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Abstract. Despite a wide spread applications of Zipf-Mandelbrot law, there is quite
small amount of results concerning analytical properties on distribution law. On
the first stage, we examine some monotonicity properties of the law, we derive the
whole variety of its lower and upper estimations. We then further refine our results
using some well-known inequalities such as Holder and Lyapunov inequality.

On the second stage we consider the case when total mass of Zipf-Mandelbrot
law is spread all over positive integer, and then we come to Hurwitz {—function.
As we show, it is very natural first to examine properties of Hurwitz {—function
to derive properties of Zipf-Mandelbrot law. Using some well-known inequalities
such as Chebyshev’s and Lyapunov’s inequality we are able to deduce a whole
variety of theoretical characterizations that include, among others, log-convexity,
log-subadditivity, exponential convexity.

On the third stage, we generalize Zipf-Mandelbrot law using maximization of
Shannon entropy, as we get hybrid Zipf-Mandelbrot law. It is interesting that ex-
amination of its densities provides some new insights of Lerch’s transcendent.
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1.1 Some classical inequalities
and Zipf-Mandelbrot law

1.1.1 Introduction

ForNeN, ¢g>0, s>0, k€ {1,2,...,N}, Zipf-Mandelbrot probability mass function is
defined with

1/(k+q)*
f(k7N7Q7s):¥a (11)
N.,q.s
where
N
Hygs= ) —, (1.2)
o ;(lw)s

NEN, g>0,s>0, ke{l,2,...,N} (see [5]).

Proposition 1.1 Fors>¢>0

(Nf(kN.q.5))'"* < (Nf (kN q.0))'" (1.3)
Proof. In [6] it is proved, after W is interpreted as power mean depending on s, that
s+— Nf(k,N,q,s) is a decreasing function. ]
Denote m = ,{%‘(’1, M= ﬁ—f’] and observe m =min{x;: i=1,..., N}, M =max{x;: i =
1,...,N}.
Further, for s, # > 0 let
M —m®
‘LL - Mt _ mt
and
1 11
INT th_ tMs 571
B=(8) . (1.4)
’ s (I—s/t)(M' —m")

Theorem 1.1 For probability mass function (1.39) we have following inequalities, for
O<t<s

a)
N~
B,

(f(k,N,q,0))"" < f(k,N,q,5) <NT7U(f(k,N,q.0)"",  (1.5)

b)
Mt o mt MS o ms
- <N (M'm®—Mm"). (1.6)
f(k,N,q,s)  f(k,N,q.t) ( )
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Proof.
a) It follows, for 0 <t < s,

(NF(k,N,q, ) < (Nf(k,N,q,0))"",

hence
f(k,N.q,5) <NT71(f(k,N,gq,0))"".

Now we prove left hand side inequality. First, observe here that m = min{x;: i=1,...,N},
M =max{x;: i=1,...,N}.
Using Beesack inequality (see [2], p. 334; [13], p. 110)

MY (e ) < BroM (i), 0 <1 <5, (17)
where
B 7(“_[)% mth*ths ly*,l
s (1—s/t) (M —m)
It follows

1]

f(k,N,q,s) > ]\gs (f(kav%t))S/l'

1,5

b) From Goldman inequality (see [13], p. 109.),0 <t <,
(M — ) (M) (x ) Y — (M —m®) {M) ()} < M'mi® — MP i
Hence, for 0 <t < s,

Mt 7mt MS 7ms .
— <N (Mm'—Mm').
f(k,N,q.s)  f(k,N.q,t) ~ ( )

Remark 1.1 Another type of a lower bound for f(k,N,q,s) can be derived from another
Beesack inequality (see [2], p. 336; [13], p. 111):

My (rr) < Gis+ My (1),

where

concluding

=z
—
o
+
=
Ky
=
=
s
N



4 1 Z1IPF-MANDELBROT LAW, PROPERTIES AND ITS GENERALIZATIONS

1.1.2 Zipf law estimations

If we take g = O in probability mass function (1.39) we get Zipf law with probability mass

function I
k,N = — 1.8
f(k,N,s) KHy, (1.8)

where
Hys= ) —. (1.9)
For s = 1 Hy = Hy,1 we get N—th harmonic number.
1° (caset = 1)
Using Proposition 1.2 forg =0, t =1 and s > 1 we have

