification, we will get (2.27). �

Theorem 2.13 Let p > 1, 1
p + 1

q = 1 and wi,xi,yi, i =,1,2,3, ... be arbitrary sequences
of positive real numbers . Then under the assumptions of Theorem 2.6 the following in-
equalities hold:

n


i=1

wixiyi ≤
n


i=1

(
wiy

q
i

) 1
q

n


i=1

(
k−1

j=0

 j+1wi+ jyi+ jxi+ j

)
(

k−1

j=0

 j+1wi+ jy
q
i+ j

) 1
q

≤
(

n


i=1

wix
p
i

) 1
p
(

n


i=1

wiy
q
i

) 1
q

. (2.31)
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where i+ j means i+ j−n in case of i+ j > n.
The inequalities in (2.31) are reversed for 0 < p < 1.

Proof. Consider the substitutions f (x) = xp, pi = wiy
q
i , xi = xiy

1−q
i in (2.14) and simpli-

fying will give (2.31). �



Chapter3
Cyclic Improvements of
Inequalities for Entropy of
Zipf-Mandelbrot Law

The Jensen’s inequality plays a crucial role to obtain inequalities for divergences between
probability distributions. Divergences between probability distributions have been intro-
duced to measure the difference between them. A lot of different type of divergences exist,
for example the f -divergence (especially, Kullback–Leibler divergence, Hellinger distance
and total variation distance), Rényi divergence, Jensen–Shannon divergence, etc. (see [63]
and [91]). There are a lot of papers dealing with inequalities for divergences and entropies,
see e.g. [32] and [88] and the references therein. The Jensen’s inequality plays a crucial
role some of these inequalities.

We first introduce some important definitions and results used for rest of this Chapter.
The following notion was introduced by Csiszár in [19] and [18].

Definition 3.1 Let f : ]0,[ → ]0,[ be a convex function, and let p := (p1, . . . , pn) and
q := (q1, . . . ,qn) be positive probability distributions. The f -divergence functional is

I f (p,q) :=
n


i=1

qi f

(
pi

qi

)
.

It is possible to use nonnegative probability distributions in the f -divergence func-
tional, by defining

f (0) := lim
t→0+

f (t) ; 0 f

(
0
0

)
:= 0; 0 f

(a
0

)
:= lim

t→0+
t f
(a

t

)
, a > 0.

29
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Based on the previous definition, the following new functional was introduced in [38].

Definition 3.2 Let J ⊂ R be an interval, and let f : J → R be a function. Let p :=
(p1, . . . , pn) ∈ R

n, and q := (q1, . . . ,qn) ∈ ]0,[n such that

pi

qi
∈ J, i = 1, . . . ,n. (3.1)

Then let

Ĩ f (p,q) :=
n


i=1

qi f

(
pi

qi

)
.

Shannon entropy and the measures related to it are frequently applied in fields like popu-
lation genetics, molecular ecology, information theory, dynamical systems and statistical
physics(see [17, 61].

Definition 3.3 The Shannon entropy of a positive probability distribution p := (p1, . . . , pn)
is defined by

H (p) := −
n


i=1

pi log(pi) .

One of the most famous distance functions used in information theory [14, 90], mathe-
matical statistics [50, 92, 51] and signal processing [30, 60] is Kullback-Leibler distance.
The Kullback-Leibler distance [58, 59] between the positive probability distributions
p = (p1, ..., pn) and q = (q1, ...,qn) is defined by

Definition 3.4 The Kullback-Leibler divergence between the positive probability distri-
butions p := (p1, . . . , pn) and q := (q1, . . . ,qn) is defined by

D(p‖q) :=
n


i=1

pi log

(
pi

qi

)
.

Definition 3.5 Zipf-Mandelbrot law is a discrete probability distribution depends on three
parameters N ∈ {1,2, . . .}, q ∈ [0,[ and s > 0, and it is defined by

f (i;N,q,s) :=
1

(i+q)s HN,q,s
, i = 1, . . . ,N,

where

HN,q,s :=
N


k=1

1
(k+q)s

.

If q = 0, then Zipf–Mandelbrot law becomes Zipf’s law.

Zipf’s law is one of the basic laws in information science and bibliometrics. Zipf’s law
is concerning the frequency of words in the text. We count the number of times each word
appears in the text. Words are ranked (r) according to the frequency of occurrence ( f ).
The product of these two numbers is a constant: r · f = c.
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Apart from the use of this law in bibliometrics and information science, Zipf’s law
is frequently used in linguistics (see [22], p. 167). In economics and econometrics, this
distribution is known as Pareto’s law which analyze the distribution of the wealthiest mem-
bers of the community (see [22], p. 125). These two laws are the same in the mathematical
sense, they are only applied in a different context (see [26], p. 294).

The same type of distribution that we have in Zipf’s and Pareto’s law can be also
found in other scientific disciplines, such as: physics, biology, earth and planetary sciences,
computer science, demography and the social sciences. For example, the same type of
distribution, which we also call the Power law, we can analyze the number of hits on web
sites, the magnitude of earthquakes, diameter of moon craters, intensity of solar flares,
intensity of wars, population of cities, and others (see [80]).

More general model introduced Benoit Mandelbrot (see [65]), by using arguments on
the fractal structure of lexical trees.

The are also quite different interpretation of Zipf-Mandelbrot law in ecology, as it is
pointed out in [79] (see also [29] and [93]).

3.1 Estimations of f - and Rényi divergences
by using a cyclic refinement of the
Jensen’s inequality

In this section, we obtain inequalities for Rényi and Shannon entropies from cyclic refine-
ments of Jensen’s inequality results. Finally, some concrete cases are considered, by using
Zipf-Mandelbrot law.

It is generally common to take log with base of 2 in the introduced notions, but in our
investigations this is not essential.

3.1.1 Inequalities for Csiszár divergence and Shannon entropy
In the first result we apply Theorem 2.6 to Ĩ f (p,q).

Theorem 3.1 Let 2≤ k≤ n be integers, and let  := (1, . . . ,k) be a positive probability
distribution. Let J ⊂R be an interval, let p := (p1, . . . , pn)∈R

n, and let q := (q1, . . . ,qn)∈
]0,[n such that

pi

qi
∈ J, i = 1, . . . ,n.

(a) If f : J → R is a convex function, then

Ĩ f (p,q) =
n


i=1

qi f

(
pi

qi

)

≥
n


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ f

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

qi. (3.2)
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If f is a concave function, then inequality signs in (3.2) are reversed.
(b) If f : J → R is a function such that x → x f (x) (x ∈ J) is convex, then

ĨidJ f (p,q) =
n


i=1

pi f

(
pi

qi

)

≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ f

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

pi. (3.3)

If x → x f (x) (x ∈ J) is a concave function, then inequality signs in (3.3) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) By applying Theorem 2.6 with C := J, f := f ,

pi :=
qi
n


i=1

qi

, vi :=
pi

qi
, i = 1, . . . ,n

we have

n


i=1

qi f

(
pi

qi

)
=

(
n


i=1

qi

)
·

n


i=1

qi
n


i=1

qi

f

(
pi

qi

)

≥
(

n


i=1

qi

)
·

n


i=1

⎛⎜⎜⎜⎝k−1


j=0

 j+1
qi+ j
n


i=1

qi

⎞⎟⎟⎟⎠ f

⎛⎜⎜⎜⎜⎜⎜⎜⎝

k−1

j=0

 j+1
qi+ j
n


i=1

qi

pi+ j
qi+ j

k−1

j=0

 j+1
qi+ j
n


i=1

qi

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
n


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ f

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

qi.

(b) We can prove similarly to (a), by using f := idJ f .
The proof is complete. �

Remark 3.1 (a) Csiszár and Körner classical inequality for the f -divergence functional
is generalized and refined in (3.2).

(b) Other type of refinements are applied to the f -divergence functional in [23], [24]
and [4].

(c) For example, the functions x→ x logb (x) (x > 0, b > 1) and x→ xarctan(x) (x ∈ R)
are convex.
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We mention two special cases of the previous result.
The first case corresponds to the entropy of a discrete probability distribution.

Corollary 3.1 Let 2≤ k≤ n be integers, and let  := (1, . . . ,k) be a positive probability
distribution.

(a) If q := (q1, . . . ,qn) ∈ ]0,[n, and the base of log is greater than 1, then

−
n


i=1

qi log(qi) ≤−
n


i=1

(
k−1


j=0

 j+1qi+ j

)
log

(
k−1


j=0

 j+1qi+ j

)
≤ log

⎛⎜⎜⎜⎝ n
n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

qi. (3.4)

If the base of log is between 0 and 1, then inequality signs in (3.4) are reversed.
(b) If q := (q1, . . . ,qn) is a positive probability distribution and the base of log is greater

than 1, then we have estimates for the Shannon entropy of q

H (q) ≤−
n


i=1

(
k−1


j=0

 j+1qi+ j

)
log

(
k−1


j=0

 j+1qi+ j

)
≤ log(n) .

If the base of log is between 0 and 1, then inequality signs in (3.4) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) It follows from Theorem 3.1 (a), by using f := log and p := (1, . . . ,1).
(b) It is a special case of (a). �

The second case corresponds to the relative entropy or Kullback-Leibler divergence
between two probability distributions.

Corollary 3.2 Let 2≤ k≤ n be integers, and let  := (1, . . . ,k) be a positive probability
distribution.

(a) Let p := (p1, . . . , pn) ∈ ]0,[n and q := (q1, . . . ,qn) ∈ ]0,[n. If the base of log is
greater than 1, then

n


i=1

pi log

(
pi

qi

)
≥

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ log

⎛⎜⎜⎜⎝
n


i=1

pi

n


i=1

qi

⎞⎟⎟⎟⎠ n


i=1

pi. (3.5)

If the base of log is between 0 and 1, then inequality signs in (3.5) are reversed.
(b) If p and q are positive probability distributions, and the base of log is greater than

1, then we have

D(p‖q) ≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≥ 0. (3.6)

If the base of log is between 0 and 1, then inequality signs in (3.6) are reversed.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.
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Proof. (a) We can apply Theorem 3.1 (b) to the function f := log.
(b) It is a special case of (a). �

Remark 3.2 We can apply Theorem 3.1 to have similar inequalities for other distances
between two probability distributions.

3.1.2 Inequalities for Rényi divergence and entropy

The Rényi divergence and entropy come from [85].

Definition 3.6 Let p := (p1, . . . , pn) and q := (q1, . . . ,qn) be positive probability distri-
butions, and let  ≥ 0,  �= 1.

(a) The Rényi divergence of order  is defined by

D(p,q) :=
1

−1
log

(
n


i=1

qi

(
pi

qi

)
)

. (3.7)

(b) The Rényi entropy of order  of p is defined by

H (p) :=
1

1−
log

(
n


i=1

pi

)
. (3.8)

The Rényi divergence and the Rényi entropy can also be extended to nonnegative prob-
ability distributions.

If  → 1 in (3.7), we have the Kullback-Leibler divergence, and if  → 1 in (3.8), then
we have the Shannon entropy.

In the next two results inequalities can be found for the Rényi divergence.

Theorem 3.2 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k), p := (p1, . . . , pn) and
q := (q1, . . . ,qn) be positive probability distributions.

(a) If 0 ≤  ≤  ,  ,  �= 1, and the base of log is greater than 1, then

D(p,q) ≤ 1
 −1

log

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎠ (3.9)

≤ D (p,q)

The reverse inequalities hold if the base of log is between 0 and 1.
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(b) If 1 <  , and the base of log is greater than 1, then

D1(p,q) = D(p‖q) =
n


i=1

pi log

(
pi

qi

)

≤ 1
 −1

log

⎛⎜⎜⎜⎝ n


i=1

(
k−1


j=0

 j+1pi+ j

)
exp

⎛⎜⎜⎜⎝
( −1)

k−1

j=0

 j+1pi+ j log
(

pi+ j
qi+ j

)
k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

≤ D (p,q),

where the base of exp is the same as the base of log.
The reverse inequalities hold if the base of log is between 0 and 1.
(c) If 0 ≤  < 1, and the base of log is greater than 1, then

D(p,q) ≤ 1
−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ D1(p,q)

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. (a) By applying Theorem 2.6 with C := ]0,[, f : ]0,[ → R, f (t) := t
−1
−1 ,

vi :=
(

pi

qi

)−1

, i = 1, . . . ,n,

we have

(
n


i=1

qi

(
pi

qi

)
) −1

−1

=

(
n


i=1

pi

(
pi

qi

)−1
) −1

−1

≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1

≤
n


i=1

pi

(
pi

qi

)−1

(3.10)

if either 0 ≤  < 1 <  or 1 <  ≤  , and the reverse inequalities hold in (3.33) if
0 ≤  ≤  < 1. By raising the power 1

−1 , we have from all these cases that
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(
n


i=1

qi

(
pi

qi

)
) 1

−1

≤

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎠
1

−1

≤
(

n


i=1

pi

(
pi

qi

)−1
) 1

−1

=

(
n


i=1

qi

(
pi

qi

)
) 1

−1

.

Since log is increasing if the base of log is greater than 1, it now follows (3.9).
If the base of log is between 0 and 1, then log is decreasing, and therefore inequality

signs in (3.9) are reversed.
(b) and (c) When  = 1 or  = 1, we have the result by taking limit.
The proof is complete. �

Theorem 3.3 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k), p := (p1, . . . , pn) and
q := (q1, . . . ,qn) be positive probability distributions.

If either 0 ≤  < 1 and the base of log is greater than 1, or 1 <  and the base of log
is between 0 and 1, then

1
n


i=1

qi

(
pi
qi

) n


i=1

pi

(
pi

qi

)−1

log

(
pi

qi

)
≤ 1

(−1)
n


i=1

pi

(
pi
qi

)−1
×

×
n


i=1

(
k−1


j=0

 j+1pi+ j

(
pi+ j

qi+ j

)−1
)

log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ D(p,q)

≤ 1
−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤ D1(p,q) (3.11)

If either 0 ≤  < 1 and the base of log is between 0 and 1, or 1 <  and the base of
log is greater than 1, then the reverse inequalities holds.

In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. We prove only the case when 0 ≤  < 1 and the base of log is greater than 1, the
other cases can be proved similarly.

Since 1
−1 < 0 and the function log is concave, we have from Theorem 2.6 by choosing

C := ]0,[, f := log,

vi :=
(

pi

qi

)−1

, i = 1, . . . ,n,
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that

D(p,q) =
1

−1
log

(
n


i=1

pi

(
pi

qi

)−1
)

≤ 1
−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≤ 1

−1

n


i=1

pi log

((
pi

qi

)−1
)

=
n


i=1

pi log

(
pi

qi

)
= D1(p,q)

and this gives the desired upper bound for D(p,q).
Since the base of log is greater than 1, the function x → x log(x) (x > 0) is convex, and

therefore 1
1− < 0 and Theorem 2.6 imply that

D(p,q) :=
1

−1
log

(
n


i=1

pi

(
pi

qi

)−1
)

=
1

(−1)
n


i=1

pi

(
pi
qi

)−1

(
n


i=1

pi

(
pi

qi

)−1
)

log

(
n


i=1

pi

(
pi

qi

)−1
)

≥ 1

(−1)
n


i=1

pi

(
pi
qi

)−1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
×

×

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠ log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
1

(−1)
n


i=1

pi

(
pi
qi

)−1

n


i=1

(
k−1


j=0

 j+1pi+ j

(
pi+ j

qi+ j

)−1
)

log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

(
pi+ j
qi+ j

)−1

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≥ 1

(−1)
n


i=1

pi

(
pi
qi

)−1

n


i=1

pi

(
pi

qi

)−1

log

((
pi

qi

)−1
)

=
1

n


i=1

pi

(
pi
qi

)−1

n


i=1

pi

(
pi

qi

)−1

log

(
pi

qi

)

which gives the desired lower bound for D(p,q).
The proof is complete. �
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Now, by using the previous theorems, some inequalities of Rényi entropy are obtained.
Denote 1

n :=
(

1
n , . . . , 1

n

)
be the discrete uniform distribution.

Corollary 3.3 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k) and p := (p1, . . . , pn)
be positive probability distributions.

(a) If 0 ≤  ≤  ,  ,  �= 1, and the base of log is greater than 1, then

H (p) ≥ 1
1−

log

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎠≥ H (p) .

The reverse inequalities hold if the base of log is between 0 and 1.
(b) If 1 <  , and the base of log is greater than 1, then

H (p) = −
n


i=1

pi log(pi)

≥ log(n)+
1

1− log

⎛⎜⎜⎜⎝n


i=1

(
k−1


j=0

 j+1pi+ j

)
exp

⎛⎜⎜⎜⎝
(−1)

k−1

j=0

 j+1pi+ j log(npi+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

≥ H (p) ,

where the base of exp is the same as the base of log.
The reverse inequalities hold if the base of log is between 0 and 1.
(c) If 0 ≤  < 1, and the base of log is greater than 1, then

H (p) ≥ 1
1−

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥ H (p)

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. If q = 1
n , then

D

(
p,

1
n

)
=

1
−1

log

(
n


i=1

n−1pi

)
= log(n)+

1
−1

log

(
n


i=1

pi

)
,

and therefore

H (p) = log(n)−D

(
p,

1
n

)
. (3.12)
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(a) It follows from Theorem 3.2 and (3.12) that

H (p) = log(n)−D

(
p,

1
n

)

≥ log(n)− 1
 −1

log

⎛⎜⎜⎜⎜⎝n−1
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
−1
−1

⎞⎟⎟⎟⎟⎠
≥ log(n)−D

(
p,

1
n

)
= H (p) .

(b) and (c) can be proved similarly.

The proof is complete. �

Corollary 3.4 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k) and p := (p1, . . . , pn)
be positive probability distributions.

If either 0 ≤  < 1 and the base of log is greater than 1, or 1 <  and the base of log
is between 0 and 1, then

− 1
n


i=1

pi

n


i=1

pi log(pi)

≥ log(n)− 1

(−1)
n


i=1

pi

×
n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝n−1

k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥ H (p)

≥ 1
1−

n


i=1

(
k−1


j=0

 j+1pi+ j

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥ H (p)

If either 0 ≤  < 1 and the base of log is between 0 and 1, or 1 <  and the base of
log is greater than 1, then the reverse inequalities holds.

In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Proof. We can prove as Corollary 3.3, by using Theorem 3.3. �

We illustrate our results by using Zipf–Mandelbrot law.
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3.1.3 Inequalities by using the Zipf-Mandelbrot law

Corollary 3.5 Let p be the Zipf-Mandelbrot law as in Definition 3.5, let 2 ≤ k ≤ N be
integers, and let  := (1, . . . ,k) be a probability distribution. By applying Corollary 3.3
(c), we have:

If 0 ≤  < 1, and the base of log is greater than 1, then

H (p) =
1

1−
log

(
1

H
N,q,s

N


i=1

1

(i+q)s

)

≥ 1
1−

n


i=1

(
k−1


j=0

 j+1

(i+ j +q)s HN,q,s

)
log

⎛⎜⎜⎜⎝ 1

H−1
N,q,s

k−1

j=0

 j+1

(i+ j+q)s

k−1

j=0

 j+1
(i+q)s

⎞⎟⎟⎟⎠
≥ s

HN,q,s

N


i=1

log(i+q)
(i+q)s

+ log(HN,q,s) = H (p)

The reverse inequalities hold if the base of log is between 0 and 1.

In all these inequalities i+ j means i+ j−n in case of i+ j > n.

Corollary 3.6 Let p1 and p2 be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .},
q1, q2 ∈ [0,[ and s1, s2 > 0, respectively, let 2 ≤ k ≤ N be integers, and let  :=
(1, . . . ,k) be a probability distribution. By applying Corollary 3.2 (b), we have:

If the base of log is greater than 1, then

D(p1‖p2) =
N


i=1

1
(i+q1)

s1 HN,q1,s1
log

(
(i+q2)

s2 HN,q2,s2

(i+q1)
s1 HN,q1,s1

)

≥
N


i=1

(
k−1


j=0

 j+1
1

(i+ j +q1)
s1 HN,q1,s1

)
log

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+q1)
s1 HN,q1 ,s1

k−1

j=0

 j+1
1

(i+ j+q2)
s2 HN,q2 ,s2

⎞⎟⎟⎟⎠≥ 0.

(3.13)

If the base of log is between 0 and 1, then inequality signs in (3.13) are reversed.

In all these inequalities i+ j means i+ j−n in case of i+ j > n.
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3.2 A refinement and an exact equality condition
for the basic inequality of f -divergences

Measures of dissimilarity between probability measures play important role in probability
theory, especially in information theory and in mathematical statistics. Many divergence
measures for this purpose have been introduced and studied (see for example Vajda [91]).
Among them f -divergences were introduced by Csiszár [19]-[18] and independently by
Ali and Silvey [2]. Remarkable divergences can be found among f -divergences, such
as the information divergence, the Pearson or 2-divergence, the Hellinger distance and
total variational distance. There are a lot of papers dealing with f -divergence inequalities
(see Dragomir [25], Dembo, Cover, and Thomas [21] and Sason and Verdú [88]). These
inequalities are very useful and applicable in information theory.

One of the basic inequalities is (see Liese and Vajda [64])

Df (P,Q) ≥ f (1) .

In this section we give a refinement and a precise equality condition for this inequality.
Some applications for discrete distributions, for the Shannon entropy, and some examples
are given.

3.2.1 Construction of the equality conditions and related
results of classical integral Jensen’s inequality

The classical Jensen’s inequality is well known (see [34]).

Theorem 3.4 Let g be an integrable function on a probability space (Y,B,) taking

values in an interval I ⊂ R. Then
∫
Y

gd lies in I. If f is a convex function on I such that

f ◦ g is -integrable, then

f

⎛⎝∫
Y

gd

⎞⎠≤
∫
Y

f ◦ gd. (3.14)

The following approach to give a necessary and sufficient condition for equality in this
inequality may be new. First, we introduce the next definition.

Definition 3.7 Let (Y,B,) be a probability space, and let g be a real measurable func-
tion defined almost everywhere on Y . We denote by essint (g) the smallest interval in R

for which
 (g ∈ essint (g)) = 1.

Remark 3.3 (a) Obviously, the endpoints of essint (g) are the essential infimum
(essinf (g)) and the essential supremum of g, and either of them belong to essint (g)
exactly if g takes this value with positive probability.
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(b) It is easy to see that either essint (g) =

⎧⎨⎩
∫
Y

gd

⎫⎬⎭ (in this case g is constant -a.e.)

or
∫
Y

gd is an inner point of essint (g).

(c) The interval essinf (g) is connected with the essential range of g, but not the same
set (for example, the essential range of g is always closed, and not an interval in general).

Lemma 3.1 Assume the conditions of Theorem 3.4 are satisfied. Equality holds in (3.14)
if and only if f is affine on essint (g).

Proof. It is easy to see that the condition is sufficient for equality in (3.14).
Conversely, if essint (g) contains only one point, then it is trivial, so we can assume

that m :=
∫
Y

gd is an inner point of essint (g). Let

l : R → R, l (t) = f ′+ (m)(t−m)+ f (m) .

If f is not affine on essint (g), then by the convexity of f , there is a point t1 ∈essint (g)
such that f (t1) > l (t1). Suppose t1 > m (the case t1 < m can be handled similarly).
Since f is convex, f (t) ≥ l (t) (t ∈ I) and f (t) > l (t) (t ∈ I, t ≥ t1). It follows by us-
ing  (g > t1) > 0, that∫
Y

f ◦ gd =
∫

(g<t1)

f ◦ gd+
∫

(g≥t1)

f ◦ gd ≥
∫

(g<t1)

l ◦ gd+
∫

(g≥t1)

f ◦ gd >

∫
Y

l ◦ gd = f (m) ,

which is a contradiction.
The proof is complete. �

The next refinement of the Jensen’s inequality can be found in Horváth [39].

Theorem 3.5 Let I ⊂ R be an interval, and let f : I → R be a convex function. Let
(Y,B,) be a probability space, and let g : Y → I be a -integrable function such that

f ◦g is also -integrable. Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1.

Then
(a)

f

⎛⎝∫
Y

gd

⎞⎠≤
∫
Yn

f

(
n


i=1

ig(xi)

)
dn (x1, . . . ,xn) ≤

∫
Y

f ◦ gd.

(b)

∫
Yn+1

f

(
1

n+1

n+1


i=1

g(xi)

)
dn+1 (x1, . . . ,xn+1)

≤
∫
Yn

f

(
1
n

n


i=1

g(xi)

)
dn (x1, . . . ,xn) ≤

∫
Yn

f

(
n


i=1

ig(xi)

)
dn (x1, . . . ,xn) .
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By analyzing the proof of the previous result, it can be seen that the hypothesis “ f ◦ g
is -integrable” can be weaken.

Theorem 3.6 Let I ⊂ R be an interval, and let f : I → R be a convex function. Let
(Y,B,) be a probability space, and let g : Y → I be a -integrable function such that the

integral
∫
Y

f ◦gd exists in ]−,]. Suppose that 1, . . . ,n are nonnegative numbers with

n


i=1

i = 1. Then the assertions of Theorem 3.5 remain true.

We assume throughout that the probability measures P and Q are defined on a fixed
measurable space (X ,A ). It is also assumed that P and Q are absolutely continuous with
respect to a  -finite measure  on A . The densities (or Radon-Nikodym derivatives) of P
and Q with respect to  are denoted by p and q, respectively. These densities are -almost
everywhere uniquely determined.

Let
F := { f : ]0,[ → R | f is convex} ,

and define for every f ∈ F the function

f ∗ : ]0,[ → R, f ∗ (t) := t f

(
1
t

)
.

If f ∈ F , then either f is monotonic or there exists a point t0 ∈ ]0,[ such that f is
decreasing on ]0,t0[. This implies that the limit

lim
t→0+

f (t)

exists in ]−,], and
f (0) := lim

t→0+
f (t)

extends f into a convex function on [0,[. The extended function is continuous and has
finite left and right derivatives at each point of ]0,[.

It is well known that for every f ∈ F the function f ∗ also belongs to F , and therefore

f ∗ (0) := lim
t→0+

f ∗ (t) = lim
u→

f (u)
u

.

We need the following simple property of functions belonging to F .

Lemma 3.2 If f ∈ F, then f ∗ (0) ≥ f ′+ (1). This inequality becomes an equality if and
only if

f (t) = f ′+ (1)(t−1)+ f (1) , t ≥ 1. (3.15)

Proof. Since f is convex,

f (t) ≥ f ′+ (1)(t−1)+ f (1) , t ≥ 1,
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and therefore

f ∗ (0) = lim
t→

f (t)
t

≥ f ′+ (1) .

If (3.15) is satisfied, then obviously f ∗ (0) = f ′+ (1).
If there exists t1 > 1 such that f ′+ (t1) > f ′+ (1), then by the convexity of f ,

f (t) ≥ f ′+ (t1) (t− t1)+ f (t1) , t ≥ t1,

and hence f ∗ (0) > f ′+ (1). It follows that f ∗ (0) = f ′+ (1) implies

f ′+ (t) = f ′+ (1) , t ≥ t1,

and this gives (3.15) (see [28] 1.6.2 Corollary 2).
The proof is complete. �

The next result prepares the notion of f -divergence of probability measures.

Lemma 3.3 For every f ∈ F the integral∫
(q>0)

q() f

(
p()
q()

)
d ()

exists and it belongs to the interval ]−,].

Proof. Since f is convex,

f (t) ≥ f ′+ (1)(t −1)+ f (1) , t ≥ 0.

This implies that for all  ∈ (q > 0)

q() f

(
p()
q()

)
≥ h() := f ′+ (1)(p()−q())+ f (1)q() . (3.16)

Elementary considerations show that the function h is -integrable over (q > 0), and
this gives the result by (3.16).

The proof is complete. �

Now we introduce the notion of f -divergence.

Definition 3.8 For every f ∈ F we define the f -divergence of P and Q by

Df (P,Q) :=
∫
X

q() f

(
p()
q()

)
d () ,

where the following conventions are used

0 f
( x

0

)
:= x f ∗ (0) if x > 0, 0 f

(
0
0

)
= 0 f ∗ (0) := 0. (3.17)
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Remark 3.4 (a) For every f ∈ F the perspective f̂ : ]0,[× ]0,[→ R of f is defined by

f̂ (x,y) := y f

(
x
y

)
.

Then (see [86]) f̂ is also a convex function. Vajda [91] proved that (3.17) is the unique rule
leading to convex and lower semicontinuous extension of f̂ to the set{

(x,y) ∈ R
2 | x,y ≥ 0

}
.

(b) Since f ∗ (0) ∈ ]−,], Lemma 3.3 shows that Df (P,Q) exists in ]−,] and

Df (P,Q) =
∫

(q>0)

f

(
p()
q()

)
dQ()+ f ∗ (0)P(q = 0) . (3.18)

It follows that if P is absolutely continuous with respect to Q, then

Df (P,Q) =
∫

(q>0)

f

(
p()
q()

)
dQ() .

Various divergences in information theory and statistics are special cases of the f -
divergence. We illustrate this by some examples.

