Chapter

Basic results and definitions

1.1 Steffensen’s inequality

Since its appearance in 1918 Steffensen’s inequality has been a subject of investigation
by many mathematicians. The book [82] is devoted to generalizations and refinements of
Steffensen’s inequality and its connection to other inequalities, such as Gauss’, Jensen-
Steffensen’s, Holder’s and Iyengar’s inequality.

In this section we recall some important generalizations and refinements of Steffensen’s
inequality.

The original version from [85] has the following form.

Theorem 1.1 Suppose that f and g are integrable functions defined on (a,b), f is non-
increasing and for eacht € (a,b) 0 < g < 1. Then

[ swas [ ssor< [ o (L.

where

A :/bg(t)dt. (1.2)
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Proof. The proof of the second inequality in (1.1) goes as follows.

[ i [ rosa= [ 1 -gwirwa- [ rgoar

+A

a+A b
> flatd) [0 =g~ [ f0)s)a
~staa) [a= [ s - / | g

+A

f(a+/1)/H dtf/ £0)
- Fla+ 1) — f(t)]dt > 0.

The first inequality in (1.1) is proved in a similar way, but it also follows from the second
one. One merely sets G(r) = 1 —g(¢) and A = f: G(t)dt. Since 0 < g(¢) <1 on (a,b)
implies 0 < G(¢) < 1 on (a,b) and b —a = A + A. Using the second inequality in (1.1) we

obtain
b a+A
/ 060 < [
b—A

f WM—gOde< [ ft)ar,

[ s [ Af(t)dt < [ 10swa
[ swa< [ s

which is the first inequality in (1.1). O

Hence,

Mitrinovi€ stated in [48] (see also [82, p. 15]) that inequalities in (1.1) follow from the
identities

a+A b
[ swar= [ s

a+A
:/a [F(t) — fla+ M) dt—i—/ flatA)— fO)lg)dr (1.3)

and

= [0 s aswars [ -0 - @l -gwla 14
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Applying Steffensen’s inequality to appropriate functions, in [45] Masjed-Jamei, Qi
and Srivastava obtained the following Steffensen type inequalities:

Theorem 1.2 [f f and g are integrable functions such that f is nonincreasing and

o 1 (o} 1
—ba(l—a)ﬁg(x)fl_ba(l—a) (1.5)

on (a,b), where q # 0 and

b
o= q/ g(x)dx,

then

[ s 1-2) o o
< [ a7 (1-2) [y

The inequalities (1.6) are reversed for f nondecreasing.

(1.6)

Identities (1.3) and (1.4) are starting points for researching the conditions of Stef-
fensen’s inequality and eventually changing them. Milovanovi¢ and Pecari¢ in their paper
[47], using integration by parts in identities (1.3) and (1.4), obtained weaker conditions
on the function g. Vasi¢ and Pecari¢ in paper [87] showed that this weaker conditions are
necessary and sufficient. Hence, we have the following theorem.

Theorem 1.3 Let f and g be integrable functions on [a,b] and let ). = [” g(1)dt.

(a) The second inequality in (1.1) holds for every nonincreasing function f if and only
if
X b
/ g()dt <x—a and / g(t)dt >0, foreveryx € [a,b]. (L.7)
a JX

(b) The first inequality in (1.1) holds for every nonincreasing function f if and only if
b X
/ g(t)dt <b—xand / g(t)dt >0, foreveryx € [a,b]. (1.8)
X a

Using identities (1.3) and (1.4) and integration by parts, Pecari¢ in [55] also proved
conditions for inverse inequalities in (1.1).

Theorem 1.4 Let f: 1 — R, g:[a,b] — R ([a,b] C I where I is an interval in R) be
integrable functions, and a+ A € I where A is given by (1.2). Then

[ swar< [ rosa
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holds for every nonincreasing function f if and only if
X b
/ g(t)dt >x—a, forx € [a,a+A] and / g(t)dr <0, forx € (a+A,b],
a X

and0< A <b—a;

or
X
/ g(t)dt >x—a, forx¢€la,b),
a
and A >b—a;
or
b
/ g(t)dt <0, forx¢ a,b)
X

and A < 0.