(NF(k,N,5))5 < Nf(k,N,1)

ie. .
f(k,N,s) < CHY, (1.10)
We can derive further bounds using well-known inequalities for harmonic numbers.
Using Schléomlich-Lemonnier inequalities (see [12], p. 118)
In(N+1)<Hy<1+In(N+1) (1.11)
and (1.10) we get
fk,N.s) < NS In (N +1).
Also, using (see [12], p. 120)
r(1—(N+1)"") < H, < r(N'"—1)+1 (1.12)

we have
F(k,N,s) < N (rk(1 — (N+1)"1/r))=s

Similarly, we have a list of inequalities with Euler constant ¥ = limy_, (Hy — InN) (see
[12], p. 120):

Y+InN+ 55 — gz <Hy <y+InN+ 55 (1.13)
y+1nN+2(A}—+U<HN<y+1nN+2(N—1l) (1.14)
Y+In(N+1/2)+ 24N+1)2 <HN<y+1n(N+1/2) T (1.15)

7
<y+In(N+1/2)+ 24N+1/2) T 960N+

Now, using (1.10) and left-hand side inequalities in (1.13)-(1.16) we get

—s
f(k,N,S) < kiSNS?] ('}’+11’1N+ % — 8]W>
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-5
Fk,N,s) < kSN (y+ InN + Z(,J—H))

FUN,$) < KON (y+In(N+1/2)+ 5k )

f(k,N,s) <k SN°~! (}”r In(N+1/2)+ sy7730 — —96(ZN4)

Similarly, using Proposition 1.2 forg =0, t =1 and 0 < s < 1 we have
(Nf(k,N,5))* > Nf(k,N,1)
i.e.
s—1
KSHY
and then using (1.13)-(1.16) we will get lower bounds

f(kavs) Z

fk,N,s) > kSN (y+InN+ 4

f(k,N,s) > kSNs—1 <y+1nN+ 2(}\]1—7])) B

—s
f(kavs) >kisNSil (Y+1n(N+1/2)+ﬁ>

f(k,N,S) >kfsNS*l (’}/+1H(N+ 1/2)+ 24(N<:l/2)2 - 960(/\3+1)4> ‘

2° (caset = 2)
Using Proposition 1.2 for g =0, t =2 and s > 2 we have

(NF(k,N,5))* < NF(k,N,1) = (Nk~2Hy,)?

i.e.
FUk,N,s) <NITTKTH 3.

Appling Proposition 1.2 forg =0, t =2 and 0 < s < 2 we get reversed inequality

FN,s) > N3 Hy 3.
Now we use the next estimations for Hy » (see [12] p. 121-122; [?])

n?  N+1/2 i n? N+1/2

— T cHy,<———— 1 1=0324555
N2™"6 TN2AN+1/3

6 N:+N+d
and (see [12] p. 122)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)
(1.22)
(1.23)
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6
Hy. < gy N> 1 (1.24)
(1.25)

Hy,<2—%,N>2.

Hence, for s > 2

and for0 < s <2
R 2 N+1/2 s
FUN,s) > NTs (B — )8 N> s

Sl (1) 73y s
1y
N

(ST

s ( , N>2.

1.1.3 Zipf law and Goldman inequality
From Goldman inequality we derived (1.6). Forg =0, 0 <t < s, (now m=k/N, M = k)

j:(/:;v%s); - ]}(;](V%t)) SN("[ (1%)—" (%)I) (1.26)

1° for s >t = 1 we have then

k_j% _ks_(%)s<N B E s_ksﬁ
- N N

f(k,N,s)  f(k,N,1)

ie.
1 NS~H(N —1)
kN,s) > —- . 1.27
FUN-$) 2 55 N (o= 1)y (1.27)

Using (1.13)-(1.16) we get the following sequence of lower bounds for f(k,N,s), s > 1,