(a) By choosing f : ]0,[ → R, f (t) = t ln(t) in (3.18), the information divergence is
obtained

I (P,Q) =
∫

(q>0)

p() ln

(
p()
q()

)
d ()+P(q = 0) . (3.19)

(b) By choosing f : ]0,[→ R, f (t) = (t−1)2 in (3.18), the Pearson or 2-divergence
is obtained

2 (P,Q) =
∫

(q>0)

(p()−q())2

q()
d ()+P(q = 0) . (3.20)

(c) By choosing f : ]0,[ → R, f (t) =
(√

t−1
)2

in (3.18), the Hellinger distance is
obtained

H2 (P,Q) =
∫
X

(√
p()−

√
q()

)2
d () . (3.21)

(d) By choosing f : ]0,[ → R, f (t) = |t−1| in (3.18), the total variational distance is
obtained

V (P,Q) =
∫
X

|p()−q()| () . (3.22)

We need the following lemma.
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Lemma 3.4 Let t0 := P(q > 0).
(a) For every  > 0

Q

(
p
q

< t0 + , q > 0

)
> 0.

(b)

essinfQ

(
p
q

)
≤ t0

Proof. (a) Obviously,

Q

(
p
q

< t0 + , q > 0

)
= 1−Q

(
p
q
≥ t0 + , q > 0

)
.

The result follows from this, since

Q

(
p
q
≥ t0 + , q > 0

)
=
∫
X

q1( p
q ≥t0+, q>0

)d ≤
∫

(q>0)

1
t0 + 

pd =
t0

t0 + 
< 1.

(b) It comes from (a).
The proof is complete. �

The following result contains a key property of f -divergences. We give a simple proof
which emphasizes the importance of the convexity of f , and give an exact equality condi-
tion.

Theorem 3.7 (a) For every f ∈ F

Df (P,Q) ≥ f (1) . (3.23)

(b) Assume P(q = 0) = 0. Then equality holds in (3.23) if and only if f is affine on

essintQ
(

p
q

)
.

(c) Assume P(q = 0) > 0. Then equality holds in (3.23) if and only if f is affine on

essintQ
(

p
q

)
∪ [1,[.

Proof. (a) If Df (P,Q) = , then (3.23) is obvious.
If Df (P,Q) ∈ R, then the integral∫

(q>0)

f

(
p()
q()

)
dQ() (3.24)

is finite, and therefore either Q(p = 0) = 0 or Q(p = 0) > 0 and f (0) is finite. It follows
that Jensen’s inequality can be applied to this integral, and we have

Df (P,Q) ≥ f

⎛⎜⎝ ∫
(q>0)

pd

⎞⎟⎠+ f ∗ (0)P(q = 0) (3.25)

= f (P(q > 0))+ f ∗ (0)P(q = 0) . (3.26)
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Let t0 := P(q > 0). By using Lemma 3.2, t0 ∈ [0,1], and the convexity of f , it follows
from (3.26) that

Df (P,Q) ≥ f (t0)+ f ′+ (1)(1− t0) (3.27)

≥ f (1)+ f ′+ (1)(t0 −1)+ f ′+ (1)(1− t0) = f (1) . (3.28)

(b) If Df (P,Q) = f (1), then Df (P,Q) is finite.
Assume P(q = 0) = 0. Then by (3.25) and (3.26), Df (P,Q) = f (1) is satisfied if and

only if equality holds in the Jensen’s inequality. Lemma 3.1 shows that this happens exactly

if f is affine on essintQ
(

p
q

)
.

(c) Assume P(q = 0) > 0. Then (3.25), (3.26), (3.27) and (3.28) yield that there must
be equality in the Jensen’s inequality, f ∗ (0) = f ′+ (1), and

f (t0) = f (1)+ f ′+ (1)(t0−1) . (3.29)

By Lemma 3.1 and Lemma 3.2, the first two equality conditions are satisfied exactly if f

is affine on essintQ
(

p
q

)
∪ [1,[.

Now assume that f is affine on essintQ
(

p
q

)
∪ [1,[. In case of t0 > 0, Lemma 3.4 (b)

and the continuity of f at t0 show that (3.29) also holds. In case of t0 = 0, it is easy to see

that Q
(

p
q = 0

)
= 1, and hence 0 ∈essintQ

(
p
q

)
which implies (3.29) too.

The proof is complete. �

Remark 3.5 (a) Consider the subclass F1 ⊂ F such that f ∈ F1 satisfies f (1) = 0. In this
case inequality (3.23) has the usual form

Df (P,Q) ≥ 0.

(b) The usual equality condition is the next (see [64]): if f is strictly convex at 1, then
Df (P,Q) = f (1) holds if and only if P = Q. Theorem 3.7 (b) and (c) give more precise
conditions.

3.2.2 Refinements of basic inequality in f -divergences
and related results

Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1. Let

A n := A ⊗ . . .⊗A , with n factors,

and define the probability measures Qn and R on A n by

Qn := Q⊗ . . .⊗Q, with n factors,

and

R :=
n


i=1

iQ⊗ . . .⊗Q⊗
i

P̆⊗Q⊗ . . .⊗Q.
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In case of i = 1
n (i = 1, . . . ,n) the probability measure R will be denoted by Rn.

These measures are absolutely continuous with respect to n on A n. The densities of
R and Qn with respect to n are

n⊗
i=1

q : Xn → R, (1, . . . ,n) →
n


i=1

q(i) ,

and

(1, . . . ,n) →
n


i=1

iq(1) . . .
i
p̆(i) . . .q(n) , (1, . . . ,n) ∈ Xn,

respectively.
It is easy to calculate that

R

(
n⊗

i=1

q = 0

)
= 1−R

(
n⊗

i=1

q > 0

)
= 1−R ((q > 0)n)

= 1−
n


i=1

iQ(q > 0)n−1 P(q > 0) = 1−P(q > 0) = P(q = 0) .

It follows that for every f ∈ F

Df (R ,Qn) =
∫

(q>0)n

f

⎛⎜⎜⎜⎝
n


i=1

iq(1) . . . p(i) . . .q(n)

n


i=1

q(i)

⎞⎟⎟⎟⎠dQn (1, . . . ,n)

+ f ∗ (0)R

(
n⊗

i=1

q = 0

)

=
∫

(q>0)n

f

(
n


i=1

i
p(i)
q(i)

)
dQn (1, . . . ,n)+ f ∗ (0)P(q = 0) (3.30)

=
∫

(q>0)n

n


i=1

q(i) f

(
n


i=1

i
p(i)
q(i)

)
dn (1, . . . ,n)+ f ∗ (0)P(q = 0) .

By applying Theorem 3.5, we obtain some refinements of the basic inequality 3.23.

Theorem 3.8 Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1. If f ∈ F,

then
(a)

Df (P,Q) ≥ Df (R ,Qn) ≥ Df (Rn,Q
n) ≥ f (1) . (3.31)

(b)

Df (P,Q) = Df
(
R1,Q

1)
≥ . . . ≥ Df (Rm,Qm) ≥ Df

(
Rm+1,Q

m+1)≥ . . . ≥ f (1) , m ≥ 1.
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Proof. (a) The third inequality in (3.31) comes from Theorem 3.7.
So it remains to prove the first two inequalities in (3.31). By (3.18) and (3.30), it is

enough to show that∫
(q>0)

f

(
p()
q()

)
dQ() ≥

∫
(q>0)n

f

(
n


i=1

i
p(i)
q(i)

)
dQn (1, . . . ,n) (3.32)

≥
∫

(q>0)n

f

(
1
n

n


i=1

p(i)
q(i)

)
dQn (1, . . . ,n) ,

which is an immediate consequence of Theorem 3.6.
(b) We can proceed similarly as in (a).
The proof is complete. �

By considering the special f -divergences (3.19-3.22), we have after each other
(a) the information divergence

I (R ,Qn) = P(q = 0)

+
∫

(q>0)n

n


i=1

⎛⎜⎝i p(i)
n


j=1
j �=i

q( j)

⎞⎟⎠ ln

(
n


i=1

i
p(i)
q(i)

)
dn (1, . . . ,n) ,

(b) the Pearson divergence

2 (R ,Qn) =
∫

(q>0)n

n


i=1

q(i)

(
n


i=1

i
p(i)−q(i)

q(i)

)2

dn (1, . . . ,n)+P(q = 0) ,

(c) the Hellinger distance

H2 (R ,Qn) =
∫

(q>0)n

n


i=1

q(i)

⎛⎝( n


i=1

i
p(i)
q(i)

)1/2

−1

⎞⎠2

dn (1, . . . ,n) ,

(d) the total variational distance

V (R ,Qn) =
∫

(q>0)n

n


i=1

q(i)

∣∣∣∣∣ n


i=1

i
p(i)−q(i)

q(i)

∣∣∣∣∣dn (1, . . . ,n) .

Now, we consider the special case, important in many applications, in which P and Q
are discrete distributions.

Denote T either the set {1, . . . ,k} with a fixed positive integer k, or the set {1,2, . . .}.
We say that P and Q are derived from the positive probability distributions p := (pi)i∈T and
q := (qi)i∈T , respectively, if pi, qi > 0 (i ∈ T ), and 

i∈T
pi = 

i∈T
qi = 1. In this case X = T ,

A is the power set of T , and  is the counting measure on A .
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Corollary 3.7 Suppose that 1, . . . ,n are nonnegative numbers with
n


i=1

i = 1. Sup-

pose also that P and Q are derived from the positive probability distributions (pi)i∈T and
(qi)i∈T , respectively. If f ∈ F, then

(a)

Df (P,Q) = 
i∈T

qi f

(
pi

qi

)
≥ 

(i1,...,in)∈Tn

n


j=1

qi j f

(
n


j=1

 j
pi j

qi j

)

≥ 
(i1,...,in)∈Tn

n


j=1

qi j f

(
1
n

n


j=1

pi j

qi j

)
≥ f (1) .

(b)

Df (P,Q) ≥ . . . ≥ 
(i1,...,in)∈Tn

n


j=1

qi j f

(
1
n

n


j=1

pi j

qi j

)

≥ 
(i1,...,in+1)∈Tn+1

n+1


j=1

qi j f

(
1

n+1

n+1


j=1

pi j

qi j

)
≥ . . . ≥ f (1) , n ≥ 1.

Proof. This comes from Theorem 3.8 immediately. �

Finally, we give an example to illustrate the previous result. We consider only Corollary
3.7 (a).

Example 3.1 (a) By choosing f : ]0,[→ R, f (x) = − ln(x) and pi = 1
k (i = 1, . . . ,k) in

the previous corollary (in this case T = {1, . . . ,k}), we have

Df (P,Q) = −
k


i=1

qi ln

(
1

kqi

)
= ln(k)+

k


i=1

qi ln(qi)

≥− 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
1
k

n


j=1

 j

qi j

)
= ln(k)− 

(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

 j

qi j

)

≥− 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
1
kn

n


j=1

1
qi j

)
= ln(kn)− 

(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

1
qi j

)
≥ 0.

It can be obtained from this some refinements of the classical upper estimation for the
Shannon entropy

H (Q) := −
k


i=1

qi ln(qi) ≤ 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

 j

qi j

)

≤− ln(n)+ 
(i1,...,in)∈Tn

n


j=1

qi j ln

(
n


j=1

1
qi j

)
≤ ln(k) .
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(b) If f : ]0,[ → R, f (x) = x ln(x) in the previous corollary, then we have the follow-
ing estimations for the information or Kullback–Leibler divergence:

I (P,Q) =
n


i=1

pi ln

(
pi

qi

)
≥ 

(i1,...,in)∈Tn

⎛⎜⎝ n


j=1

 j pi j

n


l=1
l �= j

qil

⎞⎟⎠ ln

(
n


j=1

 j
pi j

qi j

)

≥ 1
n 

(i1,...,in)∈Tn

⎛⎜⎝ n


j=1

pi j

n


l=1
l �= j

qil

⎞⎟⎠ ln

(
1
n

n


j=1

pi j

qi j

)
≥ 0. (3.33)

(c) The Zipf-Mandelbrot law (see Mandelbrot [65] and Zipf [95]) is a discrete proba-
bility distribution depends on three parameters N ∈ {1,2, . . .}, q ∈ [0,[ and s > 0, and it
is defined by

f (i;N,q,s) :=
1

(i+q)s HN,q,s
, i = 1, . . . ,N,

where

HN,q,s :=
N


k=1

1
(k+q)s

.

Let P and Q be the Zipf-Mandelbrot law with parameters N ∈ {1,2, . . .}, q1, q2 ∈ [0,[
and s1, s2 > 0, respectively, and let 2 ≤ k ≤ N be an integer. It follows from the first part
of (3.33) with T = {1, . . . ,N} that

I (P,Q) =
N


i=1

1
(i+q1)

s1 HN,q1,s1
log

(
(i+q2)

s2 HN,q2,s2

(i+q1)
s1 HN,q1,s1

)

≥ 
(i1,...,iN )∈Tn

⎛⎜⎝ n


j=1

 j
1

(i j +q1)
s1 HN,q1,s1

n


l=1
l �= j

1
(il +q2)

s2 HN,q2,s2

⎞⎟⎠
× ln

(
n


j=1

 j
(i j +q2)

s2 HN,q2,s2

(i j +q1)
s1 HN,q1,s1

)
≥ 0.

This is another type of refinement for I (P,Q) than it is given in [38].





Chapter4
Cyclic Refinement
of Beck’s Inequalities

In the present Chapter 4, we refine the discrete Jensen’s inequality for vectors by the idea
recently given in [13]. As a consequence, we are able to refine the inequality of E. Beck [9]
with the help of cyclic generalized mixed symmetric means. This leads to the refinements
of the classical Hölder’s and Minkowski’s inequalities.

4.1 Introduction and preliminary results

In this subsection we first briefly summarise some results corresponding to Beck’s inequal-
ities (see [9]). We depend upon the papers [44]and [45].

Let I ⊂ R be an interval, let h : I → R be a continuous and strictly monotone function,

let a = (a1, . . . ,an)∈ In, and let p = (p1, . . . , pn) be a nonnegative n-tuple such that
n

i=1

pi =

1. The quasi-arithmetic h-mean of a with weights p is defined by

hn(a;p) = hn(ai;1 ≤ i ≤ n;p) = h(a;p;n) := h−1

(
n


i=1

pih(ai)

)
.

If pi = 1
n (1 ≤ i ≤ n), then p will be ignored from the previous notations.

First, we extend Beck’s results (see [9]). The following hypothesis will be used:

53
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(A1) Let Lt : It → R (t = 1, ...,m) and N : IN → R be continuous and strictly monotone
functions whose domains are intervals in R, and let f : I1 × ...× Im → IN be a continuous
function. Let x(1), ...,x(m) ∈ R

n (n ≥ 2) such that x(t) ∈ I
n
t for each t = 1, . . . ,m, and let

p = (p1, ..., pn) be a nonnegative n-tuple such that n
i=1 pi = 1. The next result is a simple

consequence of the discrete Jensen’s inequality (see Theorem A).

Theorem 4.1 Assume (A1). If N is an increasing function, then the inequality

f
(
L1(x(1);p;n), ...,Lm(x(m);p;n)

)
≥ N−1

(
n


i=1

piN( f (x(1)
i , ...,x(m)

i ))

)
, (4.1)

holds for all possible x(t) (t = 1, . . . ,m) and p, if and only if the function H defined on
I1× ...× Im by

H(t1, ...,tm) := N
(
f
(
L−1

1 (t1), ...,L−1
m (tm)

))
(4.2)

is concave. The inequality in (4.1) is reversed for all possible x(t) (t = 1, . . . ,m) and p, if
and only if H is convex.

Proof. We replace the convex function f by −H or H, and xi by Lt(x
(t)
i ) in (1.1) and then

applying the increasing function N−1 we get the required results. �

Beck’s original result was the special case of Theorem 4.1, where m = 2 and I1 =
[k1,k2], I2 = [l1, l2] and IN = [n1,n2] (see [16], p. 249).

For simplicity, in the case m = 2 we use the following form of (A1):
(A2) Let K : IK → R, L : IL → R and N : IN → R be continuous and strictly mono-

tone functions whose domains are intervals in R, and let f : IK × IL → IN be a continuous
function. Let a, b ∈ R

n (n ≥ 2) such that a ∈ In
K and b ∈ In

L , and let p = (p1, ..., pn) be a
nonnegative n-tuple such that n

i=1 pi = 1.
Then (4.1) has the form

f (Kn(a;p),Ln(b;p)) ≥ Nn( f (a,b);p), (4.3)

where f (a,b) means ( f (a1,b1), ..., f (an,bn)).
The following results are important special cases of Theorem 4.1, and generalize the

corresponding results of Beck. The next hypothesis will be used:
(A3) Let K : IK → R, L : IL → R and N : IN → R be continuous and strictly monotone

functions whose domains are intervals in R such that either IK + IL ⊂ IN and f (x,y) = x+y
((x,y) ∈ IK × IL) or IK , IL ⊂]0,[, IK · IL ⊂ IN and f (x,y) = xy ((x,y) ∈ IK × IL). Assume
further that the functions K, L and N are twice continuously differentiable on the interior
of their domains, respectively. Let a, b ∈ R

n (n ≥ 2) be such that a ∈ In
K and b ∈ In

L , and
let p = (p1, ..., pn) be a nonnegative n-tuple such that n

i=1 pi = 1.
The interior of a subset A of R is denoted by A◦.

Corollary 4.1 Assume (A3) with f (x,y) = x+y ((x,y) ∈ IK × IL), and assume that K′, L′,
N′, K′′, L′′ and N′′ are all positive. Introducing E := K′

K′′ , F := L′
L′′ , G := N′

N′′ , (4.3) holds for
all possible a, b and p if and only if

E(x)+F(y) ≤ G(x+ y), (x,y) ∈ I◦K × I◦L. (4.4)
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Corollary 4.2 Assume (A3) with f (x,y) = xy ((x,y) ∈ IK × IL). Suppose the functions

A(x) := K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x) and C(x) := N′(x)
N′(x)+xN′′(x) are defined on I◦K, I◦L and

I◦N, respectively. Assume further that K′, L′, N′, A, B and C are all positive. Then (4.3)
holds for all possible a, b and p if and only if

A(x)+B(y)≤C(xy), (x,y) ∈ I◦K × I◦L.

To prove these corollaries, similar arguments can be applied as in the analogous results
of Beck. We just sketch the proof of Corollary 4.1.
Proof. By Theorem 4.1, it is enough to prove that the function

H : K(IK)×L(IL) → R, H(t,s) := N(K−1(t)+L−1(s))

is concave. Since H is continuous, and twice continuously differentiable on the interior
K(I◦K)×L(I◦L) of its domain, we have to show that

h2
1
 2H(t,s)

 t2
+2h1h2

 2H(t,s)
 t s

+h2
2
 2H(t,s)

 s2 ≤ 0

for all (t,s) ∈ K(I◦K)×L(I◦L) and (h1,h2) ∈ R
2. By computing the partial derivatives of H

of order 2 at the points of K(I◦K)×L(I◦L), we have that this condition follows from (4.4). �

Interpolations of the discrete Jensen’s inequality (1.2) given in [84] are used in [75] (see
also [74], p. 195) to refine the inequality of Beck for a function of two variables. More
general refinements of Beck’ inequality can be found in [44, 45] (see also [36] Chapter 7)
by applying refinements of the discrete Jensen’s inequality (1.1) appeared in [41, 42, 43].
In this section we give some new refinements of Beck’s inequality (4.1) by using the results
in [13]. This leads to some new refinements of the classical Hölder’s and Minkowski’s in-
equalities.

4.2 Refinements when p is the discrete
uniform distribution

For the sake of completeness we give the following refinement of the discrete Jensen’s
inequality which is a generalization of Theorem 2.1, and a special case of Theorem 2.6.

Theorem 4.2 Assume U is a convex set in R
m, x1, . . . ,xn ∈U, and  = (1, . . . ,k) is a

positive k-tuple such that
k

i=1

i = 1 for 2 ≤ k ≤ n. Then

f

(
1
n

n


i=1

xi

)
≤ S :=

1
n

n


i=1

f

(
k−1


j=0

 j+1xi+ j

)
≤ 1

n

n


i=1

f (xi) . (4.5)

Assume (A1) with p =
(

1
n , . . . , 1

n

)
, and let  = (1, . . . ,k) be a positive k-tuple such that

k

i=1

i = 1 for 2 ≤ k ≤ n. The cyclic mixed symmetric means relative to S are defined by:
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M(L1, ...,Lm;x(1), ...,x(m)) := N−1

(
1
n

n


i=1

N
(

f
(
L1(x(1);k), ...,Lm(x(m);k)

)))
(4.6)

Lt(x(t);k) = L−1
t

(
k−1


j=0

 j+1Lt(x
(t)
i+ j)

)
; t = 1, . . . ,m.

Now, we get an interpolation of (4.1) by the direct application of Theorem 4.2 as fol-
lows.

Theorem 4.3 Assume (A1) with p =
( 1

n , . . . , 1
n

)
, and let  = (1, . . . ,k) be a positive

k-tuple such that
k

i=1

i = 1 for 2 ≤ k ≤ n. If N is an increasing (decreasing) function, then

the inequalities

f
(
L1(x(1);n), ...,Lm(x(m);n)

)
≤ M(L1, ...,Lm;x(1), ...,x(m))

≤ N−1

(
1
n

n


i=1

N( f (x(1)
i , ...,x(m)

i ))

)
, (4.7)

hold for all possible x(t) (t = 1, . . . ,m), if and only if the function H is defined in (4.2) is
convex (concave). If N is an increasing (decreasing) function, then the inequalities in (4.7)
are reversed for all possible x(t) (t = 1, . . . ,m), if and only if H is concave (convex).

Proof. Suppose N is increasing and the function H : L1(I1)× ...×Lm(Im) → R,

H(t1, ...,tm) = N
(
f
(
L−1

1 (t1), ...,L−1
m (tm)

))
is convex. We can apply Theorem 4.2 to the function H and to the vectors

(L1(x
(1)
i ), . . . ,Lm(x(m)

i )), i = 1, . . . ,n. Then the first term in (4.5) gives

H

(
1
n

n


i=1

(
L1(x

(1)
i ), . . . ,Lm(x(m)

i )
))

= H

(
1
n

n


i=1

L1(x
(1)
i ), . . . ,

1
n

n


i=1

Lm(x(m)
i )

)

= N

(
f

(
L−1

1

(
1
n

n


i=1

L1(x
(1)
i )

)
, ...,L−1

m

(
1
n

n


i=1

Lm(x(m)
i )

)))
= N

(
f
(
L1(x(1);n), ...,Lm(x(m);n)

))
.

The last term in (4.5) is

1
n

n


i=1

H(L1(x
(1)
i ), . . . ,Lm(x(m)

i )) =
1
n

n


i=1

N
(

f
(
x(1)
i , . . . ,x(m)

i

))
,
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and the middle term in (4.5) has the form

1
n

n


i=1

H

(
k−1


j=0

 j+1

(
L1(x

(1)
i+ j), ...,Lm(x(m)

i+ j)
))

=
1
n

n


i=1

H

(
k−1


j=0

 j+1L1(x
(1)
i+ j), ...,

k−1


j=0

 j+1Lm(x(m)
i+ j)

)

=
1
n

n


i=1

N

(
f

(
L−1

1

(
k−1


j=0

 j+1L1(x
(1)
i+ j)

)
, ...,L−1

m

(
k−1


j=0

 j+1Lm(x(m)
i+ j)

)))

=
1
n

n


i=1

N
(

f
(
L1(x(1);k), ...,Lm(x(m);k)

))
.

The inequalities (4.7) follow from these observations and Theorem 4.2 since N−1 is
increasing.

The converse is obtained by Theorem 4.1. �

Assume (A2) with p =
(

1
n , . . . , 1

n

)
, and let  = (1, . . . ,k) be a positive k-tuple such

that
k

i=1

i = 1 for 2 ≤ k ≤ n. Then, for m = 2, the reverse of (4.7) can be written as

f (Kn(a),Ln(b)) ≥ M(K,L;a,b) ≥ N−1

(
1
n

n


i=1

N( f (ai,bi)).

)
(4.8)

Example 4.1 Let f (x) = xy and N(x) = x. Then H(s,t) = K−1(s)L−1(t). If H is concave
then (4.8) gives the following refinement of Hölder’s inequality.

1
n

n


i=1

aibi ≤ 1
n

n


i=1

K(a;k)L(b;k) ≤ Kn(a)Ln(b). (4.9)

In particular, if H(s,t) = s1/qt1/r so H is concave for q,r > 1 and q−1 + r−1 = 1; we get
the following refinement of the classical Hölder’s inequality for positive n-tuples a and b.

n


i=1

aibi ≤
n


i=1

(
k−1


j=0

 j+1a
q
i+ j

) 1
q
(

k−1


j=0

 j+1b
r
i+ j

) 1
r

≤
(

n


i=1

aq
i

) 1
q
(

n


i=1

br
i

) 1
r

.

Example 4.2 If H(s,t) = (s1/p + t1/p)p then H is concave for p > 1, and (4.8) reduces
to the following refinement of the classical Minkowski’s inequality for positive n-tuples a
and b. (

n


i=1

(ai +bi)p

) 1
p

≤
⎛⎝ n


i=1

⎛⎝(
k−1


j=0

 j+1a
p
i+ j

) 1
p

+

(
k−1


j=0

 j+1b
p
i+ j

) 1
p
⎞⎠p⎞⎠

1
p

≤
(

n


i=1

ap
i

) 1
p

+

(
n


i=1

bp
i

) 1
p

.
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On the analogy of Corollary 4.1 and Corollary 4.2, we have the following consequences of
Theorem 4.3.

Corollary 4.3 Assume (A3) with p =
(

1
n , . . . , 1

n

)
, and let  = (1, . . . ,k) be a positive

k-tuple such that
k

i=1

i = 1 for 2 ≤ k ≤ n. Suppose f (x,y) = x+ y ((x,y) ∈ IK × IL), and

assume that K′, L′, N′, K′′, L′′ and N′′ are all positive. Introducing E := K′
K′′ , F := L′

L′′ ,

G := N′
N′′ , (4.8) holds for all possible a and b if and only if

E(x)+F(y) ≤ G(x+ y), (x,y) ∈ I◦K × I◦L.

In this case

M(K,L;a,b) = N−1

(
1
n

n


i=1

N (K(a;k)+L(b;k))

)
. (4.10)

Corollary 4.4 Assume (A3) with p =
(

1
n , . . . , 1

n

)
, and let  = (1, . . . ,k) be a positive

k-tuple such that
k

i=1

i = 1 for 2 ≤ k ≤ n, and f (x,y) = xy ((x,y) ∈ IK × IL). Suppose the

functions A(x) := K′(x)
K′(x)+xK′′(x) , B(x) := L′(x)

L′(x)+xL′′(x) and C(x) := N′(x)
N′(x)+xN′′(x) are defined on

I◦K, I◦L and I◦N respectively. Assume further that K′, L′, M′, A, B and C are all positive. Then
(4.8) holds for all possible a and b if and only if

A(x)+B(y) ≤C(xy), (x,y) ∈ I◦K × I◦L.

In this case

M(K,L;a,b) = N−1

(
1
n

n


i=1

N (K(a;k)L(b;k))

)
. (4.11)

4.3 Refinement of Minkowski’s inequality

(A4) Let I be an interval in R, and let M : I → R be a continuous and strictly monotone
function, and let xi ∈ Im (i = 1, . . . ,n). Let (1, ...,k) be a positive k-tuple such that

k
i=1i = 1 for 2 ≤ k ≤ n. Let w = (w1, ...,wm) be a nonnegative m-tuple such that

m

i=1

wi =

1.
We give a refinement of the Minkowski’s inequality by using Theorem 4.2.

Theorem 4.4 Assume (A4), and assume that the quasi-arithmetic mean function

x → Mm(x;w) := M−1

(
m


i=1

wiM(xi)

)
, x ∈ Im
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is convex. Then

Mm

(
1
n

n


i=1

xi;w

)
≤ 1

n

n


i=1

Mm

(
k−1


j=0

 j+1xi+ j;w

)
≤ 1

n

n


r=1

Mm(xr;w). (4.12)

Proof. This is obtained by applying Theorem 4.2 to the function Mm(·;w) and to the
vectors xi (i = 1, . . . ,n). �

The following necessary and sufficient condition for the quasi-arithmetic mean func-
tion to be convex is given in ([74], p. 197):

Theorem C. If M : [m1,m2] → R has continuous derivatives of second order and it is
strictly increasing and strictly convex, then the quasi-arithmetic mean function Mm(·;w) is
convex if and only if M′/M′′ is a concave function.

(A5) Let M :]0,[→]0,[ be a continuous and strictly monotone function such that
lim
x→0

M(x) = or lim
x→

M(x) = . Let xi ∈ Im (i = 1, . . . ,n), and let (1, ...,k) be a positive

k-tuple such that k
i=1i = 1 for 2 ≤ k ≤ n. Let w = (w1, ...,wm) be positive m-tuple such

that wi ≥ 1 (i = 1, ...,m).
Then we define

M̃m(x;w) = M−1

(
m


i=1

wiM(xi)

)
. (4.13)

The following result is also given in ([74], page 197):

Theorem D. If M :]0,[→]0,[ has continuous derivatives of second order and it is
strictly increasing and strictly convex, then M̃m(·;w) is a convex function if M/M′ is a
convex function.

By using (4.13) we have

Theorem 4.5 Assume (A5). If the function

x → M̃m(x;w), x ∈]0,[m

is convex, then Theorem 4.4 remains valid for M̃m(x;w) instead of Mm(x;w).