Theorem 1.5 Let f: 1 — R, g:[a,b] — R ([a,b] C I where I is an interval in R) be
integrable functions, and b — A € I where A is given by (1.2). Then

b b
| s> [ roga
b—A a
holds for every nonincreasing function f if and only if
X b
/ g(t)dt <0, forx € [a,b—A] and / g(t)dt >b—x, forxe (b—A,bl,
a X

and0< A <b—a;

or
b
/ g(t)dt >b—x, forx¢la,b],
X
and A > b —a;
or .
/ g(t)dt <0, forx € la,b)
a
and A < 0.

In 1982 Pecari¢ proved the following generalization of Steffensen’s inequality (see
[56D).

Theorem 1.6 Ler h be a positive integrable function on [a,b] and f be an integrable
function such that f/h is nondecreasing on [a,b]. If g is a real-valued integrable function
such that 0 < g < 1, then

b a+A
[ r0ga= [ sy (19)
a a
holds, where A is the solution of the equation

a+A b
/ h(r)dt = / h(r)g(t)dt. (1.10)

If f/h is a nonincreasing function, then the reverse inequality in (1.9) holds.
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Theorem 1.7 Let the conditions of Theorem 1.6 be fulfilled. Then
b b
[ roginar< [ s
a b—A
where A is the solution of the equation
b b
/ h(t)dt:/ h(t)g(t)ds. (1.11)
b—A a

For ii(x) = 1 we have Steffensen’s inequality.
In [46] Mercer proved the following generalization of Steffensen’s inequality.

Theorem 1.8 Let f,g and h be integrable functions on (a,b) with f nonincreasing and
0<g<h. Then

b b a-+A
[ ronnac< [ rwsoa < [ oo, (112)
where A is given by

a+A b
/ h(r)dt = / g(t)dr. (1.13)

Wu and Srivastava in [93] and Liu in [44] noted that the generalization due to Mercer
is incorrect as stated. They have proved that it is true if we add the condition:

bh dt = ’ d 1.14
| nodr= [ stwar (1.14)

As proven by Pecari¢, Perusi¢ and Smoljak in [61], a corrected version of Mercer’s
result follows from Theorems 1.6 and 1.7, and is stated as following.

Theorem 1.9 Let I be a positive integrable function on |a,b] and f,g be integrable func-
tions on [a,b] such that f is nonincreasing on |a,b] and 0 < g < h.

a) Then
b a+A
/a f(t)g(t)dt < /a F(0)h(t)dr,
where A is given by (1.13).

b) Then
b b
smod < [ ras(ar,

b—A

where A is given by (1.14).

In [46] Mercer also gave the following theorem.
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Theorem 1.10 Let f,g,h and k be integrable functions on (a,b) with k > 0, f/k nonin-
creasing and 0 < g < h. Then

b a+A
| e < [ ron@ar,
where A is given by

a+A b
/ h(e)k(r)di = / g(k(1)d. (1.15)

As showed in [82, p. 57] Theorem 1.10 is equivalent to Theorem 1.6.

Next, we recall a corrected and refined version of Mercer’s result given by Wu and
Srivastava in [93].

Theorem 1.11 Let f,g and h be integrable functions on [a,b] with f nonincreasing and
let 0 < g < h. Then the following integral inequalities hold true

" om0 1 (om0~ o~ M) — g

" b - a+A
< [t < [ (0MO -1 ~ fla+ 210 — )
a+A
< [ romoar,
where A satisfies
/ i = / ’ o(t)dt = /b :Lh(t)dt. (1.16)

Motivated by refinement of Steffensen’s inequality given in [93], Pecari¢, Perusi¢ and
Smoljak [61] obtained the following refined version of results given in Theorems 1.6 and
1.7.

Corollary 1.1 Ler h be a positive integrable function on a,b] and f, g be integrable func-
tions on [a,b] such that f/h is nonincreasing and 0 < g < 1. Then

[ soeta< [ (50 [H8 - L2 o — o)

</ “ o,

where A is given by (1.10).
If f/h is a nondecreasing function, then the reverse inequality in (1.17) holds.

