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Preface

The most important inequality for convex functions is the Jensen’s inequality. Other in-
equalities such as inequalities for means, the Holder’s and Minkowski’s inequalities etc.
can be obtained as particular cases of it, and it has many applications in different branches
of mathematics. There are countless papers dealing with generalizations, refinements, and
converse results of Jensen’s inequality.

To give refinements of Jensen’s inequality is an extensively investigated theme with
numerous methods, results and applications. This book is mainly devoted to cyclic refine-
ments (cyclic permutations are used to define the refining terms), and their applications in
information theory. It contains the most recent research results of this promising topic.

The first chapter has a preparatory character. In the second chapter the basic cyclic
refinements for the discrete and integral Jensen’s inequalities are given. Among the many
topics where Jensen’s inequality finds application, mention should be made of informa-
tion theory. Jensen’s inequality plays a crucial role to obtain inequalities for divergences
between probability distributions, which have been introduced to measure the difference
between them. A lot of different type of divergences exist, for example the f-divergence
(especially, Kullback-Leibler divergence, Hellinger distance and total variation distance),
Rényi divergence, Jensen-Shannon divergence, etc. These important notions and the
Zipf-Mandelbrot law (a special discrete probability distribution) are introduced in chapter
three. The power of results in chapter two is also demonstrated in chapter three by obtain-
ing refinements of inequalities for divergences. In chapter four cyclic refinements of Beck’s
inequality are given. This leads to some new refinements of the classical Holder’s and
Minkowski’s inequalities. Chapter five deals with cyclic refinements of operator Jensen’s
inequalities for convex and operator convex functions. In the next six chapters (sixth to
eleventh) are devoted to extensions of cyclic refinements of Jensen’s inequality via Tay-
lor’s formula, Fink’s identity and Montgomery’s identity, and by Lidstone interpolating
polynomial, Abel-Gontscharoff interpolating polynomial and Hermite intepolating poly-
nomial, respectively. The applicability of all the obtained results is demonstrated by means
of information theory. In the last chapter, twelve, Levinson’s type generalization of cyclic
refinements of Jensen’s inequality is given with applications.
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Chapter

Introduction and Preliminaries

The notion of convexity plays an important role in different branches of mathematics.

Definition 1.1 Let V be a real vector space.

(a) A subset C of V is called convex, if for any two points vi,vy € C, the line segment
between them also lies in C, that is Avy + (1 — L) vy € C for all A € [0,1].

(b) A function f: C(C V) — Ris called convex, if its domain C is a convex set, and for
any two points vi,vy € C, and all A € [0, 1], we have that

FAvi+ (1 =2A)v) SAf(vi)+(1=A4)f(v2).

The most important inequality concerning convex functions is the Jensen’s inequality,
named after the Danish mathematician Johan Jensen. It was proven by Jensen in [49].
We emphasize the following two variants of Jensen’s inequality:

Theorem A. (discrete Jensen’s inequality, see [36]) Let C be a convex subset of a real
vector space V, and let f : C — R be a convex function. If pi,...,p, are nonnegative

n
numbers with Y, p; =1, and vy,...,v, € C, then
i=1

=

f <2p,~v,~> < pif(v) (1.1)
i=1 i=1

f(l Vi) <
iz

holds. Particularly, we have
n
> i) (1.2)

i=1

M=
S| =



2 1 INTRODUCTION AND PRELIMINARIES

Theorem B. (integral Jensen’s inequality, see [36]) Let g be an integrable function on a

probability space (X, | 1) taking values in an interval I C R. Then [ gdu lies in 1. If f
X
is a convex function on I such that f o g is integrable, then

7 [ean | < [ rosgdu.

X X

Various attempts have been made by many authors to refine either the discrete or the
integral Jensen’s inequality (see the book [36] and the references therein). A multitude of
applications underscores the importance of refinements of different Jensen’s inequalities.

The following result which provide the starting point for our discussion is from Brnetié
at al. [12].

Theorem 1.1 Suppose I is a real interval. If f : I — R is a convex function, then for all
t €10, 1] we have

i=1 1 E]f(xi)
fl— 1= _Zf((l —t)xi+txpp) < ——,\

n n= n

where x; € I (1 <i<n)andx,+1 = x1.

Recently, a lot of papers have been appeared dealing with generalizations of the pre-
vious theorem (see e.g. [13, 37]). The whole group of such results is now often known
by the collective title “cyclic refinements”. They find applications mainly in the theory of
means and in information theory.

The title of this book indicates clearly the content of it. A synthesis of recent progress
in the topic of cyclic refinements of different types of Jensen’s inequalities is presented
with the emphasis on their applications in information theory.

Let2<k<n,andleti€{l,...,n} and j €{0,...,k— 1}. In further parts of this book
i+ jalways means i+ j —nin case of i+ j > n.

While writing this book, S. I. Butt was supported by Higher Education Commission
Pakistan under NRPU project 5327 and 7906. L. Horvéth was supported by Hungarian
National Foundations for Scientific Research Grant No. K101217 and Széchenyi 2020
under the EFOP-3.6.1-16-2016-00015. J. Pecari€ is supported by the Ministry of Education
and Science of the Russian Federation (the Agreement number No. 02.a03.21.0008)



Chapter

Cyclic Improvement of
Jensen’s Inequality

In this chapter we give cyclic refinements of Jensen’s inequality and their applications.

2.1 A refinement of Jensen’s inequality

We start with the special following Jensen’s inequality

(B < Baft)

n n

Throughout this section we are going to use some of the following hypotheses:
(#4) Let I C R be an interval, x := (xy,...,x,) € I", and A := (41,...,A) be a positive

k-tuple such that Z;/M =1forsomek,2<k<n.
(%) Let f : I — R be a convex function.
(743) Let h, g : I — R be continuous and strictly monotone functions.

Theorem 2.1 Let (4), (543) be fulfilled. Then

f(Z, lxl) %2 (ij+lxl+j) < i(x‘) 2.1)

i—1 0 n
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Proof. First, since f is convex, by Jensen’s inequality we have

k—1 n k—1
2f<2)~j+lxi+j) > Z%Hf Xit )
=1 \j=0 i=1j=0

S

On the other hand, since f is convex, by Jensen’s inequality, we have

lM=

_ n k—1
1 i1 Xj_0 Aj1Xitj >

—zf(z ewnies) 24

n

B ?:1xi2];’:1/lj (2
() (=)

Theorem 2.1 is a generalization of Theorem 4 in [12].

2.1.1 Cyclic mixed symmetric means

Assume (77) for the positive n-tuple x. We define the power means of order » € R as
follows:

k=1 r
(2 A'j+1x{+j> 5 V?é 0,
My (Xi oo X ke 151 oy M) = j=0

k—1 2
J+L. _
I x5 r=20,
J=0

and cyclic mixed symmetric means corresponding to (2.1) are

n s
<%'21M;‘.'(xi,...,xi+k1;).1,...,)./()) 5 S%O,
1=

M (x,A) == (2.2)

n n
(HMr(xi,---»xtJrk1;11,---,%)) ; s=0.
I

i—1

The standard power means of order r € R for the positive n-tuple x, are

The bounds for cyclic mixed symmetric means are power means, as given in the fol-
lowing result.
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Corollary 2.1 Assume (2] ) for the positive n-tuple X. Let r,s € R such that r < s. Then
Mr(x) < MS‘J‘(X7A') < M; (X) (2.3)

Proof. Assume r, s # 0. To obtain (2.3), we apply Theorem 2.1, either for the function
f(x) = x7 (x> 0) and the n-tuples (x},...,x.) in (2.1) and then raising the power %, or

f(x) =x5 (x>0)and (x},...,x}) and raising the power L

'n

When r = 0 or s = 0, we get the required results by taking limit. O

Special cases of Corollary 2.1 can be found in [11] (see Theorem 4 with Corollaries
4.1-4.4). Namely, the result of this theorem is an inequality (2.3) forr =0, s=1,n=3
and k = 3.

Assume (7)) and (7743). Then we define the generalized means with respect to (2.1) as
follows:

n k—1
Mg p(x,A) =g (% Y (gOhfl)(z )~j+lh(xi+j))> .

i=1 j=0

Let g : I — R be a continuous and strictly monotone function then the cyclic quasi-
arithmetic means are given by

My(x) = ‘]71 (% iﬂ%’)) .

The relation among the generalized means and cyclic quasi-arithmetic means is given in
the next corollary.

Corollary 2.2 Assume (1) and (43). Then
Mi(x) < Mg (x,2) < My(x) @4

if either g o h™ ' is convex and g is strictly increasing or g o h™' is concave and g is strictly
decreasing.