4.4 Weighted version of cyclic refinement
of Beck’s inequalities

In the pervious sections, a cyclic refinement (unweighted version) of the inequality of E.
Beck [9] is presented. Now we generalize those results for positive weights. In the rest of
the Chapter 4 we work out the weighted analogue of new refinement of Beck’s inequality
(4.1) by weighted cyclic mixed symmetric means as a consequence of the refinement devel-
oped in Section 2.1.1. This obviously, leads to refinements of weighted forms of discrete
Hölder’s and Minkowski’s inequalities.
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4.5 Weighted Refinement of Beck’s Inequality

The following refinement of the discrete Jensen’s inequality is a special case of Theorem
2.6. For the sake of completeness we give it.

Theorem 4.6 Assume U is a convex set in R
m, x1, . . . ,xn ∈U. Let 2 ≤ k ≤ n be integers,

and let p1, . . . , pn and 1, . . . ,k represent positive probability distributions. Then

f

(
n


i=1

pixi

)
≤

Cdis :=
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤
n


i=1

pi f (xi) . (4.14)

Proof. Assume (A1), and let  = (1, . . . ,k) be a positive k-tuple such that
k

i=1

i = 1 for

2 ≤ k ≤ n. The weighted cyclic mixed symmetric means relative to Cdis are defined by:

M(L1, ...,Lm;x(1), ...,x(m);p; )

:= N−1

(
n

i=1

(
k−1

j=0

 j+1pi+ j

)
N
(

f
(
L1(x(1),p, ;k), ...,Lm(x(m),p, ;k)

))) (4.15)

Lt(x(t),p, ;k) = L−1
t

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jLt(x
(t)
i+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠ ; t = 1, . . . ,m.

�

Now, we get an interpolation of (4.1) by the direct application of Theorem 4.6 as fol-
lows.

Theorem 4.7 Assume (A1), and let  = (1, . . . ,k) be a positive k-tuple such that
k

i=1

i =

1 for 2 ≤ k ≤ n. If N is an increasing (decreasing) function, then the inequalities

f
(
L1(x(1),p;n), ...,Lm(x(m),p;n)

)
≤ M(L1, ...,Lm;x(1), ...,x(m);p; )

≤ N−1

(
n

i=1

piN( f (x(1)
i , ...,x(m)

i ))
)

,
(4.16)

hold for all possible x(t) (t = 1, . . . ,m), p and  if and only if the function H is defined in
(4.2) is convex (concave). If N is an increasing (decreasing) function, then the inequalities
in (4.16) are reversed for all possible x(t) (t = 1, . . . ,m), p and  if and only if H is concave
(convex).

Proof. We can apply Theorem 4.6 (the proof is almost the same as of Theorem 4.2. �
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Assume (A2), and let  = (1, . . . ,k) be a positive k-tuple such that
k

i=1

i = 1 for

2 ≤ k ≤ n. Then, for m = 2, the reverse of (4.16) can be written as

f (Kn(a,p),Ln(b,p)) ≥ M(K,L;a,b;p; ) ≥ N−1

(
n


i=1

piN( f (ai,bi))

)
. (4.17)

Example 4.3 Let f (x) = xy and N(x) = x. Then H(s,t) = K−1(s)L−1(t). If H is concave
then (4.17) gives the following refinement of Hölder’s inequality.

n


i=1

piaibi ≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)
K(a,p, ;k)L(b,p, ;k) ≤ Kn(a,p)Ln(b,p). (4.18)

In particular, if H(s,t) = s1/qt1/r so H is concave for q,r > 1 and q−1 +r−1 = 1; we get the
following refinement of the classical Hölder’s inequality for positive n-tuples a, b and p.

n


i=1

piaibi ≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ ja
q
i+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎝

k−1

j=0

 j+1pi+ jbr
i+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
1
r

≤
(

n


i=1

pia
q
i

) 1
q
(

n


i=1

pib
r
i

) 1
r

.

Example 4.4 If H(s,t) = (s1/p + t1/p)p then H is concave for p > 1, and (4.17) reduces
to the following refinement of the classical Minkowski’s inequality for positive n-tuples a,
b and p.(

n


i=1

pi(ai +bi)p

) 1
p

≤

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝

k−1

j=0

 j+1pi+ ja
p
i+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
1
p

+

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jb
p
i+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
1
p
⎞⎟⎟⎟⎟⎠

p⎞⎟⎟⎟⎟⎠
1
p

≤
(

n


i=1

pia
p
i

) 1
p

+

(
n


i=1

pib
p
i

) 1
p

.

On the analogy of Corollary 4.1 and Corollary 4.2, we have the following consequences of
Theorem 4.7.

Corollary 4.5 Assume (A3), and let (1, ...,k) be a positive k-tuple such that k
i=1i = 1

for 2 ≤ k ≤ n. Suppose f (x,y) = x+ y ((x,y) ∈ IK × IL), and assume that K′, L′, N′, K′′,
L′′ and N′′ are all positive. Introducing E := K′

K′′ , F := L′
L′′ , G := N′

N′′ , (4.17) holds for all
possible a, b and p if and only if

E(x)+F(y) ≤ G(x+ y), (x,y) ∈ I◦K × I◦L.
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In this case

M(K,L;a,b;p; ) = N−1

(
n


i=1

(
k−1


j=0

 j+1pi+ j

)
N (K(a;k)+L(b;k))

)
. (4.19)

Corollary 4.6 Assume (A3), and let (1, ...,k) be a positive k-tuple such that k
i=1i = 1

for 2 ≤ k ≤ n. Suppose f (x,y) = xy ((x,y) ∈ IK × IL) and functions A(x) := K′(x)
K′(x)+xK′′(x) ,

B(x) := L′(x)
L′(x)+xL′′(x) and C(x) := N′(x)

N′(x)+xN′′(x) are defined on I◦K, I◦L and I◦N respectively.

Assume further that K′, L′, M′, A, B and C are all positive. Then (4.17) holds for all
possible a and b if and only if

A(x)+B(y) ≤C(xy), (x,y) ∈ I◦K × I◦L.
In this case

M(K,L;a,b;p; ) = N−1

(
n


i=1

(
k−1


j=0

 j+1pi+ j

)
N (K(a;k)L(b;k))

)
. (4.20)

4.6 Weighted Refinement of Minkowski’s inequality

We give a refinement of weighted discrete Minkowski’s inequality by using Theorem 4.6.

Theorem 4.8 Assume (A4) and let (p1, . . . , pn) be a positive probability distribution. As-
sume that the quasi-arithmetic mean function

x → Mm(x;w) := M−1

(
m


i=1

wiM(xi)

)
, x ∈ Im

is convex. Then

Mm

(
n


i=1

pixi;w

)
≤

n


i=1

(
k−1


j=0

 j+1pi+ j

)
Mm

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

;w

⎞⎟⎟⎟⎠ (4.21)

≤
n


r=1

prMm(xr;w).

Proof. This is obtained by applying Theorem 4.6 to the function Mm(·;w) and to the
vectors xi (i = 1, . . . ,n). �

By using (4.13) we have

Theorem 4.9 Assume (A5) with (p1, ..., pn) and (1, ...,k) be positive probability distri-
butions for 2 ≤ k ≤ n. If the function

x → M̃m(x;w), x ∈]0,[m

is convex, then Theorem 4.8 remains valid for M̃m(x;w) instead of Mm(x;w).



Chapter5
Cyclic Refinements of the
Different Versions of Operator
Jensen’s Inequality

Refinements of the operator Jensen’s inequality for convex and operator convex functions
are given by using cyclic refinements of the discrete Jensen’s inequality. Similar refine-
ments are fairly rare in the literature. Some applications of the results to norm inequalities,
to the Hölder-McCarthy inequality and to generalized weighted power means for operators
are presented. Refinements of operator versions of Jensen’s inequality has been less exten-
sively studied than refinements of the discrete or the integral form of Jensen’s inequality.
For some results, we refer to the papers Khosravi, Aujla, Dragomir and Moslehian [56],
Niezgoda [81], Khan and Hanif [55], Kian and Moslehian [57], and the book Horváth,
Khuram Ali Khan and Pečarić [36]. This chapter is based on the paper Horváth, Khuram
Ali Khan and Pečarić [46].

5.1 Introduction

In the present Chapter 5 (H,〈·, ·〉) will always mean a complex Hilbert space. The Ba-
nach algebra of all bounded linear operators on H will be denoted by B (H). We always
understand the norm of an operator A ∈ B (H) as

‖A‖ := sup
‖x‖≤1

‖Ax‖ .

63
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The operator IH means the identity operator on H. The spectrum of an operator A ∈ B (H)
is denoted by Sp(A). An operator A ∈ B (H) is called positive, if 〈Ax,x〉 ≥ 0 for every
x ∈ H, or equivalently A is self-adjoint and Sp(A) ⊂ [0,[. An operator A ∈ B (H) is
called strictly positive, if it is positive and invertible. For an interval J ⊂R, S(J) means the
class of all self-adjoint operators from B (H) whose spectra are contained in J.

Let J ⊂ R be an interval, and f : J → R be a function. If f is continuous on J, and A ∈
S(J), then f (A) is defined by the symbolic calculus for self-adjoint operators (see Rudin
[87]). The function f is said to be operator monotone (increasing on J) if f is continuous
on J and A, B ∈ S(J), A ≤ B (i.e. A−B is a positive operator) imply f (A) ≤ f (B). The
function f is called operator convex (on J) if f is continuous on J and

f (A+(1− )B) ≤  f (A)+ (1− ) f (B)

for all A, B ∈ S(J) and for all  ∈ [0,1].

We say that the numbers p1, . . . , pn represent a (positive) discrete probability distribu-

tion if (pi > 0) pi ≥ 0 (1 ≤ i ≤ n) and
n

i=1

pi = 1.

The following well known results are operator versions of Jensen’s inequality:

Theorem 5.1 Operator Jensen’s inequality for convex functions (see Mond and Pečarić
[76] and Furuta, Mićić, Pečarić and Seo [31]): Let J ⊂ R be an interval. Let Ai ∈ S(J)

and xi ∈ H (i = 1, . . . ,n) with
n

i=1

‖xi‖2 = 1. If f : J → R is continuous and convex, then

f

(
n


i=1

〈Aixi,xi〉
)

≤
n


i=1

〈 f (Ai)xi,xi〉 . (5.1)

Theorem 5.2 Operator Jensen’s inequality for operator convex functions (see Mond and
Pečarić [77]): Let J ⊂ R be an interval, and K be a complex Hilbert space. Let Ai ∈ S(J)
(i = 1, . . . ,n), i : B (H) → B (K) (i = 1, . . . ,n) be unital positive linear maps, and let
p1, . . . , pn represent a discrete probability distribution. If f : J → R is operator convex,
then

f

(
n


i=1

pii (Ai)

)
≤

n


i=1

pii ( f (Ai)) . (5.2)

A linear map  : B (H) → B (K) is positive if (A) is positive for all positive A ∈
B (H), and unital if(IH) =(IK).  is called strictly positive if(A) is strictly positive
for all strictly positive A ∈ B (H).
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5.2 Cyclic refinements of the operator
Jensen’s inequality for convex functions

In the present Chapter 5 we shall use the following convention: let 2 ≤ k ≤ n be integers,
i ∈ {1, . . . ,n} and j ∈ {0, . . . ,k−1}; if i+ j > n, then i+ j means i+ j−n.

Our first result a new refinement of the operator Jensen’s inequality for convex func-
tions:

Theorem 5.3 Let 2 ≤ k ≤ n be integers, let x := (x1, . . . ,xn) ∈ Hn such that xi �= 0

(i = 1, . . . ,n) and
n

i=1

‖xi‖2 = 1, and let  := (1, . . . ,k) represent a positive discrete prob-

ability distribution. Let J ⊂R be an interval, Ai ∈ S(J) (i = 1, . . . ,n) and A:= (A1, . . . ,An).
If f : J → R is continuous and convex, then

f

(
n


i=1

〈Aixi,xi〉
)

≤ Dc = Dc ( f ,A,x, )

=
n


i=1

(
k−1


j=0

 j+1
∥∥xi+ j

∥∥2

)
f

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1
∥∥xi+ j

∥∥2

k−1


j=0

 j+1
〈
Ai+ jxi+ j,xi+ j

〉
⎞⎟⎟⎟⎠

≤
n


i=1

〈 f (Ai)xi,xi〉 .

Proof. Since

k−1


j=0

∥∥∥∥∥∥∥∥∥∥∥
√
 j+1xi+ j(

k−1

j=0

 j+1
∥∥xi+ j

∥∥2

)1/2

∥∥∥∥∥∥∥∥∥∥∥

2

= 1,

the operator Jensen’s inequality for convex functions yields

Dc =
n


i=1

(
k−1


j=0

 j+1
∥∥xi+ j

∥∥2

)
· f

⎛⎜⎜⎜⎜⎜⎝
k−1


j=0

〈
Ai+ j

√
 j+1xi+ j(

k−1

j=0

 j+1
∥∥xi+ j

∥∥2

)1/2
,

√
 j+1xi+ j(

k−1

j=0

 j+1
∥∥xi+ j

∥∥2

)1/2

〉⎞⎟⎟⎟⎟⎟⎠
≤

n


i=1

k−1


j=0

 j+1
〈
f (Ai+ j)xi+ j,xi+ j

〉
=

(
n


i=1

〈 f (Ai)xi,xi〉
)(

k


j=1

 j

)
=

n


i=1

〈 f (Ai)xi,xi〉 .
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Conversely, it is easy to check that

n


i=1

(
k−1


j=0

 j+1
∥∥xi+ j

∥∥2

)
= 1,

and therefore the convexity of f implies

Dc ≥ f

(
n


i=1

k−1


j=0

 j+1
〈
Ai+ jxi+ j,xi+ j

〉)
= f

((
n


i=1

〈Aixi,xi〉
)(

k


j=1

 j

))

= f

(
n


i=1

〈Aixi,xi〉
)

.

The proof is complete. �

The following particular case is interesting.

Corollary 5.1 Let 2 ≤ k ≤ n be integers, let x ∈ H with ‖x‖ = 1, and let 1, . . . ,k and
p1, . . . , pn represent positive discrete probability distributions. Let J ⊂ R be an interval,
and Ai ∈ S(J) (i = 1, . . . ,n). If f : J → R is continuous and convex, then

(a)

f

(〈
n


i=1

piAix,x

〉)
≤

n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1pi+ j

〈
k−1


j=0

 j+1pi+ jAi+ jx,x

〉⎞⎟⎟⎟⎠
≤
〈

n


i=1

pi f (Ai)x,x

〉
.

(b) In case of A := A1 = . . . = An

f (〈Ax,x〉) ≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1pi+ j

〈
k−1


j=0

 j+1pi+ jAx,x

〉⎞⎟⎟⎟⎠
≤ 〈 f (A)x,x〉 .

Proof. (a) Theorem 5.3 can be applied to the vectors xi :=
√

pix (i = 1, . . . ,n).
(b) It is a special case of (a). �

Some norm inequalities can be obtained from Corollary 5.1 (a).

Corollary 5.2 Let 2 ≤ k ≤ n be integers, and let 1, . . . ,k and p1, . . . , pn represent pos-
itive discrete probability distributions. Let J ⊂ [0,[ be an interval, and Ai ∈ S(J) (i =
1, . . . ,n). If f : J → R is nonnegative, continuous, increasing and convex, then

f

(∥∥∥∥∥ n


i=1

piAi

∥∥∥∥∥
)

≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1pi+ j

∥∥∥∥∥k−1


j=0

 j+1pi+ jAi+ j

∥∥∥∥∥
⎞⎟⎟⎟⎠

≤
∥∥∥∥∥ n


i=1

pi f (Ai)

∥∥∥∥∥ .
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Proof. If A ∈ B (H) is a positive operator, then ‖A‖ = sup
‖x‖=1

〈Ax,x〉. By using this, the

continuity and the increase of f , and Corollary 5.1 (a), we have

f

(∥∥∥∥∥ n


i=1

piAi

∥∥∥∥∥
)

= f

(
sup
‖x‖=1

〈
n


i=1

piAix,x

〉)
= sup

‖x‖=1
f

(〈
n


i=1

piAix,x

〉)

≤ sup
‖x‖=1

n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1pi+ j

〈
k−1


j=0

 j+1pi+ jAi+ jx,x

〉⎞⎟⎟⎟⎠
≤ sup

‖x‖=1

〈
n


i=1

pi f (Ai)x,x

〉
=

∥∥∥∥∥ n


i=1

pi f (Ai)

∥∥∥∥∥ .

�

Remark 5.1 We consider now some special cases of Corollary 5.2. Let 2≤ k≤ n be inte-
gers, and let 1, . . . ,k and p1, . . . , pn represent positive discrete probability distributions.
Let J ⊂ [0,[ be an interval, and Ai ∈ S(J) (i = 1, . . . ,n).

(a) For  ≥ 1∥∥∥∥∥ n


i=1

piAi

∥∥∥∥∥


≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)1− ∥∥∥∥∥k−1


j=0

 j+1pi+ jAi+ j

∥∥∥∥∥


(5.3)

≤
∥∥∥∥∥ n


i=1

piA

i

∥∥∥∥∥ ,

and for 0 <  < 1 the reverse inequalities hold. If the operators are strictly positive, (5.3)
is also true for  < 0.

(b) By choosing f = exp, we have

exp

(∥∥∥∥∥ n


i=1

piAi

∥∥∥∥∥
)

≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)
exp

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1pi+ j

∥∥∥∥∥k−1


j=0

 j+1pi+ jAi+ j

∥∥∥∥∥
⎞⎟⎟⎟⎠

≤
∥∥∥∥∥ n


i=1

pi exp(Ai)

∥∥∥∥∥ .

From Corollary 5.1 (b) a refinement of the Hölder-McCarthy inequality (see [66]) is
derived.

Corollary 5.3 Let 2 ≤ k ≤ n be integers, let x ∈ H with ‖x‖ = 1, and let 1, . . . ,k and
p1, . . . , pn represent positive discrete probability distributions. Let A∈B (H) be a positive
operator. Then
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(a) For every  ≥ 1

〈Ax,x〉 ≤
n


i=1

(
k−1


j=0

 j+1pi+ j

)1−〈k−1


j=0

 j+1pi+ jAx,x

〉

≤ 〈Ax,x〉 . (5.4)

(b) For every 0 <  < 1

〈Ax,x〉 ≥
n


i=1

(
k−1


j=0

 j+1pi+ j

)1−〈k−1


j=0

 j+1pi+ jAx,x

〉

≥ 〈Ax,x〉 .

(c) If A is strictly positive and  < 0, then (5.4) also holds.

5.3 Cyclic refinements of the operator Jensen’s
inequality for operator convex functions

In the next result we obtain a new refinement for operator Jensen’s inequality for operator
convex functions.

Theorem 5.4 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k) and p := (p1, . . . , pn)
represent positive discrete probability distributions. Let J ⊂ R be an interval, Ai ∈ S(J)
(i = 1, . . . ,n) and A:= (A1, . . . ,An). Let K be a complex Hilbert space,i : B (H)→B (K)
(i = 1, . . . ,n) be unital positive linear maps, and :=(1, . . . ,n). If f : J →R is operator
convex, then

f

(
n


i=1

pii (Ai)

)
≤ Doc = Doc ( f ,A,,p, )

:=
n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ ji+ j (Ai+ j)

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≤
n


i=1

pii ( f (Ai)) .

Proof. The operator Jensen’s inequality for operator convex functions shows that

Doc ≤
n


i=1

k−1


j=0

 j+1pi+ ji+ j ( f (Ai+ j))

=

(
n


i=1

pii ( f (Ai))

)(
k


j=1

 j

)
=

n


i=1

pii ( f (Ai)) .

Since
n


i=1

(
k−1


j=0

 j+1pi+ j

)
= 1,
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we can apply the operator Jensen’s inequality for operator convex functions again, and
have

Doc ≥ f

(
n


i=1

(
k−1


j=0

 j+1pi+ ji+ j (Ai+ j)

))
= f

(
n


i=1

pii (Ai)

)
.

The proof is complete. �

In the following variant of the previous result the maps 1, . . . ,n are defined directly
in terms of unitary operators.

Corollary 5.4 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k) and p := (p1, . . . , pn)
represent positive discrete probability distributions. Let J ⊂ R be an interval, Ai ∈ S(J)
(i = 1, . . . ,n) and A:= (A1, . . . ,An). Let Ci ∈ B (H) (i = 1, . . . ,n) be unitary operators. If
f : J → R is operator convex, then

f

(
n


i=1

piC
∗
i AiCi

)
≤

n


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jC∗
i+ jAi+ jCi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≤

n


i=1

piC
∗
i f (Ai)Ci.

Proof. For every i = 1, . . . ,n the map i : B (H) → B (H) defined by

i (A) = C∗
i ACi

is a unital positive linear map, and hence Theorem 5.4 can be applied. �

As an application, we present some monotonicity results for operator means.
Let Ai ∈ B (H) (i = 1, . . . ,n) be strictly positive operators, A:= (A1, . . . ,An), and let

p := (p1, . . . , pn) represent a positive discrete probability distribution. Let K be a complex
Hilbert space,i : B (H)→B (K) (i = 1, . . . ,n) be unital strictly positive linear maps, and
 := (1, . . . ,n).The generalized weighted power mean of the operators Ai (i = 1, . . . ,n)
is defined by (see [73])

M[ ]
n (A,,p) = M[ ]

n (A1, . . . ,An;1, . . . ,n; p1, . . . , pn)

:=

(
n


i=1

pii (A
i )

)1/

,  ∈ R\ {0} .

Theorem 5.5 Let 2 ≤ k ≤ n be integers, and let  := (1, . . . ,k) and p := (p1, . . . , pn)
represent positive discrete probability distributions. Let Ai ∈ B (H) (i = 1, . . . ,n) be
strictly positive operators, A:= (A1, . . . ,An). Let K be a complex Hilbert space, i :
B (H)→B (K) (i = 1, . . . ,n) be unital strictly positive linear maps, and := (1, . . . ,n).
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Then(
n


i=1

pii (A
i )

)1/

≤ M[ , ]
n = M[ , ]

n (A,,p, )

:=

⎛⎜⎜⎜⎜⎝
n


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ ji+ j

(
A

i+ j

)
k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
/

⎞⎟⎟⎟⎟⎠
1/

(5.5)

≤
(

n


i=1

pii

(
A

i

))1/

,

if either  ≤  ≤−1 or 1 ≤  ≤− or 1 ≤  and  ≤  ≤ 2 .
The reverse inequalities hold in (5.5) if either 1 ≤  ≤  or − ≤  ≤−1 or  ≤−1

and 2 ≤  ≤  .

Proof. The following properties of the function g : ]0,[ → R, g(x) = xr are well known
(see [31]): it is operator convex if either 1 ≤ r ≤ 2 or −1 ≤ r ≤ 0, and −g is operator
convex if 0≤ r ≤ 1; g is operator monotone increasing if 0≤ r ≤ 1 and operator monotone
decreasing if −1 ≤ r ≤ 0.

By using these properties, Theorem 5.4 can be applied to the function f : ]0,[ → R,
f (x) = x/ and the operators A

i (i = 1, . . . ,n).
The proof is complete. �

Remark 5.2 M[ , ]
n can be considered as the mixed symmetric mean corresponding to

Doc in Theorem 5.4.



Chapter6
Cyclic Refinements of
Jensen’s Inequality Via
Taylor’s Formula

In this Chapter, we give new extensions and improvements of cyclic refinements of Jensen’s
Inequality by Taylor’s Formula with and without the effect of Green functions. As an ap-
plication of our work we construct new entropic bounds for Shannon, Relative and Man-
delbrot entropies. This chapter is based on the papers [67] and [68].
For d = 1, . . . ,5, consider the Green functions Gd : [, ]× [, ] → R defined as

G1(x,r) =

{ (−x)(−r)
− ,  ≤ r ≤ x;

(−r)(−x)
− , x ≤ r ≤  .

(6.1)

G2(x,r) =
{
− r,  ≤ r ≤ x,
− x, x ≤ r ≤  .

(6.2)

G3(x,r) =
{

x− ,  ≤ r ≤ x,
r− , x ≤ r ≤  .

(6.3)

G4(x,r) =
{

x−,  ≤ r ≤ x,
r−, x ≤ r ≤  .

(6.4)

G5(x,r) =
{
 − r,  ≤ r ≤ x,
 − x, x ≤ r ≤  ,

(6.5)

All these functions are convex and continuous w.r.t both x and r, and the following Lemma
holds.

71
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Lemma 6.1 Suppose f ∈C2[, ] , then the following identities are valid:

f (x) =
 − x
 −

f ()+
x−
 −

f ( )+

∫


G1(x,r) f ′′(r)dr. (6.6)

f (x) = f ()+ (x−) f
′
( )+

∫


G2(x,r) f
′′
(r)dr, (6.7)

f (x) = f ( )+ ( − x) f
′
()+

∫


G3(x,r) f
′′
(r)dr, (6.8)

f (x) = f ( )− ( −) f
′
( )+ (x−) f

′
()+

∫


G4(x,r) f
′′
(r)dr, (6.9)

f (x) = f ()+ ( −) f
′
()− ( − x) f

′
( )+

∫


G5(x,r) f
′′
(r)dr. (6.10)

Proof. Consider the integral

∫


Gd(x,r) f ′′(r)dr =
x∫



Gd(x,r) f ′′(r)dr+

∫
x

Gd(x,r) f ′′(r)dr

Fix d = 1, . . . ,5 and perform the integration for the specific value of the Green’s function,
we shall obtained identities (6.6)–(6.10) for d = 1, . . . ,5. �

Remark 6.1 The Green’s function G1(·, ·) is called Lagrange Green’s function (see [94]).

The new Green functions Gd(·, ·), (d = 2,3,4,5), introduced by Pečarić et al. in [67]. The

result (6.7) given in the previous Lemma represents a special case of the representation

of the function using the so-called ’two-point right focal’ interpolating polynomial in case

when n = 2 and p = 0 (see [1]). Lemma 6.1 gives another proof of special case of Abel-

Gontscharoff identity (6.7). G4 and G5 are new Green functions but results are not so

simple as in other two cases.
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6.1 Extensions of cyclic refinements of Jensen’s

inequality by Taylor’s formula

For f : [, ] → R where f (n−1) is absolutely continuous, the renowned Taylor’s formula
∀ x ∈ [, ] at the point  ∈ [, ] is

f (x) =
n−1


w=0

f (w)(c)
w!

(x− c)w +
1

(n−1)!

x∫
c

f (n)( )(x−  )n−1d . (6.11)

To start for real weights, we need the following assumptions for the cyclic Jensen’s func-
tionals defined in Chapter 2, Remark 2.7:
(A1) For the linear functionals Ju(·) (u = 1,2), suppose (H1-H2) are satisfied and
k−1

j=0

 j+1 pi+ jxi+ j

k−1

j=0

 j+1 pi+ j

∈ [, ] for i = 1, . . .m.

(A2) For the linear functionals Ju(·) (u = 3, . . . ,6), suppose (H3-H5) are satisfied and
k−1

j=0

 j+1 pi+ jg(xi+ j)
k−1

j=0

 j+1 pi+ j

∈ [, ] for i = 1, . . .m.

Initially, we take cyclic refinements of Jensen’s inequality in discrete as well as contin-
uous version and form the following identities with real weights by using Taylor’s formula.

Theorem 6.1 Suppose m,k ∈ N, p1, . . . , pm and 1, . . . ,k are real tuples for 2 ≤ k ≤
m, such that

k−1

j=0

 j+1pi+ j �= 0 for u = 1, . . .m with
m

i=1

pi = 1 and
k

j=1

 j = 1. Also let

x ∈ [, ] ⊂ R and x ∈ [, ]m. Consider the function f : [, ] → R such that f (n−1) is

absolutely-continuous and Gv, (v = 1, . . . ,5) are same as given in (6.1)–(6.5), respectively.

Then for (u = 1, . . . ,6) along with the assumptions (A1) and (A2), we have the following

generalized identities:

(a)

Ju( f ) =
n−1


w=1

f (w)()
w!

Ju((x−)w)+
1

(n−1)!

∫


f (n)( )Ju((x−  )n−1
+ )d , (6.12)

(b)

Ju( f ) =
n−1


w=1

(−1)w f (w)( )
w!

Ju(( − x)w)− (−1)n−1

(n−1)!

∫


f (n)( )Ju(( − x)n−1
+ )d ,

(6.13)
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(c)

Ju( f ) =
(

f ( )− f ()
 −

)
Ju(x)+

∫


Ju(G1(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr

+
1

(n−3)!

∫


f (n)( )
( ∫



Ju(G1(x,r))(r−  )n−3dr

)
d , (6.14)

Ju( f ) = f ′( )Ju(x)+
∫



Ju(G2(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr

+
1

(n−3)!

∫


f (n)( )
( ∫



Ju(G2(x,r))(r−  )n−3dr

)
d , (6.15)

Ju( f ) = − f ′()Ju(x)+

∫


Ju(G3(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr

+
1

(n−3)!

∫


f (n)( )
( ∫



Ju(G3(x,r))(r−  )n−3dr

)
d , (6.16)

Ju( f ) = f ′()Ju(x)+

∫


Ju(G4(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr

+
1

(n−3)!

∫


f (n)( )
( ∫



Ju(G4(x,r))(r−  )n−3dr

)
d , (6.17)

Ju( f ) = f ′( )Ju(x)+

∫


Ju(G5(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr

+
1

(n−3)!