(1.17)
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Corollary 1.2 Let h be a positive integrable function on [a,b] and f,g be integrable func-
tions on [a,b] such that f/h is nonincreasing and 0 < g < 1. Then

/b : fo)dr < /b : (f(t) - [% - %} h(1)[1 - g(t)]) dt

< [ rgtoya

where A is given by (1.11).
If f/h is a nondecreasing function, then the reverse inequality in (1.18) holds.

(1.18)

Furthermore, in [93] Wu and Srivastava proved a new sharpened and generalized ver-
sion of inequality (1.12). In [61] authors separated this result into two theorems to obtain
weaker conditions on A.

Theorem 1.12 Let f,g,h and  be integrable functions on [a,b] with f nonincreasing
andlet 0 < y(t) < g(t) <h(t)—wy(t), t € [a,b]. Then

[ g < [ s [170)~ st mlwiod

where A is given by (1.13).

Theorem 1.13 Let f,g,h and  be integrable functions on [a,b] with f nonincreasing
andlet 0 < y(t) < g(t) <h(t)—wy(t), t € [a,b]. Then

/bb Hdt + / [f(t) = f(b—A)w(t)dr < /ab F(O)g(t)dt

where A is given by (1.14).

The following theorem is Cerone’s generalization of Steffensen’s inequality given in
[15]. This generalization allows bounds that involve any two subintervals instead of re-
stricting them to include the end points.

Theorem 1.14 Let f, g : [a,b] — R be integrable functions on |a,b] and let f be nonin-
creasing. Further, let 0 < g < 1 and

l:./abg(t)dt:

where [c;,d;] C [a,b] fori= 1,2 and d\ < dy. Then

d» b dy
/c F)dt = r(ea,do) < / f(t)g(t)dtg/ F()dt +R(cr,dy)

J

holds, where

b
rlends) = [ (F(ex) = F0)gle)dr > 0

2
and

Rer.dy) = [ (7(0)~ f(a)g(de = 0.
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In 1959 Bellman gave an L” generalization of Steffensen’s inequality (see [11]). As
noted by many mathematicians Bellman’s result is incorrect as stated. A comprehensive
survey of corrected versions and generalizations of Bellman’s result can be found in [82].
In the following theorem we recall generalization of Bellman’s result obtained by Pachpatte
in [53].

Theorem 1.15 Let f,g,h be real-valued integrable functions defined on [0,1] such that

f(t) >0, h(t) >0, 1€ [0,1], f/h is nonincreasing on [0,1] and 0 < g < A, where A is a
real positive constant. If p > 1, then

( / 1g(r>f(r)dt)p <ar | " (1.19)

where A is the solution of the equation

/0/1 hP (1)dt = ﬁ (/01 hp(t)g(t)dt) (,/Olg(f)dt)p

In [24] Gauss mentioned the following inequality:

-1

Theorem 1.16 If f is a nonnegative nonincreasing function and k > 0, then

oo 4 oo
/k f(x)dxgwl/o X2 f(x)dx. (1.20)

In [59] Pecaric¢ proved the following result.

Theorem 1.17 Let G : [a,b] — R be an increasing function and let f : I — R be a non-
increasing function (I is an interval from R such that a,b,G(a),G(b) € I). If G(x) > x
then
G(b) b
/ Fx)dx < / f(x)G (x)dx. (1.21)
JG(a) Ja

If G(x) < x, the reverse inequality in (1.21) is valid.
If f is a nondecreasing function and G(x) > x then the inequality (1.21) is reversed.

Inequality (1.21) is usually called Gauss-Steffensen’s inequality. As pointed out in
[82] Gauss-Steffensen’s inequality includes as special cases three famous inequalities:
Volkov’s, Steffensen’s and Ostrowski’s inequality.

In [9] Alzer gave a lower bound for Gauss’ inequality (1.20). In fact, he proved the
following theorem.