Proof. First, we can apply Theorem 2.1 to the function goh™! and the n-tuples
(h(x1),...,h(x,)), then we can apply g~ to the inequality coming from (2.1). This gives
(2.4). O

For instance, if we put g(x) = x and /(x) = Inx in Corollary 2.2 we obtain

-

Mo(xl,...,x,,) S Mo(x,',...,xi+k,1;)t,1,...,)tk) S M1 (xl,...,x,,).

S|

i=1

which is a special case of Corollary 2.1 as well.
Remark 2.1 Under the conditions (77 ), we define

1 & & -
Y1(f) =Y1(x,4,f) :;fol __Zf thtlxﬁj

i=1
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1 n

k—1 n
DY Ajrixie) = f (% 2)@) ,
j=0 i=1

Yao(f) =Ya(x,A, f) ==

ntz]

where f: I — R is a function and 2 < k < n. The functionals f — Y;(f) are linear, i = 1,2,
and Theorem 2.1 implies that

if f:1 — R is a convex function.

2.1.2 m-Exponential convexity

For log-convexity, exponential convexity and m-exponential convexity of the functionals
obtained from the interpolations of the discrete Jensen’s inequality, we refer [36] and ref-
erences therein.

We apply the method given in [83], to prove the m-exponential convexity and exponen-
tial convexity of the functionals f — Y;(f) for i = 1,2, together with the Lagrange type
and Cauchy type mean value theorems.

Definition 2.1 (see [83]) A function g : I — R is called m-exponentially convex in the

Jensen sense if
+ Xj
E aia;g >0

i,j=1

holds for every a; € R and everyx; €I, i=1,2,....m
A function g : I — R is m-exponentially convex if it is m-exponentially convex in the
Jensen sense and continuous on I.

Note that 1-exponentially convex functions in the Jensen sense are in fact the nonnegative
functions. Also, m-exponentially convex functions in the Jensen sense are n-exponentially
convex in the Jensen sense for every n € N, n < m.

Proposition 2.1 Ifg: I — R is an m-exponentially convex function, then for every x; € I,
i=1,2,....mandforalln € N, n < mthe matrix [g (xi;xj

()] =
ij=1

Definition 2.2 A function g : I — R is exponentially convex in the Jensen sense, if it is
m-exponentially convex in the Jensen sense for all m € N.

A function g : I — R is exponentially convex if it is exponentially convex in the Jensen
sense and continuous.

n
) } is a positive semi-definite
i,j=1

matrix. Particularly,

forallneN, n=1,2,....m
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Remark 2.2 It is easy to see that a positive function g : I — R is log-convex in the Jensen
sense if and only if it is 2-exponentially convex in the Jensen sense, that is

X+
aig(x) +2aaxg <Ty) +azg(y) >0

holds for every a;,a; € R and x,y € I.
Similarly, if g is 2-exponentially convex, then g is log-convex. On the other hand, if g
is log-convex and continuous, then g is 2-exponentially convex.

In sequel, we need the well known notion of “Divided difference”.

Definition 2.3 The second order divided difference of a function g : I — R at mutually
different points yo,y1,y> € I is defined recursively by

bisgl =g(vi), i=0,1,2

i+1) —8Wi .
[yivyi+1;g] = g(yl+ ) g( 1)7 12071
Yit1 —Yi
1,Y25 — Vo, V1s
V0, y1,¥2:8] = i, yiel = Do,yiigl, (2.5)
Y2—Y0

Remark 2.3 The value [yo,y1,y2;¢] is independent of the order of the points yg,y;, and
y»>. By taking limits this definition may be extended to include the cases in which any two
or all three points coincide as follows: for all yg, y1, y» € I such that y, # yg

8(v2) —g(y0) — & (¥0) (2 — Yo)
(y2—»0)?

lim [yo,y1,y2:8] = [Yo,y0,¥2:8] =
Y1—Yo

provided that g’ exists, and furthermore, taking the limits y; — yo, i = 1,2 in (2.5), we get

"

g (o)

[Vo,¥0,Y0:8] = Vo, ¥1,¥2:8] = — fori=1,2

lim
Yi—Yo
provided that g” exist on /.

Now, we give the m-exponential convexity for the linear functionals Y;(f) (i = 1,2).

Theorem 2.2 Assume I C R is an interval, and assume A = {¢; |t € J} is a family of
functions defined on an interval I C R, such that the functiont — [yo,y1,y2;¢] (t €J) is
m-exponentially convex in the Jensen sense on I for every three mutually different points
yo,¥1,y2 € I. Let Yi(f) (i = 1,2) be the linear functionals constructed in Remark 2.1.
Then t — Yi(¢y) (t € J) is an m-exponentially convex function in the Jensen sense on I
for each i = 1,2. If the function t — Y;(¢) (¢t € J) is continuous for i = 1,2, then it is
m-exponentially convex on I fori=1,2.
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Proof. Fixi=1,2.
Letty,t; € J, 1ty = lkﬂl and by, b; € Rfork,l =1,2,...,n, and define the function @ on
I by .
w = 2 bkbl(plkl-
ki=1
Since the function r — [yo,y1,y2; @] (# € J) is m-exponentially convex in the Jensen sense,
we have "
oy, y2: 0] = Y bibi[yo,y1,y2: ¢y ] =0
k=1

Hence o is a convex function on /. Therefore we have Yi(w) > 0, which yields by the
linearity of Y}, that .

N bebiYi(9r,) >0
k=1
We conclude that the function r — Y;(¢y) (r € J) is an m-exponentially convex function in
the Jensen sense on 1.
If the function # — Y;i(¢r) (# € J) is continuous on /, then it is m-exponentially convex on
[ by definition. O

As a consequence of the above theorem we can give the following corollaries.

Corollary 2.3 Assume I C R is an interval, and assume A = {¢ | t € J} is a family of
functions defined on an interval 1 C R, such that the function t — [yo,y1,v2;¢] (t € J)
is exponentially convex in the Jensen sense on I for every three mutually different points
vo,y1,v2 € L. Let Y;(f) (i = 1,2) be the linear functionals constructed in Remark 2.1. Then
t = Yi(¢) (t €J) is an exponentially convex function in the Jensen sense on I for i = 1,2.
If the function t — Y;(¢,) (t € J) is continuous, then it is exponentially convex on I for
i=1,2.

Corollary 2.4 Assume I C R is an interval, and assume A = {¢ : t € J} is a family of
functions defined on an interval I C R, such that the functiont — [yo,y1,y2;¢] (t €J) is
2-exponentially convex in the Jensen sense on I for every three mutually different points
y0,¥1,¥2 € I. Let Yi(f) (i = 1,2) be the linear functionals constructed in Remark 2.1. Then
the following two statements hold fori =1,2:

(i) Ifthe functiont — Y;(¢y) (t € J) is positive and continuous, then it is 2-exponentially
convex on I, and thus log-convex.

(ii) Ifthe functiont — Y;(¢) (t € J) is positive and differentiable, then for every s,t,u,v €
J, such that s <u andt < v, we have

Ugr (YHA) < Uy (Y”A) (26)

where L

<z>§ LS FL

us (Y3, A) == ( dy ) (2.7)
= =t

for ¢S7¢t S A



2.1 A REFINEMENT OF JENSEN’S INEQUALITY 9

Proof. Fixi=1,2.
(i) The proof follows by Remark 2.2 and Theorem 2.2.

(i) From the definition of a convex function y on I, we have the following inequality
(see [82, page 2])
Vi) v v v o8
s—t u—v
Vs, t,u,v €Jsuchthats <u,t <v,s£t, u#v.
By (i), s — Yi(¢s), s € J is log-convex, and hence (2.8) shows with y(s) =1log Y;(9s),

s € J that
logYi(¢y) —logYi(¢r) _ logYi(¢u) —logYi(¢y)
s—t - u—v

2.9

fors <u,t <v, s #t,u=#v, which is equivalent to (2.6). For s =7 or u = v (2.6)
follows from (2.9) by taking limit.

O

Remark 2.4 Note that the results from Theorem 2.2, Corollary 2.3, Corollary 2.4 are
valid when two of the points yg,y1,y2 € I coincide, say y; = yo, for a family of differen-
tiable functions ¢ such that the function ¢ — [yo,y1,y2; @] is m-exponentially convex in the
Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense),
and moreover, they are are also valid when all three points coincide for a family of twice
differentiable functions with the same property. The proofs can be obtained by recalling
Remark 2.3 and suitable characterization of convexity.

The following result given in [35] is related to the first condition of Theorem 2.2.

Theorem 2.3 Assume I C R is an interval, and assume A = {¢; |t € J} is a family of
twice differentiable functions defined on an interval I C R such that the function t — ¢/ (x)
(t € J) is exponentially convex for every fixed x € 1. Then the function t — [y, y1,y2; ]
(r € J) is exponentially convex in the Jensen sense for any three points yo, y1, y2 € 1.

Remark 2.5 It comes from either the conditions of Theorem 2.3 or the proof of this
theorem that the functions ¢, t € J are convex.