∫


f (n)( )
( ∫



Ju(G5(x,r))(r−  )n−3dr

)
d . (6.18)
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(d)

Ju( f ) =
(

f ( )− f ()
 −

)
Ju(x)+

∫


Ju(G1(x,r))

(
n−1


w=2

f (w)()(r− )w−2

(w−2)!

)
dr

− 1
(n−3)!

∫


f (n)( )
( ∫



Ju(G1(x,r))(r−  )n−3dr

)
d , (6.19)

Ju( f ) = f ′( )Ju(x)+
∫



Ju(G2(x,r))

(
n−1


w=2

f (w)()(r− )w−2

(w−2)!

)
dr

− 1
(n−3)!

∫


f (n)( )
( ∫



Ju(G2(x,r))(r−  )n−3dr

)
d , (6.20)

Ju( f ) = − f ′()Ju(x)+

∫


Ju(G3(x,r))

(
n−1


w=2

f (w)()(r− )w−2

(w−2)!

)
dr

− 1
(n−3)!

∫


f (n)( )
( ∫



Ju(G3(x,r))(r−  )n−3dr

)
d , (6.21)

Ju( f ) = f ′()Ju(x)+

∫


Ju(G4(x,r))

(
n−1


w=2

f (w)()(r− )w−2

(w−2)!

)
dr

− 1
(n−3)!

∫


f (n)( )
( ∫



Ju(G4(x,r))(r−  )n−3dr

)
d , (6.22)

Ju( f ) = f ′( )Ju(x)+

∫


Ju(G5(x,r))

(
n−1


w=2

f (w)()(r− )w−2

(w−2)!

)
dr

− 1
(n−3)!

∫


f (n)( )
( ∫



Ju(G5(x,r))(r−  )n−3dr

)
d . (6.23)

Proof. Fix u = 1, . . . ,6.
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(a) Applying Taylor’s formula (6.11) at point  , we get

f (x) =
n−1


w=0

f (w)()
w!

(x−)w +
1

(n−1)!

∫


f (n)( )(x−  )n−1
+ d , (6.24)

where (x−  )+ is a real valued function defined as:

(x−  )+ =
{

(x−  ),  ≤ x,
0,  > x.

Using (6.24) in cyclic Jensen type linear functionals Ju(·) and practicing constant
property of the functional, we get (6.12).

(b) Applying Taylor’s formula (6.11) at point  , we get

f (x) =
n−1


w=0

(−1)w f (w)( )
w!

(x− )w− (−1)n−1

(n−1)!

∫


f (n)( )( − x)n−1
+ d (6.25)

and follow similar steps as above we get (6.13).

(c) For fix v = 1, testing (6.6) in Jensen’s type functional Ju(·) and employing the lin-
earity of Ju(·) , we have

Ju( f ) = f ()Ju

(
 − x
 −

)
+ f ( )Ju

(
x−
 −

)
+

∫


Ju(G1(x,r)) f
′′
(r)dr

= f ()
Ju( − x)
 −

+ f ( )
Ju(x−)
 −

+

∫


Ju(G1(x,r))
′′
(r)dr

=
1

 −

(
f ()Ju( )− f ()Ju(x)+ f ( )Ju(x)− f ( )Ju()

)

+
∫



Ju(G1(x,r)) f
′′
(r)dr

=
1

 −

(
f ( )Ju(x)− f ()Ju(x)

)
+

∫


Ju(G1(x,r)) f
′′
(r)dr. (6.26)

Differentiating (6.11) twice and put c = or replacing n by (n−2) or utilizing (6.11)
on the function f ′′ at the point  , we get

f ′′(r) =
n−1


w=2

f (w)()
(w−2)!

(r−)w−2 +
1

(n−3)!

r∫


f (n)( )(r−  )n−3d . (6.27)
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Now, using (6.27) in (6.26), we get

Ju( f ) =
(

f ( )− f ()
 −

)
Ju(x)+

∫


Ju(G1(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr

+
1

(n−3)!

∫


Ju(G1(x,r))
( r∫



f (n)( )(r−  )n−3d
)

dr.

Now applying Fubini’s Theorem on second term gives (6.14) respectively for v = 1
and u = 1, · · · ,6. The cases for v = 2,3,4,5, are treated analogously.

(d) Differentiating (6.11) twice and now taking c =  , we get

f ′′(r) =
n−1


w=2

f (w)( )
(w−2)!

(r− )w−2− 1
(n−3)!

∫
r

f (n)( )(r−  )n−3d . (6.28)

Analogously, putting (6.28) in (6.26) and using Fubini’s Theorem gives (6.19) re-
spectively for v = 1 and u = 1, · · · ,6. The cases for v = 2,3,4,5, are treated analo-
gously.

�

We now give generalizations of cyclic Jensen type linear functionals in discrete and
integral cases for real weights.

Theorem 6.2 Consider f be n-convex function along with the suppositions of Theorem

6.1. Then the following results hold:

(a) If for all u = 1, . . . ,6,

Ju((x−  )n−1
+ ) ≥ 0,  ∈ [, ] (6.29)

holds, then we have

Ju( f ) ≥
n−1


w=1

f (w)()
w!

Ju((x−)w) (6.30)

for u = 1, . . . ,6.

(b) If for all u = 1, . . . ,6,

(−1)n−1Ju(( − x)n−1
+ ) ≤ 0,  ∈ [, ] (6.31)

holds, then we have

Ju( f ) ≥
n−1


w=1

(−1)w f (w)( )
w!

Ju(( − x)w) (6.32)

for u = 1, . . . ,6.
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(c) If for all u = 1, . . . ,6 and v = 1, . . . ,5

∫


Ju(Gv(x,r))(r−  )n−3dr ≥ 0,  ∈ [, ] (6.33)

holds, then we have

Ju( f ) ≥
(

f ( )− f ()
 −

)
Ju(x)+

∫


Ju(G1(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr,

(6.34)

Ju( f ) ≥ f ′( )Ju(x)+

∫


Ju(G2(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr, (6.35)

Ju( f ) ≥− f ′()Ju(x)+

∫


Ju(G3(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr, (6.36)

Ju( f ) ≥ f ′()Ju(x)+
∫



Ju(G4(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr, (6.37)

Ju( f ) ≥ f ′( )Ju(x)+

∫


Ju(G5(x,r))

(
n−1


w=2

f (w)()(r−)w−2

(w−2)!

)
dr. (6.38)

(d) If for all u = 1, . . . ,6 and v = 1, . . . ,5

∫


Ju(Gv(x,r))(r−  )n−3dr ≤ 0,  ∈ [, ] (6.39)

holds, then we have

Ju( f ) ≥
(

f ( )− f ()
 −

)
Ju(x)+

∫


Ju(G1(x,r))

(
n−1


w=2

f (w)( )(r− )w−2

(w−2)!

)
dr,

(6.40)

Ju() ≥ f ′( )Ju(x)+
∫



Ju(G2(x,r))

(
n−1


w=2

f (w)( )(r− )w−2

(w−2)!

)
dr, (6.41)

Ju() ≥− f ′()Ju(x)+

∫


Ju(G3(x,r))

(
n−1


w=2

f (w)( )(r− )w−2

(w−2)!

)
dr, (6.42)
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Ju() ≥ f ′()Ju(x)+
∫



Ju(G4(x,r))

(
n−1


w=2

f (w)( )(r− )w−2

(w−2)!

)
dr, (6.43)

Ju() ≥ f ′( )Ju(x)+

∫


Ju(G5(x,r))

(
n−1


w=2

f (w)( )(r− )w−2

(w−2)!

)
dr. (6.44)

Proof. We begin with the proof of (a) and its assumed conditions. Fix u = 1, . . . ,6.
By our assumption f (n−1) is absolutely-continuous on [, ] as a result f (n) exists almost
everywhere. Moreover, f is suppose to be n-convex, so by definition of n-convex function
( see [82], p. 16 ), f (n)(x) ≥ 0 for almost everywhere on [, ] . Therefore by applying
Theorem 6.1, we get (6.30).
Similarly, rest of the inequalities can be proved. �

We now give the final results of this section:

Theorem 6.3 If the suppositions of Theorem 6.1 be fulfilled with the conditions that

p1, . . . , pm and 1, . . . ,k be non negative tuples for 2≤ k≤m, in such a way that
m

i=1

pi = 1

and
k

j=1

 j = 1. Then for n-convex function f : [, ] → R , we have:

(a) (6.30) is valid when n ≥ 3. Besides, for function

F1(x) :=
n−1


w=1

f (w)()
w!

(x−)w. (6.45)

to be convex, the right side of (6.30) is non negative, means

Ju( f ) ≥ 0, u = 1, . . . ,6. (6.46)

(b) For n even (6.32) holds. Furthermore, for function

F2(x) :=
n−1


w=1

(−1)w f (w)( )
w!

( − x)w. (6.47)

to be convex, the right hand side of (6.32) is non negative, particularly (6.46) holds.

(c) Inequalities (6.34)-(6.38) hold for all n ≥ 3. Moreover, let (6.34)-(6.38) are valid

and
n−1


w=2

f (w)()(r−)w−2

(w−2)!
≥ 0 (6.48)

then, we get (6.46) for every u = 1, . . . ,6 and v = 1, . . . ,5.
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(d) If n = even, then (6.40)-(6.44) hold. Moreover, let (6.40)-(6.44) are valid and

n−1


w=2

f (w)( )(r− )w−2

(w−2)!
≥ 0 (6.49)

then, we get (6.46) for all u = 1, . . . ,6 and v = 1, . . . ,5.

Proof.

(a) Fix u = 1, . . . ,6.
For (n ≥ 3), x �→ ((x− t)+)n−1 is convex function, so (6.29) holds by virtue of Re-
mark 2.7 on account of given weights to be positive. Hence (6.30) is establish by
taking into account Theorem 6.2. Moreover, the R.H.S. of (6.30) can be written in
the functional form Ju(F1) for all (u = 1, . . . ,6), after reorganizing this side. Em-
ploying Remark 2.7 the nonnegativity of R.H.S. of (6.30) is secure, especially (6.46)
is establish.

(b) Similar to the proof of (a).

(c) Fix u = 1, . . . ,6.
We have assumed positive weights and for all v = 1, . . . ,5, Gv(x,r) is convex. Thus
by practicing Remark 2.7, Ju(Gv(x,r)) ≥ 0. As f is n-convex, so by using Theorem
6.2 (c), we get (6.34)-(6.38). Moreover the linear function z is convex(concave),
therefore considering the positive weights, Remark 2.7 gives 0 ≤ Ju(z) ≥ 0 implies
Ju(z) = 0. Finally using positivity of Ju(Gv(z,r)) and (6.48), (6.46) is obtained.

(d) Similar to the proof of (c).

�

6.2 Applications to information theory

Now as a consequences of Theorem 6.2 we consider the discrete extensions of cyclic re-
finements of Jensen’s inequalities for u = 1, from (6.30) and (6.32)with respect to n-convex
function f in the explicit form:

m


i=1

pi f (xi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥

n−1


w=1

f (w)()
w!

⎛⎜⎜⎜⎝ m


i=1

pi(xi −)w−
m


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(6.50)
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m


i=1

pi f (xi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥

n−1


w=1

(−1)w f (w)( )
w!

⎛⎜⎜⎜⎝ m


i=1

pi( − xi)w −
m


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝ −

k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(6.51)

Theorem 6.4 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions.

Let p := (p1, . . . , pm) ∈ R
m, and q := (q1, . . . ,qm) ∈ (0,)m such that

pi

qi
∈ [, ], i = 1, . . . ,m.

Also let f : [, ] → R be a function such that f (n−1) is absolutely-continuous and f is

n-convex function. Then the following inequalities hold:

(a)

Ĩ f (p,q) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠

+
n−1


w=1

f (w)()
w!

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(6.52)

(b)

Ĩ f (p,q) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠+
n−1


w=1

(−1)w f (w)( )
w!

×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
 − pi

qi

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ −

k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ . (6.53)

Proof. Replacing pi with qi and xi with pi
qi

for (i = 1, . . . ,m) in (6.50) and (6.51), we get
(6.52) and (6.53) respectively. �

We explore two exceptional cases of the previous results.
First one is corresponding to the entropy of a discrete probability distribution.
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Corollary 6.1 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions.

(a) If q := (q1, . . . ,qm) ∈ (0,)m and n is even, then

m


i=1

qi lnqi ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

+
n−1


w=1

(−1)w

w.()w

⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi
−

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(6.54)
(b) If q := (q1, . . . ,qm) is a positive probability distribution and n is even, then we get

the bounds for Shannon entropy of q.

H(q) ≤−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

−
n−1


w=1

(−1)w

w.()w

⎛⎜⎜⎜⎝m


i=1

qi

(
1
qi

−
)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(6.55)
If n is odd, then (6.54) and (6.55) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx, and p := (1,1, . . . ,1) in Theorem 6.4 (a), we get the required
results.

(b) It is a specific case of (a). �

The second case is corresponding to the relative entropy also known as Kullback-
Leibler divergence between the two probability distributions.

Corollary 6.2 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions.

(a) If q := (q1, . . . ,qm),p := (p1, . . . , pm) ∈ (0,)m and n is even, then

m


i=1

qi ln

(
qi

pi

)
≥

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠

+
n−1


w=1

(−1)w

w.()w

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(6.56)
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(b) If If q := (q1, . . . ,qm),p := (p1, . . . , pm) are positive probability distributions and n
is even, then we have

D(q ‖ p) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠+

n−1


w=1

(−1)w

w.()w

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(6.57)

If n is odd, then (6.56) and (6.57) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx in Theorem 6.4 (a), we get the desired results.

(b) It is particular case of (a).

�

Suppose m ∈ {1,2, . . .}, t ≥ 0, s > 0, then Zipf-Mandelbrot entropy is given as :

Z(H,t,s) =
s

Hm,t,s

m


i=1

ln(i+ t)
(i+ t)s + ln(Hm,t,s). (6.58)

Consider

qi = f (i;m,t,s) =
1

((i+ t)sHm,t,s)
. (6.59)

Now we state our results involving entropy introduced by Mandelbrot Law:

Theorem 6.5 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions
and q be as defined in (6.59) by Zipf-Mandelbrot law with parameters m∈ {1,2, . . .}, t ≥ 0,
s > 0. For n is even, the following holds

H(q) =Z(H,t,s) ≤−
m


i=1

(
k−1


j=0

 j+1

((i+ j + t)sHm,t,s)

)
ln

(
1

Hm,t,s

k−1


j=0

 j+1

((i+ j + t)s)

)

−
n−1


w=1

(−1)w

w.()w

(
m


i=1

1
((i+ t)sHm,t,s)

(
((i+ t)sHm,t,s)−

)w
)

+
n−1


w=1

(−1)w

w.()w

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

((i+ j + t)sHm,t,s)

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1
((i+ j+t)sHm,t,s)

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(6.60)

If n is odd, then (6.60) holds in reverse direction.
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Proof. Substituting this qi = 1
((i+t)sHm,t,s)

in Corollary 6.1(b), we get the desired result.

Since it is interesting to see that
m

i=1

qi = 1. Moreover using above qi in Shannon entropy

(3.3), we get Mandelbrot entropy(6.58)

H(q) = −qi lnqi = −
m


i=1

1
((i+ t)sHm,t,s)

ln
1

((i+ t)sHm,t,s)

=
−1

(Hm,t,s)

m


i=1

1
(i+ t)s ln

1
(i+ t)sHm,t,s

=
−1

(Hm,t,s)

m


i=1

1
(i+ t)s

(
ln(1)− s ln(i+ t)− ln(Hm,t,s)

)
=

1
(Hm,t,s)

m


i=1

1
(i+ t)s

(
s ln(i+ t)+ ln(Hm,t,s)

)
=

s
(Hm,t,s)

m


i=1

ln(i+ t)
(i+ t)s + ln(Hm,t,s). (6.61)

�

Corollary 6.3 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions
and for t1, t2 ∈ [0,), s1,s2 > 0, let Hm,t1,s1 = 1

(k+t1)s1
and Hm,t2,s2 = 1

(k+t2)s2 . Now using

qi =
1

(i+ t1)
s1Hm,t1,s1

and pi =
1

(i+ t2)
s2Hm,t2,s2

in Corollary 6.2(b), with n is even, then

the following holds

D(q ‖ p) =
m


i=1

1
(i+ t1)

s1Hm,t1,s1
ln

(
(i+ t2)

s2Hm,t2,s2

(i+ t1)
s1Hm,t1,s1

)

≥
m


i=1

(
k−1


j=0

 j+1

(i+ j + t1)
s1Hm,t1,s1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+t1)
s1 Hm,t1,s1

k−1

j=0

 j+1
1

(i+ j+t2)
s2 Hm,t2,s2

⎞⎟⎟⎟⎠
+

n−1


w=1

(−1)w

w.()w

(
m


i=1

1
(i+ t1)

s1Hm,t1,s1

(
(i+ t1)

s1Hm,t1,s1

(i+ t2)
s2Hm,t2,s2

−
)w

)

−
n−1


w=1

(−1)w

w.()w

⎛⎜⎜⎜⎝m


i=1

(
k−1


j=0

 j+1

(i+ j + t1)
s1Hm,t1,s1

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+t2)
s2Hm,t2,s2

k−1

j=0

 j+1
1

(i+ j+t1)
s1Hm,t1,s1

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠

(6.62)

If n is odd, then (6.62) holds in reverse direction.

Remark 6.2 It is interesting to note in the similar passion we are able to construct differ-
ent estimations of f -divergences along with their applications to Shannon and Mandelbrot
entropies using the other inequalities for n-convex functions constructed in Theorem 6.2
for discrete case of cyclic refinements of Jensen’s inequality.



Chapter7
Cyclic Refinements of Jensen’s
Inequality Via Fink’s Identity

In this Chapter, we give new extensions and improvements of cyclic refinements of Jensen’s
Inequality by A. M. Fink’s identity with and without the effect of Green functions. As an
application of our work we construct new entropic bounds for Shannon, Relative and Man-
delbrot entropies. This chapter is based on the paper Mehmood, Butt, Horváth and Pečarić
[78].
The following theorem is proved by A. M. Fink in [27].

Theorem 7.1 Let , ∈ R, f : [, ]→ R, n ≥ 1 and f (n−1) is absolutely continuous on

[, ]. Then

f (x) =
n

 −

∫


f (t)dt

−
n−1


w=1

(
n−w
w!

)(
f (w−1) () (x−)w − f (w−1) ( )(x− )w

 −

)

+
1

(n−1)!( −)

∫


(x− t)n−1 [ , ] (t,x) f (n) (t)dt, (7.1)

where

 [ , ] (t,x) =

{
t−,  ≤ t ≤ x ≤  ,

t− ,  ≤ x < t ≤  .
(7.2)

85
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7.1 Generalization of cyclic refinements

of Jensen’s inequality for n−convex functions

Via A. M. Fink’s identity

First, we consider the discrete as well as integral version of cyclic refinements of Jensen’s
inequality and construct the following identities having real weights with the help of Fink’s
identity.

Theorem 7.2 Suppose m,k ∈ N, p1, . . . , pm and 1, . . . ,k are real tuples for

2 ≤ k ≤ m, such that
k−1

j=0

 j+1pi+ j �= 0 for i = 1, . . . ,m with
m

i=1

pi = 1 and
k

j=1

 j = 1.

Also let x ∈ [, ] ⊂ R and x ∈ [, ]m. Consider the function f : [, ] → R such that
f (n−1) is absolutely-continuous,  [ , ](t,x) and Gv, (v = 1, . . . ,5) are same as given in
(7.2) and (6.1)–(6.5), respectively. Then for (u = 1, . . . ,6) along with the assumptions (A1)
and (A2), we have the following generalized identities:

(i)
Ju( f ) =

n−l


w=1

(
n−w

w!( −)

)(
f (w−1) ( )Ju((x− )w)− f (w−1) ()Ju((x−)w)

)

+
1

(n−1)!( −)

∫


Ju((x− t)n−1 [ , ](t,x)) f (n)(t)dt. (7.3)

(ii)

Ju( f ) = Cv(, , f )Ju(x)+ (n−2)

(
f (1) ( )− f (1) ()

 −

) ∫


Ju(Gv(x,r))dr

+
1

( −)

∫


Ju(Gv(x,r))×

×
( n−3


w=1

(
n−2−w

w!

)(
f (w+1) ( )(r− )w− f (w+1) ()(r−)w

))
dr

+
1

(n−3)!( −)

∫


f (n) (t)
( ∫



Ju(Gv(x,r))(r− t)n−3  [ , ] (t,r)dr

)
dt

(7.4)

where

C1(, , f ) =
(

f ( )− f ()
 −

)
C2(, , f ) = f ′( ) = C5(, , f )
C3(, , f ) = f ′() = −C4(, , f ).
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Proof.

(i) Fix u = 1, . . . ,6.

Using (7.1) in Jensen’s type functional Ju(·) and using the linearity of Ju(·), we have

Ju( f ) =Ju

⎛⎝ n
 −

∫


f (t)dt

⎞⎠
+

n−l


w=1

(
n−w

w!( −)

)
f (w−1) ( )Ju((x− )w)

−
n−l


w=1

(
n−w

w!( −)

)
f (w−1) ()Ju((x−)w)

+
1

(n−1)!( −)

∫


Ju((x− t)n−1  [ , ](t,x)) f (n)(t)dt.

After simplification, we get (7.3).

(ii) Fix u = 1, . . . ,6. For fix v = 1, testing (6.6) in Jensen’s type functional Ju(·) and
using the linearity of Ju(·), we have

Ju( f ) = C1(, , f )Ju(x)+

∫


Ju(G1(x,r)) f
′′
(r)dr. (7.5)

Differentiating (7.1), twice with respect variable r, we get

f ′′ (r) =
n−3


w=0

(
n−2−w

w!

)(
f (w+1) ( )(r− )w − f (w+1) () (r−)w

 −

)

+
1

(n−3)!( −)

∫ 


(r− t)n−3  [ , ] (t,r) f (n) (t)dt

=
n−2


w=1

(
n−1−w
(w−1)!

)(
f (w) ( )(r− )w−1− f (w) ()(r−)w−1

 −

)

+
1

(n−3)!( −)

∫ 


(r− t)n−3  [ , ] (t,r) f (n) (t)dt

= (n−2)

(
f (1) ( )− f (1) ()

 −

)

+
n−2


w=2

(
n−1−w
(w−1)!

)(
f (w) ( )(r− )w−1 − f (w) ()(r−)w−1

 −

)

+
1

(n−3)!( −)

∫ 


(r− t)n−3  [ , ] (t,r) f (n) (t)dt. (7.6)
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Using (7.6) in (7.5) and applying Fubini’s Theorem in the last term we get (7.4) for
v = 1.

Alternatively, we use formula (7.1) for the function f ′′ and replace n by n−2 (n≥ 3),
to get

f ′′ (r) = (n−2)

(
f (1) ( )− f (1) ()

 −

)

+
n−3


w=1

(
n−2−w

w!

)(
f (w+1) ( )(r− )w − f (w+1) () (r−)w

 −

)

+
1

(n−3)!( −)

∫ 


(r− t)n−3  [ , ] (t,r) f (n) (t)dt (7.7)

= (n−2)

(
f (1) ( )− f (1) ()

 −

)

+
n−2


w=2

(
n−1−w
(w−1)!

)(
f (w) ( )(r− )w−1− f (w) () (r−)w−1

 −

)

+
1

(n−3)!( −)

∫ 


(r− t)n−3  [ , ] (t,r) f (n) (t)dt. (7.8)

Now using (7.7) in (7.5) and applying Fubini’s Theorem in the last term we get (7.4)
for v = 1. The cases for v = 2,3,4,5, are treated analogously.

�

In the following theorems we obtain generalizations of discrete and integral Jensen
type linear functionals, with real weights for n−convex functions.

Theorem 7.3 Let all the assumptions of Theorem 7.2 be satisfied. Also let f be n−convex
function such that f (n−1) is absolutely continuous. Then we have the following two results:

(i) If
Ju((x− t)n−1 [ , ](t,x)) ≥ 0, t ∈ [, ] (7.9)

holds, then we have

Ju( f )≥
n−l


w=1

(
n−w

w!( −)

)(
f (w−1) ( )Ju((x− )w)− f (w−1) ()Ju((x−)w)

)
(7.10)

for u = 1, . . . ,6.

(ii) If for all u = 1, . . . ,6 and v = 1, . . . ,5

∫


Ju(Gv(x,r))(r− t)n−3  [ , ] (t,r)dr ≥ 0, t ∈ [, ], (7.11)
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holds, then we have

Ju( f ) ≥Cv(, , f )Ju(x)+ (n−2)

(
f (1) ( )− f (1) ()

 −

) ∫


Ju(Gv(x,r))dr

+
1

( −)

∫


Ju(Gv(x,r))×

×
( n−3


w=1

(
n−2−w

w!

)(
f (w+1) ( )(r− )w − f (w+1) () (r−)w

))
dr

(7.12)

for u = 1, . . . ,6.

Proof.

(i) Similar to that of Theorem 6.2.
�

Now, we will state the final results of this section with the following theorem:

Theorem 7.4 Let all the assumptions of Theorem 7.2 be satisfied in addition with the
condition that p1, . . . , pm and 1, . . . ,k be non negative tuples for 3 ≤ k ≤ n, such that
m

i=1 pi = 1, k
j=1 j = 1 and consider f : [, ] → R is n−convex function.

(i) If n be even and n > 3, then (7.10) holds.

(ii) Let the inequality (7.10) be satisfied. If the function

F(x) :=
n−1


w=1

(
n−w

w!( −)

)(
f (w−1) ( )(x− )w − f (w−1) () (x−)w

)
. (7.13)

is convex, the R.H.S. of (7.10) is non negative and we have inequality

Ju( f ) ≥ 0, u = 1, . . . ,6. (7.14)

(iii) If n be even and n > 3, then (7.12) holds.

(iv) Let the inequality (7.12) be satisfied and

n−3


w=0

(
n−2−w

w!

)(
f (w+1) ( )(r− )w − f (w+1) () (r−)w

)
≥ 0. (7.15)

Then we have (7.14) for all u = 1, . . . ,6 and v = 1, . . . ,5.

Proof.

(i) Fix i = 1, . . .6.
For

 (x) := (x− t)n−1 [ , ] (t,x) =
{

(x− t)n−1 (t−) ,  ≤ t ≤ x ≤  ,

(x− t)n−1 (t− ) ,  ≤ x < t ≤  ,
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we have,


′′
(x) :=

{
(n−1)(n−2)(x− t)n−3 (t−) ,  ≤ t ≤ x ≤  ,

(n−1)(n−2)(x− t)n−3 (t− ) ,  ≤ x < t ≤  ,

showing that is convex for even n, where n> 3. Since the weights are non negative,
so by virtue of Remark 2.7, (7.9) holds for even n, where n > 3. Therefore following
Theorem 7.3 (i), we can obtain (7.10).

(ii) Similar to the proof of Theorem 6.3 (a).

(iii) Fix i = 1, . . .6 and j = 1, . . .5 .
Since Green’s function Gv(x,r) is convex and the weights are positive. So Ju(Gv(x,r))≥
0 by virtue of Remark 2.7. Also, since

 (r) := (r− t)n−3 [ , ] (t,r) =
{

(r− t)n−3 (t−) ,  ≤ t ≤ r ≤  ,

(r− t)n−3 (t− ) ,  ≤ r < t ≤  ,

 is positive for even n, where n > 3. So, (7.11) holds for even n. Now following
Theorem 7.3 (ii), we can obtain (7.12).

(iv) Using (7.15) in (7.12), we get (7.14). �

7.2 Applications to information theory

Now as a consequence of Theorem 7.3 we consider the discrete extensions of cyclic refine-
ments of Jensen’s inequalities for u = 1, from (7.10) with respect to n-convex function f
in the explicit form:

m


i=1

pi f (xi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠≥
n−l


w=1

(
(n−w) f (w−1) ( )

w!( −)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

pi(xi − )w−
m


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠

−
n−l


w=1

(
(n−w) f (w−1) ()

w!( −)

)

×

⎛⎜⎜⎜⎝ m


i=1

pi(xi −)w−
m


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ . (7.16)
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Theorem 7.5 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.
Let p := (p1, . . . , pm) ∈ R

m, and q := (q1, . . . ,qm) ∈ (0,)m such that
pi

qi
∈ [, ], u = 1, . . . ,m.

Also let f : [, ] → R be a function such that f (n−1) is absolutely-continuous and f is
n-convex function. Then the following inequalities hold:

Ĩ f (p,q) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠

+
n−l


w=1

(
(n−w) f (w−1) ( )

w!(−)

)
×

⎛⎜⎜⎜⎝m


i=1

qi

(
pi

qi
−

)w
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠

−
n−l


w=1

(
(n−w) f (w−1) ()

w!(−)

)
×

⎛⎜⎜⎜⎝m


i=1

qi

(
pi

qi
−

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(7.17)

Proof. Replacing pi with qi and xi with pi
qi

for (i = 1, . . . ,m) in (7.16), we get (7.17). �

We explore two exceptional cases of the previous result.
First one is corresponding to the entropy of a discrete probability distribution.

Corollary 7.1 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm) ∈ (0,)m and n is even, then
m


i=1

qi lnqi ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

+
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)( )w−1 ( −)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

−
)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠

−
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)()w−1 ( −)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

−
)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ . (7.18)
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(b) If q := (q1, . . . ,qm) is a positive probability distribution and n is even, then we get
the bounds for Shannon entropy of q.