L . stl(N,I) .
f(k,N,s) > 5 N=Ns+(N*=1) (y+InN+ 55 ) N>t
s—1
kN,s) > - o N
f( ) > g N—Ns+(Ns—1) Y+lnN+ﬁ>



1.1 SOME CLASSICAL INEQUALITIES AND ZIPF-MANDELBROT LAW 7

NSTH(N—1)

k,N,s) > - N
f( S) k N*N‘X‘F(N‘yi]) ('y+ln(N+l/2)+ﬁ>
s—1
FUN,s) > L S Ak
N—N5+(Ns5—1) <Y+IH(N+1/2)+24(N+11/2)2 7m>

2°for0 <t <s=11in(1.26)

1 N-YN-1)
N—N'+(N'—1)Hy~
Using (1.13)-(1.16) we get the following sequence of upper bounds for f(k,N,z), t < 1,

f(k,N,t) <

(1.28)

~1
kN,t) < L. N (-1) N>1;
f ) <w NfN’+(N’71)<y+lnN+ﬁfﬁ>7
s—1
k,N,t) < &- N (N—1) N> 1;
£ ) <7 N=N*+(N5=1) (y+nN+ 5757y )
t—1
FUN.1) < 4 e N>
NfN’+(N’71)<y+ln(N+1/2)+m>
t—1
f(k,N,t) < & N (v-1) N> 1.

N—N'+(N' 1) <y+ln(N+l/2)+mf m>

3° Fors > ¢ = 2 in (1.26)
k2_(1%)2 ks_(]%)s 5 kS \ k 2
FENs) TN, ~ N\ (ﬁ) o (N)

1 N2(N*—1)
kN,s) > —
f( R ,S)_ 5 N7N5'71+(NS*1)HN,27

Combining (1.30) with (1.20), (1.24) and (1.25) we get the sequence of inequalities

ie.

N> 1. (1.29)

N“2(N?-1)

_ 2 N+12
N—N* 1+(NS*1)<%7N2+N+/|/3>

1 .
f(k7N7S)>kT' , N> 1;

) NS2(N2—1)
R v ()

NST2(N2-1)
N-N=T+(Ns—1)(2— %)

1
f(k7st) 2 3

, N>1;

1
f(k,N,s) > k- N >2.

4° Fort > s=121n (1.26)

oS¢ (1) -2 (1))
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1 N'72(N?—1)
K N—N-14 (N —1)Hya

Combining (1.30) with (1.20), (1.21), (1.22) and (1.23) we get the sequence of inequalities

fk,N,1) <

,N>1. (1.30)

=2 (N2
FUN.1) < & oy
NiNtfle(N[*l)(%iNzﬁ»Ner)
fkN,s) < & NN 1) N>1
IEAR] — K -1 8 : , ’
N—N? +(N’*‘)<§’NT@)
3
=2 (Nt
flN) < g ——E o N> 1.
Nfo*1+(N’*‘)<'8*3’N+3)
3
] N2Z(NT—1
FUN ) < - oy
NfN”'+(Nt7])<§7N+72>
3

1.1.4 Further bounds via Lyapunov and Holder inequality

Theorem 1.2 For probability mass function (1.39) we have the following inequality, for
O<r<s<t

[Nf(k’N’CIat)]7 — [Nf(k’N’q’r)]7
[Nf(kaqut)]i - [Nf(k,N,q,S)]7

Proof. Using Lyapunov inequality (see [12], p. 34, [13] p. 117). For0 <r <s <t

1 N k+q s t—r 1 N k+q N\ s | N k+q N
(N;;(uq)) S(NIZI(HC]) ﬁ%(Hq) (1.32)

We can rewrite this as

s@t—r)
= r(t—s)

~i=| ==
wl=| S

(1.31)

INF(N, .9~ < {INf (N g0 77} {INF N g.0) 77 ) (1.33)

Applying A-G inequality on right-hand side of (1.59) we have

NS (N, < S NN g, 7+ S NS (N g.0)]
which we can rewrite as
INF(k,N,q,0)) 7 — INF(N,g,1)] T st —r
INF(k,N,q,1)] 7 — [NF(l,N,g,)) s 7=s
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Theorem 1.3 For a > 1, let (o, B) be a pair of Holder conjugates. Then for r, s > 0 we
have