2.1.3 Mean value theorems

Now we formulate mean value theorems of Lagrange and Cauchy type for the linear func-
tionals Y;(f) (i = 1,2) defined in Remark 2.1.

Theorem 2.4 Let Y(f) (i = 1,2) be the linear functionals constructed in Remark 2.1
and g € C*[a,b]. Then there exists & € [a,b] such that

@Y () i=1,2

Yi(g) = >
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Proof. Fixi=1,2.

Since g € C?[a, b, there exist the real numbers m = min g”(x) and M = max g”(x).
x€la,b] x€la,b]

It is easy to show that the functions ¢; and ¢, defined on [a,b] by

M
or(x) = 3%~ g ),
and "
hr(x) =g ()~ 52,
are convex.

By applying the functional Y; to the functions ¢; and ¢, we have the properties of Y; that
M
Y; (72 —g(x)) >0,

Y; (%), (2.10)

and

égngﬁgn@. @.11)

IfY; (xz) = 0, then nothing to prove. If Y; (xz) 20, then

2Y; (g)
< <M.
=Y S
Hence we have
1
Yi(g) 58// &); (xz)

Theorem 2.5 Ler Y;(f) (i = 1,2) be the linear functionals constructed in Remark 2.1
and g,h € C*[a,b]. Then there exists & € [a,b] such that

provided that Y; (h) #0 (i = 1,2).



2.1 A REFINEMENT OF JENSEN’S INEQUALITY 11

Proof. Fixi=1,2.
Define L € C?[a,b] by

L:=c1g—cah,
where
c1:=Y;(h)
and
e :=Yi(g).
Now using Theorem 2.4 for the function L, we have
(c1 g”z(é) - hﬁz(é)) Y; (xz) =0. (2.12)

Since Y; (h) # 0, Theorem 2.4 implies that Y; (x?) 5 0, and therefore (2.12) gives
Yi(g) g (&)

Yi(h)  h'(E) 0

2.1.4 Applications to Cauchy means

In this section we apply the results of previous sections to generate new Cauchy means.
We mention that the functionals Y;(f), i = 1,2 defined in Remark 2.1 under the assumption
(247), are linear on the vector space of real functions defined on the interval I C R, and
Y;(f) > 0 for every convex function on .

Example 2.1 Let I = R and consider the class of convex functions
Ay = {(Pt R— [07oo[| re R}v

where '
=e*; 1t #£0,
o= {75 7

Then 1 — ¢/ (x) (1 € R) is exponentially convex for every fixed x € R (see [47]), thus by
Theorem 2.3, the function # — [yo,y1,y2; ], ¢ € R is exponentially convex in the Jensen
sense for every three mutually different points yg, v,y € R.

Now fix i = 1,2. By applying Corollary 2.3 with A = A;, we get the exponential
convexity of 7 — Y;(¢;) (+ € R) in the Jensen sense. This mapping is also differentiable,
therefore exponentially convex, and the expression in (2.7) has the form

1
Yi(d’s) 5=t
(Y,‘(th))' ’ S#t’
s (X3 A1) = § exp (H8) - 2) 5= 20,

Yi(iddo) \ .
exp 31??(&0))) rs=t=0,

where “id”” means the identity function on R.
From (2.6) we have the monotonicity of the functions 1, (Y;,A1) in both parameters s
and 7.
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Suppose Y;(¢) >0 (r € R), a := min{xy,...,x, }, b := max{xy,...,x, }, and let
My, (Yi,Ar) :=logus, (Y5, A1); st €R.
Then from Theorem 2.5 we have
a <M, (Yi,A1) <b,

and thus M, (Y;, A1) (s,7 € R) are means. The monotonicity of these means is followed
by (2.6).
Example 2.2 Let I =]0,°] and consider the class of convex functions
A = {wt :]0700[*} R | re R}?
where p
! #0,1,
Vi(x) =4 —logx; =0,
xlogx;t = 1.
Then 1 — y(x) = x' 2 = elI=2)102¥ (r € R) is exponentially convex for every fixed x €
10,%0[.
Now fix 1 <i<4. By similar arguments as given in Example 2.1 we get the exponential

convexity of 7 — Y;(y;) (¢ € R) in the Jensen sense. This mapping is differentiable too,
therefore exponentially convex. It is easy to calculate that (2.7) can be written as

(?Ea;)% s #1,
exp (S%;Zi") - Y"(w“f"“)) ;s=1#0,1,

us,t(xvvaiyAZ) = ri(wg;’i( 5)
exp (1= oy ) 57150,
Y;
exp (1~ S ) s =1 =

Suppose Y;(y;) >0 (1 € R), and let a := min{xy,...,x, }, b := max{xy,...,x, }. By Theorem
2.5, we can check that

a<ug(x,p,Yi,A2) <b; s,t€R. (2.13)

The means u,,(x,p,Yi,A2) (s,# € R) are continuous, symmetric and monotone in both
parameters (by use of (2.6)).

Let s,¢,7 € R such that r # 0. By the substitutions s — 7, t — %, (X1, yXn) —
(x7,...,x}) in (2.13), we get

JS uS/r,l/r<Xr7p7YlaA2) S b7

where a:=min{x},...,x} and b := max{x{,...,x},}. Thus new means can be defined with
three parameters:

u rX»AqY',A = (uS/r,t/r(er)'thAz)) ; }’7&0,
woz (o, ha) {u‘s‘,f(logx,x,nm); r=0,

S =

where logx = (logxy,...,logx,).
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The monotonicity of these three parameter means is followed by the monotonicity and
continuity of the two parameter means.

Example 2.3 Let I =]0,o[, and consider the class of convex functions

= {nl ]0700[*40700“ 4 6]0700[}7

() :={'2gf 7

X —
= or=1.

where

t— ' (x) (¢ €]0,00[) is exponentially convex for every fixed x €]0, <[, being the restriction
of the Laplace transform of a nonnegative function (see [47] or [89] page 210).

Now fix 1 < i< 4. We can get the exponential convexity of 7 — Y;(y;) (r € R) as in
Example 2.1. For the class Az, (2.7) has the form

1

(8o
ug (Yi,A3) = ¢ exp _slggs_fwr%xy;);S:t# 1,
Y,(id o
exp *%),S—I—l.

The monotonicity of u,(Y;,A3) (s,7 €]0,00[) comes from (2.6).
Suppose Y;(1;) > 0 (¢ €]0,0[), and let a :== min{xy,...,x,}, b := max{xy,...,x, }, and
define
M, (Yi,Az) := —L(s,1)logus,(Yi,Az), s,t €]0,00[,

where L(s,7) is the well known logarithmic mean

L(s,t) := { 108* IOgt’ SFIL,

’ IR s=1.
From Theorem 2.5 we have
a <M, (Yi,A3) <b, s,t€]0,00],
and therefore we get means.
Example 2.4 Let I =]0,oo[ and consider the class of convex functions
Ag = {1 :]0,0[=]0, 0| 7 €]0, [},
where

e~ Vi
—

%(x) :=

1y (x) = eV, t €]0,o[ is exponentially convex for every fixed x €]0, o[, being the
restriction of the Laplace transform of a non-negative function (see [47] or [89] page 214).
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Now fix 1 <i < 4. Asbefore t — Y;(y;) (r € R) is exponentially convex and differen-
tiable. For the class A4, (2.7) becomes

i
Yilw) \ . o 4y
g (Yi, Ag) = (Ti(%) )1 , Ti(?dé%;

exp (~F = 2y ) o=t
where id means the identity function on ]0,eo[. The monotonicity of ug,(Y;,A4) (5,7 €

]0,29[) is followed by (2.6).
Suppose Yi(1;) > 0 (¢ €]0,%9[), let @ := min{xy, ..., X, }, b := max{xy,...,x, }, and define

My, (i, Ag) i= — (/s + V1) logus, (Yi,Ag), s, €]0,00].
Then Theorem 2.5 yields that
a S mS,Z(Yi7A4) S b7

thus we have new means.

2.2 Cyclic refinements of the discrete and integral
form of Jensen’s inequality with applications

In this section we introduce new refinements both the discrete and the classical Jensen’s
inequality. First, we extend Theorem 2.1: the weighted version is given in real vector
spaces. By using this result, we obtain new refinements of the classical Jensen’s inequality.
m-exponential convexity of some functionals coming from the new refinements are inves-
tigated. To apply our results we define some new mixed symmetric means, generalized
means, and Caucy-means, and study their properties.

2.2.1 Cyclic refinements of the discrete and classical
Jensen’s inequalities

We say that the numbers py, ..., p, represent a (positive) discrete probability distribution
n

if (pi>0)p;>0(1<i<n)and ¥ p;=1.
i—1

i=
To refine the discrete Jensen’s inequality, we need the following hypotheses:

(Hy) Let 2 < k < n be integers, and let py,...,p, and Aq,..., A represent positive
probability distributions.