H(q) ≤−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

−
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)( )w−1 ( −)

)
×⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

−
)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠

+
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)()w−1 ( −)

)
×⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

−
)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ . (7.19)

If n is odd, then (7.18) and (7.19) hold in reverse directions.

Proof.

(a) Using f (x) :=− lnx, and p := (1,1, . . . ,1) in Theorem 7.5, we get the required result.

(b) It is a special case of (a). �

The second case is corresponding to the relative entropy also known as Kullback-
Leibler divergence between two probability distributions.

Corollary 7.2 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm),p := (p1, . . . , pm) ∈ (0,)m and n is even, then

m


i=1

qi ln

(
qi

pi

)
≥

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
+

n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)( )w−1 ( −)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠
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−
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)()w−1 ( −)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ . (7.20)

(b) If If q := (q1, . . . ,qm),p := (p1, . . . , pm) are positive probability distributions and n
is even, then we have

D(q ‖ p) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
+

n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)( )w−1 ( −)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠

−
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)()w−1 ( −)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)w

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ . (7.21)

If n is odd, then (7.20) and (7.21) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx in Theorem 7.5 (a), we get the desired result.

(b) It is particular case of (a).

�

Now we state our results involving entropy introduced by Mandelbrot Law:
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Theorem 7.6 Let m,k∈N (2≤ k≤m), 1, . . . ,k be positive probability distribution and
q be as defined in (6.59) by Zipf-Mandelbrot law with parameters m ∈ {1,2, . . .}, t ≥ 0,
s > 0. For n is even, the following holds

H(q) = Z(H,t,s) ≤−
m


i=1

(
k−1


j=0

 j+1

((i+ j+ t)sHm,t,s)

)
ln

(
1

Hm,t,s

k−1


j=0

 j+1

((i+ j+ t)s)

)

−
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)( )w−1 ( −)

)(
m


i=1

1
((i+ t)sHm,t,s)

(
((i+ t)sHm,t,s)−

)w
)

+
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)( )w−1 ( −)

)⎛⎜⎜⎜⎝m


i=1

(
k−1


j=0

 j+1

((i+ j+ t)sHm,t,s)

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1

((i+ j+t)sHm,t,s)

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠

+
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)()w−1 ( −)

)(
m


i=1

1
((i+ t)sHm,t,s)

(
((i+ t)sHm,t,s)−

)w
)

−
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)()w−1 ( −)

)⎛⎜⎜⎜⎝m


i=1

(
k−1


j=0

 j+1

((i+ j+ t)sHm,t,s)

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1

((i+ j+t)sHm,t,s)

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ .

(7.22)

If n is odd, then (7.22) holds in reverse direction.

Proof. Similar to that of Theorem 6.5. �

Corollary 7.3 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions

and for t1, t2 ∈ [0,), s1,s2 > 0, let Hm,t1,s1 =
m


k=1

1
(k+t1)s1 and Hm,t2,s2 =

m


k=1

1
(k+t2)s2 . Now

using qi =
1

(i+ t1)
s1Hm,t1,s1

and pi =
1

(i+ t2)
s2Hm,t2,s2

in Corollary 7.2(b), with n is even,

then the following holds

D(q ‖ p) =
m


i=1

1
(i+ t1)

s1Hm,t1,s1
ln

(
(i+ t2)

s2Hm,t2,s2

(i+ t1)
s1Hm,t1,s1

)

≥
m


i=1

(
k−1


j=0

 j+1

(i+ j + t1)
s1Hm,t1,s1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+t1)
s1 Hm,t1,s1

k−1

j=0

 j+1
1

(i+ j+t2)
s2 Hm,t2,s2

⎞⎟⎟⎟⎠
+

n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)( )w−1 ( −)

)(
m


i=1

1
(i+ t1)

s1Hm,t1,s1

(
(i+ t1)

s1Hm,t1,s1

(i+ t2)
s2Hm,t2,s2

−
)w

)

−
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)( )w−1 ( −)

)
×
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×

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

(i+ j + t1)
s1Hm,t1,s1

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+t2)
s2Hm,t2,s2

k−1

j=0

 j+1
1

(i+ j+t1)
s1Hm,t1,s1

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠

−
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)()w−1 ( −)

)(
m


i=1

1
(i+ t1)

s1Hm,t1,s1

(
(i+ t1)

s1Hm,t1,s1

(i+ t2)
s2Hm,t2,s2

−
)w

)

+
n−l


w=1

(
(n−w)(−1)(w−1)

w(w−1)()w−1 ( −)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

(i+ j + t1)
s1Hm,t1,s1

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+t2)
s2 Hm,t2,s2

k−1

j=0

 j+1
1

(i+ j+t1)
s1 Hm,t1,s1

−

⎞⎟⎟⎟⎠
w⎞⎟⎟⎟⎠ . (7.23)

If n is odd, then (7.23) holds in reverse direction.

Remark 7.1 It is interesting to note in the similar passion we are able to construct differ-
ent estimations of f -divergences along with their applications to Shannon and Mandelbrot
entropies using the other inequalities for n-convex functions constructed in Theorem 7.3
for discrete case of cyclic refinements of Jensen’s inequality.





Chapter8

Cyclic Refinements
of Jensen’s Inequality
VIA Montgomery’s Identity

In this Chapter, we give new extensions and improvements of cyclic refinements of Jensen’s
Inequality by Montgomery’s identity with and without the effect of Green functions. As
an application of our work we construct new entropic bounds for Shannon, Relative and
Mandelbrot entropies. This chapter is based on the paper [69].
In order to obtain our main results in this chapter, we use the generalized Montgomery
identity via Taylor’s formula given in paper [3].

Theorem 8.1 Let n ∈ N, f : I → R be such that f (n−1) is absolutely continuous, I ⊂ R

an open interval, , ∈ I,  <  . Then the following identity holds

f (x) =
1

 −

∫


f (v)dv+
n−2


l=0

f (l+1) ()
l!(l +2)

(x−)l+2

 −

−
n−2


l=0

f (l+1) ( )
l!(l +2)

(x− )l+2

 −
+

1
(n−1)!

∫


Rn (x,v) f (n) (v)dv (8.1)

97
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where

Rn (x,v) =

⎧⎪⎨⎪⎩
− (x−v)n

n(−) + x−
− (x− v)n−1 ,  ≤ v ≤ x,

− (x−v)n

n(−) + x−
− (x− v)n−1 , x < v ≤  .

(8.2)

In case n = 1 the sum
n−2

l=0

· · · is empty, so identity (8.1) reduces to well-known Montgomery

identity (see for instance [74])

f (x) =
1

 −

∫


f (v)dv+

∫


P(x,s) f ′ (v)dv

where P(x,v) is the Peano kernel, defined by

P(x,v) =

⎧⎪⎨⎪⎩
v−
− ,  ≤ v ≤ x,

v−
− , x < v ≤  .

Remark 8.1 It is important to note that for n even, Rn ≥ 0 defined in (8.2).

8.1 Generalization of cyclic refinements of Jensen’s
inequality by Montgomery identity

First, we consider the discrete as well as continuous version of cyclic refinements of
Jensen’s inequality and construct the following identities having real weights utilizing
Montgomery’s identity.

Theorem 8.2 Suppose m,k ∈ N, p1, . . . , pm and 1, . . . ,k are real tuples for 2 ≤ k ≤
m, such that

k−1

j=0

 j+1pi+ j �= 0 for i = 1, . . . ,m with
m

i=1

pi = 1 and
k

j=1

 j = 1. Also let

x ∈ [, ] ⊂ R and x ∈ [, ]m. Consider the function f : [, ] → R such that f (n−1)

is absolutely-continuous, Rn(·, ), Gv, (v = 1, . . . ,5) are the same as given in (8.2) and
(6.1)–(6.5), respectively. Then for (u = 1, . . . ,6) along with the assumptions (A1) and (A2),
we have the following generalized identities:

(a)

Ju( f ) =
1

 −

n−2


l=0

(
1

l!(l +2)

)(
f (l+1)()Ju((x−)l+2)− f (l+1)( )Ju((x− )l+2)

)

+
1

(n−1)!

∫


Ju(Rn (x, )) f (n)( )d , (8.3)
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(b)

Ju( f ) =Cv(, , f )Ju(x)+
(

f ′()− f ′( )
 −

) ∫


Ju(Gv(x,r))dr

+
1

−

∫


Ju(Gv(x,r))

(
n−1


l=2

l
(l−1)!

(
f (l) () (r−)l−1− f (l) ( )(r− )l−1

))
dr

+
1

(n−3)!

∫


f (n)( )(

∫


Ju(Gv(x,r))R̃n−2 (r, )dr)d , (8.4)

where Cv, (v = 1, . . . ,5) is defined in (7.5),

R̃n−2 (r, ) =

⎧⎪⎪⎨⎪⎪⎩
1

−
[

(r− )n−2

(n−2) + (r−) (r−  )n−3
]
,  ≤  ≤ r,

1
−

[
(r− )n−2

(n−2) + (r−) (r−  )n−3
]
, r <  ≤  ,

and

Ju( f ) = Cv(, , f )Ju(x)+
(

f ′( )− f ′()
 −

) ∫


Ju(Gv(x,r))dr

+
1

 −

∫


Ju(Gv(x,r))

(
n−1


l=3

f (l) () (r−)l−1− f (l) ( )(r−)l−1

(l−3)!(l−1)

)
dr

+
1

(n−3)!

∫


f (n) ( )

⎛⎝ ∫


Ju(Gv(x,r))Rn−2(r, )dr

⎞⎠d . (8.5)

Proof.

(a) Fix u = 1, . . . ,6.

Using Montgomery identity (8.1) in cyclic Jensen type linear functional Ju(·) and
practicing its properties, we have

Ju( f ) = Ju

⎛⎝ 1
 −

∫


f ( )d

⎞⎠+
1

 −

n−2


l=0

(
1

l!(l +2)

)
f (l+1) ()Ju((x−)l+2)

− 1
 −

n−2


l=0

(
1

l!(l +2)

)
f (l+1) ( )Ju((x− )l+2)

+
1

(n−1)!

∫


Ju(Rn (x, )) f (n)( )d .

Using the constant property of the functionals, we get (8.3).
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(b) Fix u = 1, . . . ,6. For fix v = 1, testing (6.6) in cyclic Jensen type functional Ju(·) and
employing the linearity of Ju(·), we have

Ju( f ) = C1(, , f )Ju(x)+

∫


Ju(G1(x,r)) f
′′
(r)dr. (8.6)

Differentiating Montgomery identity (8.1) twice with respect to the first variable, we
have

f ′′ (r) =
f ′ ()− f ′ ( )

− +
n−1


l=2

(
l

(l−1)!

)(
f (l) () (r−)l−1− f (l) ( )(r− )l−1

−

)

+
1

(n−3)!

∫


R̃n−2 (r, ) f (n) ( )d . (8.7)

Using (8.7) in (8.6), we get

Ju( f ) = C1(, , f )Ju(x)+
(

f ′()− f ′( )
 −

) ∫


Ju(G1(x,r))dr

+
n−1


l=2

l
(l−1)!

∫


Ju(G1(x,r))

(
f (l) ()(r−)l−1− f (l) ( )(r−)l−1

 −

)
dr

+
1

(n−3)!

∫


Ju(G1(x,r))(

∫


R̃n−2 (r, ) f (n) ( )d )dr.

By executing Fubini’s Theorem in the last term, we have (8.4) for u = 1, · · · ,6,
respectively.

Next, using formula (8.1) on the function f ′′, replacing n by n− 2 (n ≥ 3) and
rearranging the indices, we have

f ′′(r) =
(

f ′( )− f ′()
 −

)
+

n−1


l=3

(
1

(l−3)!(l−1)

)(
f (l) () (r−)l−1 − f (l) ( )(r− )l−1

 −

)
(8.8)

+
1

(n−3)!

∫


Rn−2(r, ) f (n) ( )d .

Similarly, using (8.8) in (8.6) and employing Fubini’s Theorem, we get (8.5) for
u = 1, · · · ,6, respectively.

The cases for v = 2,3,4,5 are treated analogously. �
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Now we obtain generalizations of discrete and integral cyclic Jensen type linear func-
tionals, with real weights.

Theorem 8.3 Under the suppositions of Theorem 8.2, let f be n−convex function. Then
we conclude the following results:

(a) If
Ju(Rn (x, )) ≥ 0,  ∈ [, ] (8.9)

holds, then we have

Ju( f ) ≥ 1
 −

n−2


l=0

(
1

l!(l +2)

)(
f (l+1)()Ju((x−)l+2)

− f (l+1)( )Ju((x− )l+2)
)

(8.10)

for u = 1, . . . ,6.

(b) If for all u = 1, . . . ,6 and v = 1, . . . ,5

∫


Ju(Gv(x,r))R̃n−2 (r, )dr ≥ 0,  ∈ [, ], (8.11)

holds, then we have

Ju( f ) ≥Cv(, , f )Ju(x)+
(

f ′()− f ′( )
 −

) ∫


Ju(Gv(x,r))dr

+
1

−

∫


Ju(Gv(x,r))×
(

n−1


l=2

l
(l−1)!

(
f (l) () (r−)l−1− f (l) ( ) (r−)l−1

))
dr

(8.12)

for u = 1, . . . ,6, and if

∫


Ju(Gv(x,r))Rn−2 (r, )dr ≥ 0,  ∈ [, ], (8.13)

holds, then we have

Ju( f ) ≥Cv(, , f )Ju(x)+
(

f ′( )− f ′()
 −

) ∫


Ju(Gv(x,r))dr

+
1

 −

∫


Ju(Gv(x,r))×
(

n−1


l=3

f (l) ()(r−)l−1− f (l) ( )(r−)l−1

(l−3)!(l−1)

)
dr

(8.14)

for u = 1, . . . ,6.

Proof. Similar to that of Theorem 6.2. �
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We will finish the present section by stating the following theorem:

Theorem 8.4 If the assumptions of Theorem 8.2 be fulfilled with additional conditions

that p1, . . . , pm and 1, . . . ,k be non negative tuples for 3 ≤ k ≤ n, such that
m

i=1

pi = 1,

k

j=1

 j = 1. Then for f : [, ] → R being n−convex function, we conclude the following

results:

(a) For even n ≥ 4, (8.10) holds.

(b) If inequality (8.10) is valid and the function

F(x) =
1

 −

n−2


l=0

(
f (l+1) () (x−)l+2 − f (l+1) ( )(x− )l+2

l!(l +2)

)
(8.15)

is convex. Then the inequality

Ju( f ) ≥ 0, u = 1, . . . ,6. (8.16)

(c) For even n ≥ 4, (8.12) and (8.14) holds.

(d) If the inequality (8.12) is true and

n−1


l=1

l
(l−1)!

(
f (l) ()(r−)l−1− f (l) ( )(r−)l−1

)
≥ 0; ∀r ∈ [, ], (8.17)

OR

(8.14) be satisfied and

f ′( )− f ′()+
n−1


l=3

f (l) () (r−)l−1 − f (l) ( )(r− )l−1

(l−3)!(l−1)
≥ 0; ∀r ∈ [, ].

(8.18)
Then we have (8.16) for all u = 1, . . . ,6 and v = 1, . . . ,5.

Proof.

(a) Fix u = 1, . . . ,6.
Since

Rn (x, ) =

⎧⎪⎨⎪⎩
− (x− )n

n(−) + x−
− (x−  )n−1 ,  ≤  ≤ x ≤  ,

− (x− )n

n(−) + x−
− (x−  )n−1 ,  ≤ x <  ≤  .

So d
dxRn (x, ) =⎧⎪⎪⎨⎪⎪⎩

1
−

[
−(x−  )n−1 +(x−  )n−1 +(n−1)(x−)(x−  )n−2

]
,  ≤ x ≤  ,

1
−

[
−(x−  )n−1 +(x−  )n−1 +(n−1)(x− )(x−  )n−2

]
, x <  ≤  .
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and

d2

dx2 Rn (x, ) =

⎧⎪⎪⎨⎪⎪⎩
n−1
−

[
(x−  )n−2 +(n−2)(x−)(x−  )n−3

]
,  ≤ x ≤  ,

n−1
−

[
(x−  )n−2 +(n−2)(x− )(x−  )n−3

]
, x <  ≤  .

Applying second derivative test on Rn (·, ), it can be seen easily that it is convex for
even n≥ 4. Since the weights are nonnegative, so by advantage of Remark 2.7, (8.9)
holds. Pursuing Theorem 8.3 (a), (8.10) is evident.

(b) Similar to the proof of Theorem 6.3 (a).

(c) Fix u = 1, . . .6 and v = 1, . . .5 .
Since, we have assumed nonnegative tuples and the Green’s function Gv(x,r) is con-
vex for all v = 1, . . .5. Thus by practicing Remark 2.7, Ju(Gv(x,r)) ≥ 0. Moreover
R̃n−2 (r, ) ≥ 0 and Rn−2 (r, ) ≥ 0 for n = 4,6, . . ., so (8.11) and (8.13) hold. As
f is n−convex, hence by following Theorem 8.3 (ii), we obtain (8.12) and (8.14)
respectively.

(d) Utilizing (8.17) in (8.12) and (8.18) in (8.14), (8.16) is established for all u = 1, . . . ,6.

�

8.2 Applications to information theory

Now as a consequence of Theorem 8.3 we consider the discrete extensions of cyclic refine-
ments of Jensen’s inequalities for u = 1, from (8.10) with respect to n-convex function f
in the explicit form:

m


i=1

pi f (xi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≥ 1

 −

n−2


l=0

(
f (l+1)()
l!(l +2)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

pi(xi −)l+2−
m


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠
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− 1
 −

n−2


l=0

(
f (l+1)( )
l!(l +2)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

pi(xi − )l+2−
m


i=1

(
k−1


j=0

 j+1pi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠ .

(8.19)

Theorem 8.5 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.
Let p := (p1, . . . , pm) ∈ R

m, and q := (q1, . . . ,qm) ∈ (0,)m such that

pi

qi
∈ [, ], i = 1, . . . ,m.

Also let f : [, ] → R be a function such that f (n−1) is absolutely-continuous and f is
n-convex function. Then the following inequalities hold:

Ĩ f (p,q) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
+

1
 −

n−2


l=0

(
f (l+1)()
l!(l +2)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠

− 1
 −

n−2


l=0

(
f (l+1)( )
l!(l +2)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠ .

(8.20)

Proof. Replacing pi with qi and xi with pi
qi

for (i = 1, . . . ,m) in (8.19), we get (8.20). �

We explore two exceptional cases of the previous results.
First one is corresponding to the entropy of a discrete probability distribution.
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Corollary 8.1 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm) ∈ (0,)m and n is even, then

m


i=1

qi lnqi ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

+
1

 −

n−2


l=0

(
(−1)(l+1)

(l +2)()l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

−
)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠

− 1
 −

n−2


l=0

(
(−1)(l+1)

(l +2)( )l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

−
)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠ .

(8.21)

(b) If q := (q1, . . . ,qm) is a positive probability distribution and n is even, then we get
the bounds for Shannon entropy of q.

H(q) ≤−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

− 1
 −

n−2


l=0

(
(−1)(l+1)

(l +2)()l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

−
)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠

+
1

 −

n−2


l=0

(
(−1)(l+1)

(l +2)( )l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

−
)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠ .

(8.22)

If n is odd, then (8.21) and (8.22) hold in reverse directions.
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Proof.

(a) Using f (x) :=− lnx, and p := (1,1, . . . ,1) in Theorem 8.5, we get the required result.

(b) It is a special case of (a). �

The second case is corresponding to the relative entropy also known as Kullback-
Leibler divergence between two probability distributions.

Corollary 8.2 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm),p := (p1, . . . , pm) ∈ (0,)m and n is even, then

m


i=1

qi ln

(
qi

pi

)
≥

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
+

1
 −

n−2


l=0

(
(−1)(l+1)

(l +2)()l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠

− 1
 −

n−2


l=0

(
(−1)(l+1)

(l +2)( )l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠ .

(8.23)

(b) If If q := (q1, . . . ,qm),p := (p1, . . . , pm) are positive probability distributions and n
is even, then we have

D(q ‖ p) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
+

1
 −

n−2


l=0

(
(−1)(l+1)

(l +2)()l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠
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− 1
 −

n−2


l=0

(
(−1)(l+1)

(l +2)( )l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi
−

)l+2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠ .

(8.24)

If n is odd, then (8.23) and (8.24) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx in Theorem 8.5 (a), we get the desired result.

(b) It is particular case of (a). �

Now we state our results involving entropy introduced by Mandelbrot Law:

Theorem 8.6 Let m,k∈N (2≤ k≤m), 1, . . . ,k be positive probability distribution and
q be as defined in (6.59) by Zipf-Mandelbrot law with parameters m ∈ {1,2, . . .}, t ≥ 0,
s > 0. For n is even, the following holds

H(q) = Z(H,t,s) ≤−
m


i=1

(
k−1


j=0

 j+1

((i+ j + t)sHm,t,s)

)
ln

(
1

Hm,t,s

k−1


j=0

 j+1

((i+ j + t)s)

)

− 1
 −

n−2


l=0

(
(−1)(l+1)

(l +2)()l+1

)(
m


i=1

1
((i+ t)sHm,t,s)

(
((i+ t)sHm,t,s)−

)l+2
)

+
1

 −

n−2


l=0

(
(−1)(l+1)

(l +2)()l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

((i+ j + t)sHm,t,s)

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1
((i+ j+t)sHm,t,s)

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠

+
1

 −

n−2


l=0

(
(−1)(l+1)

(l +2)( )l+1

)(
m


i=1

1
((i+ t)sHm,t,s)

(
((i+ t)sHm,t,s)−

)l+2
)

− 1
 −

n−2


l=0

(
(−1)(l+1)

(l +2)( )l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

((i+ j + t)sHm,t,s)

)⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1
((i+ j+t)sHm,t,s)

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠ . (8.25)

If n is odd, then (8.25) holds in reverse direction.

Proof. Similar to that of Theorem 6.5. �
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Corollary 8.3 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions

and for t1, t2 ∈ [0,), s1,s2 > 0, let Hm,t1,s1 =
m


k=1

1
(k+t1)s1 and Hm,t2,s2 =

m


k=1

1
(k+t2)s2 . Now

using qi =
1

(i+ t1)
s1Hm,t1,s1

and pi =
1

(i+ t2)
s2Hm,t2,s2

in Corollary 8.2(b), with n is even,

then the following holds

D(q ‖ p) =
m


i=1

1
(i+ t1)

s1Hm,t1,s1
ln

(
(i+ t2)

s2Hm,t2,s2

(i+ t1)
s1Hm,t1,s1

)

≥
m


i=1

(
k−1


j=0

 j+1

(i+ j + t1)
s1Hm,t1,s1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+t1)
s1 Hm,t1,s1

k−1

j=0

 j+1
1

(i+ j+t2)
s2 Hm,t2,s2

⎞⎟⎟⎟⎠
+

1
−

n−2


l=0

(
(−1)(l+1)

(l +2)()l+1

)(
m


i=1

1
(i+ t1)

s1Hm,t1,s1

(
(i+ t1)

s1Hm,t1,s1

(i+ t2)
s2Hm,t2,s2

−
)l+2

)

− 1
 −

n−2


l=0

(
(−1)(l+1)

(l +2)()l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

(i+ j + t1)
s1Hm,t1,s1

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+t2)
s2 Hm,t2,s2

k−1

j=0

 j+1
1

(i+ j+t1)
s1 Hm,t1,s1

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠

− 1
−

n−2


l=0

(
(−1)(l+1)

(l +2)( )l+1

)(
m


i=1

1
(i+ t1)

s1Hm,t1,s1

(
(i+ t1)

s1Hm,t1,s1

(i+ t2)
s2Hm,t2,s2

−
)l+2

)

+
1

 −

n−2


l=0

(
(−1)(l+1)

(l +2)( )l+1

)
×

×

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

(i+ j + t1)
s1Hm,t1,s1

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+t2)
s2 Hm,t2,s2

k−1

j=0

 j+1
1

(i+ j+t1)
s1 Hm,t1,s1

−

⎞⎟⎟⎟⎠
l+2⎞⎟⎟⎟⎠ .

(8.26)

If n is odd, then (8.26) holds in reverse direction.

Remark 8.2 It is interesting to note in the similar passion we are able to construct differ-
ent estimations of f -divergences along with their applications to Shannon and Mandelbrot
entropies using the other inequalities for n-convex functions constructed in Theorem 8.3
for discrete case of cyclic refinements of Jensen’s inequality.



Chapter9
Cyclic Refinements of Jensen’s
Inequality by Lidstone
Interpolating Polynomial

In the present Chapter , we generalize Cyclic Refinements of Jensen’s inequality for higher
order convex functions using Lidstone interpolating polynomial with applications in infor-
mation theory. This chapter is based on the paper [70].
To move on, we consider Lidstone series, a generalization of the Taylor series, approxi-
mating a given function in the neighborhood of two points instead of one by using the even
derivatives. Such series have been studied by G. J. Lidstone (1929), H. Poritsky (1932),
J. M. Wittaker (1934) and others (see [1, 6]). Widder proved the fundamental lemma:

Lemma 9.1 [94] If f ∈C2n[0,1], then

f (x) =
n−1


l=0

[
f (2l)(0)Pl(1− x)+ f (2l)(1)Pl(x)

]
+

1∫
0

G(n)(x,r) f (2n)(r)dr,

where Pn is a Lidstone’s polynomial of degree (2n+1) defined by the relations

P0(x) = x

P′′
n (x) = Pn−1(x)

Pn(0) = Pn(1) = 0, n ≥ 1

109
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and

G(1)(x,r) = G(x,r) =

⎧⎨⎩(x−1)r , r ≤ x,

(r−1)x, x ≤ r,
(9.1)

is homogeneous Green function of the differential operator d2

dr2
on [0,1], and with the suc-

cessive iterates of G(x,r)

G(n)(x,r) =
1∫

0

G(1)(x,s)G(n−1)(s,r)ds, n ≥ 2. (9.2)

The Lidstone’s polynomial can be expressed in terms of G(n)(x,r) as

Pn(x) =
1∫

0

G(n)(x,r)rdr. (9.3)

9.1 Extensions of cyclic refinements of Jensen’s

inequality by Lidstone interpolating polynomial

We propose the following Lemma in which we construct the generalized identities having
real weights utilizing Lidstone’s interpolating polynomial and Green functions.

Lemma 9.2 Suppose m,k ∈ N, p1, . . . , pm and 1, . . . ,k are real tuples for 2 ≤ k ≤ m,

such that
k−1

j=0

 j+1pi+ j �= 0 for i = 1, . . . ,m with
m

i=1

pi = 1 and
k

j=1

 j = 1. Also let x ∈
[, ]⊂R and x∈ [, ]m. Consider the function f ∈C2n[, ], G(n) and Gv, (v = 1, . . . ,5)
be the same as defined in (9.2) and (6.1)–(6.5), respectively. Then for (u = 1, . . . ,6) along

with the assumptions (A1) and (A2), we have the following generalized identities:

(a) For n ≥ 1

Ju ( f ) =
n−1


l=0

( −)2l
[

f (2l)()Ju

(
Pl

(
 − x
 −

))
+ f (2l)( )Ju

(
Pl

(
x−
 −

))]

+( −)2n−1

∫


Ju

(
G(n)

(
x−
 −

,
r−
 −

))
f (2n)(r)dr. (9.4)
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(b) For n ≥ 2

Ju( f ) = Cv(, , f )Ju(x)+

∫


Ju

(
Gv(x,r)

)

×
(

n−2


l=0

( −)2l
[

f (2l+2)()Pl

(
 − r
 −

)
+ f (2l+2)( )Pl

(
r−
 −

)])
dr

+( −)2n−3

∫


f (2n)(s)

⎛⎝ ∫


Ju

(
Gv(x,r)

)
G(n−1)

(
r−
 −

,
s−
 −

)
dr

⎞⎠ds

(9.5)

where Cv, (v = 1, . . . ,5) is defined in (7.5).

Proof. Fix u = 1, . . . ,6.

(a) As f ∈C2n([, ]). By Widder’s lemma we have

f (x) =
n−1


l=0

( −)2l
[

f (2l)()Pl

(
 − x
 −

)
+ f (2l)( )Pl

(
x−
 −

)]

+( −)2n−1

∫


G(n)

(
x−
 −

,
r−
 −

)
f (2n)(r)dr. (9.6)

Now employing our respective cyclic Jensen’s functional Ju(·) on (9.6) and practic-
ing its linearity, we get (9.4) for u = 1, . . . ,6.

(b) For fix v = 2, testing identity (6.7) in cyclic Jensen’s functional Ju(·) and employing
its properties, we have

Ju( f ) = C2(, , f )Ju(x)+

∫


Ju(G2(x,r)) f
′′
(r)dr. (9.7)

Using representation (9.6) for f ′′, we get

f ′′(r) =
n−2


l=0

( −)2l
[

f (2l+2)()Pl

(
 − r
 −

)
+ f (2l+2)( )Pl

(
r−
 −

)]

+( −)2n−3

∫


G(n−1)

(
r−
 −

,
s−
 −

)
f (2n)(s)ds. (9.8)

Now, using (9.8) in (9.7) and applying Fubini’s theorm, we get (9.5) for v = 2 and
u = 1, . . . ,6. The cases for (v = 1,3,4,5) can be treated analogously.