Theorem 1.18 Let g : [a,b] — R be increasing, convex and differentiable, and let
f: I — R be nonincreasing function. Then

[ st e < [ peoe < [ et s 12
Ja  Jgla) " Ja ’

where
s(x) = b;g(a)(x—a)—l—g(a), (1.23)
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and
1(x) = &'(x0) (x = x0) + g(x0), xo € [a,b]- (1.24)
(I is an interval containing a,b,g(a),g(b),t(a) and t(b).)
If either g is concave or f is nondecreasing, then the reversed inequalities hold.

Remark 1.1 If we consider only the left-hand side inequality in (1.22), interval I should
only contain a,b, g(a) and g(b). When considering the right-hand side inequality in (1.22),
interval I should also contain #(a) and #(b).

1.2 Convex functions

In this section we give definitions and some properties of convex functions. Convex func-
tions are very important in the theory of inequalities. The third chapter of the classical
book of Hardy, Littlewood and Pdlya [27] is devoted to the theory of convex functions (see
also [52]).

Definition 1.1 Let I be an interval in R. A function f: I — R is called convex if

JAx+(1=A)y) SAf(x)+(1=2A)f(y) (1.25)

for all points x,y € I and all A € [0,1]. It is called strictly convex if the inequality (1.25)
holds strictly whenever x and y are distinct points and A € (0,1).

If the inequality in (1.25) is reversed, then f is said to be concave. It is called strictly
concave if the reversed inequality (1.25) holds strictly whenever x and y are distinct points
and A € (0,1).

If f is both convex and concave, f is said to be affine.

Remark 1.2 (a) Forx,y €1, p,q>0,p+qg>0,(1.25)is equivalent to

f (pX+qy) < pf(x) +qf(y)'
p+q p+q

(b) The simple geometrical interpretation of (1.25) is that the graph of f lies below its
chords.

(¢) If x1,x2,x3 are three points in / such that x; < x, < x3, then (1.25) is equivalent to

xp fx) 1
x f(x2) 1] = (3 —x2)f(x1) + (x1 —x3)f(x2) + (x2 —x1) f(x3) > 0
x3 f(x3) 1
which is equivalent to
Flra) € 222 ) + 2 f (),
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or, more symmetrically and without the condition of monotonicity on x,x2,x3

fx) n f(x2) . f(x3)

(1 —22) (1 —x3) (2 —x3)(x2 —x1) (x3—x1)(x3—x2)>0'

Proposition 1.1 If f is a convex function on I and if x1 < y1, x3 < ya, X| # X2, Y1 # V2,
then the following inequality is valid

fla) —fx) _ fO2) = fOn)
Xy — X1 ~ w-n

If the function f is concave, the inequality is reversed.

Definition 1.2 Let I be an interval in R. A function f : I — R is called convex in the
Jensen sense, or J-convex on I (midconvex, midpoint convex) if for all points x,y € I the

inequality
x+y\ _ S)+ )
f < 2 )S > (1.26)

holds. A J-convex function is said to be strictly J-convex if for all pairs of points (x,y),x #
v, strict inequality holds in (1.26).

In the context of continuity the following criteria of equivalence of (1.25) and (1.26) is
valid.

Theorem 1.19 Let f : I — R be a continuous function. Then f is a convex function if
and only if f is a J-convex function.

Definition 1.3 Let I be an interval in R. A function f : I — R is called Wright convex
function if for each x <y, 7> 0, x,y+ z € I, the inequality

fx+z) = f(x) < fy+2)— f)

holds.

Next, we want do define convex functions of higher order, but first we need to define
divided differences.

Definition 1.4 Let f be a function defined on [a,b]. The n-th order divided difference of
f at distinct points xo,x1,...,%, in [a,b] is defined recursively by

b fl=rxj), 7=0,....n

and
X1y ooy X 1= %05+ -« s Xn—15 f]
Xn — X0

[X0,X1,..., x5 f] = (1.27)
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Remark 1.3 The value [xg,x],...,x,; f] is independent of the order of the points xg, . . . , X;.
Previous definition can be extended to include the case in which some or all of the points
coincide by assuming that xo < --- < x; and letting