(Hy) Let C be a convex subset of a real vector space V, and f : C — R be a convex
function.
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Theorem 2.6 Assume (H) and (H3). If vi,...,v, € C, then

n
S (2 PM) < Cais = Cais (f,V,p,A) (2.14)
i=1
k-1
n [kl .§OAj+1Pi+jVi+j \
= 2 ( )Lj+1pi+j> f j,H— < ZPif(Vi)
=1 \j=0 ZO)LjJrlPHj =1
iz

where i+ j means i+ j—n in case of i+ j > n.
Proof. By the discrete Jensen’s inequality
n k—1 n k n
Cais < O | X Ajapicif i) | = [ Dpif i) | | DA ) = Y pif ().
i=1 \j=0 i=1 j=1 i=1

The left hand side inequality can be proved similarly. Since

n (k=1
D\ X Apin | =1,
=1 \j=0

the discrete Jensen’s inequality implies that

n k—1 n
Cais > f (2 (2 )~j+lpi+jvi+j>> =f (2 Pivi> .
i=1 \j=0 i=1

The proof is complete. |

The previous result can be considered as the weighted form of Theorem 2.1.

To refine the classical Jensen’s inequality, we first introduce some hypotheses and no-
tations.

(H3) Let (X, %, u) be a probability space.
Let [ > 2 be a fixed integer. The o-algebra in X! generated by the projection mappings
pro: X' =X (m=1,...,])
Prm (X1, ,X1) = X
is denoted by %'. u' means the product measure on %': this measure is uniquely (u is
o-finite) specified by
u'(Byx...xB)):=u(By)...u(B;)), Bn€B, m=1,...,I

(Hy) Let g be a u-integrable function on X taking values in an interval I C R.
(Hs) Let f be a convex function on I such that f o g is u-integrable on X.
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Under the conditions (Hy) and (H3-Hs) we define

Cint :Cinl (faghu*apax)
k—

k—1 2 )'j+lpl+]g(xl+])
(2 )L]+1Pz+j> /f = = du" (x1,...,x,), (2.15)
Xn

= Y Ajr1Divj
j=0

™M=

i=1

and forz € [0, 1]

Cpar(t):Cpar(tvfygnuvp7 2 (2%+1pz+;>

=
/f =0

xn ZO)LjJrlPHj
j:

2 )L]+1pl+jg (xz+j)

(14)/ng AW (x1,. . x), (2.16)
X

where i + j means i + j —nin case of i + j > n.

Remark 2.6 It follows from Lemma 2.1 (b) in [40] that the integrals in (2.15) and (2.16)
exist and finite.

First, the essential properties of the function Cp,, are given.

Theorem 2.7 Assume (H;) and (H3-Hs). Then
(a) Cpyr is convex and increasing.

(b)

par /gd[.t 5 Cpar (1) = Cint-

(¢) Cpar is continuous on [0, 1].
(d) If f is continuous, then Cpqy is continuous on [0,1].

Proof. (a) Convexity is invariant under affine maps, the integral is monotonic, and the sum
of convex functions is also convex: these imply that Cp,, is convex on [0, 1].
By the classical Jensen’s inequality

n k—1
Cpar (t) > 2 (2 )Lj+1pi+j>
i=1 \j=0

g Aj+1pt+jg (xl+j)
7 s +(-0) [ gdu | du” (o)

xn _20%4 1Dit) X
]:
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k—1
= (2 %’Hpiﬂ') f t/gdu+(1 *t)/gdu
X X

i=1 \j=0

i=1 \j=0

k—1
2<le+1pi+j>f Jeau) = [edu )| =Cour @, rel0.1.
J X X

Suppose 0 <171 <1, < 1. The convexity of Cpyr, and Cpqr (1) > Cpar (0) (1 € [0,1])
imply that

Cpar (IZ) - Cpar (tl ) > Cpar (t2) - Cpar (O)
h—1 o 1)

>0

i )

and thus
Cpar (t2) 2 Cpar (tl ) .

(b) These are obvious.
(c) It follows from (a).

(d) We have only to show that Cp,, is continuous at 1. To this end, it is enough to check
that the functions

k-1
1 _goljﬁpiﬂg (xit)

t— <2A’j+1pi+j> /f = . Jr(lff)/gd.‘i du” (x1,...,%n),
J=0 X

1
Xn _Zolj+1pi+ j
]:

tel0,1], i=1,...,n

are all continuous at 1. To prove this, fix i from {1,...,n}, and let (z,) be a sequence from
[0, 1] which converges to 1.

Since f is continuous

k=1
_goljﬁpiﬂg (Xitj)
ty— f 1= — +(1 —tn)/gdu
Y Aji1Ditj X
j=0
k=1
;O/Ij+lpi+jg (Xitj)
"l = - o (. x) €XN (2.17)

1
Y Ajr1pivj
=t
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It comes from the discrete Jensen’s inequality that

k—1
20)«]'+1Pi+jg (xitj)
e (1) [ gdp
Y Aji1pivj X
=0
k—1
;0/11'+1pt+ 78 (Xitj) _
<if | —— +(1-0)f /gdu
Y Ajt1Pi+j X
=0
k—1
20 Aj+1Di+ j8 (Xitj)
<max | | 2 A [ ean (2.18)

Y Ajr1pivj X
Jj=0

forallz € [0,1] and (xy,...,x,) € X".
Choose a fixed interior point a of 1. Since f is convex
f@&)=fl@)+fi(a)(z—a), z€l,
where f! (a) means the right-hand derivative of f at a. It follows from this that

k—1
2,0 Aj1Pi+ ;8 (Xitj)
£l +(1-1) [ gdu

k—1
Y Ajr1Pitj X
j=0

k-1
Y Ajr1pitjg (Xitj)

> fla)+ fi(a) | +(1-1) [ gdu—a
Y Ajr1pi+j X
j=0
k—1
goljﬁpiﬂg (xi+ ) i
> f(a)—af.(a) +min | £} (a) | Zoms —a|. @ [ g
Zofljﬂpiﬂ X
=

(2.19)

forallz € [0,1] and (xy,...,x,) € X".
The functions in (2.18) and (2.19) do not depend on #, and u”-integrable, and therefore
Lebesgue’s dominated convergence theorem and (2.17) imply that

Crar (1) = Cpar (1).

The proof is complete. O
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We illustrate by a concrete example that Cy,- is not continuous at 1 in general.

Example 2.5 Letk=n=2,and pj=pr=A = Ay = % We consider the measure space
(10,1],8, €12+ 3€1), where 2 is the o-algebra of Borel subsets of [0,1], and € /, and

€) are the Dirac measures at 1/2 and 1, respectively. Denote u = %81 2+ %81. Define the
functions f, g : [0,1] — R by

x, if0<x<1
g(x):x, f(x){ 2 ifx=1 :

In this case for every ¢ € [0, 1]

Pal 2 / XI+x2 1_t /Xd.u d[.t x17x2)
0,1]

1 " X1 +Xx2 3 2
=_ 112
5 f(f 3 +( f)4)dﬂ (x1,%2)

(3 (o-0d) 20 3) o))

It can be seen from this that

[

o (1) = . 1,231
MCpar () =51 5t7 7F7) =
o e 2\4' 2743474

while
Now our second main result is the next:
Theorem 2.8 Assume (H;) and (H3-Hs). Then

[dn | <Cpur(t) < Cun < [ Fogau, reo.1).
X X

Proof. Tt follows from Theorem 2.7 that

/gdli SCpar(t) <Ciu, 1€ [Oal]
X
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The discrete Jensen’s inequality yields

k=1
n (k=1 . goj'j+lpi+jg (i)

Cint = 2 (2 )L]+1Pz+j> f = 1 du" (xla---axn)
=1A=0 X Z Aj+1Di+j

=)

ZA'/Jrlpth 1 du" (xi,...,Xn)
i=1

(kl ) 2 Aj1pivif (8 (xivj))
'y
Xn Y Ajr1Ditj
=0

/i (Zlﬁlpzﬂf( (xi+j))> du" (x1,. . Xn)

xn = 1

pif(g(xi))du"(xl,...,xn):/fogdu.
1

xn = X

The proof is complete. O

2.2.2 Applications to mixed symmetric means

Consider the following hypotheses for this section.
(M) LetI C R be an interval, X := (x1,...,x,) € I" and let py,...,p, and Ay,..., Ay repre-
sent positive probability distributions for 2 < k < n.
(M) Let f : I — R be a convex function.
(M3) Let ¢, v : I — R be continuous and strictly monotone functions.
Assume (M;). Then we define the power means of order r € R as follows:

M (xS pERTL 2Y = My (X, ooy Xk 13 Pt ooy Pictk 1340 w0y M)
k—1 T
2 AjiPid X
21 r#o,
. jgo/l]#lpi#rj (2.20)

k=1
k=1 5. p o\ Z Ajipij
j+1Pi+j 297/ S
<H0x1+] >] ’ rio,

and weighted cyclic mixed symmetric means corresponding to Cy;, are

1
n k—1 s
(2 (2 Aj+1pt+j>1vp( l+k l,prk I )Lk)> ;S#O,
Mr,s(x,p,l): PAU=0 il
1’_1[ (Mr(fork l,pl+k 1 lk)) > ?L;+1Pi+j; 5=0,

i=1

where i + j means i + j —nin case of i + j > n.
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The standard power means of order » € R for the positive n-tuple x and probability
distributions py,..., py, are

r

n
_ZIPin) ; r#0,
=

M, (X,p) = My (X1, .0y X3 D1y ooy Pn) i= -
xPil, r=0.
=1

1

The bounds for weighted cyclic mixed symmetric means are power means, as given in the
following result.