FUN, g s+1) > f (k,N,q,50) % f (k,N,q,rB) . (1.34)

,
Proof. Using Holder inequality for sequences {(H—q> ci=1,....N } and

i+
k+q\’ o
{(ﬁ) :i:l,...,N},wehave

§<k+q)r+s< i(k"'Q)ra /o i(k‘f'q)#} 1/B
Si\itq “\S\itg Si\itq

ie.
1 _1
(f (kN g,5+1) " < f (kN g,50) " f (k,N,q,rB) P .
O
Let
(k+ )Srg
—L , so>rf
m={4 \Vta L (1.35)
(lﬁ—g) , so<rf
and
k+ =
= , sa>rf
M= (”4> L (1.36)
(%) , soL<rf.
Theorem 1.4 For a > 1, let (o, B) be a pair of Holder conjugates. Then for r, s > 0 we

have
M—m mM% — Mm% MY% —m?%

+ < ,
f(k,N.q,s0)  f(k,N,q.rB) ~ f(k,N,q.r+s)
where m and M are defined with (1.35) and (1.36) respectively.

(1.37)

Proof. Follows from a conversion of the Holder inequality and a discreet version of the
linear functional in Theorem 4.14, [13], p. 114, applied for sequences

r N
{<1f+q) : izl,...,N} and {(’ﬂ) : i:l,...,N}.
1+q 1+q

Another type of conversion of the Holder inequality is given in [13], Theorem 4.16, p.
115. Similarly, as in the proof of Theorem 1.4, using discreet version of a linear functional,
we get the next theorem.

O

Theorem 1.5 Under the same assumptions as in Theorem 1.4, the following result holds
1
o @B (MY —m%)

: - (f (k.N.g,50))% (f (k.N.q.rB))P .
(M —m)a (mM* — Mm®)PB

(1.38)

f(k,N,q,r+s) <
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1.2 Analytical properties of Zipf-Mandelbrot law and
Hurwitz {—function

ForNeN, ¢>0,s>0, ke {1,2,...,N}, we can rewrite Zipf-Mandelbrot law (proba-
bility mass function) in the following form

1/(k+q)°
f(k,N,q,s) = =, (1.39)
( ) ¢(N,s,9)
where
N
CN,S,(] = . y (140)
( ) i—1 (l+61)s
NeN, g>0,s5>0, ke {1,2,...,N}. If total number of words N tends to infinity we
denote A )
1/(k+q)*
flk,q,s) = ——— (1.41)
(kq.5) £(s,q)
where
i 1
C(s,q9) =D, — (1.42)
(:9) Z{ (i+q)

we recognize as Hurwitz {—function. This infinite case, when total mass is spread over
all set of positive integers, particularly, is studied in [9]. Note here, that we use more
suitable version of Hurwitz ¢ function (see also [1]), since in the classical definition sum
starts from zero and ¢ > 0. However, this fact does not alter our conclusions about Hurwitz
{—function.

The are also quite different interpretation of Zipf-Mandelbrot law. As it is pointed
out in [11] (see also [3], [15]), parameters in (1.39) can be interpreted in the following
way: N is the number of species present and the parameters ¢ and s have an ecological
interpretation: g represents the diversity of the environment and s the predictability of the
ecosystem, i.e. the average probability of the appearance of a species.

1.2.1 Monotonicity properties

As starting point, we use the next proposition on inequalities for sums of positive order
([12, pp. 361, [13, pp. 165]).

