
Chapter1
Introduction and Preliminaries

The notion of convexity plays an important role in different branches of mathematics.

Definition 1.1 Let V be a real vector space.
(a) A subset C of V is called convex, if for any two points v1,v2 ∈C, the line segment

between them also lies in C, that is v1 +(1− )v2 ∈C for all  ∈ [0,1].
(b) A function f :C (⊂V )→ R is called convex, if its domainC is a convex set, and for

any two points v1,v2 ∈C, and all  ∈ [0,1], we have that

f (v1 +(1− )v2) ≤  f (v1)+ (1− ) f (v2) .

The most important inequality concerning convex functions is the Jensen’s inequality,
named after the Danish mathematician Johan Jensen. It was proven by Jensen in [49].
We emphasize the following two variants of Jensen’s inequality:

Theorem A. (discrete Jensen’s inequality, see [36]) Let C be a convex subset of a real
vector space V , and let f : C → R be a convex function. If p1, . . . , pn are nonnegative

numbers with
n

i=1

pi = 1, and v1, . . . ,vn ∈C, then

f

(
n


i=1

pivi

)
≤

n


i=1

pi f (vi) (1.1)

holds. Particularly, we have

f

(
1
n

n


i=1

vi

)
≤ 1

n

n


i=1

f (vi). (1.2)
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2 1 INTRODUCTION AND PRELIMINARIES

Theorem B. (integral Jensen’s inequality, see [36]) Let g be an integrable function on a
probability space (X ,A ,) taking values in an interval I ⊂ R. Then

∫
X

gd lies in I. If f

is a convex function on I such that f ◦ g is integrable, then

f

⎛⎝∫
X

gd

⎞⎠≤
∫
X

f ◦ gd .

Various attempts have been made by many authors to refine either the discrete or the
integral Jensen’s inequality (see the book [36] and the references therein). A multitude of
applications underscores the importance of refinements of different Jensen’s inequalities.

The following result which provide the starting point for our discussion is from Brnetić
at al. [12].

Theorem 1.1 Suppose I is a real interval. If f : I → R is a convex function, then for all
t ∈ [0,1] we have

f

⎛⎜⎜⎝
n

i=1

xi

n

⎞⎟⎟⎠≤ 1
n

n


i=1

f ((1− t)xi + txi+1) ≤

n

i=1

f (xi)

n
,

where xi ∈ I (1 ≤ i ≤ n) and xn+1 = x1.

Recently, a lot of papers have been appeared dealing with generalizations of the pre-
vious theorem (see e.g. [13, 37]). The whole group of such results is now often known
by the collective title “cyclic refinements”. They find applications mainly in the theory of
means and in information theory.

The title of this book indicates clearly the content of it. A synthesis of recent progress
in the topic of cyclic refinements of different types of Jensen’s inequalities is presented
with the emphasis on their applications in information theory.

Let 2 ≤ k ≤ n, and let i ∈ {1, . . . ,n} and j ∈ {0, . . . ,k−1}. In further parts of this book
i+ j always means i+ j−n in case of i+ j > n.
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National Foundations for Scientific Research Grant No. K101217 and Széchenyi 2020
under the EFOP-3.6.1-16-2016-00015. J. Pečarić is supported by the Ministry of Education
and Science of the Russian Federation (the Agreement number No. 02.a03.21.0008)



Chapter2
Cyclic Improvement of
Jensen’s Inequality

In this chapter we give cyclic refinements of Jensen’s inequality and their applications.

2.1 A refinement of Jensen’s inequality

We start with the special following Jensen’s inequality

f

(
n

i=1 xi

n

)
≤ n

i=1 f (xi)
n

.

Throughout this section we are going to use some of the following hypotheses:
(H1) Let I ⊂ R be an interval, x := (x1, ...,xn) ∈ In, and  := (1, ...,k) be a positive

k-tuple such thatk
i=1i = 1 for some k, 2 ≤ k ≤ n.

(H2) Let f : I → R be a convex function.
(H3) Let h, g : I → R be continuous and strictly monotone functions.

Theorem 2.1 Let (H1), (H2) be fulfilled. Then

f

(
n

i=1 xi

n

)
≤ 1

n

n


i=1

f

(k−1


j=0

 j+1xi+ j

)
≤ n

i=1 f (xi)
n

. (2.1)
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4 2 CYCLIC IMPROVEMENT OF JENSEN’S INEQUALITY

Proof. First, since f is convex, by Jensen’s inequality we have

n


i=1

f

(k−1


j=0

 j+1xi+ j

)
≤

n


i=1

k−1


j=0

 j+1 f (xi+ j)

=
n


i=1

f (xi)
k


j=1

 j =
n


i=1

f (xi).