Corollary 2.5 Assume (M;) and r,s € R such that r < s. Then

M, (x,p) < M, ,(x,p,A) < My(x,p). (2.21)

Proof. Apply Theorem 2.6. O

Assume (M;) and (M3). Then we define the cyclic generalized means with respect to Cy;s
as follows:

k—

1
s T Ajapisj ¥ i)
- “1| =
M‘Pa‘I/(vavz’) ::(p ! 2 ( A’j+1pi+j>¢ow : k—1 ’
=1 A=0 3 Ajs1Pit
j=0

Jj=

where i + j means i+ j —n in case of i+ j > n.
Let g : I — R be a continuous and strictly monotone function then the standard quasi-
arithmetic means of xy,...,x, for probability distribution p1,..., p, are given by

n
My(X,p) = My(x1,.... %05 P1,-.., Pn) = qil <2piq(xi)> .
i=1

The relation among the cyclic generalized means and quasi-arithmetic means is given in
the next corollary.

Corollary 2.6 Assume (M;) and (M3). Then

My (x,p) < My (x,p,A) < My(x,p) (2.22)

1

if either ¢ oy~ is convex and ¢ is strictly increasing or ¢ oy~ is concave and ¢ is

strictly decreasing.

Proof. We apply Theorem 2.6. O

The unweighted versions of Corollaries 2.5 and 2.6 are given in [13].
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Let (X, </, u) be a measure space with 0 < 1 (X) <eo, r € R, and u : X —R be a pos-
itive measurable function such that u" is p-integrable, if r £ 0, and logou is u-integrable,

if r = 0. Then the integral power means of order r are defined by (see [36]):

(e <>>fdu<>)', r£0, oy

e eXp( flog )du()) r=0.

() Let (X, <7, ) be a probability space, and u : X — R be a measurable function

Suppose probability distribution (py, ..., pu).
Under the conditions (H;) and (H3-Hy), we define the following cyclic mixed means
. s

corresponding to Cpq (¢) for the class of positive u-integrable functions g for which g* (if
s # 0) and logog (if s = 0) are also u-integrable.

~

s

2 /lj+l[71+/ (g<xt+j))x

Mr,s(tvag7“7p7)'):: .
]7—+(17t)fgvd:u’ d“n(xlw"vxn) ;r,s;éO,
i X

n
> (E )L]+1pl+j f t 1
i=1 Xn Y Aji1Pit
=0
1
k=1 1 kl:II( ( )))Lfﬂuj- k»i:ﬂfw’w ’ r
no (k- o 8 (xitj )=
.21 (ZO)L]#IPH/) 'Xf eXp ¢ j=0 " d:u'n (X],.. '7-xl1) ;r# 07
i= = n .
! (1) [log(g(x))du (x)

kol
ZOAHIPIH(g(XHj))A
o

-_ t k=1
) . flOg _ZO}Lj+1Pi+j d,u'n (X],...,Xn) ;5#07
Xn J=

n
exp| 5% (2 Aji1Pij
! +(1-1) [g'du
X

t

k—1 3
AjPisj | Z 1P
T (g (xip;)) 1P ) i
j:O( (xi+7)) du’ (x1,...,x,) | 35=0.
Xll
)

n (k=1
exp| £ (ZOA./‘HPH/)’ /
TNV —t }{log(g(x))dﬂ(x)

where i 4 j means i+ j —nin case of i + j > n.
The cyclic mixed symmetric means corresponding to G, are M, (0, f,g, 1, p,A)

Corollary 2.7 Assume (M), (H3) and (Hy). Let r,s € R such that r < s and suppose that
g’ & are u-integrable functions for r,s # 0 and logog is u-integrable function if either

r=0o0rs=0. Then

MV(va) S MV,S (tvag?“vpv)') S MV,S (07f7g7:u7p72') S MV(va) (224)

Proof. Apply Theorem 2.8. O
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Assume (Hj), (H3-H4) and (M3). Then we define the following quasi-arithmetic means
with respect to Cp, for u-integrable functions ¢ o g and yo g.
M(Z),ll/ (t7f7gnu7p7ﬂ') =

Z Aj +1Pz+]1//og(xz+])
1=

n k—1
! _21 (ZO)«J'HPH]') [ ooyt Zoljﬂmj du" (x1,...,xn) |
i= j= xn j=
+(1—t)){ll/ogdu

and standard quasi-arithmetic means are
My (g,10) / ¢ ogdu

The quasi- arithmetic mean related to Cj,,, are 1\7le¢ 0,f,8,Uu,p,A).

Corollary 2.8 Assume (Hy), (H3-Hy) and (M3). Suppose ¢ o g and v o g are U-integrable
functions. If either ¢ oy~ is convex and ¢ is increasing, or ¢ oy~ is concave and ¢ is
decreasing, then

Mll/ (g,,u) SM(Z),U/ (t7f7gnu7p7ﬂ') < Mq),u/ (07f7g7:u7p72') SM(Z) (gnu)v

while if either yo ¢~ !

increasing, then

My (g,1) < My (1, f.8,1.9,4) < My g (0, f, 8, 11,0, 2) < My (g, 1)
Proof. Apply Theorem 2.8. O

is convex and  is decreasing, or Wwo ¢~ is concave and  is

Remark 2.7 Under the conditions (M), we define

N(f)=n(x,p,A,f): sz f (vi) = Cais (f,X,p, )

J> (f) JZ(X PJ« f) 7Cdl§(fvx p7 <2P1Vz>

where f : I — R is a function. The functionals f — J;(f) are linear, i = 1,2, and Theorem
2.6 imply that

if f:1 — R is a convex function.
Assume (H;) and (H3-Hs). Then we have the following more linear functionals

I(f) =ds(f-guttp.2) 1= [ FogduCon(Fg.tpi2) 20,
X

J4(f) :J4(t7f7g7:u7p7ﬂ') = /fogd:u7C,Imr(t7f7gmu'7p7)') 207 re [071]7
X
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JS(f) :JS(tafaghuapax) = Cinl (fvgnuvpv)t’) _Cpar(f»f»gaH»P»)L) > O; (S [Oal]v

Jo(f) =Js(t,f g, 4,0, A) = Cpar (t, f,8, 14, P,A) — f /gdu >0; 1€[0,1],
X

h() =Js(f:8) = [ fosan—r | [edn
X X

The log-convexity, exponential convexity and m-exponential convexity and related results
for J7(f) can be found in [36].

2.2.3 m-exponential convexity, mean value theorems
and Cauchy means

We apply the method given in [83], to prove the m-exponential convexity and exponential
convexity of the functionals f — J;(f) fori=1,...,6, together with the Lagrange type and
Cauchy type mean value theorems. The same method is used for Theorem 2.1. Hence the
extension of Theorem 2.2 is as follows.

Theorem 2.9 Assume I C R is an interval, and assume A = {¢; |t € J} is a family of
functions defined on an interval I C R, such that the functiont — [yo,y1,y2; ] (¢t € J) is
m-exponentially convex in the Jensen sense on I for every three mutually different points
yo,y1,v2 € L Let Ji(f) (i = 1,...,6) be the linear functionals constructed in Remark 2.7.
Then t — Ji(¢;) (¢t € J) is an m-exponentially convex function in the Jensen sense on I for
eachi=1,...,6. If the functiont — J;(¢) (¢t € J) is continuous for i = 1,...,6, then it is
m-exponentially convex on I fori=1,...,6.

Proof. The proof is same as of 2.2. O

Similarly, the extensions for Corollary 2.3 and Corollary 2.4 are as follows.

Corollary 2.9 Assume I C R is an interval, and assume A = {¢ | t € J} is a family of
functions defined on an interval I C R, such that the function t — [yo,v1,y2;%] (t € J)
is exponentially convex in the Jensen sense on I for every three mutually different points
vo,y1,v2 € L Let Ji(f) (i = 1,...,6) be the linear functionals constructed in Remark 2.7.
Then t — Ji(¢) (¢t € J) is an exponentially convex function in the Jensen sense on I for
i=1,...,6. If the function t — J;i(¢;) (¢t € J) is continuous, then it is exponentially convex
onlfori=1,...,6.