�
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Now we obtain generalizations of discrete and integral cyclic Jensen’s type linear func-
tionals, with real weights for 2n−convex functions.

Theorem 9.1 Consider f ∈ C2n[, ] be such that f is 2n−convex function along with

the suppositions of Lemma 9.2. Then we conclude the following results:

(a) If for all u = 1, . . . ,6,

Ju

(
G(n)

(
x−
 −

,
r−
 −

))
≥ 0, r ∈ [, ] (9.9)

holds, then we have

Ju ( f ) ≥
n−1


l=0

( −)2l
[

f (2l)()Ju

(
Pl

(
 − x
 −

))
+ f (2l)( )Ju

(
Pl

(
x−
 −

))]
.

(9.10)

(b) If for all u = 1, . . . ,6 and (v = 1, . . . ,5)

∫


Ju

(
Gv(x,r)

)
G(n−1)

(
r−
 −

,
s−
 −

)
dr ≥ 0, r ∈ [, ] (9.11)

holds, then we have

Ju( f ) ≥Cv(, , f )Ju(x)+

∫


Ju

(
Gv(x,r)

)

×
(

n−2


l=0

( −)2l
[

f (2l+2)()Pl

(
 − r
 −

)
+ f (2l+2)( )Pl

(
r−
 −

)])
dr. (9.12)

Proof. We start with the proof of (a) and its assumed conditions. Fix u = 1, . . . ,6.
By our assumption f ∈ C2n[, ] and is 2n−convex function, we have f (2n)(·) ≥ 0 (

see [82], p. 16). Therefore, by applying Lemma 9.2(a) and taking into account assumption
(9.9) and f (2n) ≥ 0, we get (9.10).
In the similar passion, we can give the proof of (9.12). �

We will finish the present section by the following results:

Theorem 9.2 If the assumptions of Lemma 9.2 be fulfilled with additional conditions

that p1, . . . , pm and 1, . . . ,k be nonnegative tuples for 2≤ k ≤m, such that
m

i=1

pi = 1 and

k

j=1

 j = 1. Then for f : [, ] → R being 2n−convex function, we conclude the following

results:
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(a) (9.10) is valid for odd n ≥ 1. Besides, for function

H(x) :=
n−1


l=0

( −)2l
[

f (2l)()Pl

(
 − x
 −

)
+ f (2l)( )Pl

(
x−
 −

)]
(9.13)

to be convex, the right side of (9.10) is nonnegative, means

Ju( f ) ≥ 0, u = 1, . . . ,6. (9.14)

(b) For odd n ≥ 3, (9.12) holds. Moreover, let (9.12) is valid and(
n−2


l=0

( −)2l
[

f (2l+2)()Pl

(
 − r
 −

)
+ f (2l+2)( )Pl

(
r−
 −

)])
≥ 0, (9.15)

then, we get (9.14) for all u = 1, . . . ,6 and (v = 1, . . . ,5).

Proof.

(a) Fix u = 1, . . . ,6.
From (9.2), we get G(n)(x,r) ≤ 0 for odd n and G(n)(x,r) ≥ 0 for even n. Moreover
G1 in (9.1) is convex and Gn−1 is positive for odd n. Thus taking into account
(9.2), G(n) is convex in first variable if n is odd. Therefore (9.9) holds by virtue of
Remark 2.7 on account of given weights to be positive. Hence (9.10) is established
by taking into account Theorem 9.1 (a). Moreover, the R.H.S. of (9.10) can be
written in the functional form Ju(H) for all (i = 1, . . . ,6) after reorganizing this side.
Employing Remark 2.7 the nonnegativity of R.H.S. of (9.10) is secure, especially
(9.14) is established.

(b) Fix u = 1, . . . ,6.
For odd n ≥ 3, Gn−1 is positive. Also we have assumed positive weights and for all

( j = 1, . . . ,5), Gv(x,r) is convex. Thus by practicing Remark 2.7, Ju

(
Gv(x,r)

)
≥ 0

which together with positivity of Gn−1 yields (9.11). As f is 2n−convex, hence
by following Theorem 9.1 (b), we obtain (9.12). Finally, taking into account the

positivity of Ju

(
Gv(x,r)

)
and (9.15), we get (9.14).

�
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9.2 Applications to information theory

Under the assumptions of Theorem 9.1 (a) to be valid, we consider the discrete exten-
sions of cyclic refinements of Jensen’s inequalities for u = 1, from (9.10) with respect to
2n−convex function f in the explicit form:

m


i=1

pi f (xi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≥

n−1


l=0

( −)2l f (2l)()×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

pi ·Pl

(
 − xi

 −

)
−

m


i=1

(
k−1


j=0

 j+1pi+ j

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
 −

k−1

j=0

 j+1 pi+ jxi+ j

k−1

j=0

 j+1 pi+ j

 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

n−1


l=0

( −)2l f (2l)( )×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

pi ·Pl

(
xi −
 −

)
−

m


i=1

(
k−1


j=0

 j+1pi+ j

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k−1

j=0

 j+1 pi+ jxi+ j

k−1

j=0

 j+1 pi+ j

−

 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9.16)

where Pn is a Lidstone’s polynomial defined in Lemma 9.1.

Theorem 9.3 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

Let p := (p1, . . . , pm) ∈ R
m and q := (q1, . . . ,qm) ∈ (0,)m be such that

pi

qi
∈ [, ], i = 1, . . . ,m.

Also let f ∈C2n[, ] such that f is 2n−convex function. Then the following inequalities

hold:
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Ĩ f (p,q) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠

+
n−1


l=0

(−)2l f (2l)()×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

qi·Pl

(
− pi

qi

−

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−

k−1

j=0

 j+1 pi+ j

k−1

j=0

 j+1qi+ j

−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
n−1


l=0

(−)2l f (2l)( )×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

qi·Pl

( pi
qi
−

−

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k−1

j=0

 j+1 pi+ j

k−1

j=0

 j+1qi+ j

−

−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(9.17)

Proof. Replacing pi with qi and xi with pi
qi

for (i = 1, . . . ,m) in (9.16) , we get (9.17). �

Remark 9.1 Under the assumptions of Theorem 9.2 (a) for u = 1 to be fulfilled, (9.17)

becomes

Ĩ f (p,q) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠ . (9.18)

We now explore two exceptional cases of the previous result.
One corresponds to the entropy of a discrete probability distribution.

Corollary 9.1 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm) ∈ (0,)m, then

m


i=1

qi lnqi ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

+
n−1


l=0

( −)2l(2l−1)!
()2l ×

×

⎛⎜⎜⎜⎝ m


i=1

qi ·Pl

(
 − 1

qi

 −

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎝
 − 1

k−1

j=0

 j+1qi+ j

 −

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
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+
n−1


l=0

( −)2l(2l−1)!
( )2l ×

×

⎛⎜⎜⎜⎝ m


i=1

qi ·Pl

(
1
qi
−

 −

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎝
1

k−1

j=0

 j+1qi+ j

−

 −

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(9.19)

(b) If q := (q1, . . . ,qm) is a positive probability distribution, then we get the bounds for

the Shannon entropy of q.

H(q) ≤−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

−
n−1


l=0

( −)2l(2l−1)!
()2l ×

×

⎛⎜⎜⎜⎝ m


i=1

qi ·Pl

(
 − 1

qi

 −

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎝
 − 1

k−1

j=0

 j+1qi+ j

 −

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

−
n−1


l=0

( −)2l(2l−1)!
( )2l ×

×

⎛⎜⎜⎜⎝ m


i=1

qi ·Pl

(
1
qi
−

 −

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎝
1

k−1

j=0

 j+1qi+ j

−

 −

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(9.20)

Proof.

(a) Using f (x) :=− lnx, and p := (1,1, . . . ,1) in Theorem 9.3, we get the required result.

(b) It is a special case of (a).
�

Remark 9.2 Using Remark 9.1, (9.20) becomes

H(q) ≤−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)
. (9.21)

The second case corresponds to the Relative entropy or Kullback-Leibler divergence
between two probability distributions. Some recent bounds for Relative entropy can be
seen in [52, 38]. We propose the following results:
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Corollary 9.2 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm),p := (p1, . . . , pm) ∈ (0,)m, then

m


i=1

qi ln

(
qi

pi

)
≥

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
+

n−1


l=0

( −)2l(2l−1)!
()2l ×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

qi ·Pl

(
 − pi

qi

 −

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
 −

k−1

j=0

 j+1 pi+ j

k−1

j=0

 j+1qi+ j

 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

n−1


l=0

( −)2l(2l−1)!
( )2l ×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

qi ·Pl

( pi
qi
−

 −

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k−1

j=0

 j+1 pi+ j

k−1

j=0

 j+1qi+ j

−

 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(9.22)

(b) If If q := (q1, . . . ,qm),p := (p1, . . . , pm) are positive probability distributions, then

we have

D(q ‖ p) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
+

n−1


l=0

( −)2l(2l−1)!
()2l ×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

qi ·Pl

(
 − pi

qi

 −

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
 −

k−1

j=0

 j+1 pi+ j

k−1

j=0

 j+1qi+ j

 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+
n−1


l=0

( −)2l(2l−1)!
( )2l ×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

qi ·Pl

( pi
qi
−

 −

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k−1

j=0

 j+1 pi+ j

k−1

j=0

 j+1qi+ j

−

 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(9.23)

Proof.

(a) Using f (x) := − lnx in Theorem 9.3, we get the desired result.

(b) It is special case of (a).
�

Remark 9.3 Using Remark 9.1, (9.23) becomes

D(q ‖ p) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠ . (9.24)

Some of the recent study regarding Zipf-Mandelbrot law can be seen in the listed refer-
ences (see [48, 52, 53, 38]). Now we state our results involving entropy introduced by
Mandelbrot Law by establishing the relationship with Shannon and Relative entropies:

Theorem 9.4 Let m,k∈N (2≤ k≤m), 1, . . . ,k be positive probability distribution and

q be as defined in (6.59) by Zipf-Mandelbrot law with parameters m ∈ {1,2, . . .}, c ≥ 0,

d > 0. Then, the following holds

H(q) = Z(H,c,d) ≤−
m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm
c,d)

)
ln

(
1

Hm
c,d

k−1


j=0

 j+1

((i+ j + c)d)

)

−
n−1


l=0

( −)2l(2l−1)!
()2l

⎛⎜⎜⎜⎜⎜⎝
m


i=1

1
((i+ c)dHm

c,d)
·Pl

(
 − ((i+ c)dHm

c,d)

 −

)

−
m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm
c,d)

)
Pl

⎛⎜⎜⎜⎝
 −

k−1

j=0

((i+ j+c)dHm
c,d )

 j+1

 −

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠
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−
n−1


l=0

( −)2l(2l−1)!
( )2l

⎛⎜⎜⎜⎜⎜⎝
m


i=1

1
((i+ c)dHm

c,d)
·Pl

(
((i+ c)dHm

c,d)−
 −

)

−
m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm
c,d)

)
Pl

⎛⎜⎜⎜⎝
k−1

j=0

((i+ j+c)dHm
c,d)

 j+1
−

 −

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ .

(9.25)

Proof. Similar to that of Theorem 6.5. Finally, substituting this qi = 1
((u+c)dHm

c,d) in Corol-

lary 9.1(b), we get the desired result. �

The next result establish the relationship of Relative entropy with Mandelbrot entropy:

Corollary 9.3 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distributions

and for c1,c2 ∈ [0,), d1,d2 > 0, let Hm
c1,d1

=
m

=1

1
(+c1)d1

and Hm
c2,d2

=
m

=1

1
(+c2)d2

. Now

by using qi =
1

(i+ c1)d1Hm
c1,d1

and pi =
1

(i+ c2)
d2Hm

c2,d2

in Corollary 9.2(b), we obtain

D(q ‖ p) =
m


i=1

1
(i+ c1)d1Hm

c1,d1

ln

(
(i+ c2)

d2Hm
c2,d2

(i+ c1)
d1Hm

c1,d1

)

= −Z(H,c1,d1)+
d2

Hm
c1,d1

m


i=1

ln(i+ c2)
(i+ c1)d1

+ ln
(
Hm

c2,d2

)

≥
m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)
d1Hm

c1,d1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1

(i+ j+c1)
d1Hm

c1 ,d1

k−1

j=0

 j+1

(i+ j+c2)
d2Hm

c2 ,d2

⎞⎟⎟⎟⎠

+
n−1


l=0

( −)2l(2l−1)!
()2l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

1
(i+ c1)d1Hm

c1,d1

·Pl

⎛⎜⎜⎜⎝
 −

(
(i+c1)

d1Hm
c1 ,d1

(i+c2)
d2Hm

c2 ,d2

)
 −

⎞⎟⎟⎟⎠

−
m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)d1Hm
c1,d1

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 −
k−1

j=0

 j+1

(i+ j+c2)d2Hm
c2,d2

k−1

j=0

 j+1

(i+ j+c1)d1Hm
c1,d1

 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+
n−1


l=0

( −)2l(2l−1)!
( )2l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m


i=1

1
(i+ c1)d1Hm

c1,d1

·Pl

⎛⎜⎜⎜⎝
(

(i+c1)
d1Hm

c1 ,d1

(i+c2)
d2Hm

c2 ,d2

)
−

 −

⎞⎟⎟⎟⎠

−
m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)d1Hm
c1,d1

)
Pl

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k−1

j=0

 j+1

(i+ j+c2)d2Hm
c2,d2

k−1

j=0

 j+1

(i+ j+c1)d1Hm
c1,d1

−

 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(9.26)

Remark 9.4 By using Remark 9.1, (9.25) and (9.28) becomes

H(q) = Z(H,c,d) ≤ −
m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm
c,d)

)
ln

(
1

Hm
c,d

k−1


j=0

 j+1

((i+ j + c)d)

)
.

(9.27)

D(q ‖ p) =
m


i=1

1
(i+ c1)d1Hm

c1,d1

ln

(
(i+ c2)

d2Hm
c2,d2

(i+ c1)
d1Hm

c1,d1

)

= −Z(H,c1,d1)+
d2

Hm
c1,d1

m


i=1

ln(i+ c2)
(i+ c1)d1

+ ln
(
Hm

c2,d2

)

≥
m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)
d1Hm

c1,d1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1

(i+ j+c1)
d1Hm

c1 ,d1

k−1

j=0

 j+1

(i+ j+c2)
d2Hm

c2 ,d2

⎞⎟⎟⎟⎠ . (9.28)

Remark 9.5 It is interesting to note that, in the similar passion we are able to construct

different estimations of f -divergences along with their applications to Shannon, Relative

and Mandelbrot entropies using the other inequalities for 2n−convex functions constructed

in Theorem 9.1 for discrete case of cyclic refinements of Jensen’s inequality.



Chapter10

Cyclic Refinements of
Jensen’s Inequality and
Abel-Gontscharoff
Interpolating Polynomial

In the present Chapter, we use Abel-Gontscharoff interpolating polynomial and prove
many interesting results. This chapter is based on the paper[71].

Let − <  <  <  and let  ≤ 1 < 2 < · · ·n ≤  be the given points. For
f ∈Cn[, ], Abel-Gontscharoff interpolating polynomial AP of degree (n−1) satisfying
Abel-Gontscharoff conditions

AP()(+1) = f ()(+1), 0 ≤  ≤ n−1

exists uniquely [20, 33]. This condition in particular includes two point right focal condi-
tions.

AP()
(2) (1) = f ()(1), 0 ≤  ≤ t

AP()
(2) (2) = f ()(2), t +1 ≤  ≤ n−1,  ≤ 1 < 2 ≤  .

First we give representation of Abel-Gontscharoff interpolating polynomial:

121
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Theorem 10.1 [1] Abel-Gontscharoff interpolating polynomial AP of function f can be

expressed as

AP(x) =
n−1


=0

 (x) f ()(+1) (10.1)

where 0(x) = 1 and  , 1 ≤  ≤ n−1 is the unique polynomial of degree  satisfying

(l)
 (l+1) = 0, 0 ≤ l ≤  −1

()
 (+1) = 1

and it can be written as

 (x) =
1

1!2! · · · !

∣∣∣∣∣∣∣∣∣∣∣∣

1 1  2
1 . . . −1

1 1
0 1 22 . . . ( −1)−2

2 −1
2

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . ( −1)!  !
1 x x2 . . . x−1 x

∣∣∣∣∣∣∣∣∣∣∣∣
=
∫ x

1

∫ x1

2

∫ x2

3

· · ·
∫ x−1


dxdx−1 · · ·dx1, (x0 = x). (10.2)

In particular, we have

0(x) = 1

1(x) = x− 1

2(x) =
1
2
[x2−22x+ 1(22− 1)].

Corollary 10.1 The two point right focal interpolating polynomial AP(2)(x) of the func-

tion f can be written as

AP(2)(x) =
t


=0

(x− 1)

 !
f ()(1)

+
n−t−2


w=0

[ w


=0

(x− 1)t+1+ (1 − 2)w−

(t +1+)!(w−)!

]
f (t+1+w)(2) (10.3)

The associate error Error(x) = f (x)− AP(x) can be represented in terms of the Green
function AG(x,r;n) of the boundary value problem
y(n) = 0, y()(+1) = 0, 0 ≤  ≤ n−1
and appears as (see [1]):

AG(x,r;n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l−1


=0

 (x)
(n−−1)!

(+1− r)(n−−1), l ≤ r ≤ x,

−
n−1


=l

 (x)
(n−−1)!

(+1− r)(n−−1), x ≤ r ≤ l+1,

l = 0,1, ...,n(0 = ,n+1 =  ).

(10.4)
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Corresponding to the two point right focal conditions, Green function AG(2)(x,r;n) of
the boundary value problem
y(n) = 0, y()(1) = 0, 0 ≤  ≤ t , y()(2) = 0, t +1 ≤  ≤ n−1
is given by (see [1]):

AG(2)(x,r;n) =
1

(n−1)!

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t


=0

(
n−1


)
(x− 1) (1− r)n−−1,  ≤ r ≤ x,

−
n−1


=t+1

(
n−1


)
(x− 1) (1− r)n−−1, x ≤ r ≤  .

(10.5)

Further, for 1 ≤ r, x ≤ 2 the following inequalities hold

(−1)n−t−1 
AG(2)(x,r;n)

x
≥ 0, 0 ≤  ≤ t, (10.6)

(−1)n− 
AG(2)(x,r;n)

x
≥ 0, t +1 ≤  ≤ n−1. (10.7)

Theorem 10.2 Let f ∈ Cn[, ], and let AP(·) be its Abel-Gontscharoff interpolating

polynomial . Then

f (x) = AP(x)+Error(x) =
n−1


=0

 (x) f ()(+1)+
∫



AG(x,r;n) f (n)(r)dr (10.8)

where (·) is defined by (10.2) and AG(x,r;n) is defined by (10.4).

Theorem 10.3 Let f ∈ Cn[, ], and let AP(2)(·) be its two points right focal Abel-

Gontscharoff interpolating polynomial . Then

f (z) = AP(2)(x)+Error(x)

=
t


=0

(x− 1)

 !
f ()(1)+

n−t−2


w=0

[ w


=0

(x− 1)t+1+ (1− 2)w−

(t +1+)!(w−)!

]
f (t+1+w)(2)

+
∫



AG(2)(x,r;n) f (n)(r)dr (10.9)

where AG(2)(x,r;n) is defined by (10.5).
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10.1 Extensions of cyclic refinements of Jensen’s

inequality by Abel-Gontscharoff interpolation

We consider discrete as well as continuous version of cyclic refinements of Jensen’s in-
equality and construct the generalized new identities having real weights utilizing Abel-
Gontscharoff interpolating polynomial.

Theorem 10.4 Suppose m,k ∈ N, p1, . . . , pm and 1, . . . ,k are real tuples for 2 ≤ k ≤
m, such that

k−1

j=0

 j+1pi+ j �= 0 for i = 1, . . . ,m with
m

i=1

pi = 1 and
k

j=1

 j = 1. Also let

x ∈ [, ] ⊂ R and x ∈ [, ]m. Assume f ∈ Cn[, ] and consider interval with points

− <  ≤ 1 < 2 < · · ·n ≤  < , (·) is defined by (10.2) , AG(·,r;n) in (10.4) and

Gv, (v = 1, . . . ,5) be the Green functions defined in (6.1)–(6.5), respectively. Then for

u = 1, . . . ,6 along with assumptions (A1) and (A2), we have the following generalized

identities:

(a) For n ≥ 1

Ju( f (x)) =
n−1


=1

f ()(+1)Ju

(
 (x)

)
+

∫


Ju

(
AG(x,r;n)

)
f (n)(r)dr. (10.10)

(b) For n ≥ 3

Ju( f (x)) = Cv(, , f )Ju(x)+

∫


Ju

(
Gv(x,r)

) n−3


=0

f (+2)(+1) (r)dr

+

∫


∫


Ju

(
Gv(x,r)

)
AG(r,s;n−2) f (n)(s)dsdr (10.11)

where Cv, (v = 1, . . . ,5) is defined in (7.5).

Proof. Fix u = 1, . . . ,6.

(a) Applying cyclic Jensen’s type linear functionals Ju(·) on (10.8) and practicing prop-
erties of the functional, we get (10.10).

(b) For fix v = 5, testing (6.10) in cyclic Jensen’s type functional Ju(·) and employing
the properties of Ju(·) along with the assumed conditions, we have

Ju( f ) = C5(, , f )Ju(x)+

∫


Ju(G5(x,r)) f
′′
(r)dr. (10.12)
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By Theorem 10.2, f
′′
(r) can be expressed as:

f ′′(r) =
n−3


=0

 (r) f (+2)(+1)+

∫


AG(r,s;n−2) f (n)(s)ds. (10.13)

Putting (10.13) in (10.12), we get (10.11) respectively for v = 5 and u = 1, . . . ,6.
The cases for v = 1,2,3,4 are treated analogously and are left for the reader interest.

�

Now we obtain extensions and improvements of discrete and integral cyclic Jensen’s
inequalities, with real weights.

Theorem 10.5 Consider f be n−convex function along with the suppositions of Theorem

10.4. Then we conclude the following results:

(a) If for all u = 1, . . . ,6,

Ju

(
AG(x,r;n)

)
≥ 0, r ∈ [, ] (10.14)

holds, then we have

Ju( f (x)) ≥
n−1


=1

f ()(+1)Ju

(
 (x)

)
(10.15)

for u = 1, . . . ,6.

(b) If for all u = 1, . . . ,6 and v = 1, . . . ,5

∫


Ju

(
Gv(x,r)

)
AG(r,s;n−2)dr ≥ 0, r ∈ [, ] (10.16)

holds then

Ju( f (x)) ≥Cv(, , f )Ju(x)+

∫


Ju

(
Gv(x,r)

) n−3


=0

f (+2)(+1) (r)dr (10.17)

for u = 1, . . . ,6.

Proof. Similar to that of Theorem 6.2. �

In the next corollary, we give Theorem 10.5 by considering two points right focal Abel-
Gontscharoff interpolating polynomial:

Corollary 10.2 Assume f ∈Cn[, ] on the interval with points  ≤ 1 < 2 <  along

with the suppositions of Theorem 10.4. Let AG(2)(x,r;n) be the Green function defined in

(10.5). If f be n−convex function, then we conclude the following results:
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(a) If for all u = 1, . . . ,6,

Ju

(
AG(2)(x,r;n)

)
≥ 0, r ∈ [, ] (10.18)

holds, then we have

Ju( f (x)) ≥
t


=1

f ()(1)
 !

Ju

(
(x− 1)

)

+
n−t−2


w=0

[ w


=0

f (t+1+w)(2)(1− 2)w−

(t +1+)!(w−)!

]
Ju

(
(x− 1)t+1+

)
(10.19)

for u = 1, . . . ,6.

(b) If for all u = 1, . . . ,6 and v = 1, . . . ,5

Ju

(
Gv(x,r)

)
≥ 0, r ∈ [, ] (10.20)

holds, provided that n is even and t is odd or n is odd and t is even, then

Ju( f (x)) ≥Cv(, , f )Ju(x)+
t


=0

f (+2)(1)
 !

∫


Ju

(
Gv(x,r)

)
(r− 1)dr

+
n−t−4


w=0

[ w


=0

f (t+3+w)(2)(1 − 2)w−

(t +1+)!(w−)!

] ∫


Ju

(
Gv(x,r)

)
(r− 1)t+1+dr

(10.21)

for u = 1, . . . ,6.

Proof. Fix u = 1, . . . ,6.

(a) Applying cyclic Jensen’s type linear functionals Ju(·) on (10.9) and practicing prop-
erties of the functional, we get

Ju( f (x)) =
t


=1

f ()(1)
 !

Ju

(
(x− 1)

)

+
n−t−2


w=0

[ w


=0

f (t+1+w)(2)(1− 2)w−

(t +1+)!(w−)!

]
Ju

(
(x− 1)t+1+

)

+

∫


Ju

(
AG(2)(x,r;n)

)
f (n)(r)dr. (10.22)

Now by using (10.18) and n−convexity of the function f , we get (10.19).
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(b) Fix u = 1, . . . ,6 and v = 1, . . . ,5.
By Theorem 10.4(b), we already proved

Ju( f ) = Cv(, , f )Ju(x)+

∫


Ju(Gv(x,r)) f
′′
(r)dr. (10.23)

By Theorem 10.3, f
′′
(r) can be expressed as:

f ′′(r) =
t


=0

(r− 1)

 !
f (+2)(1)

+
n−t−4


w=0

[ w


=0

(r− 1)t+1+ (1− 2)w−

(t +1+)!(w−)!

]
f (t+3+w)(2)

+

∫


AG(2)(r,s;n−2) f (n)(s)ds. (10.24)

Putting (10.24) in (10.23), we get the following identity

Ju( f (x)) = Cv(, , f )Ju(x)+
t


=0

f (+2)(1)
 !

∫


Ju

(
Gv(x,r)

)
(r− 1)dr

+
n−t−4


w=0

[ w


=0

f (t+3+w)(2)(1− 2)w−

(t +1+)!(w−)!

] ∫


Ju

(
Gv(x,r)

)
(r− 1)t+1+dr

+

∫


∫


Ju

(
Gv(x,r)

)
AG(2)(r,s;n−2) f (n)(s)dsdr. (10.25)

Now from (10.6), we have (−1)n−t−3AG(2)(r,s;n− 2) ≥ 0. Therefore utilizing our
assumptions n is even and t is odd or n is odd and t is even, we get AG(2)(r,s;n−2)≥
0. Now employing (10.20) alongside with n−convexity of f yields (10.21).

�

We will finish the present section by the following generalizations of cyclic refine-
ments of Jensen’s inequalities by two points right focal Abel-Gontscharoff interpolating
polynomial:

Theorem 10.6 If the assumptions of Corollary 10.2 be fulfilled with additional con-

ditions that p1, . . . , pm and 1, . . . ,k be non negative tuples for 2 ≤ k ≤ m, such that
m

i=1

pi = 1 and
k

j=1

 j = 1. Then for f : [, ] → R being n−convex function, we conclude

the following results:
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(a) (10.19) holds for the cases when n is even and t is odd or n is odd and t is even. If
(10.19) is valid along with the function

(x) :=
t


=0

(x− 1)

 !
f ()(1)

+
n−t−2


w=0

[ w


=0

(x− 1)t+1+ (1 − 2)w−

(t +1+)!(w−)!

]
f (t+1+w)(2) (10.26)

to be convex, the right side of (10.19) is non negative, means

Ju( f ) ≥ 0, u = 1, . . . ,6. (10.27)

(b) For (n = even,t = odd) or (n = odd,t = even), (10.21) holds. Further

t


=0

(r− 1)

 !
f (+2)(1)

+
n−t−4


w=0

[ w


=0

(r− 1)t+1+ (1 − 2)w−

(t +1+)!(w−)!

]
f (t+3+w)(2) ≥ 0 (10.28)

the right side of (10.21) is non negative, particularly (10.27) is established for all
u = 1, . . . ,6 and v = 1, . . . ,5.

Proof.

(a) Fix u = 1, . . . ,6.
Using (10.6), for 1 ≤ r, x ≤ 2,

(−1)n−t−1 
2AG(2)(x,r;n)

x2 ≥ 0 (10.29)

ensures the convexity of AG(2)(x,r;n) w.r.t. first variable for the cases when n is even
and t is odd or n is odd and t is even. So (10.18) holds by virtue of Remark 2.7 on
account of given weights to be positive. Hence (10.19) is established by taking into
account Corollary 10.2(a). Moreover, the R.H.S. of (10.19) can be written in the
functional form Ju() for all (u = 1, . . . ,6), after reorganizing this side. Employing
Remark 2.7 the non negativity of R.H.S. of (10.19) is secured, especially (10.27) is
established.

(b) Similar to the proof of Theorem 6.3 (c).

�
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10.2 Applications to information theory

Now as a consequence of Theorem 10.5 we consider the discrete extensions of cyclic
refinements of Jensen’s inequalities for (u = 1), from (10.15) with respect to n−convex
function f in the explicit form:

m


i=1

pi f (xi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jzi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠

≥
n−1


=1

f ()(+1)×

⎛⎜⎜⎜⎝ m


i=1

pi (xi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)


⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

(10.30)

where (·) is defined by (10.2).