On the other hand, since f is convex, by Jensen’s inequality, we have

1
n

n


i=1

f

(k−1


j=0

 j+1xi+ j

)
≥ f

(n
i=1

k−1
j=0 j+1xi+ j

n

)

= f

(
n

i=1 xik
j=1 j

n

)
= f

(
n

i=1 xi

n

)
.

�

Theorem 2.1 is a generalization of Theorem 4 in [12].

2.1.1 Cyclic mixed symmetric means

Assume (H1) for the positive n-tuple x. We define the power means of order r ∈ R as
follows:

Mr(xi, ...,xi+k−1;1, ...,k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
k−1

j=0

 j+1xr
i+ j

) 1
r

; r �= 0,

k−1

j=0

x
 j+1
i+ j ; r = 0,

and cyclic mixed symmetric means corresponding to (2.1) are

Mr,s(x, ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
n

n

i=1

Ms
r (xi, ...,xi+k−1;1, ...,k)

) 1
s

; s �= 0,(
n

i=1

Mr(xi, ...,xi+k−1;1, ...,k)
) 1

n

; s = 0.

(2.2)

The standard power means of order r ∈ R for the positive n-tuple x, are

Mr(x1, ...,xn) = Mr(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
n

n

i=1

xr
i

) 1
r

; r �= 0,(
n

i=1

xi

) 1
n

; r = 0.

The bounds for cyclic mixed symmetric means are power means, as given in the fol-
lowing result.
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Corollary 2.1 Assume (H1) for the positive n-tuple x. Let r,s ∈ R such that r ≤ s. Then

Mr(x) ≤ Ms,r(x, ) ≤ Ms(x). (2.3)

Proof. Assume r, s �= 0. To obtain (2.3), we apply Theorem 2.1, either for the function
f (x) = x

s
r (x > 0) and the n-tuples (xr

1, . . . ,x
r
n) in (2.1) and then raising the power 1

s , or
f (x) = x

r
s (x > 0) and (xs

1, . . . ,x
s
n) and raising the power 1

r .
When r = 0 or s = 0, we get the required results by taking limit. �

Special cases of Corollary 2.1 can be found in [11] (see Theorem 4 with Corollaries
4.1–4.4). Namely, the result of this theorem is an inequality (2.3) for r = 0, s = 1, n = 3
and k = 3.
Assume (H1) and (H3). Then we define the generalized means with respect to (2.1) as
follows:

Mg,h(x, ) := g−1

(
1
n

n


i=1

(g ◦ h−1)(
k−1


j=0

 j+1h(xi+ j))

)
.

Let q : I → R be a continuous and strictly monotone function then the cyclic quasi-
arithmetic means are given by

Mq(x) := q−1

(
1
n

n


i=1

q(xi)

)
.

The relation among the generalized means and cyclic quasi-arithmetic means is given in
the next corollary.

Corollary 2.2 Assume (H1) and (H3). Then

Mh(x) ≤ Mg,h(x, ) ≤ Mg(x) (2.4)

if either g◦ h−1 is convex and g is strictly increasing or g◦ h−1 is concave and g is strictly
decreasing.

Proof. First, we can apply Theorem 2.1 to the function g ◦ h−1 and the n-tuples
(h(x1), . . . ,h(xn)), then we can apply g−1 to the inequality coming from (2.1). This gives
(2.4). �

For instance, if we put g(x) = x and h(x) = lnx in Corollary 2.2 we obtain

M0(x1, ...,xn) ≤ 1
n

n


i=1

M0(xi, ...,xi+k−1;1, ...,k) ≤ M1(x1, ...,xn).

which is a special case of Corollary 2.1 as well.

Remark 2.1 Under the conditions (H1), we define

1( f ) = 1(x, , f ) :=
1
n

n


i=1

f (xi)− 1
n

n


i=1

f (
k−1


j=0

 j+1xi+ j),
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2( f ) = 2(x, , f ) :=
1
n

n


i=1

f (
k−1


j=0

 j+1xi+ j)− f

(
1
n

n


i=1

xi

)
,

where f : I → R is a function and 2 ≤ k ≤ n. The functionals f → i( f ) are linear, i = 1,2,
and Theorem 2.1 implies that

i( f ) ≥ 0, i = 1,2

if f : I → R is a convex function.

2.1.2 m-Exponential convexity

For log-convexity, exponential convexity and m-exponential convexity of the functionals
obtained from the interpolations of the discrete Jensen’s inequality, we refer [36] and ref-
erences therein.

We apply the method given in [83], to prove the m-exponential convexity and exponen-
tial convexity of the functionals f → i( f ) for i = 1,2, together with the Lagrange type
and Cauchy type mean value theorems.