Corollary 2.10 Assume I C R is an interval, and assume A = {¢, : t € J} is a family of
functions defined on an interval I C R, such that the functiont — [yo,y1,y2; ] (¢t € J) is
2-exponentially convex in the Jensen sense on I for every three mutually different points
yo,y1,v2 € L Let Ji(f) (i = 1,...,6) be the linear functionals constructed in Remark 2.7.
Then the following two statements hold fori=1,...,6:
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(i) Ifthe functiont — J;(¢;) (t € J) is positive and continuous, then it is 2-exponentially
convex on I, and thus log-convex.

(ii) Ifthe functiont — J;(¢) (t € J) is positive and differentiable, then for every s,t,u,v €
J, such that s <u andt < v, we have

us; (Ji, A) <y (i, A) (2.25)
where 1
Ji(9s) \ 57 sEt
‘Il 't ) )
Uy (i, A) = ( (@ Qﬁ(%) (2.26)
exp ( d‘l_(%)‘ ) ,s=1
.for ¢S7¢t S A

The extensions of mean value theorems for the linear functionals J;(f) (i = 1,...,6) are as
follows.

Theorem 2.10 Let Ji(f) (i=1,...,6) be the linear functionals constructed in Remark 2.7
and g € C*[a,b]. Then there exists & € [a,b] such that

1 .
Ji(g) = 58//(5)11' (x*); i=1,..6.
Proof. The proof is same as of Theorem 2.4. O

Theorem 2.11 Let Ji(f) (i=1,...,6) be the linear functionals constructed in Remark 2.7
and g,h € C*[a,b]. Then there exists & € [a,b] such that

= ; i=1,...,6,
Ji(h) 1" (&)
provided that J; (h) #0 (i=1,...,6).
Proof. The proof is same as of Theorem 2.5. O

By the application of Theorem 2.11, the Cauchy means constructed in Section 2.1.4
are generalized for two probability distributions p and A.

Example 2.6 Under the settings of Example 6.1 of [13], we apply Corollary 2.9 to get
the exponential convexity of # — J;(¢) (+ € R) and the monotone functions tv, in (2.26)
become

1
s—t

N

Ji(% .
(Ji((Pt ) ' ’ s 7& 4
s (Ji, A1) = q exp Jf](,'l((fl)?;) — %) ;s =1#0,

exp (48 )15 =1 =0,

Z
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fori=1,...,6.
Suppose Ji(¢;) >0 (t € R), a := min{xy,...,x }, b := max{xy,...,x, }, and let
M, (Ji,Ar) = logus, (Ji,A1);  s,t €R.
Then from Theorem 2.11 we have
a <M, (Ji,A1) <b,

and thus 9, (J;, A1) (s,r € R) are means. The monotonicity of these means is followed
by (2.25).

Similarly, the Examples 2.1-2.4 can also be extended for J;(y;) (r € R) (i = 1,...,6).

2.3 Further Applications To Holder’s Inequality

n
We say that the numbers p; > 0 (1 <i<n)and Y, p; =P,.
i=1

=

Theorem 2.12 [Let p > 1, iJr L — 1 and wi,xi,yi, i=,1,2,3,... be arbitrary sequences
of poistive real numbers . Then under the assumptions of Theorem 2.6 the following in-

equalities hold:
1 1
k-1 q (k=1 P
q p
2 AWyl Aj Wit jXiy
=0 0

1 1
n P n q
P q
D wixi > wiyy
-1 =1 j ;

j=
where i+ j means i+ j —n in case of i+ j > n.
If0 < p < 1 then inequalities sign are reversed in (2.27).

Y
M=

Il
—_

WiX;Yi. (2.27)

Y
M=

Il
—_

Proof. Consider the family of functions f(x) = g(gx—in s#0,1. Clearly f”(x) =x*2 >0
for all x > 0. Putting in weighted version of Theorem (2.14), we get

k=1 $
1 1 n s 1 1 n k—1 .zolj+lpi+jxi+j
— ol > — A1 Dis = @
S(l 75) (Pn prc,) = S(l *S) P, ; (20 ]+1pl+1> k—1
= = VT Zofljﬂptﬂ
j=

| R
> R Y pi(x}) (2.28)

n =1
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e P,
Consider the substitutions s = l, 1—s= o Pi= ,lw’—vl, X; = x—’q in (2.28), we get
P 2 wiy! Yi
OR
n q P
1 wiyi X;
prq q
Zwlvl i=1 Zwlyl yl
=
Z wiy! 1
— 4
kZl Ajti ey Xi” ’
n k—1
= Y
_ q Jj=0 A i+J
n |k 121 wit vl ZI E ]+1W1+]y1+]
] 2 '20 L k—1 wis s
: = 1
.21 w»i’ ! Y X Ajrwie vl A
= i=1j=0 J=0 DI )Lj+lwi+jY?+j
Z Wiy i=1j=0
1
n p 1
W,’ X\ 7
>pg—— (—q) (2.29)
2 le i=1 2 le yl
i=1
2 Wiyl'
i=1
n k—1 q
Since 2] > Aj+1Wl+jthj = 2 le, 2 A= 2] wiy;, we get
i=1j=0 i=
1 —1 p
n ? [ n P 1 n (k-1 jz A’JﬂLlW”erH»j
P Nl ) 4
rq Ellwtxi lezyi > pq—— . 231 E:O)L]Jrlwwrjyﬂrj k—
B B E‘ Wiy AT jZ Ajeiwir i ;
—1
n n 2
> pq Y, wixiyi | > wiy! (2.30)

i=1 i=1

After simplification, we will get (2.27). O

Theorem 2.13 Let p > 1, %Jr é =1 and w;,x;,yi, i =,1,2,3,... be arbitrary sequences

of positive real numbers . Then under the assumptions of Theorem 2.6 the following in-

equalities hold:
k—1

2 Aj1Wig jYit jXitj

1
i=1 i=1 i=1 k—1 q
2 A1+1W1+jyl+j

Q=

n n
2 wix{.’ 2 wiy? . (2.31)
i=1 i=1

1
r
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where i+ j means i+ j—nin case of i+ j > n.
The inequalities in (2.31) are reversed for O < p < 1.

Proof. Consider the substitutions f(x) = x?, p; = wiyl‘-’, Xi = xiyff" in (2.14) and simpli-
fying will give (2.31). m]



Chapter

Cyclic Improvements of
Inequalities for Entropy of
Zipf-Mandelbrot Law

The Jensen’s inequality plays a crucial role to obtain inequalities for divergences between
probability distributions. Divergences between probability distributions have been intro-
duced to measure the difference between them. A lot of different type of divergences exist,
for example the f-divergence (especially, Kullback—Leibler divergence, Hellinger distance
and total variation distance), Rényi divergence, Jensen—Shannon divergence, etc. (see [63]
and [91]). There are a lot of papers dealing with inequalities for divergences and entropies,
see e.g. [32] and [88] and the references therein. The Jensen’s inequality plays a crucial
role some of these inequalities.

We first introduce some important definitions and results used for rest of this Chapter.
The following notion was introduced by Csiszdr in [19] and [18].

Definition 3.1 Ler f:]0,00[ — |0,00[ be a convex function, and let p := (p1,...,pn) and
q:= (41, .-,4n) be positive probability distributions. The f-divergence functional is

I1(p.q) :== Y.qif (%) :
i=1 !

It is possible to use nonnegative probability distributions in the f-divergence func-
tional, by defining

£(0):= lim £(0): 0f<g) = 0; Of(g) - limtf(?), a>0.

—0+

29
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Based on the previous definition, the following new functional was introduced in [38].

Definition 3.2 Ler J C R be an interval, and let f :J — R be a function. Let p :=
(p1,---,pn) ER", and q := (q1, .. .,qn) €]0,0[" such that

Picy i=1.. . n 3.1
qi

Then let

Ir(p.q) = li‘lif (%) .

1

Shannon entropy and the measures related to it are frequently applied in fields like popu-
lation genetics, molecular ecology, information theory, dynamical systems and statistical
physics(see [17, 61].

Definition 3.3 The Shannon entropy of a positive probability distribution p := (p1,. .., pu)
is defined by
n
H(p) := =Y pilog(pi).
i=1

One of the most famous distance functions used in information theory [14, 90], mathe-
matical statistics [50, 92, 51] and signal processing [30, 60] is Kullback-Leibler distance.
The Kullback-Leibler distance [58, 59] between the positive probability distributions

p=(p1,...,pn) and q = (q1,...,qn) is defined by

Definition 3.4 The Kullback-Leibler divergence between the positive probability distri-
butions p := (p1,...,pn) and q = (q1,...,qn) is defined by

D (pllq) = ipt10g<%).

i=1

Definition 3.5 Zipf-Mandelbrot law is a discrete probability distribution depends on three
parameters N € {1,2,...}, g € [0,o0] and s > 0, and it is defined by

1

i;N,q,s) i = ————, i=1,...,N,
f(&N,q,s) T
where
N
H =) —.
N.,q.s kzzll(k+q)s

If ¢ =0, then Zipf-Mandelbrot law becomes Zipf's law.