()
I;X',’x;f]:'f '(X)7
N—— ]!
Jj+1 times

provided that £(/)(x) exists. Note that (1.27) is equivalent to

[0, .. X f] = 2 PO ere o () = ﬁ(xk —xj)
P Rt/ R - ) - :
=0 @' (%) =0 !
J#k
Definition 1.5 Ler n € N. Function f : [a,b] — R is said to be n-convex on |a,b] if and
only if for every choice of n+ 1 distinct points xo,x1, ..., X, in [a,b]
[x0,X1,...,xn; f] > 0. (1.28)

If the inequality in (1.28) is reversed, function f is said to be n-concave on [a,b]. If the
inequality is strict, f is said to be strictly n—convex (n—concave) function.

Remark 1.4 Specially, 0—convex function is nonnegative function, 1—convex function
is nondecreasing function, 2-convex function is convex function.

Theorem 1.20 If /") exists, then f is n—convex if and only if f™ > 0.

Definition 1.6 A positive function f is said to be logarithmically convex on an interval
I C R iflogf is a convex function on I, or equivalently if for all x,y € I and all o, € [0, 1]

flox+(1—a)y) < f“x)f % (y). (1.29)

For such function f, we shortly say f is log-convex.
It is said to be log-concave if the inequality in (1.29) is reversed.

Definition 1.7 A positive function f is said to be log-convex in the Jensen sense if for
eachx,y €1

7 (5) <rtrw)

holds, i.e. iflog f is convex in the Jensen sense.

As a consequence of results from Remark 1.2 (c¢) and Proposition 1.1 we get the fol-
lowing inequality for log-convex function:

[FBI < [f@] P [f (o)) (1.30)
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Corollary 1.3 For a log-convex function f on interval I and p,q,r,s € I such that
p<r,q<s, p#£q,r+s, itholds

1 e
P—q r—s
(L) < (£0)™, W)
fa) f(s)
Inequality (1.31) is known as Galvani’s theorem for log-convex functions f: I — R.

At the end of this introductory section we overview one subclass of convex functions,
so-called s—convex functions (see [14]).

Definition 1.8 Let s be a real number, s € (0,1]. A function f : [0,00) — [0,00) is said to
be s—convex if

flax+(1—a)y) <o'f(x)+ (1 — o) f(v). (1.32)

forall x,y € [0,00) and a € [0, 1]
This class of function is recently even further refined (for details see [88]).

Definition 1.9 Let J be an open interval and h : J — R non-negative function, h % 0. We
say that f : I — R is an h—convex function if f is non-negative and for all x,y € I and
a € (0,1) we have

Flor+ (1= a)y) < h(0) £(x) + (1 — @) (). (1.33)

1.3 Exponentially convex functions

In this section we introduce definition of exponential convexity as given by Bernstein in
[12] (see also [7], [50], [51]). In this section [ is an open interval in R.

Definition 1.10 A function h: I — R is said to be exponentially convex on I if it is
continuous and

2": Ei&ih(xi+x;) >0

i,j=1

holds for every n € N and all sequences (&), N and (xu), N of real numbers, such that
xi+x;el, 1 <i,j<n
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The following Proposition follows directly from the previous Definition.
Proposition 1.2 For function h : I — R the following statements are equivalent:
(i) his exponentially convex

(ii) h is continuous and

Y & (x’jxf ) >0, (1.34)

i,j=1

for all n € N, all sequences (&,),.N of real numbers, and all sequences (x,),.N
inl.

Note that for n = 1, it follows from (1.34) that exponentially convex function is non-
negative.

Directly from a definition of positive semi-definite matrix and inequality (1.34) we get
the following result.

Corollary 1.4 If h is exponentially convex on I, then the matrix

).

is a positive semi-definite matrix. Specially,

det [h (’%)} >0, (1.35)

ij=1
for every n € N and every choicex; €1, i=1,...,n.

Remark 1.5 Note that for n = 2 from (1.35) we obtain
hxtYhlxa) — I (%) > 0.

Hence, exponentially convex function is log-convex in the Jensen sense, and, being con-
tinuous, it is also log-convex function.

We continue with the definition of n-exponentially convex function.