Definition 2.1 (see [83]) A function g : I → R is called m-exponentially convex in the
Jensen sense if

m


i, j=1

aia jg

(
xi + x j

2

)
≥ 0

holds for every ai ∈ R and every xi ∈ I, i = 1,2, ...,m.
A function g : I → R is m-exponentially convex if it is m-exponentially convex in the

Jensen sense and continuous on I.

Note that 1-exponentially convex functions in the Jensen sense are in fact the nonnegative
functions. Also, m-exponentially convex functions in the Jensen sense are n-exponentially
convex in the Jensen sense for every n ∈ N, n ≤ m.

Proposition 2.1 If g : I →R is an m-exponentially convex function, then for every xi ∈ I,

i = 1,2, ...,m and for all n∈N, n≤m the matrix
[
g
(

xi+x j
2

)]n

i, j=1
is a positive semi-definite

matrix. Particularly,

det

[
g

(
xi + x j

2

)]n

i, j=1
≥ 0

for all n ∈ N, n = 1,2, ...,m.

Definition 2.2 A function g : I → R is exponentially convex in the Jensen sense, if it is
m-exponentially convex in the Jensen sense for all m ∈ N.

A function g : I → R is exponentially convex if it is exponentially convex in the Jensen
sense and continuous.
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Remark 2.2 It is easy to see that a positive function g : I → R is log-convex in the Jensen
sense if and only if it is 2-exponentially convex in the Jensen sense, that is

a2
1g(x)+2a1a2g

(
x+ y

2

)
+a2

2g(y) ≥ 0

holds for every a1,a2 ∈ R and x,y ∈ I.
Similarly, if g is 2-exponentially convex, then g is log-convex. On the other hand, if g

is log-convex and continuous, then g is 2-exponentially convex.

In sequel, we need the well known notion of “Divided difference”.

Definition 2.3 The second order divided difference of a function g : I → R at mutually
different points y0,y1,y2 ∈ I is defined recursively by

[yi;g] = g(yi), i = 0,1,2

[yi,yi+1;g] =
g(yi+1)−g(yi)

yi+1− yi
, i = 0,1

[y0,y1,y2;g] =
[y1,y2;g]− [y0,y1;g]

y2− y0
. (2.5)

Remark 2.3 The value [y0,y1,y2;g] is independent of the order of the points y0,y1, and
y2. By taking limits this definition may be extended to include the cases in which any two
or all three points coincide as follows: for all y0, y1, y2 ∈ I such that y2 �= y0

lim
y1→y0

[y0,y1,y2;g] = [y0,y0,y2;g] =
g(y2)−g(y0)−g

′
(y0)(y2 − y0)

(y2− y0)
2

provided that g′ exists, and furthermore, taking the limits yi → y0, i = 1,2 in (2.5), we get

[y0,y0,y0;g] = lim
yi→y0

[y0,y1,y2;g] =
g
′′
(y0)
2

for i = 1,2

provided that g
′′

exist on I.

Now, we give the m-exponential convexity for the linear functionals i( f ) (i = 1,2).

Theorem 2.2 Assume I ⊂ R is an interval, and assume  = {t | t ∈ J} is a family of
functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;t ] (t ∈ J) is
m-exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ I. Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1.
Then t → i(t ) (t ∈ J) is an m-exponentially convex function in the Jensen sense on I
for each i = 1,2. If the function t → i(t) (t ∈ J) is continuous for i = 1,2, then it is
m-exponentially convex on I for i = 1,2.
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Proof. Fix i = 1,2.
Let tk, tl ∈ J, tkl := tk+tl

2 and bk,bl ∈ R for k, l = 1,2, ...,n, and define the function  on
I by

 :=
n


k,l=1

bkbltkl .

Since the function t → [y0,y1,y2;t ] (t ∈ J) is m-exponentially convex in the Jensen sense,
we have

[y0,y1,y2; ] =
n


k,l=1

bkbl[y0,y1,y2;tkl ] ≥ 0.

Hence  is a convex function on I. Therefore we have i() ≥ 0, which yields by the
linearity of i, that n


k,l=1

bkbli(tkl ) ≥ 0.

We conclude that the function t → i(t) (t ∈ J) is an m-exponentially convex function in
the Jensen sense on I.
If the function t → i(t) (t ∈ J) is continuous on I, then it is m-exponentially convex on
I by definition. �

As a consequence of the above theorem we can give the following corollaries.

Corollary 2.3 Assume I ⊂ R is an interval, and assume  = {t | t ∈ J} is a family of
functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;t ] (t ∈ J)
is exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ I. Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1. Then
t → i(t) (t ∈ J) is an exponentially convex function in the Jensen sense on I for i = 1,2.
If the function t → i(t) (t ∈ J) is continuous, then it is exponentially convex on I for
i = 1,2.