Zipf’s law is one of the basic laws in information science and bibliometrics. Zipf’s law
is concerning the frequency of words in the text. We count the number of times each word
appears in the text. Words are ranked (r) according to the frequency of occurrence (f).
The product of these two numbers is a constant: r- f = c.
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Apart from the use of this law in bibliometrics and information science, Zipf’s law
is frequently used in linguistics (see [22], p. 167). In economics and econometrics, this
distribution is known as Pareto’s law which analyze the distribution of the wealthiest mem-
bers of the community (see [22], p. 125). These two laws are the same in the mathematical
sense, they are only applied in a different context (see [26], p. 294).

The same type of distribution that we have in Zipf’s and Pareto’s law can be also
found in other scientific disciplines, such as: physics, biology, earth and planetary sciences,
computer science, demography and the social sciences. For example, the same type of
distribution, which we also call the Power law, we can analyze the number of hits on web
sites, the magnitude of earthquakes, diameter of moon craters, intensity of solar flares,
intensity of wars, population of cities, and others (see [80]).

More general model introduced Benoit Mandelbrot (see [65]), by using arguments on
the fractal structure of lexical trees.

The are also quite different interpretation of Zipf-Mandelbrot law in ecology, as it is
pointed out in [79] (see also [29] and [93]).

3.1 Estimations of /- and Rényi divergences
by using a cyclic refinement of the
Jensen’s inequality

In this section, we obtain inequalities for Rényi and Shannon entropies from cyclic refine-
ments of Jensen’s inequality results. Finally, some concrete cases are considered, by using
Zipf-Mandelbrot law.

It is generally common to take log with base of 2 in the introduced notions, but in our
investigations this is not essential.

3.1.1 Inequalities for Csiszar divergence and Shannon entropy
In the first result we apply Theorem 2.6 to Iy(p, q).

Theorem 3.1 Let2 <k <nbeintegers, andlet A := (Ay,..., ) be a positive probability
distribution. Let J C R be an interval, let p:= (p1,...,pn) ER", andlet q:= (q1,-..,qn) €
10,00[" such that

Picy i=1,..n
qi
(a) If f - J — R is a convex function, then

Ir(p.q) = Y aif (Z—)
i—1 i

k—

n 1
>3 Y Ajrigis
i=1 \j=0

|~

= |2 S 32

k-1
) Y Ajr1Pitj i,
f

1
Zofljﬂthﬂ D
= .
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If f is a concave function, then inequality signs in (3.2) are reversed.
(b) If f : J — R is a function such that x — xf (x) (x € J) is convex, then

L, (p,q) = ZPz ( )

=

i=1

k-1 n
, Y Ajr1Pivj dril o,
Jj=0 i=1
<Zk,+lpl+,>f el = el DY RN CR)
= _201j+1qz'+j Yagi | =

j= i—1

Ifx — xf (x) (x €J) is a concave function, then inequality signs in (3.3) are reversed.
In all these inequalities i + j means i+ j — n in case of i+ j > n.

Proof. (a) By applying Theorem 2.6 with C :=J, f :=f,

. qi . Di
Pi—= 7 Vii— —

2‘]1’ qi
i=1

i=1

n

B PR

we have

Sar(2)=(80) 5 ()

bi+j Pitj
2 A’J+ 1 1

qi+j
n n | k=1 it 4 ]q,
=
> Yai |- N Ajiiy f
i

TS0 |
i=1 qi
i=1
k-1 n
) _Zoijﬁpiﬂ Yo,
= =
= 2 <ij+15b+j> — >f| = 2%’-
3 Ajr1Gi+ Yai | =
J=0 i=1

(b) We can prove similarly to (a), by using f :=1id;f.
The proof is complete. O

Remark 3.1 (a) Csiszdr and Korner classical inequality for the f-divergence functional
is generalized and refined in (3.2).

(b) Other type of refinements are applied to the f-divergence functional in [23], [24]
and [4].

(c) For example, the functions x — xlogy, (x) (x > 0, b > 1) and x — xarctan (x) (x € R)
are convex.
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‘We mention two special cases of the previous result.
The first case corresponds to the entropy of a discrete probability distribution.

Corollary 3.1 Let2 <k <nbeintegers, andlet A := (Ai,...,A) be a positive probability
distribution.
(@) Ifq:=(q1,...,qn) €]0,[", and the base of log is greater than 1, then

n n (k=1
72qilog(qi) < - 2 (2 )~j+l‘11+]> log (2 )~j+l‘11+]> <log| - qu (3.4)

i=1 i=1 \j=0 =
2,%
i=1

If the base of log is between 0 and 1, then inequality signs in (3.4) are reversed.
(b)Ifq:=(q1,-..,qn) is a positive probability distribution and the base oflog is greater
than 1, then we have estimates for the Shannon entropy of q

n (k=1 k-1
H(q)<-Y (2 A’j+1‘]i+j> log (2 }“j+1‘1i+1> < log(n).
i=1

j=0 Jj=0

If the base of log is between 0 and 1, then inequality signs in (3.4) are reversed.
In all these inequalities i+ j means i+ j —nin case of i+ j > n.

Proof. (a) It follows from Theorem 3.1 (a), by using f :=1log and p := (1,...,1).
(b) It is a special case of (a). O

The second case corresponds to the relative entropy or Kullback-Leibler divergence
between two probability distributions.

Corollary 3.2 Let2 <k <nbeintegers, andlet A := (Ay,...,A) be a positive probability
distribution.

(a) Let p:= (p1,--.,pn) €)0,00[" and q := (q1,-..,qn) €]0,0[". If the base of log is
greater than 1, then

k-1 n
n i n k—1 'EO}VJLHPH»JI ;pl n
Y pilog (—) >3\ Y Ajripirs | log o | 2log| 57— Y pi. (3.5)
=1 ' =1 \j=0 _Zoljﬁqz‘ﬂ Nagi | !

Jj= i—1

If the base of log is between 0 and 1, then inequality signs in (3.5) are reversed.
(b) If p and q are positive probability distributions, and the base of log is greater than
1, then we have

2 Aj+1pt+j

qu 2 (2 A'j+1pz+j> log 27 > 0. (3.6)

=l 2 l]+1‘]z+}

If the base of log is between 0 and 1, then inequality signs in (3.6) are reversed.
In all these inequalities i + j means i+ j — n in case of i + j > n.
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Proof. (a) We can apply Theorem 3.1 (b) to the function f := log.
(b) It is a special case of (a). O

Remark 3.2 We can apply Theorem 3.1 to have similar inequalities for other distances
between two probability distributions.

3.1.2 Inequalities for Rényi divergence and entropy

The Rényi divergence and entropy come from [85].

Definition 3.6 Ler p:= (p1,...,pn) and q := (qu1,--..,qn) be positive probability distri-
butions, and let o0 > 0, o # 1.

(a) The Rényi divergence of order o is defined by

1 AN
Do (p,q) := 5 — log (Z%(%) ) 3.7)
i=1 i

(b) The Rényi entropy of order o of p is defined by

1 LN
1_a10g (lzlpi ) (3.8)

The Rényi divergence and the Rényi entropy can also be extended to nonnegative prob-
ability distributions.

If o« — 11in (3.7), we have the Kullback-Leibler divergence, and if o — 1 in (3.8), then
we have the Shannon entropy.

He (p) =

In the next two results inequalities can be found for the Rényi divergence.

Theorem 3.2 Let 2 < k < n be integers, and let A := (Ay,...,Ax), p:= (p1,-..,pn) and
q:=(q1,---,qn) be positive probability distributions.
(a) If0< o < B, a, B # 1, and the base of log is greater than 1, then

B—1
k—1 a—1 a1

Pi+j

1 no (k=1 E‘O)Lj“p"*j(qi_x)
Do(p.q) < g—ylog | 3, ( X Ajsipisj = (3.9)

=EA=0 Y Ajt1Pitj

=0
< Dg(p,q)

The reverse inequalities hold if the base of log is between 0 and 1.
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(b) If 1 < B, and the base of log is greater than 1, then

Di(p.q) = D(plq) = 3 pilog (’q’—)
i=1 !