Definition 1.11 A function h : I — R is n-exponentially convex in the Jensen sense on [

if

3 agn (252 20

ij=1
holds for all choices of & e Randx; €1, i=1,...,n.

A function & : I — R is n-exponentially convex on [ if it is n-exponentially convex in
the Jensen sense and continuous on /.
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Remark 1.6 It is clear from the definition that 1-exponentially convex functions in the
Jensen sense are nonnegative functions.

Also, n-exponentially convex functions in the Jensen sense are k-exponentially convex
in the Jensen sense for every k < n, k € N.

A function i : I — R is exponentially convex in the Jensen sense on / if it is n—exponentially
convex in the Jensen sense for all n € N.

One of the most important properties of exponentially convex functions is their integral
representation.

Theorem 1.21 The function y : I — R is exponentially convex on I if and only if

o

w(x) = / do(r), xel

oo
for some non-decreasing function o : R — R.

Proof. See [7,p. 211]. O
Remark 1.7 A function y : I — R is log-convex in the Jensen sense, i.e.

2
W(%) <w(x)y(y), forallx,yel, (1.36)

if and only if
xX+y
o’y (x)+20By (T) +B°w(y) =0

holds for every o, € R and x,y € I, i.e., if and only if y is 2-exponentially convex in the
Jensen sense. By induction from (1.36) we have

1 1 €1 1—L
U/(?XWL (1?) )’> <Syx)Fy(y) *.
Therefore, if y is continuous and y(x) = 0 for some x € 1, then from the last inequality

and nonnegativity of y (see Remark 1.6) we get

1 1
v(y) :gij}_ﬂW(?x—F (1—?)))) =0 forallyel.

Hence, 2-exponentially convex function is either identically equal to zero or it is strictly
positive and log-convex.
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1.4 Functions convex at point ¢

In this section we introduce definition of a class of functions that extends the class of
convex functions as given by Pecari¢ and Smoljak in [75]

Definition 1.12 Let f : [a,b] — R be a function and ¢ € (a,b). We say that [ belongs
to class M {[a,b] (f belongs to class #5[a,b]) if there exists a constant A such that the
function F(x) = f(x) — Ax is nonincreasing (nondecreasing) on |a,c| and nondecreasing
(nonincreasing) on [c,b).

If f € a,b]or fe.dla,b]and f'(c) exists, then f'(c) = A.
Let us show this for f € .#{[a,b]. Since F is nonincreasing on [a, c] and nondecreasing on
[¢,b] for any distinct points xj,x, € [a,c] and y1,ys € [c,b] we have

x1,x0:F] = [x1,x2; f] —A <0 < [y1,y2: f] —A = [y1,32: F].
Therefore, since f” (c) and f7, (c) exist, letting x; = y; = ¢, x2 / ¢ and y> \, ¢ we get
L) <A< Fi(o). (1.37)

Remark 1.8 We mention here that Florea and Piltdnea recently introduced (see [21]) the
following more general definition of the convexity of a function f : [a,b] — R at a point
c € (a,b):

fle)+fxty—c) < f(x)+ 1),
for all x,y € [a,b] such that x < ¢ <y. This property is denoted by f € Conv.([a,b]).
We can easily state that .#{ [a,b] C Conv.([a,b]), but the two classes of punctual convex
functions are not equal. For example, consider the function

o X, xe[-1,1];
fx) {2|x|, xe[-2,2]\[-1,1].

We have f € Convy([—2,2]) (see Example 2 in [21]). On the other hand, clearly
f¢.1-2,2].

In the following lemma and theorem we give a connection between the class of func-
tions .7 [a,b] and the class of convex functions which was obtained in [75].

Lemma 1.1 If f: [a,b] — R is convex (concave), then f € M |a,b] (f € #5|a,b]) for
every ¢ € (a,b).

Proof. If f is convex, then f’ and f/ exist (see [71]). Hence, for every x1,x, € [a,c] and
y1,¥2 € [c,b] it holds
f(2) = f(1)

f(x2)_f(x1) Sf/,(c) Sfi(c) < ~ 7

X2 — X1 Y2 =1