Theorem 10.7 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

Let p := (p1, . . . , pm) ∈ R
m and q := (q1, . . . ,qm) ∈ (0,)m such that

pi

qi
∈ [, ], u = 1, . . . ,m.

Also let f ∈Cn[, ] and consider interval with points−< ≤ 1 < 2 < · · ·n ≤  <
such that f is n−convex function. Then the following inequality holds:

Ĩ f (p,q) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠

+
n−1


=1

f ()(+1)×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)


⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(10.31)

Proof. Replacing pi with qi and xi with pi
qi

for (i = 1, . . . ,m) in (10.30) , we get (10.31). �

We now explore two exceptional cases of the previous result.
One corresponds to the entropy of a discrete probability distribution.
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Corollary 10.3 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm) ∈ (0,)m and n is even , then

m


i=1

qi lnqi ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)
+

(
n−1


=1

(−1) ( −1)!
(+1)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)


⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(10.32)
(b) If q := (q1, . . . ,qm) is a positive probability distribution and n is even , then we get

the bounds for the Shannon entropy of q.

H(q) ≤ −
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)
−
(

n−1


=1

(−1) ( −1)!
(+1)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
1
qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)


⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (10.33)

If n is odd, then (10.32) and (10.33) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx, and p := (1,1, . . . ,1) in Theorem 10.7, we get the required
result.

(b) It is a special case of (a). �

The second case corresponds to the relative entropy or Kullback-Leibler divergence
between two probability distributions.

Corollary 10.4 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm),p := (p1, . . . , pm) ∈ (0,)m and n is even , then

m


i=1

qi ln

(
qi

pi

)
≥

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠+

(
n−1


=1

(−1) ( −1)!
(+1)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)


⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(10.34)
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(b) If If q := (q1, . . . ,qm),p := (p1, . . . , pm) are positive probability distributions and n
is even , then we have

D(q ‖ p) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠+

(
n−1


=1

(−1) ( −1)!
(+1)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qi

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)


⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(10.35)

If n is odd, then (10.34) and (10.35) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx in Theorem 10.7, we get the desired result.

(b) It is special case of (a).

�

Now we state our results involving entropy introduced by Mandelbrot Law:

Theorem 10.8 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution
and q be as defined in (6.59) by Zipf-Mandelbrot law with parameters m∈ {1,2, . . .}, c≥ 0,
d > 0. If n is even , the following holds

H(q) = Z(H,c,d)

≤−
m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm,c,d)

)
ln

(
1

Hm,c,d

k−1


j=0

 j+1

((i+ j + c)d)

)

−
(

n−1


=1

(−1) ( −1)!
(+1)

)(
m


i=1

1
((i+ c)dHm,c,d)



(
((i+ c)dHm,c,d)

))

+

(
n−1


=1

(−1) (−1)!
(+1)

)⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm,c,d)

)


⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1

((i+ j+c)dHm,c,d)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(10.36)

If n is odd, then (10.36) holds in reverse direction.

Proof. Similar to that of Theorem 6.5. �
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Corollary 10.5 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution

and for c1,c2 ∈ [0,), d1,d2 > 0, let Hm,c1,d1 =
m


s=1

1
(s+c1)d1

and Hm,c2,d2 =
m


s=1

1
(s+c2)d2

. Now

using qi =
1

(i+ c1)
d1Hm,c1,d1

and pi =
1

(i+ c2)
d2Hm,c2,d2

in Corollary 10.4(b), with even n,

we obtain

D(q ‖ p) =
m


i=1

1

(i+ c1)
d1Hm,c1,d1

ln

(
(i+ c2)

d2Hm,c2,d2

(i+ c1)
d1Hm,c1,d1

)

≥
m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)
d1Hm,c1,d1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+c1)
d1Hm,c1 ,d1

k−1

j=0

 j+1
1

(i+ j+c2)
d2Hm,c2 ,d2

⎞⎟⎟⎟⎠
+

(
n−1


=1

(−1) ( −1)!
(+1)

)(
m


i=1

1
((i+ c1)d1Hm,c1,d1)



(
((i+ c1)d1Hm,c1,d1)
((i+ c2)d2Hm,c2,d2)

))

−
(

n−1


=1

(−1) ( −1)!
(+1)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)
d1Hm,c1,d1

)


⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+c2)
d2Hm,c2 ,d2

k−1

j=0

 j+1
1

(i+ j+c1)
d1Hm,c1 ,d1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(10.37)

If n is odd, then (10.37) holds in reverse direction.

Remark 10.1 It is interesting to note that, in the similar passion we are able to construct
different estimations of f -divergences along with their applications to Shannon, Relative
and Mandelbrot entropies using the other inequalities for n−convex functions constructed
in Theorem 10.5 for discrete case of cyclic refinements of Jensen inequality.

Remark 10.2 We left for reader interest to construct upper bounds for Shannon, Rel-
ative and Mandelbrot entropies by considering two points right focal Abel-Gontscharoff
interpolating polynomial in the above results.



Chapter11
Cyclic Refinements of Jensen’s
Inequality by Hermite
Intepolating Polynomial

In the present Chapter, we use Hermite interpolating polynomial to obtain generalizations
of cyclic refinements of Jensen’s inequality for n-convex functions. This chapter is based
on the paper [72].

In what follows, we shall use the following conventions for the sake of simplicity Con-
ditions(C), Hermite(H), Lagrange(L) and Taylor(T). Let f ∈Cn[, ] and consider interval
with points −<  = b1 < b2 · · · < bt =  < , (t ≥ 2). Then there exists a unique poly-
nomial H(·) of degree (n−1) satisfying any of the following axioms:

HC:(1≤  ≤ t,
t

=1

s + t = n)

()
H (b) = f ()(b); 0 ≤  ≤ s . (11.1)

Further particular cases are :
LC:(t = n, s = 0 for all )

L(b) = f (b ),1 ≤  ≤ n,

Type( ,n−)C: (t = 2,1 ≤  ≤ n−1, s1 = −1, s2 = n−−1)

()
(,n)() = f ()(), 0 ≤  ≤ −1,

()
(,n)( ) = f ()( ), 0 ≤  ≤ n−−1,

133
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Two-point TC: (n = 2 , t = 2, s1 = s2 = −1)

()
2T () = f ()(), ()

2T ( ) = f ()( ), 0 ≤  ≤ −1.

The associated error |EH(z)| can be approximated by Green’s function (Peano’s Kernal)
concerning boundary value problem for multiple points

z(n)(x) = 0, z()(b) = 0, 0 ≤  ≤ s , 1 ≤  ≤ t,

that is stated in the coming theorem:

Theorem 11.1 [1] Let − <  <  <  with  ≤ b1 < b2 · · · < bt ≤  , (t ≥ 2) be the
given points, and f ∈Cn([, ]). Then we have

f (x) = H(x)+RH( f ,x) (11.2)

where H(x) represents Hermite polynomial, i.e.

H(x) =
t


=1

s


=0

H(x) f ()(b);

where H are Hermite basis given as

H (x) =
1
 !

(x)
(x−b)s+1−

s−

s=0

1
s!

ds

dxs

(
(x−b)s+1

(x)

)∣∣∣∣∣
x=b

(x−b)s, (11.3)

with

(x) =
t


=1

(x−b)s+1,

and remainder

RH( f ,x) =
∫ 


GH,n(x,r) f (n)(r)dr

where GH,n(x,r) is defined by

GH,n(x,r) =

⎧⎪⎪⎨⎪⎪⎩
l


=1

s

=0

(b−r)n−−1

(n−−1)! H(x); r ≤ x,

−
t


=l+1

s

=0

(b−r)n−−1

(n−−1)! H(x); r ≥ x,
(11.4)

for all bl ≤ r ≤ bl+1; l = 0, . . . ,t with b0 =  and bt+1 =  .

Considering the particular cases for the Hermite conditions (HC), we have the following
corollary:

Corollary 11.1 For Lagrange conditions (LC), we have

f (x) = L(x)+RL( f ,x) (11.5)

where L(x) indicates Lagrange interpolating polynomial i.e,

L(x) =
n


=1

n


s=1
s �=

( x−bs

b −bs

)
f (b )
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with remainder RL( f ,x)

RL( f ,x) =
∫



GL(x,r) f (n)(r)dr

with

GL(x,r) =
1

(n−1)!

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l

=1

(b − r)n−1
n

s=1
s �=

(
x−bs

b−bs

)
, r ≤ x

−
n


=l+1
(b − r)n−1

n

s=1
s �=

(
x−bs

b−bs

)
, r ≥ x

(11.6)

bl ≤ r ≤ bl+1, l = 1,2, ...,n−1 with b1 =  and bn =  .

Considering type ( ,n−) conditions (Type( ,n−)C), we get

f (x) = (,n)(x)+R(,n)( f ,x) (11.7)

where (,n)(x) is ( ,n−) interpolating polynomial, that is

(,n)(x) =
−1


=0

 (x) f ()()+
n−−1


=0

 (x) f ()( ),

with

 (x) =
1
 !

(x−)
( x−
−

)n− −1−

s=0

(
n−+ s−1

s

)( x−
 −

)s
(11.8)

and

 (x) =
1
 !

(x− )
( x−
 −

) n−−1−

s=0

(
 + s−1

s

)( x−
−

)s
(11.9)

along with the remainder R(,n)( f ,x), given as

R(,n)( f ,x) =
∫ 


G(,n)(x,r) f (n)(r)dr

with

G(,n)(x,r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1

=0

[−1−


p=0

(n−+p−1
p

)(
x−
−

)p]×
(x−) (−r)n−−1

!(n−−1)!

(
−x
−

)n−
,  ≤ r ≤ x ≤ 

−
n−−1

=0

[ n−−−1


q=0

(+q−1
q

)( −x
−

)q]×
(x− ) (−r)n−−1

 !(n−−1)!

(
x−
−

)
,  ≤ x ≤ r ≤  .

(11.10)

For Type Two-point Taylor conditions (Two-point TC), from Theorem 11.1 we have

f (x) = 2T (x)+R2T ( f ,x) (11.11)
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where 2T (x)is the two-point Taylor interpolating polynomial i.e,

2T (x) =
−1


=0

−1−

s=0

(
 + s−1

s

)[ (x−)

 !

( x−
−

)( x−
 −

)s
f ()()

+
(x− )

 !

( x−
 −

)( x−
−

)s
f ()( )

]
(11.12)

and the remainder R2T ( f ,x) is given by

R2T ( f ,x) =
∫ 


G2T (x,r) f (n)(r)dr

with

G2T (x,r) =

⎧⎪⎪⎨⎪⎪⎩
(−1)

(2−1)! p
(x,r)

−1


=0

(−1+


)
(x− r)−1−q(x,r), r ≤ x;

(−1)

(2−1)!q
(x,r)

−1


=0

(−1+


)
(r− x)−1− p(x,r), r ≥ x;

(11.13)

where p(x,r) = (r−)(−x)
− , q(x,r) = p(x,r),∀x,r ∈ [, ].

(Beesack [10] and Levin [62]) characterize the non-negativity of Green’s function GH,n(x,r):

Lemma 11.1 (i)
GH,n(x,r)
 (x) > 0, b1 ≤ x ≤ bt,b1 ≤ r ≤ bt.

(ii) GH,n(x,r) ≤ 1
(n−1)!(−) |(x)|.

(iii)
∫


GH,n(x,r)dr =  (x)
n! .

11.1 Extensions of cyclic refinements of Jensen’s
inequality by Hermite interpolation

We start this section by considering the discrete as well as continuous version of cyclic
refinements of Jensen’s inequality and construct the generalized new identities having real
weights utilizing Hermite interpolating polynomial.

Theorem 11.2 Suppose m,k ∈ N, p1, . . . , pm and 1, . . . ,k are real tuples for 2 ≤ k ≤
m, such that

k−1

j=0

 j+1pi+ j �= 0 for i = 1, . . . ,m with
m

i=1

pi = 1 and
k

j=1

 j = 1. Also let

x ∈ [, ] ⊂ R and x ∈ [, ]m. Assume f ∈ Cn[, ] and consider interval with points
− <  = b1 < b2 · · · < bt =  < , (t ≥ 2), H in (11.3) are Hermite basis, GH,n(x,r)
in (11.4) be the Hermite Green function and Gv, (v = 1, . . . ,5) be the Green functions
defined in (6.1)–(6.5), respectively. Then for u = 1, . . . ,6 along with assumptions (A1) and
(A2), we have the following generalized identities:
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(a)

Ju( f (x)) =
t


=1

s


=0

f ()(b)Ju

(
H(x)

)
+

∫


Ju

(
GH,n(x,r)

)
f (n)(r)dr. (11.14)

(b)

Ju( f (x)) = Cv(, , f )Ju(x)+

∫


Ju

(
Gv(x,r)

) t


=1

s


=0

f (+2)(b)H(r)dr

+

∫


∫


Ju

(
Gv(x,r)

)
GH,n−2(r, )) f (n)( )ddr (11.15)

where Cv, (v = 1, . . . ,5) is defined in (7.5).

Proof. Fix u = 1, . . . ,6.

(a) Applying cyclic Jensen’s type linear functionals Ju(·) on (11.2) and practicing prop-
erties of the functional, we get (11.14).

(b) For fix v = 2, testing (6.7) in cyclic Jensen’s type functional Ju(·) and employing the
properties of Ju(·) along with the assumed conditions, we have

Ju( f ) = C2(, , f )Ju(x)+
∫



Ju

(
G2(x,r)

)
f
′′
(r)dr. (11.16)

By Theorem 11.1, f
′′
(r) can be expressed as:

f ′′(r) =
t


=1

s


=0

H(r) f (+2)(b)+

∫


GH,n−2(r, ) f (n)( )d . (11.17)

Putting (11.17) in (11.16), we get (11.15) respectively for v = 2 and u = 1, . . . ,6. The
cases for v = 1,3,4,5, are treated analogously and are left for the reader interest.

�

Now we obtain extensions and improvements of discrete and integral cyclic Jensen
type linear functionals, with real weights.

Theorem 11.3 Consider f be n-convex function along with the suppositions of Theorem
11.2. Then we conclude the following results:

(a) If for all u = 1, . . . ,6,

Ju

(
GH,n(x,r)

)
≥ 0, r ∈ [, ] (11.18)

holds, then we have

Ju( f (x)) ≥
t


=1

s


=0

f ()(b)Ju

(
H(x)

)
(11.19)

for u = 1, . . . ,6.
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(b) If for all u = 1, . . . ,6 and v = 1, . . . ,5

Ju

(
Gv(x,r)

)
≥ 0, r ∈ [, ] (11.20)

holds, provided that s is odd for each  = 2,3,4, · · · ,t, then

Ju( f (x)) ≥Cv(, , f )Ju(x)

+

∫


Ju

(
Gv(x,r)

) t


=1

s


=0

f (+2)(b)H(r)dr. (11.21)

for u = 1, . . . ,6.

(c) If (11.20) holds for all u = 1, . . . ,6 and v = 1, . . . ,5 , provided that s is odd for
each  = 2,3,4, · · · ,t − 1 and st is even then (11.21) holds in reverse direction for
u = 1, . . . ,6.

Proof.

(a) Fix u = 1, . . . ,6.
As the function f ∈Cn[, ] and assumed to be n−convex, therefore using the char-
acterization of n−convex function f (n)(x) ≥ 0 for all x ∈ [, ] ( see [82], p. 16 ).
Hence we can apply Theorem 11.2(a) to obtain (11.19).

(b) Fix u = 1, . . . ,6 and v = 1, . . . ,5.
As we have discussed in part(a) f (n)(x) ≥ 0 for all x ∈ [, ]. Also as it is given that

s is odd for each  = 2,3,4, · · · ,t, we have (r) =
t

=1

(r−b)s+1 ≥ 0 for any

r ∈ [, ] therefore taking into account Lemma 11.1 (i) we have GH,n−2(r, )) ≥ 0.
Thus by applying Theorem 11.2(b) yields (11.21).

(c) If st is even then (r− bt)st+1 ≤ 0 for any r ∈ [, ]. Also clearly (r− b1)s1+1 ≥ 0

for any r ∈ [, ] and
t−1

=2

(r−b)s+1 ≥ 0 for r ∈ [, ] if s is odd for each  =

2,3,4, · · · , t −1. Therefore summing this information (r) =
t

=1

(r−b)s+1 ≤ 0

for any r ∈ [, ] and taking into account Lemma 11.1 (i) we have GH,n−2(r, ))≤ 0.
Thus by applying Theorem 11.2(b) gives (11.21) in reverse direction.

�

By using Type( ,n−)C: (t = 2,1≤  ≤ n−1, s1 = −1, s2 = n−−1) we give
the following result:

Corollary 11.2 Consider f be n-convex function along with the suppositions of Theorem
11.2. Let G(,n) be the Green’s function defined in (11.10) and  ,  be as defined (11.8),
(11.9) respectively. Then we conclude the following results:

(a) If for all u = 1, . . . ,6,

Ju

(
G(,n)(z,r)

)
≥ 0, r ∈ [, ] (11.22)



11.1 EXTENSIONS OF CYCLIC REFINEMENTS OF JENSEN’S INEQUALITY. . . 139

holds, then we have

Ju( f (z)) ≥
−1


=0

f ()()Ju

(
 (z)

)
+

n−−1


=0

f ()( )Ju

(
 (z)

)
(11.23)

for u = 1, . . . ,6.

(b) If (11.20) holds for all u = 1, . . . ,6 and v = 1, . . . ,5, provided that n− is even, then

Ju( f (z)) ≥ Cv(, , f )Ju(x)

+
∫



Ju

(
Gv(z,r)

)(−1


=0

f (+2)() (r)
)

+
n−−1


=0

f (+2)( ) (r)

)
dr. (11.24)

for u = 1, . . . ,6.

(c) If (11.20) holds for all u = 1, . . . ,6 and v = 1, . . . ,5 , provided that n− is odd then
(11.24) holds in reverse direction for u = 1, . . . ,6.

By using Two-point TC: (n = 2 , t = 2, s1 = s2 = −1)
we give the following result:

Corollary 11.3 Consider f be n-convex function along with the suppositions of Theorem
11.2. Let G2T be the Green’s function defined in (11.13), then we conclude the following
results:

(a) If for all u = 1, . . . ,6,
Ju

(
G2T (z,r)

)
≥ 0, r ∈ [, ] (11.25)

holds, then we have

Ju( f (z)) ≥
−1


=0

−1−

s=0

(
+ s−1

s

)
×

×
[

f ()()Ju

((z−)

 !

( z−
−

)( z−
 −

)s)
+ f ()( )Ju

(
(z− )

 !

( z−
 −

)( z−
−

)s
)]

(11.26)

for u = 1, . . . ,6.

(b) If (11.20) holds for all u = 1, . . . ,6 and v = 1, . . . ,5, provided that  is even, then

Ju( f (z)) ≥ Cv(, , f )Ju(x)+

∫


Ju

(
Gv(z,r)

) −1


=0

−1−

s=0

(
+ s−1

s

)
×

×
[ (r−)

 !

( r−
−

)( r−
 −

)s
f ()()

+
(r− )

 !

( r−
 −

)( r−
−

)s
f ()( )

]
dr. (11.27)

for u = 1, . . . ,6.
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(c) If (11.20) holds for all u = 1, . . . ,6 and v = 1, . . . ,5 , provided that  is odd then
(11.27) holds in reverse direction for u = 1, . . . ,6.

We will finish the present section by the following generalizations of cyclic refinements of
Jensen inequalities:

Theorem 11.4 If the assumptions of Theorem 11.2 be fulfilled with additional conditions

that p1, . . . , pm and 1, . . . ,k be non negative tuples for 2≤ k≤m, such that
m

i=1

pi = 1 and

k

j=1

 j = 1. Then for f : [, ] → R being n-convex function, we conclude the following

results:

(a) If (11.19) is valid along with the function

(z) :=
t


=1

s


=0

H(z) f ()(b). (11.28)

to be convex, the right side of (11.19) is non negative, means

Ju( f ) ≥ 0, u = 1, . . . ,6. (11.29)

(b) If s to be odd for each  = 2,3,4, · · · ,t, (11.21) holds. Further

t


=1

s


=0

H(r) f (+2)(b) ≥ 0. (11.30)

the right side of (11.21) is non negative, particularly (11.29) is establish for all u =
1, . . . ,6 and v = 1, . . . ,5.

(c) Inequality (11.21) holds reversely if s is odd for each  = 2,3,4, · · · ,t−1 and st is
even. Moreover, let (11.30) holds in reverse direction then reverse of (11.29) holds
for all u = 1, . . . ,6 and v = 1, . . . ,5.

Proof.

(a) Fix u = 1, . . . ,6.
As (11.19) is valid, the R.H.S. of (11.19) can be written in the functional form Ju()
for all (u = 1, . . . ,6), after reorganizing this side. Employing Remark 2.7 the non-
negativity of R.H.S. of (11.19) is secure, especially (11.29) is establish.

(b) Fix u = 1, . . . ,6.
We have assumed positive weights and for all v = 1, . . . ,5, Gv(z,r) is convex. Thus
by practicing Remark 2.7, Ju(Gv(z,r)) ≥ 0. As f is n-convex and s odd for each
 = 2,3,4, · · · ,t, hence by following Theorem 11.3 (b), we obtain (11.21). Now
taking into account the positivity of Ju(Gv(z,r)) and (11.28), we get (11.29).

(c) Similar to the proof of (b) �

Remark 11.1 We left for reader interest to give generalizations of cyclic refinements of
Jensen inequalities by considering Type( ,n−)C and Two-point TC instead of HC in
Theorem 11.4.
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11.2 Applications to information theory

Now as a consequence of Theorem 11.3 we consider the discrete extensions of cyclic
refinements of Jensen’s inequalities for (u = 1), from (11.19) with respect to n-convex
function f in the explicit form:

m


i=1

pi f (xi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
≥
(

t


=1

s


=0

f ()(b )

)
×

×

⎛⎜⎜⎜⎝ m


i=1

piH (xi)−
m


i=1

(
k−1


j=0

 j+1pi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ jxi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

(11.31)
where H are Hermite basis defined in (11.3).

Theorem 11.5 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.
Let p := (p1, . . . , pm) ∈ R

m, and q := (q1, . . . ,qm) ∈ (0,)m such that

pi

qi
∈ [, ], u = 1, . . . ,m.

Also let f ∈Cn[, ] and consider interval with points−< = b1 < b2 · · ·< bt =  <,
(t ≥ 2) such that f is n-convex function. Then the following inequalities hold:

Ĩ f (p,q) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
+

(
t


=1

s


=0

f ()(b)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qiH

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(11.32)

Proof. Replacing pi with qi and xi with pi
qi

for (i = 1, . . . ,m) in (11.31) , we get (11.32). �

We now explore two exceptional cases of the previous result.
One corresponds to the entropy of a discrete probability distribution.
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Corollary 11.4 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm) ∈ (0,)m and n is even, then

m


i=1

qi lnqi ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qiH

(
1
qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(11.33)

(b) If q := (q1, . . . ,qm) is a positive probability distribution and n is even, then we get
the bounds for the Shannon entropy of q.

H(q) ≤−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

−
(

t


=1

s


=0

(−1) ( −1)!
(b)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qiH

(
1
qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(11.34)

If n is odd, then (11.33) and (11.34) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx, and p := (1,1, . . . ,1) in Theorem 11.5, we get the required
result.

(b) It is a special case of (a).
�

The second case corresponds to the relative entropy or Kullback-Leibler divergence
between two probability distributions.

Corollary 11.5 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution.

(a) If q := (q1, . . . ,qm),p := (p1, . . . , pm) ∈ (0,)m and n is even, then

m


i=1

qi ln

(
qi

pi

)
≥

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
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+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qiH

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(11.35)

(b) If If q := (q1, . . . ,qm),p := (p1, . . . , pm) are positive probability distributions and n
is even, then we have

D(q ‖ p) ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠
+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

qiH

(
pi

qi

)
−

m


i=1

(
k−1


j=0

 j+1qi+ j

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

(11.36)

If n is odd, then (11.35) and (11.36) hold in reverse directions.

Proof.

(a) Using f (x) := − lnx in Theorem 11.5, we get the desired result.

(b) It is special case of (a).

�

Theorem 11.6 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution
and q be as defined in (6.59) by Zipf-Mandelbrot law with parameters m∈ {1,2, . . .}, c≥ 0,
d > 0. If n is even, we obtain

S(q) = Z(H,c,d)

≤ −
m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm,c,d)

)
ln

(
1

Hm,c,d

k−1


j=0

 j+1

((i+ j + t)s)

)

−
(

t


=1

s


=0

(−1) ( −1)!
(b)

)(
m


i=1

1
((i+ c)dHm,c,d)

H

(
((i+ c)dHm,c,d)

))
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+

(
t


=1

s


=0

(−1) ( −1)!
(b)

)
×

×

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

((i+ j + c)dHm,c,d)

)
H

⎛⎜⎜⎜⎝ 1
k−1

j=0

 j+1

((i+ j+c)dHm,c,d)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (11.37)

If n is odd, then (11.37) holds in reverse direction.

Proof. Similar to that of Theorem 6.5. �

Corollary 11.6 Let m,k ∈ N (2 ≤ k ≤ m), 1, . . . ,k be positive probability distribution
and for c1,c2 ∈ [0,), d1,d2 > 0, let Hm,c1,d1 = 1

(i+c1)d1
and Hm,c2,d2 = 1

(i+c2)d2
. Now using

qi =
1

(i+ c1)
d1Hm,c1,d1

and pi =
1

(i+ c2)
d2Hm,c2,d2

in Corollary 11.5(b), with even n, we

obtain

D(q ‖ p) =
m


i=1

1

(i+c1)
d1Hm,c1,d1

ln

(
(i+c2)

d2Hm,c2,d2

(i+c1)
d1Hm,c1,d1

)

≥
m


i=1

(
k−1


j=0

 j+1

(i+ j+c1)
d1Hm,c1,d1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+c1)
d1Hm,c1 ,d1

k−1

j=0

 j+1
1

(i+ j+c2)
d2Hm,c2 ,d2

⎞⎟⎟⎟⎠
+

(
t


=1

s


=0

(−1) ( −1)!
(b )

)(
m


i=1

1
((i+c1)d1Hm,c1,d1)

H

(
((i+c2)d2Hm,c2,d2)
((i+c1)dHm,c1,d1)

))

−
(

t


=1

s


=0

(−1) ( −1)!
(b )

)
×

×

⎛⎜⎜⎜⎝ m


i=1

(
k−1


j=0

 j+1

(i+ j+c1)
d1Hm,c1,d1

)
H

⎛⎜⎜⎜⎝
k−1

j=0

 j+1
1

(i+ j+c1)
d1 Hm,c1,d1

k−1

j=0

 j+1
1

(i+ j+c2)
d2 Hm,c2,d2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

(11.38)

If n is odd, then (11.38) holds in reverse direction.

Remark 11.2 It is interesting to note that, in the similar passion we are able to con-
struct different estimations of f -divergences along with their applications to Shannon and
Mandelbrot entropies using the other inequalities for n-convex functions constructed in
Theorem 11.3 for discrete case of cyclic refinements of Jensen inequality.

Remark 11.3 We left for reader interest to construct upper bounds for Shannon, Relative
and Mandelbrot entropies by considering Type( ,n−)C and Two-point TC instead of
HC in the above results.



Chapter12

Levinson’s Type Generalization
of Cyclic Refinements of
Jensen’s Inequality and
Related Applications

We present Levinsons type generalizations of cyclic refinements of Jensen’s inequality
by employing recent class of functions that further characterize and extend the class of
3−convex functions. We get monotonic cyclic Jensen’s inequalities and particularly the
renowned Jensen’s inequality for 3−convex function at a point ( f ∈ c

1(I))) . As an appli-
cations in information theory, we first introduce new Csiszár type cyclic divergence func-
tional for 3−convex functions and establish cyclic-Kullback-Leibler and Hellinger dist-
naces. We also obtained monotonic Shannon, Relative and Zipf-Mandelbrot entropies.
We start by recent class of functions that further characterize and extend the class of
3−convex functions:

Definition 12.1 [7] Let f : I →R and c∈ I0, where I is an arbitrary interval(open, closed
or semi-open in either direction) in R and I0, is its interior. We say that f ∈c

1(I) (resp. f ∈
c

2(I)) that is f is 3-convex function at point c (respectively 3-concave function at point c) if
there exists a constant A such that the function F(x) = f (x)− A

2 x2 is concave(resp. convex)
on I

⋂
(−,c] and convex(resp. concave) on I

⋂
[c,).

145
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Remark 12.1 It is interesting to note that if f : I → R is 3-convex (3-concave), then
f ∈ c

1(I) (resp. f ∈ c
2(I)) that is f is 3-convex function at point c for every c ∈ I .

Moreover Pečarić et al. in [7] proved that f ∈ c
1(I) is the largest class of functions for

which Levinson’s inequality holds.

12.1 Cyclic refinements of Jensen’s inequalities for
3-convex function at a point

We need the following assumptions to move on:
(H∗

1 ) Let 2 ≤ k ≤ m, 2 ≤ l ≤ n be integers such that q1, ...,qm and 1, ...,k ; p1, ..., pn and
1, ...,l represent positive probability distributions.