Proposition 1.2 [fa; >0, i € Nthenfor0 <t <s

(ia?) S < (iai) . (1.43)
i=1 i=1
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Theorem 1.6

i) The function s — [E(N,s,q)]"/* is decreasing i.e. fors >t >0

[EN,5.9)]'* < [S(N.2,9))')"

i) The function s — [f(k,N,q,s)|"/* is increasing i.e. fors >t >0

[F(k,N,q,9)]Y* > [(f(k,N,q,0)]"/".
iii) The function s — [{(s,q)]"/* is decreasing i.e. fors >t >0
S5, < [8(t.q)"".

iv) The function s — [f(k,q,s)] s s increasing i.e. for s >t >0

£k, q8)]' > [(f(l,q,0)]'"

Proof.
i) We use the Proposition 1.2, for

ii) Follows from i)-part and

1 N (k+q)“'
— - = (k+q)’C(N,s,q). (1.44)
PN~ 2 \irg) ~*FaeNsg)
iii) Use Proposition 1.2 for a; = ﬁ ieN.

iv) Follows from iii)-part and

L (k+qr () (1.45)
= q S,q). .
f(k,q,s)

O

Theorem 1.7 The function
s (Nf(k.N,q,5))"/ (1.46)

is decreasing i.e. for s >t >0

(Nf(k,N,q.5)"* < (Nf(k,N,q,0))"/". (1.47)
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Proof. From (1.44) it follows

1 1
Nf(k,N.q,s) N ;

li(k“’)S
NS \itq

Denote x; = ﬁ—;’, i=1,...,N. Then the right-hand side of (1.49) is the power mean

k+gq s
(tra), s

ie.
1/s

(Nf(k,N,q,s)) "/ = (1.49)

MI[\;] ()Cm) =

Using well-known fact, that s — M 1[5] (x1v) is increasing function (see for example [12, 13])
we conclude that the function '

s (NF(k,N,q,5))"/* (1.50)

is decreasing. ]

1.2.2 Log-convexity and exponential convexity

Let us recall well-known Lyapunov inequality, for sequences ([12, pp. 34], [13, pp. 117]).

Proposition 1.3 Ifa; >0, i € N, thenforO<r<s<t

() <z (

If we set a; = ot i€ Nin (1.51) we get

DM s

a§> : (1.51)

Il
_

Corollary 1.1 Forl <r<s<t

™ (s.q) <L ()87 (t,9)- (1.52)

In the next theorem we prove, log-concavity of s — f(k,N,q,s) and log-convexity of
s E(5,9).

Theorem 1.8 Let A € (0,1).

i) ForO<r<t,

SN Ar+(1=A)t,q) < CH(N,rq)" " (N,1,q).



1.2 ANALYTICAL PROPERTIES OF ZIPF-MANDELBROT LAW... 13

ii) For 0 <r<t,
(FkN, g, Ar+ (1= A)0) " < (f(k,N,q,r) " (f (kN q,0) "2
iii) For1 <r<t,
C(Ar+(1—A)t,q) < C*(rng)C" *(1,q).
iv) Forl <r<t,
(Flkg, Ar+(1=200)"" < (f(kig,r) ™ (flkig0)) M.

Proof.
i)ForO<r<tand A € (0,1) we set

ands=Ar—+ (1 —A)tin (1.51):

N s \AHI=AN T N /1N Ae=r) sy r\ 1=A)=)
— < — .
(,Zl(iﬂl) ) _<,Z1(i+61) ) (;%(lw))

ii) Follows from (1.44) and i)-part.

iii) We set a; = 7 and s = Ar+ (1 = A)r in (1.51).

iv) Follows from i1i)-part and (1.45). O
We can conclude even more since this result can be extended to exponential convexity

(4].
Definition 1.1 A function h: I — R is exponentially convex on an interval I C R if it is

continuous and
Xi+x
2 &i&jh ( ‘ ’) >0
i,j=1

forall n € N and all choices & € R, x;€l,i=1,...,n

Theorem 1.9 The function s — {(s,q) is exponentially convex function on (1,00).
Proof. Foragivenn e Nlet &, €R, s, € (1,0) (m=1,...,n) we have

7+ Sm
2 &1&m¢ (l ,61) = 2 élém S — (1.53)
I,m=1 I,m=1 i=l (i+q)” 2
= 2 2 &1ém— (1.54)
i=11m=1 (i+q)~ 2
=) n 2
=3 (z é) >0. (1.55)
i=1 \m=1 (i+q) 2

Since the function s — (s, ¢) is continuous function on (1,0), we conclude its exponential
convexity on (1,e0). O

Using (1.45) we have also the next corollary.