1 Yl (B-1) z A,Hp,ﬂlog(qﬂ)

< - log | ) (2 /1j+1pt+j> exp k

1
~\ &
=V Y Ajy1Divj
Jj=0

where the base of exp is the same as the base of log.
The reverse inequalities hold if the base of log is between 0 and 1.
(c)If0 < a < 1, and the base of log is greater than 1, then

N Ajripivs — <Di(p,q)

) <
«(p.q) = o— 1Z =
Y Ajr1pivj

=0

i=1

; o—1
( _ ) ]ZO)L]HPzﬂ (qﬂ)
log

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j —nin case of i+ j > n.

Bt
Proof. (a) By applying Theorem 2.6 with C :=]0,00[, f :]0,00[ = R, f(¢) :=taT,

o—1
o (Pi) .
vii=|— , i=1,...,n,
qi

5E)) (@) :

o—1 o1
n _ ]2 A.j+1pz+j (qij) n i B-1
<y (2&,+1pz+,> = <Y p (_l)
i=1 0

i= Y Ajy1Di+j
=t

we have

(3.10)

if either 0 < x <1< P orl<a<p, and the reverse inequalities hold in (3.33) if
0 < a < B < 1. By raising the power ﬁll,
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1
B-1\ B—T

T kE/l 1Pi ( H)OH -
n 2i\“ o1 n (k- = Gl A
Z‘]z ( > 2 ZA']Jrlpth 1

=1
! Y Ajr1pivj
=t

(&) ()

Since log is increasing if the base of log is greater than 1, it now follows (3.9).

If the base of log is between 0 and 1, then log is decreasing, and therefore inequality
signs in (3.9) are reversed.

(b) and (¢) When o = 1 or B = 1, we have the result by taking limit.

The proof is complete. |

IN

IN

Theorem 3.3 Ler 2 < k <n be integers, and let A := (A1,...,A), p:= (p1,...,pu) and
q:=(q1,--.,qn) be positive probability distributions.

If either 0 < a0 < 1 and the base of log is greater than 1, or 1 < « and the base of log
is between 0 and 1, then

N o—1
n o [k=1 piri\ 27! 2 Ajt1Pitj (Wj)
+ Jj=0
<ij+1pl+j( d j) )10g 1 SDOC<p7q)
i qdi+j

; Aj+1Ditj

a—1

<Di(p,q) 3.11)

j
_ ]§OA]+1pl+j (qﬂ)
2 Aj+1pitj | log 1
= Y Ajr1pivj
=0

n
oclZ

i=1

If either 0 < a0 < 1 and the base of log is between 0 and 1, or 1 < o and the base of
log is greater than 1, then the reverse inequalities holds.
In all these inequalities i + j means i+ j — n in case of i+ j > n.

Proof. We prove only the case when 0 < or < 1 and the base of log is greater than 1, the
other cases can be proved similarly.

Since 1 < 0 and the function log is concave, we have from Theorem 2.6 by choosing
C:= ]O,oo[ f:=log,
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1 n pl o—1
Dqo(p.q) = log | pi| =
o—1 = qi e

; a—1
) EO/I J+1Pi+j (qﬂ)
log

37

that

< — a—1 2 <2 )L]+1pl+j

Py
Y Ajr1pitj
Jj=0

< Q%Zpllog <(Z’) 7 ) =iilpi10g (%) =Di(p.q)

and this gives the desired upper bound for D (p,q).

Since the base of log is greater than 1, the function x — xlog (x) (x > 0) is convex, and
therefore ﬁ < 0 and Theorem 2.6 imply that

wou-sie(fo ()
e B )l )

i=1

Y

1
(a— l)il’i (%)OH i

i=1

a—1
2 A.j+1pz+j ( lﬂ)

n k—1
Y Ajipit | %
—1 \j=0

1

k—

a—1
Z A.j+1pz+j ( lﬂ)

qi+j

log
Z Aj1Pisj Z Ajr1Pitj
=0 =0

YA oL P ol
1 n [k—1 it o—1 Fr j+1Pi+j it
n a1 2 Z)L]+1pl+j (q +j) log
_ . Pi 1 0 J
(OC l)gpz(q.) =1\J=
=

S

qi

i)

which gives the desired lower bound for Dy (p, q)-
The proof is complete.
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Now, by using the previous theorems, some inequalities of Rényi entropy are obtained.
Denote % = (%, U %) be the discrete uniform distribution.
Corollary 3.3 Ler 2 < k < n be integers, and let A := (Ay,...,A) and p := (p1,...,pn)
be positive probability distributions.

(a) If0< o < B, a, B # 1, and the base of log is greater than 1, then

k-1 " b
1 n k-1 jEO)LjJrlpiH
Hy (p) > =B log 2 2 Aif1Ditj o > Hg (p).
- i=1 \j=0 A L
jH1Pi+j
j=0

The reverse inequalities hold if the base of log is between 0 and 1.
(b) If 1 < B, and the base of log is greater than 1, then

H(p) = 3 pilog (1)
i—1

=

k-1
1 n (k=1 (B=1) X Ajs1pi+jlog(npit;)
( j) eXp

o
ZlOg(”)*‘mlOg 2 2 Aj+1Pit —

=1 =0 Zofljﬂptﬂ
iz

> Hg (p),
where the base of exp is the same as the base of log.

The reverse inequalities hold if the base of log is between 0 and 1.
(c) If0 < a < 1, and the base of log is greater than 1, then

k=1

1 o [kl .zoj'jﬂpﬁj

j:

Hy (p) > T—a (2 /1j+1Pi+j> log e — H(p)
=V ZO)'HIPiJrj

=

The reverse inequalities hold if the base of log is between 0 and 1.
In all these inequalities i+ j means i+ j —nin case of i+ j > n.

Proof. 1If q = %, then

1 _ 1 c a—-1_o | _ 1 c [0
Da(p,ﬁ)a_llog<2n pi*| =log(n)+——log izzlpi :

i=1

and therefore
1
Hy (p) =log(n) — Dq (p, H) : (3.12)
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(a) It follows from Theorem 3.2 and (3.12) that

He (p) =log(n) — Dg (p, %)

k—1 " =
1 L8 k—1 ]Z‘O)Ljﬁpiﬂ'
> log(n) — B—llOg nP- 2 Z%'Hpiﬂ' P E—
=1A=0 Y Aj+1Ditj
j=0
1
= log(n) =Dg (P, | = Hg (p).
(b) and (c) can be proved similarly.
The proof is complete. |

Corollary 3.4 Let 2 < k < n be integers, and let A := (Ay,...,Ar) and p := (p1,-..,Pn)
be positive probability distributions.

If either O < o < 1 and the base of log is greater than 1, or 1 < o and the base of log
is between 0 and 1, then

1 n
——— Y p{log(p;)

Y k-1
P o
= 1 n (k-1 ]EO/IjHPHj
>log(n) —————x 2 | X, Ajipfh; |log | n%~ o | = Hu(p)
(a—1) Y pr =10 Y Ajr1pitj
i=1 J=0
k-1
1 k1 20’1#11’%
e — 2 ( A'j+1pi+j> log ,1647 > H(p)
=0 '20/1,'+1Pt+j
=

If either 0 < o0 < 1 and the base of log is between 0 and 1, or 1 < o and the base of
log is greater than 1, then the reverse inequalities holds.

In all these inequalities i+ j means i+ j — n in case of i+ j > n.

Proof. We can prove as Corollary 3.3, by using Theorem 3.3. O

We illustrate our results by using Zipf—-Mandelbrot law.
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3.1.3 Inequalities by using the Zipf-Mandelbrot law

Corollary 3.5 Ler p be the Zipf-Mandelbrot law as in Definition 3.5, let 2 < k < N be
integers, and let A == (Ay,...,A) be a probability distribution. By applying Corollary 3.3
(c), we have:

If0 < o < 1, and the base of log is greater than 1, then

s Ylog(i+q)
= HNaani:I (i+q)s

The reverse inequalities hold if the base of log is between 0 and 1.

In all these inequalities i+ j means i+ j —nin case of i+ j > n.

Corollary 3.6 Ler p; and py be the Zipf-Mandelbrot law with parameters N € {1,2,...},
q1, q2 € [0,00[ and sy, sy > 0, respectively, let 2 < k < N be integers, and let A :=
(A1, ..,Ak) be a probability distribution. By applying Corollary 3.2 (b), we have:

If the base of log is greater than 1, then

(l+Q2) HN!]sz)
1P2 lo
D(pi|2) le (i+q1)" HN,qlm g((l"'ch) 'HN,thu

'S g (Y
J l+/+q1> HN,ql.sl

N
1 j=0
> lo >0.
—2<2 " z+j+ql)“HN,q1,sl> 1S -

A ——— 1
]go J+1 (i+j+q2)° ZHy, 4,52

(3.13)

If the base of log is between O and 1, then inequality signs in (3.13) are reversed.

In all these inequalities i + j means i+ j — n in case of i+ j > n.
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3.2 Arefinement and an exact equality condition
for the basic inequality of f-divergences

Measures o