Theorem 12.1 Assume (H∗
1 ). If x1, ...,xm ∈ Im;y1, ...,yn ∈ In with

m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

−
(

m


i=1

qixi

)2

=
n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

−
(

n


r=1

pryr

)2

(12.1)

and also there exists c ∈ Io such that

max
i

xi ≤ c ≤ min
r

yr. (12.2)

If f ∈ Kc
1 , then following inequality

m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠− f

(
m


i=1

qixi

)

≤
n


r=1

(
l−1


s=0

s+1pr+s

)
f

⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠− f

(
n


r=1

pryr

)
(12.3)

holds.
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Proof. Since f ∈Kc
1(I), then we have a constant A such that F(x) = f (x)− A

2 x2 is concave
on I

⋂
(−,c], so by the reverse of left inequality of (2.14) for x1, ...,xm ∈ I

⋂
(−,c], we

have

0 ≥
m


i=1

(
k−1


j=0

 j+1qi+ j

)
F

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠−F

(
m


i=1

qixi

)

=
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠− f

(
m


i=1

qixi

)

− A
2

⎡⎢⎢⎢⎣ m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

−
(

m


i=1

qixi

)2

⎤⎥⎥⎥⎦ (12.4)

Also, using the fact that F(y) = f (y)− A
2 y2 is convex on I

⋂
[c,), so by left inequality of

(1) for y1, ...,yn ∈ I
⋂

[c,), we have

0 ≤
n


r=1

(
l−1


s=0

s+1ps+r

)
F

⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠−F

(
n


r=1

pryr

)

=
n


r=1

(
l−1


s=0

s+1ps+r

)
f

⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠− f

(
n


r=1

pryr

)

− A
2

⎡⎢⎢⎢⎣ n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

−
(

n


r=1

pryr

)2

⎤⎥⎥⎥⎦ (12.5)

Rearranging above inequalities, we have

m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠− f

(
m


i=1

qixi

)
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−A
2

⎡⎢⎢⎢⎣ m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

−
(

m


i=1

qixi

)2

⎤⎥⎥⎥⎦
≤ 0 ≤

n


r=1

(
l−1


s=0

s+1pr+s

)
f

⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠− f

(
n


r=1

pryr

)

−A
2

⎡⎢⎢⎢⎣ n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

−
(

n


r=1

pryr

)2

⎤⎥⎥⎥⎦
So,

m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠− f

(
m


i=1

qixi

)

−A
2

⎡⎢⎢⎢⎣ m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

−
(

m


i=1

qixi

)2

⎤⎥⎥⎥⎦

≤
n


r=1

(
l−1


s=0

s+1pr+s

)
f

⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠− f

(
n


r=1

pryr

)

−A
2

⎡⎢⎢⎢⎣ n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

−
(

n


r=1

pryr

)2

⎤⎥⎥⎥⎦
Using (12.1), we get (12.3). �

The next result can be obtained by using an appropriate inequality from (2.14) with
same idea of proof as in above Theorem 12.1.
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Theorem 12.2 Assume (H∗
1 ). If x1, ...,xm ∈ Im;y1, ...,yn ∈ In with

m


i=1

qi (xi)
2 −

m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

=
n


r=1

pr (yr)
2 −

n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

(12.6)

and also (12.2) holds.
If f ∈ Kc

1 , then following inequality

m


i=1

qi f (xi)−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠

≤
n


r=1

pr f (yr)−
n


r=1

(
l−1


s=0

s+1pr+s

)
f

⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠ (12.7)

holds.

In the next theorem, we state well known discrete Jensen inequality for this new class of
functions, however the idea of the proof is similar to that adopted in Theorem 12.1:

Theorem 12.3 Assume (H∗
1 ). If x1, ...,xm ∈ Im;y1, ...,yn ∈ In with

m


i=1

qi(xi)
2 −

(
m


i=1

qixi

)2

=
n


r=1

pr(yr)
2 −

(
n


r=1

pryr

)2

(12.8)

and also (12.2) holds. Now, if f ∈ c
1(I), then following inequality

m


i=1

qi f (xi)− f

(
m


i=1

qixi

)
≤

n


r=1

pr f (yr)− f

(
n


r=1

pryr

)
(12.9)

holds.

The next result weakens the assumption (12.1) of Theorem 12.1 for f ∈ c
1(I).
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Theorem 12.4 Assume (H∗
1 ). If x1, ...,xm ∈ Im;y1, ...,yn ∈ In with (12.2) holds and f ∈

c
1(I) for some c ∈ [max xi,min yr]. Now, if

(a) f
′′
−(max xi) ≥ 0

and

m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

−
(

m


i=1

qixi

)2

≤
n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

−
(

n


r=1

pryr

)2

(12.10)

or
(b) f

′′
+(min yr) ≤ 0

and

m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

−
(

m


i=1

qixi

)2

≥
n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

−
(

n


r=1

pryr

)2

(12.11)

or
(c) f

′′
−(max xi) < 0 < f

′′
+(min yr) and f is 3− convex,

then (12.3) holds.

Proof. As f ∈ c
1(I), then we have a constant A such that F(x) = f (x)− A

2 x2 is concave on
I
⋂

(−,c] and F(y) = f (y)− A
2 y2 is convex on I

⋂
[c,). For xi ∈ I

⋂
(−,c](i = 1, ...,m),

we have (12.4) and for yr ∈ I
⋂

[c,)(r = 1, ...,n), we have (12.5).
Now, using (12.4) and (12.5), we get

A
2

⎡⎢⎢⎢⎣ n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

−
(

n


r=1

pryr

)2

⎤⎥⎥⎥⎦

− A
2

⎡⎢⎢⎢⎣ m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

−
(

m


i=1

qixi

)2

⎤⎥⎥⎥⎦
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≤
n


r=1

f

(
l−1


s=0

s+1pr+s

)
f

⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠− f

(
n


r=1

pryr

)

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠− f

(
m


i=1

qixi

)

Now, due to the concavity of F(x) and convexity of F(y), for every distinct point x̃u ∈
I
⋂

(−,max xi] and ỹu ∈ I
⋂

[min yr,), u = 1,2,3, we have

[x̃1, x̃2, x̃3] f ≤ A ≤ [ỹ1, ỹ2, ỹ3] f

Letting x̃u ↗ max xi and ỹu ↘ min yr, we get (if exists)

f
′′
−(max xi) ≤ A ≤ f

′′
+(min yr)

Therefore, if the assumptions (a) or (b) holds, then

A
2

[ n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

−
(

n


r=1

pryr

)2

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

+

(
m


i=1

qixi

)2 ]

is positive and we conclude the result. If the assumption (c) holds, the f
′′
− is left continuous,

f
′′
+ is right continuous, they are both nondecreasing and f

′′
− ≤ f

′′
+.

Therefore, there exists c̄ ∈ [max xi,min yr], such that f ∈  c̃
1(I) with associated constant

Ã = 0 and we can again deduce the result. �

Now next results that weakens the assumption (12.6) of Theorem 12.2 and (12.8) of
Theorem 12.3 respectively for ∈ c

1(I).

Theorem 12.5 Assume (H∗
1 ). If x1, ...,xm ∈ Im;y1, ...,yn ∈ In with (12.2) holds and f ∈

c
1(I) for some c ∈ [max xi,min yr]. Now, if

(a)
f
′′
−(max xi) ≥ 0

and
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m


i=1

qi (xi)
2 −

m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

≤
n


r=1

pr (yr)
2 −

n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

, (12.12)

or
(b)

f
′′
+(min yr) ≤ 0

and

m


i=1

qi (xi)
2 −

m


i=1

(
k−1


j=0

 j+1qi+ j

)⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ jxi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
2

≥
n


r=1

pr (yr)
2 −

n


r=1

(
l−1


s=0

s+1pr+s

)⎛⎜⎜⎝
l−1


s=0
s+1pr+syr+s

l−1


s=0
s+1pr+s

⎞⎟⎟⎠
2

, (12.13)

or
(c)

f
′′
−(max xi) < 0 < f

′′
+(min yr) and f is 3− convex,

then (12.7) holds.

Theorem 12.6 Assume (H∗
1 ). If x1, ...,xm ∈ Im;y1, ...,yn ∈ In with (12.2) holds and f ∈

c
1(I) for some c ∈ [max xi,min yr]. Now, if

(a)
f
′′
−(max xi) ≥ 0

and
m


i=1

qi (xi)
2 −

(
m


i=1

qixi

)2

≤
n


r=1

pr (yr)
2 −

(
n


r=1

pryr

)2

. (12.14)

or
(b)

f
′′
+(min yr) ≤ 0

and
m


i=1

qi (xi)
2 −

(
m


i=1

qixi

)2

≥
n


r=1

pr (yr)
2 −

(
n


r=1

pryr

)2

. (12.15)
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or
(c)

f
′′
−(max xi) < 0 < f

′′
+(min yr) and f is 3− convex,

then (12.9) holds.

For the simplification of our next results, we need the following hypothesis:
(H∗

4 ) Let h and g be − integrable and − integrable functions respectively on X taking
values in an interval I ⊂ R.
(H∗

5 ) Let f be a convex function on I such that f oh is − integrable and f og − integrable
on X .

Theorem 12.7 Assume (H∗
1 ),(H3),(H∗

4 ) and (H∗
5 ). If xi ∈ I

⋂
(−,c] and yr ∈ I

⋂
[c,)for

i = 1, ...,m and r = 1, ...,n such that

Cpar( , id2,h, ,q,)−
(∫

X
hd

)2

= Cpar( , id2,g,, p, )−
(∫

X
gd

)2

(12.16)

and also there exist c ∈ I0 such that (12.2) holds. If f ∈ c
1(I), then following inequality

Cpar( , f ,h, ,q,)− f

(∫
X

hd
)
≤Cpar( , f ,g,, p, )− f

(∫
X

gd
)

(12.17)

holds.

Theorem 12.8 Assume (H∗
1 ),(H3),(H∗

4 ) and (H∗
5 ). If xi ∈ I

⋂
(−,c] and yr ∈ I

⋂
[c,)for

i = 1, ...,m and r = 1, ...,n with

Cint(id2,h, ,q,)−
(∫

X
hd

)2

= Cint(id2,g,, p, )−
(∫

X
gd

)2

(12.18)

such that (12.2)holds. Now if f ∈ c
1(I), then following inequality

Cint( f ,h, ,q,)− f

(∫
X

hd
)
≤Cint( f ,g,, p, )− f

(∫
X

gd
)

(12.19)

.

Theorem 12.9 Assume (H∗
3 ),(H∗

4 ) and (H∗
5 ). If x ∈ I

⋂
(−,c] and y ∈ I

⋂
[c,) with

∫
X

h2d−
(∫

X
hd

)2

=
∫

X
g2d−

(∫
X

gd
)2

(12.20)

such that (12.2)holds. Now if f ∈ c
1(I), then following inequality∫

X
f ohd− f

(∫
X

hd
)
≤
∫

X
f ogd− f

(∫
X

gd
)

(12.21)

.
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Theorem 12.10 Assume (H∗
1 ),(H3),(H∗

4 ) and (H∗
5 ). If xi ∈ I

⋂
(−,c] and yr ∈ I

⋂
[c,)for

i = 1, ...,m and r = 1, ...,n with∫
X

h2d−Cpar( , id2,h, ,q,) =
∫

X
g2d−Cpar( , id2,g,, p, ) (12.22)

such that (12.2)holds. Now if f ∈ c
1(I), then following inequality∫

X
f ohd−Cpar( , f ,h, ,q,) ≤

∫
X

f ogd−Cpar( , f ,g,, p, ) (12.23)

.

Theorem 12.11 Assume (H∗
1 ),(H3),(H∗

4 ) and (H∗
5 ). If xi ∈ I

⋂
(−,c] and yr ∈ I

⋂
[c,)for

i = 1, ...,m and r = 1, ...,n with

Cint(id2,h, ,q,)−Cpar( , id2,h, ,q,)=Cint( , id2,g,, p, )−Cpar( , id2,g,, p, )
(12.24)

such that (12.2)holds. Now if f ∈ c
1(I), then following inequality

Cint( f ,h, ,q,)−Cpar( , f ,h, ,q,) ≤Cint( f ,g,, p, )−Cpar( , id2,g,, p, )
(12.25)

.

Theorem 12.12 Assume (H∗
1 ),(H3),(H∗

4 ) and (H∗
5 ). If xi ∈ I

⋂
(−,c] and yr ∈ I

⋂
[c,)for

i = 1, ...,m and r = 1, ...,n with∫
X

h2d−Cint(id2,h, ,q,) =
∫

X
g2d−Cint(id2,g,, p, ) (12.26)

such that (12.2)holds. Now if f ∈ c
1(I), then following inequality∫

X
f ohd−Cint( f ,h, ,q,) ≤

∫
X

f ogd−Cint( f ,g,, p, ) (12.27)

12.2 Applications In Information Theory

In fields like probability theory, mathematical statistics and information theory, measures
of dissimilarity between probability distributions play a pivotal role. Various divergence
measures have been introduced for this purpose. For instance, the f-divergence, some
particular cases of which are Kullback-Leibler divergence, Jensen-Shannon divergence,
etc. Entropies are used to quantify the uncertainty, diversity and randomness of a system.
The idea is frequently used in several scientific disciplines.

In the current section we will work in discrete space, i.e, with discrete probability
distributions. We first introduce some important definitions and results used for rest of this
section.

On the basis of divergence functionals 3.1 and 3.2, we propose a new cyclic divergence
functional for 3−convex functions as:
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Definition 12.2 Let 2 ≤ k ≤ m be integers such that 1, ...,k represent positive proba-
bility distributions and f : I → R be a 3-convex function with I being an interval in R. Also
Let p := (p1, . . . , pm) ∈ R

m and q := (q1, . . . ,qm) ∈]0,[m such that

pi

qi
∈ I, i = 1, . . . ,m,

k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

∈ I, i+ j( mod m)

Then let

Ĩ f (p,q;i+ j) =
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠ (12.28)

It is interesting to see that, if we choose j = 0, then

Ĩ f (p,q;i+j) = Ĩ f (p,q)

for f to be 3-convex function.

In the examples below we obtain, for suitable choices of the 3-convex function f , some of
the best known distance functions used in mathematical statistics, information theory and
signal processing between the positive probability distributions for our cyclic divergence
functional.

Example 12.1 Cyclic-Kullback-Leibler Divergence
Choosing f (t) = −t lnt, then f is 3-convex. So

Ĩ−t ln t(p,q;i+j) = −
m


i=1

(
k−1


j=0

 j+1pi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠
= −D(p ‖ q;i+j).

Moreover for j = 0, we get

Ĩ−t ln t(p,q) = −D(p ‖ q).

Example 12.2 Cyclic-Hellinger-Distance
Choosing f (t) = − 1

2(1−√
t)2, then f is 3-convex. So

Ĩ− 1
2 (1−√

t)2(p,q;i+j) = −1
2

m


i=1

⎛⎝
√√√√k−1


j=0

 j+1pi+ j −
√√√√k−1


j=0

 j+1qi+ j

⎞⎠2
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= −H2(p ‖ q;i+j).

Moreover for j = 0, we get Hellinger-Distance [8]

Î− 1
2 (1−√

t)2(p,q) = −H2(p,q) = −1
2

m


i=1

(
√

pi −√
qi)

2 .

Now we give application of our main results given in Theorem 12.5 and Theorem 12.6 by
constructing monotonic divergence functionals for 3-convex functions.

Theorem 12.13 Under the assumptions of Theorem 12.5 and Theorem 12.6 with p1
q1

, ..., pm
qm

∈
Im; p̂1

q̂1
, ..., p̂m

q̂n
∈ In and

max
i

pi

qi
≤ c ≤ min

r

p̂r

q̂r
(12.29)

for some c ∈ [max pi
qi

,min p̂r
q̂r

].

(a) If f
′′
−(max pi

qi
) < 0 < f

′′
+(min p̂r

q̂r
) and f is 3-convex, then

f

(
n


r=1

p̂r

)
− f

(
m


i=1

pi

)
≤ Ĩ f (p̂, q̂)− Ĩ f (p,q). (12.30)

Moreover, if p and p̂ are probability distributions then we get

Ĩ f (p,q) ≤ Ĩ f (p̂, q̂). (12.31)

(b) If f
′′
−(max pi

qi
) < 0 < f

′′
+(min p̂r

q̂r
) and f is 3-convex, then

n


r=1

(
l−1


s=0

s+1q̂r+s

)
f

⎛⎜⎜⎝
l−1


s=0
s+1 p̂r+s

l−1


s=0
s+1q̂r+s

⎞⎟⎟⎠

−
m


i=1

(
k−1


j=0

 j+1qi+ j

)
f

⎛⎜⎜⎜⎝
k−1

j=0

 j+1pi+ j

k−1

j=0

 j+1qi+ j

⎞⎟⎟⎟⎠≤ Ĩ f (p̂, q̂)− Ĩ f (p,q). (12.32)

OR
Ĩf (p̂, q̂;)− Ĩ f (p,q; ) ≤ Ĩ f (p̂, q̂)− Ĩ f (p,q). (12.33)

Moreover, if
0 ≤ Ĩ f (p̂, q̂;)− Ĩ f (p,q; ) (12.34)

then we get (12.31).
Proof. (a) Employing Theorem 12.6 by substituting xi = pi

qi
, pr → q̂r and yr = p̂r

q̂r
in (12.9),

we get
m


i=1

qi f

(
pi

qi

)
− f

(
m


i=1

pi

)
≤

n


r=1

q̂r f

(
p̂r

q̂r

)
− f

(
n


r=1

p̂r

)
(12.35)
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thus (12.30) holds. Using the fact that
m

i=1

pi = 1 =
n


r=1
p̂r, we get (12.31) immediately.

(b) Using Theorem 12.5 by substituting xi = pi
qi

, pr → q̂r, pr+s → q̂r+s and yr = p̂r
q̂r

in
(12.7), we get (12.33). Immediately using (12.34) gives (12.31).

�

Since we have obtained monotonic divergence functionals for 3-convex functions. It en-
abled us to investigate monotonicity of renowned distance functions used in mathematical
statistics, information theory and signal processing.
We now present two significant applications of the results given in Theorem 12.13 as fol-
lows:

Corollary 12.1 Consider the assumptions of Theorem 12.13.
(a) If q̂ := (q̂1, ..., q̂n) ∈]0,[n and q := (q1, ...,qm) ∈]0,[m, then we get

ln
( n

m

)
≤−

n


r=1

q̂r ln q̂r +
m


i=1

qi lnqi. (12.36)

(b) If q̂,q are positive probability distributions with n
m ≥ 1, then we get monotonic Shannon

entropies
H(q) ≤ H(q̂). (12.37)

(c) Let 2≤ k≤m, 2≤ l ≤ n be integers such that 1, ...,k and1, ...,l represent positive
probability distributions. If q̂ := (q̂1, ..., q̂n) ∈]0,[n and q := (q1, ...,qm) ∈]0,[m, then
we get

−
n


r=1

(
l−1


s=0

s+1q̂r+s

)
ln

(
l−1


s=0

s+1q̂r+s

)
+

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)

≤−
n


r=1

q̂r ln q̂r +
m


i=1

qi lnqi. (12.38)

(d) If q̂,q are positive probability distributions, then we get difference inequality for Shan-
non entropies

H(q̂,r+s)−H(q,i+ j) ≤ H(q̂)−H(q) (12.39)

where

H(q̂,r+s) = −
n


r=1

(
l−1


s=0

s+1q̂r+s

)
ln

(
l−1


s=0

s+1q̂r+s

)

H(q,i+ j) = −
m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

(
k−1


j=0

 j+1qi+ j

)
are cyclic Shannon entropies.

Proof. (a) It follows from Theorem 12.13 (a) by choosing f (x) = logx and p = p̂ =
(1,1, . . . ,1).
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(b) It is a special case of (a).
(c) It follows from Theorem 12.13 (b) by choosing f (x) = logx and p = p̂ = (1,1, . . . ,1).
(d) It is a special case of (c). �

The second application is about famous Kullback-Leibler divergence:

Corollary 12.2 Consider the assumptions of Theorem 12.13.
(a) If p̂ := (p̂1, ..., p̂n) , q̂ := (q̂1, ..., q̂n) ∈]0,[n and p := (p1, ..., pm) , q := (q1, ...,qm) ∈
]0,[m, then we get

ln

⎛⎜⎜⎝
n


r=1
p̂r

m

i=1

pi

⎞⎟⎟⎠≤
m


i=1

qi ln

(
qi

pi

)
−

n


r=1

q̂r ln

(
q̂r

p̂r

)
. (12.40)

(b) If p̂,p, q̂,q are positive probability distributions, then we get monotonic relative en-
tropies or Kullback-Leibler divergences.

D(q̂ ‖ p̂) ≤ D(q ‖ p). (12.41)

(c) Let 2 ≤ k ≤ m, 2 ≤ l ≤ n be integers such that 1, ...,k and 1, ...,l represent pos-
itive probability distributions. If p̂ := (p̂1, ..., p̂n) , q̂ := (q̂1, ..., q̂n) ∈]0,[n and p :=
(p1, ..., pm) , q := (q1, ...,qm) ∈]0,[m, then we get

m


i=1

(
k−1


j=0

 j+1qi+ j

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1qi+ j

k−1

j=0

 j+1pi+ j

⎞⎟⎟⎟⎠−
n


r=1

(
l−1


s=0

s+1q̂r+s

)
ln

⎛⎜⎜⎝
l−1


s=0
s+1q̂r+s

l−1


s=0
s+1 p̂r+s

⎞⎟⎟⎠
≤

m


i=1

qi ln

(
qi

pi

)
−

n


r=1

q̂r ln

(
q̂r

p̂r

)
. (12.42)

(d) If p̂,p, q̂,q are positive probability distributions, then we get difference inequality for
Kullback-Leibler divergences

D(q ‖ p;i+j)−D(q̂ ‖ p̂;r+s) ≤ D(q ‖ p)−D(q̂ ‖ p̂) (12.43)

where D(q ‖ p;i+j),D(q̂ ‖ p̂;r+s) are cyclic Kullback-Leibler divergences defined in
Example 12.1.

Proof. (a) It follows from Theorem 12.13 (a) by choosing f (x) = logx.
(b) It is a special case of (a).
(c) It follows from Theorem 12.13 (b) by choosing f (x) = logx.
(d) It is a special case of (c). �

Remark 12.2 It is interesting to note that if we choose the 3-convex function f (x) =
−x log(x) in Corollary 12.2 (b), then we get monotonicity as

D(p̂ ‖ q̂) ≤ D(p ‖ q). (12.44)

By similar substitution in Corollary 12.2 (d), we get

D(p ‖ q;i+j)−D(p̂ ‖ q̂;r+s) ≤ D(p ‖ q)−D(p̂ ‖ q̂). (12.45)
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12.2.1 Monotonic inequalities Via Zipf-Mandelbrot law

Zipf’s law is one of the basic laws in information science and is extensively applied in lin-
guistics. For the rest of the section, let m ∈ {1,2, . . .}, c≥ 0, d > 0, then Zipf-Mandelbrot
entropy can be given as:

Zm(H,c,d) =
d

Hm
c,d

m


i=1

ln(i+ c)
(i+ c)d + ln(Hm

c,d) (12.46)

where
Hm

c,d =
m


u=1

1
(u+ c)d

.

In the similar passion for n ∈ {1,2, . . .}, ĉ ≥ 0, d̂ > 0 one can define

Zn(H, ĉ, d̂ ) =
d̂

Hn
ĉ,d̂

n


r=1

ln(r+ ĉ)
(r+ ĉ)d + ln(Hn

ĉ,d̂
) (12.47)

where

Hn
ĉ,d̂

=
n


v=1

1

(v+ ĉ)d̂
.

Consider

qi = f (i;m,c,d) =
1

(i+ c)dHm
c,d

(12.48)

q̂r = f (r;n, ĉ, d̂) =
1

(r+ ĉ)d̂Hn
ĉ,d̂

(12.49)

where q̂r,qu are discrete probability distributions known as Zipf-Mandelbrot law. Appli-
cation of Zipf-Mandelbrot law can be found in linguistics, information sciences and also
is often applicable in ecological field studies. Some of the recent study regarding Zipf-
Mandelbrot law can be seen in the listed references (see [48, 52, 53, 38]). Now we state
our results involving entropy introduced by Mandelbrot Law by establishing the relation-
ship with Shannon and Relative entropies:

Corollary 12.3 Let q̂, q be as defined in (12.48), (12.49) by Zipf-Mandelbrot law with
parameters m,n ∈ {1,2, . . .}, ĉ,c ≥ 0, d̂,d > 0. Then, the following holds.
(a) If n

m ≥ 1, then we get monotonic Zipf-Mandelbrot entropies

H(q) = Zm(H,c,d) ≤ Zn(H, ĉ, d̂ ) = H(q̂). (12.50)

(b) Let 2≤ k≤m, 2≤ l ≤ n be integers such that 1, ...,k and 1, ...,l represent positive
probability distributions, then

Zn (H, ĉ, d̂,r+s
)−Zm (H,c,d,i+ j) ≤ Zn(H, ĉ, d̂ )−Zm(H,c,d) (12.51)

where

Zn (H, ĉ, d̂,r+s
)

= −
n


r=1

⎛⎝l−1


s=0

s+1(
(r+ s+ ĉ)d̂Hn

ĉ,d̂

)
⎞⎠ ln

⎛⎝ 1
Hn

ĉ,d̂

l−1


s=0

s+1(
(r+ s+ ĉ)d̂

)
⎞⎠
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Zm (H,c,d,i+ j) = −
m


i=1

⎛⎝k−1


j=0

 j+1(
(i+ j + c)dHm

c,d

)
⎞⎠ ln

(
1

Hm
c,d

k−1


j=0

 j+1

((i+ j + c)d)

)
.

Proof. (a) One can see that for qi, q̂r be as defined in (12.48) and (12.49),
m

i=1

qi = 1 =
n


r=1
q̂r. Therefore, using above qi, q̂r in Shannon entropy (3.3), we get Mandelbrot entropies

(12.46) and (12.47) respectively. Consequently, by applying Corollary 12.1 (b), we get
(12.50).
(b) By employing Corollary 12.1 (d) we get (12.51). �

Finally we will establish the nice connection of Relative entropy with Mandelbrot en-
tropy:

Corollary 12.4 Let q̂1, q1, p̂2, p2 be Zipf-Mandelbrot law with parameters m,n∈{1,2, . . .},
ĉ1,c1, ĉ2,c2 ≥ 0 and d̂1,d1, d̂2,d2 > 0. Then, the following holds.
(a) Employing Corollary 12.2 (b), we get

− Zn(H, ĉ1, d̂1)+
d̂2

Hn
ĉ1,d̂1

n


r=1

ln(r+ ĉ2)
(r+ ĉ1)d̂1

+ ln
(
Hn

ĉ2,d̂2

)
(12.52)

=
n


r=1

1

(r+ ĉ1)d̂1Hn
ĉ1,d̂1

ln

⎛⎝ (r+ ĉ2)
d̂2Hn

ĉ2,d̂2

(r+ ĉ1)
d̂1Hn

ĉ1,d̂1

⎞⎠
= D(q̂ ‖ p̂) ≤ D(q ‖ p)

=
m


i=1

1
(i+ c1)d1Hm

c1,d1

ln

(
(i+ c2)

d2Hm
c2,d2

(i+ c1)
d1Hm

c1,d1

)

= −Zm(H,c1,d1)+
d2

Hm
c1,d1

m


i=1

ln(i+ c2)
(i+ c1)d1

+ ln
(
Hm

c2,d2

)
.

(b) Let 2 ≤ k ≤ m, 2 ≤ l ≤ n be integers such that 1, ...,k and 1, ...,l represent
positive probability distributions, then by Corollary 12.2 (d), we get

m


i=1

(
k−1


j=0

 j+1

(i+ j + c1)
d1Hm

c1,d1

)
ln

⎛⎜⎜⎜⎝
k−1

j=0

 j+1

(i+ j+c1)
d1Hm

c1 ,d1

k−1

j=0

 j+1

(i+ j+c2)
d2Hm

c2 ,d2

⎞⎟⎟⎟⎠

−
n


r=1

⎛⎝l−1


s=0

 j+1

(r+ s+ ĉ1)
d̂1Hn

ĉ1,d̂1

⎞⎠ ln

⎛⎜⎜⎜⎝
l−1


s=0

s+1

(r+s+ĉ1)
d̂1 Hn

ĉ1,d̂1

l−1


s=0

s+1

(r+s+ĉ2)
d̂2 Hn

ĉ2,d̂2

⎞⎟⎟⎟⎠
≤ Zn(H, ĉ1, d̂1)−Zm(H,c1,d1)

+
d2

Hm
c1,d1

m


i=1

ln(i+ c2)
(i+ c1)d1

+ ln
(
Hm

c2,d2

)− d̂2

Hn
ĉ1,d̂1

n


r=1

ln(r+ ĉ2)

(r+ ĉ1)d̂1
+ ln

(
Hn

ĉ2,d̂2

)
. (12.53)
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[39] L. Horváth, Inequalities corresponding to the classical Jensen’s inequality, J. Math.
Inequal., 3 (2009), 189–200.
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inequalities with weights, Proc. A. Razmadze Math. Inst., 161 (2013), 97–116.
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[53] M. A. Khan, D. Pečarić, J. Pečarić, On Zipf-Mandelbrot entropy, Computational
and Applied Mathematics, 346 (2019), 192–204.
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[73] J. Mićić, J. Pečarić, Order among power means of positive operators, Sci. Math.
Jpn., e-2009, 677–693.
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