Corollary 2.4 Assume I ⊂ R is an interval, and assume  = {t : t ∈ J} is a family of
functions defined on an interval I ⊂ R, such that the function t → [y0,y1,y2;t ] (t ∈ J) is
2-exponentially convex in the Jensen sense on I for every three mutually different points
y0,y1,y2 ∈ I. Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1. Then
the following two statements hold for i = 1,2:

(i) If the function t →i(t) (t ∈ J) is positive and continuous, then it is 2-exponentially
convex on I, and thus log-convex.

(ii) If the function t →i(t) (t ∈ J) is positive and differentiable, then for every s,t,u,v∈
J, such that s ≤ u and t ≤ v, we have

us,t(i,) ≤ uu,v(i,) (2.6)

where

us,t(i,) :=

⎧⎪⎨⎪⎩
(
i(s)
i(t)

) 1
s−t

, s �= t,

exp

(
d
dsi(s)
i(s)

)
, s = t

(2.7)

for s,t ∈ .
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Proof. Fix i = 1,2.

(i) The proof follows by Remark 2.2 and Theorem 2.2.

(ii) From the definition of a convex function  on I, we have the following inequality
(see [82, page 2])

 (s) −  (t)
s − t

≤  (u) −  (v)
u − v

, (2.8)

∀s, t,u,v ∈ J such that s ≤ u, t ≤ v, s �= t, u �= v.
By (i), s→i(s), s∈ J is log-convex, and hence (2.8) shows with(s) = logi(s),
s ∈ J that

logi(s) − logi(t)
s− t

≤ logi(u)− logi(v)
u− v

(2.9)

for s ≤ u, t ≤ v, s �= t, u �= v, which is equivalent to (2.6). For s = t or u = v (2.6)
follows from (2.9) by taking limit.

�

Remark 2.4 Note that the results from Theorem 2.2, Corollary 2.3, Corollary 2.4 are
valid when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0, for a family of differen-
tiable functions t such that the function t → [y0,y1,y2;t ] is m-exponentially convex in the
Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense),
and moreover, they are are also valid when all three points coincide for a family of twice
differentiable functions with the same property. The proofs can be obtained by recalling
Remark 2.3 and suitable characterization of convexity.

The following result given in [35] is related to the first condition of Theorem 2.2.

Theorem 2.3 Assume I ⊂ R is an interval, and assume  = {t | t ∈ J} is a family of
twice differentiable functions defined on an interval I ⊂R such that the function t �→  ′′

t (x)
(t ∈ J) is exponentially convex for every fixed x ∈ I. Then the function t �→ [y0,y1,y2;t ]
(t ∈ J) is exponentially convex in the Jensen sense for any three points y0, y1, y2 ∈ I.

Remark 2.5 It comes from either the conditions of Theorem 2.3 or the proof of this
theorem that the functions t , t ∈ J are convex.

2.1.3 Mean value theorems

Now we formulate mean value theorems of Lagrange and Cauchy type for the linear func-
tionals i( f ) (i = 1,2) defined in Remark 2.1.

Theorem 2.4 Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1
and g ∈C2[a,b]. Then there exists  ∈ [a,b] such that

i (g) =
1
2
g′′ ( )i

(
x2) ; i = 1,2.
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Proof. Fix i = 1,2.
Since g ∈C2[a,b], there exist the real numbers m = min

x∈[a,b]
g′′(x) and M = max

x∈[a,b]
g′′(x).

It is easy to show that the functions 1 and 2 defined on [a,b] by

1(x) =
M
2

x2 −g(x) ,

and
2(x) = g(x)− m

2
x2,

are convex.
By applying the functional i to the functions 1 and 2, we have the properties of i that

i

(
M
2

x2−g(x)
)
≥ 0,

⇒ i (g) ≤ M
2
i
(
x2) , (2.10)

and
i

(
g(x)− m

2
x2
)

� 0

⇒ m
2
i
(
x2)≤ i (g) . (2.11)

From (2.10) and from (2.11), we get

m
2
i
(
x2)≤ i (g) ≤ M

2
i
(
x2) .

If i
(
x2
)

= 0, then nothing to prove. If i
(
x2
) �= 0, then

m ≤ 2i (g)
i (x2)

≤ M.

Hence we have

i (g) =
1
2
g′′ ( )i

(
x2) .

�

Theorem 2.5 Let i( f ) (i = 1,2) be the linear functionals constructed in Remark 2.1
and g,h ∈C2[a,b]. Then there exists  ∈ [a,b] such that

i (g)
i (h)

=
g′′ ( )
h′′ ( )

; i = 1,2,

provided that i (h) �= 0 (i = 1,2).


